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Abstract. Classical quantitative information flow analysis often con-
siders a system as an information-theoretic channel, where private data
are the only inputs and public data are the outputs. However, for sys-
tems where an attacker is able to influence the initial values of public
data, these should also be considered as inputs of the channel. This pa-
per adapts the classical view of information-theoretic channels in order
to quantify information flow of programs that contain both private and
public inputs.

Additionally, we show that our measure also can be used to reason
about the case where a system operator on purpose adds noise to the
output, instead of always producing the correct output. The noisy out-
come is used to reduce the correlation between the output and the input,
and thus to increase the remaining uncertainty. However, even though
adding noise to the output enhances the security, it reduces the reliabil-
ity of the program. We show how given a certain noisy output policy,
the increase in security and the decrease in reliability can be quantified.

1 Introduction

Qualitative security properties, such as noninterference [12] and observational
determinism [27,14], are essential for applications where private data need strict
protection, such as Internet banking, e-commerce, and medical information sys-
tems, since they prohibit any information flow from a high security level to a
low security level1. However, for many applications in which we want or need to
reveal information that depends on private data, these absolutely confidential
properties are not appropriate. A typical example is a password checker (PWC)
where an attacker (user) tries a string to guess the password [11,3,24]. Even
when the attacker makes a wrong guess, secret information has been leaked, i.e.,
it reveals information about what the real password is not. Thus, despite the
correct functioning, PWC is rejected.

Therefore, an alternative approach for such applications is to relax the abso-
lute properties by quantifying the information flow and determining how much

1 For simplicity, throughout this paper, we consider a simple two-point security lattice,
where the data is divided into two disjoint subsets, of private (high) and public (low)
security levels, respectively.
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secret information has been leaked. This information can be used to decide
whether we can tolerate minor leakages. A quantitative security theory can be
seen as a generalization of an absolute one.

Classical quantitative security analysis. Classical quantitative theory sees a pro-
gram as a channel in the information-theoretic sense, where the secret S is the
only input and the observable final outcomes O are the output [3]. An attacker,
by observing O , might be able to derive information about S . The quantita-
tive analysis of information flow then concerns the amount of private data that
an attacker might learn. The analysis is based on the notion of entropy. The
entropy of a random private variable expresses the uncertainty of an attacker
about its value, i.e., how difficult it is for an attacker to discover its value. The
leakage of a program is typically defined as the difference between the secret’s
initial uncertainty, i.e., the uncertainty of the attacker about the private data
before executing the program, and the secret’s remaining uncertainty, i.e., the
uncertainty of the attacker after observing the program’s public outcomes, i.e.,

Information leakage = Initial uncertainty - Remaining uncertainty.

Programs that contain low input. This paper considers programs where an at-
tacker is able to influence the initial values of low variables. This is a popular
kind of programs with many real-world applications, e.g., login systems, the
PWC, or banking system. For such programs, in addition to the secret, the ini-
tial low values are another input to the channel. Therefore, the traditional form
of channel becomes invalid for such programs.

To apply the traditional channel where the only input is the secret to this
situation, we consider the initial low values as parameters of the channel. In
particular, we consider a collection of sets of initial low values, and for each set,
we construct a channel corresponding to these low values. Each channel is seen
as a test, i.e., the attacker sets up the low parameters to test the system. Since
the attacker knows the program code, then he knows which test would help him
to gain the most information. Therefore, the leakage of the program with low
input is defined as the maximum leakage over all possible tests.

A new measure for the remaining uncertainty. The classical approaches of the
one-try attack model often base the analysis on the Smith’s definition of con-
ditional min-entropy [24]. However, the literature also admits that there might
be different measures for different situations [5]. This paper argues that in some
cases, Cachin’s version of conditional min-entropy [7] might be a more reason-
able measure, i.e., it gives more intuitive-matching results than Smith’s version.
Thus, we propose to consider Cachin’s version as a valid measure for the remain-
ing uncertainty. We believe that this measure has not previously been used in
the theory of quantitative information flow.

The literature argues that observable outcomes would reduce the initial un-
certainty of the attacker on the secret; and thus, the value of leakage cannot be
negative. However, we show that this non-negativeness property does not always
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hold, for example in case the output of the program contains noise. The idea is
that to enhance the security, the system operator might add noise to the out-
put, i.e., instead of always producing the exact outcomes, the program might
sometimes report a noisy one. The noisy-output policy makes the outcomes of
program more random, and thus, it reduces the correlation between the output
and the input. As a consequence, the noisy-output policy increases the remain-
ing uncertainty, and the value of leakage might become negative. This property
might open the door for a new understanding of how the measure of uncertainty
should be.

To design a noisy-output policy. Adding noise enhances the security, but reduces
the program’s reliability, i.e., the probability that a program produces the correct
outcomes. The totally random output might achieve the best confidentiality, but
these outcomes are practically useless. Thus, it is clear that a noisy-output policy
should consider the balance between confidentiality and reliability.

This paper discusses how to construct an efficient noisy-output policy such
that the attacker cannot derive secret information from the public outcomes,
while a certain level of reliability is still preserved. Since the policy is kept in
secret, i.e., we do not want the attacker to find out that the system has been
modified, the policy needs to satisfy some properties of the system. In this way,
the noisy-output policy would help to protect the system effectively, while it still
preserves the program’s function at the same time.

