
Josh Benaloh (Ed.)

 123

LN
CS

 8
36

6

The Cryptographer's Track at the RSA Conference 2014
San Francisco, CA, USA, February 25-28, 2014
Proceedings

Topics in Cryptology –
CT-RSA 2014

Lecture Notes in Computer Science 8366
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Josh Benaloh (Ed.)

Topics in Cryptology –
CT-RSA 2014

The Cryptographer’s Track at the RSA Conference 2014
San Francisco, CA, USA, February 25-28, 2014
Proceedings

13

Volume Editor

Josh Benaloh
Microsoft Research
Redmond, WA, USA
E-mail: benaloh@microsoft.com

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-319-04851-2 e-ISBN 978-3-319-04852-9
DOI 10.1007/978-3-319-04852-9
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014930761

LNCS Sublibrary: SL 4 – Security and Cryptology

© Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in its current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The RSA conference has been a major international event for information
security experts since its inception in 1991. It is an annual event that attracts
hundreds of vendors and thousands of participants from industry, government,
and academia. Since 2001, the RSA conference has included the Cryptographers’
Track (CT-RSA), which provides a forum for current research in cryptography.
CT-RSA has become a major publication venue for cryptographers.

This volume represents the proceedings of the 2014 RSA Conference Cryp-
tographers’ Track which was held in San Francisco, California, February 25–28,
2014. A total of 66 submissions were received out of which 25 papers were se-
lected. As Chair of the Program Committee, I heartily thank all of the authors
who contributed their innovative ideas and all of the Program Committee mem-
bers and their designated assistants who carefully reviewed the submissions. The
evaluation process was thorough with each submission receiving at least three
independent reviews (four if the submitted paper included a Program Commit-
tee member as an author) and extensive discussion to complete the selection
process.

Antione Joux of the University of Versailles delivered an invited address on
Discrete Logarithms: Recent Progress (and Open Problems) and Bart Preneel
moderated a panel discussion on pseudo-random number generators featuring
Dan Boneh, Paul Kocher, Adi Shamir, and Dan Shumow.

December 2013 Josh Benaloh

Organization

The RSA Cryptographers’ Track is an independently managed component of the
annual RSA Conference.

Steering Committee

Josh Benaloh Microsoft Research, USA
Ed Dawson Queensland University of Technology, Australia
Orr Dunkelman University of Haifa, Israel
Ari Juels Roving Chief Scientist, USA
Ron Rivest Massachusetts Institute of Technology, USA
Moti Yung Google, USA

Program Chair

Josh Benaloh Microsoft Research, USA

Program Committee

Josh Benaloh (Chair) Microsoft Research, USA
Tom Berson Anagram Laboratories, USA
Alex Biryukov University of Luxembourg, Luxembourg
John Black University of Colorado, USA
Xavier Boyen Queensland University of Technology, Australia
Christian Cachin IBM Research, Switzerland
Orr Dunkelman University of Haifa, Israel
Steven D. Galbraith University of Auckland, New Zealand
Jens Groth University College London, UK
Helena Handschuh Cryptography Research, Inc., USA
Marc Joye Technicolor, France
John Kelsey National Institute of Standards and

Technology, USA
Kwangjo Kim Korea Advanced Institute of Science and

Technology, South Korea
Lars Knudsen Technical University of Denmark, Denmark
Alptekin Küpçü Koç University, Turkey
Susan Langford Hewlett-Packard, USA
Anna Lysyanskaya Brown University, USA

VIII Organization

Mitsuru Matsui Mitsubishi Electric, Japan
Sarah Meiklejohn University of California, San Diego, USA
Daniele Micciancio University of California, San Diego, USA
Tal Moran Interdisciplinary Center Herzliya, Israel
Bart Preneel KU Leuven, Belgium
Christian Rechberger Technical University of Denmark, Denmark
Matt Robshaw Impinj, USA
Rei Safavi-Naini University of Calgary, Canada
Nigel Smart University of Bristol, UK
Vanessa Teague University of Melbourne, Australia
Eran Tromer Tel Aviv University, Israel

Serge Vaudenay École Polytechnique Fédérale de Lausanne,
Switzerland

Hoeteck Wee George Washington University, USA
Yiqun Lisa Yin Independent Security Consultant, USA

External Reviewers

Hadi Ahmadi
Toru Akishita
Martin Albrecht
Mohsen Alimomeni
Giuseppe Ateniese
Shi Bai
Sonia Bogos
Pyrros Chaidos
Jie Chen
Sherman Chow
Craig Costello
Claus Diem
Patrick Derbez
Alexandre Duc
Leo Ducas
Mohammad Etemad

Sebastian Faust
Benedikt Gierlichs
Aurore Guillevic
Mhavir Jhawar
Seny Kamara
Mohamed Karroumi
Dmitry Khovratovich
Handan Klnç
Mark Marson
Bart Mennink
Gregory Neven
Claudio Orlandi
Ilan Orlov
Ray Perlner
Leo Perrin
Emmanuel Prouff

Pandu Rangan
Reza Reyhanitabar
Arnab Roy
Minoru Saeki
Sumanta Sarkar
Sven Schäge
Siamak Shahandashti
Kouichi Shimizu
Tom Shrimpton
Daniel Smith
Mario Strefler
Takeshi Sugawara
Daisuke Suzuki
Liangfeng Zhang

Table of Contents

Non-integral Asymmetric Functions

Efficient and Secure Algorithms for GLV-Based Scalar
Multiplication and Their Implementation on GLV-GLS Curves 1

Armando Faz-Hernández, Patrick Longa, and Ana H. Sánchez

An Improved Compression Technique for Signatures Based on Learning
with Errors . 28

Shi Bai and Steven D. Galbraith

Public-Key Encryption

A Generic View on Trace-and-Revoke Broadcast Encryption Schemes . . . 48
Dennis Hofheinz and Christoph Striecks

Broadcast Steganography . 64
Nelly Fazio, Antonio R. Nicolosi, and Irippuge Milinda Perera

Practical Dual-Receiver Encryption: Soundness, Complete
Non-malleability, and Applications . 85

Sherman S.M. Chow, Matthew Franklin, and Haibin Zhang

Hardware Implementations

Attacking PUF-Based Pattern Matching Key Generators via Helper
Data Manipulation . 106

Jeroen Delvaux and Ingrid Verbauwhede

On Increasing the Throughput of Stream Ciphers . 132
Frederik Armknecht and Vasily Mikhalev

On Double Exponentiation for Securing RSA against Fault Analysis 152
Duc-Phong Le, Matthieu Rivain, and Chik How Tan

Side-Channel Attacks

On the Practical Security of a Leakage Resilient Masking Scheme 169
Emmanuel Prouff, Matthieu Rivain, and Thomas Roche

The Myth of Generic DPA... and the Magic of Learning 183
Carolyn Whitnall, Elisabeth Oswald, and François-Xavier Standaert

X Table of Contents

Hardware Implementation and Side-Channel Analysis of Lapin 206
Lubos Gaspar, Gaëtan Leurent, and François-Xavier Standaert

Symmetric Encryption and Cryptanalysis

Automatic Search for Differential Trails in ARX Ciphers 227
Alex Biryukov and Vesselin Velichkov

CBEAM: Efficient Authenticated Encryption from Feebly One-Way φ
Functions . 251

Markku-Juhani O. Saarinen

Beyond Modes: Building a Secure Record Protocol from a
Cryptographic Sponge Permutation . 270

Markku-Juhani O. Saarinen

Digital Signatures

Group Signatures with Message-Dependent Opening in the Standard
Model . 286

Benôıt Libert and Marc Joye

Practical Distributed Signatures in the Standard Model 307
Yujue Wang, Duncan S. Wong, Qianhong Wu,
Sherman S.M. Chow, Bo Qin, and Jianwei Liu

Decentralized Traceable Attribute-Based Signatures 327
Ali El Kaafarani, Essam Ghadafi, and Dalia Khader

Protocols

Rethinking Verifiably Encrypted Signatures: A Gap in
Functionality and Potential Solutions . 349

Theresa Calderon, Sarah Meiklejohn, Hovav Shacham, and
Brent Waters

P2OFE: Privacy-Preserving Optimistic Fair Exchange of Digital
Signatures . 367

Qiong Huang, Duncan S. Wong, and Willy Susilo

2-Pass Key Exchange Protocols from CPA-Secure KEM 385
Kaoru Kurosawa and Jun Furukawa

Hash Function Cryptanalysis

Analysis of BLAKE2 . 402
Jian Guo, Pierre Karpman, Ivica Nikolić, Lei Wang, and Shuang Wu

Table of Contents XI

An Automated Evaluation Tool for Improved Rebound Attack:
New Distinguishers and Proposals of ShiftBytes Parameters for
Grφstl . 424

Yu Sasaki, Yuuki Tokushige, Lei Wang, Mitsugu Iwamoto, and
Kazuo Ohta

Practical Collision Attack on 40-Step RIPEMD-128 444
Gaoli Wang

Applications of Cryptographic Primitives

KDM Security in the Hybrid Framework . 461
Gareth T. Davies and Martijn Stam

Key Wrapping with a Fixed Permutation . 481
Dmitry Khovratovich

Author Index . 501

Efficient and Secure Algorithms for GLV-Based

Scalar Multiplication and Their Implementation
on GLV-GLS Curves

Armando Faz-Hernández1,Π, Patrick Longa2, and Ana H. Sánchez3

1 Institute of Computing,
University of Campinas, Brazil

armfazh@ic.unicamp.br
2 Microsoft Research,

One Microsoft Way, Redmond, USA
plonga@microsoft.com

3 Computer Science Department, CINVESTAV-IPN, México
asanchez@computacion.cs.cinvestav.mx

Abstract. We propose efficient algorithms and formulas that improve
the performance of side-channel protected scalar multiplication exploit-
ing the Gallant-Lambert-Vanstone (CRYPTO 2001) and Galbraith-Lin-
Scott (EUROCRYPT 2009) methods. Firstly, by adapting Feng et al.’s
recoding to the GLV setting, we derive new regular algorithms for
variable-base scalar multiplication that offer protection against simple
side-channel and timing attacks. Secondly, we propose an efficient tech-
nique that interleaves ARM-based and NEON-based multiprecision op-
erations over an extension field, as typically found on GLS curves and
pairing computations, to improve performance on modern ARM proces-
sors. Finally, we showcase the efficiency of the proposed techniques by
implementing a state-of-the-art GLV-GLS curve in twisted Edwards form
defined over Fp2 , which supports a four dimensional decomposition of the
scalar and runs in constant time, i.e., it is fully protected against timing
attacks. For instance, using a precomputed table of only 512 bytes, we
compute a variable-base scalar multiplication in 92,000 cycles on an Intel
Ivy Bridge processor and in 244,000 cycles on an ARM Cortex-A15 pro-
cessor. Our benchmark results and the proposed techniques contribute
to the improvement of the state-of-the-art performance of elliptic curve
computations. Most notably, our techniques allow us to reduce the cost of
adding protection against timing attacks in the GLV-based variable-base
scalar multiplication computation to below 10%.

Keywords: Elliptic curves, scalar multiplication, side-channel protec-
tion, constant-time computation, GLV method, GLS method, GLV-GLS
curve, x64 processor, ARM processor, NEON instructions.

Ψ Author became affiliated to University of Campinas at the time of publication.

J. Benaloh (Ed.): CT-RSA 2014, LNCS 8366, pp. 1–27, 2014.
c© Springer International Publishing Switzerland 2014

2 A. Faz-Hernández, P. Longa, and A.H. Sánchez

1 Introduction

Let P be a point of prime order r on an elliptic curve over Fp containing a degree-
2 endomorphism φ. The Gallant-Lambert-Vanstone (GLV) method computes the
scalar multiplication kP as k1P + k2φ(P) [15]. If k1, k2 have approximately half
the bitlength of the original scalar k, one should expect an elimination of half
the number of doublings by using the Straus-Shamir simultaneous multi-scalar
multiplication technique. Thus, the method is especially useful for speeding up
the case in which the base point P is variable, known as variable-base scalar
multiplication. Later, Galbraith et al. [14] showed how to exploit the Frobe-
nius endomorphism to enable the use of the GLV approach on a wider set of
curves defined over the quadratic extension field Fp2 . Since then, significant re-
search has been performed to improve the performance [29,23] and to explore
the applicability to other settings [19,34] or to higher dimensions on genus one
curves [23,30] and genus two curves [7,8]. Unfortunately, most of the work and
comparisons with other approaches have been carried out with unprotected al-
gorithms and implementations. In fact, little effort has been done to investi-
gate methods for protecting GLV-based implementations against side-channel
attacks. Just recently, Longa and Sica [30] used the regular windowed recoding
by Okeya and Takagi [33] in combination with interleaving [15,32] to make their
four-dimensional implementation constant time. However, the use of this stan-
dard approach in the GLV paradigm incurs in a high cost in terms of storage
and computing performance because of the high number of required precompu-
tations. This issue worsens for higher dimensions [8].

In this work, we propose a new signed representation, called GLV-based Sign-
Aligned Column (GLV-SAC), that gives rise to a new method for scalar multipli-
cation using the GLV method. We depart from the traditional approach based on
interleaving or joint sparse form and adapt the recoding by Feng et al. [11], orig-
inally intended for standard comb-based fixed-base scalar multiplication, to the
computation of GLV-based variable-base scalar multiplication. The method sup-
ports a regular execution and thus provides a first layer of protection against some
simple side-channel (SSCA) attacks such as simple power analysis (SPA) [26].
Moreover, it does not require dummy operations, making it resilient to safe-error
attacks [40,41], and can be used as a basis for constant-time implementations se-
cure against timing attacks [25,9,2,35]. In comparison with the best previous ap-
proaches, the method improves the computing performance, especially during the
potentially expensive precomputation stage, and allows us to save at least half of
the storage requirement for precomputed values without impacting performance.
For instance, the method injects a 17% speedup in the overall computation and a
78% reduction in the memory consumption for a GLV-GLS curve using a 4-GLV
decomposition (see §5). The savings in memory without impacting performance
are especially relevant for the deployment of GLV-based implementations in con-
strained devices. Depending on the cost of endomorphisms, the improvement pro-
vided by the method is expected to increase for higher-degree decompositions.

Efficient and Secure Algorithms for GLV-Based Scalar Multiplication 3

Processors based on the ARM architecture are widely used in modern smart-
phones and tablets due to their low power consumption. The ARM architecture
comes equipped with 16 32-bit registers and an instruction set including 32-bit
operations, which in most cases can be executed in one cycle. To boost perfor-
mance in certain applications, some ARM processors include a powerful set of
vector instructions known as NEON. This consists of a 128-bit Single Instruction
Multiple Data (SIMD) engine that includes 16 128-bit registers. Recent research
has exploited NEON to accelerate cryptographic operations [6,18,36]. On one
hand, the interleaving of ARM and NEON instructions is a well-known tech-
nique (with increasing potential on modern processors) that can be exploited
in cryptography; e.g., see [6]. On the other hand, the vectorized computation
using NEON can be advantageously exploited to compute independent multi-
plications, as found in operations over Fp2 ; e.g., see [36]. In this work, we take
these optimizations further and propose a technique that interleaves ARM-based
and NEON-based multiprecision operations, such as multiplication, squaring and
modular reduction, in extension field operations in order to maximize the in-
herent parallelism and hide the execution latency. The technique is especially
relevant for implementing the quadratic extension field layer, as found in GLS
curves [14] and pairing computations [1]. For instance, it injects a significant
speedup in the range 17%-34% in the scalar multiplication execution on the
targeted GLV-GLS curve (see §4 and §5).

To demonstrate the efficiency of our techniques, we implement the state-of-
the-art twisted Edwards GLV-GLS curve over Fp2 with p = 2127−5997, recently
proposed by Longa and Sica [30]. This curve, referred to as Ted127-glv4, sup-
ports a 4-GLV decomposition. Moreover, we also present efficient algorithms for
implementing field and quadratic extension field operations targeting our 127-bit
prime on x64 and ARM platforms. We combine and exploit incomplete reduc-
tion [39] and lazy reduction [38], expanding techniques by [29]. These optimized
operations are then applied to state-of-the-art twisted Edwards formulas [3,22]
to speed up computations in the setting of curves over Fp2 . Our implementations
of variable-base scalar multiplication target modern x64 and ARM processors,
and include full protection against timing attacks: the scalar is decomposed and
recoded (in constant time) in a regular pattern using the proposed GLV-SAC rep-
resentation, secret-data conditional branches are avoided and memory accesses
(over precomputed points) are performed in constant time.

Notably, we show that the proposed algorithms and formulas reduce dramati-
cally the cost of protecting against timing attacks and the storage for precomputa-
tions, and set a new speed record for protected software. For instance, a protected
variable-based elliptic curve scalar multiplication on curve Ted127-glv4 runs in
96,000 cycles on an Intel Sandy Bridge, using only 512 bytes of memory for pre-
computed values. This is 30% faster, using almost 1/5 of the storage, than a pre-
vious implementation by Longa and Sica [30] also based on curve Ted127-glv4
that computes the same operation in 137,000 cycles using 2.25KB of memory for
precomputations. Moreover, this result is only 5% slower, using 1/2 of the stor-
age, than the unprotected computation by the same authors, which runs in 91,000

4 A. Faz-Hernández, P. Longa, and A.H. Sánchez

cycles and uses 1KB of memory. This not only represents a new speed record for
protected software but alsomarks the first time that a constant-time variable-base
scalarmultiplication computation is performed under 100K cycles on an Intel pro-
cessor. Similar results are obtained for ARM processors exploiting the technique
that interleaves NEON and ARM-based operations.

This paper is organized as follows. In §2, we give some preliminaries about
the GLV and GLS methods, and side-channel attacks. In §3, we present the new
GLV-based representation and the corresponding scalar multiplication method.
We describe the implementation of curve Ted127-glv4 as well as optimized
algorithms for field, extension field and point operations targeting x64 and ARM
platforms in §4. In this section, we also discuss the interleaving technique for
ARM. Finally, in §5, we perform an analysis of the proposed methods and present
benchmark results of scalar multiplication on several x64 and ARM processors.

2 Preliminaries

2.1 The GLV and GLS Methods

In this section, we briefly describe the GLV and GLS methods in a generic, m
dimensional framework. Let C be a curve defined over a finite field Fp equipped
with an efficiently computable endomorphism φ. The GLV method to compute
scalar multiplication [15] consists of first decomposing the scalar k into sub-
scalars ki for 0 ⊗ i < m and then computing

⎛m−1
i=0 kiDi using the Straus-

Shamir trick for simultaneous multi-scalar multiplication, where D0 is the input
divisor from the divisor class group of the curve and Di = φi(D0). If all of
the sub-scalars have approximately the same bitlength, the number of required
doublings is reduced to approximately log2 r/m, where r is the prime order of
the curve subgroup. Special curves equipped with endomorphisms which are
different to the Frobenius endomorphism are known as GLV curves.

The GLS method [14,13] lifts the restriction to special curves and exploits an
endomorphism ψ arising from the p-power Frobenius endomorphism on a wider
set of curves C≥ defined over a extension field Fpk that are Fpn -isogenous to curves
C/Fp, where k|n. Equipped with ψ to perform the scalar decomposition, one then
proceeds to apply the GLV method as above. More complex decompositions arise
by applying the GLS paradigm to GLV curves (a.k.a. GLV-GLS curves [14,30]).

These techniques have received lots of attention recently, given their signifi-
cant impact in the performance of curve-based systems. Longa and Gebotys [29]
report efficient implementations of GLS curves over Fp2 using two-dimensional
decompositions. In [23], Hu, Longa and Xu explore a GLV-GLS curve over Fp2
supporting a four-dimensional decomposition. In [7], Bos et al. study two and
four-dimensional decompositions on genus 2 curves over Fp. Bos et al. [8] explore
the combined GLV-GLS approach over genus 2 curves defined over Fp2 , which
supports an 8-GLV decomposition. In the case of binary GLS elliptic curves,
Oliveira et al. [34] report the implementation of a curve exploiting the 2-GLV
method. More recently, Guillevic and Ionica [17] show how to exploit the 4-
GLV method on certain genus one curves defined over Fp2 and genus two curves

Efficient and Secure Algorithms for GLV-Based Scalar Multiplication 5

defined over Fp; and Smith [37] proposes a new family of elliptic curves that
support 2-GLV decompositions.

From all these works, only [30] and [34] include side-channel protection in
their GLV-based implementations.

2.2 Side-Channel Attacks and Countermeasures

Side-channel attacks [25] exploit leakage information obtained from the phys-
ical implementation of a cryptosystem to get access to private key material.
Examples of physical information that can be exploited are power, time, elec-
tromagnetic emanations, among others. In particular, much attention has been
put on timing [25,9] and simple power attacks (SPA) [26], given their broad
applicability and relatively low costs to be realized in practice. Traditionally,
the different attacks can also be distinguished by the number of traces that are
exploited in the analysis: simple side-channel attacks (SSCA) require only one
trace (or very few traces) to observe the leakage that directly reveals the secret
bits, whereas differential side-channel attacks (DSCA) require many traces to
perform a statistical analysis on the data. The feasibility of these attacks de-
pends on the targeted application, but it is clear that SSCA attacks are feasible
in a wider range of scenarios. In this work, we focus on methods that minimize
the risk posed by SSCA attacks such as SPA, and timing attacks.

