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Abstract. According to some recent implementation reports on Ate–
based pairings such as optimal ate pairing with Barreto–Naehrig curve
whose embedding degree is 12, sparse multiplication accelerates Miller’s
loop calculation in a pairing calculation. Especially, 7–sparse multiplica-
tion is available when the implementation uses affine coordinates, where
7–sparse means that the multiplicand or multiplier has 7 zeros among
12 coefficients. This paper extends it to pseudo 8–sparse multiplication.
Then, some experimental results together with theoretic calculation costs
are shown in order to evaluate its efficiency.
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1 Introduction

Recent Ate–based pairings such as R–ate [1], Optimal ate [2] and Xate [3] on
Barreto–Naehrig (BN) curve have receivedmuch attention since they achieve quite
efficient pairing calculations. Then, many researchers have tried to implement
these Ate–based pairings as thoroughly efficient programs using mathematic and
programmatic techniques such as Montgomery reduction (Montgomery represen-
tation), lazy reduction, Projective/Jacobian coordinates, sparse multiplication,
and final exponentiation with Gröbner basis. Among these techniques, this paper
focuses on sparse multiplication. Note here that pairings on BN curve are defined
over Fq12 since the embedding degree of BN curve is 12, where q denotes the field
characteristic throughout this paper.

Aranha et al. [4] and Grewal et al. [5] have well introduced the preceding
techniques. According to their works, 6–sparse multiplication1 with projective
coordinates accelerates Miller’s loop calculation that is a major calculation part
together with final exponentiation. They have also introduced 7–sparse multi-
plication with affine coordinates. It seems that, from the viewpoint of efficiency,
7–sparse multiplication is better than 6–sparse multiplication though the dif-
ference of the adapted coordinates should be carefully taken into account. This
paper proposes a more efficient sparse multiplication.

1 It means that the multiplier/multiplicand has 6 zeros among 12 vector coefficients.

Z. Cao and F. Zhang (Eds.): Pairing 2013, LNCS 8365, pp. 186–198, 2014.
c© Springer International Publishing Switzerland 2014



Pseudo 8–Sparse Multiplication for Efficient Ate–Based Pairing 187

This paper first focuses on the fact that multiplying/dividing the result of
Miller’s loop calculation by an arbitrary non–zero element in Fq does not change
the result of the pairing because of the following final exponentiation. Based on
this fact, this paper achieves pseudo 8–sparse multiplication by dividing one of
non–zero coefficients of the preceding 7–sparse multiplier with affine coordinates.
According to the division, one of 5 non–zero coefficients becomes one and thus
it contributes to a calculation efficiency. After that, in order to cancel the cal-
culation overhead caused from the division, this paper applies isomorphic twist
with a quadratic and cubic residue in Fq, where note that sextic twist with a
quadratic and cubic non residue in Fq2 is available for BN curves. Then, in order
to evaluate the efficiency of pseudo 8–sparse multiplication, this paper shows
some experimental results together with theoretic calculation costs.

Throughout this paper, Fq and Fqm denote a prime field of characteristic q
and its m–th extension field, respectively.

2 Preliminaries

This section briefly reviews Barreto–Naehrig (BN) curve [6], towering exten-
sion field with irreducible binomials [4], sextic twist [3], Ate pairing, and sparse
multiplication (7–sparse multiplication) appeared in Miller’s loop [4].

2.1 Barreto–Naehrig Curve

Barreto–Naehrig curve [7] that is well known to realize an efficient asymmetric
pairing is defined in the form of

E : y2 = x3 + b, b ∈ Fq, (1)

together with the following parameter settings,

q(χ) = 36χ4 − 36χ3 + 24χ2 − 6χ+ 1, (2a)

r(χ) = 36χ4 − 36χ3 + 18χ2 − 6χ+ 1, (2b)

t(χ) = 6χ2 + 1, (2c)

where χ is a certain integer2. This paper focuses on recent efficient Ate–based
pairings such as optimal ate [2], R–ate [1], and Xate [3] pairings on BN curve.

Towering Extension Field with Irreducible Binomials F((q2)3)2

In what follows, let q − 1 be divisible by 4 and c be a cubic and quadratic
non residue in Fq. Then, Fq12 is constructed as a tower field in the following
representations.

