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Abstract. A distributed signature scheme allows participants in a qual-
ified set to jointly generate a signature which cannot be forged even when
all the unqualified participants collude together. In this paper, we pro-
pose an efficient scheme for any monotone access structure and show its
unforgeability and robustness under the computational Diffie-Hellman
(CDH) assumption in the standard model. For 112-bit security, its se-
cret key shares and signature fragments are as short as 255 bits and 510
bits, which are shorter than existing schemes assuming random oracle.
We then propose two extensions. The first one allows new participants
to dynamically join the system without any help from the dealer. The
second one supports a type of multipartite access structures, where the
participant set is divided into multiple disjoint groups, and each group
is bounded so that a distributed signature cannot be generated unless a
pre-defined number of participants from multiple groups work together.
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1 Introduction

A distributed signature scheme [12,24,25] enables a qualified set of participants
to jointly generate a signature on a message. The participants have their shares
of a (secret) signing key so that each of them can generate a signature fragment
for a given message. A full signature can then be reconstructed by collecting the
signature fragments from a qualified set of participants. This full signature would
be computationally indistinguishable from the one generated directly using the
signing key, and it should be unforgeable even if all the participants in the
unqualified sets collude together. How the qualified set is represented may differ
from construction to construction. The qualified set can be simply a threshold
structure (which reduces distributed signature to its special case of threshold
signature), or a more general notion of monotone access structure. For instance,
a signing key may be shared among three participants {p1, p2, p3} such that
the minimal qualified sets are {p1, p2} and {p2, p3}. As {p1, p3} is unqualified,
existing threshold signature schemes does not apply to this distributed setting.

When multiple signers are involved, there are at least two properties we may
expect from a distributed signature scheme. First, we want robustness such that
the full signature can be reconstructed even if there were some invalid signature
fragments. Second, it is also desirable if the scheme is non-interactive in both
signature fragment generation and final signature reconstruction, i.e., every par-
ticipant can locally compute a signature fragment for any given message, and
after all these fragments are collected, reconstruction can take place without
further help from any participants.

Non-interactive robust distributed cryptosystem is a useful cryptographic
primitive for distributed systems [38]. A canonical example involves issuing
signature from a number of parties for security and availability, such as is-
suing digital certificates and certifying transactions between companies. Daza,
Herranz, and Sáez [13] discussed its application in metering, which provides a
publicly-verifiable cryptographic proof counting the number of interactions be-
tween servers and clients, such as counting the number of visits to a web server
(say, for advertisement accounting) by collecting signature fragments from the
clients. On the other hand, one may use this scheme in another way. A company
can launch a promotion campaign such that users can get reward when they see
the ad-banner from this company from a sufficient number of different web sites.

1.1 Our Contributions

There are several known distributed signature schemes [12, 24, 25]. Our work
improves the state-of-the-art in a few different dimensions. In detail, our scheme
achieves these appealing properties:

1. Provable Security under Standard Assumption. Our scheme is proven secure
under Computational Diffie-Hellman (CDH) assumption without relying on
random oracles. Prior to our work, only the RSA-based scheme by Damg̊ard-
Dupont [12] is proved secure without random oracles.
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2. Expressive Access Structure. Our construction is generic and applicable to
any linear secret sharing schemes. As a result, our scheme supports expressive
access structure since monotone span programs are equivalent to linear secret
sharing schemes [4] and every monotone access structure can be realized by
a linear secret sharing scheme [24, 43]. Sharing secret key can be tricky. In
existing distributed RSA-based signature schemes [12,24], the Euler’s totient
function of RSA modulus should remain secret even for share-holder. Any
non-trivial linear dependence of the rows allows reconstruction of the Euler’s
totient function. This requires the sub-matrices regarding all unqualified sets
in the monotone span program to be full rank.

3. Practical Efficiency. Compared to the existing schemes (see Table 1), our
scheme is more efficient as its secret key shares and signature fragments are
4 times and 2 times shorter than others, e.g., for 112-bit security, secret key
shares and signature fragments of our scheme are as short as 255 bits and
510 bits, respectively. Moreover, our construction is non-interactive. All the
existing distributed signature schemes [12, 24, 25] are interactive.

1.2 Extensions

We consider two extensions of our proposed schemes.
Dynamic Joining. In some scenarios, e.g., ad-hoc networks, new participants

are expected to join the group dynamically. A trivial solution needs the help
from a trusted dealer. Our first extension is a threshold signature scheme, which
supports dynamic join without the presence of a dealer. A new participant just
needs to talk to at least t existing users for a threshold t. To the best of our
knowledge, the only known such scheme is proposed by Gennaro et al. under
the RSA assumption [21] in random oracle model, yet our scheme is in standard
model and more efficient (see Table 2).

Multipartite Access Structures.All participants have the same power in a regu-
lar threshold signature scheme. However, in real world applications, participants
may be classified by their attributes such as titles, positions, etc., which in turn
determine their power in signature generation. In a multipartite access struc-
ture [2,3,6,10,17–19,33,41,44], the participant set is divided into multiple disjoint
groups and the participants in the same group have the equal power when recon-
structing the signature. Obviously, this generalizes the threshold case. In recent
years, multipartite access structures have been received considerable attentions,
such as compartmented access structures [10, 17, 19, 44, 46, 47], weighted access
structures [2,3,33,41], multi-level (hierarchical) access structures [6,10,17–19,44],
partially hierarchical access structures [17], etc. For some of these, linear and ef-
ficient secret sharing schemes have been found [10, 41, 44, 46, 47].

