
Attacking PUF-Based Pattern Matching Key

Generators via Helper Data Manipulation

Jeroen Delvaux and Ingrid Verbauwhede

ESAT/COSIC and iMinds, KU Leuven
Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium

{firstname.lastname}@esat.kuleuven.be

Abstract. Physically Unclonable Functions (PUFs) provide a unique
signature for integrated circuits (ICs), similar to a fingerprint for hu-
mans. They are primarily used to generate secret keys, hereby exploiting
the unique manufacturing variations of an IC. Unfortunately, PUF out-
put bits are not perfectly reproducible and non-uniformly distributed.
To obtain a high-quality key, one needs to implement additional post-
processing logic on the same IC. Fuzzy extractors are the well-established
standard solution. Pattern Matching Key Generators (PMKGs) have
been proposed as an alternative. In this work, we demonstrate the latter
construction to be vulnerable against manipulation of its public helper
data. Full key recovery is possible, although depending on system de-
sign choices. We demonstrate our attacks using a 4-XOR arbiter PUF,
manufactured in 65nm CMOS technology. We also propose a simple but
effective countermeasure.

Keywords: PUF, secret key, helper data, fuzzy extractor, Hamming
distance.

1 Introduction

Modern applications for integrated circuits (ICs) increasingly rely on cryptog-
raphy to protect their sensitive data. Practically all cryptographic implemen-
tations require the ability to securely generate, store and retrieve secret keys.
Traditionally, the secret keys are stored in non-volatile memory (NVM), using
Flash technology for instance. However, providing full system security at a rea-
sonable cost has proven to be very challenging, given that an attacker can easily
gain physical access to the IC. NVM tends to be vulnerable against various hard-
ware attacks [13], as the key is stored permanently in electrical form. Additional
circuitry to protect the key is usually complemented by practical drawbacks:
costly, bulky, battery powered, etc. Furthermore, most NVM technologies are
CMOS incompatible, increasing the IC manufacturing cost.

Physically Unclonable Functions (PUFs) have been proposed as a more se-
cure and more efficient alternative. Silicon PUFs leverage the normally undesired
manufacturing variations of an IC, enhanced by CMOS technology scaling [6].
The post-manufacturing state of an IC represents an inherently unique secret in

J. Benaloh (Ed.): CT-RSA 2014, LNCS 8366, pp. 106–131, 2014.
c© Springer International Publishing Switzerland 2014

Attacking PUF-Based Pattern Matching Key Generators 107

non-electrical form. PUFs are electrical circuits that perform a two-step conver-
sion for their own variability: from non-electrical form to analog electrical signals
(voltages and currents) and finally to bits. The term ‘unclonable’ refers to the
infeasibility to manufacture a replica of a PUF, as the nanoscale variations are
uncontrollable. Input bits might be foreseen, making the PUF a function.

PUFs offer some remarkable advantages for secret key applications, in com-
parison to on-chip NVM. First, most silicon PUFs are CMOS compatible and
hence cost-efficient. Second, PUFs are often assumed to be resistant against in-
vasive attacks. One can argue that invasion damages the physical structure of
the PUF, hereby destroying the secret. Third, keys are inherently unique for
each manufactured sample of the IC and there is no need to explicitly program
them. However, the ability to program an arbitrary key can still be foreseen if
desired. Fourth, the key is only generated and stored in volatile memory (VM)
whenever key-dependent operations have to be performed. As such, limits are
posed on the attacker’s time frame.

Unfortunately, PUF output bits are not directly usable as a secret key. One
first needs to resolve two issues: (1) the bits are not perfectly reproducible, (2)
the bits are non-uniformly distributed. Therefore, digital post-processing logic
has to be implemented on the same IC. The use of public helper data is unavoid-
able hereby, requesting again NVM (preferably off-chip now for cost-efficiency
reasons). Fuzzy extractors [2] are the well-established post-processing solution.
Typical implementations employ an error-correcting code (ECC) and a cryp-
tographic hash function. Pattern Matching Key Generators (PMKGs) [9] have
been proposed as an alternative at the HOST 2011 conference. A patent on the
construction has been granted by the World Intellectual Property Organization
[10].

PMKGs employ so-called patterns, which are substrings in a long stream of
(noisy) PUF output bits. The substring indices are considered to be secret as
they directly define the secret key. The patterns are stored as public helper
data; other stream bits are not exposed. To reconstruct the key, one does ‘slide’
the patterns along their regenerated streams, performing a matching procedure
(measuring Hamming distance). In this work, we demonstrate the PMKG con-
struction to be vulnerable against malicious modification of its public helper
data. Via statistical observation of the PMKG failure rate, one can gradually
retrieve the full bitstreams and hence the secret indices, although depending on
system design choices. We demonstrate our attacks using a 4-XOR arbiter PUF,
manufactured in 65nm CMOS technology.

The organization of this paper is as follows. Section 2 and 3 provide an intro-
duction to PUFs and post-processing logic respectively. Section 4 describes the
PMKG construction. Its failure characteristics are essential for our attacks: we
analyze them in section 5. The attacks are presented in section 6. Countermea-
sures are discussed in section 7. Section 8 concludes the work.

108 J. Delvaux and I. Verbauwhede

2 Physically Unclonable Functions

PUFs are functions: their binary input and output vectors are referred to as
challenges and responses respectively. In section 2.1, we comment on the number
of challenge-response pairs (CRPs) as well as their secrecy. In sections 2.2 and
2.3, we describe two popular PUF architectures: the arbiter PUF and its XOR
variant respectively. The latter architecture has been employed for the PMKG
implementation of [9]. We do employ the same PUF to illustrate our attacks.

2.1 Challenge-Response Pairs and Their Secrecy

PUFs are often subdivided in two classes, depending on their number of CRPs
[11]. Weak PUFs have few CRPs, often linearly increasing with the required IC
area. They are primarily used to generate secret keys. Strong PUFs have a huge
amount of CRPs, in the ideal case exponentially increasing with the required
IC area. The generation of a secret key, assuming a traditional fuzzy extrac-
tor as post-processing logic, does not require such a huge amount of response
bits. For the PMKG construction however, the use of a strong PUF might be
indispensable.

The secrecy of CRPs depends on the use case of the PUF. For traditional
secret key generation, it is imperative to keep the responses on-chip. The list of
challenges, generating the stream of response bits, is to be considered as publicly
known. The secrecy of the responses bits is not affected hereby, given that PUFs
are ‘random’ functions. Hardware attacks (invasive, through side channels and
via fault injection) are a threat for the secrecy of the response bits and hence also
for the key. One can target the PUF itself as well as the post-processing logic
[8]. Remember that PUFs are often assumed to be resistant against invasion.
Experimental evidence is generally lacking however, except for the coating PUF
[14].

For some PUF use cases, typically employing a strong PUF such as the ar-
biter PUF or its XOR variant, individual CRPs are exposed on purpose. This
is also the case for the PMKG. The security arises from the CRP behavior un-
predictability. Given the exposed CRPs, it should be infeasible to construct a
mathematical model of the PUF. Machine learning (ML) techniques, like sup-
port vector machines and artificial neural networks, form a major threat. Given
a limited set of training CRPs, algorithms automatically learn the input-output
behavior, trying to generalize the underlying interactions. Both the arbiter PUF
and its XOR variant are vulnerable, although the latter construction provides
considerably more resistance [12].

2.2 Arbiter PUF

Architecture. Arbiter PUFs [7] quantify manufacturing variability via the
propagation delays of logic gates. The high-level functionality is represented
by figure 1(a). A rising edge propagates through two paths with identically de-
signed delays. Because of nanoscale manufacturing variations however, there is

Attacking PUF-Based Pattern Matching Key Generators 109

1

c1 = 1

2

c2 = 0

. . .

q

cq = 1

Δt A
r

(a)

A

...

