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Abstract. In the present paper, we propose constructing symmetric
pairings by applying the Ate pairing to supersingular elliptic curves over
finite fields that have large characteristics with embedding degree three.
We also propose an efficient algorithm of the Ate pairing on these curves.
To construct the algorithm, we apply the denominator elimination tech-
nique and the signed-binary approach to the Miller’s algorithm, and
improve the final exponentiation. We then show the efficiency of the
proposed method through an experimental implementation.
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1 Introduction

Since Sakai et al. [26] and Boneh et al. [6,7] independently proposed pairing-
based cryptosystems, many other novel cryptographic schemes that use pairings
have been proposed.

An admissible pairing e is a mapping from two source groups G1 and G2, both
of order r, to target group GT , also of order r. The mapping must be bilinear,
nondegenerate, and able to be computed efficiently. Typically, G1 and G2 are
denoted as additive groups, and GT is denoted as a multiplicative group. The
bilinearity is described as follows:

e(P1 + P2, Q) = e(P1, Q)e(P2, Q),
e(P, Q1 + Q2) = e(P, Q1)e(P, Q2),

� Part of this work was done while the second author was a student at the University
of Tsukuba.

Z. Cao and F. Zhang (Eds.): Pairing 2013, LNCS 8365, pp. 97–112, 2014.
© Springer International Publishing Switzerland 2014



98 T. Teruya et al.

where P, P1, P2 ∈ G1 and Q, Q1, Q2 ∈ G2. In the present paper, the case G1 = G2
of pairings from G1 ×G1 to GT is referred to as a symmetric pairing (the “type
1” pairing in [11]), and the other case, i.e., G1 �= G2, is referred to as an asym-
metric pairing. Symmetric pairings and asymmetric pairings are similar in some
ways, but they differ in their mathematical structures and the security assump-
tions used to construct cryptographic schemes. It has been reported for several
implementations that asymmetric pairings are the best choice for higher levels of
security. However, symmetric pairings are often used to construct cryptographic
schemes because their mathematical structures are simpler than asymmetric
pairings. Currently, the most popular way to construct symmetric pairings is to
use supersingular (hyper)elliptic curves. These curves have many properties that
are friendly to the computations for symmetric parings, for example, the exis-
tence of distortion maps. In particular, supersingular elliptic curves over finite
fields of small characteristic have been widely used for computing symmetric
pairings.

However, there have also been several proposals of security analysis for solving
the discrete logarithm problem (DLP) on GT in the case of small characteris-
tic [15,1]. Hayashi et al. [15] showed that the DLP over F397·6 can be solved.
Subsequently, Adj et al. [1] reported that the actual security level of the curves
with characteristic 3 is lower than was previously estimated. In the case of char-
acteristic 2, Joux [17] reported that the DLP in F2254·24 can be solved in practical
time. GT is included in the extension field of degree 4 or 12, thus GT is also in-
cluded in F∗

2254·24 . These results will lead to the reevaluation of their security
level, and the key length, and performance of them are expected to be worse.

As mentioned above, asymmetric pairings currently perform the best. The
constructions of cryptographic schemes on asymmetric pairings that are simi-
lar to those that have been proposed on symmetric pairings have been consid-
ered. Chatterjee et al. [9] investigated the construction of several cryptographic
schemes built on asymmetric pairings and compared their performance. The most
interesting result of Chatterjee et al. is the construction of a Waters signature
scheme [31] on an asymmetric pairing. The original Waters scheme is constructed
on a symmetric pairing, and the public key, private key, and signature are all
very small. On the other hand, in order to construct, the modified Waters signa-
ture schemes proposed by Chatterjee et al., they require either larger public and
private keys or a public parameter generated by a trusted third party. Hence,
there are several trade-offs between using symmetric or asymmetric pairings.

