
Practical Collision Attack on 40-Step RIPEMD-128

Gaoli Wang1,2

1 Donghua University
School of Computer Science and Technology, Shanghai, China

2 State Key Laboratory of Information Security Institute of Information Engineering,
Chinese Academy of Sciences, Beijing, China

wanggaoli@dhu.edu.cn

Abstract. RIPEMD-128 is an ISO/IEC standard cryptographic hash function
proposed in 1996 by Dobbertin, Bosselaers and Preneel. The compression func-
tion of RIPEMD-128 consists of two different and independent parallel lines de-
noted by line1 operation and line2 operation. The initial values and the output
values of the last step of the two operations are combined, resulting in the final
value of one iteration. In this paper, we present collision differential characteris-
tics for both line1 operation and line2 operation by choosing a proper message
difference. By using message modification technique seriously, we improve the
probabilities of the differential characteristics so that we can give a collision at-
tack on 40-step RIPEMD-128 with a complexity of 235 computations.

Keywords: Hash function, collisions, RIPEMD-128, differential characteristic,
message modification.

1 Introduction

The cryptographic hash function RIPEMD-128 [1] was proposed in 1996 by Hans Dob-
bertin, Antoon Bosselaers and Bart Preneel. It was standardized by ISO/IEC [2] and was
used in HMAC in RFC [3]. The design philosophy of RIPEMD-128 adopts the experi-
ence gained by evaluating MD4 [9], MD5 [10], and RIPEMD [8] etc.. RIPEMD-128 is
a double-branch hash function, where the compression function consists of two parallel
operations denoted by line1 operation and line2 operation, respectively. The combina-
tion of Hi−1, line1(Hi−1,Mi−1) and line2(Hi−1,Mi−1) generates the output Hi, where Hi−1

is the standard initial value or the output of the message block Mi−2.
As far as we know, the published cryptanalysis of (reduced) RIPEMD-128 includes

collision attacks [5,6,12], (semi-)free-start collision attacks [4,5], near collision attack
[5], (second) preimage attacks [7,13] and distinguishing attack [11]. As for the practical
collision attacks on step reduced RIPEMD-128, Wang et al. presented an example of
collision on 32-step RIPEMD-128 in 2008 [12], Mendel et al. presented an example
of collision on 38-step RIPEMD-128 in 2012 [5]. In the work [5], finding differential
characteristic and performing message modification in the first round are achieved by
an automatic search tool.

It is widely believed that it is difficult to construct a differential characteristic
including the first round of line1 operation because the absorption property of the

J. Benaloh (Ed.): CT-RSA 2014, LNCS 8366, pp. 444–460, 2014.
c© Springer International Publishing Switzerland 2014

Practical Collision Attack on 40-Step RIPEMD-128 445

boolean function X ⊕ Y ⊕ Z does not hold. Thus, in the collision attack on 32-step
RIPEMD-128 [12], the difference of messages is chosen as Δm14 � 0, Δmi = 0(0 ≤
i ≤ 15, i � 14) such that the differential characteristic of line1 operation almost keeps
away from the boolean function X ⊕ Y ⊕ Z. Inspired by Mendel’s work [5], we were
motivated to find a differential characteristic of line1 operation, which takes advantage
of the property of the boolean function X ⊕ Y ⊕ Z. By choosing a different message
difference than in [5], the number of the attacked steps can be increased by two.

In this paper, we use the bit tracing method to propose a collision attack on 40-step
RIPEMD-128 with a complexity of 235. The bit tracing method is proposed by Wang
and formalized in [15,16]. It is very powerful to break most of the dedicated hash func-
tions such as MD4 [15,20], RIPEMD [15], HAVAL [14,19], MD5 [16], SHA-0 [17]
and SHA-1 [18]. However, in the double-branch hash functions, two state words are
updated using a single message word. Therefore, the application of bit tracing method
to RIPEMD-128 is far from being trivial. In this paper, constructing differential charac-
teristic, deducing the sufficient conditions and performing message modification are all
fulfilled by hand. The previous results and our results are summarized in Table 1.

Table 1. Summary of the Attacks on RIPEMD-128

Attack Steps Generic Complexity Reference
collision 32 264 228 [12]
collision 38 264 214 [5]
collision 40 264 235 Ours

near collision 44 247.8 232 [5]
free-start collision 48 264 240 [5]

preimage 33 2128 2124.5 [7]
preimage 35∗ 2128 2121 [7]
preimage 36∗ 2128 2126.5 [13]

distinguishing 48 276 270 [5]
distinguishing 45 242 227 [11]
distinguishing 47 242 239 [11]
distinguishing 48 − 253 [11]
distinguishing 52 − 2107 [11]
distinguishing 64 2128 2105.4 [4]

semi-free-start collision 64 264 261.57 [4]
∗ The attack starts from an intermediate step.

The rest of the paper is organized as follows: In Section 2, we describe the RIPEMD-
128 algorithm. In Section 3, we introduce some useful properties of the nonlinear func-
tions in RIPEMD-128 and some notations. Section 4 will show the detailed descriptions
of the attack on RIPEMD-128. Finally, we summarize the paper in Section 5.

2 Description of RIPEMD-128

The hash function RIPEMD-128 compresses any arbitrary length message into a mes-
sage with length of 128 bit. Firstly the algorithm pads any given message into a

446 G. Wang

message with length of 512 bit multiple. For the description of the padding method
we refer to [1]. Then, for each 512-bit message block, RIPEMD-128 compresses it into
a 128-bit hash value by a compression function, which is composed of two parallel op-
erations: line1 and line2. Each operation has four rounds, and each round has 16 steps.
The initial value is (a, b, c, d) = (0x67452301, 0xe f cdab89, 0x98badc f e, 0x10325476).
The nonlinear functions in each round are as follows:

F(X, Y, Z) = X ⊕ Y ⊕ Z,

G(X, Y, Z) = (X ∧ Y) ∨ (¬X ∧ Z),

H(X, Y, Z) = (X ∨ ¬Y) ⊕ Z,

I(X, Y, Z) = (X ∧ Z) ∨ (Y ∧ ¬Z).

Here X, Y, Z are 32-bit words. The four boolean functions are all bitwise operations.
¬ represents the bitwise complement of X. ∧, ⊕ and ∨ are bitwise AND, XOR and
OR respectively. In each step of both line1 operation and line2 operation, one the four
chaining variables a, b, c, d is updated.

φ0(a, b, c, d, x, s) = (a + F(b, c, d) + x)≪ s,

φ1(a, b, c, d, x, s) = (a +G(b, c, d) + x + 0x5a827999)≪ s,

φ2(a, b, c, d, x, s) = (a + H(b, c, d) + x + 0x6ed9eba1)≪ s,

φ3(a, b, c, d, x, s) = (a + I(b, c, d) + x + 0x8 f 1bbcdc)≪ s,

ψ0(a, b, c, d, x, s) = (a + I(b, c, d) + x + 0x50a28be6)≪ s,

ψ1(a, b, c, d, x, s) = (a + H(b, c, d) + x + 0x5c4dd124)≪ s,

ψ2(a, b, c, d, x, s) = (a +G(b, c, d) + x + 0x6d703e f 3)≪ s,

ψ3(a, b, c, d, x, s) = (a + F(b, c, d) + x)≪ s.

