
Fault-Tolerant Non-interference

Filippo Del Tedesco, Alejandro Russo, and David Sands

Chalmers University of Technology, Sweden

Abstract. This paper is about ensuring security in unreliable systems. We study
systems which are subject to transient faults – soft errors that cause stored values
to be corrupted. The classic problem of fault tolerance is to modify a system so
that it works despite a limited number of faults. We introduce a novel variant
of this problem. Instead of demanding that the system works despite faults, we
simply require that it remains secure: wrong answers may be given but secrets
will not be revealed. We develop a software-based technique to achieve this fault-
tolerant non-interference property. The method is defined on a simple assembly
language, and guarantees security for any assembly program provided as input.
The security property is defined on top of a formal model that encompasses both
the fault-prone machine and the faulty environment. A precise characterization of
the class of programs for which the method guarantees transparency is provided.

1 Introduction and Overview

Transient faults occur in hardware for example when a high-energy particle strikes a
transistor, resulting in a spontaneous bit-flip. Such events have been acknowledged as
the source of major crashes in server systems [6]. The trend towards lower threshold
voltages and tighter noise margins means that susceptibility to transient faults is in-
creasing.

From a security perspective, transient faults (henceforth we will say simply faults)
are a known attack vector. For instance, in [7,3,20] a single bit flip, regardless of how is
triggered, can compromise the value of a secret key in both public key and authentica-
tion systems. In [17] it is shown how a fault (induced by holding a light-bulb near the
processor!) triggers a single bit flip in a malicious but well-typed Java applet, causing
it (with high probability) to do something which is otherwise impossible for well-typed
bytecode: to take over the virtual machine.

Much previous work on fault tolerance has studied the preservation of functional be-
havior or mitigation of faults. For the most part techniques employ wholesale hardware
replication, or at least some special-purpose hardware. For the predominantly-software-
based techniques, with the exception of [24], most works do not give precise, formal
guarantees.

In this work, rather than attempting to preserve full functional behavior in the pres-
ence of faults, we consider the novel problem of guaranteeing security: faults may cause
a program to go wrong, but even if it goes wrong it should not leak sensitive data, no
matter if the code is crafted with malicious intent (cf. [17]). The particular security char-
acterization we study is non-interference, a well-established end-to-end information-
flow security property which says that public outputs of a program (the low security
channel) do not reveal anything about its secrets (the high security inputs).

J. Jürjens, F. Piessens, and N. Bielova (Eds.): ESSoS 2014, LNCS 8364, pp. 60–76, 2014.
c© Springer International Publishing Switzerland 2014

Fault-Tolerant Non-interference 61

Our approach has two distinguishing features. Firstly, it does not rely on special pur-
pose hardware features (in contrast to [24]), and secondly, it makes its assumptions pre-
cise and provides formal guarantees. This latter point distinguishes our approach from
software-based techniques used in the large majority of works in fault tolerance which
are usually evaluated empirically, often using simulated errors. It should be noted, of
course, that our goal is simply to preserve non-interference, and not to detect errors or
recover from them.

In the remainder of this section we give an overview of the approach taken in this
work to achieve what we called fault-tolerant non-interference, and summarize the main
results.

The Target System and the Faulty Environment. Transient faults are a feature of
hardware, so it makes sense to have an explicit hardware representation. In this paper
we consider a single core machine that executes a small set of RISC-like instructions.
The machine has registers and two separate memories for code and for data (§ 2.1). We
assume the code memory is read-only (ROM), therefore fault-free. This is a standard as-
sumption since memory with error correcting codes is both efficient and commonplace.
On the other hand we assume that both registers and data memory are not fault-free.
This means, in particular, that even the program-counter and hence the control flow can
be affected by faults, an assumption in line with most CPU implementations. This is the
feature of the system (and systems in general) which makes the problem particularly
challenging.

Since we aim for precise guarantees, we assume there is no operating system between
programs and the underlying hardware. This choice simplifies the implementation of
our method and the security argument. In fact, since the execution of the operating
system would be subject to faults, none of its abstractions could be used in a reliable
way, and the code would introduce further vulnerabilities.

We assume that the fault environment can simultaneously induce multiple bit-flips
in any register or any part of the data memory.

Enforcing Non-interference in the Presence of Transient Faults. Our method en-
forces security via program transformation. Security is defined in terms of two secrecy
levels, low for public and high for confidential data; low input data may influence the
high outputs, but high inputs should not affect the low outputs of the system.

Our transformation combines Secure Multi-Execution (SME) [15] 1 with a technique
known from Software-based Fault Isolation (SFI) [31] to guarantee that the security
property enforced by SME is not compromised by faults.

Consider the system consisting of high and low inputs and outputs represented in
Figure 1. The SME version of this system is given in Figure 2. SME deploys two iso-
lated copies of the system, one with responsibility for computing the low outputs, and
one with the responsibility of computing the high ones. In our instantiation of this idea,
the “system” will be the program to be secured.

A natural approach to implementing SME is to use fair concurrency to compute
independently each copy of the system. In our case, the approach has necessarily to

1 Related ideas have appeared elsewhere [27,9,12,5]

62 F. Del Tedesco, A. Russo, and D. Sands

Fig. 1. Original System Fig. 2. Secure Multi-Execution

be more straightforward, since software and hardware supports for concurrency are
missing. For this reason, SME is implemented by executing the high copy sequentially
after the low one. This mandatory choice makes SME vulnerable to leakage in the
presence of faults (§ 2.2-2.3). In particular:
� during execution of the low copy, a fault in the value of a pointer stored in a register

could cause the high data to be loaded instead of low;
� during the execution of the high copy, a fault in the program counter can cause the

control-flow to transfer to the low copy, but in a state where the registers might
contain arbitrary high data.

In both of these scenarios, the low copy of the code gains access to the high data. The
attacker’s ability to take advantage of this may depend on the structure of the code, or
the attacker’s ability to recognize a leaked secret independently of the code. Neverthe-
less, to construct a general security mechanism based on SME, we must protect against
the situations enumerated above.

