
Zhenfu Cao
Fangguo Zhang (Eds.)

 123

LN
CS

 8
36

5

6th International Conference
Beijing, China, November 22-24, 2013
Revised Selected Papers

Pairing-Based
Cryptography –
Pairing 2013

Lecture Notes in Computer Science 8365
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Zhenfu Cao Fangguo Zhang (Eds.)

Pairing-Based
Cryptography –
Pairing 2013
6th International Conference
Beijing, China, November 22-24, 2013
Revised Selected Papers

13

Volume Editors

Zhenfu Cao
Shanghai Jiao Tong University
School of Electronic Information and Electrical Engineering
No. 800, Dongchuan Road, Shanghai 200240, China
E-mail: zfcao@cs.sjtu.edu.cn

Fangguo Zhang
Sun Yat-sen University
School of Information Science and Technology
No. 135, Xingang Xi Road, Guangzhou 510275, China
E-mail: isszhfg@mail.sysu.edu.cn

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-319-04872-7 e-ISBN 978-3-319-04873-4
DOI 10.1007/978-3-319-04873-4
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014930884

CR Subject Classification (1998): E.3, K.6.5, D.4.6, E.4, F.2.0, I.1

LNCS Sublibrary: SL 4 – Security and Cryptology

© Springer International Publishing Switzerland 2014

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in its current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The 6th International Conference on Pairing-Based Cryptography (Pairing 2013)
was held in Beijing, China, during November 22–24, 2013. The conference was
organized by the Information Security Center of Beijing University of Posts and
Telecommunications (BUPT) and the Chinese Association for Cryptologic Re-
search (CACR). The general chairs of the conference were Yixian Yang and Xue-
jia Lai, and secretarial support was provided by Min Lei from Beijing University
of Posts and Telecommunications. We thank both Yixian Yang and Xuejia Lai
for their constant efforts and for making this conference possible.

The goal of Pairing 2013 was to bring together leading researchers and prac-
titioners from academia and industry, all concerned with problems related to
pairing-based cryptography. We hope that this conference enhanced commu-
nication among specialists from various research areas and promoted creative
interdisciplinary collaboration.

The conference received 59 submissions from 15 countries, out of which 14
papers from 10 countries were accepted for publication in these proceedings. At
least three Program Committee (PC) members reviewed each submitted paper,
while submissions co-authored by a PC member were submitted to the more
stringent evaluation of five PC members. In addition to the PC members, many
external reviewers joined the review process in their particular areas of expertise.
We were fortunate to have this energetic team of experts, and are deeply grateful
to all of them for their hard work, which included a very active discussion phase.

Furthermore, the conference featured three invited speakers: Pierrick Gaudry
from LORIA, France, Francisco Rodriguez-Henriquez from CINVESTAV-IPN,
Mexico, and Xu Maozhi from Peking University, China, whose lectures on cutting-
edge research areas —“Computing Discrete Logarithms in Finite Fields of Small
Characteristic,”“Implementing Pairing-Based Protocols,” and “Using Endomor-
phisms to Accelerate Scalar Multiplication,” respectively — contributed in a sig-
nificant part to the richness of the program. In addition, the program included
tutorial talks by Robert H. Deng form Singapore Management University and
Peter Schwabe from Radboud University Nijmegen, The Netherlands.

Finally, we thank all the authors who submitted papers to this conference,
the Organizing Committee members, colleagues, and student helpers for their
valuable time and effort, and all the conference attendees who made this event
a truly intellectually stimulating one through their active participation.

November 2013 Zhenfu Cao
Fangguo Zhang

Organization

Honorary Chair

Dingyi Pei Guangzhou University

General Chairs

Yixian Yang Beijing University of Posts and
Telecommunications

Xuejia Lai Shanghai Jiao Tong University

Technical Program Committee Co-chairs

Zhenfu Cao Shanghai Jiao Tong University
Fangguo Zhang Sun Yat-sen University

Organizing Committee

Qun Luo Beijing University of Posts and
Telecommunications

Licheng Wang Beijing University of Posts and
Telecommunications

Organizing Secretary

Min Lei Beijing University of Posts and
Telecommunications

Technical Program Committee

Diego Aranha University of Braśılia, Brazil
Paulo S.L.M. Barreto University of São Paulo, Brazil
Liqun Chen Hewlett-Packard Laboratories, UK
Xiaofeng Chen Xidian University, China
Jérémie Detrey Inria, France
Xiaolei Dong Shanghai Jiao Tong University, China
Sylvain Duquesne Université Rennes, France
Junfeng Fan K.U. Leuven, Belgium
Dario Fiore MPI-SWS, Germany
Steven Galbraith University of Auckland, New Zealand
Sorina Ionica ENS Paris, France

VIII Organization

Kwangjo Kim KAIST, Korea
Tanja Lange Technische Universiteit Eindhoven,

The Netherlands
Jin Li Guangzhou Universtiy, China
Shengli Liu Shanghai Jiao Tong University, China
Sarah Meiklejohn University of California, USA
Atsuko Miyaji JAIST, Japan
Takeshi Okamoto University of Tsukuba, Japan
Haifeng Qian East China Normal University, China
Jacob Schuldt Royal Holloway, UK
Peter Schwabe Academia Sinica, Taiwan
Michael Scott Certivox Ltd., UK
Jun Shao Zhejiang Gongshang University, China
Alice Silverberg U.C. Irvine, USA
Tsuyoshi Takagi Kyushu University, Japan
Katsuyuki Takashima Mitsubishi Electric, Japan
Mehdi Tibouchi NIT Secure Platform Laboratories, Japan

Damien Vergnaud École Normale Supérieur, France
Baocang Wang Xidian University, China
Lihua Wang NICT, Japan
Jian Weng Jinan University, China
Zhenfeng Zhang Chinese Academy of Sciences, China
Chang-An Zhao Sun Yat-sen University, China

External Reviewers

Razvan Barbulescu
Daniel J. Bernstein
Olivier Blazy
Angelo De Caro
Jie Chen
Shan Chen
Craig Costello
Keita Emura
Emmanuel Fouotsa
Yuichi Futa
Martin Gagne
Chaowen Guan
Aurore Guillevic
Shuai Han
Mitsuhiro Hattori
Kenichiro Hayasaka
Takuya Hayashi
Kai He
Zhengan Huang

Tao Jiang
Naoki Kanayama
Yutaka Kawai
Thorsten Kleinjung
Liang Liu
Francois Morain
Michael Naehrig
Takashi Nishide
Baodong Qin
Elizabeth Quaglia
Chunhua Su
Satoru Tanaka
Christophe Tran
Jianfeng Wang
Hongfeng Wu
Shota Yamada
Takanori Yasuda

Table of Contents

EAGL: An Elliptic Curve Arithmetic GPU-Based Library for Bilinear
Pairing . 1

Shi Pu and Jyh-Charn Liu

Weakness of F36·509 for Discrete Logarithm Cryptography 20
Gora Adj, Alfred Menezes, Thomaz Oliveira, and
Francisco Rodŕıguez-Henŕıquez

The Special Number Field Sieve in Fpn : Application to Pairing-Friendly
Constructions . 45

Antoine Joux and Cécile Pierrot

Efficient Semi-static Secure Broadcast Encryption Scheme 62
Jongkil Kim, Willy Susilo, Man Ho Au, and Jennifer Seberry

Pairing Inversion via Non-degenerate Auxiliary Pairings 77
Seunghwan Chang, Hoon Hong, Eunjeong Lee, and Hyang-Sook Lee

Constructing Symmetric Pairings over Supersingular Elliptic Curves
with Embedding Degree Three . 97

Tadanori Teruya, Kazutaka Saito, Naoki Kanayama,
Yuto Kawahara, Tetsutaro Kobayashi, and Eiji Okamoto

Predicate- and Attribute-Hiding Inner Product Encryption in a Public
Key Setting . 113

Yutaka Kawai and Katsuyuki Takashima

Fast Symmetric Pairing Revisited . 131
Xusheng Zhang and Kunpeng Wang

Efficient Leakage-Resilient Identity-Based Encryption with
CCA Security . 149

Shi-Feng Sun, Dawu Gu, and Shengli Liu

Revocable IBE Systems with Almost Constant-Size Key Update 168
Le Su, Hoon Wei Lim, San Ling, and Huaxiong Wang

Pseudo 8–Sparse Multiplication for Efficient Ate–Based Pairing on
Barreto–Naehrig Curve . 186

Yuki Mori, Shoichi Akagi, Yasuyuki Nogami, and Masaaki Shirase

Adaptable Ciphertext-Policy Attribute-Based Encryption 199
Junzuo Lai, Robert H. Deng, Yanjiang Yang, and Jian Weng

X Table of Contents

Algorithms for Pairing-Friendly Primes . 215
Maciej Grześkowiak

PandA: Pairings and Arithmetic . 229
Chitchanok Chuengsatiansup, Michael Naehrig, Pance Ribarski, and
Peter Schwabe

Author Index . 251

EAGL: An Elliptic Curve Arithmetic

GPU-Based Library for Bilinear Pairing

Shi Pu and Jyh-Charn Liu

Department of Computer Science and Engineering, Texas A&M University,
TAMU 3112, College Station TX 77843-3112, USA

{shipu,liu}@cse.tamu.edu

Abstract. In this paper we present theElliptic curve Arithmetic GPU -
based Library (EAGL), a self-contained GPU library, to support parallel
computing of bilinear pairings based on the Compute Unified Device Ar-
chitecture (CUDA) programming model. It implements parallelized point
arithmetic, arithmetic functions in the 1-2-4-12 tower of extension fields.
EAGL takes full advantage of the parallel processing power of GPU, with
no shared memory bank conflict and minimal synchronization and global
memory accesses, to compute some most expensive computational steps,
especially the conventional-Montgomery-based multi-precision multipli-
cations. At the 128-bit security level, EAGL can perform 3350.9 R-ate
pairings/sec on one GTX-680 controlled by one CPU thread. Extensive
experiments suggest that performance tradeoffsbetween utilization ofGPU
pipeline vs.memory access latency are highly complex for parallelization of
pairing computations. Overall, on-chip memory is the main performance
bottleneck for pairing computations on the tested GPU device, and the
lazy reduction in Fq2 gives the best performance. Increasing the size of
on-chip memory, together with caching and memory prefetching modules
are expected to offer substantial performance improvement for GPU-based
pairing computations.

Keywords: Bilinear Pairing, Elliptic Curve Cryptography, CUDA.

1 Introduction

Bilinear pairings are useful for a broad range of secure applications, such as
key agreement [29,65], identity-based encryption [19,63] and signature [50,59],
short signature verification [17,34,43], privacy preserving verification [64], and
secret handshake [24]. In addition to guaranteed security properties, comput-
ing throughput, and/or response time are also important consideration to bring
pairings to real world applications. For instance, in the intelligent car system
concept [53], vehicles within 110 meters needed to verify each other’s BLS short
signatures every 300ms for safety messages exchanges. Some of pairing-based
protocols, e.g., secret handshake (SH), are well suited for decentralized Internet
scale applications, provided that its computing needs can meet the performance
requirements. In a recent study [51], the notion of privacy-preserving cloud ser-
vice was proposed. A privacy-preserving cloud service provider (CSP) uses a

Z. Cao and F. Zhang (Eds.): Pairing 2013, LNCS 8365, pp. 1–19, 2014.
c© Springer International Publishing Switzerland 2014

2 S. Pu and J.-C. Liu

third-party SH server to authenticate requests from its customers. Both high
throughput and low response time are required for the SH server to serve bursts
of access requests in an emergency response situation.

Continual increase of the core count in the multi-core processor architecture
will offer much needed computing resources for pairings [3,15,47,49]. In the mean-
time, the GPU architecture is also being deployed, e.g., the 256-GPU cluster [6],
and the 960-GPU cluster Jaguar in the Oak Ridge National Lab, for large scale
applications including cryptographic computations. Unlike many other applica-
tions that were effectively accelerated by the massive parallel processing power
of GPU, some recent studies on GPU-based elliptic curve cryptographic (ECC)
point multiplication [2,14,61] and pairings [35,66] reported inferior performances
than their multi-core counterparts. Our paper is motivated to understand the
relationship between computational structures of pairings and the single in-
struction multi-thread (SIMT) parallel execution model of GPU. Following the
Compute Unified Device Architecture (CUDA) programming model, the Elliptic
curve Arithmetic GPU-based Library (EAGL) parallelizes Miller’s algorithm [54]
for the R-ate pairing [40] at the 128-bit security level, and its correctness was
validated by MIRACL [46]. Using EAGL as a benchmarking tool, we identify
major performance bottlenecks among myriad design factors for pairings on the
GTX-680 device, e.g., the GPU-based fast/slow memory configuration for in-
termediate results of pairings, GPU pipeline utilization, and proper use of the
state-of-the-art pairing optimization techniques.

In terms of performance comparison, a single core of an Intel Core i7-4700MQ
(2.4GHz) was able to run 2051 pairings/sec [47]. On the other hand, EAGL run-
ning on a GTX-680 can compute 1408 R-ate pairings in 420.19 ms (3350.9 pair-
ings/sec as the amortized throughput), roughly 40% of the benchmark reported
in [47] if [47] applied on all four cores of their CPU with a perfect accelera-
tion model. With GPU as its co-processor for the pairing computation, CPU
can instead perform other complex computation and business logic. To enable
the research community to keep up with the technology evolution, and expand
EAGL to support the new curve family [52], which is not included in the current
release due to the extensive efforts required to rewrite its lazy-reduction-related
parts for the cross verification of EAGL, EAGL is being released as an open
source project. For security considerations of EAGL, we assume that the server
that controls GPU cards is subject to malicious attacks, and therefore only pub-
lic computations should be considered for the utilization of EAGL on the server
site. For instance, in the health-care cloud scenario [51], the two inputs of a
pairing operation on the server are a public key and an encrypted private key.
Both inputs are public and hence can be computed on a server without privacy
concern.

Main optimization techniques applied in EAGL include: (1) the type D sextic
twist [57] of the Barreto-Naehrig (BN) curve over Fq2 ; (2) a low hamming weight
BN curve [23]; (3) the denominator elimination [54], and optimization of the final
exponentiation on BN curves [23,56]; (4) Karatsuba multiplication for multipli-
cation in Fq12 , Chung-Hasan SQR3 [21] for squaring in Fq12 ; (5) the compressed

EAGL: An Elliptic Curve Arithmetic GPU-Based Library 3

squaring in the final exponentiation [58]; and for arithmetic of unitary elements
in Fq12 , we applied the fast squaring for elements in Fq4 [60] and Granger-Scott
fast squaring [32] in Fq12 ; (6) the general lazy reduction scheme [3] in extension
fields Fq2 , Fq4 and Fq12 , and we empirically applied lazy reduction in Fq2 to
achieve the best performance.

1.1 Background Knowledge of GPU

In the CUDA programming model, one host CPU thread is used to control one
device GPU, and a unit of task, named as the kernel function, is issued by the
host to the GPU device. Our target platform GTX-680 is a GK-104 device (”K”
means Kepler), which contains 8 streaming multiprocessors (SMX). Each SMX
can concurrently run 32 GPU threads (known as a warp) per clock. Following the
SIMT architecture, each GPU thread runs one instance of the kernel function. A
warp may be preempted when it is stalled due to memory access delay, and the
scheduler may switch the runtime context to another available warp. As such,
multiple warps of threads are usually assigned to one SMX for better utilization
of the pipeline of each SMX. These warps are called one thread block. Each SMX
could access 64KB fast shared memory/L1 cache and 64K 32-bit registers. The
shared memory of one SMX is organized into 32 64-bit banks. All SMXs share
2GB 256-bit wide slow global memory, cached R-ONLY texture memory and
cached R-ONLY constant memory.

The rest of this paper is organized as follows. Section 2 introduces the re-
lated work. Section 3 briefly discusses Miller’s algorithm and then presents our
computing model with some preliminary benchmarks. Evaluation of the gen-
eral lazy reduction scheme and tuning of memory parameters are presented in
Section 4. The performance comparison with existing CPU/GPU-based solu-
tions, our discussion and conclusion are in Section 5 and 6.

2 Related Work

Elliptic curves over finite fields can be divided into two types: supersingular (SS)
curves, and ordinary (non-supersingular) curves. For their simplicity and ease
of modular multiplication, SS curves have been proposed to construct pairing-
based cryptographic protocols. For computational efficiency and security, SS
curves have limitation on the potential values of the embedding degree k, and
are usually applied in the finite field of small characteristic [7]. For example [1,23]
set the characteristic as 3 when the embedding degree k = 6. Implementing char-
acteristic 3-based computation on GPU leads to either higher memory cost, or
more complicated logic and thus less suitable for parallelization [35]. Therefore,
we only consider ordinary curves.

One major approach for reducing the computational cost of bilinear pairings
is decreasing the length of Miller Loop in Miller’s algorithm. [10] extended the
Duursma-Lee method [25] to supersingular abelian varieties using the ηT pairing.
The Ate pairing on hyperelliptic curves [31], the twisted Ate pairing [33,44] and

4 S. Pu and J.-C. Liu

its variation Atei pairing [67] on ordinary curves reduced the loop length to
r1/ϕ(k) [33], where r is a large prime satisfying r|#E(Fq). An optimal Ate pairing
[62] was able to attain the loop length to its lower bound. The R-ate pairing [40]
obtained even shorter loop length than [31] on certain pairing-friendly elliptic
curves. Other efforts [5,18,54,55,56] worked on arithmetic optimization, such as
denominator elimination, final exponentiation simplification, faster variants of
Miller’s algorithm under Jacobian [18] or Edwards co-ordinates [13], and efficient
formulas for various curves with twists of degree 2, 3, 4 or 6 [22].

Another major acceleration approach is optimizing arithmetic operations in
extension fields. [15] presented a software library of the optimal Ate pairing on
a BN curve over a 254-bit prime field, and they could run one pairing operation
in 2.33M cycles on a single core of an Intel Core i7 CPU (2.8GHz). To utilize
optimized instructions sets, [49] represented one element in Fq as a vector of
double-precision floating points (DPF), and computed modular arithmetic in
the SIMT architecture. As such, it ran an instance of the optimal Ate pairing in
4.38M cycles on one core of an Intel Core 2 Quad Q9550 processor (2.83GHz). By
introducing optimized cyclotomic subgroups and the generalized lazy reduction
optimization technique, [3] ran one pairing operation in 1.562M cycles on AMD
Phenom II and 1.688M cycles on a single core of an Intel Core i5 CPU. A recent
work [47] showed that, by using the mulx instruction of the Haswell architecture,
it could run one pairing operation in 1.17M cycles on a single core of an Intel
i7-4700MQ CPU (2.4GHz). These implementations were at the 128-bit security
level. Another recent work [4] presented that running one Ate pairing operation
at the 192-bit security level needed 19M cycles on a single core of an Intel i5 CPU.
In 2012, [52] proposed a subclass of BN curves that had better computational
efficiency.

[2,14,61] pioneered implementation of elliptic curve point arithmetic on CUDA.
[2] implemented point multiplication under the Residue Number System (RNS),
and another work [20], also adopted RNS and implemented the Ate pairing on
FGPA. [66] implemented the Tate pairing whose elliptic-curve group had com-
posite order, and [35] the ηT pairing in characteristic 3 on CUDA. Both papers
did not implement the parallel reduction function due to its complexity. In our
CI-2thread and CI-4thread models, we implement both serial [48] and parallel
versions of the reduction function and evaluate which version fits GTX-680 better.
Moreover, both papers did not parallelize the final exponentiation (FE), which has
almost the same cost asMiller Loop (ML) (see proof in Table 2 of [15]). EAGL sup-
ports both FE and ML, and also provides exponentiation of an element in Fq12 for
applications that need to run additional exponentiation operations of the result
of the pairing computation.

3 Computing Models of Miller’s Algorithm

In this paper, the standard state-of-the-art optimization techniques are consid-
ered to target the 128-bit security level. This mainly involves computing the
optimal R-ate pairing [40] on the low-hamming weight Barreto-Naehrig (BN)
curves [11], towered extension [12], and the general lazy reduction scheme in [3].

EAGL: An Elliptic Curve Arithmetic GPU-Based Library 5

In the form of y2 = x3+b, BN curves [11] are ordinary elliptic curves defined
over Fq. Given the construction parameter u, the trace of Frobenius over Fq t(u)
= 6u2+1, the modulus q(u) = 36u4+36u3+24u2+6u+1, the prime order n(u) =
36u4+36u3+18u2+6u+1. In this paper, u = −(262+255+1) and the embedding
degree k=12, and hence the pairing computation achieves the 128-bit security
level [11]. Because the embedding degree k equals 12, ML and FE need to run
arithmetic in the extension field Fq12 , which is usually implemented as a tower
of extension fields [54]. According to [12,26], k is in a format of 2i3j with
i ≥ 1, j ≥ 0. Following the conclusion in [12], and for the cross verification of
our system with MIRACL [46], the tower of 1-2-4-12 is selected.

Let Fq be a finite field with the modulus q, E/K an elliptic curve E over
a field K, E[r] the group of all r-torsion points of E, and E(K)[r] the K-
rational group of r-torsion points of E over a field K, πq the q-power Frobe-
nius endomorphism on E(Fq), the R-ate pairing is defined as a mapping G2 ×
G1 → GT , where G1 = E(Fq)[r], G2 = E(Fqk)[r]

⋂
Ker(πq − [q]) and GT =

F∗
qk/(F

∗
qk)

r. The computation can also be represented as Ra(Q,P) = (f ·
(f · laQ,Q(P))q · lπ(aQ+Q),aQ(P))(q

k−1)/r, where P ∈ G1, Q ∈ G2, a = 6u+2,
f = fa,Q(P) and laQ,Q is the line function [54] through the points aQ and
Q. The rational function fi,P is calculated based on the property fi+j,P =
fi,P · fj,P · liP,jP , where liP,jP is the line function. Computing fi+j,P involves
addition/subtraction/multiplication operations in Fq12 . We refer readers to [40]
for details of the R-ate pairing.

Table 1. Computing latencies of three arithmetic operations with INT32 or SPF
operands on GTX-680

Instructions INT32 A+B SPF A+B INT32 A×B SPF A×B INT32 A×B+C SPF A×B+C

Latencies (ms) 0.0308 0.012 0.0326 0.011 0.0114 0.0117

Our first problem is whether we should follow [14] to utilize GPU’s single-
precision floating point (SPF) instructions for ECC arithmetic. The SPF imple-
mentation on GK104 is IEEE compliant, where each 32-bit SPF has a 23-bit
significand. In [14], a 224-bit integer was converted to an array of 24 SPFs and
each 10-bit segment of the original integer was stored by a 32-bit SPF. Although
using 10-bit of the 23-bit significand can avoid the round-off problem, only 1/3
of the on-chip memory is utilized in this representation, which either reduces the
degree of parallelism or triggers a large number of slow off-chip memory hits.
As we will discuss in the last section, the primary performance bottleneck of
the pairing computation on GTX-680 is the limited on-chip memory of GPU.
And hence, any trade-offs related to on-chip resources need to be carefully eval-
uated. To understand the efficiency of integer arithmetic and SPF arithmetic
on GTX-680, as shown in Table 1, we evaluate the computing latencies of an
addition, a multiplication, and a multiplication with an addition (also known
as fused M+A or FMA), with either INT32s or SPFs as their operands, where
INT32 means 32-bit integers. Table 1 shows that, an addition or a multiplica-
tion with SPF operands, is roughly 3 times faster than its INT32 counterpart.

6 S. Pu and J.-C. Liu

But for an FMA, the two versions have similar latencies, which is different from
elder generation GPU devices used in [14]. In the end, an INT32 array is adopted
to store a 256-bit variable due to the following reasons: first, as we will show
later, the main operation of the multi-precision multiplication, which is the most
expensive multi-precision arithmetic function for pairings, is the FMA operation;
and an FMA with INT32s and that with SPFs have similar latencies. Second,
one slow memory access is hundreds times more expensive than one SPF/INT32
arithmetic instruction on GPU. As such, the on-chip memory should be fully
utilized to minimize the slow memory accesses. As a side note, we do not con-
sider the representation in [49] because the throughput of DPF is 1/24 of that
of SPF on GTX-680.

Previous studies on parallel pairings were mainly based on either the conven-
tional Montgomery [48] or Residue Number System-based (RNS) Montgomery.
The former aims to optimize c = a×b mod q to a multiplication step T =
a×b following by a reduction step reduction(T). On the other hand, based on
the Chinese Remainder Theorem (CRT), RNS decomposes a modulus M to n
co-prime integers (m1, ...,mn), then an arbitrary integer X < M has a unique
representation xi = X mod mi, 1 < i < n,M =

∏n
i=1mi. The independency

among computation in mod mi makes RNS well suited for parallelization. How-
ever, RNS-based integers cannot be directly used in a prime field since M is
not prime, unless two extra Base Extension (BE) steps [8] are inserted in the
reduction step. As such, an a[n]×b[n] mod q in RNS needs 2n2 +5n 32-bit mul-
tiplication (denoted by MUL) by using four threads [2], while its conventional-
Montgomery-based counterpart needs 2n2 + n MUL by using one thread. The
other two extra overheads are from the synchronization for the complicated
RNS-based comparison in a reduction or a modular subtraction, and potential
branch divergences, where parallel threads need to sequentially run branches of
computing logic in SIMT, in an RNS-based modular subtraction. Such synchro-
nization overhead grows as more threads are set to compute one instance of the
RNS-based arithmetic. As concluded in [20], their parallel RNS-based computing
model worked better than a (serial) conventional-Montgomery-based model for
a long addition sequence of modular multiplication (a×b+c×d+... mod q). The
length of such sequences is closely related to the extension field being used by
the lazy reduction. We will discuss adoption of RNS for general lazy reduction
policies [3] in the next section. In this section, we quantitatively evaluate the
performance of the conventional-Montgomery-based computing models.

To evaluate parallel computing model candidates, we select c = a×b mod q in
the base field Fq as the representative code segment since it’s the most expensive
modular arithmetic function in Fq. c = a×b mod q is composed of (1) T = a×b
and (2) c = reduction(T). In terms of memory requirement for running a pair-
ing on the selected BN curve, each of the modulus q, elements a, b and c needs
one uint32[8] array (”u” means unsigned), and T one uint32[16] array. To
parallelize the conventional-Montgomery-based c = a×b mod q, firstly we note
that the step T = a×b consists of multiple independent sequences of FMA oper-
ations, mapping them to multiple threads is similar to mapping the computation

EAGL: An Elliptic Curve Arithmetic GPU-Based Library 7

0,1 ...

A0

0 ...banks

GPU threads in a warp (32 threads)

...
A1 A30 A31

memory tiers
in each bank

1 3 4

2,3 6,7 0,1 ...

... 7

6,7

8

0,1 ...

... 11

6,7 0,1 …

12 ...

...

... ... 28

0,1 ...

... 31

6,7

chaff 0,1 ...2,3 6,7 0,1 ... 6,7 0,1 ... 6,7 0,1

A0 A1 A2 A3 A4 A5 A6 A14 A15

… ... 0,1 ... 4,5

A16 A17 A18 A19 A20 A21 A22 A30 A31

6,7 0,1 ...2,3 6,7

A0, but from a different warp

chaff6,7 0,1

...

...

a CI

4,5

chaff

Fig. 1. Collision-free memory access of a 256-bit variable (CI-2thread model)

under different residues of RNS to multiple threads. Secondly, because the re-
duction step reduction(T) includes two multi-precision multiplications and one
addition, parallelizing reduction(T) can re-use the parallelization method of T
= a×b. Next, we discuss four parallel model candidates for computing a×b mod
q: CI-1/2/4/8thread models, where each computing instance (CI) is run by
1/2/4/8 cooperative thread(s). We focus on eliminating shared memory access
conflicts, race conditions and workload balance among threads in the same CI.

Next, we consider the problem of optimal placement of an element of Fq

in the shared memory of a GK104 GPU, which has 32 64-bit shared mem-
ory banks. An element of Fq is defined as shared uint32[8×BLK CI SIZE],
where BLK CI SIZE is the number of CIs per block. In the CI-2thread model,
each two threads access the same uint32[8i+ 0, 8i+ 7], 0 ≤ i < BLK CI SIZE.
As such, threads {0,16}, {2,18}, ..., {12,28}, {14,30} are allowed to concurrently
read the eight uint32[0]s, which is a typical access pattern in multi-precision
arithmetic, but only 1/2 of the physical concurrency can be realized because
threads 0 and 16 access different ties (a low-level GPU memory architecture) of
bank 0 and thus they compete for the memory interface. This is also known as
the ”bank conflict”. Because each SMX (in GK-104) has 32 LD/ST units, we
only need to consider bank conflicts within a warp of threads.

Taking the CI-2thread model as an example, to remove such bank conflicts,
as shown in Figure 1, we fill a strip of 64-bit chaff spacers in the front of every
eighth uint32[8]. The chaff spacer in the 3rd row of Figure 1 is to simplify
locating the start addresses. After inserting the chaff spacers, threads 0 and 16
read bank 0 and 1 respectively when they are reading the uint32[0]s associated
with their CIs. As such, this type of bank conflict is removed. We also append
spacers to ensure the address of each variable in the shared memory always starts
from bank 0.

8 S. Pu and J.-C. Liu

a0
b0

a1
b1

a2
b2

a3
b3b4b5b6b7

a4a5a6a7

×
a0b0a1b0...... ...a7b0

a0b1a1b1.........a7b1
a0b2a1b2.........a7b2

a0b3a1b3.........a7b3
a0b4a1b4.........a7b4

a0b5a1b5.........a7b5
a0b6a1b6.........a7b6

a0b7a1b7...... ...a7b7

T0T1T3T4T5T6T7T8 T2T9T10T12T13T14T15 T11

thread 1
(mem acces A1)

thread 0
(mem acces A0)

a. parallel multiplication in
CI-2thread model

a0
b0

a1
b1

a2
b2

a3
b3b4b5b6b7

a4a5a6a7

×
a0b0a1b0...... ...a7b0

a0b1a1b1.........a7b1
a0b2a1b2.........a7b2

a0b3a1b3.........a7b3

a0b4a1b4.........a7b4
a0b5a1b5.........a7b5

a0b6a1b6.........a7b6
a0b7a1b7.........a7b7

T0T1T3T4T5T6T7T8 T2T9T10T12T13T14T15 T11

thread 1

thread 0

thread 2

thread 3

b. parallel multiplication in CI-4thread
model

banks 012345...

mem ties in
each bank

T

T
A0A1

A8A9

A0 writes T0

A1 writes T4

T

T
A16A17

A24A25 bank conflict

banks 012345...

mem ties in
each bank

T

T
A0A1

A16A17

A2A3

A18A19

bank conflict

Fig. 2. Parallel multi-precision multiplication

T [16] = a[8]×b[8] can be considered as eight sequences of T [x] = a[i]× b[j =
0 ∼ 7], i ∈ [0, 7], x = i+j respectively. Considering the overflow effect in a[i]×b[j]
and in the accumulation of T [x], each sequence would be composed of FMA
and addition operations T [x] = (low 32-bit)(a[i]×b[j = 0, 1,..., 7] + T [x] +
carry), and carry = (high 32-bit)(a[i]×b[j = 0, 1,..., 7] + T [x] + carry) if
j > 0. Therefore, the inter-dependency among sequences is the reading/writing
(R/W) of T [0-15]. If each T [0-15] array in the shared memory is partitioned
into multiple segments with a constant size, each segment is mapped to one
thread, and the constant offset i of each thread is large enough, then there is no
race condition on R/W of T [0-15]. Considering that the bank width (of GK104
GPU) is 64-bit, which means T [x] and T [x+1] are in the same bank if x is
even, the size of the segment should be at least one bank width. It also implies
the infeasibility of the CI-8thread model where two neighboring threads in one
CI would simultaneously read and write the same bank respectively, and thus
cause the inter-CI bank conflict. As a result, the parallel T [16] = a[8]×b[8] in
the CI-2/4thread models are designed as shown in Figure 2. It is evident that
threads in the same CI, or across different CIs do not meet any bank conflict
when computing a[i]× b[j = 0 ∼ 7] in the current execution order.

However, on GK104 GPUs, we observe a new type of the across-CI bank
conflicts when threads sum the multiplication results and write back to T , as
shown in Figure 2. Comparing with earlier GPU architectures, the bank width of
GK104 grows from 32-bit to 64-bit, that is, T [0-15] are stored denser in GK104
GPUs than in earlier generations of GPUs. As such, two segments of T with
different start offsets and associated with different CIs may be placed on the
same bank. We show one example in Figure 2, in the CI-2thread model, threads

EAGL: An Elliptic Curve Arithmetic GPU-Based Library 9

{0,1}, {8,9}, {16,17}, {24,25} for four CIs are writing results T0 = a0 × b0
and T4 = a0 × b4 back to the shared memory, the banks of T0 and T4 for the
four CIs are {0,2}, {1,3}, {2,4}, {3,5}. In this example, threads 1 and 16 are
competing for bank 2. To eliminate this type of bank conflict, 12 registers are
used to temporarily save the multiplication results of T0 − T11 or T4 − T15 for
each thread, and then a serial step is employed to accumulate results of two
threads. NVIDIA profiling tool is used to validate our optimization schemes.

Theoretically, a[n]×b[n] (n = 8) in the CI-2thread model costs n2/2 MUL,
which is the same as computing it in the RNS-based model with two threads for
each instance. Taking into account the synchronization overhead for bank conflict
elimination, the actual cost of a[n]×b[n] is slightly above n2/2 MUL. On the
other hand, elimination of this type of bank conflict is also necessary if an RNS-
based T [2n] is consecutively placed in the shared memory, and thus switching to
RNS would not bring obvious extra gain for multi-precision multiplication. (An
alternative, which saves an RNS-based T [2n] as n separate variables in the shared
memory, would avoid this bank conflict. But this option will grossly complicate
the code structure of low level multi-precision arithmetic functions, especially
the division function, and make the library difficult to expand to other precision
numbers).

In [48], reduction(T = a×b) for multi-precision integers a, b, T was serially
optimized as an iterative loop, where the dependency across iterations impeded
the parallelization [35,66]. To parallelize the reduction function, the CI-2thread
model and the CI-4threadmodel adopt the single-precision version in [48], which
includes two parallelized multiplications (1) m = (T mod R)×q′ mod R, and
(2) m×q, and one parallel addition T+mq, where R × R−1 − q × q′ = 1 and
R = 2256. Because the first multiplication only needs results in the low-256-bit
half, it costs 56% of FMAs of a complete multi-precision multiplication. We skip
the implementation detail of parallel reduction(T) because it is similar to the
parallel T = a×b.

Next, we compare the combination of parallel multiplication T=a×b plus
serial/parallel reduction(T) (denoted by S-/P-reduct) in the CI-1/2/4thread
model on GTX-680. The degrees of parallelism of GPU in the CI-1/2/4thread
models are 160/352/738 GPU threads per block, equivalent to 160/176/184
CIs per block. Furthermore, when computing T+m×q, the parallel version of
reduction(T) reads T from the global memory. Optimality of these configuration
parameters will be discussed later. Table 2 lists the execution times of multipli-
cation and reduction(T) in these three models. In this experiment, 11938 times
of multi-precision multiplication and 8312 times of reduction are executed, which

Table 2. Performance of 11938 multiplications + 8312 reductions in various thread
counts per instance

models T=a×b S-reduct P-reduct best mul+reduct threads per SMX throughput(/sec)

CI-1thread 57.87ms 39.95ms N/A 97.82ms 160 13085.3

CI-2thread 39.40ms 36.71ms 48.73ms 76.11ms 352 18499.5

CI-4thread 28.58ms 51.64ms 83.59ms 80.22ms 738 18349.5

10 S. Pu and J.-C. Liu

are simulations of these two functions in one complete R-ate pairing. The last
column presents the amortized throughput.

Several conclusions can be drawn based on Table 2: (1) parallelization of
T=a×b works, but the gain from parallelization shrinks as the thread count per
instance increases. The reason is that increasing the thread count per instance
also introduces more synchronization overhead for accumulating T [i] in registers.
(2) When the shared memory usage per CI is bisected into two threads, the
increase of thread number per SMX is usually greater than doubling. Due to the
limit of placing complete warps into each SMX, a large shared memory usage per
thread usually results in poor utilization of the shared memory. As each thread
consumes less shared memory, it is possible to put more complete warps into each
SMX to make full use of the available shared memory. Therefore, as observed
in the CI-2thread model, although the execution time is not reduced by half
by using doubled threads per CI, it is still possible to have a higher throughput
gain due to a higher resource utilization rate. (3) The serial reduction in the CI-
2thread model is slightly faster than that in the CI-1thread model, possibly due
to an outlier of the micro-architecture behavior. (4) In the CI-2threadmodel, the
parallel reduction is much slower than its serial counterpart. The breakdown of
execution time shows that computing m = (T mod R)×q′ mod R and m×q took
43% execution time of the parallel reduction, the remaining time is spent in the
addition T+m×q because the T in this addition is a copy stored in the global
memory. Since computing addition operations is very cheap, 48.73ms×43% =
21ms would be the true execution time of 8312 parallel reductions if all variables
are in the shared memory. With the selected configuration parameters, the shared
memory of GTX-680 cannot fit two 512-bit caches for the reduction, where one
is used by m×q and the other stores the original value of T . As such, T+mq
stores its T in the slow memory because it only needs to read T once. According
to Table 2, EAGL adopts the CI-2thread model for parallel multi-precision
arithmetic functions.

4 Optimization for Extension Fields-Based Arithmetic

Applying the lazy reduction scheme to higher extension fields such as Fq6 and
Fq12 was proposed in [3]. With this lazy reduction scheme, the number of re-
ductions is reduced to 12 for a modular multiplication in Fq12 . Lazy reductions
usually reduce the execution time on CPU architectures, but this is not always
the case for GPU architectures. Delaying reductions to the highest extension field
(Fq12) requires doubling of the memory space for each variable in all arithmetic
operations in lower extension fields. The first option to double the memory space
for each CI is assigning it more shared memory, but this choice is at cost of de-
creased degree of parallelism. The alternative is to use the (much slower) global
memory to meet the additional memory need, without changing the original
shared memory usage per CI.

To assess the performance of these two options, we first select the modular
multiplication in Fq4 as the code segment, and apply the general lazy reduction

EAGL: An Elliptic Curve Arithmetic GPU-Based Library 11

Table 3. Performance of 1000 modular multiplications in the fourth extension field

optimization choices execution time threads per SMX smem per CI throughput (/sec)

lazy reduction in Fq2 265.4ms 352 256 Bytes 5313× 103

lazy reduction in Fq4 301.8ms 352 256 Bytes 4662× 103

prefetch+lazy reduction in Fq4 304.7ms 352 256 Bytes 4617× 103

lazy reduction in Fq4 233.7ms 224 320 Bytes 3829× 103

lazy reduction in Fq4 225.2ms 224 384 Bytes 3982× 103

scheme to Fq2 and Fq4 respectively, following the algorithms and options for
subtractions proposed in [3]. As listed in Table 3, in this experiment, we repeat
1000 modular multiplications in Fq4 with different shared memory usages per CI.

Execution times shown in rows 1 and 2 of Table 3 suggest that the perfor-
mance of running less reductions is worse than that of the one needing more
reductions, because of the slow global memory accesses. We further tested the
software prefetching [39] from the global memory to L2 cache, but no noticeable
performance gain was observed, because the prefetching for next warp policy at
programming time is not guaranteed to make a positive hit at run time. Rows
2, 4, and 5 in Table 3 illustrate some marginal improvement of execution time,
when more shared memory is allocated to each CI. The execution gain is only
marginal because the temporary variable usage of EAGL is already optimized
for spatial and temporal locality, so that little benefit can be further gained with
additional shared memory. Increasing the shared memory size per CI leads to
significant drop of throughput due to the reduced degree of parallelism. A quick
complexity analysis on implementing the lazy reduction in Fq12 suggests a sharp
increase of the size of temporary variables in the global memory as compared to
the case of Fq4 . The performance overhead is deemed to be too high for GK104
GPUs to be useful. In summary, despite the reduced computational complex-
ities in Fq4 and Fq12 , Fq2 is best suited for GK104 GPUs to achieve the best
throughput in our tests.

As discussed in last section, the efficiency of RNS and conventional Mont-
gomery systems for low-level multi-precision multiplication and reduction func-
tions depends on which extension field the lazy reduction policy is used in.
As aforementioned, running an RNS-based multi-precision multiplication with 2
threads, or the same operation in the CI-2thread model, have similar complexity
(n2/2 MUL plus the synchronization overhead). Although [20] mentioned that a
serial RNS-based reduction costs 2n2+3nMUL, this cost can be further reduced
by parallelizing the base extension (BE). Details of advanced BE parallelization
are beyond the scope of this paper. In brief, the two matrix multiplication op-
erations, as the main part of BE, can be equally balanced on the two threads
[9], and thus the cost of an RNS-based reduction would be n2 +3n MUL, which
is close to the case in the CI-2thread model. Therefore, given the same lazy
reduction policy, the gains of the RNS-based model and our CI-2thread model
from the lazy reduction are similar. Moreover, the RNS-based reduction needs
extra memory for saving matrices in BE, which can produce more global memory
accesses and thus slow down the pairing computation.

12 S. Pu and J.-C. Liu

By summarizing the usage of temporary variables of EAGL’s point and field
arithmetic functions involved in the pairing computation, it is found that the
most frequently accessed temporary variables are four elements in Fq2 per CI,
a total of 256 bytes, while the overhead for chaff spacers and bank alignment
is negligible. Next, we adjust the shared memory (smem) usage per CI from
192-byte to 384-byte, stepped by one element in Fq2 (64-byte), and observe the
fluctuation of throughput of pairings. When the usage becomes 320-byte, we
also implement a version with parallel reduction(T), where T of T+mq can be
accommodated in the shared memory. Results are shown in Table 4.

Table 4. Throughput fluctuation of pairings on a GTX-680

smem usage per CI (bytes) 192 256 320 320 (parallel reduction) 384

gpu thread per block 480 352 224 224 224

smem utilization 93.6% 91.7% 79.1% 79.1% 87.5%

throughput (pairings/sec) 2926 3350.9 2077 2564.6 2861

Table 4 first illustrates that the peak throughput occurs when each CI caches
four elements in Fq2 in the shared memory. Secondly, it shows the trade-off
between memory-accessing latency vs. pipeline utilization rate of each SMX.
Less shared memory per CI means more visits to the global memory, and also
more threads per block. Without a clear guidance for an optimal configuration
rule, we gradually tune the shared memory usage per CI to find the peak point
of throughput. When the shared memory usage per CI equals 320-byte, the
shared memory usage utilization rate is fairly poor due to the limitation that
only complete warps of threads should be assigned to each SMX. As the shared
memory usage grows to 384-byte, the negative effect of worse pipeline utilization
begins to negate the benefit of more fast memory hits. As such, trying even larger
shared memory usages is unnecessary.

5 Discussion of GPU and CPU Based Pairing
Computations

The performance of EAGL is obtained when its degree of parallelism is set at
8 SMX×352 threads = 1408. The computing latency of 1408 R-ate pairings by
using EAGL on a GTX680 is 420.19ms, and the amortized throughput is 3350.9
pairings/sec or 0.298sec/pairing. First, as illustrated in Table 5, we compare
EAGL with other GPU-based implementations in the literature [35,66]. Here
the throughput of the ηT pairing at the 128-bit security level is 254 pairings/sec,
or 3.94ms/pairing, on one Tesla C2050 card [35]. Taking into account that GTX-
680 has roughly three times more peak GFLOPS than M2050/C2050, EAGL is
almost 4.4 times faster than [35]. We include the results of [66], which achieved
23.8ms/pairing, as reference in this study. However, it is difficult to make a
quantified comparison between the two implementations due to the significant
difference between the composite-order and the prime-order pairings.

EAGL: An Elliptic Curve Arithmetic GPU-Based Library 13

Table 5. A comparison of execution times for GPU-based implementations

Implementations Algorithm Curve Type Security Exec time(ms)

EAGL on a GTX-680 R-ate,prime order ordinary 128 bits 0.298

[66] on an M2050 Tate,composite order ordinary 80 bits 23.8

[35] on a C2050 ηT pairing supersingular 128 bits 3.94

Next, we compare EAGL with existing CPU-based pairing solutions
[3,15,47,49], where all the performance results were based on a single CPU
core by their authors. Our objectives are two-fold. The first is comparing the
throughput of implementations on contemporary hardware. Furthermore, we
aim to gain some understanding on the bottlenecks of different system architec-
tures. We adopt a perfect acceleration model for CPU cases where the speedup
is proportional to the number of available processor cores. The performance
figures of studied cases are summarized in Table 6. One can see that EAGL
on GTX-680 has about 40% of the throughput that could be achieved by [47]
based on the perfect acceleration model for multi-core CPUs. We note that the
GPU controller thread that runs on CPU has negligible performance cost. As
such, the CPU host processor(s) can use GPU as a pairing co-processor, while
the host process(s) can run other business logic such as database management,
high-throughput networking or file I/O.

Table 6. Comparison of throughput, EAGL vs. CPU-base solutions

Implementations Algorithm Core Clk Throughput

EAGL on a GTX-680 R-ate pairing 1006MHz 3350.9

[49] on Intel Q6600 Ate pairing 2.4GHz 4 x 669 (est.)

[15] on i7 860 Ate pairing 2.8GHz 4 x 1202 (est.)

[3] on i5 Ate pairing 2.8GHz 4 x 1661 (est.)

[47] on i7 4700MQ Ate pairing 2.4GHz 4 x 2051 (est.)

Compilation results show that almost all shared memory is utilized and the
register count per thread reaches the architectural upper bound. As such, EAGL
fully utilizes on-chip resources of GTX-680. To identify whether the bottleneck is
caused by the CI-2thread model at the level of multi-precision arithmetic func-
tions, we cross compare EAGL’s acceleration rates on bilinear pairings and point
multiplications. It was reported in [2] that MIRACL ran 14509 224-bit point mul-
tiplications/sec on 3.0GHz AMD Phenom II CPU. Based on the same type of
curve, EAGL computes 47000 256-bit point multiplications/sec on a GTX-680
(3090GLOPS, peak). Comparing to the RNS-based implementation on GTX-295
(1788GLOPS, peak) [2], which computed 9827 224-bit point multiplications/sec,
EAGL on a GTX-680 has 2.76 times higher throughput after normalizing the
difference of peak GFLOPS. Although it is very difficult to compare the com-
puting strength utilization rate across different generations of GPUs, a higher
growth of throughput (2.76) than that of GFLOPS (1.72) at least proves that
the CI-2thread model is not worse than the RNS-based model on contemporary
GPUs.

14 S. Pu and J.-C. Liu

Execution
time (ms)

50

100

200

300

400

500

600

700

800

900
Bytes

50 100 200 300
400 450

smem (point mul)

smem (pairing)

gmem (point mul)

160

224
256

320

32
0

42

gmem (pairing)

point
calculation

64

line
calculation

1

2

1

2

896

237

3

merge
results of
step 1,2

3

448 4 inversion

246

4 5 rest
of FE

5

Miller
Loop

 Final
Expon-
ential

Fig. 3. The temporary variable usages of point multiplication and bilinear pairing in
EAGL

Even comparing with [42] that was based on twisted curves and computed
22472 256-bit point multiplications/sec on a 2.6GHz AMD Opteron 252 single-
core CPU, EAGL’s acceleration rate on point multiplications is still 2.1-fold.
It is interesting that EAGL shows different performance relationships on point
multiplications and bilinear pairings vs. their CPU-based implementations. To
gain some insights about the bottleneck, we first compare the temporary variable
usages of EAGL-based point multiplications and bilinear pairings, as shown in
Figure 3. The x co-ordinate in Figure 3 is the execution time, and the y co-
ordinate is the size of temporary variables in the shared/global memory. Figure
3 illustrates that, in EAGL, most kernel functions of the pairing computation
require much larger temporary variable usages than the point multiplication. As
a result, the global memory is hit more frequently in the pairing computation.

Then, by assuming that the on-chip memory is unlimited, we analyze the
optimal latency of 1408 pairings on a GTX-680. As we know, each pairing oper-
ation consists of 11938 multi-precision multiplications, 8312 reductions, plus over
20k inexpensive multi-precision add/sub operations (less than 15ms if residing
in the shared memory). With unlimited on-chip memory, running one pairing
operation almost equals to running 11938 multiplications and 8312 reductions in
the shared memory and registers, which takes 76ms (in Table 2), plus 15ms for
add/sub operations. This optimal latency is much less than the actual latency
420ms. Even though we do not have hardware level profiling tools available for
precise measurement, we assert that the difference between the optimal latency
and the actual latency is mainly resulted from swapping of variables between

EAGL: An Elliptic Curve Arithmetic GPU-Based Library 15

the shared and global memory spaces as follows. The NVIDIA profiling tool
shows that each powering of arbitrary x in Fq12 in the FE takes 47ms, it further
shows that one concurrent global memory copy of elements in Fq12 takes 35μs,
and one powering of x in Fq12 triggers nearly 500 times more global memory
accesses than a copy in Fq12 . Such a ratio indicates that global memory R/W
in one powering of arbitrary x in Fq12 takes 17ms, equivalent to 35% of its ex-
ecution time. And this estimation does not count in extra synchronization and
branch divergent cost associated with global memory R/W, and overhead of
global-memory-based multi-precision add/sub operations.

6 Conclusion

Our motivation of this project is to develop a usable GPU-based library for
long term development, but also to gain some insights on the performance fac-
tors. The EAGL library is composed of parallelized point addition and doubling,
add/mul/sqr/inv/powering arithmetic in the 1-2-4-12 tower of extension fields,
and line functions calculation in Miller’s algorithm. Its usage of temporary vari-
ables and its memory access model are optimized so that low-level bank conflicts
and slow memory hits are minimized. Experiments show that EAGL provides
3350.9 R-ate pairings/sec (amortized) on one GTX-680 GPU. The source code
of EAGL will be available soon on http://rtds.cse.tamu.edu/.

Computing performance is affected by computational complexity of the algo-
rithm, programming techniques, and the computer architectures. All three factors
need to be seamlessly integrated to achieve top performance. We explore critical
factors that affect the performance of GPU-based bilinear pairings. OnGPU, stor-
age, placement and access of long operands in pairings, whose lengths range from
8 to 96 (32-bit) integers has the most significant performance impact. A signifi-
cant number of optimization techniques for pairings focus on reducing the number
of arithmetic steps, but this is usually at the cost of using more memory. Unlike
the sophisticated prefetching and caching architecture on CPU-based platforms,
GPU memory hierarchy is relatively simple. As such, this CPU-based optimiza-
tion approach may not be also effective for GPU architectures, at least for the
contemporary technology, due to the different characteristics with respect to large
memory accesses on CPU/GPU. As GPU vendors advance the next generation of
products to increase shared memory size (obviously) and add more sophisticated
memory prefetching and pipelining architectures, the performance bottleneck of
the memory hierarchy in GPU for pairings may be eased significantly.

References

1. Ahmadi, O., Hankerson, D., Menezes, A.: Software Implementation of arith-
metic in GF(3m). In: Carlet, C., Sunar, B. (eds.) WAIFI 2007. LNCS, vol. 4547,
pp. 85–102. Springer, Heidelberg (2007)

2. Antão, S., Bajard, J.C., Sousa, L.: RNS-based Elliptic Curve Point Multiplication
for Massive Parallel Architectures. In the Computer Journal 55(5), 629–647 (2012)

http://rtds.cse.tamu.edu/

16 S. Pu and J.-C. Liu

3. Aranha, D.F., Karabina, K., Longa, P., Gebotys, C.H., López, J.: Faster explicit
formulas for computing pairings over ordinary curves. In: Paterson, K.G. (ed.)
EUROCRYPT 2011. LNCS, vol. 6632, pp. 48–68. Springer, Heidelberg (2011)

4. Aranha, D.F., Fuentes-Castañeda, L., Knapp, E., Menezes, A., Rodŕıguez-
Henŕıquez, F.: Implementing pairings at the 192-bit security level. In: Abdalla,
M., Lange, T. (eds.) Pairing 2012. LNCS, vol. 7708, pp. 177–195. Springer,
Heidelberg (2013)

5. Arene, C., Lange, T., Naehrig, M., Ritzenthaler, C.: Faster Computation of the
Tate Pairing. Journal of Number Theory 131(5), 842–857 (2011)

6. Babich, R., Clark, M.A., Joo, B., Shi, G., Brower, R.C., Gottlieb, S.: Scaling Lattice
QCD beyond 100 GPUs. In: SC 2011 (2011)

7. Barbulescu, R., Gaudry, P., Joux, A., Thomé, E.: A Quasi-polynomial Algorithm
for Discrete Logarithm in Finite Fields of Small Characteristic. In: IACR Cryptol-
ogy ePrint Archive 2013:400

8. Bajard, J.C., Didier, L.S., Kornerup, P.: An RNS Montgomery Modular Multipli-
cation Algorithm. IEEE Transaction on Computers 47(7), 766–776 (1998)

9. Bajard, J.C., Didier, L.S.: Modular Multiplication and Base Extensions in Residue
Number Systems. In: IEEE Symposium on Computer Arithmetic, pp. 59–65 (2001)

10. Barreto, P.S.L.M., Galbraith, S., ÓhÉigeartaigh, C., Scott, M.: Efficient Pairing
Computation on Supersingular Abelian Varieties. Designs, Codes and Cryptogra-
phy 42(3), 239–271 (2007)

11. Barreto, P.S.L.M., Naehrig, M.: Pairing-Friendly Elliptic Curves of Prime Or-
der. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331.
Springer, Heidelberg (2006)

12. Benger, N., Scott, M.: Constructing Tower Extensions of Finite Fields for Im-
plementation of Pairing-Based Cryptography. Cryptology ePrint Archive (2009),
http://eprint.iacr.org/2009/556.pdf

13. Bernstein, D.J., Lange, T.: Faster Addition and Doubling on Elliptic Curves. In:
Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 29–50. Springer,
Heidelberg (2007)

14. Bernstein, D.J., Chen, T.-R., Cheng, C.-M., Lange, T., Yang, B.-Y.: ECM onGraph-
ics Cards. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 483–501.
Springer, Heidelberg (2009)

15. Beuchat, J.-L., González-Dı́az, J.E., Mitsunari, S., Okamoto, E., Rodŕıguez-
Henŕıquez, F., Teruya, T.: High-speed software implementation of the optimal ate
pairing over barreto–naehrig curves. In: Joye, M., Miyaji, A., Otsuka, A. (eds.)
Pairing 2010. LNCS, vol. 6487, pp. 21–39. Springer, Heidelberg (2010)

16. Blake, I., Seroussi, G., Smart, N.: Elliptic Curves in Cryptography. Cambridge
University Press (1999)

17. Boneh, D., Lynn, B., Shacham, H.: Short Signatures from the Weil Pairing.
In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer,
Heidelberg (2001)

18. Boxall, J., El Mrabet, N., Laguillaumie, F., Le, D.-P.: A variant of miller’s formula
and algorithm. In: Joye, M., Miyaji, A., Otsuka, A. (eds.) Pairing 2010. LNCS,
vol. 6487, pp. 417–434. Springer, Heidelberg (2010)

19. De Caro, A., Iovino, V., Persiano, G.: Fully secure anonymous HIBE and secret-key
anonymous IBE with short ciphertexts. In: Joye, M., Miyaji, A., Otsuka, A. (eds.)
Pairing 2010. LNCS, vol. 6487, pp. 347–366. Springer, Heidelberg (2010)

http://eprint.iacr.org/2009/556.pdf

EAGL: An Elliptic Curve Arithmetic GPU-Based Library 17

20. Cheung, R.C.C., Duquesne, S., Fan, J., Guillermin, N., Verbauwhede, I., Yao, G.X.:
FPGA implementation of pairings using residue number system and lazy reduc-
tion. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 421–441.
Springer, Heidelberg (2011)

21. Chung, J., Hasan, M.A.: Asymmetric Squaring Formulae. In: ARITH 2007,
pp. 113–122 (2007)

22. Costello, C., Lange, T., Naehrig, M.: Faster pairing computations on curves with
high-degree twists. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS,
vol. 6056, pp. 224–242. Springer, Heidelberg (2010)

23. Devegili, A.J., Scott, M., Dahab, R.: Implementing cryptographic pairings over
barreto-naehrig curves. In: Takagi, T., Okamoto, T., Okamoto, E., Okamoto, T.
(eds.) Pairing 2007. LNCS, vol. 4575, pp. 197–207. Springer, Heidelberg (2007)

24. Duan, P.: Oblivious Handshakes and Computing of Shared Secrets: Pair-
wise Privacy-preserving Protocols for Internet Applications. Ph.D. Dissertation,
https://repositories.tdl.org/tdl-ir/handle/

1969.1/ETD-TAMU-2011-05-9445

25. Duursma, I.M., Lee, H.-S.: Tate Pairing Implementation for Hyperelliptic Curves
y2 = xp − x + d. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894,
pp. 111–123. Springer, Heidelberg (2003)

26. Freeman, D., Scott, M., Teske, E.: A Taxonomy of Pairing-friendly Elliptic Curves.
Journal of Cryptology 23, 224–280 (2010)

27. Freeman, D.M.: Converting pairing-based cryptosystems from composite-order
groups to prime-order groups. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 44–61. Springer, Heidelberg (2010)

28. Frey, G., Rück, H.G.: A Remark Concerning m-divisibility and the Discrete Loga-
rithm in the Divisor Class Group of Curves. Math. Comp. 62(206), 865–874 (1994)

29. Fiore, D., Gennaro, R., Smart, N.P.: Constructing certificateless encryption and ID-
based encryption from ID-based key agreement. In: Joye, M., Miyaji, A., Otsuka,
A. (eds.) Pairing 2010. LNCS, vol. 6487, pp. 167–186. Springer, Heidelberg (2010)

30. Galbraith, S.D., Lin, X., Scott, M.: Endomorphisms for faster elliptic curve cryp-
tography on a large class of curves. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 518–535. Springer, Heidelberg (2009)

31. Granger, R., Hess, F., Oyono, R., Thériault, N., Vercauteren, F.: Ate pairing on
hyperelliptic curves. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515,
pp. 430–447. Springer, Heidelberg (2007)

32. Granger, R., Scott, M.: Faster squaring in the cyclotomic subgroup of sixth degree
extensions. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056,
pp. 209–223. Springer, Heidelberg (2010)

33. Hess, F., Smart, N.P., Vercauteren, F.: The Eta Pairing Revisited. IEEE Trans. on
Inform. Theory 52, 4595–4602 (2006)

34. Huang, Q., Wong, D.S., Susilo, W.: A new construction of designated confirmer
signature and its application to optimistic fair exchange. In: Joye, M., Miyaji, A.,
Otsuka, A. (eds.) Pairing 2010. LNCS, vol. 6487, pp. 41–61. Springer, Heidelberg
(2010)

35. Katoh, Y., Huang, Y.J., Cheng, C.M., Takagi, T.: Efficient Implementation of the
eta Pairing on GPU. Cryptology ePrint Archive,
http://eprint.iacr.org/2011/540.pdf

36. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. In: Smart, N.P. (ed.) EUROCRYPT 2008.
LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008)

https://repositories.tdl.org/tdl-ir/handle/1969.1/ETD-TAMU-2011-05-9445
https://repositories.tdl.org/tdl-ir/handle/1969.1/ETD-TAMU-2011-05-9445
http://eprint.iacr.org/2011/540.pdf

18 S. Pu and J.-C. Liu

37. Koblitz, N., Menezes, A.: Pairing-based cryptography at high security levels. In:
Smart, N.P. (ed.) Cryptography and Coding 2005. LNCS, vol. 3796, pp. 13–36.
Springer, Heidelberg (2005)

38. Koblitz, N.: A Security Weakness in Composite-Order Pairing-Based Protocols
with Embedding Degree k > 2. Cryptology ePrint Archive,
http://eprint.iacr.org/2010/227.ps

39. Lee, J., Lakshminarayana, N.B., Kim, H., Vuduc, R.: Many-Thread Aware
Prefetching Mechanisms for GPGPU Applications. In: MICRO 2010, pp. 213-224
(2010)

40. Lee, E.J., Lee, H.S., Park, C.M.: Efficient and Generalized Pairing Computation
on Abelian Varieties. IEEE Transactions on Information Theory 55(4), 1793–1803
(2009)

41. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure func-
tional encryption: Attribute-based encryption and (Hierarchical) inner product en-
cryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–91.
Springer, Heidelberg (2010)

42. Longa, P., Gebotys, C.: Analysis of Efficient Techniques for Fast Elliptic Curve
Cryptography on x86-64 based Processors. IACR Cryptology ePrint Archive, 335,
1–34 (2010)

43. Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero knowledge for NP.
In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 339–358. Springer,
Heidelberg (2006)

44. Matsuda, S., Kanayama, N., Hess, F., Okamoto, E.: Optimised versions of the ate
and twisted ate pairings. In: Galbraith, S.D. (ed.) Cryptography and Coding 2007.
LNCS, vol. 4887, pp. 302–312. Springer, Heidelberg (2007)

45. Meiklejohn, S., Shacham, H., Freeman, D.M.: Limitations on transformations from
composite-order to prime-order groups: The case of round-optimal blind signatures.
In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 519–538. Springer,
Heidelberg (2010)

46. MIRACL: Multiprecision Integer and Rational Arithmetic Cryptographic Library,
http://www.certivox.com/miracl

47. Mitsunari, S.: A Fast Implementation of the Optimal Ate Pairing over BN curve
on Intel Haswell Processor. In: IACR eprint archive 2013: 362

48. Montgomery, P.L.: Modular Multiplication without Trial Division. Mathematics of
Computation 44(1985), 519–521 (1985)

49. Naehrig, M., Niederhagen, R., Schwabe, P.: New software speed records for cryp-
tographic pairings. In: Abdalla, M., Barreto, P.S.L.M. (eds.) LATINCRYPT 2010.
LNCS, vol. 6212, pp. 109–123. Springer, Heidelberg (2010)

50. Nakanishi, T., Hira, Y., Funabiki, N.: Forward-secure group signatures from pair-
ings. In: Shacham, H., Waters, B. (eds.) Pairing 2009. LNCS, vol. 5671, pp. 171–186.
Springer, Heidelberg (2009)

51. Pecarina, J., Pu, S., Liu, J.C.: SAPPHIRE: Anonymity for Enhanced Control
and Private Collaboration in Healthcare Clouds. In: CloundCom 2012, pp. 99–106
(2012)

52. Pereira, G.C.C.F., Simplcio Jr., M.A., Naehrig, M., Barreto, P.S.L.M.: A Fam-
ily of Implementation-Friendly BN Elliptic Curves. Journal of Systems and Soft-
ware 84(8), 1319–1326 (2011)

53. Raya, M., Hubaux, J.P.: Securing Vehicular Ad Hoc Networks. Journal of Com-
puter Security 15, 39–68 (2007)

http://eprint.iacr.org/2010/227.ps
http://www.certivox.com/miracl

EAGL: An Elliptic Curve Arithmetic GPU-Based Library 19

54. Scott, M.: Implementing Cryptographic Pairings. In: Takagi, T., Okamoto, T.,
Okamoto, E., Okamoto, T. (eds.) Pairing 2007. LNCS, vol. 4575, pp. 177–196.
Springer, Heidelberg (2007)

55. Scott, M.: Faster pairings using an elliptic curve with an efficient endomorphism.
In: Maitra, S., Veni Madhavan, C.E., Venkatesan, R. (eds.) INDOCRYPT 2005.
LNCS, vol. 3797, pp. 258–269. Springer, Heidelberg (2005)

56. Scott, M., Benger, N., Charlemagne, M., Dominguez Perez, L.J., Kachisa, E.J.:
On the final exponentiation for calculating pairings on ordinary elliptic curves. In:
Shacham, H., Waters, B. (eds.) Pairing 2009. LNCS, vol. 5671, pp. 78–88. Springer,
Heidelberg (2009)

57. Scott, M.: A Note on Twists for Pairing Friendly Curves,
ftp://ftp.computing.dcu.ie/pub/crypto/twists.pdf

58. Scott, M., Barreto, P.S.L.M.: Compressed pairings. In: Franklin, M. (ed.) CRYPTO
2004. LNCS, vol. 3152, pp. 140–156. Springer, Heidelberg (2004)

59. Smart, N.P., Warinschi, B.: Identity based group signatures from hierarchical
identity-based encryption. In: Shacham, H., Waters, B. (eds.) Pairing 2009. LNCS,
vol. 5671, pp. 150–170. Springer, Heidelberg (2009)

60. Stam, M., Lenstra, A.K.: Efficient Subgroup Exponentiation in Quadratic and
Sixth Degree Extensions. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES
2002. LNCS, vol. 2523, pp. 318–332. Springer, Heidelberg (2003)

61. Szerwinski, R., Güneysu, T.: Exploiting the Power of GPUs for Asymmetric
Cryptography. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154,
pp. 79–99. Springer, Heidelberg (2008)

62. Vercauteren, F.: Optimal Pairings. IEEE Transaction of Information Theory 56(1),
455–461 (2010)

63. Wang, L., Wang, L., Mambo, M., Okamoto, E.: New identity-based proxy re-
encryption schemes to prevent collusion attacks. In: Joye, M., Miyaji, A., Otsuka,
A. (eds.) Pairing 2010. LNCS, vol. 6487, pp. 327–346. Springer, Heidelberg (2010)

64. Wei, L., Liu, J.: Shorter verifier-local revocation group signature with backward
unlinkability. In: Joye, M., Miyaji, A., Otsuka, A. (eds.) Pairing 2010. LNCS,
vol. 6487, pp. 136–146. Springer, Heidelberg (2010)

65. Yoneyama, K.: Strongly Secure Two-Pass Attribute-Based Authenticated Key Ex-
change. In: Joye, M., Miyaji, A., Otsuka, A. (eds.) Pairing 2010. LNCS, vol. 6487,
pp. 147–166. Springer, Heidelberg (2010)

66. Zhang, Y., Xue, C.J., Wong, D.S., Mamoulis, N., Yiu, S.M.: Acceleration of Com-
posite Order Bilinear Pairing on Graphics Hardware. Cryptology ePrint Archive,
http://eprint.iacr.org/2011/196.pdf

67. Zhao, C.A., Zhang, F., Huang, J.: A Note on the Ate Pairing. International Journal
of Information Security 6(7), 379–382 (2008)

ftp://ftp.computing.dcu.ie/pub/crypto/twists.pdf
http://eprint.iacr.org/2011/196.pdf

Weakness of F36·509

for Discrete Logarithm Cryptography

Gora Adj1, Alfred Menezes2, Thomaz Oliveira1,
and Francisco Rodŕıguez-Henŕıquez1

1 Computer Science Department, CINVESTAV-IPN
{gora.adj,thomaz.figueiredo}@gmail.com, francisco@cs.cinvestav.mx

2 Department of Combinatorics & Optimization, University of Waterloo
ajmeneze@uwaterloo.ca

Abstract. In 2013, Joux, and then Barbulescu, Gaudry, Joux and Th-
omé, presented new algorithms for computing discrete logarithms in fi-
nite fields of small and medium characteristic. We show that these new
algorithms render the finite field F36·509 = F33054 weak for discrete log-
arithm cryptography in the sense that discrete logarithms in this field
can be computed significantly faster than with the previous fastest algo-
rithms. Our concrete analysis shows that the supersingular elliptic curve
over F3509 with embedding degree 6 that had been considered for imple-
menting pairing-based cryptosystems at the 128-bit security level in fact
provides only a significantly lower level of security. Our work provides
a convenient framework and tools for performing a concrete analysis of
the new discrete logarithm algorithms and their variants.

1 Introduction

Let Fq denote a finite field of order q, and let Q = qn. The discrete logarithm
problem (DLP) in FQ is that of determining, given a generator g of F∗

Q and an
element h ∈ F∗

Q, the integer x ∈ [0, Q − 2] satisfying h = gx. The integer x is
called the discrete logarithm of h to the base g and is denoted by logg h. In the
remainder of the paper, we shall assume that the characteristic of Fq is 2 or 3.

The fastest general-purpose DLP solver is Coppersmith’s 1984 index-calculus
algorithm [18] with a running time1 of LQ[

1
3 , (32/9)

1/3] ≈ LQ[
1
3 , 1.526], where

as usual LQ[α, c] with 0 < α < 1 and c > 0 denotes the expression

exp
(
(c+ o(1))(logQ)α(log logQ)1−α

)
that is subexponential in logQ. In 2006, Joux and Lercier [37] presented an
algorithm with a running time of LQ[

1
3 , 3

1/3] ≈ LQ[
1
3 , 1.442] when q and n are

balanced in the sense that

q = exp
(
3−2/3 · (logQ)1/3(log logQ)2/3

)
and n = 32/3 ·

(
logQ

log logQ

)2/3

.

1 All running times in this paper have been determined using heuristic arguments,
and have not been rigorously proven.

Z. Cao and F. Zhang (Eds.): Pairing 2013, LNCS 8365, pp. 20–44, 2014.
c© Springer International Publishing Switzerland 2014

Weakness of F36·509 for Discrete Logarithm Cryptography 21

In 2012, Joux [33] introduced a ‘pinpointing’ technique that improves the running
time of the Joux-Lercier algorithm to LQ[

1
3 , 2/3

2/3] ≈ LQ[
1
3 , 0.961].

In February 2013, Joux [34] presented a new DLP algorithm with a running
time of LQ[

1
4 + o(1), c] (for some undetermined c) when q and n are balanced in

the sense that q ≈ m where n = 2m. Also in February 2013, Göloğlu, Granger,
McGuire and Zumbrägel [27] proposed a variant of the Joux-Lercier algorithm
that imposes a further divisibility condition on � where q = 2�. The running
time of the Gögloğlu et al. algorithm is (i) LQ[

1
3 , 2/3

2/3] ≈ LQ[
1
3 , 0.961] when

n ≈ 2md1, d1 ≈ 2m, and m | �; and (ii) between LQ[
1
3 , (2/3)

2/3] ≈ LQ[
1
3 , 0.763]

and LQ[
1
3 , 1/2

1/3] ≈ LQ[
1
3 , 0.794] when n ≈ 2md1, 2

m � d1, and m | �. The new
algorithms were used to compute discrete logarithms in F28·3·255 = F26120 in only
750 CPU hours [28], and in F28·3·257 = F26168 in only 550 CPU hours [35]. The
astoundingly small computational effort expended in these experiments depends
crucially on the special nature of the fields F26120 and F26168 — namely that F26120

is a degree-255 extension of F28·3 with 255 = 28 − 1, and F26168 is a degree-257
extension of F28·3 with 257 = 28+1. Despite these remarkable achievements, the
effectiveness of the new algorithms for computing discrete logarithms in general
finite fields of small characteristic remains unclear.

In June 2013, Barbulescu, Gaudry, Joux and Thomé [7] presented a new DLP
algorithm that, for many choices of field sizes, is asymptotically faster than all
previous algorithms. Most impressively, in the case where q ≈ n and n ≤ q + 2,
the discrete logarithm problem in Fq2n = FQ can be solved in quasi-polynomial
time

(logQ)O(log logQ). (1)

Note that (1) is asymptotically smaller than LQ[α, c] for any α > 0 and c > 0.
However, the practical relevance of the new algorithm has not yet been deter-
mined.

The aforementioned advances in DLP algorithms are potentially relevant to
the security of pairing-based cryptosystems that use bilinear pairings derived
from supersingular elliptic curves E or genus-2 hyperelliptic curves C defined
over finite fields Fq of characteristic 2 or 3. Such a symmetric pairing, classified
as a Type 1 pairing in [25], is a non-degenerate bilinear map e : G × G → GT

where G and GT are groups of prime order N . Here, G is either a subgroup
of E(Fq), the group of Fq-rational points on E, or a subgroup of JacC(Fq), the
jacobian of C over Fq, and GT is the order-N subgroup of F∗

qk where k is the

embedding degree (the smallest positive integer such that #G | (qk − 1)). A
necessary condition for the security of pairing-based cryptosystems that employ
the pairing e is the intractability of the discrete logarithm problem in GT . Hence,
any advance in algorithms for solving the DLP in Fqk can potentially impact the
security of pairing-based cryptosystems.

Three symmetric pairings that have received a great deal of attention in the
literature are: (i) the k = 6 pairings derived from supersingular elliptic curves
Y 2 = X3 − X + 1 and Y 2 = X3 − X − 1 over F3� ; (ii) the k = 4 pairings
derived from supersingular elliptic curves Y 2 + Y = X3 + X and Y 2 + Y =
X3 + X + 1 over F2� ; and (iii) the k = 12 pairing derived from supersingular

22 G. Adj et al.

genus-2 curves Y 2 + Y = X5 +X3 and Y 2 + Y = X5 +X3 + 1 over F2� ; in all
cases, � is chosen to be prime. These symmetric pairings were considered in some
early papers [15,23,9,24] on pairing-based cryptography. Since then, many papers
have reported on software and hardware implementation of these pairings; some
examples are [8,29,43,3,30,13,16,20,12,4,1].

In all the papers cited in the previous paragraph, the pairing parameters
were chosen under the assumption that Coppersmith’s algorithm is the fastest
method for finding discrete logarithms in Fqk . For example, to achieve the 128-
bit security level, [3] chose � = 1223 for the k = 4 pairing and � = 509 for the
k = 6 pairing, [16] chose � = 439 for the k = 12 pairing, and [4] chose � = 367 for
the k = 12 pairing. These choices were made because Coppersmith’s algorithm,
as analyzed by Lenstra [39], has running time approximately 2128 for computing
logarithms in F24·1223 , F36·509 , F212·439 , and F212·367 , respectively.

In 2012, Hayashi et al. [31] reported on their implementation of the Joux-
Lercier algorithm for computing logarithms in F36·97 . Their work demonstrated
that in practice the Joux-Lercier algorithm is considerably faster than Copper-
smith’s algorithm for DLP computations in F36·97 ; note that the k = 6 pairing
with � = 97 was considered in [9,24]. In contrast, the largest discrete logarithm
computation reported using Coppersmith’s algorithm (and its generalizations
[2,36]) is the April 2013 computation by Barbulescu et al. [5] of logarithms in
F2809 ; note that 809 is prime and 36·97 ≈ 2922. Shinohara et al. [44] estimated that
F36·509 offers only 111-bits of security against Joux-Lercier attacks, considerably
less than the assumed 128-bits of security against Coppersmith attacks.

The purpose of this paper is to demonstrate that the new algorithms by Joux
[34] and Barbulescu et al. [7] can be combined to solve the discrete logarithm
problem in F36·509 significantly faster than the Joux-Lercier algorithm. More pre-
cisely, we estimate that logarithms in this field can be computed in 281.7 time
with the new algorithms, where the unit of time is the (inexpensive) cost of a
multiplication in F312 . Moreover, the 281.7 computation is effectively paralleliz-
able, whereas the Joux-Lercier algorithm isn’t because of the very large size of
the linear system of equations that needs to be solved. While the 281.7 com-
putation is certainly a formidable challenge, it is already within the realm of
feasibility for a very well-funded adversary. Thus, we conclude that F36·509 does
not offer adequate security for discrete logarithm cryptosystems and, in partic-
ular, the supersingular elliptic curve over F3509 with embedding degree 6 is not
suitable for implementing pairing-based cryptosystems.

We also analyze the efficacy of the new algorithms for computing discrete
logarithms in F212·367 and conclude that the supersingular genus-2 curve over
F2367 with embedding degree 12 should be considered weak and not employed in
pairing-based cryptography.

The remainder of the paper is organized as follows. §2 collects some results on
the number of smooth polynomials over a finite field. The new discrete logarithm
algorithms are outlined in §3. Our estimates for discrete logarithm computations
in F36·509 and F212·367 are presented in §4 and Appendix A, respectively. We draw
our conclusions in §5.

Weakness of F36·509 for Discrete Logarithm Cryptography 23

2 Smooth Polynomials

2.1 Number of Smooth Polynomials

The number of monic polynomials of degree n over Fq is qn. The number of
monic irreducible polynomials of degree n over Fq is

Iq(n) =
1

n

∑
d|n

μ(n/d)qd, (2)

where μ is the Möbius function. A polynomial in Fq[X] is said to be m-smooth
if all its irreducible factors in Fq[X] have degree at most m. Define

F (u, z) =

m∏
�=1

(
1 +

uz�

1− z�

)Iq(�)

.

F (u, z) is the generating function for m-smooth monic polynomials in Fq[X],
where u marks the number of distinct irreducible factors, and z marks the degree
of the polynomial. Thus, the number of monic m-smooth degree-n polynomials
in Fq[X] that have exactly k distinct monic irreducible factors is

Nq(m,n, k) = [uk zn]F (u, z) (3)

where [] denotes the coefficient operator, whereas the total number of monic
m-smooth degree-n polynomials in Fq[X] is

Nq(m,n) = [zn]F (1, z). (4)

Furthermore, the average number of distinct monic irreducible factors among all
monic m-smooth degree-n polynomials in Fq[X] is

Aq(m,n) =
[zn]

(
∂F
∂u

∣∣
u=1

)
Nq(m,n)

. (5)

For any given q, m and n, Nq(m,n) can be obtained by using a symbolic algebra
package such as Maple [42] to compute the first n+1 terms of the Taylor series
expansion of F (1, z) and then extracting the coefficient of zn. Similarly, one
can compute Nq(m,n, k) and Aq(m,n). For example, we used Maple 17 on a
3.2 GHz Intel Xeon CPUX5672 machine to computeN312(30, 254) in 3.2 seconds,
A312(30, 254) = 14.963 in 102.9 seconds, and N312(30, 254, 9) in 4305 seconds.

2.2 Smoothness Testing

A degree-d polynomial f ∈ Fq[X] can be tested for m-smoothness by computing

w(X) = f ′(X) ·
m∏

i=�m/2�
(Xqi −X) mod f(X) (6)

24 G. Adj et al.

and checking whether w(X) = 0 [18]. Here, f ′ denotes the formal derivative of f .
If f indeed ism-smooth, then w(X) = 0. On the other hand, if f is notm-smooth
then a necessary condition to have w(X) = 0 is that f be divisible by the square
of an irreducible polynomial of degree > m. Since randomly selected polynomi-
als f are unlikely to satisfy this condition, the vast majority of polynomials that
pass the smoothness test are indeedm-smooth. The polynomials that are declared
to be m-smooth are then factored using a general-purpose polynomial factoriza-
tion algorithm, at which time the polynomials falsely declared to bem-smooth are
identified.

Without loss of generality, we can assume that f is monic. Then the product
of two polynomials of degree < d can be multiplied modulo f in time 2d2, where
the unit of time is an Fq-multiplication. To compute w(X), one first precomputes
Xq mod f . This can be accomplished by repeated square-and-multiplication at a
cost of atmost 2||q||2 modularmultiplications, where ||q||2 denotes the bitlength of
q. Then,Xqi mod f for 2 ≤ i ≤ d−1 can be computed by repeated multiplication
ofXq mod f with itself at a cost of approximately dmodular multiplications, and
Xqi mod f for 2 ≤ i ≤ m can be computed by repeated exponentiation by q
with each exponentiating having cost d2 Fq-multiplications. Finally, the product
in (6) can be computed using m/2 modular multiplications at a cost of md2 Fq-
multiplications. The total cost for testing m-smoothness of f is thus

Sq(m, d) = 2d2(d+m+ 2||q||2) Fq-multiplications. (7)

We will mostly be interested in the case q = 312. Then, Xq mod f can be
determined by first precomputing X3, X6, . . . , X3(d−1) mod f by repeated mul-
tiplication byX . Thereafter, cubing a polynomial modulo f can be accomplished
by cubing the coefficients of the polynomial, and then multiplying the precom-
puted polynomials by these cubes (and adding the results). In this way, we get
a loose upper bound of 3d2 + 11d2 = 14d2 F312 -multiplications of the cost to
compute X312 mod f , and the total cost for testing m-smoothness of f becomes

S312(m, d) = 2d2(d+m+ 7) F312 -multiplications. (8)

3 New DLP Algorithm of Joux and Barbulescu et al.

The DLP algorithm we describe is due to Joux [34], with a descent step from
the quasi-polynomial time algorithm (QPA) of Barbulescu et al. [7]. For lack of
a better name, we will call this algorithm the “new DLP algorithm”.

Let Fq2n be a finite field where n ≤ q+2. The elements of Fq2n are represented
as polynomials of degree at most n− 1 over Fq2 . Let N = q2n − 1. Let g be an
element of order N in F∗

q2n , and let h ∈ F∗
q2n . We wish to compute logg h. The

algorithm proceeds by first finding the logarithms of all degree-one (§3.2) and
degree-two (§3.3) elements in Fq2n . Then, in the descent stage, logg h is expressed
as a linear combination of logarithms of degree-one and degree-two Fq2n elements.
The descent stage proceeds in several steps, each expressing the logarithm of a
degree-D element as a linear combination of the logarithms of elements of degree

Weakness of F36·509 for Discrete Logarithm Cryptography 25

Table 1. Estimated costs of the main steps of the new DLP algorithm for computing
discrete logarithms in Fq2n . AN and Mq2 denote the costs of an addition modulo N
and a multiplication in Fq2 . The smoothness testing cost Sq2(m,D) is given in (7). See
§3.5 for the definitions of t1 and t2. The Gröbner basis cost Gq2(m,D) is defined in
§3.7.

Finding logarithms of linear polynomials (§3.2)
Relation generation 6q2 · Sq2(1, 3)
Linear algebra q5 ·AN

Finding logarithms of irreducible quadratic polynomials (§3.3)
Relation generation q16/Nq2 (1, 6) · Sq2(1, 6)
Linear algebra q7 ·AN

Descent (Degree D to degree m)
Continued-fraction (§3.4)

{D = n− 1} (qn−1/Nq2(m, (n− 1)/2))2 · Sq2(m, (n− 1)/2)
Classical (§3.5)

q2(t1−D+t2)/(Nq2 (m, t1 −D)Nq2(m, t2)) ·min(Sq2(m, t1 −D), Sq2(m, t2))
QPA (§3.6)

q6D+2/Nq2 (m, 3D) · Sq2(m, 3D) + q5 ·AN

Gröbner bases (§3.7)
Gq2(m,D) + q6m−2D/Nq2(m, 3m−D) · Sq2(m, 3m−D)

≤ m for some m < D. Four descent methods are used; these are described in
§3.4–§3.7. The cost of each step is given in Table 1.

Notation. For γ ∈ Fq2 , γ denotes the element γq. For P ∈ Fq2 [X], P denotes the
polynomial obtained by raising each coefficient of P to the power q. The cost of
an integer addition modulo N is denoted by AN , and the cost of a multiplication
in Fq2 is denoted by Mq2 . The projective general linear group of order 2 over Fq

is denoted PGL2(Fq). Pq is a set of distinct representatives of the left cosets of
PGL2(Fq) in PGL2(Fq2); note that #Pq = q3 + q.

3.1 Setup

Select polynomials h0, h1 ∈ Fq2 [X] of degree at most 2 so that h1X
q − h0 has

an irreducible factor IX of degree n in Fq2 [X]; we will henceforth assume that
max(deg h0, deg h1) = 2. In order to avoid the “traps” discussed in [17], we
further assume that each irreducible factor J ∈ Fq2 [X] of (h1X

q−h0)/IX satisfies
the following two conditions: (i) gcd(deg J, n) = 1; and (ii) deg J > m where m
is the integer specified in the continued-fraction descent stage (§3.4). Note that
Xq ≡ h0/h1 (mod IX). The field Fq2n is represented as Fq2n = Fq2 [X]/(IX) and
the elements of Fq2n can be represented as polynomials in Fq2 [X] of degree at
most n− 1. Let g be a generator of F∗

q2n .

3.2 Finding Logarithms of Linear Polynomials

Let B1 = {X + a | a ∈ Fq2}, and note that #B1 = q2. To compute the loga-
rithms of B1-elements, we first generate linear relations of these logarithms. Let

26 G. Adj et al.

a, b, c, d ∈ Fq2 with ad − bc
= 0. Substituting Y �→ (aX + b)/(cX + d) into the
systematic equation

Y q − Y =
∏

α∈Fq

(Y − α), (9)

and then multiplying by (cX + d)q+1 yields

(ah0 + bh1)(cX + d)− (aX + b)(ch0 + dh1) (10)

≡ h1 · (cX + d) ·
∏

α∈Fq

[(a− αc)X + (b − αd)] (mod IX).

Note that the left side of (10) is a polynomial of degree (at most) 3. If this
polynomial is 1-smooth, then taking logarithms of both sides of (10) yields a
linear relation of the logarithms of B1-elements2 and the logarithm of h1. As
explained in [7], in order to avoid redundant relations one selects quadruples
(a, b, c, d) from Pq; here we are identifying a quadruple (a, b, c, d) with the matrix(
a b
c d

)
.

Now, the probability that the left side of (10) is 1-smooth is

Nq2(1, 3)

q6
=

(
q2 + 2

3

)
/q6 ≈ 1

6
.

Thus, after approximately 6q2 trials one expects to obtain (slightly more than)
q2 relations. The cost of the relation generation stage is 6q2 · Sq2(1, 3). The
logarithms can then be obtained by using Wiedemann’s algorithm for solving
sparse systems of linear equations [45]. The expected cost of the linear algebra
is q5 · AN since each equation has approximately q nonzero terms.

Remark 1. (running time of Wiedemann’s algorithm) Let B be the matrix ob-
tained after the relation generation stage. Note that B is a matrix over ZN .
However, the entries of B are coefficients of the discrete logarithms of linear
polynomials that occur in the relations. Thus the vast majority of these en-
tries are expected to be 0, 1, and −1, with the remaining entries (corresponding
to repeated factors) being a number that is small in absolute value (e.g. ±2).
Wiedemann’s algorithm treats B as a black box, and uses it only to perform
matrix-vector multiplication with vectors over ZN . Since the nonzero entries of
B are very small in absolute value, and since B has approximately q nonzero
entries per row, the expected cost of each matrix-by-vector multiplication is
q3 ·AN . Finally, since the block version of Wiedemann’s algorithm [19] requires
no more than q2 such matrix-by-vector multiplications, the overall running time
is q5 · AN .

2 It is understood that all polynomials of the right side of (10) and factors of the left
side of (10) should be made monic. The same holds for (17) and (19).

Weakness of F36·509 for Discrete Logarithm Cryptography 27

3.3 Finding Logarithms of Irreducible Quadratic Polynomials

Let u ∈ Fq2 , and let Q(X) = X2+uX+ v ∈ Fq2 [X] be an irreducible quadratic.
Define B2,u to be the set of all irreducible quadratics of the form X2+uX+w in
Fq2 [X]; one expects that #B2,u ≈ (q2 − 1)/2. The logarithms of all elements in
B2,u are found simultaneously using one application of QPA descent (see §3.6).
More precisely, one first collects relations of the form (17), where the left side of
(17) factors as a product of linear polynomials (whose logarithms are known).
The expected number of relations one can obtain is

Nq2(1, 6)

q12
· (q3 + q).

Provided that this number is significantly greater than #B2,u, the matrix H(Q)
is expected to have full (column) rank. One can then solve the resulting system
of linear equations to obtain the logarithms of all irreducible translates Q + w
of Q. This step is repeated for each u ∈ Fq2 . Hence, there are q2 independent
linear systems of equations to be solved.

For each u ∈ Fq2 , the cost of relation generation is q14/Nq2(1, 6) · Sq2(1, 6),
while the linear algebra cost is q5 ·AN .

3.4 Continued-Fraction Descent

Recall that we wish to compute logg h, where h ∈ Fq2n = Fq2 [X]/(IX). Note
that deg h ≤ n − 1; we will henceforth assume that deg h = n− 1. The descent
stage begins by multiplying h by a random power of g. The extended Euclidean
algorithm is used to express the resulting field element h′ in the form h′ = w1/w2

where degw1, degw2 ≈ n/2 [14]; for simplicity, we shall assume that n is odd
and degw1 = degw2 = (n − 1)/2. This process is repeated until both w1 and
w2 are m-smooth for some chosen m < (n − 1)/2. This gives logg h

′ as a linear
combination of logarithms of polynomials of degree at most m. The expected
cost of this continued-fraction descent step is approximately(

qn−1

Nq2(m, (n− 1)/2)

)2

· Sq2(m, (n− 1)/2). (11)

The expected number of distinct irreducible factors of w1 and w2 is 2Aq2(m, (n−
1)/2). In the analysis, we shall assume that each of these irreducible factors has
degree exactly m. The logarithm of each of these degree-m polynomials is then
expressed as a linear combination of logarithms of smaller degree polynomials
using one of the descent methods described in §3.5, §3.6 and §3.7.