Contributions. We propose a model of quantitative security analysis for pro-
grams that contain low input. This kind of programs has a vast application, i.e.,
any system with user interface. Examples of such systems include login systems,
web-based applications, or online banking systems, to name a few. We also pro-
pose to consider Cachin’s version of conditional min-entropy as a new measure
for the notion of remaining uncertainty in the model of one-try attack. Besides,
we also discuss an important property of the information flow, i.e., the quantity
of information flow might be negative. This observation might change the clas-
sical view of how to define the quantity of leakage. Finally, we give an algorithm
to generate noisy outcomes, while still preserving a certain level of the system’s
reliability. This idea can be implemented as a policy to enhance the security for
applications.

Organization of the Paper. Section 2 presents the preliminaries. Then, Sec-
tion 3 discusses the classical analysis, and presents our quantitative security
analysis model for programs that contain low input. We also show the appli-
cation of our measure. Section 4 discusses when negative information flow is
expected, and how to construct and evaluate a noisy-output policy. Section 5
discusses related work, while Section 6 concludes, and discusses future work.
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2 Preliminaries

2.1 Probabilistic Distribution

Let X be a discrete random variable with the carrier X = {x1, . . . , xn}. A
probability distribution π over a set X is a function π : X → [0, 1], such that the
sum of the probabilities of all elements over X is 1, i.e.,

∑
xi∈X π(xi) = 1. If X is

uncountable, then
∑

xi∈X π(xi) = 1 implies that π(xi) > 0 for countably many
xi ∈ X. The probabilistic behavior of X is then simply given by probabilities
p(X = xi) = π(xi).

When X is clear from the context, we use the notation π = {p(x1), p(x2), . . . ,
p(xn)} to denote the probabilities of elements in X, i.e., p(X = xi).

2.2 Min-entropy

Let X and Y denote two discrete random variables. Let p(X = x) denote the
probability that X = x, and let p(X = x|Y = y) denote the conditional proba-
bility that X = x when Y = y.

Definition 1. The Rényi’s min-entropy of a random variable X is defined as
[24]: HRényi (X) = − log maxx∈X p(X = x).

Rényi did not define the notion of conditional min-entropy, and there are
different definitions of this notion.

Definition 2 (Smith’s version of conditional min-entropy [24]). The
conditional min-entropy of a random variable X given Y is,

HSmith (X |Y ) = − log
∑

y∈Y

p(Y = y) ·max
x∈X

p(X = x|Y = y).

Definition 3 (Cachin’s version of conditional min-entropy [7]). The
conditional min-entropy of a random variable X given Y is,

HCachin (X |Y ) = −
∑

y∈Y

p(Y = y) · log max
x∈X

p(X = x|Y = y).

2.3 Information-Theoretic Channel

The quantitative security analysis in the information-theoretic sense models the
system as a channel with the secret as the input and the observables as the
output. Formally, an information-theoretic channel is a triple (X,Y,M), where
X represents a finite set of secret inputs, Y represents a finite set of observable
outputs, and M is a |X| × |Y| channel matrix which contains the conditional
probabilities p(y|x) for each x ∈ X and y ∈ Y. Thus, each entry of M is a real
number between 0 and 1, and each row sums to 1.



Quantitative Security Analysis for Programs 81

2.4 Basic Settings for the Analysis

To argue why a program is considered more dangerous than another, we need
to set up some basic settings for the discussion. First, we assume that programs
always terminate, and the attacker knows its source code. To aim for simplicity
and clarity, rather than full generality, following [24], we restrict to programs
with just a single high security input S and a single low security input L. Since
the high security output is irrelevant, programs only give a low security outcome
O . Our goal is to quantify how much information about S is deduced by the
attacker who can influence L, and observe the execution traces of O , i.e., a
sequence of values of O obtained from the program’s execution. We also assume
that the sets of possible values of data are finite, as in the traditional approaches.

Secondly, we assume that there is a priori, publicly-known probability distri-
bution on the high values. We also assume that data at the same security level
are indistinguishable in the security meaning. Thus, a system that leaks the last
9 bits of private data is considered to be just as dangerous as a system that leaks
the first 9 bits. Finally, we consider the one-try guessing model, i.e., observing
the public outcomes, the attacker is allowed to guess the value of S by only one
try. This model of attack is suitable to many security situations where systems
trigger an alarm if an attacker makes a wrong guess. For the password checker,
this one-try guessing model can be understood as that an attacker is only al-
lowed to try once. If the entered string is not the correct password, the system
will block the account.

Notice that these restrictions aim to demonstrate our core idea. However, the
analysis might be adapted to more complex situations easily after some trivial
modifications.

3 Quantitative Security Analysis for Programs with Low
Input

Before introducing our model of analysis for programs that contain low input,
we present the classical models, and discuss briefly their shortcomings (see [22]
for a detailed discussion).

3.1 Classical Models of Quantitative Security Analysis

Classical works [21,9,8,20,19,28,24,6] use information theory to analyze informa-
tion flow quantitatively. A program is seen as a standard channel with S as the
input and O as the output. Let H(S ) denote the uncertainty of the attacker
on the secret before executing the program, and H(S |O) the uncertainty after
the program has been executed and public outcomes are observed. The leakage
of the program is defined as L(P ) = H(S ) − H(S |O), where L(P ) denotes the
leakage of P ; H might be either Shannon entropy or min-entropy with Smith’s
version of conditional min-entropy.
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Classical Measures might be Counter-Intuitive. Many researchers [21,9,8,20,19,28]
quantify information flow with Shannon entropy [23]. However, Smith [24] shows
that in context of the one-try threatmodel, the Shannon-entropymeasure does not
always result in a very good operational security guarantee. In particular, Smith
[24] shows that this measure might be counter-intuitive, i.e., an intuitively more
secure program leaks more information according to the measure.