Contribution

In the present paper, we consider efficient algorithms for supersingular elliptic
curves that are defined over extension fields that have large characteristics. Su-
persingular curves defined over finite fields that have large characteristics are
classified into two types. These curves are summarized in Table 1. The type 1
curve is defined over prime fields, and the type 2 curve is defined over extension
fields.
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The use of the type 1 curve in the construction of pairing-based cryptosystems
was demonstrated by Boneh et al. [6,7]. The type 2 curve was introduced by
Verheul [29,30] in a different context. However, using these curves for pairing-
based cryptosystems is not as popular as using supersingular curves over fields
with small characteristics. One of the reasons is that the type 1 elliptic curves
have not been commonly used in recent cryptographic pairings (such as the ηT

pairing [3] and the Ate pairing [16]). For supersingular elliptic curves over small-
characteristic finite fields, we can use the ηT pairing fT,P (Q) instead of the Tate
pairing fr,P (Q), since, in this case, the bit length of T is half that of r. Thus, for
these curves, the ηT pairing can be computed much faster than the Tate pairing.
There is, however, almost no advantage to using the Eta or the Ate pairing for
type 1 supersingular elliptic curves because their trace is 0.

On the other hand, computing pairings over type 2 supersingular elliptic
curves has not been extensively investigated. One of the reasons for this is that
the embedding degree k of such curves is 3. This is smaller than that of the super-
singular elliptic curves over small characteristic fields (in these cases, k = 4, 6),
and it thus would seem that there would not be much advantage to using type
2 elliptic curves. Furthermore, the ηT pairing is not applicable for type 2 curves
because their k is odd, and we cannot directly use the denominator elimination
technique [4] that is used when k is even. However, Lin et al. [21] proposed a
denominator elimination technique for elliptic curves with an odd embedding
degree. Also note that the embedding degree k = 3 of a type 2 elliptic curve is
slightly larger than the degree k = 2 of elliptic curves over prime fields.

Another advantage of using a type 2 elliptic curve is that we can use the
efficient method for scalar multiplication that was proposed by Gallant et al. [12]
because the group order r is of the form r = p2 ± p + 1. This can save much
computation time.

In the present paper, we propose a method for efficiently computing symmetric
pairings over type 2 elliptic curves.

The remainder of this paper is organized as follows. Section 2 presents a
brief mathematical description of pairings. Section 3 presents the reduced Ate
pairings on type 2 elliptic curves; this is the main result of the present study.
Section 4 presents an experimental implementation of the proposed method.
Finally, conclusions are presented in Section 5.

2 Mathematical Preliminaries

2.1 Pairings

Let E be an elliptic curve over a finite field Fq with q elements. The set of Fq-
rational points of E is denoted as E(Fq). Let E(Fq)[r] denote the subgroup of
r-torsion points in E(Fq). We write O for the point at infinity on E. Consider
a large prime r such that r | #E(Fq), and denote the embedding degree by k,
which is the smallest positive integer such that r divides qk − 1. Let πq be the
q-power Frobenius endomorphism πq : E → E, (x, y) �→ (xq , yq). We denote the
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Table 1. Summary of supersingular elliptic curves defined over large characteristic
finite fields

Type 1 2

Base Field
Fp, where p > 3 and

p ≡ 3 (mod 4)
Fp, where p > 3 and

p ≡ 2 (mod 3)
Fp2 , where p > 3 and

p ≡ 5 (mod 6)

Curve E/Fp : Y 2 = X3 + X E/Fp : Y 2 = X3 + 1
E/Fp2 : Y 2 = X3 + b,

where b is a square but
not a cube in Fp2

Order #E(Fp) = p + 1 #E(Fp) = p + 1 #E(Fp2) = p2 + 1 − t,
t = ±p

Embedding
Degree 2 2

{
3 if t = p,
3/2 otherwise

Distortion
Map

ι : (x, y) �→ (−x, ζ4y),
where ζ4 is a proper
element in Fp2 and

ζ4
4 = 1

ι : (x, y) �→ (ζ3x, y),
where ζ3 is a proper
element in Fp2 and

ζ3
3 = 1

ι : (x, y) �→ (u2xp, u3yp),
where u is a proper
element in Fp6 and

u6 = b/bp

trace of Frobenius by t, i.e., #E(Fq) = q + 1 − t. Finally, let μr(⊂ F
×
qk) be the

group of r-th roots of unity.