2 There are some conditions such as q to be a prime number for defining Fq.
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⎧
⎪⎨

⎪⎩

Fq2 = Fq[i]/(i
2 − β), where β = c.

Fq6 = Fq2 [v]/(v
3 − ξ), where ξ = i.

Fq12 = Fq6 [w]/(w
2 − v).

(3)

According to most of previous works such as Aranha et al. [4], the above v is
used for the following sextic twist of BN curve.

Sextic Twist. For BN curve E defined above, sextic twisted curve E′ together
with a certain quadratic and cubic non residue z ∈ Fq2 and an isomorphic
mapping ψ6 are given as follows [3].

E′ : y2 = x3 + bz,

ψ6 : E′(Fq2)[r] �−→ E(Fq12)[r] ∩Ker(πq − [q]),

(x, y) �−→ (z−1/3x, z−1/2y). (4)

where Ker(·) and πq respectively denote the kernel of the mapping · and Frobe-
nius mapping for rational point as

πq : (x, y) �−→ (xq , yq). (5)

In addition, its order #E′(Fq2 ) is also divisible by r that is the order of BN
curve E over Fq. Thus, some efficient pairings [4] have made the best use of
the sextic twisted subfield curve E′(Fq2) based on the isomorphic twist. In this
paper, E′(Fq2 )[r] shown in Eq. (4) is denoted by G

′
2 such as shown in Alg. 1.

When ẑ is a Quadratic and Cubic Residue in Fq

Consider the following curve Ê(Fq) and mapping.

Ê : y2 = x3 + bẑ,

Ê(Fq )[r] �−→ E(Fq)[r],

(x, y) �−→ (ẑ−1/3x, ẑ−1/2y), (6)

where ẑ, ẑ−1/2, ẑ−1/3 ∈ Fq.

Throughout this paper, it should be carefully noted that E(Fq) and Ê(Fq)
are isomorphic3 since ẑ is a quadratic and cubic residue in Fq.

3 E(Fq2) and Ê(Fq2) furthermore E(Fq12) and Ê(Fq12) are also isomorphic.
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2.2 Pairings

In what follows, let the embedding degree be k. For example, k = 12 in the case
of BN curve. As previously introduced, this paper focuses on Ate–based pairings.

Ate Pairing. Suppose the following two groups and Ate pairing notation.

G1 = E(Fqk )[r] ∩Ker(πq − [1]),

G2 = E(Fqk )[r] ∩Ker(πq − [q]),

α : G2 ×G1 → F
∗
qk/(F

∗
qk)

r. (7)

In the case of BN curve, the above G1 is just E(Fq). Then, let P ∈ G1 and
Q ∈ G2, Ate pairing α(Q,P ) is given as follows.

α(Q,P ) = ft−1,Q(P )
qk−1

r , (8)

where ft−1,Q(P ) is the output of Miller’s algorithm. After calculating the final
exponentiation, the bilinearity of Ate pairing holds.

In the case of Xate pairing ζ(Q,P ) on BN curve defined by

ζ(Q,P ) =
{
fχ,Q(P )(1+q3)(1+q10) · lχQ,π3

q(χQ)(P )

·lχQ+π3
q(χQ),π10

q (χQ+π3
q(χQ))(P )

} qk−1
r

. (9)

where χ is the setting integer parameter shown at Eqs. (2), the calculation
procedure becomes as shown in Alg. 1. In what follows, the calculation steps
from 1 to 6 shown in Alg. 1 is called Miller’s loop. In addition, it is found that
steps 3 and 5 in Alg. 1 are key to accelerating a pairing calculation. As one of
such accelerating techniques, sparse multiplication has been introduced and thus
a lot of related works have been reported [4], [5].

7–sparse Multiplication in Miller’s Loop on Affine Coordinates
According to Grewal et al.’s work [5], in the case of adapting affine coordinates
for representing rational points, the doubling phase (step 3) and addition phase
(step 5) in Miller’s loop are efficiently carried out by the following calculations. In
what follows, let P = (xP , yP ) ∈ E(Fq), T = (x, y), and Q = (x2, y2) ∈ E′(Fq2)
be given in affine coordinates, and let T +Q = (x3, y3) be the sum of T and Q.