A typical assumption in the analysis of fault tolerance mechanisms is the occurrence
of a single fault. Similarly, we strengthen SME so that it can cope with at most some
small fixed number of faults (§ 3.3). The key to preserving the strong isolation provided
by SME, in the presence of up to F faults, is to
� (§3.1) separate the address space of the high and low variants of the code, and the data

memory addresses over which they operate so that the addresses of the respective
parts have a hamming distance2 greater than F

� (§3.2) add address masking code, in the style of SFI, around load and jump instruc-
tions to mask the address value so that it is forced within in a safe range.

As for the original SME, our method guarantees isolation between low and high com-
ponents in a language-independent manner, since systems are treated as black boxes;
moreover, such isolation remains unaltered even if F faults occur during the execution.
Our method guarantees transparency as well: if the original system had no information
leaks between high inputs and low outputs, and no faults occur in the execution, then
the modified system will produce the same values on the low and high channels as the
original system (since the dummy high input will have no influence on the computation).

Results. For security, we formalize the semantics of the machine (§ 4.1) and precisely
specify our assumptions about which faults can occur (§ 4.2). From this we formulate

2 The number of positions for which corresponding bits of two equally sized binary words differ.

Fault-Tolerant Non-interference 63

a suitable notion of non-interference (§ 4.3), where we tackle the problem that faults,
when modeled as nondeterminism, can mask information flows.

Surprisingly, security is established with no semantic assumptions about the code
itself. In order to guarantee transparency we need “reasonable” semantic invariants (§ 5)
on memory utilization and control flow modifications performed by the source program.

2 Transient Fault Based Attacks on SME

This section illustrates the syntax of assembly programs and the inadequacy of a naive
SME implementation in the presence of faults.

2.1 Syntax

Data manipulated by assembly programs are in the set Val , which is defined as the
disjoint union of W∪Ptr ∪Lab ∪DReg . The set W corresponds to numeric constants,
defined as machine words of n bits. Pointers to data memory, from the set Ptr

def
=

{ptr v | v ∈ W}, are defined as tagged machine words to keep them separated from
elements in W. We assume an infinite set of labels Lab, representing targets of jump
instructions, and a finite set of general purpose registers DReg.

I ::= [l :]B such that l ∈ Lab

B ::= load r v | store v r | jmp v | jnz v r |
nop | move r v | BinOp r v | out ch r

BinOp ::= add | or

P ::= ε | I :: P

Fig. 3. Assembly programs syntax

Figure 3 shows
the syntax for assem-
bly programs. We
consider that every
instruction I could
be optionally labeled.
Instruction load r v
accesses the data

memory and writes the value pointed by v into register r. The corresponding store v r
instruction writes the content of r into the data memory address v. Instruction jmp v
causes the control-flow to transfer to the instruction labeled as v. Instruction jnz v r
performs the jump only if the content of register r is nonzero. Instruction move r v
copies the value v into register r. BinOp stands for a family of binary operators that
combine values in r and v and store the result in r. A minimal such family contains an
or instruction and an add instruction. The or instruction performs the logic or opera-
tion between constants in r and v; the add instruction adds the unsigned constant v to
the value contained in register r, which can either be a constant or a memory pointer.
All instructions presented so far are either indirect, when v is in DReg , or direct when
v is in Val \ DReg . Instruction nop performs no computation. Instruction out ch r
outputs the constant contained in r into the channel ch. Output channels are in the set
Out = {low, high}.

Programs are defined as lists of instructions P . We denote the set of labels con-
tained in a program as lab(P). We require programs to be well-formed, namely not
having two instruction bodies labeled in the same way. Given two programs P and
P ′, we define program composition P ++ P ′ as list concatenation, provided that
lab(P) ∩ lab(P ′) = { }.

64 F. Del Tedesco, A. Russo, and D. Sands

2.2 Direct Control Flow and Memory Faults

We describe how faults can induce secret leakages in SME-programs. Consider Figure
4, in which an assembly program and the memory M on which it is executed are pre-
sented. Observe that M contains both a public value pub and a secret sec. The program
P is intuitively secure. The first move instruction writes the memory pointer pubp to
register r1. Then the public value pub is loaded in r2, and secp overwrites pubp in r1.
Finally, pub is output on the low channel via the last out instruction.

P

move r1 (ptr pubp)

load r2 r1

move r1 (ptr secp)

nop

out low r2

M

secp �→ sec

pubp �→ pub

Fig. 4. Secure program

Since program P is secure, its SME ver-
sion, written sme(P), is also secure [15]. Fig-
ure 5 shows the code of sme(P) and the
corresponding memory. The transformed pro-
gram consists of the two copies of program
P , named Plow and Phigh , responsible for
computing public and secret values, respec-
tively. The memory is divided into the seg-
ments μlow and μhigh in such a way that the
code in Plow only refers to μlow and the code
in Phigh only to μhigh . The segment μlow contains the dummy value zero (sec′p �→ 0)
instead of the secret value sec, while instructions for public outputs are replaced by nop
in Phigh . Clearly, sme(P) preserves confidentiality.

We proceed to describe how a single bit flip is enough to jeopardize the security
guarantees of sme(P). In a machine execution, it could be possible for secp and pub′p
to be located at the memory addresses 000 and 100, respectively. It is then possible for
pub′p to be converted to secp by a single bit flip. As a consequence, the secret value sec
could be loaded into r2 by the second instruction in Plow , which in turn would send it
on a low channel.

sme(P)

Plow

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

move r1 (ptr pub
′
p)

load r2 r1

move r1 (ptr sec
′
p)

nop

out low r2

Phigh

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

move r1 (ptr pubp)

load r2 r1

move r1 (ptr secp)

nop

nop

sme(M)

secp �→ sec
}

μhigh
pubp �→ pub

sec′p �→ 0
}

μlow
pub′p �→ pub

Fig. 5. sme(P) and sme(M)

Bit flips in the program
counter are problematic as well.
Suppose the execution goes
through Plow and completes
the first nop in Phigh without
faults. At this point, the pro-
gram counter contains the value
9 (1001 in binary), i.e., it points
to the last instruction of Phigh ,
and the register r1 contains the
pointer secp. However, just be-
fore the last instruction of Phigh

is executed, a bit flip in the
first bit of the program counter
can move the execution back to
0001, i.e., the second instruction

of Plow . Since this occurs while r1 contains secp, it is possible for Plow to have access
to sec, and leak it on the low channel.