Tate Pairing. Let P ∈ E(Fqk)[r] and Q ∈ E(Fqk). Choose a point R ∈ E(Fqk)
such that the supports of div(fr,P ) = r(P ) − r(O) and DQ := (Q + R) − (R) are
disjoint. Then, the Tate pairing (Tate–Lichtenbaum pairing) is defined by:

〈·, ·〉r : E(Fqk)[r] × E(Fqk)/rE(Fqk ) → F
×
qk/(F×

qk)r,

(P, Q) �→ 〈P, Q〉r := fr,P (DQ) mod (F×
qk)r

.

It has been shown that 〈P, Q〉r is bilinear and nondegenerate.
For cryptography applications, it is convenient to define pairings for which

the outputs are unique values rather than equivalence classes. Thus, we consider
the reduced Tate pairing defined by:

τr : E(Fqk)[r] × E(Fqk)/rE(Fqk) → μr,

τr(P, Q) = 〈P, Q〉(qk−1)/r
r .

We call the operation z �→ z(qk−1)/r final exponentiation.

Ate Pairing. The Ate pairing, proposed by Hess et al. [16], is a generalization
of the ηT pairing [3]. The Ate pairing can be applied to not only supersingular
but also to ordinary elliptic curves.
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Let T = t − 1. We choose integers N and L such that N = gcd(T k − 1, qk − 1)
and T k − 1 = LN . We assume that r2 does not divide qk − 1.

Definition 1. The reduced Ate pairing (on G2 × G1) is defined by

aT : G2 × G1 → μr;

(Q, P ) �→ fT,Q(P )(q
k−1)/r

,

where the rational function fT,Q on E is the normalized function that satisfies

(fT,Q) = T (Q) − ([T ]Q) − (T − 1)(O).

The definition for the normalization of rational functions is given in [22].
Many variants of the Ate pairing have been proposed, including the Atei pair-

ing [32], the R-Ate pairing [20], and the optimal pairing [28]. These pairings are
defined on G2 ×G1 using normalization functions. The Ate pairing and its vari-
ants are also defined in G1×G2

1, there is no need to consider normalization [25].

2.2 Supersingular Elliptic Curves Defined over an Extension Field

We propose a method for the efficient computation of a symmetric pairing over
a supersingular elliptic curve E/Fq, as characterized in [30]:

E/Fq : Y 2 = X3 + b, (1)

where q = p2 and the quantities in (1) satisfy the following conditions:

– p is a prime larger than 3;
– p ≡ 5 (mod 6);
– b ∈ Fq is a square in Fq but is not a cube in Fq.

The trace t of the q-power Frobenius endmorphism πq on E/Fq and the car-
dinality #E(Fq) are determined, respectively, by:

t = p,

#E(Fq) = p2 − p + 1.
(2)

Therefore, the embedding degree of E/Fq is k = 3.
Let r be the largest prime divisor of #E(Fq), and let h = #E(Fq)/r. We

assume that r2 � #E/Fq. Hereafter, we write G1 := E(Fq)[r] and call G1 the
source group of pairings.

1 When E is supersingular, the Ate pairing is defined using the same formula. When
E is ordinary, the Ate pairing is defined using a slightly different formula. In this
case, the Ate pairing is called the twisted Ate pairing; for more information see [16].
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2.3 Distortion Map

The distortion map on E/Fq is defined as follows.

Lemma 1 (distortion map, [30]). Let E/Fq : Y 2 = X3 + b be an elliptic
curve, and let u be a proper element in Fq3 such that u6 = b/bp.

Then
ι : E(Fq) → E(Fq3 ) \ E(Fq), (x, y) �→ (u2xp, u3yp) (3)

is a distortion map on E.

We can construct a symmetric pairing e(·, ·) by “compositing” the distortion
map ι to the Tate pairing 〈·, ·〉 on E, that is,

e(·, ·) := 〈·, ι(·)〉 .

3 The Main Result

As mentioned in Section 1, there is almost no advantage to using the Ate pairing
for type 1 supersingular elliptic curves defined over prime fields, because t = 0
for them. However, the Ate pairing for a type 2 curve, as discussed in Section 2.2,
can be computed efficiently. In the present section, we propose an algorithm for
computing Ate pairings over type 2 curves.

