
Jan Jürjens
Frank Piessens
Nataliia Bielova (Eds.)

 123

LN
CS

 8
36

4

6th International Symposium, ESSoS 2014
Munich, Germany, February 26-28, 2014
Proceedings

Engineering
Secure Software
and Systems

Lecture Notes in Computer Science 8364
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Jan Jürjens Frank Piessens
Nataliia Bielova (Eds.)

Engineering
Secure Software
and Systems
6th International Symposium, ESSoS 2014
Munich, Germany, February 26-28, 2014
Proceedings

13

Volume Editors

Jan Jürjens
Technical University Dortmund
Department of Computer Science
Dortmund, Germany
E-mail: jan.juerjens@isst.fraunhofer.de

Frank Piessens
KU Leuven
Department of Computer Science
Heverlee, Belgium
E-mail: frank.piessens@cs.kuleuven.be

Nataliia Bielova
Inria Sophia Antipolis – Mediterranee
Sophia Antipolis Cedex, France
E-mail: nataliia.bielova@inria.fr

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-319-04896-3 e-ISBN 978-3-319-04897-0
DOI 10.1007/978-3-319-04897-0
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014930756

CR Subject Classification (1998): E.3, D.4.6, D.2.1, D.2.4, F.3.1, K.6.5

LNCS Sublibrary: SL 4 – Security and Cryptology

© Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in its current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

It is our pleasure to welcome you to the 6th International Symposium on Engi-
neering Secure Software and Systems (ESSoS 2014). This event in a maturing
series of symposia attempts to bridge the gap between the scientific communities
from software engineering and security with the goal of supporting secure soft-
ware development. The parallel technical sponsorship from ACM SIGSAC (the
ACM interest group in security) and ACM SIGSOFT (the ACM interest group
in software engineering) demonstrates the support from both communities and
the need for providing such a bridge.

Security mechanisms and the act of software development usually go hand
in hand. It is generally not enough to ensure correct functioning of the security
mechanisms used. They cannot be “blindly” inserted into a security-critical sys-
tem, but the overall system development must take security aspects into account
in a coherent way. Building trustworthy components does not suffice, since the
interconnections and interactions of components play a significant role in trust-
worthiness. Lastly, while functional requirements are generally analyzed care-
fully in systems development, security considerations often arise after the fact.
Adding security as an afterthought, however, often leads to problems. Ad hoc de-
velopment can lead to the deployment of systems that do not satisfy important
security requirements. Thus, a sound methodology supporting secure systems
development is needed. The presentations and associated publications at ESSoS
2014 contribute to this goal in several directions: On the one hand, with se-
cure software engineering results for specific application domains (such as Web
and mobile security). On the other hand, improving specific methods in secure
software engineering (such as model-based security or formal methods). A third
set of presentations presents real-life applications of secure software engineering
approaches.

The conference program featured three major keynotes from Ross Anderson
(University of Cambridge) on the psychology of security, Adrian Perrig (ETH
Zurich) on scalability, control, and isolation for next-generation networks, and
Stephan Micklitz (Google Munich) on human factors and strong authentication,
as well as a set of research and idea papers. In response to the call for papers,
55 papers were submitted. The Program Committee selected 11 full-paper con-
tributions (20%), presenting new research results on engineering secure software
and systems. In addition, there are four idea papers, giving a concise account of
new ideas in the early stages of research.

Many individuals and organizations have contributed to the success of this
event. First of all, we would like to express our appreciation to the authors of the
submitted papers and to the Program Committee members and external refer-
ees, who provided timely and relevant reviews. Many thanks go to the Steering
Committee for supporting this series of symposia, and to all the members of

VI Preface

the Organizing Committee for their tremendous work and for excelling in their
respective tasks. The DistriNet research group of the KU Leuven did an excel-
lent job with the website and the advertising for the conference. Finally, we owe
gratitude to ACM SIGSAC/SIGSOFT, IEEE TCSP, and LNCS for continuing
to support us in this series of symposia.

December 2013 Jan Jürjens
Frank Piessens
Nataliia Bielova

Conference Organization

General Chair

Alexander Pretschner Technische Universität München, Germany

Program Co-chairs

Jan Jürjens TU Dortmund and Fraunhofer ISST, Germany
Frank Piessens Katholieke Universiteit Leuven, Belgium

Publication Chair

Nataliia Bielova Inria Sophia Antipolis, France

Publicity Chair

Pieter Philippaerts Katholieke Universiteit Leuven, Belgium

Web Chair

Ghita Saevels Katholieke Universiteit Leuven, Belgium

Local Arrangements Chair

Regina Jourdan Technische Universität München, Germany

Steering Committee

Jorge Cuellar Siemens AG, Germany
Wouter Joosen Katholieke Universiteit Leuven, Belgium
Fabio Massacci Universitá di Trento, Italy
Gary McGraw Cigital, USA
Bashar Nuseibeh The Open University, UK
Daniel Wallach Rice University, USA

VIII Conference Organization

Program Committee

Ruth Breu University of Innsbruck, Austria
Lorenzo Cavallaro Royal Holloway, University of London, UK
Anupam Datta Carnegie Mellon University, USA
Werner Dietl University of Washington, USA
François Dupressoir IMDEA, Spain
Eduardo Fernandez Florida Atlantic University, USA
Eduardo Fernandez-Medina

Paton Universidad de Castilla-La Mancha, Spain
Cormac Flanagan U.C. Santa Cruz, USA
Dieter Gollmann TU Hamburg-Harburg, Germany
Arjun Guha Cornell University, USA
Christian Hammer Saarland University, Germany
Hannes Hartenstein Karlsruher Institut für Technologie, Germany
Maritta Heisel University of Duisburg Essen, Germany
Peter Herrmann NTNU, Trondheim, Norway
Valerie Issarny Inria, France
Limin Jia Carnegie Mellon University, USA
Martin Johns SAP Research, Germany
Jay Ligatti University of South Florida, USA
Heiko Mantel TU Darmstadt, Germany
Haris Mouratidis University of East London, UK
Mart́ın Ochoa Siemens AG, Germany
Jae Park University of Texas at San Antonio, USA
Erik Poll RU Nijmegen, The Netherlands
Wolfgang Reif University of Augsburg, Germany
Riccardo Scandariato Katholieke Universiteit Leuven, Belgium
Ketil Stølen SINTEF, Norway
Steve Zdancewic University of Pennsylvania, USA
Mohammad Zulkernine Queens University, Canada

Additional Reviewers

Azadeh Alebrahim
Kristian Beckers
Abhishek Bichhawat
Marian Borek
Michael Brunner
Gencer Erdogan
Stephan Faßbender
Matthias Gander
Jinwei Hu

Kuzman Katkalov
Basel Katt
Johannes Leupolz
Yan Li
Steffen Lortz
Rene Meis
Jan Tobias Muehlberg
Sebastian Pape
Davide Papini

David Pfaff
Fredrik Seehusen
Christian Sillaber
Bjørnar Solhaug
Barbara Sprick
Kurt Stenzel
Lianshan Sun
Marie Walter
Philipp Zech

Conference Organization IX

Sponsoring Institutions

Technische Universität München, Germany

NESSoS FP7 Project, Network of Excellence on
Engineering Secure Future Internet Software Ser-
vices and Systems, www.nessos-project.eu

Keynote Abstracts

The Psychology of Security

Ross Anderson

University of Cambridge, UK

Abstract. A fascinating dialogue is developing between psychologists
and security engineers. At the macro scale, societal overreactions to ter-
rorism are founded on the misperception of risk and uncertainty, which
has deep psychological roots. At the micro scale, more and more crimes
involve deception; as security engineering gets better, it’s easier to mis-
lead people than to hack computers or hack through walls. Many frauds
can be explained in terms of the heuristics and biases that we have re-
tained from our ancestral evolutionary environment.

At an even deeper level, the psychology of security touches on funda-
mental scientific and philosophical problems. The ‘Machiavellian Brain’
hypothesis states that we evolved high intelligence not to make better
tools, but to use other monkeys better as tools: primates who were better
at deception, or at detecting deception in others, left more descendants.
Yet the move online is changing the parameters of deception, and rob-
bing us of many of the signals we use to make trust judgments in the
“real” world; it’s a lot easier to copy a bank website than it is to copy
a bank. Many systems fail because the security usability has not been
thought through: the designers have different mental models of threats
and protection mechanisms from users. And misperceptions cause secu-
rity markets to fail: many users buy snake oil, while others distrust quite
serviceable mechanisms.

Security is both a feeling and a reality, and they’re different. The gap
gets ever wider, and ever more important. In this talk I will describe the
rapidly-growing field of security psychology which is bringing together
security engineers not just with psychologists but with behavioural
economists, anthropologists and even philosophers to develop new ap-
proaches to risk, fraud and deception in the complex socio-technical sys-
tems on which we are all coming to rely.

SCION: Scalability, Control, and Isolation On

Next-Generation Networks

Adrian Perrig

Swiss Federal Institute of Technology (ETH), Switherland

Abstract. We present an Internet architecture designed to provide route
control, failure isolation, and explicit trust information for end-to-end
communications. SCION separates ASes into groups of independent rout-
ing sub-planes, called isolation domains, which then interconnect to form
complete routes. Isolation domains provide natural separation of routing
failures and human misconfiguration, give endpoints strong control for
both inbound and outbound traffic, provide meaningful and enforceable
trust, and enable scalable routing updates with high path freshness. As a
result, our architecture provides strong resilience and security properties
as an intrinsic consequence of good design principles, avoiding piecemeal
add-on protocols as security patches. Meanwhile, SCION only assumes
that a few top-tier ISPs in the isolation domain are trusted for provid-
ing reliable end-to-end communications, thus achieving a small Trusted
Computing Base. Both our security analysis and evaluation results show
that SCION naturally prevents numerous attacks and provides a high
level of resilience, scalability, control, and isolation.

Human Factors and Strong Authentication

Stephan Micklitz

Google Munich, Germany

Abstract. Google’s login team began focusing on strong authentication
in the spring of 2008, and in almost six years we have come a long way in
protecting our users. In this presentation we will talk about the progress
we have made since then, such as introducing strict 2-step verification,
risk-based login challenges and OpenID-style login.

We will then identify the biggest challenges we are currently facing
in establishing stronger authentication – both from a technological as
well as a usability point of view. We will also talk important privacy
considerations for such systems, and how we are addressing them. Next
we will look into our plan to address these challenges in the next years
ahead of us, making use of technological developments, e.g. the vastly
increased adoption of smart mobile devices.

Table of Contents

Model-Based Security

Detecting Code Reuse Attacks with a Model of Conformant Program
Execution . 1

Emily R. Jacobson, Andrew R. Bernat, William R. Williams, and
Barton P. Miller

Security@Runtime: A Flexible MDE Approach to Enforce Fine-Grained
Security Policies . 19

Yehia Elrakaiby, Moussa Amrani, and Yves Le Traon

Idea: Towards a Vision of Engineering Controlled Interaction Execution
for Information Services . 35

Joachim Biskup and Cornelia Tadros

Formal Methods

Automated Formal Verification of Application-Specific Security
Properties . 45

Piergiuseppe Bettassa Copet and Riccardo Sisto

Fault-Tolerant Non-interference . 60
Filippo Del Tedesco, Alejandro Russo, and David Sands

Quantitative Security Analysis for Programs with Low Input and Noisy
Output . 77

Tri Minh Ngo and Marieke Huisman

A Modeling and Formal Approach for the Precise Specification
of Security Patterns . 95

Brahim Hamid and Christian Percebois

On the Relation between Redactable and Sanitizable Signature
Schemes . 113

Hermann de Meer, Henrich C. Pöhls, Joachim Posegga, and
Kai Samelin

Idea: Towards a Working Fully Homomorphic Crypto-processor:
Practice and the Secret Computer . 131

Peter T. Breuer and Jonathan P. Bowen

XVIII Table of Contents

Web and Mobile Security

Architectures for Inlining Security Monitors in Web Applications 141
Jonas Magazinius, Daniel Hedin, and Andrei Sabelfeld

Automatic and Robust Client-Side Protection for Cookie-Based
Sessions . 161

Michele Bugliesi, Stefano Calzavara, Riccardo Focardi, and
Wilayat Khan

Security Testing of GSM Implementations . 179
Fabian van den Broek, Brinio Hond, and Arturo Cedillo Torres

Applications

User-Centric Security Assessment of Software Configurations: A Case
Study . 196

Hamza Ghani, Jesus Luna Garcia, Ivaylo Petkov, and Neeraj Suri

Idea: Security Engineering Principles for Day Two Car2X
Applications . 213

Sibylle Fröschle and Alexander Stühring

Idea: Embedded Fault Injection Simulator on Smartcard 222
Maël Berthier, Julien Bringer, Hervé Chabanne, Thanh-Ha Le,
Lionel Rivière, and Victor Servant

Author Index . 231

Detecting Code Reuse Attacks with a Model

of Conformant Program Execution

Emily R. Jacobson, Andrew R. Bernat,
William R. Williams, and Barton P. Miller

Computer Sciences Department, University of Wisconsin
{jacobson,bernat,bill,bart}@cs.wisc.edu

Abstract. Code reuse attacks circumvent traditional program protec-
tion mechanisms such as W ⊕ X by constructing exploits from code
already present within a process. Existing techniques to defend against
these attacks provide ad hoc solutions or lack in features necessary to
provide comprehensive and adoptable solutions. We present a system-
atic approach based on first principles for the efficient, robust detection
of these attacks; our work enforces expected program behavior instead
of defending against anticipated attacks. We define conformant program
execution (CPE) as a set of requirements on program states. We demon-
strate that code reuse attacks violate these requirements and thus can
be detected; further, new exploit variations will not circumvent CPE . To
provide an efficient and adoptable solution, we also define observed con-
formant program execution, which validates program state at system call
invocations; we demonstrate that this relaxed model is sufficient to detect
code reuse attacks. We implemented our algorithm in a tool, ROPStop,
which operates on unmodified binaries, including running programs. In
our testing, ROPStop accurately detected real exploits while imposing
low overhead on a set of modern applications: 5.3% on SPEC CPU2006
and 6.3% on an Apache HTTP Server.

Keywords: Binary analysis, static analysis, return-oriented program-
ming, jump-oriented programming.

1 Introduction

Code reuse attacks are an increasingly popular technique for circumventing tra-
ditional program protection mechanisms such as W ⊕X (e.g., Data Execution
Prevention (DEP)), and the security community has proposed a wide range of
approaches to protect against these attacks. However, many of these approaches
provide ad hoc solutions, relying on observed attack characteristics that are not
intrinsic to the class of attacks. In the continuing arms race against code reuse
attacks, we must construct defenses using a more systematic approach: good
engineering practices must combine with the best security techniques.

Any such approach must be engineered to cover the complete spectrum of
attack surfaces. While more general defensive techniques, such as Control Flow

J. Jürjens, F. Piessens, and N. Bielova (Eds.): ESSoS 2014, LNCS 8364, pp. 1–18, 2014.
c© Springer International Publishing Switzerland 2014

2 E.R. Jacobson et al.

Integrity or host-based intrusion detection, provide good technical solutions,
each is lacking in one or more features necessary to provide a comprehensive
and adoptable solution [51]. We must develop defenses that can be effectively
applied to real programs.

We present a technique based on first principles for the efficient, robust de-
tection of code reuse attacks. Our work is grounded in a model of conformant
program execution (CPE), in which we define what program states are possi-
ble during normal execution. We generate our model automatically from the
program binary; thus, no learning phase or expert knowledge is required. CPE
enforces expected program behavior instead of defending against anticipated at-
tacks; thus, new exploit variations will not circumvent CPE. CPE is based on
observable properties of the program counter and runtime callstack; a program
has CPE if, for all program states during the execution of the program, the pro-
gram counter and callstack are individually valid and consistent with each other.
Code reuse attacks execute short sequences of instructions without respect to
their location in original code; thus, these attacks deviate from our model.

Conformant program execution verifies each program state; therefore, contin-
ually validating it can result in high overhead. We address this problem with
observed conformant program execution (OCPE), which reduces overhead by
only validating program state at system call executions. We demonstrate that
this relaxed model is sufficient to detect code reuse attacks. Thus, OCPE pro-
vides an adoptable solution while still providing safety guarantees. OCPE is not
designed to handle code reuse-based mimicry attacks, which have not yet been
demonstrated in the research world or seen in the wild. We believe OCPE could
be augmented in future work to handle these attacks.

We engineer our approach using a component model based on strong binary
analysis of the code. This analysis allows us to operate on modern binaries, which
frequently are highly optimized or lack debugging information; our analysis does
not rely on information that may not be present in a modern application. We
leverage a binary analysis toolkit to identify key characteristics of the stack frame
at any instruction in the binary; this allows us to gather a full callstack via a
stackwalk at runtime. While conceptually straightforward, accurate stackwalks
are surprisingly difficult to perform on real applications. Our algorithm leverages
these stackwalks, taken at system calls, to reliably detect code reuse attacks.

We implemented our code reuse detection algorithm in a tool, ROPStop,
which operates on unmodified binaries, including running programs. We evalu-
ated ROPStop using real exploits from two classes of code reuse attacks: return-
oriented programming (ROP) and jump-oriented programming (JOP). Our
results show that our tool is able to correctly identify each exploit. We tested
ROPStop with the SPEC CPU2006 benchmarks and an Apache HTTP Server as
a control group of unexploited, conventional binaries to evaluate overhead and
measure the occurrence of false positives. Our results show an average overhead
of 5.3% on and 6.3% on Apache; ROPStop reported no false positives.

We provide an overview of the challenges in detecting code reuse attacks and
existing work in this area in Section 2 and a formal description of conformant

Detecting Code Reuse Attacks 3

program execution and code reuse attacks in Section 3. Next, we describe the
technical details of our approach in Section 4. We evaluate our approach in
Section 5 and finish with a brief conclusion in Section 6.

2 Background and Related Work

Code reuse attacks provide interesting new challenges for security researchers.
While W ⊕X guards against code injection attacks, it is insufficient to stop code
reuse attacks because such attacks do not write new code into the address space.
We describe how an attacker gains control of the program and produces a code
reuse attack. Further, we describe how an attacker locates gadgets within the
program. We conclude with a discussion of techniques that are not specifically
focused on code reuse attacks but are similar to techniques presented here.

2.1 Gaining Control of the Program

The first step of a code reuse attack is to gain control of the program counter to
divert program control flow to the first gadget. This is done by making use of an
existing vulnerability (e.g., a buffer overflow) to alter program data. Although
these vulnerabilities and possible defenses are well studied, attackers remain
able to exploit these vulnerabilities and launch attacks [51]. We assume that
an attacker will be able to find a viable entry point for launching a code reuse
attack, and do not discuss these vulnerabilities further. To ensure that program
control flow will be diverted, an attacker overwrites either the return address for
the calling function or a function pointer with the address of the first gadget.
Note that W ⊕X restricts attackers to cases where control flow targets depend
on writeable locations rather than executable locations.

If the return address is overwritten, control flow will be diverted to the gadget
when the current function returns and the new return address is loaded into
the program counter. Stack-smashing attacks such as this one have been well-
studied and techniques such as StackGuard [16] will prevent these attacks. To
be effective, this protection must be present in all program code, including the
program binary and any libraries on which it depends. These protections are
provided as options by most modern compilers, but they are frequently not
turned on by default, and can be turned off. Therefore, it is not safe to assume
these protections will be present, and frequently it is not possible for a user
to modify shared libraries (e.g., libc.so) to include them. If a function pointer
is overwritten, control flow will be diverted to the gadget when the program
invokes an indirect call or jump using the address of the function pointer.

Once control flow has been diverted to the first gadget, the code reuse attack
begins. We note that an attack might also use an existing vulnerability to modify
program data: for instance, to cause a system call to be executed with unintended
arguments. These data driven attacks [2, 14, 20] are complementary to control
flow-based attacks and are beyond the scope of our work.

4 E.R. Jacobson et al.

2.2 Gadget Execution

Return- and Jump-Oriented Programming. In ROP, each gadget is ter-
minated with a return instruction [44]. Thus, if an attacker has gained control
of the stack pointer, they can use these return instructions to cause program ex-
ecution to flow from one gadget to the next. JOP attacks use the same general
technique, but gadgets are chained together with indirect jump instructions [7,9].
Thus, unlike ROP, JOP does not rely on manipulating the stack pointer; instead,
indirect jump instructions have a specified target location, often stored in a reg-
ister. This provides an extra challenge in constructing a jump-oriented attack:
gadgets must manipulate relevant register values to ensure each indirect jump
transfers control to the next gadget.

Defenses against Code Reuse Attacks. There are a variety of techniques
designed to detect code reuse attacks. Several approaches make use of a shadow
stack to prevent control flow manipulation that relies on overwritten stack val-
ues [12, 19, 23]. Others try to detect gadget execution by monitoring the length
of instruction sequences between returns [11,18]. Still others proposed monitor-
ing pairs of call and return instructions [12, 31]. These approaches each target
return-oriented attacks; however, they will not detect jump-oriented attacks be-
cause these attacks do not rely on return instructions to transfer control between
gadgets. Another common approach ensures that a function should only start ex-
ecuting at its entry point [12,29–31]. However, an attack may still hijack control
flow while conforming to these requirements, thus remaining undetected.

Each of these mitigation techniques targets specific characteristics of previ-
ously observed code reuse attacks; such features may not be intrinsic to all code
reuse attacks. In contrast, our work detects any violations of our model of confor-
mant program execution by validating known properties of the program. Thus,
evolving attack variations will not hinder our ability to detect these attacks.

Still other techniques monitor system calls to detect violations. ROPGuard [24]
is a recent tool focused on ROP attacks that checks for a valid callstack at a subset
of system calls. ROPGuard relies on frame pointers to traverse the callstack.Many
modern programs do not save frame pointers; thus, callstack verification is turned
off by default, leaving such programsvulnerable. By verifying conformant program
behavior at all system calls and using a robust binary analysis toolkit to perform
accurate stackwalks, our work provides a more complete approach.

2.3 Gadget Discovery

Locating potential gadgets is performed by scanning a target binary for return
instructions (for ROP) or indirect jumps (for JOP). An attacker then chooses
the gadgets to use from this set potential gadgets [13, 21, 47]. This selection of
gadgets must allow the attacker to maintain command over the control flow of
the program and perform desired actions while avoiding unwanted side effects.

ASLR is a common system-level technique that randomizes the addresses at
which libraries are loaded into the address space of a process; this is particularly

Detecting Code Reuse Attacks 5

relevant for code reuse attacks because these attacks rely on known locations
for each gadget. Unfortunately, this is not sufficient to prevent a code reuse
attack. Schwartz et al. point out that not all operating systems randomize all
components within the address space, and some require an application to ex-
plicitly turn on ASLR [47]. As long as there exists some segment of code that is
not randomized, code reuse attacks are possible. Checkoway et al. demonstrated
that such attacks can be constructed even with a limited set of instructions [10].
Consequently, in real systems, we must assume that if gadgets exist in the code,
an attacker will be able to find a sufficiently powerful set to perform their attack.

Several prevention techniques attempt to eliminate possible gadgets in library
code via code diversification [17,28,32,36,53]. An alternative prevention strategy
seeks to create binaries or kernels that lack necessary characteristics for ROP
attacks [34, 35]. Many software diversification techniques rely on modifying the
program, library, or kernel binaries via recompilation or binary rewriting; such
modifications may not be possible in real systems. Furthermore, these techniques
do not preclude code reuse attacks, but simply challenge attackers to identify
gadgets in more sophisticated ways [51]. In contrast, ROPStop is engineered to
provide a comprehensive solution that does not require ASLR or recompilation;
ROPStop operates on unmodified binaries, including running programs.

2.4 Other Approaches

Our work is also similar to techniques that, while not focused on code reuse
attacks, may be effective against such attacks: control flow validity enforcement
and anomalous system call detection. Control-Flow Integrity (CFI) ensures that
program execution holds to a control-flow graph (CFG) derived from static anal-
ysis [1]. However, because CFI verifies each control-flow transfer during program
execution, it imposes high runtime overhead. More practical approaches, such as
Control Flow Locking (CFL) [6], Compact Control Flow Integrity and Random-
ization (CCFIR) [54], and CFI for COTS binaries [55], have other limitations.
CFL lazily verifies transfers, which greatly improves performance; however, their
technique requires statically-linked binaries, which severely limits its application.
CCFIR and CFI for COTS use binary rewriting to add verification checks at in-
direct control flow transfers. Although these approaches can be applied to shared
libraries, protections must be applied to all binary code to ensure the implied
security guarantees; any unprotected code is a potential attack target. Thus, the
user applying protections must both be aware of and able to protect all library
dependencies; this requirement can limit the applicability of these approaches.
Further, CCFIR relies on ASLR for all program code. The limitations of these
techniques prevent them from providing comprehensive defense solutions.

Host-based intrusion detection systems (IDS) use anomalous patterns of sys-
tem calls to identify attacks. These approaches rely on a learning phase [22,25,48]
or static binary analysis [26]. Unlike learning-based IDS, our work is based on
a model of what program states are possible in normal execution. Further, our
approach enforces a valid program state at each system call, rather than a valid
pattern of system calls. We note that mimicry attacks [33,42] allow an attacker

6 E.R. Jacobson et al.

to subvert system call monitoring by ensuring that both the call stack of each
system call and the sequence of system calls made by a compromised program
appear normal to an IDS. However, mimicry attacks rely on code injection. While
it is theoretically possible to extend a mimicry attack to employ code reuse, this
form of attack does not appear in the wild; this would require an attacker to
construct a sequence of gadgets that both executes their attack and restores the
system to a state that appears valid at the next system call. However, gadget
discovery is a difficult problem. In practice, attackers who employ code reuse
are attempting to find the shortest route to a less restrictive environment [43].
Thus, we consider mimicry attacks beyond the scope of our work.

3 Conformant Program Execution

Our work is grounded in a model of conformant program execution. We create a
definition of program state and then define requirements on that program state
that must hold true at runtime. Program executions for which these requirements
hold true are called conformant executions. Any deviation from these require-
ments during program execution indicates a non-conformant execution. We first
describe our notation, then define a model of conformant program execution,
and finally discuss how code reuse attacks will be detected as non-conformant.

3.1 Notation

A program is a set of procedures, P = {p1, . . . , pm}. I is the set of all possible
machine instructions; IP ⊆ I are the valid instructions for P . Each procedure pj
is a tuple, pj = (Ipj , entrypj , {exitpj}), where entrypj and exitpj are instructions
in Ipj that represent the entry point and the zero or more exit points for pj . To
represent valid interprocedural control flow in P , we define a call multigraph,
CMGP = (NP , EP), where NP = P and each e = (ps, pt, i) ∈ EP is a control
flow transfer ps → pt at i where i ∈ Ips is the instruction that effects the call.

We parse the program binary using control and dataflow analysis; these anal-
yses produce a call graph and control flow graph, which are used to populate the
data structures in our model. More details are presented in Section 4. The result-
ing CMGP may be incomplete due to unknown indirect control flow at i ∈ pj .
We address this incompleteness by making conservative assumptions about this
control flow, such as that any procedure may be the target of an indirect call. In
such cases, additional edges (pj , ∗, i) may be added to CMGP , where i ∈ pj and
the target of the control flow transfer at i is unknown. For increased accuracy,
CMGP could be augmented at runtime using dynamic analysis [46]; however,
there is an increase in overhead associated with such analysis.

We define an execution of P as execution(P) = 〈m1, . . . ,mn〉, where each
mi represents an instance of program state. Program state includes elements
of machine state that are affected by program execution, including registers
and memory. We represent two elements of interest, the program counter and
the callstack, with pc(m) and callstack(m). The callstack, C, is a sequence of

Detecting Code Reuse Attacks 7

currently active stack frames, C = 〈s0, . . . , sn〉, where stop = sn is the frame
at the top of the stack associated with the currently active procedure.

We refer to a stack frame as a tuple s = (p, i, height), where p refers to the
procedure associated with the stack frame. i refers to the last executed instruc-
tion in the context represented by s. For the top stack frame, this instruction is
the program counter; for all other frames, this instruction is the call immediately
before the frame’s return address (Figure 1). height is the current height of the
stack frame. Stack frame height is based on the space needed to store saved
registers, procedure parameters, local variables, and a return address. Because
different parts of a procedure may require different amounts of local storage,
this height may vary for different parts of the procedure. Therefore the control
flow path leading to the current location within a procedure, which we denote
entryproc(s) � instr(s), affects the stack frame height. Our model does not rely
on other information, such as a saved frame pointer, because such information
may be omitted by optimizing compilers. We represent elements of each frame
with proc(s), instr(s), and height(s).

assembly

foo: . . .

call bar

. . .

. . .

return address

. . .

callstack

foo’s
stack
frame

bar’s
stack
frame

proc(s)

instr(s)
height(s)

Fig. 1. Relationship between the tuple s = (p, i, height) that represents the current
stack frame instance for procedure foo, the assembly code for foo, and the callstack.
Elements of the stack frame are represented with proc(s), instr(s), and height(s). Note
that the choice to associate the return address with the caller frame and not the callee
frame is arbitrary; this could be restated without loss of generality.

We further define Heights(i) to represent the set of valid heights possible from
all paths through the CFG from entrypj to i ∈ pj. If code modifies stack frame
height inside a loop, the height will depend on the number of loop iterations,
so it is possible that the size of the set is not finite. In such cases, we assume
that the stack frame height at these instructions is unknown. In principle, we
could analyze the instruction sequence and build a closed form model of such
behavior. In practice, this occurrence is exceedingly rare.

3.2 Conformant Program Execution

Our model of conformant program execution should be permissive enough to
allow a program to execute valid program instructions reached via valid control
flow, while restrictive enough to allow only these valid executions and detect
code reuse attacks. We define a program to have conformant execution based
on characteristics of two program state components: the program counter pc

8 E.R. Jacobson et al.

and the runtime callstack C. A program is conformant at a given time, i.e., a
particular machine state mi, if each component is individually valid and if both
components are consistent. A program has conformant program execution (CPE)
if the program is conformant for all program states in execution(P).

To verify conformance for a particular program state during execution, we ex-
amine the program counter pc and the callstack C. The program counter should
contain the address of a valid instruction. An instruction j is valid if it exists
in the set of valid instructions for program P ; valid(i) : i ∈ IP . The program
counter is valid if it points to a valid instruction; valid(pc) : valid(instr(pc)).
This requirement eliminates the use of unaligned instructions that could provide
a rich selection of unintended instruction sequences to be used in an attack [8].
Further, should W ⊕X not be in place, this requirement precludes code injection
attacks, which rely on code located outside of valid code sections of the binary.

A callstack C = 〈s0, . . . , sn〉 is valid if a height requirement holds for each
frame in C and if a call requirement holds for each pair of adjacent frames.

valid(C) : ∀ s ∈ C : valid(s)

valid(sk) :

{
valid height(sk) k = n

valid height(sk) ∧ valid call(sk) 0 ≤ k < n

A stack frame has a valid height h if that height is a member of the set of valid
heights Heights(i) for the corresponding instruction. For each pair of adjacent
stack frames to meet the call requirement, the control transfer represented by
each pair must correspond to an edge in the call multigraph.

valid height(sk) : height(sk) ∈ Heights(instr(sk))

valid call(sk) : (proc(sk), proc(sk+1), instr(sk)) ∈ EP

Validating calls between procedures associated with consecutive stack frames
ensures that C represents a valid interprocedural control flow path through P .
Thus, we incorporate the goals of CFI [1] but perform verification with runtime
checks for an efficient implementation. Fratric also proposed a requirement on
callstack validity [24]. In his work, a valid callstack requires each stack frame to
have a valid return address and a valid call target, though the tool, ROPGuard,
is only able to implement the former because it relies on information often not
present in modern binaries. We discuss these technical differences in Section 4.

Finally, we define what is required for the program counter and the callstack
to be consistent. Given a program counter that points to a valid instruction and
a valid callstack, we need to ensure they are mutually consistent; that is, that
the callstack is valid for that program counter: consistent(i, C) : i = instr(top(C)).
These validity checks determine if a program has conformant execution:

valid(m) : valid(pc(m))∧ valid(callstack(m)) ∧ consistent(pc(m), callstack(m))

CPE(P) : ∀ m ∈ execution(P) : valid(m)

3.3 Code Reuse Attacks

We introduce a notation for code reuse attacks and discuss how our model detects
these attacks. A code reuse attack is comprised of a series of gadgets,

Detecting Code Reuse Attacks 9

A = 〈g0, . . . , gn〉. Each gadget is a tuple: gk = (Igk, entrygk, exitgk), where entrygk
and exitgk are the instructions in Igk that represent the entry point and exit point
for gk. The instructions that comprise each gadget are part of the set of possible
machine instructions I, but not necessarily part of IP [49].

Although we provide a broad definition of gadgets that spans several flavors
of code reuse attacks, there are several additional known characteristics of each
gadget. Such characteristics are often used when crafting code reuse attacks [13,
47]. The last instruction in a gadget, exitgk, must cause a control flow transfer to
the next gadget gk+1. Gadgets gk and gk+1 are chosen such that exitgk transfers
control to entrygk+1. In ROP, each exitgk is a return instruction and the address
of entrygk+1 is located at the top of the stack [49]; in JOP, exitgk is an indirect
jump instruction, where the target of the jump is entrygk+1 [7, 9].

Executing a sequence of gadgets interrupts the original execution of the pro-
gram. However, gadget execution occurs in the context of the program and may
use the original program stack. As a result, gadgets typically violate CPE in one
or more of three ways: executing invalid instructions, altering the stack, or not
following the original control flow of the program. To detect gadget execution,
and thus a code reuse attack, we must identify these violations.

First, gadgets may execute invalid instructions, either code that was injected
or misaligned instructions from the original program. We detect these invalid
instructions by examining the program counter: ∀ gk ∈ A : Igk ⊆ IP .

Second, gadgets may include instructions that alter the stack. Let
C = 〈s0, . . . , sm〉 represent the callstack prior to the execution of the first gadget,
where sm represents the top of the stack. While a gadget gk executes,
Ck = 〈s0, . . . , sn, . . . , sq〉 where 〈s0, . . . , sn−1〉 represents what remains of the orig-
inal callstack and 〈sn, . . . , sq〉 represents the effects of executing gadget code.

When g0 begins execution, sn = sm. If subsequent gadgets remove values from
the stack, 〈s0, . . . , sn−1〉
 〈s0, . . . , sm〉, where A
 B means that A is a contiguous
subsequence of B that either starts at the same initial state (i.e., s0) or is empty.
Otherwise, 〈s0, . . . , sn−1〉 = 〈s0, . . . , sm−1〉.

Each gadget must maintain the correct height in the context of the stack
frame in which it executes; the expected height for the first instruction in each
gadget, entrygk ∈ Ipj , must match the height of sn. Otherwise, the height of
frame at the top of the stack will be observably incorrect at all instructions in
the gadget. This invariant must be maintained as subsequent gadgets execute.
We detect these invalid stack frames by verifying the height of each stack frame:

∀ i ∈ Igk, gk ∈ A : height(entrygk � i) + height(sn) = height(entrypj � i),

where Igk ∈ Ipj

Third, gadgets may induce a control flow path that does not match that of the
original program. The instructions that comprise each gadget are selected from
an existing procedure; to maintain conformant execution, there must be a valid
control flow transfer from the procedure corresponding to the stack frame below
sn to the procedure that contains the gadget’s instructions. We detect these
invalid control flow paths by validating the path represented by the callstack:

∀ gk ∈ A : (proc(sn−1), pj , instr(sn−1)) ∈ EP , where Igk ∈ pj

10 E.R. Jacobson et al.

However, there are two ways in which an attack might be able to conform to
our model. First, there may be cases in which a loop allows multiple valid stack
heights at a particular instruction, as described in the previous section; in this
case, a gadget may be able to use an invalid stack height without detection, i.e.,

|Heights(instr(sk))| > 1 ∧ height(sk) ∈ Heights(instr(sk)) ∧
height(sk) �= height(entryproc(sk) � instr(sk))

In our experience, such code is rare, and can be mitigated by unrolling or oth-
erwise modifying the loop such that |Heights(instr(sk))| = 1. Second, an attack
might take advantage of our conservative handling of indirect control flow to
construct unintended paths through the binary via indirect procedure calls, i.e.,

(proc(sk−1), ∗, instr(sk−1)) ∈ EP ∧ proc(sk−1) �→ proc(sk) at instr(sk−1)

Such an attack would have to make use of existing program code using whole
procedures at a time, because executing a sequence of procedure fragments would
result in one or more invalid stack frames. Such attacks must still override the
targets of one or more indirect calls to force the execution of the program down
the path desired by the attack. For example, an attack could begin by overwriting
a table of function pointers. However, this is made more complex by the fact that
it must not only overwrite the function pointer but also overwrite the data used
to set up the parameters used at the callsite. While this strategy seems unlikely,
as we use more sophisticated analysis to refine indirect call edges, we further
reduce the likelihood of circumventing our technique.

3.4 Observed Conformant Program Execution

In this section, we define observed conformant program execution (OCPE), which
improves efficiency by verifying program states only at system call entries. Mon-
itoring at system call granularity offers two advantages. First, the system call
tracing interface provided by operating systems (e.g., PTRACE SYSCALL) cannot be
interrupted; therefore, we will receive notification of system call entry even if an
attack is in progress. Second, attacks must use the system call interface (e.g.,
exec) to modify the overall machine state; therefore, we will not miss the effects
of an attack by monitoring only at system calls. We define OCPE as follows:

is syscall(m) : callstack(m) = 〈s0, . . . , sn〉; proc(sn) invoked system call syscall(m)

observed(P) = 〈m ∈ execution(P) | is syscall(m)〉
OCPE(P) : ∀ m ∈ observed(P) : valid(m)

OCPE makes the assumption that the effects of an attack will be visible in the
program state at the point a system call is executed. As discussed in Section 2,
current code reuse attacks are not constructed to evade OCPE [13,47]. We demon-
strate in Section 5 that OCPE is effective against these attacks. Furthermore, we
believe it will be difficult for future code reuse attacks to entirely hide their
effects from our stack model, because an attack would have to both hide its own
effects as well as forge a consistent program state. Even if a future attack could
circumvent OCPE in this way, our model of CPE would detect these deviations
from normal program execution. Therefore, OCPE is an effective optimization of
CPE that greatly improves performance while preserving the power of CPE.

Detecting Code Reuse Attacks 11

4 Implementation

We have incorporated our model into a tool, ROPStop, that monitors a process
during its execution for observed conformant program execution. We use sev-
eral components from the Dyninst binary modification and analysis toolkit to
perform this runtime monitoring and verification [37], and ROPStop has been
implemented for both 32- and 64-bit x86/Linux. In total, ROPStop is approxi-
mately 3,000 lines of C++ on top of several toolkit libraries.

4.1 Process Monitoring

We perform runtime process monitoring using the ProcControlAPI process mon-
itoring and control component [40] of Dyninst. This library allows a tool process
(ROPStop) to manage one or more target processes using platform-independent
abstractions. ProcControlAPI includes the ability to control threads, set break-
points, request notifications (callbacks) at events, and read and write memory.

Using ProcControlAPI, we may either create a new process or attach to a
running process. We then register a callback function that is invoked before each
system call. Although ProcControlAPI already provides the capability to reg-
ister callback functions at various process events using the operating system’s
debug interface (ptrace), we extended the library to provide support for call-
backs at system call entry. ROPGuard [24] used an alternative approach that
instead operates on the library wrappers for system calls rather than directly on
the system call. However, this can be defeated by malicious code that directly
executes a trap instruction to invoke a system calls By using the debug interface,
we can guarantee that all system calls will trigger our callback.

ROPStop then parses the program binary and any library dependencies using
the ParseAPI control flow analysis library [39]. ParseAPI uses recursive traver-
sal parsing to construct a whole-program control flow graph [15, 52], including
sophisticated heuristics to recognize functions that are only reached by indirect
control flow and works in the absence of symbol table information [27,45]. This
CFG provides both the call multigraph (CMGP) required by our model and the
information necessary to identify each valid program instruction (IP).

Once the process binary has been parsed, we continue its execution. If the
process creates additional threads or launches a new process, ProcControlAPI
will monitor these also. A monitored process is stopped at each system call
entry. ROPStop checks that the program has conformant execution; ROPStop
explicitly verifies the program counter and the callstack and implicitly verifies
consistency. If the process is conformant, execution is continued. If ROPStop
detects non-conformant program state, the process is terminated.

4.2 Instruction Validity

ROPStop first verifies that the program counter points to a valid instruction
in the original program, e.g., that instr(pc) ∈ IP . This inexpensive step ensures
that an attack may not make use of unaligned instructions. We identify the basic

12 E.R. Jacobson et al.

block in the CFG that contains this address and disassemble the block using the
InstructionAPI instruction disassembly library [38]. If we reach an instruction
that begins at the address in the program counter, we conclude the current
instruction is valid. Otherwise, we conclude the instruction is invalid.

4.3 Callstack Validity

Next, ROPStop gathers a full stackwalk using the StackwalkerAPI library [41].
A full stackwalk must be gathered at each system call to ensure that no malicious
stack modifications have occurred since the last validity check; this step must
be completed even if two system calls occur within the same function or a single
loop. ROPStop uses StackwalkerAPI to walk the stack one frame at a time and
validate each frame before continuing the stackwalk. StackwalkerAPI represents
stack frames as pairs (r, sp), where r is a location in the program and sp is
the value of the stack pointer in that location. Given an input frame (ri, spi),
StackwalkerAPI calculates the expected previous frame (ri−1, si−1).

Given a valid stack frame sj and an expected previous frame sj−1 from Stack-
walkerAPI, we validate it as follows. We verify the height of the stack frame
sj by validating the return address of sj−1, rj−1. We define a return address to
be valid if the instruction at this address is immediately preceded by a call in-
struction; this definition is also used by the ROPGuard tool [24]. ROPStop uses
InstructionAPI to locate the instruction prior to the return address and identify
its type. If sj−1’s return address is valid, we conclude that the height of sj is
valid, e.g., that height(sj) ∈ Heights(instr(sj)).

This validation allows ROPStop to verify the second necessary condition for
a valid stack frame: that there exists a valid control flow transfer between the
caller (sj−1) and the current, callee frame (sj). We check the CFG constructed
by ParseAPI to verify that there is a valid call edge from the caller to the callee;
this edge must originate at the call instruction found in the previous step. This
verifies that (proc(sj−1), proc(sj), instr(sj−1)) ∈ EP .

Performing a stackwalk is not always an easy task. The debugging information
that describes stack frames (e.g., DWARF call frame information) is frequently
missing; for example, commercial binaries frequently omit this information due
to concerns about reverse engineering. Even if this debug information is present
it is frequently incomplete or incorrect; for example, compilers often omit stack-
walking information for automatically generated code.

In light of these challenges, we extended StackwalkerAPI to use dataflow
analysis to identify stack heights. This analysis begins at the entry to a function
and tracks the effects of all instructions that modify the stack heights; the result
is the set of possible stack heights for each instruction in the function. This robust
analysis enables an accurate stackwalk in the absence of debugging information.

If StackwalkerAPI reaches the bottom of the stack and does not encounter an
invalid stack frame, then we conclude that the callstack is valid. Otherwise, we
have found non-conformant program state, and the process is terminated.

Detecting Code Reuse Attacks 13

5 Evaluation

ROPStop provides protection against code reuse attacks while identifying no
false positives. We verified these characteristics with the following experiments.
First, we tested ROPStop against code reuse attacks, as well as a conventional
stack smashing attack, and show that ROPStop detects each of these attacks.
Second, we tested ROPStop against a set of conventional binaries, and show that
ROPStop results in no false positives while imposing overhead of only 5.3% on
SPEC benchmarks and 6.3% on an Apache HTTP Server.

All evaluation was conducted on a 2.27GHz quad-core Intel Xeon with 6GB
RAM, running RHEL Server 6.3 (kernel 2.6.32). All exploits were run inside
VirtualBox 4.2.0 virtual machines, running Debian 5.0.10 (2.6.32) or Ubuntu
10.04 (2.6.26); see Table 1. SPEC and Apache were run directly on the host.

Table 1. Details about each exploit and results for ROPStop’s detection of the attack.
All attacks were detected because of invalid stack frame heights; the exploit character-
istic that lead to the observed invalid program state is also provided.

Name OS Exploit Source Detected Why Invalid

17286a (ROP) Ubuntu 10.04 sickness [50] ✓ Overwritten return address
17286b (ROP) Ubuntu 10.04 sickness [50] ✓ Overwritten return address
Rsync (ROP) Debian 5.0.10 Schwartz et al. [47] ✓ Overwritten return address
Bletsch (JOP) Debian 5.0.10 Bletsch et al. [7] ✓ Gadget executing
Stack-smash Debian 5.0.10 Aleph One [3] ✓ Overwritten return address

We began by testing ROPStop against known attacks; we summarize each
attack in Table 1. The 17286 ROP exploits are from http://www.exploit-db.com.
Rsync is a ROP exploit generated by the Q tool [47]. We acquired the code
necessary for this exploit from the authors; additional exploits from this work
were unavailable. Bletsch is a JOP attack [7]. Finally, we include a canonical
buffer-overflow attack, Stack-smash, to demonstrate ROPStop’s ability to detect
these attacks also. We used information provided in the original documentation
to create the vulnerable program as well as the input necessary for each exploit.

The results of testing ROPStop against these attacks are shown in Table 1.
We were successful in detecting each attack. In each case, callstack verification
failed; the height of a stack frame was found to be invalid because the return
address in the expected caller frame did not follow a call instruction.

Next, we used the SPEC CPU2006 benchmark suite and an Apache HTTP
Server (version 2.4.6) [5] to provide a control group of conventional binaries.
We applied ROPStop to the execution of these binaries to both detect any
false positives and determine how much overhead ROPStop incurs. We selected
SPEC because the execution of each benchmark is well understood and as CPU
intensive programs, any overhead imposed by ROPStop would not be hidden by
I/O. Each benchmark was run three times with the reference inputs; we report
the mean of these runs. We measured end-to-end times, which includes the time
required to generate our model as well as the runtime of the program.

ROPStop generated no false positives when run on the SPEC CPU2006 bench-
mark suite. The overhead imposed by ROPStop is shown in Figure 2; on average,

14 E.R. Jacobson et al.

p
e
rl
b
e
n
ch

b
z
ip
2

b
w
a
v
e
s

g
a
m
e
ss

m
c
f

m
il
c

z
e
u
sm

p

g
ro

m
a
c
s

c
a
c
tu

sA
D
M

le
sl
ie
3
d

n
a
m
d

g
o
b
m
k

so
p
le
x

p
o
v
ra
y

h
m
m
e
r

sj
e
n
g

g
e
m
sF

D
T
D

li
b
q
u
a
n
tu

m

h
2
6
4
re
f

to
n
to

lb
m

o
m
n
e
tp

p

a
st
a
r

w
rf

sp
h
in
x
3

m
e
a
n

0%

10%

20%

Fig. 2. Overhead results for SPEC CPU2006 benchmarks under ROPStop; mean rep-
resents the geometric mean of all overhead values. We omit four benchmarks, gcc,
calculix, dealII, xalancbmk; we were unable to successfully run these unmonitored.

ROPStop imposes 5.3% overhead. In most cases ROPStop imposes under 3%
overhead; our highest overhead is 19.1% for tonto.

Table 2. Full results for SPEC CPU2006 benchmarks under ROPStop. The system call
rate is reported as system calls per second based on unmonitored runtimes; components
of overhead are reported as percentages of total overhead imposed (summing to 100%).

Overhead Breakdown

Benchmark System Call Rate % Overhead % Instruction % Callstack % Context
(calls/second) Imposed Validity Validity Switching

perlbench 167.8 9.6 0.2 50.7 49.1
bzip2 2.0 0.8 0.0 43.8 56.2
bwaves 3.3 1.4 0.0 31.7 68.2
gamess 29.5 2.4 0.1 59.0 40.9
mcf 3.4 1.9 0.0 51.4 48.5
milc 25.5 5.7 0.1 23.5 76.4
zeusmp 0.2 0.7 0.0 54.2 45.7
gromacs 1.5 0.6 0.0 45.1 54.9
cactusADM 7.6 1.0 0.1 52.0 47.9
leslie3d 31.4 9.2 0.1 14.2 85.7
namd 3.1 0.9 0.0 61.6 38.4
gobmk 14.0 2.2 0.1 43.6 56.4
soplex 241.5 18.1 0.2 50.8 49.1
povray 156.2 18.1 0.1 53.3 46.6
hmmer 18.6 2.6 0.1 38.8 61.1
sjeng 4.8 1.3 0.0 40.5 59.5
GemsFDTD 88.7 7.3 0.2 40.9 59.0
libquantum 0.3 0.7 0.0 50.2 49.8
h264ref 5.1 1.3 0.0 28.9 71.0
tonto 119.6 19.1 0.1 41.2 58.7
lbm 1.4 3.4 0.0 15.5 84.5
omnetpp 3.7 8.8 0.0 12.7 87.3
astar 7.2 1.3 0.1 56.7 43.3
wrf 53.2 15.7 0.0 13.4 86.6
sphinx3 18.6 2.4 0.1 38.1 61.8

The overhead imposed by ROPStop is dependent on the frequency of system
calls as well as the height of the stack. ROPStop is a separate process, rather than
in the same address space as the monitored application. Validating state at each
system call requires at least two context switches; these context switches are more
expensive than the validation checks ROPStop performs. Thus, benchmarks that
make frequent use of system calls or, to a lesser extent, have deep call stacks,

Detecting Code Reuse Attacks 15

suffer higher overhead. We report the breakdown of this overhead in Table 2.
The SPEC benchmarks vary greatly in the number of invoked system calls. The
average number of system calls is 23,635; zeusmp invokes only 140, while tonto

invokes 153,890 system calls. We omit four benchmarks, gcc, calculix, dealII,
and xalancbmk, because we were unable to run them unmonitored; we expect
these to have similar performance to our reported numbers.

We used the ApacheBench tool [4] to measure the performance of the Apache
server while being protected by ROPStop. We ran ApacheBench with various to-
tal numbers of requests to a local, static page; the number of concurrent requests
was always 100. Each request size was run twenty times; we report the mean of
these runs. For each run, we started the server, attached ROPStop, and then
ran ApacheBench. We report numbers recorded by ApacheBench, rather than
end-to-end results, because web servers are commonly long-running applications;
however, model generation times were similar to those for SPEC. ROPStop gen-
erated no false positives when run on the Apache server. The overhead imposed
is shown in Figure 3; on average, ROPStop imposes 6.3% overhead. The Apache
server made between approximately 3,000 and 60,000 system calls for the small-
est and largest total number of requests, respectively.

1
0
0
0
0

2
0
0
0
0

3
0
0
0
0

4
0
0
0
0

5
0
0
0
0

6
0
0
0
0

7
0
0
0
0

8
0
0
0
0

9
0
0
0
0

1
0
0
0
0
0

1
1
0
0
0
0

1
2
0
0
0
0

1
3
0
0
0
0

1
4
0
0
0
0

1
5
0
0
0
0

1
6
0
0
0
0

1
7
0
0
0
0

1
8
0
0
0
0

1
9
0
0
0
0

2
0
0
0
0
0

m
e
a
n

0%

10%

20%

30%

Total Number of Requests

Fig. 3. Overhead results for an Apache HTTPD web server run under ROPStop, mea-
sured using ApacheBench; mean represents the geometric mean of all overhead values.

6 Conclusion

We have presented a systematic approach for detecting code reuse attacks. In
contrast to current techniques, which rely on exploit characteristics that may
not be intrinsic to the class of attacks, our approach is based on first princi-
ples. We defined a model of conformant program execution; by verifying the
program counter and callstack, we were able to detect code reuse attacks, even
as they continued to evolve. To provide an efficient and adoptable solution, we
also defined observed conformant program execution, which provided the same
guarantees while only verifying program conformance at system calls. Finally,
we built a tool, ROPStop, that uses our model of observed conformant program
execution to detect code reuse attacks. Our results show that ROPStop is ca-
pable of accurately detecting real code reuse attacks. Further, when tested on a
set of modern applications, ROPStop produced no false positives and incurred
only 5.3% overhead on SPEC CPU2006 and 6.3% on an Apache HTTP Server.

16 E.R. Jacobson et al.

Acknowledgments. This work is supported in part by Department of En-
ergy grants DE-SC0003922 and DE-SC0002154; National Science Foundation
Cyber Infrastructure grants OCI-1032341, OCI-1032732, and OCI-1127210; and
Department of Homeland Security under AFRL Contract FA8750-12-2-0289.

References

1. Abadi, M., Budiu, M., Erlingsson, U., Ligatti, J.: Control-flow integrity principles,
implementations, and applications. ACM Trans. Info. & Systems Security (TIS-
SEC) 13, 4:1–4:40 (2009)

2. Akritidis, P., Cadar, C., Raiciu, C., Costa, M., Castro, M.: Preventing Memory
Error Exploits with WIT. In: IEEE Symposium on Security and Privacy, Oakland,
CA (May 2008)

3. Aleph One: Smashing the stack for fun and profit. Phrack Magazine 7(49), 14–16
(1996)

4. Apache Software Foundation: ab - Apache HTTP server benchmarking tool (July
2013), http://httpd.apache.org/docs/2.2/programs/ab.html

5. Apache Software Foundation: Apache HTTP Server Project (July 2013),
http://www.apache.org

6. Bletsch, T., Jiang, X., Freeh, V.: Mitigating Code-Reuse Attacks with Control-
flow Locking. In: Annual Computer Security Applications Conference (ACSAC),
Orlando, FL (December 2011)

7. Bletsch, T., Jiang, X., Freeh, V.W., Liang, Z.: Jump-Oriented Programming: A
New Class of Code-Reuse Attack. In: ASIACCS, Hong Kong, China (March 2011)

8. Buchanan, E., Roemer, R., Shacham, H., Savage, S.: When Good Instructions Go
Bad: Generalizing Return-Oriented Programming to RISC. In: ACM Conference on
Computer and Communications Security (CCS), Alexandria, VA (October 2008)

9. Checkoway, S., Davi, L., Dmitrienko, A., Sadeghi, A.R., Shacham, H., Winandy,
M.: Return-Oriented Programming without Returns. In: ACM Conference on Com-
puter and Communications Security (CCS), Chicago, IL (October 2010)

10. Checkoway, S., Feldman, A.J., Kantor, B., Halderman, J.A., Felten, E.W.,
Shacham, H.: Can DREs Provide Long-Lasting Security? The Case of Return-
Oriented Programming and the AVC Advantage. In: EVT/WOTE, Montreal,
Canada (August 2009)

11. Chen, P., Xiao, H., Shen, X., Yin, X., Mao, B., Xie, L.: DROP: Detecting Return-
Oriented Programming Malicious Code. In: Prakash, A., Sen Gupta, I. (eds.) ICISS
2009. LNCS, vol. 5905, pp. 163–177. Springer, Heidelberg (2009)

12. Chen, P., Xing, X., Han, H., Mao, B., Xie, L.: Efficient Detection of the Return-
Oriented Programming Malicious Code. In: Jha, S., Mathuria, A. (eds.) ICISS
2010. LNCS, vol. 6503, pp. 140–155. Springer, Heidelberg (2010)

13. Chen, P., Xing, X., Mao, B., Xie, L., Shen, X., Yin, X.: Automatic construction
of jump-oriented programming shellcode (on the x86). In: ASIACCS, Hong Kong,
China (March 2011)

14. Chen, S., Xu, J., Sezer, E.C., Gauriar, P., Iyer, R.K.: Non-control-data attacks are
realistic threats. In: USENIX Security Symposium, Baltimore, MD (July 2005)

15. Cifuentes, C., Van Emmerik, M.: UQBT: Adaptable Binary Translation at Low
Cost. Computer 33(3), 60–66 (2000)

16. Cowan, C., Pu, C., Maier, D., Walpole, J., Bakke, P., Beattie, S., Grier, A., Wa-
gle, P., Zhang, Q.: StackGuard: Automatic Adaptive Detection and Prevention
of Buffer-Overflow Attacks. In: USENIX Security Symposium, San Antonio, TX
(January 1998)

http://httpd.apache.org/docs/2.2/programs/ab.html
http://www.apache.org

Detecting Code Reuse Attacks 17

17. Davi, L., Dmitrienko, A., Nurnberger, S., Sadeghi, A.R.: Gadge Me If You Can:
Secure and Efficient Ad-hoc Instruction-Level Randomization for x86 and ARM.
In: ASIACCS, Hangzhou, China (May 2013)

18. Davi, L., Sadeghi, A.R., Winandy, M.: Dynamic integrity measurement and at-
testation: towards defense against return-oriented programming attacks. In: ACM
Workshop on Scalable Trusted Computing (STC), Chicago, IL (November 2009)

19. Davi, L., Sadeghi, A.R., Winandy, M.: ROPdefender: A Detection Tool to Defend
Against Return-Oriented Programming Attacks. In: ASIACCS, Hong Kong, China
(March 2011)

20. Demay, J.C., Majorczyk, F., Totel, E., Tronel, F.: Detecting illegal system calls
using a data-oriented detection model. In: International Information Security Con-
ference (SEC), Lucerne, Switzerland (June 2011)

21. Dullien, T., Kornau, T., Weinman, R.P.: A framework for automated architecture-
independent gadget search. In: USENIX Workshop on Offensive Technologies
(WOOT), Washington, D.C. (August 2010)

22. Feng, H.H., Kolesnikov, O.M., Fogla, P., Lee, W., Gong, W.: Anomaly Detection
Using Call Stack Information. In: IEEE Symposium on Security and Privacy, Oak-
land, CA (May 2003)

23. Francillon, A., Perito, D., Castelluccia, C.: Defending embedded systems against
control flow attacks. In: ACM Workshop on Secure Execution of Untrusted Code
(SecuCode), Chicago, IL (November 2009)

24. Fratric, I.: ropguard (2012), http://code.google.com/p/ropguard/
25. Gao, D., Reiter, M.K., Song, D.: Gray-box extraction of execution graphs for

anomaly detection. In: ACM Conference on Computer and Communications Secu-
rity (CCS), Washington, D.C. (October 2004)

26. Giffin, J.T., Jha, S., Miller, B.P.: Automated Discovery of Mimicry Attacks. In:
Zamboni, D., Kruegel, C. (eds.) RAID 2006. LNCS, vol. 4219, pp. 41–60. Springer,
Heidelberg (2006)

27. Harris, L.C., Miller, B.P.: Practical Analysis for Stripped Binary Code. ACM
SIGARCH Computer Architecture News 33(5), 63–68 (2005)

28. Hiser, J., Nguyen-Tuong, A., Co, M., Hall, M., Davidson, J.W.: ILR: Where’d My
Gadgets Go? In: IEEE Symposium on Security and Privacy, San Francisco, CA
(May 2012)

29. Huang, Z., Zheng, T., Liu, J.: A Dynamic Detective Method against ROP Attack on
ARM Platform. In: International Workshop on Software Engineering for Embedded
Systems (SEES), Zurich, Switzerland (June 2012)

30. Huang, Z., Zheng, T., Shi, Y., Li, A.: A Dynamic Detection Method against ROP
and JOP. In: International Conference on Systems and Informatics, Yantai, China
(May 2012)

31. Kayaalp, M., Ozsoy, M., Abu-Ghazaleh, N., Ponomarev, D.: Branch Regulation:
Low-Overhead Protection from Code Reuse Attacks. In: International Symposium
on Computer Architecture (ISCA), Portland, OR (June 2012)

32. Kemerlis, V.P., Portokalidis, G., Keromytis, A.: KGuard: Lighweight Kernel Pro-
tection against Return-to-user Attacks. In: USENIX Security Symposium, Belle-
vue, WA (August 2012)

33. Kruegel, C., Kirda, E., Mutz, D., Robertson, W., Vigna, G.: Automating mimicry
attacks using static binary analysis. In: USENIX Security Symposium, Baltimore,
MD (July 2005)

34. Li, J., Wang, Z., Jiang, X., Grace, M., Bahram, S.: Defeating Return-Oriented
Rootkits with “Return-Less” Kernels. In: European Conference on Computer Sys-
tems (EuroSys), Paris, France (April 2010)

http://code.google.com/p/ropguard/

18 E.R. Jacobson et al.

35. Onarlioglu, K., Bilge, L., Lanzi, A., Balzarotti, D., Kirda, E.: G-Free: Defeating
Return-Oriented Programming Through Gadget-less Binaries. In: Annual Com-
puter Security Applications Conference (ACSAC), Austin, TX (December 2010)

36. Pappas, V., Polychronakis, M., Keromytis, A.D.: Smashing the Gadgets: Hinder-
ing Return-Oriented Programming Using In-Place Code Randomization. In: IEEE
Symposium on Security and Privacy, San Francisco, CA (May 2012)

37. Paradyn Project: Dyninst (2013), http://www.dyninst.org
38. Paradyn Project: InstructionAPI (2013), http://www.dyninst.org
39. Paradyn Project: ParseAPI (2013), http://www.dyninst.org
40. Paradyn Project: ProcControlAPI (2013), http://www.dyninst.org
41. Paradyn Project: StackwalkerAPI (2013), http://www.dyninst.org
42. Parampalli, C., Sekar, R., Johnson, R.: A practical mimicry attack against powerful

system-call monitors. In: ASIACCS, Tokyo, Japan (March 2008)
43. Polychronakis, M., Keromytis, A.: ROP Payload Detection Using Speculative Code

Execution. In: International Conference on Malicious and Unwanted Software
(MALWARE), Fajardo, Puerto Rico (October 2011)

44. Roemer, R., Buchanan, E., Shacham, H., Savage, S.: Return-Oriented Program-
ming: Systems, Languages, and Applications. ACM Trans. Info. & Systems Secu-
rity (TISSEC) 15(1), 2:1–2:34 (2012)

45. Rosenblum, N., Zhu, X., Miller, B., Hunt, K.: Learning to Analyze Binary Com-
puter Code. In: AAAI, Chicago, IL (2008)

46. Roundy, K.A., Miller, B.P.: Hybrid Analysis and Control of Malware Binaries. In:
Jha, S., Sommer, R., Kreibich, C. (eds.) RAID 2010. LNCS, vol. 6307, pp. 317–338.
Springer, Heidelberg (2010)

47. Schwartz, E.J., Avgerinos, T., Brumley, D.: Q: Exploit Hardening Made Easy. In:
USENIX Security Symposium. San Francisco, CA (August 2011)

48. Sekar, R., Bendre, M., Dhurjati, D., Bollineni, P.: A Fast Automaton-Based Method
for Detecting Anomalous Program Behaviors. In: IEEE Symposium on Security and
Privacy, Oakland, CA (May 2001)

49. Shacham, H.: The geometry of innocent flesh on the bone: return-into-libc without
function calls (on the x86). In: ACM Conference on Computer and Communications
Security (CCS), Alexandria, VA (October 2007)

50. sickness: Linux exploit development part 4 - ASCII armor bypass + return-to-plt
(2011), http://sickness.tor.hu/?p=378

51. Szekeres, L., Payer, M., Wei, T., Song, D.: SoK: Eternal War in Memory. In: IEEE
Symposium on Security and Privacy (May 2013)

52. Theiling, H.: Extracting safe and precise control flow from binaries. In: Conference
on Real-Time Computing Systems and Applications, Washington, D.C. (December
2000)

53. Wartell, R., Mohan, V., Hamlen, K.W., Lin, Z.: Binary Stirring: Self-randomizing
Instruction Addresses of Legacy x86 Binary Code. In: ACM Conference on Com-
puter and Communications Security (CCS), Raleigh, NC (October 2012)

54. Zhang, C., Wei, T., Chen, Z., Duan, L., Szekeres, L., McCamant, S., Song, D., Zou,
W.: Practical Control Flow Integrity & Randomization for Binary Executables. In:
IEEE Symposium on Security and Privacy, San Francisco, CA (May 2013)

55. Zhang, M., Sekar, R.: Control Flow Integrity for COTS Binaries. In: USENIX
Security Symposium, Washington, D.C. (August 2013)

http://www.dyninst.org
http://www.dyninst.org
http://www.dyninst.org
http://www.dyninst.org
http://www.dyninst.org
http://sickness.tor.hu/?p=378

Security@Runtime: A Flexible MDE Approach

to Enforce Fine-grained Security Policies

Yehia Elrakaiby, Moussa Amrani, and Yves Le Traon

University of Luxembourg, 4 Alphonse Weicker L-2721, Luxembourg
{yehia.elrakaiby,moussa.amrani,yves.letraon}@uni.lu

Abstract. In this paper, we present a policy-based approach for au-
tomating the integration of security mechanisms into Java-based business
applications. In particular, we introduce an expressive Domain Specific
modeling Language (Dsl), called Security@Runtime, for the specification
of security configurations of targeted systems. The Security@Runtime
Dsl supports the expression of authorization, obligation and reaction
policies, covering many of the security requirements of modern appli-
cations. Security requirements specified in security configurations are
enforced using an application-independent Policy Enforcement Point
(Pep)- Policy Decision Point (Pdp) architecture, which enables the run-
time update of security requirements. Our work is evaluated using two
systems and its advantages and limitations are discussed.

Keywords: Java Security, Security Policies, Security Domain Specific
Language, Access Control, Obligations.

1 Introduction

Integrating security mechanisms into applications is necessary to ensure data
confidentiality, data integrity and users’ privacy preservation. Security is a cross-
cutting concern affecting most parts of an application and, therefore, decoupling
security requirements from the code implementing system functionalities is desir-
able to achieve code modularity and simplify the correct development of systems
and their maintenance. Previous works primarily focus on the separate specifica-
tion of access control requirements and integration of access control enforcement
mechanisms into applications using either Aspect Oriented Programming (AOP)
[9] [4–8] or using a model-based approach [11–13]. In the former approach, access
control enforcement mechanisms are automatically weaved into the application
at compilation time, whereas in the latter approach, the system and its access
control requirements are abstractly specified using models, from which imple-
mentation code is generated. Neither of these approaches allows for the runtime
updating of security requirements.

The dynamic nature of modern applications and their sophistication requires
however more than just static access control, typically the only security require-
ment covered in existing approaches (see Section 6 for a detailed discussion of

J. Jürjens, F. Piessens, and N. Bielova (Eds.): ESSoS 2014, LNCS 8364, pp. 19–34, 2014.
© Springer International Publishing Switzerland 2014

20 Y. Elrakaiby, M. Amrani, and Y. Le Traon

current approaches and their features). In particular, security requirements typi-
cally reflect regulatory and internal mandates, which are naturally dynamic and
could change with time. Also, many systems today have requirements that go
beyond access control such as usage control [1], which extends traditional access
control by enabling specification of obligations that users must fulfill before,
while or after access, and privacy obligations [3, 2], which dictate duties and
expectations on how users’ personal data should be handled.

In this paper, we propose a Domain Specific modeling Language (Dsl) and
an architecture for securing Java-based business applications to address the
aforementioned issues. The Dsl supports the expression of fine-grained contex-
tual authorization, obligation, sanction and reaction policies, thus covering the
expression of many of the sophisticated security requirements of modern appli-
cations. Security policies specified using the Dsl are enforced into target appli-
cations using an application-independent architecture, which follows the Policy
Enforcement Point (PEP) / Policy Decision Point (PDP) paradigm. The pro-
posed architecture enforces security requirements into target applications in a
non-intrusive manner using Aspect-Oriented Programming (Aop) [9], enabling
a clean separation between the application’s functional and non-functional re-
quirements. Furthermore, the architecture supports the update of security re-
quirements at runtime.

The remainder of the paper is organized as follows. Section 2 describes S@R
(for Security@Runtime), our Dsl for dealing with the identified challenges and
its enforcement architecture. Section 3 illustrates our approach by presenting
a complete application example. Section 4 describes the implementation of our
tool prototype. Section 5 shows performance results of the prototype for two
real-life systems. Section 6 presents related work; and Section 7 concludes the
paper and discusses future work.

2 The Security@Runtime Approach

At the center of our approach is the Security@Runtime (S@R) Dsl, used for the
configuration of the security enforcement mechanisms. This Section starts by
presenting our Pdp/Pep architecture for enforcing S@R security configurations,
then describes each S@R component in detail.

2.1 Architecture Overview

Figure 1 shows the main components of the security enforcement architecture,
namely the (i) Pap, (ii) Pep and (iii) Pdp. The Policy Administration Point
(Pap) allows the specification of a S@R configuration for the Pep and the Pdp.
The Pep monitors the application, using Aop [9] (in our case, AspectJ), and
filters out information that is irrelevant to policy enforcement based on the con-
figuration. Three events are monitored by the Pep: instance creation, instance
field updates and method calls. If an event is relevant to policy management or
enforcement, then the Pep notifies the Pdp to update the effective security pol-
icy accordingly, e.g. activate a new obligation. When an event corresponds to a

Security@Runtime: A Flexible MDE Approach 21

JAVA
RUNTIME

Interception &
Monitoring

Layer

Policy
Representation

Layer

Dynamic
State

Security
Rules

Binding
Rules

Policy
Decision

Logic

PEP

PDP

Policy
State

Security@Runtime
Configuration

PAP

Filtering Layer

Policy-relevant Information

Fig. 1. Architecture Overview

Fig. 2. The S@R Metamodel

method call, the Pdp computes an access decision. If access is granted, then ex-
ecution proceeds; otherwise, different actions are possible: (1) a runtime security
exception is raised with an appropriate message, (2) the system is stopped, or
(3) the method execution is skipped. In our current prototype’s implementation,
a security exception is raised after access denial.

Figure 2 shows the four building blocks of S@R: (1) DynamicState, (2) Dec-
larations, (3) SecurityRules and (4) DynamicMappingRules. The Dynamic State
is a partial representation of the runtime state of the application and is auto-
matically maintained and managed by the Pdp. The other blocks define the
configuration of the security mechanisms and are presented successively in the
following: SecurityRules are introduced in Section 2.2; then Declarations and Dy-
namicMappingRules are described in Section 2.3. A comprehensive example is
given in Section 3 to illustrate the specification of security configurations.

2.2 Security Rules (SR)

A security policy is a set of security rules specifying what subjects, i.e. active
entities in the system, are permitted, prohibited and obliged to do in the system.
A security rule is contextual, i.e. it may apply only under certain conditions. A
security rule includes the following elements:

– An Identifier of the security rule.

22 Y. Elrakaiby, M. Amrani, and Y. Le Traon

Fig. 3. Security Rules

– A Role representing a set of system users or resources (we choose to abstract
resources using roles, similarly to subjects/users, to minimize the number of
basic policy entities).

– An Action representing an interaction between users and resources.
– A Context denoting a set of system state conditions.

Figure 3 shows the metamodel for security rules. Each SecurityRule has a
unique identifier RuleId, a subject and a target role, and an activation context.
The activation context defines the rule’s applicability condition: a rule is active
only if the evaluation of the boolean ContextExpression is true. A security rule is
either a Permission, a Prohibition, or an Obligation and may be either ActionBased
or StateBased. An ActionBased rule specifies that its subject role is permitted,
prohibited or obliged to execute an Action on its target role. A StateBased

rule specifies that its subject role is obliged or prohibited to maintain a required
Context. An Obligation defines a violationContext that specifies under which
conditions the obligation, after its activation, should be considered violated.

A ContextExpression is a boolean expression language constituted of Basic-
Expressions that can be composed with the usual boolean connectives. A Basic-
Expression is either a DefaultContext, a ContextRef, or a Delay. A DefaultContext
is a special context that is always true. A Delay is a context that is true after the
elapse of the time period specified in it. Finally, a ContextExpression can be an
Interval, denoted [lhr, rhs]. An interval context holds since the left-hand side
lhs holds until the right-hand side rhs holds.

2.3 Declarations and Dynamic Security Rules

Security policies are defined on the abstract level on roles, actions and con-
texts, allowing the use of the same policies in different systems. Declarations and
DynamicMappingRules link elements of security rules to target applications by
defining a mapping between these elements and the application classes, instances
and method calls.

Declarations define aliases for the application classes and methods to simplify
referring to them in security rules instead of using fully qualified names. A

Security@Runtime: A Flexible MDE Approach 23

Fig. 4. Dynamic State

Declaration (cf. Fig. 2) is either a ClassDeclaration or an ActionDecla-

ration. A ClassDeclaration provides an alias for one application class and
may optionally specify a list of the Fields of the class that are relevant to the
enforcement of the security policy. This list improves system efficiency: only the
updates of the relevant instance fields will be notified to the Pdp, as opposed to
notifying the Pdp about changes of the value of every field of declared classes (see
implementation details in Section 4). An ActionDeclaration provides an alias
for one of the application methods or for every method in a sequence of (nested)
methods. Declarations indicate which parts of the application are relevant to the
security policy, therefore they are used by the Pep to filter information about
changes in the application state that are being notified to the Pdp.

Dynamic Mapping Rules describe the mapping between the policy enti-
ties (roles, actions and contexts) and the application entities (instances, fields,
methods and their parameters). A RoleRule specifies which instances in the ap-
plication are assigned to which role in the policy. An OperationRule specifies a
correspondence between method calls and policy actions. A ContextRule defines
a policy context as a condition on the application state: the context holds if its
MatchingExpression holds on the application state. In the following, we describe
the representation of the application and policy states (which compose together
the Pdp state) in S@R. Then, we explain how elements of the application state
are mapped to elements of the policy state using dynamic mapping rules.

Application State At runtime, the state of an application consists of the set of
active objects (or instances), the field instance values, and the stack of method
calls. To correctly manage the security policy, e.g. activate contextual obliga-
tions, changes in the application state that are relevant to the enforcement of
the policy need to be monitored. In our architecture, shown in Figure 1, these
changes are monitored by the aspect layer within the Pep, which notifies the
Pdp when a relevant change is detected. Using the Pep’s notifications, the Pdp

maintains a partial representation of the application state. Concretely, this state
takes the form of a set of First-Order Logic (Fol) facts, allowing the specifica-
tion of security policies in Fol. This state is metamodelled in Figure 4 (left): an
InstanceFact represents a class instance; a FieldFact represents an instance field;

24 Y. Elrakaiby, M. Amrani, and Y. Le Traon

Fig. 5. Rule Condition Language

a MethodCallFact, together with ParamFacts, represents a method call. In S@R’s
concrete syntax, these facts are written as follows:

– instance of(i,r): i is an instance of class r.
– field of(i,f,v): v is the value of the field f of the instance i.
– call of(c,m): c is a call of the method m.
– param of(c,p,v): v is the value of parameter p in the method call c.

Two special parameters, this and target, are systematically added to the nor-
mal parameter list of a method call to denote the calling and called instance
respectively.

Policy State is managed by the Pdp based on the application state. A PolicyState
contains security rules that are applicable, or effective at a given time. Effective
security rules are the set of ACTIVE permissions and the set of ACTIVE, FUL-
FILLED or VIOLATED obligations (all values of the State enumeration in Fig. 4).
In S@R’s concrete syntax, a policy state is represented using facts having one of
the following forms:

– permitted(r,s,a,o): rule r authorizes subject s to take action a on o.
– prohibited(r,s,a,o): rule r prohibits s to take a on o.
– obliged(r,s,a,o,t): rule r obliges s to take a on o.
– obliged(r,s,c,o,t): rule r obliges s to maintain c on o.

Dynamic Mapping Rules If the MatchingExpression of a DynamicMappingRule
holds on the application and policy states for some instantiation, i.e. a variable
substitution making the MatchingExpression true, then the DynamicMappingRule
holds for this instantiation. For example, a RoleRule of the form role of(I,

role name) <- instance of(I,class name) assigns an instance x to the role
role name when instance of(x,class name) holds in the current state. Fig-
ure 5 shows the MatchingExpression’s metamodel: it includes a matching expres-
sion for matching a class instance, a field value, a method call, or any logical
combination of these elements. Note that data operators can be used for the
FieldOf and ParamOf expressions. For example, field of(D,age,≤,18)means
that D is any instance whose value for the field age is less or equal than 18.