Fault-Tolerant Non-interference 65

The scenarios described above suggest that in order to guarantee security in a faulty
context, SME has to separate Plow , Phigh , μlow , and μhigh in a way that tolerates bit
flips in memory pointers or in the program counter, as discussed in Section 3.1.

2.3 Indirect Control Flow and Memory Faults

Faults can induce arbitrary computations within Plow and Phigh . Although we do not
attempt to preserve functional correctness in the presence of faults, performing arbitrary
computations in a SME scenario has important security implications.

move r1 •
move r1 (ptr pubp)

nop

load r2 r1
Fig. 6. low code

Consider the fragment of low code in Figure 6. Alterations
in the program counter could bypass the initialization of r1 to
ptr pubp and use an arbitrary value • as memory pointer. Hence,
regardless how μlow and μhigh are spread out in memory, it
would be still possible for a pointer in Plow to refer to values
in μhigh . This situation can clearly jeopardize the security guar-
antees of SME. Observe that arbitrary computations on Phigh ’s
memory pointers do not present any security risks. After all, it is
secure for Phigh to access μlow . However, perturbations in Phigh ’s control flow impose
other danger.

When Phigh is executed, faults in the program counter could induce arbitrary values
to be used as jump targets. When this is the case, the control flow can be moved from
Phigh back to Plow , regardless how Plow and Phigh are located in memory. Since secret
data is often loaded into registers by Phigh , this type of jumps presents a security risk.
Observe that there is no risk for arbitrary computations to trigger jumps from Plow to
Phigh .

In Section 3.2 we propose to use instrumentations for instructions load, jmp, and jnz
so that leaks can be prevented even in the presence of arbitrary computations.

3 Fault-Tolerant Secure Multi-execution

We present a version of SME capable of preserving confidentiality of high inputs even
in a faulty environment. Our technique relies on spreading out code (Plow and Phigh)
and memory (μlow and μhigh) as well as instrumenting instructions related to memory
access and jumps.

3.1 Fault-Tolerant Layout for Code and Memory

Fault tolerance always involves some kind of redundancy. In our case we will use the
first F + 1 bits of every n-bit address exclusively for keeping the hamming distance
between Plow and Phigh , and between μlow and μhigh , to at least F + 1.

Let distance(u, v) be the hamming distance between two words u and v. We will
say that two words are F -separate whenever their hamming distance is greater than F .

We will work with programs for which both their size, and their run-time memory
footprint, is roughly in the range [0, 2n−(F+1) − 1] (the exact range may be slightly
smaller than this and can be calculated after some additional instructions have been

66 F. Del Tedesco, A. Russo, and D. Sands

iloadSec

load r′ v �→ move rsp mask

or rsp v

load r′ rsp
Fig. 7. Securing load

ijmpSec

jmp v �→ move rsp mask

or rsp v

jmp rsp

Fig. 8. Securing jmp

ijnzSec

jnz v r′ �→ move rsp mask

or rsp v

jnz rsp r′

Fig. 9. Securing jnz

inserted into the code according to the transformation described in the next subsection).
The remaining bits of the address spaces (code and data memory) are reserved for our
fault tolerance mechanism.

Let mask denote the word with F + 1 leading 1s followed by n− (F + 1) zeros.
The idea is that any address in the range [b, t] (where b < t < 2n−(F+1)) is F -

separate from any address in the range [b+mask , t+mask].
If μhigh occupies the memory addresses in the interval [0, t] then we ensure that

μlow uses the range [mask , t + mask]. This clearly gives F -separation between μlow

and μhigh and thus avoids leaks due to faults in pointers handled by Plow (see Section
2.2).

For achieving a similar separation between Phigh from Plow we add some code
padding between the two copies of P such that the first instruction of Phigh is at the
ROM address mask . This guarantees F -separation between the addresses of instruc-
tions in Plow and Phigh and thereby avoids leak due to direct faults in the program
counter while executing Phigh (see Section 2.2).

3.2 Control Flow Integrity

Faults can break the control-flow integrity of the program, causing it, for example, to
jump to an arbitrary address. The two problematic instances of this problem are when
(i) Plow loads from an address in μhigh , and (ii) when the destination of a jump in
Phigh points to Plow . We mitigate these cases using a technique which turns out to be
very similar to the sandboxing approach in software-based fault isolation [31]: we mask
the addresses so that they are always within a safe range. This is achieved in case (i) by
transforming load instructions, and in case (ii) by transforming jmp and jnz instructions,
as shown in Figures 7 to 9.

Note that for this to work we need one spare general purpose register rsp – i.e., one
which is not used by the original program P .

3.3 Formal Definition of Fault-Tolerant SME

Figure 10 summarizes the process of generating our fault-tolerant version of SME as a
program transformation. SME reworks an assembly program P into two secure variants
Plow and Phigh . This requires modifications to the internal behavior of program P . The
transformation consists of several steps. To obtain Phigh from P , we first replace the
instructions to write data into public channels by nops. This is done by the function
olow , which generates an intermediate result P ′

high . Function jnzSec◦ jmpSec (the sym-
bol ◦ denotes function composition) instruments jmp and jnz instructions by applying
functions in Figures 8 and 9 to the entire program.