Doubling phase (when T = Q)

A =
1

2y
, B = 3x2, C = AB, D = 2x, x3 = C2 −D,

E = Cx− y, y3 = E − Cx3, F = Cx̄P ,

lT,T (P ) = yP + Fw + Ew3 = yP − CxPw + Ew3, (10a)

where x̄P = −xP will be precomputed. ��
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Algorithm 1. Xate pairing on BN curves (generalized for χ < 0)

Input: P ∈ G1, Q ∈ G
′
2, χ

Output: ζ(Q,P )
T ← Q, f ← 11

for i = �log2(|χ|)� − 1 downto 0 do2

f ← f2 · lT,T (P ), T ← 2T ; (see Doubling phase Eq. (10a))3

if |χ|i = 1 then4

f ← f · lT,Q(P ), T ← T +Q; (see Addition phase Eq. (10b))5

if |χ|i = −1 then6

f ← f · lT,−Q(P ), T ← T −Q; (see Addition phase Eq. (10b))7

end for8

if χ < 0 then9

T ← −T, f ← f−1
10

f ← f · π3
q(f), Q1 ← π3

q (T )11

f ← f · lT,Q1(P ), Q2 ← T +Q112

f ← f · π10
q (f), T ← π10

q (Q2)13

f ← f · lT,Q2(P )14

f ← FinalExp(f)(= f ← f (qk−1)/r)15

return f16

Addition phase (when T �= Q)

A =
1

x2 − x
, B = y2 − y, C = AB, D = x+ x2, x3 = C2 −D,

E = Cx− y, y3 = E − Cx3, F = Cx̄P ,

lT,Q(P ) = yP + Fw + Ew3 = yP − CxPw + Ew3, (10b)

where x̄P = −xP will be precomputed. ��

As shown in Eqs. (10), since 1, w, and w3 = vw are basis elements of Fq12

for Fq2 as previously introduced, it is found that 7 coefficients among 12 of the
vector representation of lψ6(T ),ψ6(T )(P ) ∈ Fq12 are equal to zero at least. In other
words, only 5 coefficients yP ∈ Fq, CxP ∈ Fq2 , and E ∈ Fq2 are possible to be
non–zero. lψ6(T ),ψ6(Q)(P ) also has the same property. Thus, the calculation of
multiplying lψ6(T ),ψ6(T )(P ) or lψ6(T ),ψ6(Q)(P ) is called sparse multiplication, in
this case especially 7–sparse multiplication, that accelerates Miller’s loop calcu-
lation as shown in Alg. 1. This paper proposes pseudo 8–sparse multiplication.
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3 Main Proposal

This paper proposes the following two ideas in order to realize an efficient 8–
sparse multiplication for Ate–based pairing on BN curve such as Ate, optimal
ate [2], R–ate [1], and Xate [3] pairings.

1. As shown in Eqs. (10), one of non–zero coefficients is yP ∈ Fq. This coefficient
does not change through Miller’s loop calculation. Thus, dividing both sides
of those equations by yp, the coefficient becomes 1. It leads to a more efficient
sparse multiplication by lψ6(T ),ψ6(T )(P ) or lψ6(T ),ψ6(Q)(P ). In this paper, it
is called pseudo 8–sparse multiplication.

2. The above division by yP causes a little more calculation cost for the other
non–zero coefficients in the Miller’s loop as it is. Applying the map intro-
duced in Eqs. (6), such an additional cost in Miller’s loop is canceled.

As shown in Eq. (10a) and Eq. (10b), they are basically the same. Thus, using
Eq. (10a) in what follows, these ideas are introduced in detail.

3.1 Pseudo 8–Sparse Multiplication

Note that yP shown in Eq. (10a) is an non–zero4 element in Fq. Thus, dividing
both sides of Eq. (10a) by yP ,

y−1
P lT,T (P ) = 1− C(xP y

−1
P )w + Ey−1

P w3. (11)

Even if replacing lT,T (P ) by the above y−1
P lT,T (P ), the calculation result of the

pairing does not change because final exponentiation cancels y−1
P ∈ Fp. Then,

as shown above, one of the non–zero coefficients becomes 1 and it realizes more
efficient vector multiplications in Miller’s loop. This paper calls it pseudo 8–
sparse multiplication. The detailed calculation procedure of pseudo 8–sparse
multiplication is introduced in App. A.

