
Security Testing of GSM Implementations

Fabian van den Broek1, Brinio Hond2, and Arturo Cedillo Torres2

1 Institute for Computing and Information Sciences,
Radboud University Nijmegen, The Netherlands

f.vandenbroek@cs.ru.nl
2 KPMG

{hond.brinio,cedillotorres.arturo}@kpmg.nl

Abstract. Right after its introduction, GSM security was reviewed in a
mostly theoretical way, uncovering some major security issues. However,
the costs and complexity of the required hardware prohibited most people
from exploiting these weaknesses in practice and GSM became one of the
most successful technologies ever introduced. Now there is an enormous
amount of mobile enabled equipment out there in the wild, which not
only have exploitable weaknesses following from the GSM specifications,
but also run implementations which were never security tested. Due to
the introduction of cheap hardware and available open-source software,
GSM found itself under renewed scrutiny in recent years. Practical secu-
rity research such as fuzzing is now a possibility.

This paper gives an overview on the current state of fuzzing research
and discusses our efforts and results in fuzzing parts of the extensive GSM
protocol. The protocol is described in hundreds of large PDF documents
and contains many layers and many, often archaic, options. It is, in short,
a prime target for fuzzing. We focus on two parts of GSM: SMS messages
and CBS broadcast messages.

1 Introduction

GSM saw its first deployment in 1991 in Finland and from there grew out to be-
come one of the dominant technologies. GSM can be considered old technology,
since there are numerous newer technologies in the GSM family, such as UMTS
and LTE, which provide better bandwidth and possibilities for data transfer.
However, that does not mean GSM is no longer a critical infrastructure. As of
2013, approximately 7 billion SIM cards are active worldwide, offering subscrip-
tion services to the GSM family of networks for around 3.4 billion unique sub-
scribers [1]. Even though these subscriptions are partly for other networks, GSM
is nearly always the base subscription and almost all equipment supports GSM
(or GPRS for mobile Internet equipment). Furthermore, GSM/GPRS coverage
is far more extensive than the coverage of the newer protocols and GSM uses
less power and is more efficient for voice calls. Also, a lot of machine-to-machine
communication relies on GSM/GPRS, such as certain smart meters and traffic
lights in South Africa [2,3] as well as railway systems in the European Union
[4]. All this has prompted providers to speculate that newer protocols such as

J. Jürjens, F. Piessens, and N. Bielova (Eds.): ESSoS 2014, LNCS 8364, pp. 179–195, 2014.
c© Springer International Publishing Switzerland 2014



180 F. van den Broek, B. Hond, and A. Cedillo Torres

LTE will replace their direct predecessor (UMTS), but will still run alongside
an active GSM/GPRS network [5]. So, for the foreseeable future, GSM is here
to stay. When GSM was first deployed there was some security research, which
mostly focused on the specifications and the reverse engineering of the secret and
proprietary encryption algorithm [6]. Several weaknesses in GSM where quickly
identified, though practical exploits of these weaknesses proved complicated be-
cause of all the signal processing involved. This changed around 2010 with the
arrival of cheap hardware [7] and open-source software [8] which provided easy
access to the GSM spectrum. This immediately led to some high profile attacks,
such as the release of the Time-Memory Trade-Off tables for breaking GSM’s
standard encryption [9,10].

With this new hardware and software it is possible to run your own GSM
cell tower to which real phones will connect, since in GSM the network does
not authenticate itself to the phones. This opens up the possibility to verify the
implementations of the GSM stack of phones by the technique known as fuzzing.
Fuzzing has been used a lot to find security holes on Internet equipment. Thanks
to low level access offered by Ethernet cards it was easy to simply try out all
kinds of possible messages, mostly those just outside of the specifications, and
see what happens when these are received by network equipment. Fuzzing mobile
phones has mostly happened in the hackers scene of security research, with few
academic publications.

Naturally, there are many interfaces in mobile phones which can be fuzzed.
Just think of every type of input that a phone can receive, such as WiFi, Blue-
tooth, NFC, installed apps or the SIM interface. All of these inputs can be
interesting input vectors for fuzz testing. We focused on fuzzing the GSM base-
band stack. This is the part of the phone which handles all the GSM traffic. It
is available in every phone, implements a hugely complicated standard and is
remotely accessible over the air, which could easily lead to dangerous attacks.

The GSM system comprises many entities, such as the mobile phones and cell
towers, but also many more back-end components. Our fuzzing research only
focuses on mobile phones. Naturally, fuzzing the network components of a GSM
network can have a much larger impact. However, availability of commercially
used network components that are not currently running inside an operational
GSM network is very limited. Thus we limited ourselves to the readily available
mobile phones. In this paper we discuss our efforts and results in fuzzing two
specific parts of the GSM specification: SMS messages and CBS messages.

The well-known Short Message Service (SMS) was added shortly after the
initial release of GSM and the first SMS message was sent in 1992 [1]. The first
version of SMS allowed the exchange of short text messages between GSM users,
but SMS has gone a long way since then. Not only can SMS be used to exchange
text messages, but nowadays also pictures, sounds and many other types of data
can be sent over the SMS. The current SMS standards also allow segmentation of
messages that are too long to fit into a single message, enabling users to transmit
much longer messages. The current SMS specification is found in [11,12].



