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Abstract. Group signatures allow members of a group to anonymously
sign messages in the name of this group. They typically involve an open-
ing authority that can identify the origin of any signature if the need
arises. In some applications, such a tracing capability can be excessively
strong and it seems desirable to restrict the power of the authority. Sakai
et al. recently suggested the notion of group signatures with message-
dependent opening (GS-MDO), where the opening operation is made
contingent on the knowledge of a trapdoor information – generated by a
second authority – associated with the message. Sakai et al. showed that
their primitive implies identity-based encryption (IBE). In the standard
model, efficiently constructing such a system thus requires a structure-
preserving IBE scheme, where the plaintext space is the source group G

(rather than the target group GT ) of a bilinear map e : G × G → GT .
Sakai et al. used a structure-preserving IBE which only provides bounded
collusion-resistance. As a result, their GS-MDO construction only pro-
vides a weak form of anonymity where the maximal number of trapdoor
queries is determined by the length of the group public key. In this paper,
we construct the first fully collusion-resistant IBE scheme that encrypts
messages in G. Using this construction, we obtain a GS-MDO system
with logarithmic signature size (in the number N of group members)
and prove its security in the standard model under simple assumptions.

Keywords: Group signatures, message-dependent opening, efficiency,
collusion-resistance, structure-preserving cryptography.

1 Introduction

Group signatures are central anonymity-related primitives, suggested by Chaum
and van Heyst [20], which allow users to sign messages while hiding their identity
within a population they belong to. They notably find applications in trusted
computing platforms, auction protocols, anonymous subscription systems or in
mechanisms for protecting the privacy of commuters in public transportation.
To prevent users from abusing the system, group signatures usually involve an
opening authority (OA) which is capable of identifying the signer using some
trapdoor information. Although the opening authority can remain most fre-
quently offline, group members have no privacy at all against this all powerful
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entity that can spy on all signature generations and identify the signer every
time. To address this problem, Sakai et al. [35] advocated the design of a spe-
cial kind of group signatures, called group signatures with message-dependent
opening (GS-MDO), where restrictions are placed on the power of the OA. In
the GS-MDO primitive, opening authorities cannot open any signature on their
own. In order to open a signature on a message M , they need both their private
key and a message-specific trapdoor tM generated by a separate authority called
admitter.

While the notion of group signatures dates back to Chaum and van Heyst [20],
truly scalable and secure solutions remained elusive until the construction put
forth by Ateniese et al. [6]. For lack of well-understood definitions, the secu-
rity of their scheme was analyzed w.r.t. a list of sometimes redundant properties.
A suitable security model was studied later on by Bellare, Micciancio and Warin-
schi [7] in the setting of static groups, where previous properties were subsumed
by two security notions named full anonymity and full traceability. The case of
dynamically growing groups was independently considered by Bellare, Shi and
Zhang [9] and Kiayias and Yung [29].

During the last decade, a number of practical schemes were analyzed (e.g.,
[6, 12, 21, 29, 32]) in the random oracle model [8], which is known [18] to
only provide heuristic arguments in terms of security. While theoretical stan-
dard model constructions were given under general assumptions [7, 9], they were
“only” proofs of concept. Viable constructions were suggested for the first time
by Boyen and Waters [14, 15] and Groth [23, 24] who took advantage of break-
through results [22, 25] in the construction of non-interactive zero-knowledge
(NIZK) and witness indistinguishable (NIWI) proofs. The most efficient stan-
dard model realizations to date rely on the Groth-Sahai methodology [25], which
is tailored to specific languages involving elements in bilinear groups.

Group Signatures with Message-Dependent Opening. Traditional group
signature models allow opening authorities to identify the originator of every sin-
gle signature. As discussed by Sakai et al. [35], it may be desirable to restrict
this extremely high power in many real-life applications.

One way to address this problem is to use techniques from threshold cryptog-
raphy and share the opening key among several distributed opening authorities
(as considered in, e.g., [10]) in such a way that none of these can individually
open signatures and hurt the privacy of group members. While this approach
may be sufficient in some applications, it requires the distributed openers to run
a joint opening protocol whenever they want to trace a signature back to its
source. In applications where many signatures on the same message have to be
opened, this may become impractical. For example, suppose that group signa-
tures are used to verify anonymous access rights to a parking or to enhance the
privacy of users in public transportation systems: by issuing a group signature
on a message consisting of the current date and time, users can demonstrate
that they hold a valid credential and paid the subscription without being link-
able to their previous rides. If a crime is committed, the police may want to find
out who used a given metro line during a specific time interval. This requires
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a mechanism allowing for the opening of all signatures generated for a given
date-time message and only those. Running a distributed opening protocol for
each individual signature may be a bottleneck in this scenario. The same is true
when group signatures are used in auction protocols: if group members are bid-
ders who anonymously sign their bids, the threshold opening approach entails
a communication cost proportional to the number of winners who offered the
highest amount.

The above use cases motivated Sakai et al [35] to formalize the notion of group
signatures with message-dependent opening (GS-MDO), which splits the role of
the opening authority between two entities called opener and admitter. In order
to identify the author of a signature on a message M , the opener needs both
its opening key ok and a trapdoor tM generated by the admitter for the mes-
sage M : the opening operation must be approved by the admitter, depending
on the content of the message. Importantly, neither entity is powerful enough to
open a signature by itself. A crucial difference with the aforementioned threshold
opening approach is that, once a trapdoor tM has been released for a sensitive
message M , the opener can trace all signatures on M without any further inter-
action with the admitter.

We believe this message-dependent opening property to be of interest even
in the setting of a centralized opening authority. Indeed, it features a comple-
mentary property to that of traceable signatures [28]. These involve opening
authorities which can release a user-specific trapdoor allowing anyone to trace
all signatures issued by a misbehaving group member. The GS-MDO primitive is
important when the tracing criterion is the signed message (which could contain
keywords associated with an illegal transaction) instead of the group member’s
identity. Both techniques could actually be used in conjunction: one could first
use a message-specific trapdoor to identify all group members who signed a sus-
picious message before tracing all other signatures created by these members.

Related Work. Sakai et al. [35] gave a general construction of GS-MDO and
notably showed that it implies Identity-Based Encryption [13, 36] (IBE): in their
specific construction, the trusted authority naturally serves as an admitter and
message-specific trapdoors are nothing but IBE private keys associated with the
message. They also pointed out that, in order to build an efficient GS-MDO
system in the standard model with the current state of knowledge in the area,
they need a form of structure-preserving IBE scheme. Recall that a cryptographic
primitive is called structure-preserving (see [1–4, 17, 19, 23] for examples) if it
handles objects – like ciphertexts or signatures – that only consist of elements
from a group G over which a bilinear map is efficiently computable and if the
validity of these objects can be checked using pairing-product equations. The
latter properties make the primitive compatible with the Groth-Sahai techniques
[25], which is crucial when one seeks to prove security in the standard model.