Our second extension is designed specifically for compartmented access struc-
ture with upper bounds [17,46]. There exists a threshold for all the participants,
and an upper bound for each separate group, i.e., there is a quorum for signature
issuing, but any group can not contribute more than the given upper bound even
when all the participants in this group participate.
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1.3 Related Work

There are a few different notions of signature related to distributed signatures.
Threshold Signatures. Threshold signatures have been received considerable

attentions (e.g., see [11, 14, 15, 21–23, 31, 42, 45]). A signature can be created
from the participation of any t or more signers among n potential signers. When
2t − 1 ≤ n, the scheme can be made robust. To realize robustness, Gennaro
et al. [22] proposed two approaches to verify RSA signature fragments, which
are based on the non-interactive information checking protocol, and undeniable
signature requiring interactions between the verifier and the signers. The robust
threshold RSA signature schemes also have been discussed in random oracle
model [21, 42] and without random oracles [11, 31]. There is also a threshold
version for digital signature standard (DSS) signatures [23].

Distributed Signatures. An RSA-based distributed signature scheme for gen-
eral access structures was proposed by Herranz, Padró and Sáez [24]. An RSA-
based scheme in the standard model was given by Damg̊ard and Thorbek [12],
which introduced linear integer secret sharing to distribute RSA secret keys.
Stinson and Strobl [45] generalized discrete-logarithm-based Schnorr’s signa-
ture [37,40] into a threshold version. Distributed Schnorr’s signature was studied
by Herranz and Sáez [25], which also served as a building block for constructing
distributed proxy signature [25,26]. However, these schemes are analyzed in the
random oracle model.

Mesh Signatures. As a generalization of ring signatures, mesh signatures [9]
can be generated by a qualified set of valid atomic signatures with anonymity.
The only construction known [9] has complexities linear in the number of sign-
ers. In fact, the corresponding arborescent monotone access structure is a linear
combination of threshold gates, as both AND and OR gates are special cases of
threshold access structures. However, this scheme [9] cannot support monotone
access structures without arborescent representations. Both distributed signa-
ture and mesh signature can be used to express that the signers are from a
qualified group. A mesh signature can be generated by a single signer, while a
distributed signature is usually generated by multiple signers.

Attribute-Based Signatures.In attribute-based signature [32], each signer is as-
signed with a set of attributes. A signer can generate a signature if the claim-
predicate is satisfied by her attributes. Both monotone [29,32] and non-monotone
access structures [34,35] can be realized by span programs. Like distributed signa-
tures, the scheme has collusion resistance such that signers cannot create a signa-
ture that none of them are qualified to even if they pool their attributes together.
Unlike distribute signatures, an attribute-based signature is generated by a single
signer (with a qualified set of attributes). The claim-predicate can be different for
each signature,which inherentlymakes the signaturemore complex, either in terms
of signature size or underlying assumption. For example, the schemes of Okamoto-
Takashima [34, 35], which are based on decisional linear assumption, produce sig-
natures of lengths increase linearly with the complexity of the access structure.
The attribute-based signature scheme with threshold access structure due to Her-
ranz et al. [29] is constant-size, yet based on a non-static assumption. Bellare and
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Fuchsbauer [8] considered a more general primitive known as policy-based signa-
ture, which allows a signer to generate signature on somemessage that fits in some
policy, while the privacy of the policy is preserved.

2 Definitions and Security Requirements

2.1 Secret Sharing and Monotone Span Program

In a secret sharing scheme [7,28,41], a dealer distributes the shares of some secret
information to participants in such a way that the secret can be recovered when
participants in a qualified set pool their shares together. An access structure
is the collection of all qualified sets. An access structure is said to satisfy the
monotone increasing property if any set that contains a qualified set is also
qualified. In this paper, we will require all the secret sharing schemes are perfect,
that is, unqualified sets cannot get any information about the secret.

Notations. Consider a group of participants P = {p1, · · · , pn}. We use Γ
to denote the monotone access structure defined on P . Due to its monotone
increasing property of Γ , there exists a collection of minimal qualified sets which
denoted by minΓ , such that their proper subsets are not qualified, that is, ∀A ∈
minΓ and ∀B � A, we have B �∈ Γ . We also use Γ = 2P \ Γ to represent the
collection of all unqualified sets of participants where 2P is the power set of P .
Clearly, Γ satisfies monotone decreasing property, i.e., ∀A ∈ Γ and ∀B ⊆ A,
B ∈ Γ . Similarly, let maxΓ be the collection of all the maximal unqualified sets
of participants which are not contained in any other unqualified ones.

Definition 1 (Perfect Secret Sharing [4]). Let Γ be an access structure
defined on a group of participants P. For a secret sharing scheme S realizing Γ ,
S is said to be perfect if the following two properties are satisfied:

– for any qualified set A ∈ Γ , Pr[Re(sA(k)) = k] = 1 for every k ∈ F;
– for any unqualified set B �∈ Γ , Pr[sB(k1) = (si)pi∈B] = Pr[sB(k2) = (si)pi∈B]

for any two distinct secrets k1, k2 ∈ F, and a list of any possible shares (si)pi∈B;

where Re(·) is the reconstruction function of S and sA(k) denotes the shares of
the secret k which are assigned to the participants in set A.

