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Abstract. We initiate the study of broadcast steganography (BS), an
extension of steganography to the multi-recipient setting. BS enables
a sender to communicate covertly with a dynamically designated set
of receivers, so that the recipients recover the original content, while
unauthorized users and outsiders remain unaware of the covert com-
munication. One of our main technical contributions is the introduc-
tion of a new variant of anonymous broadcast encryption that we term
outsider-anonymous broadcast encryption with pseudorandom ciphertexts
(oABE$). Our oABE$ construction achieves sublinear ciphertext size
and is secure in the standard model. Besides being of interest in its own
right, oABE$ enables an efficient construction of BS secure in the stan-
dard model against adaptive adversaries with sublinear communication
complexity.
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1 Introduction

Point-to-point encryption schemes are effective at concealing the meaning of the
communication between two parties. If the parties additionally desire that the
very existence of their communication over a public channel remains concealed,
then the required tool is steganography. Conventional steganography allows two
parties to communicate covertly, even in the presence of an adversary, by hiding
the intended content within other, seemingly harmless messages. After its initial
formalization in the information-theoretic [12] and complexity-theoretic [3,32,34]
settings, steganography has received regular attention by the cryptographic com-
munity. To a first approximation, existing solutions differ mostly in the degree
of adversarial control that they can tolerate, and in the specific trade-off that
they achieve among the main efficiency measures of transmission overhead, pub-
lic/secret key storage, and encryption/decryption complexity.

Steganography. Simmons [44] introduced the cryptographic community to the
problem of hidden communication with his famous prisoners’ dilemma: Alice
and Bob are in jail and can only talk in the presence of the jail warden Ward.
Ward will not allow any encrypted communication, so Alice and Bob must
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Fig. 1. Relations between broadcast encryption (BE), (outsider) anonymous broadcast
encryption (AnoBE and oABE), and broadcast steganography (BS). A straight arrow
means that one notion implies the other, while the curly arrow denotes our black-box
construction from oABE$ to BS (cf. Sect. 5).

hide their messages about an escape plan (the hiddentext) into innocent-looking
communication (the stegotext) that Ward cannot distinguish from casual chat-
ter (the covertext). Modern cryptographic treatment of steganography began
with Cachin’s formalization in the information-security setting [12] and Hopper
et al.’s in the complexity-theoretic one [32]. Kiayias et al. [35] improve the effi-
ciency of the steganographic protocol of [32] by replacing the use of a pseudo-
random function family with the combination of a pseudorandom generator and
a t-wise independent hash function. This approach was further refined in [36] to
obtain a key-efficient steganographic system, where the gain stems from employ-
ing a novel rejection sampling method based on extractors.

In 2004, von Ahn and Hopper [3] extended the notion of steganography
to the public-key setting, but mostly focused on security against passive ad-
versaries. A stronger security model (steganographic secrecy against adaptive
chosen-covertext attacks, or SS-CCA) was defined by Backes and Cachin [6],
but their constructions attained only an intermediate security notion, termed
steganographic secrecy against publicly-detectable, replayable adaptive chosen-
covertext attacks (SS-PDR-CCA). Building upon the work of [6], Hopper [31]
attained full SS-CCA security under the Decisional Diffie-Hellman (DDH) as-
sumption, in the standard model. Le and Kurosawa [38] suggested a weaker
generalization of the model of [6], but with better efficiency than [31].

All steganographic constructions mentioned above assume that the commu-
nication channel can be modeled by an efficient covertext sampler that can
be queried adaptively, in a black-box manner. Dedic et al. [15] looked into
communication bounds for stegosystems of this kind, while Lysyanskaya and
Meyerovich [40] dealt with the case of imperfect channel oracle samplers.

Work of von Ahn et al. [4] and Chandran et al. [14] introduced stealthiness
to the setting of secure function evaluation, originating the notion of covert
two-party/multi-party computation. Covert protocols allow parties to carry out
distributed computations in a way that hides their very intent of taking part
in the protocol: that is, unless all parties actively participate, nobody can de-
tect that protocol messaging had been initiated (and aborted). This capability
supports stealthy coordination between mutually mistrustful parties and enables
fascinating applications like covert authentication [4] and co-spy detection [14].
However, it does not imply efficient covert dissemination of information to a cho-
sen subset of (mostly passive) receivers, which is the main focus of this paper.
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Table 1. Comparison of the parameters of (outsider) anonymous broadcast encryption
schemes. Each scheme is CCA-secure and requires only one decryption attempt. Only
our scheme provides pseudorandom ciphertexts (c ≈ $:Yes). N is the total number of
users and r is the number of revoked users.

Scheme |MPK| |sk| |c| Security Model Anonymity c ≈ $

BBW06 [7] O(N) O(1) O(N − r) Static, RO Full No
LPQ12 [39] O(N) O(1) O(N − r) Adaptive, Standard Full No

FP12a [23] O(N) O(logN) O
(

r log
(

N
r

))
Adaptive, Standard Outsider No

FP12b [24] O(N log N) O(N) O(r) Adaptive, Standard Outsider No

oABE$ [ours] O(N) O(logN) O
(

r log
(

N
r

))
Adaptive, Standard Outsider Yes

Broadcast Steganography (BS). In this work, we extend steganography to
the broadcast setting. Intuitively, broadcast steganography enables a sender to
communicate covertly with a dynamically designated set of receivers, so that
authorized recipients correctly recover the original content, while unauthorized
users and outsiders remain unaware of the covert communication. To construct
broadcast steganography, we employ the “encrypt-then-embed” paradigm that
underpins most steganographic constructions [3,6,31,32] (cf. Sect. 2). Realizing
this approach, however, requires solving several technical problems.

The first issue is that, in broadcast encryption, the receiver set is included
explicitly in the ciphertext as part of its header (e.g., [8,9,16–19,25,26,28,29,42]).
This is a non-starter for steganography, which intrinsically requires that the
existence of any data in the channel be concealed. To address this issue, we turn
to private broadcast encryption, a notion introduced by Barth et al. [7] with the
goal of keeping the identities of the authorized receivers anonymous (Sect. 2).

