
Idea: Towards a Vision of Engineering Controlled
Interaction Execution for Information Services�

Joachim Biskup and Cornelia Tadros

Fakultät für Informatik, Technische Universität Dortmund, Germany
{joachim.biskup,cornelia.tadros}@cs.tu-dortmund.de

Abstract. To protect an agent’s own knowledge or belief against
unwanted information inferences by cooperating agents, Controlled
Interaction Execution offers a variety of control methods to confine the in-
formation content of outgoing interaction data according to agent-specific
confidentiality policies, assumptions and reaction specifications. Based on
preliminary experiences with a prototype implementation as a frontend to
a relational DBMS, in this article we outline the architectural design and
the parameterized construction of specific tasks to uniformly shield all in-
formation services in need of confinement, potentially comprising query
answering, update processing with refreshments, belief revision, data pub-
lishing and data mining. Refraining from any intervention at the cooper-
ating agents, which are also seen as intelligently attacking the defending
agent’s own interest in preserving confidentiality, the engineering solely
aims at self-confinement when releasing information.

Keywords: agent, a priori knowledge, attacker assumption, belief, be-
lief revision, confidentiality policy, constraint, censor, data mining, data
publishing, formal semantics, frontend, group, inference control, inference-
usability confinement, information engineering, information flow, infor-
mation integration, invariant, logic, lying, overestimation, permission,
possibilistic secrecy, prohibition, query answering, reasoning, refreshment,
refusal, simulation, state, theorem-proving, update processing.

1 Introduction

People are communicating by using their computing devices – profiting from
external facilities while purposely either sharing or protecting own informational
resources. We consider the people’s devices as a kind of intelligent agents which
are interacting within a multiagent system. Accordingly, while being designed to
cooperatively share its data with another agent in general, each agent also has
to keep its own sensitive information confidential. In this report, we outline a
specific approach to engineer such a “defending” agent, for the sake of supporting
privacy as informational self-determination and protecting business assets.
� This work has been supported by the Deutsche Forschungsgemeinschaft (German Re-

search Council) under grant SFB 876/A5 within the framework of the Collaborative
Research Center “Providing Information by Resource-Constrained Data Analysis”.

J. Jürjens, F. Piessens, and N. Bielova (Eds.): ESSoS 2014, LNCS 8364, pp. 35–44, 2014.
c© Springer International Publishing Switzerland 2014

36 J. Biskup and C. Tadros

Our approach can be motivated by the case of Bob living with his family and
running his own business, gathering any information he needs and maintaining
the plans he pursues by means of his computing devices. This includes XML
documents with personal details about him and his children, their electronic
health records, a relational database about commercial offers and customers,
and an AI system for assembling and evaluating ideas on further projects.

Bob is cooperating with a large variety of relatives, friends, business partners,
officials and so on. Communicating with any of them, according to the agreed
purposes behind the specific contact, he is willing to discretionarily share some
pieces of information and selected details of his plans. At the same time, however,
depending on the social relationship and guided by personal preferences, Bob
might want each of the persons involved not to learn parts of the information
and plans that appear to be sensitive regarding the specific situation.

So, Bob is facing the challenge to uniformly and consistently shield the infor-
mation services he offers to others, balancing his and their interests in availability
and integrity of data to be shared with his potentially conflicting own interest
of context-specific confidentiality. Accordingly, he would like to employ a single
control mechanism to confine the outgoing information flow from all his com-
puting devices according to his personal or business needs and the nature of the
social contact to the recipient envisioned. To be sure, this mechanism should not
at all be invasive to the computing devices of the others, but only regulate the
functionality of his own devices.

In other words, Bob seeks for installing and parameterizing a personal intel-
ligent computing agent that securely mediates the interactions with the devices
of the others such that the specifically expressed interests are actually automat-
ically enforced, in each single interaction and over the time as well.

More abstractly, we aim at constructing a defending agent, i.e., an intelligent
computing agent that will enable its owner to both conveniently and effectively
deal with formal requirements about the following high-level issues:

– general permission to share data, for the sake of availability: declared as
interface language;

– dedicated prohibition to acquire information, for the sake of confidentiality:
declared as a policy, expressing security constraints/invariants on “released
information”;

– application-oriented quality guarantees to reflect aspects of the “real-world”,
for the sake of integrity: declared as functional constraints/invariants on
own information.