First, we compare type 2 curves with type 1 curves from the viewpoint of
pairing-based cryptography.

3.1 Comparison between Type 1 and Type 2 Curves

When we use elliptic curves over Fp2 , we need to consider the hardness of
the elliptic curve discrete logarithm problem (ECDLP) on E/Fp2 against a
Gaudry–Hess–Smart (GHS) attack or an attack by one of its variants. Let
E/Fp2 : Y 2 = F (X) be an elliptic curve. According to Momose et al. [23], if
F (X) is irreducible over Fp2 or can be factored as a product of linear factors,
then E is equivalent to the elliptic curves of the Scholten form [27], and we
can use degree 2 Weil restrictions to make a genus 2 hyperelliptic curve C/Fp.
Hence, the ECDLP on E/Fp2 is reduced to the hyperelliptic curve discrete log-
arithm problem (HECDLP) on the Jacobian group of C/Fp. In the case of our
target curve Fp2 , F (X) = X3 + b is generally irreducible since b is not a cube
in Fp2 . Hence, degree 2 Weil restrictions are applicable to E/Fp2 , and we must
choose parameters (q(= p2), r, t) to protect against this attack. When we solve
the HECDLP on the Jacobian of C/Fp, which is obtained by applying degree 2
Weil restrictions to E/Fp2 and using the double-large prime variation-of-index
calculus of Gaudry et al. [13] and Nagao [24]. The running cost is Õ(q) when the
genus of C is 2.

When we choose (q, r, t) such that q3 is at least 960 bits, then q = p2 is at
least 320 bits. Hence, the running cost Õ(q) is larger than O(2320) when the
characteristic p is 160 bits. We now need to choose a larger q; for example, if p
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is 200 bits, we can choose a q3 that is 1200 bits. We can thus obtain parameters
that are secure against the Weil restrictions.

Next, we consider the hardness of finite-field discrete logarithm problem
(FFDLP) on GT . To guarantee security, the FFDLP must be hard. The elliptic
curve introduced in Section 2.2 is defined over a large characteristic extension
field. Freeman et al. [10] suggested that the size of qk needs 2200-3600 bits in
order to guarantee the 112-bit level of security. We can also consider another
setting, which based on the function-field sieve attack [2], and its complexity is:

exp

((
32
9

+ o(1)
) 1

3

· (log qk) 1
3 · (log log qk) 2

3

)
. (4)

Recently, Joux and Pierrot [18] proposed the extended special number field
sieve to compute FFDLP in Fpn , where p has an adequate sparse representation.
The concern with the security analysis of FFDLP has been growing by their
investigations. It is interesting to follow up their results further, but it is not our
present concern.

Next, we compare the parameters of the type 1 and type 2 elliptic curves for
the 112-bit level of security based on Equation (4). We suppose o(1) in Equa-
tion (4) is 0, namely, we need that the size of the resulting Fpk , which includes
GT , is around 3132 bits. The summary of the comparison of parameters is shown
in Table 2. The base field of the type 2 curve is smaller than that of the type 1
curve. Moreover, the base field of the type 2 curve is an extension field. Thus,
the characteristic of the type 2 curve is small, its arithmetic is implementa-
tion friendly, and the representation of the elements in G1 is smaller than it
is for the type 1 curve. However, the order of the type 2 curve is larger than
that of the type 1 curve. If the method proposed by Gallant et al. [12] (GLV)
is used for scalar multiplication on G1 for the type 2 elliptic curves, then the
length of this operation is cut in half; nevertheless, the reduced length is still
larger than that for type 1 curves. Scalar multiplication on type 2 curves is
considerably slower than it is for type 1 curves. But the final exponentiation
is faster for type 2 curves because the costly part of this operation on type 2
curves is smaller than it is for type 1 curves. Hence, the Weil pairing is con-
siderable for type 1 curves. This means that Miller’s algorithm is evaluated in
twice the time it takes to calculate a pairing on type 1 curves. The actual Miller
loop parameters for the type 1 and type 2 curves are 2 · 224 bits and 522 bits,
respectively, so that of the type 2 curves is still larger. However, the arithmetic of
the type 2 curves can be implemented efficiently by using the pseudo-Mersenne
prime [14], and we show several instances of them in Section 4.1.