The second hurdle is that the “encrypt-then-embed” paradigm requires the un-
derlying encryption functionality to have pseudorandom ciphertexts. This prop-
erty so far had not been considered in the broadcast encryption literature, and none
of the existing constructions support it natively. Interestingly, attaining pseudo-
random ciphertexts requires implicitly that the identities of the recipients be un-
intelligible in the view of outsiders (pseudorandomness of the ciphertext clearly
cannot hold in the view of the recipients). This condition ties back directly to the
previous issue, but in a weaker form, as recipient anonymity is only required to
hold against outsiders. As it turns out, Fazio and Perera [23] recently proposed
a relaxation of full anonymity of exactly this sort: outsider-anonymous broadcast
encryption (oABE). This notion trades some degree of anonymity for better effi-
ciency: whereas all known fully-anonymous broadcast encryption schemes [7, 39]
have ciphertexts linear in the number of receivers, the constructions of [23] obtain
sublinear ciphertext length, though they do not necessarily guarantee that autho-
rized users will learn no information about other members of the receiver set.

In light of the above observations, we put forth and realize (Sect. 4) a new
broadcast encryption variant that we term outsider-anonymous broadcast en-
cryption with pseudorandom ciphertexts (oABE$). oABE$ enables a black-box
construction of BS (cf. Sect. 5). Realizing an efficient oABE$ scheme requires
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Table 2. The parameters of our black-box broadcast steganography schemes. Type-1
channels are the most general, and are modeled as stateful probabilistic oracles whose
output distribution may depend on past samples. Type-2 channels are slightly more
restrictive as they assume history independence, and can then be modeled as efficiently
sampleable document distributions, i.e., efficiently computable randomized functions.
N is the total number of users and r is the number of revoked users. The notion of
BS-CHA (resp. BS-CCA) captures passive (resp. active) security for the BS setting (cf.
Sect. 3.2).

Scheme |MPK| |sk| |s| Security Model Channel Type

BS-CHA O(N) O(logN) O
(

r log
(

N
r

))
Adaptive, Standard 1

BS-CCA O(N) O(logN) O
(

r log
(

N
r

))
Adaptive, Standard 2

non-trivial enhancements to the oABE construction of [23], for it entails resolv-
ing the apparent tension between our ciphertext pseudorandom property and
the ciphertext redundancy introduced by common approaches to CCA secu-
rity [10,20]. Our solution harmonizes these requirements using a novel Pedersen-
like encapsulation mechanism discussed in Sect. 4.2. A comparison of our oABE$
construction with existing ones is reported in Table 1, whereas Fig. 1 shows how
oABE$ relates to other anonymous broadcast communication tools.

Applications. The combination of stealth and revocation capabilities offered
by broadcast steganography enables defenses against insider threats in anti-
censorship systems, intelligence scenarios, and other domains that rely on covert
communication [41, 45].

For a military example, consider a camp where each soldier has an army
smartphone, on which they receive weather forecast, unclassified news and other
information in the clear. Suppose that headquarters suspect that a group of offi-
cials are conspiring to commit treachery, and decides to carry out an undercover
investigation to confirm the identities of the traitors. Conventional broadcast
encryption does not suffice to protect the transmission channel to the soldiers
involved in the investigation of the traitors, because the selective exclusion of
the conspirators from the communication would already put them on notice.
Broadcast steganography, instead, would allow delivery of instructions to the
investigating parties without risking alerting the traitors to the investigation.

For a civil rights scenario, an activist/blogger may want to hide her commen-
tary into innocent-looking image postings to social media services (e.g., Instagram
or Weibo). Because censorship authorities may infiltrate among the activist’s fol-
lowers, the ability of broadcast steganography to authorize/deauthorize recipients
at a fine grain would enable the blogger to revoke the infiltrator and prevent him
from recovering the hiddentext, without him noticing that he has been singled out.

Our Contributions. This work initiates the study of broadcast steganography.
After introducing a suitable security framework, we highlight the connections
with the issue of recipient-anonymity in broadcast encryption. One of our main
technical contributions is the introduction of a new variant of anonymous broad-
cast encryption that we term outsider-anonymous broadcast encryption with



68 N. Fazio, A.R. Nicolosi, and I.M. Perera

hiddentext

Encrypt ciphertext Embed

stegotext

ExtractciphertextDecrypt

Encode

Decode

Fig. 2. The “encrypt-then-embed” paradigm underlying (broadcast) steganography

pseudorandom ciphertexts. Our oABE$ construction achieves sublinear cipher-
text size and is secure in the standard model against adaptive adversaries, which
required circumventing multiple technical hurdles and is thus of independent in-
terest. Finally, we devise efficient oABE$-based BS schemes at varying security
levels (cf. Table 2), including a construction with sublinear stegotexts secure in
the standard model against adaptive adversaries.

2 Background

Documents and Covertexts. Let Σ = {0, 1}σ be a finite set of bit-strings
with length σ. Denote by Σ∗ the set of sequences of finite length over Σ. We
call the strings u ∈ Σ documents and the strings s ∈ Σ∗ covertexts.

Channels. A channel Ch is a function that takes as input a channel history
h ∈ Σ∗ and produces a probability distribution on Σ. A channel history h =
s1‖ . . . ‖sl ∈ Σ∗ is called legal if for all i ∈ [1, l], PrCs1‖...‖si−1

[si] > 0. A sampling
of l documents in succession from a channel is denoted by s = s1‖ . . . ‖sl ←
Cl

h (shorthand notation for s1 ← Ch, s2 ← Ch‖s1 , . . . , sl ← Ch‖s1‖...‖sl−1). A
channel is called always informative if for every legal history h ∈ Σ∗, H∞(Cl

h) =
�(l), where H∞ is the min-entropy function. A channel can be modeled either
as an oracle or as an efficiently computable randomized function Channel(h; r)
(where r denotes the random coins). While the latter is a stronger assumption on
the channel, [31] shows it to be necessary for secure steganography. Efficiently
computable channels also enable broadcast steganographic constructions with
stronger security guarantees (cf. Sect. 5).

Public-KeySteganography.From an operational standpoint, public-key stega-
nography resembles the setting of asymmetric encryption: a participant with a
public/secret key pair is able to receive covert messages (the hiddentexts) from
another party, who only knows the public key. Unlike the case of public-key cryp-
tography, however, the encoded hiddentexts, termed stegotexts, are required to be
indistinguishable from the covertexts of the communication channel.

A common approach to realize public-key stegosystems is the “encrypt-then-
embed” paradigm [3, 6, 31, 32], depicted in Fig. 2. At a high level, encoding is
accomplished by first encrypting the hiddentext using a public-key cryptosystem,
and then implanting the resulting ciphertext in the stegotext using an embedding
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function. The decoding process develops similarly, but in the reverse direction.
Based on the security properties of the underlying cryptosystem and embed-
ding function, one obtains stegosystems with a variety of security guarantees
(cf. Sect. 1).

