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Abstract. We propose a tool1 for automatic search for differential trails
in ARX ciphers. By introducing the concept of a partial difference distri-
bution table (pDDT) we extend Matsui’s algorithm, originally proposed
for DES-like ciphers, to the class of ARX ciphers. To the best of our
knowledge this is the first application of Matsui’s algorithm to ciphers
that do not have S-boxes. The tool is applied to the block ciphers TEA,
XTEA, SPECK and RAIDEN. For RAIDEN we find an iterative char-
acteristic on all 32 rounds that can be used to break the full cipher using
standard differential cryptanalysis. This is the first cryptanalysis of the
cipher in a non-related key setting. Differential trails on 9, 10 and 13
rounds are found for SPECK32, SPECK48 and SPECK64 respectively.
The 13 round trail covers half of the total number of rounds. These are
the first public results on the security analysis of SPECK. For TEA mul-
tiple full (i.e. not truncated) differential trails are reported for the first
time, while for XTEA we confirm the previous best known trail reported
by Hong et al. . We also show closed formulas for computing the exact
additive differential probabilities of the left and right shift operations.

Keywords: symmetric-key, differential trail, tools for cryptanalysis, au-
tomatic search, ARX, TEA, XTEA, SPECK, RAIDEN.

1 Introduction

A broad class of symmetric-key cryptographic algorithms are designed by com-
bining a small set of simple operations such as modular addition, bit rotation, bit
shift and XOR. Although such designs have been proposed as early as the 1980s,
only recently the term ARX (from Addition, Rotation, XOR) was adopted in
reference to them.

Some of the more notable examples of ARX algorithms, ordered chronologi-
cally by the year of proposal are: the block cipher FEAL [37] (1987), the hash
functions MD4 [34] (1990) and MD5 [35] (1992), the block ciphers TEA [40]
(1994), RC5 [36] (1994), XTEA [30] (1997), XXTEA [31] (1998) and HIGHT [15]
(2006), the stream cipher Salsa20 [4] (2008), the SHA-3 [28] finalists Skein [13]

1 The source code of the tool is made publicly available as part of a larger toolkit for the
analysis of ARX at the following address: https://github.com/vesselinux/yaarx .
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and BLAKE [2] (2011) and the recently proposed hash function for short mes-
sages SipHash [1] (2012).

By combining linear (XOR, bit shift, bit rotation) and non-linear (modular
addition) operations, and iterating them over multiple rounds, ARX algorithms
achieve strong resistance against standard cryptanalysis techniques such as lin-
ear [24] and differential [5] cryptanalysis. Additionally, due to the simplicity of
the underlying operations, they are typically very fast in software.

Although ARX designs have many advantages and have been widely used for
many years now, the methods for their rigorous security analysis are lagging
behind. This is especially true when compared to algorithms such as AES [9]
and DES [29]. The latter were designed using fundamentally different principles,
based on the combination of linear transformations and non-linear substitution
tables or S-boxes.

Since a typical S-box operates on 8 or 4-bit words, it is easy to efficiently
evaluate its differential (resp. linear) properties by computing its difference dis-
tribution table (DDT) (resp. linear approximation table (LAT)). In contrast,
ARX algorithms use modular addition as a source of non-linearity, rather than
S-boxes. Constructing a DDT or a LAT for this operation for n-bit words would
require 23n × 4 bytes of memory and would clearly be infeasible for a typical
word size of 32 bits.

In this paper we demonstrate that although the computation of a full DDT for
ARX is infeasible, it is still possible to efficiently compute a partial DDT contain-
ing (a fraction of) all differentials that have probability above a fixed threshold.
This is possible due to the fact that the probabilities of XOR (resp. ADD) differ-
entials through the modular addition (resp. XOR) operation are monotonously
decreasing with the bit size of the word.

Based on the concept of partial DDT-s we develop a method for automatic
search for differential trails in ARX ciphers. It is based on Matsui’s branch-
and-bound algorithm [23], originally proposed for S-box based ciphers. While
other methods for automatic search for differential trails in ARX designs exist
in literature [12,25,20] they have been exclusively applied to the analysis of hash
functions where the key (the message) is known and can be freely chosen. With
the proposed algorithm we address the more general setting of searching for
trails in block ciphers, where the key is fixed and unknown to the attacker.

Beside the idea of using partial DDT-s another fundamental concept at the
heart of the proposed algorithm is what we refer to as the highways and country
roads analogy. If we liken the problem of finding high probability differential
trails in a cipher to the problem of finding fast routes between two cities on a
road map, then differentials that have high probability (w.r.t. a fixed threshold)
can be thought of as highways and conversely differentials with low probability
can be viewed as slow roads or country roads. To further extend the analogy, a
differential trail for n rounds represents a route between points 1 and n composed
of some number of highways and country roads. A search for high probability
trails is analogous to searching for a route in which the number of highways is
maximized while the number of country roads is minimized.
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The differentials from the pDDT are the highways on the road map from the
above analogy. Beside those highways, the proposed search algorithm explores also
a certain number of country roads (low probability differentials). While the list of
highways is computed offline prior to the start of the search, the list of country
roads is computed on-demand for each input difference to an intermediate round
that is encountered during the search. Of all possible country roads that can be
taken at a given point (note that there may be a huge number of them), the algo-
rithm considers only the ones that lead back on a highway. If such are not found,
then the shortest country road is taken (resp. the maximum probability transi-
tion). This strategy prevents the number of explored routes from exploding and
at the same time keeps the total probability of the resulting trail high.

Due to the fact that it uses a partial, rather than the full DDT, our algorithm
is not guaranteed to find the best differential trail. However experiments2 on
small word sizes of 11, 14 and 16 bits show that the probabilities of the found
trails are within a factor of at most 2−3 from the probability of the best one.

We demonstrate the proposed tool on block ciphers TEA [40], XTEA [30],
SPECK [3] and RAIDEN [32]. Beside being good representatives of the ARX
class of algorithms, these ciphers are of interest also due to the fact that results
on full (i.e. not truncated) differential trails on them either do not exist (as is
the case for TEA, RAIDEN and SPECK) or are scarce (in the case of XTEA).
For TEA specifically, in [16, Sect. 1] the authors admit that it is difficult to find
a good differential characteristic.