3.2 Miller’s Algorithm

We now present an algorithm for computing the Ate pairing over type 2 curves.
In this algorithm, we use a denominator elimination technique based on the

following lemma.
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Table 2. Summary of parameter comparison for the 112-bit security level which is
discussed in Section 3.1, where “GLV Method” is the method proposed by Gallant
et al. [12], “Miller Loop Parameter” is the integer that determines the number of
iterations of Miller’s algorithm, and “Final Exp.” is the exponents of operations in the
final exponentiation

Type 1 2

Base Field Fp: p is a 1566-bit prime number Fp2 : 1044-bit size and p is a 522-
bit prime number

Order r: 224-bit prime number such
that p + 1 = hr

r: prime number such that hr is
a 1044-bit integer and h is small

GLV Method Not applicable Applicable by using φ : (x, y) �→
(ζ3x, y), where ζ3 ∈ μ3 ⊂ F

∗
p2

Miller Loop
Parameter

r: 224-bit prime number with
low Hamming weight

p − 1: 522-bit integer with small
number of non-zero components
in NAF encoding

Final Exp. (p2 − 1)/r = (p − 1)h, where h is
a 1342-bit integer

(p6 − 1)/r = (p3 − 1)(p + 1)h,
where h is a small integer

Lemma 2 ([21])
1

xP − xQ
=

x2
P + xP xQ + x2

Q

(yP + yQ)(yP − yQ)
(5)

Lemma 1 and Lemma 2 derive the following theorem.

Theorem 1 (denominator elimination). Let P = (xP , yP ) and Q =
(xQ, yQ) ∈ G1, let ι be a distortion map defined as in Equation (3), and let
Q′ = ι(Q).

Then, without changing the output of the reduced Tate pairing, division by
xP − xQ′ can be replaced with multiplication by x2

P + xP xQ′ + x2
Q′ .

Proof. In Equation (5), xP − xQ′ �= 0 and x2
P + xP xQ′ + x2

Q′ �= 0 for all pos-
sible xP , xQ′ in the Miller loop. Then, the denominator in Miller’s algorithm is
replaced as in Lemma 2, and we note that the denominator in Equation (5) is
as follows:

(yP + yQ′)(yP − yQ′) = (yP + u3yQ)(yP − u3yQ)
= y2

P − u6y2
Q ∈ Fq.

(6)

In the final exponentiation, the exponent can be decomposed as (q3 − 1)/r =
(q − 1)(p2 + p + 1)h, and resulting value of the final exponentiation with input
the value of Equation (6) becomes one. 
�

Miller’s Algorithm with Signed-Binary Representation. Miller’s algo-
rithm to compute fp−1,P

(
ι(Q)

)
is defined on the standard binary representa-

tion, and it is also known as the double-and-add approach. It can be extended
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to the signed-binary representation, and it is then known as the double-and-
add/subtract approach. If the number of non-zero components of the non-adjacent
form (NAF) of p − 1 is smaller than the Hamming weight of its binary represen-
tation, then the computation time can be improved.

Beuchat et al. [5] proposed using Miller’s algorithm on the signed-binary rep-
resentation of the Miller’s algorithm on the Barreto–Naehrig curves; however,
their algorithm does not work on the curves introduced in Section 2.2. As the
definition of the Miller function implies,

(f−a,P ) =
(

1
fa,P · v[a]P

)
. (7)

The algorithm presented by Beuchat et al. does not handle v[a]P .
To extend the original Miller’s algorithm for the signed-binary representation,

we consider the subtraction of Miller’s formula as follows:

(fa−1,P ) =
(

fa,P · f−1,P · l[a]P,−P

v[a−1]P

)

=
(

fa,P · l[a]P,−P

v−P · v[a−1]P

)
.