Security Testing of GSM Implementations 181

The lesser-known Public Warning System (PWS) actually started out as the
Cell Broadcast Service (CBS), which was developed in parallel to the SMS ser-
vice as a response of mobile developers to the competing paging services being
offered in 1990. It allows providers to broadcast messages to all phones currently
connected to a certain cell, i.e. all phones connected to a single transceiver on a
cell tower. The original business case was to provide news, weather and traffic
information to mobile users, though this never found any wide spread popular-
ity. This lead to both mobile network operators and mobile developers neglecting
the implementation of the service in their equipment. However, this service has
been gaining importance in the last years, because it can be an ideal method
for governments to broadcast information in the event of an emergency to all
phones in the vicinity. Several countries define and implement their own warn-
ing system that rely on the CBS to deliver emergency information. Due to the
diversity of technical specifications of each warning system, ETSI with the aid
of the 3GPP consortium developed a standardized system known as the Public
Warning System (PWS). The initial goal of the PWS was to introduce a stan-
dard emergency and warning communication infrastructure, as well as specific
technical requirements for mobile phones within the European Union to receive
these emergency messages. Due to its standardized nature this system and its
accompanying protocols can now be implemented worldwide. This allows roam-
ing users to receive broadcast messages no matter what their location is, as long
as they are in a GSM coverage area.

Structure of this Paper. In Section 2 we discuss the basics of the GSM air
interface and provide an introduction into the SMS and CBS protocols. We then
discuss fuzzing in general and the specifics of fuzzing mobile phones in Section 3.
Section 4 describes our own fuzzing research, together with the practical details
and results. It is here that we also discuss the related work, for comparison and
to attempt to provide an overview of the fuzzing research into GSM up to this
point. Finally, Section 5 presents the conclusions and ideas for future work.

2 GSM

The GSM baseband stack is usually described in three layers, where the third
layer is again subdivided, as is shown in Figure 1. The bottom two layers of the
GSM stack show similarities with the OSI model. The first layer, the physical
layer, creates a set of logical channels through time division on already divided
frequencies. These channels can be used by higher layer functions for many
different tasks, as uplink (mobile phone to cell tower), downlink (cell tower to
mobile phone) or broadcast (cell tower to all connected phones) communication.
These channels can either be a traffic channel, or one of a multitude of control
channels. Most control data is transmitted in 184 bit frames which are split up
into 4 bursts. These bursts are modulated and transmitted by radio waves.

The signaling protocol used on the second layer, the data link layer, is called
LAPDm. The data link layer (and higher layers) is only defined for the signaling



182 F. van den Broek, B. Hond, and A. Cedillo Torres

channels, not for the speech channels. This is because speech bursts contain no
further headers or other meta information, only speech data; during a phone con-
versation, the traffic on the dedicated speech channels needs no meta information
in order to be reconstructed correctly at the receiving end. The LAPDm protocol
can provide positive acknowledgement, error protection through retransmission,
and flow control.

The third layer is where the match with the OSI model stops. The third layer
is subdivided into three layers, of which the last (highest) one is again subdivided
into several protocols:

1. Radio Resource management (RR); this concerns the configuration of the
logical and physical channels on the air-interface;

2. Mobility Management (MM); for subscriber authentication and maintaining
the geographical location of subscribers;

3. Connection management (CM); consists of several sublayers itself, such as:
(a) Supplementary Services (SS); managing all kinds of extra services that

are not connected to the core functionality of GSM;
(b) Short Message Service (SMS); the handling of the SMS messages;
(c) Call Control (CC); creating and ending telephone calls;
(d) Locations Services (LCS); location based services for both the user and

the provider;

Layer 3 frames consist of a 2 byte header followed by 0 or more Information
Elements (IEs). These IEs can be of several different types: T, V, TV, LV and
TLV, where the letters T, L and V denote the presence of a Type, Length and
Value field respectively. The type field is always present in non-mandatory IEs.
Interesting from a fuzzing perspective are those IEs that contain a length field,
LV and TLV, even though they are specified as having a standard length, because
these are typical places where a programmer might make a mistake in handling
data of non-standard length.

Fig. 1. The layers of GSM

We only fuzz on the third layer of the protocol stack, since this is more likely
to trigger observable bugs than fuzzing on the first two layers. That is not to say
that the lower layers of the protocol will likely contain less, or less nasty bugs,
they are simply harder to observe.