3.5 Classical Descent

Let p be the characteristic of Fq, and let q = p�. Let s ∈ [1, �], and let R ∈
Fq2 [X,Y]. Then

R(X,Xps

)p
�−s

= R′(Xp�−s

, Xq) ≡ R′(Xp�−s

,
h0
h1

) (mod IX),

28 G. Adj et al.

where R′ is obtained from R by raising all its coefficients to the power p�−s. For
the sake of simplicity, we will assume in this section that h1 = 1 and so

R(X,Xps

)p
�−s ≡ R′(Xp�−s

, h0) (mod IX). (12)

Let Q ∈ Fq2 [X] with degQ = D, and let m < D. In the Joux-Lercier descent
method [37], as modified by Joux [34], one selects suitable parameters d1, d2
and searches for a polynomial R ∈ Fq2 [X,Y] such that (i) degX R ≤ d1 and
degY R ≤ d2; (ii) Q | R1 where R1 = R(X,Xps

); and (iii) R1/Q and R2 are

m-smooth where R2 = R′(Xp�−s

, h0). Taking logarithms of both sides of (12)
then gives an expression for loggQ in terms of the logarithms of polynomials of
degree at most m.

A family of polynomials R satisfying (i) and (ii) can be constructed by finding
the null space of the D×(D+δ) matrix whose columns are indexed by monomials
X iY j for D+ δ pairs (i, j) ∈ [0, d1]× [0, d2], and whose X iY j-th column entries
are the coefficients of the polynomial X i(Xps

)j mod Q. The components of the
vectors in the null space of this matrix can be interpreted as the coefficients
of polynomials R ∈ Fq2 [X,Y] satisfying (i) and (ii). The dimension of this null
space is expected to be δ, and so the null space is expected to contain (q2)δ−1

monic polynomials. Let degR1 = t1 and degR2 = t2. We have t1 ≤ d1 + psd2
and t2 ≤ p�−sd1 + 2d2; the precise values of t1 and t2 depend on the (i, j) pairs
chosen (see §4.5 for an example). In order to ensure that the null space includes a
monic polynomial R such that both R1/Q and R2 arem-smooth, the parameters
must be selected so that

q2δ−2 � q2(t1−D)

Nq2(m, t1 −D)
· q2t2

Nq2(m, t2)
. (13)

Ignoring the time to compute the null space, the expected cost of finding a
polynomial R satisfying (i)–(iii) is

q2(t1−D)

Nq2(m, t1 −D)
· q2t2

Nq2(m, t2)
·min(Sq2 (m, t1 −D), Sq2 (m, t2)). (14)

The expected number of distinct irreducible factors ofR1/Q andR2 isAq2(m, t1−
D) + Aq2(m, t2). In the analysis, we shall assume that each of these irreducible
factors has degree exactly m.

3.6 QPA Descent

The QPA descent method is so named because it was a crucial step in the
Barbulescu et al. quasi-polynomial time algorithm for the DLP in finite fields of
small characteristic [7].

Let Q ∈ Fq2 [X] with degQ = D, and let m ∈ [�D/2, D− 1]. Let (a, b, c, d) ∈
Pq, and recall that #Pq = q3 + q. Substituting Y �→ (aQ+ b)/(cQ+ d) into the
systematic equation (9) and multiplying by (cQ + d)q+1 yields

(aQ+b)q(cQ+d)−(aQ+b)(cQ+d)q = (cQ+d)
∏

α∈Fq

[(a−αc)Q+(b−αd)]. (15)

Weakness of F36·509 for Discrete Logarithm Cryptography 29

The left side of (15) can be written as

(aQ(Xq) + b)(cQ + d)− (aQ+ b)(cQ(Xq) + d)

≡ (aQ(
h0
h1

) + b)(cQ+ d)− (aQ+ b)(cQ(
h0
h1

) + d) (mod IX).

Hence

(aQ(
h0
h1

) + b)(cQ + d)− (aQ+ b)(cQ(
h0
h1

) + d) (16)

≡ (cQ+ d)
∏

α∈Fq

[(a− αc)Q + (b− αd)] (mod IX).

Multiplying (16) by hD1 yields

(aQ̃ + bhD1)(cQ + d)− (aQ+ b)(cQ̃+ dhD1) (17)

≡ hD1 · (cQ+ d) ·
∏

α∈Fq

[(a− αc)Q + (b− αd)] (mod IX),

where Q̃(X) = hD1 ·Q(h0/h1). Note that the polynomial on the left side of (17)
has degree ≤ 3D. If this polynomial is m-smooth, then (17) yields a linear rela-
tion of the logarithms of some degree-m polynomials and logarithms of translates
of Q. After collecting slightly more than q2 such relations, one searches for a lin-
ear combination of these relations that eliminates all translates of Q except for Q
itself. To achieve this, consider row vectors in (ZN)q

2

with coordinates indexed
by elements λ ∈ Fq2 . For each relation, we define a vector v whose entry vλ
is 1 if Q − λ appears in the right side of (17), and 0 otherwise. If the resulting
matrix H(Q) of row vectors has full column rank, then one obtains an expression
for logg Q in terms of the logarithms of polynomials of degree ≤ m. The num-
ber of distinct polynomials of degree ≤ m in this expression is expected to be
Aq2(m, 3D) · q2; in the analysis we shall assume that each of these polynomials
has degree exactly m.

Since the probability that a degree-3D polynomial ism-smooth isNq2(m, 3D)/
(q2)3D, one must have

Nq2(m, 3D)

q6D
· (q3 + q) � q2 (18)

in order to ensure that H(Q) has � q2 rows, whereby H(Q) can be expected to
have full rank.

The expected cost of the relation generation portion of QPA descent is

q6D

Nq2(m, 3D)
q2 · Sq2(m, 3D),

while the cost of the linear algebra is q5 · AN .

30 G. Adj et al.

3.7 Gröbner Bases Descent

Let Q ∈ Fq2 [X] with degQ = D, and let m = �(D + 1)/2. In Joux’s new
descent method [34, §5.3], one finds degree-m polynomials3 k1, k2 ∈ Fq2 [X] such
that Q | G, where

G = hm1 (kq1k2 − k1k
q
2) mod IX .

We then have

hm1 · k2 ·
∏

α∈Fq

(k1 − αk2) ≡ G(X) (mod IX)

as can be seen by making the substitution Y �→ k1/k2 into the systematic equa-

tion (9) and clearing denominators. Define k̃(X) = hm1 · k(h0/h1) and note

that deg k̃ = 2m. We thus have G ≡ k̃1k2 − k1k̃2 (mod IX), and consequently

G = k̃1k2 − k1k̃2 provided that 3m < n. It follows that G(X) = Q(X)R(X)
for some R ∈ Fq2 [X] with degR = 3m − D. If R is m-smooth, we obtain a
linear relationship between loggQ and logs of degree-m polynomials by taking
logarithms of both sides of the following:

hm1 · k2 ·
∏

α∈Fq

(k1 − αk2) ≡ Q(X)R(X) (mod IX). (19)

To determine (k1, k2, R) that satisfy

k̃1k2 − k1k̃2 = Q(X)R(X), (20)

one can transform (20) into a system of multivariate bilinear equations over Fq.
Specifically, each coefficient of k1, k2 and R is written using two variables over
Fq, the two variables representing the real and imaginary parts of that coefficient

(which is in Fq2). The coefficients of k̃1 and k̃2 can then be written in terms of
the coefficients of k1 and k2. Hence, equating coefficients of X i of both sides of
(20) yields 3m + 1 quadratic equations. The real and imaginary parts of each
of these equations are equated, yielding 6m+2 bilinear equations in 10m−2D+6
variables over Fq. This system of equations can be solved by finding a Gröbner
basis for the ideal it generates. Finally, solutions (k1, k2, R) are tested until one is
found for which R is m-smooth. This yields an expression for logg Q in terms of
the logarithms of approximately q+1+Aq2(m, 3m−D) polynomials of degree (at
most)m; in the analysis we shall assume that each of the polynomials has degree
exactly m.

Now, the number of candidate pairs (k1, k2) is ((q2)m+1)2 = q4(m+1). Since
(q2)3m−D+1 of the (q2)3m+1 degree-(3m) polynomials in Fq2 [X] are divisible by
Q(X), the number of solutions (k1, k2, R) is expected to be approximately

q2(3m−D+1)

q2(3m+1)
· q4(m+1) = q4(m+1)−2D.

3 More generally, the degrees of k1 and k2 can be different.

Weakness of F36·509 for Discrete Logarithm Cryptography 31

However, the number of distinct R obtained will be much less than q4(m+1)−2D.
For example, any two pairs (k′1, k

′
2) and (k′′1 , k

′′
2) with k

′
1/k

′
2 = k′′1/k

′′
2 will generate

the same R, so the expected number of distinct R is at most q4(m+1)−2D/(q2−1).
Let us denote by R(m,D) the expected number of distinct R obtainable. Then
the condition

R(m,D) � q2(3m−D)

Nq2(m, 3m−D)
, (21)

can ensure that there exists a solution (k1, k2, R) for which R is m-smooth.
The number R(m,D) has not been determined in general. For the case m = 1

and D = 2, one must select k1 = aX+ b and k2 = cX+d with (a, b, c, d) ∈ Pq to

avoid collisions; hence R(1, 2) ≤ q4

q8 (q
3 + q) ≈ 1

q and descending from 2 to 1 can
be expected to succeed only for 1 out of every q quadratics; this is indeed what
we observed in our experiments. In general, the success of the Gröbner bases
descent step is best determined experimentally (cf. §4.7).

It is difficult to determine the exact cost Gq2 (m,D) of the Gröbner basis
finding step. After the Gröbner basis is found, the cost to find an m-smooth R
is (q2)3m−D/Nq2(m, 3m−D) · Sq2(m, 3m−D).

4 Computing Discrete Logarithms in F36·509

We present a concrete analysis of the DLP algorithm described in §3 for comput-
ing discrete logarithms in F36·509 . In fact, this field is embedded in the quadratic
extension field F312·509 , and it is the latter field where the DLP algorithm of §3
is executed. Thus, we have q = 36 = 729, n = 509, and N = 312·509 − 1. Note
that 312·509 ≈ 29681. We wish to find logg h, where g is a generator of F∗

312·509

and h ∈ F∗
312·509 .

As mentioned in §1, our main motivation for finding discrete logarithms in
F36·509 is to attack the elliptic curve discrete logarithm problem in E(F3509),
where E is the supersingular elliptic curve Y 2 = X3−X+1 with #E(F3509) = 7r,
and where r = (3509 − 3255 + 1)/7 is an 804-bit prime. Note that r2 � N . The
elliptic curve discrete logarithm problem in the order-r subgroup of E(F3509) can
be efficiently reduced to the discrete logarithm problem in the order-r subgroup
of F∗

312·509 . In the latter problem, we are given two elements α, β of order r
in F∗

312·509 and we wish to find logα β. It can readily be seen that logα β =
(logg β)/(logg α) mod r. Thus, we will henceforth assume that h has order r
and that we only need to find logg h mod r. An immediate consequence of this
restriction is that all the linear algebra in the new algorithm has to be performed
modulo the 804-bit r instead of modulo the 9681-bit N .

The parameters for each step of the algorithm were carefully chosen in order
to balance the running time of the steps. We also took into account the degree
to which each step could be parallelized on conventional computers. A summary
of the parameter choices for the descent is given in Figure 1. The costs of each
step are given in Table 2.

32 G. Adj et al.

Continued fraction descent
Time: 279 Mq2

254 (2)

Classical descent

15 (870)
Classical descent
Time: 870 · 271 Mq2

Time: 30 · 274 Mq2

30 (30)

11 (23,490)
QPA descent
Time: 23, 490 · (246 Mq2 + 248 Ar)

7 (237)

4 (247)
Gröbner bases descent
Time: 247 · (0.03135 sec)

Gröbner bases descent
Time: 255.5 · (0.002532 sec)

2

3 (255.5)

Time: 237 · (76.9 sec)
Gröbner bases descent

Fig. 1. A typical path of the descent tree for computing an individual logarithm in
F312·509 (q = 36). The numbers in parentheses next to each node are the expected
number of nodes at that level. ‘Time’ is the expected time to generate all nodes at a
level.

Table 2. Estimated costs of the main steps of the new DLP algorithm for computing
discrete logarithms in F312·509 (q = 36). Ar and Mq2 denote the costs of an addition
modulo the 804-bit prime r = (3509 − 3255 +1)/7 and a multiplication in F312 . We use
the cost ratio Ar/Mq2 = 4, and also assume that 230 multiplications in F312 can be
performed in 1 second (cf. §4.8).

Finding logarithms of linear polynomials
Relation generation 230Mq2 230Mq2

Linear algebra 248Ar 250Mq2

Finding logarithms of irreducible quadratic polynomials
Relation generation 312 · 239Mq2 258Mq2

Linear algebra 312 · 248Ar 269Mq2

Descent
Continued-fraction (254 to 30) 279Mq2 279Mq2

Classical (30 to 15) 30 · 274Mq2 279Mq2

Classical (15 to 11) 870 · 271Mq2 281Mq2

QPA (11 to 7) 23, 490 · (246Mq2 + 248Ar) 2
65Mq2

Gröbner bases (7 to 4) 237 · (76.9 seconds) 273Mq2

Gröbner bases (4 to 3) 247 · (0.03135 seconds) 272Mq2

Gröbner bases (3 to 2) 255.5 · (0.002532 seconds) 277Mq2

Weakness of F36·509 for Discrete Logarithm Cryptography 33

4.1 Setup

We chose the representations

F36 = F3[U]/(U6 + 2U4 + U2 + 2U + 2)

and
F312 = F36 [V]/(V 2 + U365).

We selected

h0 = (U553V + U343)X2 + (U535V + U417)X + (U172V + U89) ∈ F312 [X]

and h1 = 1, and IX ∈ F312 [X] to be the degree-509 monic irreducible factor of

X36 − h0. The other irreducible factors have degrees 43, 55 and 122.

4.2 Finding Logarithms of Linear Polynomials

The factor base B1 has size 312 ≈ 219. The cost of relation generation is approx-
imately 230Mq2 , whereas the cost of the linear algebra is approximately 248Ar.

4.3 Finding Logarithms of Irreducible Quadratic Polynomials

For each u ∈ F312 , the expected cost of computing logarithms of all quadratics
in B2,u is 239Mq2 for the computation of H(Q), and 248Ar for the linear algebra.
Note that the number of columns in H(Q) can be halved since the logarithms
of all reducible quadratics are known. Since the expected number of relations
obtainable is

Nq2(1, 6)

q12
· (q3 + q) ≈ 1

719.98
· (q3 + q) ≈ q2 + 6659,

one can expect that the matrix H(Q) will have full rank.

4.4 Continued-Fraction Descent

For the continued-fraction descent, we selected m = 30. The expected cost of
this descent is 279Mq2 . The expected number of distinct irreducible factors of
degree (at most) 30 obtained is 2A312(30, 254) ≈ 30.

4.5 Classical Descent

Two classical descent stages are employed. In the first stage, we have D = 30
and select m = 15, s = 3, d1 = 5, d2 = 5, and δ = 4. The set of D+ δ pairs (i, j)
selected was

([0, 3]× [0, 5]) ∪ {(4, 0), (4, 1), (4, 2), (4, 3), (4, 4), (5, 0), (5, 1), (5, 2), (5, 3), (5, 4)},

34 G. Adj et al.

yielding t1 = 138 and t2 = 143. Note that inequality (13) is satisfied. The
expected cost of the descent for each of the 30 degree-30 polynomials is ap-
proximately 252 ·Sq2(15, 108). The expected total number of distinct irreducible
polynomials of degree (at most) 15 obtained is approximately 870.

In the second classical descent stage, we have D = 15 and select m = 11,
s = 3, d1 = 3, d2 = 4, and δ = 4. The set of D + δ pairs (i, j) selected was

([0, 2]× [0, 4]) ∪ {(3, 0), (3, 1), (3, 2), (3, 3)},

yielding t1 = 110 and t2 = 87. Note that inequality (13) is satisfied. The expected
cost of the descent for each of the 870 degree-15 polynomials is approximately
250 · Sq2(11, 87). The expected total number of distinct irreducible polynomials
of degree (at most) 11 obtained is approximately 23,490.

4.6 QPA Descent

The QPA descent method is then applied to each of the 23,490 degree-11 polyno-
mials Q obtained from the classical descent stage. We have D = 11 and m = 7.
For each Q, the expected number of rows in H(Q) is 570,172, so we can expect
this matrix to have full column rank (namely, q2 = 531, 441). For each Q, the
expected cost of relation generation is 229 · Sq2(7, 33) and the cost of the linear
algebra is 248Ar. Also for each Q, the expected number of distinct polynomials
of degree at most 7 obtained is expected to be Aq2(7, 33) · q2 ≈ 222. Thus, the
total number of distinct polynomials of degree at most 7 obtained after the QPA
descent stage is approximately 237.

4.7 Gröbner Bases Descent

The Gröbner bases descent method is applied to each of the 237 polynomials of
degree (at most) 7 obtained after QPA descent. Our experiments were run using
Magma v2.19-7 [41] on a 2.9 GHz Intel core i7-3520M.

First, one descends from 7 to 4, i.e., D = 7 andm = 4. For each degree-7 poly-
nomial Q, we have to solve a system of 26 quadratic polynomial equations in 32
variables over Fq (cf. (20)). Since the ideal generated by these polynomials typi-
cally has dimension greater than 0, we randomly fix some of the variables in the
hope of obtaining a 0-dimensional ideal. (More precisely, we added some linear
constraints involving pairs of variables, one variable from k1 and the other from
k2.) Each degree-5 R obtained from the variety of the resulting ideal is tested for
4-smoothness. If no 4-smooth R is obtained, we randomly fix some other sub-
set of variables and repeat. We ran 17,510 Gröbner bases descent experiments
with randomly-selected degree-7 polynomialsQ. On average, we had to find 1.831
Gröbner bases for eachQ. The average number of R’s tested for 4-smoothness for
each Q was 1.252, which agrees with the expected number q10/Nq2(4, 5) ≈ 1.25.
The average time to find each Gröbner basis was 42.0 seconds, and the memory
consumption was 64 Mbytes. In total, the expected number of polynomials of
degree at most 4 obtained is 237(q + 1 +Aq2(4, 5)) ≈ 247.

Weakness of F36·509 for Discrete Logarithm Cryptography 35

Next, one descends from 4 to 3, i.e., D = 4 and m = 3. For each degree-4
polynomial Q, we have to solve a system of 20 quadratic polynomial equations in
28 variables over Fq. We proceed as above, by fixing some of the 28 variables. We
ran 1,230,000 Gröbner bases descent experiments with randomly-selected degree-
4 polynomials Q. On average, we had to find 2.361 Gröbner bases for each Q.
The average number of R’s tested for 3-smoothness for each Q was 1.815, which
agrees with the expected number q10/Nq2(3, 5) ≈ 1.818. The average time to
find each Gröbner basis was 0.01328 seconds, and the memory consumption was
32 Mbytes. In total, the expected number of polynomials of degree at most 3
obtained is 247(q + 1 +Aq2 (3, 5)) ≈ 257.

Finally, one descends from 3 to 2, i.e., D = 3 and m = 2. Since the total
number of monic irreducible cubics over Fq2 is approximately 255.5, which is less
than 257, we perform the 3 to 2 descent for all monic irreducible cubics. For
each such polynomial Q, we have to solve a system of 14 quadratic polynomial
equations in 20 variables over Fq. We proceed as above, by fixing some of the 20
variables. We ran 8,100,000 Gröbner bases descent experiments with randomly-
selected degree-3 polynomials Q. On average, we had to find 2.026 Gröbner
bases for each Q. The average number of R’s tested for 2-smoothness for each
Q was 1.499, which agrees with the expected number q6/Nq2(2, 3) ≈ 1.5. The
average time to find each Gröbner basis was 0.00125 seconds, and the memory
consumption was 32 Mbytes.

4.8 Overall Running Time

The second column of Table 2 gives the running time estimates for the main
steps of the new DLP algorithm in three units of time: Ar, Mq2 , and seconds.
In order to assess the overall time, we make some assumptions about the ratios
of these units of time.

First, we shall assume that Ar/Mq2 = 4. To justify this, we observe that an
804-bit integer can be stored in thirteen 64-bit words. The X86-64 instruction set
has anADD operation that adds two 64-bit unsigned integers in one clock cycle.
Hence, integer addition can be completed in 13 clock cycles. Modular reductions
comprises one conditional statement plus one subtraction (required in roughly
half of all modular additions). One can use a lazy reduction technique that
amortizes the cost of a modular reduction among many integer additions. All in
all, the cost of Ar can be estimated to be 13 clock cycles. Unlike for 64-bit integer
multiplication, there is no native support for F312 multiplication on an Intel Core
i7 machine. However, we expect that a specially designed multiplier could be built
to achieve a multiplication cost of 4 clock cycles. While building such a native
multiplier would certainly be costly, this expense can be expected to be within
the budget of a well-funded adversary who is contemplating implementing the
new DLP algorithm. This gives us an Ar/Mq2 ratio of approximately 4.

Next, since a multiplication in F312 can be done in 4 clock cycles, we will
transform one second on a 2.9 GHz machine (on which the Gröbner bases descent
experiments were performed) into 230Mq2 .

36 G. Adj et al.

Using these estimates, we see from the third column of Table 2 that the overall
running time of the new algorithm is approximately 281.7Mq2 . We note that the
relation generation, continued-fraction descent, classical descent, and Gröbner
bases descent steps, and also the relation generation portion of QPA descent, are
effectively parallelizable in the sense that one can essentially achieve a factor-C
speedup if C processors are available. Using the experimental results in [32,5]
as a guide, we can safely estimate that each linear system of equations can be
solved in less than one day of using a small number of GPUs and CPUs. Thus,
we conclude that the linear system of equations for finding logarithms of linear
polynomials, the 312 ≈ 219 linear systems of equations for finding logarithms of
irreducible quadratic polynomials, and the 23, 490 linear systems of equations in
QPA can be effectively parallelized on conventional computers.

Remark 2. (caveat emptor) Although our analysis is concrete rather than asymp-
totic, it must be emphasized that the analysis makes several heuristic assumptions
and approximations. For example, there are the usual heuristic assumptions that
certain polynomials encountered are uniformly distributed over the set of all poly-
nomials of the same degree. Furthermore, we have assumed that the matrixH(Q)
in QPA descent indeed has full column rank. Also, our run time analysis ignores
operations such as additions in F312 and memory accesses. Thus, further analy-
sis and experimentation is needed before one can conclude with certainty that the
281.7Mq2 running time estimate is an accurate measure of the efficiency of the new
DLP algorithm for computing logarithms in the order-r subgroup of F∗

36·509 .

Remark 3. (looseness of our upper bound on the running time) Remark 2
notwithstanding, our analysis is quite conservative and there are several possible
ways in which the upper bound on the running time could be improved. (i) In
our estimates for the number of branches in a descent step, we assume that each
distinct irreducible polynomial obtained has degree exactly m, whereas in prac-
tice many of these polynomials will have degree significantly less than m. Thus,
it would appear that our upper bound on the number of nodes in the descent
tree is quite loose. (ii) The Gröbner bases descent running times reported in §4.7
can be expected to be significantly improved by a native implementation of the
F4 [21] or F5 [22] Gröbner basis finding algorithms optimized for characteristic-
three finite fields. (Magma implements the F4 algorithm, but is not optimized
for characteristic-three finite fields.) (iii) An optimized Gröbner basis implemen-
tation might be successful in performing the descent from D = 11 to D = 6,
thereby replacing the QPA descent from D = 11 to D = 7 and significantly re-
ducing the number of nodes in the descent tree. (iv) Bernstein’s smoothness test-
ing method [11] might be faster in practice than the basic method described in
§2.2. (v) Sieving can be expected to significantly speedup the continued-fraction
descent stage [6].

4.9 Comparisons with Joux-Lercier

Shinohara et al. [44] estimated that the running time of the Joux-Lercier algo-
rithm [37] for computing discrete logarithms in F36·509 is 2111.35 for the relation

Weakness of F36·509 for Discrete Logarithm Cryptography 37

generation stage, and 2102.69 for the linear algebra stage; the units of time were
not specified. The relation generation time can be significantly decreased using
Joux’s pinpointing technique [33] without having a noticeable impact on the
linear algebra time. We note also that the linear algebra cost of 2102.69 is an
underestimation since it does not account for the number of nonzero coefficients
in each equation. In any case, since the relation generation is effectively paral-
lelizable on conventional computers whereas the linear algebra is not, the linear
algebra stage is the dominant step of the Joux-Lercier algorithm. Due to its large
size, the linear algebra stage will remain infeasible for the foreseeable future.

In contrast, the new algorithm is effectively parallelizable and has an overall
running time of 281.7Mq2 . If one had access to a massive number of processors
(e.g., 230 processors), then the new algorithm could be executed within one year.

We believe that these comparisons justify the claim made in the abstract about
the weakness of the field F36·509 , and thereby also the supersingular elliptic curve
over F3509 with embedding degree 6.

5 Concluding Remarks

Our concrete analysis of the new algorithm of Joux and Barbulescu et al. has
shown that the supersingular elliptic curve over F3509 with embedding degree 6
is significantly less resistant to attacks on the elliptic curve discrete logarithm
problem than previously believed. Consequently, this elliptic curve is not suit-
able for implementing pairing-based cryptosystems. Our analysis applies equally
well to the supersingular elliptic curve over F35·97 with embedding degree 6 that
has been proposed for compact hardware implementation of pairing-based cryp-
tosystems by Estibals [20], and to the genus-2 curves over F212·367 and F212·439

with embedding degree 12 (see Appendix A).
An important open question is whether the new algorithm or its implementa-

tion can be improved to the extent that the discrete logarithm problem in F36·509

can be feasibly solved using existing computer technology.
Another important question is whether the new attack is effective for finding

discrete logarithms in other small-characteristic finite fields of interest in pairing-
based cryptography. Our preliminary analysis suggests that the new algorithm
is ineffective for computing discrete logarithms in F24·1223 .

Acknowledgements. We would like to thank Pierre-Jean Spaenlehauer for
answering our questions about Gröbner basis finding algorithms.

References

1. Adikari, J., Anwar Hasan, M., Negre, C.: Towards faster and greener cryptoproces-
sor for eta pairing on supersingular elliptic curve over F21223 . In: Knudsen, L.R.,
Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp. 166–183. Springer, Heidelberg (2013)

2. Adleman, L., Huang, M.-D.: Function field sieve method for discrete logarithms
over finite fields. Information and Computation 151, 5–16 (1999)

38 G. Adj et al.

3. Ahmadi, O., Hankerson, D., Menezes, A.: Software implementation of arithmetic
in F3m . In: Carlet, C., Sunar, B. (eds.) WAIFI 2007. LNCS, vol. 4547, pp. 85–102.
Springer, Heidelberg (2007)

4. Aranha, D., Beuchat, J., Detrey, J., Estibals, N.: Optimal eta pairing on supersin-
gular genus-2 binary hyperelliptic curves. In: Dunkelman, O. (ed.) CT-RSA 2012.
LNCS, vol. 7178, pp. 98–115. Springer, Heidelberg (2012)

5. Barbulescu, R., Bouvier, C., Detrey, J., Gaudry, P., Jeljeli, H., Thomé, E., Videau,
M., Zimmermann, P.: Discrete logarithm in GF(2809) with FFS,
http://eprint.iacr.org/2013/197

6. Barbulescu, R., Gaudry, P.: Personal communication (August 12, 2013)
7. Barbulescu, R., Gaudry, P., Joux, A., Thomé, E.: A quasi-polynomial algorithm for

discrete logarithm in finite fields of small characteristic: Improvements over FFS
in small to medium characteristic, http://eprint.iacr.org/2013/400

8. Barreto, P., Galbraith, S., ÓhÉigeartaigh, C., Scott, M.: Efficient pairing compu-
tation on supersingular abelian varieties. Designs, Codes and Cryptography 42,
239–271 (2007)

9. Barreto, P., Kim, H., Lynn, B., Scott, M.: Efficient algorithms for pairing-based
cryptosystems. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 354–368.
Springer, Heidelberg (2002)

10. Barrett, P.: Implementing the Rivest Shamir and Adleman public key encryption
algorithm on a standard digital signal processor. In: Odlyzko, A.M. (ed.) CRYPTO
1986. LNCS, vol. 263, pp. 311–323. Springer, Heidelberg (1987)

11. Bernstein, D.: How to find small factors of integers (2002) (manuscript),
http://cr.yp.to/papers/sf.pdf

12. Beuchat, J., Detrey, J., Estibals, N., Okamoto, E., Rodŕıguez-Henŕıquez, F.: Fast
architectures for the ηT pairing over small-characteristic supersingular elliptic
curves. IEEE Transactions on Computers 60, 266–281 (2011)

13. Beuchat, J., López-Trejo, E., Mart́ınez-Ramos, L., Mitsunari, S., Rodŕıguez-
Henŕıquez, F.: Multi-core implementation of the Tate pairing over supersingular
elliptic curves. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS 2009. LNCS,
vol. 5888, pp. 413–432. Springer, Heidelberg (2009)

14. Blake, I., Fuji-Hara, R., Mullin, R., Vanstone, S.: Computing logarithms in finite
fields of characteristic two. SIAM Journal on Algebraic and Discrete Methods 5,
276–285 (1984)

15. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. Journal
of Cryptology 17, 297–319 (2004)

16. Chatterjee, S., Hankerson, D., Menezes, A.: On the efficiency and security of
pairing-based protocols in the type 1 and type 4 settings. In: Hasan, M.A., Helle-
seth, T. (eds.) WAIFI 2010. LNCS, vol. 6087, pp. 114–134. Springer, Heidelberg
(2010)

17. Cheng, Q., Wan, D., Zhuang, J.: Traps to the BGJT-algorithm for discrete loga-
rithms, http://eprint.iacr.org/2013/673

18. Coppersmith, D.: Fast evaluation of logarithms in fields of characteristic two. IEEE
Transactions on Information Theory 30, 587–594 (1984)

19. Coppersmith, D.: Solving homogeneous linear equations over GF (2) via block
Wiedemann algorithm. Mathematics of Computation 62, 333–350 (1994)

20. Estibals, N.: Compact hardware for computing the Tate pairing over 128-bit-
security supersingular curves. In: Joye, M., Miyaji, A., Otsuka, A. (eds.) Pairing
2010. LNCS, vol. 6487, pp. 397–416. Springer, Heidelberg (2010)

21. Faugère, J.: A new efficient algorithm for computing Gröbner bases (F4). Journal
of Pure and Applied Algebra 139, 61–88 (1999)

http://eprint.iacr.org/2013/197
http://eprint.iacr.org/2013/400
http://cr.yp.to/papers/sf.pdf
http://eprint.iacr.org/2013/673

Weakness of F36·509 for Discrete Logarithm Cryptography 39

22. Faugère, J.: A new efficient algorithm for computing Gröbner bases without reduc-
tion to zero (F5). In: Proceedings of the 2002 International Symposium on Symbolic
and Algebraic Computation (ISSAC 2002), pp. 75–83 (2002)

23. Galbraith, S.: Supersingular curves in cryptography. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 495–513. Springer, Heidelberg (2001)

24. Galbraith, S.,Harrison,K., Soldera,D.: Implementing theTatepairing. In:Fieker,C.,
Kohel, D.R. (eds.) ANTS 2002. LNCS, vol. 2369, pp. 324–337. Springer, Heidelberg
(2002)

25. Galbraith, S., Paterson, K., Smart, N.: Pairings for cryptographers. Discrete Ap-
plied Mathematics 156, 3113–3121 (2008)

26. Geiselmann, W., Shamir, A., Steinwandt, R., Tromer, E.: Scalable hardware for
sparse systems of linear equations, with applications to integer factorization. In:
Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 131–146. Springer,
Heidelberg (2005)

27. Göloğlu, F., Granger, R., McGuire, G., Zumbrägel, J.: On the function field sieve
and the impact of higher splitting probabilities. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 109–128. Springer, Heidelberg (2013)

28. Göloğlu, F., Granger, R., McGuire, G., Zumbrägel, J.: Solving a 6120-bit DLP on
a desktop computer, http://eprint.iacr.org/2013/306

29. Granger, R., Page, D., Stam, M.: Hardware and software normal basis arithmetic
for pairing based cryptography in characteristic three. IEEE Transactions on Com-
puters 54, 852–860 (2005)

30. Hankerson, D., Menezes, A., Scott, M.: Software implementation of pairings. In:
Joye, M., Neven, G. (eds.) Identity-Based Cryptography. IOS Press (2008)

31. Hayashi, T., Shimoyama, T., Shinohara, N., Takagi, T.: Breaking pairing-based
cryptosystems using ηT pairing over GF (397). In: Wang, X., Sako, K. (eds.)
ASIACRYPT 2012. LNCS, vol. 7658, pp. 43–60. Springer, Heidelberg (2012)

32. Jeljeli, H.: Accelerating iterative SpMV for discrete logarithm problem using GPUs,
http://arxiv.org/abs/1209.5520

33. Joux, A.: Faster index calculus for the medium prime case: Application to 1175-bit
and 1425-bit finite fields. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT
2013. LNCS, vol. 7881, pp. 177–193. Springer, Heidelberg (2013)

34. Joux, A.: A new index calculus algorithm with complexity L(1/4 + o(1)) in very
small characteristic, http://eprint.iacr.org/2013/095

35. Joux, A.: Discrete logarithm in GF(26128). Number Theory List (May 21, 2013)
36. Joux, A., Lercier, R.: The function field sieve is quite special. In: Fieker, C., Kohel,

D.R. (eds.) ANTS 2002. LNCS, vol. 2369, pp. 431–445. Springer, Heidelberg (2002)
37. Joux, A., Lercier, R.: The function field sieve in the medium prime case. In:

Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 254–270. Springer,
Heidelberg (2006)

38. LaMacchia, B., Odlyzko, A.: Solving large sparse linear systems over finite fields.
In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 109–
133. Springer, Heidelberg (1991)

39. Lenstra, A.K.: Unbelievable security: Matching AES security using public key sys-
tems. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 67–86. Springer,
Heidelberg (2001)

40. Lenstra, A.K., Shamir, A., Tomlinson, J., Tromer, E.: Analysis of bernstein’s
factorization circuit. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501,
pp. 1–26. Springer, Heidelberg (2002)

41. Magma v2.19-7, http://magma.maths.usyd.edu.au/magma/

http://eprint.iacr.org/2013/306
http://arxiv.org/abs/1209.5520
http://eprint.iacr.org/2013/095
http://magma.maths.usyd.edu.au/magma/

40 G. Adj et al.

42. Maple 17, http://www.maplesoft.com/products/maple/
43. Page, D., Smart, N., Vercauteren, F.: A comparison of MNT curves and supersingu-

lar curves. Applicable Algebra in Engineering, Communication and Computing 17,
379–392 (2006)

44. Shinohara, N., Shimoyama, T., Hayashi, T., Takagi, T.: Key length estimation of
pairing-based cryptosystems using ηT pairing. In: Ryan, M.D., Smyth, B., Wang,
G. (eds.) ISPEC 2012. LNCS, vol. 7232, pp. 228–244. Springer, Heidelberg (2012)

45. Wiedemann, D.: Solving sparse linear equations over finite fields. IEEE Transac-
tions on Information Theory 32, 54–62 (1986)

A Computing Discrete Logarithms in F212·367

We present a concrete analysis of the DLP algorithmdescribed in §3 for computing
discrete logarithms inF212·367 . In fact, this field is embedded in the quadratic exten-
sionfieldF224·367 , and it is the latter fieldwhere theDLPalgorithmof §3 is executed.
Thus, we have q = 212, n = 367, and N = 224·367 − 1. Note that 224·367 ≈ 28808.
We wish to find logg h, where g is a generator of F

∗
224·367 and h ∈ F∗

224·367 .
As mentioned in §1, our main motivation for finding discrete logarithms in

F212·367 is to attack the discrete logarithm problem in JacC(F2367), where C
is the supersingular genus-2 curve Y 2 + Y = X5 + X3 with #JacC(F2367) =
13 ·7170258097 ·r, and where r = (2734+2551+2367+2184+1)/(13 ·7170258097)
is a 698-bit prime. Note that r2 � N . The discrete logarithm problem in the order-
r subgroup of JacC(F2367) can be efficiently reduced to the discrete logarithm

QPA descent
Time: 233 · (251 Mq2 + 260 Ar)

6 (259)
Gröbner bases descent

Continued fraction descent
Time: 2100 Mq2

183 (2)

QPA descent
Time: 35 · (254 Mq2 + 260 Ar)

17 (35)

10 (233)

Time: 259 · (64.9 sec)

2

3 (270.4)

Gröbner bases descent

Time: 270.4 · (0.005428 sec)

4 (271)

Gröbner bases descent

Time: 271 · (0.02771 sec)

Fig. 2. A typical path of the descent tree for computing an individual logarithm in
F224·367 (q = 212). The numbers in parentheses next to each node are the expected
number of nodes at that level. ‘Time’ is the expected time to generate all nodes at a
level.

http://www.maplesoft.com/products/maple/

Weakness of F36·509 for Discrete Logarithm Cryptography 41

Table 3. Estimated costs of the main steps of the new DLP algorithm for computing
discrete logarithms in F224·367 (q = 212). Ar and Mq2 denote the costs of an addition
modulo the 698-bit prime r = (2734 + 2551 + 2367 + 2184 + 1)/(13 · 7170258097) and a
multiplication in F224 . We use the cost ratio Ar/Mq2 = 1, and also assume that 228

multiplications in F224 can be performed in 1 second (cf. §A).

Finding logarithms of linear polynomials
Relation generation 235Mq2 235Mq2

Linear algebra 260Ar 260Mq2

Finding logarithms of irreducible quadratic polynomials
Relation generation 224 · 244Mq2 268Mq2

Linear algebra 224 · 260Ar 284Mq2

Descent
Continued-fraction (183 to 17) 2100Mq2 2100Mq2

QPA (17 to 10) 35 · (254Mq2 + 260Ar) 265Mq2

QPA (10 to 6) 233 · (251Mq2 + 260Ar) 293Mq2

Gröbner bases (6 to 4) 259 · (64.9 seconds) 293Mq2

Gröbner bases (4 to 3) 271 · (0.02771 seconds) 294Mq2

Gröbner bases (3 to 2) 270.4 · (0.005428 seconds) 291Mq2

problem in the order-r subgroup of F∗
212·367 . Thus, we will henceforth assume

that h has order r and that we only need to find logg h mod r. An immediate
consequence of this restriction is that all the linear algebra in the new algorithm
has to be performed modulo the 698-bit r instead of modulo the 8808-bit N .

The parameters for each step of the algorithm were chosen in order to balance
the running time of the steps. We also took into account the degree to which
each step could be parallelized on conventional computers. A summary of the
parameter choices for the descent is given in Figure 2. The costs of each step are
given in Table 3.

If f ∈ Fq[X] has degree d, then Xq mod f can be determined by first precom-
puting X4, X8, . . . , X4(d−1) mod f by repeated multiplication by X . Thereafter,
computing the fourth power of a polynomial modulo f can be accomplished by
computing fourth powers of the coefficients of the polynomial, and then mul-
tiplying the precomputed polynomials by these fourth powers (and adding the
results). In this way, we get a loose upper bound of 4d2 + 11d2 = 15d2 F224 -

multiplications of the cost to compute X224 mod f , and the total cost for testing
m-smoothness of f (cf. §2.2) becomes

S224(m, d) = 2d2(d+m+ 7.5) F224 -multiplications. (22)

A.1 Setup. We chose the representations

F212 = F2[U]/(U12 + U7 + U6 + U5 + U3 + U + 1)

and

F224 = F212 [V]/(V 2 + U152V + U3307).

42 G. Adj et al.

We selected

h0 = (U2111V + U2844)X2 + (U428V + U2059)X + (U1973V + U827) ∈ F224 [X]

and

h1 = X + U2904V + U401 ∈ F224 [X],

and IX ∈ F224 [X] to be the degree-367 monic irreducible factor of h1X
212 − h0.

The other irreducible factors of h1X
212 − h0 have degrees 23, 103, 162, 298 and

3144.

A.2 Finding Logarithms of Linear Polynomials. The factor base B1 has
size 224. The cost of relation generation is approximately 235Mq2 , whereas the
cost of the linear algebra is approximately 260Ar.

A.3 Finding Logarithms of Irreducible Quadratic Polynomials. For
each u ∈ F224 , the expected cost of computing logarithms of all quadratics in
B2,u is 244Mq2 for the computation of H(Q), and 260Ar for the linear algebra.

A.4 Continued-Fraction Descent. We selected m = 17. The expected cost
of this descent is 2100Mq2 . The expected number of distinct irreducible factors
of degree (at most) 17 obtained is 2A224(17, 183) ≈ 35.

A.5 Classical Descent. When applicable, classical descent is preferable to
QPA descent since the former produces a far smaller number of branches when
descending from a polynomial Q. However, in the field under consideration we
have q = 212, so at least one ofX2s andX212−s

has degree at least 64. This means
that at least one of the polynomials R1 = R(X,X2s) and R2 = R′(X212−s

, h0)
(cf. §3.5) has very large degree, rendering classical descent ineffective.

A.6 QPA Descent. The QPA descent method is applied to each of the 35
degree-17 polynomials Q obtained from the continued-fraction descent stage. We
have D = 17 and m = 10. For each Q, the expected cost of relation generation is
254Mq2 and the cost of the linear algebra is 260Ar. Also for each Q, the expected
number of distinct polynomials of degree at most 6 obtained is expected to be
Aq2(10, 51) · q2 ≈ 228. Thus, the total number of distinct polynomials of degree
at most 10 obtained after the first QPA descent stage is approximately 233.

The QPA descent method is then applied to each of these 233 degree-10 poly-
nomials Q. We have D = 10 and m = 6. For each Q, the expected cost of
relation generation is 251Mq2 and the cost of the linear algebra is 260Ar. Also
for each Q, the expected number of distinct polynomials of degree at most 6 ob-
tained is expected to be Aq2 (6, 30) · q2 ≈ 226. Thus, the total number of distinct
polynomials of degree at most 6 obtained after the second QPA descent stage is
approximately 259.

Weakness of F36·509 for Discrete Logarithm Cryptography 43

A.7 Gröbner Bases Descent. The Gröbner bases descent method is applied to
each of the 259 polynomials of degree (at most) 6 obtained after QPA descent. Our
experiments were run using Magma v2.19-7 [41] on a 2.9 GHz Intel core i7-3520M.

First, one descends from 6 to 4, i.e., D = 6 and m = 4. For each degree-6
polynomial Q, we have to solve a system of 26 quadratic polynomial equations
in 34 variables over Fq (cf. (20)). After fixing some variables, each degree-6
R obtained from the variety of the resulting ideal is tested for 4-smoothness.
If no 4-smooth R is obtained, we randomly fix some other subset of variables
and repeat. We ran 11,810 Gröbner bases descent experiments with randomly-
selected degree-6 polynomials Q. On average, we had to find 2.112 Gröbner
bases for each Q. The average number of R’s tested for 4-smoothness for each Q
was 1.585, which agrees with the expected number q12/Nq2(4, 6) ≈ 1.579. The
average time to find each Gröbner basis was 30.74 seconds. In total, the expected
number of polynomials of degree at most 4 obtained is 259(q+1+Aq2(4, 6)) ≈ 271.

Next, one descends from 4 to 3, i.e., D = 4 and m = 3. For each degree-4
polynomial Q, we have to solve a system of 20 quadratic polynomial equations in
28 variables over Fq. We proceed as above, by fixing some of the 28 variables. We
ran 3,608,000 Gröbner bases descent experiments with randomly-selected degree-
4 polynomials Q. On average, we had to find 2.362 Gröbner bases for each Q.
The average number of R’s tested for 3-smoothness for each Q was 1.817, which
agrees with the expected number q10/Nq2(3, 5) ≈ 1.818. The average time to
find each Gröbner basis was 0.01173 seconds. In total, the expected number of
polynomials of degree at most 3 obtained is 271(q + 1 +Aq2(3, 5)) ≈ 283.

Finally, one descends from 3 to 2, i.e., D = 3 and m = 2. Since the total
number of monic irreducible cubics over Fq2 is approximately 270.4, which is less
than 283, we perform the 3 to 2 descent for all monic irreducible cubics. For
each such polynomial Q, we have to solve a system of 14 quadratic polynomial
equations in 20 variables over Fq. We proceed as above, by fixing some of the 20
variables. We ran 1,080,000 Gröbner bases descent experiments with randomly-
selected degree-3 polynomials Q. On average, we had to find 2.024 Gröbner bases
for each Q. The average number of R’s tested for 2-smoothness for each Q was
1.5, which agrees with the expected number q6/Nq2(2, 3) ≈ 1.5. The average
time to find each Gröbner basis was 0.002682 seconds.

A.8 Overall Running Time. In order to assess the overall time, we make
some assumptions about the ratios of units of time used in Table 3, namely Ar,
Mq2 , and seconds.

First, we shall assume that Ar/Mq2 = 1. To justify this, we use estimates
similar to the ones in §4.8. An integer modulo r can be accommodated in eleven
64-bit words, so we estimate Ar to be 11 clock cycles. Using the carry-less multi-
plication instruction PCLMULQDQ, a multiplication in F224 can be performed
at a price of approximately 10 clock cycles. This gives us an Ar/Mq2 ratio of
approximately 1.

Next, since a multiplication in F224 can be done in approximately 10 clock
cycles, we will transform one second on a 2.9 GHz machine (on which the Gröbner
bases descent experiments were performed) into 228Mq2 .

44 G. Adj et al.

Using these estimates, we see from the third column of Table 2 that the
overall running time of the new algorithm is approximately 2100Mq2 . As with
the case of F312·509 , the relation generation, continued-fraction descent, classical
descent, and Gröbner bases descent steps, and also the relation generation por-
tion of QPA descent, are effectively parallelizable on conventional computers.
Moreover, the linear system of equations for finding logarithms of linear poly-
nomials, the 224 linear systems of equations for finding logarithms of irreducible
quadratic polynomials, and the 233 linear systems of equations are also effectively
parallelizable on conventional computers since each linear system of equations
can be expected to be solvable in less than 12 days using a small number of
GPUs and CPUs (cf. [32,5]).

A.9 Comparisons with Joux-Lercier. The Joux-Lercier algorithm [37] with
pinpointing [33] is an alternative method for computing discrete logarithms in
the order-r subgroup of F∗

212·367 . The algorithm works with two polynomial rep-
resentations of F212·367 .

The factor base can be taken to be the set of all monic irreducible polynomials
of degree at most 4 over F212 in each of the two representations. The action of
the 212-power Frobenius is used to reduce the factor base size by a factor of 12,
yielding a factor base of size 243.4. Taking d1 = 37 and d2 = 10 (see Section 2 of
[33] for the definitions of d1 and d2), the running time of relation generation is
approximately 294.0Mq, whereMq denotes the cost of a multiplication in F212 (cf.
Section 4 of [33]). The (sparse) matrix in the linear algebra stage has 243.4 rows
and columns, and approximately 28 nonzero entries per row. Using standard
techniques for solving sparse systems of linear equations [38], the expected cost
of the linear algebra is approximately 291.6 operations modulo r. Since relation
generation is effectively parallelizable, whereas the linear algebra is not amenable
to parallelization due to its large size, the dominant step in the Joux-Lercier
algorithms is the linear algebra.

In contrast, even though the new algorithmhas a greater overall running time of
2100Mq2 , it is effectively parallelizable.Thus a reasonable conclusion is that the new
algorithm is more effective than Joux-Lercier for computing logarithms in F212·367 .

To lend further weight to this conclusion, we observe that special-purpose
hardware for solving the relatively-small linear systems of equations in the new
algorithm can reasonably be expected to be built at a cost that is well within the
budget of a well-funded organization. In 2005, Geiselmann et al. [26] estimated
that the cost of special-purpose hardware for solving a linear system where the
matrix has 233 rows and columns, and approximately 27 nonzero entries (inte-
gers modulo 2) per row would be approximately U.S. $2 million; the linear system
would be solvable in 2.4 months. For F212·367 , eachmatrix in the new algorithmhas
224 rows and columns, and approximately 212 nonzero entries (integers modulo r)
per row. On the other hand, the cost of special-purpose hardware for solving the
linear system encountered in the Joux-Lercier algorithm would be prohibitive.

Our conclusion about the relative weakness of F212·367 for discrete logarithm
cryptography also applies to the field F212·439 . Both these conclusions are subject
to the caveats in Remark 2 in §4.8.

The Special Number Field Sieve in Fpn

Application to Pairing-Friendly Constructions

Antoine Joux1,2,4,5,6 and Cécile Pierrot3,4,5,6

1 CryptoExperts
2 Chaire de Cryptologie de la Fondation de l’UPMC,

4 place Jussieu, 75005 Paris, France
3 Université de Versailles Saint-Quentin, Laboratoire PRISM,

45 avenue des États-Unis, 78000 Versailles, France
4 UPMC, Univ Paris 06, LIP6

5 INRIA, Paris-Rocquencourt Center, PolSys Project
6 CNRS, UMR 7606, LIP6

Antoine.Joux@m4x.org, Cecile.Pierrot@lip6.fr

Abstract. In this paper, we study the discrete logarithm problem in
finite fields related to pairing-based curves. We start with a precise anal-
ysis of the state-of-the-art algorithms for computing discrete logarithms
that are suitable for finite fields related to pairing-friendly constructions.
To improve upon these algorithms, we extend the Special Number Field
Sieve to compute discrete logarithms in Fpn , where p has an adequate
sparse representation. Our improved algorithm works for the whole range
of applicability of the Number Field Sieve.

1 Introduction

Since its introduction, pairing-based cryptography has permitted the develop-
ment of many cryptographic schemes, including identity-based cryptographic
primitives [BF03, SK03, CC03, Pat02], short signature schemes [BLS04], or one-
round three-way key exchange [Jou04]. Some of these schemes have already been
deployed in the marketplace.

One very important challenge necessary for practical pairing-based cryptogra-
phy is to construct pairing-friendly curves suitable for efficient asymmetric schemes
offering a high security level and to estimate precisely their concrete security. This
is not a simple task, since it requires to construct a pairing-based curve, while bal-
ancing the complexities of the various discrete logarithm algorithms that can be
used. This challenge has been studied in many articles such as [BLS03, KM05]. To
evaluate the security of a given construction, the traditional approach is to balance
the complexity of square-root algorithms for computing discrete logarithms in the
relevant subgroup of the elliptic curve and an estimate of the complexity of the
Number Field Sieve (NFS) algorithm in the finite field where the pairing takes its
values. The complexity of solving the discrete logarithm problem in the finite field
in this context is usually estimated by using keysize tables such as [Nat03, LV01].
This approach makes an implicit assumption, namely it considers that the com-
plexity of NFS in the finite field is close to the complexity of factoring an integer

Z. Cao and F. Zhang (Eds.): Pairing 2013, LNCS 8365, pp. 45–61, 2014.
c© Springer International Publishing Switzerland 2014

46 A. Joux and C. Pierrot

of the same size. As far as we know, this implicit assumption has not been checked
in the relevant literature.

Our goal in this paper is twofold. First, we show that for current parameters
of high-security pairing-based cryptography, the implicit assumption is incor-
rect and that the state-of-the-art algorithm for discrete logarithms in this case
is the High-Degree variant of the Number Field Sieve introduced in [JLSV06],
whose complexity is higher than the complexity of factoring. Second, we re-
visit discrete logarithm algorithms and show that, thanks to the specific form
of the characteristic of the field of definition of pairing-friendly curves that ap-
pears with classical constructions, such as Barreto-Naehrig [BN05], it is possible
to devise improved algorithms by generalizing the Special Number Field Sieve
(SNFS) [Gor93, Sch08]. In truth, we go beyond this goal and present SNFS vari-
ations for the whole range of finite fields covered by the NFS, assuming that the
characteristic of the field admits an adequate sparse representation.

As a side bonus, we also improve the complexity analysis given in [JLSV06]
for the boundary case between FFS and NFS and show that in this boundary
case, the complexity of NFS is, in fact, not higher than in the general case.

This paper is organized as follows: in Sections 2 and 3 we make a short re-
fresher on tools and on the Number Field Sieve used in the medium prime case.
This includes our improvement of the boundary case in Section 3.1. We explain in
Section 4 the state-of-the-art algorithm for discrete logarithms for pairing-based
cryptography. In Section 5 we develop our variation on the special index calculus
algorithm for Fpn involved in pairing-friendly constructions. The Section 6 gives
finally a precise heuristic analysis of the algorithm.

2 Tools and Notations

When dealing with index calculus algorithms, the complexities are usually ex-
pressed using the following notation:

Lq(α, c) = exp
(
(c + o(1))(log q)α(log log q)1−α

)

where α and c are constants such that 0 < α < 1 and c > 0 and log denotes
natural logarithm. The notation Lq(α) is also used when the constant c is not
explicitly specified. These functions arise from the probability for values to be
smooth. More precisely, it comes from the well-known theorem of Canfield, Erdös
and Pomerance. Let us introduce the quantity ψ(x, y) to denote the number of
positive numbers up to x which are y-smooth. Then log(ψ(x, y)/x) is close to:

− log x

log y

(
log

(
log x

log y

))
.

In particular, when both x and y are given as Lq expressions, we have the
following theorem.

The Special Number Field Sieve in Fpn 47

Theorem 21 (Canfield, Erdös, Pomerance). Let C ⊂ R4 be a compact set
such that for all (r, s, γ, δ) ∈ C one has γ > 0, δ > 0 and 0 < s < r < 1. Let
P denote the probability that a random positive integer below Lq(r, γ) splits into
primes lower than Lq(s, δ). Then we have:

P = Lq(r − s, −γ(r − s)/δ + o(1))

for q → ∞, uniformly for (r, s, γ, δ) in C.

As often the case in articles studying index calculus algorithms, we also use
the heuristic generalization of Theorem 21 to the probability of smoothness of
integers which are not selected uniformly and to pairs of integers which are not
independent.

3 A Short Refresher on Discrete Logarithms in the
Medium Prime Case

Thoughout the rest of the paper, Q denotes the size of the finite field being
considered, i.e. Q = pn.

3.1 The p = LQ(lp, cp) Case, with 1/3 � lp < 2/3

We first recall the Number Field Sieve variant proposed in [JLSV06] in the case
where p = LQ(lp, cp), with 1/3 < lp < 2/3. We extend afterwards the algorithm
to the configuration p = LQ(1/3, cp).

3.1.1 The lp �= 1/3 Case

Setup
General setting. In order to compute discrete logarithms in Fpn , a degree n
extension of the base field Fp, we start by choosing two polynomials f1 and f2 in
Z [X] with a common root in Fpn . In other words, we choose f1 and f2 such that
the greatest common divisor of these two polynomials has an irreducible factor
of degree n in Fp. As a consequence, we can draw the commutative diagram in
Figure 1.

Let Q [θ1] denote Q [X] /(f1(X)) and Q [θ2] denote Q [X] /(f2(X)), the two
number fields defined by f1 and f2, i.e. θ1 and θ2 are roots of these polynomials
in C.

Choice of polynomials. In [JLSV06], f1 is chosen as a degree n polynomial, with
small coefficients and irreducible over Fp, while f2 is defined as the polynomial
f1 +p. To balance the size of the norms computed during the algorithm, another
approach is also mentioned. This variant uses continued fractions and involves
changing the polynomial selection such that the coefficients of both polynomials
are of the same size. The authors of [JLSV06] propose for instance to choose f1
such that at least one of its coefficients, let us say c, is of the order of √

p. More

48 A. Joux and C. Pierrot

Z [X]

Q [X] /(f1(X)) Q [X] /(f2(X))

Fpn

X �→θ1
X �→θ2

Fig. 1. Commutative diagram for the algorithm of [JLSV06]

precisely, such that f1 = g + c · h where g and h are polynomials with small
coefficients. Since we can write c ≡ a/b (mod p) with a and b also of the order
of √

p, we define f2 ≡ bf1 (mod p). The coefficients of f2 are O(√p) instead of
O(p).

The key contribution of our variation of the SNFS in Section 5 is to introduce
a different way to reduce the size of the coefficients that appear in f1 and f2.

Sieving
We then denote by t − 1 the degree 1 of the polynomials which we are going
to sieve on and the two following bounds: A a sieve limit and B a smoothness
bound. We consider all t-uples of the form (a0, · · · , at−1) such that the norms of
the a0 + · · · + at−1θt−1

1 and a0 + · · · + at−1θt−1
2 are both B-smooth. After some

post-processing described in [JLSV06], each such t-uple yields a linear equation
between “logarithms of ideals” coming from both number fields and belonging
to the smoothness basis.

Linear Algebra
Once the sieving phase is complete, we solve the resulting sparse system of equa-
tions modulo pn−1, the cardinality of F∗

pn , and recover logarithms of ideals in the
smoothness basis. To be more precise, the linear algebra is done modulo a large
factor of this cardinality, while small prime factors are considered separately,
using a combination of Pollard’s rho and Pohlig-Hellman algorithm.

Individual Discrete Logarithms
Once the sieving and the linear algebra phases have been performed, we know
the logarithms of all the ideals in the smoothness basis. The important phase
that remains is the individual discrete logarithms phase which allows to compute
the discrete logarithm of an arbitrary element in the finite field. The approach
proposed in [JLSV06] is based on a “special-q” descent. In a nutshell, in order to
compute the discrete logarithm of an arbitrary element y of Fpn , represented as
Fp [X] /(f1(X)), we search for a multiplicative relation of the form z = yiXj for
some i, j ∈ N. We expect z to satisfy the two properties: if B′ = LQ(2/3, 1/31/3)
and z̄ denotes the lift of z to the number field Q [θ1], the norm of z̄ should be

1 While this notation might seems awkward, it is in fact quite convenient, because a
polynomial of degree t − 1 gives dimension t to the sieving space.

The Special Number Field Sieve in Fpn 49

B′-smooth and squarefree. The second condition implies that only degree one
prime ideals will appear in the factorization of (z̄). This is required since only
logarithms of such ideals are computed during the sieving and linear algebra
phases. After finding such a z, we factor the principal ideal generated by z̄
into degree one prime ideals of small norm. Some of them are not in the factor
base (those whose norm is smaller than B′ but bigger than B). To compute
the logarithm of such an ideal q we start a “special-q” descent, progressively
lowering the bound B′ until it reaches B. We finally backtrack to recover the
logarithm of z̄ and consequently the logarithm of y.

3.1.2 The p = LQ(1/3, cp) Case
Again, we sieve on polynomials of degree t − 1 and follow the phases described
above. However, the analysis of [JLSV06] no longer applies directly and we need
to refine the bound on norms to extend the analysis to this case.

A Short Analysis of the Extended NFS
Let us recall that the parameters of the algorithm taking part in the analysis are
the extension degree n, the smoothness bound 2, the degree t − 1 of the elements
we are sieving over and the bound A on the coefficients of these elements. We
assume that we can write:

n = 1
cp

(
log Q

log log Q

)2/3
, t = ct

cp

(
log Q

log log Q

)1/3
, At = LQ(1/3, cact),

where ca and ct will be determined later on.
The difference between the case p = LQ(1/3, cp) and the case p = LQ(lp, cp)

with 1/3 < lp < 2/3 appears when computing the bound on the norms of
polynomials. More precisely, for each polynomial involved in the sieving, the two
norms are easily bounded by nttnAn and nttnAnpt respectively on the Q [θ1] and
on the Q [θ2] side. When lp > 1/3, the nttn term is negligible compared to An

and pt and vanishes from the complexity analysis. However, due to the size of t
and n in the lp = 1/3 case, the tn term is no longer negligible. This leads to an
extra term in the product of the norms and yields a LQ(1/3) complexity with a
constant higher than (128/9)1/3.

We now improve the bound on these two norms in order to restore a complex-
ity of LQ(1/3, (128/9)1/3) in this extended case of NFS.

First, each norm can be expressed as the determinant of the Sylvester matrix
M(fi, h) of fi and h, with i = 1 or i = 2. Let mj,k represents the coefficient at
the j-th row and k-th column of M(fi, h). Using the formula:

det M(fi, h) =
∑

σj∈Sn+t

sign(σj)
n+t∏
k=1

mk,σj(k), (1)

we remark that the two norms are bounded by ΘAn and ΘAnpt respectively
on the Q [θ1] and on the Q [θ2] side, where Θ is the number of permutations
2 Which is not required in this section, where we simply improve the bound on norms.

50 A. Joux and C. Pierrot

of Sn+t leading to a non zero product in (1). Kalkbrener gives a majoration of
Θ in the second theorem of [Kal97]. With our notations this bound becomes:
Θ �

(
n+t

n

) · (
n+t−1

t

)
. Because of the following inequalities:

(
n+t

n

) · (
n+t−1

t

)
= n

n + t

(
(n + t)!

n!t!

)2

≤ n

n + t

(
(n + 1) · · · (n + t)

t!

)2

≤ n

n + t

(
t∏

i=1

(n + i)
i

)2

≤ n

n + t

t∏
i=1

(n

i
+ 1

)2

we obtain that Θ � (n + 1)2t. Hence the two norms are bounded by (n + 1)2tAn

and (n + 1)2tAnpt respectively. Due to the size of n and t in this case, we have
(n+1)2t ≈ LQ(1/3, 4ct/3cp) and thus the coefficient (n+1)2t is negligible (when
Q tends to infinity) compared to the LQ(2/3) contribution of An and pt. As a

Fig. 2. Asymptotic complexities at the p = LQ(1/3, cp) boundary case. The graph
represents the second constant c of the complexity LQ(1/3, c) as a function of cp.

The Special Number Field Sieve in Fpn 51

consequence, we recover the two usual bounds so this allows us to continue with
the same analysis of NFS as before. We conclude that the asymptotic complexity
of the extended NFS when lp = 1/3 is also:

LQ(1/3, (128/9)1/3).

Yet the p = LQ(1/3, cp) case remains particular because we have to consider
both the extended version of the NFS algorithm and the Function Field Sieve
algorithm (FFS) from [JL06]. It is not our main point here to develop the analysis
of this boundary case in the FFS part but we need to know which algorithm gives
the best asymptotic complexity depending on the constant cp. The Figure 2
addresses this need by showing how complexities vary with cp in this case. The
intersection between the FFS and the NFS approach is at cp = κ with κ =
(16/9)1/3. It is also indicated which algorithm has to be chosen in each case:
the FFS algorithm when cp is smaller than κ, and the NFS algorithm when
cp is higher. This figure is the juxtaposition of two analyses: the NFS analysis
performed above and the FFS analysis from [JL06].

3.2 The p = LQ(lp, cp) Case with 2/3 � lp � 1

In this case, we modify both settings and sieving phase. First, the choice of the
polynomials has to be changed, since the size of the coefficients of f2 is too
high when f2 is defined as f1 + p. In [JLSV06] the authors propose to select the
polynomial f2 using lattice reduction. We do not give details on this method
since it does not affect our new algorithm developed further.

The second modification concerns the sieving space. Indeed, for these values
of lp it is possible to collect enough relations with a smaller sieving space than
the one involved above. More precisely, it suffices to set t = 2, i.e. to sieve on
linear polynomials only. The linear algebra and the individual discrete logarithms
phases are left unchanged.

4 Applicable Discrete Logarithms for Pairing-Based
Cryptography

Constructing pairing-based elliptic curves with a high security level implies tak-
ing into account the complexities of the various discrete logarithm algorithms
that can be used. The traditional approach is to balance the complexity of a
generic algorithm for computing discrete logarithms in the relevant subgroup of
the elliptic curve and an estimate of the complexity of the NFS algorithm in the
finite field where the pairing takes its values. This requires that √

p = LQ(1/3, c),
for some constant c. Equivalently, we have:

p = LQ(1/3, 2c). (2)

It is relevant to notice that this constraint imposed on curves gives an indication
on the form of the characteristic p, and that this explicit form permits conversely

52 A. Joux and C. Pierrot

to estimate the actual complexity of computing discrete logarithms in the finite
field considered. As a consequence of (2), we consider the case discussed in
section 3.1. To determine which algorithm is applicable for computing discrete
logarithms in FQ with p = LQ(1/3, 2c), we have to evaluate the constant 2c.
As said in the introduction, we notice that current constructions select keys
implicitly as if the complexity in the finite field was LQ(1/3, c) with a constant
c = (64/9)1/3. This leads to 2c ≈ 3.845998854, which is clearly higher than
the boundary point κ. This points out that the extended NFS is the algorithm
applicable here.

As a consequence, the actual choice of parameters and, in particular, the usual
implicit assumption that c = (64/9)1/3 are too pessimistic compared with the
state-of-the-art. In fact, the analysis of section 3.1 shows that, using the best
currently known variant of the Number Field Sieve algorithm, we have to choose
c = (128/9)1/3. We still have 2c > κ.

5 SNFS Polynomials for Pairing-Based Finite Fields

5.1 Pairing-Based Finite Fields

Instead of proceeding as in Section 3 in the case of finite fields of general form we
consider now the specificity of finite fields obtained with some particular curves.
In practice, pairings require elliptic curves to be computationally very simple
to use, and, often, not too difficult to generate. With this aim, families of such
curves are frequently characterized by three simple polynomials, including P
which defines after evaluation the characteristic of Fpn where ϕ : E × E → Fpn

is the pairing considered, E a particular curve in the family and n its embedding
degree. Several families have been proposed [FST10] and most of them have in
common to set P as a polynomial of small degree and with constant coefficients.
Until now, we consider the case of a particular family of curves where p the
characteristic of Fpn is given by the evaluation of such a polynomial. In other
words, we consider a family where p can be written as:

p = P (u),

with P a polynomial of small degree λ and small coefficients and u small com-
pared to p. We want to underline that λ is fixed beforehand and only depends
on the family considered. Thus λ does not depend on p. In the following sub-
section 5.2, we explain how to use this sparse representation of p to lower the
asymptotic heuristic complexity for the whole range of finite fields covered by
the NFS – see the complete analysis in Section 6.

5.2 Choice of Polynomials for the SNFS Algorithm

We explain now how to use the specific structure of the polynomials characteriz-
ing pairing-friendly curves. Only a slight change has to be made in the algorithm

The Special Number Field Sieve in Fpn 53

described above: it concerns the choice of the two polynomials f1 and f2. We
choose f1 as an irreducible polynomial over Fp, with degree equals to n, such as:

f1(X) = Xn + R(X) − u

with R(X) a polynomial of small degree and with coefficients 0, 1 or −1. Since
we have P (u) = p, the size of the coefficients of f1 is bounded by p1/λ. Let
us be more precise about the degree dR of R. f1 is a polynomial of degree n
and has consequently approximatively one chance over n to be irreducible over
the finite field: thus we need to keep enough degree of freedom concerning the
choice of the coefficients of f1. Hence we assume that the degree dR is such
as dR = O(log n/ log 3). Since 3logn/ log 3 = n, this permits us to have enough
choices for R, thus for f1, and finally to obtain an irreducible polynomial 3.

Moreover, the second polynomial is chosen as follows:

f2(X) = P (Xn + R(X)).

Indeed, f2 has degree λn and the size of its coefficients is bounded by O(log(n)λ).
This mostly comes from the R(X)λ term that appears in the decomposition
of f2, which provides the highest coefficients of f2. Its coefficients are in fact
bounded by (dR + 2)λ = O(log(n)λ), with some multinomials in λ hidden in the
O notation. Furthermore, we have:

f2(X) = P (f1(X) + u) ≡ P (u) = p,

where ≡ denotes equivalence modf1(X).
Thus there exists a polynomial h such that f2(X) − p = h(X)f1(X), and this

implies that f2(X) is a multiple of f1(X) modulo p. Due to the fact that the
gcd(f1(X), f2(X)) is irreducible with degree n, they correctly define the com-
mutative diagram previously drawn. The main interest of this choice is to keep
small degrees while forcing a very small product of the two size of coefficients:
the polynomials have respectively (n, p1/λ) and (λn, O(log(n)λ)) as degree and
size of coefficients.

A Short Example
We give here both an example of a finite field based on a usual pairing construc-
tion and a possible choice for the two polynomials f1 and f2. We consider the
Barreto-Naehrig family which is optimal for the polynomial:

P (x) = 36x4 + 36x3 + 24x2 + 6x + 1.

3 Other possibilities are available for the polynomial R, all without any influence
over the final asymptotic complexities. In the opposite way of our choice (small
degree and constant coefficients), we could take R of constant degree dR and with
coefficients bounded by O(n1/(dr+1)). An interesting configuration is to consider the
intermediate case and to balance the degree of R with the size of its coefficients.
If we force the coefficients to be bounded by dr, the irreducibility of f1 leads to
the condition ddr

r ≈ n and finally to take dr = O(log n/ log log n). This impacts
on the coefficients of f2 which become bounded by O((log n/ log log n)λ) instead of
O(log(n)λ).

54 A. Joux and C. Pierrot

For u = 6521908912666445631 we get the characteristic

p = P (u) =65133050195992538051524258355272021564060086092744501919128354661463478504083

and the elliptic curve defined over Fp by the equation:

Y 2 = X3 + 3.

We recall that the embedding degree of an elliptic curve in this family is 12,
thus the target field of the pairing is Fp12 . We choose the following irreducible
polynomial over Fp:

f1(X) = X12 + X − 6521908912666445631

and we define f2 as:

f2(X) = 36X48 + 144X37 + 36X36 + 216X26 + 108X25 + 24X24

+144X15 + 108X14+48X13+6X12 + 36X4 + 36X3 + 24X2 + 6X + 1.

The reader can check that the resultant of f1 and f2 is equal to p12 and that f1
divides f2 modulo p.

6 Asymptotic Heuristic Complexity

In order to analyze the asymptotic heuristic complexity of the algorithm de-
scribed above, we first write the relations between n, p and Q = pn in the
following form:

p = exp
(
cp(log Q)lp(log log Q)1−lp

)
, n = 1

cp

(
log Q

log log Q

)1−lp

.

The parameters of the algorithm that appear in the analysis are the smoothness
bound B, the degree of the elements in the sieving space t − 1 and the bound A
on the coefficients of these elements. We recall that we note λ the degree of the
polynomial P mentioned in Section 5.

6.1 The p = LQ(lp, cp) Case with 1/3 � lp < 2/3

We assume that we can express t, A and B as

t =
ct

cp

(
log Q

log log Q

)2/3−lp

, At = LQ(1/3, cact), B = LQ(1/3, cb)

where ca, cb and ct will be determined later on.
In order to minimize the total runtime of the algorithm, we want to balance

the complexities of the sieving phase and of the linear algebra phase. Since
the total sieving space contains At elements, and the linear algebra phase costs

The Special Number Field Sieve in Fpn 55

approximately B2 operations, we require that t, A and B satisfy At = B2. This
leads to the first condition:

cb = cact

2
. (3)

Since we need to have enough good relations after sieving, we also require that
AtP ≈ B, where P denotes the probability that an element of the sieving space
yields a good relation, i.e. the probability that its norms (in each of the two
number fields) split into primes number smaller than B. Put together with the
previous remark, this means:

B ≈ 1/P . (4)

Let us note Ni the norm coming from the polynomial h = at−1Xt−1 + · · · + a0
in Q [X] /(fi(X)) (for i = 1 and i = 2 to account for both sides). We can
bound the two norms as follows. Keeping the notations of Section 3.1, N1 is
smaller than ΘAnpt/λ, because f1 is of degree n and its coefficients are bounded
by p1/λ and h is of degree t − 1 and its coefficients are bounded by A. Simi-
larly we have N2 smaller than ΘAλn log(n)λt. Thus, P is the probability that
Θ2 log(n)λtA(λ+1)npt/λ splits into primes lower than B. Besides, the calculus of
A(λ+1)npt/λ gives LQ(2/3, (λ+1)ca+ct/λ). We remark that both Θ2 and log(n)λt

are negligible in this case: in fact, both terms are smaller than (n + 1)4λt and
(n + 1)4λt ≈ LQ(2/3 − lp). We now make the usual heuristic hypothesis, and
assume that P follows the theorem of Canfield, Erdös and Pomerance: a random
number below Lq(r, γ) splits into primes lower than Lq(s, δ) with probability
Lq(r − s, −γ(r − s)/δ). As a result, after plugging in our values, we find that:

P = LQ

(
1
3

,
−1
3cb

((λ + 1)ca + ct/λ)
)

. (5)

Putting together (4) and (5), we finally obtain the second condition involving
the various constants:

3 c2b = (λ + 1)ca + ct/λ. (6)

We now want to minimize cb under the two conditions (3) and (6). Hence, the
complexity will be LQ(1/3, 2 cmin

b), where cmin
b is naturally the minimum we are

looking for. Let us introduce two new variables μ and x and rewrite (3):

ct = x, ca = μx, cb = μx2

2
.

Then (6) becomes:

3
(

μx2

2

)2

= (λ + 1)μx + x

λ
⇔ x3 = 4

3
·
(

(λ + 1)μ + 1/λ

μ2

)

Minimizing 2 cb = μx2 is clearly equivalent to minimizing (μx2)3, so we calculate:

(μx2)3 =
(

4
3

)2
·
(

(λ + 1)2μ2 + 1/λ2 + 2μ(λ + 1)/λ

μ

)
.

56 A. Joux and C. Pierrot

Finally, forcing the derivative of the right member with respect to μ to vanish
implies (λ + 1)2μ2 − 1/λ2 = 0 and at the end μ = 1/(λ(λ + 1)). As a result,
(2 cmin

b)3 = (μx2)3 = (64/9) · (λ + 1)/λ. Thus, the complexity of the algorithm
in this case is:

LQ

(
1
3

,

(
64
9

· λ + 1
λ

)1/3
)

.

As soon as λ � 2, the complexity is clearly better than the one in the general
case, which is LQ(1/3, (128/9)1/3).

6.2 The p = LQ(2/3, cp) Case

In this case, we consider a family of algorithms indexed by the degree t − 1 of
the polynomials we are sieving on and we compute the asymptotic complexity
of each algorithms. Figure 3 shows which algorithm has to be chosen, depending
on the constant cp, in order to get the best asymptotic complexity. The analysis
made here follows exactly the previous one, except that the round-off error in t
is no longer negligible. This explains why the final complexity varies with cp. We
continue the analysis in the general case while the two extreme cases t → ∞ and
t = 2 are discussed further. When t tends to infinity, we recover the asymptotic
complexity of the p = LQ(lp, cp) case with 1/3 � lp < 2/3. Furthermore, the
asymptotic complexity is minimal for the choice of p that are compatible with
t = 2, i.e. that allows sieving on linear polynomials. Thus we explicitly compute
the complexity in this case.

Sieving on Polynomials of Degree t − 1
We assume that we can express A and B as:

A = LQ(1/3, ca) and B = LQ(1/3, cb).

The sieving space contains in this case At elements since the polynomials involved
are of degree t−1. Thus, balancing the size of the sieving space and the runtime
of the linear algebra we deduce ca = 2cb/t. Keeping the same notations as
above and neglecting again the Θ and log(n)λ terms, we can write the two
norms N1 = Anp(t−1)/λ and N2 = Aλn. So the product of the two norms is
A(λ+1)np(t−1)/λ, which can also be written as:

N1 · N2 = LQ

(
2
3 ,

2(λ + 1)cb

cpt
+

(t − 1)cp

λ

)
.

In order to get enough relations we force B to be equal to the inverse of the
probability of smoothness P , i.e. B = LQ

(
1
3 , 1

3cb

(
2(λ+1)cb

cpt + (t−1)cp
λ

))
. This

leads to the following equation:

3 c2b = 2(λ + 1)cb

cpt
+ (t − 1)cp

λ
.

The Special Number Field Sieve in Fpn 57

Consequently, the sieving on polynomials of degree t − 1 has complexity
LQ(1/3, Cλ(cp)) with:

Cλ(cp) = 2 cb = 2
3

⎛
⎝λ + 1

cpt
+

√(
λ + 1
cpt

)2
+ 3(t − 1)cp

λ

⎞
⎠ . (7)

This has to be compared with the asymptotic complexity in the General Number
Field Sieve (GNFS) for the same case which is LQ(1/3, C(cp)) with:

C(cp) = 2
3

⎛
⎝ 2

cpt
+

√(
2

cpt

)2
+ 3(t − 1)cp

⎞
⎠ .

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

0 2 4 6 8 10

Se
co

nd
co

ns
ta

nt
of

th
e

C
om

pl
ex

ity
in

th
e

L Q
no

ta
tio

n

cp

Sieving on Linear Polynomials
t=2

Algorithm for larger p – see [JLSV06]

t=3

t=4

t→∞

Lower bound
C
C2
C4

Fig. 3. Asymptotic complexities LQ(1/3, C(cp)), LQ(1/3, C2(cp)) and LQ(1/3, C4(cp))
as a function of cp with p = LQ(2/3, cp). The red curve shows the variation of the
second constant of the complexity for the GNFS while the green and blue ones present
the amelioration obtained by our SNFS in two cases λ = 2 and λ = 4. The degree t − 1
of the elements in the sieving space is also indicated for the blue curve. The pink curve
corresponds to the minimal complexity that can be obtained. The value of the optimal
degree of P depends on the value of cp – see Section 6.3, The Boundary Case lp = 2/3.

58 A. Joux and C. Pierrot

In Figure 3 we have plotted the constant C(cp) which determines the com-
plexity LQ(1/3, C(cp)) as a function of the constant cp. The red curve represents
the constant C(cp) obtained with the GNFS [JLSV06] while the other ones are
obtained with our SNFS for λ = 2 (green curve) and λ = 4 (blue curve). Those
values of λ correspond respectively to the family of MNT curves and to the
family of Barreto-Naehrig elliptic curves.

Splicing the p = LQ(2/3, cp) Case to the p = LQ(lp, cp) Case with lp < 2/3
We consider cp as a variable and compute the value of cp which minimize the
complexity LQ(1/3, Cλ(cp)) given in the previous subsection 6.2. We note it
again cmin

p . Cλ(cp) comes to a minimum when:

λ + 1
c2pt

=
−2(λ + 1)2t−2c−3

p + 3(t − 1)λ−1

2
√(

λ+1
cpt

)2
+ 3(t−1)cp

λ

⇔ 4(λ + 1)4λ2 + 12t2(t − 1)λ(λ + 1)2c3p = (3(t − 1)t2c3p − 2λ(λ + 1))2
⇔ t2(t − 1)c3p = (8/3)λ(λ + 1)2.

Thus we take:

cmin
p =

(
8
3

· λ(λ + 1)2

(t − 1)t2

)1/3

.

As a consequence, putting together with (7) we obtain:

cb = 2
(

1
32

· t − 1
t

· λ + 1
λ

)1/3
.

We conclude that the minimal complexity of the sieving on polynomials of degree
t − 1 in this case is:

LQ

(
1
3

,

(
64
9

· t − 1
t

· λ + 1
λ

)1/3
)

. (8)

If p = LQ(2/3, cp) can only be written with a constant cp close to zero, it is
better in practice to write it as p = LQ(lp, c′

p) with lp < 2/3 and a constant c′
p

higher than cp, and to apply afterwards the previous algorithm. Nonetheless, if
we fix p = LQ(2/3, cp), when cp tends to zero the best choice is to force t to tend
to infinity (Figure 3). Theoretically, it is interesting to see that t → ∞ yields
the expected limit:

LQ

(
1
3

,

(
64
9

· λ + 1
λ

)1/3
)

which is the asymptotic complexity of the p = LQ(lp, cp) case with 1/3 � lp <
2/3.

Looking at the Optimal Case: Sieving on Linear Polynomials
Let us go back to the minimal complexity that appears in (8). Consider-
ing that the asymptotic complexity in GNFS [JLSV06] for the same case is

The Special Number Field Sieve in Fpn 59

LQ(1/3, (128/9).(t − 1/t)1/3), we remark that for each algorithm our variant
multiplied by a factor λ+1

2λ the cube of the second constant of the complexity
in the Lq notation. In particular, this gives an interesting result when we are
sieving on linear polynomials, i.e. when t − 1 = 1. Replacing t by 2 in (8), we
find that sieving on linear polynomials leads to the following complexity:

LQ

(
1
3

,

(
32
9

· λ + 1
λ

)1/3
)

.

This has to be compared with the asymptotic complexity in GNFS [JLSV06]
for the same case which is LQ(1/3, (64/9)1/3). Again, as soon as λ � 2, the
complexity of our SNFS is clearly better than the one in the general case.

6.3 Algorithm for Larger p

The p = LQ(lp, cp) Case with 2/3 < lp < 1
We recall that sieving on linear polynomials in this case is sufficient. Let A be
the bound on the coefficients of the polynomials we are sieving over, and B
the smoothness bound. Again, balancing the size of the sieving space A2 and the
runtime of the linear algebra B2 leads to A = B. We assume that we can express
B as B = LQ(1/3, cb). The product of the two norms is as usual bounded by
Θ2 log(n)λB(λ+1)np1/λ. Due to the size of n in this case, Θ2 and log(n)λ are
negligible compared to B(λ+1)np1/λ. Let us develop the logarithm of this new
bound: log(B(λ+1)np1/λ) = n log B+λn log B+(1/λ) log p. First, we remark that
we have n log B = log LQ(4/3 − lp) = log LQ(l) with l < 2/3. Setting besides:

λn = cl

(
log Q

log log Q

)1/3
(9)

with cl to be determined later on, we obtain λn log B + (1/λ) log p =
log(LQ(2/3, cbcl + 1/cl)). Thus Bn is negligible compared to Bλnp1/λ. More-
over, Bλnp1/λ comes to a minimum when:

cl = 1/
√

cb. (10)

The product of the two norms is so bounded by LQ(2/3, 2√
cb). Hence the prob-

ability that it is B-smooth is LQ(1/3, −2/(3√
cb)). As usual, we equalize B with

the inverse of the probability. This yields cb = 2/(3√
cb) and then cb = (4/9)1/3.

Putting this value in (10), we get cl = (3/2)1/3. The constraint (9) over λ be-
comes:

λ = 1
n

(
3 log Q

2 log log Q

)1/3
.

Finally, the asymptotic complexity of the algorithm for this degree λ is:

LQ(1/3, (32/9)1/3).

60 A. Joux and C. Pierrot

This has to be compared with the complexity of GNFS in the same case, which
is LQ(1/3, (64/9)1/3).

The Boundary Case : lp = 2/3
When lp = 2/3 matters are more complicated since Bn is no more negligible. The
product of the norms is now rewritten as LQ(2/3, cb(cl + 1/cp) + 1/cl). Again,
this is minimized at cl = 1/

√
cb. However, it now becomes LQ(2/3, 2√

cb +cb/cp)
and the probability of smoothness is LQ(1/3, −(1/3).(2/

√
cb)+1/cp)). Equating

the opposite of the second constant to cb yields (3cb + 1/cp)2 = 4/cb and finally:

9c3b − 6
cp

c2b + 1
c2p

cb − 4 = 0.

This equation leads to the pink curve represented in Figure 3. When cp tends to
infinity, we recover the (32/9)1/3 constant in the complexity.

The p = LQ(1, cp) Case
The analysis follows exactly the previous one, except that we have a sim-
pler expression of the extension degree n = 1/cp. Setting again λ =
cp(3 log Q)1/3(2 log log Q)−1/3, we obtain the final asymptotic complexity
LQ(1/3, (32/9)1/3). In particular, this applies on finite fields of prime order,
since n = 1 implies that p can be written as p = Lp(1, 1). We recall that the
original SNFS applies on such fields of prime order and has the same complexity
LQ(1/3, (32/9)1/3) – see [Sch10, Sch08, HT11].

7 Conclusion

In this paper, we adapted the Special Number Field Sieve to compute dis-
crete logarithms in Fpn when p is obtained by evaluation of a polynomial with
small coefficients. More precisely, for p = LQ(lp, cp) with 1/3 � lp < 2/3
our variation yields a complexity of LQ(1/3, [(64/9) · (λ + 1)/λ)]1/3) where λ
is the small degree of the polynomial P which gives the characteristic p after
evaluation. This should be compared with the previous LQ(1/3, (128/9)1/3) in
the General High Degree Number Field Sieve. Likewise, for p = LQ(2/3, cp)
we make the asymptotic heuristic complexity drop from LQ(1/3, (64/9)1/3) to
LQ(1/3, [(32/9) · (λ + 1)/λ]1/3). For larger p (p = LQ(lp, cp) with 2/3 < lp < 1),
it goes down from LQ(1/3, (64/9)1/3) to LQ(1/3, (32/9)1/3) for some λ with a
suitable size compared with p.

Thankfully, our improved NFS in the pairing-based case essentially counter-
balances a technical mistake in the analysis of the security of many pairing-based
curves. As a consequence, it is not necessary to change the practical parameters
of current pairing-based cryptosystems in large characteristic.

The Special Number Field Sieve in Fpn 61

References
[BF03] Boneh, D., Franklin, M.K.: Identity-based encryption from the Weil pairing.

SIAM J. Comput. 32(3), 586–615 (2003)
[BLS03] Barreto, P.S.L.M., Lynn, B., Scott, M.: On the selection of pairing-friendly

groups. In: Matsui, M., Zuccherato, R.J. (eds.) SAC 2003. LNCS, vol. 3006,
pp. 17–25. Springer, Heidelberg (2004)

[BLS04] Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing.
J. Cryptology 17(4), 297–319 (2004)

[BN05] Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order.
In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331.
Springer, Heidelberg (2006)

[CC03] Cha, J.C., Cheon, J.H.: An identity-based signature from gap diffie-hellman
groups. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 18–30.
Springer, Heidelberg (2002)

[FST10] Freeman, D., Scott, M., Teske, E.: A taxonomy of pairing-friendly elliptic
curves. J. Cryptology 23(2), 224–280 (2010)

[Gor93] Gordon, D.M.: Discrete logarithms in GF(p) using the number field sieve.
SIAM J. Discrete Math. 6(1), 124–138 (1993)

[HT11] Hayasaka, K., Takagi, T.: An experiment of number field sieve over gF(p)
of low hamming weight characteristic. In: Chee, Y.M., Guo, Z., Ling, S.,
Shao, F., Tang, Y., Wang, H., Xing, C. (eds.) IWCC 2011. LNCS, vol. 6639,
pp. 191–200. Springer, Heidelberg (2011)

[JL06] Joux, A., Lercier, R.: The function field sieve in the medium prime case.
In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 254–270.
Springer, Heidelberg (2006)

[JLSV06] Joux, A., Lercier, R., Smart, N.P., Vercauteren, F.: The number field sieve in
the medium prime case. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117,
pp. 326–344. Springer, Heidelberg (2006)

[Jou04] Joux, A.: A one round protocol for tripartite Diffie-Hellman. J. Cryptol-
ogy 17(4), 263–276 (2004)

[Kal97] Kalkbrener, M.: An upper bound on the number of monomials in determi-
nants of sparse matrices with symbolic entries. Mathematica Pannonica 8,
73–82 (1997)

[KM05] Koblitz, N., Menezes, A.: Pairing-based cryptography at high security levels.
In: IMA Int. Conf., pp. 13–36 (2005)

[LV01] Lenstra, A.K., Verheul, E.R.: Selecting cryptographic key sizes. J. Cryptol-
ogy 14(4), 255–293 (2001)

[Nat03] National Institute of Standards and Technology. Special publication 800-56:
Recommendation on key establishment schemes, Draft 2.0 (2003)

[Pat02] Paterson, K.G.: Id-based signatures from pairings on elliptic curves. IACR
Cryptology ePrint Archive, 2002:4 (2002)

[Sch08] Schirokauer, O.: The impact of the number field sieve on the discrete loga-
rithm problem in finite fields. Algorithmic Number Theory 44 (2008)

[Sch10] Schirokauer, O.: The number field sieve for integers of low weight. Math.
Comput. 79(269), 583–602 (2010)

[SK03] Sakai, R., Kasahara, M.: Id based cryptosystems with pairing on elliptic
curve. IACR Cryptology ePrint Archive, 2003:54 (2003)

Efficient Semi-static Secure Broadcast

Encryption Scheme

Jongkil Kim, Willy Susilo, Man Ho Au, and Jennifer Seberry

Centre for Computer and Information Security Research
School of Computer Science and Software Engineering

University of Wollongong, Australia
jk057@uowmail.edu.au, {wsusilo,aau,jennie}@uow.edu.au

Abstract. In this paper, we propose a semi-static secure broadcast en-
cryption scheme with constant-sized private keys and ciphertexts. Our
result improves the semi-static secure broadcast encryption scheme in-
troduced by Gentry and Waters. Specifically, we reduce the private key
and ciphertext size by half. By applying the generic transformation pro-
posed by Gentry and Waters, our scheme also achieves adaptive security.
Finally, we present an improved implementation idea which can reduce
the ciphertext size in the aforementioned generic transformation.