In curve-based cryptosystems, the first step to achieve protection against these
attacks is to use regular algorithms for performing scalar multiplication (other
methods involve the use of unified formulas, but these are generally expensive).
One efficient approach in this direction is to recode the scalar to a represen-
tation exhibiting a regular pattern. In particular, for the case of variable-base
scalar multiplication, the regular windowed recoding proposed by Okeya and
Takagi [33] and further analyzed by Joye and Tunstall [24] represents one of the
most efficient alternatives. Nevertheless, in comparison with the standard width-
w non-adjacent form (wNAF) [20] used in unprotected implementations, the
Okeya-Takagi recoding increases the nonzero density from 1/(w+1) to 1/(w−1).
In contrast, side-channel protected methods for scalar multiplication exploiting
the GLVmethod have not been fully studied. Furthermore, we note that methods
typically efficient in the standard case are not necessarily efficient in the GLV
paradigm. For example, in [30], Longa and Sica apply the Okeya-Takagi recoding
to protect scalar multiplication on a GLV-GLS curve using a four-dimensional
GLV decomposition against timing attacks. The resulting protected implemen-
tation is about 30% more expensive than the unprotected version. In this work,
we aim at reducing that gap, providing efficient methods that can be exploited
to improve and protect GLV and GLS-based implementations.

The comb method [27] is an efficient approach for the case of fixed-base scalar
multiplication. However, in its original form, the method is unprotected against
SSCA and timing attacks. An efficient approach to achieve a regular execution
is to recode the scalar using signed nonzero representations such as LSB-set [11],
MSB-set [12] or SAB-set [21]. A key observation in this work is that the ba-
sic version of the fixed-base comb execution (i.e., without exploiting multiple

6 A. Faz-Hernández, P. Longa, and A.H. Sánchez

tables) has several similarities with a GLV-based variable-base execution. So it
is therefore natural to adapt these techniques to the GLV setting to achieve
side-channel protection. In particular, the LSB-set representation is a good can-
didate, given that an analogue of this method in the GLV setting minimizes the
cost of precomputation.

2.3 The Least Significant Bit - Set (LSB-Set) Representation

Feng et al. [11] proposed a clever signed representation, called LSB-set, that
is based on the equivalence 1 ≡ 11̄ . . . 1̄ (assuming the notation −1 ≡ 1̄), and
used it to protect the comb method [27] in the computation of fixed-base scalar
multiplication (we refer to this method as LSB-set comb scalar multiplication).
Next, we briefly describe the LSB-set recoding and its application to fixed-base
scalar multiplication. The reader is referred to [27] and [11] for complete details
about the original comb method and the LSB-set comb method, respectively.

Let t be the bitlength of a given scalar k. Assume that k is partitioned
in w consecutive parts of d = �t/w∪ bits each, padding k with (dw − t) zeros
to the left. Let the updated binary representation of k be (kl−1, kl−2, . . . , k0),
where l = dw. One can visualize the bits of k in matrix form by considering
the w pieces as the rows and arranging them from top to bottom. The LSB-set
recoding consists of first applying the transformation 1 ⇐→ 11̄ . . . 1̄ to the least
significant d bits of the scalar (i.e., the first row in the matrix) and, then, con-
verting every bit ki in the remaining rows in such a way that output digits bi
for d ⊗ i ⊗ (l − 1) are in the digit set {0, bi mod d}. That is, digits in the same
column are 0 or share the same sign. Then, for computing a comb fixed-base
scalar multiplication, one scans the “digit-columns” in the matrix from left to
right. Since every digit-column is nonzero by definition, the execution consists of
a doubling-addition computation at every iteration, which provides protection
against certain SSCA attacks such as SPA.

3 The GLV-Based Sign-Aligned Column (GLV-SAC)
Representation

In this section, we introduce a variant of the LSB-set recoding that is amenable
for the computation of side-channel protected variable-base scalar multiplication
in the GLV setting. The new recoding is called GLV-Based Sign-Aligned Column
(GLV-SAC). Also, we present a new method for GLV-based scalar multiplication
exploiting the proposed representation.

In the following, we first discuss the GLV-SAC representation in a generic
setting. In Section 3.2, we discuss variants that are expected to be more efficient
whenm = 2 andm ≥ 8. To simplify the descriptions, we assume in the remainder
that we are working on an elliptic curve. The techniques and algorithms can be
easily extended to other settings such as genus 2 curves.

Let {k0, k1, . . . , kj , . . . , km−1} be a set of positive sub-scalars in the setting of
GLV with dimension m. The basic idea of the new recoding is to have one of the

Efficient and Secure Algorithms for GLV-Based Scalar Multiplication 7

sub-scalars of the m-GLV decomposition, say kJ , represented in signed nonzero
form and acting as a “sign-aligner”. The latter means that kJ determines the sign
of all the digits of remaining sub-scalars according to their relative position.

The GLV-SAC representation has the following properties:

(i) The length of the digit representation of every sub-scalar kj is fixed and
given by l = �log2 r/m∪+ 1, where r is the prime subgroup order.

(ii) Exactly one sub-scalar, which should be odd, is expressed by a signed
nonzero representation kJ = (bJl−1, . . . , b

J
0), where all digits bJi ∈ {1,−1}

for 0 ⊗ i < l.
(iii) All the sub-scalars kj , with exception of kJ from (ii), are expressed by

signed representations (bjl−1, . . . , b
j
0) such that bji ∈ {0, bJi } for 0 ⊗ i < l.

In the targeted setting, (i) and (ii) guarantee a constant-time execution re-
gardless of the value of the scalar k and without having to appeal to masking for
dealing with the identity element. Item (iii) allows us to reduce the size of the
precomputed table by a factor of 2, while minimizing the cost of precomputation.

Note that we do not impose any restriction on which sub-scalar should be des-
ignated as kJ . In some settings, choosing any of the kj (with the exception of the
one corresponding to the base point, i.e., k0) could lead to the same performance
in the precomputation phase and be slightly faster than kJ = k0, if one takes into
consideration the use of mixed point additions. The condition that kJ should be
odd enables the conversion of any integer to a full signed nonzero representation
using the equivalence 1 ≡ 11̄ . . . 1̄. To deal with this restriction during the scalar
multiplication, we first convert the selected sub-scalar kJ to odd (if even), and
then make the corresponding correction at the end (more details can be found in
Section 3.1). Finally, the reader should note that the GLV-SAC representation, in
the way we describe it above, assumes that the sub-scalars are all positive. This
restriction is imposed in order to achieve the minimum length l = �log2 r/m∪+1
in the representation. Note that it is possible to lift this restriction if needed
in a certain setting (the analysis of this case is included in the extended paper
version [10]).

An efficient algorithm to recode the sub-scalars to GLV-SAC proceeds as
follows. Assume that each sub-scalar kj is padded with zeros to the left until
reaching the fixed length l = �log2 r/m∪ + 1, where r is the prime order of
the curve subgroup. After choosing a suitable kJ to act as the “sign-aligner”,
the sub-scalar kJ is recoded to signed nonzero digits bJi using the equivalence
1 ≡ 11̄ . . . 1̄. Remaining sub-scalars are then recoded in such a way that output
digits at position i are in the set {0, bJi }, i.e., nonzero digits at the same relative
position share the same sign. This is shown as Algorithm 1.

We highlight that, in contrast to [11, Alg. 4] and [12, Alg. 2], our recoding
algorithm is simpler and exhibits a regular and constant time execution, making
it resilient to timing attacks. Moreover, Algorithm 1 can be implemented very
efficiently by exploiting the fact that the only purpose of the recoded digits from
the sub-scalar kJ is, by definition, to determine the sign of their correspond-
ing digit-columns (see details in Alg. 2 below). Since kJi+1 = 0 and kJi+1 = 1

8 A. Faz-Hernández, P. Longa, and A.H. Sánchez

Algorithm 1. Protected Recoding Algorithm for the GLV-SAC Representation.
Input: m l-bit positive integers kj = (kj

l−1, . . . , k
j
0)2 for 0 ◦ j < m, an odd “sign-

aligner” kJ ∈ {kj}m, where l = ⇒log2 r/m� + 1, m is the GLV dimension and r is the
prime group order.
Output: (bjl−1, . . . , b

j
0)GLV-SAC for 0 ◦ j < m, where bJi ∈ {1,−1}, and bji ∈ {0, bJi }

for 0 ◦ j < m and j →= J .

1: bJl−1 = 1
2: for i = 0 to (l − 2) do
3: bJi = 2kJ

i+1 − 1
4: for j = 0 to (m− 1), j →= J do
5: for i = 0 to (l − 1) do
6: bji = bJi · kj

0

7: kj = ⊗kj/2≥ − ⊗bji/2≥
8: return (bjl−1, . . . , b

j
0)GLV-SAC for 0 ◦ j < m.

indicate that the corresponding output digit-column i will be negative and posi-
tive, respectively, Step 3 of Algorithm 1 can be reduced to bJi = kJi+1 by assuming
the convention bJi = 0 to indicate negative and bJi = 1 to indicate positive, for
0 ⊗ i < l. Following this convention, further efficient simplifications are possible
for Steps 6 and 7.

3.1 GLV-Based Scalar Multiplication Using GLV-SAC

We now present a new method for computing variable-base scalar multiplication
using the GLV method and the GLV-SAC representation (see Algorithm 2). To
simplify the description, we assume that k0 is fixed as the “sign-aligner” kJ (it
is easy to modify the algorithm to set any other sub-scalar to kJ). The basic
idea is to arrange the sub-scalars, after being converted to their GLV-SAC rep-
resentation, in matrix form from top to bottom, with sub-scalar kJ = k0 at
the top, and then run a simultaneous multi-scalar multiplication execution scan-
ning digit-columns from left to right. By using the GLV-SAC recoding, every
digit-column i is expected to be nonzero and have any of the possible combina-
tions [bm−1

i , . . . , b2i , b
1
i , b

0
i], where b0i ∈ {1,−1}, and bji ∈ {0, b0i } for 1 ⊗ j < m.

Since nonzero digits in the same column have the same sign, one only needs
to precompute all the positive combinations P0 + u1P1 + . . .+ um−1Pm−1 with
uj ∈ {0, 1}, where Pj are the base points of the sub-scalars. Assuming that nega-
tion of group elements is inexpensive in a given curve subgroup, negative values
can be computed on-the-fly during the evaluation stage.

Since the GLV-SAC recoding requires that the “sign-aligner” kJ (in this case,
k0) be odd, k0 is subtracted by one if it is even in Step 3 of Algorithm 2.
The correction is then performed at the end of the evaluation stage at Step 9.
These computations, as well as the accesses to the precomputed table, should be
performed in constant time to guarantee protection against timing attacks. For
example, in the implementation discussed in Section 5, the value P [Ki] required

Efficient and Secure Algorithms for GLV-Based Scalar Multiplication 9

Algorithm 2. Protected m-GLV Variable-Base Scalar Multiplication using the
GLV-SAC Representation.
Input: Base point P0 of order r and (m − 1) points Pj for 1 ◦ j < m corresponding
to the endomorphisms, m scalars kj = (kj

tj−1, . . . , k
j
0)2 for 0 ◦ j < m, l = ⇒ log2 r

m
� + 1

and max(tj) = ⇒ log2 r
m

�.
Output: kP .

Precomputation stage:
1: Compute P [u] = P0 + u0P1 + . . . + um−2Pm−1 for all 0 ◦ u < 2m−1, where
u = (um−2, . . . , u0)2.
Recoding stage:
2: even = k0 mod 2
3: if even = 0 then k0 = k0 − 1
4: Pad each kj with (l − tj) zeros to the left for 0 ◦ j < m and convert them to
the GLV-SAC representation using Algorithm 1 s.t. kj = (bjl−1, . . . , b

j
0)GLV-SAC. Set

digit-columns Ki = [bm−1
i , . . . , b2i , b

1
i] ≡ |bm−1

i 2m−2+ . . .+ b2i 2+ b1i | and digit-column
signs si = b0i for 0 ◦ i ◦ l − 1.
Evaluation stage:
5: Q = sl−1P [Kl−1]
6: for i = l − 2 to 0 do
7: Q = 2Q
8: Q = Q+ siP [Ki]
9: if even = 0 then Q = Q+ P0

10: return Q

at Step 8 is retrieved from memory by performing a linear pass over the whole
precomputed table using conditional move instructions. The final value siP [Ki]
is then obtained by performing a second linear pass over the points P [Ki] and
−P [Ki]. Similarly, to realize Step 9, we always carry out the computation Q≥ =
Q+P0 and then perform a linear pass over the points Q and Q≥ using conditional
move instructions to transfer the correct value to the final destination.

Note that Algorithm 2 assumes a decomposed scalar as input. This is
sufficient in some settings, in which randomly generated sub-scalars could be
provided. However, in others settings, one requires to calculate the sub-scalars
in a decomposition phase. We remark that this computation should also be
computed in constant time for protecting against timing attacks (e.g., see the
details for Ted127-glv4 in §5).

Example 1. Let m = 4, log2 r = 16 and kP = 11P0 + 6P1 + 14P2 + 3P3.
Using Algorithm 1, the corresponding GLV-SAC representation with fixed length
l = �16/4∪+ 1 = 5 is given by (arranged in matrix form from top to bottom as
required in Alg. 2)

10 A. Faz-Hernández, P. Longa, and A.H. Sánchez

⎡
⎢⎢⎞
k0
k1
k2
k3

⎤
⎥⎥⎦ ≡

⎡
⎢⎢⎞

0 1 0 1 1
0 0 1 1 0
0 1 1 1 0
0 0 0 1 1

⎤
⎥⎥⎦ ≡

⎡
⎢⎢⎞

1 1̄ 1 1̄ 1
1 1̄ 0 1̄ 0
1 0 0 1̄ 0
0 0 1 1̄ 1

⎤
⎥⎥⎦

According to Algorithm 2, digit columns are given by K0 = [100] = 4,K1 =
[1̄1̄1̄] = 7,K2 = [100] = 4,K3 = [001̄] = 1 and K4 = [011] = 3, and their
corresponding si are s0 = 1, s1 = −1, s2 = 1, s3 = −1 and s4 = 1. Precomputed
values P [u] are given by P [0] = P0, P [1] = P0 + P1, P [2] = P0 + P2, P [3] =
P0 + P1 + P2, P [4] = P0 + P3, P [5] = P0 + P1 + P3, P [6] = P0 + P2 + P3 and
P [7] = P0 + P1 + P2 + P3. At Step 5 of Alg. 2, we compute Q = s4P [K4] =
P [3] = P0 + P1 + P2. The main loop in the evaluation stage is then executed as
follows

i 3 2 1 0

2Q 2P0 + 2P1 + 2P2 2P0 + 2P1 + 4P2 6P0 + 4P1 + 8P2 + 2P3 10P0 + 6P1 + 14P2 + 2P3

Q+ siP [Ki] P0 + P1 + 2P2 3P0 + 2P1 + 4P2 + P3 5P0 + 3P1 + 7P2 + P3 11P0 + 6P1 + 14P2 + 3P3

Cost Analysis.To simplify comparisons, we will only consider a setting in which
precomputed points are left in some projective system. When converting points
to affine is convenient, one should include the cost of this conversion. Also, we
do not consider optimizations exploiting cheap endomorphism mappings during
precomputation, since this is dependent on a specific application. The reader is
referred to Section 5 for a more precise comparison in a practical implementation
using a GLV-GLS twisted Edwards curve.

The cost of the proposed m-GLV variable-base scalar multiplication using the
GLV-SAC representation (Alg. 2) is given by (l − 1) doublings and l additions
during the evaluation stage using 2m−1 points, where l = � log2 rm ∪ + 1. Naively,
precomputation costs 2m−1− 1 additions (in practice, several of these additions
might be performed using cheaper mixed additions). So the total cost is given
by (l − 1) doublings and (l + 2m−1 − 1) additions.

In contrast, the method based on the regular windowed recoding [33] used
in [30] requires (l−1) doublings and m · (l−1)/(w−1)+2m−1 additions during
the evaluation stage and m doublings with m · (2w−2 − 1) additions during
the precomputation stage, using m · (2w−2 + 1) points (naive approach without
exploiting endomorphisms). If, for example, r = 256,m = 4 and w = 5 (typical
parameters to achieve 128-bit security on a curve similar to Ted127-glv4), the
new method costs 64 doublings and 72 additions using 8 points, whereas the
regular windowed method costs 68 doublings and 99 additions using 36 points.
Thus, the new method improves performance while reduces dramatically the
number of precomputations (in this case, to almost 1/5 of the storage). Assuming
that one addition costs 1.3 doublings, the expected speedup is 20%.

Certainly, one can reduce the number of precomputations when using the
regular windowed recoding by only precomputing multiples corresponding to
one or some of the sub-scalars. However, these savings in memory come at the
expense of computing endomorphisms during the evaluation stage, which can
cost from several multiplications [7] to approximately one full point addition

Efficient and Secure Algorithms for GLV-Based Scalar Multiplication 11

each (see Appendix A). The proposed method always requires the minimum
storage without impacting performance.

The basic GLV-SAC representation and its corresponding scalar multiplica-
tion are particularly efficient for four-dimensional GLV. In the following section,
we discuss variants that are efficient for m = 2 and m ≥ 8.

3.2 Windowed and Partitioned GLV-SAC: Case of Dimension 2 and
≥ 8

In some cases, the performance of the proposed scalar multiplication can be im-
proved further by combining windowed techniques with the GLV-SAC recoding.
Given a window width w, assume that a set of sub-scalars kj has been padded
with enough zeros to the left to guarantee that w|l, where l is the expected
length of an extended GLV-SAC representation that we refer to as wGLV-SAC.
The basic idea is to join every w consecutive digits in the wGLV-SAC represen-
tation, and precompute all possible values P [u] = u≥P0+u0P1+ . . .+um−2Pm−1

for 0 ⊗ u < 2wm−1 and u≥ ∈ {1, 3, . . . , 2w − 1} (again, points corresponding to
negative values of u≥ can be computed on-the-fly). Scalar multiplication then
proceeds by scanning w-digit columns from left to right.

Conveniently, Algorithm 1 can also be used to obtain wGLV-SAC(kj), with the
only change in the fixed length to l = (�log2 r/w∪+1)+(�log2 r/w∪+1) mod w.

Example 2. Let m = 2, log2 r = 8, w = 2 and kP = 11P0 + 14P1. Using
Algorithm 1, the corresponding wGLV-SAC representation with fixed length
l = �8/2∪ + 1 + (�8/2∪ + 1) mod 2 = 6, arranged in matrix form from top to
bottom, is given by

[
k0
k1

]
≡

[
0 0 1 0 1 1
0 0 1 1 1 0

]
≡

[
1 1̄ 1̄ 1 1̄ 1
1 1̄ 0 0 1̄ 0

]
(1)

The 2-digit columns are given by K0 = [2̄1̄] = 3,K1 = [01̄] = 1 and K2 =
[11] = 2, and their corresponding si are s0 = −1, s1 = −1 and s2 = 1. Precom-
puted values P [u] are given by P [0] = P0−P1, P [1] = P0, P [2] = P0+P1, P [3] =
P0 + 2P1, P [4] = 3P0, P [5] = 3P0 + P1, P [6] = 3P0 + 2P1 and P [7] = 3P0 + 3P1.
In the evaluation stage we first compute Q = s2P [K2] = P [2] = P0 + P1 and
then execute

i 1 0

2wQ 4P0 + 4P1 12P0 + 16P1

Q+ siP [Ki] 3P0 + 4P1 11P0 + 14P1

Since the requirement of precomputations, given by 2wm−1, increases
rapidly as w and m grow, windowed GLV-SAC is especially attractive for 2-
GLV implementations. In this case, by fixing w = 2 the number of precomputed
points is only 8. At the same performance level (in the evaluation stage), this is

12 A. Faz-Hernández, P. Longa, and A.H. Sánchez

approximately half the memory requirement of a method based on the regular
windowed recoding [33] 1.

Whereas joining columns in the representation matrix is amenable for small
m using windowing, for large m it is recommended to join rows instead. We
illustrate the approach with m = 8. Given a set of sub-scalars kj for 0 ⊗ j < 8,
we first partition it in c consecutive sub-sets k≥i such that c|8, and then convert
every sub-set to the GLV-SAC representation (using Alg. 1). In this case, every
column in the matrix consists of c sub-columns, each one corresponding to a
sub-set k≥i. Scalar multiplication then proceeds by scanning c sub-columns per
iteration from right to left. Thus, with this “partitioned” GLV-SAC approach, one
increases the number of point additions per iteration in the main loop of Alg. 2
from one to c. However, the number of required precomputations is reduced from
2m−1 to c · 2m

c −1. For example, for m = 8, this approach reduces the number
of points from 128 to only 16 if c is fixed to 2 (each sub-table corresponding
to a sub-set of scalars contains 8 points). At the same performance level (in
the evaluation stage), this is approximately half the memory requirement of
a method based on the regular windowed recoding [33], as discussed by the
recent work by Bos et al. [8]. Performance is also expected to improve since the
number of point operations for precomputation is significantly reduced. Note
that, if one only considers positive sub-scalars and the endomorphism mapping
is inexpensive in comparison to point addition, then sub-tables can be computed
by simply applying the endomorphism to the first sub-table arising from the base
point P0. In some instances, such as the 8-GLV in [8], this approach is expected
to reduce further the cost of precomputation. Although an issue arises when
sub-scalars can also be negative, this can be dealt with by adding one extra bit
containing the sign to the representation. We give the full details in the extended
paper version [10].