Security Testing of GSM Implementations 183

Service Centre Mobile Station

SDCCH

1. SMS-DELIVER

2. CP-ACK

3. RP-ACK

4. CP-ACK

Fig. 2. Message sequence chart of delivering an SMS to a mobile phone

SMS. Before messages can be sent on the SMS sublayer the cell tower needs to
notify the mobile phone of an incoming message and set up the channel (Stan-
dalone Dedicated Control Channel or SDCCH) with the mobile phone. The
delivery of an SMS message then requires four messages exchanged on the SMS
sublayer using the SDCCH, as shown in Figure 2. The first message is the SMS-
DELIVER message sent from the network to the phone. This message contains
the actual content (user data) with an optional User Data Header (UDH) and
mandatory Transfer Protocol (TP), Relay Protocol (RP) and Connection Pro-
tocol (CP) headers. The phone first parses the CP header and verifies it. If it
is valid the MS returns a CP-ACK message, otherwise it returns a CP-ERROR
message and releases the connection. If the CP header was correct the MS con-
tinues by verifying the RP header and checking if the phone has enough memory
to store the message. If either of those checks fails it returns an RP-ERROR
and releases the connection. If both checks succeed the MS returns an RP-ACK
with a CP header. The final message is sent by the network when the RP-ACK
passes the checks for the CP header.

A schematic overview of a correct SMS-DELIVER message can be found in
Figure 3, where Figure 3(b) shows the fields we fuzzed of the SMS-DELIVER
message. Of the RP-ACK message we fuzzed practically all header fields.

Public Warning System. For CBS messages no specific traffic channels need
to be set up for mobile phones to receive the transmission. The messages are
transmitted on the broadcast channel, a specific channel to which all phones
always listen to see if they are still in the same cell. So even if a cell is overloaded
with regular voice or data traffic, broadcast messages can still be sent to mobile
phones. This very feature is what makes them interesting for emergency messages
in the first place. Japan’s tsunami warning system and the European emergency
broadcast (EU-Alert) are examples of implementations of the PWS.

A CBS message is first announced on a broadcast channel and then transmit-
ted in four frames. A schematic representation of a CBS message is shown in
Figure 4 where all the fields we fuzzed are shown in grey.



184 F. van den Broek, B. Hond, and A. Cedillo Torres

3 Fuzzing

Fuzzing is the process of transmitting automatically generated, uncommon in-
puts to a target with the purpose of triggering unexpected behavior. This un-
expected behavior is typically something like program crashes or failing built-in
code assertions. In contrast to human testing, fuzzing can be largely automated
and as a result can find (security) errors that likely won’t be triggered during
normal use or testing. Fuzzing is already a relatively old testing technique, dat-
ing from the end of the 70s and start of the 80s [13]. Fuzzing has evolved over
the years into several variants:

1. Plain fuzzing,
2. Protocol fuzzing, and
3. State-based fuzzing.

Plain fuzzing is the original idea behind fuzzing: simply generating lots of test
cases, often with random data, and feed this to the program you are testing.
These test cases are usually made by mutating correct inputs and is used to
test the error-handling routines. It is a highly portable way of fuzzing, but also
provides very little assurance on code coverage.

In protocol fuzzing the test cases are generated based on the specifications,
especially on specifications of packet formats. Here the fuzzer will try to choose
specific test cases which are likely to provide the largest code coverage based on
its knowledge of the specifications. Typically, fuzzers will look at each field which
can contain more values than are allowed by the specifications and generate test
cases with values on the corner cases, values just over the corner cases and some
values way out of the range of what is allowed. This is also called “partition fuzz
testing”, since the possible inputs for a field are partitioned (e.g. a half byte which
represents an ID and allows for the values 1-12, would give three partitions: 0,
1 to 12 and 13 to 15). These are often not partitions in the mathematical sense,
as they need not be disjoint, but the union of all partitions usually do span
the entire input space. Note that although these fuzzers are named “protocol
fuzzers” and are in fact mostly used to test protocols, they can also be used to
test non-protocol implementations, as long as the input has a format to which
it should conform.

The first two fuzz variants discussed here try to find errors by changing the
content of individual messages. But there is another part that can often be
fuzzed: the state machine. Most protocols have some sort of set sequence in
which messages are exchanged and which messages are expected at any one time
is tracked in a state machine. When the wrong message is sent at some point
in time and still accepted by the implementation it shows a problem with its
state machine. The impact of this is hard to estimate, because it depends on
what states can be skipped, but for some protocols it might allow one to bypass
authentication steps, posing a serious security risk. State-based fuzzers not only
change the content, but also the sequence of messages.



Security Testing of GSM Implementations 185

Whichever fuzzing approach is used, fuzzing will usually follow three distinct
phases:

1. Generating the test cases,
2. Transmitting the test cases, and
3. Observing the behavior.

The fuzzing approaches discussed above concern the first phase. On traditional
computer networks the second phase is trivial. Also, observing the effects after
transmitting the fuzz tests is usually easier on traditional computers than on
GSM phones, because there is often the possibility of running a debugger, or
simply looking for familiar error messages. Fuzzing GSM implementations on
baseband chips has many of the same problems as the fuzzing of embedded
systems; one cannot easily observe the effect of fuzzed inputs [14].

3.1 Fuzzing GSM Phones

There are many different GSM-enabled mobile phones. Mobile phones started
out with just the ability to make and receive voice calls, but nowadays phones
are available that have a wide range of features and possible connections. It is
important to realize that the current market contains a wide variety of GSM-
enabled devices, not only of different make and model, but also internally: GSM
phones can consist of a single processor, which runs the GSM protocol stack
and a very limited OS for the user interface, these are typically cheaper or older
GSM phone models. The chip running the GSM protocol stack is referred to
as the baseband chip [15]. More complicated phones run their OS on a separate
general purpose processor, named the application processor. Both processors can
communicate through a variety of protocols, where the application processor
uses the baseband processor like a modem. Most modern phones combine the
application and baseband processor in a single SoC (System on a Chip).