2 From a Required Vision to Available Ideas

Our vision of a defending agent is driven by widespread requirements to en-
able individuals to discretionarily control the sharing of their information with
others, which are treated as cooperation partners on the one hand and neverthe-
less perceived as potential attackers against wanted confidentiality on the other
hand. While the requirements appear to be socially accepted, actually offered

Towards a Vision of Engineering Controlled Interaction Execution 37

XML documents
(personal data)

EHR
(health data)

relational database
(business data)

AI system
(planning data, ...)

common interface
to integrated own
knowledge/belief

.

.

.

.

.

.

 owner

.

.

.

.
.

.

.

.

.

 Bob

interacting agents and their holdersvision of a defending agent

 collusion ?

semantic modelling ?
dynamic adaption?

no side-channels ?

 no direct control ?

cooperation overview ?

 inference control ?

 as potential attackers

 self-confinement ?

confidentiality policy ?

 attacker modelling ?

parametrization ?

specialization ?

administration ?
optimization ?

information integration ?

Fig. 1. The vision and major challenges

IT-systems rarely comply with them, and some people might even consider our
vision to be just a dream, nice to have but impossible to achieve. We deal with
the latter concern in a gradual way, rather than giving a strict yes-no answer.

In fact, in this article we argue for the thesis that our vision is approximately
realizable indeed, by exhibiting an architectural design that exploits or partly is
justified by ideas about actually available technologies. Trying a somehow bold
correspondence, realizing the vision of controlling the release of own information
is comparable to traveling to the moon: having been a dream for a long time, at
a specific stage of scientific development, a concrete top-down plan was possible
based on ideas from various fields. Clearly, just reaching the moon has left many
further issues open, and so will our design be in need of many further features.

Figure 1 illustrates the vision and indicates major challenges. In the following,
we gather most of these challenges into three main groups, and for each group we
identify a basic idea about available technologies to solve the problems involved.

The challenges of inference control according to a confidentiality policy by self-
confinement of the information supplier include the problems of attacker mod-
elling and a complete cooperation overview. As a main idea towards a solution,
we follow the approach of Controlled Interaction Execution, as summarized in Sec-
tion 3. Though this approach is mainly logic-oriented, additional features are ex-
pected to be smoothly integrable, in particular numerical information like outputs
of statistical functions and data mining support and confidence numbers. Attacker
modelling in a large scale and, in particular, establishing an overview about coop-
erations are in need of adapting insight from, e.g., adversarial reasoning [18] and

38 J. Biskup and C. Tadros

normative reasoning [1] about an inaccessible environment which does not provide
complete knowledge about the dissemination of information.

We can further profit from the idea of information engineering [14] to deal
with information integration requiring semantic modelling of diverse sources
including their dynamic adaption. In particular, research on multi-context sys-
tems [13] facilitates the integration of knowledge with heterogeneous logical rep-
resentations such as envisioned in the sketched example scenario. Presumably, an
information owner may employ not only structured or at least semi-structured
information services but also ad-hoc facilities like email conversation led in nat-
ural language. To avoid the resulting opening of side-channels, we would need
additional expertise, e.g., to convert “freely” expressed information into “more
structural” one, as explored in the field of information extraction [21].

Guided by the two ideas sketched above and adapting the respective tech-
nologies, we come up with the architectural design described in Section 4. To
actually build a manageable system we suggest to employ the idea of modern
software development and maintenance, in particular to cope with specialization
and parametrization as well as automatic optimization and administration, as
further exemplified in Section 5. Additional insight can be provided by the field
of multiagent systems [23], in particular for the integration of agent systems with
other technologies, including standards for communication protocols [16].

We willingly accept to exercise no direct control at all on the cooperating
agents and, accordingly, we only indirectly deal with options of collusion among
those agents. These evident shortcomings will remain unsolved.

We intend to complement other approaches to overcome their restrictions
and shortcomings sketched as follows. Access control and encryption applied to
single data items are helpful but in general not sufficient to protect against an
intelligent agent that might combine data received and already available before
and intelligently infer consequences. Usage control is conceptually mandatory in
general, but requires to implant trusted components into the interacting devices,
see, e.g., [20]. Cryptographic multiparty computations are powerful means for
protecting numerically encoded information but in most cases are rather costly
and not applicable for logic-oriented information, see, e.g., [17].