In this paper, we are interested in the linear secret sharing schemes (LSSS),
that is, the shares are calculated by using a linear mapping, and also the secret
information can be linearly represented by the shares in any qualified set. In
the upcoming sections, we will use monotone span programs (MSP) to model
linear secret sharing schemes, which was introduced in [30] by Karchmer and
Wigderson. In fact, MSP was implicitly proposed before [10] by Brickell which
was called vector space secret sharing scheme.

Definition 2 (Monotone Span Program [4,30]). Let P be a group of partic-
ipants, a and b be two positive integers. A monotone span program is a quadruple
M = (F, τ ,M, ρ), where F is a field, τ is a target vector in Fb, M is an a × b
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matrix over F and ρ : {1, 2, · · · , a} → P labels each row of M by a participant
in P. The size of M is defined as the row number of M . For any set P ⊆ P,
there is a sub-matrix MP of M , which consists of all the rows labeled by the
participants in P . A set P ⊆ P is accepted by M if the target vector τ can be
spanned by the vectors in MP . An access structure Γ defined on P is accepted
by M if and only if M accepts all the sets P ∈ Γ .

It is easy to see that, M not only defines a linear mapping from the matrix M
to the participants in P , but also defines a linear relationship between τ and each
sub-matrix MP (P ∈ Γ ) because τ can be spanned by the rows of MP . It is well
known that, each monotone access structure can be realized by an LSSS [24,43]
and MSP is equivalent to LSSS [4, 30]. Thus, every monotone access structure
can be realized by an MSP, and in such a way that, there may be several rows
of M labeled to one participant pi ∈ P . However, for convenience to express our
results in next sections, we assume there is a one to one correspondence between
the rows of M and the participants in P , and will use the vector ωi to denote
the row of M which labeled by the participant pi ∈ P , i.e., ωi = ρ−1(pi).

For other details on secret sharing, the readers can refer to [4].

2.2 Distributed Signature Scheme

We proceed to review the definitions and security model of distributed signa-
ture schemes [12,24,25], which are in fact generalizations of threshold signature
schemes [22,23]. Besides a group of participants P = {p1, p2, · · · , pn}, we assume
there exists a special trusted dealer D and a collector C. Anyone (including that
in P) can act as the collector C to run the public-known signature reconstruction
algorithm without requiring or producing any secret. We also assume that there
exists a secure channel between D and each participant pi (1 ≤ i ≤ n), but we
do not assume that between any pair of participants (including C). The access
structure Γ will be represented by an MSP M = (F, τ ,M, ρ), and in which the
target vector τ is implicitly assigned to the dealer D.

Definition 3 (Γ -Distributed Signature Scheme). Let SS=〈KGen, Sig, Ver〉
be a signature scheme and Γ be a general monotone access structure realized by
MSP on the participant set P and a trusted dealer D. A Γ -distributed signature
scheme DS for SS is a quadruple DS = 〈DKGen, SFGen,SReCon, Ver〉 where all
algorithms are polynomial-time computable.

– DKGen: On input 1κ where κ ∈ N is a security parameter, and access struc-
ture Γ , the (randomized) distributed signature key generation algorithm,
which is carried out by the dealer D, computes (PK, SK) ← KGen(1κ),
then generates n secret key shares (SK1, · · · , SKn) based on Γ . This algo-
rithm also publishes some additional verification parameters V P . We denote
(PK, SK1, · · · , SKn, V P ) ← DKGen(1κ, Γ ).

– SFGen: On input 1κ, a message m, secret key share SKi, public key PK,
and public verification parameters V P , the signature fragment generation
algorithm, which is carried by each participant pi ∈ P, generates a signature
fragment σi. We denote σi ← SFGen(1κ,m, SKi, PK, V P ) for any pi ∈ P.
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– SReCon: On input 1κ, a message m, signature fragments {σi : pi ∈ P} where
P ⊆ P, public key PK, public verification parameters V P , and access struc-
ture Γ , the signature reconstruction algorithm is carried out by the collector,
reconstructs the signature σ from the signature fragments σi’s based on Γ .
If the set of signature fragments is unqualified with respect to Γ , then out-
puts ⊥. We denote {σ,⊥} ← SReCon(1κ,m, {σi : pi ∈ P such that P ⊆
P}, PK, V P, Γ ).

– Ver: On input 1κ, a message-signature pair (m,σ) and a public key PK, the
deterministic verification algorithm, which can be carried out by anyone (in-
cluding who are not in P), outputs “1” if σ is a valid signature for m under
the public key PK, or “0” otherwise. We denote {1, 0} ← Ver(1κ,m, σ, PK).

When the verification algorithm Ver in DS is just the same as that in SS,
no one can tell whether a signature is generated in a distributed or the typical
centralized manner.

A distributed signature scheme is correct, if for all messages and all key tu-
ples consisting of public key, secret key shares and public verification parameters,
the signatures produced by signature reconstruction algorithm can be verified
as valid under the corresponding public key. Formally, the correctness of a Γ -
distributed signature scheme DS = 〈DKGen, SFGen, SReCon, Ver〉 can be de-
fined as follows.

Definition 4 (Correctness). Γ -distributed signature scheme DS is correct
if Ver(1κ,m, σ, PK) = 1 for any (PK, SK1, · · · , SKn, V P ) ← DKGen(1κ, Γ ),
any P ∈ Γ , any m ∈ {0, 1}�, and any σ ← SReCon(1κ,m, {σi ← SFGen(1κ,m,
SKi, PK, V P ) : pi ∈ P}, PK, V P, Γ ).

