
Erik Maehle Kay Römer
Wolfgang Karl Eduardo Tovar (Eds.)

 123

LN
CS

 8
35

0

27th International Conference
Lübeck, Germany, February 25-28, 2014
Proceedings

Architecture of
Computing Systems –
ARCS 2014

Lecture Notes in Computer Science 8350
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Erik Maehle Kay Römer
Wolfgang Karl Eduardo Tovar (Eds.)

Architecture of
Computing Systems –
ARCS 2014

27th International Conference
Lübeck, Germany, February 25-28, 2014
Proceedings

13

Volume Editors

Erik Maehle
Universität zu Lübeck, Institut für Technische Informatik
Lübeck, Germany
E-mail: maehle@iti.uni-luebeck.de

Kay Römer
Graz University of Technology, Institute of Technical Informatics
Graz, Austria
E-mail: roemer@tugraz.at

Wolfgang Karl
Karlsruhe Institute of Technology (KIT)
Institute of Computer Science and Computer Engineering
Karlsruhe, Germany
E-mail: karl@kit.edu

Eduardo Tovar
CISTER-ISEP, Polytechnic Institute of Porto
Porto, Portugal
E-mail: emt@isep.ipp.pt

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-319-04890-1 e-ISBN 978-3-319-04891-8
DOI 10.1007/978-3-319-04891-8
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014930986

CR Subject Classification (1998): C.2, C.5.3, D.4, D.2.11, H.3.5, H.4, H.5.4

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The 27th International Conference on Architecture of Computing Systems
(ARCS 2014) was hosted by the Institute of Computer Engineering at the Uni-
versity of Luebeck, Germany, from February 25 to 28, 2014 and continued the
long-standing ARCS tradition of reporting top-notch results in computer ar-
chitecture and related areas. It was organized by the special interest group on
Architecture of Computing Systems of the GI (Gesellschaft für Informatik e.V.)
and ITG (Informationstechnische Gesellschaft im VDE), where the latter held
the organizational and financial responsibility for the 2014 edition. The con-
ference was also supported by IFIP (International Federation of Information
Processing), Working Group 10.3 on Concurrent Systems.

The special focus of ARCS 2014 was on connecting computing with the phys-
ical world. This reflects the fact that more and more computing systems are
deeply embedded into the real world, closely interacting with their physical en-
vironment as well as with human users, forming large and dynamic distributed
embedded systems. These cyber-physical systems provide new opportunities and
challenges for computer and systems architecture, such as ultra-low power con-
sumption, while at the same time meeting real-time constraints and depend-
ability requirements. Novel concepts for self-organization and adaptation are
required to address highly dynamic environments, networks, and changing user
requirements. Traditional topics of computer architecture, in particular in the
area of parallel and high performance computing, are also advancing rapidly,
driven mainly by new multi/many-core systems and accelerators.

The conference attracted 44 submissions from 23 countries. Each paper was
assigned to at least three Program Committee members for reviewing. The Com-
mittee selected 20 submissions for publication with authors from 14 countries.
These papers were organized in six sessions covering topics like parallelization
methods, self-organization and trust, system design, sensor systems, virtualiza-
tion or dependability aspects. Three invited talks on “Control of Cyber-physical
Systems” by Karl H. Johansson, KTH Royal Institute of Technology, Sweden;
“Approximate Computing” by Ravi Nair, IBM Thomas J. Watson Research
Center, Yorktown Heights, USA; and “High Performance Computers for Earth
System Science” by Thomas Ludwig, German Climate Computing Centre, Ham-
burg, Germany, completed the strong technical program. Four workshops focus-
ing on specific sub-topics of ARCS were organized in conjunction with the main
conference, one on dependability and fault tolerance, one on multi-objective
many-core design, one on parallel systems and algorithms, as well as one on
self-optimization in organic and autonomic computing systems.

We would like to thank the many individuals who contributed to the success
of the conference, in particular the members of the ProgramCommittee as well as
the additional external reviewers, for the time and effort they put into reviewing

VI Preface

the submissions carefully and selecting a high-quality program. Many thanks
also to all authors for submitting their work. The workshops were organized
and coordinated by Walter Stechele and Thomas Wild, the proceedings were
compiled by Thilo Pionteck, and the financial issues managed by Karl-Erwin
Großpietsch. The local arrangements were coordinated by Christian Renner,
and the website was maintained by Steffen Prehn. Our gratitude goes to all of
them as well as all of the other people, in particular the ITG office team, who
helped in the organization of ARCS 2014.

December 2013 Erik Maehle
Kay Römer

Wolfgang Karl
Eduardo Tovar

Organization

General Co-chairs

Erik Maehle Universität zu Lübeck, Germany
Kay Römer Graz University of Technology, Austria

Program Co-chairs

Wolfgang Karl Karlsruhe Institute of Technology, Germany
Eduardo Tovar ISEP-IPP Porto, Portugal

Workshop and Tutorial Co-chairs

Walter Stechele Technische Universität München, Germany
Thomas Wild Technische Universität München, Germany

Publication Chair

Thilo Pionteck Hamburg University of Technology, Germany

Finance Chair

Karl-Erwin Großpietsch St. Augustin, Germany

Local Organization

Christian Renner Universität zu Lübeck, Germany

Program Committee

Michael Beigl Karlsruhe Institute of Technology, Germany
Mladen Berekovic Technische Universität Braunschweig,

Germany
Koen Bertels Delft University of Technology,

The Netherlands

VIII Organization

Jürgen Brehm Leibniz Universität Hannover, Germany
Uwe Brinkschulte Goethe University Frankfurt am Main,

Germany
Kaan Bur Lund University, Sweden
João M.P. Cardoso FEUP/University of Porto, Portugal
Luigi Carro Universidade Federal do Rio Grande do Sul,

Brazil
Alfons Crespo Universitat Politècnica de València, Spain
Martin Daněk daiteq, Czech Republic
Koen De Bosschere Universiteit Gent, Belgium
Nikitas Dimopoulos University of Victoria, Canada
Arvind Easwaran Nanyang Technological University, Singapore
Ahmed El-Mahdy Egypt-Japan University for Science and

Technology, Egypt
Tullio Facchinetti University of Pavia, Italy
Fabrizio Ferrandi Politecnico di Milano, Italy
Dietmar Fey Friedrich-Alexander-Universität

Erlangen-Nürnberg, Germany
Pierfrancesco Foglia Università di Pisa, Italy
William Fornaciari Politecnico di Milano, Italy
Björn Franke University of Edinburgh, UK
Roberto Giorgi Università di Siena, Italy
Daniel Gracia Pérez Thales Research & Technology, France
Jan Haase Technische Universität Wien, Austria
Jörg Hähner Universität Augsburg, Germany
Jörg Henkel Karlsruhe Institute of Technology, Germany
Andreas Herkersdorf Technische Universität München, Germany
Christian Hochberger Technische Universität Darmstadt, Germany
Michael Hübner Ruhr-Universität Bochum, Germany
Gert Jervan Tallinn University of Technology, Estland
Ben Juurlink Technische Universität Berlin, Germany
Shinpei Kato Nagoya University, Japan
Jörg Keller Fernuniversität Hagen, Germany
Andreas Koch Technische Universität Darmstadt, Germany
Anis Koubaa Prince Sultan University,

Saudi Arabia/CISTER Research Unit,
Portugal

Hana Kubátová Czech Technical University in Prague,
Czech Republic

Olaf Landsiedel Chalmers University of Technology, Sweden
Paul Lukowicz DKFI, Kaiserslautern, Germany
Pedro José Marrón University of Duisburg-Essen and Fraunhofer

FKIE, Germany
Alejandro Masrur Technische Universität Chemnitz, Germany

Organization IX

Christian Müller-Schloer Leibniz Universität Hannover, Germany
Thomas Nolte Mälardalen University, Sweden
Roman Obermeisser Universität Siegen, Germany
Alex Orailoglu University of California, San Diego, USA
Luigi Palopoli University of Trento, Italy
Carlos Eduardo Pereira Universidade Federal do Rio Grande do Sul,

Brazil
Pascal Sainrat IRIT - Université de Toulouse, France
Luca Santinelli Onera, France
Silvia Santini Technische Universität Darmstadt, Germany
Toshinori Sato Fukuoka University, Japan
Martin Schulz Lawrence Livermore National Laboratory, USA
Karsten Schwan Georgia Institute of Technology, USA
Bernhard Sick Universität Kassel, Germany
Leonel Sousa INESC-ID, IST, Universidade de Lisboa,

Portugal
Rainer G. Spallek Technische Universität Dresden, Germany
Olaf Spinczyk Technische Universität Dortmund, Germany
Benno Stabernack Fraunhofer HHI, Germany
Walter Stechele Technische Universität München, Germany
Djamshid Tavangarian Universität Rostock, Germany
Jürgen Teich Friedrich-Alexander-Universität

Erlangen-Nürnberg, Germany
Martin Törngren KTH Royal Institute of Technology, Sweden
Pedro Trancoso University of Cyprus, Cyprus
Carsten Trinitis Technische Universität München, Germany
Theo Ungerer Universität Augsburg, Germany
Hans Vandierendonck Queen’s University Belfast, UK
Stephane Vialle SUPELEC, France
Lucian Vintan Lucian Blaga University of Sibiu, Romania
Thiemo Voigt SICS and Uppsala University, Sweden
Klaus Waldschmidt Goethe University Frankfurt am Main,

Germany
Stephan Wong Delft University of Technology,

The Netherlands

Additional Reviewers

Hussam Amrouch Mikael Åsberg
Kostiantyn Berezovskyi Yvonne Bernard
Anthony Brandon David de La Chevallerie
Chi Ching Chi Andreas Diavastos
Ahmed Elhossini Lei Feng
Florian Haas Uwe Jaenen
Reinier van Kampenhout Nima Moghaddami Khalilzad

X Organization

Erol Koser Tilman Küstner
Björn Lisper Pedro Miguens
Jörg Mische Nuno Neves
Julian Oppermann Ahsan Qamar
Johny Paul Rafael Rosales
Sebastian Schlingmann Nuno Sebastião
Matthias Sommer Henning Spiegelberg
Ericles Sousa Florian Stock
Volker Wenzel Ioannis Zgeras
Xinhai Zhang

Invited Talks

Karl Hendrik Johansson, KTH Royal Institute of Technology,
Sweden

Control of Cyber-physical Systems: Fundamental Challenges and Ap-
plications to Transportation Networks

Cyber-physical systems are engineered systems whose operations are monitored,
coordinated, controlled, and integrated by computing and communication cores
interacting with humans and the physical environment. In this talk, we will dis-
cuss some recent developments on control architectures for cyber-physical sys-
tems. Motivated by application projects in goods transportation, we will consider
the influence of local and partial plant state and model information on the syn-
thesis problem. Some fundamental bounds relating global system performance
with local information exchange and physical interactions will be introduced.
Details will be given on an emerging goods transportation system based on
fleets of platooning heavy-duty vehicles utilizing vehicle-to-vehicle and vehicle-
to-infrastructure communications. Some preliminary results from a large-scale
evaluation currently being performed on the highway road network in North-
ern Europe will be discussed, showing the fuel saving and transport efficiency
potentials of the system but also some of the challenges with humans in the
loop and technology transfer. The presentation will be based on joint work with
collaborators at KTH and at Scania.

Ravi Nair, IBM Thomas J. Watson Research Center, Yorktown
Heights, NY, USA

Approximate Computing

There is an unprecedented amount of data being produced in the world to-
day. Yet, cost and energy considerations are limiting a corresponding growth
in the compute capability needed to process and analyze this data in a con-
ventional manner. The adoption of computing devices by a wider segment of
the world’s population is leading to computing of the sort where the results
are often ephemeral, and where there is a greater acceptance of approximate
results. In addition though, approximate results are acceptable even in enter-
prise computing where, in comparison to traditional activities like accounting
and inventory control, new activities such as decision support, search and data-
mining are consuming increasingly greater cycles and are frequently performed
on input data that may be unreliable. It is becoming evident that there are sig-
nificant computational and energy efficiencies to be gained by relaxing the ex-
pectation of preciseness in today’s computational models and moving to a more

XII Invited Talks

approximate computing model. This talk will examine the implications of this
notion of approximate computing on the exploitation of new technology and on
the design of future systems.

Thomas Ludwig, DKRZ Deutsches Klimarechenzentrum GmbH,
Germany

High Performance Computers for Earth System Science

Earth system science has a long tradition in using high performance computers.
The process of gaining new insight heavily depends on the available compute
power. For decades we observe an exponential increase in this compute power.
With the advent of Exascale architectures we are faced with new challenges for
this research community. The talk will highlight options for new types of research
as well as risks to be able to conduct specific investigations.

Table of Contents

Parallelization: Applications and Methods

Resource-Aware Harris Corner Detection Based on Adaptive Pruning . . . 1
Johny Paul, Walter Stechele, Manfred Kröhnert, Tamim Asfour,
Benjamin Oechslein, Christoph Erhardt, Jens Schedel,
Daniel Lohmann, and Wolfgang Schröder-Preikschat

Victim Selection Policies for Intel TBB: Overheads and Energy
Footprint . 13

Alexandru C. Iordan, Magnus Jahre, and Lasse Natvig

Non-preemptive Scheduling of Real-Time Software Transactional
Memory . 25

António Barros and Lúıs Miguel Pinho

Self-Organization and Trust

Trust-Enhanced Self-configuration for Organic Computing Systems 37
Nizar Msadek, Rolf Kiefhaber, Bernhard Fechner, and Theo Ungerer

Estimation of Reward and Decision Making for Trust-Adaptive Agents
in Normative Environments . 49

Jan Kantert, Yvonne Bernard, Lukas Klejnowski, and
Christian Müller-Schloer

An Adaptive Personal Learning Environment Architecture 60
Alexander Kiy, Ulrike Lucke, and Dietmar Zoerner

Middleware for Dynamically Adaptive Systems . 72
Sihem Loukil, Slim Kallel, and Mohamed Jmaiel

System Design I

Mahler: Sketch-Based Model-Driven Virtual Prototyping 85
Rafael Rosales, Michael Glaß, and Jürgen Teich

Formal Architecture Specification for Time Analysis 98
Hajer Herbegue, Mamoun Filali, and Hugues Cassé

XIV Table of Contents

Hardware APIs: A Software-Centric Approach for Automated
Derivation of MPSoC Hardware Structures Based on Static Code
Analysis . 111

Matthias Meier, Mark Breddemann, and Olaf Spinczyk

uBuild: Automated Testing and Performance Evaluation of Embedded
Linux Systems . 123

Fabio Erculiani, Luca Abeni, and Luigi Palopoli

System Design II and Sensor Systems

A Two-Tier Design Space Exploration Algorithm to Construct a GPU
Performance Predictor . 135

S. Ali Mirsoleimani, Ali Karami, and Farshad Khunjush

A Sensor Network Architecture for Urban Traffic State Estimation
with Mixed Eulerian/Lagrangian Sensing Based on Distributed
Computing . 147

Edward Canepa, Enas Odat, Ahmad Dehwah, Mustafa Mousa,
Jiming Jiang, and Christian Claudel

From Smart Clothing to Smart Table Cloth: Design and Implementation
of a Large Scale, Textile Pressure Matrix Sensor . 159

Bo Zhou, Jingyuan Cheng, Mathias Sundholm, and Paul Lukowicz

Virtualization: I/O, Memory, Cloud

Performance Isolation Exposure in Virtualized Platforms with PCI
Passthrough I/O Sharing . 171

Andre Richter, Christian Herber, Holm Rauchfuss,
Thomas Wild, and Andreas Herkersdorf

3D DRAM and PCMs in Processor Memory Hierarchy 183
Krishna Kavi, Stefano Pianelli, Giandomenico Pisano,
Giuseppe Regina, and Mike Ignatowski

A Service-Oriented Architecture for Virtualizing Robots
in Robot-as-a-Service Clouds . 196

Anis Koubaa

Dependability: Safety, Security, and Reliability
Aspects

Towards Code Safety with High Performance . 209
Ghazaleh Nazarian, Luigi Carro, and Georgi N. Gaydadjiev

Table of Contents XV

Detecting Compromised Programs for Embedded System
Applications . 221

Xiaojun Zhai, Kofi Appiah, Shoaib Ehsan, Wah M. Cheung,
Gareth Howells, Huosheng Hu, Dongbing Gu, and
Klaus McDonald-Maier

Independent Kernel/Process Checkpointing on Non-Volatile Main
Memory for Quick Kernel Rejuvenation . 233

Shuichi Oikawa

Author Index . 245

Resource-Aware Harris Corner Detection
Based on Adaptive Pruning�

Johny Paul1, Walter Stechele1, Manfred Kröhnert2,
Tamim Asfour2, Benjamin Oechslein3, Christoph Erhardt3,

Jens Schedel3, Daniel Lohmann3, and Wolfgang Schröder-Preikschat3

1 Technical University of Munich, Germany
2 Karlsruhe Institute of Technology, Germany

3 Friedrich-Alexander University Erlangen-Nuremberg, Germany
{johny.paul,walter.stechele}@tum.de,
{manfred.kroehnert,asfour}@kit.edu,

{oechslein,erhardt,schedel,lohmann,wosch}@cs.fau.de

Abstract. Corner-detection techniques are being widely used in computer vision
– for example in object recognition to find suitable candidate points for feature
registration and matching. Most computer-vision applications have to operate on
real-time video sequences, hence maintaining a consistent throughput and high
accuracy are important constrains that ensure high-quality object recognition. A
high throughput can be achieved by exploiting the inherent parallelism within the
algorithm on massively parallel architectures like many-core processors. How-
ever, accelerating such algorithms on many-core CPUs offers several challenges
as the achieved speedup depends on the instantaneous load on the processing el-
ements. In this work, we present a new resource-aware Harris corner-detection
algorithm for many-core processors. The novel algorithm can adapt itself to the
dynamically varying load on a many-core processor to process the frame within a
predefined time interval. The results show a 19% improvement in throughput and
an 18% improvement in accuracy.

Keywords: Harris corner detection, resource-aware programming, invasive com-
puting, adaptive pruning.

1 Introduction

Corner detection is used within computer-vision algorithms like motion detection, im-
age registration, video tracking, feature descriptors for object recognition etc. to infer
the contents of an image. Several corner detectors exist today in the literature and com-
parative evaluations have shown that the Harris [9] corner detectors achieve some of
the best results. Recent evaluations in real-time applications such as video tracking [7],
visual SLAM [8] and robotic navigation [19] have demonstrated that the preferred
way to detect features in a scene is the use of a Harris detector in combination with
more complex feature descriptors. Harris detectors are also used in the humanoid robot

� This work was supported by the German Research Foundation (DFG) as part of the Transre-
gional Collaborative Research Centre “Invasive Computing” (SFB/TR 89).

E. Maehle et al. (Eds.): ARCS 2014, LNCS 8350, pp. 1–12, 2014.
c© Springer International Publishing Switzerland 2014

2 J. Paul et al.

ARMAR-III [2] for recognizing and tracking textured objects [3]. A humanoid robot
like ARMAR has to handle various tasks like vision, motion planning, speech recogni-
tion, etc. with the workload spread across multiple industrial PCs. The data from var-
ious sensors flows into the processing system, each dedicated for a different task like
computer vision, motion control, speech processing, etc. Similarly, the humanoid robot
Asimo uses two PCs, a control and planning processor plus an additional digital signal
processor (DSP) for sound processing [18]. Two processor boards were also used in
the humanoid robots HRP-2 [11] and HRP-4C [12]. The Hand Arm System from DLR
[10] has three layers of computing hierarchy consisting of COTS PCs for control ap-
plications, an auxiliary Linux workstation for user interfaces and a composition layer
constituted by FPGAs for hardware-accelerated tasks.

The use of multiple PCs results in high power consumption, low interconnect band-
width and occupies a large amount of space on the robot. The use of many-core proces-
sors can mitigate some of the above mentioned problems on account of their immense
computational power assembled in a compact design. However, the available resources
on a many-core chip (processing elements (PEs), memories, interconnects, etc.) have
to be shared among various applications running concurrently, which leads to unpre-
dictable execution time or frame drops for vision applications. Our work focuses on
analyzing the effect of sharing resources on a conventional Harris detector and propose
a new resource-aware Harris detector to resolve the issues. Evaluations shows that the
newly proposed Harris detector is capable of adapting to varying load conditions on the
many-core processor and delivers better results in terms of throughput, accuracy and la-
tency. This work also describes how to distribute the workload on the massively parallel
PEs for best results, avoiding frame drops, even under varying load conditions.

This paper is organized as follows. Section 2 describes the state-of-the-art algorithms
used for corner detection and different schemes using for accelerating the algorithm.
Section 3 provides a brief overview of the conventional Harris detector and describes
some of the challenges with implementing a conventional Harris detector on many-core
processors. Section 4 starts with a brief description of various pruning techniques to
accelerate corner detection. This is followed by the description of the resource-aware
corner detector using an enhanced pruning technique. Section 5 provides an overview of
the many-core system used for evaluation and Section 6 describes the implementation
and results, followed by Section 7, which concludes the paper.

2 State of the Art

Several techniques exist today to detect corners in an image. These include Harris corner
detection [9], SUSAN [20], FAST [17], etc. Independent of the technique used, corner
detection is a compute-intensive task and two main techniques have been used to speed
it up. The first approach focuses on algorithmic techniques to reduce the computational
complexity, while the second employs hardware accelerators or graphics processing
units (GPUs) to accelerate the conventional algorithm. Independent of the technique
used, they all pose a challenge to the programmer; how to control the worst-case execu-
tion time and avoid frame drops when the resources on the processor are shared across
multiple applications. High throughput can be guaranteed using hardware accelerators

Resource-Aware Harris Corner Detection Based on Adaptive Pruning 3

based on field-programmable gate arrays (FPGAs). However, the flexibility offered by
FPGAs is quite low and requires very high effort in terms of design, implementation
and verification. On the other hand, GPUs are very powerful and provide significant
acceleration over small multi-core processors due to their massively parallel architec-
ture. However, they consume very high power, are less flexible, difficult to debug and
require data transfers between processor and the hardware accelerator, which increases
the overall latency.

The use of many-core processors can overcome many of the above mentioned hur-
dles as they offer higher computing power necessary to accelerate the algorithms, while
at the same time retaining the simplicity in programming and debugging. Today it is
possible to put onto a single chip a large number of general-purpose cores, certainly
tens of highly complex cores as on Intel’s Single-Chip Cloud Computer [15] or Tilera’s
64-core processor [4]. A major challenge associated with todays many-core systems is
the question of how to program such systems to make best use of their computing power.
In order to address these issues, [14] propose a new resource-aware operating system
(ROS) for many-core hardware, with direct support for parallel applications and a scal-
able kernel. ROS offers a resource-management scheme based on resource provisioning
which enables system-wide, efficient accounting and utilization of resources. Resources
such as cores and memory are explicitly granted to the applications and revoked. The
kernel exposes information about a process’s current resource allocation and the sys-
tem’s utilization, and allows the application programs to make requests based on this
information.

The demand for more stringent (OS-supported) resource awareness was also pro-
posed in [21], put forward by a new programming methodology called Invasive
Computing. The main idea and novelty of Invasive Computing is that it extends resource-
aware programming support to various layers in the many-core system like resource-
aware OS, communication interfaces like Network-on-Chip (NoC), and PEs. Programs
running on this system get the ability to explore and dynamically spread their compu-
tations to neighboring processors and execute portions of code with a high degree of
parallelism in parallel based on the availability of resources. Once the program termi-
nates or if the degree of parallelism is expected to be lower again, the program may
enter a retreat phase. At this point, the resources can be deallocated and execution re-
sumed, for example, sequentially on a single processor. In this work, a resource-aware
Harris corner-detection algorithm is evaluated using the Invasive Computing method-
ology. However, the concepts demonstrated in this work are platform-independent and
can be demonstrated on any resource-aware platform including ROS.

3 Harris Corner Detection

This section provides a brief overview of the conventional Harris corner-detection al-
gorithm. The calculation is based on the local auto-correlation function that is approxi-
mated by a matrix M over a small window w for each pixel p(x, y):

M =

[∑
w W (x)I2x

∑
w W (x)IxIy∑

w W (x)IxIy
∑

w W (x)I2y

]
=

[
a b
c d

]
(1)

4 J. Paul et al.

where Ix and Iy are horizontal and vertical intensity gradients, respectively, and W (x)
is an averaging filter that can be a box or a Gaussian filter. The eigenvalues λ1 and λ2

(where λ1 ≥ λ2) indicate the type of intensity change in the window w around p(x, y).
If both λ1 and λ2 are small, p(x, y) is a point in a flat region. If λ1 is large and λ2

is small, p(x, y) is an edge point and if both λ1 and λ2 are large, p(x, y) represents a
corner point. Harris combines the eigenvalues into a single corner measure R as shown
in (2) (k is an empirical constant with value 0.04 to 0.06). Once the corner measure is
computed for every pixel, a threshold is applied on the corner measures to discard the
obvious non-corners.

R = λ1λ2 − k · (λ1 + λ2)
2 = (ac− b2)− k · (a+ c)2 (2)

Corner detection is often employed as the first step in computer-vision applications
with real-time video input. Hence, the application has to maintain a steady throughput
and good response time to ensure quality results. However, the presence of
other high-priority tasks may alter the behavior of the corner-detection algorithm. To
evaluate such a dynamically changing situation, we analyzed the behavior of the con-
ventional Harris detector on a many-core processor with 32 PEs. Fig. 1 shows resource-
allocation schemes (left) along with the execution-time profiles (right). A video input
with 640 × 480 pixels at 10 frames per second was used, with the test running for
20 seconds. To evaluate the impact of other applications running concurrently on the
many-core system, applications like audio processing, motor control, etc. were used.
These applications create dynamically changing load on the processor based on what
the robot is doing at that point in time. For instance, the speech-recognition application
is activated when the user speaks to the robot. The conventional OS scheduler schedules
the threads of the applications based on the overall system load. Sharing of available
resources resulted in the execution-time profile shown in Fig. 1. It can be seen that the
execution time varies from 0 to 430 milliseconds, based on the load condition. A lack
of sufficient resources leads to very high processing intervals or frame drops (a process-
ing interval of zero represents a frame drop). The number of frames dropped during
this evaluation is as high as 20% and the worst-case latency increased by 4.3x (100
milliseconds to 430 milliseconds). Frame drops reduce the quality of the results and the
robot may lose track of the object if too many consecutive frames are dropped. In order
to overcome these challenges, we present a modified Harris detector for many-core pro-
cessors capable of allocating resources based on the current workload. The algorithm
can also adapt the workload based on the currently available resources. The following

0

100

200

300

400

1 21 41 61 81 101 121 141 161 181

Du
ra

tio
n

(m
ill

ise
co

nd
s)

Frame no.
Expected Observed

0

4

8

12

16

1 21 41 61 81 101 121 141 161 181

Co
re

 co
un

t

Frame No.
Required Available

Fig. 1. Variation in processing interval based on available resources

Resource-Aware Harris Corner Detection Based on Adaptive Pruning 5

sections demonstrate how the resources are claimed and how the processing interval
can be constrained to guarantee consistent throughput and processing intervals.

4 Pruning Techniques

A pruning technique to reduce the computational complexity of the conventional Harris
detector is described in [22]. This technique relies on the fact that in most situations, the
obvious non-corners constitute a large majority of the image. Hence the Harris detectors
incur a lot of redundant computations as they evaluate the entire image for a high corner
response. From (2), R is most influenced by the term (ac − b2) as the two (a + c)
terms cancel out. For a good corner, R needs to be a large value. Hence maximizing
(ac−b2) can select good corners without explicit eigenvalue computation. However, this
technique cannot demonstrate a noticeable speedup on platforms with FPU as the pixels
are pruned away in the final step, just before eigenvalue computation. The limitations
in [22] can be resolved using the multi-stage pruning technique described in [1]. The
main difference between these techniques is that the second one can prune away pixels
at a very early stage. A corner response (CR) is defined as:

CR = min (|Ix| , |Iy |) , (3)

where Ix and Iy are the horizontal and vertical pixel-intensity derivatives. If CR is
greater than a predefined gradient threshold, the pixel is a corner candidate and should
be retained for processing in the subsequent steps. This technique ensures that the non-
corner pixels are removed prior to more intensive processing. All candidate corners
from the previous steps are further assessed by computing the eigenvalues as in the
conventional Harris detector (2). Finally a non-maxima suppression is applied to sup-
press the corners that are close to each other. Some of the challenges posed by the
conventional Harris detector on a many-core system can be resolved using the pruning
techniques described above. In situations where the system is under-utilized, the thresh-
old can be reduced, thereby processing more pixels and achieving a higher accuracy,
whereas increasing the threshold can prune away more pixels when the processing sys-
tem is heavily loaded by other high-priority tasks. Fig. 3 shows the relation between
the threshold and the processing interval. The results were captured by applying the
pruning technique to six different video sequences whose snapshots are shown in Fig. 2
(each video sequence consists of 200 frames). In order to evaluate the impact of pruning
on the accuracy of detected corners, we use the metrics named precision and recall as
proposed in [13]. The value of recall measures the number of correct matches out of

Bricks kitchen Corridor Window Bunny Cereal

Fig. 2. Snapshot of the video-sequences used for evaluation

6 J. Paul et al.

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11 12

Pe
rc

en
ta

ge
 (%

)

Threshold

Fig. 3. Multi-stage pruning technique

0

20

40

60

80

100

1 11 21 31 41 51 61 71 81 91

Pe
rc

en
ta

ge
 (%

)

Threshold

Exec-time
Precision
Recall

Fig. 4. Resource-aware pruning

the total number of possible matches, and the value of precision measures the number
of correct matches out of all matches returned by the algorithm. From Fig. 3 it can be
seen that the application performs well for a threshold below four. However, increasing
the threshold further results in a drastic decrease in precision and recall rates (as low
as 60% for a threshold of 12). Values beyond this point are not plotted in the graph as
the corners with an accuracy below 60% are not suitable for practical use. The second
drawback of this algorithm is that it offers only few candidate points for adaptations
within an acceptable accuracy range.

In order to overcome the challenges with the multi-stage pruning technique, we present
an enhanced pruning technique with better flexibility and higher accuracy compared to
the conventional pruning technique presented in Section 4. Our algorithm uses a new
threshold model as described in (4), where product of vertical and horizontal difference
in pixel intensities is used and the candidates with low CR values are pruned away.

CR = (|Ix · Iy|) (4)

This new model results in significantly more selection points as shown in Fig. 4, offering
a higher flexibility to the resource-aware algorithm whenever adaptations are necessary.
In addition to this, there is a significant improvement in both precision and recall rates.
For example, precision is improved from 84.0% to 90.8% and recall is improved from
82.3% to 89.2% for the same speedup value of 35%. The new model shows a consistent
improvement in precision and recall for the entire range and higher values are obtained
as the threshold is increased. A more detailed analysis on the video sequences shows
that the effects of pruning vary based on the scene. For example, the speedup achieved
(using the same threshold) is low for cluttered scenes like Bricks while the majority
of the pixels can be pruned away for scenes with plain backgrounds. Fig. 5 shows the
relation between speedup and accuracy for all six video sequences. This means that
the amount of computing resources required to perform the corner detection will vary
from one scene to another based on the nature of the foreground, background, etc. and
therefore the resources have to be allocated on a frame-to-frame basis, based on the
scene captured. A resource-aware many-core platform meeting the above requirements,
is presented in Section 5 with emphasis on how to allocate and release resources in
real-time based on application requirements.

5 Evaluation Platform

As described in Section 2, our work focuses on exploring the benefits of resource-aware
Harris corner detection. Therefore, we implemented our algorithms on top of OctoPOS

Resource-Aware Harris Corner Detection Based on Adaptive Pruning 7

0

20

40

60

80

100

0 5 10 15 20 25

Ex
ec

ut
io

n
tim

e
(m

ill
ise

co
nd

s)

Threshold

90

92

94

96

98

100

0 5 10 15 20 25

Pr
ec

isi
on

Threshold

90

92

94

96

98

100

0 5 10 15 20 25

Re
ca

ll

Threshold

Bricks

Bunny

Corridor

Kitchen

Cereal

Window

Fig. 5. Effects of pruning on processing time, precision and accuracy

[16], a resource-aware operating system for Invasive Computing. OctoPOS shares the
same view with ROS [14] as far as application-directed resource management of many-
core processors is concerned. Also, both approaches resort to an event-based kernel
architecture and largely benefit from asynchronous and non-blocking system calls. The
main difference, however, is in the execution model of OctoPOS that was specifically
designed to support invasive-parallel applications.

5.1 System Programming Interface

At the OctoPOS interface, resource-aware programming maps to three fundamental sys-
tem calls: invade(), infect() and retreat(). The typical usage of these calls
in the course of an application programm are depicted in Fig. 6. First, the application’s

start

invade

workload
distribution

infect

retreat

exit

Fig. 6. Structure of an invasive program Fig. 7. Execution model of applications in Octo-
POS

resource demand has to be expressed to the system. We call this the invade phase. It
yields a set of resources in the form of a claim, the central data structure in the system
for representing the resources associated with an application (processors, memory, etc.).
Depending on the structure of the claim, the application has to distribute its workload
accordingly. For example, it can tune its algorithms towards the number of processors
present in the claim. Actual computation is then performed using the infect call. Af-
ter execution finishes, another computation phase can be started on the same set of

8 J. Paul et al.

resources, resources can be released using retreat, or additional resources can be ac-
quired using invade. The basic concept of Invasive Computing states that an application
dynamically expands and shrinks its set of resources at runtime according to its own
demand and that it can react to undersupply situations where not enough resources are
available. Hence, depending on the current system state, the resulting claim may or may
not fulfill the demands specified before. On the other side, once an application gets a
claim, it gains full control over the associated resources. This guarantee on the acquired
resources enables the application to balance its workload according to the dynamic run-
time state of the system. Assumptions made during workload distribution before the
infect phase hold until the application itself changes its resource allocation following
the infect phase.

The main building blocks of applications in OctoPOS are so-called i-lets: Fragments
of a program potentially executed in parallel with mostly run-to-completion semantics.
These are represented by function and data pointers and thus are very lightweight en-
tities. An i-let is like a Cilk procedure [5], but allows for the blocking of its executing
thread by creating a “featherweight” continuation when actually releasing a PE. An
application can create an arbitrary number of i-lets to be executed – potentially in par-
allel – using the infect system call. As depicted in Fig. 7, OctoPOS forwards i-lets to
processor-local buffer queues for execution. Overall, this leads to an efficient implemen-
tation of i-let creation and dispatching. Moreover, with a tiled hardware architecture as
described in Section 5.2, the buffering scheme is a possible candidate for hardware ac-
celeration: To execute i-lets on distant tiles without obstructing the processors in the tile,
the buffers can be maintained in hardware and accessed directly through the NoC. This
leads to a very scalable system architecture especially suitable for many-core systems.

5.2 Hardware Architecture

Our target many-core processor consists of 9 tiles interconnected by a NoC. Each com-
pute tiles consists of 4 cores interconnected by a local bus and some fast, on-chip tile-
local memory, with a total of 32 cores (LEON3, a SPARC V8 design by Gaisler [6])
spread across 8 tiles. The 9th tile is a memory and I/O tile encompassing a DDR-III
memory controller and Ethernet, UART, etc. for data exchange and debugging. Each
core has a dedicated L1 cache while all the cores within a tile share a common L2
cache for accesses that go beyond the tile boundary to the external DDR-III memory.
L1 caches are write-through and L2 is a write-back cache. Cache coherency is only
maintained within the tile boundary to eliminate a possible scalability bottleneck when
scaling to higher core counts. Therefore, data consistency has to be handled by the
programmer through proper programming techniques that are built on top of hardware
features to provide consistent data access and exchange between the different cache-
coherency domains. This scheme is somewhat similar to the Intel SCC.

6 Implementation and Results

The first step in the resource-aware Harris detector is to allocate sufficient resources to
perform corner detection within the interval specified by the user. The number of PEs

Resource-Aware Harris Corner Detection Based on Adaptive Pruning 9

required is calculated based on the input-image resolution, the processing interval, the
nature of the scene, etc. The analysis starts with the generation of a differential image,
where each pixel is computed using (4). In order to speed up the pruning logic within the
algorithm, an integral histogram is computed from the differential image as described
in Algorithms 1 and 2, where n is the total number of pixels to be processed, Idiff is
the differential image, limit is the maximum possible value generated by (4) and H is
the integral histogram computed from differential image. Once the integral histogram
is computed, the values in the bin represent the number of pixels to be processed by the
algorithm when the threshold is set to histogram-bin-index. The number of PEs (Npe)
is calculated using (5).

Npe ≥ n · Tprn + Ppix(th) · Thcd

Texe · η(Npe)
(5)

where n is the total number of pixels, Tprn is the processing time per pixel until the
generation of integral histogram, Ppix is the number of pixels to be processed as com-
puted by the pruning algorithm (a function of the threshold value th), Thcd is the time
to compute R for pixels with CR above threshold, Texe is the processing interval and
η(Npe) represents the algorithm’s efficiency as a function of degree-of-parallelism or
available resources (Npe). Including an efficiency factor is important as every additional
i-let created by the algorithm also creates additional load on the external memory and
shared communication interfaces, limiting the overall scalability. For the best results,
the threshold value th can be set to zero so that the algorithm will attempt to process
all pixels in the image. It should be noted that Tprn and Thcd may vary based on the
actual implementation and processor architecture. Hence these values are estimated by
profiling the application on the target platform. Fig. 8 shows the change in efficiency
against degree of parallelism, on the target HW. It can be seen clearly that when the
number of i-lets is doubled from 1 to 2, the execution time does not halve, but is re-
duced by a factor of 1.96, which means an efficiency of 98%. In the next step, an invade
request (for Npe) is raised and the OS makes a final decision on the number of PEs
considering the current system load. The PE count may vary from zero (if the system
is too heavily loaded and no further resources can be allocated at that point in time) to
the total number of PEs requested (provided that a sufficient number of idle PEs exist
in the system and the current power mode offers sufficient power budget to enable the

Algorithm 1. Differential image

1: i ← 0
2: h ← 0
3: while i < n do
4: Idiff (i) ← |dx(i) · dy(i)|
5: h(Idiff (i)) ← h(Idiff (i)) + 1
6: i ← i+ 1
7: end while

Algorithm 2. Integral histogram

1: i ← 0
2: H ← 0
3: while i < limit do
4: k ← i
5: while k < limit do
6: H(i) ← H(i) + h(k)
7: k ← k + 1
8: end while
9: i ← i+ 1

10: end while

10 J. Paul et al.

60
70
80
90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

(%
)

PE Count

Efficiency

Fig. 8. Efficiency map for Harris detector on target hardware

0

0.2

0.4

0.6

0.8

1

1 21 41 61 81 101 121 141 161 181

Pr
ec

is
io

n/
Re

ca
ll

Ra
te

Frame No.

PR-RA

RE-RA

PR-CN

RE-CN

0

100

200

300

400

1 21 41 61 81 101 121 141 161 181Du
ra

tio
n

(m
ill

is
ec

on
ds

)

RA

CN

Fig. 9. Comparison between conventional and resource-aware model (RA = resource-aware-
model, CN = conventional-model, PR = precision, RE = recall)

selected PEs). This means that under numerous circumstances the application has to
adapt to the limited resources offered by the runtime system by increasing the threshold
value th until the condition in (6) is satisfied.

Ppix(th) ≤ Npe · Texe · η(Npe)− n · Tprn

Thcd
(6)

The new workload is processed by the allocated PEs and the resources can be released
at the end of the processing interval or a new invade request can be raised if more PEs
are required for the next frame due to a change in the scene. The behavior of the new
resource-aware Harris detector is depicted in Fig. 9. The resource-allocation scheme
remains same as described in Fig. 1. The execution-time profile in Fig. 9 shows that
the resource-aware Harris detector can constrain the execution time per frame to the
specified value of 100 milliseconds. The use of the conventional algorithm resulted in
very high latencies under circumstances where sufficient resources are not available,
and dropped frames occasionally. The values of precision and recall drops slightly in
the region where the application has to adapt by pruning pixels. However, this helps to
avoid overshoot in execution time and eliminate frame drops, so that results are consis-
tently available within the predefined intervals. An overall comparison between the two
scenarios is shown in Table 1. The use of the conventional algorithm leads to a very
high worst-case execution time(WCET) and frame drops. The precision and recall val-
ues are low for the conventional algorithm as a frame drop leads to zero precision and
recall for that particular frame. In brief, the resource-aware Harris detector can operate

Resource-Aware Harris Corner Detection Based on Adaptive Pruning 11

Table 1. Comparison between conventional and resource-aware Harris detectors

Throughput WCET Precision Recall
Conventional 81% 4.31x 0.82 0.81
Resource-aware 100% 1.04x 0.98 0.98

very well under dynamically changing conditions by adapting the workload, avoiding
frame drops and regulating the WCET, leading to high precision and recall rates.

7 Conclusion

This paper presented a resource-aware Harris corner detector and demonstrated how
to estimate the resources required for corner detection based on the scene, the resolu-
tion of the input image and the user-specified time interval. The application is aware of
available resources on the many-core processor and can adapt the workload if sufficient
resources are not available. The enhanced corner detector can generate results within the
specified search interval and avoid frame drops. Our experiments show that incorporat-
ing resource awareness into the conventional Harris detector can significantly improve
the quality of the algorithm. A detailed evaluation was conducted on an FPGA-based
hardware prototype to ensure the validity of the results. The results show up to 19% im-
provement in throughput and 18% improvement in accuracy as described in Section6.
Though the evaluations were conducted using the OS and hardware explained under
Section 5, the benefits are expected to be visible on any resource-aware platform in-
cluding ROS [14]. The resource allocation and release happens once per frame and the
additional overhead in execution time is negligible when compared to the time taken by
the detector to process millions of pixels in every frame.

References

1. Alkaabi, S., Deravi, F.: Candidate pruning for fast corner detection. Electronics Letters 40(1),
18–19 (2004)

2. Asfour, T., Azad, P., et al.: ARMAR-III: An integrated humanoid platform for sensory-motor
control. In: 6th IEEE-RAS International Conference on Humanoid Robots. IEEE (2006)

3. Azad, P., Asfour, T., Dillmann, R.: Combining harris interest points and the sift descriptor for
fast scale-invariant object recognition. In: Intelligent Robots and Systems, IROS 2009. IEEE
(2009)

4. Bell, S., Edwards, B., et al.: Tile64-processor: A 64-core soc with mesh interconnect. In:
Solid-State Circuits Conference, 2008. Digest of Technical Papers, pp. 88–598. IEEE (2008)

5. Blumofe, R.D., Joerg, C.F., et al.: Cilk: An efficient multithreaded runtime system. In: Pro-
ceedings of the Fifth ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP 1995 (1995)

6. Gaisler, J., Catovic, E.: Multi-core processor based on leon3-ft ip core (leon3-ft-mp). In:
DASIA 2006-Data Systems in Aerospace, vol. 630, p. 76 (2006)

7. Gauglitz, S., Höllerer, T., et al.: Evaluation of interest point detectors and feature descriptors
for visual tracking. International Journal of Computer Vision 94(3), 335–360 (2011)

12 J. Paul et al.

8. Gil, A., Mozos, O.M., Ballesta, M., Reinoso, O.: A comparative evaluation of interest point
detectors and local descriptors for visual slam. Machine Vision and Applications 21(6), 905–
920 (2010)

9. Harris, C., Stephens, M.: A combined corner and edge detector. In: Alvey Vision Conference,
Manchester, UK, vol. 15, p. 50 (1988)

10. Jorg, S., Nickl, M., Nothhelfer, A., et al.: The computing and communication architecture of
the dlr hand arm system. In: 2011 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 1055–1062. IEEE (2011)

11. Kaneko, K., Kanehiro, F., Kajita, S., Hirukawa, H., et al.: Humanoid robot HRP-2. In: Pro-
ceedings of the 2004 IEEE International Conference on Robotics and Automation, ICRA
2004, vol. 2, pp. 1083–1090 (May 2004)

12. Kaneko, K., Kanehiro, F., Morisawa, M., Miura, K., Nakaoka, S., Kajita, S.: Cybernetic hu-
man HRP-4C. In: 9th IEEE-RAS International Conference on Humanoid Robots, Humanoids
2009, pp. 7–14 (December 2009)

13. Klippenstein, J., Zhang, H.: Quantitative evaluation of feature extractors for visual slam. In:
Fourth Canadian Conference on Computer and Robot Vision, CRV 2007, pp. 157–164. IEEE
(2007)

14. Klues, K., Rhoden, B., Zhu, Y., Waterman, A., Brewer, E.: Processes and resource manage-
ment in a scalable many-core os. In: HotPar 2010, Berkeley, CA (2010)

15. Mattson, T., Riepen, M., et al.: The 48-core scc processor: the programmer’s view. In: Pro-
ceedings of the 2010 ACM/IEEE International Conference for High Performance Computing,
Networking, Storage and Analysis, pp. 1–11. IEEE Computer Society (2010)

16. Oechslein, B., Schedel, J., Henkel, J., Lohmann, D., Schröder-Preikschat, W., et al.: Octo-
pos: A parallel operating system for invasive computing. In: Proceedings of the International
Workshop on Systems for Future Multi-Core Architectures (SFMA). EuroSys (2011)

17. Rosten, E., Drummond, T.: Machine learning for high-speed corner detection. In: Leonardis,
A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 430–443. Springer,
Heidelberg (2006)

18. Sakagami, Y., Watanabe, R., Aoyama, C., Matsunaga, S., et al.: The intelligent ASIMO: sys-
tem overview and integration. In: IEEE/RSJ International Conference on Intelligent Robots
and Systems, vol. 3, pp. 2478–2483 (2002)

19. Schmidt, A., Kraft, M., Kasiński, A.: An evaluation of image feature detectors and descrip-
tors for robot navigation. In: Bolc, L., Tadeusiewicz, R., Chmielewski, L.J., Wojciechowski,
K. (eds.) ICCVG 2010, Part II. LNCS, vol. 6375, pp. 251–259. Springer, Heidelberg (2010)

20. Smith, S.M., Brady, J.M.: Susan—a new approach to low level image processing. Interna-
tional Journal of Computer Vision 23(1), 45–78 (1997)

21. Teich, J., Henkel, J., Herkersdorf, A., Schröder-Preikschat, W., et al.: Invasive Computing:
An Overview. In: Hübner, M., Becker, J. (eds.) Multiprocessor System-on-Chip – Hardware
Design and ToolIntegration, pp. 241–268. Springer, Heidelberg (2011)

22. Wu, M., Ramakrishnan, N., Lam, S.-K., Srikanthan, T.: Low-complexity pruning for accel-
erating corner detection. In: 2012 IEEE International Symposium on Circuits and Systems
(ISCAS), pp. 1684–1687. IEEE (2012)

Victim Selection Policies for Intel TBB:

Overheads and Energy Footprint

Alexandru C. Iordan, Magnus Jahre, and Lasse Natvig

Norwegian University of Science and Technology, Trondheim, Norway
{iordan,jahre,lasse}@idi.ntnu.no

Abstract. With the wide adoption of Chip Multiprocessors (CMPs),
software developers need to switch to parallel programming to reach the
performance potential of CMPs and maximize their energy efficiency.
Management overheads due to parallelization can cause sub-linear speed-
ups and increase the energy consumption of parallel programs. In this
paper, we investigate the parallelization overheads of Intel TBB with
a particular focus on its victim selection policy. We implement an “all
knowing” oracle victim selection scheme as well as a pseudo-random
scheme and compare them against TBB’s default random selection pol-
icy. We also break down TBB’s parallelization overheads and report how
basic operations like task spawning, task stealing and task de-queuing im-
pact the energy footprint. Our experiments show that failed task stealing
is by far the highest energy consumer. In fact, the oracle victim selection
policy can reduce the application energy footprint by 13.6% compared
to TBB’s default policy.

Keywords: Intel TBB, victim selection, energy efficiency.

1 Introduction

Energy consumption has become the main challenge for almost all systems in the
information world, from HPC to embedded devices. Architects and developers
are trying to find solutions for problems ranging from reducing the high cost of
operation of data centers to maximizing the battery life of mobile and embedded
systems. For over 20 years, techniques like transistor-speed scaling, pipelining,
out-of-order execution and speculation have increased CPU performance at a
rate of 50% per year [1]. However, diminishing returns from transistor scaling
and power budget limitations has almost removed the single-core performance
improvement trend.

The introduction of Chip Multiprocessors (CMPs) enabled the mitigation of
development constraints like the power wall and the ILP wall. CMPs allow chip
designers to utilize the increasing transistor count available with each new gener-
ation without increasing the power budget [2]. However, to fully take advantage
of this architecture, parallel software is required since the performance potential
of CMPs lies in exploiting thread level parallelism. This places a new burden
on the software developers because there is no widely adopted programming

E. Maehle et al. (Eds.): ARCS 2014, LNCS 8350, pp. 13–24, 2014.
c© Springer International Publishing Switzerland 2014

14 A.C. Iordan, M. Jahre, and L. Natvig

model that facilitates easy parallelization. In this work, we focus on Task Based
Programming (TBP) which is a parallel programming model that has received
significant attention recently [3–6].

To reduce the impact of parallelization overheads, a necessary first step is to
identify the root cause of such overheads. To this end, we investigate the extra
instructions added by parallelization management and the energy consumption
of these instructions which we refer to as the energy footprint. More precisely,
the energy footprint is the energy spent for executing the given application or
section of code in the context of the test system.

In our experiments, we utilize Intel’s Thread Building Blocks (TBB) [6] library
for parallelization. TBB is a C++ template library designed to help programmers
create portable, parallel applications using task parallelism. It was designed to
avoid the low level programming inherent in the direct use of threading packages
such as pthreads [6].

To allow for extensive and noninvasive measurements, we use a performance
simulator and a power estimation tool in our study. We implement two victim
selection policies in addition to TBB’s random policy and report the performance
and energy overheads of 5 PARSEC benchmarks [7]. We also break down TBB’s
overheads and look into basic TBP operations like task spawning, task stealing
and task de-queuing. In our results, failed steals are the highest contributor to
the overheads’ energy footprint. With more accurate victim selection, the energy
footprint of the application can be reduced by up to 13.6%.

2 Intel TBB

The concept of parallel programming is almost as old as the computer itself.
Over the years, many parallel languages have been developed and a multitude
of research was done in an effort to improve raw performance and maximize
hardware utilization [8]. With the majority of those approaches, one factor was
often overlooked: the composability of the resulting solution. Composability of
an applications refers to its ability to run efficiently side by side with other ap-
plications and being able to cope with the fact that it does not have exclusive
access to the hardware resources [9]. In today’s multi-core era, if parallel ap-
plications are not developed to dynamically scale and take advantage of all the
resources that are available to them, the overall efficiency of the system suffers.
In this work we focus on Intel’s TBB version 4.1.1., which was design to ensure
a high degree of composability.

TBB allows parallelism to be annotated both explicitly, by calling the spawn()
method, and implicitly, through some templates like parallel for or parallel reduce.
Tasks get created by the spawn() method and then added to the calling thread’s
task queue inside the arena (see Fig. 1). From the arena the task is available for
execution by its owner thread or by other workers through stealing. A task can
instantiate and spawn other tasks resulting a hierarchical task tree.

When an application thread instantiates the tbb::task scheduler init object,
that thread becomes a TBB master thread (MT). All threads created by TBB to

Victim Selection Policies for Intel TBB: Overheads and Energy Footprint 15

n worker threads

RML

Market

Arena Arena Arena

Worker
threads

Assigned
workers Arena

slots

MT1 MT2 MT3

Task
queues

Fig. 1. Components of TBB’s task scheduler

help complete the work of the MT are called worker threads. The Resource Man-
agement Layer (RML) is the component that hosts the pool of worker threads
and gets instantiated first (see Fig. 1). No worker threads are created at this
point, this being postponed until the first task is spawned.

Next a Market component is instantiated. This component was added in ver-
sion 3.0 of TBB to ensure the composability of the framework. It guarantees
that the work (the tasks) of one MT are isolated from other MTs that may be
executing on the same machine. The role of the market is to assign workers to
the arenas of each MT. The limit of the total number of workers available is
set to 1 less than the maximum of the argument of the tbb::task scheduler init
constructor and the total number of logical CPUs on the executing system.

Finally, the Arena associated with calling MT gets allocated. An arena en-
capsulates all the tasks and the execution resources (worker threads) available
to a MT. Each arena is assigned a number of slots representing the number of
workers the arena requires to perform its parallel tasks. This is defined as 1 less
than the minimum of the argument of the tbb::task scheduler init constructor
and the total number of workers available (limit set by the market). Because
several MTs can coexist, the total number of workers requested by all arenas
can be greater than the number of workers available in the RML’s pool. In this
situation, the market will allot workers proportionally to each MT’s request.

All these components and limits are created only once, during the first instance
of the tbb::task scheduler init object in the current execution. If an MT is not
the first one to call the task scheduler, it will only create a new arena that will
comply with the limitation imposed by the market. Upon creation or destruction
of an arena, the worker threads can migrate between the active arenas.

After they are created, each worker thread runs a scheduling procedure called
wait for all() consisting of 3 nested loops. The inner loop is executing the current
task by calling its execute() method. TBB is a continuation-passing style library
which means that the completion of this task returns a pointer to the next task
that needs to be executed. If a new task is not referenced, the inner loop exits.

16 A.C. Iordan, M. Jahre, and L. Natvig

In the middle loop the get task() method tries to dequeue the local task queue
using a LIFO order. If successful, the inner loop is called again. If unsuccessful
because the queue is empty, the middle loop exits and the outer loop invokes the
stealing mechanism by calling the receive or steal task() method.

3 The Stealing Mechanism

3.1 The TBB Implementation

Stealing is part of the receive or steal task() method. This method includes some
other techniques to find a new task to execute than just stealing: mailing tasks
via task-to-thread affinity mechanism, reload offloaded non-priority tasks, reload
tasks abandoned by other workers. Receive or steal task() method runs an infi-
nite loop and calls each of the above mentioned mechanisms, stealing being the
last one. Before a steal is attempted, a victim thread is selected randomly from
the current arena. If the attempt is successful, the method returns and the sched-
uler re-enters the inner loop. If unsuccessful, a failure counter is incremented and
the execution pauses before looping back. Also, if the failure counter surpasses
a given threshold (default value is 100), the current worker thread is freed and
returns to the RML.

The first step when a steal is performed is to use the lock task pool() method
and try to get a lock on the victim. If the lock task pool() fails, the worker thread
goes through a 5 steps exponential backoff. After 5 fails, the current thread yields
its resources and waits for its next time slot to try again locking the same victim.
This locking mechanism assures the high composability of TBB we discussed in
Section 2. However, since we simulate 1 thread / hardware core, the yielding
function returns immediately and the thief thread will continue to try to lock
its victim.

A stealing attempt can fail for several reasons. The most common situation
is selecting from a victim with an empty task queue. Applications with an un-
balanced workload distribution face this problem often.

Race contention is also a common situation for failure. When 2 or more
threads are trying to get exclusive access to the same task queue by calling the
lock task pool(), only one can succeed. A thief can return from the lock task pool()
only if it either succeeds or the victim’s task queue has been depleted.

A special situation is when a thief thread is competing for access with the
owner thread of that task queue. If there are more than 1 task in the queue,
there is no race contention because the thief will steal at one end while the
owner will dequeue the other. However, if there is only 1 task in the queue,
the owner thread will have priority and the thief will backoff even if it already
acquired the lock.

3.2 The Oracle Selection Scheme

In an attempt to set an upper bound for the performance gain, we first imple-
mented an “all knowing” scheme we call oracle selection. This method leverages

Victim Selection Policies for Intel TBB: Overheads and Energy Footprint 17

on the fact that we use a simulator and not a real machine and it provides TBB
with information that would be otherwise very “expensive” to obtain. We cre-
ated a data structure to store the occupancy of all tasks queues in the arena as
well as the level of congestion for each queue (the number of workers trying to
steal from this queue). This structure is stored outside the simulated memory
space in our simulator and is updated by the application through specialized
instructions called markers. Since we do all this computation outside the simu-
lated environment, our TBB application sees the victim selection as an extremely
fast procedure. The queue with available tasks for stealing and with the lowest
congestion level is selected as victim. This oracle scheme provides very fast and
accurate results, but it is not optimal. There are still situations when updates
to our structure do not propagate fast enough and the selected victim ends up
creating conflicts.

3.3 The Pseudo-random Selection Scheme

The second selection method we implemented is a pseudo-random scheme in-
spired by the Wool library [5]. For the first stealing attempt, we randomly select
a task queue. If stealing from this victim fails, we then start a loop and sequen-
tially scan the other active task queues, excluding the one of the current thread.
In this way we will first try to steal from all possible queues before looping back
in the receive or steal task() and selecting a new random victim. Also, we re-
moved the call to the yielding function from the lock task pool() and forced the
method to return after the 5 steps exponential backoff. This approach eliminates
the conflicts caused by the immediate return of the yielding function, but it will
also make the stealing mechanism a bit more aggressive since it allows it to select
new victims faster. It is worth mentioning that by doing this, we did not elim-
inate TBB’s composability feature since yielding is implemented in more than
one place.

4 Methodology

4.1 Simulation Tools

We performed our experiments using a parallel, x86 computer architecture sim-
ulator called Sniper [10]. Sniper uses the interval core model [11] and Graphite
simulation infrastructure [12] to provide fast and accurate simulations. Our
model is based on a Nehalem-based Xeon 5500-series multi-core CPU (code
name Gainestown) with a clock frequency of 2.66 GHz and 3 levels of cache.
Table 1 lists the main characteristics of the modeled processor.

The performance results from Sniper are fed into a power estimation tool
called McPAT [13]. An important characteristic of McPAT is its ability to model
dynamic, static and short-circuit power. Because we use only one CPU model,
for a given core count the static power is a constant value. This is why for all our
experiments we computed the energy footprint using only the dynamic power.

18 A.C. Iordan, M. Jahre, and L. Natvig

Table 1. Main characteristics of modeled processor

Core Cache Main mem.

#cores
1-,2-,4-,

Size Assoc.
8-,16-cores

Clock
2.66 GHz L1 i/dCache #cores x 32KB 4/8

frequency
Size

2/4/8/
Instruction

x86-64 L2 Cache #cores x 256KB 8
16/32 GB

set
Dispatch

4 L3 Cache
2/4/8/

16
width 16/32 MB

Window size 128

4.2 Benchmarks

For our experiments, we used the default TBB implementations of Blacksc-
holes, Bodytrack, Fluidanimate, Streamcluster and Swaptions benchmarks with
the medium input set from the PARSEC suite [7]. Collectively, these bench-
marks express parallelism both explicitly as well as through some templates like
parallel for, parallel reduce and pipelines. They also employ some special TBB
constructs like cache affinity partitioners and cache allocators. All these provide
a wide test base for our study.

Parallelization was done using TBB version 4.1.1. which we customized in
order to isolate and measure the overheads introduced by task spawning, task
de-queuing and task stealing. We added special instructions called markers in
the beginning and at the end of each function of interest to allow us to make
measurements on the enclosed region of code.

To ensure statistically stable results, we performed 10 simulations of each
benchmark for every core count. We averaged the performance results before
estimating the power requirements. We computed the standard deviation (σ) of
the execution time for each 10 simulation set as a percentage out of the average
value for the set. Our results show a σ that ranges between 0.09% and 14.1%
with no outliers (an outlier is a value that is above or bellow 3σ±average value).

5 Results

Parallelization overheads often account for the sub-linear speedups of parallel
implementation. While this still means that the work gets done faster, the en-
ergy required to complete the parallel execution is often equal or greater than
the serial one. In Section 5.1 we quantify these overheads as the difference in
number of executed instructions between parallel and serial executions. We also
break down the the overheads and see how task spawning, task de-queuing and
task stealing impact the parallel execution and its energy footprint. For better
visualization Fig. 3 is plotted with logarithmic scale on the vertical axis. Finally,
in Section 5.2 we look into what performance and energy efficiency gains we can
achieve by modifying the victim selection policy.

Victim Selection Policies for Intel TBB: Overheads and Energy Footprint 19

Fig. 2. Executed number of instructions and speedup

5.1 Parallel Overheads

Blackscholes employs TBB’s parallel for template for all the options in the input
portfolio. Tasks are created by dividing these options on to the thread workers.
This benchmark uses an auto partitioning algorithm to control the granularity
of the tasks in order to handle work imbalance as well as possible. In Fig. 2 you
can see that the overheads are almost constant across the core count. This shows
how small the parallel section is compared to the serial one and also why we see
only a 5.8 speedup on the 16 core execution. Fig. 3 breaks down the overheads
and shows the energy footprint of the task spawning, task de-queuing and task
stealing. Because we kept the input set constant across all core counts, our total
number of tasks increases as we scale up the number of execution threads, but
tasks also become finer. This has two consequences: the energy footprint for
spawning increases from 2 to 16 cores (see Fig. 3) and the overhead to useful
work ratio per task increases with the core count. Fig. 3 shows the same trend for
the get task() method. Second, we have the high number of stealing attempts.
The energy footprint for failed steals is highest among what we measured and the
trend is: more cores means more conflicts which leads to more failed attempts.
Successful stealing has a smaller footprint but the same trend.

Bodytrack uses a 2 stage TBB pipeline construct to process the input images.
In each stage parallel for templates are used to divide the workload into parallel
tasks. The difference compared to Blackscholes is that a special parameter of the
parallel for template, the grain size, is used to ensure a minimum size for each
task. Similar with Blackscholes, Fig. 2 shows a low parallel/sequential ratio as
well as a sub-linear speedup. Because Bodytrack has larger sequential regions
throughout the execution, the average number of threads that are active during
the execution is lower than for the other benchmarks. This means that the
worker threads return to RML (see Fig. 1) because of work starvation more
times. However, before returning, they attempt to steal 100 times each and fail
which drives up the energy footprint (see Fig. 3).

Fluidanimate computes the interactions between the particles of an incom-
pressible fluid. Its input set, a matrix describing the positions of the particles,

20 A.C. Iordan, M. Jahre, and L. Natvig

Fig. 3. Energy footprint for task management operations

is divided into a grid of size N*M = the number of threads. For 2 threads we
have a 1*2 grid, for 4 threads we have a 2*2 grid, for 8 threads we have 2*4
grid and for 16 threads we have a 4*4 grid. For each particle in the grid, the
interactions with all its neighbors on the 8 surrounding directions are computed.
When parallelized, this translates into larger lists of tasks that can be spawned
for a square grid compared to a rectangular one. For this reason, our 4- and
16-cores simulations show fewer calls to the get task() method and considerable
less attempts to steal when compared to the 2- and 8-cores respectively (see
Fig. 3).

The Streamcluster results are the best in terms of speedup when comparing
the parallel version to the serial one (see Fig 2). This happens because the input
set does not fit into the cache hierarchy and there is a lot of access to main
memory when executed sequentially. The parallel tasks use much smaller blocks
of data with higher spacial locality. Coupled with the use of TBB’s cache alloca-
tors, this results in almost no misses for the L3 cache. Spawning and get task()
follow the same trend as those of Bodytrack because of the same reason: the
parallel for as well as the parallel reduce templates are used together with the
grain size parameter. Again, failed steals have the largest energy footprint among
what we measured for this benchmark (see Fig. 3).

Swaptions spawns over 600000 tasks, the largest number among all of our
test applications. Like Bodytrack and Streamcluster, the parallel for templates
are prevented from dividing the workload too thin. In Fig. 2 we can see that
overheads grow with the core count which shows a higher parallel/sequential
ratio than for the first 3 benchmarks. In Fig. 3 we can see how failed stealing
footprint grows significantly as the number of conflicts grows with the core count.

5.2 Improving Task Stealing

TBB uses a random victim selection policy. While fast and easy to implement,
this approach is not fair: the same victim can be selected several times even if
it is not the best candidate [14]. Because we account part of the failed stealing
attempts in our experiments to this exact scenario, we looked into changing the
selection policy in order to improve performance and energy efficiency.

Victim Selection Policies for Intel TBB: Overheads and Energy Footprint 21

Fig. 4. Victim selection policies - comparison of overheads

Fig. 4 shows an overall decrease in the number of executed instructions for
our oracle scheme. The results for both our victim selection methods in Fig. 4
are normalized against TBB’s random results. Benchmarks that have a small
number of total tasks like Blackscholes, Bodytrack and Fluidanimate see only
a marginal improvement in both Fig. 4 and Fig. 5. There are numerous phases
during the execution of these benchmarks when all queues are empty. However,
these phases are don’t last enough to retire the workers meaning that they just
waste energy trying to steal. Both Streamcluster and Swaptions show better
results with the oracle selection in both Fig. 4 and Fig. 5.

Our results with the pseudo-random victim selection are also mixed. Overall
we recorded an increase with all “bad” metrics like the number of failed stealing
attempts, the number of conflicts and backoffs. However, the sequential scan-
ning for victims is “cheaper” in terms of executed instructions than the default
method which can be seen in Fig. 4. Again, in terms of energy footprint Blacksc-
holes, Bodytrack and Fluidanimate performed only marginally better or even
worse than the default random selection. Streamcluster is the only benchmarked
that showed improvements in all our test (see Fig. 5). It is also worth mentioning
that for 16-cores we recorded in average 2.14 times more failed stealing attempts
than the default method. For Swaption, Fig. 5 shows improvements for 2- to
8-cores but not for the 16-cores execution, where we recorded in average 4.27
times more failed stealing attempts than the default method. This shows that
our pseudo-random implementation can be a bit too aggressive.

6 Related Work

The energy efficiency of parallel systems and the overheads parallelization brings
have been the subject of many studies. Reducing the power requirements of
multi-core CPUs, improving the energy efficiency of big parallel systems or re-
ducing the overheads of parallel implementations have been explored by many
researchers and plenty of solutions have been found. However, to the best of our
knowledge, none of them tries to quantify the energy consumption of parallel
overheads.

22 A.C. Iordan, M. Jahre, and L. Natvig

Fig. 5. Victim selection policies - comparison of total energy footprint

Li andMartinez studied the power-performance implications of running parallel
applications on CMPs [15]. Using both an analytical model and detailed simula-
tions, the authors show that parallel computing can bring significant power savings
through judiciously selections of the granularity and voltage/frequency levels.

Contreras and Martonosi study and characterize some of the overheads of
Intel’s TBB [14]. They concluded that task management operation can have a
detrimental effect on the performance of parallel execution. The authors also
note that random stealing fails to scale with increasing core counts and that
alternative policies can improve performance.

Bhattacharjee and Martonosi propose a thread criticality predictor which they
build using memory hierarchy statistics [16]. The authors implement this pre-
dictor in two different applications. First, they implement it into TBB’s task
scheduler and show that task stealing can be improved over the original ran-
dom approach. Second, they use the predictor to guide DVFS and to reduce
dynamic energy in barrier-based applications. The authors conclude that the
thread criticality predictor offers good accuracy at very low hardware overhead.

Podobas et al. do a performance comparative study of several TBP libraries,
including TBB [17]. They use both micro-benchmarks and a subset of the BOTS
suite to characterize application performance and the costs for task creation
and stealing. The study concludes that Wool has the lowest overhead for task
spawning and task stealing. However, our previous study showed Wool to be far
more aggressive when stealing than TBB which means that as we scale up the
core number, Wool will perform worse [18].

The direct task stack is a TBP algorithm for extremely fine grained parallel ap-
plications [19]. Its implementation in the Wool library shows very low overheads
for task creation and task stealing. The experimental result show that Wool sig-
nificantly outperforms other implementations like Cilk++, TBB or OpenMP for
extremely fine grained parallel applications (tens of cycles/task).

Vandierendonck et al. advocate the use of TBP models with nested task
spawning for writing general-purpose programs [20]. The authors developed a
Cilk-like language to express parallel pipelines and extended a Cilk-like sched-
uler to recognize and enforce argument dependency types on task spawns. This
programming model enhances the ease of programming parallel pipelines.

Victim Selection Policies for Intel TBB: Overheads and Energy Footprint 23

Chen et al. do a study to evaluate TBB’s scalability against Pthreads imple-
mentations and to measure some of TBB’s overheads [21]. Their results show
possible bottlenecks that limit the scalability of TBB. They also show that TBB
runtime overheads increase with core counts and in the current implementation
will become the main performance bottleneck when scaling to tens of cores.

Ami Marowka introduces TBBench, a micro-benchmark suite designed for In-
tel’s TBB [22]. TBBench is designed to measure the overheads associated with
parallel for and parallel reduce constructs and mutual exclusion mechanisms like
Mutex, Spin mutex and Queuing mutex. The experimental results show that
TBB’s mutual exclusion mechanisms and scheduler exhibit less overheads than
the equivalent OpenMP constructs.

7 Conclusion

Intel’s TBB is a runtime library designed to encourage programmers to create
portable, parallel applications using task parallelism. TBB was developed to
dynamically scale on the existing resources, employing task stealing to deal with
workload imbalance. Recently, the ICT sector is facing concerns about energy
consumption and TBB has the potential of addressing these issues.

In the current study, we quantified the management overheads involved in par-
allelizing an application using TBB. We experimented with three victim selection
policies. Using the “all knowing” oracle selection method, we saw a reduction of
up to 60% in the number of executed instructions which translates into a 13%
reduction in energy consumption compared to random victim selection. The
pseudo-random also showed overall better results than the random scheme, with
up to a 5% reduction in the energy footprint. We also looked at individual TBB
operations like task spawning, task stealing and task de-queuing. Among these,
we observed that the task stealing mechanism scales worst with core count and
creates the highest energy footprint.

The results in this work suggest that there is a potential for improving the
energy efficiency of victim selection policies. However, it is still unclear how to
reach this potential with a practical implementation. We plan to investigate this
and other issues in future work.

