
Automated Formal Verification

of Application-specific Security Properties

Piergiuseppe Bettassa Copet and Riccardo Sisto

Dipartimento di Automatica e Informatica
Politecnico di Torino, Italy

{piergiuseppe.bettassa,riccardo.sisto}@polito.it

Abstract. In the past, formal verification of security properties of dis-
tributed applications has been mostly targeted to security protocols and
generic security properties, like confidentiality and authenticity.

At ESSOS 2010, Moebius et. al. presented an approach for develop-
ing Java applications with formally verified application-specific security
properties. That method, however, is based on an interactive theorem
prover, which is not automatic and requires considerable expertise. This
paper shows that a similar result can be achieved in a fully automated
way, using a different model-driven approach and state-of-the-art au-
tomated verification tools. The proposed method splits the verification
problem into two independent sub-problems using compositional verifi-
cation techniques and exploits one tool for analyzing the security proto-
col under active attackers and another tool for verifying the application
logic. The same case study that was verified in the previous work is used
here in order to show how the new approach works.

1 Introduction

Formal verification of security properties of distributed applications is attract-
ing researchers’ attention, especially in recent years, because of the increasing
diffusion of applications with important security requirements.

Distributedapplicationswith security requirements generally use cryptographic
protocols to communicate over insecure channels. Sometimes the security proto-
col and the application logic are totally independent: the protocol provides virtual
communication channels with standard security properties (mutual authentica-
tion, confidentiality, data integrity) and the application is developed in a nearly
security-unaware way, security being provided just by application insulation,
which is guaranteedby the fact that the application communicates only over secure
channels. In other cases, however, protocol and application logic are less indepen-
dent. For example, customprotocols can be used in order to guarantee application-
specific properties, and the application logic may interact more strictly with the
protocol in order to achieve the desired security properties. Of course, using an in-
dependent security layer realized by standard protocols (for instance TLS) is pre-
ferred when possible, because of its simplicity and reliability. However, this is not
always possible or convenient, for example because the devices involveddo not have

J. Jürjens, F. Piessens, and N. Bielova (Eds.): ESSoS 2014, LNCS 8364, pp. 45–59, 2014.
c© Springer International Publishing Switzerland 2014

46 P. Bettassa Copet and R. Sisto

enough hardware resources or do not have standard connectivity to the Internet,
but only limited ad-hoc connectivity.

The techniques and tools for automated formal verification developed so far
are mostly targeted to either the analysis of security protocols or the analy-
sis of application code. On the one hand, some tools [1] can formally verify
standard security properties of cryptographic protocols under the presence of
active attackers. However, these tools can analyze only the bare protocol (mes-
sage exchanges and related checks) while they are not adequate to also model
and analyze the application logic that interacts with the protocol, which can
be made of complex programs, without particular constraints. Moreover, gener-
ally these tools cannot deal with application-specific security properties. On the
other hand, tools for the automated formal verification of arbitrary application
source code are available (e.g. software model checkers [2]). In theory these tools
even allow to consider active attackers in the system, but a model of those at-
tackers must be supplied by the user and the inclusion of active attackers makes
verification very complex.

Actually, the main obstacle to extending existing verification techniques to an-
alyze both protocol and application logic together in the face of active attackers
is mainly practical, and is related to the limited scalability of these verification
techniques. In fact, the problem of cryptographic protocol verification is itself
challenging despite the simplicity of such protocols.

A case study of formal verification of application-specific security properties
(i.e. the truth of a predicate involving some variables of the application), tak-
ing into account both the protocol and the application logic together, appeared
recently in literature [3]. In this case study the application is developed with a
model-driven approach and the model is used to generate a formal specification,
which afterwards can be verified by an interactive theorem prover. An important
limitation of this approach is that it is based on interactive theorem proving,
which is not automatic, is very time consuming, and requires a lot of exper-
tise. Moreover, if the application is flawed, interactive theorem proving does not
provide counter examples, which can make error diagnosis and correction very
difficult.

In this paper we show that a simpler approach can be used to achieve a similar
result. In fact, the proposed method is based on verification techniques that are
automated, simpler to use, and that can also provide counter examples when the
properties to be verified do not hold.

The main idea is to combine two already existing and well-known automated
formal verification techniques, theorem proving for cryptographic protocol verifi-
cation andmodel checking for source code verification, according to the principles
of assume-guarantee compositional verification. This approach brings, in addi-
tion to the above mentioned advantages, better scalability, due to the splitting
of the verification problem into simpler sub-problems. The work proposed in
this paper, as well as combining the two mentioned verification techniques, also
aims at automating the entire process of implementing and verifying distributed

Automated Formal Verification of Application-specific Security Properties 47

applications. To our knowledge, at present there are no other proposals with the
same characteristics in literature.