3.2 Line Evaluation in Miller’s Loop

Comparing the line evaluations Eq. (10a) and Eq. (11), it is found that the latter
needs a little more calculation cost for Ey−1

P even though xP y
−1
P and y−1

P can
be precomputed. In what follows, an approach to cancel xP y

−1
P is introduced.

In brief, based on P (xP , yP ), the map introduced in Eqs. (6) can find a certain
isomorphic rational point P̂ (xP̂ , yP̂ ) ∈ Ê(Fq) such that

xP̂ y
−1

P̂
= 1 (12)

by letting the twist parameter z of Eq. (4) be ẑ = (xP y
−1
P )6 of Eqs. (6), where

Ê denotes the BN curve defined by Eqs. (6). Of course, this ẑ is a quadratic and

4 P (xP , yP ) ∈ E(Fq) for pairing on BN curve is selected such that xP �= 0 and yP �= 0.
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cubic residue in Fp and thus it yields the map. According to Eq. (4), such z is
obtained by solving the following equation from the input P (xP , yP ).

z1/3xP = z1/2yP . (13)

Then, P̂ (xP̂ , yP̂ ) ∈ Ê(Fq) is given by

P̂ (xP̂ , yP̂ ) = (x3
P y

−2
P , x3

P y
−2
P ). (14)

Since the x and y coordinates of P̂ are the same, xP̂ y
−1

P̂
= 1. Therefore, corre-

sponding to the the map introduced in Eqs. (6), first mapping not only P to P̂
shown above but also Q to Q̂ shown below,

Q̂(xQ̂, yQ̂) = (x2
P y

−2
P xQ, x

3
P y

−3
P yQ). (15)

the line evaluations Eq. (10a) becomes

l̂T̂ ,T̂ (P̂ ) = y−1

P̂
lT̂ ,T̂ (P̂ ) = 1− C(xP̂ y

−1

P̂
)w + Ey−1

P̂
w3

= 1− Cw + E(x−3
P y2P )w

3. (16)

Eq. (10b) becomes the same. Compared to Eq. (11), the second term of the
right–hand side has become simple because xP̂ y

−1

P̂
= 1.

Computing P̂ , Q̂, and x−3
P y2P using x−1

P and y−1
P will be an overhead; how-

ever, Miller’s loop calculation becomes efficient together with pseudo 8–sparse
multiplication. Alg. 2 shows the proposed algorithm for which x−1

P and y−1
P thus

need to be once calculated5.

4 Cost Evaluation and Experimental Result

In order to show the efficiency of the proposal, this section shows some experi-
mental results with evaluating the calculation costs.

In what follows, “Grewal’s work” means optimal ate pairing with affine coor-
dinates and 7–sparse multiplication (see the detail [5]). “This work” means Xate
pairing with affine coordinates and 8–sparse multiplication.

4.1 Parameter Settings and Computational Environment

This paper has set the following parameters (see Sec. 2.1).

χ = −4611686018425225214, (17a)

= −262 + 221 + 216 + 2,

where r(χ) becomes a 254–bit prime,

b = c = 2, (17b)

z = i−1. (17c)

5 They are obtained by one Fq–inversion using Montgomery trick.
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Algorithm 2. Proposed Xate pairing on BN curves (generalized for χ < 0)

Input: P (xP , yP ) ∈ G1, Q(xQ, yQ) ∈ G
′
2, χ

Output: ζ(Q,P )
Compute x−1

P and y−1
P ; (they are used at steps 3 and 4)1

Compute x−3
P y2P ; (it is used at steps 7 and 9 with Eq. (16))2

P̂ ← Mapping(P ) ; (see Eq. (14))3

Q̂ ← Mapping(Q) ; (see Eq. (15))4

T̂ ← Q̂, f ← 15

for i = 
log2(|χ|)� − 1 downto 0 do6

f ← f2 · l̂T̂ ,T̂ (P̂ ), T̂ ← 2T̂ ; (see Eq. (16))7

if |χ|i = 1 then8

f ← f · l̂T̂ ,Q̂(P̂ ), T̂ ← T̂ + Q̂ ; (see Eq. (16))9

if |χ|i = −1 then10

f ← f · l̂T̂ ,−Q̂(P̂ ), T̂ ← T̂ − Q̂ ; (see Eq. (16))11

end for12

if χ < 0 then13

T̂ ← −T̂ , f ← f−1
14

f ← f · π3
q(f), Q̂1 ← π3

q (T̂ )15

f ← f · l̂T̂ ,Q̂1
(P̂ ), Q̂2 ← T̂ + Q̂1 ; (see Eq. (16))16

f ← f · π10
q (f), T̂ ← π10

q (Q̂2)17

f ← f · l̂T̂ ,Q̂2
(P̂ ) ; (see Eq. (16))18

f ← FinalExp(f)(= f ← f (qk−1)/r)19

return f20

Table 1 shows the computational environments.