<<< s represents the circular shift s bit positions to the left. + denotes addition modulo
232.

line1 operation. For a 512-bit block M = (m0,m1, . . . ,m15), line1 operation is as fol-
lows:

1. Let (a, b, c, d) = (a0, b0, c0, d0) be the input of line1 operation for M. If M is the
first block to be hashed, (a0, b0, c0, d0) is the initial value. Otherwise it is the output
of compressing the previous block.

2. Perform the following 64 steps (four rounds):
For j = 0, 1, 2, 3,
For i = 0, 1, 2, 3,
a = φ j(a, b, c, d,mord1(j,16 j+4i+1), s1 j,16 j+4i+1),
d = φ j(d, a, b, c,mord1(j,16 j+4i+2), s1 j,16 j+4i+2),
c = φ j(c, d, a, b,mord1(j,16 j+4i+3), s1 j,16 j+4i+3),
b = φ j(b, c, d, a,mord1(j,16 j+4i+4), s1 j,16 j+4i+4).

Practical Collision Attack on 40-Step RIPEMD-128 447

line2 operation. For a 512-bit block M = (m0,m1, . . . ,m15), line2 operation is as fol-
lows:

1. Let (aa, bb, cc, dd) = (a0, b0, c0, d0) be the input of line2 operation for M. If M is
the first block to be hashed, (a0, b0, c0, d0) is the initial value. Otherwise it is the
output of compressing the previous block.

2. Perform the following 64 steps (four rounds):
For j = 0, 1, 2, 3,
For i = 0, 1, 2, 3,
aa = ψ j(aa, bb, cc, dd,mord2(j,16 j+4i+1), s2 j,16 j+4i+1),
dd = ψ j(dd, aa, bb, cc,mord2(j,16 j+4i+2), s2 j,16 j+4i+2),
cc = ψ j(cc, dd, aa, bb,mord2(j,16 j+4i+3), s2 j,16 j+4i+3),
bb = ψ j(bb, cc, dd, aa,mord2(j,16 j+4i+4), s2 j,16 j+4i+4).

The output of compressing the block M is obtained by combining the initial value
with the outputs of line1 and line2 operations: a = b0 + c + dd, b = c0 + d + aa,
c = d0 + a + bb, d = a0 + b+ cc. If M is the last message block, then a ‖ b ‖ c ‖ d is the
hash value, where ‖ denotes the bit concatenation. Otherwise repeat the compression
process for the next 512-bit message. The order of message words and the details of the
shift positions can be seen in Table 2.

Table 2. Order of the Message Words and Shift Positions in RIPEMD-128

Step i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
ord1(0, i) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

line1 s10,i 11 14 15 12 5 8 7 9 11 13 14 15 6 7 9 8
ord2(0, i) 5 14 7 0 9 2 11 4 13 6 15 8 1 10 3 12

line2 s20,i 8 9 9 11 13 15 15 5 7 7 8 11 14 14 12 6
Step i 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

ord1(1, i) 7 4 13 1 10 6 15 3 12 0 9 5 2 14 11 8
line1 s11,i 7 6 8 13 11 9 7 15 7 12 15 9 11 7 13 12

ord2(1, i) 6 11 3 7 0 13 5 10 14 15 8 12 4 9 1 2
line2 s21,i 9 13 15 7 12 8 9 11 7 7 12 7 6 15 13 11

Step i 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
ord1(2, i) 3 10 14 4 9 15 8 1 2 7 0 6 13 11 5 12

line1 s12,i 11 13 6 7 14 9 13 15 14 8 13 6 5 12 7 5
ord2(2, i) 15 5 1 3 7 14 6 9 11 8 12 2 10 0 4 13

line2 s22,i 9 7 15 11 8 6 6 14 12 13 5 14 13 13 7 5
Step i 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

ord1(3, i) 1 9 11 10 0 8 12 4 13 3 7 15 14 5 6 2
line1 s13,i 11 12 14 15 14 15 9 8 9 14 5 6 8 6 5 12

ord2(3, i) 8 6 4 1 3 11 15 0 5 12 2 13 9 7 10 14
line2 s23,i 15 5 8 11 14 14 6 14 6 9 12 9 12 5 15 8

448 G. Wang

3 Some Basic Conclusions and Notations

In this section we will recall some properties of the four nonlinear functions in our
attack.

Proposition 1. For the nonlinear function F(x, y, z) = x ⊕ y ⊕ z, there are the following
properties:

1. F(0, y, z) = 0 and F(1, y, z) = 1⇐⇒ y = z.
F(0, y, z) = 1 and F(1, y, z) = 0⇐⇒ y � z.
F(x, 0, z) = 0 and F(x, 1, z) = 1⇐⇒ x = z.
F(x, 0, z) = 1 and F(x, 1, z) = 0⇐⇒ x � z.
F(x, y, 0) = 0 and F(x, y, 1) = 1⇐⇒ x = y.
F(x, y, 0) = 1 and F(x, y, 1) = 0⇐⇒ x � y.

2. F(x, y, z) = F(¬x,¬y, z) = F(x,¬y,¬z) = F(¬x, y,¬z).

Proposition 2. For the nonlinear function G(x, y, z) = (x ∧ y) ∨ (¬x ∧ z) , there are the
following properties:

1. G(x, y, z) = G(¬x, y, z)⇐⇒ y = z.
G(0, y, z) = 0 and G(1, y, z) = 1⇐⇒ y = 1 and z = 0.
G(0, y, z) = 1 and G(1, y, z) = 0⇐⇒ y = 0 and z = 1.

2. G(x, y, z) = G(x,¬y, z)⇐⇒ x = 0.
G(x, 0, z) = 0 and G(x, 1, z) = 1⇐⇒ x = 1.

3. G(x, y, z) = G(x, y,¬z)⇐⇒ x = 1.
G(x, y, 0) = 0 and G(x, y, 1) = 1⇐⇒ x = 0.

Proposition 3. For the nonlinear function H(x, y, z) = (x ∨ ¬y) ⊕ z , there are the fol-
lowing properties:

1. H(x, y, z) = H(¬x, y, z)⇐⇒ y = 0.
H(0, y, z) = 0 and H(1, y, z) = 1⇐⇒ y = 1 and z = 0.
H(0, y, z) = 1 and H(1, y, z) = 0⇐⇒ y = 1 and z = 1.