The proposed development approach is based on the principles of model driven
design: it starts by defining a high-level formal model of the communication pro-
tocol, where also the expected security properties of the protocol are formally
specified. An automated formal verification of those properties is performed by
the protocol verifier ProVerif [4], and the Java implementation of the protocol is
automatically generated by the model driven development framework JavaSPI
[5], which guarantees the preservation of the intended security properties. The re-
sulting protocol implementation must then be integrated within the application
logic (client and server), which can be developed in any way (hand written or de-
veloped using other code generation techniques). Then, the application-specific
properties are formulated and verified on the application logic using a Java source
code verifier, such as Java Pathfinder (JPF)[2], but taking the results of the pro-
tocol formal verification into account. This is achieved by replacing the code
that implements the protocol with a stub that enforces the properties already
verified on the protocol model. If compared to a separate and independent use of
the theorem prover and the model checker, the main advantage of the methodol-
ogy proposed here is the reduction of verification complexity, made possible by
leveraging compositional verification in the assume-guarantee reasoning style.

The whole process evolves in a largely automated workflow, which reduces the
probability of introducing errors significantly, and enables quick error diagnosis
(both the tools used for formal verification can provide counter examples, i.e.
the execution traces that violate the intended properties).

The remainder of the paper is organized as follows. Section 2 discusses related
work and Section 3 gives some background about the tools that are exploited
in this work (ProVerif, JavaSPI and Java Pathfinder). Then, Section 4 explains
some new features that have been added to JavaSPI in order to support the
approach proposed in this paper and Section 5 introduces the case study example
and describes how it was developed and verified. Finally, Section 6 concludes.

2 Related Work

In the last decades many automated techniques have been developed for the for-
mal analysis of security protocols, as recently surveyed in Patel et al. [1]. These
techniques analyze high-level abstract models, in order to prove the correctness
of the protocol logic. More recently, some researchers have started working on
techniques that bring automated formal proofs closer to real implementations
of security protocols [6]. Among these are the model-driven development ap-
proaches, like the one exploited in this paper [5].

All the above mentioned techniques are focused on security protocols rather
than on whole applications, and address the generic security properties enforced
by such protocols (e.g. authentication, secrecy and integrity), rather than the
application-specific security properties.

Some papers have addressed the formal verification of security protocols for
specific applications, such as for example electronic commerce, with their related

48 P. Bettassa Copet and R. Sisto

application-specific properties. For example, Bella et al. [7] presented the formal
verification of some application-specific properties of the suite of protocols “Elec-
tronic Secure Transaction”, used for e-commerce. However, this work is substan-
tially different from the one presented here because verification is not automatic
(being based on the interactive theorem prover Isabelle [8] which requires human
assistance), and what is formally verified is only an abstract model of the applica-
tion rather than its final implementation.

Besides the work by Moebius et al. [3] that was already mentioned in the
introduction, and a related publication [9] that presents exactly the same method-
ology but applied to a service-oriented application, some other papers have ad-
dressed the problem of developing distributed applications with formally verified
security properties. A recent paper [10] extends the previous approach by inte-
grating the AVANTSSAR [11] model checker into SecureMDD. As a result, it is
possible to automatically generate a formal specification for the model checker
from a UML model. However, only some application-specific properties can be
verified using AVANTSSAR. For example, differently from the work presented
here, which enables the verification of arbitrary properties, it is not possible to
compare numeric values inside the model checker.

Jürjens [12] proposed a UML-based technique for the specification of dis-
tributed applications and automated formal verification of application-specific
security properties. The technique was applied to the Common Electronic Purse
Specifications regarding payment via smart-card. One of the properties that were
verified is, for example, that the amount of money in the system is every time
the same, that is the total sum of budgets of smart-card holders is always equal
to the sum of the earnings of all merchants. However, this technique provides for-
mal verification of UML models only, whereas a formal link with the application
implementation is missing. Moreover, differently from our approach, verification
is performed in a single step on the whole model, without using compositional
verification.

Gunawan et al. [13] proposed a method to integrate some standard security
mechanisms (for protecting information transfer) into distributed applications
automatically. The paper includes a proof that the security mechanisms are
integrated into the application so as to fulfill some generic properties. However
this approach does not target the verification of application-specific properties.