(8)

Theorem 1 derives the following subtraction procedure:

fa−1,P (Q) =
(
fa,P · l[a]P,−P · S[a−1]P · S−P

)
(Q), (9)

where SV is a polynomial function on the elliptic curve defined as SV (Q) =
x2

V + xV xQ + x2
Q. Equation (9) allows us to extend Miller’s algorithm for the

signed-binary representation with the elimination of the denominator to the
curves introduced in Section 2.2.

3.3 Final Exponentiation
The output of Miller’s algorithm is defined as an element of F∗

qk/(F∗
qk)r. An

exponentiation by (q3 − 1)/r is necessary in order to obtain a unique value of
μr ∈ F

∗
q3 , where μr is the r-th roots of unity. Typically, this exponentiation is

called final exponentiation. This operation is computed in Fq3 , and so it is one
of the more expensive parts of a pairing computation.

From the definition of type 2 elliptic curves in Section 2.2, we can transform
the exponent for the final exponentiation as follows:

(p6 − 1)/r = h(p6 − 1)/#E(Fq)
= h(p6 − 1)/(p2 − p + 1)
= h(p3 − 1)(p + 1),

(10)

where h = #E(Fq)/r. Hence, the final exponentiation is efficiently calculated by
one inversion over Fqk , two multiplications over Fqk , two Frobenius maps, and
an exponentiation by h. The most expensive part is the exponentiation by h.
However, since we can choose an elliptic curve such that h is a very small integer
in almost all cases, this operation can be done quickly. We call this faster version
fast final exponentiation.
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Algorithm 1. Reduced Ate pairing on E/Fp2

Input: T, P, Q: T = t − 1 = 2� +
∑�−1

i=0 si2i, where si ∈ {0, ±1}, and P, Q ∈ G1.

Output: Reduced Ate pairing fT,P

(
ι(Q)

)(qk−1)/r ∈ GT .
1: Q′ ← ι(Q); // 6M2
2: t0 ← x2

Q′ ; // S6
3: t1 ← S′

−P (Q′, t0); // 3M2
4: V ← P ;
5: f ← 1;
6: for i ← � − 1 down to 0 do
7: (f, V ) ←

(
f2 · lV,V (Q′) · S′

[2]V (Q′, t0), [2]V
)

;
8: if si = 1 then
9: (f, V ) ←

(
f · lV,P (Q′) · S′

V +P (Q′, t0), V + P
)

;
10: else if si = −1 then
11: (f, V ) ←

(
f · lV,−P (Q′) · S′

V −P (Q′, t0) · t1, V − P
)

;
12: end if ;
13: end for;
14: f ← fp3 · f−1; // πp3 + I6 + M6
15: f ← f · fp; // πp + M6
16: f ← fh; // Exph

17: return f ;

3.4 Estimation of Computational Cost

In this section, we estimate computational cost of our algorithm performing the
reduced Ate pairing. We will show the algorithm for the reduced Ate pairing
on the elliptic curve E/Fp2 introduced in Section 2.2; see Algorithm 1. We note
that S′

V (Q, t) := xV (xV + xQ) + t and S′
P (Q, x2

Q) = x2
P + xP xQ + x2

Q = SP (Q)
in Algorithm 1. In Algorithm 1, lines 1-13 and lines 14-16 correspond to the
Miller’s algorithm and the final exponentiation, respectively.

In this paper, we use the affine coordinate to implement the group operation
of G1. The details of lines 7 and 9 in Algorithm 1 are described in Algorithm 2
and 3, respectively. The detail of line 11 in Algorithm 1 is easily derived by
Algorithm 3, the difference is a multiplication by t1 ∈ Fp6 and P is replaced
by −P . We then show the computational cost of Algorithm 1 at Table 3. We
note that the number of additions and subtractions are ignored and assume two
Frobenius maps πp and πp3 over Fp6 have same computational cost in Table 3.

4 Experimental Implementation

In this section, we show the results from an experimental implementation of our
proposed method. First, we show the environment in Table 4.
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Algorithm 2. Doubling step of the reduced Ate pairing on E/Fp2 (at the line 7
in Algorithm 1)
Input: f, V, Q′, t0: f ∈ Fp6 , V ∈ E(Fp2), Q′ = ι(Q) ∈ E(Fp6), and t0 = x2

Q′ ∈ Fp6 .
Note that Q′ and t0 are computed at lines 1 and 2, respectively, in Algorithm 1.