Outsider-Anonymous Broadcast Encryption (oABE). The notion of pri-
vate broadcast encryption was initially introduced in [7], with the aim of pro-
viding explicit protection for identities of the receivers during each transmission.
As a proof-of-concept, therein the authors suggested both generic and number-
theoretic public-key constructions that do not leak any information about the
list of authorized receivers, and are secure in the standard model and in the
random oracle model, respectively. The proposed schemes, however, have com-
munication complexity linear in the number of recipients. In [39], Libert et al.
suggested proof techniques to argue the security of (a variant of) the number-
theoretic construction of [7] without reliance on random oracles, thus attain-
ing anonymous broadcast encryption with efficient decryption in the standard
model. Still, ciphertexts in the resulting construction have length linear in the
number of recipients. In [37], Kiayias and Samari put forth lower bounds on
the ciphertext size of private broadcast encryption schemes and showed, among
other results, that fully anonymous broadcast encryption schemes with a cer-
tain “atomicity” property (satisfied, e.g., by the schemes of [7, 39]) must have
�(s · λ) ciphertext size, where s is the number of authorized receivers and λ is
the security parameter.

Fazio and Perera [23] formalized the notion of outsider-anonymous broadcast
encryption , which lies between the complete lack of protection that character-
izes traditional broadcast encryption schemes as introduced in [25], and the full
anonymity provided by [7, 39]. In an oABE scheme, an attacker who intercepts
a ciphertext of which she is not a legal recipient will be unable to learn anything
about the identities of the legal recipients (let alone the contents of the cipher-
text). Still, for those ciphertexts for which the adversary is in the authorized
set of recipients, she might also garner information about the identities of the
other receivers. This seems a natural relaxation, since often the contents of the
communication already reveals something about the recipient set. Moreover, it
enables schemes that achieve sublinear ciphertexts size and are secure against
adaptive adversaries in the standard model. We observe that, in light of the
lower bounds of [37], the trade-off proposed in [23] may be unavoidable.

Entropy Smoothing Hash. A family of hash functions Hes = {H : X → Y }
is “entropy smoothing” [33] if it is hard to distinguish (H, H(x)) from (H, y),
where H is a random element of Hes, x is a random element of X , and y is a
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random element of Y . More formally, Hes is called (t, ε)-entropy smoothing if
for every t-time adversary A,

∣
∣Pr

[A(H, H(x)) = 1 | H ←$ Hes, x ←$ X
]

− Pr
[A(H, y) = 1 | H ←$ Hes, y ←$ Y

]∣
∣ ≤ ε,

where the probability is over the choice of H, x, y and the random coins of A.1

3 Broadcast Steganography (BS)

3.1 The Setting

Definition 3.1. A broadcast steganography scheme, associated with a universe
of users U = [1, N ], a message space MSP, and a channel Ch on a set
of documents Σ, is a tuple of probabilistic polynomial-time (PPT) algorithms
(Setup,KeyGen,Encode,Decode) such that:

(MPK,MSK) ← Setup(1λ,N): Setup takes the security parameter 1λ and the
number of users in the system N as inputs and outputs the master public
key MPK and the master secret key MSK.

ski ← KeyGen(MPK,MSK, i): Given the master public key MPK, the master
secret key MSK, and a user i ∈ U , KeyGen generates a secret key ski for
user i.

s ← Encode(MPK, S, h,m): Encode takes the master public key MPK, a set
of receivers S ⊆ U , a channel history h ∈ Σ∗, and a message m ∈ MSP
as inputs and outputs a stegotext s ∈ Σ∗ from the support of Cl

h for some
l = poly(|m|).

m/⊥ := Decode(MPK, ski, s): Given the master public key MPK, a secret key
ski, and a stegotext s ∈ Σ∗, Decode either outputs a message m ∈ MSP or
the failure symbol ⊥. We assume that Decode is deterministic.

Correctness. For every S ⊆ U , i ∈ S, legal channel history h ∈ Σ∗, and
m ∈ MSP, if (MPK,MSK) is output by Setup(1λ, N) and ski is generated by
KeyGen(MPK,MSK, i), then Decode(MPK, ski,Encode(MPK, S, h, m)) = m ex-
cept with negligible probability in the security parameter λ.

Remark 3.2. In contrast to the definition from [31], our definition requires that the
Decode algorithm works without receiving the channel history h corresponding to
the stegotext s as an input. This is crucial for an efficient broadcast steganogra-
phy scheme, because requiring that authorized users feed the Decode algorithm
with the same h that was used by the sender entails a level of coordination that
is unrealistic in a broadcast setting. Our definition also applies to channels whose
samples do not depend on h at all, as Encode may simply ignore h.
1 Entropy smoothing is related to strong randomness extraction [46], but it is a much

less stringent (and hence easier to realize) notion, as it seeks only computational
(rather than information-theoretic) guarantees, and it is specific to one entropy
source (the uniform distribution over the domain X), whereas strong extractors are
applicable to any source of a given min-entropy.



Broadcast Steganography 71

3.2 The Security Models

In broadcast encryption (BE), the adversary’s goal is to learn something about the
message encrypted within a given ciphertext despite not having a valid decryption
key. In broadcast steganography, the adversary’s goal is to detect the presence of a
message in a given covertext without a valid decoding key. In either case, one may
consider multiple levels of security, according to the amount of power afforded to the
attacker. We discuss below three models of security for broadcast steganography
schemes, followed by formal definitions later in this section.
Chosen-Hiddentext Attack (BS-CHA). This is the weakest model of secu-
rity for a broadcast steganography scheme. Analogous to the chosen-plaintext
attack in broadcast encryption, the adversary in this context is only allowed to
corrupt users by gaining their secret keys.
Publicly-Detectable Replayable Chosen-Covertext Attack (BS-PDR-
CCA). In this model of security, the adversary is additionally given access to
a decoding oracle through which they can obtain the hiddentext (if any) in any
covertext s of their choice, as recovered by any honest user i of their choice,
subject to the following restriction: After receiving the challenge covertext s∗

for the set of recipients S∗, the adversary is not allowed to query the decoding
oracle with a user index i and a covertext s such that i ∈ S∗ and s ≡MPK s∗,
where ≡MPK is an arbitrary compatible relation:

Definition 3.3. Let Π = (Setup,KeyGen,Encode,Decode) be a BS scheme. A
binary relation on stegotexts of Π induced by a master public key MPK of Π is
called a compatible relation (denoted by ≡MPK) if for any two stegotexts s1, s2
encoded under sets of receivers S1, S2 respectively, we have

1. If s1 ≡MPK s2 then for any i1 ∈ S1 and i2 ∈ S2, Decode(MPK, ski1 , s1) =
Decode(MPK, ski2 , s2) except with negligible probability in the security pa-
rameter λ.