Keywords: semi-static, broadcast encryption, constant size.

1 Introduction

A broadcast encryption [7] is a cryptographic primitive that allows a sender to
encrypt a message to a set of users so that only the users within that set can
decrypt it and obtain the message. In addition, the set of receivers is not fixed and
an arbitrary set of users can be chosen by the sender at the time of encryption.
Broadcast encryption is suggested as being efficient in a system having a large
number of group members, and it also has many practical applications such as
its use in secure database system, DRM (digital right management) and group
communications. In a broadcast encryption system, any subset of users can be
included in a broadcast, but decryption of the chiphertexts is only possible for
users included in the broadcast using their own private keys.

There are many desirable properties of broadcast encryption. It can be fully
collusion resistant, which means that a ciphertext cannot be decrypted even if
all users who are not included in the broadcast encryption collude. This is an es-
sential property of a secure broadcast encryption. Having stateless receivers [15]
is another desirable property. In a broadcast encryption with stateless receivers,
any set of receivers can be included in a broadcast encryption without requiring
any update of private keys.

Multi-receiver key encapsulation [22] (mKEM) is a key encapsulation scheme,
which allows multiple parties to share a secret key efficiently, and the notion
of mKEM has been extended to multi-receiver identity-based key encapsula-
tion [1] [2] (mID-KEM) by combining it with an identity-based encryption [20].

Z. Cao and F. Zhang (Eds.): Pairing 2013, LNCS 8365, pp. 62–76, 2014.
c© Springer International Publishing Switzerland 2014

Efficient Semi-static Secure Broadcast Encryption Scheme 63

Identity-based broadcast encryption [5,19] is a combination of broadcast en-
cryption and identity-based encryption. Although it shares many similar con-
cepts with mID-KEM, an identity-based broadcast encryption focuses more on
a broadcast encryption as a generalization of an identity-based encryption. This
means that an identity-based encryption is a special case of an identity-based
broadcast encryption with a single receiver in the broadcast. In an identity-
based broadcast encryption, encryptions and decryptions are based on receivers’
identities, in which the recipients in a normal broadcast encryption are usu-
ally indexed sequentially from 1 to n. The most important difference between
broadcast encryption and identity-based broadcast encryption is the number of
users in the system. Identity-based broadcast encryptions are usually designed
to support exponentially many users since user identities are merely bit-strings
of arbitrary-size and hence, they are unknown during the system setup.

Adaptive security, also known as full security, of a broadcast encryption was
introduced by Gentry and Waters [9]. In this security model, an adversary can
adaptively select a target set by using public parameters and previously com-
promised private keys. Static security, as defined by [3], is a weaker version of
adaptive security of a broadcast encryption. In the static security model, an
adversary must declare the target set he/she wants to attack before observing
public parameters. A Semi-static security model [9] is half-way between a static
and an adaptive security model. Similar to the case in a static security model,
an adversary is still required to declare a potential target set prior to setting
public keys in a semi-static security model. However, the adversary can select
any target set to be challenged, provided that the target set is a subset of the
previously declared potential target set.

In this paper, we improve the semi-static secure broadcast encryption of Gen-
try and Waters. As in Gentry and Waters’ scheme, our scheme offers semi-static
security and is fully collusion-resistant. In addition, receivers are stateless re-
ceivers, and the sizes of the public key and the private key do not depend on
the total number of users. Our scheme also features very short private keys
and ciphertexts and is computationally more efficient than Gentry and Waters’
scheme. Based on the transformation technique from [9], our scheme can achieve
adaptive security while maintaining efficiency.

The rest of this paper is organized as follows. In the next section, we will
review some related work. We will highlight our contributions and compare them
to existing schemes in the literature. In Section 3, we will review some definitions
and complexity assumptions that will be used throughout the paper. In Section
4, we will first describe semi-static secure broadcast encryption and subsequently
revisit the construction by Gentry and Waters. In Section 5, we will present our
construction that will improve Gentry and Waters’ scheme, together with its
security analysis. In Section 6, we will present the transformation of our scheme
to achieve adaptive security, following the transformation technique from [9].
We will also present a technique in the implementation of the scheme to remove
the linear-sized tag required in the generic transformation. Finally, Section 7
concludes the paper.

64 J. Kim et al.

2 Related Works

Since the introduction of broadcast encryption as a revocation system [15],
a number of several fully collusion resistant broadcast encryption schemes
have been proposed. [6,10,11] A fully collusion resistant broadcast encryption
scheme which has short ciphertext was proposed by Boneh, Gentry and Waters
(BGW) [3]. They introduced a broadcast encryption scheme with a constant size
private key and ciphertext in the static security model, then generalized it to
achieve O(

√
n) size ciphertext. As a compensation for generalization, they re-

duced the size of the public key from O(n) to O(
√
n). A similar achievement in

identity-based broadcast encryption scheme was introduced Delerablée [5]. Del-
erablée’s work offers constant size private keys and ciphertexts, and it supports
exponentially many identities in the random oracle model.

Gentry and Waters [9] considered adaptive security from a different approach.
They first introduced semi-static security, in which efficient schemes can be con-
structed. Then, they presented a generic transformation to achieve adaptive
security with only a small impact on the ciphertext size. Specifically, the result-
ing ciphertext size is doubled and a component, called a ‘tag’ is added, which
has a space complexity of O(|S|) where S is the set of receivers of a broadcast.
For a normal broadcast encryption, this tag is of |S|-bit and can be removed in
the random oracle model. In addition, they introduced two broadcast encryp-
tion schemes that satisfy semi-static security. Both of the schemes have constant
sized ciphertext. In contrast, the first scheme has O(n) private key size, while
the second scheme has a constant size private key.

A revocation system [15,16] where only non-revoked users can decrypt cipher-
texts is a type of broadcast encryption system and is comparable to semi-static
broadcast encryption. Indeed, the selective secure revocation system and semi-
static broadcast encryption offer similar functions when the encrypter in the
semi-static broadcast encryption only chooses the set of non-revoked users to be
included in the broadcast. However, it seems that Gentry and Waters’ technique
is not applicable to transform selectively secure revocation to offer adaptive se-
curity, as noted in [13].

Although our scheme and [9] can achieve adaptive security in broadcast en-
cryption, it is only adaptive chosen plaintext attack (CPA) secure. Recently, a
few adaptively chosen ciphertext attack (CCA) secure schemes were introduced,
including the schemes by Malek and Miri [14] and Ren and Gu [18], which fea-
ture constant size ciphertexts and private keys of size O(n). In addition, Phan
et al. [17] suggested a broadcast encryption scheme with constant size private
key and ciphertext under a non standard assumption.

2.1 Our Contributions

Compared with Gentry and Waters’ semi-static broadcast encryption scheme
with constant size private key and ciphertext (denoted as GWSS throughout this
paper), our construction offers a reduced-size private key and ciphertext. Also, in
terms of computation, the number of pairing and exponentiation computations

Efficient Semi-static Secure Broadcast Encryption Scheme 65

are reduced. While several adaptively secure broadcast encryption schemes have
been introduced recently, our semi-static secure scheme is still important because
a semi-static secure broadcast encryption scheme can be transformed into an
adaptively secure broadcast encryption scheme. We compare the efficiency of
our scheme with other broadcast encryption schemes in Table 1. Our scheme
is quite competitive when we consider both efficiency and security. The only
scheme offering better efficiency is the broadcast encryption scheme that was
suggested by Phan et al. [17]. Unfortunately, this scheme is based on a non-
standard assumption.

Table 1. Comparison of efficiency and security of Broadcast Encryption schemes

Pub. Key Priv. Key Ciphertext Pairing Exponentiation Security

MM [14] O(n) O(n) O(1) 0/2 O(|S|)/O(|S|) ACCA

RG [18] O(n) O(n) O(1) 3/3 O(|S|)/O(1) ACCA

PPSS [17] O(n) O(1) O(1) 1/2 O(1)/O(1) ACCA

CDb [5] O(�) O(1) O(1) 0/2 O(|S|)/O(|S|) SCCA

BGW [3] O(n) O(1) O(1) 1/2 O(1)/O(1) SCCA

GWSS [9] O(�) O(1) O(1) 2/2 O(�)/O(�) SSCPA

GWa
SS [9] O(�) O(1) O(|S|) 4/2 O(�)/O(�) ACPA

GWIBBE [9] O(
√|S|) O(1) O(

√|S|) O(
√|S|)/2 O(|S|)/O(

√|S|) ACPA

Our scheme O(�) O(1) O(1) 1/2 O(�)/O(�) SSCPA

Our schemea O(�) O(1) O(1) or O(�) 2/2 O(�)/O(�) ACPA
a

An adaptively secure scheme transformed from semi-static secure schemes
b

In the random oracle model

3 Definitions and Complexity Assumptions

3.1 Broadcast Encryption System

For simplicity, the definition of a broadcast encryption system is often replaced
by a key encapsulation system. Through a key encapsulation system, multiple
receivers participating in a broadcast share a symmetric key for further secure
communications. We introduce the definition of a semi-static broadcast encryp-
tion system, which is useful to understand our scheme, based on the definition
of an adaptively secure broadcast encryption system [9]. It consists of four algo-
rithms, setup (Setup), private key generation (KeyGen), encapsulation (Enc),
and decapsulation (Dec) as defined below.

Setup(λ, n, �) takes as input the number of receivers (n) and the maximal size
of a broadcast recipient group � (≤ n). It outputs a public/master secret key
pair 〈PK,MSK〉.

KeyGen(i, MSK) takes as input an index i ∈ {1, ..., n} and the secret key
MSK. It outputs a private key di.

66 J. Kim et al.

Enc(S, PK) takes as input a subset S ⊆ {1, ..., n}, a public key PK and a
message M to encrypt. If |S| ≤ �, it outputs a pair 〈Hdr,K〉 where Hdr is
called the header and K ∈ K is a message encryption key.

Dec(S, i, di, Hdr, PK) takes as input a subset S ⊆ {1, ..., n} an index i ∈
{1, ..., n}, a private key di for i, a header Hdr, and the public key PK. If
|S| ≤ � and i ∈ S, then the algorithm outputs the message encryption key
K ∈ K.

Correctness Property. For the correctness, the following property must be
satisfied.

For S = {1, ..., n} where |S| ≤ � ≤ n, let (PK, SK1, ..., SKn) ← Setup(λ, n, �),
and 〈Hdr,K〉 ← Enc(S, PK). Then, if i ∈ S, Dec(S, i, di, Hdr, PK) = K.

It should be noted that the definition of a semi-static secure broadcast encryp-
tion system above can be easily extended to encrypt messages using the standard
key encapsulation mechanism/data encapsulation mechanism (KEM/DEM)
transformation [21] [4].

3.2 Bilinear Maps

Let p be a large prime number. Let G1, G2 be two groups of order p, and g be
a generator of G1. e : G1 × G1 → G2 is a bilinear map satisfying the following
properties:

1. Bilinearity: For all, u, v ∈ G1 and a, b ∈ Z, e(ua, ub) = e(u, v)ab.
2. Non-degeneracy: e(g, g) /∈ 1.
3. Computability: There exists an efficient algorithm to compute e(u, v), ∀u, v ∈

G1.

3.3 Complexity Assumptions

Definition 1. (The Decision Bilinear Diffie-Hellman Exponent (DB-
DHE) Sum Problem for (S, m))[8] Fix S ⊂ Z and m ∈ Z \ (S + S). Let G
and GT be groups of order p with bilinear map e : G×G → GT , and let g be a gen-
erator for G. Set α← Z∗

p and b ← {0, 1}. If b = 0, set Z ← e(g, g)α
m

;otherwise,
set Z ← GT . Output

{gα
i

: i ∈ S} and Z

The problem is to guess b. The specific BDHE Sum instance we use in our
security analysis is for m = 4d+ 4�− 1 and

S = [0, �− 2] ∪ [d+ �, 2d+ �− 1] ∪ [2d+ 2�, 2d+ 3�− 1]

∪[3d+ 3�, 4d+ 3�] ∪ [4d+ 4�, 5d+ 4�+ 1]

where d = n+ 2�.

Also, we define AdvBDHESA,n,�(λ) as the advantage of an algorithm A to solve
the decision BDHE Sum problem as defined above.

AdvBDHESA,n,�(λ) = |Pr[b = b′]− 1/2|.

Efficient Semi-static Secure Broadcast Encryption Scheme 67

4 Semi-static Secure Broadcast Encryption

4.1 Security Definition

Static secure broadcast encryption is a weaker notion of adaptively secure broad-
cast encryption. In a static secure broadcast encryption, the adversary must de-
clare the target set he/she wants to attack before Setup, and ask a challenge
against exactly the same target set in Challenge. Semi-static secure broadcast
encryption is in between static security and adaptive security. In a semi-static
secure broadcast encryption, the adversary must also let the challenger know
the target set before Setup in the same way that static secure requires, but the
adversary makes a challenge for any subsets of the target set which the adversary
has declared. We review the definition given in Gentry and Waters [9], which is
a game between the challenger and the adversary.

Both the adversary and the challenger are given as input �, i.e., the maximal
size of a set of receivers S.

Init: The adversary A first outputs a set S∗ ⊆ {1, ..., n} of identities that
he/she wants to attack (with |S| ≤ �), and let k = |S|.

Setup: The challenger runs Setup(λ, �) to obtain a public key PK. He/she
gives A the public key PK.

Extract: The adversary A adaptively issues queries q1, ..., qn−k, where qi is
that the challenger runs KeyGen on ith element of S∗c = {1, ..., n} − S∗

and forwards the resulting private key to the adversary.
Challenge: If Extract is over, the challenger runs Encrypt algorithm to

obtain (Hdr∗, K) = Encrypt(S̃, PK) where K ∈ K, and any S̃ ⊆ S∗. The
challenger set K0 = K, and K1 to a random value in K, then randomly
selects b ← {0, 1}. The challenger returns (Hdr∗, Kb) to A.

Guess: Finally, the adversary A outputs a guess b′ ∈ {0, 1} and wins the game
if b = b′.

In the definition above, the indices of users were noted as ID. However, this
is only for the generalization of the definition. For a normal broadcast encryp-
tion, the values of ID are taken from the set {1, . . . , n} where n is an integer
representing the total number of users and is polynomial in the security param-
eter. Also, we define AdvBrSS

A,n,�(λ) be the advantage of algorithm A in winning
the semi-static security game through at most � users that can be included a
broadcast if the system has total n users. It should be noted that the maximum
number of extraction queries in this case is n−k in the definition above because
A cannot make private key queries for users in S∗.

4.2 Semi-static Secure Broadcast Encryption by Gentry and Waters
[9]

Our main contribution is to improve the efficiency of the semi-static secure
broadcast encryption from [9]. However, their construction of semi-static se-
cure broadcast encryption was not separately written down because it can be

68 J. Kim et al.

obtained by simplifying adaptively secure identity-based broadcast encryption.
For comparison with our algorithm, it is helpful to rewrite their semi-static se-
cure broadcast encryption scheme clearly based on their description and proof.
Let GroupGen(λ, n, �) be an algorithm that outputs suitable bilinear group
parameters 〈G,GT , e〉, where G is of order p ≥ n+ �.

Setup(n, �): Run 〈G,GT , e〉 ← GroupGen(λ, n, �). Set g1, g2
R←− G. Set

α, β, γ
R←− Zp. Set ĝ1 ← gβ1 and ĝ2 ← gβ2 . PK contains a description of

〈G,GT , e〉, the parameters n and �, along with gγ1 , g
γ·α
1 and the set

{gαj

1 , ĝα
j

1 , ĝα
k

2 : j ∈ [0, �], k ∈ [0, �− 2]}.

Generate a random key κ for a PRF Ψ : [1, n] → Zp. The private key is
SK ← (α, γ, g2, κ).

KeyGen(i, SK): set ri ← Ψκ(i) and output the private key

di ← 〈ri, hi〉, where hi ← g
γ−ri
α−i

2 .

Enc(S, PK): Let k = |S|. Parse S as {i1, ..., ik}. Set ij ← n+j for j ∈ [k+1, �].

Set P (x) =
∏�

j=1(x − ij). Set t
R←− Zp and set K ← e(g1, ĝ2)

γ·α�−1·t. Next,
set

Hdr ← 〈C1, C2, C3, C4〉 ← 〈ĝP (α)·t
1 , gγ·t1 , gt1, e(g1, ĝ2)

α�−1·t〉.
Output 〈Hdr,K〉.

Dec(S, i , di, Hdr, PK): Suppose i ∈ S = {i1, ..., ik}. Define P (x) as above.

Let Pi(x) = x�−1 − P (x)
x−i . Set

K = e(C1, hi) · e(C2 · C−ri
3 , ĝ

Pi(α)
2) · Cri

4 .

Correctness. Note that K = K1 ·K2, where we gather the terms containing
a γ in K1, and the other terms in K2.

K1 = e(C1, g
γ
2)

1/(α−i) · e(C2, ĝ
Pi(α)
2).

K2 = e(C1, g
−ri/(α−i)
2) · e(C3, ĝ

Pi(α)
2)−ri · Cri

4 .

We have that

K
1/t
1 = e(g1, ĝ2)

γ(P (α)/(α−i)+Pi(α)) = e(g1, ĝ2)
γ·α�−1

.

We also have that

K
1/t
2 = e(g1, ĝ2)

−ri·P (α)/(α−i)−ri·Pi(α)+ri·α�−1

= e(g1, ĝ2)
ri·(α�−1−Pi(α)−P (α)/(α−i))

= e(g1, ĝ2)
0 = 1

as required.

Efficient Semi-static Secure Broadcast Encryption Scheme 69

5 Our Scheme

Our scheme reduces the size of private keys by removing the randomness ri in
GW scheme. Below we give an intuition for the reason that we are able to reduce
the private key size (which in turn allows reduction in ciphertext size). Roughly

speaking, the key structure, (ri, g
γ−ri
α−i

2) for master key (γ, α) and generator g2,
of the GW scheme is commonly used to handle adaptive private key queries.
However, we observe that this capability is not required since the goal is to
achieve semi-static security. Based on this observation, we are able to remove
the randomness ri in the private key. Additionally, upon successful removal of
ri, we are also able to reduce the ciphertext size by half though removing the
component (C3, C4) which was used to cancel the effect of ri in the private key.

To be more specific, recall that in the security proof of GW scheme, the prob-
lem instance given to the simulator contains various power of α in the exponents.
That is, gα

j

for a set of j and a generator g. The simulator chooses a polynomial
f(x) of some suitable degree and sets γ = f(α). While the simulator cannot
compute the value γ, the public key is computable because it is at the form
of gγ = gf(α). In order to generate a private key for value i, the simulator is

required to compute a value related to g
γ−ri
α−i . This is where ri is needed in GW’s

proof: for any value i, the simulator can set ri = f(i). Since γ is f(α), this
ensures (α− i) is a factor of γ−ri because the latter is equivalent to f(α)−f(i).
Note that indeed the simulator is capable of generating private key for any i.

As discussed, our goal is to achieve semi-static security and thus the capa-
bility of handling adaptive private key queries is not necessary. Our simple key
structure can be proven as follows. Since any query i must come from the set
Ṡ = {1, . . . , n} \ S∗, the simulator in our scheme sets the polynomial f(x) to be
divisible by (x − i) for all i ∈ Ṡ. That is, f(x) =

∏
i∈Ṡ(x + i)f ′(x)1 for some

random polynomial f ′(x) that is also chosen by the simulator. The master key γ
is then set to be f(α). Since the adversary in the semi-static setting is restricted
to query private keys from the set Ṡ, the simulator can always compute the
corresponding private key since γ = f(α) is always divisible by (x + i) for all
i ∈ Ṡ. As such, we eliminate the need of randomness ri which in turns remove
the ciphertext component (C3, C4).

Our scheme has identical Setup with GWSS , which means the public key
remains the same as GWSS . However, in KeyGen, the random element ri of a
private key in GWSS was removed. As a result of the removal, Enc and Dec
become simpler. Also, the size of private keys and ciphertexts are reduced by
50% and less computation are required. The detail of the scheme is as follows.

Let GroupGen(λ, n, �) be an algorithm that outputs suitable bilinear group
parameters 〈G,GT , e〉, where G is of order p ≥ n+ �.

Setup(n, �): Run 〈G,GT , e〉 ← GroupGen(λ, n, �). Set g1, g2
R←− G. Set

α, β, γ
R←− Zp. Set ĝ1 ← gβ1 and ĝ2 ← gβ2 . PK contains a description of

1 We use the (x + i) instead of (x − i) as the factor since it appears to be easier to
work with in our case.

70 J. Kim et al.

〈G,GT , e〉, the parameters n and �, along with gγ1 , g
γ·α
1 and the set

{gαj

1 , ĝα
j

1 , ĝα
k

2 : j ∈ [0, �], k ∈ [0, �− 2]}.

The private key is SK ← (α, γ, g2).
KeyGen(i, SK): Output the private key

di ← g
γ

α+i

2 .

Enc (S, PK): Let k = |S|. Parse S as {i1, ..., ik}. Set ij ← n+j for j ∈ [k+1, �].

Set P (x) =
∏�

j=1(x + ij). Set t
R←− Zp and set K ← e(g1, ĝ2)

γ·α�−1·t. Next,
set

Hdr ← 〈C1, C2〉 ← 〈ĝP (α)·t
1 , gγ·t1 〉.

Output 〈Hdr,K〉.
Dec (S, i , di, Hdr, PK): Suppose i ∈ S = {i1, ..., ik}. Define P (x) as above.

Let Pi(x) = x�−1 − P (x)
x+i . Set

K = e(C1, di) · e(C2, ĝ
Pi(α)
2).

Correctness. The correctness of our scheme is shown as follows.

K1/t = e(ĝ
P (α)
1 , gγ2)

1/(α+i) · e(gγ1 , ĝ
Pi(α)
2)

= e(g1, ĝ2)
γ(P (α)/(α+i)+Pi(α))

= e(g1, ĝ2)
γ·α�−1

.

�

It was modified to a semi-static construction to achieve constant size private
key and ciphertext. Thus, as a broadcast encryption in the semi-static security
model, this construction can be optimized as per our scheme.

5.1 Security Analysis

In this section, we shall prove that our scheme remains semi-static secure.

Theorem 1. Let A be a semi-static adversary against the above broadcast en-
cryption system that makes at most n−|S∗| queries. Then, there exists algorithm
B such that

AdvBrSS
A,n,�(λ) ≤ AdvBDHESB,q,�(λ) + 2/p

where B runs in time t(A) +O((n+ �)2 · λ3) at most, assuming exponentiations
take time O(λ3).

Proof. Let us assume that BDHE Sum instance {gαi

: i ∈ S} is given for m =
4d+ 4�− 1 and

S = [0, �− 2] ∪ [d+ �, 2d+ �− 1] ∪ [2d+ 2�, 2d+ 3�− 1]

Efficient Semi-static Secure Broadcast Encryption Scheme 71

∪[3d+ 3�, 4d+ 3�] ∪ [4d+ 4�, 5d+ 4�+ 1]

where d = n+ 2�.

Init A selects S∗ ⊆ [1, n] and sends S∗ to B.

Setup B randomly generates a0, a1, a2
R←− Z∗

p, and implicitly sets k = |S∗|.
Then, B parses S∗ as {i1, ..., ik} and sets ij ← n + j for j ∈ [k + 1, �] and

P (x) =
∏�

j=1(x + ij). Also, let f(x) =
∏

i∈[1,n]\S∗(x + i) · f ′(x), and randomly

construct f ′(x) that is a d−n+ k degree polynomial not to have common roots
with P (x). f(x) is constructed in this way because f(x) has to be divided by
(x + i) to generate valid private keys if identity i does not belong to the target
set S∗.

Now, B sets
β ← a0 · α−d−�, γ ← f(α),

and
g1 ← ga1·α4d+4�

, g2 ← ga2·αd+�

, ĝ1 ← gβ1 , ĝ2 ← gβ2 .

Then, all public keys which are gγ1 , g
γ·α
1 and

{gαj

1 , ĝα
j

1 , ĝα
k

2 : j ∈ [0, �], k ∈ [0, �− 2]}

can be computed from the instance. Then, B send PK to A.

Extract. If A makes a private key query against i, B computes

di ← g
γ

α+i

2

and sends di to A. Notice that fi(x) ← f(x)/(x + i) is a polynomial of degree
d− 1 for all i ∈ [1, n] \ S∗. Hence, B can calculate

g
f(α)
α+i

2 = ga2α
d+�·fi(α)

because {gαi

: i ∈ [d+ �, 2d+ �− 1]} is given in the instance.

Challenge. For simplifying the notations, let g3 = gα
−d−�

1 = ga1·α3d+3�

, and

ĝ3 = gβ3 . Then, g3 and ĝ3 are only possible to be computed from the BDHE Sum
instance

{gαj

3 , ĝα
k

3 : j ∈ [0, d] ∪ [d+ �, 2d+ �+ 1], k ∈ [0, �− 1] ∪ [d+ �, 2d+ �]}.

If A sends a set S̃ ⊆ S∗, B computes a polynomial t(x) of degree d + � − 1
satisfying

t(x)f(x)|i = 0, if i ∈ [d+ 1, d+ �− 1] t(x)f(x)|d = 1.

t(x)P (x)|i = 0, if i ∈ [�, d+ �− 1].

72 J. Kim et al.

where f(x)|i is the coefficient of xi in function f .
t(x) exists due to Lemma 1 of [9]. B now sets the ciphertext values:

Hdr∗ ← 〈C1, C2〉 ← 〈ĝP (α)·t(α)
3 , g

f(α)·t(α)
3 〉.

K ← Za0a1a2 · e(g, g)a0a1a2(f(α)·t(α)·α3d+4�−1−α4d+4�−1).

It should be noted that if Z = e(g, g)α
4d+4�−1

, K is valid because t(x)f(x)|d = 1.

Guess. Finally, A outputs a bit b′. B sends b′ to the challenger.

Almost Perfect Simulation. We show that B’s simulation is almost perfect
from the point of A. Most of our analysis is identical with GW’s analysis [9].
In a semi-static security model, the maximum number of extraction queries is
limited as n− k because A only queries private keys for receivers not in S̃.

• PK is uniformly distributed since a0, a1, a2, and α are random.
• Private key is uniformly distributed if f(x) is uniformly distributed. In order

to verify the uniformity of f(x), the information leaking to A is formalized
as follows.
◦ In Init, A gets

f(−i)
= 0 for i ∈ {S∗ ∪ [n+ 1, n+ �]}.

◦ In Setup, From the PK, A gets

f(α) = DLg1(g
γ
1).

◦ In Extract, to A, each private key query reveals

f(−i) = 0 for i /∈ S∗.

Since at most n−k extraction queries can be made, therefore the information
about f(x) to A can be formulated by total n+ �−k+1 equations described
above even if we consider all non-zero equations. Because degree of f(x) is
n+ 2�, f(x) can be random and independent. This implies that the private
key is also appropriately distributed.

• Suppose Z is random, then the statistical difference from uniform distribu-

tion is less than 2/p. Let Z = e(g, g)δ+α4d+4�−1

, then K = e(g, g)δa0a1a2 ·K ′

where K ′ is the correct key for Hdr∗. When δ = 0, there is only one possible
value of K. However, when δ
= 0, there are p− 1 equally probable values of
K depending on a0a1a2 which is non-zero.

Abort. There is no additional abortion which gives advantages to A except the
cases we mentioned in Almost Perfect Simulation part.

Running Time of Simulation. The running time of this game is dominated

by two computations, computing g
fi(α)
2 and t(x). O(n + �) exponentiation is

Efficient Semi-static Secure Broadcast Encryption Scheme 73

necessary to calculate g
fi(α)
2 for each private key query, and n − k private key

queries can be made at most. Also, for computing t(x), the algorithm must
calculate at least one column of a (d + � − 1) dimension Sylvester matrix. This
requires O(�(n + �)) algorithm with the current knowledge [9]. Therefore, the
running time of this simulation is at most about O((n+ �)2). �

6 Transforming Semi-static Security to Adaptive Security

The adaptive security model [9] is the strongest and most realistic notion in
broadcast encryption. An adversary is not required to declare any target set
before observing public keys. As such, there is no Init phase. Moreover, the set
for a challenge cipertext can be any subsets of the set of identities that has never
been queried in the Extract phase.

6.1 Transforming Semi-static Security to Adaptive Security

In addition to the semi-static security model, Gentry and Waters also showed
how to transform a semi-static secure broadcast encryption scheme to an adap-
tively secure broadcast algorithm based on the two key technique [12]. In their
technique, two keys are assigned for each user, but only one private key is allo-
cated randomly to an individual user to respond extraction queries adaptively.
Since the sender does not know which key each receiver has, the ciphertext must
be constructed for both keys. Furthermore, users can also figure out which ci-
phertext can be decrypted by their private keys through a bit included in their
private key.

We basically follow GW’s approaches to make our semi-static secure broad-
cast encryption scheme be adaptively secure. In addition to their technique, we
suggest an implementation technique to remove a linearly increasing element in
GW’s transformation. Let S be the set of receivers. The original transformation
requires that for all i ∈ S, a bit bi ∈ {0, 1} is also included in the ciphertext. In
other words, the ciphertext contains an additional component of |S|-bit.

Let S = {ID1, . . . , ID|S|} be the set of receivers. The original transformation
requires an additional one bit information for each identity IDi, denoted as bIDi ,
to be transmitted along the ciphertext. In order to transmit this information,
the transformation includes an additional bit-string t of length |S| such that
t[i] = bIDi , where t[i] represents the i-th bit of t.

In the transformation, the i-th receiver IDi ∈ S is associated with a bit t[i].
And therefore, the |S|-bit t is required.

Since decryption requires the knowledge of S, it is possible that in some
scenarios, S has to be transmitted along the ciphertext. In this case, we describe
an implementation trick that reduces the component t from |S| bits to one bit.
As the set S is normally not counted as part of the ciphertext, truly constant
size ciphertext can be achieved.

74 J. Kim et al.

Our Implementation Technique
Based on the observation that transmitting a set S and a sequence S̃, such that
for any i ∈ S̃, i ∈ S, requires the same space complexity, we are able to replace
{bi} with one single bit as follows. Denote is as the smallest value in S. Let
Sb0 = {i ∈ S \ {is}|bi = 0} and Sb1 = {i ∈ S \ {is}|bi = 1}. In other words, Sb0

and Sb1 are the partition of S \ {is} based on the bit bi.
We can construct a sequence

(
Sseparated

)
as seq(Sb0), is, seq(Sb1) where seq(S)

represents the random arrangement of elements of a set S to form a sequence (for
simplicity, it can be in the normal ascending order). The sequence Sseparated, to-
gether with a bit bis would be sufficient to recover bi for all i. For instance, the
receiver first recovers the smallest identity is from the sequence Sseparated. For any
i in the sequenceSseparated, bi = 0 if i is before is and bi = 1 otherwise. The only bit
that needs to be transmitted along with the ciphertext is therefore bis . Note that
the cost of transmitting the sequence Sseparated is identical to that of S. We do not
claim significant reduction in transmission cost in practice despite the saving in
asymptotic complexity is from O(|S|) to O(1). In practice, if the set of receivers is
to be transmitted together with the ciphertext, which is possibly true in some cases
when S is highly dynamic, the actual saving of our tricks is �log(|S|)− 1 bits only.
However, if the set S is known to the set of receivers, the trick is not applicable as
in those cases, S does not need to be transmitted repeatedly.

Our construction using Sseparated is as follows. Note that the size of Sseparated

is identical that of S.

Setup(n, �): Run 〈PK ′, SK ′〉 ← SetupSS(2n, �). Set s← {0, 1}n, Set PK ←
PK ′ and SK ← (SK ′, s). Output 〈PK, SK〉.

KeyGen(i, SK): Run d′i ← KeyGenSS(i + n · si, SK ′). Set di ← 〈d′i, si〉.
Output di.

Enc(S, PK): Generate a random set of |S| bits: t ← {ti ← {0, 1} : i ∈ S}.
Generate K ← K. Set

St0 ← {i if ti = 0 : i ∈ S}, St1 ← {i if ti = 1 : i ∈ S}
S0 ← St0 ∪ {i+ n : i ∈ St1}, 〈Hdr0, k0〉 ← EncSS(S0, PK

′)
S1 ← {i+ n : i ∈ St0} ∪ St1 , 〈Hdr1, k1〉 ← EncSS(S1, PK

′).

Set C0 ← SymEnc(k0,K), C1 ← SymEnc(k1,K), Hdr ←
〈Hdr0, C0, Hdr1, C1, bis〉 where bis is the bit for the smallest iden-
tity in is ∈ S. Output 〈Hdr,K〉. Also, replace S with the sequence
Sseparated ← {seq(Sb0), is, seq(Sb1)} where

Sb0 ← St0 \ {is}, Sb1 ← St1 \ {is}.

Dec(Sseparated, i, di, Hdr, PK): Parse di as 〈d′i, si〉 and Hdr as 〈Hdr0, C0,
Hdr1, C1, bis〉. Set S0 and S1. Run

ksi⊕ti ← DecSS(Ssi⊕ti , i, d
′
i, Hdrsi⊕ti , PK

′).

Efficient Semi-static Secure Broadcast Encryption Scheme 75

Run K ← SymDec(ksi⊕ti , Csi⊕ti). Output K.

Since we just compress t to S through Sseperated, the security analysis remains
the same as in the original Gentry and Waters’ proof. Our adaptive broadcast en-
cryption, following this generic transformation, compares favourably to the trans-
formation of GWSS since the impact of the transformation on efficiency is linear.

7 Conclusion

Gentry and Waters [9] introduced the security model and constructions for semi-
static broadcast encryption, which can be transformed to an adaptively secure
broadcast encryption. Based on their contributions, we introduced amore efficient
semi-static broadcast encryption scheme. Our scheme enjoys smaller ciphertexts,
shorter private keys and is more efficient in terms of computation cost.

We also showed that an adaptively secure broadcast encryption scheme trans-
formed from our semi-static broadcast encryption scheme is still competitive
against other adaptively secure broadcast encryption schemes that have been
introduced recently. In addition, we elaborated an implementation technique to
add to Gentry and Waters’ transformation technique, which removes the linearly
increasing part in the ciphertext. By adopting this idea, the resulting adaptively
secure broadcast encryption scheme has a constant ciphertext if the underlying
semi-static secure broadcast encryption scheme has a constant size ciphertext.

Furthermore, our scheme can be used as an identity-based broadcast encryp-
tion, but limited for polynomially many users. Extending our scheme for expo-
nentially many users might be possible following the approach introduced by
Delerablée [5], but it will rely on a random oracle.

Acknowledgements. We would like to thank the anonymous referees of Pairing
2013 for their constructive feedback to improve our paper. Additionally, we would
like to thank Madeleine Cincotta for her thorough check to improve the linguistic
quality of our paper. Finally, we would like to thank Dario Fiore who helped us to
improve the quality of our paper. The second author is supported by ARC Future
Fellowship FT0991397 and partly supported by the Natural Science Foundation
of China through project 61370190.

References

1. Baek, J., Safavi-Naini, R., Susilo, W.: Efficient multi-receiver identity-based en-
cryption and its application to broadcast encryption. In: Vaudenay, S. (ed.) PKC
2005. LNCS, vol. 3386, pp. 380–397. Springer, Heidelberg (2005)

2. Barbosa, M., Farshim, P.: Efficient identity-based key encapsulation to multiple
parties. In: Smart, N.P. (ed.) Cryptography and Coding 2005. LNCS, vol. 3796,
pp. 428–441. Springer, Heidelberg (2005)

3. Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast encryption with
short ciphertexts and private keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS,
vol. 3621, pp. 258–275. Springer, Heidelberg (2005)

76 J. Kim et al.

4. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM Journal on Com-
puting 33(1), 167–226 (2003)

5. Delerablée, C.: Identity-based broadcast encryption with constant size ciphertexts
and private keys. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833,
pp. 200–215. Springer, Heidelberg (2007)

6. Dodis, Y., Fazio, N.: Public key broadcast encryption for stateless receivers. In:
Feigenbaum, J. (ed.) DRM 2002. LNCS, vol. 2696, pp. 61–80. Springer, Heidelberg
(2003)

7. Fiat, A., Naor, M.: Broadcast encryption. In: Stinson, D.R. (ed.) CRYPTO 1993.
LNCS, vol. 773, pp. 480–491. Springer, Heidelberg (1994)

8. Gentry, C., Halevi, S.: Hierarchical identity based encryption with polynomially
many levels. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 437–456.
Springer, Heidelberg (2009)

9. Gentry, C., Waters, B.: Adaptive security in broadcast encryption systems (with
short ciphertexts). In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479,
pp. 171–188. Springer, Heidelberg (2009)

10. Goodrich, M.T., Sun, J.Z., Tamassia, R.: Efficient tree-based revocation in groups
of low-state devices. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152,
pp. 511–527. Springer, Heidelberg (2004)

11. Halevy, D., Shamir, A.: The LSD broadcast encryption scheme. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 47–60. Springer, Heidelberg (2002)

12. Katz, J., Wang, N.: Efficiency improvements for signature schemes with tight se-
curity reductions. In: Jajodia, S., Atluri, V., Jaeger, T. (eds.) ACM Conference on
Computer and Communications Security, pp. 155–164. ACM (2003)

13. Lewko, A.B., Sahai, A., Waters, B.: Revocation systems with very small private
keys. In: IEEE Symposium on Security and Privacy, pp. 273–285. IEEE Computer
Society (2010)

14. Malek, B., Miri, A.: Adaptively secure broadcast encryption with short ciphertexts.
I. J. Network Security 14(2), 71–79 (2012)

15. Naor, D., Naor, M., Lotspiech, J.: Revocation and tracing schemes for stateless
receivers. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 41–62. Springer,
Heidelberg (2001)

16. Naor, M., Pinkas, B.: Efficient trace and revoke schemes. In: Frankel, Y. (ed.) FC
2000. LNCS, vol. 1962, pp. 1–20. Springer, Heidelberg (2001)

17. Phan, D.-H., Pointcheval, D., Shahandashti, S.F., Strefler, M.: Adaptive CCA
broadcast encryption with constant-size secret keys and ciphertexts. In: Susilo, W.,
Mu, Y., Seberry, J. (eds.) ACISP 2012. LNCS, vol. 7372, pp. 308–321. Springer,
Heidelberg (2012)

18. Ren, Y., Gu, D.: Fully CCA2 secure identity based broadcast encryption without
random oracles. Inf. Process. Lett. 109(11), 527–533 (2009)

19. Sakai, R., Furukawa, J.: Identity-based broadcast encryption. IACR Cryptology
ePrint Archive, 2007:217 (2007)

20. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985)

21. Shoup, V.: A proposal for an iso standard for public key encryption. IACR Cryp-
tology ePrint Archive, 2001:112 (2001)

22. Smart, N.P.: Efficient key encapsulation to multiple parties. In: Blundo, C., Cimato,
S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 208–219. Springer, Heidelberg (2005)

Pairing Inversion via Non-degenerate

Auxiliary Pairings

Seunghwan Chang1, Hoon Hong2, Eunjeong Lee3, and Hyang-Sook Lee4

1 Institute of Mathematical Sciences, Ewha Womans University, Seoul, S. Korea
schang@ewha.ac.kr

2 Department of Mathematics, North Carolina State University, Raleigh, USA
hong@ncsu.edu

3 Institute of Mathematical Sciences, Ewha Womans University, Seoul, S. Korea
ejlee127@ewha.ac.kr

4 Department of Mathematics, Ewha Womans University, Seoul, S. Korea
hsl@ewha.ac.kr

Abstract. The security of pairing-based cryptosystems is closely related
to the difficulty of the pairing inversion problem(PI). In this paper, we
discuss the difficulty of pairing inversion on the generalized ate pairings of
Vercauteren. First, we provide a simpler approach for PI by generalizing
and simplifying Kanayama-Okamoto’s approach; our approach involves
modifications of exponentiation inversion(EI) and Miller inversion(MI),
via an auxiliary pairing. Then we provide a complexity of the modified
MI, showing that the complexity depends on the sum-norm of the integer
vector defining the auxiliary pairing. Next, we observe that degenerate
auxiliary pairings expect to make modified EI harder. We provide a suf-
ficient condition on the integer vector, in terms of its max norm, so that
the corresponding auxiliary paring is non-degenerate. Finally, we define
an infinite set of curve parameters, which includes those of typical pair-
ing friendly curves, and we show that, within those parameters, PI of
arbitrarily given generalized ate pairing can be reduced to modified EI
in polynomial time.

1 Introduction

Pairings [1, 9, 12, 13, 18, 25, 29] play an important role in cryptography [2–4,
14, 27]. The security of pairing-based cryptosystems is closely related to the diffi-
culty of the pairing inversion problem (PI): for a given pairing 〈·, ·〉, an argument
Q(or P) and a pairing value z, compute the other argument P (or Q) such that
z = 〈P,Q〉.

PI on elliptic curves was first recognized by Verheul [26] as a potentially hard
cryptographic computational problem. Satoh [23, 24] considered the polynomial
interpolations to find the x-coordinate of P for given Q and z, providing evi-
dences that support the difficulty of PI. Galbraith-Hess-Vercauteren [11] defined
PI formally and discussed two approaches for PI. (1) Try to solve PI in a single
step. (2) Solve PI by inverting exponentiation first and then inverting Miller step

Z. Cao and F. Zhang (Eds.): Pairing 2013, LNCS 8365, pp. 77–96, 2014.
c© Springer International Publishing Switzerland 2014

78 S. Chang et al.

- Since pairings on elliptic curves are computed in two steps, namely the Miller
step and the exponentiation step, they suggested inverting them in reverse or-
der to solve PI, i.e. exponentiation inversion(EI) and then Miller inversion (MI).
They discussed the possibilities on the reduction of MI to PI (precisely FAPI-1)
vice versa for Tate-Lichtenbaum pairing after the observation that the EI for
Tate-Lichtenbaum pairing can be defined as returning a random value satisfying
its exponentiation relation, which is very easy. They remarked that the situation,
of EI, is quite different for the ate pairing. Recently, [17] showed that, when a
preimage of Tate-Lichtenbaum pairing was restricted, its PI was equivalent to
the PI of the ate pairing. Kanayama-Okamoto [15] studied the PI on the atei
pairings and suggested a clever idea for a reduction of PI to EI.

In this paper, inspired by significant previous works [26, 22–24, 11, 20, 28, 15, 7],
we provide further contributions toward understanding the difficulty of pairing
inversion. In order to provide the context and the motivation for the main con-
tributions of this paper, we first review informally some of the previous works
particular [11, 15] on PI by recasting them for the generalized ate pairing of Ver-
cauteren [25], which currently is one of the most general constructions of crypto-
graphic pairings.

For a given integer vector ε, the generalized ate pairing aε : G2 × G1 → G3

takes two points P ∈ G1, Q ∈ G2 and produces a value z. It is carried out in two
steps: Miller step (M) [19] and Exponentiation step (E).

1. [Mε] γε = Zε (Q,P)
2. [Eε] z = γLε

where Zε is a certain rational function depending on the integer vector ε and L
is a certain natural number. Depending on the choice of ε, one gets a different
pairing (see [25] and Section 2.2 for details).

Pairing inversion problems are defined in two types [11]. In this paper, we
consider one of them (FAPI-1): for given Q ∈ G2, z ∈ G3, find P such that
z = aε(Q,P). Following [11, 15], we consider the two-step approach i.e., first
inverting the exponentiation step (EI) and then inverting the Miller step (MI).

For the generalized ate pairings, there is a subtlety in the formulation of EI,
as observed for example in [17], due to the fact that, for a fixed Q, the map
aε(Q, ·) : G1 → G3 is one-to-one, unlike for Tate-Lichtenbaum pairing. One
could think of three possible formulations of EI. For a given L and z, find

F1: any γ such that z = γL. (γ might not be γε)
F2: all γ’s such that z = γL. (one of them will be γε)
F3: the “right” γ such that z = γL. (γ = γε)

In [15], it is not stated explicitly which formulation of EI is intended. From
the context, we conclude that it cannot be F1. If it were F1, then we get into
a strange conclusion that PI could be solvable in polynomial time since F1 is
obviously solvable in polynomial time (due to fact that L is relatively prime to
the order of z) and [15] showed that PI can be reduced to EI. We also conclude
that it cannot be F2 either. If it were F2, then one would have to carry out

Pairing Inversion via Non-degenerate Auxiliary Pairings 79

MI for each of the exponentially many γ’s, contradicting the claim of [15] that
PI can be reduced to EI in polynomial time. Hence, the only formulation of EI
which is consistent with the claim of [15] is F3. Therefore, we will use F3 as the
formulation of EI. Summarizing, we have the following formulation of PI :

1. [EIε] Find the “right” γε from the set {γ : z = γL}
2. [MIε] Find P from γε = Zε (Q,P)

In [15], Kanayama-Okamoto proposed an interesting modification of the nat-
ural approach for PI, which amounts to the following:

1. [Choice] Choose an integer vector e (which might be different from ε), giving
rise to another generalized ate pairing, which we will call an auxiliary pairing,
which may or may not be non-degenerate.

2. [EIε,e] Find the “right” γe by carrying out several “related” exponentiation
inversions (See Section 2.3).

3. [MIe] Find P from γe = Ze (Q,P)

From now on, we will call EIε,e and MIe as the modified exponentiation inversion
and the modified Miller inversion, respectively. If e = ε, then EIε,e and MIe are
exactly same as EIε and MIε. The key idea is to choose an integer vector e which
may be different from ε, but which may be better for PI. Specifically, Kanayama-
Okamoto suggested that the integer vector e is chosen from either coefficients
of cyclotomic polynomials or (1, . . . , 1), because such e yields Ze of low degree,
making MIe easy.

This concludes the informal review of the previous works on PI (recast for the
generalized ate pairing). Finally we are ready to describe informally the main
contributions of this paper.

1. In Section 3, we provide another approach for pairing inversion (Approach 1),
by simplifying the step EIε,e of Kanayama-Okamoto’s approach. The simplic-
ity of the proposed approach significantly facilitates the subsequent inves-
tigation. We prove its correctness (Theorem 1), and then compare the two
approaches with respect to the search spaces(Theorem 2).

2. In Section 4, we provide a complexity analysis of MIe (Theorem 3). It essen-
tially says that the complexity is bounded by ||e||21 where ||e||1 stands for
the sum norm of the chosen integer vector e. Hence, in order to reduce the
complexity of MIe, one needs to choose e with small sum norm.

3. In Section 5, we provide an incremental result toward the understanding of
the complexity of EIε,e. We begin by observing that the degeneracy of the
auxiliary pairing has a potential impact on the difficulty of EIε,e (Proposi-
tion 1 and Remark 2). More precisely, if the auxiliary paring defined by the
choice of e is degenerate, then the exponential relation in EIε,e step becomes
independent of the input z, that is, the exponential relation does not capture
any information about the input. As a result, EIε,e is expected to be harder
than EIε, when such e is chosen. If the auxiliary pairing corresponding to
e is non-degenerate, then EIε,e is likely as hard as EIε. Hence, in order to

80 S. Chang et al.

reduce the complexity of EIε,e, one better choose e such that the auxiliary
paring defined by e is non-degenerate. We provide a sufficient condition on
e, in terms of the max norm of e, so that the pairing corresponding to e is
non-degenerate (Theorem 4).

4. In Section 6, we discuss when pairing inversion can be reduced to modified
exponentiation inversion EIε,e. This was inspired by Kanayama-Okamoto [15]
where pairing inversion was reduced to several (unmodified) exponentiation
inversions. Specifically we are looking for a condition on e so that MIe is easy.
As explained above, we need to find small e. Thus, one might be naturally
tempted to choose the integer vector e from either coefficients of cyclotomic
polynomials or (1, . . . , 1). However such e makes the corresponding auxil-
iary pairing degenerate. Hence the modified exponentiation inversion EIε,e
is expected to be hard. Therefore, in order to meaningfully reduce pairing
inversion to modified exponentiation inversion, one needs find e such that
it is small and the corresponding auxiliary pairing is non-degenerate. In
this section, we investigate the existence of such e in various cases. In par-
ticular, we define an infinite set of curve parameters (Definition 1), which
includes those of typical pairing friendly curves as in Table 1 of [10] and show
that, within those parameters, pairing inversion of an arbitrarily given pair-
ing can be reduced to modified exponentiation inversion in polynomial time
(Theorem 5). We furthermore provide tighter upper bounds on the num-
ber of bit operations needed by such reductions for several concrete cases
(Table 1).

2 Preliminaries

In this section, we briefly review elliptic curves, the generalized ate pairings due
to Vercauteren [25] and an approach to pairing inversion due to Kanayama-
Okamoto [15]. We encourage all the readers to skim through them, as the no-
tations and the assumptions therein will be extensively used throughout the
subsequent sections.

2.1 Elliptic Curves

We fix the basic notations for elliptic curves. Let q be a power of a prime and let
r be a prime such that gcd(q, r) = 1. Let k be the embedding degree defined as
the multiplicative order of q in F∗

r , denoted by k = ordr (q) , and L = (qk − 1)/r.
Let E be an elliptic curve defined over Fq such that r | #E(Fq). Let G1 =
E[r] ∩ ker(πq − [1]) and G2 = E[r] ∩ ker(πq − [q]) where πq : E → E denotes the
q-power Frobenius endomorphism.

2.2 Vercauteren’s Generalized Ate Pairings

We review the generalized ate pairings [25]. Let μr =
{
u ∈ F×

qk
: ur = 1

}
. Let

fn,Q, lP,Q and vP be the normalized functions with divisors n (Q) − ([n]Q) −

Pairing Inversion via Non-degenerate Auxiliary Pairings 81

(n− 1) (O) , (P)+(Q)+(−(P +Q))−3 (O) and (P)+(−P)−2 (O) respectively,
where O denotes the identity element of the group E. Let

g (X) = Xk − 1, λε (X) =

k−1∑
j=0

εjX
j, Wε(X) = det

(
g (X) λε(X)
g′ (X) λ′ε(X)

)

for ε = (ε0, . . . , εk−1) ∈ Zk. Vercauteren [25] defined a map aε : G2 ×G1 → μr

such that, for all P ∈ G1, Q ∈ G2,

aε(Q,P) = Zε (Q,P)L , where

Zε (Q,P) =

k−1∏
j=0

fεj ,qjQ(P)

k−2∏
j=0

lεjqjQ, (εj+1qj+1+···+εk−1qk−1)Q

v(εjqj+···+εk−1qk−1)Q

(P)

and showed that it is a well-defined bilinear map if r | λε (q), r2 � λε(q) and
r2 � g (q). He also showed that aε is non-degenerate if and only if r2 �Wε(q).

From now on, we will assume r | λε (q) , r2 � λε(q), r2 � g (q) and r2 �Wε(q),
so that aε is a non-degenerate pairing. We will also assume, without losing
generality, that gcd (ε0, . . . , εk−1) = 1 because the vector ε is selected as small
as possible for faster pairing computation. In summary, Vercauteren proposed
the following approach for pairings.

In: P ∈ G1, Q ∈ G2

Out: z = aε(Q,P)

1. [Mε] γε ← Zε (P,Q)
2. [Eε] z ← γLε

2.3 Kanayama-Okamoto’s Approach to Pairing Inversion

We review an approach for pairing inversion due to Kanayama-Okamoto [15].
They proposed the following approach and proved its correctness.

In: Q ∈ G2, z ∈ μr

Out: P ∈ G1 such that z = aε(Q,P).

1. [Choice] Choose e ∈ Zk such that r | λe(q) and gcd (e0, . . . , ek−1) = 1.
2. [EIε,e] Find γe by carrying out the following.

(a) Tj ← rem
(
qj , r

)
, the remainder of qj modulo r

(b) aj ← ordr(Tj)

(c) nj ←
T

aj
j −1

r
(d) Nj ← gcd(T

aj

j − 1, qk − 1)

(e) dj ←
∑aj−1

h=0 T
aj−1−h
j qjh

(f) cj ← rem(dj , Nj)
(g) c′j ← c−1

j mod r.

(h) Ue ← 1
r

∑k−1
j=0 ejTj

82 S. Chang et al.

(i) Uε ← 1
r

∑k−1
j=0 εjTj

(j) ψε ← Uε −
∑k−1

j=0 εjc
′
jnj

(k) ψ′
ε ← ψ−1

ε mod r.
(l) Find the “right” τ such that τL = zψ

′
ε

(m) Find the “right” αj such that αL
j = τLc′jnj

(n) γe ← τUe
∏k−1

j=0 α
ej
j

.

3. [MIe] Find P from γe = Ze (Q,P) .

By the “right” τ and the “right” αj , we mean the ones satisfying the condition
τ = fr,Q(P) and αj = fTj ,Q(P) for some P ∈ G1.

Remark 1. The above description is a bit different from the original one by
Kanayama-Okamoto [15] in three ways.

– They used the quantity
∏k−1

j=0 α
ej
j

τUe
for γe, which is the reciprocal of the quantity

shown above. We changed it in the current form, because it is more consistent
with the notation used in Vercauteren’s generalized pairings [25].

– They elaborated their idea for atei pairing (corresponding to a particular
class of ε) and indicated that it could be extended to the generalized ate pair-
ing of Vercauteren [25] (corresponding to a general class of ε). Indeed, such
an extension is straightforward. The above description allows arbitrary ε.

– They elaborated their idea for particular choices of e such as coefficients of
cyclotomic polynomials or (1, . . . , 1). The extension to arbitrary e is also
straightforward. The above description allows arbitrary e.

3 A Simpler Approach for Paring Inversion

In this section, we describe an approach for inverting the generalized ate pairing
of Vercauteren (Approach 1). We will use the notations introduced in Section 2.2.
Comparing to Kanayama-Okamoto’s approach (See Section 2.3), one sees that
the modified exponentiation inversion step EIε,e is simplified. The simplicity of
the proposed approach facilitates the subsequent investigation. We prove its cor-
rectness (Theorem 1). Then we compare the simpler approach with Kanayama-
Okamoto’s approach (Theorem 2). We let a ≡n b abbreviate a ≡ b (mod n) for
simplicity.

Approach 1 Pairing Inversion

In: Q ∈ G2, z ∈ μr

Out: P ∈ G1 such that z = aε(Q,P).

1. [Choice] Choose e ∈ Zk such that r | λe(q) and gcd (e0, . . . , ek−1) = 1.

2. [EIε,e] Find the “right” γe from Γε,e,z =
{
γ ∈ F×

qk
: γL = zδε,e

}
, where

δε,e ≡r we/wε and wη = 1
rWη (q).

3. [MIe] Find P from γe = Ze (Q,P) .

Pairing Inversion via Non-degenerate Auxiliary Pairings 83

By the “right” γe, we mean the ones satisfying the condition γe = Ze (Q,P)
for some P ∈ G1.

Theorem 1 (Correctness). If γe = Ze (Q,P), then γLe = zδε,e .

Proof. Recall that γLe = ae(Q,P) and z = aε(Q,P). Hence we need to show that

ae(Q,P) = aε(Q,P)δε,e .

Recall, from the proof of Theorem 4 in [25], that

fq,Q(P)L
λe(q)

r g′(q)(g(q)
r)

−1

= fq,Q(P)Lλ′
e(q) · ae(Q,P).

and thus

ae(Q,P) = fq,Q(P)
L
(

λe(q)
r g′(q)(g(q)

r)
−1−λ′

e(q)
)

= fq,Q(P)
L
(
−(g(q)

r)
−1

we

)

.

Similarly, one gets

aε(Q,P) = fq,Q(P)
L
(
−(g(q)

r)
−1

wε

)

.

Thus,

ae(Q,P) = fq,Q(P)
L
(
−(g(q)

r)
−1

we

)

= aε(Q,P)wew
−1
ε = aε(Q,P)δε,e . ��

One may wonder how the above approach compares to the approach of
Kanayama-Okamoto. Since the MIe steps are the same, we only need to com-
pare EIε,e steps. Since EIε,e is essentially a search problem (finding the “right”
elements), we need to compare the search spaces. Recall that the search space
of Approach 1 is Γε,e,z when “brute-force” search is used. Likewise, the search
space for the approach of Kanayama-Okamoto (see Section 2.3) amounts to

Θε,e,z =

{
τUe∏k−1
j=0 α

ej
j

: ∃τ, αj ∈ F×
qk

αL
j = τLc′jnj ∧ τL = zψ

′
ε

}
The following theorem states that the two “brute-force” search spaces are the
same.

Theorem 2. We have
Γε,e,z = Θε,e,z.

Proof. We will prove the inclusion in both directions.

Claim 1: Θε,e,z ⊂ Γε,e,z

Let τ ∈ F×
qk

and αj ∈ F×
qk

be such that αL
j = τLc′jnj and τL = zψ

′
ε . Let

θ = τUe
∏k−1

j=0 α
ej
j

. We need to show that θL = zδε,e . Note

θL=

(
τUe∏k−1

j=0 α
ej
j

)L

=
τLUe∏k−1

j=0 α
Lej
j

=
τLUe∏k−1

j=0 τLejc
′
j
nj

= τL(Ue−
∑k−1

j=0
ejc

′
jnj) = τLψe

84 S. Chang et al.

As z = τLψε , we have θL = zψeψ
′
ε . Since Ze (Q,P) ∈ Θe,z as [15] showed, we

also have Ze (Q,P)L = zψeψ
′
ε . Recall Ze (Q,P)L = aε (Q,P)wew

′
ε = zwew

′
ε .

Thus,

θL = zψeψ
′
ε = Ze (Q,P)

L
= aε (Q,P)

wew
′
ε = zwew

′
ε = zδε,e .

Claim 2: Γε,e,z ⊂ Θε,e,z

Let γ ∈ F×
qk

be such that γL = zδε,e . We need to find τ and αj such that

αL
j = τLc′jnj and τL = zψ

′
ε and γ = τUe

∏k−1
j=0 α

ej
j

. Let P ∈ G1 and Q ∈ G2 be

such that z = aε(Q,P). Such P,Q exist because the map G1 → μr, P �→
aε(Q,P) is bijective if Q ∈ G2 − {O}. Let τ̃ = fr,Q(P) and α̃j = fTj ,Q(P)

and γ̃ = τ̃Ue
∏k−1

j=1 α̃
ej
j

. Let h ∈ Zk be such that
∑k−1

j=0 hjej = 1. Such h exists

because gcd (e0, . . . , ek−1) = 1. Let

τ = τ̃ , αj = α̃j

(
γ̃

γ

)hj

Then we have

τL = τ̃L = zψ
′
ε

αL
j =

(
α̃j

(
γ̃

γ

)hj
)L

= α̃L
j

(
γ̃

γ

)Lhj

= α̃L
j

(
zδε,e

zδε,e

)hj

= τ̃Lc′jnj = τLc′jnj

γ = γ̃
γ

γ̃
=

τ̃Ue∏k−1
j=0 α̃

ej
j

k−1∏
j=0

(
γ

γ̃

)hjej

=
τ̃Ue∏k−1

j=0

(
α̃j

(
γ̃
γ

)hj
)ej =

τUe∏k−1
j=1 α

ej
j

��

4 Complexity of Modified Miller Inversion

In this section, we provide a bit-complexity of the modified Miller inversion step
MIe. It essentially says that, when q and k are fixed, the complexity is bounded
by ||e||21 where ||e||1 stands for the sum norm of the integer vector e. Hence in
order to reduce the complexity of MIe, one needs to choose e with small sum
norm. This result can be viewed as an adaptation of the results/ideas [11] to the
generalized ate pairing.

Theorem 3 (Complexity of MIe). There exists an algorithm for MIe requiring
at most

28 ||e||21 k2 (log2 q)
3

bit operations.

In the remainder of this section, we will prove Theorem 3. We will divide the
proof into several lemmas that are interesting on their own. We begin with a
slight reformulation of the expression for the generalized ate pairing [25], because
it greatly simplifies the derivation of the above upper bound.

Pairing Inversion via Non-degenerate Auxiliary Pairings 85

Lemma 1. Let e(+), e(−) ∈ Zk be

e
(+)
i =

{
ei if ei > 0
0 else

and e
(−)
j =

{
ej if ej < 0
0 else

Then, for all Q ∈ G2 and all P ∈ G1, we have

Ze (Q,P) =
Ze(+) (Q,P)

Z−e(−) (Q,P)

Proof. See the Appendix. ��

Lemma 2. For every Q ∈ G2, θ ∈ F∗
qk and e ∈ Z�, there exists a bivariate

polynomial h over Fqk such that

(a) ∀(x, y) ∈ G1 θ = Ze(Q, (x, y)) =⇒ h(x, y) = 0

(b) degX (h) ≤ ||e||1
(c) degY (h) ≤ 2max{s, t}, where s := #{j : ej > 0} and t := #{j : ej < 0}.

Proof. See the Appendix.. ��

Proof (Proof of Theorem 3). To solve MIe for given Q ∈ G2 and e ∈ Z�, we have
to find P = (x, y) ∈ G1 such that

θ = Ze(Q, (x, y)), y2 = x3 + ax+ b (1)

Let h be a bivariate polynomial over Fqk satisfying the three conditions in
Lemma 2 and let, for the h,

F (X,Y) = Y 2 −X3 − aX − b

u (X) = resY (h (X,Y) , F (X,Y)) .

Note, for all (x, y) ∈ G1, if θ = Ze(Q, (x, y)), then u (x) = 0 and

deg u ≤ degY F degX h+ degY h degX F ≤ 2 · ||e||1 + 2||e||1 · 3 = 8 ||e||1 .

From [11], there exists an algorithm for solving a polynomial of degree d in

Fq whose complexity is O(d2k2 (log q)
3
). In fact, a more detailed analysis shows

that the algorithm requires at most 4 d2 k2 (log2 q)
3
bit operations. Since solving

u(X) = 0 is enough to solve the system of equations (1), we see that MIe can be
solved within

4 (8 ||e||1)
2 k2 (log2 q)

3 = 28 ||e||21 k2 (log2 q)
3 .

bit operations. ��

86 S. Chang et al.

5 Toward Complexity of Modified Exponentiation
Inversion

It would be nice to have a complexity estimate for the modified exponentia-
tion inversion EIε,e, just as for the modified Miller inversion MIe (Theorem 3).
Unfortunately, we do not have a result on it. We are not aware of any results
in the literature either. We expect it to be a very non-trivial task, most likely
requiring patient and long arduous efforts of many researchers, each making an
incremental contribution. In this section, we report on an incremental finding
toward complexity of EIε,e.

Recall that EIε,e asks to find the “right” γe from the search space Γε,e,z . Hence
it is reasonable to begin with the study of the relationship between the search
space Γε,e,z and the chosen vector e.

Proposition 1. We have

1. If the auxiliary pairing ae is degenerate, then Γε,e,z = Γε,ε,1 = μL.
2. If the auxiliary pairing ae is non-degenerate, then Γε,e,z = Γε,ε,zδε,e .

Proof. Note that δε,ε = 1. Recall that δε,e ≡r we/wε and we = 1
rWe(q) ∈ Z.

Therefore we have

ae is degenerate ⇐⇒ r2|We(q) ⇐⇒ we ≡r 0 ⇐⇒ δε,e ≡r 0

If ae is degenerate, then we have

Γε,e,z =
{
γ ∈ F×

qk
: γL = z0

}
=

{
γ ∈ F×

qk
: γL = 1δε,ε

}
= Γε,ε,1 = μL

If ae is non-degenerate, then we have

Γε,e,z =
{
γ ∈ F×

qk
: γL = zδε,e

}
=

{
γ ∈ F×

qk
: γL =

(
zδε,e

)δε,ε}
= Γε,ε,zδε,e

��

Remark 2. From the above proposition, we observe the followings:

– If ae is degenerate then the search space of EIε,e is independent of the input z,
that is, the exponential relation in EIε,e does not capture any information
about the input. Thus the modified exponentiation inversion EIε,e will be
most likely harder when ae is degenerate than when ae is non-degenerate.

– If ae is non-degenerate then the search space of EIε,e for an input z is the
same as that of EIε for another input zδε,e . Thus the modified exponentiation
inversion EIε,e is likely as hard as the original exponentiation inversion EIε.

Therefore, as a first step toward finding an efficient method for EIε,e, we better
ensure that ae is non-degenerate. The following theorem (Theorem 4) gives a
sufficient condition on e, in terms of the max norm of e, for the non-degeneracy
of ae. We will use the following lemma in the proof of the theorem, hence we
state it first.

Pairing Inversion via Non-degenerate Auxiliary Pairings 87

Lemma 3. Let s be a primitive k-th root of unity modulo r2 and s ≡ q mod r.
Then r2 � λe(s) iff ae is non-degenerate.

Proof. The claim follows easily from the proof of [12, Theorem 3]. See the Ap-
pendix for a detailed proof in terms of our terminologies.

Theorem 4. Let e ∈ Zk be such that r | λe(q) and Φk(X) � λe(X). Let me =
[Q(ζk) : Q(λe(ζk))]. If

||e||∞ <
r2me/ϕ(k)

ϕ(k)

then ae is non-degenerate.

Proof. We will prove the contra-positive. Assume that ae is degenerate. We claim

||e||∞ ≥ r2me/ϕ(k)

ϕ(k)
.

Let s ∈ Z be such that s ≡ q (mod r) and ordr2(s) = k. To prove the claim,
we will use the fact that ae is degenerate if and only if r2 | λe(s) (Lemma 3).
Note r2 | (sk − 1) =

∏
d|k Φd(s). Since r | Φd(s) = Φd(q + ιr) implies r | Φd(q), r

divides only Φk(s) and r � Φd(s) for all d < k. Therefore, r2 | Φk(s).
Let μe(X) = rem(λe(X), Φk(X)) and ζk ∈ C be a primitive k-th root of

unity. Note that μe
= 0 from the assumption. Let v(X) ∈ Q[X] be the minimal
polynomial of μe(ζk) over Q. Note that v(x) ∈ Z[x] as μe(ζk) ∈ Z[ζk], the ring
of integers of Q(ζk). Since v(μe(X)) is zero at ζk and Φk(x) is monic, we have

v(μe(X)) = Φk(X)h(X) for some h(X) ∈ Z[X].

From r2 | λe(s) and r2 | Φk(s), we have r2 | μe(s) and

v(0) ≡r2 v(μe(s)) ≡r2 Φk(s)h(s) ≡r2 0

Therefore, we have either v(0) = 0 or |v(0)| ≥ r2. Noting that, by [6, Proposition
4.3.2] and the fact that v is monic,

|v(0)| = |Norm(μe(ζk))| =
∣∣NormQ(ζk)/Q(μe(ζk))

∣∣ 1
me =

∣∣∣∣∣∣
∏

gcd(j,k)=1

μe(ζ
j
k)

∣∣∣∣∣∣
1

me

,

we conclude that v(0)
= 0. Indeed if v(0) = 0, then Φk | λe, a contradiction to
μe
= 0. Thus, we have

r2 ≤ |v(0)| =
∣∣∣∣∣∣

∏
gcd(j,k)=1

μe(ζ
j
k)

∣∣∣∣∣∣
1

me

≤
⎛⎝ ∏

gcd(j,k)=1

ϕ(k)||e||∞
⎞⎠ 1

me

= (ϕ(k)||e||∞)
ϕ(k)
me

Therefore, we finally have the claim. ��

88 S. Chang et al.

6 Reducing Paring Inversion to Modified Exponentiation
Inversion

In this section, we discuss when pairing inversion can be reduced to modified
exponentiation inversion EIε,e.

Specifically we are looking for a condition on e so that MIe is easy. Accord-
ing to Theorem 3, we need to find small e. One might be naturally tempted to
choose the integer vector e from either coefficients of cyclotomic polynomials or
(1, . . . , 1). However according to Corollary 6 of Vercauteren [25], such e makes
the corresponding auxiliary pairing degenerate. Hence, from Proposition 1, the
modified exponentiation inversion EIε,e is expected to be hard because the search
space does not depend on z. Therefore, in order to meaningfully reduce pairing
inversion to modified exponentiation inversion, one needs find e such that it is
small and the corresponding auxiliary pairing is non-degenerate. In this section,
we investigate the existence of such e in various cases (Theorem 5 and the sub-
sequent examples in Table 1). We begin by introducing a definition that was
inspired by the discussions in[11].

Definition 1. Let Cα be the set of all (r, k) ∈ Z2
>0 satisfying

C1: r1/ϕ(k) > ϕ (k)
C2: r1/ϕ(k) ≤ (log2 r)

α

Remark 3. In the following figure, the bottom curve is from the condition C1 in
Definition 1 and the top curve is from the condition C2 when α = 10. Thus, the
regions between the two curves is the set C10, The black dots represent typical
pairing friendly curves from Table 1 in [10]. Note that the parameters for the
typical pairing friendly curves belong to C10.

0

1000

2000

3000

4000

0 5 10 15 20 25 30 35

ϕ(k)

log2 r

� ��� �� �� ��� �� �� �� ��
� �� �� ��

� �� �� �� ��

Lemma 4. If α > 1, then Cα is an infinite set.

Proof. See the Appendix. ��

Theorem 5. Let α > 1, (r, k) ∈ Cα and r ≥ √
q. Then the inversion of ev-

ery generalized ate pairing can be reduced to modified exponentiation inversion

Pairing Inversion via Non-degenerate Auxiliary Pairings 89

in polynomial time in log2 r. Specifically, there exists e such that the auxiliary
pairing ae is non-degenerate and MIe can be carried out in at most

213 (log2 r)
8α+3

bit operations.

Proof. Let (q, r) ∈ Cα and r ≥ √
q. We need to find a “witness” e such that

ae is non-degenerate and MIe can be carried out in the claimed number of bit
operations. From Minkowski’s theorem (see III.C of [25]), there exists e ∈ Zk

with r | λe(q) such that the last k − ϕ(k) elements of e are zero and

||e||∞ ≤ r1/ϕ(k)

We will take it as the witness.
First we show that ae is non-degenerate. Since the last k − ϕ(k) elements of

e are zero, we have λe(X) � Φk(X). From the condition that r1/ϕ(k) > ϕ (k), we
have

r(2me−1)/ϕ(k)

ϕ(k)
≥ r1/ϕ(k)

ϕ(k)
> 1

and thus

||e||∞ ≤ r1/ϕ(k) < r1/ϕ(k) r
(2me−1)/ϕ(k)

ϕ(k)
=
r2me/ϕ(k)

ϕ(k)

Therefore, by Theorem 4, ae is non-degenerate.
Next we show that MIe can be carried out in the claimed number of bit

operations. Let N be the number of bit operations for MIe. Note that ||e||1 ≤
ϕ(k) ||e||∞ . Hence ||e||1 ≤ ϕ(k)r1/ϕ(k). Therefore, from Theorem 3, we have

N ≤ 28
(
ϕ(k)r1/ϕ(k)

)2

k2 (log2 q)
3

From the condition r ≥ √
q, we have

N ≤ 28
(
ϕ(k)r1/ϕ(k)

)2

k2 (2 log2 r)
3
= 211 ϕ(k)2 r2/ϕ(k) k2 (log2 r)

3

Since
√
k ≤

√
2ϕ(k) and ϕ (k) < r1/ϕ(k), we have

N ≤ 211 ϕ(k)2 r2/ϕ(k) 4 ϕ(k)4 (log2 r)
3
= 213 r8/ϕ(k) (log2 r)

3

Since r1/ϕ(k) ≤ (log2 r)
α
, we have

N < 213 (log2 r)
8α

(log2 r)
3
= 213 (log2 r)

8α+3 ��

The upper bound in Theorem 5 is not tight. In Table 1, we provide tighter
upper bounds for several examples. For each example, the first row of the table
shows k, ϕ(k), log2 r, α with which we can estimate an upper bound of the bit
complexity for reducing PI to EIε,e , using Theorem 5. The next rows show actual

90 S. Chang et al.

Table 1. Estimates on time needed for reducing pairing inversion to exponentiation
inversion

BN k, ϕ(k), log2 r, α 12, 4, 158, 6

q 206327671360737302491015800744139033450591027219

r 206327671360737302491015346511080613560608358413

e [−550292684801, 0, −550292684802, 1]

||e1|| ≈ 241

bit ops < 2118 ≈ 5.7 × 108 years

KSS1 k, ϕ(k), log2 r, α 40, 16, 270, 3

q 17832670971324521726062757296872438734385533246858199397670289787762755378
369096459615195260462717384342962017722458889

r 10333609989585926391763339467648162217044412785537436596479947661501694341
18209921

e [−89353, −1, 0, 0, 0, 0, 0, 0, 0, 0, −178706, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

||e1|| ≈ 219

bit ops < 281 ≈ 1.5 days

KSS2 k, ϕ(k), log2 r, α 36, 12, 169, 2

q 27515431606313682600546511947515923267058275939278041592973834669

r 705708527028528420873135632253194587092728456673193

e [644, 966, 2899, −2255, 8697, 10307, 12562, −2577, 5798, 0, 6120, 2577, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

||e1|| ≈ 216

bit ops < 274 ≈ 17.1 minutes

CP1 k, ϕ(k), log2 r, α 23, 22, 257, 2

q
14581195760274460834017340459207397113118390962271666876151276230048512680
03597885800006313754045399948707280439848940248906689382680399441035897388
657793

r 17116282357765890892357712305726339622924416691441071745853644550112128595
6693

e [−196, −527, −851, −89, −648, 115, 1086, −14, 547, −1053, 409, −611, 680, −1368, −
891, −1808, −3226, −1664, 577, 22, 213, 15, 0]

||e1|| ≈ 215

bit ops < 273 ≈ 8.5 minutes

C6.6 k, ϕ(k), log2 r, α 33, 20, 265, 2

q 17156052909325454315949246639981773625245302303247192926147820123623493657
4795328339355710502059

r 57482237782367522519498203534411140773179333661921340353191781776555783843
120129

e [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, −9727, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

||e1|| ≈ 214

bit ops < 270 ≈ 1.1 minutes

Pairing Inversion via Non-degenerate Auxiliary Pairings 91

parameters q, r and a vector e ∈ Zϕ(k). The vector e is the one with smallest
sum norm among the LLL reduced vectors for the lattice with respect to q, r, k
[25]. The vector e is verified to yield non-degenerate ae. For the vector e, the last
row has been calculated using Theorem 3, which estimates the bit complexity of
MIe on the curve more precisely. The estimated upper bounds on the computing
times are based on the assumption that one uses the currently fastest super-

computer [8], which can perform about 17 · 1015 flops × 1000
bops
flops = 264bops

(bit operations per second).
The first example BN is the smallest value taken from Table 1 in [21]. Since

ϕ(k) for the BN curves [5] are small (ϕ(k) = 4), they easily satisfy the condition
C1 in Definition 1 but large α values are needed to satisfy C2. Therefore, from
Theorem 5, we expect that it will be difficult to reduce PI to EIε,e for BN
curves. The tighter upper bound on the bit operation on the last row, based on
Theorem 3, supports the observation. Next two examples are the KSS curves
described in Example 4.6 and Example 4.7 in [16]. The parameters are obtained
by evaluating the polynomials in the Examples in [16] at x0 = −188 for KSS1 and
x0 = 107 for KSS2. The example CP1 is constructed by Cocks-Pinch method to
have small α and “typical” parameters (k, log2 r) in Table 1 in [10]. The example
C6.6 is obtained from evaluating the polynomials in Construction 6.6 with k = 33
in [10] at x0 = −9727, which is also a pairing-friendly curve (Definition 2.3 in
[10]). The ϕ(k) for these curves are small enough to satisfy C1, and big enough
for small α values to satisfy C2. Therefore, from Theorem 5, we expect that it
will be relatively easy to reduce PI to EIε,e for these curves. The tighter upper
bound on the bit operations on the last row, based on Theorem 3, supports the
observation.

Acknowledgements. The authors1,3,4 were supported by Basic Science Re-
search Program through the National Research Foundation of Korea(NRF)
funded by the Ministry of Science, ICT and Future Planning(Grant Num-
ber: 2012R1A2A1A03006706). The author3 was also supported by Basic Sci-
ence Research Program (Grant No. 2011-0022600). The authors would like to
thank Steven Galbraith and anonymous referees for their insightful and helpful
suggestions.

References

1. Barreto, P., Galbraith, S., ÓhÉigeartaigh, C., Scott, M.: Efficient Pairing Compu-
tation on Supersingular Abelian Varieties. Designs, Codes and Cryptography 42(3),
239–271 (2007)

2. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. SIAM
J. of Computing 32(3), 586–615 (2003)

3. Boneh, D., Goh, E., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In:
Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg
(2005)

4. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. J. of
Cryptology 17(4), 297–319 (2004)

92 S. Chang et al.

5. Barreto, P., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In: Preneel,
B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer, Heidelberg
(2006)

6. Cohen, H.: A Course in Computational Algebraic Number Theory. Springer,
Heidelberg (2000)

7. Duc, A., Jetchev, D.: Hardness of Computing Individual Bits for One-way Func-
tions on Elliptic Curves. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012.
LNCS, vol. 7417, pp. 832–849. Springer, Heidelberg (2012)

8. Cray Titan, olcf.ornl.gov/titan/,
en.wikipedia.org/wiki/Titan_(supercomputer)

9. Duursma, I., Lee, H.-S.: Tate pairing implementation for hyperelliptic curves y2 =
xp −x+ d. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 111–123.
Springer, Heidelberg (2003)

10. Freeman, D., Scott, M., Teske, E.: A taxonomy of pairing-friendly elliptic curves.
J. of Cryptology 23, 224–280 (2010)

11. Galbraith, S., Hess, F., Vercauteren, F.: Aspects of Pairing Inversion. IEEE Trans.
Information Theory 54, 5719–5728 (2008)

12. Hess, F.: Pairing Lattices. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008.
LNCS, vol. 5209, pp. 18–38. Springer, Heidelberg (2008)

13. Hess, F., Smart, N., Vercauteren, F.: The Eta Pairing Revisited. IEEE Trans.
Information Theory 52, 4595–4602 (2006)

14. Joux, A.: A one round protocol for tripartite Diffie-Hellman. J. of Cryptology 17(4),
263–276 (2004)

15. Kanayama, N., Okamoto, E.: Approach to Pairing Inversions Without Solving
Miller Inversion. IEEE Trans. Information Theory 58, 1248–1253 (2012)

16. Kachisa, E.J., Schaefer, E.F., Scott, M.: Constructing Brezing-Weng Pairing-
Friendly Elliptic Curves Using Elements in the Cyclotomic Field. In: Galbraith,
S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 126–135. Springer,
Heidelberg (2008)

17. Kim, S., Cheon, J.: Fixed Argument Pairing Inversion on Elliptic Curves (2012)
(preprint), http://eprint.iacr.org/2012/657

18. Lee, E., Lee, H.-S., Park, C.: Efficient and Generalized Pairing Computation on
Abelian Varieties. IEEE Trans. Information Theory 55(4), 1793–1803 (2009)

19. Miller, V.: The Weil pairing and its efficient calculation. J. of Cryptology 17,
235–261 (2004)

20. El Mrabet, N.: What about Vulnerability to a Fault Attack of the Miller’s Algo-
rithm During an Identity Based Protocol? In: Park, J.H., Chen, H.-H., Atiquz-
zaman, M., Lee, C., Kim, T.-h., Yeo, S.-S. (eds.) ISA 2009. LNCS, vol. 5576,
pp. 122–134. Springer, Heidelberg (2009)

21. Pereira, G., Simpĺıcio, M., Naehrig, M., Barreto, P.: A Family of Implementation-
Friendly BN Elliptic Curves. J. of Systems and Software 84(8), 1319–1326 (2011)

22. Page, D., Vercauteren, F.: A Fault Attack on Pairing Based Cryptography. IEEE
Trans. Computers 55(9), 1075–1080 (2006)

23. Satoh, T.: On polynomial interpolations related to Verheul homomorphisms. J.
Comput. Math. 9, 135–158 (2006)

24. Satoh, T.: On pairing inversion problems. In: Takagi, T., Okamoto, T., Okamoto,
E., Okamoto, T. (eds.) Pairing 2007. LNCS, vol. 4575, pp. 317–328. Springer,
Heidelberg (2007)

25. Vercauteren, F.: Optimal Pairings. IEEE Trans. Information Theory 56(1),
455–461 (2010)

olcf.ornl.gov/titan/,
en.wikipedia.org/wiki/Titan_(supercomputer)
http://eprint.iacr.org/2012/657

Pairing Inversion via Non-degenerate Auxiliary Pairings 93

26. Verheul, E.: Evidence that XTR is more secure than supersingular elliptic curve
cryptosystems. J. Cryptology 17(4), 277–296 (2004)

27. Waters, B.: Efficient Identity-Based Encryption Without Random Oracles. In:
Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer,
Heidelberg (2005)

28. Weng, J., Dou, Y., Ma, C.: Fault Attacks against the Miller Algorithm in Hes-
sian Coordinates. In: Wu, C.-K., Yung, M., Lin, D. (eds.) Inscrypt 2011. LNCS,
vol. 7537, pp. 102–112. Springer, Heidelberg (2012)

29. Zhao, C., Zhang, F., Huang, J.: A Note on the Ate Pairing. International J. of
Information Security 7(6), 379–382 (2008)

Appendix

In this appendix, we provide proofs of several technical lemmas.

Proof (Proof of Lemma 1). Let em1 , . . . , ems > 0 and en1 , . . . , ent < 0 and all
other components of e are zero. Then we have

e(+)
mi

= emi e(−)
nj

= enj

and all other components of e(+) and e(−) are zero. Note

Uer − en1q
n1 − · · · − entq

nt = em1q
m1 + · · ·+ emsq

ms

Thus

fem1q
m1+···+emsq

ms ,Q

=

s∏
i=1

f
emi

qmi ,Q

s∏
i=1

femi
,qmiQ

s−1∏
i=1

lemi
qmiQ,(emi+1

qmi+1+···+emsq
ms)Q

v(emi
qmi+···+ems q

ms)Q

=

s∏
i=1

f
emi

qmi ,Q(P) · Ze(+)(Q,P)

fUer−en1q
n1−···−entq

nt ,Q

= fUer,Qf−en1q
n1−···−entq

nt ,Q

= fUe

r,Q(P)

t∏
j=1

f
−enj

qnj ,Q
(P) · Z−e(−)(Q,P)

Hence

fUe

r,Q(P)

t∏
j=1

f
−enj

qnj ,Q
(P) · Z−e(−)(Q,P) =

s∏
i=1

f
emi

qmi ,Q · Ze(+)(Q,P)

and, from [25], we have

Ze (Q,P) =
fUe

r,Q (P)∏k−1
i=0 f

ei
qi,Q (P)

=
Ze(+)(Q,P)

Z−e(−)(Q,P)

��

94 S. Chang et al.

Proof (Proof of Lemma 2). Let Q ∈ G2, θ ∈ F∗
qk and e ∈ Z�. We will construct

a witness for the existentially quantified h. From Lemma 14 of [11], we have

fμ, νQ (X,Y) =

{
1 μ = 1

fμ,ν,1(X)+Y fμ,ν,2(X)
vμνQ

μ > 1

where fμ,ν,1, fμ,ν,2 ∈ Fqk [X] such that

deg(fμ,ν,1) ≤
⌊
μ+ 1

2

⌋
, deg(fμ,ν,2) ≤

⌊μ
2
− 1

⌋
From Lemma 1, we have

Ze (Q, (x, y)) =
Ze(+)(x, y)

Z−e(−)(x, y)
=:

A(x, y)

B(x, y)
for all (x, y) ∈ G1

where

A =
∏

1≤i≤s
emi

≥2

(
femi

,qmi ,1 + Y femi
,qmi ,2

) ∏
1≤j≤t
enj

≤−2

v−enj
qnjQ

s−1∏
i=1

lemi
qmiQ,(emi+1

qmi+1+···+emsq
ms)Q

t−1∏
j=1

v(−enj+1
qnj+1−···−entq

nt)Q

B =
∏

1≤j≤t
enj

≤−2

(
f−enj

,qnj ,1 + Y f−enj
,qnj ,2

) ∏
1≤i≤s
emi

≥2

vemi
qmiQ

t−1∏
j=1

l−enj
qnjQ,(−enj+1

qnj+1−···−entq
nt)Q

s−1∏
i=1

v(emi
qmi+···+emsq

ms)Q

Finally, we propose the following h as a witness for the existential quantification:

h = A− θB.

We will show that h is indeed a witness satisfying the three conditions.

(a) ∀(x, y) ∈ G1, Ze(Q, (x, y)) = θ =⇒ h(x, y) = 0.: Let (x, y) ∈ G1.

Assume that θ = Ze(Q, (x, y)). Then Obviously θ = A(x,y)
B(x,y) . Thus h(x, y) =

A(x, y)− θB(x, y) = 0.

Pairing Inversion via Non-degenerate Auxiliary Pairings 95

(b) degX (h) ≤ ||e||1: Note

degX(A) ≤
∑
ei≥2

⌊
ei + 1

2

⌋
+

∑
ei≤−2

1 +
∑
ei≥1

1 +
∑

ei≤−1

1

=
∑
ei≥2

⌊
ei + 3

2

⌋
+

∑
ei≤−2

2 +
∑
ei=1

1 +
∑

ei=−1

1

≤
∑
ei≥2

|ei|+
∑

ei≤−2

|ei| +
∑
ei=1

|ei|+
∑

ei=−1

|ei|

= ||e||1

degX (B) ≤
∑

ei≤−2

⌊
−ei + 1

2

⌋
+

∑
ei≥2

1 +
∑

ei≤−1

1 +
∑
ei≥1

1

=
∑

ei≤−2

⌊
−ei + 3

2

⌋
+

∑
ei≥2

2 +
∑

ei=−1

1 +
∑
ei=1

1

≤
∑

ei≤−2

|ei|+
∑
ei≥2

|ei| +
∑

ei=−1

|ei|+
∑
ei=1

|ei|

= ||e||1

Hence degX(h) ≤ ||e||1.
(c) degY (h) ≤ 2max{s, t}: Note

degY (A) ≤ s+ s ≤ 2s, degY (B) ≤ t+ t ≤ 2t

Hence degY (h) ≤ 2max{s, t}.
��

Proof (Proof of Lemma 3). Note

f
sk−1

r

r,Q = fsk−1,Q = fsk,Q = f sk−1

s,Q f sk−2

s,sQ · · · fs,sk−1Q

Since s ≡ q (mod r) and fs,sQ = fs,qQ = f q
s,Q, we have

f
sk−1

r

r,Q = f sk−1

s,Q f qsk−2

s,Q · · · f q
s,sk−2Q

= f sk−1+qsk−2+···+qk−1

s,Q (2)

Let u = sk−1 + qsk−2 + · · · + qk−1. Then u ≡ kqk−1 mod r. Raising Eq. (2) to
the power (qk − 1)/r, we have

t(Q,P)
sk−1

r = fs,Q(P)
(qk−1)

r ·u.

Since r | sk−1
r , we have

t(Q,P)
sk−1

r = 1

fs,Q(P)
(qk−1)

r = 1.