For this reason, Smith develops a new measure based on min-entropy [24]. He
defines uncertainty in terms of vulnerability of the secret to be guessed correctly
in one try. The vulnerability of a random variable X is the maximum of the
probabilities of the values of X . This approach seems to match the intuitive
idea of the one-try threat model, i.e., the attacker always chooses the value
with the maximum probability. However, in [22], we show that the measure with
Smith’s version of conditional min-entropy still results in counter-intuitive values
of leakage. Therefore, we agree with Alvim et al. [5]: no single leakage measure
is likely to suit all cases.

Leakage in Intermediate States. Classical analysis often considers only leakages
in the final states of the execution. However, for programs that contain parallel
operators, the leakages in intermediate states should also be taken into account
[27,14,25]. Consider the following example,

O := 0;
{if (O = 1) then (O := S ) else skip} ∣∣∣∣O := 1;
O := 1;

For notational convenience, let C1 and C2 denote the left and right operands
of the parallel composition operator

∣
∣
∣
∣. Executing this program, we obtain the

following traces T |O of O , depending on which thread is picked first, i.e., T |O =
[0, 1, 1] if executing C1 first, or T |O = [0, 1, S , 1] if executing C2 first.

This program does not leak information in the final states, since the final
values of O are independent of the initial value of S . However, when C2 is
executed first, the attacker is able to access S via an intermediate state.

Thus, to obtain a suitable model of quantitative security analysis, we need to
consider the leakage given by a sequence of publicly observable data obtained
during the execution of the program.

3.2 Leakage of Programs with Low Input

The only input of the information-theoretic channel is the secret. For programs
where an attacker might influence the initial value of the low variable, the initial
low value is also an input of the channel modeling the program. To use the
traditional channel, we model such a program by a set of channels. Each channel
corresponds to the case where the low input is assigned a specific value. Thus, in
our approach, the initial low value is considered as a parameter. Since we assume
that the low value set is finite, the set of channels is also finite.

We see a channel as a test. We run the analysis on the set of tests. Since
the attacker knows the program code, and is also able to influence the initial
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low value, he knows which test would give him more secret information. Thus,
the leakage of the program that contains low input is defined as the maximum
leakages over all tests.

Given a program P that contains a low input L. Let π denote the priori
distribution on the possible values of the private data, and LVal denote the
value set of L. Let T |O denote a trace of O obtained from the execution of P ,
i.e., the sequence of O that occurs during the execution. To define the leakage
of P , we carry out the following steps.

Leakage of Programs with Low Input
1: Set up a test (P, π, L):

1.1: Choose a value for L.
1.2: Construct a channel where S is the input, L is the parameter of

the channel, and the traces T |O are the output.
2: Compute the leakage of the test (P, π, L):

L(P, π, L) = HRényi (S )−HCachin (S |L, T |O ),
where HRényi (S ) is the min-entropy of S corresponding to π.

3: Define the leakage of P as: L(P, π) = maxL∈LVal L(P, π, L).

Notice that Step 1 and 2 repeat for all values of L.

Measures of Uncertainty. Since we follow the one-try attack model, the initial
uncertainty is computed as Rényi’s min-entropy of S with distribution π. In this
work, we propose to use Cachin’s conditional min-entropy as a measure for the
remaining uncertainty. Notice that in the remainder of this paper, to denote our
measure, we use the notation LCachin , instead of L, to distinguish between our
measure and Smith’s measure, i.e., LSmith .

3.3 Case Studies

Below, we analyze some case studies, and compare Smith’s measure with our
measure. We show that our measure agrees more with the intuition.

Password Checker. Consider the following PWC. Let S denote the password,
L the string entered by the attacker (low input), and O the public answer,

if (S = L) then O := 1 else O := 0;

Assume that S might be A1, A2, or A3, with π = {p(A1) = 0.98, p(A2) =
0.01, p(A3) = 0.01}. Since the attacker tests L based on the value of S , there are
3 corresponding tests, i.e., L = A1, L = A2, or L = A3. The leakages of the tests
L = A2 and L = A3 are the same. Hence, we only analyze L = A1 and L = A2.

Before interacting with the PWC, the attacker believes that the password is
A1, since p(A1) dominates the other cases. Thus, in both tests, the attacker’s
initial uncertainty about S is HRényi (S ) = − log 0.98 = 0.02915.
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When L = A1, the PWC is modeled by the following channel M ,

M O = 1 O = 0
S = A1 1 0
S = A2 0 1
S = A3 0 1

The channelM and the distribution π and determine the joint probability matrix
J , where J [s , o] = π(s) ·M [s , o].

J O = 1 O = 0
S = A1 0.98 0
S = A2 0 0.01
S = A3 0 0.01

The joint probabilitymatrix J determines amarginal distribution ofO , i.e., p(o) =∑
∀s J [s , o].Thus,p(O = 1) = 0.98 andp(O = 0) = 0.02. Sincep(S = s |O = o) =

J[s,o]
p(o) , then p(S = A1|O = 1) = 1, p(S = A2|O = 1) = p(S = A3|O = 1) = 0,

and p(S = A1|O = 0) = 0, p(S = A2|O = 0) = p(S = A3|O = 0) = 0.5. Thus,
LSmith (P, π,A1) = 0.01465, while LCachin (P, π,A1) = 0.00915.