2. There exists a PPT algorithm that takes MPK, s1, s2 and determines whether
s1 ≡MPK s2.

Chosen-Covertext Attack (BS-CCA). A BS-CCA adversary has the same
capabilities from the BS-PDR-CCA model of security, but the restriction for the
decoding queries is now lifted. Specifically, the only covertext that the adversary
is not allowed to submit to the decoding oracle with a user index i ∈ S∗ is the
challenge covertext s∗ itself.

We now formally define the BS-CCA security model via the following security
game.

Definition 3.4. For a given BS scheme Π = (Setup,KeyGen,Encode,Decode),
the BS-IND-CCA game, played between a PPT adversary A and a challenger C,
is defined as follows:

Setup: C runs (MPK,MSK) ← Setup(1λ, N) and gives A the resulting master
public key MPK, keeping the master secret key MSK to itself. C also initializes
the set of revoked users R to be empty.
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Phase 1: A adaptively issues queries q1, . . . , qm of one of the following types:
• Secret-key query i: A requests the secret key of a user i ∈ U . C runs

ski ← KeyGen(MPK,MSK, i), adds i to R, and sends ski to A.
• Decoding query (i, s): A issues a decoding query on a
user index i ∈ U and a covertext s ∈ Σ∗. C computes
Decode(MPK,KeyGen(MPK,MSK, i), s) and gives the result to A.

Challenge: A gives C a message m∗ ∈ MSP, a legal history h ∈ Σ∗, and a
set of user identities S∗ ⊆ U with the restriction that S∗ ∩ R = ∅. C picks
a random bit b∗ ∈ {0, 1} and generates the challenge s∗ depending on it as
follows. If b∗ = 0, then C encodes m∗ into a stegotext s∗ for the receiver set
S∗, i.e., s∗ ← Encode(MPK, S∗, h, m∗). Otherwise, C sample s∗ as a cover-
text of equal length, i.e., s∗ ←$ Cl∗

h for l∗ = |Encode(MPK, S∗, h, m∗)|/σ. At
the end, C gives s∗ to A.

Phase 2: A adaptively issues additional queries qm+1, . . . , qn where each qi is
one of the following:

• Secret-key query i such that i �∈ S∗.
• Decoding query (i, s) such that, if i ∈ S∗, then s �= s∗.

Guess: A outputs a guess b ∈ {0, 1} and wins if b = b∗.

The adversary A is called a BS-IND-CCA adversary and A’s advantage is de-
fined as

AdvBS-IND-CCA
A,Π :=

∣
∣Pr[b = b∗] − 1

2

∣
∣,

where the probability is over the random coins used by the adversary A and the
challenger C.
Definition 3.5. A BS scheme Π is (t, Qsk, Qd, ε)-BS-CCA-secure if for any
t-time BS-IND-CCA adversary making at most Qsk adaptive secret-key queries
and at most Qd adaptive decoding queries, it is the case that AdvBS-IND-CCA

A,Π ≤ ε.

By restricting the kind of decoding queries allowed in Phase 2 of the BS-IND-
CCA game above, we can obtain the BS-IND-PDR-CCA game. Specifically, the
adversary now cannot issue any decoding query (i, s) such that i ∈ S∗ and
s ≡MPK s∗ for some compatible relation ≡MPK. The adversary A in this game is
called a BS-IND-PDR-CCA adversary and A’s advantage is defined as

AdvBS-IND-PDR-CCA
A,Π :=

∣
∣Pr[b = b∗] − 1

2

∣
∣.

Definition 3.6. A BS scheme Π is (t, Qsk, Qd, ε)-BS-PDR-CCA-secure with
respect to some compatible relation ≡MPK if for any t-time BS-IND-PDR-CCA
adversary making at most Qsk adaptive secret-key queries and at most Qd adap-
tive decoding queries, it holds that AdvBS-IND-PDR-CCA

A,Π ≤ ε.

The BS-IND-CHA game is defined similar to the BS-IND-CCA game, with the
restriction that the adversary is not allowed to issue any decoding queries during
Phase 1 and Phase 2. The adversary is still allowed to issue secret-key queries.

Definition 3.7. A BS scheme Π is (t, Qsk, ε)-BS-CHA-secure if Π is (t, Qsk, 0,
ε)-BS-CCA-secure.
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4 Anonymity and Pseudorandomness in
Broadcast Encryption

In Sect. 2, we briefly discussed the notion of outsider-anonymous broadcast en-
cryption [23], a security model for BE whose goal is to hide the identities of the
intended receivers of a broadcast ciphertext from unauthorized users. As out-
lined in Sect. 1, a crucial technical step to realize broadcast steganography is
combining receiver anonymity with pseudorandomness of broadcast ciphertexts
(cf. Sect. 5). This section develops the notion of outsider-anonymous broadcast
encryption with pseudorandom ciphertexts (oABE$), and presents an efficient
construction secure in the standard model under a stronger security model, out-
sider anonymity and ciphertext pseudorandomness against chosen-ciphertext at-
tacks (oABE$-CCA).

4.1 The Security Models of oABE$
We now present three oABE$ security models: oABE$-CPA, oABE$-PDR-CCA,
and oABE$-CCA. In Sect. 4.2, we present an oABE$-CCA-secure construction.
At a high level, these security models require that for any message m∗ and set of
recipients S∗, no PPT adversary A can distinguish between an actual encryption
of m∗ intended for the set S∗, and a truly random string of the same length as
an encryption of m∗ for S∗, so long as A does not possess the secret key of any
user in S∗.
Definition 4.1. Given an oABE$ schemeΠ =(Setup,KeyGen,Encrypt,Decrypt),
the oABE$-IND-CCA game, played between a PPT adversary A and a challenger
C, is defined as follows:
Setup: C runs (MPK,MSK) ← Setup(1λ, N) and gives A the resulting master

public key MPK, keeping the master secret key MSK to itself. C also initializes
the set of revoked users R to be empty.

Phase 1: A adaptively issues queries q1, . . . , qm where each qi is one of the
following:

• Secret-key query i: A requests the secret key of a user i ∈ U . C runs
ski ← KeyGen(MPK,MSK, i), adds i to R, and sends ski to A.

• Decryption query (i, c): A sends a decryption query on a user i ∈ U and a
ciphertext c ∈ CSP. C computes Decrypt(MPK,KeyGen(MPK,MSK, i), c)
and gives the result to A.