References

1. Borkar, S., Chien, A.A.: The Future of Microprocessors. Commun. ACM 54(5)
(May 2011)

2. Fuller, S., Millett, L.: Computing Performance: Game Over or Next Level? Com-
puter 44(1) (2011)

3. Cilk++: A quick, easy and reliable way to improve threaded perfor-
mance, http://software.intel.com/en-us/articles/intel-cilk-plus/ (ac-
cessed September 15, 2013)

4. Leijen, D., Schulte, W., Burckhardt, S.: The Design of a Task Parallel Library. In:
Proc. of the 24th Conf. on Object Oriented Programming, Systems Languages and
Applications (2009)

http://software.intel.com/en-us/articles/intel-cilk-plus/

24 A.C. Iordan, M. Jahre, and L. Natvig

5. Faxén, K.F.: Wool - A Work Stealing Library. SIGARCH Computer Architecture
News 36(5) (2008)

6. Intel Corporation. Intel Threading Building Blocks Reference Manual,
http://threadingbuildingblocks.org/ (accessed September 15, 2013)

7. Bienia, C.: Benchmarking Modern Multiprocessors. PhD thesis, Princeton Univer-
sity (January 2011)

8. Patterson, D.: The Trouble With Multicore. IEEE Spectrum 47(7) (2010)
9. Pan, H., Hindman, B., Asanović, K.: Composing Parallel Software Efficiently with

Lithe. In: Proc. of the ACM SIGPLAN Conf. on Programming Language Design
and Implementation (2010)

10. Carlson, T.E., Heirman, W., Eeckhout, L.: Sniper: Exploring the Level of Abstrac-
tion for Scalable and Accurate Parallel Multi-Core Simulations. In: Int’l Conf. for
High Performance Computing, Networking, Storage and Analysis (2011)

11. Genbrugge, D., Eyerman, S., Eeckhout, L.: Interval Simulation: Raising the Level
of Abstraction in Architectural Simulation. In: Proc. of the IEEE 16th Int’l Symp.
on High Performance Computer Architecture (2010)

12. Miller, J., Kasture, H., Kurian, G., Gruenwald, C., Beckmann, N., Celio, C., Eastep,
J., Agarwal, A.: Graphite: A Distributed Parallel Simulator for Multicores. In:
Proc. of the IEEE 16th Int’l Symp. on High Performance Computer Architecture
(2010)

13. Li, S., Ahn, J., Strong, R., Brockman, J., Tullsen, D., Jouppi, N.: McPAT: An In-
tegrated Power, Area, and Timing Modeling Framework for Multi-Core and Many-
Core Architectures. In: Proc. of the 42nd Annual IEEE/ACM International Symp.
on Microarchitecture (2009)

14. Contreras, G., Martonosi, M.: Characterizing and Improving the Performance of
Intel Threading Building Blocks. In: IEEE Int’l Symp. on Workload Characteriza-
tion (2008)

15. Li, J., Mart́ınez, J.: Power-Performance Considerations of Parallel Computing on
Chip Multiprocessors. ACM Trans. Archit. Code Optim. 2 (2005)

16. Bhattacharjee, A., Martonosi, M.: Thread Criticality Predictors for Dynamic Per-
formance, Power, and Resource Management in Chip Multiprocessors. In: Proc. of
the 36th Annual Int’l Symp. on Computer Architecture (2009)

17. Podobas, A., Brorsson, M., Faxén, K.F.: A Comparison of Some Recent Task-based
Parallel Programming Models. In: Third Workshop on Programmability Issues for
Multi-Core Computers (2009)

18. Iordan, A.C., Jahre, M., Natvig, L.: On the Energy Footprint of Task Based Par-
allel Applications. In: Proc. of the Int’l Conf. on High Performance Computing &
Simulation (2013)

19. Faxén, K.F.: Efficient Work Stealing for Fine Grained Parallelism. In: 39th Int’l
Conf. on Parallel Processing (2010)

20. Vandierendonck, H., Pratikakis, P., Nikolopoulos, D.S.: Parallel Programming of
General-Purpose Programs Using Task-Based Programming Models. In: Proc. of
the 3rd USENIX Conference on Hot Topic in Parallelism, HotPar 2011 (2011)

21. Chen, X., Chen, W., Li, J., Zheng, Z., Shen, L., Wang, Z.: Characterizing Fine-
Grain Parallelism on Modern Multicore Platform. In: IEEE 17th Int’l Conf. on
Parallel and Distributed Systems (2011)

22. Marowka, A.: TBBench: A Micro-Benchmark Suite for Intel Threading Building
Blocks. JIPS 8(2) (2012)

http://threadingbuildingblocks.org/

Non-preemptive Scheduling
of Real-Time Software Transactional Memory

António Barros and Luís Miguel Pinho

CISTER/INESC-TEC
School of Engineering of the Polytechnic Institute of Porto

Porto, Portugal
{amb,lmp}@isep.ipp.pt

Abstract. Recent embedded processor architectures containing multi-
ple heterogeneous cores and non-coherent caches, bring renewed atten-
tion to the use of Software Transactional Memory (STM) as a building
block for developing parallel applications. STM promises to ease concur-
rent and parallel software development, but relies on the possibility of
abort conflicting transactions to maintain data consistency, which affects
the execution time of tasks carrying transactions. Thus, execution time
overheads resulting from aborts must be limited, otherwise the timing be-
haviour of the task set will not be predictable. In this paper we formalise
a FIFO-based algorithm to order the sequence of commits of concurrent
transactions. Furthermore, we propose and evaluate two non-preemptive
scheduling strategies, in order to avoid transaction starvation.

1 Introduction

The current trend to increase processing power by manufacturing chips includ-
ing multiple processor cores provided the ability to execute concurrent software
in parallel. This tendency for even larger number of processor cores will further
impact the way systems are developed. Some recently proposed architectures for
embedded systems, like the STMicroelectronics P2012 [4] (prototypes are avail-
able with 69 cores), Kalray’s MPPA [10] (up to 1024 cores; current version is
256 cores) allow both to concentrate multiple applications into the same proces-
sor, maximizing the hardware utilisation, and reducing cost, size, weight, and
power requirements, and also to improve application performance by exploiting
parallelism at the application level.

Nevertheless, integrating a high number of cores in a chip raises several prob-
lems, due to core interconnection and memory hierarchy. Cache coherency is
being challenged [7] although some solutions can scale to dozens of cores [13],
and some chips still provide (software-based) solutions. Buses do not to scale and
the paradigm is shifting to networks-on-chip (NoC). Furthermore, platforms can
be homogeneous, with either symmetric multiprocessing or asymmetric multipro-
cessing, or heterogeneous, with different core types. This influences substantially
in the way applications share data.

E. Maehle et al. (Eds.): ARCS 2014, LNCS 8350, pp. 25–36, 2014.
c© Springer International Publishing Switzerland 2014

26 A. Barros and L.M. Pinho

Caches can be private to the cluster/tile, being coherent at that level, globally
coherent in the chip, or not made coherent at all (e.g. [4] and [10]). As the
number of cores increases, traditional solutions, such as buses or caches may
become bottlenecks due to the contention on simultaneous accesses.

These challenging architectures introduce more complexity for sharing data
between parallel threads. Lock-based synchronisation solutions are seldom used
to avoid race conditions, but in multiprocessor systems, coarse-grained locks seri-
alise non-conflicting operations that could progress in parallel, causing an impact
on the system throughput, while fine-grained locks increase the complexity of
system development, causing an impact on composability.

Alternatively, non-blocking approaches present strong conceptual advantages
[19] and have been shown in several cases to perform better than lock-based
ones [6]. The software transactional memory (STM) [18], is a concept in which
a critical section – the transaction – executes in isolation, without blocking,
regardless of other simultaneous transactions. An optimistic concurrency control
mechanism is responsible to serialise concurrent transactions, maintaining the
consistency of shared data objects. Conflicts are solved applying a contention
policy that selects the transaction that will commit, while the contender will
most likely abort and repeat. Solutions must be devised that reduce contention.

The time overhead resulting from aborts affects the worst-case execution time
(WCET) of a task that executes a transaction. Therefore, the timing behaviour
of a task can only be predictable if the transaction overhead is bounded, allowing
to determine the WCET and the utilisation of the task. Additionally, minimising
the number of aborts reduces wasted execution time.

In this paper, we formalise a FIFO-based contention management algorithm
and two non-preemptive scheduling strategies that provide predictability and
prevent transaction starvation. We evaluate the behaviour of these strategies
by simulation, analysing the introduced overhead and consequent impact in
schedulability.

The paper is structured as follows. Section 2 describes the problem of guar-
anteeing timing requirements when using STM in embedded real-time systems
based on parallel architectures, and presents relevant published work in this
field. Section 3 sets the system model in which the assumptions of this work
are valid. We then formalise a decentralised algorithm to manage conflicts be-
tween concurrent transactions (Section 4). This contention management policy
is more effective if transactions are not preempted, as we show in Section 5. The
results from simulations that compare the performance of the contention man-
agement algorithm, under the two proposed scheduling strategies against pure
partitioned EDF (P-EDF) are presented in section 6. This paper terminates with
the conclusions and perspectives for further work in Section 7.

2 Background and Related Work

Transactional memory promises to ease concurrent programming: the program-
mer must indicate which code that forms the transaction, and relies an underly-
ing mechanism that maintains the consistency of shared data objects located at

Non-preemptive Scheduling of Real-Time Software Transactional Memory 27

the transactional memory. Multiple transactions can be executed optimistically
in parallel; however, when conflicting concurrent object accesses occurs (either a
read-write or a write-write conflict) a contention policy is applied to guarantee
the serialisation of the concurrent schedules, usually allowing one transaction to
complete and aborting (and, consequently, repeat) the contenders. This approach
has proved to scale well with multiprocessors [8], delivers higher throughput than
coarse-grained locks and does not increase design complexity as fine-grained locks
do [16].

STM achieves better performances when contention is low, causing low trans-
action abort ratio. Thus, STM behaves very well in systems exhibiting the follow-
ing characteristics [11]: a predominance of read-only transactions, short-running
transactions and a low ratio of context switching during the execution of a
transaction. Some transactions may present characteristics (e.g. long-running,
low priority) that can potentially expose them to starvation. In parallel sys-
tems literature, the main concern about STM is on system throughput, and
the contention management policy has often the role to prevent livelock (a pair
of transactions indefinitely aborting each other) and starvation (one transac-
tion being constantly aborted by the contenders), so that each transaction will
eventually conclude and the system will progress as a whole.

In real-time systems, the guarantee that a transaction will eventually conclude
is not sufficient to assure the timing requirements that are critical to such type
of systems: it must be known how long it will take to conclude. The verification
of the schedulability of the task set requires that the WCET of each task is
known, which can only be calculated if the maximum time used to commit the
included transaction is known. As such, STM can be used in real-time systems
as long as the employed contention management policy provides guarantees on
the maximum number of retries each transaction is subject to.

Although the concept of STM is not new and numerous works have been
published, only a few works dealt with it in the context of real-time systems.
In [12], a data access mechanism is proposed for uniprocessor platforms – the
Preemptible Atomic Regions – together with an analysis to bound the response
time of jobs. An atomic region is guaranteed to be free from other tasks’ interfer-
ence because any transaction preempted by a higher-priority task is immediately
aborted, and its effects undone. As no concurrent transactions are allowed in the
system, it is impractical in multiprocessor systems. However, this policy matches
with the Abort-and-Restart model [15].

In [2], and based on previous work on lock-free objects, Anderson et al. estab-
lish scheduling conditions for lock-free transactions under Earliest Deadline First
(EDF) and Deadline Monotonic (DM), exclusively for uniprocessor systems. A
different approach to support transactions in multiprocessor systems is provided
in [1]: a wait-free mechanism relies on a helping scheme that provides an upper
bound on the transaction execution time. In this approach, an arriving trans-
action must help pending transactions before being able to proceed, even if no
conflicts would occur, so the upper bound is likely to increase with the number
of processors in the system.

28 A. Barros and L.M. Pinho

In [9], Fahmy et al. describe an algorithm to calculate an upper-bound on
the worst-case response time of tasks on a multiprocessor system using STM.
Tasks are scheduled with the Pfair approach. Each task can have multiple atomic
regions, and concurrent transactions can interfere with each other. Conflicts are
detected and solved during the commit phase. This analysis is limited for small
atomic regions, assuming that any transaction will execute in, at most, two
quanta.

Sarni et al. propose real-time scheduling of concurrent transactions for soft
real-time systems in [17]. The authors adapted a practical STM to run on a real-
time kernel, and modified the contention manager to apply their proposed policy.
In this model, transactions are characterised by scheduling parameters, which
are taken into account whenever solving a detected conflict between transactions.
Conflicting transactions are serialised based exclusively on their absolute dead-
lines, which may have a negative effect on transactions with further deadlines.

In [3], we defend a FIFO-based approach to serialise concurrent transactions
as a means to predict the time required to commit, but only provide a sketch
of the decision algorithm. However, this paper does not take into account the
considerable effect of preempting transaction on the predictability of the time
required to commit.

These works provide already some perspectives on how to deal with STM in
real-time systems. However, it is clear that there are many issues pending, and
further research is necessary to take advantage of future parallel architectures.
Therefore, this paper proposes new approaches to manage contention between
conflicting transactions, using on-line information, with the purpose of reducing
the overall number of retries, increasing responsiveness and reducing useless
processor utilisation, while assuring deadlines are met.

3 System Model

We assume that jobs are released by a set of periodic tasks τ = {τ1, . . . , τn},
and scheduled on m identical processors denoted P = {P1, . . . , Pm}, under par-
titioned EDF (each task is statically assigned to a processor and each processor
schedules its set of tasks under classical EDF). Each task τi is characterised by
the period of job arrivals Ti, the worst-case execution time Ci, and the relative
deadline Di. The jth job of task τi, hence forward denominated τi,j , is charac-
terised by the time the job arrives rij , and the absolute deadline of the job dij ,
defined as

dij = rij +Di. (1)

For the sake of simplicity, we assume that each task τi performs at most one
transaction, ωi. Nevertheless, the results of this paper are extensible to tasks
executing multiple non-nested transactions. Each transaction is characterised
by:

– CTi – the maximum execution time required to execute the sequential code
once and try to commit,

Non-preemptive Scheduling of Real-Time Software Transactional Memory 29

NO TRANSACTION

ACTIVE

ZOMBIE FAILED

start
commit:

wins all conflicts

killed by contender

commit:
already dead

commit:
loses conflict

restart

Fig. 1. State diagram of a transaction

– DataSeti – the data set, a collection of shared objects accessed by the trans-
action, which is divided into

– ReadSeti – the read set, the collection of objects that are accessed solely for
reading, and

– WriteSeti – the write set, a collection of objects that are modified during
the execution of the transaction.

A collection of STM objects O = {o1, . . . , op} are assumed to be located at
shared memory, being globally accessible to tasks, independently of the processor
in which transactions are executing. We assume multiple simultaneous transac-
tions are supported, and for each object there is a chronologically ordered list
that contains records of all transactions currently accessing the object.

Each instance of a transaction has a life cycle that follows the states repre-
sented in Figure 1. Once a transaction arrives, it executes the transaction code
and then tries to commit; if no conflicts are detected, the transaction commits,
otherwise it may be aborted, retrying immediately. A transaction may be aborted
multiple times until successfully commit. Transaction overhead is the execution
time wasted executing aborted attempts. Transaction overhead of task τi is given
considering the maximum number of failed attempts experienced by any of its
jobs, abortsi before the transaction commits:

overheadi = abortsi · CTi. (2)

The WCET of a task that executes a transaction is then given by the time
required to execute the code of the task without aborts C′

i, with the maximum
transaction overhead:

Ci = C′
i + overheadi. (3)

The utilisation of this task is expressed by

Ui = Ci/Ti. (4)

4 Contention Management

A STM contention management policy oriented for real-time systems must tackle
three issues.

30 A. Barros and L.M. Pinho

– Predictability. When a transaction arrives, it must be assured that it will not
exceed a determined time to commit (thus, imposing an upper bound on the
number of aborts).

– Starvation avoidance. The ability to commit must be distributed fairly be-
tween contending transactions, so no task will have an excessive abort
overhead.

– Decentralised contention management. The algorithm that implements the
contention management policy should be preferably decentralised and exe-
cuted by each transaction at the moment it tries to commit, and not on a
dedicated processor.

In [3], we advanced that these issues are covered by a policy that sequences
contending transactions by their chronological order of arrival, i.e. by the mo-
ment a transaction starts executing its first attempt. The algorithm we now
formalise considers only static parameters, such as time of arrivals and core ids,
so it is simple to reach a decentralised consensus. The time until commit should
depend solely on the ongoing transactions at the moment the transaction starts,
and independent of future arrivals of other transactions.

In algorithm 1 we detail the operations executed by every transaction when
trying to commit. If the transaction was not previously turned in to zombie,
it will take ownership of the objects in its data set. A transaction will have to
wait that an object is released before taking ownership of it. For every object
in its write set, the transaction determines if it wins against all contenders. In
order to preserve work, the transaction just considers the contenders that are
currently active and running (i.e. the host job is not preempted). If it fails on
one object, then it immediately releases all owned objects, aborts and repeats.
If all conflicts are won, it can immediately release the objects in the read set,
commit updates, and mark the contenders in the write set as zombies, before
releasing the objects.

Unlike locking solutions, the shared objects are just owned during the process
of commit, and not during the whole critical section, which improves parallelism.
Furthermore, the ownership process is controlled by the STM and should be
transparent to the programmer, which improves composability.

However, if we consider preemptions during the execution of transactions, this
behaviour can be seriously undermined, as we demonstrate in the next section.

5 Scheduling Transactions

The way tasks are scheduled on multiple cores can affect the contention manage-
ment behaviour and influence the success rate and predictability of transactions.
Our algorithm permits that a transaction overtakes a preempted transaction:
this avoids deadlock between conflicting transactions executing in the same core,
and preserves work of running transactions ready to commit. However, this re-
duces the probability of committing transactions that are prone to be preempted
(e.g. long transaction, or low-priority job). Furthermore, a frequently preempted

Non-preemptive Scheduling of Real-Time Software Transactional Memory 31

Algorithm 1. STM contention management algorithm proposed for real-time
systems
Require: Current job of task τi has finished executing transaction ωi.
Ensure: Transaction ωi commits if and only if it wins all conflicts.
1. if ωi status is ACTIVE then
2. for all ok ∈ DataSeti do
3. if ωi status is ACTIVE then
4. Take ownership of ok
5. for all ωj contending with ωi on ok do
6. if ωj status is ACTIVE then
7. if τj status is RUNNING then
8. if arrival(ωi) > arrival(ωj) then
9. Set ωi status as FAILED

10. else if arrival(ωi) = arrival(ωj) and
Core(τi) > Core(τj) then

11. Set ωi status as FAILED
12. else
13. Stop checking further objects
14. if ωi status is ACTIVE then
15. for all ok ∈ ReadSeti do
16. Remove ωi entry from list
17. Release ok
18. Commit updates
19. for all ok ∈ WriteSeti do
20. Remove ωi entry from list
21. for all ωj accessing ok do
22. Set ωj status as ZOMBIE
23. Release ok
24. else
25. Release all currently owned objects
26. Abort and repeat ωi

27. else
28. Abort and repeat ωi

transaction may fail to commit for contending transactions that are more re-
cent but are allowed to commit while the transaction is preempted, inverting
artificially the intended behaviour of the system.

Cancelling temporarily preemptions, during the execution of a transaction,
solves the problems of long transaction starvation and unpredictability stated
above. If a transaction is guaranteed that it will not be preempted, then the
success of transaction will depend solely on the contention management policy.

This solution can be compared with priority boosting [14]: raising the pri-
ority of a job to the highest level during a critical section cancels effectively
preemptions. The Flexible Multiprocessor Locking Protocol (FMLP) [5] follows
a similar approach to the one presented in this paper, executing critical sections
non-preemptively, by their order of arrival. However, FMLP can serialise critical

32 A. Barros and L.M. Pinho

sections with non-intersecting datasets but accessing objects in the same group;
STM allows such transactions to proceed and commit in parallel.

In this paper, we consider two non-preemptive approaches:

– Non-preemptible until commit (NPUC).
In this approach, the job is assured to be scheduled from the moment the
transaction arrives until it successfully commits.

– Non-preemptible during attempt (NPDA).
In this approach, the task is non-preemptible during the transaction, but
has preemption points between attempts. Any higher-priority job can be
scheduled at any of these points.

5.1 Non-preemptible Until Commit

Under NPUC, each transaction will take-over the core in which it is executing,
and will fail until all active direct contenders (transactions whose data accesses
will conflict with the accesses of the transaction in consideration) that arrived
earlier have committed and finished.

NPUC is totally predictable, as the time required for the transaction to suc-
cessfully commit depends solely on the transactions that are already executing
when the transaction arrives. Since direct contenders (transactions that have, at
least, one conflict with the write set) will also wait for their own earlier direct
contenders to finish, contention is propagated in chain. So, in the worst case,
a transaction will have to wait for (m − 1) transactions to complete, assuming
that every other core is already executing one transaction.

The predictability given by NPUC comes with a cost: higher priority tasks
will have their responsiveness reduced due to lower-priority blocking.

5.2 Non-preemptible during Attempt

Under NPDA, preemptions are limited during a transaction to preemption points
inserted between attempts. This policy assures that the success of each attempt
depends only on the running transactions, and reduces lower-priority blocking
as compared with NPUC, improving responsiveness of higher-priority tasks.

Since jobs can be preempted between transaction attempts, one core can hold
more than one ongoing transaction at any given time. This means that the
number of earlier conflicting transactions for a given transaction is not limited
to the number of remaining cores (m − 1), as in NPUC. So, although NPDA
increases responsiveness of higher priority jobs, it is less predictable than NPUC.

6 Simulation Results

We developed a simulation environment to test the proposed contention manage-
ment algorithm under different scheduling policies – pure P-EDF, P-EDF with
NPUC and P-EDF with NPDA – in systems containing from 2 to 64 cores.

Non-preemptive Scheduling of Real-Time Software Transactional Memory 33

Fig. 2. Maximum aborts per transaction, normalised to P-EDF

For each system we generated randomly 20 synchronous task sets for three
degrees of contention. The degree of contention is characterised by the ratio of
the sum of all dataset sizes and the number of TM objects. In the experiments,
we used 1.2, 2.4 and 3.6 ratios. All task sets demand each core a maximum ideal
utilisation (not considering abort overhead) of 0.75.

In each task set, all tasks executed one transaction, and 50% were update
transactions. The sequential execution time of each transaction CT was 20% of
the ideal WCET (without abort overhead) of the task. Each transaction could
access, at most, 5 shared TM objects.

In each simulation, we recorded for each task the maximum number of aborts
experienced in a job, the total number of aborts, the number of deadlines missed
and the total execution time. For every task set, we simulated 106 time units
under P-EDF, NPUC and NPDA.

First, we wanted to know how cancelling preemptions would affect the maxi-
mum number aborts experienced in a job of a task. We normalised the maximum
number of aborts experienced in a job in NPUC and NPDA simulations to the
values recorded in P-EDF simulations. Figure 2 presents the averages of these
normalised results, indicating that cancelling preemptions tends to reduce the
maximum number of aborts.

Next, we wanted to observe how the execution time would increase, due to
aborts. Figure 3 shows the increase in execution time due to transaction overhead.
We can observe that the amount of execution time with aborted transactions in-
creases with contention density, as expected. The non-preemptive approaches also
present very similar overheads (they overlap in this chart), and are lower than P-
EDF, which means that they tend to produce less aborts, at the overall system
perspective.

Table 1 reveals the total number of missed deadlines for each set of 20 sim-
ulations. Deadline misses are practically due to a very limited number of tasks
with very high ideal utilisations, close to 0.75, and small periods. Inspection of
simulation logs reveals that such tasks have laxities that are barely sufficient

34 A. Barros and L.M. Pinho

Fig. 3. System overall transaction overhead

Table 1. Total deadlines missed (20 simulations)

1.2 2.4 3.6
Cores EDF NPUC NPDA EDF NPUC NPDA EDF NPUC NPDA

2 0 0 0 0 1 0 0 0 0
4 0 0 37 0 35 1 21 1 1
8 0 77 0 657 520 540 964 959 954

16 6 60 49 154 256 220 1939 1897 1687
32 33 204 147 483 723 589 1768 2317 1884
64 246 450 310 1400 1923 1424 4843 4757 4389

to accommodate transactions from concurrent tasks on the same core (in low
contention scenarios), or accommodate multiple aborts (in higher contention
scenarios). These characteristics do not fit non-preemptive approaches.

These results suggest that STM can naturally adapt to systems in which cores
are grouped in tiles of 8 or 16 cores, and STM is isolated inside each partition
(tile). Note that this maps well with cluster based many-core architectures which
are emerging, where dozens or hundreds of processors are grouped into 8 or 16
core shared memory partitions, being the clusters interconnected by NoC.

7 Conclusions and Further Work

In this paper we propose a decentralised contention management algorithm
for Software Transactional Memory (STM), for multi-core real-time systems,
in which conflicting transactions are serialised by their chronological order of
arrival. This algorithm is fair and avoids starvation across transactions. How-
ever, preempting a transaction reduces the probability of successfully commit,
and so we propose two approaches to limit preemptions: non-preemptive until
commit (NPUC) and non-preemptive during attempt (NPDA). NPUC is more
predictable, while NPDA improves responsiveness of more urgent tasks.

Non-preemptive Scheduling of Real-Time Software Transactional Memory 35

Simulation results show that non-preemptive approaches can reduce transac-
tion overhead. However, judicious processor allocation is required for tasks that
have small laxity to accommodate transaction retries.

Acknowledgement. We would like to thank the anonymous reviewers for their
suggestions and comments. This work was partially supported by National Funds
through FCT (Portuguese Foundation for Science and Technology) and by ERDF
(European Regional Development Fund) through COMPETE (Operational
Programme ‘Thematic Factors of Competitiveness’), within projects FCOMP-
01-0124-FEDER-015006 (VIPCORE) and FCOMP-01-0124-FEDER-037281
(CISTER); by FCT and EU ARTEMIS JU, within project ARTEMIS/0003/2012,
JU grant nr. 333053 (CONCERTO).

References

1. Anderson, J.H., Jain, R., Ramamurthy, S.: Implementing hard real-time transac-
tions on multiprocessors. In: Real-Time Database and Information Systems: Re-
search Advances, pp. 247–260. Kluwer Academic Publishers, Norwell (1997)

2. Anderson, J.H., Ramamurthy, S., Moir, M., Jeffay, K.: Lock-free transactions for
real-time systems. In: Real-Time Database Systems: Issues and Applications, pp.
215–234. Kluwer Academic Publishers, Norwell (1997)

3. Barros, A., Pinho, L.M.: Software transactional memory as a building block for
parallel embedded real-time systems. In: Proceedings of the 37th EUROMICRO
Conference on Software Engineering and Advanced Applications (SEAA 2011),
Oulu, Finland (August 2011)

4. Benini, L., Flamand, E., Fuin, D., Melpignano, D.: P2012: Building an ecosystem
for a scalable, modular and high-efficiency embedded computing accelerator. In:
Proceedings of the Conference & Exhibition Design, Automation Test in Europe
(DATE 2012), pp. 983–987 (March 2012)

5. Block, A., Leontyev, H., Brandenburg, B.B., Anderson, J.H.: A Flexible Real-Time
Locking Protocol for Multiprocessors. In: Proceedings of the 13th IEEE Interna-
tional Conference on Embedded and Real-Time Computing Systems and Applica-
tions (RTCSA 2007), Daegu, South Korea, pp. 47–56 (August 2007)

6. Brandenburg, B.B., Calandrino, J.M., Block, A., Leontyev, H., Anderson, J.H.:
Real-Time Synchronization on Multiprocessors: To Block or Not to Block, to Sus-
pend or Spin? In: Proceedings of the 14th IEEE Real-Time and Embedded Tech-
nology and Applications Symposium (RTAS 2008), pp. 342–353 (April 2008)

7. Choi, B., Komuravelli, R., Sung, H., Smolinski, R., Honarmand, N., Adve, S.,
Adve, V., Carter, N., Chou, C.-T.: Denovo: Rethinking the memory hierarchy for
disciplined parallelism. In: Proceedings of the International Conference on Parallel
Architectures and Compilation Techniques (PACT), pp. 155–166 (October 2011)

8. Dragojević, A., Felber, P., Gramoli, V., Guerraoui, R.: Why STM can be more
than a research toy. Communications of the ACM 54(4), 70–77 (2011)

9. Fahmy, S.F., Ravindran, B., Jensen, E.D.: On Bounding Response Times under
Software Transactional Memory in Distributed Multiprocessor Real-Time Systems.
In: Proceedings of the Design, Automation & Test in Europe Conference & Exhi-
bition (DATE 2009), pp. 688–693 (April 2009)

10. Kalray: MPPA 256 – Many-core processors (2012),
http://www.kalray.eu/products/mppa-manycore/mppa-256/

http://www.kalray.eu/products/mppa-manycore/mppa-256/

36 A. Barros and L.M. Pinho

11. Maldonado, W., Marlier, P., Felber, P., Suissa, A., Hendler, D., Fedorova, A.,
Lawall, J.L., Muller, G.: Scheduling support for transactional memory contention
management. In: Proceedings of the 15th ACM SIGPLAN Symposium on Prin-
ciples and Practice of Parallel Programming (PPoPP 2010), pp. 79–90 (January
2010)

12. Manson, J., Baker, J., Cunei, A., Jagannathan, S., Prochazka, M., Xin, B., Vitek,
J.: Preemptible Atomic Regions for Real-Time Java. In: Proceedings of the 26th
IEEE International Real-Time Systems Symposium (RTSS 2005), Miami, FL, pp.
62–71 (December 2005)

13. Martin, M.M.K., Hill, M.D., Sorin, D.J.: Why on-chip cache coherence is here to
stay. Communications of the ACM 55(7), 78–89 (2012)

14. Rajkumar, R.: Real-time synchronization protocols for shared memory multipro-
cessors. In: Proceedings of the 10th International Conference on Distributed Com-
puting Systems, pp. 116–123 (1990)

15. Ras, J., Cheng, A.M.K.: Response time analysis for the Abort-and-Restart
event handlers of the Priority-Based Functional Reactive Programming (P-FRP)
paradigm. In: Proceedings of the 15th IEEE International Conference on Embed-
ded and Real-Time Computing Systems and Applications (RTCSA), pp. 305–314
(2009)

16. Rossbach, C.J., Hofmann, O.S., Witchel, E.: Is transactional programming actually
easier? In: Proceedings of the 15th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP 2010), pp. 47–56 (January 2010)

17. Sarni, T., Queudet, A., Valduriez, P.: Real-Time Support for Software Transac-
tional Memory. In: Proceedings of the 15th IEEE International Conference on
Embedded and Real-Time Computing Systems and Applications (RTCSA 2009),
pp. 477–485 (August 2009)

18. Shavit, N., Touitou, D.: Software transactional memory. In: Proceedings of the
14th Annual ACM Symposium on Principles of Distributed Computing (PODC
1995), pp. 204–213 (August 1995)

19. Tsigas, P., Zhang, Y.: Non-blocking data sharing in multiprocessor real-time sys-
tems. In: Proceedings of the 6th IEEE International Conference on Real-Time Com-
puting Systems and Applications (RTCSA 1999), pp. 247–254 (December 1999)

Trust-Enhanced Self-configuration

for Organic Computing Systems

Nizar Msadek, Rolf Kiefhaber, Bernhard Fechner, and Theo Ungerer

Institute of Computer Science
University of Augsburg

86135 Augsburg, Germany
{Msadek,Kiefhaber,Fechner,Ungerer}@informatik.uni-augsburg.de

Abstract. Organic Computing (OC) enhances computer systems by pos-
tulating life-like properties to enable a system to self-configure, self-heal,
self-optimize and self-protect. It is a solution to reduce the complexity of
systems but is based on a benevolence assumption that all parts of the
system are reliable and interested to further the system goal. In open and
heterogeneous systems, the benevolence assumption is unrealistic, since
uncertainties about the participants’ behavior have to be regarded. We
propose trust as a concept to cope with these uncertainties.

This paper presents a trust enhancement of the self-configuration al-
gorithm based on the well-known Contract Net Protocol. This baseline
algorithm can be used in a distributed system, i.e., multi-agent system,
cloud computing or grid system, to equally distribute the load of ser-
vices on the nodes. However, the trust enhancement of self-configuration
assigns services with different importance levels to nodes so that more
important services are assigned to more reliable nodes. Evaluations have
been conducted to rate the effectiveness of the algorithm when nodes are
failing, i.e., the reduction of failures of important services. The results
show that our self-configuration algorithm increases the availability of
important services by more than 12%. To our knowledge this is the first
trust integrated self-configuration process that proposes to build reliable
and robust heterogeneous distributed systems in a decentralized way.

Keywords: Organic Computing, Self-Configuration, Trust, Contract
Net Protocol.

1 Introduction

The Organic Computing Initiative [1] has become an important research area
for future information processing systems. This initiative consists of developing
computer systems capable of so-called self-x properties (like self-configuration,
self-optimization, self-healing and self-protection) to cope with the rapidly grow-
ing complexity of computing systems and to reduce the barriers that complexity
poses to further growth. These properties are achieved by constantly observing
the system and initiating autonomous reconfiguration if necessary. An essential
aspect that becomes particularly prominent in these systems is trust. In this

E. Maehle et al. (Eds.): ARCS 2014, LNCS 8350, pp. 37–48, 2014.
© Springer International Publishing Switzerland 2014

38 N. Msadek et al.

paper we adopt the definition of trust [2] of the research unit OC-Trust of the
German Research Foundation (DFG). In their research, trust covers different
facets, as, for example, safety, reliability, credibility and usability. Our investi-
gation focuses on the reliability aspect. In this paper, when we speak of trust
we mean always reliability. Furthermore, it is assumed that a node can not re-
alistically assess its own trust value because it trusts itself fully. Therefore, the
calculation of the trust value for the trust-enhanced self-configuration must be
done with the following trust metrics.

– Direct Trust [3] is based on the experiences a node has made directly with
an interaction partner node. Typically, trust values are calculated by taking
the mean or weighted mean of past experiences.

– Reputation [4] is based on the trust values of others that had experiences
with the interaction partner. Reputation is typically collected if not enough
or outdated experiences exist.

– Confidence [5] Before both values, direct trust and reputation, can be
aggregated to a total trust value, the reliability of one’s own trust value has
to be determined, the so-called confidence. If a node does have a direct trust
value but is not confident about its accuracy, it needs to include reputation
data as well.

When all the aforementioned values are obtained, a total trust value based on
the direct trust and reputation values can be calculated using confidence to
weight both parts against each other. This value can then be used to improve
the self-configuration.

Our objective is to enhance the self-configuration process with trust capabil-
ities to enable building a reliable system from unreliable components. This is
achieved by improving the availability of important services.

The remainder of this paper is structured as follows. Section 2 presents related
work on self-configuration including a comparison with our work. Our metrics
for enabling a node to host a specific service are presented in section 3 together
with the self-configuration process. The results of the evaluations are shown in
section 4. The paper closes with a conclusion and future work in section 5.

2 Related Work

There are many sophisticated approaches to deal with the allocation problem of
services on nodes, either to achieve good load balancing or to minimize energy
consumption.

An approach that has become a standard by FIPA1 is the Contract Net Pro-
tocol [6]. It consists of finding an agent that is the most suitable to provide a
service. This approach is often adapted and applied in many application do-
mains, for example, manufacturing systems [7], resource allocation in grids and

1 FIPA: Interaction Protocol Specifications - [Accessed: Sept 03, 2013]
http://www.fipa.org/specs/fipa00029/

http://www.fipa.org/specs/fipa00029/

Trust-Enhanced Self-configuration for Organic Computing Systems 39

sensor web environments [8] [9], as well as in hospitals [10], electronic market-
places [11], power distribution network restoration [12], etc. Our model is based
on the Contract Net Protocol, extended by trust. In this context, trust serves as
a mean to give nodes a clue about with which nodes to cooperate.

Bittencourt et al. [13] presented an approach to schedule processes composed
of dependent services onto a grid. This approach is implemented in the Xavantes
grid middleware and arranges the services in groups. It has the drawback of
a central service distribution instance and therefore a single point of failure
can occur. Trumler et al. [14] described a scheduling algorithm for distributing
services onto nodes based on social behavior. It is implemented in the OCμ
middleware. In their model, nodes can calculate a QoS for the services to decide
which service is assigned to which node. In this case only resource constraints are
used to describe cases when a service should be hosted depending on a specific
hardware. In contrast to our approach, this algorithm does not include reliability
constraints.

In [15], Topcuoglu et al. presented an approach to consider the priorities of
tasks. They try to select tasks in order of their priorities and to schedule them to
the best machine that minimize their finish time in an insertion based manner.
This approach has been shown to significantly improve the schedule computation
time. However, a disadvantage is that important tasks might run on unreliable
nodes and are prone to fail. Later, in [16], reliability constraints were considered
to find a homogeneous allocation of the instances of services. Contrary to this
work, our approach is able to work with heterogeneous systems.

3 Trust-Enhanced Self-configuration

The approach of trust-enhanced self-configuration is a crucial part for developing
dependable and robust systems using self-x properties. This consists mainly of
finding a robust distribution of services by including trust. The services are cat-
egorized into important services with a high required trust, and non important
services with a low required trust. Important services are those, which are nec-
essary for the functionality of the entire system. E.g., Bernard et al. [17] present
a computing grid to solve computationally intensive problems. In their model,
trust is incorporated to enable nodes to form Trusted Communities (TCs). The
manager, that administrates these TCs is an example for an important service,
since its failure deteriorates the entire TC.

The goal is to maximize the availability of important services. Therefore, it
is necessary to assign important services to more reliable nodes. Reliability in
this context is expressed by a trust value based on previously developed trust
metrics [3] [4] [5]. In addition to the reliability, resource requirements (e.g., like
CPU and memory) should also be considered to balance the load of the nodes.

3.1 Metrics

The self-configuration focuses on assigning services with different required trust
levels to nodes which have different reliability levels so that more important

40 N. Msadek et al.

services are assigned to more reliable nodes. Furthermore, the overall utilization
of resources in the network should be well-balanced. Therefore, a metric is defined
to calculate a Quality of Service (QoStotal), i.e., the suitability of node to host
a specific service.

QoStotal = (1− α) ·QoStrust + α ·QoSworkload. (1)

The relationship between trust and workload can be set through α ∈ [0, 1].
If α = 1, the QoStotal is only obtained by the current value QoSworkload, i.e.,
the suitability of a node to host a specific service with regard to its workload.
If α = 0, the QoStotal is decided only by the actual QoStrust value, i.e., the
suitability of a node to host a specific service with regard to its reliability. A
higher value α favors QoSworkload over QoStrust.

– QoStrust indicates how well the reliability of a node fulfilled the required
reliability of a service. Figure 1 visualizes formula 2 to calculate the QoStrust.

+1

-1

0

 : Current trust value (i.e., reliability) of a node.
 : Required trust value (i.e., reliability) of a service.

Fig. 1. QoStrust based on the difference between the reliability tn of node n compared
to the required reliability ts of service s

tn represents the current trust value of a node n based on the trust met-
rics [3] [4] [5]. In this work, it is assumed that tn is constant at a cer-
tain point in time. However, tn is likely to change over time. This issue
is work in progress and will be addressed in a subsequent publication of self-
optimization. ts represents the required trust value of service s defined by the
user. If both values are close enough then n has fulfilled the required trust
value of a service s. Close enough is defined by the threshold δopt (optimal
area). If the difference between tn and ts is more than δopt, then QoStrust

will be gradually decreased until it reaches 0 at tn ± δtol (tolerance area).

Trust-Enhanced Self-configuration for Organic Computing Systems 41

If ts is even beyond tn ± δtol then the QoStrust will drop below 0(critical
area). In the case that the divergence between tn and ts is more than δcrit,
the QoStrust remains constant at -1. This is expressed by the formula 2, with
ts, tn ∈ [0, 1] and 0 < δopt < δtol < δcrit.

QoStrust(ts) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 if 0 ≤ |tn − ts| ≤ δopt
−|ts−tn|+δtol

δtol−δopt
if δopt < |tn − ts| ≤ δtol

−|ts−tn|+δtol
δcrit−δtol

if δtol < |tn − ts| ≤ δcrit

−1 otherwise

(2)

– QoSworkload gives an estimation of the workload of a node. As long as the
load of a node is lower than two times its maximum capacity, the quality
of service (QoS) decreases linearly, otherwise it remains constant at −1. We
assume that the capacity of a node has not a hard limit (e.g., swapping data
from RAM to hard drive provides extra memory at the cost of runtime). The
QoS regarding only one resource i is calculated as follows :

workloadi(Vreqi) =

{
Vavi

−Vreqi
Vmaxi

if Vreqi ≤ Vavi + Vmaxi

−1 otherwise
(3)

with Vmaxi > 0, Vreqi > 0, and Vavi ≤ Vmaxi .
It is to note that Vreqi means the required resource i of a service. The avail-
able resource amount of a node is denoted by Vavi and its maximum resource
amount by Vmaxi . However, every node can have multiple resources n. There-
fore the QoSworkload is calculated by the average sum of all resource values.

QoSworkload =
1

n

n∑

i=1

workloadi(Vreqi) (4)

3.2 Self-configuration Process

This section discusses the methodology for distributing services. This consists
of a collection of services with different importance levels which should run on
nodes with different reliability. It is known to be a NP-hard problem to find an
optimal solution for the distribution of the services on the nodes, so that the
quality of service is optimal [18]. Furthermore, there is no known algorithm which
can, for a given solution, in a polynomial time identify whether it is optimal.
The aim behind self-configuration is to find a distributed and robust but not
necessarily optimal yet good enough solution.

The quality of service metric presented in 3.1 is used to evaluate the dis-
tribution phase which is based on the Contract Net Protocol [6]. During the
distribution phase, every node in the network can act as a manager or contrac-
tor. A manager is responsible for assigning services. A contractor is responsible
for the actual execution of the service. The manager is determined by the user.
Figure 2 visualizes a step-by-step example on how the negotiation process is run
between nodes.

42 N. Msadek et al.

(1) Announcement

(1) Announcement

(1) Announcement

(2) Bidding

(2) Bidding

(3) Awarding

(2) Bidding

node1
(Manager)

node2
(Contractor)

node4
(Contractor)

node3
(Contractor)

Fig. 2. Elementary representation of the distribution phase

1. Announcement: The manager (e.g., node1) that wants to distribute a ser-
vice, initiates contract negotiation by advertising the existence of that ser-
vice to the other contractors (e.g., node2, node3 and node4) with a service
announcement message. A service announcement can be transmitted to a
single contractor in the network (unicast), to a specific set of contractors
(multicast) or to all contractors (broadcast).

2. Bidding: Every contractor that receives the announcement calculates the
QoSworkload for the given service based on its own available resources and
then submits its bid in form of QoSworkload to the manager. Note that the
service announcement is ignored if the service cannot be hosted due to miss-
ing resources.

3. Awarding: When the expiration time (i.e., the deadline for receiving bids)
has passed, the manager that sent the service announcement must calcu-
late QoStrust for every contractor in order to build the QoStotal and de-
cides who to award the contract to. In the basic Contract Net Protocol
the manager selects among the received bids the contractor with the high-
est QoSworkload. Our enhancement improves the Awarding phase by includ-
ing trust (QoStrust) so that more reliable contractors always have a higher
chance to receive the service than less reliable contractors. The result of this
process will be then communicated to the contractors that submitted a bid.
It is to note that the expiration time is defined by the user.

3.3 Conflict Resolution

During the self-configuration process, several nodes could be ranked with the
same QoStotal. This might lead to a conflict for the manager to decide to whom
to award the service. To avoid this a conflict resolution mechanism is used which
does not need any further messages. The conflict resolution mechanism consists
of three stages which might be used in the following chronological order:

Trust-Enhanced Self-configuration for Organic Computing Systems 43

1. Minimum latency: The node with the lowest latency will get the service.
2. Minimum amount of already assigned services: The node with the

least amount of already assigned services will get the service, assuming that
a lower amount of services will produce less load (e.g., process or thread
switching produces additional load).

3. Node ID: It is unlikely but not impossible that all of the former values were
equal. In this case the node with the lowest id will be used to find a solution
to the conflict because every node has a unique id.

4 Evaluation

In this section an evaluation for the introduced self-configuration approach is pro-
vided. For the purpose of evaluating and testing, an evaluator based on TEM [19]
has been implemented which is able to simulate the distributed self-configuration
process. The evaluation network consists of 50 nodes, where all nodes are able
to communicate with each other using message passing. Experiments with more
nodes were tested and yielded similar results, but with 50 nodes more observ-
able effects were seen. Each node has a limited resource capacity (e.g., CPU and
memory) and is judged by an individual trust value (reliability) without any
central knowledge. Notice that the reliability will always range between 0 and 1.
The value of 0 means that the node is not reliable at all while a value of 1 stands
for whole reliability. Four type of nodes are defined with different reliability and
resources (see Table 1).

Table 1. Mixture of heterogeneous nodes

Node Type CPU (MHz) Memory (MB) Reliability Amount (%)

Embedded 200-800 500-1000 0.7-0.9 10
Smartphone 500-1500 500-1500 0.3-0.6 50
Laptop 1500-2000 2000-4000 0.4-0.8 30
Workstation 2000-3000 4000-8000 0.4-0.9 10

Then 150 services, 75 of them important and 75 unimportant (50/50 ratio),
with random resources (CPU ∈ [0, 800] and RAM ∈ [0, 1000] are generated so
that all nodes are loaded on average to 60%. Without additional information
important services might run on unreliable nodes and are prone to fail. Such sit-
uations can be avoided. With the use of the trust metrics [3] [4] [5], the reliability
of a node can be measured and taken into consideration for the service distri-
bution. Hence, the goal is to maximize the availability of important services.
Therefore, it is necessary to assign the more important services to more reliable
nodes. In the following the results of the conducted evaluations are presented.

4.1 Quality of Distribution

To evaluate the distribution of important services with regard to trust, the map-
ping between the reliability of the node and the required reliability of the service

44 N. Msadek et al.

is compared using different values for α. If α = 1, the service distribution is only
obtained by considering the resource utilization as in a typical load balancing
scenario. Figure 3 shows the results of this experiment with α = 1, whereas the
values on the x-axis represent nodes together with services and their reliability
is depicted on the y-axis. The dotted line represents the expected reliability of
important services sorted in descending order. However, the rectangular points
show the reliability of nodes on which an important service is running. In the
majority of cases, the divergence between both values, i.e., the current reliabil-
ity of a node and the required reliability of the service is very important. This
explains why the majority of important services are hosted on unreliable nodes.

Fig. 3. Quality of distribution without trust (α = 1)

To overcome this issue, trust has been taken into consideration. Figure 4
illustrates exactly the same information as Figure 3, but with α = 1/2 to provide
a better assigning of important services on reliable nodes.

Please note that the allocation of services is referred to as the trust-workload
trade-off problem in which it is impossible to make any trust distribution better
without making at least the load balancing distribution worse. This trade-off
depends on the specific assortment of α. It is therefore imperative in future
work to focus on learning the optimal trade-off α between trust and workload.

4.2 Permanent Node Failures

The improved self-configuration algorithm should assure beside load balancing
that the majority of important services runs on reliable nodes. This can be
shown by letting unreliable nodes fail and comparing the amount of unavailable
important services of the baseline algorithm (i.e., load balancing distribution
using Contact Net Protocol) with the trust-enhanced version. However, it should
be noted that in a real life situation it is unlikely that all of the unreliable

Trust-Enhanced Self-configuration for Organic Computing Systems 45

Fig. 4. Quality of distribution with trust (α = 1/2)

nodes fail at once. For this purpose we adopt a more realistic approach using
a selection metric to decide which node fails at each time step. This selection
metric is based on a roulette wheel selection, where nodes with lower trust values
(unreliable nodes) have a higher chance to fail than other nodes with a higher
trust values (reliable nodes). Our goal is to evaluate the cumulated amount of
unavailable important services for the trust-enhanced and baseline algorithm.
Figure 5 shows the results of this experiment, whereas the values on the x-
axis stand for the trust-enhanced and baseline algorithm and their cumulative
amount of unavailable important services are depicted on the y-axis. The dotted

Fig. 5. Failure of important services

46 N. Msadek et al.

line represents the cumulated number of important services that failed per time
step using the trust-enhanced algorithm. However, the square line illustrates
exactly the same information but with the baseline algorithm. At the first step,
the two curves look the same, because all nodes are still running. The most
interesting part in the figure is the middle part, where a number of nodes has
failed and the number of still running important services is higher for the trust-
enhanced algorithm than in the baseline. At the time step 50, i.e., in that case,
all the nodes have failed, all important services are down (exactly 75 services),
which explains the similarity again of the two curves.

To quantify the obtained enhancement of our approach, we calculate the avail-
ability enhancement (AE) of important services. The AE is defined as follows:

AE =
1

ts

ts∑

i=1

(ci − ti) (5)

where ts means the number of time steps. ci is the amount of unavailable
services at time step i calculated with the baseline algorithm. However, ti is the
amount of unavailable services at time step i calculated with the trust-enhanced
algorithm.

Concluding, the evaluation shows that with trust the availability of important
services is better than without trust. In addition, we did not observe any sim-
ulation2 with the trust metric that showed a bad mapping between reliability
of nodes and required reliability of services. The use of trust leads to positive
impact on the QoS metric because an availability enhancement (AE) of more
than 12% was achieved with α = 1

2 .

5 Summary and Outlook

In this paper, a new design of a self-configuration algorithm for organic com-
puting systems is presented. Its main task is to improve the assigning of impor-
tant services to reliable nodes using trust. Furthermore, the overall utilization
of resources in the network should be well balanced. Our experimental results
show that the availability of important services is better than without trust,
which underlines the effectiveness of our approach. In future work we plan to
focus on learning the optimal trade-off α between trust and workload and to
work on extensions of the trust-enhanced self-configuration to distribute several
services simultaneously. Moreover, we plan to integrate the trust-enhanced self-
configuration into the TEM [19], a trust enabling middleware implemented in
Java and based on a peer to peer network. The TEM should then be in a position
to respond to permanent changes in the reliability of the nodes, i.e., under the
aspect of self-optimization.

Acknowledgment. This research is sponsored by the research unit OC-Trust
(FOR 1085) of the German Research Foundation (DFG).

2 In total, about 10000 runs were evaluated.

Trust-Enhanced Self-configuration for Organic Computing Systems 47

References

1. Müller-Schloer, C.: Organic Computing - On the Feasibility of Controlled Emer-
gence. In: International Conference on Hardware/Software Codesign and System
Synthesis, CODES + ISSS 2004, vol. 2-5 (2004)

2. Steghöfer, J.-P., Kiefhaber, R., Leichtenstern, K., Bernard, Y., Klejnowski, L., Reif,
W., Ungerer, T., André, E., Hähner, J., Müller-Schloer, C.: Trustworthy Organic
Computing Systems: Challenges and Perspectives. In: Xie, B., Branke, J., Sadjadi,
S.M., Zhang, D., Zhou, X. (eds.) ATC 2010. LNCS, vol. 6407, pp. 62–76. Springer,
Heidelberg (2010)

3. Kiefhaber, R., Satzger, B., Schmitt, J., Roth, M., Ungerer, T.: Trust measure-
ment methods in organic computing systems by direct observation. In: The 8th
IEEE/IFIP International Conference on Embedded and Ubiquitous Computing
(EUC 2010), pp. 105–111 (December 2010)

4. Kiefhaber, R., Hammer, S., Savs, B., Schmitt, J., Roth, M., Kluge, F., André, E.,
Ungerer, T.: The neighbor-trust metric to measure reputation in organic comput-
ing systems. In: The 5th IEEE Conference on Self-Adaptive and Self-Organizing
Systems Workshops (SASOW 2011), pp. 41–46 (October 2011)

5. Kiefhaber, R., Anders, G., Siefert, F., Ungerer, T., Reif, W.: Confidence as a means
to assess the accuracy of trust values. In: The 11th IEEE International Conference
on Trust, Security and Privacy in Computing and Communications, TrustCom
2012 (September 2012)

6. Smith, R.G.: The Contract Net Protocol: High-Level Communication and Control
in a Distributed Problem Solver. In: Defence Research Establishment Atlantic,
IEEE Transactions on Computers, pp. 1–10 (1980)

7. Hsieh, F.-S., Chiang, C.Y.: Workflow planning in holonic manufacturing systems
with extended contract net protocol. In: Chien, B.-C., Hong, T.-P., Chen, S.-M.,
Ali, M. (eds.) IEA/AIE 2009. LNCS, vol. 5579, pp. 701–710. Springer, Heidelberg
(2009)

8. Kinnebrew, J.S., Biswas, G.: Efficient allocation of hierarchically-decomposable
tasks in a sensor web contract net. In: Conference on Web Intelligence and Intelli-
gent Agent Technology, vol. 2, pp. 225–232 (2009)

9. Goswami, K., Gupta, A.: Resource selection in grids using contract net. In: 16th
Euromicro Conference on Parallel, Distributed and Network-Based Processing, pp.
105–109 (2008)

10. Deshpande, U., Gupta, A., Basu, A.: Performance improvement of the contract
net protocol using instance based learning. In: 5th International Workshop - Dis-
tributed Computing (2003)

11. Dellarocas, C., Klein, M., Rodriguez-Aguilar, J.A.: An exception-handling archi-
tecture for open electronic marketplaces of contract net software agents. In: Pro-
ceedings of the 2nd ACM Conference on Electronic Commerce (2000)

12. Kodama, J., Hamagami, T., Shinji, H., Tanabe, T., Funabashi, T., Hirata, H.:
Multi-agent-based autonomous power distribution network restoration using con-
tract net protocol. Electrical Engineering in Japan 166 (2009)

13. Bittencourt, L., Madeira, E.R.M., Cicerre, F.R.L., Buzato, L.E.: A path clustering
heuristic for scheduling task graphs onto a grid. In: 3rd International Workshop on
Middleware for Grid Computing, MGC 2005 (2005)

14. Trumler, W., Klaus, R., Ungerer, T.: Self-configuration Via Cooperative Social
Behavior. In: Yang, L.T., Jin, H., Ma, J., Ungerer, T. (eds.) ATC 2006. LNCS,
vol. 4158, pp. 90–99. Springer, Heidelberg (2006)

48 N. Msadek et al.

15. Topcuoglu, H., Hariri, S., Wu, M.Y.: Performance-effective and low-complexity
task scheduling for heterogeneous computing. IEEE Transactions on Parallel and
Distributed Systems 13(3), 260–274 (2002)

16. Beaumont, O., Eyraud-Dubois, L., Larchevêque, H.: Reliable service allocation in
clouds. In: 27th IEEE International Parallel & Distributed Processing Symposium
(2013)

17. Bernard, Y., Klejnowski, L., Hähner, J., Christian, M.S.: Towards trust in desktop
grid systems. In: 10th IEEE/ACM International Conference on Cluster, Cloud and
Grid Computing (2010)

18. Reischuk, K.R.: Komplexitätstheorie: Band 1. Teubner Verlag (1999)
19. Anders, G., Siefert, F., Msadek, N., Kiefhaber, R., Kosak, O., Reif, W., Ungerer,

T.: TEMAS - A Trust-Enabling Multi-Agent System for Open Environments. Tech-
nical report, Universität Augsburg (2013)

Estimation of Reward and Decision Making

for Trust-Adaptive Agents
in Normative Environments

Jan Kantert, Yvonne Bernard, Lukas Klejnowski, and Christian Müller-Schloer

Institute of Systems Engineering, Leibniz Universität Hannover, Germany

Abstract. In an open trusted Desktop Grid system with a normative
environment incentives and sanctions may change during runtime. Every
agent in the system computes work for other agents and also submits jobs
to other agents. It has to decide for which agents it wants to work and
to which agent it wants to give its jobs. We introduced a trust metric
to isolate misbehaving agents. After getting a job processed by another
agent it will get a reward. When processing a job for another agent it will
get a positive trust-rating, but no direct reward. To come to a decision
when accepting or rejecting jobs we need to be able to estimate the
reward. Since the environment may change at runtime and to overcome
delayed reward issues we use a neural network to estimate the reward
based on the environment and trust level.

1 Introduction

The Organic Computing Initiative [1] concentrates on developing new solutions
to manage the complexity of today’s computing systems. As embedded devices,
smart phones, other mobile devices and further PCs become more and more
cheap and powerful, system designers need to ensure that systems consisting of
several devices are both efficient and robust. Maintaining the openness of such
complex systems is the main challenge we regard here: Agents (representing e.g.
devices, PCs) can join and leave the system at any time. Moreover, if we regard
systems distributed over the Internet, these agents are from different administra-
tive domains. System designers cannot know whether the agents are benevolent,
uncooperative or even malicious. This leads to an information uncertainty which
agents who act within the systems need to cope with: They cannot know whether
or not another agent is cooperative.

Therefore, we introduce trust as a computational concept to model the ex-
pected future behaviour of agents. Adding trust information to cooperation deci-
sions leads to performance improvement, especially in systems with misbehaving
agents [2]. So far, we have realised agents with a local trust-adaptive decision
mechanism. But there are system states where local knowledge alone does not
suffice to overcome the undesired situation. One example of such a global state
is the trust breakdown: the emergent global shutdown of trust relations, which
is the result of local trust crises as defined in [3]. In order to overcome these

E. Maehle et al. (Eds.): ARCS 2014, LNCS 8350, pp. 49–59, 2014.
c© Springer International Publishing Switzerland 2014

50 J. Kantert et al.

undesired global system states, we add a hierarchical component, which detects
such global situations and legislates norms to bring the system back into target
space [4].

In an environment with changing norms an agent cannot have a static decision
mechanism, because incentives and sanctions are not known at design time.
Agents need to evaluate and rate all actions during runtime. Unfortunately,
they are only partially able to predict the reward of all available actions. We
evaluated different learning algorithms to learn job acceptance thresholds in
previous papers [5], but since the reward is delayed when jobs are submitted it is
hard to correlate actions to reward. This delayed reward makes it impossible for
the agent to learn the outcome of a specific action. To overcome those problems
we introduce a reward estimation component. It will be used in the worker to rate
all actions based on the environment. When reward is received by the submitter,
the estimation will be updated based on the environment parameters.

2 Application Scenario

Our application scenario is an open distributed trusted desktop grid with agents
representing client machines and making decisions on behalf of their users (es-
pecially about resource selection). The system is distributed without central
control. The applications regarded produce bag-of-task jobs, i. e. tasks that are
independent of each other. A system like this is suited for scenarios where most
clients run applications that produce grid jobs and thus are in high demand of
computing resources, e.g. video rendering.

According to the taxonomy of [6], we classify the agents of this Desktop Grid
System as: egoistic, volatile, distributed over the Internet, dynamic, faulty and
heterogeneous. Agents can join and leave the system at any time. They take part
in the system to get their jobs calculated faster than they could do on their own.
Every agent will distribute jobs at some point and will calculate the speedup:

speedup =
timeown

timedistributed
(1)

An agent also needs to work for other agents. To prevent abuse and increase
robustness we introduced a trust metric to our system, which is based on ratings
for all performed actions. Those ratings are based on the current valid norms in
the system, which may change during runtime. All agents have a submitter and
a worker component, which have to take the following decision:

– Worker - For which agents will I work?
– Submitter - To which agent will I give my jobs?

In Figure 1 we model the worker as event-driven process chain. When the
worker receives a job offer it needs to decide whether it wants to accept the
job. Based on the current normative environment both actions will influence the
trust level of agent. Our hypothesis is that this will directly influence the success
of the submitter, because other agents will base their actions on trust.

Estimation of Reward and Decision Making for Trust-Adaptive Agents 51

Job offer
received

Estimate
Reward

XOR

Reward of
rejecting
prevails

Reward of
accepting
prevails

Reputation

Environment

Norms

Reject job Accept job

Job has been
rejected

Job has been
accepted

Do job

Job is done

Fig. 1. Event-driven process chain for worker

52 J. Kantert et al.

Job available
for distribution

Select workers
and replication

factor

Workers have
been selected

Send job to
worker

XOR

Worker
accepted job

Worker
rejected job

Check if all
workers have
been asked

Yes No

Do job on your
own

Wait for worker

Job is finished

XOR

XOR

XOR

Rate worker

Done

Rate worker

Worker has
been rated

Norms

Fig. 2. Event-driven process chain for submitter

Estimation of Reward and Decision Making for Trust-Adaptive Agents 53

In Figure 2 the submitter is modelled as an event-driven process chain. Once
the agent has work to distribute it has to decide which agent the job should
be given to. Based on the trust levels of the selected agents it may decide to
replicate the job one or multiple times. Next step is to ask the desired workers
to accept the work unit. Depending on the normative environment there will be
sanctions and incentives for rejecting or accepting a job. If the worker accepts,
the submitter will wait until the job is done and rate the worker afterwards. If
the worker rejects, the rating will be issued immediately. If no worker can be
found or no worker accepts the job the agent will do the job on its own.

3 Previous and Related Work

We regard an open Desktop Grid, therefore, agents have to cope with mali-
cious agents, which might refuse to accept work units for computation or deliver
no, delayed, incomplete or wrong computational results for the work units they
accept. Such a behaviour leads to improved personal benefits of the malicious
agents but harms the efficiency of the system as it leads to resubmissions and
waste. Therefore, agents need to cope with uncertainty how other agents will
behave. Usually, replication and majority voting as mechanism to validate re-
sults are common techniques to cope with incomplete information about other
agents’ cooperativity. But replication of a work unit largely increases the sys-
tem’s workload and thus leads to low system performance. Therefore, in [2], we
introduce a trust-based approach to cope with information uncertainty in such
open systems: Agents rate each interaction they have with other agents. A rat-
ing is given each time an agent has rejected, delayed or successfully computed a
work unit. We here do not rate agent rewards received by a sum of interactions
(e.g. Scheduling success rate), but rather rate atomic agent interactions. These
ratings are both stored locally as direct experience and globally as reputation
values. A reputation value is an aggregation of other agent’s rated experiences
with an agent Aj . Using his own experience and reputation, agent Ai computes
an aggregated trust value aggTLi,j which depends on the number of experiences
the agent has had with Ai in the past [2]. The fewer own experiences it has,
the more the globally aggregated reputation is used. This aggregated trust value
defines an expectation how the agent is going to behave in the future (e.g. if it
is asked to compute a work unit). Agents use a trust threshold plane defining
whether to cooperate with an agent based on this trust information. So far, the
trust threshold plane was predefined by the designer.

This threshold plane can also be coarsely represented by a table mapping the
workload of the agents (WLtotal) and the own reputation (Repi) of the agent Ai

itself into three intervals [7]. This TT acc trust decision table is shown in Table
1. The agent tries to keep its reputation to a level, where it can best submit
work units itself. If its reputation is low, it is more likely to work for others in
order to build up reputation which will increase its performance in submitter
role. For each interval combination, the agent defines a trust threshold (TT acc).
If aggTLi,j is larger than TT acc, agent Ai accepts and computes the work unit

54 J. Kantert et al.

offered by agent Aj . If agents use trust information in submitter role, they are
more likely to find a fast and reliable interaction partner. In worker role, agents
use trust information in order to build self-organised implicit Trusted Commu-
nities [7]: Misbehaving agents are marked as outsiders and forced to either leave
the system or change their behaviour to a more cooperative one in order to get
their work units accepted in the future. Nonetheless, a sampling of the situa-
tion in three values in each dimension (low, medium, high reputation and low,
medium, high workload) might not be optimal to define such a decision plane
defined by TT acc = f(Repi,WLtotal). Therefore, we are interested in the opti-
mal situation sampling and whether there is room for performance improvement
by using a more fine-grained sampling for Repi and WLtotal. Thus, we want
to reach an enhanced version of the agents’ trust decision (Table 1) by using a
learning technique to improve TT acc = f(Repi,WLtotal) at runtime. As in our
current trust threshold (Table 1) function currently used in the Controller, the
learning agent Ai will accept a work unit from agent Aj if aggTLi,j ≥ TT acc.

Table 1. Decision table: trust-adaptive agent in worker role

WLtotal Repi low Repi medium Repi high

low TT acc low TT acc high TT acc high

medium TT acc low TT acc medium TT acc high

high TT acc low TT acc medium TT acc medium

In [5], we have shown that our implementation of learning algorithms led to
a slight performance improvement, but we think that there is room for further
improvement with the mechanism presented in this paper. Therefore, we analyse
the delayed reward problem and propose a better solution. Additionally, we want
agents to learn their behaviour from scratch and therefore we will not add the
designer-given rules (see threshold Table 1) to the solution space of the learning
mechanism. In this paper, we introduce a new learning mechanism with focuses
on the delayed reward problem.

4 Delayed Reward

In previous work all decisions were based on thresholds, which have been learned
by learning algorithms. This worked well for a static environment and non-
colluding attacks to the system. If we consider colluding attacks or a changing
normative environment those algorithms fail to predict reasonable actions. As
seen in Figure 3 all previous actions in the worker will get their reward after the
submitter received the results of its previous actions. Typically, an agent will
produce one job with multiple work units every 10k time units. However, it will
receive a request whether to work for another agent almost once per time unit.
Every decision to accept or reject a job will influence reputation and trust level
of the agent. Nevertheless, the agent will only be rewarded after submitting its

Estimation of Reward and Decision Making for Trust-Adaptive Agents 55

Job offer
received

Execute Worker

Jobs to submit
available

XOR

Learning
Algorithm

Execute
Submitter

XOR

Learning
Algorithm

Fig. 3. Event-driven process chain of the learning process with worker and submitter

Learning
AlgorithmWorker Submitter

Delayed
Reward

Perform
Actions

Trust value

Fig. 4. Block diagramm of the learning process with worker and submitter

56 J. Kantert et al.

own jobs and getting back the results. To correlate specific actions taken in the
worker to the reward received in the submitter is nearly impossible.

As seen in Figure 4 the worker bases its decision on the learned threshold.
Since it does not receive any direct reward there will be no feedback or im-
provement after the action was performed. The worker is only able to affect the
trust level of the agent in the system. The submitter, however, will receive re-
wards, based on its actions, but the success of those actions is mostly based on
trust which the agent itself cannot influence. Eventually, we got two components
which depend on each other. The worker generates trust, which is leveraged by
the submitter to receive reward by performing successful actions.

5 Reward Estimator

To overcome this problem we propose a reward estimator to forecast the out-
come of a potential action in the worker. The forecast is based on the agent’s
trust and observed environment parameters. We expect better results with this
approach, because all actions are based on trust and we have a self-referential
fitness landscape [8]. Based on current valid norms the agent can calculate his
resulting trust value for all available actions. Subsequently, the agent estimates
its reward based on this trust value and the current environment.

Reward Estimation
Based on trust

value
Worker Submitter

Learn
Reward

Calculate
Reward

Trust value

Fig. 5. Reward Estimator with Worker and Submitter

In contrast to the old behaviour, which has caused issues with delayed rewards
(as shown in Figure 4), our new approach is to learn the expected reward based
on the current environment and trust level (as shown in Figure 5), which allows to
select more favorable actions. As long as the hypothesis that reward is directly
coupled to the trust value in the current environment holds, we can directly
estimate the reward of our actions.

Estimation of Reward and Decision Making for Trust-Adaptive Agents 57

Our estimator is implemented as a neural network using WEKA [9]. As envi-
ronment we use the current average workload and current average trust level in
the system. When submitting a work unit (see Figure 2) we will remember the
values of those environment variables. After the job has been completed we use
the saved environment values and the received reward to improve the estimation
by training the neural network. In the worker (see Figure 1) we will select the
best actions based on the expected reward. When accepting or rejecting jobs in
the worker we will estimate each reward based on the current environment and
the current trust-level using the neural network.

6 Evaluation

We evaluated our new reward-based approach against our previous implemen-
tation with decision thresholds in a changing environment. Our scenario is a
situation with very high load, where it is important to maintain a sufficient
trust level to always find a cooperation partner. To maintain trust, preventing
negative ratings, which might occur if an agent rejects a job, is important. In
normal situations it would be allright to reject jobs of agents with a low trust
value, but it will get the agent into trouble under high load. Our previous im-
plementation was not able to adapt to these changes in the environment. Figure
6 shows the average speedup for the previous implementation on the left and
our new implementation on the right. Speedup of the previous implementation
is about 1, which means that the agent should preferably process the job on its
own. Our new implementation with reward estimation did perform significantly
better and was able to maintain good collaboration in this scenario.

Fig. 6. Speedup of agents with decision table (ADA) and norm adaptive agent (NAA)

58 J. Kantert et al.

All norm-adaptive agents achieved a speedup higher than 1, which means
they gained an advantage by participating in the system. However, some agents
performed better than others. Only a few agents got near the theoretical maximal
speedup of 16. We found some indications that agents with lower speedup did
get stuck in some local optimal in their reward function and assume that this
behaviour may be improved by better exploration of the reward function.

7 Conclusion and Future Work

With our new approach we were able to improve the adaptivity of our agents in
changing environments. This is an important step towards a normative system,
where incentives and sanctions may change during runtime. We showed that
our implementation works well for high load situations. Also we did some initial
experiments with changing incentives and got promising results.

In future work we want to change norms during runtime to improve behaviour
of our system in extreme situations like very high load. To achieve this we observe
the system from ”above” and try to recognize abnormal behaviour pattern. In
case of discovering anomalous behaviour, we will try to mitigate the situation
by changing norms.

Acknowledgements. This research is funded by the research unit “OC-Trust”
(FOR 1085) of the German Research Foundation (DFG).

References

1. Tomforde, S., Hähner, J., Müller-Schloer, C.: The multi-level observer/controller
framework for learning and self-optimising systems. Int. J. Data Mining and Bioin-
formatics (2012)

2. Bernard, Y., Klejnowski, L., Hähner, J., Müller-Schloer, C.: Towards trust in desktop
grid systems. In: IEEE International Symposium on Cluster Computing and the
Grid, pp. 637–642 (2010)

3. Castelfranchi, C., Falcone, R.: Trust Theory: A Socio-Cognitive and Computational
Model, 1st edn. Wiley Publishing (2010)

4. Cakar, E.: Population-based runtime optimisation in static and dynamic environ-
ments. Ph.D. dissertation, Leibniz Universität Hannover (2011),
http://edok01.tib.uni-hannover.de/edoks/e01dh11/668667427.pdf

5. Bernard, Y., Kantert, J., Klejnowski, L., Schreiber, N., Müller-Schloer, C.: Applica-
tion of learning to trust-adaptive agents. In: Workshop on Social Concepts in Self-
Adaptive and Self-Organising Systems, Workshop Proceedings of the Seventh IEEE
International Conference on Self-Adaptive and Self-Organizing Systems (SASOW),
Philadelphia, USA, September 9-13 (2013)

6. Choi, S., Buyya, R., Kim, H., Byun, E.: A Taxonomy of Desktop Grids and its
Mapping to State of the Art Systems. Grid Computing and Distributed Systems
Laboratory, The University of Melbourne, Tech. Rep. (2008)

http://edok01.tib.uni-hannover.de/edoks/e01dh11/668667427.pdf

Estimation of Reward and Decision Making for Trust-Adaptive Agents 59

7. Bernard, Y., Klejnowski, L., Cakar, E., Hahner, J., Müller-Schloer, C.: Efficiency
and robustness using trusted communities in a trusted desktop grid. In: 2011
Fifth IEEE Conference on Self-Adaptive and Self-Organizing Systems Workshops,
SASOW (2011)

8. Cakar, E., Müller-Schloer, C.: Self-organising interaction patterns of homogeneous
and heterogeneous multi-agent populations. In: Third IEEE International Confer-
ence on Self-Adaptive and Self-Organizing Systems, SASO 2009, pp. 165–174 (2009)

9. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
weka data mining software: an update. SIGKDD Explor. Newsl. 11(1), 10–18 (2009),
http://doi.acm.org/10.1145/1656274.1656278

http://doi.acm.org/10.1145/1656274.1656278

E. Maehle et al. (Eds.): ARCS 2014, LNCS 8350, pp. 60–71, 2014.
© Springer International Publishing Switzerland 2014

An Adaptive
Personal Learning Environment Architecture

Alexander Kiy, Ulrike Lucke, and Dietmar Zoerner

Institute of Computer Science, University of Potsdam, Germany
firstname.lastname@uni-potsdam.de

Abstract. Institutions are facing the challenge to integrate legacy systems with
steadily growing new ones, using different technologies and interaction patterns.
With the demand of offering the best potential of all systems, several not
matching systems including their functions have to be aggregated and offered in a
useable way. This paper presents an adaptive, generalizable and self-organized
Personal Learning Environment (PLE) framework with the potential to integrate
several heterogeneous services using a service-oriented architecture. First, a gen-
eral overview over the field is given, followed by the description of the core com-
ponents of the PLE framework. A prototypical implementation is presented.
Finally, it’s shown how the PLE framework can be dynamically adapted to a
changing system environment, reflecting experiences from first user studies.