2. H(x, y, z) = H(x,¬y, z)⇐⇒ x = 1.
H(x, 0, z) = 0 and H(x, 1, z) = 1⇐⇒ x = 0 and z = 1.
H(x, 0, z) = 1 and H(x, 1, z) = 0⇐⇒ x = 0 and z = 0.

3. H(x, y, 0) = 0 and H(x, y, 1) = 1⇐⇒ x = 0 and y = 1.
H(x, y, 0) = 1 and H(x, y, 1) = 0⇐⇒ x = 1 or y = 0.

Proposition 4. For the nonlinear function I(x, y, z) = (x ∧ z) ∨ (y ∧ ¬z) , there are the
following properties:

1. I(x, y, z) = I(¬x, y, z)⇐⇒ z = 0.
I(0, y, z) = 0 and I(1, y, z) = 1⇐⇒ z = 1.

Practical Collision Attack on 40-Step RIPEMD-128 449

2. I(x, y, z) = I(x,¬y, z)⇐⇒ z = 1.
I(x, 0, z) = 0 and I(x, 1, z) = 1⇐⇒ z = 0.

3. I(x, y, z) = I(x, y,¬z)⇐⇒ x = y.
I(x, y, 0) = 0 and I(x, y, 1) = 1⇐⇒ x = 1 and y = 0.
I(x, y, 0) = 1 and I(x, y, 1) = 0⇐⇒ x = 0 and y = 1.

Notations. In order to describe our attack conveniently, we define some notations in the
following.

1. M = (m0,m1, ...,m15) and M′ = (m′0,m
′
1, ...,m

′
15) represent two 512-bit messages.

2. ai, di, ci, bi respectively denote the outputs of the (4i − 3)-th, (4i − 2)-th, (4i− 1)-th
and 4i-th steps for compressing M in line1 operation, where 1 ≤ i ≤ 16.

3. aai, ddi, cci, bbi respectively denote the outputs of the (4i−3)-th, (4i−2)-th, (4i−1)-
th and 4i-th steps for compressing M in line2 operation, where 1 ≤ i ≤ 16.

4. a′i , d′i , c′i , b′i respectively denote the outputs of the (4i− 3)-th, (4i− 2)-th, (4i− 1)-th
and 4i-th steps for compressing M′ in line1 operation.

5. aa′i , dd′i , cc′i , bb′i respectively denote the outputs of the (4i − 3)-th, (4i − 2)-th,
(4i − 1)-th and 4i-th steps for compressing M′ in line2 operation.

6. Δmi = m′i − mi denotes the difference of two words mi and m′i . It is noted that Δmi

is a modular difference and not a XOR difference.
7. xi, j represent the j-th bit of xi, where the least significant bit is the 1-st bit, and the

most significant bit is 32-nd bit.
8. xi[j], xi[− j] are the resulting values by only changing the j-th bit of the word xi.

xi[j] is obtained by changing the j-th bit of xi from 0 to 1. xi[− j] is obtained by
changing the j-th bit of xi from 1 to 0.

9. xi[± j1,± j2, ...,± jl] is the value by change j1-th, j2-th, ..., jl-th bits of xi. The ”+”
sign means that the bit is changed from 0 to 1, and the ”-” sign means that the bit is
changed from 1 to 0.

4 The Collision Attack against 40-Step RIPEMD-128

The collision consists of a pair of two 512-bit blocks (N ‖ M,N ‖ M′). Let (a0, b0, c0, d0)
denote the input chaining value of the message block M. As stated below, in order to
implement the message modification, we have to add some conditions on b0, which
leads the hash value of the first block N to satisfy b0,i = 1 (i = 1, 2, 3, 27) and b0,i = 0
(i = 7, ..., 10, 13, ..., 24). We search the second block M in the following three parts:

1. Choose proper differences of message words and find two concrete differential
characteristics for line1 and line2 operations respectively in which M and M′ pro-
duces a collision. The differential characteristics without round 1 must hold with
high probability.

2. Derive two sets of sufficient conditions which ensure the two differential character-
istics hold, respectively.

3. Modify the message to fulfill most of the conditions on chaining variables.

450 G. Wang

4.1 Differential Characteristics for 40-Step RIPEMD-128

Choosing proper differences of message words plays an important role in constructing
differential characteristics which contain as many steps as possible and hold with high
probabilities after message modification. Let M = (m0,m1, . . . ,m15), we select ΔM =
M′ − M as follows: Δmi = 0 (0 ≤ i ≤ 15, i � 2, 12), Δm2 = 28 and Δm12 = −2. It
forms a local collision from step 25 to step 29 in line1 operation. Although in the same
round, there are the same circular shift values corresponding to the same message words
between line1 operation and line2 operation, e.g. in step 25 (29) of line1 operation, the
shift value is 7 (11) corresponding to the message word m12 (m2), and in step 28 (32)
of line2 operation, the shift value is also 7 (11) corresponding to the message word m12

(m2), it can not form a local collision from step 28 to step 32 in line2 operation. The
reason is that the property of the boolean function (X ∨ ¬Y) ⊕ Z make it need at least
three message words to form a local collision. Therefore, the differential characteristic
of line2 operation consists of one long local collision between step 6 to step 32. In round
3, the message differences first appear at step 41 of line1 operation and at step 43 of
line2 operation. Thus, we can get a collision attack on 40-step RIPEMD-128 by using
this message differences.

The boolean function X ⊕ Y ⊕ Z make it more difficult to construct a differential
characteristic in line1 operation. Hence, the differential characteristic of line1 operation
we presented in Table 8 is dense. The differential characteristic for line2 operation is
presented in Table 9, which makes the probability after round 1 hold as high as possible.

4.2 Deriving Conditions on Chaining Variables of line1 and line2 Operations

In this section, we derive two sets of sufficient conditions presented in Table 10 and
Table 11, which ensure the differential characteristics in Table 8 and Table 9 hold, re-
spectively. We describe how to derive a set of sufficient conditions that guarantee the
difference in steps 3-7 of table 8 hold. Other conditions can be derived similarly.

1. In step 3, the message difference Δm2 = 28 produces c1[−1,−2, 3,−24, ...,−32].
2. In step 4, (b0, a1, d1, c1[−1,−2, 3,−24, ...,−32])

=⇒ (a1, d1, c1[−1,−2, 3,−24, ...,−32], b1[4, ..., 10,−11, 12,−13, ...,−22, 23]).
According to Proposition 1, the conditions d1,i = a1,i (i = 1, 2, 3, 31) ensure

that the change of c1,i (i = 1, 2, 3, 31) results in Δb1 = −212 − 213 + 214 − 210.
Meanwhile, the conditions d1,i � a1,i (i = 24, ..., 30, 32) ensure that the change
of c1,i (i = 24, ..., 30, 32) results in Δb1 = 23 + ... + 29 + 211. Combined with the
conditions b1,i = 0 (i = 4, ..., 10, 12, 23) and b1,i = 1 (i = 11, 13, ..., 22), we can get
b′1 = b1[4, ..., 10,−11, 12,−13, ...,−22, 23].