96 S. Chang et al.

Therefore, fsi,Q(P)
qk−1

r = f
(si−1+si−2q+...+qi−1) qk−1

r̃

s,Q = 1 for 0 ≤ i ≤ k− 1. Note

t(Q,P)
λe(s)

r = fr,Q(P)
λe(s)

r
qk−1

r

= fλe(s),Q(P)
qk−1

r

= fe0+···+ek−1sk−1,Q (P)
qk−1

r

=
k−1∏
j=0

fejsj ,Q (P)
qk−1

r

⎛⎝k−2∏
j=0

�ejsjQ,(ej+1sj+1+···+ek−1sk−1)Q (P)
v(ejsj+···+ek−1sk−1)Q (P)

⎞⎠
qk−1

r

=
k−1∏
j=0

fsj ,Q (P)ej
qk−1

r

k−1∏
j=0

fej ,qjQ (P)
qk−1

r

⎛⎝k−2∏
j=0

�ejqjQ,(ej+1qj+1+···+ek−1qk−1)Q (P)
v(ejqj+···+ek−1qk−1)Q (P)

⎞⎠
qk−1

r

=
k−1∏
j=0

1ej

⎛⎝k−1∏
j=0

f
qj

ej ,Q (P)
k−2∏
j=0

�ejqjQ,(ej+1qj+1+···+ek−1qk−1)Q (P)
v(ejqj+···+ek−1qk−1)Q (P)

⎞⎠
qk−1

r

= Ze (Q,P)
qk−1

r = ae(Q,P)

The claim follows immediately from the relation t(Q,P)
λe(s)

r = ae(Q,P). ��

Proof (Proof of Lemma 4). We first observe that r = 9 and ϕ (k) = 2 satisfy the
above two conditions. We will show that the two curves defined by

r1/ϕ(k) = ϕ (k) , r1/ϕ(k) = (log2 r)
α

do not meet when ϕ (k) > 2. The above system is equivalent to

r1/ϕ(k) = ϕ (k)

(log2 r)
α
= ϕ (k)

The first equation is equivalent to

log2 r = ϕ (k) log2 ϕ (k)

By substituting it into the second equation, we have

ϕ (k)
α
(log2 ϕ (k))

α
= ϕ (k) ,

which does not have a solution when ϕ (k) > 2. Thus the above two curves do
not meet when ϕ (k) > 2. Therefore, we conclude that Cα is an infinite set. ��

Constructing Symmetric Pairings
over Supersingular Elliptic Curves
with Embedding Degree Three

Tadanori Teruya1, Kazutaka Saito2,�, Naoki Kanayama3,
Yuto Kawahara4, Tetsutaro Kobayashi4, and Eiji Okamoto3

1 Research Institute for Secure Systems,
National Institute of Advanced Industrial Science and Technology,

1-1-1 Umezono, Tsukuba-shi, Ibaraki-ken 305-8568, Japan
2 Internet Initiative Japan Inc.,

Jinbocho Mitsui Bldg., 1-105 Kanda Jinbo-cho, Chiyoda-ku, Tokyo 101-0051, Japan
3 Faculty of Systems and Information Engineering,

University of Tsukuba,
1-1-1, Ten-nohdai, Tsukuba-shi, Ibaraki-ken, 305-8573 Japan

4 NTT Secure Platform Laboratories,
3-9-11, Midori-cho, Musashino-shi, Tokyo 180-8585, Japan

Abstract. In the present paper, we propose constructing symmetric
pairings by applying the Ate pairing to supersingular elliptic curves over
finite fields that have large characteristics with embedding degree three.
We also propose an efficient algorithm of the Ate pairing on these curves.
To construct the algorithm, we apply the denominator elimination tech-
nique and the signed-binary approach to the Miller’s algorithm, and
improve the final exponentiation. We then show the efficiency of the
proposed method through an experimental implementation.

Keywords: supersingular elliptic curves, symmetric pairings.

1 Introduction

Since Sakai et al. [26] and Boneh et al. [6,7] independently proposed pairing-
based cryptosystems, many other novel cryptographic schemes that use pairings
have been proposed.

An admissible pairing e is a mapping from two source groups G1 and G2, both
of order r, to target group GT , also of order r. The mapping must be bilinear,
nondegenerate, and able to be computed efficiently. Typically, G1 and G2 are
denoted as additive groups, and GT is denoted as a multiplicative group. The
bilinearity is described as follows:

e(P1 + P2, Q) = e(P1, Q)e(P2, Q),
e(P, Q1 + Q2) = e(P, Q1)e(P, Q2),

� Part of this work was done while the second author was a student at the University
of Tsukuba.

Z. Cao and F. Zhang (Eds.): Pairing 2013, LNCS 8365, pp. 97–112, 2014.
© Springer International Publishing Switzerland 2014

98 T. Teruya et al.

where P, P1, P2 ∈ G1 and Q, Q1, Q2 ∈ G2. In the present paper, the case G1 = G2
of pairings from G1 ×G1 to GT is referred to as a symmetric pairing (the “type
1” pairing in [11]), and the other case, i.e., G1 �= G2, is referred to as an asym-
metric pairing. Symmetric pairings and asymmetric pairings are similar in some
ways, but they differ in their mathematical structures and the security assump-
tions used to construct cryptographic schemes. It has been reported for several
implementations that asymmetric pairings are the best choice for higher levels of
security. However, symmetric pairings are often used to construct cryptographic
schemes because their mathematical structures are simpler than asymmetric
pairings. Currently, the most popular way to construct symmetric pairings is to
use supersingular (hyper)elliptic curves. These curves have many properties that
are friendly to the computations for symmetric parings, for example, the exis-
tence of distortion maps. In particular, supersingular elliptic curves over finite
fields of small characteristic have been widely used for computing symmetric
pairings.

However, there have also been several proposals of security analysis for solving
the discrete logarithm problem (DLP) on GT in the case of small characteris-
tic [15,1]. Hayashi et al. [15] showed that the DLP over F397·6 can be solved.
Subsequently, Adj et al. [1] reported that the actual security level of the curves
with characteristic 3 is lower than was previously estimated. In the case of char-
acteristic 2, Joux [17] reported that the DLP in F2254·24 can be solved in practical
time. GT is included in the extension field of degree 4 or 12, thus GT is also in-
cluded in F∗

2254·24 . These results will lead to the reevaluation of their security
level, and the key length, and performance of them are expected to be worse.

As mentioned above, asymmetric pairings currently perform the best. The
constructions of cryptographic schemes on asymmetric pairings that are simi-
lar to those that have been proposed on symmetric pairings have been consid-
ered. Chatterjee et al. [9] investigated the construction of several cryptographic
schemes built on asymmetric pairings and compared their performance. The most
interesting result of Chatterjee et al. is the construction of a Waters signature
scheme [31] on an asymmetric pairing. The original Waters scheme is constructed
on a symmetric pairing, and the public key, private key, and signature are all
very small. On the other hand, in order to construct, the modified Waters signa-
ture schemes proposed by Chatterjee et al., they require either larger public and
private keys or a public parameter generated by a trusted third party. Hence,
there are several trade-offs between using symmetric or asymmetric pairings.

Contribution

In the present paper, we consider efficient algorithms for supersingular elliptic
curves that are defined over extension fields that have large characteristics. Su-
persingular curves defined over finite fields that have large characteristics are
classified into two types. These curves are summarized in Table 1. The type 1
curve is defined over prime fields, and the type 2 curve is defined over extension
fields.

Constructing Symmetric Pairings 99

The use of the type 1 curve in the construction of pairing-based cryptosystems
was demonstrated by Boneh et al. [6,7]. The type 2 curve was introduced by
Verheul [29,30] in a different context. However, using these curves for pairing-
based cryptosystems is not as popular as using supersingular curves over fields
with small characteristics. One of the reasons is that the type 1 elliptic curves
have not been commonly used in recent cryptographic pairings (such as the ηT

pairing [3] and the Ate pairing [16]). For supersingular elliptic curves over small-
characteristic finite fields, we can use the ηT pairing fT,P (Q) instead of the Tate
pairing fr,P (Q), since, in this case, the bit length of T is half that of r. Thus, for
these curves, the ηT pairing can be computed much faster than the Tate pairing.
There is, however, almost no advantage to using the Eta or the Ate pairing for
type 1 supersingular elliptic curves because their trace is 0.

On the other hand, computing pairings over type 2 supersingular elliptic
curves has not been extensively investigated. One of the reasons for this is that
the embedding degree k of such curves is 3. This is smaller than that of the super-
singular elliptic curves over small characteristic fields (in these cases, k = 4, 6),
and it thus would seem that there would not be much advantage to using type
2 elliptic curves. Furthermore, the ηT pairing is not applicable for type 2 curves
because their k is odd, and we cannot directly use the denominator elimination
technique [4] that is used when k is even. However, Lin et al. [21] proposed a
denominator elimination technique for elliptic curves with an odd embedding
degree. Also note that the embedding degree k = 3 of a type 2 elliptic curve is
slightly larger than the degree k = 2 of elliptic curves over prime fields.

Another advantage of using a type 2 elliptic curve is that we can use the
efficient method for scalar multiplication that was proposed by Gallant et al. [12]
because the group order r is of the form r = p2 ± p + 1. This can save much
computation time.

In the present paper, we propose a method for efficiently computing symmetric
pairings over type 2 elliptic curves.

The remainder of this paper is organized as follows. Section 2 presents a
brief mathematical description of pairings. Section 3 presents the reduced Ate
pairings on type 2 elliptic curves; this is the main result of the present study.
Section 4 presents an experimental implementation of the proposed method.
Finally, conclusions are presented in Section 5.

2 Mathematical Preliminaries

2.1 Pairings

Let E be an elliptic curve over a finite field Fq with q elements. The set of Fq-
rational points of E is denoted as E(Fq). Let E(Fq)[r] denote the subgroup of
r-torsion points in E(Fq). We write O for the point at infinity on E. Consider
a large prime r such that r | #E(Fq), and denote the embedding degree by k,
which is the smallest positive integer such that r divides qk − 1. Let πq be the
q-power Frobenius endomorphism πq : E → E, (x, y) �→ (xq , yq). We denote the

100 T. Teruya et al.

Table 1. Summary of supersingular elliptic curves defined over large characteristic
finite fields

Type 1 2

Base Field
Fp, where p > 3 and

p ≡ 3 (mod 4)
Fp, where p > 3 and

p ≡ 2 (mod 3)
Fp2 , where p > 3 and

p ≡ 5 (mod 6)

Curve E/Fp : Y 2 = X3 + X E/Fp : Y 2 = X3 + 1
E/Fp2 : Y 2 = X3 + b,

where b is a square but
not a cube in Fp2

Order #E(Fp) = p + 1 #E(Fp) = p + 1 #E(Fp2) = p2 + 1 − t,
t = ±p

Embedding
Degree 2 2

{
3 if t = p,
3/2 otherwise

Distortion
Map

ι : (x, y) �→ (−x, ζ4y),
where ζ4 is a proper
element in Fp2 and

ζ4
4 = 1

ι : (x, y) �→ (ζ3x, y),
where ζ3 is a proper
element in Fp2 and

ζ3
3 = 1

ι : (x, y) �→ (u2xp, u3yp),
where u is a proper
element in Fp6 and

u6 = b/bp

trace of Frobenius by t, i.e., #E(Fq) = q + 1 − t. Finally, let μr(⊂ F×
qk) be the

group of r-th roots of unity.

Tate Pairing. Let P ∈ E(Fqk)[r] and Q ∈ E(Fqk). Choose a point R ∈ E(Fqk)
such that the supports of div(fr,P) = r(P) − r(O) and DQ := (Q + R) − (R) are
disjoint. Then, the Tate pairing (Tate–Lichtenbaum pairing) is defined by:

〈·, ·〉r : E(Fqk)[r] × E(Fqk)/rE(Fqk) → F×
qk/(F×

qk)r,

(P, Q) �→ 〈P, Q〉r := fr,P (DQ) mod (F×
qk)r

.

It has been shown that 〈P, Q〉r is bilinear and nondegenerate.
For cryptography applications, it is convenient to define pairings for which

the outputs are unique values rather than equivalence classes. Thus, we consider
the reduced Tate pairing defined by:

τr : E(Fqk)[r] × E(Fqk)/rE(Fqk) → μr,

τr(P, Q) = 〈P, Q〉(qk−1)/r
r .

We call the operation z �→ z(qk−1)/r final exponentiation.

Ate Pairing. The Ate pairing, proposed by Hess et al. [16], is a generalization
of the ηT pairing [3]. The Ate pairing can be applied to not only supersingular
but also to ordinary elliptic curves.

Constructing Symmetric Pairings 101

Let T = t − 1. We choose integers N and L such that N = gcd(T k − 1, qk − 1)
and T k − 1 = LN . We assume that r2 does not divide qk − 1.

Definition 1. The reduced Ate pairing (on G2 × G1) is defined by

aT : G2 × G1 → μr;

(Q, P) �→ fT,Q(P)(q
k−1)/r

,

where the rational function fT,Q on E is the normalized function that satisfies

(fT,Q) = T (Q) − ([T]Q) − (T − 1)(O).

The definition for the normalization of rational functions is given in [22].
Many variants of the Ate pairing have been proposed, including the Atei pair-

ing [32], the R-Ate pairing [20], and the optimal pairing [28]. These pairings are
defined on G2 ×G1 using normalization functions. The Ate pairing and its vari-
ants are also defined in G1×G2

1, there is no need to consider normalization [25].

2.2 Supersingular Elliptic Curves Defined over an Extension Field

We propose a method for the efficient computation of a symmetric pairing over
a supersingular elliptic curve E/Fq, as characterized in [30]:

E/Fq : Y 2 = X3 + b, (1)

where q = p2 and the quantities in (1) satisfy the following conditions:

– p is a prime larger than 3;
– p ≡ 5 (mod 6);
– b ∈ Fq is a square in Fq but is not a cube in Fq.

The trace t of the q-power Frobenius endmorphism πq on E/Fq and the car-
dinality #E(Fq) are determined, respectively, by:

t = p,

#E(Fq) = p2 − p + 1.
(2)

Therefore, the embedding degree of E/Fq is k = 3.
Let r be the largest prime divisor of #E(Fq), and let h = #E(Fq)/r. We

assume that r2 � #E/Fq. Hereafter, we write G1 := E(Fq)[r] and call G1 the
source group of pairings.

1 When E is supersingular, the Ate pairing is defined using the same formula. When
E is ordinary, the Ate pairing is defined using a slightly different formula. In this
case, the Ate pairing is called the twisted Ate pairing; for more information see [16].

102 T. Teruya et al.

2.3 Distortion Map

The distortion map on E/Fq is defined as follows.

Lemma 1 (distortion map, [30]). Let E/Fq : Y 2 = X3 + b be an elliptic
curve, and let u be a proper element in Fq3 such that u6 = b/bp.

Then
ι : E(Fq) → E(Fq3) \ E(Fq), (x, y) �→ (u2xp, u3yp) (3)

is a distortion map on E.

We can construct a symmetric pairing e(·, ·) by “compositing” the distortion
map ι to the Tate pairing 〈·, ·〉 on E, that is,

e(·, ·) := 〈·, ι(·)〉 .

3 The Main Result

As mentioned in Section 1, there is almost no advantage to using the Ate pairing
for type 1 supersingular elliptic curves defined over prime fields, because t = 0
for them. However, the Ate pairing for a type 2 curve, as discussed in Section 2.2,
can be computed efficiently. In the present section, we propose an algorithm for
computing Ate pairings over type 2 curves.

First, we compare type 2 curves with type 1 curves from the viewpoint of
pairing-based cryptography.

3.1 Comparison between Type 1 and Type 2 Curves

When we use elliptic curves over Fp2 , we need to consider the hardness of
the elliptic curve discrete logarithm problem (ECDLP) on E/Fp2 against a
Gaudry–Hess–Smart (GHS) attack or an attack by one of its variants. Let
E/Fp2 : Y 2 = F (X) be an elliptic curve. According to Momose et al. [23], if
F (X) is irreducible over Fp2 or can be factored as a product of linear factors,
then E is equivalent to the elliptic curves of the Scholten form [27], and we
can use degree 2 Weil restrictions to make a genus 2 hyperelliptic curve C/Fp.
Hence, the ECDLP on E/Fp2 is reduced to the hyperelliptic curve discrete log-
arithm problem (HECDLP) on the Jacobian group of C/Fp. In the case of our
target curve Fp2 , F (X) = X3 + b is generally irreducible since b is not a cube
in Fp2 . Hence, degree 2 Weil restrictions are applicable to E/Fp2 , and we must
choose parameters (q(= p2), r, t) to protect against this attack. When we solve
the HECDLP on the Jacobian of C/Fp, which is obtained by applying degree 2
Weil restrictions to E/Fp2 and using the double-large prime variation-of-index
calculus of Gaudry et al. [13] and Nagao [24]. The running cost is Õ(q) when the
genus of C is 2.

When we choose (q, r, t) such that q3 is at least 960 bits, then q = p2 is at
least 320 bits. Hence, the running cost Õ(q) is larger than O(2320) when the
characteristic p is 160 bits. We now need to choose a larger q; for example, if p

Constructing Symmetric Pairings 103

is 200 bits, we can choose a q3 that is 1200 bits. We can thus obtain parameters
that are secure against the Weil restrictions.

Next, we consider the hardness of finite-field discrete logarithm problem
(FFDLP) on GT . To guarantee security, the FFDLP must be hard. The elliptic
curve introduced in Section 2.2 is defined over a large characteristic extension
field. Freeman et al. [10] suggested that the size of qk needs 2200-3600 bits in
order to guarantee the 112-bit level of security. We can also consider another
setting, which based on the function-field sieve attack [2], and its complexity is:

exp

((
32
9

+ o(1)
) 1

3

· (log qk) 1
3 · (log log qk) 2

3

)
. (4)

Recently, Joux and Pierrot [18] proposed the extended special number field
sieve to compute FFDLP in Fpn , where p has an adequate sparse representation.
The concern with the security analysis of FFDLP has been growing by their
investigations. It is interesting to follow up their results further, but it is not our
present concern.

Next, we compare the parameters of the type 1 and type 2 elliptic curves for
the 112-bit level of security based on Equation (4). We suppose o(1) in Equa-
tion (4) is 0, namely, we need that the size of the resulting Fpk , which includes
GT , is around 3132 bits. The summary of the comparison of parameters is shown
in Table 2. The base field of the type 2 curve is smaller than that of the type 1
curve. Moreover, the base field of the type 2 curve is an extension field. Thus,
the characteristic of the type 2 curve is small, its arithmetic is implementa-
tion friendly, and the representation of the elements in G1 is smaller than it
is for the type 1 curve. However, the order of the type 2 curve is larger than
that of the type 1 curve. If the method proposed by Gallant et al. [12] (GLV)
is used for scalar multiplication on G1 for the type 2 elliptic curves, then the
length of this operation is cut in half; nevertheless, the reduced length is still
larger than that for type 1 curves. Scalar multiplication on type 2 curves is
considerably slower than it is for type 1 curves. But the final exponentiation
is faster for type 2 curves because the costly part of this operation on type 2
curves is smaller than it is for type 1 curves. Hence, the Weil pairing is con-
siderable for type 1 curves. This means that Miller’s algorithm is evaluated in
twice the time it takes to calculate a pairing on type 1 curves. The actual Miller
loop parameters for the type 1 and type 2 curves are 2 · 224 bits and 522 bits,
respectively, so that of the type 2 curves is still larger. However, the arithmetic of
the type 2 curves can be implemented efficiently by using the pseudo-Mersenne
prime [14], and we show several instances of them in Section 4.1.

3.2 Miller’s Algorithm

We now present an algorithm for computing the Ate pairing over type 2 curves.
In this algorithm, we use a denominator elimination technique based on the

following lemma.

104 T. Teruya et al.

Table 2. Summary of parameter comparison for the 112-bit security level which is
discussed in Section 3.1, where “GLV Method” is the method proposed by Gallant
et al. [12], “Miller Loop Parameter” is the integer that determines the number of
iterations of Miller’s algorithm, and “Final Exp.” is the exponents of operations in the
final exponentiation

Type 1 2

Base Field Fp: p is a 1566-bit prime number Fp2 : 1044-bit size and p is a 522-
bit prime number

Order r: 224-bit prime number such
that p + 1 = hr

r: prime number such that hr is
a 1044-bit integer and h is small

GLV Method Not applicable Applicable by using φ : (x, y) �→
(ζ3x, y), where ζ3 ∈ μ3 ⊂ F∗

p2

Miller Loop
Parameter

r: 224-bit prime number with
low Hamming weight

p − 1: 522-bit integer with small
number of non-zero components
in NAF encoding

Final Exp. (p2 − 1)/r = (p − 1)h, where h is
a 1342-bit integer

(p6 − 1)/r = (p3 − 1)(p + 1)h,
where h is a small integer

Lemma 2 ([21])
1

xP − xQ
=

x2
P + xP xQ + x2

Q

(yP + yQ)(yP − yQ)
(5)

Lemma 1 and Lemma 2 derive the following theorem.

Theorem 1 (denominator elimination). Let P = (xP , yP) and Q =
(xQ, yQ) ∈ G1, let ι be a distortion map defined as in Equation (3), and let
Q′ = ι(Q).

Then, without changing the output of the reduced Tate pairing, division by
xP − xQ′ can be replaced with multiplication by x2

P + xP xQ′ + x2
Q′ .

Proof. In Equation (5), xP − xQ′ �= 0 and x2
P + xP xQ′ + x2

Q′ �= 0 for all pos-
sible xP , xQ′ in the Miller loop. Then, the denominator in Miller’s algorithm is
replaced as in Lemma 2, and we note that the denominator in Equation (5) is
as follows:

(yP + yQ′)(yP − yQ′) = (yP + u3yQ)(yP − u3yQ)
= y2

P − u6y2
Q ∈ Fq.

(6)

In the final exponentiation, the exponent can be decomposed as (q3 − 1)/r =
(q − 1)(p2 + p + 1)h, and resulting value of the final exponentiation with input
the value of Equation (6) becomes one. ��

Miller’s Algorithm with Signed-Binary Representation. Miller’s algo-
rithm to compute fp−1,P

(
ι(Q)

)
is defined on the standard binary representa-

tion, and it is also known as the double-and-add approach. It can be extended

Constructing Symmetric Pairings 105

to the signed-binary representation, and it is then known as the double-and-
add/subtract approach. If the number of non-zero components of the non-adjacent
form (NAF) of p − 1 is smaller than the Hamming weight of its binary represen-
tation, then the computation time can be improved.

Beuchat et al. [5] proposed using Miller’s algorithm on the signed-binary rep-
resentation of the Miller’s algorithm on the Barreto–Naehrig curves; however,
their algorithm does not work on the curves introduced in Section 2.2. As the
definition of the Miller function implies,

(f−a,P) =
(

1
fa,P · v[a]P

)
. (7)

The algorithm presented by Beuchat et al. does not handle v[a]P .
To extend the original Miller’s algorithm for the signed-binary representation,

we consider the subtraction of Miller’s formula as follows:

(fa−1,P) =
(

fa,P · f−1,P · l[a]P,−P

v[a−1]P

)

=
(

fa,P · l[a]P,−P

v−P · v[a−1]P

)
.

(8)

Theorem 1 derives the following subtraction procedure:

fa−1,P (Q) =
(
fa,P · l[a]P,−P · S[a−1]P · S−P

)
(Q), (9)

where SV is a polynomial function on the elliptic curve defined as SV (Q) =
x2

V + xV xQ + x2
Q. Equation (9) allows us to extend Miller’s algorithm for the

signed-binary representation with the elimination of the denominator to the
curves introduced in Section 2.2.

3.3 Final Exponentiation
The output of Miller’s algorithm is defined as an element of F∗

qk/(F∗
qk)r. An

exponentiation by (q3 − 1)/r is necessary in order to obtain a unique value of
μr ∈ F∗

q3 , where μr is the r-th roots of unity. Typically, this exponentiation is
called final exponentiation. This operation is computed in Fq3 , and so it is one
of the more expensive parts of a pairing computation.

From the definition of type 2 elliptic curves in Section 2.2, we can transform
the exponent for the final exponentiation as follows:

(p6 − 1)/r = h(p6 − 1)/#E(Fq)
= h(p6 − 1)/(p2 − p + 1)
= h(p3 − 1)(p + 1),

(10)

where h = #E(Fq)/r. Hence, the final exponentiation is efficiently calculated by
one inversion over Fqk , two multiplications over Fqk , two Frobenius maps, and
an exponentiation by h. The most expensive part is the exponentiation by h.
However, since we can choose an elliptic curve such that h is a very small integer
in almost all cases, this operation can be done quickly. We call this faster version
fast final exponentiation.

106 T. Teruya et al.

Algorithm 1. Reduced Ate pairing on E/Fp2

Input: T, P, Q: T = t − 1 = 2� +
∑�−1

i=0 si2i, where si ∈ {0, ±1}, and P, Q ∈ G1.

Output: Reduced Ate pairing fT,P

(
ι(Q)

)(qk−1)/r ∈ GT .
1: Q′ ← ι(Q); // 6M2
2: t0 ← x2

Q′ ; // S6
3: t1 ← S′

−P (Q′, t0); // 3M2
4: V ← P ;
5: f ← 1;
6: for i ← � − 1 down to 0 do
7: (f, V) ←

(
f2 · lV,V (Q′) · S′

[2]V (Q′, t0), [2]V
)

;
8: if si = 1 then
9: (f, V) ←

(
f · lV,P (Q′) · S′

V +P (Q′, t0), V + P
)

;
10: else if si = −1 then
11: (f, V) ←

(
f · lV,−P (Q′) · S′

V −P (Q′, t0) · t1, V − P
)

;
12: end if ;
13: end for;
14: f ← fp3 · f−1; // πp3 + I6 + M6
15: f ← f · fp; // πp + M6
16: f ← fh; // Exph

17: return f ;

3.4 Estimation of Computational Cost

In this section, we estimate computational cost of our algorithm performing the
reduced Ate pairing. We will show the algorithm for the reduced Ate pairing
on the elliptic curve E/Fp2 introduced in Section 2.2; see Algorithm 1. We note
that S′

V (Q, t) := xV (xV + xQ) + t and S′
P (Q, x2

Q) = x2
P + xP xQ + x2

Q = SP (Q)
in Algorithm 1. In Algorithm 1, lines 1-13 and lines 14-16 correspond to the
Miller’s algorithm and the final exponentiation, respectively.

In this paper, we use the affine coordinate to implement the group operation
of G1. The details of lines 7 and 9 in Algorithm 1 are described in Algorithm 2
and 3, respectively. The detail of line 11 in Algorithm 1 is easily derived by
Algorithm 3, the difference is a multiplication by t1 ∈ Fp6 and P is replaced
by −P . We then show the computational cost of Algorithm 1 at Table 3. We
note that the number of additions and subtractions are ignored and assume two
Frobenius maps πp and πp3 over Fp6 have same computational cost in Table 3.

4 Experimental Implementation

In this section, we show the results from an experimental implementation of our
proposed method. First, we show the environment in Table 4.

Constructing Symmetric Pairings 107

Algorithm 2. Doubling step of the reduced Ate pairing on E/Fp2 (at the line 7
in Algorithm 1)
Input: f, V, Q′, t0: f ∈ Fp6 , V ∈ E(Fp2), Q′ = ι(Q) ∈ E(Fp6), and t0 = x2

Q′ ∈ Fp6 .
Note that Q′ and t0 are computed at lines 1 and 2, respectively, in Algorithm 1.

Output:
(

f2 · lV,V (Q′) · S′
[2]V (Q′, t0), [2]V

)
∈ Fp6 × E(Fp2).

1: m ← 3x2
V ; // S2

2: n ← 2yV ;
3: λ ← m/n; // I2 + M2
4: g ← yQ′ − yV − λ(xQ′ − xV); // 3M2
5: f ← f2; // S6
6: f ← fg; // M6
7: λ′ ← λ2; // S2
8: xV ′ ← λ′ − 2xV ;
9: yV ′ ← λ(xV − xV ′) − yV ; // M2

10: V ′ ← (xV ′ , yV ′);
11: v ← xV ′(xV ′ + xQ′) + t0; // 3M2
12: f ← fv; // M6
13: return (f, V ′);

4.1 Parameters

In our experiment, we generated two parameters, Curve 1 and Curve 2. In the
class of our target elliptic curves described in Section 3, the characteristic p
of a base field can be chosen as the pseudo-Mersenne prime (p = 2n − c and
log2 |c| ≤ n/2) [14]. Moreover, a tower field Fq3 = Fp6 containing GT can be
defined by an irreducible binomial of W 3 − β ∈ Fq[W].

For our experiments, we generated two elliptic curves, Curves 1 and 2, as
defined above. The length of their characteristics are n = 367 and 522, respec-
tively. The parameter setting of Curve 1 is based on the least size of suggestions
described in [10], and Curve 2 is based on Equation (4) with the assumption
described in Section 3.1. Note that these two curves were generated randomly.
We note that w+

NAF and w−
NAF denote the numbers of 1 components and −1

components, respectively, in NAF encoding of p − 1.

Curve 1 (the sizes of p, r, and q3 are 367 bits, 718 bits, and 2202 bits,
respectively):

E/Fp2 : Y 2 = X3 + β,
p = 2367 − c, where c = 6441,
w+

NAF = 2 and w−
NAF = 5,

q = p2, and t = p,
r = #E(Fp2)/h = (p2 − p + 1)/h, where h = 110937,
Fq = Fp2 := Fp[V]/(V 2 − α), where α is

2674245158309532807325674069454972905651716022739308862
87892166998704709621703598439163805756069650247147619722,

108 T. Teruya et al.

Algorithm 3. Addition step of the reduced Ate pairing on E/Fp2 (at the line 9
in Algorithm 1)
Input: f, V, P, Q′, t0: f ∈ Fp6 , V, P ∈ E(Fp2), Q′ = ι(Q) ∈ E(Fp6), and t0 = x2

Q′ ∈
Fp6 . Note that Q′ and t0 are computed at lines 1 and 2, respectively, in Algorithm 1,
and P is a one of inputs of Algorithm 1.

Output:
(

f · lV,P (Q′) · S′
V +P (Q′, t0), V + P

)
∈ Fp6 × E(Fp2).

1: m ← (yP − yV);
2: n ← (xP − xV);
3: λ ← m/n; // I2 + M2
4: g ← yQ′ − yV − λ(xQ′ − xV); // 3M2
5: f ← fg; // M6
6: λ′ ← λ2; // S2
7: xV ′ ← λ′ − xV − xP ;
8: yV ′ ← λ(xP − xV ′) − yP ; // M2
9: V ′ ← (xV ′ , yV ′);

10: v ← xV ′(xV ′ + xQ′) + t0; // 3M2
11: f ← fv; // M6
12: return f ;

Fq3 := Fq[W]/(W 3 − β), where β is
2528964409087109586735370294508436849691017597126041538
65507223659919771838536052460473873404183697695433840882V +
2058841674231253025987668201602254081903020106910309523
52459948502700795868754014808684134161442322034832833606,

and distortion map is ι : (x, y) �→ (u2xp, u3yp) where u is
9914330293514571516462572069203799078797519193318327503
5881780110152715684795782450470760308772041178167589900W .

Curve 2 (the sizes of p, r, and q3 are 522 bits, 1038 bits, and 3132
bits, respectively):

E/Fp2 : Y 2 = X3 + β,
p = 2522 − c, where c = 29087,
w+

NAF = 3 and w−
NAF = 3,

q = p2, and t = p,
r = #E(Fp2)/h = (p2 − p + 1)/h, where h = 93,
Fq = Fp2 := Fp[V]/(V 2 − α), where α is

2583834559853811459432166124427683502167391574858989654
5214442003228999316236159397036115676140967350980743986
57016518475273042151263769973552482210593801879,

Fq3 := Fq[W]/(W 3 − β), where β is
5540496805234858649054077930128599436615709048884769387
6603968620597741702054737057676736328177323553483431937
91011363959336092540257851314510544280297171401V +
5729611582621237878678119907084390704267702847871726214

Constructing Symmetric Pairings 109

Table 3. Computational cost of our algorithm, where Mk, Sk, and Ik denote the
multiplication, squaring, and inversion over Fpk , π denotes Frobenius map over Fp6 ,
p = 2� − c and it is a prime number, w+

NAF denotes the number of 1 components and
w−

NAF denotes the number of −1 components in NAF encoding of p − 1, and Exph

denotes exponentiation by h over Fp6

Part of Algorithm 1 Computational Cost
lV,V (Q′) and [2]V in line 7 5M2 + 2S2 + I2

S′
[2]V (Q′, t0) in line 7 3M2

lV,±P (Q′) and V ± P in lines 9 and 11 5M2 + S2 + I2
S′

V ±P (Q′, t0) in lines 9 and 11 3M2

Line 7 8M2 + 2S2 + I2 + 2M6 + S6
Line 9 8M2 + S2 + I2 + 2M6
Line 11 8M2 + S2 + I2 + 3M6

Miller’s algorithm (lines 1-13)
9M2 + S6 + (8M2 + 2S2 + I2 + 2M6 + S6)�
+(w+

NAF + w−
NAF)(8M2 + S2 + I2 + 2M6)

+w−
NAFM6

Final exponentiation (lines 14-16) 2M6 + 2π + I6 + Exph

Table 4. Experimental environment

Environment
OS Linux 3.5.0-37 (Ubuntu 12.04.2 LTS)

CPU Core i7-4770 (3.4 GHz)
Memory 32 GB

Language Magma version 2.19-8 [8]

3429775029040573419091832483405499148515483815456512633
32728406562347176934945350917989445472195196929, and

distortion map is ι : (x, y) �→ (u2xp, u3yp) where u is
1810455431901709610502451144154632135017017586718473396
1873794180953915455128081305700723007474055399866147491
22579794730213310737853381173392719765819055455W

4.2 Performance of the Proposed Method

We computed the pairings and compared the running time of the Tate pairing
and the Ate pairing with the signed-binary approach on E/Fq. The parameters
used in Miller’s algorithm were r and p − 1, and these were represented in NAF
encoding. We ran the pairings 1000 times and computed the averages of Miller’s
algorithm for the Tate pairing, the Ate pairing, and the fast final exponentiation.
Table 5 shows these averages. It is clear that the Ate pairing computation on
E/Fq is efficiently computable. We note that our experimental implementation
is written in Magma [8], we did not implement efficient arithmetic based on the
pseudo-Mersenne prime, and generated curves are randomly generated. Thus,
there is room for further optimization.

110 T. Teruya et al.

Table 5. Running time of pairing computations (unit: milliseconds)

Curve 1 Curve 2
fr,P

(
ι(Q)

)
with NAF 88.28 157.87

fT,P

(
ι(Q)

)
with NAF 34.38 62.06

Fast Final Exp. 0.25 0.21
Reduced Tate 88.53 158.08
Reduced Ate 34.63 62.27

5 Conclusion

In the present paper, we proposed a method to construct symmetric pairings by
applying the Ate pairing to supersingular elliptic curves over finite fields with
large characteristics and embedding degree three. We also proposed an efficient
algorithm of the Ate pairing on these curves. We then generated several curves
in order to show the existence of curves that our method is applicable to, and
implemented experimental programs of our method and demonstrated that it is
efficiently computable.

Acknowledgements. The authors would like to thank Goichiro Hanaoka and
Takahiro Matsuda for the valuable comments. We gratefully thank the members
of Shin-Akarui-Angou-Benkyou-Kai for the valuable discussion and comments.
We also thank the anonymous reviewers of Pairing 2013 for the valuable com-
ments.

References

1. Adj, G., Menezes, A., Oliveira, T., Rodríguez-Henríquez, F.: Weakness of F36·509

for discrete logarithm cryptography. In: Cao, Z., Zhang, F. (eds.) Pairing 2013.
LNCS, vol. 8365, pp. 19–43. Springer, Heidelberg (2014)

2. Adleman, L.M.: The function field sieve. In: Huang, M.-D.A., Adleman, L.M. (eds.)
ANTS 1994. LNCS, vol. 877, pp. 108–121. Springer, Heidelberg (1994)

3. Barreto, P.S.L.M., Galbraith, S.D., ÓhÉigeartaigh, C., Scott, M.: Efficient pairing
computation on supersingular abelian varieties. Des. Codes Cryptography 42(3),
239–271 (2007)

4. Barreto, P.S.L.M., Kim, H.Y., Lynn, B., Scott, M.: Efficient algorithms for
pairing-based cryptosystems. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442,
pp. 354–368. Springer, Heidelberg (2002)

5. Beuchat, J.-L., González-Díaz, J.E., Mitsunari, S., Okamoto, E., Rodríguez-
Henríquez, F., Teruya, T.: High-speed software implementation of the optimal ate
pairing over barreto–naehrig curves. In: Joye, M., Miyaji, A., Otsuka, A. (eds.)
Pairing 2010. LNCS, vol. 6487, pp. 21–39. Springer, Heidelberg (2010)

6. Boneh, D., Franklin, M.K.: Identity-based encryption from the Weil pairing. In:
[19], pp. 213–229

7. Boneh, D., Franklin, M.K.: Identity-based encryption from the Weil pairing. SIAM
J. Comput. 32(3), 586–615 (2003)

Constructing Symmetric Pairings 111

8. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user
language. J. Symbolic Comput. 24(3-4), 235–265 (1997); Computational algebra
and number theory, London (1993)

9. Chatterjee, S., Hankerson, D., Knapp, E., Menezes, A.: Comparing two pairing-
based aggregate signature schemes. Des. Codes Cryptography 55(2-3), 141–167
(2010)

10. Freeman, D., Scott, M., Teske, E.: A taxonomy of pairing-friendly elliptic curves.
J. Cryptology 23(2), 224–280 (2010)

11. Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers. Discrete
Applied Mathematics 156(16), 3113–3121 (2008)

12. Gallant, R., Lambert, R., Vanstone, S.: Faster point multiplication on elliptic
curves with efficient endomorphisms. In: [19], pp. 190–200 (2001)

13. Gaudry, P., Thomé, E., Thériault, N., Diem, C.: A double large prime variation for
small genus hyperelliptic index calculus. Mathematics of Computation 76, 475–492
(2004)

14. Hankerson, D., Menezes, A.J., Vanstone, S.: Guide to Elliptic Curve Cryptography.
Springer-Verlag New York, Inc., Secaucus (2004)

15. Hayashi, T., Shimoyama, T., Shinohara, N., Takagi, T.: Breaking pairing-based
cryptosystems using ηT pairing over GF (397). In: Wang, X., Sako, K. (eds.)
ASIACRYPT 2012. LNCS, vol. 7658, pp. 43–60. Springer, Heidelberg (2012)

16. Hess, F., Smart, N.P., Vercauteren, F.: The eta pairing revisited. IEEE Transac-
tions on Information Theory 52(10), 4595–4602 (2006)

17. Joux, A.: Discrete logarithms in GF(26168) [= GF((2257)24)]. NMBRTHRY list
(May 21, 2013), https://listserv.nodak.edu/
cgi-bin/wa.exe?A2=NMBRTHRY;49bb494e.1305

18. Joux, A., Pierrot, C.: The special number field sieve in Fpn , application to pairing-
friendly constructions. In: Cao, Z., Zhang, F. (eds.) Pairing 2013. LNCS, vol. 8365,
pp. 45–61. Springer, Heidelberg (2014)

19. Kilian, J. (ed.): CRYPTO 2001. LNCS, vol. 2139. Springer, Heidelberg (2001)
20. Lee, E., Lee, H.S., Park, C.M.: Efficient and generalized pairing computation

on abelian varieties. IEEE Transactions on Information Theory 55(4), 1793–1803
(2009)

21. Lin, X., Zhao, C., Zhang, F., Wang, Y.: Computing the ate pairing on elliptic curves
with embedding degree k = 9. IEICE Transactions 91-A(9), 2387–2393 (2008)

22. Miller, V.S.: The Weil pairing, and its efficient calculation. J. Cryptology 17(4),
235–261 (2004)

23. Momose, F., Chao, J.: Scholten forms and elliptic/hyperelliptic curves with
weak Weil restrictions. Cryptology ePrint Archive, Report 2005/277 (2005),
http://eprint.iacr.org/2005/277

24. Nagao, K.: Improvement of Thériault algorithm of index calculus for Jacobian of
hyperelliptic curves of small genus. Cryptology ePrint Archive, Report 2004/161
(2004), http://eprint.iacr.org/2004/161

25. Ogura, N., Uchiyama, S., Kanayama, N., Okamoato, E.: A note on the pairing com-
putation using normalized Miller functions. IEICE Transactions on Fundamentals
of Electronics, Communications and Computer Sciences E95-A(1), 196–203 (2012)

26. Sakai, R., Ohgishi, K., Kasahara, M.: Cryptosystems based on pairing. In: 2000
Symposium on Cryptography and Information Security (SCIS 2000), pp. 26–28
(January 2000) C20

https://listserv.nodak.edu/cgi-bin/wa.exe?A2=NMBRTHRY;49bb494e.1305
https://listserv.nodak.edu/cgi-bin/wa.exe?A2=NMBRTHRY;49bb494e.1305
http://eprint.iacr.org/2005/277
http://eprint.iacr.org/2004/161

112 T. Teruya et al.

27. Scholten, J.: Weil restriction of an elliptic curve over a quadratic extension (2003)
(preprint), http://www.esat.kuleuven.ac.be/~jscholte/weilres.ps

28. Vercauteren, F.: Optimal pairings. IEEE Transactions on Information The-
ory 56(1), 455–461 (2010)

29. Verheul, E.R.: Evidence that XTR is more secure than supersingular elliptic curve
cryptosystems. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045,
pp. 195–210. Springer, Heidelberg (2001)

30. Verheul, E.R.: Evidence that XTR is more secure than supersingular elliptic curve
cryptosystems. J. Cryptology 17(4), 277–296 (2004)

31. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg
(2005)

32. Zhao, C., Zhang, F., Huang, J.: A note on the ate pairing. Int. J. Inf. Sec. 7(6),
379–382 (2008)

http://www.esat.kuleuven.ac.be/~jscholte/weilres.ps

Predicate- and Attribute-Hiding Inner Product

Encryption in a Public Key Setting

Yutaka Kawai and Katsuyuki Takashima

Mitsubishi Electric, 5-1-1 Ofuna, Kamakura, Kanagawa 247-8501, Japan
Kawai.Yutaka@da.MitsubishiElectric.co.jp,

Takashima.Katsuyuki@aj.MitsubishiElectric.co.jp

Abstract. In this paper, we propose a reasonable definition of predicate-
hiding inner product encryption (IPE) in a public key setting, which
we call inner product encryption with ciphertext conversion (IPE-CC),
where original ciphertexts are converted to predicate-searchable ones by
an helper in possession of a conversion key. We then define a notion of
full security for IPE-CC, which comprises three security properties of
being adaptively predicate- and attribute-hiding in the public key set-
ting, adaptively (fully-)attribute-hiding against the helper, and usefully
secure even against the private-key generator (PKG). We then present
the first fully secure IPE-CC scheme, and convert it into the first fully
secure symmetric-key IPE (SIPE) scheme, where the security is defined
in the sense of Shen, Shi, Waters. All the security properties are proven
under the decisional linear assumption in the standard model. The IPE-
CC scheme is comparably as efficient as existing attribute-hiding (not
predicate-hiding) IPE schemes. We also present a variant of the proposed
IPE-CC scheme with the same security that achieves shorter public and
secret keys. We employ two key techniques, trapdoor basis setup, in which
a new trapdoor is embedded in a public key, and multi-system proof tech-
nique, which further generalizes an extended dual system approach given
by Okamoto and Takashima recently.

1 Introduction

1.1 Background

The notion of predicate encryption (PE) was explicitly presented by Katz, Sahai
and Waters [12] for achieving fine-grained control over revealed information on
encrypted data for various predicate-searchable token key owners. In the encryp-
tion system, the owner of a (master) secret key can create and issue tokens to
system users. Informally, tokens in a predicate encryption scheme correspond
to predicates in some class F , and a sender associates a ciphertext with an at-
tribute in a set Σ; a ciphertext ctx associated with the attribute (or plaintext)
x ∈ Σ can be evaluated by token tkf corresponding to the predicate f ∈ F to
learn whether f(x) = 1. In this paper, we only consider this predicate-only PE
[12, 21], in which attribute x can be treated as a plaintext in a general functional
encryption framework [8]. (However, we treat x as an attribute hereafter.)

Z. Cao and F. Zhang (Eds.): Pairing 2013, LNCS 8365, pp. 113–130, 2014.
c© Springer International Publishing Switzerland 2014

114 Y. Kawai and K. Takashima

In addition, a security notion for PE, attribute-hiding, was defined in [12],
where, roughly speaking, a ciphertext conceals the associated attribute. More
specifically, it requires that an adversary in possession of tokens tkf1 , . . . , tkfh
for predicates f1, . . . , fh cannot derive any information on attribute x from ci-
phertext ctx other than the values of f1(x), . . . , fh(x).

Katz, Sahai and Waters [12] also presented a concrete construction of PE for
a class of predicates called inner product predicates, which represents a wide
class of predicates that includes an equality test (for IBE [2–4, 10] and HVE
[9]), range queries [22], disjunctions or conjunctions of equality tests, and, more
generally, arbitrary CNF or DNF formulas. Informally, an attribute of inner
product predicates is expressed as vector �x and predicate f�v is associated with
vector �v, where f�v(�x) = 1 iff �v · �x = 0. (Here, �v · �x denotes the standard inner
product.)

The attribute-hiding security achieved in [13–15] is more limited or weaker than
that achieved in [12, 17]. The former is called weakly-attribute-hiding, and the lat-
ter fully-attribute-hiding. Although the IPE scheme [12] achieved fully-attribute-
hiding, it is selectively secure under non-standard assumptions. Subsequently,
several attribute-hiding IPE schemes have been proposed [13–16, 20], for aim-
ing at an IPE scheme with better security, e.g., adaptive security, fully-attribute-
hiding and weaker (standard) assumptions. This research direction culminated in
adaptively secure and fully-attribute-hiding IPE scheme under the decisional linear
(DLIN) assumption [17]. The basic scheme in [17] has a variant with shorter public
and tokens based on the technique in [16]. A hierarchical IPE (HIPE) scheme can
be realized with the same security. (For a practical variant of the schemes, refer
to [19].)

However, all previous public key IPE schemes have a problem to be applied
in a practical system, that is, predicate token queries may leak some sensitive
information, e.g., medical personal history, patent strategy, or corporate sensi-
tive data. This is unavoidable in a plain public key IPE system, since anyone
can generate a ciphertext associated with any attribute, and then, by using it,
check the predicate associated in (target) token. In order to avoid this prob-
lem, Shen-Shi-Waters [21] proposed a symmetric-key IPE (SIPE) scheme, where
predicate in a token is hidden from any malicious users [21, 23]. The property
is called predicate-hiding. They [21] defined a strong security notion “full secu-
rity”, which implies predicate- and attribute-hiding, however, only constructed a
weakly secure (selectively secure, single challenge) SIPE scheme since it is based
on a weakly secure public key IPE given in [12]. Therefore, to construct a fully
secure SIPE remains an interesting open problem.

Moreover, we require such an IPE functionality in a public key setting. To
see the importance of predicate- and attribute-hiding IPE in a public key setting,
let us consider an example on electronic medical record (EMR) storing and
managing system that allows multiple hospitals to export EMRs to a remote
server. By sharing EMRs among the hospitals, patient care and cost savings
are greatly improved. Moreover, the database system provides a large source of

Predicate- and Attribute-Hiding Inner Product Encryption 115

medical research for physicians, biologists, and pharmacists, etc. For example,
pharmaceutical companies use it for developing a new medicine.

Here, it is desirable that such a sensitive data be treated as encrypted data
even for data processing and retrievals, which protects privacy of data provider.
In addition, in the above example, multiple competitors, e.g., pharmaceutical
companies, like to hide their access histories from each other. Hence, to apply
PE technology to the remote EMR server setting, we require

1. For providing and sharing EMRs among multiple medical institutes, PE
should be realized in a public key setting.

2. Attribute-hiding (for data-provider’s privacy) and predicate-hiding (for data-
retriever’s privacy) must be assured.

In other applications with remote storage servers, a PE-encrypted file system
with the above properties also highly improves user availability and removes
privacy concerns. Recently, Boneh et al.[6, 7] proposed function-private PE (in-
cluding IPE) schemes, which assure predicate-hiding only when used predicates
are sampled from any sufficiently unpredictable distribution. The schemes does
not guarantee predicate-hiding in the above setting, in general. Hence, to give a
reasonable and useful definition of predicate-hiding IPE in a public key setting
which is applicable in the above, is also an interesting open problem from a
practical and theoretical point of view.1

1.2 Our Results

1. This paper introduces a reasonable and useful definition of IPE for achieving
predicate-hiding in a public-key setting, i.e., IPE with ciphertext conversion
(IPE-CC).

Here, two types of ciphertexts, original and converted, are introduced, and
a new type of key, conversion key, is used as well as public and secret keys:
Each user encrypts an attribute �x by using public key, and the generated
ciphertext ct�x is called original. The ciphertext is converted to a predicate-
searchable one CT�x by a helper in possession of the conversion key ck.

IPE-CC has two types of secret (or trapdoor) keys, sk and ck. Depending
on which key an adversary has, we have three security requirements:
(a) predicate-hiding of token key tk�v and attribute-hiding of ciphertexts (ct�x,

CT�x) against any malicious user with no secret key sk nor conversion key
ck,

(b) (fully-)attribute-hiding of ciphertexts (ct�x,CT�x) against any malicious
helper with no secret key sk,

(c) predicate-hiding of token key tk�v and attribute-hiding of ciphertext ct�x
against any malicious PKG with no conversion key ck.

An IPE-CC scheme is called fully secure iff it satisfies all the above three
security requirements.

1 Boneh et al. [5] approached the problem based on PIR, which is a communication
protocol, while our solution is provided just by an encryption scheme (with much
more efficient communication).

116 Y. Kawai and K. Takashima

Fig. 1. Application to EMR storing and managing system, in which original encrypted
data ct�x are publicly accessible but converted ciphertexts CT�x are not made public.
Pharmaceutical Company X retrieves medical data with some medical predicate 	w as
well as a predetermined condition 	v.

2. This paper proposes the first fully-secure IPE-CC scheme, where all the se-
curity properties are proven under the DLIN assumption in the standard
model (Section 4).

Remark: Our IPE-CC scheme addresses privacy concerns given in the
above remote server system, which is illustrated in Figure 1. Every data-
provider, e.g., Hospital A, B,.., can put his encrypted data ct�x for data �x on
the shared server, and each data-retriever, e.g., Pharmaceutical Company X,
Y,.., obtains his own token tk�v associated with a predicate category �v from
PKG. Here, a predicate category indicates an available range for specific
predicate searches, e.g., Company X is assigned for accessing patient-data
in the south of the U.S., and Y is assigned for accessing patient-data in the
north. (The predicate category may be empty condition.) The data-retriever
delegates the (high-level) token tk�v to a specific predicate token tk�v∧ �w, where
�w indicates some medical predicate, e.g., records for cardiac patients aged
60 and above. (Refer to Appendix A for the 2-level hierarchical IPE-CC
scheme.) Helper converts original encrypted data ct�x to searchable ones, CT�x,
using conversion key ck (in some extra time). Note that the converted ci-
phertexts are not made public (while original encrypted data on the database
are publicly accessible). In the figure, Company X sends a search query with
delegated token tk�v∧ �w, and he obtains search result, f�v ∧ �w(�x) ∈ {0, 1}. The
basic security (a) protects privacy for both data-providers and data-retrievers
from dishonest users, e.g., competing companies. The security condition (b)
assures no information leakage to the server administrator (i.e., helper) from
ciphertexts on the server. Moreover, since converted ciphertexts are not pub-
lic, security (c) assures both predicate-hiding in tokens and attribute-hiding
in ciphertexts against PKG. Since to mitigate the power of PKG is important
in PE systems, this security against PKG is useful and interesting. Thus, to

Predicate- and Attribute-Hiding Inner Product Encryption 117

Fig. 2. Trapdoor basis setup with conversion key ck for public key p̂k and (master)

secret key sk, in which PK := B̂ is not directly used (with Enc, TokenGen, Conv, Query)

summarize, the proposed scheme provides attribute-hiding for ciphertexts
as in [17] and predicate-hiding for tokens from any malicious users but the
helper. The technique can be applied to unbounded IPE in [18].

3. We propose the first fully secure symmetric-key IPE (SIPE) scheme in the
sense of the definition by Shen, Shi and Waters [21] (Section 5). The scheme
is (generically) converted from our public key setting IPE-CC by including
public key and conversion key into (master) secret key. The security is also
proven under the DLIN assumption in the standard model.

4. We also present a variant of the proposed IPE-CC scheme with the same
security that achieves shorter public key and shorter (master) secret key
(Section 6). Table 1 in Section 7 compares the proposed IPE-CC scheme
(resp. SIPE scheme) with existing attribute-hiding IPE schemes in the public
key setting (resp. the existing SIPE scheme).

1.3 Key Techniques

Trapdoor Basis Setup: A full security notion of IPE-CC (in the public key
setting) consists of three types of hiding properties against various type adver-
saries, i.e., malicious users, helper, or PKG. For achieving such a rich security
property, we employ a new trapdoor embedded in a public key. See Figure 2.
The setup algorithm produces a pair of random dual bases (B,B∗) on a dual
pairing vector space (DPVS), and by using random matrix ck := W , linearly

transforms a part of the basis, B̂ (⊂ B), to a new basis D̂ := B̂ ·W , which is

uniformly and independently distributed from B. It outputs p̂k := D̂ as a part of
a public key and the corresponding sk := B̂∗ as a secret key, where the bases are
independent from each other if W is not considered. Original ciphrtexts and to-
kens inherit this independence property from the master key pair. The trapdoor
(i.e., conversion key) W transforms the original ciphertexts to searchable ones,
which are related to tokens through the dual orthonormal property of (B,B∗).
We establish security properties against various level adversaries based on this
trapdoor basis setup construction.

Multi-system Proof Technique: As we observed, our IPE-CC scheme im-
plies the first fully secure SIPE scheme. Since no previous SIPE schemes are fully
secure, we develop a new technique to obtain the scheme, we call multi-system
proof technique, which extends the approach given in [17]. Based on Waters’

118 Y. Kawai and K. Takashima

dual system encryption methodology, a large hidden subspace is used for achiev-
ing fully-attribute-hiding of IPE in [17], where the subspace is 2n-dimensional
for n-dimensional attribute vectors and the two n-dimensional blocks play dif-
ferent roles in the proof. Moreover, to hide a challenge bit b from adversary,
unbiased ciphertexts with ω0�x

(0) + ω1�x
(1) for challenge �x(0), �x(1) ∈ Fn

q (and

ω0, ω1
U← Fq) plays a key role in the security proof. For both fully predicate- and

attribute-hiding security of our schemes, a simulator must deal with two types of
challenges (�x(0), �x(1)) and (�v(0), �v(1)) simultaneously. Since the above unbiased
ciphertext (or token) construction is not enough for this purpose, we use larger,
3n-dimensional, multi-system hidden subspace, and refined game hopping.2 See
the full version of this paper for the details.

1.4 Notations

When A is a random variable or distribution, y
R← A denotes that y is randomly

selected from A according to its distribution. When A is a set, y
U← A denotes

that y is uniformly selected from A. We denote the finite field of order q by
Fq, and Fq \ {0} by F×

q . A vector symbol denotes a vector representation over
Fq, e.g., �x denotes (x1, . . . , xn) ∈ Fn

q . For two vectors �x = (x1, . . . , xn) and

�v = (v1, . . . , vn), �x·�v denotes the inner product
∑n

i=1 xivi. The vector
�0 is abused

as the zero vector in Fn
q for any n. XT denotes the transpose of matrix X . I� and

0� denote the �×� identity matrix and the �×� zero matrix, respectively. A bold
face letter denotes an element of vector space V, e.g., x ∈ V. When bi ∈ V (i =
1, . . . , n), span〈b1, . . . , bn〉 ⊆ V (resp. span〈�x1, . . . , �xn〉) denotes the subspace
generated by b1, . . . , bn (resp. �x1, . . . , �xn). For bases B := (b1, . . . , bN) and B∗ :=

(b∗1, . . . , b
∗
N), (x1, . . . , xN)B :=

∑N
i=1 xibi and (y1, . . . , yN)B∗ :=

∑N
i=1 yib

∗
i . For

a dimension n, �ej denotes the canonical basis vector (

j−1︷ ︸︸ ︷
0 · · · 0, 1,

n−j︷ ︸︸ ︷
0 · · ·0) ∈ Fn

q for
j = 1, . . . , n. GL(n,Fq) denotes the general linear group of degree n over Fq.

2 Dual Pairing Vector Spaces (DPVS)

In this paper, for simplicity of description, we will present the proposed schemes
on the symmetric version of dual pairing vector spaces (DPVS) [14, 13, 15] con-
structed using symmetric bilinear pairing groups given in Definition 1. Owing to
the abstraction of DPVS, the presentation and the security proof of the proposed
schemes are essentially the same as those on the asymmetric version of DPVS,
(q,V,V∗,GT ,A,A

∗, e), for which see Appendix A.2 in the full version of [15].
The symmetric version is a specific (self-dual) case of the asymmetric version,
where V = V∗ and A = A∗.
2 In [21], a generic conversion from an adaptively secure single-challenge SIPE to a
fully secure (multi-challenge) SIPE is given. By using the conversion, we may take
an approach to fully secure SIPE via single challenge secure SIPE based on IPE in
[17]. However, since the conversion loses efficiency, our SIPE in Section 5 is better.

Predicate- and Attribute-Hiding Inner Product Encryption 119

Definition 1. “Symmetric bilinear pairing groups” (q,G,GT , G, e) are a tuple
of a prime q, cyclic additive group G and multiplicative group GT of order q,
G
= 0 ∈ G, and a polynomial-time computable nondegenerate bilinear pairing
e : G × G → GT i.e., e(sG, tG) = e(G,G)st and e(G,G)
= 1. Let Gbpg be an
algorithm that takes input 1λ and outputs a description of bilinear pairing groups
(q,G,GT , G, e) with security parameter λ.

Definition 2. “Dual pairing vector spaces (DPVS)” (q,V,GT ,A, e) by a direct
product of symmetric pairing groups (q,G,GT , G, e) are a tuple of prime q, N -

dimensional vector space V :=

N︷ ︸︸ ︷
G× · · ×G over Fq, cyclic group GT of order

q, canonical basis A := (a1, . . . ,aN) of V, where ai := (

i−1︷ ︸︸ ︷
0, .., 0, G,

N−i︷ ︸︸ ︷
0, .., 0), and

pairing e : V×V → GT . The pairing is defined by e(x,y) :=
∏N

i=1 e(Gi, Hi) ∈ GT

where x := (G1, .., GN) ∈ V and y := (H1, .., HN) ∈ V. This is nondegenerate
bilinear i.e., e(sx, ty) = e(x,y)st and if e(x,y) = 1 for all y ∈ V, then x = 0.
For all i and j, e(ai,aj) = e(G,G)δi,j where δi,j = 1 if i = j, and 0 otherwise,
and e(G,G)
= 1 ∈ GT . DPVS generation algorithm Gdpvs takes input 1

λ (λ ∈ N)
and N ∈ N, and outputs a description of param′

V := (q,V,GT ,A, e) with security
parameter λ and N -dimensional V. It can be constructed by using Gbpg.

3 Definition of Inner Product Encryption with
Ciphertext Conversion (IPE-CC)

This section defines inner product encryption with ciphertext conversion (IPE-
CC) and its security. An attribute (or plaintext) of inner product predicates is
expressed as a vector �x ∈ Fn

q \ {�0} and a predicate f�v is associated with a vector

�v, where f�v(�x) = 1 iff �v · �x = 0. Let Σ := Fn
q \ {�0}, i.e., the set of the attributes,

and F := {f�v|�v ∈ Fn
q \ {�0}} i.e., the set of the predicates.

Definition 3. An inner product encryption with ciphertext conversion (IPE-CC)
scheme (for predicates F and attributes Σ) consists of probabilistic polynomial-
time algorithms Setup,TokenGen,Enc,Conv and Query. They are given as follows:

– Setup takes as input security parameter 1λ, and it outputs a public key pk,
a conversion key ck, and a (master) secret key sk.

– TokenGen takes as input a public key pk, a (master) secret key sk, and a
predicate vector �v. It outputs a corresponding token tk�v.

– Enc takes as input a public key pk and an attribute (or plaintext) vector �x.
It returns an original ciphertext ct�x.

– Conv takes as input a public key pk, a conversion key ck, and an original
ciphertext ct�x. It returns a converted ciphertext CT�x.

– Query takes as input a public key pk, a token tk�v and a converted cipher-
text CT�x. It outputs either 0 or 1, indicating the value of the predicate f�v
evaluated on the underlying attribute �x.

120 Y. Kawai and K. Takashima

Remark 1. In the introduction, we give an application example using a dele-
gation from tk�v to tk�v∧ �w(:= tk(�v, �w)). While we can add this functionality, the
explicit description of the delegation is not included here for simple presentation.
Refer to Appendix A for the 2-level hierarchical IPE-CC scheme.

An IPE-CC scheme should have the following correctness property: for all

(pk, ck, sk)
R← Setup(1λ, n), all f�v ∈ F and �x ∈ Σ, all tk�v

R← TokenGen(pk, sk, �v),

all original ciphertexts ct�x
R← Enc(pk, �x) and converted ciphertexts CT�x

R←
Conv(pk, ck, ct�x), it holds that 1 = Query(tk�v,CT�x) if f�v(�x) = 1. Otherwise,
it holds only with negligible probability.

We then define the full security notion of IPE-CC, which consists of three
security notions, i.e., security against malicious users, malicious helper, and ma-
licious PKG.

Definition 4 (Full Security of IPE-CC). An IPE-CC scheme is fully secure
if for all probabilistic polynomial-time adversaries A, all AdvDisU

A (λ), AdvDisH
A (λ)

and AdvDisPKG
A (λ) are negligible.

[Dishonest-User Game] The model for defining the adaptively predicate-
hiding and adaptively attribute-hiding security of IPE-CC against malicious user
A is given as follows:

1. The challenger runs Setup to generate keys pk, ck and sk, and pk is given to
A. The challenger picks a random bit b.

2. A may adaptively make a polynomial number of queries, where each query
is one of two types:

– On the �-th ciphertext query, A outputs two attribute vectors (�x
(0)
� , �x

(1)
�).

The challenger responds with (ct�,CT�), where ct�
R← Enc(pk, �x

(b)
�) and

CT�
R← Conv(pk, ck, ct�).

– On the h-th token query, A outputs two predicate vectors, (�v
(0)
h , �v

(1)
h).

The challenger responds with tkh
R← TokenGen(pk, sk, �v

(b)
h).

A’s queries are subject to the restriction that, for all ciphertext queries

(�x
(0)
� , �x

(1)
�) and all token queries (�v

(0)
h , �v

(1)
h), f

�v
(0)
h

(�x
(0)
�) = f

�v
(1)
h

(�x
(1)
�).

3. A outputs a guess b′ of b.

The success experiment in the above game, i.e., b′ = b, is denoted by SuccDisU
A (λ),

and the advantage of A is defined as AdvDisU
A (λ) := Pr[SuccDisU

A (λ)]−1/2 for any
security parameter λ.

[Dishonest-Helper Game] The model for defining the adaptively
(fully-)attribute-hiding security of IPE-CC against malicious helper A is given as
follows:

1. The challenger runs Setup to generate keys pk, ck and sk, and pk and ck are
given to A. The challenger picks a random bit b.

2. A may adaptively make a polynomial number of queries, where each query
is one of two types:

Predicate- and Attribute-Hiding Inner Product Encryption 121

– On the �-th ciphertext query, A outputs two attribute vectors (�x
(0)
� , �x

(1)
�).

The challenger responds with ct�
R← Enc(pk, �x

(b)
�).

– On the h-th token query, A outputs a predicate vector, �vh. The challenger

responds with tkh
R← TokenGen(pk, sk, �vh).

A’s queries are subject to the restriction that, for all ciphertext queries

(�x
(0)
� , �x

(1)
�) and all token queries �vh, f�vh(�x

(0)
�) = f�vh(�x

(1)
�).

3. A outputs a guess b′ of b.

The success experiment in the above game, i.e., b′ = b, is denoted by SuccDisH
A (λ),

and the advantage of A is defined as AdvDisH
A (λ) := Pr[SuccDisH

A (λ)] − 1/2 for
any security parameter λ.

[Dishonest-PKG Game] The model for defining the adaptively attribute-
hiding and predicate-hiding security of IPE-CC against malicious-PKG A is
given as follows:

1. The challenger runs Setup to generate keys pk, ck and sk, and pk and sk are
given to A. The challenger picks a random bit b.

2. A may adaptively make a polynomial number of queries, where each query
is one of two types:

– On the �-th ciphertext query, A outputs two attribute vectors (�x
(0)
� , �x

(1)
�).

The challenger responds with ct�
R← Enc(pk, �x

(b)
�).

– On the h-th token query, A outputs two predicate vectors, (�v
(0)
h , �v

(1)
h).

The challenger responds with tkh
R← TokenGen(pk, sk, �v

(b)
h).

A’s queries are subject to no restrictions.
3. A outputs a guess b′ of b.

The success experiment in the above, i.e., b′ = b, is denoted by SuccDisPKG
A (λ),

and the advantage of A is defined as AdvDisPKG
A (λ) := Pr[SuccDisPKG

A (λ)] − 1/2
for any security parameter λ.

Since a converted ciphertext is not publicly available, it is not given to the
adversary in the above Dishonest-PKG game.

4 Proposed (Basic) IPE-CC Scheme

4.1 Construction

We describe random dual orthonormal basis generator GIPE
ob below, which is used

as a subroutine in the proposed IPE-CC and SIPE schemes.

G IPE
ob (1λ, N) : param′

V := (q,V,GT ,A, e)
R← Gdpvs(1

λ, N), ψ
U← F×

q , gT := e(G,G)ψ,

X := (χi,j)
U← GL(N, Fq), (ϑi,j) := ψ · (XT)−1, paramV := (param′

V, gT),

bi :=
∑N

j=1 χi,jaj ,B := (b1, . . . , bN), b∗i :=
∑N

j=1 ϑi,jaj ,B
∗ := (b∗1, . . . , b

∗
N),

return (paramV,B,B
∗).

122 Y. Kawai and K. Takashima

We refer to Section 1.4 for notations on DPVS. For matrix W :=
(wi,j)i,j=1,...,N ∈ FN×N

q and element g := (G1, . . . , GN) inN -dimensionalV, gW

denotes (
∑N

i=1Giwi,1, . . . ,
∑N

i=1Giwi,N) = (
∑N

i=1 wi,1Gi, . . . ,
∑N

i=1 wi,NGi) by a
natural multiplication of a N -dim. row vector and a N ×N matrix. Thus it holds
an associative law like (gW)W−1 = g(WW−1) = g. The proposed scheme is given
as:

Setup(1λ, n) : (paramV,B := (b1, .., b6n),B
∗ := (b∗1, .., b

∗
6n))

R← G IPE
ob (1λ, N := 6n),

W
U← GL(N, Fq), di := biW for i = 1, . . . , 6n, D := (d1, . . . ,d6n),

D̂ := (d1, . . . ,dn,d5n+1, . . . ,d6n), B̂∗ := (b∗1, . . . , b
∗
n, b

∗
4n+1, . . . , b

∗
5n),

return pk := (1λ, paramV, D̂), ck := W, sk := B̂∗.

TokenGen(pk, sk, 	v ∈ Fn
q \ {	0}) : σ

U← Fq, 	η
U← Fn

q ,

n︷ ︸︸ ︷ 3n︷ ︸︸ ︷ n︷ ︸︸ ︷ n︷ ︸︸ ︷
k∗ := (σ	v, 03n, 	η, 0n)B∗ , return tk�v := k∗.

Enc(pk, 	x ∈ Fn
q \ {	0}) : τ

U← Fq, 	ξ
U← Fn

q ,

n︷ ︸︸ ︷ 3n︷ ︸︸ ︷ n︷ ︸︸ ︷ n︷ ︸︸ ︷
f := (τ	x, 03n, 0n, 	ξ)D, return ct�x := f .

Conv(pk, ck := W, ct�x := f) : ρ
U← Fq, y

U← span〈d5n+1, . . . ,d6n〉,
c := (ρf + y)W−1, return CT�x := c.

Query(pk, tk�v := k∗, CT�x := c) :

if e(c,k∗) = 1, output 1, otherwise, output 0.

Remark 2. To realize a delegation from tk�v to tk�v∧ �w(:= tk(�v, �w)) given in the
introduction, we can construct a natural delegation algorithm in a similar man-
ner to [14–17]. We give the 2-level hierarchical IPE-CC (HIPE-CC) scheme in
Appendix A.

[Correctness] Since D · W−1 := (d1W
−1, . . . ,d6nW

−1) is equal to B :=
(b1, . . . , b6n), c := (ρf + u)W−1 = (ω�x, 03n, 0n, �ϕ)D ·W−1 = (ω�x, 03n, 0n,
�ϕ)D·W−1 = (ω�x, 03n, 0n, �ϕ)B, where ω ∈ Fq and �ϕ ∈ Fn

q are uniformly and

independently distributed. Therefore, if �v · �x = 0, then e(c,k∗) = gωσ�v·�x
T = 1.

4.2 Security

The DLIN assumption is standard [15–17] (and given in the full paper).

Theorem 1. The proposed IPE-CC scheme is fully secure under the DLIN as-
sumption, i.e., for any adversary A, all AdvDisU

A (λ), AdvDisH
A (λ) and AdvDisPKG

A (λ)
are negligible under the DLIN assumption.

Proof. The proof of Theorem 1 is reduced to those of Lemmas 1–3. ��

Predicate- and Attribute-Hiding Inner Product Encryption 123

Lemma 1. For any adversary A, AdvDisU
A (λ) is negligible under the DLIN as-

sumption.

Lemma 2. For any adversary A, AdvDisH
A (λ) is negligible under the DLIN as-

sumption.

Lemma 3. For any adversary A, AdvDisPKG
A (λ) is negligible under the DLIN

assumption.

The proofs of Lemmas 1–3 are given in the full version of this paper.

5 Fully Secure SIPE

The definitions of symmetric-key IPE (SIPE) and full security of SIPE are given
in AppendixB.

From the above IPE-CC scheme, we obtain the first fully secure SIPE
scheme. Namely, using the IPE-CC scheme, ΠIPE-CC := (Setup,TokenGen,Enc,
Conv,Query), a modified setup algorithm Setup′(1λ, n) outputs a (master) secret

key sk′ := (pk, ck, sk), where (pk, ck, sk)
R← Setup(1λ, n), and a modified encryp-

tion algorithm Enc′(sk′, �x) outputs a ciphertext CT′
�x

R← Conv(pk, ck, ct�x), where

ct�x
R← Enc(pk, �x), and the rest of algorithms, TokenGen andQuery are the same as

those of the IPE-CCscheme since an input sk′ ofTokenGen includes (pk, sk). Hence,
we obtain a (converted) SIPE,ΠSIPE := (Setup′,TokenGen,Enc′,Query).

Theorem 2. The proposed SIPE scheme is fully secure under the DLIN as-
sumption.

Proof. By the construction, the full security for SIPE ΠSIPE is reduced from the
Dishonest-User Game security for IPE-CC ΠIPE-CC, i.e., for any adversary A, we
can construct A′ from A s.t. AdvSIPEA (λ) for ΠSIPE in Def. 6 is less than or equal
to AdvDisU

A′ (λ) for ΠIPE-CC in Def. 4. Hence, Lemma 1 implies Theorem 2. ��

6 A Variant for Achieving Shorter Public and Secret
Keys

A variant of the proposed (basic) IPE-CC scheme with the same security, that
achieves a shorter (O(n)-size) public key and secret key, can be constructed by
combining with the techniques in [16], where n is the dimension of vectors of the
IPE-CC scheme. Here, we show this variant.

6.1 Construction and Security

Let N := 6n and

H(n,Fq) :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎝
μ′′
1 μ

′′
2 . . . μ

′′
n−1 μ′′′

μ μ′
2

. . .
...

μ μ′
n−1

μ′
n

⎞⎟⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣∣
μ, μ′

2, . . . , μ
′
n,

μ′′
1 , . . . , μ

′′
n−1, μ

′′′ ∈ Fq,
a blank element in the matrix
denotes 0 ∈ Fq

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
,

124 Y. Kawai and K. Takashima

L(6, n,Fq) :=

⎧⎪⎨⎪⎩X :=

⎛⎜⎝X1,1 · · · X1,6

...
...

X6,1 · · · X6,6

⎞⎟⎠
∣∣∣∣∣∣∣ Xi,j ∈ H(n,Fq)
for i, j = 1, . . . , 6

⎫⎪⎬⎪⎭
⋂

GL(N,Fq).

We note that L(6, n,Fq) is a subgroup of GL(N,Fq) (Lemma 4). For X ∈
L(6, n,Fq), we denote (ψ-times) its adjoint matrix (X−1)T as a sparse form

(X−1)T :=

⎛⎜⎝Y1,1 · · · Y1,6
...

...
Y6,1 · · · Y6,6

⎞⎟⎠ , where Yi,j :=

⎛⎜⎜⎜⎜⎜⎝
ϑ′′i,j,1
ϑ′′i,j,2 ϑi,j
...

. . .

ϑ′′i,j,n−1 ϑi,j
ϑ′′′i,j ϑ′i,j,2 . . . ϑ′i,j,n

⎞⎟⎟⎟⎟⎟⎠
for i, j = 1, . . . , 6. Here, a blank element in the above matrix denotes 0 ∈ Fq. That
is, X ∈ L(6, n,Fq) is represented by 72n non-zero entries {μi,j, μ

′
i,j,2, . . . , μ

′
i,j,n,

μ′′
i,j,1, . . . , μ

′′
i,j,n−1, μ

′′′
i,j}i,j=1,...6, and ψ(X−1)T is represented by 72n non-zero

entries {ϑi,j , ϑ′i,j,2, . . . , ϑ′i,j,n, ϑ′′i,j,1, . . . , ϑ′′i,j,n−1, ϑ
′′′
i,j}i,j=1,...6.

Random dual orthonormal basis generator GIPE
ob,sp with sparse matrices below

is used as a subroutine in the proposed variants of IPE-CC and SIPE schemes.

GIPE
ob,sp(1

λ, 6, n) : paramG := (q,G,GT , G, e)
R← Gbpg(1

λ), N := 6n,

ψ
U← F×

q , gT := e(G,G)ψ , param′
V := (q,V,GT ,A, e) := Gdpvs(1

λ, N, paramG),

paramV := (param′
V, gT), X

U← L(6, n,Fq),

hereafter, {μi,j , μ
′
i,j,2, .., μ

′
i,j,n, μ

′′
i,j,1, .., μ

′′
i,j,n−1, μ

′′′
i,j}i,j=1,...6 denotes

non-zero entries of X, and {ϑi,j , ϑ′i,j,2, .., ϑ′i,j,n, ϑ′′i,j,1, .., ϑ′′i,j,n−1, ϑ
′′′
i,j}i,j=1,...6

denotes non-zero entries of ψ(X−1)T,

{Bi,j := μi,jG,B
′
i,j,2 := μ′

i,j,2G, . . . , B
′
i,j,n := μ′

i,j,nG,

B′′
i,j,1 := μ′′

i,j,1G, . . . , B
′′
i,j,n−1 := μ′′

i,j,n−1G,B
′′′
i,j := μ′′′

i,jG}i,j=1,...6,

{B∗
i,j := ϑi,jG,B

′∗
i,j,2 := ϑ′i,j,2G, . . . , B

′∗
i,j,n := ϑ′i,j,nG,

B′′∗
i,j,1 := ϑ′′i,j,1G, . . . , B

′′∗
i,j,n−1 := ϑ′′i,j,n−1G,B

′′′∗
i,j := ϑ′′′i,jG}i,j=1,...6,

return (paramV, {Bi,j , B
′
i,j,2, . . . , B

′
i,j,n, B

′′
i,j,1, . . . , B

′′
i,j,n−1, B

′′′
i,j}i,j=1,...6,

{B∗
i,j , B

′∗
i,j,2, . . . , B

′∗
i,j,n, B

′′∗
i,j,1, . . . , B

′′∗
i,j,n−1, B

′′′∗
i,j }i,j=1,...6).

Remark 3. Let

⎛⎜⎝b(i−1)n+1

...
bin

⎞⎟⎠ :=

⎛⎜⎜⎜⎝
B′′

i,1,1 B
′′
i,1,2 . . . B

′′′
i,1

Bi,1 B′
i,1,2

. . .
...

B′
i,1,n

· · ·

B′′
i,6,1 B

′′
i,6,2 . . . B

′′′
i,6

Bi,6 B′
i,6,2

. . .
...

B′
i,6,n

⎞⎟⎟⎟⎠ (1)

Predicate- and Attribute-Hiding Inner Product Encryption 125

⎛⎜⎜⎝
b∗(i−1)n+1

...

b∗in

⎞⎟⎟⎠ :=

⎛⎜⎜⎜⎜⎝
B′′∗

i,1,1

B′′∗
i,1,2 B∗

i,1

...
. . .

B′′′∗
i,1 B′∗

i,1,2 . . . B
′∗
i,1,n

· · ·

B′′∗
i,6,1

B′′∗
i,6,2 B∗

i,6

...
. . .

B′′′∗
i,6 B′∗

i,6,2 . . . B
′∗
i,6,n

⎞⎟⎟⎟⎟⎠
for i = 1, . . . , 6, and B := (b1, . . . , b6n),B

∗ := (b∗1, . . . , b
∗
6n), where a blank

element in the matrices denotes 0 ∈ G. (B,B∗) are the dual orthonormal bases,
i.e., e(bi, b

∗
i) = gT and e(bi, b

∗
j) = 1 for 1 ≤ i
= j ≤ 6n.

Here, we assume that input vectors, �x := (x1, . . . , xn) and �v := (v1, . . . , vn),
satisfies x1
= 0 and vn
= 0. The proposed scheme is given as:

Setup(1λ, n) :

(paramV, {Bi,j , B
′
i,j,2, . . . , B

′
i,j,n, B

′′
i,j,1, . . . , B

′′
i,j,n−1, B

′′′
i,j}i,j=1,...6,

{B∗
i,j , B

′∗
i,j,2, . . . , B

′∗
i,j,n, B

′′∗
i,j,1, . . . , B

′′∗
i,j,n−1, B

′′′∗
i,j }i,j=1,...6)

R← G IPE
ob,sp(1

λ, 6, n),

W
U← L(6, n, Fq),

⎛⎜⎝ d1

...
d6n

⎞⎟⎠ :=

⎛⎜⎝ b1
...

b6n

⎞⎟⎠ ·W,

where (bi)i=1,...,6n is given
in Eq. (1), and (di)i=1,...,6n

is represented as in Eq. (1)
using

{Di,j , D
′
i,j,2, . . . , D

′
i,j,n, D

′′
i,j,1, . . . , D

′′
i,j,n−1, D

′′′
i,j}i,j=1,...6,

return pk :=(1λ, paramV, {Di,j , D
′
i,j,2, .., D

′
i,j,n, D

′′
i,j,1, .., D

′′
i,j,n−1, D

′′′
i,j}i=1,6; j=1,..,6),

ck := W, sk := {B∗
i,j , B

′∗
i,j,2, .., B

′∗
i,j,n, B

′′∗
i,j,1, .., B

′′∗
i,j,n−1, B

′′′∗
i,j }i=1,5; j=1,..,6.

TokenGen(pk, sk, 	v) : σ, η1, . . . , ηn
U← Fq ,

for j = 1, .., 6, K∗
j,1 :=

∑n−1
l=1 (σvlB

′′∗
1,j,l + ηlB

′′∗
5,j,l) + σvnB

′′′∗
1,j + ηnB

′′′∗
5,j ,

K∗
j,l := σ(vlB

∗
1,j + vnB

′∗
1,j,l) + ηlB

∗
5,j + ηnB

′∗
5,j,l for l = 2, . . . , n− 1,

K∗
j,n := σvnB

′∗
1,j,n + ηnB

′∗
5,j,n,

k∗ := (K∗
1,1, . . . ,K

∗
1,n, . . . ,K∗

6,1, . . . ,K
∗
6,n) ∈ G6n, return tk�v := k∗.

Enc(pk, 	x) : ω, ϕ1, . . . , ϕn
U← Fq,

for j = 1, .., 6, Fj,1 := ωx1D
′′
1,j,1 + ϕ1D

′′
6,j,1,

Fj,l := ω(x1D
′′
1,j,l + xlD1,j) + ϕ1D

′′
6,j,l + ϕlD6,j for l = 2, . . . , n− 1,

Fj,n := ωx1D
′′′
1,j + ϕ1D

′′′
6,j +

∑n
l=2(ωxlD

′′
1,j,l + ϕlD

′′
6,j,l),

f := (F1,1, . . . , F1,n, . . . , F6,1, . . . , F6,n) ∈ G6n, return ct�x := f .

Conv(pk, ck := W, ct�x := f) : ρ
U← Fq, y

U← span〈d5n+1, . . . ,d6n〉,
c := (ρf + y)W−1, return CT�x := c.

Query(pk, tk�v := k∗, CT�x := c) :

if e(c,k∗) = 1, return 1, otherwise, return 0.

Remark 4. A part of output of Setup(1λ, n), {Di,j, D
′
i,j,2, . . . , D

′
i,j,n, D

′′
i,j,1, . . . ,

D′′
i,j,n−1, D

′′′
i,j}i=1,6; j=1,...6, can be identified with D̂ := (d1, . . . ,dn,d5n+1, . . . ,

d6n), while D := (d1, . . . ,d6n) is identified with {Di,j, D
′
i,j,2, . . . , D

′
i,j,n, D

′′
i,j,1,

. . . , D′′
i,j,n−1, D

′′′
i,j}i,j=1,...6 as in Remark 3. Also, {B∗

i,j, B
′∗
i,j,2, . . . , B

′∗
i,j,n, B

′′∗
i,j,1,

126 Y. Kawai and K. Takashima

Table 1. Comparison with pairing-based IPE schemes in [12, 17, 21], where |G|
represents size of an element of G. PH, AH, PK, SK, TK, CT, GSD, and C3DH
stand for predicate-hiding, attribute-hiding, public key, secret key, token, ciphertext,
general subgroup decision [1], and composite 3-party (decisional) Diffie-Hellman [21],
respectively.

KSW08 OT12 IPE [17] Proposed IPE-CC SSW09 Proposed SIPE
IPE [12] (basic) (variant) (basic) (variant) SIPE [21] (basic) (variant)

Setting public key public key public key secret key secret key

Security
selective &
fully-AH

adaptive &
fully-AH

adaptive &
fully-secure
(PH & AH)

selective &
single-chal.
PH & AH

adaptive &
fully-secure
(PH & AH)

Order
of G

composite prime prime composite prime

Assump.
2 variants
of GSD

DLIN DLIN
A variant
of GSD,

C3DH,DLIN
DLIN

PK size O(n)|G| O(n2)|G| O(n)|G| O(n2)|G| O(n)|G| – – –

SK size O(n)|G| O(n2)|G| O(n)|G| O(n2)|G| O(n)|G| O(n)|G| O(n2)|G| O(n)|G|
TK size (2n+1)|G| (4n+1)|G| 10|G| 6n|G| (2n+ 2)|G| 6n|G|
CT size (2n+1)|G| (4n+1)|G| 5n|G| 6n|G| (2n+ 2)|G| 6n|G|

. . . , B′′∗
i,j,n−1, B

′′′∗
i,j }i=1,5; j=1,...6 can be identified with B̂∗ := (b∗1, . . . , b

∗
n, b

∗
4n+1,

. . . , b∗5n), while B∗ := (b∗1, . . . , b
∗
6n) is identified with {B∗

i,j , B
′∗
i,j,2, . . . , B

′∗
i,j,n,

B′′∗
i,j,1, . . . , B

′′∗
i,j,n−1, B

′′′∗
i,j }i,j=1,...6 in Remark 3. In Query, c and k∗ can be alterna-

tively described as c=(

n︷ ︸︸ ︷
ω�x,

3n︷ ︸︸ ︷
03n,

n︷︸︸︷
0n,

n︷︸︸︷
�ϕ)B, k

∗=(

n︷ ︸︸ ︷
σ�v,

3n︷ ︸︸ ︷
03n,

n︷︸︸︷
�η,

n︷︸︸︷
0n)B∗ ,

where �ϕ := (ϕ1, . . . , ϕn), �η := (η1, . . . , ηn) ∈ Fn
q .

Theorem 3. The proposed IPE-CC scheme (with short public and secret keys)
is fully secure under the DLIN assumption.

Theorem 3 is proven in a similar manner to Theorem 3 (and 4) in [16]. For
achieving dual system encryption proof for IPE-CC with employing a sparse

matrix, X
U← L(6, n,Fq), for base change, the matrix set L(6, n,Fq) should form

a (matrix) group. (For the reason, refer to [16].) Therefore, proofs of Theorem
1 and Theorem 3 have the same high-level structure using the full matrix group
GL(6n,Fq) and a subgroup L(6, n,Fq) based on Lemma 4, respectively.

Lemma 4. L(6, n,Fq) is a subgroup of GL(6n,Fq).

Lemma 4 is proven in a similar manner to Lemma 2 in the full version of [16].

7 Efficiency Comparisons

Table 1 compares the proposed IPE-CC schemes in Sections 4 and 6 with pairing-
based attribute-hiding IPE schemes in [12, 17], and compares the proposed SIPE

Predicate- and Attribute-Hiding Inner Product Encryption 127

schemes in Sections 5 (and 6) with pairing-based predicate- and attribute-hiding
SIPE scheme in [21].

Acknowledgments. The authors would like to thank anonymous reviewers for
their valuable comments.