The idea of using compositional verification to formally verify application-
specific security properties of distributed applications already appeared in Gu-
nawan and Herrmann [14]. In that work, however, formal verification is done by
a general-purpose model checker, without considering active network attackers
and the properties of cryptographic operations.

3 Background

3.1 ProVerif

ProVerif [4] is an automated theorem prover for cryptographic protocols. In
ProVerif, the protocol and the attacker are modeled according to the Dolev-Yao

Automated Formal Verification of Application-specific Security Properties 49

[15] symbolic approach, which substantially means representing data and crypto-
graphic operations symbolically and assuming the attacker has complete control
over public communication channels, thus being able to read, delete, and modify
messages in transit or forge new messages using the knowledge the attacker has
achieved so far. The symbolic representation of data and cryptography entails
that cryptography is assumed to be ideal. For example, an encrypted message
can be decrypted only if the correct decryption key is known. Differently from
model checkers, ProVerif can model and analyze an unbounded number of con-
current sessions of the protocol, thus providing results that hold for any number
of parallel sessions. However, like model checkers, ProVerif can reconstruct a
possible attack trace when it detects a violation of the intended security prop-
erties. ProVerif may report false attacks, that is attacks that in reality are not
possible, but at the same time if a security property is reported as satisfied then
it is true in all cases, so it is necessary to analyze the results carefully when
attacks are reported.

3.2 The JavaSPI Framework

JavaSPI [5] is a framework for modeling, formally verifying and implementing
cryptographic protocols, according to the paradigm of model-driven develop-
ment. Initially, the user defines an abstract formal model of the protocol accord-
ing to the Dolev-Yao modeling approach. This model, being abstract, does not
include implementation details such as, for example, hash algorithms and length
of cryptographic keys. This model can be formally verified by ProVerif in order
to check that it satisfies some security properties. These properties are gener-
ally expressed either as secrecy requirements (the attacker must not be able to
know some data) or as correspondence requirements referred to events specified
in the abstract model. The latter requirements can be used to express authen-
tication or data integrity properties; for example an authentication requirement
could be expressed as terminate(A,B) ⇒ start(B,A), which means that each
time actor A terminates a session of the protocol apparently with B (i.e. event
terminate(A,B) occurs), B has previously started a session of the protocol with
A (i.e. event start(B,A) has occurred).

When the user is satisfied with the model and confident about its logical
correctness, the missing implementation details can be specified and a Java im-
plementation of the protocol can be automatically generated. JavaSPI is very
similar to Spi2Java [16], the main difference being the modeling language: while
with Spi2Java a protocol is modeled directly in the formal specification language
spi-calculus, JavaSPI lets the user develop the protocol model in the form of a
Java application, written with some restrictions on the Java language and mak-
ing use of a custom library (JavaSpiSim), which offers the same expressiveness
as the spi calculus language. In fact, a formal specification of the protocol com-
patible with ProVerif can be generated automatically from the Java code. Using
Java as the modeling language facilitates users who are familiar with object ori-
ented programming and Java. Moreover, this approach lets the user simulate the
execution logic of the protocol by means of a normal Java debugger.

50 P. Bettassa Copet and R. Sisto

Figure 1 shows an excerpt of an abstract model written with JavaSPI. Each
model is composed of a number of processes, each one specified by a Java
class that extends the spiProcess library class. The behavior of a process is
specified by defining the doRun method, which takes as arguments objects be-
longing to classes of the JavaSpiSim library. These classes represent the data
types admitted in a security protocol model and include methods for perform-
ing common operations, such as for example encrypting or decrypting data or
sending or receiving data on channels. The occurrence of an event is specified
by calling the event method which can have any number of arguments (e.g.
event("start",A,B) generates event start(A,B).

The implementation details that are necessary for generating the final imple-
mentation code are specified as Java annotations added to the abstract model.
JavaSPI shares with Spi2Java the same code generation mechanism, which has
been proved to preserve a large class of security properties [17]. This means that
if a security property has been proved to hold on the formal model, then that
property holds on the automatically generated Java implementation too.

3.3 Java Pathfinder

Java Pathfinder [2] (JPF) is a software model checking tool for the Java lan-
guage. Java Pathfinder can directly analyze the bytecode of Java multithreaded
applications, checking the truth of assertions or LTL formulas. Java Pathfinder
consists of a particular Java Virtual Machine (JVM) which executes the byte-
code by exploring all possible execution paths (when nondeterministic choices
are possible in the execution, each one of them is explored by backtracking
execution).

JPF includes several optimizations that automatically reduce the number of
states to be visited (avoiding those whose inspection is redundant) and thus the
complexity of the analysis.