When L = A2, we obtain the following channel,

M O = 1 O = 0
S = A1 0 1
S = A2 1 0
S = A3 0 1

Thus, p(O = 1) = 0.01 and p(O = 0) = 0.99, and
p(S = A1|O = 1) = p(S = A3|O = 1) = 0, p(S =
A2|O = 1) = 1, and p(S = A1|O = 0) = 0.9899, p(S =
A2|O = 0) = 0, p(S = A3|O = 0) = 0.0101. Therefore,
LCachin (P, π,A2) = 0.01465, while LSmith (P, π,A2) =
0.01465. The measure proposed by Smith judges that
the leakages of the two tests where L = A1 and L = A2

are the same. However, this contradicts the intuition. In the test L = A1, if the
PWC answers yes, it only helps the attacker to confirm something that he already
believed to be certainly true. However, if the answer is O = 0, it does not help
the attacker at all, i.e., he still does not know whether either A2 or A3 is more
likely to be the password, since the posteriori probability p(S = A2|O = 0) is
still equal to p(S = A3|O = 0).

Intuitively, the test L = A2 helps the attacker gain more secret information. If
O = 1, it completely changes the attacker’s priori belief, i.e., the password is not
A1, and it also confirms a very rare case, i.e., the password is A2. If O = 0, this
even strengthens what the attacker’s belief about the secret, since the posteriori
probability p(S = A1|O = 0) = 0.9899 increases. The analysis should indicate
that the test L = A2 leaks more information than the test L = A1.

Thus, in this example, our measure gives results that match more the intuition.
The leakage of this PWC is defined as the leakage of the test L = A2. This
example also shows that the test in which the attacker sets the low input based
on the value that he believes to be the private data is not always the “best
test”. Since the attacker knows the source code of the program and the priori
distribution of the private data, he knows which test would give him the most
information. This is the reason that we define the leakage of a program with low
input as the maximum leakage over all tests.
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In the general case, given π = {p(A1) = a, p(A2) = b, p(A3) = c}, whenever
a > c and b > c, Smith’s measure cannot distinguish between the test L = A1

and L = A2, while our measure can and also agrees more with the intuition
about what the leakage should be.

A Multi-threaded Program. Consider the following example,

O := 0;
{if (O = 1) then O := S/4 else O := S mod 2} ∣∣∣∣ O := 1;
O := S mod 4;

where S is a 3-bit unsigned integer with the priori uniform distribution. The
execution of this program results in the following traces of O , depending on
whether C1 or C2 is picked first:

S 0 1 2 3 4 5 6 7

T |O

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1
1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1
0 0 1 1 2 2 3 3 0 0 1 1 2 2 3 3

Consider a uniform scheduler, i.e., a scheduler that picks threads with equal
probability. It is clear that the last command O := S mod 4 always reveals the
last 2 bits of S . The first bit might be leaked with probability 1

2 , depending
on whether the scheduler picks thread C2 first or not. Thus, with the uniform
scheduler, intuitively, the real leakage of this program is 2.5 bits.

By observing the traces of O , the attacker is able to derive secret information.
For example, if the trace is 0100, the attacker can derive S precisely, since this
trace is produced only when S = 0. If the trace is 0010, the attacker can conclude
that S is either 0 or 4 with the same probability, i.e., 1

2 . If the trace is 0111,
the possible value of S is either 1 or 5, but with different probabilities, i.e., the
chance that S is 5 is 2

3 . Therefore, LCachin (P, π) = 3− (−( 6
16 · log 1+ 4

16 · log 1
2 +

6
16 · log 2

3 )) = 2.53, while LSmith (P, π) = 3− (− log( 6
16 ·1+ 4

16 · 12 + 6
16 · 23 )) = 2.58.

Consider a scheduler that picks thread C2 first with probability 3
4 . With

this scheduler, the real leakage of this program is 2.75. Our measure gives
LCachin (P, π) = 2.774, while LSmith (P, π) = 2.807. If the scheduler picks thread
C2 first with probability 1

4 , LCachin (P, π) = 2.271, while LSmith (P, π) = 2.321.
Of course in this case, the real leakage is 2.25. These results show that our
measures are closer to the real leakage values.

These case studies show that our measure is more precise than the classical
measure given by Smith’s conditional min-entropy. The main difference between
the two measures is the position of log in the expression of the remaining en-
tropy. The idea of using logarithm is to express the notion of uncertainty in
bits. Thus, the log should apply only to the probability of the guess, which
represents the uncertainty of the attacker, as in our approach. Our measure dis-
tinguishes between the probabilities of the observable and the probabilities of the
guess based on the observable. In Smith’s measure, the logarithm applies to the
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combination of the two probabilities, and does not distinguish between them,
which might cause imprecise results.

However, as a side remark, we emphasize that no unique measure is likely
to be suitable for all cases. We believe that for some examples, measures based
on Shannon entropy or Smith’s version of conditional min-entropy might match
better the real values of leakage.

4 Adding Noise to the Output

4.1 Negative Information Flow

In relation to defining an appropriate measure for information flow quantifi-
cation, this paper also discusses a claim of the existing theory of quantitative
information flow, i.e., a quantitative measure of information leakage should re-
turn a non-negative value. The common idea of the classical analysis is that
the observation of the program’s public outcomes would enhance the attacker’s
knowledge about the private data, and consequently reduce the attacker’s initial
uncertainty.