By applying our tool, we are able to find multiple differential characteristics for
TEA. They cover between 15 and 18 rounds, depending on the value of the key
and have probabilities ≈ 2−60. The 18 round trail, in particular, has probability
≈ 2−63 for approx. 2116 (≈ 0.1%) of all keys. To put those results in perspective,
we note that the best differential attack on TEA covers 17 rounds and is based on
an impossible differential [8] while the best attack overall applies zero-correlation
cryptanalysis and is on 23 rounds but requires the full codebook [6]. For XTEA,
we confirm the best previously known full differential trail based on XOR differ-
ences [16], but this time it was found in a fully automatic way.

For RAIDEN an iterative characteristic on 3 rounds with probability 2−4 is
reported. When iterated over all 32 rounds a characteristic with probability 2−42

on the full cipher is constructed that can be used to fully break RAIDEN using
standard differential cryptanalysis. This is the first analysis of the cipher in a
non-related key setting.

We also present results on versions of the recently proposed block cipher
SPECK [3] with word sizes 16, 24 and 32 bits resp. SPECK32, SPECK48 and
SPECK64. For SPECK64 the best trail found by the tool covers half of the total
number of rounds (13 out of 26) and has probability 2−58. The best found trails
for 16 and 24 bits cover resp. 9 and 10 rounds out of 22/23 with probabilities
resp. 2−31 and 2−45.

2 For 11 and 14 bits 50 experiments were performed, while for 16 bits 20 experiments
were performed. In each experiment a new fixed key was chosen uniformly at random.
More details are provided in Appendix C.1.
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Table 1. Maximum number of rounds covered by single (truncated) differential trails
used in existing differential attacks on TEA, XTEA, SPECK and RAIDEN compared
to the best found trails reported in this paper

Cipher Type of #Rounds #Rounds Ref.
Trail Covered Total

TEA Trunc. 5 64 [26]
Trunc. 7 [8]
Trunc. 8 [16,6]
Full 18 Sect. 6

XTEA Trunc. 6 64 [26]
Trunc. 7 [8]
Trunc. 8 [16,6]
Full 14 [16]
Full 14 Sect. 6

SPECK32 Full 9 22 Sect. 6
SPECK48 Full 10 22/23 Sect. 6
SPECK64 Full 13 26/27 Sect. 6

RAIDEN Full 32 32 Sect. 6

In Table 1 we provide a comparison between the number of rounds covered by
single (truncated) differential trails used in existing attacks (where applicable)
on TEA, XTEA, SPECK and RAIDEN to the number of rounds covered by the
trails found with the tool.

An additional contribution is that the paper is the first to report closed for-
mulas for computing the exact additive differential probabilities of the left and
right shift operations. These formulas are derived in a similar way as the ones for
computing the DP of left and right rotation reported by Daum [11, Sect. 4.1.3].
Note that Fouque et al. [14] have previously analyzed the propagation of additive
differences through the shift operations, but not the corresponding differential
probabilities.

The outline is as follows. In Sect. 2 we define partial difference distribution
tables (pDDT) and present an efficient method for their computation. Our ex-
tension of Matsui’s algorithm using pDDT, referred to as threshold search, is
presented in Sect. 3. It is followed by the description of a general methodology
for automatic search for differential trails in ARX ciphers with Feistel struc-
ture in Sect. 4. A brief description of block ciphers TEA, XTEA, SPECK and
RAIDEN is given in Sect. 5. In Sect. 6 we apply our methods to search for
differential trails in the studied ciphers and we show the most relevant experi-
mental results. Finally, in Sect. 7 are discussed general problems and limitations
arising when studying differential trails in ARX ciphers. Sect. 8 concludes the
paper. Proofs of all theorems and propositions and more experimental results
are provided in Appendix.

A few words on notation: with x[i] is denoted the i-th bit of x; x[i : j] represents
the sequence of bits x[j], x[j+1], . . . , x[i] : j ≤ i where x[0] is the least-significant
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bit (LSB); xn denotes the n-bit word x (equivalent to x[n− 1 : 0], but more con-
cise); #A denotes the number of elements in the setA and x|y is the concatenation
of the bit strings x and y.

2 Partial Difference Distribution Tables

In this section as well as in the rest of the paper with xdp+ and adp⊕ are
denoted respectively the XOR differential probability (DP) of addition modulo 2n

and the additive DP of XOR. Similarly, the additive differential probability of the
operations right bit shift (RSH) and left bit shift (LSH) are denoted resp. with
adp�r and adp�r. Due to space constrains the formal definition and details on
the efficient computation of those probabilities are given in Appendix A and
Appendix B.

Definition 1. A partial difference distribution table (pDDT) D for the
ADD (resp. XOR) operation is a DDT that contains all XOR (resp. ADD) differentials
(α, β → γ) whose probabilities are larger than or equal to a pre-defined threshold
pthres:

(α, β, γ) ∈ D ⇐⇒ DP(α, β → γ) ≥ pthres . (1)

If a DDT contains only a fraction of all differentials that have probability above
a pre-defined threshold, it is an incomplete pDDT.

The following proposition is crucial for the efficient computation of a pDDT:

Proposition 1. TheDP of ADD and XOR (resp. xdp+ and adp⊕) are monotonously
decreasing with the word size n of the differences α, β, γ:

pn ≤ . . . ≤ pk ≤ pk−1 ≤ . . . ≤ p1 ≤ p0 , (2)

where pk = DP(αk, βk → γk), n ≥ k ≥ 1, p0 = 1, and xk denotes the k LSB-s
of the difference x i.e. xk = x[k − 1 : 0].

Proof. Appendix D.1.

For xdp+, the proposition follows from the following result by Lipmaa et

al. [21]: xdp+(α, β → γ) = 2−
∑n−2

i=0 ¬eq(α[i],β[i],γ[i]), where eq(α[i], β[i], γ[i]) =
1 ⇐⇒ α[i] = β[i] = γ[i]. Proposition 1 is also true for adp⊕.

Due to Proposition 1 a recursive procedure for computing a pDDT for a
given probability threshold pthres can be defined as follows. Starting at the least-
significant (LS) bit position k = 0 recursively assign values to bits α[k], β[k]
and γ[k]. At every bit position k : n > k ≥ 0 check if the probability of the
partially constructed (k+1)-bit differential is still bigger than the threshold i.e.
check if pk = DP(αk, βk → γk) ≥ pthres holds. If yes, then proceed to the next
bit position, otherwise backtrack and assign other values to (α[k], β[k], γ[k]).
This process is repeated recursively until k = n, at which point the differential
(αn, βn → γn) is added to the pDDT together with its probability pn. A pseudo-
code of the described procedure is listed in Algorithm 1. The initial values are:
k = 0, p0 = 1 and α0 = β0 = γ0 = ∅.
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Algorithm 1. Computation of a pDDT for ADD and XOR.