The main difficulty is that no structure-preserving IBE scheme is available to
date: all pairing-based schemes proceed either by XORing the message with a
hashed Bilinear Diffie-Hellman key [13] or encrypting messages that live in the
target group GT of the bilinear map e : G × G → GT (see, e.g., [11, 37]). In
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order to construct an efficient GS-MDO in the standard model, what we need
is an IBE scheme that encrypts messages in the domain group G. We call such
a system partially structure-preserving since identities do not have to be group
elements and private keys can be ordinary (non-structure-preserving) signatures.
For lack of a fully collusion-resistant such IBE, Sakai et al. [35] used a variant of
the k-resilient construction of Heng and Kurosawa [27]: in the latter, semantic
security is only guaranteed against adversaries that obtain private keys for no
more than an a priori bounded number of identities. Moreover, the master public
key has linear size in the pre-determined upper bound k. As a consequence, the
standard model GS-MDO realization of [35] only achieves a relaxed flavor of
security: namely, anonymity against the opener is only guaranteed as long as
the adversary obtains trapdoors for at most k distinct messages. Moreover, the
group public key inherits the O(k) size of the underlying IBE system.

In the random oracle model, Ohara et al. [33] recently proposed a construction
allowing for an unbounded number of trapdoor queries. However, for the time
being, building a fully secure GS-MDO system in the standard model remains
an open problem.

OurContribution. In this paper, we describe aGS-MDO systemwithO(logN)
size signatures, whereN is the number of groupmembers, and prove its security in
the standard model under simple, constant-size assumptions (i.e., we do not use
q-type assumptions where the number of input elements depends on the number
of adversarial queries or other system-related parameters).

As a result of independent interest, we describe the first fully collusion-
resistant pairing-based IBE scheme that allows encrypting messages in the source
group G. This property is useful when it comes to proving properties about
IBE-encrypted data: for example, the techniques of Camenisch et al. [16] can be
used in combination with Groth-Sahai proofs to provide evidence that an IBE-
encrypted plaintext belongs to a public set. Our system proceeds by blinding
the plaintext M ∈ G using a random mask obtained by multiplying a random
subset

∏
i∈S Zi of public elements (Z1, . . . , Z�) ∈ G�, where � is proportional

to the security parameter. The �-bit string K identifying the subset S (so that
K[i] = 1 if and only if Zi ∈ S) is in turn encoded in a bit-wise manner using
a variant of the Waters IBE scheme, each bit K[i] of K being encoded as an
independent IBE ciphertext entirely comprised of elements in G. A consequence
of this bit-by-bit encoding is that we need O(�) group elements to encrypt one
element M ∈ G. Despite its relatively large ciphertext size, our construction
suffices to provide O(logN) size signatures.

If we naively plug our IBE scheme into the general GS-MDO construction
of Sakai et al. [35], we obtain signatures consisting of O(λ) group elements (or
O(λ2) bits), where λ is the security parameter, as each signature includes an
IBE ciphertext. Fortunately, we can obtain signatures of only O(logN) group
elements – which is substantially shorter since logN � λ for any group of poly-
nomial cardinality N – by combining the bit-wise encoding of our IBE scheme
with the technique used in the Boyen-Waters group signature [14]. In the latter,

membership certificates consist of Waters signatures
(
gω · (v0 ·

∏�
j=1 v

id[j]
j )r, gr

)
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on the group members’ identifiers id ∈ {0, 1}�, where � = logN , and each group
signature contains commitments to the individual bits id[j] of id as well as NIWI
proofs showing that committed values are actually bits. Our idea is thus to en-
code each bit id[j] of id using a structure-preserving identity-based bit encryp-
tion scheme where the receiver’s identity is the message to be signed. In order
to guarantee anonymity against the admitter, we follow [35] and super-encrypt
each IBE ciphertext under the opener’s public key using a CCA2-secure public-
key cryptosystem. For groups of N = 106 users, we eventually obtain signatures
of 68 kB at the 128-bit security level, which is approximately twice the signature
length of the k-resilient scheme of [35].

Organization. In the forthcoming sections, we first recall the syntax and the
security definitions of group signatures with message-dependent opening in Sec-
tion 2. Section 3 describes our structure-preserving IBE system and our GS-MDO
scheme is detailed in Section 4.

2 Background

2.1 Bilinear Maps and Complexity Assumptions

We use bilinear maps e : G × G → GT over groups of prime order p where
e(g, h) �= 1GT if and only if g, h �= 1G. In these groups, we rely on two hardness
assumptions that are both non-interactive and stated using a constant number
of elements.

Definition 1 ([12]). The Decision Linear (DLIN) Problem in G, is to dis-
tinguish between the distributions (ga, gb, gac, gbd, gc+d) and (ga, gb, gac, gbd, gz),
with a, b, c, d R← Zp, z

R← Zp. The Decision Linear assumption is the intractability
of DLIN for any PPT distinguisher.

Definition 2 ([13]). TheDecision 3-party Diffie-Hellman (D3DH) Problem
in G, is to distinguish the distributions (g, ga, gb, gc, gabc) and (g, ga, gb, gc, gz),
where a, b, c, z R← Zp.

2.2 Groth-Sahai Proof Systems

Groth-Sahai (GS) proofs [25] can be based on the DLIN assumption, where they
use prime order groups and a common reference string containing three vectors
�f1, �f2, �f3 ∈ G3, where �f1 = (f1, 1, g), �f2 = (1, f2, g) for some f1, f2 ∈ G. To

commit to X ∈ G, one chooses r, s, t R← Zp and computes �C = (1, 1, X) · �f1
r ·

�f2
s · �f3

t
. In the soundness setting, we have �f3 = �f1

ξ1 · �f2
ξ2

where ξ1, ξ2 ∈ Zp.

Commitments �C = (f r+ξ1t
1 , f s+ξ2t

2 , X · gr+s+t(ξ1+ξ2)) are then extractable using
β1 = logg(f1), β2 = logg(f2). In the witness indistinguishability (WI) setting,
�f1, �f2, �f3 are linearly independent and �C is a perfectly hiding commitment. Under
the DLIN assumption, the two kinds of CRS are indistinguishable.
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To commit to an exponent x ∈ Zp, the prover computes �C = �ϕx · �f1
r · �f2

s
,

where r, s R← Zp, using a CRS consisting of vectors �ϕ, �f1, �f2. In the perfect sound-

ness setting, �ϕ, �f1, �f2 are linearly independent while, in the perfect WI setting,

choosing �ϕ = �f1
ξ1 · �f2ξ2 gives a perfectly hiding commitment.