Security@Runtime: A Flexible MDE Approach 25

Table 1. Security Requirements for Hospital X

R1 A doctor can read the medical files of the patients he’s treating [Access Control]

R2 A doctor should fill and submit a case evaluation report for each of his patients within
one week [Non-persistent Obligation]

R3 A doctor should fill and submit a check-up report when he is assigned a patient within
two days [Persistent Obligation]

R4 If the doctor does not submit the report, then he has to fill and submit a “violation of
duty” report within one week [Sanctions]

R5 Meanwhile, his access to all files are suspended [Reactions]

R6 A doctor has to delete his patients’ files that are private and not vital within two years
[Privacy]

R7 A medical file has to be stored encrypted at most one minute after its creation by its
creator [Confidentiality]

3 Example: The Medical System (MS)

Consider as an example the information system of Hospital X. The hospital needs
to comply with some internal and regulatory mandates governing the activities
of its personnel in order to protect the privacy of patients and guarantee the
confidentiality and integrity of its information system. In Hospital X, a secu-
rity policy should be specified to govern interactions between Doctors, Patients,
Reports and Files, each of these roles being implemented into a simple class in
the application. Table 1 describes this policy informally. The policy specifies one
access control requirement (R1), a non-persistent obligations (R2), i.e. an obli-
gation that may be cancelled after it is activated, persistent obligations (R3),
i.e. an obligation that cannot be cancelled, sanctions (R4) and reactions (R5) to
compensate the violation of obligations, and the obligations R6 and R7 to satisfy
some privacy and confidentiality requirements respectively.

To enforce these requirements, the security officer of Hospital X should define
a security configuration for the information system of Hospital X as follows: (i)
declare the monitored aspects of the information system using Declarations; (ii)
specify how application entities aremapped to policy entities using DynamicMap-
pingRules; and (iii) define the SecurityRules formalizing the regulatory mandates.

Declarations are simply specified by defining aliases for classes and methods
that need to be referenced in other parts of the configuration (dynamic mapping
rules and security rules). The following example creates an alias “doctor” for the
class *.Person.Doctor, declaring its field patients as the only policy relevant field
(when the attribute clause is absent, all fields are considered relevant). Note
that class aliases can then be used directly as role names (cf. Fig. 3). Similarly,
an alias “read” is created for the method *.Server.readFile(String). Finally,
the actions “readServer” and “readFile” are used as aliases for the method calls
appearing in the sequence (denoted by ->) of the method calls readFileServer
followed by readFile.

26 Y. Elrakaiby, M. Amrani, and Y. Le Traon

class alias doctor method id read
class *.Person.Doctor method sig *.Server.readFile(String)
attributes ArrayList<Patient>: method id readServer,readFile

patients method sig *.Server.readFileServer(String)
->*.File.readFile()

Security Rules are defined according to the Security Requirements (cf. Tab. 1).
Here, each requirement is expressed using one security rule. Rule r3 has doctor,
submit and report as its subject, action and target respectively. The rule’s activa-
tion context is an Interval, thus r3 is activated when the context assigned doctor

becomes true, and is never cancelled (because the Interval’s rhs is false). Rule
r2 is non-persistent because its activation context is aBasicExpression: in this case,
the obligation is activated when assigned doctor holds, i.e. when a doctor is as-
signed to some patient, and it is cancelled when the activation context no longer
holds, i.e. if this patient is no longer treated by this doctor.

permission(r1,doctor,read,file, assigned doctor)
action obl(r2,doctor,submit,report,assigned doctor,delay<1:w>)
action obl(r3,doctor,submit,report,[assigned doctor,false],delay<2:d>)
action obl(r4,doctor,submit,viol report,violation r2,delay<1:w>)
prohibition(r5,doctor,read,file,violation r2)
action obl(r6,doctor,delete,file,private & !vital, delay<2:y>)
state obl(r7,doctor,file encrypted,file,file created,delay<1:m>)

Dynamic Mapping Rules are defined as follows. The first mapping rule is
a RoleRule: it says that any instance of the class report whose field type has
the value of ‘violation report’ is assigned to the role of viol report. The
second mapping rule is an OperationRule: it says that if an instance (denoted
here by S) calls the method read method on a file (denoted by F), then the
policy action “read” has subject S and target F (note the use of the special
parameters this and target for the calling/callee instances). The fourth rule
is a ContextRule that specifies that the context private holds for any file F

whose field classification has the value of ‘‘private’’. The ContextRule
violation r2 is different, because it depends on the policy state: violation r2

holds for a doctor D for which r2 is in the VIOLATED state.

role of(R,viol report) ← instance of(R,report) & field of(R,type,’violation report’)

operation(S,read,F) ← call of(read method) & param of(read method,this,S) &
param of(read method,target,F)

operation(S,delete,F) ← call of(delete method) & param of(delete method,this,S) &
param of(delete method,target,F)

hold(, ,F,private) ← instance of(F,file) & field of(F,classification,’private’)

hold(D, , ,violation r2) ← violated(r2,D,submit,report) field of(F,type,’vital’)

hold(D, , ,file created) ← instance of(F,file) & field of(F,creator,D) & instance of(D,doctor)

hold(D, ,P,assigned doctor) ← instance of(D,doctor) &
field of(D,patients,contains,P) & instance of(P,patient)

hold(, ,F,file encrypted) ← instance of(F,file) & field of(F,encrypted,true)

Security@Runtime: A Flexible MDE Approach 27

One could also define the action read differently: an instance S reads F whenever
readServer and ReadFile are called sequentially; then S is matched to the caller
instance of the method aliased to readServer (precisely, *.Server.readFile-
Server(String), as declared before) and F to the target instance for the method
aliased to readFile (declared previously as being *.File.readFile()).

operation(S,read,F) ← call of(read server) & call of(read file) &
param of(read server,this,S) & param of(read file,target,F)

4 Implementation

The architecture described in Fig. 1 is implemented using AspectJ for monitoring
the target application, XSB Prolog [34] for computing access control decisions
and policy management and Java/interProlog [35] for the communication be-
tween the Pep and the Pdp. EmfText [33] is used for parsing S@R’s concrete
syntax and creating models.

4.1 Application Monitoring Layer

Each activity affecting the application state (instance creation, field update
or method call) is monitored using an aspect. When an instance is created,
if its class type is part of the Declarations within the S@R configuration, the
aspect RelevantClassObserver detects the object using a pointcut of the form
execution(*.new (..)), and passes it to the representation layer.

Field value update detection is more sophisticated: pointcuts of the form
set(* *) only works for Java primitive types (strings, integers, booleans and
so on). To monitor changes within the other supported data structures (like
ArrayLists), a specific pointcut is defined to detect the execution of all meth-
ods altering the contents of the data structure (for example, ArrayList.clear
or ArrayList.set). The pointcut below is specifically defined for the class
ArrayList. Currently, our implementation supports fields whose type is a prim-
itive type and unidimensional structures (Vectors, HashSets and ArrayList).
It is however straightforward to support more data structures.

Finally, method calls are intercepted using a pointcut of the form (call(public
* *(..))). This aspect is of type around, i.e. the call is not executed until the
aspect code is executed. This allows verification of the policy state at the Pdp

before allowing the execution of the method.

28 Y. Elrakaiby, M. Amrani, and Y. Le Traon

4.2 Policy Representation Layer

The policy representation layer consists of a recursive algorithm that processes
Java objects and method calls in order to represent them using the facts de-
scribed in Figure 4. For example, consider an instance of the declared class
doctor with a field age of type Integer and another field patients of type
ArrayList of Patient. Class Patient has a single field name of type String.
Suppose there are two patients P1 and P2 in the treated patients list of doctor
X. These objects would be represented as follows:

– instance of(X,doctor) representing the instance,
– field of(X,age,18) if the value of age of X is 18,
– field of(X,patients,Y) where Y is an identifier of the ArrayList of patients,
– field of(Y,e,P1) where P1 is an identifier of the first Patient, this fact denotes

that P1 is an element of the ArrayList of patients,
– field of(Y,e,P2) where P2 is an identifier of the second Patient,
– field of(P1,name,’John’) if the name of the first Patient is John,
– field of(P2,name,’Ben’) if the name of the second Patient is Ben.

A method call is represented using a fact of the form call of(method id) where
method id is the method alias. Methods are processed similarly to class in-
stances. However, param of facts use the parameter position instead of attribute
names: for example, a fact param of(delete method,1,X) means that X is the first
parameter of the method call delete method. Method calls have two additional
parameters, namely the this and target parameters denoting the calling and called
instances of the method call respectively. AspectJ enables an easy identification
of these instances for intercepted method calls.

4.3 The Policy Decision Point (PDP)

The Pdp is a policy engine implemented in Prolog. It computes a decision for
access control requests and manages obligations in the policy according to noti-
fications received from the Pep as follows: for an instance creation notification,
new Prolog facts representing the instance are inserted into the engine’s knowl-
edge base; for a field update notification, old facts specifying the field’s value
are retracted and replaced by new facts specifying the new value; for a method
call notification, new facts corresponding to the call and its parameters’ value
(which works just as for instance fields) are inserted and the authorization policy
is checked. An access control decision is then returned to the Pep and the facts
corresponding to the call are retracted from the engine. After each notification,
the Pdp also updates the state of obligations.

Access Control After a method call is attempted, the call is interpreted by
the Pep. An access is granted if it is permitted and not prohibited, i.e. the
prohibitions are given an implicit priority over permissions for the resolution of
potential conflicts between them. This access control policy evaluation strategy
is specified using Prolog rules as follows:

Security@Runtime: A Flexible MDE Approach 29

Table 2. Obligation Management Rules

Action Conditions

1 assert(obliged(I,S,A,T,[Ca,Cd],Cv,active))

action obligation(I,R,A,Rt,[Ca,Cd],Cv)
instance of(S,R)
instance of(T,Rt)
hold(S,A,T,Ca)

2
retract(obliged(I,S,A,T,[Ca,Cd],Cv,active))
assert(obliged(I,S,A,T,[Ca,Cd],Cv,violated))

obliged(I,S,A,T,[Ca,Cd],Cv,active)
hold(S,A,T,Cv)

3
retract(obliged(I,S,A,T,[Ca,Cd],Cv,active))
assert(obliged(I,S,A,T,[Ca,Cd],Cv,fulfilled))

obliged(I,S,A,T,[Ca,Cd],Cv,active)
operation(S,A,T)

4 retract(obliged(I,S,A,T,[Ca,Cd],Cv,))
obliged(I,S,A,T,[Ca,Cd],Cv,)
hold(S,A,T,Cd)

5
retract(obliged(I,S,Cf,T,[Ca,Cd],Cv,active))
assert(obliged(I,S,Cf,T,[Ca,Cd],Cv,fulfilled))

obliged(I,S,Cf,T,[Ca,Cd],Cv,active)
hold(S, ,T,Cf)

allow operation(S,A,T) ← operation(S,A,T), permitted(,S,A,T), ¬ prohibited(,S,A,T).

permitted(I,S,A,T) ← permission(I,Rs,A,Rt,C), instance of(S,Rs), action(A),
instance of(T,Rt), hold(S,A,T,C).

prohibited(I,S,A,T) ← prohibition(I,Rs,A,Rt,C), instance of(S,Rs), action(A),
instance of(T,Rt), hold(S,A,T,C).

Obligations The Pdp manages the state of obligations by detecting their ac-
tivation, cancellation, fulfillment and violation. We unify the representation of
obligation activation contexts using Intervals: every activation context c is rep-
resented using an interval [c, !c].

An obligation is managed as follows: it is instantiated when its activation
context holds. It is then fulfilled when its required action (context) is detected,
otherwise the obligation is violated if its violation context holds. An obligation is
canceled at any time when its deactivation context holds. Table 2 shows the con-
ditions for the detection of the activation, cancellation, fulfillment and violation
of obligations and the update actions taken by the Pdp when these conditions
are detected. For example, Line 3 specifies that when the state of an obliga-
tion is active, its state is updated to violated when its violation context becomes
true. State obligations (Line 5) are managed similarly, however their fulfillment
is detected when their required context holds.

Support of Quaternary Predicates One advantage of using predicate logic to
represent the application state is that it simplifies the definition of predicates
for the expression of sophisticated state conditions. For example, the rules below
specify the contains operator for data structures like ArrayLists, the less than or
equals operator for numbers and the derivation of violated facts from obligation
facts respectively.

30 Y. Elrakaiby, M. Amrani, and Y. Le Traon

Fig. 6. Performance Results

field of(Id,Name,<=,Val) ← field of(Id,Name,V), number(V), V =< Val.

field of(Id,Name,includes,Val) ← field of(Id,Name,V), field of(V,e,Val).

violated(Id,S,A,O) ← obliged(Id,S,A,O,[Ca,Cd],Cv,violated).

4.4 Policy Update

A runtime update of Security Rules is managed by simply adding (or retracting)
the Security Rules from the policy engine (and their associated facts), i.e. if an
obligation rule is removed then all its activated instances are also removed. When
a new class is added (or removed) to the declarations part of the configuration,
then the instances of this class are added to (or removed from) the knowledge
base of the Pdp as discussed in Section 4.2. Similarly, when an attribute is added
(or removed), then the facts representing it are added (or retracted). A method
call that is declared (undeclared) starts (ceases) to be monitored by the Pep.
To handle these updates to declared classes and attributes, we need to keep a
map of the class instances of the application at the Pep level.

5 Validation

To validate our approach, we considered two use case applications, namely our
MS running example of Section 3, and an Auction Sales Management System
(Asms). The Asms consists of 122 classes, 797 methods and about 11 kLoC.
The Asms implements an Auction system, where users can buy or sell products
online, after joining an auction and placing bids. Users can also post, or read,
comments from the Auction session. In the evaluation, we specifically targeted
performance-related research questions:

– does the tool perform sufficiently well to be used in practice?
– what are the main factors impacting the tool performance?

To answer these questions, we defined a security policy for each example appli-
cation and ran a scenario covering the different policy management operations,

Security@Runtime: A Flexible MDE Approach 31

Table 3. Comparison of S@R with Existing MDS approaches

DM SM CS SC CG

SecureUML[19] UML Profiles OCL AC �
UMLsec[20] UML Profiles × C,IF,AC ×
secureMDD[21] UML Profiles × AC �
ModelSec[31] UML SecML ◦ MC �
SECTET[32] SE-UML Profiles SE-PL AC ◦
XACML[36] × XACML XACML AC,OB ×
S@R UML S@R S@R AC,OB �

AC: Access Control, C: Confidentiality,
IF: Information Flow, OB: Obligations, MC: Multiple Concerns

DM: System Modeling, SM: Security Modeling, CL: Contextual Security
SC: Security Concerns, CG: Code Generation

i.e. obligation activation, violation, access control, etc. We evaluated three fac-
tors: the time necessary to perform policy management operations, to evaluate
an access request, and to update the (obligation) policy state, for different sizes
of the application and policy states (number of activated obligations).

Figure 6 shows the results: policy management operations and access request
evaluations are performed in a few milliseconds, and represent an almost con-
stant overhead. On the other hand, obligation processing time increases with
the number of (activated) obligations in the system: the activated obligations’
contexts have to be verified individually to check whether they are canceled,
violated or fulfilled, after each state update. We are currently investigating ways
to improve this processing time.

6 Discussion and Related Work

Since the seminal contributions of Lodderstedt and Basin with SecureUml [10],
and Jürgens with UmlSec [20] back in 2002, model-based development of secure
systems has been an active research area. In Table 3, we compare several contri-
butions with respect to several dimensions: system (DM) and security modeling
(SM); contextual security (CS); security concerns (SC) (i.e. what kind of security
properties can be expressed); and code generation (CG).

Domain and Security Modeling. Uml is the most common way to de-
fine the target application domain, as shown in the first column of Table 3.
UML-based approaches annotate the business Uml model with their security
requirements. Conceptually, our approach is different since we introduce the
S@R DSL to specify security requirements and their mapping to target systems.
One advantage of our approach is that it cleanly separates security from system

32 Y. Elrakaiby, M. Amrani, and Y. Le Traon

specification making a true separation of concerns, as opposed to the use of OCL

constraints to specify contextual policies when Uml profiles are used. Note that
Xacml does not assume any specific domain modeling language and, therefore,
it does not provide means to systematically integrate security mechanisms for
enforcing Xacml policies in targeted systems.

Expressivity of Security Languages is a major challenge since it is necessary
to cover the specification of many practical security concerns. Many systems to-
day have security requirements that go beyond access control, as recognized by
Basin, Clavel and Egea in [13] where they pointed out the need to add support
for obligations. To the best of our knowledge, S@R is the first Dsl that sup-
ports management and enforcement of both authorizations and obligations. The
specification of obligations is supported in Xacml [36]. However, obligations in
Xacml are syntactic elements without formal semantics. Furthermore, Xacml

does not provide management and enforcement support for obligations.

Violation Monitoring and Policy Runtime Updating. Runtime policy up-
dating and security rule violation monitoring are not, to the best of our knowl-
edge, present in any of the current approaches.

Security Infrastructure. Despite the use of automated transformations in
Mds, it is still difficult to enable full code generation from high-level require-
ments. SecureUml [19] supports the generation of secure systems for two target
architectures (Enterprise JavaBeans and Microsoft DotNet), but the generating
mechanism relies on pre-existing security mechanisms. In Sectet, the infor-
mation relevant for authorizations are specified using the tool’s language, and
transformed into Xacml specifications. In [31], security and business are com-
posed into a model from which Java code is generated. Our approach generates
Prolog code from security policies defined within S@R, whereas the rest (i.e.,
aspects monitoring and policy interpretation) is application-independent.

7 Conclusion

This paper proposes an approach for securing Java-based business applications
using security policies. Our approach cleanly separates between security and
business concerns, allowing the separate development and specification of busi-
ness and security aspects. It also enables the specification of fine-grained contex-
tual permissions and obligations and supports their management, enforcement
and their update at runtime. We have demonstrated the expressiveness of our
security policy language using a comprehensive example and validated our ap-
proach by using it to secure two different systems. We have identified some lim-
itations of our framework, namely its scalability when the number of activated
obligations in the system increases. Therefore, we plan to study optimization
techniques to improve the tool’s performance. We also intend to provide support
for more advanced usage controls and more Java data structures.

Security@Runtime: A Flexible MDE Approach 33

References

1. Sandhu, R., Park, J.: The UCON ABC usage control model. ACM Transactions
on Information and System Security (TISSEC) 7(1), 128–174 (2004)

2. Ni, Q., Bertino, E., Lobo, J.: An obligation model bridging access control policies
and privacy policies. In: SACMAT 2008, p. 133 (2008)

3. Mont, M.: Dealing with privacy obligations in enterprises. In: ISSE 2004 Securing
Electronic Business Processes, pp. 28–30 (2004)

4. Erlingsson, U., Schneider, F.B.: SASI enforcement of security policies. In: NSPW,
pp. 87–95 (2000)

5. Bauer, L., Ligatti, J., Walker, D.: Composing security policies with polymer. ACM
SIGPLAN Notices 40(6), 305 (2005)

6. de Oliveira, A.S., Wang, E.K., Kirchner, C., Kirchner, H.: Weaving rewrite-based
access control policies. In: FMSE, pp. 71–80 (2007)

7. Hamlen, K.W., Jones, M.: Aspect-oriented in-lined reference monitors. In: PLAS,
p. 11 (2008)

8. Hussein, S., Meredith, P., Rolu, G.: Security-policy monitoring and enforcement
with JavaMOP. In: PLAS, pp. 1–11 (2012)

9. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.V., Loingtier,
J.M., Irwin, J.: Aspect-Oriented Programming. In: Akşit, M., Matsuoka, S. (eds.)
ECOOP 1997. LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997)

10. Lodderstedt, T., Basin, D.: SecureUML: A UML-Based Modeling Language for
Model-Driven Security. In: Proceedings of the 5th International Conference on
The Unified Modeling Language, pp. 426–441 (2002)

11. Mouelhi, T., Fleurey, F., Baudry, B., Le Traon, Y.: A model-based framework
for security policy specification, deployment and testing. In: Czarnecki, K., Ober,
I., Bruel, J.-M., Uhl, A., Völter, M. (eds.) MODELS 2008. LNCS, vol. 5301, pp.
537–552. Springer, Heidelberg (2008)

12. Morin, B., Mouelhi, T., Fleurey, F., Le Traon, Y., Barais, O., Jézéquel, J.M.:
Security-driven model-based dynamic adaptation. In: ASE 2010 (2010)

13. Basin, D., Clavel, M., Egea, M.: A decade of model-driven security. In: SACMAT
2011, pp. 1–10 (2011)

14. Basin, D., Clavel, M., Doser, J., Egea, M.: A Metamodel-Based Approach for Ana-
lyzing Security-Design Models. In: Engels, G., Opdyke, B., Schmidt, D.C., Weil, F.
(eds.) MODELS 2007. LNCS, vol. 4735, pp. 420–435. Springer, Heidelberg (2007)

15. May, M., Gunter, C., Lee, I.: Privacy APIs: Access control techniques to analyze
and verify legal privacy policies. In: 19th IEEE Computer Security Foundations
Workshop, CSFW 2006 (2006)

16. Barth, A., Datta, A., Mitchell, J., Nissenbaum, H.: Privacy and contextual in-
tegrity: framework and applications. In: IEEE Symposium on Security and Privacy
(2006)

17. Barth, A., Mitchell, J., Datta, A., Sundaram, S.: Privacy and Utility in Business
Processes. In: 20th IEEE Computer Security Foundations Symposium, pp. 279–294
(2007)

18. Lam, P.E., Mitchell, J.C., Sundaram, S.: A formalization of HIPAA for a medical
messaging system. In: Fischer-Hübner, S., Lambrinoudakis, C., Pernul, G. (eds.)
TrustBus 2009. LNCS, vol. 5695, pp. 73–85. Springer, Heidelberg (2009)

19. Basin, D., Doser, J., Lodderstedt, T.: Model driven security: From UML models
to access control infrastructures. ACM Transactions on Software Engineering and
Methodology (TOSEM) 15(1), 39–91 (2006)

34 Y. Elrakaiby, M. Amrani, and Y. Le Traon

20. Jürjens, J.: UMLsec: Extending UML for secure systems development. In: Jézéquel,
J.-M., Hussmann, H., Cook, S. (eds.) UML 2002. LNCS, vol. 2460, pp. 412–425.
Springer, Heidelberg (2002)

21. Moebius, N., Stenzel, K., Grandy, H., Reif, W.: SecureMDD: a model-driven de-
velopment method for secure smart card applications. In: International Conference
on Availability, Reliability and Security, ARES 2009, pp. 841–846 (March 2009)

22. Cuppens, F., Miège, A.: Modelling contexts in the Or-BAC model. In: ACSAC,
pp. 416–425 (2003)

23. Elrakaiby, Y., Cuppens, F., Cuppens-Boulahia, N.: Formal enforcement and man-
agement of obligation policies. In: Data & Knowledge Engineering, pp. 1–21 (2011)

24. Jajodia, S., Samarati, P., Subrahmanian, V.: A logical language for expressing
authorizations. In: Proceedings of 1997 IEEE Symposium on Security and Privacy,
pp. 31–42 (1997)

25. Kagal, L., Finin, T.: A policy language for a pervasive computing environment.
In: IEEE 4th International Workshop on Policies for Distributed Systems and
Networks, pp. 63–74 (2003)

26. Gosling, J., Joy, B., Steele, G., Bracha, G., Buckley, A.: The Java Language Spec-
ification. Addison-Wesley Longman (2013)

27. Ben-Ghorbel-Talbi, M., Cuppens, F., Cuppens-Boulahia, N., Bouhoula, A.: A del-
egation model for extended RBAC. International Journal of Information Secu-
rity 9(3), 209–236 (2010)

28. Cuppens, F., Cuppens-Boulahia, N., Ghorbel, M.B.: High Level Conflict Manage-
ment Strategies in Advanced Access Control Models. Electronic Notes in Theoret-
ical Computer Science 186, 3–26 (2007)

29. Autrel, F., Cuppens, F., Cuppens-Boulahia, N., Coma, C.: Motorbac 2: a security
policy tool. In: 3rd Conference on Security in Network Architectures and Informa-
tion Systems (SAR-SSI 2008), Loctudy, France, pp. 273–288 (2008)

30. Kateb, D.E., Mouelhi, T., Traon, Y.L., Hwang, J., Xie, T.: Refactoring access
control policies for performance improvement. In: ICPE, pp. 323–334 (2012)

31. Molina, F., Toval, A., Sánchez, O., Garca-Molina, J.: ModelSec: A Genera-
tive Architecture for Model-Driven Security. Journal of Universal Computer Sci-
ence 15(15), 2957–2980 (2009)

32. Breu, R., Popp, G., Alam, M.: Model based development of access policies. Inter-
national Journal on Software Tools for Technology Transfer 9(5-6), 457–470 (2007)

33. emfText, http://www.emftext.org/index.php/EMFText
34. XSB Porlog, http://xsb.sourceforge.net
35. interProlog, http://www.declarativa.com/interprolog
36. Extensible Access Control Markup Language (XACML) version 3.0,

http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-cs-01-en.pdf

http://www.emftext.org/index.php/EMFText
http://xsb.sourceforge.net
http://www.declarativa.com/interprolog
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-cs-01-en.pdf

Idea: Towards a Vision of Engineering Controlled
Interaction Execution for Information Services�

Joachim Biskup and Cornelia Tadros

Fakultät für Informatik, Technische Universität Dortmund, Germany
{joachim.biskup,cornelia.tadros}@cs.tu-dortmund.de

Abstract. To protect an agent’s own knowledge or belief against
unwanted information inferences by cooperating agents, Controlled
Interaction Execution offers a variety of control methods to confine the in-
formation content of outgoing interaction data according to agent-specific
confidentiality policies, assumptions and reaction specifications. Based on
preliminary experiences with a prototype implementation as a frontend to
a relational DBMS, in this article we outline the architectural design and
the parameterized construction of specific tasks to uniformly shield all in-
formation services in need of confinement, potentially comprising query
answering, update processing with refreshments, belief revision, data pub-
lishing and data mining. Refraining from any intervention at the cooper-
ating agents, which are also seen as intelligently attacking the defending
agent’s own interest in preserving confidentiality, the engineering solely
aims at self-confinement when releasing information.

Keywords: agent, a priori knowledge, attacker assumption, belief, be-
lief revision, confidentiality policy, constraint, censor, data mining, data
publishing, formal semantics, frontend, group, inference control, inference-
usability confinement, information engineering, information flow, infor-
mation integration, invariant, logic, lying, overestimation, permission,
possibilistic secrecy, prohibition, query answering, reasoning, refreshment,
refusal, simulation, state, theorem-proving, update processing.

1 Introduction

People are communicating by using their computing devices – profiting from
external facilities while purposely either sharing or protecting own informational
resources. We consider the people’s devices as a kind of intelligent agents which
are interacting within a multiagent system. Accordingly, while being designed to
cooperatively share its data with another agent in general, each agent also has
to keep its own sensitive information confidential. In this report, we outline a
specific approach to engineer such a “defending” agent, for the sake of supporting
privacy as informational self-determination and protecting business assets.
� This work has been supported by the Deutsche Forschungsgemeinschaft (German Re-

search Council) under grant SFB 876/A5 within the framework of the Collaborative
Research Center “Providing Information by Resource-Constrained Data Analysis”.

J. Jürjens, F. Piessens, and N. Bielova (Eds.): ESSoS 2014, LNCS 8364, pp. 35–44, 2014.
c© Springer International Publishing Switzerland 2014

36 J. Biskup and C. Tadros

Our approach can be motivated by the case of Bob living with his family and
running his own business, gathering any information he needs and maintaining
the plans he pursues by means of his computing devices. This includes XML
documents with personal details about him and his children, their electronic
health records, a relational database about commercial offers and customers,
and an AI system for assembling and evaluating ideas on further projects.

Bob is cooperating with a large variety of relatives, friends, business partners,
officials and so on. Communicating with any of them, according to the agreed
purposes behind the specific contact, he is willing to discretionarily share some
pieces of information and selected details of his plans. At the same time, however,
depending on the social relationship and guided by personal preferences, Bob
might want each of the persons involved not to learn parts of the information
and plans that appear to be sensitive regarding the specific situation.

So, Bob is facing the challenge to uniformly and consistently shield the infor-
mation services he offers to others, balancing his and their interests in availability
and integrity of data to be shared with his potentially conflicting own interest
of context-specific confidentiality. Accordingly, he would like to employ a single
control mechanism to confine the outgoing information flow from all his com-
puting devices according to his personal or business needs and the nature of the
social contact to the recipient envisioned. To be sure, this mechanism should not
at all be invasive to the computing devices of the others, but only regulate the
functionality of his own devices.

In other words, Bob seeks for installing and parameterizing a personal intel-
ligent computing agent that securely mediates the interactions with the devices
of the others such that the specifically expressed interests are actually automat-
ically enforced, in each single interaction and over the time as well.

More abstractly, we aim at constructing a defending agent, i.e., an intelligent
computing agent that will enable its owner to both conveniently and effectively
deal with formal requirements about the following high-level issues:

– general permission to share data, for the sake of availability: declared as
interface language;

– dedicated prohibition to acquire information, for the sake of confidentiality:
declared as a policy, expressing security constraints/invariants on “released
information”;

– application-oriented quality guarantees to reflect aspects of the “real-world”,
for the sake of integrity: declared as functional constraints/invariants on
own information.

2 From a Required Vision to Available Ideas

Our vision of a defending agent is driven by widespread requirements to en-
able individuals to discretionarily control the sharing of their information with
others, which are treated as cooperation partners on the one hand and neverthe-
less perceived as potential attackers against wanted confidentiality on the other
hand. While the requirements appear to be socially accepted, actually offered

Towards a Vision of Engineering Controlled Interaction Execution 37

XML documents
(personal data)

EHR
(health data)

relational database
(business data)

AI system
(planning data, ...)

common interface
to integrated own
knowledge/belief

.

.

.

.

.

.

 owner

.

.

.

.
.

.

.

.

.

 Bob

interacting agents and their holdersvision of a defending agent

 collusion ?

semantic modelling ?
dynamic adaption?

no side-channels ?

 no direct control ?

cooperation overview ?

 inference control ?

 as potential attackers

 self-confinement ?

confidentiality policy ?

 attacker modelling ?

parametrization ?

specialization ?

administration ?
optimization ?

information integration ?

Fig. 1. The vision and major challenges

IT-systems rarely comply with them, and some people might even consider our
vision to be just a dream, nice to have but impossible to achieve. We deal with
the latter concern in a gradual way, rather than giving a strict yes-no answer.

In fact, in this article we argue for the thesis that our vision is approximately
realizable indeed, by exhibiting an architectural design that exploits or partly is
justified by ideas about actually available technologies. Trying a somehow bold
correspondence, realizing the vision of controlling the release of own information
is comparable to traveling to the moon: having been a dream for a long time, at
a specific stage of scientific development, a concrete top-down plan was possible
based on ideas from various fields. Clearly, just reaching the moon has left many
further issues open, and so will our design be in need of many further features.

Figure 1 illustrates the vision and indicates major challenges. In the following,
we gather most of these challenges into three main groups, and for each group we
identify a basic idea about available technologies to solve the problems involved.

The challenges of inference control according to a confidentiality policy by self-
confinement of the information supplier include the problems of attacker mod-
elling and a complete cooperation overview. As a main idea towards a solution,
we follow the approach of Controlled Interaction Execution, as summarized in Sec-
tion 3. Though this approach is mainly logic-oriented, additional features are ex-
pected to be smoothly integrable, in particular numerical information like outputs
of statistical functions and data mining support and confidence numbers. Attacker
modelling in a large scale and, in particular, establishing an overview about coop-
erations are in need of adapting insight from, e.g., adversarial reasoning [18] and

38 J. Biskup and C. Tadros

normative reasoning [1] about an inaccessible environment which does not provide
complete knowledge about the dissemination of information.

We can further profit from the idea of information engineering [14] to deal
with information integration requiring semantic modelling of diverse sources
including their dynamic adaption. In particular, research on multi-context sys-
tems [13] facilitates the integration of knowledge with heterogeneous logical rep-
resentations such as envisioned in the sketched example scenario. Presumably, an
information owner may employ not only structured or at least semi-structured
information services but also ad-hoc facilities like email conversation led in nat-
ural language. To avoid the resulting opening of side-channels, we would need
additional expertise, e.g., to convert “freely” expressed information into “more
structural” one, as explored in the field of information extraction [21].

Guided by the two ideas sketched above and adapting the respective tech-
nologies, we come up with the architectural design described in Section 4. To
actually build a manageable system we suggest to employ the idea of modern
software development and maintenance, in particular to cope with specialization
and parametrization as well as automatic optimization and administration, as
further exemplified in Section 5. Additional insight can be provided by the field
of multiagent systems [23], in particular for the integration of agent systems with
other technologies, including standards for communication protocols [16].

We willingly accept to exercise no direct control at all on the cooperating
agents and, accordingly, we only indirectly deal with options of collusion among
those agents. These evident shortcomings will remain unsolved.

We intend to complement other approaches to overcome their restrictions
and shortcomings sketched as follows. Access control and encryption applied to
single data items are helpful but in general not sufficient to protect against an
intelligent agent that might combine data received and already available before
and intelligently infer consequences. Usage control is conceptually mandatory in
general, but requires to implant trusted components into the interacting devices,
see, e.g., [20]. Cryptographic multiparty computations are powerful means for
protecting numerically encoded information but in most cases are rather costly
and not applicable for logic-oriented information, see, e.g., [17].

3 Summary of Controlled Interaction Execution

Specifically realizing security automata, see, e.g., [19], for a logic-oriented
view on information services, our own approach of inference-usability con-
finement by Controlled Interaction Execution, CIE, has been summarized
in [3,4]. This approach originated from a seminal proposal of Sicherman/de
Jonge/van de Riet [22] in 1983, which later has been resumed and extended
by Biskup/Bonatti, e.g., [5,7] and then has further been elaborated by Biskup
et al, e.g., [11,8,12,2,9,10]. CIE has been proved to be in accordance with fun-
damental notions of secrecy, as unified by Halpern/O’Neill [15], while adding
dedicated logic-oriented enforcement mechanisms.

Towards a Vision of Engineering Controlled Interaction Execution 39

We briefly summarize the main characteristics of CIE concepts:

– cooperativeness:
• no intervention whatsoever at other agents (seen as potential attackers),
• only self-confinement when releasing own information,
• confidentiality requirements as exceptions from permissions to share data;

– logic-orientation:
• information represented by (sets of) sentences of a suitable logic, coming

along with formal semantics of formulas, to precisely capture notions of
knowledge and belief,

• information acquired either explicitly/directly from communication data
or implicitly/indirectly inferred by intelligent reasoning,

• focus on possibilistic secrecy of a sentence to be kept confidential, roughly
meaning, belief in the possibility of the sentence being not valid from an
attacker’s point of view;

– statefulness:
• rich supported functionality for interaction to share data, including query

answering, update processing with refreshments, belief revision, and data
publishing, potentially as well as related services like, e.g., data mining,

• unlimited interaction sequences,
• keeping track of interaction history and thus state-based reactions;

– modelling of “attacking” agent:
• agent-specific assumptions and agent-specific policy,
• several approaches to attacker-specific reactions on potentially harmful

requests, namely refusal, weakening, lying and combinations thereof,
• simulating an attacking agent’s postulated reasoning about candidates

for reactions on an attacker’s request to determine potential harmfulness,
before deciding how to actually react;

– formal assurances:
• formally proved compliance with confidentiality requirements under

specified assumptions and policies.

In the remainder of this note, we elaborate our vision of a defending agent of the
wanted kind, based on the broad theoretical work on CIE and preliminary expe-
riences with an ongoing prototype implementation for a less ambitious situation,
only requiring a frontend to a single relational DBMS.

4 Architectural Design

As a starting point, we assume that there are one or more existing functional
components for information services – like a local DBMS for a private company,
XML documents for personal and family data, and electronic health records.
Figure 2 then shows the overall design of an agent implementing CIE. That
agent should uniformly shield the functional components as a common control
frontend to confine the outgoing flow of information to each of the cooperating
agents according to the pertinent agent-specific policy and assumptions.

40 J. Biskup and C. Tadros

common interface language

censorn

 own
knowledge/
 belief

functional
constraints/
invariants

information
 servicek

 censor censor

 interfacek
information
 service1

 interface1

prohibitionsm/

 assumptions1

assumptionsm

requests from
other agents

reactions (answers, notifications, ...)
to other agents

 permissions1

permissionsm

se
cu

rit
y

ad
m

in
is

tra
tio

n
la

ng
ua

ge

 selection optimization

censor1

theorem
proving

 . . .

parameters for
security administration

 authentication and access control

 . . .

policymprohibitions1/
policy1

parameters for
information engineering

 i

nf
or

m
at

io
n

en
gi

ne
er

in
g

la
ng

ua
ge desires

infor-

 reactions1

reactionsm
 agent simulation1

agent simulationm

 runtime state1

 runtime statem
inten-

mation
inte-
gration

tions

integrated

Fig. 2. Controlled Interaction Execution uniformly shielding a defending agent’s inte-
grated own knowledge or belief by means of, e.g., n available censors regarding, e.g., k
existing information services offered to, e.g., m currently cooperating agents

As a prerequisite, we need a technology of information system integration,
e.g., [14,13], to treat the existing functional components in a uniform manner:

– embedding each individual interface into a common interface;
– forming the integrated own knowledge/belief – whether explicitly or implic-

itly – , part of which is the target of the policy for prohibitions;
– evaluating an incoming request expressed in the common interface language

in terms of evaluations of subrequests to pertinent information services.

Though highly demanding in its own right, it is indispensable to form a uni-
fied own knowledge/belief to which all security measures should refer, in order
to achieve consistent enforcement of the owner’s interests in confidentiality, in-
dependently of the information services involved and the interactions requested.

Each of the cooperating agents is specifically treated, as discretionarily speci-
fied by the defending agent’s owner acting as security officer by means of context-
specific parameters for the following components: permissions granted to the

Towards a Vision of Engineering Controlled Interaction Execution 41

agent, the confidentiality policy as prohibitions, assumptions about the agent,
and the kind of reactions in case of violating requests. Given these specifications,
the runtime state and the simulation of the cooperating agent are initialized,
and an initial censor is selected to control the reactions to that agent.

The runtime state represents the cooperating agent, in particular to capture
original parameters, possibly their modifications, and past and current requests.
Based on the runtime state, over the time, the component of censor selection
determines the current censor for the agent. Together with the reactions shown
to the agent, the runtime state also determines the simulation of the agent:
basically, this simulation serves to model the cooperating agent’s current belief
about the defending agent’s integrated own knowledge/belief, aiming to ensure
invariantly that the former never contains any part of the latter that the policy
requires to keep confidential.

In fact, the simulation of a cooperating agent(’s belief of the defender’s own
knowledge/belief) is most crucial for an effective self-control as favored by CIE:
though an agent is treated as cooperating in principle, it is also seen as a “curi-
ous attacker” and, as such, it cannot be supposed to frankly tell its belief about
the defender’s knowledge/belief. So, agent modelling by the control component
is the only alternative, and obviously it can only be based on two features: the
assumptions as specified and the requests and reactions having been occurred.
Since the control component has observed the requests and even generated the
reactions, it is completely certain about this feature; however, the assumptions
are inherently uncertain. Accordingly, the parameters for the assumptions and
their representation within the runtime state should be expressive enough to
capture all relevant aspects of many and diverse situations; moreover, expres-
siveness should come along with best achievable orthogonality of dimensions to
enable automatic translation into a runtime state and later uniform processing
for censor selection and even censor optimization as well as agent simulation.

Besides the always postulated attacker’s system awareness according to “no
security by obscurity”, i.e., knowledge of both the functional components and
the confining frontend, the following parameter dimensions are most important:

– the attacker’s configuration awareness : knowledge of specific declarations
(interaction language, policy (security constraints), functional constraints);

– the attacker’s applicable common knowledge: knowledge regarding the ap-
plication, in particular schema declarations;

– the attacker’s specific knowledge: knowledge resulting from other sources etc.;
– the attacker’s specific reasoning: “procedural knowledge” to form beliefs etc.;
– the attacker’s guess of the defender’s hidden parameters (kind of defender’s

functional reasoning etc.).

Notably, in principle not only the defending agent to be implemented is uncertain
about an attacking agent’s belief, but also the attacking agent is uncertain how
it is simulated by the defender, and thus there is mutually recursive uncertainty
to be suitably resolved. Indeed, each particular censor working with a specific
simulation has to be justified by a convincing postulate on the coincidence of
the actual attacker with the defender’s simulation.

42 J. Biskup and C. Tadros

5 Uniformity for Specific Engineering Tasks

Within the design, we will have to treat many specific engineering tasks. As ex-
emplified in the following, for each task we envision to achieve uniformity across
the anticipated variety of situations: conceptually, the situations are captured by
a powerful abstraction which then, by an implementation, is strictly encapsulated
into a single module; further, the selection of a specific situation is enabled by a
powerful parameterization and embodied by a specialization of that module.

Existing information services may considerably vary in the underlying logic,
which, basically, defines the specific semantics. For example, an information ser-
vice might be based on a completeness assumption – enabling reasoning about a
“closed-world” [5,6,12]–, faced with partial or principle incompleteness – restrict-
ing or even disabling reasoning about “negative information” [11,9] –, or equipped
with a concept of preferences – introducing essential differences between certain
knowledge and uncertain belief and requiring non-monotonic reasoning for re-
visions and updates [10]. Given the pertinent parameters for the information
services to be integrated, the totality of information available to the owner is
abstracted into the integrated own knowledge/belief, and querying and antici-
pated manipulations, respectively, are encapsulated by specific modules, which
have appropriate specializations for the potentially occurring variations.

Under each of these variations, a censor basically has to evaluate possible
reactions on a request regarding harmfulness of adding the supplied informa-
tion to the requester’s current belief. This belief is abstracted as the pertinent
agent simulation, and the needed evaluations are encapsulated by a module for
determining harmfulness. Again, this module has appropriate specializations,
which might employ the incorporated theorem prover to reduce the problem of
harmfulness to a suitable entailment problem in the pertinent logic.

The abstraction of an agent simulation permits a large range of actual imple-
mentations. In a simple dynamic case, there is just a logfile containing sentences
reflecting the a priori knowledge and the reactions provided so far [5,6,11]. For
optimization, instead of keeping a logfile an adapted version of the original con-
fidentiality policy might be maintained [2]. In the more advanced context of
non-monotonic belief management, the agent simulation comprises both an ap-
proximation of the own knowledge/belief and skeptical reasoning regarding the
aspects left only approximated [10]. For the static case of data publishing, a pos-
sibly distorted, “inference-free” alternative view on the own knowledge/belief is
generated beforehand and later employed like an agent simulation, for which the
associated censor does not need to perform any further dynamic control [12,9].

6 Experiences, Further Issues, and Concluding Remarks

We are implementing a CIE-prototype [3,4] for a simplified scenario, only shield-
ing a single relational DBMS, Oracle, for somehow restricted interactions. This
prototype provides a uniform treatment of all included interactions for various

Towards a Vision of Engineering Controlled Interaction Execution 43

kinds of cooperating agents and the permissions, prohibitions (policies), assump-
tions and reactions specified for them. For each such a situation, the actual con-
trol is established by a dedicated specialization of a general censor component.

Successful CIE operation needs powerful tools and facilities for the administra-
tion of agent-specific parameters, and (semi-)automatic optimization. In partic-
ular, the initial selection of an appropriate censor instance followed by repeated
reconsiderations appear to be crucial. As expected by theoretical insight, com-
putational complexity and scalability remain a major issue. Accordingly, identi-
fication of parameters leading to feasible cases and their automatic recognition
as part of optimization are further important topics. Our experiences also sug-
gest to sometimes refrain from the principle of minimal distortion, but instead
to look for efficiently computable overestimations of an agent’s simulation.

A main concern is to achieve robustness of the defending agent’s attempt to
simulate the postulated behavior and reasoning of another agent seen as attacker:
what assurances regarding preservation of confidentiality can the defending agent
get if the attacker’s situation actually differs from the defender’s simulation?

There are several further issues whose solutions might have an impact on both
the architectural design and specific tasks. Basically, in each case we would have
to decide whether to include additional control components or only refined pa-
rameters for the already existing components, the latter found to be extremely
worthwhile so far and hoped to be extendable. In the following, we briefly list
selected issues: collusion among cooperating agents has to be made useless by
treating a group of agents like a single agent; possibilistic confidentiality might
be strengthened, for example to k-confidentiality demanding a stronger “negative
belief”, by ensuring the existence of at least k > 0 essentially different counterex-
amples, or to probabilistic secrecy or related notions; we might also weaken our
current notion into a sort of complexity-theoretic secrecy; seen from a broader
perspective, the desires and intentions of a BDI-like agent [23] might influence
the agent-specific parameters, as do normative concepts [1]; as usual, production
of reliable software and its appropriate installation are mandatory, leaving no
options to circumvent the censoring or to exploit side-channels.

Concluding, we advocate the engineering of inference control as a frontend to
existing functional components as a promising step to our vision, emphasizing a
uniform treatment of various situations by means of strict encapsulation of pow-
erful abstractions, expressive parameterization, and the concept of specialization.

References

1. Andrighetto, G., Governatori, G., Noriega, P., van der Torre, L.W.N. (eds.): Nor-
mative Multi-Agent Systems. Dagstuhl Follow-Ups, vol. 4. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik (2013)

2. Biskup, J.: Dynamic policy adaption for inference control of queries to a proposi-
tional information system. Journal of Computer Security 20, 509–546 (2012)

3. Biskup, J.: Inference-usability confinement by maintaining inference-proof views
of an information system. International Journal of Computational Science and
Engineering 7(1), 17–37 (2012)

44 J. Biskup and C. Tadros

4. Biskup, J.: Logic-oriented confidentiality policies for controlled interaction execu-
tion. In: Madaan, A., Kikuchi, S., Bhalla, S. (eds.) DNIS 2013. LNCS, vol. 7813,
pp. 1–22. Springer, Heidelberg (2013)

5. Biskup, J., Bonatti, P.A.: Controlled query evaluation for enforcing confidentiality
in complete information systems. Int. J. Inf. Sec. 3(1), 14–27 (2004)

6. Biskup, J., Bonatti, P.A.: Controlled query evaluation for known policies by com-
bining lying and refusal. Ann. Math. Artif. Intell. 40(1-2), 37–62 (2004)

7. Biskup, J., Bonatti, P.A.: Controlled query evaluation with open queries for a
decidable relational submodel. Ann. Math. Artif. Intell. 50(1-2), 39–77 (2007)

8. Biskup, J., Gogolin, C., Seiler, J., Weibert, T.: Inference-proof view update trans-
actions with forwarded refreshments. Journal of Computer Security 19, 487–529
(2011)

9. Biskup, J., Li, L.: On inference-proof view processing of XML documents. IEEE
Trans. Dependable Sec. Comput. 10(2), 99–113 (2013)

10. Biskup, J., Tadros, C.: Preserving confidentiality while reacting on iterated queries
and belief revisions. Ann. Math. Artif. Intell. (2013), doi:10.1007/s10472-013-9374-6

11. Biskup, J., Weibert, T.: Keeping secrets in incomplete databases. Int. J. Inf.
Sec. 7(3), 199–217 (2008)

12. Biskup, J., Wiese, L.: A sound and complete model-generation procedure for consis-
tent and confidentiality-preserving databases. Theoretical Computer Science 412,
4044–4072 (2011)

13. Brewka, G.: Multi-context systems: Specifying the interaction of knowledge bases
declaratively. In: Krötzsch, M., Straccia, U. (eds.) RR 2012. LNCS, vol. 7497, pp.
1–4. Springer, Heidelberg (2012)

14. Calvanese, D., Giacomo, G.D., Lenzerini, M., Rosati, R.: View-based query answer-
ing in description logics: Semantics and complexity. J. Comput. Syst. Sci. 78(1),
26–46 (2012)

15. Halpern, J.Y., O’Neill, K.R.: Secrecy in multiagent systems. ACM Trans. Inf. Syst.
Secur. 12(1), 5.1–5.47 (2008)

16. Huget, M.-P., Poslad, S.: The Foundation of Intelligent Physical Agents,
http://www.fipa.org

17. Kolesnikov, V., Sadeghi, A.-R., Schneider, T.: A systematic approach to practically
efficient general two-party secure function evaluation protocols and their modular
design. Journal of Computer Security 21(2), 283–315 (2013)

18. Kott, A., McEneaney, W.M. (eds.): Adversarial Reasoning: Computational Ap-
proaches to Reading the Opponent’s Mind. Chapman & Hall/CRC, Boca Raton
(2007)

19. Ligatti, J., Bauer, L., Walker, D.: Run-time enforcement of nonsafety policies. ACM
Trans. Inf. Syst. Secur. 12(3) (2009)

20. Pretschner, A., Hilty, M., Basin, D.A.: Distributed usage control. Commun.
ACM 49(9), 39–44 (2006)

21. Sarawagi, S.: Information extraction. Foundations and Trends in Databases 1(3),
261–377 (2008)

22. Sicherman, G.L., de Jonge, W., van de Riet, R.P.: Answering queries without re-
vealing secrets. ACM Trans. Database Syst. 8(1), 41–59 (1983)

23. Wooldridge, M.J.: An Introduction to MultiAgent Systems, 2nd edn. Wiley, Hobo-
ken (2009)

http://www.fipa.org

Automated Formal Verification

of Application-specific Security Properties

Piergiuseppe Bettassa Copet and Riccardo Sisto

Dipartimento di Automatica e Informatica
Politecnico di Torino, Italy

{piergiuseppe.bettassa,riccardo.sisto}@polito.it

Abstract. In the past, formal verification of security properties of dis-
tributed applications has been mostly targeted to security protocols and
generic security properties, like confidentiality and authenticity.

At ESSOS 2010, Moebius et. al. presented an approach for develop-
ing Java applications with formally verified application-specific security
properties. That method, however, is based on an interactive theorem
prover, which is not automatic and requires considerable expertise. This
paper shows that a similar result can be achieved in a fully automated
way, using a different model-driven approach and state-of-the-art au-
tomated verification tools. The proposed method splits the verification
problem into two independent sub-problems using compositional verifi-
cation techniques and exploits one tool for analyzing the security proto-
col under active attackers and another tool for verifying the application
logic. The same case study that was verified in the previous work is used
here in order to show how the new approach works.

1 Introduction

Formal verification of security properties of distributed applications is attract-
ing researchers’ attention, especially in recent years, because of the increasing
diffusion of applications with important security requirements.

Distributedapplicationswith security requirements generally use cryptographic
protocols to communicate over insecure channels. Sometimes the security proto-
col and the application logic are totally independent: the protocol provides virtual
communication channels with standard security properties (mutual authentica-
tion, confidentiality, data integrity) and the application is developed in a nearly
security-unaware way, security being provided just by application insulation,
which is guaranteedby the fact that the application communicates only over secure
channels. In other cases, however, protocol and application logic are less indepen-
dent. For example, customprotocols can be used in order to guarantee application-
specific properties, and the application logic may interact more strictly with the
protocol in order to achieve the desired security properties. Of course, using an in-
dependent security layer realized by standard protocols (for instance TLS) is pre-
ferred when possible, because of its simplicity and reliability. However, this is not
always possible or convenient, for example because the devices involveddo not have

J. Jürjens, F. Piessens, and N. Bielova (Eds.): ESSoS 2014, LNCS 8364, pp. 45–59, 2014.
c© Springer International Publishing Switzerland 2014

46 P. Bettassa Copet and R. Sisto

enough hardware resources or do not have standard connectivity to the Internet,
but only limited ad-hoc connectivity.

The techniques and tools for automated formal verification developed so far
are mostly targeted to either the analysis of security protocols or the analy-
sis of application code. On the one hand, some tools [1] can formally verify
standard security properties of cryptographic protocols under the presence of
active attackers. However, these tools can analyze only the bare protocol (mes-
sage exchanges and related checks) while they are not adequate to also model
and analyze the application logic that interacts with the protocol, which can
be made of complex programs, without particular constraints. Moreover, gener-
ally these tools cannot deal with application-specific security properties. On the
other hand, tools for the automated formal verification of arbitrary application
source code are available (e.g. software model checkers [2]). In theory these tools
even allow to consider active attackers in the system, but a model of those at-
tackers must be supplied by the user and the inclusion of active attackers makes
verification very complex.

Actually, the main obstacle to extending existing verification techniques to an-
alyze both protocol and application logic together in the face of active attackers
is mainly practical, and is related to the limited scalability of these verification
techniques. In fact, the problem of cryptographic protocol verification is itself
challenging despite the simplicity of such protocols.

A case study of formal verification of application-specific security properties
(i.e. the truth of a predicate involving some variables of the application), tak-
ing into account both the protocol and the application logic together, appeared
recently in literature [3]. In this case study the application is developed with a
model-driven approach and the model is used to generate a formal specification,
which afterwards can be verified by an interactive theorem prover. An important
limitation of this approach is that it is based on interactive theorem proving,
which is not automatic, is very time consuming, and requires a lot of exper-
tise. Moreover, if the application is flawed, interactive theorem proving does not
provide counter examples, which can make error diagnosis and correction very
difficult.

In this paper we show that a simpler approach can be used to achieve a similar
result. In fact, the proposed method is based on verification techniques that are
automated, simpler to use, and that can also provide counter examples when the
properties to be verified do not hold.

The main idea is to combine two already existing and well-known automated
formal verification techniques, theorem proving for cryptographic protocol verifi-
cation andmodel checking for source code verification, according to the principles
of assume-guarantee compositional verification. This approach brings, in addi-
tion to the above mentioned advantages, better scalability, due to the splitting
of the verification problem into simpler sub-problems. The work proposed in
this paper, as well as combining the two mentioned verification techniques, also
aims at automating the entire process of implementing and verifying distributed

Automated Formal Verification of Application-specific Security Properties 47

applications. To our knowledge, at present there are no other proposals with the
same characteristics in literature.

The proposed development approach is based on the principles of model driven
design: it starts by defining a high-level formal model of the communication pro-
tocol, where also the expected security properties of the protocol are formally
specified. An automated formal verification of those properties is performed by
the protocol verifier ProVerif [4], and the Java implementation of the protocol is
automatically generated by the model driven development framework JavaSPI
[5], which guarantees the preservation of the intended security properties. The re-
sulting protocol implementation must then be integrated within the application
logic (client and server), which can be developed in any way (hand written or de-
veloped using other code generation techniques). Then, the application-specific
properties are formulated and verified on the application logic using a Java source
code verifier, such as Java Pathfinder (JPF)[2], but taking the results of the pro-
tocol formal verification into account. This is achieved by replacing the code
that implements the protocol with a stub that enforces the properties already
verified on the protocol model. If compared to a separate and independent use of
the theorem prover and the model checker, the main advantage of the methodol-
ogy proposed here is the reduction of verification complexity, made possible by
leveraging compositional verification in the assume-guarantee reasoning style.

The whole process evolves in a largely automated workflow, which reduces the
probability of introducing errors significantly, and enables quick error diagnosis
(both the tools used for formal verification can provide counter examples, i.e.
the execution traces that violate the intended properties).

The remainder of the paper is organized as follows. Section 2 discusses related
work and Section 3 gives some background about the tools that are exploited
in this work (ProVerif, JavaSPI and Java Pathfinder). Then, Section 4 explains
some new features that have been added to JavaSPI in order to support the
approach proposed in this paper and Section 5 introduces the case study example
and describes how it was developed and verified. Finally, Section 6 concludes.

2 Related Work

In the last decades many automated techniques have been developed for the for-
mal analysis of security protocols, as recently surveyed in Patel et al. [1]. These
techniques analyze high-level abstract models, in order to prove the correctness
of the protocol logic. More recently, some researchers have started working on
techniques that bring automated formal proofs closer to real implementations
of security protocols [6]. Among these are the model-driven development ap-
proaches, like the one exploited in this paper [5].

All the above mentioned techniques are focused on security protocols rather
than on whole applications, and address the generic security properties enforced
by such protocols (e.g. authentication, secrecy and integrity), rather than the
application-specific security properties.

Some papers have addressed the formal verification of security protocols for
specific applications, such as for example electronic commerce, with their related

48 P. Bettassa Copet and R. Sisto

application-specific properties. For example, Bella et al. [7] presented the formal
verification of some application-specific properties of the suite of protocols “Elec-
tronic Secure Transaction”, used for e-commerce. However, this work is substan-
tially different from the one presented here because verification is not automatic
(being based on the interactive theorem prover Isabelle [8] which requires human
assistance), and what is formally verified is only an abstract model of the applica-
tion rather than its final implementation.

Besides the work by Moebius et al. [3] that was already mentioned in the
introduction, and a related publication [9] that presents exactly the same method-
ology but applied to a service-oriented application, some other papers have ad-
dressed the problem of developing distributed applications with formally verified
security properties. A recent paper [10] extends the previous approach by inte-
grating the AVANTSSAR [11] model checker into SecureMDD. As a result, it is
possible to automatically generate a formal specification for the model checker
from a UML model. However, only some application-specific properties can be
verified using AVANTSSAR. For example, differently from the work presented
here, which enables the verification of arbitrary properties, it is not possible to
compare numeric values inside the model checker.

Jürjens [12] proposed a UML-based technique for the specification of dis-
tributed applications and automated formal verification of application-specific
security properties. The technique was applied to the Common Electronic Purse
Specifications regarding payment via smart-card. One of the properties that were
verified is, for example, that the amount of money in the system is every time
the same, that is the total sum of budgets of smart-card holders is always equal
to the sum of the earnings of all merchants. However, this technique provides for-
mal verification of UML models only, whereas a formal link with the application
implementation is missing. Moreover, differently from our approach, verification
is performed in a single step on the whole model, without using compositional
verification.

Gunawan et al. [13] proposed a method to integrate some standard security
mechanisms (for protecting information transfer) into distributed applications
automatically. The paper includes a proof that the security mechanisms are
integrated into the application so as to fulfill some generic properties. However
this approach does not target the verification of application-specific properties.

The idea of using compositional verification to formally verify application-
specific security properties of distributed applications already appeared in Gu-
nawan and Herrmann [14]. In that work, however, formal verification is done by
a general-purpose model checker, without considering active network attackers
and the properties of cryptographic operations.

3 Background

3.1 ProVerif

ProVerif [4] is an automated theorem prover for cryptographic protocols. In
ProVerif, the protocol and the attacker are modeled according to the Dolev-Yao

Automated Formal Verification of Application-specific Security Properties 49

[15] symbolic approach, which substantially means representing data and crypto-
graphic operations symbolically and assuming the attacker has complete control
over public communication channels, thus being able to read, delete, and modify
messages in transit or forge new messages using the knowledge the attacker has
achieved so far. The symbolic representation of data and cryptography entails
that cryptography is assumed to be ideal. For example, an encrypted message
can be decrypted only if the correct decryption key is known. Differently from
model checkers, ProVerif can model and analyze an unbounded number of con-
current sessions of the protocol, thus providing results that hold for any number
of parallel sessions. However, like model checkers, ProVerif can reconstruct a
possible attack trace when it detects a violation of the intended security prop-
erties. ProVerif may report false attacks, that is attacks that in reality are not
possible, but at the same time if a security property is reported as satisfied then
it is true in all cases, so it is necessary to analyze the results carefully when
attacks are reported.

3.2 The JavaSPI Framework

JavaSPI [5] is a framework for modeling, formally verifying and implementing
cryptographic protocols, according to the paradigm of model-driven develop-
ment. Initially, the user defines an abstract formal model of the protocol accord-
ing to the Dolev-Yao modeling approach. This model, being abstract, does not
include implementation details such as, for example, hash algorithms and length
of cryptographic keys. This model can be formally verified by ProVerif in order
to check that it satisfies some security properties. These properties are gener-
ally expressed either as secrecy requirements (the attacker must not be able to
know some data) or as correspondence requirements referred to events specified
in the abstract model. The latter requirements can be used to express authen-
tication or data integrity properties; for example an authentication requirement
could be expressed as terminate(A,B) ⇒ start(B,A), which means that each
time actor A terminates a session of the protocol apparently with B (i.e. event
terminate(A,B) occurs), B has previously started a session of the protocol with
A (i.e. event start(B,A) has occurred).

When the user is satisfied with the model and confident about its logical
correctness, the missing implementation details can be specified and a Java im-
plementation of the protocol can be automatically generated. JavaSPI is very
similar to Spi2Java [16], the main difference being the modeling language: while
with Spi2Java a protocol is modeled directly in the formal specification language
spi-calculus, JavaSPI lets the user develop the protocol model in the form of a
Java application, written with some restrictions on the Java language and mak-
ing use of a custom library (JavaSpiSim), which offers the same expressiveness
as the spi calculus language. In fact, a formal specification of the protocol com-
patible with ProVerif can be generated automatically from the Java code. Using
Java as the modeling language facilitates users who are familiar with object ori-
ented programming and Java. Moreover, this approach lets the user simulate the
execution logic of the protocol by means of a normal Java debugger.

50 P. Bettassa Copet and R. Sisto

Figure 1 shows an excerpt of an abstract model written with JavaSPI. Each
model is composed of a number of processes, each one specified by a Java
class that extends the spiProcess library class. The behavior of a process is
specified by defining the doRun method, which takes as arguments objects be-
longing to classes of the JavaSpiSim library. These classes represent the data
types admitted in a security protocol model and include methods for perform-
ing common operations, such as for example encrypting or decrypting data or
sending or receiving data on channels. The occurrence of an event is specified
by calling the event method which can have any number of arguments (e.g.
event("start",A,B) generates event start(A,B).

The implementation details that are necessary for generating the final imple-
mentation code are specified as Java annotations added to the abstract model.
JavaSPI shares with Spi2Java the same code generation mechanism, which has
been proved to preserve a large class of security properties [17]. This means that
if a security property has been proved to hold on the formal model, then that
property holds on the automatically generated Java implementation too.

3.3 Java Pathfinder

Java Pathfinder [2] (JPF) is a software model checking tool for the Java lan-
guage. Java Pathfinder can directly analyze the bytecode of Java multithreaded
applications, checking the truth of assertions or LTL formulas. Java Pathfinder
consists of a particular Java Virtual Machine (JVM) which executes the byte-
code by exploring all possible execution paths (when nondeterministic choices
are possible in the execution, each one of them is explored by backtracking
execution).

JPF includes several optimizations that automatically reduce the number of
states to be visited (avoiding those whose inspection is redundant) and thus the
complexity of the analysis.

4 The Extended JavaSPI

To achieve the final goal of this work the JavaSPI framework has been extended
in order to enable increased interaction between the generated protocol code and
the application that uses the protocol. With the original JavaSPI, only a sim-
ple interaction mechanism was possible, where the application starts a protocol
session, passing input arguments, and, upon termination of the protocol session,
the application gets the outputs. With the extended JavaSPI version, the appli-
cation can be called back by the protocol code when some events defined in the
model occur. In this way, the application can receive outputs from the protocol
at intermediate stages of a protocol session. The @EventsInterface annotation
enables this new mechanism. When the annotation is present, the code generator
generates a Java interface that contains the methods associated with the events
generated by the process and has the name specified in the annotation. When
a session of the protocol is started by the application, a callback object that

Automated Formal Verification of Application-specific Security Properties 51

public class p_Card extends spiProcess {
...

@EventsInterface("p_Card_Interface")
public void doRun(Channel cTermCard, Nonce passphrase,

Identifier LOAD, Identifier PAY, Identifier TERMAUTH,
Identifier RESAUTH, Identifier TERMLOAD, Identifier TERMPAY,
Identifier RESPAY) throws SpiWrapperSimException{

Message xIn = cTermCard.receive(Message.class);

if(xIn.equals(TERMAUTH)){
Nonce challenge = new Nonce();
Pair<Identifier,Nonce> _w0 = new Pair<Identifier, Nonce>(RESAUTH,challenge);
cTermCard.send(_w0);

Pair<Message,Hashing> _p0 = cTermCard.receive(Pair.class);
Pair<Identifier,Integer> xTermLoad_xValue = (Pair<Identifier, Integer>) _p0.getLeft();
Hashing xHash = _p0.getRight();
Identifier xTermLoad = xTermLoad_xValue.getLeft();
Integer xValue = xTermLoad_xValue.getRight();

if(xTermLoad.equals(TERMLOAD)){
Pair<Identifier,Nonce> _w1 = new Pair<Identifier, Nonce> (LOAD,passphrase);
Pair<Message,Nonce> _w2 = new Pair<Message, Nonce>(_w1,challenge);
Pair<Message,Integer> _w3 = new Pair<Message, Integer>(_w2,xValue);
Hashing h = new Hashing(_w3);

if(h.equals(xHash)){
event("addToBalance",xValue);

...

Fig. 1. Excerpt of a sample model code

implements the generated interface must be passed as argument. This extension
does not affect the validity of the ProVerif model that is generated from JavaSPI,
because the methods called on event occurrence cannot alter the protocol be-
havior as modeled by ProVerif. As detailed in Section 5.6, when performing the
verification of the application code, the protocol code is substituted by stubs
that enforce exactly the event orderings that are made possible by the protocol.

5 The Case Study Application Development

The case study is the development of a smart-card based application that imple-
ments a sort of electronic purse. The application lets the user load credit onto
the smart card and use the loaded credit to get some services. In Moebius et al.
[3], a copy service offered by a University Campus to students is considered,
but which specific service is offered by the application is not relevant. In the
description of the case study, we stick to the copy service example.

The users of the application are some customers and a manager. Each cus-
tomer owns a smart-card where Java code can run, on which credit can be
loaded. The manager provides a set of terminals where customers can go with
their smart-card in order to buy or spend credit. The current balance of credit
is stored on the smart card and is updated at each operation performed. For
simplicity, the example considers one unit of credit corresponding to one copy.

52 P. Bettassa Copet and R. Sisto

Finally, all terminals and all smart-cards store internally the same secret key,
shared by all trusted and original components. The secret keys are assumed to
be not accessible, both in the smart-cards and in the terminals (the smart-card
is assumed to be tamper-proof while the terminal is assumed to be secured so
that only the manager can access its internals for maintenance).

The security goal that is considered in this case study is “the manager does
not lose money”, that is the total amount of issued copies does not exceed
the total credit bought previously by all users during their loading operations
on their smart-cards. This property must be satisfied even in the presence of
potential active attackers who may intercept/alter/delete messages transmitted
between the actors (smart-cards and terminals), or create new ones, following
the definition of attackers of the Dolev-Yao model.

5.1 The Development Workflow

The key idea of the proposed development approach (depicted in Figure 2) is
to divide the application into two distinct parts, to be developed and verified
separately: the protocol, and the application logic.

The protocol is developed according to the JavaSPI model-driven method-
ology. It includes all communication activities and must satisfy some security
properties, specified by the developer.

The application logic can be developed in any way, but it must properly
interact with the protocol, by starting protocol sessions and reacting to events.

The verification process is compositional. The security properties of the pro-
tocol are verified on the abstract protocol model using ProVerif and assuming
a generic scenario with an unbounded number of parallel protocol sessions. The
same properties are guaranteed to hold on the Java code that implements the
protocol by the code generation algorithm. Application-specific security proper-
ties are specified and formally verified using an automated formal verification
tool capable of analyzing Java code directly (Java Pathfinder in our case). When
performing this verification step, it is possible to avoid the explicit modeling of
the protocol part, by substituting it with a stub that describes the security
properties proved by ProVerif. The stub can be automatically generated from
the protocol properties.

The rest of this section details the various steps with reference to the case
study.

5.2 Developing the JavaSPI Abstract Protocol Model

The protocol designed for this application is based on challenge interactions.
Figure 3 shows the interaction between a terminal and a card during the load
operation.

Once a card is plugged into the terminal, the user can enter money into the
terminal, which triggers the start of the load operation. This operation then
proceeds as shown in Figure 3, where value is the amount of credit to be loaded.
The terminal starts the operation generating the addToIssued(value) event and

Automated Formal Verification of Application-specific Security Properties 53

ProVerif

Develop application and
generate stub

JavaSPI model
(with security properties)

ProVerif specification

Properties
satisfied?

NO,
refine model

JavaSPI code generator

YES, generate code

Java Protocol Code

Java PathFinder

Java Application Code
with stub

Properties
satisfied?

Correctly verified
application

YES

NO,
review

JavaSPI translator

Fig. 2. Workflow of the verification process

sending the card the TERMAUTH message. The card responds issuing the chal-
lenge message, composed of the RESAUTH tag and a nonce (a randomly gen-
erated number). The terminal responds to the challenge by sending the last
message, which includes the TERMLOAD tag followed by the value to be loaded
and a hash value, computed on a 4-tuple that includes the shared secret key, the
nonce and the value. Finally, the card re-computes the hash value using its own
copy of the secret key and nonce and the value received in the message, and if the
result matches the received hash value it concludes successfully the operation,
by generating the addToBalance(value) event.

The two events will correspond to operations in the application logic that
record, respectively, the amount of money earned and the amount of credit spent.

The JavaSPI specification of the card behavior during the load operation is
the code excerpt shown in Figure 1.

The JavaSPI model can be simulated in order to check that it behaves as
expected.

This security protocol is expected to satisfy two main security properties.
The first one is that the secret shared by all the original components can-
not be known by an attacker, who has access to the communication channel
between the terminal and the card. The second one is the correspondence of
the protocol events. For the load operation, each time some credit is actu-
ally loaded onto a smart-card (event addToBalance(credit)), the corresponding
amount of money must have been previously entered into one terminal (event

54 P. Bettassa Copet and R. Sisto

TERMAUTH

RESAUTH, nonce

TERMLOAD, value, H(LOAD,sk,nonce,value)

Terminal Card
addToIssued(value)

addToBalance(value)

Fig. 3. The load operation

addToIssued(credit)). Moreover, the correspondence between these events must
be injective, i.e. any addToBalance(credit) event must have its own correspond-
ing addToIssued(credit) event. Injectivity is necessary in order to avoid replay
attacks (i.e. a duplicated load credit message, which would result in an addition
of unpaid credit on the smart-card, must be avoided). A similar property can be
specified for the operation of spending credit.

Note that a tool like ProVerif cannot model integer arithmetic and precedence
comparisons between integers. Hence, it does not allow to specify more complex
properties, e.g. the ones related to the sum of credit loaded or spent, nor it allows
to describe the application logic that processes the events and updates integer
counters.

5.3 Formal Protocol Verification

The model generated in the previous step is automatically converted by JavaSPI
into the input syntax accepted by ProVerif. The resulting code is ready to be
formally analyzed, but first the information on the multiplicity of processes must
be added, in order to indicate that there may be an unbounded number of
instances of processes.

ProVerif succeeds in proving that the intended properties of the protocol hold
on the model. ProVerif takes 15ms to complete the proof on a computer equipped
with Intel Core2 Quad Q9450 running at 2.66GHz, 8 GB of DDR2 RAM and
Ubuntu 12.04 64-bit operating system and ProVerif 1.86p13.

5.4 Protocol Code Generation

After having verified the model with ProVerif, the generation of the Java code
that implements the protocol can take place, by means of the code generator
provided by JavaSPI. The result is a set of Java packages, one for each process
in the model, which implements the behavior defined in the model.

Automated Formal Verification of Application-specific Security Properties 55

5.5 Application Logic Development

The generated protocol code must now be integrated with the application code
that uses it. In our case study, the application code has been kept simple, but it
includes all the fundamental aspects of the application that are necessary for its
verification. More precisely, only the functionalities related to the management
of the credit system have been implemented on the card software.

5.6 Checking the Application Code

The last step of the workflow is the verification of the application-specific
properties using Java Pathfinder. As already anticipated, in order to reduce
the complexity of this verification task, the protocol code generated by JavaSPI
is replaced with a stub that just reproduces any possible behavior of the proto-
col sessions, as seen by the application, without really executing the protocol.
Of course, the behavior of the stub must be constrained so as to satisfy the
security properties that have already been verified by ProVerif. In principle, this
constraint can be enforced in one of two different ways: either the constraint is
enforced when generating the stub, or the stub is generated without any con-
straint but the application-specific security property P to be verified is rewritten
in the following form

C ⇒ P

where C is the constraint (i.e. the property verified by ProVerif). This second
approach is more difficult, because of the difficulty of expressing C. Then, the
first approach (generation of a stub that incorporates the constraints coming
from the properties verified by ProVerif has been selected for our case study).

As the application processes interact with each other only through the proto-
col, having replaced the protocol implementation with the stub makes it possible
to avoid considering the behavior of active attackers any more during the verifi-
cation of the application code. In fact, the behavior of potential active attackers
has already been considered when analyzing the protocol by ProVerif, and it is
already incorporated in the stub behavior itself.

Based on the architecture of the developed application, the only possible in-
teractions between the protocol and the application logic are those that occur
at the start and at the end of each session, as well as at the occurrence of one of
the intermediate events described in the model. For this reason, it is enough for
the stub to include the statements corresponding to these interaction points. All
the other statements that make up the protocol implementation can be safely
omitted.

The stub can be built by creating multiple Java threads, each one playing
the behavior of a single actor in a single protocol session. In order to include
the constraints deriving from the security properties verified by ProVerif, it is
enough to synchronize these threads in such a way that the security properties
proved for the protocol are enforced.

56 P. Bettassa Copet and R. Sisto

In our case study, the stub includes threads that play the role of the terminal
and threads that play the role of the card. The threads that play the role of
the terminal learn the kind of operation and the amount of credit to be loaded
or spent at their startup (this information is an input coming from the user
when the application starts the session). Instead, the threads that play the card
role are ready to perform either a load or a spend operation, which in the real
protocol is selected by the first message received.

If we want to constrain the behavior of these threads so as to enforce the cor-
respondence properties that have been verified by ProVerif, we have to synchro-
nize the events of each card thread with the events of a corresponding terminal
thread. More precisely, before performing a load or spend event, a card thread
has to synchronize with a terminal thread that has just performed a correspond-
ing event. This means that the terminal thread enters a synchronization state
after having generated an event while a card thread enters a synchronization
state before proceeding with a load or spend event.

Model checking does not allow to analyze systems with an unbounded number
of states. For this reason, a necessary condition is that the number of parallel
protocol sessions (i.e. the number of threads in the stub) is kept bounded. In our
case study, this corresponds to having bounded numbers of users and terminals
(as each user has one card, the number of cards equals the number of users),
with the assumption that no more than one session at a time is possible on each
card or on each terminal.

In addition to bounding the number of threads, as with any software model
checking problem, abstractions in the application code may be necessary, in order
to make the number of states finite and reasonably small.

In our case study, the application-specific property to be checked is given
by the fact that in every instant (or for every state reached and analyzed by
the model checker) the value of an integer field (named “balance”, which repre-
sents the difference between the current paid copies and those issued) is always
greater than or equal to zero. This property details the more general property
“the manager does not lose money”. Since the instantaneous value of the balance
field depends on the field additions and subtractions performed by the applica-
tion itself, it is not possible to introduce a layer of abstraction on it. Neverthe-
less, it is still affordable to run the model checker over a reasonable number of
possible cases.

To check if it is satisfied there are two possible ways.
The first one is to use a plugin for Java Pathfinder that enables the verification

of LTL formulas during the state exploration performed by JPF. The plugin 1

used in this case study is not maintained directly by the JPF development team
and is subject to discontinuity of development over the years. Other plugins that
support LTL verification are available. However, the one used in this case study
was chosen because it supports the verification of class field values, and not
only method calls sequences. In this case, the LTL property to verify is specified
through the following annotation:

1 Available at https://bitbucket.org/petercipov/jpf-ltl

https://bitbucket.org/petercipov/jpf-ltl

Automated Formal Verification of Application-specific Security Properties 57

@LTLSpec("[] (it.polito.javaSPI.test.CSJPF.balance>=0)")

where it.polito.javaSPI.test.CSJPF is the class that includes the balance
field. This formula simply means that the balance is always greater than or
equal to zero.

The second way is to introduce assertions within the application code. In this
case, since the example application requires that the “balance” is always non-
negative, it is sufficient to place an “assert balance >= 0” at any point in the
code where the value of the “balance” is set or modified. As this is a private
field, it is very simple to identify the only places where it can be set or modified.

Results show that both methods work well for our case study. No violations
of the specified properties are detected, thus proving, by exhaustive state ex-
ploration, that the properties hold on the application code. Furthermore, the
method that uses assertions occupies less memory (RAM) and takes less time,
compared to the LTL formula verification.

Verification with JPF was performed on a computer equipped with Intel i7-
3770 CPU running at 3.40GHz and 11GiB of DDR3 RAM. The software com-
ponents relied on an Ubuntu 13.04 32-bit operating system, Java HotSpot(TM)
Server VM (Java version 1.7.0 21, build 23.21-b01, mixed mode).