A

A

c1 c2 cq

+
r

(b)

Fig. 1. Arbiter PUF (a) and its XOR variant (b)

a delay difference Δt between both paths. An arbiter decides which path ‘wins’
the race (Δt ≶ 0) and generates a response bit r.

The two paths are constructed from a series of q switching elements. Challenge
bits ci determine for each stage whether path segments are crossed or uncrossed.
Each stage has a unique contribution to Δt, depending on its challenge bit.
Challenge vector Chal =

(
c1 c2 . . . cq

)
determines the time difference Δt and

hence the response bit r. The number of CRPs equals 2q. The reproducibility
differs per response bit: the smaller |Δt|, the easier to flip side because of various
perturbations.

Machine Learning. Arbiter PUFs show additive linear behavior, as described
in appendix A. This makes them vulnerable to modeling attacks: high accura-
cies can rapidly be obtained through ML techniques. In the paper proposing
arbiter PUFs as a security primitive, ML was already identified as a threat [7].
They reported a modeling accuracy of 97% for their 64-stage 0.18μm CMOS
implementation. The same accuracy was also reported for a more recent 65nm
implementation, having 64-bit challenges too and using 5000 CRPs as a training
set [3].

2.3 XOR Arbiter PUF

Several variants of the arbiter PUF increase the resistance against ML. They
introduce various forms of non-linearity for this purpose. We only consider the
XOR variant, which has been employed for the PMKG implementation of [9].
The response bits of multiple arbiter chains are XORed to a single response bit,
as shown in figure 1(b). All chains have the same challenge as input. The more
chains, the more resistance against against ML: the required number of CRPs
and the computation time both increase rapidly [12]. However, the reproducibil-
ity decreases with the number of chains: the stability of r depends on the stability
of all arbiter outputs. As a consequence, the burden of the post-processing logic
(PMKG) does increase.

110 J. Delvaux and I. Verbauwhede

3 Post-Processing Logic: Generating Keys from PUF
Responses

Unfortunately, PUF response bits are not directly usable as a secret key. On-chip
digital post-processing logic is required to resolve two issues: (1) the response
bits are not perfectly reproducible, (2) the response bits are non-uniformly dis-
tributed. Section 3.1 clarifies both issues. Section 3.2 introduces the general
methodology to resolve them. Section 3.3 describes the well-established solu-
tion: the fuzzy extractor. We highlight all interfaces with the user: great care is
required to maintain system security.

3.1 PUF Imperfections

A first PUF imperfection concerns the reproducibility of the response bits. The
main responsible is noise in CMOS transistors (and interconnect), to be consid-
ered as a random time-dependent phenomenon [5]. Its presence is unavoidable.
Environmental perturbations, originating from the IC supply voltage or the out-
side temperature for instance, worsen the problem. Their significance depends
on the intended use of the IC. The reproducibility differs per response bit: some
bits flip very often, others are very stable. This observation has already been
made for arbiter PUFs in specific, although it is true in general.

A second imperfection of PUFs concerns the non-uniform distribution of the
responses. The corresponding entropy reduction is clearly disadvantageous for
secret key applications. One often considers bias, meaning that a PUF generates
on average more 0’s than 1’s, or vice versa. Correlations between CRPs are
another symptom, although harder to quantify. Systematic (spatially dependent)
manufacturing variations are a major root cause for both bias and correlations.
However, there are various other root causes. Strong PUF responses tend to be
very correlated, as an enormous number of bits is extracted from a limited circuit
area only. The linear additive delay model of the arbiter PUF (see appendix A)
provides some insights in this matter.

3.2 Post-Processing Logic

Fixing the non-uniformity issue is relatively straightforward: one can apply a
compression function to restore full entropy. Resolving the reproducibility issue
tends to be more complicated. Two procedures are hereby defined. First, a one-
time enrollment to mark a response vectorResp as a reference: a string of public
helper bits Pub, containing information about Resp, is stored in (off-chip)
NVM. Second, a reconstruction procedure for Resp, given a nearby response
vector Resp′ = Resp⊕Error and the public helper data. Hamming distance
(HD) is the most intuitive proximity criterion, defined as HD(Resp′,Resp) =
HW (Error), with HW the Hamming weight.

Key reconstruction is performed in a setting where an attacker can easily
gain physical access to the IC. The enrollment however, is assumed to take

Attacking PUF-Based Pattern Matching Key Generators 111

place in a secure environment, as an additional step after IC manufacturing.
This assumption facilitates several purposes. First, enrollment procedures might
require random uniformly distributed bits as an input. An external source of
randomness could then be employed, reducing the IC overhead to a minimum.
Furthermore, some constructions hereby enable the user to program an arbitrary
key on the IC, despite the immutable PUF randomness. Second, several interfaces
need to be disabled permanently after the enrollment. The one-time nature of
the enrollment can be imposed with irreversible fuses, for instance.

Helper NVM should be considered as public, meaning that an attacker can
read or even modify its data. Remember that PUFs have been proposed as a
more secure and more efficient alternative for on-chip NVM: labelling helper
data as private would undermine the need for PUFs. Helper string Pub is not
supposed to leak any information about the secret key. Malicious modification
of Pub is a second security concern.

3.3 Fuzzy Extractor

Fuzzy extractors [2] are the well-established post-processing solution. They form
a very generic concept, but we limit ourselves to the most convenient data format
for PUFs: binary vectors with HD as a distance metric. Their definition offers
two guarantees. First, correctness of reconstruction, given HD(Resp′,Resp) ≤
t, with t a fixed parameter. Second, a minimum entropy for Resp, given an at-
tacker that observes the helper string Pub. Typical fuzzy extractor implementa-
tions contain two building blocks: an ECC construction and a cryptographic hash
function, resolving the reproducibility and non-uniformity issue in a sequential
manner.

Figure 2 shows the high-level architecture for secret key generation. A de-
terministic challenge generator extracts a noisy response vector from the (weak)
PUF. A simple counter-based construction might be sufficient. Another option is
a pseudorandom number generator (PRNG), starting from a fixed seed value. In
either case: the full list of challenges should be considered as publicly known, as
mentioned in section 2.1. The fuzzy extractor produces a high-quality secret key
Key, which is stored in VM for as long as needed. There are two bidirectional
interfaces with the user (or attacker). First, an application with key-dependent
operations, having input I and output O. Second, the public helper string Pub
in (off-chip) NVM, providing both read and write access.

Several ECC constructions have been proposed. We limit ourselves to an illus-
tration with the code-offset construction. Its enrollment and reconstruction steps
are listed below. Consider a binary [n,k,2t+ 1] ECC, having block length n, di-
mension k and error-correcting capability t. Response vector Resp, assumed to
have length n, is considered as a codeword offset. XORing with a random code-
word Cword results in the public helper string Pub. During reconstruction,
one does compensate the offset using an erroneous response vector Resp′: the
error vector Error is mapped onto the codeword hereby. Via error-correction,
one can retrieve the original codeword Cword and hence also Resp, the latter
to be hashed to obtain the secret key Key.

112 J. Delvaux and I. Verbauwhede

IC

Weak PUF

Chal

Challenge
Generator

Resp′
ECC

Resp
Hash Key

VM

Application

I O

User
(Attacker)

Randomness

Fuzzy
Extractor

Reconstruction

Enrollment

Public Helper
Data Pub

NVM
Leakage

Manipulation

Fig. 2. Key generation via a typical fuzzy extractor

Enrollment Reconstruction
Choose a random codeword Cword Cword′ ← Resp′ ⊕ Pub = Cword⊕Error
Pub ← Resp ⊕Cword Error-correct Cword′ to Cword

Resp ← Pub⊕Cword
Key ← Hash1(Resp)

Both helper data leakage and manipulation have been studied extensively.
For the code-offset construction, one can prove that Pub does leak n − k bits
of information about Resp. Hash function Hash1 does compensate for this ad-
ditional entropy loss, given the initial entropy loss due to non-uniformity. An
architectural extension, the so-called robust fuzzy extractor [1], detects modifi-
cation with very high probability: key reconstruction is aborted in the former
case. The enrollment and reconstruction steps are listed below, for the code-
offset construction in particular. An additional helper string MAC provides an
integrity assurance.