To prove that committed variables satisfy a set of relations, the prover com-
putes one commitment per variable and one proof element per relation. Such
non-interactive witness indistinguishable (NIWI) proofs are available for pairing-
product equations, which are equations of the form

n∏

i=1

e(Ai,Xi) ·
n∏

i=1

·
n∏

j=1

e(Xi,Xj)
aij = tT , (1)

for variables X1, . . . ,Xn ∈ G and constants tT ∈ GT , A1, . . . ,An ∈ G, aij ∈ Zp,
for i, j ∈ {1, . . . , n}. Efficient NIWI proofs also exist for multi-exponentiation

equations, which are of the form
∏m

i=1 Ayi

i ·∏n
j=1 X bj

j ·∏m
i=1 ·

∏n
j=1 X yiγij

j = T,
for variables X1, . . . ,Xn ∈ G, y1, . . . , ym ∈ Zp and constants T,A1, . . . ,Am ∈ G,
b1, . . . , bn ∈ Zp and γij ∈ G, for i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}.

In pairing-product equations, proofs for quadratic equations require 9 group
elements whereas linear equations (i.e., where aij = 0 for all i, j in equation (1))
only cost 3 group elements each. Linear multi-exponentiation equations of the
type

∏m
i=1 Ayi

i = T require 2 group elements.

2.3 Group Signatures with Message-Dependent Opening

We use the syntax of [35], which extends the static model of Bellare, Micciancio
and Warinschi [7].

Keygen(λ,N): given a security parameter λ ∈ N and a maximal number of
group members N ∈ N, this algorithm outputs a group public key gpk, a
vector gsk = (gsk[0], . . . , gsk[N − 1]) of group members’ private keys as well
as private keys mskADM and ok for the admitter and the opener.

Sign: takes as input a message M , a private key gsk[i] and gpk, it outputs a
signature σ.

Verify: is a deterministic algorithm taking as input a signature σ, a message M
and a group public key gpk. It returns either 0 or 1.

TrapGen: is a possibly randomized algorithm that takes as input the admitter’s
private key mskADM and a message M . It outputs a trapdoor tM allowing
the OA to open all signatures on M .

Open: takes as input a message M , a valid signature σ w.r.t. gpk, the opening
authority’s private key ok and a trapdoor tM for the message M . It outputs
i ∈ {0, . . . , N − 1} ∪ {⊥}, which is either the index of a group member or a
symbol indicating an opening failure.

Definition 3. A GS-MDO scheme provides full traceability if, for any λ ∈ N,
any N ∈ poly(λ) and any PPT adversary A involved in the experiment hereafter,
it holds that
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Advtrace
A (λ) = Pr[Exptrace

A (λ,N) = 1] ∈ negl(λ).

Exptrace
A (n,N)

(gpk, ok,mskADM,gsk) ← Keygen(λ,N)

st ← (ok,mskADM, gpk) ; C ← ∅ ; K ← ε ; Cont ← true

while (Cont = true) do

(Cont, st, j) ← ASign(gsk[·],·)(choose, st,K)

if Cont = true then C ← C ∪ {j} ; K ← K ∪ {gsk[j]} end if

end while

(M�, σ�) ← ASign(gsk[·],·)(guess,st)
if Verify(gpk,M�, σ�) = 0 then Return 0

if Open(gpk, ok,TrapGen(gpk,mskADM,M
�),M�, σ�) =⊥ then Return 1

if ∃j� ∈ {0, . . . , N − 1} such that

(Open(gpk, ok, tM� ,M�, σ�) = j�) ∧ (j� /∈ C) ∧ ((j�,M�) not queried by A)

with tM� ← TrapGen(gpk,mskADM,M
�)

then Return 1

else Return 0

Definition 4. A GS-MDO scheme provides full anonymity against the admitter
if, for any λ ∈ N, any N ∈ poly(λ) and any PPT adversary A, the function

Advanon-adm
A (λ) = |Pr[Expanon-adm

A (λ,N) = 1]− 1/2| ∈ negl(λ)

is a negligible function in the security parameter if the experiment proceeds as
follows

Expanon−adm
A (λ,N)

(gpk, ok,mskADM,gsk) ← Keygen(λ,N)

(st, j0, j1,M
�) ← AOok(choose, gpk,gsk,mskADM)

b R← {0, 1}; σ� ← Sign(gpk, gsk[jb],M
�)

b′ ← AOok (guess,st, σ�)

Return 1 if b′ = b and 0 otherwise

In the above notation, Ook denotes an oracle that takes as input any adversar-
ially chosen signature σ �= σ� and uses ok and mskADM to determine and return
the identity of the signer.

Definition 5. A GS-MDO scheme provides full anonymity against the opener
if, for any λ ∈ N, any N ∈ poly(λ) and any PPT adversary A, the function

Advanon-oa
A (λ) = |Pr[Expanon-oa

A (λ,N) = 1]− 1/2| ∈ negl(λ)

is a negligible function in the security parameter if the experiment goes as follows

Expanon−oa
A (λ,N)

(gpk, ok,mskADM,gsk) ← Keygen(λ,N)
(st, j0, j1,M

�) ← AOmskADM (choose, gpk,gsk, ok)

b R← {0, 1}; σ� ← Sign(gpk, gsk[jb],M
�)

b′ ← AOmskADM (guess,st, σ�)
Return 1 if b′ = b and 0 otherwise

In the above notation, OmskADM
(.) is an oracle that returns trapdoors for arbi-

trary messages M �= M� chosen by the adversary.
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3 A Fully Collusion-Resistant Partially Structure-
Preserving IBE

3.1 Intuition

The scheme is only partially structure-preserving in that identities are still en-
coded as binary strings and private keys are ordinary signatures (recall that,
in any IBE, private keys are signatures on the corresponding identity, as men-
tioned in [13]) instead of structure-preserving ones. It can be seen as a variant
of Waters’ IBE [37] (see Appendix A for syntactic definitions) and builds on
a consequence of the Leftover Hash Lemma [26]: namely, if � > 2 log2(p) and
a1, . . . , a� ∈R Zp are uniformly distributed in Zp, then random subset sums
∑�

i=1 βiai with (β1, . . . , β�) ∈R {0, 1}� are statistically indistinguishable from
uniformly random values in Zp.