References

1. Bellare, M., Waters, B., Yilek, S.: Identity-based encryption secure against selective
opening attack. In: Ishai (ed.) [11], pp. 235–252

2. Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption with-
out random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

3. Boneh, D., Boyen, X.: Secure identity based encryption without random oracles.
In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 443–459. Springer,
Heidelberg (2004)

4. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)

5. Boneh, D., Kushilevitz, E., Ostrovsky, R., Skeith III, W.E.: Public key encryption
that allows PIR queries. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622,
pp. 50–67. Springer, Heidelberg (2007)

6. Boneh, D., Raghunathan, A., Segev, G.: Function-private identity-based encryp-
tion: Hiding the function in functional encryption. In: Canetti, R., Garay, J.A.
(eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 461–478. Springer, Heidelberg
(2013)

7. Boneh, D., Raghunathan, A., Segev, G.: Function-private subspace-membership
encryption and its applications. IACR Cryptology ePrint Archive 2013, 403 (2013)

8. Boneh, D., Sahai, A., Waters, B.: Functional encryption: Definitions and challenges.
In: Ishai (ed.) [11], pp. 253–273

9. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted
data. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer,
Heidelberg (2007)

10. Cocks, C.: An identity based encryption scheme based on quadratic residues. In:
Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–363.
Springer, Heidelberg (2001)

11. Ishai, Y. (ed.): TCC 2011. LNCS, vol. 6597. Springer, Heidelberg (2011)
12. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, poly-

nomial equations, and inner products. In: Smart, N.P. (ed.) EUROCRYPT 2008.
LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008)

13. Lewko, A.B., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully se-
cure functional encryption: Attribute-based encryption and (hierarchical) in-
ner product encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 62–91. Springer, Heidelberg (2010), Full version is available at
http://eprint.iacr.org/2010/110

14. Okamoto, T., Takashima, K.: Hierarchical predicate encryption for inner-products.
In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 214–231. Springer,
Heidelberg (2009)

http://eprint.iacr.org/2010/110

128 Y. Kawai and K. Takashima

15. Okamoto, T., Takashima, K.: Fully secure functional encryption with general re-
lations from the decisional linear assumption. In: Rabin, T. (ed.) CRYPTO 2010.
LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010), Full version is available
at http://eprint.iacr.org/2010/563

16. Okamoto, T., Takashima, K.: Achieving short ciphertexts or short secret-keys for
adaptively secure general inner-product encryption. In: Lin, D., Tsudik, G., Wang,
X. (eds.) CANS 2011. LNCS, vol. 7092, pp. 138–159. Springer, Heidelberg (2011),
Full version is available at http://eprint.iacr.org/2011/648

17. Okamoto, T., Takashima, K.: Adaptively attribute-hiding (hierarchical) inner
product encryption. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 591–608. Springer, Heidelberg (2012), Full version is available
at http://eprint.iacr.org/2011/543

18. Okamoto, T., Takashima, K.: Fully secure unbounded inner-product and attribute-
based encryption. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS,
vol. 7658, pp. 349–366. Springer, Heidelberg (2012), Full version is available at
http://eprint.iacr.org/2012/671

19. Okamoto, T., Takashima, K.: Efficient (hierarchical) inner-product encryption
tightly reduced from the decisional linear assumption. IEICE Transactions 96-A(1),
42–52 (2013)

20. Park, J.H.: Inner-product encryption under standard assumptions. Des. Codes
Cryptography 58(3), 235–257 (2011)

21. Shen, E., Shi, E., Waters, B.: Predicate privacy in encryption systems. In: Reingold,
O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 457–473. Springer, Heidelberg (2009)

22. Shi, E., Bethencourt, J., Chan, H.T.H., Song, D.X., Perrig, A.: Multi-dimensional
range query over encrypted data. In: IEEE Symposium on Security and Privacy,
pp. 350–364. IEEE Computer Society (2007)

23. Yoshino, M., Kunihiro, N., Naganuma, K., Sato, H.: Symmetric inner-product pred-
icate encryption based on three groups. In: Takagi, T., Wang, G., Qin, Z., Jiang,
S., Yu, Y. (eds.) ProvSec 2012. LNCS, vol. 7496, pp. 215–234. Springer, Heidelberg
(2012)

A Proposed (Basic 2-Level) Hierarchical IPE-CC Scheme

We refer to Section 1.4 for notations on DPVS. For matrixW := (wi,j)i,j=1,...,N ∈
FN×N
q and element g := (G1, . . . , GN) in N -dimensional V, for notation gW ,

refer to Section 4.1. The hierarchical IPE-CC (HIPE-CC) below is based on the
(basic) construction idea given in [13], however, since the scheme has enough
hidden subspace and randomness spaces, the security is proven from the DLIN
assumption.

Setup(1λ, (n1, n2)) : n := n1 + n2,

(paramV,B := (b1, . . . , b6n),B
∗ := (b∗1, . . . , b

∗
6n))

R← GIPE
ob (1λ, N := 6n),

W
U← GL(N,Fq), di := biW for i = 1, . . . , 6n, D := (d1, . . . ,d6n),

D̂ := (d1, . . . ,dn,d5n+1, . . . ,d6n), B̂∗ := (b∗1, . . . , b
∗
n, b

∗
4n+1, . . . , b

∗
5n),

return pk := (1λ, paramV, D̂), ck :=W, sk := B̂∗.

http://eprint.iacr.org/2010/563
http://eprint.iacr.org/2011/648
http://eprint.iacr.org/2011/543
http://eprint.iacr.org/2012/671

Predicate- and Attribute-Hiding Inner Product Encryption 129

TokenGen(pk, sk, �v1 ∈ Fn1
q \ {�0}) : σ, ψ

U← Fq, �η0, �η1, . . . , �ηn2

U← Fn
q ,

n︷ ︸︸ ︷ 3n︷ ︸︸ ︷ n︷ ︸︸ ︷ n︷ ︸︸ ︷
k∗
0 := (σ�v1, 0

n2 , 03n, �η0, 0n)B∗ ,
k∗
i := (σ�v1, ψ�ei, 03n, �ηi, 0n)B∗ for i = 1, . . . , n2,

where �ei := (0i−1, 1, 0n2−i),

return tk�v1 := (k∗
0 , k

∗
1 , . . . ,k

∗
n2

).

Enc(pk, �x1 ∈ Fn1
q \ {�0}, �x2 ∈ Fn2

q) : τ1, τ2
U← Fq, �ξ

U← Fn
q ,

if �x2 = �0, �x ′
2

U← Fn2
q , else �x ′

2 := �x2,

n︷ ︸︸ ︷ 3n︷ ︸︸ ︷ n︷ ︸︸ ︷ n︷ ︸︸ ︷
f := (τ1�x1, τ2�x

′
2, 03n, 0n, �ξ)D, return ct�x := f .

Conv(pk, ck := W, ct�x := f) : ρ
U← Fq, y

U← span〈d5n+1, . . . ,d6n〉,
c := (ρf + y)W−1, return CT�x := c.

Query(pk, tk := tk�v1 or tk(�v1,�v2), CT�x := c) :

if tk = tk�v1 = (k∗
0 , k

∗
1 , . . . ,k

∗
n2

),

if e(c,k∗
0) = 1, output 1, otherwise, output 0.

if tk = tk(�v1,�v2) = k̃∗, if e(c, k̃∗) = 1, output 1, otherwise, output 0.

Delegate(pk, tk�v1 := (k∗
0 , k∗

1 , . . . ,k
∗
n2

), �v2 := (v2,1, . . . , v2,n2) ∈ Fn2
q \ {�0}) :

ξ, δ
U← Fq, �η

′ := (η′1, . . . , η
′
n)

U← Fn
q ,

k̃∗ := ξk∗
0 + δ(

∑n2

i=1 v2,ik
∗
i) +

∑n
i=1 η

′
ib

∗
4n+i,

return tk(�v1,�v2)(= tk�v1 ∧�v2) := k̃∗.

The full security notion of IPE-CC is extended to that for (2-level) HIPE-CC
schemes in a usual way. The proof of Theorem 4 is given in the full paper.

Theorem 4. The proposed (2-level) HIPE-CC scheme is fully secure under the
DLIN assumption.

Remark:

1. While we present a 2-level HIPE-CC scheme here, clearly, the construction
can be extended to an arbitrary level HIPE-CC scheme.

2. While the above basic HIPE-CC scheme is built based on [13], if we apply
several techniques given in [15, 16], efficiency of the HIPE scheme is greatly
improved.

B Definition of Symmetric-Key Inner Product
Encryption (SIPE)

This section defines symmetric-key inner product encryption (SIPE) and its
security.

130 Y. Kawai and K. Takashima

An attribute (or plaintext) of inner product predicates is expressed as a vector
�x ∈ Fn

q \ {�0} and a predicate f�v is associated with a vector �v, where f�v(�x) = 1

iff �v · �x = 0. Let Σ := Fn
q \ {�0}, i.e., the set of the attributes, and F := {f�v|�v ∈

Fn
q \ {�0}} i.e., the set of the predicates.

Definition 5. A symmetric-key inner product encryption scheme (SIPE) for
predicates F and attributes Σ consists of probabilistic polynomial-time algorithms
Setup,TokenGen,Enc and Query. They are given as follows:

– Setup takes as input security parameter 1λ, and it outputs a secret key sk.
– TokenGen takes as input a secret key sk, and a predicate vector �v. It outputs

a corresponding token tk�v.
– Enc takes as input a secret key sk and an attribute (or plaintext) vector �x.

It returns a ciphertext ct�x.
– Query takes as input a token tk�v and a ciphertext ct�x. It outputs either 0

or 1, indicating the value of the predicate f�v evaluated on the underlying
attribute �x.

An SIPE scheme should have the following correctness property: for all sk
R←

Setup(1λ, n), all f�v ∈ F and �x ∈ Σ, all tk�v
R← TokenGen(sk, �v), all ciphertext

ct�x
R← Enc(sk, �x), it holds that 1 = Query(tk�v, ct�x) if f�v(�x) = 1. Otherwise, it

holds with negligible probability.
We then define the full security notion of SIPE, which is the same as that

given by Shen, Shi, and Waters [21].

Definition 6 (Full Security of SIPE). The model for defining the full secu-
rity of SIPE against adversary A is given as follows:

1. The challenger runs Setup to generate secret key sk, and picks a random bit
b.

2. A may adaptively make a polynomial number of queries, where each query
is one of two types:

– On the �-th ciphertext query, A outputs two attribute vectors (�x
(0)
� , �x

(1)
�).

The challenger responds with ct�
R← Enc(sk, �x

(b)
�).

– On the h-th token query, A outputs two predicate vectors, (�v
(0)
h , �v

(1)
h).

The challenger responds with tkh
R← TokenGen(sk, �v

(b)
h).

A’s queries are subject to the restriction that, for all ciphertext queries

(�x
(0)
� , �x

(1)
�) and all token queries (�v

(0)
h , �v

(1)
h), f

�v
(0)
h

(�x
(0)
�) = f

�v
(1)
h

(�x
(1)
�).

3. A outputs a guess b′ of b.

The success experiment in the above game, i.e., b′ = b, is denoted by SuccA(λ),
and the advantage of A is defined as AdvSIPEA (λ) := Pr[SuccA(λ)] − 1/2 for
any security parameter λ. An SIPE scheme is fully secure if all probabilistic
polynomial-time adversaries A have at most negligible advantage in the above
game.

Fast Symmetric Pairing Revisited

Xusheng Zhang1,� and Kunpeng Wang2,��

1 Institute of Software, Chinese Academy of Sciences, Beijing
xszhang.is@gmail.com

2 Institute of Information Engineering, Chinese Academy of Sciences, Beijing
kunpengwang@263.net

Abstract. During the past decade pairing-based cryptosystems have
been through a huge development, and the implementation of bilinear
pairings has been improved greatly. Two pairing models, namely sym-
metric and asymmetric pairings, are widely used and have common cryp-
tographic properties in most cryptosystems. Symmetric pairings are more
convenient to construct cryptographic schemes, but asymmetric pairings
are more efficient and suitable for implementation due to their flexible
embedding degrees. In this paper we revisit symmetric pairings on su-
persingular elliptic curves over large characteristic fields. We show that
a special family of supersingular elliptic curves with embedding degree
3 admits a kind of fast symmetric pairings, whose computational costs
might be twice the costs for the current fastest asymmetric pairings.

Keywords: Supersingular Elliptic Curve, Verschiebung Isogeny, Sym-
metric Pairing.

1 Introduction

In pairing-based cryptography, the symmetric pairing e : G1 ×G1 → G3 can be
used to simplify cryptographic schemes; however, from the point of view of the
implementation, the asymmetric pairing e : G1 ×G2 → G3 can greatly improve
the efficiency. The key reason is that symmetric pairings are only constructed
on supersingular (hyper-)elliptic curves with bounded embedding degrees, but
asymmetric pairings can be derived on ordinary curves with flexible embedding
degrees. Hence, many significant improvements have been proposed to speed up
asymmetric pairing computations and optimise ordinary pairing-friendly curve
constructions.

As far as we know, ηT pairings [7] derived on supersingular curves over binary
and ternary fields, are the well-known fast symmetric pairings, and have some
computational advantages for hardware implementation. But with the research
going on, the computational advantage in hardware of symmetric pairing may be

� The majority of this work was done while the first author was doing his Ph.D research
in Institute of Software, Chinese Academy of Sciences during 2012.

�� Supported by the National Natural Science Foundation of China No.61272040 and
the Strategic Research Program of Chinese Academy of Sciences No.XDA06010702.

Z. Cao and F. Zhang (Eds.): Pairing 2013, LNCS 8365, pp. 131–148, 2014.
c© Springer International Publishing Switzerland 2014

132 X. Zhang and K. Wang

less obvious than ever thought before. For example, at the 128-bit security level,
the ηT pairing [9] on supersingular elliptic curve over F21223 can be computed in
0.19ms in hardware [19]. The currently fastest asymmetric pairing, namely the
optimal ate pairing [36] on Barreto-Naehrig (BN) curves [9], can be computed
in 0.37ms in hardware [20,37]. Besides, the software optimizations for symmetric
pairings are relatively rare and only focused on the ηT pairing over binary field
[14,5]. Also, at the 128-bit security level, the optimal ate pairing on the BN
curve [4] can be computed in 0.52ms, which is at least three times faster than
the parallel implementation of the ηT pairing on supersingular elliptic curve over
F21223 [5]. Moreover, at higher security levels (e.g. the 192/256-bit security levels)
the symmetric pairing computations would be much more expensive than the
asymmetric cases and seem inconvenient in practice.

Very recently, Joux [26] presented a new DLP algorithm in Fqn with a running
time of L[1/4+ o(1)] when q and n are balanced in the sense that q ≈ m where
n = 2m. Later, Barbulescu, Gaudry, Joux and Thomé [6] presented another new
DLP algorithm in Fqn that is asymptotically faster than all previous algorithms.
Specifically, when n = 2m, q ≈ m and m ≤ q+2, the discrete logarithm problem
can be solved in quasi-polynomial time (logQ)O(log logQ) where Q = qn = q2m.
Then, Adj, Menezes, Oliveira and Rodŕıguez-Henŕıquez [1] combined the new
algorithms by Joux and Barbulescu et al. to solve the DLP in F36·509 in 273.7

time. So, these major breakthroughs in computing discrete logarithms in finite
fields of small and medium characteristic, greatly weaken the security of pairing-
based cryptosystems that use pairings derived from supersingular (hyper)elliptic
curves over finite fields of characteristic 2 or 3.

In this paper, we revisit fast symmetric pairings by studying pairings derived
from supersingular elliptic curves over large characteristic fields, in order to
explore efficient and secure symmetric pairings. Concretely, we give a method to
generate special supersingular curves over large characteristic extension fields,
and then develop new fast symmetric pairings on these curves.

This paper is organized as follows: Section 2 provides basics of elliptic curve
pairings. In Section 3, we first formulated the Verschiebung isogeny π̂p and endo-
morphism [p] on supersingular elliptic curves over extension fields Fpn , and then
study two special supersingular curves of the pairing-friendly forms y2 = x3+ax
and y2 = x3 + b over large characteristic fields Fpn . We present our main results
(Theorem 4) in Section 4, that is the construction of new symmetric pairing on
supersingular elliptic curves with embedding degrees 3 over extension fields Fp2m

where p > 3. Furthermore, we develop an algorithm (Theorem 5) to generate
a special family of supersingular elliptic curves, and provide suggested curves
at the 80/128/192-bit security levels to accelerate the computation of our new
symmetric pairings. Especially at the 80-bit security level, our algorithm can
generate more suitable curves over the extension of optimal prime fields, that
fits for fast Montgomery modular reduction (multiplication).

To speed up the computation of our new pairing, we develop a modified multi-
Miller’s algorithm, and utilize the Miller’s formulas for curves y2 = x3 + b with
only cubic twist in [38] and refine these formulas for the case of square element

Fast Symmetric Pairing Revisited 133

b. Then we show that theoretically the cost of our new symmetric pairing for the
80-bit security is close to the recommended fast asymmetric pairing (the Tate
pairing on MNT curve); and the costs of our new symmetric pairings for the
128/192-bit securities are nearly twice the costs for the current fastest asym-
metric pairings (i.e. the optimal ate pairing on BN curve and the ate pairing on
BLS12 curve).

2 Background

Let E be an elliptic curve over a field Fq, where q is a power of prime p and
O is the neutral element of the group E. From the Hasse’s theorem, #E(Fq) =
q−t+1, where t is the Frobenius trace. Let πq(x, y) = (xq, yq) be the (q-th power)
Frobenius endomorphism which is purely inseparable, and π̂q denotes the dual
Frobenius endomorphism of πq (also called Verschiebung endomorphism). E/Fq

is called supersingular if p | t, or the Verschiebung endomorphism π̂q is purely
inseparable; otherwise, E/Fq is called ordinary. Let r be the subgroup order of
E(Fq) which is coprime to q. If k > 1 is the smallest integer such that r | qk − 1,
then k is called the embedding degree with respect to r. For supersingular elliptic
curves, the embedding degrees are 2, 3, 4, and 6 (refer to [29]). Specially when
p > 3, the largest embedding degree of supersingular elliptic curves is three.

For P , Q ∈ E[r], there exist rational functions fP and fQ with divisor
div(fr,P) = r(P) − r(O) and div(fr,Q) = r(Q) − r(O). Let μr ⊂ F∗

qk denote

the group of r-th roots of unity. The reduced Tate pairing [8] is given as1

tr : E(Fq)[r] × E(Fqk)[r] → μr, (P,Q) �→ fr,P (Q)(q
k−1)/r.

The rational function fn,R ∈ Fqk(E) with divisor div(fn,R) = n(R) − ([n]R) −
(n − 1)(O) can be computed by Miller’s algorithm [30,31] with the property
fi1+i2,P = fi1,P · fi2,P · l[i1]P,[i2]P /v[i1+i2]P , where l[i1]P,[i2]P is the line passing
through [i1]P , [i2]P , and v[i1+i2]P is the vertical line passing through [i1 + i2]P .

For supersingular curves, there exists distortion map ψ that maps a point of
E(Fq)[r] to a distinct subgroup of E(Fqk)[r]. By using the distortion map, the
symmetric Tate pairing can be simplified as

tr : E(Fq)[r] × E(Fq)[r] → μr, (P, P ′) �→ fr,P (ψ(P
′))(q

k−1)/r.

In a significant breakthrough, Barreto et al. [7] proposed the truncated pair-
ing on supersingular curves with shorter Miller’s loop length, namely ηT pairing
(Theorem 1), and specifically optimized their ηT pairings on supersingular ellip-
tic curves over F2m and F3m .

Theorem 1. ([7], ηT pairing) Let E be a supersingular elliptic curve over Fq

with distortion map ψ and embedding degree k > 1. Let P and P ′ be non-neutral

1 In fact, Tate pairing is defined on E(Fq)[r] × E(Fqk)/rE(Fqk), and an hypothesis
is missing here. In [15], for a supersingular elliptic curve over Fq, if r > 4

√
q, then

E(Fqk)[r]
⋂

rE(Fqk) = {O}. Thus E(Fqk)[r] is isomorphic to E(Fqk)/rE(Fqk).

134 X. Zhang and K. Wang

points on E(Fq) with order r. Suppose T is such that: 1. T ≡ q (mod r); 2.
γ(P) = [T]P , where γ ∈ Aut(E) is defined over Fq; 3. γ ◦ ψ(q) = ψ, where
ψ(q) means the function obtained by applying the q-power Frobenius map to the
coefficients of ψ. Then

ηT : E(Fq)[r]× E(Fq)[r] → μr, (P, P ′) �→ fT,P

(
ψ(P ′)

)(qk−1)/r

defines a pairing , which is non-degenerate if and only if T k
≡ 1 (mod r2).

3 Supersingular Elliptic Curves over Large Characteristic
Fields

The results in [7] have shown good properties of special supersingular elliptic
curves over F2 and F3 fitting for pairing computation. In this section we study
properties of supersingular curves E : y2 = x3 + ax+ b over large characteristic
fields Fq with p = char(Fq) > 3 and q = pn.

3.1 Verschiebung Isogeny π̂p and Endomorphism [p]

Let E(pi) denote the curve of the form y2 = x3 + ap
i

x+ bp
i

over Fpn . When the
curve E is supersingular, both the endomorphism [p] and the p-th power Ver-
schiebung isogeny π̂p ∈ Hom(E(p), E) are purely inseparable, and therefore there

exists a decomposition π̂p = φ ◦ πp where φ ∈ Hom(E(p2), E) is an isomorphism.

Since E(p2) and E are isomorphic it follows that a3p
2 · b2 = a3 · b2p2

. Concretely,
we formulate the pi-th power Verschiebung isogeny π̂pi ∈ Hom(E(pi), E) and the
endomorphism [pi] ∈ End(E) in the following proposition.

Besides, we recall an important necessary and sufficient condition ensuring
elliptic curve y2 = x3 + ax + b is supersingular, that is the coefficient of term
xp−1 in (x3 + ax + b)(p−1)/2 is zero ([35]). Thus, for the case of a = 0, the
condition is equivalent to p ≡ 5 (mod 6); for the case of b = 0, the condition is
equivalent to p ≡ 3 (mod 4).

Proposition 1. Let E be a supersingular curve of the form y2 = x3 +
ax + b over Fpn with characteristic p > 3, and j-invariant j(E) ∈ Fp.

If a · b
= 0, then π̂pi(x, y) = (xp
i

/a(p
2i−1)/2, (−1)iyp

i

/b(p
2i−1)/2) and

[pi](x, y) = (xp
2i

/a(p
2i−1)/2, (−1)iyp

2i

/b(p
2i−1)/2). Especially, if b = 0, then

π̂pi(x, y) = (xp
i

/a(p
2i−1)/2, (−1)iyp

i

/a3(p
2i−1)/4). If a = 0, then π̂pi(x, y) =

(xp
i

/b(p
2i−1)/3, (−1)iyp

i

/b(p
2i−1)/2).

Proof. Case: a · b
= 0. Since j(E) ∈ Fp, then j(E) = j(E(p)), i.e. E ∼=
Ep, and therefore a3p · b2 = a3 · b2p, i.e. a3(p−1) = b2(p−1). Since p + 1
is even it follows that a3(p

2−1)/2 = b(p
2−1). Then it is easy to verify that

φ1(x, y) = (x/a(p
2−1)/2, y/b(p

2−1)/2) ∈ Hom(E(p2), E) is an isomorphism. Since
#Aut(E) = 2, then the isomorphism φ satisfying π̂p = φ ◦ πp equals φ1 or −φ1.

Fast Symmetric Pairing Revisited 135

Suppose φ = φ1, then [p] = φ ◦ πp ◦ πp = (xp
2

/a(p
2−1)/2, yp

2

/b(p
2−1)/2). Let

ψ(x, y) = (xp/a(p−1)/2, yp/b(p−1)/2) ∈ End(E) defined over Fpn , we can deduce

ψ2 = [p] and ψ̂ = ψ. From the theory of endomorphism rings (refer to [35]), when

ψ̂ = ψ, then ψ is a scalar multiplication. But this contradicts that p is prime.
Thus we have φ = −φ1, and therefore π̂p(x, y) = (xp/a(p

2−1)/2,−yp/b(p2−1)/2)

and [p](x, y) = (xp
2

/a(p
2−1)/2,−yp2

/b(p
2−1)/2). By induction, assume that

π̂pi−1(x, y) = (xp
i−1

/a(p
2(i−1)−1)/2, (−1)i−1yp

i−1

/b(p
2(i−1)−1)/2). Then, for

π̂
(i)
p (x, y) = (xp/ap

i−1(p2−1)/2,−yp/bpi−1(p2−1)/2) ∈ Hom(E(pi), E(pi−1)), we have

π̂pi(x, y) = π̂pi−1 ◦ π̂(i)
p (x, y) = (xp

i

/a(p
2i−1)/2, (−1)iyp

i

/b(p
2i−1)/2).

Case: b = 0. It is easy to verify φ1(x, y) = (x/a(p
2−1)/2, y/a3(p

2−1)/4)

is an isomorphism between E(p2) and E. Since #Aut(E) = 4, then the iso-
morphism φ satisfying π̂p = φ ◦ πp may have four choices. If φ(x, y) =

(ζ24x/a
(p2−1)/2, ζ34y/a

3(p2−1)/4) where ζ4 is a primitive 4-th root of unity, since
p ≡ 3 (mod 4) and ζp4 = −ζ4 it follows that πp ◦ [p] = −p ◦ πp,
where p denotes the p-multiplication on E(p). But this contradicts the com-
mutativity of scalar multiplication. Similarly, if φ = φ1, we take an endo-
morphism ψ(x, y) = (xp/a(p−1)/2, yp/a3(p−1)/4) satisfying ψ2 = [p] to give
another contradiction. So, the only available choice for φ is −φ1, then π̂pi(x, y) =

(xp
i

/a(p
2i−1)/2, (−1)iyp

i

/a3(p
2i−1)/4) by using the similar analysis above.

Case: a = 0. Similarly, since φ1(x, y) = (x/b(p
2−1)/3, y/b(p

2−1)/2) is an isomor-

phism between E(p2) and E, and #Aut(E) = 6, then the isomorphism φ may

have six choices. If φ(x, y) = (ζ26x/a
(p2−1)/2, ζ36y/a

3(p2−1)/4), where ζ6 is a primi-
tive 6-th root of unity. Since p ≡ 5 (mod 6) and ζ2p6 = ζ46 , then πp◦[p]
= p◦πp,
which contradicts the commutativity of scalar multiplication. Then we can also
deduce a contradiction for the case of φ = φ1. Thus we only have φ = −φ1, and
then π̂pi(x, y) = (xp

i

/b(p
2i−1)/3, (−1)iyp

i

/b(p
2i−1)/2). ��

3.2 Special Supersingular Elliptic Curves

As with the constructions of pairing-friendly ordinary elliptic curves, we study
two attractive forms of pairing-friendly curves y2 = x3 + ax and y2 = x3 + b
in the supersingular case, by characterizing the relations between their curve’s
orders and their equations.

Theorem 2. Let p > 3 be prime and let E : y2 = x3 + ax be a supersingu-
lar elliptic curve where a ∈ F∗

pn . Then #E(Fpn) satisfies one of the following
conditions

1. #E(Fpn) = pn + 1, if and only if, n is odd, or n is even and a is not a
square;

2. #E(Fp2m) = (pm − 1)2, if and only if, m is even and a is a quartic residue,
or m is odd and a is a square but not quartic residue;

3. #E(Fp2m) = (pm + 1)2, if and only if, m is even and a is a square but not
quartic residue, or m is odd and a is a quartic residue.

136 X. Zhang and K. Wang

Proof. When n is odd, pn ≡ 3 (mod 4), then a(p
2n−1)/2 = a3(p

2n−1)/4 =
1, thus π̂pn(x, y) = (xp

n

, (−1)nyp
n

) = −πpn(x, y) from Proposition 1, i.e.

tr(πpn) = 0. When n = 2m, p2m ≡ 1 (mod 4), then a(p
4m−1)/2 = 1 and

a3(p
4m−1)/4 = ±1, thus πp2m = π̂p2m or πp2m = −π̂p2m , i.e. tr(πp2m) = 0 or

±2pm. If a is not a square, since a(p
4m−1)/2 = 1 and a3(p

4m−1)/4 = −1, then
π̂p2m(x, y) = (xp

2m

,−yp2m

) = −πp2m(x, y), i.e tr(πpn) = 0. If a is a square,

we have a(p
4m−1)/2 = a3(p

4m−1)/4 = 1, then deduce π̂p2m = πp2m . Further-

more, since [pm](x, y) = (xp
2m

/a(p
2m−1)/2, (−1)myp

2m

/a3(p
2m−1)/4), and if a is

a quartic residue, then [pm](x, y) = (xp
2m

, (−1)myp
2m

). Thus, we deduce that
tr(πpn) = 2pm when m is even, or tr(πp2m) = −2pm when m is odd. If a is a

quartic non-residue, then [pm](x, y) = (xp
2m

, (−1)m+1yp
2m

), and therefore we
have tr(πpn) = 2pm when m is odd, or tr(πpn) = −2pm when m is odd. ��

Theorem 3. Let p > 3 be prime and let E : y2 = x3 + b be a supersingu-
lar elliptic curve where b ∈ F∗

pn . Then #E(Fpn) satisfies one of the following
conditions

1. #E(Fpn) = pn + 1, if and only if, n is odd.
2. #E(Fp2m) = (pm − 1)2, if and only if, m is odd and b is a cube but not

square, or m is even and b is a cube and square;
3. #E(Fp2m) = (pm + 1)2, if and only if, m is even and b is a cube but not

square, or m is odd and b is a cube and square.
4. #E(Fp2m) = p2m− pm+1, if and only if, m is odd and b is a square but not

cube, or m is even and b is not a square nor cube;
5. #E(Fp2m) = p2m + pm + 1, if and only if, m is even and b is a square but

not cube, or m is odd and b is not a square nor cube;

Proof. When n is odd, pn ≡ 2 (mod 3), then b(p
2n−1)/2 = b(p

2n−1)/3 = 1, thus
π̂pn(x, y) = (xp

n

, (−1)nyp
n

) = −πpn(x, y) from Proposition 1, i.e. tr(πpn) = 0.
When n = 2m is even, tr(πpn) may equals 0, ±p, or ±2p. Then we discuss each
case as follows.

If b is a cube, then π̂p2m(x, y) = (xp
2m

/b(p
4m−1)/3, yp

2m

/b(p
4m−1)/2) =

(xp
2m

, yp
2m

) = πp2m(x, y). Furthermore, [pm](x, y) = (xp
2m

/b(p
2m−1)/3,

(−1)myp
2m

/b(p
2m−1)/2) = (xp

2m

, (−1)myp
2m

/b(p
2m−1)/2). Thus, we deduce that

tr(πp2m) = 2pm when m is even and b is a square, or m is odd and b is not a
square; or, tr(πp2m) = −2pm when m is odd and b is a square, or m is even and
b is not a square.

If b is not a cube, since p2m ≡ 1 (mod 3), then ζ3 = b(p
4m−1)/3 is a prim-

itive 3rd root of unity, and therefore ζ23 = b2(p
2m+1)(p2m−1)/3 = b(p

2m−1)/3.

From Proposition 1, we have π̂p2m (x, y) = (xp
2m

/ζ3, y
p2m

) and [pm](x, y) =

(xp
2m

/ζ23 , (−1)myp
2m

/b(p
2m−1)/2). Using the group law, we compute that (πp2m+

π̂p2m)(x, y) = (xp
2m

/ζ23 ,−yp
2m

), and then deduce that πp2m + π̂p2m = p2m

when m is odd and b is a square, or m is even and b is not a square; or,
πp2m + π̂p2m = −p2m when m is even and b is a square, or m is odd and b
is not a square. ��

Fast Symmetric Pairing Revisited 137

Remark 1. Note that when #E(Fp2m) = p2m ± pm + 1, E has the only form

y2 = x3 + b (b ∈ F∗
p2m). Suppose a · b
= 0, since a(p

4m−1)/2 = b(p
4m−1)/2 = 1,

then πp2m = π̂p2m and tr(πp2m) = 2πp2m
= ±pm from Proposition 1.

For the cases of embedding degree 2 and 3, the distortion maps ψ for super-
singular curves y2 = x3+ax and y2 = x3+ b can be constructed directly as with
[15].

Embedding Degree 2 Case. Condition (1) in Theorem 2: when n is odd, let

ζ24 = −1, ψ1(x, y) =
(
x, y

ζ4

)
; when n is even, ψ2(x, y) =

(
xp

a(p−1)/2 ,
yp

sa3(p−1)/2

)
where sa ∈ Fp2n satisfies s2a = a. Condition (1) in Theorem 3: let ζ23 + ζ3+1 = 0,
ψ3(x, y) =

(
x
ζ3
, y

)
.

Embedding Degree 3 Case. Conditions (4), (5) in Theorem 3: ψ4(x, y) =(
xp

sb(p−1) ,
yp

b(p−1)/2

)
where sb ∈ Fp6m satisfies s3b = b.

Proposition 2. From the above constructions, distortion maps ψ1, ψ2, and ψ4

satisfy the conditions in Theorem 1 (ηT pairing).

Proof. Case 1: Since pn ≡ −1 (mod r), take the automorphism γ = [−1]. Since

p ≡ 3 (mod 4) and n is odd, then pn ≡ 3 (mod 4), and ζp
n

4 = −ζ4. Thus
γ ◦ ψ(pn)

1 = ψ1.
Case 2: Since a is not a square, then sa
∈ Fpn and sa

pn

= −sa, and we have
(sa

3(p−1)/2)p
n

= (sa
pn

)3(p−1)/2 = (−1)3(p−1)/2 · sa3(p−1)/2. Since p ≡ 3 (mod 4),
then 3(p − 1)/2 is odd, and (sa

3(p−1)/2)p
n

= −sa3(p−1)/2, which is the key to

prove that γ ◦ ψ(pn)
2 = ψ2.

Case 3: Since b is not a cube and sb
∈ Fp2m , then sb
p2m

= ζ3 · sb where ζ3
is a primitive 3rd root of unity. Since p ≡ 2 (mod 3), then p2m − 1 is divisi-

ble by 3 and ζ3 = sb
p2m−1 = b(p

2m−1)/3 is defined over Fp2m . Thus, we have

b(p
4m−1)/3 = ζ3

p2m+1 = ζ3
−1. Also, b(p

4m−1)/2 = (b(p
2m−1))(p

2m+1)/2 = 1. From

Proposition 1, we then have [p2m](x, y) = (xp
4m

/b(p
4m−1)/3, yp

4m

/b(p
4m−1)/2) =

(ζ3 · xp
4m

, yp
4m

) = γ(xp
4m

, yp
4m

), with the isomorphism γ : (x, y) �→ (ζ3 · x, y).
Then, since p − 1 ≡ 1 (mod 3) it is follows that (sb

p−1)p
2m

= (sb
p2m

)p−1 =

ζ3
p−1 · sbp−1 = ζ3 · sbp−1. Thus we deduce that γ ◦ ψ(p2m)

4 = ψ4. ��

Remark that the distortion map ψ3 does not satisfy the conditions in Theorem
1, but in this case the ηT pairing can be defined as a trivial variant of the
Tate pairing by taking T = pn. To construct fast symmetric pairing, we prefer
supersingular elliptic curves with embedding degree 3, which has shorter Miller’s
loop length.

4 Fast Symmetric Pairing over Large Characteristic Field

In this section we develop a fast variant of the ηT pairing for embedding degree 3,
and give a strategy for generating supersingular elliptic curves with embedding
degree 3 admitting our fast pairing variants.

138 X. Zhang and K. Wang

4.1 Fast Variant of Eta Pairing for Embedding Degree 3

For the supersingular curve E : y2 = x3 + b over Fp2m with embedding degree 3
satisfying #E(Fp2m) = p2m − pm + 1, its ηT pairing is given as

ηT (P, P
′) = fpm−1,P

(
ψ4(P

′)
)(p6m−1)/r

=
(
fpm,P

(
ψ4(P

′)
)
·

v[pm]P (ψ4(P
′))

l[pm−1]P,P (ψ4(P ′))

)(p6m−1)/r

.

Since the Miller function can be transformed as fpm,P =
∏m−1

i=0 fp(m−i−1)

p,[pi]P , and

each [pi] is purely inseparable, then fp,[pi]P ◦ [pi] = fp2i

p,P . Therefore ηT can be
modified as

ηT (P, P
′) =

(m−1∏
i=0

fp,P
(
ψ4([p

−i]P ′)
)p(m+i−1)

·
v[pm]P (ψ4(P

′))
l[pm−1]P,P (ψ4(P ′))

)(p6m−1)/r

.

Then we consider a new pairing

η(P, P ′) = ηT (P, [p
m−1]P ′) =

(m−1∏
i=0

fp,P
(
ψ4([p

i]P ′)
)p2(m−1)−i

·

v[pm]P (ψ4([p
m−1]P ′))

l[pm−1]P,P (ψ4([pm−1]P ′))

)(p6m−1)/r

.

Let d ≡ p (mod r), i.e. p = d + cr for some integer c, then [pi]P ′ = [di]P ′, and
we have

fp,P
(
ψ4([p

i]P ′)
)(p6m−1)/r

= fd+cr,P

(
ψ4([p

i]P ′)
)(p6m−1)/r

=
(
fd,P

(
ψ4([p

i]P ′)
)
fr,P

(
ψ4([p

i]P ′)
)c)(p6m−1)/r

= fd,P
(
ψ4([p

i]P ′)
)(p6m−1)/r · tr(P, P ′)cp

i

Thus we can separate a fixed pairing power tr(P, P
′)mcp2(m−1)

from η(P, P ′) to
obtain a new truncated pairing in the following theorem.

Theorem 4. Assume the curve E : y2 = x3+b over Fp2m satisfies the condition
4 in Theorem 3. Let r be a prime dividing p2m − pm +1, and let d ≡ p (mod r).
For P, P ′ ∈ E(Fp2m)[r], take P ′

i = ψ4([p
i]P ′), then the following defines a pairing

ηd(P, P
′) =

(m−1∏
i=0

fd,P
(
P ′
i

)p2(m−1)−i

·
v[pm]P (P

′
m−1)

l[pm−1]P,P (P
′
m−1)

)(p6m−1)/r

.

Remark 2. For the sake of fast computation,
v[pm]P (P ′

m−1)

l[pm−1]P,P (P ′
m−1)

can be represented

as
v[−pm]P (P ′

m−1)

l[−pm]P,P (P ′
m−1)

.

Fast Symmetric Pairing Revisited 139

Usually an exponentiation of the characteristic power is efficient than a finite
field multiplication. As with the method of [39], when m > 1 the computation of
ηd(P, P

′) can be speeded up further by using the multi-pairing technique, which
is presented in Appendix A.

To speed up the final exponentiation, the final exponent is decomposed into
easy part (qk − 1)/Φk(q) and hard part Φk(q)/r. Scott et al. [34] obtained a
faster hard part that could be expressed to the base q by using an optimal
addition chain case by case. Later, Fuentes-Castañeda et al. [18] showed that
each pairing friendly curve admits an ”optimal” expression to the base q by

using the lattice-based method, whose complexity is nearly O
(ϕ(k)−1

ϕ(k) log2 r
)
. For

the curves E/Fp2m generated by Theorem 5, we can use the following Corollary
to give an optimal expression of Φ3(p

2m)/r to the base p without an addition
chain, whose coefficients are polynomials of d with coefficients {±c, h}. When
c and h are small, then the performance of the hard part has the complexity
O
(
2m−1
ϕ(6m) log2 r

)
.

Corollary 1. Let p = d+ c · r, and r satisfy h · r = Φ6(d
m) for some integer h.

Then the final exponent of ηd can be expanded as (p6m− 1)/r = (p2m− 1)(p2m+

pm + 1)f , where f = c(pm + dm − 1)(
∑m−1

i=0 dm−1−ipi) + h.

Proof. Directly verify that

r · f = r
(
c(pm + dm − 1)(pm−1 + · · ·+ dm−2p+ dm−1) + h

)
= (pm + dm − 1)(p− d)(pm−1 + · · ·+ dm−2p+ dm−1) + (d2m − dm + 1)

= (pm + dm − 1)(pm − dm) + (d2m − dm + 1) = p2m − pm + 1.

��

4.2 Supersingular Elliptic Curve with Embedding Degree 3

Compared with the recommended supersingular curves over F2n or F3n in [7], it
is more flexible to generate supersingular curves over large characteristic fields
containing smaller subgroup (but large enough to ensure the ECDLP is hard).
For generating suitable supersingular elliptic curves with embedding degree 3,
we can construct Fp2m as pairing-friendly fields or towering-friendly fields. Note
that the new pairing in Theorem 4 can be computed efficiently when d is rel-
atively small. As with the analysis in [24], since x − d belongs to the lattice
I = {h(x) + (xn − 1)Z[x] | h(p) ≡ 0 (mod r)}, then the lower bound of |d|
is close to �r1/ϕ(6m), and therefore the lower bound of the Miller’s loop of ηd
is �log2(r)/ϕ(6m) by using the multi-pairing technique. But, the new pairing
ηd in Theorem 4 can not be rewriten in an optimal pairing form (or a pairing
lattice form). Thus, our method to construct the pairing ηd with multi-Miller’s
loop length �log2(r)/ϕ(6m), is to generate special supersingular elliptic curve
satisfying d ≈ r1/ϕ(6m) directly.

Theorem 5. Fix a positive integer m and a security parameter λ. Execute the
following steps.

140 X. Zhang and K. Wang

1. Pick an integer d of � 2λ
ϕ(6m)-bit such that Φ6m(d) has a large prime factor

r satisfying (−3
r) = 1, where Φ6m is the 6m-th cyclotomic polynomial.

2. Pick p = d+ c · r such that p is prime and p ≡ 5 (mod 6).
3. If m is even, pick b ∈ F∗

p2m as a non-square nor non-cube; if m is odd, pick
b ∈ F∗

p2m as a square but non-cube.

Then y2 = x3 + b is a supersingular curve over Fp2m with an order-r subgroup,
and embedding degree k = 3, and ρ = 2m, where both p and r are nearly 2λ-bit
primes.

In Theorem 5 it is easy to generate supersingular elliptic curve with embedding
degree three and a relatively small order subgroup, which can fit the gap between
ECC security and MOV security. When generating such curve, one can pick an
integer d of low hamming weight, small positive integers c and h = (d2m − dm +
1)/r, which could produce a fast Miller iteration and fast final exponentiation
for the pairing ηd.

However, for elliptic curves E over extension fields Fq (q = pn), there are two
security issues: minimal embedding field and Weil decent (or GHS) attack. The
first issue shown by Hitt [25], is that the minimal finite field ensuring the ECDLP
of E(Fq)[r] secure is Fpordr(p) = Fqordr(p)/n , named the minimal embedding field,
rather than Fqk . Later, Benger et al. [10] proved that the minimal embedding
field of E with respect to r is Fpk if and only if r | Φk(p). In our situation, when

#E(Fq) = q− q1/2 + 1 and q = p2m the minimal embedding field is Fq3 . On the
other hand, our new supersingular curves could resist the Weil decent (or GHS)
attack since the attack complexity O(p2−1/m) is also more expensive than the
generic attack complexity O(p1/2).

We provide suggested parameters p and r, and the corresponding supersingu-
lar elliptic curves with embedding degree three at the 80/128/192-bit security
levels.

Example 1. SS380 Curve for 80-bit security. We take m = 1 such that the
prime p has the form p = d2 + 1. Then we pick d = d0 · 2m0 where d0 is a small
odd integer. Thus p = d20 · 22d0 +1 can be used to define so-called optimal prime
fields (OPFs) [23], which allow for the efficient Montgomery modular reduction
with only linear complexity [40].

Here we suggest d = 131 · 280 = (27 + 2 + 1)280 such that p = 17161 ·
2160 + 1 is a prime of 175-bit. Then the tower extension can be constructed as
Fp2 = Fp[u]/(u

2 − 3) and Fp6 = Fp2 [v]/(v3 − 1 − u). And the curve equation is
y2 = x3 + 1 + u where 1 + u is a square in Fp2 and the group of rational points
has a prime subgroup order r = (p− d)/3 of 173-bit

r = 8360276532745208326431145085291616843599678827834027.

Then we can define the new pairing as

ηd(P, P
′) =

(
fd,P

(
ψ(P ′)

)
·
v[−p]P (ψ(P

′))
l[−p]P,P (ψ(P ′))

)(p6−1)/r

where (p6 − 1)/r = (p2 − 1)(p2 + p+ 1)(3(p+ d− 1) + 3).

Fast Symmetric Pairing Revisited 141

Example 2. SS3128 Curve for 128-bit security. We take m = 2 and p = cd4 −
cd2 + d + c. With searching in practice, it is impossible to choose d and c such
that (d2m−dm+1) is nearly a prime and p is a prime. Here we provide suggested
parameters d = 263 +240+219, c = 3 and h = 1, which ensure p a 254-bit prime
and r a 253-bit prime

p = 2171102708462309453597674588694061563597789964537238281716

4688279661760217091,

r = 7237009028207698178658915295646871878659299881790794272385

154968841797763073.

Then we construct the tower extension fields Fp2 = Fp[u]/(u
2 + 1), Fp4 =

Fp2 [v]/(v2−3−u) and Fp12 = Fp4 [w]/(w3−v), and the curve equation y2 = x3+v,
where v is a nonsquare in Fp4 . The new pairing is given as

ηd(P, P
′) =

(
fd,P

(
ψ([p]P ′)

)p
fd,P

(
ψ(P ′)

)p2

·
v[−p2]P (ψ([p]P

′))
l[−p2]P,P (ψ([p]P ′))

)(p12−1)/r

where (p12 − 1)/r = (p4 − 1)(p4 + p2 + 1)(3(p2 + d2 − 1)(p+ d) + 1).

Example 3. SS3192 Curve for 192-bit security. Similarly as the case of the 128-
bit security, we take m = 4 and choose parameters d = 247 + 230 + 221, c = 27
and h = 1, which ensure p a 381-bit prime and r a 377-bit prime

p = 4155934485820195734601843536704204028652753723468550944995

924011180469700175742356645893937407803534516249599934491,

r = 1539234994748220642445127235816371862463982860543907757405

89778191869248154657124320218293978066797569463371694081.

Then we construct the tower extension fields Fp2 = Fp[u]/(u
2 + 1), Fp8 =

Fp2 [v]/(v4−3−u) and Fp24 = Fp8 [w]/(w3−v), and the curve equation y2 = x3+v,
where v is a nonsquare in Fp8 . The new pairing is given as

ηd(P, P
′) =

(3∏
i=0

fd,P
(
ψi(P

′)
)p6−i

·
v[−p4]P (ψ3(P

′))
l[−p4]P,P (ψ3(P ′))

)(p24−1)/r

where (p24−1)/r = (p8−1)(p8+p4+1)(27(p4+d4−1)(p3+dp2+d2p+d3)+1).

5 Pairing Computation

5.1 Miller’s Formulas and Main Loop

Recently, Zhang and Lin [38], Le and Tan [28], respectively proposed fast affine
Miller’s formulas for computing ate-like pairing on the curve y2 = x3 + b with
only cubic twist. Zhang and Lin also gave the faster projective formulas than

142 X. Zhang and K. Wang

the formulas in [17], costing kM1 + 3Mk/3 + 9Sk/3 +M(3b) in a doubling step
and kM1 + 12Mk/3 + 5Sk/3 in a mixed addition step, where Mi and Si denote
multiplication and squaring in field Fqi , and M(c) denotes multiplication by a
constant c in Fpk/3 . In our case of k = 3, the doubling step and mixed addition
step respectively cost 1S3+1M3+6M1+9S1+1M(3b) and 1M3+15M1+5S1,
where q = p2m.

As shown in [16,17], Miller’s formulas could be improved due to the fast point
doubling formulas when b is a square. Similarly, we can improve the ate-like
Miller’s formulas in [38] for a square b. With the notations in [16], let b = c2 and
the curve E : y2 = cx3+1. For P ′ = (xPω

2, yPω
3, 1) ∈ E(Fqk) with xP , yP ∈ Fq,

and R1 = (X1, Y1, Z1) ∈ E(Fqk/3), point doubling (X3, Y3, Z3) = [2](X1, Y1, Z1)
can be performed as X3 = 2X1Y1(Y

2
1 − 9Z2

1), Y3 = (Y1 − Z1)(Y1 + 3Z1)
3 −

8Y 3
1 Z1, Z3 = 8Y 3

1 Z1. Then we can compute the point doubling and line formula
FDBL(R1)(P

′) = X2
3 +12X2

1Y
2
1 (Y3−Z3yPω

3)+2X3Z3(
xP

2 ω
2)+Z2

3(x
2
Pω

4) in the
coordinates (X,Y, Z, T, U) = (X,Y, Z,X2, Z2) and the Fpk/3-basis {1, ω, ω2} of
Fpk as follows.

A = Y 2
1 , B = (X1 + Y1)

2 − T1 −A, C = (Y1 + Z1)
2 −A− U1, Z3 = 4A · C,

X3 = C · (A− 9U1), Y3 = (A− 3U1 + C)(A+ 9U1 + 3C)− Z3, T3 = X2
3 ,

U3 = Z2
3 , D = (X3 + Z3)

2 − T3 − U3, E = 3B2, F = Z3 · yPω3,
L0 = E · (Y3 − F) + T3, L1 = D · (xP /2), L2 = U3 · (x2P).

Thus the point doubling with line computation needs kM1+4Mk/3+7Sk/3. On
the other hand, for R2 = (X2, Y2, Z2) ∈ E(Fqk/3), we can modify the point addi-

tion formulas and line formula FADD(R1,R2)(P
′) = X2

3 − Z1

c (Z1X2−X1)
2(Z1Y2−

Y1)(Y3 −Z3yPω
3) + 2X3Z3(

xP

2 ω
2) +Z2

3 (x
2
Pω

4) and perform these operations as
follows, which costing kM1 + 12Mk/3 + 4Sk/3 + 1M(c−1).

A = X1 − Z1 ·X2, B = A2, C = A · B, D = X1 ·B, E = 2D − C, F = D + E,
G = Y1 − Z1 · Y2, H = G · Z1 · c−1, I = G ·H , X3 = A · (I − E),

Y3 = G · (F − I)− Y1 · C, Z3 = Z1 · C, T3 = X2
3 , U3 = Z2

3 ,
J = (X3 + Z3)

2 − T3 − U3, K = H · B, L = Y3 − Z3 · yPω3, L0 = T3 +K · L,
L1 = J · (xP /2), L2 = U3 · (x2P).

In our case of k = 3 and b = c2, the above doubling steps and mixed addition
steps cost 1S3+1M3+7M1+7S1 and 1M3+15M1+4S1+1M(c−1) respectively,
which are faster compared with the formulas in [38].

Wemodify themulti-Miller’s algorithm [22] inAppendix A to compute ηd(P, P
′)

in Theorem 4 with the precomputation of each ψ4([p
i]P ′). Since many common

operations can be shared in doubling steps and addition steps for computing each
fd,P

(
ψ4([p

i]P ′)
)
(0 ≤ i ≤ m−1), then themulti-doubling step costs 1S3+m(M3+

4M1)+2M1+9S1+1M(3b) or 1S3+m(M3+4M1)+3M1+7S1, and the multi-
addition step m(M3 + 4M1) + 11M1 + 5S1 or m(M3 + 4M1) + 11M1 + 4S1 +
1M(c−1).

Fast Symmetric Pairing Revisited 143

5.2 Final Steps

When computing ηd(P, P
′), the final steps involve the multiplication of the linear

part v[−pm]P (Q)/l[−pm]P,P (Q), where P = (xP , yP), [−pm]P = (x1, y1), and Q =

ψ4([p
m−1]P ′) = (xQα, yQ) with α = b2/3 ∈ Fp6m . With the subfield elimination

technique, v[−pm]P (Q)/l[−pm]P,P (Q) can be transformed as

(xP − x1)
−1 v[−pm]P (Q)

l[−pm]P,P (Q)
=

(xP − x1)
−1(xQα− x1)

(yQ − y1)− (xQα− x1)(yP − y1)/(xP − x1)

=
xQα− x1

(yQ − y1)(xP − x1)− (xQα− x1)(yP − y1)

=
xQα− x1
β0 − β1xQα

,

where β0 = (yQ − y1)(xP − x1) + x1(yP − y1) and β1 = (yP − y1). Then the
denominator (β0−β1xQα) can be transformed as (β3

0−β3
1x

3
Qα

3)/(β2
0+β0β1xQα+

β2
1x

2
Qα

2) such that the new denominator (β3
0−β3

1x
3
Qα

3) is omitted. Thus we only
need to compute

(xQα− x1)(β
2
0 + β0β1xQα+ β2

1x
2
Qα

2)

= (β0β1 − β2
1x1)x

2
Qα

2 + (β2
0 − β0β1x1)xQα+ (β2

1x
3
Qα

3 − β2
0x1)

with the following operations, which costing 10M1 + 2S1 by precomputing x2Q
and xQb

2.

A = (yQ − y1)(xP − x1), B = x1(yP − y1), C = A+B, E = A ·B, F = C2,
G = (yP − y1)

2, H = F · x2Q · xQb2, I = E · x1, J = D · x1, K = F · x1,
L0 = G−H , L1 = xQ(A− I), L2 = x2Q(C − J).

5.3 Final Exponentiation

As we shown in §4.1, for the curve E/Fp2m generated by Theorem 5, the per-
formance of the hard part has the complexity O

(
2m−1
ϕ(6m) log2 r

)
. When pm ≡

1 (mod 6), we can apply fast squaring technique in cyclotomic subgroupsGΦ6(pm)

to accelerate the final exponentiation. When m = 2a · 3b, Granger and Scott’s
squaring [21] needs 1S6m = (6b · 3a · 6)M1, and Karabina’s squaring [27] needs
1S6m = (6b · 3a · 4)M1 and extra decompression cost 1Im +(6b · 3a · 5)M1. Thus,
the final exponentiation of our new symmetric pairings can be speeded up as
the asymmetric case when m is even, e.g. the curves in the 128-bit and 192-bit
security cases.

5.4 Exponentiation by p

For our new pairing (4), a few exponentiations of the characteristic p need
to be computed in each Miller’s iteration and the final exponentiation. Due

144 X. Zhang and K. Wang

to the special field extension, the exponentiations of the characteristic could
be computed very efficient. For example, when the characteristic satisfies p ≡
19 (mod 24), the field extension of Fp2m with m = 2i3j can be constructed as
Fp2m = Fp2 [x]/(xm − (1 +

√
−1)) according to [10]. Thus the exponentiation by

p is fast by costing m− 1 modular reductions.
In our case, since p ≡ 2 (mod 3) it follows that the above field extension

is feasible when m = 2i and p ≡ 3 (mod 8). Regarding the field Fp6m with
m = 2i, we recommend the field extension Fp2m = Fp2 [x]/(xm − (1 +

√
−1))

and Fp6m = Fp2m [y]/(y3 − (a+ bx)) for our suggested curves SS3128 and SS3192.
Then the exponentiation of p in field Fp6m needs two (constant) multiplications
in field Fp2m and several modular reductions, whose cost is at most one half of
the cost for the squaring in field Fp6m .

Besides, for the curve SS380, we have p ≡ 1 (mod 4) since the field Fp is
an optimal prime field. Then the exponentiation of p in field Fp6 needs two
(constant) multiplications in field Fp2 , three (constant) multiplications in field
Fp and several modular reductions.

5.5 Special Modular Reduction

The modular arithmetic in a generic finite field would be costly when its char-
acteristic is large. The Montgomery reduction usually has better computational
complexity than the classical method by a constant factor. Moreover, the lazy
reduction and the residue number system are proposed for further optimiza-
tions. In practical public key cryptography, however, it is recommended to use
primes of special forms (e.g. Mersenne and NIST primes). Unluckily, it is hard
to utilize these special primes in fast pairing computation. But in our suggested
examples, the curve SS380 can be specially defined over an quadratic extension
of an optimal prime field, which admits fast Montgomery modular reduction
(multiplication).

5.6 Cost Estimation

At different levels of the 80/128/192-bit securities, we give the rough estimations
and comparisons of the computational costs for our new symmetric pairings
and the currently recommended symmetric and asymmetric pairings listed in
Table 1.

From the comparisons in Table 2, we can assume that for software computa-
tion our new symmetric pairings at the 80/128-bit security levels can be more
efficient than the recommended ηT pairings. Moreover, compared with the rec-
ommended asymmetric pairings in Table 1, our new symmetric pairings might
shorten the efficiency gap between symmetric pairings and asymmetric pairings
within two times for the 80/128/192-bit securities. Specially, due to the fast
modular reduction in our new pairing computation at the 80 security level, our
new pairing might have faster performance compared with the Tate pairing on
the MNT curve.

Fast Symmetric Pairing Revisited 145

Table 1. Different recommended pairing-friendly curves at different security levels

Security Curve Equation Field Pairing

80-bit Supersingular k = 4 [13] y2 + y = x3 + x+ 1 F2457 ηT

Supersingular k = 6 [13] y2 = x3 − x− 1 F3239 ηT

MNT (k = 6) [33] y2 = x3 − 3x+ b Fpmnt Tate
SS380 (Example 1) y2 = x3 + 1 + u Fp2 ηd

b = 194856775885459025831105686028633928753660625487

pmnt = 867258523307518647087182620127316278179122196339

128-bit Supersingular k = 4 [19] y2 + y = x3 + x+ 1 F21223 ηT

Supersingular k = 6 [2] y2 = x3 − x+ 1 F3509 ηT

BN (k = 12) [32] y2 = x3 + 2 Fpbn
opt-ate

SS3128 (Example 2) y2 = x3 + 2 + v Fp4 ηd

pbn = 36z41 + 36z31 + 24z21 + 6z1 + 1, z1 = −262 − 255 − 1

192-bit BLS12 (k = 12) [3] y2 = x3 + 4 Fpbls
ate

SS3192 (Example 3) y2 = x3 + 1 + 3v Fp8 ηd

pbls = (z2 − 1)2(z82 − z42 + 1)/3 + z2, z2 = −2107 + 2105 + 293 + 25

Table 2. Comparisons of pairing computations at the 80/128/192-bit security levels

Security Pairing ML+FS Cost FE Cost Total Cost
80-bit SS4, ηT 1599m

2457
+ 458s

2457
i
2457

+ 26m
2457

i
2457

+ 1625m
2457

[11] (Alg1) +456r
2457

+932s
2457

+1390s
2457

+ 456r
2457

SS6, ηT 1495m
3239

+ 1311c
3239

i
3239

+ 73m
3239

i
3239

+ 1568m
3239

[12] (Alg5) +720c
3239

+2031c
3239

MNT, Tate 4733m160 i160 + 1076m160 i160 + 5809m160

[33]
SS380, ηd 5843m173 i173 + 674m173 i173 + 6517m173

(this work)
128-bit SS4, ηT 4280m

21223
+ 1224s

21223
i
21223

+ 26m
21223

i
21223

+ 4306m
21223

+

[11] (Alg1) +1222r
21223

+2455s
21223

3679s
21223

+ 1222r
21223

SS6, ηT 3181m
3509

+ 2797c
3509

i
3509

+ 73m
3509

i
3509

+ 3254m
3509

[12] (Alg5) +1530c
3509

+4327c
3509

BN, opt-ate 6792m254 4i254 + 3769m254 4i254 + 10561m254

[4]
SS3128, ηd 21168m254 4i254 + 3417m254 4i254 + 24585m254

(this work)
192-bit BLS12, ate 10865m638 6i638 + 8464m638 6i638 + 19329m638

[3] (≈ 29249m384) (≈ 6i638 + 22785m384) (≈ 6i638 + 52034m384)

SS3192, ηd 72144m381 8i381 + 18283m381 8i381 + 90427m381

(this work)

6 Conclusion

We have constructed fast symmetric pairings on the supersingular curves y2 =
x3+b over extension fields Fp2m with embedding degree 3. In order to obtain fast
performance, we have given some suggestions about choices of curve’s parameters
and introduced a new variant of the ηT pairing on our suggested supersingular
curves. Moreover, we have recommended to use the multi-pairing technique to
speed up our new pairing computation. At last, we have given the concrete
formulas and estimated the rough costs for our pairing computations to illustrate
that our new symmetric pairings could be efficient candidates in practice.

146 X. Zhang and K. Wang

Acknowledgments. We are heartily grateful to Jérémie Detrey for reviewing
the revised paper and helping us to remedy some proof shortcomings and im-
prove the readability. We also thank the Pairing2013 reviewers for many helpful
comments and suggestions, and particularly for directing us to the breakthrough
papers of Joux and Barbulescu et al. and Adj et al..

References

1. Adj, G., Menezes, A., Oliveira, T., Rodŕıguez-Henŕıquez, F.: Weakness of F36∗509
for discrete logarithm cryptography. IACR ePrint Archive Report 2013/446

2. Ahmadi, O., Hankerson, D., Menezes, A.: Software implementation of arithmetic
in F3m . In: Carlet, C., Sunar, B. (eds.) WAIFI 2007. LNCS, vol. 4547, pp. 85–102.
Springer, Heidelberg (2007)

3. Aranha, D.F., Fuentes-Castañeda, L., Knapp, E., Menezes, A., Rodŕıguez-
Henŕıquez, F.: Implementing Pairings at the 192-Bit Security Level. In: Abdalla, M.,
Lange, T. (eds.) Pairing 2012. LNCS, vol. 7708, pp. 177–195. Springer, Heidelberg
(2013)

4. Aranha, D., Karabina, K., Longa, P., Gebotys, C., López, J.: Faster explicit
formulas for computing pairings over ordinary curves. In: Paterson, K.G. (ed.)
EUROCRYPT 2011. LNCS, vol. 6632, pp. 48–68. Springer, Heidelberg (2011)

5. Aranha, D.F., López, J., Hankerson, D.: High-Speed Parallel Software Implemen-
tation of the ηT Pairing. In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985,
pp. 89–105. Springer, Heidelberg (2010)

6. Barbulescu, R., Gaudry, P., Joux, A., Thomé, E.: A quasi-polynomial algorithm
for discrete logarithm in finite fields of small characteristic. IACR ePrint Archive
Report 2013/400

7. Barreto, P., Galbraith, S., hÉigeartaigh, C.Ó., Scott, M.: Efficient pairing compu-
tation on supersingular abelian varieties. Designs, Codes and Cryptography 42(3),
239–271 (2007)

8. Barreto, P.S.L.M., Kim, H.Y., Lynn, B., Scott, M.: Efficient Algorithms for
Pairing-Based Cryptosystems. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442,
pp. 354–369. Springer, Heidelberg (2002)

9. Barreto, P., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In: Preneel,
B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer, Heidelberg
(2006)

10. Benger, N., Scott, M.: Constructing tower extensions of finite fields for implemen-
tation of pairing-based cryptography. In: Hasan, M.A., Helleseth, T. (eds.) WAIFI
2010. LNCS, vol. 6087, pp. 180–195. Springer, Heidelberg (2010)

11. Beuchat, J.-L., Brisebarre, N., Detrey, J., Okamoto, E., Rodŕıguez-Henŕıquez, F.:
A Comparison between Hardware Accelerators for the Modified Tate Pairing over
F2m and F3m . In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS,
vol. 5209, pp. 297–315. Springer, Heidelberg (2008)

12. Beuchat, J.L., Brisebarre, N., Detrey, J., Okamoto, E., Shirase, M., Takagi, T.: Al-
gorithms and Arithmetic Operators for Computing the ηT Pairing in Characteristic
Three. IEEE Transactions on Computers 57(11), 1454–1468 (2008)

13. Beuchat, J.L., Detrey, J., Estibals, N., Okamoto, E., Rodŕıguez-Henŕıquez, F.: Fast
Architectures for the ηT Pairing over Small-Characteristic Supersingular Elliptic
Curves. IEEE Transactions on Computers 60(2), 266–281 (2011)

Fast Symmetric Pairing Revisited 147

14. Beuchat, J.-L., López-Trejo, E., Mart́ınez-Ramos, L., Mitsunari, S., Rodŕıguez-
Henŕıquez, F.: Multi-core Implementation of the Tate Pairing over Supersingular
Elliptic Curves. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS 2009. LNCS,
vol. 5888, pp. 413–432. Springer, Heidelberg (2009)

15. Blake, I., Seroussi, G., Smart, N.: Advances in Elliptic Curve Cryptography. LMS
Lecture Note Series, vol. 317. Cambridge University Press (2005)

16. Costello, C., Hisil, H., Boyd, C., Gonzalez Nieto, J., Wong, K.K.-H.: Faster Pairings
on Special Weierstrass Curves. In: Shacham, H., Waters, B. (eds.) Pairing 2009.
LNCS, vol. 5671, pp. 89–101. Springer, Heidelberg (2009)

17. Costello, C., Lange, T., Naehrig, M.: Faster pairing computations on curves with
high-degree twists. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS,
vol. 6056, pp. 224–242. Springer, Heidelberg (2010)

18. Fuentes-Castañeda, L., Knapp, E., Rodŕıguez-Henŕıquez, F.: Faster Hashing to G2.
In: Miri, A., Vaudenay, S. (eds.) SAC 2011. LNCS, vol. 7118, pp. 412–430. Springer,
Heidelberg (2012)

19. Ghosh, S., Roychowdhury, D., Das, A.: High Speed Cryptoprocessor for ηT Pairing
on 128-bit Secure Supersingular Elliptic Curves over Characteristic Two Fields. In:
Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 442–458. Springer,
Heidelberg (2011)

20. Ghosh, S., Verbauwhede, I., Roychowdhury, D.: Core Based Architecture to Speed
Up Optimal Ate Pairing on FPGA Platform. In: Abdalla, M., Lange, T. (eds.)
Pairing 2012. LNCS, vol. 7708, pp. 141–159. Springer, Heidelberg (2013)

21. Granger, R., Scott, M.: Faster squaring in the cyclotomic subgroup of sixth degree
extensions. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056,
pp. 209–223. Springer, Heidelberg (2010)

22. Granger, R., Smart, N.: On computing products of pairings. IACR ePrint Archive
Report 2006/172

23. Großschädl, J.: TinySA: A security architecture for wireless sensor networks. In:
CoNEXT 2006, pp. 288–289. ACM Press (2006)

24. Hess, F.: Pairing lattices. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008.
LNCS, vol. 5209, pp. 18–38. Springer, Heidelberg (2008)

25. Hitt, L.: On the minimal embedding field. In: Takagi, T., Okamoto, T., Okamoto,
E., Okamoto, T. (eds.) Pairing 2007. LNCS, vol. 4575, pp. 294–301. Springer,
Heidelberg (2007)

26. Joux, A.: A new index calculus algorithm with complexity L(1/4 + o(1)) in very
small characteristic. IACR ePrint Archive Report 2013/095

27. Karabina, K.: Squaring in cyclotomic subgroups. Mathematics of Computa-
tion 82(281), 555–579 (2013)

28. Le, D.-P., Tan, C.H.: Speeding up ate pairing computation in affine coordinates. In:
Kwon, T., Lee, M.-K., Kwon, D. (eds.) ICISC 2012. LNCS, vol. 7839, pp. 262–277.
Springer, Heidelberg (2013)

29. Menezes, A., Okamoto, T., Vanstone, S.: Reducing Elliptic Curve Logarithms to
Logarithms in a Finite Field. IEEE Transactions on Information Theory 39(5),
1639–1646 (1993)

30. Miller, V.: Short programs for functions on curves (1986) (unpublished manuscript)
31. Miller, V.: The Weil pairing, and its efficient calculation. Journal of Cryptol-

ogy 17(4), 235–261 (2004)
32. Pereira, G., Simpĺıcio, M., Naehrig, M., Barreto, P.: A family of implementation-

friendly BN elliptic curves. Journal of Systems and Software 84, 1319–1326 (2011)
33. Scott, M., Barreto, P.: Generating More MNT Elliptic Curves. Designs, Codes and

Cryptography 38, 209–217 (2006)

148 X. Zhang and K. Wang

34. Scott, M., Benger, N., Charlemagne, M., Dominguez Perez, L.J., Kachisa, E.J.:
On the final exponentiation for calculating pairings on ordinary elliptic curves. In:
Shacham, H., Waters, B. (eds.) Pairing 2009. LNCS, vol. 5671, pp. 78–88. Springer,
Heidelberg (2009)

35. Silverman, J.: The Arithmetic of Elliptic Curves. GTM, vol. 106. Springer (2009)
36. Vercauteren, F.: Optimal Pairings. IEEE Transactions on Information The-

ory 56(1), 455–461 (2010)
37. Yao, G.X., Fan, J., Cheung, R.C.C., Verbauwhede, I.: Faster Pairing Coprocessor

Architecture. In: Abdalla, M., Lange, T. (eds.) Pairing 2012. LNCS, vol. 7708,
pp. 160–176. Springer, Heidelberg (2013)

38. Zhang, X., Lin, D.: Analysis of Optimum Pairing Products at High Security Levels.
In:Galbraith, S., Nandi,M. (eds.) INDOCRYPT2012. LNCS, vol. 7668, pp. 412–430.
Springer, Heidelberg (2012)

39. Zhang, X., Wang, K., Lin, D.: On Efficient Pairings on Elliptic Curves over Ex-
tension Fields. In: Abdalla, M., Lange, T. (eds.) Pairing 2012. LNCS, vol. 7708,
pp. 1–18. Springer, Heidelberg (2013)

40. Zhang, Y., Großschädl, J.: Efficient Prime-Field Arithmetic for Elliptic Curve
Cryptography on Wireless Sensor Nodes. In: ICCSNT 2011, pp. 459–466. IEEE
(2011)

A Modified Multi-miller’s Algorithm for Computing
ηd(P, P ′)

Input: d =
∑l

i=0 di · 2i, di ∈ {0, 1}, dl = 1; P, P ′ ∈ G1; h = (p2m − pm + 1)/r;
Output: ηd(P, P

′);
1: for i = m− 1 to 0 do
2: P ′

i ← ψ4([p
m−i−1]P ′);

3: end for
4: R ← P ;
5: for j = l − 1 to 0 do
6: f ← f2; R ← [2]R; F ← FDBL(R);
7: for i = m− 1 to 0 do

8: f ← f · F (P ′
i)

pi ;
9: end for
10: if dj = 1 then
11: R ← R + P ; F ← FADD(R,P);
12: for i = m− 1 to 0 do

13: f ← f · F (P ′
i)

pi ;
14: end for
15: end if
16: end for

17: f ← fp(m−1)

;
18: R′ ← [−pm]P ;
19: f ← f · vR′(P ′

0)/lP,R′(P ′
0);

20: return f (p3m−1)(pm+1)h;

Efficient Leakage-Resilient Identity-Based

Encryption with CCA Security

Shi-Feng Sun, Dawu Gu�, and Shengli Liu

Department of Computer Science and Engineering,
Shanghai Jiao Tong University, Shanghai 200240, China

{crypto99,dwgu,slliu}@sjtu.edu.cn

Abstract. Due to the proliferation of side-channel attacks, lots of efforts
have been made to construct cryptographic systems that are still secure
even if part of the secret information is leaked to the adversary. Recently,
many identity-based encryption (IBE) schemes have been proposed in
this context, almost all of which, however, are only proved CPA secure.
As far as we know, the IBE scheme presented by Alwen et al. is the
unique CCA secure and the most practical one in the standard model.
Unfortunately, this scheme suffers from an undesirable shortcoming that
the leakage parameter λ and the message length m are subject to λ+m ≤
log p−ω(log κ), where κ is the security parameter and p is the prime order
of the underlying group. To overcome this drawback, we designed a new
IBE scheme based on Gentry’s IBE in this paper, which is λ-leakage
resilient CCA2 secure in the standard model where λ ≤ log p− ω(log κ).
In contrast, the leakage parameter λ in our proposal is independent of
the size of the message space. Moreover, our scheme is quite practical and
almost as efficient as the original scheme. To the best of our knowledge,
it is the first practical leakage-resilient fully CCA2 secure IBE scheme
in the standard model, tolerating up to (log p − ω(log κ))-bit leakage of
the private key, the leakage parameter of which is independent of the
message length.

Keywords: Identity-Based Encryption, Leakage-Resilient, Bounded Mem-
ory Leakage, Chosen Ciphertext Security.

1 Introduction

The right and reasonable definition of security models is crucial to provably
secure cryptography. Traditionally, the security of cryptographic systems is ana-
lyzed in an idealized model, where the secret states are assumed to be generated
using perfectly random bits and completely hidden from the adversary. That is,
an adversary in this setting only can see the specified input and output behaviors
of one system, but has no any other access to the internal secret states. However,
it has been observed that the assumption above does not hold in the real world.

� Corresponding author.

Z. Cao and F. Zhang (Eds.): Pairing 2013, LNCS 8365, pp. 149–167, 2014.
c© Springer International Publishing Switzerland 2014

150 S.-F. Sun, D. Gu, and S. Liu

Actually, the potential attackers may exploit the variously physical character-
istics, such as computation-time, power-consumption, electro-magnetic radiation
etc, of the execution of a cryptographic device to learn some partial information
of the secret states, which are usually called side-channel attacks [24,5,23,3,18].
What’s more, another kind of attack called cold-boot attack is presented by
Halderman et al. in 2008 [21], where an attacker is allowed to learn information
about the contents of a machine, even after the machine is powered down. Under
many such attacks, many systems proved secure in the traditional security mod-
els, without key leakage, may become completely insecure, even if the attacker
leaks only a small amount of information about the secret states.

To take account of these attacks in the security proof, leakage-resilient cryp-
tography has been initiated by the cryptographic community, with the goal of
constructing stronger secure cryptographic systems that remain provably se-
cure even in the presence of some key leakage attacks. Recently, many excellent
works, such as [13,15,22,17,28,2,27,14], have been proposed in this new setting,
and they are proved secure in several different leakage models, such as the only
computation leakage model and auxiliary input leakage model. In this work, we
focus on a simple and general leakage model, called bounded memory-leakage
model (or sometimes relative leakage model), where the attacker is allowed to
learn arbitrary information about the secret key, with the only restriction that
the number of leakage bits is bounded by some parameter λ. In recent years, the
bounded memory-leakage model has received considerable attentions.

1.1 Related Work

To capture the cold-boot attack, bounded memory-leakage model was first intro-
duced by Akavia et al. [1], who also proposed CPA secure PKE and IBE schemes
in this leakage model based on the learning with errors (LWE) assumption. Sub-
sequently, Naor and Segev [28] gave a general construction of CPA secure leakage
resilient PKE derived from hash proof system [12], and they presented two ef-
ficient concrete constructions in this framework under the DDH and K-Linear
assumptions, the leakage-ratio (leakage bits/secret key bits) of which are almost
to approach 1. Moreover, in the same work they considered how to achieve CCA
secure leakage resilient PKE, and showed that given any CPA leakage resilient
PKE, the corresponding CCA leakage resilient PKE can be obtained by leverag-
ing Naor-Yung paradigm [29]. Except this inefficiently general method, they still
gave two efficient CCA secure leakage resilient constructions based on the practi-
cal Cramer-Shoup cryptosystem [11], one CCA1 and the other CCA2. However,
these schemes suffer from one undesirable shortcoming that the leakage param-
eter λ is dependent to the message length m. The relationship between them is
λ +m ≤ log q − ω(log κ), where κ is the security parameter and q is the prime
order of the underlying group. In order to solve this problem, Liu et al.[26] gave
a new leakage resilient PKE based on Cramer-Shoup cryptosystem, in which the
number of leakage bits λ ≤ log q − ω(log κ).

Furthermore, Alwen et al.[2] generalized hash proof system in [12] to the
identity-based setting and referred to it as identity-based hash proof system,

Efficient Leakage-Resilient Identity-Based Encryption with CCA Security 151

based on which they showed how to construct leakage resilient IBE schemes.
In particular, they presented three instantiations based on Boneh et al.’ IBE [6],
Gentry et al.’ IBE [20] and Gentry’s IBE [19], respectively. In addition, based
on the framework presented by Alwen et al., the work of [10] gave three new
leakage-resilient IBE schemes, which were constructed from Waters’s IBE [30],
Lewko et al.’ IBE [25] and Boneh et al.’ IBE [4], and Chen et al. [8] also present
a new IBE in this new setting. Different from these works, Yuen et. al.[32] put
forward a novel IBE scheme in the auxiliary input model, which can tolerate
a more general form of leakage. Among all these leakage resilient IBE schemes,
those presented in [10,32] are all proved secure in the standard model, in contrast
to the others most of which are proposed in the random oracle model. However,
all these leakage resilient IBE schemes are only proved CPA secure, except the
only one presented in the work [2]. Unfortunately, this unique CCA secure scheme
also suffers from the undesirable drawback that the leakage parameter λ and the
message length m are subject to λ+m ≤ log q−ω(log κ), where κ is the security
parameter and q is the prime order of the underlying group. In this case, when
the message length m approaches to log q, the number of leakage bits approaches
to 0, vice verse. Hence, it is natural to ask whether there exists one IBE scheme
that can achieve CCA security in the context of leakage resilience, and does not
suffer from this inherent drawback.

In this work, we present a new leakage resilient IBE based on Gentry’s IBE,
which not only has almost the same efficiency as the original one, but also can
achieve CCA2 security in the standard model, simultaneously without suffering
from the undesirable drawback as in [2].

1.2 Organization

The rest paper is organized as follows. Section 2 describes some preliminaries,
including some basic notations, definitions and security models. The concrete
construction and the security analysis will be presented in section 3 and 4, re-
spectively. Section 5 gives a detailed performance analysis. And at last, we end
this work with a brief conclusion.

2 Preliminaries

In the following, we first give some notations, definitions and assumptions used
in our work, and then review the security model of IBE in the bounded memory
leakage setting.

2.1 Notations

Let κ denote the security parameter. For a set S, we write s ← S to denote
sampling s uniformly at random from S, and |S| the cardinality of the set S; if
S is a random variable or distribution, it denotes sampling a random s according
to S. For a randomized algorithm A(·), a← A(·) denotes running the algorithm

152 S.-F. Sun, D. Gu, and S. Liu

and obtaining a as an output, which is distributed over the internal random coins
of A. PPT and negl(κ) denote probabilistic polynomial time and a negligible
function of κ, respectively.

2.2 Bilinear Maps and Complexity Assumption

Let G and GT be two multiplicative cyclic groups of prime order p. We assume
that the discrete logarithm problems in both G and GT are intractable. Let
e : G×G → GT be a bilinear map with the following properties:
(1) Bilinear: e(P a, Qb) = e(P,Q)ab, for all P,Q ∈ G , and a, b ∈ Z∗

p .
(2) Non-degenerate: There exists P ∈ G such that e(P, P)
= 1GT .
(3) Computable: There exists an efficient algorithm to compute e(P,Q) for any

P,Q ∈ G.

Definition 1 (Complexity Assumption [19]). Let G and GT be two mul-
tiplicative cyclic groups of order p, which are determined by some security pa-
rameter κ. The complexity assumption used in our scheme is a truncated ver-
sion of the decisional q-augmented bilinear Diffie-Hellman exponent assumption
(q-ABDHE). That is, the ensembles PABDHE = {(G, g′, (g′)αq+2

, g, gα, . . . , gα
q

,

e(g, g′)α
q+1

)} and RABDHE = {(G, g′, (g′)αq+2

, g, gα, . . . , gα
q

, Z)} are computa-
tionally indistinguishable, where the elements g, g′ ∈ G, Z ∈ GT and α ∈ Zp are
chosen independently and uniformly at random.

2.3 Entropy and Randomness Extractors

Definition 2 (Average Min-entropy [16]). Let X ∈ X and Z ∈ Z be
two random variables, the min-entropy of X denoted by H∞(X), is defined as
H∞(X) = minx∈X {− log(Pr[X = x])} = − log(maxx∈X Pr[X = x]). Given a
(correlated) random variable Z, the average min-entropy of X conditioned on
Z, is defined as

H̃∞(X |Z) = − log(Ez∈Z [max
x∈X

Pr[X = x|Z = z]]) = − log(Ez∈Z [2−H∞(X|Z=z)]).

This notion of average min-entropy measures the optimal probability of guess-
ing X for an adversary who may observe the knowledge of Z.

Lemma 1 [16]. Let X,Y, Z be arbitrarily correlated random variables where Y
takes at most 2l possible values, then H̃∞(X |(Y, Z)) ≥ H̃∞(X |Z)− l. In partic-
ular, H̃∞(X |Y) ≥ H∞(X)− l.

Definition 3 (Statistical Distance and Extractors [9,16]). Let X,Y be
two random variables with the same range U , the statistical distance between
random variable X and Y , denoted by SD(X,Y), is defined as SD(X,Y) =
1
2

∑
u∈U |Pr[X = u] − Pr[Y = u]|. A function Ext : U × R → V is an average-

case (l, δ)-extractor if for all random variables X,Z such that X ∈ U and

Efficient Leakage-Resilient Identity-Based Encryption with CCA Security 153

H̃∞(X |Z) ≥ l, we have SD((Ext(X,R), R, Z), (V,R, Z)) ≤ δ, where R and
V are distributed uniformly and independently over their domain R and V , re-
spectively.

Definition 4 (Universal Hash [31,7]). A family H of hash functions H =
{hk : X → Y}k∈K is called universal if, for every x1, x2 ∈ X with x1
= x2,

Prk∈K[hk(x1) = hk(x2)] ≤
1

|Y| .

Two specific examples of universal hash are given as follows:

– the family H of functions {hk1,k2,···,kt : X → Y}ki∈Zp,i=1,2,···,t is universal,
where hk1,k2,···,kt(x0, x1, · · · , xt) = x0 + x1k1 + · · ·+ xtkt, all the operations
are in the prime field Fp.

– the family H of functions {hk1,k2,···,kt : Gt+1 → G}ki∈Zp,i=1,2,···,t is universal,
where G is a multiplicative group of prime order p with a generator g, and
hk1,k2,···,kt(g0, g1, · · · , gt) = g0 ·gk1

1 ·· · ··gkt
t (= gx0+x1k1+···+xtkt), with gi = gxi

for i = 0, 1, · · · , t.

Actually, the second family of universal hash is derived from the fact that the
multiplicative group (G, ·) of prime order p is isomorphic to (Zp,+).

Lemma 2 (Leftover Hash Lemma and Its Generalization [16]). Assume
that H = {hk : X → Y}k∈K is a family of universal hash functions, then for arbi-
trarily randomvariablesX ∈ X ,K ∈ K andZ, we haveSD((hK(X),K), (UY ,K))

≤ 1
2

√
2−H∞(X)|Y|, and SD((hK(X),K, Z), (UY ,K, Z)) ≤ 1

2

√
2−

˜H∞(X|Z)|Y|.
The leftover hash lemma stats that a family of universal hash functions gives

an average-case (l, δ)-extractor Ext : X×K → Y, with log |Y| ≤ l−2 log(1/δ)+2.

2.4 CCA2 Security of Leakage Resilient IBE

Similar to previous works [4,10,2], an IBE system E consists of four algorithms:
Setup, KeyGen, Encrypt, and Decrypt. Setup algorithm takes as input a security
parameter κ, and establishes PKG’s public parameters params and the master
secret key msk. KeyGen takes the master secret key msk and an identity ID as
input, and generates the private key for the identity ID. On input a message,
an identity ID and params, Encrypt algorithm outputs a ciphertext for ID.
Receiving a ciphertext, the recipient with identity ID decrypts the ciphertext
using algorithm Decrypt, with the ciphertext and her private key as input.

In this work, we use the bounded memory-leakage model, which is simple
and general, and used in many PKE and IBE settings. The CCA2 security of
leakage resilient IBE is defined via the following game, which is refined from
the definition in [2]. Consistent with the work of [10,2], our security definition
also only allows leakage attacks against the private keys of the various identities,
but not the master secret key. Additionally, just as noted by [28,2,1], we also
only allow the adversary to make leakage queries before seeing the challenge
ciphertext.

154 S.-F. Sun, D. Gu, and S. Liu

Setup: The challenger generates (params,msk) ← Setup(1κ), and sends params
to the adversary A.

Phase 1: In this phase, the adversary A can adaptively make the following
three kinds of queries.
– Key generationqueries:On input identity ID, the challenger runsKeyGen

on ID and replies with the resulting private key skID.
– Leakage queries: On input ID and a PPT leakage function fi : {0, 1}∗ →

{0, 1}λi, the challenger replies with fi(skID), if
∑i

k=1 λk ≤ λ; Otherwise,
outputs ⊥.

– Decryption queries: On input the ciphertext (ID,C), the challenger first
runs KeyGen on ID, and then decrypts C using the resulting private
key.

Challenge: The adversary submits two messages m0,m1 and a challenge iden-
tity ID∗, which never appeared in a key generation query and appeared in
leakage queries with at most λ bits leakage. The challenger selects a random
bit b ∈ {0, 1}, and sends C∗ ← Encrypt(params, ID∗, mb) to the adversary
as the challenge ciphertext.

Phase 2: This Phase is almost the same as Phase 1, with the restriction that
neither key generation queries on ID∗ nor decryption queries on (ID∗, C∗)
are allowed to make. Also, as mentioned above, no leakage query is allowed
to make in this phase.

Guess: Finally, the adversary outputs a guess b′ ∈ {0, 1}. The adversary wins
the game if b′ = b.

We call an adversary A in the above game a IND-KL-ID-CCA2 adversary.
The advantage of A is defined by AdvLR−CCA2−IBE

IBE,A (κ, λ) = |Pr[A wins]− 1
2 |.

Definition5 (λ-LR-CCA2-IBE).An IBE scheme E=(Setup,KeyGen, Encrypt,
Decrypt) is λ-leakage resilient CCA2 secure if for any probabilistic polynomial
time IND-LR-ID-CCA2 adversary A, it holds that AdvLR−CCA2−IBE

IBE,A (κ, λ) ≤
negl(κ).

3 Concrete Construction

The proposed leakage-resilient identity-based encryption scheme consists of four
algorithms, each of which is described as follows:

– Setup(1κ): On input the security parameter κ, PKG chooses random gen-
erators g, h1, h2, h3 ∈ G, a random α ∈ Zp, and a hash function H from
a universal one-way hash function family H. Then the public parameters
params and the master secret key msk are set to be:

params = {G, g, g1 = gα, h1, h2, h3, H},msk = α.

– KeyGen(ID,msk): To generate a private key for identity ID ∈ Zp, PKG
randomly chooses rID,i ∈ Zp for i ∈ {1, 2, 3}, and outputs the corresponding
private key skID for ID:

Efficient Leakage-Resilient Identity-Based Encryption with CCA Security 155

skID = {(rID,i, hID,i)}, where hID,i = (hig
−rID,i)1/(α−ID).

If ID = α, PKG aborts. We require that PKG always uses the same values
rID,i, i ∈ {1, 2, 3} for the same ID.

– Encrypt(params,m): To encrypt a message m ∈ GT for ID, the sender
picks r, s ∈ Zp at random, and outputs the ciphertext C = (u, v, w, r, y),

where u = gs1g
−s·ID, v = e(g, g)s, w = m · e(g, h3hr1)−s, y = e(g, h2h

β
3)

s, and
β = H(u, v, w, r).

– Decrypt(skID , C): To decrypt a ciphertext C = (u, v, w, r, y), the recipient
with identity ID computes β = H(u, v, w, r) and check whether

y = e(u, hID,2h
β
ID,3)v

(rID,2+rID,3·β).

If the check fails, outputs ⊥. Otherwise, outputs

m = w · e(u, hID,3h
r
ID,1)v

(rID,3+rID,1·r).

4 Security and Correctness Analysis

4.1 Correctness

Assuming the ciphertext C = (u, v, w, r, y) received by the recipient with ID is
well-formed, we have:

e(u, hID,2h
β
ID,3)v

(rID,2+rID,3·β)

= e(gs(α−ID), (h2h
β
3)

1/(α−ID)g−(rID,2+rID,3·β)/(α−ID))e(g, g)s(rID,2+rID,3·β)

= e(g, h2h
β
3)

s,

where β = H(u, v, w, r), and

e(u, hID,3h
r
ID,1)v

(rID,3+rID,1·r)

= e(gs(α−ID), (h3h
r
1)

1/(α−ID)g−(rID,3+rID,1·r)/(α−ID))e(g, g)s(rID,3+rID,1·r)

= e(g, h3h
r
1)

s.

4.2 Security Analysis

In this section, we prove that the proposed scheme is semantically secure against
λ-bounded memory leakage and chosen-ciphertext attacks (λ-leakage resilient
CCA2 secure), based on the truncated decision q-ABDHE assumption.

Theorem1.Under the hardness assumption of the truncated decision q-ABDHE
problem, where q = qID+2, the above IBE scheme is (log p−ω(log κ))-leakage re-
silient CCA2 secure, where qID is the maximum number of key generation queries
made by the adversary, p is the prime order of the underlying group, and κ denotes
the security parameter.

156 S.-F. Sun, D. Gu, and S. Liu

Proof . Suppose that there exists an adversary A that, making at most qID key
generation queries and qC decryption queries, breaks the λ-LR-CCA2 security of
the presented IBE scheme above. Then, we can useA as a subroutine to construct
an algorithm B, which can solve the truncated decision q-ABDHE assump-
tion. On input a random truncated decision q-ABDHE instance (G, g′, (g′)α

q+2

,

g, gα, . . . , gα
q

, Z), where Z is either e(g, g′)α
q+1

or a random element of GT , the
algorithm B proceeds as follows:

Setup: B randomly generates fi(x) ∈ Zp[x] of degree q for i ∈ {1, 2, 3}, and sets
hi = gfi(α), which can be computed from (g, gα, . . . , gα

q

). Then the public
parameters are published as params = {G, g, g1, h1, h2, h3, H}, where H is
chosen at random from one universal one-way hash function family H and
g1 set to be gα.

Phase 1: In this phase, the adversary A can adaptively make the following
queries.