Output:
(

f2 · lV,V (Q′) · S′
[2]V (Q′, t0), [2]V

)
∈ Fp6 × E(Fp2).

1: m ← 3x2
V ; // S2

2: n ← 2yV ;
3: λ ← m/n; // I2 + M2
4: g ← yQ′ − yV − λ(xQ′ − xV ); // 3M2
5: f ← f2; // S6
6: f ← fg; // M6
7: λ′ ← λ2; // S2
8: xV ′ ← λ′ − 2xV ;
9: yV ′ ← λ(xV − xV ′) − yV ; // M2

10: V ′ ← (xV ′ , yV ′);
11: v ← xV ′(xV ′ + xQ′ ) + t0; // 3M2
12: f ← fv; // M6
13: return (f, V ′);

4.1 Parameters

In our experiment, we generated two parameters, Curve 1 and Curve 2. In the
class of our target elliptic curves described in Section 3, the characteristic p
of a base field can be chosen as the pseudo-Mersenne prime (p = 2n − c and
log2 |c| ≤ n/2) [14]. Moreover, a tower field Fq3 = Fp6 containing GT can be
defined by an irreducible binomial of W 3 − β ∈ Fq[W ].

For our experiments, we generated two elliptic curves, Curves 1 and 2, as
defined above. The length of their characteristics are n = 367 and 522, respec-
tively. The parameter setting of Curve 1 is based on the least size of suggestions
described in [10], and Curve 2 is based on Equation (4) with the assumption
described in Section 3.1. Note that these two curves were generated randomly.
We note that w+

NAF and w−
NAF denote the numbers of 1 components and −1

components, respectively, in NAF encoding of p − 1.

Curve 1 (the sizes of p, r, and q3 are 367 bits, 718 bits, and 2202 bits,
respectively):

E/Fp2 : Y 2 = X3 + β,
p = 2367 − c, where c = 6441,
w+

NAF = 2 and w−
NAF = 5,

q = p2, and t = p,
r = #E(Fp2 )/h = (p2 − p + 1)/h, where h = 110937,
Fq = Fp2 := Fp[V ]/(V 2 − α), where α is

2674245158309532807325674069454972905651716022739308862
87892166998704709621703598439163805756069650247147619722,
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Algorithm 3. Addition step of the reduced Ate pairing on E/Fp2 (at the line 9
in Algorithm 1)
Input: f, V, P, Q′, t0: f ∈ Fp6 , V, P ∈ E(Fp2), Q′ = ι(Q) ∈ E(Fp6), and t0 = x2

Q′ ∈
Fp6 . Note that Q′ and t0 are computed at lines 1 and 2, respectively, in Algorithm 1,
and P is a one of inputs of Algorithm 1.

Output:
(

f · lV,P (Q′) · S′
V +P (Q′, t0), V + P

)
∈ Fp6 × E(Fp2).

1: m ← (yP − yV );
2: n ← (xP − xV );
3: λ ← m/n; // I2 + M2
4: g ← yQ′ − yV − λ(xQ′ − xV ); // 3M2
5: f ← fg; // M6
6: λ′ ← λ2; // S2
7: xV ′ ← λ′ − xV − xP ;
8: yV ′ ← λ(xP − xV ′ ) − yP ; // M2
9: V ′ ← (xV ′ , yV ′);

10: v ← xV ′(xV ′ + xQ′ ) + t0; // 3M2
11: f ← fv; // M6
12: return f ;

Fq3 := Fq[W ]/(W 3 − β), where β is
2528964409087109586735370294508436849691017597126041538
65507223659919771838536052460473873404183697695433840882V +
2058841674231253025987668201602254081903020106910309523
52459948502700795868754014808684134161442322034832833606,

and distortion map is ι : (x, y) �→ (u2xp, u3yp) where u is
9914330293514571516462572069203799078797519193318327503
5881780110152715684795782450470760308772041178167589900W .