4 High-Speed Implementation on GLV-GLS Curves

In this section, we describe implementation aspects of the GLV-GLS curve
Ted127-glv4. We present optimized algorithms for prime field, extension field
and point arithmetic. We also present the technique of interleaving NEON and
ARM-based multiprecision operations over Fp2 . Although our techniques are es-
pecially tuned for the targeted curve, we remark that they can be adapted and
exploited in other scenarios.

4.1 The Curve

For complete details about the four-dimensional method using GLV-GLS curves,
the reader is referred to [14] and [31]. We use the following GLV-GLS curve in
twisted Edwards form [30], referred to as Ted127-glv4:
1 However, in some cases one can afford the reduction of precomputations from 16
to 8 when using the windowed recoding if endomorphisms are cheap and can be
computed on-the-fly during the evaluation stage; e.g., see [34].

Efficient and Secure Algorithms for GLV-Based Scalar Multiplication 13

E≥
TE/Fp2 : −x2 + y2 = 1 + dx2y2, (2)

where Fp2 is defined as Fp[i]/(i
2 − β), β = −1 is a quadratic non-

residue in Fp and u = 1 + i is a quadratic non-residue in Fp2 . Also,
p = 2127 − 5997, d = 170141183460469231731687303715884099728 +
116829086847165810221872975542241037773i and #E≥

TE(Fp2) = 8r, where r is
the 251-bit prime 2251 − 255108063403607336678531921577909824432295. E≥

TE

is isomorphic to the Weierstrass curve E≥
W /Fp2 : y2 = x3 − 15/2 u2x − 7u3,

which is the quadratic twist of a curve isomorphic to the GLV curve EW /Fp :
y2 = 4x3 − 30x − 28 (see [30, Section 5]). E≥

TE/Fp2 is equipped with two ef-
ficiently computable endomorphisms Φ and Ψ defined over Fp2 , which enable
a four-dimensional decomposition for any scalar k ∈ [1, r − 1] in the subgroup
generated by a point P of order r and, consequently, enable a four-dimensional
scalar multiplication given by

kP = k1P + k2Φ(P) + k3Ψ(P) + k4ΨΦ(P), with max
i

(|ki|) < C r1/4

where C = 179 [30]. Let ζ8 = u/
∅
2 be a primitive 8th root of unity. The affine

formulas for Φ(x, y) and Ψ(x, y) are given by

Φ(x, y) =

(
− (ζ38 + 2ζ28 + ζ8)xy

2 + (ζ38 − 2ζ28 + ζ8)x

2y
,
(ζ28 − 1)y2 + 2ζ38 − ζ28 + 1

(2ζ38 + ζ28 − 1)y2 − ζ28 + 1

)
and Ψ(x, y) =

(
ζ8x

p,
1

yp

)
,

respectively. It can be verified that Φ2 + 2 = 0 and Ψ2 + 1 = 0. The formulas in
homogeneous projective coordinates can be found in Appendix A.

Note that Ted127-glv4 has a = −1 (in the twisted Edwards equation; see [3]),
corresponding to the most efficient set of formulas proposed by Hisil et al. [22].
Although GLV-GLS curves with suitably chosen parameters when transformed
to twisted Edwards form offer roughly the same performance, as discussed in [30],
there are certain differences in the cost of formulas for computing the endomor-
phismsΦ and Ψ . Curve Ted127-glv4 exhibits relatively efficient formulas for com-
puting the endomorphisms in comparison with other GLV-GLS curves from [30].
On the other hand, our selection of the pseudo-Mersenne prime p = 2127 − 5997
enables efficient field arithmetic by exploiting lazy and incomplete reduction tech-
niques (see the next section for details). Also, since p ≡ 3 (mod 4), −1 is a
quadratic non-residue in Fp, which minimizes the cost of multiplication over Fp2
by transforming multiplications by β to inexpensive subtractions.

4.2 Field Arithmetic

For field inversion, we use the modular exponentiation ap−2 (mod p) ≡ a−1

using a fixed and short addition chain. This method is simple to implement and
is naturally protected against timing attacks.

In the case of a pseudo-Mersenne prime of the form p = 2m − c, with c
small, field multiplication can be efficiently performed by computing an integer
multiplication followed by a modular reduction exploiting the special form of

14 A. Faz-Hernández, P. Longa, and A.H. Sánchez

the prime. This separation of operations also enables the use of lazy reduc-
tion in the extension field arithmetic. For x64, integer multiplication is im-
plemented in product scanning form (a.k.a Comba’s method), mainly exploit-
ing the powerful 64-bit unsigned multiplier instruction. Let 0 ⊗ a, b < 2m+1.
To exploit the extra room of one bit in our targeted prime 2127 − 5997, we
first compute M = a · b = 2m+1MH + ML followed by the reduction step
R = ML + 2cMH ⊗ 2m+1(2c + 1) − 2. Then, given R = 2mRH + RL, we
compute RL + cRH (mod p), where RL, c RH < 2m. This final operation can
be efficiently carried out by employing the modular addition proposed by Bos
et al. [7] to get the final result in the range [0, p− 1]. Note that the computation
of field multiplication above naturally accepts inputs in unreduced form with-
out incurring in extra costs, enabling the use of additions without correction
or operations with incomplete reduction (see below for more details). We follow
a similar procedure for computing field squaring. For ARM, we implement the
integer multiplication using the schoolbook method. In this case, and also for
modular reduction, we extensively exploit the parallelism of ARM and NEON
instructions. The details are discussed in Section 4.4.

Let 0 ⊗ a, b < 2m − c. Field subtraction is computed as
(a − b) + borrow · 2m − borrow · c, where borrow = 0 if a ≥ b, otherwise
borrow = 1. Notice that in practice the addition with borrow · 2m can be
efficiently implemented by clearing the (m+ 1)-th bit of a− b.

Incomplete Reduction. Similar to [29], we exploit the form of the pseudo-
Mersenne prime in combination with the incomplete reduction technique to
speedup computations. We also mix incompletely reduced and completely re-
duced operands in novel ways.

Let 0 ⊗ a < 2m − c and 0 ⊗ b < 2m. Field addition with incomplete reduction
is computed as (a + b) − carry · 2m + carry · c, where carry = 0 if a + b < 2m,
otherwise carry = 1. Again, in practice the subtraction with carry · 2m can be
efficiently implemented by clearing the (m+1)-th bit of a+b. The result is correct
modulo p, but falls in the range [0, 2m − 1]. Thus, this addition operation with
incomplete reduction works with both operands in completely reduced form or
with one operand in completely reduced form and one in incompletely reduced
form. A similar observation applies to subtraction. Consider two operands a and
b, such that 0 ⊗ a < 2m and 0 ⊗ b < 2m − c. The standard field subtraction
(a− b) mod (2m − c) described above will then produce an incompletely reduced
result in the range [0, 2m−1], since a−b with borrow = 0 produces a result in the
range [0, 2m−1] and a− b with borrow = 1 produces a result in the range [−2m+
c+1,−1], which is then fully reduced by adding 2m−c. Thus, performance can be
improved by using incomplete reduction for an addition preceding a subtraction.
For example, this technique is exploited in the point doubling computation (see
Steps 7-8 of Algorithm 8). Note that, in contrast to addition, only the first operand
is allowed to be in incompletely reduced form for subtraction.

To guarantee correctness in our software, and following the previous descrip-
tion, incompletely reduced results are always fed to one of the following: one of
the operands of an incompletely reduced addition, the first operand of a field

Efficient and Secure Algorithms for GLV-Based Scalar Multiplication 15

subtraction, a field multiplication or squaring (which ultimately produces a com-
pletely reduced output), or a field addition without correction preceding a field
multiplication or squaring.

In the targeted setting, there are only a limited number of spots in the curve
arithmetic in which incompletely reduced numbers cannot be efficiently exploited.
For these few cases, we require a standard field addition. We use the efficient im-
plementation proposed byBos et al. [7]. Again, let 0 ⊗ a, b < 2m−c. Field addition
is then computed as ((a + c) + b)− carry · 2m − (1− carry) · c, where carry = 0
if a + b + c < 2m, otherwise carry = 1. Similar to previous cases, the subtrac-
tion with carry · 2m can be efficiently carried out by clearing the (m+1)-th bit in
(a+ c) + b. As discussed above, this efficient computation is also advantageously
exploited in the modular reduction for multiplication and squaring.

4.3 Quadratic Extension Field Arithmetic

For the remainder, we use the following notation: (i) I,M, S,A and R represent
inversion, multiplication, squaring, addition and modular reduction over Fp, re-
spectively, (ii)Mi and Ai represent integer multiplication and integer addition,
respectively, and (iii) i,m, s, a and r represent analogous operations over Fp2 .
When representing registers in algorithms, capital letters are used to allocate
operands with “double precision” (in our case, 256 bits). For simplification pur-
poses, in the operation counting an integer operation with double-precision is
considered equivalent to two integer operations with single precision. We assume
that addition, subtraction, multiplication by two and negation have roughly the
same cost.

Let a = a0 + a1i ∈ Fp2 and b = b0 + b1i ∈ Fp2 . Inversion over Fp2 is computed
as a−1 = (a0 − a1i)/(a

2
0 + a21). Addition and subtraction over Fp2 consist in

computing (a0+ b0)+ (a1+ b1)i and (a0− b0)+ (a1− b1)i, respectively. We com-
pute multiplication over Fp2 using the Karatsuba method. In this case, we fully
exploit lazy reduction and the room of one bit that is gained by using a prime
of 127 bits. The details for the x64 implementation are shown in Algorithm 3.
Remarkably, note that only the subtraction in Step 3 requires a correction to
produce a positive result. No other addition or subtraction requires correction
to positive or to modulo p. That is, ×, + and − represent operations over the
integers. In addition, the algorithm accepts inputs in completely or incompletely
reduced form and always produces a result in completely reduced form. Option-
ally, one may “delay” the computation of the final modular reductions (by setting
reduction=FALSE in Alg. 3) if lazy reduction could be exploited in the curve
arithmetic. This has been proven to be useful to formulas for the Weierstrass
form [1], but unfortunately the technique cannot be advantageously exploited
in the most efficient formulas for twisted Edwards (in this case, one should set
reduction=TRUE). Squaring over Fp2 is computed using the complex method.
The details for the x64 implementation are shown in Algorithm 4. In this case,
all the additions are computed as integer operations since, again, results can be
let to grow up to 128 bits, letting subsequent multiplications take care of the
reduction step.

16 A. Faz-Hernández, P. Longa, and A.H. Sánchez

Algorithm 3. Multiplication in Fp2 with reduction (m = 3Mi+9Ai +2R) and
without reduction (mu = 3Mi+9Ai), using completely or incompletely reduced
inputs (x64 platform).
Input: a = (a0 + a1i) and b = (b0 + b1i) ∈ Fp2 , where 0 ◦ a0, a1, b0, b1 ◦ 2127 − 1, p =
2127 − c, c small.
Output: a · b (mod p) ∈ Fp2

1: T0 ← a0 × b0 [0, 2254 >
2: T1 ← a1 × b1 [0, 2254 >
3: C0 ← T0 − T1 < −2254, 2254 >
4: if C0 < 0, then C0 ← C0 + 2128 · p [0, 2255 >
5: if reduction=TRUE, then c0 ← C0 mod p [0, p >
6: t0 ← a0 + a1 [0, 2128 >
7: t1 ← b0 + b1 [0, 2128 >
8: T2 ← t0 × t1 [0, 2256 >
9: T2 ← T2 − T0 [0, 2256 >
10: C1 ← T2 − T1 [0, 2256 >
11: if reduction=TRUE, then c1 ← C1 mod p [0, p >
12: return if reduction=TRUE then a · b = (c0 + c1i), else a · b = (C0 + C1i) .

Algorithm 4. Squaring in Fp2(s = 2M + 1A+ 2Ai), using completely reduced
inputs (x64 platform).
Input: a = (a0 + a1i) ∈ Fp2 , where 0 ◦ a0, a1 ◦ p− 1, p = 2127 − c, c small.
Output: a2 (mod p) ∈ Fp2

1: t0 ← a0 + a1 [0, 2128 >
2: t1 ← a0 − a1 mod p [0, p >
3: c0 ← t0 × t1 mod p [0, p >
4: t0 ← a0 + a0 [0, 2128 >
5: c1 ← t0 × a1 mod p [0, p >
6: return a2 = (c0 + c1i).

4.4 Extension Field Arithmetic on ARM: Efficient Interleaving of
ARM-Based and NEON-Based Multiprecision Operations

The potential performance gain when interleaving ARM and NEON operations
is well-known. This feature was exploited in [6] to speed up the Salsa20 stream
cipher. On the other hand, Sánchez and Rodríguez-Henríquez [36] showed how
to take advantage of NEON instructions to perform independent multiplications
in operations over Fp2 . In the following, we go a step further and show how to
exploit the increasingly efficient capacity of modern ARM processors for execut-
ing ARM and NEON instructions “simultaneously” to implement multiprecision

Efficient and Secure Algorithms for GLV-Based Scalar Multiplication 17

Algorithm 5. Double 128-bit integer product with ARM and NEON interleaved
(double_mul_neonarm)
Input: a = {ai}, b = {bi}, c = {ci}, d = {di}, i ∈ {0, . . . , 3}.
Output: (F,G) ← (a× b, c× d).
1: (F,G) ≤ (0, 0)

2: for i = 0 to 1 do

3: (C0, C1, C2) ≤ (0, 0, 0)

4: for j = 0 to 3 do

5: (C0, Fi+j , C1, Fi+j+2) ≤ (Fi+j + aibj + C0, Fi+j+2 + ai+2bj + C1) {done by NEON}

6: for j = 0 to 3 do

7: (C2, Gi+j) ≤ Gi+j + cjdi + C2 {done by ARM}

8: (Fi+4, Fi+6, Gi+4) ≤ (Fi+4 + C0, C1, C2)

9: for i = 2 to 3 do

10: for j = 0 to 3 do

11: (C2, Gi+j) ≤ Gi+j + cjdi + C2 {done by ARM}

12: Gi+4 ≤ C2

13: return (F,G)

Algorithm 6. Triple 128-bit integer product with ARM and NEON interleaved
(triple_mul_neonarm)
Input: a = {ai}, b = {bi}, c = {ci}, d = {di}, e = {ei}, f = {fi}, i ∈ {0, . . . , 3}.
Output: (F,G,H) ← (a× b, c× d, e× f).

1: (F,G,H) ← (0, 0, 0)
2: for i = 0 to 3 do
3: (C0, C1, C2) ← (0, 0, 0)
4: for j = 0 to 3 do
5: (C0, Fi+j , C1, Gi+j) ← (Fi+j + ajbi +C0, Gi+j + cjdi +C1) {done by NEON}
6: for j = 0 to 3 do
7: (C2,Hi+j) ← Hi+j + ejfi +C2 {done by ARM}
8: (Fi+4, Gi+4,Hi+4) ← (C0, C1, C2)
9: return (F,G,H)

operations, such as multiplication, squaring and modular reduction, over Fp2 . In
other words, we exploit the fact that when ARM code produces a data hazard
in the pipeline, the NEON unit may be ready to execute vector instructions,
and vice versa. Note that loading/storing values from ARM to NEON registers
still remains relatively expensive, so in order to achieve an effective performance
improvement, one should carefully interleave independent operations while mini-
mizing the loads and stores from one unit to the other. Hence, operations such as
multiplication and squaring over Fp2 are particularly friendly to this technique,
given the availability of internal independent multiplications in their formulas.
Thus, using this approach, we implemented:

18 A. Faz-Hernández, P. Longa, and A.H. Sánchez

Algorithm 7. Double modular reduction with ARM and NEON interleaved
(double_red_neonarm)
Input: A prime p = 2127 − c, a = {ai}, b = {bi}, i ∈ {0, . . . , 7}.
Output: (F,G) ← (a mod p, b mod p).

1: (Fi, Gi) ← (ai, bi)i∈{0,...,3}
2: (C0, C1, C2) ← (0, 0, 0)
3: for j = 0 to 1 do
4: (C0, Fj , C1, Fj+2) ← (Fj + aj+4c+ C0, Fj+2 + aj+6c+ C1) {done by NEON}
5: for j = 0 to 3 do
6: (C2, Gj) ← Gj + bj+4c+ C2 {done by ARM}
7: (F2, F4, G4) ← (F2 + C0, C1, C2)
8: (F0, G0) ← (F4c+ F0, G4c+G0)
9: return (F,G)

– a double integer multiplier (double_mul_neonarm) detailed in Algorithm 5,
which interleaves a single 128-bit multiplication using NEON and a single
128-bit multiplication using ARM,

– a triple integer multiplier (triple_mul_neonarm) detailed in Algorithm 6,
which interleaves two single 128-bit multiplication using NEON and one
single 128-bit multiplication using ARM, and

– a double reduction algorithm (double_red_neonarm) detailed in Algo-
rithm 7, that interleaves a single modular reduction using NEON and a
single modular reduction using ARM.

Note that integer multiplication is implemented using the schoolbook method,
which requires one multiplication, two additions, one shift and one bit-wise AND
per iteration. These operations were implemented using efficient fused instruc-
tions such as UMLAL, UMAAL, VMLAL and VSRA [28], which add the result
of a multiplication or shift to the destination register in one single operation,
reducing code size.

To validate the efficiency of our approach, we compared the interleaved al-
gorithms above with standard implementations using only NEON or ARM. In
all the cases, we observed a reduction of costs in favor of our novel interleaved
ARM/NEON implementations (see Section 5 for benchmark results).

Triple_mul_neonarm is nicely adapted to the computation of multiplication
over Fp2 , since this operation requires three integer multiplications of 128 bits
(Steps 1, 2 and 8 of Algorithm 3). For the case of squaring over Fp2 , we use
double_mul_neonarm to compute the two independent integer multiplications
(Steps 3 and 5 of Algorithm 4). Finally, for each case we can efficiently use a
double_red_neonarm. The final algorithms for ARM are shown as Algorithms 10
and 11 in Appendix B.

Efficient and Secure Algorithms for GLV-Based Scalar Multiplication 19

4.5 Point Arithmetic

In this section, we describe implementation details and our optimized formu-
las for the point arithmetic. We use as basis the most efficient set of formulas
proposed by Hisil et al. [22], corresponding to the case a = −1, that uses a
combination of homogeneous projective coordinates (X : Y : Z) and extended
homogeneous coordinates of the form (X : Y : Z : T), where T = XY/Z.

The basic algorithms for computing point doubling and addition are shown
in Algorithms 8 and 9, respectively. In these algorithms, we extensively exploit
incomplete reduction (denoted by with ⊕,∃), following the details given in Sec-
tion 4.2. To ease coupling of doubling and addition in the main loop of the scalar
multiplication computation, we make use of Hamburg’s “extensible” strategy and
output values {Ta, Tb}, where T = Ta · Tb, at every point operation, so that a
subsequent operation may compute coordinate T if required. Note that the cost
of doubling is given by 4m + 3s + 5a. We do not apply the usual transforma-
tion 2XY = (X + Y)2 − (X2 + Y 2) because in our case it is faster to compute
one multiplication and one incomplete addition than one squaring, one subtrac-
tion and one addition. In the setting of variable-base scalar multiplication (see
Alg. 2), the main loop of the evaluation stage consists of a doubling-addition
computation, which corresponds to the successive execution of Algorithms 8
and 9. For this case, precomputed points are more efficiently represented as
(X + Y, Y − X, 2Z, 2T) (corresponding to setting EXT_COORD=TRUE in
Alg. 9), so the cost of addition is given by 8m+ 6a.

Algorithm 8. Twisted Edwards point doubling over Fp2 (DBL = 4m+3s+5a)

Input: P = (X1, Y1, Z1).
Output: 2P = (X2, Y2, Z2) and {Ta, Tb} such that T2 = Ta · Tb.

1: Ta ← X2
1 (X2

1)
2: t1 ← Y 2

1 (Y 2
1)

3: Tb ← Ta ⊕ t1 (X2
1 + Y 2

1)
4: Ta ← t1 − Ta (Y 2

1 −X2
1)

5: Y2 ← Tb × Ta (Y2 = (X2
1 + Y 2

1)(Y
2
1 −X2

1))
6: t1 ← Z2

1 (Z2
1)

7: t1 ← t1 ⊕ t1 (2Z2
1)

8: t1 ← t1 � Ta (2Z2
1 − (Y 2

1 −X2
1))

9: Z2 ← Ta × t1 (Z2 = (Y 2
1 −X2

1)[2Z
2
1 − (Y 2

1 −X2
1)])

10: Ta ← X1 ⊕X1 (2X1)
11: Ta ← Ta × Y1 (2X1Y1)
12: X2 ← Ta × t1 (X2 = 2X1Y1[2Z

2
1 − (Y 2

1 −X2
1)])

13: return 2P = (X2, Y2, Z2) and {Ta, Tb} such that T2 = Ta · Tb.

5 Performance Analysis and Experimental Results

In this section, we carry out the performance analysis of the proposed GLV-based
scalar multiplication method using the GLV-SAC representation, and present

20 A. Faz-Hernández, P. Longa, and A.H. Sánchez

Algorithm 9. Twisted Edwards point addition over Fp2 (ADD = 8m + 6a,
mADD = 7m+ 7a or 8m+ 10a)

Input: P = (X1, Y1, Z1) and {Ta, Tb} such that T1 = Ta · Tb. If
EXT_COORD=FALSE then Q = (x2, y2), else Q = (X2 + Y2, Y2 −X2, 2Z2, 2T2).
Output: P +Q = (X3, Y3, Z3) and {Ta, Tb} such that T3 = Ta · Tb.