– Key generation queries: On input ID ∈ Zp, if ID = α, B uses α to
solve the truncated decision q-ABDHE immediately. Else, let FID,i(x) =
(fi(x) − fi(ID))/(x − ID), then sets skID = (rID,i, hID,i) = (fi(ID),

gFID,i(α)). This is a valid private key for ID, since gFID,i(α) = g
fi(α)−fi(ID)

α−ID

= (gfi(α)g−fi(ID))
1

α−ID = (hig
−rID,i)

1
α−ID , as required.

– Leakage queries: On input a leakage function Li : {0, 1}∗ → {0, 1}λi for
ID, if ID = α, B uses α to solve the truncated decision q-ABDHE
immediately. Else, B replies with Li(skID), if

∑i
k=1 λk ≤ λ; Otherwise,

outputs ⊥.

– Decryption queries: On input the ciphertext (ID,C) for ID, B first gen-
erates a private key for ID as above, and then decrypts C by performing
the usual Decrypt algorithm with this private key, and eventually sends
the result to the adversary.

Challenge: A outputs two messages m0,m1, and the challenge identity ID∗.
If ID∗ = α, B uses α to solve the truncated decision q-ABDHE imme-
diately. Else, B generates b ∈ {0, 1} and computes a private key skID∗ =
(rID∗,i, hID∗,i) for ID∗ as in Phase 1. Let f4(x) = xq+2 and F4,ID∗(x) =
(f4(x) − f4(ID

∗))/(x− ID∗), which is a polynomial of degree q + 1. B sets

u∗ = g′f4(α)−f4(ID
∗), v∗ = Z · e(g′,

∏q
i=0 g

F4,ID∗,i·αi

), w∗ = mb/e(u
∗, hID∗,3

hr
∗

ID∗,1)v
∗(rID∗,3+rID∗,1·r∗), where F4,ID∗,i is the coefficient of xi in F4,ID∗(x),

and r∗ is chosen randomly from Zp. After setting β
∗ = H(u∗, v∗, w∗, r∗), B

sets y∗ = e(u∗, hID∗,2 h
β∗
ID∗,3)v

∗(rID∗,2+rID∗,3·β∗), and sends C∗ = (u∗, v∗, w∗,
r∗, y∗) as the challenge ciphertext to the adversary.

Phase 2: This Phase is almost the same as Phase 1, with the restriction that no
leakage queries, and neither key generation queries on ID∗ nor decryption
queries on (ID∗, C∗) are allowed to make.

Guess: Finally, A outputs a guess b′ ∈ {0, 1}. If b′ = b, B outputs 0 (indicating

that Z = e(g, g′)α
q+1

); otherwise, returns 1.

Efficient Leakage-Resilient Identity-Based Encryption with CCA Security 157

Lemma 3. If B’s input is sampled according to PABDHE , A’s view is identical
to the actual attack.

Proof. It is clear that the public parameters in the simulation, from the adver-
sary’s view of point, have an identical distribution to the actual construction.
This is because g, α, and fi(x) for i ∈ {1, 2, 3} are all chosen uniformly at ran-
dom, and so h1, h2 and h3 are uniformly random.

As to the challenge ciphertext, it also has the correct distribution in the
case of B’s input sampled according to PABDHE , i.e., Z = e(g, g′)α

q+1

. In-
deed, in this case u∗ = gs

∗(α−ID∗), v∗ = e(g, g)s
∗
,mb/w

∗ = e(g, h3h
r∗
1)s

∗
, and

y∗ = e(g, h2h
β∗
3)s

∗
, where s∗ is implicitly set to be (logg g

′) · F4,ID∗(α); thus,
(u∗, v∗, w∗, r∗, y∗) is a valid ciphertext for (ID∗,mb) under randomness s∗ and
r∗. Since logg g

′ is uniformly random, s∗ is uniformly random. Besides, r∗ is
uniformly random, so (u∗, v∗, w∗, r∗, y∗) is a valid and appropriately-distributed
challenge to the adversary A.

At last, with similar analysis to [19], it is easy to show that, from A’s view, the
private keys issued by B in the simulation are appropriately distributed, which
follows from the fact that fi(x) ∈ Zp[x] for i ∈ {1, 2, 3} are uniformly random
polynomials of degree q.

Lemma 4. If B’s input is sampled according to RABDHE , A has only a negli-
gible advantage in outputting the correct bit b.

The Lemma follows from the following two claims. In later parts, we say a
ciphertext C′ = (u′, v′, w′, r′, y′) for ID is “invalid” if v′
= e(u′, g)1/(α−ID).

Claim 1. If the decryption oracle rejects all invalid ciphertexts, then A has only
a negligible advantage in outputting the correct bit b.

Proof. If all the invalid ciphertexts queried by A are rejected by the decryp-
tion oracle, A cannot gain any more information about the private key from
it. The only information regarding the private key, known by A, relates to the
evaluations of (f1(x), f2(x), f3(x)) at α (from the public key components), qID
identities (from its key generation queries), the λ-bit leakage on the private
key, and the challenge ciphertext C∗ = (u∗, v∗, w∗, r∗, y∗, ID∗). The information
gained from the public key components and the key generation queries can be
represented as follows:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

f1(IDi) = rIDi,1, for i ∈ {1, 2, · · · , qID}
gf1(α) = h1
f2(IDi) = rIDi,2, for i ∈ {1, 2, · · · , qID}
gf2(α) = h2
f3(IDi) = rIDi,3, for i ∈ {1, 2, · · · , qID}
gf3(α) = h3

(1)

158 S.-F. Sun, D. Gu, and S. Liu

Hence, the secret vector
−→
f = (f1,0, f1,1, · · · , f1,q, f2,0, f2,1, · · · , f2,q, f3,0, f3,1,

· · · , f3,q), where fi,j denotes the coefficient of xj in fi(x), satisfies the following
matrix product:

−→
f

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 · · · 1 1 0 · · · 0 0 0 · · · 0 0
ID1 · · · IDqID α 0 · · · 0 0 0 · · · 0 0
...

. . .
...

...
...

. . .
...

...
...

. . .
...

...
IDq

1 · · · IDq
qID αq 0 · · · 0 0 0 · · · 0 0

0 · · · 0 0 1 · · · 1 1 0 · · · 0 0
0 · · · 0 0 ID1 · · · IDqID α 0 · · · 0 0
...

. . .
...

...
...

. . .
...

...
...

. . .
...

...
0 · · · 0 0 IDq

1 · · · IDq
qID αq 0 · · · 0 0

0 · · · 0 0 0 · · · 0 0 1 · · · 1 1
0 · · · 0 0 0 · · · 0 0 ID1 · · · IDqID α
...

. . .
...

...
...

. . .
...

...
...

. . .
...

...
0 · · · 0 0 0 · · · 0 0 IDq

1 · · · IDq
qID αq

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

rID1,1

...
rIDqID

,1

logg h1
rID1,2

...
rIDqID

,2

logg h2
rID1,3

...
rIDqID

,3

logg h3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where “�” denotes matrix transposition.
In addition, from the challenger ciphertext C∗ = (u∗, v∗, w∗, r∗, y∗) we have:⎧⎨⎩

e(u∗, hID∗,3)v
∗rID∗,3 = A

e(u∗, hID∗,1)v
∗rID∗,1 = B

e(u∗, hID∗,2h
β∗
ID∗,3)v

∗(rID∗,2+rID∗,3·β∗) = y∗
(2)

which equation system is equal to:⎧⎪⎪⎨⎪⎪⎩
au∗ logg hID∗,3 + av∗rID∗,3 = loge(g,g) A

au∗ logg hID∗,1 + av∗rID∗,1 = loge(g,g) B

au∗(logg hID∗,2 + β∗ logg hID∗,3)+
av∗(rID∗,2 + β∗ · rID∗,3) = ay∗

(3)

where au∗ = logg u
∗, av∗ = loge(g,g) v

∗ and ay∗ = loge(g,g) y
∗.

Combining the following equations (4) got by the construction of the private
key, ⎧⎨⎩

logg h1 = (α− ID∗) · logg hID∗,1 + rID∗,1
logg h2 = (α− ID∗) · logg hID∗,2 + rID∗,2
logg h3 = (α− ID∗) · logg hID∗,3 + rID∗,3

(4)

equations (3) can be rephrased as:⎧⎪⎪⎨⎪⎪⎩
au∗

α−ID∗ logg h3 + (av∗ − au∗
α−ID∗)rID∗,3 = loge(g,g) A

au∗
α−ID∗ logg h1 + (av∗ − au∗

α−ID∗)rID∗,1 = loge(g,g) B
au∗

α−ID∗ (logg h2 + β∗ logg h3)+
(av∗ − au∗

α−ID∗)(rID∗,2 + β∗ · rID∗,3) = ay∗

(5)

Efficient Leakage-Resilient Identity-Based Encryption with CCA Security 159

from which we know that the secret vector
−→
f also satisfies the following matrix

product:

−→
f

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0
0 ID∗ 0
...

...
...

0 ID∗q 0
0 0 1
0 0 ID∗
...

...
...

0 0 ID∗q

1 0 β∗

ID∗ 0 β∗ID∗
...

...
...

ID∗q 0 β∗ID∗q

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎝
loge(g,g) A− au∗

α−ID∗ logg h3

av∗− au∗
α−ID∗

loge(g,g) B− au∗
α−ID∗ logg h1

av∗− au∗
α−ID∗

ay∗− au∗
α−ID∗ (logg h2+β∗ logg h3)

av∗− au∗
α−ID∗

⎞⎟⎟⎟⎟⎠

where “�” denotes matrix transposition.
In what follows we will show thatmb/w

∗ is in fact the output of a (2 log p−λ, δ)
extractor, with A = e(u∗, hID∗,3)v

∗rID∗,3 and B = e(u∗, hID∗,1)v
∗rID∗,1 as input.

By the matrix products derived from the equation systems (1) and (5), we
can obtain the following coefficient matrix:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 · · · 1 1 0 · · · 0 0 0 · · · 0 0 0 1 0
ID1 · · · IDqID α 0 · · · 0 0 0 · · · 0 0 0 ID∗ 0
...

. . .
...

...
...

. . .
...

...
...

. . .
...

...
...

...
...

IDq
1 · · · IDq

qID αq 0 · · · 0 0 0 · · · 0 0 0 ID∗q 0
0 · · · 0 0 1 · · · 1 1 0 · · · 0 0 0 0 1
0 · · · 0 0 ID1 · · · IDqID α 0 · · · 0 0 0 0 ID∗
...

. . .
...

...
...

. . .
...

...
...

. . .
...

...
...

...
...

0 · · · 0 0 IDq
1 · · · IDq

qID αq 0 · · · 0 0 0 0 ID∗q

0 · · · 0 0 0 · · · 0 0 1 · · · 1 1 1 0 β∗

0 · · · 0 0 0 · · · 0 0 ID1 · · · IDqID α ID∗ 0 β∗ID∗
...

. . .
...

...
...

. . .
...

...
...

. . .
...

...
...

...
...

0 · · · 0 0 0 · · · 0 0 IDq
1 · · · IDq

qID αq ID∗q 0 β∗ID∗q

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
It is easy to prove that the columns of the (3q + 3)× (3q) coefficient matrix

above denoted byM are linearly independent, where q = qID+2. Specifically, let
−→v1 ,−→v2 , · · · ,−→v3q be the 3q columns ofM . Suppose that they are linearly dependent,
then there must exist integers a1, a2, · · · , a3q, not all zero, such that a1−→v1+a2−→v2+
· · ·+ a3q−→v3q = 0. From this equation, we have a1−→v1 ′ + a2−→v2 ′ + · · ·+ aq−1

−−→vq−1
′ +

a3q−1
−−−→v3q−1

′ = 0, where −→vi ′ denotes the first q + 1 coordinates of the column −→vi
for i ∈ {1, 2, · · · , q − 1, 3q − 1}. Since all the columns −→v1 ′,−→v2 ′, · · · ,−−→vq−1

′,−−−→v3q−1
′

constitute a Vandermonde matrix, we get that a1 = a2 = · · · = aq−1 = a3q−1 =

160 S.-F. Sun, D. Gu, and S. Liu

0. Similarly, we can obtain aq = aq+1 = · · · = a2q−2 = a3q = 0 and a2q−1 =
a2q = · · · = a3q−3 = (a3q−2 + β∗a3q) = 0. Through these equations, it is easy to
get that a1 = a2 = · · · = a3q = 0. Thus, this forms a contradiction.

Then, according to the equation system
−→
f · M = −→v got from (1) and (5),

where−→v = (rID1,1, · · · , rIDqID
,1, logg h1, rID1,2, · · · , rIDqID

,2, logg h2, rID1,3, · · · ,
rIDqID

,3, logg h3, (loge(g,g) A− au∗
α−ID∗ logg h3)/(av∗ − au∗

α−ID∗), (loge(g,g) B− au∗
α−ID∗

logg h1)/(av∗ − au∗
α−ID∗), (ay∗ − au∗

α−ID∗ (logg h2 + β∗ logg h3))/(av∗ − au∗
α−ID∗)), we

get that for each (A,B) ∈ GT ×GT , the equation system has a three-dimensional

solution space for
−→
f , and that, even given (h1, h2, h3, (sk1, sk2, · · · , skqID), y∗),

(A,B) is still uniformly distributed overGT ×GT . Hence, we obtain:

H̃∞((A,B)|h1, h2, h3, (sk1, sk2, · · · , skqID), y∗) = 2 log p.

Besides the knowledge above, the adversary also obtains at most λ-bit leakage
on the private key. Thus, from the point of the adversary’s view, we have:

H̃∞((A,B)|h1, h2, h3, (sk1, sk2, · · · , skqID), y∗, λ-bit leakage)≥ 2 log p− λ,

where the inequality is obtained from the Lemma 1.
Moreover, from the construction of the ciphertext C∗ = (u∗, v∗, w∗, r∗, y∗),

we have:

mb/w
∗ = e(u∗, hID∗,3h

r∗
ID∗,1)v

∗(rID∗,3+rID∗,1·r∗)

= e(u∗, hID∗,3)v
∗rID∗,3 [e(u∗, hID∗,1)v

∗rID∗,1]r
∗

= hr∗(A,B).

By the definition of universal hash function (see, the example 2, with t=1),
we know that mb/w

∗ is the output of the universal hash hr∗(A,B) = A · Br∗ ,
with A and B as input.

According to the generalized leftover hash lemma, the statical distance be-
tween w∗ and w chosen uniformly at random from GT is given by SD(w∗, w) ≤
1
2

√
p · 2λ

p2 = 2λ/2−1√
p = δ.

The strong extractor then guarantees that the part of challenge ciphertext w∗

that depends on b is δ-close to the uniform on GT , given the adversary’s view,
where δ is negligible.

From the condition log |Y| ≤ l− 2 log(1/δ)+ 2 satisfied by the (l, δ)-extractor
Ext : X ×K → Y, we can obtain that λ ≤ log p− 2 log(1/δ) + 2.

Claim 2. The decryption oracle rejects all invalid ciphertexts, except with a neg-
ligible probability.

Proof. Suppose that the adversaryA submits an invalid ciphertext (u′, v′, w′, r′, y′)
for unqueried identity ID, where (u′, v′, w′, r′, y′, ID)
= (u∗, v∗, w∗, r∗, y∗, ID∗).
Let {(rID,i, hID,i) : i ∈ {1, 2, 3}} be the private key for ID. For the invalid cipher-

text to be accepted, it must satisfy y′ = e(u′, hID,2h
β′
ID,3)v

′(rID,2+rID,3·β′)
, which

is equal to :

ay′ = au′(logg hID,2 + β′ logg hID,3) + av′(rID,2 + β′ · rID,3) (6)

Efficient Leakage-Resilient Identity-Based Encryption with CCA Security 161

where β′ = H(u′, v′, w′, r′), au′ = logg u
′, av′ = loge(g,g) v

′ and ay′ = loge(g,g) y
′.

To compute the probability that A can generate such a y′, we consider the
distribution of {(rID,i, hID,i) : i ∈ {1, 2, 3}} from the point of the adversary’s
view.

By the construction of the private key, A knows that {(rID,i, hID,i) : i ∈
{1, 2, 3}} satisfy the following equations:

⎧⎨⎩
logg h1 = (α− ID) · logg hID,1 + rID,1

logg h2 = (α− ID) · logg hID,2 + rID,2

logg h3 = (α− ID) · logg hID,3 + rID,3

(7)

Combined with the above equations (7), equation (6) can be rephrased as
follows:

ay′ =
au′

α− ID
(logg h2 + β′ logg h3) + (av′ − au′

α− ID
)(rID,2 + β′ · rID,3) (8)

where av′ − au′
α−ID
= 0, because the ciphertext (u′, v′, w′, r′, y′) is invalid.

It is known to us that rID,i is generated by computing fi(ID) for each iden-
tity in the simulation, in contrast to its generation in the actual construction
where each rID,i is chosen uniformly at random and independently. Therefore,
A could conceivably gain some information regarding (rID,1, rID,2, rID,3) from
its information regarding f1(x), f2(x) and f3(x).

In the following, we denote the simulator’s secret vector (f1,0, f1,1, · · · , f1,q,
f2,0, f2,1, · · · , f2,q, f3,0, f3,1, · · · , f3,q) by

−→
f and the identity vector (1, ID, ID2,

· · · , IDq) by −→γ ID, where fi,j is the coefficient of xj in fi(x). Then we rephrase
the equation (8) and obtain the following version:

ay′ =
au′

α− ID
(logg h2+β

′ logg h3)+(av′− au′

α− ID
)(
−→
f ·−→0 ‖ −→γ ID ‖ β′−→γ ID) (9)

where “·” denotes the dot product and “‖” denotes the concatenation of the
coordinates of −→γ ID and β′−→γ ID.

Prior to submitting the first invalid ciphertext, A is given the public parame-
ters (G, g, g1, h1, h2, h3, H), the challenge ciphertext (u∗, v∗, w∗, r∗, y∗) for ID∗,
the answers {(rIDi,j , hIDi,j) : i ∈ {1, 2, · · · , qID}, j ∈ {1, 2, 3}} to the qID key
generation queries on identities (ID1, · · · , IDqID), the λ-bit leakage on the pri-
vate key, and the answers to the decryption queries on the valid ciphertexts. It
could gain the information regarding (f1(x), f2(x), f3(x)) from the evaluations
of these values, but except the valid ciphertext queries. In fact, by submitting
a valid ciphertext to the decryption oracle the adversary only learns the linear
combinations of logg h1, logg h2 and logg h3, which are already known from the
public parameters. Ignoring the λ-bit leakage for now, the knowledge gained by
A can be represented as follows:

162 S.-F. Sun, D. Gu, and S. Liu

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1(IDi) = rIDi,1, for i ∈ {1, 2, · · · , qID}
gf1(α) = h1
f2(IDi) = rIDi,2, for i ∈ {1, 2, · · · , qID}
gf2(α) = h2
f3(IDi) = rIDi,3, for i ∈ {1, 2, · · · , qID}
gf3(α) = h3
e(u∗, hID∗,2h

β∗
ID∗,3)v

∗(rID∗,2+rID∗,3·β∗) = y∗

e(u∗, hID∗,3h
r∗
ID∗,1)v

∗(rID∗,3+rID∗,1·r∗) = mb/w
∗

(10)

From the above, it is easy to get the coefficient matrix V of the matrix product
corresponding to the equation system (10):⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 · · · 1 1 0 · · · 0 0 0 · · · 0 0 0 r∗

ID1 · · · IDqID α 0 · · · 0 0 0 · · · 0 0 0 r∗ID∗
...

. . .
...

...
...

. . .
...

...
...

. . .
...

...
...

...
IDq

1 · · · IDq
qID αq 0 · · · 0 0 0 · · · 0 0 0 r∗ID∗q

0 · · · 0 0 1 · · · 1 1 0 · · · 0 0 1 0
0 · · · 0 0 ID1 · · · IDqID α 0 · · · 0 0 ID∗ 0
...

. . .
...

...
...

. . .
...

...
...

. . .
...

...
...

...
0 · · · 0 0 IDq

1 · · · IDq
qID αq 0 · · · 0 0 ID∗q 0

0 · · · 0 0 0 · · · 0 0 1 · · · 1 1 β∗ 1
0 · · · 0 0 0 · · · 0 0 ID1 · · · IDqID α β∗ID∗ ID∗
...

. . .
...

...
...

. . .
...

...
...

. . .
...

...
...

...
0 · · · 0 0 0 · · · 0 0 IDq

1 · · · IDq
qID αq β∗ID∗q ID∗q

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
where the first 3qID+3 columns of V correspond to the public terms h1, h2, h3

and qID key generation queries made by A, and the last two columns correspond
to the challenge ciphertext for ID∗. In particular, from the challenge ciphertext
(u∗, v∗, w∗, r∗, y∗) we know that{

e(u∗, hID∗,2h
β∗
ID∗,3)v

∗(rID∗,2+rID∗,3·β∗) = y∗

e(u∗, hID∗,3h
r∗
ID∗,1)v

∗(rID∗,3+rID∗,1·r∗) = mb/w
∗ (11)

Combining with the following equations derived from the constructions of the
private key for ID∗,⎧⎨⎩

logg h1 = (α− ID∗) · logg hID∗,1 + rID∗,1
logg h2 = (α− ID∗) · logg hID∗,2 + rID∗,2
logg h3 = (α− ID∗) · logg hID∗,3 + rID∗,3

(12)

they can be rephrased as:⎧⎪⎪⎨⎪⎪⎩
au∗

α−ID∗ (logg h2 + β∗ logg h3)+
(av∗ − au∗

α−ID∗)(rID∗,2 + β∗ · rID∗,3) = ay∗
au∗

α−ID∗ (r
∗ logg h1 + logg h3)+

(av∗ − au∗
α−ID∗)(r

∗ · rID∗,1 + rID∗,3) = loge(g,g)mb/w
∗

(13)

Efficient Leakage-Resilient Identity-Based Encryption with CCA Security 163

where au∗ = logg u
∗, av∗ = loge(g,g) v

∗ and ay∗ = loge(g,g) y
∗, from which the

last two columns of V are obtained.
Beyond that, the adversary learns at most λ-bit leakage on the private key.
Now, there are 3 cases to consider:

1. (u′, v′, w′, r′) = (u∗, v∗, w∗, r∗): In this case, β′ = β∗. If ID = ID∗ but
y′
= y∗, the decryption oracle certainly rejects the ciphertext. If ID
= ID∗,
for the invalid ciphertext to be accepted by the decryption oracle, A must
generate a y′ that satisfies equation (9). However, it is easy to know that
the vector (

−→
0 ‖ −→γ ID ‖ β′−→γ ID) corresponding to equation (9) and the

columns of V in Z
3(q+1)
p are linearly independent, where “�” denotes matrix

transposition. That is, the new matrix V ′ = (V, (
−→
0 ‖ −→γ ID ‖ β′−→γ ID)) is

column full rank. Thus, for each y′ ∈ GT the equation system with the
coefficient matrix V ′, obtained by combining (9) with (10), has a three-

dimensional solution space for
−→
f , and y′ is uniformly distributed over GT ,

conditioned on the adversary’s view except the λ-bit leakage. Hence, ignoring
the leakage on the private key for the time being, the adversary can guess
a correct y′ with probability 1/p, even given the public parameters params,
key generation queries on (ID1, · · · , IDqID), and the challenge ciphertext
(u∗, v∗, w∗, r∗, y∗) for ID∗. Now, taking the λ-bit leakage in account, we have
H̃∞(y′|view) ≥ log p−λ, where view denotes the view of the adversary prior
to submitting the first invalid ciphertext. In particular, by the definition of
the average min-entropy, it implies that the probability of A in generating a

correct y′ is at most 2H̃∞(y′|view) ≤ 2λ/p. Thus, the first invalid ciphertext is
accepted by the decryption oracle with probability at most 2λ/p. An almost
identical argument holds for all the subsequent invalid ciphertext queries.
The decryption oracle accepts the i-th invalid ciphertext with probability at
most 2λ/(p − i + 1) ≤ 2λ/(p − qc), where qc is total number of decryption
queries. Therefore, the probability that at least one of the invalid ciphertexts
can be accepted is at most 2λqc/(p−qc), which is negligible. This follows from
the fact that qc is a polynomial, and from the restriction λ ≤ log p−ω(logκ).

2. (u′, v′, w′, r′)
= (u∗, v∗, w∗, r∗) and β′ = β∗: This violates the universal one-
wayness of the hash function H . An argument can be made, analogously to
that in Cramer-Shoup cryptosystem [11].

3. (u′, v′, w′, r′)
= (u∗, v∗, w∗, r∗) and β′
= β∗: In this case, to pass the decryp-
tion algorithm, A must generate such a y′ for ID that satisfies the equation
(9). When ID
= ID∗, A just can do this with a negligible probability,
the reason for which is essentially the same as that discussed in Case 1.
If ID = ID∗, then (

−→
0 ‖ −→γ ID ‖ β′−→γ ID) and the columns of V are also

linearly independent because of β′
= β∗. Similar to the analysis in Case 1,
the adversary A can guess y′ correctly in this case with only a negligible
probability.

Note.Due to the underlying design rationale, we can also obtain some other vari-
ants of our proposal, such as w = m·e(g, h2)−se(g, h1)

−sr, y = e(g, h2)
se(g, h3)

sβ

and w = m · e(g, h2h3)−se(g, h1)
−sr , y = e(g, h1h2)

se(g, h3)
sβ .

164 S.-F. Sun, D. Gu, and S. Liu

5 Performance Analysis

In this part, we will give a comparison of our work with the original scheme
proposed by Gentry et. al. [19] and the leakage-resilient version presented in [2],
in terms of the message space, leakage size, computation cost, and so on. The
results are shown in the following tables (cf. Table 1 & 2).

From Table 1, it is easy to see that our scheme gives a larger message space
than that in Alwen et.al.’s scheme [2] and can tolerate a larger amount of leakage.
In particular, the message space in our work is the group G, which is exactly
the same as that in the original scheme [19]. Moreover, in our scheme it is
independent of the bit-size λ of leakage. However, in Alwen et. al.’s work the
length m of the encrypted message is limited by log p−λ−ω(logκ), which is due
to the fact that the length m of the plaintext and the leakage bits λ in [2] need
to satisfy the relation λ+m ≤ log p− ω(log κ). That is, the size of the message
space in [2] is limited by p/2λ, i.e., 2m < p/2λ. Thus, our proposal can encrypt
a longer message and tolerate a larger amount of leakage simultaneously.

Table 1. Comparison of leakage resilience

Scheme |M| Leakage λ∗ Ratio
Gentry et.al.[19] p – –
Alwen et.al.[2] 2m (log p − m − ω(log κ)) 1/6
Our Scheme p (log p − ω(log κ)) 1/6

|M|: the size of message space M; Ratio: the fraction of leakage, i.e., the size of leakage permitted
/ the size of private key; *: the upper bound of the bit-size of leakage allowed.

Table 2. Computational efficiency comparison

Scheme KeyGen Encryption Decryption Ciphertext
Gentry et.al.[19] 6Exp 6Exp 2P+3Exp 1G+3GT

Alwen et.al.[2] 6Exp 6Exp+1Ext 2P+3Exp+1Ext 1G+2GT+(m + d)-bit
Our Scheme 6Exp 7Exp 2P+4Exp 1G+3GT+log p-bit

m: the bit-size of the encrypted message; P: a pairing operation; Exp: a group exponentiation in
G or GT ; Ext: an evaluation of Ext : GT × {0, 1}d → {0, 1}m.

As to the computational efficiency, it is shown in Table 2 that our proposal
is quite practical, which is comparable to the original scheme [19]. Specifically,
Gentry et. al.’s scheme is a little more efficient than ours, but it cannot tolerate
any leakage. For the scheme in [2], when it is used to encrypt log p-bit message,
our proposal has almost the same efficiency as [2] and can still tolerate log p −
ω(log κ) bits of leakage. In contrast, the scheme in [2] almost disallows any key
leakage, as in this case the leakage parameter λ is approaching to 0. Furthermore,
when the scheme is deployed in the environments where the key leakage occurs
with a large amount, assuming it approaching to log p− ω(log κ), our proposal
will be significantly more efficient than the scheme in [2], since in this case the
length of the encrypted message in [2] is approaching to 0. Overall, our proposal
is quite practical, and has almost the same efficiency as the original scheme and
a much better performance than [2].

Efficient Leakage-Resilient Identity-Based Encryption with CCA Security 165

6 Conclusion

As an important primitive, IBE has attracted much attention in the context of
leakage resilience in recent years. However, almost all of the existing leakage-
resilient IBE schemes only achieve CPA security in this new setting, except that
one proposed by Alwen et al.. Unfortunately, this CCA secure scheme suffers
from an undesirable shortcoming that the leakage parameter λ and the message
length m are subject to λ+m ≤ log p−ω(log κ). In this paper, we put forward a
new IBE scheme, which is proved λ-leakage resilient CCA2 secure in the standard
model under the truncated decision q-ABDHE assumption. Compared with the
existing CCA secure IBE scheme, the leakage parameter in our proposal, λ ≤
log p − ω(log κ), is independent of the size of the message space. As far as we
know, it is the most practical and the first leakage-resilient fully CCA2 secure
IBE scheme in the standard model, whose leakage parameter is independent of
the message length. Although we overcome this undesirable drawback in this
work, the leakage ratio (cf. Table 1) here is still approximately equal to 1/6. In
the future work, we will try to give some new proposal with higher leakage ratio.

Acknowledgements. The authors are grateful to all anonymous reviewers for
valuable suggestions and comments. The authors Shi-Feng Sun and Dawu Gu
are supported by the Major State Basic Research Development Program (973
Plan)(No. 2013CB338004), and the Doctoral Fund of Ministry of Education
of China (No. 20120073110094). And the author Shengli Liu is supported by
the Natural Science Foundation of China (No. 61170229, 61373153), and the
Scientific Innovation Project of Shanghai Municipal Education Commission (No.
12ZZ021).

References

1. Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous hardcore bits and
cryptography against memory attacks. In: Reingold, O. (ed.) TCC 2009. LNCS,
vol. 5444, pp. 474–495. Springer, Heidelberg (2009)

2. Alwen, J., Dodis, Y., Naor, M., Segev, G., Walfish, S., Wichs, D.: Public-key en-
cryption in the bounded-retrieval model. In: Gilbert, H. (ed.) EUROCRYPT 2010.
LNCS, vol. 6110, pp. 113–134. Springer, Heidelberg (2010)

3. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In:
Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer,
Heidelberg (1997)

4. Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption with-
out random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

5. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking crypto-
graphic protocols for faults (extended abstract). In: Fumy, W. (ed.) EUROCRYPT
1997. LNCS, vol. 1233, pp. 37–51. Springer, Heidelberg (1997)

6. Boneh, D., Gentry, C., Hamburg, M.: Space-efficient identity based encryption
without pairings. In: FOCS, pp. 647–657 (2007)

7. Carter, L., Wegman, M.N.: Universal classes of hash functions (extended abstract).
In: STOC, pp. 106–112 (1977)

166 S.-F. Sun, D. Gu, and S. Liu

8. Chen, Y., Luo, S., Chen, Z.: A new leakage-resilient IBE scheme in the relative
leakage model. In: Li, Y. (ed.) DBSec 2011. LNCS, vol. 6818, pp. 263–270. Springer,
Heidelberg (2011)

9. Chor, B., Goldreich, O.: Unbiased bits from sources of weak randomness and prob-
abilistic communication complexity. SIAM J. Comput. 17(2), 230–261 (1988)

10. Chow, S.S.M., Dodis, Y., Rouselakis, Y., Waters, B.: Practical leakage-resilient
identity-based encryption from simple assumptions. In: ACM Conference on Com-
puter and Communications Security, pp. 152–161 (2010)

11. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS,
vol. 1462, pp. 13–25. Springer, Heidelberg (1998)

12. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002)

13. Dodis, Y., Goldwasser, S., Kalai, Y.T., Peikert, C., Vaikuntanathan, V.: Public-
key encryption schemes with auxiliary inputs. In: Micciancio, D. (ed.) TCC 2010.
LNCS, vol. 5978, pp. 361–381. Springer, Heidelberg (2010)

14. Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Efficient public-key cryptog-
raphy in the presence of key leakage. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS,
vol. 6477, pp. 613–631. Springer, Heidelberg (2010)

15. Dodis, Y., Kalai, Y.T., Lovett, S.: On cryptography with auxiliary input. In: STOC,
pp. 621–630 (2009)

16. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors: How to generate
strong keys from biometrics and other noisy data. SIAM J. Comput. 38(1), 97–139
(2008)

17. Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: FOCS,
pp. 293–302 (2008)

18. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: Concrete re-
sults. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162,
pp. 251–261. Springer, Heidelberg (2001)

19. Gentry, C.: Practical identity-based encryption without random oracles. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445–464. Springer,
Heidelberg (2006)

20. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: STOC, pp. 197–206 (2008)

21. Halderman, J.A., Schoen, S.D., Heninger, N., Clarkson, W., Paul, W., Calandrino,
J.A., Feldman, A.J., Appelbaum, J., Felten, E.W.: Lest we remember: Cold boot
attacks on encryption keys. In: USENIX Security Symposium, pp. 45–60 (2008)

22. Juma, A., Vahlis, Y., Yung, M.: Multi-location leakage resilient cryptography.
In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293,
pp. 504–521. Springer, Heidelberg (2012)

23. Kocher, P.C.: Timing attacks on implementations of diffie-hellman, RSA, DSS, and
other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113.
Springer, Heidelberg (1996)

24. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

25. Lewko, A., Waters, B.: New techniques for dual system encryption and fully secure
HIBE with short ciphertexts. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978,
pp. 455–479. Springer, Heidelberg (2010)

Efficient Leakage-Resilient Identity-Based Encryption with CCA Security 167

26. Liu, S., Weng, J., Zhao, Y.: Efficient public key cryptosystem resilient to key leakage
chosen ciphertext attacks. In: Dawson, E. (ed.) CT-RSA 2013. LNCS, vol. 7779,
pp. 84–100. Springer, Heidelberg (2013)

27. Micali, S., Reyzin, L.: Physically observable cryptography (extended abstract). In:
Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 278–296. Springer, Heidelberg
(2004)

28. Naor, M., Segev, G.: Public-key cryptosystems resilient to key leakage. In: Halevi,
S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 18–35. Springer, Heidelberg (2009)

29. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ci-
phertext attacks. In: STOC, pp. 427–437 (1990)

30. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg
(2005)

31. Wegman, M.N., Carter, L.: New hash functions and their use in authentication and
set equality. J. Comput. Syst. Sci. 22(3), 265–279 (1981)

32. Yuen, T.H., Chow, S.S.M., Zhang, Y., Yiu, S.M.: Identity-based encryption re-
silient to continual auxiliary leakage. In: Pointcheval, D., Johansson, T. (eds.)
EUROCRYPT 2012. LNCS, vol. 7237, pp. 117–134. Springer, Heidelberg (2012)

Revocable IBE Systems

with Almost Constant-Size Key Update

Le Su, Hoon Wei Lim, San Ling, and Huaxiong Wang

Division of Mathematical Sciences
School of Physical and Mathematical Sciences
Nanyang Technological University, Singapore

lsu1@e.ntu.edu.sg, {hoonwei,lingsan,hxwang}@ntu.edu.sg

Abstract. Identity-based encryption (IBE) has been regarded as an at-
tractive alternative to more conventional certificate-based public key sys-
tems. It has recently attracted not only considerable research from the
academic community, but also interest from the industry and standard-
ization bodies. However, while key revocation is a fundamental require-
ment to any public key systems, not much work has been done in the
identity-based setting. In this paper, we continue the study of revocable
IBE (RIBE) initiated by Boldyreva, Goyal, and Kumar. Their proposal
of a selective secure RIBE scheme, and a subsequent construction by
Libert and Vergnaud in a stronger adaptive security model are based on
a binary tree approach, such that their key update size is logarithmic in
the number of users. In this paper, we show that the key update size
could be further reduced to constant with some small amount of auxil-
iary information, through a novel combination of the Lewko and Waters
IBE scheme and the Camenisch, Kohlweiss, and Soriente pairing-based
dynamic accumulator.

Keywords: public-key cryptography, identity-based encryption, revo-
cation, accumulator, adaptive security.

1 Introduction

It is sometimes necessary to remove keying material from use prior to the end
of its normal cryptoperiod (or key lifetime) for reasons that include key com-
promise, removal of an entity from an organization, and so on. This process is
known as key revocation and is used to explicitly revoke a symmetric key or the
public key of a key pair, although the private key associated with the public
key is also revoked [5]. Public key revocation in a conventional, certificate-based
public key infrastructure (PKI) has been well studied and understood. A widely
deployed revocation mechanism is through the use of a Certificate Revocation
List (CRL) [21]. Alternatively, an Internet protocol called the Online Certificate
Status Protocol (OCSP) is used to check if a certificate has been revoked [26].

In this paper, we study public key revocation in an identity-based encryption
(IBE) system. The idea of using an identity (or identifier) as a public key was

Z. Cao and F. Zhang (Eds.): Pairing 2013, LNCS 8365, pp. 168–185, 2014.
c© Springer International Publishing Switzerland 2014

Revocable IBE Systems with Almost Constant-Size Key Update 169

originally conceived by Shamir [32], and subsequently realized by Cocks [15] us-
ing quadratic residues, and Boneh and Franklin [10] using pairings on elliptic
curves. One very appealing property of IBE is that it alleviates cumbersome
certificate management in a traditional PKI. To securely send a message to an
intended receiver, the sender no longer needs to look up for the public key cer-
tificate associated with the receiver, but simply encrypts the message directly
using a common set of public system parameters and the receiver’s identifier,
such as email address. Over the past decade, pairing-based IBE has not only
received considerable attention from academic researchers, but also attracted
commercial interest from Mitsubishi, Noretech, Trend Micro, Voltage Security,
and Gemplus [18], for example. Moreover, identity-based cryptographic tech-
niques using pairings are currently undergoing standardization through the IEEE
1363.3 and the IETF S/MIME working groups. However, very few studies, for
example [7, 14, 25, 31], have been devoted to key revocation thus far.

1.1 Motivation

Unlike a certificate-based public key, which is simply a random-looking string, a
public key in the IBE setting is a user’s identity. This hinders “explicit” revoca-
tion of an identity-based public key using conventional revocation mechanisms.
Instead, one typically adopts a more “implicit” approach by periodically up-
dating the corresponding private key after a pre-defined validity period, while
letting the old private key expire automatically and keeping the public key (iden-
tity) unchanged. One trivial way of achieving this is by encoding a current time
period into an identity during encryption. This forces a decryptor to regularly
obtain her private key (corresponding to the current time period) from a key
authority [10]. However, such an approach does not scale well because the key
authority has to generate new keys for all the remaining non-revoked users at
the beginning of each time period. Further, distribution of private keys requires
establishment of secure channels between the key authority and the users. This
may not be always feasible for every user.

A more desirable approach is to let the key authority broadcast some public
information, from which the users can perform key update themselves without
interacting with the key authority. Clearly, we must ensure that the broadcast
information is useful only to non-revoked users, but meaningless to those who
have been revoked. Hanaoka et al. [20] proposed one of the first IBE schemes
that supports a non-interactive key revocation approach. However, their scheme
requires each user to posses a special tamper-resistant hardware device that
stores a secret helper key used for key update—a requirement that is likely to
hinder practical deployment of the scheme.

Subsequently, Boldyreva et al. [7] proposed a scheme that obviates the need
for special devices and significantly reduces the complexity of key update infor-
mation from linear to logarithmic in the number users. They cleverly combined
fuzzy IBE (FIBE) [30] with binary tree structure, which has previously been used
to improve the efficiency of certificate revocation in a traditional PKI [1, 27].
By making use of the concept of FIBE, Boldyreva et al. gave a construction

170 L. Su et al.

they called revocable IBE (RIBE), in which a message is encrypted under two
attributes, namely identity id and time t. Correspondingly, the associated de-
cryption key comprises two components, of which the identity part is fixed (also
called a long-term private key), while the time part is updated after each time
period (or epoch). In order to revoke a user, the key authority simply stops
issuing key update for that user in the next time period. Without the latest
key update, a revoked user will no longer be able to decrypt any ciphertext
generated beyond the current (expiring) time period. As with [1, 27], a binary
tree can then be used to more efficiently (logarithmically) represent all the re-
maining non-revoked users than simply listing all the revoked or non-revoked
users. In Boldyreva et al.’s RIBE scheme, each user’s id is assigned to a leaf
node in the binary tree and her long-term private key is generated according to
the key material on each node along the path from the user’s leaf node to the
root. To decrypt a message encrypted under id and t, the user needs an updated
decryption key (associated with t) that can be derived from the key material
associated with any one of the nodes along the path from her id leaf node to
the root. Hence, if a user has been revoked, such key material will not be made
available in the key update broadcast by the key authority.

However, Boldyreva et al.’s scheme was proven secure in a selective security
model, which is widely accepted as a weaker model in comparison with an adap-
tive security model. The former requires the adversary to announce the target
identity and time at the beginning of a security game simulated in the model,
while the latter has no such restriction. Nevertheless, Libert and Vergnaud [25]
showed that adaptive security is possible. They proposed an RIBE scheme which
has key update size that is also logarithmic using a similar binary tree technique,
while proving their scheme to be adaptively secure. However, they achieved this
at the expense of increasing the size of public parameters from constant to linear
in the number of users.

The goal of this paper is then to study whether or not we could further
reduce the key update size while retaining the adaptive security requirement. We
give an affirmative answer and provide a concrete construction which relies on
only constant-size of key update material along with some auxiliary information,
through a novel approach that combines IBE with the concept of a cryptographic
accumulator.

1.2 Our Approach

The key component in our approach that enables efficient key revocation and
update is a pairing-based cryptographic accumulator by Camenisch et al. [13]. An
accumulator, originally introduced by Benaloh and de Mare [6] as an alternative
to digital signatures for secure decentralized and distributed protocols, is an
algorithm that “compresses” a large set of values into a single, short value with
the following two basic properties:

– For each accumulated value, it is possible to compute a witness that can be
used to prove that a given value was indeed incorporated into the accumu-
lator;

Revocable IBE Systems with Almost Constant-Size Key Update 171

– Whenever a value is added or removed from the accumulator, all witnesses
correspond to all the remaining values in the updated accumulator need to
be re-computed as well.

The accumulator proposed by Camenisch et al. [13] is designed to address
the problem of revocation of anonymous credentials—to efficiently prove that a
hidden value has been accumulated. By making use of techniques from broad-
cast encryption developed by Boneh et al. [11], Camenisch et al.’s accumulator
has a very nice property that allows update of witnesses to be performed very
efficiently. Only one multiplication is required for addition or deletion of a value
from the accumulator. Further, update of witnesses can be delegated to an un-
trusted entities without compromising the security of an anonymous credential
system.

In this work, we take a different approach from that of [13] when consider-
ing public key revocation in the IBE setting. We combine Lewko and Waters’
IBE scheme [23] with Camenisch et al.’s accumulator [13] in a particular way.
Conventionally, an accumulator is used for revocation of credentials or keys in
an anonymous authentication system that is based on concepts such as, group
signatures or anonymous e-cash. Also, a witness is independent of the authen-
tication system, in the sense that it is not directly used for authentication, but
rather is typically used to convince a verifier that a user has or has not been
revoked through a zero-knowledge proof. On the other hand, in our approach,
we integrate an accumulator with a public key encryption scheme, such that
the accumulator is associated with ciphertexts, while witnesses are associated
with decryption keys. Particularly, our encryption algorithm takes as input a
message, an identity, and an up-to-date accumulator for current time period t,
such that a target recipient is able to decrypt the resulting ciphertext using an
up-to-date witness. That is, the decryption would succeed only if the recipient
has not already been revoked at time t. Here, a user’s decryption key comprises
an identity-based key and a witness. During decryption, both the witness and
the ciphertext component containing the accumulator are required to cancel out
a blinding factor of the message.

Our approach of combining the IBE scheme of [23] and the accumulator of [13]
requires a careful treatment. As described, one of the basic properties of an
accumulator is that a witness can be used to prove that an associated value has
been accumulated. Translating this into our design of RIBE, it turns out that
a collusion attack is possible if a decryption key comprising a witness and an
identity-based key is formed in a näıve manner. This is because a revoked user
can collude with a non-revoked user, such that a valid witness (of the non-revoked
user) can be used by the revoked user (together with her own identity-based key)
to decrypt ciphertexts that she no longer has authorized access. To address this,
for each user, we introduce a new secret component1 that is associated with the
accumulator and a witness, such that the secret component must be used to
cancel out the blinding factor. We then bind the secret component to the user’s

1 Coincidentally, the secret component we adopt here is also used as a user private
key in Boneh et al.’s broadcast encryption scheme [11].

172 L. Su et al.

identity-based key. Since the identity-based key is randomized for each user, two
users will no longer be able to collude to share one of their witnesses to perform
decryption.

Our key update method (to be performed by the key authority) through
an accumulator differs in two aspects from that of existing RIBE schemes [7,
25] which make use of a binary tree. First, we simply update an accumulator
according to the updated revocation list at a new time period t′, generate a new
witness associated with t′, and create a signature over the updated accumulator.
(We note that we also add t′ into the accumulator to ensure that the accumulated
value for each time period is always distinct even if there is no change in the
revocation list between two successive time periods.) However, in the binary
tree method, they first need to identify the minimal set of nodes (in the tree)
for which key update needs to be published so that only non-revoked users are
able to decrypt ciphertexts generated at time t′. For each node in the identified
set, they then generate some key material required to update a decryption key.
Second, in terms of communication overhead, our key update material comprises
just a (short) accumulator, a witness, and a signature. Hence, the complexity of
the size of our key update improves significantly fromO(log(n)) in the binary tree
approach for n users to O(1) with some relatively small amount of bookkeeping
information by using accumulator. (We provide further details on the efficiency
of our scheme in Section 3.4.).

In our security analysis, we adopt the Waters dual system encryption method-
ology [34]. As with that of [7, 25], we consider two types of adversaries: Type
I adversaries that are not allowed to request for the private key of a target
identity throughout the entire security game; and Type II adversaries that are
allowed to make a query on the private key of a target identity, provided that
the queried identity must subsequently be revoked before the challenge time.
However, we show that our accumulator-based approach has simpler and tighter
security proofs than those of a binary-tree method. To simulate a security game
in the latter setting, extra care needs to be taken in order to appropriately answer
any private key query that is associated with a node in the tree. Particularly, to
achieve adaptive security, the simulator has to guess the position of the target
identity-time pair in the tree beforehand. This causes some loss of reduction in
their security proofs. Such concerns do not exist in our proofs.

1.3 Other Related Work

After the work by Boldyreva et al. [7] and Libert and Vergnaud [25], there have
been proposals on various instances of functional encryption (generalization of
IBE) schemes that support revocation, such as revocable attribute-based encryp-
tion (RABE) and revocable predicate encryption (RPE) [2, 3, 19]. We note that
the revocation method in the schemes of [3,19] is different from that of existing
RIBE schemes. In the RABE schemes, the users themselves are the ones who
enforce key revocation instead of the key authority. This is known as sender-local
revocation and is achieved by taking as input a revocation list during encryp-
tion. A receiver’s private key can decrypt a ciphertext only if her identity has

Revocable IBE Systems with Almost Constant-Size Key Update 173

not been included in the revocation list. This way, the users are not required
to perform any private key update as with that in [7]. In [2], a key revocation
system combining both approaches from [7] and [3] was proposed.

Moreover, there exist proposals on revocable IBE schemes with mediators [4,
9,17,24]. Here, a mediator is a semi-trusted authority that helps users to decrypt
ciphertexts. If a user has been revoked, the mediator simply stops decrypting for
the user. Such an approach, while interesting, does not seem to be satisfactory
as it requires interactions between the mediator and the users for decryption of
each ciphertext.

Seo and Emura [31] gave a pairing-based RIBE construction and proved that
it is secure under a new security model, which considers not only exposure of
long-term private keys, but also exposure of decryption keys2 (associated to each
time period). We further discuss this in Section 4.2. Recently, Chen et al. [14]
proposed an RIBE scheme based on lattices under a similar security model as [7].

1.4 Outline

The paper is organized as follow: Section 2 introduces some background on
bilinear maps and assumptions used in our security analysis. It also describes
the definitions for RIBE. In Section 3, we present our RIBE construction and
its security proofs. In Section 4, we discuss and sketch some extensions to our
scheme. We conclude the paper in Section 5.

2 Preliminaries

2.1 Composite Order Bilinear Groups

Composite order bilinear groups, originally introduced in [12], are defined by a
group generator G which takes as input a security parameter λ and outputs the
description of a bilinear map G. This includes (N,G,GT , e), where N = p1p2p3
and p1, p2, p3 are distinct primes, G and GT are cyclic groups of order N , and
e : G×G → GT is a bilinear map such that:

– (Bilinear) ∀g, h ∈ G, a, b,∈ ZN , e(g
a, hb) = e(g, h)ab

– (Non-degenerate) ∃g ∈ G such that e(g, g) has order N in GT .

In addition to the above properties, we also require that the group operations
in G and GT , together with the bilinear map e, are polynomial time computable
with respect to the security parameter λ. We also assume that the group de-
scriptions of G and GT include the group generators. For ease of exposition, we
let Gp1 , Gp2 , Gp3 denote the subgroups of order p1, p2 and p3 in G respectively.
We also note the orthogonality property of our bilinear map: that is, e(hi, hj)
is the identity element in GT whenever hi ∈ Gpi and hj ∈ Gpj for i
= j. This
property of the three subgroups will be a principal tool in our construction and
proofs.

2 In the security model of [31], an adversary is allowed to make decryption key queries,
in addition to the conventional private key queries allowed in [7].

174 L. Su et al.

2.2 Complexity Assumptions

Our construction and security proofs relies on four complexity assumptions.
The first three assumptions are the same as those used by Lewko and Waters
in [23]. They are static (not dependent on the number of queries made by an
adversary) and can be proved using the theorem introduced by Katz, Sakai and
Waters [22]. The fourth assumption is called the Oracle Bilinear Diffie Hellman
Exponent (OBDHE) assumption, which was used in [28] to prove the security of a
broadcast encryption scheme. It is a modified version of the standard decisional
BDHE problem such that it provides the adversary with an additional query
oracle. In the assumptions below, we let Gpipj denote the subgroup of order pipj
in G.

Assumption 1. (Subgroup decisional problem for 3 primes) Given a
group generator G, we define the following distribution:

G = (N = p1p2p3, G,GT , e)
R←− G,

g
R←− Gp1 , X3

R←− Gp3 ,
D = (G, g,X3),

T1
R←− Gp1p2 , T2

R←− Gp1 .

We define the advantage of an algorithm A in breaking Assumption 1 to be:

Adv1G,A(λ) := |Pr[A(D,T1) = 1]− Pr[A(D,T2) = 1]|.

Definition 1. We say that G satisfies Assumption 1 if Adv1G,A(λ) is a negligible
function of λ for any polynomial time algorithm A.

Assumption 2. Given a group generator G, we define the following distribu-
tion:

G = (N = p1p2p3, G,GT , e)
R←− G,

g,X1
R←− Gp1 , X2, Y2

R←− Gp2 , X3, Y3
R←− Gp3 ,

D = (G, g,X1X2, X3, Y2Y3),

T1
R←− G, T2

R←− Gp1p3 .

We define the advantage of an algorithm A in breaking Assumption 2 to be:

Adv2G,A(λ) := |Pr[A(D,T1) = 1]− Pr[A(D,T2) = 1]|.

Definition 2. We say that G satisfies Assumption 2 if Adv2G,A(λ) is a negligible
function of λ for any polynomial time algorithm A.

Assumption 3. Given a group generator G, we define the following distribu-
tion:

G = (N = p1p2p3, G,GT , e)
R←− G, α, s R←− ZN ,

g
R←− Gp1 , X2, Y2, Z2

R←− Gp2 , X3
R←− Gp3 ,

D = (G, g, gαX2, X3, g
sY2, Z2),

T1 = e(g, g)αs, T2
R←− GT .

Revocable IBE Systems with Almost Constant-Size Key Update 175

We define the advantage of an algorithm A in breaking Assumption 3 to be:

Adv3G,A(λ) := |Pr[A(D,T1) = 1]− Pr[A(D,T2) = 1]|.

Definition 3. We say that G satisfies Assumption 3 if Adv3G,A(λ) is a negligible
function of λ for any polynomial time algorithm A.

We now define the Diffie-Hellman computation oracle required for the OBDHE
assumption.

Definition 4. The Diffie Hellman computation oracle ODH
g,e takes as inputs

u, v ∈ G and outputs w ∈ G such that e(u, v) = e(g, w).

We let prime p1 be the group order of G and define the OBDHE assumption
as follow:

Assumption 4. (Oracle Bilinear Diffie-Hellman Exponent) Given a
group generator G, we define the following distribution:

G = (G,GT , e)
R←− G, α R←− ZN ,

g, f
R←− G,

D = (G, f, g, gα, gα
2

, . . . , gα
�

, gα
�+2

, . . . , gα
2�

)

T1 = e(gα
�+1

, f), T2
R←− GT .

We define the advantage of an algorithm A in breaking Assumption 4 to be:

Adv4G,A(λ) := |Pr[A(D,T1) = 1]− Pr[A(D,T2) = 1]|

given that A has access to the ODH
g,e oracle.

Definition 5. We say that G satisfies Assumption 4 if Adv4G,A(λ) is a negligible
function of λ for any polynomial time algorithm A.

2.3 Revocable Identity-Based Encryption

We are now ready to define RIBE [7]. Let M denote a message space, I denote
an identity space, and T denote a time space. Assume that the sizes of M, I, T
are all polynomial in the security parameter. Each algorithm within RIBE is
run by either one of three types of parties—key authority, sender or receiver.
The key authority maintains a revocation list RL and state ST. An algorithm is
called stateful if it updates RL or ST. We treat time as discrete as opposed to
continuous.

Definition 6 (RIBE). An identity-based encryption scheme with efficient re-
vocation or simply revocable IBE (RIBE) scheme has seven PPT algorithms as
follows:

– Setup(1k, n) → (PP,MK,RL, ST) The setup algorithm takes as input a se-
curity parameter k and a maximal number of users n. It outputs a public
parameters PP, a master key MK, a revocation list RL (initially empty), and
a state ST. (This is run by the key authority.)

176 L. Su et al.

– PriKeyGen(PP,MK, id, ST) → (SKid, ST) The private key generation algo-
rithm takes as input the public parameters PP, the master key MK, an
identity id ∈ I, and the state ST. It outputs a private key SKid and an
updated state ST. (This is stateful and run by the key authority.)

– KeyUpd(PP,MK, t,RL, ST) → KUt The key update algorithm takes as input
the public parameters PP, the master key MK, a key update time t ∈ T , the
revocation list RL, and the state ST. It outputs a key update KUt. (This is
run by the key authority.)

– DecKeyGen(SKid,KUt) → DKid,t The decryption key generation takes as
input a private key SKid and key update KUt. It outputs a decryption key
DKid,t or a special symbol ⊥ indicating that id was revoked. (This is run by
the receiver.)

– Enc(PP, id, t,M) → CTid,t The encryption algorithm takes as input the pub-
lic parameters PP, an identity id, an encryption time t, and a message
M ∈ M. It outputs a ciphertext CTid,t. (This is run by the sender. For
simplicity and without loss of generality, we assume that id, t are efficiently
computable from CTid,t.)

– Dec(PP,DKid,t,CTid,t) → M The decryption algorithm takes as input the
public parameters PP, a decryption key DKid,t, and a ciphertext CTid,t. It
outputs a message M . (This is deterministic and run by the receiver.)

– KeyRev(id, t,RL, ST) → RL The key revocation algorithm takes as input an
identity to be revoked id, a revocation time t, the revocation list RL, and
the state ST. It outputs an updated revocation list RL. (This is stateful and
run by the key authority.)

The consistency condition requires that for all k ∈ N and polynomials (in k)
n, all PP and MK output by setup algorithm Setup, all M ∈ M, id ∈ I, t ∈ T
and all possible valid states ST and revocation lists RL, we then have
Dec(PP,DKid,t,CTid,t) = M with probability 1 if identity id was not revoked
before or at time t.

Next, we define the security of RIBE in the form of a security game played
between an adversary and a challenger.

– Setup: It is run to generate some public parameters PP, a master key MK, a
revocation list RL (initially empty), and a state ST. Then PP is given to A.

– Query: A may adaptively make a polynomial number of queries of the fol-
lowing oracles (which share state information):

• The private key generation oracle PriKeyGen(·) takes as input an identity
id and runs PriKeyGen(PP,MK, id, ST) to return a private key SKid.

• The key update generation oracle KeyUpd(·) takes as input time t and
runs KeyUpd(PP,MK, t,RL, ST) to return key update KUt.

• The revocation oracle KeyRev(·, ·) takes as input an identity id and time
t, and runs KeyRev(id, t,RL, ST) to update RL.

– Challenge: A outputs the target ID-time pair (id∗, t∗) and two messages
M0,M1. The challenger flips a random bit d and returns the output of

Revocable IBE Systems with Almost Constant-Size Key Update 177

Enc(PP, id∗, t∗,Md) to A. After that, the adversary may continue to make
queries to the oracles as with in the Query phase.

– Guess: At the end of the game, the adversary outputs a bit d′, and succeeds
if d′ = d.

The following restrictions must always hold:

1. M0,M1 ∈ M and |M0| = |M1|.
2. KeyUpd(·) and KeyRev(·, ·) can be queried on a time which is greater than

or equal to all the previously queried times, i.e., the adversary is allowed
to query only in non-decreasing order of time. Also, the oracle KeyRev(·, ·)
cannot be queried at time t if KeyUpd(·) was queried on t.

3. If PriKeyGen(·) was queried on identity id∗, then KeyRev(·, ·) must be queried
on (id∗, t) for some t ≤ t∗.

If the adversary’s output d′ equals to d, we set return = 1, otherwise return = 0.
We define the adversary’s advantage as

AdvRIBE
A (λ) := |Pr[return = 1]− 1

2
|.

An RIBE scheme is adaptive-ID secure if for all PPT adversaries A the func-
tion AdvRIBE

A (λ) is negligible.

3 Our Construction

3.1 Intuition

Our RIBE scheme is based on the Lewko and Waters IBE scheme [23]. In our
scheme, however, the decryption key of each user has two components: one is
fixed (long-term) and is associated with her identity id; while the other is up-
dated at the beginning of each time period (epoch) and corresponds to t. Particu-
larly, the key component associated with id is essentially a normal identity-based
key (in the IBE setting) combined with a secret value3 that is associated with
an accumulator, while the key component associated with t is a witness in the
context of an accumulator.

All non-revoked users’ identities are captured through an accumulator. At the
beginning of each time period t, the key authority adds t to the accumulator and
generates the corresponding witness (i.e., the values contained in the up-to-date
accumulator are current time period and the identities of all legitimate users
under this period). The key authority then broadcasts the updated accumulator
and witness (with respect to t) to all users, who will then update their respective
existing witnesses. We note here that the integrity of the accumulator is protected
through a standard signature. To encrypt a message intended for id at time t, the
encryptor makes use of the updated accumulator as part of the ciphertext. To

3 As described in Section 1.2, this is needed to circumvent a possible collusion attack.

178 L. Su et al.

decrypt a ciphertext, on the other hand, the decryptor must possess the correct
identity-based key associated with id and updated witness corresponds to t. To
revoke a user, the key authority simply removes the identity of the user from
the accumulator. A revoked user would not be able to update his witness and
therefore, would not be able to decrypt any ciphertext generated beyond the
current epoch.

3.2 Construction

In addition to the Lewko and Waters IBE scheme [23], our RIBE construction
makes use of two other building blocks: Camenisch et al.’s accumulator [13], and
any standard public key signatures scheme PKS with three algorithms: the key
generation algorithm PKSGen, the signing algorithm PKSSig and the verification
algorithm PKSVer.

Let φ denote a one-to-one map from a string (id or t) to an index i. Our RIBE
construction is described as follows:

– Setup(1k, n) → (PP,MK,RL, ST∅) The setup algorithm first chooses a bilin-
ear group G of order N = p1p2p3 (with 3 distinct primes), random expo-
nents α, γ ∈ ZN , and random group elements u, g, h ∈ Gp1 . It also computes
e(g, g)α, where e : G×G→ GT is a bilinear map.

From the parameters 〈N,G,GT , e, g〉, the algorithm performs the following
steps:

1. run the PKSGen algorithm to generate a private-public key pair (sk, pk);

2. calculate z = e(g, g)(γ
n+1) ∈ GT and Pi = g(γ

i) ∈ Gp1 for i =
1, 2, . . . , n, n+ 2, . . . , 2n, where γ is randomly chosen from ZN ;

3. choose a random β ∈ ZN and compute gβ ∈ Gp1 .

Let U be the bookkeeping information of all the elements that have ever
been added into the accumulator (but not necessarily contained in the
current accumulator), and at the point of system setup, U = ∅. The
Setup algorithm then sets the accumulator AC∅ = 1 and state ST∅ =
{U, P1, . . . , Pn, Pn+2, . . . , P2n}. The revocation list RL is initially empty.

The public parameters PP are 〈N, u, g, h, gβ, e(g, g)α, z, pk,AC∅, P1, . . . , Pn,
Pn+2, . . . , P2n〉. The master secrete key MK is 〈α, β, γ, sk〉 and a generator
of Gp3 .

– PriKeyGen(PP,MK, id, STU) → (SKid, STU∪{i}) Let V denotes the bookkeep-
ing information of the values that have currently been accumulated (so V is
a subset of U). Given i = φ(id) ∈ [n], the private key generation algorithm
performs the following steps:

1. compute wi =
∏

j∈V,j �=i Pn+1−j+i;

2. update the accumulator and state such that

ACV ∪{i} = ACV · Pn+1−i and

STU∪{i} = {U ∪ {i}, P1, . . . , Pn, Pn+2, . . . , P2n}.

Revocable IBE Systems with Almost Constant-Size Key Update 179

The PriKeyGen algorithm then chooses a random r ∈ ZN , and random ele-
ments R3, R

′
3 ∈ Gp3 . The private key SKid is then:

〈K1 = grR3, K2 = gα(uidh)rP β
i R

′
3, K3 = wi〉.

The PriKeyGen algorithm also prepares a set Vw, which denotes the values
contained in the accumulator when a witness wi was created (so Vw is fixed
for each user and it is also a subset of U). This set Vw is given to the user
along with his private key SKid.

– KeyUpd(PP,MK, t,RL, STU) → KUt At the start of each new time period t,
the key update algorithm first updates the accumulator by performing the
following steps:
1. remove l′ = φ(t′) associated with the just expired time period t′ from V ;
2. remove all i = φ(id) that corresponds to t′ in RL from V ;
3. update the accumulator, that is ACV =

∏
i′∈V Pn+1−i′ for all i′ in the

updated V .
The KeyUpd algorithm then adds the new time period l = φ(t) ∈ [n] following
the same steps as before (in PriKeyGen) to obtain the latest accumulator
ACV ∪{l}. It then generates a signature σl on ACV ∪{l}. The algorithm also
prepares a set ΔV , which contains a list of recently joined and revoked users’
identities within the last (just expired) epoch. Then the KeyUpd algorithm
broadcasts KUt = 〈ACV ∪{l}, σl, wl〉, together with the set ΔV , to all users.

– DecKeyGen(SKid,KUt) → DKid,t The decryption key generation algorithm
first checks if:
1. i = φ(id), l = φ(t) ∈ V ;
2. σl is a valid signature associated with ACV using the PKSVer algorithm

and pk;
3. e(Pl,ACV)/e(g, wl) = z to ensure the correctness of ACV .
We set a Boolean flag denoted by DecKeyChk to 0 if any of the above three
checks fails. If all the three conditions are satisfied, we set DecKeyChk = 1. If
DecKeyChk = 0, then the DecKeyGen algorithm outputs a special symbol ⊥.
Otherwise, DecKeyGen replaces the existing accumulator with an up-to-date
one. It then updates the witness and computes the decryption key as follows:
1. if i ∈ V and V ∪ Vw ⊂ U , compute

w′
i = wi ·

∏
j∈V \Vw

Pn+1−j+i∏
j∈Vw\V Pn+1−j+i

;

2. otherwise, output ⊥.
Set the decryption key DKid,t to be

〈K1 = grR3, K2 = gα(uidh)rP β
i R

′
3, K3 = w′

i〉.

– Enc(PP,M, id,ACV) → CTid,t Given a message M and an up-to-date accu-
mulator ACV containing current time t, the encryption algorithm chooses
s ∈ ZN randomly, and set the ciphertext CTid,t to be

C = M
e(g, g)αs

zs
, C0 = gs, C1 = (uidh)s, C2 = (gβACV)

s.

180 L. Su et al.

– Dec(PP,DKid,t,CTid,t) → M The decryption algorithm computes

e(C0,K2K3)

e(C1,K1)e(Pφ(id), C2)
=
e(g, g)αs

zs
.

The message M can be recovered by dividing C by the computed term.
– KeyRev(id, t,RL, STU) → RL The key revocation algorithm adds (id, t) to

the revocation list RL if i = φ(id) ∈ STU .

Correctness. We now verify that the decryption algorithm works correctly.
First we notice that a correct accumulator is always in the form of ACV =∏

j∈V Pn+1−j , and the witness wi for each i ∈ V always has a value wi =∏
j∈V,j �=i Pn+1−j+i. Hence, the following equation always holds:

e(Pi,ACV)

e(g, wi)
=

e(g, g)
∑

j∈V (γn+1−j+i)

e(g, g)
∑

j∈V,j �=i(γ
n+1−j+i)

= e(g, g)(γ
n+1) = z.

Thus we have

e(C0,K2K3)

e(C1,K1)e(Pφ(id), C2)
=

e(gs, gα(uidh)rP β
φ(id)R

′
3 · wφ(id))

e((uidh)s, grR3)e(Pφ(id), (gβACV)s)

=
e(gs, gα(uidh)rR′

3)

e((uidh)s, grR3)
·
e(gs, P β

φ(id)wφ(id))

e(Pφ(id), (gβACV)s)

=
e(g, g)αse(g, uidh)rs

e(uidh, g)rs
·

e(g, Pφ(id))
βse(g, wφ(id))

s

e(Pφ(id), g)βse(Pφ(id),ACV)s

=
e(g, g)αs

zs
.

Remark. In comparison with the Lewko and Waters IBE scheme, our identity-
based private key component K2 has an additional secret value P β

i . Moreover,
our ciphertexts are different in two aspects: the blinding factor of our ciphertext
component C has an additional term z−s, and we have an additional ciphertext
component C2.

It is also worth stressing again that our scheme enforces key revocation
through decryption (at the recipient), that is, a ciphertext recipient can de-
crypt properly only if he uses an updated decryption key. An encryptor may or
may not know the set V (which is associated with a revocation list),4 and hence,
may not always know if a target recipient has been revoked.

3.3 Security Analysis

Overview. In our security analysis, we consider the following two types of
adversaries:

4 Recall that in IBE, anyone can encrypt to an identity using the appropriate public
parameters (even without having a decryption key).

Revocable IBE Systems with Almost Constant-Size Key Update 181

– Type I adversaries that never make a private key query on the target identity
id∗ at any time throughout the game.

– Type II adversaries that are allowed to make a private key query on the
target identity id∗ at some point of the game, provided that the queried
identity must subsequently be revoked before the challenge time t∗.

We then prove the security of our RIBE scheme by adopting the dual system
encryption technique by Waters [34]. In our proofs, private keys and cipher-
texts take two forms: normal or semi-functional. A normal private key could
decrypt a ciphertext, which in turn, is either normal or semi-functional; while a
semi-functional private key can only decrypt a normal ciphertext. When using a
semi-functional key to decrypt a semi-functional ciphertext, the decryption will
fail. We then use a hybrid argument through a sequence of games to prove the se-
curity of our scheme. We first change the challenge ciphertext to semi-functional,
then gradually change the private keys into semi-functional one by one. At the
very last step, we change the semi-functional ciphertext into an encryption of a
random message, in which the adversary has no advantage at all. Particularly,
we prove that neither Type I nor Type II adversary learns any useful informa-
tion about the chosen message from the challenge ciphertext, even when they
are provided some information on the associated blinding factor.

Theorem 1. If Assumptions 1, 2, 3, and 4 hold, then our RIBE scheme is
secure.

Due to space constraints, please refer to [33] for the full security proof.

3.4 Efficiency

We now compare the efficiency of our construction against existing pairing-based
RIBE schemes. We let ñ denote the number of users in the system, n̂ denote
the size of identity space representing ñ many users, r denote the number of
revoked users, and r′ = |ΔV |, where ΔV is as defined in Section 3.2. Also, we
let PP, DK, CT, KUp, Dec, SM and Group denote public parameters, decryption
key, ciphertext, key update, decryption, security model and underlying bilinear
group, respectively. The sizes for PP, DK, CT, and KUp are measured in the
number of group elements; Dec is measured as the number of pairing operations;
SM is either selective or adaptive and Group is either prime or composite.

From Table 1, we see that all RIBE schemes, including ours, have comparable
DK and CT sizes, and the computational overhead of Dec. However, our scheme
has a clear advantage of having constant size KUp. As illustrated in the scheme,
our core key update material only consists of three group elements.

We note that during key update, the key authority of all the above consid-
ered schemes also broadcasts some auxiliary information with respect to non-
revoked/revoked user identities. As shown in the analysis of the key update
algorithm in [7], the binary tree approach is most advantageous when r ≤ ñ

2 , in

which case the complexity of key update is O(r log(ñr)). (For the case of r > ñ
2 ,

we simply assume that the scheme can be “reset” to retain the efficiency of key

182 L. Su et al.

Table 1. A comparison between existing and our RIBE schemes

PP DK CT KUp Dec SM Group
size size size size

BGK [7] O(1) 4 4 O(log(n̂)) 4 select. prime

LV [25] O(n̂) 4 5 O(log(n̂)) 3 adapt. prime

SE [31] O(n̂) 3 4 O(log(n̂)) 3 adapt. prime

Ours O(ñ) 3 4 O(1) 3 adapt. composite

update.) By considering only the case of r ≤ ñ
2 , we have ñ

r ≥ 2 and log(ñr) ≥ 1,

and thus we have O(r log(ñr)) ≥ O(r). In the BGK, LV, SE schemes, therefore,
the auxiliary information required during key update has complexity of O(r),
while ours has complexity of O(r′). In reality, we have r′ < r, or even r′ " r.
Consider a concrete example by letting r′ = |ΔV | = 100 and assuming a user
identity is of 32-bits, our bookkeeping information during key update consumes
only 400 bytes.

4 Extension

4.1 Supporting More Than n Users

Our scheme presented in Section 3.2 supports up to only n users. However, as
shown by Phan et al. [28] in their dynamic broadcast encryption scheme, our
scheme similarly can handle polynomially many more than n users (but still
bounded) and remains secure under a generalization [16, 28] of the decisional
bilinear Diffie-Hellman Exponent (BDHE) assumption [8].

4.2 Forward-Secure Decryption Keys

Our security model, as with that of Boldyreva et al.’s [7], considers exposure of
only long-term private keys, but not decryption keys. However, if the adversary
is also allowed access to the decryption key of any user, such as that in a security
model recently considered by Seo and Emura [31], we then require the decryp-
tion keys to be forward-secure. Nevertheless, our RIBE scheme can naturally be
extended to achieve forward-secure decryption keys using a 2-level Lewko and
Waters HIBE scheme [23]. Particularly, we let level 1 keys be users’ long-term
private keys (associated with identities), and let level 2 keys be decryption keys
(associated with times). For each time period, a user “delegates” a new, fully
randomized decryption key with her long-term private key. As shown in [31],
re-randomization of decryption keys is sufficient to achieve the forward-secure
property.

4.3 Revocable Attribute-Based Encryption

Boldyreva et al. [7] sketched a construction of revocable KP-ABE using the
binary tree method. Subsequently Sahai et al. [29] extended their idea and gave

Revocable IBE Systems with Almost Constant-Size Key Update 183

a complete construction with a security proof. Similarly, our accumulator-based
revocation technique can be extended to the KP-ABE setting. Intuitively, we
rely on an accumulator to capture all valid (non-revoked) attributes such that
they can be represented with a single group element. Without loss of generality,
we assume that an attribute can be a user identity. This way, we can revoke
not only a common attribute shared among multiple users, but also a unique
identity attribute to revoke a user. We also believe that similar techniques can
be applied to obtain a revocable ciphertext-policy ABE (CP-ABE) scheme,
another variant of ABE that reverses the properties of KP-ABE.

Further details of the above extensions and their security proofs will be pro-
vided in a full version of this paper.

5 Conclusions

In this paper, we proposed a very efficient and adaptively secure RIBE scheme
based on an accumulator. Our scheme enjoys constant-size key update, a major
improvement from all previous RIBE schemes.

One immediate open problem would be to achieve adaptive security under
more standard assumptions. Also, it would be interesting to investigate if our
accumulator-based key update technique can be applied to revocable storage
ABE proposed by Sahai et al. [29] and other variants of functional encryption.

Acknowledgment. The first author is supported by the A*STAR Graduate
Scholarship. The other three authors are supported by the Singapore Ministry of
Education Research Grant MOE2013-T2-1-041 and National Research Founda-
tion of Singapore Research Grant NRF-CRP22007-03. The authors are thankful
to the very useful comments from the anonymous reviewers.

References

1. Aiello, W., Lodha, S., Ostrovsky, R.: Fast digital identity revocation. In: Krawczyk,
H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 137–152. Springer, Heidelberg (1998)

2. Attrapadung, N., Imai, H.: Attribute-based encryption supporting direct/indirect
revocation modes. In: Parker, M.G. (ed.) Cryptography and Coding 2009. LNCS,
vol. 5921, pp. 278–300. Springer, Heidelberg (2009)

3. Attrapadung, N., Imai, H.: Conjunctive broadcast and attribute-based encryption.
In: Shacham, H., Waters, B. (eds.) Pairing 2009. LNCS, vol. 5671, pp. 248–265.
Springer, Heidelberg (2009)

4. Baek, J., Zheng, Y.: Identity-based threshold decryption. In: Bao, F., Deng, R.,
Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 262–276. Springer, Heidelberg
(2004)

5. Barker, E., Barker, W., Burr, W., Polk, W., Smid, M.: Recommendation for key
management – part 1: General (revision 3). In: NIST Special Publication 800-57
(2012)

184 L. Su et al.

6. Benaloh, J.C., de Mare, M.: One-way accumulators: A decentralized alternative to
digital signatures. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp.
274–285. Springer, Heidelberg (1994)

7. Boldyreva, A., Goyal, V., Kumar, V.: Identity-based encryption with efficient re-
vocation. In: ACM Conference on Computer and Communications Security, pp.
417–426. ACM (2008)

8. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with con-
stant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 440–456. Springer, Heidelberg (2005)

9. Boneh, D., Ding, X., Tsudik, G., Wong, C.M.: A method for fast revocation of
public key certificates and security capabilities. In: USENIX, p. 22. USENIX As-
sociation (2001)

10. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)

11. Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast encryption with
short ciphertexts and private keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS,
vol. 3621, pp. 258–275. Springer, Heidelberg (2005)

12. Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In:
Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg
(2005)

13. Camenisch, J., Kohlweiss, M., Soriente, C.: An accumulator based on bilinear maps
and efficient revocation for anonymous credentials. In: Jarecki, S., Tsudik, G. (eds.)
PKC 2009. LNCS, vol. 5443, pp. 481–500. Springer, Heidelberg (2009)

14. Chen, J., Lim, H.W., Ling, S., Wang, H., Nguyen, K.: Revocable identity-based
encryption from lattices. In: Susilo, W., Mu, Y., Seberry, J. (eds.) ACISP 2012.
LNCS, vol. 7372, pp. 390–403. Springer, Heidelberg (2012)

15. Cocks, C.: An identity based encryption scheme based on quadratic residues. In:
Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–363.
Springer, Heidelberg (2001)

16. Delerablée, C., Paillier, P., Pointcheval, D.: Fully collusion secure dynamic broad-
cast encryption with constant-size ciphertexts or decryption keys. In: Takagi, T.,
Okamoto, T., Okamoto, E., Okamoto, T. (eds.) Pairing 2007. LNCS, vol. 4575, pp.
39–59. Springer, Heidelberg (2007)

17. Ding, X., Tsudik, G.: Simple identity-based cryptography with mediated RSA. In:
Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 193–210. Springer, Heidelberg
(2003)

18. Franklin, M.: An introduction to identity-based encryption. In: NIST Identity-
based Encryption Workshop (2008)

19. González-Nieto, J.M., Manulis, M., Sun, D.: Fully private revocable predicate en-
cryption. In: Susilo, W., Mu, Y., Seberry, J. (eds.) ACISP 2012. LNCS, vol. 7372,
pp. 350–363. Springer, Heidelberg (2012)

20. Hanaoka, Y., Hanaoka, G., Shikata, J., Imai, H.: Identity-based hierarchi-
cal strongly key-insulated encryption and its application. In: Roy, B. (ed.)
ASIACRYPT 2005. LNCS, vol. 3788, pp. 495–514. Springer, Heidelberg (2005)

21. Housley, R., Polk, W., Ford, W., Solo, D.: Internet X.509 public key infrastructure
certificate and certificate revocation list (CRL) profile (2002)

22. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. In: Smart, N.P. (ed.) EUROCRYPT 2008.
LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008)

Revocable IBE Systems with Almost Constant-Size Key Update 185

23. Lewko, A., Waters, B.: New techniques for dual system encryption and fully secure
HIBE with short ciphertexts. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978,
pp. 455–479. Springer, Heidelberg (2010)

24. Libert, B., Quisquater, J.-J.: Efficient revocation and threshold pairing based cryp-
tosystems. In: Proceedings of the 22nd Annual Symposium on Principles of Dis-
tributed Computing, pp. 163–171. ACM (2003)

25. Libert, B., Vergnaud, D.: Adaptive-ID secure revocable identity-based encryption.
In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 1–15. Springer, Heidelberg
(2009)

26. Myers, M., Ankney, R., Malpani, A., Galperin, S., Adams, C.: X.509 internet public
key infrastructure online certificate status protocol-OCSP. Technical report (1999)

27. Naor, M., Nissim, K.: Certificate revocation and certificate update. In: USENIX,
p. 17. USENIX Association (1998)

28. Phan, D.-H., Pointcheval, D., Shahandashti, S.F., Strefler, M.: Adaptive CCA
broadcast encryption with constant-size secret keys and ciphertexts. In: Susilo, W.,
Mu, Y., Seberry, J. (eds.) ACISP 2012. LNCS, vol. 7372, pp. 308–321. Springer,
Heidelberg (2012)

29. Sahai, A., Seyalioglu, H., Waters, B.: Dynamic credentials and ciphertext del-
egation for attribute-based encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 199–217. Springer, Heidelberg (2012)

30. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.)
EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

31. Seo, J.H., Emura, K.: Revocable identity-based encryption revisited: Security
model and construction. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS,
vol. 7778, pp. 216–234. Springer, Heidelberg (2013)

32. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985)

33. Su, L., Lim, H.W., Ling, S., Wang, H.: Revocable IBE systems with almost
constant-size key update. Cryptology ePrint Archive, Report 2013/495 (2013),
http://eprint.iacr.org/

34. Waters, B.: Dual system encryption: Realizing fully secure IBE and HIBE under sim-
ple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–636.
Springer, Heidelberg (2009)

http://eprint.iacr.org/

Pseudo 8–Sparse Multiplication for Efficient

Ate–Based Pairing on Barreto–Naehrig Curve

Yuki Mori1, Shoichi Akagi1, Yasuyuki Nogami1, and Masaaki Shirase2

1 Graduate School of Natural Science and Technology, Okayama University
3-1-1, Tsushima-naka, Okayama, Okayama 700-8530, Japan

2 Future University Hakodate, Japan
yasuyuki.nogami@okayama-u.ac.jp

Abstract. According to some recent implementation reports on Ate–
based pairings such as optimal ate pairing with Barreto–Naehrig curve
whose embedding degree is 12, sparse multiplication accelerates Miller’s
loop calculation in a pairing calculation. Especially, 7–sparse multiplica-
tion is available when the implementation uses affine coordinates, where
7–sparse means that the multiplicand or multiplier has 7 zeros among
12 coefficients. This paper extends it to pseudo 8–sparse multiplication.
Then, some experimental results together with theoretic calculation costs
are shown in order to evaluate its efficiency.

Keywords: sparse multiplication, pairing, Barreto–Naehrig curve.

1 Introduction

Recent Ate–based pairings such as R–ate [1], Optimal ate [2] and Xate [3] on
Barreto–Naehrig (BN) curve have receivedmuch attention since they achieve quite
efficient pairing calculations. Then, many researchers have tried to implement
these Ate–based pairings as thoroughly efficient programs using mathematic and
programmatic techniques such as Montgomery reduction (Montgomery represen-
tation), lazy reduction, Projective/Jacobian coordinates, sparse multiplication,
and final exponentiation with Gröbner basis. Among these techniques, this paper
focuses on sparse multiplication. Note here that pairings on BN curve are defined
over Fq12 since the embedding degree of BN curve is 12, where q denotes the field
characteristic throughout this paper.

Aranha et al. [4] and Grewal et al. [5] have well introduced the preceding
techniques. According to their works, 6–sparse multiplication1 with projective
coordinates accelerates Miller’s loop calculation that is a major calculation part
together with final exponentiation. They have also introduced 7–sparse multi-
plication with affine coordinates. It seems that, from the viewpoint of efficiency,
7–sparse multiplication is better than 6–sparse multiplication though the dif-
ference of the adapted coordinates should be carefully taken into account. This
paper proposes a more efficient sparse multiplication.

1 It means that the multiplier/multiplicand has 6 zeros among 12 vector coefficients.

Z. Cao and F. Zhang (Eds.): Pairing 2013, LNCS 8365, pp. 186–198, 2014.
c© Springer International Publishing Switzerland 2014

Pseudo 8–Sparse Multiplication for Efficient Ate–Based Pairing 187

This paper first focuses on the fact that multiplying/dividing the result of
Miller’s loop calculation by an arbitrary non–zero element in Fq does not change
the result of the pairing because of the following final exponentiation. Based on
this fact, this paper achieves pseudo 8–sparse multiplication by dividing one of
non–zero coefficients of the preceding 7–sparse multiplier with affine coordinates.
According to the division, one of 5 non–zero coefficients becomes one and thus
it contributes to a calculation efficiency. After that, in order to cancel the cal-
culation overhead caused from the division, this paper applies isomorphic twist
with a quadratic and cubic residue in Fq, where note that sextic twist with a
quadratic and cubic non residue in Fq2 is available for BN curves. Then, in order
to evaluate the efficiency of pseudo 8–sparse multiplication, this paper shows
some experimental results together with theoretic calculation costs.

Throughout this paper, Fq and Fqm denote a prime field of characteristic q
and its m–th extension field, respectively.

2 Preliminaries

This section briefly reviews Barreto–Naehrig (BN) curve [6], towering exten-
sion field with irreducible binomials [4], sextic twist [3], Ate pairing, and sparse
multiplication (7–sparse multiplication) appeared in Miller’s loop [4].

2.1 Barreto–Naehrig Curve

Barreto–Naehrig curve [7] that is well known to realize an efficient asymmetric
pairing is defined in the form of

E : y2 = x3 + b, b ∈ Fq, (1)

together with the following parameter settings,

q(χ) = 36χ4 − 36χ3 + 24χ2 − 6χ+ 1, (2a)

r(χ) = 36χ4 − 36χ3 + 18χ2 − 6χ+ 1, (2b)

t(χ) = 6χ2 + 1, (2c)

where χ is a certain integer2. This paper focuses on recent efficient Ate–based
pairings such as optimal ate [2], R–ate [1], and Xate [3] pairings on BN curve.

Towering Extension Field with Irreducible Binomials F((q2)3)2

In what follows, let q − 1 be divisible by 4 and c be a cubic and quadratic
non residue in Fq. Then, Fq12 is constructed as a tower field in the following
representations.

2 There are some conditions such as q to be a prime number for defining Fq.

188 Y. Mori et al.

⎧⎪⎨⎪⎩
Fq2 = Fq[i]/(i

2 − β), where β = c.

Fq6 = Fq2 [v]/(v
3 − ξ), where ξ = i.

Fq12 = Fq6 [w]/(w
2 − v).

(3)

According to most of previous works such as Aranha et al. [4], the above v is
used for the following sextic twist of BN curve.

Sextic Twist. For BN curve E defined above, sextic twisted curve E′ together
with a certain quadratic and cubic non residue z ∈ Fq2 and an isomorphic
mapping ψ6 are given as follows [3].

E′ : y2 = x3 + bz,

ψ6 : E′(Fq2)[r] �−→ E(Fq12)[r] ∩Ker(πq − [q]),

(x, y) �−→ (z−1/3x, z−1/2y). (4)

where Ker(·) and πq respectively denote the kernel of the mapping · and Frobe-
nius mapping for rational point as

πq : (x, y) �−→ (xq , yq). (5)

In addition, its order #E′(Fq2) is also divisible by r that is the order of BN
curve E over Fq. Thus, some efficient pairings [4] have made the best use of
the sextic twisted subfield curve E′(Fq2) based on the isomorphic twist. In this
paper, E′(Fq2)[r] shown in Eq. (4) is denoted by G′

2 such as shown in Alg. 1.

When ẑ is a Quadratic and Cubic Residue in Fq

Consider the following curve Ê(Fq) and mapping.

Ê : y2 = x3 + bẑ,

Ê(Fq)[r] �−→ E(Fq)[r],

(x, y) �−→ (ẑ−1/3x, ẑ−1/2y), (6)

where ẑ, ẑ−1/2, ẑ−1/3 ∈ Fq.

Throughout this paper, it should be carefully noted that E(Fq) and Ê(Fq)
are isomorphic3 since ẑ is a quadratic and cubic residue in Fq.

3 E(Fq2) and Ê(Fq2) furthermore E(Fq12) and Ê(Fq12) are also isomorphic.

Pseudo 8–Sparse Multiplication for Efficient Ate–Based Pairing 189

2.2 Pairings

In what follows, let the embedding degree be k. For example, k = 12 in the case
of BN curve. As previously introduced, this paper focuses on Ate–based pairings.

Ate Pairing. Suppose the following two groups and Ate pairing notation.

G1 = E(Fqk)[r] ∩Ker(πq − [1]),

G2 = E(Fqk)[r] ∩Ker(πq − [q]),

α : G2 ×G1 → F∗
qk/(F

∗
qk)

r. (7)

In the case of BN curve, the above G1 is just E(Fq). Then, let P ∈ G1 and
Q ∈ G2, Ate pairing α(Q,P) is given as follows.

α(Q,P) = ft−1,Q(P)
qk−1

r , (8)

where ft−1,Q(P) is the output of Miller’s algorithm. After calculating the final
exponentiation, the bilinearity of Ate pairing holds.

In the case of Xate pairing ζ(Q,P) on BN curve defined by

ζ(Q,P) =
{
fχ,Q(P)(1+q3)(1+q10) · lχQ,π3

q(χQ)(P)

·lχQ+π3
q(χQ),π10

q (χQ+π3
q(χQ))(P)

} qk−1
r

. (9)

where χ is the setting integer parameter shown at Eqs. (2), the calculation
procedure becomes as shown in Alg. 1. In what follows, the calculation steps
from 1 to 6 shown in Alg. 1 is called Miller’s loop. In addition, it is found that
steps 3 and 5 in Alg. 1 are key to accelerating a pairing calculation. As one of
such accelerating techniques, sparse multiplication has been introduced and thus
a lot of related works have been reported [4], [5].

7–sparse Multiplication in Miller’s Loop on Affine Coordinates
According to Grewal et al.’s work [5], in the case of adapting affine coordinates
for representing rational points, the doubling phase (step 3) and addition phase
(step 5) in Miller’s loop are efficiently carried out by the following calculations. In
what follows, let P = (xP , yP) ∈ E(Fq), T = (x, y), and Q = (x2, y2) ∈ E′(Fq2)
be given in affine coordinates, and let T +Q = (x3, y3) be the sum of T and Q.