The idea is to include a vector (Z1, . . . , Z�) ∈ G
� in the master public key. The

message M ∈ G will be encrypted by choosing a random �-bit string K ∈ {0, 1}�
and multiplying M with a product of elements in the set S = {Zi | K[i] = 1}.
Then, each bit K[i] of K will be individually encrypted using a variant of the
Waters IBE. In the latter variant, an encryption of 1 will consist of a tuple

(Ci,1, Ci,2, Ci,3, Ci,4) = (gsi , HG(ID)
si , g

si/ωi

1 , gωi
2 ), where si, ωi ∈R Zp. In an

encryption of 0, the pair (Ci,3, Ci,4) is chosen uniformly in G2. Upon decryp-
tion, the receiver can use his private key (d1, d2) to test whether the equality
e(Ci,3, Ci,4) = e(Ci,1, d1)/e(Ci,2, d2) holds. If it does, the receiver decodes the
i-th bit of K as K[i] = 1. Otherwise, it sets K[i] = 0. The security of the result-
ing scheme can be proved under the D3DH assumption (instead of the DBDH
assumption).

Although the latter scheme allows encrypting messages in the group G, it still
does not provide all the properties we need for the problem at hand. When it
comes to proving that a ciphertext encrypts a message that coincides with the
content of Groth-Sahai commitment, the difficulty is to prove that the equal-
ity e(Ci,3, Ci,4) = e(Ci,1, d1)/e(Ci,2, d2) is not satisfied when K[i] = 0. For this
reason, we need to modify the scheme as suggested in Section 3.2.

3.2 Construction

In order to be able to efficiently prove that a ciphertext and a Groth-Sahai
commitment hide the same group element, we modify the scheme of Section
3.1 as follows. In the master public key, the element g1 is replaced by a pair
(g0, g1) = (gα0 , gα1). The master secret key is twinned in the same way and now
consists of (gα0

2 , gα1
2 ). Likewise, each identity is assigned a private key of the form

(d0,1, d0,2, d1,1, d1,2) = (gα0
2 ·HG(ID)

r0 , gr0 , gα1
2 ·HG(ID)

r1 , gr1).
In the encryption algorithm, when the sender wants to “encrypt” a bit K[i]

of K ∈ {0, 1}�, it generates (Ci,3, Ci,4) as (Ci,3, Ci,4) =
(
g
si/ωi

K[i] , gωi
2

)
, so that the

receiver can easily determine the value of K[i] using his private key.
The modification will make it easier to prove equalities between the plaintext

and a committed value. The reason is that the prover does not have to prove
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an inequality when K[i] = 0: he essentially has to prove statements of the form

“(Ci,3, Ci,4) =
(
g
si/ωi

0 , gωi
2

)
OR (Ci,3, Ci,4) =

(
g
si/ωi

1 , gωi
2

)
”. Our construction of

Groth-Sahai-compatible IBE thus goes follows.

Setup(λ) : Choose bilinear groups (G,GT ) of prime order p > 2λ. Then, do the
following.

1. Choose α0, α1
R← Zp, g

R← G, g2
R← G and set g0 = gα0 , g1 = gα1 .

2. Choose u0, u1, . . . , uL
R← G, for a suitably large L ∈ poly(λ). These will

be used to implement a number-theoretic hash function HG : {0, 1}L →
G such that any L-bit string τ = τ [1] . . . τ [L] ∈ {0, 1}L is mapped to the

value HG(τ) = u0 ·
∏L

i=1 u
τ [i]
i .

3. Choose group elements (Z1, . . . , Z�)
R← G�, where � = 2	log2(p)
 > 2λ.

The master secret key is msk := (gα0
2 , gα1

2 ) and the master public key is
defined as

mpk =
(
(G,GT ), p, g, g0 = gα0 , g1 = gα1 , g2, {ui}Li=0, {Zi}�i=1

)

Keygen(msk, ID) : given the master secret key msk = (gα0
2 , gα1

2 ) and an identity
ID ∈ {0, 1}L, choose r0, r1

R← Zp to compute and return

dID = (d0,1, d0,2, d1,1, d1,2) =
(
gα0
2 ·HG(ID)

r0 , gr0 , gα1
2 ·HG(ID)

r1 , gr1
)
.

Encrypt(mpk, ID,M) : to encrypt a message M ∈ G, conduct the following
steps.

1. Choose a random �-bit string K R← {0, 1}�, where � = 2 log2(p).
2. Choose s1, . . . , s�

R← Zp and ω1, . . . , ω�
R← Zp.

3. Parse K as K[1] . . .K[�] ∈ {0, 1}�. For i = 1 to �, compute

Ci,1 = gsi Ci,2 = HG(ID)
si Ci,3 = g

si/ωi

K[i] Ci,4 = gωi
2 (2)

4. Then, compute C0 = M ·∏�
i=1 Z

K[i]
i .

Return the ciphertext C =
(
C0, {(Ci,1, Ci,2, Ci,3, Ci,4)}�i=1

) ∈ G4�+1.

Decrypt(mpk, dID, C) : parse C as C =
(
C0, {(Ci,1, Ci,2, Ci,3, Ci,4)}�i=1

)
.

1. For i = 1 to � compute μb = e(Ci,1, db,1)/e(Ci,2, db,2) for each b ∈ {0, 1}.
If there exists b ∈ {0, 1} such that μb = e(Ci,3, Ci,4), set K[i] = b.
Otherwise, return ⊥.

2. Compute and return M = C0/(
∏�

i=1 Z
K[i]
i ).

Unlike the IBE system of Sakai et al. [35], the above scheme provides full
collusion-resistance and the size of the master public key only depends on the
security parameter and not on a pre-determined bound on the number of cor-
rupted users.
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Theorem 1. The above IBE scheme provides IND-ID-CPA security under the
D3DH assumption.

Proof. We consider a sequence of games which begins with the real game and
ends with a game where the adversary’s view is independent of the challenger’s
bit β ∈ {0, 1}. For each i, we denote by Si the event that the adversary wins in
Game i and we define the adversary’s advantage as Advi := |Pr[Si]− 1/2|.
Game 0: This is the real attack game where the challenger generates a proper

encryption of Mβ , with β R← {0, 1}, in the challenge phase. The game ends
with the adversary A outputting β′ ∈ {0, 1} and we denote by S0 the event
that β′ = β.

Game i (1 ≤ i ≤ �): In this game, the challenger generates the challenge ci-
phertext in a hybrid manner. Namely, for each j ∈ {1, . . . , �}, the challenger
generates the ciphertext components {(Cj,1, Cj,2, Cj,3, Cj,4)} as follows.