Enrollment Reconstruction
Choose a random codeword Cword Cword′ ← Resp′ ⊕ Pub� = Cword⊕Error
Pub� ← Resp⊕Cword Error-correct Cword′ to Cword
MAC ← Hash2(Resp,Pub�) Abort reconstruction if HD(Cword′,Cword) > t
Pub ← < Pub�, MAC > Resp ← Pub� ⊕Cword

Abort reconstruction if MAC �= Hash2(Resp,Pub�)
Key ← Hash1(Resp)

4 Pattern Matching Key Generators

PMKGs [9] have been proposed as an alternative post-processing method. We
observe that the proposal does not satisfy the fuzzy extractor definition: one can
ensure correct reconstruction with a very high probability, but there is never a
100% guarantee, even with HW (Error) = 0. No claims about an improved ef-
ficiency and/or security are made. The authors present a high-level architecture,
hereby suggesting a few alternatives and extensions, without posing a stringent

Attacking PUF-Based Pattern Matching Key Generators 113

need to implement the latter. We describe the most basic high-level functionality
in section 4.1. Extensions and alternatives are considered as countermeasures,
as they (unintentionally) increase the resistance against our attacks: we discuss
them later in section 7. Section 4.2 further discusses PMKG failures, as we ex-
ploit them in our attacks.

4.1 Basic Functionality

Enrollment. Consider a stream of PUF response bits Resp. A subset of W
consecutive bits is referred to as a pattern. Given a stream of L +W − 1 bits,
there are L possible patterns one can select. A selection is made at random via
an external interface, which is permanently disabled after the enrollment. The
index j of the selected pattern is kept secret, but the corresponding response bits
Patt are exposed in public helper NVM. The secret index j can provide log2(L)
bits for the construction of a secret key, assuming L to be a power of two. To
obtain a secret key of sufficient length, the former mechanism is repeated for
multiple streams, with each iteration referred to as a round. There is no reuse of
CRPs within this set of streams {Resph}, with h ∈ [1, H]. Indices jh of all H
rounds are concatenated to obtain the full-length secret key Key = K0. Note
that the user is able to program an arbitrary key during enrollment.

Reconstruction. To reconstructK0, a patternmatching procedure is performed
for every round. One does ‘slide’ each helper pattern Patth along its correspond-
ing stream of noisy response bitsResp′

h, testing the resemblance with every noisy
pattern Patt′h. At each index, one does compute t = HD(Patth,Patt′h). The
index with t ≤ T is supposed to be the secret index jh, with T a well-chosen thresh-
old value. As described before, each jh directly corresponds to a subkey.

High-Level Architecture. The high-level architecture is represented by figure
3. Similarities with figure 2 have been preserved, for ease of comparison. A strong
PUF might be required because of the large CRP consumption. A reasonable
amount of built-in ML resistance is assumed to be present. An XOR arbiter
PUF is therefore suggested in [9]. As a challenge generator, one does suggest a
Linear Feedback Shift Register (LFSR), starting from a fixed known seed value.
The noisy PUF response bits are fed into a W -bit ‘First In, First Out’ (FIFO)
shift register.

Helper Data. Public helper string Pub consists of H patterns {Patth}. There
are two lines of defence against PUF modeling attacks. First, the exposure is
small in comparison to the built-in ML resistance of the strong PUF. Note that
one does reveal only a subset of the response bits. Second, the link between the
exposed response bits and their corresponding challenges is unknown. Retrieving
this link is actually equivalent to retrieving the secret key. For each round, there
are L possibilities to link the exposed response bits to their challenges. Note
that former observations only consider helper data leakage. Our attacks exploit
malicious modification of the public helper string Pub.

114 J. Delvaux and I. Verbauwhede

IC

Strong PUF

Chal

Challenge
Generator

Resp′
h

FIFO t ≤ T
index jh

Key

VM

Application

I O

User
(Attacker)

Randomness

Pattern
Matching

Reconstruction

Enrollment

Patth

Patt′h

Public Helper
Data Pub

NVM
Leakage

Manipulation

Fig. 3. Pattern matching key generator

Failures. There are two possible failure conditions for key reconstruction: pat-
tern misses and pattern collisions. A pattern miss1 occurs if t > T at the subkey
index of a certain round. A pattern collision occurs if t ≤ T for at least one
non-subkey index of a certain round.

Parameter Configuration. There are four system parameters: W , L, H and
T . Appropriate values need to be chosen for implementation purposes. We sum-
marized the encountered trade-offs hereby in table 1. A better understanding
of the failure probabilities is clearly desired. In [9], only intuitive insights are
provided, supported by some experimental results. Therefore, we introduce an
analytical framework, which also facilitates the understanding of the presented
attacks.

Table 1. Choosing parameter values for the PMKG

Design goal Quantifier/Estimator Parameter dependencies

Security Key length = H log2(L)

Speed, energy PUF bits = H(L+W − 1)

Area, power FIFO size = W

NVM size Helper bits = HW

Reliability Pattern misses: probability of
occurrence

Decreases with increasing T . Decreases
with increasing W (while preserving the ra-
tio T/W).

Pattern collisions: probability
of occurrence

Decreases with decreasing T . Decreases
with increasing W (while preserving the ra-
tio T/W). Decreases with decreasing L.

1 For ease of notation, we do not use the definition given in [9]: a pattern miss occurs
if t > T for all indices of a certain round.

Attacking PUF-Based Pattern Matching Key Generators 115

4.2 Handling Failures

The precise impact of pattern misses and collisions on the reconstructed key
has not been specified in [9]. For each round, one expects a single index to
satisfy the condition t ≤ T . However, it is not clear what happens if either
zero or at least two indices provide a match. Note that a single match is no
guarantee for correctness: a pattern miss and a single pattern collision might
occur simultaneously.

Our attacks do exploit statistical properties of both failure conditions. They
are developed in a conservative manner, assuming a minimum level of informa-
tion propagation. We assume any combination of pattern misses and/or colli-
sions to be detected properly (PMKG extensions in section 7.1 can obtain this
goal). This should prevent the application from (unknowingly) processing a data-
dependent erroneous key Key �= K0. In case of a failure, one could force the
reconstructed key to have a constant value Key = KFAIL, still without noti-
fying the application. Or alternatively, one might raise a flag, commanding the
application to abort its execution: Key = ⊥.

5 PMKG Failure Analysis

There are two failure conditions for the PMKG: pattern misses and pattern
collisions. We now study their probability of occurrence extensively: a good un-
derstanding will be essential for our attacks. In section 5.1, we construct approx-
imate formulas for the failure probabilities. Except for providing useful insights,
they are actually very helpful to determine appropriate system parameters (W ,
L, H and T), as mentioned before. Section 5.2 provides a graphical illustration.

5.1 Failure Probabilities

The occurrence of both failure conditions indicates an inability to cope with
response bit errors. Therefore, we consider the reproducibility of the PUF bits
as a starting point. A crucial observation has been stated in section 3.1: the
reproducibility differs per response bit. WithR ∈ [0, 1], we denote the probability
that a particular response bit evaluates to ‘1’. To determine the nominal value
of the bit, we evaluate R ≶ 1

2 . The further from R = 1
2 , the more reproducible

the bit.
To obtain workable formulas, providing useful insights, we introduce a few ap-

proximations. First, we rely on averaged statistics of R. This approach is accurate
for sufficiently wide patterns (large W), which should be the case in practice.
Second, we make abstraction of the fact that patterns do overlap. Third, we
ignore time-dependencies of R due to low-frequency disturbances (with respect
to the sampling rate), regarding either CMOS/interconnect noise or the IC’s
environment.