Fault-Tolerant Non-interference 67

P

P ′
highP ′

low

Plow PAD Phigh

smeft (P) =
Plow ++ PAD ++ Phigh

ohigh ◦ labP ◦ offsetmask olow

loadSec jnzSec ◦ jmpSec

++

++

Fig. 10. Fault-tolerant SME code transformation (smeft)

Obtaining Plow is
a bit more involved. It
requires offsetting ev-
ery pointer appearing
in P by mask so that
Plow refers to μlow

(function offsetmask).
Additionally, the
transformation renames
instruction labels to
avoid name clashes
with Phigh (function
labP), as well as sup-
pressing instructions
performing outputs in
high channels (function ohigh).

The instrumentation of load is done by function loadSec (based on the auxiliary
function in Figure 7), thus finally obtaining Plow . Once Plow and Phigh are obtained,
in order for F -separation to hold between them, the transformation adds some padding
code, named PAD . All instructions in PAD are jumps to the first instruction of Phigh ,
and the length of PAD guarantees the first instruction of Phigh is located at the address
mask (recall Section 3.1).
Initial memory configuration. Consider the initial memory M for P in Figure 11. We
assume that the program uses the memory interval μ = [0, t], where the first s words in
M are secrets (labeled high in), the subsequent words are public values (low in) and the
rest is uninitialized (in white). We require s to be within the range [0, 2n−(F+1)− 1] to
ensure the separation between μhigh and μlow is possible (Section 3.1).

M smeft M
0

s

0

s

mask

s+mask

highin

t t

t+mask

lowin

default

lowin

lowin

highin

Fig. 11. Initial memory M and
transformed version smeft (M)

We also require that M only contains values from
W. The security of the method does not depend on
this assumption, but for the transformation to preserve
the non-faulty behavior of secure runs of the program
we will need such requirement on input. We return
to this issue in Section 5. Under these assumptions,
the initial memory for smeft (P), which we denote
by smeft (M), corresponds to the right side of Fig-
ure 11. Notice that μhigh , the portion of the memory
to be used by Phigh , is the same as μ, whereas Plow

will use μlow which is located in the memory inter-
val [mask , t + mask]. In μlow the words represent-
ing the secret are initialized to a default value (marked
“default” in the figure). For the sake of simplicity,
we do not require smeft (P) to take care of memory
rearrangement itself – we assume the preparation of
smeft (M) is external to SME. We assume initial reg-
isters to be all uninitialized for P , therefore they will
be uninitialized for smeft (P) as well.

68 F. Del Tedesco, A. Russo, and D. Sands

Optimizing smeft . It might appear redundant to modify memory pointers in Plow and
instrument direct load instructions according to Figure 7 (and similarly for control flow
labels in Phigh and functions in Figures 8 and 9). For many sensible programs this is
indeed the case, such as the safe programs characterised in § 5.

Redefining mask . Recall that in Section 3.1 we define mask as the mask used to obtain
F-separation of memory and code. When it comes to the code, we assume that the size
of Plow is the same as Phigh . However, this assumption is no longer true for Plow and
Phigh produced by smeft due to the instrumentations of load, jmp and jnz instructions.
This is not a major problem. It is enough to pad with nops Plow or Phigh to match their
sizes. For simplicity, we omit this step in our schematic description.

4 Security Guarantees Provided by smeft

In this section we state the security property bestowed by smeft on transformed pro-
grams. To do this we define a formal semantics for the RISC machine; extend it to model
faults; define non-interference for faulty runs; state the security theorem: any program
transformed by smeft corresponds to a machine program which is non-interfering for
runs with no more than F faults. For space reasons most of the details are not given
here; we refer to the full version [13].

4.1 Semantics

DLoad

P (pc) = loadd r w

〈P,Reg ,M〉 τ−→ 〈P,Reg+[r �→ M(w)],M〉

DAdd

P (pc) = addd r w Reg (r) + w = w′

〈P,Reg ,M〉 τ−→ 〈P,Reg+[r �→ w′],M〉

DJnz-A

P (pc) = jnzd w r Reg (r)
= 0

〈P,Reg,M〉 τ−→ 〈P,Reg[pc �→ w],M〉

Out

P (pc) = out ch r

〈P,Reg,M〉 ch!Reg(r)−→ 〈P,Reg+,M〉
Fig. 12. Concrete Semantics (selected rules)

To give a precise semantics to
faults we need to work at the
level of concrete programs, i.e.,
machine code, which are lists
of concrete instructions. Com-
pared to assembly instructions
from Figure 3, concrete instruc-
tions are not labeled, and their
arguments are register names or
machine words. This formaliza-
tion of machine code is suffi-
ciently concrete to describe the
class of faults we wish to model.
In particular, a concrete encoding
of the register names is not made
explicit because we do not consider faults in the code memory, and because registers
are not addressable indirectly. We sometimes write P (i) to denote the ith concrete in-
struction in the instruction list P .

Most assembly instructions have two explicit versions in the concrete domain: a
direct version, such as loadd r w which loads the value contained at memory address w
into the register r, and an indirect version, such as loadi r r

′ which fetches the memory
address of the data to be loaded from register r′. There are two exceptions to this: the

Fault-Tolerant Non-interference 69

nop instruction, which does not require any parameter, and the out instruction, which
has no direct formulation. Observe that, similarly to register names, channel names are
not encoded.

Assembly programs are converted to concrete ones by the function loader. The func-
tion converts abstract values Val into machine words. In particular this amounts to
stripping the pointer tag away from the pointers, and resolving code labels to ROM
addresses. The function loader is also responsible for mapping all abstract instructions
into their direct or indirect versions. The details are straightforward and not presented
here [13].

Configurations of the concrete machine are given by a triple 〈P,Reg ,M〉, where P
is the concrete program, Reg ∈ DReg ∪ {pc} → W is the (Concrete) Register Bank
and M ∈ W → W is the (Concrete) Data Memory.