1: T1 ← Ta × Tb (T1)
2: if EXT_COORD=FALSE then T2 = x2 ⊕ x2, T2 = T2 × y2 (2T2)
3: t1 ← T2 × Z1 (2T2Z1)
4: if Z2 = 1 then t2 ← T1 ⊕ T1 else t2 ← T1 × 2Z2 (2T1Z2)
5: Ta ← t2 − t1 (Ta = α = 2T1Z2 − 2T2Z1)
6: Tb ← t1 ⊕ t2 (Tb = θ = 2T1Z2 + 2T2Z1)
7: t2 ← X1 ⊕ Y1 (X1 + Y1)
8: if EXT_COORD=TRUE then Y3 = Y2 −X2, else Y3 = y2 − x2 (Y2 −X2)
9: t2 ← Y3 × t2 (X1 + Y1)(Y2 −X2)
10: t1 ← Y1 −X1 (Y1 −X1)
11: if EXT_COORD=TRUE then X3 = X2 + Y2, else X3 = x2 ⊕ y2 (X2 + Y2)
12: t1 ← X3 × t1 (X2 + Y2)(Y1 −X1)
13: Z3 ← t2 − t1 β = (X1 + Y1)(Y2 −X2)− (X2 + Y2)(Y1 −X1)
14: t1 ← t1 ⊕ t2 ω = (X1 + Y1)(Y2 −X2) + (X2 + Y2)(Y1 −X1)
15: X3 ← Tb × Z3 (X3 = βθ)
16: Z3 ← t1 × Z3 (Z3 = βω)
17: Y3 ← Ta × t1 (Y3 = αω)
18: return P +Q = (X3, Y3, Z3) and {Ta, Tb} such that T3 = Ta · Tb.

benchmark results of our constant-time implementations of curve Ted127-glv4
on x64 and ARM platforms. We also assess the performance improvement ob-
tained with the proposed ARM/NEON interleaving technique. For our exper-
iments, we targeted a 3.4GHz Intel Core i7-2600 Sandy Bridge processor and
a 3.4GHz Intel Core i7-3770 Ivy Bridge processor, from the Intel family, and
a Samsung Galaxy Note with a 1.4GHz Exynos 4 Cortex-A9 processor and an
Arndale Board with a 1.7GHz Exynos 5 Cortex-A15 processor, from the ARM
family, both equipped with the NEON vector unit. The x64 implementation
was compiled with Microsoft Visual Studio 2012 and ran on 64-bit Windows
(Microsoft Windows 8 OS). In our experiments, we turned off Intel’s hyper-
threading and Turbo Boost technologies; we averaged the cost of 104 operations
which were measured with the timestamp counter instruction rdtsc. The ARM
implementation was developed and compiled with the Android NDK (ndk8d)
toolkit. In this case, we averaged the cost of 104 operations which were mea-
sured with the clock_gettime() function and scaled to clock cycles using the
processor frequency.

First, we present timings for all the fundamental operations of scalar multipli-
cation in Table 1. Implementation details for quadratic extension field operations
and point operations over Fp2 can be found in Section 4. “IR” stands for incom-
plete reduction and “extended” represents the use of the extended coordinates

Efficient and Secure Algorithms for GLV-Based Scalar Multiplication 21

(X + Y, Y −X, 2Z, 2T) to represent precomputed points. The four-dimensional
decomposition of the scalar follows [30]. In particular, a scalar k is decomposed
in smaller ki s.t. max(|ki|) < C r1/4 for 0 ⊗ i ⊗ 3, where r is the 251-bit
prime order and C = 179 for our case (see §4.1). In practice, however, we
have found that the bitlength of ki is at most 63 bits for our targeted curve.
The decomposition can be performed as a linear transformation by computing
ki =

⎛3
j=0 round(Sjk) · Mi,j for 0 ⊗ i < 4, where Mi,j and Sj are integer

constants. We truncate operands in the round() operation, adding enough preci-
sion to avoid loss of data. Thus, the computation involves a few multi-precision
integer operations exhibiting constant-time execution.

Table 1. Cost (in cycles) of basic operations on curve Ted127-glv4

Operation
ARM ARM Intel Intel

Cortex-A9 Cortex-A15 Sandy Bridge Ivy Bridge

Fp2

ADD with IR 20 19 12 12

ADD 39 37 15 15

SUB 39 37 12 12

SQR 223 141 59 56

MUL 339 185 78 75

INV 13,390 9,675 6,060 5,890

ECC

DBL 2,202 1,295 545 525

ADD 3,098 1,831 690 665

mADD (Z1 = 1) 2,943 1,687 622 606

Δ endomorphism (Z1 = 1) 3,118 1,724 745 712

Ψ endomorphism (Z1 = 1) 1,644 983 125 119

Misc

8-point LUT (extended) 291 179 83 79

GLV-based LSB-set recoding 1,236 873 482 482

4-GLV decomposition 756 430 305 290

Next, we analyze the cost of GLV-based variable-base scalar multiplication
on curve Ted127-glv4. Based on Algorithm 2, this operation involves the com-
putation of one Φ endomorphism, 2 Ψ endomorphisms, 3 additions and 4 mixed
additions in the precomputation stage; 63 doublings, 63 additions, one mixed
addition and 64 protected table lookups in the evaluation stage; and one in-
version and 2 multiplications over Fp2 for converting the final result to affine.
In total, the cost is given by 1i + 833m+ 191s+ 769a+ 64LUT 8 + 4M + 9A.
This operation count does not include other additional computations, such as
the recoding to the GLV-SAC representation or the decomposition to 4-GLV,
which are relatively inexpensive (see Table 1).

Compared to [30], which uses a method based on the regular windowed recod-
ing [33], the optimized GLV-SAC method for variable-base scalar multiplication
allows us to save 181 multiplications, 26 squarings and 228 additions over Fp2 .
Additionally, it only requires 8 precomputed points, which involve 64 protected
table lookups over 8 points (denoted by LUT 8) during scalar multiplication,
whereas the method in [30] requires 36 precomputed points, which involve 68
protected table lookups over 9 points. For example, this represents in practice a

22 A. Faz-Hernández, P. Longa, and A.H. Sánchez

17% speedup in the computation and a 78% reduction in the memory consump-
tion of precomputation on curve Ted127-glv4.

Finally, in Table 2 we summarize our benchmark results for scalar multi-
plication and compare them with other constant-time implementations in the
literature. The results for the representative variable-base scenario set a new
speed record for protected curve-based scalar multiplication on x64 and ARM
processors. In comparison with the previously fastest genus one implementation
on x64 by Longa and Sica [30], which runs in 137,000 cycles, the presented result
injects a cost reduction of 30% on a Sandy Bridge machine. Likewise, in compari-
son with the state-of-the-art genus 2 implementation by Bos et al. [7], our results
are between 21%-24% faster on x64 processors. It is also between 17%-19% faster
than the very recent implementation by Oliveira et al. [34] based on a binary
GLS curve using the 2-GLV method1, and about 2 times faster than Bernstein
et al.’s implementation using a Montgomery curve over Fp [4]. Moreover, our re-
sults also demonstrate that the proposed techniques bring a dramatic reduction
in the overhead for protecting against timing attacks. An unprotected version
of our implementation computes a scalar multiplication in 87,000 cycles on the
Sandy Bridge processor, which is only 9% faster than our protected version. In
the case of ARM, our implementation of variable-base scalar multiplication on
curve Ted127-glv4 is 27% and 32% faster than Bernstein and Schwabe’s [6] and
Hamburg’s [18] implementation (respect.) of curve25519 on a Cortex-A9 pro-
cessor. Note, however, that comparisons on ARM are particularly difficult. The
implementation of [6] was originally optimized for Cortex-A8, and [18] does not
exploit NEON.

Table 2. Cost (in 103 cycles) of implementations of variable-base scalar multiplica-
tion with protection against timing-type side-channel attacks at approximately 128-bit
security level. Results are approximated to the nearest 103 cycles.

Work ARM ARM Intel Intel

Curve Precomputations Cortex-A9 Cortex-A15 Sandy Bridge Ivy Bridge

Ted127-glv4 (this work) 512 bytes (8 points) 417 244 96 92

Ted127-glv4, Longa-Sica [30] 2.25 KB (36 points) - - 137 -

Binary GLS E/F2254 , Oliveira et al. [34] 512 bytes (8 points) - - 115 113

Genus 2 Kummer C/Fp, Bos et al. [7] 0 - - 126 (*) 117

Curve25519, Bernstein et al. [4] 0 - - 194 (*) 183 (*)

Curve25519, Bernstein et al. [6] 0 568 (*) - - -

Curve25519, Hamburg [18] 0 616 - 153 -

(*) Source: eBACS [5].

To put our results in perspective, note that the original GLS paper [14] re-
ported a scalar multiplication that ran in 0.76 the time of the best available
implementation on x64 (Core 2 Duo) at that time, namely a Montgomery curve

1 In the case of unprotected software on x64, Oliveira et al. [34] hold the current
speed record with 72,000 cycles on an Intel Sandy Bridge. Their protected version
is significantly more costly and runs in about 115,000 cycles.

Efficient and Secure Algorithms for GLV-Based Scalar Multiplication 23

over Fp [16]. However, the former implementation is not protected against tim-
ing attacks whereas the latter is protected. If, optimistically, one assumes a 10%
overhead to protect [14], the ratio above would increase to at least 0.83. Our
software, on the other hand, runs in only 0.63 and 0.49 the time of two contem-
porary implementations also based on the same Montgomery curve, namely [18]
and [4], respectively, on another x64 processor (Sandy Bridge). Although a pre-
cise comparison is difficult (ratios are obtained on different x64 architectures,
GLS implementation [14] and ours exploit different prime forms, have different
endomorphism and precomputation costs, etc.) and part of the increase in the
speedup can be attributed to moving from 2 to 4-GLV decomposition, there is a
wide margin that makes clear the improvement obtained by using the proposed
techniques. A similar experimental comparison for ARM is not available in the
literature. To our knowledge, we report the first implementation of a GLV-based
GLS curve on an ARM processor.

Finally, in our experiments to assess the improvement obtained with the pro-
posed ARM/NEON interleaving technique on the Cortex-A9 processor, we ob-
served speedups close to 17% and 24% in comparison with implementations
exploiting only ARM or NEON instructions, respectively. Remarkably, for the
same figures on the Cortex-A15, we observed speedups in the order of 34%
and 35%, respectively. These experimental results confirm the significant per-
formance improvement enabled by the proposed technique, which exploits the
increasing capacity of the latest ARM processors for parallelizing ARM and
NEON instructions.

Acknowledgements. We would like to thank Joppe Bos, Craig Costello, Fran-
cisco Rodríguez-Henríquez and the reviewers for their useful comments that
helped us improve the quality of this work. Also, we would like to thank Fran-
cisco Rodríguez-Henríquez for giving us access to the Arndale board for the
development of the ARM implementation.

References

1. Aranha, D.F., Karabina, K., Longa, P., Gebotys, C., López, J.: Faster explicit
formulas for computing pairings over ordinary curves. In: EUROCRYPT 2011.
LNCS, vol. 6632, pp. 48–68. Springer, Heidelberg (2011)

2. Bernstein, D.: Cache-timing attacks on AES (2005),
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf

3. Bernstein, D.J., Birkner, P., Joye, M., Lange, T., Peters, C.: Twisted Edwards
curves. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 389–
405. Springer, Heidelberg (2008)

4. Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.-Y.: High-speed high-
security signatures. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917,
pp. 124–142. Springer, Heidelberg (2011)

5. Bernstein, D., Lange, T.: eBACS: ECRYPT Benchmarking of Cryptographic Sys-
tems, http://bench.cr.yp.to/results-dh.html (accessed on December 12, 2013)

http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://bench.cr.yp.to/results-dh.html

24 A. Faz-Hernández, P. Longa, and A.H. Sánchez

6. Bernstein, D.J., Schwabe, P.: NEON crypto. In: Prouff, E., Schaumont, P. (eds.)
CHES 2012. LNCS, vol. 7428, pp. 320–339. Springer, Heidelberg (2012)

7. Bos, J.W., Costello, C., Hisil, H., Lauter, K.: Fast cryptography in genus 2.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881,
pp. 194–210. Springer, Heidelberg (2013)

8. Bos, J.W., Costello, C., Hisil, H., Lauter, K.: High-performance scalar multiplica-
tion using 8-dimensional GLV/GLS decomposition. In: Bertoni, G., Coron, J.-S.
(eds.) CHES 2013. LNCS, vol. 8086, pp. 331–348. Springer, Heidelberg (2013)

9. Brumley, D., Boneh, D.: Remote timing attacks are practical. In: Mangard, S.,
Standaert, F.-X. (eds.) Proceedings of the 12th USENIX Security Symposium.
LNCS, vol. 6225, pp. 80–94. Springer (2003)

10. Faz-Hernández, A., Longa, P., Sánchez, A.H.: Efficient and secure algorithms
for GLV-based scalar multiplication and their implementation on GLV-GLS
curves (extended version). Cryptology ePrint Archive, Report 2013/158 (2013),
http://eprint.iacr.org/2013/158

11. Feng, M., Zhu, B.B., Xu, M., Li, S.: Efficient comb elliptic curve multiplication
methods resistant to power analysis. Cryptology ePrint Archive, Report 2005/222
(2005), http://eprint.iacr.org/2005/222

12. Feng, M., Zhu, B.B., Zhao, C., Li, S.: Signed MSB-set comb method for elliptic
curve point multiplication. In: Chen, K., Deng, R., Lai, X., Zhou, J. (eds.) ISPEC
2006. LNCS, vol. 3903, pp. 13–24. Springer, Heidelberg (2006)

13. Galbraith, S.D., Lin, X., Scott, M.: Endomorphisms for faster elliptic curve cryp-
tography on a large class of curves. J. Cryptology 24(3), 446–469 (2011)

14. Galbraith, S.D., Lin, X., Scott, M.: Endomorphisms for faster elliptic curve cryp-
tography on a large class of curves. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 518–535. Springer, Heidelberg (2009)

15. Gallant, R.P., Lambert, R.J., Vanstone, S.A.: Faster Point Multiplication on El-
liptic Curves with Efficient Endomorphisms. In: Kilian, J. (ed.) CRYPTO 2001.
LNCS, vol. 2139, pp. 190–200. Springer, Heidelberg (2001)

16. Thomé, E., Gaudry, P.: The mpFq library and implementing curve-based key ex-
changes. In: SPEED 2007, pp. 49–64 (2007)

17. Guillevic, A., Ionica, S.: Four dimensional GLV via the Weil restriction. In: Sako,
K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 79–96.
Springer, Heidelberg (2013)

18. Hamburg, M.: Fast and compact elliptic-curve cryptography. In: Cryptology ePrint
Archive, Report 2012/309 (2012), http://eprint.iacr.org/2012/309

19. Hankerson, D., Karabina, K., Menezes, A.: Analyzing the Galbraith-Lin-Scott
point multiplication method for elliptic curves over binary fields. IEEE Trans.
Computers 58(10), 1411–1420 (2009)

20. Hankerson, D., Menezes, A., Vanstone, S.: Guide to elliptic curve cryptography.
Springer (2004)

21. Hedabou, M., Pinel, P., Bénéteau, L.: Countermeasures for preventing comb
method against SCA attacks. In: Deng, R.H., Bao, F., Pang, H., Zhou, J. (eds.)
ISPEC 2005. LNCS, vol. 3439, pp. 85–96. Springer, Heidelberg (2005)

22. Hisil, H., Wong, K.K.-H., Carter, G., Dawson, E.: Twisted Edwards curves re-
visited. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 326–343.
Springer, Heidelberg (2008)

23. Hu, Z., Longa, P., Xu, M.: Implementing 4-dimensional GLV method on GLS
elliptic curves with j-invariant 0. Designs, Codes and Cryptography 63(3), 331–343
(2012), http://eprint.iacr.org/2011/315

http://eprint.iacr.org/2013/158
http://eprint.iacr.org/2005/222
http://eprint.iacr.org/2012/309
http://eprint.iacr.org/2011/315

Efficient and Secure Algorithms for GLV-Based Scalar Multiplication 25

24. Joye, M., Tunstall, M.: Exponent recoding and regular exponentiation algo-
rithms. In: Preneel, B. (ed.) AFRICACRYPT 2009. LNCS, vol. 5580, pp. 334–349.
Springer, Heidelberg (2009)

25. Kocher, P.C.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996)

26. Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

27. Lim, C.H., Lee, P.J.: More flexible exponentiation with precomputation. In:
Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 95–107. Springer, Hei-
delberg (1994)

28. ARM Limited. ARM Architecture Reference Manual: ARMv7-A and ARMv7-R
edition (2012)

29. Longa, P., Gebotys, C.: Efficient techniques for high-speed elliptic curve cryp-
tography. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225,
pp. 80–94. Springer, Heidelberg (2010)

30. Longa, P., Sica, F.: Four-dimensional Gallant-Lambert-Vanstone scalar multi-
plication. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658,
pp. 718–739. Springer, Heidelberg (2012)

31. Longa, P., Sica, F.: Four-dimensional Gallant-Lambert-Vanstone scalar multiplica-
tion. Journal of Cryptology (to appear, 2013)

32. Möller, B.: Algorithms for multi-exponentiation. In: Vaudenay, S., Youssef, A.M.
(eds.) SAC 2001. LNCS, vol. 2259, pp. 165–180. Springer, Heidelberg (2001)

33. Okeya, K., Takagi, T.: The width-w NAF method provides small memory and fast
elliptic curve scalars multiplications against side-channel attacks. In: Joye, M. (ed.)
CT-RSA 2003. LNCS, vol. 2612, pp. 328–342. Springer, Heidelberg (2003)

34. Oliveira, T., López, J., Aranha, D.F., Rodríguez-Henríquez, F.: Lambda coordi-
nates for binary elliptic curves. In: Bertoni, G., Coron, J.-S. (eds.) CHES 2013.
LNCS, vol. 8086, pp. 311–330. Springer, Heidelberg (2013)

35. Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures: the
case of AES. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 1–20.
Springer, Heidelberg (2006)

36. Sánchez, A.H., Rodríguez-Henríquez, F.: NEON implementation of an attribute-
based encryption scheme. In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-Naini,
R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 322–338. Springer, Heidelberg (2013)

37. Smith, B.: Families of fast elliptic curves from Q-curves. In: Sako, K., Sarkar, P.
(eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 61–78. Springer, Heidelberg
(2013)

38. Weber, D., Denny, T.: The solution of McCurley’s discrete log challenge. In:
Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 458–471. Springer, Hei-
delberg (1998)

39. Yanik, T., Savaş, E., Koç, Ç.K.: Incomplete reduction in modular arithmetic. IEE
Proc. of Computers and Digital Techniques 149(2), 46–52 (2002)

40. Yen, S.-M., Joye, M.: Checking before output not be enough against fault- based
cryptanalysis. IEEE Trans. Computers 49(9), 967–970 (2000)

41. Yen, S.-M., Kim, S., Lim, S., Moon, S.-J.: A countermeasure against one physical
cryptanalysis may benefit another attack. In: Kim, K.-c. (ed.) ICISC 2001. LNCS,
vol. 2288, pp. 414–427. Springer, Heidelberg (2002)

26 A. Faz-Hernández, P. Longa, and A.H. Sánchez

A Formulas for Endomorphisms Φ and Ψ on Curve
Ted127-glv4

Let P = (X1, Y1, Z1) be a point in homogeneous projective coordinates on a
twisted Edwards curve with eq. (2), u = 1 + i be a quadratic non-residue in
Fp2 , and ζ8 = u/

∅
2 be a primitive 8th root of unity. Then, we can compute

Φ(P) = (X2, Y2, Z2, T2) as follows

X2 = −X1

⎪
αY 2

1 + θZ2
1

) [
μY 2

1 − φZ2
1

]
, Y2 = 2Y1Z

2
1

[
φY 2

1 + γZ2
1

]
,

Z2 = 2Y1Z
2
1

[
μY 2

1 − φZ2
1

]
, T2 = −X1

⎪
αY 2

1 + θZ2
1

) [
φY 2

1 + γZ2
1

]
,

where α = ζ38 + 2ζ28 + ζ8, θ = ζ38 − 2ζ28 + ζ8, μ = 2ζ38 + ζ28 − 1, γ = 2ζ38 − ζ28 + 1
and φ = ζ28 − 1.

For curve Ted127-glv4, we have the fixed values

ζ8 = 1 +Ai, α = A+ 2i, θ = A+Bi,

μ = (A− 1) + (A+ 1)i, γ = (A+ 1) + (A− 1)i, φ = (B + 1) + i,

where A = 143485135153817520976780139629062568752, B =
170141183460469231731687303715884099729.

Computing an endomorphism Φ with the formula above costs 12m+2s+5a or
only 8m+ 1s+ 5a if Z1 = 1. Similarly, we can compute Ψ(P) = (X2, Y2, Z2, T2)
as follows

X2 = ζ8X
p
1Y

p
1 , Y2 = Zp

2

1 , Z2 = Y p
1 Z

p
1 , T2 = ζ8X

p
1Z

p
1 .