The initial JavaSPI model is composed by 250 lines of Java code and anno-
tations. The size of the ProVerif model is 150 lines, and the size of the protocol
code is about 450 lines of Java code. Both are generated by the JavaSPI gen-
erator starting from the initial model. The final application requires about 200
additional lines of Java code.

Table 1 and Table 2 report the time and memory required for the verification
of the case study example, in the cases of assertions and LTL formula respec-
tively. With the computational resources specified above, in this case it has been
possible to analyze a scenario with a maximum of 4 users and 4 terminals when
the LTL formula verification is performed. Conversely, the verification of the as-
sert conditions requires fewer resources, and can handle efficiently systems with
up to 5 users and 5 terminals. It is important to note, however, that, in general,
assertions are not always enough for expressing application-specific properties.
Therefore, in other case studied the use of LTL formulas can be unavoidable.

Although it is not possible, with a model checker, to formally infer that the
properties hold with any number of users and terminals, the results obtained
with a small number of participants are sufficient to give reasonable confidence
that this is true. In fact, if a distributed application is flawed, usually the error
can be detected even with small numbers of parallel sessions.

Table 1. Java Pathfinder verification time and memory consumption using the assert
construct

Users and terminals
1 2 3 4 5

Time <1s 1s 7s 2m 40s 42m 21s

Memory 61MB 79MB 145MB 275MB 697MB

58 P. Bettassa Copet and R. Sisto

Table 2. Java Pathfinder verification time and memory consumption of the LTL
formula

Users and terminals
1 2 3 4

Time 1s 30s 30m 18s 44h 24m 59s

Memory 61MB 290MB 467MB 952MB

As mentioned above, the characteristics of the application itself have a sig-
nificant effect on the complexity of model checking, so performance can be very
different depending on the application under test.

6 Conclusions

In this paper it has been shown how a distributed application with application-
specific security requirements can be developed using a model-driven approach
that finally yields a formally verified Java implementation. The formal verifi-
cation of the security properties takes into account active attackers and is en-
tirely automated. The most critical part of the code, i.e. the implementation of
the security protocol, is generated automatically from an abstract model with
the guarantee of security property preservation. Moreover, the model is written
in Java, instead of using domain-specific formal languages. The adoption of a
compositional verification approach splits verification into two separate simpler
tasks, which potentially leads to the possibility to handle larger applications.

Up to our knowledge, no other approach was previously proposed with all
these features together. Compared to the approach presented in [3], which de-
veloped the same case study, our approach has the advantage of being fully
automated. Even if model checking does not allow us to get a result that holds
for any number of users and terminals, the result gives anyway good security
assurance and can be obtained using only automated tools and without requiring
excessive expertise.

The results obtained are encouraging because they confirm that it is possible
to develop distributed applications with formally verified application-specific
security properties using only automated tools.

One drawback that we found is the high quantity of resources that the model
checking with JPF requires, in terms of memory and time. This is partially
due to the kind of verification that interprets the bytecode of the real Java
application. Using other verification tools for Java may improve the performance.
Future works will address the verification of generic security properties in the
final application code, for example guarantee that a the value of a field added
manually remains confidential in the final application.

References

1. Patel, R., Borisaniya, B., Patel, A., Patel, D., Rajarajan, M., Zisman, A.: Compar-
ative analysis of formal model checking tools for security protocol verification. In:
Meghanathan, N., Boumerdassi, S., Chaki, N., Nagamalai, D. (eds.) CNSA 2010.
CCIS, vol. 89, pp. 152–163. Springer, Heidelberg (2010)

Automated Formal Verification of Application-specific Security Properties 59

2. Visser, W., Havelund, K., Brat, G., Park, S., Lerda, F.: Model checking programs.
Automated Software Engg. 10(2), 203–232 (2003)

3. Moebius, N., Stenzel, K., Reif, W.: Formal verification of application-specific secu-
rity properties in a model-driven approach. In: Massacci, F., Wallach, D., Zannone,
N. (eds.) ESSoS 2010. LNCS, vol. 5965, pp. 166–181. Springer, Heidelberg (2010)

4. Blanchet, B.: An Efficient Cryptographic Protocol Verifier Based on Prolog Rules.
In: 14th IEEE workshop on Computer Security Foundations, p. 82 (2001)

5. Avalle, M., Pironti, A., Sisto, R., Pozza, D.: The Java SPI framework for secu-
rity protocol implementation. In: Sixth International Conference on Availability,
Reliability and Security (ARES), pp. 746–751 (2011)

6. Avalle, M., Pironti, A., Sisto, R.: Formal verification of security protocol imple-
mentations: a survey. In: Formal Aspects of Computing (to appear)

7. Bella, G., Massacci, F., Paulson, L.C.: Verifying the SET purchase protocols. J.
Autom. Reason. 36(1-2), 5–37 (2006)

8. Nipkow, T., Paulson, L.C., Wenzel, M.T.: Isabelle/HOL. LNCS, vol. 2283.
Springer, Heidelberg (2002)

9. Borek, M., Moebius, N., Stenzel, K., Reif, W.: Model-driven development of secure
service applications. In: Proceedings of the 35th Annual IEEE Software Engineering
Workshop (SEW), pp. 62–71. IEEE (2012)

10. Borek, M., Moebius, N., Stenzel, K., Reif, W.: Model checking of security-
critical applications in a model-driven approach. In: Hierons, R.M., Merayo, M.G.,
Bravetti, M. (eds.) SEFM 2013. LNCS, vol. 8137, pp. 76–90. Springer, Heidelberg
(2013)

11. Armando, A., et al.: The AVANTSSAR platform for the automated validation of
trust and security of service-oriented architectures. In: Flanagan, C., König, B.
(eds.) TACAS 2012. LNCS, vol. 7214, pp. 267–282. Springer, Heidelberg (2012)

12. Jürjens, J.: Developing high-assurance secure systems with UML: a smartcard-
based purchase protocol. In: 8th IEEE International Conference on High Assurance
Systems Engineering, pp. 231–240 (2004)

13. Gunawan, L.A., Kraemer, F.A., Herrmann, P.: A tool-supported method for the
design and implementation of secure distributed applications. In: Erlingsson, Ú.,
Wieringa, R., Zannone, N. (eds.) ESSoS 2011. LNCS, vol. 6542, pp. 142–155.
Springer, Heidelberg (2011)

14. Gunawan, L.A., Herrmann, P.: Compositional verification of application-level se-
curity properties. In: Jürjens, J., Livshits, B., Scandariato, R. (eds.) ESSoS 2013.
LNCS, vol. 7781, pp. 75–90. Springer, Heidelberg (2013)

15. Dolev, D., Yao, A.C.C.: On the security of public key protocols. IEEE Transactions
on Information Theory 29(2), 198–207 (1983)

16. Pozza, D., Sisto, R., Durante, L.: Spi2Java: automatic cryptographic protocol Java
code generation from spi calculus. In: 18th International Conference on Advanced
Information Networking and Applications, 2004, vol. 1, pp. 400–405 (2004)

17. Pironti, A., Sisto, R.: Provably correct Java implementations of Spi Calculus se-
curity protocols specifications. Computers & Security 29, 302–314 (2010)

Fault-Tolerant Non-interference

Filippo Del Tedesco, Alejandro Russo, and David Sands

Chalmers University of Technology, Sweden

Abstract. This paper is about ensuring security in unreliable systems. We study
systems which are subject to transient faults – soft errors that cause stored values
to be corrupted. The classic problem of fault tolerance is to modify a system so
that it works despite a limited number of faults. We introduce a novel variant
of this problem. Instead of demanding that the system works despite faults, we
simply require that it remains secure: wrong answers may be given but secrets
will not be revealed. We develop a software-based technique to achieve this fault-
tolerant non-interference property. The method is defined on a simple assembly
language, and guarantees security for any assembly program provided as input.
The security property is defined on top of a formal model that encompasses both
the fault-prone machine and the faulty environment. A precise characterization of
the class of programs for which the method guarantees transparency is provided.

1 Introduction and Overview

Transient faults occur in hardware for example when a high-energy particle strikes a
transistor, resulting in a spontaneous bit-flip. Such events have been acknowledged as
the source of major crashes in server systems [6]. The trend towards lower threshold
voltages and tighter noise margins means that susceptibility to transient faults is in-
creasing.

From a security perspective, transient faults (henceforth we will say simply faults)
are a known attack vector. For instance, in [7,3,20] a single bit flip, regardless of how is
triggered, can compromise the value of a secret key in both public key and authentica-
tion systems. In [17] it is shown how a fault (induced by holding a light-bulb near the
processor!) triggers a single bit flip in a malicious but well-typed Java applet, causing
it (with high probability) to do something which is otherwise impossible for well-typed
bytecode: to take over the virtual machine.

Much previous work on fault tolerance has studied the preservation of functional be-
havior or mitigation of faults. For the most part techniques employ wholesale hardware
replication, or at least some special-purpose hardware. For the predominantly-software-
based techniques, with the exception of [24], most works do not give precise, formal
guarantees.

In this work, rather than attempting to preserve full functional behavior in the pres-
ence of faults, we consider the novel problem of guaranteeing security: faults may cause
a program to go wrong, but even if it goes wrong it should not leak sensitive data, no
matter if the code is crafted with malicious intent (cf. [17]). The particular security char-
acterization we study is non-interference, a well-established end-to-end information-
flow security property which says that public outputs of a program (the low security
channel) do not reveal anything about its secrets (the high security inputs).

J. Jürjens, F. Piessens, and N. Bielova (Eds.): ESSoS 2014, LNCS 8364, pp. 60–76, 2014.
c© Springer International Publishing Switzerland 2014

Fault-Tolerant Non-interference 61

Our approach has two distinguishing features. Firstly, it does not rely on special pur-
pose hardware features (in contrast to [24]), and secondly, it makes its assumptions pre-
cise and provides formal guarantees. This latter point distinguishes our approach from
software-based techniques used in the large majority of works in fault tolerance which
are usually evaluated empirically, often using simulated errors. It should be noted, of
course, that our goal is simply to preserve non-interference, and not to detect errors or
recover from them.

In the remainder of this section we give an overview of the approach taken in this
work to achieve what we called fault-tolerant non-interference, and summarize the main
results.

The Target System and the Faulty Environment. Transient faults are a feature of
hardware, so it makes sense to have an explicit hardware representation. In this paper
we consider a single core machine that executes a small set of RISC-like instructions.
The machine has registers and two separate memories for code and for data (§ 2.1). We
assume the code memory is read-only (ROM), therefore fault-free. This is a standard as-
sumption since memory with error correcting codes is both efficient and commonplace.
On the other hand we assume that both registers and data memory are not fault-free.
This means, in particular, that even the program-counter and hence the control flow can
be affected by faults, an assumption in line with most CPU implementations. This is the
feature of the system (and systems in general) which makes the problem particularly
challenging.

Since we aim for precise guarantees, we assume there is no operating system between
programs and the underlying hardware. This choice simplifies the implementation of
our method and the security argument. In fact, since the execution of the operating
system would be subject to faults, none of its abstractions could be used in a reliable
way, and the code would introduce further vulnerabilities.

We assume that the fault environment can simultaneously induce multiple bit-flips
in any register or any part of the data memory.

Enforcing Non-interference in the Presence of Transient Faults. Our method en-
forces security via program transformation. Security is defined in terms of two secrecy
levels, low for public and high for confidential data; low input data may influence the
high outputs, but high inputs should not affect the low outputs of the system.

Our transformation combines Secure Multi-Execution (SME) [15] 1 with a technique
known from Software-based Fault Isolation (SFI) [31] to guarantee that the security
property enforced by SME is not compromised by faults.

Consider the system consisting of high and low inputs and outputs represented in
Figure 1. The SME version of this system is given in Figure 2. SME deploys two iso-
lated copies of the system, one with responsibility for computing the low outputs, and
one with the responsibility of computing the high ones. In our instantiation of this idea,
the “system” will be the program to be secured.

A natural approach to implementing SME is to use fair concurrency to compute
independently each copy of the system. In our case, the approach has necessarily to

1 Related ideas have appeared elsewhere [27,9,12,5]

62 F. Del Tedesco, A. Russo, and D. Sands

Fig. 1. Original System Fig. 2. Secure Multi-Execution

be more straightforward, since software and hardware supports for concurrency are
missing. For this reason, SME is implemented by executing the high copy sequentially
after the low one. This mandatory choice makes SME vulnerable to leakage in the
presence of faults (§ 2.2-2.3). In particular:
� during execution of the low copy, a fault in the value of a pointer stored in a register

could cause the high data to be loaded instead of low;
� during the execution of the high copy, a fault in the program counter can cause the

control-flow to transfer to the low copy, but in a state where the registers might
contain arbitrary high data.

In both of these scenarios, the low copy of the code gains access to the high data. The
attacker’s ability to take advantage of this may depend on the structure of the code, or
the attacker’s ability to recognize a leaked secret independently of the code. Neverthe-
less, to construct a general security mechanism based on SME, we must protect against
the situations enumerated above.

A typical assumption in the analysis of fault tolerance mechanisms is the occurrence
of a single fault. Similarly, we strengthen SME so that it can cope with at most some
small fixed number of faults (§ 3.3). The key to preserving the strong isolation provided
by SME, in the presence of up to F faults, is to
� (§3.1) separate the address space of the high and low variants of the code, and the data

memory addresses over which they operate so that the addresses of the respective
parts have a hamming distance2 greater than F

� (§3.2) add address masking code, in the style of SFI, around load and jump instruc-
tions to mask the address value so that it is forced within in a safe range.

As for the original SME, our method guarantees isolation between low and high com-
ponents in a language-independent manner, since systems are treated as black boxes;
moreover, such isolation remains unaltered even if F faults occur during the execution.
Our method guarantees transparency as well: if the original system had no information
leaks between high inputs and low outputs, and no faults occur in the execution, then
the modified system will produce the same values on the low and high channels as the
original system (since the dummy high input will have no influence on the computation).

Results. For security, we formalize the semantics of the machine (§ 4.1) and precisely
specify our assumptions about which faults can occur (§ 4.2). From this we formulate

2 The number of positions for which corresponding bits of two equally sized binary words differ.

Fault-Tolerant Non-interference 63

a suitable notion of non-interference (§ 4.3), where we tackle the problem that faults,
when modeled as nondeterminism, can mask information flows.

Surprisingly, security is established with no semantic assumptions about the code
itself. In order to guarantee transparency we need “reasonable” semantic invariants (§ 5)
on memory utilization and control flow modifications performed by the source program.

2 Transient Fault Based Attacks on SME

This section illustrates the syntax of assembly programs and the inadequacy of a naive
SME implementation in the presence of faults.

2.1 Syntax

Data manipulated by assembly programs are in the set Val , which is defined as the
disjoint union of W∪Ptr ∪Lab ∪DReg . The set W corresponds to numeric constants,
defined as machine words of n bits. Pointers to data memory, from the set Ptr

def
=

{ptr v | v ∈ W}, are defined as tagged machine words to keep them separated from
elements in W. We assume an infinite set of labels Lab, representing targets of jump
instructions, and a finite set of general purpose registers DReg.

I ::= [l :]B such that l ∈ Lab

B ::= load r v | store v r | jmp v | jnz v r |
nop | move r v | BinOp r v | out ch r

BinOp ::= add | or

P ::= ε | I :: P

Fig. 3. Assembly programs syntax

Figure 3 shows
the syntax for assem-
bly programs. We
consider that every
instruction I could
be optionally labeled.
Instruction load r v
accesses the data

memory and writes the value pointed by v into register r. The corresponding store v r
instruction writes the content of r into the data memory address v. Instruction jmp v
causes the control-flow to transfer to the instruction labeled as v. Instruction jnz v r
performs the jump only if the content of register r is nonzero. Instruction move r v
copies the value v into register r. BinOp stands for a family of binary operators that
combine values in r and v and store the result in r. A minimal such family contains an
or instruction and an add instruction. The or instruction performs the logic or opera-
tion between constants in r and v; the add instruction adds the unsigned constant v to
the value contained in register r, which can either be a constant or a memory pointer.
All instructions presented so far are either indirect, when v is in DReg , or direct when
v is in Val \ DReg . Instruction nop performs no computation. Instruction out ch r
outputs the constant contained in r into the channel ch. Output channels are in the set
Out = {low, high}.

Programs are defined as lists of instructions P . We denote the set of labels con-
tained in a program as lab(P). We require programs to be well-formed, namely not
having two instruction bodies labeled in the same way. Given two programs P and
P ′, we define program composition P ++ P ′ as list concatenation, provided that
lab(P) ∩ lab(P ′) = { }.

64 F. Del Tedesco, A. Russo, and D. Sands

2.2 Direct Control Flow and Memory Faults

We describe how faults can induce secret leakages in SME-programs. Consider Figure
4, in which an assembly program and the memory M on which it is executed are pre-
sented. Observe that M contains both a public value pub and a secret sec. The program
P is intuitively secure. The first move instruction writes the memory pointer pubp to
register r1. Then the public value pub is loaded in r2, and secp overwrites pubp in r1.
Finally, pub is output on the low channel via the last out instruction.

P

move r1 (ptr pubp)

load r2 r1

move r1 (ptr secp)

nop

out low r2

M

secp → sec

pubp → pub

Fig. 4. Secure program

Since program P is secure, its SME ver-
sion, written sme(P), is also secure [15]. Fig-
ure 5 shows the code of sme(P) and the
corresponding memory. The transformed pro-
gram consists of the two copies of program
P , named Plow and Phigh , responsible for
computing public and secret values, respec-
tively. The memory is divided into the seg-
ments μlow and μhigh in such a way that the
code in Plow only refers to μlow and the code
in Phigh only to μhigh . The segment μlow contains the dummy value zero (sec′p → 0)
instead of the secret value sec, while instructions for public outputs are replaced by nop
in Phigh . Clearly, sme(P) preserves confidentiality.

We proceed to describe how a single bit flip is enough to jeopardize the security
guarantees of sme(P). In a machine execution, it could be possible for secp and pub′p
to be located at the memory addresses 000 and 100, respectively. It is then possible for
pub′p to be converted to secp by a single bit flip. As a consequence, the secret value sec
could be loaded into r2 by the second instruction in Plow , which in turn would send it
on a low channel.

sme(P)

Plow

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

move r1 (ptr pub
′
p)

load r2 r1

move r1 (ptr sec
′
p)

nop

out low r2

Phigh

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

move r1 (ptr pubp)

load r2 r1

move r1 (ptr secp)

nop

nop

sme(M)

secp → sec
}
μhigh

pubp → pub

sec′p → 0
}
μlow

pub′p → pub

Fig. 5. sme(P) and sme(M)

Bit flips in the program
counter are problematic as well.
Suppose the execution goes
through Plow and completes
the first nop in Phigh without
faults. At this point, the pro-
gram counter contains the value
9 (1001 in binary), i.e., it points
to the last instruction of Phigh ,
and the register r1 contains the
pointer secp. However, just be-
fore the last instruction of Phigh

is executed, a bit flip in the
first bit of the program counter
can move the execution back to
0001, i.e., the second instruction

of Plow . Since this occurs while r1 contains secp, it is possible for Plow to have access
to sec, and leak it on the low channel.

Fault-Tolerant Non-interference 65

The scenarios described above suggest that in order to guarantee security in a faulty
context, SME has to separate Plow , Phigh , μlow , and μhigh in a way that tolerates bit
flips in memory pointers or in the program counter, as discussed in Section 3.1.

2.3 Indirect Control Flow and Memory Faults

Faults can induce arbitrary computations within Plow and Phigh . Although we do not
attempt to preserve functional correctness in the presence of faults, performing arbitrary
computations in a SME scenario has important security implications.

move r1 •
move r1 (ptr pubp)

nop

load r2 r1
Fig. 6. low code

Consider the fragment of low code in Figure 6. Alterations
in the program counter could bypass the initialization of r1 to
ptr pubp and use an arbitrary value • as memory pointer. Hence,
regardless how μlow and μhigh are spread out in memory, it
would be still possible for a pointer in Plow to refer to values
in μhigh . This situation can clearly jeopardize the security guar-
antees of SME. Observe that arbitrary computations on Phigh ’s
memory pointers do not present any security risks. After all, it is
secure for Phigh to access μlow . However, perturbations in Phigh ’s control flow impose
other danger.

When Phigh is executed, faults in the program counter could induce arbitrary values
to be used as jump targets. When this is the case, the control flow can be moved from
Phigh back to Plow , regardless how Plow and Phigh are located in memory. Since secret
data is often loaded into registers by Phigh , this type of jumps presents a security risk.
Observe that there is no risk for arbitrary computations to trigger jumps from Plow to
Phigh .

In Section 3.2 we propose to use instrumentations for instructions load, jmp, and jnz
so that leaks can be prevented even in the presence of arbitrary computations.

3 Fault-Tolerant Secure Multi-execution

We present a version of SME capable of preserving confidentiality of high inputs even
in a faulty environment. Our technique relies on spreading out code (Plow and Phigh)
and memory (μlow and μhigh) as well as instrumenting instructions related to memory
access and jumps.

3.1 Fault-Tolerant Layout for Code and Memory

Fault tolerance always involves some kind of redundancy. In our case we will use the
first F + 1 bits of every n-bit address exclusively for keeping the hamming distance
between Plow and Phigh , and between μlow and μhigh , to at least F + 1.

Let distance(u, v) be the hamming distance between two words u and v. We will
say that two words are F -separate whenever their hamming distance is greater than F .

We will work with programs for which both their size, and their run-time memory
footprint, is roughly in the range [0, 2n−(F+1) − 1] (the exact range may be slightly
smaller than this and can be calculated after some additional instructions have been

66 F. Del Tedesco, A. Russo, and D. Sands

iloadSec

load r′ v �→ move rsp mask

or rsp v

load r′ rsp
Fig. 7. Securing load

ijmpSec

jmp v �→ move rsp mask

or rsp v

jmp rsp

Fig. 8. Securing jmp

ijnzSec

jnz v r′ �→ move rsp mask

or rsp v

jnz rsp r′

Fig. 9. Securing jnz

inserted into the code according to the transformation described in the next subsection).
The remaining bits of the address spaces (code and data memory) are reserved for our
fault tolerance mechanism.

Let mask denote the word with F + 1 leading 1s followed by n− (F + 1) zeros.
The idea is that any address in the range [b, t] (where b < t < 2n−(F+1)) is F -

separate from any address in the range [b+mask , t+mask].
If μhigh occupies the memory addresses in the interval [0, t] then we ensure that

μlow uses the range [mask , t + mask]. This clearly gives F -separation between μlow

and μhigh and thus avoids leaks due to faults in pointers handled by Plow (see Section
2.2).

For achieving a similar separation between Phigh from Plow we add some code
padding between the two copies of P such that the first instruction of Phigh is at the
ROM address mask . This guarantees F -separation between the addresses of instruc-
tions in Plow and Phigh and thereby avoids leak due to direct faults in the program
counter while executing Phigh (see Section 2.2).

3.2 Control Flow Integrity

Faults can break the control-flow integrity of the program, causing it, for example, to
jump to an arbitrary address. The two problematic instances of this problem are when
(i) Plow loads from an address in μhigh , and (ii) when the destination of a jump in
Phigh points to Plow . We mitigate these cases using a technique which turns out to be
very similar to the sandboxing approach in software-based fault isolation [31]: we mask
the addresses so that they are always within a safe range. This is achieved in case (i) by
transforming load instructions, and in case (ii) by transforming jmp and jnz instructions,
as shown in Figures 7 to 9.

Note that for this to work we need one spare general purpose register rsp – i.e., one
which is not used by the original program P .

3.3 Formal Definition of Fault-Tolerant SME

Figure 10 summarizes the process of generating our fault-tolerant version of SME as a
program transformation. SME reworks an assembly program P into two secure variants
Plow and Phigh . This requires modifications to the internal behavior of program P . The
transformation consists of several steps. To obtain Phigh from P , we first replace the
instructions to write data into public channels by nops. This is done by the function
olow , which generates an intermediate result P ′

high . Function jnzSec◦ jmpSec (the sym-
bol ◦ denotes function composition) instruments jmp and jnz instructions by applying
functions in Figures 8 and 9 to the entire program.

Fault-Tolerant Non-interference 67

P

P ′
highP ′

low

Plow PAD Phigh

smeft (P) =
Plow ++ PAD ++ Phigh

ohigh ◦ labP ◦ offsetmask olow

loadSec jnzSec ◦ jmpSec

++

++

Fig. 10. Fault-tolerant SME code transformation (smeft)

Obtaining Plow is
a bit more involved. It
requires offsetting ev-
ery pointer appearing
in P by mask so that
Plow refers to μlow

(function offsetmask).
Additionally, the
transformation renames
instruction labels to
avoid name clashes
with Phigh (function
labP), as well as sup-
pressing instructions
performing outputs in
high channels (function ohigh).

The instrumentation of load is done by function loadSec (based on the auxiliary
function in Figure 7), thus finally obtaining Plow . Once Plow and Phigh are obtained,
in order for F -separation to hold between them, the transformation adds some padding
code, named PAD . All instructions in PAD are jumps to the first instruction of Phigh ,
and the length of PAD guarantees the first instruction of Phigh is located at the address
mask (recall Section 3.1).
Initial memory configuration. Consider the initial memory M for P in Figure 11. We
assume that the program uses the memory interval μ = [0, t], where the first s words in
M are secrets (labeled high in), the subsequent words are public values (low in) and the
rest is uninitialized (in white). We require s to be within the range [0, 2n−(F+1)− 1] to
ensure the separation between μhigh and μlow is possible (Section 3.1).

M smeft M
0

s

0

s

mask

s+mask

highin

t t

t+mask

lowin

default

lowin

lowin

highin

Fig. 11. Initial memory M and
transformed version smeft (M)

We also require that M only contains values from
W. The security of the method does not depend on
this assumption, but for the transformation to preserve
the non-faulty behavior of secure runs of the program
we will need such requirement on input. We return
to this issue in Section 5. Under these assumptions,
the initial memory for smeft (P), which we denote
by smeft (M), corresponds to the right side of Fig-
ure 11. Notice that μhigh , the portion of the memory
to be used by Phigh , is the same as μ, whereas Plow

will use μlow which is located in the memory inter-
val [mask , t + mask]. In μlow the words represent-
ing the secret are initialized to a default value (marked
“default” in the figure). For the sake of simplicity,
we do not require smeft (P) to take care of memory
rearrangement itself – we assume the preparation of
smeft (M) is external to SME. We assume initial reg-
isters to be all uninitialized for P , therefore they will
be uninitialized for smeft (P) as well.

68 F. Del Tedesco, A. Russo, and D. Sands

Optimizing smeft . It might appear redundant to modify memory pointers in Plow and
instrument direct load instructions according to Figure 7 (and similarly for control flow
labels in Phigh and functions in Figures 8 and 9). For many sensible programs this is
indeed the case, such as the safe programs characterised in § 5.

Redefining mask . Recall that in Section 3.1 we define mask as the mask used to obtain
F-separation of memory and code. When it comes to the code, we assume that the size
of Plow is the same as Phigh . However, this assumption is no longer true for Plow and
Phigh produced by smeft due to the instrumentations of load, jmp and jnz instructions.
This is not a major problem. It is enough to pad with nops Plow or Phigh to match their
sizes. For simplicity, we omit this step in our schematic description.

4 Security Guarantees Provided by smeft

In this section we state the security property bestowed by smeft on transformed pro-
grams. To do this we define a formal semantics for the RISC machine; extend it to model
faults; define non-interference for faulty runs; state the security theorem: any program
transformed by smeft corresponds to a machine program which is non-interfering for
runs with no more than F faults. For space reasons most of the details are not given
here; we refer to the full version [13].

4.1 Semantics

DLoad

P (pc) = loadd r w

〈P,Reg ,M〉 τ−→ 〈P,Reg+[r → M(w)],M〉

DAdd

P (pc) = addd r w Reg (r) + w = w′

〈P,Reg ,M〉 τ−→ 〈P,Reg+[r → w′],M〉

DJnz-A

P (pc) = jnzd w r Reg (r) �= 0

〈P,Reg,M〉 τ−→ 〈P,Reg[pc → w],M〉

Out

P (pc) = out ch r

〈P,Reg,M〉 ch!Reg(r)−→ 〈P,Reg+,M〉

Fig. 12. Concrete Semantics (selected rules)

To give a precise semantics to
faults we need to work at the
level of concrete programs, i.e.,
machine code, which are lists
of concrete instructions. Com-
pared to assembly instructions
from Figure 3, concrete instruc-
tions are not labeled, and their
arguments are register names or
machine words. This formaliza-
tion of machine code is suffi-
ciently concrete to describe the
class of faults we wish to model.
In particular, a concrete encoding
of the register names is not made
explicit because we do not consider faults in the code memory, and because registers
are not addressable indirectly. We sometimes write P (i) to denote the ith concrete in-
struction in the instruction list P .

Most assembly instructions have two explicit versions in the concrete domain: a
direct version, such as loadd r w which loads the value contained at memory address w
into the register r, and an indirect version, such as loadi r r

′ which fetches the memory
address of the data to be loaded from register r′. There are two exceptions to this: the

Fault-Tolerant Non-interference 69

nop instruction, which does not require any parameter, and the out instruction, which
has no direct formulation. Observe that, similarly to register names, channel names are
not encoded.

Assembly programs are converted to concrete ones by the function loader. The func-
tion converts abstract values Val into machine words. In particular this amounts to
stripping the pointer tag away from the pointers, and resolving code labels to ROM
addresses. The function loader is also responsible for mapping all abstract instructions
into their direct or indirect versions. The details are straightforward and not presented
here [13].

Configurations of the concrete machine are given by a triple 〈P,Reg ,M〉, where P
is the concrete program, Reg ∈ DReg ∪ {pc} → W is the (Concrete) Register Bank
and M ∈ W → W is the (Concrete) Data Memory.

The fault-free semantics of concrete programs is given as a labeled transition sys-
tem. The labels on transitions indicate the observable output of each clocked machine
step, and are either τ , a label marking just the passage of time, or an output label,
indicating a word output on a specific channel. All labels are in Act = {low !w|w ∈
W}∪{high!w|w ∈ W}∪{τ}. A representative selection of reduction rules for the con-
crete machine are presented in Figure 12. We use Reg+ as a shorthand for Reg[pc →
Reg (pc) + 1] and we abbreviate P (Reg (pc)) as P (pc). Modelling instructions as con-
secutive words implies that it is impossible to jump to an address which is not aligned
with the beginning of an instruction; this assumption corresponds to the implementation
of simpler RISC architectures such as ARM versions 1 and 2.

4.2 Modeling Faults

Our aim will be to describe the overall behavior of a fault-prone system as simply as we
can, while still permitting reasoning about non-interference. The core idea is to model
the transitions of the system in the presence of faults with a labeled transition system
obtained by interleaving the machine transitions with a nondeterministic flipping of
zero or more bits. As described previously, the fault-prone bits of the machine are any
of the register bits, and any bits in the data memory.

We need some notation to talk about bit flips. Recall machine words are n bits long.
Let us define the set of locations at which a fault may occur as:

Loc
def
= {(r, i) | r ∈ DReg ∪ {pc}, i ∈ {1, . . . , n}} ∪ {(k, i) | k ∈ W, i ∈ {1, . . . , n}}

For a machine configuration C and location l ∈ Loc we will write C[l] to denote the
value of the bit specified by l in C; for any b ∈ {0, 1} we write C[l → b] to denote the
configuration obtained from C by updating the location l to b.

Let L range over the (possibly empty) subsets of locations. We express bit flips in the
values of a given subset L of locations by using the function flip defined as flip(C,L) =
C[l → ¬ C[l], l ∈ L], which flips every bit of locations L in the machine configuration
C.

flip(C,L)
a−→ C′ L ⊆ Loc

C
a
C′

We can now define faulty systems with labeled tran-

sitions (
a

, a ∈ Act) with the transition rule to the right.
It can be seen from the rule that our fault model assumes

70 F. Del Tedesco, A. Russo, and D. Sands

that the transitions of the system are instantaneous (a common assumption, but a poten-
tial source of inaccuracy – a point we return to in the conclusions). The fact that faults
can occur between transitions is modeled by allowing any fault to occur before any
transition of the system is taken. The number of faults occurring in a given transition is
|L|, and is not constrained in this rule, but will be constrained at the level of runs.

4.3 Fault-Tolerant Non-interference

This section formalizes the confidentiality guarantees of our approach in the presence
of faults.

Since the faulty system is nondeterministic, one might consider a simple possibilis-
tic notion of non-interference — secret values should not influence the set of possible
public outputs of the faulty system. This notion is not adequate because unfortunately
errors might occur anywhere, in particular on public values, therefore any program is
capable to produce any possible output!

This is an instance of a known weakness of possibilistic non-interference [18,22].
A standard fix is to adopt a probabilistic notion of non-interference – the probability
distribution of public outputs is unaffected by the secrets in the presence of errors – as-
suming an attacker can perform probability measures. In this paper, however, we adopt
a different approach: we permit the attacker to observe exactly when and where faults
occur in a given run, along with output events in the low channel and the passage of
time. This model leads to a security definition which seems stronger than the proba-
bilistic one, but in fact we have shown [14] that the two notions are equivalent for the
computational model considered here.

We start concretising the attacker’s view of a system by defining function low ∈
Act → {low!w|w ∈ W} ∪ {τ}. More precisely, low (a) returns a if a = low !w, and
returns τ otherwise. Now we can define the semantics of the faulty system from the
attacker’s perspective as a labeled transition system given by the following transition
rules:

Step

flip(C,L)
a−→ C′

C
L,low(a)

C′
Stuck-1

flip(C,L) �→

C
L,τ

flip(C,L)

Stuck-2
C �→

C
L,τ

C

The attacker observations imply that termination of the system is not directly ob-
servable and that once a system reaches a stuck configuration, faults have no further
effect.

We can now state our security condition. We say a machine configuration is initial if
(i) Reg(pc) = 0, (ii) Reg(rsp) = 2n − 1 (so it never points to low code/high data), and
(iii) secrets are stored in the first s words of the memory (Figure 11).

We say two initial configurationsC and C′ are low equivalent, written as C =low C′

if they differ, at most, on the first s words of the heap.
We say that a sequence σ = L0, a0, . . . Ln−1, an−1 is a low run of a system state C0

whenever there exist states C1, . . . , Cn such that Ci
Li,ai

Ci+1 for all i ∈ {0, . . . , n−
1}. The number of faults exhibited by σ is Σn−1

i=0 |Li|.

Fault-Tolerant Non-interference 71

Definition 1 (F -Fault-Tolerant Non-interference). An initial configuration C is F -
fault-tolerant non-interfering if for all initial configurations C′ such that C =low C′,
the set of low runs exhibiting no more than F faults are the same for C and C′.

We say that an assembly program P is F -fault-tolerant non-interfering if all initial
configurations relative to P , namely 〈loader(P),Reg ,M〉 are F -fault-tolerant non-
interfering.

Theorem 1 (Non-interference induced by smeft). If smeft (P) = P ′ then P ′ is F -
Fault-tolerant non-interfering.

The theorem is proved by showing that (i) all memory accesses in Plow are performed
towards addresses that are F -separate from μhigh and (ii) once the computation reaches
Phigh it cannot be moved back to Plow .

Both properties depends on the layout of code and data memory, together with on
the invariant property on rsp . In particular we can show that in the absence of faults, the
value contained in rsp is in the range [mask, 2n − 1], whereas in the presence of faults
the content of rsp is never in the range [0, 2n−(F+1) − 1]. For a detailed proof refer to
[13].

Definition 1 is both termination and (logical) timing sensitive: we require that any
two runs of the system (that exhibit at most F faults) correspond to the same sequence
of observable events, regardless of secret data. Not only output values must be the same,
but the instant in which they occur must coincide as well. Hence, Theorem 1 guarantees
that our transformation technique can secure all programs whose timing and termination
behavior can induce leaks.

5 Transparency Guarantees Provided by smeft

We have shown that the transformed programs meet the goal of non-interference in the
presence of faults. We have done so with no semantic assumptions about the code itself.
The only syntactic assumptions are on the size of the code, which is required to be small
enough to accommodate the transformation in the ROM, on the amount of secret data
in the initial memory, and on the registers utilization – we require at least one spare
register.

Does the transformation smeft preserve the behavior of programs? The answer, in
general, is no. Firstly, programs which are intrinsically insecure exhibit a different be-
havior under standard SME. This alteration in the semantics is done in order to enforce
confidentiality. It could be said that “software faults”, i.e., instructions leaking secret
data, are being mitigated by SME. However, even when the original program is secure,
our transformation modifies the size and layout of the original program and the absolute
location of data in memory. In general machine code programs can be sensitive to such
transformation, and behave in an arbitrarily different way.

For this reason, transparency guarantees can be given only for programs which are
“sensible” and secure for fault-free runs. We consider a program “sensible” when it
is safe and bounded. A program is safe when, roughly speaking, it is not sensitive to
the absolute addresses of its instructions in the ROM, or the absolute addresses of the

72 F. Del Tedesco, A. Russo, and D. Sands

memory that it accesses. A program is bounded when there is a known upper bound on
the region of memory that it will address.

For any “sensible” program, the following theorem holds:

Theorem 2 (Transparency). (informal statement) Let P be a non-interfering, “sensi-
ble” assembly program. If the low copy Plow always terminates, then the SME trans-
formed program smeft (P) yields the same sequence of values on each of the respective
output channels as P for any fault-free run.

A formal account of Theorem 2 (and its proof) can be found in the full version of the
paper [13].

In this work the characterization of safe and bounded programs is obtained via an
abstract machine for the language. The abstract machine characterises those programs
which never exhibit certain “bad” behaviours. This is in the same spirit as e.g. Leroy’s
compiler correctness proof [21]. We expect that any program correctly compiled from a
strongly-typed high level language, and which has a statically known memory footprint,
will be a safe and bounded program. To give these guarantees formally one could use
a verified compiler, or it could be achieved by compiling to a typed version of our
assembly language (see, for example, [23]) which ensures that the produced code is safe
and bounded. However, these endeavours lie outside the scope of the present paper.

Notice that for Theorem 2 to hold we require the low copy of the source program
to terminate on all input. This means that, in general, transparency does not hold for
programs that are nonterminating by construction (e.g. server applications). However,
this does not compromise security: Theorem 1 holds for this class of programs as well.

6 Related Work

Language Based Dependability. The use of application-layer techniques for achieving
fault tolerance have been widely studied. De Florio and Blondia survey the field [16]
and classify the various ways in which fault tolerance can be added, and what kind of
faults are supported. Notably, none of the techniques surveyed at that time either deal
with tolerance with respect to security properties, or with techniques that give precise
semantic guarantees.

More recently, Project Zap [1] has applied language based techniques to transient
faults modeling and analysis with the goal of providing formally verifiable dependabil-
ity methods. The closest to our work in the Zap series is the work on fault-tolerant
typed assembly language of Perry et al [24]. We use an abstract machine to characterize
the class of programs for which our method is applicable. Our characterization is more
liberal than a typical typed assembly language, but a typed assembly language could
nevertheless be used as a sound method to prove that a program is safe and bounded.
Both in that work and in ours, transient faults have a semantic interpretation as nonde-
terministic transitions that can happen at anytime and anywhere in the faulty hardware.
Since we do not aim at functional correctness preservation, we can be more liberal in
the class of faults we admit (more than one bit flipped at a time) and in the hardware
components the concrete machine operates on. In [25] the attention is solely focused
on detecting control flow modifications induced by transient faults. The method, unlike

Fault-Tolerant Non-interference 73

[24], is purely software based. However, detectability is possible only for programs that
obey a strict control-flow discipline, and under the assumption that at most a single
bit flip occurs. Once again, our ability to cope with a bigger class of control flow errors
comes from the fact that we aim for a weaker property; arbitrary control flow alterations
inside Plow or Phigh executions do not pose security threats.

Fault Isolation Techniques. As mentioned previously, the techniques we use to mask
addresses to prevent dangerous loads and jumps can be found in the software-based
techniques for fault isolation (SFI) introduced by Wahbe et al [31] for sandboxing un-
trusted code. A similar address-masking technique is used in [10] for mitigating the
effects of transient faults. Also, principles from SFI are also implemented in [2], where
the authors define a method to prevent an active attacker from corrupting the control
flow integrity of a program.

It should be noted, however, that the “faults” targeted by SFI are those caused by
buggy/malicious code or data. The SFI techniques, in isolation, are able to protect from
the effects of some but not all of the transient faults studied here.

What we said for software based methods also hold for sandboxing techniques using
special operating system or hardware features – they are not designed for and do not
protect against all transient faults, and may increase the attack surface (via increased
code or by relying on special purpose registers).

Fault Tolerance vs Non-Interference. As we have shown in our result, fault tolerance
and non-interference present interesting connections, and we believe that our combi-
nation is a novel one. However other connections between the two concepts have been
noted in a number of other works.

The Strong Security notion introduced by Sabelfeld and Sands in [29] for multi-
threaded programs is shown to be strong enough to guarantee an unrestricted form of
fault-tolerant non-interference in [14], providing a more restrictive class of transient
faults are considered (faults cannot corrupt the control flow integrity). In a similar way,
programs that are secure according to the definition in [28], an extension of [29] to
distributed systems, can be shown to retain security regardless of faults occurring in
network communications. It is not surprising that both cases cannot cope against faults
in the control flow since, as we have shown in Section 2, control flow alterations intro-
duce completely unexpected information flows.

Another interesting aspects of the comparison between fault tolerance and non-
interference was observed by Weber [33]. In this work the author explores a non-
interference-like characterisation of fault tolerance in terms of program semantics. A
more general view on the connection between enforcement mechanisms for informa-
tion flow properties and dependability goals is proposed by Rushby [26]. Overall the
techniques used in the present work can be understood in terms of the general parti-
tioning mechanisms described by Rushby. In particular what Rushby calls spatial par-
titioning corresponds to our separation of memory addresses (albeit within the same
physical memory); temporal partitioning characterises what we achieve by ensuring
that low events happen before high events, since this ensures that the timing of high
events cannot influence low events.

74 F. Del Tedesco, A. Russo, and D. Sands

Security Preservation in the Presence of Transient Faults. Our method guarantees
that security of programs, expressed in terms of F -Fault-Tolerant Non-interference,
is preserved even when a limited number of bit flips occur. Other forms of security
preservation in faulty environments have been studied, particularly in cryptography.

In [4] authors illustrate several transient-fault based attacks on RSA and Discrete
Logarithms cryptographic schemes, together with software countermeasures. Such pro-
tection mechanisms involve either some form of replication (they basically require to
repeat the computation twice and check the result for fault detection) or a more intensive
usage of randomness in the intermediate stages of cryptographic operations to increase
the unpredictability of the result.

In [11] authors show how the parameters of an elliptic curve cryptosystem can be
compromised by transient faults, and illustrate how a comparison mechanism is suffi-
cient to prevent the attack from being successful. In particular the method compares the
working copies of said parameters (located in a faulty hardware component) to their
original counterparts (stored in fault-free hardware) in several stages of the computa-
tion. Canetti et al [8] discuss security in the presence of transient faults for crypto-
graphic protocol implementations where they focus on how random number generation
is used in the code. Harrison et al consider [19] a “confinement problem in the pres-
ence of faults”, but their work concerns faults in the sense of abnormal termination of
software, and the proper confinement thereof.

7 Conclusion and Further Work

We have presented a technique to make programs secure despite a small number of
faults, and characterized when the method preserves the behavior of programs. The
problem we study is itself novel, and relative to the faults we model, it is notable that
our technique does not demand special hardware, and is capable of tolerating multi-bit
errors.

Perhaps the main weakness of the present work is the fault model itself. While we
model faults in all the main state elements of the machine, we do not model faults in
lower-level structures, such as pipelines or in the combinatorial circuits. This short-
coming seems to be shared with much work on fault tolerance (although we do, at least,
model faults in the program counter) – in particular works which focus on fault injection
e.g. [30]. One might speculate that many faults occurring at the lower level of abstrac-
tion are adequately modeled by flipping a few bits in a register, but there seems to be
little work to verify this. One of them, by Wang et al [32], suggests that lower-level
faults are notably rare.

A precise account about the efficiency of our approach is left for further work. An ap-
proximate estimation of the overhead can be determined by considering that the system
is basically run twice, and all the load and jump instructions are expanded in macros of
three instructions each.

Acknowledgment. Many thanks to Johan Karlsson, Ioannis Sourdis, Georgi Gaydad-
jiev, Arshad Jhumka and the anonymous referees for useful comments and observations.
This work was partially financed by grants from the Swedish research agencies VR and
SSF, and the European Commission EC FP7-ICT-STREP WebSand project.

Fault-Tolerant Non-interference 75

References

1. The zap project, http://sip.cs.princeton.edu/projects/zap/ (accessed:
February 20, 2013)

2. Abadi, M., Budiu, M., Erlingsson, U., Ligatti, J.: Control-flow integrity. In: Proceedings of
the 12th ACM Conference on Computer and Communications Security, CCS 2005, pp. 340–
353. ACM, New York (2005),
http://doi.acm.org/10.1145/1102120.1102165

3. Aumüller, C., Bier, P., Fischer, W., Hofreiter, P., Seifert, J.P.: Fault attacks on rsa with crt:
Concrete results and practical countermeasures. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C.
(eds.) CHES 2002. LNCS, vol. 2523, pp. 260–275. Springer, Heidelberg (2003)

4. Bao, F., Deng, R., Han, Y., Jeng, A., Narasimhalu, A., Ngair, T.: Breaking public key cryp-
tosystems on tamper resistant devices in the presence of transient faults. In: Christianson,
B., Crispo, B., Lomas, M., Roe, M. (eds.) Security Protocols 1997. LNCS, vol. 1361, pp.
115–124. Springer, Heidelberg (1998)

5. Barthe, G., Crespo, J.M., Devriese, D., Piessens, F., Rivas, E.: Secure multi-execution
through static program transformation. In: Giese, H., Rosu, G. (eds.) FORTE/FMOODS
2012. LNCS, vol. 7273, pp. 186–202. Springer, Heidelberg (2012)

6. Baumann, R.: Radiation-induced soft errors in advanced semiconductor technologies. IEEE
Transactions on Device and Materials Reliability 5(3), 305–316 (2005)

7. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of eliminating errors in crypto-
graphic computations. Journal of Cryptology 14, 101–119 (2001)

8. Canetti, R., Herzberg, A.: Maintaining security in the presence of transient faults. In:
Desmedt, Y.G. (ed.) Advances in Cryptology - CRYPTO 1994. LNCS, vol. 839, pp. 425–
438. Springer, Heidelberg (1994)

9. Capizzi, R., Longo, A., Venkatakrishnan, V.N., Sistla, A.P.: Preventing information leaks
through shadow executions. In: Proceedings of the 2008 Annual Computer Security Appli-
cations Conference, ACSAC 2008. IEEE Computer Society (2008)

10. Chang, J., Reis, G., August, D.: Automatic instruction-level software-only recovery. In: DSN
2006, pp. 83–92 (2006)

11. Ciet, M., Joye, M.: Elliptic curve cryptosystems in the presence of permanent and transient
faults. Des. Codes Cryptography 36(1), 33–43 (2005)

12. Cristiá, M., Mata, P.: Runtime enforcement of noninterference by duplicating processes and
their memories. In: WSEGI 2009, Argentina. 38 JAIIO (2009)

13. Del Tedesco, F., Russo, A., Sands, D.: Fault tolerant non-interference (extended version)
(2013), http://www.cse.chalmers.se/˜tedesco/papers/essos14.pdf

14. Del Tedesco, F., Russo, A., Sands, D.: A theory of fault tolerance noninterference (prelimi-
nary) (2013)

15. Devriese, D., Piessens, F.: Noninterference through secure multi-execution. In: Proc. of the
2010 IEEE Symposium on Security and Privacy, SP 2010. IEEE Computer Society (2010)

16. Florio, V.D., Blondia, C.: A survey of linguistic structures for application-level fault toler-
ance. ACM Comput. Surv. 40(2) (2008)

17. Govindavajhala, S., Appel, A.W.: Using memory errors to attack a virtual machine. In: SP
2003, IEEE Computer Society, Washington, DC (2003)

18. Gray, J.W., Probabilistic, I.: interference. In: Proceedings of the 1990 IEEE Computer Soci-
ety Symposium on Research in Security and Privacy, pp. 170–179 (1990)

19. Harrison, W.L., Procter, A., Allwein, G.: The confinement problem in the presence of faults.
In: Aoki, T., Taguchi, K. (eds.) ICFEM 2012. LNCS, vol. 7635, pp. 182–197. Springer, Hei-
delberg (2012)

http://sip.cs.princeton.edu/projects/zap/
http://doi.acm.org/10.1145/1102120.1102165
http://www.cse.chalmers.se/~tedesco/papers/essos14.pdf

76 F. Del Tedesco, A. Russo, and D. Sands

20. Kim, C., Quisquater, J.J.: Fault attacks for crt based rsa: New attacks, new results, and new
countermeasures. In: Sauveron, D., Markantonakis, K., Bilas, A., Quisquater, J.-J. (eds.)
WISTP 2007. LNCS, vol. 4462, pp. 215–228. Springer, Heidelberg (2007)

21. Leroy, X.: A formally verified compiler back-end. J. Autom. Reason. 43(4), 363–446 (2009),
http://dx.doi.org/10.1007/s10817-009-9155-4

22. McLean, J.: Security models and information flow. In: Proc. IEEE Symposium on Security
and Privacy, pp. 180–187. IEEE Computer Society Press (1990)

23. Morrisett, G., Walker, D., Crary, K., Glew, N.: From system f to typed assembly language.
ACM Trans. Program. Lang. Syst. 21(3), 527–568 (1999)

24. Perry, F., Mackey, L., Reis, G.A., Ligatti, J., August, D.I., Walker, D.: Fault-tolerant typed
assembly language. In: Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation, pp. 42–53. ACM, New York (2007)

25. Perry, F., Fisher, K.: Reasoning about control flow in the presence of transient faults. In:
Alpuente, M., Vidal, G. (eds.) SAS 2008. LNCS, vol. 5079, pp. 332–346. Springer, Heidel-
berg (2008)

26. Rushby, J.: Partitioning for safety and security: Requirements, mechanisms, and assurance.
NASA Contractor Report CR-1999-209347, NASA Langley Research Center (June 1999);
also to be issued by the FAA

27. Russo, A., Hughes, J., Naumann, D.A., Sabelfeld, A.: Closing internal timing channels by
transformation. In: Okada, M., Satoh, I. (eds.) ASIAN 2006. LNCS, vol. 4435, pp. 120–135.
Springer, Heidelberg (2008)

28. Sabelfeld, A., Mantel, H.: Static confidentiality enforcement for distributed programs. In:
Hermenegildo, M.V., Puebla, G. (eds.) SAS 2002. LNCS, vol. 2477, pp. 376–394. Springer,
Heidelberg (2002)

29. Sabelfeld, A., Sands, D.: Probabilistic noninterference for multi-threaded programs. In: Pro-
ceedings of the 13th IEEE Workshop on Computer Security Foundations, CSFW 2000, p.
200. IEEE Computer Society, Washington, DC (2000)

30. Skarin, D., Barbosa, R., Karlsson, J.: Goofi-2: A tool for experimental dependability as-
sessment. In: Proceedings of the 2010 IEEE/IFIP International Conference on Dependable
Systems and Networks (2010)

31. Wahbe, R., Lucco, S., Anderson, T.E., Graham, S.L.: Efficient software-based fault isolation.
In: Proceedings of the Fourteenth ACM Symposium on Operating Systems Principles, SOSP
1993, pp. 203–216. ACM, New York (1993),
http://doi.acm.org/10.1145/168619.168635

32. Wang, N.J., Quek, J., Rafacz, T.M., Patel, S.J.: Characterizing the effects of transient faults on
a high-performance processor pipeline. In: International Conference on Dependable Systems
and Networks, DSN 2004 (2004)

33. Weber, D.G.: Formal specification of fault-tolerance and its relation to computer security.
In: Proceedings of the 5th International Workshop on Software Specification and Design,
IWSSD 1989, pp. 273–277. ACM, New York (1989)

http://dx.doi.org/10.1007/s10817-009-9155-4
http://doi.acm.org/10.1145/168619.168635

Quantitative Security Analysis for Programs

with Low Input and Noisy Output

Tri Minh Ngo and Marieke Huisman

University of Twente, Netherlands
tringominh@gmail.com,

Marieke.Huisman@ewi.utwente.nl

Abstract. Classical quantitative information flow analysis often con-
siders a system as an information-theoretic channel, where private data
are the only inputs and public data are the outputs. However, for sys-
tems where an attacker is able to influence the initial values of public
data, these should also be considered as inputs of the channel. This pa-
per adapts the classical view of information-theoretic channels in order
to quantify information flow of programs that contain both private and
public inputs.

Additionally, we show that our measure also can be used to reason
about the case where a system operator on purpose adds noise to the
output, instead of always producing the correct output. The noisy out-
come is used to reduce the correlation between the output and the input,
and thus to increase the remaining uncertainty. However, even though
adding noise to the output enhances the security, it reduces the reliabil-
ity of the program. We show how given a certain noisy output policy,
the increase in security and the decrease in reliability can be quantified.

1 Introduction

Qualitative security properties, such as noninterference [12] and observational
determinism [27,14], are essential for applications where private data need strict
protection, such as Internet banking, e-commerce, and medical information sys-
tems, since they prohibit any information flow from a high security level to a
low security level1. However, for many applications in which we want or need to
reveal information that depends on private data, these absolutely confidential
properties are not appropriate. A typical example is a password checker (PWC)
where an attacker (user) tries a string to guess the password [11,3,24]. Even
when the attacker makes a wrong guess, secret information has been leaked, i.e.,
it reveals information about what the real password is not. Thus, despite the
correct functioning, PWC is rejected.

Therefore, an alternative approach for such applications is to relax the abso-
lute properties by quantifying the information flow and determining how much

1 For simplicity, throughout this paper, we consider a simple two-point security lattice,
where the data is divided into two disjoint subsets, of private (high) and public (low)
security levels, respectively.

J. Jürjens, F. Piessens, and N. Bielova (Eds.): ESSoS 2014, LNCS 8364, pp. 77–94, 2014.
c© Springer International Publishing Switzerland 2014

78 T.M. Ngo and M. Huisman

secret information has been leaked. This information can be used to decide
whether we can tolerate minor leakages. A quantitative security theory can be
seen as a generalization of an absolute one.

Classical quantitative security analysis. Classical quantitative theory sees a pro-
gram as a channel in the information-theoretic sense, where the secret S is the
only input and the observable final outcomes O are the output [3]. An attacker,
by observing O , might be able to derive information about S . The quantita-
tive analysis of information flow then concerns the amount of private data that
an attacker might learn. The analysis is based on the notion of entropy. The
entropy of a random private variable expresses the uncertainty of an attacker
about its value, i.e., how difficult it is for an attacker to discover its value. The
leakage of a program is typically defined as the difference between the secret’s
initial uncertainty, i.e., the uncertainty of the attacker about the private data
before executing the program, and the secret’s remaining uncertainty, i.e., the
uncertainty of the attacker after observing the program’s public outcomes, i.e.,

Information leakage = Initial uncertainty - Remaining uncertainty.

Programs that contain low input. This paper considers programs where an at-
tacker is able to influence the initial values of low variables. This is a popular
kind of programs with many real-world applications, e.g., login systems, the
PWC, or banking system. For such programs, in addition to the secret, the ini-
tial low values are another input to the channel. Therefore, the traditional form
of channel becomes invalid for such programs.

To apply the traditional channel where the only input is the secret to this
situation, we consider the initial low values as parameters of the channel. In
particular, we consider a collection of sets of initial low values, and for each set,
we construct a channel corresponding to these low values. Each channel is seen
as a test, i.e., the attacker sets up the low parameters to test the system. Since
the attacker knows the program code, then he knows which test would help him
to gain the most information. Therefore, the leakage of the program with low
input is defined as the maximum leakage over all possible tests.

A new measure for the remaining uncertainty. The classical approaches of the
one-try attack model often base the analysis on the Smith’s definition of con-
ditional min-entropy [24]. However, the literature also admits that there might
be different measures for different situations [5]. This paper argues that in some
cases, Cachin’s version of conditional min-entropy [7] might be a more reason-
able measure, i.e., it gives more intuitive-matching results than Smith’s version.
Thus, we propose to consider Cachin’s version as a valid measure for the remain-
ing uncertainty. We believe that this measure has not previously been used in
the theory of quantitative information flow.

The literature argues that observable outcomes would reduce the initial un-
certainty of the attacker on the secret; and thus, the value of leakage cannot be
negative. However, we show that this non-negativeness property does not always

Quantitative Security Analysis for Programs 79

hold, for example in case the output of the program contains noise. The idea is
that to enhance the security, the system operator might add noise to the out-
put, i.e., instead of always producing the exact outcomes, the program might
sometimes report a noisy one. The noisy-output policy makes the outcomes of
program more random, and thus, it reduces the correlation between the output
and the input. As a consequence, the noisy-output policy increases the remain-
ing uncertainty, and the value of leakage might become negative. This property
might open the door for a new understanding of how the measure of uncertainty
should be.

To design a noisy-output policy. Adding noise enhances the security, but reduces
the program’s reliability, i.e., the probability that a program produces the correct
outcomes. The totally random output might achieve the best confidentiality, but
these outcomes are practically useless. Thus, it is clear that a noisy-output policy
should consider the balance between confidentiality and reliability.

This paper discusses how to construct an efficient noisy-output policy such
that the attacker cannot derive secret information from the public outcomes,
while a certain level of reliability is still preserved. Since the policy is kept in
secret, i.e., we do not want the attacker to find out that the system has been
modified, the policy needs to satisfy some properties of the system. In this way,
the noisy-output policy would help to protect the system effectively, while it still
preserves the program’s function at the same time.

Contributions. We propose a model of quantitative security analysis for pro-
grams that contain low input. This kind of programs has a vast application, i.e.,
any system with user interface. Examples of such systems include login systems,
web-based applications, or online banking systems, to name a few. We also pro-
pose to consider Cachin’s version of conditional min-entropy as a new measure
for the notion of remaining uncertainty in the model of one-try attack. Besides,
we also discuss an important property of the information flow, i.e., the quantity
of information flow might be negative. This observation might change the clas-
sical view of how to define the quantity of leakage. Finally, we give an algorithm
to generate noisy outcomes, while still preserving a certain level of the system’s
reliability. This idea can be implemented as a policy to enhance the security for
applications.

Organization of the Paper. Section 2 presents the preliminaries. Then, Sec-
tion 3 discusses the classical analysis, and presents our quantitative security
analysis model for programs that contain low input. We also show the appli-
cation of our measure. Section 4 discusses when negative information flow is
expected, and how to construct and evaluate a noisy-output policy. Section 5
discusses related work, while Section 6 concludes, and discusses future work.

80 T.M. Ngo and M. Huisman

2 Preliminaries

2.1 Probabilistic Distribution

Let X be a discrete random variable with the carrier X = {x1, . . . , xn}. A
probability distribution π over a set X is a function π : X → [0, 1], such that the
sum of the probabilities of all elements over X is 1, i.e.,

∑
xi∈X π(xi) = 1. If X is

uncountable, then
∑

xi∈X π(xi) = 1 implies that π(xi) > 0 for countably many
xi ∈ X. The probabilistic behavior of X is then simply given by probabilities
p(X = xi) = π(xi).

When X is clear from the context, we use the notation π = {p(x1), p(x2), . . . ,
p(xn)} to denote the probabilities of elements in X, i.e., p(X = xi).

2.2 Min-entropy

Let X and Y denote two discrete random variables. Let p(X = x) denote the
probability that X = x, and let p(X = x|Y = y) denote the conditional proba-
bility that X = x when Y = y.

Definition 1. The Rényi’s min-entropy of a random variable X is defined as
[24]: HRényi (X) = − log maxx∈X p(X = x).

Rényi did not define the notion of conditional min-entropy, and there are
different definitions of this notion.

Definition 2 (Smith’s version of conditional min-entropy [24]). The
conditional min-entropy of a random variable X given Y is,

HSmith (X |Y) = − log
∑
y∈Y

p(Y = y) ·max
x∈X

p(X = x|Y = y).

Definition 3 (Cachin’s version of conditional min-entropy [7]). The
conditional min-entropy of a random variable X given Y is,

HCachin (X |Y) = −
∑
y∈Y

p(Y = y) · log max
x∈X

p(X = x|Y = y).

2.3 Information-Theoretic Channel

The quantitative security analysis in the information-theoretic sense models the
system as a channel with the secret as the input and the observables as the
output. Formally, an information-theoretic channel is a triple (X,Y,M), where
X represents a finite set of secret inputs, Y represents a finite set of observable
outputs, and M is a |X| × |Y| channel matrix which contains the conditional
probabilities p(y|x) for each x ∈ X and y ∈ Y. Thus, each entry of M is a real
number between 0 and 1, and each row sums to 1.

Quantitative Security Analysis for Programs 81

2.4 Basic Settings for the Analysis

To argue why a program is considered more dangerous than another, we need
to set up some basic settings for the discussion. First, we assume that programs
always terminate, and the attacker knows its source code. To aim for simplicity
and clarity, rather than full generality, following [24], we restrict to programs
with just a single high security input S and a single low security input L. Since
the high security output is irrelevant, programs only give a low security outcome
O . Our goal is to quantify how much information about S is deduced by the
attacker who can influence L, and observe the execution traces of O , i.e., a
sequence of values of O obtained from the program’s execution. We also assume
that the sets of possible values of data are finite, as in the traditional approaches.

Secondly, we assume that there is a priori, publicly-known probability distri-
bution on the high values. We also assume that data at the same security level
are indistinguishable in the security meaning. Thus, a system that leaks the last
9 bits of private data is considered to be just as dangerous as a system that leaks
the first 9 bits. Finally, we consider the one-try guessing model, i.e., observing
the public outcomes, the attacker is allowed to guess the value of S by only one
try. This model of attack is suitable to many security situations where systems
trigger an alarm if an attacker makes a wrong guess. For the password checker,
this one-try guessing model can be understood as that an attacker is only al-
lowed to try once. If the entered string is not the correct password, the system
will block the account.

Notice that these restrictions aim to demonstrate our core idea. However, the
analysis might be adapted to more complex situations easily after some trivial
modifications.

3 Quantitative Security Analysis for Programs with Low
Input

Before introducing our model of analysis for programs that contain low input,
we present the classical models, and discuss briefly their shortcomings (see [22]
for a detailed discussion).

3.1 Classical Models of Quantitative Security Analysis

Classical works [21,9,8,20,19,28,24,6] use information theory to analyze informa-
tion flow quantitatively. A program is seen as a standard channel with S as the
input and O as the output. Let H(S) denote the uncertainty of the attacker
on the secret before executing the program, and H(S |O) the uncertainty after
the program has been executed and public outcomes are observed. The leakage
of the program is defined as L(P) = H(S) − H(S |O), where L(P) denotes the
leakage of P ; H might be either Shannon entropy or min-entropy with Smith’s
version of conditional min-entropy.

82 T.M. Ngo and M. Huisman

Classical Measures might be Counter-Intuitive. Many researchers [21,9,8,20,19,28]
quantify information flow with Shannon entropy [23]. However, Smith [24] shows
that in context of the one-try threatmodel, the Shannon-entropymeasure does not
always result in a very good operational security guarantee. In particular, Smith
[24] shows that this measure might be counter-intuitive, i.e., an intuitively more
secure program leaks more information according to the measure.

For this reason, Smith develops a new measure based on min-entropy [24]. He
defines uncertainty in terms of vulnerability of the secret to be guessed correctly
in one try. The vulnerability of a random variable X is the maximum of the
probabilities of the values of X . This approach seems to match the intuitive
idea of the one-try threat model, i.e., the attacker always chooses the value
with the maximum probability. However, in [22], we show that the measure with
Smith’s version of conditional min-entropy still results in counter-intuitive values
of leakage. Therefore, we agree with Alvim et al. [5]: no single leakage measure
is likely to suit all cases.

Leakage in Intermediate States. Classical analysis often considers only leakages
in the final states of the execution. However, for programs that contain parallel
operators, the leakages in intermediate states should also be taken into account
[27,14,25]. Consider the following example,

O := 0;
{if (O = 1) then (O := S) else skip}

∣∣∣∣O := 1;
O := 1;

For notational convenience, let C1 and C2 denote the left and right operands
of the parallel composition operator

∣∣∣∣. Executing this program, we obtain the
following traces T |O of O , depending on which thread is picked first, i.e., T |O =
[0, 1, 1] if executing C1 first, or T |O = [0, 1, S , 1] if executing C2 first.

This program does not leak information in the final states, since the final
values of O are independent of the initial value of S . However, when C2 is
executed first, the attacker is able to access S via an intermediate state.

Thus, to obtain a suitable model of quantitative security analysis, we need to
consider the leakage given by a sequence of publicly observable data obtained
during the execution of the program.

3.2 Leakage of Programs with Low Input

The only input of the information-theoretic channel is the secret. For programs
where an attacker might influence the initial value of the low variable, the initial
low value is also an input of the channel modeling the program. To use the
traditional channel, we model such a program by a set of channels. Each channel
corresponds to the case where the low input is assigned a specific value. Thus, in
our approach, the initial low value is considered as a parameter. Since we assume
that the low value set is finite, the set of channels is also finite.

We see a channel as a test. We run the analysis on the set of tests. Since
the attacker knows the program code, and is also able to influence the initial

Quantitative Security Analysis for Programs 83

low value, he knows which test would give him more secret information. Thus,
the leakage of the program that contains low input is defined as the maximum
leakages over all tests.

Given a program P that contains a low input L. Let π denote the priori
distribution on the possible values of the private data, and LVal denote the
value set of L. Let T |O denote a trace of O obtained from the execution of P ,
i.e., the sequence of O that occurs during the execution. To define the leakage
of P , we carry out the following steps.

Leakage of Programs with Low Input
1: Set up a test (P, π, L):

1.1: Choose a value for L.
1.2: Construct a channel where S is the input, L is the parameter of

the channel, and the traces T |O are the output.
2: Compute the leakage of the test (P, π, L):

L(P, π, L) = HRényi (S)−HCachin (S |L, T |O),
where HRényi (S) is the min-entropy of S corresponding to π.

3: Define the leakage of P as: L(P, π) = maxL∈LVal L(P, π, L).

Notice that Step 1 and 2 repeat for all values of L.

Measures of Uncertainty. Since we follow the one-try attack model, the initial
uncertainty is computed as Rényi’s min-entropy of S with distribution π. In this
work, we propose to use Cachin’s conditional min-entropy as a measure for the
remaining uncertainty. Notice that in the remainder of this paper, to denote our
measure, we use the notation LCachin , instead of L, to distinguish between our
measure and Smith’s measure, i.e., LSmith .

3.3 Case Studies

Below, we analyze some case studies, and compare Smith’s measure with our
measure. We show that our measure agrees more with the intuition.

Password Checker. Consider the following PWC. Let S denote the password,
L the string entered by the attacker (low input), and O the public answer,

if (S = L) then O := 1 else O := 0;

Assume that S might be A1, A2, or A3, with π = {p(A1) = 0.98, p(A2) =
0.01, p(A3) = 0.01}. Since the attacker tests L based on the value of S , there are
3 corresponding tests, i.e., L = A1, L = A2, or L = A3. The leakages of the tests
L = A2 and L = A3 are the same. Hence, we only analyze L = A1 and L = A2.

Before interacting with the PWC, the attacker believes that the password is
A1, since p(A1) dominates the other cases. Thus, in both tests, the attacker’s
initial uncertainty about S is HRényi (S) = − log 0.98 = 0.02915.

84 T.M. Ngo and M. Huisman

When L = A1, the PWC is modeled by the following channel M ,

M O = 1 O = 0
S = A1 1 0
S = A2 0 1
S = A3 0 1

The channelM and the distribution π and determine the joint probability matrix
J , where J [s , o] = π(s) ·M [s , o].

J O = 1 O = 0
S = A1 0.98 0
S = A2 0 0.01
S = A3 0 0.01

The joint probabilitymatrix J determines amarginal distribution ofO , i.e., p(o) =∑
∀s J [s , o].Thus,p(O = 1) = 0.98 andp(O = 0) = 0.02. Sincep(S = s |O = o) =

J[s,o]
p(o) , then p(S = A1|O = 1) = 1, p(S = A2|O = 1) = p(S = A3|O = 1) = 0,

and p(S = A1|O = 0) = 0, p(S = A2|O = 0) = p(S = A3|O = 0) = 0.5. Thus,
LSmith (P, π,A1) = 0.01465, while LCachin (P, π,A1) = 0.00915.

When L = A2, we obtain the following channel,

M O = 1 O = 0
S = A1 0 1
S = A2 1 0
S = A3 0 1

Thus, p(O = 1) = 0.01 and p(O = 0) = 0.99, and
p(S = A1|O = 1) = p(S = A3|O = 1) = 0, p(S =
A2|O = 1) = 1, and p(S = A1|O = 0) = 0.9899, p(S =
A2|O = 0) = 0, p(S = A3|O = 0) = 0.0101. Therefore,
LCachin (P, π,A2) = 0.01465, while LSmith (P, π,A2) =
0.01465. The measure proposed by Smith judges that
the leakages of the two tests where L = A1 and L = A2

are the same. However, this contradicts the intuition. In the test L = A1, if the
PWC answers yes, it only helps the attacker to confirm something that he already
believed to be certainly true. However, if the answer is O = 0, it does not help
the attacker at all, i.e., he still does not know whether either A2 or A3 is more
likely to be the password, since the posteriori probability p(S = A2|O = 0) is
still equal to p(S = A3|O = 0).

Intuitively, the test L = A2 helps the attacker gain more secret information. If
O = 1, it completely changes the attacker’s priori belief, i.e., the password is not
A1, and it also confirms a very rare case, i.e., the password is A2. If O = 0, this
even strengthens what the attacker’s belief about the secret, since the posteriori
probability p(S = A1|O = 0) = 0.9899 increases. The analysis should indicate
that the test L = A2 leaks more information than the test L = A1.

Thus, in this example, our measure gives results that match more the intuition.
The leakage of this PWC is defined as the leakage of the test L = A2. This
example also shows that the test in which the attacker sets the low input based
on the value that he believes to be the private data is not always the “best
test”. Since the attacker knows the source code of the program and the priori
distribution of the private data, he knows which test would give him the most
information. This is the reason that we define the leakage of a program with low
input as the maximum leakage over all tests.

Quantitative Security Analysis for Programs 85

In the general case, given π = {p(A1) = a, p(A2) = b, p(A3) = c}, whenever
a > c and b > c, Smith’s measure cannot distinguish between the test L = A1

and L = A2, while our measure can and also agrees more with the intuition
about what the leakage should be.

A Multi-threaded Program. Consider the following example,

O := 0;
{if (O = 1) then O := S/4 else O := S mod 2}

∣∣∣∣ O := 1;
O := S mod 4;

where S is a 3-bit unsigned integer with the priori uniform distribution. The
execution of this program results in the following traces of O , depending on
whether C1 or C2 is picked first:

S 0 1 2 3 4 5 6 7

T |O

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1
1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1
0 0 1 1 2 2 3 3 0 0 1 1 2 2 3 3

Consider a uniform scheduler, i.e., a scheduler that picks threads with equal
probability. It is clear that the last command O := S mod 4 always reveals the
last 2 bits of S . The first bit might be leaked with probability 1

2 , depending
on whether the scheduler picks thread C2 first or not. Thus, with the uniform
scheduler, intuitively, the real leakage of this program is 2.5 bits.

By observing the traces of O , the attacker is able to derive secret information.
For example, if the trace is 0100, the attacker can derive S precisely, since this
trace is produced only when S = 0. If the trace is 0010, the attacker can conclude
that S is either 0 or 4 with the same probability, i.e., 1

2 . If the trace is 0111,
the possible value of S is either 1 or 5, but with different probabilities, i.e., the
chance that S is 5 is 2

3 . Therefore, LCachin (P, π) = 3− (−(6
16 · log 1+

4
16 · log

1
2 +

6
16 · log

2
3)) = 2.53, while LSmith (P, π) = 3− (− log(6

16 ·1+
4
16 ·

1
2 +

6
16 ·

2
3)) = 2.58.

Consider a scheduler that picks thread C2 first with probability 3
4 . With

this scheduler, the real leakage of this program is 2.75. Our measure gives
LCachin (P, π) = 2.774, while LSmith (P, π) = 2.807. If the scheduler picks thread
C2 first with probability 1

4 , LCachin (P, π) = 2.271, while LSmith (P, π) = 2.321.
Of course in this case, the real leakage is 2.25. These results show that our
measures are closer to the real leakage values.

These case studies show that our measure is more precise than the classical
measure given by Smith’s conditional min-entropy. The main difference between
the two measures is the position of log in the expression of the remaining en-
tropy. The idea of using logarithm is to express the notion of uncertainty in
bits. Thus, the log should apply only to the probability of the guess, which
represents the uncertainty of the attacker, as in our approach. Our measure dis-
tinguishes between the probabilities of the observable and the probabilities of the
guess based on the observable. In Smith’s measure, the logarithm applies to the

86 T.M. Ngo and M. Huisman

combination of the two probabilities, and does not distinguish between them,
which might cause imprecise results.

However, as a side remark, we emphasize that no unique measure is likely
to be suitable for all cases. We believe that for some examples, measures based
on Shannon entropy or Smith’s version of conditional min-entropy might match
better the real values of leakage.

4 Adding Noise to the Output

4.1 Negative Information Flow

In relation to defining an appropriate measure for information flow quantifi-
cation, this paper also discusses a claim of the existing theory of quantitative
information flow, i.e., a quantitative measure of information leakage should re-
turn a non-negative value. The common idea of the classical analysis is that
the observation of the program’s public outcomes would enhance the attacker’s
knowledge about the private data, and consequently reduce the attacker’s initial
uncertainty.

However, we think that this non-negativeness property does not always hold.
For some applications, to enhance the confidentiality, the system operator adds
noise secretly to the output, i.e., via some output perturbation mechanism based
on randomization. The noisy outcomes might mislead the attacker’s belief about
the secret, i.e., they increase the final uncertainty. As a consequence, the value
of leakage might be negative. This idea is illustrated more as follows.

Password checker with noisy outcomes. Consider the PWC in Section 3.3. We
assume that the system operator secretly has changed its behavior, i.e., the
real PWC is a probabilistic PWC where the system operator introduced some
perturbation mechanism to the output (We assume that the attacker does not
know about the security policy applied to the system.),

if (S = L) then {O := 1 0.9[]O := 0} else {O := 0 0.9[]O := 1};

In this version, the exact answers are reported with probability 0.9, i.e., when
S = L, O = 1 is reported with probability 0.9, and O = 0 with probability 0.1.
Consider the test L = A2, the real channel M ′ is as follows,

M ′ O = 1 O = 0
S = A1 0.1 0.9
S = A2 0.9 0.1
S = A3 0.1 0.9

Notice that the attacker still thinks that the system is M , but in fact, the real
system is M ′. Based on π and M ′, the computation gives the real distribution
p(O = 1) = 0.108 and p(O = 0) = 0.892, and the real posteriori probabilities
p(S = A2|O = 1) = 0.083 and p(S = A1|O = 0) = 0.9887.

Quantitative Security Analysis for Programs 87

Before observing the outcome, the guess, i.e., the secret is A1, has 98% chance
of being correct. If the outcome is O = 0, the real posteriori probability gives the
attacker’s guess, i.e., S = A1, a 98.87% chance of being correct. This is almost
the same as the guess without the outcome. When O = 1, the attackers guesses
S = A2, since his database tells that this guess has the highest chance to be
correct. However, the real posteriori probability ensures that his guess only has
a 8.3% chance of being correct. Therefore, the outcomes of the program not only
reveal no secret information, but also cause him to decide wrongly. Therefore,
intuitively, this is a negative information flow.

As we expected, our measure indicates a negative leakage: LCachin (P, π,A2) =
− log 0.98+(0.108 log0.083+0.892 log0.9887) = −0.37, while LSmith (P, π,A2) =
−0.137. Notice that the value of the leakage is determined by the real probability
of success, not by the probability in the attacker’s database.