3. In step 5, (a1, d1, c1[−1,−2, 3,−24, ...,−32], b1[4, ..., 10,−11, 12,−13, ...,−22, 23])
=⇒ (d1, c1[−1,−2, 3,−24, ...,−32], b1[4, ..., 10,−11, 12,−13, ...,−22, 23], a2[1,−2,
...,−11, 12, ..., 21,−22, ...,−32]).

From Proposition 1, the conditions b1,i = d1,i (i = 1, 2, 24, ..., 27, 29, ..., 32) and
b1,i � d1,i (i = 3, 28) ensure that the change of c1 results in Δa2 = 1 − 2 − 22 − ... −
27 − 228 − ...− 231. Meanwhile, the conditions c1,i = d1,i (i = 7, ..., 10, 12, 17, ..., 22)
and c1,i � d1,i (i = 4, 5, 6, 11, 13, ..., 16, 23) ensure that the change of b1 results in

Practical Collision Attack on 40-Step RIPEMD-128 451

Δa2 = −28 − 29 − 210 + 211 + ...+ 220 − 221 − ...− 227. Combined with the conditions
a2,i = 0 (i = 1, 12, ..., 21) and a2,i = 1 (i = 2, ..., 11, 22, ..., 32), we can obtain
a′2 = a2[1,−2, ...,−11, 12, ..., 21,−22, ...,−32].

4. In step 6, (d1, c1[−1,−2, 3,−24, ...,−32], b1[4, ..., 10,−11, 12,−13, ...,−22, 23],
a2[1,−2, ...,−11, 12, ..., 21,−22, ...,−32]) =⇒ (c1[−1,−2, 3,−24, ...,−32], b1[4, ...,
10,−11, 12,−13, ...,−22, 23], a2[1,−2, ...,−11, 12, ..., 21,−22, ...,−32], d2).

From Proposition 1, it is easy to get a′2 = a2 without no condition.
5. In step 7, (c1[−1,−2, 3,−24, ...,−32], b1[4, ..., 10,−11, 12,−13, ...,−22, 23],

a2[1,−2, ...,−11, 12, ..., 21,−22, ...,−32], d2) =⇒ (b1[4, ..., 10,−11, 12,−13, ...,
−22, 23], a2[1,−2, ...,−11, 12, ..., 21,−22, ...,−32], d2, c2).

From Proposition 1, the conditions d2,i = b1,i (i = 1, 3) and d2,i � b1,i (i =
2, 24, ..., 32) result in F(d′2, a

′
2, b
′
1) − F(d2, a2, b1) = 1 + 2 − 22 + 223 + ... + 231.

Combined with c′1 = c1[−1,−2, 3,−24, ...,−32], we can get c′2 = c2.

4.3 Message Modification

As demonstrated in Table 10 of line1 operation, there is no constraint on the message
words mi (i = 0, 9, 11, ..., 15), and there is some freedom on the message words mi

(i = 1, 5, 7, 8, 10). Thus, all the freedom of these message words can be utilized to
fulfill the conditions in Table 11, which are imposed by the differential characteristic of
line2 operation.

We modify M so that all the conditions in the first round of Table 10 and most of
the conditions in Table 11 hold. The outline of the modification is described as follows.
Taking into consideration the fact that in Table 11 of line2 operation, the conditions first
appear in the chaining variable bb1, and the message words m5, m14, m7 are involved
in steps 1-3, we first modify mi (i = 1, ..., 7) such that all the conditions of d1, c1,
b1, a2, d2, c2 and b2 in Table 10 are satisfied. Then we correct the conditions of bb1

in Table 11. The message word involved in bb1 is m0, which is also involved in the
first step of line1 operation. Therefore, if the conditions of bb1 are corrected by m0, it
will probably lead to the correction of d1, c1, b1, a2, d2, c2, b2 being invalid. As stated
below, only the condition bb1,4 = 0 is corrected by m0, and all the other conditions
of bb1 are corrected by the change of dd1. For example, if the condition bb1,24 = 0
does not hold, we flip the bit dd1,13 by changing m14. However, we need to add the
condition b0,13 = 0 such that the change of dd1,13 does not disturb cc1. Meanwhile,
we also need to add the condition aa1,13 = 0 such that the change of dd1,13 will invert
bb1,24. Similarly, we need to add some other conditions on the chaining variables of
line2 operation, especially on the chaining variables aa1, dd1 and cc1 in order to correct
some conditions in Table 10 and Table 11. (It is noted that these extra added conditions
are not presented in Table 11.) Furthermore, we also need to add some conditions on
b0 such that b0,i = 1 (i = 1, 2, 3, 27) and b0,i = 0 (i = 7, ..., 10, 13, ..., 24) in order
to implement the message modification. (These conditions can be easily satisfied by
exhaustively searching the first message block N.) Hence, we correct the conditions of
line2 operation from aa1, and the process of modification is as follows. It is noted that
in most cases, the conditions are corrected from low bit to high bit. Sometimes, the
order of correction is adjusted.

452 G. Wang

1. Modify mi (i = 1, 2, 3, 4) such that the conditions of d1, c1, b1 and a2 in Table 10
hold, respectively.

2. Firstly, modify m5 such that the conditions of d2 in Table 10 hold. Secondly, if
there is no overlap between the conditions on d2 in Table 10 and aa1 in Table 11,
i.e., the conditions on aa1 lies in aa1,i (i � 1, 2, 3, 24, ..., 32), then it is easy to
correct them. For example, if the condition aa1,13 = 0 does not hold, we flip the
bit d2,13 by changing m5, then aa1,13 is inverted, i.e., aa1,13 = 0 is satisfied. Thirdly,
if the conditions on aa1 lies in aa1,i (i = 1, 2, 3, 24, ..., 32), we present an example
below to illustrate how to correct them. For example, if the condition aa1,1 = 0 does
not hold, we correct it by changing m5, which will also flip the bit d2,1. In order to
fulfill the condition d2,1 = b1,1, b1,1 is flipped by changing m3. Similarly, m0, m1 and
m4 are modified in order to ensure the conditions on d1, c1, b1 and a2, especially,
b1,1 = d1,1 and d1,1 = a1,1 hold. The modification of m0, m1, m3 and m4 ensures
that the differential characteristic of line1 operation is not disturbed by the change
of m5. The detail of correcting the condition aa1,1 = 0 is described in the following
steps and illustrated in Table 3.

(a) Modify m0 such that a1,1 in Table 10 is flipped and all the other bits of a1 are
unchanged. Without loss of generality, we suppose aa1,1 = 0, then a1 becomes
a1[1] after flipping a1,1.

(b) Modify m1 such that d1,1 in Table 10 is flipped and all the other bits of d1 are
unchanged, which ensures the condition d1,1 = a1,1 in Table 10 hold.