116 J. Delvaux and I. Verbauwhede

We denote the probability of a pattern miss and collision as PMISS and PCOLL

respectively. The overall failure probability PFAIL is easily expressed as shown
below. We now discuss pattern misses and pattern collisions separately. Mea-
surements on our 65nm PUF illustrate the theory.

PFAIL = 1− (1 − PMISS)
H(1− PCOLL)

H

Pattern Misses. Before considering a whole pattern, we first study the mis-
match behavior of a single response bit. Given its reproducibility R, the proba-
bility of a mismatch between its enrolled and regenerated instance is as shown
below. As it will be of interest later, we note that a (one-time) majority vote dur-
ing enrollment could reduce this probability. The more votes, the more likely the
enrolled instance to be correct. In the ideal case of negligible enrollment error, the
mismatch probability would be as follows: PMISS BIT IDEAL(R) = 1

2 −
∣∣R− 1

2

∣∣.
Figure 4(a) plots both curves as a function of R.

PMISS BIT (R) = 2R(1−R).

As patterns contain many bits, we have particular interest for an averaged
mismatch probability. We define the latter via the probability density func-
tion (PDF) of R, as shown below. Figure 4(c) plots PDFR(R) for our 65nm
PUF, as measured for 25000 response bits, evaluated 100 times each. We obtain
PMISS BIT ≈ 14%. With a perfect majority vote, one could obtain a reduced
probability of PMISS BIT IDEAL ≈ 10%.

PMISS BIT =

∫ 1

0

PMISS BIT (R)PDFR(R) dR

We now consider a full pattern, approximating the mismatch outcome of each
bit as a Bernouilli trial, using the averaged probability PMISS BIT . The proba-
bility of a pattern miss is then easily described via a cumulative binomial distri-
bution, as expressed below. The formula confirms the intuitive design guidelines

0 0.5 1
0

0.1

0.2

0.3

0.4

(a)

R

PMISS BIT (R)

0
0.5

1

0
0.5

1
0

0.5

1

(b)

Ri Rj

PCOLL BIT (Ri, Rj)

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

(c)

R

PDFR(R)

Fig. 4. (a) Probability of a response bit mismatch. The dashed curve corresponds with
a majority vote during enrollment, in the ideal case. (b) Probability of a response bit
collision. (c) Probability density function of R for our 65nm PUF.

Attacking PUF-Based Pattern Matching Key Generators 117

of table 1 to reduce pattern misses. The same formula could be employed in case
of a perfect majority vote, using PMISS BIT IDEAL instead.

PMISS = 1−
T∑

t=0

fBIN (t;W,PMISS BIT) with fBIN(t;w, p) =

(
w

t

)
pt(1−p)w−t.

Pattern Collisions. For pattern collisions, we again consider the behavior
of a single bit first. Now, the enrolled and regenerated instance correspond to
different response bits. The probability of a match is as shown below, given
their reproducibilities Ri and Rj . Figure 4(b) plots the corresponding surface,
together with its contour lines.

PCOLL BIT (Ri, Rj) = RiRj + (1−Ri)(1−Rj).

As patterns contain many bits, we are again interested in an averaged prob-
ability. A definition is provided via the PDF of R, as shown below. The proba-
bility can be rewritten in terms of the response bit bias. We define RB as the
expected value of R, which should be 1

2 in the ideal case of zero bias. We estimate

PCOLL BIT ≈ 50% for our (very low bias) 65nm PUF.

PCOLL BIT =

∫∫
[0,1]×[0,1]

PCOLL BIT (Ri, Rj)PDFR(Ri)PDFR(Rj) dRi dRj

= R2
B + (1 −RB)

2 with RB =

∫ 1

0

R PDFR(R) dR.

We now consider a full pattern, with the match outcome of each bit again as
a Bernouilli trial, using the averaged probability PCOLL BIT . The probability of
a pattern collision is easily described via a cumulative binomial distribution, as
shown below. Parameter Q corresponds with the number of collision candidates.
The formula confirms the intuitive design guidelines of table 1 to reduce pattern
collisions.

PCOLL = PCOLL(L−1) with PCOLL(Q)=1−
(
1−

T∑
t=0

fBIN (t;W, 1− PCOLL BIT)

)Q

5.2 Graphical Interpretation

For a better understanding, we graphically interpret the failure probabilities.
We incorporate the averaged characteristics of our PUF: PMISS BIT = 0.14 and
PCOLL BIT = 0.50. Figure 5 plots the probability of a pattern miss and a pattern
collision as a function of T , for W ∈ {64, 128, 256} and fixing L = 1024. Pattern
misses and collisions are an issue for low and high values of T respectively.
The optimal thresholds, minimizing the overall failure probability PFAIL, are
indicated by a vertical line.

118 J. Delvaux and I. Verbauwhede

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

PMISS PCOLL

W = 64

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

PMISS PCOLL

W = 128

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

PMISS PCOLL

W = 256

T

Fig. 5. Failure probabilities, incorporating our PUF statistics PMISS BIT = 0.14 and
PCOLL BIT = 0.50, using L = 1024 and W ∈ {64, 128, 256}. Functions are of discrete
nature, although drawn continuously. The optimal thresholds are T = 15, T = 34
and T = 72. Dashed curves represent the pattern miss probability in case of a perfect
majority vote: PMISS BIT IDEAL = 0.10.

The need for sufficiently wide patterns is clearly visible, as one demonstrated
experimentally in [9]. For W = 64 for instance, it is not possible to make PFAIL

negligible. For W = 128 however, one is able to fix an appropriate threshold.
We employ W = 256 to illustrate our attacks, although this setting actually
corresponds to a system overdesign. Note that a majority vote during enrollment
could alleviate the need for wide patterns.

6 Attacks

We present two key recovery attacks for PMKG devices. They are named Snake I
and Snake II, as their graphical representation contains some striking similarities
with the well-known video game. We first discuss the attacker model in section
6.1. Section 6.2 describes the setup for our experimental validation. Section 6.3
provides a common framework for the attacks. We discuss Snake I and Snake II
separately in sections 6.4 and 6.5 respectively.

6.1 Attacker Model

We consider a PMKG device configured with a secret key Key = K0, assuming
the enrollment has been performed in a secure environment. We assume that all

Attacking PUF-Based Pattern Matching Key Generators 119

parameters (W , L, H and T) are fixed by design and can not be modified. We
consider an active attacker with physical access to the device, trying to retrieve
K0 via the IC interfaces: modifying the public helper string Pub, controlling
the application input I and observing the application output O. As described
in section 4.2, we assume a minimum level of information propagation for the
PMKG in case of a failure: Key = KFAIL or Key = ⊥.

Our attacks rely on a different assumption regarding the application, as for-
malized below. Application input I is fixed hereby. We consider the requirement
for Snake II to be satisfied always: any practical application should behave dif-
ferently if K0 is not reconstructed properly. Snake I utilizes key reprogramming:
the device is then configured with a key K′

0 �= K0. We require key reconstruc-
tion failures of K′

0 to be observable via the application output O. We state that
many (if not most) practical applications do satisfy. Consider for instance all
applications where O contains any form of encrypted data. Furthermore, one
might broaden the range of applications via side channel analysis. The occur-
rence of both Key = KFAIL and Key = ⊥ might be recognizable via timing
information, power consumption, etc.