Input: n, pthres, k, pk, αk, βk, γk.
Output: pDDT D: (α, β, γ) ∈ D : DP(α, β → γ) ≥ pthres.
1: procedure compute pddt(n, pthres, k, pk, αk, βk, γk) do
2: if n = k then
3: Add (α, β, γ) ← (αk, βk, γk) to D
4: return
5: for x, y, z ∈ {0, 1} do
6: αk+1 ← x|αk, βk+1 ← y|βk, γk+1 ← z|γk .
7: pk+1 = DP(αk+1, βk+1 → γk+1)
8: if pk+1 ≥ pthres then
9: compute pddt(n, pthres, k + 1, pk+1, αk+1, βk+1, γk+1)

The correctness of Algorithm 1 follows directly from Proposition 1. After
successful termination the computed pDDT contains all differentials with prob-
ability equal to or larger than the threshold. The complexity of Algorithm 1
depends on the value of the threshold pthres. Some timings for both ADD and XOR

differences for different thresholds are provided in Table 2. As can be seen from
the data in the table it is infeasible to compute pDDT-s for XOR differences for
values of the threshold pthres ≤ 0.01 = 2−6.64, while for ADD differences this is
still possible, but requires significant time (more than 17 hours).

Table 2. Timings on the computation of pDDT for ADD and XOR on 32-bit words using
Algorithm 1. Target machine: IntelR© CoreTM i7-2600, 3.40GHz CPU, 8GB RAM.

ADD XOR

pthres #elements in pDDT Time #elements in pDDT Time

0.1 252 940 36 sec. 3 951 388 1.23 min.
0.07 361 420 37 sec. 3 951 388 2.29 min.
0.05 3 038 668 5.35 min. 167 065 948 44.36 min.
0.01 2 715 532 204 17.46 hours ≥ 72 589 325 174 ≥ 29 days

3 Threshold Search

In his paper from 1994 [23] Matsui proposed a practical algorithm for searching
for the best differential trail (and linear approximation) for the DES block cipher.
The algorithm performs a recursive search for differential trails over a given num-
ber of rounds n ≥ 1. From knowledge of the best probabilities B1, B2, . . . , Bn−1

for the first (n − 1) rounds and an initial estimate Bn for the probability for
n rounds it derives the best probability Bn for n rounds. For the estimate the
following must hold: Bn ≤ Bn. As already noted, Matsui’s algorithm is appli-
cable to block ciphers that have S-boxes. In this section we extend it to the
case of ciphers without S-boxes such as ARX by applying the concept of pDDT.
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We describe the extended algorithm next. Its description in pseudo-code is listed
in Algorithm 2.

In addition to Matsui’s notation for the probability of the best n-round trail
Bn and of its estimate Bn we introduce ̂Bn to denote the probability of the
best found trail for n rounds: Bn ≤ ̂Bn ≤ Bn. Given a pDDT H of size m, an
estimation for the best n-round probability Bn with its corresponding n-round
differential trail T and the probabilities ̂B1, ̂B2, . . . , ̂Bn−1 of the best found trails

for the first n − 1 rounds, Algorithm 2 outputs an n-round trail ̂T that has
probability ̂Bn ≥ Bn.

Similarly to Matsui’s algorithm, Algorithm 2 operates by recursively extend-
ing a trail for i rounds to (i + 1) rounds, beginning with i = 1 and terminating
at i = n. The recursion at level i continues to level (i+1) only if the probability
of the constructed i-round trail multiplied by the probability of the best found
trail for (n − i) rounds is at least Bn i.e. if p1p2 . . . pi ̂Bn−i ≥ Bn. For i = n

the last equation is equivalent to: p1p2 . . . pn = ̂Bn ≥ Bn. If the latter holds, the
initial estimate is updated with the new: Bn ← ̂Bn and the corresponding trail
is also updated accordingly: Tn ← ̂Tn.

During the search process Algorithm 2 explores multiple differential trails. It
is important to stress that the differentials that compose those trails are not
restricted to the entries from the initial pDDT H . The latter represent only the
starting point of the first two rounds of the search, as in those rounds both the
input and the output differences of the round transformation can be freely chosen
(due to the specifics of the Feistel structure). From the third round onwards,
excluding the last round, beside the entries in H the algorithm explores also
an additional set of low-probability differentials stored in a temporary pDDT C
and sharing the same input difference.

The table C is computed on demand for each input difference to an interme-
diate round (any round other than the first two and the last) encountered during
the search. All entries in C additionally satisfy the following two conditions: (1)
Their probabilities are such that they can still improve the probability of the
best found trail for the given number of rounds i.e. if (αr, βr, pr) is an entry in C

for round r, then pr ≥ Bn/(p1p2 · · · pr−1
̂Bn−r); (2) Their structure is such that

they guarantee that the input difference for the next round αr+1 = αr−1 + βr

will have a matching entry in H . While the need for condition (1) is self-evident,
condition (2) is necessary in order to prevent the exploding of the size of C while
at the same time keeping the probability of the resulting trail high. The meaning
of the tables H and C is further clarified with the following analogy.

Example 1 (The Highways and Country Roads Analogy). The two tables H and
C employed in the search performed by Algorithm 2 can be thought of as lists of
highways and country roads on a map. The differentials contained inH have high
probabilities w.r.t. to the fixed probability threshold and correspond therefore
to fast roads such as highways. Analogously, the differentials in C have low
probabilities and can be seen as slow roads or country roads. To continue this
analogy, the problem of finding a high probability differential trail for n rounds
can be seen as a problem of finding a fast route between points 1 and n on the
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Algorithm 2. Matsui Search for Differential Trails Using pDDT (Threshold
Search).

Input: n: number of rounds; r: current round; H: pDDT; ̂B = (̂B1, ̂B2, . . . , ̂Bn−1):
probs. of best found trails for the first (n − 1) rounds; Bn ≤ Bn: initial estimate;
T = (T1, . . . ,Tn): trail for n rounds with prob. Bn; pthres: probability threshold.

Output: ̂Bn, ̂T = (̂T1, . . . , ̂Tn): trail for n rounds with prob. ̂Bn : Bn ≤ ̂Bn ≤ Bn.