Definition 5 (Unforgeability). Given a Γ -distributed signature scheme DS.
Suppose A be a probabilistic polynomial time adversary who controls an unqual-
ified set P ′ ∈ Γ of participants. Consider the following experiment for A:

– On input 1κ and Γ , DKGen is executed to get (PK, SK) and (SK1, · · · , SKn);
– A is given 1κ, PK, and a list of secret key shares which belong to P ′.
– A adaptively chooses qs (qs ∈ N) messages m1, · · · ,mqs and interacts with

SFGen and SReCon to obtain their signatures σ1, · · · , σqs .
– A outputs a pair (m,σ). A succeeds the game if Ver(1κ,m, σ, PK) = 1 and

m �∈ {m1, · · · ,mqs}.
If there is no such adversary A who could succeed with non-negligible probability
in κ, then DS is said to be existentially unforgeable against adaptively
chosen message attacks.

If an adversary A controls an unqualified set P ′ ∈ Γ of participants, then A’s
view contains not only all the signatures σ1, · · · , σqs for the adaptively chosen
messages, but also all the intermediate states of the participants in P ′ and the
public outputs on the execution of DS. Furthermore, suppose A is a malicious
adversary, then A can also make participants in P ′ deviate from the algorithms
running, e.g., the corrupted participants can provide invalid signature fragments
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for SReCon. If a distributed signature scheme resists such an adversary A, then
it is robust.

Definition 6 (Robustness). Given a Γ -distributed signature scheme DS. Sup-
pose A be a malicious adversary who controls an unqualified set P ′ ∈ Γ of par-
ticipants. DS is said to be Γ -robust if for any (PK, SK1, · · · , SKn, V P ) ←
DKGen(1κ, Γ ) and any message m ∈ {0, 1}�, there exists P ⊆ P \ P ′ such that
Ver(1κ,m, σ, PK) = 1 for any σ ← SReCon(1κ,m, {σ′

i : pi ∈ P ′} ∪ {σi ←
SFGen(1κ,m, SKi, PK, V P ) : pi ∈ P}, PK, V P, Γ ).

In fact, all the existing distributed signature schemes [12, 24, 25] are robust.
Similar to the threshold cases, there is a requirement on the access structures to
implement robust distributed signature schemes. In our case, the union of any
two unqualified sets cannot cover the universal set of the participants. Otherwise,
after discarding an unqualified set of signature fragments provided by malicious
participants, the remaining ones will also be unqualified to recover the signature.

3 Our Basic Scheme

We first briefly review bilinear groups which will be used in our construction.

Definition 7 (Bilinear Groups [20]). Let q be a prime. Suppose G1 and G2

are cyclic groups of order q, and generated by g1 and g2, respectively. A group
pair (G1,G2) are said to be bilinear if there exists a cyclic group GT and a
bilinear map e : G1 ×G2 → GT such that:

1. Bilinearity: ∀μ ∈ G1, ∀ν ∈ G2, and ∀a, b ∈ Z, e(μa, νb) = e(μ, ν)ab;
2. Non-degeneracy: e(g1, g2) �= 1 and thus is a generator of GT ;
3. Efficiency: the map e and the group operations in G1,G2 and GT could be

calculated efficiently.

Our Construction. Our construction is based on the Waters signature scheme
[27, 48].Let G be a group of order q, where q is a prime. For simplicity of pre-
sentation we set G1 = G2 = G such that e : G×G → GT is an efficient bilinear
map. Suppose H : {0, 1}� → {0, 1}� is a public collision-resistant hash function,
where � is derived from the system security parameter. The access structure Γ
is represented by an MSP M = (Zq, τ ,M, ρ).

– DKGen: The dealer randomly chooses a secret key k from Zq, and also a
series of elements g, g0, · · · , g� ∈ G. The public key is a tuple

PK = (g, g0, · · · , g�, e(g, g)k).
To share the secret key k among the participants in P , the dealer randomly
chooses a vector v ∈ (Zq)

b that satisfies v · τ = k mod q and calculates the
secret key shares as ki = v ·ωi mod q for every pi ∈ P . The algorithm also
publishes the verification parameters

V P = (e(g, g)k1 , · · · , e(g, g)kn).
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– SFGen: All messages are taken as �-bit strings. For any longer messages, hash
function H should be applied first on them in order to shorten their length
to �. Given a message m denoted by (m1, · · · ,m�), the algorithm randomly
chooses a value ri ∈ Zq and generates signature fragment σi = (αi, βi) for
the participant pi (pi ∈ P) using the secret key share ki as

αi = gki

⎛
⎝g0

�∏
j=1

g
mj

j

⎞
⎠

ri

, βi = gri .

– SReCon: Given a message m, signature fragments {σi : pi ∈ P such that P ⊆
P}, public key PK = (g, g0, · · · , g�, e(g, g)k) and verification parameters
V P = (e(g, g)k1 , · · · , e(g, g)kn), the collector discards all the invalid signa-
ture fragments by checking if

e(αi, g)
?
= e(g, g)kie(g0

�∏
j=1

g
mj

j , βi)

holds. If the remaining signature fragments constitute a qualified set P with
regard to the access structure Γ , then there exist a series of values {di ∈ Zq :
pi ∈ P} which can be efficiently found by solving the system of equations,
such that

τ =
∑
pi∈P

diωi mod q.