The fault-free semantics of concrete programs is given as a labeled transition sys-
tem. The labels on transitions indicate the observable output of each clocked machine
step, and are either τ , a label marking just the passage of time, or an output label,
indicating a word output on a specific channel. All labels are in Act = {low !w|w ∈
W}∪{high!w|w ∈ W}∪{τ}. A representative selection of reduction rules for the con-
crete machine are presented in Figure 12. We use Reg+ as a shorthand for Reg[pc �→
Reg (pc) + 1] and we abbreviate P (Reg (pc)) as P (pc). Modelling instructions as con-
secutive words implies that it is impossible to jump to an address which is not aligned
with the beginning of an instruction; this assumption corresponds to the implementation
of simpler RISC architectures such as ARM versions 1 and 2.

4.2 Modeling Faults

Our aim will be to describe the overall behavior of a fault-prone system as simply as we
can, while still permitting reasoning about non-interference. The core idea is to model
the transitions of the system in the presence of faults with a labeled transition system
obtained by interleaving the machine transitions with a nondeterministic flipping of
zero or more bits. As described previously, the fault-prone bits of the machine are any
of the register bits, and any bits in the data memory.

We need some notation to talk about bit flips. Recall machine words are n bits long.
Let us define the set of locations at which a fault may occur as:

Loc
def
= {(r, i) | r ∈ DReg ∪ {pc}, i ∈ {1, . . . , n}} ∪ {(k, i) | k ∈ W, i ∈ {1, . . . , n}}

For a machine configuration C and location l ∈ Loc we will write C[l] to denote the
value of the bit specified by l in C; for any b ∈ {0, 1} we write C[l �→ b] to denote the
configuration obtained from C by updating the location l to b.

Let L range over the (possibly empty) subsets of locations. We express bit flips in the
values of a given subset L of locations by using the function flip defined as flip(C,L) =
C[l �→ ¬ C[l], l ∈ L], which flips every bit of locations L in the machine configuration
C.

flip(C,L)
a−→ C′ L ⊆ Loc

C
a
C′

We can now define faulty systems with labeled tran-

sitions (
a

, a ∈ Act) with the transition rule to the right.
It can be seen from the rule that our fault model assumes

70 F. Del Tedesco, A. Russo, and D. Sands

that the transitions of the system are instantaneous (a common assumption, but a poten-
tial source of inaccuracy – a point we return to in the conclusions). The fact that faults
can occur between transitions is modeled by allowing any fault to occur before any
transition of the system is taken. The number of faults occurring in a given transition is
|L|, and is not constrained in this rule, but will be constrained at the level of runs.

4.3 Fault-Tolerant Non-interference

This section formalizes the confidentiality guarantees of our approach in the presence
of faults.

Since the faulty system is nondeterministic, one might consider a simple possibilis-
tic notion of non-interference — secret values should not influence the set of possible
public outputs of the faulty system. This notion is not adequate because unfortunately
errors might occur anywhere, in particular on public values, therefore any program is
capable to produce any possible output!

This is an instance of a known weakness of possibilistic non-interference [18,22].
A standard fix is to adopt a probabilistic notion of non-interference – the probability
distribution of public outputs is unaffected by the secrets in the presence of errors – as-
suming an attacker can perform probability measures. In this paper, however, we adopt
a different approach: we permit the attacker to observe exactly when and where faults
occur in a given run, along with output events in the low channel and the passage of
time. This model leads to a security definition which seems stronger than the proba-
bilistic one, but in fact we have shown [14] that the two notions are equivalent for the
computational model considered here.

We start concretising the attacker’s view of a system by defining function low ∈
Act → {low!w|w ∈ W} ∪ {τ}. More precisely, low (a) returns a if a = low !w, and
returns τ otherwise. Now we can define the semantics of the faulty system from the
attacker’s perspective as a labeled transition system given by the following transition
rules:

Step

flip(C,L)
a−→ C′

C
L,low(a)

C′
Stuck-1

flip(C,L)
→
C

L,τ
flip(C,L)

Stuck-2
C
→

C
L,τ

C

The attacker observations imply that termination of the system is not directly ob-
servable and that once a system reaches a stuck configuration, faults have no further
effect.

We can now state our security condition. We say a machine configuration is initial if
(i) Reg(pc) = 0, (ii) Reg(rsp) = 2n − 1 (so it never points to low code/high data), and
(iii) secrets are stored in the first s words of the memory (Figure 11).

We say two initial configurationsC and C′ are low equivalent, written as C =low C′

if they differ, at most, on the first s words of the heap.
We say that a sequence σ = L0, a0, . . . Ln−1, an−1 is a low run of a system state C0

whenever there exist states C1, . . . , Cn such that Ci
Li,ai

Ci+1 for all i ∈ {0, . . . , n−
1}. The number of faults exhibited by σ is Σn−1

i=0 |Li|.

Fault-Tolerant Non-interference 71

Definition 1 (F -Fault-Tolerant Non-interference). An initial configuration C is F -
fault-tolerant non-interfering if for all initial configurations C′ such that C =low C′,
the set of low runs exhibiting no more than F faults are the same for C and C′.

We say that an assembly program P is F -fault-tolerant non-interfering if all initial
configurations relative to P , namely 〈loader(P),Reg ,M〉 are F -fault-tolerant non-
interfering.

Theorem 1 (Non-interference induced by smeft). If smeft (P) = P ′ then P ′ is F -
Fault-tolerant non-interfering.

The theorem is proved by showing that (i) all memory accesses in Plow are performed
towards addresses that are F -separate from μhigh and (ii) once the computation reaches
Phigh it cannot be moved back to Plow .

Both properties depends on the layout of code and data memory, together with on
the invariant property on rsp . In particular we can show that in the absence of faults, the
value contained in rsp is in the range [mask, 2n − 1], whereas in the presence of faults
the content of rsp is never in the range [0, 2n−(F+1) − 1]. For a detailed proof refer to
[13].

Definition 1 is both termination and (logical) timing sensitive: we require that any
two runs of the system (that exhibit at most F faults) correspond to the same sequence
of observable events, regardless of secret data. Not only output values must be the same,
but the instant in which they occur must coincide as well. Hence, Theorem 1 guarantees
that our transformation technique can secure all programs whose timing and termination
behavior can induce leaks.