- If j ≤ i, its picks sj
R← Zp, computes (Cj,1, Cj,2) = (gsj , HG(ID)

sj ) but

chooses (Cj,3, Cj,4)
R← G2 at random.

- If j > i, it runs the normal encryption algorithm and sets

(Cj,1, Cj,2, Cj,3, Cj,4) = (gsj , HG(ID)
sj , g

sj/ωj

K[j] , g
ωj

2 )

for randomly chosen sj , ωj
R← Zp.

Game � + 1: This game is identical to Game � with the difference that, in the
challenge ciphertext, C0 is chosen as a uniformly random C0

R← G instead of

being computed as C0 = Mβ ·∏�
j=1 Z

K[j]
j .

For each j ∈ {1, . . . , �}, Lemma 1 shows that Game j is computationally indis-
tinguishable from Game j − 1 if the D3DH assumption holds.

In Game �, the ciphertext components {(Cj,1, Cj,2, Cj,3, Cj,4)}�j=1 are com-

pletely uncorrelated to the string K = K[1] . . .K[�] ∈ {0, 1}� that is used to

compute C0 = Mβ ·∏�
j=1 Z

K[j]
j . For this reason, we argue that the adversary’s

view is statistically independent of Mβ. This is easily seen by observing that the
Leftover Hash Lemma implies that the two distributions

D0 = {(a, 〈a, z〉) | a R← Z
�
p, z R← {0, 1}�} D1 = {(a, w) | a R← Z

�
p, w R← Zp},

are statistically close when � > 2 log2(p). Consequently, Game � is statistically
close to Game �+1, where C0 is replaced by a uniformly random group element
in the challenge ciphertext. In the latter game, we have Pr[S�+1] = 1/2 (and
thus Adv�+1 = 0) since the challenge ciphertext is independent of Mβ . ��
Lemma 1. If the D3DH assumption holds, Game i is computationally indistin-
guishable from Game i − 1 for each i ∈ {1, . . . , �}. More precisely, if A runs in
time t and has significantly different advantages in Game i and Game i−1, then
there exists a PPT algorithm B with running time t+O(ε−2 ln(ε−1)η−1 ln(η−1))
such that

|Advi(A)−Advi−1(A)| ≤ 16 · (L+ 1) · q ·AdvD3DH(B),
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where η = 1/(4(L + 1)q) and q is the maximal number of private key queries.
(The proof is given in Appendix B.)

We note that the same idea can be applied to construct other partially
structure-preserving primitives. For example, it can be applied to selectively-
secure attribute-based encryption schemes based on the Decision Bilinear Diffie-
Hellman assumption [34].

3.3 Proving Properties about Encrypted Messages

Our solution retains the useful property of the scheme in [35] as it allows effi-
ciently proving relations about the plaintext using the Groth-Sahai techniques.

If �CM = (1, 1,M) · �f1
rM · �f2

sM · �f3
tM

denotes a Groth-Sahai commitment to
M ∈ G which is also encrypted with the above IBE, the sender can proceed as
follows to prove the equality between the committed message and the plaintext.

For each i, the sender computes �CKi = (1, 1, gK[i]) · �f1
rK[i] · �f2

sK[i] · �f3
tK[i]

as
a commitment to the group element Ki = gK[i] and generates a non-interactive
proof �πK[i] that K[i] ∈ {0, 1}. This is typically achieved by proving the equality
K[i]2 = K[i] mod p with a proof �πK[i] consisting of 9 group elements. Next, the

sender generates a commitment �CGi to the group element Gi = gK[i] and gen-
erates a non-interactive proof �πGi that committed elements Gi and K[i] satisfy

Gi = g
K[i]
1 ·g1−K[i]

0 or, equivalently, e(Gi, g) = e(g1,Ki)·e(g0,K−1
i ·g). The latter

is a linear equation for which the proof �πGi requires three group elements. Then,

the sender generates a commitment �CΘi to the auxiliary variable Θi = gsi/ωi

and generate non-interactive proofs �πΘi,1, �πΘi,2 for the relations

e(Θi, Ci,4) = e(Ci,1, g2) e(Θi, Gi) = e(g, Ci,3). (3)

Since the first equation of (3) is linear equation, �πΘi,1 only requires 3 group
elements. On the other hand, the second equation is quadratic, so that �πΘi,2

costs 9 group elements to prove.
Finally, the sender is left with proving that e(C0/M, g) =

∏�
i=1 e(Zi,Ki),

which is a linear equation whose proof �πC0 requires 3 group elements.

The whole NIWI proof
({ �CKi , �CGi , �CΘi , �πK[i], �πGi , �πΘi,1, �πΘi,2}�i=1, �πC0

)
thus

takes 35�+ 3 group elements overall.
In some cases, the above proof might have to be a NIZK (and not just NIWI)

proof. In pairing-product equations, NIZK proofs are not known to always exist.
Fortunately, we can solve this issue by introducing a constant number of extra
variables, as we will see in Section 4.

4 A Fully Anonymous GS-MDO Scheme with
Logarithmic-Size Signatures

Our construction departs from the general approach suggested in [35] in order
to obtain shorter signatures. The signing algorithm of [35] proceeds by choosing
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two random session keys KPKE and KIBE which are separately encrypted using
a CCA2-secure public-key encryption scheme and an IBE scheme, respectively.
These two keys KPKE and KIBE are then used to hide the group member’s
credential in the fashion of nested multiple encryptions while adding a proof
that the hidden value is a valid and properly encrypted credential. If we naively
apply this approach using our IBE scheme, we will eventually obtain signatures
consisting of O(λ2) bits, where λ is the security parameter.

To reduce the signature size to O(λ logN) bits (recall that logN � λ since
the cardinality N of the group is assumed to be polynomial), we use a different
approach. Instead of encrypting random session keys which conceal the group
member’s credential under two randomly generated session keys, we directly
encrypt the bits of the group member’s identity as if it were the session key K in
the IBE scheme of Section 3.2. This allows reducing the number of bit-carrying
IBE ciphertext components from O(λ) to O(logN). In order to make sure that
neither the admitter or the opening authority will be able to individually open
any signature, we add a second encryption layer and additionally encrypt – under
the admitter’s public key using Kiltz’s DLIN-based CCA2-secure encryption
scheme [31] – the IBE ciphertext components which depend on the bits of the
group member’s identity.

The rest of the signing algorithm proceeds as in the Boyen-Waters group
signature [14], by having the signer verifiably encrypt a two-level hierarchical
signature [30], where the first-level (resp. second-level) message is the signer’s
identity (resp. the actual message). Like [14], we use a two-level hierarchical
extension of Waters’ signature [37].