Doubling phase (when T = Q)

A =
1

2y
, B = 3x2, C = AB, D = 2x, x3 = C2 −D,

E = Cx− y, y3 = E − Cx3, F = Cx̄P ,

lT,T (P) = yP + Fw + Ew3 = yP − CxPw + Ew3, (10a)

where x̄P = −xP will be precomputed. ��

190 Y. Mori et al.

Algorithm 1. Xate pairing on BN curves (generalized for χ < 0)

Input: P ∈ G1, Q ∈ G′
2, χ

Output: ζ(Q,P)
T ← Q, f ← 11

for i = �log2(|χ|)	 − 1 downto 0 do2

f ← f2 · lT,T (P), T ← 2T ; (see Doubling phase Eq. (10a))3

if |χ|i = 1 then4

f ← f · lT,Q(P), T ← T +Q; (see Addition phase Eq. (10b))5

if |χ|i = −1 then6

f ← f · lT,−Q(P), T ← T −Q; (see Addition phase Eq. (10b))7

end for8

if χ < 0 then9

T ← −T, f ← f−1
10

f ← f · π3
q(f), Q1 ← π3

q (T)11

f ← f · lT,Q1(P), Q2 ← T +Q112

f ← f · π10
q (f), T ← π10

q (Q2)13

f ← f · lT,Q2(P)14

f ← FinalExp(f)(= f ← f (qk−1)/r)15

return f16

Addition phase (when T
= Q)

A =
1

x2 − x
, B = y2 − y, C = AB, D = x+ x2, x3 = C2 −D,

E = Cx− y, y3 = E − Cx3, F = Cx̄P ,

lT,Q(P) = yP + Fw + Ew3 = yP − CxPw + Ew3, (10b)

where x̄P = −xP will be precomputed. ��

As shown in Eqs. (10), since 1, w, and w3 = vw are basis elements of Fq12

for Fq2 as previously introduced, it is found that 7 coefficients among 12 of the
vector representation of lψ6(T),ψ6(T)(P) ∈ Fq12 are equal to zero at least. In other
words, only 5 coefficients yP ∈ Fq, CxP ∈ Fq2 , and E ∈ Fq2 are possible to be
non–zero. lψ6(T),ψ6(Q)(P) also has the same property. Thus, the calculation of
multiplying lψ6(T),ψ6(T)(P) or lψ6(T),ψ6(Q)(P) is called sparse multiplication, in
this case especially 7–sparse multiplication, that accelerates Miller’s loop calcu-
lation as shown in Alg. 1. This paper proposes pseudo 8–sparse multiplication.

Pseudo 8–Sparse Multiplication for Efficient Ate–Based Pairing 191

3 Main Proposal

This paper proposes the following two ideas in order to realize an efficient 8–
sparse multiplication for Ate–based pairing on BN curve such as Ate, optimal
ate [2], R–ate [1], and Xate [3] pairings.

1. As shown in Eqs. (10), one of non–zero coefficients is yP ∈ Fq. This coefficient
does not change through Miller’s loop calculation. Thus, dividing both sides
of those equations by yp, the coefficient becomes 1. It leads to a more efficient
sparse multiplication by lψ6(T),ψ6(T)(P) or lψ6(T),ψ6(Q)(P). In this paper, it
is called pseudo 8–sparse multiplication.

2. The above division by yP causes a little more calculation cost for the other
non–zero coefficients in the Miller’s loop as it is. Applying the map intro-
duced in Eqs. (6), such an additional cost in Miller’s loop is canceled.

As shown in Eq. (10a) and Eq. (10b), they are basically the same. Thus, using
Eq. (10a) in what follows, these ideas are introduced in detail.

3.1 Pseudo 8–Sparse Multiplication

Note that yP shown in Eq. (10a) is an non–zero4 element in Fq. Thus, dividing
both sides of Eq. (10a) by yP ,

y−1
P lT,T (P) = 1− C(xP y

−1
P)w + Ey−1

P w3. (11)

Even if replacing lT,T (P) by the above y−1
P lT,T (P), the calculation result of the

pairing does not change because final exponentiation cancels y−1
P ∈ Fp. Then,

as shown above, one of the non–zero coefficients becomes 1 and it realizes more
efficient vector multiplications in Miller’s loop. This paper calls it pseudo 8–
sparse multiplication. The detailed calculation procedure of pseudo 8–sparse
multiplication is introduced in App. A.

3.2 Line Evaluation in Miller’s Loop

Comparing the line evaluations Eq. (10a) and Eq. (11), it is found that the latter
needs a little more calculation cost for Ey−1

P even though xP y
−1
P and y−1

P can
be precomputed. In what follows, an approach to cancel xP y

−1
P is introduced.

In brief, based on P (xP , yP), the map introduced in Eqs. (6) can find a certain
isomorphic rational point P̂ (xP̂ , yP̂) ∈ Ê(Fq) such that

xP̂ y
−1

P̂
= 1 (12)

by letting the twist parameter z of Eq. (4) be ẑ = (xP y
−1
P)6 of Eqs. (6), where

Ê denotes the BN curve defined by Eqs. (6). Of course, this ẑ is a quadratic and

4 P (xP , yP) ∈ E(Fq) for pairing on BN curve is selected such that xP
= 0 and yP
= 0.

192 Y. Mori et al.

cubic residue in Fp and thus it yields the map. According to Eq. (4), such z is
obtained by solving the following equation from the input P (xP , yP).

z1/3xP = z1/2yP . (13)

Then, P̂ (xP̂ , yP̂) ∈ Ê(Fq) is given by

P̂ (xP̂ , yP̂) = (x3P y
−2
P , x3P y

−2
P). (14)

Since the x and y coordinates of P̂ are the same, xP̂ y
−1

P̂
= 1. Therefore, corre-

sponding to the the map introduced in Eqs. (6), first mapping not only P to P̂
shown above but also Q to Q̂ shown below,

Q̂(xQ̂, yQ̂) = (x2P y
−2
P xQ, x

3
P y

−3
P yQ). (15)

the line evaluations Eq. (10a) becomes

l̂T̂ ,T̂ (P̂) = y−1

P̂
lT̂ ,T̂ (P̂) = 1− C(xP̂ y

−1

P̂
)w + Ey−1

P̂
w3

= 1− Cw + E(x−3
P y2P)w

3. (16)

Eq. (10b) becomes the same. Compared to Eq. (11), the second term of the
right–hand side has become simple because xP̂ y

−1

P̂
= 1.

Computing P̂ , Q̂, and x−3
P y2P using x−1

P and y−1
P will be an overhead; how-

ever, Miller’s loop calculation becomes efficient together with pseudo 8–sparse
multiplication. Alg. 2 shows the proposed algorithm for which x−1

P and y−1
P thus

need to be once calculated5.

4 Cost Evaluation and Experimental Result

In order to show the efficiency of the proposal, this section shows some experi-
mental results with evaluating the calculation costs.

In what follows, “Grewal’s work” means optimal ate pairing with affine coor-
dinates and 7–sparse multiplication (see the detail [5]). “This work” means Xate
pairing with affine coordinates and 8–sparse multiplication.

4.1 Parameter Settings and Computational Environment

This paper has set the following parameters (see Sec. 2.1).

χ = −4611686018425225214, (17a)

= −262 + 221 + 216 + 2,

where r(χ) becomes a 254–bit prime,

b = c = 2, (17b)

z = i−1. (17c)

5 They are obtained by one Fq–inversion using Montgomery trick.

Pseudo 8–Sparse Multiplication for Efficient Ate–Based Pairing 193

Algorithm 2. Proposed Xate pairing on BN curves (generalized for χ < 0)

Input: P (xP , yP) ∈ G1, Q(xQ, yQ) ∈ G′
2, χ

Output: ζ(Q,P)
Compute x−1

P and y−1
P ; (they are used at steps 3 and 4)1

Compute x−3
P y2P ; (it is used at steps 7 and 9 with Eq. (16))2

P̂ ← Mapping(P) ; (see Eq. (14))3

Q̂ ← Mapping(Q) ; (see Eq. (15))4

T̂ ← Q̂, f ← 15

for i = #log2(|χ|)$ − 1 downto 0 do6

f ← f2 · l̂T̂ ,T̂ (P̂), T̂ ← 2T̂ ; (see Eq. (16))7

if |χ|i = 1 then8

f ← f · l̂T̂ ,Q̂(P̂), T̂ ← T̂ + Q̂ ; (see Eq. (16))9

if |χ|i = −1 then10

f ← f · l̂T̂ ,−Q̂(P̂), T̂ ← T̂ − Q̂ ; (see Eq. (16))11

end for12

if χ < 0 then13

T̂ ← −T̂ , f ← f−1
14

f ← f · π3
q(f), Q̂1 ← π3

q (T̂)15

f ← f · l̂T̂ ,Q̂1
(P̂), Q̂2 ← T̂ + Q̂1 ; (see Eq. (16))16

f ← f · π10
q (f), T̂ ← π10

q (Q̂2)17

f ← f · l̂T̂ ,Q̂2
(P̂) ; (see Eq. (16))18

f ← FinalExp(f)(= f ← f (qk−1)/r)19

return f20

Table 1 shows the computational environments.

Table 1. Computing environment

PC iPad2 iPhone5

CPU Core 2 Duo∗ E8135 2.66GHz Apple A5∗ 1.0GHz Apple A6∗ 1.3GHz
OS Mac OS X 10.7.2 iOS 6.1.3 iOS 6.1.4

Library GMP 5.1.2 gmp4osx (GMP 5.0.5) gmp4osx (GMP 5.0.5)
Compiler g++ 4.2.1 g++ 4.2.1 g++ 4.2.1

Programming
C++

C++ and C++ and
Language Objective-C Objective-C

∗ Only single core is used though it has two cores.

194 Y. Mori et al.

4.2 Cost Evaluation

In the same manner of Aranha et al. [4] and Grewal et al. [5], this paper uses
the following notations for evaluating the calculation costs. Thus, the following
paragraph is almost the same of that of Grewal et al.’s [5].

Notation and Definitions (see also Grewal et al.’s instruction [5])
Throughout this paper, lower case variables denote single–precision integers,
upper case variables denote double–precision integers. The operation + repre-
sents addition without reduction, and ⊕ represents addition with reduction (see
Alg. alg:sparse). The quantities m, s, a, i and r denote the times for multiplica-
tion, squaring, addition, inversion, and modular reduction in Fq , respectively.
Likewise, m̃, s̃, ã, ĩ and r̃ denote the times for multiplication, squaring, addition,
inversion, and reduction in Fq2 , respectively, and mu, su, m̃u and s̃u denote the
times for multiplication and squaring without reduction in the corresponding
fields. Finally, mβ and mξ mv denote the times for multiplication by the quan-
tities β and ξ, respectively (see the preceding towering extension field).

First, Table 2 shows the calculation costs for the arithmetics in E′(Fq2), Fq2 ,
and Fq12 . Since their constructions are slightly different though both are based
on towering extension field technique, the calculation costs are slightly different.
Basically, the number of multiplications such as m and m̃u are the same though
those of additions such as a and ã are different; however, 7–sparse multiplication
and pseudo 8–sparse multiplication have the difference of 6mu. It leads to the
main contribution of this paper.

Based on these fundamental arithmetics, Table 3 shows the calculation costs
for pairings by Grewal et al.’s work and this paper in which that of final ex-
ponentiation is excluded6. Instead of 7–sparse multiplication, pseudo 8–sparse
multiplication is applied 66 times in Xate pairing calculation excluding final ex-
ponentiation. Thus, as shown in Table 3, the difference of 66 × 6mu = 396mu

has occurred between the pairings excluding final exponentiation. According to
the calculation costs of pairings, it is found that pseudo 8–sparse multiplication
has reduced a few hundreds of mu’s. For iPad 2 and iPhone 5, since the relation
of 69ĩ+204a+s+2i≤ 178m̃u+326s̃+229r̃+2056ã+131m, This work is faster
than the Xate pairing using projective coordinates.

4.3 Experimental Result

Table 4 shows the calculation times of Xate pairing including(excluding) final
exponentiation. They are the averages of 100,000 and 9,000 iterations of pairing
on PC and iOS devices (iPad 2 and iPhone 5), respectively. According to the
experimental results, pseudo 8–sparse multiplication contributes to a few percent
acceleration of Previous work, which the Xate pairing uses affine coordinates and
uses 7–sparse multiplication. It seems to be very small but makes the recent
marvelous implementations of pairing [4], [5] a little more efficient.

6 Because the calculation cost of final exponentiation is almost the same.

Pseudo 8–Sparse Multiplication for Efficient Ate–Based Pairing 195

Table 2. Operation counts for 254-bit prime fields

E′(Fq2) Arithmetics Grewal’s work [5] This work

Doubling/Line Evaluation ĩ+ 3m̃u + 2s̃u + 5r̃ + 7ã + 2m ĩ+ 3m̃u + 2s̃u + 5r̃ + 7ã+ 2m

Addition/Line Evaluation ĩ+ 3m̃u + 1s̃u + 4r̃ + 6ã+ 2m ĩ+ 3m̃u + 1s̃u + 4r̃ + 6ã+ 2m
q–power Frobenius 2m̃+ 2a –
q2–power Frobenius 4m –
q3–power Frobenius – 4a+ 2m
q10–power Frobenius – 2a+ 2m

Fq2 Arithmetics Grewal’s work [5] This work

Add/Subtr./Nega. ã = 2a ã = 2a
Multiplication m̃ = 3mu + 2r + 8a m̃ = 3mu + 2r + 8a

Squaring s̃ = 2mu + 2r + 3a s̃ = 2mu + 2r + 6a
Multiplication by β mβ = a mβ = a
Multiplication by ξ mξ = 2a mξ = a

Fq12 Arithmetics Grewal’s work [5] This work

Multiplication 18m̃u + 6r̃ + 110ã 18m̃u + 6r̃ + 96ã+ a
7–sparse Mult. 10m̃u + 6r̃ + 47ã + 6mu + a –

Pseudo 8–sparse Mult. – 10m̃u + 6r̃ + 37ã+ 3a
Squaring 12m̃u + 6r̃ + 73ã 12m̃u + 6r̃ + 63ã

q–power Frobenius 5m̃u + 6a a+ 10m
q2–power Frobenius 10m̃u + 2ã 2a+ 8m
q3–power Frobenius – 3a+ 6m
q6–power Frobenius – 3ã
q10–power Frobenius – 2a+ 8m

∗ : Add./Subtr./Nega./Mult. denote Addition/Subtraction/Negation/Multiplication.

Table 3. Calculation cost of pairings excluding final exponentiation

Method Calculation cost∗

Projective 1835m̃u + 458s̃u + 1359r̃ + 9118ã + 25a+ 308m

Grewal’s work [5] 70̃i+ 1628m̃u + 135s̃u + 1120r̃ + 7618ã + 69a+ 144m + 396mu

This work 69̃i+ 1657m̃u + 132s̃u + 1130r̃ + 7062ã + 229a + 177m+ s+ 2i
∗ : “Projective” means that the Xate pairing uses projective coordinates,

and thus 6–sparse multiplication is only available in its Miller’s loop.

Table 4. Calculation time of Xate pairing

Calculation time of Xate pairing∗ [ms]

Method PC iPad 2 iPhone 5

Previous work 1.48(0.9) 12.3(7.4) 9.97(5.8)

This work 1.46(0.89) 12.1(7.2) 9.84(5.7)
∗ : In the parenthesis, the calculation time excluding final exponentiation is shown.

In other words, it is the calculation time for steps 1 to 15 on Alg. 2.
∗∗ : “Previous” means that the Xate pairing uses 7–sparse multiplication and

affine coordinates.

196 Y. Mori et al.

Table 5. Calculation time of multi–Xate pairing

Calculation time of multi–pairing on PC [ms]
PC

pairings This work Previous work∗ Projective∗∗

1 1.46 1.48 1.31
2 1.86 1.92 1.78
3 2.25 2.30 2.28
4 2.65 2.70 2.75
5 3.02 3.12 3.24
6 3.40 3.51 3.70
7 3.82 3.89 4.18
8 4.18 4.29 4.64
9 4.62 4.71 5.12
10 4.96 5.09 5.58

Calculation time of multi–pairing on iPhone 5 [ms]

pairings This work Previous work∗ Projective∗∗

1 9.83 9.97 9.91
2 13.0 13.4 13.9
3 16.1 16.8 17.7
4 19.2 20.1 21.5
5 22.5 23.4 25.3
6 25.5 26.7 29.1
7 28.7 30.1 32.9
8 31.8 33.4 36.6
9 34.8 36.7 40.5
10 38.1 40.0 44.3

∗ : “Projective” means that the Xate pairing uses projective coordinates,
and thus 6–sparse multiplication is only available in its Miller’s loop.

∗∗ : “Previous” means that the Xate pairing uses 7–sparse multiplication and
affine coordinates.

By the way, the proposed pseudo 8–sparse multiplication is not able to accel-
erate final exponentiation. Thus, it yields a greater effect for multi–pairing than
a single pairing because multi–pairing can combine the final exponentiations as

N∏
i=1

α(Qi, Pi) =
N∏
i=1

(ft−1,Qi(Pi))
(pk−1)/r

=

(
N∏
i=1

ft−1,Qi(Pi)

)(pk−1)/r

. (18)

In addition, squarings at step 6 in Alg. 2, for example, can also be combined.
Table 5 shows the calculation time for N multi–pairing. They are the averages
of 12,500 and 4,500 iterations of N multi–pairing on PC and iOS devices (iPad 2

Pseudo 8–Sparse Multiplication for Efficient Ate–Based Pairing 197

and iPhone 5), respectively. Compared to the case with 6–sparse multiplication
and projective coordinates, that with pseudo 8–sparse multiplication and affine
coordinates becomes more efficient as the number N becomes larger.

5 Conclusion and Future Works

This paper has proposed pseudo 8–sparse multiplication for accelerating Ate–
based pairing with affine coordinates on Barreto–Naehrig (BN) curve. Accord-
ing to the calculation costs and experimental results shown in this paper, the
proposal made recent efficient pairings such as optimal ate and Xate pairings
more efficient, especially together with multi–pairing technique.

As a future work, it should be considered to apply such a sparse multiplication
for the other pairings together with some twist techniques.

Acknowledgement. This research was supported by KAKENHI Grant–in–Aid
for Scientific Research (B) Number 25280047.

References

1. Lee, E., Lee, H.-S., Park, C.-M.: Efficient and generalized pairing computation on
abelian varieties. IEEE Transactions on Information Theory 55(4), 1793–1803 (2009)

2. Vercauteren, F.: Optimal pairings. IEEE Transactions on Information Theory 56(1),
455–461 (2010)

3. Nogami, Y., Sakemi, Y., Kato, H., Akane, M., Morikawa, Y.: Integer Variable χ-
based Cross Twisted Ate Pairing and Its Optimization for Barreto-Naehrig Curve.
IEICE Transactions on Fundamentals of Electronics 2009(8), 1859–1867 (2009)

4. Aranha, D.F., Karabina, K., Longa, P., Gebotys, C.H., López, J.: Faster explicit
formulas for computing pairings over ordinary curves. In: Paterson, K.G. (ed.)
EUROCRYPT 2011. LNCS, vol. 6632, pp. 48–68. Springer, Heidelberg (2011)

5. Grewal, G., Azarderakhsh, R., Longa, P., Hu, S., Jao, D.: Efficient Implementation
of Bilinear Pairings on ARM Processors. Cryptology ePrint Archive, Vol. 2012:408
(2012)

6. Barreto, P.S.L.M., Naehrig, M.: Pairing-Friendly Elliptic Curves of Prime Order. In:
Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer,
Heidelberg (2006)

7. Freeman, D., Scott, M., Teske, E.: A Taxonomy of Pairing-Friendly Elliptic Curves.
Journal of Cryptology 23, 224–280 (2006)

198 Y. Mori et al.

A Pseudo 8–Sparse Multiplication

The calculation procedure of pseudo 8–sparse multiplication becomes as follows.

Algorithm 3. Pseudo 8–sparse multiplication

Input: a, b ∈ Fq12 ,

a = (a0 + a1v + a2v
2) + (a3 + a4v + a5v

2)w, b = 1 + (b3 + b4v)w,
where aj , bk ∈ Fq2(j = 0, · · · , 5, k = 3, 4),

Output: c = ab = (c0 + c1v + c2v
2) + (c3 + c4v + c5v

2)w ∈ Fq12

D0 ← a3 × b3, D1 ← a4 × b4, S0 ← a5 × b3 ; (3m̃u)1

T0 ← S0 +D1 ; (2ã)2

T1 ← T0 × i ; (mξ)3

c0 ← MontRed(T1) ; (r̃)4

T0 ← a5 × b4 ; (m̃u)5

S0 ← S0 + T0 ; (2ã)6

T1 ← T0 × i ; (mξ)7

c0 ← c0 ⊕ a0 ; (ã)8

T1 ← T1 +D0 ; (2ã)9

c1 ← MontRed(T1) ; (r̃)10

t0 ← a3 + a4, s0 ← b4 + b3 ; (2ã)11

T1 ← t0 × s0 ; (m̃u)12

c1 ← c1 ⊕ a1 ; (ã)13

T1 ← T1 −D0 −D1 ; (4ã)14

c2 ← MontRed(T1) ; (r̃)15

T0 ← a2 × b4 ; (m̃u)16

c2 ← c2 ⊕ a2 ; (ã)17

S0 ← S0 + T0 ; (2ã)18

T1 ← T0 × i ; (mξ)19

t0 ← a0 + a3, t1,0 ← b3,0 + 1, t1,1 ← b3,1 ; (ã+ a)20

T0 ← t0 × t1 ; (m̃u)21

T0 ← T0 −D0 ; (2ã)22

T1 ← T1 + T0 ; (2ã)23

c3 ← MontRed(T1) ; (r̃)24

T1 ← a1 × b3 ; (m̃u)25

S0 ← S0 + T1 ; (2ã)26

c3 ← c3 − a0, t0 ← a0 + a4 ; (2ã)27

t1,0 ← b4,0 + 1, t1,1 ← b4,1 ; (a)28

T0 ← t0 × t1 ; (m̃u)29

T0 ← T0 −D1 ; (2ã)30

T1 ← T1 + T0 ; (2ã)31

c4 ← MontRed(T1) ; (r̃)32

t0 ← a1 + a2, s0,0 ← s0,0 + 1 ; (ã+ a)33

t0 ← t0 + a5 ; (ã)34

T1 ← s0 × t0 ; (m̃u)35

T1 ← T1 − S0 ; (2ã)36

c5 ← MontRed(T1) ; (r̃)37

t0 ← a1 ⊕ a2 ; (ã)38

c4 ← c4 − a0 ; (ã)39

c5 ← c5 − t0 ; (ã)40

Return c = (c0 + c1v + c2v
2) + (c3 + c4v + c5v

2)w41

Adaptable Ciphertext-Policy Attribute-Based

Encryption

Junzuo Lai1,2, Robert H. Deng2, Yanjiang Yang3, and Jian Weng1,2

1 Department of Computer Science, Jinan University, China
2 School of Information Systems, Singapore Management University, Singapore

{junzuolai,robertdeng,jianweng}@smu.edu.sg
3 Institute for Infocomm Research, Singapore

yyang@i2r.a-star.edu.sg

Abstract. In this paper, we introduce a new cryptographic primitive,
called adaptable ciphertext-policy attribute-based encryption (CP-ABE).
Adaptable CP-ABE extends the traditional CP-ABE by allowing a semi-
trusted proxy to modify a ciphertext under one access policy into cipher-
texts of the same plaintext under any other access policies; the proxy,
however, learns nothing about the underlying plaintext. With such
“adaptability” possessed by the proxy, adaptable CP-ABE has many real
world applications, such as handling policy changes in CP-ABE encryp-
tion of cloud data and outsourcing of CP-ABE encryption.

Specifically, we first specify a formal model of adaptable CP-ABE;
then, based on the CP-ABE scheme by Waters, we propose a concrete
adaptable CP-ABE scheme and further prove its security under our
security model.

Keywords: ciphertext-policy attribute-based encryption, adaptability,
policy change.

1 Introduction

Attribute-based encryption (ABE), e.g., [25,9,3], has thus far received enormous
attention, due to its ability in enforcing encryption/decryption capabilities de-
fined over descriptive attributes. Unlike standard public key encryption, where
encryption is performed under a public key and the ciphertext can be decrypted
by a single private key, ABE is a one-to-many public key encryption primitive,
allowing data to be encrypted with certain access policy/attributes while each
decryption key is associated with certain attributes/policy; only when the at-
tributes satisfy the access policy can a key decrypt the ciphertext successfully.

Two types of ABE are distinguished in the literature: ciphertext-policy ABE
(CP-ABE) such as [3], and key-policy ABE (KP-ABE) such as [9]. The difference
lies in that in the former, a ciphertext is generated under an access policy (also
called access structure), and decryption keys are associated with attributes; while
the latter is the other way around. While it is often possible to transform one
type of ABE into the other [8], CP-ABE appears more aligned with practice

Z. Cao and F. Zhang (Eds.): Pairing 2013, LNCS 8365, pp. 199–214, 2014.
c© Springer International Publishing Switzerland 2014

200 J. Lai et al.

where the encryptor directly specifies the access policy under which a ciphertext
can be decrypted.

In reality, a user’s access privileges are often granted based on the functional
role he/she assumes in an organization, where a role reduces to no more than
a set of attributes. In this regard, CP-ABE enables a kind of cryptographic
access control over data with respect to functional roles, rather than the usual
notion of individuals inherent to the standard public key encryption. Thus CP-
ABE represents a practically promising encryption primitive, and it has been an
active research field in the past few years. Existing research on CP-ABE in the
literature generally follows several lines. For example, since the earlier CP-ABE
scheme [3] can only attain security in the generic group model, one direction of
research is to propose CP-ABE constructions with security under a more solid
ground (e.g., in the standard model) [5]. Another line of efforts is to enable
CP-ABE schemes to accommodate more expressive and complex access policies
[14,27,16,6,7]. Still, there are also many attempts to pursue more privacy-wise
CP-ABE or variants that hide the associated access policies, besides encryption
of the payload data [22,17,12,13,11,26,23,24].

In this work, we propose yet another new variant of CP-ABE, namely adapt-
able CP-ABE. We introduce a semi-trusted party, called proxy, into the setting
of CP-ABE. Given a trapdoor, the proxy is entitled to transform a ciphertext
under one access policy into ciphertexts of the same plaintext under any other
access policies. The proxy, however, learns nothing about the plaintext during
the process of transformation. We first formulate a model for adaptable CP-
ABE, and then present a concrete construction. In fact, we can use the similar
method to obtain adaptable KP-ABE. Due to space limitations, we do not dis-
cuss adaptable KP-ABE in this paper.

Comparison with PRE. To better understand the concept of adaptable CP-ABE,
it is conducive to outline the distinctions between adaptable CP-ABE and proxy
re-encryption (PRE), or more precisely ciphertext-policy attribute-based PRE
(CP-ABPRE) [19,20,18]. PRE is a public key encryption primitive also incorpo-
rating a semi-trusted proxy which is capable of converting ciphertexts (Please
refer to Section 2 for more details on the concept of PRE). Particularly, in CP-
ABPRE [19,20,18], the proxy given a trapdoor (called re-encryption key in PRE)
issued for a set S of attributes and an access policy B, can transform a cipher-
text under access policy A to a ciphertext under another access policy B, if S
satisfies A.

The major differences between our adaptable CP-ABE and CP-ABPRE
[19,20,18] can be summarized as follows. First, in adaptable CP-ABE the proxy
is not restricted in its ability in converting ciphertexts, in that with a single trap-
door it can transform ciphertexts under any access policies and to the ones under
any other policies. In comparison, each re-encryption key held by the proxy in
CP-ABPRE is bound to a set of attributes and a destination access policy, and
it is applicable only to the source ciphertexts whose access policies are satisfied
by the set of attributes. Second, in adaptable CP-ABE the proxy’s trapdoor is
generated in a “centralized” manner by a trusted authority who is responsible for

Adaptable Ciphertext-Policy Attribute-Based Encryption 201

establishing system parameters. In contrast, re-encryption keys in CP-ABPRE
are generated in a “distributed” manner by individual users each holding a pri-
vate key associated with a set of attributes. Lastly, in CP-ABPRE, a source
ciphertext and its transformed version have different formats; the transformed
ciphertext usually expands in size, compared to the ciphertext in the “source
format” under the same access policy. This is not the case for adaptable CP-
ABE, in which no discrepancy exists between “source format” and “destination
format”, and thus there is no ciphertext size expansion.

1.1 Applications of Adaptable CP-ABE

Recall that, in CP-ABPRE, a proxy with a re-encryption key generated by a
user, only can transform the ciphertexts whose access policies are satisfied by
the user’s attributes set. In some applications, the access polices associated with
the ciphertexts across many users need to be modified; in these cases, CP-
ABPRE is cumbersome to fulfill if not impossible and adaptable CP-ABE will
show its capabilities. Below we give examples of applications that demonstrate
the genuine applicability of adaptable CP-ABE. In view of the fact that cloud
computing has been well accepted as a powerful platform for data sharing, we
especially choose to consider the scenario where CP-ABE is used to encrypt
the data outsourced to the cloud storage, to achieve confidentiality against the
cloud.

Handling Policy Changes in CP-ABE Encryption of Cloud Data. In-
deed, cloud computing enables users to outsource their data to the cloud, where
massive storage capacity is available. However, a major concern over this data
outsourcing paradigm is that the data owner who outsources his data (e.g., a
company) may not want the cloud to see the data in cleartext. It is now basi-
cally accepted that in data critical applications, a user should only outsource
encrypted data in order to ensure confidentiality against the cloud.

In practice, data accessing is often obliged to enforce fine-grained access con-
trol rules. For example, imagine that a hospital moves patient data to the cloud.
Access control rules must guarantee that a patient’s information is only allowed
to be accessed by appropriate doctors/nurses from appropriate departments.
Undoubtedly, CP-ABE is a nice tool for achieving this type of fine-grained cryp-
tographic access control over cloud data.

In such applications where CP-ABE is used for encryption of cloud data,
changes of access policies are not a rare phenomenon. For example, specifications
on a new product might be only allowed access by the engineering department
during the design and testing stage. As the product is ready to be launched in
the market, access of the product specifications will need to be transferred from
the engineering department to the marketing and sales departments. A straight-
forward application of CP-ABE would involve the data owner downloading the
encrypted data from the cloud, decrypting it to obtain the original data, re-
encrypting the data under the new access policies and uploading again. This is
a daunting task if the quantity of data involved is massive.

202 J. Lai et al.

Adaptable CP-ABE offers an effective solution by delegating the task of data
re-encryption to the cloud. More specifically, the cloud is trusted as the proxy
and is given the trapdoor for data transformation. As a result, the data owner
simply needs to instruct the cloud to re-encrypt the data by providing the new
access policies, while retaining data confidentiality against the cloud. We should
point out that it is also possible to apply CP-ABPRE to accomplish the same
task, but at a much higher price: for each old/new policy pair, the data owner
must provide a seperate re-encryption key.

Outsourcing of CP-ABE Encryption. Consider again the above scenario
of encryption of cloud data using CP-ABE, but now we focus on the situation
where the data owner uses a resource-constrained device (e.g., tablet or smart
phone) to do the data outsourcing. This is in accord with the current trend of
growing use of such low-powered devices in our daily life. An example is that a
user encrypts the photos taken with his smart phone, and uploads them to his
personal account over the cloud for sharing with his friends.

We observe that in the existing CP-ABE schemes in the literature, the encryp-
tion function cannot be deemed efficient, and an encryption operation normally
involves O(n) scalar exponentiations, where n is the number of attributes in-
volved in the access policy. This is quite a burden for resource-limited devices.
Adaptable CP-ABE would provide a good solution to this problem, inflicting
fixed computation on the weak devices by delegating the majority of the com-
putation to the cloud.

The basic idea is as follows. We first extend the original attributes of the
system with an additional single-valued dummy attribute, but no one will be
issued a private key corresponding to this dummy attribute. To generate the
ciphertext for data to be outsourced to cloud, the data owner encrypts the data
under a single-attribute access policy involving only the dummy attribute (i.e.,
only the dummy attribute satisfies the policy). The computation overhead for
this is thus constant. The data owner then sends the ciphertext together with
the intended access policy to the cloud, who then does the ciphertext conversion,
generating the desired ciphertext. It goes without saying that using CP-ABPRE
would require the data owner to provide a re-encryption key from the dummy
attribute to each intended access policy.

1.2 Organization

This paper is organized as follows. In Section 2, we provide an overview of
related work. In Section 3, some standard notations and cryptographic definitions
are highlighted. In Section 4, we describe the formal model for adaptable CP-
ABE, followed by a concrete construction together with its security analysis.
Concluding remarks are contained in Section 5.

2 Related Work

ABE and proxy re-encryption (PRE) are of obvious relevance to our work, and
we next give an overview of them, respectively.

Adaptable Ciphertext-Policy Attribute-Based Encryption 203

ABE. The notion of ABE is introduced by Sahai and Waters as an application of
their fuzzy identity-based encryption (IBE) scheme [25], where both ciphertexts
and secrete keys are associated with sets of attributes. The decryption of a
ciphertext is enabled if and only if the set of attributes for the ciphertext and
the set of attributes for the secret key overlap by at least a fixed threshold value
d. Goyal et al. [9] formulate two complementary forms of ABE: KP-ABE and
CP-ABE. Our focus in this work is CP-ABE. In a CP-ABE scheme, decryption
keys are associated with sets of attributes and ciphertexts are associated with
access policies.

The first CP-ABE construction proposed by Bethencourt et al. [3] is proven
secure under the generic group model. Later, Cheung and Newport [5] present
a CP-ABE scheme that is secure under the standard model; however, the access
policies in that scheme are restricted to be in the form of a AND combination
of different attributes. Recently, secure and more expressive CP-ABE schemes
[27,14,16,6,7] are proposed. In virtually all existing CP-ABE schemes, the size
of a ciphertext in a CP-ABE scheme is proportional to the size of its associated
access policy, and the decryption time is proportional to the number of attributes
that have been used for decryption. This has motivated some work [1,10] to
design CP-ABE schemes with faster decryption algorithms. Müller et al. [21]
and Lewko et al. [15] led another line of research, considering CP-ABE schemes
with multiple authorities, in an attempt to meet the need of a more general
framework where data are shared according to policies defined over attributes
or credentials issued across different trust domains and organizations.

Proxy Re-Encryption (PRE). Proxy re-encryption (PRE), first introduced in [4],
involves a set of users (each holding a public/private key pair for standard public-
key encryption), and a semi-trusted proxy. Let pkA and pkB be the public keys
of Alice and Bob, respectively. The proxy is given a re-encryption key rkA→B

from Alice to Bob, and can transform ciphertexts under Alice’s public key into
ciphertexts under Bob’s public key, where the procedure is intuitively depicted

as Enc(pkA,m)
rkA→B−−−−−→ Enc(pkB,m). The proxy does not learn anything about

the messages m encrypted under either key.
Later, the concept of conditional proxy re-encryption(CPRE) [28] emerged,

which strengthens PRE in such a way that a ciphertext under Alice’s public key
is generated under a condition C, and the re-encryption key from Alice to Bob is
associated with certain properties P (denoted as rk

A
P−→B

). A ciphertext for Alice

can be transferred to one for Bob, if and only if P satisfies C. Intuitively, the

procedure is Enc(pkA,m,C)
rk

A
P−→B−−−−−→ Enc(pkB,m). Most of the existing CPRE

schemes such as [28,29] can only handle keyword-based conditions, where both
C and P are a keyword. The scheme in [30] is an exception, and it manages to
process attribute-based conditions.

To implement PRE in the attribute-based cryptographic setting, Liang et al.
[19] introduce ciphertext-policy attribute-based PRE (CP-ABPRE), in which
a proxy is allowed to transform a ciphertext under a source access policy into
another ciphertext under a destination policy. At the mean time, CP-ABPRE has

204 J. Lai et al.

the flavor of CPRE, in the sense that a re-encryption key is bounded with a set S
of attributes as well as a destination access policy, and ciphertext transformation
is conditioned upon the satisfaction of S to the source access policy. Liang et
al. [19] propose a concrete construction of CP-ABPRE based on a CP-ABE
scheme [5] in which access policy is only represented as AND gates on positive
and negative attributes. Luo et al. [20] propose a CP-ABPRE scheme which
supports AND gates on multi-valued and negative attributes. Recently, Liang et
al. [18] present a CP-ABPRE scheme supporting any monotonic access policy.

Adaptable CP-ABE is similar to CP-ABPRE, in terms of the concept of ci-
phertext transformation among source/destination access policies, but they also
differ in delicate ways as shown earlier. Adaptable CP-ABE has no implication
of “conditional” transformation, and the trapdoor for ciphertext conversion is
independent of specific attributes and access policies, and entitles to transform
ciphertext under any source access policy and to any destination policy.

3 Preliminaries

If S is a set, then s
$← S denotes the operation of picking an element s uniformly

at random from S. Let z ← A(x, y, . . .) denote the operation of running an
algorithm A with inputs (x, y, . . .) and output z. A function f(λ) is negligible if
for every c > 0 there exists a λc such that f(λ) < 1/λc for all λ > λc.

3.1 Access Structures

Definition 1 (Access Structure [2]). Let {P1, . . . , Pn} be a set of parties. A
collection A ⊆ 2{P1,...,Pn} is monotone for ∀B and C, if B ∈ A, B ⊆ C, then C ∈
A. An access structure (respectively, monotone access structure) is a collection
(respectively, monotone collection) A of non-empty subsets of {P1, . . . , Pn}, i.e.,
A ⊆ 2{P1,...,Pn}\{∅}. The sets in A are called authorized sets, and the sets not
in A are called unauthorized sets.

In our context, attributes play the role of parties and we restrict our attention
to monotone access structures. It is possible to (inefficiently) realize general
access structures using our techniques by treating the negation of an attribute
as a separate attribute.

3.2 Linear Secret Sharing Schemes

Our construction will employ linear secret-sharing schemes. We use the definition
adapted from [2].

Definition 2 (Linear Secret-Sharing Schemes (LSSS)). A secret sharing
scheme Π over a set of parties P is called linear (over Zp) if

1. The shares for each party form a vector over Zp.

Adaptable Ciphertext-Policy Attribute-Based Encryption 205

2. There exists a matrix A with � rows and n columns called the share-generating
matrix for Π. For all i = 1, . . . , �, the ith row of A is labeled by a party
ρ(i) (ρ is a function from {1, . . . , �} to P). When we consider the column
vector v = (s, r2, . . . , rn), where s ∈ Zp is the secret to be shared, and
r2, . . . , rn ∈ Zp are randomly chosen, then Av is the vector of � shares of the
secret s according to Π. The share (Av)i belongs to party ρ(i).

It is shown in [2] that every linear secret-sharing scheme according to the above
definition also enjoys the linear reconstruction property, defined as follows. Sup-
pose that Π is an LSSS for the access structure A. Let S ∈ A be any authorized
set, and let I ⊂ {1, . . . , �} be defined as I = {i|ρ(i) ∈ S}. Then there exist
constants {ωi ∈ Zp}i∈I such that, if {λi} are valid shares of any secret s ac-
cording to Π, then

∑
i∈I ωiλi = s. Let Ai denotes the ith row of A, we have∑

i∈I ωiAi = (1, 0, . . . , 0). These constants {ωi} can be found in time polyno-
mial in the size of the share-generation matrix A [2]. Note that, for unauthorized
sets, no such constants {ωi} exist.

Boolean Formulas. Access structures might also be described in terms of
monotonic boolean formulas. Using standard techniques one can convert any
monotonic boolean formula into an LSSS representation. We can represent the
boolean formula as an access tree. An access tree of � nodes will result in an LSSS
matrix of � rows. We refer the reader to the appendix of [15] for a discussion on
how to perform this conversion.

3.3 Bilinear Groups

Let G be an algorithm that takes as input a security parameter λ and outputs
a tuple (p,G,GT , e), where G and GT are multiplicative cyclic groups of prime
order p, and e : G×G → GT is a map such that:

1. Bilinearity: e(ga, hb) = e(g, h)ab for all g, h ∈ G and a, b ∈ Z∗
p.

2. Non-degeneracy: e(g, h)
= 1 whenever g, h
= 1G.
3. Computable: efficient computability for any input pair.

We refer to the tuple (p,G,GT , e) as a bilinear group.

3.4 Complexity Assumption

Definition 3 (DBDH Problem). Given a group G of prime order p with gen-
erator g and elements ga, gb, gc ∈ G, e(g, g)z ∈ GT where a, b, c, z are selected
uniformly at random from Z∗

p. A fair binary coin β ∈ {0, 1} is flipped. If β = 1,

it outputs the tuple (g, ga, gb, gc, T = e(g, g)abc). If β = 0, it outputs the tu-
ple (g, ga, gb, gc, T = e(g, g)z). The Decisional Bilinear Diffie-Hellman (DBDH)
problem is to guess the value of β.

The advantage of an adversary A in solving the DBDH problem is defined as

|Pr[A(g, ga, gb, gc, T = e(g, g)abc) = 1]

−Pr[A(g, ga, gb, gc, T = e(g, g)z) = 1]|

206 J. Lai et al.

where the probability is over the randomly chosen a, b, c, z and the random bits
consumed by A. We refer to the distribution on the left-hand size as PBDH and
the one on the right as RBDH .

Definition 4 (DBDH assumption). We say that DBDH assumption holds
if all probabilistic polynomial time (PPT) adversaries have at most a negligible
advantage in solving the DBDH problem.

4 Adaptable Ciphertext-Policy Attribute-Based
Encryption

In this section, we give the formal definition of adaptable CP-ABE firstly. Then,
we present the formal security model for adaptable CP-ABE. Finally, drawing on
the CP-ABE scheme proposed byWaters [27], we propose a concrete construction
of adaptable CP-ABE and prove that it is secure in our security model.

4.1 Formal Definition of Adaptable CP-ABE

Besides Setup, KeyGen, Encrypt and Decrypt algorithms as in a traditional CP-
ABE scheme, an adaptable CP-ABE scheme also includes two additional al-
gorithms: TrapdoorGen and PolicyAdp. The authority runs the algorithm Trap-
doorGen to generate a trapdoor. Given the trapdoor, a proxy can transform a
ciphertext under an access policy into another ciphertext of the same plaintext
under any access policy using the algorithm PolicyAdp.

Formally, an adaptable CP-ABE scheme consists of the following six algo-
rithms:

Setup(λ, U) takes as input a security parameter λ and an attribute universe
description U . It outputs the public parameters PK and a master secret key
MSK. This algorithm is run by a trusted authority.

KeyGen(PK,MSK, S) takes as input the public parameters PK, the master secret
key MSK and a set of attributes S. It outputs a private key SKS correspond-
ing to S. This algorithm is run by a trusted authority.

TrapdoorGen(PK,MSK) takes as input the public parameters PK and the master
secret key MSK. It outputs a trapdoor TK. This algorithm is run by a trusted
authority and the trapdoor TK is sent to a semi-trusted proxy.

Encrypt(PK,M,A) takes as input the public parameters PK, a message M and
an access structure A. It outputs a ciphertext CT .

PolicyAdp(PK,TK, CT,A′) takes as input the public parameters PK, a trapdoor
TK, a ciphertext CT which contains an access policy A, and a new access
policy A′. It outputs a new ciphertext CT ′ associated with the access policy
A′, without changing the underlying plaintext message of CT . This algorithm
is run by a semi-trusted proxy.

Decrypt(PK, SKS , CT) takes as input the public parameters PK, a private key
SKS , and a ciphertext CT associated with an access policy A. If the set S
of attributes satisfies the access structure A, then the algorithm will decrypt
the ciphertext and return a message M ; otherwise, it outputs ⊥.

Adaptable Ciphertext-Policy Attribute-Based Encryption 207

Let (PK,MSK) ← Setup(λ, U), SKS ← KeyGen(PK,MSK, S), TK ←
TrapdoorGen(PK,MSK), CT ← Encrypt(PK,M,A) and CT ′ ← PolicyAdp
(PK,TK, CT,A′). For correctness, we require the following to hold:

1. If the set S of attributes satisfies the access structure A, then M ←
Decrypt(PK, SKS , CT);

2. The distributions of CT ′ and Encrypt(PK,M,A′) are identical.

4.2 Security Model for Adaptable CP-ABE

Given the formal definition for adaptable CP-ABE, we are now in a position to
define its security specification. We consider two types of adversaries. Type 1
adversaries who are allowed to query for any private keys that cannot be used
to decrypt the challenge ciphertext, model adversaries in a traditional CP-ABE
scheme. We also want to consider Type 2 adversaries who are equipped with a
transformation trapdoor, in order to model security against an eavesdropping
proxy. We assume that the proxy in an adaptable CP-ABE scheme is semi-
trusted. That is to say, the proxy does not collude with any user. Thus, Type 2
adversaries are not allowed to query for any private keys.

We now give the security model against Type 1 adversaries for adaptable CP-
ABE, described as a security game between a challenger and a Type 1 adversary.
The game proceeds as follows:

Setup. The challenger runs Setup to obtain the public parameters PK and a
master secret key MSK. It gives the public parameters PK to the adversary and
keeps MSK to itself.

Query Phase 1. The adversary adaptively queries the challenger for secret keys
corresponding to sets of attributes S1, . . . , Sq. In response, the challenger runs
SKSi ← KeyGen(PK,MSK, Si) and gives the secret key SKSi to the adversary,
for 1 ≤ i ≤ q.

Challenge. The adversary submits two (equal length) messages M0,M1 and
an access structures A, subject to the restriction that A cannot be satisfied by
any of the queried sets of attributes in Query phase 1. The challenger selects
a random bit β ∈ {0, 1}, sets CT = Encrypt(PK,Mβ ,A) and sends CT to the
adversary as the challenge ciphertext.

Query Phase 2. The adversary continues to adaptively query the challenger
for secret keys corresponding to sets of attributes with the restriction that none
of these satisfies A.

Guess. The adversary outputs its guess β′ ∈ {0, 1} for β.
The advantage of the Type 1 adversary in this game is defined as |Pr[β =

β′]− 1
2 | where the probability is taken over the random bits used by the challenger

and the Type 1 adversary.
Note that, a Type 1 adversary of adaptable CP-ABE can see the trans-

formed ciphertexts CT ′ of the challenge ciphertext CT ← Encrypt(PK,Mβ ,
A). The challenger does not provide the information for the adversary in the
above game, since CT ′ does not leak any additional information about Mβ .

208 J. Lai et al.

We give a brief explanation. One can easily prove that, if C ← Encrypt(PK,M ,
A), C′ ← Encrypt(PK,M , A′) are the ciphertexts of a secure CP-ABE, then given
C‖C′ simultaneously, the adversary also can not obtain any information about
M . On the other hand, adaptable CP-ABE requires that the distributions of
CT ′ and Encrypt(PK,Mβ,A

′) should be identical, hence CT ′ does not leak any
additional information about Mβ .

Definition 5. An adaptable CP-ABE scheme is secure against Type 1 adver-
saries if all PPT adversaries have at most a negligible advantage in the above
game.

We say that an adaptable CP-ABE scheme is selectively secure against Type 1
adversaries if we add an Init stage before Setup where the adversary commits
to the challenge access structure A.

The security model against Type 2 adversaries for adaptable CP-ABE is also
described as a security game between a challenger and a Type 2 adversary. The
game proceeds as follows:

Setup. The challenger runs Setup to generate a public parameters/master secret
key pair (PK, MSK) firstly. Then, it runs TrapdoorGen(PK,MSK) to obtain a
trapdoor TK. Finally, it sends (PK, TK) to the adversary and keeps MSK to
itself.

Challenge. The adversary submits two (equal length) messagesM0,M1 and an
access structures A. The challenger selects a random bit β ∈ {0, 1}, sets CT =
Encrypt(PK,Mβ,A) and sends CT to the adversary as the challenge ciphertext.

Guess. The adversary outputs its guess β′ ∈ {0, 1} for β.
The advantage of the Type 2 adversary in this game is defined as |Pr[β =

β′]− 1
2 | where the probability is taken over the random bits used by the challenger

and the Type 2 adversary.

Definition 6. An adaptable CP-ABE scheme is secure against Type 2 adver-
saries if all PPT adversaries have at most a negligible advantage in the above
game.

4.3 Proposed Adaptable CP-ABE Scheme

Based on the CP-ABE scheme proposed by Waters [27], we propose a concrete
construction of adaptable CP-ABE scheme. Inheriting from the underlying Wa-
ters CP-ABE scheme [27], our proposed adaptable CP-ABE is only selectively
secure against Type 1 adversaries and the size of the public parameters is linear
in the number of attributes in the universe.

Recently, the first CP-ABE scheme that achieved full security was proposed
by Lewko et al. [14]. Since the underlying structure of the CP-ABE scheme
presented by Lewko et al. [14] is almost identical to the underlying Waters CP-
ABE scheme [27] we use, one can adapt our construction techniques to the

Adaptable Ciphertext-Policy Attribute-Based Encryption 209

CP-ABE scheme proposed in [14] to achieve a new adaptable CP-ABE scheme,
which is (fully) secure against Type 1 adversaries. On the other hand, it is also
possible to adapt our techniques to obtain a large universe construction. In a
large universe construction, we could use all elements of Zp as attributes. To
obtain a large universe construction, we could replace the group elements hi
associated with attribute i with a function h : Zp → G based on a polynomial,
as shown in [27].

Concretely, the proposed adaptable CP-ABE scheme is as follows:

Setup(λ, U) The setup algorithm takes as input a security parameter λ and
a small universe description U = {1, 2, . . . , |U |}. It first runs G(λ) to ob-
tain a bilinear group (p,G,GT , e), where G and GT are cyclic groups
of prime order p. It then chooses g, h1, . . . , h|U| ∈ G, and α, β ∈ Zp

uniformly at random. The public parameters are published as PK =
(G,GT , e, g, g

β, e(g, g)α, h1, . . . , h|U|). The master secret key is MSK =
(α, β).

KeyGen(PK,MSK, S) The key generation algorithm takes as input the public
parameters, the master secret key and a set S of attributes. The algorithm
first randomly picks t ∈ Zp. Then, the secret key SKS = (S, K,K0,Ki) is
computed as K = gαgβt, K0 = gt, Ki = hti ∀i ∈ S.

TrapdoorGen(PK,MSK = (α, β)) The trapdoor generation algorithm takes as
input the public parameters and the master secret key. It creates the trap-
door as TK = β.

Encrypt(PK,M ∈ GT ,A) The encryption algorithm takes as input the public
parameters PK, a messageM ∈ GT to encrypt and an LSSS access structure
A = (A, ρ), where A is an �× n matrix and ρ is a map from each row Ai of
A to an attribute ρ(i).

The algorithm first chooses a random vector v = (s, v2, . . . , vn) ∈ Zn
p .

These values will be used to share the encryption exponent s. Then, for
each row Ai of A, it chooses ri ∈ Zp uniformly at random. The ciphertext
is CT = ((A, ρ), C, C′, Ci, Di), where C = M · e(g, g)αs, C′ = gs, Ci =
gβAi·vh−ri

ρ(i), Di = gri ∀i ∈ {1, 2, . . . , �}.
PolicyAdp(PK,TK = β,CT,A′ = (A′, ρ′)) The policy adaptation algorithm

takes as input the public parameters PK, the trapdoor TK, a ciphertext
CT = (A = (A, ρ), C, C′, Ci, Di) and an access structure A′ = (A′, ρ′).
With the help of the trapdoor TK, this algorithm transforms the ciphertext
CT into a ciphertext CT ′ associated with the access structure A′ = (A′, ρ′),
without changing the underlying message of CT .

Let CT = ((A, ρ), C = M · e(g, g)αs, C′ = gs, Ci = gβAi·vh−ri
ρ(i), Di =

gri ∀i ∈ {1, 2, . . . , �}), where A is an � × n matrix and v = (s, v2, . . . , vn)
∈ Zn

p is a random vector.
Let A′ be an �′ × n′ matrix. The algorithm proceeds as follows. First

choose a random vector ṽ = (s̃, ṽ2, . . . , ṽn′) ∈ Zn′
p . Then, for each row A′

i of
A′, choose r′i ∈ Zp uniformly at random. Let v′ = (s′, ṽ2, . . . , ṽn′), where

210 J. Lai et al.

s′ = s + s̃. The new ciphertext CT ′ = ((A′, ρ′), C̃, C̃′, C̃i, D̃i) is computed
as

CT ′ = ((A′, ρ′), C̃ = C · (e(g, g)α)s̃ =M · e(g, g)αs′ ,
C̃′ = C′ · gs̃ = gs+s̃ = gs

′
,

∀i ∈ {1, 2, . . . , �′} : C̃i = gβA
′
i·v′

h
−r′i
ρ′(i), D̃i = gr

′
i).

It can see that the distribution of CT ′ is the same as that generated directly
from Encrypt(PK,M , A′ = (A′, ρ′)).
Comment: Note that, although s is unknown, we show how exactly C̃i are
computed. Let the row vector A′

i = (ai,1, . . . , ai,n′). Then,

gβA
′
i·v′

= gβ(ai,1s
′+ai,2ṽ2+···+ai,n′ ṽn′)

= (gs
′
)βai,1 · gβ(ai,2ṽ2+···+ai,n′ ṽn′) = (C̃′)βai,1 · gβ(ai,2ṽ2+···+ai,n′ ṽn′).

Thus, C̃i can be computed from β, C̃′, the LSSS access structure A′ =
(A′, ρ′), the randomness ṽ2, . . . , ṽn′ and r′i, and the public parameters.

Decrypt(PK, SKS , CT) The decryption algorithm takes as input the public pa-
rameters PK, a private key SKS = (S, K, K0,Ki) for a set of attributes
S and a ciphertext CT = ((A, ρ), C, C′, Ci, Di) for an access structure
A = (A, ρ), where A is an � × n matrix. If S does not satisfy the access
structure A, it outputs ⊥. Suppose that S satisfies the access structure A
and let I ⊂ {1, 2, . . . , �} be defined as I = {i : ρ(i) ∈ S}. It computes
constant ωi ∈ Zp such that

∑
i∈I ωiAi = (1, 0, . . . , 0).

The decryption algorithm first computes:

e(C′,K)∏
i∈I(e(Ci,K0) · e(Kρ(i), Di))ωi

=
e(g, g)αse(g, g)βts∏
i∈I e(g, g)

βtAi·v·ωi
= e(g, g)αs.

The decryption algorithm can then divide out this value from C and obtain
the message M .

Obviously, the above scheme satisfies the correctness of adaptable CP-ABE. We
now state the security theorems of our adaptable CP-ABE scheme.

Theorem 1. If the CP-ABE scheme proposed in [27] is selectively secure, then
our proposed adaptable CP-ABE scheme is selectively secure against Type 1 ad-
versaries.

Proof. Recall that, Type 1 adversaries in an adaptable CP-ABE scheme, which
model adversaries in a traditional CP-ABE scheme, are allowed to possess any
private keys that cannot be used to decrypt the challenge ciphertext. Observe
that, the algorithms Setup, KeyGen, Encrypt and Decrypt constitute a traditional
CP-ABE scheme, and the scheme is same as the CP-ABE scheme proposed by
Waters [27]. Since Waters [27] has proved that the CP-ABE scheme is selectively
secure, thus, our proposed adaptable CP-ABE scheme is also selectively secure
against Type 1 adversaries. �

Adaptable Ciphertext-Policy Attribute-Based Encryption 211

Theorem 2. If DBDH assumption holds, then our proposed adaptable CP-ABE
is secure against Type 2 adversaries.

Proof. Suppose there exists a Type 2 adversary A against our proposed adapt-
able CP-ABE scheme with non-negligible advantage. We are going to construct
another PPT B that makes use of A to solve the DBDH problem with non-
negligible probability.

B is given as input a random 5-tuple (g, ga, gb, gc, T) that is either sampled
from PBDH (where T = e(g, g)abc) or from RBDH (where T is uniform and
independent in GT). Algorithm B’s goal is to output 1 if T = e(g, g)abc and
0 otherwise. Algorithm B, playing the role of challenger, runs A executing the
following steps.

Setup. B chooses random exponents β, γ1, . . . , γ|U| ∈ Z∗
p. The public parameters

PK = (G, g, gβ, e(ga, gb), h1 = gγ1 , . . . , h|U| = gγ|U|) and the trapdoor TK = β
are passed to A. It sets α = ab implicitly, which is unknown to B.
Challenge. The adversary A outputs two equal-length messages (M0,M1) and
an access structure A = (A, ρ), where A is an �× n matrix and ρ is a map from
each row Ai of A to an attribute ρ(i).

B flips a fair coin σ ∈ {0, 1} firstly. Then, for each row Ai of A, B chooses
ri ∈ Zp uniformly at random. B also chooses random v2, . . . , vn ∈ Zp and sets
v = (c, v2, . . . , vn). B computes the ciphertext CT as ((A, ρ), C =Mβ · T, C′ =
gc, Ci = gβAi·vh−ri

ρ(i), Di = gri ∀i ∈ {1, 2, . . . , �}), Note that, although c is

unknown to B, it can compute Ci from gc, β, the LSSS access structure A =
(A, ρ), the randomness v2, . . . , vn and ri, and the public parameters, as in the
PolicyAdp algorithm.

Finally, B sets CT as the challenge ciphertext and sends it to A . Obviously,
the challenge ciphertext is a valid encryption ofMβ with the correct distribution
whenever T = e(g, g)abc = e(ga, gb)c = e(g, g)αc (as is the case when the input
5-tuple is sampled from PBDH). On the other hand, when T is uniform and
independent in GT (which occurs when the input 5-tuple is sampled fromRBDH)
the challenge ciphertext CT is independent of σ in the adversary’s view.

Guess. The adversary A outputs a bit σ′. If σ′ = σ then B outputs 1 meaning
T = e(g, g)abc. Otherwise, it outputs 0 meaning T
= e(g, g)abc.

Observe that, when the input 5-tuple is sampled from PBDH (where T =
e(g, g)abc) then A’s view is identical to its view in a real attack game. On the
other hand, when the input 5-tuple is sampled from RBDH (where T is uniform
in GT) then the value of σ is information-theoretically hidden from the adver-
sary A. Thus, if A breaks our proposed adaptable CP-ABE scheme with non-
negligible advantage, then B will solve the DBDH problem with non-negligible
probability. �

5 Conclusions

In this paper, we introduced a new cryptographic primitive, called adaptable
CP-ABE, which enables a semi-trusted proxy, given a trapdoor, to transform

212 J. Lai et al.

a ciphertext under one access policy into ciphertexts under any other access
policies. We showed that adaptable CP-ABE has many interesting real world
applications. We gave the formal model of adaptable CP-ABE and proposed a
concrete construction.

In our construction, since a proxy with the trapdoor can transform a cipher-
text under one access policy into ciphertexts under any other access policies,
then the proxy colluding with any user can decrypt all ciphertexts in the sys-
tem. Hence, we require that the proxy should be semi-trusted, i.e., it does not
collude with any user in the system. On the one hand, the assumption that a
proxy is semi-trusted is reasonable and is used in many related works, such as
PREs. On the other hand, a future research direction is to construct adaptable
CP-ABE schemes, where the “adaptability” capability of the semi-trusted proxy
could be controlled flexibly, called controlled adaptable CP-ABE. In a controlled
adaptable CP-ABE, the semi-trusted proxy with a trapdoor only can transform
a ciphertext associated with an access policy A1 ∈ AS1 into a ciphertext of
the same plaintext under the access policy A2 ∈ AS2, where the access poli-
cies sets AS1,AS2 are specified by the trusted authority who setups the system
and generates the trapdoor. Our proposed scheme can be viewed as of a special
case of controlled adaptable CP-ABE, where AS1,AS2 are the sets of all access
polices. Observe that, since the authority also can generate the re-encryption
keys which is generated by the users in CP-ABPRE, one can easily construct a
special case of controlled adaptable CP-ABE, which has the same functionality
of CP-ABPRE.

Acknowledgment. The research effort of Robert H. Deng was funded through
a research grant 13-C220-SMU-005 from Singapore MOE’s AcRF Tier 1 funding
support through Singapore Management University. The work of Junzuo Lai was
supported by the National Natural Science Foundation of China (Nos. 61300226,
61272534, 61272453), the Research Fund for the Doctoral Program of Higher
Education of China (No. 20134401120017), the Guangdong Provincial Natu-
ral Science Foundation (No. S2013040014826), and the Fundamental Research
Funds for the Central Universities. The work of Jian Weng was supported by
the National Natural Science Foundation of China under Grant Nos. 61272413,
61005049, 61373158, 61133014, 61070249, 61272415, the Fok Ying Tung Educa-
tion Foundation under Grant No. 131066, the Program for New Century Excel-
lent Talents in University under Grant No. NCET-12-0680, the Opening Project
of Shanghai Key Laboratory of Integrate Administration Technologies for Infor-
mation Security under Grand No. AGK2011003, and the R&D Foundation of
Shenzhen Basic Research Project under Grant No. JC201105170617A.

References

1. Attrapadung, N., Herranz, J., Laguillaumie, F., Libert, B., de Panafieu, E., Ràfols,
C.: Attribute-based encryption schemes with constant-size ciphertexts. Theor.
Comput. Sci. 422, 15–38 (2012)

Adaptable Ciphertext-Policy Attribute-Based Encryption 213

2. Beimel, A.: Secure Schemes for Secret Sharing and Key Distribution. PhD thesis,
Israel Institute of Technology (1996)

3. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: IEEE Symposium on Security and Privacy, pp. 321–334 (2007)

4. Blaze, M., Bleumer, G., Strauss, M.: Divertible protocols and atomic proxy cryp-
tography. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 127–144.
Springer, Heidelberg (1998)

5. Cheung, L., Newport, C.C.: Provably secure ciphertext policy ABE. In: ACM Con-
ference on Computer and Communications Security, pp. 456–465 (2007)

6. Garg, S., Gentry, C., Halevi, S., Sahai, A., Waters, B.: Attribute-based encryption
for circuits from multilinear maps. IACR Cryptology ePrint Archive, 2013:128
(2013)

7. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for cir-
cuits. In: STOC, pp. 545–554 (2013)

8. Goyal, V., Jain, A., Pandey, O., Sahai, A.: Bounded Ciphertext Policy Attribute
Based Encryption. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126,
pp. 579–591. Springer, Heidelberg (2008)

9. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: ACM Conference on Computer and
Communications Security, pp. 89–98 (2006)

10. Hohenberger, S., Waters, B.: Attribute-based encryption with fast decryption.
In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 162–179.
Springer, Heidelberg (2013)

11. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. In: Smart, N.P. (ed.) EUROCRYPT 2008.
LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008)

12. Lai, J., Deng, R.H., Li, Y.: Fully secure cipertext-policy hiding CP-ABE. In: Bao,
F., Weng, J. (eds.) ISPEC 2011. LNCS, vol. 6672, pp. 24–39. Springer, Heidelberg
(2011)

13. Lai, J., Deng, R.H., Li, Y.: Expressive cp-abe with partially hidden access struc-
tures. In: ASIACCS, pp. 18–19 (2012)

14. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure func-
tional encryption: Attribute-based encryption and (Hierarchical) inner product en-
cryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–91.
Springer, Heidelberg (2010)

15. Lewko, A., Waters, B.: Decentralizing attribute-based encryption. In: Paterson,
K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 568–588. Springer, Heidelberg
(2011)

16. Lewko, A., Waters, B.: New proof methods for attribute-based encryption: Achiev-
ing full security through selective techniques. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 180–198. Springer, Heidelberg (2012)

17. Li, J., Ren, K., Zhu, B., Wan, Z.: Privacy-aware attribute-based encryption with
user accountability. In: Samarati, P., Yung, M., Martinelli, F., Ardagna, C.A. (eds.)
ISC 2009. LNCS, vol. 5735, pp. 347–362. Springer, Heidelberg (2009)

18. Liang, K., Fang, L., Wong, D.S., Susilo, W.: A ciphertext-policy attribute-based
proxy re-encryption with chosen-ciphertext security. IACR Cryptology ePrint
Archive, 2013:236 (2013)

19. Liang, X., Cao, Z., Lin, H., Shao, J.: Attribute-based proxy re-encrytpion with
delegating capabilities. In: ACM ASIACCS, pp. 276–286 (2009)

214 J. Lai et al.

20. Luo, S., Hu, J., Chen, Z.: Ciphertext policy attribute-based proxy re-encryption. In:
Soriano, M., Qing, S., López, J. (eds.) ICICS 2010. LNCS, vol. 6476, pp. 401–415.
Springer, Heidelberg (2010)

21. Müller, S., Katzenbeisser, S., Eckert, C.: Distributed attribute-based encryption.
In: Lee, P.J., Cheon, J.H. (eds.) ICISC 2008. LNCS, vol. 5461, pp. 20–36. Springer,
Heidelberg (2009)

22. Nishide, T., Yoneyama, K., Ohta, K.: Attribute-based encryption with partially
hidden encryptor-specified access structures. In: Bellovin, S.M., Gennaro, R.,
Keromytis, A.D., Yung, M. (eds.) ACNS 2008. LNCS, vol. 5037, pp. 111–129.
Springer, Heidelberg (2008)

23. Okamoto, T., Takashima, K.: Hierarchical predicate encryption for inner-products.
In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 214–231. Springer,
Heidelberg (2009)

24. Okamoto, T., Takashima, K.: Fully secure functional encryption with general re-
lations from the decisional linear assumption. In: Rabin, T. (ed.) CRYPTO 2010.
LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010)

25. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.)
EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

26. Shen, E., Shi, E., Waters, B.: Predicate privacy in encryption systems. In: Reingold,
O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 457–473. Springer, Heidelberg (2009)

27. Waters, B.: Ciphertext-policy attribute-based encryption: An expressive, efficient,
and provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi,
A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011)

28. Weng, J., Deng, R.H., Ding, X., Chu, C.K., Lai, J.: Conditional proxy re-encryption
secure against chosen-ciphertext attack. In: ACM Symposium on Information,
Computer and Communications Security, ASIACCS 2009, pp. 322–332 (2009)

29. Weng, J., Yang, Y., Tang, Q., Deng, R.H., Bao, F.: Efficient conditional
proxy re-encryption with chosen-ciphertext security. In: Samarati, P., Yung, M.,
Martinelli, F., Ardagna, C.A. (eds.) ISC 2009. LNCS, vol. 5735, pp. 151–166.
Springer, Heidelberg (2009)

30. Zhao, J., Feng, D., Zhang, Z.: Attribute-based conditional proxy re-encryption with
chosen-ciphertext security. In: IEEE GLOBECOM 2010, pp. 1–6 (2010)

Algorithms for Pairing-Friendly Primes

Maciej Grześkowiak�

Adam Mickiewicz University,
Faculty of Mathematics and Computer Science,

Umultowska 87, 61-614 Poznań, Poland
maciejg@amu.edu.pl

Abstract. Given an integer n > 1 and a square-free Δ < 0, we present
a general method of generating primes p and q such that q | Φn(p) and
q | p+1− t, where |t| ≤ 2

√
p and 4p− t2 = −Δf2 for some integers f, t.

Such primes can be used for implementing pairing-based cryptographic
systems.

Keywords: pairing-based cryptography, embedding degree, pairing-
friendly elliptic curves.

1 Introduction

Let E be an elliptic curve defined over finite field Fp, where p is a prime. Let
|E(Fp)| be the order of group of Fp-rational points of E. Given E over Fp, Hasse’s
theorem states |E(Fp)| = p + 1 − t, where |t| ≤ 2

√
p, and t ∈ Z [11], [21]. Let

q be a divisor of |E(Fp)| such that q is prime to p. The embedding degree of E
with respect to q is the smallest positive integer n such that q | pn − 1, but q
does not divide pd−1 for d | n [15]. This condition is equivalent to q > n divides
Φn(p) [18, Lemma 2.4], where Φn(x) is the nth cyclotomic polynomial; this is a
unique monic polynomial of degree ϕ(n) whose roots are the complex primitive
nth roots of unity, where ϕ is Euler’s totient function. Elliptic curves that have
large prime-order subgroups and small embedding degrees are commonly referred
to as pairing-friendly [15].

Many new cryptographic protocols have been introduced in recent years which
require generating pairing-friendly elliptic curves. For instance: one-round three-
way key exchange [17], identity-based encryption [5], identity-based signature
[10], and short signatures schemes [6]. From the security point of view it is es-
sential to find a pairing-friendly curve E over Fp such that the discrete logarithm
problems in the group E(Fp) and in the multiplicative group F∗

pn both are com-
putationally infeasible. To achieve security comparable to Advance Encryption
Standard (AES-128), that is 128-bit security, we need to find a large prime q
dividing |E(Fp)| having no less than 256 bits to make ECDLP Problem in sub-
group of order q of E(Fp) intractable. Moreover, one should find a prime p such

� The author was partially supported by the grant no. N N201 605940 from National
Science Centre.

Z. Cao and F. Zhang (Eds.): Pairing 2013, LNCS 8365, pp. 215–228, 2014.
c© Springer International Publishing Switzerland 2014

216 M. Grześkowiak

that pn has no less than 3248 bits to make the DLP Problem in F∗
pn be computa-

tionally infeasible [15]. From the implementation point of view the ratio ρ = log p
log q

should be close to 1. Now, we introduce the following definition.

Definition 1. Given n ∈ N and a square-free integer Δ < 0. Primes p and q
are pairing-friendly with respect to n and Δ if there exist integers f and t such
that

|t| ≤ 2
√
p, q | p+ 1− t, q | Φn(p), 4p− t2 = −Δf2. (1)

Given pairing-friendly primes p and q with respect to n, Δ and integers f, t as
above, then there exists an ordinary elliptic curve E over Fp having cardinality
p+1− t. The only known algorithm to find the equation of such an elliptic curve
E over Fp is to use the complex multiplication (CM) method [2], [13]. Thus,
if q is a large prime and n is a small positive integer, then a pairing-friendly
elliptic curve E over Fp can be constructed. Constructing elliptic curves with
CM method can be computationally very expensive. Let Δ < 0 be a square-free
integer, and let K = Q(

√
Δ) be quadratic field with the corresponding ring of

integers OK . Let Of = [1, fω] be an arbitrary order of conductor f of K, where

ω = 1+
√
Δ

2 for Δ ≡ 1 (mod 4) and ω =
√
Δ for Δ ≡ 2, 3 (mod 4). The CM

method constructs a curve with endomorphism ring isomorphic to a given order
Of ⊆ OK . Let D < 0 be the discriminant of the order Of , so D = f2Δ for
Δ ≡ 1 (mod 4), and D = 4f2Δ for Δ ≡ 2, 3 (mod 4). Then for any ε > 0 the
CM algorithm takesO(|D|1+ε) arithmetic operations [14]. In practice we can take
Of to be OK , which reduces the complexity of the CM method to O(|Δ|1+ε).
Given current computational power, the method can construct curves over Fp

when |D| ≤ 1012 [22]. For this reason Δ defined in (10) should be sufficiently
small to make the CM method work effectively in practice.

There are many approaches for generating pairing-friendly primes. Idea of
most presented methods is based on the observation related to the factorization
of polynomials [4], [9], [11], [13], [15], [19]. Another approach for generating
pairing-friendly primes with respect n and Δ was introduced by Cocks and
Pinch [11]. Unfortunately, their work has not been published. For the convenience
of the reader, we remind the idea of the Cocks-Pinch algorithm [15]. Let q ≡ 1
(mod n) be a prime, and let Δ < 0 be a square-free integer such that Δ is a
square modulo q. Determine a nth a primitive root of unity wn modulo q. Set
t′ ≡ wn+1 (mod q), and f ′ ≡ (t′−2)(

√
Δ)−1 (mod q). Find t ≡ t′ (mod q) and

f ≡ f ′ (mod q) such that p = 1
4 (t

2 −Δf2) is an integer and prime. Finally, find
corresponding elliptic curve E over Fp using the complex multiplication method.

In this paper, we present a variant of the Cocks-Pinch method for generat-
ing pairing-friendly curves. Namely, we slightly change the form of the prime p
in the above algorithm and we consider p depending on Δ modulo 4. We fur-
ther generate a prime q which is of the same form as the prime p. Thanks to
this approach our algorithm does not require calculation of square roots of Δ
modulo q. Our method can also be used to construct pairing-friendly composite
order groups with prescribed embedding degree associated with ordinary elliptic

Algorithms for Pairing-Friendly Primes 217

curves. However, in constructions in which the order of elliptic curves is divisible
by N , where N is a product of distinct primes congruent to 1 modulo n, it is nec-
essary that additional information about factorization N does not leak [7]. This
is required in order for pairing-based cryptosystems using elliptic curves of com-
posite order were secure [15]. Similarly to [7], a square root of Δ (mod N) leaks
in our construction, but we do not know how to use this additional information
to factor N .

Let H(K) be the ideal class group of K, and let h(K) be the number of
elements inH(K). Analysis of our algorithm shows that the Cocks-Pinch method
is a special case of our construction for generating pairing-friendly primes when
h(K) = 1 and Δ ≡ 2, 3 (mod 4). For Δ ≡ 1 (mod 4) our algorithm generates
primes of the form q = a2+ab+ 1−Δ

4 b2, p = t2+ tf+ 1−Δ
4 f2, where a, b, t, f ∈ Z.

Such primes have not been considered so far. Our variant of the Cocks-Pinch
algorithm produced primes with ρ ≈ 2.

The remaining part of the paper is organized as follows. In Section 2 we
present the algorithm for generating pairing-friendly primes with respect to n
and Δ. A detailed analysis of our algorithm is presented in Section 3. In Section
4 we construct paring-friendly elliptic curves E over Fp with embedding degree
n with respect to N , where N divides |E(Fp)|. A numerical example is given in
Section 5.

2 The Main Algorithm

Throughout this paper, let n be a positive integer, and let Δ < 0 be a square-
free integer, K = Q(

√
Δ) is the quadratic field with the corresponding ring of

integers OK = {a + bω : a, b ∈ Z}, and Of = [1, fω], f ∈ Z is any order

of K, where ω = 1+
√
Δ

2 when Δ ≡ 1 (mod 4) and ω =
√
Δ for Δ ≡ 2, 3

(mod 4). By N(α) = αα = (a+ bω)(a+ bω) we denote the norm of any element
α = a+ bω ∈ OK with respect to Q. That is

N(α) = a2 + ab+ 1−Δ
4 b2 if Δ ≡ 1 (mod 4),

N(α) = a2 −Δb2 if Δ ≡ 2, 3 (mod 4).

We describe the algorithm which generates pairing-friendly primes p and q with
respect to n and Δ. The algorithm consists of the following two procedures.

Procedure. FindPrimeQ(n,Δ, γ). Given n ∈ N, a square-free Δ ∈ Z, Δ < 0.
Fix K = Q(

√
Δ) with the corresponding ring of integers OK . Let γ = f +

gω ∈ OK be such that |f |, |g| ≤ n, N(γ) ≡ 1 (mod n); this procedure finds
α = a+ bω ∈ OK , N(α) ≡ 1 (mod n), such that N(α) = q is a prime.

step 1. Choose u, v at random in Z.
step 2. Compute a = nu+ f and b = nv + g.
step 3. Compute q = N(a+ bω).
step 4. If q is a prime, then terminate the procedure. Otherwise go to step 1.
step 5. Return α = a+ bω, q.

218 M. Grześkowiak

Procedure. FindPrimeP(α, q,Δ). Fix K = Q(
√
Δ) with the corresponding

ring of integers OK . Given α = a+ bω ∈ OK such that q = N(α) ≡ 1 (mod n)
is a prime; this procedure finds β ∈ OK such that N(β) ≡ wn (mod q), where
wn is a primitive nth root of unity modulo q, and N(β) is a prime.

step 1. Compute a primitive nth root of unity wn modulo q.
step 2. Compute r ≡ a(−b)−1 (mod q).
step 3. Compute k and l modulo q.

If Δ ≡ 1 (mod 4),

k ≡ (1− (1 + ωn)r)(1 − 2r)−1 (mod q), l ≡ (ωn − 1)(1− 2r)−1 (mod q).

If Δ ≡ 2, 3 (mod 4)

k ≡ (1− ωn)2
−1 (mod q), l ≡ (1 + ωn)(2r)

−1 (mod q).

step 4. Choose s, t at random in Z.
step 5. Compute c = qs+ k and d = qt+ l.
step 6. Compute p = N(c+ dω). If p is a prime, then terminate the procedure.

Otherwise go to step 3.
step 7. Return β = c+ dω, p.

Remark 1. Computing wn modulo q can be easily done with the randomized
algorithm. The algorithm fails with probability 1/n, and otherwise return wn

(mod q). Its expected running time is O(log4 q) bits operations.

We are now in a position to introduce our main algorithm.

Algorithm 1. (n,Δ, γ, wn)

step 1. α, q := FindPrimeQ(n,Δ, γ).
step 2. β, p := FindPrimeP(α, q,Δ).
step 3. Return p, q, α, β.

Theorem 1. Given n ∈ N, and a square-free integer Δ < 0. Fix K = Q(
√
Δ)

with the corresponding ring of integers OK . Then Algorithm 1 finds α, β ∈ OK ,
β = c + dω such that N(α) = q, N(β) = p are pairing-friendly primes with
respect to n and Δ.

3 Analysis of the Main Algorithm

3.1 Proof of Theorem 1

Lemma 1. Let Δ < 0 be a square-free integer. Fix K = Q(
√
Δ) with the cor-

responding ring of integers OK . Let α = a+ bω ∈ OK be such that q = N(α) is
a prime that does not divide Δ. Then there exists an integer r ≡ ω (mod (α)).
Further, the map

ψ : OK/αOK −→ Z/qZ

defined by
(e + fω) + αOK �−→ (e + fr) + qZ

is the ring isomorphism. Moreover, r ≡ a(−b)−1 (mod q).

Algorithms for Pairing-Friendly Primes 219

Proof. Since q = N(α) is a prime, the ideal αOK is a prime ideal, and OK/αOK

is isomorphic to Z/qZ . Let

φ2 : OK −→ OK/αOK

be a homomorphism. Let

φ1 : OK/αOK −→ Z/qZ

be an isomorphism. Then

φ = φ1 ◦ φ2 : OK −→ Z/qZ

is a homomorphism with ker(φ) = αOK . We show that there exists r ∈ Z such
that r ≡ ω (mod (α)). Consider a homomorphism

φ/Z
: Z −→ Z/qZ.

Since αOK ∩ Z = qZ, so ker(φ/Z
) = qZ. Hence, Z/ ker(φ/Z

) is isomorphic to
Z/qZ and the number of elements of im(φ/Z

) is equal to q, so φ/Z
is surjective.

Therefore, there exists r ∈ Z such that

r + αOK = ω + αOK (2)

and r is uniquely modulo q. We show that φ1 = ψ. Let β ∈ OK , β = e+ fω. We
have

φ2(β) = β + αOK ,

so by (2)

φ1(β + αOK) = φ1 ◦ φ2(β) = φ(β) = e+ fφ(ω) =

= e+ fφ1(ω + αOK) = e+ fφ1(r + αOK) =

= φ1((e + fr) + αOK) = (e + fr) + qZ.

Hence φ1 = ψ. We compute r (mod q). Since α divides r − ω, so there exists
γ = c+ dω ∈ OK such that

αγ = ac− 1−Δ
4 bd+ (bc+ (a+ b)d)ω = r − ω if Δ ≡ 1 (mod 4),

αγ = ac+Δbd+ (bc+ ad)ω = r − ω if Δ ≡ 2, 3 (mod 4).
(3)

Let

Mα =

[
a − 1−Δ

4 b
b a+ b

]
if Δ ≡ 1 (mod 4),

Mα =

[
a Δb
b a

]
if Δ ≡ 2, 3 (mod 4),

and let B = [c, d]T , Cr = [r,−1]T . We can write (3) as

MαB = Cr. (4)

220 M. Grześkowiak

By Cramer’s rule, (4) has a unique solution B, given by

c =
detA1

q
, d =

detA2

q
,

where Ak, k = 1, 2 is the matrix formed by replacing the kth column of Mα by
Cr. Clearly,

c =
r(a+ b)− 1−Δ

4 b

q
, d =

−a− br

q
if Δ ≡ 1 (mod 4),

c =
ra+Δb

q
, d =

−a− rb

q
if Δ ≡ 2, 3 (mod 4).

Since (a+ b, q) = (a, q) = (b, q) = 1 and c, d ∈ Z, so

r ≡ (1−Δ)b
4(a+b) (mod q), r ≡ a(−b)−1 (mod q) if Δ ≡ 1 (mod 4),

r ≡ −Δba−1 (mod q), r ≡ a(−b)−1 (mod q) if Δ ≡ 2, 3 (mod 4).
(5)

This finishes the proof.

Lemma 2. Let Δ < 0 be a square-free integer. Fix K = Q(
√
Δ) with the cor-

responding ring of integers OK . Let α = a + bω ∈ OK , where q = N(α) ≡ 1
(mod n) is a prime that does not divide Δ. Let wn be a primitive nth root of
unity modulo q, and let r ≡ a(−b)−1 (mod q). Let k, l be the solution of the
system of linear equations over Z/qZ{

ψ(1 + αOK)k + ψ(ω + αOK)l = 1 + qZ
ψ(1 + αOK)k + ψ(ω + αOK)l = wn + qZ,

(6)

where ψ is defined in (2). Let δ = k + lω ∈ OK , then N(δ) ≡ ωn (mod q).
Moreover, k ≡ (1−(1+ωn)r)(1−2r)−1 (mod q), l ≡ (ωn−1)(1−2r)−1 (mod q)
when Δ ≡ 1 (mod 4), and k ≡ (1 − ωn)2

−1 (mod q) and l ≡ (1 + ωn)(2r)
−1

(mod q) if Δ ≡ 2, 3 (mod 4).

Proof. Firstly, we show that (6) has a solution in Z/qZ. Since ω+ω = 1 if Δ ≡ 1
(mod 4), ω + ω = 0 when Δ ≡ 2, 3 (mod 4), so

det

[
ψ(1 + αOK) ψ(ω + αOK)
ψ(1 + αOK) ψ(ω + αOK)

]
=

{
(1− 2r) + qZ if Δ ≡ 1 (mod 4),
(−2r) + qZ if Δ ≡ 2, 3 (mod 4).

On the other hand, it is an elementary check that

ω − ω =

{
−
√
Δ if Δ ≡ 1 (mod 4),

−2
√
Δ if Δ ≡ 2, 3 (mod 4).

(7)

Moreover,

ψ((ω − ω) + αOK) =

{
(1− 2r) + qZ if Δ ≡ 1 (mod 4),
(−2r) + qZ if Δ ≡ 2, 3 (mod 4).

(8)

Algorithms for Pairing-Friendly Primes 221

Since (Δ, q) = 1, by (8), (7) we obtain{
(1 − 2r) + qZ
= 0 + qZ if Δ ≡ 1 (mod 4),
(−2r) + qZ
= 0+ qZ if Δ ≡ 2, 3 (mod 4).

Consequently, (6) has a unique solution in Z/qZ. By Cramer’s rule, the solution
of (6) are given by k ≡ (1− (1+ωn)r)(1−2r)−1 (mod q), l ≡ (ωn−1)(1−2r)−1

(mod q) when Δ ≡ 1 (mod 4), and k ≡ (1 − ωn)2
−1 (mod q) and l ≡ (1 +

ωn)(2r)
−1 (mod q) ifΔ ≡ 2, 3 (mod 4). Let δ = k+lω. We show that N(δ) ≡ ωn

(mod q). By (6),

ψ((k + lω) + αOK) = 1 + qZ,

ψ((k + lω) + αOK) = wn + qZ,

so ψ(N(k + lω) + αOK) = wn + qZ. This finishes the proof.

We are now in a position to prove Theorem 1

Proof. Let p = N(β) be a prime computed in step 6 of procedure FindPrimeP,
where β = c+dω ∈ OK is computed in step 5. Let a prime q = N(α), be output
from procedure FindPrimeQ. We show that primes p and q are pairing friendly
with respect to n and Δ. Since β is the root of x2 − Tr(β)x +N(β), so

Tr(β)2 − 4N(β) = d2Δ, |Tr(β)| ≤ 2
√
p.

We show that q divides N(β) + 1 − Tr(β). Since c ≡ k (mod q) and d ≡ l
(mod q), by (6)

ψ(β + αOK) = ψ((c+ dω) + αOK) = (k + lr) + qZ = 1 + qZ.

Hence ψ((β − 1) + αOK) = 0 + qZ, so ψ(N(β − 1) + αOK) = 0 + qZ. On the
other hand, it is an elementary check that N(β − 1) = N(β) + 1 − Tr(β), so q
divides N(β) + 1− Tr(β). Now, we show that q divides Φn(p). By (6),

ψ(β + αOK) = ψ((c+ dω) + αOK) = wn + qZ,

hence ψ(N(β) + αOK) = wn + qZ, and so ψ(Φn(N(β)) + αOK) = 0 + qZ.
Consequently, p and q are pairing-friendly with respect to n and Δ. This finishes
the proof.

Remark 2. Let Δ < 0 be a square-free integer, and n ∈ N. Let q = N(α),
p = N(β) be pairing-friendly primes with respect to n and Δ, where α, β ∈ OK ,
β = c+ dω. It is well known that for every f | d there exists an elliptic curve E
over Fp with complex multiplication by an order Of = [1, fω] ⊆ K such that q
divides

|E(Fp)| = p+ 1− 2c− d if Δ ≡ 1 (mod 4),
|E(Fp)| = p+ 1− 2c if Δ ≡ 2, 3 (mod 4).

For more details we refer the reader to [11], [23]. Moreover, if Δ < 1012, then E
over Fp can be effectively constructed via the CM method.

222 M. Grześkowiak

Remark 3. Fix n ∈ N and K = Q(
√
Δ), Δ < 0. Let q = N(α), α = a+ bω ∈ OK

be the output of procedure FindPrimeQ. The system of linear equations over
Z/qZ {

ψ(1 + αOK)u + ψ(ω + αOK)v = 1 + qZ
ψ(1 + αOK)u + ψ(ω + αOK)v = wn + qZ,

has a solution u, v in Z/qZ, where ψ is defined in (2). Moreover, u ≡ (r−(wn(1−
r))(−1 + 2r)−1 (mod q), v ≡ (wn − 1)(−1 + 2r)−1 (mod q) if Δ ≡ 1 (mod 4),
and u ≡ (wn + 1)2−1 (mod q), v ≡ (wn − 1)(2r)−1 (mod q) when Δ ≡ 2, 3
(mod 4), where r ≡ a(−b)−1 (mod q). The proof is similar to that of Lemma 2.
Let β = c + dω, where c ≡ u (mod q), d ≡ v (mod q) be such that p = N(β)
is a prime. Then p and q are pairing-friendly with respect to n and Δ. Indeed,
ψ(β+αOK) = 1+ qZ, ψ(β+αOK) = wn+ qZ, so ψ(N(β−1)+αOK) = 0+ qZ,
and ψ(N(β)+αOK) = wn+qZ. Hence ψ(Φn(N(β))+αOK) = 0+qZ. Moreover,
q divides |E(Fp)| = N(β − 1). Consequently, step 3 of procedure FindPrimeP
can be constructed as follows.

step 3’. Compute k and l modulo q.
If Δ ≡ 1 (mod 4),

k′≡(r − (wn(1− r))(−1 + 2r)−1 (mod q), l′≡(wn − 1)(−1 + 2r)−1 (mod q).

If Δ ≡ 2, 3 (mod 4)

k′ ≡ (wn + 1)2−1 (mod q), l′ ≡ (wn − 1)(2r)−1 (mod q).

Remark 4. Note that, the primes generated by procedure FindPrimeP with
step 3’ instead of step 3 correspond to the primes that are generated by the
Cocks-Pinch method [15] for Δ ≡ 2, 3 (mod 4).

Remark 5. Let H(K) be the ideal class group of K = Q(
√
Δ), where Δ < 0, and

let h(K) be the number of elements in H(K). Fix a class X0 ∈ H(K) containing
principal ideals. Note that, procedure FindPrimeQ finds α ∈ OK that generates
a prime ideal q ∈ X0 such that N(q) = q. Now, let h(K) = 1. A prime q
= 2
which does not divide Δ is of the form

a2 + ab+ 1−Δ
4 b2 if Δ ≡ 1 (mod 4),

a2 −Δb2 if Δ ≡ 2, 3 (mod 4)
(9)

for some a, b ∈ Z if and only if (Δq) = 1 (see, [16, Theorem 1.25, page 185]).