(c) The change of a1,1 and d1,1 does not disturb c1 according to Proposition 1.
(d) Modify m3 such that b1,1 in Table 10 is flipped and all the other bits of b1 are

unchanged, which ensures the condition b1,1 = d1,1 in Table 10 hold.
(e) Modify m4 such that a2 in Table 10 is unchanged.
(f) Modify m5 such that d2,1 in Table 10 is flipped and all the other bits of d2 are

unchanged, which ensures the condition d2,1 = b1,1 hold. Meanwhile, aa1,1 is
flipped by the change of m5 and the condition aa1,1 = 0 is satisfied.

It is noted that combined with the conditions c1,1 = 1 and a2,1 = 0, we can get that
the flips of d1,1 and b1,1 have no impact on d2. Hence, the modification of m5 does
not need to offset the flips of d1,1 and b1,1, and only flips d2,1. Consequently, the
change of m5 is only likely to flip aa1,1 and aa1,i (i = 2, ..., 8) by carry. Since the
conditions of aa1 are corrected from low bit to high bit, i.e., the order of modifi-
cation is 9,...,32,1,...,8, then the correction of aa1,1 does not disturb the conditions
which have been corrected. Therefore, the condition aa1,1 = 0 is corrected success-
fully with probability 1.

3. Modify m14 and m6 such that the conditions on dd1 in Table 11 and c2 in Table 10
hold, respectively.

4. Firstly, modify m7 such that the conditions on b2 in Table 10 hold. Secondly,
similar to the modification of aa1,i (i � 1, 2, 3, 24, ..., 32), the conditions on cc1,i

(i � 2, ..., 12) can be corrected by the change of m7. Thirdly, the other conditions
on cc1 are corrected by the change of dd1. For example, if the condition cc1,10 = 0
does not hold, we flip dd1,1 by changing m14. Then cc1,10 is flipped if the extra
condition b0,1 = 1 is added according to Proposition 4. The detail of correcting the
condition cc1,10 = 0 is illustrated in Table 4.

Practical Collision Attack on 40-Step RIPEMD-128 453

Table 3. Message Modification for Correcting aa1,1

step mi Shift Modify mi Chaining values Chaining values
before modifying mi after modifying mi

line1 1 m0 11 Modify m0 a1 a1[1]
line1 2 m1 14 Modify m1 d1 d1[1]
line1 3 m2 15 c1 c1

line1 4 m3 12 Modify m3 b1 b1[1]
line1 5 m4 5 Modify m4 a2 a2

line1 6 m5 8 Modify m5 d2 d2[1]
line2 1 m5 8 Modify m5 aa1 aa1,1 is flipped

Table 4. Message Modification for Correcting cc1,10

step mi Shift Modify mi flipped bit additional condition
2 m14 9 Modify m14 dd1,1

3 m7 9 cc1,10 b0,1 = 1

5. Firstly, the condition bb1,4 = 0 is corrected by the change of m0. If bb1,4 = 0 does
not hold, we flip bb1,4 by modifying m0, which will change a1 in Table 10. On
one hand, there is no constraint on a1, so the change of a1 does not disturb the
differential characteristic. On the other hand, d1, c1, b1 and a2 are unchanged by
modifying m1, m2, m3 and m4 respectively. Therefore, the change of m0 does not
disturb the differential characteristic of line1 operation. The procedure of correcting
bb1,4 = 0 is illustrated in Table 5. Secondly, all the other conditions on bb1 are
corrected by the change of dd1. For example, if the condition bb1,24 = 0 does not
hold, we flip dd1,13 by changing m14. Then cc1 is unchanged if the extra condition
b0,13 = 0 is added, and bb1,24 is flipped if the extra condition aa1,13 = 0 is added
according to Proposition 4.

Table 5. Message Modification for Correcting bb1,4

step mi Shift Modify mi Chaining values Chaining values
before modifying mi after modifying mi

line2 4 m0 11 Modify m0 bb1 bb1,4 is flipped
line1 1 m0 11 Modify m0 a1 a1 is changed
line1 2 m1 14 Modify m1 d1 d1

line1 3 m2 15 Modify m2 c1 c1

line1 4 m3 12 Modify m3 b1 b1

line1 5 m4 5 Modify m4 a2 a2

454 G. Wang

6. Modify m9 such that the conditions on aa2 in Table 11 hold.
7. The conditions on dd2 in Table 11 are corrected through the following four ap-

proaches. All the conditions on dd2 are fulfilled after message modification except
dd2,29 = 1. We present examples to illustrate the approaches of modification.
(a) The condition dd2,16 = 0 is corrected by the change of m7. In order not to

disturb the condition b2,2 = 0 which has been corrected, we modify m7 such
that only b2,1 is flipped and the other bits of b2 are unchanged. The modifica-
tion of m7 flips cc1,1 definitely, and is likely to flip cc1,i (i = 2, ..., 9) by carry.
Hence, according to Proposition 4, bb1 in all probability is unchanged if the
extra conditions aa1,1 = 0 and aa1,2 = 0 are added, and dd2,16 is flipped be-
cause the condition aa2,1 � bb1,1 is hold yet. Furthermore, aa2 is unchanged by
modifying m9. The success probability of correcting dd2,16 = 0, i.e., the prob-
ability that dd2,16 = 0 is satisfied and all the other conditions which have been
corrected are not disturbed, is very close to 1.

(b) The condition dd2,24 = 1 is corrected by the change of m14. Firstly, m14 is
changed such that dd1,9 is flipped and all the other bits of dd1 are unchanged.
Then, according to Proposition 4, cc1 will remain unchanged if the extra con-
dition b0,9 = 0 is added, and bb1 will be unchanged if the extra condition
aa1,9 = 1 is added. Furthermore, aa2 remains unchanged by modifying m9, and
dd2,24 is flipped by the change of dd1,9.

(c) The condition dd2,26 = 1 is corrected by the change of m9. Furthermore, m9 is
changed such that only aa2,11 is flipped and the other bits of aa2 are unchanged,
which does not make the differential characteristic invalid because there is no
constraint on aa2,11. The change of aa2,11 will flip dd2,26 if the extra condition
cc1,11 = 1 is added.

(d) The condition dd2,19 = 1 is corrected by the change of m2. However, the change
of m2 disturbs the conditions on c1, which is compensated by modifying m1

and m6. Firstly, we modify m1 such that d1,19 is flipped and all the other bits
of d1 are unchanged. Then we modify m2 such that c1,19 is flipped and all the
other bits of c1 are unchanged. According to Proposition 1, we can get b1 and
a2 are unchanged, meanwhile, d2 is also unchanged because of the conditions
c1,19 = d1,19, b1,19 = 1 and a2,19 = 0. Thirdly, we modify m6 such that c2 is
unchanged. Therefore, b1, a2, d2 and c2 are unchanged, and all the conditions
in Table 10 are not disturbed. Obviously, the change of m2 will flip dd2,19,
however, it is also likely to change dd2,2. Fortunately, the conditions on dd2 are
corrected from low bit to high bit and dd2,2 = 1 is not corrected yet. So the
success probability of correcting dd2,19 = 1 is 1. The procedure of correction
dd2,19 is illustrated in Table 6.