4 The Extended JavaSPI

To achieve the final goal of this work the JavaSPI framework has been extended
in order to enable increased interaction between the generated protocol code and
the application that uses the protocol. With the original JavaSPI, only a sim-
ple interaction mechanism was possible, where the application starts a protocol
session, passing input arguments, and, upon termination of the protocol session,
the application gets the outputs. With the extended JavaSPI version, the appli-
cation can be called back by the protocol code when some events defined in the
model occur. In this way, the application can receive outputs from the protocol
at intermediate stages of a protocol session. The @EventsInterface annotation
enables this new mechanism. When the annotation is present, the code generator
generates a Java interface that contains the methods associated with the events
generated by the process and has the name specified in the annotation. When
a session of the protocol is started by the application, a callback object that

Automated Formal Verification of Application-specific Security Properties 51

public class p_Card extends spiProcess {
...

@EventsInterface("p_Card_Interface")
public void doRun(Channel cTermCard, Nonce passphrase,

Identifier LOAD, Identifier PAY, Identifier TERMAUTH,
Identifier RESAUTH, Identifier TERMLOAD, Identifier TERMPAY,
Identifier RESPAY) throws SpiWrapperSimException{

Message xIn = cTermCard.receive(Message.class);

if(xIn.equals(TERMAUTH)){
Nonce challenge = new Nonce();
Pair<Identifier,Nonce> _w0 = new Pair<Identifier, Nonce>(RESAUTH,challenge);
cTermCard.send(_w0);

Pair<Message,Hashing> _p0 = cTermCard.receive(Pair.class);
Pair<Identifier,Integer> xTermLoad_xValue = (Pair<Identifier, Integer>) _p0.getLeft();
Hashing xHash = _p0.getRight();
Identifier xTermLoad = xTermLoad_xValue.getLeft();
Integer xValue = xTermLoad_xValue.getRight();

if(xTermLoad.equals(TERMLOAD)){
Pair<Identifier,Nonce> _w1 = new Pair<Identifier, Nonce> (LOAD,passphrase);
Pair<Message,Nonce> _w2 = new Pair<Message, Nonce>(_w1,challenge);
Pair<Message,Integer> _w3 = new Pair<Message, Integer>(_w2,xValue);
Hashing h = new Hashing(_w3);

if(h.equals(xHash)){
event("addToBalance",xValue);

...

Fig. 1. Excerpt of a sample model code

implements the generated interface must be passed as argument. This extension
does not affect the validity of the ProVerif model that is generated from JavaSPI,
because the methods called on event occurrence cannot alter the protocol be-
havior as modeled by ProVerif. As detailed in Section 5.6, when performing the
verification of the application code, the protocol code is substituted by stubs
that enforce exactly the event orderings that are made possible by the protocol.

5 The Case Study Application Development

The case study is the development of a smart-card based application that imple-
ments a sort of electronic purse. The application lets the user load credit onto
the smart card and use the loaded credit to get some services. In Moebius et al.
[3], a copy service offered by a University Campus to students is considered,
but which specific service is offered by the application is not relevant. In the
description of the case study, we stick to the copy service example.

The users of the application are some customers and a manager. Each cus-
tomer owns a smart-card where Java code can run, on which credit can be
loaded. The manager provides a set of terminals where customers can go with
their smart-card in order to buy or spend credit. The current balance of credit
is stored on the smart card and is updated at each operation performed. For
simplicity, the example considers one unit of credit corresponding to one copy.

52 P. Bettassa Copet and R. Sisto

Finally, all terminals and all smart-cards store internally the same secret key,
shared by all trusted and original components. The secret keys are assumed to
be not accessible, both in the smart-cards and in the terminals (the smart-card
is assumed to be tamper-proof while the terminal is assumed to be secured so
that only the manager can access its internals for maintenance).

The security goal that is considered in this case study is “the manager does
not lose money”, that is the total amount of issued copies does not exceed
the total credit bought previously by all users during their loading operations
on their smart-cards. This property must be satisfied even in the presence of
potential active attackers who may intercept/alter/delete messages transmitted
between the actors (smart-cards and terminals), or create new ones, following
the definition of attackers of the Dolev-Yao model.

5.1 The Development Workflow

The key idea of the proposed development approach (depicted in Figure 2) is
to divide the application into two distinct parts, to be developed and verified
separately: the protocol, and the application logic.

The protocol is developed according to the JavaSPI model-driven method-
ology. It includes all communication activities and must satisfy some security
properties, specified by the developer.