Failure Handling Snake I Snake II
Key = KFAIL OK′

0
�= OKFAIL OK0 �= OKFAIL

Key = ⊥ OK′
0
�= O⊥ OK0 �= O⊥

6.2 Experimental Validation

The PMKG implementation of [9] employs a 4-XOR arbiter PUF. We illustrate
our attacks using the same PUF architecture, for ease of comparison. More pre-
cisely: we use 64-stage arbiter PUFs manufactured in 65nm CMOS technology
[4]. XORing is not performed on-chip but afterwards in software. However, this
fact does not affect the validity of our demonstration.

We implemented the PMKG fully in software. For ease of testing, we emulate
the 65nm PUF as follows. First, we measured the reproducibility R of many
response bits, using 100 evaluations each. These bits are subsequently employed
to construct streams of length L+W −1. We evaluate bits as r ← (rand() < R),
with rand() ∈ [0 1] the PRNG output of our programming environment, which
has a uniform PDF. Like this, there is no limit on the number of evaluations per
bit.

The failure probability formulas of section 5.1 rely on approximations. Worka-
bility and insights were preferred above analytical complexity. As a consequence,
three effects have not been included: (1) an individual R for every pattern/stream
bit, (2) pattern overlap and (3) time-dependencies of R due to low-frequency dis-
turbances. Our experimental tests do incorporate (1) and (2) properly. Although
(3) has not been addressed explicitly, its impact could be diminished by lowering
the sampling rate (the number of key reconstructions per time unit). One could
interleave measurements for multiple rounds hereby, to alleviate the execution
time penalty.

120 J. Delvaux and I. Verbauwhede

6.3 Common Framework Snake I and Snake II

Snake I and Snake II recover secret indices j on a per round basis. The initially
unexposed bit directly left (or right) of a helper data pattern is retrieved via
statistical properties of the overall failure probability PFAIL. Repeating the same
mechanism over and over again, we slide (like a snake) along the PUF response
string of length L+W −1, revealing a bit with every move. Despite the exposure
of more response bits, increased ML opportunities are not the main threat here:
an abrupt change in failure rate when sliding too far, directly reveals the secret
index of the original pattern. Figure 6 provides an illustration.

Stream

Index 0 1

. . .

j

. . .

j +W − 1

. . .

L+W − 2

Exposure

Fig. 6. The common framework for Snake I and Snake II, illustrated for a single round.
Newly exposed bits are shaded.

For each move of the snake, there are two hypotheses for the unknown
bit: its value is either ‘0’ or ‘1’. We collect failure rate statistics for patterns(
0 ri+1 ri+2 . . . ri+W−1

)
and

(
1 ri+1 ri+2 . . . ri+W−1

)
, with i the index of the

unknown bit. The correct guess tends to generate either more or less failures,
depending on the snake. Snake I and II use pattern misses and pattern collisions
as primary failure condition respectively. Failures are rare events under nomi-
nal conditions. To amplify statistical differences between both hypotheses, we
intentionally introduce errors in the corrupted patterns.

For ease of notation, we introduce a key reconstruction failure flag: Failure ∈
{0, 1}, to be raised when any pattern miss or collision did occur. This flag is
updated by the attacker after each key reconstruction.

6.4 Snake I

Snake I forces the PMKG device to reconstruct new altered keys, with in-
dex i of the unknown bit as a subkey. Therefore, the helper pattern is set to(
0 ri+1 ri+2 . . . ri+W−1

)
, arbitrarily choosing ri = 0. Given i ≥ 0, this results

with very high probability in a successfully reconstructed key, even if ri = 1. A
persistent inability to successfully reconstruct a key, indicates an excess of i = 0,
hereby revealing the value of j. Figure 7 provides an illustration of the helper
data dynamics.

We exploit pattern misses to determine ri, given i ≥ 0. A correct guess of ri
results in a lower mismatch rate for this bit: 1

2 − ∣∣Ri − 1
2

∣∣ < 1
2 +

∣∣Ri − 1
2

∣∣ . As a
consequence, less pattern misses are bound to occur for the correct hypothesis:
the expected value of Hamming distance t differs 2|Ri− 1

2 | at pattern index i. The

Attacking PUF-Based Pattern Matching Key Generators 121

Stream

Index 0 1

. . .

j

. . .

j +W − 1

. . .

L+W − 2

Exposure ?

Helper
Data 1

0
. . .

Fig. 7. Snake I helper data, illustrated for a single round. Newly exposed bits are
shaded.

Algorithm 1. Snake I

Input: Original helper data Patth ∈ {0, 1}1×W of round h ∈ [1 H]
Key reconstruction failure flag Failure ∈ {0, 1}
Number of pattern errors T �

Number of samples N
Output: Modified helper data Patt�h ∈ {0, 1}1×W of round h

Secret index j ∈ [0 L− 1] of round h
j ← 0
stop ← 0
while stop = 0 do

Patt�h ← (
0 Patth[1 : W − 1]

)
if Failure = 1 then

stop ← 1
else

j ← j + 1
FailureRate0 ← 0
FailureRate1 ← 0
for n ← 1 to N do

Choose randomly e ∈ {0, 1}1×W−1 with HW (e) = T �

Patt�h ← (
0 Patth[1 : W − 1]⊕ e

)
FailureRate0 ← FailureRate0 + Failure/N

Patt�h ← (
1 Patth[1 : W − 1]⊕ e

)
FailureRate1 ← FailureRate1 + Failure/N

ri ← (FailureRate0 > FailureRate1)

Patth ← (
ri Patth[1 : W − 1]

)

further from Ri =
1
2 , the easier to observe statistical differences in failure rate.

To amplify failure statistics, we randomly flip T � bits of the two hypothetical
patterns, on corresponding positions for bits ri+1 to ri+W−1.

Algorithm 1 provides pseudocode for Snake I, applied on a certain round
h ∈ [1 H]. The larger the number of samples N , the more confidence one should

122 J. Delvaux and I. Verbauwhede

have in the prediction of ri. Our tests indicate highly feasible values of N , e.g.
10000, to be sufficient. An occasional prediction error, typically occurring if
Ri ≈ 1

2 , can be tolerated. An appropriate value of T � has to be chosen. Algorithm
2 provides pseudocode of a simple method: the (initial) probability of a pattern
miss is centered at 1

2 . Note that we observe statistics for all rounds hereby.

Algorithm 2. Snake I Profiling

Input: Original helper data 〈Patt1,Patt2, . . . ,PattH〉 ∈ {0, 1}H×W

Key reconstruction failure flag Failure ∈ {0, 1}
Number of samples N

Output: Modified helper data 〈Patt�1,Patt�2, . . . ,Patt�H〉 ∈ {0, 1}H×W

Number of errors T �

for t ← 1 to T do
FailureRate(t) ← 0
for n ← 1 to N do

〈Patt�1,Patt�2, . . . ,Patt�H〉 ← 〈Patt1,Patt2, . . . ,PattH〉
Choose a random h ∈ [1 H]

Choose randomly e ∈ {0, 1}1×W with HW (e) = t
Patt�h ← Patth ⊕ e
FailureRate(t) ← FailureRate(t) + Failure/N

T � ← arg min
t

|FailureRate(t)− 1
2
|

Variants and extensions of former algorithms could serve various purposes. (1)
Robustness and/or efficiency could be improved. For algorithm 1 for instance,
one could measure samples until a certain level of confidence is obtained regard-
ing the unknown bit ri. Furthermore, one could adjust the value T � at run-time,
hereby stabilizing the failure rates. (2) A variant of algorithm 1 could error-
correct the initially exposed pattern Patth, minimizing the pattern miss prob-
ability. (3) An extension of algorithm 2 could provide estimates for PMISS BIT ,
or alternatively PMISS BIT IDEAL. (4) One could estimate R, both for initially
and newly exposed response bits.