Challenge: A gives C a message m∗ ∈ MSP and a set of user identities S∗ ⊆
U with the restriction that S∗ ∩ R = ∅. C picks a random bit b∗ ∈ {0, 1} and
generates the challenge ciphertext c∗ depending on it: if b∗ = 0, then c∗ ←
Encrypt(MPK, S∗, m∗), else c∗ ←$ {0, 1}l∗ for l∗ = |Encrypt(MPK, S∗, m∗)|.
The challenge ciphertext c∗ is then given to A.

Phase 2: A adaptively issues additional queries qm+1, . . . , qn where each qi is
one of the following:

• Secret-key query i such that i �∈ S∗.
• Decryption query (i, c) such that, if i ∈ S∗, then c �= c∗.

Guess: A outputs a guess b ∈ {0, 1} and wins if b = b∗.
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The adversary A is called an oABE$-IND-CCA adversary and A’s advantage is
defined as

AdvoABE$-IND-CCA
A,Π :=

∣
∣Pr[b = b∗] − 1

2

∣
∣,

where the probability is over the random coins used by the adversary A and the
challenger C.

Observe that the key difference of the above definition from the oABE notion
defined in [23] is in the Challenge phase, where the challenger either returns the
encryption of m∗ or a random bit-string with appropriate length.

Definition 4.2. An oABE$ scheme Π is (t, Qsk, Qd, ε)-oABE$-CCA-secure if
for any t-time oABE$-IND-CCA adversary making at most Qsk (resp. Qd) adap-
tive secret-key (resp. decryption) queries we have AdvoABE$-IND-CCA

A,Π ≤ ε.

The oABE$-IND-PDR-CCA game is obtained by restricting the adversary dur-
ing Phase 2 of the oABE$-IND-CCA game from submitting any decoding query
(i, c) such that i ∈ S∗ and c ≡MPK c∗, where ≡MPK is an arbitrary compati-
ble relation of the oABE$ scheme.2 The adversary A in this game is called an
oABE$-IND-PDR-CCA adversary and A’s advantage is defined as

AdvoABE$-IND-PDR-CCA
A,Π :=

∣
∣Pr[b = b∗] − 1

2

∣
∣.

Definition 4.3. An oABE$ scheme Π is (t, Qsk, Qd, ε)-oABE$-PDR-CCA-
secure with respect to a compatible relation ≡MPK if for any t-time oABE$-IND-
PDR-CCA adversary making at most Qsk adaptive secret-key queries and at
most Qd adaptive decoding queries AdvoABE$-IND-PDR-CCA

A,Π ≤ ε.

By restricting the adversary in the oABE$-IND-CCA game from submitting any
decoding queries during Phase 1 and Phase 2, we obtain the oABE$-IND-CPA
game. The adversary is still allowed to issue secret-key queries.

Definition 4.4. An oABE$ scheme Π is (t, Qsk, ε)-oABE$-CPA-secure if Π is
(t, Qsk, 0, ε)-oABE$-CCA-secure.

4.2 An oABE$-CCA-Secure Construction

Our construction builds on the one of [23], so we start with a brief review of the
latter. At a high level, the approach of [23] is to: (1) “bundle” multiple ciphertexts
of an anonymous identity-based encryption scheme (AIBE, e.g., [1,11,27]) into a
single oABE ciphertext; (2) “tag” each AIBE ciphertext to enable the decryptor
to efficiently locate the component compatible with her decryption key; and (3)
“seal” everything together with a one-time signature to thwart CCA attacks.
To attain pseudorandom oABE ciphertexts, we will start with an anonymous
identity-based encryption scheme with pseudorandom ciphertexts (AIBE$) like
2 The definition of a compatible relation for an oABE$ scheme follows analogously to

Definition 3.3.
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Algorithm: Commit(PK′′)
1 k̂ ←$ {0, 1}λ

2 repeat
3 k̃ ←$ Zq, com := mp(gk̂

comhk̃
com)

4 until com < 2λ

5 decom := (k̂, k̃)
6 return (k̂, com, decom)

Algorithm: Open(PK′′, com, decom)
1 parse decom as (k̂, k̃)
2 if com = mp(gk̂

comhk̃
com) then

3 return k̂
4 return ⊥

Fig. 3. Our Pedersen-like encapsulation mechanism

the one of [2]. Additionally, we will use an entropy-smoothing hash function [33]
to hide the structure in the ciphertext tags.

These adjustments do not suffice because the presence of the one-time sig-
nature introduces additional structure in the oABE ciphertext of [23]. To get
around this, we substitute one-time signatures with MACs (implemented via
pseudorandom functions) and employ a variant of an encapsulation mecha-
nism [10, 20] with an additional pseudorandom property. In short, an encap-
sulation mechanism is a “relaxed” commitment scheme consisting of a triplet of
algorithms (SetupCom,Commit,Open): SetupCom(1λ) produces a commitment
public key PK′′; Commit(PK′′) samples a random bit string k̂ together with
associated commitment and decommitment information com and decom; and
Open(PK′′, com, decom) recovers k̂. For hiding, triples of the form (PK′′, com, k̂)
ought to be statistically indistinguishable from those of the form (PK′′, com, r)
for random r. For relaxed binding, given a random output (k̂, com, decom) of
Commit(PK′′), it should be hard to produce decom′ such that Open(PK′′, com,

decom′) �∈ {k̂, ⊥}.
Let p, q be primes such that 2λ < q < 2λ+1 and p = 2q + 1, and g be a square

modulo p. Denote by G = 〈g〉 the group of quadratic residues modulo p. To
“pack” quadratic residues into λ bits, we will use rejection sampling along with
the following well-known G–Zq bijection (cf. e.g., [31]):

mp(a) =

{
a if a ≤ q

p − a otherwise
mp−1(b) =

{
b if b

p−1
2 ≡ 1 mod p

p − b otherwise

Figure 3 shows the Commit and Open functionalities of our Pedersen-like [43]
encapsulation mechanism over G, whose commitment public keys are random
pairs (gcom, hcom) of generators of G. The hiding requirement follows from the
hiding properties of standard Pedersen commitments, coupled with the observa-
tion that mp(·) is a bijection. Relaxed binding follows from the discrete logarithm
assumption in G, again similarly to standard Pedersen commitments. A novel
feature of our encapsulation mechanism is that the distribution of commitments
com induced by the Commit(PK′′) algorithm is uniform over {0, 1}λ, and hence
the relaxed commitment scheme of Fig. 3 has pseudorandom commitments.