Fuzzing mobile phones is challenging compared to e.g. fuzzing network cards,
mainly because it is hard to observe undefined behavior. Most phones are closed
devices without any debugging tools, so it is impossible to, for instance, look
at the memory during operation. Also most phones run closed source software.
This makes it harder to predict where errors will occur. Even Android phones
use closed software libraries for low level communication with the baseband chip
and if the baseband chip has its own memory a debugger on a rooted Android
phone will provide little extra help. Phones usually have limited interaction
possibilities, which makes observation a time consuming effort. Generally there
are few alternatives to simply using the phone after a fuzz message and observing
whether it shows any undefined behavior, which can lead to false positives. This
means internal errors that do not directly lead to observable undefined behavior,
may go unnoticed.

The fuzzed messages need to be introduced to the target phones. This can
either be done by transmitting them as actual GSMmessages to the phones, or by
directly inserting them in the phones, for instance by inserting them on the wire



186 F. van den Broek, B. Hond, and A. Cedillo Torres

between the baseband and application chip. The latter option is cumbersome to
use on many different phones and much harder on modern phones with a single
SoC, but this was the only available option when open source GSM networks
were not available [16].

For transmitting the messages over actual networks there are several options:

1. You could use a running GSM network, either because you happen to have
access to commercial GSM network equipment, or by transmitting fuzzed
messages from a modified phone to a target phone over the normal network.

2. A more feasible solution is to change existing GSM equipment, such as a fem-
tocell [17] for transmitting fuzz messages, though the success of this method
will depend on the success in breaking the femtocell security.

3. Finally there are several open-source projects that allow you to set-up your
own GSM network.

Using the existing network (option 1) severely limits the fields you can fuzz and
the network operator could change or filter our messages. Adapting a femtocell to
do the fuzzing (option 2) could prove unsuccessful, so we chose the third option.
The most important of the open-source projects are OpenBTS [8] and OpenBSC
[18]. Both systems run on most ordinary PCs and require extra hardware for
transceiving GSM signals.

OpenBTS is based on the GNU Radio project [19] and is designed to work with
the USRP (Universal Software Radio Peripheral), a generic and programmable
hardware radio component. The USRP can be modified through the use of
daughterboards for specific applications and frequencies. Several versions of the
USRP are currently available and a typical setup for a local GSM network costs
around $1500,- [7].

OpenBSC runs a basestation controller and therefore interfaces with an actual
basestation in order to work. OpenBSC started out as a controller for the Siemens
BS11, an actual commercial cell tower of which a small batch became available
on eBay, and the nanoBTS from ip.access, a corporate solution miniature cell
tower. Both cell towers are hard to obtain, so OpenBSC will now also work
with a new project, OsmoBTS [20], which in turn implements a cell tower on
several devices such as the custom made sysmoBTS and even, experimentally,
two modified mobile phones.

The OsmoBTS project was not yet available when we started our research,
which led us to choose the OpenBTS option, for full control of the GSM air link.

4 Our Fuzzing

For GSM all the specifications are openly available, but implementations of the
baseband stacks are not. Examining the specifications led to the conclusion that
although GSM is a very complicated protocol, there are actually very few state
changes in the baseband stacks. This is why we mostly resorted to protocol
fuzzing, as will be described in Section 4.1 and 4.2. We attempted some state-
based fuzzing on the SMS sublayer by both sending a correct message when it



Security Testing of GSM Implementations 187

was not expected by the phone and sending a correct message when a different
message was expected by the phone. This only showed unexpected results for
one phone, the Sony-Ericsson T630, which accepted confirmations of unsent SMS
messages, but which did not lead to any exploitable results.

There are several open-source protocol fuzzing frameworks available [21]. How-
ever, these frameworks are not made to be used with cell phones. Especially the
target monitoring aspects generally work on network interfaces and virtual ma-
chines, while we have separate devices connected over a (custom) radio interface.
This makes automatic target monitoring with one of these tools impossible. We
did end up using one fuzzer, Sulley [22], as the basis for our fuzzer.

4.1 How Do We Fuzz?

For this research we made our own fuzzer GSMFuzz, for the generation of the
fuzz messages. It is a fuzzer, with features designed specifically for GSM, but
which nonetheless can be used for other protocols as well. The fuzzer is written
in Python (version 2.6) and loosely based on Sulley[22], an open-source fuzzing
framework. It has the following features added:

– Fuzzing of bit positions within a byte;
– Partition fuzz testing of special fields (type, length), resulting in few cases

with maximum impact;
– Innate support for the eight different GSM Layer 3 IEs;
– Length fields can count octets, septets or half-octets (often used in GSM);
– Hexadecimal output of fuzz cases to a file, which can be used directly in our

extended version of OpenBTS.