5 Transparency Guarantees Provided by smeft

We have shown that the transformed programs meet the goal of non-interference in the
presence of faults. We have done so with no semantic assumptions about the code itself.
The only syntactic assumptions are on the size of the code, which is required to be small
enough to accommodate the transformation in the ROM, on the amount of secret data
in the initial memory, and on the registers utilization – we require at least one spare
register.

Does the transformation smeft preserve the behavior of programs? The answer, in
general, is no. Firstly, programs which are intrinsically insecure exhibit a different be-
havior under standard SME. This alteration in the semantics is done in order to enforce
confidentiality. It could be said that “software faults”, i.e., instructions leaking secret
data, are being mitigated by SME. However, even when the original program is secure,
our transformation modifies the size and layout of the original program and the absolute
location of data in memory. In general machine code programs can be sensitive to such
transformation, and behave in an arbitrarily different way.

For this reason, transparency guarantees can be given only for programs which are
“sensible” and secure for fault-free runs. We consider a program “sensible” when it
is safe and bounded. A program is safe when, roughly speaking, it is not sensitive to
the absolute addresses of its instructions in the ROM, or the absolute addresses of the

72 F. Del Tedesco, A. Russo, and D. Sands

memory that it accesses. A program is bounded when there is a known upper bound on
the region of memory that it will address.

For any “sensible” program, the following theorem holds:

Theorem 2 (Transparency). (informal statement) Let P be a non-interfering, “sensi-
ble” assembly program. If the low copy Plow always terminates, then the SME trans-
formed program smeft (P) yields the same sequence of values on each of the respective
output channels as P for any fault-free run.

A formal account of Theorem 2 (and its proof) can be found in the full version of the
paper [13].

In this work the characterization of safe and bounded programs is obtained via an
abstract machine for the language. The abstract machine characterises those programs
which never exhibit certain “bad” behaviours. This is in the same spirit as e.g. Leroy’s
compiler correctness proof [21]. We expect that any program correctly compiled from a
strongly-typed high level language, and which has a statically known memory footprint,
will be a safe and bounded program. To give these guarantees formally one could use
a verified compiler, or it could be achieved by compiling to a typed version of our
assembly language (see, for example, [23]) which ensures that the produced code is safe
and bounded. However, these endeavours lie outside the scope of the present paper.

Notice that for Theorem 2 to hold we require the low copy of the source program
to terminate on all input. This means that, in general, transparency does not hold for
programs that are nonterminating by construction (e.g. server applications). However,
this does not compromise security: Theorem 1 holds for this class of programs as well.

6 Related Work

Language Based Dependability. The use of application-layer techniques for achieving
fault tolerance have been widely studied. De Florio and Blondia survey the field [16]
and classify the various ways in which fault tolerance can be added, and what kind of
faults are supported. Notably, none of the techniques surveyed at that time either deal
with tolerance with respect to security properties, or with techniques that give precise
semantic guarantees.

More recently, Project Zap [1] has applied language based techniques to transient
faults modeling and analysis with the goal of providing formally verifiable dependabil-
ity methods. The closest to our work in the Zap series is the work on fault-tolerant
typed assembly language of Perry et al [24]. We use an abstract machine to characterize
the class of programs for which our method is applicable. Our characterization is more
liberal than a typical typed assembly language, but a typed assembly language could
nevertheless be used as a sound method to prove that a program is safe and bounded.
Both in that work and in ours, transient faults have a semantic interpretation as nonde-
terministic transitions that can happen at anytime and anywhere in the faulty hardware.
Since we do not aim at functional correctness preservation, we can be more liberal in
the class of faults we admit (more than one bit flipped at a time) and in the hardware
components the concrete machine operates on. In [25] the attention is solely focused
on detecting control flow modifications induced by transient faults. The method, unlike

Fault-Tolerant Non-interference 73

[24], is purely software based. However, detectability is possible only for programs that
obey a strict control-flow discipline, and under the assumption that at most a single
bit flip occurs. Once again, our ability to cope with a bigger class of control flow errors
comes from the fact that we aim for a weaker property; arbitrary control flow alterations
inside Plow or Phigh executions do not pose security threats.

Fault Isolation Techniques. As mentioned previously, the techniques we use to mask
addresses to prevent dangerous loads and jumps can be found in the software-based
techniques for fault isolation (SFI) introduced by Wahbe et al [31] for sandboxing un-
trusted code. A similar address-masking technique is used in [10] for mitigating the
effects of transient faults. Also, principles from SFI are also implemented in [2], where
the authors define a method to prevent an active attacker from corrupting the control
flow integrity of a program.

It should be noted, however, that the “faults” targeted by SFI are those caused by
buggy/malicious code or data. The SFI techniques, in isolation, are able to protect from
the effects of some but not all of the transient faults studied here.

What we said for software based methods also hold for sandboxing techniques using
special operating system or hardware features – they are not designed for and do not
protect against all transient faults, and may increase the attack surface (via increased
code or by relying on special purpose registers).

Fault Tolerance vs Non-Interference. As we have shown in our result, fault tolerance
and non-interference present interesting connections, and we believe that our combi-
nation is a novel one. However other connections between the two concepts have been
noted in a number of other works.

The Strong Security notion introduced by Sabelfeld and Sands in [29] for multi-
threaded programs is shown to be strong enough to guarantee an unrestricted form of
fault-tolerant non-interference in [14], providing a more restrictive class of transient
faults are considered (faults cannot corrupt the control flow integrity). In a similar way,
programs that are secure according to the definition in [28], an extension of [29] to
distributed systems, can be shown to retain security regardless of faults occurring in
network communications. It is not surprising that both cases cannot cope against faults
in the control flow since, as we have shown in Section 2, control flow alterations intro-
duce completely unexpected information flows.