Keywords: Service-oriented architecture (SOA), University Service Bus
(USB), Personal Learning Environment (PLE).

1 Introduction

The IT infrastructure of universities usually consists of heterogeneous, historically
developed systems and software environments which have to meet the university-
specific requirements for research, teaching and administration. While more and more
new technologies are introduced and existing ones continue being operated we are
facing an increasing complexity in design, development and maintenance of complex
networked application systems [1].

Service-oriented architectures (SOA) offer some potential in such fields. With their
weak coupling, they break up rigid connections between single systems and make
them more generalizable and thus reusable for other contexts or services. The late
binding of a SOA additionally offers an opportunity to substitute semantically similar
service providers at runtime. The adaptivity to connect different systems with each
other and to provide a homogenous view is usually achieved by means of an Enter-
prise Service Bus (ESB) as a middleware component of an overall system architec-
ture. Adapted to the needs of the university we will call this specific implementation
of an ESB a University Service Bus (USB).

But the simplifications related to an ESB are only one side of the coin. The user is
not able to interact with the ESB in a direct and user-friendly way. To make use
of an ESB all services have to get their representation in the graphical user interface,

 An Adaptive Personal Learning Environment Architecture 61

forming a mashup of existing and new interface components. Only in this way, Quali-
ty of Service and Quality of Experience can be brought together [2].

Narrowing the academic context to educational issues, a Personal Learning Envi-
ronment (PLE) is a current concept of how learners organize themselves by making
use of “a collection of tools brought together under the conceptual notion of openness,
interoperability and learner control” [3]. Moreover, there exists the notion of an insti-
tutional PLE (iPLE) as an environment that provides a personalized interface to uni-
versity data and services and provides the opportunity to expose that data and services
to a student’s personal tools [4]. However, the concept of personalized and personal
learning environments has to break through the institutional barriers to meet the re-
quirements of life-long learning. On the one hand a university member must be
enabled to use common web 2.0 tools in everyday context. On the other hand after
graduation he/she must be able to continue learning using the preferred and familiar
learning environment. Furthermore, the special needs of teachers and tutors (e.g. sim-
plified application procedures and communication flows to students, customized tools
for improving courses and teaching quality) have to be considered.

It is a complex task to offer personalized institutional services to institutional and
non-institutional members by taking heterogeneous systems and different user re-
quirements into account. Following a review on existing approaches in section 1.1,
the detailed challenges will be considered in section 1.2. This is followed by a de-
tailed description of the PLE framework. The paper concludes with some gained ex-
periences and an outlook on further work.

1.1 Related Work

The approach to use a service-oriented architecture to solve complex integration prob-
lems to support cross-system processes where all systems are equipped with a service
interface is not new. The resulting web services encapsulate generalized, cross-system
core functions, which enables not only the flexible composition of systems, but also
interoperability across heterogeneous environments.

Good experiences could be collected with the use of service-oriented architecture
in several domains, e.g. integration of e-learning services into the university infra-
structure [5] as well as developing adaptive ESB frameworks to handle problems of a
changing environment [1].

In the field of Personal Learning Environments several projects [6][8][12][13]
were started over the time, but none attempted to combine institutional elements of an
iPLE with the concept of a generalizable PLE. Either it was tried to imitate the
iGoogle concept with the aim to create an own PLE, or the approach was to improve
an existing learning management system (LMS) with some functionalities to realize
an iPLE. All of this work was only focused on one side although the goal has to be to
integrate the institutional functions of an iPLE into a PLE.

The ROLE-Project (Responsive Open Learning Environments), for instance, is
based on the theory of self-regulated learning and therefore assumes the learner is
capable to create his own PLE with a set of widgets offered over a marketplace. The
whole system is cloud-based and thus operated as Software as a Service (SaaS). They
don’t make use of a pre-delivered orchestration of learning goals, tools, services
or content [6] and also work without a set of institutional widgets offering specific

62 A. Kiy, U. Lucke, and D. Zoerner

information about the LMS and other usual daily used services. Unsurprisingly, for
many users it’s pointless to invest the effort of designing their PLE. Moreover, there
is a lack of transparency for the users; several tools of quite different providers are
used, each with different terms of use and privacy policies1. Undoubtedly, the use of
web 2.0 tools including the existing resources offers a great potential for the users.
However, it can’t be neglected that they are still working, teaching and learning in an
institutional context from which they obtain their major information.

More work deals with making conventional LMS more adaptable by focusing on
the connection, interaction and enrichment of conventional LMS with the resulting
PLE over an ESB [7], but these solutions establish only another static point-to-point
connection without any chance to substitute the LMS or to transfer this concept into
another institution using another LMS.

The GRAPPLE project [8] goes a different way by providing learners an environ-
ment that guides them and can be adapted e.g. to personal preferences, competences
or personal and social contexts called Adaptive Learning Environment (ALE). It is
connected over a service-oriented framework using an event bus with the used learn-
ing management systems. The resulting system may solve some core challenges but is
not capable of adapting to a changing environmental behavior or generalizable for
other contexts of use. All presented system developments have in common that they
offer the user a more or less personalized view with a subset of tools he might need
for his daily working and learning process, each with its own layout and interaction
patterns. None of the systems combine the aspects of an iPLE with those of a PLE
with web 2.0 tools, or even offers an generic framework which is reusable for other
institutions with other service systems (e.g. other LMS, Campus Management Sys-
tems (CaMS), and so on). Furthermore, most described solutions are based on pro-
prietary system connections which can’t be substituted easily. This problem is tackled
by the framework presented in this article.

1.2 Challenges of an Adaptive PLE Framework

The conception of a generic and extendable architecture for a personal learning envi-
ronment framework leads to several problems which have to be solved.

Infrastructure that has grown over the years mostly consists of different distributed
software systems, which have been developed with a variety of different technologies
and programming languages. When designing and developing a PLE framework,
several problems from different domains have to be considered (e.g. technical, peda-
gogical, social, privacy and many more). In the following, the focus shall be on the
technical dimension whose problems inter alia can be solved with the resulting PLE
framework. The most relevant challenges are:

─ distributed diverse content scattered over several systems (transcripts in LMS,
grades in CaMS, e-papers in publisher portals, videos & recordings in streaming
platform etc.)

─ large amount of point-to-point connections between single software components
(inter alia LMS and CaMS, LMS and library for digital copies)

1 https://support.google.com/websearch/answer/2492212

 An Adaptive Personal Learning Environment Architecture 63

─ only a few standards to support interoperability of systems
─ lack of system interfaces or web service endpoints
─ complex workflows involving several systems to achieve relatively simple goals

(e.g. request a course for the semester and prepare it with the necessary services)
─ in worst case different usernames and passwords for every used system
─ lack of integration for third-party providers’ services like iGoogle widgets, Drop-

box and common web 2.0 tools for cooperation and communication
─ high expense when substituting a service including adjusting the specific interfaces

of legacy systems
─ guest students and guest lectures want to continue using their profiles, credentials,

documents and meta information’s “hidden” in several varying systems after leav-
ing the university

─ every systems has its own rights and role management (sometimes permissions are
missing to achieve a certain workflow)

─ every system holds different user profiles, user settings and many more informa-
tion (some of them should be consistent in all systems and manageable over a
common interface)

─ a possibility is missing to transfer existing profile information to new systems
without providing the same details for each system separately, or to change the in-
formation (see Multiple-Sign-In of Google), the ability to use different profiles in
one system

─ several heterogeneous graphical user interfaces with quite different use concepts
and layouts may confuse the users

In the next sections, an architecture and prototypical implementation will be pre-
sented that go beyond existing solutions and adequately solve these problems.

2 System Architecture of a PLE Framework

To solve the addressed challenges a scalable service-oriented architecture is used as a
basis for the whole framework on which all relevant systems can exchange their ser-
vices independent of the specific software implementation.

The system architecture consists of two main layers – the Public Layer and the
University Layer, as depicted in figure 1. The Public Layer represents every service or
request existing outside the specific institutional infrastructure, e.g. cloud services,
distributed institutional services or federated services as well as domain specific re-
quests from members, federated members or externals. In turn, the University Layer
consists of internal services, organized in a Public Gateway Layer and a Private Ser-
vice Layer. The main components of both layers are the university service buses
(USB) [9] as a special realization of an Enterprise Service Bus (ESB). The Public
USB handles all requests coming from the Public Layer, e.g. requests for the Univer-
sity API Place. If necessary, it passes them to the private USB in the Private Service
Layer. The Public Gateway Layer also provides the portal server and other specific
graphical user interfaces like web applications or native mobile apps to the user. The
portal server aggregates all services that are available for the user in a consistent,
comprehensive and unified view.

64 A. Kiy, U. Lucke, an

The Private Service Lay
(e.g. the CaMS, the LMS
which itself is a special ser
and Access Management (
interfaces, like for instance
sentational state transfer)
(Search/Retrieve via URL)
of the IAM is to handle a
access special service provi

In the following section
Identity and Access Manage

Fig. 1. The system architectur
services by means of a gatewa

2.1 University Service B

The two University Servic
service providers and the s
pus management system, th
The main service consume
the portal server or other gr
University API Place offer
which can be used in othe

nd D. Zoerner

yer contains on the one hand all major service provid
or other e-learning tools) as well as the process eng

rvice provider. On the other hand, it comprises the Iden
(IAM). The providers offer different services via dive
e SOAP (Simple Object Access Protocol), REST (Rep
, XML-Sides, AMF (Action Message Format), S
, RPC (Remote Procedure Call) and many more. The t
ll permission and identity requests of users who wan
iders.
s, the adaptivity of the USB’s, the process engine and
ement will be examined more closely.

re of the presented PLE framework separates public and priv
y layer, where two independent service buses cooperate

Buses

ce Buses are working as an integration layer between
ervice consumers. The service providers are e.g. the ca
he library, student services or external federated servic
rs can be other service providers, the User Gateways l
raphical user interfaces and the University API Place. T
rs a generic web service interface with available servi
er contexts, e.g. by independently developed applicatio

ders
gine
ntity
erse
pre-

SRU
task

nt to

the

vate

the
am-
ces.
like
The
ices
ons,

 An Adaptive Personal Learning Environment Architecture 65

from other universities or everyone else. (This can be compared to the concept of
Amazon Web Services.) It includes a documentation of the services and their end-
points for different protocols in order to simplify their use.

The distinction of the Public and the Private USB are used to ensure on the one
hand security and performance of the overall architecture and to have the full flex-
ibility on the other hand of logically subdividing users and services which are only
relevant to the University API Place. So it is even possible to throttle the access re-
garding special services without causing side effects to the processes of the Private
Service Layer.The Public USB consumes services, for instance from external cloud
services or federated services, and passes them to the Private USB. Vice versa, it pro-
vides services from the Private USB to the University API Place or the graphical user
interfaces. Furthermore, only the Private Layer is enclosed by a firewall, and only the
Private USB deals with the issue of granting or prohibiting the access to services with
the help of the IAM. Both USB’s take care of tasks like data and protocol transforma-
tion, data and service security, load balancing or routing.

The adaptivity of the USB’s is reached by the use of a well-defined generic web
service interface. If an existing system will be replaced by another, for instance the
LMS, then only once the specific service provider interface has to be adapted to the
generic web service interface definition and finally connected to the USB. No other
systems have to be touched. Other LMS can also be attached to the ESB by providing
the generic LMS interface description. For every connected system such a generic
service provider description is used to make it possible to either connect semantically
similar systems to the USB or to exchange existing systems at runtime without the
need of touching other system components. Such an interface description is mostly
provided as a WSDL file and can be transformed with XSD to match other system
specifications.

2.2 Process Engine

To implement an efficient Personal Learning Environment, not only all corresponding
systems have to be connected with each other over an University Service Bus. More-
over, respective processes have to be designed, developed and established to offer the
best support for daily working and learning. To achieve this, a process engine is used
to choreography the complex processes involving different service providers. Whe-
reas basic as well as composed services can be connected to the USB, the process
engine handles only the orchestration of services and thus it includes all composed
services of the PLE-framework. When designing a process which interacts with mul-
tiple applications and systems it is first decomposed into elementary steps. This can
be achieved by accessing the interfaces of existing service providers connected to the
USB, which can be either basic or already composed services. These interfaces are
used to assemble the overall process. For this purpose, different forms of description
like Business Process Model and Notation or the Business Process Execution Lan-
guage can be used. This process is then connected as a new service to the Private USB
and can be reused by other services. Accordingly, it can be offered through the graph-
ical user interfaces.

66 A. Kiy, U. Lucke, and D. Zoerner

The process engine controls and executes the previously defined workflows. Also,
the process engine is able to handle lengthy processes, which are based on rules and
whose procedure should be monitored. In the PLE framework the process engine
aggregates all major cross-system processes for the institution. Important composed
processes are, for example:

─ synchronization of user profiles (defined in the virtual directory)
─ the process of course creation starting with the announcement of a course by a

lecturer, automated creation of this course in the Campus Management System
with the ability to add several other services to the course, like a course in the LMS
(see figure 2), a separate wiki or blog, or code-repositories
(The process includes automated creation of blog or wiki instances and their con-
nection with existing courses.)

─ synchronization of course enrolment (between campus management system, learn-
ing management system, e-portfolio-system and personal learning groups, on dif-
ferent abstraction layers)

─ e-procurement [11] workflow from procuration over status overview until delivery
and payment

Fig. 2. The BPMN process includes the initial course creation in the CaMS and the optional
automated associated course and blog creation in the LMS and the blog farm. The basic tasks of
enrolling users and notifying users or the creator are already the result of a previous composi-
tion of basic services and are used in this process as basic orchestrated services.

2.3 Identity and Access Management

The Identity & Access Management consists of two main parts. The Identity Man-
agement is a virtual directory which holds all institutional digital identities. The
access management uses an eXtensible Access Control Markup Language (XACML)
database where all access rights and privileges for digital identities are saved. The
virtual directory handles the direct flows between the specific Protected Database
Layer, the databases of the service providers accessed over the Private USB and other
legacy systems like existing LDAP’s or other databases. The virtual directory has

 An Adaptive Personal Learning Environment Architecture 67

access to sensitive databases (staff data or internal databases), which usually can be
accessed by authorized personal only. Specific read and write permissions are stored
in the database of the access management to enable data alignment.

The access management consists on the one hand of a role-based access control
and on the other hand of a digital rights management. A single role in an institution is
not enough to get detailed access right permissions for several systems. For a more
generalizable way to define detailed access rights the attribute-based access control is
used. Most rules are based on XACML and can be transferred with the use of the
security assertion markup language to the requested service provider to grant or
prohibit the access to a specific resource or request. In order to keep control, only
well-defined generalized roles (like student, faculty member, employee, scientific
employee, alumni, guest and admin) are used to specify global user-right-associations.

The IAM provides further services like authentication, authorization and account-
ing. Moreover, single-sign-on functionality realized with Shibboleth is available when
accessing service providers over the USB or managing identities provided by fede-
rated identity management systems (e.g. OpenID, OAuth, DFN-AAI).

To provide a personalized view of the content, information on the user accounts
has to be saved (e.g. user themes, existing profiles and cross-shared attributes, infor-
mation like disabilities to provide specific views). The IAM synchronizes this infor-
mation between the LMS, the PLE profile database and other e-learning systems, if
desired by the user, and stores the data in the Shared Profile Informations Metadirec-
tory of the PLE databases. In this way, the user is able to use either dedicated profiles
for single applications or one common profile for all applications. Furthermore, he is
able to edit his profiles in the PLE-GUI or to connect existing external accounts (e.g.
google, facebook, dropbox, mircrosoft etc.).

2.4 Portal Server

The implementation of the portal server was realized with the versatile portal software
Liferay. The different views are mainly implemented as Java Portlets using the JSR-
286 standard to ensure inter-portlet communication. The current solution uses a port-
let bridge which allows using either JavaServer Faces or the Google Web Toolkit,
depending on the application to be developed, each with its respective frameworks as
front-end technologies.

The portal server is the first entrance point or main gateway for everybody in the
university to access an application. Widgets or gadgets like from iGoogle can be inte-
grated by the user by means of the OpenSocial API. The reverse away of integrating
existing institutional widgets or gadgets into an existing external environment like
iGoogle is also possible. Therefore, a valid institutional account including the re-
quired privileges to access the widget information is required.

Experience shows that novice users appreciate a pre-defined interface configura-
tion, since otherwise it’s too costly for them to arrange things accordingly. The added
value must be clearly evident, so we are providing a subset of pre-defined portlets
which offer the main information and main functionalities a typical student or teacher
needs. Specific user details like the field of study, individual preferences or the like

68 A. Kiy, U. Lucke, and D. Zoerner

are used to provide a view that is unique for every user. The user is still able to ar-
range the portlets in a layout of his choice. He is capable of adding and deleting por-
tlets to self-created pages, which in turn can be private or public. Public pages are
visible to everybody, where however private pages are only visible to the owner.

Tech-savvy users have the opportunity to develop more complex portlets according
to their wishes and to deploy them to the Portal Server. All necessary services are
either hosted directly by the USB or connected to it. In addition to the Portal Server
view, further pervasive mobile applications are offered which make use of context
information on the user and his current situation [10]. They make use of the current
location to improve the orientation on campus or to trigger events when somebody is
close to the library and has expired books or even suggesting the best train connection
to reach the next course in time. All other necessary information can be accessed us-
ing the Portal Server which supports device-specific rendering of the content for mo-
bile, tablet or desktop.

3 Experimental Results and Evaluation

After implementation of the PLE framework with its main components and exemplary
service providers the following workflow example was evaluated, as depicted in fig-
ure 3. A clipping of the portal servers’ graphical user interface presenting the
workflow is shown in figure 4. The workflow involves only the core components: the
portal server, the Private USB, the Identity & Access Management, the process engine
including a sample process, the LMS and CaMS as service providers.

The workflow starts with the login process in the portal server, which uses the sin-
gle-sign-on service of the IAM. All necessary portal information like the system role
(e.g. faculty member) is requested and propagated to the portal server (steps 1. to 4.).
When accessing the course overview portlet, two simultaneous requests are sent over
the Private USB. One goes to the CaMS service provider to get general data of the
course (e.g. duration, frequency, room details). Another request goes to the LMS ser-
vice provider to check whether the course is already created or not. The requests are
aggregated by the Private USB and sent back to the portal server (steps 5. to 12.). In
this example, the user is a lecturer with only two courses. All information from both
systems is aggregated and presented in a single view. Being a lecturer, the user is
capable of modifying the course in the CaMS and to create a course in the LMS with
triggering the respective process in the workflow engine (steps 13. to 16.). Here, all
necessary information (like course description and category) is read from the CaMS,
automatically. Afterwards, all enrolled users get enrolled in the newly created course,
too, and they will receive a notification about this.

 An

Fig. 3. S

Fig. 4. A page of the portal ser
quick navigation to the course

The evaluation was carr
cluding the respective tests
user tests focusing on the G
cial goal of the evaluation w
ent components works as ex
ation of our prototype (inte
ing results:

─ it is useful to work with
plicated configuration or

─ the development of web
tandable interface adapta

─ with several thousand re
tecture and high availabi

n Adaptive Personal Learning Environment Architecture

Simple workflow and involved components

rver including the calendar portlet, the course service portlet w
service creation and a rss portlet

ried out based on automated tests of the whole process
s of the involved service providers. Moreover, exempl

GUI handling and the desired outcome took place. The c
was to find whether the approach involving several dif
xpected and is comfortable for the users. During the eva
er alia with the described process) we obtained the follo

h an OpenSource ESB as a fundament; small bugs, a co
r missing documentation are not necessarily a problem
b services is easy; to define an generic and easily unde
able for other systems is still sophisticated
equests over the Public- and Private USB a scalable arc
ility have to be ensured

69

with

 in-
lary
cru-
ffer-
alu-
ow-

om-

ers-

chi-

70 A. Kiy, U. Lucke, and D. Zoerner

─ the definition of cross-system processes using Activiti as a Java-Framework is a
practical approach for development, maintenance and further extensions

─ equipping plugin-based systems with web services is easy, but monolithic legacy
systems can be hard to handle

─ only a few systems provide existing interfaces or web services
─ initial creation of access and control rules (XACML) requires a high expense but

brings benefit over time, with the ability to connect several systems
─ the Portal Server allows to integrate institutional services on the one hand and Web

2.0 widgets or gadgets on the other hand
─ personalized information like the suggestion of suitable food of the day or interest-

ing personal contacts are indispensable

A sophisticated evaluation of the developed system with productive users and
courses is currently to be scheduled. This will take place as soon as more functionality
(in terms of processes) is implemented. However, the results of the existing prototype
provide confidence that the presented approach fulfills the requirements defined in
section 1.2. With the use of web services the implementation details are well encapsu-
lated and the generic web interfaces ensure the replaceability of existing service pro-
viders. With the use of the process engine and an appropriate modeling language like
Activiti complex cross-system processes can be modeled, maintained and adjusted
with little effort. The summarization of generalizable roles including its permissions
in form of XACML rules turned out to be a feasible way. Finally, the portal server
and the PLE specific profile databases enable a personalized view on the one hand,
and the aggregation of institutional as well as external services in one view on the
other hand.

4 Conclusion

The IT infrastructure of universities will continuously grow in the future. However, in
order to ensure the operation, development and maintenance of complex software
systems the described architecture can help. Especially, the PLE offers for the first
time a user-friendly way to combine institutional services and widespread web 2.0
tools in one homogeneous graphical user interface. With the underlying service-
oriented architecture, the presented PLE framework offers not only the possibility to
extend old services with new generic web service interfaces which can be easily subs-
tituted at runtime and so to integrate old services with reasonable expense, but also to
adapt itself to changing heterogeneous environments.

It’s a hard negotiation process to get read & write access to specific sensible appli-
cations or databases. Additionally, it’s complicated to examine the leading system,
which has rights to override or refresh other service provider databases. Our tasks for
the future are to provide more legacy systems with web service interfaces and to inte-
grate them into the existing architecture by connecting them to the USB. All web
services that can be used without consideration have to be well documented for a use
by external application developers. A token based authentication system has to
be introduced when authentication for web services is required. In general, more

 An Adaptive Personal Learning Environment Architecture 71

standards for interoperability of systems and content have to be defined, adopted and
implemented. For the field of technology enhanced learning, some research is
underway.

With respect to life-long learning we are trying to provide useful import/export op-
portunities from one system to the other in order to provide possibilities after leaving
the institution to continue using data and information collected over several years of
institutional belonging.

References

1. Schmeck, H., Müller-Schloer, C., Çakar, E., Mnif, M., Richter, U.: Adaptivity and Self-
organisation in Organic Computing Systems. In: Organic Computing A Paradigm Shift for
Complex Systems, pp. 5–37. Springer, Basel (2011)

2. Zieliński, K., Szydło, T.: Adaptive Enterprise Service Bus. New Generation Compu-
ting 30, 189–214 (2012)

3. Siemens, G.: PLEs – I Acronym, therefore I exist, http://www.elearnspace.org/
blog/2007/04/15/ples-i-acronym-therefore-i-exist/ (last visit Sep-
tember 24, 2013)

4. Omar, L.M., Platteaux, H., Gillet, D.: An Institutional Personal Learning Environment
Enabler. In: IEEE 12th Int. Conf. on Advanced Learning Technologies (ICALT), Rome,
pp. 51–52 (2012)

5. Graf, S., Gergintchev, I., Pätzold, S., Rathmayer, S.: eLearning als Teil einer service-
orientierten Hochschulinfrastruktur. DeLFI 2008: Die 6. e-Learning Fachtagung Informa-
tik, pp. 65–76 (2008)

6. Kroop, S., Nussbaumer, A., Albert, D.: Evaluation on Students’ and Teachers’ Acceptance
of Widget- and Cloud-based Personal Learning Environments. Special Issue “Cloud Edu-
cation Environments”. J.UCS. Journal of Universal Computer Science (2013)

7. Casquero, O., Portillo, J., Ovelar, R., Benito, M., Romo, J.: iPLE Network: an integrated
eLearning 2.0 architecture from a university’s perspective. Interactive Learning Environ-
ments 18, 293–308 (2010)

8. Oneto, L., Abel, F., Herder, E., Smits, D.: Making today’s Learning Management Systems
adaptive. In: Learning in the Synergy of Multiple Disciplines, Proceedings of the EC-TEL.
Springer, Heidelberg (2009)

9. Tavangarian, D., Lucke, U.: Pervasive University A Technical Perspective. it – Informa-
tion Technology 51, 6–13 (2009)

10. Lucke, U., Specht, M.: Mobilität, Adaptivität und Kontextbewusstsein im E-Learning. i-
com 11(1), 26–29 (2012)

11. Kaiser, S., Kuhnt, E., Lemcke, S., Lucke, U.: Web-basierte Beschaffung. Erscheint in
Proc. Informatik 2013. Köllen Verlag, Bonn (2013)

12. Kieslinger, B., Wild, F., Arsun, O.I.: iCamp – The Educational Web for Higher Education.
In: Nejdl, W., Tochtermann, K. (eds.) EC-TEL 2006. LNCS, vol. 4227, pp. 640–645.
Springer, Heidelberg (2006)

13. Chatti, M.A., Agustiawan, M.R., Jarke, M., Specht, M.: Toward a Personal Learning Envi-
ronment Framework. International Journal of Virtual and Personal Learning Environ-
ments 1, 66–86 (2010)

Middleware for Dynamically Adaptive Systems

Sihem Loukil, Slim Kallel, and Mohamed Jmaiel

ReDCAD Laboratory, University of Sfax, Tunisia
sihem.loukil@redcad.org,

slim.kallel@fsegs.rnu.tn, mohamed.jmaiel@enis.rnu.tn

Abstract. Dynamically adaptive systems are expected to be able to
meet changing user needs and varying environmental conditions they
operate in. This motivates current research on developing execution sup-
port for such systems. In this context we propose a new middleware that
ensures the dynamic reconfiguration of dynamically adaptive systems at
runtime. This middleware provides a set of functions enabling the dy-
namic reconfiguration as well as the monitoring and the consistency of
such systems during the reconfiguration.

1 Introduction

Dynamically adaptive systems are be able to detect changes in their execution
context and then be adapted at runtime in order to satisfy high reliability and
availability requirements. Such systems should be reliable and always available to
maintain their usefulness. Two types of adaptations are generally used to ensure
the adaptation of these systems : the behavioral adaptations that affect the
behavior of the system by changing the behavior of one or several components,
and the architectural adaptations (so called architectural reconfigurations) that
consist in modifying the structure of the architecture by adding or removing
components or connections. These two types of adaptations affect each other
since the modification of the structure of the system can cause the change of
its behavior and conversely, behavioral changes can cause the addition of new
components and connections.

In this context, we proposed, in a previous work [1, 2], an approach for man-
aging of architectural reconfiguration of dynamically adaptive systems. This ap-
proach allows the designer to specify the architecture of the system. Then, an
automatic code generation process is applied to obtain a system ready to be
executed. This code requires a middleware ensuring dynamic reconfiguration as
well as monitoring and consistency. This paper focuses on the description of this
middleware.

In the literature, several works address the development of middleware sup-
porting dynamically adaptive systems. However, they present several limitations.
First, some existing middlewares such as [3, 4] do not support the dynamic re-
configuration in response to execution context changes. Second, other proposed
middleware [5, 6] only handles starting, stopping, and connecting components
and connectors, but not their addition, removal, and replacement. Third, most

E. Maehle et al. (Eds.): ARCS 2014, LNCS 8350, pp. 72–84, 2014.
c© Springer International Publishing Switzerland 2014

Middleware for Dynamically Adaptive Systems 73

of the existing middleware [5–8] consider the system environment context im-
plicitly in the functional code of the system. As such, the system complexity
is increased, and the ability to process and manage the context information is
limited.

In this paper, we propose a middleware, called DRES4DAS (Dynamic Re-
configuration Execution Support for Dynamically Adaptive Systems), which
supports dynamically adaptive systems. This middleware allows performing ar-
chitectural reconfigurations at runtime that handle starting, stopping, adding
and removing components and connectors. It also provides mechanisms to guar-
antee the monitoring of the execution context in separate modules using the
Aspect-Oriented Software Development (AOSD) paradigm. Moreover, our pro-
posed middleware ensures the consistency of the system during reconfigurations.

The remainder of this paper is organized as follows. Section 2 briefly presents
our previous work to ensure the architectural reconfiguratioon of dynamically
adaptive systems. Section 3 describes the proposed middleware and its imple-
mentation. Section 4 illustrates the effectiveness of the proposed approach by
considering a case study having dynamic reconfiguration requirements. Section 5
details some related work. Finally, Section 6 concludes this paper and presents
future work.

2 Previous Work

We proposed an approach to ensure the architectural reconfiguration of dynam-
ically adaptive systems (figure 1). It supports two types of reconfigurations :
planned and unplanned reconfigurations.

For the planned reconfigurations, they are used to monitor the execution con-
text of the running system. These reconfigurations are specified at architectural
level using the AOSD paradigm and more specifically the AO4AADL [9, 10]
language (Aspect-Oriented extension for AADL). The AO4AADL architectural
aspects are associated to a set of AADL (Architecture Analysis & Design Lan-
guage) component types to form the Declarative model. The instantiation of
these component types to specify the architecture of the system includes also
the instantiation of the AO4AADL aspects. In fact, every aspect has been de-
clared for a type, will be attached to all instances of this type. The resulting
model is called Instance model. Finally, an automatic code generation process is
taken place to generate RTSJ (Real-Time Specification for Java) code from the
AADL specification and AspectJ code from the AO4AADL aspects. This code
generation is ensured using the Ocarina tool suite [11]. AspectJ aspects are later
woven with RTSJ code to form the final application code. We note here that
we adopted the RTSJ code because it is the only available java implementation
that can be generated from the AADL models.

For the unplanned reconfigurations that can not be anticipated at design time,
we used the HOOK methods technique to handle them. These ad-hoc reconfig-
urations need the manual intervention of the designer and they are triggered
in response to new user requirements. The HOOK methods include listeners to

74 S. Loukil, S. Kallel, and M. Jmaiel

capture the evolution of the architecture of application. For example, a Hook
method can be used to intercept event messages and then perform customized
actions to commit the architectural modifications to the running system.

To ensure a clear representation of the architecture of the modeled system
while maintaining its usefulness and reliability, we performed, in a previous
work [12], the verification of the reconfiguration actions against a set of im-
posed architectural OCL invariants. This verification is performed at design level
through a verification module. Indeed, the reconfiguration actions are performed
first on the instance model to verify the preservation of a set of architectural in-
variants. If no invariant is violated, the reconfiguration actions are committed to
the running system. Otherwise, the new configuration is simply discarded. This
allows to save costly executions of roll-back operations on the system. We have
opted for selecting eclipse plug-ins to develop a graphical editor allowing the
specification of the dynamically adaptive systems. We present in the following,
our proposed middleware to support this approach.

Fig. 1. Architectural reconfiguration of dynamically adaptive systems

3 DRES4DAS Middleware

Our proposed DRES4DAS middleware allows runtime reconfiguration of dy-
namically adaptive systems and ensures their monitoring and their consistency
during the reconfiguration. We assume that our approach is applied on systems
with Client/Server architecture and it uses a reliable network and communica-
tion protocol that ensures a correct transmission of messages behind distributed
systems. The declarative model and the instance model are located at the server
machine while the generated code can be distributed on several execution ma-
chines. Therefore, our proposed middleware represents a distributed system by
a set of interconnected nodes (processes). Each node defines one process of the

Middleware for Dynamically Adaptive Systems 75

specified system and includes a set of threads deployed on it. Our proposed
middleware (figure 2) ensures various functionalities which consists mainly in :

– Supporting the monitoring of the system by supervising at runtime the ex-
ecution context of the system (i.e; information of the environment elements
relevant for expressing reconfiguration actions) and the topology of the ar-
chitecture (e.g, getting information about the number of components and
connections).

– Ensuring the dynamic reconfiguration of adaptive systems which represents
the main function of this middleware.

– Preserving the consistency of the system during and after reconfiguration
actions since reconfiguration may lead the system to undesirable states which
risks its functioning.

Fig. 2. The proposed middleware

3.1 Aspect-Based Monitoring

The middleware provides a way to detect when it is time to reconfigure the system
to build an effective dynamically adaptive system. In this context, we built the run-
ning systemmonitor (figure 1) that includes a set of programming aspects that can
be easily woven with the functional code of the application. Two types of aspects
can be used to monitor the system : generic and specific aspects. Generic aspects
can be defined tomonitor the whole system in order to get general information such
as the number of components running on the system, the number of connections
between components, etc. However, specific aspects are used to monitor the exe-
cution context variables that are intended to be changed during the execution of
the system. These aspects are written in AspectJ language. The specific AspectJ
aspects are automatically generated from the AO4AADL aspects using our As-
pect generator [9, 10]. Our aspect-based monitor is able to intercept information
about the execution context (i.e; messages exchanged through ports and program
parameters) of the running system.

Listing 1.1 presents the AspectJ code of an aspect that aims to monitor the
battery level of a sensor node. As shown in this code, the pointcut of such

76 S. Loukil, S. Kallel, and M. Jmaiel

aspect (lines 2–3) intercepts the context variable that gives information on the
battery level. This information is given through the parameter battery level of
the subprogram Get Battery State. This later is invoked periodically to inform
the system on the battery level. The advice code (lines 4–11) enumerates the
list of the reconfiguration actions to perform when the battery level drops below
a well-determined threshold (lines 6–10). These actions consist in removing the
current sensor node and replace it with a new one.

1 aspect Battery State Aspect{
2 pointcut check Battery(int battery level): execution (∗ Subprograms.Get Battery State(..))
3 && args (battery level);
4 advice after(int battery level):check Battery(battery level){
5 ...
6 if (battery level < threshold){
7 R1:=”removeThreadInstance(this)”;
8 R2:=”addThreadInstance(”Sensor Thread”+”,”+New Sensor Thread+”,

9 ”+outport tab+”,”+inport tab+”)”;
10 ...}
11 ...}}

Listing 1.1. Example of monitoring aspect

3.2 Dynamic Reconfiguration

The middleware allows modifying the software architecture of the system by
adding or removing components or connections. In our work, we consider that
the types and the implementations of the components are defined before deploy-
ing and executing the system. However, behavioral reconfigurations returns to
modify the behavior of the component and consequently may require the defini-
tion of a new type or a new implementation of a component. This needs to stop
the system, regenerate the code and re-run it. Thus, the behavioral reconfigura-
tions are not considered in our work.

The architectural reconfigurations supported by our middleware are : (1) Add
connection: adding a connection between two ports of two threads, (2) Remove
connection: deleting a connection between two ports of two threads, (3) Add
thread : creating and deploying a new thread on execution platform and then
connecting it with the other components, (4) Remove thread : removing its con-
nections with the other components, undeploying it and then deleting it, and
(5) Migrate thread : moving a thread from a node (process) to another.

A real-time thread is attached to each node of the distributed system. This
thread is launched simultaneously with the associated node to detect requests of
reconfiguration and perform the necessary reconfigurations affecting this node.

We developed a set of reconfiguration functions in our middleware to ensure
the previously presented architectural reconfigurations. For example, Listing 1.2
presents the addConnection function used to add a connection between two
ports of two threads. This function takes as parameters (line 1) the identifiers of
the source port of the connection (src) and the destination port of the connection
(dest), respectively. First, this function looks for the identifiers of the component
of the source port (src component) and the destination one (dest component)
(lines 2 and 3). Then, it verifies whether these two components are nested in

Middleware for Dynamically Adaptive Systems 77

which case both ports that have as identifiers src and dest must be of the same
kind, i.e. input or output ports (lines 4–6). Otherwise, the source port must be
an output port and the destination port must be an input port (lines 8 and
9). Moreover, this function verifies that there is no connection between these
two ports (line 11). Finally, the connection will be created by adding the dest
identifier to the set of destinations of the port whose identifier is src (line 12).

1 addConnection(src,dest:String)
2 String src_component=getComponent(src);
3 String dest_component=getComponent(dest);
4 If ((isNested(src_component,dest_component)
5 and ((isOutputPort(src) and isOutputPort(dest))
6 or (isInputPort(src) and isInputPort(dest))))
7 or
8 (not isNested(src_component,dest_component)
9 and isOutputPort(src) and isInputPort(dest))

10 and
11 not isExistConnection(src,dest)) then
12 addDestinationPort(src,dest);
13 EndIf

Listing 1.2. Adding connection

Listing 1.3 presents the addThreadInstance function which allows to add
a new thread instance to a node and connect it to other components. This
function takes as parameters (line 1) : the component type of the new instance
(componentType), the node where it will be deployed (node), the destination list
of each output port of this new instance (outport dest) and the list of ports which
have in their destinations an input port of this new instance (source inport).
After creating a new instance of the specified component type (line 2), this
instance is deployed on the node (line 3). The connections of this instance with
the other components will be added (as shown in lines 4–9). Adding a new
instance of a given type is achieved by calling the constructor of the generated
class for this type and providing all necessary parameters.

1 addThreadInstance(componentType,node:String; outport dest[][],source inport[][]:Hashtable) {
2 String entity=newInstance (componentType);

3 deploy(entity , node);
4 For i=0 to outport dest.size() do
5 addConnection (outport dest[i][1], outport dest[i][2]);

6 EndFor
7 For i=0 to source inport. size()do
8 addConnection(source inport[i][2], source inport[i][1]);
9 EndFor

Listing 1.3. Adding component

3.3 Consistency

In order to avoid reconfigurations that may lead the system to inconsistent states,
we propose a set of algorithms to enforce the consistency of the dynamically
adaptive system and maintain its correct state. In this context, we distinguish
two main problems likely to occur : (1) Problem of conflicting reconfigurations
and (2) Problem of removal of architectural elements at runtime.

78 S. Loukil, S. Kallel, and M. Jmaiel

Problem of Conflicting Reconfigurations : Conflicting reconfigurations may
occur when at least two nodes connected to the distributed system launch two
contradictory reconfigurations. To avoid such a problem, we propose to lock all
the threads affected by the reconfiguration treatments using a common lock. This
later allows preventing the connected threads from sending further requests and
achieving the treatment of all current requests. These threads are unlocked once
the reconfiguration process is achieved.

For each node connected to the communication network, a thread is created
to perform the various tasks associated with the reconfiguration process. The
role of the used lock is to manage the execution of the various reconfigurations.
It guarantees that reconfigurations that are not conflicting with the current re-
configuration (i.e; that do not affect the same architectural elements) can be
executed in parallel. For the reconfigurations that affect the same architectural
elements, they are executed in mutual exclusion. Hence, these reconfigurations
are processed in the order of their arrival. This ensures therefore make reconfig-
uration decisions consistent in solving conflicts.

Problem of Removal of Architectural Elements at Runtime : Two main
cases of dynamic reconfigurations can put the system in an inconsistent state.
The first case is related to the removal of a thread that has pending queries.
These queries will be unfinished and lost. Thus, the execution of the components
interacting with the removed one will be disturbed and even blocked by the
non-receipt of the corresponding answers. The second case of this problem is the
removal of an active connection that is transmitting messages may have queries
that are being evaluated and will not be fully processed.

Avoiding these inconsistencies requires the control on the reconfiguration ac-
tions related to the removal of thread instances and connections.

– Control on removing threads : The removal of an instance of a thread is con-
ditioned by the absence of messages in transit destined for this instance. In
addition, it should be resting and not currently carrying out any treatments.

For this purpose, we adopt a verification of the state of the thread instance
in case of detection of removing query : if it stills active, the reconfiguration
waits until the thread goes into a passive state to proceed the delete action.
At the end of each operating cycle of the thread, a program verifies if there
is any blocking request of the thread activities (request to delete the thread
instance). If so, this thread should be stopped prohibiting the launch of a
new cycle. Otherwise, a new cycle is started.

The removal of the thread is preceded by removing all the connections
between this instance and all the other components to ensure a full isolation
and avoid the disruption of the rest of the system.

– Control on removing the connections : The middleware verifies if the connec-
tion to remove is not transmitting data or messages using the same principle
of the removal of threads. At the moment of the reconfiguration request, we
verify the state of the connection to remove using its parameters. This allows
making the right decision without disturbing the system. If it indicates that

Middleware for Dynamically Adaptive Systems 79

the concerned connection is still sending messages then the reconfiguration
is blocked until the state of the connection indicates the end of transmission.

3.4 Implementation

We used the PolyORB-HI [13], inspired from the PolyORB middleware archi-
tecture [14] to implement our proposed middleware. PolyORB-HI is composed
of a minimal middleware core and several automatically generated services. The
minimal core presents the common services for all applications while the gener-
ated functions are customizable to the needs of the target application. Most of
the code of this middleware is generated automatically using the Ocarina tool
suite. PolyORB-HI includes three types of middlewares : POLYORB-HI-ADA,
POLYORB-HI-C and POLYORB-HI-JAVA that support the execution of the
ADA, C and RTSJ code, respectively. However, POLYORB-HI presents some
drawbacks. First, examples used to test this middleware are quite simple (two
threads communicating where each thread contains at most one input port and
one output port). Hence, using POLYORB-HI for a real example (which con-
tains many threads) presents a tedious task. Second, POLYORB-HI carries out
a static code generation. In other words, it uses static structures in the generated
code. Therefore, once the system is deployed and executed, it can not be recon-
figured at runtime. This latter presents a major drawback of the POLYORB-HI
middleware.

We developed our middleware in order to deal with these problems. It
consists in updating and extending the existing implementation of the PolyORB-
HI-JAVAmiddleware. In this context, we adopted the POLYORB-HI-JAVAmid-
dleware since we are interested in the execution of the RTSJ code, as described
in [1, 2]. We implemented the functions mentioned in section 3 allowing to per-
form dynamic reconfigurations. We added then a new class called Reconfigure
which includes the reconfiguration functions.

In addition to this new class, we updated the existing routines such as the
addressing service which manages the components references at runtime. For ex-
ample we updated the Context routine which contains some context parameters
used by PolyORB-HI components to allow the deployment and the connections
of the components. We replaced the static structures with dynamic ones. In this
context, Hash tables are used for ensuring the various dynamic reconfigurations.

Moreover, we implemented the necessary routines for ensuring the consistency
of the running system. Indeed, two new programs are included in the new mid-
dleware, the first one is responsible of controlling the removal of thread instances
and the second one looks for the removal of connections.

4 Case Study

We considered a case study of a FPS (Flood Prediction System) to illustrate the
proposed approach allowing the modeling and the reconfiguration of dynamically
adaptive systems. This case study presents a set of nodes that communicate and

80 S. Loukil, S. Kallel, and M. Jmaiel

cooperate to carry out flood predictions and notify local authorities to be able
to avoid potential hazards. Figure 3 depicts a simplified representation of the
general architecture of the FPS using our graphical editor.

Fig. 3. The graphical representation of the architecture of the FPS system

Three types of components are considered in this case study :

– Sensors sense and collect the data relevant for calculations. Several sensors
are required such as pressure, rainfall, and temperature sensors.

– Computational entities compute flood prediction level according to the val-
ues provided by sensor nodes, communicate the predictions to an office node.
They also have communication between themselves for detecting malfunc-
tioning of nodes.

– Office node verifies the results with the available online information, issues
alerts and initiates evacuation procedures.

To illustrate our approach, we define a dynamic reconfiguration that aims at
removing a computational thread already deployed in the river when it is no
more operational. When such thread is removed, the related sensor threads will
be no more connected to a computational thread and the collected information
will be lost. The sensor threads should be connected to the nearest operational
computational thread in order to tackle this problem.

As mentioned previously, our middleware allows the monitoring of the context
information at runtime through AspectJ aspects that are woven with the code
of the application.

Middleware for Dynamically Adaptive Systems 81

An AspectJ aspect is intended to intercept a subprogram that indicates
whether the thread is still active or no. This subprogram is invoked periodically on
each deployed component in the system.We suppose, for example, that the thread
CT 1 is nomore operational for a precise period of time.Therefore, ourmiddleware
is supposed to follow a dynamic reconfiguration. This reconfiguration consists in
removing the computational threadCT 1 instance ofComputational Thread type.
For this, the connections of this instance with the computational node (Computa-
tional Node), the other computational threads (CT 2) and the corresponding sen-
sor threads (Temp 1, Rain 1 and Pres 1) should be removed. Moreover, to avoid
the loss of information, these sensor threads should be connected to the nearest
operational computational thread. In our case, the CT 2 node is considered as the
nearest thread to the CT 1 thread. The following reconfigurations should be se-
quentially handled to guarantee the safe reconfiguration of the FPS system:

– Adding connection between Temp 1 and CT 2,
– Adding connection between Rain 1 and CT 2,
– Adding connection between Pres 1 and CT 2,
– Removing connection between CT 1 and Temp 1,
– Removing connection between CT 1 and Rain 1,
– Removing connection between CT 1 and Pres 1,
– Removing connection between CT 1 and CT 2,
– Removing connection between CT 1 and Computational Node,
– Removing CT 1 instance of Computational thread component.

Figure 4 shows the execution trace of the reconfiguration actions related to
the addition of a connection between Temp 1 and CT 2 and the removing of
the connection between CT 1 and Temp 1. For example, adding the connec-
tion between Temp 1 and CT 2 consists in adding connections between the two
outports of the Temp 1 thread to the corresponding inputs of the CT 2 thread.

After applying efficiently the previously presented reconfiguration actions,
we demonstrate also that the consistency is ensured by our middleware using
the considered FPS case study. In fact, after this reconfiguration, the system
remains consistent. As shown in Figure 5, we note that the temperature sensor
thread Temp 1 continue to collect information and communicate them to the
CT 2 thread which in turn continue to compute the flood prediction level and
communicate the predictions to the office node through the Computational Node
node.

5 Related Work

Several approaches supported the runtime reconfiguration of dynamically adap-
tive systems. Some of them presented a middleware to ensure such reconfigura-
tion. In the following, we present the most important ones.

RUNES [3] is a component-based middleware that supports the development
of software for networked embedded systems. This middleware enables dynamic
reconfiguration of components and their interconnections according to changing

82 S. Loukil, S. Kallel, and M. Jmaiel

Fig. 4. Part of trace of the dynamic recon-
figuration of the FPS sytem

Fig. 5. Consistency of the FPS system af-
ter reconfiguration

condition. It encompasses dedicated radio layers, networks, middleware, and spe-
cialized simulation and verification tools. Unlike our middleware, RUNES does
not provide monitoring routines of the context changes of the running system.

FRASCATI [4] is a component-based middleware platform for reconfigurable
distributed Service-Oriented Architectures (SOA). It supports runtime adapta-
tion and managing properties of Service Component Architecture (SCA) appli-
cations. It allows to introspect an SCA application to discover at runtime its
structure, modify it to add new services, reconfigure the application to take into
account new operating conditions. Unlike our middleware, FRASCATI does not
address the automatic adaptation of components depending on execution context
changes. Moreover, it does not have fully-fledged AOP development technique
for SCA. It uses some notions like join points and advice code but no grammar
including all the concepts of AOP is provided.

Planit [6] presents a framework for deployment and reconfiguration of
distributed systems. Similarly to our approach, Planit ensures architectural re-
configurations. Ulike our middleware, it only handles starting, stopping, and
connecting components and connectors. The addition, removal and replacement
of components are not taken into account. Similarly to Planit, the approach pre-
sented in [5] is not capable of handling the addition, removal and replacement
of components.

The RCES4RTES [8] middleware performs the dynamic reconfiguration of
Distributed Real-time Embedded (DRE) systems. It supports architectural re-
configurations (adding/removing components or connections) as well as behav-
ioral reconfigurations (updating component or updating its implementation). It
provides mechanisms for monitoring DRE systems to observe a system state
during its execution. This monitoring consists in getting the component number
running on the system, getting the connection number between a given compo-
nent and other components, and getting the last read/write access time to shared
variables. Moreover, this middleware allows to preserve the consistency of the
system during and after reconfigurations. Unlike our middleware, RCES4RTES
provides poor monitoring routines dealing with the structure of the system and
does not allow to monitor the execution context of the running system.

Middleware for Dynamically Adaptive Systems 83

Unlike our proposed middleware, in all the presented middleware above, the
code of processing/managing the execution context is implicitly included in the
functional code of the system which increases the complexity of the system and
limits the ability to manage it. However, in our middleware, the monitoring of
the execution context is separated from the functional code of the application.
Indeed, it is captured into modular units (aspects) using the AOSD paradigm.
Therefore, the complexity of the system is decreased and the management of its
execution context becomes easier.

6 Conclusion and Future Work

In this paper, we presented a middleware that supports the architectural reconfig-
uration of dynamically adaptive systems. This middleware ensures the monitoring
and the consistency of the system during reconfigurations. The implementation of
our proposedmiddleware is achieved through updating and extending the existing
version of POLYORB-HI-JAVAmiddleware.

As future work, we plan to provide reliable dynamic reconfigurations following
two main axes. On one hand, we aim to reduce as much as possible the occurrence
of errors (fault prevention). On the other hand, to minimize the damage they
cause to the system when errors that could not be prevented actually happen
(fault tolerance).

References

1. Loukil, S., Kallel, S., Jmaiel, M.: Runtime adaptation of component based systems.
In: Gramoli, V., Guerraoui, R. (eds.) NETYS 2013. LNCS, vol. 7853, pp. 284–288.
Springer, Heidelberg (2013)

2. Loukil, S., Kallel, S., Jmaiel, M.: Managing architectural reconfiguration at run-
time. International Journal of Web Portals 5, 55–71 (2013)

3. Costa, P., Coulson, G., Mascolo, C., Picco, G.P., Zachariadis, S.: The runes
middleware: A reconfigurable component-based approach to networked embedded
systems. In: Proceedings of the 16th Annual IEEE International Symposium on
Personal Indoor and Mobile Radio Communications, Berlin, Germany (2005)

4. Seinturier, L., Merle, P., Rouvoy, R., Romero, D., Schiavoni, V., Stefani, J.B.: A
Component-Based Middleware Platform for Reconfigurable Service-Oriented Ar-
chitectures. Software: Practice and Experience 42, 559–583 (2012)

5. Sykes, D., Heaven, W., Magee, J., Kramer, J.: From goals to components: a com-
bined approach to self-management. In: Proceedings of the 2008 International
Workshop on Software Engineering for Adaptive and Self-managing Systems. ACM
(2008)

6. Arshad, N., Heimbigner, D., Wolf, A.L.: Deployment and dynamic reconfiguration
planning for distributed software systems. Software Quality Control 15, 265–281
(2007)

7. Morin, B., Barais, O., Jezequel, J.M., Fleurey, F., Solberg, A.: Models@ run.time
to support dynamic adaptation. IEEE Computer 42, 44–51 (2009)

84 S. Loukil, S. Kallel, and M. Jmaiel

8. Krichen, F., Zalila, B., Jmaiel, M., Hamid, B.: A middleware for reconfigurable
distributed real-time embedded systems. In: Lee, R. (ed.) Software Engineering
Research, Management and Appl. 2012. SCI, vol. 430, pp. 81–96. Springer, Heidel-
berg (2012)

9. Loukil, S., Kallel, S., Zalila, B., Jmaiel, M.: Toward an Aspect Oriented ADL
for Embedded Systems. In: Babar, M.A., Gorton, I. (eds.) ECSA 2010. LNCS,
vol. 6285, pp. 489–492. Springer, Heidelberg (2010)

10. Loukil, S., Kallel, S., Zalila, B., Jmaiel, M.: Ao4aadl: Aspect oriented extension
for aadl. Central European Journal of Computer Science 3, 43–68 (2013)

11. Vergnaud, T., Zalila, B., Hugues, J.: Ocarina: a Compiler for the AADL. Technical
report, Telecom Paristech - France (2006)

12. Loukil, S., Kallel, S., Jmaiel, M.: Verifying runtime reconfiguration of dynamically
adaptive systems. In: Proceedings of the 39th Euromicro Conference on Software
Engineering and Advanced Applications. IEEE Computer Society (2013)

13. Zalila, B., Pautet, L., Hugues, J.: Towards Automatic Middleware Generation.
In: Proceedings of the International Symposium on Object-oriented Real-time dis-
tributed Computing, pp. 221–228. IEEE (2008)

14. Vergnaud, T., Hugues, J., Pautet, L., Kordon, F.: PolyORB: A Schizophrenic
Middleware to Build Versatile Reliable Distributed Applications. In: Llamośı, A.,
Strohmeier, A. (eds.) Ada-Europe 2004. LNCS, vol. 3063, pp. 106–119. Springer,
Heidelberg (2004)

Mahler: Sketch-Based Model-Driven Virtual

Prototyping

Rafael Rosales, Michael Glaß, and Jürgen Teich

University of Erlangen-Nuremberg,
Germany

{rafael.rosales,michael.glass,teich}@cs.fau.de

Abstract. Virtual prototyping and Electronic System Level (ESL) mod-
eling have become valuable resources to cope with the ever-increasing
complexity of embedded systems. Their effectiveness, however, is highly
dependent on their quick development time and accuracy, both conflict-
ing goals. In this paper, we present a novel tool, Mahler, to accelerate the
development of ESL models. Mahler provides an early design phase play-
ground to manually explore the modeling of functionality at a high level
of abstraction and analyze its performance on different architecture im-
plementations very fast. It generates a ready-to-execute source code func-
tional model in an open source SystemC-based language, bridging the
gap between a design’s very preliminary stage and a more mature design
stage that can serve as a starting point for automatic design space ex-
ploration on existing ESL design flows. Mahler achieves this through the
most natural interface: the designer’s pen, enabling an intuitive model-
driven creation of virtual prototypes following the Y-chart approach;
literally sketching actor-oriented functional models at the ESL which
are then mapped to the architecture platform for a simulation-based
evaluation of power and performance. We demonstrate its advantage in
terms of improved design productivity through the implementation of an
MPEG-4 encoder virtual prototype.

Keywords: Virtual Prototyping Tool, ESL, Simulation-based Perfor-
mance and Power Consumption evaluation, Energy Aware Design,
Model-Driven Design, Sketch-based User Interface.

1 Introduction and State-of-the-Art

Modern MPSoCs are increasingly complex, as Moore’s Law still holds to be
true. This has resulted in a productivity gap, where the designers can hardly
increase their efficiency at the same pace. Increasing the level of abstraction and
modeling at the Electronic System Level (ESL) is an attempt to address this
problem, enabling to evaluate the performance of complex systems in a tractable
way. Virtual Prototyping, in turn, enables the parallel design of software and
hardware and allows to test developed software even before the first hardware
prototype has been created, reducing time-to-market considerably.

E. Maehle et al. (Eds.): ARCS 2014, LNCS 8350, pp. 85–97, 2014.
c© Springer International Publishing Switzerland 2014

86 R. Rosales, M. Glaß, and J. Teich

Fig. 1. Mahler sketch-based user interface. A drawn model is auto-generated into a
ready-to-execute Virtual Prototype, including XML back-annotations for power and
performance evaluation.

Although the creation of a virtual prototype results in an overall time saving,
the development effort is significant, and in the case of semi-formal models the
designer is involved in writing code overhead, such as boiler-plate code, synchro-
nization constructs, or redundant model definitions. For very abstract models,
such as those typically used in ESL, the overhead even becomes the major effort
factor, hindering design productivity and making maintenance a difficult task.

Several methodologies for the creation of Virtual Prototypes have been devel-
oped with the aim to increase the designer’s efficiency further. SystemC is the
de-facto standard language in industry. It enables the creation of Virtual Pro-
totypes at high levels of abstraction such as transaction-level. Metropolis [1] is
a methodology that follows the Y-chart approach [12], separating the modeling
of application functionality from the architecture platform. This separation en-
ables to explore different design implementations through a meet-in-the-middle
approach, but introduces a non-standard language which system-level designers
are required to learn. The SystemCoDesigner methodology [9] [18], also following
the Y-chart approach, makes use of SysteMoC [6] [5], an open source SystemC-
based language for actor-oriented modeling of functionality. This methodology
exploits the formal actor-oriented model for automatic design space exploration
(DSE) of hardware/software partitioning [18]. Sesame [4], uses Kahn processes
as the formal model to describe functionality and the Pearl discrete event sim-
ulation language [2] for the hardware architecture to enable the design space
exploration of system architectures. VisualSim [16], is a tool based on Ptole-
myII [3]. It enables to create actor-oriented functional models through a mouse-
based graphical user interface. Its emphasis, however, resides in supporting the
functional modeling under different models of computation (MoC) and not au-
tomatic DSE of HW-SW partitioning. These established approaches enable the
creation of system models, but are limited in their capabilities to rapidly de-
sign an executable virtual prototype, hindering the potential of an early manual
exploration.

Mahler: Sketch-Based Model-Driven Virtual Prototyping 87

On the user interface side, approaches to improve the productivity of system
designers in the modeling process have been developed. In [8], a UML class dia-
gram sketch recognition system is presented. MATLAB/Simulink [19], provides
a model-based interface for dynamical systems. In [10], a sketch-based interface
for Simulink is described. These sketch-based modeling approaches have shown
to improve the efficiency of the designer, but, so far, no complete flow for virtual
prototyping exists that enables a sketch-based design to be automatically trans-
formed into an executable virtual prototype, suitable for design space exploration
of hardware/software partitioning for power and performance optimization.

This paper introduces Mahler, a novel tool to accelerate the development of
virtual prototypes, providing an intuitive modeling user interface and aiding to
begin design space exploration at a pre-optimized starting point. Mahler facili-
tates the development of an ESL model at its initial stage, where many design
choices have to be made before starting established automatic design space explo-
ration iterations. Mahler provides an intuitive modeling interface that generates
SystemC-based ESL models which can (a) be simulated for power and perfor-
mance evaluation and (b) serve as a starting point of existing ESL flows, such
as automatic design space exploration of hardware/software partitioning.

The main contributions of Mahler are:
(I) Fill the gap between the very early model development stage and the

starting point of existing automatic design space exploration flows, by providing
a very fast sketch-based modeling playground environment.

(II) Reduce the ESL design adoption barrier by enabling a very intuitive
manual exploration of actor-oriented modeling and hardware/software codesign
choices producing executable SystemC-based virtual prototypes within minutes.

In Mahler, the designer is able to literally sketch with a pen or touch interface,
e.g. a tablet stylus, or a touchless interface, such as Leap Motion controller [14],
the functional and architecture model that will be transformed to an executable
virtual prototype through sketch recognition, see Fig. 1. This intuitive sketch-
based approach is shown to be preferred by UML model designers compared to
traditional mouse-based user interfaces [8]. This provides not only a direct inter-
face from an idea to an executable implementation, but enables a very fast way to
explore actor-oriented functional modeling and hardware/software partitioning.
As Mahler follows a model-driven approach, the designer is not required to learn
the syntax details of a modeling language and, thus, eliminates the overhead and
verbosity of plain source code required for trivial tasks, such as plumbing, inter-
connecting, declarations, instantiation, tagging, etc. This overhead, as we will
show, can easily outgrow the size of actual model information, specially in high-
level models typical for the ESL, where functionality is abstracted at a coarse
level. With Mahler, an ESL designer can focus on the actual modeling as in other
model-driven approaches, creating a design as on a piece of paper, and almost
forget about the coding implementation. This is not only useful in models built
from-scratch, but also for porting legacy code to the actor-oriented paradigm,
allowing the designer to try different modeling granularities very fast, by drawing

88 R. Rosales, M. Glaß, and J. Teich

simple actors representing very high level functional tasks, or a complex actor
network with a more granular task level detail.

Through the use of this actor-orientedparadigm, it is possible to take advantage
of techniques for early evaluation of performance such as back-annotation [11] [17],
perform a quick simulation of the system, and modify it according to the obtained
traces of performance and power consumption. In Fig. 1, it is shown that after
the designer has captured the functional model as well as the architecture through
sketches,Mahler generates the functionalmodel source code in the SystemC-based
language SysteMoC [6] as well as the configuration files for simulation. The result-
ing source code stub is ready for simulation for performance and power estimation,
enabling to simulate and visualize power and performance traces immediately after
sketching. This provides immediate feedback to the designer on the actual sched-
ule of tasks through time permitting to identify potential optimizations that would
lead to reducedpower consumption.The sketchedmodel canbemodified to explore
different architecture hardware mappings, as well as to investigate finer granular-
ities on the functional model and re-run a simulation after some re-sketches. Once
a sufficiently good ESL model has been obtained at this high level playground,
the actor-oriented source code can be enriched with computational code to specify
functionality beyond the formal model. The resulting model can be incorporated
into automatic DSE and synthesis toolflows [7], maximizing the reuse of the effort
invested.

The rest of the paper is structured as follows: In Section 2, the Mahler sketch
recognition-based user interface is presented while introducing the functional
modeling language and the generation of the source code at the same time.
Section 3 describes the modeling of the architecture platform, timing and power
consumption annotations, and the simulation of the generated virtual prototype.
In Section 4, we present a case study to demonstrate the benefits of modeling
with Mahler. Finally, we present our conclusions on Section 5.

2 Sketch-Based Functional Modeling

2.1 Functional Model Elements

The actor-oriented formal model SysteMoC [6] used in Mahler provides the nec-
essary constructs to model functionality at a high level of abstraction in an
implementation-independent manner while providing a well-defined granular-
ity to back-annotate low-level timing-execution values of computational actions.
Thereby, it is possible to create an ESL model very fast and obtain estimations
of power and performance very early.

We summarize the formal model elements illustrated in Fig.2 in the following:

Definition 1. An actor is a tuple a = (I, O, F,R) containing a set of actor
ports partitioned into a set of actor input ports I and a set of actor output ports
O, the actor functionality F , and a Finite State Machine (FSM) R.

Definition 2. The actor FSM is a tuple R = (Q, q0, T) containing a finite set
of states Q, an initial state q0 ∈ Q, and a finite set of transitions T .

Mahler: Sketch-Based Model-Driven Virtual Prototyping 89

Fig. 2. SysteMoC language elements

Definition 3. In an FSM R = (Q, q0, T), a transition is a tuple t = (q, k, f, q) ∈
T containing the current state q ∈ Q, an activation pattern k, the associated
action f ∈ a.F , and the next actor state q ∈ Q. The activation pattern k is a
Boolean function that decides if transition t can be taken or not.

The communication behavior of an actor a (production/consumption of to-
kens) is coordinated by its FSM R thereby separating clearly the control flow
from the processing of data. The latter is modeled by so-called actions which are
executed if in the current state of the FSM R, an activation pattern associated
with a state transition evaluates to true.

Definition 4. A channel is a tuple c = (I, O, n, d) containing channel ports
partitioned into a set of channel input ports I and a set of channel output ports
O, its buffer size n ∈ N∞ = {1, 2, 3, ..,∞}, and also a possibly empty sequence
d ∈ D of initial tokens, where D denotes the set of all possible finite sequences
of tokens.

The channels connecting actor ports can be assumed to have FIFO semantics.
The complete system functionality is therefore modeled by a network graph:

Definition 5. A network graph is a directed bipartite graph Pn = (A,C,E),
containing a set of actors A, a set of channels C, and directed edges E ⊆ (C.O×
A.I)∪ (A.O×C.I) between actor output ports A.O and channel input ports C.I,
as well as channel output ports C.O and actor input ports A.I, respectively.

The representation of the formal model in SystemC requires to code each
element using the SysteMoC library. As an example, Listing 1.1 shows the source
code of a simple actor composed of a single input port and a two state FSM.
The transition activation pattern from the first to the second state consists of
the existence of a token at the input port. The associated action is the execution
of the single actor action.

This source code represents purely the formal model, and can be extended with
computational code to operate on the data exchanged. For high level performance
estimation however, it is very often unnecessary, and thus the coding of the
formal model directly in SystemC becomes a tedious task. With Mahler, it is
possible to represent the formal model in the most domain-adequate way through
sketch recognition from which SystemC code is finally generated automatically.

90 R. Rosales, M. Glaß, and J. Teich

Listing 1.1. SysteMoC source code

1 class ActorClass0 : public smoc actor {
2 protected :
3 smo c f i r i n g s t a t e s t a t e 0 ;
4 smo c f i r i n g s t a t e s t a t e 1 ;
5 public :
6 smoc port in<void∗> i nputport0 ;
7 ActorClass0 (sc module name name)
8 : smoc actor (name , s t a t e 0){
9 s ta t e 0 = inputport0 (1) >>

10 CALL(ActorClass0 : : ac t ion0) >>
11 s ta t e 1 ;
12 }
13 void act ion0 () {
14 //−−Inse r t your code here i f desired−−}
15 } ;

In Mahler, an actor is represented as a rounded-border rectangle. To create
an actor, see I of Fig. 3, a rectangle sketch on the drawing canvas is performed.
Mahler supports any sketch created through mouse, stylus and Leap Motion
controller [14] strokes. After finishing the sketch strokes, the sketch-recognition
algorithm, based on the shape recognition engine of [15], replaces the sketch with
an empty graphical actor instance. This recognition engine is robust enough for
the simple sketches required for our formal model, namely rectangles, circles and
lines, and it is not a new contribution of Mahler.

To begin the specification of the actor FSM, states have to be specified. An
FSM state is recognized and represented by circles inside the actor area, see II of
Fig. 3. FSM Transitions are recognized from a sketched line starting and ending
at an actor state. A recognized transition sketch is replaced by an instance of a
graphical transition displayed as a directed arrow, see III of Fig. 3.

Ports are created via ’cuts’ at the actor borders, i. e., a line starting outside
and ending inside of an actor will be recognized as an input port, while a a
line starting inside and ending outside of an actor will be recognized as an
output port, achieved by testing the coordinates of the first and last strokes.
Port instances are displayed by small triangles, see IV of Fig. 3.

Functional actions are represented through rectangles inside the actor area,,
see V of Fig. 3. A drawn rectangle sketch inside of an actor is replaced with
a graphical functional action with a default name. Associated with each FSM
transition, a firing rule is specified to define under which conditions the state
transition should take place and what functional actions will be executed when
taking the transition. To provide the firing rules and actions taken on each
FSM transition, the ports and actions are first selected and then associated to
a transition through a spring-alike sketch, see VI of Fig. 3. The port conditions
are necessary to check for available data tokens at input ports or available slots
for output ports. For static data flow models of computation such as SDF, it
is not necessary to specify the actual functional action’s source code, e. g. the
computation of the FFT algorithm, and thus the formal model is complete to
specify the functional model for fast evaluation purposes. If a data-dependent
algorithm is required to be modeled, the formal model can be used to generate
the source code stub and manually insert the code into the functional actions
after sketching the actor model.

Mahler: Sketch-Based Model-Driven Virtual Prototyping 91

Fig. 3. Sketch-based interface. I) Actor sketch II) FSM State sketch III) FSM Transi-
tion sketch IV) Port Sketch V) Action Sketch VI) Action and Firing Rules association
VII) Actor interconnection and Hardware Mapping.

Finally, actors are interconnected through FIFO channels through their ports.
This is done by sketching a line starting and ending on the respective ports.

All graphical modeling elements are not merely drawings, but manipulable
object instances, i. e., each element can be moved around, deleted, or modified by
switching from ’Sketch mode’ to ’Manipulate mode’. Double clicking on elements
permits to change their name IDs. In the case of FSM transitions, a dialog
displaying the associated firing rules and actions are displayed.

2.2 Functional Model Generation

Once a functional model has been created, Mahler generates the source code
in the SysteMoC language [6]. This language is based on SystemC, and de-
fines a formal actor model through the members of classes inheriting from the
smoc actor class. Ports and states are value members, while functional actions
are represented with the class methods. The construction of the actor FSM is
done on the constructor of the class, see Listing. 1.1 for the code generated from
the sketched actor at step VI shown in Fig. 3.

92 R. Rosales, M. Glaß, and J. Teich

3 Sketch-Based Architecture Platform Mapping

Once the functional model has been specified, it is possible to map each single ac-
tor to a hardware resource in the architecture platform. Such a mapping defines
that the scheduling and execution of the actor functional actions will be per-
formed in that particular resource. Annotations on the timing execution of each
action can then be specified as they are dependent on the hardware executing
the functionality. These annotations are interpreted by the hardware resource’s
performance model at simulation time as described in [17]. Even more, each
resource’s power consumption can be specified following a state-machine based
approach [20]. Here, a power consumption value is provided for the possible pro-
cessor activity states, namely RUNNING or IDLE, and for the specified processor
power state, i. e., a discrete set of states representing different clock frequencies.
During simulation, using a hysteresis-based approach, the power state is changed
to minimize power consumption at the cost of slower execution time.

The above modeling of the architecture platform, mappings, and annotations
in Mahler is done as follows:

Hardware resource such as processors are drawn as rectangles at the bottom
of the canvas. They are represented as dark blue rectangle instances. To map
an actor to a resource, a line sketch starting at the actor and finishing at a
resource is drawn. If a previous mapping existed before to a different resource,
the previous one is automatically removed.

The annotation of timing execution values takes place after double-clicking
on the mapping line. This action opens a dialog, listing all the actions belonging
to the mapped actor and providing a space to fill the estimated timing values, in
nanoseconds for example, for each action when run on this particular resource.
Power consumption annotations are included on the dialog box opened after
double-clicking the respective resource. A list of power states can be specified to
establish the amount of power consumed, and the associated clock frequency for
each particular power state.

3.1 Generated XMLs

The mapping of actors to the architecture platform, the execution timing annota-
tions as well as the power consumption parameters are then generated by Mahler
as XML configuration files. These configuration files are used for the simulation-
based power and performance evaluation, see Listing 1.2 for the generated XMLs
for the functional model of Fig. 3 mapped to an architecture platform consisting
of two processors: proc0 and proc1, as shown in VII of Fig. 3.