The application logic can be developed in any way, but it must properly
interact with the protocol, by starting protocol sessions and reacting to events.

The verification process is compositional. The security properties of the pro-
tocol are verified on the abstract protocol model using ProVerif and assuming
a generic scenario with an unbounded number of parallel protocol sessions. The
same properties are guaranteed to hold on the Java code that implements the
protocol by the code generation algorithm. Application-specific security proper-
ties are specified and formally verified using an automated formal verification
tool capable of analyzing Java code directly (Java Pathfinder in our case). When
performing this verification step, it is possible to avoid the explicit modeling of
the protocol part, by substituting it with a stub that describes the security
properties proved by ProVerif. The stub can be automatically generated from
the protocol properties.

The rest of this section details the various steps with reference to the case
study.

5.2 Developing the JavaSPI Abstract Protocol Model

The protocol designed for this application is based on challenge interactions.
Figure 3 shows the interaction between a terminal and a card during the load
operation.

Once a card is plugged into the terminal, the user can enter money into the
terminal, which triggers the start of the load operation. This operation then
proceeds as shown in Figure 3, where value is the amount of credit to be loaded.
The terminal starts the operation generating the addToIssued(value) event and

Automated Formal Verification of Application-specific Security Properties 53

ProVerif

Develop application and
generate stub

JavaSPI model
(with security properties)

ProVerif specification

Properties
satisfied?

NO,
refine model

JavaSPI code generator

YES, generate code

Java Protocol Code

Java PathFinder

Java Application Code
with stub

Properties
satisfied?

Correctly verified
application

YES

NO,
review

JavaSPI translator

Fig. 2. Workflow of the verification process

sending the card the TERMAUTH message. The card responds issuing the chal-
lenge message, composed of the RESAUTH tag and a nonce (a randomly gen-
erated number). The terminal responds to the challenge by sending the last
message, which includes the TERMLOAD tag followed by the value to be loaded
and a hash value, computed on a 4-tuple that includes the shared secret key, the
nonce and the value. Finally, the card re-computes the hash value using its own
copy of the secret key and nonce and the value received in the message, and if the
result matches the received hash value it concludes successfully the operation,
by generating the addToBalance(value) event.

The two events will correspond to operations in the application logic that
record, respectively, the amount of money earned and the amount of credit spent.

The JavaSPI specification of the card behavior during the load operation is
the code excerpt shown in Figure 1.

The JavaSPI model can be simulated in order to check that it behaves as
expected.

This security protocol is expected to satisfy two main security properties.
The first one is that the secret shared by all the original components can-
not be known by an attacker, who has access to the communication channel
between the terminal and the card. The second one is the correspondence of
the protocol events. For the load operation, each time some credit is actu-
ally loaded onto a smart-card (event addToBalance(credit)), the corresponding
amount of money must have been previously entered into one terminal (event

54 P. Bettassa Copet and R. Sisto

TERMAUTH

RESAUTH, nonce

TERMLOAD, value, H(LOAD,sk,nonce,value)

Terminal Card
addToIssued(value)

addToBalance(value)

Fig. 3. The load operation

addToIssued(credit)). Moreover, the correspondence between these events must
be injective, i.e. any addToBalance(credit) event must have its own correspond-
ing addToIssued(credit) event. Injectivity is necessary in order to avoid replay
attacks (i.e. a duplicated load credit message, which would result in an addition
of unpaid credit on the smart-card, must be avoided). A similar property can be
specified for the operation of spending credit.

Note that a tool like ProVerif cannot model integer arithmetic and precedence
comparisons between integers. Hence, it does not allow to specify more complex
properties, e.g. the ones related to the sum of credit loaded or spent, nor it allows
to describe the application logic that processes the events and updates integer
counters.

5.3 Formal Protocol Verification

The model generated in the previous step is automatically converted by JavaSPI
into the input syntax accepted by ProVerif. The resulting code is ready to be
formally analyzed, but first the information on the multiplicity of processes must
be added, in order to indicate that there may be an unbounded number of
instances of processes.

ProVerif succeeds in proving that the intended properties of the protocol hold
on the model. ProVerif takes 15ms to complete the proof on a computer equipped
with Intel Core2 Quad Q9450 running at 2.66GHz, 8 GB of DDR2 RAM and
Ubuntu 12.04 64-bit operating system and ProVerif 1.86p13.

5.4 Protocol Code Generation

After having verified the model with ProVerif, the generation of the Java code
that implements the protocol can take place, by means of the code generator
provided by JavaSPI. The result is a set of Java packages, one for each process
in the model, which implements the behavior defined in the model.