Table 1. Computing environment

PC iPad2 iPhone5

CPU Core 2 Duo∗ E8135 2.66GHz Apple A5∗ 1.0GHz Apple A6∗ 1.3GHz
OS Mac OS X 10.7.2 iOS 6.1.3 iOS 6.1.4

Library GMP 5.1.2 gmp4osx (GMP 5.0.5) gmp4osx (GMP 5.0.5)
Compiler g++ 4.2.1 g++ 4.2.1 g++ 4.2.1

Programming
C++

C++ and C++ and
Language Objective-C Objective-C

∗ Only single core is used though it has two cores.
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4.2 Cost Evaluation

In the same manner of Aranha et al. [4] and Grewal et al. [5], this paper uses
the following notations for evaluating the calculation costs. Thus, the following
paragraph is almost the same of that of Grewal et al.’s [5].

Notation and Definitions (see also Grewal et al.’s instruction [5])
Throughout this paper, lower case variables denote single–precision integers,
upper case variables denote double–precision integers. The operation + repre-
sents addition without reduction, and ⊕ represents addition with reduction (see
Alg. alg:sparse). The quantities m, s, a, i and r denote the times for multiplica-
tion, squaring, addition, inversion, and modular reduction in Fq , respectively.
Likewise, m̃, s̃, ã, ĩ and r̃ denote the times for multiplication, squaring, addition,
inversion, and reduction in Fq2 , respectively, and mu, su, m̃u and s̃u denote the
times for multiplication and squaring without reduction in the corresponding
fields. Finally, mβ and mξ mv denote the times for multiplication by the quan-
tities β and ξ, respectively (see the preceding towering extension field).

First, Table 2 shows the calculation costs for the arithmetics in E′(Fq2), Fq2 ,
and Fq12 . Since their constructions are slightly different though both are based
on towering extension field technique, the calculation costs are slightly different.
Basically, the number of multiplications such as m and m̃u are the same though
those of additions such as a and ã are different; however, 7–sparse multiplication
and pseudo 8–sparse multiplication have the difference of 6mu. It leads to the
main contribution of this paper.

Based on these fundamental arithmetics, Table 3 shows the calculation costs
for pairings by Grewal et al.’s work and this paper in which that of final ex-
ponentiation is excluded6. Instead of 7–sparse multiplication, pseudo 8–sparse
multiplication is applied 66 times in Xate pairing calculation excluding final ex-
ponentiation. Thus, as shown in Table 3, the difference of 66 × 6mu = 396mu

has occurred between the pairings excluding final exponentiation. According to
the calculation costs of pairings, it is found that pseudo 8–sparse multiplication
has reduced a few hundreds of mu’s. For iPad 2 and iPhone 5, since the relation
of 69ĩ+204a+s+2i≤ 178m̃u+326s̃+229r̃+2056ã+131m, This work is faster
than the Xate pairing using projective coordinates.

4.3 Experimental Result

Table 4 shows the calculation times of Xate pairing including(excluding) final
exponentiation. They are the averages of 100,000 and 9,000 iterations of pairing
on PC and iOS devices (iPad 2 and iPhone 5), respectively. According to the
experimental results, pseudo 8–sparse multiplication contributes to a few percent
acceleration of Previous work, which the Xate pairing uses affine coordinates and
uses 7–sparse multiplication. It seems to be very small but makes the recent
marvelous implementations of pairing [4], [5] a little more efficient.