Mahler: Sketch-Based Model-Driven Virtual Prototyping 93

Listing 1.2. Snippet of generated XML
1 <Functional i tyMapping>
2 <Map FuncUID=” actor1 ” ArchUID=”proc0”/>
3 </Functional i tyMapping>
4 <TimingAnnotations>
5 <Resource id=”proc0” f requency=”130” un i t s=”MHz”>
6 <Timing ac t i on=” a c t o r 1 : : a c t i o n 0 ” va lue=”22146” un i t s=”us”/>
7 </Resource>
8 </TimingAnnotations>
9 <PowerAnnotations>

10 <Resource id=”proc0”>
11 <ComponentState id=”RUNNING”>
12 <PowerState id=” f a s t ” powerConsumption=”94 mW” frequency=”200 MHz”/>
13 <PowerState id=” slow” powerConsumption=”35 mW” frequency=”130 MHz”/>
14 </ComponentState>
15 <ComponentState id=”IDLE”>
16 <PowerState id=” f a s t ” powerConsumption=”90 mW” frequency=”200 MHz”/>
17 <PowerState id=” slow” powerConsumption=”33 mW” frequency=”130 MHz”/>
18 </ComponentState>
19 </Resource>
20 </PowerAnnotations>

3.2 Simulation

The generated source code and configuration files contain the necessary infor-
mation to start a simulation-based evaluation of performance. By following a
similar virtual processing approach as provided in [17] [11], the functional model
is simulated along with a performance model for each hardware resource to ob-
tain the respective scheduling and power consumption traces. In this approach,
each hardware resource defines a single SystemC process, and schedules the
execution of the actors mapped to it. The execution time of each functional
action is simulated according to the parameters provided in the configuration
file. An embedded power management service on each processing element drives
the power state machine to manage power consumption. Integrating as well a
GUI for trace visualization makes it possible to visualize the performance of the
sketched model after a single click. After obtaining the traces, it is possible to
modify the functional model to regenerate the source code for compilation, sim-
ulation and visualization. If the changes involve only a change in the mapping
of actors, or the annotation of their timing or power consumption values, no
recompilation is necessary as only new configuration files will be created.

4 Use Case

To demonstrate the design productivity improvement using Mahler, we have
chosen to model an MPEG-4 Encoder Use Case. We would like to show what
little effort is needed to model such an encoder at the ESL and to estimate if
the performance constraints are met while taking into account the respective
power consumption for two different scenarios: one implementing the encoder in
software running on a single processor, and another one splitting the workload
into three application-specific processors.

The MPEG-4 Encoder system-level model is taken from [13]. We model each
MPEG-4 Encoder algorithm block as a separate actor, namely: discrete cosine

94 R. Rosales, M. Glaß, and J. Teich

Fig. 4. MPEG-4 Use case - All actors run-
ning on a single processor

Fig. 5.MPEG-4 Use case - Actors mapped
to multiple hardware resources

Fig. 6. Scheduling simulation results - Shown is the sequential scheduling and execu-
tion of the actions of (a) all actors mapped to a single processor and (b) the parallel
execution of actors mapped on three different processors

transform (DCT), quantization, inverse quantization (IQ), motion compensa-
tion, motion estimation, Content Based Arithmetic Encoding (CAE), variable
length coding (VLC). The encoder follows a dataflow paradigm, thus we proceed
to define simple FSMs for most of the actors, where the periodic execution of
its functional action is conditioned to the existence of tokens at the input ports
before trying to compute an action as well as enough FIFO space available before
producing one token of data at the output ports, see Figure 4. As at this level
of abstraction we are not interested in the functional (algorithmic) execution
of the specified actor actions but rather in a loosely timed execution according
to the annotated timing values. For this case study, the majority of the FSMs
simply contain one state and one transition to account for the dataflow depen-
dencies with the other actors. The multiplexor actor, in contrast, defines the
multiplexing order through a four-state FSM.

Now that the functional model has been sketched including 20 actors, we
proceed to set-up the architecture platform to then map the functional actors to
hardware resources and thus be able to provide timing annotations for execution
as well as power consumption parameters on each resource.

The annotated execution time values can be obtained from data sheets of
previous designs, or be expert’s estimations. In this use case, we obtained these
numbers from the relative load profile of a single RISC processor [13].

Mahler: Sketch-Based Model-Driven Virtual Prototyping 95

Fig. 7. Power consumption simulation results - Constant power consumption of fully
active single processor vs. variable power consumption values due to idle periods of
time of inactive processors

On the LHS of Figures 6 and 7, we can see the simulation results of the
one RISC processor mapping. The actors, shown at different Y-axis levels, are
executed sequentially, and their periodic execution can be observed as well. The
power consumption is constant due to the 100% usage of the processor.

We proceed now to evaluate this encoder for a three processor solution pro-
posed in [13], in which algorithms with similar properties are assigned to the
most appropriate processor or accelerator. Blocks with high data parallelism,
such as DCT, IDCT, and motion estimation, have been mapped to hardware
accelerator, whereas stream oriented blocks, such as VLC have been mapped to
a different processor, see Figure 5. As processors will not be completely utilized
all of the time, we make use of low power modes to save power while idle as
well as reduce the processor frequency. The respective timing annotations were
scaled to the expected operating frequency of the dedicated processors. The RHS
of Figures 6 and 7 shows the resulting task schedule and power consumption.
It is now possible to observe the parallel execution of tasks and their duration,
and the different system power consumption values according to the number of
active processors and their power mode. The corresponding number of Lines
of Code for the generated functional model and XML annotation files for the
MPEG-4 use case and the first introduced source-sink model of step VII of Fig. 3
are summarized in Table 1. It is easy to appreciate that even though the use case
functional model actors were only a bit more complex than the simple functional
model of Fig. 3 VII, this results in a significant increase of a factor of 40x or
more of LoC. The time taken to model the complete use case was less than an
hour, and the investigation of the alternative scenario took less than 10 minutes

Table 1. LoC generated for the simple Source-Sink and MPEG-4 Encoder Use Case

Complexity LoC

Simple Functional Model 2 actors 20

MPEG-4 Functional Model 20 actors 850

MPEG-4 XMLs Single Processor 74

MPEG-4 XMLs Three Processors 104

96 R. Rosales, M. Glaß, and J. Teich

to set-up. With Mahler, we have reduced the modeling effort significantly, saving
us to write so many LoC, and furthermore, we can reuse our generated model
on automatic DSE tools to obtain a more optimal mapping of functionality into
hardware, as well as instrument the model with real algorithm computations for
HW synthesis purposes.

5 Conclusions

We have presented a novel tool to accelerate the generation of Virtual Proto-
types and ESL specifications from graphically sketched actor models through a
model-driven natural interface. To the best of our knowledge, this is the first ESL
modeling tool to provide a consolidated sketch-based interface for actor-oriented-
based model development that generates ready to execute virtual prototypes for
simulation-based power and performance evaluation reducing the initial model-
ing stage of actor-oriented and hardware/software codesign choices thanks to its
model-driven and natural interface approach. Its benefits may be summarized
as follows: i) It allows to very quickly pre-optimize an initial design through
very short design iterations before beginning automatic design space exploration
thanks through its intuitive playground environment, increasing the efficiency of
a virtual prototype designer, by enabling the creation of a fully executable ESL
virtual prototype within minutes with the same accuracy as state-of-the-art ap-
proaches ii) The generated functional code can be integrated into existing ESL
design flows for further design phases. Furthermore, being a model-driven ap-
proach it also features: iii) No necessity to master a new language or dialect to
create a system model, reducing the learning curve and facilitating the adoption
of system-level design techniques. iv) Enabling the designer to focus on model
development, and not on boiler-plate code such as declarations, instantiations,
interconnections, associations, etc. which usually introduce more complexity into
the model than the model information itself.

Acknowledgment. We would like to thank the support of the team of Dr.
Ralph Hasholzner at Intel Mobile Communications, Munich, Germany, for their
valuable feedback. This work was supported in part by the Project PowerEval
funded by Bayerisches Wirtschaftsministerium, support code IUK314/001.

References

1. Balarin, F., Watanabe, Y., Hsieh, H., Lavagno, L., Passerone, C., Sangiovanni-
Vincentelli, A.: Metropolis: an integrated electronic system design environment.
Computer 36(4), 45–52 (2003)

2. Coffland, J.E., Pimentel, A.D.: A software framework for efficient system-level per-
formance evaluation of embedded systems. In: Proceedings of the 2003 ACM Sym-
posium on Applied Computing, pp. 666–671. ACM (2003)

3. Eker, J., Janneck, J.W., Lee, E.A., Liu, J., Liu, X., Ludvig, J., Neuendorffer, S.,
Sachs, S., Xiong, Y.: Taming heterogeneity-the Ptolemy approach. Proceedings of
the IEEE 91(1), 127–144 (2003)

Mahler: Sketch-Based Model-Driven Virtual Prototyping 97

4. Erbas, C., Pimentel, A.D., Thompson, M., Polstra, S.: A framework for system-
level modeling and simulation of embedded systems architectures. EURASIP J.
Embedded Syst. 2007(1), 2 (2007)

5. Falk, J.: SysteMoC (2008), http://forge.greensocs.com/en/projects/SysteMoC
6. Falk, J., Haubelt, C., Teich, J.: Efficient representation and simulation of model-

based designs in SystemC. In: Proc. FDL 2006, Forum on Design Languages 2006,
Darmstadt, Germany, pp. 129–134 (September 2006)

7. Gerstlauer, A., Haubelt, C., Pimentel, A., Stefanov, T., Gajski, D., Teich, J.:
Electronic system-level synthesis methodologies. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 28(10), 1517–1530 (2009)

8. Hammond, T., Davis, R.: Tahuti: A geometrical sketch recognition system for UML
class diagrams. In: ACM SIGGRAPH 2006 Courses, p. 25. ACM (2006)

9. Haubelt, C., Falk, J., Keinert, J., Schlichter, T., Streubühr, M., Deyhle, A., Hadert,
A., Teich, J.: A SystemC-based design methodology for digital signal processing
systems. EURASIP J. Embedded Syst. 2007(1), 15 (2007)

10. Kara, L.B., Stahovich, T.F.: Hierarchical parsing and recognition of hand-sketched
diagrams. In: ACM SIGGRAPH 2007 Courses. ACM, New York (2007)

11. Kempf, T., Doerper, M., Leupers, R., Ascheid, G., Meyr, H., Kogel, T., Van-
thournout, B.: A modular simulation framework for spatial and temporal task
mapping onto multi-processor SoC platforms. In: DATE, vol. 2, pp. 876–881. IEEE
Computer Society, Washington, DC (2005)

12. Kienhuis, B., Deprettere, E.F., van der Wolf, P., Vissers, K.A.: A methodology to
design programmable embedded systems - The Y-Chart approach. In: Embedded
Processor Design Challenges: Systems, Architectures, Modeling, and Simulation -
SAMOS, pp. 18–37. Springer, London (2002)

13. Kneip, J., Bauer, S., Vollmer, J., Schmale, B., Kuhn, P., Reissmann, M.: The
MPEG-4 video coding standard-A VLSI point of view. In: 1998 IEEE Workshop
on Signal Processing Systems, SIPS 1998, pp. 43–52. IEEE (1998)

14. Leap Motion Inc.: Leap Motion (2013), https://www.leapmotion.com/
15. Microsoft: Ink analysis framework. http://msdn.microsoft.com/en-us/library/

windows/desktop/ms704040%28v=vs.85%29.aspx

16. Mirabilis Design Inc.: Visual Sim (2008),
http://www.mirabilisdesign.com/Pages/Product/mdi_products.htm

17. Streubühr, M., Gladigau, J., Haubelt, C., Teich, J.: Efficient approximately-timed
performance modeling for architectural exploration of MPSoCs. In: Forum on Spec-
ification Design Languages, FDL 2009, pp. 1–6 (September 2009)

18. Teich, J.: Hardware/software codesign: The past, the present, and predicting the
future. Proceedings of the IEEE 100, 1411–1430 (2012) (Centennial-Issue)

19. The Mathworks Inc.: Simulink (2013), http://www.mathworks.com
20. Xu, Y., Rosales, R., Wang, B., Streubühr, M., Hasholzner, R., Haubelt, C., Teich,

J.: A very fast and quasi-accurate power-state-based system-level power modeling
methodology. In: Herkersdorf, A., Römer, K., Brinkschulte, U. (eds.) ARCS 2012.
LNCS, vol. 7179, pp. 37–49. Springer, Heidelberg (2012)

http://forge.greensocs.com/en/projects/SysteMoC
https://www.leapmotion.com/
http://msdn.microsoft.com/en-us/library/windows/desktop/ms704040%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms704040%28v=vs.85%29.aspx
http://www.mirabilisdesign.com/Pages/Product/mdi_products.htm
http://www.mathworks.com

Formal Architecture Specification

for Time Analysis

Hajer Herbegue, Mamoun Filali, and Hugues Cassé

CNRS-IRIT, Université de Toulouse
Toulouse, France

firstname.lastname@irit.fr

Abstract. WCET calculus is nowadays a must for safety critical sys-
tems. As a matter of fact, basic real-time properties rely on accurate tim-
ings. Although over the last years, substantial progress has been made
in order to get a more precise WCET, we believe that the design of
the underlying frameworks deserve more attention. In this paper, we are
concerned mainly with two aspects which deal with the modularity of
these frameworks. First, we enhance the existing language Sim-nML for
describing processors at the instruction level in order to capture modern
architecture aspects. Second, we propose a light DSL in order to describe,
in a formal prose, architectural aspects related to both the structural as-
pects as well as to the behavioral aspects.

Keywords: Hardware, microarchitecture, pipeline, WCET, architecture
language, formalization, constraints.

1 Introduction

System-on-chip and processor modeling methodologies are continuously improved
to overcome the increasing complexities of critical embedded systems. Designers
have to deal with complex features of new architectures and develop applica-
tion/domain specific processors. It is highly desirable, as intending to reduce the
costs and time-to-market, that the software design tool can be synthesized auto-
matically from high level processor specifications. In this scope, there is a surge
in architecture description languages. ADLs have been used in retargetable tools
generation, design space exploration, hardware synthesis, verification and time
analysis [14,16]. In order to have reliable and powerful design and analysis flows,
ADLs have to convey the informal processor specification provided by vendors to
the development tools, as closely as possible. Furthermore, the validation (and
verification) is an important task in the system-on-ship design process, that en-
sures the correction of the system with respect to the correctness requirements
and real-time constraints. Such a task is arduous because of the architecture
complexity and lack of clear and explicit syntax and semantics in currently used
architecture languages. Indeed, to ensure the completeness of the architecture
requirements at the design stage, it is essential to have a precise and formal pro-
cessor specification. ADL-driven flows for worst case execution time (WCET)

E. Maehle et al. (Eds.): ARCS 2014, LNCS 8350, pp. 98–110, 2014.
c© Springer International Publishing Switzerland 2014

Formal Architecture Specification for Time Analysis 99

analysis, like the OTAWA framework [4], need a clear and explicit syntax and
semantics for the architecture description to provide the required accuracy.

At the present time, OTAWA allows the time analysis using a constraint-based
approach, in addition to the validation and the animation of time results [12]
and the generation of fine-grained simulators at pipeline level. In this paper,
we enhance the OTAWA work flow with a logic-based description that formal-
ize the architecture properties. This description is used, with the architecture
model described in the Sim-nML language, to generate a constraint-based de-
scription for the WCET computation. We first present how advanced architec-
ture features, specially instruction with complex behaviors, can be handled by
the OTAWA ADL description. Second, we give, in a formal prose, the oper-
ational properties of the hardware components and the instruction set. These
properties describe the instructions behavior regarding to resources allocation,
dependencies, parallel execution, etc. This description also provides a good basis
for formal verification of time analysis methods.

The paper is organized as follows. Section 2 gives an overview of the ADL-
based approach and our contribution. In Section 3, we present the Sim-nML
language and its extension to describe advanced features of real-life architec-
tures. In Section 4, we present the logic-based description, illustrated through
a processor use case. In Section 5, we present an overview of related works and
draw a comparison between their respective description languages. Section 6
concludes the paper.

2 ADL-Based Approach for Time Computation

OTAWA [4] is a framework dedicated to WCET computation of a program ex-
ecuted on a given processor. The time analysis is based on an abstraction of
the target architecture and the binary. The WCET of a program corresponds
to the execution time of the longest execution path, which is identified on the
control flow graph (CFG) of the program. An execution path is a sequence of
code snippets, called basic blocks. The WCET is a function of the time cost of
the basic blocks and their execution counts [18]. In this paper, we focus on the
computation of the basic block execution time. The pipeline analysis consists
of modeling the instruction behavior of the pipeline and evaluating the impact
of the hardware features on the instruction execution times [17]. The frame-
work OTAWA was enhanced with an ADL-based approach [11] that aims at
computing the time cost of a basic block considering the pipeline features. The
carried analysis considers as input (1) the program binary, (2) the basic block
as an instruction sequence and (3) the architecture description in the Sim-nML
language [10] (see figure 1). Sim-nML was extended to support, in addition to
the ISA description, the micro-architecture description of the target processor.
The architecture description includes the resources accessed by the instructions
such as pipeline stages, buffers, etc. and the execution model of instructions.
The execution model describes the instruction behavior in terms of resource al-
location. From the Sim-nML language and the binary, we generate an internal

100 H. Herbegue, M. Filali, and H. Cassé

Internal representation
Architecture and basic block

abstraction

CSP-based
description

WCET

Binary file

Basic block

Sim-nML description

Hardware
description

ISA
description

Processor specification
Reference manual

Library of
Quantitative properties

Processor properties

Fig. 1. ADL-based flow for time analysis

representation of the architecture and of the basic block. Then, a constraint-
based description is automatically generated from the execution models of the
instructions and the pipeline description. These constraints are combined to for-
mulate a constraint satisfaction problem (CSP) [8], whose resolution provides
the time cost of the basic block.

In this paper, we intend to provide a formal description of the architecture
constraints, in which we can express the architecture elements and properties,
regardless of the resolution method and the language used later for time com-
putation. We propose a domain specific language that allows a logic description
of the architecture properties. The idea is to provide a library in which the
architect-user can find a set of reusable quantitative properties that assist him
in (1) the definition of architecture high-level constraints that would be used for
time analysis and (2) the validation of the correctness and the consistency of the
architecture model with respect to the initial specification. Indeed, according to
the initial Sim-nML description and what is provided in the properties library,
the user defines a set of properties that will be used further to compute WCETs.

3 The Sim-nML Description Language Extension

Sim-nML [10] is a hierarchical and a highly structured language that describes
the processor at instruction level, using an attributed grammar. The instructions
and the addressing modes are described using pre-defined attributes. The syntax
attribute defines the assembly representation of the instruction. The attribute
image gives the binary representation and action defines the semantics of the in-
struction (register transfer). Our extension to the Sim-nML language [11] allows
the definition of the processor resources and the execution model of the instruc-
tion set, giving how and when the resources are accessed by each instruction.
The properties of the hardware components are specified as attributes. So, we
can declare stages, buffers, registers and memories. Concerning stages, we can
specify out-of-order execution, superscalarity, cache characteristics, if relevant
for time analysis, etc. The instructions definition is extended with an attribute

Formal Architecture Specification for Time Analysis 101

ALU

Re-order
Buffer

Instruction
Cache

Fetch
BufferPC

MEM

ALU
mul

Data
Cache

FE DE CM
instr 0

Register
File

instr 1

instr 0

instr 1

instr 0

instr 1

instr 0

instr 1

Fig. 2. An out-of-order superscalar pro-
cessor

FE CM

P C

Register file MD : Multiply/Divide
 floating point units

DE

ALU

MD0 MD1 MD2 MD3

i0

i1

Fig. 3. Floating point pipeline

uses that describes the execution model. In fact, to start execution on a stage, an
instruction has to wait for its resources to be available, including the operands,
the executing stage, the memory, etc. Therefore, the execution time of an in-
struction is impacted by the resources state. The uses attribute defines, in a
timed sequence called clause, the resources required by an instruction in each
step of its execution. A sequence is defined using commas. Every clause in a se-
quence represents a step of the instruction execution. In every step, one or more
resources are required, and access can be in read or write mode. Parallel access
is expressed by the operator &. Access to some resources takes a fixed duration
t, that is specified as #{t}. An example of a 2-scalar out-of-order processor is
illustrated in figure 2 and described in Sim-nML in lines 1-12 of listing 1.1. The
language extension was amenable to describe some complications of instruction
set architectures. In next paragraphs, we show how we extend the Sim-nML in
order to handle pipelines with complex and long-running instructions.

Not-fully symmetric ALU. Specialized functional units are designed for
specific operation patterns to achieve shorter delays. In the processor of figure 2,
we assume that the first ALU occurrence implements a multiplier component
executing multiply operations and ordinary data processing operations. Usually,
processors include only one specialized ALU because it is expensive and there
are more additions than multiply operations. Thus, arithmetic instructions are
executed by any of the ALU . So no occurrence is specified in the ADD execution
model (lines 18-19 of listing 1.1). While, in the execution model of MUL, we
specify ALU [0] as the required stage occurrence (lines 23-24 of listing 1.1). This
will be used when scheduling instructions to be issued to the ALU units. Different
latencies has been associated to the execution of theADD andMUL instructions
on the ALU unit.

Listing 1.1. Sim-nML processor description
1 s tage FE , DE , ALU[2] , MEM , CM
2 extend FE , DE , CM
3 capac i ty = 2 // super−s c a l a r i t y degree
4 i n o rd e r = true // in−order s tage s
5 extend ALU , MEM

102 H. Herbegue, M. Filali, and H. Cassé

6 i n o rd e r = f a l s e // out−of−order s tage s
7

8 bu f f e r FBuf [4] , RoB [8] // Fetch Buffer and Re−order Buffer
9

10 reg PC [1 , card (32)] // 32− b i t PC re g i s t e r
11 reg R [16 , card (32)] // 16 r e g i s t e r s of 32 b i t s
12 mem M [32 , card (8)] // a memory of 2ˆ32 8−b i t words
13

14 op ADD (rd : card (4) , r s : card (4) , rn : card (4))
15 syntax = format (”add r%d r%d r%d” , rd , rs , rn)
16 image = format (”00%2b%2b%2b” , rd , rs , rn)
17 action = {R[rd] = R[r s] + R[rn] ;}
18 uses= FE & FBuf & PC. read , DE, ALU & RoB & R[r s] . read &R[rn] . read
19 & R[rd] . wr i te #{1} , CM
20

21 // Mul t ip ly ins t ruc t ion executed on the s p e c i l i z e d ALU
22 op MUL
23 uses= FE & FBuf & PC. read , DE, ALU[0] & R[rd] . wr i te & R[rm] . read
24 & R[r s] . read & RoB#{5} ,CM
25

26 // load mu l t ip l e ins t ruc t ion
27 op l o ad mu l t i p l e (r l i s t : card (16) , rn : card (4))
28 uses = FE & PC. read & FBuf , DE ,
29 i f r l <0..0>==1 then MEM & M. read & R[rn] . read & R [0] . wr i te & RoB

end i f ,
30 i f r l <1..1>==1 then MEM & M. read & R[rn] . read & R [1] . wr i te & RoB

end i f , . . ,CM
31

32 // branch ins t ruc t ion dumped a f t e r decode
33 var taken [1 , u1]
34 extend B Cond
35 uses = FE & PC. read & FBuf ,DE & (i f (taken==1) then PC. wr i te end i f)

Multi-cycle instructions. Some complicated arithmetic operations, such
as multiply, divide and floating point operations, can require complex hardware
with significantly longer delays than a single ALU . One solution is to have
parallel pipelines for different multi-stage instructions. For example, division is
frequently implemented using this scheme even in high performance superscalar
processors. In addition, such an instruction stays many cycles on the same stage,
mostly the first. In the pipeline of figure 3, we have a pipelined multiply/divide
functional unit MD. The ALU unit executes simple operations. Instructions are
issued in the MD floating point pipeline out-of-order. The listing 1.2 presents
the execution model of the divide and multiply instructions. TheDIV andMUL
instructions have different latencies on the first stage of the pipelined MD unit.
In fact, stages with different latencies is also a relevant pipeline property for
hazards detection and the instructions scheduling, which is critical in an out-
of-order issue processor. These latencies will be considered when generating the
timing constraints to compute the execution time of instructions.

Listing 1.2. Floating point pipeline

1 s tage FE, DE, ALU, MD0 , MD1 , MD2 , MD3, CM
2 extend FE , DE , CM
3 capac i ty = 2 // 2−supersca lar s tage s
4 extend ALU , MD0
5 i n o rd e r = f a l s e // out−of−order s tage s
6 extend MUL
7 uses= FE#{1} , DE#{1} , MD0 & R[rd] . wr i te & R[rm] . read & R[r s] . read

#{1} ,

Formal Architecture Specification for Time Analysis 103

8 MD1#{1} , MD2#{1} , MD3#{1} , CM#{1}
9 extend DIV

10 uses= FE#{1} , DE#{1} , MD0 & R[rd] . wr i te & R[rn] . read & R[rm] . read
#{21} ,

11 MD1#{1} , MD2#{1} , MD3#{1} , CM#{1}

Micro-coded Instructions. Multiple register transfer instructions provide
an efficient way of moving the contents of several registers to and from memory.
These instructions take one cycle to issue but then use multiple memory cycles
to load/store all the registers. We consider the pipeline of the figure 2. The load
multiple instruction is given in lines 27-30 of listing 1.1. The list of registers to
load is given by the operand rl coded on 16 bits. Every bit refers to a register
and is set to one if the register is to load. So, if the register is loaded, then we
have a clause in which the MEM unit, the memory and the register with the
appropriate access mode are required. Otherwise, we have an empty clause. In
order to have a wellformed final clause, with a valid pipeline path, we defined a
semantic rule that states that: in a clause sequence, if a clause is empty, then it
is removed from the sequence: cl , ∅ , cl′ ⇒ cl , cl′. For example, we have the
following instantiated clause for the instruction ldmia r13, {, r11, r13, r15}:
FE & PC.read&FBuf, DE , MEM&M.read&R[13].read&R[11].write&RoB , MEM&M.read&

R[13].read&R[13].write&RoB ,MEM&M.read&R[13].read&PC.write&RoB , CM.

Branch Instruction. Some processors resolve branch target at the decode
stage. The branch instruction is no longer used on next stages. So a branch
instruction is dropped after the decode stage (lines 33-35 of listing 1.1). This
is useful in out-of-order pipelines, since it reduces the structural hazards on
functional units.

4 Formal Architecture Description

We formalize an architecture description through the architecture denoted by A
and the instruction clauses of the basic block BB. We generate an equation sys-
tem Eq(BB,A) representing the analyzed BB, with respect to A. In Eq(BB,A),
the execution times are not computed. In order to do that, we formulate a set
of structural and temporal high-level constraints Constraints A. The resolu-
tion of Eq(BB,A) and Constraints A provides an equation system where the
instructions execution times have been computed (figure 4).

 (BB ,)

Constraints_
 (BB ,)

Fig. 4. Formal approach for time analysis

4.1 A Light DSL for Architecture Constraints

We introduce a light DSL (Domain Specific Language) for expressing the archi-
tecture and basic block properties. We derive from every instruction of the basic
block a set of tasks that are divided into levels:

104 H. Herbegue, M. Filali, and H. Cassé

– ISA level. The task represents the lifetime of the instruction on the pipeline.
It starts when the instruction enters the pipeline and finishes when it leaves.
The task is given by the instruction index in the basic block.

– Step level. The task models the execution of an instruction on a stage or a
functional unit, what we call a step. Hereinafter, we use processing units to
refer to stages or functional units.

– Resource level. Basic tasks or leaves represent the resource allocation within
an instruction step. This includes stages, functional units, buffers, registers
and memory allocation.

The lifetime of every task is modeled using an interval. Table 1 summarizes
the architecture DSL. We also consider the predefined functions scal(st) and
nb(r) returning respectively a stage scalarity and a resource occurrences number.
We consider the instruction sequence of figure 5 executed on the processor of
figure 2 as a use case. From the Sim-nML description, the non terminal 〈Stage〉,
〈Register〉 and 〈Memory〉 are instantiated as in (1).

Table 1. Architecture DSL

Architecture domain

〈Stage〉 , 〈Register〉 , 〈Memory〉 , 〈Buffer〉 , 〈Resource〉 ::= 〈Register | Buffer | Memory〉
Basic block domain (of length n)

〈instruction〉 ::= nat , 〈step〉 ::= nat , 〈interval〉 ::= string

ISA level tasks: Step level tasks:

〈ISA〉〈interval〉〈instruction〉 〈Step〉〈interval〉〈instruction〉,〈step〉
Resource level tasks (leaves):

〈occurrence|?〉〈Stage〉〈interval〉〈instruction〉,〈step〉 | [r|w]

〈occurrence|?〉〈Resource〉〈interval〉〈instruction〉,〈step〉

〈Stage〉 ::= {FE,DE,ALU,MEM,CM} , 〈Register〉 ::= {R,PC},
〈Memory〉 ::= {M}, 〈Buffer〉 ::= {FBuf,RoB} (1)

We assume the following semantic sets that we automatically generate from the
architecture and the basic block:

– I denotes the set of tasks of the ISA level.
– S denotes the set of steps of all the instructions in the basic block,
– L denotes the set of synthesized leaves,
– U denotes the subset of leaves concerning stages or functional units,
– B,R and M denote respectively the subset of leaves concerning buffers,
registers and memories.

We consider the following dedicated quantifiers where ∀I , ∀S , ∀L, ∀U , ∀B quan-
tifies respectively over the basic block instructions, the steps, the leaves, the
processing units and the buffers. We also use the predefined functions LastS(i),
Buffer(i, s) and Unit(i, s) that return respectively the last step task of i, the
set of buffers and processing units of i at the step s.

Formal Architecture Specification for Time Analysis 105

I = {ot 0
0 , ot 1

1 , ot 2
2 } , S = S0 ∪ S1 ∪ S2 , L = L0 ∪ L1 ∪ L2

In the following, we detail the sets S2, U2,R2,B2 andM2 which are respectively
the set of steps, stages, registers, buffers and memories of o2. The instruction o2
is a load multiple and loads 3 registers from memory. So, we can observe that,
based on the execution model in listing 1.1, 6 steps are generated, including 3
relative to the execution on the MEM unit. The instruction decomposition is
illustrated in figure 6.

S2={st 2 0
2,0 , st 2 1

2,1 , st 2 2
2,2 , st 2 3

2,3 , st 2 4
2,4 , st 2 5

2,5 }
L2=Ui2 ∪ Ri2 ∪ Bi2 ∪Mi2

U2={0FEtu 2 0
2,0 , 0DEtu 2 1

2,1 , 0MEMtu 2 2
2,2 , 0MEMtu 2 3

2,3 , 0MEMtu 2 4
2,4 , 0CMtu 2 5

2,5 }
R2={r

0PCtr 2 0
2,0 , r

13R
tr 2 2
2,2 , w

11R
tr 2 2
2,2 , r

13R
tr 2 3
2,3 , w

13R
tr 2 3
2,3 , r

13R
tr 2 4
2,4 , wPCtr 2 4

2,4 }
B2={?FBuftb 2 0

2,0 , ?RoBtb 2 2
2,2 , ?RoBtb 2 3

2,3 , ?RoBtb 2 4
2,4 }

M2={r
0M

tm 2 2
2,2 , r

0M
tm 2 3
2,3 , r

0M
tm 2 4
2,4 }

Assembly

o0 b 8410

o1 sub sp, fp, #12

o2 ldmia sp, {, fp, sp, pc}

Fig. 5. Basic block

ISA level :

Step level : 2

Resource
level : 2

0FE2,0
tu_2_0

0DE2,1
tu_2_1

...

...
?FBuf2,0

tb_2_0

0CM2,5
tu_2_5...

...

Fig. 6. Decomposition of instruction o2

4.2 Architecture Properties

In this section we give a set of structural and dynamic properties that describes
the architecture and instruction behavior. We use Allen intervals to express
temporal relations between intervals. The properties are parametrized by the
architecture and the basic block equations presented in the previous section.

Instruction Continuity. An instruction starts when its first step (s = 0)
starts and terminates when its last step terminates. Considering two successive
steps of an instruction, a current step finishes when the next step starts (2).

∀I oti. ∀S st
′
i,0. t Starts t′

∀S sti,s. ∀S s′ t′
i,s+1. t Meets t′

∀I oti. ∀S st
′
i,LastS(i). t Finishes t′

(2)

Instruction Support. We assume that, within a step, an instruction re-
quires one and only one stage and at the most one buffer resource (3a). This is a
structural property used for architecture correctness validation. Two cases arise.
First, if a buffer is required within a step, then this buffer is unique and is the

106 H. Herbegue, M. Filali, and H. Cassé

support of the instruction during that step. Indeed, the instruction is contained
in the buffer slot throughout the step. The buffer is allocated since the instruc-
tion starts execution within the step, and remains so until the resources on the
next step become available. The buffer is released when the instruction starts
the next step (3b). Second, if no buffer is used, thus, the stage is the instruction
support. It is blocked until the instruction starts the next step, i.e. next step
resources are available (3c).

∀i. ∀s. card (Buffer(i, s)) ≤ 1 ∧ card (Unit(i, s)) = 1 (3a)

∀S sti,s. card (Buffer(i, s)) = 1 ⇒ ∃!?bt
′
i,s ∈ Buffer(i, s). t = t′ (3b)

∀S sti,s. card (Buffer(i, s)) = 0 ⇒ ∃!ostt
′
i,s ∈ Unit(i, s). t = t′ (3c)

Resources Allocation Policy. An instruction executes on a given stage,
once it gets all its required resources, including the stage. Thus, all required
resources are allocated at the beginning of the step (4a). After the execution
latency elapses, all or some of the owned resources are released. Actually, we
assume that an instruction keeps the resources that are going to be asked on
further steps. This allocation policy is defined to avoid deadlocks. Such a situ-
ation occurs when a micro-coded instruction, as the multiple load presented in
section 3, uses the same register on several successive steps. Such instruction
must not be preempted during its execution on the processing unit. When an
instruction uses a resource through two successive steps, we force the temporal
continuity on the allocation intervals, as presented in the constraint (4b). Some
resources, like stages and buffers, can be required in non-deterministic way: the
instruction requests for any of the available occurrences, or in a deterministic
way: the instruction requests for a specific occurrence. For a resource r, we have
to insure that no more then nb(r) occurrences are allocated at the same time.
This contention problem occurs in case of non-deterministic resources with dy-
namic scheduling. Currently, the property (4c) concerns stages and buffers.

∀S sti,s. ∀L a
ores

t′
i,s. t Starts t′ ∧ t′ During t (4a)

∀L a
or

t
i,s. ∀L a

or
t′
i,s+1. t Meets t′ (4b)

∀U∪B ox
t
i,s. card ({oxt′

i′,s′ ∈ U ∪ B | t Overlaps t′}) ≤ nb(x) (4c)

Stage Specific Constraints. These constraints depend on the stages ex-
ecution features. For a simple-scalar stage with in-order execution, only one
instruction is issued to the stage per cycle and is issued before its successor in
the program (5a).

∀U ost
t
i,s. ∀U ost

t′
i′,s′ . i < i′ ⇒ t Before t′ (5a)

∀U ost
t
i,s. card ({ostt

′
i′,s′ ∈ U | t Overlaps t′}) ≤ scal(st) (5b)

∀U ost
t
i,s. ∀U ost

t′
i′,s′ . i

′ < i+ scal(st) ⇒ t StartsBeforeBegin t′ (5c)

∀U ost
t
i,s. ∀U ost

t′
i+scal(st),s′ . t Before t′ (5d)

Formal Architecture Specification for Time Analysis 107

In case we have a super-scalar stage st, at most scal(st) successive instruc-
tions can be issued in parallel (5b). However the overall program order must
be maintained. Thus, an instruction of index i can be executed in parallel with
an instruction of index j such that j < i + scalst. We introduce a new time
relation StartsBeforeBegin that define a priority relation between two inter-
vals (5c). The scalarity limit of the stage is expressed by a forced precedence
between instruction i and instruction i + scal(st) (5d). For out-of-order stages,
no precedence is defined except those implied by the data dependencies.

Data Dependencies. Memories and registers can be owned in a read or
a write mode. For example, when a register is accessed by two successive in-
structions such that the first request is a read access and the second is a write
access, then, the read access must occur before the write access. Read After Write
(RAW) hazards are explicited when instructions access registers and memories.
Write After Write (WAW) hazards must be explicited for memory accesses.

∀R r
oreg

el
i,s. ∀R w

o reg
el′
i′,s′ . i ≤ i′ ⇒ el Before el′

∀R a
om

el
i,s. ∀R w

o m
el′
i′,s′ . i ≤ i′ ⇒ el Before el′

(6)

To elaborate the constraints Constraints A, we instantiate all (or some of) the
constraints presented in equations from 2 to 6, with respect to the architecture
A and the basic block sets. We detail here the constraints of the instruction o0
which is a branch (the corresponding execution model is in listing 1.1):

(2) → t 2 Starts t 2 0 ∧ t 2 0 Meets t 2 1 ∧ . . . t 2 1 Finishes t 2
(3) → tb 2 0 = t 2 0 ∧ tu 2 1 = t 2 1 ∧ tb 2 2 = t 2 2 ∧ tb 2 3 = t 2 3 ∧ . . .
(4) → tu 2 2 Meets tu 2 3 ∧ tu 2 3 Meets tu 2 4 ∧ tb 2 2 Meets tb 2 3 ∧ . . .
(6) → t 0 1 Before t 2 0 ∧ t 1 2 Before t 2 2 ∧ . . .

These high-level constraints are used to generate a constraint description to be
processed by a given solver. In [11], we show how to solve these constraints with
the CSP/CHOCO [1]. The resolution of the constraints for the basic block of the
figure 5 executed on the processor of figure 2 gives the following values, among
others :t 0 = [0, 2] ; t 1 = [2, 6] and t 2 = [2, 9]. In [12], we also show how to
animate such properties through the timed automata provided by the UPPAAL
tool [7].

5 Related Work

There have been a lot of research efforts in architecture description languages
that aim to formalize the processor specification provided in user manuals. Most
of these efforts was based on ADLs like ArchC [15], LISA [13], HARMLESS [5]
and Sim-nML [11], that was used to generate retargetable tools. Since these
ADLs are actually mature regarding the ISA level description, modern ISAs
are currently supported and accurate simulators can be generated. Nevertheless,
these approaches assume simple pipelines like DLX, since the micro-architecture

108 H. Herbegue, M. Filali, and H. Cassé

is not handled or limited to its structure. Our general approach based on Sim-
nML supports the retargetable tool generation, in addition to complex instruc-
tion execution models. Retargetable WCET analysis tools based on processor
description are presented, among others, in [14] [19] [6] [9]. Timed automata was
observed in [6] [9] as a formal processor description. This model is difficult to
elaborate and is hand-made, which limits experimentations to simple five stage
pipelines with in-order execution. Our approach offers a high-level processor de-
scription that can be used to generate timed automata. The work of [19] is close
to ours. The authors use the EXPRESSION language to describe the ISA and
the micro-architecture and generates execution graphs for the analysis. However,
the ADL description only includes the pipeline structure. The hardware compo-
nents behavior, such as out-of-order execution and superscalarity, are specified
in C++ external libraries. The use of many formalisms to processor description
makes it not suitable for validation. Other methods verify program behavior and
the memory design [3] on PowerPC and ARM architecture using a formaliza-
tion. This approach uses the L3 language [2] for the ISA description and the
generation of a HOL specification used for verification. The formal description
is limited to the ISA level and cannot be used for time analysis. The table 2
summarizes the architecture languages capabilities.

Table 2. Architecture languages summary table

ArchC Chronos LISA Harmless Expression L3 Otawa

Code optimization

Simulation ● ● ● ● ●

Retargetable tool generation ● ● ● ●

Design space exploration ● ● ●

Time analysis ● ● ●

Formalization ● ● ● ● ●

Verification/Validation ● ● ●

Out-of-order pipeline ● ● ●

Superscalar pipeline ● ● ● ● ●

Complex instruction set ● ● ● ●

6 Conclusion

In this paper, we have showed how advanced architecture features can be de-
scribed through an extension of the Sim-nML architecture description language.
We have presented the syntax for describing advanced pipelines structure and in-
structions with complex execution models. We have also presented a specification
language that aims to formalize the architecture features. We have elaborated
a set of generic properties that can be used for the generation of architecture
constraints for time analysis and the validation. This formalization can be a
basis for formal verification, required to obtain certified WCET computation
methods. The proposed approach for time analysis is modular since it is based

Formal Architecture Specification for Time Analysis 109

on the hardware description and the basic block, each one independent from the
other. Modularity also comes from the fact that the Sim-nML description of the
ISA and the micro-architecture are separated in implementation terms, so that
the same ISA description can be reused for different pipelines. High-level con-
straint description present a significant advantage since the user is free to choose
the resolution method for WCET computation. We have drawn a comparison
between currently used description languages and formalism. In this paper we
have used a processor model that possess real word processor features to test our
approach. We are currently validating our formalization on real-life processors
that are rolling out on the market, among which the Cortex-A8.

References

1. CHOCO: An Open Source Java Constraint Programming Library,
http://choco.mines-nantes.fr

2. L3: An ISA Specification Languag, http://www.cl.cam.ac.uk/~acjf3/l3/
3. Alglave, J., Fox, A., Ishtiaq, S., Myreen, M., Sarkar, S., Sewell, P., Nardelli, F.Z.:

The semantics of power and arm multiprocessor machine code. In: Workshop on
Declarative Aspects of Multicore Programming (DAMP), pp. 13–24 (2008)

4. Ballabriga, C., Cassé, H., Rochange, C., Sainrat, P.: OTAWA: An Open Toolbox
for Adaptive WCET Analysis. In: Min, S.L., Pettit, R., Puschner, P., Ungerer, T.
(eds.) SEUS 2010. LNCS, vol. 6399, pp. 35–46. Springer, Heidelberg (2010)

5. Béchennec, J.L., Briday, M., Alibert, V.: Extending harmless architecture descrip-
tion language for embedded real-time systems validation. In: International Sym-
posium on Industrial Embedded Systems, pp. 223–231 (2011)

6. Béchennec, J.L., Cassez, F.: Computation of wcet using program slicing and real-
time model-checking. CoRR (2011)

7. Behrmann, G., David, A., Larsen, K.G., H̊akansson, J., Pettersson, P., Yi, W.,
Hendriks, M.: Uppaal 4.0. In: QEST, pp. 125–126 (2006)

8. Beldiceanu, N., Carlsson, M., Demassey, S., Petit, T.: Global constraint catalogue:
Past, present and future. Constraints 12, 21–62 (2007)

9. Dalsgaard, A., Olesen, M., Toft, M., Hansen, R., Larsen, K.: METAMOC: Mod-
ular execution time analysis using model checking. In: Workshop on Worst-Case
Execution Time Analysis (WCET), vol. 15, pp. 113–123 (2010)

10. Fauth, A., Van Praet, J., Freericks, M.: Describing instruction set processors using
nML. In: European Design and Test Conference (EDTC), pp. 503–507 (1995)

11. Herbegue, H., Cassé, H., Filali, M., Rochange, C.: Hardware architecture speci-
fication and constraint based wcet computation. In: International Symposium on
Industrial Embedded Systems (SIES), pp. 259–268 (2013)

12. Herbegue, H., Filali, M., Cassé, H.: A constraint-based wcet computation frame-
work. In: Junior Researcher Workshop on Real-Time Computing (JRWRTC), pp.
33–36 (2013)

13. Hohenauer, M., Scharwaechter, H., Karuri, K., Wahlen, O., Kogel, T., Leupers, R.,
Ascheid, G., Meyr, H., Braun, G., Someren, H.V.: A methodology and tool suite
for c compiler generation from adl processor models. In: Design, Automation and
Test in Europe Conference and Exhibition, vol. 2, pp. 276–1281 (2004)

14. Li, X., Roychoudhury, A., Mitra, T.: Modeling out-of-order processors for WCET
analysis. Real-Time Systems 34, 195–227 (2006)

http://choco.mines-nantes.fr
http://www.cl.cam.ac.uk/~acjf3/l3/

110 H. Herbegue, M. Filali, and H. Cassé

15. Miele, A., Pilato, C., Sciuto, D.: An automated framework for the simulation of
mapping solutions on heterogeneous mpsocs. In: International Symposium on Sys-
tem on Chip (SoC), pp. 1–6 (2012)

16. Mishra, P., Dutt, N.: Modeling and validation of pipeline specifications. ACM
Trans. Embed. Comput. Syst., 114–139 (2004)

17. Rochange, C., Sainrat, P.: A context-parameterized model for static analysis of ex-
ecution times. High-Performance Embedded Architectures and Compilers II (2009)

18. Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing, S., Whalley, D.,
Bernat, G., Ferdinand, C., Heckmann, R., Mitra, T., Mueller, F., Puaut, I.,
Puschner, P., Staschulat, J., Stenström, P.: The Worst-Case Execution-Time
problem–overview of methods and survey of tools. ACM Transactions on Embed-
ded Computing Systems (TECS), 36:1–36:53 (2008)

19. Xianfeng, L., Abhik, R., Tulika, M., Prabhat, M., Xu, C.: A retargetable software
timing analyzer using architecture description language (2007)

Hardware APIs: A Software-Centric Approach

for Automated Derivation of MPSoC Hardware
Structures Based on Static Code Analysis

Matthias Meier, Mark Breddemann, and Olaf Spinczyk

Technische Universität Dortmund, Department of Computer Science 12

Abstract. Multiprocessor systems on a chip (MPSoCs) are a popular
class of course-grained parallel computer architectures, which are very
useful, because they support re-use of legacy software components and
application-specific tailoring of hardware structures at the same time.
Furthermore, model-driven design frameworks for MPSoCs such as Xil-
inx’ EDK or our own LavA-framework facilitate very fast system develop-
ment. However, in this paper we argue that these design frameworks are
not ideal from the development process perspective. Instead, we propose
a software-centric approach that is based on the hardware API concept.
The API is a representation of hardware components on the software
level, which is generated from a hardware meta-model. It allows us to
automatically derive a hardware structure based on access patterns in
software, revealed by a static code analysis. This trick reduces the num-
ber of hardware details the developer needs to deal with and avoids
configuration inconsistencies between the hardware and software levels
by design.

1 Introduction

Configurable hardware is becoming increasingly powerful and less expensive.
This allows embedded system developers to exploit hardware parallelism in or-
der to improve real-time properties and energy efficiency. Multiprocessor systems
on a chip (MPSoCs) are a popular class of course-grained parallel computer ar-
chitectures, which are very useful, because they support re-use of legacy soft-
ware components and application-specific tailoring of hardware structures at
the same time. Hardware accelerators for timing-critical operations can be eas-
ily integrated due to standardized on-chip busses, leading to acceptable system
performance.

In a previous paper we have presented our LavA-framework [10], which follows
a model-driven approach to synthesize MPSoC hardware structures based on
high-level descriptions. From a user’s perspective it resembles Xilinx’ well-known
Embedded Development Kit (EDK), but is completely based on configurable
open source components and easily extensible. Frameworks such as EDK and
LavA free application developers from the burden to cope with the underlying
hardware description language, such as VHDL or Verilog, hide implementation
details, and are thus very popular.

E. Maehle et al. (Eds.): ARCS 2014, LNCS 8350, pp. 111–122, 2014.
c© Springer International Publishing Switzerland 2014

112 M. Meier, M. Breddemann, and O. Spinczyk

However, in systems with complex infrastructure software, such as operating
systems, communication libraries, or language runtimes, the semantic gap be-
tween the application-code level and the hardware model, on which hardware
design frameworks rely, is still very big. Besides this difficulty, the developer is
left alone with the problem to fit the infrastructure software layers, which are
typically highly configurable, between the application and the hardware.

In contrast, our approach aims at a seamless co-configuration of hardware
structures and infrastructure software based on the application software’s re-
quirements. This avoids misconfiguration, which would lead to waste of resources,
and improves separation of responsibilities between application and platform de-
velopers. The approach is “software centric” in the sense that the configuration
process starts with a static code analysis of the application software and config-
ures all infrastructure software layers as well as the MPSoC hardware structure
in a top-down manner. A key question in the design of this process, which we
have implemented as an extension of our LavA framework, is how to derive the
hardware structure from usage patterns on the lowest level of the software stack.
This question will be the focus of this paper and the “hardware API”, which
represents the hardware components in software, is the answer.

The outline of this paper is as follows: In Section 2 we will discuss exist-
ing approaches from related literature and we will present the differences and
advantages of our software-centric approach compared to other MPSoC design
processes. The details of our own approach including the notion of a hardware
API will be presented in sections 3 and 4. The sections 5 and 6 provide addi-
tional insights into the implementation. An example project will be presented in
Section 7. The paper ends with a discussion in Section 8 and a short conclusion
in Section 9.

2 State of the Art

Many research groups work on the automated configuration of MPSoC structures
based on application knowledge. Typically, these works based on a similar work-
flow as presented on the left-hand side of Figure 1. The input for the workflow
is usually represented by an abstract application model. This model combined
with a design space exploration (DSE) is used to automatically generate the ap-
plication code and the hardware structure. For instance, Arpinen et al. present
a configurable multiprocessor platform that supports distributed execution of
applications described in UML 2.0 [1]. Several others use Kahn Process Net-
works [4] or similar process networks as a model to describe the application and
map the processes to hardware resources based on different optimization crite-
ria, such as performance, energy consumption, or chip space demands [6,15,16].
However, the process networks are suitable for the purpose of mapping optimiza-
tions rather than the configuration of an entire multiprocessor system, including
peripheral devices. Further, some approaches introduce their own specifications
to describe multiprocessor or manycore systems. These systems are specified by
high-level system specifications [9], textual [8] or XML-based descriptions [18].

Hardware APIs: A Software-Centric Approach for Automated Derivation 113

Fig. 1. HW/SW Design Methodologies

Besides the fact that the information is not extracted from the software, we
think that these specifications are too far away from the application and thus
not amenable to application developers.

Only very few publications address the role of infrastructure software in this
domain. This is surprising, because computer scientists tend to regard computer
systems as a stack of hardware and software layers with several infrastructure
software layers between the hardware and the application code [14]. Ignoring
these layers comes at the risk of designing solutions that cannot cope with the
demands of complex real-world applications. Furthermore, the subsequent inte-
gration of off-the-shelf infrastructure software between the application and the
hardware layer is difficult and can lead to inconsistencies between the layers, be-
cause both adjacent layers have to be considered and the designer has to adapt
the operating system by hand. HeMPS [2] is a framework that integrates a micro-
kernel for scheduling and task communication into the workflow for NoC-based
MPSoCs. The configuration of HeMPS is done by a graphical user interface and
not automated derived from the application. In [1] they use the RTOS eCos in
a configurable multiprocessor platform, but the operating system is not directly
integrated in the architecture exploration of the application and the hardware.
There is also some work [3, 19] that deals with the co-simulation of operating
system and hardware. These simulations are rather intended for the fast valida-
tion or partitioning of embedded systems than a refinement of the DSE results
by the consideration of the operating system.

Based on experience with the configuration of vertically composed software
product lines [13], we favor a straight top-down configuration process for complex
embedded hardware/software stacks (right-hand side of Figure 1). This software-
centric model provides a streamlined design flow from the application over the
infrastructure software to the hardware layer. At the boundary between each
pair of adjacent layers, there are two sources of configuration information for
the lower layer:

114 M. Meier, M. Breddemann, and O. Spinczyk

1. Usage patterns in the code of the upper layer, which can be found by means
of static code analysis.

2. Explicit configuration decisions that are provided by the application devel-
oper.

Typically most of the features of a configurable software product line can be
derived from usage patterns [12]. For the code analysis it is crucial to analyze
the configured code of the upper software layer (the software instance) and not
the original source code. Thereby configuration knowledge is transported step-
by-step down from the application layer to the lowest infrastructure software
layer, which is typically—but doesn’t have to be—an operating system. The
first advantage of the software-centric model is that the infrastructure software
is included in the configuration process, and layer-by-layer will be generated in
the top-down configuration process in order to prevent inconsistencies between
them. The second advantage is that no abstract application model is needed and
the configuration information can directly be obtained from the highest software
layer, simply by using the API. The lower layers can be configured automatically
afterwards. In this paper we focus on the step from the hardware API to the
hardware structure. Therefore, we need a representation of MPSoC hardware
components on the software level that can be analyzed statically at compile
time to derive a hardware design. There are several approaches that are dealing
with the representation of hardware in software. Kumar et al. present an object-
oriented technique to model hardware in C++ in their work [7]. They focus
on the states of the hardware and the operations that modify these states. In
order to create hardware components they instantiate C++ classes at runtime.
However, since we need to analyze the software statically at compile time to
obtain the MPSoC configuration, we need another mechanism to represent the
MPSoC hardware. In [11] a high-level design methodology to describe hardware
in C++ is presented. For this purpose, they extend C++ with new class libraries
to provide concurrency and reactivity in order to describe hardware in software.
This approach is quite similar to the common C++ extension SystemC and is
rather intended to describe the behavior of hardware than application-specific
requirements on the hardware component configurations.

3 LavA Configuration Process

The main idea behind the LavA configuration process is to extend the straight
top-down configuration process from the software layers down into the layer of
configurable MPSoC hardware. An overview of the process is given in Figure 2. In
order to detect usage patterns for the hardware layer within the application/in-
frastructure software layer statically, a representation of hardware components
on the software level is needed. We call this representation the hardware API. In
the case of the LavA-framework this API could be generated automatically from
the meta-model, which describes the set of all hardware components available in
the LavA platform. By means of the hardware API the software can instantiate

Hardware APIs: A Software-Centric Approach for Automated Derivation 115

Fig. 2. LavA Configuration Process

and use hardware components as if they were ordinary software. The static code
analysis detects these instantiations and uses this information to generate an
MPSoC model, which will finally be used for the hardware synthesis.

This approach is beneficial for both, the application developer and the hard-
ware platform developer. The application developer only needs to write the ap-
plication software and does not have to deal with low-level hardware structures,
hardware description languages or other unamenable representations of the hard-
ware for an application developer at all. The platform developer only has to
provide a meta-model for his platform. In case of an extension, for example the
integration of a new kind of I/O device, an extended version of the hardware
API will be generated automatically and is ready to be used as soon as the
meta-model got extended. All steps of the LavA approach below the dashed line
are fully automated. In the following sections the LavA approach is described in
greater detail.

4 Representation of Hardware in Software

The essential question which had to be answered, was: How to represent the
several hardware components of an MPSoC in software in order to obtain the
MPSoCs configuration at compile time? As the software for embedded systems
is frequently written in C or C++, we looked for a suitable language element in
these languages to represent the hardware components. The required software
language element to represent the hardware has to be flexible enough to deal
with the vast amount of possible hardware configurations. Especially, when con-
sidering hardware structures like MPSoCs, which are typically composed out of
processing elements, communication infrastructure, peripheral devices and mem-
ories. At the same time it has facilitate the analysis of the hardware representing

116 M. Meier, M. Breddemann, and O. Spinczyk

source code statically at compile time in order to detect and to configure the
MPSoC hardware components. Furthermore, it is necessary to represent devices
of the same kind but with different configurations. This is important, since other-
wise every instance of a hardware device would have the same properties, which
would unnecessarily restrict the configuration of the hardware structure.

4.1 Hardware Representation

We decided to represent the hardware by the C++ template mechanism, because
it matches all of our requirements. Templates are a very powerful and generic
mechanism. They allow us to configure the hardware components at compile time
since the language forces the developer to specify parameters as constants. This is
absolutely essential for the usage of static analysis. The various hardware devices
are basically described with a C++ class template for each kind of device. Figure
3 exemplarily shows a template that represents UART1 devices. The UART can
be configured with two parameters: First, the desired baud rate has to be defined,
and then the interrupt configuration for this device follows. The required I/O
address range is indicated in bytes by the symbolic constant Size.

template < int Baud = 57600 , int IRQLines = 1 >
struct UART : public AbstractDevice<IRQLines> {

enum { S ize = 8 } ;
} ;

Fig. 3. The UART template – Part of the Hardware API

4.2 Hardware Instantiation

In order to create a hardware instance for a specific device in software, the
corresponding class template has to be instantiated as global object. By the
use of inheritance or composition, the developer has manifold possibilities to
instantiate the hardware. Thus, for example, a device driver may use a hardware
object as attribute, or the device driver class inherits from the hardware class
template in order to instantiate the hardware by itself. Several examples of the
hardware instantiation with different parameters are presented in Figure 4.

4.3 Interrupts and Device Addresses

The interrupt numbers and addresses for the memory-mapped I/O devices are
assigned automatically during the LavA HW/SW synthesis process. Therefore,
the application developer does not have to care about their correct and consistent
assignment. However, he can use the provided member functions of the hardware
class templates to query the assigned interrupt numbers and I/O addresses.

1 Universal Asynchronous Receiver/Transmitter.

Hardware APIs: A Software-Centric Approach for Automated Derivation 117

// Object in g l o b a l namespace
UART<9600 , 0> globalUART ;

// Mu l t i p l e i n s t a n t i a t i o n wi th array
UART<57600 , 1> threeUARTs [3] ;

// I n s t an t i a t i o n a f t e r i nhe r i t ance
class DerivedUART : public UART<> {} DerivedUART derivedUART ;

// I n s t a n t i a t i o n a f t e r composi t ion
class CompUART {

public :
UART<19200 , 1> uart1 , uart2 ;

} CompUART compUART;

Fig. 4. Instantiation of UART Template

5 Model-Driven Development of Hardware API

The presented hardware class templates constitute the hardware API, the lowest
layer of the software stack. It fulfills two purposes: first, the instantiation of the
API is detected to configure the MPSoC and second, the resulting code will be
used at runtime to access the synthesized hardware component. The hardware
API interacts directly with the hardware structure, and is thus closely linked to
it. Extensions to the hardware may also have an impact on the hardware API.
Therefore, LavA uses a model-driven approach to keep the hardware as well as
the hardware API consistent.

The meta-model plays the central role of the model-driven approach. It de-
fines the formal structure and the construction rules for LavA’s MPSoC hardware
structure (Figure 5). In addition, it specifies the relationships and operations for
the arrangement of the hardware components. On the top level, the MPSoC is
composed of nodes, connections and shared memories. In this context a node
signifies one processor of the MPSoC with its local peripherals and communi-
cation interfaces. The nodes, or rather the processors, can be associated with
connections in order to communicate by a message-based mechanism with any
number of other processors. Additionally, all hardware components provide a
minimal required set of attributes, for instance the size of the message queue for
a connection, or the width of a timer register. Attributes that are declared con-
stant, are fixed for all instances of the same kind, whereas the other attributes
are used as parameter for the hardware class templates. These attributes express
the variations for hardware instances of the same kind.

We developed the meta-model with EMF2 (Eclipse Modeling Framework),
an open-source framework for model-driven software engineering and code

2 http://www.eclipse.org/modeling/emf/

http://www.eclipse.org/modeling/emf/

118 M. Meier, M. Breddemann, and O. Spinczyk

Fig. 5. Excerpt of the LavA Meta-Model

generation, which allows us to generate the hardware API class templates di-
rectly from the meta-model.

6 Static Code Analysis

To generate an instance of the meta-model, that is, a hardware model for a con-
crete MPSoC, we have to analyze the software stack (in our case: application
and operating system) by searching for global instances of hardware API class
templates. We use an extended version of the C++ parser library Puma [17]
for this purpose. By means of these detected hardware instances and the ini-
tialization parameters the hardware model is being created and filled. The only
exceptions are the interrupt numbers and the device addresses. Due to the cyclic
dependencies between the software and hardware layer it is not possible to assign
these numbers and addresses before the hardware structure is determined. After
Puma finds each hardware instantiation in the software, the devices get assigned
their interrupt numbers, one by one, and the address space will be continuously
partitioned according to the symbolic constant Size. Finally, Puma generates
a hw init function that is executed during the boot-up time of the operating
system. Within this function the interrupt numbers and the device addresses
are set to the attributes of any peripheral device representing object. The result
of this step is extended C++ source code and an EMF model representing the
hardware.

Based on the model and LavA’s extensible library of VHDL-based open-
source IP components, which are extended with component-specific configuration

Hardware APIs: A Software-Centric Approach for Automated Derivation 119

options, we finally create the hardware instance. More details on how to configure
LavA’s hardware platform from the EMF model can be found in [10].

7 Example: Audio Decoder

To exemplify our approach we here present the implementation of a Dolby Dig-
ital3 audio decoder. The application reads the encoded audio bit stream from a
DVD Player using an S/PDIF interface, decodes the audio signal and outputs
this to an AC’97 module. The workload is divided accordingly using a pipelined
design with three stages:

1. extraction of synchronization frames from the bit stream, which contain the
encoded audio signals for 6 audio channels

2. decoding the extracted frames and mixing the 6 channels down to a stereo
signal

3. output of audio samples to AC’97

In this scenario, the extraction and output stages are performed on an own
processor each. Since synchronization frames can be decoded independently, we
further parallelized the decoding stage, using three processors. In the future we
plan to gain the task mapping automatically from a design space exploration.
For the audio decoder we could even re-use a standard decoding library initially
developed for x86 (liba524). Within each application software task we instanti-
ated the required hardware components, namely processors, communication in-
frastructure and devices, and configured them by the template parameters. For
example, the hardware instantiations for one of the decoding processors look as
follows: Node<2>, CPU<MBLITE, 96, true, true, true>, SharedMemory<1,

4>, SharedMemory<4, 4>, Connection<1, BUS, 32, 5, 5>, IPC<1>, and
Outport<2>. The used template parameters correspond to the attributes of the
meta-model for each hardware component. For instance, the type of the processor
is MBLITE, its local memory allocates 96 kB and the three optional hardware
accelerators are enabled in the processor. Modifications to the hardware, for ex-
ample due to performance issues, can easily be done by the replacement of the
CPU type with a more powerful processor. After the software for each proces-
sor is programmed the Puma parser analyzes the five software stacks, generates
the hw init functions for each processor and creates the hardware model. Fi-
nally, the VHDL source code is generated from the hardware model by the EMF.
All steps after the application development are fully automated. Only the User
Constraints File for the hardware synthesis has to be prepared manually. Due
to LavA’s automated design flow the application-specific MPSoC in the form of
VHDL source code can be generated in seconds after the developer has finalized
the application.

3 Dolby Digital (ATSC A/52) is a standard for 6 channel audio compression. It uses
AC-3 as audio bit stream, which contains a sequence of synchronization frames. Each
frame contains 6 audio blocks. A synchronization frame is the smallest independently
decodable unit of the audio bit stream.

4 http://liba52.sourceforge.net/

http://liba52.sourceforge.net/

120 M. Meier, M. Breddemann, and O. Spinczyk

Fig. 6. Hardware Platform: Dolby Digital Audio Decoder

The final hardware platform generated for the case study is shown in Fig-
ure 6. The MPSoC is composed out of five MB-Lite5 processors arranged in
three stages. The MB-Lite is an instruction set and cycle compatible open-source
version of the Xilinx’s MicroBlaze processor. We tested this MPSoC on a Xil-
inx Virtex-5 LX110 FPGA (speed grade -1) at a frequency of 33 MHz. On this
FPGA the MPSoC occupies 35,711 6-input LUTs6 (51 %).

8 Discussion

8.1 Top-Down vs. Bottom-Up Configuration

In the embedded systems domain all re-usable hardware and software compo-
nents tend to be configurable according to application-specific requirements. In a
complex hardware/software stack the configurations of all layers have to be con-
sistent, thus top-down or bottom-up configuration processes are possible. The
hardware manufacturer Xilinx provides tool support for bottom-up configuration
while the software engineering community seems to favor top-down configuration
starting with highly abstract configurable features [5]. The approach presented
here is top-down. This allows application developers to abstract from hardware
structures. It is more “programmer compatible”. On the other hand, we are
aware that the lack of control over the synthesized hardware might induce a

5 http://www.opencores.org/project, mblite.
6 The area-wise most expensive component is the floating-point unit (FPU) with 6,432
6-input LUTs per instance. However, due to real-time constraints, the FPU cannot
efficiently be replaced by a software algorithm.

http://www.opencores.org/project

Hardware APIs: A Software-Centric Approach for Automated Derivation 121

certain overhead. We haven’t experienced this problem in our example, but will
investigate it in the future.

8.2 General Applicability of the Approach

The presented approach is neither limited to be used in conjunction with the
LavA-framework nor is it required to have an operating system on top of the
hardware. The hardware API can be used by a complex software stack as well
as by simple applications. In any case it hides the hardware details from the ap-
plication developer. It is also conceivable to replace LavA’s hardware platform,
for instance, by Xilinx’s EDK or by a software-based emulation of the hardware
components. It would merely be necessary to provide a meta-model that re-
flects the respective configuration options and a transformation of the resulting
hardware model into the model that is needed by the respective framework for
hardware synthesis. It is furthermore interesting to note that two frameworks
with a compatible meta-model would also have a compatible hardware API. As a
consequence, software written for one framework would also work with the other,
e.g. switching between LavA and EDK would only be a matter of configuration.

9 Conclusion

In this paper we have introduced a methodology and a tool chain for tailoring
MPSoC hardware structures solely based on static code analysis. By automat-
ing the configuration process we simplify application development, because no
knowledge about computer architecture or hardware description languages is re-
quired, and configuration inconsistencies are avoided by design. We regard the
hardware API, i.e. the generated representation of configurable hardware compo-
nents on the software level, as the key innovation of this work. Our experiences
with an audio decoder example are positive and encourage us to validate the
approach with bigger case studies.

Acknowledgments. This work is supported by the German Research Founda-
tion (DFG) under grant no. SP 968/4-2.

References

1. Arpinen, T., Kukkala, P., Salminen, E., Hännikäinen, M., Hämäläinen, T.D.: Con-
figurable multiprocessor platform with RTOS for distributed execution of UML 2.0
designed applications. In: Proceedings of the Conference on Design, Automation
and Test in Europe (DATE 2006), Washington, D.C., USA (2006)

2. Carara, E., de Oliveira, R., Calazans, N.L.V., Moraes, F.: Hemps - a framework for
noc-based mpsoc generation. In: IEEE International Symposium on Circuits and
Systems (ISCAS 2009), pp. 1345–1348 (2009)

3. Honda, S., Wakabayashi, T., Tomiyama, H., Takada, H.: Rtos-centric hardware/-
software cosimulator for embedded system design. In: Int. Conf. on Hardware/Soft-
ware Codesign and System Synthesis (CODES+ISSS 2004), pp. 158–163 (2004)

122 M. Meier, M. Breddemann, and O. Spinczyk

4. Kahn, G.: The semantics of a simple language for parallel programming. In: Rosen-
feld, J.L. (ed.) Information Processing, Stockholm, Sweden, pp. 471–475. North
Holland, Amsterdam (1974)

5. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, S.: Feature-oriented domain
analysis (FODA) feasibility study. Technical report, Carnegie Mellon University,
Software Engineering Institute, Pittsburgh, PA (November 1990)

6. Kangas, T., Kukkala, P., Orsila, H., Salminen, E., Hännikäinen, M., Hämäläinen,
T.D., Riihimäki, J., Kuusilinna, K.: Uml-based multiprocessor soc design frame-
work. ACM Trans. Embed. Comput. Syst. 5(2), 281–320 (2006)

7. Kumar, S., Aylor, J., Johnson, B., Wulf, W.: Object-oriented techniques in hard-
ware design. Computer 27(6), 64–70 (1994)

8. Lukovic, S., Fiorin, L.: An automated design flow for NoC-based MPSoCs on
FPGA. In: 19th IEEE/IFIP Intl. Symposium on Rapid System Prototyping (RSP
2008), pp. 58–64 (June 2008)

9. Lyonnard, D., Yoo, S., Baghdadi, A., Jerraya, A.: Automatic generation of
application-specific architectures for heterogeneous multiprocessor system-on-chip.
In: Design Automation Conference (DAC 2001), pp. 518–523 (2001)

10. Meier, M., Engel, M., Steinkamp, M., Spinczyk, O.: LavA: An open platform for
rapid prototyping of MPSoCs. In: 2010 Int. Conf. on Field Programmable Logic
and Applications (FPL 2010), Milano, Italy, pp. 452–457. IEEE Computer Society
Press (2010)

11. Roth, R., Ramanathan, D.: A high-level hardware design methodology using c++.
In: 4th High Level Design Validation and Test Workshop, pp. 73–80 (1999)

12. Schirmeier, H., Spinczyk, O.: Tailoring infrastructure software product lines by
static application analysis. In: 11th Int. Software Product Line Conference (SPLC
2007), pp. 255–260. IEEE Computer Society Press (2007)

13. Schirmeier, H., Spinczyk, O.: Challenges in software product line composition. In:
42nd Hawaii Int. Conf. on System Sciences (HICSS 2009), pp. 1–7. IEEE Computer
Society Press, Waikoloa (January 2009)

14. Tanenbaum, A.S.: Structured Computer Organization, 5th edn. Prentice-Hall, Inc.,
Upper Saddle River (2005)

15. Thiele, L., Bacivarov, I., Haid, W., Huang, K.: Mapping applications to tiled mul-
tiprocessor embedded systems. In: 7th Int. Conf. on Application of Concurrency
to System Design (ACSD 2007), pp. 29–40 (2007)

16. Thompson, M., Nikolov, H., Stefanov, T., Pimentel, A.D., Erbas, C., Polstra, S.,
Deprettere, E.F.: A framework for rapid system-level exploration, synthesis, and
programming of multimedia mp-socs. In: 5th Int. Conf. on Hardware/software
Codesign and System Synthesis (CODES+ISSS 2007), pp. 9–14. ACM (2007)

17. Urban, M., Lohmann, D., Spinczyk, O.: Puma: An aspect-oriented code analysis
and manipulation framework for C and C++. In: Katz, S. (ed.) Transactions on
AOSD VIII. LNCS, vol. 6580, pp. 144–165. Springer, Heidelberg (2011)

18. Wallentowitz, S., Lankes, A., Zaib, A., Wild, T., Herkersdorf, A.: A framework for
open tiled manycore system-on-chip. In: 22nd Int. Conf. on Field Programmable
Logic and Applications (FPL 2012), pp. 535–538 (2012)

19. Xiong, Z., Zhang, M., Li, S., Liu, S., Chao, Y.: Virtual embedded operating system
for hardware/software co-design. In: 6th Int. Conf. on ASIC. ASICON, vol. 2, pp.
939–943 (2005)

uBuild: Automated Testing and Performance

Evaluation of Embedded Linux Systems

Fabio Erculiani, Luca Abeni, and Luigi Palopoli�

DISI – University of Trento, 38123 Povo, Trento, Italy
fabio.erculiani@gmail.com, luca.abeni@unitn.it, palopoli@disi.unitn.it

Abstract. This paper describes uBuild, a novel tool designed to support
the automated execution of repeatable and controlled tests of embedded
Linux systems. This is useful for continuous integration purposes, and
to evaluate the impact of various design and implementation options on
the system’s performance. uBuild allows the designer to build the em-
bedded system image from scratch, by compiling all the needed software
from the source code and by even building the needed cross-compilation
toolchain if required. It provides deterministic control on the configu-
ration options used to build the cross-compilation toolchain, the Linux
kernel, the system libraries, and all the programs. In this way, the effects
of each option can be tested and evaluated in isolation.