1: procedure threshold search(n, r,H, ̂B,Bn, T) do
2: // Process rounds 1 and 2
3: if ((r = 1) ∨ (r = 2)) ∧ (r 	= n) then
4: for all (α, β, p) in H do

5: pr ← p, ̂Bn ← p1 · · · pr ̂Bn−r

6: if ̂Bn ≥ Bn then
7: αr ← α, βr ← β, add ̂Tr ← (αr, βr, pr) to ̂T

8: call threshold search(n, r + 1, H, ̂B,Bn, ̂T )
9: // Process intermediate rounds
10: if (r > 2) ∧ (r 	= n) then

11: αr ← (αr−2 + βr−1); pr,min ← Bn/(p1p2 · · · pr−1
̂Bn−r)

12: C ← ∅ // Initialize the country roads table
13: for all βr : (pr(αr → βr) ≥ pr,min) ∧ ((αr−1 + βr) = γ ∈ H) do
14: add (αr, βr, pr) to C // Update country roads table
15: if C = ∅ then
16: (βr, pr) ← pr = maxβ p(αr → β); add (αr, βr, pr) to C
17: for all (α, β, p) : α = αr in H and all (α, β, p) ∈ C do

18: pr ← p, ̂Bn ← p1p2 . . . pr ̂Bn−r

19: if ̂Bn ≥ Bn then
20: βr ← β, add ̂Tr ← (αr, βr, pr) to ̂T

21: call threshold search(n, r + 1, H, ̂B,Bn, ̂T )
22: // Process last round
23: if (r = n) then
24: αr ← (αr−2 + βr−1)
25: if (αr in H) then
26: (βr, pr) ← pr = maxβ∈H p(αr → β) // Select the max. from the

highway table
27: else
28: (βr, pr) ← pr = maxβ p(αr → β) // Compute the max.
29: if pr ≥ pthres then
30: add (αr, βr, pr) to H

31: pn ← pr, ̂Bn ← p1p2 . . . pn
32: if ̂Bn ≥ Bn then
33: αn ← αr, βn ← β, add ̂Tn ← (αn, βn, pn) to ̂T

34: Bn ← ̂Bn, T ← ̂T
35: ̂Bn ← Bn, ̂T ← T // Update the target bound and the best found trail

36: return ̂Bn, ̂T
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map. Clearly such a route must be composed of as many highways as possible.
Condition (2), mentioned above, essentially guarantees that any country road
that we may take in our search for a fast route will bring us back on a highway.
Note that it is possible that the fastest route contains two or more country
roads in sequence. While such a case will be missed by Algorithm 2, it may be
accounted for by lowering the initial probability threshold.

Algorithm 2 terminates when the initial estimate Bn can not be further im-
proved. The complexity of Algorithm 2 depends on the following factors: (1) the

closeness of the best found probabilities ̂B1, ̂B2, . . . , ̂Bn−1 for the first (n − 1)
rounds to the actual best probabilities, (2) the tightness of the initial estimate
Bn and (3) the number of elements m in H . The latter is determined by the
probability threshold used to compute H .

4 General Methodology for Automatic Search for
Differential Trails in ARX

We describe a general methodology for the automatic search for differential trails
in ARX algorithms. In our analysis we restrict ourselves to Feistel ciphers, al-
though the proposed method is applicable to other ARX designs as well.

Let F be the round function (the F-function) of a Feistel cipher E, designed
by combining a number of ARX operations, such as XOR, ADD, bit shift and bit
rotation. To search for differential trails for multiple rounds of E perform the
following steps:

1. Derive an expression for computing the differential probability (DP) of F
for given input and output difference. The computation may be an approxi-
mation obtained as the multiplication of the DP of the components of F .

2. Compute a pDDT for F . It can be an incomplete pDDT obtained e.g. by
merging the separate pDDT-s of the different components of F .

3. Execute the threshold search algorithm described in Sect.3 with the (incom-
plete) pDDT computed in Step. 2 as input.

In the following sections we apply the proposed methodology to automatically
search for differential trails in several ARX-based block ciphers.

5 Description of TEA, XTEA, SPECK and RAIDEN

The Tiny Encryption Algorithm (TEA) is a block cipher designed by Wheeler
and Needham and presented at FSE 1994 [40]. It has a Feistel structure composed
of 64 rounds. Each round operates on 64-bit blocks divided into two 32-bit words
Li, Ri : 0 ≤ i ≤ 64, so that P = L0|R0 is the plaintext and C = L64|R64 is
the ciphertext. TEA has 128-bit key K composed of four 32-bit words: K =
K3|K2|K1|K0. The key schedule is such that the same two key words are used
at every second round i.e. K0,K1 are used in all odd rounds and K2,K3 are used
in all even rounds. Additionally, thirty-two 32-bit constants δr : 1 ≤ r < 32 (the



236 A. Biryukov and V. Velichkov

δ constants) are defined. A different δ constant is used at every second round.
The round function F of TEA takes as input a 32-bit value x, two 32-bit key
words k0, k1 and a round constant δ and produces a 32-bit output F (x). For
fixed δ, k0 and k1, F is defined as:

(δ, k0, k1) : F (x) = ((x � 4) + k0)⊕ (x+ δ)⊕ ((x  5) + k1) . (3)

For fixed round keys Kj,Kj+1 : j ∈ {0, 2} and round constant δr, round i of
TEA (1 ≤ i < 64) is described as: Li+1 = Ri, Ri+1 = Li + F (Ri).