GSMfuzz itself is just over 900 lines of code (excluding white space). Besides
the source code of the program itself we created 34 files with input to mutate
valid messages. The input files are 3601 lines in total (excluding white space and
comments).

Figure 3(b) shows the fields we fuzzed in the SMS-DELIVER message and
Figure 4 shows the fields we fuzzed in the CBS message.

For the transmission of the fuzzed messages we used the open-source OpenBTS
software together with a USRP-1 (where the internal clock was replaced with
the more precise Fairwaves ClockTamer-1.2) and a collection of (a WBX and two
RFX1800) daughterboards. Combining this with two Ettus LP0926 900 MHz to
2.6 GHz antennas yielded a setup of around 1500e.

We tuned the software to only allow a specific set of SIM cards to connect, but
this did not prevent several phones in the surroundings to still connect to our
cell. This already shows errors in how phones handle connecting to cell towers.
Since we did not want to unintentionally harm the phones of our colleagues, we
made a Faraday cage around the whole setup, using chicken wire. With a maze
size of 12.5mm, which is smaller than ten times the wavelength of GSM signals
on 1800MHz, we managed to keep our GSM broadcasts contained.1

1 There was some leakage through the power cord, but not enough to get phones
outside of the cage to connect.



188 F. van den Broek, B. Hond, and A. Cedillo Torres

(a) Overview of the fields fuzzed
in the SMS-DELIVER message
by related research.

(b) Overview of the fields we
fuzzed in the SMS-DELIVER
message.

fuzzed in [23] fuzzed in [24]

fuzzed in [25] fuzzed in [16,26]

Fig. 3. Overview of the fields fuzzed in the SMS-DELIVER message

The OpenBTS software does not support emergency broadcasts2, so for these
broadcasts we installed a specific branch of an older OpenBTS version (OpenBTS
2.5.4 - SMS-CB), where this service was already implemented.

Having the ability to generate and transmit fuzzed messages, leaves the third
stage: the observation. In our SMS fuzzing case, we alternated each fuzzed SMS
message with a correct SMS message to see if the phone still responded by ac-
knowledging the correct message. Then after transmitting a batch of alternating

2 Although it is likely that this will be included in a newer release [8].



Security Testing of GSM Implementations 189

Fig. 4. CBS message fuzzing candidates

Table 1. Overview of cell phones tested in this research and the most noticeable results.
Legend: I: unremoveable icons, D: DoS message, M: memory bug, N: no notification,
R: Reboot S: message handling in violation of specification.

Brand Type Firmware/OS SMS fuzz Result CBS fuzz Result

Apple iPhone 4 iOS 4.3.3 yes I,D no –
Blackberry 9700 BB OS 5.0.0.743 yes I yes S
HTC Legend Android 2.2 yes I,D no –
Nokia 1100 6.64 yes I no –
Nokia 1600 RH-64 v6.90 no – yes S
Nokia 2600 4.42 yes I,M,R no –
Nokia 3310 5.57 yes I yes S
Nokia 3410 5.06 yes I no –
Nokia 6610 4.18 yes I,N,R no –
Nokia 6610 4.74 yes I,N,R no –
Nokia 7650 4.36 yes I,R no –
Nokia E70-1 3.0633.09.04 yes I no –
Nokia E71-1 110.07.127 yes I no –
Samsung SGH-A800 A80XAVK3 yes I,N,R no –
Samsung SGH-D500 D500CEED2 yes I,M,R no –
Samsung Galaxy S Android 2.2.1 yes I no –
Samsung Galaxy Note Android 4.1.2 no – yes S
Sony Ericsson T630 R7A011 yes I,N no –

fuzzed and normal SMS messages we quickly tried most functions of the phones.3

For our CBS fuzzing we simply used most functions of the tested phones after
a batch of fuzzed messages, since there is no acknowledgement of received CBS
messages.

Table 1 shows the make and models of the phones we used during the fuzzing
research. During the research it turned out that many phones did not support
the CBS features, so the test set for CBS fuzzing was small.

4.2 Fuzzing Results

We now give an overview of some of the most interesting results we found during
our fuzzing research, which are also summarized in Table 1. For a complete

3 At this stage we also used the phones to empty the SMS memory, which is limited
in the older models.



190 F. van den Broek, B. Hond, and A. Cedillo Torres

Fig. 5. These two pictures show the strange behavior when the same SMS is opened
twice in a row. Note that the words in the left image are the names of games available
on the device.

overview of the exact fuzzing performed and the obtained results we refer to the
Master’s theses on fuzzing SMS [27] and CBS [28] on which this paper is based.

SMS Fuzzing. All tested phones accepted some rarely used SMS variants, such
as Fax-over-SMS, which causes strange icons to appear to notify the user of a
new message (e.g. a new fax). These SMS variants are so obscure that often the
GUI of these mobile phones offered no way for the user to remove these icons,
only a message from the network could remove them.

More serious issues were that for five out of sixteen phones we found SMS
messages that are received and stored by the phones without any notification
to the user. This enables attacks of filling up the SMS memory remotely, but
all phones notify the user of a full SMS memory. In addition, seven out of the
sixteen tested phones could be forced into a reboot with a single SMS message,
though each through a different SMS message.