We believe that this observation of negative information flow has not been
reported in the literature. We think that this property would change the classical
view of how the measure of uncertainty should be, i.e., we do not need to avoid
measures that do not guarantee the non-negativeness property.

4.2 Noisy-Output Policy

The noisy outcomes change the behavior of the system, i.e., they change the
channel M that models the system (the public channel that the attacker also
knows) to M ′ (the real channel in secret). The noisy outcomes should be added
in such a way that they change the original channel, but still preserve a certain
level of reliability, e.g., the above probabilistic PWC works properly in 90%
of the time. Totally random outcomes might achieve the best confidentiality,
but these outcomes are practically useless. Besides, the noisy-output policy also
needs to satisfy some general requirements that, on one hand, help to mislead
the attacker, i.e., the attacker does not know that the system has been changed
by the policy; thus, he still uses the posteriori distributions based on M and π to
make a guess, and on the other hand, reduce the leakage. This section discusses
how to design such an efficient noisy-output policy.

Design a Policy. Given a system P that is described by a channel matrix M
of size n×m, e.g., the set of secret input values is {A1, · · · ,An}, and the set of
observable outcomes is {Z1, · · · ,Zm}.

General Requirements. Since the attacker knows π and M , he is able to compute
the marginal distribution of the output. Thus, firstly, the distribution of the
output has to be preserved by the channel M ′, where the noise has been added.
If the policy does not preserve this distribution, the attacker might find out that
the channel M has been changed, and then he will try to study the system before
making a guess, i.e., trying to get the real program code of the system.

Secondly, for each outcome Zi, assume that p(S = Aj |Zi) is the maximum pos-
teriori probability, then p′(S = Aj|Zi) is also the maximum posteriori probabil-
ity, i.e., themaximum property of the posteriori distributions has to be preserved.

88 T.M. Ngo and M. Huisman

For example, if M gives a posteriori distribution where p(S = Aj |Zi) = 0.8,
then the real posteriori probability given by M ′ might be p(S = Aj |Zi) = 0.6.
Thus, if the outcome is Zi, the attacker thinks that the guess S = Aj has
a 80% chance to be correct. However, in reality, this guess only has a 60%
chance of success. Notice that p(S = Aj |Zi) does not need to be equal to
p′(S = Aj |Zi). The preservation of the maximum property of the posteriori
distribution is necessary. Consider a uniform posteriori distribution {p(S =
A1|Zi) = p(S = A2|Zi) = p(S = A3|Zi) = 1

3} in the attacker’s database. Fol-
lowing the requirement, the posteriori distribution given by M ′ has to be also
uniform. If we do not require this, then the real distribution might possibly be
{p′(S = A1|Zi) = 0.2, p′(S = A2|Zi) = 0.7, p′(S = A3|Zi) = 0.1}. According to
his database, the attacker might guess S = A2, since all three guesses have the
same chance of being correct. In this case, the real probability would increase
the chance of success, and thus, increase the leakage.

Reliability. Reliability of a system is the probability that a system will perform
its intended function during a specified period of observation time. LetRi (Ri ≤
1) denote the reliability corresponding to the secret value Ai, i.e., the probability
that the system will produce correct outcomes when the secret is Ai. Thus, the
overall reliability of the system P is RP =

∑
i p(Ai)·Ri. The noisy-output policy

produces noise, and thus it reduces the reliability of the system. Therefore, we
require that a noisy-output should guarantee at least a certain level of reliability.

Noisy-output policy. We propose a simple policy that might reduce the unwanted
information flow, while still preserving a certain level of reliability. The following
policy only aims to demonstrate the core idea of what a noisy-output policy
should be. The practical policy might be customized due to the requirement of
the application. Given a channel M that models a system P . A noisy-output
policy changes M to M ′ by choosing an appropriate set of {R1, · · · ,Rn}.

Noisy-Output Policy
1: For each row i of M , multiply each entry of the row by the reliability variable
Ri. Choose randomly one of the smallest entries, and add the value 1 − Ri to
it. Denote this modified matrix by M ′.
2: Choose an overall reliability value that the policy has to guarantee, e.g., Rmin.
Establish an inequality:

∑
i p(Ai) · Ri ≥ Rmin.

3: For any outcome Zi, let p(O = Zi) denote the probability determined by
π and M , and p′(O = Zi) determined by π and M ′, establish an equation:
p(O = Zi) = p′(O = Zi).
4: For each outcome Zi, if ∀k. p(S = Aj |Zi) ≥ p(S = Ak|Zi), then establish the
following condition: ∀k. p′(S = Aj |Zi) ≥ p′(S = Ak|Zi).
5: Solve these equations and inequalities. The set {R1, · · · ,Rn}, are chosen in
such a way that the leakage given by M ′ is close to zero, and the reliability of
the system RP is as high as possible.

Quantitative Security Analysis for Programs 89

Notice that in Step 1, the sum of all entries of a row has to be 1; thus we have
to add the value 1−Ri to one of its entries. Step 3 establishes a set of equations,
i.e., m−1 independent equations that correspond to m−1 observable outcomes,
that preserve the output distribution. We also obtain (n− 1) ·m inequalities in
Step 4, that preserve the maximum property of the posteriori distributions.

There always exists a trivial solution R1 = · · · = Rn = 1, i.e., M and M ′

are identical. When there are multiple solutions, we choose one that gives a low
leakage, but a high overall reliability. However, this does not always happen. A
solution that guarantees a very low leakage might also give a low reliability. In
fact, a negative leakage, i.e., when the attacker decides wrongly based on the
observable outcomes, is not always necessary. The goal of the policy is to ensure
that the attacker cannot gain knowledge from the observable outcomes. Thus,
R1, · · · ,Rn are chosen such that the leakage is close to zero and the overall
reliability gets a high value. Next, we show an important property of our policy.

Theorem 1. Given a priori distribution π and a channel matrix M , the channel
matrix M ′ modified from M by the noisy-output policy always gives a leakage
quantity that is not greater than the one given by M .

Proof. For any outcome Zi, assume that the maximum likely secret is Aj. Since
p′(Zi) = p(Zi) and p′(S = Aj |Zi) = Rj · p(S = Aj |Zi), thus −p′(Zi) log p

′(S =
Aj |Zi) ≥ −p(Zi) log p(S = Aj |Zi). Therefore, the value of remaining uncertainty
given by π and M ′ is greater than or equal to the one given by π and M . As a
consequence, the corresponding leakage quantity is reduced.

Example. Consider a deterministic program P where the secret might be A1,
A2, or A3 with a uniform π = {p(A1) = p(A2) = p(A3) = 1

3}. The system P
might produce three low outcomes Z1, Z2, and Z3 as described by M ,

M Z1 Z2 Z3

S = A1 1 0 0
S = A2 0 1 0
S = A3 0 0 1

Since the attacker knows the program code, he is able to construct M in his
database. Since the public outcomes are totally dependent on the secret, the
attacker can derive the private data entirely from the outcomes, e.g., if the
outcome is Zi, the attacker knows for sure that S = Ai.

To protect the secret, the system operator might mislead the attacker by
adding noise to the output, i.e., the real system is M ′,

M ′ Z1 Z2 Z3

S = A1 R1 1−R1 0
S = A2 0 R2 1−R2

S = A3 1−R3 0 R3

Based on π and M , the attacker knows that p(O = Z1) = p(O = Z2) =
p(O = Z3) = 1

3 . To satisfy this output distribution, R1 = R2 = R3. Be-
sides, the maximum property of the posteriori distributions determines that

90 T.M. Ngo and M. Huisman

1
2 ≤ R1,R2,R2 ≤ 1. Thus, the reliability of the system is RP = R1, and for
this example, LCachin (P, π) = LSmith (P, π) = log 3R1.

Thus, a high value of R1, which guarantees a high overall reliability, also gives
a high leakage. If the goal is to reduce the leakage, we might choose R1 = R2 =
R3 = 1

2 , which gives the smallest value of leakage, i.e., log 3
2 , but also a very low

reliability. If a high reliability is required, R1 = R2 = R3 = 2
3 might be a good

choice.
Consider the PWC example, for the test L = A2, following the policy, we can

choose R1 = 0.995,R2 = 0.5,R3 = 0.99 to have LCachin (P, π,A2) = −0.00275
with the reliability R = 0.99. However, if we consider both tests, i.e., L = A1

and L = A2, R1 = R2 = R3 = 1.
As mentioned above, a noisy-output policy enhances the security, but reduces

the reliability of a system, i.e., the system does not always work in a proper way.
However, the drawback of the reduced reliability can be overcome. Consider a
situation of the PWC in which an user or an attacker provides a correct password,
but the system rejects it, and then blocks his account (the one-try model). If
this context is for the attacker, it would be very nice, since the attacker does
not have a chance to use the account again. If this context is for the real user;
however, the situation would be different: the user is still allowed to reactivate
the account by contacting the company/website administrators and proving that
he is the real owner of the account, while the attacker cannot do the same.

The other way around, i.e., when the system accepts a wrong password, is
not nice for the security. This is the reason that the policy should guarantee
a high reliability. Notice that in this situation, the system accepts the login,
but no private information is leaked, since the attacker still does not know the
correct password. Thus, in the next login, there is a high chance that the system
will reject this wrong password. Moreover, to avoid this situation, the system
might also implement two-factor authentication, i.e., in addition to asking for
something that only the user knows (e.g., user-name, password, PIN), the system
also requires something that only the user has (e.g., ATM card, smart card). The
ATM scenario illustrates the basic concept of most two-factor authentication
systems, i.e., without the combination of both ATM card and PIN verification,
authentication does not succeed.

Finally, it would be stressed that we only sketch the main idea of a noisy-
output policy. However, for practical applications, depending on the real security
requirements, the above policy might be customized, e.g., in Step 1, instead of
choosing randomly one of the smallest entries, and adding 1−Ri to it, the policy
can add to each of the smallest entries a value such that the sum of all these
values is equal to 1−Ri.

5 Related Work

Our proposal for programs with low input borrows ideas from Malacaria et al.
[20] and Yasuoka et al. [26]. However, in these works, they [20,26] do not analyze
the systems with low input sufficiently. They define the leakage of a program

Quantitative Security Analysis for Programs 91

as the leakage of a single test, while we define it as the maximum leakage of all
tests. All examples in [20] are without low input, and their measure is based on
Shannon entropy. Yasuoka et al. only consider the leakages in the final states.

Clarkson et al. [11] argue that the classical uncertainty-based analysis is not
adequate to measure information flow of programs that contain low input. To
define the leakage of the PWC, Clarkson et al. fix the value of the secret, i.e.,
the password, and the low input, i.e., by always assigning it the value that the
attacker believes to be the password, then run the analysis under that specific
circumstance. In case the value the attacker believes is not the real password, the
uncertainty-based analysis might return a negative leakage value. The authors
argue that this result flatly contradicts the intuition, i.e., from interacting with
PWC, the attacker gains more knowledge by learning that the password is not
the one that he has just entered. Based on this claim, they propose a different
approach named accuracy-based information flow analysis. This trend of research
has been expanded in [10,15,16,13]. However, the accuracy-based analysis often
results in a quantity that is inconsistent with the size of the flow, i.e., the quantity
of the secret information flow exceeds the size needed to store the secret [10].

We believe that there is a flaw in the way Clarkson et al. model the system.
Clarkson et al. fix the value of the secret. Thus, this does not capture precisely
the idea of information-theoretic channel. The information-theoretic channel has
the secret as the input, and the entropy of the input quantifies the uncertainty
involved in predicting the value of the secret. Thus, if the value of the secret is
fixed, it implies that the priori distribution on the possible values of the secret
is not valid anymore, i.e., the secret is now a certain value with the absolute
probability 1. As a consequence, the entropy of the input does not reflect the
true meaning of the initial uncertainty. Therefore, in these approaches, a wrong
channel model has led to misleading results, i.e., a negative uncertainty-based
result, or a size-inconsistent accuracy-based result.

Alvim et al. discuss limitations of the classical information-theoretic channel,
i.e., showing that it is not a valid model for interactive systems where secrets
and observables can alternate during the computation and influence each other
[4]. In [3], Alvim et al. also discuss the example of the password checker. They
fix the password by assigning it a specific value, and then consider the initial
low values as the only input to the channel. As discussed before, this idea does
not reflect the true idea of the information-theoretic channel.

Köpf et al. also consider systems with low input, i.e., cryptosystems where
the attacker can control the set of input messages [17]. However, their proposal
is only for deterministic systems, i.e., for each input, the system produces only
one output, while in our proposal, the output might be nondeterministic and
probabilistic. Besides, Köpf et al. consider a different threat model, i.e., the
multiple-try guessing model, and they put a restriction on the priori distribution
of the secret, requiring it to be uniform.

The idea of adding noise to the output comes from the differential privacy
control, i.e., the problem of protecting the privacy of database’s participants
when performing statistical queries [3,1,2]. The differential privacy control also

92 T.M. Ngo and M. Huisman

uses some output perturbation mechanism to report a noisy answer among the
correct ones for the queries. Thus, while the attacker is still able to learn prop-
erties of the population as a whole, he cannot learn the value of an individual.
To construct an efficient noisy-output policy for a statistical database, it is nec-
essary to consider the balance between privacy, i.e., how difficult to guess the
value of an individual, and utility, i.e., the capacity to retrieve accurate answers
from the reported ones. In [18], Köpf et al. also explore a similar idea to cope
with timing attacks for cryptosystems, i.e., randomizing each cipher-text before
decryption. As a consequence, the strength of the security guarantee is enhanced,
while the efficiency of the cryptosystem is decreased, since the execution time of
the cryptographic algorithm is increased.

In this work, we assume that the attacker cannot choose schedulers. The idea
is to make our measure valid for both sequential and multi-threaded programs.
Since sequential programs contain no parallel operator, the scheduler is not nec-
essary for such programs. In [22], we propose a model of analysis for multi-
threaded programs where the attacker is able to select an appropriate scheduler
to control the set of program traces. In this current work, if the attacker can
choose schedulers, i.e., if observations in our channel are not only traces, but
also include scheduling decisions at each step, our measure and the proposed
measure in [22] coincide. Notice that we did not consider the low input in [22].

6 Conclusions and Future Work

This paper discusses how to analyze quantitatively information flow of a pro-
gram that contains low input. For such programs, we adapt the traditional
information-theoretic channel by considering the initial low values as param-
eters of the channel. Besides, we also show that the value of information flow
might be negative in case the system operator adds noise to the outcomes, i.e.,
the noise misleads the attacker’s belief about the secret, and thus, it increases
the final uncertainty. We believe that this property would change the way people
often think about the measure of uncertainty. Since there is a growing appre-
ciation that no unique measure is suitable for all cases, we suggest to measure
the remaining uncertainty by Cachin’s conditional min-entropy. This new mea-
sure matches the intuition in many cases. Finally, this paper discusses how to
design an efficient noisy-output policy, which generates noisy outcomes, while
still guarantees a high overall reliability.

Future Work. The classical approaches of the one-try attack model only base
the analysis on the information of the value that the attacker believes to be the
secret. Thus, the analysis ignores the extra leakage that might be derived from
the values that the attacker disbelieves to be the secret. In the future work, we
propose to include this extra information to the analysis. We also consider to
define a measure for the multiple-try attack model.

Quantitative Security Analysis for Programs 93

Since there are many measures proposed for quantitative information flow
analysis, and no unique measure is likely to suit all contexts, it might be in-
teresting to evaluate each measure to determine under which circumstances, a
certain measure might give the best answer.

Acknowledgments. The authors would like to thank Catuscia Palamidessi and
Kostas Chatzikokolakis for many fruitful discussions. Our work is supported by
NWO as part of the SlaLoM project.

References

1. Alvim, M.S., Andrés, M.E., Chatzikokolakis, K., Palamidessi, C.: On the rela-
tion between differential privacy and quantitative information flow. In: Aceto, L.,
Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS, vol. 6756, pp. 60–76.
Springer, Heidelberg (2011)

2. Alvim, M.S., Andrés, M.E., Chatzikokolakis, K., Degano, P., Palamidessi, C.: Dif-
ferential privacy: on the trade-off between utility and information leakage. CoRR,
abs/1103.5188 (2011)

3. Alvim, M.S., Andrés, M.E., Chatzikokolakis, K., Palamidessi, C.: Quantitative in-
formation flow and applications to differential privacy. In: Aldini, A., Gorrieri, R.
(eds.) FOSAD VI 2011. LNCS, vol. 6858, pp. 211–230. Springer, Heidelberg (2011)

4. Alvim, M.S., Andrés, M.E., Palamidessi, C.: Information flow in interactive sys-
tems. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp.
102–116. Springer, Heidelberg (2010)

5. Alvim, M.S., Chatzikokolakis, K., Palamidessi, C., Smith, G.: Measuring informa-
tion leakage using generalized gain functions. In: Proceedings of the IEEE 25th
Computer Security Foundations Symposium, CSF 2012, pp. 265–279. IEEE Com-
puter Society (2012)

6. Andres, M.E., Palamidessi, C., Rossum, P., Sokolova, A.: Information hiding in
probabilistic concurrent systems. In: Proceedings of the 2010 Seventh International
Conference on the Quantitative Evaluation of Systems, QEST 2010, pp. 17–26.
IEEE Computer Society (2010)

7. Cachin, C.: Entropy Measures and Unconditional Security in Cryptography. PhD
thesis (1997)

8. Chatzikokolakis, K., Palamidessi, C., Panangaden, P.: Anonymity protocols as
noisy channels. In: Montanari, U., Sannella, D., Bruni, R. (eds.) TGC 2006. LNCS,
vol. 4661, pp. 281–300. Springer, Heidelberg (2007)

9. Clark, D., Hunt, S., Malacaria, P.: Quantitative information flow, relations and
polymorphic types. J. Log. and Comput. 15, 181–199 (2005)

10. Clarkson, M.R., Myers, A.C., Schneider, F.B.: Quantifying information flow with
beliefs. J. Comput. Secur. (2009)

11. Clarkson, M.R., Myers, A.C., Schneider, F.B.: Belief in information flow. In: In
Proc. 18th IEEE Computer Security Foundations Workshop, pp. 31–45 (2005)

12. Goguen, J.A., Meseguer, J.: Security policies and security models. In: IEEE Sym-
posium on Security and Privacy, pp. 11–20 (1982)

13. Hamadou, S., Sassone, V., Palamidessi, C.: Reconciling belief and vulnerability in
information flow. In: Proceedings of the 2010 IEEE Symposium on Security and
Privacy, SP 2010, pp. 79–92. IEEE Computer Society (2010)

94 T.M. Ngo and M. Huisman

14. Huisman, M., Ngo, T.M.: Scheduler-specific confidentiality for multi-threaded pro-
grams and its logic-based verification. In: Beckert, B., Damiani, F., Gurov, D. (eds.)
FoVeOOS 2011. LNCS, vol. 7421, pp. 178–195. Springer, Heidelberg (2012)

15. Hussein, S.H.: A precise information flow measure from imprecise probabilities. In:
Proceedings of the 2012 IEEE Sixth International Conference on Software Security
and Reliability, SERE 2012, pp. 128–137. IEEE Computer Society (2012)

16. Hussein, S.H.: Refining a quantitative information flow metric. CoRR,
abs/1206.0886 (2012)

17. Köpf, B., Basin, D.: An information-theoretic model for adaptive side-channel at-
tacks. In: Proceedings of the 14th ACM Conference on Computer and Communi-
cations Security, CCS 2007, pp. 286–296. ACM (2007)

18. Köpf, B., Dürmuth, M.: A provably secure and efficient countermeasure against
timing attacks. In: Proceedings of the 2009 22nd IEEE Computer Security Foun-
dations Symposium, CSF 2009, pp. 324–335. IEEE Computer Society (2009)

19. Malacaria, P.: Risk assessment of security threats for looping constructs. J. Com-
put. Secur. 18, 191–228 (2010)

20. Malacaria, P., Chen, H.: Lagrange multipliers and maximum information leakage
in different observational models. In: Proceedings of the Third ACM SIGPLAN
Workshop on Programming Languages and Analysis for Security, PLAS 2008, pp.
135–146. ACM (2008)

21. Moskowitz, I.S., Newman, R.E., Crepeau, D.P., Miller, A.R.: Covert channels and
anonymizing networks. In: Proceedings of the 2003 ACM Workshop on Privacy in
the Electronic Society, WPES 2003, pp. 79–88. ACM (2003)

22. Ngo, T.M., Huisman, M.: Quantitative security analysis for multi-threaded pro-
grams. CoRR, abs/1306.2693 (2013)

23. Shannon, C.E., Weaver, W.: A Mathematical Theory of Communication. Univer-
sity of Illinois Press (1963)

24. Smith, G.: On the foundations of quantitative information flow. In: de Alfaro, L.
(ed.) FOSSACS 2009. LNCS, vol. 5504, pp. 288–302. Springer, Heidelberg (2009)

25. Volpano, D., Smith, G.: Probabilistic noninterference in a concurrent language. J.
Comput. Secur. 7, 231–253 (1999)

26. Yasuoka, H., Terauchi, T.: On bounding problems of quantitative information
flow. In: Gritzalis, D., Preneel, B., Theoharidou, M. (eds.) ESORICS 2010. LNCS,
vol. 6345, pp. 357–372. Springer, Heidelberg (2010)

27. Zdancewic, S., Myers, A.C.: Observational determinism for concurrent program
security. In: Proceedings of 16th IEEE Computer Security Foundations Workshop,
CSFW 2003, pp. 29–43. IEEE Computer Society (2000)

28. Zhu, Y., Bettati, R.: Anonymity vs. information leakage in anonymity systems. In:
Proceedings of the 25th IEEE International Conference on Distributed Computing
Systems, ICDCS 2005, pp. 514–524. IEEE Computer Society (2005)

A Modeling and Formal Approach for the Precise
Specification of Security Patterns

Brahim Hamid and Christian Percebois

IRIT, University of Toulouse
118 Route de Narbonne, 31062 Toulouse Cedex 9, France

{hamid,percebois}@irit.fr

Abstract. Non-functional requirements such as Security and Dependability (S
&D) become more important as well as more difficult to achieve. In fact, the in-
tegration of security features requires the availability of both application domain
specific knowledge and security expertise at the same time. Hence, capturing and
providing this expertise by the way of security patterns can support the integra-
tion of S&D features by design to foster reuse during the process of software
system development.

The solution envisaged here is based on combining metamodeling techniques
and formal methods to represent security pattern at two levels of abstraction fos-
tering reuse during the process of pattern development and during the process of
pattern-based development. The contribution of this work is twofold: (1) An im-
provement of our previous pattern modeling language for representing security
pattern in the form of a subsystem providing appropriate interfaces and targeting
security properties, (2) Formal specification and validation of pattern properties,
using the interactive Isabelle/HOL proof assistant. The resulting validation arti-
facts may mainly complete the definitions, and provide semantics for the inter-
faces and the properties in the context of S&D. As a result, validated patterns
will be used as bricks to build applications through a Model-Driven engineering
approach.

Keywords: Pattern, Metamodel, Domain, Formalization, Model-Driven
engineering, Security.

1 Introduction

Recent times have seen a paradigm shift in terms of design by combining multiple soft-
ware engineering paradigms, namely, Model-Driven Engineering (MDE) [20] and for-
mal methods [25]. Such a paradigm shift is changing the way systems are developed
nowadays, reducing development time significantly. Embedded systems [26] are a case
where a range of development approaches have been proposed. The most popular are
those using models as main artifacts to be constructed and maintained. In these ap-
proaches, software development consists of model specification and transformations. In
addition to MDE, pattern-based development has gained more attention recently in soft-
ware engineering by addressing new challenges that were not targeted in the past. In
fact, they are applied in modern software architecture for distributed systems including
middlewares, real-time embedded systems, and recently in security and dependability
engineering.

J. Jürjens, F. Piessens, and N. Bielova (Eds.): ESSoS 2014, LNCS 8364, pp. 95–112, 2014.
c© Springer International Publishing Switzerland 2014

96 B. Hamid and C. Percebois

Unfortunately, most of security patterns are expressed as informal indications on
how to solve some security problems, using template like traditional patterns [1,6].
These patterns do not include sufficient semantic descriptions, including those of se-
curity and dependability concepts, for automated processing within a tool-supported
development and to extend their use. Furthermore, due to manual pattern implementa-
tion, the problem of incorrect implementation (the most important source of security
problems) remains unsolved. For that, model driven software engineering can provide a
solid basis for formulating design patterns that can incorporate security aspects and for
offering these patterns at several levels of abstraction.

In this paper, we leverage on this idea to propose a new framework for the specifica-
tion and the validation of security patterns intended for systems with stringent security
requirements. Reaching this target requires to get a common representation of such a
modeling environment for several domains and the ability to customize them for a spe-
cific domain. Here we propose two additional and complementary types of represen-
tations: a semi-formal representation through metamodeling techniques and a rigorous
formal representation through interactive theorem proving approaches. Regarding the
comparison with documentation template [6] (informal representation) used to repre-
sent security patterns, our proposition is based on it. However, we keep the template
elements in the form of attributes and we deeply refine them by the definition of new
concepts in order to fit with security engineering needs. In this vision, a security or (in
general an S&D) pattern is a subsystem exposing pattern functionalities through inter-
faces and targeting security properties. As it follows the MDE paradigm for system’s
design, using patterns on different levels of abstraction, it allows for integration into the
system’s design process, hence supports this process. To this end, the proposed repre-
sentation takes into account the simplification and the enhancement of such activities,
namely: selection/search, based on the classified properties, and integration, based on a
high level description of interfaces.

The rest of this paper is organized as follows. An overview of the modeling approach
we proposed including a set of definitions is presented in Section 2. Then, Section 3
presents the pattern modeling language and illustrates the pattern modeling process in
practice. Section 4 presents the validation process through the example of the secure
communication pattern. In Section 5, we review most related works addressing pat-
tern specification and validation. Finally, Section 6 concludes this paper with a short
discussion on future works. An appendix is added with the Isabelle/HOL code of our
experiment.

2 The Nature of Patterns within PBSE (Pattern-Based System and
software Engineering)

Usually, pattern design artifacts are provided as a library of models (subsystems) and as
a system of patterns (framework) in the more elaborated approaches. However, there are
still lacks in existing modeling languages and/or formalisms dedicated to model these
design artifacts and the way how to reuse them in software development automation.
The supporting research activities examine three distinct challenges: mining - discover-
ing patterns from existing systems, hatching - selection of the appropriate pattern and
application - effective use during the system development process.

A Modeling and Formal Approach for the Precise Specification of Security Patterns 97

In our work, we study only the two last challenges, targeting the (i) development
of an extensible design language for modeling patterns for secure and dependable dis-
tributed embedded systems and (ii) a methodology to improve existing development
processes using patterns. The language has to capture the core elements of the pat-
tern to help its (a) precise specification, (b) selection and (c) integration. Supporting
research tackles the presented challenges includes domain patterns, pattern languages
and recently formalisms and modeling languages to foster their application in practice.
Here, we propose a novel approach to improve the security pattern representation by
the combination of semi-formal semantics and rigorous formal semantics of some of its
concepts.

2.1 Motivational Example: Secure Communication Pattern (SCP)

As example of a common and a widely used patterns we choose the Secure Communi-
cation Pattern referred to in the following as SCP. Messages passing across any public
network can be intercepted. The problem is how to ensure that data being across this
system is secure in transit. In other words, how to guarantee data authenticity. This is
one of the goal to use the SCP.

However, those SCP are slightly different with regard to the application domain. For
instance, a system domain has its own mechanisms and means to serve the implemen-
tation of this pattern using a set of protocols ranging from SSL, TLS, Kerberos, IPSec,
SSH, WS-Security and so on. In summary, they are similar in the goal, but different
in the implementation issues. So, the motivation is to handle the modeling of security
patterns by following abstraction. In the following, we propose to use SSL mechanisms
1 to specialize the implementation of the SCP.

The establishment of a secure channel is composed of two phases. First, the client
informs the server of the cryptographic algorithms it can handle. The actual choice
is always made by the server, which reports its choice back to client. In the second
phase, authentication takes place. The server is required to authenticate itself. It sends a
certificate containing its public key signed by a certification authority CA to the client.
In order to authenticate the client by the server, the client has to send a certificate to the
server as well. The client generates a random number that will be used by both sides for
building a session key, and sends this number to the server, encrypted with the server’s
public key. In the case of client required authentication, the client signs the number with
its private key. At that point, the sever can verify the identity of the client, after which
the secure channel can be established.

2.2 Definitions and Concepts

In [6], a design pattern abstracts the key artifacts of a common design structure that
make it useful for creating a reusable object-oriented design. Several generalizations on
this basis to describe software design patterns in general are proposed in literature. We
quote the following definition of security patterns from [21]:

1 SSL or its update named TLS proposed in RFC 2246.

98 B. Hamid and C. Percebois

Definition 1 (Security Pattern). A security pattern describes a particular recurring
security problem that arises in specific contexts and presents a well-proven generic
scheme for its solution.

Security patterns are not only defined from a platform independent viewpoint (i.e.
they are independent from the implementation), they are also expressed in a consistent
way with domain specific models. Consequently, they will be much easier to under-
stand and validate by application designers in a specific area. To capture this vision,
we introduced the concept of domain view. Particularly a security pattern at domain
independent level exhibits an abstract solution without specific knowledge on how the
solution is implemented with regard to the application domain.

Definition 2 (Domain). A domain is a field or a scope of knowledge or activity that is
characterized by the concerns, methods, mechanisms, ... employed in the development
of a system. The actual clustering into domains depends on the given group/community
implementing the target methodology.

In our context, a domain represents all the knowledge including protocols, processes,
methods, techniques, practices, OS, HW systems, measurement and certification related
to the specific domain. With regard to the artifacts used in the system under develop-
ment, we will identify the first classes of the domain to specialize such artifacts. For
instance, the specification of a pattern at domain independent point of view is based on
the software design constructs. The specialization of such a pattern for a domain uses a
domain protocol to implement the pattern solution (see example of secure communica-
tion pattern given in Section 3.2.1 and Section 3.2.2).

The objective is to reuse the domain independent model security patterns for sev-
eral industrial application domain sectors and also let them be able to customize those
domain independent patterns with their domain knowledge and/or requirements to pro-
duce their own domain specific artifacts. Thus, the ’how’ to support these concepts
should be captured in the specification languages.

3 Pattern Modeling Process

We now present an overview of our pattern specification process. Along this description,
we will give the main keys to understand why our process is based on a general and a
constructive approach. We begin with our pattern specification metamodel.

3.1 Pattern Specification Metamodel (SEPM)

To foster reuse of patterns in the development of critical systems with S&D require-
ments, we are building on a metamodel for representing security pattern in the form
of a subsystem providing appropriate interfaces and targeting security properties to en-
force the S&D system requirements. Interfaces will be used to exhibit pattern’s func-
tionality in order to manage its application. In addition, interfaces support interactions
with security primitives and protocols for the specialization for a specific application
domain. The principal classes of the System and Software Engineering Pattern Meta-
model (SEPM) [11] are described with Ecore notations in Figure 1. Their meanings are
more detailed in the following paragraphs.

A Modeling and Formal Approach for the Precise Specification of Security Patterns 99

Fig. 1. The SEPM metamodel - Overview

– SepmPattern. This block represents a security pattern as a subsystem describing a solution
for a security particular recurring design problem that arises in specific design context. A
SepmPattern defines its behavior in terms of provided and required interfaces. Larger pieces
of a system’s functionality may be assembled by reusing patterns as parts in an encompassing
pattern or assembly of patterns, and wiring together their required and provided interfaces.
A SepmPattern may be manifested by one or more artifacts.

– SepmDIPattern. It is an SepmPattern denoting some abstract representation of a security
pattern at domain independent level. This is the key entry artifact to model patterns at domain
independent level (DIPM).

– Interface. A SepmPattern interacts with its environment with Interfaces which are composed
of Operations. A SepmPattern owns provided and required interfaces. A provided interface
highlights the services exposed to the environment. A required interface corresponds to ser-
vices needed by the pattern to work properly. We consider two kinds of interface:

• External interface. Allows implementing interaction with regard to the integration of a
pattern into an application model or to compose patterns.

• Technical interface. Allows implementing interaction with security primitives and pro-
tocols, such as encryption, and specialization for specific underlying software and/or
hardware platforms, mainly during the deployment activity. Please note, a SepmDIPat-
tern does not have TechnicalInterfaces.

– Property. Is a particular characteristic of a pattern related to the concern it is dealing with
and dedicated to capture its intent in a certain way. For instance, security properties. Each
property of a pattern will be validated at the time of the pattern validating process and the
assumptions used, will be compiled as a set of constraints which will have to be satisfied by
the domain application.

– SepmDSPattern. Is a refinement of a SepmDIPattern. It is used to build a pattern at at domain
specific level (DSPM). Furthermore a SepmDSPattern has Technical Interfaces in order to
interact with the platform. This is the key entry artifact to model pattern at DSPM.

3.2 Specification Process

We propose an iterative specification process consisting of the following phases: (1) the
specification of the pattern at domain independent level (DIPM), (2) the refinement of

100 B. Hamid and C. Percebois

DIPM pattern to specify one of its representations at domain specific level (DSPM).
These two levels of the secure communication pattern presented in Section 2.1 are il-
lustrated. For the sake of clarity, many functions and artifacts of this pattern have been
omitted. We only detail the properties and interfaces that we need to describe the vali-
dation process. Note that the artifacts representing the formalization and the proof are
detailed in Section 4.

The first step in our specification process is the understanding of the pattern’s in-
formal representation. The target representation is the SEPM metamodel, simplified in
Figure 1 for the purpose of our study (semi-formal and formal representation of secu-
rity pattern). The informal description given in Section 2.1 reflects our understanding
from the representation of secure communication pattern given in literature [22]. At the
DIPM level this description reveals the following elements: interfaces of type SepmEx-
ternalInterface and security properties of type SepmProperties. At the DSPM level, the
description reveals the following elements: interfaces of type SepmExternalInterface
and SepmTechnicalInterface and security properties of type SepmProperties. The de-
scription with varying levels of abstraction is managed by inheritance. Once there is a
good understanding of the pattern informal representation structure, the pattern can be
specified using the SEPM metamodel. The first step is to create an instance of SepmPat-
tern. The instance is given a set of attributes representing the pattern. In our example,
an instance of SepmPattern is created and named ’SecureCommPattern’.

Once the basic pattern subsystem has been specified, interfaces are added to expose
some of the pattern’s functionalities. For each such interface, an instance of SepmExter-
naInterface is added to the pattern’s interfaces collection. The next step after creating
interfaces is the creation of properties instances. An instance is created in the pattern’s
properties collection to specify every identified security property. A property is given
a name and an expression on external interfaces in a property language. A complete
specification of this pattern at both DIPM and DSPM levels is described below.

3.2.1 Domain Independent Pattern Model (DIPM). At DIPM level, the security
pattern subsystem and its related elements are created by inheritance. In our example,
the DIPM of the secure communication pattern consists of:

– External Interfaces. The secure communication pattern exposes its functionalities
through an external interface offering the following function calls:
- Send(P,Q, ch(P,Q),m),
- Receive(P,Q, ch(P,Q),m), with P,Q ∈ {C, S}, ch(C,S) = ch(S,C) denoting the
communication channel of client and server, and m a message.

– Properties. At this level, we specify the security property: “authenticity of sender
and receiver”. We denote this property as auth(Send(C, S, ch(C, S),m),
Receive(S,C, ch(C, S),m), S) where the server S invokes the primitives
Send(C, S, ch(C, S),m) and Receive(S,C, ch(C, S),m).

3.2.2 Domain Specific Pattern Model (DSPM). At DSPM level, the security pattern
and some of its related elements are also created by inheritance. Once a SEPMDSPAT-
TERN is created, every pattern external interface is identified and modeled as a refine-
ment of the SEPMEXTERNALINTERFACE in the pattern’s interfaces collection. Then,

A Modeling and Formal Approach for the Precise Specification of Security Patterns 101

each of the pattern’s technical interface is identified and modeled by an instance of
SepmTechnicalInterface in the pattern’s interfaces collection. The next step is the spec-
ification of properties. Each property is represented by an instance of SepmProperty in
the pattern’s properties collection. A property is given a name and an expression on
external and technical interfaces in a property language.

For instance, when using SSL as a mechanism related to the application domain to
refine the secure communication pattern at DSPM, we manage the following artifacts:

– External Interfaces. The DS external interface, a refinement of the DI external in-
terface, can be specified as follows:
- send(C,S,macC(m),m): The client C sends m and the corresponding MAC (Message
Authentication Code) to the server S.
- recv(S,C,macC(m),m): The server receives m and corresponding MAC.

– Technical Interfaces. The most important functions of the DS technical interface of
the SSL pattern can be specified as follows:
- genRand(C,RC), genRand(S,RS): Client/server generate a random number.
- verifyCert(): Client/server verify each others certificate and extract the respective public
key.
- encrypt(C, pubKeyS, RC): The client encrypts its random number using the server’s
public key.
- sign(C, . . .): The client signs the SSL handshake messages.
- verifySig(S, . . .): The server verifies the client’s signature.
- genMac(C,macKeyC , m,macC(m)): The client generates the MAC for message m

using its own SSL shared secret for MAC generation.
- verifyMac(S,macKeyC ,m,macC(m)): The server verifies, using its shared secret for
MAC verification (i.e. the client’s key for MAC generation), that the MAC for m is correct
and thus originates from the client.
- send(), recv(): Send and receive of the SSL messages by client and server, respectively.

– Properties. In addition to the refinement of the authenticity property identified in
the DIPM, at this level we may identify some related resource properties, e.g. the
size of the cryptographic key.

4 Pattern Validation Process

We propose to use the interactive Isabelle/HOL proof assistant [17] for formalizing
security patterns. The formal specification and verification of a pattern is represented
through an Isabelle theory. It consists of a set of types, functions and theorems. In some
situations, intermediate lemmas have been introduced in order to simplify what we have
to prove.

We have defined a set of transformation rules to map the pattern metamodel concepts
onto those of Isabelle/HoL. In our case, we focus on interfaces and properties. These in-
terfaces provide functionalities through function calls that are encoded as actions whose
parameters are agents and data. On the other side, pattern properties denote some ex-
pected outcomes over these actions. A property is given a name and an expression on
agents and actions. Sometimes a property may refer to another property.

102 B. Hamid and C. Percebois

Each concept involved in the modeling of interfaces and properties is translated in Is-
abelle as an abbreviation, i.e. a new name for an existing construction, using data-types,
records and definitions. For instance, the record action and the abbreviation createAc-
tion allow to create the Send and Receive actions. Following this definitional approach,
we build the pattern specification from the bottom.

The designer can then extend this theory by verifying properties using the Isabelle
scripting language for writing proofs using tactics. The goal now is to identify the set of
assumptions required to prove the properties. Then, the proof consists to find a schedul-
ing of valid steps using Isabelle’s tactics such as applying a simplification considering
that each step corresponds to a sub-goal to resolve (command apply). Our proof only
uses simplification rules which consist in rewriting specified equations from left to right
in the current goal (command simp).

Correctness of the proof is guaranteed by construction from the first goal to re-
solve (a lemma or a theorem) until the message “no sub-goals” is produced by the
framework which confirms that the proof is finished (command done). For instance,
to prove the authenticity property expressed as the goal lemma authSendReceive :
′′auth Send Receive server′′ with respect to the definition auth, each subgoal auth,
Send, Receive, . . . is rewritten according to its definition.

In the following, we apply the formalization and the verification processes to both
DIPM and DSPM levels, and then we present the poof that the DIPM is an abstraction
of the DSPM. The definitions introduced below are extracted from the code of our
experiment. Definitions mainly concern the refinement process of SCP from the DIPM
model to the DSPM model, using the SSL mechanism for the application domain.

4.1 Pattern Formalization

We first introduce the main concepts of authenticity, precedence and trust that are rele-
vant for SCP. We call a particular action a authentic for an agent P after a sequence of
actions if in all sequences that P considers to have possibly happened a must have hap-
pened. This is modeled by the auth(a, b, P) predicate which denotes that whenever a
particular action b has happened, it must be authentic for agent P that action a has hap-
pened as well. In the same way, precede(a, b) holds if all action sequences in the sys-
tem’s behavior that contain an action b also contain an action a. Finally, trust(P, prop)
means that P trusts a property prop to hold in the system if the property holds in the
agent’s conception of the system. The following gives types for these predicates in
Isabelle.

auth ::′′ action => action => agent => bool′′

precede ::′′ action => action => bool′′

trust ::′′ agent => property => bool′′

Before encoding the authenticity relation in Isabelle/HOL, one has to define what
are an action, an agent and a property. All three are records i.e. tuples, with a name
attached to each component. They will be independently introduced when defining the
DIPM and DSPM pattern models respectively in Figure 2 and Figure 3.

A Modeling and Formal Approach for the Precise Specification of Security Patterns 103

1 : r e c o r d a c t i o n = a g e n t 1 : : " agen tType "
a g e n t 2 : : " agen tType "
c h a n n e l : : " f u n c t o r T y p e "
message : : " messageType "

2 : d e f i n i t i o n c r e a t e A c t i o n : : " agen tType ==> agen tType ==> f u n c t o r T y p e ==>messageType==>
a c t i o n " where " c r e a t e A c t i o n a1 a2 ca me== a g e n t 1 =a1 , a g e n t 2 =a2 , c h a n n e l =ca , message=me"
3 : d e f i n i t i o n Send : : " a c t i o n " where " Send == c r e a t e A c t i o n C S ch m"
4 : d e f i n i t i o n Rece ive : : " a c t i o n " where " Rece ive == c r e a t e A c t i o n S C ch m"
5 : r e c o r d p r o p e r t y = a c t i o n 1 : : " a c t i o n "

a c t i o n 2 : : " a c t i o n "
6 : d e f i n i t i o n c r e a t e P r o p e r t y : : " a c t i o n ==> a c t i o n ==> p r o p e r t y " where
" c r e a t e P r o p e r t y a1 a2 == a c t i o n 1 =a1 , a c t i o n 2 =a2 "
7 : d e f i n i t i o n p r e c e d e : : " a c t i o n ==> a c t i o n ==> p r o p e r t y " where
" p r e c e d e a1 a2 == c r e a t e P r o p e r t y a1 a2 "
8 : d e f i n i t i o n p r e c e d e S e n d R e c e i v e : : " p r o p e r t y " where
" p r e c e d e S e n d R e c e i v e == p r e c e d e Send Rece ive "
9 : r e c o r d a g e n t = name : : " agen tType "

a c t i o n s : : " a c t i o n s e t "
p r o p e r t i e s : : " p r o p e r t y s e t "

1 0 : d e f i n i t i o n c r e a t e A g e n t : : " agen tType ==>(a c t i o n s e t)== >(p r o p e r t y
s e t)== > a g e n t " where " c r e a t e A g e n t a a s ps == name=a , a c t i o n s =as , p r o p e r t i e s =ps "
1 1 : d e f i n i t i o n c l i e n t : : " a g e n t " where " c l i e n t == c r e a t e A g e n t C { Send } {}"
1 2 : d e f i n i t i o n s e r v e r : : " a g e n t " where
" s e r v e r == c r e a t e A g e n t S { Send , Rece ive } { p r e c e d e S e n d R e c e i v e }"
1 3 : d e f i n i t i o n a u t h : : " a c t i o n ==> a c t i o n ==> a g e n t ==> boo l " where
" a u t h a1 a2 a == a1 IN (a c t i o n s a) AND a2 IN (a c t i o n s a) "
1 4 : d e f i n i t i o n t r u s t : : " a g e n t ==> p r o p e r t y ==> boo l " where
" t r u s t a p == p IN (p r o p e r t i e s a) "
1 5 : d e f i n i t i o n a u t h I f T r u s t : : " a c t i o n ==> a c t i o n ==> a g e n t ==> boo l " where
" a u t h I f T r u s t a1 a2 a == t r u s t a (p r e c e d e a1 a2)−> a u t h a1 a2 a "

Fig. 2. The DIPM formalization of the Secure Communication Pattern

4.1.1 Domain Independent Pattern Model (DIPM). As previously defined in Sec-
tion 3.2.1, the secure communication pattern exposes its functionalities through the two
primitivesSend andReceive. Applying the previous definition auth, we have to define
these two primitives at the DIPM level. Figure 2 highlights the corresponding formal-
ization in Isabelle owing to the createAction definition and the Send and Receive
constants (lines 2-4). In the same way, an agent is introduced by the createAgent defi-
nition and the subject constant nominates the active computational entity of the pattern
(line 10). The modeled cooperating system is so composed of a set of agents (e.g. some
clients and a server) and a set of actions (e.g. the Send and Receive interface actions
introduced above). We consider that the set of all possible sequences of actions mod-
els the behavior of the system and that an agent’s initial knowledge about the system
consists of all traces the agent initially considers possible. An agent may assume for
example that a message that was received must have been sent before, and this is the
case for any validation of a security property holding in a system. In our example, the
SCP’s DIPM level states that a Receive action from a client C using a specific channel
ch is always preceded by the respective Send generation action triggered by the server
S (line 8).

4.1.2 Domain Specific Pattern Model (DSPM). The formal model corresponding
to the DSPM introduced in Section 3.2.2, as the refinement of the DIPM using the
SSL mechanism, contains the same set of agents, namely C and S. Figure 3 depicts

104 B. Hamid and C. Percebois

1 : r e c o r d ac t ionMac = a g e n t : : " agen tType "
f u n c t o r 1 : : " f u n c t o r T y p e "
d a t a : : " messageType "
f u n c t o r 2 : : " f u n c t o r T y p e "

2 : d e f i n i t i o n c r e a t e A c t i o n M a c : : " agen tType ==> f u n c t o r T y p e ==>messageType ==>
f u n c t o r T y p e ==> ac t ionMac " where " c r e a t e A c t i o n M a c a f1 d f2 == (a g e n t =a ,
f u n c t o r 1 =f1 , d a t a =d , f u n c t o r 2 = f2) "
3 : d e f i n i t i o n genMac : : " ac t ionMac " where
" genMac == c r e a t e A c t i o n M a c C macKey m mac "
4 : d e f i n i t i o n ve r i fyMac : : " ac t ionMac " where " ve r i fyMac == c r e a t e A c t i o n M a c S
macKey m mac "
5 : r e c o r d prope r tyMac = a c t i o n 1 : : " ac t ionMac "

a c t i o n 2 : : " ac t ionMac "
6 : d e f i n i t i o n c r e a t e P r o p e r t y M a c : : " ac t ionMac ==> ac t ionMac ==> proper tyMac " where
" c r e a t e P r o p e r t y M a c a1 a2 == (a c t i o n 1 =a1 , a c t i o n 2 =a2) "
7 : d e f i n i t i o n p r e c e d e : : " ac t ionMac ==> ac t ionMac ==> proper tyMac " where
" p r e c e d e a1 a2 == c r e a t e P r o p e r t y M a c a1 a2 "
8 : d e f i n i t i o n precedeGenMacVerifyMac : : " p rope r tyMac " where
" precedeGenMacVerifyMac == p r e c e d e genMac ve r i fyMac "
9 : r e c o r d a g e n t = name : : " agen tType "

a c t i o n s M a c : : " ac t ionMac s e t "
ac t ionsRandom : : " act ionRandom s e t "
a c t i o n s K e y : : " a c t i o n K e y s e t "
p r o p e r t i e s M a c : : " p rope r tyMac s e t "
p r o p e r t i e s R a n d o m : : " proper tyRandom s e t "
p r o p e r t i e s K e y : : " p r o p e r t y K e y s e t "

1 0 : d e f i n i t i o n c r e a t e A g e n t : : " agen tType ==>(ac t ionMac s e t)== >(act ionRandom s e t)
== >(a c t i o n K e y s e t)== >(prope r tyMac s e t)== >(proper tyRandom s e t)== >(p r o p e r t y K e y
s e t)==> a g e n t " where " c r e a t e A g e n t a asm a s r ask psm p s r psk == (name=a , a c t i o n s M a c =asm ,
ac t ionsRandom = a s r , a c t i o n s K e y =ask , p r o p e r t i e s M a c =psm , p r o p e r t i e s R a n d o m = psr ,
p r o p e r t i e s K e y =psk) "
1 1 : d e f i n i t i o n s e r v e r : : " a g e n t " where " s e r v e r == c r e a t e A g e n t S {genMac , ve r i fyMac }
{ genRand } { privKeyS , privKeyCA } { precedeGenMacVerifyMac } { notPrecedeGenRandGenRand }
{ confPr ivKeyS , confPrivKeyCA }"
1 2 : d e f i n i t i o n t r u s t M a c : : " a g e n t ==> proper tyMac ==> boo l " where
" t r u s t a p == p IN (p r o p e r t i e s M a c a) "

Fig. 3. The DSPM formalization of the Secure Communication Pattern

some of these DSPM artifacts using the Isabelle definitions. Its actions correspond to
the external and technical DS interface function calls. They can be considered as a
refinement of the actions of the DIPM formal model. The code defines also a specific
DSPM server S suitable for the SSL protocol (line 11). The security property that is
provided by this SSL pattern and that corresponds to the trust property assumed to
hold for the DIPM model is that the server trusts into the precedence of its own MAC
verification action by the MAC generation action of the client (line 12).

4.2 Pattern Validation

Now we present the verification of the secure communication pattern at both DIPM and
DSPM levels.

4.2.1 Domain Independent Pattern Model (DIPM). The DIPM formal model of
Figure 2 defines the SCP’s collaborative agents of the pattern refined at Figure 3 using
the SSL mechanism. The former figure also introduces the Send and Receive actions
corresponding to the external DI interface (lines 3 and 4). We further assume that each
agent can only see its own actions. According to Section 3.2.1, the required authenticity

A Modeling and Formal Approach for the Precise Specification of Security Patterns 105

property is expressed as: lemma authSendReceive : ′′auth Send Receive server′′

(P-DI)
In order to prove this constraint between Send and Receive messages, we use the

result of [5] which states that the properties trust(P, precede(a, b)) and auth(b, c, P)
imply the property auth(a, c, P). Setting b = c and instantiating a, b, P with the con-
crete Send and Receive actions and the server S of property P-DI, we conclude that
P-DI holds if the following properties (assumptions) hold:
- lemma trustSendReceive : ′′trust server precedeSendReceive′′ (A-DI)
- lemma authReceiveReceive : ′′auth Receive Receive server′′

We may assume that the latter property holds because any action identified by the server
is authentic. Hence, this concludes our proof with respect to the DIPM model the as-
sumption (A-DI) must be assumed to hold.

We emulate these constraints in Isabelle by the theorem:
theorem authIfT rustSendReceive : ′′authIfT rust Send Receive server′′

which terminates the P-DI proof of the DIPM model assuming the assumption A-DI.
For simplification purpose, we consider that trust of the server into the precedence of a
corresponding Receive action by a client Send action is given by the set membership
relation of the same action to the set of actions of mapped agents. Recall that Figure 2
introduces the definitions which encodes the precedence, auth and trust properties be-
tween a Send action and a Receive action for the couple client and server (lines 8, 13,
14 and 15).

The fact that no more DIPM definition can be applied shows that we now have to
consider the DSPM level, i.e. we have to find and validate the SSL implementation that
provides an equivalent property. This will be discussed in the next paragraph.

4.2.2 Domain Specific Pattern Model (DSPM). The security property that is pro-
vided by this SSL pattern and that corresponds to the trust property assumed to hold
for the DIPM model is that the server trusts into the precedence of its own signature
verification action by the signature generation action of the client:

lemma trust : ′′trust server precedeGenMacV erifyMac′′ (P-DS)
In order to prove P-DS, we isolate assumptions provided by the SSL protocol as a

random number is only generated once, the server trusts into the confidentiality of its
own private RSA key and into the confidentiality of the certificate authority’s private
key. These statements captures the semantics of an RSA encryption and allows to con-
clude that S trusts in the confidentiality of the shared secrets derived from the SSL
handshake and yields that indeed property P-DS holds. For more details, the complete
proof was introduced in [11]. In our case, we introduce the genMac and verifyMac
actions and their temporal dependency precedeGenMacV erifyMac, as illustrated by
Figure 3 (lines 3, 4 and 8). We also defined the trust predicate for the DSPM server (line
12). This predicate will be used by the refinement process from the DIPM model to the
DSPM model (line 1 of Figure 4).

We synthesize the P-DS proof by introducing the genMac and verifyMac actions
and their temporal dependency precedeGenMacV erifyMac, as illustrated by Fig-
ure 3 (lines 3, 4 and 8). However we need what is trust for a DSPM server; this is

106 B. Hamid and C. Percebois

defined by the code of line 12. This predicate will be used by the refinement process
from the DIPM model to the DSPM model (see line 1 of Figure 4).

4.3 Correspondence between DIPM and DSPM

Note that a system specification does not require a particular level of abstraction. Dif-
ferent formal models of the same system are partially ordered with respect to different
levels of abstraction. Formally, abstractions can be mapped to action sequences of a
finer abstraction level to action sequences of a more abstract level while respecting
concatenation of actions.

Correspondence between the DIPM and DSPM formal models is assumed when
proving that the property introduced at the DIPM model is transferred to the DPSM
model. More precisely, this means that the DIPM model is an abstraction of the DSPM
model. In particular, we must show that using a specific mechanism for verifying the
property together with function calls of the specific domain is a specific case of proving
the upper-level property.

We so have to map actions of the DSPM model onto the actions of the DIPM model
by an appropriate homomorphism h and then prove that this homomorphism preserves
trust in precede. In practice, h is required to preserve each operation or a pseudo-
operation which summarizes the behavior of a set of operations. Figure 4 specifies h
in Isabelle and the resulting trustWithH theorem.

1 : d e f i n i t i o n h : : " (DSPM. a c t i o n ∗ DIPM . a c t i o n) l i s t " where
" h == [(genMac , Send) , (ver i fyMac , Rece ive)] "
2 : d e f i n i t i o n b u i l d P r o p e r t y : : " (DSPM. a c t i o n ∗ DIPM . a c t i o n) l i s t ==>DSPM. p r o p e r t y "
where " b u i l d P r o p e r t y l == DSPM. p r o p e r t y . a c t i o n 1 = f s t (n t h l 0) ,
DSPM. p r o p e r t y . a c t i o n 2 = f s t (n t h l 1) "
3 : d e f i n i t i o n applyH : : " (DSPM. a c t i o n ∗ DIPM . a c t i o n) l i s t ==>DIPM . p r o p e r t y " where
" applyH l ==DIPM . p r o p e r t y . a c t i o n 1 =snd (n t h l 0) , DIPM . p r o p e r t y . a c t i o n 2 =snd (n t h l 1) "
4 : d e f i n i t i o n buildAndApplyH : : "DSPM. a g e n t ==>DIPM . a g e n t ==>
(DSPM. a c t i o n ∗ DIPM . a c t i o n) l i s t ==> boo l " where
" buildAndApplyH a1 a2 l == DSPM. t r u s t a1 (b u i l d P r o p e r t y l)−>
DIPM . t r u s t a2 (applyH l) "
5 : theorem t r u s t W i t h H : " buildAndApplyH DSPM. s e r v e r DIPM . s e r v e r h "

Fig. 4. Proving trust in precede for the Secure Communication Pattern

Since we assume property A-DI to hold for the DIPM model, all server Receive
actions are preceded by a client Send action in the server’s abstract initial knowledge.
On the other hand, the server’s concrete initial knowledge reflects the MAC mechanism,
i.e. reflects that a verifyMac action is always preceded by the respective genMac
action. This is assumed by the buildProperty definition of Figure 4 (line 2) introduced
as assumption and by the precedeGenMacV erifyMac definition of Figure 3 (line 8).

Note that we consider P-DS as the premise of an implication where
DSPM.trust a1 (buildProperty l) refers to trust for the DSPM model of Figure 3,
while DIPM.trust a2 (applyH l) refers to trust for the DIPM counterpart of Fig-
ure 2. More generally, the DIPM and DSPM call or type prefixes of Figure 4 are related
to each modeling. Thereby, setting up and proving the trustWithH theorem (line 5) re-
quires defining both a DIPM server and a DSPM server; these two servers have the same

A Modeling and Formal Approach for the Precise Specification of Security Patterns 107

functionality in practice. Based on these assumptions, the homomorphism h preserves
trust into precedence and property A-DI transferred to the DSPM model is identical to
property P-DS.

5 Related Works

Design patterns are a solution model to generic design problems, applicable in spe-
cific contexts. Supporting research tackles the presented challenges includes domain
patterns, pattern languages and recently formalisms and modeling languages to foster
their application in practice. To give an idea of the improvement achievable by using
specific languages for the specification of patterns, we look at pattern formalization and
modeling problems targeting the integration of the pattern specification and validation
steps into a broader MDE process.

Several tentatives exist in the literature to deal with patterns for specific concerns
[8,23]. They allow to solve very general problems that appear frequently as sub-tasks
in the design of systems with security and dependability requirements. These elemen-
tary tasks include secure communication, fault tolerance, etc. The pattern specification
consists of a service-based architectural design and deployment restrictions in form of
UML deployment diagrams for the different architectural services.

To give an overview of the improvement achievable by using specific languages,
we look at the pattern specification and formalization problems. UMLAUT [9] is an
approach that aims to formally model design patterns by proposing extensions to the
UML metamodel 1.3. They used OCL language to describe constraints (structural and
behavioral) in the form of meta-collaboration diagrams. In the same way, RBML (Role-
Based Metamodeling Language) [15] is able to capture various design perspectives of
patterns such as static structure, interactions, and state-based behavior.

While many patterns for specific concern have been designed, still few works
propose general techniques for patterns. For the first kind of approaches [6], design
patterns are usually represented by diagrams with notations such as UML objects, an-
notated with textual descriptions and examples of code. There are some well-proven
approaches [3] based on Gamma et al. However, this kind of technique does not al-
low to reach the high degree of pattern structure flexibility which is required to reach
our target.

Formal specification has also been introduced in [16] in order to give rigorous rea-
soning of behavioral features of a design pattern in terms of high-level abstractions of
communication. In this paper, the author considers an object-oriented formalism for
reactive system (DisCo) [13] based on TLA (Temporal Logic of Actions) to express
high-level abstractions of cooperation between objects involved in a design pattern.
However, patterns are directly formalized at the pattern level including its classes, its
relations and its actions, without defining a modeling language.

The work in [2] introduces a new specification template inspired on secure system
development needs. The template is augmented with UML notations for the solution
and with formal artifacts for the requirement properties. Another approach [7] provides
a formal and visual language for specifying design patterns called LePUS. It defines a

108 B. Hamid and C. Percebois

pattern in an accurate and complete form of formula in Z, with a graphical representa-
tion. The framework promoted by LePUS is interesting but the degree of expressiveness
proposed to design a pattern is too restrictive.

UMLsec [14] is an approach based on the integration of modeling security in UML
and formal methods for object-oriented system development. UMLsec is defined in
form of a UML profile and semantics to assist in the automated analysis of the UMLsec
models with respect to security requirements. UMLsec and our approach are not in
competition but they complement each other by providing different view points to the
secure information system, mainly in applying security patterns for system security
engineering.

Moreover, [12] used the concept of security problem frames as analysis patterns
for security problems and associated solution approaches. The analysis activities using
these patterns are described with a highlight of how the solution may be set, with a
focus on the privacy requirement anonymity. For software architecture, [10] presented
an evaluation of security patterns in the context of secure software architectures. The
evaluation is based on the existing methods for secure software development, such as
guidelines as well as on threat categories.

To summarize, in software engineering, design patterns are considered effective tools
for the reuse of specific knowledge. However, a gap between the development of sys-
tems using patterns and the pattern information still exists. This becomes even more
visible when dealing with specific concerns namely security and dependability proper-
ties for several application sectors such as presented recently in [4]. In an other point
of view, we agree with the argumentations given in [24] to justify why the precise spec-
ification and formalization of a pattern by definition restricts its ”degree of freedom for
the design”, and hence there is no success stories of works dealing with pattern for-
malization. This is not only related to security patterns. Note however, that this work
does not address the validation activity which is an important issue in any design ac-
tivity and more particularly in security engineering. We think that security is subject to
rigorous and precise specification and the proposed literature (in our best knowledge)
fails to meet these two objectives. To remedy these contradictory needs, we support
the specifications of security patterns at two levels of abstractions, domain indepen-
dent and domain specific, in both a semi-formal representation through metamodeling
techniques and a rigorous formal representation through interactive theorem proving
approach. This allows to support some variability of the pattern.

6 Conclusion and Future Work

A classical form of pattern is not sufficient to tame the complexity of safety critical sys-
tems – complexity occurs because of both the concerns and the domain management.
To reach this objective and to foster reuse, we introduced the specification at domain in-
dependent and domain specific levels. The former exhibits an abstract solution without
specific knowledge on how the solution is implemented with regard to the application
domain. Following an MDE process, the domain independent model of patterns is then
refined towards a domain specific level, taking into account domain artifacts, concrete
elements such as mechanisms to use, devices that are available, etc. Consequently, a
security pattern at domain specific level contains the respective information.

A Modeling and Formal Approach for the Precise Specification of Security Patterns 109

These two levels of abstractions are captured using new concepts related to the
different kind of knowledge described by the pattern had; not with existing software
constructs. In our work, we used the MDE philosophy. We do not use the software
concepts (object or component constructs) recommended by Model-Driven Architec-
ture (MDA), for example. However, the SEPM language is subject to target specific
software modeling languages such as those recommended by MDA, using model trans-
formation techniques. Regarding the well known MDA levels (PIM and PSM), there is
an overlap between these levels and our two abstraction levels. For example, in the Intel-
ligent Transport Systems (ITS) domain, the ISO/IEC 15118 highly recommends to use
TLS for ensuring security properties. For that domain, we can find different platforms
supporting such a DSPM pattern.

We also provide an accompanying formalization and validation framework to help
precise specification of patterns based on the interactive Isabelle/HOL proof assistant.
The resulting validation artifact’s may mainly (1) complete the definitions, and (2) pro-
vide semantics for the interfaces and the properties in the context of S&D. Like this,
validation artifacts may be added to the pattern for traceability concerns. In the same
way, the domain refinement is applied during the formal validation process for the spec-
ification and validation of patterns.

Furthermore, we walk through a prototype of EMF tree-based editors supporting the
approach. Currently the tool suite named Semcomdt2 is provided as Eclipse plugins.
The approach presented here has been evaluated on two case studies from the TERESA
project3 resulting in the development of a repository of S&D patterns with more than
30 S&D patterns.

The next step of this work consists in defining a correct-by-construction pattern-
based security engineering process. It aims to provide the correct-by-construction inte-
gration of a design pattern into an application while offering a certain degree of liberty
to the designer using it. In order to be able to validate the integration, we must have a
formal specification of the pattern, i.e., its properties, constraints and related validation
artifacts, as input to the pattern-based development process. Another objective for the
near future is to provide automated tool support for pattern-based development, prefer-
ably based on a widely known and accepted model-based approach in industry such
as UML [18]. For that, we plan to investigate the possibility to transform these design
artifacts into UML [18] and their corresponding validation artifacts into OCL [19].

References

1. Alexander, C., Ishikawa, S., Silverstein, M.: A Pattern Language. Center for Environmental
Structure Series, vol. 2. Oxford University Press, New York (1977)

2. Cheng, B., Cheng, B.H.C., Konrad, S., Campbell, L.A., Wassermann, R.: Using security pat-
terns to model and analyze security. In: IEEE Workshop on Requirements for High Assurance
Systems, pp. 13–22 (2003)

3. Douglass, B.P.: Real-time UML: Developing Efficient Objects for Embedded Systems.
Addison-Wesley (1998)

2 http://www.semcomdt.org
3 http://www.teresa-project.org/

http://www.semcomdt.org
http://www.teresa-project.org/

110 B. Hamid and C. Percebois

4. Fernandez, E.B., Yoshioka, N., Washizaki, H., Jürjens, J., VanHilst, M., Pernul, G.: Software
Engineering for Secure Systems: Industrial and Research Perspectives. In: Mouratidis, H.
(ed.) IGI Global, pp. 16–31 (2010)

5. Fuchs, A., Gürgens, S., Rudolph, C.: A Formal Notion of Trust – Enabling Reasoning about
Security Properties. In: Nishigaki, M., Jøsang, A., Murayama, Y., Marsh, S. (eds.) IFIPTM
2010. IFIP AICT, vol. 321, pp. 200–215. Springer, Heidelberg (2010)

6. Gamma, E., Helm, R., Johnson, R.E., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley (1995)

7. Gasparis, E., Nicholson, J., Eden, A.H.: LePUS3: An Object-Oriented Design Descrip-
tion Language. In: Stapleton, G., Howse, J., Lee, J. (eds.) Diagrams 2008. LNCS (LNAI),
vol. 5223, pp. 364–367. Springer, Heidelberg (2008)

8. Di Giacomo, V., et al.: Using Security and Dependability Patterns for Reaction Processes. In:
International Workshop on Database and Expert Systems Applications, pp. 315–319. IEEE
Computer Society (2008)

9. Le Guennec, A., Sunyé, G., Jézéquel, J.-M.: Precise modeling of design patterns. In: Evans,
A., Caskurlu, B., Selic, B. (eds.) UML 2000. LNCS, vol. 1939, pp. 482–496. Springer, Hei-
delberg (2000)

10. Halkidis, S.T., Chatzigeorgiou, A., Stephanides, G.: A qualitative analysis of software secu-
rity patterns. Computers & Security 25(5), 379–392 (2006)

11. Hamid, B., Gürgens, S., Jouvray, C., Desnos, N.: Enforcing S&D Pattern Design in RCES
with Modeling and Formal Approaches. In: Whittle, J., Clark, T., Kühne, T. (eds.) MODELS
2011. LNCS, vol. 6981, pp. 319–333. Springer, Heidelberg (2011)

12. Hatebur, D., Heisel, M., Schmidt, H.: A security engineering process based on patterns. In:
Proceedings of the 18th International Conference on Database and Expert Systems Applica-
tions, DEXA 2007, pp. 734–738. IEEE Computer Society, Washington, DC (2007)

13. Jarvinen, H.M., Kurki-Suonio, R.: DisCo specification language: marriage of actions and
objects. In: 11th International Conference on Distributed Computing Systems, pp. 142–151.
IEEE Press (1991)

14. Jürjens, J.: UMLsec: Extending UML for Secure Systems Development. In: Jézéquel, J.-
M., Hussmann, H., Cook, S. (eds.) UML 2002. LNCS, vol. 2460, pp. 412–425. Springer,
Heidelberg (2002)

15. Kim, D.K., France, R., Ghosh, S., Song, E.: A UML-Based Metamodeling Language to Spec-
ify Design Patterns. In: Patterns, Proc. Workshop Software Model Eng (WiSME) with Uni-
fied Modeling Language Conf. 2004, pp. 1–9 (2004)

16. Mikkonen, T.E.: Formalizing design patterns. In: Proceeding ICSE 1998 Proceedings of the
20th International Conference on Software Engineering. IEEE Press (1998)

17. Nipkow, T., Paulson, L.C., Wenzel, M.T.: Isabelle/HOL. LNCS, vol. 2283. Springer, Heidel-
berg (2002)

18. OMG. OMG Unified Modeling Language (OMG UML), Superstructure (February 2009),
http://www.omg.org/spec/UML/2.2/Superstructure

19. OMG. OCL 2.2 Specification (February 2010)
20. Schmidt, D.: Model-Driven Engineering. IEEE Computer 39(2), 41–47 (2006)
21. Schumacher, M.: Security Engineering with Patterns. LNCS, vol. 2754. Springer, Heidelberg

(2003)
22. Schumacher, M., Fernandez-Buglioni, E., Hybertson, D., Buschmann, F., Sommerlad, P.:

Security Patterns: Integrating Security and Systems Engineering. Wiley Software Patterns
Series. John Wiley & Sons (2006)

23. Yoshioka, N., Washizaki, H., Maruyama, K.: A survey of security patterns. Progress in In-
formatics (5), 35–47 (2008)

http://www.omg.org/spec/UML/2.2/Superstructure

A Modeling and Formal Approach for the Precise Specification of Security Patterns 111

24. Zdun, U., Avgeriou, P.: Modeling Architectural Patterns Using Architectural Primitives. In:
Proceedings of the 20th Annual ACM SIGPLAN Conference on Object-oriented Program-
ming, Systems, Languages, and Applications, OOPSLA 2005, pp. 133–146. ACM, New York
(2005)

25. Zhang, T., Jouault, F., Bezivin, J., Zhao, J.: A MDE Based Approach for Bridging Formal
Models. In: Sixth International Symposium on Theoretical Aspects of Software Engineering,
pp. 113–116 (2008)

26. Zurawski, R.: Embedded Systems. In: Embedded Systems Handbook. CRC Press Inc. (2005)

A. Isabelle/HOL Formalization and Validation of the Secure
Communication Pattern

The complete formalisation and verification of the secure communication pattern, us-
ing Isabelle/HoL, are available online via http://www.semcomdt.org/semco/
resources/SCP_Isabelle.zip.

A.1. DIPM Validation
t h e o r y DIPM i m p o r t s Main
b e g i n
(∗ Secure Communicat ion DIPM P a t t e r n d e f i n i t i o n s ∗)
. . .
d e f i n i t i o n a u t h I f T r u s t : : " a c t i o n ==> a c t i o n ==> a g e n t ==> boo l " where
" a u t h I f T r u s t a1 a2 a == t r u s t a (p r e c e d e a1 a2) −> a u t h a1 a2 a "

(∗ Secure Communicat ion DIPM P a t t e r n v a l i d a t i o n ∗)
theo rem a u t h I f T r u s t S e n d R e c e i v e : " a u t h I f T r u s t Send Rece ive s e r v e r "
a p p l y (simp on ly : a u t h I f T r u s t _ d e f)
a p p l y (simp on ly : t r u s t _ d e f)
a p p l y (simp on ly : s e r v e r _ d e f)
a p p l y (simp on ly : c r e a t e P r o p e r t y _ d e f c r e a t e A g e n t _ d e f)
a p p l y (simp on ly : Send_def R e c e i v e _ d e f)
a p p l y (simp on ly : c r e a t e A c t i o n _ d e f)
a p p l y (simp on ly : a u t h _ d e f)
a p p l y (simp)
done
end

A.2. DSPM Formalization and Validation
t h e o r y DSPM i m p o r t s Main
b e g i n
(∗ Secure Communicat ion DSPM P a t t e r n d e f i n i t i o n s ∗)
. . .
d e f i n i t i o n t rus tRandom : : " a g e n t ==>propertyRandom ==>boo l " where
" t rus tRandom a p == p IN (p r o p e r t i e s R a n d o m a) "
d e f i n i t i o n t r u s t K e y : : " a g e n t ==> prope r tyKey ==> boo l " where
" t r u s t K e y a p == p IN (p r o p e r t i e s K e y a) "
d e f i n i t i o n t r u s t I n C o n f i d e n t i a l i t y : : " a g e n t ==> boo l " where
" t r u s t I n C o n f i d e n t i a l i t y a == (t rus tRandom a notPrecedeGenRandGenRand) AND
(t r u s t K e y a confPr ivKeyS) AND (t r u s t K e y a confPrivKeyCA) "
d e f i n i t i o n t r u s t I n S i g n a t u r e : : " a g e n t ==> boo l " where
" t r u s t I n S i g n a t u r e a == (t r u s t M a c a (p r e c e d e genMac ve r i fyM ac)) "
d e f i n i t i o n t r u s t S C P : : " a g e n t ==> boo l " where
" t r u s t S C P a == t r u s t I n C o n f i d e n t i a l i t y a −> t r u s t I n S i g n a t u r e a "

(∗ Secure Communicat ion DSPM P a t t e r n v a l i d a t i o n ∗)
theo rem proofT rus tSCP : " t r u s t S C P s e r v e r "
a p p l y (simp on ly : t r u s t S C P _ d e f)
a p p l y (simp on ly : t r u s t I n C o n f i d e n t i a l i t y _ d e f t r u s t I n S i g n a t u r e _ d e f)
a p p l y (simp on ly : notPrecedeGenRandGenRand_def confPr ivKeyS_d e f confPrivKeyCA_def)

http://www.semcomdt.org/semco/resources/SCP_Isabelle.zip
http://www.semcomdt.org/semco/resources/SCP_Isabelle.zip

112 B. Hamid and C. Percebois

a p p l y (simp on ly : genMac_def v e r i f y M a c _ d e f)
a p p l y (simp on ly : n o t P r e c e d e _ d e f p r e c e d e _ d e f c o n f _ d e f)
a p p l y (simp on ly : c r e a t e P r o p e r t y M a c _ d e f c r e a t e A c t i o n M a c _ d e f)
a p p l y (simp on ly : c r e a t e P r o p e r t y R a n d o m _ d e f c rea teAc t ionRandom_ de f)
a p p l y (simp on ly : c r e a t e P r o p e r t y K e y _ d e f c r e a t e A c t i o n K e y _ d e f)
a p p l y (simp on ly : t r u s t M a c _ d e f t rus tRandom_d ef t r u s t K e y _ d e f)
a p p l y (simp on ly : genRand_def p r ivKey1_def p r ivKey2_def)
a p p l y (simp on ly : s e r v e r _ d e f)
a p p l y (simp on ly : c r e a t e A c t i o n M a c _ d e f c rea t eAc t ionRandom _d ef
c r e a t e A c t i o n K e y _ d e f c r e a t e A g e n t _ d e f)
a p p l y (simp)
a p p l y (simp on ly : notPrecedeGenRandGenRand_def confPr ivKeyS_d e f confPrivKeyCA_def)
a p p l y (simp on ly : precedeGenMacVerifyMac_def)
a p p l y (simp on ly : p r e c e d e _ d e f n o t P r e c e d e _ d e f c o n f _ d e f)
a p p l y (simp on ly : c r e a t e P r o p e r t y M a c _ d e f c r e a t e P r o p e r t y R a n d o m _ d e f c r e a t e P r o p e r t y K e y _ d e f)
a p p l y (simp on ly : genMac_def v e r i f y M a c _ d e f p r ivKeyS_de f privKeyCA_def genRand_def)
a p p l y (simp on ly : c r e a t e A c t i o n M a c _ d e f c rea t eAc t ionRandom _ def c r e a t e A c t i o n K e y _ d e f)
a p p l y (simp)
done
end

A.3. Correspondence between DIPM and DSPM Formalization and Validation
t h e o r y DIPMtoDSPM i m p o r t s DIPM DSPM
b e g i n
(∗ From DIPSM P a t t e r n t o DSPM P a t t e r n d e f i n i t i o n s ∗)
. . .
d e f i n i t i o n buildAndApplyH : : "DSPM . a g e n t ==> DIPM . a g e n t ==>
(DSPM . a c t i o n ∗ DIPM . a c t i o n) l i s t ==> boo l " where
" buildAndApplyH a1 a2 l == DSPM . t r u s t a1 (b u i l d P r o p e r t y l) −>
DIPM . t r u s t a2 (applyH l) "

(∗ From DIPSM P a t t e r n t o DSPM P a t t e r n v a l i d a t i o n ∗)
theo rem t r u s t W i t h H : " buildAndApplyH DSPM . s e r v e r DIPM . s e r v e r h "
a p p l y (simp on ly : bui ldAndApplyH_def)
a p p l y (simp on ly : DIPM . t r u s t _ d e f DSPM . t r u s t _ d e f)
a p p l y (simp on ly : b u i l d P r o p e r t y _ d e f)
a p p l y (simp on ly : app lyH_def)
a p p l y (simp)
a p p l y (simp on ly : h_de f)
a p p l y (simp on ly : Send_def R e c e i v e _ d e f)
a p p l y (simp on ly : DIPM . c r e a t e A c t i o n _ d e f)
a p p l y (simp on ly : genMac_def v e r i f y M a c _ d e f)
a p p l y (simp on ly : DSPM . c r e a t e A c t i o n _ d e f)
a p p l y (simp on ly : DIPM . s e r v e r _ d e f DSPM . s e r v e r _ d e f)
a p p l y (simp)
a p p l y (simp on ly : DIPM . c r e a t e A g e n t _ d e f DSPM . c r e a t e A g e n t _ d e f)
a p p l y (simp on ly : Send_def R e c e i v e _ d e f genMac_def v e r i f y M a c _ d e f)
a p p l y (simp)
a p p l y (simp on ly : p r e c e d e S e n d R e c e i v e _ d e f precedeGenMacVerifyMac_def)
a p p l y (simp on ly : DIPM . p r e c e d e _ d e f DIPM . c r e a t e P r o p e r t y _ d e f DSPM . p r e c e d e _ d e f
DSPM . c r e a t e P r o p e r t y _ d e f)
a p p l y (simp)
a p p l y (simp on ly : Send_def R e c e i v e _ d e f genMac_def v e r i f y M a c _ d e f)
a p p l y (simp on ly : DIPM . c r e a t e A c t i o n _ d e f DSPM . c r e a t e A c t i o n _ d e f)
a p p l y (simp)
done
end

On the Relation between Redactable

and Sanitizable Signature Schemes

Hermann de Meer1,3, Henrich C. Pöhls2,3,�,
Joachim Posegga2,3, and Kai Samelin4,��

1 Chair of Computer Networks and Computer Communication
2 Chair of IT-Security

3 Institute of IT-Security and Security Law (ISL), University of Passau, Germany
4 Engineering Cryptographic Protocols Group & CASED, TU Darmstadt, Germany
demeer@uni-passau.de, {hp,jp}@sec.uni-passau.de, kai.samelin@ec-spride.de

Abstract. Malleable signature schemes (MSS) enable a third party
to alter signed data in a controlled way, maintaining a valid signature
after an authorized change. Most well studied cryptographic construc-
tions are (1) redactable signatures (RSS), and (2) sanitizable signatures
(SSS). RSSs allow the removal of blocks from a signed document, while
SSSs allow changing blocks to arbitrary strings. We rigorously prove
that RSSs are less expressive than SSSs: no unforgeable RSS can be
transformed into an SSS. For the opposite direction we give a black-box
transformation of a single SSS, with tightened security, into an RSS.