3 Summary of Controlled Interaction Execution

Specifically realizing security automata, see, e.g., [19], for a logic-oriented
view on information services, our own approach of inference-usability con-
finement by Controlled Interaction Execution, CIE, has been summarized
in [3,4]. This approach originated from a seminal proposal of Sicherman/de
Jonge/van de Riet [22] in 1983, which later has been resumed and extended
by Biskup/Bonatti, e.g., [5,7] and then has further been elaborated by Biskup
et al, e.g., [11,8,12,2,9,10]. CIE has been proved to be in accordance with fun-
damental notions of secrecy, as unified by Halpern/O’Neill [15], while adding
dedicated logic-oriented enforcement mechanisms.

Towards a Vision of Engineering Controlled Interaction Execution 39

We briefly summarize the main characteristics of CIE concepts:

– cooperativeness:
• no intervention whatsoever at other agents (seen as potential attackers),
• only self-confinement when releasing own information,
• confidentiality requirements as exceptions from permissions to share data;

– logic-orientation:
• information represented by (sets of) sentences of a suitable logic, coming

along with formal semantics of formulas, to precisely capture notions of
knowledge and belief,

• information acquired either explicitly/directly from communication data
or implicitly/indirectly inferred by intelligent reasoning,

• focus on possibilistic secrecy of a sentence to be kept confidential, roughly
meaning, belief in the possibility of the sentence being not valid from an
attacker’s point of view;

– statefulness:
• rich supported functionality for interaction to share data, including query

answering, update processing with refreshments, belief revision, and data
publishing, potentially as well as related services like, e.g., data mining,

• unlimited interaction sequences,
• keeping track of interaction history and thus state-based reactions;

– modelling of “attacking” agent:
• agent-specific assumptions and agent-specific policy,
• several approaches to attacker-specific reactions on potentially harmful

requests, namely refusal, weakening, lying and combinations thereof,
• simulating an attacking agent’s postulated reasoning about candidates

for reactions on an attacker’s request to determine potential harmfulness,
before deciding how to actually react;

– formal assurances:
• formally proved compliance with confidentiality requirements under

specified assumptions and policies.

In the remainder of this note, we elaborate our vision of a defending agent of the
wanted kind, based on the broad theoretical work on CIE and preliminary expe-
riences with an ongoing prototype implementation for a less ambitious situation,
only requiring a frontend to a single relational DBMS.

4 Architectural Design

As a starting point, we assume that there are one or more existing functional
components for information services – like a local DBMS for a private company,
XML documents for personal and family data, and electronic health records.
Figure 2 then shows the overall design of an agent implementing CIE. That
agent should uniformly shield the functional components as a common control
frontend to confine the outgoing flow of information to each of the cooperating
agents according to the pertinent agent-specific policy and assumptions.

40 J. Biskup and C. Tadros

common interface language

censorn

 own
knowledge/
 belief

functional
constraints/
invariants

information
 servicek

 censor censor

 interfacek
information
 service1

 interface1

prohibitionsm/

 assumptions1

assumptionsm

requests from
other agents

reactions (answers, notifications, ...)
to other agents

 permissions1

permissionsm

se
cu

rit
y

ad
m

in
is

tra
tio

n
la

ng
ua

ge

 selection optimization

censor1

theorem
proving

 . . .

parameters for
security administration

 authentication and access control

 . . .

policymprohibitions1/
policy1

parameters for
information engineering

 i

nf
or

m
at

io
n

en
gi

ne
er

in
g

la
ng

ua
ge desires

infor-

 reactions1

reactionsm
 agent simulation1

agent simulationm

 runtime state1

 runtime statem
inten-

mation
inte-
gration

tions

integrated

Fig. 2. Controlled Interaction Execution uniformly shielding a defending agent’s inte-
grated own knowledge or belief by means of, e.g., n available censors regarding, e.g., k
existing information services offered to, e.g., m currently cooperating agents

As a prerequisite, we need a technology of information system integration,
e.g., [14,13], to treat the existing functional components in a uniform manner:

– embedding each individual interface into a common interface;
– forming the integrated own knowledge/belief – whether explicitly or implic-

itly – , part of which is the target of the policy for prohibitions;
– evaluating an incoming request expressed in the common interface language

in terms of evaluations of subrequests to pertinent information services.