4.1 Construction

Keygen(λ,N): given a security parameter λ ∈ N and N = 2�,

1. Choose bilinear groups (G,GT ) of prime order p > 2λ, with g R← G.

2. As a CRS for the Groth-Sahai proof system, select vectors f = (�f1, �f2, �f3)

such that �f1 = (f1, 1, g) ∈ G3, �f2 = (1, f2, g) ∈ G3, and �f3 = �f1
ξ1 · �f2

ξ2
,

where f1 = gβ1 , f2 = gβ2 R← G and β1, β2, ξ1, ξ2
R← Zp. We also define

the vector �ϕ = �f3 · (1, 1, g).
3. Generate a master key pair (mskIBE,mpkIBE) for the identity-based key

encapsulation scheme of Section 3.21. These consist ofmskIBE = (gα0
2 , gα1

2 )
and

mpkIBE =
(
g0 = gα0 , g1 = gα1 , g2, {ui}Li=0,

)
,

where L ∈ poly(λ) denotes the length of (hashed) messages to be signed.
For a message M ∈ {0, 1}L, we define the function HU (M) ∈ G as

HU (M) = u0 ·
∏L

i=1 u
M [i]
i , where M [i] ∈ {0, 1} denotes the i-th bit of M .

4. Generate a key pair (skW, pkW) for a two-level hierarchical Waters sig-
nature. At level 1 (resp. level 2), messages will be of length � (resp. L).

1 Note that the {Zi}�i=1 components are not needed here and can be discarded.
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This key pair consists of skW = gω and

pkW =
(
e(g, g)ω, {vi}�i=0, {wi}Li=0

)
,

where ω ∈R Zp. Analogously to step 3, we denote by HW (M) the func-

tion that maps the message M ∈ {0, 1}L to HW (M) = w0 ·
∏L

i=1 w
M [i]
i ,

where M [i] ∈ {0, 1} is the i-th bit of M .
5. For each i ∈ {0, . . . , N−1} generate the private key gsk[i] of member i as

a Waters signature gsk[i] =
(
gω · (v0 ·

∏�
j=1 v

idi[j]
j

)r
, gr

)
, with r R← Zp,

on the message idi = idi[1] . . . idi[�] ∈ {0, 1}� which is obtained as the
binary expansion of i ∈ {0, . . . , N − 1}. The private key skW = gω is not
needed beyond this point and can be erased after the generation of the
vector of private keys gsk = (gsk[0], . . . , gsk[N − 1]).

6. Generate a public key (X,Y, U, V ) = (gβx , gβy , gβu , gβv), with random
βx, βy, βu, βv

R← Zp, for Kiltz’s CCA2-secure encryption scheme.
7. Select a strongly unforgeable one-time signature scheme Σ = (G,S,V).
The admitter’s message specification key consists of mskADM := mskIBE. The
private key ok of the opening authority is defined as ok := (βx, βy, βu, βv).
The private key of member i is gsk[i] while the group public key is be

gpk :=
(
(G,GT ), p, g, f = (�f1, �f2, �f3), mpkIBE, pkW, (X,Y, U, V ), Σ

)

Sign(gpk, gsk[i],M): to sign a message M ∈ {0, 1}L using the i-th group mem-

ber’s private key gsk[i] = (Si,1, Si,2) =
(
gω · (v0 ·

∏�
j=1 v

idi[j]
j )r, gr

)
, generate

a one-time signature key pair (SK,VK) ← Σ.G(λ) and do the following.

1. Generate a two-level Waters signature where the message is idi ∈ {0, 1}�
at the first level and M ∈ {0, 1}L at level 2. The signature consists of

(Ω1, Ω2, Ω3) =
(
Si,1 · (v0 ·

�∏

j=1

v
idi[j]
i )r

′ ·HW (M)s, Si,2 · gr′ , gs
)

=
(
gω · (v0 ·

�∏

j=1

v
idi[j]
i )r

′′ ·HW (M)s, gr
′′
, gs

)
,

where r′′ = r + r′.
2. Generate a commitment �CHV to HV = v0 ·

∏�
j=1 v

idi[j]
j . Then, for each

j ∈ {1, . . . , �}, generate a commitment �CFj to Fj = gidi[j] and generate
a NIWI proof �πHV ∈ G3 that

e(HV , g) ·
�∏

j=1

e(vj , Fj)
−1 = e(v0, g) (4)

Since (4) is a linear equation, �πHV only requires 3 group elements.
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3. Choose s1, . . . , s�
R← Zp and ω1, . . . , ω�

R← Zp. For j = 1 to �, compute

Cj,1 = gsj Cj,2 = HU (M)sj (5)

Cj,3 = g
sj/ωj

idi[j]
Cj,4 = g

ωj

2 .

Then, encrypt Cj,3 using Kiltz’s encryption scheme, by randomly choos-

ing zj,1, zj,2
R← Zp and computing

Ψj = (Ψj,1, Ψj,2, Ψj,3, Ψj,4, Ψj,5)

=
(
Xzj,1 , Y zj,2 , Cj,3 · gzj,1+zj,2 , (gVK · U)zj,1 , (gVK · V )zj,2

)

The next step will be to prove that the ciphertexts {Ψj}�j=1 encrypt

{Cj,3}�j=1 such that {(Cj,1, Cj,2, Cj,3, Cj,4)}�j=1 are of the form (5) with
idi[j] ∈ {0, 1}.

4. To generate NIZK proofs for the next statements, generate commitments
�Cθ = �ϕθ · �f1

rθ · �f2
sθ
, as well as �CΓ1 and �CΓ2 to the variables

θ = 1, Γ1 = gθ, Γ2 = gθ2 (6)

and a non-interactive proof �πΓ for the three equalities (6), which requires
9 group elements (3 for each equation). Then, for each j ∈ {1, . . . , �},
generate Groth-Sahai commitments �CGj , �CΘj , �Czj,1 , �Czj,2 to the vari-

ables Gj = g
idi[j]
1 · g1−idi[j]

0 , Θj = gsj/ωj , Zj,1 = gzj,1 and Zj,2 = gzj,2 .
Then, generate NIZK proofs �πj , �πGj , �πΘj , {�πΨj,k

}3k=1 for the relations

e(Fj , Fj) = e(g, Fj) (7)

e(Gj , g) = e(g1, Fj) · e(g0, F−1
j · g) (8)

e(Θj , Cj,4) = e(Cj,1, g2) (9)

e(Ψj,1, g) = e(X,Zj,1) (10)

e(Ψj,2, g) = e(Y, Zj,2) (11)

e(Ψj,3, g) = e(Θj , Gj) · e(g, Zj,1 · Zj,2) (12)