Keywords: Embedded Systems, Continuous Testing, Performance
Evaluation.

1 Introduction

The recent developments in embedded computing devices and related technolo-
gies (sensing and battery technologies, etc...) are creating the premises for a
pervasive diffusion of small computing systems that directly interact with the
physical environment in many ways. This is reflected in the increasing impor-
tance of consumer electronics, which has become one of the most important
drivers of the global economy. Smartphones, tablets, smart glasses are a few ex-
ample of commercial breakthroughs. These devices operate in close interaction
with their users offering an easy and intuitive access to their computing abilities
and connectivity. Home automation, automotive and even fashion industries are
example application areas where a massive penetration of these transformative
devices is expected to introduce changes of unprecedented radicality.

At the heart of this new generation of embedded systems are Systems Chip
(SoC) devices. Their evolution has transformed traditionally “low-power” devices
into out-and-out computing units, whose power matches the one of Personal
Computers of a generation ago. The gap of computing power between high end

� The research leading to these results has received funding from the European Union
Seventh Framework Programme (FP7/2007-2013) under grant agreement n ICT-
2011-288917 “DALi - Devices for Assisted Living”.

E. Maehle et al. (Eds.): ARCS 2014, LNCS 8350, pp. 123–134, 2014.
c© Springer International Publishing Switzerland 2014

124 F. Erculiani, L. Abeni, and L. Palopoli

embedded devices and PC is expected to be closed in a few years time horizon [3].
As a result, different authors observe a slow but steady decrease of the PC
sales [6] and establish a clear connection of this commercial trend with the
increased performance of modern embedded systems.

The constant growth of embedded systems computing power is being reflected
on the complexity of the software that they execute. And of course a great (com-
putational) power comes with great responsibility (in meeting the increased ex-
pectations of users on the functionality of embedded devices). This emphasises
the role of the Operating System (OS) layer to facilitate the integration of com-
plex functionalities and to optimally manage the system resources. As a conse-
quence, it is possible to notice an evident transition from custom solutions to
solutions based on the Linux Kernel.

A reliable and well tested OS layer is certainly a desirable feature but it is not
sufficient. At the same level of importance are software testing, performance and
power consumption evaluation and optimisation. Generally speaking, there is a
need for development cycles based on a sound scientific basis. For this reason,
embedded software engineers are experimenting with new solutions to develop-
ment, test and release that could help preserving the quality of software, in spite
of the pressure for a quick time-to-market and of the complexity of the embedded
functionalities.

This paper presents the design of uBuild, a new tool aimed at simplifying
and automatising the development and test of Linux-based embedded systems.
uBuild allows developers to exactly define the software to be installed on the sys-
tem and to build the software from source, using a customised cross-development
toolchain. Since the tool gives complete control over the specific software versions
to be used, additional patches to be applied to the various programs, the various
build options, and the configuration of the cross-compiler, it becomes possible
to test and evaluate the impact of every single option on the global performance
of the generated embedded system. uBuild is a tool developed from the grounds
up, which could help meet the pressing requirements of modern Linux Based
embedded software.

2 The Problem

The process of consolidating the development and testing of Linux-based em-
bedded systems has already started, as shown by the proliferation of terms like
continuous testing and integration or tinderbox systems [10,15,11,8].

However, such activities as continuous integration, testing and profiling, need
some way to automate the build, test, and evaluation process [14], while main-
taining a high degree of flexibility and configurability to test and compare differ-
ent setups. For example, when trying to improve a piece of code or its execution
speed through compiler optimisations or when trying to evaluate the impact of
some configuration option on the system performance, developers are typically
looking for a proof that corroborates their expectations. The performance gain of
a change in the software configuration should be deterministic, and measurable
in a reliable and repeatable way.

uBuild: Automated Testing and Performance Evaluation 125

In some situations, the designer of an embedded system might want to test
a large number of software implementations, each one with a few configuration
changes (the used libraries or cross-compilation tools, the compiler flags, the
kernel version or the scheduling algorithm, etc...), collect performance results,
and compare them at the end.

In this context, the term “performance” is used in a generic way and might
refer to the ability of the system to respect temporal constraints, to power con-
sumption, or to other aspects which could be critical, for instance, in Linux
operated wearable devices.

Current Linux-based embedded systems are generally based on well-defined
Linux distributions [4], which impose serious limitations in the choice of the used
software. For example, the distribution might provide packages only for a limited
number of software versions, and it is not possible to change the build options.
Hence, the only way to have control on the used software is to re-compile it
from the source code following a tedious and error-prone process. This option
has become impractical because the size of the test matrices used to asses the
system qualities can quickly grow as the variables increase in quantity. Hence,
manually building all of the system images to be evaluated is not feasible.

To understand the multi-dimensionality of the domain space to be explored,
consider some of the questions that a developer or system designer might ask:

– Will the system benefit (in terms of memory footprint, power consumption,
or real-time performance) from a specific compiler optimisation?

– Will a specific compiler optimisation cause stability issues or affect the per-
formance?

– Will the system benefit from a proposed patch to the Linux kernel (imple-
menting, for example, a more advanced and experimental scheduler [1,5] or
reducing the kernel latencies [13])?

– Will the system perform better with a different set of libraries?

– Will the system perform better if compiled with a different ABI (Applica-
tion Binary Interface)? For example, consider ARM hardfp (using a hard-
ware FPU for floating point operations) vs softfp (emulating floating point
operations in software)

– Will the system pass the regressions test suite if some configuration option
is changed?

Unfortunately, generating a system image according to all the requirements
mentioned above can be difficult [16], and there is no one-size-fits-all solution
which fulfils all of these requirements without slowing down the software devel-
opment process. This problem is increasingly affecting popular software compo-
nents, as witnessed by the development speed of the Linux kernel [7].

uBuild tries to address the issues mentioned above by providing a simple,
controlled, reproducible, and fast way to build from scratch embedded systems
based on the Linux kernel. Moreover, uBuild allows to configure and change a
large amount of different parameters and options: the cross compiler toolchain
(binutils, libc [12], gcc, linux-headers) version and its required patchset, the

126 F. Erculiani, L. Abeni, and L. Palopoli

bootloader version, the used Linux kernel, the userspace environment, the com-
piler or linker flags, etc. Hence, uBuild can speed testing and development up, by
making tests both reproducible and deterministic so that various implementation
options can be correctly evaluated and compared, understanding the impact of
all the possible choices.

The problem of the explosion of the size of the test matrix (mentioned above)
is mitigated by uBuild in two orthogonal ways. First, the declarative language
used for its specification files supports pre-processor statements (like for instance
#include) that make it possible to reduce the duplications when managing a
large amount of files. Then, uBuild provides a build cache for the result of the
compilation processes that allows the system to reuse the generated binaries in
future builds. Such a cache subsystem works at the build target level and is
cooperative: this means that the generation of cache keys is done cooperatively
with build profile parameters (“cache env =” statements.)

Finally, uBuild is free software, released under the GNU General Public Li-
cense (GPL) and is downloadable from http://github.com/lxnay/ubuild.

3 The uBuild Architecture

To address the problems presented in the previous section, uBuild has been
developed within the following requirements:

1. Portability and Distribution independence: uBuild must run on every
Linux-based OS where Python and Bash are available. Buildroot1 is the only
similar software tool that aims to be as independent from the host OS as
uBuild;

2. Determinism: uBuild must be able to generate embedded system images,
with specific properties, in a deterministic and reproducible way. This makes
it possible to generate large test matrices and compare the results in a reliable
way;

3. Scalability: uBuild must support the generation of images on a large scale
(in order to support large test matrices). Multiple uBuild instances process-
ing different specification files should be able to run in parallel in order to
leverage all the CPU, RAM and I/O resources available on a single system.
Different specification files (build profiles), can be created using #include

statements, so that the amount of shared code reduces the complexity of
managing hundreds of files;

4. Smart Caching: each uBuild target is cached on its own (more on this
later) in order to increase the likelihood that the same target, with the same
properties, has been already built by uBuild. In order to increase the cache
hit, a cooperative caching strategy has been designed: the uBuild target has
to assist uBuild in the generation of a hash key used in cache lookups;

5. Reduced root privileges (ab-)use: uBuild is designed to be executed
by non privileged users. There are however some operations that cannot be

1 http://buildroot.uclibc.org

http://github.com/lxnay/ubuild
http://buildroot.uclibc.org

uBuild: Automated Testing and Performance Evaluation 127

executed without root privileges, like for instance: mkfs, mount, mknod and
losetup. In order to execute these, operations uBuild scripts use the sudo

command (overridable through the environment variable PRIV AGENT). While
Linux Capabilities may also be a possible solution, they are not portable and
they require a specific filesystem support and the executable to be “marked”
accordingly.

To comply with the goals stated above, uBuild is based on an architecture
organised in 3 main components:

1. A builder, that is responsible of parsing and validating the command line
arguments, passing the specification files (containing build profiles) to the
parser, managing the uBuild target cache, and executing the build plan
through the target controller ;

2. A cache manager (uBuild cache in Figure 1) that manages cache writes,
reads and lookups in an atomic way;

3. A set of build scripts, that are used to effectively compile code (be it the
cross compiler itself or the executables required by the target architecture).
These scripts must be provided by the user and are divided into the actual
executable scripts and the build scripts library. The latter contains set of
shell functions that can be used to correctly interface to uBuild-core.

Fig. 1. The uBuild architecture diagram

128 F. Erculiani, L. Abeni, and L. Palopoli

Figure 1 shows the various uBuild components and their relationships. The
first two components compose the uBuild-core and are written in Python,
while the third one is written in Bash. With reference to the portability goal,
it is worth noticing that uBuild-core is more portable than the uBuild scripts,
since it only requires Python, while the uBuild scripts depend on Linux and use
Linux specific tools.

The build scripts provided with the current uBuild codebase provide support
for building embedded systems for the BeagleBoard, BeagleBone and BeagleBone
Black in two different ABIs: armhf (ARMv7 hard floating point) and armel

(older ARMv7 soft floating point).
uBuild configuration is based on specification files and build profiles. Strictly

speaking, a specification file is a text file containing a build profile, but since
there can only be one build profile per configuration file, both terms can be mixed
without problems. Each build profile is composed of global uBuild settings
(parameters that affect the whole uBuild build plan and its targets) and uBuild
targets (the actual descriptors of what uBuild should try to build). The latter
can either be a cross compiler toolchain target or a package target for the
architecture that the profile builds for.

The global settings affect the execution of all the uBuild targets. Such settings
can range from the name of the final filesystem image to the directories used by
uBuild for downloading and compiling the sources. Without going too much
into detail, it is safe to say that global settings are a way to declare shared
environment variables (through bash-parseable environment files) or pre- and
post-execution hooks. In other words, global settings allow to share pieces of
information across all the defined uBuild targets.

Targets are executed in the order they are declared and behave in an additive
way when declared multiple times. This enables the user to stack declarations
on top of each other in a hierarchical fashion and to split them into separate
files.

Note that uBuild specification files follow a declarative programming style.
Declarative programming is “a programming paradigm that expresses the logic
of a computation without describing its control flow” [9], leaving the how part
of the problem to an implementation detail. Among the many advantages of a
declarative language, there is certainly one that fits well into typical uBuild work
scenarios: static analysis [2]. It is much easier to write a static analyser for a
declarative language rather than for a compiled or even interpreted one.

uBuild targets are similar to Makefile targets for some aspects, but with some
important differences. Like a Makefile target, a uBuild target is an individual
entity that uBuild can reference to, containing a “build recipe”. In other words,
the content of a target is essentially a set of ordered statements that describe
what uBuild is required to do, like for instance:

– read environment variables from a file

– use a given list of environment variables as part of the build cache lookup

– download the source code from a specified URL

– apply a set of patches

uBuild: Automated Testing and Performance Evaluation 129

– call a build script
– build the source code inside a specified directory

On the other hand, a uBuild target differs from a Makefile target in the
following ways:

– it is declarative (as previously explained)
– targets can be defined multiple times and the “recipes” are additive
– there is no way to define inter-target dependencies (this may change in fu-

ture). Instead, targets are executed in the order they are declared
– caching doesn’t happen through “timestamp magic” but rather through the

uBuild cache subsystem, which is guaranteed to be atomic (for instance,
by using syscalls exposed through mkstemp(3) and rename(3)).

Notice that previously a distinction between cross compiler toolchain targets
and package targets has been pointed out. While they are all uBuild targets
(and hence they are handled in the same way and undergo the same build plan),
the former are expected to build a cross compiler (which is needed to build all
the other packages) and are hence always executed before any package uBuild
targets.

A uBuild target can expose an infinite number of build scripts and their argu-
ments2. Similarly to uBuild targets, the build scripts are executed in the order
as they are declared, using the environment variables read from the environment
files defined in the same target.

Obviously, build scripts are not called in case of build cache hits. uBuild-core
will take care of unpacking the cached data and placing it in the appropriate
destination directory, which is determined by the nature of the defined target
(either a cross compiler toolchain build target or a simple package build one).

The uBuild cache is probably the most interesting part of uBuild, since its
beneficial effects have a great impact on the user. A well designed cache sub-
system makes it possible to save huge amounts of time during trial and error
or debugging phases, development, or performance testing. For this reason, the
cache subsystem has been designed with these goals in mind:

– Reliability. The build cache must never generate corrupted cache objects
or reuse stale data, unless a corruption in lower I/O layers happens.

– Atomicity. The build cache must handle cache objects in an atomic way,
allowing for lock-less uBuild processes parallelisation.

– Control. The user must be able to control the way cache keys are generated,
by defining a list of environment variables whose values become part of the
(hashed) key.

A 160-bit hashing algorithm like SHA-1 has been used for the uBuild cache,
as its low collision probability makes it solid enough to be used as key for cache

2 While in this context they are called “build scripts”, uBuild only expects them to
be executable and runs them through execve(2): it is up to the kernel (with the
shell interpreter as fallback) to determine the binary format through the binfmt

subsystem.

130 F. Erculiani, L. Abeni, and L. Palopoli

objects. This is confirmed by the fact that SHA-1 is used for instance by git3 to
ensure the integrity of various types of internal objects and files.

While uBuild-core is very lightweight and most of the activity is carried out in
the sample build scripts library and in the scripts written by the users, it plays
an important role in solidly glueing everything together.

4 A Simple Example

As a simple example, uBuild has been used to evaluate the impact of some build
options (ABI, CFLAGS, libc, etc...) on a simple signal processing application
running on a BeagleBoard4 (a small embedded board based on the ARMv7
Cortex-A8 32-bit architecture). In particular, uBuild has been used to answer
the following questions:

– Is the new armhf ABI (using the hardware floating point unit) giving any
real advantage in this scenario? Or maybe the old soft-floating point ABI
avoids certain side-effects that could degrade the performance?

– Given the criticality of the task, is the gcc -O1 optimisation level enough?
Is -O2 reliable enough? And what about -O3?

– Can the entire system be compiled with these CFLAGS? Or is this setting
going to hit any compiler bug affecting runtime execution?

– Does the compiler auto-vectorisation (gcc -ftree-vectorize) provide any
advantage? Does vectorisation actually work when it is supposed to?

– Do CPU specific optimisations (-mcpu=cortex-a8) have any impact on the
application performance?

Notice that although it is possible to answer all these questions without
uBuild, the time taken to correctly and reliably setup “by hand” a test framework
shaped around this problem and the risk to taint the results in unpredictable
ways is non-trivial. Hence, uBuild has been used to generate a test matrix in
order to compare the results obtained with the various options. The uBuild spec-
ification files have been adapted by introducing a set of 7 different build flags that
could help to determine the best configuration. A reference build using the opti-
misation level -O0 is used to verify if the compiler is doing its job correctly, and
the other 6 builds use -O1 -mfpu=vfp, -O2 -mfpu=vfp, -O2 -mfpu=neon, -O2
-mfpu=neon -ftree-vectorize, -O3 -mfpu=neon, and -O3 -mcpu=cortex-a8

-mfpu=neon. The test software is compiled by defining a new build target inside
the build profile and CFLAGS are swapped through global environment files.
Finally, since both the hardfp and softpf ABI had to be tested, the total number
of different build flags combination grew up to 14. It is easy to realise how this
number can potentially grow very quickly, since the number of subsets of a set
composed by n elements is is O(2n). Of course, assumptions and simplifications
can be made in order to avoid to test less interesting scenarios.

3 Git, the stupid content tracker - http://git-scm.com/
4 http://www.beagleboard.org

http://git-scm.com/
http://www.beagleboard.org

uBuild: Automated Testing and Performance Evaluation 131

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 1.6e+07

-O0 -m
fpu=vfp

-O1 -m
fpu=vfp

-O2 -m
fpu=vfp

-O2 -m
fpu=neon

-O2 -m
fpu=neon -ftree-vectorize

-O3 -m
fpu=neon

-O3 -m
cpu=cortex-a8 -m

fpu=neon

Execution times (us)

softfp
hardfp

Fig. 2. test results of the 14-ways benchmark of armhf, armel and different CFLAGS.
The Y axis reports the execution time, in microseconds.

Each build profile is stored in a file and in order to avoid “code” duplication it
is possible to leverage the pre-processor features of the .spec language and use
#include statements as explained in Section 3. Hence, the 14 specification files
only contain one or more #include statement and an [ubuild] section hosting
“env =” and “image name =” statements.

Every generated image has been copied to microSD storage and configured
to run on the target device that, after booting the Linux system, executes 10
iterations of the test and saves the processing time. Figure 2 shows the results
obtained with this experiment.

The first important aspect of the results is that the “reference group” com-
posed by the builds having CFLAGS="-O0" demonstrates that gcc correctly does
what is asked to do in terms of optimisation. Hence, the whole testing pipeline
seems to produce a correct outcome. A second apparent conclusion is that any-
thing better than -O2 does not produce any relevant advantage. This could mean
three things:

1. There are bottlenecks in the code that defy any compiler optimisations

2. The code is not complex enough or is already leveraging all the capabilities
of the CPU

3. Code loops are too complex and the automatic vectorisation capabilities of
the compiler is not working as expected. In this case,
“gcc -ftree-vectorizer-verbose=n” could give some insights into why
this happens.

132 F. Erculiani, L. Abeni, and L. Palopoli

Further analysis (based on “gcc -ftree-vectorizer-verbose=n”) revealed
that there were problems in how the for loops were designed in the test applica-
tion, and this caused the auto-vectorisation feature of gcc to fail optimise code
during compilation.

As a final observation, it is worth noting that the flexibility and configurability
provided by uBuild does not come with big costs in terms of image size: while
an embedded image generated by buildroot is about 7.2MB (plus a 2.8MB
kernel), the size of a filesystem generated by uBuild is 9MB (and the kernel size
is 3.6MB). Hence, the flexibility and configurability provided by uBuild “costs”
only 2.6MB.

5 Related Work

In the open source field, it is possible to find several software solutions aimed
at designing and building various kinds of embedded Linux-based OSs. All of
these tools have been designed with very specific goals and sometimes targeting
a very narrow audience. Besides, none of them tackles the family of problems
addressed in the paper in the way uBuild does.

LTIB (Linux Target Image Builder)5 has similar goals respect to uBuild, as it
allows to build Linux-based filesystems for embedded devices. However, it uses
a specific package manager (RPM) which can be unavailable on some host sys-
tems, and depends on a large number of software packages and libraries. uBuild,
instead, is designed to be portable and to have a small number of dependencies
(only a working C compiler, Python, and Bash).

Buildroot6 is probably the most commonly used tool for building Linux-based
embedded systems. Although a good tool for a wide variety of applications, buil-
droot comes with several limitations that make it hardly a good option for con-
tinuous integration and testing purposes. In particular, buildroot is strictly tied
to a specific C library (uClibc) and does not allow to easily install packages that
are not officially supported, or arbitrary versions of specific packages. Compiler
flags tuning and patchsets handling are also not fully supported, and it is hard
to maintain multiple configurations of the same system.

Cross Linux From Scratch (CLFS)7 presents a different approach to building a
Linux-based embedded system. As indicated in its official documentation, CLFS
is “a project that provides you with step-by-step instructions for building your
own customised Linux system entirely from source” . However, it does not pro-
vide most of the features needed by uBuild, such as the possibility to automate
the system generation, an efficient build cache, etc...

Angstrom8 is a Linux distribution based on the OpenEmbedded build frame-
work9, supporting a wide range of hardware architectures and offering an online

5 http://ltib.org
6 http://buildroot.uclibc.org
7 http://www.cross-lfs.org
8 http://www.angstrom-distribution.org
9 http://www.openembedded.org

http://ltib.org
http://buildroot.uclibc.org
http://www.cross-lfs.org
http://www.angstrom-distribution.org
http://www.openembedded.org

uBuild: Automated Testing and Performance Evaluation 133

tool for generating and downloading custom “rootfs” images10. However, it does
not provide much control on the software installed in the rootfs nor on the build
options.

The Yocto project11 is an “open source collaboration project that provides
templates, tools and methods to help you create custom Linux-based systems
for embedded products regardless of the hardware architecture”. Hence, its main
goal is to standardise the way embedded Linux images are generated by providing
an open source development framework and compliance guidelines. However, as
it happens with buildroot and Angstrom, the vertical architecture of Yocto does
not help in building multiple variants of a system image containing different
versions of the various packages, or using different patches and build flags (Yocto
is a tool for creating Linux distributions and not something that can be easily
used to assess a particular combination of “input” variables).

Portage12 is a packagemanagement system specifically built forGentoo Linux13

that originally aimed at a good degree of operating system independence. However,
recent versions of portage are not portable, and strictly depend on the host OS.
Moreover, portagedoesnot support cross compilationnatively,whichdoesn’tmake
it suitable to build embedded systems from scratch.

Many of the design choices taken in implementing uBuild have been con-
sciously inherited from some of the software packages mentioned above. For
example, while uBuild has different goals, it has to implement some sort of
source-based package management system that builds source code, similarly to
Portage. On the other hand, it uses a cross-compiler toolchain and install the
generated binaries in a filesystem generated from scratch, similarly to buildroot
and Angstrom/Yocto.

6 Conclusions

The process of evaluating and regression testing changes to an embedded system
is, in general, expensive both in terms of time and money. Trial-and-error has
always been the easiest way to evaluate benefits given by specific compile-time
optimisations. Its complexity however, rapidly scales as the number of combi-
nations to take into account grows, and with it, the risk of tainting the results
with external, likely human, errors.

This paper presented a novel approach to performance evaluation and contin-
uous testing of embedded Linux-based systems based on a tool, named uBuild,
for the automated and controlled build of the embedded system image. uBuild
is designed to offer an effective solution to the problems mentioned above, and
relies on modern technological foundations: declarative configuration files, easy
extendibility through shell scripts and scalability thanks to its efficient build
cache.

10 http://narcissus.angstrom-distribution.org
11 https://www.yoctoproject.org
12 http://www.gentoo.org/doc/en/handbook/handbook-x86.xml?part=2&chap=1
13 http://www.gentoo.org

http://narcissus.angstrom-distribution.org
https://www.yoctoproject.org
http://www.gentoo.org/doc/en/handbook/handbook-x86.xml?part=2&chap=1
http://www.gentoo.org

134 F. Erculiani, L. Abeni, and L. Palopoli

uBuild tries to ease and formalise the testing and performance evaluation pro-
cess through a parametric “interface” that is specifically designed for generating
multiple experimental scenarios, changing controlled sets of build parameters.

The determinism of the generated system images provides an effective frame-
work for evaluating the performance benefits of specific compile options (for
example, compile flags, linker flags) or specific patchsets.

References

1. Abeni, L., Buttazzo, G.: Integrating multimedia applications in hard real-time
systems. In: Proceedings of the IEEE Real-Time Systems Symposium, Madrid,
Spain (December 1998)

2. Chess, B., McGraw, G.: Static analysis for security. IEEE Security Privacy 2(6)
(2004)

3. Detwiler, B.: Tabelts will replace pcs for many enterprise users (September 2011),
http://www.techrepublic.com/blog/tr-dojo/tablets-will-replace-pcs-for

-many-enterprise-users/

4. Dudak, J., Pavlikova, S., Gaspar, G., Kebisek, M.: Application of open source
software on arm platform for data collection and processing. In: Proceedings of the
14th International Symposium MECHATRONIKA (2011)

5. Faggioli, D., Checconi, F., Trimarchi, M., Scordino, C.: An EDF scheduling class
for the Linux kernel. In: Proceedings of the Eleventh Real-Time Linux Workshop,
Dresden, Germany (September 2009)

6. Gartner, J.R., Meulen, R.V.D.: Gartner says worldwide pc, tablet and mo-
bile phone combined shipments to reach 2.4 billion units in 2013 (April 2013),
http://www.gartner.com/newsroom/id/2408515

7. Kroah-Hartman, G., Corbet, J., McPherson, A.: Linux kernel development: How
fast it is going, who is doing it, what they are doing, and who is sponsoring it
(2013 edition) (2013), http://www.linuxfoundation.org/publications/linux-

foundation/who-writes-linux-2013

8. Lacoste, F.: Killing the gatekeeper: Introducing a continuous integration system.
In: Proceedings of the Agile Conference (AGILE 2009), Chicago, IL (August 2009)

9. Lloyd, J.W.: Practical advantages of declarative programming. In: Proceedings of
the Joint Conference on Declarative Programming, GULP-PRODE 1994 (Septem-
ber 1994)

10. Mitchell, D.J., Prince, T.: Automating build, test, and release with buildbot (2013),
http://people.v.igoro.us/~dustin/buildbot-paper.pdf

11. Nimmer, J., Fallik, B., Martin, N., Chapin, J.: Continuous automated testing of sdr
software. In: Proceedings of the 2006 Software Defined Radio Technical Conference
(SDR 2006), Orlando, Florida (November 2006)

12. Plauger, P.J.: The standard C library, 1st edn. Prentice Hall PTR (1991)
13. Rostedt, S.: Internals of the rt patch. In: Proceedings of the Linux Symposium,

Ottawa, Canada (June 2007)
14. Spinellis, D.: Software builders. IEEE Software 25(3) (2008)
15. Swartout, P.: Continuous Delivery and DevOps: A Quickstart Guide. Packt Pub-

lishing Ltd. (2012)
16. Weber, J., Rehkopf, A.: Description of a formalized approach to build reproducible

linux images for a project-specific electronics platform. In: Proceedings of the 2nd
International Conference on Adaptive Science Technology, ICAST 2009 (2009)

http://www.techrepublic.com/blog/tr-dojo/tablets-will-replace-pcs-for-many-enterprise-users/
http://www.techrepublic.com/blog/tr-dojo/tablets-will-replace-pcs-for-many-enterprise-users/
http://www.gartner.com/newsroom/id/2408515
http://www.linuxfoundation.org/publications/linux-foundation/who-writes-linux-2013
http://www.linuxfoundation.org/publications/linux-foundation/who-writes-linux-2013
http://people.v.igoro.us/~dustin/buildbot-paper.pdf

A Two-Tier Design Space Exploration Algorithm

to Construct a GPU Performance Predictor

S. Ali Mirsoleimani1, Ali Karami1, and Farshad Khunjush1,2,3

1 School of Electrical and Computer Engineering, Shiraz University, Shiraz, Iran
2 Department of Electrical and Electronics Engineering, Hormozgan University,

Bandar Abbas, Iran
3 School of Computer Science,

Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
ali.mirsoleimani@gmail.com, {karami,khunjush}@cse.shirazu.ac.ir

Abstract. Graphics Processing Units (GPUs) have a large and complex
design space that needs to be explored in order to optimize the perfor-
mance of future GPUs. Statistical techniques are useful tools to help
computer architects to predict performance of complex processors. In
this study, these methods are utilized to build an effective performance
prediction model for a Fermi GPU. The design space of this GPU is more
than 8 million points. In order to build an accurate model, we propose a
two-tier algorithm which builds a multiple linear regression model from
a small set of simulated data. In this algorithm the Plackett and Bur-
man design is used to find the key parameters of the GPU, and further
simulations are guided by a fractional factorial design for the most im-
portant parameters. The generated performance model is able to predict
the performance of any other point in the design space with an average
prediction error between 1% to 5% for different benchmark applications.
This accuracy is achieved by only sampling between 0.0003% to 0.0015%
of the full design space.

1 Introduction

Computer architects try hard to design high performance microprocessors under
restrictive power and technology constraints. The design space that has to be
explored in order to evauate and find an optimal design is large. The recent
trend towards many-core processors such as GPUs has aggravated this problem
since interactions between various existing parameters occur.

Using cycle-accurate simulators such as GPGPU-Sim is a widely accepted
solution for accurate performance evaluations of a GPU’s micro-architecture
[1]. It allows exploring the architecture design space through parameterization,
i.e., running a simulation by changing simulator’s parameters with a variety of
proper benchmarks, in order to investigate the impact of an architecture feature
or a novel design-idea. Unfortunately, with cycle-accurate simulators exploring
the full design space requires long-running simulations that are frequently too
costly. Therefore, architects need to restrict the number of design points that
are evaluated.

E. Maehle et al. (Eds.): ARCS 2014, LNCS 8350, pp. 135–146, 2014.
c© Springer International Publishing Switzerland 2014

136 S.A. Mirsoleimani, A. Karami, and F. Khunjush

Computer architects investigate the impact of GPU parameters such as cache
size, latency, warp size as well as their interactions on performance by simulating
different possible configurations of them. Simulating all possible configurations
is really time consuming, therefore one can randomly generate and simulate
some configurations [2]. However, this naive solution might involve unnecessary
simulations because in GPU programming, a programmer does not necessarily
use all the GPU features when optimizing their code. For example, one can
omit shared memory, texture memory, or constant memory in writing a GPU
program. A different approach is to explore the full design space systematically.
For example, statistical-based experimental designs allow users to change the
configurations of the simulator systematically and to investigate which GPU
parameters have the greatest impact on performance. Therefore, it is desired to
create a model of large micro-architectural design space from a small number of
simulation samples. In our approach, we use statistical inference techniques to
achieve this goal.

In this paper we propose to use statistical-based experimental designs for effi-
ciently exploring the GPU design space. For this, we present a two-tier algorithm
to prune the large GPU design space. The idea is to break up the exploration
process into two steps to reduce the number of required simulations. In the first
tier, the number of parameters may be large and the goal is to determine the
relative effect of various parameters on the GPU performance. Therefore, the
Plackett and Burman (P&B) design is used to explore the design space quickly
and to prune the insignificant parameters in the design space. These parameters
are not required to be included in further experiments. In the second tier, the
number of parameters is reduced and we utilize a fractional factorial design to
investigate the interactions between significant parameters. Using this technique
we explore a small region of interest identified in the first tier.

The key contributions of this paper are:

1. Using the P&B design we prune the design space of a Fermi GPU architecture
for 23 micro-architectural parameters. We find that this technique quickly
shows GPU performance bottlenecks for each application, significantly de-
creasing the total number of required simulations to build a performance
prediction model.

2. Using statistical experimental designs, a multiple linear regression model is
constructed by sampling less than 0.0015% of design points from the full de-
sign space of 8M points. The proposed model achieves an average prediction
error of less than 5%.

The remainder of this paper is organized as follows. Related work is presented
in sect. 2. In sect. 3 and 4 statistical-base experimental designs and regression
analysis are described. We give a brief background on GPU architecture in sect. 5
and our proposed algorithm is elaborated in sect. 6. In sect. 7, we describe our
experimental methodology and setup. sect. 8 provides our experimental results
and a detailed evaluation of the proposed model. Finally, we conclude the paper
in sect. 9.

A Two-Tier Design Space Exploration Algorithm 137

2 Related Work

Architectural design space exploration and performance modeling for GPUs have
recently emerged as an interesting and important problem in computer architec-
ture design. In contrast, the performance analysis for CPUs has a long history
and there exist many methods for this purpose.

Lee et al. proposed a regression-based modeling approach to study the CPU
design space [3]. Joseph et al. proposed an automatic iterative approach using a
stepwise regression technique to automatically explore a CPU design space [4].
Their approach has been similar to ours. They also employ a regression tech-
nique and also achieve a good model accuracy with a small number of sampled
simulations. Yi et al. [5] have explored significant micro-architectural parameters
by conducting simulations based on the P&B design. However, their approach
differs from our method in the way in which the P&B design is used. As the
P&B design cannot quantify all the interactions between processor parameters,
we use the P&B design to only identify significant parameters and then employ
these parameters for performing further simulations.

In addition to studies of the CPU design, there have been a wide range of
performance studies on GPUs from statistical to analytical methods. Jooya et
al. [6] presented a method to optimize resource allocation in GPU architecture
by using the P&B design to explore the design space of 4 GPU parameters.
They formulate the problem as a constraint optimization problem. Jia et al.
[2] proposed a design space exploration technique which simulates randomly
selected design points from a GPU design space of 933K points. The design
space is constructed from 10 GPU parameters. Next, they exploit the well-known
stepwise regression technique to construct a performance model. Their model is
trained with 0.03% of the full design space to predict any other design point with
less than 1.1% error on average. Our work has some major differences. First,
our design space has more than 8M points with 23 parameters and is based
on the Fermi architecture. Second, instead of sampling design points randomly
we choose them systematically using a novel algorithm. This approach causes
a great reduction in number of required simulations for training the predictor
model. Using this technique our method requires less than 0.0015% of the full
design space to build accurate performance models.

3 Factorial Design

Factorial designs are frequently used in experiments involving several factors
where it is necessary to study the joint effect of the factors on a response. In many
cases, it is sufficient to consider the factors affecting the system at 2 high and
low levels. A complete replicate of such a design requires at least 2k observations
which is called a 2k factorial design or full factorial design. This kind of design
is appropriate for studying the effects of GPU parameters, although the number
of necessary simulations in the experiment increases geometrically due to large
number of GPU parameters. For example, to study 10 parameters we require

138 S.A. Mirsoleimani, A. Karami, and F. Khunjush

210 = 1024 runs in the experiment. Because each run is a time-consuming and
costly simulation, it is not feasible to run many different simulations for the
experiment.

As the full factorial design considers all relations among factors, the analysis
takes a long time to investigate the design space. However, due to the sparsity-
of-effects principle (i.e., the processor performance is usually dominated by main
effects and low order interactions) [5][4] during early stages of the analysis, there
is little interest in high-order interactions among different factors. Thus, a frac-
tional factorial design, in which fewer runs is required, can be used to obtain
information on the main effects and low-order interactions. In general, a full fac-
torial design may be run in a 1/2p fraction called a 2(k−p) design. For example,
a 1/4 fraction is called a 2(k−2) design. Plackett and Burman [7] show how full
factorial designs can be fractionalized in a different manner, to yield saturated
designs where the number of runs is a multiple of 4, rather than a power of 2.
This design has been named after them as the Plackett and Burman design.

3.1 The Plackett and Burman Design

We use a P&B design as a screening tool to determine which GPU parameters
have the most effect on performance. Screening experiments are usually per-
formed in early stages of a project when it is likely that many of the factors
initially considered have little or no effect on the response. The factors that are
identified as important are then investigated more thoroughly in subsequent ex-
periments. The P&B design is efficient when we use design of experiments to
learn as much as possible from the smallest amount of data.

In the P&B design, for each benchmark, the value of each parameter is given
by a matrix. It requires as few as n runs to determine the main effects for k
factors, where n is the next multiple of 4 greater than k. As an example, a P&B
design with 11 factors and 12 runs is shown in Table 1. We have used “+1” and
“-1” to denote the values of the high and low levels of a factor, respectively. The
first row pattern determines the entire design. Each subsequent row is simply a
circular right shift on the previous row. The final row is set to all “-1.” Each row
of this matrix represents a simulation configuration.

Running a benchmark for all the configurations, we measure a performance
metric (PM) for each run. Then, the effect of each parameter is calculated by
multiplying each parameter’s value (“1” or “-1”) to its corresponding PM value.
The effect of each parameter is calculated by summing all of these products. For
example, the effect of parameter D in 1 is computed as:

EffectD = 13 + (−14) + 18 + 22 + (−19) + 12 + (−23) + (−21) + (−15) +
14 + 20 + (−24) = −17

The magnitude of the measured effect is used for ranking the parameters. The
parameters that have higher ranks represent significant performance bottlenecks.
It should be noticed that the P&B design does not reveal whether the effect of
a parameter depends on another parameter. Therefore, we use it as a starting
point for more detailed experimentation.

A Two-Tier Design Space Exploration Algorithm 139

Table 1. Plackett and Burman matrix for 12 runs and 11 parameters

Run A B C D E F G H I J K PM

1 +1 +1 -1 +1 +1 +1 -1 -1 -1 +1 -1 13
2 -1 +1 +1 -1 +1 +1 +1 -1 -1 -1 +1 14
3 +1 -1 +1 +1 -1 +1 +1 +1 -1 -1 -1 18
4 -1 +1 -1 +1 +1 -1 +1 +1 +1 -1 -1 22
5 -1 -1 +1 -1 +1 +1 -1 +1 +1 +1 -1 19
6 -1 -1 -1 +1 -1 +1 +1 -1 +1 +1 +1 12
7 +1 -1 -1 -1 +1 -1 +1 +1 -1 +1 +1 23
8 +1 +1 -1 -1 -1 +1 -1 +1 +1 -1 +1 21
9 +1 +1 +1 -1 -1 -1 +1 -1 +1 +1 -1 15
10 -1 +1 +1 +1 -1 -1 -1 +1 -1 +1 +1 14
11 +1 -1 +1 +1 +1 -1 -1 -1 +1 -1 +1 20
12 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 24
Effect -17

4 Multiple Linear Regression

Regression analysis is a statistical technique for modeling and investigating the
relationships between one dependent variable (response variable) and one or
more independent variables in a given design space [8]. This technique can be
utilized to predict a GPU performance based on the values of micro-architectural
parameters.

Many applications of regression analysis involve situations in which there
are more than one independent variable. A regression model containing more
than one independent variable is called a multiple linear regression model. For
example, a system with one response variable y and k independent variables
xj ,j = 1, 2, ..., k can be modeled as:

y = β0 + β1x1 + β2x2 + . . .+ βkxk + ε (1)

where parameters βj ,j = 0, 1, 2, ..., k are the regression coefficients and ε is a
random error term. The term linear is used because (1) is a linear function of the
unknown parameters βj . This model describes a hyperplane in the k-dimensional
space of the independent variables xj .

A multiple linear regression may also be used to model the interactions be-
tween independent variables. An interaction between two variables can be rep-
resented by a cross-product term in the model, such as:

y = β0 + β1x1 + β2x2 + β12x1x2 + ε (2)

4.1 Transformation

It has been shown that a non-linear function can be expressed as a linear model
by using a suitable transformation of response variables. For example, Joseph

140 S.A. Mirsoleimani, A. Karami, and F. Khunjush

et al. [4] show that such transformations might result in response surfaces that
are more linear and easier to fit for CPU processors. On the other hand, it
has been shown that GPU micro-architectural parameters and their interactions
exhibit strong and highly nonlinear impacts on the performance of applications
[2]. Therefore, we consider to apply a proper transformation to map from a
non-linear space to a linear one. For this, several transformations such as 1/y,
log(y) and

√
y have been examined and the log(y) transformation exhibits the

best performance among them. We use this transformation to linearize the GPU
design space.

4.2 Prediction

Once the performance prediction model is determined, to analyze the accuracy
of predictions made by the model, for each benchmark an independent test set
of 1000 design points are randomly selected from full design space. They are
simulated to measure their actual performance. These 1000 samples are different
from those used for constructing the model. The predicted performance for each
of these points is measured using the constructed performance model, then using
(3), the prediction error (PE) for each of them is calculated. The reported average
and maximum errors, are the mean and maximum across all 1000 tests.

PE = |(predicted−Actual)/Actual| ∗ 100% (3)

5 GPU Architecture

GPUs are processors with hundreds of processing cores which provide high
throughput and high memory-bandwidth. The building blocks of a GPU ar-
chitecture are streaming multiprocessors (SMs). A Fermi-based multiproces-
sor GPU leverages a SIMT (Single-Instruction, Multiple-Thread) architecture
and includes 32 SIMD (Single-Instruction, Multiple-Data) Streaming Processors
(SPs). A SM executes a group of 32 threads concurrently, called a warp [9]. Each
SM consists of 64 KB of SRAM that can be partitioned between the L1 cache and
a shared memory. The GPU also contains 64 KB of read-only constant cache and
4 texture units backed by 12 KB of texture cache. A Fermi-based GPU includes
a 384-bit memory interface divided into 6 independent 64-bit partitions. Each
partition has two 32-bit GDDR5 DRAMs. This arrangement supports up to a
total of 6-GB of DRAM memory [9]. There exist two types of memories: off-chip
and on-chip memories. The off-chip memories, which are the largest but slow-
est memories, include global, constant, and texture memories which are shared
among all threads. The off-chip memories contain large amount of spaces with
high latency. The Fermi-based GPU architecture provides two levels of caches
(i.e., L1 and L2 caches) to exploit data locality within each SM which can be
leveraged to hide the latency of global memory transactions. This architecture
also includes four more types of on-chip caches for each SM named Instruction,
Local, Constant, and Texture.

A Two-Tier Design Space Exploration Algorithm 141

6 Proposed Model Construction Algorithm

Algorithm 1 shows our model construction procedure for predicting GPU perfor-
mance. This procedure takes k parameters, ranges of parameters value r, model
prediction error threshold t, and number of tries i as its inputs. This algorithm
has two tiers:

Tier 1 Screening: This step of the algorithm reduces the maximum number
of parameters in the design space to only those which have significant effects
on GPU performance. Therefore, we just need to focus on points in the design
space that are touched by these parameters. This is really important because
not all GPU candidate parameters are necessary to adequately model GPU per-
formance.

A P&B design is constructed for k GPU candidate parameters. For each row
of the P&B matrix, we modified the configuration file of the simulator and ran
a simulation. The performance metric for each run is collected. Afterwards, we

Algorithm 1. Two-tier design space exploration algorithm
Require: Parameters p1, p2, ..., pk

Require: Ranges of parameters value r1, r2, ..., rk
Require: Prediction error threshold t
Require: Number of tries i
Require: Test set size S
Require: Initial number of important parameters m
1: Create an initial P&B design for k parameters and X experiments
2: Simulate all the experiments in the design and measure the performance metric y for all of them

3: for Each p ∈ p1, p2, ..., pk do
4: for j = 1 to number of experiments in X do
5: Effect(p)=

∑
(Xjpyj)

6: end for
7: end for
8: Sort the parameters based on their effect
9: Randomly choose S design points from full design space as test set

10: Simulate all the points in the test set and measure the actual performance metric for them
11: Select m most important parameters
12: n = 1
13: while APE ≤ t or n ≤ i do
14: if m ≤ 7 then
15: p = 0
16: else
17: p = log2 (2m/128)
18: end if
19: Create a 2(m−p) factorial design for m parameters
20: Simulate all the experiments in the design and measure the performance metric for all of

them
21: Obtain a multiple linear regression model L using a stepwise regression technique
22: Measure the average prediction error of s design points in test set using model L
23: APE = 0
24: for Each s ∈ test set do
25: APE+ = |(predict(s)byL − actual(s))/actual(s)|
26: end for
27: APE/ = S
28: m+ = 1
29: n+ = 1
30: end while
31: return L as the final model

142 S.A. Mirsoleimani, A. Karami, and F. Khunjush

rank the parameters based on their importance. The sorted parameters resulting
from this tier are stored to be used in the subsequent tier of the algorithm.

Tier 2 Modeling: In this phase the algorithm attempts to build the most accu-
rate prediction equation. Once the sorted parameters are available, a fractional
factorial design is constructed using m most important parameters. The value of
m can be any number from 1 to the number of parameters. If the value of m was
greater than 7, then the algorithm calculates the value of p in such a way that
no more than 128 simulations are required. For each row of the newly created
design matrix we run a simulation and compute the performance metric.

Once the performance measurements for all rows are available, the algorithm
tries to build a multiple linear regression model using a stepwise regression
method. This is the most widely used variable selection technique for model
construction [8]. Then constructed model L is used to measure the average of
predict error of the design points in the test set.

This procedure repetitively selects the next m + 1 significant parameters to
build a new performance model until a specific prediction error threshold is met
or the maximum number of tries i is passed.

7 Experimental Setup

We use some applications with reasonable execution time from GPGPU-Sim [1]
and Rodinia [10] benchmarks. The selected applications are listed in Table 2. In
this study, a cycle-level GPU PTX-ISA simulator, GPGPU-Sim [1], is chosen to
run the benchmarks. The simulation results are reported as instruction per cycle
(IPC). This is the performance metric which is used as response variable. We
implemented Algorithm 1 by using STATISTICA, a software environment for
statistical analysis, which takes the required inputs and completed simulation
experimental data, and performs the propose model construction algorithm by
providing accurate coefficient estimates.

Table 2. Benchmark programs

Suit Name Abr. Description

3D Laplace Solver LPS 3D Laplace equation solver
Ray Tracing RAY Graphics rendering of lighting effects

GPGU-Sim StoreGPU STO Sliding-window-based MD5 calculation

Coulombic Potential CP
Calculate Coulombic potential in molecular

dynamics
Breadth First Search BFS Breadth-first search on a graph

Back Propagation BP Training weights in a layered neural network
Breadth First Search BFS r Breadth-first search on a graph

Rodinia Gaussian Elimination GS Linear system solver using Gaussian elimination
Hot Spot HS Microprocessor thermal modeling on a 2D grid

Needleman Wunsch NW
Parallel Needleman-Wunsch algorithm for DNA

sequencing

A Two-Tier Design Space Exploration Algorithm 143

Table 3 lists 47 micro-architectural parameters and their value ranges. We
have configured the simulator based on these values. Among them 24 parameters
are held constant in our experiments. The design space for other 23 parameters
has 8,388,608 unique design points. We select the high and low values of our
parameters based on findings in several other studies, including [2] [1] [10]. All
parameters are chosen considering the NVIDIA Fermi GTX 480 GPU. Those
parameters that are held constant in the experiments are shown. Due to the
simulator constraints, the L2 block size is set to 256 bytes.

Table 3. Micro-architectural parameters and their value ranges

Parameter Abr. Fix Unit Low High

Instruction Cache Size/SM il1 size No KB 1 32
Instruction Cache Associativity il1 assoc No way 2 4
Instruction Cache Block Size il1 bsize No byte 32 256
Instruction Cache Repl. Policy il1 rep Yes type LRU
L1 Data Cache Size/SM dl1 size No KB 8 64
L1 Data Cache Associativity dl1 assoc No way 8 32
L1 Data Cache Block Size dl1 bsize No byte 128 256
L1 Data Cache Repl. Policy dl1 rep Yes type LRU
L2 Data Cache Size dl2 size No KB 64 256
L2 Data Cache Associativity dl2 assoc No way 8 32
L2 Data Cache Block Size dl2 bsize Yes byte 256 256
L2 Data Cache Repl. Policy dl2 rep Yes type LRU
L2 Data Chache Latency dl2 lat No cycle 60 240
Texture Cache Size/SM tl1 size No KB 1 32
Texture Cache Associativity tl1 assoc No way 1 4
Texture Cache Block Size tl1 bsize No byte 32 256
Texture Cache Repl. Policy tl1 rep Yes type LRU
Constant Cache Size/SM cl1 size No KB 1 32
Constant Cache Associativity cl1 assoc No way 1 4
Constant Cache Block Size cl1 bsize No byte 16 128
Constant Cache Repl. Policy cl1 rep Yes type LRU
Shared Memory Number of Banks shmem nbanks No num 16 64
Shared Memory Size/SM shmem size Yes KB 48
Number of Memory Controller n mem ctrlr Yes num 4 8
Number of DRAM Chips / Controller n chips Yes num 2
DRAM Clock Frequency dram freq Yes MHz 1848
DRAM Scheduler Queue Size dram sched qsize No num 8 32
DRAM Bus Width dram buswidth Yes bytes 4 8
DRAM type dram type Yes type GDDR5
DRAM Latency dram latency No cycle 50 200
Core Clock Frequency core freq Yes MHz 700
SIMD Pipeline Width simd width No num 16 64
Number of Blocks / SM n blocks No num 1 16
Number of Register / SM n registers No num 16384 65536
Number of Threads / SM n threads No num 768 2048
Number of Scheduler / SM n sched No num 1 4
Number of register banks n reg banks Yes num 8 32
Topology topo Yes type butterfly
Routing rout Yes type Destination tag
Virtual Channels vc Yes count 1
VC Buffer Size vc bufsize Yes byte 8
Flit Size f size Yes byte 32

144 S.A. Mirsoleimani, A. Karami, and F. Khunjush

8 Experimental Results

8.1 Screening Results

Table 4 shows the results of the screening tier with parameter values shown
in Table 3. This table shows the ranks of 23 parameters for all benchmarks.
As shown, the ranks of the parameters of different benchmarks are completely
different. Therefore, In the screening step, the most important GPU parameters
for each benchmark are found. Using these parameters we can build an accurate
model with minimum number of simulations.

The parameters which have the lower average ranks are significant across most
of the benchmarks. In other words, the high rank parameters are the biggest
performance bottlenecks in the GPU and determine the execution time of a
benchmark. Therefore, they should be included in further experiments in order
to build the performance model.

The effect of each benchmark on GPU performance can be defined as the
performance bottlenecks when running that application. For example, for BFS
and BFS r, since the dl1 size ranked first among parameters, the performance
of memory accesses is the most limiting factor. For benchmarks that utilize large
amounts of memory, the dl2 lat will be likely a performance bottleneck. On the
other hand, for a computation-intensive benchmarks, the simd width may be a
performance bottleneck.

Table 4. P&B design result for all GPU parameters

Parameters BFS LPS RAY STO CP BP BFS r GS HS NW Avg. Rank

n blocks 4 1 3 1 2 1 8 6 4 4 3.40
dl2 lat 2 11 7 9 4 8 2 1 7 1 5.20
simd width 12 2 2 3 1 2 14 3 1 16 5.60
shmem nbanks 5 4 4 4 5 4 22 18 3 10 7.90
dram lat 18 3 6 8 10 3 13 8 6 5 8.00
n sched 14 5 8 7 6 7 10 7 9 8 8.10
dram sched qsize 13 6 11 14 9 5 5 4 10 9 8.60
il1 bsize 9 13 13 5 7 11 6 2 23 3 9.20
n registers 11 8 5 6 11 6 9 17 2 17 9.20
dl1 size 1 12 14 12 20 12 1 9 13 11 10.50
il1 size 17 18 1 2 23 18 12 12 5 2 11.00
tl1 bsize 10 9 9 10 17 9 15 23 14 19 13.50
dl2 size 6 22 19 21 12 14 4 20 19 6 14.30
cl1 assoc 21 14 15 15 13 15 18 5 21 7 14.40
dl1 bsize 3 15 23 19 8 21 3 19 18 22 15.10
dl2 assoc 22 10 16 22 16 13 23 11 8 13 15.40
n threads 16 7 21 23 18 10 17 16 12 15 15.50
tl1 assoc 7 21 20 16 14 22 7 22 16 14 15.90
dl1 assoc 19 16 12 11 22 20 21 10 17 12 16.00
tl1 size 15 23 10 13 19 19 19 13 11 18 16.00
il1 assoc 8 20 17 18 15 16 11 21 15 23 16.40
cl1 size 20 19 18 17 3 17 20 14 22 20 17.00
cl1 bsize 23 17 22 20 21 23 16 15 20 21 19.80

A Two-Tier Design Space Exploration Algorithm 145

Table 5. Summary of average and maximum of prediction error

Suit m # of Sim. BFS (%) LPS (%) CP (%) STO (%) RAY (%)

Avg. Max Avg. Max Avg. Max Avg. Max Avg Max

5 32 1.73 14.34 3.67 13.24 4.64 25.70 6.62 23.82 8.56 42.89
GPGPU-Sim 6 64 - - 3.66 13.35 3.53 24.24 6.35 18.35 8.48 42.91

7 128 - - 3.05 13.56 3.39 23.16 4.96 18.16 7.37 30.50
8 128 - - 2.65 7.39 3.38 22.70 4.86 18.60 5.85 31.81

BP BFS r GS HS NW

Avg. Max Avg. Max Avg. Max Avg. Max Avg. Max

5 32 4.30 11.94 2.95 11.58 2.56 20.75 7.71 33.40 3.19 10.91
Rodinia 6 64 3.67 9.23 2.84 11.39 2.06 20.75 7.19 33.95 1.78 10.61

7 128 2.61 8.79 2.82 11.25 1.74 20.83 6.17 27.23 - -
8 128 - - - - - - 5.72 27.61 - -

8.2 Modeling Results

Our model construction algorithm builds a performance prediction model with
minimum number of simulations. Table 5 reports the maximum number of pa-
rameters in the model, required simulations, the average prediction error, and
the maximum prediction error for each benchmark. In order to construct the
performance model for each benchmark the prediction error threshold is set to
t=2, and the number of tries is set to i=3. In the case of undesirable accuracy
one additional try is run for some benchmarks.

We observed that, the constructed model for GS, NW, and BFS can predict
the performance with an average error of less than 2%. To reach this level of
accuracy we just need to simulate 128, 64, and 32 points, respectively. The model
for LPS, CP, BP, and BFS r is able to predict with an average error of 3% or less
than that using just 128 simulations. The average errors of the model for RAY,
STO, and HS are about 5% and less than that. As can be seen, our method does
not need more than 128 simulations.

As mentioned in sect. 2, the most similar work to ours is [2]. Although our
design space is completely different and almost 8 times larger, a comparison
between these two approaches reveals interesting results. In [2], they required
300 simulations to construct their model with average prediction error of about
1% for all of the benchmarks. However, our algorithm only needs less than 128
simulations to build a model with average prediction errors between 1% to 5%
for different benchmarks. It is also important to consider the maximum error
of prediction. In [2], the maximum error is about 50% when the number of
simulations is less than 100. In our approach, the maximum error of the model
among all of the benchmarks is 42%, when there are just 32 simulations, and it
can be reduced to 31% by having 128 simulations.

9 Conclusion

In this paper a two-tier algorithm has been proposed for design space exploration
and constructing a performance model for a GPU design space. Our method

146 S.A. Mirsoleimani, A. Karami, and F. Khunjush

presents useful techniques in terms of pruning insignificant parameters on GPU
performance when running an application. In the first tier of the algorithm, the
Plackett and Burman design is used for pruning the design space, and in the
second tier a fractional factorial design is utilized to investigate the interactions
between the most effective parameters. Our approach reduces the number of
required simulations for building an accurate performance model significantly
(128 out of 8M). In future work, we plan to increase the levels of parameters
value to more than 2 in order to investigate the effectiveness of our approach on
larger design spaces.

Acknowledgment. This work was supported in part by School of Computer
Science, Institute for Research in Fundamental Sciences (IPM) under grant num-
ber CS1391-4-03.

References

1. Bakhoda, A., Yuan, G.G.L., Fung, W.W.W.L., Wong, H., Aamodt, T.M.: Analyz-
ing CUDA workloads using a detailed GPU simulator. In: 2009 IEEE International
Symposium on Performance Analysis of Systems and Software, ISPASS 2009, pp.
163–174. IEEE (April 2009)

2. Jia, W., Shaw, K.A., Martonosi, M.: Stargazer: Automated Regression-Based GPU
Design Space Exploration. In: IEEE International Symposium on Performance
Analysis of Systems and Software, ISPASS (2012)

3. Lee, B., Brooks, D.: Accurate and efficient regression modeling for microarchitec-
tural performance and power prediction. In: Proceedings of the 12th International
Conference on Architectural Support for Programming Languages and Operating
Systems, vol. 40, pp. 185–194. ACM (October 2006)

4. Joseph, P., Vaswani, K., Thazhuthaveetil, M.: Construction and Use of Linear
Regression Models for Processor Performance Analysis. In: The Twelfth Interna-
tional Symposium on High-Performance Computer Architecture, pp. 99–108. IEEE
(2006)

5. Yi, J., Lilja, D., Hawkins, D.: Improving computer architecture simulation method-
ology by adding statistical rigor. IEEE Transactions on Computers 54(11), 1360–
1373 (2005)

6. Jooya, A., Baniasadi, A., Dimopoulos, N.J.: Efficient design space exploration of
GPGPU architectures. In: Caragiannis, I., Alexander, M., Badia, R.M., Cannataro,
M., Costan, A., Danelutto, M., Desprez, F., Krammer, B., Sahuquillo, J., Scott,
S.L., Weidendorfer, J. (eds.) Euro-Par Workshops 2012. LNCS, vol. 7640, pp. 518–
527. Springer, Heidelberg (2013)

7. Plackett, R., Burman, J.: The Design of Optimum Multifactorial Experiments.
Biometrika 33(4), 305–325 (1946)

8. Montgomery, D.C., Runger, G.C.: Applied Statistics and Probability for Engineers,
5th edn. John Wiley & Sons (2010)

9. NVIDA: Whitepaper NVIDIA’s Next Generation CUDA Compute Architecture:
Fermi (2009)

10. Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J.W., Lee, S.H., Skadron, K.:
Rodinia: A benchmark suite for heterogeneous computing. In: 2009 IEEE Interna-
tional Symposium on Workload Characterization IISWC 2009(c), pp. 44–54 (2009)

A Sensor Network Architecture

for Urban Traffic State Estimation
with Mixed Eulerian/Lagrangian Sensing

Based on Distributed Computing

Edward Canepa, Enas Odat, Ahmad Dehwah, Mustafa Mousa,
Jiming Jiang, and Christian Claudel

King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
firstname.lastname@kaust.edu.sa

Abstract. This article describes a new approach to urban traffic flow
sensing using decentralized traffic state estimation. Traffic sensor data is
generated both by fixed traffic flow sensor nodes and by probe vehicles
equipped with a short range transceiver. The data generated by these
sensors is sent to a local coordinator node, that poses the problem of
estimating the local state of traffic as a mixed integer linear program
(MILP). The resulting optimization program is then solved by the nodes
in a distributed manner, using branch-and-bound methods. An optimal
amount of noise is then added to the maps before dissemination to a
central database. Unlike existing probe-based traffic monitoring systems,
this system does not transmit user generated location tracks nor any
user presence information to a centralized server, effectively preventing
privacy attacks. A simulation of the system performance on computer-
generated traffic data shows that the system can be implemented with
currently available technology.

1 Introduction

Traffic congestion is an increasing concern in large urban areas of the world,
and is expected to become worse as global traffic demand increases. While traf-
fic control methods such as ramp metering, adaptive speed limits and demand
response could solve the problem to a certain extent, such methods require as
an input accurate traffic density, velocity and flow estimates.

In the recent years, probe vehicles (i.e. vehicles containing speed and/or po-
sition sensors) have emerged as a possible solution to the traffic monitoring
problem. Probe sensing offers the potential for low cost sensing (in contrast
to expensive fixed traffic sensor networks), in particular when sensing relies on
existing devices (for instance smartphones), see for instance [24]. Nevertheless,
all current probe-based traffic monitoring systems require users to send their
location data to a centralized server, which carries high risks of user privacy in-
trusion whenever the location data servers are attacked. It should be noted that
even anonymous location tracks can yield substantial information on users [17],

E. Maehle et al. (Eds.): ARCS 2014, LNCS 8350, pp. 147–158, 2014.
c© Springer International Publishing Switzerland 2014

148 E. Canepa et al.

which can be correlated with social network data to identify user identity based
on their tracks. Such privacy risks are one of the main reasons preventing the
large-scale implementation of cheap transceivers and positioning devices on all
vehicles (despite the considerable societal benefits), specially since the recent
PRISM revelations.

Several attempts to address the user privacy issues in probe-based traffic mon-
itoring systems have been made [18]. All techniques either modify the sampling
characteristics [14] (locations of samples, sampling rate) or attempt to obfuscate
the real data trace by either removing data points or adding fake data points (or
noise). A spatial sampling method called virtual trip lines (VTLs) is proposed
in [15], to prevent users from sending their data whenever they are close to lo-
cations that could help identify them (home, workplace). However, this method
is not applicable for traffic monitoring in urban environments since most urban
areas are either workplaces or accommodations. Another obfuscation method is
shown in [21], but the same article shows that generating fake data to hide real
location tracks is challenging, even with aggregated statistical data.

The above privacy issues can only addressed at the system level if the system
estimates the traffic flow conditions in a decentralized manner, since a central
server receiving user data (even temporarily) would be a primary target for a
privacy attack. In this article, we propose a new heterogenous sensor network
architecture for traffic flow sensing in which user-generated data is processed
by the nodes of the sensor network, possibly together with data generated by
existing traffic sensors, to generate traffic estimates directly. By construction of
this system, no information related to the presence of any user located outside
of the radio range of a cluster (of configurable size) can be inferred.

This article is organized as follows. We present the sensing paradigm in sec-
tion 2, including the distributed computing aspect of the system. We then study
the privacy properties of the resulting system in section 3, with an analysis of
the possible privacy attack scenarios. We then present in section 5 an ongoing
wireless sensor network implementation (with currently no distributed comput-
ing algorithms implemented), with an associated simulation of the performance
of the system.

2 Sensing Paradigm

2.1 Current Architecture of Probe-Based Traffic Sensing Systems

Probe-based traffic sensing systems follow typical sensor network architectures,
in which data generated by sensors is sent to a centralized server for processing or
display [22]. Traffic speed and/or density maps are the end product for the user,
and the basis of all other location-based services such as travel time estimation
or optimal routing. The architecture of such systems is illustrated in Figure 1.

One of the major drawbacks of such systems is the fact that the ID proxy
server holds privacy sensitive information regarding the users. Privacy of users
is at risk even when data is anonymized [17], therefore even the input database of
the system can contain privacy sensitive data. While some systems [22] attempt

A Sensor Network Architecture for Urban Traffic State Estimation 149

Fig. 1. Traffic monitoring systems architectures
Up: current systems. The data generated by users is sent to a proxy server for
obfuscation/anonymization . The resulting data is then sent to an input database
that also collects data from the existing fixed sensor infrastructure (if it exists). The
resulting data is the fused with traffic flow models (a process sometimes referred to
as data assimilation) to generate traffic maps. The resulting estimates are sent to an
output database, which is queried by the users.
Down: proposed system. In the proposed system, traffic estimation is integrated
to the wireless sensor network, which computes the traffic maps in each cluster using
distributed computing. The resulting traffic maps are then forwarded to an output
database.

to solve the privacy problem using data obfuscation or specific spatial sampling
strategies [15], it is important to note that none of these strategies can guarantee
that user privacy is preserved in all situations. In particular, no sampling strategy
can prevent the identification of the approximate path whenever only one user is
present in a given geographical area (the extent of which depends on the vehicle
speed and the sampling rate).

Since user location and velocity information is required by themodel to build the
trafficmaps, and since a centralized server handing user data can alwaysbe a target
of attacks, the above privacy issues can be solved only if the information about the
user location and velocity is used locally. This implies that the traffic state estima-
tion process, which consists in fusing traffic flow data with traffic flow models, can
only be done locally (for instance by the sensor nodes themselves). In this approach,
privacy-critical information (location tracks) are not sent to a centralized location,
and remain in a small (configurable) area around the probe vehicle.

2.2 Proposed System Architecture

Our proposed system consists in an heterogenous wireless sensor network, con-
nected to a centralized output database. The database itself can directly be
queried by the clients, or feed other on-demand location based services such as
optimal routing or travel time estimation.

150 E. Canepa et al.

Fixed Sensor Nodes
The sensor nodes play three roles: communication (in the wireless sensor net-
work), computation (distributed traffic inference, vehicle positioning, fixed sen-
sor data processing) and sensing. Two types of sensing approaches exist: Eulerian
(fixed) or Lagrangian (mobile) sensing. Eulerian sensing nodes consist in fixed
traffic flow sensors, for instance inductive loop detectors [25], magnetometers or
traffic cameras. The remaining nodes are called Lagrangian sensing nodes, and
collect traffic data from users in their vicinity using a short range transceiver.
All nodes are forming a wireless mesh network. The output database is in wire-
less range of the rest of the network. As in any wireless sensor network multiple
databases/gateways can be used to reduce network load.

Principle of Operation
The network of fixed nodes is divided into clusters. In a given cluster, the nodes
form a subnetwork (for traffic estimation purposes) to compute the local traffic
conditions. Clusters can communicate between each other, though the only data
sent by a cluster to another is anonymized traffic maps. A local coordinator node
is chosen in each subnetwork.

Probe vehicles broadcast their location and/or speed information to surround-
ing Lagrangian sensing nodes, which temporarily store this data as well as network
connectivity data (RSSI, CRC). All location (if any), speed and connectivity data
is forwarded to the local coordinator node. If no positional information is available
to probe vehicles, the coordinator node estimates the corresponding vehicle posi-
tions in the road network using inputs from surrounding nodes. Vehicle mapping
can be done through a variety of methods, for example using RSSI data.

In addition to the data transmitted from local Lagrangian sensing nodes,
the coordinator receives traffic data generated by Eulerian sensor nodes in the
subnetwork.

Since traffic data is sparse and of different nature, reconstructing the state
of traffic everywhere requires the combination of available data with traffic flow
models, a process sometimes referred to as data assimilation. In our present
case, we consider all incoming traffic data during the time window [t−Δt, t] to
estimate the traffic state at time t. The data assimilation method used in this
article is outlined in the subsequent sections.

While no user information is directly present in this traffic map, it may
nonetheless reveal user presence in some circumstances. To make the system
completely privacy preserving, one needs to obfuscate the presence of users in
the resulting maps (a problem that all traffic monitoring systems have, irrespec-
tive of their internal mechanisms). Such methods are detailed in section 3.

The anonymized density maps are then forwarded by other clusters to a central
database for dissemination to the users, using multi-hop communication.

A Sensor Network Architecture for Urban Traffic State Estimation 151

3 User Privacy Analysis

3.1 Threat Model

In this article, we assume that attackers can compromise any part of the system,
that is, any individual node, any local coordinator, and any output database.

3.2 Properties of the System

By construction, no vehicle track information can be obtained beyond the radio
range of the cluster in which the vehicle lies. Thus, an eavesdropper can “track”
a vehicle’s position only if he/she can listen to all clusters in the path of the vehi-
cle. While such a distributed attack is theoretically possible, it is very costly and
impractical, requiring the deployment of listening nodes in all clusters (which
have independent encryption keys).

3.3 Privacy Attacks and Countermeasures

Compromising a Local Coordinator. Since all information in a cluster is
handled by the local coordinator, the worst-case attack is to compromise it
to obtain the position or velocities of all vehicles in the cluster (though these
positions remain anonymous). Other attacks would result in partial knowledge
of the position of vehicles in the radio range of the attacker.

This type of attack can be countered in two ways. First, the size of a cluster
can be made arbitrarily small, to minimize the extent of the privacy intrusion.
There is a tradeoff though, as smaller size will yield less accurate results for the
estimation process due to the uncertainty in the estimated boundary conditions.

Another strategy is to change the coordinator node in the cluster periodically,
using a scheduler or according to other constraints such as energy or bandwidth.
Thus, an attacker compromising a coordinator would have limited knowledge (in
time) of the presence of vehicles. Since it cannot be inferred which node will be
a coordinator in advance (for instance if the scheduling is random), an attacker
would have to physically compromise all nodes in a cluster to guarantee an access
to the vehicle positions.

Possible Attacks. Based on these results, an attacker that wants to reidentify
the track of a given vehicle has to compromise either all nodes in the path of
the vehicle, or all coordinators in all clusters in the path of the vehicle. Thus,
the system is only vulnerable to distributed privacy attacks (distributed eaves-
dropping).

Given the cost of such an attack (installing transceivers around all nodes, and
breaking the encryption keys of all clusters), it is probably easier for an attacker
to implement its own monitoring network to listen to vehicle communications
directly. The system would be vulnerable to this type of attack, though an ad-
ditional wireless sensor network deployed in a city would probably be detected
sooner or later through its radio emissions.

152 E. Canepa et al.

Compromising an Output Database. By compromising an output database
(there may be one or many output databases for the complete network), an
attacker can only gain access to anonymized traffic maps (since these are the
only information sent to the databases), which are also public.

While no track information from a cluster is not propagated beyond its radio
range, traffic maps are propagated beyond each cluster to reach a gateway. Thus,
the privacy of the user is maintained only if the problem of reconstructing tra-
jectories from traffic maps (speed and/or density maps) does not yield a unique
solution. Different anonymization strategies are possible to increase the number
of solutions to the previous problem. One of the possible strategies could be the
use of k-anonymity techniques [19] to determine the optimal level of noise to
apply, in order to guarantee that a user is indistinguishable from others.

Note that while inferring vehicle positions from traffic maps is theoretically
possible from any traffic map, it is difficult for two main reasons: low accuracy
of current traffic systems, and security through obscurity from traffic providers.
A wireless sensor network should not rely on security through obscurity as it
is relatively easy to access one node (the code is identical in all nodes) and
decompile its code.

4 Distributed Computing for Traffic State Estimation

The data assimilation scheme is based on the seminal Lighthill Whitham Richards
[20] (LWR) traffic flow model, a first order scalar conservation law, with triangu-
lar flux function. It is here based on a decomposition of the solutions using the
inf-morphism property of the solutions to the Hamilton Jacobi equation from
which the LWR model is derived [8,9]. Using this decomposition, we write the
problem of estimating traffic density on a section of road as a mixed integer
linear program (MILP) [6]. The solution to the MILP correspond to a vector of
current traffic densities, which can be interpreted as a traffic density map.

4.1 Input Data

Specifically, on each segment of road, the input data can take any of the following
forms.