However, we think that this non-negativeness property does not always hold.
For some applications, to enhance the confidentiality, the system operator adds
noise secretly to the output, i.e., via some output perturbation mechanism based
on randomization. The noisy outcomes might mislead the attacker’s belief about
the secret, i.e., they increase the final uncertainty. As a consequence, the value
of leakage might be negative. This idea is illustrated more as follows.

Password checker with noisy outcomes. Consider the PWC in Section 3.3. We
assume that the system operator secretly has changed its behavior, i.e., the
real PWC is a probabilistic PWC where the system operator introduced some
perturbation mechanism to the output (We assume that the attacker does not
know about the security policy applied to the system.),

if (S = L) then {O := 1 0.9[]O := 0} else {O := 0 0.9[]O := 1};

In this version, the exact answers are reported with probability 0.9, i.e., when
S = L, O = 1 is reported with probability 0.9, and O = 0 with probability 0.1.
Consider the test L = A2, the real channel M ′ is as follows,

M ′ O = 1 O = 0
S = A1 0.1 0.9
S = A2 0.9 0.1
S = A3 0.1 0.9

Notice that the attacker still thinks that the system is M , but in fact, the real
system is M ′. Based on π and M ′, the computation gives the real distribution
p(O = 1) = 0.108 and p(O = 0) = 0.892, and the real posteriori probabilities
p(S = A2|O = 1) = 0.083 and p(S = A1|O = 0) = 0.9887.
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Before observing the outcome, the guess, i.e., the secret is A1, has 98% chance
of being correct. If the outcome is O = 0, the real posteriori probability gives the
attacker’s guess, i.e., S = A1, a 98.87% chance of being correct. This is almost
the same as the guess without the outcome. When O = 1, the attackers guesses
S = A2, since his database tells that this guess has the highest chance to be
correct. However, the real posteriori probability ensures that his guess only has
a 8.3% chance of being correct. Therefore, the outcomes of the program not only
reveal no secret information, but also cause him to decide wrongly. Therefore,
intuitively, this is a negative information flow.

As we expected, our measure indicates a negative leakage: LCachin (P, π,A2) =
− log 0.98+(0.108 log0.083+0.892 log0.9887) = −0.37, while LSmith (P, π,A2) =
−0.137. Notice that the value of the leakage is determined by the real probability
of success, not by the probability in the attacker’s database.

We believe that this observation of negative information flow has not been
reported in the literature. We think that this property would change the classical
view of how the measure of uncertainty should be, i.e., we do not need to avoid
measures that do not guarantee the non-negativeness property.

4.2 Noisy-Output Policy

The noisy outcomes change the behavior of the system, i.e., they change the
channel M that models the system (the public channel that the attacker also
knows) to M ′ (the real channel in secret). The noisy outcomes should be added
in such a way that they change the original channel, but still preserve a certain
level of reliability, e.g., the above probabilistic PWC works properly in 90%
of the time. Totally random outcomes might achieve the best confidentiality,
but these outcomes are practically useless. Besides, the noisy-output policy also
needs to satisfy some general requirements that, on one hand, help to mislead
the attacker, i.e., the attacker does not know that the system has been changed
by the policy; thus, he still uses the posteriori distributions based on M and π to
make a guess, and on the other hand, reduce the leakage. This section discusses
how to design such an efficient noisy-output policy.

Design a Policy. Given a system P that is described by a channel matrix M
of size n×m, e.g., the set of secret input values is {A1, · · · ,An}, and the set of
observable outcomes is {Z1, · · · ,Zm}.

General Requirements. Since the attacker knows π and M , he is able to compute
the marginal distribution of the output. Thus, firstly, the distribution of the
output has to be preserved by the channel M ′, where the noise has been added.
If the policy does not preserve this distribution, the attacker might find out that
the channel M has been changed, and then he will try to study the system before
making a guess, i.e., trying to get the real program code of the system.

Secondly, for each outcome Zi, assume that p(S = Aj |Zi) is the maximum pos-
teriori probability, then p′(S = Aj|Zi) is also the maximum posteriori probabil-
ity, i.e., themaximum property of the posteriori distributions has to be preserved.
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For example, if M gives a posteriori distribution where p(S = Aj |Zi) = 0.8,
then the real posteriori probability given by M ′ might be p(S = Aj |Zi) = 0.6.
Thus, if the outcome is Zi, the attacker thinks that the guess S = Aj has
a 80% chance to be correct. However, in reality, this guess only has a 60%
chance of success. Notice that p(S = Aj |Zi) does not need to be equal to
p′(S = Aj |Zi). The preservation of the maximum property of the posteriori
distribution is necessary. Consider a uniform posteriori distribution {p(S =
A1|Zi) = p(S = A2|Zi) = p(S = A3|Zi) = 1

3} in the attacker’s database. Fol-
lowing the requirement, the posteriori distribution given by M ′ has to be also
uniform. If we do not require this, then the real distribution might possibly be
{p′(S = A1|Zi) = 0.2, p′(S = A2|Zi) = 0.7, p′(S = A3|Zi) = 0.1}. According to
his database, the attacker might guess S = A2, since all three guesses have the
same chance of being correct. In this case, the real probability would increase
the chance of success, and thus, increase the leakage.

Reliability. Reliability of a system is the probability that a system will perform
its intended function during a specified period of observation time. LetRi (Ri ≤
1) denote the reliability corresponding to the secret value Ai, i.e., the probability
that the system will produce correct outcomes when the secret is Ai. Thus, the
overall reliability of the system P is RP =

∑
i p(Ai)·Ri. The noisy-output policy

produces noise, and thus it reduces the reliability of the system. Therefore, we
require that a noisy-output should guarantee at least a certain level of reliability.