Assume that q ≡ 1 (mod n) is of the form (9). There exist a + bω ∈ OK such
that N(a+ bω) = q. Moreover, there exist e+ fω ∈ OK such that N(a+ bω) ≡
N(e + fω) (mod n), where a ≡ e (mod n), b ≡ f (mod n), |e| ≤ n, |f | ≤ n.
By the above, if h(K) = 1 every set of parameters output by the Cocks-Pinch
method is also output by our algorithm. It is known that for square-free Δ < 0,
h(K) = 1 for the nine values Δ = −1,−2,−3,−7,−11,−19,−47,−67,−163.

Algorithms for Pairing-Friendly Primes 223

Remark 6. Remarks 4 and 5 shows that the Cocks-Pinch method [15] is a special
case of our construction when h(K) = 1 and Δ ≡ 2, 3 (mod 4). When h(K) > 1
then the Cocks-Pinch method generates a larger set of primes q than our method
does. On the other hand, if q ≡ 1 (mod n) and (Δq) = 1, then r ≡

√
Δ (mod q),

where Δ ≡ 2, 3 (mod 4) (or r ≡ (1 +
√
Δ)/2 (mod q), when Δ ≡ 1 (mod 4))

can be computed in step 1 of procedure FindPrimeP. For this reason , every
such a prime q can be input to procedure FindPrimeP. Remark 3 shows that
the Cocks-Pinch algorithm is a special of our method in this case. However, in
the Cocks-Pinch method is easier to choose a prime q that have low Hamming
weight or a prime q that satisfy other security properties.

Remark 7. The Cocks-Pinch method finds a prime p that lie in the proper order
Z[
√
Δ] ⊂ OK when Δ ≡ 1 (mod 4). In our method, a prime p is obtained as a

norm of an algebraic integer β ∈ OK that need not lie in Z[
√
Δ]. For this reason,

procedure FindPrimeP reaches a slightly larger set of primes p when h(K) = 1.

4 Composite Order Elliptic Curves

Let N be a composite positive integer. In [7], the Cocks-Pinch method was gen-
eralized by Boneh, Rubin and Silverberg. The authors constructed an algorithm
which generates an ordinary elliptic curve E over a finite field Fp such that N
divides |E(Fp)| and embedding degree of E with respect to N is n. Our method
can be used for finding such curves too. We begin with the following definition.

Definition 2. Given n ∈ N and a square-free integer Δ < 0. A prime p and
a positive integer N are pairing-friendly with respect to n and Δ if there exist
integers f and t such that

|t| ≤ 2
√
p, N | p+ 1− t, N | Φn(p), 4p− t2 = −Δf2. (10)

Our algorithm utilizes the following procedure.

Procedure. FindPrimeP’(αi, qi, Δ,m). Fix K = Q(
√
Δ) with the correspond-

ing ring of integers OK . Given αi = ai + biω ∈ OK such that qi = N(αi) ≡ 1
(mod n) is a prime; this procedure finds β ∈ OK such that N(β) ≡ wn (mod N),
and N(β) is a prime, where N =

∏m
i=1 qi, wn ≡ wni (mod qi), where wni is a

primitive nth root of unity modulo qi, i = 1, . . . ,m.

step 1. Compute a primitive nth root of unity wni modulo qi for i = 1, . . . ,m.
step 2. For 1, . . . ,m compute ri ≡ ai(−bi)−1 (mod qi).
step 3. Apply the Chinese Remainder Theorem to find r (mod N) a solution

of the system of linear equations r ≡ ri (mod qi), 1 ≤ i ≤ m.
step 4. For 1, . . . ,m find a primitive nth root of unity wni (mod qi) for 1 ≤

i ≤ k.
step 5. Apply the Chinese Remainder Theorem to find wn (mod N) a solution

of the system of linear equations wn ≡ wni (mod qi), 1 ≤ i ≤ m.

224 M. Grześkowiak

step 6. Compute k and l modulo N ,
If Δ ≡ 1 (mod 4),

k ≡(1− (1 + ωn)r)(1 − 2r)−1 (mod N), l ≡(ωn − 1)(1− 2r)−1 (mod N).

If Δ ≡ 2, 3 (mod 4)

k ≡ (1 − ωn)2
−1 (mod N), l ≡ (1 + ωn)(2r)

−1 (mod N).

step 7. Choose s, t at random in Z, and compute β = c+dω, where c = Ns+k
and d = Nt+ l.

step 8. Compute p = N(β). If p is a prime, then terminate the procedure.
Otherwise go to step 6.

step 9. Return β = c+ dω, p, N .

Algorithm 2. (n,m,Δ, γ)

step 1. For 1, . . . ,m using procedure FindPrimeQ(n,Δ, γ) find αi = ai+biω ∈
OK such that N(αi) = qi, N(αi) ≡ 1 (mod n), where qi are distinct primes.

step 2. FindPrimeP’(αi, qi, Δ,m).
step 3. Return β = c+ dω, p, N .

Theorem 2. Given n,m ∈ N, and a square-free integer Δ < 0. Fix K = Q(
√
Δ)

with the corresponding ring of integers OK . Then Algorithm 2 finds αi, β ∈ OK ,
N(αi) is a prime, 1 ≤ i ≤ m, and β = c + dω such that p = N(β), N =∏m

i=1N(αi) are pairing-friendly with respect to n and Δ.

Proof. Let p = N(β) be a prime computed in step 8 of procedure FindPrimeP’,
where β = c+ dω ∈ OK is computed in step 7. Let qi = N(αi), i = 1, . . . ,m be
outputs from procedure FindPrimeQ. Let N =

∏m
i=1 qi. We show that a prime

p and a positive integer N are pairing friendly with respect to n and Δ. Since β
is the root of x2 − Tr(β)x+N(β), so

Tr(β)2 − 4N(β) = d2Δ, |Tr(β)| ≤ 2
√
p.

We show that N divides N(β − 1) = N(β) + 1 − Tr(β). Since qi
= qj , i
= j,
by the Chinese Remainder Theorem and Lemma 1 we have an isomorphism of
rings

OK/(
m∏
i=1

αi)OK &
m⊕
i=1

OK/(αiOK) &
m⊕
i=1

Z/(qiZ) & Z/(NZ). (11)

Let r (mod N) and wn (mod N) be computed in step 3 and step 5 of procedure
FindPrimeP’ respectively. Let k (mod N) and l (mod N) be computed in step
6 of procedure FindPrimeP’. By Lemma 2, ki ≡ k (mod qi) and li ≡ l (mod qi)
are the solution of the system of linear equations over Z/qiZ

{
ψ(1 + αiOK)ki + ψ(ω + αiOK)li = 1 + qiZ
ψ(1 + αiOK)ki + ψ(ω + αiOK)li = wni + qiZ,

(12)

Algorithms for Pairing-Friendly Primes 225

for 1 ≤ i ≤ m. Hence, by (11), (12)

β + (

m∏
i=1

αi)OK = c+ dω + (

m∏
i=1

αi)OK �→

�→ ((c+ dω) + α1OK , . . . , (c+ dω) + αmOK) �→
�→ ((c+ dr1) + q1Z, . . . , (c+ drm) + qmZ) =

= ((k1 + l1r1) + q1Z, . . . , (km + lmrm) + qmZ) =

= (1 + q1Z, . . . , 1 + qmZ) �→ 1 +NZ.

Hence (β − 1) + (
∏m

i=1 αi)OK maps to 0 +NZ under (11), and consequently N
divides N(β − 1). Now, we show that N divides Φn(N(β)). By (11), (12),

β + (

m∏
i=1

αi)OK = c+ dω + (

m∏
i=1

αi)OK �→

�→ ((c+ dω) + α1OK , . . . , (c+ dω) + αmOK) �→
�→ ((c+ dψ(ω + α1OK) + q1Z, . . . , (c+ dψ(ω + αmOK)) + qmZ) =

= ((k1 + l1ψ(ω + α1OK)) + q1Z, . . . , (km + lmψ(ω + αmOK)) + qmZ) =

= (wn1 + q1Z, . . . , wnm + qmZ) �→ wn +NZ.

HenceN(β)+(
∏m

i=1 αi)OK maps town+NZ under (11),Φn(N(β))+(
∏m

i=1 αi)OK

maps to 0 +NZ under (11), so N divides Φn(N(β)). Consequently, p and N are
pairing-friendly with respect to n and Δ. This finishes the proof.

Remark 8. Given pairing-friendly integers p and N with respect to n, Δ and
β ∈ OK , an elliptic curve E over Fp with embedding degree n such that N
divides |E(Fp)| = p + 1 − Tr(β) can be constructed using the CM method for

K = Q(
√
Δ).

Remark 9. As pointed out in [7], every construction of pairing-friendly curves
will leak wn (mod N) a nth root of unity modulo N , by the definition of embed-
ding degree and the existence of efficient point counting algorithms. Anyone can
compute c, d and k, l mod N from p, N and E using Cornacchia’s algorithm. In
this way a square root ofΔ (mod N) forΔ ≡ 2, 3 (mod N), and r ≡ (1+

√
Δ)/2

(mod N) when Δ ≡ 1 (mod N), is revealed from k, l, N and E. Such additional
information can be used to factor N , but we do not know how to do it. The
algorithm presented in [7] has similar properties.

Remark 10. From the security point of view factorization of the curve order
|E(Fp)| should be computationally infeasible. By Remark 9, a square root r

of Δ (mod N), for Δ ≡ 2, 3 (mod N), and r ≡ (1 +
√
Δ)/2 (mod N) when

Δ ≡ 1 (mod N) is leaked in our construction. Note that, if one can choose
r′
≡ ±r (mod N) such that r′2 ≡ r2 (mod N), one could use r′, r to factor N
for Δ ≡ 2, 3 (mod N). We do not know how to find such a square root r′ of Δ
moduloN . Moreover, our construction computes r (mod N) using wn (mod N),

226 M. Grześkowiak

so this r does not leak extra information beyond that leaked by wn (mod N).
In [7], method for computing a square root of Δ (mod N) knowing just a nth
root of unity modulo N was given. However, this method works only for Δ < 0
such that

√
Δ ∈ Q(e2πi/n), and takes at least O(ϕ(Δ)) multiplication. For this

reason, the algorithm may be impractical for large Δ.

Remark 11. The number ρ = log p/ logN is approximately 2. From implemen-
tation point of view ordinary elliptic curves of composite order should have
embedding degrees and the ratio ρ chosen to minimize ρ · n [15].

5 An Illustrative Example

5.1 Case Δ ≡ 1 (mod 4)

To demonstrate our ideas, we have implemented our algorithm. For this purpose,
integers n and Δ are chosen randomly. Let n = 119 and Δ = −79, so K =

Q(
√
−79), and OK = {a + b 1+

√−79
2 : a, b ∈ Z}. Let f = 65, g = 73, so

γ = 65 + 73 1+
√−79
2 . It is an elementary check N(γ) = f2 + fg + 20g2 ≡ 1

(mod 119). Procedure FindPrimeQ has generated α = a+ b 1+
√−79
2 such that

q = N(α) is a 314-bits prime ,where

q = 228904809582860022525361075739081121431865073975264232389720859907

45876555823064438862876171491≡ 1 (mod 119),

a = 31748511241079110435916592268101932047369992571≡ 65 (mod 119)

b = 32293378804541847510319849609613288028925359950≡ 73 (mod 119),

Let

w119 = 2289048095828600225253610757390811214318650739752642323897208

5990745876555823064438862876171491 (mod q),

be the primitive 119th root of unity modulo q. Procedure FindPrimeP has

generated k, l ∈ Z and β = c+ d1+
√−79
2 such that p = N(β) is a 641-bits prime,

where

p = 48056536506392842840862648334289553646883334897025710896604601072967

0479564014632510419817605947730799802607065625696155207116179331324962

7545320452829855522330991593544900093669185131511295217 ≡ w119 (mod q),

c = 54525982251461629057207938532700643346630378736885189302890661837299

1798595021183278977907964753 ≡ k (mod q),

d = 46134543703577257692684515502035115495988163444076944001521593717756

0979975268402299352287625296 ≡ l (mod q),

k = 18778760474038238763748911127119854173014117225744158532548640585836

637811090701185131756020460,

l = 353581787005253187612300354218891209615148649024097523577421736264344

8858807113522094764195476.

Algorithms for Pairing-Friendly Primes 227

The ρ-value is 2.041. Moreover, for every f |d there exists an elliptic curve E
over Fp with complex multiplication by an order Of = [1, fω] ⊆ K such that q
divides |E(Fp)| = p+ 1− 2c− d, and q divides Φ119(p).

5.2 Case Δ ≡ 3 (mod 4)

Let us fix n = 339 and Δ = −93, so K = Q(
√
−93), and OK = {a + b

√
−93 :

a, b ∈ Z}. Let f = 193, g = 203, so γ = 193 + 203
√
−93. It is an elementary

check N(γ) = f2+93g2 ≡ 1 (mod 339). Procedure FindPrimeQ has generated
α = a+ b

√
−93 such that q = N(α) is a 320-bits prime ,where

q = 18705285257870027473846006982562795616921295345270888843962983083

04795024365330049795438909449737≡ 1 (mod 339),

a = 141374036746142424036445475728028394395855531773≡ 193 (mod 339)

b = 141061334464381402818274148821619006790989667584≡ 203 (mod 339),

Let

w339 = 1870528525787002747384600698256279561692129534527088884396298308

304795024365330049795438909449737 (mod q),

be the primitive 339th root of unity modulo q. Procedure FindPrimeP has
generated k, l ∈ Z and β = c+ d

√
−93 such that p = N(β) is a 653-bits prime,

where

p = 22534308956817616576212217488269644446047448212017544947775436167853

74348151690676311930801578494578918495357357542296134917219692870559

5563446652197803273280483326613775217518952560520122262211521 ≡ w339 (mod q),

c = 436287511911929869196649021526362739606444216942964479124222833993525

38947306372062790616506401298 ≡ k (mod q),

d = 148941935089803574765557365911767295215747916392026811525344908609967

81008168253346792526973833263 ≡ l (mod q),

k = 606595098091923729819086092741844041725442400173403571307422308342253

386903780917495521589057347,

l = 180049382847133824486353170338277258972988489751305896176040270286321

5837610942998224454607685104.

The ρ-value is 2.040. Moreover, for every f |d there exists an elliptic curve E
over Fp with complex multiplication by an order Of = [1, fω] ⊆ K such that q
divides |E(Fp)| = p+ 1− 2c, and q divides Φ339(p).

Acknowledgements. The author thank Sorina Ionica, Steven Galbraith and
anonymous reviewers of the conference for valuable suggestions and comments
on the paper.

228 M. Grześkowiak

References

[1] Agrawal, M., Kayal, N., Saxena, N.: Primes is in P. Annals of Mathematics 160(2),
781–793 (2004)

[2] Atkin, A., Morain, F.: Elliptic curves and primality proving. Technical Report
RR-1256, INRIA, Projet ICSLA (June 1990)

[3] Bach, E., Shallit, J.: Algorithmic Number Theory. Efficient Algorithms, vol. I.
MIT Press (1996)

[4] Preneel, B., Tavares, S. (eds.): SAC 2005. LNCS, vol. 3897. Springer, Heidelberg
(2006)

[5] Boneh, D., Franklin, M.K.: Identity-based encryption from the Weil pairing. SIAM
J. Comput. 32(3), 586–615 (2003)

[6] Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. Journal
of Cryptology 17(4), 297–319 (2004)

[7] Boneh, D., Rubin, K., Silverberg, A.: Finding composite order ordinary elliptic
curves using the Cocks-Pinch method. Journal of Number Theory 131, 832–841
(2011)

[8] Borevich, Z., Shafarevich, I.: Number Theory. Academic Press (1966)
[9] Brezing, F., Weng, A.: Elliptic curves suitable for pairing based cryptography.

Designs, Codes and Cryptography 37(1), 133–141 (2005)
[10] Cha, J.C., Cheon, J.H.: An Identity-Based Signature from Gap Diffie-Hellman

Groups. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 18–30. Springer,
Heidelberg (2002)

[11] Cocks, C., Pinch, R.: Identity-based cryptosystems based on the Weil pairing
(2001) (unpublished manuscript)

[12] Cox, D.A.: Primes of the Form x + ny: Fermat, Class Field Theory, and Complex
Multiplication. John Wiley & Sons, New York (1989)

[13] Dupont, R., Enge, A., Morain, F.: Building curves with arbitrary small MOV
degree over finite prime fields. Journal of Cryptology 18(2), 79–89 (2005)

[14] Enge, A.: The complexity of class polynomial computation via floating point ap-
proximations. Math. Comput. 78(266), 1089–1107 (2009)

[15] Freeman, D., Scott, M., Teske, E.: A taxonomy of pairing-friendly elliptic curves.
J. Cryptology 23(2), 224–280 (2010)

[16] Fröhlich, A., Taylor, M.: Algebraic number theory. Cambridge University Press
(2000)

[17] Joux, A.: A one round protocol for tripartite Diffie-Hellman, J. Cryptology 17(4),
263–276 (2004)

[18] Lenstra, A.K.: Using cyclotomic polynomials to construct efficient discrete loga-
rithm cryptosystems over finite fields. In: Boyd, C., Simpson, L. (eds.) ACISP.
LNCS, vol. 7959, pp. 126–138. Springer, Heidelberg (2013)

[19] Miyaji, A., Nakabayashi, M., Takano, S.: New Explicit conditions of elliptic curve
traces for FR-reduction. IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences 84(5), 1234–1243 (2001)

[20] Narkiewicz, W.: Elementary and Analytic Theory of Algebraic Numbers. Springer
(2004)

[21] Silverman, J.: The Arithmetic of Elliptic Curves. Springer (1985)
[22] Sutherland, A.V.: Computing Hilbert class polynomials with the chinese remain-

der theorem. Math. Comput. 80(273), 501–538 (2011)
[23] Watherhouse, W.C.: Abelian varietes over finite fields. Annales Scientifiques de

l’É. N. S. 4e série 2(4), 521–560 (1969)

PandA: Pairings and Arithmetic

Chitchanok Chuengsatiansup1, Michael Naehrig2, Pance Ribarski3,
and Peter Schwabe4,�

1 Technische Universiteit Eindhoven
c.chuengsatiansup@tue.nl

2 Microsoft Research
michael@cryptosith.org

3 Ss. Cyril and Methodius University in Skopje
pance.ribarski@finki.ukim.mk

4 Radboud University Nijmegen
peter@cryptojedi.org

Abstract. This paper introduces PandA, a software framework for Pair-
ings and Arithmetic. It is designed to bring together advances in the effi-
cient computation of cryptographic pairings and the development and
implementation of pairing-based protocols. The intention behind the
PandA framework is to give protocol designers and implementors easy
access to a toolbox of all functions needed for implementing pairing-based
cryptographic protocols, while making it possible to use state-of-the-art
algorithms for pairing computation and group arithmetic. PandA offers
an API in the C programming language and all arithmetic operations
run in constant time to protect against timing attacks. The framework
also makes it easy to consistently test and benchmark the lower level
functions used in pairing-based protocols.

As an example of how easy it is to implement pairing-based proto-
cols with PandA, we use Boneh-Lynn-Shacham (BLS) signatures. Our
PandA-based implementation of BLS needs only 434640 cycles for signa-
ture generation and 5832584 cycles for signature verification on one core
of an Intel i5-3210M CPU. This includes full protection against timing
attacks and compression of public keys and signatures.

Keywords: Cryptographic pairings, benchmarking, API design, BLS
signatures.

1 Introduction

Since the late 1990s and early 2000s, when Ohgishi, Sakai, Kasahara [46,51,52]
and Joux [39,40] presented the first constructive uses of cryptographic pairings,
many pairing-based cryptographic protocols have been proposed. Early work

� This work was supported by the European Commission under ICT COST Ac-
tion IC1204 TRUDEVICE and by the Netherlands Organisation for Scientific
Research (NWO) under grant 639.073.005. Permanent ID of this document:
775a51985db9972bde7bd2acddf1d2a2. Date: November 3, 2013.

Z. Cao and F. Zhang (Eds.): Pairing 2013, LNCS 8365, pp. 229–250, 2014.
© Springer International Publishing Switzerland 2014

230 C. Chuengsatiansup et al.

such as the identity-based encryption scheme by Boneh and Franklin [18] and
the short signature scheme by Boneh, Lynn and Shacham [19], were followed
by a flood of papers presenting more and more pairing-based schemes with ex-
citing, new cryptographic functionalities. Examples include schemes for hierar-
chical identity-based encryption [38,29], attribute-based encryption [50], systems
for non-interactive zero-knowledge proofs [35,34], and randomizable proofs and
anonymous credentials [10].

In a highly related—but often somewhat independent—line of research, the
performance of pairing computation was drastically improved. Milestones in
this line of research were the construction of various families of pairing-friendly
curves (for an overview, see [28]), many optimizations for the pairing algorithm
including denominator elimination in the Miller loop [7], faster algorithms to
compute the final exponentiation [56], and the introduction of loop-shortening
techniques [36], that lead to the notion of optimal pairings [60]. Recently, sev-
eral papers presented high-speed software that computes 128-bit secure pairings
for various Intel and AMD processors [45,17,5,43], and for ARM processors with
NEON support [53]. These efforts reduced the time required to compute a pairing
at the 128-bit security level on current processors to below 0.5 ms.

Unfortunately, these advances in pairing performance do not immediately
speed up pairing-based protocols. The reason is that protocols need much more
than just fast pairings. They need fast arithmetic in all involved groups, fast
hashing into elliptic-curve groups, fast multi-scalar multiplication (and multi-
exponentiation), or specific optimizations for computing products of pairings.
This means that, even if authors of speed-record papers for pairing computation
make their software available, this software is typically not “complete” from a
protocol designer’s point of view, and does not necessarily include these other
operations; and it is often not easy to use when it comes to prototyping a new
pairing-based protocol to evaluate its practical performance. Also, once a pro-
tocol implementation has settled for one pairing library, it typically requires a
significant effort to switch to another software or library.

Furthermore, as Scott points out in [54], which optimizations to the pairing
computation or other arithmetic operations are most useful, strongly depends on
the pairing-based protocol that is being implemented. Pairings are used in such
protocols in different flavors, where in some scenarios pairing computation is the
dominant cost in the overall protocol and in others the large number of non-
pairing operations may be the bottleneck (see, for example, [48]). If the protocol
contains many more group exponentiations than it has pairing computations, in
some cases it might even make sense to choose different pairing-friendly curves
to allow faster group operations at the cost of a slightly more expensive pairing
(see the ratios of group exponentiation and pairing costs in [20]). In an imple-
mentation that has been tailored for high-speed pairings only, it is often difficult
to account for such trade-offs.

This paper introduces PandA, a software framework that intends to address
the above concerns by making improvements in pairing (and more generally
group-arithmetic) performance easily usable for protocol designers. The project

PandA: Pairings and Arithmetic 231

is inspired by the eBACS benchmarking project that defines APIs for various
typical cryptographic primitives and protocols (such as hash functions, stream
ciphers, public-key encryption, and cryptographic signatures). PandA can be
seen as a generalization of eBACS to lower-level functions in the elliptic-curve
and pairing setting. We are currently discussing a possible inclusion of PandA
into eBACS with the editors of the eBACS project.

We encourage submissions of implementations of all the underlying functions
to extend the implementation portfolio and to obtain consistent benchmark-
ing as shown in the eBACS project. In particular, we hope that implementors
of pairings will be motivated to submit more complete libraries that allow the
implementation of full pairing-based protocols. We will make all software de-
scribed in this paper available at http://panda.cryptojedi.org and place it in
the public domain to maximize reusability of our results.

Type-1, Type-2 and Type-3 Pairings. Currently our reference implemen-
tation of the PandA API only implements a particular set of parameters for
Type-3 pairings, but the API is designed to support arbitrary pairing-friendly
curves. However, Section 2 explains how the API supports also Type-1 pairings.
Until recently the standard approach to implementing high-security (e.g., 128-bit
secure) Type-1 pairings was using supersingular curves over binary or ternary
fields. However, advances on solving discrete-logarithm problems in multiplica-
tive groups of small-characteristic fields by Joux in [41], by Göloğlu, Granger,
McGuire, and Zumbrägel in [31], by Barbulescu, Gaudry, Joux, and Thomé in [6],
and by Adj, Menezes, Oliveira, and Rodŕıguez-Henŕıquez in [1] have raised seri-
ous concerns about the security of such constructions. Granger commented that
he does not “think the coffin has been firmly nailed shut just yet!” 1, and it
is indeed not clear that all small-characteristic pairings are broken, but there
is a strong consensus that pairings on curves over small-characteristic fields are
not recommended anymore. We are therefore planning to include a reference
implementation of Type-1 pairings that uses a 1536-bit supersingular curve with
embedding degree 2 over a large-characteristic field. Even with serious optimiza-
tion effort the resulting pairing computation (and also group arithmetic) will
be very slow, but this simply reflects the cost of protocols that need Type-1
pairings.

We follow Chatterjee and Menezes stating in [24] that “Type 2 pairings are
merely inefficient implementations of Type 3 pairings, and appear to offer no
benefit for protocols based on asymmetric pairings from the point of view of
functionality, security, and performance”. Thus, we do not explicitly support
Type-2 pairings, but it would be straight-forward to include Type-2 pairings in
PandA (the only difference from an API perspective is missing hashing into the
second group of pairing arguments).

The Type-3 pairing setting in this paper is as follows. The pairing is a non-
degenerate, bilinear function e : G1 ×G2 → G3, where G1 and G2 are groups of
prime order r consisting of rational points on an ordinary, pairing-friendly elliptic

1 See http://ellipticnews.wordpress.com/2013/05/22/
joux-kills-pairings-in-characteristic-2/

http://panda.cryptojedi.org
http://ellipticnews.wordpress.com/2013/05/22/joux-kills-pairings-in-characteristic-2/
http://ellipticnews.wordpress.com/2013/05/22/joux-kills-pairings-in-characteristic-2/

232 C. Chuengsatiansup et al.

curve E defined over a finite field Fp of prime characteristic p. The elliptic curve
E has a small embedding degree k, which means that the group G3 is the group
of r-th roots of unity in the multiplicative group F∗

pk , i.e. all three groups have
prime order r.

Arithmetic in Non-pairing Groups. PandA also has an API for arithmetic
in groups that do not support efficient computation of pairings (like non-pairing-
friendly elliptic curves). If protocols do not need efficient pairing computation
they can choose from a much larger pool of groups in which the DLP is hard.
When choosing from this larger pool one can typically pick groups with more
efficient arithmetic. The group API supports all functions that are also supported
for each of the three groups in the pairing setting. Our reference implementation
of this API uses the group of the twisted Edwards curve that is also used for
Ed25519 signatures [12,13]. However, this paper focuses on the description of the
pairing setting in PandA.

The Importance of Constant-Time Algorithms.Aside from attacks against
the hard problems that the security of modern cryptography is based on, major
threats to cryptographic software are side-channel attacks. In particular timing
attacks (that can even be carried out remotely in many cases) prove to be a
very powerful attack tool. See [47,59], [22], [26], [61] for some examples of timing
attacks against cryptographic software.

One could argue that a framework which is designed to evaluate the perfor-
mance of cryptographic protocols should not pay attention to these issues, but
rather keep the API simple, and add suitable timing-attack protection only for
“real-world” software. We disagree for two reasons. First, once some pieces of un-
protected cryptographic software have been written and publicized, it is almost
impossible to ensure that it does not end up in some real-world software. Second,
and more importantly, protecting software against timing-attacks does not add
a constant overhead; the cost highly depends on protocol design, and algorithm
and parameter choices made on a high level. For example, the completeness of
the group law on Edwards curves [15,11] makes it easy to protect group addition
against timing attacks. It is possible to protect Weierstrass-curve point addition
against timing attacks (see Section 3) but it involves a significant overhead.

Optimizing performance of unprotected implementations of cryptographic
protocols may thus lead to wrong decisions that are very hard to correct later.
PandA acknowledges this fact by offering timing-attack protected (constant-
time) versions of all arithmetic operations. For operations that do not involve
any secret data (such as signature verification) there are possibly faster non-
constant-time versions of all group-arithmetic operations. These unprotected
versions of functions have to be chosen explicitly; the default is the constant-
time versions.

Related Work. There exist various cryptographic libraries that expose low-
level functionality such as group arithmetic and pairings through their API.
However, the API that gives access to this low-level functionality is typically
tailored to suit the specific needs of the higher-level primitives of the library. It

PandA: Pairings and Arithmetic 233

is usually not designed for efficient implementation of arbitrary new protocols.
Some libraries that use group arithmetic even decide to not expose the low-level
functionality through the API, because this functionality was never written to
be used outside the specific needs of the higher-level protocols. See, for example,
the high-level API of NaCl [16]. Two notable examples of cryptographic libraries
with a convenient API for pairings and group arithmetic are RELIC [4] and
Miracl [23].

A library which has been explicitly designed for the use in arbitrary pairing-
based protocols is the PBC library [42]. This careful design is the reason that it is
still the preferred library for the implementation of various protocols; despite the
fact that it does not offer state-of-the-art performance and (by default) no high-
security curves. The PandA API is designed with the same usage profile as PBC
in mind. However, the reference implementation of the PandA API presented in
this paper offers state-of-the art performance with a curve choice that offers 128
bits of security. Furthermore, PandA is designed as a framework that supports
(and encourages!) submissions by various designers to keep reflecting the state-
of-the-art in group-arithmetic and pairing performance.

Another framework for easy implementation of cryptographic protocols is
Charm [3]. Charm offers a high-level Python API and uses multiple crypto-
graphic libraries to achieve good performance. For pairing-based cryptography
it uses the PBC library. Charm is a higher-level framework than PandA; we see
PandA not in competition to Charm but rather hope that Charm will even-
tually include some of PandA’s high-performance pairing and group-arithmetic
implementations to speed up protocols implemented in its high-level API.

Organization of the Paper. Section 2 explains the PandA API. Section 3
gives details of our reference implementation of this API and reports benchmark
results of all arithmetic operations. Section 4 considers an example that shows
how easy it is to implement pairing-based protocols that achieve state-of-the-art
performance using the PandA API.

2 PandA API and Functionality

The API of PandA is inspired by the API of eBACS, which means in partic-
ular that the API is also for the C programming language. There are various
advantages of using C. It is the language most commonly used for speed-record-
setting cryptographic software (often combined with assembly), so a C API
makes it easy to integrate fast software in PandA. Furthermore, protocols that
need group arithmetic, pairings, and, for example, a hash function or a stream
cipher, can easily combine software from PandA with software that is tested and
benchmarked in eBACS.

In the eBACS API all functions are within the crypto namespace, i.e. all func-
tion names begin with crypto . Similarly, all functions and data types related
to arithmetic in groups that support efficient bilinear-pairing computation are
in the bgroup namespace (for “bilinear group”); the API for group arithmetic
without pairings uses the group namespace.

234 C. Chuengsatiansup et al.

2.1 PandA Data Types

The functionality that is tested and benchmarked in PandA is on a lower level
in the design of cryptographic protocols. In the eBACS project, complete cryp-
tographic primitives and protocols are benchmarked, while PandA benchmarks
arithmetic operations that are meant to be used to implement cryptographic
protocols. This has consequences for the data type of inputs and outputs. In
eBACS, all functions receive inputs as byte arrays (C data type unsigned char),
the length of these arrays is specified in arguments of type unsigned long long.
Outputs are again written to byte arrays. A typical implementation of a cryp-
tographic protocol in eBACS first converts the input byte arrays to an internal
representation for fast computation that depends on the architecture, then per-
forms all computations in this representation, and then transforms the output
to a unique representation as a byte array. These transformations typically con-
tribute only little overhead to the cost of a cryptographic protocol if they are
done only at the beginning and the end of the protocol. Protocols implemented
using the PandA API typically need a sequence of functions from the PandA
API and we clearly want to avoid transformations at the beginning and the end
of each function. Implementations of the PandA API therefore define 4 data
types—for elements of the three groups G1, G2 and G3 and for scalars (modulo
the group order)—in a file called api.h. These data types (struct in C) are
called bgroup g1e, bgroup g2e, bgroup g3e, and bgroup scalar. The API pro-
vides two functions, one is used to convert an element of G1, G2, G3, or a scalar
to a unique byte array of fixed length (pack), the other one converts such a byte
array back to a group element or scalar (unpack). Implementations of the PandA
API furthermore specify the size of packed elements in api.h:

#define BGROUP_G1E_PACKEDBYTES 32
#define BGROUP_G2E_PACKEDBYTES 64
#define BGROUP_G3E_PACKEDBYTES 384
#define BGROUP_SCALAR_PACKEDBYTES 32

indicating that packed elements of G1 need 32 bytes, packed elements of G2

need 64 bytes, etc. From this file, PandA automatically generates the header file
panda bgroup.h that defines all functions of the API. Implementations of Type-1
pairings omit the implementation of G2 and instead include a line

#define BGROUP_TYPE1

in the file api.h. For the group G1, the unpack and pack functions are

int bgroup_g1e_unpack(bgroup_g1e *r, const unsigned char b[BGROUP_G1E_PACKEDBYTES]);

void bgroup_g1e_pack(unsigned char r[BGROUP_G1E_PACKEDBYTES], const bgroup_g1e *b);

Following eBACS convention, the unpack function returns an integer value, which
is zero whenever a valid byte array is received that can be unpacked to a group
element. On input of an invalid byte array that does not correspond to a packed
group element, the function returns a non-zero integer. In the following, we
mostly describe the API for arithmetic in G1 as an example, Equivalent functions
exist for G2 and G3.

PandA: Pairings and Arithmetic 235

2.2 PandA Constants

For each of the three groups, a PandA implementation has to define two con-
stants: a generator and the neutral element. For the group G1 these are called
bgroup g1e base and bgroup g1e neutral. Each implementation needs to en-
sure that the pairing evaluated at bgroup g1e base and bgroup g2e base gives
bgroup g3e base as result. Furthermore, each PandA implementation has to
define two constants of type bgroup scalar: namely bgroup scalar zero and
bgroup scalar one for the element zero and the element one in the ring of inte-
gers modulo the order r of the groups G1, G2, and G3.

2.3 Comparing Group Elements

One way to compare two group elements for equality is obviously to use the
bgroup g1e pack function on both of them and compare the resulting byte arrays
for equality. This is typically not the most efficient way to compare equality
(except if packing of elements is required anyway). For example, consider two
elliptic-curve points in projective coordinates. Conversion to a unique byte array
requires transformation to affine coordinates, i.e., two inversions and several
multiplications. Comparison for equality only needs a few multiplications. The
API therefore has a comparison function

int bgroup_g1e_equals(const bgroup_g1e *a, const bgroup_g1e *b);

which returns 1 if the two elements are equal and 0 if they are not.
As explained in the introduction, this function must be guaranteed to not leak

timing information about the two arguments. For cases where none of the two
inputs is secret, there is a function

int bgroup_g1e_equals_publicinputs(const bgroup_g1e *a, const bgroup_g1e *b);

which behaves the same way but is not guaranteed to not leak timing information
and may be faster than the constant-time version.

2.4 Addition and Doubling

In concrete implementations of pairings, the groups G1 and G2 are typically
additive groups, while the group G3 is a multiplicative group. Hence, the core
operations for group arithmetic are additions and doublings in G1 and G2 and
multiplications and squarings in G3. It makes sense to treat all three groups
as abstract abelian groups and therefore use a common notation for the group
operation in all of them. Many papers that treat a pairing as a black box use mul-
tiplicative notation for G1, G2, and G3. Instead, the PandA API uses additive
notation following the crypto scalarmult API of the SUPERCOP benchmark-
ing framework used in eBACS.

Addition of two elements, doubling, and negation (computing the inverse of
an element) are done through the functions:

236 C. Chuengsatiansup et al.

void bgroup_g1e_add(bgroup_g1e *r, const bgroup_g1e *a, const bgroup_g1e *b);
void bgroup_g1e_double(bgroup_g1e *r, const bgroup_g1e *a);
void bgroup_g1e_negate(bgroup_g1e *r, const bgroup_g1e *a);

Note that the return value is always written to the first argument pointer (as in
the eBACS API and also, for example, in the GMP API [30]). Note also that the
implementation needs to ensure that the addition and doubling functions work
for all elements of the group as inputs and that no timing information leaks
about these inputs or the output. As before, there are also potentially faster
non-constant-time versions of these functions:

void bgroup_g1e_add_publicinputs(bgroup_g1e *r, const bgroup_g1e *a,
const bgroup_g1e *b);

void bgroup_g1e_double_publicinputs(bgroup_g1e *r, const bgroup_g1e *a);
void bgroup_g1e_negate_publicinputs(bgroup_g1e *r, const bgroup_g1e *a);

2.5 Scalar Multiplication

The default function for performing a scalar multiplication is simply

void bgroup_g1e_scalarmult(bgroup_g1e *r, const bgroup_g1e *a, const bgroup_scalar *s);

This function can be made much faster when multiplying a fixed base point that
is known at compile time. This potentially faster version is supported for the
generator bgroup g1e base through

void bgroup_g1e_scalarmult_base(bgroup_g1e *r, const bgroup_scalar *s);

Another improvement can be implemented for multi-scalar multiplication, i.e.
whenever a sum

∑m−1
i=0 siPi of several scalar multiples needs to be computed for

m scalars s0, . . . , sm−1 and m group elements P0, . . . , Pm−1. Such computations
are supported through the below function, in which the last (unsigned long
long) argument specifies the number m of scalar multiplications to be performed
in the sum.

void bgroup_g1e_multiscalarmult(bgroup_g1e *r, const bgroup_g1e *a,
const bgroup_scalar *s, unsigned long long alen);

Again, all group elements have to be supported as inputs, constant-time behavior
has to be ensured by implementations, and the API also supports non-constant-
time (publicinputs) versions of the functions. The input alen is considered
public also for the constant-time version.

2.6 Hashing to G1 and G2

Many protocols require hashing of arbitrary bit strings to group elements in G1

and G2, which is also supported by the PandA API. The corresponding function
for hashing into G1 is:

void bgroup_g1e_hashfromstr(bgroup_g1e *r, const unsigned char *a,
unsigned long long alen);

PandA: Pairings and Arithmetic 237

As for the previous functions, there is also a non-constant-time (publicinputs)
version of this function. Due to the different ways in which the constant-time and
non-constant-time functions are computed, it can be the case that the hashed
values obtained by evaluating each version on the same input bit string are
different. It is not necessary to insist that both versions compute the same result,
because we expect that throughout a protocol, the same input string to a hash
function is always either public or private. Therefore, one can consistently select
the right version of the function and thus take advantage of faster non-constant-
time algorithms.

2.7 Arithmetic on Scalars

Various functions are supported for arithmetic on scalars modulo the group or-
der, which are required in various protocols (for example for ECDSA signatures).
Specifically these functions are the following:

void bgroup_scalar_setrandom(bgroup_scalar *r);
void bgroup_scalar_add(bgroup_scalar *r, const bgroup_scalar *s, const bgroup_scalar *t);
void bgroup_scalar_sub(bgroup_scalar *r, const bgroup_scalar *s, const bgroup_scalar *t);
void bgroup_scalar_negate(bgroup_scalar *r, const bgroup_scalar *s);
void bgroup_scalar_mul(bgroup_scalar *r, const bgroup_scalar *s, const bgroup_scalar *t);
void bgroup_scalar_square(bgroup_scalar *r, const bgroup_scalar *s);
void bgroup_scalar_invert(bgroup_scalar *r, const bgroup_scalar *s);
int bgroup_scalar_equals(const bgroup_scalar *s, const bgroup_scalar *t);

Arithmetic on scalars is typically not the performance bottleneck in pairing-
based protocols; furthermore we do not expect significant speedups for non-
constant-time versions of scalar arithmetic. Therefore, the API does not include
publicinputs versions of functions for arithmetic on scalars.

2.8 Pairings and Products of Pairings

Finally, the API function for computing a pairing is

void bgroup_pairing(bgroup_g3e *r, const bgroup_g1e *a, const bgroup_g2e *b);

Some protocols need—or can make use of—the product of several pairings (for
an example see BLS signatures in Section 4). Computing the product of two
pairings can be significantly faster than computing two independent pairings
and then multiplying the results. One reason is that the final exponentiation has
to be done only once, another reason is that squarings inside the Miller loop can
be shared between the two pairings. To support these important speedups, the
PandA API includes a function

void bgroup_pairing_product(bgroup_g3e *r, const bgroup_g1e *a, const bgroup_g2e *b,
unsigned long long alen);

3 PandA Reference Implementation

This section describes our reference implementation of the API functions
from Section 2. The implementation provides a 128-bit secure, Type-3 pairing
framework.

238 C. Chuengsatiansup et al.

3.1 Choice of Parameters

At the 128-bit security level, the most suitable choice of pairing-friendly curve
is a Barreto-Naehrig curve [8] over a prime field of size roughly 256 bits. We
use the 254-bit curve E = E2,254 that has been proposed in [49] and has also
been used in [5]. The curve parameter u = −(262+255+1) yields 254-bit primes
p = p(u) = 36u4 + 36u3 + 24u2 + 6u+ 1 and r = r(u) = 36u4 + 36u3 + 18u2 +
6u + 1, and E : y2 = x3 + 2 over Fp. Since the embedding degree is k = 12,
the implementation needs to provide the field extension Fp12 . This extension is
implemented in the standard way as a tower Fp ⊂ Fp2 ⊂ Fp6 ⊂ Fp12 .

As usual, the elliptic-curve groups are G1 = E(Fp) and G2 is the p-eigenspace
of the p-power Frobenius in the r-torsion group E(Fp12)[r], which is represented
by an isomorphic group G′

2 = E′(Fp2)[r] on a sextic twist E′ of E over Fp12 .
Whenever we work with elements in G2, we make use of their representation as
elements in G′

2, i.e. they are curve points with coefficients in Fp2 and arithmetic
is actually arithmetic on E′ over Fp2 .

3.2 Algorithms

Packing and Unpacking. To pack elements of the groups G1 and G2, we use
the usual way of point compression on elliptic curves. For elliptic-curve arith-
metic, points are in Jacobian coordinates. To pack a point, it is first transformed
to affine coordinates. The packed representation is the 32-byte array containing
the point’s 254-bit affine x-coordinate together with the least significant bit of
its y-coordinate in one of the remaining two free bits. The other free bit is used
to represent the point at infinity.

Given such a byte array, the unpacking algorithm recovers the x-coordinate
and solves the curve equation for the y-coordinate, choosing the right square
root according to the least significant bit given in the array. The core of this
operation is a square root computation, for which we use different algorithms in
G1 and G2. Since p ≡ 3 mod 4, in G1, we use a(p+1)/4 to compute the square
root of a ∈ Fp. The unpack algorithm in G2 uses [2, Algorithm 9] to compute
the square root. After obtaining a point on the curve, it needs to be checked
whether it has order r, i.e. whether it is in the correct subgroup.

The elements of G3 are kept as elements of F∗
p12 . The packing algorithm con-

structs a unique byte array composed of the twelve Fp-coefficients of the unique
Fp12 -element in G3. The unpack algorithm simply converts the byte array back
to an Fp12 -element and checks that the order of the element is r. At the time of
writing this paper, the implementation does not compress pairing values. How-
ever, this will be changed. Pairing values can be compressed to one third the
length of an Fp12 -element by using the techniques described in [55,32,44,5].

Comparison. To compare elements of the groups G1 and G2, we need to com-
pare points that are represented in (projective) Jacobian coordinates. The stan-
dard way of comparing these redundant representations is to multiply through
by the respective powers of the Z-coordinate. This does not need inversions, in

PandA: Pairings and Arithmetic 239

contrast to a conversion to affine coordinates. Comparison in the group G3 can
directly compare Fp12-elements or the respective compressed representations.

Hashing to G1 and G2. The standard non-constant-time algorithm to hash an
arbitrary string to a point on an elliptic curve is the “try-and-increment” method
introduced in [19]. The message is concatenated with a counter and hashed by a
cryptographic hash function to an element of the underlying finite field. If this
element is a valid x-coordinate, compute one of the corresponding y coordinates;
otherwise increase the counter and repeat the procedure. We use this method
for non-constant-time hashing to G1 and G2.

For constant-time hashing to G1 and G2 we use the algorithm described in [27]
which is based on the algorithm by Shallue and van der Woestijne described
in [57]. The conditional branches in the algorithm (in particular choosing be-
tween one out of three possible solutions) are implemented through constant-
time conditional-copy operations.

We do not yet include the indistinguishable hashing described in [27]. This
would require carrying out two independent hashing operations to the curve
(e.g., by using two different cryptographic hash functions) and then adding the
results.

Group Addition.We represent elements of G1 and G2 in Jacobian coordinates.
For non-constant-time addition we use the addition formulas by Bernstein and
Lange that take 11 multiplications and 5 squarings2. If the inputs happen to be
one of the special cases that are not handled by the formulas we use conditional
branches to switch to doubling or to returning the point at infinity. Doubling
uses the formulas by Lange that take 5 squarings and 2 multiplications3.

Constant-time complete addition on a Weierstrass curve is not easy to do effi-
ciently. There exist no complete formulas [21, Theorem 1]. The unified formulas
proposed in [37, 5.5.2] can handle doublings but they achieve this by moving the
special cases to other points (specifically, addition of points of the form (x1, y1)
and (x2,−y1) with x1
= x2). Here, we evaluate two sets of formulas and use
constant-time conditional copies to choose between the two outputs. We do that
with the addition and doubling formulas described above. Note that protocols
are typically not bottlenecked by additions but rather by scalar multiplications.
Constant-time scalar-multiplication can use much faster dedicated addition as
long as we can be sure that scalars are smaller than the group order. This is also
compatible with the GLV/GLS decomposition described in the next paragraph.

Scalar Multiplication. For the scalar multiplication algorithms implemented
in PandA for each of the three groups, we distinguish between constant-time
algorithms and their more efficient counterparts public inputs. For each case,
there are three algorithms: general scalar multiplication, scalar multiplication of
a fixed base point, and multi-scalar multiplication.

2 http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html
#addition-add-2007-bl

3 http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html
#doubling-dbl-2009-l

http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl
http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl
http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l
http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l

240 C. Chuengsatiansup et al.

Scalar multiplication of a fixed base point that is known at compile time is
done by precomputing 512 multiples of that point in a table and then using
these to compute the scalar multiple. The method we use is described in detail
by Bernstein et al. [12,13, Section 4]. Since we do not expect a significant speed-
up by moving from the constant-time to a variable-time version, we also use the
constant-time algorithm in the function on public inputs.

The standard case of scalar multiplication uses efficient endomorphisms on
the BN curve by splitting the scalars via 2-dimensional GLV in G1 and 4-
dimensional GLS decomposition in G2 and G3. See the work by Bos, Costello,
and Naehrig [20] for details. In G1, we slightly differ from the method in [20].
After the scalar decomposition in the constant-time function, we save a few ad-
ditions by using a fixed signed window of size 5 and two additions per lookup,
instead of the table with window size 2 and one addition. The function on public
inputs uses a signed sliding window of size 5. The constant-time algorithms in G2

and G3 are as described in [20], the variable-time algorithms use signed sliding
windows of size 4.

The variable-time algorithm for multi-scalar multiplication first applies the
GLV/GLS scalar decomposition. For small batch sizes it then uses joint-signed-
sliding-window scalar multiplication; for larger batch sizes (> 16 for G1 and > 8
for G2 and G3) we use Bos-Coster scalar multiplication (described in [25, Section
4]). For the constant-time version, due to the slow complete addition routine,
the function currently simply carries out each scalar multiplication separately
and adds them together at the end.

For the group G3, it seems worthwhile to implement exponentiations of com-
pressed values using the methods of Stam and Lenstra [58]. We are planning to
consider this optimization.

Pairing Computation. The pairing algorithm computes the optimal ate pair-
ing on the same BN curve as [5]. Unlike [5] we do not use standard projective
coordinates but Jacobian coordinates as in [45]. We use lazy reduction for arith-
metic in the extension fields as described in [5]. The final exponentiation im-
plements the same approach as [17], we use the cyclotomic squarings from [33,
Section 3.1], but we do not use the compressed squarings described in [5, Section
5.2].

We are planning to continue optimizing pairing computation by experimenting
with standard projective coordinates, a final exponentiation with compressed
squarings [5], and faster low-level arithmetic.

Low-Level Arithmetic. The low-level arithmetic in Fp and arithmetic on
scalars are implemented in AMD64 assembly. We use Montgomery representation
for elements in Fp; scalars are represented in “standard” form because in scalar
multiplication we need access to the binary representation. Modular reduction
of scalars uses Barrett reduction [9].

We have not yet implemented inlined arithmetic in Fp2 in assembly. We are
planning to include this optimization and expect significant performance im-
provements for pairing computation and for arithmetic in G2 and G3.

PandA: Pairings and Arithmetic 241

We also have a compatible implementation of the field arithmetic entirely
written in C to support other platforms. We will continue to optimize the soft-
ware with assembly implementations for other platforms, in particular ARM
processors with NEON support.

3.3 Performance

We benchmarked our software (with Fp arithmetic implemented in assembly)
on one core of an Intel Core i5-3210M processor with Turbo Boost and Hy-
perthreading disabled. For each function we carried out 100 computations on
random inputs. The median and quartiles of the cycle counts measured in these
experiments are reported in Tables 1, 2, 3, and 4.

Table 1. Cycle counts for arithmetic operations in G1 on Intel Core i5-3210M

API function 25% quartile median 75% quartile

bgroup g1e unpack 39140 39184 39212

bgroup g1e pack 39512 39548 39568

bgroup g1e hashfromstr (59 bytes) 198780 198908 198964

bgroup g1e add 6052 6080 6100

bgroup g1e double 1204 1216 1224

bgroup g1e negate 36 36 40

bgroup g1e scalarmult 346852 347024 347180

bgroup g1e scalarmult base 128468 128596 128696

bgroup g1e multiscalarmult
(n = 2) 705564 705820 706056
(n = 3) 1058308 1058644 1059128
(n = 4) 1411188 1411644 1411944
(n = 8) 2822252 2823148 2826864
(n = 32) 11294736 11296364 11298420
(n = 128) 45181816 45186732 45193356

bgroup g1e equals 1124 1132 1140

bgroup g1e hashfromstr publicinputs (59 bytes) 41752 83168 83696

bgroup g1e add publicinputs 2456 2468 2476

bgroup g1e double publicinputs 1180 1192 1200

bgroup g1e negate publicinputs 36 36 40

bgroup g1e scalarmult publicinputs 284228 288240 290788

bgroup g1e scalarmult base publicinputs 102184 104024 105772

bgroup g1e multiscalarmult publicinputs
(n = 2) 415076 419860 423440
(n = 3) 551124 556792 560712
(n = 4) 710416 715396 722000
(n = 8) 1229100 1238660 1246568
(n = 32) 4727808 4741472 4752772
(n = 128) 14590168 14605364 14635184

bgroup g1e equals publicinputs 576 580 588

242 C. Chuengsatiansup et al.

4 Implementing Protocols with PandA

In this section we consider BLS signatures [19] as a small example of a pairing-
based protocol implemented in PandA. We choose this example, because it il-
lustrates the use of most API functions of PandA and because cryptographic
signatures (unlike more complex cryptographic protocols) are supported by the
eBACS benchmarking project [14]. The software presented in this section im-
plements the eBACS API for cryptographic signatures and we will submit our
software to eBACS for public benchmarking.

4.1 The BLS Signature Scheme

We briefly describe the three algorithms — key generation, signing, and verifi-
cation — of the BLS scheme for an asymmetric, Type-3 pairing. Let Q ∈ G2 be
a system-wide fixed base point for G2.

Key Generation. Pick a random scalar s ∈ Z∗
r . Compute the scalar multiple

R ← [s]Q. Return R as the public key and s as the private key.

Signing. Hash the message m to an element M in G1. Use the private key s to
compute S = [s]M . Return the x-coordinate of the result S as the signature σ.

Verification. Upon receiving a signature σ, a message m, and the public key R,
find an element S ∈ G1 such that its x-coordinate corresponds to σ and it has
order r. If no such point exists, reject the signature. Then calculate t1 ← e(S,Q).
Compute the hash M ∈ G1 of the message m, and compute t2 ← e(M,R). The
signature is accepted if t1 = t2 or t1 = −t2 and rejected otherwise. Note that we
use additive notation in G3.

This scheme requires one scalar multiplication for key generation, one scalar
multiplication for signature generation, and the comparison of two pairing values
for signature verification. In our case the signature is the packed value of the
elliptic-curve point, which includes the information on the sign of the correct
y-coordinate. We therefore compute the unique point S corresponding to the
signature σ, and to verify we only need to check whether e(−S,Q) ·e(M,R) = 1.

4.2 Implementation with PandA

Our example implementation follows the eBATS API which consists of three
functions, namely, crypto sign keypair, crypto sign, and crypto sign open.
The details of each function are as follows.

The function crypto sign keypair generates the public and private key pair.
It requires one fixed-basepoint scalar multiplication in G2. The complete code
for keypair generation is given in Listing 1. The macro CRYPTO BYTES is required
by the eBACS API and is set to BGROUP G1E PACKEDBYTES in a file called api.h.

The function crypto sign computes the signature upon receiving the message.
This function also requires hashing to G1 (we assume that the message is public

PandA: Pairings and Arithmetic 243

Listing 1. Public and private key generation

int crypto_sign_keypair(
unsigned char *pk,
unsigned char *sk

)
{

// private key //
bgroup_scalar x;
bgroup_scalar_setrandom(&x);
bgroup_scalar_pack(sk, &x);

// public key //
bgroup_g2e r;
bgroup_g2_scalarmult_base(&r, &x);
bgroup_g2_pack(pk, &r);

return 0;
}

Listing 2. Signature generation

int crypto_sign(
unsigned char *sm,
unsigned long long *smlen,
const unsigned char *m,
unsigned long long mlen,
const unsigned char *sk)

{

bgroup_g1e p, p1;
bgroup_scalar x;
int i,r;

bgroup_g1e_hashfromstr_publicinputs(&p, m, mlen);
r = bgroup_scalar_unpack(&x, sk);
bgroup_g1e_scalarmult(&p1, &p, &x);
bgroup_g1e_pack(sm, &p1);

for (i = 0; i < mlen; i++)
sm[i + CRYPTO_BYTES] = m[i];
*smlen = mlen + CRYPTO_BYTES;

return -r;
}

and use the publicinputs version) and one scalar multiplication in G1. The
complete code for signing is given in Listing 2.

The function crypto sign open verifies whether the signature belongs to the
message. As described in the previous subsection, a naive method to compare
whether two pairing values are equal is to first compute those two pairings, then
compare the results. It is obvious that one can avoid the computation of two
pairings. Instead, one computes a product of two pairings and checks whether
it is equal to one. In this way, verification needs hashing to G1 and one pairing-
product computation. The code for signature verification is given in Listing 3.

4.3 Performance

We benchmarked the BLS implementation on the same Core i5-3210M run-
ning at 2.5 GHz that we also used for the detailed benchmarks of our reference

244 C. Chuengsatiansup et al.

Listing 3. Signature verification

int crypto_sign_open(
unsigned char *m,
unsigned long long *mlen,
const unsigned char *sm,
unsigned long long smlen,
const unsigned char *pk)

{

bgroup_g1e p[2];
bgroup_g2e q[2];
bgroup_g3e r;
unsigned long long i;
int ok;

ok = !bgroup_g1e_unpack(p, sm);
bgroup_g1e_negate_publicinputs(p, p);
q[0] = bgroup_g2e_base;
bgroup_g1e_hashfromstr_publicinputs(p+1, sm + CRYPTO_BYTES, smlen - CRYPTO_BYTES);
ok &= !bgroup_g2e_unpack(q+1, pk);
bgroup_pairing_product(&r, p, q, 2);

ok &= bgroup_g3e_equals(&r, &bgroup_g3e_neutral);

if (ok)
{

for (i = 0; i < smlen - CRYPTO_BYTES; i++)
m[i] = sm[i + CRYPTO_BYTES];

*mlen = smlen - CRYPTO_BYTES;
return 0;

}
else
{

for (i = 0; i < smlen - CRYPTO_BYTES; i++)
m[i] = 0;

*mlen = (unsigned long long) (-1);
return -1;

}
}

implementation of the API. We will also submit the software to eBACS for public
benchmarking. Key generation takes 378848 cycles. Signing (of a 59-byte mes-
sage) takes 434640 cycles (this is a median of 10000 measurements, the quartiles
are 428616 and 511764). Verification of a signature on a 59-byte message takes
5832584 cycles (again, this is a median, the quartiles are 5797640 and 5874292).
To our knowledge these are the fastest reported speeds of a BLS signature imple-
mentation at the 128-bit security level. We would like to compare performance
with the BLS implementation by Scott included in SUPERCOP. However, it
seems that the software fails to build on 64-bit platforms; consequently eBACS
does not contain benchmark results of the “bls” software on such platforms.

We ran the benchmark included in the RELIC framework (version 0.3.5)
on the same machine that we used for benchmarking. The times reported by
this RELIC benchmark are 609966 nanoseconds for BLS key generation, 510775
nanoseconds for signing and 6910615 nanoseconds for verification. At a clock
speed of 2.5 GHz this corresponds to 1524915 cycles for key generation, 1276937
cycles for signing, and 17276537 cyles for verification; about three times slower
than our implementation.

PandA: Pairings and Arithmetic 245

Table 2. Cycle counts for arithmetic operations in G2 on Intel Core i5-3210M

API function 25% quartile median 75% quartile

bgroup g2e unpack 1864580 1864884 1865396

bgroup g2e pack 42080 42124 42160

bgroup g2e hashfromstr (59 bytes) 2435116 2435564 2439536

bgroup g2e add 16048 16072 16096

bgroup g2e double 2924 2940 2948

bgroup g2e negate 60 60 64

bgroup g2e scalarmult 764628 764808 765088

bgroup g2e scalarmult base 336788 336916 337060

bgroup g2e multiscalarmult
(n = 2) 1563312 1563668 1564040
(n = 3) 2344964 2345496 2346704
(n = 4) 3126720 3127116 3131192
(n = 8) 6253984 6257528 6258700
(n = 32) 25024136 25027200 25031036
(n = 128) 100103176 100117420 100157284

bgroup g2e equals 3100 3112 3124

bgroup g2e hashfromstr publicinputs (59 bytes) 298524 299884 894696

bgroup g2e add publicinputs 6572 6596 6608

bgroup g2e double publicinputs 2960 2972 2992

bgroup g2e negate publicinputs 60 60 64

bgroup g2e scalarmult publicinputs 612012 625636 635656

bgroup g2e scalarmult base publicinputs 273468 278372 283056

bgroup g2e multiscalarmult publicinputs
(n = 2) 1031736 1043332 1060796
(n = 3) 1477392 1492796 1510148
(n = 4) 1889684 1912744 1928124
(n = 8) 3443640 3467764 3489032
(n = 32) 10293932 10329088 10366420
(n = 128) 32941972 32991824 33061804

bgroup g2e equals publicinputs 3104 3116 3120

246 C. Chuengsatiansup et al.

Table 3. Cycle counts for arithmetic operations in G3 on Intel Core i5-3210M

API function 25% quartile median 75% quartile

bgroup g3e unpack 1832068 1832404 1833044

bgroup g3e pack 424 424 428

bgroup g3e add 8020 8032 8048

bgroup g3e double 5548 5560 5572

bgroup g3e negate 172 176 180

bgroup g3e scalarmult 1120300 1120552 1120936

bgroup g3e scalarmult base 608964 609148 609320

bgroup g3e multiscalarmult
(n = 2) 2255028 2255624 2258896
(n = 3) 3382628 3383284 3387392
(n = 4) 4510336 4511420 4515516
(n = 8) 9024924 9025736 9026820
(n = 32) 36100180 36103240 36109596
(n = 128) 144408660 144446076 144467856

bgroup g3e equals 8304 8324 8336

bgroup g3e add publicinputs 8024 8044 8056

bgroup g3e double publicinputs 5548 5556 5568

bgroup g3e negate publicinputs 176 176 180

bgroup g3e scalarmult publicinputs 852272 864136 877804

bgroup g3e scalarmult base publicinputs 609004 609188 609352

bgroup g3e multiscalarmult publicinputs
(n = 2) 2255104 2255424 2258836
(n = 3) 3382688 3383368 3387800
(n = 4) 4510680 4512684 4515652
(n = 8) 4272080 4297668 4330036
(n = 32) 12768868 12803832 12843124
(n = 128) 40764052 40825956 40876608

bgroup g3e equals publicinputs 8304 8320 8332

Table 4. Cycle counts for pairing computation on Intel Core i5-3210M

API function 25% quartile median 75% quartile

bgroup pairing 2566580 2567116 2572096

bgroup pairing product
(n = 2) 3831724 3832644 3837688
(n = 3) 5089192 5093724 5094728
(n = 4) 6347328 6351260 6352588
(n = 8) 11380604 11381384 11383420
(n = 32) 41565448 41569424 41588976
(n = 128) 162321836 162364916 162387468

PandA: Pairings and Arithmetic 247

References

1. Adj, G., Menezes, A., Oliveira, T., Rodŕıguez-Henŕıquez, F.: Weakness of F36·509
for discrete logarithm cryptography (2013), http://eprint.iacr.org/2013/446/

2. Adj, G., Rodŕıguez-Henŕıquez, F.: Square root computation over even extension
fields (2012), http://eprint.iacr.org/

3. Akinyele, J.A., Garman, C., Miers, I., Pagano, M.W., Rushanan, M., Green, M.,
Rubin, A.D.: Charm: a framework for rapidly prototyping cryptosystems. Journal
of Cryptographic Engineering, 3(2):111–128 (2013),
http://eprint.iacr.org/2011/617/

4. Aranha, D.F., Gouvêa, C.P.L.: RELIC is an Efficient LIbrary for Cryptography,
http://code.google.com/p/relic-toolkit/ (accessed November 5, 2013).

5. Aranha, D.F., Karabina, K., Longa, P., Gebotys, C.H., López, J.: Faster explicit
formulas for computing pairings over ordinary curves. In: Paterson, K.G. (ed.)
EUROCRYPT 2011. LNCS, vol. 6632, pp. 48–68. Springer, Heidelberg (2011),
http://eprint.iacr.org/2010/526/

6. Barbulescu, R., Gaudry, P., Joux, A., Thomé, E.: A quasi-polynomial al-
gorithm for discrete logarithm in finite fields of small characteristic (2013),
http://eprint.iacr.org/2013/400/

7. Barreto, P.S.L.M., Kim, H.Y., Lynn, B., Scott, M.: Efficient Algorithms for
Pairing-Based Cryptosystems. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442,
pp. 354–368. Springer, Heidelberg (2002), http://eprint.iacr.org/2002/008

8. Barreto, P.S.L.M., Naehrig, M.: Pairing-Friendly Elliptic Curves of Prime Or-
der. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331.
Springer, Heidelberg (2006), http://cryptosith.org/papers/#bn

9. Barrett, P.: Implementing the Rivest Shamir and Adleman Public Key Encryp-
tion Algorithm on a Standard Digital Signal Processor. In: Odlyzko, A.M. (ed.)
CRYPTO 1986. LNCS, vol. 263, pp. 311–323. Springer, Heidelberg (1987)

10. Belenkiy, M., Camenisch, J., Chase, M., Kohlweiss, M., Lysyanskaya, A., Shacham,
H.: Randomizable Proofs and Delegatable Anonymous Credentials. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 108–125. Springer, Heidelberg (2009),
http://research.microsoft.com/pubs/122759/anoncred.pdf

11. Bernstein, D.J., Birkner, P., Joye, M., Lange, T., Peters, C.: Twisted Edwards
Curves. In: Vaudenay, S. (ed.) AFRICACRYPT2008. LNCS, vol. 5023, pp. 389–405.
Springer, Heidelberg (2008), http://cr.yp.to/papers.html#twisted

12. Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.-Y.: High-Speed High-
Security Signatures. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917,
pp. 124–142. Springer, Heidelberg (2011) see also full version [13]

13. Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.-Y.: High-speed high-
security signatures. Journal of Cryptographic Engineering 2(2), 77–89 (2012),
http://cryptojedi.org/papers/#ed25519 , see also short version [12]

14. Bernstein, D.J., Lange, T.: eBACS: ECRYPT benchmarking of cryptographic sys-
tems, http://bench.cr.yp.to (accessed August 15, 2013)

15. Bernstein, D.J., Lange, T.: Faster Addition and Doubling on Elliptic Curves. In:
Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 29–50. Springer,
Heidelberg (2007), http://cr.yp.to/papers.html#newelliptic

16. Bernstein, D.J., Lange, T., Schwabe, P.: The Security Impact of a New Crypto-
graphic Library. In: Hevia, A., Neven, G. (eds.) LatinCrypt 2012. LNCS, vol. 7533,
pp. 159–176. Springer, Heidelberg (2012),
http://cryptojedi.org/papers/#coolnacl

http://eprint.iacr.org/2013/446/
http://eprint.iacr.org/
http://eprint.iacr.org/2011/617/
http://code.google.com/p/relic-toolkit/
http://eprint.iacr.org/2010/526/
http://eprint.iacr.org/2013/400/
http://eprint.iacr.org/2002/008
http://cryptosith.org/papers/#bn
http://research.microsoft.com/pubs/122759/anoncred.pdf
http://cr.yp.to/papers.html#twisted
http://cryptojedi.org/papers/#ed25519
http://bench.cr.yp.to
http://cr.yp.to/papers.html#newelliptic
http://cryptojedi.org/papers/#coolnacl

248 C. Chuengsatiansup et al.

17. Beuchat, J.-L., Dı́az, J.E.G., Mitsunari, S., Okamoto, E., Rodŕıguez-Henŕıquez,
F., Teruya, T.: High-speed software implementation of the optimal ate pairing
over Barreto-Naehrig curves (2010), http://eprint.iacr.org/2010/354/

18. Boneh, D., Franklin, M.: Identity-Based Encryption from the Weil Pairing. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001), http://www.iacr.org/archive/crypto2001/21390212.pdf

19. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. Journal
of Cryptology 17(4), 297–319 (2004),
http://crypto.stanford.edu/˜dabo/pubs/papers/weilsigs.ps

20. Bos, J.W., Costello, C., Naehrig, M.: Exponentiating in pairing groups. In: Selected
Areas in Cryptography – SAC 2013. LNCS (to appear, 2013),
http://cryptosith.org/papers/#exppair

21. Bosma, W., Lenstra, H.W.: Complete systems of two addition laws for elliptic
curves. Journal of Number Theory 53, 229–240 (1995),
http://www.math.ru.nl/˜bosma/pubs/JNT1995.pdf

22. Brumley, B.B., Tuveri, N.: Remote timing attacks are still practical. In: Atluri, V.,
Diaz, C. (eds.) ESORICS 2011. LNCS, vol. 6879, pp. 355–371. Springer, Heidelberg
(2011), http://eprint.iacr.org/2011/232/

23. Certivox. MIRACL Cryptographic SDK, http://www.certivox.com/miracl
24. Chatterjee, S., Menezes, A.: On cryptographic protocols employing asymmetric

pairings – the role of ψ revisited. Discrete Applied Mathematics 159, 1311–1322
(2011), http://eprint.iacr.org/2009/480/

25. de Rooij, P.: Efficient exponentiation using precomputation and vector addition
chains. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 389–399.
Springer, Heidelberg (1995)

26. Fardan, N.J.A., Paterson, K.G.: Lucky thirteen: Breaking the TLS and DTLS
record protocols. In: 2013 IEEE Symposium on Security and Privacy, pp. 526–540.
IEEE Computer Society (2013), www.isg.rhul.ac.uk/tls/TLStiming.pdf

27. Fouque, P.-A., Tibouchi, M.: Indifferentiable hashing to barreto–naehrig curves. In:
Hevia, A., Neven, G. (eds.) LatinCrypt 2012. LNCS, vol. 7533, pp. 1–17. Springer,
Heidelberg (2012), www.di.ens.fr/˜fouque/pub/latincrypt12.pdf

28. Freeman, D., Scott, M., Teske, E.: A taxonomy of pairing-friendly elliptic curves.
Journal of Cryptology 23(2), 224–280 (2010), http://eprint.iacr.org/2006/372/

29. Gentry, C., Silverberg, A.: Hierarchical ID-Based Cryptography. In: Zheng, Y. (ed.)
ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (2002),
http://www.cs.ucdavis.edu/˜franklin/ecs228/pubs/extra_pubs/hibe.pdf

30. The GNU MP library, http://gmplib.org/ (accessed November 02, 2013)
31. Göloğlu, F., Granger, R., McGuire, G., Zumbrägel, J.: Solving a 6120-bit DLP

on a desktop computer. In: Selected Areas in Cryptography. LNCS. Springer (to
appear, 2013), http://eprint.iacr.org/2013/306

32. Granger, R., Page, D., Stam, M.: On small characteristic algebraic tori in pairing-
based cryptography, p. 132 (2004), http://eprint.iacr.org/2004/132

33. Granger, R., Scott, M.: Faster Squaring in the Cyclotomic Subgroup of Sixth
Degree Extensions. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS,
vol. 6056, pp. 209–223. Springer, Heidelberg (2010)

34. Groth, J.: Short Pairing-Based Non-interactive Zero-Knowledge Arguments. In:
Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer,
Heidelberg (2010), http://www.cs.ucl.ac.uk/staff/J.Groth/ShortNIZK.pdf

35. Groth, J., Sahai, A.: Efficient noninteractive proof systems for bilinear groups.
SIAM J. Comput. 41(5), 1193–1232 (2012),
http://www0.cs.ucl.ac.uk/staff/J.Groth/WImoduleFull.pdf

http://eprint.iacr.org/2010/354/
http://www.iacr.org/archive/crypto2001/21390212.pdf
http://crypto.stanford.edu/~dabo/pubs/papers/weilsigs.ps
http://cryptosith.org/papers/#exppair
http://www.math.ru.nl/~bosma/pubs/JNT1995.pdf
http://eprint.iacr.org/2011/232/
http://www.certivox.com/miracl
http://eprint.iacr.org/2009/480/
www.isg.rhul.ac.uk/tls/TLStiming.pdf
www.di.ens.fr/~fouque/pub/latincrypt12.pdf
http://eprint.iacr.org/2006/372/
http://www.cs.ucdavis.edu/~franklin/ecs228/pubs/extra_pubs/hibe.pdf
http://gmplib.org/
http://eprint.iacr.org/2013/306
http://eprint.iacr.org/2004/132
http://www.cs.ucl.ac.uk/staff/J.Groth/ShortNIZK.pdf
http://www0.cs.ucl.ac.uk/staff/J.Groth/WImoduleFull.pdf

PandA: Pairings and Arithmetic 249

36. Hess, F., Smart, N.P., Vercauteren, F.: The eta pairing revisited. IEEE Transac-
tions on Information Theory 52(10), 4595–4602 (2006),
http://eprint.iacr.org/2006/110

37. Hışıl, H.: Elliptic Curves, Group Law, and Efficient Computation. PhD thesis,
Queensland University of Technology (2010), http://eprints.qut.edu.au/33233/

38. Horwitz, J., Lynn, B.: Toward Hierarchical Identity-Based Encryption. In: Knud-
sen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 466–481. Springer,
Heidelberg (2002), http://theory.stanford.edu/˜horwitz/pubs/hibe.pdf

39. Joux, A.: A one round protocol for tripartite Diffie-Hellman. In: Bosma, W.
(ed.) ANTS 2000. LNCS, vol. 1838, pp. 385–393. Springer, Heidelberg (2000),
cgi.di.uoa.gr/˜aggelos/crypto/page4/assets/joux-tripartite.pdf

40. Joux, A.: A one round protocol for tripartite Diffie-Hellman. Journal of Cryptology,
17(4):263–276 (2004)

41. Joux, A.: A new index calculus algorithm with complexity L(1/4 + o(1)) in very
small characteristic. In: SAC 2013. LNCS. Springer (invited paper) (to appear,
2013), http://eprint.iacr.org/2013/095/

42. Lynn, B.: PBC library – the pairing-based cryptography library,
http://crypto.stanford.edu/pbc/ (accessed November 05, 2013).

43. Mitsunari, S.: A fast implementation of the optimal ate pairing over BN curve on
Intel Haswell processor (2013), http://eprint.iacr.org/2013/362/

44. Naehrig, M., Barreto, P.S.L.M., Schwabe, P.: On Compressible Pairings and Their
Computation. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp.
371–388. Springer, Heidelberg (2008), http://eprint.iacr.org/2007/429/

45. Naehrig, M., Niederhagen, R., Schwabe, P.: New Software Speed Records for Cryp-
tographic Pairings. In: Abdalla, M., Barreto, P.S.L.M. (eds.) LATINCRYPT 2010.
LNCS, vol. 6212, pp. 109–123. Springer, Heidelberg (2010),
http://cryptojedi.org/users/peter/#dclxvi

46. Ohgishi, K., Sakai, R., Kasahara, M.: Notes on ID-based key sharing systems over
elliptic curve (in Japanese). Technical Report ISEC99-57, IEICE (1999)

47. Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures: the
case of AES. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 1–20.
Springer, Heidelberg (2006), http://eprint.iacr.org/2005/271/

48. Parno, B., Gentry, C., Howell, J., Raykova, M.: Pinocchio: Nearly practical verifi-
able computation. In: Proceedings of the IEEE Symposium on Security and Pri-
vacy. IEEE (2013), http://eprint.iacr.org/2013/279

49. Pereira, G.C.C.F., Simpĺıcio Jr., M.A., Naehrig, M., Barreto, P.S.L.M.: A family of
implementation-friendly BN elliptic curves. Journal of Systems and Software 84(8),
1319–1326 (2011), http://cryptojedi.org/papers/#fast-bn

50. Sahai, A., Waters, B.: Fuzzy Identity-Based Encryption. In: Cramer, R. (ed.)
EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005),
http://eprint.iacr.org/2004/086/

51. Sakai, R., Ohgishi, K., Kasahara, M.: Cryptosystems based on pairing. In: The
2000 Symposium on Cryptography and Information Security, Okinawa, Japan,
pp. 135–148 (2000)

52. Sakai, R., Ohgishi, K., Kasahara, M.: Cryptosystems based on pairing over elliptic
curve (in Japanese). In: The 2001 Symposium on Cryptography and Information
Security, Oiso, Japan, pp. 23–26 (2001)

53. Sánchez, A.H., Rodŕıguez-Henŕıquez, F.: NEON Implementation of an Attribute-
Based Encryption Scheme. In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-
Naini, R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 322–338. Springer, Heidelberg
(2013), http://cacr.uwaterloo.ca/techreports/2013/cacr2013-07.pdf

http://eprint.iacr.org/2006/110
http://eprints.qut.edu.au/33233/
http://theory.stanford.edu/~horwitz/pubs/hibe.pdf
cgi.di.uoa.gr/~aggelos/crypto/page4/assets/joux-tripartite.pdf
http://eprint.iacr.org/2013/095/
http://crypto.stanford.edu/pbc/
http://eprint.iacr.org/2013/362/
http://eprint.iacr.org/2007/429/
http://cryptojedi.org/users/peter/#dclxvi
http://eprint.iacr.org/2005/271/
http://eprint.iacr.org/2013/279
http://cryptojedi.org/papers/#fast-bn
http://eprint.iacr.org/2004/086/
http://cacr.uwaterloo.ca/techreports/2013/cacr2013-07.pdf

250 C. Chuengsatiansup et al.

54. Scott, M.: On the efficient implementation of pairing-based protocols. In: Chen,
L. (ed.) IMACC 2011. LNCS, vol. 7089, pp. 296–308. Springer, Heidelberg (2011),
http://eprint.iacr.org/2011/334/

55. Scott, M., Barreto, P.S.L.M.: Compressed Pairings. In: Franklin, M. (ed.) CRYPTO
2004. LNCS, vol. 3152, pp. 140–156. Springer, Heidelberg (2004)

56. Scott, M., Benger, N., Charlemagne, M., Dominguez Perez, L.J., Kachisa, E.J.: On
the Final Exponentiation for Calculating Pairings on Ordinary Elliptic Curves. In:
Shacham, H., Waters, B. (eds.) Pairing 2009. LNCS, vol. 5671, pp. 78–88. Springer,
Heidelberg (2009), eprint.iacr.org/2008/490/

57. Shallue, A., van de Woestijne, C.E.: Construction of Rational Points on Elliptic
Curves over Finite Fields. In: Hess, F., Pauli, S., Pohst, M. (eds.) ANTS 2006.
LNCS, vol. 4076, pp. 510–524. Springer, Heidelberg (2006)

58. Stam, M., Lenstra, A.K.: Efficient subgroup exponentiation in quadratic and sixth
degree extensions. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002.
LNCS, vol. 2523, pp. 318–332. Springer, Heidelberg (2003)

59. Tromer, E., Osvik, D.A., Shamir, A.: Efficient cache attacks on AES, and counter-
measures. Journal of Cryptology 23(1), 37–71 (2010),
http://people.csail.mit.edu/tromer/papers/cache-joc-official.pdf

60. Vercauteren, F.: Optimal pairings. IEEE Transactions on Information Theory 56(1)
(2010), http://www.cosic.esat.kuleuven.be/publications/article-1039.pdf

61. Yarom, Y., Falkner, K.: Flush+reload: a high resolution, low noise, L3 cache side-
channel attack (2013), http://eprint.iacr.org/2013/448/

http://eprint.iacr.org/2011/334/
eprint.iacr.org/2008/490/
http://people.csail.mit.edu/tromer/papers/cache-joc-official.pdf
http://www.cosic.esat.kuleuven.be/publications/article-1039.pdf
http://eprint.iacr.org/2013/448/

Author Index

Adj, Gora 20
Akagi, Shoichi 186
Au, Man Ho 62

Chang, Seunghwan 77
Chuengsatiansup, Chitchanok 229

Deng, Robert H. 199

Grześkowiak, Maciej 215
Gu, Dawu 149

Hong, Hoon 77

Joux, Antoine 45

Kanayama, Naoki 97
Kawahara, Yuto 97
Kawai, Yutaka 113
Kim, Jongkil 62
Kobayashi, Tetsutaro 97

Lai, Junzuo 199
Lee, Eunjeong 77
Lee, Hyang-Sook 77
Lim, Hoon Wei 168
Ling, San 168
Liu, Jyh-Charn 1
Liu, Shengli 149

Menezes, Alfred 20
Mori, Yuki 186

Naehrig, Michael 229
Nogami, Yasuyuki 186

Okamoto, Eiji 97
Oliveira, Thomaz 20

Pierrot, Cécile 45
Pu, Shi 1

Ribarski, Pance 229
Rodŕıguez-Henŕıquez, Francisco 20

Saito, Kazutaka 97
Schwabe, Peter 229
Seberry, Jennifer 62
Shirase, Masaaki 186
Su, Le 168
Sun, Shi-Feng 149
Susilo, Willy 62

Takashima, Katsuyuki 113
Teruya, Tadanori 97

Wang, Huaxiong 168
Wang, Kunpeng 131
Weng, Jian 199

Yang, Yanjiang 199

Zhang, Xusheng 131

	Preface
	Organization
	Table of Contents
	EAGL: An Elliptic Curve ArithmeticGPU-Based Library for Bilinear Pairing
	1 Introduction
	1.1 Background Knowledge of GPU

	2 Related Work
	3 Computing Models of Miller’s Algorithm
	4 Optimization for Extension Fields-Based Arithmetic
	5 Discussion of GPU and CPU Based Pairing Computations
	6 Conclusion
	References

	Weakness of F36·509for Discrete Logarithm Cryptography
	1 Introduction
	2 Smooth Polynomials
	2.1 Number of Smooth Polynomials
	2.2 Smoothness Testing

	3 New DLP Algorithm of Joux and Barbulescu et al.
	3.1 Setup
	3.2 Finding Logarithms of Linear Polynomials
	3.3 Finding Logarithms of Irreducible Quadratic Polynomials
	3.4 Continued-Fraction Descent
	3.5 Classical Descent
	3.6 QPA Descent
	3.7 Gr¨obner Bases Descent

	4 Computing Discrete Logarithms in F36·509
	4.1 Setup
	4.2 Finding Logarithms of Linear Polynomials
	4.3 Finding Logarithms of Irreducible Quadratic Polynomials
	4.4 Continued-Fraction Descent
	4.5 Classical Descent
	4.6 QPA Descent
	4.7 Gr¨obner Bases Descent
	4.8 Overall Running Time
	4.9 Comparisons with Joux-Lercier

	5 Concluding Remarks
	References

	The Special Number Field Sieve in FpnApplication to Pairing-Friendly Constructions
	1 Introduction
	2 Tools and Notations
	3 A Short Refresher on Discrete Logarithms in theMedium Prime Case
	3.1 The p = LQ(lp, cp) Case, with 1/3 � lp < 2/3
	3.2 The p = LQ(lp, cp) Case with 2/3 � lp � 1

	4 Applicable Discrete Logarithms for Pairing-BasedCryptography
	5 SNFS Polynomials for Pairing-Based Finite Fields
	5.1 Pairing-Based Finite Fields
	5.2 Choice of Polynomials for the SNFS Algorithm

	6 Asymptotic Heuristic Complexity
	6.1 The p = LQ(lp, cp) Case with 1/3 � lp < 2/3
	6.2 The p = LQ(2/3, cp) Case
	6.3 Algorithm for Larger p

	7 Conclusion
	References

	Efficient Semi-static Secure BroadcastEncryption Scheme
	1 Introduction
	2 Related Works
	2.1 Our Contributions

	3 Definitions and Complexity Assumptions
	3.1 Broadcast Encryption System
	3.2 Bilinear Maps
	3.3 Complexity Assumptions

	4 Semi-static Secure Broadcast Encryption
	4.1 Security Definition
	4.2 Semi-static Secure Broadcast Encryption by Gentry and Waters [9]

	5 Our Scheme
	5.1 Security Analysis

	6 Transforming Semi-static Security to Adaptive Security
	6.1 Transforming Semi-static Security to Adaptive Security

	7 Conclusion
	References

	Pairing Inversion via Non-degenerateAuxiliary Pairings
	1 Introduction
	2 Preliminaries
	2.1 Elliptic Curves
	2.2 Vercauteren’s Generalized Ate Pairings
	2.3 Kanayama-Okamoto’s Approach to Pairing Inversion

	3 A Simpler Approach for Paring Inversion
	4 Complexity of Modified Miller Inversion
	5 Toward Complexity of Modified Exponentiation Inversion
	6 Reducing Paring Inversion to Modified Exponentiation Inversion
	References

	Constructing Symmetric Pairings over Supersingular Elliptic Curveswith Embedding Degree Three
	1 Introduction
	2 Mathematical Preliminaries
	2.1 Pairings
	2.2 Supersingular Elliptic Curves Defined over an Extension Field
	2.3 Distortion Map

	3 The Main Result
	3.1 Comparison between Type 1 and Type 2 Curves
	3.2 Miller’s Algorithm
	3.3 Final Exponentiation
	3.4 Estimation of Computational Cost

	4 Experimental Implementation
	4.1 Parameters
	4.2 Performance of the Proposed Method

	5 Conclusion
	References

	Predicate- and Attribute-Hiding Inner ProductEncryption in a Public Key Setting
	1 Introduction
	1.1 Background
	1.2 Our Results
	1.3 Key Techniques
	1.4 Notations

	2 Dual Pairing Vector Spaces (DPVS)
	3 Definition of Inner Product Encryption with Ciphertext Conversion (IPE-CC)
	4 Proposed (Basic) IPE-CC Scheme
	4.1 Construction
	4.2 Security

	5 Fully Secure SIPE
	6 A Variant for Achieving Shorter Public and Secret Keys
	6.1 Construction and Security

	7 Efficiency Comparisons
	References

	Fast Symmetric Pairing Revisited
	1 Introduction
	2 Background
	3 Supersingular Elliptic Curves over Large Characteristic Fields
	3.1 Verschiebung Isogeny
	3.2 Special Supersingular Elliptic Curves

	4 Fast Symmetric Pairing over Large Characteristic Field
	4.1 Fast Variant of Eta Pairing for Embedding Degree 3
	4.2 Supersingular Elliptic Curve with Embedding Degree 3

	5 Pairing Computation
	5.1 Miller’s Formulas and Main Loop
	5.2 Final Steps
	5.3 Final Exponentiation
	5.4 Exponentiation by
	5.5 Special Modular Reduction
	5.6 Cost Estimation

	6 Conclusion
	References

	Efficient Leakage-Resilient Identity-BasedEncryption with CCA Security
	1 Introduction
	1.1 Related Work
	1.2 Organization

	2 Preliminaries
	2.1 Notations
	2.2 Bilinear Maps and Complexity Assumption
	2.3 Entropy and Randomness Extractors
	2.4 CCA2 Security of Leakage Resilient IBE

	3 Concrete Construction
	4 Security and Correctness Analysis
	4.1 Correctness
	4.2 Security Analysis

	5 Performance Analysis
	6 Conclusion
	References

	Revocable IBE Systemswith Almost Constant-Size Key Update
	1 Introduction
	1.1 Motivation
	1.2 Our Approach
	1.3 Other Related Work
	1.4 Outline

	2 Preliminaries
	2.1 Composite Order Bilinear Groups
	2.2 Complexity Assumptions
	2.3 Revocable Identity-Based Encryption

	3 Our Construction
	3.1 Intuition
	3.2 Construction
	3.3 Security Analysis
	3.4 Efficiency

	4 Extension
	4.1 Supporting More Than
	4.2 Forward-Secure Decryption Keys
	4.3 Revocable Attribute-Based Encryption

	5 Conclusions
	References

	Pseudo 8–Sparse Multiplication for EfficientAte–Based Pairing on Barreto–Naehrig Curve
	1 Introduction
	2 Preliminaries
	2.1 Barreto–Naehrig Curve
	2.2 Pairings

	3 MainProposal
	3.1 Pseudo 8–Sparse Multiplication
	3.2 Line Evaluation in Miller’s Loop

	4 Cost Evaluation and Experimental Result
	4.1 Parameter Settings and Computational Environment
	4.2 Cost Evaluation
	4.3 Experimental Result

	5 Conclusion and Future Works
	References

	Adaptable Ciphertext-Policy Attribute-BasedEncryption
	1 Introduction
	1.1 Applications of Adaptable CP-ABE
	1.2 Organization

	2 Related Work
	3 Preliminaries
	3.1 Access Structures
	3.2 Linear Secret Sharing Schemes
	3.3 Bilinear Groups
	3.4 Complexity Assumption

	4 Adaptable Ciphertext-Policy Attribute-Based Encryption
	4.1 Formal Definition of Adaptable CP-ABE
	4.2 Security Model for Adaptable CP-ABE
	4.3 Proposed Adaptable CP-ABE Scheme

	5 Conclusions
	References

	Algorithms for Pairing-Friendly Primes
	1 Introduction
	2 The Main Algorithm
	3 Analysis of the Main Algorithm
	3.1 Proof of Theorem 1

	4 Composite Order Elliptic Curves
	5 An Illustrative Example
	5.1 Case Δ ≡ 1 (mod 4)
	5.2 Case Δ ≡ 3 (mod 4)

	References

	PandA: Pairings and Arithmetic
	1 Introduction
	2 PandA API and Functionality
	2.1 PandA Data Types
	2.2 PandA Constants
	2.3 Comparing Group Elements
	2.4 Addition and Doubling
	2.5 Scalar Multiplication
	2.6 Hashing to G1 and G2
	2.7 Arithmetic on Scalars
	2.8 Pairings and Products of Pairings

	3 PandA Reference Implementation
	3.1 Choice of Parameters
	3.2 Algorithms
	3.3 Performance

	4 Implementing Protocols with PandA
	4.1 The BLS Signature Scheme
	4.2 Implementation with PandA
	4.3 Performance

	References

	Author Index