6 Because the calculation cost of final exponentiation is almost the same.
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Table 2. Operation counts for 254-bit prime fields

E′(Fq2) Arithmetics Grewal’s work [5] This work

Doubling/Line Evaluation ĩ+ 3m̃u + 2s̃u + 5r̃ + 7ã + 2m ĩ+ 3m̃u + 2s̃u + 5r̃ + 7ã+ 2m

Addition/Line Evaluation ĩ+ 3m̃u + 1s̃u + 4r̃ + 6ã+ 2m ĩ+ 3m̃u + 1s̃u + 4r̃ + 6ã+ 2m
q–power Frobenius 2m̃+ 2a –
q2–power Frobenius 4m –
q3–power Frobenius – 4a+ 2m
q10–power Frobenius – 2a+ 2m

Fq2 Arithmetics Grewal’s work [5] This work

Add/Subtr./Nega. ã = 2a ã = 2a
Multiplication m̃ = 3mu + 2r + 8a m̃ = 3mu + 2r + 8a

Squaring s̃ = 2mu + 2r + 3a s̃ = 2mu + 2r + 6a
Multiplication by β mβ = a mβ = a
Multiplication by ξ mξ = 2a mξ = a

Fq12 Arithmetics Grewal’s work [5] This work

Multiplication 18m̃u + 6r̃ + 110ã 18m̃u + 6r̃ + 96ã+ a
7–sparse Mult. 10m̃u + 6r̃ + 47ã + 6mu + a –

Pseudo 8–sparse Mult. – 10m̃u + 6r̃ + 37ã+ 3a
Squaring 12m̃u + 6r̃ + 73ã 12m̃u + 6r̃ + 63ã

q–power Frobenius 5m̃u + 6a a+ 10m
q2–power Frobenius 10m̃u + 2ã 2a+ 8m
q3–power Frobenius – 3a+ 6m
q6–power Frobenius – 3ã
q10–power Frobenius – 2a+ 8m

∗ : Add./Subtr./Nega./Mult. denote Addition/Subtraction/Negation/Multiplication.

Table 3. Calculation cost of pairings excluding final exponentiation

Method Calculation cost∗

Projective 1835m̃u + 458s̃u + 1359r̃ + 9118ã + 25a+ 308m

Grewal’s work [5] 70̃i+ 1628m̃u + 135s̃u + 1120r̃ + 7618ã + 69a+ 144m + 396mu

This work 69̃i+ 1657m̃u + 132s̃u + 1130r̃ + 7062ã + 229a + 177m+ s+ 2i
∗ : “Projective” means that the Xate pairing uses projective coordinates,

and thus 6–sparse multiplication is only available in its Miller’s loop.

Table 4. Calculation time of Xate pairing

Calculation time of Xate pairing∗ [ms]

Method PC iPad 2 iPhone 5

Previous work 1.48(0.9) 12.3(7.4) 9.97(5.8)

This work 1.46(0.89) 12.1(7.2) 9.84(5.7)
∗ : In the parenthesis, the calculation time excluding final exponentiation is shown.

In other words, it is the calculation time for steps 1 to 15 on Alg. 2.
∗∗ : “Previous” means that the Xate pairing uses 7–sparse multiplication and

affine coordinates.
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Table 5. Calculation time of multi–Xate pairing

Calculation time of multi–pairing on PC [ms]
PC

# pairings This work Previous work∗ Projective∗∗

1 1.46 1.48 1.31
2 1.86 1.92 1.78
3 2.25 2.30 2.28
4 2.65 2.70 2.75
5 3.02 3.12 3.24
6 3.40 3.51 3.70
7 3.82 3.89 4.18
8 4.18 4.29 4.64
9 4.62 4.71 5.12
10 4.96 5.09 5.58

Calculation time of multi–pairing on iPhone 5 [ms]

# pairings This work Previous work∗ Projective∗∗

1 9.83 9.97 9.91
2 13.0 13.4 13.9
3 16.1 16.8 17.7
4 19.2 20.1 21.5
5 22.5 23.4 25.3
6 25.5 26.7 29.1
7 28.7 30.1 32.9
8 31.8 33.4 36.6
9 34.8 36.7 40.5
10 38.1 40.0 44.3

∗ : “Projective” means that the Xate pairing uses projective coordinates,
and thus 6–sparse multiplication is only available in its Miller’s loop.

∗∗ : “Previous” means that the Xate pairing uses 7–sparse multiplication and
affine coordinates.