The effect of flipping T � bits can be studied with our analytical failure frame-
work. Figure 8 provides an illustration for our 65nm PUF. We rely on two as-
sumptions in order to obtain simple formulas. First, Ri ∈ {0, 1}, corresponding
to the best observable difference between hypotheses. Second, we assume all
exposed bits to be correct. For initially exposed bits, this would require a pre-
ceding error correction with variant (2) of algorithm 1. For newly exposed bits,
this would require a very high N in algorithm 1 to obtain a quasi perfect predic-
tion. Note that one could construct a more generally applicable mathematical
model.

Attacking PUF-Based Pattern Matching Key Generators 123

6.5 Snake II

Snake II employs pattern collisions as primary failure condition. Figure 9 illus-
trates the helper data dynamics. The alignment with secret index j is preserved.
The pattern at index i is employed as a source of collisions. A correct guess for
ri, provided at index j, does result in more collisions with the former pattern: hy-
potheses can hence be distinguished. A persistent absence of failures (collisions),
indicates an excess of i = 0, hereby revealing the value of j.

To stimulate the occurrence of a collision, we again flip T � bits, on correspond-
ing positions for bits rj+1 to rj+W−1. We only flip bits that represent a mismatch
with the intended collision source. As an undesired side effect however, the prob-
ability of a pattern miss will increase as well. So both conditions may contribute
significantly to the overall failure rate PFAIL, causing difficulties to distinguish
hypotheses. Algorithm 3 provides pseudocode for Snake II, applicable in absence

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

T

PMISS PCOLL

Fig. 8. Snake I failure probabilities using L = 1024, W = 256 and
T = 72. We incorporate the reproducibility statistics of our 65nm PUF:
PMISS BIT = 0.14, PMISS BIT IDEAL = 0.10 and PCOLL BIT = 0.50. Func-
tions are of discrete nature, although drawn continuously. The pattern miss
curve shifts to the right for both hypotheses, as indicated by the arrow. We
assume Ri ∈ {0, 1}. Furthermore, we assume all exposed bits to be cor-
rect. The correct hypothesis then results in PMISS =

∑T
t1=0 fBIN (t1,W −

T � − 1, PMISS BIT IDEAL)
∑T−t1

t2=0 fBIN (t2, T
�, 1 − PMISS BIT IDEAL). The in-

correct hypothesis then results in PMISS =
∑T−1

t1=0 fBIN (t1,W − T � −
1, PMISS BIT IDEAL)

∑T−1−t1
t2=0 fBIN (t2, T

�, 1 − PMISS BIT IDEAL). We employed
T � = 55.

Stream

Index 0 1

. . .

j

. . .

j +W − 1

. . .

L+W − 2

Exposure ?

Helper
Data 1

0
. . .

Fig. 9. Snake II helper data, illustrated for a single round. Newly exposed bits are
shaded.

124 J. Delvaux and I. Verbauwhede

of the former issue. Again, very feasible values of N (e.g. 10000) turn out to be
successful then.

We study the modified failure probabilities with our analytical framework.
Figure 10 provides an illustration for our 65nm PUF. We rely on the same
assumptions as before to obtain simple formulas. Threshold value T has a major
impact on the feasibility of the attack: it might not be possible to fix T � so that
hypotheses can be distinguished easily. The smaller T , the larger T � in order to
obtain collision behavior. For large values of T , as illustrated on the figure, there
is typically no problem: only pattern collisions contribute significantly to PFAIL.
For small values of T , a pattern miss would occur practically always, completely
overshadowing the collision behavior. For medium values of T , both Ri and Rj

contribute significantly to the statistical difference in failure rate. Note that [9]
does not provide any procedure to determine T or any other system parameters.

Several workarounds could mitigate the former issue. (1) For rounds with
Rj ≈ 1

2 , pattern misses do not contribute to the statistical difference. A variant of
algorithm 1 can determine whether this is the case, as stated before. (2) Or more

Algorithm 3. Snake II

Input: Original helper data Patth ∈ {0, 1}1×W of round h ∈ [1 H]
Key reconstruction failure flag Failure ∈ {0, 1}
Number of pattern errors T �

Stop condition FailureRateMin ∈ [0 1]
Number of samples N

Output: Modified helper data Patt�h ∈ {0, 1}1×W of round h
Secret index j ∈ [0 L− 1] of round h

P �
h ← Patth

j ← 0
stop ← 0
while stop = 0 do

FailureRate0 ← 0
FailureRate1 ← 0
for n ← 1 to N do

e ← Patth[2 : W]⊕ Patt�h[1 : W − 1]
Randomly reduce HW (e) so that it equals T �

Patt�h ← (
0 Patth[2 : W]⊕ e

)
FailureRate0 ← FailureRate0 + Failure/N

Patt�h ← (
1 Patth[2 : W]⊕ e

)
FailureRate1 ← FailureRate1 + Failure/N

if FailureRate0 < FailureRateMin then
stop ← 1

else
j ← j + 1
ri ← (FailureRate0 < FailureRate1)

Patt�h ← (
ri Patt�h[1 : W − 1]

)

Attacking PUF-Based Pattern Matching Key Generators 125

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

T

PMISS

PCOLL(L− 2)

PCOLL(1)

Fig. 10. Snake II failure probabilities using L = 1024, W = 256 and T = 80.
We incorporate the reproducibility statistics of our 65nm PUF: PMISS BIT =
0.14, PMISS BIT IDEAL = 0.10 and PCOLL BIT = 0.50. Functions are of
discrete nature, although drawn continuously. The pattern miss and collision
curve shift to the right and left respectively for both hypotheses, as indicated
by the arrows. We assume Ri, Rj ∈ {0, 1}. Furthermore, we assume all ex-
posed bits to be correct. The correct hypothesis then results in PCOLL =∑T�+T

t1=T� fBIN (t1,W − 1, 1 − PCOLL BIT)
∑T�+T−t1

t2=0 fBIN (t2, T
�, PMISS BIT IDEAL).

The incorrect hypothesis then results in PCOLL =
∑T�+T−1

t1=T� fBIN (t1,W − 1, 1 −
PCOLL BIT)

∑T�+T−1−t1
t2=0 fBIN (t2, T

�, PMISS BIT IDEAL). We employed T � = 50.

generally applicable: one could estimate Rj and compensate its contribution
with respect to the observed statistical difference. (3) In section 4.2, we made
the conservative assumption that all pattern misses and collisions are detected
properly. However, if this is not the case, one might be able to tell whether
a failure is caused by either a miss or a collision. (4) Appendix B discusses a
method to generate a large and small shift for the pattern collision and pattern
miss curve respectively.

7 Countermeasures

Our attacks have been elaborated for the basic PMKG architecture. We now
also consider the various architectural extensions and alternatives: section 7.1
provides a functional description. All of them are treated as countermeasures,
as they (unintentionally) increase the resistance against our attacks. Section 7.2
summarizes the corresponding attack capabilities.

7.1 PMKG Extensions and Alternatives

We first describe three extensions of the basic PMKG architecture, all of them
to be considered as optional. Subsequently, we describe two alternatives, which
are briefly mentioned in the patent application [10] only. We stress that only the
first extension has been proposed with increased security as an objective.

Extension: Bi-modal Challenge Generator. Bi-modality of the challenge
generator has been proposed as a third ML countermeasure. The secret index
of each round is employed to ‘fork’ the next round of the challenge generator.

126 J. Delvaux and I. Verbauwhede

Stated otherwise: the PUF challenge/response stream for each round depends
on the secret indices of all previous rounds. As a consequence, the CRP link
becomes less and less traceable, with a multiplicative rate of L per round.