This is done by proving that

e(Fj , Fj) = e(g, Fj) (13)

e(Gj , g) = e(g1, Fj) · e(g0, F−1
j · g) (14)

e(Θj , Cj,4) = e(Cj,1, Γ2) (15)

e(Ψj,1, Γ1) = e(X,Zj,1) (16)

e(Ψj,2, Γ1) = e(Y, Zj,2) (17)

e(Ψj,3, Γ1) = e(Θj , Gj) · e(Γ1, Zj,1 · Zj,2) (18)

Note that relation (7) guarantees that each idi[j] is indeed a bit. Rela-
tions (13) and (18) are quadratic equation and thus require 9 elements
each whereas 12 elements suffice for relations (14)-(17). Note that the
same variable θ ∈ Zp can be re-used for each j ∈ {1, . . . , �}, so that (6)
only needs to be proved once.
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5. Generate a commitment �CΩ1 to Ω1 with a NIWI proof �πW ∈ G3 that
variables (Ω1, HV ) satisfy the verification equation

e(g, g)ω · e(HW (M), Ω3) = e(Ω1, g) · e(HV , Ω
−1
2 ) (19)

of the two-level Waters signature.

6. Finally, use SK to generate a one-time signature σots on the entire set of
commitments and NIWI/NIZK proofs in order to achieve anonymity in
the CCA2 sense.

The whole signature σ consists of

σ =
(
VK, �CHV , �Cθ, �CΓ1 , �CΓ2 , �πΓ , �πHV , �πW , { �CFj , (Cj,1, Cj,2, Cj,4, Ψj),

�CGj , �πGj , �πΘj , �CΘj , �CZj,1 , �CZj,2 , �πj , {�πΨj,k
}3k=1}�j=1, �CΩ1 , Ω2, Ω3, σots

)

Verify(gpk,M, σ): parse σ as above. Return 1 if and only if: (i) σots is a valid
one-time signature on the entire bundle; (ii) {Ψj}�j=1 are all valid ciphertexts

for Kiltz’s cryptosystem (i.e., by testing if e(Ψj,4, X) = e(Ψj,1, g
VK · U) and

e(Ψj,5, Y ) = e(Ψj,2, g
VK · V )); (iii) It holds that e(Cj,1, HU (M)) = e(g, Cj,2)

for each j ∈ {1, . . . , �}; (iv) All proofs properly verify.

TrapGen(gpk,mskADM,M): given the admitter’s key mskADM = (gα0
2 , gα1

2 ) and a
message M ∈ {0, 1}L, choose r0, r1

R← Zp to compute and return

tM = (t0,1, t0,2, t1,1, t1,2) =
(
gα0
2 ·HU (M)r0 , gr0 , gα1

2 ·HU (M)r1 , gr1
)
. (20)

Open(gpk, ok, tM ,M, σ): return ⊥ if σ is not a valid group signature w.r.t. gpk
and M . Otherwise, parse tM as in (20). For i = 1 to �, do the following.

1. Decrypt Ψj = (Ψj,1, Ψj,2, Ψj,3, Ψj,4, Ψj,5) using ok = (βx, βy, βu, βv) to
obtain Cj,3 ∈ G.

2. Use tM to determine the bit id[i] ∈ {0, 1} for which the equalities (5) are
satisfied.

Return the identifier id = id[1] . . . id[�] ∈ {0, 1}�.

Overall, each signature consists of 53� + 35 group elements if the scheme is
instantiated with Groth’s discrete-logarithm-based one-time signature [23]. For
groups of N ≈ 106 members (which can accommodate the population of a city),
we can set � = 20 and obtain signatures of 68 kB at the 128-bit security level as-
suming that each group element has a 512-bit representation. In comparison, the
k-resilient system of Sakai et al. [35] already requires signatures of 32 kB for the
same security level. While less efficient than the random-oracle-based realization
of [33], our scheme is not unrealistically expensive for practical applications.
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4.2 Security

The traceability of the scheme relies on the standard CDH assumption whereas
the anonymity properties rely on the D3DH and DLIN assumptions. In the proof
of anonymity against the admitter, we also need to assume that the one-time
signature is strongly unforgeable [5], which is implied by the DLIN assumption
in Groth’s scheme [23]. Since the CDH assumption is implied by both D3DH and
DLIN, we only need two assumptions to prove the following result (as detailed
in the full version of the paper).

Theorem 2. The scheme provides full traceability as well as full anonymity
against the opener and the admitter assuming that: (i) Σ is a strongly unforgeable
one-time signature; (ii) The DLIN and D3DH assumption both hold in G.
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A Definitions for Identity-Based Encryption

Definition 6 ([13]). An IBE scheme consists of a tuple of efficient algorithms
(Setup,Keygen,Encrypt,Decrypt) such that:

– Setup takes as input a security parameter λ ∈ N and outputs a master public
key mpk and a matching master secret key msk.

– Keygen takes as input an identity ID and a master secret key msk. It outputs
a private key dID for the identity ID.

– Encrypt takes as input the master public key mpk, an identity ID and a
message m and outputs a ciphertext C.

– Decrypt takes as input the master public key mpk, a decryption key dID and
a ciphertext C and outputs a message M .

Correctness requires that, for any λ ∈ N, any outputs (mpk,msk) of Setup(λ),
any plaintext M and any identity ID, if dID ← Keygen(msk, ID), it holds that
Decrypt(mpk, dID,Encrypt(mpk, ID,M)) = M.

The standard security notion captures the semantic security of messages en-
crypted under some identity, evenwhen the adversaryhas corruptedpolynomially-
many other identities.

Definition 7. [13] An IBE system is semantically secure (or IND-ID-CPA se-
cure) if no PPT adversary A has non-negligible advantage in this game:
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1. The challenger generates a master key pair (mpk,msk) ← Setup(λ) and
gives mpk to A.

2. A issues a number of key extraction queries for identities ID of its choice.
The challenger responds with dID ← Keygen(msk, ID).

3. When the adversary A decides that phase 2 is over, it chooses distinct equal-
length messages M0,M1 and an identity ID� that has never been queried to
the key extraction oracle at step 2. The challenger flips a coin d R← {0, 1}
and returns a challenge ciphertext C� = Encrypt(mpk, ID,M�

d ).

4. A issues new queries but cannot ask for the private key of ID�.

5. A finally outputs a bit d′ ∈ {0, 1} and wins if d′ = d. A’s advantage is defined
as the distance Advind-id-cpa(A) := |Pr[d′ = d]− 1/2|.