Noisy-output policy. We propose a simple policy that might reduce the unwanted
information flow, while still preserving a certain level of reliability. The following
policy only aims to demonstrate the core idea of what a noisy-output policy
should be. The practical policy might be customized due to the requirement of
the application. Given a channel M that models a system P . A noisy-output
policy changes M to M ′ by choosing an appropriate set of {R1, · · · ,Rn}.

Noisy-Output Policy
1: For each row i of M , multiply each entry of the row by the reliability variable
Ri. Choose randomly one of the smallest entries, and add the value 1 − Ri to
it. Denote this modified matrix by M ′.
2: Choose an overall reliability value that the policy has to guarantee, e.g., Rmin.
Establish an inequality:

∑
i p(Ai) · Ri ≥ Rmin.

3: For any outcome Zi, let p(O = Zi) denote the probability determined by
π and M , and p′(O = Zi) determined by π and M ′, establish an equation:
p(O = Zi) = p′(O = Zi).
4: For each outcome Zi, if ∀k. p(S = Aj |Zi) ≥ p(S = Ak|Zi), then establish the
following condition: ∀k. p′(S = Aj |Zi) ≥ p′(S = Ak|Zi).
5: Solve these equations and inequalities. The set {R1, · · · ,Rn}, are chosen in
such a way that the leakage given by M ′ is close to zero, and the reliability of
the system RP is as high as possible.
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Notice that in Step 1, the sum of all entries of a row has to be 1; thus we have
to add the value 1−Ri to one of its entries. Step 3 establishes a set of equations,
i.e., m−1 independent equations that correspond to m−1 observable outcomes,
that preserve the output distribution. We also obtain (n− 1) ·m inequalities in
Step 4, that preserve the maximum property of the posteriori distributions.

There always exists a trivial solution R1 = · · · = Rn = 1, i.e., M and M ′

are identical. When there are multiple solutions, we choose one that gives a low
leakage, but a high overall reliability. However, this does not always happen. A
solution that guarantees a very low leakage might also give a low reliability. In
fact, a negative leakage, i.e., when the attacker decides wrongly based on the
observable outcomes, is not always necessary. The goal of the policy is to ensure
that the attacker cannot gain knowledge from the observable outcomes. Thus,
R1, · · · ,Rn are chosen such that the leakage is close to zero and the overall
reliability gets a high value. Next, we show an important property of our policy.

Theorem 1. Given a priori distribution π and a channel matrix M , the channel
matrix M ′ modified from M by the noisy-output policy always gives a leakage
quantity that is not greater than the one given by M .

Proof. For any outcome Zi, assume that the maximum likely secret is Aj. Since
p′(Zi) = p(Zi) and p′(S = Aj |Zi) = Rj · p(S = Aj |Zi), thus −p′(Zi) log p

′(S =
Aj |Zi) ≥ −p(Zi) log p(S = Aj |Zi). Therefore, the value of remaining uncertainty
given by π and M ′ is greater than or equal to the one given by π and M . As a
consequence, the corresponding leakage quantity is reduced.

Example. Consider a deterministic program P where the secret might be A1,
A2, or A3 with a uniform π = {p(A1) = p(A2) = p(A3) = 1

3}. The system P
might produce three low outcomes Z1, Z2, and Z3 as described by M ,

M Z1 Z2 Z3

S = A1 1 0 0
S = A2 0 1 0
S = A3 0 0 1

Since the attacker knows the program code, he is able to construct M in his
database. Since the public outcomes are totally dependent on the secret, the
attacker can derive the private data entirely from the outcomes, e.g., if the
outcome is Zi, the attacker knows for sure that S = Ai.

To protect the secret, the system operator might mislead the attacker by
adding noise to the output, i.e., the real system is M ′,

M ′ Z1 Z2 Z3

S = A1 R1 1−R1 0
S = A2 0 R2 1−R2

S = A3 1−R3 0 R3

Based on π and M , the attacker knows that p(O = Z1) = p(O = Z2) =
p(O = Z3) = 1

3 . To satisfy this output distribution, R1 = R2 = R3. Be-
sides, the maximum property of the posteriori distributions determines that
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1
2 ≤ R1,R2,R2 ≤ 1. Thus, the reliability of the system is RP = R1, and for
this example, LCachin (P, π) = LSmith (P, π) = log 3R1.

Thus, a high value of R1, which guarantees a high overall reliability, also gives
a high leakage. If the goal is to reduce the leakage, we might choose R1 = R2 =
R3 = 1

2 , which gives the smallest value of leakage, i.e., log 3
2 , but also a very low

reliability. If a high reliability is required, R1 = R2 = R3 = 2
3 might be a good

choice.
Consider the PWC example, for the test L = A2, following the policy, we can

choose R1 = 0.995,R2 = 0.5,R3 = 0.99 to have LCachin (P, π,A2) = −0.00275
with the reliability R = 0.99. However, if we consider both tests, i.e., L = A1

and L = A2, R1 = R2 = R3 = 1.
As mentioned above, a noisy-output policy enhances the security, but reduces

the reliability of a system, i.e., the system does not always work in a proper way.
However, the drawback of the reduced reliability can be overcome. Consider a
situation of the PWC in which an user or an attacker provides a correct password,
but the system rejects it, and then blocks his account (the one-try model). If
this context is for the attacker, it would be very nice, since the attacker does
not have a chance to use the account again. If this context is for the real user;
however, the situation would be different: the user is still allowed to reactivate
the account by contacting the company/website administrators and proving that
he is the real owner of the account, while the attacker cannot do the same.