The Nokia 2600 showed strange behavior where a particular SMS message
would display random parts of the phone memory when opened, instead of the
SMS message. This behavior is shown in Figure 5.

Both the iPhone 4 and the HTC Legend could be forced in a DoS state
were they silently received a message and afterward could no longer receive any
SMS messages, without any notification to the user. Rebooting these phones or
roaming to a different network would stop the DoS.

Strangely enough we found no real correlation between specific harmful mes-
sages and phone brands. So, a message triggering a reboot in a specific Nokia
phone, would have no effect on all other Nokia phones. This is likely due to the
large variety in phones as explained in Section 3.1

CBS Fuzzing. Our CBS fuzzing research did not reveal any obvious errors such
as spontaneous phone reboots. One of the main problems here is that we had no



Security Testing of GSM Implementations 191

way to tell whether an ignored CBS message was not received by the baseband
stack, or that the phone OS did not know how to display it.

The Galaxy Note displayed a fuzzed CBS message which according to the
specifications should have been ignored. According to the GSM specification,
mobile phones should only receive CBS messages containing Message Identifiers
registered in their memory or SIM card. In our initial tests we used the Mes-
sage Identifier value of 0 and did not register this topic number in the mobile
phones. All mobile phones except for the Blackberry received the CBS message.
In addition, once we changed the Message Identifier to a value different from 0,
all mobile stations did not receive the CBS messages even though this time we
did register the topic in the mobile phones.

So we observed that most phones have a lot of trouble to show even correct
CBS messages. Since several countries are clearly pushing to get the CBS mes-
sages re-supported by phone manufacturers, CBS fuzzing tests should definitely
be repeated when wider support is provided.

4.3 Related Work

One of the most well-known bugs found in SMS implementations is the “Curse
of Silence” found by Thomas Engel, though it is not directly clear if he used any
systematic way, such as fuzzing, to find the vulnerability. With this bug certain
Nokia phones stopped receiving SMS messages after receiving an email as SMS
message4 with a sender’s email address longer than 32 characters [23].

The most prolific academic researcher in the fuzzing of GSM phones is Collin
Mulliner [29,16,26,25]. In 2006 he fuzzed the Multimedia Messaging Service
(MMS) feature of GSM [29]. MMS is an extension to SMS for the exchange
of multimedia content. When an MMS message is sent the recipient receives an
SMS message with a Uniform Resource Identifier (URI) to a server where the
MMS content can be retrieved using the Wireless Application Protocol (WAP).
Of the three delivery methods discussed op Page 186 Mulliner et al. used the
first method by building a virtual (malicious) MMS server using open source
software and retrieving content from it on different cell phones. They found
several weaknesses in various implementations, including buffer overflows in the
Synchronized Multimedia Integration Language (SMIL) parser, the part that
takes care of the presentation of the content on the cell phone to the user. Some
of these buffer overflows could be used for arbitrary code execution. Mulliner
together with Charlie Miller fuzzed SMS messages on smart phones [16,26] us-
ing the second method of transmission. The three smart phones available for
this research were an iPhone, an Android Phone and a Windows Phone. An
application was developed for each of the three platforms, which makes it pos-
sible to directly generate and inject SMS messages into the phones modems.
Through this application, the researchers were able to make the device believe
that an SMS was just received from the GSM network. Finally, Mulliner and

4 Simply this option of receiving email over SMS is a good illustration of how baroque
the SMS standard is!



192 F. van den Broek, B. Hond, and A. Cedillo Torres

Golde fuzzed the SMS implementation on feature phones [25]. This time they
used a rogue cell tower based on OpenBSC, so they used the third method of
message transmission. Furthermore they used a J2ME3 application for monitor-
ing on the cell phones. Despite the spectacular title of this publication (“SMS
of Death”) there was no hard evidence that a fuzzed message caused the death
of a phone, since this test was not repeated. The researchers did find DoS at-
tacks for six different popular feature phone brands. They formed SMS messages
that can even be sent over commercial (real) networks and will cause the phones
to reboot, temporarily losing network connectivity. After consultation with the
phone manufacturers Mulliner and Golde did not publish the actual messages
that cause the DoS.

The company Codenomicon released a white paper detailing a product that
fuzzes SMS messages in order to test the whole network chain for delivery of
fuzzed SMS messages [24]. This is targeted towards providers as a tool that can
be connected inside the core GSM network.

It is often hard to find out exactly which fields were fuzzed in the studies
discussed so far. We have attempted to provide an overview of the fields that
have been fuzzed in the SMS-DELIVER message, as far as we can tell from these
publications and sometimes through personal communication with the authors.
This overview can be found in Figure 3(a). We chose to limit this overview to
the one message we also fuzz in our research.

Naturally, fuzzing is not the only way to reveal (security) bugs in the GSM
baseband stack. Weinmann et al. decompiled baseband firmware updates from
two popular baseband chips and performed a manual code inspection which led
to several bugs, amongst which one which led to remote code execution [30,31].