In k-resilient IBE schemes [27], the adversary is restricted to make private
key extraction queries on at most k distinct identities. In this paper, we consider
the standard definition where the maximal number of private key queries is not
fixed in advance.

B Proof of Lemma 1

Proof. Let us assume that there exists i ∈ {1, . . . , �} for which a PPT adversary
A can tell Game i apart from Game i − 1. We show how to build an algorithm
B that takes in an instance (g, ga, gb, gc, T ) of the D3DH problem and uses its
interaction with A to decide if T = gabc or T ∈R G.

To this end, algorithm B prepares the master public key mpk by randomly
choosing γ0, γ1

R← Zp and setting g0 = (ga)γ0 , g1 = (ga)γ1 as well as g2 = gb. Note
that this implicitly defines α0 = a · γ0 and α1 = a · γ1. Next, B chooses random
values ν R← {0, . . . , L}, ρ0, ρ1, . . . , ρL R← {0, . . . , ζ − 1} and δ0, δ1, . . . , δL

R← Zp,
with ζ = 2q and where q is the maximal number of private key queries throughout
the game. These are used to define

u0 = gδ0 · (gb)ν·ζ−ρ0 (21)

ui = gδi · (gb)−ρi , i ∈ {1, . . . , L},

so that any L-bit identity ID = ID[1] . . . ID[L] ∈ {0, 1}L has a hash value

HG(ID) = u0 · ∏L
i=1 u

ID[i]
i that can be written HG(ID) = gJ2(ID) · (gb)J1(ID) if

we define the functions

J1(ID) = ν · ζ − ρ0 −
L∑

i=1

ρi · ID[i], J2(ID) = δ0 −
L∑

i=1

δi · ID[i].

The generation of mpk is completed by having B choose Z1, . . . , Z�
R← G at

random.
Whenever A queries an identity ID for private key extraction, B uses the

same strategy as in the security proofs of [11, 37]. Namely, it first evaluates the
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function J1(ID). If J1(ID) = 0, it aborts and outputs a random bit. Otherwise,
it chooses r0, r1

R← Zp and computes (d0,1, d0,2, d1,1, d1,2) as

(
HG(ID)

r0 · (ga)−γ0·J2(ID), gr0 · (ga)−γ0/J1(ID),

HG(ID)
r1 · (ga)−γ1·J2(ID), gr1 · (ga)−γ1/J1(ID)

)

which equals (gγ0·a
2 ·HG(ID)

r̃0 , gr̃0 , gγ1·a
2 ·HG(ID)

r̃1 , gr̃1) if r̃0 = r0 − γ0 ·a/J1(ID)
and r̃1 = r1 − γ1 · a/J1(ID). The 4-uple dID = (d0,1, d0,2, d1,1, d1,2) thus forms a
valid private key and is returned to A.

When A decides to enter the challenge phase, it chooses messagesM0,M1 ∈ G

and a target identity ID�. At this point, B aborts and outputs a random bit in
the event that J1(ID

�) �= 0. Otherwise (i.e., if J1(ID
�) = 0), B chooses a bit

β R← {0, 1} as well as a random �-bit string K R← {0, 1}� and generates the
challenge ciphertext as follows.

- For each j ∈ {1, . . . , i−1}, B chooses sj , ωj
R← Zp, C̃j,3, C̃j,4

R← G at random

and sets (Cj,1, Cj,2, Cj,3, Cj,4) =
(
gsj , HG(ID)

sj , C̃j,3, C̃j,4

)
.

- For each j ∈ {i + 1, . . . , �}, B faithfully chooses sj , ωj
R← Zp and sets

(Cj,1, Cj,2, Cj,3, Cj,4) =
(
gsj , HG(ID)

sj , g
sj/ωj

K[j] , g
ωj

2

)
.

- For j = i, B (Ci,1, Ci,2, Ci,3, Ci,4) =
(
gc, (gc)J2(ID

�), T γK[i]/ωi , gωi

)
for a

randomly drawn ωi
R← Zp.

Finally, B computes C0 = Mβ ·∏�
j=1 Z

K[j]
j and provides the adversary with the

challenge ciphertext C = (C0, {(Cj,1, Cj,2, Cj,3, Cj,4)}�j=1).

We remark that, if T = gabc, the challenge ciphertext C is distributed as in
Game i− 1 as (Ci,1, Ci,2, Ci,3, Ci,4) can be written

(Ci,1, Ci,2, Ci,3, Ci,4) =
(
gc, HG(ID

�)c, gac·γK[i]/ω̃i , (gb)ω̃i

)

=
(
gc, HG(ID

�)c, g
c/ω̃i

K[i] , gω̃i
2

)
.

where ω̃i = ωi/b. In contrast, if T ∈R G, then the pair (Ci,3, Ci,4) is uniformly
distributed in G2, which means that (Ci,1, Ci,2, Ci,3, Ci,4) has the same distribu-
tion as in Game i.

At this stage, the adversary’s probability may be correlated with the proba-
bility that the simulator B has to abort (i.e., because A queries the private key
of an identity ID for which J1(ID) = 0 or because J1(ID

�) �= 0 in the challenge
phase). As in [37], one way to address this problem is to introduce an artificial
abort step in order to guarantee that B always aborts with the maximal proba-
bility, no matter which particular set of queries is made by A.

Namely, with ζ = 2q, the same analysis as [37] shows that B’s probability not
to abort for any set of queries is at least η = 1/(4(L+ 1)q).

When the game ends, B considers the sequence of identities (ID1, . . . , IDq, ID
�)



306 B. Libert and M. Joye

chosen by A during the game and estimates the probability that this choice
causes the simulation to abort. This process does not require to run A again but
rather involves repeatedly sampling vectors (ρ0, ρ1, . . . , ρL)

R← Z
L+1
ζ and evaluate

J1(ID1), . . . , J1(IDq) and J1(ID
�) accordingly. When the estimated probability η′

is obtained after O(ε−2 ln(ε−1)η−1 ln(η−1)) samples, if η′ > η, B artificially
aborts and outputs a random bit with probability 1 − η/η′. With probability
η/η′, it continues.

After the artificial abort step, if the simulator B did not naturally or artifi-
cially abort, it outputs 1 if A successfully guesses β′ = β and 0 otherwise. We
now argue that B has non-negligible advantage as a D3DH distinguisher if A
can distinguish Game i from Game i− 1. Indeed, depending on the distribution
of T , B is playing either Game i− 1 or Game i with A. Using the same analysis
as in [37], we find that, if the difference |Advi−1 −Advi| between A’s advantage
functions in Game i−1 and Game i is ε, then B can break the D3DH assumption
with probability ε/(16(L+ 1)q). ��
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