By the way, the proposed pseudo 8–sparse multiplication is not able to accel-
erate final exponentiation. Thus, it yields a greater effect for multi–pairing than
a single pairing because multi–pairing can combine the final exponentiations as

N∏

i=1

α(Qi, Pi) =
N∏

i=1

(ft−1,Qi(Pi))
(pk−1)/r

=

(
N∏

i=1

ft−1,Qi(Pi)

)(pk−1)/r

. (18)

In addition, squarings at step 6 in Alg. 2, for example, can also be combined.
Table 5 shows the calculation time for N multi–pairing. They are the averages
of 12,500 and 4,500 iterations of N multi–pairing on PC and iOS devices (iPad 2
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and iPhone 5), respectively. Compared to the case with 6–sparse multiplication
and projective coordinates, that with pseudo 8–sparse multiplication and affine
coordinates becomes more efficient as the number N becomes larger.

5 Conclusion and Future Works

This paper has proposed pseudo 8–sparse multiplication for accelerating Ate–
based pairing with affine coordinates on Barreto–Naehrig (BN) curve. Accord-
ing to the calculation costs and experimental results shown in this paper, the
proposal made recent efficient pairings such as optimal ate and Xate pairings
more efficient, especially together with multi–pairing technique.

As a future work, it should be considered to apply such a sparse multiplication
for the other pairings together with some twist techniques.
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A Pseudo 8–Sparse Multiplication

The calculation procedure of pseudo 8–sparse multiplication becomes as follows.

Algorithm 3. Pseudo 8–sparse multiplication

Input: a, b ∈ Fq12 ,

a = (a0 + a1v + a2v
2) + (a3 + a4v + a5v

2)w, b = 1 + (b3 + b4v)w,
where aj , bk ∈ Fq2(j = 0, · · · , 5, k = 3, 4),

Output: c = ab = (c0 + c1v + c2v
2) + (c3 + c4v + c5v

2)w ∈ Fq12

D0 ← a3 × b3, D1 ← a4 × b4, S0 ← a5 × b3 ; (3m̃u)1

T0 ← S0 +D1 ; (2ã)2

T1 ← T0 × i ; (mξ)3

c0 ← MontRed(T1) ; (r̃)4

T0 ← a5 × b4 ; (m̃u)5

S0 ← S0 + T0 ; (2ã)6

T1 ← T0 × i ; (mξ)7

c0 ← c0 ⊕ a0 ; (ã)8

T1 ← T1 +D0 ; (2ã)9

c1 ← MontRed(T1) ; (r̃)10

t0 ← a3 + a4, s0 ← b4 + b3 ; (2ã)11

T1 ← t0 × s0 ; (m̃u)12

c1 ← c1 ⊕ a1 ; (ã)13

T1 ← T1 −D0 −D1 ; (4ã)14

c2 ← MontRed(T1) ; (r̃)15

T0 ← a2 × b4 ; (m̃u)16

c2 ← c2 ⊕ a2 ; (ã)17

S0 ← S0 + T0 ; (2ã)18

T1 ← T0 × i ; (mξ)19

t0 ← a0 + a3, t1,0 ← b3,0 + 1, t1,1 ← b3,1 ; (ã+ a)20

T0 ← t0 × t1 ; (m̃u)21

T0 ← T0 −D0 ; (2ã)22

T1 ← T1 + T0 ; (2ã)23

c3 ← MontRed(T1) ; (r̃)24

T1 ← a1 × b3 ; (m̃u)25

S0 ← S0 + T1 ; (2ã)26

c3 ← c3 − a0, t0 ← a0 + a4 ; (2ã)27

t1,0 ← b4,0 + 1, t1,1 ← b4,1 ; (a)28

T0 ← t0 × t1 ; (m̃u)29

T0 ← T0 −D1 ; (2ã)30

T1 ← T1 + T0 ; (2ã)31

c4 ← MontRed(T1) ; (r̃)32

t0 ← a1 + a2, s0,0 ← s0,0 + 1 ; (ã+ a)33

t0 ← t0 + a5 ; (ã)34

T1 ← s0 × t0 ; (m̃u)35

T1 ← T1 − S0 ; (2ã)36

c5 ← MontRed(T1) ; (r̃)37

t0 ← a1 ⊕ a2 ; (ã)38

c4 ← c4 − a0 ; (ã)39

c5 ← c5 − t0 ; (ã)40

Return c = (c0 + c1v + c2v
2) + (c3 + c4v + c5v

2)w41
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