Though highly demanding in its own right, it is indispensable to form a uni-
fied own knowledge/belief to which all security measures should refer, in order
to achieve consistent enforcement of the owner’s interests in confidentiality, in-
dependently of the information services involved and the interactions requested.

Each of the cooperating agents is specifically treated, as discretionarily speci-
fied by the defending agent’s owner acting as security officer by means of context-
specific parameters for the following components: permissions granted to the

Towards a Vision of Engineering Controlled Interaction Execution 41

agent, the confidentiality policy as prohibitions, assumptions about the agent,
and the kind of reactions in case of violating requests. Given these specifications,
the runtime state and the simulation of the cooperating agent are initialized,
and an initial censor is selected to control the reactions to that agent.

The runtime state represents the cooperating agent, in particular to capture
original parameters, possibly their modifications, and past and current requests.
Based on the runtime state, over the time, the component of censor selection
determines the current censor for the agent. Together with the reactions shown
to the agent, the runtime state also determines the simulation of the agent:
basically, this simulation serves to model the cooperating agent’s current belief
about the defending agent’s integrated own knowledge/belief, aiming to ensure
invariantly that the former never contains any part of the latter that the policy
requires to keep confidential.

In fact, the simulation of a cooperating agent(’s belief of the defender’s own
knowledge/belief) is most crucial for an effective self-control as favored by CIE:
though an agent is treated as cooperating in principle, it is also seen as a “curi-
ous attacker” and, as such, it cannot be supposed to frankly tell its belief about
the defender’s knowledge/belief. So, agent modelling by the control component
is the only alternative, and obviously it can only be based on two features: the
assumptions as specified and the requests and reactions having been occurred.
Since the control component has observed the requests and even generated the
reactions, it is completely certain about this feature; however, the assumptions
are inherently uncertain. Accordingly, the parameters for the assumptions and
their representation within the runtime state should be expressive enough to
capture all relevant aspects of many and diverse situations; moreover, expres-
siveness should come along with best achievable orthogonality of dimensions to
enable automatic translation into a runtime state and later uniform processing
for censor selection and even censor optimization as well as agent simulation.

Besides the always postulated attacker’s system awareness according to “no
security by obscurity”, i.e., knowledge of both the functional components and
the confining frontend, the following parameter dimensions are most important:

– the attacker’s configuration awareness : knowledge of specific declarations
(interaction language, policy (security constraints), functional constraints);

– the attacker’s applicable common knowledge: knowledge regarding the ap-
plication, in particular schema declarations;

– the attacker’s specific knowledge: knowledge resulting from other sources etc.;
– the attacker’s specific reasoning: “procedural knowledge” to form beliefs etc.;
– the attacker’s guess of the defender’s hidden parameters (kind of defender’s

functional reasoning etc.).

Notably, in principle not only the defending agent to be implemented is uncertain
about an attacking agent’s belief, but also the attacking agent is uncertain how
it is simulated by the defender, and thus there is mutually recursive uncertainty
to be suitably resolved. Indeed, each particular censor working with a specific
simulation has to be justified by a convincing postulate on the coincidence of
the actual attacker with the defender’s simulation.

42 J. Biskup and C. Tadros

5 Uniformity for Specific Engineering Tasks

Within the design, we will have to treat many specific engineering tasks. As ex-
emplified in the following, for each task we envision to achieve uniformity across
the anticipated variety of situations: conceptually, the situations are captured by
a powerful abstraction which then, by an implementation, is strictly encapsulated
into a single module; further, the selection of a specific situation is enabled by a
powerful parameterization and embodied by a specialization of that module.

Existing information services may considerably vary in the underlying logic,
which, basically, defines the specific semantics. For example, an information ser-
vice might be based on a completeness assumption – enabling reasoning about a
“closed-world” [5,6,12]–, faced with partial or principle incompleteness – restrict-
ing or even disabling reasoning about “negative information” [11,9] –, or equipped
with a concept of preferences – introducing essential differences between certain
knowledge and uncertain belief and requiring non-monotonic reasoning for re-
visions and updates [10]. Given the pertinent parameters for the information
services to be integrated, the totality of information available to the owner is
abstracted into the integrated own knowledge/belief, and querying and antici-
pated manipulations, respectively, are encapsulated by specific modules, which
have appropriate specializations for the potentially occurring variations.