8. Modify m11 to correct the conditions of cc2 in Table 11.
9. Similar to the procedure of modification above, the conditions of bb2,i (i � 1, 4, 8,

16, 23, 24, 25, 26, 29, 31, 32) in Table 11 are corrected by changing cc2 or aa2, cor-
responding to changing m11 or m9, respectively.

10. Modify m13 to correct the conditions of aa3.
11. Similar to the procedure of modification above, the conditions of dd3,i (i � 2, 5, 7,

23, 25, 26, 30, 31, 32) in Table 11 are corrected by changing aa3, corresponding to
changing m13.

Practical Collision Attack on 40-Step RIPEMD-128 455

Table 6. Message Modification for Correcting dd2,19

step mi Shift Modify mi Chaining values Chaining values Conditions
before modifying mi after modifying mi

line1 2 m1 14 Modify m1 d1 d1[19]
line1 3 m2 15 Modify m2 c1 c1[19] c1,19 = d1,19

line1 4 m3 12 b1 b1 b1,19 = 1
line1 5 m4 5 a2 a2 a2,19 = 0
line1 6 m5 8 d2 d2

line1 7 m6 7 Modify m6 c2 c2 c2,19 = d2,19

line2 6 m2 15 Modify m2 dd2 dd2,19 is flipped dd2,19 = 1

12. Modify m15 to correct the conditions of cc3.
13. Firstly, modify m8 such that the conditions on a3 in Table 10 and bb3,i (i = 23, ..., 32)

in Table 11 hold. Secondly, the condition bb3,12 = 1 in Table 11 is corrected by
flipping cc3,1 combined with the condition aa3,1 = 1 according to Proposition 4.
Thirdly, if the condition bb3,2 = 0 does not hold, we flip cc3,22, then bb3,1 is flipped
if the extra condition aa3,22 = 1 (which is satisfied in step 10) is added according
to Proposition 4. Meanwhile, if bb3,1 � cc3,22, then the change of bb3,1 will result
in the change of bb3,2 by bit carry. Furthermore, the condition bb3,1 � cc3,22 can be
corrected by modifying m8.

14. Firstly, the condition on aa4,5 can be corrected by the change of cc3,23 and bb3,23.
Similarly, the condition on aa4,9 can be corrected by the change of cc3,27 and bb3,27.
Secondly, the condition aa4,25 = 1 in Table 11 is corrected by flipping cc3,11. Then
bb3 is unchanged if the extra condition aa3,11 = 0 is added, and aa4,25 is changed
if the extra condition dd3,11 = 0 is added according to Proposition 4. The condition
aa3,11 = dd3,11 is already corrected in step 11, thus, the extra conditions aa3,11 = 0
and dd3,11 = 0 hold with a probability of 2−1. Therefore, the success probability of
correcting the condition on aa4,25 is about 2−1 + 2−1 × 2−1 = 3/4. Thirdly, if the
condition aa4,7 = 0 does not hold, we flip cc3,24, then bb3 is unchanged if the extra
condition aa3,24 = 0 is added, and aa4,6 is changed if the extra condition dd3,24 = 0
is added according to Proposition 4. Furthermore, if aa4,6 � cc3,24, then the change
of aa4,6 will lead to the change of aa4,7 by carry. The condition aa3,24 = dd3,24 is
already corrected in step 11, thus, the extra conditions aa3,24 = 0 and dd3,24 = 0
hold with a probability of 2−1. Meanwhile, the condition aa4,6 � cc3,24 holds with
a probability of 2−1. Therefore, the success probability of correcting the condition
on aa4,7 is about 2−1 + 2−1 × 2−1 × 2−1 = 5/8.

15. The condition dd4,9 = 1 is corrected by flipping cc3,13. Then bb3 is unchanged if
the extra condition aa3,13 = 0 is added, and aa4,27 is flipped if the extra condition
dd3,13 = 0 is added. The change of aa4,27 will result in the change of dd4,9 if the
extra condition cc3,27 = 1 is added. The condition cc3,27 = 1 has been corrected in
step 12. The condition dd3,13 = aa3,13 has been corrected in step 11, thus, the extra
conditions aa3,13 = 0 and dd3,13 = 0 hold with a probability of 2−1. Therefore, the
success probability of correcting the condition on dd4,9 is about 2−1 + 2−1 × 2−1 =

3/4.

456 G. Wang

Table 7. Collision for 40-step of RIPEMD-128

N 664504b6 d6e949ba 2176407d 85426fc1 5ec28995 c3d318b 787db431 ae2c13fb
cee9d90 c5078e4b 84bae5bc 99f3f4ae d7403dc6 917fa14c 85155db5 fd9311e6

M a7e4a89f 6278156c 2a535118 90eba965 670841b2 ea6f8dcb 800766d9 d0bfa5c6
ffe74d8e 6df2c5f7 a3ffdbfd 53e156d4 54f75d f0d3a13f 7eef12b9 ef317f76

M′ a7e4a89f 6278156c 2a535218 90eba965 670841b2 ea6f8dcb 800766d9 d0bfa5c6
ffe74d8e 6df2c5f7 a3ffdbfd 53e156d4 54f75b f0d3a13f 7eef12b9 ef317f76

H a76df6ab 43ae1a6e 171d9fda da03925e

Table 8. Differential Characteristic for line1 Operation

Step Message M S hi f t Δmi The output for M′

1 m0 11 a1

2 m1 14 d1

3 m2 15 28 c1[−1,−2, 3,−24, ...,−32]
4 m3 12 b1[4, ..., 10,−11, 12,−13, ...,−22, 23]
5 m4 5 a2[1,−2, ...,−11, 12, ..., 21,−22, ...,−32]
6 m5 8 d2

7 m6 7 c2

8 m7 9 b2[2, ..., 10,−11,−12]
9 m8 11 a3[−2, ...,−11, 12]
10 m9 13 d3

11 m10 14 c3

12 m11 15 b3

13 m12 6 -2 a4

.

25 m12 7 -2 a7[−9]
26 m0 12 d7

27 m9 15 c7

28 m5 9 b7

29 m2 11 28 a8

.

40 m1 15 b10

16. The conditions on cc4,i (i = 7, 9, 12) are corrected by the change of dd4,i (i =
27, 29, 32) respectively with probability 1. The condition cc4,5 = 1 is corrected by
flipping dd4,24 if the extra condition cc4,4 � dd4,24 is added, which holds with a
probability of 2−1. Therefore, the success probability of correcting the condition on
cc4,5 is about 2−1 + 2−1 × 2−1 = 3/4.