Given the value for ζ8 on curve Ted127-glv4 computing an endomorphism
Ψ with the formula above costs approximately 3m + 1s + 2M + 5A or only
1m+ 2M + 4A if Z1 = 1.

B Algorithms for Quadratic Extension Field Operations
Exploiting Interleaved ARM/NEON Multiprecision
Operations

Below are the algorithms for multiplication and squaring over Fp2 , with p =
2127 − c, for ARM platforms. They exploit functions interleaving ARM/NEON-
based operations, namely double_mul_neonarm, triple_mul_neonarm and
double_red_neonarm, detailed in Algorithms 5, 6 and 7, respectively.

Efficient and Secure Algorithms for GLV-Based Scalar Multiplication 27

Algorithm 10. Multiplication in Fp2 using completely or incompletely reduced
inputs, m = 3Mi + 9Ai + 2R (ARM platform)
Input: a = (a0 + a1i) and b = (b0 + b1i) ∈ Fp2 , where 0 ◦ a0, a1, b0, b1 ◦ 2127 − 1, p =
2127 − c, c small.
Output: a · b ∈ Fp2 .

1: t0 ← a0 + a1 [0, 2128 >
2: t1 ← b0 + b1 [0, 2128 >
3: (T0, T1, T2) ← triple_mul_neonarm(a0, b0, a1, b1, t0, t1) [0, 2256 >
4: C0 ← T0 − T1 < −2254, 2254 >
5: if C0 < 0, then C0 ← C0 + 2128 · p [0, 2255 >
6: T2 ← T2 − T0 [0, 2256 >
7: C1 ← T2 − T1 [0, 2256 >
8: return (c0, c1) ← double_red_neonarm(C0, C1) [0, p >

Algorithm 11. Squaring in Fp2 using completely reduced inputs, s = 2M +
1A+ 2Ai (ARM platform)
Input: a = (a0 + a1i) ∈ Fp2 , where 0 ◦ a0, a1 ◦ p− 1, p = 2127 − c, c small.
Output: a2 ∈ Fp2 .

1: t0 ← a0 + a1 [0, 2128 >
2: t1 ← a0 − a1 mod p [0, p >
3: t2 ← a0 + a0 [0, 2128 >
4: (C0, C1) ← double_mul_neonarm(t0, t1, t2, a1) [0, p2 >
5: return a2 = double_red_neonarm(C0, C1) [0, p >

An Improved Compression Technique

for Signatures Based on Learning with Errors

Shi Bai and Steven D. Galbraith

Department of Mathematics,
University of Auckland,

New Zealand
S.Bai@auckland.ac.nz,

S.Galbraith@math.auckland.ac.nz

Abstract. We present a new approach to the compression technique of
Lyubashevsky et al. [17,13] for lattice-based signatures based on learn-
ing with errors (LWE). Our ideas seem to be particularly suitable for
signature schemes whose security, in the random oracle model, is based
on standard worst-case computational assumptions. Our signatures are
shorter than any previous proposal for provably-secure signatures based
on standard lattice problems: at the 128-bit level we improve signature
size from (more than) 16500 bits to around 9000 to 12000 bits.

Keywords: Lattice-based signatures, learning with errors.

1 Introduction

An important problem is to obtain practical and provably secure public key sig-
nature schemes based on lattice assumptions. One approach is to use trapdoor
functions and the hash-and-sign methodology (see Gentry, Peikert and Vaikun-
tanathan [12], Stehlé and Steinfeld [22]). However, the most promising avenue for
practical signatures (with security in the random oracle model) has long been the
use of the Fiat-Shamir paradigm; this is the approach used for all currently de-
ployed discrete-logarithm-based digital signature schemes. (For signatures that
are proven secure in the standard model, we refer to Boyen [6] and Böhl et al.
[5].)

A series of works by Lyubashevsky and others [15,17,13,9] have developed
schemes based on the Fiat-Shamir paradigm that are secure in the random oracle
model. There are several challenges when implementing lattice-based signature
schemes, including the size of the public key, the size of the signature and the
requirement to sample from discrete Gaussians during the signing process. Our
main focus in this paper is to reduce the size of signatures.

The basic idea of Lyubashevsky’s signatures in the case of LWE is to have
a public key of the form (A,T = AS + E (mod q)) where A is an m × n
matrix and m ⊗ n. The signing procedure starts by choosing vectors y1,y2 of
small norm and computing v = Ay1+y2 (mod q). Then, using the Fiat-Shamir
paradigm, the signer computes c = H(v, μ) where μ is the message and H is a

J. Benaloh (Ed.): CT-RSA 2014, LNCS 8366, pp. 28–47, 2014.
c© Springer International Publishing Switzerland 2014

An Improved Compression Technique for Signatures Based on LWE 29

hash function. Finally, the signer computes z1 = y1+Sc and z2 = y2+Ec. The
signature is (z1, z2, c). The verifier checks that ≡z1≡ and ≡z2≡ are small enough
and that H(Az1 + z2 − Tc (mod q), μ) is equal to c. A significant obstacle to
short signatures is the need to send the length m vector z2. Recent work [13,9]
has introduced compression techniques that greatly reduce the amount of data
to be sent for the vector z2. The main contribution of our paper is to give a
variant of the signature scheme with the feature that z2 can be omitted entirely.

1.1 Related Work

At Eurocrypt 2012, Lyubashevsky [17] gave a signature scheme whose security
(at around the 100-bit security level) relies on SIS and LWE, and for which
signatures are 16500 bits. To our knowledge, this is the current record in the
literature for signatures whose security is reduced to worst-case assumptions in
general lattices. The signing algorithm for that scheme requires sampling from
discrete Gaussians. At the 128-bit security level, signatures for this scheme would
be around 20000 bits.

Güneysu, Lyubashevsky and Pöppelmann [13] introduced an important com-
pression technique and gave a signature scheme that does not require sampling
from Gaussians. The security depends on the Ring-SIS and DCK (an NTRU-like
variant of Ring-LWE with small parameters) assumptions, however a full secu-
rity analysis is not given in their paper. The signatures are around 9000 bits.
The compression technique can be modified to shorten the signatures from [17]
(changing the rejection sampling to a Gaussian distribution).

Recently Ducas, Durmus, Lepoint and Lyubashevsky [9] have given a new
scheme with several further tricks to reduce the signature size. For security
based on SIS (and hence on standard worst-case lattice problems) their scheme
has signatures of size more than 20000 bits1. They also give a variant, based on
a non-standard computational assumption related to NTRU, that has signatures
of around 5000 bits.

1.2 Our Contribution

As mentioned already, our main contribution is to present a variant of the Lyuba-
shevsky signature scheme based on LWE that does not require sending any in-
formation about the z2 vector. At a high level, Lyubashevsky’s scheme [13,17]
based on LWE has public key (A,b = As+ e (mod q)) and a signature is like a
proof of knowledge of the pair (s, e). The key feature of our scheme is to prove
knowledge of only s. The smallness of e becomes implicit in the verification equa-
tion, so we no longer need to send any information about e. Since s has length n
and e has length m ⊗ n, not needing to prove knowledge of e has the potential
to provide a significant reduction in signature size.

1 It may seem paradoxical that the improved techniques of [9] lead to larger signatures
than [17]. This is due to the requirement that the matrix A in the public key be
indistinguishable from a uniformly chosen matrix, which makes m larger where m =
O(n log q

log n
).

30 S. Bai and S.D. Galbraith

Briefly, the public key for our scheme is an LWE instance (A,T = AS + E
(mod q)) where all terms are matrices, and S,E have small entries. A signature
is formed by first choosing a vector y and computing v = Ay (mod q). One
then throws away the least significant bits of v and hashes the remaining bits
together with the message μ to get a hash value c. The value c is used to create a
low weight vector c and the signature is the pair (z = y+Sc, c). As in [9,13,17],
we use rejection sampling to ensure that the distribution of z is independent
of the secret. To verify the signature one computes w = Az − Tc ≡ Ay − Ec
(mod q). Assuming that Ec is small enough then the most significant bits of w
will match those of v and so the hash value computed using the most significant
bits of w equals c.

Our work employs several ideas from [9,13,17]. We prove the security of our
scheme using the proof methodology from [17].

For signatures based on worst-case lattice assumptions we improve signature
size from more than 16500 bits to around 9000 bits. The security level (at the
128 bits-level) of our signatures is supported by Regev’s reduction for LWE and
also arguments about BKZ 2.0 lattice reduction due to Chen and Nguyen [8].
Hence, we match the signature size of [13], and still with the beneficial feature of
using uniform distributions, but with security based on standard assumptions.
Relaxing the conditions of Regev’s theorem also allows signatures of size under
10000 bits (see Section B.2). We also give signatures of under 8000 bits with
security based on a non-standard matrix-NTRU-like problem (see Section B.3).

Another aspect of our result is that we use standard LWE rather than Ring-
LWE. Previous work on lattice signatures assumed that using Ring-LWE or
NTRU would give more practical signatures. While there are certainly significant
practical benefits from using Ring-LWE (such as smaller public keys), there are
also some constraints (such as preferring n to be a power of 2).

2 Preliminaries

2.1 Basic Notation and Gaussians

Let q ∪ N be a prime. We write Zq for the integers modulo q and represent this
set by integers in the range (−q/2, q/2]. We write (column) vectors in bold face
as v = (v1, . . . , vn)

T , where vT denotes the transpose of the vector, and matrices
in bold face as A. The n×n identity matrix is denoted In. The Euclidean norm
is ≡v≡ = ≡v≡2 =

√∑n
i=1 v

2
i and the infinity norm (or sup norm) is ≡v≡≥ =

max1≤i≤n |vi|.
For a ∪ Z and d ∪ N, define [a]2d to be the unique integer in the set

(−2d−1, 2d−1] such that a ≡ [a]2d (mod 2d). For a ∪ Z, we define ⇐a→d = (a −
[a]2d)/2

d (dropping the d-least significant bits). Note that it satisfies ⇐2d−1→d =
⇐−2d−1 + 1→d = 0 and ⇐2d−1 + 1→d = −⇐−2d−1→d = 1. We extend this function
to vectors: on input a length m vector v = (v1, . . . , vm)T ∪ Z

m the function ⇐v→d
is the length m vector with entries ⇐vi→d. A lattice in Z

m is a subgroup of Zm;
for background see [18,19].

An Improved Compression Technique for Signatures Based on LWE 31

Let A be a finite set. We write a ≥ A to denote that a is sampled uni-
formly from A. We write A ≥ Z

m×n
q to denote that A is an m × n matrix

with entries uniformly and independently sampled from Zq. Let σ ∪ R>0. Define
ρΠ(x) = exp(−x2/(2σ2)) and ρΠ(Z) = 1 + 2

∑≥
x=1 ρΠ(x). The discrete Gaussian

distribution on Z with standard deviation σ is the distribution that associates
to x ∪ Z the probability ρΠ(x)/ρΠ(Z). We denote this distribution DΠ. Some
authors write s =

∈
2Δσ and define ρs(x) = exp(−Δx2/s2) and denote the dis-

tribution Ds. The tail of a discrete Gaussian variable can be bounded by the
following result.

Lemma 1. (Lemma 4.4, full version of [17]) For any k > 0,

Prx←Dσ (|x| > kσ) ∅ 2e−k
2/2. (1)

Taking k = 13 gives tail probability approximately 2−121, taking k = 13.5 gives
2−130 and k = 14 gives 2−140.

One can also define discrete Gaussian distributions on vectors. We write y ≥
Dn
Π to mean that the vector y = (y1, . . . , yn)

T ∪ Z
n is sampled such that each

entry yi is independently sampled according to the distribution DΠ.

2.2 Learning with Errors

The learning with errors problem (LWE) was introduced by Regev [23]. It is
parameterised by integers n, q ∪ N and distributions Φ and Ψ on Z (typically
Φ is the uniform distribution on Zq and Ψ = DΔq for some fixed real number
0 < Υ < 1).

Definition 1. Let n, q ∪ N and let Φ and Ψ be distributions on Z. The LWE
distribution for a given vector s ∪ Z

n
q is the set of pairs (a,a · s + e (mod q))

where a ∪ Z
n
q is sampled uniformly and where e is sampled from Ψ.

– The computational-LWE problem is: For a vector s ≥ Φn and given arbi-
trarily many samples from the LWE distribution for s, to compute s.

– The decisional-LWE problem is: Given arbitrarily many samples from Z
n+1
q

to distinguish whether the samples are distributed uniformly or whether they
are distributed as the LWE distribution for some fixed vector s ≥ Φn.

We sometimes use notation like (n, q, Ψ)-LWE to mean the computational LWE
problem with these parameters. We also write (n, q, Υ)-LWE to mean LWE where
Ψ = DΔq.

If the error distribution is small enough compared with q and if one has
enough samples from the LWE-distribution then it can be shown that these
computational problems are well-defined. Well-defined for decisional-LWEmeans
that the LWE-distribution, for all vectors likely to be sampled as s ≥ Φn, is not
statistically close to the uniform distribution. Well-defined for computational-
LWE means that there is a unique solution s that is most likely to be the
one used to generate the samples from the LWE distribution (in other words,

32 S. Bai and S.D. Galbraith

computational-LWE is well-defined as a maximum likelihood problem). There is
a reduction (Lemma 4.2 of Regev [24]) from the computational-LWE problem
to the decisional-LWE problem. So if one problem is hard then so is the other.

Regev’s main theorem is that the LWE problems are as hard as worst-case
assumptions in general lattices when Φ is the uniform distribution and when Ψ is
a discrete Gaussian with standard deviation σ = Υq for some fixed real number
0 < Υ < 1.

Theorem 1. (Regev) Let n, q ∪ N and 0 < Υ < 1 be such that Υq ⊕ 2
∈
n. Then

there exists a quantum reduction from worst-case GapSVPÕ(n/Δ) to (n, q, Υ)-
LWE.

One can also fix an integer m and consider the case of LWE with a bounded
number of samples. We often write the LWE instance in this case as (A,b ≡
As + e (mod q)) where A is an m × n matrix over Zq, s is a length n column
vector, and e is a length m vector with entries sampled independently from Ψ.
As long as the bounded LWE instance is well-defined then this problem cannot
be easier than the general LWE instance. Consider the bounded samples LWE
problem when Φ is the uniform distribution on Zq and when Ψ is such that
error values satisfy |e| ∅ E with overwhelming probability (in our application
we will have E = 2d−1 or E = 2d). Then there are at most qn(2E + 1)m choices
for (s, e) compared with qm choices for b. Hence, as a rule of thumb, we need
qm > qn(2E + 1)m for the bounded samples LWE problem to be well-defined.

Another well-known fact (see [2]) is that one may reduce LWE to the case
where Φ = Ψ. Suppose we have m samples, where m is significantly larger than
n, and write the LWE instance as (A,b ≡ As+e (mod q)). With overwhelming
probability, A has rank n and (swapping rows of A if necessary) we may write

A =

(
A1

A2

)

where A1 is an invertible n× n matrix and A2 is an (m− n)× n matrix. Write
b = (b1

b2
) and e = (e1

e2
) where b1 and e1 have length n and we have b1 = A1s+e1

and b2 = A2s+ e2. It follows that

b2 −A2A
−1
1 b1 = (−A2A

−1
1)e1 + e2 (mod q)

which gives an LWE instance where the solution (e1, e2) is sampled from the
error distribution. We call this problem LWE with short secrets.

It follows that LWE with short secrets is not easier than the general case.
We can also consider the LWE problem with short secrets and with a bounded
number of samples. As long as this problem is well defined then it is also not eas-
ier than the general case. Furthermore, fewer samples are required for the LWE
with short secrets problem to be well-defined: If we again assume the distribu-
tion Ψ is such that error values satisfy |e| ∅ E with overwhelming probability,
then we need, as a rule of thumb, qm > (2E + 1)n+m for the LWE problem
to be well-defined. To get very short signatures one can push this further and

An Improved Compression Technique for Signatures Based on LWE 33

have the distribution Φ having smaller support than the error distribution Ψ (cf.
Appendix B.2).

In our work we will consider a matrix variant of LWE. The LWE distribution is
on pairs (A,AS+E (mod q)) where S and E are matrices. Each of the columns
of S and E corresponds to an LWE instance (A,As+ e (mod q)), so this is just
a collection of individual LWE instances. However, note that the matrix A is
shared across all instances; we call them semi-independent instances of LWE. In
any case, it is clear that this matrix variant of LWE cannot be easier than LWE
with a single vector b ≡ As + e (mod q).

To summarise, we may choose (n, q, Υ) such that Υq > 2
∈
n and set Φ = Ψ =

DΔq. We should choose m such that qm > (28Υq)n+m so that the problem is
well-defined with overwhelming probability. Consider the computational LWE
problem (A,AS + E (mod q)) where A is an m × n matrix uniformly chosen
from Z

m×n
q and where S and E are chosen to have entries sampled independently

from DΔq. Then this problem is not easier than GapSVPÕ(n/Δ) in n-dimensional
lattices.

2.3 Rejection Sampling

For security we will need to ensure that the signatures do not leak the private
key. We use a variant of the general rejection sampling lemma of [17] (also see
Chapter 2 of Devroye [10]).

Lemma 2. Let f : Zn ∃ R be a probability distribution. Given a subset V ⊆ Z
n,

let h : V ∃ R be a probability distribution defined on V . Let gv : Zn ∃ R be a
family of probability distributions indexed by v ∪ V such that for almost all v’s
from h there exists a universal upper bound M ∪ R such that

Pr [Mgv(z) ⊕ f(z); z ≥ f] ⊕ 1− negligible.

Then the output distributions of the following two algorithms have negligible
statistical difference:

1. v ≥ h, z ≥ gv, output (z, v) with probability min
(

f(z)
Mgv(z)

, 1
)
, else fail.

2. v ≥ h, z ≥ f , output (z, v) with probability 1
M .

In the signature (and the security proof), distribution f is a uniform distri-
bution over [−B + U,B − U]n where U = 14σSc. Each v = Sc is a vector with
entries in a close-to-Gaussian distribution with standard deviation σSc. With
high probability, the coefficients in v are bounded by 14σSc. This accounts for
the “almost all” argument in above lemma. In the signature z = Sc+ y, vector
y is generated from a uniform distribution over [−B,B]n (so each entry is set
for 2−140 error). For success probability of roughly 1/e, we can set B = 14σScn.

3 Our Signature Scheme

In Appendix A, we recall some standard background on signature schemes. We
will focus on our signature scheme (Figure 1) in this section.

34 S. Bai and S.D. Galbraith

The scheme depends on parameters n,m, k, α, w, q, Υ, d, B and distributions
DE , DS, Dy and Dz. The distributions DS and DE are the distributions for the
secret and error respectively in the LWE assumption. As in [9,17], the distribu-
tion Dn

y,Sc(z) is the distribution coming from the shift of the distribution Dn
y by

an offset vector Sc. Various constraints on the parameters will be given later,
but we typically havem > n = k and q > 2d ⊕ B. The main security parameters
are n (the security of our scheme will depend on (n, q, Υ)-LWE) and α (which
controls the probability of breaking the hash function).

The scheme requires a hash function H to binary strings of fixed length α,
and an encoding function F that maps binary strings of length α to elements of
the set Bk,w of length k vectors of weight w with coefficients in {−1, 0, 1}. We
require F to be close to an injection in the sense that

Prs1,s2←{0,1}κ(F (s1) = F (s2)) ∅ c1
2Ψ

(2)

for some constant c1. We also typically choose parameters so that 2Ψ ⊗ #Bk,w =

2w
(
k
w

)
. There are several ways to construct a suitable function F . One method is

given in Section 4.4 of [9] and some other approaches are discussed in Appendix
C (and the references) of Biswas and Sendrier [4].

The verifier wants to test that signature vectors z have come from the cor-
rect distribution Dn

z . This could be done in many ways, depending on Dz and
how much statistical analysis the verifier wishes to perform. If Dz is a uniform
distribution on [−B,B] then the natural test is that ≡z≡≥ ∅ B; this could be
entirely implicit if the interval is of the form [−2a−1 + 1, 2a−1] and entries of z
are represented by a bits. If Dz is a Gaussian or Gaussian-like distribution with
mean 0 and standard deviation σz then a a cheap test is to have a bound B (e.g.,
B = 2

∈
nσz ; see Lemma 4.4 of the full version of [17]) such that z ≥ Dn

z implies
≡z≡2 ∅ B with high probability. Hence, in Line 4 of Algorithm 3 we write this
as ≡z≡ι ∅ B where typically θ ∪ {2,◦}.

The scheme is given by Algorithms 1, 2 and 3 in Figure 1. While reading the
protocol the reader may keep in mind the following set of parameters:

(n,m, k, α, q, d, B) = (512, 945, 512, 132,⊗ 230.84, 24,⊗ 220.97).

The distributions DE = DS used here are discrete Gaussians with standard
deviation σE = σS ⊕ 2

∈
n. We will choose the distributions Dy and Dz to be

uniform distributions, like [−B,B]. A minor subtlety is that Dy must cover Dz

with a little slack on each side, so to keep the notation simple we choose Dy to
be the uniform distribution on [−B,B] and Dz to be the uniform distribution on
[−(B−U), B−U] where U = 14

∈
wσE ⊕ 28

∈
wn. If one wanted to be pedantic

would one could modify line 4 of Algorithm 3 to ≡z≡ι ∅ B − U .
The message is denoted μ. Recall that, for a ∪ Z, ⇐a→d = (a − [a]2d)/2

d is
essentially the integer a with its d least significant bits removed. The value M
used in the rejection sampling in Line 10 of Algorithm 2 is a bound for the
expected number of trials until rejection sampling succeeds, as in Lemma 2. The
rejection in Line 4 of Algorithm 1 occurs with probability less than 1/30 for our

An Improved Compression Technique for Signatures Based on LWE 35

parameters, and since LWE with bounded number of samples is not easier than
general LWE (see Section 2.2), it follows that the outputs of the key generation
algorithm are hard LWE instances.