Under each of these variations, a censor basically has to evaluate possible
reactions on a request regarding harmfulness of adding the supplied informa-
tion to the requester’s current belief. This belief is abstracted as the pertinent
agent simulation, and the needed evaluations are encapsulated by a module for
determining harmfulness. Again, this module has appropriate specializations,
which might employ the incorporated theorem prover to reduce the problem of
harmfulness to a suitable entailment problem in the pertinent logic.

The abstraction of an agent simulation permits a large range of actual imple-
mentations. In a simple dynamic case, there is just a logfile containing sentences
reflecting the a priori knowledge and the reactions provided so far [5,6,11]. For
optimization, instead of keeping a logfile an adapted version of the original con-
fidentiality policy might be maintained [2]. In the more advanced context of
non-monotonic belief management, the agent simulation comprises both an ap-
proximation of the own knowledge/belief and skeptical reasoning regarding the
aspects left only approximated [10]. For the static case of data publishing, a pos-
sibly distorted, “inference-free” alternative view on the own knowledge/belief is
generated beforehand and later employed like an agent simulation, for which the
associated censor does not need to perform any further dynamic control [12,9].

6 Experiences, Further Issues, and Concluding Remarks

We are implementing a CIE-prototype [3,4] for a simplified scenario, only shield-
ing a single relational DBMS, Oracle, for somehow restricted interactions. This
prototype provides a uniform treatment of all included interactions for various

Towards a Vision of Engineering Controlled Interaction Execution 43

kinds of cooperating agents and the permissions, prohibitions (policies), assump-
tions and reactions specified for them. For each such a situation, the actual con-
trol is established by a dedicated specialization of a general censor component.

Successful CIE operation needs powerful tools and facilities for the administra-
tion of agent-specific parameters, and (semi-)automatic optimization. In partic-
ular, the initial selection of an appropriate censor instance followed by repeated
reconsiderations appear to be crucial. As expected by theoretical insight, com-
putational complexity and scalability remain a major issue. Accordingly, identi-
fication of parameters leading to feasible cases and their automatic recognition
as part of optimization are further important topics. Our experiences also sug-
gest to sometimes refrain from the principle of minimal distortion, but instead
to look for efficiently computable overestimations of an agent’s simulation.

A main concern is to achieve robustness of the defending agent’s attempt to
simulate the postulated behavior and reasoning of another agent seen as attacker:
what assurances regarding preservation of confidentiality can the defending agent
get if the attacker’s situation actually differs from the defender’s simulation?

There are several further issues whose solutions might have an impact on both
the architectural design and specific tasks. Basically, in each case we would have
to decide whether to include additional control components or only refined pa-
rameters for the already existing components, the latter found to be extremely
worthwhile so far and hoped to be extendable. In the following, we briefly list
selected issues: collusion among cooperating agents has to be made useless by
treating a group of agents like a single agent; possibilistic confidentiality might
be strengthened, for example to k-confidentiality demanding a stronger “negative
belief”, by ensuring the existence of at least k > 0 essentially different counterex-
amples, or to probabilistic secrecy or related notions; we might also weaken our
current notion into a sort of complexity-theoretic secrecy; seen from a broader
perspective, the desires and intentions of a BDI-like agent [23] might influence
the agent-specific parameters, as do normative concepts [1]; as usual, production
of reliable software and its appropriate installation are mandatory, leaving no
options to circumvent the censoring or to exploit side-channels.

Concluding, we advocate the engineering of inference control as a frontend to
existing functional components as a promising step to our vision, emphasizing a
uniform treatment of various situations by means of strict encapsulation of pow-
erful abstractions, expressive parameterization, and the concept of specialization.