It is noted that the conditions which are corrected in the first 12 steps hold with a
probability of about 2−3 after message modification by experiment. Meanwhile, after
message modification, in the first round of line2 operation in Table 11, there are 29
conditions which are not corrected, 3 conditions which hold with a probability of 3/4
respectively, and 1 condition which holds with a probability of 5/8. Therefore, all the
conditions in steps 2-11 of Table 10 and in steps 4-15 of Table 11 hold with a probability
of about 2−35 after message modification.

Practical Collision Attack on 40-Step RIPEMD-128 457

Table 9. Differential Characteristic for line2 Operation

Step Message M Shift Δmi The output for M′

1 m5 8 aa1

2 m14 9 dd1

3 m7 9 cc1

4 m0 11 bb1

5 m9 13 aa2

6 m2 15 28 dd2[−1,−2,−3, 4,−24, ...,−32]
7 m11 15 cc2[17, 18 − 19]
8 m4 5 bb2[8, ..., 15,−16,−24]
9 m13 7 aa3[−31]
10 m6 7 dd3[8,−23, 26, ..., 31,−32]
11 m15 8 cc3[7, 8,−25]
12 m8 11 bb3[2, 5]
13 m1 14 aa4[7,−9,−12]
14 m10 14 dd4[−5, 7,−9]
15 m3 12 cc4[−5]
16 m12 6 −2 bb4

17 m6 9 aa5[−21]
18 m11 13 dd5[−20,−21]
19 m3 15 cc5[−20]
20 m7 7 bb5

21 m0 12 aa6

22 m13 8 dd6[−29]
23 m5 9 cc6[−29]
24 m10 11 bb6

25 m14 7 aa7

26 m15 7 dd7

27 m8 12 cc7[−9]
28 m12 7 −2 bb7[−9]
29 m4 6 aa8

30 m9 15 dd8

31 m1 13 cc8

32 m2 11 28 bb8

.

40 m9 14 bb10

458 G. Wang

Table 10. A Set of Sufficient Conditions for the Differential Characteristic in Table 8

Step Chaining Conditions on the Chaining Variable
Variable

2 d1 d1,i = a1,i(i = 1, 2, 3, 31), d1,i � a1,i(i = 24, ..., 30, 32)
3 c1 c1,3 = 0, c1,i = 1(i = 1, 2, 24, ..., 32), c1,i = d1,i(i = 7, ..., 10, 12, 17, ..., 22),

c1,i � d1,i(i = 4, 5, 6, 11, 13, ..., 16, 23)
4 b1 b1,i = 0(i = 4, ..., 10, 12, 23), b1,i = 1(i = 11, 13, ..., 22),

b1,i = d1,i(i = 1, 2, 24, ..., 27, 29, ..., 32), b1,i � d1,i(i = 3, 28)
5 a2 a2,i = 0(i = 1, 12, ..., 21), a2,i = 1(i = 2, ..., 11, 22, ..., 32)
6 d2 d2,i = b1,i(i = 1, 3), d2,i � b1,i(i = 2, 24, ..., 32)
7 c2 c2,i = d2,i(i = 1, ..., 10, 13, ..., 21, 24), c2,i � d2,i(i = 11, 12, 22, 23, 25, ..., 32)
8 b2 b2,i = 0(i = 2, ..., 10), b2,i = 1(i = 11, 12)
9 a3 a3,12 = 0, a3,i = 1(i = 2, ..., 11)

11 c3 c3,i = d3,i(i = 2, ..., 10, 12), c3,11 � d3,11

24 b6 b6,9 = c6,9

25 a7 a7,9 = 1
26 d7 d7,9 = 0
27 c7 c7,9 = 1

Table 11. A Set of Sufficient Conditions for the Differential Characteristic in Table 9

Step Chaining Conditions on the Chaining Variable
Variable

4 bb1 bb1,i = 0(i = 1, 3, 4, 24, ..., 32), bb1,2 = 1
5 aa2 aa2,i = 0(i = 3, 17, 18), aa2,i = 1(i = 1, 2, 4, 19, 24, ..., 32)
6 dd2 dd2,i = 0(i = 4, 8, ..., 16), dd2,i = 1(i = 1, 2, 3, 17, 18, 19, 24, ..., 32)
7 cc2 cc2,i = 0(i = 16, 17, 18, 24, 26, ..., 32), cc2,i = 1(i = 8, ..., 15, 19)
8 bb2 bb2,i = 0(i = 8, ..., 15, 19, 23, 26, ..., 32), bb2,i = 1(i = 16, 24), bb2,i = cc2,i(i = 1, 2, 3, 4, 25)
9 aa3 aa3,i = 0(i = 7, 23, 27), aa3,i = 1(i = 8, 19, 25, 26, 28, ..., 32), aa3,i = bb2,i(i = 17, 18)
10 dd3 dd3,i = 0(i = 2, 5, 8, 25, ..., 31), dd3,i = 1(i = 7, 23, 32), dd3,i = aa3,i(i = 9, ..., 16, 24)
11 cc3 cc3,i = 0(i = 7, 8, 12), cc3,i = 1(i = 2, 5, 9, 25, 26, 30, 31)
12 bb3 bb3,i = 0(i = 2, 5, 8, 25, 26, 30, 31), bb3,i = 1(i = 7, 12), bb3,i = cc3,i(i = 23, 27, 28, 29), bb3,32 � cc3,32

13 aa4 aa4,i = 0(i = 5, 7), aa4,i = 1(i = 8, 9, 12, 25)
14 dd4 dd4,7 = 0, dd4,i = 1(i = 5, 9), dd4,2 = aa4,2

15 cc4 cc4,i = 0(i = 7, 9), cc4,5 = 1, cc4,12 = dd4,12

16 bb4 bb4,i = 0(i = 5, 21)
17 aa5 aa5,20 = 0, aa5,21 = 1
18 dd5 dd5,i = 1(i = 20, 21)
19 cc5 cc5,21 = 0, cc5,20 = 1
20 bb5 bb5,20 = 0
21 aa6 aa6,29 = 0
22 dd6 dd6,29 = 1
23 cc6 cc6,29 = 1
24 bb6 bb6,29 = 0
26 dd7 dd7,9 = 0
27 cc7 cc7,9 = 1
28 bb7 bb7,9 = 1
29 aa8 aa8,9 = 0

Practical Collision Attack on 40-Step RIPEMD-128 459

There are 4 conditions in steps 24-27 of Table 10 and 17 conditions in steps 16-29
of Table 11. These 21 conditions can be easily satisfied by exhaustively searching m12.

4.4 Collision Search Algorithm

From the above technique details, we present an overview of the collision search algo-
rithm to get two 512-bit blocks N ‖ M, where the second block M = m0 ‖ m1 ‖ ... ‖ m15.