Automated Formal Verification of Application-specific Security Properties 55

5.5 Application Logic Development

The generated protocol code must now be integrated with the application code
that uses it. In our case study, the application code has been kept simple, but it
includes all the fundamental aspects of the application that are necessary for its
verification. More precisely, only the functionalities related to the management
of the credit system have been implemented on the card software.

5.6 Checking the Application Code

The last step of the workflow is the verification of the application-specific
properties using Java Pathfinder. As already anticipated, in order to reduce
the complexity of this verification task, the protocol code generated by JavaSPI
is replaced with a stub that just reproduces any possible behavior of the proto-
col sessions, as seen by the application, without really executing the protocol.
Of course, the behavior of the stub must be constrained so as to satisfy the
security properties that have already been verified by ProVerif. In principle, this
constraint can be enforced in one of two different ways: either the constraint is
enforced when generating the stub, or the stub is generated without any con-
straint but the application-specific security property P to be verified is rewritten
in the following form

C ⇒ P

where C is the constraint (i.e. the property verified by ProVerif). This second
approach is more difficult, because of the difficulty of expressing C. Then, the
first approach (generation of a stub that incorporates the constraints coming
from the properties verified by ProVerif has been selected for our case study).

As the application processes interact with each other only through the proto-
col, having replaced the protocol implementation with the stub makes it possible
to avoid considering the behavior of active attackers any more during the verifi-
cation of the application code. In fact, the behavior of potential active attackers
has already been considered when analyzing the protocol by ProVerif, and it is
already incorporated in the stub behavior itself.

Based on the architecture of the developed application, the only possible in-
teractions between the protocol and the application logic are those that occur
at the start and at the end of each session, as well as at the occurrence of one of
the intermediate events described in the model. For this reason, it is enough for
the stub to include the statements corresponding to these interaction points. All
the other statements that make up the protocol implementation can be safely
omitted.

The stub can be built by creating multiple Java threads, each one playing
the behavior of a single actor in a single protocol session. In order to include
the constraints deriving from the security properties verified by ProVerif, it is
enough to synchronize these threads in such a way that the security properties
proved for the protocol are enforced.

56 P. Bettassa Copet and R. Sisto

In our case study, the stub includes threads that play the role of the terminal
and threads that play the role of the card. The threads that play the role of
the terminal learn the kind of operation and the amount of credit to be loaded
or spent at their startup (this information is an input coming from the user
when the application starts the session). Instead, the threads that play the card
role are ready to perform either a load or a spend operation, which in the real
protocol is selected by the first message received.

If we want to constrain the behavior of these threads so as to enforce the cor-
respondence properties that have been verified by ProVerif, we have to synchro-
nize the events of each card thread with the events of a corresponding terminal
thread. More precisely, before performing a load or spend event, a card thread
has to synchronize with a terminal thread that has just performed a correspond-
ing event. This means that the terminal thread enters a synchronization state
after having generated an event while a card thread enters a synchronization
state before proceeding with a load or spend event.

Model checking does not allow to analyze systems with an unbounded number
of states. For this reason, a necessary condition is that the number of parallel
protocol sessions (i.e. the number of threads in the stub) is kept bounded. In our
case study, this corresponds to having bounded numbers of users and terminals
(as each user has one card, the number of cards equals the number of users),
with the assumption that no more than one session at a time is possible on each
card or on each terminal.

In addition to bounding the number of threads, as with any software model
checking problem, abstractions in the application code may be necessary, in order
to make the number of states finite and reasonably small.

In our case study, the application-specific property to be checked is given
by the fact that in every instant (or for every state reached and analyzed by
the model checker) the value of an integer field (named “balance”, which repre-
sents the difference between the current paid copies and those issued) is always
greater than or equal to zero. This property details the more general property
“the manager does not lose money”. Since the instantaneous value of the balance
field depends on the field additions and subtractions performed by the applica-
tion itself, it is not possible to introduce a layer of abstraction on it. Neverthe-
less, it is still affordable to run the model checker over a reasonable number of
possible cases.

To check if it is satisfied there are two possible ways.
The first one is to use a plugin for Java Pathfinder that enables the verification

of LTL formulas during the state exploration performed by JPF. The plugin 1

used in this case study is not maintained directly by the JPF development team
and is subject to discontinuity of development over the years. Other plugins that
support LTL verification are available. However, the one used in this case study
was chosen because it supports the verification of class field values, and not
only method calls sequences. In this case, the LTL property to verify is specified
through the following annotation:

1 Available at https://bitbucket.org/petercipov/jpf-ltl

https://bitbucket.org/petercipov/jpf-ltl

Automated Formal Verification of Application-specific Security Properties 57

@LTLSpec("[] (it.polito.javaSPI.test.CSJPF.balance>=0)")

where it.polito.javaSPI.test.CSJPF is the class that includes the balance
field. This formula simply means that the balance is always greater than or
equal to zero.