We make two observations. First, one does not mention that bi-modality could
facilitate failure detection. In particular for the combination of a pattern miss
and a single pattern collision within a certain round, resulting in a single match-
ing index. Bi-modality would then cause a regular pattern miss for all subsequent
rounds, with very high probability. This is straightforward to detect as no match-
ing indices are found. Second, the enormous CRP consumption of bi-modality
makes the use of a strong PUF indispensable. However, the use of a weak PUF
might even eliminate the ML threat, as their architectures provide considerably
lower degrees of correlation (see section 3.1).

Extension: Key Mixing. Secret indices are concatenated to obtain the full
secret key. One suggests the optional use of a non further clarified key mixer,
post-processing the secret indices. We presume that this could be any determin-
istic function, not necessarily one-way. Furthermore, one mentions an alternative
for the secret indices: state bits of a bi-modal challenge generator could be em-
ployed as well.

Extension: Failure Detection Hash. Pattern misses and/or collisions might
result in an erroneous reconstructed key. Only with a detection mechanism, an
appropriate action can be taken. One suggest the use of a cryptographic hash
function, having the bi-modal challenge stream as an input. The digest is stored
in public helper NVM during enrollment. Its value is recomputed for every key
reconstruction, to check whether there is a match.

We have two remarks. First, there is no adequate detection for the last round.
The introduction of an additional dummy round, or simply hashing the set of all
secret indices, would resolve this issue. Second, a cryptographic hash function is
not readily available as for a traditional fuzzy extractor, leading to a substantial
hardware overhead.

Alternative: Best Matching Patterns. During reconstruction, a fixed thresh-
old T is employed to retrieve the secret indices. However, one could also look
for the best matching pattern, having the smallest t within a round. The fail-
ure characteristics differ considerably with respect to the original proposal, as
discussed in appendix C.

Alternative: Non-Overlapping Patterns. Patterns might be chosen in a
non-overlapping manner. We consider this as very inefficient however. The num-
ber of PUF response bits increases from H(L + W − 1) to HLW , given very
comparable failure probabilities.

7.2 Attack Capabilities Overview

Table 2 summarizes the capabilities of our attacks, including all but one coun-
termeasures. The ‘best matching patterns’ alternative is discussed separately in

Attacking PUF-Based Pattern Matching Key Generators 127

appendix C. The direct retrieval of (sub)keys is considered to be the main secu-
rity risk. However, increased ML opportunities due to the exposure of additional
response bits, should be taken into account too.

Table 2. Attacks and countermeasures

Attacks
Counter-
measures

Snake I Snake II

None Exposure of all response bits; retrieval of all
secret indices; retrieval of the full secret key.

Exposure of all response bits; retrieval of
all secret indices; retrieval of the full se-
cret key. Although, small threshold values
T might complicate the attack consider-
ably.

Bi-modality1 For the last round only: exposure of all re-
sponse bits and retrieval of the secret index.
Retrieval of log2(L) key bits.

Bi-modality1 and
key mixing2,3

For the last round only: exposure of all re-
sponse bits and retrieval of the secret index.

Failure detection
hash2,4

/

Non-overlapping
patterns2

/ /

Circularity
(newly proposed)

Exposure of all response bits. Exposure of all response bits. Although,
small threshold values T might complicate
the attack considerably.

1 Assuming the original proposal of [9], without an additional dummy round.
2 Not initially proposed with a security objective in [9,10].
3 We assume the worst-case scenario, as there is no precise specification of the key mixing step in [9].
4 We assume the hash digest to depend on the secret index of the last round too, fixing the issue of [9].

Snake II provides more resistance against the various countermeasures than
Snake I. Decreasing T should not be considered as a secure countermeasure
against the former, because of the aforementioned workarounds. Furthermore,
effectiveness is only offered for very wide patterns, corresponding to a substantial
system overdesign (see figure 5). This undermines any efficiency advantage a
PMKG might possibly have. For more optimal parameter settings, there is little
margin to shift T without affecting the overall failure rate PFAIL significantly.

With non-overlapping patterns, both Snake I and Snake II are fully impeded.
However, we consider this countermeasure as very inefficient, as mentioned be-
fore. Therefore, we also list a new rather simple countermeasure: circularity of
the response bits within a round. Instead of L + W − 1 non-circular bits, one
could generate L circular bits. As before, there are L pattern indices. Although
response bits are still vulnerable to exposure, an attacker will no longer observe
an abrupt change in failure statistics at index 0 (or L − 1), protecting the se-
cret index as such. One could thwart the increased ML risk by implementing
bi-modality as well, or by employing a weak PUF with a negligible amount of
correlation (see section 3.1).

8 Conclusion and Further Work

PMKGs offer an alternative for traditional fuzzy extractors, in order to generate
reproducible and uniformly distributed keys from PUF responses. However, we

128 J. Delvaux and I. Verbauwhede

presentedmajor vulnerabilities in their architecture. Via manipulation of the pub-
lic helper data, full key recoverymight be possible, although depending on system
design choices.Hereby, failure statistics are collected during the key reconstruction
phase, observable via the application user interface. We illustrated our attacks us-
ing a 4-XOR arbiter PUF, manufactured in 65nm CMOS technology.

However, we still see substantial value in the PMKG proposal. One could
develop many post-processing variants according to its basic principle: Ham-
ming distance measurements. As all building blocks of such architectures could
be rather simple, there might be an efficiency advantage for various use cases.
Careful system design should take helper data leakage and manipulation into
account. Our (modified) failure framework might be very helpful to determine
appropriate system parameters. We consider all of the former as further work.

Acknowledgment. This work was supported in part by the European Commis-
sion through the ICT programme under contract FP7-ICT-2011-317930 HINT.
In addition this work is supported by the Research Council of KU Leuven: GOA
TENSE (GOA/11/007), by the Flemish Government through FWO G.0550.12N
and the Hercules Foundation AKUL/11/19. Jeroen Delvaux is funded by IWT-
Flanders grant no. 121552.

References

1. Boyen, X., Dodis, Y., Katz, J., Ostrovsky, R., Smith, A.: Secure Remote Authen-
tication Using Biometric Data. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 147–163. Springer, Heidelberg (2005)

2. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy Extractors: How to Generate
Strong Keys from Biometrics and Other Noisy Data. SIAM J. Comput. 38(1),
97–139 (2008)

3. Hospodar, G., Maes, R., Verbauwhede, I.: Machine Learning Attacks on 65nm
Arbiter PUFs: Accurate Modeling poses strict Bounds on Usability. In: Workshop
on Information Forensics and Security (WIFS), pp. 37–42. IEEE (December 2012)

4. Koeberl, P., Maes, R., Rožić, V., Van der Leest, V., Van der Sluis, E., Verbauwhede,
I.: Experimental Evaluation of Physically Unclonable Functions in 65 nmCMOS. In:
2012 IEEE Conference on European Solid-State Circuits (ESSCIRC), pp. 486–489
(September 2012)

5. Konczakowska, A., Wilamowski, B.M.: Noise in Semiconductor Devices. In: In-
dustrial Electronics Handbook, 2nd edn. Fundamentals of Industrial Electronics,
vol. 1, ch. 11. CRC Press (2011)

6. Kuhn, K., Kenyon, C., Kornfeld, A., Liu, M., Maheshwari, A., Shih, W., Sivakumar,
S., Taylor, G., Van Der Voorn, P., Zawadzki, K.: Managing Process Variation in
Intel’s 45nm CMOS Technology. Intel Technology Journal 12(2), 92–110 (2008)

7. Lee, J.W., Lim, D., Gassend, B., Suh, G.E., van Dijk, M., Devadas, S.: A technique
to build a secret key in integrated circuits for identification and authentication
applications. In: 2004 Symposium on VLSI Circuits, pp. 176–179 (June 2004)