Algorithm 1. Key generation

Input: n,m, k, q, ΔS, ΔE

Output: A,T
1: A ◦ Z

m×n
q

2: S ◦ Dn×k
S

3: E ◦ Dm×k
E

4: if |Ei,j | > 7ΔE for any (i, j) then
5: Restart
6: end if
7: T ∈ AS+E (mod q)
8: return A,T

Algorithm 2. Signing

Input:
μ,A,T,S, Dy, Dz , d, w, ΔE, H,F,M

Output: (z, c)
1: y ◦ Dn

y

2: v ∈ Ay (mod q)
3: c = H (⇒v�d, μ)
4: c = F (c)
5: z = y+ Sc
6: w ∈ Az−Tc (mod q)
7: if |[wi]2d | > 2d−1 − 7wΔE then
8: Restart
9: end if
10: return (z, c) with probability

min
(
Dn

z (z)/(M ·Dn
y,Sc(z)), 1

)

Algorithm 3. Verifying

Input: μ, z, c,A,T, δ, B, d,H,F
Output: Accept or Reject
1: c = F (c)
2: w ∈ Az−Tc (mod q)
3: c∗ = H (⇒w�d, μ)
4: if c∗ = c and →z→Ψ ⊗ B then
5: return “Accept”
6: else
7: return “Reject”
8: end if

Fig. 1. The LWE Signature Scheme

The test in Line 7 of Algorithm 2 ensures that ⇐v→d = ⇐v−Ec→d = ⇐w→d, and
so the signatures do verify. The bound 7wσE comes from the fact that entries
of E are bounded by 7σE and that the weight of c is w. Assuming that w is
distributed close to uniformly, then this condition will hold with probability
(1− 14wσE/2

d)m and so we require

2d � 7wmσE . (3)

The probability of acceptance is targeted between 1/3 and 1/2 for our parameters
(see Table 1 for details).

Remark 1. The signature size essentially depends on n and the distribution Dz.
Due to the rejection sampling, the distribution Dz depends on the size of Sc,

36 S. Bai and S.D. Galbraith

which depends on DS (i.e., σS) and the weight w of c. Hence, the signature size
is driven by n,w and DS . A surprising fact is that the signature size does not
depend on m or d. In fact, it seems to be quite possible to choose 2d rather
large and q quite a bit larger than 2d (as a minimum we need ⇐Ay (mod q)→d
to provide more than α-bits of entropy into the hash function.

4 Security Proofs

There are several ways to prove security of our signature scheme in the random
oracle model. Each requires different conditions on the parameters. Theorem 2
follows Lyubashevsky’s blueprint and seems to be the most useful for short
signatures.

Theorem 2. Let q be prime. Let parameters n,m, d, α,B be such that

(2B)nqm−n ⊕ (2d+1)m2Ψ. (4)

and suppose equation (2) holds. Let Dy = [−B,B] with the uniform distribution
and let S,E have entries chosen from discrete Gaussian distributions with stan-
dard deviation σS = σE = Υq. Let A be a forger against the signature scheme
in the random oracle model that makes h hash queries, s sign queries, runs in
time t and succeeds with probability γ. Then there is a negligible ε and some
0 ∅ γ⊕ ∅ γ such that A can be turned into either of the following two algorithms:

1. an algorithm, running in time approximately t and with advantage γ−γ⊕−ε,
that solves the (n,m, q, Υ)-decisional-LWE problem.

2. an algorithm, running in time approximately 2t and with success probability

γ⊕
(
δ′
h − 1

2κ

)
, that solves the unbalanced (m + n,m, q)-search-SIS problem:

Given an m× (n+m) matrix A⊕ to find a length n vector y1 and a length m
vector y2 such that ≡y1≡≥, ≡y2≡≥ ∅ max(2B, 2d−1) + 2E⊕w and A⊕(y1y2) ≡ 0

(mod q) where E⊕ satisfies

(2E⊕)m+n ⊕ qm2Ψ. (5)

The proof of Theorem 2 is given in Subsection 4.2. We sketch the main idea here.
We first replace the signing oracle with a simulation in the random oracle model.
We then replace the public key (A,T) with a different value; the decisional-LWE
assumption appears at this point. The forking lemma is then used to transform
a forger into an algorithm that solves SIS.

Here, we first show that there is enough entropy going into the hash function.
In Algorithm 2 the vector y is sampled from Dn

y , and when Dy is the uniform
distribution on [−B,B] this means there are (2B + 1)n choices for y. There
are at most (q/2d)m choices for ⇐Ay→d, and these values are hashed to α-bit
strings, giving at most 2Ψ possible values for c. It is necessary that the hash
outputs are uniformly distributed, which requires that there is sufficient entropy
in the distribution of values ⇐Ay→d being hashed. Since (2B + 1)n will be much

An Improved Compression Technique for Signatures Based on LWE 37

greater than 2Ψ (this condition is required for the computational assumptions
to be reasonable), it suffices to ensure that there is a sufficiently large supply of
possible values for ⇐Ay→d. This is the content of Lemma 3.

Lemma 3. Let q > 4B > 4 and m > n > α and other notation be as above.
Let Dy be the uniform distribution on [−B,B] and suppose the condition in
Equation (4) holds. Then the number of values for ⇐Ay (mod q)→d is at least
2Ψ, and the probability that two values y1, y2 sampled uniformly from [−B,B]n

give the same value is at most 1/2Ψ.

Proof. Let A be a randomly chosen matrix. We can assume the rank of A is n
provided that m ⊕ n (if not then we can re-generate A in the key generation).
Hence A defines an injective linear map from Z

n to Z
m.

Let y1 ∪ Dn
y and set u = ⇐Ay1 (mod q)→d. Define

Su = {y2 ∪ Dn
y : ⇐Ay2 (mod q)→d = u}.

It suffices to bound #Su. Note that if y2 ∪ Su then y = y1 − y2 satisfies
≡y≡≥ ∅ 2B and

Ay (mod q) ∪ [−2d, 2d]m.

Hence, to bound #Su it suffices to bound the number of such vectors y.
A randomly chosen matrix A defines a random lattice L = {v ∪ Z

m : v ≡ Ay
(mod q) for some y ∪ Z

n}. The volume of L is qm−n. By the Gaussian heuristic,
the number of elements in L⊥[−2d, 2d]m is expected to be 2(d+1)m/qm−n. Finally,
suppose y,y⊕ ∪ [−2B, 2B]n are such that Ay ≡ Ay⊕ (mod q). Then A(y−y⊕) ≡
0 (mod q), which implies y ≡ y⊕ (mod q) which, due to the size constraints
and the condition q > 4B, implies y = y⊕. Hence, #Su is upper bounded by
2(d+1)m/qm−n for all u.

There are (2B + 1)n choices for y1, so if we choose two of uniformly, the
probability of a collision is bounded by

2(d+1)m/qm−n

(2B + 1)n
∅ 1

2Ψ
. (6)

�

4.1 Simulation in the Random Oracle Model

Let A be a forger for the signature scheme. The forger takes as input a public
key for the signature scheme, makes h random oracle queries and s sign queries,
runs in time t, and outputs a valid signature with probability γ. Note that sign
queries contain implicit hash queries, but we count those separately. So the total
number of calls to the random oracle is actually s+h. We want to use A to solve
LWE or SIS.

Game 0 is running the forger A on the real cryptosystem. Game 1 is the same
as Game 0, except that the sign queries are replaced by a simulation in the
random oracle model (see Algorithm 4 below) and hash queries are handled by

38 S. Bai and S.D. Galbraith

answering with random values (as usual we use a list to ensure that the hash
function responses are consistent). Our goal in this section is to show that Game
0 and Game 1 are indistinguishable.

Algorithm 4. Game 1 sign query handler

Input: μ,A,T, Dy , Dz, d, w, ΔE ,H,F,M
Output: (z, c)
1: choose uniformly a β-bit binary string c
2: c = F (c)
3: z ◦ Dn

z

4: w ∈ Az−Tc (mod q)
5: if |[wi]2d | > 2d−1 − 7wΔE then
6: Restart
7: end if
8: if H has already been defined on (⇒w�d, μ) then
9: Abort game
10: else
11: Program H(⇒w�d, μ) = c
12: end if
13: return (z, c) with probability 1/M

Lemma 4. Let notation be as above and suppose the conditions of Lemma 3
hold. Then Game 0 and Game 1 are indistinguishable.

Proof. As with Lemma 5.3 of [17] the indistinguishability can be shown in several
steps. We sketch the main ideas.

The first step is to show that, in the random oracle model, one can consider
c as being independent of y. We decouple c from y and show that the changes
(Lines 1-2, 8-9) are statistically negligible. First, by Lemma 3 the distribution
of values ⇐Ay (mod q)→d has sufficient entropy that c is uniformly distributed
on α-bit strings. Hence the real signing algorithm is consistent with line 1 of the
simulation.

Lemma 3 can be used to show that the values ⇐w→d are well-distributed.
Hence, the probability that the game aborts in line 9 of Algorithm 4 is negligible
(the danger is that two values of ⇐w→d might arise from different choices of c,
and this cannot happen in Algorithm 2). This follows by an argument similar to
that in [17]. The probability is bounded by s(s+h)max

(
(2d+1/q)m, 2−Ψ

)
using a

hybrid argument (this term contributes to the ε in the statement of Theorem 2).
The next step of the proof is to note that the output distributions have neg-

ligible statistical difference, due to the rejection sampling (cf. Lemma 2) in two
places in the sign algorithm. Hence, the success of any distinguisher between
these two games is negligible. �

An Improved Compression Technique for Signatures Based on LWE 39

4.2 Completing the Proof of Theorem 2

We want to show that a forger A can be used to solve SIS. We could apply
the forking lemma to Game 1, showing that an adversary who can win Game
1 can be used to solve search-SIS. This approach is analogous to Lemma 5.4 of
Lyubashevsky [17]. The argument requires there to be more than one private
key for the given public key (A,T). Precisely, we need there to exist at least
two pairs (S,E), (S⊕,E⊕) such that T ≡ AS+E ≡ AS⊕ +E⊕ (mod q) and where
both pairs are roughly equally likely with respect to the output distribution of
the key generation algorithm. This is achieved in Lemma 5.2 of [17] in the case
of SIS by taking m to be sufficiently large. This approach would require taking
n large and the signature size is increased.

Instead we employ an alternative proof technique given in Section 6 of Lyuba-
shevsky [17]. The idea is to introduce Game 2, which is Game 1 but with the
public key replaced by a pair (A,T ≡ AS⊕ + E⊕ (mod q)) of matrices over Zq,
where S⊕ and E⊕ have larger entries than S and E do. The decisional-LWE as-
sumption is that Game 1 and Game 2 are computationally indistinguishable: the
only change happens in the public keys which the adversary can not distinguish.

More precisely, the key generation in Game 2 is to choose a random n × k
matrix S⊕ with entries in [−E⊕, E⊕] and a random m× k matrix E⊕ with entries
in [−E⊕, E⊕]. The inequality in Equation (5) implies that the LWE instance
has non-unique solutions with overwhelming probability. We set T ≡ AS⊕ +
E⊕ (mod q). We do not claim that (A,T) are uniformly distributed, but an
argument analogous to Lemma 3.6 of [17] together with a hybrid argument
shows that the decisional LWE assumption implies it is hard to distinguish such
a pair (A,T) from a pair (A,T) output by Algorithm 1.

We write γ⊕ for the success probability of the forger when running Game 2. If
the decisional-LWE assumption holds then γ− γ⊕ is negligible. Finally, we apply
the forking lemma to Game 2; this is the content of Lemma 5. Theorem 2 follows
from Lemma 5.

Lemma 5. Suppose the forger A plays Game 2, makes h hash function queries
and s sign queries, runs in time t, and succeeds with probability γ⊕. Suppose the
parameters satisfy the conditions in Theorem 2. Then there exists an algorithm

running in time approx 2t and with success probability δ′
h

(
δ′
h − 1

2k

)
+ O(s

2

2κ +
n+m
2140) that solves the unbalanced search-SIS problem defined in Theorem 2.

Proof. Let A⊕ be the m× (n+m) matrix giving the input SIS instance. Taking
the Hermite normal form we can write A⊕ = (A|Im), where A is an m × n
matrix. The goal of the proof is to compute short non-zero vectors y1,y2 such
that Ay1 + y2 ≡ 0 (mod q).

As mentioned, we choose a random n× k matrix S⊕ with entries in [−E⊕, E⊕]
and a random m × k matrix E⊕ with entries in [−E⊕, E⊕]. Set T ≡ AS⊕ + E⊕

(mod q). The inequality in Equation (5) implies that the LWE instance has non-
unique solutions with overwhelming probability. Game 2 is to run the forger A
on (A,T).

40 S. Bai and S.D. Galbraith

The forger makes hash and sign queries that are simulated in the random
oracle model as usual. Eventually A outputs a valid signature (z, c) on message
μ. We know that the random oracle has been queried in order for the verification
equation c = H(⇐w→d, μ) to hold for w = Az−Tc (mod q).

We will now reduce to the case where c arises from a hash query, rather than a
sign query. Suppose not: then there is a sign query on a message μ⊕ with output
equal to (z⊕, c), and so

c = H(⇐Az−Tc (mod q)→d, μ) = H(⇐Az⊕ −Tc (mod q)→d, μ⊕).

If μ⊕ ⊃= μ or ⇐Az−Tc (mod q)→d ⊃= ⇐Az⊕ −Tc (mod q)→d then we have a colli-
sion in H , so this event occurs with probability 1/2Ψ. Therefore we may assume
that μ⊕ = μ and that A(z − z⊕) (mod q) has entries in [−2d, 2d]. If z ⊃= z⊕ then
we have a non-zero solution to Ay1 + y2 ≡ 0 (mod q) with ≡y1≡≥ ∅ 2B and
≡y2≡≥ ∅ 2d and we have solved the SIS instance and we are done. Finally, if
z = z⊕ then (μ⊕, z⊕, c) is equal to (μ, z, c) and so it is not a forgery. Hence, for the
remainder of the proof we may assume that the forgery (z, c) has c an output of
a random oracle query (on some index I) that was not made as part of a sign
query.

Now we apply the Bellare-Neven [3] version of the forking lemma. In other
words, we re-wind the attack, so that v is the same but the I-th random oracle
output is taken to be a different binary string c⊕. One can verify that our signature
scheme is a generic signature scheme with security parameter α. With probability
γ⊕(δ

′
h − 1

2κ) we obtain a valid signature (z⊕, c⊕) on the same message μ. Let c =
F (c) and c⊕ = F (c⊕). With overwhelming probability we have c ⊃= c⊕.

Now, we have ⇐Az−Tc (mod q)→d = ⇐Az⊕ −Tc⊕ (mod q)→d and so Az −
Tc+ e ≡ Az⊕ −Tc⊕ (mod q) for some vector e satisfying ≡e≡≥ ∅ 2d−1 coming
from the rounding. Hence, putting T ≡ AS⊕ +E⊕ (mod q), we see

A(z − z⊕ + S⊕(c⊕ − c)) + e+E⊕(c⊕ − c) ≡ 0 (mod q). (7)

Writing y1 = z−z⊕+S⊕(c⊕−c) and y2 = e+E⊕(c⊕−c) we have ≡y1≡≥ ∅ 2B+2E⊕w
and ≡y2≡≥ ∅ 2d−1+2E⊕w. Hence, as long as (y1,y2) ⊃= (0, 0), we have a solution
to the input SIS instance. Finally, since the matrices (S⊕,E⊕) are not uniquely
defined with high probability, the adversary does not know which pair (S⊕,E⊕) is
being used to construct the vectors y1 and y2. Hence, with probability at least
1
2 , we deduce that (y1,y2) ⊃= (0, 0). �

5 Parameter Selection

In Table 1, we give some concrete parameters for our signature scheme in
Figure 1. The parameters are provably secure (cf.Theorem 2) and reduce to worst-
case computational problems in general lattices. In Appendix B.2, we also give
some shorter signatures that are based on non-standard LWE assumptions.

An Improved Compression Technique for Signatures Based on LWE 41

We discuss how the signature parameters in Table 1 are chosen. Given the
security parameter n, the weight w is chosen such that 1/(2w · (nw)) < 2−Ψ.
Standard estimates show that w ⊗ α/ log(n). The standard deviation of Gaussian
entries S and E are chosen such that the LWE problem for the key is secure. In
the signature, one computes z = y+Sc. By the central limit theorem the entries
of Sc are Gaussian with mean 0 and standard deviation σSc =

∈
wσS. We bound

the entries of Sc by 14σSc, which is true with probability 2−140. Let Dz and
Dy be the uniform distribution on [−B + U,B − U] and [−B,B] respectively.
The probability of acceptance in line 7 of Algorithm 2 is (1 − 14σEw/2

d)m;
hence we need q > 2d ⊕ 14mσEw. We also need the parameters to satisfy
the conditions in the statement of Theorem 2. The signature size is given by
n⊂log2(2(B − U))→ + α ⊗ ⊂log2(2B)→ + α. Note that the public key size can
be effectively halved by generating A using a pseudo-random generator and by
publishing only the seed for the generator as part of the public key (cf. [11]).

Table 1. Parameters for LWE Signatures using Uniform Distributions

I II III IV V

n 640 576 512 512 400

m 1137 969 945 1014 790

w 2w · (n
w

) ≥ 2128 18 18 19 19 20

Approx. log2(q) 34.34 33.10 30.84 32.66 28.71

β 132 132 132 132 132

ΔE 58 68 66 224 70

ΔS 58 68 66 224 70

ΔSc
≡
wΔS 246.07 288.50 287.69 976.39 313.05

B 14ΔSc(n− 1) 2201370 2322422 2058115 6985118 1748695

2d 224 224 224 226 224

Prob. acceptance in
(
1− 14ΔEw/2d

)m
0.371 0.371 0.372 0.406 0.397

line 7 of Alg 2.

Hermite factor (for breaking the key) 1.0056 1.0057 1.0057 1.0055 1.0064

Hermite factor (for forging signature) 1.0038 1.0044 1.0048 1.0047 1.0061

Signature (bits) n←log2(2B)�+ β 14852 13380 11396 12420 8932

Public key (Mb) 2mn log2(q) 6.0 4.4 3.6 4.0 2.2

Signing key (Mb) 2mn log2(4ΔS) 1.4 1.0 0.9 1.2 0.6

To evaluate the security of our parameters against practical lattice attacks
we consider the LWE problem for the secret key and the SIS problem for the
forgery. The security can be estimated by computing the (root) Hermite factor Π
of the lattices (based on the BKZ 2.0 estimates of Chen and Nguyen [8]). Tables
2 and 3 of [8] suggest that instances with Π ∅ 1.0065 should require around 2128

operations to solve using BKZ lattice reduction. These security estimations are
standard in the field so we only sketch the details.

42 S. Bai and S.D. Galbraith

Solving an LWE instance (A,b ≡ As+e (mod q)) corresponds to solving the
closest vector problem (CVP) with target b in the image lattice {v ∪ Z

m : v ≡
As (mod q)} ⊆ Z

m. It is known that the optimal dimensionm, when using a lat-
tice reduction algorithm with root Hermite factor γ, is around

√
n log(q)/ log(γ).

To get closer to the optimal dimension (which is often larger thanm) one can con-
sider the inhomogeneous SIS (ISIS) problem b = (A|Im)(sT , eT)T (mod q). Let
v⊕ ∪ Z

n+m be any solution (not necessarily small) to the equation b = (A|Im)v⊕

(mod q). One can solve the ISIS problem by solving the CVP (with target v⊕)
in the kernel lattice {v ∪ Z

n+m : b ≡ (A|Im)v (mod q)} ⊆ Z
m.

The CVP problem can be solved use the embedding technique. It is plausible
to turn the CVP problem into an Unique-SVP problem in the embedded lat-
tice. For instance, using the embedding technique, the above ISIS problem gives
(A|Im|b)(sT , eT ,−1)T ≡ 0 (mod q) and so one can solve the problem by finding
a short vector in this lattice. Since the short vector (sT , eT ,−1)T is often very
small, the standard approach is to estimate the lattice gap Π = λ2(L)/λ1(L)
(see [16,1]). We let λ1(L) be the length of the target vector and λ2(L) be the
Gaussian expected shortest vector of the q-ary lattice. In the ISIS case, the tar-
get vector has norm

∈
n+m+ 1σE in the case σS = σE . The root Hermite

factor γ (needed for the attack) is Π1/(n+m+1) =
(
qm/(n+m+1)

ΠE

∪
2πe

)1/(n+m+1

.