Thus, the signature σ = (α, β) can be reconstructed as follows

α =
∏
pi∈P

αi
di , β =

∏
pi∈P

βi
di .

Otherwise, outputs ⊥.
– Ver: Given a message-signature pair (m,σ = (α, β)) and public key PK =

(g, g0, · · · , g�, e(g, g)k), checks whether the following equality holds

e(α, g)
?
= e(g, g)ke(g0

�∏
j=1

g
mj

j , β).

If it is true, then the purported signature σ on message m is valid and
accepted; otherwise it is invalid.

Theorem 1. The proposed distributed signature scheme is correct.

Proof. According to the definition of MSP, τ can be linearly represented by
using all ωi’s of MP where P is a qualified set P ∈ Γ . Thus, there exists a group
of numbers {di ∈ Zq : pi ∈ P} such that

∑
pi∈P diωi = τ mod q and they can

be found by solving linear equations. Furthermore, we know

k = v · τ = v ·
⎛
⎝∑

pi∈P

diωi

⎞
⎠ =

∑
pi∈P

di (v · ωi) =
∑
pi∈P

diki mod q.
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Then, the signature σ = (α, β) can be computed as

α =
∏
pi∈P

αi
di = g

∑
pi∈P diki

⎛
⎝g0

�∏
j=1

g
mj

j

⎞
⎠

∑
pi∈P diri

= gk

⎛
⎝g0

�∏
j=1

g
mj

j

⎞
⎠

r

,

and

β =
∏
pi∈P

βi
di = g

∑
pi∈P diri = gr,

where r =
∑

pi∈P diri mod q is also random because all the ri’s are randomly
chosen.

Givenamessage-signaturepair (m,σ = (α, β)) andpublic keyPK = (g, g0, · · · ,
g�, e(g, g)

k), the signature σ can be validated due to the following equalities

e(α, g) = e

⎛
⎝gk

⎛
⎝g0

�∏
j=1

g
mj

j

⎞
⎠

r

, g

⎞
⎠ = e(gk, g)e

⎛
⎝
⎛
⎝g0

�∏
j=1

g
mj

j

⎞
⎠

r

, g

⎞
⎠

= e(g, g)ke(g0

�∏
j=1

g
mj

j , gr) = e(g, g)ke(g0

�∏
j=1

g
mj

j , β).


�

3.1 Security Analysis

We first review a modular approach to prove unforgeability of distributed (thresh-
old) signature schemes, which has been used in previous works (e.g., [22–24,42]).
In detail, the unforgeability of a Γ -distributed signature scheme can be proved
by first showing that the underlying standard signature scheme is unforgeable
and then showing that the Γ -distributed signature scheme itself is simulatable.
A simulatable Γ -distributed signature scheme DS requires that DKGen, SFGen
and SReCon are simulatable for any probabilistic polynomial time adversary A,
that is, A’s view on the execution of DKGen, SFGen and SReCon can be efficiently
simulated only based on the public key PK and access structure Γ (represented
by MSP) of DS.

Definition 8 (Simulatability [22–24,42]). A Γ -distributed signature scheme
DS = 〈DKGen, SFGen,SReCon,Ver〉 is said to be simulatable, if for any prob-
abilistic polynomial time adversary A who controls an unqualified set P ′ ∈ Γ ,
there exist efficient (polynomial time) algorithms S1 to simulate A’s view on the
execution of DKGen, and S2 to simulate A’s view on the execution of SFGen and
SReCon:

– S1: on input public key PK, corrupted set P ′, and MSP which represents Γ
in DS, can simulate the adversary A’s view on the execution of DKGen.
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– S2: on input the outputs of S1 (including all the secret information with re-
gard to the corrupted participants in P ′, e.g., secret key shares), a message-
signature pair (m,σ), the public key PK, the corrupted set P ′ and MSP
which represents Γ in DS, can simulate the adversary A’s view on the exe-
cution of SFGen and SReCon for generating σ.

The next lemma states the requirements for the unforgeability of DS, and will
show that holding the view on the executions of DKGen and SFGen is useless for
A to generate a signature forgery. The counterpart of the lemma for threshold
signatures is given in [22,23,42]. It was used in distributed signature schemes [24].

Lemma 1. The DS scheme is also unforgeable if the underlying signature
scheme SS = 〈KGen, Sig, Ver〉 is unforgeable and the corresponding Γ -distribute
signature scheme DS = 〈DKGen,SFGen,SReCon,Ver〉 is simulatable.

Regarding the security of our scheme, we have the following claim.

Theorem 2. Let Γ ⊂ 2P be an access structure and M = (Zq , τ ,M, ρ) be a
monotone span program realizing Γ . Then our Γ -distributed signature scheme
is secure (robust and unforgeable under chosen message attacks) in the standard
model, assuming that the underlying Waters signature scheme is unforgeable.

Proof. It is easy to verify that the robustness can be achieved if P \ P ′ ∈ Γ
for any P ′ ∈ Γ . In detail, suppose the adversary A controls an unqualified set
P ′ ∈ Γ , then all the invalid signature fragments provided by P ′ can be detected
during the execution of SReCon, and the signature can be reconstructed by P\P ′.

For unforgeability, we will give two algorithms S1 and S2 to simulate the
adversary A’s view when A controls an unqualified set P ′ ∈ Γ , then Lemma 1
can be used accordingly.