Definition 41 [Affine initial, boundary and internal conditions] Let us
define K = {0, . . . , kmax}, N = {0, . . . , nmax} and M = {0, . . . ,mmax}. For all
k ∈ K, n ∈ N and m ∈ M, we define the following functions, respectively called
initial, upstream, downstream (boundary) and internal conditions:

A Sensor Network Architecture for Urban Traffic State Estimation 153

Mk(t, x)=

⎧
⎪⎪⎨

⎪⎪⎩

−∑k−1
i=0 ρ(i)X

−ρ(k)(x− kX) if t = 0
and x ∈ [kX, (k + 1)X]
+∞ otherwise

γn(t, x)=

⎧⎪⎨
⎪⎩

∑n−1
i=0 qin(i)T

+qin(n)(t− nT) if x = ξ
and t ∈ [nT, (n+ 1)T]

+∞ otherwise

βn(t, x)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑n−1
i=0 qout(i)T

+qout(n)(t− nT)

−∑kmax
k=0 ρ(k)X if x = χ

and t ∈ [nT, (n+ 1)T]
+∞ otherwise

μm(t, x)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Lm + rm(t− tmin(m))
(if x = xmin(m)

+xmax(m)−xmin(m)
tmax(m)−tmin(m)

(t− tmin(m))

and t ∈ [tmin(m), tmax(m)])
+∞ otherwise

The LWR model [20] is encoded by the following Hamilton-Jacobi [9] partial
differential equation:

∂M(t, x)

∂t
− ψ

(
−∂M(t, x)

∂x

)
= 0 (1)

The function ψ(·) defined in equation (1) is the Hamiltonian. The B-J/F [4,13]
solutions to equation (1) are fully characterized by a Lax-Hopf formula [3,8],
which was initially derived using the control framework of viability theory [2].
We assume that the Hamiltonian is piecewise affine and continuous [12]:

ψ(ρ) =

{
vfρ : ρ ∈ [0, kc]
w(ρ− κ) : ρ ∈ [kc, κ]

(2)

4.2 Traffic State Estimation Using Mixed Integer Linear
Programming

We consider a set of block boundary conditions 41, with unknown coefficients.
Let us call V the vector space of unknown coefficients. Our measurement data
(from the data set) constraints the possible values of these coefficients. Such
constraints are called data constraints. Similarly, the PDE model also constraints
the possible values of the unknown coefficients. Such constraints are called model
constraints. An important and nontrivial result of [10] is that all these constraints
are explicit. The extensive list of all constraints can be found in [6,7], though
we do not write them in this article for compactness. The main result is the
following:

Fact 42 [Mixed integer linear inequality property] The model constraints
[7] are mixed integer linear in the variables ρ(1), ρ(2), . . . , ρ(kmax), qin(1), . . . ,
qin(nmax), qout(1), . . . , qout(nmax), L1, . . . , Lmmax and r1, . . . , rmmax .

The proof of this proposition is available in [7].
Similarly, the unknown coefficients of the initial, boundary and internal con-

ditions have to satisfy data constraints to be compatible with the observations.
The data constraints express the fact that the true values of the initial, boundary
and internal conditions coefficients should be within the bounds of the sensor
measurement errors (which are known).

154 E. Canepa et al.

Hypothesis 43 [Data constraints] In the remainder of our article, we as-
sume that the data constraints are linear in the unknown coefficients of the ini-
tial, boundary and internal conditions.

Different important and practical choices of error models that yield linear
data constraints are available in [6]. Among all possible choices, the L1 norm
of the initial (or final) densities is a good candidate to obtain a sparse density
map.

In the remainder of this article, we define y as the decision variable of the
problem, containing the continuous variables ρ(1), ρ(2), . . . , ρ(kmax), qin(1), . . . ,
qin(nmax), qout(1), . . . , qout(nmax), L1, . . . , Lmmax and r1, . . . , rmmax , with addi-
tional integer variables representing continuity constraints.

Using the above equations, the set of possible traffic scenarios compatible with
the data and the model can be written as {y|Ay ≤ b andCy ≤ d}. To select a
solution among all possible choices, we choose a linear function of y, which can
represent for instance the minimal travel time or the maximal average density
at the current time. We can also look for sparse solutions by minimizing the L1

norm of y. All of these examples boil down (modulo additional slack variables)
to Mixed Integer Linear Programs (MILPs):

Min. cT y

s. t.

{
Ay ≤ b
Cy ≤ d

(3)

We refer the reader to [11] for examples of choices of linear objectives relevant
to traffic state estimation.

4.3 Distributed Computing Principle

MILPs can be parallelized [1,16] using parallel branch and bound methods. In
the present case, the coordinator will coordinate the computation of the solution
to the MILP, sending branches to explore to other nodes in the cluster, under
a tree topology. See [1] for an example of implementation of a parallel MILP
solver. Note that the attribution of tasks is dynamic. Once a node has found a
better optimal solution, it will broadcast its results (multi-hop communication
will be used if the nodes are not all in radio range) to the remaining nodes so
only branches with possibly optimal candidates can be explored.

Once the MILP is solved (if it is not solved by the deadline, then the most
optimal current solution can be used in lieu of the optimal solution), the coor-
dinator node “anonymizes” the map by adding an optimal amount of noise (if
the map “reveals” the location of an user) and then sends the resulting traffic
map to an output database (through other clusters). The general principle is
illustrated in Figure 2.

A Sensor Network Architecture for Urban Traffic State Estimation 155

Fig. 2. Distributed computing process used by the proposed system

5 Implementation

We now present an ongoing implementation of a distributed-computing based
traffic sensing system, as well as a simulation of the performance of the deployed
system.

5.1 Computational Platform

In order to minimize power consumption while allowing distributed computing
to be performed, we designed a new hardware platform around a 32-bit ARM

Cortex M4 normally operating at 168MHz. The platform draws its energy jointly
from a solar panel and a rechargeable Li− FePO4 battery. It is designed to be
OTA (over-the-air programming) capable. The current implementation of this
platform is illustrated in Figure 3.

The STM32F407 microcontroller (MCU) includes a 1 Mbyte Flash memory
and 196 KBytes of data RAM. It supports up to seventeen timers, 24 channels
for analog to digital conversion and two 12-bit DACs. With embedded real-time
memory accelerator, multi-AHB bus matrix and two dual-port DMA controllers,
a maximal performance of 1.25DMIPS/MHz (Dhrystone million instructions per
second per MHz) can be achieved.

5.2 Fixed Eulerian and Lagrangian Sensor Nodes

For this application, we also developed fixed traffic flow sensors that can sense
both traffic and urban flash flooding (a secondary application of this system,
which is out of the scope of this article). Each node is capable of monitoring
traffic flow on two adjacent traffic lanes, as well as detect the presence and
accurately measure the level of water in case of flooding. Measurements rely on
two arrays of remote temperature (Melexis MLX90614) sensors (using passive
infrared detection), as well as one ultrasonic rangefinder (MaxBotix MB7066),
as illustrated in Figure 3. All sensors are digitally connected (SMBus and serial
respectively) to a fixed transceiver node (described above) which generates traffic
measurement data. .

156 E. Canepa et al.

Fig. 3. Fixed sensing nodes
This figure shows the common computational platform used in the Lagrangian and
Eulerian sensor nodes (left), as well as an Eulerian sensor node deployed on KAUST
campus (right).

5.3 Mobile Transceivers

Mobile transceivers equipping vehicles are a key component of the proposed
system, and will initially consist in dedicated low-cost modules, though they can
piggyback on future V2V systems [5].

5.4 Simulated Performance of the System

Since the system is not fully functional yet (due to porting an OS and developing
libraries for the OTA and for the MILP solver), we simulate the performance of
an actual system using traffic data generated by the PTV VISSIM[23] microsim-
ulator. We simulate a small road network consisting of 10 roads. Owing to the
fact that the boundary conditions between links are known in some instances
(for instance when the traffic light in a section is red), we decompose the traffic
estimation problem into smaller scale subproblems involving 4 roads only, as
illustrated in Figure 4. We consider a time horizon of 5 seconds and two internal
conditions (obtained from vehicle position data), two boundary conditions and
one initial condition (which can be the previous estimate) per road. On our 5
minutes of simulated data, The computational time required to solve it on an
Imac with an Intel i5@2.5GHz varies between 25 ms and 65 ms, which trans-
lates into between 1 second to 3 seconds on our prototype experimental platform
(using the Coremark benchmark, and assuming a similar computational efficiency
between both platforms). On the simulated examples, the MILPs have between
44 and 49 variables, and between 177 and 196 constraints.

Since there exists an overhead for transmitting data (during the branch and
bound process) and for the traffic sensing activities themselves, we expect that
1-2 nodes would be required to reliably estimate the traffic on these four roads,
or equivalently that 4 nodes would be required for the complete set of 10 roads,
which covers an area of 0.15 km2, making this system an inexpensive traffic
sensing solution.

A Sensor Network Architecture for Urban Traffic State Estimation 157

Fig. 4. Screenshot of the simulated transportation network
Left: we consider a subnetwork of four roads (in red), and compute 50 consecutive
traffic estimation problems (5s time horizon).
Right: distribution of simulated computational times on the ARM-based platform.

6 Conclusions

This article presents a new wireless sensor network architecture for estimating
traffic conditions in an urban environment based on distributed computing. Pro-
vided that the traffic estimation is distributed among a set of local nodes, we
show that no user track information is sent beyond the radio range of this clus-
ter, thereby preventing inference attacks on user location tracks. An ongoing
implementation is briefly discussed, as well as a simulation of the system’s per-
formance. Future work will deal with the implementation of this system on the
new ARM-based computational platform developed in our lab.

Acknowledgments. We would like to thank Guodong Li (KAUST) for his
CAD design of the traffic sensor system, Sergio Favela (MS, KAUST) for his
help writing the embedded code and Ehsan Wariach (PhD, U. Groningen) for
his help on Eulerian sensor data processing.

References

1. Alonso, J., Schmidt, H., Alexandrov, V.N.: Parallel branch and bound algorithms
for integer and mixed integer linear programming problems under PVM. In: Bubak,
M., Waśniewski, J., Dongarra, J. (eds.) PVM/MPI 1997. LNCS, vol. 1332, pp. 313–
320. Springer, Heidelberg (1997)

2. Aubin, J.-P.: Viability Theory. Systems and Control: Foundations and Applica-
tions. Birkhäuser, Boston (1991)

3. Aubin, J.-P., Bayen, A.M., Saint-Pierre, P.: Dirichlet problems for some Hamilton-
Jacobi equations with inequality constraints. SIAM Journal on Control and Opti-
mization 47(5), 2348–2380 (2008)

4. Barron, E.N., Jensen, R.: Semicontinuous viscosity solutions for Hamilton-Jacobi
equations with convex Hamiltonians. Communications in Partial Differential Equa-
tions 15, 1713–1742 (1990)

5. Biswas, S., Tatchikou, R., Dion, F.: Vehicle-to-vehicle wireless communication pro-
tocols for enhancing highway traffic safety. IEEE Communications Magazine 44(1),
74–82 (2006)

6. Canepa, E.S., Claudel, C.G.: Exact solutions to traffic density estimation problems
involving the LWR traffic flow model using MILPs. In: Proceedings of the 15th
IEEE ITSC Conference, Anchorage, AK (September 2012)

158 E. Canepa et al.

7. Canepa, E.S., Claudel, C.G.: Spoofing Cyber Attack Detection in Probe-based
Traffic Monitoring Systems using MILP. In: Proceedings of IEEE ICNC, San Diego,
CA (January 2013)

8. Claudel, C.G., Bayen, A.M.: Lax-Hopf based incorporation of internal boundary
conditions into Hamilton-Jacobi equation. Part I: theory. IEEE Transactions on
Automatic Control 55(5), 1142–1157 (2010), doi:10.1109/TAC.2010.2041976.

9. Claudel, C.G., Bayen, A.M.: Lax-Hopf based incorporation of internal bound-
ary conditions into Hamilton-Jacobi equation. Part II: Computational meth-
ods. IEEE Transactions on Automatic Control 55(5), 1158–1174 (2010),
doi:10.1109/TAC.2010.2045439.

10. Claudel, C.G., Bayen, A.: Convex formulations of data assimilation problems for a
class of Hamilton-Jacobi equations. SIAM Journal on Control and Optimization 49,
383–402 (2011)

11. Claudel, C.G., Chamoin, T., Bayen, A.M.: Solutions to estimation problems for
Hamilton-Jacobi equations using Linear Programming. In: Submitted to IEEE
Transactions on Control Sytems Technology (2010)

12. Daganzo, C.F.: A variational formulation of kinematic waves: basic theory and
complex boundary conditions. Transporation Research B 39B(2), 187–196 (2005)

13. Frankowska, H.: Lower semicontinuous solutions of Hamilton-Jacobi-Bellman equa-
tions. SIAM Journal of Control and Optimization 31(1), 257–272 (1993)

14. Gruteser, M., Grunwald, D.: Anonymous usage of location-based services through
spatial and temporal cloaking. In: Proceedings of the 1st International Conference
on Mobile Systems, Applications and Services, pp. 31–42. ACM (2003)

15. Hoh, B., Gruteser, M., Herring, R., Ban, J., Work, D., Herrera, J.C., Bayen, A.M.,
Annavaram, M., Jacobson, Q.: Virtual trip lines for distributed privacy-preserving
traffic monitoring. In: MobiSys 2008, Breckenridge, CO (2008) (to appear)

16. Kitakami, H., Hara, H., Yamanaka, H., Miyazaki, T.: Performance evaluation
for parallel mixed-integer linear programming system. Optimization Methods and
Software 3(4), 257–272 (1994)

17. Krumm, J.: Inference attacks on location tracks. In: LaMarca, A., Langheinrich,
M., Truong, K.N. (eds.) Pervasive 2007. LNCS, vol. 4480, pp. 127–143. Springer,
Heidelberg (2007)

18. Krumm, J.: A survey of computational location privacy. Personal and Ubiquitous
Computing 13(6), 391–399 (2009)

19. Le Ny, J., Pappas, G.: Privacy-preserving release of aggregate dynamic models.
In: Proceedings of the 2nd ACM International Conference on High Confidence
Networked Systems, pp. 49–56. ACM (2013)

20. Lighthill, M.J., Whitham, G.B.: On kinematic waves. II. A theory of traffic flow
on long crowded roads. Proceedings of the Royal Society of London 229(1178),
317–345 (1956)

21. Peddinti, S.T., Saxena, N., Birmingham, A.L.: On the limitations of query obfus-
cation techniques for location privacy. In: International Conference on Ubiquitous
Computing (2011)

22. Work, D., Blandin, S., Tossavainen, O., Piccoli, B., Bayen, A.: A distributed high-
way velocity model for traffic state reconstruction. Applied Research Mathematics
eXpress (ARMX) 1, 1–35 (2010)

23. http://www.vissim.de/

24. http://traffic.berkeley.edu/

25. http://pems.eecs.berkeley.edu

http://www.vissim.de/
http://traffic.berkeley.edu/
http://pems.eecs.berkeley.edu

From Smart Clothing to Smart Table Cloth:

Design and Implementation of a Large Scale,
Textile Pressure Matrix Sensor

Bo Zhou, Jingyuan Cheng, Mathias Sundholm, and Paul Lukowicz

Embedded Intelligence
German Research Center for Artificial Intelligence (DFKI)

{bo.zhou,jingyuan.cheng,mathias.sundholm,paul.lukowicz}@ dfki.de

Abstract. We describe the design and implementation of an unobtru-
sive, cheap, large scale, pressure sensor matrix that can be used for a
variety of applications ranging from smart clothing, through smart fur-
niture, to an intelligent table cloth or carpet. The specific functionality
and with it most of the complexity lies in the electronics and the pro-
cessing software. We propose a scalable, modular architecture for such
electronics, describe a prototype implementation, and present the results
of its application to three different scenarios.

Keywords: large scale data acquisition system, pressure sensor matrix,
wearable and ubiquitous computing.

1 Introduction

Human activity recognition with ubiquitous sensors is a well established research
area [1]. While, over time, a variety of sensor modalities have been proposed
and evaluated, there are still many applications that are limited by the quality
and reliability of information sources. In particular, the trade-off between the
effort involved in the instrumentation of the environment and the amount of
information provided by the system remains a key issue.

In this paper, we describe our researchon unobtrusive, high density, high sample
rate textile pressure sensor matrices. As described in Section 2, the actual sensor
matrix can be produced cheaply by printing arrays of conductive lines on an elas-
tic, high resistance material. The resulting device is essentially a piece of textile
that can be used for a broad range of applications: from smart clothing through
smart furniture to an intelligent table cloth or carpet (see Figures 5,6,7). The spe-
cific functionality and, with it, most of the complexity lies in the electronics and
the processing software (following the concept of “textile-based wearable sensing
as an app” [2]). Thus, given envisioned sensor densities of several points per cm2

and sensor area of up to severalm2, a core problem is how to realize the required
read-out electronics with appropriate sensitivity and refresh rates.

Related Work and Paper Contributions. Different pressure sensor matrices
with flexible and thin features have already been proposed and demonstrated.

E. Maehle et al. (Eds.): ARCS 2014, LNCS 8350, pp. 159–170, 2014.
c© Springer International Publishing Switzerland 2014

160 B. Zhou et al.

Table 1. Overview on Existing Digital Pressure Matrix

application modality node
amount

analogue
precision

refresh
rate

chair user posture [4] resistive matrix 42x84 8-bit 6Hz
bed sleeper vital signs and
posture[5] [6]

resistive matrix 16x16 unspecified 12Hz

shoes gait analysis [7] opto-electronic 64 nodes 14-bit 1.8kHz
cushion user posture [8] resistive matrix 16x16 unspecified 10Hz
commercial surface pres-
sure mapping [9]

resistive matrix 32-by-32 discharging
capacitora

1kHz

driver comfort [10] capacitive matrix 10x10 10-bit 100Hz
humanoid robotics resistive EITb 16c unspecified 24Hz
a Discharging a capacitor is a low-end alternative to using an ADC. [11]
b Electrical Impedance Tomography, a technique to reversely estimate the resistance
distribution of a conductive material only from the rim. [12]

c This number is only the physical electrodes; the calculated pressure mapping has
higher resolution but is not specified by the authors.

A brief overview is given in Table 1, from which, it is easy to see, that cur-
rent approaches are limited by the sampling electronics to raise the resolutions,
conversion bits and refresh rates comprehensively. In [3], Bränzel, etc. recognize
people and objects by sensing the pressure distribution in a room based on op-
tical interference, where transparent glass floor with a large space underneath
the testing room is required by the camera, using the camera to solve the hard-
ware limits. Clearly such a solution involves much more installation effort than
carpet-like textiles. Compared to the existing systems summarized above, the
contribution of our work lies in a general hardware architecture topology which
is:
– large-scale. The modularized hardware’s complexity grows with n while the

matrix’s channel number grows with n2. (detailed in Section 3) With existing
hardware, the maximum channel number can be more than 106;

– high pixel (analogue) and temporal (scanning rate) resolution. Recent studies
have shown high precision pressure sensor helps reveal subtle activities(e.g.
four pressure force sensors under chair’s leg can distinguish not only user’s
postures but also activities like nodding or moving the mouse. [13]). We thus
choose 24-bit analogue-digital converters (ADCs) rather than low-end 10-bit
integrated ADCs, the structural separation between the digital and analogue
modules can minimize noise level;

– suitable for a broad range of applications. As demonstrated in Section 4, our
system provides relevant information in applications ranging from on-body
sensing through a smart table cloth to carpet-like structures.

In the paper, we first describe the basic sensing principle (Section 2). We then
outline a generalized, scalable, adaptive architecture for the driver electron-
ics (Section 3). This includes concepts for dynamic reconfiguration and data

From Smart Clothing to Smart Table Cloth 161

V
reference

V output

R
sensitive

R ground

V output

Fig. 1. Sensing Principle

compression schemes to reduce the data transmission load and facilitate real-
time processing. It also encompasses a detailed analysis of the scalability in
terms of size and sampling rate on the basis of existing off-the-shelf components.
In Section 5 we then describe our first prototype implementation of the system
and discuss performance results in three different scenarios (smart carpet for
exercise monitoring, smart table cloth and wearable posture monitoring).

2 Textile Pressure Sensor Matrix

The general principle of our textile pressure sensor matrix is shown in Figure
1. The basis is a large area of a material that has high resistivity that can
be locally reduced by applying vertical pressure. The force/resistance curve for
the foam material used in the tablecloth example in Section 5 is shown in the
bottom left part of Figure 1. Other materials can have steeper or gentler slopes
and different regions of operation. For large body area wearable applications,
material flexibility and ‘feel’ is also an important consideration.

Once an appropriate material has been selected, an array of conductive lines
is attached to (or printed on) the upper and the lower side in such a way that the
lines on the lower side are perpendicular to the lines on the upper side (as shown
on the right side of Figure 1). Thus, at every intersection of two lines, a sensing
element, as shown in the top left part of Figure 1, is generated. Each sensing
element can be read out by measuring the resistance between the respective
horizontal and vertical line.

3 Processing Architecture

3.1 Design Requirements

The concept of a large scale pressure sensor matrix as information source for activ-
ity recognition is motivated by the insight that many activities are determined by

162 B. Zhou et al.

physical contact and changes in shape. Thus, for example, physical exercises (eg.
push-ups, sit ups etc) involve different contact patterns between the body and the
ground. Having a meal can be described by the placement and changes of weight
of objects caused by food being moved from one plate to another and eaten, pres-
sure being applied when cutting something on the plate, and the position of hands
and arms. Body motion and posture can be acquired from changes in the pressure
distribution between the body and tightly fitting clothes (e.g. as muscle expand
on contraction).

From the above considerations, the following requirements can be identified
for the processing electronics required for large scale sensing matrices suitable
for activity recognition:

– Spacial resolution. Appropriate pixel density is essential for recognizing shapes
of objects (feet, furniture legs, etc.) placed on relevant surfaces (floor, tables).
In general a resolution in sub-cm range is desirable. Higher density clearly will
offer more details; however, it also significantly increases data amount, so that
a good tradeoff must be found.

– Measurement sensitivity and dynamic range. Studies such as [14] and [13]
show that subtle difference in weight and weight distribution contain im-
portant information about user activities. In general a sensitivity well below
100g with a measurement range of well over a typical body weight (�100kg)
is required.

– Sample rate. Since not only identifying objects, but also recognizing activities
is of interest, sufficient scanning rate must be appropriate for typical human
motions, which is described as around 10Hz to 50Hz, according to relative
studies.[15]

– Scalability. A key advantage of the proposed sensor system is the fact that
the same basic textile structure can be used in a wide variety of applications.
Obviously the core matrix structure scales well and different sized matrices
can be easily combined to form large, complex systems. However this implies
that the control and evaluation must also scale with respect to scanning rate,
driving load and supported data rates. Thus, system sizes up to a mega-pixel
(1024x1024) are conceivable in many applications.

3.2 Architecture

Based on the specifications discussed above, to achieve a large scale, high ana-
logue precision, large channel amount system, we propose an architecture de-
scribed in Figure 2. In this chapter the system design considerations will be
discussed in details.

First of all, the sensor matrix is in fact constructed by intersecting two sets
of parallel wires (X and Y). The sensor node between each conjunction can be
abstracted as a block with an enable input, pinned to the corresponding Y wire,
and an analogue output, connected to the X direction. During the scanning
procedure, one Y wire is powered each time, enabling the nodes with the same
Y to generate outputs on the X wires. A complete frame is done by sweeping the

From Smart Clothing to Smart Table Cloth 163

X
 C

ha
nn

el
s

ADC2

…

ADC1 Multiplexer

ADCn

Y Channels

Fast response analogue switch array

Low noise power source

Memory

Data
Transmit

Units

PC

…

Multiplexer

MultiplexerControl Units

Fig. 2. Matrix Data Acquisition System Architecture

Y axes to address all the sensor nodes. As an example to illustrate the amount
of data that needs to be processed, we consider a 128-by-128 system.

High analogue precision always requires low noise level. To achieve this we
separate the digital and analogue parts and equip the analogue part with ultra
low noise power supply ICs. The Y electrodes are separated from the digital
part by fast analogue switches. The addressing sequence can be implemented by
several layers of demultiplexers; however, in our architecture, a single IC with
sufficient I/O pins is chosen to simplify the printed circuit board (PCB) and
facilitate complex control and scanning strategies.

The X electrodes need to be connected to ADC input channels for sampling;
we choose single channel high precision ADCs for the flexibility in building the
structure. In general it is impractical to have a dedicated ADC channel for
each X line. Therefore, we put analogue multiplexers in front of the ADC to
route analogue signals. To route 128 channels into one ADC input using existing
devices requires at least one base layer of four 32-to-1 multiplexers and a second
level layer of 4-to-1 multiplexers, which in turn increases noise and settling time.
The settling time increase applies to every sample and thus has a big influence on
the scanning rate. Our approach uses a hybrid combination of ADC-multiplexer
blocks to balance performance and cost: each block includes one ADC and a
32-to-1 multiplexer as the front end, and four of these blocks can cover 128
channels.

A master control unit coordinates the scanning sequence, reads out the ADC
sampling result, processes data and sends the data to the computer. The control
units including the master unit and the demultiplexer unit are FPGAs, with a
high number of I/Os and the capability to process the data from multiple ADC-
multiplexer blocks simultaneously. The data transmission method is flexible.
Available options include: a serial port, Universal Serial Bus, Gigabit-Ethernet,
Peripheral Component Interconnect Bus, etc. The choice should be made based
on the actual data bandwidth and the complexity of developing the local drivers
on the computer.

164 B. Zhou et al.

3.3 Performance Limits

In the following part, a calculation is carried out to see how much spatial reso-
lution our architecture can achieve based on the analogue components commer-
cially available today. Since on the X direction, several ADC-multiplexer blocks
operate simultaneously, in principle, the analogue sampling timing does not limit
the resolution. However in practice we must consider the fact that the product
of X and Y channels determines the overall data rate in each frame and, with it,
the required processing power of the control and data transmission unit (in the
case that on-board data compression is not implemented). Assuming the ADC-
multiplexer blocks have 32-to-1 multiplexers, each block controls 32× Y nodes.
Figure 3 shows the timing components of a single ADC-multiplexer block within
a frame. Since the blocks operate in parallel, the timing components of a single
block determine the timing of the entire frame. Looking at the performance of
currently available off the shelf components we have the following:

– high performance ADCs (24 bit, 2.5MHz output sample rate, 100dB Signal-
to-Noise ratio) with a 2500ns complete sample-conversion cycle (TADC);

– high speed analogue switch with TY on = TY off = 10ns at the Y channels;
– high speed 32-to-1 analogue multiplexers with TXon = TXoff = 30ns on and

off times at the X channels.

TYon TXon TADC TXoff TXon TADC TXoff TYoff

TYon TXon TADC TXoff TXon TADC TXoff TYoff

TYon TXon TADC TXoff TXon TADC TXoff TYoff

32 TADC

N

…

…

…

…

X channels

Y
 channels

Fig. 3. ADC-Multiplexer block timing components

Thus, to maintain a maintain a 50Hz scanning rate the following constraint
should hold:

[m× 2560ns+ 20ns]×N ×R < 1s,

m = 32, multiplexer input channels;
R = 50, scanning rate;
N : Y channels.

The maximum integer value of N meeting this constraint is 244. With 8 blocks, a
255-by-244 matrix can be configured. From the above constraint, the Y channel
limit N increases with less analogue multiplexer input channels m. Therefore

From Smart Clothing to Smart Table Cloth 165

Table 2. Scalability – small to large scale designs with the same architecture

Small (Pro-
totype)

Medium Large Tessellation

Scale 32× 32 128× 128 1024 × 1024 16× 255× 244
Multiplexer 32-to-1 32-to-1 8-to-1 32-to-1
ADC-MUX
blocks

1 4 125 128

Refresh rate >50Hz 50Hz 47Hz 50Hz
ADC precision 16-bit 24-bit 24-bit 24-bit
demultiplexer
controllers I/Os

32 128 1024 16× 244

Data rate (un-
compressed)

100kB/s 2.4MB/s 141GB/s 16x9.1MB/s

more ADCs are needed to achieve higher spacial resolutions. This structure can
fully utilize the ADC sampling time.

3.4 Scalability

From the constraint in section 3.3, having m = 8 and N = 1024 will result in
R < 47.6. That is to say, using 8-to-1 analogue multiplexers and having 1024
Y channels, the system will still have a scanning rate of 47Hz. With 125 ADC-
multiplexer blocks, the system can scale up to 1024-by-1024, i.e. mega-pixel
level. Another alternative for scaling is to tesselate a big matrix with several
intermediate-sized systems as submodules, in which case, there is the option to
process the data either centrally, distributedly or in a hybrid fashion. Tessellation
with distributed data processing in theory can unlock the scale limit, because
it is essentially a duplication of the base system. Table 2 summarizes the above
mentioned scalability of the architecture.

3.5 Dynamic Reconfiguration and Data Compression Schemes

As described above, our architecture scales well with respect to the timing lim-
its of the analogue components. However, from Table 2 it can be seen that data
rates generated by the system will become a bottleneck as the scale of the sys-
tem goes up. Even though PCIe interfaces can now deliver speeds up to 128
Gbps (Gen3) [16], there is still consideration of power consumption, system size
and etc. Luckily, there is significant potential to reduce the data rate. The un-
compressed data from matrix shares great similarity with gray-colored video
(1024× 1024@50Hz vs. 1280× 720@25Hz) in:

– temporal redundancy. Most of the human activities are of low frequencies
(< 20Hz), so there is similarity from frame to frame.

– spatial redundancy. There is similarity between adjacent channels. And more
importantly, for pressure matrix is the ratio of triggered to un-triggered

166 B. Zhou et al.

channels. Taking a carpet covering a 3× 3m2 living room with 3 people for
example, when the people are standing or walking around, maximum 6 feet
(30 × 10cm2) are triggering the carpet, which, for 1024 × 1024 resolution,
means 200 channels, uncompressed data-rate 30kB/s. The information about
furniture, which are stable, can be sent as a base-frame from time to time.

– statistical redundancy. The distribution of 24-bit codes are not the same. For
everyday activity recognition, subtle activities which result in small signals
(e.g. move head/hand, walk around, cooking) are much more likely to happen
than activities with big pressure distribution change (run, drag big furniture,
roll about on the floor).

With FPGA included already in the architecture, first-step compressions such
as applying a threshold to remove the un-triggered channels can be done for
each ADC in parallel. This may bring even further advantage: reducing power
consumption. Because the process of scanning each channel is controlled by
FPGA, combined with parameters feed back to FPGA from on-line processing
software, the scanning rate for un-triggered channels can be dropped to a much
lower value. (E.g. a program detecting human feet and only the area of possible
next step is scanned at a high speed.)

We would like to mention that our paper puts emphasize on the hardware
architecture. For that we explain here only the potential of data compression.
How to modify and implement existing compression methods for image and video
to the pressure matrix lies in our future work.

4 Implementation and Results

4.1 Prototype Hardware

To test the architecture and demonstrate the capability of the sensor matrix
we made out of low cost materials, a prototype of 32-by-32 channels with 16-bit
ADC precision was built. The prototype’s hardware structure is shown in Figure
4. It is not exactly the same as the architecture described in Section 3, but the
overall structure falls into the architecture. The ADC with 32-to-1 multiplexer is
integrated in a micro-controller; since the ADC precision does not require ultra
low noise power on the Y channels, the FPGA I/O pins are connected directly
to the Y channels.

The sensor matrix is made by attaching two perpendicular arrays of electrode
stripes (aluminium foil on fiber-glass reinforced polypropylene tape) on two sides
of flexible resistive material sheets, of which the volume resistance changes with
the deformation caused by pressure. We use two different materials to represent
carpet and cloth separately. The spacial distance on X and Y directions between
pixels is 30mm for the former and 20mm for the latter.

4.2 Results and Application Examples

We have used the prototype to acquire and analyse signals in three scenarios
that were already mentioned in the paper: (1) physical exercise, (2) a ‘smart

From Smart Clothing to Smart Table Cloth 167

FPGA
…

…

PC

Microcontroller (dsPIC)

ADC 32-1
multiplexer

UART
Driver

On-chip
memory

Fig. 4. Prototype System Structure

Fig. 5. Prototype Experiment Result: push-ups on the top, reaching shelves on the
bottom)

tablecloth’ and (3) sensing body shape changes with tight fitting garments. These
scenarios represent a broad rang of applications with different requirements with
respect to resolution and fore sensitivity. Since the focus of this paper is on
sensing system design, not on activity recognition, we refrain from doing actual
recognition (which is subject of future work). Instead, we focus on demonstrating
that our system can acquire signals that reflect the differences between relevant
situations and actions.

Detecting Physical Exercise with a Mat. We consider a person exercising
on the floor. Specifically Figure 5 shows the signals acquired when doing push-ups
with hands on the smart mat made of our sensor matrix. It can be seen that the

168 B. Zhou et al.

force distribution between hands and the sensor matrix is different when moving
downwards and upwards. On a downwards move the forces are more evenly
distributed across the hand, because the arms are trying to support the body
against gravity and achieve a fluent speed. When moving upwards, the forces
are more focused near the waist joint since the arms are actively outperforming
against gravity to push the body upwards. In addition, the distribution between
the left and the right hands shows asymmetry caused by more weight being
placed on the dominant hand. The movement process is more obvious in the
dynamic data of several marked nodes in Figure 5. It can be seen that the signal
contains a clear pattern for every push up instance that could be easily used to
for counting.

On the bottom of Figure 5 the same system is used to detect a person reaching
diferent locations of a shelf. It can be seen that, when standing still, the signals
show the pressure from the toes to the heel. When stretching up the pressure is
focused on the toes, in the low position the pressure is spread out on the soles of
the feet. Note that the overall pattern is distinctly different from the push ups.

Smart Table Cloth. Next we consider our pressure matrix being placed on a
table as a ‘smart tablecloth’ to detect different types of objects (plates, glasses,
bottles etc) and the weight changes associated with their content being con-
sumed. As an example, Figure 6 shows the signal produced by an empty and
half full bottle of mineral water. The observation can be made. First, in both
cases the shape of the bottle bottom can be clearly seen. Second there is a clear
difference in the signals between the empty and the half full bottle. Similar re-
sults were achieved with plates, bowls etc. Hands and arms placed on the table
also show distinct signals.

Fig. 6. Prototype Experiment Result: table cloth

From Smart Clothing to Smart Table Cloth 169

Wearable Sensing. To investigate the suitability of the proposed system for
on-body sensing, the matrix previously used for table cloth has been first wrapped
around the users upper and lower arm. The resulting signal is shown in Figure 7
a) and b). It can be clearly seen that the signals differ significantly for a straight
and flexed elbow.

Second ,we have placed the matrix in the trousers on the buttock to compare
the signals for different sitting situations. Figure 7 shows the signals obtained
from sitting on a chair and leaning on the edge of a table. Again a clear difference
can be seen.

(a) (b) (c) (d)

Wrapped around a relaxed arm Wrapped around a flexed arm Sitting on the edge of a table Sitting on the chair

Fig. 7. Prototype Experiment Result: wearable scenarios

5 Conclusion

The main conclusion from the work presented in this paper is that large scale
textile pressure matrix that produce information relevant to a variety of context
recognition tasks is feasible. In particular we have shown that, using existing
commercial components, system sizes of up to 1024x1024 (1 million individual
sensors) are feasible with sample rates of up to 50Hz.

As a next step, we are currently working on demonstrating the actual recog-
nition of different activities (e.g. distinguishing different exercises and counting
repetitions). In parallel a larger version of the system will be deployed on the
floor of the social area of our lab in a long term experiment.

Acknowledgments. This work was partially supported by the collaborative
project SimpleSkin under contract with the European Commission (#323849)
in the FP7 FET Open framework. The support is gratefully acknowledged.

References

1. Chen, L., Hoey, J., Nugent, C., Cook, D., Yu, Z.: Sensor-based activity recognition.
IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and
Reviews 42(6), 790–808 (2012)

2. Cheng, J., Lukowicz, P., Henze, N., Schmidt, A., Amft, O., Salvatore, G., Troster,
G.: Smart textiles: From niche to mainstream. IEEE Pervasive Computing 12(3),
81–84 (2013)

170 B. Zhou et al.

3. Bränzel, A., Holz, C., Hoffmann, D., Schmidt, D., Knaust, M., Lühne, P., Meusel,
R., Richter, S., Baudisch, P.: Gravityspace: Tracking users and their poses in a
smart room using a pressure-sensing floor. In: CHI 2013, Paris, France, April 27-
May 2 (2013)

4. Tan, H., Slivovsky, L., Pentland, A.: A sensing chair using pressure distribution
sensors. IEEE/ASME Transactions on Mechatronics 6(3), 261–268 (2001)

5. Kortelainen, J., van Gils, M., Parkka, J.: Multichannel bed pressure sensor for sleep
monitoring. In: Computing in Cardiology (CinC 2012), pp. 313–316 (2012)

6. Lokavee, S., Puntheeranurak, T., Kerdcharoen, T., Watthanwisuth, N., Tuantra-
nont, A.: Sensor pillow and bed sheet system: Unconstrained monitoring of res-
piration rate and posture movements during sleep. In: 2012 IEEE International
Conference on Systems, Man, and Cybernetics (SMC), pp. 1564–1568 (2012)

7. De Rossi, S., Lenzi, T., Vitiello, N., Donati, M., Persichetti, A., Giovacchini, F.,
Vecchi, F., Carrozza, M.: Development of an in-shoe pressure-sensitive device for
gait analysis. In: 33rd Annual International Conference of the IEEE EMBS (2011)

8. Xu, W., Huang, M.C., Amini, N., He, L., Sarrafzadeh, M.: ecushion: A textile
pressure sensor array design and calibration for sitting posture analysis. IEEE
Sensors Journal 13(10), 3926–3934 (2013)

9. Sensor Product INC.: Tactilus real-time surface pressure mapping technology
10. Marenzi, E., Lombardi, R., Bertolotti, G.M., Cristiani, A., Cabras, B.: Design and

development of a novel capacitive sensor matrix for measuring pressure distribu-
tion. In: 2012 IEEE Sensors Applications Symposium, SAS (2012)

11. Holtek Semiconductor INC.: Using an i/o port pin as an a/d converter input
12. Holder, D.S.: Electrical impedance tomography:methods, history and applications.

Institute of Physics (2004)
13. Cheng, J., Zhou, B., Sundholm, M., Lukowicz, P.: Smart chair: What can simple

pressure sensors under the chair’s legs tell us about user activity? In: Ubicomm
2013 (2013)

14. Adami, A.M., Hayes, T.L., Pave, M.: Unobtrusive monitoring of sleep patterns.
In: Proceedings of the 25th Annual lntemational Conference of the IEEE EMBS
(2003)

15. Wilde, A.G.: An overview of human activity detection technologies for pervasive
systems, Department of Informatics University of Fribourg, Switzerland (2010)

16. Vienne, J., Chen, J., Wasi-ur Rahman, M., Islam, N., Subramoni, H., Panda, D.:
Performance analysis and evaluation of infiniband fdr and 40gige roce on hpc
and cloud computing systems. In: 2012 IEEE 20th Annual Symposium on High-
Performance Interconnects (HOTI), pp. 48–55 (2012)

Performance Isolation Exposure in Virtualized

Platforms with PCI Passthrough I/O Sharing

Andre Richter, Christian Herber, Holm Rauchfuss,
Thomas Wild, and Andreas Herkersdorf

Institute for Integrated Systems, Technische Universität München,
Arcisstr. 21, 80290 Munich, Germany

{andre.richter,christian.herber,holm.rauchfuss,
thomas.wild,herkersdorf}@tum.de

http://www.lis.ei.tum.de

Abstract. PCI Passthrough is an x86 virtualization technology that
enables low overhead, high performance I/O virtualization. It is an es-
tablished technology in server and cloud computing environments and
a promising technology for sharing I/O devices in future Cyber Physi-
cal Systems that consolidate mixed-criticality applications on multi-core
CPUs. In this paper, we show that current implementations of x86 PCI
Passthrough are prone to Denial-of-Service attacks. We demonstrate that
attacks can be launched from within Virtual Machine environments and
affect the performance of every I/O device on the interconnect. This
means that malicious or malfunctioning applications inside Virtual Ma-
chines can impair the I/O performance of co-residential Virtual Ma-
chines. For example, attacking an SR-IOV capable Gigabit Ethernet NIC
causes its TCP throughput to drop by 326 Mbit/s; latencies for reading
32 bit words from the NIC increase by over 650%. We investigate which
hardware parameters influence the impact of such attacks and introduce
three protection approaches.

Keywords: Performance Isolation, Virtualization, Passthrough I/O.

1 Introduction

A current research challenge in Cyber Physical Systems (CPS) is the enablement
of multi-core processor platforms for the consolidation of multiple, independent
software applications [8] [7]. Parallel execution on a multi-core processor intro-
duces concerns regarding performance and risks regarding safety and security,
because they have to share resources like memory, caches and I/O devices. In
order to prevent consolidated applications running on a multi-core from inter-
fering with each other, spatial and temporal isolation of the shared resources
is mandatory. This is especially important for future mixed-criticality CPS sys-
tems, where applications with different real-time requirements are consolidated,
e.g. safety-critical driver-assist and high data volume Infotainment applications.
At the same time, the overhead of isolation mechanisms should impair the per-
formance of individual applications only as little as possible.

E. Maehle et al. (Eds.): ARCS 2014, LNCS 8350, pp. 171–182, 2014.
� Springer International Publishing Switzerland 2014

http://www.lis.ei.tum.de

172 A. Richter et al.

Virtualization of computing resources is a promising approach for solving
these challenges [10]. Spatial isolation of memory is nowadays enforced via hard-
ware virtualization extensions, which ensure that co-residential Virtual Machines
(VMs) do not spy on or corrupt each other’s memory. These hardware extensions
have low overheads and are available in modern, commercial off-the-shelf (COTS)
processors and chipsets. On the x86 platform, for example, processors provide
MMUs with virtualization extensions for isolating CPU-to-memory transactions,
while virtualization-enabled IOMMUs isolate I/O-to-memory transactions.

Besides isolation, IOMMUs also help to solve the problem of efficiently shar-
ing I/O devices for virtualized applications running on a multi-core. They en-
able VMs to directly communicate with PCI(e)-connected I/O devices, without
any involvement of the Hypervisor. This is called direct device assignment or,
on x86 platforms, PCI Passthrough. Utilizing PCI Passthrough also allows to
make use of the PCI Express Single Root I/O Virtualization (SR-IOV) tech-
nology. SR-IOV enables a single physical PCIe device to offer several hundred
Virtual Functions (VFs), each of which can be directly assigned to a distinct
VM. SR-IOV offloads routines for virtualizing I/O devices into the target de-
vice’s hardware. This makes PCI Passthrough with SR-IOV the currently best
performing I/O virtualization approach [2], because in contrast to emulation [12]
and paravirtualization [1] approaches, the computation of isolation and I/O de-
vice virtualization routines are offloaded into hardware accelerators. This mini-
mizes processor overhead and therefore boosts I/O virtualization performance.
Additionally, PCI Passthrough and SR-IOV technologies are nowadays widely
deployed in server and cloud computing environments. This ensures that virtu-
alization extensions and (IO)MMU enforced spatial separation are quite mature
and tested in currently available x86 COTS hardware.

However, besides superior performance and low processor overhead, PCI Pass-
through has yet-to-be-solved problems regarding temporal isolation [6], because
multiple VMs running on different cores share a single bus for accessing their
assigned I/O devices or VFs. Current PCI Passthrough setups have no instance
that monitors access to shared devices, because the datapath of PCI Passthrough
bypasses the Hypervisor. Therefore, no control instance is present that may block
exhaustive access to them.

In this paper, we demonstrate the severeness of this lack of temporal iso-
lation. We show how it can be exploited in order to significantly degrade the
performance of co-residential VMs and the host system: We present how Denial-
of-Service attacks on an SR-IOV capable Gigabit Ethernet NIC cause its TCP
throughputs to drop by 326 MBit/s and how latencies for reading 32 bit words
from the NIC to increase by over 650%. We investigate why PCI Passthrough
setups are prone to such attacks and propose three different approaches for tack-
ling the presented problems.

The remainder of this paper is organized as follows: Section 2 explains the
evaluation methodology, experimental setup and threat model. Section 3 presents
results of our experiments. Section 4 proposes protection approaches. Section 5
reviews related work. Finally, Section 6 concludes this paper.

Performance Isolation Exposure in PCI Passthrough Setups 173

2 Experimental Setup and Threat Model

CPU, 4 cores Q77 PCH

20 Gbit/s DMI
(PCIe Express)

PCIe
3.0 PCIe 2.0 Root Ports

82574L NIC

82579LM NIC

2.5 GT/s
x1

1.25 GT/s

2.5 GT/s
x8

SP605 FPGA Board
2.5 GT/s

x1
82576 Dual Port SR-IOV NIC
Port 1

Port 2 VF2.0

VF1.0

VF2.1 VF2.2
2.5 GT/s

x4

1 2 3

4

0.00

1

0.00

2

0.00

3

Legend:
0.00

Latency and/or
data rate
measurement

DoS attack with
PCIe write packets

Fig. 1. Block diagram of virtualization platform

For our experiments, we utilized an advanced x86 platform that was chosen
for providing the latest generation of hardware virtualization accelerators. An
overview is depicted in Figure 1. An Intel DQ77MK Motherboard is equipped
with a Core i7-3770T CPU (2.5 GHz, 4 physical cores, 8 logical cores with
HyperThreading enabled) and 32 GB of RAM. The proprietary 20 Gbit/s Direct
Media Interface (DMI) 2.0 connects the CPU to the Q77 Platform-Controller-
Hub (PCH), which provides access to the platform’s PCIe 2.0 subsystem.

PCIe is a serial, point-to-point, packet-switched interconnect. A connection be-
tween two PCIe devices is called a link. A link’s bandwidth is determined by its
number of lanes, the encoding on the physical layer and the physical layer bit rate.
The latter is always given in GigaTransfers per second (GT/s). For example, PCIe
2.0 uses 8b/10b encoding, which means a four lane connection with a speed of 2.5
GT/s (x4, 2.5GT/s) can move 2.5 · 4 · (8/10) = 8Gbit/s in one direction.

The Q77 hosts three PCIe 2.0 Root Ports, one featuring four lanes (x4), while
the other two provide one lane (x1), respectively. Each lane has a rate of 2.5
GigaTransfers per second (GT/s). The Q77 also integrates an 82579LM Gigabit
Ethernet NIC, which mimics a PCIe interface so it can be accessed easily with
standard drivers. However, the connection is only capable of providing a speed of
1.25 GT/s [4]. Another Gigabit Ethernet NIC, the 82574L, is soldered onto the
Motherboard and connected to one of the x1 Root Ports. The x4 Root Port is
connected to a PCIe slot where we put in an SR-IOV capable, dual port gigabit
Ethernet extension card with an Intel 82576 controller. Each of the controller’s
ports can provide up to seven VFs. We configured the card to use one VF (VF1.0)
for Port 1, and three VFs (VF2.X) for Port 2. The remaining x1 Root Port is
equipped with a Xilinx SP605, a PCIe board housing a Spartan 6 FPGA. We
use this board as a target for standard read/write operations. Its purpose will
be discussed in detail in Section 3.2. The PCIe 3.0 controller embedded onto the
CPU will be discussed in Section 3.3.

On the software side, the host system is running Ubuntu 12.10 with the KVM
Hypervisor. Each guest VM uses the same Ubuntu version and kernel as the host
and is assigned 4096 MB of RAM.

174 A. Richter et al.

2.1 Threat Model

Our attack scenarios assume that the virtualization platform hosts several VMs
concurrently. Each VM is pinned on a dedicated physical core with HyperThread-
ing disabled. This is because we do not want two VMs running on the same core
to influence each other’s performance. Additionally, we needed this partitioning
for accurate latency measurements, which will be explained in subsection 2.2.

We assume that an attacker overtakes VMs by gathering root privileges inside
the VMs operating system, which enables him to install his own device drivers.
An overtaken, malicious VM is either directly assigned to a Virtual Function of
the SR-IOV NIC or to the SP605 via PCI Passthrough. In order to compromise
performance of the host system and co-residential VMs, the attacker will abuse
the directly assigned PCIe device by launching a Denial-of-Service attack on
one of the device’s Memory Mapped I/O (MMIO) resources. Accessing MMIO
resources of a device means that the CPU reads from or writes to registers or
other forms of memory that are located on the device.

Malicious VMs launch a MMIO DoS attack against its PCI Passthrough device
by removing the device’s standard driver and inserting a Linux kernel module
that contains an attack method. This DoS attack method is realized with a
for-loop that floods the PCIe device with 32 bit write packets. We chose write
packets for flooding because a PCIe write is, in contrast to a PCIe read, a so
called posted transaction. This means that a write transaction does not wait for
an acknowledge or any other type of response. Therefore, write packets can be
generated with a very high rate. The generation rate is only constrained by the
CPU clock, which is 2.5 GHz in our case.

2.2 Evaluation Methodology

To quantify the impact of DoS attacks on the performance of co-residential VMs
and the host system, we measured two indicators:

Latencies for PCIe 32 bit reads are a general metric of a DoS attack’s
impact on the interconnect level. Latency is measured by counting the time it
takes from requesting a word from the PCIe device until the response with the
respective data arrives at the requesting CPU core. To realize this, we extended
our Linux kernel module for launching the MMIO DoS attacks with a latency
measurement function. The function utilizes the Linux kernel’s readl() instruc-
tion, which reads a 32 bit word from the target device. Time is counted using
the CPU’s Time Stamp Counter (TSC) register like described in [9]. There is
one TSC per core available. Latency results presented in this paper are always
the average of one million samples. HyperThreading has been disabled in order
to prevent that an active measuring thread is pushed from its core, which would
cause erroneous results. To get consistent and reproducible results, we disabled
SpeedStep and TurboBoost technologies. Otherwise, the frequency of the CPU
cores would have varied depending on the current thermal conditions and the
workload of other cores.

TCP and UDP throughputs of the multiple NICs of our hardware platform
are the second set of indicators used in the following experiments. They directly

Performance Isolation Exposure in PCI Passthrough Setups 175

depend on the read/write latencies of the PCIe devices, but give a better idea
of a DoS attack’s impact on standard I/O workloads in a computer system.
Additionally, it is easier to put network throughput benchmarks in context than
raw read/write latencies of interconnects. Network throughputs were measured
with the netperf tool between our virtualization platform and a dedicated PC.
We used standard TCP and UDP stream tests (1500 Byte Ethernet Frames)
without any additional parameters.

3 Results

This Section presents three experiments we conducted in order to evaluate the
impact of MMIO DoS attacks, including the respective results and conclusions.

3.1 Experiment 1: Attacking SR-IOV Virtual Functions

SR-IOV capable PCIe devices are built with the intention to be shared between
multiple, potentially untrusted virtual machines. The 82576 NIC used in our
hardware platform represents such a commercially available device. It features
two disjunct gigabit Ethernet ports, each of which may be shared by up to eight
Virtual Functions, respectively. The PCIe board on which the 82576 controller
resides is designed to operate both Ethernet ports at full speed simultaneously
(x4, 2.5 GT/s). Our netperf tests showed 941 Mbit/s for TCP stream tests and
961 Mbit/s for UDP stream tests for both ports in concurrent operation.

If the same Ethernet port is used by two VMs at the same time, e.g. one VM
assigned to VF2.0 and one VM assigned to VF2.1, the resulting throughput for
each VM halves. For 3 VMs it divides by three, and so on. Given the premise
that all VMs attached to a VF are non-malicious and use the standard driver for
the VF, throughput of Port 1 is never influenced by usage of Port 2, no matter
how many VMs are accessing Port 2 concurrently.

In the following experiment, we want to show that malicious guests can have
a huge impact on the throughput of co-residential VMs. Therefore, we first mea-
sured latencies and TCP throughput for VF1.0 (compare Figure 1, λ1) when
the rest of the system is idle. The results, 941 Mbit/s TCP throughput and a
latency of 1.58 �s, shall serve as the baseline measurements and are depicted
in the ”none” column of Figure 2. The remaining columns show how latency
and throughput of VF1.0 are impaired by MMIO DoS attacks on VFs2.X of
disjunct Ethernet Port 2. Results are depicted for a single DoS attack A = {δ1}
and concurrent attacks A = {δ1, δ2} and A = {δ1, δ2, δ3}. Each DoS attack δx
was launched from within a VM running on a dedicated core and targeted its
respective VF2.X (compare Figure 1).

The results show that a single DoS attack (δ1 on VF2.0) from one malicious
VM suffices to force a TCP throughput drop from 941 to 684 Mbit/s for VF1.0,
which is allocated to a different physical Ethernet port than the DoS target.
A second DoS attack (δ2 on VF2.1) which is launched concurrently from an
additional VM causes the TCP throughput to drop further down to 615 Mbit/s.
A third attack does not result in an additional performance drop.

176 A. Richter et al.

none 1 2 3

5

10

15

1.58

12.61

Number of VFs experiencing a DoS attack

�

-s
ec
o
n
d
s

0

200

400

600

800

1000
M
b
it
/
s

TCP throughput 82576 VF1.0 [Mbit/s]

Latency 32 bit read 82576 VF1.0 [�s]

Fig. 2. Latency for 32 bit reads and TCP throughput for VF1.0 of the 82576 NIC while
one or more VFs of the 82576 NIC experience MMIO DoS attacks

The reason for these performance drops lies within the architecture of PCIe
interconnects. The CPU cores of the malicious VMs are able to produce write
packets at a rate much higher than the 82576 NIC can consume them. Eventually,
this leads to a congestion in the ingress buffers of the 82576 NIC. PCIe flow
control mechanisms then pass on the backpressure to the next device in the
PCIe hierarchy, and so on. This congestions builds up through the Q77 PCH
until it reaches the CPU itself. This is also visible from the latencies shown in
Figure 2, which increase from 1.58 �s for an idle system to 12.61 �s. This increase
of 689% is the actual reason for the TCP throughput drop. With latencies of
12.61 �s , it is no longer possible to transfer data at near 1 Gbit/s volumes to
and from the PCIe device.

That the congestion during DoS attacks spreads over the whole PCIe inter-
connect can be shown by exchanging the NIC for which the TCP throughputs
are measured. Therefore, the 82574L and 82579LM NICs (compare λ2 and λ3

in Figure 1) were used for measuring TCP throughputs, one at a time. Both
NICs are connected at different locations of the PCIe tree, compared to the DoS
target (82576 NIC). Figure 3 compares the results of the new measurements to
the previously measured throughputs of the 82576’s VF1.0

The results show that the congestion spreads over the whole PCIe intercon-
nect, because all three NICs suffer from throughput degradation. In comparison
to VF1.0 of the 82576 NIC, the other NICs perform worse. Throughputs drop to
506 Mbit/s for the 82574L and 325 Mbit/s for the 82579LM. The observed gaps
result from the different link speeds at which the NICs are connected to their
PCIe ports. These link speeds define the time it takes to transfer an Ethernet
frame to the NIC. As mentioned in Section 2, a PCIe link’s data bit rate Rdata

is calculated from the number of lanes nlanes, the physical layer bit rate Rphys

and the encoding on the physical layer: Rdata = nlanes ×Rphys × encoding.
Table 1 shows these parameters for the three NICs (also depicted in Figure 1),

together with the calculated time Ttrans it takes to transfer a 1500 Byte Ethernet
Frame. As one can see, the 82576 NIC has 4.5 �s and 10.5 �s faster transfer times

Performance Isolation Exposure in PCI Passthrough Setups 177

none 1 2 3
0

200

400

600

800

1000

Number of VFs experiencing a DoS attack

M
b
it
/
s 82576 VF1.0 [Mbit/s]

82574L [Mbit/s]

82579LM [Mbit/s]

Fig. 3. TCP throughputs of the three NICs of the test system while one or more VFs
of the 82576 NIC experience a MMIO DoS attack

Table 1. Transfer time for a 1500 Byte Ethernet Frame

NIC nlanes Rphys enc Rdata Ttrans

82576 x4 2.5 GT/s 8b/10b 8 Gbit/s 1.5 �s
82574L x1 2.5 GT/s 8b/10b 2 Gbit/s 6.0 �s
82579LM x1 1.5 GT/s 8b/10b 1 Gbit/s 12 �s

than the 82574L and 82579LM, respectively. This means that the overall delay
for the NICs is the sum of the DoS-caused latency and the transfer time Ttrans

of the NIC’s PCIe link. Consequently, the overall latencies for the three NICs
differ, which results in the diverse throughput drops.

3.2 Experiment 2: Influence of the DoS Target’s Processing Speed

In our second experiment, wemeasured how the processing speed of the device un-
der attack influences the system’s performance drop. To do so, we used a SP605
FPGA board to implement a standard PCIe endpoint. We designed the logic on
the FPGA to be able to dynamically adjust the time it takes to process an incom-
ing PCIewrite packet. Theminimum time the SP605 achieves is 112 ns. Processing
time is modified by artificially keeping the write busy signal of the ingress port on
high. This triggers the PCIe flow control mechanism to stop sending more pack-
ets to the SP605, which eventually leads to the congestion build-up on the PCIe
interconnect. To quantify the impact of the different processing times, the follow-
ing measurement series has been conducted:

1. The SP605 was attached to a VM via PCI Passthrough.

2. Packet processing times varied from 112 ns to 7.15 �s.

3. For each processing time, the VM executed a MMIO DoS attack on the
SP605 device (see δ4, Figure 1).

4. During the DoS attack, the latency for reading from the 82576 NIC was
measured.

178 A. Richter et al.

We chose the 82576 NIC for measuring, because out of the three NICs in our
test system, it is the most advanced and has the fastest link speed. The results
are depicted in Figure 4.

0.11 1.07 2.03 2.99 4 5 6 7.15
1.56

66.28

132.91

Packet processing time of attacked SP605 in �s

8
2
5
7
6
la
te
n
cy

in

�

s

Fig. 4. Latency degradation for reading 32 bit words from the 82576 NIC while the
SP605 experiences a MMIO DoS attack

They show a linear dependency between the processing time of the DoS target
and the latency for reading from the 82576 NIC. This is because the PCIe packets
which request a data word from the 82576 NIC must traverse many buffers and
their respective slots which are also traversed by the DoS packets flowing to
the SP605 device. This follows that, in the congested case, a packet can only
advance one buffer slot further on its way to the endpoint after the DoS target
has processed a packet. Therefore, the additional flight time of a packet, in the
case of a fully congested interconnect, depends on two characteristics:

– The number of buffer slots shared with the DoS packets.
– The DoS target’s processing time of a PCIe packet.

How the different processing speeds of the DoS target translate to network
throughput degradation is shown in Figure 5.

0.32 1.07 2.03 2.99 4 5 6 7.15
0

200

400

600

800

1000

Packet processing time of attacked SP605 in �s

M
b
it
/
s

UDP throughput [Mbit/s]

TCP throughput [Mbit/s]

Fig. 5. TCP and UDP throughput degradation of the 82576 NIC while the SP605
experiences a MMIO DoS attack

The results show UDP and TCP throughputs of the 82576 NIC during a DoS
attack on the SP605 as a function of the packet processing time of the attacked

Performance Isolation Exposure in PCI Passthrough Setups 179

SP605 device. TCP throughput is experiencing a drop for packet processing
times greater than 320 ns, while UDP throughput sees a degradation for times
greater than 1.07 �s. TCP is more affected by DoS attacks because of its protocol
nature. Besides packets carrying the actual payload, additional SYN and ACK
packets need to be transferred, which are also affected by the congestion on the
interconnect. UDP, on the other hand, is a fire and forget protocol where every
packet contains payload.

3.3 Experiment 3: Influence of the Path to the DoS Target

Our third experiment shows the influence of buffers and switching circuitry on
the path from the CPU to the DoS target. Therefore, we put the 82576 SR-IOV
NIC into the CPU slot, which connects to the PCIe 3.0 controller that is inte-
grated into the CPU (compare Figure 1). As PCIe 3.0 is backwards compatible,
the NIC runs with the same speed (x4, 2.5 GT/s) as in the Q77 slot.

Similar to Experiment 1 in Section 3.1, latencies for VF1.0 were measured for
the idle case, as well as for one, two and three VMs attacking their respective
VFs2.X. The results are shown in Figure 6, where they are compared to the
results of the 82576 NIC residing in the Q77 slot (aka results of Experiment 1).

none 1 2 3
0

1.81

7

12.61

16

�

-s
ec
o
n
d
s Latency 32 bit read

Q77 slot [�s]

Latency 32 bit read
CPU slot [�s]

none 1 2 3
0

200

400

600

800

1000

Number of VFs experiencing a DoS attack

M
b
it
/
s

TCP throughput
Q77 slot [MBit/s]

TCP throughput
CPU slot [MBit/s]

Fig. 6. Latency for 32 bit reads and TCP throughput for VF1.0 of the 82576 NIC while
one or more VFs of the 82576 NIC experience MMIO DoS attacks. Results distinguished
by the utilized slot (Q77 or CPU).

The results show, that for the idle case, the CPU slot is already faster than
the Q77 slot (0.7 �s vs. 1.58 �s). Both latencies suffice to saturate a Gigabit link.
However, when experiencing MMIO DoS attacks, the CPU slot is less impaired
than the Q77 slot. Latencies for the CPU slot increase up to 1.81 �s. This is still

180 A. Richter et al.

fast enough for Gigabit Ethernet, but a 10 Gigabit connection would most likely
experience a drop in throughput. This experiment shows that a shorter path to
the I/O device (less buffers and switching circuitry) lowers the impact of DoS
attacks. However, we still observe an increase in latencies by 157% (compare to
the 698% increase from Experiment 1).

4 Protection Approaches

The three experiments conducted in Section 3 demonstrated that the impact of
MMIO DoS attacks mainly depends on three key factors:

– The production rate of PCIe packets of the attacking CPU/core, aka fre-
quency of the core.

– The consumption rate of the PCIe device targeted by a MMIO DoS attack.
– Switching circuitry and buffers on the path to the DoS target.

In the following, we present three approaches for tackling these weak points
of current PCI Passthrough implementations. Each approach aims at a different
component involved in the CPU to I/O device path.

Modern x86 CPUs support performance monitoring through built-in perfor-
mance counters. They are available per core and can be programmed to count
different events, like cache-misses or memory requests. The counters could be
utilized by the Hypervisor to enforce I/O-access policing for VMs running on
different cores. Similar approaches have been successfully implemented in the
past, e.g. for mitigating performance degradation due to shared caches or mem-
ory [5][14]. The policing algorithms could be designed to implicitly prevent or
detect DoS attacks. It must be evaluated if there are suitable counters available
for detecting abusive access patterns on PCI(e) devices.

The PCIe standard already defines a set of Quality-of-Service features.
PCIe packets can be assigned different Traffic Classes (TCs). These TCs can be
assigned to different Virtual Channels (VC) via various arbitration policies, like
fixed priority or time based weighted round robin. VCs must be implemented as
dedicated physical buffers. With the help of these QoS features and by adapt-
ing Hypervisors and hardware such that it would be possible to assign distinct
TCs for each Virtual Machine, it should be possible to enforce strong temporal
isolation. Unfortunately, the PCIe standard only defines the use of one Virtual
Channel (VC0) as mandatory. Therefore, the major part of today’s commer-
cially available hardware only employs a single buffer for ingress and egress ports.
It should be evaluated how multiple VCs and available arbitration schemes could
be leveraged to enforce temporal isolation.

Experiment 2 showed that the impact of a DoS attack depends on the DoS
targets processing speed, given that the interconnect is faster than the packet
production rate of the CPU. This has been shown in Figure 5, where performance
drops for gigabit Ethernet emerged only for processing times that are slower than
a certain threshold. Therefore, it is possible to employ countermeasures into the
endpoint device. Like mentioned in [3], a DoS detection inside the I/O device

Performance Isolation Exposure in PCI Passthrough Setups 181

could identify possibly harmful access patterns. If such a pattern is detected,
the endpoint can discard these packets as fast as possible, which lowers the
impact of the DoS attack. At the same time, the device reports the DoS attack’s
source via an interrupt to the Hypervisor. The latter can then take appropriate
countermeasures, e.g. by shutting down the attacking VM.

5 Related Work

We are not aware of previous work that quantifies the impact of MMIO DoS
attacks on the PCIe interconnect. However, other attacks relevant to PCI Pass-
through have been demonstrated.

In [13], software attacks against Intel’s VT-d IOMMU are demonstrated. They
allow to break out of a Xen driver domain by generating specially crafted Mes-
sage Signaled Interrupts with a PCI Passthrough device. Interrupt Remapping
technology, which is available on recent hardware, can be used to prevent the
demonstrated attacks if set up properly.

In [11], two possibilities for circumventing VT-d protection are presented. I/O
devices with reconfigurable hardware could be used to spoof another device’s
source-id. These IDs are used by the VT-d IOMMU to identify a device’s access
rights to the system’s memory regions. Supplying wrong device IDs enables a
VM to compromise memory of co-residential VMs or the host. A second attack
scenario describes the exploitation of PCI-to-PCI Express bridges with modified
peripheral hardware. This attack requires physical access to the system.

6 Conclusion and Outlook

In this paper, we demonstrated that current, commercially available x86 virtu-
alization solutions utilizing PCI Passthrough are vulnerable to MMIO Denial of
Service attacks from malicious VMs. Three experiments with our test system
showed how these attacks exploit the lack of temporal isolation in modern x86
setups. As a result, the performance of co-residential VMs and the host is im-
paired, because performance of every I/O device connected to the interconnect
degrades significantly. Our findings are relevant to server and cloud computing
environments, where PCI Passthrough and SR-IOV are established and deployed
technologies, as well as for future CPS systems that aim to consolidate mixed-
criticality applications on multi-core CPUs.

We are currently investigating and evaluating the presented protection ap-
proaches. First results showed that performance counters in modern Intel CPUs
may be capable of detecting abusive access to PCIe I/O devices. Simulations
with QoS enabled PCIe switches promise a strong temporal isolation between
different VMs. Furthermore, we are investigating additional attack vectors like
programming DMA engines of PCI Passthrough devices to execute DoS attacks
or exploiting hardware bugs of PCI Passthrough devices. Such attacks might
also require new/different approaches for countermeasures.

182 A. Richter et al.

Acknowledgments. This work was funded within the project ARAMiS by
the German Federal Ministry for Education and Research with the funding IDs
01|S11035. The responsibility for the content remains with the authors.

References

1. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer,
R., Pratt, I., Warfield, A.: Xen and the art of virtualization. In: ACM SIGOPS
Operating Systems Review, vol. 37, pp. 164–177. ACM (2003)

2. Dong, Y., Yang, X., Li, J., Liao, G., Tian, K., Guan, H.: High performance network
virtualization with sr-iov. Journal of Parallel and Distributed Computing (2012)

3. Dong, Y., Yu, Z., Rose, G.: Sr-iov networking in xen: architecture, design and
implementation. In: Proceedings of the First Conference on I/O Virtualization,
pp. 10–10. USENIX Association (2008)

4. Intel: Intel 7 series / c216 chipset family platform controller hub (pch) datasheet
(2012)

5. Jing, W.: Performance Isolation for Mixed Criticality Real-time System on Mul-
ticore with Xen Hypervisor. Master’s thesis, Uppsala University, Department of
Information Technology (2013)

6. Kotaba, O., Nowotsch, J., Paulitsch, M., Petters, S.M., Theiling, H.: Multicore
in real-time systems–temporal isolation challenges due to shared resources. In:
Workshop on Industry-Driven Approaches for Cost-effective Certification of Safety-
Critical, Mixed-Criticality Systems, WICERT (2013)

7. Navet, N., Monot, A., Bavoux, B., Simonot-Lion, F.: Multi-source and multicore
automotive ecus-os protection mechanisms and scheduling. In: International Sym-
posium on Industrial Electronics-ISIE 2010 (2010)

8. Nowotsch, J., Paulitsch, M.: Leveraging multi-core computing architectures in
avionics. In: 2012 Ninth European Dependable Computing Conference (EDCC),
pp. 132–143 (2012)

9. Paoloni, G.: How to benchmark code execution times on intel ia-32 and ia-64
instruction set architectures. White paper. Intel Corporation (2010)

10. Reinhardt, D., Kaule, D., Kucera, M.: Achieving a scalable e/e-architecture using
autosar and virtualization. In: SAE World Congress (2013)

11. Sang, F.L., Lacombe, E., Nicomette, V., Deswarte, Y.: Exploiting an i/ommu vul-
nerability. In: 2010 5th International Conference on Malicious and Unwanted Soft-
ware (MALWARE), pp. 7–14. IEEE (2010)

12. Sugerman, J., Venkitachalam, G., Lim, B.H.: Virtualizing i/o devices on vmware
workstation’s hosted virtual machine monitor. In: Proceedings of the General
Track: 2002 USENIX Annual Technical Conference, pp. 1–14 (2001)

13. Wojtczuk, R., Rutkowska, J.: Following the white rabbit: Software attacks against
intel vt-d technology (2011)

14. Zhuravlev, S., Blagodurov, S., Fedorova, A.: Addressing shared resource contention
in multicore processors via scheduling. In: ACM SIGARCH Computer Architecture
News, pp. 129–142. ACM (2010)

E. Maehle et al. (Eds.): ARCS 2014, LNCS 8350, pp. 183–195, 2014.
© Springer International Publishing Switzerland 2014

3D DRAM and PCMs in Processor Memory Hierarchy

Krishna Kavi1, Stefano Pianelli2, Giandomenico Pisano2,
Giuseppe Regina2, and Mike Ignatowski3

1 University of North Texas, Denton, Texas, USA
2 University of Pisa, Italy

3 Advanced Micro Devices, Austin, Texas, USA

Abstract. In this paper we describe and evaluate two possible architectures
using 3D DRAMs and PCMs in the processor memory hierarchy. We explore
using (a) 3D DRAM as main memory with PCM as backing store and (b) 3D
DRAM as the Last Level Cache and PCM as the main memory. In each of these
configurations, since the proposed main memories are significantly faster than
today’s off-chip 2D DRAMs for main memory and either flash memory based
SSDs or magnetic hard drives for secondary storage, we will introduce
hardware assistance for virtual to physical address translation and to speed up
page-fault handling.

We use Simics, a full system simulator and benchmarks from both SPEC
2006 and OLTP suites to evaluate our designs. Our experiments measure energy
consumed and execution performance; we use CACTI for obtaining energy and
latency values for our memory configurations.

Index Terms: Memory hierarchy, 3D DRAMs, PCM, set-associate addressing,
energy modeling, memory latency modeling.

1 Introduction

The purpose of this paper is to investigate different alternatives for using 3D DRAMs
and PCMs in the memory hierarchy. More specifically, we will explore the following
organizations:

a). 3D DRAM as main memory (we call this CMM) and PCM as secondary
memory

b). 3D DRAM as Last Level Cache and PCM as main memory (we call this LLC).

Since 3D stacked DRAMs offer much lower access latencies (and higher
bandwidths) than off-chip 2D DRAMs, and PCMs offer similar advantages over other
technologies for secondary memory, we will assume hardware assistance for virtual to
physical address translation, as well as different ways of viewing pages and how page
faults are handled. Our feeling is that traditional memory management that relies on
several levels of page tables for translating virtual addresses to physical addresses will
effectively defeat the advantages of the new technologies. Moreover, since the time
needed to transfer pages between PCM and 3D DRAM will be significantly less than

184 K. Kavi et al.

that for transferring pages between magnetic disk drives and 2D DRAMs, kernel
intervention leading to process context switches on page faults should be minimized.

In this paper we will evaluate our memory organizations and associated hardware
needed to achieve our objective; we use execution performance and energy
consumption as evaluation metrics. We use several different benchmarks drawn from
both SPEC 2006 and OLTP suites, and vary benchmark mixes running on different
cores in a multicore system. We use Simics, a full system simulator for our
simulations, and CACTI for evaluating latencies and power requirements for our
organizations.