Curve 2 (the sizes of p, r, and q3 are 522 bits, 1038 bits, and 3132
bits, respectively):

E/Fp2 : Y 2 = X3 + β,
p = 2522 − c, where c = 29087,
w+

NAF = 3 and w−
NAF = 3,

q = p2, and t = p,
r = #E(Fp2 )/h = (p2 − p + 1)/h, where h = 93,
Fq = Fp2 := Fp[V ]/(V 2 − α), where α is

2583834559853811459432166124427683502167391574858989654
5214442003228999316236159397036115676140967350980743986
57016518475273042151263769973552482210593801879,

Fq3 := Fq[W ]/(W 3 − β), where β is
5540496805234858649054077930128599436615709048884769387
6603968620597741702054737057676736328177323553483431937
91011363959336092540257851314510544280297171401V +
5729611582621237878678119907084390704267702847871726214
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Table 3. Computational cost of our algorithm, where Mk, Sk, and Ik denote the
multiplication, squaring, and inversion over Fpk , π denotes Frobenius map over Fp6 ,
p = 2� − c and it is a prime number, w+

NAF denotes the number of 1 components and
w−

NAF denotes the number of −1 components in NAF encoding of p − 1, and Exph

denotes exponentiation by h over Fp6

Part of Algorithm 1 Computational Cost
lV,V (Q′) and [2]V in line 7 5M2 + 2S2 + I2

S′
[2]V (Q′, t0) in line 7 3M2

lV,±P (Q′) and V ± P in lines 9 and 11 5M2 + S2 + I2
S′

V ±P (Q′, t0) in lines 9 and 11 3M2

Line 7 8M2 + 2S2 + I2 + 2M6 + S6
Line 9 8M2 + S2 + I2 + 2M6
Line 11 8M2 + S2 + I2 + 3M6

Miller’s algorithm (lines 1-13)
9M2 + S6 + (8M2 + 2S2 + I2 + 2M6 + S6)�
+(w+

NAF + w−
NAF)(8M2 + S2 + I2 + 2M6)

+w−
NAFM6

Final exponentiation (lines 14-16) 2M6 + 2π + I6 + Exph

Table 4. Experimental environment

Environment
OS Linux 3.5.0-37 (Ubuntu 12.04.2 LTS)

CPU Core i7-4770 (3.4 GHz)
Memory 32 GB

Language Magma version 2.19-8 [8]

3429775029040573419091832483405499148515483815456512633
32728406562347176934945350917989445472195196929, and

distortion map is ι : (x, y) �→ (u2xp, u3yp) where u is
1810455431901709610502451144154632135017017586718473396
1873794180953915455128081305700723007474055399866147491
22579794730213310737853381173392719765819055455W

4.2 Performance of the Proposed Method

We computed the pairings and compared the running time of the Tate pairing
and the Ate pairing with the signed-binary approach on E/Fq. The parameters
used in Miller’s algorithm were r and p − 1, and these were represented in NAF
encoding. We ran the pairings 1000 times and computed the averages of Miller’s
algorithm for the Tate pairing, the Ate pairing, and the fast final exponentiation.
Table 5 shows these averages. It is clear that the Ate pairing computation on
E/Fq is efficiently computable. We note that our experimental implementation
is written in Magma [8], we did not implement efficient arithmetic based on the
pseudo-Mersenne prime, and generated curves are randomly generated. Thus,
there is room for further optimization.
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Table 5. Running time of pairing computations (unit: milliseconds)

Curve 1 Curve 2
fr,P

(
ι(Q)

)
with NAF 88.28 157.87

fT,P

(
ι(Q)

)
with NAF 34.38 62.06

Fast Final Exp. 0.25 0.21
Reduced Tate 88.53 158.08
Reduced Ate 34.63 62.27

5 Conclusion

In the present paper, we proposed a method to construct symmetric pairings by
applying the Ate pairing to supersingular elliptic curves over finite fields with
large characteristics and embedding degree three. We also proposed an efficient
algorithm of the Ate pairing on these curves. We then generated several curves
in order to show the existence of curves that our method is applicable to, and
implemented experimental programs of our method and demonstrated that it is
efficiently computable.
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