The second way is to introduce assertions within the application code. In this
case, since the example application requires that the “balance” is always non-
negative, it is sufficient to place an “assert balance >= 0” at any point in the
code where the value of the “balance” is set or modified. As this is a private
field, it is very simple to identify the only places where it can be set or modified.

Results show that both methods work well for our case study. No violations
of the specified properties are detected, thus proving, by exhaustive state ex-
ploration, that the properties hold on the application code. Furthermore, the
method that uses assertions occupies less memory (RAM) and takes less time,
compared to the LTL formula verification.

Verification with JPF was performed on a computer equipped with Intel i7-
3770 CPU running at 3.40GHz and 11GiB of DDR3 RAM. The software com-
ponents relied on an Ubuntu 13.04 32-bit operating system, Java HotSpot(TM)
Server VM (Java version 1.7.0 21, build 23.21-b01, mixed mode).

The initial JavaSPI model is composed by 250 lines of Java code and anno-
tations. The size of the ProVerif model is 150 lines, and the size of the protocol
code is about 450 lines of Java code. Both are generated by the JavaSPI gen-
erator starting from the initial model. The final application requires about 200
additional lines of Java code.

Table 1 and Table 2 report the time and memory required for the verification
of the case study example, in the cases of assertions and LTL formula respec-
tively. With the computational resources specified above, in this case it has been
possible to analyze a scenario with a maximum of 4 users and 4 terminals when
the LTL formula verification is performed. Conversely, the verification of the as-
sert conditions requires fewer resources, and can handle efficiently systems with
up to 5 users and 5 terminals. It is important to note, however, that, in general,
assertions are not always enough for expressing application-specific properties.
Therefore, in other case studied the use of LTL formulas can be unavoidable.

Although it is not possible, with a model checker, to formally infer that the
properties hold with any number of users and terminals, the results obtained
with a small number of participants are sufficient to give reasonable confidence
that this is true. In fact, if a distributed application is flawed, usually the error
can be detected even with small numbers of parallel sessions.

Table 1. Java Pathfinder verification time and memory consumption using the assert
construct

Users and terminals
1 2 3 4 5

Time <1s 1s 7s 2m 40s 42m 21s

Memory 61MB 79MB 145MB 275MB 697MB

58 P. Bettassa Copet and R. Sisto

Table 2. Java Pathfinder verification time and memory consumption of the LTL
formula

Users and terminals
1 2 3 4

Time 1s 30s 30m 18s 44h 24m 59s

Memory 61MB 290MB 467MB 952MB

As mentioned above, the characteristics of the application itself have a sig-
nificant effect on the complexity of model checking, so performance can be very
different depending on the application under test.

6 Conclusions

In this paper it has been shown how a distributed application with application-
specific security requirements can be developed using a model-driven approach
that finally yields a formally verified Java implementation. The formal verifi-
cation of the security properties takes into account active attackers and is en-
tirely automated. The most critical part of the code, i.e. the implementation of
the security protocol, is generated automatically from an abstract model with
the guarantee of security property preservation. Moreover, the model is written
in Java, instead of using domain-specific formal languages. The adoption of a
compositional verification approach splits verification into two separate simpler
tasks, which potentially leads to the possibility to handle larger applications.

Up to our knowledge, no other approach was previously proposed with all
these features together. Compared to the approach presented in [3], which de-
veloped the same case study, our approach has the advantage of being fully
automated. Even if model checking does not allow us to get a result that holds
for any number of users and terminals, the result gives anyway good security
assurance and can be obtained using only automated tools and without requiring
excessive expertise.

The results obtained are encouraging because they confirm that it is possible
to develop distributed applications with formally verified application-specific
security properties using only automated tools.

One drawback that we found is the high quantity of resources that the model
checking with JPF requires, in terms of memory and time. This is partially
due to the kind of verification that interprets the bytecode of the real Java
application. Using other verification tools for Java may improve the performance.
Future works will address the verification of generic security properties in the
final application code, for example guarantee that a the value of a field added
manually remains confidential in the final application.