1 Introduction

Digital signatures are the IT-Security mechanism applied to detect integrity vi-
olations, as they become invalid on any change to the signed data. However,
this also prohibits third parties from changing signed data in an allowed and
controlled way. Applications where such an alteration is crucial, include secure
routing [2] or “blank signatures” [23]. An additional prevailing reason to allow for
subsequent changing or removing parts is the anonymization of personally iden-
tifiable information (PII), e.g., in medical data [28,39]. Apart from the important
privacy guarantee for the original data, it is often of paramount importance that
the action of modification requires no additional interaction with the original
signer. Hence, they are applicable in a wide area, e.g., in the Internet-of-Things
(IoT) or for cloud computing [30]. For example, consider the IoT: communication

� The research leading to these results has received funding from the European Union’s
Seventh Framework Programme (FP7/2007-2013) under grant agreement no 609094.

�� Work partly carried out while working at the University of Passau, supported by
“Regionale Wettbewerbsfähigkeit und Beschäftigung”, Bayern, 2007-2013 (EFRE)
as part of the SECBIT project (www.secbit.de) and the European Community’s
Seventh Framework Programme through the EINS Network of Excellence under
grant agreement no 288021. This work was also partly supported by the German
Federal Ministry of Education and Research (BMBF) within EC SPRIDE and by
the Hessian LOEWE excellence initiative within CASED.

J. Jürjens, F. Piessens, and N. Bielova (Eds.): ESSoS 2014, LNCS 8364, pp. 113–130, 2014.
c© Springer International Publishing Switzerland 2014

114 H. de Meer et al.

with the originating sensor for re-signing would dramatically increase commu-
nication costs. Also in the case of smart metering privacy [16], the originating
Smart meter must not know in what way the data it signed is later modified to
preserve the user’s privacy.

One cryptographically suitable approach to solve the above described “digital
document sanitization problem” [34] are malleable signature schemes. Malleable
signature schemes authorize certain changes to signed data such that the result-
ing changed message’s authenticity is still verifiable, i.e., it remains verifiable that
either none or only authorized changes have been applied to the signed message.
This authorized change can come in several facets: Let m = (m[1], . . . ,m[�]),
where � ∈ N and m[i] ∈ {0, 1}∗, be a string m split up into � parts we refer
to as blocks. First, redactable signature schemes (RSS) allow anyone to remove
blocks m[i] from m, without invalidating the signature. In particular, a redac-
tion of the block m[i], 0 < i ≤ � leaves a blinded message m′ without m[i], i.e.,
m′ = (. . . ,m[i − 1],�,m[i + 1], . . .). A visible � has a major impact on the
RSS’s privacy guarantees. For RSSs, it is required that anyone can derive a
signature σ′ which verifies for m′. Second, sanitizable signature schemes (SSS),
allow a sanitizer to change the admissible blocks, which are predefined by the
signer, into arbitrary strings m[i]′ ∈ {0, 1}∗. Hence, the sanitizer can generate a
verifiable message-signature pair (m′, σ′). Contrary to RSSs, in SSSs the san-
itizer holds its own secret key. Obviously, it must be verifiable that all changes
were endorsed by the signer in both concepts.

Motivation. When more and more data containers are digitally signed as a
countermeasure against attacks on their integrity and authenticity, it becomes
increasingly important to be able to remove contained sensitive data with lit-
tle impact on the integrity of the remaining data. In other words, signing data
becomes the standard solution to allow integrity checks, e.g., for data stored
on third-party storage servers in the cloud [30]. Current provably secure (un-
forgeable and private) solutions mostly focus on one out of two specific types
of malleable signature schemes, i.e., either on RSSs or SSSs, often stating the
other as related work, or even the same. At first sight, both approaches aim for
the same goal, i.e., changing signed data. In detail, SSSs only allow for alter-
ations of blocks, while RSSs only allow removal of complete blocks. Moreover,
SSSs require an additional key pair, while RSSs have public redactions. The
questions we answer in this paper is: What is the exact relation between both
types of malleable signature?

Findings. Weprove that anRSS is not trivially a “special case” ofSSS [8,41,42].
But first things first: Obviously an unforgeable SSS can emulate a standard signa-
ture by disallowing any modifications by any sanitizer [42]. Second, we note that
aRSS for a message of n blocks, fulfilling privacy [7], can trivially be constructed
by deployingO(n2) standard digital signatures [7,37]. Hence,O(n2) SSSs are suf-
ficient to construct one RSS. Thus, from a theoretical point of view, SSSs di-
rectly imply the existence ofRSSs. However, from a practical point of view, such

On the Relation between Redactable and Sanitizable Signature Schemes 115

constructions are rather inefficient. Especially asRSS can be constructed inO(n)
for computation and storage [37]. We provide the security definitions required to
transform only a single invocation of an SSS into anRSS. We prove that the ex-
isting security models are not sufficient to achieve such a transformation. In par-
ticular, the resulting RSSs cannot fulfill the state-of-the-art privacy definitions,
as introduced in [7]. Note, for all transforms we treat SSS andRSS as black-boxes
and ignore the constructions’ details.

Contribution. This paper rigorously shows that RSSs do not imply SSSs:
no unforgeable RSS can be transformed into a secure SSS . While the converse
is true in general, we give a more detailed separation: one cannot construct a
fully secure RSS from a single SSS invocation, if one treats the used SSS as a
black-box. In detail, weakening the privacy definition of RSSs, while strength-
ening the security definitions of SSSs, a single invocation of such a strong SSS
can emulate a weaker RSS . This paper provides an algorithm for a general
transform: Any SSS that is (1) strongly private, (2) weakly immutable and (3)
weakly blockwise non-interactive publicly accountable can be transformed into
a weakly private RSS. We give formal definitions of all the security properties
in Sect. 2. Interestingly enough, it turns out that our definition of weak privacy
is fulfilled by many existing RSSs, which are considered not private following
the model by Brzuska et al. [7].

Related Work. SSSs have been introduced by Ateniese et al. [2] at ES-
ORICS ’05. Brzuska et al. formalized the most essential security properties [8].
These have later been extended for the properties of unlinkability [10,12] and
(block/groupwise) non-interactive public accountability [11,18]. Moreover, sev-
eral extensions and modifications like limiting-to-values [13,27,36], trapdoor
SSSs [15] and multi-sanitizer environments [14] have been considered.

RSSs were introduced in 2002 by Johnson et al. in [26]. In the same year,
Steinfeld and Bull introduced a similar concept as “Content Extraction Sig-
natures” [40]. Since then, RSSs have been subject to much research and got
extended to tree-structured data [7,28] and to arbitrary graphs [29]. Samelin et
al. introduced the concept of redactable structure in [38]. The standard security
properties of RSSs have been formalized in [7,17,37]. Ahn et al. introduced the
notion of context-hiding RSSs [1]. Even stronger privacy notions have recently
been introduced in [3,4]. However, the scheme by Ahn et al. only achieves the
less common notion of selective unforgeability [1]. Moreover, [1,3,4] are limited
to quoting, i.e., redactions are only possible at the beginning, or end resp., of a
list. There exists many additional work on RSSs. We do note that most of the
schemes are not fully private, e.g., [22,24,25,31,33]. Hence, a verifier can make
statements about the original message m, which contradicts the intention of an
RSS [7]. Most of these schemes achieve our notion of “weak privacy”.

Combinations of both approaches appeared in [22,24,25]. However, their
schemes do not preserve privacy [38]. While the work of Yum and Joong tries

116 H. de Meer et al.

to combine the two properties in [42], the authors are not aware of any work
considering relations between the notions.

Malleable signature schemes are usable in practice according to [35,36].
We do note that there are also schemes aiming for calculating general functions

on signed data, e.g., [5,6,19]. In this work, we focus on the relation between SSSs
and RSSs.

2 Preliminaries and Security of SSS and RSS
For a message m = (m[1], . . . ,m[�]), we call m[i] ∈ {0, 1}∗ a block, where “,”
denotes a uniquely reversible concatenation of blocks or strings. The symbol
⊥ /∈ {0, 1}∗ denotes an error or an exception. For a visible redaction, we use the
symbol � /∈ {0, 1}∗, � �=⊥.

Sanitizable Signatures. The used notation is adapted from [8].

Definition 1 (Sanitizable Signature Scheme). A SSS consists of at least
seven efficient (PPT) algorithms SSS := (KGensig,KGensan, Sign, Sanit,Verify,
Proof, Judge):

Key Generation. There are two key generation algorithms, one for the signer
and one for the sanitizer. Both create a pair of keys, a private key and the
public key, using the security parameter λ:

(pksig, sksig) ← KGensig(1
λ), (pksan, sksan) ← KGensan(1

λ)

Signing. The Sign algorithm takes m = (m[1], . . . ,m[�]), m[i] ∈ {0, 1}∗, the
signer’s secret key sksig, the sanitizer’s public key pksan, as well as a de-
scription adm of the admissibly modifiable blocks, where adm contains the
number � of blocks in m, as well the indices of the modifiable blocks. It out-
puts the message m and a signature σ (or ⊥, indicating an error):

(m,σ) ← Sign(1λ,m, sksig, pksan,adm)

Sanitizing. Algorithm Sanit takes a message m = (m[1], . . . ,m[�]), m[i] ∈
{0, 1}∗, a signature σ, the public key pksig of the signer and the secret key
sksan of the sanitizer. It modifies the message m according to the modifi-
cation instruction mod, which contains pairs (i,m[i]′) for those blocks that
shall be modified. Sanit calculates a new signature σ′ for the modified message
m′ ← mod(m). Then Sanit outputs m′ and σ′ (or ⊥, indicating an error):

(m′, σ′) ← Sanit(1λ,m,mod, σ, pksig, sksan)

Verification. The Verify algorithm outputs a decision d ∈ {true, false} ver-
ifying the validity of a signature σ for a message m = (m[1], . . . ,m[�]),
m[i] ∈ {0, 1}∗ with respect to the public keys:

d ← Verify(1λ,m, σ, pksig, pksan)

Proof. The Proof algorithm takes as input the security parameter, the secret
signing key sksig, a message m = (m[1], . . . ,m[�]), m[i] ∈ {0, 1}∗ and a sig-
nature σ as well a set of (polynomially many) additional message-signature

On the Relation between Redactable and Sanitizable Signature Schemes 117

pairs {(mi, σi) | i ∈ N} and the public key pksan. It outputs a string π ∈
{0, 1}∗ (or ⊥, indicating an error):

π ← Proof(1λ, sksig,m, σ, {(mi, σi) | i ∈ N}, pksan)
Judge. Algorithm Judge takes as input the security parameter, a message m =

(m[1], . . . ,m[�]), m[i] ∈ {0, 1}∗ and a valid signature σ, the public keys of
the parties and a proof π. It outputs a decision d ∈ {Sig, San,⊥} indicating
whether the message-signature pair has been created by the signer or the san-
itizer (or ⊥, indicating an error): d ← Judge(1λ,m, σ, pksig, pksan, π)

To have an algorithm actually able to derive the accountable party for a
specific block m[i], Brzuska et al. introduced the additional algorithmDetect [11].
The algorithm Detect is not part of the original SSS description by Ateniese
et al., since it is not required for the purpose of a SSS [2,8]. However, we
require this algorithm later on to define (weak) blockwise non-interactive public
accountability (See Def. 6).

Definition 2 (SSS Detect). On input of the security parameter λ, a message-
signature pair (m,σ), the corresponding public keys pksig and pksan, and a block
index 1 ≤ i ≤ �, Detect outputs the accountable party (San or Sig) for block i
(or ⊥, indicating an error):

d ← Detect(1λ,m, σ, pksig, pksan, i), d ∈ {San, Sig,⊥}

We require the usual correctness properties to hold. In particular, all genuinely
signed or sanitized messages are accepted, while every genuinely created proof
π by the signer leads the judge to decide in favor of the signer. For a formal
definition of correctness, refer to [8,11]. It is also required by every SSS that
adm is always correctly recoverable from any valid message-signature pair (m,σ).
This accounts for the work done in [21]. Jumping ahead, we want to emphasize
that an SSS with weak non-interactive public accountability requires that Judge
detects any sanitization on input of an empty proof π =⊥. Formal definitions of
the security properties in a game-based manner follow.

Redactable Signatures. The following notation is derived from [38].

Definition 3 (Redactable Signature Schemes). An RSS consists of four
efficient algorithms RSS := (KeyGen, Sign,Verify,Redact):

KeyGen. The algorithm KeyGen outputs the public key pk and private key sk of
the signer, where λ denotes the security parameter:

(pk, sk) ← KeyGen(1λ)

Sign. The algorithm Sign gets as input the secret key sk and the message m =
(m[1], . . . ,m[�]), m[i] ∈ {0, 1}∗: (m,σ) ← Sign(1λ, sk,m)

Verify. The algorithm Verify outputs a decision d ∈ {true, false}, indicating
the validity of the signature σ, w.r.t. pk, protecting m = (m[1], . . . ,m[�]),
m[i] ∈ {0, 1}∗: d ← Verify(1λ, pk,m, σ)

118 H. de Meer et al.

Experiment UnforgeabilityRSS,A(λ)

(pk, sk) ← KeyGen(1λ)

(m∗, σ∗) ← ASign(1λ,sk,·)(pk)
let i = 1, . . . , q denote the queries to Sign

return 1, if

Verify(1λ, pk,m∗, σ∗) = 1 and
for all i = 1, . . . , q : m∗ /∈ span�(mi)

Fig. 1. Unforgeability for RSS

Redact. The algorithm Redact takes as input the message m = (m[1], . . . ,m[�]),
m[i] ∈ {0, 1}∗, the public key pk of the signer, a valid signature σ and a
list of indices mod of blocks to be redacted. It returns a modified message
m′ ← mod(m) (or ⊥, indicating an error):

(m′, σ′) ← Redact(1λ, pk,m, σ,mod)

We denote the transitive closure of m as span�(m). This set contains all
messages derivable from m w.r.t. Redact

As for SSSs, the correctness properties for RSSs are required to hold as well.
Thus, every genuinely signed or redacted message must verify. Refer to [7] for a
formal definition of correctness.

Security Models. This section contains the required security properties and
models. They are derived from [8,21,38], but have been significantly altered. The
requirement that adm is always correctly reconstructible is captured within the
unforgeability and immutability definitions. Note, following [8,11,12], an SSS
must at least be unforgeable, immutable, accountable and private to be mean-
ingful. Hence, we assume that all used SSSs fulfill these four fundamental se-
curity requirements; if these requirements are not met, the construction is not
considered an SSS and the results of this paper are not directly applicable.
On the other hand, an RSS must be unforgeable and (weakly) private to be
meaningful [7].

Unforgeability. No one should be able to compute a valid signature on a message
not previously issued without having access to any private keys [7]. This is
analogous to the unforgeability requirement for standard signature schemes [20],
except that it excludes valid redactions from the set of forgeries for RSSs, while
for SSSs no alterations are allowed.

Definition 4 (RSS Unforgeability). We say that an RSS is unforgeable, if
for any efficient (PPT) adversary A the probability that the game depicted in
Fig. 1 returns 1, is negligible (as a function of λ).

Definition 5 (SSS Unforgeability). We say an SSS is unforgeable, if for
any efficient (PPT) adversary A the probability that the game depicted in Fig. 2
returns 1, is negligible (as a function of λ).

On the Relation between Redactable and Sanitizable Signature Schemes 119

Experiment UnforgeabilitySSS,A(λ)

(pksig, sksig) ← KGensig(1
λ)

(pksan, sksan) ← KGensan(1
λ)

(m∗, σ∗) ← ASign(1λ,·,sksig,···)Proof(1λ,·,sksig,···),Sanit(1λ,··· ,sksan)(pksig, pksan)
let (mi,admi, pksan,i) and σi for i = 1, 2, . . . q
denote the queries/answers to/by the oracle Sign,
let (mj ,modj , σj , pksig,j) and (m′

j , σ
′
j) for j = q + 1, . . . , r

denote the queries/answers to/by the oracle Sanit.
return 1, if

Verify(1λ,m∗, σ∗, pksig, pksan) = true and
for all q = 1, . . . q : (pksan, m

∗,adm∗) �= (pksan,i,mi,admi) and
for all j = q + 1, . . . , r : (pksig,m

∗,adm∗) �= (pksig,j ,mi,admi)

Fig. 2. Unforgeability for SSS

Experiment WBlockPubAccSSS,A(λ)

(pksig, sksig) ← KGensig(1
λ)

(pksan, sksan) ← KGensan(1
λ)

(m∗, σ∗) ← ASign(1λ,·,sksig,pksan,·),Proof(1λ,·,sksig,··· ,pksan)(pksan, sksan, pksig)
let (mi,admi) and (mi, σi) for i = 1, . . . , k be queries/answers to/by Sign
return 1, if

Verify(1λ,m∗, σ∗, pksig, pksan) = true and

∃q, s.t. Detect(1λ,m∗, σ∗, pksig, pksan, q) = Sig and
for all i = 1, . . . , k : (m∗[q], σ∗) �= (mi[q], σi).

return 0

Fig. 3. Weak Blockwise Non-Interactive Public Accountability for SSS

Weak Blockwise Non-Interactive Public Accountability. The basic idea is that an
adversary, i.e., the sanitizer, has to be able to make the Detect algorithm accuse
the signer, if it did not sign the specific block. Moreover, in our definition, the
signer is not considered adversarial, contrary to Brzuska et al. [11]. An example
for a weakly blockwise non-interactive publicly accountable SSS is the scheme
introduced by Brzuska et al. [11]. We explain the reasons for our adversary model
after the introduction of all required security properties. Note, pksan is fixed for
the oracles. For SSSs, we also have sanitization and proof oracles [8].

Definition 6 (SSS Weak Blockwise Non-interactive Public Account-
ability). A sanitizable signature scheme SSS is weakly non-interactive publicly
accountable, if Proof = ⊥, and if for any efficient algorithm A the probability
that the experiment given in Fig. 3 returns 1 is negligible (as a function of λ).

Privacy. No one should be able to gain any knowledge about sanitized parts
without having access to them [8]. This is similar to the standard indistinguisha-
bility notion for encryption schemes. The basic idea is that the oracle either signs
and sanitizes the first message (m0) or the second (m1), while the resulting mes-
sage must be the same for each input. The adversary must not be able to decide
which input message was used.

120 H. de Meer et al.

Experiment PrivacySSS,A(λ)

(pksig, sksig) ← KGensig(1
λ)

(pksan, sksan) ← KGensan(1
λ)

b ← {0, 1}
a ← ASign(1λ,sksig,···),Proof(1λ,sksig,···),LoRSanit(··· ,sksig,sksan,b),Sanit(1λ,··· ,sksan)(pksig, pksan)

where oracle LoRSanit on input of:
m0,mod0,m1,mod1,adm
if mod0(m0) �= mod1(m1), return ⊥
if mod0 �⊆ adm ∨ mod1 �⊆ adm, return ⊥
let (m,σ) ← Sign(1λ,mb, sksig, pksan,adm)
return (m′, σ′) ← Sanit(1λ,m,modb, σ, pksig, sksan)

return 1, if a = b

Fig. 4. Standard Privacy for SSS

Definition 7 (SSS Standard Privacy). We say that an SSS is (standard)
private, if for any efficient (PPT) adversary A the probability that the game
depicted in Fig. 4 returns 1, is negligibly close to 1

2 (as a function of λ).

The aforementioned privacy definition [8] only considers outsiders as adver-
sarial. However, we require that even insiders, i.e., sanitizers, are not able to win
the game. Note, the key sksan is not generated by the adversary, only known
to it. We explain the need for this alteration after the next definitions. For our
definition of strong privacy, the basic idea remains the same: no one should be
able to gain any knowledge about sanitized parts without having access to them,
with one exception: the adversary is given the secret key sksan of the sanitizer.
This notion extends the definition of standard privacy (Fig. 4) to also account
for parties knowing the secret sanitizer key sksan. In a sense, this definition cap-
tures some form of “forward-security”. Examples for strongly private SSSs are
the schemes introduced by Brzuska et al. [9,11,12], as their schemes are per-
fectly private. As the adversary now knows sksan, it can trivially simulate the
sanitization oracle itself.

Definition 8 (SSS Strong Privacy). We say that an SSS is private, if for
any efficient (PPT) adversary A the probability that the game depicted in Fig. 5
returns 1, is negligibly close to 1

2 (as a function of λ).

In a weakly private RSS , a third party can derive which parts of a message
have been redacted without gathering more information, as redacted blocks are
replaced with �, which is visible. The basic idea is that the oracle either signs
and sanitizes the first message (m0) or the second (m1). As before, the resulting
redacted message m′ must be the same for both inputs, with one additional
exception: the length of both inputs must be the same, while � is considered
part of the message. For strong privacy, this constraint is not required. We want
to emphasize, that Lim et al. define weak privacy in a different manner: they
prohibit access to the signing oracle [31]. Our definition allows for such adaptive
queries. Summarized, weak privacy only makes statements about blocks, not
the complete message. See [28] for possible attacks. Weakly private schemes,
following our definition, are, e.g., [22,28]. In their schemes, the adversary is able
to pinpoint the indices of the redacted blocks, as � is visible.

On the Relation between Redactable and Sanitizable Signature Schemes 121

Experiment SPrivacySSS,A(λ)

(pksig, sksig) ← KGensig(1
λ)

(pksan, sksan) ← KGensan(1
λ)

b ← {0, 1}
a ← ASign(1λ,·,sksig,pksan,·),Proof(1λ,sksig,··· ,pksan),LoRSanit(··· ,sksig,sksan,b)(pksig, pksan, sksan)

where oracle LoRSanit on input of:
m0,mod0,m1,mod1,adm
if mod0(m0) �= mod1(m1), return ⊥
if mod0 �⊆ adm ∨ mod1 �⊆ adm, return ⊥
let (m,σ) ← Sign(1λ,mb, sksig, pksan,adm)
return (m′, σ′) ← Sanit(1λ,m,modb, σ, pksig, sksan)

return 1, if a = b

Fig. 5. Strong Privacy for SSS

Experiment WPrivacyRSS,A(λ)

(pk, sk) ← KeyGen(1λ)
b ← {0, 1}
d ← ASign(1λ,sk,·),LoRRedact(··· ,sk,b)(pk)

where oracle LoRRedact
for input m0,m1,mod0,mod1:
if mod0(m0) �= mod1(m1), return ⊥
Note: redacted blocks are denoted �, which are considered part of m

(m,σ) ← Sign(1λ, sk,mb)

return (m′, σ′) ← Redact(1λ, pk,m, σ,modb).
return 1, if b = d

Fig. 6. Weak Privacy for RSS

Definition 9 (RSS Weak Privacy). We say that an RSS is weakly private,
if for any efficient (PPT) adversary A the probability that the game depicted in
Fig. 6 returns 1, is negligibly close to 1

2 (as a function of λ).

The next definition is similar to weak privacy. However, redacted parts are
not considered part of the message.

Definition 10 (RSS Strong Privacy). We say that an RSS is strongly pri-
vate, if for any efficient (PPT) adversary A the probability that the game de-
picted in Fig. 7 returns 1, is negligibly close to 1

2 (as a function of λ). This is
the standard definition of privacy [7].

Immutability. The idea behind immutability is that an adversary generating the
sanitizer key must only be able to sanitize admissible blocks. Hence, immutability
is the unforgeability requirement for the sanitizer.

Definition 11 (SSS Immutability). A sanitizable signature scheme SSS is
immutable, if for any efficient algorithm A the probability that the experiment
from Fig. 8 returns 1 is negligible (as a function of λ) [8].

For weak immutability, an adversary knowing, but not generating, the san-
itizer key must only be able to sanitize admissible blocks. Hence, once more,
pksan is fixed.

122 H. de Meer et al.

Experiment SPrivacyRSS,A(λ)

(pk, sk) ← KeyGen(1λ)
b ← {0, 1}
d ← ASign(1λ,sk,·),LoRRedact(··· ,sk,b)(pk)

where oracle LoRRedact
for input m0,m1,mod0,mod1:
if mod0(m0) �= mod1(m1), return ⊥
Note: redacted blocks are not considered part of the message

(m,σ) ← Sign(1λ, sk,mb)

return (m′, σ′) ← Redact(1λ, pk,m, σ,modb).
return 1, if b = d

Fig. 7. Strong Privacy for RSS

Experiment ImmutabilitySSS,A(λ)

(pksig, sksig) ← KeyGen(1λ)

(m∗, σ∗, pk∗) ← ASign(1λ,·,sksig,·,·),Proof(1λ,sksig,···)(pksig)
let (mi,admi, pksan,i) and σi for i = 1, . . . , q be queries/answers to/by Sign
return 1, if:

Verify(1λ, m∗, σ∗, pksig, pk
∗) = true and

for all i = 1, 2, . . . , q : (pk∗,m∗[ji],adm∗) �= (pksan,i,mi[ji],admi) and
if (m∗[ji],admi, pksan,i) �= (mi[ji],admi, pksan,i), also ji /∈ admi

where shorter messages are padded with ⊥
Fig. 8. Immutability for SSS

Definition 12 (SSS Weak Immutability). A sanitizable signature scheme
SSS is weakly immutable, if for any efficient algorithm A the probability that
the experiment given in Fig. 9 returns 1 is negligible (as a function of λ).

Interestingly, weak immutability is enough for our construction to be unforge-
able, while for an RSS used in the normal way, this definition is obviously not
suitable at all due to accountability reasons. We omit the security parameter λ
for the rest of the paper to increase readability.

Implications and Separations. Let us formulate our first theorems:

Theorem 1. There exists an RSS which is only weakly private.

Proof. See [22,24,25,31] for examples.

Theorem 2. Every SSS which is immutable, is also weakly immutable.

Proof. Trivially implied: A generates the sanitizer key pair honestly.

Theorem 3. There exists an SSS which is private, but not strongly private.

Th. 3 is proven in App. B.

On the Relation between Redactable and Sanitizable Signature Schemes 123

Experiment WImmutabilitySSS,A(λ)

(pksig, sksig) ← KeyGen(1λ)
(pksan, sksan) ← KeyGen(1λ)

(m∗, σ∗) ← ASign(1λ,·,sksig,pksan,·),Proof(1λ,sksig,··· ,pksan,·)(pksig, pksan, sksan)
let (mi,admi) and σi for i = 1, 2, . . . q be queries/answers to/by Sign
return 1, if:

Verify(1λ,m∗, σ∗, pksig, pksan) = true and
∀i, i = 1, 2, . . . , q : (m∗[ji],adm∗) �= (mi[ji],admi) and
if (m∗[ji],admi) �= (mi[ji],admi), also ji /∈ admi

where shorter messages are padded with ⊥
Fig. 9. Weak Immutability for SSS

Definition of a Secure RSS and a Secure SSS. We want to explicitly
emphasize that accountability, as defined for SSSs in [8], has not been defined for
RSSs yet, as Redact is a public algorithm. Hence, no secret sanitizer key(s) are
required for redactions. To circumvent this inconsistency, we utilize a standard
SSS and let the signer generate the sanitizer key sksan, attaching it to the public
key of the signer. This also explains why pksan is fixed in our security model.
If any alteration without sksan is possible, the underlying SSS would obviously
be forgeable. As we have defined that this is a non-secure SSS , we omit this
case. Hence, the secret sksan becomes public knowledge and can be used by every
party. This is the reason why the adversary only knows sksig, but cannot generate
it. We require these, at first sight very unnatural, restrictions to stay consistent
with the standard model of SSSs as formalized in [8]. Moreover, the signer is
generally not considered an adversarial entity in RSSs [7]. If other notions or
adversary models are used, the results may obviously differ. In App. A, we show
that any SSS which only achieves standard privacy, is not enough to construct
a weakly private RSS and additional impossibility results.

3 Generic Transformation

This section presents the generic transform. In particular, we provide a generic
algorithm which transforms any weakly immutable, strongly private, and weakly
blockwise non-interactive publicly accountable SSS into an unforgeable and
weakly private RSS.

Outline. The basic idea of our transform is that every party, including the
signer, is allowed to alter all given blocks. The verification procedure accepts
sanitized blocks, if the altered blocks are �. � is treated as a redacted block.
Hence, redaction is altering a given block to a special symbol. As we have defined
that an SSS only allows for strings m[i] ∈ {0, 1}∗, we need to define � := ∅
and m[i] ← 0, if m[i] = ∅ and m[i] ← m[i] + 1 else to codify the additional
symbol �. Here, ∅ expresses the empty string. Hence, we remain in the model
defined. Moreover, this is where weak blockwise non-public interactive public
accountability comes in: the changes to each block need to be detectable to
allow for a meaningful result, as an SSS allows for arbitrary alterations. As �

124 H. de Meer et al.

is still visible, the resulting scheme is only weakly private, as statements about
m can be made. This contradicts our definition of strong privacy for RSSs.
Moreover, as an RSS allows every party to redact blocks, it is obvious that
sksan must be known to every party, including the signer. Therefore, we need a
strongly private SSS to achieve our definition of weak privacy for the RSS, as
proven in App. A.

Construction 1. LetSSS := (KGensig,KGensan, Sign, Sanit,Verify,Proof, Judge,
Detect) be a secure SSS . DefineRSS := (KeyGen, Sign,Verify,Redact) as follows:

Key Generation: Algorithm KeyGen generates on input of the security param-
eter λ, a key pair (pksig, sksig) ← SSS .KGensig(1λ) of the SSS, and also a

sanitizer key pair (pksan, sksan) ← SSS .KGensan(1λ). It returns (sk, pk) =
(sksig, (sksan, pksan, pksig))

Signing: Algorithm RSS .Sign on input m ∈ {0, 1}∗, sk, pk, sets adm = (1, . . . , �)
and computes σ ← SSS .Sign(1λ,m, sksig, pksan,adm). It outputs: (m,σ)

Redacting: Algorithm RSS .Redact on input message m, modification instruc-
tions mod, a signature σ, keys pk = (sksan, pksan, pksig), first checks if σ
is a valid signature for m under the given public keys using RSS.Verify.
If not, it stops outputting ⊥. Afterwards, it sets mod

′ = {(i,�) | i ∈
mod}. In particular, it generates a modification description for the SSS
which sets block with index i ∈ mod to �. Finally, it outputs (m′, σ′) ←
SSS .Sanit(1λ,m,mod′, σ, pksig, sksan)

Verification: Algorithm RSS.Verify on input a message m ∈ {0, 1}∗, a signature
σ and pk first checks that adm = (1, . . . , �) and that σ is a valid signature
for m under the given public keys using SSS.Verify. If not, it returns false.
Afterwards, for each i for which SSS.Detect(1λ,m, σs, pksig, pksan, i) returns
San, it checks that m[i] = �. If not, it returns false. Else, it returns true.
One may also check, if sksan is correct and that all m[i] are sanitizable, if
required.

Theorem 4 (Our Construction is Secure). If the utilized SSS is weakly
blockwise non-interactive publicly accountable, weakly immutable and strongly
private, the resulting RSS is weakly private, but not strongly, and unforgeable.

Th. 4 is proven in App. B.
AsRSSs allow for removing every block, we require thatadm = (1, . . . , �). This

rules out cases where a signer prohibits alterations of blocks. This constraint can
easily be transformed into theuseful notionof consecutivedisclosure control [32,38].

4 Conclusion and Future Work

This paper presents a method to transform a single instantiation of an SSS into
an RSS. In detail, if we use one SSS instantiation, an emulation of an RSS
can only be achieved, if the SSS’s security is strengthened, raising it above
the existing standard. The resulting emulated RSS offers only weaker privacy

On the Relation between Redactable and Sanitizable Signature Schemes 125

guarantees. Moreover, we have argued rigorously that the opposite implication is
not possible. Thus, noRSS can be transformed into an unforgeable SSS . Hence,
RSSs and SSSs are indeed two different cryptographic building blocks, even if
they achieve to define and delegate authorized modifications of signed messages.
Currently, the number of SSSs achieving the new security requirements needed
to securely emulate an RSS is still low.

For the future, we suggest to focus on implementing and standardizing an
SSS secure enough to emulate RSSs, to have one universal building block. In
the meantime we advice to use dedicated RSS algorithms if only redactions are
needed and a SSS algortihm. Of course, you are advised to check current work
to ensure the cryptographic strength of the constructions.

Cryptographically, remaining open questions are: how to formally define ac-
countability for RSSs, to identify if the interesting privacy properties of unlink-
ability for SSS [10,12] will carry forward when transformed into an RSS, and
to further research how RSS and SSSs can be combined.

References

1. Ahn, J.H., Boneh, D., Camenisch, J., Hohenberger, S., Shelat, A., Waters, B.:
Computing on authenticated data. Cryptology ePrint Archive, Report 2011/096
(2011), http://eprint.iacr.org

2. Ateniese, G., Chou, D.H., de Medeiros, B., Tsudik, G.: Sanitizable signatures. In:
de Capitani di Vimercati, S., Syverson, P.F., Gollmann, D. (eds.) ESORICS 2005.
LNCS, vol. 3679, pp. 159–177. Springer, Heidelberg (2005)

3. Attrapadung, N., Libert, B., Peters, T.: Computing on authenticated data: New
privacy definitions and constructions. In: Wang, X., Sako, K. (eds.) ASIACRYPT
2012. LNCS, vol. 7658, pp. 367–385. Springer, Heidelberg (2012)

4. Attrapadung, N., Libert, B., Peters, T.: Efficient completely context-hiding
quotable and linearly homomorphic signatures. In: Kurosawa, K., Hanaoka, G.
(eds.) PKC 2013. LNCS, vol. 7778, pp. 386–404. Springer, Heidelberg (2013)

5. Boneh, D., Freeman, D.M.: Homomorphic signatures for polynomial functions. In:
Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 149–168. Springer,
Heidelberg (2011)

6. Boneh, D., Freeman, D.M.: Linearly homomorphic signatures over binary fields and
new tools for lattice-based signatures. In: Catalano, D., Fazio, N., Gennaro, R., Ni-
colosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 1–16. Springer, Heidelberg (2011)

7. Brzuska, C., et al.: Redactable Signatures for Tree-Structured Data: Definitions
and Constructions. In: Zhou, J., Yung, M. (eds.) ACNS 2010. LNCS, vol. 6123, pp.
87–104. Springer, Heidelberg (2010)

8. Brzuska, C., Fischlin, M., Freudenreich, T., Lehmann, A., Page, M., Schelbert, J.,
Schröder, D., Volk, F.: Security of Sanitizable Signatures Revisited. In: Jarecki, S.,
Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 317–336. Springer, Heidelberg
(2009)

9. Brzuska, C., Fischlin, M., Lehmann, A., Schröder, D.: Sanitizable signatures: How
to partially delegate control for authenticated data. In: Proc. of BIOSIG. LNI,
vol. 155, pp. 117–128. GI (2009)

10. Brzuska, C., Fischlin, M., Lehmann, A., Schröder, D.: Unlinkability of Sanitizable
Signatures. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056,
pp. 444–461. Springer, Heidelberg (2010)

http://eprint.iacr.org

126 H. de Meer et al.

11. Brzuska, C., Pöhls, H.C., Samelin, K.: Non-Interactive Public Accountability for
Sanitizable Signatures. In: De Capitani di Vimercati, S., Mitchell, C. (eds.) Eu-
roPKI 2012. LNCS, vol. 7868, pp. 178–193. Springer, Heidelberg (2013)

12. Brzuska, C., Pöhls, H.C., Samelin, K.: Efficient and Perfectly Unlinkable Saniti-
zable Signatures without Group Signatures. In: Agudo, I. (ed.) EuroPKI 2013.
LNCS, vol. 8341, pp. 12–30. Springer, Heidelberg (2014)

13. Canard, S., Jambert, A.: On extended sanitizable signature schemes. In: Pieprzyk,
J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 179–194. Springer, Heidelberg (2010)

14. Canard, S., Jambert, A., Lescuyer, R.: Sanitizable signatures with several sign-
ers and sanitizers. In: Mitrokotsa, A., Vaudenay, S. (eds.) AFRICACRYPT 2012.
LNCS, vol. 7374, pp. 35–52. Springer, Heidelberg (2012)

15. Canard, S., Laguillaumie, F., Milhau, M.: Trapdoor sanitizable signatures and their
application to content protection. In: Bellovin, S.M., Gennaro, R., Keromytis, A.D.,
Yung, M. (eds.) ACNS 2008. LNCS, vol. 5037, pp. 258–276. Springer, Heidelberg
(2008)

16. Cavoukian, A., Polonetsky, J., Wolf, C.: Smartprivacy for the smart grid: embed-
ding privacy into the design of electricity conservation. Identity in the Information
Society 3(2), 275–294 (2010)

17. Chang, E.-C., Lim, C.L., Xu, J.: Short Redactable Signatures Using Random Trees.
In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 133–147. Springer, Hei-
delberg (2009)

18. de Meer, H., Pöhls, H.C., Posegga, J., Samelin, K.: Scope of security properties of
sanitizable signatures revisited. In: ARES, pp. 188–197 (2013)

19. Freeman, D.M.: Improved security for linearly homomorphic signatures: A generic
framework. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS,
vol. 7293, pp. 697–714. Springer, Heidelberg (2012)

20. Goldwasser, S., Micali, S., Rivest, R.L.: A Digital Signature Scheme Secure Against
Adaptive Chosen-Message Attacks. SIAMJournal on Computing 17, 281–308 (1988)

21. Gong, J., Qian, H., Zhou, Y.: Fully-secure and practical sanitizable signatures. In:
Lai, X., Yung, M., Lin, D. (eds.) Inscrypt 2010. LNCS, vol. 6584, pp. 300–317.
Springer, Heidelberg (2011)

22. Haber, S., Hatano, Y., Honda, Y., Horne, W.G., Miyazaki, K., Sander, T., Tezoku,
S., Yao, D.: Efficient signature schemes supporting redaction, pseudonymization,
and data deidentification. In: ASIACCS, pp. 353–362 (2008)

23. Hanser, C., Slamanig, D.: Blank digital signatures. In: AsiaCCS, pp. 95–106. ACM
(2013)

24. Izu, T., Izumi, M., Kunihiro, N., Ohta, K.: Yet another sanitizable and deletable
signatures. In: AINA, pp. 574–579 (2011)

25. Izu, T., Kunihiro, N., Ohta, K., Sano, M., Takenaka, M.: Sanitizable and deletable
signature. In: Chung, K.-I., Sohn, K., Yung, M. (eds.) WISA 2008. LNCS, vol. 5379,
pp. 130–144. Springer, Heidelberg (2009)

26. Johnson, R., Molnar, D., Song, D., Wagner, D.: Homomorphic signature schemes.
In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 244–262. Springer, Hei-
delberg (2002)

27. Klonowski, M., Lauks, A.: Extended Sanitizable Signatures. In: Rhee, M.S., Lee,
B. (eds.) ICISC 2006. LNCS, vol. 4296, pp. 343–355. Springer, Heidelberg (2006)

28. Kundu, A., Bertino, E.: Structural Signatures for Tree Data Structures. In: Proc.
of PVLDB 2008, New Zealand. ACM (2008)

29. Kundu, A., Bertino, E.: How to authenticate graphs without leaking. In: EDBT,
pp. 609–620 (2010)

30. Kundu, A., Bertino, E.: Privacy-preserving authentication of trees and graphs. Intl.
J. of Inf. Sec., 1–28 (2013)

On the Relation between Redactable and Sanitizable Signature Schemes 127

31. Lim, S., Lee, E., Park, C.-M.: A short redactable signature scheme using pairing.
Sec. and Comm. Netw. 5(5), 523–534 (2012)

32. Miyazaki, K., Hanaoka, G., Imai, H.: Digitally signed document sanitizing scheme
based on bilinear maps. In: ASIACCS 2006, pp. 343–354. ACM, New York (2006)

33. Miyazaki, K., Iwamura, M., Matsumoto, T., Sasaki, R., Yoshiura, H., Tezuka, S.,
Imai, H.: Digitally Signed Document Sanitizing Scheme with Disclosure Condition
Control. IEICE Transactions 88-A(1), 239–246 (2005)

34. Miyazaki, K., Susaki, S., Iwamura, M., Matsumoto, T., Sasaki, R., Yoshiura, H.:
Digital documents sanitizing problem. Technical report, IEICE (2003)

35. Pöhls, H.C., Peters, S., Samelin, K., Posegga, J., de Meer, H.: Malleable signatures
for resource constrained platforms. In: Cavallaro, L., Gollmann, D. (eds.) WISTP
2013. LNCS, vol. 7886, pp. 18–33. Springer, Heidelberg (2013)

36. Pöhls, H.C., Samelin, K., Posegga, J.: Sanitizable Signatures in XML Signature -
Performance, Mixing Properties, and Revisiting the Property of Transparency. In:
Lopez, J., Tsudik, G. (eds.) ACNS 2011. LNCS, vol. 6715, pp. 166–182. Springer,
Heidelberg (2011)

37. Samelin, K., Pöhls, H.C., Bilzhause, A., Posegga, J., de Meer, H.: On Structural
Signatures for Tree Data Structures. In: Bao, F., Samarati, P., Zhou, J. (eds.)
ACNS 2012. LNCS, vol. 7341, pp. 171–187. Springer, Heidelberg (2012)

38. Samelin, K., Pöhls, H.C., Bilzhause, A., Posegga, J., de Meer, H.: Redactable signa-
tures for independent removal of structure and content. In: Ryan, M.D., Smyth, B.,
Wang,G. (eds.) ISPEC2012.LNCS, vol. 7232, pp. 17–33. Springer,Heidelberg (2012)

39. Slamanig, D., Rass, S.: Generalizations and extensions of redactable signatures
with applications to electronic healthcare. In: De Decker, B., Schaumüller-Bichl, I.
(eds.) CMS 2010. LNCS, vol. 6109, pp. 201–213. Springer, Heidelberg (2010)

40. Steinfeld, R., Bull, L., Zheng, Y.: Content extraction signatures. In: Kim, K.-C.
(ed.) ICISC 2001. LNCS, vol. 2288, pp. 285–304. Springer, Heidelberg (2002)

41. Yuen, T.H., Susilo, W., Liu, J.K., Mu, Y.: Sanitizable signatures revisited. In:
Franklin, M.K., Hui, L.C.K., Wong, D.S. (eds.) CANS 2008. LNCS, vol. 5339, pp.
80–97. Springer, Heidelberg (2008)

42. Yum, D.H., Seo, J.W., Lee, P.J.: Trapdoor sanitizable signatures made easy. In:
Zhou, J., Yung, M. (eds.) ACNS 2010. LNCS, vol. 6123, pp. 53–68. Springer, Hei-
delberg (2010)

A Requirements to Transform a SSS into a RSS
In this section, we show that standard private SSSs are not enough to build
weakly private RSSs. Moreover, we prove that weak blockwise non-interactive
public accountability is required to build an unforgeable RSS. To formally ex-
press this intuitive goals, we need Theorems 5 and 6.

Theorem 5 (Any non strongly private SSS results in a non-weakly
private RSS). If the transformed SSS is not strongly private, the resulting
RSS is not weakly private.

Proof. Let A be an adversary winning the strong privacy game as defined in
Fig. 5. We can then construct an adversary B, which wins the weak privacy
game as defined in Fig. 6, using A as a black-box:

1. B receives the following keys from the challenger: pksan, sksan, pksig and
forwards them to A

128 H. de Meer et al.

2. B simulates the signing oracle using the oracle provided
3. Eventually, A returns its guess b∗

4. B outputs b∗ as its own guess

Following the definitions, the success probability of B equals the one of A. This
proves the theorem.

Theorem 6 (No Transform can Result in a Strongly Private RSS).
There exists no algorithm which transforms a secure SSS into a strongly private
RSS.

Proof. Once again, every meaningful SSS must be immutable, which implies
weak immutability due to Th. 2. Hence, we do not make any statements about
schemes not weakly immutable. We show that any transform T achieving this
property uses a SSS ′ which is not weakly immutable. Let RSS ′ denote the
resulting RSS. We can then derive an algorithm which uses RSS ′ to break the
weak immutability requirement of the underlying SSS in the following way:

1. The challenger generates the two key pairs of the SSS. It passes all keys but
sksig to A

2. A transforms the SSS into RSS ′ given the transform T
3. A calls the oracle SSS.Sign with a message m = (1, 2)
4. A calls RSS ′.Redact with mod = (1)
5. If the resulting signature σ does not verify, abort
6. A outputs (m′, σSSS) of the underlying SSS

As �m �= �mod(m), (mod(m), σSSS) breaks the weak immutability requirement
of the SSS . Moreover, as hiding redacted parts of a message is essential for
strong privacy, no algorithm exists, which transforms a weakly immutable SSS
into a strongly private RSS, as adm needs to be correctly recoverable. This
proves the theorem. This concrete example is possible, as we only use required
behavior.

Theorem 7 (Weak Blockwise Non-Interactive Public Accountability
is Required for any Transform T). For any transformation algorithm T ,
the utilized SSS must be weakly blockwise non-interactive publicly accountable
to result in an unforgeable RSS.

Proof. Let RSS ′ be the resulting RSS from the given SSS. Perform the fol-
lowing steps to show that the used SSS is not weakly blockwise non-interactive
publicly accountable. In particular, let A be an adversary winning the unforge-
ability game, which is used by B to break the weak blockwise non-interactive
public accountability of the used SSS .

1. The challenger generates the two key pairs of the SSS. It passes all keys but
sksig to B

2. B forwards all received keys to A
3. A transforms the SSS into RSS ′ given the transform T

On the Relation between Redactable and Sanitizable Signature Schemes 129

4. Any calls to the signing oracle by A are answered genuinely by B using its
own signing oracle

5. Eventually, A returns a tuple (m,σRSS) to B
6. If the resulting signature does not verify or does not win the unforgeability

game, A and therefore also B abort
7. B outputs the underlying message-signature pair (m′, σSSS′)

Following Fig. 3, (m′, σSSS′) breaks the weak blockwise non-interactive public
accountability requirement of the SSS, as there exists a block, which has not
been signed by the signer, while the signer is accused by Detect. Moreover, the
success probabilities are equal. The contrary, i.e., if the SSS used is not weakly
blockwise non-interactive publicly accountable, the proof is similar. To achieve
the correctness requirements, our accountability definition must hold blockwise.

Theorem 8 (No Unforgeable RSS can be Transformed into an SSS).
There exists no transform T , which converts an unforgeable RSS into an un-
forgeable SSS .

Proof. Let SSS ′ be the resulting SSS . Now perform the following steps to ex-
tract a valid forgery of the underlying RSS :

1. The challenger generates a key pair for an RSS. It passes pk to A.
2. A transforms RSS into SSS ′ given the transform T
3. A calls the oracle RSS .Sign with a message m = (1, 2) and simulates

SSS ′.Sign with adm = (1)
4. A calls SSS ′.Sanit with mod = (1, a), a ∈R {0, 1}λ.
5. If the resulting signature does not verify, abort
6. Output the resulting signature σRSS of the underlying RSS

As (a, 2) /∈ span�(m), ((a, 2), σRSS) is a valid forgery of the underlying RSS .
Note, this concrete counterexample is possible, as only required behavior is used.

B Proofs of Theorem 3 and 4

Th. 3: There exists an SSS which is private, but not strongly private.

Proof. We do so by modifying an arbitrary existing strongly private SSS. Let
SSS = (KGensig,KGensan, Sign, Sanit,Verify,Proof, Judge) be an arbitrary private
SSS. We alter the scheme as follows:

– KGen′sig := KGensig
– KGen′san := KGensan, while an additional key pair for a IND-CCA2-secure

encryption scheme ENC is generated.
– Sign′ is the same as Sign, but it appends the encryption e of a digest

of original message to the final signature, i.e., σ′ = (σ, e), where e ←
ENC(pksan,H(m)) and H some cryptographic hash-function.

– Sanit′ is the same as Sanit, while it first removes the encrypted digest from
the signature, appending it to the resulting signature.

130 H. de Meer et al.

– Verify′, Proof′ and Judge′ work the same as their original counterparts, but
removing the trailing e from the signature before proceeding.

Clearly, a sanitizer holding the corresponding secret key for ENC, can distinguish
betweenmessages generated by the signer and the sanitizer using the information
contained in the signature σ. Without sksan, this information remains hidden due
to the IND-CCA2 encryption.

Th. 4: Our Construction is Secure. We have to show that the resulting
RSS is unforgeable and weakly private, but not strongly.

Proof. We prove each property on its own.

I) Unforgeability. Let A be an algorithm breaking the unforgeability of the
resultingRSS. We can then construct an algorithm B which breaks the weak
blockwise non-interactive public accountability of the utilized SSS. To do
so, B simulates A’s environment in the following way:
1. B receives pksan, sksan, pksig and forwards them to A
2. B forwards every query to its own signing oracle
3. Eventually, A outputs a tuple (m∗, σ∗)
4. If (m∗, σ∗) does not verify or is trivial, abort
5. B outputs (m∗, σ∗)
m cannot be derived from any queried message, with the exception of m[i] =
� for any index i. Hence, ∃i : m[i] �= �, which has not been signed by
the signer. The accepting verification requires that Sig = Detect(1λ,m∗, σ∗,
pksig, pksan). Therefore, (m

∗, σ∗) breaks the weak blockwise non-interactive
publicly accountability. The success probability of B equals the one of A.

II) Weak Privacy. To show that our scheme is weakly private, we only need to
show that an adversary A cannot derive information about the prior content
of a contained block m[i], as � is considered part of the resulting message
m′ and all other modifications result in a forgeable RSS . Let A winning the
weak privacy game. We can then construct an adversary B which breaks the
strong privacy game in the following way:
1. B receives pksan, sksan, pksig and forwards them to A
2. B forwards every query to its own oracles
3. Eventually, A outputs its guess b∗
B outputs b∗ as its own guess. The oracle requires thatmod1(m1) = mod(m2),
disregarding�. Note, the messages are the same. Hence, the success probabil-
ity of B is the same as A’s. This proves the theorem.

III) No Strong Privacy. Due to the above, we already know that our scheme is
weakly private. Hence, it remains to show that it is not strongly private. As
a redaction leaves a visible special symbol, i.e., �, an adversary can win the
strong privacy game in the following way: Generate two messages m0,m1,
where m1 = (m0, 1). Hence, �0 < �1, while m0 is a prefix of m1. Afterwards,
it requests that m1[�1] is redacted, i.e., mod1 = (�1) and mod0 = ().
Hence, if the oracle chooses b = 0, it will output m2 = m0 and for b = 1,
m2 = (m1,�). Hence, the adversary wins the game, as (m1,�) �= m0.

Idea: Towards a Working Fully Homomorphic

Crypto-processor

Practice and the Secret Computer

Peter T. Breuer1 and Jonathan P. Bowen2,�

1 Department of Computer Science, University of Birmingham, UK
ptb@cs.bham.ac.uk

2 School of Computing, Telecommunications and Networks,
Birmingham City University, UK

jonathan.bowen@bcu.ac.uk

Abstract. A KPU is a replacement for a standard RISC processor that
natively runs encrypted machine code on encrypted data in registers and
memory – a ‘general-purpose crypto-processor’, in other words. It works
because the processor’s arithmetic is customised to make the chosen en-
cryption into a mathematical homomorphism, resulting in what is called
a ‘fully-homomorphic encryption’ design. This paper discusses the prob-
lems and solutions associated with implementing a KPU in hardware.

1 Introduction

A KPU (‘Krypto-Processor Unit’) is a simple general purpose processor and
processor architecture that works on data in encrypted form. To input data into
the machine, the owner prepares it in encrypted form and receives encrypted
data back. In theory, a KPU need never decrypt, even as it places encrypted
data in memory and registers and runs the encrypted program. That makes it of
interest for cloud computation, and also the reverse situation, where, for example,
a bank wishes to securely devolve responsibility for transactions on individual
bank accounts to personal chips held by the untrusted account owners.

The mathematics relates a KPU to the science of fully-homomorphic encryp-
tion, first introduced as privacy homomorphisms in [10]. Well-known encryptions
such as RSA private/public key cryptography [11] exhibit partial homomor-
phism, in the case of RSA with respect to multiplication, in that RSA(a)∗RSA(b)
mod m = RSA(a ∗ b), where RSA stands for the encryption and m is its asso-
ciated (large) arithmetic modulus. An encryption that supports homomorphism
both with respect to addition and to multiplication is said to be a fully homo-
morphic encryption (FHE). The operations on encrypted data corresponding to
multiplication and addition on the unencrypted data need not be as simple as
multiplication or addition in the general case, but Gentry [6] constructed a FHE
in which those operations, while complex, do not compromise the encryption

� Jonathan Bowen acknowledges the support of Museophile Limited.

J. Jürjens, F. Piessens, and N. Bielova (Eds.): ESSoS 2014, LNCS 8364, pp. 131–140, 2014.
c© Springer International Publishing Switzerland 2014

132 P.T. Breuer and J.P. Bowen

and thus may still be carried out by untrusted parties. In a KPU, the corre-
sponding operations are embedded in the hardware. A KPU can be handed out
to an untrusted party just as the software algorithms for the operations that
work on FHE-encrypted data can be handed out. However, a KPU design al-
lows more flexibility in the choice of the underlying encryption, and engineering
tradeoffs come to the fore. One may entertain, for example, the possibility of
operations that would reveal the encryption if they were exposed, but which are
implemented in hardware that physically secures them, as for SmartCards [8].

In terms of its construction, a KPU is a processor in which the standard
arithmetic logic unit (ALU) has been replaced by a different design satisfying
certain special properties. A standard processor is the trivial case. A KPU is
described in mathematical terms in [1], where it is shown that, whatever the
detail of the implementation, provided the modified ALU satisfies the required
properties then a KPU operates correctly, in that the machine states that obtain
during the execution of an encrypted program are encryptions of the states that
would result in an ordinary RISC [9] processor running the unencrypted program.
A RISC design is a convenient point of departure for the proof, because of its
simplicity, but it is equally possible to build a KPU by starting from another
class of modern von Neumann processor.

The modified ALU in a KPU, instead of 1 + 1 = 2, does 6769875#6769875 =
87997001 (for example), those numbers being encodings of 1 and 2 under the
encryption. In its most general form, this is a homomorphism statement, and
the ‘special properties’ of the modified ALU alluded to above are the require-
ments that its operations, functions and relations be homomorphic images of the
standard operations.

Counter-intuitively for those who appreciate that the slightest change inside
the processor may snowball, the grossly changed arithmetic results in states that
are ‘correct’, but encrypted. One can liken it to changing from speaking ‘English’
in a CPU to speaking ‘Chinese’ in the KPU, with the added difficulty of very
many ‘Chinese’ words for every ‘English’ word. The detail in a practical KPU de-
sign is merely aimed at avoiding design features that may inadvertently sabotage
this principle. It is important, for example, to separate the circuitry that does
arithmetic on program addresses from that which does arithmetic on data, or the
encrypted ‘+1’ on the address at most every tick of the clock would leak signifi-
cant information, as well as compromise program loading and caching localities.
In consequence, while data addresses and contents and program instructions are
encrypted in a KPU, program addresses should be encrypted differently and
may not be encrypted at all. Running programs must be written to keep the two
kinds apart, so that encrypted values are acted on by instructions that expect
encryption, and unencrypted values are acted on by instructions that do not
expect encryption [2].

The idea behind KPU design is ‘problem reduction’. It reduces the problem of
encrypted general purpose computing to the lower order problem of constructing
an appropriately modified ALU. In principle a very large lookup table suffices to
drive the ALU, but replacing every gate in the standard ALU with an ‘encrypted

Practice and the Secret Computer 133

version’ of the same gate also works. Between those extremes lie many other
possibilities, which will be explored in this paper.

Speed is not a primary concern — IBM’s FHE implementations take on the
order of seconds per single bit operation on a vector mainframe [7], though this
shows signs of being improved by means of special techniques on GPU-based
hardware [12] — and there are many other factors to consider. There is, for
example, a hardware aliasing problem, which arises because ciphers are one–
many and thus many different (‘Chinese’) encryptions of a single (‘English’)
memory address may crop up and be used during the execution of a program.
Since all the different aliases designate physically different locations in memory,
a working program for a KPU must be written to access only one of them, which
means every address must be calculated the same way at every use [3].

This paper focuses on two areas in working KPU design in particular. Section 2
discusses hardware options and Section 3 discusses encoding strategies.

2 Word Size and Hardware Design

The first issue in processor design is ‘how big is a data word’, the physical extent
of the standard unit of data. ‘Large’ means the processor needs long registers
and many traces and wide busses to carry the data internally, which is costly.
The quick answer here is that nobody yet really knows what word size is best,
because different design approaches indicate different solutions.

In a KPU, the data word size is the encryption block size, the size of a unit of
encrypted data. For strong encryption, about 128 bits is reasonable for many of
the common ciphers in the medium to long term, whereas 64 bits is borderline,
but sufficient for real time protection, supposing key size the same as encryption
block size. Neither is technically impossible, but 64 bits would be very favourable
from the manufacturer’s point of view as the associated technology is already
in use. Fewer bits would be even better from that perspective, however. The
trade-off is small size (low cost, low power) against greater security.

How many plaintext bits does a 64-bit encrypted data word contain? It can
be anywhere from 1 to close to 64, leaving room for padding bits that make the
encryption one–many overall; 32 plaintext bits and 32 padding bits would result
in 232 different encodings of each 32-bit plaintext number. The numbers are
significant because if an attacker guesses the encryption for 1 and also guesses
which operation is the ‘+’ in the ALU, then, given access, the attacker can
generate the encryption of 2 via 1 + 1, of 3 via 2 + 1, etc, and thus obtain
a complete codebook. Many encodings for each plaintext number imply many
codebooks and only relatively few encountered in any program run. That is
reassuring because, in general, there is no mathematical analysis available of the
security of arithmetic in a KPU. That is also the case for white-box access, but
note that the example of the encrypted arithmetic in Gentry’s software solution
[5] shows that it is not a priori unsafe to permit unfettered access to hardware.
To make the discussion concrete, five designs are set out below.

1. Embedded codecs: We may create an encrypted ALU by placing codecs
on inputs and outputs of a standard ALU, as in Fig. 1. The codecs (D, C) contain

134 P.T. Breuer and J.P. Bowen

keys that must be transferred securely into the hardware, perhaps via a Diffie-
Hellman protocol [4], and they must be invulnerable to electronic probes. That
is within the capabilities of SmartCard manufacturers today. The key should be
volatile, so it does not survive disconnection, and the hardware’s internal traces
protected by overlying circuit elements. A 64-bit (encrypted) word is inherently
feasible, but stripping out and replacing 32 bits of padding requires extra hard-
ware. The simplest implementation has the data bits in the middle of the word
and routes them to a 32-bit ALU. The output padding is generated by a separate
unit (P); it can multiply input paddings and take the middle 32 bits (‘mid-out’
hash), folding in extra randomness as desired.

One problem with this kind of design,

ALU

D

D P

C

64

64

32

32 64

32

ALU’

Fig. 1. Building an encrypted ALU us-
ing codecs (D, C) with embedded keys,
and a padding unit (P). 64-bit inputs at
left, 64-bit outputs at right.

apart from potential vulnerabilities with
harbouring keys, is that the speed of the
codecs limits the speed of the processor.
Some encryptions when done in hardware
can run at a few hundred MHz (CuBox
run an ARM v6-based chip doing AES
encryption clocked at 800MHz).

Nevertheless, the design is easily re-
alised with present-day silicon technolo-
gies, requiring no radical innovations, and
represents the most likely initial imple-
mentation technique. A small company
with processor expertise can already pro-
duce chip wafers based on this idea.

2. Lookup tables: Fig. 2 shows a 16-bit ‘black-box’

RAM table store

16

16

16

ALU’

Lookup

Fig. 2. Building an
encrypted ALU as
a ‘black-box’ lookup
table requires large
amounts of on-board
RAM. 16-bit inputs
at left, 16-bit outputs
at right.

ALU design. It contains tables for encrypted arithmetic
on two 16-bit encrypted inputs, producing one 16-bit en-
crypted output. Leaving security questions aside (16-bit
cipherspaces are easily searched, but that is not the end of
the story), each binary operator requires tables occupying
(216)2 × 16 = 236 bits, or 8GB. That is too large to go
in-processor at present, but it can reside in RAM. Every
arithmetic operation must access the tables, which limits
speeds to 200MHz to 400MHz, in practice. But we expect
advances in technology to make the numbers feasible in a
few years, returning focus to the security question here.

This solution focuses on encrypted arithmetic tables as
the encryption ‘key’. Those 8GB lumps of data in RAM
need to be supplied, probably over the Internet, at rel-
atively frequent intervals as different configurations are
adopted for different encryptions, but sending them be-
forehand, or in parallel while computation proceeds, is an
option. The transfer need not be in public view, but if it

Practice and the Secret Computer 135

is, then can an attacker work out an encoding given the full tables, together with
observations of what computations are done in practice?

The answer is formally ‘no’ (one may place two and in practice ‘very many’
encodings simultaneously in the same tables; see Section 3), but observations of
a running CPU may aid the attacker. If this solution is secure, then it can also
be implemented in software, leading to the safe running of a KPU in simulation.

The problematic aspect of this solution is the short 16-bit input and output
sizes. If, say, 8 bits of that is padding, it only leaves room for 8 bits of data
beneath the encryption. While 8-bit computation is feasible (and from 4 to
16 times as slow as 32-bit computation), it is disadvantaged in security terms
because 32-bit calculations take several cycles, and the carry in to the second
cycle will be highly constrained and yet encrypted in the same way as the other
inputs, which makes decoding relatively easy.

On the plus side, however, is that algebraic attacks using the ring structure of
addition and multiplication under the homomorphism do not work. One might
look for, say, 3 as one of the highest-order elements of the tables under self-
multiplication (it should take or 216 or 16 self-multiplications to get back to 3
again, depending how one counts), but that approach is scotched because the
padding makes the result still look different from the original.

3. Modular design: Putting several ALUs in parallel in the hardware allows
the lookup table solution to be ‘ramped up’ to deliver 32-bit computation in one
cycle in hardware, as shown in Fig. 3 for addition. The individual encrypted
adders are 16-bit for a total of 64 bits of input and output, but the encryption
is different in each group of 16 bits. The encryption varies again on each of
the carry outputs and inputs. One may imagine that between each adder an
arbitrary extra encryption has been applied via codecs Di, Ci, shown in dotted
lines, but in reality these are folded into the tables.

In hardware, no internal connections are exposed, but this solution is prob-
lematic in software. Can the units in solid lines be safely stored as lookup tables
in full public view? The answer is formally unknown.

One may embed at least two different ciphers in one 3-bit encrypted arithmetic
table, encoding just one data bit (the technique is explained in Section 3). The
maximum number M of ciphers is much higher than two, but there are too
many configurations to establish M exactly (a 3-bit table for one arithmetic
operation has 64 entries, each 3 bits, thus 864 = 2192 tables to explore). The
significance of that may be seen via an analogy: Suppose that the English word
‘mouse’ is also the Chinese word for ‘sunshine’, with similar overlaps for all
English and Chinese words. The situation here is then that an observer cannot
decide if an observed computation is an ‘English’ conversation about pests or a
‘Chinese’ conversation about weather. The mathematics makes the ‘grammar’
(the arithmetic) look right both ways.

The layout of Fig. 3 may be adapted for 32 3-bit units, each encoding one bit
of data. Then 32-bit computation is implemented with 96-bit encrypted words
and an attacker with full access must explore M32 valid decodings, assuming
it is already known which decodings are valid for those tables (there are only

136 P.T. Breuer and J.P. Bowen

8!/2! = 20160 each to check in the 3-bit case). The tables are small and may be
placed in-processor. Alternatively, 21-bit computation (via 21 3-bit units in the
layout of Fig. 3) can be fitted in 63-bit encrypted words, and 24-bit computation
in 64-bit encrypted words is feasible using trits and base-6 digitisation.

The lemma to remember here is that the arithmetic

+

D2

C3

+

D3

D1

+
C2

C1
+

16

16

16

16
16

16

16
16

16

16
16

16

Fig. 3. Encrypted
adder built from
smaller units, with
4×16-bit inputs at
left, 4×16-bit output
at right, and distinct
encodings in each unit.

tables for coded values do not expose the coding, when
padding makes the coding 1-to-many.

We will elaborate the approach in §5 below. First con-
sider another approach that at first also looks unlikely.

4. Gate-level encryption: One may replace every
single (1-bit) trace in an ALU by a set of 3 or 8 or
16, etc., traces carrying respectively a 3- or 8- or 16-bit
encryption of the single bit; every OR gate is replaced
by a corresponding ‘encrypted-OR gate’, possibly table-
driven. If we consider the units of Fig. 3, then each of
them may be implemented via a network of such ‘en-
crypted gates’.

This reduces the design problem to dealing with just
one bit of data, encrypted in as many bits as may be ad-
visable for security. Fig. 4 shows how a 16-bit encrypted
one-bit half-adder may be implemented like this. Instead
of one table for addition and another for multiplication,
etc., there is one table for 1-bit AND, one for 1-bit OR,
and one for 1-bit inversion, but, in theory, just one table,
for 1-bit NAND, will suffice. So storage requirements are
‘only’ one 8GB table for each 16-bit encryption used.

An entire 16-bit encrypted ALU can be built in this
way, using just one encryption, but it requires 16×16 in-
put and output traces, i.e., encrypted words of 256 bits.
But there is a problem: how to access the arithmetic
tables simultaneously for all the gates that need to. In
practice, with today’s technology, one cannot. Even so,
ALUs tend to be built so that calculation propagates
across them in systolic fashion. If the construction is at
worst n gates wide by m deep (m determines the latency), then the calculation
may in principle be pipelined using just n gates and n tables organised into m
stages. Each stage of the calculation takes time equal to one table lookup, thus
a complete arithmetic calculation should take time equal to m table lookups.
But one complete calculation will exit the pipeline at intervals of one lookup,
so the throughput is normal. Pipelined ALUs (for floating point arithmetic) are
common in processor technology.

5. Hybrids: We now revisit the modular design of Fig. 3. That has relatively
weak 4× 16-bit security in the configuration shown, but imagine an AES codec
that decrypts a 64-bit ciphertext to a 64-bit plaintext, but which does so in

Practice and the Secret Computer 137

hardware. AES works via addition and multiplication operations on 16-bit seg-
ments. Apply the process that built Fig. 4 to the codec, operation by operation.

Imagine the ith 16-bit segment of plaintext

inv

inv

AND

AND

OR

inv table OR tableAND table

16

16 16

16

16

16
16

Fig. 4. An adder built from en-
crypted gates. 16-bit inputs at left,
16-bit output at right.

output as followed by a new encoder Ei that
produces 16 bits of encrypted output. PassEi

to the input side of the adjacent internal AES
operation G, replacing it with an encrypted
operation G′, such that Ei ·G′ = G ·Ei. Re-
peat, passing the encoders Ei from output to
input side of each successive layer of internal
AES operations in turn.

The process ends in a design analogous to
Fig. 4, shown at left in Fig. 5 as ‘D’. In it,
every 16-bit operation G in the original AES
decoder has been replaced by an ‘encrypted
version’ G′ working on 16-bit encrypted words. Internal changes between en-
cryptions Ei and Ej are notionally handled by extra codecs Di and Cj shown in
Fig. 5, although in reality these are folded into the tables that drive the different
encrypted operations. What does this bizarre construction do?

The answer is that it takes as input 4× 16 =

+

D2

C3

+

D3

D1

+
C2

C1
+

16

16

16

16
16

16

16
16

16

16
16

16

C

D

D

64

64

64

Fig. 5. Increasing encryption
security. 64-bit inputs at left, 64-
bit output at right.

64 bits in which the ith group of 16 is an en-
coding under Ei of the ith 16-bit segment of
the AES encoding of a 64-bit plaintext number
x. The output is a 64-bit word y in which the
ith group of 16 bits is the encoding under Ei

of the ith 16-bit segment of x. In other words,
it decodes doubly encrypted data to singly en-
crypted data that is suitable as input to the de-
sign of Fig. 3. The AES key is kept encrypted
under the Ei in the internals of the modified
decoder.

After decoding by D, doubly encrypted data
is suitable for handling by the encrypted arith-
metic structure of Fig. 3, shown in the centre of
Fig. 5. The output from that may be recoded
again using a modified AES encoder, labelled C
in Fig. 5, producing doubly encrypted data. The
AES keys are stored encrypted, and the ALU of
Fig. 5 does ‘doubly encrypted arithmetic’. An
untrusted party with the encrypted AES keys

can decrypt doubly encrypted data to singly encrypted data, but no more.
What is the advantage of this construction? The input encoding is at least as

safe as AES. The keys, even if uncovered, are themselves encrypted and do not
serve to decrypt the input, or output, or any intermediate. But the number of

138 P.T. Breuer and J.P. Bowen

bits in the construction is most significant: it is just 64 bits. If every trace and
gate had been ‘encrypted’, as in §4, it would have been 32× 64 bits.

So what is the right word size? Every size from 3, 8, 16, 64, 256, 512 bits has
been suggested above. It requires detailed simulation and negotiation with chip
manufacturers to make the decision in practice.

3 ABC Encoding

If the KPU’s ALU contains a division operator – or even if there is a division
routine in software – then an attacker with sufficient access can nearly always
obtain an encryption of 1 by computing x/x for any encrypted x that has been
observed. Even if which operation is division is formally unknown, the choice
of n (usually 64 at most in a conventional ALU) operations merely multiplies
up the number of possibilities to be tried by n, which is not significant. And
obtaining encrypted 1 gives encrypted 2 via 1+1, etc, until a complete codebook
is constructed. This attack has implications for the encodings used in a KPU.

We have remarked that padding under the encryption is justified by the need
for many codebooks in order to confound this kind of attack, but there is also
a separate ‘defense by construction’ that may be built into the system. It is to
set the ALU so that x opx, always gives a nonsensical or random result, for
any operator. How then to really calculate 1/1, for example? Two different and
disjoint encodings are implemented, a type-A encoding and a type-B encoding,
and AopB gives the right answer of type B, while A opA and BopB always give
nonsense. Symmetrically, B opA gives the right answer of type A. It is simple to
compile programs such that every operation takes place on operands of types A
and B, or B and A, and the program runs correctly. This is called ‘AB encoding’.

Unfortunately, AB encoding does not make things more difficult for an at-
tacker with sufficient access. Doing the calculation (x+y)/(y+x), where x is of
type A and y of type B, still gives 1. An attacker may use any observed x, y.

An improvement called ‘ABC encoding’ resolves the problem. It adds one
more disjoint encoding, a so-called type-C encoding, to the mix. The valid oper-
ations are now of type AopB = C, BopC = A and CopA = B, and everything
else gives nonsense. Again, compiling programs so that all operations have cor-
rect typing is trivial. One may prove that an attacker cannot take an observed
calculation x of type A, reshuffle its parts to obtain a calculation y of type B, and
then compute x/y with ABC encoding, for a known constant result. The logic of
ABC encoding does not allow it. A loophole, however, is that the attacker may
not merely reshuffle parts, but also duplicate or eliminate some parts in a revised
sum, to get a constant. The following calculation is valid in ABC encoding:

(x ∗ y) + (y ∗ (x ∗ y)) = 0 mod 2

So an attacker with the encrypted arithmetic tables for two 1-bit plaintext op-
erations can obtain an encoding of the 1-bit plaintext ‘0’. If the attacker does
not know which operation is which, however, then there is no way of getting a
constant result out (mod 2), and nothing can be gained in this way.

Practice and the Secret Computer 139

A0

A1

B0

B1

C0

C1

5

A1

A0

B0

B1

B1

B0

A0

A1

C0

C1

B1

B0

C1

C0

B0

B1

B1

B0

C1

C0

C0

C1

A1

B1

B0

B0 B1 C0 C1A0 A1

C1

C1 C0

C0

A0

A1 A0

B1 B0

B0 B1

A1

A1

A0

A0
A0 A1

A1 A0

C0 C1

C0C1

A0

A0

A1

A1

B0 B1

B1 B0

A1

A1

A0

C1

C1C0

C0

B1

B1B0

B0

A0

A1

B0

B1

C0

C1

A1

A0

B1

B0

C1

C0

+

2

1

3

4 3

4

2

1 5

6

4

3 4

3

5

6

1 2

12

6

5 6

A0

A0A1 B1 B0C0 C1

1 2 3 4 5 6

1

2

3

4

5

6

5 6

56

1

2

2

1

3 4

4 3

A0

C1

C0

B0

A1

B0

A0

A0

A0

A1

C1

C1

B0

B1

B0

B1

B1

B0

C0 B0

A0

B0

A1 A0

A1

A1

C0

C1

C1

C0

C1

B1 B0C0 C0A1

A1 B0 B1 C0 C1A0

A1

A0

B1

B0

C1

C0

A1

A1

A1

A0

A0

B1

B1

B1

B0

C0

C0

C1

C1

A1 A1

A1 A0

C0 C0

C0 C1

B1

B1

B0

B0

∗

A1 A0 C0 C1 B1 B0

C0

C0C0

C1

B1

B0 B0

B0

A0

A0 A0

3

3

1

2

2

1

5

5 6

5

143

4 3 1

53

4 6 5

6

2

1

1 2 3 4 5 6

4 3

33

2 1

22

66

5 6

5

6

4

3

2

1

Fig. 6. Two different encodings simultaneously embedded in the same 6× 6 tables for
encrypted addition and multiplication mod 2, using ABC encoding. The ‘lower left’
A, B, C encryptions of 0,1 are 1,2;3,4;5,6 respectively. The ‘upper right’ encryptions
are 2,1;6,5;3,4 respectively. Only AB=C, BC=A, CA=B gives valid results, such as
A0+B1=C1, the rest are arbitrary.

ABC encoding trebles the size of the cipherspace required, and thus requires
nine times as much storage space for arithmetic tables, as well as slightly increas-
ing the number of bits required for an encrypted word. However, several different
encryptions may be placed in the same tables simultaneously. Fig. 6 shows an
example in the minimal possible size ABC tables: 6× 6 in a cipherspace of size
6 for modulo 2 arithmetic.

In practice, 8 coding values would be used for 3 full bits of cipherspace, the
redundancy permitting more overlaps. However, the upper limit for overlap as
the cipherspace size increases is not known, nor is the number M ≥ 2 of different
encryptions that may be fitted in simultaneously. Despite the formal unknowns,
we believe that ABC encodings do make it much more difficult to deduce the
encryption from the encrypted arithmetic tables. An attacker may never hope
to recognise a chance encoding that looks like 1 ∗ 1 = 1 under ABC rules, for
example, because patterns of that form may never be constructed.