S1 takes the public key PK = (g, g0, · · · , g�, e(g, g)k), the controlled set P ′

and access structure Γ with an MSP realization M = (Zq, τ ,M, ρ) as input. In
the proposed scheme, every participant pi ∈ P ′ holds a secret key share ki = v·ωi

mod q, where the vector v is randomly chosen from (Zq)
b such that k = v · τ

mod q. As Γ is monotone decreasing, there exists a maximal unqualified set
P̂ ′ ∈ maxΓ such that P ′ ⊆ P̂ ′. In order to simulate the adversary A’s view, S1

randomly chooses a vector ṽ ∈ (Zq)
b and gives every participant pi ∈ P̂ ′ a value

k̃i = ṽ ·ωi mod q. In fact, the outputs {k̃i : pi ∈ P ′} of S1 are computationally
indistinguishable from the real secret key shares {ki : pi ∈ P ′}, because both
k̃i’s and ki’s are uniformly distributed in Zq. Furthermore, it has been proved [4]
that MSP is equivalent to the perfect linear secret sharing scheme, which means
that the distribution of {ki : pi ∈ P̂ ′} are perfectly secure with regard to Γ .
Thus, {k̃i : pi ∈ P̂ ′} are also perfectly secure towards the same Γ .

S1 also calculates the simulated verification parameters Ṽ P which are com-
putationally indistinguishable from the real verification parameters V P . In de-
tail, a part of Ṽ P which related to the participants in P̂ ′ can be calculated as

{e(g, g)k̃i : pi ∈ P̂ ′}, while the other ones can be computed as follows. Since
P̂ ′ ∈ maxΓ , we know P̂ ′ ∪ {ps} ∈ Γ for any participant ps ∈ P \ P̂ ′. According
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to the definition of monotone span program, ωs can be linearly represented by
τ and {ωi : pi ∈ P̂ ′}:

ωs = dDτ +
∑

pi∈P̂ ′

diωi mod q,

where dD and {di : pi ∈ P̂ ′} are elements in Zq. Thus, for any participant

ps ∈ P \ P̂ ′, S1 computes

e(g, g)k̃s = e(g, g)
dDk+

∑
pi∈P̂ ′ dik̃i =

(
e(g, g)k

)dD ·
∏

pi∈P̂ ′

(
e(g, g)k̃i

)di

.

S2 takes the public key PK = (g, g0, · · · , g�, e(g, g)k), the outputs {k̃i : pi ∈
P̂ ′} of S1, the controlled set P ′, a public known hash function H , and a message-
signature pair (m,σ) as input. For each participant pi ∈ P̂ ′, S2 calculates the
simulated signature fragment σ̃i = (α̃i, β̃i) as

α̃i = gk̃i

⎛
⎝g0

�∏
j=1

g
mj

j

⎞
⎠

r̃i

, β̃i = gr̃i ,

where r̃i ∈ Zq is randomly chosen by S2. Under the above Ṽ P , for any participant

ps ∈ P \ P̂ ′, S2 can generate a simulated signature fragment σ̃s = (α̃s, β̃s) as

α̃s = αdDg
∑

pi∈P̂ ′ dik̃i

⎛
⎝g0

�∏
j=1

g
mj

j

⎞
⎠

r̃s

, β̃s = βdDgr̃s ,

where r̃s ∈ Zq is randomly chosen by S2. As it is easy to check the validity of
these simulated signature fragments {σ̃i : pi ∈ P} under the public key PK and

the simulated verification parameters Ṽ P , {σ̃i : pi ∈ P} are computationally
distinguishable from the real signature fragments {σi : pi ∈ P} with regard to
the given (m,σ).

Thus, the proposed Γ -distributed signature scheme is simulatable. Since Wa-
ters signature scheme is unforgeable under chosen message attacks [27,48], then
by Lemma 1, so does our scheme. 
�

3.2 Comparison

We compare the proposed scheme with existing distributed Schnorr signature
scheme [25] and distributed RSA signature schemes [12, 24] in terms of key
(share) sizes and signature (fragment) sizes at the same security level. It is
well known that the bilinear map can be realized by utilizing pairings on some
elliptic curves. We give a comparison according to the key sizes recommended
by NIST [1, 20] in Table 1. Consider 112-bit security level, distributed Schnorr
signature scheme requires the longest signature fragments (2272 bits), while
distributed RSA signature scheme requires the longest secret key shares (2048
bits). Thus, our scheme is more practical with secret key shares and signature
fragments as short as 255 bits and 510 bits, respectively.
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Table 1. Comparison of distributed signature schemes for κ = 112 (bits)

Schemes Key size Key share size Signature (fragment) size Standard model

DL-based [25] 224 448 2272 ×
RSA-based [24] 2048 2048 2052 ×
RSA-based [12] 2048 2048 2048 �
Our CDH-based 224-255 224-255 448-510 �

4 Extensions

In this section, we will give two special extensions of our distributed signature
scheme, which can capture some specific requirements in real-world applications.

4.1 Threshold Signatures with Dynamic Addition of Participants

We first give an extension of our distributed signature scheme by using a sym-
metric bivariate polynomial to share the signing key. Any two secret key shares
generated by our scheme are correlated according to the symmetric property.
We will give one more algorithm (i.e., PtAdd), which is executed by the new
participants to generate his/her secret key share, on inputting the information
that generated by other t or more participants. The same technique is used in
the scheme of Gennaro et al. [21], which was originally used for admitting node
in a short-lived mobile ad hoc network [39].