We also want the SIS problem in the forgery to be hard. In the proof of
Lemma 5, we choose random matrices S⊕ and E⊕ with entries in [−E⊕, E⊕] for
large enough E⊕ such the there exists alternative keys. The short vectors in
the forgery (cf. Equation (7)) have entries bounded by max(2B, 2d−1) + 2E⊕w.
The short vectors v in the forging problem Av ≡ 0 (mod q) have length ≡v≡2 ∅(
max(2B, 2d−1

)
+2E⊕w)

∈
m+ n. Following Section 3 and equation (1) of [19], an

estimate for the length of the shortest vector that we can find is qm/(n+m)γm+n

(where γ ⊗ 1.0065), and for the forgery security we need this to be larger than
D =

(
max(2B, 2d−1) + 2E⊕w

)∈
m+ n. In Table 1 we estimate the Hermite fac-

tor required to solve the problem by γ = (D/qm/(m+n))1/(n+m).

6 Conclusion

We described a new method for compressing lattice-based signatures in Lyuba-
shevsky’s framework. The new signature scheme, together with the compression
method, is based on the standard worst-case hardness of LWE and SIS in gen-
eral modular lattices. Our signature size for 128-bit security is about 12000 bits,
which is shorter than the previous signatures (⊕ 16500 bits) whose security are
based on hard problems in general lattices.

Acknowledgements. The authors are grateful to Vadim Lyubashevsky, Chris
Peikert and anonymous referees for helpful comments and discussions on drafts
of this paper. The authors wish to acknowledge NeSI (New Zealand eScience
Infrastructure) and the Centre for eResearch at the University of Auckland for
providing CPU hours (for searching the parameters in Table 1) and support.

An Improved Compression Technique for Signatures Based on LWE 43

References

1. Albrecht, M.R., Fitzpatrick, R., Göpfert, F.: On the Efficacy of Solving LWE by
Reduction to Unique-SVP. To appear Proceedings of International Conference on
Information Security and Cryptology (2013)

2. Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast Cryptographic Primitives
and Circular-Secure Encryption Based on Hard Learning Problems. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009)

3. Bellare, M., Neven, G.: Multi-Signatures in the Plain Public-Key Model and a
General Forking Lemma. In: Juels, A., Wright, R.N., De Capitani di Vimercati, S.
(eds.) ACM CCS 2006, pp. 390–399. ACM (2006)

4. Biswas, B., Sendrier, N.: McEliece Cryptosystem Implementation: Theory and
Practice. In: Buchmann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299,
pp. 47–62. Springer, Heidelberg (2008)

5. Böhl, F., Hofheinz, D., Jager, T., Koch, J., Seo, J.H., Striecks, C.: Practical
Signatures From Standard Assumptions. In: Johansson, T., Nguyen, P.Q. (eds.)
EUROCRYPT 2013. LNCS, vol. 7881, pp. 461–485. Springer, Heidelberg (2013)

6. Boyen, X.: Lattice Mixing and Vanishing Trapdoors – A Framework for Fully
Secure Short Signatures and More. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC
2010. LNCS, vol. 6056, pp. 499–517. Springer, Heidelberg (2010)

7. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical Hardness
of Learning with Errors. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.)
STOC 2013, pp. 575–584. ACM (2013)

8. Chen, Y., Nguyen, P.Q.: BKZ 2.0: Better Lattice Security Estimates. In: Lee,
D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer,
Heidelberg (2011)

9. Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice Signatures and
Bimodal Gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I.
LNCS, vol. 8042, pp. 40–56. Springer, Heidelberg (2013)

10. Devroye, L.: Non-Uniform Random Variate Generation. Springer, New York (1986)

11. Galbraith, S.D.: Space-efficient variants of cryptosystems based on learning with
errors (2013) (preprint)

12. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for Hard Lattices and New
Cryptographic Constructions. In: Dwork, C. (ed.) STOC 2008, pp. 197–206. ACM
(2008)

13. Güneysu, T., Lyubashevsky, V., Pöppelmann, T.: Practical Lattice-Based Cryp-
tography: A Signature Scheme for Embedded Systems. In: Prouff, E., Schaumont,
P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 530–547. Springer, Heidelberg (2012)

14. Liu, M., Nguyen, P.Q.: Solving BDD by Enumeration, An Update. In: Dawson, E.
(ed.) CT-RSA 2013. LNCS, vol. 7779, pp. 293–309. Springer, Heidelberg (2013)

15. Lyubashevsky, V.: Fiat-Shamir with Aborts: Applications to Lattice and Factoring-
Based Signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
598–616. Springer, Heidelberg (2009)

16. Lyubashevsky, V., Micciancio, D.: On Bounded Distance Decoding, Unique Short-
est Vectors, and the Minimum Distance Problem. In: Halevi, S. (ed.) CRYPTO
2009. LNCS, vol. 5677, pp. 577–594. Springer, Heidelberg (2009)

17. Lyubashevsky, V.: Lattice Signatures without Trapdoors. In: Pointcheval, D., Jo-
hansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer,
Heidelberg (2012)

44 S. Bai and S.D. Galbraith

18. Micciancio, D., Goldwasser, S.: Complexity of Lattice Problems: A cryptographic
Perspective. Kluwer (2002)

19. Micciancio, D., Regev, O.: Lattice-Based Cryptography. In: Bernstein, D.J.,
Buchmann, J., Dahmen, E. (eds.) Post Quantum Cryptography, pp. 147–191.
Springer (2009)

20. Micciancio, D., Peikert, C.: Hardness of SIS and LWE with Small Parameters. In:
Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 21–39.
Springer, Heidelberg (2013)

21. Pointcheval, D., Stern, J.: Security Arguments for Digital Signatures and Blind
Signatures. J. Cryptology 13, 361–396 (2000)

22. Stehlé, D., Steinfeld, R.: Making NTRUEncrypt and NTRUSign as Secure as Stan-
dard Worst-Case Problems over Ideal Lattices, Cryptology ePrint Archive: Report
2013/004 (2013)

23. Regev, O.: On Lattices, Learning with Errors, Random Linear Codes, and Cryp-
tography. In: Gabow, H.N., Fagin, R. (eds.) STOC 2005, pp. 84–93. ACM (2005)

24. Regev, O.: On Lattices, Learning with Errors, Random Linear Codes, and Cryp-
tography. Journal of the ACM 56(6), article 34 (2009)

A Signatures

A signature scheme comprises three randomized algorithms: KeyGen, Sign, Ver-
ify. KeyGen takes as input a security parameter and outputs a public/private key
pair (pk, sk). Sign takes as input a message μ and a private key sk, and outputs
a signature Σ. Verify takes as input a message μ, signature Σ and public key pk,
and outputs “valid” or “invalid”. We require that, at least with overwhelming
probability, Verify(μ, Sign(μ, sk), pk) = “valid”.

Adaptive security for signatures is defined using a game between a forgery
algorithm F and a challenger. The challenger generates a public key pk for
the signature scheme at a given security level and runs the forger. The forger
takes as input the public key for the signature scheme, makes h random oracle
queries and s sign queries, runs in time t, and outputs (μ,Σ). The forger wins
if Verify(μ,Σ, pk) = “valid”. The success probability (taken over all public keys
generated by the challenger, all responses to the hash and sign queries, and over
the random choices made by F) is denoted ε. The signature scheme is secure if
there is no polynomial-time (in terms of the security parameter) algorithm F
whose success probability in the above game is non-negligible.

An important tool for analysing signatures in the random oracle model is the
Forking Lemma of Pointcheval and Stern [21]. We need the signature scheme
to be a generic signature scheme (the scheme in this paper does satisfy that
requirement) with security parameter α and hash output of size 2Ψ. Note that
a sign query involves an implicit hash query, but that this is to a random value
that is chosen by the challenger. Hence, when we say that F makes h hash
queries we are only counting the actual queries to the random oracle, and not
the additional s hash queries implicit in the signing algorithm.

The basic principle is to run a forger for the signature scheme, interacting with
a specific instance of the random oracle, to get a forgery. The forgery corresponds
to specific hash value corresponding to the I-th random oracle query. One then

An Improved Compression Technique for Signatures Based on LWE 45

replays or rewinds the forger, with the same random tape, and answering the
first I − 1 queries to the random oracle with the same values as before, but
answering the subsequent queries with freshly chosen random values. With a
certain probability, the forger outputs a new forgery that corresponds once again
to the I-th hash query.

Theorem 13 of [21] considers a forger F that runs in time t, makes h queries to
the random oracle (including those performed by the sign oracle), s sign queries,
and outputs a forgery with probability ε > 10(s + 1)(s + h)/2Ψ. Then the re-
winding process produces, with probability one, two valid signatures with the
same “y-value” but different hash values in time t⊕ ∅ 120686 th/ε.

An alternative formulation was given by Bellare and Neven [3]. The two main
differences are a cleaner and more general presentation, and an analysis in the
case where the forking lemma just runs F twice (rather than 120686 th/ε times).
Bellare and Neven consider a forger F that outputs a valid forgery in time t
with probability ε making h random oracle queries and s sign queries. Then the
rewinding algorithm outputs two valid signatures in time approximately 2t and
with probability at least (Lemma 1 of [3])

ε

(
ε

h
− 1

2Ψ

)
.

We use a slight variant of the forking lemma. In our case, we must guess in
advance the index I of the hash query that corresponds to a successful forgery
(as we need to program this hash value to be a specific element corresponding
to the problem instance). Hence, we need to guess the index I from among the h
possible values. We then answer the I-th hash query with a specific value c∗ and
then, in the re-winding, answer the I-th hash query with another specific value c†.
Both values c∗ and c† are chosen uniformly at random. Hence, the probability
the rewinding algorithm outputs two valid signatures in time approximately
2t is

ε

h

(
ε

h
− 1

2Ψ

)
. (8)

B Variants

This section discusses some avenues to obtain even shorter signatures. Some of
these ideas have already been used by other authors [17,13,9]. First we discuss
obstructions to very short lattice signatures. The main driver of signature size is
that n must be sufficiently large to ensure the lattice problems are hard. Some
further issues are:

– The z vector has to cover all possible values for Sc, so if Sc can be made
smaller then signatures will be smaller. Unfortunately, we cannot just reject
those c for which Sc is large, since we are unable to simulate such behaviour.

– Lemma 4 requires the simulation to be statistically very close to the real
game, and this requires high-grade rejection sampling in the sign algorithm.

46 S. Bai and S.D. Galbraith

If we want to have a constant rejection rate then this leads to a linear
factor of n in the bound B for the distribution Dz. In principle, using a
Gaussian distribution for Dz reduces this to a

∈
n factor, but large constants

are introduced that prevent short signatures for concrete small parameters.
Overall, the strong requirement of Lemma 4 is a major contributor to the
signature size.

B.1 General Tricks

One can take k very large so that w is smaller. However, the public key grows
in size and the improvement is minor (for example, taking k = 3n so that public
keys are 3 times larger only reduces w from 18 to 14 when n = 600).

One can apply a further rejection sampling to ensure that z is small. For
example, one can save n bits in the signature by replacing B by B/2 in the
distribution Dz. In other words, we require that z ∪ [−B/2, B/2]n. Since z
is sampled uniformly it follows that the acceptance probability goes from 1/e
to 1/e2. Similarly, saving 2n bits by reducing Dz to [−B/4, B/4] changes the
acceptance probability to 1/e4 ⊗ 1/55.

B.2 Signatures Based on Non-standard LWE

We have seen that signature size depends on both n and Sc. Hence, there is a
temptation to choose the entries of S to be as small as possible.

For instance, we could choose S to be a binary matrix (entries uniformly
chosen from {0, 1}) and E from a discrete Gaussian distribution with standard
deviation σE. This is the binary secret LWE problem. Micciancio and Peikert [20]
and Brakerski, Langlois, Peikert, Regev and Stenlé [7] have studied the case of
LWE with binary secrets. They give some results that imply that such variants
of LWE can be hard. However, their results are not useful for our application
as they require a large increase in the parameter n for the LWE problem. More
precisely, Theorem 4.6 of [20] shows that (m,n, q)-binary-LWE can be hard as
long as SIVPγ is hard in k = n/ log(n) dimensional lattices, where Π = Õ(

∈
kq).

The value n = 512 corresponds to k = 82, and so such parameters give a weak
security guarantee.

Alternatively, we could choose S and E from Gaussian with some deviation
σ ∅ 2

∈
n. As a example we choose (n,m, σS , σE , d, w) = (448, 886, 32, 32, 23, 19)

and take q ⊗ 227.84. Here B is about 219.74 which gives signatures of size
21n+ 128 = 9540 bits. The Hermite constant Π needed is roughly 1.0060. The
acceptance probability is roughly 0.407.

The size of σS and σE also affects relations in Equation (4). This turns out to
be a stricter constraint: it is easier to find suitable parameters when σS and σE
are large. In general, such methods may turn out to provide a relatively minor
saving in signature size so we do not pursue this further.

An Improved Compression Technique for Signatures Based on LWE 47

B.3 Bi-Modal

We can also consider the bimodal technique of Ducas, Durmus, Lepoint and
Lyubashevsky [9] in our setting. The main idea is to work modulo 2q and to
choose the matrix T to be such that −T ≡ T (mod 2q). This can be achieved
by ensuring that the entries of the matrix T are all in {0, q}. The matrix T can
be represented using mn bits rather than mn log2(2q) bits.

One particular choice for T is q times an n × n identity matrix (note that
this requires m = n, which may result in a further increase in q. In this case
the public key is further compressed, since there is no need to publish T at all.
Let k = n and suppose the n × n matrix S with Gaussian entries is invertible.
Construct the public key (A,T) as follows. Choose (S,E) first and set A ≡
(T − E)S−1 (mod 2q). The computational assumption is now related to the
NTRU assumption: Given A find matrices (S,E) with small entries such that
A ≡ −ES−1 (mod q). In particular, it is necessary (but not sufficient as far
as we know) for this matrix-NTRU problem to be hard for our scheme to be
secure. Note that the security of the short signature scheme of [9] also relies on
an NTRU assumption (also in a ring) of a similar form.

The goal of using the bimodal distribution is that is makes the rejection
sampling work better, and so one can use smaller distributions for Dy and Dz

(indeed, Gaussian distributions). Using a Gaussian distribution for Dy with stan-
dard deviation σ and the bi-modal trick we should be able to take (as on page
5 of [9])

σ = 12
∈
nσS

∈
w/

∈
2.

For instance, from parameters (n, σS , w) = (448, 32, 19) we can obtain σ =
12

√
wn/2σS ⊗ 25051. Assuming a perfect encoding of Gaussian data that only

requires log2(4σ) bits to represent elements from this distribution we might hope
to have signatures of around 448 · log2(4σ) + 132 ⊗ 7575 bits.

The security analysis of this variant requires a different use of the forking
lemma, as well as a non-standard assumption. We do not have space to provide
the details here.

B.4 Signatures Based on Ring-LWE/NTRU

Our scheme could be implemented with Ring-LWE. The signature is a single
ring element and the hash value. The public key is now a sequence ti = ais+ ei
(mod q), for 1 ∅ i ∅ θ, with elements in Zq[x]/(x

2k + 1).
To sign we compute c = H(⇐a1y→d . . . ⇐aιy→d, μ) and then z = y + sc. Verifi-

cation is that z is short and that H(⇐a1z− t1c→d, . . . ⇐aιz− tιc→dμ) equals c.
The security proof is identical (one can always consider Ring-LWE as a par-

ticular case of the matrix problem), but of course the security now depends on
the Ring-LWE assumption. Using Ring-LWE will reduce the public key size and
improve speed, but it does not seem to lead to any reduction of the signature
size, so we do not consider it further in this paper.

A Generic View on Trace-and-Revoke Broadcast

Encryption Schemes

Dennis HofheinzΠ and Christoph StriecksΠΠ

Karlsruhe Institute of Technology, Karlsruhe, Germany

Abstract. At Eurocrypt 2011, Wee presented a generalization of thresh-
old public key encryption, threshold signatures, and revocation schemes
arising from threshold extractable hash proof systems. In particular, he
gave instances of his generic revocation scheme from the DDH assump-
tion (which led to the Naor-Pinkas revocation scheme), and from the
factoring assumption (which led to a new revocation scheme). We ex-
pand on Wee’s work in two directions:
(a) We propose threshold extractable hash proof instantiations from the

“Extended Decisional Diffie-Hellman” (EDDH) assumption due to
Hemenway and Ostrovsky (PKC 2012). This in particular yields
EDDH-based variants of threshold public key encryption, threshold
signatures, and revocation schemes. In detail, this yields a DCR-
based revocation scheme.

(b) We show that our EDDH-based revocation scheme allows for a mild
form of traitor tracing (and, thus, yields a new trace-and-revoke
scheme). In particular, compared to Wee’s factoring-based scheme,
our DCR-based scheme has the advantage that it allows to trace
traitors.

Keywords: broadcast encryption, revocation scheme, traitor tracing,
trace-and-revoke scheme, threshold extractable hash proof system, ex-
tended decisional Diffie-Hellman.

1 Introduction

Broadcast Encryption, Revocation Schemes, Traitor Tracing, and
Trace-and-Revoke Schemes. In a broadcast encryption (BE) scheme [17],
a sender is able to generate ciphertexts that only members of a privileged set
S ⊗ {1, . . . , N} of users — each given a long-lived user secret key — can de-
crypt. There exists a large number of BE schemes under various assumptions
and with various efficiency characteristics (e.g., [17, 20, 8, 3, 21, 34, 42, 41]). In
this work, we focus on revocation schemes, which are a variant of BE schemes,
where a set of revoked users (e.g., non-paying subscribers) R = {1, . . . , N} \ S
is given as input to the encryption function. Revocation schemes proposed in
the literature are, e.g., [38, 50, 36, 23, 13, 14, 54, 22, 12, 33, 53]. A particularly

Ψ Dennis Hofheinz was supported by a DFG grant (GZ HO 4534/2-1).
ΨΨ Christoph Striecks was supported by a DFG grant (GZ HO 4534/2-1).

J. Benaloh (Ed.): CT-RSA 2014, LNCS 8366, pp. 48–63, 2014.
c© Springer International Publishing Switzerland 2014

A Generic View on Trace-and-Revoke Broadcast Encryption Schemes 49

interesting property a cryptosystem in the broadcast encryption setting can have
is traceability [11], i.e., the ability to trace a “pirate” decryption box back to the
corrupted user(s), called traitor(s), who constructed it. Thus, traceability allows
to identify a traitor (or a coalition of traitors). Such schemes are called traitor
tracing schemes and a variety of them was proposed, e.g., [11, 39, 40, 32, 47, 48,
37, 5, 18, 43, 51, 28, 45, 30, 29, 35, 10, 49, 9, 16, 46, 1, 4, 6]. The combination of
revocation and traceability is an aspiring goal. We stress that combining these
properties is nontrivial (see [7, Section 4.1]). Nevertheless, there are schemes,
e.g., [19, 38, 36, 50, 23, 13, 14, 31, 15, 7, 26]1, which provide a solution for this
problem. These schemes are called trace-and-revoke schemes.

Threshold Extractable Hash Proof Systems. In [53], Wee established
threshold extractable hash proof systems (TEHPS) as a generalization of ex-
tractable hash proof systems (EHPS) [52]. Applying the concept of TEHPSs,
Wee explains threshold public key encryption, threshold signatures, and revoca-
tion schemes from the Decisional Diffie-Hellman (DDH), from the Computational
Diffie-Hellman (CDH), and from the factoring assumptions which — at least in
the case of factoring — led to new cryptosystems. We expand the generic view
of [53] by providing a TEHPS from the “Extended Decisional Diffie-Hellman”
(EDDH) assumption due to Hemenway and Ostrovsky [24]. The EDDH assump-
tion generalizes the DDH and Decisional Composite Residuosity (DCR) assump-
tions. By our first result, we obtain threshold public key encryption, threshold
signatures, and revocation schemes from the EDDH assumption. In particu-
lar, our generic system extends the generic view of revocation schemes from
[53] (recapped below) and, additionally, via our second result, it yields a new
trace-and-revoke scheme from the DCR assumption. (This is not known for the
factoring-based instance of [53].)

A Generic Revocation Scheme. Recently, Wee [53] gave a very simple and
elegant generic view of revocation schemes. He explains and generalizes previous
constructions (e.g., [38, 50]). The public key in these constructions contains
the coefficients of a secret polynomial f(x) = a0 + a1x + · · · + atx

t “in the
exponent” as ga0 , ga1 , . . . , gat . Note that this allows to compute values gf(x) for
arbitrary x. A ciphertext is of the form C = (R, u, (uf(id))id≥R), where R is
a set of t revoked identities. (The uf(id) can be computed from pk , and using
knowledge of an exponent r with u = gr.) The corresponding encapsulated key2

is s = uf(0). Any user with identity id in the system possesses a user secret key
usk id = f(id). (Of course, 0 is not an allowed identity for a user.) If id ≡∈ R, then
a user can derive a (t + 1)-st share uuskid = uf(id) and compute uf(0) through
Lagrange interpolation of the t+ 1 values uf(id) (for id ∈ R∪ {id}). Depending
on the domain over which we are working, and on how a “raw key” s = uf(0)

1 Note that the schemes from [36, 23, 13] support a different form of traitor tracing.
Particularly, their main goal is to find a setting in which the pirate box is not useful
anymore rather than identifying the traitor(s).

2 Wee’s scheme actually is a key encapsulation mechanism, not a full encryption
scheme. Hence, a ciphertext does not encrypt a message, but only encapsulates a
key that can be used to (symmetrically) encrypt a message.