1. Exhaustively search the first block N such that the hash value of N satisfies b0,i = 1
(i = 1, 2, 3, 27) and b0,i = 0 (i = 7, ..., 10, 13, ..., 24).

2. Randomly choose mi (0 ≤ i ≤ 15, i � 12), and modify them by the above message
modification techniques such that all the conditions in steps 2-11 of Table 10 are
satisfied and all the conditions in steps 4-15 of Table 11 hold with a probability of
2−35.

3. If all the conditions in steps 4-15 of Table 11 are satisfied, then goto Step 4. Other-
wise, go to Step 2.

4. Randomly choose m12 and compute the hash values of M and M′ under 40-step
RIPEMD-128. If the two hash values are equal, then output M and M′. Otherwise,
goto Step 1.

There are total 21 conditions in steps 24-27 of Table 10 and steps 16-29 of Table 11.
By our experiment, it is easy to make the 21 conditions hold by exhaustively search m12

when the other conditions of Table 10 and Table 11 hold. Therefore, the time complexity
of the collision attack is about 235 + 221 40-step RIPEMD-128 computations. We give
an example in Table 7.

5 Conclusions

In this paper, we propose a practical collision attack for 40-step RIPEMD-128 by using
bit tracing method [15,16] and present a true collision instance. Firstly, we find two
differential characteristics for line1 operation and line2 operation respectively. Then,
by correcting most of the sufficient conditions that ensure the collision characteristics
hold, we can improve the probabilities of the characteristics. Finding high-probability
characteristics as well as implementing message modifications is nontrivial, because
the compression function of RIPEMD-128 consists of two parallel and independent
operations.

Acknowledgment. The author would like to thank Hongbo Yu for her helpful
comments. The author also thanks the anonymous reviewers for their valuable sug-
gestions and remarks. This work is supported by the National Natural Science Foun-
dation of China (No. 61103238, 61373142), the Fundamental Research Funds for the
Central Universities and DHU Distinguished Young Professor Program, and the Open-
ing Project of State Key Laboratory of Information Security (Institute of Information
Engineering, Chinese Academy of Sciences).

460 G. Wang

References

1. Dobbertin, H., Bosselaers, A., Preneel, B.: RIPEMD-160: A Strengthened Version of
RIPEMD. In: Gollmann, D. (ed.) FSE 1996. LNCS, vol. 1039, pp. 71–82. Springer,
Heidelberg (1996)

2. International Organization for Standardization: ISO/IEC 10118-3:2004, Informa- tion
technology-Security techniques-Hash-functions-Part 3: Dedicated hash functions (2004)

3. Kap, J.: Test Cases for HMAC-RIPEMD160 and HMAC-RIPEMD128. Internet Engineering
Task Force (IETF), RFC 2286 (1998), http://www.ietf.org/rfc/rfc2286.txt

4. Landelle, F., Peyrin, T.: Cryptanalysis of Full RIPEMD-128. In: Johansson, T., Nguyen, P.Q.
(eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 228–244. Springer, Heidelberg (2013)

5. Mendel, F., Nad, T., Schläffer, M.: Collision Attacks on the Reduced Dual-Stream Hash
Function RIPEMD-128. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp. 226–243.
Springer, Heidelberg (2012)

6. Mendel, F., Pramstaller, N., Rechberger, C., Rijmen, V.: On the Collision Resistance of
RIPEMD-160. In: Katsikas, S.K., López, J., Backes, M., Gritzalis, S., Preneel, B. (eds.) ISC
2006. LNCS, vol. 4176, pp. 101–116. Springer, Heidelberg (2006)

7. Ohtahara, C., Sasaki, Y., Shimoyama, T.: Preimage Attacks on Step-Reduced RIPEMD-128
and RIPEMD-160. In: Lai, X., Yung, M., Lin, D. (eds.) Inscrypt 2010. LNCS, vol. 6584,
pp. 169–186. Springer, Heidelberg (2011)

8. Bosselaers, A., Preneel, B. (eds.): RIPE 1992. LNCS, vol. 1007. Springer, Heidelberg (1995)
9. Rivest, R.L.: The MD4 message digest algorithm. In: Menezes, A., Vanstone, S.A. (eds.)

CRYPTO 1990. LNCS, vol. 537, pp. 303–311. Springer, Heidelberg (1991)
10. Rivest, R.: The MD5 message-digest algorithm, Request for Comments(RFC 1320), Internet

Activities Board, Internet Privacy Task Force (1992)
11. Sasaki, Y., Wang, L.: Distinguishers beyond Three Rounds of the RIPEMD-128/-160 Com-

pression Functions. In: Bao, F., Samarati, P., Zhou, J. (eds.) ACNS 2012. LNCS, vol. 7341,
pp. 275–292. Springer, Heidelberg (2012)

12. Wang, G., Wang, M.: Cryptanalysis of Reduced RIPEMD-128. Ruanjianxuebao/Journal of
Software in Chinese 19(9), 2442–2448 (2008)

13. Wang, L., Sasaki, Y., Komatsubara, W., Ohta, K., Sakiyama, K.: (Second) Preimage At-
tacks on Step-Reduced RIPEMD/RIPEMD-128 with a New Local-Collision Approach. In:
Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 197–212. Springer, Heidelberg (2011)

14. Wang, X., Feng, D., Yu, X.: An attack on HAVAL function HAVAL-128. Science in China
Ser. F Information Sciences 48(5), 1–12 (2005)

15. Wang, X., Lai, X., Feng, D., Chen, H., Yu, X.: Cryptanalysis of the Hash Functions MD4 and
RIPEMD. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 1–18. Springer,
Heidelberg (2005)

16. Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer, R. (ed.)
EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005)

17. Wang, X., Yu, H., Yin, Y.L.: Efficient Collision Search Attacks on SHA-0. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 1–16. Springer, Heidelberg (2005)

18. Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)

19. Yu, H., Wang, X., Yun, A., Park, S.: Cryptanalysis of the full HAVAL with 4 and 5 passes.
In: Robshaw, M. (ed.) FSE 2006. LNCS, vol. 4047, pp. 89–110. Springer, Heidelberg (2006)

20. Yu, H., Wang, G., Zhang, G., Wang, X.: The Second-Preimage Attack on MD4. In: Desmedt,
Y.G., Wang, H., Mu, Y., Li, Y. (eds.) CANS 2005. LNCS, vol. 3810, pp. 1–12. Springer,
Heidelberg (2005)

http://www.ietf.org/rfc/rfc2286.txt

	Practical Collision Attack on 40-Step RIPEMD-128
	1Introduction
	2Description of RIPEMD-128
	3Some Basic Conclusions and Notations
	4The Collision Attack against 40-Step RIPEMD-128
	4.1Differential Characteristics for 40-Step RIPEMD-128
	4.2Deriving Conditions on Chaining Variables of line1 and line2 Operations
	4.3Message Modification
	4.4Collision Search Algorithm

	5Conclusions
	References