Few researchers have access to the GSM core network. One private security
company specializes in fuzz testing GSM core networks and they apparently have
a database of possible attacks [32], though the nature of the found vulnerabilities
is not public knowledge.

5 Conclusions and Directions for Future Work

We have demonstrated that fuzzing is useful to find bugs in the implementation
of GSM stacks on mobile phones. Just think on the number of different mobile
phones out in the wild and the information we store on them. Setting up a fake
base station and sending out malicious messages is, at least for GSM, not that
hard nor expensive anymore and the potential damage could be enormous.

The wide diversity of phones makes it harder to find a single bug affecting
many different mobile phones. Nevertheless, our fuzzing research in GSM has
shown several issues with mobile phones. The most important attacks here led
to various types of DoS messages which can usually be solved through a reboot
of the phone. Some results show clear buffer overflow errors, such as the SMS
message which will show random parts of the phone’s memory when read on the
Nokia 2600. Although it is not immediately clear how to abuse such an error for
remote code execution, it is possible that such an attack will be constructed in



Security Testing of GSM Implementations 193

the future for a popular brand of mobile phones. Unfortunately, the CBS service
seems to be too poorly supported at the moment to achieve any meaningful
fuzzing results, or to use it as an emergency broadcast service for that matter.

The hardest part of fuzzing mobile phone implementations is observing the
phone’s behavior, which is hard to automate. There are not a lot of other options,
other than human testing, for security analysis of the closed source baseband
stacks on mobile phones. Then again, with direct access to the baseband stacks
fuzz testing these implementations would be much easier. The manufacturers of
the baseband stacks or of the SoC have this access and employing strong security
tests on their products could greatly increase the security of their product, which
among baseband stacks would be a novel selling point. For future research it
would be interesting to focus on fuzzing rooted Android devices, where it may
be possible to run debuggers in the memory to better observe strange behavior.

For now almost all fuzzing research into GSM has focused on fuzzing mobile
phones, and then mostly on fuzzing SMS messages, which still leaves many areas
open to explore, such as all the other broadcast messages, but also the network
side of a GSM network. It seems logical to assume that the baseband stack on
network equipment will contain as many bugs as the stacks on mobile phones,
and attacks against the GSM network itself would probably have a much larger
impact.

Since the 3G and 4G protocols all have mutual authentication, it is not possi-
ble to simply deploy a fake base station in order to fuzz the 3G and 4G baseband
stacks. A way around this obstacle would be to use self controlled SIM cards, so
you can have your cell tower authenticate to the mobile phone. However, as far
as we know there is no open source 3G or 4G cell tower software available yet,
so this would require a large amount of work to implement.

Most of our effort came from getting the open source GSM base station up and
running. After that implementing the fuzzers was only a few weeks of work. The
initial effort to set up a base station and incorporate a fuzzer was substantial,
but this solution can now be used to fuzz test any GSM phone on SMS or CBS
weaknesses in one and a half hour. This makes fuzzing a cost-effective and fea-
sible technique for making implementations of mobile phone stacks more robust
and safe.

References

1. GSM-Association: data and analysis for the mobile industry,
https://gsmaintelligence.com/

2. UK smartmeter company using GSM/GPRS,
http://www.smsmetering.co.uk/products/

smart-meters/gsm-gprs-meters.aspx

3. Hack a day website on sim card carrying traffic lights,
http://hackaday.com/2011/01/28/sim-card-carrying-traffic-lights/

4. GSM-R Industry Group, http://www.gsm-rail.com/
5. News story on the absence of plans to stop 2g services,

http://www.computerweekly.com/news/2240160984/

Will-the-UK-turn-off-its-2G-networks-in-2017

https://gsmaintelligence.com/
http://www.smsmetering.co.uk/products/smart-meters/gsm-gprs-meters.aspx
http://www.smsmetering.co.uk/products/smart-meters/gsm-gprs-meters.aspx
http://hackaday.com/2011/01/28/sim-card-carrying-traffic-lights/
http://www.gsm-rail.com/
http://www.computerweekly.com/news/2240160984/Will-the-UK-turn-off-its-2G-networks-in-2017
http://www.computerweekly.com/news/2240160984/Will-the-UK-turn-off-its-2G-networks-in-2017


194 F. van den Broek, B. Hond, and A. Cedillo Torres

6. Briceno, M., Goldberg, I., Wagner, D.: A pedagogical implementation of the GSM
A5/1 and A5/2 “voice privacy” encryption algorithms (1999),
http://cryptome.org/gsm-a512.htm (originally on www.scard.org)

7. Website of the Ettus company, selling USRPs, http://www.ettus.com/

8. Burgess, D.: Homepage of the OpenBTS project,
http://openbts.sourceforge.net/

9. Nohl, K.: Attacking phone privacy. Blackhat 2010 (2010),
https://srlabs.de/blog/wp-content/uploads/2010/07/

Attacking.Phone .Privacy Karsten.Nohl 1.pdf

10. van den Broek, F., Poll, E.: A comparison of time-memory trade-off attacks on
stream ciphers. In: Youssef, A., Nitaj, A., Hassanien, A.E. (eds.) AFRICACRYPT
2013. LNCS, vol. 7918, pp. 406–423. Springer, Heidelberg (2013)