Fig. 6 proves that the tables do not determine the encryption uniquely.

4 Conclusion

The construction of the modified arithmetic logic unit in a KPU (a general
purpose fully homomorphic crypto-processor architecture) has been discussed,
with options ranging from monolithic lookup tables to gate-wise encryption. The
objective is the implementation of PC-sized or smaller-sized computers that do
all their work encrypted, with applications in many areas in the realm of secure
computing. There is a close relation with work on fully-homomorphic computing,
with hardware replacing the role of software algorithms. Some design options use

140 P.T. Breuer and J.P. Bowen

no or an incomplete set of keys – meaning that the processor itself does not know
the encryption it uses – which implies that no backdoor can ever be built in.

‘ABC encoding’ has been introduced as a technique that we believe always
improves security in a fully homomorphic context, potentiating the use of smaller
encryption block-sizes.

References

[1] Breuer, P.T., Bowen, J.P.: A Fully Homomorphic Crypto-Processor Design: Cor-
rectness of a Secret Computer. In: Jürjens, J., Livshits, B., Scandariato, R. (eds.)
ESSoS 2013. LNCS, vol. 7781, pp. 123–138. Springer, Heidelberg (2013)

[2] Breuer, P.T., Bowen, J.P.: Typed Assembler for a RISC Crypto-Processor. In:
Barthe, G., Livshits, B., Scandariato, R. (eds.) ESSoS 2012. LNCS, vol. 7159, pp.
22–29. Springer, Heidelberg (2012)

[3] Breuer, P.T., Bowen, J.P.: Certifying Machine Code Safe from Hardware Aliasing:
RISC is not necessarily risky. In: Counsell, S., Núñez, M. (eds.) Proc. OpenCert
2013, collocated with SEFM 2013. LNCS. Springer, Madrid (to appear 2013)

[4] Diffie, W., Hellman, M.: New directions in cryptography. IEEE Transactions on
Information Theory 22(6), 644–654 (1976), doi:10.1109/TIT.1976.1055638.

[5] Gentry, C.: Computing arbitrary functions of encrypted data. Communications of
the ACM 53(3), 97–105 (2010)

[6] Gentry, C.: Fully Homomorphic Encryption Using Ideal Lattices. In: Proc. 41st
ACM Symposium on Theory of Computing (STOC), pp. 169–178. ACM (2009),
doi:10.1145/1536414.1536440, ISBN: 978-1-60558-506-2

[7] Gentry, C., Halevi, S.: Implementing Gentry’s fully-homomorphic encryption
scheme. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 129–
148. Springer, Heidelberg (2011)

[8] Kömmerling, O., Kuhn, M.G.: Design principles for Tamper-Resistant Smart-
card Processors. In: Smartcard 1999, Chicago, Illinois, USA, May 10-11, pp. 9–20
(1999)

[9] Patterson, D.A.: Reduced Instruction Set Computers. Communications of the
ACM 28(10), 8–21 (1985)

[10] Rivest, R.L., Adleman, L., Dertouzos, M.L.: On data banks and privacy homo-
morphisms. Foundations of Secure Computation 32(4), 169–180 (1978)

[11] Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM 21(2), 120–126 (1978)

[12] Wei, W., et al.: Accelerating Fully Homomorphic Encryption on GPUs. In: Proc.
IEEE High Performance Extreme Computing Conference (2012)

Architectures for Inlining Security Monitors
in Web Applications

Jonas Magazinius, Daniel Hedin, and Andrei Sabelfeld

Chalmers University of Technology, Gothenburg, Sweden

Abstract. Securing JavaScript in the browser is an open and challenging prob-
lem. Code from pervasive third-party JavaScript libraries exacerbates the prob-
lem because it is executed with the same privileges as the code that uses the
libraries. An additional complication is that the different stakeholders have dif-
ferent interests in the security policies to be enforced in web applications. This
paper focuses on securing JavaScript code by inlining security checks in the code
before it is executed. We achieve great flexibility in the deployment options by
considering security monitors implemented as security-enhanced JavaScript in-
terpreters. We propose architectures for inlining security monitors for JavaScript:
via browser extension, via web proxy, via suffix proxy (web service), and via in-
tegrator. Being parametric in the monitor itself, the architectures provide freedom
in the choice of where the monitor is injected, allowing to serve the interests of
the different stake holders: the users, code developers, code integrators, as well
as the system and network administrators. We report on experiments that demon-
strate successful deployment of a JavaScript information-flow monitor with the
different architectures.

1 Introduction

JavaScript is at the heart of what defines the modern browsing experience on the web.
JavaScript enables dynamic and interactive web pages. Glued together, JavaScript code
from different sources provides a rich execution platform. Reliance on third-party code
is pervasive [32], with the included code ranging from format validation snippets, to
helper libraries such as jQuery, to helper services such as Google Analytics, and to
fully-fledged services such as Google Maps and Yahoo! Maps.

Securing JavaScript Securing JavaScript in the browser is an open and challenging
problem. Third-party code inclusion exacerbates the problem. The same-origin policy
(SOP), enforced by the modern browsers, allows free communication to the Internet
origin of a given web page, while it places restrictions on communication to Internet
domains outside the origin. However, once third-party code is included in a web page,
it is executed with the same privileges as the code that uses the libraries. This gives rise
to a number of attack possibilities that include location hijacking, behavioral tracking,
leaking cookies, and sniffing browsing history [21].

Security policy stakeholders An additional complication is that the different stakehold-
ers have different interests in the security policies to be enforced in web applications.

J. Jürjens, F. Piessens, and N. Bielova (Eds.): ESSoS 2014, LNCS 8364, pp. 141–160, 2014.
c© Springer International Publishing Switzerland 2014

142 J. Magazinius, D. Hedin, and A. Sabelfeld

Users might demand stronger guarantees than those offered by SOP when it is not de-
sired that sensitive information leaves the browser. This makes sense in popular web
applications such as password-strength checkers and loan calculators. Code developers
clearly have an interest in protecting the secrets associated with the web application.
For example, they might allow access to the first-party cookie for code from third-party
services, like Google (as needed for the proper functioning of such services as Google
Analytics), but under the condition that no sensitive part of the cookie is leaked to the
third party. Code integrators might have different levels of trust to the different inte-
grated components, perhaps depending on the origin. It makes sense to invoke different
protection mechanisms for different code that is integrated into the web application. For
example, an e-commerce web site might include jQuery from a trusted web site without
protection, while it might load advertisement scripts with protection turned on. Finally,
system and network administrators also have a stake in the security goals. It is often
desirable to configure the system and/or network so that certain users are protected to
a larger extent or communication to certain web sites is restricted to a larger extent.
For example, some Internet Service Providers, like Comcast, inject JavaScript into the
users’ web traffic but so far only to display browser notifications for sensitive alerts1.

Secure inlining for JavaScript This paper proposes a novel approach to securing Java-
Script in web applications in the presence of different stakeholders. We focus on secur-
ing JavaScript code by inlining security checks in the code before it is executed. A key
feature of our approach is focusing on security monitors implemented, in JavaScript,
as security-enhanced JavaScript interpreters. This, seemingly bold, approach achieves
two-fold flexibility. First, having complete information about a given execution, security-
enhanced JavaScript interpreters are able to enforce such fine-grained security policies as
information-flow security [37]. Second, because the monitor/interpreter is itself written
in JavaScript, we achieve great flexibility in the deployment options.

Architectures for inlining security monitors As our main contribution, we propose ar-
chitectures for inlining security monitors for JavaScript: via browser extension, via web
proxy, via suffix proxy (web service), and via integrator. While the code extension and
proxy techniques themselves are well known, their application to security monitor de-
ployment is novel. Being parametric in the monitor itself, the architectures provide
freedom in the choice of where the monitor is injected, allowing to serve the interests
of the different stake holders: users, code developers, code integrators, as well as system
and network administrators.

We note that our approach is general: it applies to arbitrary security monitors, im-
plemented as JavaScript interpreters. The Narcissus [13] project provides a baseline
JavaScript interpreter written in JavaScript, an excellent starting point for supporting
versatile security policies.

Our evaluation of the architectures explores the relative security considerations. When
introducing reference monitoring, Anderson [3] identifies the following principles: (i)
the monitor must be tamperproof (monitor integrity), (ii) the monitor must be always
invoked (complete mediation) [39], and (iii) the monitor must be small enough to be

1 https://gist.github.com/ryankearney/4146814

https://gist.github.com/ryankearney/4146814

Architectures for Inlining Security Monitors in Web Applications 143

subject to correctness analysis (small trusted computing base (TCB)) [39,35]. Overall,
the requirements often considered in the context of monitoring are that the monitor must
enforce the desired security policy (soundness) and that the monitor is transparent to
the applications (transparency). Soundness is of higher priority than transparency in
our setting. Our methods of deployment do not rely on transparency to provide security
guarantees. Even if the application is able to detect that it is running in the monitor, this
knowledge cannot be used to circumvent the monitor given that the monitor is sound (if
this was possible the monitor is by definition not sound). Of course, if the application is
able to detect that it is monitored it might chose to only expose benign behavior in order
to escape detection. In either case, the user is protected from attacks. Note the relation
of the soundness to Anderson’s principles: while the principles do not automatically
imply soundness, they facilitate establishing soundness. Transparency requirements are
often in place for reference monitors to ensure that no new behaviors are added by mon-
itors for any programs, and no behaviors are removed by monitors when the original
program is secure.

Since the architectures are parametric in the actual monitor, we can draw on the prop-
erties of the monitor to guarantee the above requirements. It is essential for soundness
and transparency that the monitor itself supports them. In our consideration of sound-
ness for security, we assume the underlying monitors are sound (as natural to expect of
such monitors). This implies that dealing with such features as dynamic code evaluation
in JavaScript is already covered by the monitors. We note that monitor integrity, and
complete mediation are particularly important in our security considerations because
they are crucially dependent on the choice of the architecture. Our security considera-
tions for the architectures are of general nature because of the generality of the security
policies we allow.

Roadmap We study the relative pros and cons of the architectures. The goal of the study
is not to identify a one-fits-all solution but to highlight the benefits and drawbacks for
the different stakeholders. With this goal, we arrive at a roadmap to be used by the
stakeholders when deciding on what architecture to deploy.

Instantiation To illustrate the usefulness of the approach, we present an instantiation
of the architectures to enforce secure information flow in JavaScript. Information-flow
control for JavaScript allows tracking fine-grained security policies for web applica-
tions. Typically, information sources and sinks are given sensitivity labels, for example,
corresponding to the different Internet origins. Information-flow control prevents ex-
plicit flows, via direct leaks by assignment commands, as well as implicit flows via the
control flow in the program.

Our focus on information flow is justified by the nature of the JavaScript attacks
from the empirical studies [21,32] that demonstrate the current security practices fail
to prevent such attacks as location hijacking, behavioral tracking, leaking cookies, and
sniffing browsing history. Jang et al. [21] report on both explicit and implicit flows ex-
ploited in the empirical studies. Further, inlining by security-enhanced interpreting is a
particularly suitable choice for tracking information flow in JavaScript, because alterna-
tive approaches to inlining suffer from scalability problems, as discussed in Section 5.

144 J. Magazinius, D. Hedin, and A. Sabelfeld

Our instantiation shows how to deploy JSFlow [19,18], an information-flow moni-
tor for JavaScript by Hedin et al., via browser extension, via web proxy, and via suffix
proxy (web service). We report on security and performance experiments that illus-
trate successful deployment of a JavaScript information-flow monitor with the different
architectures.

2 Architectures

This section presents the architectures for inlining security monitors. We describe four
different architectures and report on security considerations, pros and cons, including
how the architectures reflect the demands of the different stakeholders. In the following
we contrast the needs of the private user and the corporate user; the latter representing
the network and system administrators as well.

2.1 Browser Extension

Modern browsers allow for the functionality of the browser to be enriched via exten-
sions. By deploying the security monitor via a browser extension it is possible to enforce
properties not normally enforced by browsers. A browser extension is a program that is
installed into the browser in order to change or enrich the functionality. By employing
a method pioneered by Zaphod [31] it is possible to use the monitor as JavaScript en-
gine. The basic idea is to turn off JavaScript and have the extension traverse the page
once loaded using the monitor to execute the scripts. This method leverages that the
implementation language for extensions and the monitor is JavaScript.

It is illuminating to contrast deployment via browser extension with directly instru-
menting the browser (e.g., [40,22,17]). While the latter may provide performance ben-
efits it is also monitor specific. Each monitor leads to a different instrumented browser,
which is a significant undertaking. In this sense, browser instrumentation is comparable
to implementation of a new monitor. The browser extension, on the other hand, is para-
metric over the monitor allowing different monitors to be used with the same extension.
While potentially slower than an instrumented browser it also offers greater flexibility.

Security considerations From a security perspective, one of the main benefits of this
deployment method is strong security guarantees. Since the JavaScript engine is turned
off, no code is executed unless explicitly done by the extension. During execution the
scripts are passed as data to the monitor, and are only able to influence the execution
environment implemented by the monitor and not the general execution environment.
This ensures the integrity of the monitor and complete mediation. In addition, this also
guarantees that the deployment method is sound given that the monitor is sound.

However, by running the monitor as an extension, the monitor is run with the same
privileges as the browser. Compared to the other methods of deployment this means that
a faulty monitor not only jeopardizes the property enforced by the monitor, but might
jeopardize the integrity of the entire browser.

Architectures for Inlining Security Monitors in Web Applications 145

Pros and cons Regardless of whether the user is private or corporate, browser exten-
sions provide a simple install-once deployment method. From the corporate perspec-
tive, central management of the extension and its policies can easily be incorporated
into standard system maintenance procedures. Important for the private user, the fact
that the extension is installed locally in the browser of the user makes it possible to
give the user direct control over what security policies to enforce on the browsed pages
without relying on and trusting other parties.

A general limitation of this approach is that browser extensions are browser specific.
This is less of an issue for corporate users than for private users. In the former case it is
common that browser restrictions are already in place, and corporations have the assets
to make sure that extensions are available for the used platform. In the latter case, a
private user may be discouraged by restrictions imposed by the extension.

2.2 Web Proxy

Deployment via browser extension entails being browser dependent and running the se-
curity monitor with elevated privileges. The web proxy approach addresses these con-
cerns by including the monitor in the page, modifying any scripts on the page to ensure
they are run by the monitor. All modern browsers support relaying all requests through
a proxy. A proxy specific to relaying HTTP requests is referred to as a web proxy. The
web proxy acts as a man-in-the-middle, making requests on behalf of the client. In the
process, the proxy can modify both the request and the response, making it a convenient
way to rewrite the response to include the monitor in each page. Doing so makes the
method more intrusive to the HTML content, but less intrusive to the browser.

Security considerations For the monitor to guarantee security, all scripts bundled with
the page must be executed by the monitor. The scripts can either be inline, i.e., included
as part of the HTML page, or external, i.e., referenced in the HTML page to be down-
loaded from an external source. Inline scripts appear both in the form of script-tags as
well as inline event handlers, e.g., onclick or onload. Apart from including the monitor
in all browsed pages, all scripts, whether inline or external, must be rewritten by the
web proxy to be executed by the monitor.

External scripts are rewritten in their entirety, whereas inline scripts must be identi-
fied within the page and rewritten them individually. As opposed to a browser extension
that replaces the JavaScript engine, the monitor is executed by the engine of the browser
in the context of the page. This is the same context in which all scripts bundled with the
page are normally executed.

Unlike deployment via extension, omissions in this process breaks complete media-
tion, which risks undermining the integrity of the monitor; any script not subjected to
the rewriting process is run in the same execution environment as the monitor. This
assumes that there are no exploitable differences between the HTML parser used for
rewriting and the parser of the browser. While this might be an issue in current browsers,
with the introduction of standardized parsing in HTML5 we believe that this is a tran-
sient problem.

Under the assumption that all scripts are rewritten appropriately complete mediation
is achieved. Complete mediation is required for both integrity and soundness, while

146 J. Magazinius, D. Hedin, and A. Sabelfeld

the two latter are strongly related. Soundness is guaranteed by the soundness of the
underlying monitor and complete mediation, given that the integrity of the monitor
is guaranteed. This must, however, be the case, since the soundness of the monitor
guarantees that no scripts executed by the monitor are able to jeopardize the integrity of
the monitor. Thus, threats against the integrity of the monitor must come from scripts
not run by the monitor, contradicting the assumption of complete mediation.

Unlike deployment via extension, special consideration is required for HTTPS con-
nections, as HTTPS is designed to prevent the connection from being eavesdropped or
modified in transit. To solve this the web proxy must establish two separate HTTPS
connections, one with the client and one with the target. The client’s request is passed
on to the connection with the target and the rewritten response to the client. This puts
considerable trust in the proxy, since the proxy has accesses to all information going to
and from the user, including potentially sensitive or secret data. In addition, access to
the unencrypted data significantly simplifies tampering unless additional measures are
deployed. Whether including the proxy into the trusted computing base is acceptable or
not depends on the situation.

Pros and cons In the corporate setting deployment via web proxy is appealing; it is
common to use corporate proxies for filtering, which means that the infrastructure is
already in place and trusted. Additionally, the use of proxies allows for easy central
administration of security policies.

For the private user, however, the situation is different. Even though important con-
siderations of extensions are addressed, e.g., browser dependency, and monitor privilege
increase, adding the proxy to the trusted computing base might be a significant issue.
Unless the private user runs and administers the proxy himself he might have little rea-
son to trust the proxy with the ability to access all communicated information. This
is especially true when the user visits web sites that he trusts more than the proxy. In
such cases it could make sense to turn off the proxy, which, while possible, requires
reconfiguring the browser.

2.3 Suffix Proxy (Service)

The extension and the web proxy deployment methods unconditionally applies the mon-
itor to all visited pages. Suffix proxies can be used to provide selective monitoring, i.e.,
where the user can select when to use the monitor. Suffix proxies can be thought of as
a service that allows the user to select which pages to proxy on demand — only pages
visited using the suffix proxy will be subjected to proxying.

A suffix proxy is a specialized web proxy, with a different approach to relaying the
request. The suffix proxy takes advantage of the domain name system (DNS) to redirect
the request to it. Wildcard domain names allow all requests to any subdomain of the
domain name to resolve to a single domain name, i.e., in DNS terms *.proxy.domain ⇒
proxy.domain.

Typically, the user navigates to a web application associated with the proxy and en-
ters the target URL, e.g.,http://google.com/search?q=sunrise, in an input
field. To redirect the request to the proxy, the target domain name is altered by appending

http://google.com/search?q=sunrise

Architectures for Inlining Security Monitors in Web Applications 147

the domain name of the proxy, making the target domain a subdomain of the proxy do-
main, e.g., http://google.com.proxy.domain/search?q=sunrise. The
suffix proxy is set up so that all requests to any subdomain are directed to the proxy
domain. A web application on the proxy domain is set up to listen for such subdomain
requests. When a request for a subdomain is registered, it is intercepted by the web appli-
cation. The web application strips the proxy domain from the URL, leaving the original
target URL, and makes the request on behalf of the client. As with the web proxy, re-
laying the request to the target URL gives the suffix proxy an opportunity to modify and
include the monitor in the response.

Security considerations In the suffix proxy, not only the content is rewritten but also
the headers of the incoming request and the returned response. Certain headers, like the
Host and Referrer headers of the request, include the modified domain name and need
to be rewritten to make the proxy transparent. Similarly, in the response, some headers,
for instance Location, contain the unmodified target URL and need to be rewritten to
include the monitor domain.

As the web proxy, the suffix proxy must ensure that all scripts bundled with a page
are executed by the monitor. The procedure to rewrite scripts is much the same as for
the web proxy. However, in order to guarantee complete mediation, the suffix proxy
must also rewrite the URLs to external scripts to include the proxy domain, in addition
to rewriting inline scripts in a page. Otherwise the script will not be requested through
the monitor which will prevent it from being rewritten and thereby it will execute along-
side the monitor.

Identical to the web proxy, soundness and integrity is guaranteed by complete me-
diation together with soundness of the monitor. See Section 2.2 above for a longer
discussion.

A consequence of modifying the domain name is that the domain of the target URL
no longer matches the modified URL, making them two separate origins as per the
same-origin policy. This implies that all information in the browser specific to the target
origin, e.g., cookies and local storage, are no longer associated with the modified origin,
and vice versa. This results in a clean separation between the proxied and unproxied
content.

Altering the domain name has another interesting effect on the same-origin policy.
Modern web browsers allow relaxing of the same-origin policy for subdomains. Docu-
ments from different subdomains of the same domain can relax their domains by setting
the document.domain attribute to their common domain. In doing so, they set aside
the restrictions of the same-origin policy and can freely access each others resources
across subdomains. This means that two pages of separate origins loaded via the proxy,
each relaxing their domain attribute to the domain of the proxy, can access each others
resources across domains. This is problematic for monitors that rely on the same-origin
policy to enforce separation between origins. However, the flexibility of disabling the
same-origin policy opens up for monitors aimed at replacing the same-origin policy
with policies that are more appropriate for the given scenario. For example, given es-
tablished trust between a number of sites it is possible for a monitor to disable the
same-origin policy between these sites, while leaving it enabled, or even strengthened
(via, e.g., information flow tracking), for any sites outside the set of mutually trusting

http://google.com.proxy.domain/search?q=sunrise

148 J. Magazinius, D. Hedin, and A. Sabelfeld

sites. Note that a monitor is always able to refuse relaxation by preventing scripts from
changing the domain attribute; what the suffix proxy enables is the ability for moni-
tors to modify and even disable the same-origin policy by allowing JavaScript to relax
the domain. Clearly, if this is done, care must be taken not to introduce any security
breaches.

Similar to the web proxy, HTTPS requires special consideration. For the suffix proxy,
however, the situation is slightly simpler. Given that the suffix proxy builds on DNS
wildcards, it is sufficient to issue a certificate for all subdomains of the proxy domain,
e.g., *.proxy.domain. Such a wildcard certificate is valid for all target URLs re-
layed through the proxy.

Pros and cons In the corporate setting the suffix proxy does not offer any advantages
over a standard web proxy. Giving corporate users control over the decision whether or
not to use the proxy service opens up for mistakes.

From the perspective of a private user suffix proxies can be very appealing. Given
that the suffix proxy is hosted by a trusted party, e.g., the user’s ISP, the proxy can
provide additional security for any web page. At the same time the user retains simple
control over which pages are proxied. At any point, the user can opt out from the proxy
service by not using it.

On the technical side, while sharing a common foundation, there are several differ-
ences between a suffix proxy compared to a traditional web proxy. The differences lie,
not in how the monitor is included in the page, but in the way the proxy is addressed.
A consequence of the use of wildcard domain names is that the suffix proxy requires
somewhat more rewriting than the web proxy in order to capture all requests.

Additionally, the suffix proxy can ensure that only resources relevant to security are
relayed via the proxy, whereas a traditional web proxy must cover all requests. This
both reduces the load on the proxy service, as well as the overhead for the end user,
thus benefiting both the user and the service provider. This is not possible in a web
proxy, that must relay all requests, but a suffix proxy provides the means to do so.

2.4 Integrator

Modern web pages make extensive use of third-party code to add features and function-
ality to the page. The code is retrieved from external resources in the form of JavaScript
libraries. The third-party code is considered to be part of the document and is executed
in the same context as any other script included in the document. Executing the code
in the context of the page gives the code full access to all the information of the page,
including sensitive information such as form data and cookies. Granting such access
requires that the code integrator must trust the library not to abuse this privilege. To a
developer, an appealing alternative is to run untrusted code in the monitored context,
while running trusted code outside of the monitor.

Integrator-driven monitor inclusion is suitable for web pages that make use of third-
party code. The security of the information contained on the web page relies not only
on the web page itself, but also on the security of all included libraries. To protect
against malicious or compromised libraries, an integrator can execute part of, or all of
the code in the monitor. Unlike the other deployment alternatives, that consider all code

*.proxy.domain

Architectures for Inlining Security Monitors in Web Applications 149

as untrusted, this approach requires a line to be drawn between trusted and untrusted
code. The code executing outside of the monitor is trusted with full access to the page
and the monitor state, and the untrusted code will be executed by the monitor, restricted
from accessing either. This can be achieved by manually including the monitor in the
page and loading the third-party code either through the suffix proxy, or from cached
rewritten versions of the code. This approach allows for a well defined, site-specific
policy specification. The monitor is set up and configured with policies best suiting the
need of the site.

An important aspect of integrator-driven monitor inclusion is the interaction between
trusted and untrusted code. The trusted code executing outside the monitor can interact
with the code executed in the monitor. This way, the trusted code can share specific
information with the library, that the library requires to execute. There are different
means of introducing this information to the monitor. The most rudimentary solution
is to evaluate expressions in the monitor, containing the information in a serialized
form. The monitor can also provide an API for reading and writing variables, or calling
functions in the monitor. This simplifies the process and makes it less error-prone. A
more advanced solution is a set of shared variables that are bidirectionally reflected
from one context to the other when their values are updated.

Security considerations One security consideration that arises is the implication of
sharing information between the trusted and untrusted code. It might be appealing to
simplify sharing of information between the two by reflecting a set of shared variables
of one into the other. However, automatically reflecting information from one context
to the other, will have severe security implications in terms of confidentiality as well
as monitor integrity. If the execution of trusted code depends on a shared variable, the
untrusted code can manipulate the value to control the execution. Thus, for security
reasons, any sharing of information with the untrusted code must be done manually by
selectively and carefully introducing the information in the monitored context.

It should be noted that since the trusted code is running along side the monitor, it
can access and manipulate the state of the monitor and thereby the state of the untrusted
code. It is impossible for the monitored code to protect against such manipulation. The
integrator approach allows web developers to make use of untrusted code in trusted
pages in a secure way. Thus, regardless of manually or automatically wrapping the
untrusted code it is the responsibility of the integrator to ensure complete mediation.
In the former case by making sure to wrap all untrusted code, and in the latter case
by ensuring that eventual parser differences do not compromise mediation. Since the
integrator approach provides complete mediation for untrusted code only, it is important
that the trusted code does not break the integrity of the monitor. If this would occur
soundness cannot be guaranteed, since the integrity breach could potentially allow for
the untrusted code to break out of the monitor. However, if the trusted code does not
break the integrity of the monitor, the integrator approach guarantees soundness and
integrity with respect to the untrusted code in a similar manner to the proxy approach,
see Section 2.2.

Pros and cons This developer-centric approach gives the integrator full control over
the configuration of the monitor and the policies to enforce. From the perspective of a

150 J. Magazinius, D. Hedin, and A. Sabelfeld

user this approach is not intrusive to the browser, requires no setup or configuration,
and provides additional security for the user’s sensitive information. However, it also
limits the user’s control over which policies are applied to user information.

A benefit of the integrator-driven approach over the proxies is potential performance
gains. While the proxies for all code on the page to run monitored, the integrator-driven
approach lets the integrator select what is monitored and what is not.

As previously stated, sharing information between trusted and untrusted code in a
secure manner requires manual interaction. This implies that the developer must to some
degree understand the inner workings of the monitor and the implications of interacting
with the monitor.

2.5 Summary of Architectures

We have discussed four architectures for deployment. The differences between the ar-
chitectures decide which architecture is better suited for different stakeholders and sit-
uations. The first three architectures were targeted to end users and were distinguished
by their appeal to corporate and private users, whereas the last architecture was targeted
on code developers.

Deployment via extension offers potentially stronger security guarantees at the price
of running the monitor with the privilege of the browser, while the web proxy and suffix
proxy approached were more susceptible to mistakes in the rewriting procedure. In the
extension failing to identify a script leads to the script not executing, while in the proxies
unidentified scripts would execute alongside the monitor, potentially jeopardizing its
integrity. However, deployment via proxies requires someone to run and administer the
proxies. For the corporate user the corporation is a natural host for such services, while
the private user might lack such a trusted 3rd party. See Table 1 for a summary of how
the architectures best suit each stakeholder. The results of the table are not firm. Rather
they are recommendations based on the properties of the deployment methods and the
needs of the different stakeholders in general.

For the corporate user we argue that deployment via web proxy may be the most
natural method: it allows for simple centralized administration and, since it is common
to use corporate proxies, the infrastructure might already be in place. As a runner up,
deployment via extension is a good alternative deployment method, while the suffix
proxy is the least attractive solution from a corporate perspective. The latter allows the
user to select when to use the service, which opens up for security issues in case the
user forgets to use the service.

For the private user we argue that deployment via extension is the most appealing
method: after an initial installation it allows for local administration without the need
to run additional services or rely on trusted 3rd parties. An interesting alternative for
the private user is to use the suffix proxy. For web sites the private user trusts less than
the provider of the suffix proxy service, the suffix proxy allows for increased security
on a per web site basis. The web proxy is the least attractive means of deployment for
the private user. From the private user’s perspective the web proxy offers essentially the
same guarantees as the extension, while either encumbering her to run her own proxy
or rely on a 3rd party.

Architectures for Inlining Security Monitors in Web Applications 151

Table 1. Suitability of architectures with respect
to different stakeholders

Browser
extension

Web
proxy

Suffix
proxy

Integrator
driven

Corporate user �
Private user � �
Developer �

Finally, for the developer using
the monitor as a library provides the
possibility to include untrusted code
safely using the monitor, while allow-
ing trusted code to run normally. This
allows for security, while lowering the
performance impact by only monitor-
ing potentially malicious parts of the
program.

3 Implementation

This section details our implementations of the architectures from Section 2. The code
is readily available and can be obtained from the authors upon request.

3.1 Browser Extension

The browser extension is a Firefox extension based on Zaphod [31], a Firefox extension
that allows for the use of experimental Narcissus [13] engine as JavaScript engine.
When loaded, the extension turns off the standard JavaScript engine by disallowing
JavaScript and listens for the DOMContentLoaded event. DOMContentLoaded is
fired as soon as the DOM tree construction is finished. On this event the DOM tree is
traversed twice. The first traversal checks every node for event handlers, e.g., onclick,
and registers the monitor to handle them. The second traversal looks for JavaScript
script nodes. Each found script node is pushed onto an execution list, which is then
processed in order. For each script on the execution list, the source is downloaded and
the monitor is used to execute the script; any dynamically added scripts are injected into
the appropriate place on the execution list.

The downside of this way of implementing the extension is that the order in which
scripts are executed is important. When web pages are loaded, the scripts of the pages
are executed as they are encountered while parsing the web page. This means that the
DOM tree of the page might not have been fully constructed when the scripts execute.
Differences in the state of the DOM tree can be detected by scripts at execution time.
Hence, to guarantee transparency the execution of scripts must occur at the same times
in the DOM tree construction as they would have in the unmodified browser. This can
be achieved using DOM MutationEvent [41] instead of the DOMContentLoaded
event. The idea is to listen to any addition of script nodes to the DOM tree under the
construction, and execute the script on addition. However, due to performance rea-
sons the DOM MutationEvents are deprecated, and are being replaced with DOM
MutationObserver [42]. It is unclear whether the MutationObserver can be
used to provide transparency, since events are grouped together, i.e., the mutation ob-
server will not necessarily get an event each time a script is added — to improve per-
formance single events may bundle several modifications together.

However, the exact order of loading is not standardized and differs between browsers.
This forces scripts to be independent of such differences. Thus, using the method of

152 J. Magazinius, D. Hedin, and A. Sabelfeld

executing scripts on the DOMContentLoaded event is not necessarily a problem in
practice.

Further, since extension run with the same privileges as the browser certain pro-
tection mechanism are in place to protect the browser from misbehaving extensions.
Those restrictions may potentially clash with the selected monitor. One example of
this is document.write. The effect of document.write is [23] to write a string
into the current position of the document. For security reasons, extensions are prohib-
ited from calling document.write. Intuitively, document.write writes into the
character stream that is fed to the HTML parser, which can have drastic effects on
the parsing of the page. In a monitor it is natural to implement document.write
by at some point calling the document.write of the browser. The alternative is to
fully implement document.write, which would entail taking the interaction be-
tween the content written by document.write, the already parsed parts of the page
and the remaining page into account. The inability to provide full functionality of
document.write does not jeopardize the security, as argued in the introduction.
Rather, it may prevent certain pages to execute properly. The consensus in the commu-
nity is that document.write has few valid use cases, all pertaining to the inclusion
of various entities during page load (calling document.write on a fully loaded
page overwrites the entire page). One arguably reasonable use of document.write
to include style sheets that only work when JavaScript is enabled. Another common
use of document.write, that is broadly considered bad style, is to include scripts
synchronously onto the page. Both approaches work by executing document.write
with very specific strings as parameters, e.g.,

document.write(
’<script src="http://somesite.com/script.js"></’ + ’script>’)

In such cases it is a simple matter to identify the attempt at inclusion, and mimic the
appropriate behavior.

The extension consists of 1200 lines of JavaScript and XUL code.

3.2 Web Proxy

The web proxy is implemented as an HTTP-server. When the proxy receives a request
it extracts the target URL and in turn requests the content from the target. Before the
response is delivered to the client, the content is rewritten to ensure that all JavaScript
is executed by the monitor.

In HTML, where JavaScript is embedded in the code, the web proxy must first iden-
tify the inline code in order to rewrite it. Identifying inline JavaScript in HTML files
is a complex task. Simple search and replace is not satisfactory due to the browser’s
error tolerant parsing of HTML-code, meaning that the browser will make a best-effort
attempt to make sense of malformed fragments of HTML. It would require the search
algorithm to account for all parser quirks in regard to malformed HTML, a task which
is at least as complex as actually parsing the document. Consider the example below:

<script>0</script/> HTML </script>
<script>0</script./> alert(JavaScript) </script>
<p>a<sCript/"=/ src=//t.co/abcde a= >b</p></script c<p>d

Architectures for Inlining Security Monitors in Web Applications 153

The first line will be interpreted as a script followed by the text HTML, the second
line as a script that alerts the string JavaScript, and the third will display ac and d in
two separate paragraphs and load a script from an external domain.

In the web proxy, Mozilla’s JavaScript-based HTML-parser dom.js [16], is used to
parse the page. HTML parsing is standardized in the HTML5 specification. The dom.js
parser is HTML5 compliant and parses the HTML the same as any HTML5 compliant
browser. In the case that the browser is not HTML5 compliant, or if there are implemen-
tation flaws, there may be ways to circumvent the rewriting in the proxy by exploiting
such parsing mismatches. However, as browser vendors are implementing according to
the specification to an increasing degree, these types of attacks are to be less likely.

After the page has been parsed, the DOM-tree can be traversed to properly localize
all inline script code. All occurrences of JavaScript code are rewritten as outlined in
the code snipped below, wrapped in a call to the monitor. Because all instances of the
modified script code will reference the monitor, the monitor must be added as the first
script to be executed.

Rewriting JavaScript requires converting the source code to a string that can be fed
to the monitor. The method JSON.stringify() provides this functionality and will
properly escape the string to ensure that it is semantically equivalent when interpreted
by the monitor. The code string is then enclosed in a call to the monitors interpreter, as
shown below:

code = ’Monitor.eval(’ + JSON.stringify(code) + ’)’;

The implementation consists of 256 lines of JavaScript code.

3.3 Suffix Proxy (Service)

The web proxy serves as a foundation for the suffix proxy. The suffix proxy adds with
an additional step of rewriting to deal with external resources. Since the suffix proxy is
referenced by altering the domain name of the target, the proxy must ensure that relevant
resources, e.g., scripts, associated with the target page are also retrieved through the
proxy. Resources with relative URLs requires no processing, as they are relative to
the proxy domain and will by definition be loaded through the monitor. However, the
URLs of resources targeting external domains must be rewritten to include the proxy
domain. Similarly, links to external pages must include the domain of the proxy for the
monitor. The external references are identified in the same manner as inline JavaScript,
by parsing the HTML to a DOM-tree and traversing the tree. When found, the URL is
substituted using a regular expression.

Another difference to the web proxy relates to the use of non-standard ports. The
web proxy will receive all requests regardless of the target port. The suffix proxy,
on the other hand, only listens to the standard ports for HTTP and HTTPS, port 80
and 443 respectively. The port in a URL is specified in conjunction to, but not in-
cluded in the domain. Hence any URLs specifying non-standard ports would attempt
to connect to closed ports on the proxy server. A solution to this problem is to in-
clude the port as part of the modified domain name. To prevent clashing with the tar-
get domain or the proxy domain, the port number is included between the two, e.g.,
http://target.domain.com.8080.proxy.domain/. This does not clash with the target do-
main because the top domain of the target domain cannot be numeric. Neither does it

154 J. Magazinius, D. Hedin, and A. Sabelfeld

clash with the proxy domain because it is still a subdomain of the proxy domain. The
implementation consists of 276 lines of JavaScript code.

4 Instantiation

This section presents practical experiments made by instantiating the deployment ar-
chitectures with the JSFlow [19,18] information-flow monitor. JSFlow is a tool that ex-
tends the formalization of a dynamic information flow tracker [20] to the full JavaScript
language and its APIs. We briefly describe the monitor and discuss security and perfor-
mance experiments.

Since the deployment approaches are parametric in the choice of monitor, we limit
our interest to properties that relate to the approaches rather than the monitors. In par-
ticular, for the performance experiments we measure the time from issuing the request
until the response is fully received, since the performance after that point depends en-
tirely on the monitor, and for the security experiments we focus on results that are more
generally interesting and not depending on the specific choice of monitor.

Monitor JSFlow is a dynamic information-flow monitor that tags values with runtime
security labels. The security labels default to the origin of the data, e.g., user input is
tagged user, but the labels can be controlled by the use of custom data attributes in
the HTML. The default security policy is a strict version of the same-origin policy,
where implicit flows, and flows via, e.g., image source attributes, are taken into ac-
count. Whenever a potential security violation has been encountered the monitor stops
the execution with a security error. Implemented in JavaScript, the monitor supports full
ECMA-262 (v5) [12] including the standard API and large parts of the browser-specific
APIs such as the DOM APIs. JSFlow supports a wide variety of information-flow poli-
cies, including tracking of user input and preventing it from leaving the browser, as used
in the security experiments below.

Security experiments Our experiments focus on password-strength checkers. After the
user inputs a password, the strength of the password is computed according to some
metric, and the result is displayed to the user, typically on a scale from weak to strong.
This type of service is ubiquitous on the web, with service providers ranging from
private web sites to web sites of national telecommunication authorities.

Clearly, the password needs to stay confidential; The strength of the password is ir-
relevant if the password is leaked. We have investigated a number of password-strength
services. Our experiments identify services that enforce two types of policies: (i) allow
the password to be sent back to the origin web site, but not to any other site (suitable for
server-side checkers); and (ii) disallow the password to leave the browser (suitable for
client-side checkers). The first type places trust on the service provider not to abuse the
password, while the second type does not require such trust, in line with the principle
of least privilege [39]. Note that these policies are indistinguishable from SOP’s point
of view because it is not powerful enough to express the second type.

One seemingly reasonable way to enforce the second type of policy is to isolate the
service, i.e., prevent it from performing any communication. While effective, such a

Architectures for Inlining Security Monitors in Web Applications 155

stern approach risks breaking the functionality of the service. It is common that pages
employ usage statistics tracking such as Google Analytics. Google Analytics requires
that usage information is allowed to be gathered and sent to Google for aggregation.
Using information-flow tracking, we can allow communication to Google Analytics but
with the guarantee that the password will not be leaked to it.

We have investigated a selection of sites2 that fall into the first category, and a selection
of sites3 that fall into the second category. Of these, it is worth commenting on two sites,
one from each category. Interestingly, the first site, https://testalosenord.
pts.se/, is provided by the Swedish Post and Telecom Authority. The site contains
a count of how many passwords have been submitted to the service, with over 1,000,000
tried passwords so far. We are in contact with the authority to help improve the secu-
rity and usability of the service. The second,http://www.getsecurepassword.
com/CheckPassword.aspx, is an example of a web site that uses Google Analyt-
ics. The monitor rightfully allows communication to Google while ensuring the password
cannot be leaked anywhere outside the browser.

The benefit of the architectures for the scenario of password-strength checking is that
users can get strong security guarantees either by installing an extension, using a web
proxy, or a suffix proxy. In the latter two cases, the system and network administrators
have a stake in deciding what policies to enforce. Further, the integrator architecture is
an excellent fit for including a third-party password-strength checker into web pages of
a service, say a social web site, with no information leaked to the third party.

Performance experiments Since the approaches are parametric in the choice of monitor,
we are interested in evaluating the performance of each approach rather than the perfor-
mance of the employed monitor. We measure the time from issuing the request until the
response is fully received, as the performance after that point depends entirely on the
monitor. We measure the average overhead introduced by architectures compared to a
reference sample of unmodified requests. The overhead is measured against two of the
password-strength checkers listed previously, namely passwordmeter.com, over
HTTP, and testalosenord.pts.se, over HTTPS. This measures the additional
overhead introduced by the deployment method. Three out of the four architectures are
evaluated; the browser extension, the web proxy, and the suffix proxy. The overhead of
the integrator architecture is specific to the page that implements it, and is therefore not
comparable to the other three. The browser extension does not begin executing until the
browser has received the page and has begun parsing it, therefore its response time is
the same as with the extension disabled. Due to the rewriting mechanism being closely
related, the web proxy and the suffix proxy show similar results.

2 https://testalosenord.pts.se/, http://www.lbw-soft.de/,
http://www.inutile.ens.fr/estatis/password-security-checker/,
https://passfault.appspot.com/password_strength.html, and
http://geodsoft.com/cgi-bin/pwcheck.pl.

3 http://www.getsecurepassword.com/CheckPassword.aspx,
http://www.passwordmeter.com/, http://howsecureismypassword.net,
https://www.microsoft.com/en-gb/security/pc-security/
password-checker.aspx, https://www.grc.com/haystack.htm, and
https://www.my1login.com/password-strength-meter.php.

https://testalosenord.pts.se/
https://testalosenord.pts.se/
http://www.getsecurepassword.com/CheckPassword.aspx
http://www.getsecurepassword.com/CheckPassword.aspx
passwordmeter.com
testalosenord.pts.se
https://testalosenord.pts.se/
http://www.lbw-soft.de/
http://www.inutile.ens.fr/estatis/password-security-checker/
https://passfault.appspot.com/password_strength.html
http://geodsoft.com/cgi-bin/pwcheck.pl
http://www.getsecurepassword.com/CheckPassword.aspx
http://www.passwordmeter.com/
http://howsecureismypassword.net
https://www.microsoft.com/en-gb/security/pc-security/password-checker.aspx
https://www.microsoft.com/en-gb/security/pc-security/password-checker.aspx
https://www.grc.com/haystack.htm
https://www.my1login.com/password-strength-meter.php

156 J. Magazinius, D. Hedin, and A. Sabelfeld

Table 2. Architecture overhead passwordmeter.com
Measurements (ms) Average (ms) Delta (ms) Overhead (%)

Reference 434, 420, 445, 443 435 0 0%
Browser extension 434, 420, 445, 443 435 0 0%
Web proxy 638, 690, 681, 781 697 +262 +60.2%
Suffix proxy 663, 775, 689, 694 705 +270 +62.0%

Table 3. Architecture overhead testalosenord.pts.se
Proxy Measurements (ms) Average (ms) Delta (ms) Overhead (%)
Reference 114, 240, 103, 104 140 0 0%
Browser extension 114, 240, 103, 104 140 0 0%
Web proxy 372, 308, 311, 305 324 +184 +131.4%
Suffix proxy 316, 314, 324, 333 321 +181 +129.2%

The tests were performed in the Firefox browser on the Windows 7 64 bit SP1 op-
erating system on a machine with an Intel Core i7-3250M 2.9 GHz CPU, and 8 GB of
memory.

5 Related Work

We first discuss the original work on reference monitors and their inlining, then inlining
for information flow, and, finally, inlining security checks in the context of JavaScript.

Inlined reference monitors Anderson [3] introduces reference monitors and outlines the
basic principles, recounted in Section 1. Erlingsson and Schneider [15,14] instigate the
area of inlining reference monitors. This work studies both enforcement mechanisms
and the policies that they are capable of enforcing, with the focus on safety properties.
Inlined reference monitors have been proposed in a variety of languages and settings:
from assembly code [15] to Java [10,11,9].

Ligatti et al. [25] present a framework for enforcing security policies by monitoring
and modifying programs at runtime. They introduce edit automata that enable monitors
to stop, suppress, and modify the behavior of programs.

Inlining for secure information flow Language-based information-flow security [37]
features work on inlining for secure information flow. Secure information flow is not a
safety property [29], but can be approximated by safety properties (e.g., [6,38,4]).

Chudnov and Naumann [7] have investigated an inlining approach to monitoring
information flow in a simple imperative language. They inline a flow-sensitive hybrid
monitor by Russo and Sabelfeld [36]. The soundness of the inlined monitor is ensured
by bisimulation of the inlined monitor and the original monitor.

Magazinius et al. [28] cope with dynamic code evaluation instructions by inlining
on-the-fly. Dynamic code evaluation instructions are rewritten to make use of auxiliary
functions that, when invoked at runtime, inject security checks into the available string.

Architectures for Inlining Security Monitors in Web Applications 157

The inlined code manipulates shadow variables to keep track of the security labels of
the program’s variables. In similar vein, Bello and Bonelli [5] investigate on-the-fly
inlining for a dynamic dependency analysis. However, there are fundamental limits in
the scalability of the shadow-variable approach. The execution of a vast majority of
the JavaScript operations (with the prime example being the + operation) is dependent
on the types of their parameters. This might lead to coercions of the parameters that,
in turn, may invoke such operations as toString and valueOf. In order to take
any side effects of these methods into account, any operation that may case coercions
must be wrapped. The end result of this is that the inlined code ends up emulating the
interpreter, leaving no advantages to the shadow-variable approach.

Inlining for secure JavaScript Inlining has been explored for JavaScript, although fo-
cusing on simple properties or preventing against fixed classes of vulnerabilities. A
prominent example in the context of the web is BrowserShield [34] by Reis et al. to
instrument scripts with checks for known vulnerabilities.

Yu et al. [44] and Kikuchi et al. [24] present an instrumentation approach for Java-
Script in the browser. Their framework allows instrumented code to encode edit auto-
mata-based policies.

Phung et al. [33] and Magazinius et al. [27] develop secure wrapping for self-protecting
JavaScript. This approach is based on wrapping built-in JavaScript methods with secure
wrappers that regulate access to the original built-ins.

Agten et al. [2] present JSand, a server-driven client-side sandboxing framework.
The framework mediates attempts of untrusted code to access resources in the browser.
In contrast to its predecessors such as ConScript [30], WebJail [1], and Contego [26],
the sandboxing is done purely at JavaScript level, requiring no browser modification.

Despite the above progress on inlining security checks in JavaScript, achieving
information-flow security for client-side JavaScript by inlining has been out of reach
for the current methods [40,8,43,21,17] that either modify the browser or perform the
analysis out-of-the-browser.

6 Conclusions

Different stakeholders have different interests in the security of web applications. We
have presented architectures for inlining security monitors, to take into account the
security goals of the users, system and network administrators, and service providers
and integrators. We achieve great flexibility in the deployment options by considering
security monitors implemented as security-enhanced JavaScript interpreters. The archi-
tectures allow deploying such a monitor in a browser extension, web proxy, or web
service. We have reported on the security considerations and on the relative pros and
cons for each architecture. We have applied the architectures to inline an information-
flow security monitor for JavaScript. The security experiments show the flexibility in
supporting the different policies on the sensitive information from the user. The perfor-
mance experiments show reasonable overhead imposed by the architectures.

Future work is focused on three promising directions. First, JavaScript may occur
outside script elements, e.g., as part of css, SVG or Flash. Ignoring JavaScript outside

158 J. Magazinius, D. Hedin, and A. Sabelfeld

script elements potentially opens up for bypassing the security policies. One possible
solution to this is to disallow JavaScript from occurring outside normal script tags,
either by removing it of turning off the enabling features (e.g., Flash). Even though
such a method might seem drastic it is conceivable due to the limited proliferation of
JavaScript outside normal scripts. Nevertheless, to provide a more complete solution,
we aim to investigate extending the approaches presented in this paper to handle such
JavaScript. Second, recall that the integrator architecture relies on the developer to es-
tablish communication between the monitored and unmonitored code. With the goal to
relieve the integrator from manual efforts, we develop a framework for secure commu-
nication that provides explicit support for integrating and monitored and unmonitored
code. Third, we pursue instantiating the architectures with a monitor for controlling
network communication bandwidth.

Acknowledgments. Thanks are due to Christian Hammer for useful feedback. This
work was funded by the European Community under the ProSecuToR and WebSand
projects and the Swedish agencies SSF and VR.

References

1. Acker, S.V., Ryck, P.D., Desmet, L., Piessens, F., Joosen, W.: Webjail: least-privilege inte-
gration of third-party components in web mashups. In: Proc. of ACSAC 2011 (2011)

2. Agten, P., Acker, S.V., Brondsema, Y., Phung, P.H., Desmet, L., Piessens, F.: JSand: complete
client-side sandboxing of third-party JavaScript without browser modifications. In: Zakon,
R.H. (ed.) ACSAC 2012, pp. 1–10. ACM (2012)

3. Anderson, J.P.: Computer security technology planning study. Technical report, Deputy for
Command and Management System, USA (1972)

4. Austin, T.H., Flanagan, C.: Efficient purely-dynamic information flow analysis. In: Proc.
ACM Workshop on Programming Languages and Analysis for Security, PLAS (June 2009)

5. Bello, L., Bonelli, E.: On-the-fly inlining of dynamic dependency monitors for secure infor-
mation flow. In: Barthe, G., Datta, A., Etalle, S. (eds.) FAST 2011. LNCS, vol. 7140, pp.
55–69. Springer, Heidelberg (2012)

6. Boudol, G.: Secure information flow as a safety property. In: Degano, P., Guttman, J., Mar-
tinelli, F. (eds.) FAST 2008. LNCS, vol. 5491, pp. 20–34. Springer, Heidelberg (2009)

7. Chudnov, A., Naumann, D.A.: Information flow monitor inlining. In: Proc. of CSF 2010
(2010)

8. Chugh, R., Meister, J.A., Jhala, R., Lerner, S.: Staged information flow for JavasCript. In:
Hind, M., Diwan, A. (eds.) PLDI, pp. 50–62. ACM (2009)

9. Dam, M., Guernic, G.L., Lundblad, A.: Treedroid: a tree automaton based approach to en-
forcing data processing policies. In: Proc. of ACM CCS 2012, pp. 894–905 (2012)

10. Dam, M., Jacobs, B., Lundblad, A., Piessens, F.: Security monitor inlining for multithreaded
java. In: Drossopoulou, S. (ed.) ECOOP 2009. LNCS, vol. 5653, pp. 546–569. Springer,
Heidelberg (2009)

11. Dam, M., Jacobs, B., Lundblad, A., Piessens, F.: Provably correct inline monitoring for mul-
tithreaded java-like programs. Journal of Computer Security 18(1), 37–59 (2010)

12. ECMA International. ECMAScript Language Specification, Version 5 (2009)
13. B. Eich. Narcissus—JS implemented in JS (2011),

http://mxr.mozilla.org/mozilla/source/js/narcissus/

http://mxr.mozilla.org/mozilla/source/js/narcissus/

Architectures for Inlining Security Monitors in Web Applications 159

14. Erlingsson, U.: The inlined reference monitor approach to security policy enforcement. PhD
thesis, Cornell University, Ithaca, NY, USA (2004)

15. Erlingsson, U., Schneider, F.B.: Sasi enforcement of security policies: a retrospective. In:
Proc. of NSPW 1999, pp. 87–95 (1999)

16. Gal, A.: dom.js, https://github.com/andreasgal/dom.js
17. Groef, W.D., Devriese, D., Nikiforakis, N., Piessens, F.: Flowfox: a web browser with flexible

and precise information flow control. In: Proc. of ACM CCS 2012 (October 2012)
18. Hedin, D., Birgisson, A., Bello, L., Sabelfeld, A.: JSFlow. Software release (September

2013), Located at http://chalmerslbs.bitbucket.org/jsflow
19. Hedin, D., Birgisson, A., Bello, L., Sabelfeld, A.: JSFlow: Tracking Information Flow in

JavaScript and its APIs. In: SAC. ACM (March 2014)
20. Hedin, D., Sabelfeld, A.: Information-flow security for a core of JavaScript. In: Proc. IEEE

Computer Security Foundations Symposium, pp. 3–18 (June 2012)
21. Jang, D., Jhala, R., Lerner, S., Shacham, H.: An empirical study of privacy-violating infor-

mation flows in JavaScript web applications. In: Proc. of ACM CCS 2010 (October 2010)
22. Just, S., Cleary, A., Shirley, B., Hammer, C.: Information Flow Analysis for JavaScript. In:

Proc. of PLASTIC 2011 (2011)
23. Kesselman, J.: Document Object Model (DOM) Level 2 Core Specification (2000)
24. Kikuchi, H., Yu, D., Chander, A., Inamura, H., Serikov, I.: Javascript instrumentation in

practice. In: Ramalingam, G. (ed.) APLAS 2008. LNCS, vol. 5356, pp. 326–341. Springer,
Heidelberg (2008)

25. Ligatti, J., Bauer, L., Walker, D.: Edit automata: Enforcement mechanisms for run-time se-
curity policies. International Journal of Information Security 4, 2–16 (2005)

26. Luo, T., Du, W.: Contego: Capability-based access control for web browsers - (short paper).
In: McCune, J.M., Balacheff, B., Perrig, A., Sadeghi, A.-R., Sasse, A., Beres, Y. (eds.) Trust
2011. LNCS, vol. 6740, pp. 231–238. Springer, Heidelberg (2011)

27. Magazinius, J., Phung, P.H., Sands, D.: Safe wrappers and sane policies for self protecting
javascript. In: Aura, T., Järvinen, K., Nyberg, K. (eds.) NordSec 2010. LNCS, vol. 7127, pp.
239–255. Springer, Heidelberg (2012)

28. Magazinius, J., Russo, A., Sabelfeld, A.: On-the-fly inlining of dynamic security monitors.
Computers & Security 31(7), 827–843 (2012)

29. McLean, J.: A general theory of composition for trace sets closed under selective interleaving
functions. In: Proc. IEEE Symp. on Security and Privacy, pp. 79–93 (May 1994)

30. Meyerovich, L.A., Livshits, V.B.: Conscript: Specifying and enforcing fine-grained security
policies for javascript in the browser. In: Proc. of IEEE S&P 2010 (2010)

31. Mozilla Labs. Zaphod add-on for the Firefox browser (2011),
http://mozillalabs.com/zaphod

32. Nikiforakis, N., Invernizzi, L., Kapravelos, A., Van Acker, S., Joosen, W., Kruegel, C.,
Piessens, F., Vigna, G.: You are what you include: large-scale evaluation of remote JavaScript
inclusions. In: Proc. of ACM CCS 2012, pp. 736–747 (October 2012)

33. Phung, P.H., Sands, D., Chudnov, A.: Lightweight self-protecting javascript. In: Proc. of
ASIACCS 2009, pp. 47–60 (2009)

34. Reis, C., Dunagan, J., Wang, H.J., Dubrovsky, O., Esmeir, S.: Browsershield: Vulnerability-
driven filtering of dynamic html. ACM Trans. Web 1(3), 11 (2007)

35. Rushby, J.M.: Design and verification of secure systems. In: Proc. SOSP 1981 (1981)
36. Russo, A., Sabelfeld, A.: Dynamic vs. static flow-sensitive security analysis. In: Proc. IEEE

Computer Security Foundations Symposium, pp. 186–199 (July 2010)
37. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE J. Selected Ar-

eas in Communications 21(1), 5–19 (2003)

https://github.com/andreasgal/dom.js
http://chalmerslbs.bitbucket.org/jsflow
http://mozillalabs.com/zaphod

160 J. Magazinius, D. Hedin, and A. Sabelfeld

38. Sabelfeld, A., Russo, A.: From dynamic to static and back: Riding the roller coaster of
information-flow control research. In: Pnueli, A., Virbitskaite, I., Voronkov, A. (eds.) PSI
2009. LNCS, vol. 5947, pp. 352–365. Springer, Heidelberg (2010)

39. Saltzer, J.H., Schroeder, M.D.: The protection of information in computer systems. Proc. of
the IEEE 63(9), 1278–1308 (1975)

40. Vogt, P., Nentwich, F., Jovanovic, N., Kirda, E., Kruegel, C., Vigna, G.: Cross-site scripting
prevention with dynamic data tainting and static analysis. In: Proc. of NDSS (February 2007)

41. W3C. Document Object Model (DOM) Level 3 Events Specification,
http://www.w3.org/TR/DOM-Level-3-Events/

42. W3C. DOM4 W3C Working Draft 6, http://www.w3.org/TR/dom/
43. Yip, A., Narula, N., Krohn, M., Morris, R.: Privacy-preserving browser-side scripting with

BFlow. In: EuroSys 2009, pp. 233–246. ACM, New York (2009)
44. Yu, D., Chander, A., Islam, N., Serikov, I.: JavaScript instrumentation for browser security.

In: Proc. ACM Symp. on Principles of Programming Languages, pp. 237–249. ACM (2007)

http://www.w3.org/TR/DOM-Level-3-Events/
http://www.w3.org/TR/dom/

Automatic and Robust Client-Side Protection

for Cookie-Based Sessions

Michele Bugliesi, Stefano Calzavara, Riccardo Focardi, and Wilayat Khan

Università Ca’ Foscari Venezia
{michele,calzavara,focardi,khan}@dais.unive.it

Abstract. Session cookies constitute one of the main attack targets
against client authentication on the Web. To counter that, modern web
browsers implement native cookie protection mechanisms based on the
Secure and HttpOnly flags. While there is a general understanding about
the effectiveness of these defenses, no formal result has so far been proved
about the security guarantees they convey. With the present paper we
provide the first such result, with a mechanized proof of noninterfer-
ence assessing the robustness of the Secure and HttpOnly cookie flags
against both web and network attacks. We then develop CookiExt, a
browser extension that provides client-side protection against session hi-
jacking based on appropriate flagging of session cookies and automatic
redirection over HTTPS for HTTP requests carrying such cookies. Our
solution improves over existing client-side defenses by combining protec-
tion against both web and network attacks, while at the same time being
designed so as to minimise its effects on the user’s browsing experience.

1 Introduction

Providing access to online content-rich resources such as those available in mod-
ern web applications requires tracking a user’s identity through multiple requests.
That, in turn, leads naturally to introduce the concept of web session to gather
different HTTP(S) requests under the same identity, and implement a stateful,
authenticated communication paradigm.

State information in web sessions is typically encoded by means of cookies : a
cookie is a small piece of data generated by the server, sent to the user’s browser
and stored therein, for the browser to attach it automatically to all HTTP(S)
requests to the server which registered it. If the cookie contains an adequately
long string of random data, the server can effectively identify the client and
restore its state, thus implementing a web session across different requests.

Cookie-based sessions are exposed to serious security threats, as the inadver-
tent disclosure of a session cookie provides an attacker with full capabilities of
impersonating the client identified by that cookie. Indeed, cookie theft consti-
tutes one of the most prominent web security attacks and several approaches
have been proposed in the past to prevent and/or mitigate it [17,16,9,15]. Inter-
estingly, this problem is so serious that modern web browsers implement native
protection mechanisms based on the Secure and HttpOnly flags to shield session

J. Jürjens, F. Piessens, and N. Bielova (Eds.): ESSoS 2014, LNCS 8364, pp. 161–178, 2014.
c© Springer International Publishing Switzerland 2014

162 M. Bugliesi et al.

cookies from unintended access by scripts injected within HTML code, as well
as by sniffers tapping the client-server link of an HTTP connection. While there
is a general understanding that these flags constitute an effective defense, no
formal result has so far been proved about the security guarantees they convey.

Contributions. With the present paper we provide the first such result assessing
the robustness of the Secure and HttpOnly cookie flag mechanisms with re-
spect to a precise and rigorous attacker model, which captures both web threats
(based on, e.g., code injection) and network attacks. We state our result in terms
of reactive noninterference [7], a popular and widely accepted definition of in-
formation security, which provides strong, full-rounded protection against any
(direct or indirect) information flow occurring in the browser. To carry out our
mechanized proof, we extend Featherweight Firefox [6,5], a core model of a web
browser developed in the Coq proof assistant [1], and we rely on Coq’s facilities
for interactive theorem proving to establish our result.

The security guarantees provided by our mechanized proof apply only to ses-
sions that draw on appropriately flagged cookies. Clearly, however, poorly engi-
neered websites that do not comply with the required flagging still expose their
users to serious risks of session hijacking. Our analysis of the Alexa-ranked top
1000 popular websites gives clear evidence that such risks are far from remote,
as the Secure and HttpOnly flags appear as yet to be largely ignored by web
developers. As a countermeasure, we propose CookiExt, a browser extension that
provides client-side protection against the theft of session cookies, based on ap-
propriate flagging of such cookies and automatic redirection over HTTPS for
HTTP requests carrying them.

We discuss the design of our Google Chrome implementation of CookiExt,
and report on the experiments we carried out to evaluate the effectiveness of
our approach. As we discuss in the related work section, CookiExt improves
over existing client-side defenses by combining protection against both web and
network attacks, while at the same time being designed so as to minimise its
effects on the user’s browsing experience.

Structure of the paper. Section 2 provides background material. Section 3 de-
scribes our formal model and the main theoretical results. Section 4 focuses on
the practical aspects of session cookie security and presents CookiExt. Section 5
compares the present paper to related work. Section 6 concludes1.

2 Background

2.1 Session Cookies: Attacks and Defenses

Web Attacks. Web browsers store cookies in their local storage and imple-
ment a simple protection mechanism based on the so-called “same-origin pol-
icy”, whereby cookies registered by a given domain are made accessible only

1 CookiExt and Coq scripts available at https://github.com/wilstef/secookie

Automatic and Robust Client-Side Protection for Cookie-Based Sessions 163

to scripts retrieved from that same domain. Unfortunately, as it is well-known,
the same-origin policy may be circumvented by a widespread form of code in-
jection attacks known as cross-site scripting (XSS). In these attacks, a script
crafted by the attacker is injected in a page originating from a trusted web site
and thus acquires the privileges of that site [10]. As a result, the injected script
is granted access to the DOM of the page, in particular to the Javascript ob-
ject document.cookie containing the session cookies, which it can leak to the
attacker’s website.

Network Attacks. A network attacker may be able to fully inspect all the un-
encrypted traffic exchanged between the browser and the server. Though adopt-
ing HTTPS connections to encrypt network traffic would provide an effective
countermeasure against eavesdropping, protecting session cookies against im-
proper disclosure is tricky. On the one hand, many websites are still only partially
deployed over HTTPS, and require special attention. In fact, cookies registered
by a given domain are by default attached to all the requests to that domain:
consequently, unless appropriate protection is put in place, loading a page over
HTTPS may still leak session cookies, whenever the page retrieves additional
contents (e.g., images or scripts) over an HTTP connection to the same domain.
On the other hand, even websites which are completely deployed over HTTPS
are vulnerable to session cookie theft, whenever an attacker is able to inject
HTTP links to them in unrelated web pages [13].

Protection Mechanisms. Web development frameworks provide two main
mechanisms to secure session cookies, based on the Secure and HttpOnly flags.
The HttpOnly flag blocks any access to a cookie attempted by JavaScript or any
other non-HTTP API, thus making cookies available only upon transmissions of
HTTP(S) requests and thwarting XSS attacks. The Secure flag, in turn, informs
the browser that a cookie may only be included in requests sent over HTTPS
connections, thus ensuring that the cookie is always encrypted when transmit-
ted from the client to the server. Since Secure cookies will never be attached
to requests performed over HTTP connections, they are protected against the
security flaws discussed above.

2.2 Formal Browser Models

Web browsers can be formalized in terms of constrained labelled transition sys-
tems known as reactive systems [6]. Intuitively, a reactive system is an event-
driven state machine which waits for an input, produces a sequence of outputs
in response, and repeats the process indefinitely.

Definition 1 (Reactive System [7]). We define a reactive system as a tuple
(C,P , I,O,−→), where C and P are disjoint sets of consumer and producer states
respectively, I and O are disjoint sets of input and output events respectively.
The last component, −→, is a labelled transition relation over the set of states
S � C ∪ P and the set of labels A � I ∪ O, defined by the following clauses:

1. C ∈ C and C
α−→ Q imply α ∈ I and Q ∈ P;

2. P ∈ P, Q ∈ S and P
α−→ Q imply α ∈ O;

164 M. Bugliesi et al.

3. C ∈ C and i ∈ I imply ∃P ∈ P : C
i−→ P ;

4. P ∈ P implies ∃o ∈ O, Q ∈ S : P
o−→ Q.

Defining a notion of information security for reactive systems requires one to
identify how input events affect the output events generated in response. We
define (possibly infinite) streams of events, coinductively, as the largest set gen-
erated by the following productions: S := [] | s :: S, where s ranges over stream
elements. Then, we characterize the behaviour of a reactive system as a trans-
formation of a given input stream into a corresponding output stream.

Definition 2 (Trace). For an input stream I, a reactive system in a given state
Q computes an output stream O iff the judgement Q(I) ⇒ O can be derived by
the following inference rules:

(C-Nil)

C([]) ⇒ []

(C-In)

C
i−→ P P (I) ⇒ O

C(i :: I) ⇒ O

(C-Out)

P
o−→ Q Q(I) ⇒ O

P (I) ⇒ o :: O

A reactive system generates the trace (I, O) if we have Q0(I) ⇒ O, where Q0 is
the initial state of the reactive system.

2.3 Reactive Noninterference

Given the previous definition, we can introduce an effective notion of information
security based on the theory of noninterference. We presuppose a pre-order of
security labels (L,�) and characterize the power of an observer in terms of the
labels l ∈ L, where higher labels correspond to higher power.

Definition 3 (Reactive Noninterference [7]). A reactive system is nonin-
terferent if for all labels l and all its traces (I, O) and (I ′, O′) such that I ≈l I

′,
one has O ≈l O

′.

The notation S ≈l S′ identifies a similarity relation on streams, which corre-
sponds to the inability of an observer at level l to distinguish S from S′. As
discussed in [7], different definitions of stream similarity correspond to different
sensible notions of information security. We focus on a very natural definition,
which gives rise to a practically useful (termination-insensitive) notion of non-
interference called indistinguishable security.

Definition 4 (Stream Similarity). We let ≈l be the largest relation closed
under the following inference rules:

(S-Nil)

[] ≈l []

(S-Vis)

visible l(s) visible l(s
′) s ≈l s

′ S ≈l S
′

s :: S ≈l s
′ :: S′

(S-InvisL)

¬visible l(s) S ≈l S
′

s :: S ≈l S
′

(S-InvisR)

¬visible l(s′) S ≈l S
′

S ≈l s
′ :: S′

Automatic and Robust Client-Side Protection for Cookie-Based Sessions 165

The definition is parametric with respect to a visibility and a similarity relations
for individual stream elements. Different instantiations of these relations entail
different security guarantees, as we discuss in Section 3.3.

3 Formalizing Session Security

We continue with an outline of our mechanized formal proof of reactive noninter-
ference for properly flagged session cookies under the currently available browser
protection mechanisms. To ease readability, we keep the presentation informal
(though rigorous) whenever possible: full details can be found in the online Coq
scripts at https://github.com/wilstef/secookie.

3.1 Extending Featherweight Firefox

Featherweight Firefox (FF) is a core model of a web browser, developed in the
Coq proof assistant [6,5]. Despite its name, the model is not tailored specifically
around Firefox. Instead, it provides a fairly rich subset of the main functionali-
ties of any standard web browser, including multiple browser windows, cookies,
HTTP requests and responses, basic HTML elements, a simple Document Object
Model, and some of the essential features of JavaScript.

FF is a reactive system: input events can either originate from the user or
from the network, and output events can similarly be sent to the user or to the
network. In particular, the model defines how the browser reacts to each possible
input by emitting (a sequence of) outputs in response.

We extend FF with a number of new features, to include (i) support for
HTTPS communication; (ii) a more accurate management of the browser cookie
store to capture the Secure and HttpOnly flags with their intended semantics,
and (iii) HTTP(S) redirects, a feature included in related models [2,3] which has
been shown to have a significant impact on browser security.

The implementation of the extended model arises as expected, though it re-
quires several changes to the existing framework to get a working Coq program.
We just remark that HTTPS communication is modelled symbolically, by ex-
tending the syntax of input and output events to make it possible to discriminate
between plain and encrypted exchanges (see below).

3.2 Threat Model

As anticipated, we characterize attackers in terms of a pre-order on security
labels, which we define as follows.

Definition 5 (Security Labels and Order). Let D be a denumerable set of
domain names, ranged over by d. We define the set of security labels L, ranged
over by l, as the smallest set generated by the following grammar:

l := ⊥ | � | net | http(d) | https(d).

166 M. Bugliesi et al.

We define � as the least reflexive relation over L, with � as a top element, ⊥
as a bottom element, and closed under the following inference rules:

(O-NetL)

net � https(d)

(O-NetR)

http(d) � net

(O-Https)

http(d) � https(d′)

We can easily prove that (L,�) is a pre-order, hence our definition is well-suited
for the theory of reactive noninterference.

It is very natural to characterize the attacker power in terms of a security
label in the previous pre-order. Specifically, level http(d) corresponds to a web
attacker at d, which has no network capability and can only observe data sent to
d itself. A network attacker, instead, resides at level net and is stronger than any
web attacker, being able to inspect the contents of all the unencrypted network
traffic. We additionally assume that a net-level attacker is able to observe the
presence of any HTTPS request sent over the network, even though he does
not have access to its contents. Finally, level https(d) corresponds to an even
more powerful attacker, which has fully compromised the web server at d: this
attacker has all the capabilities of a network attacker and can also decrypt all
the encrypted traffic sent to d.

We anticipate that, by quantifying over all the possible inputs, our model will
implicitly provide the attacker (at any level) with the ability to inject malicious
contents on all websites, thus naturally capturing XSS attacks.

3.3 Noninterference for Session Cookies

The two security properties we target may informally be described as follows:

(1) the value of an HttpOnly cookie registered by a domain d can only be dis-
closed by an attacker at level http(d) or higher;

(2) the value of an HttpOnly and Secure cookie registered by a domain d can
only be disclosed by an attacker at level https(d) or higher.

In both cases we target strong confidentiality guarantees, to ensure that the
secrecy of a session cookie is protected against both explicit and implicit flows of
information. Interestingly, we can uniformly characterize properties (1) and (2)
in terms of reactive noninterference and carry out a single security proof which
entails both. Specifically, we will show that a browser reacting to two input
streams that are indistinguishable up to the values of the HttpOnly (and Secure,
when conveyed over HTTPS) cookies attached to the streams’ components, will
produce indistinguishable output streams for any observer/attacker that is not
the intended owner of these cookies.

Overview. Before delving into the technical details, we first provide an intuition
about how existing attacks are captured by reactive noninterference. Consider
a web attacker running the website attacker.com and take the following script
snippet:

Automatic and Robust Client-Side Protection for Cookie-Based Sessions 167

val = get_ck_val(document.cookie,"PHPSESSID");

for (x in val) {

<contact http://attacker.com/leak?pos=x&char=val[x]>

}

The script retrieves the document.cookie object containing all the cookies ac-
cessible by the page to read the value of the PHPSESSID cookie (storing a session
identifier), and then leaks each character of the cookie value to the attacker’s
website. If the script is injected into a response from honest.com, for instance
through XSS, the attacker will be able to hijack the user’s session.

Now notice that, if the cookie PHPSESSID is marked as HttpOnly, the previous
attack will not work. In particular, irrespective of the value stored in the cookie,
the observable output available to the attacker will always be the same, i.e.,
nothing. This ensures that both the value of the cookie and its length (an implicit
flow of information) are not disclosed to the attacker, and it is thus safe to
deem two HTTP(S) responses from honest.com as similar whenever they are
identical up to the choice of the PHPSESSID cookie value. If the HttpOnly flag is
not applied to the cookie, we cannot treat the two responses as similar, since the
attacker would be able to draw a difference between them based on the outputs
observable at attacker.com, thus violating reactive noninterference.

The reasoning can be generalized to the Secure flag and network attackers,
with the proviso that any Secure cookie must be marked also as HttpOnly to
be actually protected: the script above already highlights this point. Indeed, if
the cookie PHPSESSID is only marked as Secure, the previous script could still
leak over HTTP all the characters composing the cookie value, thus allowing a
network attacker to draw a difference between two responses identical up to the
cookies they set.

Formalization. We start by introducing some notation. We let URLs be defined
by the productions: url := blank | url(protocol , domain, path), where protocol ∈
{http, https}, and domain and path are arbitrary strings. We let uwi range over
window identifiers, i.e., natural numbers serving as an internal representation of
browser windows; similarly, we let ncid range over network connection identi-
fiers, which are needed in the browser model to match responses with their cor-
responding requests. A network connection identifier is a record with two fields:
url , which contains the URL endpoint of the connection, and value, a natural
number which uniquely identifies the connection. We use the dot operator “.”
to perform the lookup of a record field.

Output events. Output events are defined by the following, mostly self-explanatory
productions:

o := ui window opened | ui window closed(uwi)
| ui page loaded(uwi , url , doc) | ui page updated(uwi , doc)
| ui error(msg) | net doc req(ncid , req)
| net script req(ncid , req) | net xhr req(ncid , req).

168 M. Bugliesi et al.

We define visibility for output events by means of the following inference rules:

(VO-Net)

url label (ncid) � net � l ∗ ∈ {doc, script, xhr}
visible l(net ∗ req(ncid , req))

(VO-Top)

visible�(o)

The partial function url label(·) maps network connection identifiers to security
labels as follows:

url label (ncid) =

{
https(d) if ∃p : ncid .url = url(https, d , p)

http(d) if ∃p : ncid .url = url(http, d , p)

The definition is consistent with the previous characterization of the attacker
on the label pre-order. In particular, notice that both the encrypted and the
unencrypted network traffic is visible to any attacker l such that l � net.

We then define similarity for output events through the following rules:

(SO-Crypt)

∃d : url label(ncid) = https(d) �� l ∗ ∈ {doc, script, xhr}
net ∗ req(ncid , req) ≈l net ∗ req(ncid , req ′)

(SO-Refl)

o ≈l o

In words, we are assuming that the attacker is able to fully analyse any plain
output event it has visibility of, while the contents of an encrypted request
can only be inspected by a sufficiently strong attacker, who is able to decrypt
the message. We assume a randomized encryption scheme, whereby encrypting
the same request twice always produces two different ciphertexts2. Notice that
similar (≈l) output events must be sent to the same URL, i.e., we assume that
the attacker is able to observe the recipient of any visible network event.

Input events. The treatment for input events is similar, but subtler. Again, we
start by introducing some notation. We let network responses (resp) be defined
as records with four fields: del cookies , which is a set of names of cookies which
should be deleted by the browser; set cookies , which is a set of cookies which
should be stored in the browser; redirect url , which is an (optional) URL needed
for HTTP(S) redirects; and file, which is the body of the response. Cookies, in
turn, are ranged over by c and defined as records with six fields: a name, a value,
a domain , a path, and two boolean flags secure and httponly .
Input events are then defined by the following productions:

i := ui load in window(uwi , url) | ui close window(uwi)
| ui input text(uwi , field ,msg) | net doc resp(ncid , resp)
| net script resp(ncid , resp) | net xhr resp(ncid , resp).

We presuppose a further condition to rule out input events built around Secure

cookies registered over HTTP. This corresponds to assuming the following

2 This is a sound assumption for HTTPS, since it relies on the usage of short-term
symmetric keys and attaches different sequence numbers to different messages.

Automatic and Robust Client-Side Protection for Cookie-Based Sessions 169

condition for the last three clauses of the input-event productions above: when-
ever there exists a cookie c ∈ resp.set cookies such that c.secure = true, then
ncid .url must be of the form url(https, d , p) for some d and p. Any input that
does not satisfy this condition is clearly ill-formed, as Secure cookies received
in the clear cannot be protected at the client side. Ruling out ill-formed inputs
provides then the formal counterpart of having the browser simply reject them,
declining the request to store the cookie. Indeed, while current browsers do not
seem to implement this check, that is enforced by our browser extension (cf.
Section 4).