XTEA is an extended version of TEA proposed in [30] by the same designers.
It was designed in order to address two weaknesses of TEA pointed by Kelsey
et al. [18]: (1) a related-key attack on the full TEA and (2) the fact that the
effective key size of TEA is 126, rather than 128 bits. The structure of XTEA
is very similar to the one of TEA: 64-round Feistel network operating on 64-bit
blocks using a 128-bit key. The main difference is in the key schedule: at every
round XTEA uses one rather than two 32-bit key words from the original key
according to a new non-periodic key schedule. Additionally, the number of δ
constants is increased from 32 to 64 and thus a different constant is used at
every round. The F-function of XTEA is also slightly modified and for a fixed
round key k and round constant δ is defined as:

(δ, k) : F (x) = (δ + k)⊕ (x+ ((x � 4)⊕ (x  5))) . (4)

The F-functions of TEA and XTEA are depicted in Fig. 1.

k0

� 4

δ

F (x) x

� 5

k1

� 4

k

δ

F (x) x

� 5

Fig. 1. The F-functions of TEA (left) and XTEA (right)

In [32] Polimón et al. have proposed a variant of TEA called RAIDEN. It has
been designed by applying genetic programming algorithms to automatically
evolve a highly non-linear round function. The latter is composed of the same
operations as TEA (arranged in different order) but is more efficient and has
better mixing properties as measured by its avalanche effect. As a result RAIDEN
is claimed to be competitive to TEA in terms of security. It has 32 rounds and
its round function is:

Fk(x) = ((k + x) � 9)⊕ (k − x)⊕ ((k + x)  14) . (5)
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The key k in (5) is updated every second round according to a new key schedule
and therefore every two consecutive rounds use the same key. The main dif-
ferences with TEA are that in (5) the round constant δ is discarded, the shift
constants are changed and the shift operations are moved after the key addition
(see Fig. 2, left). For more details on the RAIDEN cipher we refer the reader
to [32]. The only previous security result for RAIDEN is a related-key attack
reported in [17].

Most recently, in June 2013, a new family of ARX-based lightweight block ci-
phers SPECK [3] was proposed by researchers from the National Security Agency
(NSA) of the USA. Its design bears strong similarity to Threefish – the block
cipher used in the hash function Skein [13]. The round function of SPECK under
a fixed round key k is defined on inputs x and y as

Fk(x, y) = (fk(x, y), fk(x, y)⊕ (y ≪ t2)) , (6)

where the function fk(·, ·) is defined as fk(x, y) = ((x ≫ t1) + y) ⊕ k. The
rotation constants t1 and t2 are equal to 7 and 2 resp. for word size n = 16 bits
and to 8 and 3 for all other word sizes: 24, 32, 48 and 64. Note that although
SPECK is not a Feistel cipher itself, it can be represented as a composition of
two Feistel maps as described in [3]. At the time of this writing we are not aware
of any published results on the security analysis of SPECK. The round functions
of RAIDEN and SPECK are shown in Fig. 2.

k

� 9

k

F (x) x

� 14

k

x y

≫ 7/8

k ≪ 2/3

Fig. 2. The F-functions of RAIDEN (left) and SPECK (right)

In Table 1 are listed the maximum number of rounds covered by differential
trail/s used in published differential attacks on TEA, XTEA, RAIDEN and
SPECK. These results are compared with the best trails found using our method.

6 Automatic Search for Differential Trails

We apply the steps from Sect. 4 to search for differential trails for multiple rounds
of the block ciphers described in Sect. 5. We analyze TEA, RAIDEN and SPECK
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w.r.t. ADD differences and XTEA w.r.t. XOR differences. Additive differences are
more appropriate for the differential analysis of the former (as opposed to XOR

differences) due to two reasons. First, the round keys and round constants are
ADD-ed. Second, the number of ADD vs. XOR operations in one round is larger and
therefore more components are linear w.r.t. ADD than to XOR. Similarly, XTEA
is more suitably analyzed with XOR differences since the round keys are XOR-ed.

In Table 3 (left) is shown the best found ADD differential trail for 18 rounds
of TEA with probability 2−62.6 and on the right side is shown the best found
XOR trail for 14 rounds of XTEA with probability 2−60.76 confirming a previous
result by Hong et al. [16]. Note that while the rule that a country road must be
followed by a highway is strictly respected in the trail for TEA, this is not the
case for XTEA. For example transitions 6 and 7 in the trail for XTEA have prob.
resp. 2−5.35 and 2−5.36 both of which are below the threshold pthres = 2−4.32. In
those cases no country road that leads back on a highway was found and so the
shortest country road was taken (resp. the maximum probability transition for
the given input difference was computed: lines 15–16 of Algorithm 2).

The top line of Table 3 shows the fixed values of the keys for which the two
trails were found and for which their probabilities were experimentally verified.

Table 3. Differential trails for TEA and XTEA. The leftmost key word is K0, the next
is K1, etc. #hways lists the number of elements in the pDDT (the highways).

TEA XTEA

key 11CAD84E 96168E6B 704A8B1C 57BBE5D3 E15C838 DC8DBE76 B3BB0110 FFBB0440

r β α log2p β α log2p

1 F ← FFFFFFFF −3.62 0 ← 80402010 −4.61
2 0 ← 0 −0.00 80402010 ← 0 −3.01
3 F ← FFFFFFFF −2.87 80402010 ← 80402010 −5.48
4 0 ← F −7.90 0 ← 80402010 −3.30
5 FFFFFFF1 ← FFFFFFFF −3.60 80402010 ← 0 −3.01
6 0 ← 0 −0.00 80402010 ← 80402010 −5.35
7 FFFFFFF1 ← FFFFFFFF −2.78 0 ← 80402010 −5.36
8 2 ← FFFFFFF1 −8.66 80402010 ← 0 −2.99
9 F ← 1 −3.57 80402010 ← 80402010 −5.45
10 0 ← 0 −0.00 0 ← 80402010 −5.42
11 FFFFFFF1 ← 1 −2.87 80402010 ← 0 −2.99
12 FFFFFFFE ← FFFFFFF1 −7.90 80402010 ← 80402010 −5.38
13 F ← FFFFFFFF −3.59 0 ← 80402010 −5.40
14 0 ← 0 −0.00 80402010 ← 0 −2.99
15 11 ← FFFFFFFF −2.79
16 0 ← 11 −8.83
17 FFFFFFEF ← FFFFFFFF −3.61
18 0 ← 0 −0.00

∑

r log2pr −62.6 −60.76

log2pthres −4.32 −4.32
#hways 68 474
Time: 21.36 min. 315 min.
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The reason to perform the search for a fixed key rather than averaged over all
keys is the fact that for TEA the assumption of independent round keys, com-
monly made in differential cryptanalysis, does not hold. This is a consequence
of the simple key schedule of the cipher according to which the same round keys
are re-used every second round. Thus a trail that has very good probability com-
puted as an average over all keys, may in fact have zero probability for many or
even all keys. This problem is further discussed in Sect. 7.

The mentioned effect is not so strong for XTEA due to the slightly more com-
plex key schedule of the latter. In XTEA, the round keys are re-used according
to a non-periodic schedule and, more importantly, a round constant that is dif-
ferent for every round, is added to the key before it is applied to the state (see
Fig. 1). In this way the round keys are randomized in every round and thus the
traditional differential analysis with probabilities computed as an average over
all keys is more appropriate for XTEA.