Another interesting aspects of the comparison between fault tolerance and non-
interference was observed by Weber [33]. In this work the author explores a non-
interference-like characterisation of fault tolerance in terms of program semantics. A
more general view on the connection between enforcement mechanisms for informa-
tion flow properties and dependability goals is proposed by Rushby [26]. Overall the
techniques used in the present work can be understood in terms of the general parti-
tioning mechanisms described by Rushby. In particular what Rushby calls spatial par-
titioning corresponds to our separation of memory addresses (albeit within the same
physical memory); temporal partitioning characterises what we achieve by ensuring
that low events happen before high events, since this ensures that the timing of high
events cannot influence low events.

74 F. Del Tedesco, A. Russo, and D. Sands

Security Preservation in the Presence of Transient Faults. Our method guarantees
that security of programs, expressed in terms of F -Fault-Tolerant Non-interference,
is preserved even when a limited number of bit flips occur. Other forms of security
preservation in faulty environments have been studied, particularly in cryptography.

In [4] authors illustrate several transient-fault based attacks on RSA and Discrete
Logarithms cryptographic schemes, together with software countermeasures. Such pro-
tection mechanisms involve either some form of replication (they basically require to
repeat the computation twice and check the result for fault detection) or a more intensive
usage of randomness in the intermediate stages of cryptographic operations to increase
the unpredictability of the result.

In [11] authors show how the parameters of an elliptic curve cryptosystem can be
compromised by transient faults, and illustrate how a comparison mechanism is suffi-
cient to prevent the attack from being successful. In particular the method compares the
working copies of said parameters (located in a faulty hardware component) to their
original counterparts (stored in fault-free hardware) in several stages of the computa-
tion. Canetti et al [8] discuss security in the presence of transient faults for crypto-
graphic protocol implementations where they focus on how random number generation
is used in the code. Harrison et al consider [19] a “confinement problem in the pres-
ence of faults”, but their work concerns faults in the sense of abnormal termination of
software, and the proper confinement thereof.

7 Conclusion and Further Work

We have presented a technique to make programs secure despite a small number of
faults, and characterized when the method preserves the behavior of programs. The
problem we study is itself novel, and relative to the faults we model, it is notable that
our technique does not demand special hardware, and is capable of tolerating multi-bit
errors.

Perhaps the main weakness of the present work is the fault model itself. While we
model faults in all the main state elements of the machine, we do not model faults in
lower-level structures, such as pipelines or in the combinatorial circuits. This short-
coming seems to be shared with much work on fault tolerance (although we do, at least,
model faults in the program counter) – in particular works which focus on fault injection
e.g. [30]. One might speculate that many faults occurring at the lower level of abstrac-
tion are adequately modeled by flipping a few bits in a register, but there seems to be
little work to verify this. One of them, by Wang et al [32], suggests that lower-level
faults are notably rare.

A precise account about the efficiency of our approach is left for further work. An ap-
proximate estimation of the overhead can be determined by considering that the system
is basically run twice, and all the load and jump instructions are expanded in macros of
three instructions each.

Acknowledgment. Many thanks to Johan Karlsson, Ioannis Sourdis, Georgi Gaydad-
jiev, Arshad Jhumka and the anonymous referees for useful comments and observations.
This work was partially financed by grants from the Swedish research agencies VR and
SSF, and the European Commission EC FP7-ICT-STREP WebSand project.

Fault-Tolerant Non-interference 75

References

1. The zap project, http://sip.cs.princeton.edu/projects/zap/ (accessed:
February 20, 2013)

2. Abadi, M., Budiu, M., Erlingsson, U., Ligatti, J.: Control-flow integrity. In: Proceedings of
the 12th ACM Conference on Computer and Communications Security, CCS 2005, pp. 340–
353. ACM, New York (2005),
http://doi.acm.org/10.1145/1102120.1102165

3. Aumüller, C., Bier, P., Fischer, W., Hofreiter, P., Seifert, J.P.: Fault attacks on rsa with crt:
Concrete results and practical countermeasures. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C.
(eds.) CHES 2002. LNCS, vol. 2523, pp. 260–275. Springer, Heidelberg (2003)

4. Bao, F., Deng, R., Han, Y., Jeng, A., Narasimhalu, A., Ngair, T.: Breaking public key cryp-
tosystems on tamper resistant devices in the presence of transient faults. In: Christianson,
B., Crispo, B., Lomas, M., Roe, M. (eds.) Security Protocols 1997. LNCS, vol. 1361, pp.
115–124. Springer, Heidelberg (1998)

5. Barthe, G., Crespo, J.M., Devriese, D., Piessens, F., Rivas, E.: Secure multi-execution
through static program transformation. In: Giese, H., Rosu, G. (eds.) FORTE/FMOODS
2012. LNCS, vol. 7273, pp. 186–202. Springer, Heidelberg (2012)

6. Baumann, R.: Radiation-induced soft errors in advanced semiconductor technologies. IEEE
Transactions on Device and Materials Reliability 5(3), 305–316 (2005)

7. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of eliminating errors in crypto-
graphic computations. Journal of Cryptology 14, 101–119 (2001)

8. Canetti, R., Herzberg, A.: Maintaining security in the presence of transient faults. In:
Desmedt, Y.G. (ed.) Advances in Cryptology - CRYPTO 1994. LNCS, vol. 839, pp. 425–
438. Springer, Heidelberg (1994)

9. Capizzi, R., Longo, A., Venkatakrishnan, V.N., Sistla, A.P.: Preventing information leaks
through shadow executions. In: Proceedings of the 2008 Annual Computer Security Appli-
cations Conference, ACSAC 2008. IEEE Computer Society (2008)

10. Chang, J., Reis, G., August, D.: Automatic instruction-level software-only recovery. In: DSN
2006, pp. 83–92 (2006)

11. Ciet, M., Joye, M.: Elliptic curve cryptosystems in the presence of permanent and transient
faults. Des. Codes Cryptography 36(1), 33–43 (2005)