Let Π ′ = (Init,Ext,Enc,Dec) be an AIBE$-CCA-secure AIBE$ scheme with
expansion � (i.e., |Enc(MPK′, ID, m)| = �(|m|)). Let F : {0, 1}λ × {0, 1}∗ →
{0, 1}λ be a PRF and let Hes = {G2 → {0, 1}λ} be an entropy smoothing
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hash function family. Below we describe at a high level how we combine these
primitives into an oABE$-CCA-secure scheme Π ; Fig. 4 reports the details.

Algorithm: Setup(1λ, N)
1 (MPK′,MSK′) ← Init(1λ)
2 PK′′ ← SetupCom(1λ), H ←$ Hes

3 � Fam – the set of all the subtrees in T
4 for j := 1 to |Fam| do
5 � Tj – the subtree in Fam indexed by j
6 � HIDj – the HID of Tj’s root
7 a1,HIDj

, a2,HIDj
, b1,HIDj

, b2,HIDj
←$ Zq

8 A1,HIDj
:= g

a1,HIDj , A2,HIDj
:= g

a2,HIDj

9 B1,HIDj
:= gb1,HIDj , B2,HIDj

:= gb2,HIDj

10 MPK := (MPK′,PK′′, H, N,G, g,
{Ai,HIDj

, Bi,HIDj
}i∈{1,2},j∈[1,|Fam|])

11 MSK := (MSK′,
{ai,HIDj

, bi,HIDj
}i∈{1,2},j∈[1,|Fam|])

12 return (MPK,MSK)

Algorithm: KeyGen(MPK,MSK, i)
1 � HIDi – the HID of leaf i in T
2 for z := 1 to n + 1 do
3 ski,z := (a1,HIDi|z

, a2,HIDi|z
, b1,HIDi|z

, b2,HIDi|z
)

4 ski,z ← Ext(MPK′,MSK′,HIDi|z)
5 ski := ((ski,1, ski,1), . . . , (ski,n+1, ski,n+1))
6 return ski

Algorithm: Encrypt(MPK, S, m)
1 r := N − |S|, L :=

⌊
r log

(
N
r

)⌋

2 (k̂, com, decom) ← Commit(PK′′)
3 repeat
4 s ←$ Zq, c0 := mp(gs)
5 until c0 < 2λ

6 � Cov – the subtrees covering S in T
7 for j := 1 to |Cov| do
8 � Tj – a subtree in Cov
9 � HIDj – the HID of Tj’s root

10 cj := H((Acom
1,HIDj

A2,HIDj
)s,

(Bcom
1,HIDj

B2,HIDj
)s)

11 cj ← Enc(MPK′,HIDj , com‖m‖decom)
12 for j := |Cov| + 1 to L do
13 cj ←$ {0, 1}λ, cj ←$ {0, 1}�(3λ+1+|m|)

14 ĉ := c0‖c1‖c1‖ . . . ‖cL‖cL

15 σ := F (k̂, ĉ), c := σ‖ĉ‖com
16 return c

Algorithm: Decrypt(MPK, ski, c)
1 parse ski as ((ski,1, ski,1), . . . ,

(ski,n+1, ski,n+1))
2 parse c as σ‖ĉ‖com
3 parse ĉ as c0‖c1‖c1‖ . . . ‖cL‖cL

4 c̃0 := mp−1(c0)
5 for z := 1 to n + 1 do
6 parse ski,z as (ã1,z , ã2,z , b̃1,z , b̃2,z)
7 tagz := H(c̃ ã1,zcom+ã2,z

0 , c̃
b̃1,zcom+b̃2,z

0 )
8 if ∃z ∈ [1, n + 1] ∃j ∈ [1, L] : tagz = cj then
9 m′ := Dec(MPK′, ski,z , cj)

10 if m′ �= ⊥ then
11 parse m′ as com‖m‖decom
12 if com = com then
13 k̂ := Open(PK′′, com, decom)
14 if k̂ �= ⊥ ∧ σ = F (k̂, ĉ) then
15 return m

16 return ⊥

Fig. 4. The oABE$-CCA-secure construction. T is the perfect binary tree with N =
2n leaves, which represent the users in the system. HIDi|z denotes a prefix of the
hierarchical identifier HIDi with length z.

To attain sublinear ciphertexts, we follow the approach of [23], which is
based on the Subset Cover Framework [16, 42] (cf. also [21]). We arrange the
N = 2n users in a perfect binary tree with N leaves, and assign to each user
(using AIBE$) n + 1 decryption keys, corresponding to all the nodes in the path
to its designated leaf (Line 4 of KeyGen). Each oABE$ ciphertexts consists of
multiple AIBE$ components. For efficient decryption, AIBE$ components are
tagged using a twin-DH-based [13] technique reminiscent of [24, 39] (Line 10 of
Encrypt) so that recipients can single out which AIBE$ component to decrypt,
and with which key (Lines 5–8 and 9 of Decrypt). Throughout Encrypt, we make
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sure that each piece in an oABE$ ciphertext looks random, with the use of re-
jection sampling (Lines 3–5), entropy smoothing (Line 10), dummy components
(Line 13), and pseudorandom MACs (Line 15) in place of one-time signatures.
Forgoing signatures introduce a complication, as the input to the PRF appears
to depend on the PRF key k̂: the cj values and the oABE$ components cj ’s com-
puted in Lines 10 and 11 are derived from com and decom, which correlate with
k̂. We solve this circularity by mediating the occurrence of k̂ in the ciphertext
via the encapsulation scheme of Fig. 3.

Theorem 4.5. If F is a (t1, ε1)-hard PRF, Π ′ is (t2, Qsk, Qd, ε2)-AIBE$-CCA-
secure, Hes is a (t3, ε3)-entropy smoothing hash function, and DDH is (t4, ε4)-
hard in G, then the construction given in Fig. 4 is

(
t1+t2+t3+t4, Qsk, Qd,

(
ε1+

ε2+ε3+2
(
ε4 + Qd

q

))
r log

(
N
r

))
-oABE$-CCA-secure, where N is the total number

of users and r is the number of revoked users.

Proof Sketch. We organize our proof as a sequence of games (Game0, Game1,
Game1, . . . , Gamel, Gamel) between an oABE$-IND-CCA adversary A and the
challenger C, where l denotes the cardinality of the coverset Cov induced by
the set of authorized receivers S∗ chosen by A during the Challenge phase of the
oABE$-IND-CCA game. In the first game (Game0), A receives an encryption
of m∗ for S∗ in the Challenge phase, and in the last game (Gamel), A re-
ceives a uniformly random bit-string of the appropriate length as the challenge
ciphertext.