The rest of the paper is organized as follows. In the next section we will review
research that is very closely related to ours. In Section 3, we will describe the
underlying hardware components for our memory architectures. Section 4 shows
the results obtained using CACTI models for 3D DRAM memories along with the
additional hardware structures (primarily SRAMs) and PCM memories. Using values
for access latencies and power taken from CACTI simulations, we evaluate our
memory organizations for executing various benchmarks. The experimental setup is
described in Section 5. Section 6 analyzes the results.

2 Related Works

There are several methods used for stacking two or more dies: wafer-to-wafer bonding,
die-to-die bonding and die-to-wafer bonding with different kinds of overlays. We will
assume die-to-die technology with face-to-face overlays [7]. Stacking technology
allows for the reduction of wire lengths by introducing vertical connections between
dies called Through Silicon Vias (TSV) [6]. 3D stacked DRAMs appear to be an
obvious way to take advantage of the new technology, and overcome memory access
delays [8][9]. By using high capacity DRAM dies and using several die-to-die
connections we can greatly reduce memory access latencies and increase bandwidths
[10][11]. Several studies have shown that 3D DRAM memory may also reduce energy
consumed by applications while improving performance, particularly when the
memory layers are organized as True 3D [12]. In a True 3D DRAM organization, the 1 upper layers contain only DRAM bit-cells. Layer 1 contains only the control
logic such as sense amplifiers, row decoders, row buffers etc. In true 3D organization,
ranks and banks of DRAM cross multiple layers to reduce the length of data paths and
increase clock frequencies. In our work we assume that all the extra logic such as
SRAMs needed for our cache like indexing, row buffers, and other components of a
memory controller, are placed on the same logic layer (i.e. layer 1). In fact since layer
1 is dedicated to these functions we feel that it should have more than adequate area to
accommodate our requirements. We use CACTI to model True-3D organization and
obtain latencies and energy values for our memory organizations.

Qureshi et. al., [1] have studied the use of PCMs as main memory with a small 2D
DRAM as a buffer to both speedup accesses and reduce write-backs to PCM. In
particular, they focused their work to study the effect of overall system performance by
adding PCM as a complement to the DRAM memory. The DRAM buffer is organized
similarly to a hardware cache that is not visible to the OS, and is managed by the

 3D DRAM and PCMs in Processor Memory Hierarchy 185

DRAM controller. In our study, however, we evaluate different memory organizing
using 3D DRAM and PCM in the memory hierarchy. The study by Lee, et. al., [13] is
similar to that of Qureshi [1], in that they also use PCM as a replacement to DRAM as
main memory. Like Qureshi, Lee uses small DRAM based buffers between last level
caches and PCM, to reduce the amount of data written back to PCM. However, Lee
studies the use of multiple DRAM buffers instead of a single DRAM based cache.

Our previous studies [16] have provided an organization and named it Cache Main
Memory (CMM). The idea behind the CMM organization is that, since 3D DRAMs
have lower latencies and higher bandwidths, allowing them to appear both as cache
and as main memory can be advantageous. This duality makes the memory perfect
either for operations that are more efficient if they use cache like addressing (fast
address translation) or for operations that require main memory like organization
(DMA, shared pages, OS management of memory). Our previous studies were limited
since: (a) they did not provide details on the hardware needed, (b) they did not provide
results on energy consumption, (c) they used access latencies for 3D DRAM and PCM
memories that were simplistic and rely on average values, and (d) benchmarks did not
seem to fully stress the memory architectures. In this paper we have addressed these
limitations.

There have been other studies that are aimed at improving performance of PCM-
based memory system and reduce the amount of data written back to PCMs [2][3] [4],
[13]. These approaches are orthogonal to our studies since they can be applied within
our organizations.

3 Foundation of the Architecture

The cache like indexing mentioned above with CMM [16] designs allows us to
minimize the number of levels of page tables needed by the OS for translating virtual
addresses to physical addresses. We assume that OS will use one or two levels of page
tables and map a large virtually addressed region (or segment) to a smaller physical
region (segment) in main memory. We assume that a virtual segment has pages but
physical segments contain fewer than k pages – pages in a virtual segment compete for
pages in a physical segment similar to cache lines (see Figure 1).

In this paper we assumed 1024 pages per virtual segment, and use 64 pages per
physical segment. The sizes of virtual and physical segments can be varied based
on the size of the main memory, the number of page tables that must be looked
up during translation and the number of tag bits needed for cache-like
addressing of pages in a segment. SRAM structures store the virtual page
numbers associated with pages that are currently in these physical pages. We use
set associative search through the sets belonging to a physical segment to find the
desired page. Once found, the newly obtained physical address is stored in TLB
for future accesses; to further speedup the translation TLBs are used. Using larger
virtual segments will require more tag bits.

186 K. Kavi et al.

Fig. 1. Cache Like Indexing for Virtual Address Translation

3D-DRAM as LLC
In a configuration reported in this paper we explore using 3D DRAM as LLC (instead
of SRAM based caches), and PCM as main memory. 3D DRAM as last level cache
should be distinguished from traditional SRAM based caches. 3D LLC are divided into
two components:

1. One component built with SRAM logic, which implements cache-like indexing
and holds tags (usually on the logic layer of the 3D organizations).

2. The other component is implemented with DRAM logic and stores the actual
data contained in LLC

For very large DRAMs when used as LLC, the number of lines of data in LLC will
be large and thus the number of SRAM entries will also be very large. However, note
that most SRAM based level 3 caches in current processors require a large portion of a
chip (as much as 50%). Since we eliminate the traditional SRAM based level 3 cache,
we feel that the saved area can be used to build a SRAM to hold the tags for DRAM
based LLCs.

The actual data contained in the LLC will be located in the 3D DRAM. The SRAM
location with matching tags will be used as an index into DRAM to find the desired
data. When using 3D DRAM as LLC, the size of a single memory line is set to 1024
bytes, or 8 times larger than a typical cache line. The underlying memory controller
will transfer data equivalent to a cache line to 2 caches.

 3D DRAM and PCMs in Processor Memory Hierarchy 187

PCM
When 3D DRAM is used as LLC, PCM will be used as main memory and we propose
to use the same virtual to physical address translation described previously with the
CMM organization for accessing PCM pages (Figure 1). This requires SRAM based
tag structure (as with CMM organization described previously). For PCM as main
memory configuration, the internal organization of PCM is similar to a DRAM
organization using ranks, banks and row buffers.

4 Cacti Models

We modeled SRAM, PCM and 3D DRAM memories using CACTI (in particular we
used CACTI-3DD [15] to simulate 3D DRAMs), in order to obtain very accurate
design parameters for estimating delays and power requirements of the components
used in our architectures. More specifically we obtain values for: memory access times,
cycle times, area and dynamic power. We used all these parameters taken from CACTI
within our simulations for obtaining execution performance results and overall energy
consumed by benchmark applications. We explored different sizes and associatives for
TLBs and as can be seen from Figure 2, a 2048 entry 8-way associative TLB provides
a good compromise between performance and energy consumed by TLB hardware.

Fig. 2. TLB latencies and Power requirements

In addition, we use SRAM structure to contain tags representing (partial) physical
addresses of currently resident physical pages (see Figure 1). The size of the SRAM
depends on the size of the main memory, since a tag is stored in SRAM for each main
memory page. SRAM is also used when 3D DRAM is used as the Last Level Cache.
The size of the SRAM depends on the number of cache line in 3D DRAM. We use 8-
way associativity. Figure 3 shows the results for different SRAM sizes -- x-axis
represents DRAM sizes for which SRAMs contain tags.

188 K. Kavi et al.

Fig. 3. Evaluation of SRAM latencies and Energy

We also used CACTI to model 3D DRAM. We chose 8, 16 and 32 GB for our
DRAMs, but varied the number of ranks and banks. The number of channels has been
fixed to 1. This choice actually penalizes the memory parallelism but it also provide a
very simple entry-level 3D-DRAM for the True-3D configuration. We decided to use 4
ranks similar to the research described in [8] and [12]. The number of banks and the
number of dies have been varied in our experiments (see Figure 4). All the results
indicate designs with 8 dies (8 layers of DRAM cells) are not the best choice for our
organization: they consume more energy and cause longer latencies. We notice that
among 4 die alternatives, larger memories perform better with more banks: 16 banks
for 8 GB, 32 banks for 16 GB and 64 banks for 32 GB.

Fig. 4. CACTI models for 3D DRAM

Initially we explored available CACTI extensions for modeling PCM, such as the
NVSim [17]. However this tool proved to be not useful for our study because it only
simulates PCM at a bank level while we needed to simulate a complete PCM memory
device with multiple banks. So we followed the work of Qureshi [1]. Basically, if we
use a PCM with x GB, its delays and energies will be 4 times those of a 2D-DRAM
with x/4 GB capacity

 3D DRAM and PCMs in Processor Memory Hierarchy 189

5 Experimental Setup

To simulate the different memory architectures we described in this paper we used
Wind River Simics, a full system simulator. Simics includes several tools and modules
that can be used to model user-defined architectures and components. Since we are
only studying memory subsystem, the module of interest to us is the G-Cache. This
module was originally designed to simulate simple caches but can easily be expanded
to simulate any memory hierarchy.

We used benchmarks from SPEC 2006 and OLTP suites. Since we used a 4-core 86 64 “Hammer” system in our simulations, we created several benchmark mixes
(mixes of 4 benchmarks each) to test our architecture as shown in Table 1 and Table 2.
We will refer to each mix of 4 benchmarks by the name given in the first column of the
table1.

For L-1 and L-2 caches we used the same configurations as those of [16]. Per core
L-1 caches are 32KB, 128 byte lines and use 4 way associative; per cores L-2 caches
are 256KB, 8-way associative and 128byte lines.

Baseline

In order to evaluate the efficiencies of our proposed organizations we defined a
generous baseline system. The system includes an infinite 2D DRAM for main
memory. Thus it does not encounter page faults. However the system relies on slower
2D technology. The latencies and the energies modeled are taken from commercially
available DDR3 DRAMs with 1GB for each bank. Also the baseline uses traditional
4K pages (unlike 32KB pages used for 3D DRAM organizations of our work) and
relies on multiple levels of page tables for virtual to physical address translation. It
uses a finite sized TLB and thus can encounter penalties on TLB misses. We modeled
the baseline with TLB miss penalties using data for commercial systems using AMD
processors. We felt that using a very generous baseline allows us to see the true
benefits of new memory technologies.

Table 1. SPEC 2006 Benchmark Mixes

Mix Name Bench 1 Bench 2 Bench 3 Bench 4 Total

(GB)

Gobmk Gobmk Hmmer H264Ref Gromacs 0.046

Gamess Gamess Sphinx3 Tonto Namd 0.027

Sjeng Sjeng Libquantum Leslie3d Astar 0.192

Omnetpp Omnetpp Astar Calculix Gcc 0.140

Milc Milc Wrf Zeusmp Soplex 0.866

Zeusmp Zeusmp Leslie3d Gcc CactusADM 0.718

GemsFTD GemsFDTD Mcf Bwaves CactusADM 2.262

Mcf Mcf Zeusmp Milc Bwaves 1.656

1 Thus when we say ‘Gobmk’ or any other benchmark name, are actually referring to corresponding mix and

not a single benchmark application.

190 K. Kavi et al.

Table 2. OLTP Benchmark Mixes

Mix
Name

Bench1 Bench2 Bench32 Bench4 Total
(GB)

Auction
Mark

Auction
Mark

Auction
Mark

Sjeng Stream 20 25

Seats Seats Seats Sjeng Stream 20 25
Tatp Tatp Tatp Sjeng Stream 20 25

Epinions Epinions Epinions Sjeng Stream 20 25

6 Results and Analysis

A). CMM (3D DRAM as Main Memory)

In the first memory organization (or CMM that uses 3D DRAM as main memory) we
used different TLB configurations (capacities and associativity). Charts 1 and 2 depict
results obtained with the tested configurations, compared to the baseline, using
SPEC2006 benchmark mixes. For these experiments, we used a 8GB 3D DRAM since
the memory footprints for SPEC2006 benchmarks is relatively small. We explored
larger 3D DRAM sizes for OLTP benchmarks. Although the baseline consists of an
infinite 2D DRAM, the baseline does not always outperform our CMM. There are
several reasons for this. First, the benchmarks used have finite memory footprints,
often smaller than the 3D DRAM configurations we used - thus infinite 2D DRAM
offers no special advantage. Second, conventional off-chip 2D DRAMs are
significantly slower than 3D DRAMs. And baseline uses 4 KB pages (compared to 32
KB in 3D DRAM). This requires more frequent accesses to TLB and page tables for
address translations.

Chart 1. IPC - SPEC 2006 for CMM architecture (using different TLB configurations)

2 We used Sjeng and Stream benchmarks along with OLTP in these mixes to represent server environments

that may be presented with large footprint applications along with heavy processing load benchmarks.

 3D DRAM and PCMs in Processor Memory Hierarchy 191

It appears that for CMM (3D DRAM as main memory), 8-way 2048 entry TLB
performs better than other configurations. In subsequent experiments we will use this
TLB configuration. The chart shows that on average, this configuration performs 18%
better than the baseline.

Let’s now look at energy consumed. Although the baseline configuration contains
infinite DRAM, in order to estimate power values for the baseline (infinite 2D DRAM)
we used sizes that are comparable to the 3D DRAM used in CMM organization.
Looking at the Chart 2, it should be noted that even under this assumption (finite
energy consumption), our CMM system has comparable performance in terms of
energy requirements for SPEC2006 mixes. And most interestingly, TLBs and SRAM
structures needed for CMM consume less than 1% of the energy used by the CMM
memory system (detailed data not included in this paper, but similar observation can
be made from Chart 8).

Chart 2. Energy Consumption - SPEC 2006 for CMM architecture (using 2048 8-way TLB)

OLTP benchmarks are characterized by a large memory footprint, in the order of 20 25 , and represent Cloud applications. As can be expected, for these
applications the baseline's infinite DRAM becomes advantageous and outperforms
our CMM (see Chart 3). And within CMM, lager memory footprint applications
perform better with larger TLBs (Chart 3 shows data for different TLB sizes). Note
that having a large 3D DRAM is not always beneficial - in some cases the longer
latencies associated with larger 3D DRAMs can defeat the larger capacity (unless
more than 4 dies are used; we used 4 dies). This can be seen when 32 GB 3D DRAM
is used (which is more than sufficient to fully contain the OLTP benchmarks) the
performance, in terms of IPC is worse than the baseline. It should be noted that while
baseline does better than CMM, the performance differences are not significant. In
reality a practical 2D DRAM based system will face several additional delays due to
page faults.

192 K. Kavi et al.

Chart 3. IPC - OLTP for CMM architecture

Chart 4. Energy consumption – OLTP for CMM architecture

Let’s now consider energy performance for OLTP benchmarks. Chart 4 confirms
what was stated before: even though CMM power consumption is still greater than the
baseline, the values are within comparable range; in some cases, CMM actually has
lower energy values than the baseline. Note that the baseline energy values are based
on 2D DRAM sizes that are comparable to our 3D DRAM sizes used in CMM. If the
baseline included a magnetic disk as a backing store, the power requirements for that
configuration would be significantly greater than that for our organizations.

B). 3D-DRAM as Last Level Cache (LLC)

Charts 5 and 6 clearly show that our configuration that uses 3D DRAM as LLC and PCM
as main memory outperforms the baseline configuration (with infinite 2D DRAM).

 3D DRAM and PCMs in Processor Memory Hierarchy 193

Chart 5. IPC for SPEC 2006 for LLC Chart 6. IPC for OLTP for LLC

The execution performance gains are particularly impressive for mcf (SPEC2006)
and Tatp (OLTP)3. The average performance gains for SPEC2006 benchmark mixes
are . % and % for the OLTP mixes. An observation that should be
emphasized from the data shown above is that using larger than GB 3D DRAM for
LLC shows insignificant performance improvements, regardless how large the PCM
is. This may be in part because of our system, which has only 4 cores and the nature
of these benchmark programs. Our experiments show that GB 3D DRAM as LLC
and GB PCM as main memory is the best choice.

Looking at Charts 7 and 8, the significant energy consumed in this configuration is
due to the 3D DRAM (as LLC), but the energy consumed increases only marginally
when the size of the DRAM is doubled. This allows us to choose, depending on our
needs, the best alternative: for instance a greater last level cache may be more useful
when the application can use more cache capacity, or use smaller caches to save energy
and cost of the system.

Chart 7. Power consumption for SPEC 2006 Chart 8. Power consumption for OLTP

3 Note these names refer to benchmark mixes and not single benchmark.

194 K. Kavi et al.

7 Conclusions

Memory wall, which refers to the disparity of speeds between processors and
memories, is still a major problem limiting the performance that can be achieved with
modern processor technologies. Some new memory technologies may alleviate this
problem to some extent. They include 3D DRAM memories and Phase Change
Memories. These technologies present opportunities and challenges when they are
included in processor memory hierarchy.

In this paper we explored two different memory organizations for using 3D DRAMs
and PCMs. Each configuration has associated advantages and disadvantages, differing
in execution performance, energy consumed and cost. Our goal is to provide initial
data that may guide choices on how these new technologies can be used.

3D DRAM as LLC configuration, with PCM as the main memory, achieves best
results in terms of execution times, but consume more energy than the other
configuration. This is due to larger SRAMs needed to store tags for a large LLC (we
separate the tags form DRAM and store them in SRAM for fast access to tags).

The CMM (3D DRAM as main memory and PCM as secondary memory)
configuration require higher execution times than the previous case, but require lower
energies. This is expected because CMM uses a longer path to its data using larger
pages; at the same time, we needed smaller SRAMs. In this configuration, SPEC2006
benchmarks mixes achieve reasonably comparable results as the baseline, since they
exhibit smaller memory footprints, unlike OLTP benchmarks where CMM performs
worse than the baseline.

Acknowledgement. This work is supported in part by the NSF Net-Centric I/UCRC,
AMD and other industrial members

References

[1] Qureshi, M., Gurumurthi, S., Rajendran, B.: Phase Change Memory – from Devices to
Systems. M. & C. Publishers, Morgan & Claypool Publishers (2011)

[2] Qureshi, M., Srinivasan, V., Rivers, J.A.: Scalable high performance main memory
system using phase change memory tecnology. In: Proceedings of ISCA 2009, pp. 24–33
(2009)

[3] Qureshi, M.: Improving read performance of phase change memories via write
cancellation and write pausing. In: Proceedings of HPCA 2010, pp. 1–11 (2010)

[4] Quereshi, M., Franceschini, M., Jagmohan, A., Lastras, L.: PreSET: Improving
performance of phase change memories by exploiting asymmetry in write times. In:
ISCA 2012, pp. 380–391 (2012)

[5] Wulf, W.A., McKee, S.A.: Hitting the Memory Wall: Implications of the Obvious.
Computer Architecture News 23(1), 20–24 (1995)

[6] Lau, J.: Through-Silicon Vias for 3D Integration. McGraw-Hill Professional (2012)
[7] Lecarpentier, G., Vos, J.D.: Die 2 Die Bonding, SET S.A.S. (Smart Equipment

Technology), 131 Impasse Barteudet, 74490 Saint Jeoire, France & IMEC, Kapeldreef
75, Leuven B-3001, Belgium (2012)

 3D DRAM and PCMs in Processor Memory Hierarchy 195

[8] Loh, G.: Computer architecture for Die Stacking. In: International Symposium on VLSI
Technology, Systems and Applications, Hsinchu, Taiwan, pp. 1–2 (2012)

[9] Liu, C.: Bridging the processor-memory gap with 3D IC technology. IEEE Design and
Test, 564–565 (2005)

[10] Sun, H.: 3D DRAM design and application to 3D multicore systems. IEEE Design &
Test of Computers, 36–46 (2009)

[11] Weis, C.: Design space exploration for 3D-stacked DRAMs. In: Proceedings of DATE-
11 (2001)

[12] Loh, G.: 3D-Stacked Memory Architectures for Multi-core Processors. In: 35th
International Symposium on Computer Architecture, ISCA 2008, pp. 453–464 (2008)

[13] Lee, B.C., Ipek, E., Mutlu, O., Burger, D.: Architecting phase change memory as a
scalable dram alternative. Sigarc Comput. Archit. News 3(37), 2–13 (2009)

[14] Barr, T., Cox, A., Rixner, S.: Translation caching: skip, don’t walk (the page table). In:
ISCA 2010, Saint-Melo, pp. 48–59 (2010)

[15] Wilton, S.J.E., Jouppi, N.: CACTI: an enhanced cache access and cycle time model.
IEEE Journal of Solid-State Circuits 31(5), 677–688 (1996)

[16] Sherman, J., Kavi, K., Potter, B., Ignatowski, M.: A Multi-core Memory Organization for
3-D DRAM as Main Memory. In: Kubátová, H., Hochberger, C., Daněk, M., Sick, B.
(eds.) ARCS 2013. LNCS, vol. 7767, pp. 62–73. Springer, Heidelberg (2013)

[17] Xiangyu, D., Cong, X., Yuan, X., Norman, P.J.: NVSim: A Circuit-Level Performance,
Energy, and Area Model for Emerging Nonvolatile Memory. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 31(7), 994–1007 (2012)

A Service-Oriented Architecture for Virtualizing

Robots in Robot-as-a-Service Clouds

Anis Koubaa

Prince Sultan University, Riyadh, Saudi Arabia
CISTER/INESC-TEC, ISEP, Polytechnic Institute of Porto, Porto, Portugal

COINS Research Group, Riyadh, Saudi Arabia
akoubaa@coins-lab.org

Abstract. Exposing software and hardware computing resources as ser-
vices through a cloud is increasingly emerging in the recent years. This
comes as a result of extending the service-oriented architecture (SOA)
paradigm to virtualize computing resources. In this paper, we extend
the paradigm of the SOA approach to virtualize robotic hardware and
software resources to expose them as services through the Web. This al-
lows non-technical users to access, interact and manipulate robots simply
through a Web browser. The proposed RoboWeb system is based on a
SOAP-based Web service middleware that binds robots computing re-
sources as services and publish them to the end-users. We consider robots
that operates with the Robotic Operating System (ROS), as it provides
hardware abstraction that makes easier applications development.We de-
scribe the implementation of RoboWeb and demonstrate how researchers
can use it to interact remotely with the robots. We believe that this work
consistently contributes to enabling remote robotic labs using the cloud
paradigm.

Keywords: Cloud Robotics, Service-Oriented Architecture, SOAP,
Web Services, Robot Operating System (ROS), Remote Robotic Labs.

1 Introduction

Cloud robotics have been attracting a lot of interest in the last three years
[1–5]. In a general sense, this emerging paradigm consists in integrating cloud
computing concepts and other Internet Web-centered technologies to leverage
converged infrastructures and shared services for robotics [6]. Cloud robotics are
very promising to be the most effective way to create and monitor robotic ap-
plications, in particular for service robots, in different fields including security
and surveillance, remote robotic labs, and home and industrial automation. In-
deed, on the one hand, robots will be able to go beyond their limited processing
capabilities and take profit from Internet computing resources. On the other
hand, robots can be accessed anywhere and anytime through Web interfaces.
Several recent works have proposed different designs and implementations for
cloud robotics [2, 4, 7, 6, 8]. With reference to these works [1], the robotic cloud

E. Maehle et al. (Eds.): ARCS 2014, LNCS 8350, pp. 196–208, 2014.
c© Springer International Publishing Switzerland 2014

A Service-Oriented Architecture for Virtualizing Robots 197

can play two different roles. The first role is to act as a virtualization middle-
ware, where service-oriented technologies are used to build virtual environments
of robotic ecosystem through Web services, which allow the users to access the
robots through Web browsers and Internet utilities. The virtualization of robotic
ecosystem through Web services contributed to offering the Robot as a Service
(RaaS) model [1, 7]. For instance, in [1], the authors designed and implemented
an service-oriented framework of RaaS model for both Windows and Linux oper-
ating systems using Web 2.0 technologies and complies with common service and
development platforms standards. The second role that the robotic cloud plays
is computations offloading, which consists in migrating intensive computations
and processing tasks from the robot to the cloud computing infrastructure [9, 2].
This is particularly interesting for mobile robots that might have low compu-
tation and energy capabilities to perform computationally-intensive tasks, such
as 3D localization and mapping, image processing, object recognition, etc. For
instance, in [9], the authors proposed a cloud robotics system for recognizing
and grasping common household objects by sending 2D images captured by the
robot to the cloud, which returns semantic information about the object.

In this paper, we consider the design and implementation of a cloud robotics
system of the first category, i.e. virtualization layer. Indeed, the idea of this
work is triggered by our need to develop a remote robotic lab to allow different
students and researchers outside the University and/or abroad to access and use
our robotic platforms located in Saudi Arabia. Our main objective is to make
our robots accessible through the Internet for authorized users through Web
browsers. We would like to allow students and researchers to access, manipulate,
interact and perform experiments with robots living behind the “cloud”. For this
purpose, we devised a service-oriented framework based on SOAP Web services
for mapping hardware and software robotic resources as services and publish
them to the end-users as Web services. We considered robots operating with
the Robotic Operating System (ROS) [10], which also provides an abstraction
layer, at the level of the operating system, of the hardware resources of the
robots. The main advantage of ROS is that it allows to manipulate sensor data
of the robot as a labeled abstract data stream, called topic, without having to
deal with hardware drivers. Several previous works have also proposed different
architecture for cloud robotics and remote robotic labs, which we present and
discuss their advantages and limitations in details in Section 2, and we clarify
the difference of our proposed system as compared to other existing systems.

The remainder of this paper is as follows. Section 2 surveys the most relevant
works on cloud robotics and discusses their contributions to the field. Section 3
describes the system and software architecture of the RoboWeb system starting
from requirements specification to system design. In Section 4, we present the
implementation, deployment and experimentation with the RoboWeb system
and we demonstrate its features. Section 5 concludes the paper and discusses
future works.

198 A. Koubaa

2 Related Works

The concept of cloud robotics has been increasingly expanding since the last
three years. Basically, the cloud robotics research trend can be roughly classified
into two categories: (i.) using cloud for virtualizing robotic resources (e.g. [1, 7]),
(ii.) using cloud for offloading heavy computations from the robot to the cloud
(e.g. [9]). In what follows, we present the most relevant works over the past four
years in the increasing chronological order of their publications dates.

In [1], the authors exploited the Service Oriented Architecture (SOA) tech-
nology to design and implement a prototype of the Robot as a Service (RaaS)
cloud computing model. The design complies with the common service stan-
dards, development platforms, and execution infrastructure, following the Web
2.0 principles and participation. The authors also demonstrated through exper-
iments that their system is effective, flexible, and portable.

DAvinCi was proposed in [2] as a cloud computing software framework for
service robots. The goal of this system is to offload intensive workloads from the
onboard robots’ resources to a backend cluster system in the cloud. The idea was
to investigate the possibility of parallelizing the execution some complex robotic
algorithms, and applied it to the FastSLAM algorithm as a proof of concept. The
DAvinCi architecture was implemented using the open source Hadoop cluster
and ROS as messaging framwork for the robotic ecosystem. The deployment did
not consider network latencies and delays, which turns the results limited to
ideal operational conditions.

In [11], the authors designed a robot cloud center to overcome the limita-
tion in capacity, versatility and extensibility of robotic applications, and to meet
the diverse requirements of the end-users requesting robot resources according
to their demand. They also designed a Robot Resources Scheduler to minimize
the task execution cost while still meeting the end-users requirements. Robot
scheduling simulation proved that robots, especially whose cost-capability den-
sity is low, can be used more efficiently with the scheduler. In [12], the authors
have proposed the RSi Research Cloud (RSi-Cloud) that seamlessly integrates
robotic services with the Internet.

In [4], the authors described their vision of cloud robotics and proposed differ-
ent possible architectures to address the constraints faced by current networked
robots. The motivation of the work was to allow the robots to share information
and computation resources among each other and cooperate through the cloud to
acquire new knowledge and behaviors. The cloud artchitecture design takes into
account two types of communication paradigms namely the machine-to-machine
(M2M) communications among participating robots, and the machine-to-cloud
(M2C) communications between the robots and the cloud. The authors also pro-
posed three elastic computing models for cloud robotics, namely the peer-to-peer
model, proxy-based model and the clone-based model.

In [13] and [7], the authors made interesting extensions to the ROS middle-
ware, namely rosjs, which is a JavaScript library for ROS that exposes the robot
functionalities as web services, and rosbridge, which is a light weight protocol
that exposes robot sensor data and controllers, through web sockets accessible

A Service-Oriented Architecture for Virtualizing Robots 199

anywhere over the Internet, and provides security mechanisms and runtime tools
for remotely manipulating the robots. Similarly to one of the objective of our
work, The rosjs and robridge were proved to enable remote laboratories, and a
prototype was implemented and tested for monitoring iRobot Create and PR2
robots. The difference with our work is that our approach is based on a SOAP-
based service oriented archirtcture, which represents a complementary solution
to rosjs and rosbridge.

3 RoboWeb System Architecture

In this section, we describe the system architecture and the software develop-
ment process of the RoboWeb system. We start by specifying the functional and
non-functional requirements of RoboWeb, then, we describe the system archi-
tecture and software design. RoboWeb differs from existing systems in that it
leverages SOAP-based Web services for building the virtualization layer of the
cloud robotic infrastructure.

3.1 Requirements Specification

As a research group installed in Saudi Arabia at Al-Imam Mohamed bin Saud
University and Prince Sultan University, we have several robotic platforms in-
cluding four Turtlebot robots, two Wifibot Lab robots, two unmanned aerial
vehicles (UAVs), namely the AscTec Pelican and AscTec FireFly, which are
cutting-edge and expensive robotic technologies, and several other sensor and
robotic devices. Our objective is to allow our students and researchers abroad
or from outside the University during non-working hours to access and use the
robots in a ubiquitous and seamless way, i.e. anywhere and anytime, through the
Internet. This lead us to design a service-oriented cloud robotics system, namely
RoboWeb.

Basically, the idea of RoboWeb is to develop a service-oriented middleware
that plays the role of the virtualization layer. This layer binds software and hard-
ware robotic resources as Web services allowing authorized users to subscribe
to the published services of interests, through which they can “play” with the
robots. Two Web services options were possible: SOAP approach or the REST-
ful approach. We had to make a milestone decision at this point. Finally, we
have opted for the SOAP approach for several reasons. First, SOAP provides a
well-structured transctional model between the client (service subscriber) and
server (service publisher) that allows to define a contract between both ends.
Indeed, in contrast to SOAP, REST is basically an architectural style based on
the HTTP protocol rather than a SOA middleware as it is the case with SOAP
Web services. Second, SOAP Web services enables the definition of composable
and complex Web services in contrast to REST. This is an important require-
ment in the design of RoboWeb as we need to take advantage of the flexibility
of the SOAP approach to define different service/abstraction layers, which help
achieving virtulization more effectively.

200 A. Koubaa

With respect to robots to be supported by the system, we considered robotic
platforms operating with ROS. The adoption of ROS has several advantages.
First, ROS is a free and open-source middleware for robots that acts as a meta
operating system and builds a hardware abstraction layer. This makes the pro-
gramming of ROS-enabled robots much easier as software developers will not
have to deal with hardware drivers and interfacing. In fact, ROS already pro-
vides comprehensive and well-structured libraries and drivers for several robots
and sensor devices, and publishes sensor data (camera frames, laser range data,
IMU data, motors speeds, etc.) simply as labeled data streams called topics. Sec-
ond, the control of robots through Web services will be much easier when ROS
is used as the Web server will only have to deal with topics rather than with
hardware resources. Indeed, ROS provides another level of resources virtualiza-
tion at the operating system level. Third, ROS complies with component-based
software development, which makes ROS-based system modular, extensible and
flexible. This is particularly important as architectural design since services can
be mapped to software components making easier their composition, addition
and removal.

We also derived the following four (most important) non-functional properties
for the RoboWeb system:

– Service-Orientation: This is the most important requirement in our sys-
tem as we need to map any robotic resource or operation as a service. The
SOA approach allow to easily extends the capabilities and functionalities of
the system by dynamically adding services. The users will be able to manip-
ulate robots in the same way they use any Web service. In addition, robot
software developers can reuse available services to design more complex com-
posite services.

– Reliability: The system must be reliable in different perspective. First, it
must be available such that it ensures continuous connectivity with users at
anytime. In addition, it must provide consistent view of the robot status to
the users. For example, the system should consistently report in real-time
the list of connected robots and change the connectivity status each time a
robot join or leave the cloud.

– Modularity: The system should be easily extensible by dynamically adding/
removing components to/from the system. The modularity ensures the in-
dependence of the different modules which makes their integration more
effective. This is very appropriate for service composition and orchestration
to build more complex Web services for manipulating the robots. For in-
stance, making experiments with a robot can be seen as a complex Web
service composed of several other Web services including accessing robot,
running a program, getting the list of nodes and topics, etc. The modularity
has also the advantage of allowing software reuse.

– Real-Time: Once the user is connected to a particular robot, it is important
that the system ensures small and controlled delays. Indeed, the user must be
kept up-to-date with latest status updates of the robot for effective control
and monitoring. Large delays and delay variations (jitter) will compromise

A Service-Oriented Architecture for Virtualizing Robots 201

Robot Operating System

Web-based Interface

FTP Server Database
Server

Internet

WiFi WiFi

RoboWeb Server

Web Service
Server

PHP Server HP S

rosPHP.php

Fig. 1. High-Level System Architecture

the user experiments. Delays must be kept as low as possible to ensure
interactivity between the user and the robot.

3.2 System Architecture Design

In this section, we describe the RoboWeb system architecture and discuss the de-
sign considerations. Figure 1 depicts a high-level overview of the system architec-
ture. The bottom layer consists of the robotic ecosystem that comprises
ROS-enabled robots, each of them runs its own ROS master node. Mobile robots
are dotted with wireless communication capabilities allowing them to collaborate
for performing certain missions on demand. the ROS platform is used for sensor
data collection and streaming among the robot agents and the end-users (clients).

The top layer defines the Web interfaces for users to access and manipulate the
robots remotely. We implemented a PHP library, called rosPHP, to act as an ab-
straction layer on top of ROS providing the required ROS functionalities to inter-
actwithROS-enabled robots.The rosPHP layer allows the interactionbetween the
end-users and the robots thoughSOAPWeb services andprovides several function-
alities including connection to the Web server, getting the list of available
ROS-enabled robots, gettingROSnodes and topics of selected robots, getting infor-
mation about robots sensors, publishing and subscribing to a ROS topic, creating
new ROS package, uploading, running and stopping ROS programs.

The core part of the system is the RoboWeb service broker. It basically include
three main components: (1) the Web service server, which is required to deploy
robotic Web services and respond to end-users requests. The Apache Axis Web
server for development and deployment of SOAP Web services. (2) the back-
end MySQL database that is used to store information about the whole cloud
including robots, users, programs, reservations, experiments, etc. and (3) the
FTP server, which is used to upload files, namely experiments output, user
programs, and robot description files. The robot description files are XML files
that contain meta-data about the robots and their sensors.

202 A. Koubaa

Robot Side Server Side End-user Side

WWW
SOAP /

XML

Upload program on
robot

PHP Server

Run / stop program
on robot

Create package on
robot

Publish on topic

Subscribe on topic

Get robot sensors

Get robot nodes /
topics

Teleop Widget

ro
sP

H
P.

ph
p

HTML

mjpegcanvasjs

Web Service Server

Upload program on
robot

Run program on
robot

Stop program

Publish on topic

Subscribe on topic

Hardware Interface ROS Middleware

R
O

S
 C

o
n

n
ec

ti
o

n

MJPEG Server

ROS Master

ROS Tools

ROS Libraries

S
S

H

 - Building ROS nodes
 - Running ROS nodes
 - Publish On Topic
 - Subscribe On Topic

 - Arm Controller
 - Head Controller
 - Navigation
 - Building Map

S
C

P

WWW
HTTP

WWW
HTTP

Upload files

Manage database

FTP Server

DataBase Server

F

D

Sensors

 - Camera
 - Laser Scanner

Actuators

 - Arms
 - Head

Controller

 - CPU
 - Memory

 - Base

Drivers

 - Camera Driver
 - Laser Scanner
 Driver

Software Interface

Robot
Registration

Ping on robot

AJAX

WWW
HTTP
WWW

Interact with ROS-
enabled robots

WWW
HTTP

WWW
FTP

WWW
HTTP

WWW
SOAP /

XML

WWW

Fig. 2. Low-Level System Architecture: The figure presents four main parts of the
RoboWeb System. The End-User side uses a AJAX interface to interact with ROS-
enabled Robot through a PHP Server (rosPHP) the implements the core functionalities
of ROS. The rosPHP server communication with the Web Service server that directly
interfaces with ROS middleware installed on robots through SSH and SCP protocols to
perform requested commands submitted by the user and ensure sending back responses
to the end-user side.

Figure 2 presented a more detailed view of the system architecture and its
subsystems.

The robot side of the system includes the hardware interface that consists of
robot hardware resources (i.e. sensor, actuators, controllers) and their drivers.
This interface is abstracted by the ROS middleware that provides a first level of
virtualization to all robotic hardware resources. Indeed, any sensor or actuator
data is provided by ROS as a a stream of data that can be manipulated by any
client that subscribes to that data. ROS manages the hardware through ROS
connection which provides tools and libraries required to control and manage
hardware and software interfaces. The MJPEG server is defined as a ROS pack-
age that streams image topics captured from the robot camera ROS using the
HTTP protocol, so that it can be displayed by any browser. The software inter-
face is responsible for the robot auto-registration to the system. We developed
a program that allows a robot to register to the RoboWeb system and publishes
the services that it provides. In the server side, the Web service server interacts
with the ROS middleware through the SSH secure communication protocol to
execute commands or programs on the remote robot. On the other hand, it uses
the Session Control Protocol (SCP) to transfer computer files between the server
and to run program on the remote robot. We also consider the PHP server which
essentially includes three main parts. The first part consists of the rosPHP li-
brary, which represents a PHP layer that defines ROS and network commands

A Service-Oriented Architecture for Virtualizing Robots 203

to be executed on the robot such as upload program to robot, run a ROS node
on the robot, stop a ROS node, publish a ROS topic, create a ROS package, get
robot sensor information, subscribe to a ROS topic and ping a robot, and tele-
operate the robot. the rosPHP layer communicates with the Web service server
via SOAP/XML protocol, and also define methods to access FTP and database
servers via FTP and HTTP protocols.

The end-user side consists of the user-interface which uses AJAX to interact
with PHP server. It also uses the mjpegcanvasjs, a JavaScript tool that allows
the user to easily display, manage and modify ROS image streams received from
MJPEG sever via HTTP.

4 Implementation and Deployment

4.1 Hardware and Software Suits

To demonstrate the feasibility of our architecture, we developed a complete pro-
totype of the RoboWeb application and tested on a wireless local area network.
The Web Service server was implemented on a computer laptop with Intel(R)
Core(TM) i3 CPU, 4.00 Go RAM, and Ubuntu 12.04 OS, running Apache Axis
(Apache eXtensible Interaction System) Web service framework for generating
and deploying Web service applications; Apache Tomcat, which provides a Java
HTTP web server environment for Java code (including Servlets and JSP) to
run in; and Eclipse IDE for software development.

The front-end user interface provides an easy-to-use and intuitive GUI to in-
teract with the robots living behind the cloud. It was implemented using: (i.)
AJAX client side scripting technology for ensuring asynchronous interaction with
the rosPHP server library that we developed. It provides the benefit of asyn-
chronous communication with the server seamlessly in the background without
interference with the display and the behavior of the web page; (ii.) HTML5
Web Workers technology to take benefit from its multi-threading capability in
particular for subscribing to ROS topics; indeed, Web Workers technology allows
the execute and run multiple JavaScript scripts in the background of a web page
independently of other user-defined scripts, and enables to perform parallel and
computationally expensive tasks without interrupting the user interface. This
is particularly useful in our RoboWeb system as a robot may independently
subscribe to or publish several ROS topics that must be handled with different
threads in the user-interface; (iii.) mySQL triggers and procedures to manage
the information and reservations of the robots; and (iv.) JQuery and CSS for
the dynamicity and the design of the interface.

The back-end database was also implemented using the mySQL 5.5 server.
The FTP server was set-up on the same computer laptop using the vsftpd 3.0
server (Very Secure FTP Daemon), which is an FTP server for Unix-like systems,
and represents the default FTP server for the Ubuntu OS. Regarding the PHP
server, we have installed PHP5 on the same computer laptop.

As for the robotics hardware, we tested our RoboWeb prototype with two
ROS-enabled robots, namely the TurtleBot 2.0 robot and the Wifibot Lab V2

204 A. Koubaa

robot. Any other ROS-enabled robots can easily be added to the RoboWeb
system as will be explained in the deployment subsection.

4.2 Deployment

In this subsection, we provide step-by-step guidelines on the deployment of the
RoboWeb system through illustrative examples and we demonstrate how to use
it for accessing and manipulating ROS-enabled robots.

The first step in deployment consists in setting-up and configuring the back-
end system of the RoboWeb cloud, that is configuring the robots, running their
ROS middleware and setting-up their networking configurations including the
IP addresses, the IP port numbers, the IP Addresses of the ROS Masters and
its port numbers. These settings are crucial for the ensuring the communication
between the ROS-enabled robots and the system. Second, at its startup, the Web
Service server will check and discover existing robots in the cloud automatically.
Actually, once a robot joins the cloud, it uploads its description file on the FTP
server. Then, it registers itself in the back-end database, or updates its status
and IP address if it has already been registered. At this instance, the robots
are considered as active and accessible to the end-user interface through the
RoboWeb cloud. Finally, the robot invokes a web service that periodically tests
its connectivity. This web service tests the robot connectivity every 30 seconds.
If the robot disconnects or fails, the web service will attempt three times testing
the robot connectivity: 180, 300 and 600 seconds later. If the robot remains still
disconnected, the web service will deactivate the robot by updating its status in
the database to be inactive, notify the administrator by email, and stop testing
the robot connectivity. In what follows, we present the main functionalities at
the user side.

1. Register and authenticate: First, the end-user is required to create an
account to be authorized to access the robotic resources. Once the registra-
tion request is submitted and approved by the administrator, the end-user
must authenticate to use the system functionalities. Non-authenticated users
are only able to get information about active robots in the cloud. They are
not allowed to reserve robots or perform experiments.

2. Browse the list of active robots: Once authenticated, the end-user is
allowed to obtain and browse the list of active robots (i.e. already connected
with the Web Service server) with information including the list of avail-
able ROS topics and ROS nodes, robot sensors (camera, laser data), IP
address, and status. The top half of Figure 3 depicts the list of robot cate-
gories (TurtleBot 2.0, Wifobot Lab V2) supported by the RoboWeb robotic
prototype.

When the end-user selects a robot category, all active robots that belong
to this category will be displayed. Then, the end-user can get information
of a given robot including (1) robot description, (2) list of available ROS
Nodes, and (3) list of available ROS Topics. The bottom half of Figure 3
shows the information about the selected robot. It is also possible for a user

A Service-Oriented Architecture for Virtualizing Robots 205

Fig. 3. Robot Description Interface

to look at the list of ROS topics and the list of ROS nodes of the selected
robot, as illustrated in Figure 4. This interface allows the user to indentify
the different ROS nodes and topics that he might need in his application and
helps him choosing the most appropriate robot for his experiments before
proceeding to the reservation.

Fig. 4. List of Available ROS Nodes and ROS Topics in the Selected Robot

3. Reserve Robot: After browsing the list of robots and identifying currently
active robots and their specifications, the end-user may reserve a robot to use
for experimentation and/or remote manipulation. The reservation process
consists in booking the requested robotic platform for a particular reservation
date and time. The RoboWeb reservation system is able to check possible
booking conflicts and only propose the user with available dates/times for
the available active robots.

4. Perform Experiment: Once an authenticated user has successfully booked
a robot, he will be allowed to access and use that reserved robot for running

206 A. Koubaa

his experiments at the allocated time slot. Authorized users are allowed to
interact with and manipulate a given robot by uploading and running a ROS
program, in addition to remotely controlling and monitoring it. For safety
of execution, experiments should be run with the assistance of a local tech-
nical staff to avoid hazardous manipulation and control of the robot in the
cyber-lab space. Figure 5 shows the ‘ ‘Robot Experiment Interface”, which
provides information concerning the selected robot, the booked period, the
robot camera video streams, and the list of ROS topics. The Robot Exper-
iment Interface also shows buttons to upload, run, and stop ROS programs
on reserved robot. The end-user is allowed to publish and subscribe to any
of the available ROS topics. He also allowed to send rospy commands (ROS
Python) to control the robot. Execution results are displayed in the output
area in real-time.

Fig. 5. Robot Experiment Interface

Fig. 6. System Fault-Tolerance: The figure shows an error message when the server
stops working for any reason, warning the user and requesting him to contact the
administrator

For maintaining connectivity with the server, the client system controls con-
tinuously whether the web server is working, and whether the reserved robot
is still connected and active. The green light on the right side of the name of

A Service-Oriented Architecture for Virtualizing Robots 207

the reserved robot indicates that the robot is still active. When the connec-
tion is lost, the end-user will be updated by changing the connection color
to the gray. Figure 6 displays the warning messages sent by the system to
alert the end-user when a problem, with the web server or the robot, occurs.

5 Conclusion

In this paper, we presented RoboWeb, a SOAP-based service-oriented archi-
tecture that virtualizes robotic hardware and software resources and exposes
them as services through the Web, contributing to the evolving concept of cloud
robotics. The major contribution of this paper lies in the integration of different
Web services technologies with the Robot Operating System (ROS) middleware
to allow for different levels of abstraction (multi-layer architecture), ensuring
more modularity and flexibility of the deployment. We have also demonstrated
the feasibility and the added value of RoboWeb through a complete prototypic
implementation.

Although we believe that this work provides a consistent step towards the
future cloud robotics paradigm, we are currently planning and working on ex-
tending the RoboWeb system design and deployment in several perspectives.
First, we aim at extending the deployment to the Internet rather than on a local
area network. Proxy servers can be used for that purpose. Furthermore, we aim
at looking into more depth into security issues, in particular, investigating po-
tential attacks and threats that might compromise the robots’ cloud operation,
and undertake appropriate preventive measures. Finally, the RoboWeb system
should allow the user to reserve and use more than one robot to be able to deploy
multi-robot applications.

Acknowledgment. This work is supported by the iroboapp project “Design
and Analysis of Intelligent Algorithms for Robotic Problems and Applications”
[14] under the grant of the National Plan for Sciences, Technology and Innovation
(NPSTI), managed by the Science and Technology Unit of Al-Imam Mohamed
bin Saud University and by King AbdulAziz Center for Science and Technology
(KACST).

The author would like to thank Fatma Ellouze for her excellent performance
in this work in the context of her graduation project and her outstanding work
in the implementation of the RoboWeb system.

Also, the author would like to thank Rihab Chaari, Dr. Slim Kallel and Dr.
Wajdi Louati for the technical support they provided.

References

1. Chen, Y., Du, Z., Garćıa-Acosta, M.: Robot as a service in cloud computing. In:
Fifth IEEE International Symposium on Service Oriented System Engineering.
IEEE (2010)

208 A. Koubaa

2. Arumugam, R., Enti, V.R., Bingbing, L., Xiaojun, W., Baskaran, K., Konga, F.F.,
Meng, K.D., Kumar, S., Kit, G.W.: Davinci: A cloud computing framework for ser-
vice robots. In: 2010 IEEE International Conference on Robotics and Automation
(ICRA), pp. 3084–3089 (2010)

3. Waibel, M., Beetz, M., Civera, J., D’ Andrea, R., Elfring, J., Galvez-Lopez, D.,
Haussermann, K., Janssen, R., Montiel, J.M.M., Perzylo, A., Schiele, B., Tenorth,
M., Zweigle, O., van de Molengraft, R.: A world wide web of robots: Roboearth.
IEEE Robotics and Automation Magazine (2011)

4. Hu, G., Tay, W.-P., Wen, Y.: Cloud robotics: architecture, challenges and applica-
tions. IEEE Network 26(3), 21–28 (2012)

5. Kamei, K., Nishio, S., Hagita, N., Sato, M.: Cloud networked robotics. IEEE Net-
work 26(3), 28–34 (2012)

6. Lee, J.: Project report: web applications for robots using rosbridge (2012)
7. Osentoski, S., Pitzer, B., Crick, C., Graylin, J., Dong, S., Grollman, D., Suay,

H.B., Jenkins, O.C.: Remote robotic laboratories for learning from demonstration.
International Journal of Social Robotics, SORO, special issue on Learning from
Demonstration (2012)

8. Yang, T.-H., Lee, W.-P.: A service-oriented framework for the development of home
robots. International Journal of Advanced Robotic Systems (2013)

9. Kehoe, B., Matsukawa, A., Candido, S., Kuffner, J., Goldberg, K.: Cloud-based
robot grasping with the google object recognition engine. In: 2013 IEEE Interna-
tional Conference on Robotics and Automation, ICRA (2013)

10. Quigley, M., Conley, K., Gerkey, B.P., Faust, J., Foote, T., Leibs, J., Wheeler, R.,
Ng, A.Y.: Ros: an open-source robot operating system. In: ICRA Workshop on
Open Source Software (2009)

11. Du, Z., Yang, W., Chen, Y., Sun, X., Wang, X., Xu, C.: Design of a robot cloud
center. In: 2011 10th International Symposium on Autonomous Decentralized Sys-
tems (ISADS), pp. 269–275 (2011)

12. Kato, Y., Izui, T., Murakawa, Y., Okabayashi, K., Ueki, M., Tsuchiya, Y., Narita,
M.: Research and development environments for robot services and its implemen-
tation. In: 2011 IEEE/SICE International Symposium on System Integration (SII),
pp. 306–311 (2011)

13. Osentoski, S., Jay, G., Crick, C., Pitzer, B., DuHadway, C., Jenkins, O.C.: Robots
as web services: Reproducible experimentation and application development using
rosjs (2011)

14. iroboapp: Design and analysis of intelligent algorithms for robotic problems and
applications, http://www.iroboapp.org

http://www.iroboapp.org

Towards Code Safety with High Performance

Ghazaleh Nazarian1, Luigi Carro2, and Georgi N. Gaydadjiev3,1

1 Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology, Mekelweg 4, 2628 CD Delft, The Netherlands

g.nazarian@tudelft.nl
2 Instituto de Informatica, Universidade Federal do Rio Grande do Sul, Av. Bento

Gonçalves, 9500,Porto Alegre, Brazil
carro@inf.ufrgs.br

3 Dept. of Computer Science and Engineering, Chalmers University of Technology,
Rannvagen 6, Goteburg, Sweden

georgig@chalmers.se

Abstract. Reliability is a major issue for safety-critical embedded
systems such as biomedical implants. In such systems, hardware fault
tolerance techniques are usually not available in off-the-shelf processors,
because of the intrinsic energy costs of hardware duplication or triplica-
tion. As an alternative, software schemes based on compiler transforma-
tions are used for error detection and recovery. A common software error
class caused by hardware transient faults is Control-Flow Errors (CFEs).
In this paper we demonstrate how a new technique based on software
instrumentation can benefit from loop-unrolling, with huge impact on
control-flow reliability. We show the impact of loop-unrolling on fault-
coverage and performance of these schemes. Thanks to the proposed ap-
proach, significant fault-coverage concerning CFE can be obtained with
no extra costs, and even faster than other available techniques with the
same fault-coverage level.

1 Introduction

Traditionally the most important concern in digital systems design is perfor-
mance. On the other hand, with technology advances, the ongoing trends of
shrinking feature sizes and increasing chip density have made processors more
susceptible to transient faults [1]. As a result, reliability is emerging as another
important design criterion especially for safety-critical embedded systems such
as biomedical implants. In these systems, operating on batteries, another very
important criterion is the overall energy consumption. There is a large body
of research on hardware optimizations for performance, reliability and power-
consumption [2] [3] [4]. Given the energy constraints, hardware optimizations
can not be used for off-the-shelf processors in many systems. Software optimiza-
tions are alternative techniques for reliability without requiring special hardware.
Software reliability optimizations add extra code to detect and correct errors
during program execution, caused by transient hardware faults.

E. Maehle et al. (Eds.): ARCS 2014, LNCS 8350, pp. 209–220, 2014.
c© Springer International Publishing Switzerland 2014

210 G. Nazarian, L. Carro, and G.N. Gaydadjiev

Hardware faults may cause two types of errors in program execution: data
and control-flow errors. Experiments on the influence of heavy-ion fault injec-
tion on program behavior shows that more than half of the injected faults cause
Control-Flow Error (CFE) [5]. Other works show that about 75% of injected
data errors are masked [6] [7] [8]. Based on these statistics, CFE is a major
reason for system breakdown and safety-critical systems require a dedicated re-
liability optimization for detecting and correcting this class of errors. Software
optimizations for CFE detection associate unique signatures with branch-free
sections of the code, which are referred as Basic Blocks (B-blocks) [9] [10]. At
compile time, the code is instrumented with set and test assertions. Set asser-
tions, used in all B-blocks, update the runtime signature. Test assertions, added
at predefined program locations, compare the runtime signature with the asso-
ciated signatures to verify correct execution. The added assertions cause extra
performance and energy overheads. The performance overhead of CFE detec-
tion methods depends on the category of the CFE detection. Methods from
path-based category have lower fault-coverage and lower overhead, while meth-
ods in the predecessor/successor-based category have high fault-coverage and
high overheads [11].

The target of this paper is safety-critical systems with high performance and
low energy requirements. In such systems, both optimizations for improving
performance and reliability are required. The challenge which remains is to
understand which error detection/recovery method is efficient to be used with
performance-oriented optimizations, in order to provide high performance and
reliability with low energy-consumption. From reliability-optimization aspect,
this challenge is satisfied if employing the reliability optimization together with
a performance-oriented optimization does not degrade the fault-coverage.

Among the CFE detection methods we investigate the impact of loop un-
rolling on two methods; Control-flow Correcting Assertion (CCA) [10] and Se-
lective Control-Flow Checking (SCFC) [11]. SCFC is a novel hybrid method
with the lowest possible overheads and moderate fault coverage [11]. SCFC is
chosen for our investigation, due to the fact that it selects the optimum program
points to add assertions by analyzing the Control Flow Graph (CFG) topology at
compile time. Therefore, the performance and energy overheads are minimized
without degrading fault-coverage significantly. Since SCFC instrumentation is
done with the knowledge of the CFG topology, it is expected that using SCFC
together with compiler optimizations that change this topology (like loop un-
rolling) does not degrade the fault coverage. The other method (CCA [10]) be-
longs to predecessor/successor-based category with the highest fault coverage.
It is important to note that high-coverage CFE detections (such as CCA) do
not analyze the CFG topology before adding assertions. Hence, most compiler
optimizations (which are mainly loop-related) go against either fault-coverage
or performance in these approaches. On the contrary, thanks to its topology
analysis, SCFC can benefit from compiler transformations that change the CFG
topology.

Towards Code Safety with High Performance 211

In this paper we present a case study of the previous concept, showing that
a traditional compiler technique like loop-unrolling can improve SCFC perfor-
mance while sustaining high fault coverage. For this study workloads are chosen
from a benchmark suite containing safety-critical code for biomedical implants.
The main contributions of this paper are:

– Achieving higher performance and reliability using SCFC (for CFE detec-
tion) together with loop unrolling (for performance-improvements);

– Improving fault coverage of SCFC by additional 9.75% on average;
– Analysis of the obtained results based on the workloads CFG.

The remainder of this paper is organized as follows: Section 2 gives an overview
of software optimizations targeting reliability and performance. Section 3 briefly
illustrates the two studied CFE detection methods with an example. In this
section also the effect of loop unrolling on the studied methods is analytically
investigated. In Section 4, the experimental setup and obtained results are given.
In this section we show SCFC benefits from loop unrolling in terms of fault-
coverage and performance. Finally, the conclusions are given in Section 5.

2 Related Work

There are several software optimization methods to improve reliability by instru-
menting programs with additional code to check run-time program execution.
EDDI [12] is a method to detect data errors which checks the consistency be-
tween duplicated instructions. However due to the major influence of CFE in
modern digital systems malfunctioning, we aim at detection methods target-
ing this important class of errors. Several software optimization methods pro-
posed for CFE detection are: CCA [10], ECCA [13], CFCSS [9], YACCA [14],
CEDA [15], ACFC [16], Abstract Control Signatures (ACS) [6], SCFC [11] and
SWIFT [17]. SWIFT is a hybrid method combining CFCSS for CFE and EDDI
for data error detection.

In all the CFE detection methods a unique signature is associated to each B-
block. At run-time set assertions update Runtime Signature (RS) to the current
B-block signature and test assertions check the correctness of the RS content
to validate control-flow correctness. Set assertions are added to all B-blocks to
update RS along the control-flow path. However, the locations where test asser-
tions are added, depend on the CFE detection category. The two CFE detection
categories, depicted in Figure 1 are path-asserting and predecessor/successor-
asserting methods. A path-asserting method adds test in one B-block per control-
flow path1 to assert correct path execution. Predecessor/Successor-asserting
methods add test in all B-blocks to check if the previous (or next) B-block in the
execution flow is the correct predecessor (or successor). The difference between
these two categories is in the number of added test assertions in the program.
Predecessor/Successor-asserting methods add more tests, therefore has higher

1 A path is group of B-blocks executed in an uninterrupted sequence.

212 G. Nazarian, L. Carro, and G.N. Gaydadjiev

B1

B3

B4

Bj

B5

Bk

Bi

B2

P
A

TH
3

P
A

TH
2

P
A

TH
1

B1

B3

B4

Bj

B5

Bk

Bi

B2

SET
TEST

SET

TEST

(a) Path-asserting methods (b) Pred/Succes-asserting methods

B6

SET
TEST

SET
TEST

SET
TEST

SET
TEST

SET
TEST

SET
TEST

Fig. 1. Two categories of SM techniques

overheads and also potentially higher fault-coverage. Path-asserting methods
add less test assertions, have less overhead but lower fault-coverage.

CFCSS, ECCA, CEDA, YACCA and CCA are all a predecessor/successor-
asserting methods with high fault coverage and high overhead. Among this group
CCA has the simplest set/test assertions and no extra CF-parameters. ACFC
is a path-based method that adds tests to the last B-Block of the loops and
the exit B-Block of the program. ACFC does not add tests at the end of paths
which are formed due to conditional branches. As a consequence, it is efficient
only in programs with symmetric CFG topology. If a program is not symmetric
due to unbalanced conditional statements (an if without an else counterpart),
ACFC adds dummy elses to balance the CFG and then instrument it. This
causes extra branches and is the major reason of overhead in ACFC. ACS is
also a path-based method, since it adds one test assertion for group of B-Blocks
in single-entry-multiple-exit regions. ACS offers a coarse grain CFE detection,
useful in commodity systems which require high performance while 100% fault-
coverage is not demanded as in safety-critical systems. Both methods are in the
path-based category, have simple and low-cost assertions.

SCFC is a hybrid method. It uses CFG analysis information and adds low-cost
test assertions to the last B-Block of the identified control-flow paths, including
the paths resulted from conditional statements. B-blocks that are not part of
a control-flow path (at compile-time it is not clear if the B-block is executed
with group of other B-blocks at run-time or not), are called lonely-blocks. SCFC
does not leave these blocks un-detected, it adds a predecessor-test assertions to
them. Since SCFC adds test also to the conditional paths (as opposed to ACFC),
it is efficient even in programs with un-balanced asymmetric CFG topology.
Compared to ACS, SCFC has two differences: 1) it defines finer grain paths;
and 2) it guards lonely-blocks with predecessor-test assertions. As a result, it
provides higher fault coverage. High level of fault coverage makes SCFC more
suitable for safety-critical systems.

Towards Code Safety with High Performance 213

B1

B3B2

B4

B0

B5

 =0;

 =0

if (!= 0) error2RS1RS
=1;

if (!= 1) error
2RS

2RS =1;1RS

 =3;

if (!= 3) error
2RS

2RS
if (!= 1) error1RS

 =3;1RS
 =2;

if (!= 2) error
2RS

2RS
if (!= 1) error1RS

 =4;
if (!= 4) error

2RS
2RS

if (!= 3) error1RS

 =5;

if (!= 5) error
2RS

2RS

2RSori , 0, 1;

B1

B3B2

B4

B0

B5

sw ,mem

ori , 0, 2

ori , , 8lw ,mem;
ori , 0, 3

ori , , 16
cmpneq RE, , 25

ori , , 4

cmpneq RE, , 6

cmpneq RE, , 3

1RS 1RS

1RS

1RS 1RS 1RS

1RS 1RS
1RS

1RS 1RS
1RS 2RS

2RS

(a) CFG with SCFC optimization (b) CFG with CCA optimization

Fig. 2. CFG optimized for CFE detection

The authors of [18], have investigated the impact of different compiler opti-
mizations on the fault-recovery ability of ACCE [19]. ACCE is a recovery method
which uses CEDA [15] for CFE detection. The result of this investigation shows
that several compiler optimizations can increase the fault recovery rate. It is also
demonstrated that there is no specific optimization that can increase ACCE fault
coverage and this is the structure of the workloads which influences how opti-
mizations impact the recovery rate. Regarding today’s safety-critical systems
requirements, there is a need for high performance and reliability at the same
time. Compiler-based code transformations for increasing performance reduce
the number of executed instructions, and increase parallelism level and memory
locality in high-performance superscalar, vector, and parallel processors [20].
Among the discussed methods in [20] loop-unrolling is a widely-used method
to increase instruction-level parallelism, applicable for most of the workloads.
Loop-unrolling changes CFG topology and B-block sizes. Since SCFC analyzes
CFG topology and based on the obtained results adds assertions to the program,
loop-unrolling can be used before SCFC optimization to improve performance
while preserving high fault coverage.

3 The Impact of Loop Unrolling on SCFC and CCA
Optimizations

In this section, first we give a brief explanation over the mechanism of the hybrid
CFE detection (SCFC) and a method from predecessor/successor-asserting cat-
egory (CCA) with an illustrative example. CCA is chosen as the representative
of high-coverage CFE detection methods due to its simple set and test asser-
tions and higher coverage compared to other methods in the category. After the
methods explanation, we discuss the influence of loop-unrolling on fault coverage
of SCFC and CCA.

Figure 2.a. shows an example CFG subgraph instrumented with SCFC. SCFC
adds two assertion types based on the CFG analysis:

1. B-blocks residing in control-flow paths are instrumented with low-cost path-
based assertions, meaning that each B-block in the path has a set assertion

214 G. Nazarian, L. Carro, and G.N. Gaydadjiev

and the test assertion is added only to the last B-block of the path. This
set assertion is an OR instruction with an immediate representing the B-
block MASK (ori RS1, RS1, MASK), which updates path-runtime-signature
contents (RS1). The test assertion is cmpneq instruction to compare the
contents of RS1 with the path CONST (cmpneq RE, RS1, CONST). RE is
a restricted register that holds the results of fault detection.

2. Lonely-blocks are guarded with predecessor-test, meaning that a predecessor-
set assertion is added to the predecessor of the lonely-block and a predecessor-
test assertion is added to the lonely-block. This set assertion is also an OR
instruction, but it updates the contents of the predecessor-runtime-signature
(RS2) to the signature of the predecessor B-block (oriRS2, 0, Sigpre). The
test assertion is an instruction comparing RS2 contents with the predeces-
sor signature (cmpneqRE,RS2, Sigpre). If there is an inconsistency RE is
written.

In the subgraph depicted in Figure 2, SCFC defines {B1, B2} and {B0, B3,
B5} as control-flow paths and B4 as a lonely-block. Respectively, it instruments
the B-blocks in the control-flow paths and the lonely-block with corresponding
assertions, as shown in Figure 2.a.

Figure 2.b. shows the same CFG instrumented with CCA assertions. CCA
adds a pair of set RS1 in the end of the predecessor B-block and test RS1 at
the beginning of the current B-block to check the predecessor correctness. It also
adds a pair of set RS2 at the beginning of the B-block and test RS2 to the end of
the B-block for detecting erroneous jumps to/from mid of the B-block. In case
inconsistencies are detected an error recovery routine will be called. However
B-blocks with multiple predecessors can not be guarded with the first pair of
assertion (set/testRS1). In the depicted CFG, B1 and B5 are not guarded with
RS1 checking.

Loop unrolling may change CFG topology, B-blocks number and their sizes.
The effect of unrolling loops on the CFG depends on the loop that is unrolled: if
it is while or for loop; if it is a nested loop or there is a conditional statement in
the loop-body. Figure 3 shows different CFGs before and after unroll. Unrolling
simple for-loops, without conditional-statements or other loop-constructs in the
body, does not change the CFG topology as depicted in Figure 3.a. In this
case the unrolled CFG has the same B-blocks numbers and only the number of
instructions in the unrolled B-block (B2 in the figure) is increased. On the other
hand, the CFG of for-loops with conditional-statements (or a loop-constructs)
in the body, changes after unrolling. Figure 3. b. shows how the CFG of such a
loop changes after unrolling with increased number of B-blocks. Unrolling while-
loops requires checking the loop-condition before loop body repetition and break
in case the condition does not hold. The break statements cause extra branches
in the unrolled CFG (as shown with bold arrows in Figure 3). Figure 3.c. shows
that, opposed to for-loops, unrolling even a simple while-loop changes the CFG
and the total B-blocks number.

Change of CFG after loop-unrolling affects CFE detection fault coverage.
As discussed above CCA is weak in fault detection of B-blocks with multiple

Towards Code Safety with High Performance 215

B1

B2

B0

B3

B1

B0

B3
B2

B1

B0

B5B4

B2

B3

B1

B0

B8B4

B2

B3

B7

B5

B6

Lo
op

 u
nr

ol
l

(a) simple
for-loop

(b) for-loop with
if statement

B1

B2

B0

B3

B1

B2

B0

B4

B3

(c) simple
while-loop

B1

B0

B5B4

B2

B3

(d) while-loop
with if statement

B1

B0

B8

B4

B2

B3

B7

B5

B6

Fig. 3. Impact of for-loop unrolling on the CFG

predecessors. Therefore, if the resultant CFG after unroll has more number of
such B-blocks, CCA fault coverage may decrease. In Figure 3.(b) and (d), it is
shown that unrolling loops with a conditional statement in the body, adds the
number of B-blocks with multiple predecessors in the resultant CFG. This is the
case also in nested loops, when the out-most loop is unrolled. In these cases CCA
fault coverage decreases. On the other hand, SCFC analyzes the newly formed
CFG after unrolling and groups most of the multiple-predecessor B-blocks to the
new set of control-flow paths.

SCFC has a higher fault-coverage when CFG has a bigger control-flow path
in the loops than smaller ones. Since SCFC resets the path-runtime-signature
in the first block of the control-flow path (RS1 in Figure 2.a), having a bigger
loop-control-flow path with less number of loop-iterations helps to detect more
number of erroneous branches to the loop-control-flow path. As an example, the
control-flow path of the loop in Figure 3.b, before unrolling is {B1, B2, B4}. After
unrolling this control-flow path expands to {B1, B2, B4, B5, B7}. An erroneous
branch to the end of B4 (depicted by an arrow in Figure 3.b), is not detected
by SCFC in the loop-control-flow path before unrolling ({B1, B2, B4}). This is
due to the fact that the path-runtime-signature (RS1), is reset in the beginning

216 G. Nazarian, L. Carro, and G.N. Gaydadjiev

of B1 and this error is masked. However, SCFC detects this erroneous branch in
the loop-control-flow path after unrolling ({B1, B2, B4, B5, B7}).

Contrary to for-loops, unrolling while-loops does not result in bigger
loop-control-flow path. SCFC fault coverage in not increased after unrolling
while-loops. In Figure 3.d, the loop-control-flow path before unrolling has three
B-blocks. After unrolling, the resultant loop-control-flow paths are {B1, B2, B4}
and {B5, B7}. An erroneous branch similar to the one discussed above, which
targets B4,is not detected by SCFC even after unrolling the while-loop. In Fig-
ure 3.d, an erroneous branch to the begin of B2 (depicted with an arrow) in the
second iteration of the loop, is equivalent to an error in B5 at the first iteration
of unrolled-loop. The error before unrolling in B2 is detected by SCFC, But,
SCFC can not detect the erroneous branch to the begin of B5 after the loop is
unrolled.

4 Experimental Setup and Results

Since in this paper we are targeting systems with high performance and high
reliability requirements, only CFE detection methods with high fault-coverage
level (SCFC and CCA) are investigated. ACFC, the path-based-asserting CFE
detection method, adds low number of assertions and has low fault-coverage.
Moreover, this method does not define and analyze CFG control-flow paths, as
SCFC does. Therefore the CFG topology refinement after loop-unrolling does
not solve the problem of low fault-coverage. Loop unrolling favors both SCFC
and CCA methods in terms of performance, as the level of instruction-level par-
allelism increases. To generate optimized binaries with SCFC/CCA, we have
used CoSy compiler-development framework [21]. This framework contains dif-
ferent modules (so called engines) responsible for common compilation tasks,
e.g, scheduling, etc. SCFC/CCA are implemented as a new engine and added
to the compiler. We show how loop unrolling influences SCFC and CCA fault-
coverages. In this section first the used workloads in our experiments, the error
model and the error injection frame-work for evaluating the fault-coverages are
introduced. Next, the obtained results are illustrated and analyzed.

workloads: We have selected ImpBench benchmark suite as a representative
for applications which require high reliability and performance. ImpBench is a
benchmark suite with applications typical for biomedical implants.

Control-Flow Error Model: Errors at software level occur due to hardware
transient faults caused by electro-magnetic radiation or wire crosstalk. The im-
pact of transient hardware faults at software control flow can be categorized in
two CFE types based on the reason of the occurrence:

– CFEs that occur due to a fault in the opcode of a non-branch instruction
and conversion to a branch instruction. The consequence of this type of CFE
is an erroneous jump from the middle of a B-block to the end of the same
B-block or to another B-block in the CFG. This type of fault is referred to
as FT1;

Towards Code Safety with High Performance 217

-80

-60

-40

-20

0

20

40

60

FT1 /CRC FT1 /CSUM FT1 /RC6 FT1 /Fin FT2 /CRC FT2 /CSUM FT2 /RC6 FT2 /Fin

Re
la

ti
ve

 fa
ul

t-
co

ve
ra

ge
 c

ha
ng

e
 a

ft
er

 u
nr

ol
l

CCA

SCFC

Avg. CCA

Avg. SCFC

Fig. 4. Loop-unrolling impact on fault coverage

– CFEs which happen due to a fault in the operand bits of a branch instruction.
This CFE type causes an erroneous jump from the end of a B-block to a
random location. In the rest of the paper this type is referred to as FT2.