We define similarity for input events as follows:

(SI-Net)

in erase l(resp) = in erase l(resp
′) ∗ ∈ {doc, script, xhr}

net ∗ resp(ncid , uwi , resp) ≈l net ∗ resp(ncid , uwi , resp′)

(SI-Refl)

i ≈l i

Here, in erase l(resp) is obtained from resp by erasing from resp.set cookies the
value of every cookie c such that ck label(c) �� l with:

ck label(c) =

⎧⎪⎨
⎪⎩
http(d) if c.domain = d ∧ c.httponly = true ∧ c.secure = false

https(d) if c.domain = d ∧ c.httponly = true ∧ c.secure = true

⊥ otherwise

Intuitively, i ≈l i
′ if and only if i and i′ are syntactically equal, except for the

cookies hidden to an attacker at level l (recall the previous informal overview).
We conclude by defining visibility for input events: that is an easy task, since

we just stipulate that visible l(i) holds true for all security labels l and all input
events i. In other words, this corresponds to stating that the occurrence of a given
input event is never hidden to the attacker: indeed, the cookie flags described
above are just intended to protect the value of the cookie.

Formal results. Let EFF denote the extended FF of Section 3.1: assuming the
definitions of visibility and similarity for input and output events introduced
above, we have our desired result.

Theorem 1 (Noninterference). EFF is noninterferent.

We refer the interested reader to Appendix A for an intuition about the coin-
ductive technique adopted in the proof. The result is interesting and important
in itself, however, as it provides a certified guarantee of the effectiveness of the
Secure and HttpOnly flags as robust protection mechanisms for session cookies.
Needless to say, the theorem does not say anything about the security of ses-
sions in existing web applications, as that depends critically on the correct use
of the cookie flags. In the next section, we analyze the actual deployment of such
mechanisms in existing systems, and describe our approach to enforce their use
at the client side to secure modern browsers.

170 M. Bugliesi et al.

4 Strengthening Session Security

4.1 Session Cookie Protection in Existing Systems

We start with an analysis of the actual adoption of the security flags in existing
systems. To accomplish that, we conduct an analysis of the the top 1000 websites
of Alexa: we first collect the cookies registered through the HTTP headers by
these websites, and then apply a heuristic to isolate session cookies. The heuristic
marks a cookie as a session cookie if it satisfies either of the following conditions:

1. the cookie name contains the strings ’sess’ or ’sid’;
2. the cookie value contains at least 10 characters and its index of coincidence3

is below 0.04.

Our solution is consistent with previous proposals [17] and has been validated
by a manual investigation on known websites. In particular, condition 1 is mo-
tivated by the observation that several web frameworks offer native support for
cookie-based sessions and by default register session cookies with known names
satisfying this condition. In addition, it appears that custom session identifiers
tend to include the string ’sess’ or ’sid’ in their names as well. Condition 2, in
turn, is dictated by the expected statistical properties of a robust session iden-
tifier, which is typically a long and random string. Clearly, there is no a prori
guarantee of accuracy for our heuristic. As we will discuss, however, we have
strong evidence that our survey is reliable enough (cf. Section 4.5).

4.2 The Need for a Client-Side Defense

Table 1 provides some statistics which highlight that the large majority of the
session cookies we identified (71.35%) has no flag set: though this percentage may
be partially biased by the adoption of a heuristic, it provides clear indications of
a limited practical deployment of the available protection mechanisms. Further
evidence will be provided by our field experiments.

Table 1. Statistics about cookie flags

HttpOnly Secure #cookies percentage

yes yes 32 2.81%

yes no 284 24.96%

no yes 10 0.88%

no no 812 71.35%

Of the two flags, HttpOnly appears to be adopted much more widely than
Secure. We conjecture two reasons for that: first, modern releases of major
web frameworks (e.g., ASP) automatically set the HttpOnly flag (but not the
Secure flag) for session cookies generated through the standard API; second,
Secure cookies presuppose an HTTPS implementation, which is not available
for all websites. We further investigate this point below.

3 This is a statistical measure which can be effectively employed to understand how
likely a given text was randomly generated [11].

Automatic and Robust Client-Side Protection for Cookie-Based Sessions 171

Evaluating Client-Side Protection. Prior research has advocated the se-
lective application of the HttpOnly flag to session cookies at the client side to
reduce the attack surface against session hijacking [17,21]. We propose to push
this idea further, by automatically flagging session cookies also as Secure and
enforcing a redirection to HTTPS for supporting websites.

To get a better understanding about the practical implications of this ap-
proach, we conducted a simple experiment aimed at estimating the extent of the
actual HTTPS deployment. We found that 192 out of the 443 websites register-
ing at least one session cookie (43.34%) support HTTPS transparently, i.e., they
can be successfully accessed simply by replacing http with https in their URL.
(In this count we excluded a number of websites which automatically redirect
HTTPS connections over HTTP.) We then observed that only 16 of these web-
sites (8.33%) set the Secure flag for at least one session cookie. Remarkably, it
turns out that 141 out of these 192 websites (73.44%) contain at least one HTTP
link to the same domain hard-coded in their homepage, hence session cookies
which are not marked Secure are at risk of being disclosed to a network attacker
when navigating these websites.

4.3 Client-Side Protection with CookiExt

CookiExt is an extension for Google Chrome aimed at enforcing robust client-side
protection for session cookies. We choose Chrome for our development because it
provides a fairly powerful – yet simple to use – API for programming extensions:
the same solution could be implemented in any other modern web browser.

Overview. At a high level, the behaviour of CookiExt can be summarized as
follows: when the browser receives an HTTP(S) response, CookiExt inspects its
headers, trying to identify the session cookies based on the heuristic discussed
earlier. If a session cookie is found, CookiExt behaves as follows:

– if the response was sent over HTTPS, all the identified session cookies are
marked Secure and HttpOnly;

– if the response was sent over HTTP, all the identified session cookies are
erased from the HTTP headers.

In both cases, all subsequent requests to the website are automatically redirected
over HTTPS. This simple picture, however, is significantly complicated by a
number of issues which arise in practice and must be addressed to devise a
usable implementation.

Supporting “mixed” Websites. Mixed websites are websites which support
HTTPS but make some of their contents available only on HTTP. This website
structure is often adopted by e-commerce sites, which offer access to their private
areas over HTTPS, but then make their catalogs available only on HTTP. These
cases are problematic, as enforcing a redirection over HTTPS for the HTTP

172 M. Bugliesi et al.

portion of the website would make the latter unavailable. Similarly, assuming
to be able to detect the absence of HTTPS support for some links, even the
adoption of a fallback to HTTP would eventually break the user’s session: in
fact, since session cookies are by default marked Secure by our extension, they
will not be sent to the HTTP portion of the website.

We therefore adopt the following, more elaborate solution. When CookiExt
forces a redirection over HTTPS, we implement a check to detect possible fail-
ures (see below). If the redirection cannot be performed, we enforce a fallback to
HTTP, distinguishing two cases: if the failure arises from the request of a page,
we extend the set of the cookies attached to the request with all the cookies which
have been made Secure by CookiExt, but were not originally marked Secure by
the server; if the browser instead is trying to retrieve a sub-resource, like an
image or a script, we leave the set of cookies attached to the request unchanged.
This way we confine any deviation from the browser behaviour expected by the
server only to sub-resources, which typically do not require authenticated ac-
cess. Clearly, transmitting in clear the session cookies identified by the heuristic
exposes the client to a risk. However, this approach offers an interesting compro-
mise between usability and security: in fact, the user’s navigation will not break
the session, since page requests will always include session cookies, but at the
same time the attack surface for network attackers will be significantly reduced,
since retrieving an image over HTTP inside an HTTPS page will not leak any
session cookie.

Checking HTTPS Support. As we said, CookiExt could try to enforce a
redirection from HTTP to HTTPS also for websites supporting only HTTP
access. The Chrome API already allows one to detect a number of network
connection errors which may arise when HTTPS is not supported; however, some
of these alerts are only triggered after a significant delay, which may negatively
affect usability.

Our choice is to set a relatively small timeout every time CookiExt forces an
HTTPS redirection: if no response is received before the timeout expires, the
extension fallbacks to HTTP. To prevent a network attacker from tapping with
outgoing HTTPS connections and disabling our client-side defense, CookiExt
keeps track of all the pages for which a successful redirection from HTTP to
HTTPS has been performed in the past, and notifies the user in case of an
unexpected lack of HTTPS support possibly due to malicious network activities.

4.4 Noninterference in Theory and in Practice

Careful readers will argue that our non-interference result (Theorem 1) predi-
cates on (a Coq model of) a standard web browser rather than on a web browser
extended with CookiExt, and consequently provides no information about the
soundness of CookiExt. The gap is only apparent, however, as CookiExt does not
really alter the browser behaviour, but rather activates existing protection mech-
anisms available in standard web browsers. Indeed, one may view CookiExt just

Automatic and Robust Client-Side Protection for Cookie-Based Sessions 173

as a filter that applies the desired flagging to all inputs, de facto enforcing the
similarity condition on the input streams that constitutes the hypothesis of the
non-interference definition. The only discrepancy determined by CookiExt arises
from the fallback mechanism, which may end up sending over HTTP cookies
that the extension promoted to Secure. While this effect has no counterpart in
standard browsers, the gap is again harmless, as all such cookies can be assim-
ilated to HttpOnly cookies, for which confidentiality is guaranteed against web
attackers.

4.5 Experiments

The effectiveness of CookiExt critically depends on the accuracy of the heuristic
for session cookie detection. On the one hand, false negatives lead to failures at
protecting the session cookies of vulnerable websites. On the other hand, false
positives may hinder the usability of the browser (though they do not cause any
security flaw). We now report on our experiments to evaluate both these aspects.

Security Evaluation. To understand the practical impact of false negatives,
we analyze again our survey of websites and isolate the cookies flagged Secure

or HttpOnly which are not identified as session cookies by the heuristic: the
intuition here is that cookies which are explicitly protected by web developers
are likely to contain session information and we deem them as potential false
negatives. As it turns out, only 37 of the 1153 cookies ignored by our heuristic
(3.21%) have at least one security flag set: in addition, 8 of these 37 cookies
are already flagged Secure and HttpOnly, hence missing them is completely
harmless. We then carried out a manual review of the remaining potential false
negatives, which showed that none of the 29 cookies left is a real session identifier.
We performed this check by authenticating onto the private areas of the websites
registering one of these cookies, and then erasing all the cookies identified by
our heuristic: a logout from the website implies that all the real session cookies
have been successfully recognized.

Usability Tests. The only way to understand the practical impact of the false
positives is by testing and hands-on experience with the extension. We performed
an empirical evaluation by having a small set of users install CookiExt on their
browsers and navigate the Web, trying to find out usability issues and general
limitations while performing standard operations on websites where they own a
personal account. The feedback by the users was very important to refine the
original implementation and make it work in practice: with our latest prototype,
no major complaint was reported at the time of writing, even though some users
have been noticing a slight performance degradation when activating CookiExt.

Manual Investigation. We carried out a manual investigation on the top 20
websites from the Alexa ranking where we own a personal account. For all the
websites we performed three different experiments:

174 M. Bugliesi et al.

1. Detecting session cookies. We authenticate to the private area of the website
and we delete from the browser all the cookies which have been marked as session
cookies by our extension: a logout implies that all the real session cookies have
been identified by our heuristic. In all cases, our heuristic over-approximated
correctly the real set of session cookies;

2. Preserving usability. We navigate the website as deep as possible, trying to
identify visible usability issues. Our most serious concern was about the web
session being broken by the security policy applied by CookiExt, but this never
happened in practice. From our experience, usability crucially hinges on our
choice of discriminating the behaviour of CookiExt based on the request type.
Occasionally, we noticed that some images are not loaded when our extension is
activated: it seems this typically happens with third-party advertisement, since
the choice of the contents to deliver to the browser likely depend on some tracking
cookies which are stripped off by CookiExt;

3. Evaluating protection. We navigate the website and we log any redirection
attempt from HTTP to HTTPS when navigating to an internal web page: we
identified 36 requests overall, among which 23 were successfully redirected to
HTTPS; we manually verified that 11 of the 13 remaining links do not support
HTTPS.

We remark that, though promising, our extension is still a prototype under
active development: we are currently performing a larger scale evaluation and
implementing a number of practical improvements.

5 Related Work

Browser-Side Protection Mechanisms. The idea of enforcing security
browser-side is certainly not new. Below, we focus on a detailed comparison
with the works which share direct similarities with our present proposal. Other
approaches exist as well [15,14,18,19,20], but the relationships with ours are
loose.

SessionShield [17] is a lightweight protection mechanism against session hi-
jacking. SessionShield acts as a proxy between the browser and the network:
incoming session cookies are stripped out from HTTP headers and stored in an
external database; on later HTTP requests, the database is queried using the do-
main of the request as the key, and all the retrieved session cookies are attached
to the outgoing request. We find the design of SessionShield very competent and
we borrowed the idea of relying on a heuristic to identify session cookies in our
implementation. On the other hand, SessionShield does not enforce any protec-
tion against network attacks and does not support HTTPS, since it is deployed
as a stand-alone personal proxy external to the browser.

The idea of identifying session cookies through a heuristic and selectively
applying the HttpOnly flag to them has also been advocated in Zan [21], a
browser-based solution aimed at protecting legacy web applications against dif-
ferent attacks. Similarly to SessionShield, Zan does not implement any protection
mechanism against network attackers.

Automatic and Robust Client-Side Protection for Cookie-Based Sessions 175

Another particularly relevant client-side defense is HTTPS Everywhere [22].
This is a browser extension which enforces communication with many major
websites to happen over HTTPS. The tool also offers support for setting the
Secure flag of known session cookies at the client side. Unfortunately, HTTPS
Everywhere does not enforce any protection against XSS attacks, hence it does
not implement complete safeguards for session cookies. Moreover, the tool relies
on a white-list of known websites both for redirecting network traffic over HTTPS
and to identify session cookies to be set as Secure, an approach which does not
scale in practice and fails at protecting websites not included in the white-list.
Similar design choices and limitations apply to ForceHTTPS [13], a proposal
aimed at protecting high-security websites from network attacks.

Formal Methods for Web Security. The importance of applying formal tech-
niques to web security has been first recognised in a seminal paper by Akhawe
et al. [2]. The work proposes a rigorous formalization of standard web concepts
(browsers, servers, network messages...), a clear threat model and a precise spec-
ification of its security goals. The model is implemented in Alloy and applied to
several case studies, exposing concrete attacks on web security mechanisms.

A more recent research paper by Bansal et al. [3] introduces WebSpi, a
ProVerif library which provides an applied pi-calculus encoding of a number
of web features, including browsers, servers and a configurable threat model.
The authors rely on the WebSpi library to perform an unbounded verification
of several configurations of the OAuth authorization protocol through ProVerif,
identifying some previously unknown attacks on authentication.

Reactive Noninterference. The theory of reactive noninterference has been
first developed by Bohannon et al. [7]. Aaron Bohannon’s doctoral dissertation [5]
provides a mechanized proof of noninterference for a Coq implementation of the
original Featherweight Firefox model [6] extended with a number of dynamic
checks aimed at preventing information leakage. In the present work we leverage
the existing proof architecture to carry out our formal development, with the
notable differences and extensions discussed in Section 3 and Appendix A.

Independently from Bohannon’s work, Bielova et al. [4] proposed an extension
of the Featherweight Firefox model to enforce reactive noninterference through
a dynamic technique known as secure multi-execution. In later work, De Groef
et al. [12] built on this approach to develop FlowFox, a full-fledged web browser
implementing fine-grained information flow control.

6 Conclusion

We have provided a formal view of web session security in terms of reactive non-
interference and we showed that the protection mechanisms available in modern
web browsers are effective at enforcing this notion. On the other hand, our prac-
tical experience highlighted that many web developers still fail at adequately

176 M. Bugliesi et al.

protecting session cookies, hence we proposed CookiExt, a client-side solution
aimed at taming existing security flaws. We find preliminary experiences with
our tool to be fairly satisfactory.

We imagine different directions for future work. First, we would like to fur-
ther refine our formal model, to include additional concrete details which were
initially left out from our study for the sake of simplicity. Moreover, we plan
to combine the current heuristic for session cookie detection with a learning
algorithm, to improve its accuracy by analysing the navigation behaviour.

Finally, we remark that both our theory and implementation just focus on the
confidentiality of session cookies, which is a necessary precondition for thwarting
the risk of session hijacking. However, several serious security threats against web
sessions do not follow by confidentiality violations: for instance, classic CSRF
vulnerabilities should rather be interpreted in terms of attacks on integrity. In a
recently submitted paper we consider a much stronger definition of web session
security and we discuss its browser-side enforcement [8].

References

1. The Coq proof assistant, http://coq.inria.fr/
2. Akhawe, D., Barth, A., Lam, P.E., Mitchell, J.C., Song, D.: Towards a formal

foundation of web security. In: IEEE Computer Security Foundations Symposium
(CSF), pp. 290–304 (2010)

3. Bansal, C., Bhargavan, K., Maffeis, S.: Discovering concrete attacks on website
authorization by formal analysis. In: IEEE Computer Security Foundations Sym-
posium (CSF), pp. 247–262 (2012)

4. Bielova, N., Devriese, D., Massacci, F., Piessens, F.: Reactive non-interference for a
browser model. In: IEEE International Conference on Network and System Security
(NSS), pp. 97–104 (2011)

5. Bohannon, A.: Foundations of webscript security. PhD thesis, University of Penn-
sylvania (2012)

6. Bohannon, A., Pierce, B.C.: Featherweight Firefox: formalizing the core of a web
browser. In: USENIX Conference on Web Application Development (WebApps),
Berkeley, CA, USA, pp. 1–12. USENIX Association (2010)

7. Bohannon, A., Pierce, B.C., Sjöberg, V., Weirich, S., Zdancewic, S.: Reactive non-
interference. In: ACM Conference on Computer and Communications Security
(CCS), pp. 79–90 (2009)

8. Bugliesi, M., Calzavara, S., Focardi, R., Tempesta, M., Khan, W.: Formalizing and
enforcing web session integrity (submitted)

9. Dacosta, I., Chakradeo, S., Ahamad, M., Traynor, P.: One-time cookies: Preventing
session hijacking attacks with stateless authentication tokens. ACM Transactions
on Internet Technology 12(1), 1 (2012)

10. Fogie, S., Grossman, J., Hansen, R., Rager, A., Petkov, P.D.: XSS Attacks: Cross
Site Scripting Exploits and Defense. Syngress Publishing (2007)

11. Friedman, W.F.: The index of coincidence and its applications to cryptanalysis.
Cryptographic Series (1922)

12. Groef, W.D., Devriese, D., Nikiforakis, N., Piessens, F.: FlowFox: a web browser
with flexible and precise information flow control. In: ACM Conference on Com-
puter and Communications Security (CCS), pp. 748–759 (2012)

http://coq.inria.fr/

Automatic and Robust Client-Side Protection for Cookie-Based Sessions 177

13. Jackson, C., Barth, A.: Forcehttps: protecting high-security web sites from network
attacks. In: International Conference on World Wide Web (WWW), pp. 525–534
(2008)

14. Johns, M., Winter, J.: RequestRodeo: client side protection against session riding.
In: Proceedings of the OWASP Europe Conference, pp. 5–17 (2006)

15. Kirda, E., Krügel, C., Vigna, G., Jovanovic, N.: Noxes: a client-side solution for
mitigating cross-site scripting attacks. In: ACM Symposium on Applied Computing
(SAC), pp. 330–337 (2006)

16. Liu, A.X., Kovacs, J.M., Gouda, M.G.: A secure cookie scheme. Computer Net-
works 56(6), 1723–1730 (2012)

17. Nikiforakis, N., Meert, W., Younan, Y., Johns, M., Joosen, W.: SessionShield:
Lightweight protection against session hijacking. In: Erlingsson, Ú., Wieringa, R.,
Zannone, N. (eds.) ESSoS 2011. LNCS, vol. 6542, pp. 87–100. Springer, Heidelberg
(2011)

18. Nikiforakis, N., Younan, Y., Joosen, W.: HProxy: Client-side detection of SSL strip-
ping attacks. In: Kreibich, C., Jahnke, M. (eds.) DIMVA 2010. LNCS, vol. 6201,
pp. 200–218. Springer, Heidelberg (2010)

19. De Ryck, P., Desmet, L., Joosen, W., Piessens, F.: Automatic and precise client-
side protection against CSRF attacks. In: Atluri, V., Diaz, C. (eds.) ESORICS
2011. LNCS, vol. 6879, pp. 100–116. Springer, Heidelberg (2011)

20. De Ryck, P., Nikiforakis, N., Desmet, L., Piessens, F., Joosen, W.: Serene: Self-
reliant client-side protection against session fixation. In: Göschka, K.M., Haridi, S.
(eds.) DAIS 2012. LNCS, vol. 7272, pp. 59–72. Springer, Heidelberg (2012)

21. Tang, S., Dautenhahn, N., King, S.T.: Fortifying web-based applications automat-
ically. In: ACM Conference on Computer and Communications Security (CCS),
pp. 615–626 (2011)

22. Tor Project and the Electronic Frontier Foundation. HTTPS Everywhere. Available
for download at, https://www.eff.org/https-everywhere

A Noninterference Proof

Following previous work [7,4], we prove our main result through an unwinding
lemma, which provides a coinductive proof technique for reactive noninterfer-
ence. However, we depart from previous proposals by developing a variant of the
existing unwinding lemma based on a lockstep unwinding relation.

Definition 6 (Lockstep Unwinding Relation). We define a lockstep un-
winding relation on a reactive system as a label-indexed family of binary relations
on states (written �l) with the following properties:

1. if Q �l Q
′, then Q′ �l Q;

2. if C �l C′ and C
i−→ P and C′ i′−→ P ′ and i ≈l i′ and visible l(i) and

visible l(i
′), then P �l P

′;
3. if C �l C

′ and ¬visible l(i) and C
i−→ P , then P �l C

′;
4. if P �l C and P

o−→ Q, then ¬visible l(o) and Q �l C;

5. if P �l P
′, then for any o, o′, Q,Q′ such that P

o−→ Q and P ′ o′−→ Q′ we have
Q �l Q

′, provided that either (i) o ≈l o
′; or (ii) ¬visible l(o) and ¬visible l(o

′).

https://www.eff.org/https-everywhere

178 M. Bugliesi et al.

With respect to previous proposals, the main difference is in clause 5, where
we require two related producer states to proceed in a lockstep fashion, even
when they emit invisible output events. We can show that exhibiting a lockstep
unwinding relation on the initial state of a reactive system is enough to prove
noninterference.

Lemma 1 (Unwinding). If Q �l Q for all l, then Q is noninterferent.

Proof. We show by coinduction that Q �l Q
′ implies Q ∼l Q

′ for all l, where
∼l is an unwinding relation according to the definition in [5]. Then, the result
follows by the main theorem therein, showing that, if Q ∼l Q for all l, then Q is
noninterferent.

By relying on a lockstep unwinding relation rather than on a standard unwind-
ing relation, we can dramatically simplify the definition of the witness required
by our proof technique and the proof itself, as we discuss below.

We can finally give a solid intuition about our main result. The browser state
b in Featherweight Firefox is represented by a tuple, which contains several
data structures representing open windows, loaded pages, cookies, open network
connections and a bunch of additional information needed for the browser to
operate. We identify the set of consumer states with the space state generated
by instantiating the set of these data structures in all possible ways. We then
define producer states by pairing a consumer state b with a task list t: this list
keeps track of the script expressions that the browser must evaluate before it can
accept another input. State transitions are defined by the FF implementation:
intuitively, the browser starts its execution in a consumer state and each kind of
input fed to it will initialize the task list in a different way. Processing the task
list moves the browser across producer states (possibly adding new tasks): when
the task list is empty, the browser moves back to a consumer state.

To prove noninterference, we define our candidate lockstep unwinding relation
�B

l as follows:

(B-Cons)

erase l(b) = erase l(b
′)

b �B
l b′

(B-Prod)

b �B
l b′

(b, t) �B
l (b′, t)

where erasel(b) is obtained from b by erasing from its cookie store the value of
every cookie c with ck label (c) �� l. We then show that �B

l is indeed a lockstep
unwinding relation and that binit �B

l binit for all l, where binit is the initial state
of the Featherweight Firefox model. By Lemma 1, this implies that the browser
model is noninterferent. As a technical note, we point out that �B

l is not itself
an unwinding relation according to the definition in [5]. On the other hand, it is
a lockstep unwinding relation, which is enough for our present needs.

Security Testing of GSM Implementations

Fabian van den Broek1, Brinio Hond2, and Arturo Cedillo Torres2

1 Institute for Computing and Information Sciences,
Radboud University Nijmegen, The Netherlands

f.vandenbroek@cs.ru.nl
2 KPMG

{hond.brinio,cedillotorres.arturo}@kpmg.nl

Abstract. Right after its introduction, GSM security was reviewed in a
mostly theoretical way, uncovering some major security issues. However,
the costs and complexity of the required hardware prohibited most people
from exploiting these weaknesses in practice and GSM became one of the
most successful technologies ever introduced. Now there is an enormous
amount of mobile enabled equipment out there in the wild, which not
only have exploitable weaknesses following from the GSM specifications,
but also run implementations which were never security tested. Due to
the introduction of cheap hardware and available open-source software,
GSM found itself under renewed scrutiny in recent years. Practical secu-
rity research such as fuzzing is now a possibility.

This paper gives an overview on the current state of fuzzing research
and discusses our efforts and results in fuzzing parts of the extensive GSM
protocol. The protocol is described in hundreds of large PDF documents
and contains many layers and many, often archaic, options. It is, in short,
a prime target for fuzzing. We focus on two parts of GSM: SMS messages
and CBS broadcast messages.

1 Introduction

GSM saw its first deployment in 1991 in Finland and from there grew out to be-
come one of the dominant technologies. GSM can be considered old technology,
since there are numerous newer technologies in the GSM family, such as UMTS
and LTE, which provide better bandwidth and possibilities for data transfer.
However, that does not mean GSM is no longer a critical infrastructure. As of
2013, approximately 7 billion SIM cards are active worldwide, offering subscrip-
tion services to the GSM family of networks for around 3.4 billion unique sub-
scribers [1]. Even though these subscriptions are partly for other networks, GSM
is nearly always the base subscription and almost all equipment supports GSM
(or GPRS for mobile Internet equipment). Furthermore, GSM/GPRS coverage
is far more extensive than the coverage of the newer protocols and GSM uses
less power and is more efficient for voice calls. Also, a lot of machine-to-machine
communication relies on GSM/GPRS, such as certain smart meters and traffic
lights in South Africa [2,3] as well as railway systems in the European Union
[4]. All this has prompted providers to speculate that newer protocols such as

J. Jürjens, F. Piessens, and N. Bielova (Eds.): ESSoS 2014, LNCS 8364, pp. 179–195, 2014.
c© Springer International Publishing Switzerland 2014

180 F. van den Broek, B. Hond, and A. Cedillo Torres

LTE will replace their direct predecessor (UMTS), but will still run alongside
an active GSM/GPRS network [5]. So, for the foreseeable future, GSM is here
to stay. When GSM was first deployed there was some security research, which
mostly focused on the specifications and the reverse engineering of the secret and
proprietary encryption algorithm [6]. Several weaknesses in GSM where quickly
identified, though practical exploits of these weaknesses proved complicated be-
cause of all the signal processing involved. This changed around 2010 with the
arrival of cheap hardware [7] and open-source software [8] which provided easy
access to the GSM spectrum. This immediately led to some high profile attacks,
such as the release of the Time-Memory Trade-Off tables for breaking GSM’s
standard encryption [9,10].

With this new hardware and software it is possible to run your own GSM
cell tower to which real phones will connect, since in GSM the network does
not authenticate itself to the phones. This opens up the possibility to verify the
implementations of the GSM stack of phones by the technique known as fuzzing.
Fuzzing has been used a lot to find security holes on Internet equipment. Thanks
to low level access offered by Ethernet cards it was easy to simply try out all
kinds of possible messages, mostly those just outside of the specifications, and
see what happens when these are received by network equipment. Fuzzing mobile
phones has mostly happened in the hackers scene of security research, with few
academic publications.

Naturally, there are many interfaces in mobile phones which can be fuzzed.
Just think of every type of input that a phone can receive, such as WiFi, Blue-
tooth, NFC, installed apps or the SIM interface. All of these inputs can be
interesting input vectors for fuzz testing. We focused on fuzzing the GSM base-
band stack. This is the part of the phone which handles all the GSM traffic. It
is available in every phone, implements a hugely complicated standard and is
remotely accessible over the air, which could easily lead to dangerous attacks.

The GSM system comprises many entities, such as the mobile phones and cell
towers, but also many more back-end components. Our fuzzing research only
focuses on mobile phones. Naturally, fuzzing the network components of a GSM
network can have a much larger impact. However, availability of commercially
used network components that are not currently running inside an operational
GSM network is very limited. Thus we limited ourselves to the readily available
mobile phones. In this paper we discuss our efforts and results in fuzzing two
specific parts of the GSM specification: SMS messages and CBS messages.

The well-known Short Message Service (SMS) was added shortly after the
initial release of GSM and the first SMS message was sent in 1992 [1]. The first
version of SMS allowed the exchange of short text messages between GSM users,
but SMS has gone a long way since then. Not only can SMS be used to exchange
text messages, but nowadays also pictures, sounds and many other types of data
can be sent over the SMS. The current SMS standards also allow segmentation of
messages that are too long to fit into a single message, enabling users to transmit
much longer messages. The current SMS specification is found in [11,12].

Security Testing of GSM Implementations 181

The lesser-known Public Warning System (PWS) actually started out as the
Cell Broadcast Service (CBS), which was developed in parallel to the SMS ser-
vice as a response of mobile developers to the competing paging services being
offered in 1990. It allows providers to broadcast messages to all phones currently
connected to a certain cell, i.e. all phones connected to a single transceiver on a
cell tower. The original business case was to provide news, weather and traffic
information to mobile users, though this never found any wide spread popular-
ity. This lead to both mobile network operators and mobile developers neglecting
the implementation of the service in their equipment. However, this service has
been gaining importance in the last years, because it can be an ideal method
for governments to broadcast information in the event of an emergency to all
phones in the vicinity. Several countries define and implement their own warn-
ing system that rely on the CBS to deliver emergency information. Due to the
diversity of technical specifications of each warning system, ETSI with the aid
of the 3GPP consortium developed a standardized system known as the Public
Warning System (PWS). The initial goal of the PWS was to introduce a stan-
dard emergency and warning communication infrastructure, as well as specific
technical requirements for mobile phones within the European Union to receive
these emergency messages. Due to its standardized nature this system and its
accompanying protocols can now be implemented worldwide. This allows roam-
ing users to receive broadcast messages no matter what their location is, as long
as they are in a GSM coverage area.

Structure of this Paper. In Section 2 we discuss the basics of the GSM air
interface and provide an introduction into the SMS and CBS protocols. We then
discuss fuzzing in general and the specifics of fuzzing mobile phones in Section 3.
Section 4 describes our own fuzzing research, together with the practical details
and results. It is here that we also discuss the related work, for comparison and
to attempt to provide an overview of the fuzzing research into GSM up to this
point. Finally, Section 5 presents the conclusions and ideas for future work.

2 GSM

The GSM baseband stack is usually described in three layers, where the third
layer is again subdivided, as is shown in Figure 1. The bottom two layers of the
GSM stack show similarities with the OSI model. The first layer, the physical
layer, creates a set of logical channels through time division on already divided
frequencies. These channels can be used by higher layer functions for many
different tasks, as uplink (mobile phone to cell tower), downlink (cell tower to
mobile phone) or broadcast (cell tower to all connected phones) communication.
These channels can either be a traffic channel, or one of a multitude of control
channels. Most control data is transmitted in 184 bit frames which are split up
into 4 bursts. These bursts are modulated and transmitted by radio waves.

The signaling protocol used on the second layer, the data link layer, is called
LAPDm. The data link layer (and higher layers) is only defined for the signaling

182 F. van den Broek, B. Hond, and A. Cedillo Torres

channels, not for the speech channels. This is because speech bursts contain no
further headers or other meta information, only speech data; during a phone con-
versation, the traffic on the dedicated speech channels needs no meta information
in order to be reconstructed correctly at the receiving end. The LAPDm protocol
can provide positive acknowledgement, error protection through retransmission,
and flow control.

The third layer is where the match with the OSI model stops. The third layer
is subdivided into three layers, of which the last (highest) one is again subdivided
into several protocols:

1. Radio Resource management (RR); this concerns the configuration of the
logical and physical channels on the air-interface;

2. Mobility Management (MM); for subscriber authentication and maintaining
the geographical location of subscribers;

3. Connection management (CM); consists of several sublayers itself, such as:
(a) Supplementary Services (SS); managing all kinds of extra services that

are not connected to the core functionality of GSM;
(b) Short Message Service (SMS); the handling of the SMS messages;
(c) Call Control (CC); creating and ending telephone calls;
(d) Locations Services (LCS); location based services for both the user and

the provider;

Layer 3 frames consist of a 2 byte header followed by 0 or more Information
Elements (IEs). These IEs can be of several different types: T, V, TV, LV and
TLV, where the letters T, L and V denote the presence of a Type, Length and
Value field respectively. The type field is always present in non-mandatory IEs.
Interesting from a fuzzing perspective are those IEs that contain a length field,
LV and TLV, even though they are specified as having a standard length, because
these are typical places where a programmer might make a mistake in handling
data of non-standard length.

Fig. 1. The layers of GSM

We only fuzz on the third layer of the protocol stack, since this is more likely
to trigger observable bugs than fuzzing on the first two layers. That is not to say
that the lower layers of the protocol will likely contain less, or less nasty bugs,
they are simply harder to observe.

Security Testing of GSM Implementations 183

Service Centre Mobile Station

SDCCH

1. SMS-DELIVER

2. CP-ACK

3. RP-ACK

4. CP-ACK

Fig. 2. Message sequence chart of delivering an SMS to a mobile phone

SMS. Before messages can be sent on the SMS sublayer the cell tower needs to
notify the mobile phone of an incoming message and set up the channel (Stan-
dalone Dedicated Control Channel or SDCCH) with the mobile phone. The
delivery of an SMS message then requires four messages exchanged on the SMS
sublayer using the SDCCH, as shown in Figure 2. The first message is the SMS-
DELIVER message sent from the network to the phone. This message contains
the actual content (user data) with an optional User Data Header (UDH) and
mandatory Transfer Protocol (TP), Relay Protocol (RP) and Connection Pro-
tocol (CP) headers. The phone first parses the CP header and verifies it. If it
is valid the MS returns a CP-ACK message, otherwise it returns a CP-ERROR
message and releases the connection. If the CP header was correct the MS con-
tinues by verifying the RP header and checking if the phone has enough memory
to store the message. If either of those checks fails it returns an RP-ERROR
and releases the connection. If both checks succeed the MS returns an RP-ACK
with a CP header. The final message is sent by the network when the RP-ACK
passes the checks for the CP header.

A schematic overview of a correct SMS-DELIVER message can be found in
Figure 3, where Figure 3(b) shows the fields we fuzzed of the SMS-DELIVER
message. Of the RP-ACK message we fuzzed practically all header fields.

Public Warning System. For CBS messages no specific traffic channels need
to be set up for mobile phones to receive the transmission. The messages are
transmitted on the broadcast channel, a specific channel to which all phones
always listen to see if they are still in the same cell. So even if a cell is overloaded
with regular voice or data traffic, broadcast messages can still be sent to mobile
phones. This very feature is what makes them interesting for emergency messages
in the first place. Japan’s tsunami warning system and the European emergency
broadcast (EU-Alert) are examples of implementations of the PWS.

A CBS message is first announced on a broadcast channel and then transmit-
ted in four frames. A schematic representation of a CBS message is shown in
Figure 4 where all the fields we fuzzed are shown in grey.

184 F. van den Broek, B. Hond, and A. Cedillo Torres

3 Fuzzing

Fuzzing is the process of transmitting automatically generated, uncommon in-
puts to a target with the purpose of triggering unexpected behavior. This un-
expected behavior is typically something like program crashes or failing built-in
code assertions. In contrast to human testing, fuzzing can be largely automated
and as a result can find (security) errors that likely won’t be triggered during
normal use or testing. Fuzzing is already a relatively old testing technique, dat-
ing from the end of the 70s and start of the 80s [13]. Fuzzing has evolved over
the years into several variants:

1. Plain fuzzing,
2. Protocol fuzzing, and
3. State-based fuzzing.

Plain fuzzing is the original idea behind fuzzing: simply generating lots of test
cases, often with random data, and feed this to the program you are testing.
These test cases are usually made by mutating correct inputs and is used to
test the error-handling routines. It is a highly portable way of fuzzing, but also
provides very little assurance on code coverage.

In protocol fuzzing the test cases are generated based on the specifications,
especially on specifications of packet formats. Here the fuzzer will try to choose
specific test cases which are likely to provide the largest code coverage based on
its knowledge of the specifications. Typically, fuzzers will look at each field which
can contain more values than are allowed by the specifications and generate test
cases with values on the corner cases, values just over the corner cases and some
values way out of the range of what is allowed. This is also called “partition fuzz
testing”, since the possible inputs for a field are partitioned (e.g. a half byte which
represents an ID and allows for the values 1-12, would give three partitions: 0,
1 to 12 and 13 to 15). These are often not partitions in the mathematical sense,
as they need not be disjoint, but the union of all partitions usually do span
the entire input space. Note that although these fuzzers are named “protocol
fuzzers” and are in fact mostly used to test protocols, they can also be used to
test non-protocol implementations, as long as the input has a format to which
it should conform.

The first two fuzz variants discussed here try to find errors by changing the
content of individual messages. But there is another part that can often be
fuzzed: the state machine. Most protocols have some sort of set sequence in
which messages are exchanged and which messages are expected at any one time
is tracked in a state machine. When the wrong message is sent at some point
in time and still accepted by the implementation it shows a problem with its
state machine. The impact of this is hard to estimate, because it depends on
what states can be skipped, but for some protocols it might allow one to bypass
authentication steps, posing a serious security risk. State-based fuzzers not only
change the content, but also the sequence of messages.

Security Testing of GSM Implementations 185

Whichever fuzzing approach is used, fuzzing will usually follow three distinct
phases:

1. Generating the test cases,
2. Transmitting the test cases, and
3. Observing the behavior.

The fuzzing approaches discussed above concern the first phase. On traditional
computer networks the second phase is trivial. Also, observing the effects after
transmitting the fuzz tests is usually easier on traditional computers than on
GSM phones, because there is often the possibility of running a debugger, or
simply looking for familiar error messages. Fuzzing GSM implementations on
baseband chips has many of the same problems as the fuzzing of embedded
systems; one cannot easily observe the effect of fuzzed inputs [14].

3.1 Fuzzing GSM Phones

There are many different GSM-enabled mobile phones. Mobile phones started
out with just the ability to make and receive voice calls, but nowadays phones
are available that have a wide range of features and possible connections. It is
important to realize that the current market contains a wide variety of GSM-
enabled devices, not only of different make and model, but also internally: GSM
phones can consist of a single processor, which runs the GSM protocol stack
and a very limited OS for the user interface, these are typically cheaper or older
GSM phone models. The chip running the GSM protocol stack is referred to
as the baseband chip [15]. More complicated phones run their OS on a separate
general purpose processor, named the application processor. Both processors can
communicate through a variety of protocols, where the application processor
uses the baseband processor like a modem. Most modern phones combine the
application and baseband processor in a single SoC (System on a Chip).

Fuzzing mobile phones is challenging compared to e.g. fuzzing network cards,
mainly because it is hard to observe undefined behavior. Most phones are closed
devices without any debugging tools, so it is impossible to, for instance, look
at the memory during operation. Also most phones run closed source software.
This makes it harder to predict where errors will occur. Even Android phones
use closed software libraries for low level communication with the baseband chip
and if the baseband chip has its own memory a debugger on a rooted Android
phone will provide little extra help. Phones usually have limited interaction
possibilities, which makes observation a time consuming effort. Generally there
are few alternatives to simply using the phone after a fuzz message and observing
whether it shows any undefined behavior, which can lead to false positives. This
means internal errors that do not directly lead to observable undefined behavior,
may go unnoticed.

The fuzzed messages need to be introduced to the target phones. This can
either be done by transmitting them as actual GSMmessages to the phones, or by
directly inserting them in the phones, for instance by inserting them on the wire

186 F. van den Broek, B. Hond, and A. Cedillo Torres

between the baseband and application chip. The latter option is cumbersome to
use on many different phones and much harder on modern phones with a single
SoC, but this was the only available option when open source GSM networks
were not available [16].

For transmitting the messages over actual networks there are several options:

1. You could use a running GSM network, either because you happen to have
access to commercial GSM network equipment, or by transmitting fuzzed
messages from a modified phone to a target phone over the normal network.

2. A more feasible solution is to change existing GSM equipment, such as a fem-
tocell [17] for transmitting fuzz messages, though the success of this method
will depend on the success in breaking the femtocell security.

3. Finally there are several open-source projects that allow you to set-up your
own GSM network.

Using the existing network (option 1) severely limits the fields you can fuzz and
the network operator could change or filter our messages. Adapting a femtocell to
do the fuzzing (option 2) could prove unsuccessful, so we chose the third option.
The most important of the open-source projects are OpenBTS [8] and OpenBSC
[18]. Both systems run on most ordinary PCs and require extra hardware for
transceiving GSM signals.

OpenBTS is based on the GNU Radio project [19] and is designed to work with
the USRP (Universal Software Radio Peripheral), a generic and programmable
hardware radio component. The USRP can be modified through the use of
daughterboards for specific applications and frequencies. Several versions of the
USRP are currently available and a typical setup for a local GSM network costs
around $1500,- [7].

OpenBSC runs a basestation controller and therefore interfaces with an actual
basestation in order to work. OpenBSC started out as a controller for the Siemens
BS11, an actual commercial cell tower of which a small batch became available
on eBay, and the nanoBTS from ip.access, a corporate solution miniature cell
tower. Both cell towers are hard to obtain, so OpenBSC will now also work
with a new project, OsmoBTS [20], which in turn implements a cell tower on
several devices such as the custom made sysmoBTS and even, experimentally,
two modified mobile phones.

The OsmoBTS project was not yet available when we started our research,
which led us to choose the OpenBTS option, for full control of the GSM air link.

4 Our Fuzzing

For GSM all the specifications are openly available, but implementations of the
baseband stacks are not. Examining the specifications led to the conclusion that
although GSM is a very complicated protocol, there are actually very few state
changes in the baseband stacks. This is why we mostly resorted to protocol
fuzzing, as will be described in Section 4.1 and 4.2. We attempted some state-
based fuzzing on the SMS sublayer by both sending a correct message when it

Security Testing of GSM Implementations 187

was not expected by the phone and sending a correct message when a different
message was expected by the phone. This only showed unexpected results for
one phone, the Sony-Ericsson T630, which accepted confirmations of unsent SMS
messages, but which did not lead to any exploitable results.

There are several open-source protocol fuzzing frameworks available [21]. How-
ever, these frameworks are not made to be used with cell phones. Especially the
target monitoring aspects generally work on network interfaces and virtual ma-
chines, while we have separate devices connected over a (custom) radio interface.
This makes automatic target monitoring with one of these tools impossible. We
did end up using one fuzzer, Sulley [22], as the basis for our fuzzer.

4.1 How Do We Fuzz?

For this research we made our own fuzzer GSMFuzz, for the generation of the
fuzz messages. It is a fuzzer, with features designed specifically for GSM, but
which nonetheless can be used for other protocols as well. The fuzzer is written
in Python (version 2.6) and loosely based on Sulley[22], an open-source fuzzing
framework. It has the following features added:

– Fuzzing of bit positions within a byte;
– Partition fuzz testing of special fields (type, length), resulting in few cases

with maximum impact;
– Innate support for the eight different GSM Layer 3 IEs;
– Length fields can count octets, septets or half-octets (often used in GSM);
– Hexadecimal output of fuzz cases to a file, which can be used directly in our

extended version of OpenBTS.

GSMfuzz itself is just over 900 lines of code (excluding white space). Besides
the source code of the program itself we created 34 files with input to mutate
valid messages. The input files are 3601 lines in total (excluding white space and
comments).

Figure 3(b) shows the fields we fuzzed in the SMS-DELIVER message and
Figure 4 shows the fields we fuzzed in the CBS message.

For the transmission of the fuzzed messages we used the open-source OpenBTS
software together with a USRP-1 (where the internal clock was replaced with
the more precise Fairwaves ClockTamer-1.2) and a collection of (a WBX and two
RFX1800) daughterboards. Combining this with two Ettus LP0926 900 MHz to
2.6 GHz antennas yielded a setup of around 1500e.

We tuned the software to only allow a specific set of SIM cards to connect, but
this did not prevent several phones in the surroundings to still connect to our
cell. This already shows errors in how phones handle connecting to cell towers.
Since we did not want to unintentionally harm the phones of our colleagues, we
made a Faraday cage around the whole setup, using chicken wire. With a maze
size of 12.5mm, which is smaller than ten times the wavelength of GSM signals
on 1800MHz, we managed to keep our GSM broadcasts contained.1

1 There was some leakage through the power cord, but not enough to get phones
outside of the cage to connect.

188 F. van den Broek, B. Hond, and A. Cedillo Torres

(a) Overview of the fields fuzzed
in the SMS-DELIVER message
by related research.

(b) Overview of the fields we
fuzzed in the SMS-DELIVER
message.

fuzzed in [23] fuzzed in [24]

fuzzed in [25] fuzzed in [16,26]

Fig. 3. Overview of the fields fuzzed in the SMS-DELIVER message

The OpenBTS software does not support emergency broadcasts2, so for these
broadcasts we installed a specific branch of an older OpenBTS version (OpenBTS
2.5.4 - SMS-CB), where this service was already implemented.

Having the ability to generate and transmit fuzzed messages, leaves the third
stage: the observation. In our SMS fuzzing case, we alternated each fuzzed SMS
message with a correct SMS message to see if the phone still responded by ac-
knowledging the correct message. Then after transmitting a batch of alternating

2 Although it is likely that this will be included in a newer release [8].

Security Testing of GSM Implementations 189

Fig. 4. CBS message fuzzing candidates

Table 1. Overview of cell phones tested in this research and the most noticeable results.
Legend: I: unremoveable icons, D: DoS message, M: memory bug, N: no notification,
R: Reboot S: message handling in violation of specification.

Brand Type Firmware/OS SMS fuzz Result CBS fuzz Result

Apple iPhone 4 iOS 4.3.3 yes I,D no –
Blackberry 9700 BB OS 5.0.0.743 yes I yes S
HTC Legend Android 2.2 yes I,D no –
Nokia 1100 6.64 yes I no –
Nokia 1600 RH-64 v6.90 no – yes S
Nokia 2600 4.42 yes I,M,R no –
Nokia 3310 5.57 yes I yes S
Nokia 3410 5.06 yes I no –
Nokia 6610 4.18 yes I,N,R no –
Nokia 6610 4.74 yes I,N,R no –
Nokia 7650 4.36 yes I,R no –
Nokia E70-1 3.0633.09.04 yes I no –
Nokia E71-1 110.07.127 yes I no –
Samsung SGH-A800 A80XAVK3 yes I,N,R no –
Samsung SGH-D500 D500CEED2 yes I,M,R no –
Samsung Galaxy S Android 2.2.1 yes I no –
Samsung Galaxy Note Android 4.1.2 no – yes S
Sony Ericsson T630 R7A011 yes I,N no –

fuzzed and normal SMS messages we quickly tried most functions of the phones.3

For our CBS fuzzing we simply used most functions of the tested phones after
a batch of fuzzed messages, since there is no acknowledgement of received CBS
messages.

Table 1 shows the make and models of the phones we used during the fuzzing
research. During the research it turned out that many phones did not support
the CBS features, so the test set for CBS fuzzing was small.

4.2 Fuzzing Results

We now give an overview of some of the most interesting results we found during
our fuzzing research, which are also summarized in Table 1. For a complete

3 At this stage we also used the phones to empty the SMS memory, which is limited
in the older models.

190 F. van den Broek, B. Hond, and A. Cedillo Torres

Fig. 5. These two pictures show the strange behavior when the same SMS is opened
twice in a row. Note that the words in the left image are the names of games available
on the device.

overview of the exact fuzzing performed and the obtained results we refer to the
Master’s theses on fuzzing SMS [27] and CBS [28] on which this paper is based.

SMS Fuzzing. All tested phones accepted some rarely used SMS variants, such
as Fax-over-SMS, which causes strange icons to appear to notify the user of a
new message (e.g. a new fax). These SMS variants are so obscure that often the
GUI of these mobile phones offered no way for the user to remove these icons,
only a message from the network could remove them.

More serious issues were that for five out of sixteen phones we found SMS
messages that are received and stored by the phones without any notification
to the user. This enables attacks of filling up the SMS memory remotely, but
all phones notify the user of a full SMS memory. In addition, seven out of the
sixteen tested phones could be forced into a reboot with a single SMS message,
though each through a different SMS message.

The Nokia 2600 showed strange behavior where a particular SMS message
would display random parts of the phone memory when opened, instead of the
SMS message. This behavior is shown in Figure 5.

Both the iPhone 4 and the HTC Legend could be forced in a DoS state
were they silently received a message and afterward could no longer receive any
SMS messages, without any notification to the user. Rebooting these phones or
roaming to a different network would stop the DoS.

Strangely enough we found no real correlation between specific harmful mes-
sages and phone brands. So, a message triggering a reboot in a specific Nokia
phone, would have no effect on all other Nokia phones. This is likely due to the
large variety in phones as explained in Section 3.1

CBS Fuzzing. Our CBS fuzzing research did not reveal any obvious errors such
as spontaneous phone reboots. One of the main problems here is that we had no

Security Testing of GSM Implementations 191

way to tell whether an ignored CBS message was not received by the baseband
stack, or that the phone OS did not know how to display it.

The Galaxy Note displayed a fuzzed CBS message which according to the
specifications should have been ignored. According to the GSM specification,
mobile phones should only receive CBS messages containing Message Identifiers
registered in their memory or SIM card. In our initial tests we used the Mes-
sage Identifier value of 0 and did not register this topic number in the mobile
phones. All mobile phones except for the Blackberry received the CBS message.
In addition, once we changed the Message Identifier to a value different from 0,
all mobile stations did not receive the CBS messages even though this time we
did register the topic in the mobile phones.

So we observed that most phones have a lot of trouble to show even correct
CBS messages. Since several countries are clearly pushing to get the CBS mes-
sages re-supported by phone manufacturers, CBS fuzzing tests should definitely
be repeated when wider support is provided.

4.3 Related Work

One of the most well-known bugs found in SMS implementations is the “Curse
of Silence” found by Thomas Engel, though it is not directly clear if he used any
systematic way, such as fuzzing, to find the vulnerability. With this bug certain
Nokia phones stopped receiving SMS messages after receiving an email as SMS
message4 with a sender’s email address longer than 32 characters [23].

The most prolific academic researcher in the fuzzing of GSM phones is Collin
Mulliner [29,16,26,25]. In 2006 he fuzzed the Multimedia Messaging Service
(MMS) feature of GSM [29]. MMS is an extension to SMS for the exchange
of multimedia content. When an MMS message is sent the recipient receives an
SMS message with a Uniform Resource Identifier (URI) to a server where the
MMS content can be retrieved using the Wireless Application Protocol (WAP).
Of the three delivery methods discussed op Page 186 Mulliner et al. used the
first method by building a virtual (malicious) MMS server using open source
software and retrieving content from it on different cell phones. They found
several weaknesses in various implementations, including buffer overflows in the
Synchronized Multimedia Integration Language (SMIL) parser, the part that
takes care of the presentation of the content on the cell phone to the user. Some
of these buffer overflows could be used for arbitrary code execution. Mulliner
together with Charlie Miller fuzzed SMS messages on smart phones [16,26] us-
ing the second method of transmission. The three smart phones available for
this research were an iPhone, an Android Phone and a Windows Phone. An
application was developed for each of the three platforms, which makes it pos-
sible to directly generate and inject SMS messages into the phones modems.
Through this application, the researchers were able to make the device believe
that an SMS was just received from the GSM network. Finally, Mulliner and

4 Simply this option of receiving email over SMS is a good illustration of how baroque
the SMS standard is!

192 F. van den Broek, B. Hond, and A. Cedillo Torres

Golde fuzzed the SMS implementation on feature phones [25]. This time they
used a rogue cell tower based on OpenBSC, so they used the third method of
message transmission. Furthermore they used a J2ME3 application for monitor-
ing on the cell phones. Despite the spectacular title of this publication (“SMS
of Death”) there was no hard evidence that a fuzzed message caused the death
of a phone, since this test was not repeated. The researchers did find DoS at-
tacks for six different popular feature phone brands. They formed SMS messages
that can even be sent over commercial (real) networks and will cause the phones
to reboot, temporarily losing network connectivity. After consultation with the
phone manufacturers Mulliner and Golde did not publish the actual messages
that cause the DoS.

The company Codenomicon released a white paper detailing a product that
fuzzes SMS messages in order to test the whole network chain for delivery of
fuzzed SMS messages [24]. This is targeted towards providers as a tool that can
be connected inside the core GSM network.

It is often hard to find out exactly which fields were fuzzed in the studies
discussed so far. We have attempted to provide an overview of the fields that
have been fuzzed in the SMS-DELIVER message, as far as we can tell from these
publications and sometimes through personal communication with the authors.
This overview can be found in Figure 3(a). We chose to limit this overview to
the one message we also fuzz in our research.

Naturally, fuzzing is not the only way to reveal (security) bugs in the GSM
baseband stack. Weinmann et al. decompiled baseband firmware updates from
two popular baseband chips and performed a manual code inspection which led
to several bugs, amongst which one which led to remote code execution [30,31].

Few researchers have access to the GSM core network. One private security
company specializes in fuzz testing GSM core networks and they apparently have
a database of possible attacks [32], though the nature of the found vulnerabilities
is not public knowledge.

5 Conclusions and Directions for Future Work

We have demonstrated that fuzzing is useful to find bugs in the implementation
of GSM stacks on mobile phones. Just think on the number of different mobile
phones out in the wild and the information we store on them. Setting up a fake
base station and sending out malicious messages is, at least for GSM, not that
hard nor expensive anymore and the potential damage could be enormous.

The wide diversity of phones makes it harder to find a single bug affecting
many different mobile phones. Nevertheless, our fuzzing research in GSM has
shown several issues with mobile phones. The most important attacks here led
to various types of DoS messages which can usually be solved through a reboot
of the phone. Some results show clear buffer overflow errors, such as the SMS
message which will show random parts of the phone’s memory when read on the
Nokia 2600. Although it is not immediately clear how to abuse such an error for
remote code execution, it is possible that such an attack will be constructed in

Security Testing of GSM Implementations 193

the future for a popular brand of mobile phones. Unfortunately, the CBS service
seems to be too poorly supported at the moment to achieve any meaningful
fuzzing results, or to use it as an emergency broadcast service for that matter.

The hardest part of fuzzing mobile phone implementations is observing the
phone’s behavior, which is hard to automate. There are not a lot of other options,
other than human testing, for security analysis of the closed source baseband
stacks on mobile phones. Then again, with direct access to the baseband stacks
fuzz testing these implementations would be much easier. The manufacturers of
the baseband stacks or of the SoC have this access and employing strong security
tests on their products could greatly increase the security of their product, which
among baseband stacks would be a novel selling point. For future research it
would be interesting to focus on fuzzing rooted Android devices, where it may
be possible to run debuggers in the memory to better observe strange behavior.

For now almost all fuzzing research into GSM has focused on fuzzing mobile
phones, and then mostly on fuzzing SMS messages, which still leaves many areas
open to explore, such as all the other broadcast messages, but also the network
side of a GSM network. It seems logical to assume that the baseband stack on
network equipment will contain as many bugs as the stacks on mobile phones,
and attacks against the GSM network itself would probably have a much larger
impact.

Since the 3G and 4G protocols all have mutual authentication, it is not possi-
ble to simply deploy a fake base station in order to fuzz the 3G and 4G baseband
stacks. A way around this obstacle would be to use self controlled SIM cards, so
you can have your cell tower authenticate to the mobile phone. However, as far
as we know there is no open source 3G or 4G cell tower software available yet,
so this would require a large amount of work to implement.

Most of our effort came from getting the open source GSM base station up and
running. After that implementing the fuzzers was only a few weeks of work. The
initial effort to set up a base station and incorporate a fuzzer was substantial,
but this solution can now be used to fuzz test any GSM phone on SMS or CBS
weaknesses in one and a half hour. This makes fuzzing a cost-effective and fea-
sible technique for making implementations of mobile phone stacks more robust
and safe.

References

1. GSM-Association: data and analysis for the mobile industry,
https://gsmaintelligence.com/

2. UK smartmeter company using GSM/GPRS,
http://www.smsmetering.co.uk/products/

smart-meters/gsm-gprs-meters.aspx

3. Hack a day website on sim card carrying traffic lights,
http://hackaday.com/2011/01/28/sim-card-carrying-traffic-lights/

4. GSM-R Industry Group, http://www.gsm-rail.com/
5. News story on the absence of plans to stop 2g services,

http://www.computerweekly.com/news/2240160984/

Will-the-UK-turn-off-its-2G-networks-in-2017

https://gsmaintelligence.com/
http://www.smsmetering.co.uk/products/smart-meters/gsm-gprs-meters.aspx
http://www.smsmetering.co.uk/products/smart-meters/gsm-gprs-meters.aspx
http://hackaday.com/2011/01/28/sim-card-carrying-traffic-lights/
http://www.gsm-rail.com/
http://www.computerweekly.com/news/2240160984/Will-the-UK-turn-off-its-2G-networks-in-2017
http://www.computerweekly.com/news/2240160984/Will-the-UK-turn-off-its-2G-networks-in-2017

194 F. van den Broek, B. Hond, and A. Cedillo Torres

6. Briceno, M., Goldberg, I., Wagner, D.: A pedagogical implementation of the GSM
A5/1 and A5/2 “voice privacy” encryption algorithms (1999),
http://cryptome.org/gsm-a512.htm (originally on www.scard.org)

7. Website of the Ettus company, selling USRPs, http://www.ettus.com/

8. Burgess, D.: Homepage of the OpenBTS project,
http://openbts.sourceforge.net/

9. Nohl, K.: Attacking phone privacy. Blackhat 2010 (2010),
https://srlabs.de/blog/wp-content/uploads/2010/07/

Attacking.Phone .Privacy Karsten.Nohl 1.pdf

10. van den Broek, F., Poll, E.: A comparison of time-memory trade-off attacks on
stream ciphers. In: Youssef, A., Nitaj, A., Hassanien, A.E. (eds.) AFRICACRYPT
2013. LNCS, vol. 7918, pp. 406–423. Springer, Heidelberg (2013)

11. ETSI. Digital cellular telecommunications system (Phase 2+); UMTS; LTE; Point-
to-Point (PP) Short Message Service (SMS) support on mobile radio interface
(3GPP TS 24.011 version 11.1.0 Release 11) (2012)

12. ETSI. Digital cellular telecommunications system (Phase 2+); UMTS;Technical
realization of the Short Message Service (SMS), (3GPP TS 23.040 version 11.5.0
Release 11)
(2013)

13. Myers, G.J.: The Art of Software Testing. John Wiley & Sons (1979)

14. Kuipers, R., Takanen, A.: Fuzzing embedded devices. GreHack 2012, 38 (2012)

15. Welte, H.: Anatomy of contemporary GSM cellphone hardware (2010),
http://laforge.gnumonks.org/papers/gsm_phone-anatomy-latest.pdf

16. Mulliner, C., Miller, C.: Injecting SMS Messages into Smart Phones for Security
Analysis. In: Proceedings of the 3rd USENIX Workshop on Offensive Technologies
(WOOT). Montreal, Canada (August 2009)

17. van den Broek, F., Wichers Schreur, R.: Femtocell Security in Theory and Practice.
In: Riis Nielson, H., Gollmann, D. (eds.) NordSec 2013. LNCS, vol. 8208, pp. 183–
198. Springer, Heidelberg (2013)

18. Welte, H.: Homepage of the OpenBSC project, http://openbsc.osmocom.org/

19. Homepage of the GNU Radio project, http://gnuradio.org/

20. Welte, H.: Homepage of the OsmoBTS project,
http://openbsc.osmocom.org/trac/wiki/OsmoBTS

21. Collection of fuzzing software, http://fuzzing.org/

22. Code archive of the sulley fuzzing framework,
https://github.com/OpenRCE/sulley

23. Engel, T.: S60 Curse of Silence. CCC Berlin (2008)
http://berlin.ccc.de/~tobias/cos/

24. Vuontisjärvi, M., Rontti, T.: SMS Fuzzing. Codenomicon whitepaper (2011),
http://www.codenomicon.com/resources/whitepapers/

codenomicon wp SMS fuzzing 02 08 2011.pdf

25. Mulliner, C., Golde, N., Seifert, J.-P.: SMS of Death: From Analyzing to Attacking
Mobile Phones on a Large Scale. In: USENIX (2011)

26. Mulliner, C., Miller, C.: Fuzzing the Phone in your Phone. Black Hat USA (June
2009)

27. Hond, B.: Fuzzing the GSM protocol. Master’s thesis, Radboud University Ni-
jmegen, Kerckhoff’s Master, The Netherlands (2011)

28. Torres, A.C.: GSM cell broadcast service security analysis. Master’s thesis, Tech-
nical University Eindhoven, Kerckhoff’s Master, The Netherlands (2013)

http://cryptome.org/gsm-a512.htm
www.scard.org
http://www.ettus.com/
http://openbts.sourceforge.net/
https://srlabs.de/blog/wp-content/uploads/2010/07/Attacking.Phone_.Privacy_Karsten.Nohl_1.pdf
https://srlabs.de/blog/wp-content/uploads/2010/07/Attacking.Phone_.Privacy_Karsten.Nohl_1.pdf
http://laforge.gnumonks.org/papers/gsm_phone-anatomy-latest.pdf
http://openbsc.osmocom.org/
http://gnuradio.org/
http://openbsc.osmocom.org/trac/wiki/OsmoBTS
http://fuzzing.org/
https://github.com/OpenRCE/sulley
http://berlin.ccc.de/~tobias/cos/
http://www.codenomicon.com/resources/whitepapers/codenomicon_wp_SMS_fuzzing_02_08_2011.pdf
http://www.codenomicon.com/resources/whitepapers/codenomicon_wp_SMS_fuzzing_02_08_2011.pdf

Security Testing of GSM Implementations 195

29. Mulliner, C., Vigna, G.: Vulnerability Analysis of MMS User Agents. In: Proceed-
ings of the Annual Computer Security Applications Conference (ACSAC), Miami,
FL (December 2006)

30. Weinmann, R.-P.: Baseband Attacks: Remote Exploitation of Memory Corruptions
in Cellular Protocol Stacks. In: WOOT, pp. 12–21 (2012)

31. Weinmann, R.-P.: The baseband apocalypse. In: 27th Chaos Communication
Congress Berlin (2010)

32. P1Security. website detailing a fuzzing product for telco core-networks,
http://www.p1sec.com/corp/products/p1-telecom-fuzzer-ptf/

http://www.p1sec.com/corp/products/p1-telecom-fuzzer-ptf/

User-Centric Security Assessment of Software

Configurations: A Case Study

Hamza Ghani, Jesus Luna Garcia, Ivaylo Petkov, and Neeraj Suri

Technische Universität Darmstadt, Germany
{ghani,jluna,petkov,suri@deeds.informatik.tu-darmstadt.de}

Abstract. Software systems are invariably vulnerable to exploits, thus
the need to assess their security in order to quantify the associated
risk their usage entails. However, existing vulnerability assessment ap-
proaches e.g., vulnerability analyzers, have two major constraints: (a)
they need the system to be already deployed to perform the analysis
and, (b) they do not consider the criticality of the system within the busi-
ness processes of the organization. As a result, many users, in particular
small and medium-sized enterprizes are often unaware about assessing
the actual technical and economical impact of vulnerability exploits in
their own organizations, before the actual system’s deployment. Drawing
upon threat modeling techniques (i.e., attack trees), we propose a user-
centric methodology to quantitatively perform a software configuration’s
security assessment based on (i) the expected economic impact associ-
ated with compromising the system’s security goals and, (ii) a method to
rank available configurations with respect to security. This paper demon-
strates the feasibility and usefulness of our approach in a real-world case
study based on the Amazon EC2 service. Over 2000 publicly available
Amazon Machine Images are analyzed and ranked with respect to a spe-
cific business profile, before deployment in the Amazon’s Cloud.

Keywords: Cloud Security, Economics of Security, Security Metrics,
Security Quantification, Vulnerability Assessment.

1 Introduction

The use of information systems has been proliferating along with rapid develop-
ment of the underlying software elements driving them (e.g., operating systems
and commercial off-the-shelf software). However, this rapid development comes
at a cost, and in many cases e.g., due to limited time schedules and testing
budgets for releasing new products, software is often not rigorously tested with
respect to security. This results in security flaws that can be exploited to com-
promise the confidentiality (C), integrity (I) and availability (A) of the affected
software products. These flaws are referred to as software vulnerabilities and are
collected, quantitatively scored and categorized by a multitude of vulnerabil-
ity databases (e.g., the National Vulnerability Database NVD [1] or the Open
Source Vulnerability Database OSVDB [2]). It is a prevalent practice to assess

J. Jürjens, F. Piessens, and N. Bielova (Eds.): ESSoS 2014, LNCS 8364, pp. 196–212, 2014.
c© Springer International Publishing Switzerland 2014

User-Centric Security Assessment 197

the security of a software system using software analyzers (e.g., OpenVAS [3]
and Nessus [4]), that query databases like NVD to ascertain the vulnerabilities
affecting a specific software configuration (cf., Figure 1). Unfortunately, despite
their broad usage, this approach has two main drawbacks:

1. Most (if not all) vulnerability analyzers require the deployed software sys-
tem to perform the assessment, therefore resulting in a costly trial-and-error
process.

2. Such security assessment does not take into account the economic impact
of detected vulnerabilities. Therefore, it is common to find inconsistencies
e.g., technically critical vulnerabilities that do not have the highest economic
impact on the organization [5].

Hardware

Operating System

Application Software

v1
v2

v3

v4 v5
Vulnerability
Database (V):

- contains a set of
vulnerabilities (v)

- v has a quantitative
score

v6

v7

Software
Configuration

Fig. 1. System Model - Software Configurations and Vulnerabilities (vi)

Empirical research has shown that the actual impact of vulnerability exploits
varies significantly among different types of organizations (in particular the
smaller/medium enterprises or SMEs) [6,7]. Since different organizations per-
ceive the severity of a particular vulnerability differently, they also prioritize its
mitigation differently. Existing hypotheses advocate user-centric approaches [8],
where the quality and customization of the performed security assessments can
be improved if these correlate to the user awareness on the actual impact of a
vulnerability in their particular organizational context.

In order to empower users to perform an accurate assessment and ranking of
available software configurations before deploying them, we propose a method-
ology to perform the security assessment of a software configuration based on
the user’s organizational context (expressed in the form of both expected tech-
nical and economical impacts). Figure 2 depicts the main stages of our proposed
approach, where the specific paper contributions are:

– C1: An approach to elicit the technical metrics required to quantitatively
reason about the security goals (C, I, A) of a software configuration, based
on the notion of threat modeling and attack trees.

– C2: A systematic approach eliciting the economic-driven factors for weighting
the user’s security goals, in order to improve the conclusions that can be
drawn from the generated attack trees (cf., C1).

198 H. Ghani et al.

C1: Vulnerability Score
Aggregation Based on

Quantitative Attack Trees

SW Config.
Ranking

Input Threat Modeling, Aggregation
Rules & Economic Driven

Weighting

Output

SW Configuration 1

.

.

.

C2: Economic Driven
Weighting of Security Goals

C3: MCDA-Based Ranking of
SW Configurations

SW Configuration 2

SW Configuration

Section 3

Section 4

Section 5

Fig. 2. Overview of the Proposed Approach

– C3: A quantitative technique to rank alternative software configurations us-
ing as input the technical (cf., C1) and economical metrics (cf., C2). Our
ranking technique is based on the widely used Multiple Criteria Decision
Analysis (MCDA) [9,10].

We demonstrate the feasibility of our approach through a real-world Cloud
case study, in which a data set of over 2000 software configurations (publicly
available for users of the Amazon EC2 service) are analyzed and ranked from
a security perspective before the actual deployment. The contributed approach
aims to enhance the usefulness of widely used security analyzers, by provid-
ing users with additional tools that take into account their own organizational
contexts.

The remainder of this paper is organized as follows: Section 2 introduces a
motivating case study. Sections 3 – 5 detail the paper contributions as depicted
in Figure 2. The results of our evaluation using real world data from Amazon
EC2 are shown in Section 6. Section 7 summarizes existing related approaches
and Section 8 provides conclusions for the paper.

2 Motivating Case Study: Security-Aware Selection of
Amazon Machine Images

While the many economic and technological advantages of Cloud computing are
apparent, the migration of key business applications onto it has been limited, in
part, due to the lack of security assurance on the Cloud Service Provider (CSP).
For instance the so-called Infrastructure-as-a-Service (IaaS) Cloud providers al-
low users to create and share virtual images with other users. This is the case of
e.g., Amazon EC2 service where users are given the chance to create, instantiate,
use and share an Amazon Machine Image (AMI) without the hassle of installing
new software themselves. The typical IaaS trust model considers that users trust
the CSP (e.g., Amazon), but the trust relationship between the provider of the
virtual image –not necessarily Amazon – and the user is not as clear [11].

User-Centric Security Assessment 199

The basic usage scenario for the Amazon EC2 service requires the user to ac-
cess the “AWS Management Console” in order to search, select and instantiate
the AMI that fulfills her functional requirements (e.g., specific software configu-
ration, price, etc.). Even in simple setups, the security of the chosen AMI (e.g.,
number and criticality of existing vulnerabilities) remains unknown to the cus-
tomer before its instantiation. Once instantiated, it is the responsibility of the
user to assess the security of the running AMI and take the required measures to
protect it. However, in a recent paper Balduzzi [11] demonstrated that both the
users and CSPs of public AMIs may be exposed to software vulnerabilities that
might result in unauthorized accesses, malware infections, and loss of sensitive
information. These security issues raise important questions e.g., is it possible
for an Amazon EC2’s user to assess the security of an AMI before actually in-
stantiating it? Or, can we provide an Amazon EC2’s customer with the AMI
that both fulfills the functional requirements and, also represents the smallest
security risk for the organization?

3 Vulnerability Score Aggregation Based on Attack Trees

This section presents the first contribution of the proposed assessment method-
ology (cf., Stage 1 in Figure 2), as an approach to quantify the aggregated impact
of a set of vulnerabilities associated with a software configuration, based on the
notion of attack trees [12]. Quantified technical impact and proposed economic
metrics (cf. Section 4), will be used as inputs to the MCDA methodology (cf.
Section 5) to rank available software configurations.

3.1 Building the Base Attack Pattern

Taking into account that the basic concepts of threat modeling are both well-
documented (see Section 7 for more details) and broadly adopted by the industry
(e.g., Microsoft’s STRIDE threat modeling methodology [13]), the initial stage
of the proposed methodology is built utilizing the notion of attack trees. Attack
trees, as also used in our paper, are hierarchical representations built by creating
nodes that represent the threats to the software configuration i.e., the security
properties that the attacker seeks to compromise (any of C, I or A). Then one
continues adding the attack nodes, which are the attacker’s strategies to pose a
threat to the system (e.g., Denial of Service, SQL injection, etc.). Finally, the
attack tree’s leaf nodes are populated with the actual software vulnerabilities
that might be exploited by the attacker to launch an attack. As mentioned in
Section 1, software vulnerabilities are associated with a unique identifier and
a numeric score similar to those in contemporary databases e.g., NVD [1] and
OSVDB [2].

One of the main advantages related with the use of attack trees, is that they
allow the creation of “attack tree patterns”. The usefulness of attack tree pat-
terns has been documented by the U.S. Department of Homeland Security [14]
and, also has been researched in EU projects e.g., SHIELDS [15]. The attack

200 H. Ghani et al.

SW System Configuration 1

Availability

Confidentiality

Integrity

Misconfiguration Input Manipulation

System Level

Attack Level

Threat Level

Vulnerability ID:
83244

Score: 7.5

Vulnerability ID:
83266

Score: 10

Vulnerability ID:
95095

Score: 7.5

Vulnerability ID:
95073

Score: 7.5

Vulnerability Level

SW System Configuration 2

Availability Confidentiality Integrity

Complex Threat

and

Get Personal Data from Web Form
and

System of Systems

Fig. 3. Extended attack tree pattern

tree built with the basic information presented in this section will be called base
attack pattern in this paper. Section 6 will introduce a tool we have developed to
automatically create attack trees based on the output of the Linux RPM package
manager [16].

Base attack patterns can be re-used or even extended by other users to model
their own organizational contexts/concerns, therefore taking advantage of the
knowledge from the experts that originally created them. For example, our base
attack pattern can be further extended with the different elements shown in
Figure 3 (i.e., AND nodes1, composite attacks/threats). The conclusions that can
be drawn from the attack tree shown in Figure 3 (i.e., the aggregated impact of
a software configuration’s vulnerabilities), can be greatly improved if we provide
the techniques to quantitatively reason about the numeric scores associated with
each node, as presented in the next section.

3.2 Quantitatively Reasoning about Attack Trees

The proposed rules for aggregating the numeric scores in an “extended attack
tree pattern” (cf., Figure 3), requires that every software vulnerability in the
tree has a score (similar to NVD [1]). If the vulnerability does not currently
have a score, then predictive techniques like VAM [17] can be utilized to propose
or predict a value. Based on widely used scoring systems like CVSS [18], we also
make the conventional assumption that the provided vulnerability scores are on
the interval [0, 10]. The aggregation rules proposed in this paper (cf., Table 1) are

1 The AND relationship is only an example option and more complex logical rules can
be set up by the user as needed for their applications context.

User-Centric Security Assessment 201

Table 1. Aggregation Rules for Attack Trees

Relationship Aggregation rule for node N

AND AggN =
∑m

i=1 Ni

m
where

m = N ’s number of children nodes

OR AggN = max(N1 . . . Nm)× m
n

where
m = N ’s number of children nodes
n = total number of nodes at the same level than N ’s children (n ≥ m)

recursively applied throughout the attack tree in a bottom-up approach, starting
at the vulnerability level and finishing at the threat level (cf., Figure 3). Our
proposed aggregation rules are based on previous research in the Privacy-by-
Design [19] and Cloud security metrics topics [20], and only need to differentiate
the actual relationship among the siblings (i.e., AND/OR). Future work will
analyze the effect of aggregating at a higher level of granularity on the attack
tree (i.e., the system level). A detailed example on the use of extended attack
tree patterns and, designed aggregation rules is presented in Section 6.

4 Economic Driven Weighting of Security Goals

In this section we investigate the trade-offs between security and those economic
considerations that play a central role in the proposed methodology.

4.1 Including The Economic Perspective

As information systems constitute a mean for helping organizations meet their
business objectives, not considering economic aspects when assessing IT secu-
rity is potentially a major issue (e.g., reputation loss caused by vulnerability
exploits). As required by our model, in order to determine the user priorities
w.r.t. security goals (i.e., C, I, A) and their relative importance, we propose
to use a novel economic driven approach. The rationale is that the potential
economic damage to the business caused by a security compromise determines
significantly the weight of the security goals. As security goals do not equally
influence the core business of the considered organization, they need to be quan-
titatively weighted following a user-centric approach taking into account the
business context specificities. Next, we elaborate on the economic driven dam-
age estimation metrics suitable for weighting an organization’s security goals.

4.2 Running Example – Business Profiling

In this section we introduce a calculation model for weighting the security goals
based on the notion of “business profile”, which refers to the organization’s (i)

202 H. Ghani et al.

Table 2. Business Profiles: Qualitative/Quantitative Assessment

Characteristics SME X Multinational Y

Qualitative Quantitative Qualit. Quant.