A major consequence of the key dependency effect discussed above is that
while the 14 round trail for XTEA from Table 3 can directly be used in a key-
recovery attack, as has indeed been already done in [16], it is not straightforward
to do so for the 18 round trail for TEA. The reason is that this trail is valid
only for a fraction of all keys. We have estimated the size of this fraction to be
approx. 0.098% ≈ 0.1%, which is equal to 2116 weak keys (note that the effective
key size of TEA is 126 bits [18]). The size of the weak key class was computed
by observing that only the 9 LS bits of K2 and the 3 LS bits of K3 influence
the probability of the trail. By fixing those 12 bits to the corresponding bits of
the key values in Table 3 (resp. 0x11C and 0x3), we have experimentally verified
that for any assignment of the remaning 116 bits of the key the 18 round trail
has probability ≈ 2−63. Note that other assignments of the relevant 12 bits may
also be possible and therefore the size of the weak key class may be actually
bigger.

While the fixed-key trails for TEA found by the threshold search algorithm
may have limited use for an attacker due to the reasons discussed above, they
already provide very useful information for a designer. By running Algorithm 2
for many fixed keys we saw that the best found trails typically cover between
15 and 17 rounds and in more rare cases 18 rounds. If this information has
been available to the designers of TEA at the time of the design, they may have
considered reducing the total number of rounds from 64 to 32 or less. Similarly,
the threshold search algorithm can be used in order to estimate the security
of new ARX designs and to help to select the appropriate number of rounds
accordingly.

Comparisons of the trails found with the tool to the actual best trails on TEA
with reduced word size of 11 and 16 bits are shown in Appendix C.1.

After applying the threshold search to RAIDEN the best characteristic that
was found is iterative with period 3 with probability 2−4 (shown in Table 4). By
iterating it for 32 rounds we construct a charactersistic with probability 2−42.
The latter can be used in a standard differential attack on the full cipher under
a non related-key setting. Note that in contrast to TEA, the probabilities of the
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Table 4. Three round iterative characteristic for RAIDEN beginning at round i

r β α log2p

i 0 ← 0 −0
i+ 1 7FFFFF00 ← 7FFFFF00 −2
i+ 2 80000100 ← 7FFFFF00 −2
. . . . . . ← 0 −0

∑

r log2pr −4

reported differentials for RAIDEN are independent of the round key due to the
fact that the shift operations are moved after the key addition.

We applied the threshold search algorithm using XOR differences to three in-
stances of block cipher SPECK with 16, 24 and 32 bit word sizes respectively.
The best trail found for the 32-bit version covers half of the rounds (13 out of
26) and has probability 2−58 while the best found trails for 16 and 24 bits cover
resp. 9 and 10 rounds out of 22/23 and have probabilities resp. 2−31 and 2−45.
All trails are shown in Table 5.

Table 5. Differential trails for Speck32, Speck48 and Speck64. #hways lists the
number of elements in the pDDT (the highways).

Speck32 Speck48 Speck64

r ΔL ΔR log2p ΔL ΔR log2p ΔL ΔR log2p

0 A60 4205 −0 88A 484008 −0 802490 10800004 −0
1 211 A04 −5 424000 4042 −5 80808020 4808000 −5
2 2800 10 −4 202 20012 −4 24000080 40080 −5
3 40 0 −2 10 100080 −3 80200080 80000480 −3
4 8000 8000 −0 80 800480 −2 802480 800084 −4
5 8100 8102 −1 480 2084 −2 808080A0 84808480 −5
6 8000 840A −2 802080 8124A0 −3 24000400 42004 −6
7 850A 9520 −4 A480 98184 −6 202000 12020 −4
8 802A D4A8 −6 888020 C48C00 −7 10000 80100 −3
9 A8 520B −7 240480 6486 −7 80000 480800 −2
10 800082 8324B2 −6 480000 2084000 −3
11 2080800 124A0800 −4
12 12480008 80184008 −7
13 880A0808 88C8084C −7

∑

r log2pr −31 −45 −58

log2pthres −5.00 −5.00 −5.00
#hways 230 230 230

Time: ≈ 240 min. ≈ 400 min. ≈ 500 min.
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7 Difficulties, Limitations and Common Problems

In this section we discuss the common problems and difficulties encountered
when studying differential trails in ARX ciphers. This discussion is also naturally
related to the limitations of the methodology proposed in Sect. 4. Although below
we often use the TEA block cipher as an example, our observations are general
and are therefore applicable to a broader class of ARX algorithms.

Accuracy of the Approximation of the DP of F. The first step in the
methodology presented in Sect. 4 is to derive an expression for computing the
DP of the F-function of the target cipher. Since it is often difficult to efficiently
compute the exact probability, this expression would usually be an approxima-
tion obtained as the multiplication of the DP of the separate components of F.
The probability computed in this way will often deviate from the actual value
due to the dependency between the inputs of the different components. Indeed,
this phenomenon is well-known and has been studied before e.g. in [38]. The
mentioned problem can be addressed with experimental re-adjustment of the
probability by evaluating the F-function over a number of random chosen input
pairs satisfying the input difference.

Dependency of the DP of F on the Round Keys. Another difficulty
arises from the fact that in some cases the DP of the F-function is dependent
on the value of the round key(s). Ciphers for which this is the case are not key-
alternating ciphers (cf. [10, Definition 2]) and are typically harder to analyze.
The block cipher TEA is an example of a non-key-alternating cipher. The DP of
its F-function is key-dependent w.r.t. both XOR and ADD differences. A solution
to the problem of key-dependency of the DP of the F-function is to search for
differential trails with probabilities computed for (multiple) fixed keys rather
than for trails with probabilities averaged over all keys. As discussed in Sect. 6,
this is the approach that we took in the analysis of TEA.

Dependency Between the Round Keys. In differential cryptanalysis of
keyed primitives it is common practice to assume that the round keys are in-
dependent [19]. This is known as making the hypothesis of independent round
keys [10]. In ciphers with weak key schedule such as TEA the hypothesis of in-
dependent round keys does not hold. As a consequence, obtaining an accurate
estimation of the expected probabilities of differential trails in such ciphers is
difficult. A possible solution to the dependent round keys problem is to analyze
the cipher with respect to a set of randomly chosen fixed keys and consider the
minimum probability, among all keys within the set (rather than the expected
probabilities averaged over all keys). The reason to select the minimum prob-
ability is to guarantee that the resulting differential trail is possible (i.e. has
non-zero probability) for every key in the set.