The other way around, i.e., when the system accepts a wrong password, is
not nice for the security. This is the reason that the policy should guarantee
a high reliability. Notice that in this situation, the system accepts the login,
but no private information is leaked, since the attacker still does not know the
correct password. Thus, in the next login, there is a high chance that the system
will reject this wrong password. Moreover, to avoid this situation, the system
might also implement two-factor authentication, i.e., in addition to asking for
something that only the user knows (e.g., user-name, password, PIN), the system
also requires something that only the user has (e.g., ATM card, smart card). The
ATM scenario illustrates the basic concept of most two-factor authentication
systems, i.e., without the combination of both ATM card and PIN verification,
authentication does not succeed.

Finally, it would be stressed that we only sketch the main idea of a noisy-
output policy. However, for practical applications, depending on the real security
requirements, the above policy might be customized, e.g., in Step 1, instead of
choosing randomly one of the smallest entries, and adding 1−Ri to it, the policy
can add to each of the smallest entries a value such that the sum of all these
values is equal to 1−Ri.

5 Related Work

Our proposal for programs with low input borrows ideas from Malacaria et al.
[20] and Yasuoka et al. [26]. However, in these works, they [20,26] do not analyze
the systems with low input sufficiently. They define the leakage of a program
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as the leakage of a single test, while we define it as the maximum leakage of all
tests. All examples in [20] are without low input, and their measure is based on
Shannon entropy. Yasuoka et al. only consider the leakages in the final states.

Clarkson et al. [11] argue that the classical uncertainty-based analysis is not
adequate to measure information flow of programs that contain low input. To
define the leakage of the PWC, Clarkson et al. fix the value of the secret, i.e.,
the password, and the low input, i.e., by always assigning it the value that the
attacker believes to be the password, then run the analysis under that specific
circumstance. In case the value the attacker believes is not the real password, the
uncertainty-based analysis might return a negative leakage value. The authors
argue that this result flatly contradicts the intuition, i.e., from interacting with
PWC, the attacker gains more knowledge by learning that the password is not
the one that he has just entered. Based on this claim, they propose a different
approach named accuracy-based information flow analysis. This trend of research
has been expanded in [10,15,16,13]. However, the accuracy-based analysis often
results in a quantity that is inconsistent with the size of the flow, i.e., the quantity
of the secret information flow exceeds the size needed to store the secret [10].

We believe that there is a flaw in the way Clarkson et al. model the system.
Clarkson et al. fix the value of the secret. Thus, this does not capture precisely
the idea of information-theoretic channel. The information-theoretic channel has
the secret as the input, and the entropy of the input quantifies the uncertainty
involved in predicting the value of the secret. Thus, if the value of the secret is
fixed, it implies that the priori distribution on the possible values of the secret
is not valid anymore, i.e., the secret is now a certain value with the absolute
probability 1. As a consequence, the entropy of the input does not reflect the
true meaning of the initial uncertainty. Therefore, in these approaches, a wrong
channel model has led to misleading results, i.e., a negative uncertainty-based
result, or a size-inconsistent accuracy-based result.

Alvim et al. discuss limitations of the classical information-theoretic channel,
i.e., showing that it is not a valid model for interactive systems where secrets
and observables can alternate during the computation and influence each other
[4]. In [3], Alvim et al. also discuss the example of the password checker. They
fix the password by assigning it a specific value, and then consider the initial
low values as the only input to the channel. As discussed before, this idea does
not reflect the true idea of the information-theoretic channel.

Köpf et al. also consider systems with low input, i.e., cryptosystems where
the attacker can control the set of input messages [17]. However, their proposal
is only for deterministic systems, i.e., for each input, the system produces only
one output, while in our proposal, the output might be nondeterministic and
probabilistic. Besides, Köpf et al. consider a different threat model, i.e., the
multiple-try guessing model, and they put a restriction on the priori distribution
of the secret, requiring it to be uniform.

The idea of adding noise to the output comes from the differential privacy
control, i.e., the problem of protecting the privacy of database’s participants
when performing statistical queries [3,1,2]. The differential privacy control also
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uses some output perturbation mechanism to report a noisy answer among the
correct ones for the queries. Thus, while the attacker is still able to learn prop-
erties of the population as a whole, he cannot learn the value of an individual.
To construct an efficient noisy-output policy for a statistical database, it is nec-
essary to consider the balance between privacy, i.e., how difficult to guess the
value of an individual, and utility, i.e., the capacity to retrieve accurate answers
from the reported ones. In [18], Köpf et al. also explore a similar idea to cope
with timing attacks for cryptosystems, i.e., randomizing each cipher-text before
decryption. As a consequence, the strength of the security guarantee is enhanced,
while the efficiency of the cryptosystem is decreased, since the execution time of
the cryptographic algorithm is increased.

In this work, we assume that the attacker cannot choose schedulers. The idea
is to make our measure valid for both sequential and multi-threaded programs.
Since sequential programs contain no parallel operator, the scheduler is not nec-
essary for such programs. In [22], we propose a model of analysis for multi-
threaded programs where the attacker is able to select an appropriate scheduler
to control the set of program traces. In this current work, if the attacker can
choose schedulers, i.e., if observations in our channel are not only traces, but
also include scheduling decisions at each step, our measure and the proposed
measure in [22] coincide. Notice that we did not consider the low input in [22].