Game0: corresponds to the game given in Definition 4.1 when the challenge bit
b∗ is fixed to 0. C computes the challenge ciphertext c∗ as follows:
1 r := N − |S∗|, L :=

⌊
r log

(
N
r

)⌋

2 (k̂, com, decom) ← Commit(PK′′)
3 repeat s ←$ Zq, c0 := mp(gs) until c0 < 2λ

4 for j := 1 to l do
5 cj := H((Acom

1,HIDj
A2,HIDj )s, (Bcom

1,HIDj
B2,HIDj )s)

6 cj ← Enc(MPK′,HIDj , com‖m∗‖decom)
7 for j := l + 1 to L do
8 cj ←$ {0, 1}λ

9 cj ←$ {0, 1}�(3λ+1+|m∗|)

10 ĉ := c0‖c1‖c1‖ . . . ‖cL‖cL

11 σ := F (k̂, ĉ), c∗ := σ‖ĉ‖com
Gameh(1 ≤ h ≤ l): is similar to Gameh−1, but, when creating c∗, C replaces

Lines 4–9 with:
1′ for j := 1 to l − h do
2′ cj := H((Acom

1,HIDj
A2,HIDj )s, (Bcom

1,HIDj
B2,HIDj )s)

3′ cj ← Enc(MPK′,HIDj , com‖m∗‖decom)
4′ cl−h+1 := H((Acom

1,HIDl−h+1A2,HIDl−h+1)s, (Bcom
1,HIDl−h+1B2,HIDl−h+1)s)

5′ cl−h+1 ←$ {0, 1}�(3λ+1+|m∗|)

6′ for j := l − h + 2 to L do
7′ cj ←$ {0, 1}λ

8′ cj ←$ {0, 1}�(3λ+1+|m∗|)
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Gameh(1 ≤ h ≤ l): is similar to Gameh, but, when creating c∗, C replaces
Lines 4′–8′ with:
1′′ for j := l − h + 1 to L do
2′′ cj ←$ {0, 1}λ

3′′ cj ←$ {0, 1}�(3λ+1+|m∗|)

Note that the only difference between Gameh−1 and Gameh is that in the for-
mer, the ciphertext component cl−h+1 is an AIBE$ ciphertext while in the latter,
it is just a random bit string with appropriate length. If A can distinguish these
two games, she can also either break the AIBE$ security or break the encapsula-
tion mechanism (which eventually leads to breaking the PRF). Therefore, if the
underlying PRF F is (t1, ε1)-hard and the AIBE$ scheme Π ′ is (t2, Qsk, Qd, ε2)-
AIBE$-CCA-secure, then A’s advantage of distinguishing Gameh−1 from Gameh

must be at most ε1 + ε2. To formally support this claim, we show in the full ver-
sion [22] how to reduce an AIBE$ or a PRF problem instance to an oABE$
problem instance by building an AIBE$/PRF adversary B that uses A as a
subroutine during its execution.

Also note that the only difference between Gameh from Gameh is that in
Gameh, cl−h+1 is a well formed tag whereas in Gameh, it is a random bit string.
We can show that if Hes is an (t2, ε2)-entropy smoothing family of hash functions
and DDH is (t4, ε4)-hard in G, then A has at most ε3 + 2

(
ε4 + Qd

q

)
advantage

in distinguishing Gameh from Gameh with the help of two intermediate games
G̃ame1,h and G̃ame2,h. During the transition from Gameh to G̃ame1,h, we replace
(Bcom

1,HIDl−h+1
B2,HIDl−h+1)s with a random group element r2 ∈ G. Next, during

the transition from G̃ame1,h to G̃ame2,h, we replace (Acom
1,HIDl−h+1

A2,HIDl−h+1)s

with another random group element r1 ∈ G. Finally, during the transition from
G̃ame2,h to Gameh, we replace H(r1, r2) with a truly random bit-string of length
λ. The idea of the proof of the first two transitions is to reduce from the DDH
problem and build a PPT adversary B that internally executes the oABE$-IND-
CCA game with the adversary A in order to gain advantage in breaking the
DDH assumption. This reduction argument proceeds along the same lines as
Lemma 1 of [39]. As for the second transition, we employ the fact that Hes is
an entropy smoothing hash function.

Let Adv0A,Π and Advl
A,Π denote A’s advantage in winning Game0 and Gamel,

respectively. Combining the adversary’s advantages we explained above in a
hybrid argument, we arrive at

∣
∣
∣Adv0A,Π − Advl

A,Π

∣
∣
∣ ≤

(
ε1 + ε2 + ε3 + 2

(
ε4 + Qd

q

))
r log

(
N

r

)
.

5 Constructions of Public-Key Broadcast Steganography

We now present three constructions of broadcast steganography: one for each
model of security defined in Sect. 3.2. Our constructions employ the encrypt-
then-embed paradigm depicted in Fig. 2, using oABE$ (Sect. 4) for encryption
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Function: Sample(λ, h, H, c)
Input: parameter λ, history h,

function H, bit-string c
Output: stegotext s
1 l := |c|
2 for i := 1 to l do
3 j := 0
4 repeat
5 j := j + 1, si ← Ch

6 until H(si) = ci ∨ j = λ
7 h := h‖si

8 s := s1‖ . . . ‖sl

9 return s
(a) Regular

Function: DSample(λ, H, c, r)
Input: parameter λ, function H,

bit-string c, randomness r
Output: stegotext s
1 l := |c|
2 for i := 1 to l do
3 j := 0
4 repeat
5 j := j + 1, si := Channel(rλ

λ(i−1)+j
)

6 until H(si) = ci ∨ j = λ

7 s := s1‖ . . . ‖sl

8 return s

(b) Deterministic

Fig. 5. The rejection-sampler functions

and rejection-sampling [3, 5, 32] for embedding. In what follows, sσ
i denotes the

ith leftmost non-overlapping substring with length σ of a given bit-string s.

5.1 A BS-CHA-Secure Construction

The rejection-sampler function used in our first construction is given in Fig. 5a.
Sample takes as input a security parameter λ, a channel history h ∈ Σ∗, a func-
tion H : Σ → {0, 1}, and a bit-string c ∈ {0, 1}∗, and outputs a covertext
s ∈ Σ∗. Internally, for every bit ci, Sample attempts to find a covertext sσ

i ∈ Σ
such that H(sσ

i ) = ci by repeatedly querying the channel oracle up to λ number
of times.3 This mechanism allows a simple method to extract c from s: compute
c = H(sσ

1 )‖ . . . ‖H(sσ
l ) where l = |s|/σ. As shown in [3, 6], if the channel is al-

ways informative, H is a strongly universal hash function, and c is uniformly ran-
dom, then the maximum statistical distance between s1 ← Sample(λ, h, H, c) and
s2 ← C

|c|
h for any valid h ∈ Σ∗ is negligible in the security parameter λ. For sim-

plicity, we denote this statistical distance when |c| = 1 by ε1 in the reminder of
the paper.