Faults which cause a branch instruction change to a non-branch will either be-
have as FT2 or may cause a data error and not a CFE. Data errors should be
detected with another group of detection methods as discussed in section 2

Error Injection: In order to evaluate the impact of loop unrolling on SCFC
and CCA fault coverage, we have used an error-injection mechanism that injects
the two CFE types discussed above. We have emulated FT1 and FT2, using a
special error-injector instruction and a Linear-Feedback-Shift-Register (LFSR)
which are implemented in the simulator. The error-injector instruction is added
in the beginning of the program-under-test along with a random value (generated
by RANDOM linux command) as its operand. The random value is used as the
LFSR seed with x32+x31+x29+x+1 polynomial. The LFSR with this polynomial
generate pseudo random numbers [22] and we use it to generate faulty branch
targets. The random value also determines the trigger time of the error. After the
number of cycles specified by the trigger time has passed, an error is generated.

For generating FT1, the first fetched non-branch instruction after the trigger
time is converted to a branch instruction with a random value as its operand.
This is done by modifying the corresponding opcode bits of the register between
Fetch and Decode pipeline stages. The random value of the operand is the LFSR
register value at that moment. An FT2 error is generated, for the first fetched
branch-instruction after the trigger time, by changing the operand bits of the
register between Fetch and Decode to a random value. The random value for
branch operand is provided by the LFSR.

Error Detection Mechanism: In order to detect the errors, one of the registers
in the register file is reserved for the test assertions. In case a control-flow error is
detected by test assertions, this register is written. After the simulator generated

218 G. Nazarian, L. Carro, and G.N. Gaydadjiev

131574

73724

260945

356793

135036

73511

259476

356169

0

50000

100000

150000

200000

250000

300000

350000

400000

CRC CSUM RC6 Fin

Ex
e

c.
 c

yc
le

s
af

te
r

u
n

ro
ll CCA

SCFC

167998

79330

285392

361410

153914

79112

282649

359364

0

50000

100000

150000

200000

250000

300000

350000

400000

CRC CSUM RC6 Fin

Ex
ec

. c
yc

le
s

b
ef

o
re

 u
n

ro
ll

CCA
SCFC

(a) Execution cycles

0

10

20

30

40

50

60

70

80

CRC CSUM RC6 Fin

FC
 p

er
ce

nt
 a

ft
er

 u
nr

ol
l

CCA
SCFC

0

10

20

30

40

50

60

70

80

CRC CSUM RC6 Fin

FC
 p

er
ce

nt
 b

ef
or

e
 u

nr
ol

l

CCA
SCFC

(b) Fault coverage

Fig. 5. Execution cycles and fault coverage in loop-unrolled workloads

runtime traces, by checking the contents of the reserved register we determine if
a CFE has been occurred.

Experimental Results: To investigate the impact of loop unrolling on CCA
and SCFC fault-coverage, we have executed four sets of simulations for four ver-
sions of workloads binaries. The different versions of binaries are generated with
four versions of optimized compilers: 1) with SCFC but without loop unrolling;
2) with SCFC and with loop unrolling; 3) with CCA but without loop unrolling
and 4) with CCA and loop unrolling. The generated workload binaries are eval-
uated using Synopsys Processor Designer cycle-accurate simulator [23]. Each set
of simulation run, consists of 1000 runs with one error injected in each run. The
obtained fault-coverage results from running the binaries without loop-unrolling,
are used as the baseline to investigate the improvement or degradation of CCA
and SCFC fault-coverages after loop-unrolling.

The impact of loop unrolling on SCFC and CCA fault-coverage is illustrated in
the diagram of Figure 4. The diagram shows fault-coverage improvement or loss
due to loop unrolling for the two error types (FT1 and FT2). On average fault-
coverage of SCFC is improved by 9.75%, while CCA fault coverage is decreased
by 29.87%. The main reason of fault-coverage improvement in SCFC is due to
CFG analysis prior to instrumentation. Loop unrolling restructures workloads
CFG topology. SCFC takes this restructuring into account, forms new control-
flow paths and adds required number of assertions. However CCA, does not adapt
to the new topology and instruments the code with the same number of assertions
before unrolling. The peculiar cases where SCFC fault-coverage after unrolling
has degraded is for CSUM workload. This workload has two while-loops, that
after unrolling have smaller control-flow paths. As discussed in section 3, this
condition is not favorable for SCFC and degrades its fault coverage.

The plot in Figure 5.a. shows the total execution-cycles for SCFC and CCA
before and after loop-unrolling. As the data in the diagram of execution-cycles
after loop-unroll shows, in three example workloads SCFC has less number of
execution-cycles than CCA. The only case which SCFC causes higher execution-
cycles than CCA is for CRC. This is due to the fact that a high percentage
of B-blocks of this workload have multiple-predecessors. CCA does not instru-
ment these blocks with inter-block set/test assertions, while SCFC does not
leave any B-block without being checked. As a consequence SCFC causes higher
execution-cycles, but also higher fault coverage after loop-unroll, as illustrated

Towards Code Safety with High Performance 219

in Figure 5.b. High fault-coverage level of SCFC, when loop unrolling is used (for
instruction-level parallelism), makes SCFC a better method for CFE detection
than CCA for safety-critical systems with high performance requirement.

5 Conclusions and Future Work

In this paper the impact of loop unrolling on a new control-flow error detection
method, SCFC, is investigated.The results are compared with one of the tra-
ditional detections schemes with the highest fault-coverage. Comparing results
show that SCFC, thanks to its control-flow graph analysis, can benefit from
traditional compiler optimizations as loop unrolling, both in terms of perfor-
mance and fault coverage. Other techniques with similar fault coverage do not
allow such optimization, which are crucial for current day processors. The av-
erage fault coverage improvement of SCFC with loop-unrolling compared to a
version without loop-unrolling by 9.75%, shows that SCFC is a suitable control-
flow error detection method for safety-critical systems with high-performance
requirements. Moreover, it shows that this technique can be applied in modern
processors that can exploit instruction-level parallelism, hence providing high
fault-coverage and performance at the same time. As future work, we inves-
tigate the impact of other loop-transforming compiler optimizations on SCFC
method. It is expected that compiler transformations which simplify the control-
flow graph topology can improve SCFC performance and fault-coverage.

References

1. Zhu, D.: Energy management for real-time embedded systems with reliability re-
quirements. In: Proceedings of International Conference on Computer-Aided De-
sign, ICCAD 2006, pp. 528–534 (November 2006)

2. Ganesh, T.S., et al.: Seu mitigation techniques for microprocessor control logic.
In: Proceedings of the Sixth European Dependable Computing Conference (EDCC
2006), pp. 77–86 (2006)

3. Mahmood, A., McCluskey, E.J.: Concurrent error detection using watchdog
processors-a survey. IEEE Trans. on Computers, 160–174 (1988)

4. Saxena, N., McCluskey, E.J.: Dependable adaptive computing systems the roar
project. In: Proceedings of International Conference on Systems, Man, and Cyber-
netics, pp. 2172–2177 (1998)

5. Gunneflo, U., Karlsson, J., Torin, J.: Evaluation of error detection schemes using
fault injection by heavy-ion radiation. In: Proceedings of Nineteenth International
Symposium on Fault-Tolerant Computing, FTCS-19, pp. 340–347 (June 1989)

6. Khudia, D.S., Mahlke, S.: Low cost control flow protection using abstract control
signatures. In: Proceedings of LCTES, pp. 3–12 (June 2013)

7. Feng, S., Gupta, S., Ansari, A., Mahlke, S.: Shoestring: Probabilistic soft-error
reliability on the cheap. In: Proceedings of ASPLOS (2010)

8. Wang, N.J., Quek, J., Rafacz, T.M., Patel, S.J.: Characterizing the effects of tran-
sient faults on a high-performance processor pipeline. In: Proceedings of DSN (June
2004)

220 G. Nazarian, L. Carro, and G.N. Gaydadjiev

9. Oh, N., Shirvani, P.P., McCluskey, E.J.: Control flow checking by software signa-
tures. IEEE Trans. on Reliability 51(1), 111–122 (2000)

10. Kanawati, G.A., Nair, V.S.S., Krishnamurthy, N., Abraham, J.A.: Evaluation of
integrated system-level checks for on-line error detection. In: Proceedings of IEEE
International Computer Performance and Dependability Symposium, pp. 292–301.
IEEE (September 1996)

11. Nazarian, G., Seepers, R.M., Strydis, C., Gaydadjiev, G.N.: Compiler-aided
methodology for low overhead on-line testing. In: International Conference on
Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS
XIII), pp. 219–226 (July 2013)

12. Oh, N., Shirvani, P.P., McCluskey, E.: Error detection by duplicated instructions
in super-scalar processors. IEEE Trans. on Reliability, 63–75 (March 2002)

13. Alkhalifa, Z., Nair, V.S., Krishnamurthy, N., Abraham, J.: Design and evaluation of
system-level checks for on-line control flow error detection. IEEE Trans. on Parallel
and Distributed Systems 10(6), 627–641 (1999)

14. Goloubeva, O., Rebaudengo, M., Reorda, M.S., Violante, M.: Soft-error detection
using control flow assertions. In: 18th IEEE International Symposium on Defect
and Fault Tolerance in VLSI Systems, pp. 581–588. IEEE (November 2003)

15. Vemu, R., Abraham, J.: Ceda: Control-flow error detection using assertions. IEEE
Trans. on Computers 90(9), 1233–1245 (2011)

16. Venkatasubramanian, R., Hayes, J.P., Murray, B.T.: Low-cost on-line fault de-
tection using control flow assertions. In: 9th IEEE On-Line Testing Symposium,
pp. 137–143. IEEE (July 2003)

17. Reis, G.A., et al.: Swift: software implemented fault tolerance. In: Proceedings of In-
ternational Symposium on Code Generation and Optimization, CGO, pp. 243–254
(March 2005)

18. Parizi, R.B., Ferreira, R.R., Carro, L., Moreira, Á.F.: Compiler optimizations do
impact the reliability of control-flow radiation hardened embedded software. In:
Schirner, G., Götz, M., Rettberg, A., Zanella, M.C., Rammig, F.J. (eds.) IESS
2013. IFIP AICT, vol. 403, pp. 49–60. Springer, Heidelberg (2013)

19. Vemu, R., Gurumurthy, S., Abraham, J.: Acce: Automatic correction of control-
flow errors. In: Int. Test Conference, pp. 1–10 (2007)

20. Bacon, D.F., Graham, S.L., Sharp, O.J.: Compiler transformations for high-
performance computing. ACM Trans. Computing Surveys 26(4), 345–420 (1994)

21. Cosy compiler, http://www.ace.nl/compiler/cosy
22. George, M., Alfke, P.: Linear feedback shift registers in virtex devices (2007),

http://www.xilinx.com

23. Synopsys processor designer, http://www.synopsys.com/Systems/
BlockDesign/processorDev/Pages/default.aspx

http://www.ace.nl/compiler/cosy
http://www.xilinx.com
http://www.synopsys.com/Systems/BlockDesign/processorDev/Pages/default.aspx
http://www.synopsys.com/Systems/BlockDesign/processorDev/Pages/default.aspx

E. Maehle et al. (Eds.): ARCS 2014, LNCS 8350, pp. 221–232, 2014.
© Springer International Publishing Switzerland 2014

Detecting Compromised Programs
for Embedded System Applications

Xiaojun Zhai1, Kofi Appiah1, Shoaib Ehsan1, Wah M Cheung1, Gareth Howells2,
Huosheng Hu1, Dongbing Gu1, and Klaus McDonald-Maier1

1 School of Computer Science & Electronic Engineering
University of Essex, Colchester, UK

{xzhai,kappiah,sehsan,wmcheu,hhu,dgu,kdm}@essex.ac.uk
2 School of Engineering and Digital Arts

University of Kent
Canterbury, UK

W.G.J.Howells@kent.ac.uk

Abstract. This paper proposes an approach for detecting compromised pro-
grams by analysing suitable features from an embedded system. Features used
in this paper are the performance variance and actual program counter values of
the embedded processor extracted during program execution. “Cycles per In-
struction” is used as pre-processing block before the features are classified us-
ing a Self-Organizing Map. Experimental results demonstrate the validity of the
proposed approach on detecting some common changes such as deletion, inser-
tion and substitution of programs. Overall, correct detection rate for our system
is above 90.9% for tested programs.

Keywords: ICmetrics, Self-Organising Map (SOM), embedded system
security.

1 Introduction

As embedded systems involve various aspects of our everyday lives, they are often
needed to process sensitive information or perform critical functions, which make
security an important concern in embedded computer architecture design [1]. The
rapid growth of embedded systems has transformed the way we create, destroy, share,
process and manage information. However, this has also paved the way for unautho-
rised access, fraud and other related crimes [2]. Security has been extensively ex-
plored in the context of general purpose computing and communications systems,
such as cryptographic algorithms and security protocols [3]. Such security measures
typically provide a basis for securing embedded system rather than enabling a sys-
tem’s overall security. On the other hand, as embedded systems are often specific to a
certain function, the resources and cost are very limited by the strict performance and
power constraints. Consequently, it is a challenge to increase overall dependability,
integrity and robust security of embedded systems [4].

222 X. Zhai et al.

Identification and security of these embedded systems are emerging as an impor-
tant concern in embedded computer architecture design. Mechanisms to protect the
embedded system can be either included in the hardware architecture or at software
level. Physical Unclonable Function (PUF) [5] or hardware intrinsic security [6], have
been proposed as physically more secure alternative to storing secrets in a digital
memory [7]. The core idea behind these approaches is to use the manufacturing
process variation to identify the integrated circuits, which offers a higher level of
security against physical level attacks. However, they are limited by environmental
variance such as changes in temperature, user interactions and software. There is
much existing work focusing on detecting software failure, tampering and malicious
codes in embedded systems [1, 4, 8]. These approaches require storing sensitive data
in the system as “valid” samples or template. For example, a basic-block control flow
graph (CFG) is usually stored and used to examine the running program.

Currently, researchers are working on alternative solutions to the above problems
in the fields of digital forensics and machine learning [9]. As electronic devices and
components cannot have exactly the same frequency response and latency due to
tolerances in production and the different designs employed by various manufactur-
ers, it is possible to find unique features or identifiers from the electronic devices [9].
In order to recognise the features, various machine learning algorithms can also be
applied. Based on the above ideas, a new concept termed ICmetrics (Integrated Cir-
cuit metrics) was introduced [10]. Embedded systems typically consist of hardware
and application specific software, and are applied in a specific environment. These
could result in the embedded system performing uniquely to the others. Consequently,
the structure, characteristic and behaviour of an embedded system can also be used to
identify the devices. Fig.1 exhibits a typical embedded system and ICmetrics system.

Fig. 1. A typical embedded system and ICmetrics system

In Fig. 1, the embedded system can be affected by many factors, for example,
compromised software, unauthorised access, environment changing, internal structure
failure and malicious code. All these effects could change the behaviour or characte-
ristic of the embedded system significantly. Since the ICmetrics system is continually
monitoring the information metric, and behaviours derived from the embedded system

Peripheral D
Peripheral C

Peripheral B

Peripheral A

Embedded
System

User Interaction,
Environmental Variance,

Malicious Program,
Network Attack,

…….

Application Environment

Interference

Information
Metrics

Key Cryptography
Feature Extraction,
Feature Analysis,

Classification

ICmetrics System

System Identifier

Software

Embedded
Processor

 Detecting Compromised Programs for Embedded System Applications 223

change over time as well, a different system identifier could be generated. As a result
of this, a different encryption key will be generated by the key cryptography mechan-
ism [11], using a two phase approach to deal with training and recall. As the ICme-
trics system only relies on the properties and features of the system, the system iden-
tifier (i.e. basic number or encryption key) can be regenerated on demand and there is
no requirement to store it locally. The major advantage of the ICmetrics system is no
user data or template is required to be stored, which is essential for applications
that have no direct interaction with human operators. Thus, the ICmetrics can
improve both security and dependability based on exploitation of the system’s unique
behaviour.

The information metrics used in the ICmetrics system can be collected from any
aspect of the embedded system, for example, memory usage, program monitoring,
processor caches, and register status checking. In this paper, we limit the focus on
monitoring the system processor’s status while running various programs. A method
for detecting compromised programs is proposed. The method extracts suitable fea-
tures from the embedded system (i.e. the performance variance and program counter
(PC) register of the embedded processor), enabling it to identify the running programs
using Self-Organising Map (SOM) classifier [12]. The experimental results demon-
strate the effectiveness of the proposed method for identifying compromised pro-
grams. The performance variance and PC status can be one of the information metrics
for the ICmetrics system.

The remainder of this paper is organised as follows. A survey of related work is
presented in Section 2. The proposed algorithm is introduced in Section 3. The expe-
rimental setup and the implementation results are discussed in Section 4. Finally, the
conclusions are presented in Section 5.

2 Related Work

As most information is being digitized to facilitate quick access, digital privacy is
becoming even more important in protecting personal information [13]. Arora et al [1]
addressed secure program execution by focusing on the specific problem of ensuring
that the program does not deviate from its intended behaviour. Similar to [1], Rahma-
tian et al [4] used a CFG to detect intrusion for secured embedded systems by detect-
ing behavioural differences between the correct system and malware. An attack is
detected if the system call sequence deviates from the known sequence. Yang et al
[14] presents a very interesting approach for detecting digital audio forgeries mainly
in MP3. Using a passive approach, they are able to detect doctored MP3 audio by
checking frame offsets.

Information hiding can be used in authentication, copyright management as well as
digital forensics [15]. Swaminathan et al [15] proposed an enhanced computer system
performance with information hiding in the compiled program binaries. The system
wide performance is improved by providing additional information to the processor
without changing the instruction set architecture. In [16] Boufounos and Rana demon-
strate with the use of signal processing and machine learning techniques, to securely

224 X. Zhai et al.

determine whether two signals are similar to each other. They also show how to util-
ize an embedding scheme for privacy-preserving nearest neighbour search by present-
ing protocols for clustering and authenticating applications.

ICmetrics can be defined as a unique characteristic that a program possesses when
running on a particular embedded device and can be used to identify the program and
hardware. In this paper we use Cycle per Instruction (CPI) to extract corresponding
PC values, and use it as ICmetric for program identification. Using an unsupervised
SOM to reduce the dimensionality of PC values, we introduce an offset rule similar to
that presented in [14] to detect compromised programs rather than detecting digital
audio forgeries. Thus using machine learning techniques [16], we are able to deter-
mine whether two PC values are similar to each other, with the use of the program
binaries [15] and no prior knowledge of the source code. The following section de-
scribes our system to detect compromised programmes in details.

3 Methods for Detecting Compromised Programs

In this section, we first provide an overview of the proposed methods for detecting
compromised programs, and then details of the proposed method are introduced.

3.1 Overall System Architecture

In computer systems, a program normally consists of three structure levels: (1) func-
tion call level, as represented by function call relationship; (2) internal control flow
for each function, represented by a basic-block CFG; (3) instruction stream within
each CFG [1]. A program is comprised of a number of micro operations, which de-
pend on the instruction sets and the exact processor architecture that are used in the
embedded system. The number of clock cycles for each instruction depends on the
used hardware architecture and type of instruction, for example, most of instructions
only require one clock cycle to be executed in modern pipelined processer architec-
ture, but some instructions require multi-cycle to be executed, as they need access to
memory during processing (e.g. Load, Store and Jump). In particularly, these multi-
cycle instructions indicate where the functions call or the condition branch is [4].
Consequently, we can approximately detect the function call or condition branch
based on the variance of the processor’s performance. In addition, the value of PC
register shows the instruction stream of a program, which is also a suitable source for
monitoring changes at the instruction level.

Based on the above principle, through monitoring the processor’s performance, we
detect changes in the function call and CFG, and then analyse the PC values within
each CFG. Finally, an overall evaluation could indicate whether the program is com-
promised or not. In the proposed work, we measure the average CPI as the parameter
of a processor’s performance. Fig. 2 shows a block diagram of the proposed program
monitoring system.

 Detecting Compromised Programs for Embedded System Applications 225

Fig. 2. Overall block diagram of the proposed monitoring system

In Fig. 2, phase localiser and peak point detector blocks are used to obtain the func-
tion call and conditional branch location information from average CPI profile respec-
tively, and then the obtained information will be used to extract features for the SOM
classifier. The final evaluation is based on the results of the SOM classifier.

3.2 CPI Analysis

CPI indicates the complexity of instructions executed within a particular period of time.
The average CPI of a processor can be calculated as described in [17]. Fig. 3 shows an
average CPI profile while a program is running in an ARM cortex-M3 processor based
embedded platform, where I and maxf are 211 and 120 MHz respectively.

Fig. 3. Example of average CPI diagram

As can be seen from Fig. 3, the program mainly consists of five phases, and there
are also many variances (i.e. peaks) within each phase. In the following sections, we
introduce a method to obtain the position information of the phases and peaks.

Phase Localiser Block
In the phase localiser block, there are mainly two sub-blocks: mean filter and critical
point localiser. The mean filter is first used to smooth the original CPI diagram, the
critical point localiser is then used to localise the positions of each phase.

Mean filter
A 1×w rectangular window is used as a mask in the mean filter, the local average
value within the mask is then calculated. Let f(n) denote the CPI value at position n
which is always the centre point of a rectangular window B with size 1×w. The win-
dow mean value fmean(n) is calculated by (1):

PC Register

Average CPI
Calculator

Clock Cycle
Counter

Phase
Localiser

Peak Detector

Function call
and conditional
branch locations

SOM Similarity
Analyser

Overall
Evaluation

226 X. Zhai et al.

() () /mean
n B

f n f n w
∈

= (1)

Fig. 4 shows the resulting diagram after applying the mean filter on the original
CPI diagram (i.e. Fig. 3), where w is set to ‘5’. As can be seen from Fig. 4, the va-
riances within each phase have been significantly suppressed, and the boundaries of
each phase still stay intact.

Fig. 4. Resulting CPI diagram after applying the mean filter

Critical point localiser
As the values of two adjacent points at the boundary are normally significantly differ-
ent, the proposed method is to localise the high variance points, and then select the
best candidates based on pre-defined criterion.

Let fmean denote averaged CPI, absolute differences between adjacent elements of
fmean can then be calculated by:

() (1) ()mean meand n f n f n= + − (2)

where1 ,n N≤ < N is the total numbers of elements in array fmean, d(n) is nth element
in an array of absolute differences between adjacent elements of fmean(n).

A threshold t1 is first used to select the high variance elements from array d ,
where the indices of the elements are greater than t1 they are stored in array d1. After
that, absolute differences between adjacent elements of d1 are calculated to form d2.
Finally, a threshold t2 is used to select the boundary candidates, where elements great-
er than t2 are selected as the candidates. Values of t1 and t2 are fixed based on experi-
mental results. In this work, t1 and t2 are set to 0.03 and 9 respectively. Fig. 5 shows
resulting diagram after applying the critical point localiser on Fig.4.

Fig. 5. Resulting diagram after applying the critical point localizer

 Detecting Compromised Programs for Embedded System Applications 227

Peak detector block
In order to obtain positions of peaks and valleys, we apply the peak detector on array
d rather than the original array fmean. Pseudo-codes for detecting the peaks are summa-
rised as follows:

Peak detection procedure:
Input: id is an array of absolute differences between ad-
jacent elements of meanf in the ith phase.
Output: = 1 2 3{ , , ,..., }iP p p p p where 1p is a set of locations
for the ith phase.
for all samples in id do
 if − <(1) ()i id n d n and > +() (1)i id n d n then
 '()id j = ()id n ; /* record the amplitude in array '()id j */
 end
end
ti=mean('()id j); /*t is mean of all the elements in 'id */
for all samples in 'id do
 if >'()id j t then
 pi = j; /*mark j

th element as a peak*/
 end
end

Fig. 6 shows resulting diagram after applying the peak detector on array d.

Fig. 6. Diagram following the application of the peak detector

Similarity Analyser
The similarity analyser has three different parts, each with a measure to ascertain the
originality of the program in execution. The three parts are the phase, peak and SOM
analysers. The first part is used to verify if the number of known phases is the same as
the number of phases in the executed program. Any mismatch shows that the number
of function calls differ, signifying an insertion or deletion. The second part compares
the number of identified peaks within each phase. It must be noted that any difference
in the number of peaks does not necessarily mean the program is compromised, but
rather a variation in CPI. The first two parts of the analyser becomes useful when the
system has completed a cycle. The final part of the analyser uses the SOM to measure
similarity between known programs and programs currently executed.

228 X. Zhai et al.

The basic principle of the SOM is to adjust the weight vectors until the neurons
represent the input data, while using a topological neighbourhood update rule to en-
sure that similar prototypes occupy nearby positions on the topological map. PC val-
ues extracted from the program execution trace, corresponding to the peaks in the
trace are used as inputs to the SOM during training and testing. For a given network
with k neurons and N-dimensional input vector Ki, the distance from the jth neuron
with weight vector wj (j<k) is given by

 ()22

1

N
i

j l jl
l

D K w
=

= − (3)

where wjl is the lth component of weight vector wj. The vector components of the win-
ning neuron wk with minimum distance Dk are updated as follows, where (0,1)η ∈ is

the learning rate.

 ()i
k kw K wηΔ = − (4)

Updates are only carried out during the training phase. Additionally, for every neu-
ron in the network we maintain two extra parameters; the minimum and maximum
distances of all input vectors associated with any particular neuron.

After training, the next step is to associate each of the network neurons with the
corresponding program or sub-program. In this work, we use Vector Quantization
(VQ) [12] to assign labels to the trained neurons in the network as follows:

• Assign labels to all the input training data. The label is an identifier for the pro-
gram from which the training data has been extracted from.

• Find the neuron in the network with the minimum distance to the labelled input
data.

• For each input data maintain the application label, the corresponding neuron and
the distance measured. The distance is maintained as a tie breaker for applications
that share similar address space.

For each network neuron, we estimate the number of programs that are associated
with that neuron. If only one program is associated with a neuron and the number of
data points exceeds 5% of the total number of program data points, the neuron is ex-
clusively assigned to that very program. For all programs with more than 5% of data
points associated with a neuron, we create a codebook with an entry for the neuron,
and the corresponding programs, each with its distance range (i.e. minimum distance
and maximum distance).

4 Experimental Results

An embedded system based on a STMicroelectronics STM32F207IG microcontroller
equipped with an ARM 32-bit Cortex-M3 processor is used in the proposed work
[18]. A combination of KEIL µVision IDE, and ULINKpro Debug and Trace Unit
[19] is used to download the program and trace the instructions executed in the

 Detecting Compromised Programs for Embedded System Applications 229

microcontroller. High-speed data and instruction trace are streamed directly to the
host computer allowing off-line analysis of the program behaviour [19]. MATLAB is
used to implement the proposed method prior to hardware implementation. It should
be noted that our experimental platform limits the complexity of test programs, as it
comes with only 128KB of on-chip RAM and 2MB of external SRAM, for which
only 1MB is usable when the tracing port is enabled. This limitation falls within the
scope of our initial embedded architecture, expected to have minimal memory, power
and computational resources. The concept presented here is very scalable; as the
available resources increase the complexity of applications can also be increased.

As our initial focus is dedicated and constrained embedded systems, five algo-
rithms from the automotive package of the MiBench benchmark suite [20] are se-
lected: angle conversion (AC); bit count (BC); cubic function (CF); random numbers
(RN); and square roots (SR). These five algorithms are mixed together as a single
program, and this program is treated as original. We also propose five further com-
promised programs formed by various combinations of the five algorithms. In each
combination AC, BC, CF, RN, and SR are executed twice. In addition to the above,
we also use an “unknown” algorithm “Fibonacci Series (FS)” to replace AC, BC, CF,
RN, and SR to represent another five compromised programs for testing. Since the FS
algorithm consists of some similar sub-functions to the known algorithms, this expe-
rimental setup is more suitable for evaluating the proposed system. At the beginning
of the test, we run the original program five times separately in the embedded plat-
form, and all the program execution trace profiles are stored into five different files
respectively. One of the files (i.e. the training file) is used for training the SOM clas-
sifier and the remainder are used for testing.

During training, PC values from the “training file” are used as input to the SOM.
The size of the training vectors is 2048, taken from 2048 PC values for each peak in
the training file. The vector values are then normalised before feeding them into the
SOM. The epoch use for training is set to 1000, after which VQ is used to assign la-
bels to the neurons. The outputs of the training are network weights, a record of each
phase, the corresponding neuron(s), and associated minimum and maximum distance
for the phase. In these experiments the network size has been fixed to 20 each of
length 2048. For testing, each of the test files (27 files in total) is fed into the trained
network to generate individual output files. The output after testing is the peak

Fig. 7. Training and testing results for the original program

0%

20%

40%

60%

80%

100%

Ps Tp Tn Fp Fn

R
at

e

Training set Testing set

230 X. Zhai et al.

similarity (Ps), the correct detection rate (true positive (Tp) and true negative (Tn))
representing the correct detection rate of the SOM for known testing programs and
unknown testing programs respectively, rate of misclassified unknown testing pro-
grams (false positive (Fp)) and rate of programs misclassified as compromised (false
negative (Fn)). Fig. 7 shows the training and testing results for the original program.

Table 1. Outputs of SOM using compromised testing programs

Ps (%) Tp (%) Tn (%) Fp (%) Fn (%)

T1
a T2

b T1 T2 T1 T2 T1 T2 T1 T2
AC 98.0 98.0 86.5 82.7 0 0 3.9 5.8 9.6 11.5
BC 95.8 94.4 86.7 86.8 0 0 6.7 2.9 6.7 10.3

CF/FS 90.9 0 40.0 0 0 50.0 0 50.0 60.0 0
RN 40.0 80.0 87.5 75.0 0 0 0 0 12.5 25.0
SR 98.7 94.7 68.8 73.8 0 0 1.3 1.3 29.9 25.0

a. Without unknown algorithm; b. With unknown algorithm

As shown in Fig. 7, the training and testing results have very similar performance,
but Ps for a particular algorithm may vary when it is executed at different times. This
is because CPI does not remain exactly the same as the original value in the training
file. In Table I, RN has been repeated twice in T1 and we replaced CF with FS
representing the unknown algorithm in T2. Ps of 40% in Table I shows RN has the
least peak similarity compare to the other algorithms, suggesting RN has been com-
promised. However, the result from the Tp (87.5%) shows that the algorithm is known
to the SOM. Overall, the correct detection rate for our system is above 90.9% for
uncompromised programs. Ps of 0% in Table I shows that FS is completely different
from CF in the original training file. The result for Tp (0%) in Table I shows that FS is
unknown to the SOM. Tn (50%) means that 50% of codes are unknown to the SOM
and Fp (50%) means that 50% of codes are known to the SOM but they appeared in
the wrong section. As an unknown program is introduced, the overall SOM recogni-
tion rate for each algorithm is reduced, which indicates the original program has been
compromised. In our experiments, the threshold for detecting a compromised program
is set to 50%. Hence a program is treated as compromised if Tn is greater than 50%.
Fig. 8 shows the PC profile when the CF is replaced by the FS.

Fig. 8. PC profile when the CF is replaced by the FS

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
6

134,218,000

134,220,000

134,222,000

134,224,000

134,226,000

134,228,000

134,230,000

134,232,000

Executed Instructions

P
C

 Detecting Compromised Programs for Embedded System Applications 231

In Fig. 8, the yellow circles indicate selected peaks from compromised part of the
executed intrusions. As can be seen from the figure, most of the circles are concen-
trated at FS section, with the very few sparsely distributed over the remaining pro-
grams, contributing to the marginal error.

5 Conclusion

In this paper, we have presented an approach for detecting compromised programs by
analysing CPI and PC from an embedded system. Through monitoring the processor’s
CPI, we detect changes in the function call and CFG, and then analyse the PC values
within each CFG using SOM. The results achieved show that the proposed algorithm
can be used to detect the changes in a program, and the information metrics can fur-
ther be generated based on the outputs from the SOM. For example, different basic
numbers could be generated based on the results of SOM, as a result of this, different
encryption keys can be generated by the key cryptography mechanism, using the
recall phase. Since the main aim of this research work is to implement a real-time
security solution for complex embedded computer architectures, more evaluation on
realistic attacks for the proposed algorithms will further be investigated. Moreover,
the proposed algorithm can be used in combination with other ICmetric approaches to
evaluate commercial embedded system benchmarks. For evaluation parameters of
real-time detection system, the proposed algorithm can also be implemented with a
soft-core processor on FPGA as part of an on-line protection system. The online im-
plementation will have the capability of extracting execution trace from customised
tracing interfaces directly located on the processor, determine the behaviour in real-
time, and subsequently halting the program to prevent any harmful effect on the em-
bedded system architecture.

Acknowledgment. The authors gratefully acknowledge the support of the EU ERDF
Interreg IVa 2 Mers Seas Zeeën Cross-border Cooperation Programme – SYSIASS
project: Autonomous and Intelligent Healthcare System (project’s website
http://www.sysiass.eu/).

References

1. Arora, D., Ravi, S., Raghunathan, A., Jha, N.K.: Secure embedded processing through
hardware-assisted run-time monitoring. In: Proceedings Design, Automation and Test in
Europe, pp. 178–183 (2005)

2. F-Secure Corporation: F-Secure reports amount of malware grew by 100% during 2007,
Helsinki, Finland (2007)

3. Dongara, P., Vijaykumar, T.N.: Accelerating private-key cryptography via multithreading
on symmetric multiprocessors. In: IEEE International Symposium on Performance Analy-
sis of Systems and Software, pp. 58–69 (2003)

4. Rahmatian, M., Kooti, H., Harris, I.G., Bozorgzadeh, E.: Hardware-Assisted Detection of
Malicious Software in Embedded Systems. IEEE Embedded Systems Letters 4, 94–97
(2012)

232 X. Zhai et al.

5. Suh, G.E., Devadas, S.: Physical Unclonable Functions for Device Authentication and Se-
cret Key Generation. In: 44th ACM/IEEE Design Automation Conference, pp. 9–14
(2007)

6. Handschuh, H., Schrijen, G.-J., Tuyls, P.: Hardware Intrinsic Security from Physically Un-
clonable Functions. In: Sadeghi, A.-R., Naccache, D. (eds.) Towards Hardware-Intrinsic
Security, pp. 39–53. Springer, Heidelberg (2010)

7. Hospodar, G., Maes, R., Verbauwhede, I.: Machine learning attacks on 65nm Arbiter
PUFs: Accurate modeling poses strict bounds on usability. In: IEEE International Work-
shop on Information Forensics and Security (WIFS), pp. 37–42 (2012)

8. Arora, D., Ravi, S., Raghunathan, A., Jha, N.K.: Secure embedded processing through
hardware-assisted run-time monitoring. In: Proceedings of Design, Automation and Test in
Europe, vol. 171, pp. 178–183 (2005)

9. Hanilci, C., Ertas, F., Ertas, T., Eskidere, O.: Recognition of Brand and Models of Cell-
Phones From Recorded Speech Signals. IEEE Transactions on Information Forensics and
Security 7, 625–634 (2012)

10. Kovalchuk, Y., McDonald-Maier, K.D., Howells, G.: Overview of ICmetrics technology-
security infrastructure for autonomous and intelligent healthcare system. International
Journal of u- and e- Sevice, Science and Technology 4, 49–60 (2011)

11. Howells, G., Papoutsis, E., Hopkins, A., McDonald-Maier, K.: Normalizing Discrete Cir-
cuit Features with Statistically Independent values for incorporation within a highly Secure
Encryption System. In: Second NASA/ESA Conference on Adaptive Hardware and Sys-
tems, pp. 97–102 (2007)

12. Kohonen, T.: Learning vector quantization. In: Michael, A.A. (ed.) The Handbook of
Brain Theory and Neural Networks, pp. 537–540. MIT Press (1998)

13. Deng, M., Wuyts, K., Scandariato, R., Preneel, B., Joosen, W.: A privacy threat analysis
framework: supporting the elicitation and fulfillment of privacy requirements. Require-
ments Eng. 16, 3–32 (2011)

14. Yang, R., Qu, Z., Huang, J.: Detecting digital audio forgeries by checking frame offsets.
In: Proceedings of the 10th ACM Workshop on Multimedia and Security, pp. 21–26.
ACM, Oxford (2008)

15. Swaminathan, A., Mao, Y., Wu, M., Kailas, K.: Data Hiding in Compiled Program Bina-
ries for Enhancing Computer System Performance. In: Barni, M., Herrera-Joancomartí, J.,
Katzenbeisser, S., Pérez-González, F. (eds.) IH 2005. LNCS, vol. 3727, pp. 357–371.
Springer, Heidelberg (2005)

16. Boufounos, P., Rane, S.: Secure binary embeddings for privacy preserving nearest neigh-
bors. In: IEEE International Workshop on Information Forensics and Security (WIFS), pp.
1–6 (2011)

17. Annavaram, M., Rakvic, R., Polito, M., Bouguet, J., Hankins, R., Davies, B.: The fuzzy
correlation between code and performance predictability. In: The 37th International Sym-
posium on Microarchitecture (MICRO), pp. 93–104 (2004)

18. STMicroelectronics. STM32F207G DATA Sheet, http://www.st.com/ (accessed on
January 2013)

19. KEIL. Keil uVision IDE Data Sheet, http://www.keil.com/uvision/ (accessed
on January 2013)

20. Guthaus, M.R., Ringenberg, J.S., Ernst, D., Austin, T.M., Mudge, T., Brown, R.B.: Mi-
Bench: A free, commercially representative embedded benchmark suite. In: IEEE Interna-
tional Workshop on Workload Characterization, pp. 3–14 (2001)

Independent Kernel/Process Checkpointing

on Non-Volatile Main Memory
for Quick Kernel Rejuvenation

Shuichi Oikawa

Division of Information Engineering, Faculty of Engineering,
Information and Systems, University of Tsukuba

Tsukuba, Ibaraki, Japan

Abstract. This paper presents a quick operating system kernel reju-
venation technique based on the integrated management of the main
memory and a file system on non-volatile (NV) memory. The proposed
technique independently takes and restores the checkpoints of the kernel
and processes in order to accelerate the kernel rejuvenation. We imple-
mented its prototype in Linux, and performed evaluation experiments
on a system emulator. The results show the significant reduction of the
time required for kernel rejuvenation.

1 Introduction

Software rejuvenation [1] is a proactive technique that copes with software ag-
ing. Since software aging tends to occur in large and complex software systems,
the operating system (OS) kernel is one of such typical systems; thus, the kernel
rejuvenation can improve the reliability of systems [2]. The kernel rejuvena-
tion is, however, typically realized on virtualized environments because various
optimizations are possible in order to reduce downtime of systems. Therefore,
rebooting the kernel was an only choice to realize the kernel rejuvenation on
smaller non-virtualized systems. Rebooting the kernel, however, is a time con-
suming task, and it makes downtime of such systems long.

In these days, byte addressable non-volatile (NV) memory technologies, such
as STT-RAM, PCM, and ReRAM, are being actively researched. Because they
are byte addressable, they can be used as main memory by directly connecting
them to CPUs [3]. Because they are non-volatile, they can also be used as storage
devices [4]. Therefore, the main memory and file system management can be
integrated, and the integration enables NV memory to be used as both the main
memory and storage. Our approach of such integration constructs a file system
on NV memory, and its blocks are allocated for the use of the main memory
[5]. This approach enables a tight integration by making the memory allocator
directly consult the file system in order to obtain requested memory pages on
demand. The file system searches free pages and marks them allocated. Freed
pages are returned to the file system.

E. Maehle et al. (Eds.): ARCS 2014, LNCS 8350, pp. 233–244, 2014.
c© Springer International Publishing Switzerland 2014

234 S. Oikawa

This paper presents a quick kernel rejuvenation technique based on our inte-
grated management of the main memory and a file system on byte addressable
NV memory. The proposed technique independently takes and restores the check-
points of the kernel and user processes in order to accelerate the rejuvenation.
It utilizes the integrated management in the two ways. First, the kernel can be
quickly rejuvenated by restoring only the execution image of the kernel because
NV memory can be excluded from the checkpoint. Second, the NV memory pages
allocated for a user process are instantly converted to a checkpoint file without
copying. Therefore, the total cost to restart a system can be significantly re-
duced. We implemented a prototype of the proposed technique in Linux, and
performed evaluation experiments on a system emulator. The results show the
significant reduction of the time required for rejuvenation.

The proposed technique can also be used for a replacement of the current
hibernation mechanism, which requires saving and restoring the whole volatile
memory. It makes it unnecessary to save the kernel portion of the memory, and
the kernel is rejuvenated after system resumption. It is also possible to make
system resumption even faster by selectively restoring user processes on demand.

The rest of this paper is organized as follows. Section 2 describes the back-
ground and the related work. Section 3 describes the target system structure
that is based on NV main memory. Section 4 presents the design and implemen-
tation. Section 5 shows the experiment results. Finally, Section 6 concludes this
paper. Unless otherwise specified, NV memory mentioned in this paper is byte
addressable.

2 Background and Related Work

2.1 New Non-Volatile Memory Technologies

New NV memory technologies, such as PCM, MRAM, and STT-RAM, enable
persistent data store without power supply. Since these technologies use resis-
tance values rather than electric charge, their values are persistent without con-
tinuous power supply. PCM technology is based on a chalcogenide material,
which takes the two states, amorphous and crystalline. Because their resistance
values are different, they can encode binary information. Since PCM requires
the material state being changed, changing its value takes longer and also its
lifetime is limited. MRAM technology is based on a magnetic tunneling junc-
tion (MTJ), which consists of two ferromagnetic layers and one tunnel barrier
layer. One of ferromagnetic layers of can change its magnetic direction. Because
their resistance values of different directions are different, they can encode bi-
nary information. STT-RAM is a new type of MRAM, of which performance of
STT-RAM is comparable to DRAM, and there is no need to treat it differently
[6]. While MRAM and STT-RAM have better characteristics than PCM in order
to be used for main memory, they are less dense; thus, their capacity tends to be
less than PCM. Since the researchers and manufacturers of NV memory claims
that scaling DRAM will end soon because of fundamental technology limit, such

Independent Kernel/Process Checkpointing on Non-Volatile Main Memory 235

as leakage and refresh dynamic power, NV memory became a candidate that can
replace or be used along with DRAM.

The researches on their use for either main memory or secondary storage have
been conducted actively but independently. Because these NV memory technolo-
gies are byte addressable and can achieve access speed comparable to DRAM,
their use for main memory has been studied. The development of PCM matured
before MRAM and STT-RAM, it was first considered to be the most close to
replace DRAM; thus, there were the active researches conducted to utilize PCM
as main memory [3]. Since these were the researches on the computer architec-
ture, the operating system (OS) takes only a minor role [7]. There were also the
researches that construct file systems on NV memory by taking advantage of its
byte addressability and larger capacity [4].

2.2 Checkpointing

Checkpointing was developed as a technique for rollback recovery. The state of
an executing program is saved in persistent storage. After a failure, the program
can be restarted from the saved state.

Checkpointing is useful also for software rejuvenation in the two ways. First,
checkpointing can accelerate software rejuvenation by restarting a program from
its clean state. Booting a complex program, such as the OS kernel and database
systems, takes time. It takes less time to restore its state that was saved soon
after its booting, and such a state is clean to make it rejuvenated. Second, check-
pointing enables the continuation of an executing program, of which execution
environment depends on the software that requires rejuvenation. While such
a program also needs to be rebooted without checkpointing, checkpointing en-
ables its continuous execution with interruption caused by the rejuvenation of
its underlying software.

Dong, et. al. [8] proposed a utilization of PCM as a device to save a checkpoint
image in it. This work assumes that PCM chips stacked on top of DRAM chips
and that the data in DRAM can be copied directly to PCM within the same
memory module. It employs the existing method to select the data to copy from
DRAM to PCM. Li, et. al. [9] proposed a fault-tolerance process abstraction
based on NV memory, called NV-process. While NV-process requires the signifi-
cantly different management of user processes and memory pages, our technique
is simple and more applicable to the existing systems. Moreover, NV-process
does not discuss anything to shorten the time for the kernel rejuvenation.

2.3 Integrated Main Memory and File System Management

The integrated main memory and file system management is the core mechanism
of our work, and is described in Section 3.

As its related work, there are only few papers that describe the integration
of main memory and storage. Bailey, et. al. [10] discusses various possibilities,
including the integration of main memory and storage and the aspects of ex-
ecution models, made possible by employing NV memory as main memory.

236 S. Oikawa

Fig. 1. A system that integrates NV main memory and a file system

Jung, et. al. [11] describes the policy and possible effect of the integration, but
does not mention any of software rejuvenation. It is important to mention neither
of them realized the integration.

3 System Based on NV Main Memory

This section describes the background of the work presented in this paper.
Firstly, the target system structure is described. Next, the virtual memory sys-
tem architecture is described. Finally, the integration method of main memory
and file system management is described.

3.1 Target System Structure

Since there is no publicly available system that employs NV memory as its main
memory, we need to construct a reasonable target system structure. In this
paper, we assume that 1) DRAM and NV memory constitute the main memory
of a system, and 2) DRAM and NV memory are placed in the same physical
address space. DRAM and NV memory are connected to the memory bus(ses)
of CPUs, and they are mapped in the same physical address space; thus, they
can be accessed in the same way with appropriate physical addresses, and there
is no distinction between them from the OS kernel.

Our approach to use NV memory integrates the main memory and storage
management; thus, NV memory takes the roles of both the main memory and
storage. The integration method utilizes a file system constructed on NV mem-
ory. The file system is used to store directories and files, and these contents
persist across the termination and rebooting of the OS kernel. The free blocks of
the file system are allocated for main memory while a system is running. They
are returned to the file system when a system terminates. Figure 1 depicts such
integration of the main memory and storage management.

Independent Kernel/Process Checkpointing on Non-Volatile Main Memory 237

Fig. 2. Virtual memory system architecture and its relationships with the memory
allocator and a file system

On the target system structure, of which memory consists of DRAM and
NV memory, the kernel is loaded on DRAM and manages the whole DRAM by
its memory allocator. This is mainly because the memory management in the
kernel heavily depends on the memory allocator for its flexibility. NV memory
is used for user processes. Memory requests from user processes are per page.
Such requests match the per block allocation from a file system.

We consider this structure is reasonable when our primary target systems are
clients devices, such as note PCs, tablets, and smart phones. Since these client
devices do not require a large amount of storage spaces, NV memory suffices the
needs of storage.

3.2 Virtual Memory System

The virtual memory system of the Linux kernel is built upon the memory al-
locator and file systems, and they are tightly integrated for efficiency. Figure 2
depicts the architecture. Traditionally, the memory allocator manages DRAM,
and file systems manage storage. Since our target system employs NV memory
for storage, a file system is used to manage NV memory. The virtual memory sys-
tem uses the memory allocator to allocate physical memory pages from DRAM.
It then maps the allocated DRAM pages in virtual address spaces, and finally
they become accessible from processes.

The virtual memory system can use XIP1-enabled file systems, such as Ext2
and PRAMFS [12]. When they are used, files can be directly mapped in user
process address spaces. Since the physical memory pages of the files are mapped
through the virtual memory system, no copying of pages occurs. We use the XIP
feature to map files on NV memory to avoid unnecessary copying.

1 XIP stands for eXecution In Place.

238 S. Oikawa

3.3 Integration of Main Memory and File System Management

In order to use NV memory as main memory, physical memory pages need to
be allocated from a file system. Therefore, in Figure 2, the double arrowed line
that connects the memory allocator and a file system is a missing link. The link
needs to be connected to make the memory allocator allocate physical memory
pages from a file system.

The integration method connects the link to enable the integration of the main
memory and storage management. It allocates free blocks from a file system for
the use of main memory just as those are allocated for files. The allocation is done
by finding free blocks and marking them allocated. Such information is stored
in the management data structures of a file system; thus, this method requires
the direct manipulation of those data structures, and the additional code for the
allocation and freeing needs to be implemented. The integration method was
implemented in Ext2 and PRAMFS. Its details are described elsewhere [5].

4 Design and Implementation

This section describes a quick kernel rejuvenation technique. In order to take
advantage of the integrated management of the main memory and a file system,
the proposed technique consists of two methods, one for the kernel and the other
for user processes.While both of the methods are based on the checkpoint/restart
system, they take different approaches in accord with the natures of the kernel
and user processes. The combination of the different approaches enables the
significant reduction of the total cost of the kernel rejuvenation.

4.1 Kernel Rejuvenation

On our target system structure, of which memory consists of DRAM and NV
memory, the kernel is loaded on DRAM and manages the whole DRAM by its
memory allocator. The size of DRAM can be small because DRAM is used to
store the kernel’s internal data structures but not user processes. NV memory is
used for the memory allocation of user processes, and the XIP feature of a file
system on NV memory reduces the necessity of page cache significantly.

Since the size of DRAM is small on our target system and the kernel resides
on DRAM, the cost to copy the whole DRAM is small. Therefore, we take an
approach to copy the whole DRAM in order to checkpoint and to restore the
kernel. The whole DRAM data is copied to NV memory to checkpoint the kernel,
and the copy is restored to DRAM to rejuvenate the kernel.

Before checkpointing the kernel, the devices of a system need to bet set to
the known states, so that the kernel can resume the devices when rejuvenated.
The Linux kernel provides the suspend/resume feature of devices as a part of
its power management subsystem. This feature is used to set the devices in the
quiescent states and to resume them.

Independent Kernel/Process Checkpointing on Non-Volatile Main Memory 239

4.2 User Process Checkpoint/Restart

NV memory is used for the memory allocation of user processes; thus, the blocks
of a file system created on NV memory are allocated and mapped in the virtual
address spaces of user processes. While these blocks are not referenced from any
files, they are a part of the file system; thus, they can become a part of files by
having files reference to them.

The proposed approach for the checkpoint/restart of a user process has these
allocated blocks instantly converted to a file without copying. A process that
needs to be restarted after kernel rejuvenation takes a checkpoint, and saves it
in a file. The checkpoint file is created from the blocks allocated for the process.
The references to these allocated block are added to the checkpoint file in order to
convert them to the file. Such conversion does not require allocating new blocks
and copying the data to these blocks. Only the management data structures
inside the kernel need to be additionally saved in the checkpoint file. Therefore,
creating a checkpoint of a user process can be finished quickly.

The restart of a process from a checkpoint does not require copying the data,
either. The blocks saved in the checkpoint file are directly mapped in the virtual
address space of the restarted process; thus, they are referenced from the appro-
priate page table entries of the process. When the checkpoint file is used just
once to restart a process, the blocks of the file can be overwritten. If a process
may be restarted multiple times from the same checkpoint file, the data of the
checkpoint file needs to be preserved. In this case, the copy-on-write (COW) is
applied to the mapped blocks.

Figure 3 depicts the checkpoint/restart of a user process by the proposed
system. The figure shows that the blocks allocated for a process directly become
a part of the checkpoint file, and also that the the blocks of the file are directly
mapped in a process. Except for the management data structures inside the
kernel, the execution image of a process can reside on NV memory as a file.

4.3 Putting Pieces Together

The proposed technique independently takes and restores the checkpoints of
the kernel and processes in order to accelerate the kernel rejuvenation. The
checkpoint of the kernel is taken at the boot time because the kernel rejuvenation
is our objective. In order to skip over a time consuming boot process but to keep
the checkpoint consistent with the file system on NV memory, the checkpoint
should be taken before mounting the file system. When the kernel is rejuvenated
by restoring the checkpoint, the kernel mounts the file system; thus, the data of
the file system can be preserved across the kernel rejuvenation.

In order to continue the processing of user processes after the kernel reju-
venation, the checkpoints of processes are taken just before the rejuvenation.
The checkpoint files are stored in the file system on NV memory. After the ker-
nel is rejuvenated and the file system is mounted, the checkpoint files become
accessible. Because the data of the file system is preserved across the kernel
rejuvenation, the checkpoint files created before the rejuvenation are the latest

240 S. Oikawa

Fig. 3. Checkpoint/restart of a user process by the proposed system

ones. User processes are resumed from these checkpoint files. Therefore, they
can continue the work across the rejuvenation.

Checkpoint/restart systems handle user process states, such as a process id,
opened file descriptors, signal handlers, and so on, managed inside the kernel.
They usually implement kernel modules that retrieve and restore these states.
The amount of data required to save these states is much smaller than a user
process image, the existing mechanism is sufficient enough.

5 Evaluation

This section first describes the evaluation method and then shows the experiment
results.

5.1 Evaluation Method

We employed the QEMU system emulator to construct the target system as
described in Section 3.1. The evaluation results presented below do not take
into account the difference of access latencies between DRAM and NV mem-
ory because of the two reasons. First, this paper focuses on an application of
the integrated main memory and file system management to software rejuvena-
tion. Second, NV memory technologies are still under active development, and
it is possible that some of them, such as STT-RAM and MRAM, will perform
comparably to DRAM [6].

The version of QEMU used for the evaluation is 1.0.1, and QEMU emulates
x86 64. It was modified to emulate NV memory that persists its contents across
termination and rebooting of the emulator. A file is used for the persistence of
NV memory. The file is mapped into the physical address space emulated by
QEMU. The experiments were performed on QEMU invoked with the following
options:

Independent Kernel/Process Checkpointing on Non-Volatile Main Memory 241

% qemu -icount 0 -m 128 -nvmemory \

file=nvmm.img,physaddr=0x100000000

With the above options, QEMU is invoked with 128MB DRAM along with NV
memory mapped from 0x100000000 of the physical address. The size of the file
emulating NV memory (nvmm.img) is 4GB. While the size of DRAM is passed
to the Linux kernel through BIOS, the information of NV memory is not passed
in order to make their management separate.

The evaluation of execution costs needs to measure execution times. Times
counted by the interrupts from a timer device are not accurate enough on system
emulators. Instead, the number of executed instructions is used as the measure of
execution costs. Our past work [13] shows that the number of executed instruc-
tions strongly correlates with the execution cost of mobile processors, such as
Intel Atom, which are our target systems; thus, it is adequate to use the number
of executed instructions for the evaluation of execution costs. The -icount 0

option of QEMU lets the TSC (time stamp counter) register count the number
of executed instructions. The RDTSC instruction reads the value of TSC.

The Linux kernel version 3.4 and BLCR version 0.8.5 [14] were modified as
described in Section 3.3 and 4. We employed PRAMFS as its file system.

5.2 Quick Rejuvenation Experiment

We performed an experiment that evaluates the proposed quick rejuvenation
in two steps because the rejuvenation of a system including user processes is
not automated yet. First, we measured the numbers of the instructions for the
boot and rejuvenation of the kernel. Second, we measured the numbers of the
instructions for the checkpoint/restart of a user process using the existing and
proposed methods. Finally, we calculated the total rejuvenation costs by the
existing and proposed methods from these numbers.

Table 1 shows the numbers of the instructions measured for the boot and
rejuvenation of the kernel. The number of instructions for the kernel boot is cal-
culated from the values of the TSC at the beginning of start_kernel() and just
before opening the console in kernel_init(). start_kernel() is the first func-
tion written in the C language that starts the boot process, and kernel_init()

is almost the last step of the boot process that mounts the root file system.
The number of instructions for the kernel rejuvenation includes all the neces-
sary steps required for the rejuvenation including the restoration of the memory
image, the register contents, and the device states.

The experiment results show that the kernel rejuvenation is x10 faster than the
kernel boot. The restoration of the device states takes approximately 20% of the
number of instructions for the target emulator system, of which configuration is
relatively simple. Since real hardware systems have more complex configuration,
the cost for the restoration of the device states may increase for them.

242 S. Oikawa

Table 1. The numbers of instructions for the kernel boot and rejuvenation

Method Instruction count

Kernel Boot 570,187,040
Rejuvenation 55,120,925

Fig. 4. Comparison of the checkpoint and restart costs of a user process on QEMU

Figure 4 and 5 show the checkpoint and restart costs and the calculated
rejuvenation costs by the existing and proposed methods, respectively. The al-
location size is the memory size allocated by a user process. Boot+UIO shows
the cumulative cost of the kernel boot and the checkpoint/restart of a user pro-
cess by the existing method that copies the data between a process and a file.
Quick Rejuvenation shows the cumulative cost of the kernel rejuvenation and
the checkpoint/restart of a user process by the proposed method that preserves
and restores the pages of a user process without copying.

The results show the significance of the proposed method. The proposed
method is x10 faster than the existing method for all the allocation sizes of
a user process. While the cost for the existing method increases sharply as the
allocation size of a user process increases, the cost for the proposed method in-
creases only gently. Therefore, the proposed method works significantly better
than the existing method for user processes of various allocation sizes.

Independent Kernel/Process Checkpointing on Non-Volatile Main Memory 243

Fig. 5. Comparison of the cumulative costs for the rejuvenation of system on QEMU

6 Summary

This paper presented a quick software rejuvenation technique based on the inte-
grated management of the main memory and a file system on NV memory. By
having NV memory dedicated to the memory allocation for user processes, the
kernel image can be quickly restored independently from NV memory. By con-
verting the blocks allocated for a user process to a file, it becomes possible to take
its checkpoint and to restore it without copying data. The proposed technique
was implemented in Linux, and the evaluation results showed the significant
reduction of the time required for rejuvenation.

References

1. Huang, Y., Kintala, C., Kolettis, N., Fulton, N.: Software Rejuvenation: Analysis,
Module and Applications. In: Proc. of Int’l Symp. Fault-Tolerant Computing, pp.
381–391 (1995)

2. Baker, M., Sullivan, M.: The Recovery Box: Using Fast Recovery to Provide High
Availability in the UNIX Environment. In: Proc. of the USENIX Conference, pp.
31–44 (1992)

3. Lee, B.C., Ipek, E., Mutlu, O., Burger, D.: Architecting phase change memory
as a scalable dram alternative. In: Proc. of the 36th International Symposium on
Computer Architecture (ISCA 2009), pp. 2–13 (2009)

244 S. Oikawa

4. Condit, J., Nightingale, E.B., Frost, C., Ipek, E., Lee, B., Burger, D., Coetzee,
D.: Better I/O through byte-addressable, persistent memory. In: Proc. of the 22nd
Symposium on Operating Systems Principles (SOSP 2009), pp. 133–146 (2009)

5. Oikawa, S.: Integrating Memory Management with a File System on a Non-Volatile
Main Memory System. In: Proc. of the 28th ACM Symposium on Applied Com-
puting (SAC 2013), pp. 1589–1594 (2013)

6. Park, S.W.: Overcoming the Scaling Problem for NAND Flash. Flash Memory
Summit (2012)

7. Mogul, J.C., Argollo, E., Shah, M., Faraboschi, P.: Operating system support for
NVM+DRAMhybrid main memory. In: Proc. of the 12th Conference on Hot Topics
in Operating Systems, HotOS 2009 (2009)

8. Dong, X., Muralimanohar, N., Jouppi, N., Kaufmann, R., Xie, Y.: Leveraging 3D
PCRAM technologies to reduce checkpoint overhead for future exascale systems.
In: Proc. of the Conference on High Performance Computing Networking, Storage
and Analysis, SC 2009 (2009)

9. Li, X., Lu, K., Wang, X., Zhou, X.: NV-process: A Fault-Tolerance Process Model
Based on Non-Volatile Memory. In: Proc. of the 3rd ACM SIGOPS Asia-Pacific
Workshop on Systems, APSys 2012 (2012)

10. Bailey, K., Ceze, L., Gribble, S.D., Levy, H.M.: Operating system implications of
fast, cheap, non-volatile memory. In: Proc. of the 13th USENIX Conference on Hot
Topics in Operating Systems, HotOS 2011 (2011)

11. Jung, J.-Y., Cho, S.: Dynamic co-management of persistent RAM main memory
and storage resources. In: Proc. of the 8th ACM International Conference on Com-
puting Frontiers, CF 2011 (2011)

12. Protected and Persistent RAM Filesystem (2012),
http://pramfs.sourceforge.net/

13. Oikawa, S., Miki, S.: File-based Memory Management for Non-Volatile Main Mem-
ory. In: Proc. of the 37th IEEE Annual International Computers, Software & Ap-
plications Conference (COMPSAC 2013), pp. 559–568 (2013)

14. Hargrove, P., Duell, J.: Berkeley Lab Checkpoint/Restart (BLCR) for Linux Clus-
ters. In: Proc. of Scientific Discovery through Advanced Computing (SciDAC), pp.
494–499 (2006)

http://pramfs.sourceforge.net/

Author Index

Abeni, Luca 123
Appiah, Kofi 221
Asfour, Tamim 1

Barros, António 25
Bernard, Yvonne 49
Breddemann, Mark 111

Canepa, Edward 147
Carro, Luigi 209
Cassé, Hugues 98
Cheng, Jingyuan 159
Cheung, Wah M. 221
Claudel, Christian 147

Dehwah, Ahmad 147

Ehsan, Shoaib 221
Erculiani, Fabio 123
Erhardt, Christoph 1

Fechner, Bernhard 37
Filali, Mamoun 98

Gaydadjiev, Georgi N. 209
Glaß, Michael 85
Gu, Dongbing 221

Herbegue, Hajer 98
Herber, Christian 171
Herkersdorf, Andreas 171
Howells, Gareth 221
Hu, Huosheng 221

Ignatowski, Mike 183
Iordan, Alexandru C. 13

Jahre, Magnus 13
Jiang, Jiming 147
Jmaiel, Mohamed 72

Kallel, Slim 72
Kantert, Jan 49
Karami, Ali 135
Kavi, Krishna 183
Khunjush, Farshad 135
Kiefhaber, Rolf 37
Kiy, Alexander 60
Klejnowski, Lukas 49

Koubaa, Anis 196
Kröhnert, Manfred 1

Lohmann, Daniel 1
Loukil, Sihem 72
Lucke, Ulrike 60
Lukowicz, Paul 159

McDonald-Maier, Klaus 221
Meier, Matthias 111
Mirsoleimani, S. Ali 135
Mousa, Mustafa 147
Msadek, Nizar 37
Müller-Schloer, Christian 49

Natvig, Lasse 13
Nazarian, Ghazaleh 209

Odat, Enas 147
Oechslein, Benjamin 1
Oikawa, Shuichi 233

Palopoli, Luigi 123
Paul, Johny 1
Pianelli, Stefano 183
Pinho, Lúıs Miguel 25
Pisano, Giandomenico 183

Rauchfuss, Holm 171
Regina, Giuseppe 183
Richter, Andre 171
Rosales, Rafael 85

Schedel, Jens 1
Schröder-Preikschat, Wolfgang 1
Spinczyk, Olaf 111
Stechele, Walter 1
Sundholm, Mathias 159

Teich, Jürgen 85

Ungerer, Theo 37

Wild, Thomas 171

Zhai, Xiaojun 221
Zhou, Bo 159
Zoerner, Dietmar 60

	Preface
	Organization
	Table of Contents
	Parallelization: Applications and Methods
	Resource-Aware Harris Corner Detection Based on Adaptive Pruning
	1 Introduction
	2 State of the Art
	3 Harris Corner Detection
	4 Pruning Techniques
	5 Evaluation Platform
	5.1 System Programming Interface
	5.2 Hardware Architecture

	6 Implementation and Results
	7 Conclusion
	References

	Victim Selection Policies for Intel TBB: Overheads and Energy Footprint
	1 Introduction
	2 IntelTBB
	3 The Stealing Mechanism
	3.1 The TBB Implementation
	3.2 The Oracle Selection Scheme
	3.3 The Pseudo-random Selection Scheme

	4 Methodology
	4.1 Simulation Tools
	4.2 Benchmarks

	5 Results
	5.1 Parallel Overheads
	5.2 Improving Task Stealing

	6 Related Work
	7 Conclusion
	References

	Non-preemptive Schedulingof Real-Time Software Transactional Memory
	1 Introduction
	2 Background and Related Work
	3 SystemModel
	4 Contention Management
	5 Scheduling Transactions
	5.1 Non-preemptible Until Commit
	5.2 Non-preemptible during Attempt

	6 Simulation Results
	7 Conclusions and Further Work
	References

	Self-Organization and Trust
	Trust-Enhanced Self-configuration for Organic Computing Systems
	1 Introduction
	2 Related Work
	3 Trust-Enhanced Self-configuration
	3.1 Metrics
	3.2 Self-configuration Process
	3.3 Conflict Resolution

	4 Evaluation
	4.1 Quality of Distribution
	4.2 Permanent Node Failures

	5 Summary and Outlook
	References

	Estimation of Reward and Decision Making for Trust-Adaptive Agents in Normative Environments
	1 Introduction
	2 Application Scenario
	3 Previous and Related Work
	4 Delayed Reward
	5 Reward Estimator
	6 Evaluation
	7 Conclusion and Future Work
	References

	An Adaptive Personal Learning Environment Architecture
	1 Introduction
	1.1 Related Work
	1.2 Challenges of an Adaptive PLE Framework

	2 System Architecture of a PLE Framework
	2.1 University Service Buses
	2.2 Process Engine
	2.3 Identity and Access Management
	2.4 Portal Server

	3 Experimental Results and Evaluation
	4 Conclusion
	References

	Middleware for Dynamically Adaptive Systems
	1 Introduction
	2Previous Work
	3 DRES4DAS Middleware
	3.1 Aspect-Based Monitoring
	3.2 Dynamic Reconfiguration
	3.3 Consistency
	3.4 Implementation

	4 Case Study
	5 Related Work
	6 Conclusion and Future Work
	References

	System Design I
	Mahler: Sketch-Based Model-Driven Virtual Prototyping
	1 Introduction and State-of-the-Art
	2 Sketch-Based Functional Modeling
	2.1 Functional Model Elements
	2.2 Functional Model Generation

	3 Sketch-Based Architecture Platform Mapping
	3.1 Generated XMLs
	3.2 Simulation

	4 Use Case
	5 Conclusions
	References

	Formal Architecture Specification for Time Analysis
	1 Introduction
	2 ADL-Based Approach for Time Computation
	3 The Sim-nML Description Language Extension
	4 Formal Architecture Description
	4.1 A Light DSL for Architecture Constraints
	4.2 Architecture Properties

	5 Related Work
	6 Conclusion
	References

	Hardware APIs: A Software-Centric Approach for Automated Derivation of MPSoC Hardware Structures Based on Static Code Analysis
	1 Introduction
	2 State of the Art
	3 LavA Configuration Process
	4 Representation of Hardware in Software
	4.1 Hardware Representation
	4.2 Hardware Instantiation
	4.3 Interrupts and Device Addresses

	5 Model-Driven Development of Hardware API
	6 Static Code Analysis
	7 Example: Audio Decoder
	8 Discussion
	8.1 Top-Down vs. Bottom-Up Configuration
	8.2 General Applicability of the Approach

	9 Conclusion
	References

	uBuild: Automated Testing and Performance Evaluation of Embedded Linux Systems
	1 Introduction
	2 TheProblem
	3 The uBuild Architecture
	4 A Simple Example
	5 Related Work
	6 Conclusions
	References

	System Design II and Sensor Systems
	A Two-Tier Design Space Exploration Algorithm to Construct a GPU Performance Predictor
	1 Introduction
	2 Related Work
	3 Factorial Design
	3.1 The Plackett and Burman Design

	4 Multiple Linear Regression
	4.1 Transformation
	4.2 Prediction

	5 GPUArchitecture
	6 Proposed Model Construction Algorithm
	7 Experimental Setup
	8 Experimental Results
	8.1 Screening Results
	8.2 Modeling Results

	9 Conclusion
	References

	A Sensor Network Architecture for Urban Traffic State Estimation with Mixed Eulerian/Lagrangian Sensing Based on Distributed Computing
	1 Introduction
	2 Sensing Paradigm
	2.1 Current Architecture of Probe-Based Traffic Sensing Systems
	2.2 Proposed System Architecture

	3 User Privacy Analysis
	3.1 Threat Model
	3.2 Properties of the System
	3.3 Privacy Attacks and Countermeasures

	4 Distributed Computing for Traffic State Estimation
	4.1 Input Data
	4.2 Traffic State Estimation Using Mixed Integer Linear Programming
	4.3 Distributed Computing Principle

	5 Implementation
	5.1 Computational Platform
	5.2 Fixed Eulerian and Lagrangian Sensor Nodes
	5.3 Mobile Transceivers
	5.4 Simulated Performance of the System

	6 Conclusions
	References

	From Smart Clothing to Smart Table Cloth: Design and Implementation of a Large Scale,Textile Pressure Matrix Sensor
	1 Introduction
	2 Textile Pressure Sensor Matrix
	3 Processing Architecture
	3.1 Design Requirements
	3.2 Architecture
	3.3 Performance Limits
	3.4 Scalability
	3.5 Dynamic Reconfiguration and Data Compression Schemes

	4 Implementation and Results
	4.1 Prototype Hardware
	4.2 Results and Application Examples

	5 Conclusion
	References

	Virtualization: I/O, Memory, Cloud
	Performance Isolation Exposure in Virtualized Platforms with PCI Passthrough I/O Sharing
	1 Introduction
	2 Experimental Setup and Threat Model
	2.1 Threat Model
	2.2 Evaluation Methodology

	3 Results
	3.1 Experiment 1: Attacking SR-IOV Virtual Functions
	3.2 Experiment 2: Influence of the DoS Target’s Processing Speed
	3.3 Experiment 3: Influence of the Path to the DoS Target

	4 Protection Approaches
	5 Related Work
	6 Conclusion and Outlook
	References

	3D DRAM and PCMs in Processor Memory Hierarchy
	1 Introduction
	2 Related Works
	3 Foundation of the Architecture
	4 Cacti Models
	5 Experimental Setup
	6 Results and Analysis
	7 Conclusions
	References

	A Service-Oriented Architecture for Virtualizing Robots in Robot-as-a-Service Clouds
	1 Introduction
	2 Related Works
	3 RoboWeb System Architecture
	3.1 Requirements Specification
	3.2 System Architecture Design

	4 Implementation and Deployment
	4.1 Hardware and Software Suits
	4.2 Deployment

	5 Conclusion
	References

	Dependability: Safety, Security, and Reliability Aspects
	Towards Code Safety with High Performance
	1 Introduction
	2 Related Work
	3 The Impact of Loop Unrolling on SCFC and CCA Optimizations
	4 Experimental Setup and Results
	5 Conclusions and Future Work
	References

	Detecting Compromised Programs for Embedded System Applications
	1 Introduction
	2 Related Work
	3 Methods for Detecting Compromised Programs
	3.1 Overall System Architecture
	3.2 CPI Analysis

	4 Experimental Results
	5 Conclusion
	References

	Independent Kernel/Process Checkpointing on Non-Volatile Main Memory for Quick Kernel Rejuvenation
	1 Introduction
	2 Background and Related Work
	2.1 New Non-Volatile Memory Technologies
	2.2 Checkpointing
	2.3 Integrated Main Memory and File System Management

	3 System Based on NV Main Memory
	3.1 Target System Structure
	3.2 Virtual Memory System
	3.3 Integration of Main Memory and File System Management

	4 Design and Implementation
	4.1 Kernel Rejuvenation
	4.2 User Process Checkpoint/Restart
	4.3 Putting Pieces Together

	5 Evaluation
	5.1 Evaluation Method
	5.2 Quick Rejuvenation Experiment

	6 Summary
	References

	Author Index