6 Conclusions and Future Work

This paper discusses how to analyze quantitatively information flow of a pro-
gram that contains low input. For such programs, we adapt the traditional
information-theoretic channel by considering the initial low values as param-
eters of the channel. Besides, we also show that the value of information flow
might be negative in case the system operator adds noise to the outcomes, i.e.,
the noise misleads the attacker’s belief about the secret, and thus, it increases
the final uncertainty. We believe that this property would change the way people
often think about the measure of uncertainty. Since there is a growing appre-
ciation that no unique measure is suitable for all cases, we suggest to measure
the remaining uncertainty by Cachin’s conditional min-entropy. This new mea-
sure matches the intuition in many cases. Finally, this paper discusses how to
design an efficient noisy-output policy, which generates noisy outcomes, while
still guarantees a high overall reliability.

Future Work. The classical approaches of the one-try attack model only base
the analysis on the information of the value that the attacker believes to be the
secret. Thus, the analysis ignores the extra leakage that might be derived from
the values that the attacker disbelieves to be the secret. In the future work, we
propose to include this extra information to the analysis. We also consider to
define a measure for the multiple-try attack model.
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Since there are many measures proposed for quantitative information flow
analysis, and no unique measure is likely to suit all contexts, it might be in-
teresting to evaluate each measure to determine under which circumstances, a
certain measure might give the best answer.

Acknowledgments. The authors would like to thank Catuscia Palamidessi and
Kostas Chatzikokolakis for many fruitful discussions. Our work is supported by
NWO as part of the SlaLoM project.

References

1. Alvim, M.S., Andrés, M.E., Chatzikokolakis, K., Palamidessi, C.: On the rela-
tion between differential privacy and quantitative information flow. In: Aceto, L.,
Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS, vol. 6756, pp. 60–76.
Springer, Heidelberg (2011)

2. Alvim, M.S., Andrés, M.E., Chatzikokolakis, K., Degano, P., Palamidessi, C.: Dif-
ferential privacy: on the trade-off between utility and information leakage. CoRR,
abs/1103.5188 (2011)

3. Alvim, M.S., Andrés, M.E., Chatzikokolakis, K., Palamidessi, C.: Quantitative in-
formation flow and applications to differential privacy. In: Aldini, A., Gorrieri, R.
(eds.) FOSAD VI 2011. LNCS, vol. 6858, pp. 211–230. Springer, Heidelberg (2011)

4. Alvim, M.S., Andrés, M.E., Palamidessi, C.: Information flow in interactive sys-
tems. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp.
102–116. Springer, Heidelberg (2010)

5. Alvim, M.S., Chatzikokolakis, K., Palamidessi, C., Smith, G.: Measuring informa-
tion leakage using generalized gain functions. In: Proceedings of the IEEE 25th
Computer Security Foundations Symposium, CSF 2012, pp. 265–279. IEEE Com-
puter Society (2012)

6. Andres, M.E., Palamidessi, C., Rossum, P., Sokolova, A.: Information hiding in
probabilistic concurrent systems. In: Proceedings of the 2010 Seventh International
Conference on the Quantitative Evaluation of Systems, QEST 2010, pp. 17–26.
IEEE Computer Society (2010)

7. Cachin, C.: Entropy Measures and Unconditional Security in Cryptography. PhD
thesis (1997)

8. Chatzikokolakis, K., Palamidessi, C., Panangaden, P.: Anonymity protocols as
noisy channels. In: Montanari, U., Sannella, D., Bruni, R. (eds.) TGC 2006. LNCS,
vol. 4661, pp. 281–300. Springer, Heidelberg (2007)

9. Clark, D., Hunt, S., Malacaria, P.: Quantitative information flow, relations and
polymorphic types. J. Log. and Comput. 15, 181–199 (2005)

10. Clarkson, M.R., Myers, A.C., Schneider, F.B.: Quantifying information flow with
beliefs. J. Comput. Secur. (2009)

11. Clarkson, M.R., Myers, A.C., Schneider, F.B.: Belief in information flow. In: In
Proc. 18th IEEE Computer Security Foundations Workshop, pp. 31–45 (2005)

12. Goguen, J.A., Meseguer, J.: Security policies and security models. In: IEEE Sym-
posium on Security and Privacy, pp. 11–20 (1982)

13. Hamadou, S., Sassone, V., Palamidessi, C.: Reconciling belief and vulnerability in
information flow. In: Proceedings of the 2010 IEEE Symposium on Security and
Privacy, SP 2010, pp. 79–92. IEEE Computer Society (2010)



94 T.M. Ngo and M. Huisman

14. Huisman, M., Ngo, T.M.: Scheduler-specific confidentiality for multi-threaded pro-
grams and its logic-based verification. In: Beckert, B., Damiani, F., Gurov, D. (eds.)
FoVeOOS 2011. LNCS, vol. 7421, pp. 178–195. Springer, Heidelberg (2012)

15. Hussein, S.H.: A precise information flow measure from imprecise probabilities. In:
Proceedings of the 2012 IEEE Sixth International Conference on Software Security
and Reliability, SERE 2012, pp. 128–137. IEEE Computer Society (2012)

16. Hussein, S.H.: Refining a quantitative information flow metric. CoRR,
abs/1206.0886 (2012)

17. Köpf, B., Basin, D.: An information-theoretic model for adaptive side-channel at-
tacks. In: Proceedings of the 14th ACM Conference on Computer and Communi-
cations Security, CCS 2007, pp. 286–296. ACM (2007)
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