We obtain our BS-CHA-secure scheme by combining the rejection-sampler
function from Fig. 5a with our oABE$ scheme (cf. Sect. 4). Formally, given
a strongly universal hash function family Hsu = {H : Σ → {0, 1}} and an
oABE$-CPA-secure oABE$ scheme Π ′ = (Setup′,KeyGen′,Encrypt′,Decrypt′)
with expansion � (i.e., |Encrypt′(MPK′, S, m)| = �(|m|)), we construct a BS-CHA-
secure broadcast steganography scheme Π = (Setup,KeyGen,Encode,Decode) as
shown in Fig. 6.

Theorem 5.1 (Proof in full version [22]). If the channel is always infor-
mative, Hsu is a strongly universal hash function family, and Π ′ is (t2, Qsk, ε2)-
oABE$-CPA-secure, then the construction in Fig. 6 is (t2, Qsk, με1 + ε2)-BS-
CHA-secure, where μ is the poly. bound on the total message length.
3 Sample may fail to find a valid si during the λ iterations, but only with negligible

probability in the parameter λ.
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Algorithm: Setup(1λ, N)
1 (MPK′,MSK′) ← Setup′(1λ, N)
2 H ←$ Hsu

3 MPK := (MPK′, H)
4 MSK := MSK′

5 return (MPK,MSK)

Algorithm: Encode(MPK, S, h, m)
1 c ← Encrypt′(MPK′, S, m)
2 s ← Sample(λ, h, H, c)
3 return s

Algorithm: KeyGen(MPK,MSK, i)
1 ski ← KeyGen′(MPK′,MSK′, i)
2 return ski

Algorithm: Decode(MPK, ski, s)
1 l := |s|/σ
2 for j := 1 to l do
3 cj := H(sσ

j )
4 c := c1‖ . . . ‖cl

5 m := Decrypt′(MPK′, ski, c)
6 return m

Fig. 6. The BS-CHA-secure construction

Remark 5.2. If the oABE$ scheme employed in Fig. 6 is oABE$-PDR-CCA-
secure, then the resulting BS scheme is BS-PDR-CCA-secure.

5.2 A BS-CCA-Secure Construction

Unfortunately, our first construction fails to provide a BS-CCA-secure broad-
cast steganography scheme even if the oABE$ scheme internally used provides
oABE$-CCA security. The problem is that the rejection-sampler function from
Fig. 5a allows multiple covertexts corresponding to a given bit-string. How-
ever, this limitation can be overcome in the case of channels that are efficiently
computable and whose samples are independently distributed. In fact, for chan-
nels of this type, Hopper [30] devised a deterministic rejection-sampler function
DSample that maps a given bit-string to exactly one covertext.

As shown in Fig. 5b, DSample takes in input a security parameter λ, a predi-
cate H : Σ → {0, 1} along with a bit-string c ∈ {0, 1}∗ to embed, and a random
bit-string r ∈ {0, 1}|c|·λ2 that controls the embedding. To sample s ∈ Σ∗, for
every bit ci of c, DSample seeks sσ

i ∈ Σ such that H(sσ
i ) = ci, by repeat-

edly drawing from the channel according to the random chunks specified in r.
This approach requires that the channel be efficiently computable by a function
Channel(·) whose samples are independent of the history (hence we drop h from
its input), but guarantees that an adversary who intercepts a stegotext is unable
to tweak it meaningfully. Furthermore, as shown in [3, 6, 31], if H is a strongly
universal hash function, and c and r are uniformly random, then the statisti-
cal distance between stegotexts produced by DSample and innocent covertexts
sampled from Channel(·) is a negligible function ε1 of λ.

Figure 7 reports the details of our BS-IND-CCA-secure scheme Π = (Setup,
KeyGen,Encode,Decode), based on a strongly universal hash function family Hsu,
a variable-length pseudorandom generator (vPRG) G : {0, 1}λ × Z → {0, 1}∗

(whose second input sets the output length), and an oABE$-IND-CCA-secure
scheme Π ′ = (Setup′,KeyGen′,Encrypt′,Decrypt′) with expansion �.

Theorem 5.3 (Proof in full version [22]). If the channel is always informa-
tive, Hsu is a strongly universal hash function family, G is a (t2, ε2)-hard vPRG,
and Π ′ is (t3, Qsk, Qd, ε3)-oABE$-CCA-secure, then the construction in Fig. 7
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Algorithm: Setup(1λ, N)
1 (MPK′,MSK′) ← Setup′(1λ, N)
2 H ←$ Hsu

3 MPK := (MPK′, H, G)
4 MSK := MSK′

5 return (MPK,MSK)

Algorithm: Encode(MPK, S, m)
1 r̂ ←$ {0, 1}λ

2 c ← Encrypt′(MPK′, S, r̂‖m)
3 r := G(r̂, |c| · λ2)
4 s := DSample(λ, H, c, r)
5 return s

Algorithm: KeyGen(MPK,MSK, i)
1 ski ← KeyGen′(MPK′,MSK′, i)
2 return ski

Algorithm: Decode(MPK, ski, s)
1 l := |s|/σ
2 for j := 1 to l do
3 cj := H(sσ

j )
4 c := c1‖ . . . ‖cl

5 m′ := Decrypt′(MPK′, ski, c)
6 if m′ �= ⊥ then
7 parse m′ as r̂‖m
8 r := G(r̂, l · λ2)
9 if DSample(λ, H, c, r) = s then

10 return m

11 return ⊥

Fig. 7. The BS-CCA-secure construction

is (t2 + t3, Qsk, Qd, με1 + ε2 + ε3)-BS-CCA-secure, where μ is the poly. bound on
the total message length.

6 Extensions and Future Work

As in the case of broadcast encryption, one may consider extensions of the notion
of broadcast steganography that enhance the setting discussed in this paper with
additional functionality or security properties. In particular, while broadcast
steganography natively protects the recipients’ identities from outsiders, it does
not aim to prevent recipients from finding out about each other. The natural
solution for that is anonymous broadcast steganography (AnoBS). By extending
the anonymous broadcast encryption schemes of [7, 39] to support ciphertext
pseudorandomness, we can use them in place of our oABE$ to achieve fully
anonymous broadcast steganography. The resulting AnoBS scheme, however,
would have ciphertexts with length linear in the number of receivers.
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