12. Cristiá, M., Mata, P.: Runtime enforcement of noninterference by duplicating processes and
their memories. In: WSEGI 2009, Argentina. 38 JAIIO (2009)

13. Del Tedesco, F., Russo, A., Sands, D.: Fault tolerant non-interference (extended version)
(2013), http://www.cse.chalmers.se/˜tedesco/papers/essos14.pdf

14. Del Tedesco, F., Russo, A., Sands, D.: A theory of fault tolerance noninterference (prelimi-
nary) (2013)

15. Devriese, D., Piessens, F.: Noninterference through secure multi-execution. In: Proc. of the
2010 IEEE Symposium on Security and Privacy, SP 2010. IEEE Computer Society (2010)

16. Florio, V.D., Blondia, C.: A survey of linguistic structures for application-level fault toler-
ance. ACM Comput. Surv. 40(2) (2008)

17. Govindavajhala, S., Appel, A.W.: Using memory errors to attack a virtual machine. In: SP
2003, IEEE Computer Society, Washington, DC (2003)

18. Gray, J.W., Probabilistic, I.: interference. In: Proceedings of the 1990 IEEE Computer Soci-
ety Symposium on Research in Security and Privacy, pp. 170–179 (1990)

19. Harrison, W.L., Procter, A., Allwein, G.: The confinement problem in the presence of faults.
In: Aoki, T., Taguchi, K. (eds.) ICFEM 2012. LNCS, vol. 7635, pp. 182–197. Springer, Hei-
delberg (2012)

http://sip.cs.princeton.edu/projects/zap/
http://doi.acm.org/10.1145/1102120.1102165
http://www.cse.chalmers.se/~tedesco/papers/essos14.pdf

76 F. Del Tedesco, A. Russo, and D. Sands

20. Kim, C., Quisquater, J.J.: Fault attacks for crt based rsa: New attacks, new results, and new
countermeasures. In: Sauveron, D., Markantonakis, K., Bilas, A., Quisquater, J.-J. (eds.)
WISTP 2007. LNCS, vol. 4462, pp. 215–228. Springer, Heidelberg (2007)

21. Leroy, X.: A formally verified compiler back-end. J. Autom. Reason. 43(4), 363–446 (2009),
http://dx.doi.org/10.1007/s10817-009-9155-4

22. McLean, J.: Security models and information flow. In: Proc. IEEE Symposium on Security
and Privacy, pp. 180–187. IEEE Computer Society Press (1990)

23. Morrisett, G., Walker, D., Crary, K., Glew, N.: From system f to typed assembly language.
ACM Trans. Program. Lang. Syst. 21(3), 527–568 (1999)

24. Perry, F., Mackey, L., Reis, G.A., Ligatti, J., August, D.I., Walker, D.: Fault-tolerant typed
assembly language. In: Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation, pp. 42–53. ACM, New York (2007)

25. Perry, F., Fisher, K.: Reasoning about control flow in the presence of transient faults. In:
Alpuente, M., Vidal, G. (eds.) SAS 2008. LNCS, vol. 5079, pp. 332–346. Springer, Heidel-
berg (2008)

26. Rushby, J.: Partitioning for safety and security: Requirements, mechanisms, and assurance.
NASA Contractor Report CR-1999-209347, NASA Langley Research Center (June 1999);
also to be issued by the FAA

27. Russo, A., Hughes, J., Naumann, D.A., Sabelfeld, A.: Closing internal timing channels by
transformation. In: Okada, M., Satoh, I. (eds.) ASIAN 2006. LNCS, vol. 4435, pp. 120–135.
Springer, Heidelberg (2008)

28. Sabelfeld, A., Mantel, H.: Static confidentiality enforcement for distributed programs. In:
Hermenegildo, M.V., Puebla, G. (eds.) SAS 2002. LNCS, vol. 2477, pp. 376–394. Springer,
Heidelberg (2002)

29. Sabelfeld, A., Sands, D.: Probabilistic noninterference for multi-threaded programs. In: Pro-
ceedings of the 13th IEEE Workshop on Computer Security Foundations, CSFW 2000, p.
200. IEEE Computer Society, Washington, DC (2000)

30. Skarin, D., Barbosa, R., Karlsson, J.: Goofi-2: A tool for experimental dependability as-
sessment. In: Proceedings of the 2010 IEEE/IFIP International Conference on Dependable
Systems and Networks (2010)

31. Wahbe, R., Lucco, S., Anderson, T.E., Graham, S.L.: Efficient software-based fault isolation.
In: Proceedings of the Fourteenth ACM Symposium on Operating Systems Principles, SOSP
1993, pp. 203–216. ACM, New York (1993),
http://doi.acm.org/10.1145/168619.168635

32. Wang, N.J., Quek, J., Rafacz, T.M., Patel, S.J.: Characterizing the effects of transient faults on
a high-performance processor pipeline. In: International Conference on Dependable Systems
and Networks, DSN 2004 (2004)

33. Weber, D.G.: Formal specification of fault-tolerance and its relation to computer security.
In: Proceedings of the 5th International Workshop on Software Specification and Design,
IWSSD 1989, pp. 273–277. ACM, New York (1989)

http://dx.doi.org/10.1007/s10817-009-9155-4
http://doi.acm.org/10.1145/168619.168635

	Fault-Tolerant Non-interference
	1 Introduction and Overview
	2 Transient Fault Based Attacks on SME
	2.1 Syntax
	2.2 Direct Control Flow and Memory Faults
	2.3 Indirect Control Flow and Memory Faults

	3 Fault-Tolerant Secure Multi-execution
	3.1 Fault-Tolerant Layout for Code and Memory
	3.2 Control Flow Integrity
	3.3 Formal Definition of Fault-Tolerant SME

	4 Security Guarantees Provided by
	4.1 Semantics
	4.2 Modeling Faults
	4.3 Fault-Tolerant Non-interference

	5 Transparency Guarantees Provided by
	6 Related Work
	7 Conclusion and Further Work
	References