Organization Size (OS) 30 1
3

5500 1

Sector of Activity (SA) Manufacturing 1
3

Direct Banking 1

Countries of Activity (CA) Mexico 1
3

US, Euro zone 1

Security Policy (SP) No 1
3

E & M 1

Annual Turnover (AT) 3M USD 1
3

750M USD 1

Customer Data (CD) Personal Data 2
3

P & F 1

Employee Data (ED) P & F 1 P & F 1

Intellectual Property (IP) No 1
3

Risk Models 2
3

economic and (ii) data-centric characteristics (as suggested by the authors of
[21]). Both set of characteristics, altogether denoted as CH , are the basis for
evaluating the weights for the cost categories depicted in Figure 4 and Table 2.
In analogy to widely used scoring systems like CVSS [18] and taking into account
related works [21], we propose the following eight CH and the corresponding set
of qualitative values:

– OS = {Less than 50 < Less than 250 < More than 250 employees}
– SA = {Low < Moderate < High IT dependency}
– CA = {Others < Euro zone < United States}
– SP = {No < Existing < Existing & Monitored (E & M)}
– AT = {less 10M < less 50M < more 50M USD}
– CD = {No < Personal Data < Personal & Financial (P & F)}
– ED = {No < Personal Data < Personal & Financial}
– IP (patents, blueprints, etc.) = {No < Moderate value < High value}
To perform the calculation process these qualitative values in CH will be

mapped to quantitative values (e.g., (13 ;
2
3 ; 1) as used in this section). To illustrate

our approach, let us consider an example with two companies i.e., (i) an SME
X , and (ii) a large multinational company Y . Both have their respective com-
pany profiles depicted in Table 2. Thanks to the proposed approach, whatever
company C can be represented as a tuple C = (OS, SA,CA, SP, AT,CD,ED, IP)

containing the quantitative values of the characteristics of C. For instance, the
SME X shown in Table 2 can be represented by the tuple (13 ,

1
3 ,

1
3 ,

1
3 ,

1
3 ,

2
3 , 1,

1
3).

The notion of business profiles will be utilized as a basis to weight the economic
driven metrics to be defined in the next section.

4.3 Economic Driven Approach for Weighting Security Goals

The methodology proposed in this paper requires a set of metrics reflecting the
economic impact of potential security incidents, caused by software vulnerabil-
ity exploits. To define these Economic Driven Metrics (EDM), one needs to

User-Centric Security Assessment 203

Legal Costs (LC)

Reputation
Loss (RL)

Customer &
Revenue Loss

(CRL)

Potential
Damage (PD)

Repair &
Recovery (RR)

Investigation &
Forensics (IF)

Ex-Post
Response (EPR)

Potential
Costs (PC)

C1

C2

…

Cn

…

…

…

L1 L2 L3 L4

S
et of C

ost T
ypes F

rom
 E

m
pirical S

tudies

Level of Granularity LowHigh

(WLC)

(WRL)

(WCRL)

(WRR)

(WIF)

Fig. 4. Aggregation of the Proposed Economic Driven Metrics

investigate the expected potential costs of security incidents. The main basis for
determining our set of applicable EDM is the work of Innerhofer et al. [22], in
which the authors define a set of 91 cost units based on an empirical study on the
costs caused by publicly known security incidents. Because in many cases (secu-
rity) managers are in charge of assessing the economic impact of vulnerabilities,
experience has proved that it is more convenient to evaluate higher/aggregated
levels of granularity for the potential costs of a security exploit in order to be
intuitive and easy to classify. Therefore, we define a small set of higher level main
cost classes aggregating the 91 cost units of [22,23]. We distinguish three levels
of granularity regarding the potential costs: the highest level (most detailed) is
L1 which contains all cost units defined in the state of the art literature [22,23].
L2 aggregates the L1 costs into one of the five proposed cost classes (dashed
rectangles in Figure 4) with context-dependent weights ((WLC), (WRL), etc.)
reflecting the criticality of the corresponding cost (sub)class for the organiza-
tion. For instance “Legal Costs (LC)” are highly dependent on the country, in
which the organization is located, thus need to be weighted differently in diverse
legal environments (e.g., the jurisprudence in the USA is completely different
than in Germany, developing countries, etc.). The lowest level of granularity L3
distinguishes between two main cost classes (i) potential damage/losses, and (ii)
ex-post response costs, which could result from a security incident. Figure 4 de-
picts the overall cost aggregation process. In earlier work, we have described our
methodology for systematically investigating all cost units and the correspond-
ing unified cost classes [24], which constitute the underlying cost data for L1
(Figure 4).

Based on the same principles that CVSS [25], we propose to use an intuitive
scale of three possible values (i.e., low, medium, high) to evaluate the different
metrics of level L2 (cf. Figure 4). Furthermore, as monetized metrics have the
advantage of (i) allowing easy numerical comparison between alternative scenar-
ios within the same company, and (ii) are directly understandable by managers
and executives with less technical affinity, we propose a mapping (cf., Table

204 H. Ghani et al.

Table 3. Mapping proposed scale - monetized scale

Qualitative Scale Monetized Scale (USD) Quantitative Scale

Low [0, Cmedium[3.5

Medium [Cmedium, Chigh[6.1

High [Chigh,∞[9.3

3) between our proposed qualitative scale and a company-dependent monetized
scale. The rationale is that absolute monetary terms do not allow an objective
comparison across companies of different sizes; e.g., a cost of 100K EUR might
be critical for an SME, but of low effect for a large multinational company.

Organizations could define their specific interval values cx for the monetized
mapping. For the calculation of our metrics, one needs also quantified factors to
be mapped to the proposed scale (cf., Table 3). The quantitative scale thresholds
are defined in such a way that, analogous to the CVSS thresholds, the scoring
diversity is taken into consideration [26] and the intuitive and widely accepted
CVSS scoring scheme is respected. To illustrate the usage of the metrics e.g.,
for “Reputation Loss” in the case of a Confidentiality compromise, the user can
qualitatively estimate a value (i.e., low, medium, high) for that specific EDM, and
according to the mapping depicted in Table 3, a quantitative value to be utilized
for the score calculations is assigned accordingly. To calculate the metric for the
overall “Potential Costs” (L4) we define the final outcome of calculating PC for
each security goal (i.e., C, I, A) as depicted in Equation 1 for Confidentiality
(similarly for I, A):

PCC = (LC×WLC)+(RL×WRL)+(CRL×WCRL)+(RR×WRR)+(IF×WIF) (1)

Furthermore, the different weights for L2 (Figure 4) needed to compute Equation
1 are calculated as follows, where Max(X) is the maximal possible value for X :

WLC =
CA

Max(CA)
(2)

WRL =
OS + SA+ CA+ AT

Max(OS) +Max(SA) +Max(CA) +Max(AT)
(3)

WCRL =
AT +CD + IP

Max(AT) +Max(CD) +Max(IP)
(4)

WRR =
OS + SP

Max(OS) +Max(SP)
(5)

WIF =
OS + SP + CD + ED + IP

Max(OS) +Max(SP) +Max(CD) +Max(ED) +Max(IP)
(6)

To calculate these weights, we utilize the business profiling values defined in
Table 2. The weight calculations for SME X and Multinational Y provide the
results shown in Table 4. In the next section, we introduce the last stage of our
approach consisting of an MCDA-based approach to assess and rank different
software configurations, taking as input the outcomes of Sections 3 and 4.

User-Centric Security Assessment 205

Table 4. L2 Weights for SME X and Multinational Y

Weights (L2) SME X Multinational Y

WLC
1
3

1

WRL
1
3

1

WCRL
4
9

8
9

WRR
1
3

1

WIF
8
15

14
15

5 MCDA-Based Ranking of Software Configurations

In this section, we present a MCDA-based methodology by which the proposed
raking of software configurations can be performed in a systematic way. MCDA
methods are concerned with the task of ranking a finite number of alternatives
(software configurations in our case), each of which is explicitly described in
terms of different characteristics (i.e., the aggregated vulnerability scores from
Section 3) and weights (i.e., the economic-driven metrics from Section 4) which
have to be taken into account simultaneously. For our research we decided to
apply the Multiplicative Analytic Hierarchy Process (MAHP) [9,27], one of the
most widely used and accurate MCDA methodologies nowadays [10]. In the
following, the MAHP-background required to comprehend our approach will be
briefly presented . For a detailed description of the MCDA methods (including
MAHP), we refer to [28].

SWC1

SWC2
..

..

SWCn

PC PC PC

C I A

AggC1 AggI1 AggA1

AggC2 AggI2 AggA2

AggCn AggIn AggAn

MCDA

Output of
Section 4

Output of
Section 3

Section 5

Fig. 5. MAPH-based matrix used by our approach

At a glance, MAHP starts by building a matrix as shown in Figure 5 in order
to perform the ranking. The MAHP matrix requires the aggregated impacts of a
set of vulnerabilities associated with a software configuration. Furthermore, the
EDMs that have been introduced in Section 4 constitute the weights (PC) of
the security goals to take into account (i.e., C, I, A). Once the MAHP matrix
is built, we calculate a quantitative score SSWCi for each software configuration
utilizing Equation 7. The value of SSWCi is directly proportional to the overall

206 H. Ghani et al.

impact (technical and economical) associated with the software configuration
i.e., a low SSWCi represents also a low impact for the organization. In the next
section, we will experimentally show how thanks to MAHP it is possible to
quantitatively rank different Amazon EC2’s AMIs configurations from a user-
centric perspective.

SSWCi = (AggCi)
PCC × (AggIi)

PCI × (AggAi)
PCA (7)

6 Evaluation: Security Ranking of Amazon EC2’s AMIs

Further developing the Amazon EC2-based case study introduced in Section 2,
performed validation experiments and obtained results are presented next.

6.1 Experimental Setup

Our validation experiments consider a SME user of the Amazon EC2 service
(cf., Section 2), who is looking for an available AMI with a LAMP software
configuration2. Our methodology aims to provide this user with quantitative
security insights about alternative AMIs before instantiating any. In particular
we will take into consideration for the assessment her organizational context
(i.e., technical and economical risks).

The proposed methodology was validated using real-world vulnerability data
(i.e., Nessus’ reports [4]) from more than 2000 Amazon EC2’s AMIs, kindly pro-
vided for research purposes (i.e., sanitized and anonymized) by Balduzzi et. al.
[11]. It is also worth to highlight that this data set covers a period of five months,
between November 2010 and May 2011, and as mentioned by Balduzzi [11] the
Amazon Web Services Security Team already took the appropriate actions to
mitigate the detected vulnerabilities.

The implemented test bed (cf., Figure 6) consisted of three main building
blocks, namely:

– The “Attack Tree”, a Java/MySQL implementation to automatically create
“base attack patterns” (cf., Section 3.1) by sequentially extracting both AMI
configurations (RPM-like format) and reported vulnerabilities from the data
set (Step 1a). OSVDB [2] was queried (Step 1b) to classify found vulnera-
bilities into corresponding attacks, and then NVD [1] scores were used to
compute our “coverage” metric (cf., Section 6.2). Finally, this component
also aggregated the values on the resulting attack tree applying the rules
presented in Section 3.2.

– The “Economic Metrics” component (web form and back-end database)
where the User inputs the information related to her own organizational con-
text (Step 2). This information is processed to create the numeric weights
(i.e., PCC , PCI and PCA presented in Section 4.3) required by the ranking
module described next.

2 LAMP stands for the software system consisting of Linux (operating system), Apache
HTTP Server, MySQL (database software), and PHP, Perl or Python.

User-Centric Security Assessment 207

Attack
Tree1a: Retrieve AMI

config (RPM) and
Vulns (Nessus)

1b: Query for
vulnerabilities

Amazon EC2
Data set

Vuln. DB
(NVD and
OSVDB)

Economic
metrics

2: Add
bussiness
profile

User

MAHP
engine

Ranked list
of AMIs

3: Ranking

Fig. 6. Test bed used for validation

– The “MAHP engine” implements the MAHP technique described in Sec-
tion 5, which takes as inputs both the aggregated technical impact (from
the “Attack Tree” component) and the economic-driven weights (from the
“Economic Metrics” module). The output is an ordered set of AMIs.

For our ranking experiments, we used the two synthetic business profiles shown
in Table 2 (i.e., SME X and Multinational Y). At the time of writing this paper
we still do not have the information for creating real-world profiles, however as
discussed in Section 8 we have started collecting this data via targeted surveys.

6.2 Evaluating the Methodology’s Coverage

The goal of this experiment was to validate if the vulnerabilities reported by our
approach (cf., Step 1b in Figure 6) were at least the same as reported by the
Nessus tool. If that is the case, then we can actually assert the validity of per-
forming the proposed AMI’s security assessment before instantiation. Obtained
coverage results are shown in Figure 7 for all tested 2081 AMIs. A coverage rate
of at least 90% was achieved in 93.46% of the AMIs, with a worst case scenario
of 65% coverage in only one AMI.

One of the main challenging issues facing our current implementation is ensur-
ing 100% coverage. Vulnerabilities are queried from publicly available databases
(e.g., NVD [1]) based on a mapping between the actually installed software
(RPM-like format [16]) and, the Nessus reported software (using the Common
Platform Enumeration or CPE format [29]). Therefore, we cannot claim that our
mapping is complete, as it does not contain all existing software packages. Un-
fortunately, at the state of the art there is no publicly available RPM ↔ CPE
mapping that can be applied for this purpose. So we had to manually check
and complement the mapping to run our experiments meaningfully. Such a com-
prehensive/constantly updated mapping, could allow Amazon EC2 to actually
provide its users with a realistic security assessment of existing AMIs (before
instantiation).

208 H. Ghani et al.

1072 AMIs650 AMIs

22
3

A
M

Is

93.46% of AMIs

Tested AMIs

Fig. 7. Vulnerability Detection Coverage in 2081 AMIs

6.3 Ranking Existing AMIs

During this experiment, we applied the business profiles presented in Table 2
to the data set of 2081 AMIs in order to rank them with the MAHP technique
described in Section 5. As required by the MAHP matrix (cf., Figure 5), the base
attack pattern for each available AMI was automatically created and populated
in order to compute the aggregated impacts AggCi, AggIi and AggAi. For the
sake of automation, our experiments did not extend the base attack pattern
(e.g., with the use of AND relationships).

Just as expected, ranking results show that for both business profiles (i.e.,
SME X and Multinational Y) the order of the best suitable AMIs is different.
For instance the 2nd best AMI for SME X is ranked 20 for Multinational Y , and
the 3rd one for SME is ranked 21st for the latter. Table 5 depicts the rankings of
the top 10 AMIs in both scenarios (SME X and Multinational Y). Notice that in
both scenarios the best ranked AMI was the same (ami-fb6e8292), because this
configuration has both the least number of critical vulnerabilities and, relatively

Table 5. Top 10 AMI Rankings: SME X vs. Multinational Y

Rank Multinational Y MAHP Score SME X MAHP Score

1 ami-fb6e8292 0.231468538 ami-fb6e8292 0.738087398

2 ami-f857b091 0.3934929 ami-044fa56d 1.002042157

3 ami-43aa432a 0.534172853 ami-2309e44a 1.002042157

4 ami-63aa430a 0.534172853 ami-49c72920 1.002042157

5 ami-665bb00f 0.534172853 ami-6c749e05 1.002042157

6 ami-6743ae0e 0.534172853 ami-8f729fe6 1.002042157

7 ami-7d43ae14 0.534172853 ami-a236c1cb 1.002042157

8 ami-8ff38cdd 0.534172853 ami-43aa432a 1.014506003

9 ami-bb709dd2 0.534172853 ami-63aa430a 1.014506003

10 ami-c224d5ab 0.534172853 ami-665bb00f 1.014506003

User-Centric Security Assessment 209

low aggregated scores in the corresponding attack tree. The latter also explains
the low overall score SSWCi obtained by the MAHP technique (despite the two
different organizational profiles). This quantitative result proves the intuitive
notion that a properly secured AMI, can provide an adequate security level to
different types of users/organizations.

7 Related Work

Despite the large variety of papers devoted to vulnerability assessment in soft-
ware systems, there are, to the best of our knowledge, no existing approaches
that take account of both technical and economical perspectives in the assess-
ment process. Nevertheless, we present in this section relevant existing research
in the field of vulnerability assessment. For the vulnerability assessment ap-
proaches from a technical perspective, there exist varied academic and applied
approaches to manage and assess vulnerabilities. Projects described in [30,31,32]
define a list of detected vulnerabilities, typically ranked using qualitative assess-
ment such as low, medium, high. These assessment approaches have a qualitative
nature and do not consider economic aspects. Mell et. al. [33] propose quantita-
tive metrics for calculating scores reflecting the severity of vulnerabilities based
on published vulnerability reports. They introduce CVSS, which is a vulnera-
bility scoring system providing a standardized method for rating vulnerabilities
[26]. Our approach can be used to add the necessary contextual dimension to
improve the usage and accuracy of CVSS scores (cf., Section 3). This aspect of
our approach is important, when considering the existing works suggesting that
different organizations evaluate vulnerabilities differently, based on their specific
contexts [34,8,35,36]. The authors of [6,7] showed empirically that the impact of
security vulnerability exploits varies with a company’s context. The results of
[6,7] constitute a major driver motivating our work.

Like our approach, there exists a separate line of research applying MCDA
techniques in security related fields. The authors of [37] utilize MAHP for the
security assessment of power control processes. Similarly, another work in the
area of power systems [38] applies an MCDA approach to provide online quan-
tification of a security level associated with an existing or forecasted operating
condition of power systems.

In the area of economic driven metrics, the authors of [39] analyzed the in-
curred costs related to the resolution of individual security incidents within 18
participating US schools. Additionally, there are simple calculators of potential
losses such as “Data Breach Risk Calculator” [21] from the Ponemon Institute
and Symantec Corporation, and the “Data Loss Cost Calculator” [40]. These
calculators provide rough numbers (mostly for illustrative purposes), and their
calculation formulas and methodologies are mostly hidden. Another related field
concerns cybercrime and its economic impact on the society. Anderson [41] in-
troduces the first systematic study of the costs of cybercrime in the society, as an
answer to the the UK Detica report [42]. Clearly, our approach is hence the first
vulnerability assessment method that uses both technical and economic driven

210 H. Ghani et al.

metrics in the calculation process and aggregates them in a holistic manner,
enabling a user centric, pre-deployment assessment of security vulnerabilities of
different software configurations.

8 Conclusions

In this paper we presented a methodology to quantitatively assess the secu-
rity of a software configuration from a user-centric perspective. The proposed
approach takes into account the overall organizational context (i.e., technical
and economical risks), and does not require the actual software system to be
deployed/installed. The proposed approach has been validated using real-world
data from Amazon EC2. Vulnerability reports covering a total number of 2081
AMIs has been considered in the evaluation of our approach. The obtained re-
sults show that (i) our approach not requiring a physical system deployment is
able to report at least the same vulnerabilities as Nessus [4] (a coverage rate of
93.46% of the tested AMIs); and (ii) given some business profiling data (e.g.,
turn-over, countries of activity), it is feasible to rank available Amazon EC2’s
AMIs with respect to security. While a limitation of our approach consists in
that the results’ accuracy depends on the quality of the available input data,
especially business profiling data, our findings suggest that the proposed assess-
ment could be adopted with little effort by IaaS providers, thus empowering
their customers to compare different existing configurations and offers from a
security level perspective.

Furthermore, we are investigating alternative aggregation rules to be applied
on the attack trees, a promising direction consists in utilizing semi-ring opera-
tions in order to interpret the “AND” branches.

Acknowledgments. Research supported in part by EC FP7 SPECS, Loewe-
CASED and BMBF EC-SPRIDE at TU Darmstadt. The authors would like to
thank Marco Balduzzi, Jonas Zaddach, and especially Davide Balzarotti, Engin
Kirda and Sergio Loureiro for sharing with us the Amazon data set for our
experiments.

References

1. NVD, National Vulnerability Database (2013), http://nvd.nist.gov/

2. OSVDB, The Open Source Vulnerability Database (2012), http://osvdb.org/
3. OpenVAS, Open Vulnerability Assessment System (2013),

http://www.openvas.org/

4. Tenable Network Security, Nessus vulnerability scanner (2013),
http://www.tenable.com/products/nessus

5. Fruehwirth, C., et al.: Improving CVSS-based vulnerability prioritization and re-
sponse with context. In: Proc. of Third International Symposium on Empirical
Software Engineering and Measurement (2009)

http://nvd.nist.gov/
http://osvdb.org/
http://www.openvas.org/
http://www.tenable.com/products/nessus

User-Centric Security Assessment 211

6. Ishiguro, M., et al.: The effect of information security incidents on corporate values
in the japanese stock market. In: Proc. of International Workshop on the Economics
of Securing the Information Infrastructure, WESII (2006)

7. Telang, R., et al.: An empirical analysis of the impact of software vulnerability
announcements on firm stock price. Proc. of IEEE Transactions on Software En-
gineering (2007)

8. Lai, Y., et al.: Using the vulnerability information of computer systems to improve
the network security. Computer Communications (2007)

9. Saaty, T.: Book: The Analytic Hierarchy Process. McGraw-Hill, New York (1980)
10. Triantaphyllou, E.: The impact of aggregating benefit and cost criteria in four

mcda methods. IEEE Transactions on Engineering Management (2004)
11. Balduzzi, M., et al.: A security analysis of Amazon’s Elastic Compute Cloud ser-

vice. In: Proc. of the Annual ACM Symposium on Applied Computing (2012)
12. Schneier, B.: Attack trees. Dr Dobb’s 24(12) (1999),

http://www.schneier.com/paper-attacktrees-ddj-ft.html

13. Swiderski, F., Snyder, W.: Book: Threat Modeling. Microsoft Press (2004)
14. Department of Homeland Security, Attack Patterns (2009),

https://buildsecurityin.us-cert.gov/

15. SHIELDS, EU FP 7 – SHIELDS project: Detecting known security vulnerabilities
from within design and development tools (2010),
http://www.shields-project.eu/

16. RPM ORG, The RPM package manager (2007), http://rpm.org/
17. Ghani, H., et al.: Predictive vulnerability scoring in the context of insufficient

information availability. In: Proc. of the Intl. Conference on Risk and Security of
Internet and Systems, CRiSIS (2013)

18. Forum of Incident Response and Security Teams, CVSS – Common Vulnerability
Scoring System (2012), http://www.first.org/cvss/

19. Luna, J., et al.: Privacy-by-design based on quantitative threat modeling. In: Proc.
of the Intl. Conference on Risk and Security of Internet and Systems (2012)

20. Luna, J., et al.: Benchmarking Cloud Security Level Agreements Using Quanti-
tative Policy Trees. In: Proc. of the ACM Cloud Computing Security Workshop
(2012)

21. Symantec, Ponemon Institute, Data Breach Calculator (2013),
https://databreachcalculator.com

22. Innerhofer, F., et al.: An empirically derived loss taxonomy based on publicly
known security incidents. In: Proc. of Intl. Conf. on Availability, Reliability and
Security, ARES (2009)

23. Van Eeten, M., et al.: Damages from internet security incidents. OPTA Research
reports (2009),
http://www.opta.nl/nl/actueel/alle-publicaties/publicatie/?id=3083

24. Ghani, H., et al.: Quantitative assessment of software vulnerabilities based on
economic-driven security metrics. In: Proc. of the Intl. Conference on Risk and
Security of Internet and Systems, CRiSIS (2013)

25. Forum of Incident Response and Security Teams, CVSS Adopters (2013),
http://www.first.org/cvss/eadopters.html.

26. Scarfone, K., Mell, P.: An analysis of CVSS version 2 vulnerability scoring. In: Intl.
Symposium on Empirical Software Engineering and Measurement, ESEM (2009)

27. Saaty, T.: Book: Fundamentals of decision making and priority theory with the
analytic hierarchy process. RWS Publications, Pittsburgh (1994)

28. Zeleny, M.: Book: Multiple Criteria Decision Making. McGraw-Hill (1982)

http://www.schneier.com/paper-attacktrees-ddj-ft.html
https://buildsecurityin.us-cert.gov/
http://www.shields-project.eu/
http://rpm.org/
http://www.first.org/cvss/
 https://databreachcalculator.com
http://www.opta.nl/nl/actueel/alle-publicaties/publicatie/?id=3083
http://www.first.org/cvss/eadopters.html.

212 H. Ghani et al.

29. NIST, CPE – Official Common Platform Enumeration Dictionary (2013),
http://nvd.nist.gov/cpe.cfm

30. SANS-Institute, SANS critical vulnerability analysis archive (2007),
http://www.sans.org/newsletters/cva/

31. Johnson, E., et al.: Symantec global internet security threat report (2008),
http://eval.symantec.com/mktginfo/enterprise/white papers/

b-whitepaper internet security threat report xiii 04-2008.en-us.pdf

32. Microsoft, Microsoft security response center - security bulletin severity rating
system (2007),
http://www.microsoft.com/technet/security/bulletin/rating.mspx,

33. Mell, P., et al.: Common vulnerability scoring system. IEEE Security and Privacy 4,
85–89 (2006)

34. Rieke, R.: Modelling and analysing network security policies in a given vulnerability
setting. Critical Information Infrastructures Security (2006)

35. Eschelbeck, G.: The laws of vulnerabilities: Which security vulnerabilities really
matter. Information Security Technical Report (2005)

36. Chen, Y.: Stakeholder value driven threat modeling for off the shelf based systems
(2007)

37. Liu, N., et al.: Security assessment for communication networks of power con-
trol systems using attack graph and mcdm. IEEE Transactions on Power Delivery
(2010)

38. Ni, M., et al.: Online risk-based security assessment. IEEE Transactions on Power
Systems (2003)

39. Rezmierski, V., et al.: Incident cost analysis and modeling project (i-camp). Tech-
nical Report, Higher Education Information Security Council, HEISC (2000)

40. Allied World Assurance, Tech404 Data Loss Cost Calculator (2013),
http://www.tech-404.com/calculator.html

41. Anderson, R., et al.: Measuring the cost of cybercrime. In: Proc. of Workshop on
the Economics of Information Security, WEIS (2012)

42. Detica and C. Office, The cost of cyber crime: joint government and industry
report. In: Detica Report (2012),
https://www.gov.uk/government/publications/

the-cost-of-cyber-crime-joint-government-and-industry-report

http://nvd.nist.gov/cpe.cfm
http://www.sans.org/newsletters/cva/
http://eval.symantec.com/mktginfo/enterprise/white_papers/b-whitepaper_internet_security_threat_report_xiii_04-2008.en-us.pdf
http://eval.symantec.com/mktginfo/enterprise/white_papers/b-whitepaper_internet_security_threat_report_xiii_04-2008.en-us.pdf
http://www.microsoft.com/technet/security/bulletin/rating.mspx
http://www.tech-404.com/calculator.html
https://www.gov.uk/government/publications/the-cost-of-cyber-crime-joint-government-and-industry-report
https://www.gov.uk/government/publications/the-cost-of-cyber-crime-joint-government-and-industry-report

Idea: Security Engineering Principles for Day

Two Car2X Applications

Sibylle Fröschle1 and Alexander Stühring2

1 University of Oldenburg & OFFIS, Oldenburg, Germany
froeschle@informatik.uni-oldenburg.de

2 University of Oldenburg, Oldenburg, Germany
alexander.stuehring@informatik.uni-oldenburg.de

Abstract. Car2X communication based on IEEE 802.11p has been
prepared over the last years by a tremendous collaborative effort of the
automotive industry, researchers, and standardization bodies. At the Eu-
ropean level ETSI has released a first set of standards for interoperability
and initial deployment in February this year. The “day one” Car2X appli-
cations, which will be implemented soon, do not automatically intervene
into the driving behaviour of a car, but such “day two” applications will
be the next step. In this idea paper we highlight some principle differences
between Car2X and traditional security-relevant systems such as bank-
ing. We show how this might lead to a more straightforward escalation
of attacks, which should be kept in mind in view of the safety-relevant
“day two” applications. We also propose a principle of how to avoid this.
In current work we test the feasibility of the attacks.

1 Introduction

Car2X communication based on IEEE 802.11p has been prepared over the last
years by a tremendous collaborative effort of the automotive industry, researchers,
and standardization bodies. At the European level ETSI1 has released a first set
of standards for interoperability and initial deployment in February this year.2

These standards will enable the deployment of a set of “day one” Car2X appli-
cations, which will improve road safety and traffic efficiency. As an example con-
sider the use case “Emergency electronic brake lights” [5]: if a vehicle performs an
emergency brake then emergency messages will be broadcast to warn the follower
vehicles of this event. The messaging is triggered by the braking vehicle when the
switch of its emergency electronic brake lights is set on. Thereby the risk of lon-
gitudinal collision will be reduced.

“Day one” applications communicate Car2X messages as warnings or contex-
tual awareness information to the driver, and do not automatically intervene into
the driving behaviour of a vehicle. However, it is clear that Car2X will reach its

1 European Telecommunications Standards Institute: http://www.etsi.org
2 C.f. http://www.etsi.org/news-events/events/618-2013-itsworkshop

J. Jürjens, F. Piessens, and N. Bielova (Eds.): ESSoS 2014, LNCS 8364, pp. 213–221, 2014.
c© Springer International Publishing Switzerland 2014

froeschle@informatik.uni-oldenburg.de
alexander.stuehring@informatik.uni-oldenburg.de
http://www.etsi.org
http://www.etsi.org/news-events/events/618-2013-itsworkshop

214 S. Fröschle and A. Stühring

full potential only with actively intervening “day two” applications. For exam-
ple, in the “Emergency electronic brake lights” use case, it is technically feasible
to automatically brake follower vehicles.

It is immediately clear that if Car2X messages were sent unauthenticated an
attacker could easily wreak havoc by injecting forged messages. In particular,
with repect to “day two” applications such attacks could have a very drastic
impact on the safety of road users. This and other security risks as well as pri-
vacy concerns have been taken into account: based on research projects such as
EVITA3, SeVeCom4 and PRESERVE5, the ETSI standards advocate a sophisti-
cated security architecture, which includes authenticated Car2X communication,
cryptographic keys and credentials management, privacy enabling technologies
by pseudonyms, and in-car software and hardware security [13,8,6].

In this paper, we put forward ideas towards answering the following questions:
what is the likelihood that something goes wrong with this security architecture,
what is the safety impact, and how can the risk be contained? Our focus will be
on the security of user credentials. After summarizing the ETSI security archi-
tecture we present our ideas: (1) By a comparison with the traditional security-
relevant area of banking we highlight that Car2X user keys are employed under
novel trust assumptions, which might lead to a more straightforward escalation
of attacks. Thus motivated, we propose several robustness principles for security
engineering Car2X. (2) We explore the scalability of attacks within the current
ETSI architecture, using the “Emergency electronic brake lights” use case as
a concrete example. We exhibit two scenarios that if realized would allow for
an attack escalation, and show that our containment principle is not adhered
to by the current Car2X architecture. In current practical work we are work-
ing towards a proof-of-concept of the attacks. (3) In view of the safety-relevant
“day two” applications, we suggest a “security by design” method, which would
contain the attacks.

2 The ETSI Communication and Security Architecture

We provide a summary of the ETSI ITS (Intelligent Transportation Systems)
communication and security architecture as specified in [8,6].

To participate in the ITS every vehicle first has to enrol with an enrolment au-
thority.As a result of enrolingwith the enrolmentauthority ea thevehicle vwill pos-
sess a long-term signature key skv together with an enrolment ticket ecertea(pkv),
a certificate for the corresponding public key pkv signed by ea. With these long-
term credentials the vehicle can then apply to an authorization authority to obtain
authorization for a particular Car2X application or service. After successfully ap-
plying to the authorization authority aa the vehicle v will hold a fresh short-term
signature key skp together with an authorization ticket acertaa(pkp), a certificate

3 E-safety Vehicle Intrusion Protected Applications: http://evita-project.org
4 Secure Vehicular Communication: http://www.sevecom.org
5 Preparing Secure Vehicle-to-X Communication Systems:
http://www.preserve-project.eu

http://evita-project.org
http://www.sevecom.org
http://www.preserve-project.eu

Idea: Security Engineering Principles for Day Two Car2X 215

for the corresponding public key pkp signed by aa . The vehicle may obtain many
such pairs for different pseudonyms p, and exchange their use frequently. This will
prevent that the vehicle can be tracked by its trace of Car2X messages, and thus
ensures privacy. A pilot PKI to provide the necessary public key infrastructure is
currently run by the Car2Car Communication Consortium [2].

For safety applications personal user vehicles will typically obtain authoriza-
tion to broadcast the two types of basic Car2X messages: cooperative awareness
messages (CAMs) and distributed environmental notification messages (DENMs).
CAMs are beaconed periodically by all vehicles to inform neighbour nodes about
their position, speed, and direction. The idea is that based on CAMs every vehi-
cle can maintain a local dynamic map (LDM) of their environment. In contrast,
DENMs are triggered by an event such as an emergency brake. They are then
disseminated into the relevant geographical area by multi-hop broadcasting. De-
pending on the use case DENMs have a typical life cycle. For example, in the
“Emergency electronic brake lights” use case the originating vehicle will period-
ically broadcast DENMs until the emergency brake lights are off. A DENM can-
cellation message can be sent to signal the termination of the event [9].

To prevent message injection and tampering CAMs and DENMs are always
sent authenticated. Each vehicle signs its outgoingCAMs andDENMswith its sig-
nature key skp and prepends the corresponding authorization ticket certaa(pkp).
Thus, a receiving vehicle will be able to validate the signature. Authorization cer-
tificates and signed messages are implemented by the WAVE 1609.2 standard,
which uses the relatively efficient ECDSA as signature algorithm [7].

3 Trust Assumptions and Robustness Principles

Having seen the security architecture of Car2X we now highlight some differences
to traditional security-relevant networks such as the EMV system, which is used
worldwide for smartcardbanking transactions at point-of-sales orATMs.Thusmo-
tivated, we derive several robustness principles for security engineering Car2X.

The security architectures of both banking and Car2X require that each user
is equipped with authentication credentials: in banking each user is issued with
a smartcard, which contains a signature key and a certificate for authentica-
tion with an ATM or sales terminal (e.g. [12]); in Car2X each car is equipped
with a security module, which contains a signature key and a certificate for
obtaining authorization for Car2X applications (and ultimately signature keys
and certificates that authorize the car to send CAMs and DENMs). However,
the “enabling scope” of such credentials is in each case very different: While
in banking the credentials of one user give access to the one user’s resources,
in Car2X the credentials of one user give access to influencing the driving be-
haviour of all peers at all locations within the authorization realm (which for
CAMs and DENMs is at least nationwide).

Hence, user credentials need to be well-protected, including protection from
abuse by the car owner themselves. The ETSI security architecture prescribes
that ITS key material should be stored in a tamper-resistant hardware security

216 S. Fröschle and A. Stühring

module (HSM). A good security API guarantees that sensitive keys are gener-
ated within the HSM, and that they will never be revealed in plaintext. (This is
possible since all cryptographic operations can be performed within the HSM,
accessing keys only via handles.) Good tamper-resistance ensures that the keys
cannot easily be obtained by physical means. However, the current Car2X se-
curity architecture does not specify to which standard the security API of the
HSM or its tamper-resistance should be evaluated. Neither do vendors of Car2X
modules advertise any details to this point.6

By now it is well-known that security APIs are susceptible to subtle attacks
where an attacker can trick an HSM into revealing a sensitive key by using the
API in an unanticipated fashion [1,3]. Fortunately, there are now formal methods
available that allow us to verify the API relative to standard assumptions similar
to those in formal security protocol analysis [3,10]. Hence, we propose:

Principle 1 (Software security of user credentials). To prevent that user
credentials can be obtained by software attacks, the security APIs of Car2X HSMs
should be formally verified.

Concerning security against physical attacks (and also cryptographic attacks)
one should keep a further difference to banking in mind: While in banking user
keys can easily be revoked in case of theft of the smartcard (and the owner them-
selves would only be able to access resources they already own), in Car2X an
attacker can experiment with their own device for a long period of time, and then
use the retrieved keys in an attack against others. High-cost HSMs, evaluated to
FIPS-140-2 level 4, provide a complete envelope of protection; they can detect
physical penetration, and then zeroize sensitive memory immediately. However,
it is highly unlikely that cost-effective mass-market HSMs such as those needed
for Car2X will ever reach this level. For mass-market TPMs physical attacks are
well-known.

While it seems clear that a dedicated attacker with large resources could
extract a key it is difficult to estimate what their motive would be. If the key
enabled them to perform attacks with a large safety impact then one would
have to consider the threat of cyber war or cyber terrorism. One should also
keep in mind that safety-relevant attacks, or rather the ability to execute them,
could be used to blackmail or coerce OEMs and authorities: with an ultimately
financial, political, or military motive. Since attacker types with large resources
do potentially exist we recommend to adopt the following robustness principle:

Principle 2 (Physical security of user credentials). The global safety of
the Car2X system should not be based on the assumption that user credentials
such as long-term vehicle signature keys cannot be obtained by an attacker who
has large resources and physical access to the HSM that holds the keys.

What could a global safety goal of a Car2X system be under this assump-
tion? It is important to keep in mind that the current transportation system

6 C.f. http://www.auto-talks.com/public/page.aspx?PageID=27
and https://www.escrypt.com/index.php?id=201

http://www.auto-talks.com/public/page.aspx?PageID=27
https://www.escrypt.com/index.php?id=201

Idea: Security Engineering Principles for Day Two Car2X 217

is very vulnerable to safety attacks. Anyone could at any time endanger others
by dangerous driving or more drastic actions. As a very tragic example take an
incident in Oldenburg, where a person threw a 6 kg block of wood from an auto-
bahn bridge, thereby killing a passenger in a passing car.7 This is by no means
the only such incidence. Theoretically such attacks could be scaled to a large
impact by a cell of terrorists performing instances of this attack at the same time
at various locations. What keeps it in check is that the number of participating
terrorists grows proportional to the scale of the attack. We translate this into
the principle of proportion between attack distribution and physical presence.

Principle 3 (Proportion of attack distribution and physical presence).
The Car2X system should satisfy the principle of proportion of attack distribu-
tion and physical presence: whenever there is a distributed attack at locations
x1, . . . , xn then n physical entities must be present at x1, . . . , xn.

4 How Much Damage Can You Do with One Set of User
Credentials?

Let us now explore the scalability of attacks within the current ETSI architec-
ture. Motivated by the previous discussion we assume:

Assumption 1. The attacker group has obtained a set of Car2X user creden-
tials: a long-term signature key skv with a corresponding enrolment certificate, as
well as a signature key skp for signing DENMs and CAMs with a corresponding
authorization certificate.

To be able to argue concretely we consider the attacker group’s ability to forge
emergency brake light situations. An emergency brake light situation is forged
when an honest vehicle decides to deliver an HMI warning to the driver (or, if
it was “day two”, to induce automatic braking) while no vehicle has actually
performed an emergency brake at the supposed location.

We assume that to reduce any security risk vehicles use as much contextual
awareness information as possible to validate received DENMs before acting on
them. However, we assume a no-line-of-sight situation where the receiver cannot
validate a DENM by comparison with its own sensor input (e.g. due to bad
wheather conditions such as fog). Altogether, before acting on a DENM a vehicle
will: (1) validate the signature of the DENM, (2) check whether the situational
information within the DENM such as time and event position is plausible and
relevant, (3) check whether the DENM fits in with a vehicle profile within the
local dynamic map (LDM) (based on CAMs), (4) test whether the pattern of
the received DENMs and CAMs matches the usual pattern of an emergency
brake light situation. Note that (3) and (4) are in general made difficult by the
fact that vehicles may change pseudonyms frequently but we wish to explore the
scalability of attacks under the worst conditions for the attacker here.

7 http://www.sueddeutsche.de/panorama/

urteil-gegen-holzklotz-werfer-lebenslang-wegen-mordes-1.450602

http://www.sueddeutsche.de/panorama/urteil-gegen-holzklotz-werfer-lebenslang-wegen-mordes-1.450602
http://www.sueddeutsche.de/panorama/urteil-gegen-holzklotz-werfer-lebenslang-wegen-mordes-1.450602

218 S. Fröschle and A. Stühring

1. Local Attack: The attacker group forges one emergency brake light situation
at location x with one attacker (and possibly a helper) physically present at x.

Since the attacker has a signature key skp and a corresponding authorization
certificate for sending DENMs and CAMs she can easily construct DENMs and
CAMs with situational information of her choice. Thereby checks (1) and (2)
can be passed easily. To not be caught out by the consistency test with the
LDM, prior to sending out DENMs, the attacker participates in the traffic like
an honest Car2X participant, beaconing CAMs signed with the key skp.

Altogether, she can forge a pattern of CAMs and DENMs typical for an
emergency brake manoever: at the intended location of the phantom emergency
brake she broadcasts the appropriate number of DENMs. Moreover, to simulate
braking and breakdown she offsets the location information in the DENMs and
CAMs from her true position and then stops sending them altgother. Since an
emergency brake occurs within a short time span this should be possible while
she is actually driving away from the location. Otherwise she can always use a
helper on the roadside, who takes over sending DENMs and CAMs when she is
too far away from the phantom emergency brake location.

2. Multiplication Attack: The attacker group forges n emergency brake light
situations at locations x1, . . . , xn with n attackers (possibly each with a helper)
physically present at x1, . . . , xn.

This can be done analogously to above: n attackers distributed at n locations
perform n instances of the local attack. They can use the same key credentials,
which can be exchanged beforehand (by person, email, phone, etc.). The timing
of the attacks can be synchronized to make it more spooky.

Note that if neither check (3) nor check (4) is carried out then the attack
can easily be performed by one attacker who remotely controls n 802.11p boxes
hidden at the roadside at the n locations.

3. Escalation Attack via Malware on Head Units: The attacker group forges a
large number of emergency brake light situations at a large number of locations
without any physical entities present, using a malware distributed on automotive
head units.

We additionally assume a software vulnerability in the head unit of a widely
used car model. This will allow the attacker group to widely distribute a piece
of malware onto Car2X vehicles. This is plausible since there will be many info-
tainment applications that users can download themselves. The attack will work
even if we assume that the safety-critical code of the head unit runs in a secure
execution environment and cannot be meddled with by the malware. We only
assume that the malware has access to the 802.11p network interface (which can
also be used for infotainment applications).

Themalwarewaits for an environmental trigger, such as a specific date and time,
and then forges an emergency brake light situation. This can be done as follows.
Themalware contains the signature key skp and the corresponding certificate, and
by using the GPS and clock of the vehicle (which are available to infotainment
applications) it can construct DENMs and CAMs with appropriate situational

Idea: Security Engineering Principles for Day Two Car2X 219

information similarly to the local attack but dynamically. To pass check (3) it can
send out CAMs early on, using the 802.11p interface of the host vehicle. One ques-
tion is whether the LDM consistency check of the receiving vehicle could spot that
there are two “overlapping” vehicles, and thereby recognize that one must be a
phantom vehicle. (Recall that we only assume infotainment access, which means
that the host vehiclewill continue beaconing authenticCAMs.)However, this could
probably be overcomeby offsetting the forgedCAMs a little pretending the path of
a motorbike. If the local attack works without a roadside helper then the malware
can fake an emergency brake analogously.

This will not work in every case. But given a wide distribution of the malware
it would probably cause a large enough number of forged emergency brake light
situations to make this a serious attack. Also note that if the lifetime of skp is
shorter than the expected distribution time of the malware then the malware
could run a small IRC client for post-compromise control (e.g. making use of
a vehicle’s cellular interface as in [4]). Thereby fresh authorization credentials
could be distributed to the malware instances via a central attacker system,
which could update the credentials easily without arousing suspicion by using
the long-term key skv.

4. Escalation Attack Via Malware on Standard Devices: The attacker group
forges a large number of emergency brake light situations at a large number of
locations without any physical entities present, using a malware distributed on
standard devices.

While it will be difficult enough to keep malware out of head units it will
be impossible to keep malware from infecting common mobile devices such as
smartphones, tablets, and laptops. So the question is: is it possible to run an
attack similar to the previous one from an infected common mobile device on-
board a vehicle? The main hindrance of doing so is that such common devices
are equipped with standard 802.11abg hardware rather than 802.11p, which is
dedicated to vehicular communications. However, it might still be possible.

Since 802.11p devices have been rarely available and are still very expensive
compared to commercial off-the-shelf 802.11abg devices researchers interested
in analysing the 802.11p channel properties have resorted to employing com-
mercial off-the-shelf 802.11abg hardware for their research [15,14]. The 802.11p
specification is directly derived from 802.11a [11], and it seems possible to make
standard 802.11abg devices speak 802.11p by merely modifying, in a linux-type
operating system, kernel modules such as the card driver and the linux wireless
subsystem. Such manipulations could be installed by malware with root privi-
lege. In practical work, we are currently working towards testing the feasibility
of this attack. It is e.g. not clear whether the signal strength of 802.11a chips in
laptops will be sufficient.

5 Discussion and Solutions

The last two hypothetical attacks show that the current Car2X system might
well allow for potentially large scale attacks that do not satisfy the principle of

220 S. Fröschle and A. Stühring

proportion between distribution and physical presence. In view of the safety-
relevant “day two” applications such attacks could potentially be large enough
in impact to be relevant for cyber-terrorism or cyber-war. For “day one” appli-
cations one could “deflate” such attacks by socio-technical measures: if Car2X
users perceive the warnings as “look out for this” rather than “there is definitely
such a situation” no harm is done.

Unfortunately, we have seen that plausibility tests can be very limited since
an attacker with a set of user credentials has a great repertoire of forging situa-
tional information, perhaps, even dynamically as in Attack 3 and 4. Of course,
one could always think of another measure. For example, Attack 3 could be
prevented if the compromised vehicle ran intruder detection (from a secure ex-
ecution environment) that would spot the phantom vehicle, etc. However, for a
robust and verifiably robust security architecture trust should be anchored in
clear assumptions.

The most robust way to go forward seems to be to design locality and proof
of physical presence into the Car2X system. To see what we mean first consider
a road hazard warning application, where a road side unit (RSU) triggers the
DENMs. Assume that the attacker has got hold of the signature key of the RSU
and a corresponding authorization certificate. Then analogues of Attacks 3 and 4
are easily preventend if the authorization certificate contains the location of the
static RSU and receiving vehicles check whether it is plausible that the DENMs
stem from an RSU at this location. Attack 2 is then only possible within a
very restricted area. The potential of attack scalability is caused by the large
authorization realm of mobile vehicles.

For Car2X applications that entirely rely on cooperative information rather
than local sensor input it would make the system much more robust if vehicles
were required to produce witness certificates of their physical presence: RSUs
could compare an optically observed identifer such as the number plate of the
vehicle with the same type of identifier provided by the vehicle in a long-term
certificate. If both match then the RSU will provide the vehicle with a certificate,
say for its pseudonym p, that certifies that p has been physically observed at
location x and time t. Such location stamps could contain Attacks 3 and 4 (while
Attack 2 was only possible when obtaining n keys and the correponding cars).
Privacy relative to other vehicles is still given.

We have addressed here only principal issues arising from the (in)security of
vehicle keys. There are of course many other facets such as software integrity of
the Car2X head-unit, and how to bootstrap it verifiably from the automotive
HSMs (and ultimately the vehicle keys!). Moreover, Car2X PKI servers will be
very safety-critical infrastructure. That none of the hypothetical attacks should
be taken lightly should be clear latest since [4].

Acknowlegdments. The first author would like to thank the PRESERVE
community for many discussions at the PRESERVE Summerschool and the
CAR2X Architecture Workshop. This work was supported by the funding initia-
tive Niedersächsisches Vorab of the Volkswagen Foundation and the Ministry of

Idea: Security Engineering Principles for Day Two Car2X 221

Science and Culture of Lower Saxony (as part of the Interdisciplinary Research
Center on Critical Systems Engineering for Socio-Technical Systems).

References

1. Anderson, R., Bond, M., Clulow, J., Skorobogatov, S.: Cryptographic processors—
a survey. Proceedings of the IEEE 94, 357 (2006)

2. Bißmeyer, N., Stuebing, H., Schoch, E., Götz, S., Stotz, J.P., Lonc, B.: A generic
public key infrastructure for securing car-to-x communication. In: 18th ITS World
Congress, Orlando, USA (2011)

3. Bond, M., Focardi, R., Fröschle, S., Steel, G.: Analysis of security APIs (Dagstuhl
Seminar 12482). Dagstuhl Reports 2(11), 155–168 (2012)

4. Checkoway, S., McCoy, D., Kantor, B., Anderson, D., Shacham, H., Savage, S.,
Koscher, K., Czeskis, A., Roesner, F., Kohno, T.: Comprehensive experimental
analyses of automotive attack surfaces. In: Proceedings of the 20th USENIX Con-
ference on Security, SEC 2011. USENIX Association (2011)

5. ETSI: TR 102 638 V1.1.1: ITS; vehicular communications; basic set of applications;
definitions (June 2009)

6. ETSI: TS 102 731 V1.1.1: ITS; security; security services and architecture (Septem-
ber 2010)

7. ETSI: TS 102 867 V1.1.1: ITS; security; stage 3 mapping for IEEE 1609.2 (June
2012)

8. ETSI: TS 102 940 V1.1.1: ITS; security; ITS communications security architecture
and security management (June 2012)

9. ETSI: TS 101 539-1 V1.1.1: ITS; v2x applications; part 1: Road hazard signalling
(rhs) application requirements specification (August 2013)

10. Fröschle, S.: From Security Protocols to Security APIS: Foundations and Verifica-
tion (To appear in the Information Security and Cryptography series of Springer)

11. Institute of Electrical and Electronics Engineers: IEEE Standard for Information
Technology, Local and Metropolitan Area Networks, Specific Requirements, Part
11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Spec-
ifications Amendment 6: Wireless Access in Vehicular Environments. IEEE Stan-
dard 802.11p-2010, pp. 1–51 (2010)

12. Murdoch, S.J., Drimer, S., Anderson, R., Bond, M.: Chip and PIN is broken. In:
IEEE Symposium on Security and Privacy, pp. 433–446 (2010)

13. Papadimitratos, P., Buttyan, L., Holczer, T., Schoch, E.: Secure Vehicular Com-
munication Systems: Design and Architecture. IEEE Communcations Maga-
zine 46(11), 100–109 (2008)

14. Schumacher, H., Tchouankem, H., Nuckelt, J., Kurner, T., Zinchenko, T., Leschke,
A., Wolf, L.: Vehicle-to-Vehicle IEEE 802.11p performance measurements at urban
intersections. In: IEEE International Conference on Communications (ICC 2012),
pp. 7131–7135 (2012)

15. Vandenberghe, W., Moerman, I., Demeester, P.: Approximation of the IEEE
802.11p standard using commercial off-the-shelf IEEE 802.11a hardware. In: 11th
International Conference on ITS Telecommunications (ITST 2011), pp. 21–26
(2011)

Idea: Embedded Fault Injection

Simulator on Smartcard

Maël Berthier1, Julien Bringer1, Hervé Chabanne1,2, Thanh-Ha Le1,
Lionel Rivière1,2, and Victor Servant1

1 SAFRAN Morpho
2 Télécom ParisTech

Identity & Security Alliance (The Morpho and Télécom ParisTech Research Center)

Abstract. Smartcard implementations are prone to perturbation at-
tacks that consist in changing the normal behavior of components in
order to create exploitable errors. Perturbation attacks could be realized
by different means such as laser beams involving costly and complex in-
jection platforms. In the context of black box or grey box evaluation,
there is a strong necessity of identifying fault injection vulnerabilities
in developed products. This is why we propose to integrate the injection
mechanism straight into the smartcard project. The embedded fault sim-
ulator program is thus integrated with the chip software and its effects
can be analyzed by side-channel observations, which is not the case with
any existing fault simulators. In this paper, we present this new concept
and its architectural design. We show then how to implement the sim-
ulator on a real smartcard product. Finally, to validate this approach,
we study the functional and side-channel impact of fault injection on a
standard algorithm provided by the host smartcard.

Keywords: Fault injection simulation, fault attack, smartcard, embed-
ded secure software.

1 Introduction

The telecommunication, banking and identity industry provides more and more
services handling sensitive and personal data. New institutional and consumer
services, entertainment and payment means confirm the trend. To avoid pri-
vacy/confidentiality disclosure, careful attention must be granted to this class
of component security: smartcards. While processing, the semi-conductor based
device leaks some physical signals such as electromagnetic radiations, the power
consumption or execution timings. This exposes the smartcard to side-channel
analysis as these signals are related to ongoing instruction sequence. Memory
read/write and buses activity are of particular interest for side-channel observa-
tions as they store or manipulate sensitive data and instructions.

Implementations are also prone to perturbation attacks that consist in chang-
ing the normal behavior of components in order to create exploitable errors. This

This work was partially funded by the French ANR project E-MATA HARI.

J. Jürjens, F. Piessens, and N. Bielova (Eds.): ESSoS 2014, LNCS 8364, pp. 222–229, 2014.
c© Springer International Publishing Switzerland 2014

Idea: Embedded Fault Injection Simulator on Smartcard 223

can be done because hardware logic gates rely on metal-based semi-conductors,
which can be tampered by any external mean influencing the electrical potentials.
Fault injection attacks which can be performed using laser beam or electromag-
netic pulse, abruptly increase the energy level of the chip causing uncontrolled
gates freeze or switches, hence the fault.

For secure smartcard based products, side-channel and fault attacks scenarios
must be considered. Security evaluations are often performed in black box or grey
box approach. Vulnerabilities could then be reported but without pinpointing
where or what causes the weakness. Replaying attacks following the same setup
and parameters brings no more information. However, with an embedded fault
simulator into an actual smartcard, replayed attacks can be monitored by side
channels from which we can take advantage to locate the vulnerabilities in the
source code.

The remainder of the paper is organized as follows: in Section 2, we review the
physical threats to smartcards. In Section 3, we confront existing fault simula-
tion solutions and show their limitations regarding our needs. We then describe
our new fault simulator concept in Section 4. Prior to conclusion, we show the
primary results obtained with our first implementation in Section 5.

2 Physical Threats to Smartcards

2.1 Side Channel Analysis

Since 1996, Kocher et al have attempted to break Diffie-Helmann, RSA, DSS
using timing attacks [1]. Simple Power Analysis (SPA) and Simple Electromag-
netic Analysis (SEMA)[2,3] aim to exhibit information depending on processed
data on plain reading of the associated trace. In contrast, a statistical analysis is
performed to point out dependencies between manipulated sensitive values and
traces. This can be realized with Differential Power Analysis (DPA)[4] such as
Correlation Power Analysis (CPA)[5] or Mutual Information Analysis MIA)[6].
DPA can be performed on simulated traces before the chip tape-out [7]. The
idea of countermeasures against side-channel leakages consists in reducing the
dependency between physical signals and manipulated data or instructions.

2.2 Fault Injection Attacks

Physical injection causes faults to spread across the chip resulting in operational
malfunction. This is the source of errors affecting code or data manipulation.
By controlling the injection precision in time and space, errors can be exploited
in order to skip instructions, flip bits or generate other unexpected behaviors.
In [8], Skorobogatov was able to avoid normal memory writes/erasures by dis-
rupting its operation with laser faults. Consequently, while sensitive data are
stored in memory, impeding the security memory flush with a fault attack could
lead to sensitive information leak. These kinds of flaws have to be taken into
consideration in the development phase of a smartcard-based product. Existing

224 M. Berthier et al.

solutions to guard against fault injection are based on detection, tolerance and
protection concepts.

In order to ensure a high level of security regarding established standards,
these attack paths must be considered and tested in laboratories. The success
of a laser injection does not depend only on spatial and temporal parameters.
The evaluator has to consider wavelength, beam diameter, exposure duration
and intensity. Laser beam is still an effective means to lead attacks but generally
involves costly and cumbersome injection platforms. Physical attacks could be
supplemented with full software simulations but at the expense of accuracy. For
smartcard product developers, which possess physical cards, simulation tech-
niques come to complement and validate physical injections through refinement
of attack scenario.

3 Fault Injection Simulation

We distinguish three simulation approaches: emulation, classical and high-level.
Classical simulation considers hardware models while high-level simulation fo-
cuses on the code only.

Considering a set of test parameters and a model for injecting fault, simulation
allows us to determine faulty outputs, undetected faults and the fault coverage.
Thereby, we can predict the behavior of a design prior to its physical implemen-
tation. Simulation models consider the impact of injected faults such as logic
evaluations at logic and binary level [9]. Even with a parallel approach, simula-
tion remains time consuming as the time complexity depends on the number of
logic gates and models to be considered.

In contrast, emulation involves hardware designed to operate in the same way
as smartcards, allowing runtime attacks [10,11]. By synthesizing design descrip-
tions onto FPGAs, it leverages hardware acceleration and outperforms classical
fault simulation. Therefore, emulators are bounded to specific devices, or a de-
vice family at best. For simulation and emulation, two main techniques stands
out, namely saboteur and mutant. A saboteur is an extra code or module while
a mutant [12] consists of a pre-existing code or a module that has been modified.
Using an external controller, they can inject expected faults at a precise location
(in code or module).

Static high-level simulation approaches consist of analyzing potential vulnera-
bilities at the source code level. The aim is to automatically detect vulnerabilities
in the context of complex fault model such as multiple fault injections. Noth-
ing ensures that the chosen fault effect is actually achievable but this approach
remains powerful for static analysis.

Classical and high-level simulation approaches allow very complex fault mod-
els and can consider overpowered attackers while the emulations, depending on
a physical implementation, is somehow less flexible but closer to an effective
smartcard behavior. But theses techniques rely on assumptions about targets
and fault models. For instance, even if an emulator tends to operate identical
to the final target, it is still physically different and thus, will respond in dif-
ferent ways under fault injections. In particular, none of them allows evaluators

Idea: Embedded Fault Injection Simulator on Smartcard 225

to perform side-channel observations and fault injections simultaneously. In the
context of black box or grey box evaluation, there is a strong need to identify
fault injection vulnerabilities in developed products. This is why we propose to
integrate the injection mechanism straight into the smartcard project. Here, a
project stands for the whole platform source code of a smartcard based product.
The embedded fault simulator program is thus integrated to the chip software
and its effects can be analyzed by real side-channel observations.

4 Embedded Injection Fault Simulator Concept

4.1 Concept

We have integrated a fault injection mechanism right into the smartcard provid-
ing control commands to setup attacks and retrieve relevant data. The embedded
fault mechanism acts as a self-test program with a high priority level, granting
access to critical registers, memories and execution flow of the smartcard. One
main advantage is that the very same fault simulator code could be embed-
ded into various smartcard models and families. Thus, developers have nothing
specific to worry about while working on projects for the referred component.

The fault simulator code is integrated to a common smartcard development
project such that interactions remain possible regardless of the running appli-
cation. After compilation and debug sessions, the project is loaded onto the
final smartcard. Thus, it uses the existing APDU communication standard for
I/O transmissions [13]. The embedded fault simulator can be seen as an oper-
ating system (OS) service to perform fault injections. Post-compilation param-
eters such as function identifiers (IDs) are saved for later use as inputs for the
simulator.

4.2 Advantages

Due to its operating range, different fault models can be obtained with the
embedded fault simulator such as code alterations (by control flow disruption)
or data modifications at the register level. Based on the byte skipping and thanks
to a configurable fault width (the number of bytes to be skipped), the instruction
skipping fault model, which is a realistic model [14], is reached.

With the embedded fault simulator there is no need to model any instruction
or physical behavior to reach a specific fault model. Compared to emulation, the
hardware used in our case is the final target, and thus, no bias is introduced by
peripheral devices. Furthermore, in contrast to simulation or emulation, injecting
fault with the embedded simulator does not rely on mechanisms that modify the
code of modules (Mutant) or add new ones (Saboteur) and it does not use any
external injection controller.

Hardware modules, for example, a hardware Data Encryption Standard (DES)
implementation do not constitute direct targets. However, their input parameters
are loaded into registers, which are set up according to software functionalities

226 M. Berthier et al.

(key loads, counter increments, mode of operation). Thereby, the embedded fault
simulator could disrupt software initialization, chaining or termination phases.

This approach has several advantages such that fault injections will occur
directly on the real physical component running a real project. This new embed-
ded approach allows side-channel observations, which is not the case with any
existing fault injection simulation technique.

In the fault injection context, unpredicted fault effects reduce the side-channel
simulationprecision.Powerand noisemodels rely on assumptions about its param-
eters and electromagnetic models are even more complex. As depicted in Figure
1, side-channel observations possible by our approach rely on real physical obser-
vations and traces contain all the device activity. This gives us the possibility to
perform fault simulations and side-channel observations simultaneously.

Fig. 1. Setup Functional Design

The simulator allows forward analysis, which consists of pinpointing fault vul-
nerabilities from code and confirms them with side-channel traces. But our main
goal is to take advantage of side-channel signals to reveal software weaknesses,
by analyzing patterns resulting from faulted execution traces.

In response to the lack of realism of simulation and the low success rate
of physical injection, the idea is to bring the mechanism responsible for faults
straight into the device under test. We keep the advantage of 100% injection
success rate whereas laser fault injection could have no effect due to too weak
beam intensity for instance. We also loose the spatial placement problem inherent
to physical injections. But as stated before, the simulator could help refining the
parameter range of physical injections.

4.3 Prototype Implementation

To demonstrate its feasibility, we have implemented a prototype on a real com-
ponent and reached the instruction skipping fault model as a proof-of-concept.
We studied the functional and the side-channel impact of fault injections on

Idea: Embedded Fault Injection Simulator on Smartcard 227

various functionalities provided by the host smartcard such as PIN verification,
software security mechanisms or cryptographic software implementations.

The instruction skipping fault model consists of bypassing a determined in-
struction or a set of instructions while a program is running. Depending on
the targeted instruction set, functional security calls or conditional tests can be
avoided resulting in code re-branching. This leads to security breaches, which
can potentially reveal information about the running code or manipulated data.

The high level code consists of a module interacting with the smartcard OS in
order to provide the simulator program as service to all other embedded applica-
tions. On the other hand, the mechanism in charge of fault injections is defined
at assembly level. The overhead resulting from the simulator integration repre-
sents no more than 1KB in its actual implementation, which is an overwhelming
advantage in smartcard development.

As the fault occurs in the hardware abstraction layer, the fault simulator can
impact all higher levels, from OS to application. The chosen method focuses on
functions that are tagged with IDs, but is not restricted to this class of target.
The fault simulator is embedded (and compiled) only in debug mode. There is
no embedded fault simulator compiled in release versions or on the smartcard
product to be shipped.

5 Fault Simulator Impact on Real Smartcards

5.1 Impact on Commands

For this study, we targeted a software implementation of the DES algorithm.
First, a fault-free run is launched from which we store states for further compar-
ison purposes. Those states consist of functional outputs and parameters from
the fault simulator. Then, faults are injected during the whole DES execution
and output behaviors are sorted out.

As shown in Table 1, eight behaviors were observed in our tests. Attack status
is to be considered with a functional point of view, i.e. the target function ter-
minates with or without the expected output. Functional failure simply means

Table 1. Encountered Functional Behavior Under Attack

Output Behavior Attack Status

Normal Normal −
Tampered Altered but functional Success

MuteCard Altered and detected Failure

KillCard Altered and detected as critical Failure

HardKill Critical, Reflash required even in debug Failure

Timeout No answer after 10s Failure

Freeze Software card disconnect have no effect Failure

Unknown Unexpected values and behavior ?

228 M. Berthier et al.

no readable output. Therefore, the fault occurs in a specific time frame, which
could be analyzed using side-channel observations in order to identify the pro-
gram rerouting. In the context of fault injection, the failure case has a high
probability to be reached. A freeze can occur mostly when the fault simu-
lator creates infinite loops or leads to illegal values. The latter happens if an
instruction is not included in the smartcard instruction set, consequently, the
card switches to the freeze state.

5.2 Impact on Side Channel

The traces in Figure 2 depict the code bypassing effect obtained with the Em-
bedded Fault Simulator. The light grey trace on top is with the embedded fault
simulator running, the black trace is the reference trace without the fault simu-
lator running. Before triggering the interruption (left part), the two traces match
perfectly in time and amplitude. This is expected as nothing has yet occurred,
but it shows the low footprint of the Embedded Fault Simulator.

Fig. 2. Side Channel Impact - Targeted Functionality

In the light grey trace undergoing the attack, the simulator is set to perform a
fault shortly after the entry point of a DES encryption. The right part depicts the
impact of the fault simulator that shows de-synchronization and de-coherence
between the two traces. A whole part is missing on the faulted trace (light
grey). Retrieving the simulator parameters that led to this particular case allows
us to point out the sensitive portion of the source code. It turned out that a
conditional branch was bypassed preventing a while loop to call an external
function. This results in an empty while loop that is observable on the faulted
trace. For example, a fault bypassing the so-called ’try counter’ during a PIN
verification would allow brute force attacks.

Idea: Embedded Fault Injection Simulator on Smartcard 229

6 Conclusion

In this paper we exposed a new concept for fault injection simulation directly
integrated into the smartcard source code and we proposed a very compact
implementation. We tested its capabilities on standard algorithms and reached
the instruction skipping fault model. With the Embedded Fault Simulator we can
reproduce behaviors obtained with laser injection. Moreover, this new approach
allows side-channel observations from which we can take advantage to refine
fault injection vulnerability detection in source code.

References

1. Kocher, P.C.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996)

2. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic Analysis: Concrete Results.
In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp.
251–261. Springer, Heidelberg (2001)

3. Sauvage, L., Danger, J., Guilley, S., Homma, N., Hayashi, Y.-I.: Advanced Analysis
of Faults Injected Through Conducted Intentional Electromagnetic Interferences.
IEEE Transactions on Electromagnetic Compatibility 55(3), 589–596 (2013)

4. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

5. Coron, J.-S., Kocher, P.C., Naccache, D.: Statistics and Secret Leakage. In: Frankel,
Y. (ed.) FC 2000. LNCS, vol. 1962, pp. 157–173. Springer, Heidelberg (2001)

6. Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual Information Analysis. In:
Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 426–442. Springer,
Heidelberg (2008)

7. Hartog, J., Verschuren, J., Vink, E., Vos, J., Wiersma, W.: PINPAS: A Tool for
Power Analysis of Smartcards. In: Security and Privacy in the Age of Uncertainty.
IFIP, vol. 122, pp. 453–457. Springer, US (2003)

8. Skorobogatov, S.: Optical Fault Masking Attacks. In: FDTC, pp. 23–29. IEEE
Computer Society (2010)

9. Berthomé, P., Heydemann, K., Kauffmann-Tourkestansky, X., Lalande, J.-F.: High
Level Model of Control Flow Attacks for Smart Card Functional Security. In:
ARES, pp. 224–229. IEEE Computer Society (2012)

10. Grinschgl, J., Aichinger, T., Krieg, A., Steger, C., Weiss, R., Bock, H., Haid, J.: Au-
tomatized Fault Attack Emulation for Penetration Testing. In: 12th International
Common Criteria Conference (2011)

11. Kosuri, V.K., Fazal, N.: FPGA Modeling of Fault-Injection Attacks on Crypto-
graphic Devices. IJERA 3, 937–943 (2013)

12. Machemie, J.-B., Mazin, C., Lanet, J.-L., Cartigny, J.: SmartCM a smart card fault
injection simulator. In: WIFS, pp. 1–6. IEEE (2011)

13. ISO/IEC 7816-4 Identification cards – Integrated circuit cards – Part 4: Organiza-
tion, security and commands for interchange(2013)

14. Moro, N., Dehbaoui, A., Heydemann, K., Robisson, B., Encrenaz, E.: Electro-
magnetic Fault Injection: Towards a Fault Model on a 32-bit Microcontroller. In:
FDTC, pp. 77–88. IEEE (2013)

Author Index

Amrani, Moussa 19

Bernat, Andrew R. 1
Berthier, Maël 222
Bettassa Copet, Piergiuseppe 45
Biskup, Joachim 35
Bowen, Jonathan P. 131
Breuer, Peter T. 131
Bringer, Julien 222
Bugliesi, Michele 161

Calzavara, Stefano 161
Cedillo Torres, Arturo 179
Chabanne, Hervé 222

Del Tedesco, Filippo 60
de Meer, Hermann 113

Elrakaiby, Yehia 19

Focardi, Riccardo 161
Fröschle, Sibylle 213

Ghani, Hamza 196

Hamid, Brahim 95
Hedin, Daniel 141
Hond, Brinio 179
Huisman, Marieke 77

Jacobson, Emily R. 1

Khan, Wilayat 161

Le, Thanh-Ha 222
Le Traon, Yves 19
Luna Garcia, Jesus 196

Magazinius, Jonas 141
Miller, Barton P. 1

Ngo, Tri Minh 77

Percebois, Christian 95
Petkov, Ivaylo 196
Pöhls, Henrich C. 113
Posegga, Joachim 113

Rivière, Lionel 222
Russo, Alejandro 60

Sabelfeld, Andrei 141
Samelin, Kai 113
Sands, David 60
Servant, Victor 222
Sisto, Riccardo 45
Stühring, Alexander 213
Suri, Neeraj 196

Tadros, Cornelia 35

van den Broek, Fabian 179

Williams, William R. 1

	Preface
	Conference Organization
	Table of Contents
	Model-Based Security
	Detecting Code Reuse Attacks with a Modelof Conformant Program Execution
	1 Introduction
	2 Background and Related Work
	2.1 Gaining Control of the Program
	2.2 Gadget Execution
	2.3 Gadget Discovery
	2.4 Other Approaches

	3 Conformant Program Execution
	3.1 Notation
	3.2 Conformant Program Execution
	3.3 Code Reuse Attacks
	3.4 Observed Conformant Program Execution

	4 Implementation
	4.1 Process Monitoring
	4.2 Instruction Validity
	4.3 Callstack Validity

	5 Evaluation
	6 Conclusion
	References

	Security@Runtime: A Flexible MDE Approachto Enforce Fine-grained Security Policies
	1 Introduction
	2 The Security@Runtime Approach
	2.1 Architecture Overview
	2.2 Security Rules (SR)
	2.3 Declarations and Dynamic Security Rules

	3 Example: The Medical System (MS)
	4 Implementation
	4.1 Application Monitoring Layer
	4.2 Policy Representation Layer
	4.3 The Policy Decision Point (PDP)
	4.4 Policy Update

	5 Validation
	6 Discussion and Related Work
	7 Conclusion
	References

	Idea: Towards a Vision of Engineering ControlledInteraction Execution for Information Services
	1 Introduction
	2 From a Required Vision to Available Ideas
	3 Summary of Controlled Interaction Execution
	4 Architectural Design
	5 Uniformity for Specific Engineering Tasks
	6 Experiences, Further Issues, and Concluding Remarks
	References

	Formal Methods
	Automated Formal Verificationof Application-specific Security Properties
	1 Introduction
	2 Related Work
	3 Background
	3.1 ProVerif
	3.2 The JavaSPI Framework
	3.3 Java Pathfinder

	4 The Extended JavaSPI
	5 The Case Study Application Development
	5.1 The Development Workflow
	5.2 Developing the JavaSPI Abstract Protocol Model
	5.3 Formal Protocol Verification
	5.4 Protocol Code Generation
	5.5 Application Logic Development
	5.6 Checking the Application Code

	6 Conclusions
	References

	Fault-Tolerant Non-interference
	1 Introduction and Overview
	2 Transient Fault Based Attacks on SME
	2.1 Syntax
	2.2 Direct Control Flow and Memory Faults
	2.3 Indirect Control Flow and Memory Faults

	3 Fault-Tolerant Secure Multi-execution
	3.1 Fault-Tolerant Layout for Code and Memory
	3.2 Control Flow Integrity
	3.3 Formal Definition of Fault-Tolerant SME

	4 Security Guarantees Provided by
	4.1 Semantics
	4.2 Modeling Faults
	4.3 Fault-Tolerant Non-interference

	5 Transparency Guarantees Provided by
	6 Related Work
	7 Conclusion and Further Work
	References

	Quantitative Security Analysis for Programswith Low Input and Noisy Output
	1 Introduction
	2 Preliminaries
	2.1 Probabilistic Distribution
	2.2 Min-entropy
	2.3 Information-Theoretic Channel
	2.4 Basic Settings for the Analysis

	3 Quantitative Security Analysis for Programs with Low Input
	3.1 Classical Models of Quantitative Security Analysis
	3.2 Leakage of Programs with Low Input
	3.3 Case Studies

	4 Adding Noise to the Output
	4.1 Negative Information Flow
	4.2 Noisy-Output Policy

	5 Related Work
	6 Conclusions and Future Work
	References

	A Modeling and Formal Approach for the PreciseSpecification of Security Patterns
	1 Introduction
	2 The Nature of Patterns within PBSE (Pattern-Based System and software Engineering)
	2.1 Motivational Example: Secure Communication Pattern (SCP)
	2.2 Definitions and Concepts

	3 Pattern Modeling Process
	3.1 Pattern Specification Metamodel (SEPM)
	3.2 Specification Process

	4 Pattern Validation Process
	4.1 Pattern Formalization
	4.2 Pattern Validation
	4.3 Correspondence between DIPM and DSPM

	5 Related Works
	6 Conclusion and Future Work
	References

	On the Relation between Redactableand Sanitizable Signature Schemes
	1 Introduction
	2 Preliminaries and Security of SSS and RSS
	3 Generic Transformation
	4 Conclusion and Future Work
	References

	Idea: Towards a Working Fully HomomorphicCrypto-processor
	1 Introduction
	2 Word Size and Hardware Design
	3 ABC Encoding
	4 Conclusion
	References

	Web and Mobile Security
	Architectures for Inlining Security Monitors inWeb Applications
	1 Introduction
	2 Architectures
	2.1 Browser Extension
	2.2 Web Proxy
	2.3 Suffix Proxy (Service)
	2.4 Integrator
	2.5 Summary of Architectures

	3 Implementation
	3.1 Browser Extension
	3.2 Web Proxy
	3.3 Suffix Proxy (Service)

	4 Instantiation
	5 Related Work
	6 Conclusions
	References

	Automatic and Robust Client-Side Protectionfor Cookie-Based Sessions
	1 Introduction
	2 Background
	2.1 Session Cookies: Attacks and Defenses
	2.2 Formal Browser Models
	2.3 Reactive Noninterference

	3 Formalizing Session Security
	3.1 Extending Featherweight Firefox
	3.2 Threat Model
	3.3 Noninterference for Session Cookies

	4 Strengthening Session Security
	4.1 Session Cookie Protection in Existing Systems
	4.2 The Need for a Client-Side Defense
	4.3 Client-Side Protection with CookiExt
	4.4 Noninterference in Theory and in Practice
	4.5 Experiments

	5 Related Work
	6 Conclusion
	References

	Security Testing of GSM Implementations
	1 Introduction
	2 GSM
	3 Fuzzing
	3.1 Fuzzing GSM Phones

	4 Our Fuzzing
	4.1 How Do We Fuzz?
	4.2 Fuzzing Results
	4.3 Related Work

	5 Conclusions and Directions for Future Work
	References

	Applications
	User-Centric Security Assessment of SoftwareConfigurations: A Case Study
	1 Introduction
	2 Motivating Case Study: Security-Aware Selection of Amazon Machine Images
	3 Vulnerability Score Aggregation Based on Attack Trees
	3.1 Building the Base Attack Pattern
	3.2 Quantitatively Reasoning about Attack Trees

	4 Economic Driven Weighting of Security Goals
	4.1 Including The Economic Perspective
	4.2 Running Example – Business Profiling
	4.3 Economic Driven Approach for Weighting Security Goals

	5 MCDA-Based Ranking of Software Configurations
	6 Evaluation: Security Ranking of Amazon EC2’s AMIs
	6.1 Experimental Setup
	6.2 Evaluating the Methodology’s Coverage
	6.3 Ranking Existing AMIs

	7 Related Work
	8 Conclusions
	References

	Idea: Security Engineering Principles for DayTwo Car2X Applications
	1 Introduction
	2 The ETSI Communication and Security Architecture
	3 Trust Assumptions and Robustness Principles
	4 How Much Damage Can You Do with One Set of User Credentials?
	5 Discussion and Solutions
	References

	Idea: Embedded Fault InjectionSimulator on Smartcard
	1 Introduction
	2 Physical Threats to Smartcards
	2.1 Side Channel Analysis
	2.2 Fault Injection Attacks

	3 Fault Injection Simulation
	4 Embedded Injection Fault Simulator Concept
	4.1 Concept
	4.2 Advantages
	4.3 Prototype Implementation

	5 Fault Simulator Impact on Real Smartcards
	5.1 Impact on Commands
	5.2 Impact on Side Channel

	6 Conclusion
	References

	Author Index