Influence of the Round Constants. Fixed constants are commonly used in
the design of symmetric-key primitives in order to destroy similarities between
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the rounds. Since they are typically added to the state by applying the same
operation as for the round keys, it is generally assumed that constants influence
neither the probabilities nor the structure of differential trails and hence can
be safely ignored. Surprisingly, this assumption does not hold for TEA and
possibly for other ARX constructions as well. After modifying TEA to use the
same δ constant at every round, for many keys the best found trail after several
rounds eventually becomes iterative with period 2 and of the form (α → 0), (0 →
0), (α → 0), . . . . The difference that maximizes the probability of the differential
(α → 0) is α = 0xF and has probability 2−8 for exactly 6 · 259 ≈ 261.6 keys
(approx. 10% of all keys). We use the two-round iterative trail (0xF → 0), (0 → 0)
to construct a trail over 15 rounds with probability 2−56. We also found a 4-round
iterative pattern with probability < 2−15 which holds for a smaller number of
key and is used to construct a trail with probability 2−61.36 on 18 rounds of the
modified TEA.

8 Conclusions and Future Work

In this paper we proposed the first extension of Matsui’s algorithm for automatic
search for differential trails, originally proposed for S-box based ciphers, to the
class of ARX ciphers. We used the block ciphers TEA, XTEA, RAIDEN and
SPECK as a testbed for demonstrating the practical application of this method.

Using the proposed algorithm, the first full (i.e. not truncated) differential
trails for block cipher TEA were found. The best one covers 18 rounds which
is one round more than the best differential attack on TEA (17 rounds) and
significantly improves the best previously known truncated trail which is on 8
rounds. Trails on 9, 10 and 13 rounds of SPECK32, SPECK48 and SPECK64
resp. were also reported. They represent the first public security analysis of the
cipher. For RAIDEN, a trail on all 32 rounds was shown that can be used to
break the full cipher. The best trail for XTEA found by the tool confirms the
previous known best trail, but this time it was found in a fully automatic way.

For future work, an important problem on the theoretical side would be to
compute a bound on how far the probabilities of the best found trails can be from
the actual best trail in terms of the fixed probability threshold. On the practical
side it would be interesting to extend the algorithm to search for differentials
rather than characteristics. Applying the tool to other ARX constructions is
another natural direction for future work.
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A The Differential Probabilities of ADD and XOR

In this section we recall the definitions of the differential probabilities of the
operations XOR and modular addition. Before we begin – a brief remark on no-
tation: in the same way as XOR is used to denote both the XOR operation and an
XOR difference, we use ADD to denote both the modular addition operation and
an additive difference.

Definition 2. Let α, β and γ be fixed n-bit XOR differences. The XOR differential
probability (DP) of addition modulo 2n (xdp+) is the probability with which α
and β propagate to γ through the ADD operation, computed over all pairs of n-bit
inputs (x, y):

xdp+(α, β → γ) = 2−2n ·#{(x, y) : ((x ⊕ α) + (y ⊕ β)) ⊕ (x+ y) = γ} . (7)

The dual of xdp+ is the probability adp⊕ and is defined analogously:

Definition 3. Let α, β and γ be fixed n-bit ADD differences. The additive DP of
XOR (adp⊕) is the probability with which α and β propagate to γ through the XOR

operation, computed over all pairs of n-bit inputs (x, y):

adp⊕(α, β → γ) = 2−2n ·#{(x, y) : ((x+ α)⊕ (y + β))− (x+ y) = γ} . (8)

The probabilities xdp+ and adp⊕ have been studied in [21] and [22] respectively,
where methods for their efficient computation have been proposed. In [21] is
also described an efficient algorithm for the computation of xdp+ maximized
over all output differences: maxγ xdp

+(α, β → γ). In [27] the methods for the
computation of xdp+ and adp⊕ are further generalized using the concept of
S-functions. Finally, in [39, Appendix C, Algorithm 1] a general algorithm for
computing the maximum probability output difference for certain types of differ-
ences and operations is described. It is applicable to both maxγ xdp

+(α, β → γ)
and maxγ adp

⊕(α, β → γ).
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B The Additive DP of Left and Right Shift

Definition 4. For fixed input and output ADD differences resp. α and β, the ad-
ditive differential probability of the operation right bit shift (RSH) by r positions
is defined over all n-bit (n ≥ r) inputs x as:

adp�r(α → β) = 2−n ·#{x : ((x+ α)  r) − (x  r) = β} . (9)

Analogously, the additive differential probability of the operation left bit shift
(LSH) by r positions is defined as in (9) after replacing  r with � r.

Theorem 1. The LSH operation is linear with respect to ADD differences i.e.
((x + α) � r) − (x � r) = (α � r), where x, α and r are as in Definition 4. It
follows that

adp�r(α → β) =

{

1 , if (β = α � r) ,

0 , otherwise .
. (10)

Proof. Appendix D.2.

In contrast to LSH, the RSH operation is not linear w.r.t. ADD differences. The
following theorem provides expressions for the computation of adp�r.

Theorem 2. Let α be a fixed n-bit input ADD difference to an RSH operation
with shift constant r ≤ n. Then there are exactly four possibilities for the output
difference β. The four differences together with their corresponding probabilities
computed over all n-bit inputs are:

adp�r(α → β) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

2−n(2n−r − αL)(2
r − αR) , β = (α  r) ,

2−nαL(2
r − αR) , β = (α  r)− 2n−r ,

2−nαR(2
n−r − αL − 1) , β = (α  r) + 1 ,

2−n(αL + 1)αR , β = (α  r)− 2n−r + 1 .

,

(11)
where αL and αR denote respectively the (n− r) most-significant (MS) bits and
the r least-significant (LS) bits of α so that: α = αL2

r + αR and additions and
subtractions are performed modulo 2n. If α : β = βi = βj for some 0 ≤ i �= j < 4
then adp�r(α → β) = adp�r(α → βi) + adp�r(α → βj).

Proof. Appendix D.3.