8. Merli, D., Schuster, D., Stumpf, F., Sigl, G.: Side-channel analysis of PUFs and
fuzzy extractors. In: McCune, J.M., Balacheff, B., Perrig, A., Sadeghi, A.-R., Sasse,
A., Beres, Y. (eds.) TRUST 2011. LNCS, vol. 6740, pp. 33–47. Springer, Heidelberg
(2011)

Attacking PUF-Based Pattern Matching Key Generators 129

9. Paral, Z., Devadas, S.: Reliable and Efficient PUF-Based Key Generation Using
Pattern Matching. In: 2011 IEEE International Symposium on Hardware-Oriented
Security and Trust (HOST), pp. 128–133 (June 2011)

10. Paral, Z., Devadas, S., Verayo Inc.: Patent WO/2012/099657, Reliable PUF value
generation by pattern matching (July 26, 2012)

11. Rührmair, U., Devadas, S., Koushanfar, F.: Security based on Physical Unclon-
ability and Disorder. Introduction to Hardware Security and Trust. Springer, Book
Chapter (2011)

12. Rührmair, U., Sehnke, F., Sölter, J., Dror, G., Devadas, S., Schmidhuber, J.: Mod-
eling attacks on physical unclonable functions. In: 2010 ACM Conference on Com-
puter and Communications Security (CCS), pp. 237–249 (October 2010)

13. Skorobogatov, S.: Semi-invasive attacks - a new approach to hardware security
analysis, Technical Report UCAM-CL-TR-630, University of Cambridge, Com-
puter Laboratory (April 2005)

14. Tuyls, P., Schrijen, G.-J., Škorić, B., van Geloven, J., Verhaegh, N., Wolters, R.:
Read-Proof Hardware from Protective Coatings. In: Goubin, L., Matsui, M. (eds.)
CHES 2006. LNCS, vol. 4249, pp. 369–383. Springer, Heidelberg (2006)

A Arbiter PUF: Vulnerability to Modeling Attacks

A single stage of the arbiter PUF can be described by two delay parameters: one
for each challenge bit state, as illustrated in figure 11. The delay difference at
the input of stage i flips in sign for the crossed configuration and is incremented
with δt1i or δt0i for crossed and uncrossed configurations respectively.

ΔtIN

i

ci = 0

ΔtIN + δt0i ΔtIN

i

ci = 1

−ΔtIN + δt1i

Fig. 11. Modeling a single stage of the arbiter PUF

The impact of a δt on Δt is incremental or decremental for an even and odd
number of subsequent crossed stages respectively. By lumping together the δt’s
of neighboring stages, one can model the whole arbiter PUF with only q + 1
independent parameters (and not 2q). A formal expression for Δt is as follows
[12]:

Δt = γτ =
(
γ1 γ2 . . . γq 1

)(
τ1 τ2 . . . τq+1

)T

with τ =
1

2

⎛
⎜⎜⎜⎜⎜⎜⎝

δt01 − δt11
δt01 + δt11 + δt02 − δt12

.

.

.

δt0q−1 + δt1q−1 + δt0q − δt1q
δt0q + δt1q

⎞
⎟⎟⎟⎟⎟⎟⎠
and γ=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

(1 − 2c1)(1 − 2c2) . . . (1 − 2cq−1)(1 − 2cq)

(1 − 2c2) . . . (1 − 2cq−1)(1 − 2cq)

.

.

.

(1 − 2cq−1)(1 − 2cq)

(1 − 2cq)

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

.

130 J. Delvaux and I. Verbauwhede

Vector γ ∈ {±1}1×(q+1) is a transformation of challenge vector Chal ∈
{0, 1}1×q. Vector τ ∈ R

(q+1)×1 contains the lumped stage delays. The more
linear a system, the easier to learn its behavior. By using γ instead of Chal
as ML input, a great deal of non-linearity is avoided. The non-linear threshold
operation Δt ≶ 0 remains however.

B Snake II Extension to Resolve the Threshold Issue

Small and medium values of T complicate the execution of Snake II, as pattern
misses then contribute significantly to the overall failure rate. We introduce an
extension of Snake II to resolve this issue. Hereby, we generate a large and
small shift for the pattern collision and miss curve respectively, referring to the
representation of figure 10. The method requires an estimate of R for all exposed
bits. Variants of algorithms 1 and 3 can obtain this goal for initially exposed and
unexposed bits respectively.

Currently, T � patterns errors are introduced fully at random, given the ri+z �=
rj+z constraint, with z ∈ [1 W − 1]. We formulate a simple heuristic to assess
the benefit for the remaining positions. Introducing an error at position z shifts
the pattern collision and pattern miss curve with 2

∣∣Ri+z − 1
2

∣∣ and 2
∣∣Rj+z − 1

2

∣∣
respectively. So the higher

∣∣Ri+z − 1
2

∣∣ − ∣∣Rj+z − 1
2

∣∣, the more advantageous to
flip the bit.

C PMKG Alternative: Best Matching Patterns

For the ‘best matching patterns’ alternative, the current notion of pattern misses
and collisions gets obsolete. There is only one unified failure condition, which
we prefer to denote as a collision. A collision occurs if at least one non-subkey
index has a lower or equal value of t with respect to the the subkey index. An
approximate formula for the failure probability is given below. The Hamming
distance at a subkey and non-subkey index is denoted as t1 and t2 respectively.

PFAIL = 1− (1− PCOLL)
H

with PCOLL = 1− (1− PCOLL(1))
L−1 and

PCOLL(1) =

W∑
t1=0

fBIN (t1;W,PMISS BIT)

t1∑
t2=0

fBIN (t2;W, 1− PCOLL BIT)

We briefly introduce two attacks, which are inspired by Snake I and Snake
II respectively. They inherit the corresponding assumption regarding the appli-
cation, as given in section 6.1. A first attack employs the helper data dynam-
ics of figure 7. Again, we randomly introduce T � errors for positions ri+1 to
ri+W−1. The correct hypothesis results in fewer collisions: the expected value of
t1 differs 2

∣∣Ri − 1
2

∣∣. The randomized nature of the errors is important: a single
collision source would introduce a bias for t2, causing difficulties to distinguish
hypotheses.

Attacking PUF-Based Pattern Matching Key Generators 131

A second attack employs the helper data dynamics of figure 9. Again, we
randomly introduce T � errors for positions rj+1 to rj+W−1, but only for bits that
represent a mismatch with the intended collision source. The corrects hypothesis
should result in more collisions with the intended collision source: the expected
value of t2 differs 2

∣∣Ri − 1
2

∣∣. However, the expected value of t1 differs 2
∣∣Rj − 1

2

∣∣,
either stimulating or counteracting the collision, with respect to the correct
hypothesis. There are a few resolutions, similar to the low threshold issue of
Snake II. (1) One could limit the attack to patterns with Rj ≈ 1

2 . (2) Or one
could perform a compensation for Rj , given a precise estimate of its value.

	Attacking PUF-Based Pattern Matching KeyGenerators via Helper Data Manipulation
	1 Introduction
	2 Physically Unclonable Functions
	2.1 Challenge-Response Pairs and Their Secrecy
	2.2 Arbiter PUF
	2.3 XOR Arbiter PUF

	3 Post-Processing Logic: Generating Keys from PUF Responses
	3.1 PUF Imperfections
	3.2 Post-Processing Logic
	3.3 Fuzzy Extractor

	4 Pattern Matching Key Generators
	4.1 Basic Functionality
	4.2 Handling Failures

	5 PMKG Failure Analysis
	5.1 Failure Probabilities
	5.2 Graphical Interpretation

	6 Attacks
	6.1 Attacker Model
	6.2 Experimental Validation
	6.3 Common Framework Snake I and Snake II
	6.4 Snake I
	6.5 Snake II

	7 Countermeasures
	7.1 PMKG Extensions and Alternatives
	7.2 Attack Capabilities Overview

	8 Conclusion and Further Work
	References