11. ETSI. Digital cellular telecommunications system (Phase 2+); UMTS; LTE; Point-
to-Point (PP) Short Message Service (SMS) support on mobile radio interface
(3GPP TS 24.011 version 11.1.0 Release 11) (2012)

12. ETSI. Digital cellular telecommunications system (Phase 2+); UMTS;Technical
realization of the Short Message Service (SMS), (3GPP TS 23.040 version 11.5.0
Release 11)
(2013)

13. Myers, G.J.: The Art of Software Testing. John Wiley & Sons (1979)

14. Kuipers, R., Takanen, A.: Fuzzing embedded devices. GreHack 2012, 38 (2012)

15. Welte, H.: Anatomy of contemporary GSM cellphone hardware (2010),
http://laforge.gnumonks.org/papers/gsm_phone-anatomy-latest.pdf

16. Mulliner, C., Miller, C.: Injecting SMS Messages into Smart Phones for Security
Analysis. In: Proceedings of the 3rd USENIX Workshop on Offensive Technologies
(WOOT). Montreal, Canada (August 2009)

17. van den Broek, F., Wichers Schreur, R.: Femtocell Security in Theory and Practice.
In: Riis Nielson, H., Gollmann, D. (eds.) NordSec 2013. LNCS, vol. 8208, pp. 183–
198. Springer, Heidelberg (2013)

18. Welte, H.: Homepage of the OpenBSC project, http://openbsc.osmocom.org/

19. Homepage of the GNU Radio project, http://gnuradio.org/

20. Welte, H.: Homepage of the OsmoBTS project,
http://openbsc.osmocom.org/trac/wiki/OsmoBTS

21. Collection of fuzzing software, http://fuzzing.org/

22. Code archive of the sulley fuzzing framework,
https://github.com/OpenRCE/sulley

23. Engel, T.: S60 Curse of Silence. CCC Berlin (2008)
http://berlin.ccc.de/~tobias/cos/

24. Vuontisjärvi, M., Rontti, T.: SMS Fuzzing. Codenomicon whitepaper (2011),
http://www.codenomicon.com/resources/whitepapers/

codenomicon wp SMS fuzzing 02 08 2011.pdf

25. Mulliner, C., Golde, N., Seifert, J.-P.: SMS of Death: From Analyzing to Attacking
Mobile Phones on a Large Scale. In: USENIX (2011)

26. Mulliner, C., Miller, C.: Fuzzing the Phone in your Phone. Black Hat USA (June
2009)

27. Hond, B.: Fuzzing the GSM protocol. Master’s thesis, Radboud University Ni-
jmegen, Kerckhoff’s Master, The Netherlands (2011)

28. Torres, A.C.: GSM cell broadcast service security analysis. Master’s thesis, Tech-
nical University Eindhoven, Kerckhoff’s Master, The Netherlands (2013)

http://cryptome.org/gsm-a512.htm
www.scard.org
http://www.ettus.com/
http://openbts.sourceforge.net/
https://srlabs.de/blog/wp-content/uploads/2010/07/Attacking.Phone_.Privacy_Karsten.Nohl_1.pdf
https://srlabs.de/blog/wp-content/uploads/2010/07/Attacking.Phone_.Privacy_Karsten.Nohl_1.pdf
http://laforge.gnumonks.org/papers/gsm_phone-anatomy-latest.pdf
http://openbsc.osmocom.org/
http://gnuradio.org/
http://openbsc.osmocom.org/trac/wiki/OsmoBTS
http://fuzzing.org/
https://github.com/OpenRCE/sulley
http://berlin.ccc.de/~tobias/cos/
http://www.codenomicon.com/resources/whitepapers/codenomicon_wp_SMS_fuzzing_02_08_2011.pdf
http://www.codenomicon.com/resources/whitepapers/codenomicon_wp_SMS_fuzzing_02_08_2011.pdf


Security Testing of GSM Implementations 195

29. Mulliner, C., Vigna, G.: Vulnerability Analysis of MMS User Agents. In: Proceed-
ings of the Annual Computer Security Applications Conference (ACSAC), Miami,
FL (December 2006)

30. Weinmann, R.-P.: Baseband Attacks: Remote Exploitation of Memory Corruptions
in Cellular Protocol Stacks. In: WOOT, pp. 12–21 (2012)

31. Weinmann, R.-P.: The baseband apocalypse. In: 27th Chaos Communication
Congress Berlin (2010)

32. P1Security. website detailing a fuzzing product for telco core-networks,
http://www.p1sec.com/corp/products/p1-telecom-fuzzer-ptf/

http://www.p1sec.com/corp/products/p1-telecom-fuzzer-ptf/

	Security Testing of GSM Implementations
	1 Introduction
	2 GSM
	3 Fuzzing
	3.1 Fuzzing GSM Phones

	4 Our Fuzzing
	4.1 How Do We Fuzz?
	4.2 Fuzzing Results
	4.3 Related Work

	5 Conclusions and Directions for Future Work
	References