C More Experimental results

C.1 Threshold Search on TEA with Reduced Word Size

In Fig. 3 and Fig. 4 are compared the probabilities of the best trails found by
the threshold search algorithm using pDDT to the actual best trails found by
applying Matsui’s search using full DDT on TEA with word size reduced to
11 and 16 bits respectively. For 11 bits 50 experiments are performed and in
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each experiment a new fixed key is chosen uniformly at random. For 16 bits,
the number of experiments is 20. In the experiments on 16 bits the same δ
constant (equal to the initial value) was used in every round. The reason is that
if different constants are used, then a separate DDT has to be computed for
every round, which for more than a couple of rounds quickly becomes infeasible.
Also note that for 16 bits it takes longer to compute the full DDT-s due to their
larger size (compared to the 11 bit case). The memory consumption is also much
bigger – 320 GB of RAM are required to store all DDT-s. Due to the mentioned
limitations, less number of experiments on 16 bits were performed.

D Proofs

D.1 Proof of Proposition 1

Proof. We shall prove the proposition for adp⊕. In this case α, β and γ are
ADD differences propagating through the XOR operation. The proof for xdp+ is
analogous.

We induct over the word size n. The proposition is trivially true for the base
case n = 1: p1 ≤ p0 = 1. Let n = k > 1. We have to prove that pk ≤ pk−1.

Let x and y be n-bit integers. Define Li to be the set of i-bit pairs (xi, yi)
that satisfy the differential (αi, βi → γi) for the operation addition modulo 2i:

Li = {(xi, yi) : ((xi + αi)⊕ (yi + βi))− (xi + yi) = γi}, n ≥ i ≥ 1 . (12)

Let li = #Li. By definition pk = lk/2
2k and pk−1 = lk−1/2

2(k−1) (cf. (8)). Note
that every element of Lk can be obtained from an element (xk−1, yk−1) of Lk−1

by appending bits x[k − 1] and y[k − 1] to xk−1 and yk−1 respectively. Assume
that this is not true i.e. assume:

∃xk, yk : (xk = x[k − 1]|xk−1, yk = y[k − 1]|yk−1, (xk, yk) ∈ Lk)∧
((xk−1, yk−1) /∈ Lk−1) . (13)

If (13) is true then we can construct a new set L∗
k−1 = (xk−1, yk−1)∪Lk−1. Its size

is l∗k−1 = lk−1 +1 and so pk−1 = l∗k−1/2
2(k−1). The latter differs from the actual

value of the probability pk−1 = lk−1/2
2(k−1) and therefore the assumption (13) is

false. Thus ∀(xk, yk) ∈ Lk : (xk−1, yk−1) ∈ Lk−1. Because #{(x[k], y[k])} = 22,
the size of Lk can be at most 22 times bigger than the size of Lk−1:

lk ≤ 22lk−1 ⇒ lk
22k

≤ lk−1

22(k−1)
⇒ pk ≤ pk−1 . (14)

��

D.2 Proof of Theorem 1

Proof. Let x be an n-bit input to LSH with shift constant r ≤ n. Let xL, xR :
x = xL2

n−r + xR. Then (x � r) = xR2
r. Similarly, for the input ADD difference
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α let αL, αR : α = αL2
n−r +αR and thus (α � r) = αR2

r. The sum (x+α) can
then be represented as:

(x+ α) = (xL + αL)2
n−r + (xR + αR)

= ((xL + αL + cR) mod 2r) 2n−r + ((xR + αR) mod 2n−r) , (15)

where cR is the carry generated from the addition (xR+αR) mod 2n−r. From (15)
follows that (x + α) � r = (xR + αR)2

r. Thus for the output difference β we
get:

β = ((x + α) � r)− (x � r) = (xR + αR)2
r − xR2

r = αR2
r = (α � r) . (16)

Note that (16) is independent of the input x and therefore holds with probability
1 over all values of x. From this the expression (10) for the probability adp�r

immediately follows. ��

D.3 Proof of Theorem 2

Proof. Let x be an n-bit input to RSH with shift constant r ≤ n. Let xL, xR :
x = xL2

r + xR. Then (x  r) = xL. Similarly, for the input ADD difference α
let αL, αR : α = αL2

r + αR and thus (α  r) = αL. Denote by cR the carry
generated from the addition (aR + αR) mod 2r:

cR =

{

0 , if (xR + αR) < 2r ,

1 , otherwise .
. (17)

The sum (x+ α) can then be represented as:

(x+ α) = (xL + αL)2
r + (xR + αR)

= ((xL + αL + cR) mod 2n−r) 2r + ((xR + αR) mod 2r) . (18)

Therefore (x+α)  r = (xL+αL+cR) mod 2n−r and for the output difference
β we derive:

β = ((x+ α)  r) − (x  r) = ((xL + αL + cR) mod 2n−r)− xL

= αL − cL2
n−r + cR , (19)

where

cL =

{

0 , if (xL + αL + cR) < 2n−r ,

1 , otherwise .
. (20)

The term −cL2
n−r in (19) is introduced in order to cancel the carry 2n−r that is

generated in the cases in which the sum (xL+αL+cR) is bigger than (2n−r−1). In
such a case cL = 1 and −cL2

n−r+(xL+αL+cR) = −2n−r+2n−r+(xL+αL+cR)
mod 2n−r = (xL + αL + cR) mod 2n−r.
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In the expression for β (19), for each distinct value of the tuple (cL, cR) we
get one of the four possibilities for β:

β =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(α  r) , cL = 0, cR = 0 ,

(α  r)− 2n−r , cL = 1, cR = 0 ,

(α  r) + 1 , cL = 0, cR = 1 ,

(α  r)− 2n−r + 1 , cL = 1, cR = 1 .

. (21)

In order to compute the corresponding probabilities, we have to count the
number of inputs x, that result in a given value for (cL, cR). Note that cL and
cR depend on x and α, of which α is fixed and x can take on all values from 0
to 2n − 1. From (17) it is easy to compute that cR = 0 for exactly (2r − αR)
values of xR and therefore cR = 1 for the remaining 2r − (2r −αR) = αR values.
Note that xR is an r-bit word. Similarly, if cR = 0 then cL = 0 for (2n−r − αL)
values of xL and cL = 1 for the remaining αL values. If cR = 1 then cL = 0 for
(2n−r − αL − 1) values and cL = 1 for the remaining αL + 1 values. Therefore
(cL, cR) = (0, 0) for (2n−r − αL)(2

r − αR) values of x. Since the total number of
values is 2n we obtain the probability:

adp�r(α → β = (α  r)) = 2−n(2n−r − αL)(2
r − αR) . (22)

The expressions for the remaining three probabilities are derived analogously.
��
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