– DKGen: The dealer randomly chooses a secret key k from Zq, and also a
series of elements g, g0, · · · , g� ∈ G. The public key is a tuple

PK = (g, g0, · · · , g�, e(g, g)k).
To share the secret key k among the participants in P , the dealer constructs
a symmetric bivariate polynomial

f(x, y) =

t−1∑
u=0

t−1∑
v=0

cu,vx
uyv,

where the coefficients cu,v’s are randomly chosen from Zq such that cu,v =
cv,u, c0,0 = k and ct−1,t−1 is nonzero. Thus, the secret key shares are com-
puted as ki(x) = f(x, i) mod q for all participants pi ∈ P . The algorithm
also publishes the verification parameters V P = {e(g, g)ki(0) : pi ∈ P}.

– PtAdd: When a new participant ps joining the group, he/she should be given
a share of the secret key. In fact, his/her share can be computed with the
help of other t participants and do not need the dealer. We assume the
new participant ps received t shares ki(s) = f(s, i) mod q from the other
parties. Without loss of generality, we assume these values are calculated by
the participants in P = {p1, · · · , pt}, that is, the new participant ps holds

{k1(s) = f(s, 1), · · · , kt(s) = f(s, t)}.



320 Y. Wang et al.

Due to the symmetric property of the bivariate polynomial f(x, y), i.e.
ki(j) = f(j, i) = f(i, j) = kj(i) mod q, the new participant ps indeed holds
{ks(1) = f(1, s), · · · , ks(t) = f(t, s)} and his/her share of the secret key can
be calculated by using polynomial interpolation

ks(x) =
t∑

i=1

λi(x)ks(i) mod q,

where λi(x) =
∏t

j=1,j �=i
x−j
i−j mod q. Then, he/she also publishes e(g, g)ks(0).

Thus, the participant set P and verification parameters V P are dynamically
updated.
In fact, the new participant ps can validate ks(0) by checking if the following
equalities holds

e(g, g)ks(0) = e(g, g)
∑t

i=1 λiki(0) =
t∏

i=1

(
e(g, g)ki(0)

)λi

,

which is due to

ks(0) = f(0, s) =
t∑

i=1

λif(0, i) =
t∑

i=1

λiki(0) mod q,

where λi’s are the Lagrange coefficients λi =
∏t

j=1,j �=i
s−j
i−j mod q.

– SFGen: Given a messagem denoted by (m1, · · · ,m�), the algorithm randomly
chooses a value ri ∈ Zq and generates signature fragment σi = (αi, βi) for
the participant pi (pi ∈ P) as

αi = gki(0)

⎛
⎝g0

�∏
j=1

g
mj

j

⎞
⎠

ri

, βi = gri.

– SReCon: Given a message m, signature fragments {σi : pi ∈ P such that P ⊆
P}, public key PK, and verification parameters V P , the collector discards
all the invalid signature fragments by checking if

e(αi, g)
?
= e(g, g)ki(0)e(g0

�∏
j=1

g
mj

j , βi)

holds. If there are remaining t or more valid signature fragments (e.g.,
{σ1, · · · , σt}), the signature σ = (α, β) of m can be reconstructed as fol-
lows

α =

t∏
i=1

αi
λi , β =

t∏
i=1

βi
λi ,

where λi’s are the Lagrange coefficients λi =
∏t

j=1,j �=i
j

j−i mod q.
Otherwise, outputs ⊥.
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– Ver: Given a message m, a signature σ = (α, β), and a public key PK =
(g, g0, · · · , g�, e(g, g)k), check if the following equality holds

e(α, g)
?
= e(g, g)ke(g0

�∏
j=1

g
mj

j , β).

If it is true, the signature σ is valid; otherwise it is invalid.

As the secret sharing scheme being used in the distributed secret key gener-
ation algorithm DKGen is a special linear threshold scheme, thus, according to
Theorem 1, we have the following corollary.

Corollary 1. The above threshold signature scheme is correct.

Also, according to Theorem 2, we have the following claim.

Corollary 2. The above threshold signature scheme is secure under CDH as-
sumption in the standard model.

Table 2 illustrates a performance comparison between our scheme with Gen-
naro et al.’s scheme [21]. Our scheme has shorter secret key shares and signature
fragments, and introduces no additional parameters. As we have noted, due to
the Euler’s totient function of RSA modulus should keep unknown to all the
participants, some additional parameters (Δ, {δi}, δ) should be introduced for
realizing the same functionality in RSA setting.

Table 2. Comparison of threshold signature schemes for κ = 112 (bits)

Key share size Signature fragment size Additional parameters Standard model

[21] 2048t 2048 Δ, {δi}, δ ×
Ours 224t to 255t 448-510 × �

4.2 Distributed Signature Scheme for Multipartite Access
Structures

In a multipartite access structure, the participant set P can be divided into
u disjoint groups Gi (i ∈ [1, u]), i.e., P = ∪u

i=1Gi and Gi ∩ Gj = ∅ if i �= j.
Furthermore, all participants in the same group Gi are equally powerful, that is,
if a participant p ∈ Gi is in a qualified set P ∈ Γ , then p can be replaced by any
participant p′ ∈ Gi \ P .