References

1. Patel, R., Borisaniya, B., Patel, A., Patel, D., Rajarajan, M., Zisman, A.: Compar-
ative analysis of formal model checking tools for security protocol verification. In:
Meghanathan, N., Boumerdassi, S., Chaki, N., Nagamalai, D. (eds.) CNSA 2010.
CCIS, vol. 89, pp. 152–163. Springer, Heidelberg (2010)

Automated Formal Verification of Application-specific Security Properties 59

2. Visser, W., Havelund, K., Brat, G., Park, S., Lerda, F.: Model checking programs.
Automated Software Engg. 10(2), 203–232 (2003)

3. Moebius, N., Stenzel, K., Reif, W.: Formal verification of application-specific secu-
rity properties in a model-driven approach. In: Massacci, F., Wallach, D., Zannone,
N. (eds.) ESSoS 2010. LNCS, vol. 5965, pp. 166–181. Springer, Heidelberg (2010)

4. Blanchet, B.: An Efficient Cryptographic Protocol Verifier Based on Prolog Rules.
In: 14th IEEE workshop on Computer Security Foundations, p. 82 (2001)

5. Avalle, M., Pironti, A., Sisto, R., Pozza, D.: The Java SPI framework for secu-
rity protocol implementation. In: Sixth International Conference on Availability,
Reliability and Security (ARES), pp. 746–751 (2011)

6. Avalle, M., Pironti, A., Sisto, R.: Formal verification of security protocol imple-
mentations: a survey. In: Formal Aspects of Computing (to appear)

7. Bella, G., Massacci, F., Paulson, L.C.: Verifying the SET purchase protocols. J.
Autom. Reason. 36(1-2), 5–37 (2006)

8. Nipkow, T., Paulson, L.C., Wenzel, M.T.: Isabelle/HOL. LNCS, vol. 2283.
Springer, Heidelberg (2002)

9. Borek, M., Moebius, N., Stenzel, K., Reif, W.: Model-driven development of secure
service applications. In: Proceedings of the 35th Annual IEEE Software Engineering
Workshop (SEW), pp. 62–71. IEEE (2012)

10. Borek, M., Moebius, N., Stenzel, K., Reif, W.: Model checking of security-
critical applications in a model-driven approach. In: Hierons, R.M., Merayo, M.G.,
Bravetti, M. (eds.) SEFM 2013. LNCS, vol. 8137, pp. 76–90. Springer, Heidelberg
(2013)

11. Armando, A., et al.: The AVANTSSAR platform for the automated validation of
trust and security of service-oriented architectures. In: Flanagan, C., König, B.
(eds.) TACAS 2012. LNCS, vol. 7214, pp. 267–282. Springer, Heidelberg (2012)

12. Jürjens, J.: Developing high-assurance secure systems with UML: a smartcard-
based purchase protocol. In: 8th IEEE International Conference on High Assurance
Systems Engineering, pp. 231–240 (2004)

13. Gunawan, L.A., Kraemer, F.A., Herrmann, P.: A tool-supported method for the
design and implementation of secure distributed applications. In: Erlingsson, Ú.,
Wieringa, R., Zannone, N. (eds.) ESSoS 2011. LNCS, vol. 6542, pp. 142–155.
Springer, Heidelberg (2011)

14. Gunawan, L.A., Herrmann, P.: Compositional verification of application-level se-
curity properties. In: Jürjens, J., Livshits, B., Scandariato, R. (eds.) ESSoS 2013.
LNCS, vol. 7781, pp. 75–90. Springer, Heidelberg (2013)

15. Dolev, D., Yao, A.C.C.: On the security of public key protocols. IEEE Transactions
on Information Theory 29(2), 198–207 (1983)

16. Pozza, D., Sisto, R., Durante, L.: Spi2Java: automatic cryptographic protocol Java
code generation from spi calculus. In: 18th International Conference on Advanced
Information Networking and Applications, 2004, vol. 1, pp. 400–405 (2004)

17. Pironti, A., Sisto, R.: Provably correct Java implementations of Spi Calculus se-
curity protocols specifications. Computers & Security 29, 302–314 (2010)

	Automated Formal Verification
of Application-specific Security Properties
	1 Introduction
	2 Related Work
	3 Background
	3.1 ProVerif
	3.2 The JavaSPI Framework
	3.3 Java Pathfinder

	4 The Extended JavaSPI
	5 The Case Study Application Development
	5.1 The Development Workflow
	5.2 Developing the JavaSPI Abstract Protocol Model
	5.3 Formal Protocol Verification
	5.4 Protocol Code Generation
	5.5 Application Logic Development
	5.6 Checking the Application Code

	6 Conclusions
	References