References

1. Andrighetto, G., Governatori, G., Noriega, P., van der Torre, L.W.N. (eds.): Nor-
mative Multi-Agent Systems. Dagstuhl Follow-Ups, vol. 4. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik (2013)

2. Biskup, J.: Dynamic policy adaption for inference control of queries to a proposi-
tional information system. Journal of Computer Security 20, 509–546 (2012)

3. Biskup, J.: Inference-usability confinement by maintaining inference-proof views
of an information system. International Journal of Computational Science and
Engineering 7(1), 17–37 (2012)

44 J. Biskup and C. Tadros

4. Biskup, J.: Logic-oriented confidentiality policies for controlled interaction execu-
tion. In: Madaan, A., Kikuchi, S., Bhalla, S. (eds.) DNIS 2013. LNCS, vol. 7813,
pp. 1–22. Springer, Heidelberg (2013)

5. Biskup, J., Bonatti, P.A.: Controlled query evaluation for enforcing confidentiality
in complete information systems. Int. J. Inf. Sec. 3(1), 14–27 (2004)

6. Biskup, J., Bonatti, P.A.: Controlled query evaluation for known policies by com-
bining lying and refusal. Ann. Math. Artif. Intell. 40(1-2), 37–62 (2004)

7. Biskup, J., Bonatti, P.A.: Controlled query evaluation with open queries for a
decidable relational submodel. Ann. Math. Artif. Intell. 50(1-2), 39–77 (2007)

8. Biskup, J., Gogolin, C., Seiler, J., Weibert, T.: Inference-proof view update trans-
actions with forwarded refreshments. Journal of Computer Security 19, 487–529
(2011)

9. Biskup, J., Li, L.: On inference-proof view processing of XML documents. IEEE
Trans. Dependable Sec. Comput. 10(2), 99–113 (2013)

10. Biskup, J., Tadros, C.: Preserving confidentiality while reacting on iterated queries
and belief revisions. Ann. Math. Artif. Intell. (2013), doi:10.1007/s10472-013-9374-6

11. Biskup, J., Weibert, T.: Keeping secrets in incomplete databases. Int. J. Inf.
Sec. 7(3), 199–217 (2008)

12. Biskup, J., Wiese, L.: A sound and complete model-generation procedure for consis-
tent and confidentiality-preserving databases. Theoretical Computer Science 412,
4044–4072 (2011)

13. Brewka, G.: Multi-context systems: Specifying the interaction of knowledge bases
declaratively. In: Krötzsch, M., Straccia, U. (eds.) RR 2012. LNCS, vol. 7497, pp.
1–4. Springer, Heidelberg (2012)

14. Calvanese, D., Giacomo, G.D., Lenzerini, M., Rosati, R.: View-based query answer-
ing in description logics: Semantics and complexity. J. Comput. Syst. Sci. 78(1),
26–46 (2012)

15. Halpern, J.Y., O’Neill, K.R.: Secrecy in multiagent systems. ACM Trans. Inf. Syst.
Secur. 12(1), 5.1–5.47 (2008)

16. Huget, M.-P., Poslad, S.: The Foundation of Intelligent Physical Agents,
http://www.fipa.org

17. Kolesnikov, V., Sadeghi, A.-R., Schneider, T.: A systematic approach to practically
efficient general two-party secure function evaluation protocols and their modular
design. Journal of Computer Security 21(2), 283–315 (2013)

18. Kott, A., McEneaney, W.M. (eds.): Adversarial Reasoning: Computational Ap-
proaches to Reading the Opponent’s Mind. Chapman & Hall/CRC, Boca Raton
(2007)

19. Ligatti, J., Bauer, L., Walker, D.: Run-time enforcement of nonsafety policies. ACM
Trans. Inf. Syst. Secur. 12(3) (2009)

20. Pretschner, A., Hilty, M., Basin, D.A.: Distributed usage control. Commun.
ACM 49(9), 39–44 (2006)

21. Sarawagi, S.: Information extraction. Foundations and Trends in Databases 1(3),
261–377 (2008)

22. Sicherman, G.L., de Jonge, W., van de Riet, R.P.: Answering queries without re-
vealing secrets. ACM Trans. Database Syst. 8(1), 41–59 (1983)

23. Wooldridge, M.J.: An Introduction to MultiAgent Systems, 2nd edn. Wiley, Hobo-
ken (2009)

http://www.fipa.org

	Idea: Towards a Vision of Engineering ControlledInteraction Execution for Information Services
	1 Introduction
	2 From a Required Vision to Available Ideas
	3 Summary of Controlled Interaction Execution
	4 Architectural Design
	5 Uniformity for Specific Engineering Tasks
	6 Experiences, Further Issues, and Concluding Remarks
	References