Our second extension is a distributed signature scheme for compartmented
access structures with upper bounds [17, 46]. Our construction is based on the
linear secret sharing scheme proposed by Tassa and Dyn [46]. Compartmented
access structures with upper bounds can be defined as

Γ = {I ⊆ P : ∃J ⊆ I such that |J ∩ Gi| ≤ ti, 1 ≤ i ≤ u, and |J | = t},
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where 1 ≤ t ≤ min{∑u
i=1 ti, n}. That is, ti determines the power of group Gi

(i ∈ [1, u]). As we will see in the following, for the scheme presented by Tassa and
Dyn [46], more than ti participants of Gi cannot contribute more to recovering
the secret.

– DKGen: The dealer randomly chooses a secret key k ∈ Zq, and also a series
of elements g, g0, · · · , g� ∈ G. The public key is a tuple

PK = (g, g0, · · · , g�, e(g, g)k).

To share the secret key k among the participants in P , for each group Gi

(i ∈ [1, u]), the dealer first constructs a random univariate polynomial

fi(y) =

ti−1∑
j=0

ci,jy
j

over Zq, where ci,ti−1 is nonzero, and specifies a distinct identity xi ∈ Zq.
Furthermore, it is required that

u∑
i=1

ti−1∑
j=0

ci,j = k mod q.

Then using Lagrange interpolation to construct

f(x, y) =

u∑
i=1

λi(x)fi(y) =

u∑
i=1

ti−1∑
j=0

ci,jλi(x)y
j mod q,

where λi(x) =
∏u

h=1,h �=i
x−xh

xi−xh
mod q. The secret key share for participant

pi,j ∈ Gi (i ∈ [1, u]) can be calculated as ki,j = f(xi, yi,j) mod q, in which
yi,j is the identity of pi,j such that yi,j �= 1. The verification parameters are
published as

V P = {e(g, g)ki,j : pi,j ∈ P}.
In addition, as t ≤ ∑u

i=1 ti, the dealer should also publish s =
∑u

i=1 ti − t
secret key shares, that is, the dealer random chooses s different points (x′

i, z
′
i)

where x′
i �∈ {x1, · · · , xu} and calculates k′i = f(x′

i, z
′
i) mod q.

– SFGen: Given a messagem denoted by (m1, · · · ,m�), the algorithm generates
a signature fragment σi,j = (αi,j , βi,j) for the participant pi,j ∈ P as

αi,j = gki,j

(
g0

�∏
h=1

gmh

h

)ri,j

, βi,j = gri,j ,

where ri,j is randomly chosen from Zq.
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– SReCon: Given a message m, signature fragments {σi,j : pi,j ∈ P such that
P ⊆ P}, public key PK = (g, g0, · · · , g�, e(g, g)k), and verification param-
eters V P = {e(g, g)ki,j : pi,j ∈ P}, the collector discards all the invalid
signature fragments by checking if

e(αi,j , g)
?
= e(g, g)ki,je(g0

�∏
h=1

gmh

h , βi,j)

holds. If there are remaining t or more valid signature fragments σi,j ’s (sup-
pose they belong to the participants in P ⊆ P), the signature σ = (α, β)
of m can be reconstructed as follows: because there exist

∑u
i=1 ti values of

di,j ’s and di’s over Zq (which can be efficiently found by solving the system
of equations) such that

k =
∑

pi,j∈P

di,jki,j +

s∑
i=1

dik
′
i mod q,

the signature σ is calculated as

α =
∏

pi,j∈P

αi,j
di,j ·

s∏
i=1

(gk
′
i)di , β =

∏
pi,j∈P

βi,j
di,j .

Otherwise, outputs ⊥.
– Ver: Given a message m, a signature σ = (α, β), and a public key PK =

(g, g0, · · · , g�, e(g, g)k), check whether the following equality holds

e(α, g)
?
= e(g, g)ke(g0

�∏
h=1

gmh

h , β).

If it holds, then the signature σ is valid; otherwise it is invalid.

Tassa and Dyn [46] proved their linear secret sharing scheme for the com-
partmented access structures with upper bounds is perfect with probability
1 − O(1/q). It is easy to rewrite their scheme in a MSP representation, thus,
according to Theorem 1 and Theorem 2, we have following corollaries.

Corollary 3. The above distributed signature scheme for compartmented access
structures with upper bounds is correct.

Corollary 4. The above distributed signature scheme for compartmented access
structures with upper bounds is secure with probability 1 − O(1/q) under CDH
assumption in the standard model.

5 Conclusion

We proposed a distributed signatures scheme in the standard model based on
the CDH assumption. Our scheme offers higher efficiency when compared with
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existing schemes in the random oracle model. We also presented two special
extensions of our construction. The first one can be used in the situation in
which new participants can join the system without the help from a centralized
dealer. The second one can be used for a type of multipartite access structures
where all the disjoint groups are bounded to jointly generate a signature.
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33. Morillo, P., Padró, C., Sáez, G., Villar, J.L.: Weighted Threshold Secret Sharing
Schemes. Information Processing Letters 70, 211–216 (1999)

34. Okamoto, T., Takashima, K.: Efficient Attribute-Based Signatures for Non-
monotone Predicates in the Standard Model. In: Catalano, D., Fazio, N., Gennaro,
R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 35–52. Springer, Heidelberg
(2011)

35. Okamoto, T., Takashima, K.: Decentralized Attribute-Based Signatures. In:
Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 125–142.
Springer, Heidelberg (2013)



326 Y. Wang et al.
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