50 D. Hofheinz and C. Striecks

is post-processed, this yields a revocation scheme from the DDH, the CDH, or
the factoring assumption. Note that although similar secret sharing techniques
are common in broadcast encryption, Wee’s scheme is particularly simple and
appealing from a conceptual point of view.

Our First Result: An EDDH-Based TEHPS Instance. By giving a
slightly different generic view, we extend the work of Wee to obtain thresh-
old extractable hash proof instantiations from the extended decisional Diffie-
Hellman assumption. Concretely, the EDDH assumption works in a group �
with subgroups G,H . It states that, given g, gx, and gy, elements gxy are com-
putationally indistinguishable from elements gxy · h, where g ∈ G and h ∈ H
are uniformly chosen, and x, y are uniform exponents. For G = H , we have the
DDH assumption, and if � = �≤N , G = {xN | x ∈ �}, and H = ⇐1 + N→,
we have the DCR assumption. In particular, our first result yields EDDH-based
threshold encryption, signatures, and revocation schemes. We stress that the
EDDH-based instances use a potential stronger assumption (i.e., DCR) as op-
posed to Wee’s factoring-based schemes. Nevertheless, to give a foreshadow,
this slightly stronger assumption enables us — via our second result — to ob-
tain a new DCR-based trace-and-revoke scheme which, again, is not known to
achieve from Wee’s factoring-based scheme. Our revocation scheme is similar to

the above generic scheme, but has ciphertexts C = (R, u1, (uf(id)1)id≥R, u2), for
u1 ∈ G and u2 = u

f(0)
1 · h with h ∈ H . The shared key is extracted from h.

Hence, instead of directly using u
f(0)
1 as shared key, we use it to blind the actual

key h. This is consistent with the EDDH assumption: EDDH does not state
that gxy looks random — it does state however that gxy can be used to blind
an H-element. The security analysis of this modified scheme is similar to the
analysis of previous schemes. The only difficulties arise out of the fact that the
group order of G may not be known (e.g., in the case of DCR). Hence, we must
avoid inversion operations in the exponent. (Such inversion operations arise dur-
ing Lagrange interpolation of the polynomial f in the exponent.) More details
about the technique we use to avoid inversions in the exponent are given below.

Our Second Result: Traceability of the EDDH-Based Revocation
Scheme. We prove that our EDDH-based revocation scheme also supports
a mild form of black-box traitor tracing. That is, we prove that any pirate box
produced by a coalition of T ≥ (t+1)/2 corrupted users can be traced back to a
user in that coalition. Tracing requires only completely black-box access to the
pirate box and works for imperfect decryption boxes (where the box is allowed
to decrypt well-formed ciphertexts invalidly down to some threshold). Further,
we allow adversarially chosen revoked sets R. Similar black-box tracing strate-
gies in the revocation setting were considered in previous works, e.g., in [50, 15].
But unlike in, e.g., [50], our tracing algorithm works with imperfect pirate boxes
that may even only work for an adversarially chosen set R of revoked users. The
tracing model in [15] also considers imperfect decryption boxes and adversar-
ially chosen revoked users, but for a different scheme. (To achieve black-box
traceability in the BE setting we note that similar techniques are common,
e.g., in [7].) However, we stress that our focus is on the generic view of

A Generic View on Trace-and-Revoke Broadcast Encryption Schemes 51

constructing trace-and-revoke schemes. Nevertheless, our tracing strategy is ex-
plained in more detail below.

More on the Used Techniques. To construct revocation schemes from the
EDDH assumption — in which the order of the subgroup G might not be known
as opposed to Wee’s generic construction above — we use a technique called
“clearing the denominator” in the exponent. This tool was used before, but in
different scenarios to ours, e.g., in [44, 53, 2]. Hence, we can avoid Lagrangian
coefficient inversion in the exponent and are able to construct our EDDH-based
revocation scheme. For traceability, consider random ciphertexts of the form

CRrnd = (R, u1, (uf(id)1 hzid)id≥R, u
f(0)
1 hz0) for uniform h ∈ H and zid , z0.

Under the EDDH assumption, such random ciphertexts are indistinguishable
from real ones, even when knowing a single user key usk id . In particular, a
pirate box B decrypts random ciphertexts just as well as real ones. However, the
decryption of random ciphertexts depends highly on which user key usk id is used
to decrypt. Hence, to trace a pirate box B back to its creator, we can simply feed
B with random ciphertexts and compare B’s output with decryption results for
various user keys. This strategy only works if the pirate box B knows only one
user key. If B knows, say, two different user keys, it can distinguish real from
random ciphertexts. (For instance, B could decrypt a given ciphertext under the
two keys. If the decryptions do not match, the ciphertext cannot be real. See [27]
by Kiayias and Yung for a more general case and a formal analysis.) Thus, we
adapt our strategy by considering “semi-random ciphertexts” of the form

CR,Irnd = (R, u1, (uf(id)1 hf
∗(id))id≥R, u

f(0)
1 hf

∗(0))
for f ′(x) ∈ �q[x] uniform
of degree ≥ t, but subject
to f ′(id) = 0 for id ∈ I.

(1)

Such ciphertexts are indistinguishable from real ones, even when knowing the
user keys for I. However, when using user keys for identities outside of I, then we
will get a different, random result. Our tracing strategy will hence make a guess
for the set I of corrupted users, and confirm the guess by checking if B decrypts
ciphertexts CR,Irnd correctly. (Note that this is very similar to the “black-box con-
firmation” argument defined by Boneh and Franklin [5].) The main challenge
in our proof consists of handling the case when B knows some, but not all user
keys for I. In that case, we have to make sure that we output an identity in I
that surely corresponds to a traitor. Similar traceability strategies were already
considered, e.g., in [5] (but with a restriction on how the pirate box is built),
and in [28, 9, 7] (for very different schemes). In the revocation setting the trac-
ing technique of Tzeng and Tzeng [50] also considers semi-random ciphertexts
as those from (1). However, the tracing algorithm of [50] assumes a pirate box
with perfect decryption, and, more importantly, has to choose the analog of the
revoked set R from (1) by itself. Dodis, Fazio, Kiayias, and Yung [15] consider
imperfect pirate boxes and adversarially chosen revoked users in the revocation
setting, but for a different scheme. Again, we stress that the novelty of our work

52 D. Hofheinz and C. Striecks

lies in the fact that we extend Wee’s generic view of revocation schemes by pro-
viding an EDDH-based trace-and-revoke variant which, in particular, generalizes
(known) DDH-based and (new) DCR-based trace-and-revoke schemes.

2 Preliminaries

Notation. For n ∈ �, let [n] := {1, . . . , n}. Throughout the paper, k ∈ �
denotes the security parameter. For a finite set S, we denote by s ∈ S the
process of sampling s uniformly from S. For a probabilistic algorithm A, we
write y ∈ A(x) for the process of running A on input x with uniformly chosen
random coins, and assigning y the result. If A’s running time is polynomial in
k, then A is called probabilistic polynomial-time (PPT). A function f : � ∅
� is negligible if it vanishes faster than the inverse of any polynomial (i.e., if
⊕c∃k0⊕k ⊆ k0 : |f(k)| ≥ 1/kc). On the other hand, f is significant if it dominates
the inverse of some polynomial (i.e., if ∃c, k0⊕k ⊆ k0 : f(k) ⊆ 1/kc).

(Binary) Relations for Hard Search Problems [52, 53]. Following the def-
inition of (binary) relations for hard search problems in [53], let Rpp be a family of
binary relations, where pp is a public parameter. We assume the existence of two
PPT algorithms: given the security parameter k in unary, SampP(1k) outputs a
public parameter pp together with a secret parameter sp, while SampR(1k, pp)
outputs a binary relation (u, s) ∈ Rpp such that given only u it is hard to find s.
(To make random coins r explicit, we may write SampR(1k, pp; r).) Concretely,
we define the one-way property of binary relations for hard search problems in the
sense that with overwhelming probability over pp, for all u, there exists at most
one s such that (u, s) ∈ Rpp , and, given an adversary A that gets pp and u with
(u, s) ∈ SampR(1k, pp), there exists an efficiently computable generator Gpp

such that, for all A, AdvprgA (k) := Pr [A(pp, u,Gpp(s)) = 1]−Pr [A(pp, u,R) = 1] ,
with uniform R, is negligible in k.

Lagrange Interpolation and Vandermonde Matrices. Fix a field � and
d + 1 values x0, . . . , xd ∈ �. The Vandermonde matrix Vx0,...,xd

∈ �(d+1)×(d+1)

is defined as

Vx0,...,xd
:=

⎛
⎡⎢
1 x0 . . . x

d
0

...
...

. . .
...

1 xd . . . x
d
d

⎞
⎤⎥ .

It is easy to see that det(Vx0,...,xd
) =

⎦
i<j(xj −xi); in particular, Vx0,...,xd

is in-
vertible iff all xi are distinct. We can evaluate a polynomial f(x) = a0+a1x+· · ·+
adx

d at x0, . . . , xd via (f(x0), f(x1), . . . , f(xd))
⊕ = Vx0,...,xd

· (a0, a1, . . . , ad)⊕.
Conversely, given values y0, . . . , yd ∈ �, we can via (a0, a1, . . . , ad)

⊕ = V −1x0,...,xd
·

(y0, y1, . . . , yd)
⊕compute coefficients a0, . . . , an ∈ � of a polynomial f(x) =

a0+a1x+· · ·+adxd such that f(xi) = yi. It will be useful to perform such matrix-
vector multiplications “in the exponent,” where generally a matrixM = (Mi,j) ∈
�n×n is known, and a vector x = (xi) ∈ �n is given in the formX = (Xi) = (gxi)

for some g. We will writeM ◦X := (Y1, . . . , Yn) with Yi :=
⎦n
j=1X

Mi,j

j . If we
write y = (yi) for the “exponent vector” with Yi = gyi, this achieves M · x = y.

A Generic View on Trace-and-Revoke Broadcast Encryption Schemes 53

The Extended Decisional Diffie-Hellman Assumption. In [24], Hemen-
way and Ostrovsky introduced the Extended Decisional Diffie-Hellman (EDDH)
assumption. We say that the EDDH assumption holds for group � and sub-
groups G,H ⊗ � iff Adveddh

�,H,D(k) := Pr
[
D(1k, ord(H), g, ga, gb, gab) = 1

] −
Pr

[
D(1k, ord(H), g, ga, gb, gabh) = 1

]
is negligible for any PPT distinguisher D,

for uniform group elements g and h from G and H , respectively, for uniform
exponents a, b, and group order function ord. Additionally, we require that there
exists a randomness extractor Geddh

�,H such that Geddh
�,H(h) with uniform h ∈ H is

pseudorandom. We note that the EDDH assumption can be instantiated under
the DDH and the DCR assumption. (We refer to [24] for further details.)

3 First Result: An EDDH-Based TEHPS Instance

Threshold Extractable Hash Proof Systems. We first restate the definition
of threshold extractable hash proof systems (TEHPS) from [53], in which Wee
explains several cryptosystems, i.e., threshold encryption, threshold signatures,
and revocation schemes as arising from TEHPSs for a hard search problem with
instances u and solution s (defined as above). For public key hk , we define a
family of hash functions Hhk , which take as input a tag tag and an instance u, and
output a hash value Hhk (tag, u). A TEHPS TEHPS = (Gen, Share,Pub,Priv,Ext)
with tag space T consists of the following PPT algorithms:
Setup. Given the security parameter k ∈ �, the threshold parameter t ∈ �, and

system parameters (pp, sp) (defined as above), Gen((pp, sp), 1k, 1t) generates
a public key hk and a master secret key msk .

Key generation. Share(msk , tag), given the master secret key msk and a tag
tag ∈ T , generates a user secret key usk tag for tag tag.

Public evaluation. Pub(hk , tag, r), given a public key hk , a tag tag ∈ T , and
random r, outputs a hash value Hhk (tag, u), with (u, s) = SampR(1k, pp; r).

Private evaluation. Priv(usk tag, u), given a user secret key usk tag and an in-
stance u, outputs a hash value Hhk (tag, u).

Extraction. Ext(u, (tagi, τi)i≥[t+1]), given an instance u, tags (tagi)i≥[t+1] ∈
(T)t+1, and hash values (τi)i≥[t+1], outputs a value s or ⊥.

For all k, t ∈ � and with overwhelming probability over all values (pp, sp) ∈
SampP(1k), for all (hk ,msk) ∈ Gen((pp, sp), 1k, 1t), for all r, for all (u, s) ∈
SampR(1k, pp; r), we require correctness, (t+ 1)-extraction, and t-simulation:
Correctness. For all tag ∈ T , all usk tag ∈ Share(msk , tag), we require that

Pub(hk , tag, r) = Hhk (tag, u) = Priv(usk tag, u).
(t+ 1)-extraction. For all distinct tags (tagi)i≥[t+1] ∈ (T)t+1, and all hash

values (τi := Hhk (tagi, u))i≥[t+1], for s = Ext(u, (tagi, τi)i≥[t+1]), we require
(u, s) ∈ Rpp .

t-simulation. For all distinct (tagi)i≥[t] ∈ (T)t, there exists a PPT algorithm
SetupSim such that distributions of ω = (hk , usk tag1 , . . . , usk tagt) in the fol-
lowing are statistically close: i.e., we require that

54 D. Hofheinz and C. Striecks

{ω : (hk ,msk) ∈ Gen((pp, sp), 1k, 1t), (usk tagi ∈ Share(msk , tagi))i≥[t]}
s⊃ {ω : (hk , usk tag1 , . . . , usk tagt) ∈ SetupSim(pp, tag1, . . . , tagt)},

where
s⊃ denotes statistically indistinguishable.

A TEHPS for the EDDH Relation. We now construct a new EDDH-
based threshold extractable hash proof system. As opposed to the DDH-based
construction in [53], here, the group order of a subgroup G ⊗ � may not be
known (i.e., in the case of DCR). Hence, we must avoid inversion operations
in the exponent. We use a technique called “clearing the denominator” that,
in a similar way, was used before but in different scenarios; e.g., in [44, 53, 2].
Further, fix a commutative group � and a subgroup H ⊗ � of (known) order
n. We assume that a (proper) lower bound d on the smallest prime divisor of
n is known. Let G ⊗ � be a cyclic subgroup of (potentially unknown) order q
and let K := [B] such that for x∈ K, the value x mod q is statistically close to
uniform. In that case we will sample an exponent x uniformly from [B], where
B = B′ ·2k for an upper bound B′ on q. (Such an upper bound B′ will always be
known.) Further, we need to specify a (binary) relation for the EDDH problem.
Therefor, consider

Reddh
pp = {(u, s) ∈ ((G×�)×H) | u2 = usp1 s} ,

with u = (u1, u2) ∈ (G × �), for uniform s ∈ H , uniform sp ∈ K. We set
the public parameter pp to be (n, g, gsp) and assume that we can sample g
from G efficiently. Thus, sp and pp are efficiently samplable. (This completes
the description of the SampP algorithm for the EDDH relation.) For the second
EDDH-relation algorithm, we set SampR(1k, pp; r) to output

(u, s) := ((gr, (gsp)r · s), s),
for randomness r ∈ K and uniform s ∈ H . (This completes the description of
SampR.) Further, we set Gpp(s) := Geddh

�,H(s). Now, we are able to construct:

Construction 3.1 (EDDH-based TEHPS). Let a TEHPS TEHPSEDDH =
(Gen, Share,Pub,Ext,Priv) with tag space T := [min{d,B}] ⊂ �, with d and B
as above, be as follows:
Setup. Gen((pp, sp), 1k, 1t), with pp =: (n, g, gsp), chooses a polynomial f(x) :=

sp+ a1x+ · · ·+ atx
t over K, with uniform exponents ai, for i ∈ [t]. The out-

put is the public key hk := (n, g̃, g̃sp , (g̃ai)ti=1), with g̃ := gv, for uniform
v ∈ K, and master secret key msk := (sp, (ai)

t
i=1). We fix a hash function

Hhk (tag, u) := u
f(tag)
1 , with u = (u1, u2) and some tag tag ∈ T . For ran-

domness r ∈ K, we have (u, s) = ((g̃r, g̃sp·r ·s), s) = SampR(1k, (n, g̃, g̃sp); r).
(Note that we re-randomize the g-elements of pp here.)

Sharing. Share(msk , tag), for tag ∈ T , returns usk tag := f(tag).
Public Evaluation. Given a public key hk , a tag tag ∈ T , randomness r ∈ K,

Pub(hk , tag, r) computes

(
g̃sp ·

t⎪
i=1

(g̃ai)
tagi)r (

=
(
g̃f(tag)

)r
= u

f(tag)
1 = Hhk (tag, u)

)
,

A Generic View on Trace-and-Revoke Broadcast Encryption Schemes 55

with (u, s) = SampR(1k, (n, g̃, g̃sp); r) as above.
Private Evaluation. Given usk tag and u = (u1, u2), Priv(usk tag, u) outputs

u
usktag

1 (= u
f(tag)
1).

Extraction. Ext(u, (tagi, τtagi)i≥[t+1]), given u = (u1, u2), tags (tagt+1)i≥[t+1] ∈
(T)t+1, and hash values (τtagi)i≥[t+1], efficiently computes fractional La-

grangian coefficients Li(0) =
⎦t+1
j=1,i∪=j

−tagj
tagi−tagj ∈ Q such that f(0) =∑t+1

i=1 Li(0) · f(tagi) mod q. (Note that the Lagrangian coefficients can be
computed iff all tags (tagt+1)i≥[t+1] are distinct. If the tags are not distinct
we output ⊥.) Now, for Δ := lcm{⎦i,j≥[t+1],i∪=j(tagi− tagj) ∈ �} the values

Δ · Li(0), for all i ∈ [t + 1], are integers. Thus, we are able to extract and
output the value

((t+1⎪
i=1

τ
ΔLi(0)
tagi

)−1 · uΔ2)Δ−1 mod n
.

(Note that n is always known.)

We now show correctness, (t+1)-extraction, and t-simulation of Construction 3.1.

Claim 3.2. For all t ∈ �, TEHPSEDDH from Construction 3.1 is correct, (t+1)-
extractable, and t-simulatable.

Proof sketch. For all k, t ∈ �, with overwhelming probability over (pp, sp) ∈
SampP(1k), for all r, for all (u, s) ∈ SampR(1k, (n, g̃, g̃sp); r), with u = (u1, u2),
for all (hk ,msk) ∈ Gen((pp, sp), 1k, 1t), for all tags tag ∈ T , all usk tag ∈
Share(msk , tag), we have:

Correctness. Correctness is easy to verify, i.e., Pub(hk , tag, r) = Hhk (tag, u) =
Priv(usk tagi , u).

(t+ 1)-extraction. For all distinct tags (tagi)i≥[t+1] ∈ (T)t+1, all hash values

(τi := Hhk (tagi, u))i≥[t+1](= (u
f(tagi)
1)i≥[t+1]), for Δ and fractional Lagrangian

coefficients Li(0) as above, Ext(u, (tagi, τtagi)i≥[t+1]) yields

((t+1⎪
i=1

τ
ΔLi(0)
tagi

)−1 · uΔ2)Δ−1 mod n (≤)
=

((
u
Δf(0)
1

)−1 · (usp1 · s)Δ)Δ−1 mod n

=
(
u−Δsp
1 · uΔsp

1 · sΔ)Δ−1 mod n
= s.

Recall that all Δ ·Li(0), for i ∈ [t+ 1], are integers and that we used Lagrangian
interpolation in the exponent in (∗). Thus, we obtain s such that (u, s) ∈ Reddh

pp .

t-simulation. For all distinct tags (tagi)i≥[t+1] ∈ (T)t+1, there exists a PPT al-
gorithm SetupSim as follows: Choose uniformly y1, . . . , yt ∈ K and set f(tagi) :=
yi, for i ∈ [t]. Further, set ĝ := gv, for uniform v ∈ K, and set ĝf(0) := (gsp)v =
ĝsp . Note, that this will uniquely define a polynomial f of degree ≥ t. Let Δ be
as above but with tagt+1 = 0. That (implicitly) determines a vector

(Δa0, Δa1, . . . , Δat)
⊕ := (Δ · V −1tagt+1,tag1,...,tagt) · (sp, y1, . . . , yt)⊕.

56 D. Hofheinz and C. Striecks

(That is every Δai can be written as linear combination of the yi, with appro-
priate integer coefficients. Here, again, we use Δ to “clear the denominator” of
V −1’s entries.) Subsequently, output (n, g̃, g̃a0 , g̃a1 , . . . , g̃at), for g̃ := ĝΔ, and
(usk tag1 , . . . , usk tagt) := (y1, . . . , yt). Thus, the distribution of the output of
SetupSim and and the distribution of (hk , (Share(msk , tagi))i≥[t]) are statisti-
cally indistinguishable. ��
Now, by [53, Theorems 1, 2, 3], we derive semantically secure threshold public key
encryption, existentially unforgeable threshold signatures in the random oracle
model, and semantically secure revocation schemes from the hardness of the
EDDH assumption which — at least in the revocation case — yields a new
DCR-based revocation scheme. We will now provide details about revocation
schemes and recap from [53] how to build them from TEHPSs.

Revocation Schemes. Opposed to a broadcast encryption scheme, where a set
of privileged users S ⊗ {1, . . . , N} (for number of users N ∈ �) is given as input
to the encryption function, a revocation scheme receives a set of revoked users
R := {1, . . . , N} \ S as input instead. The system then guarantees that users in
{1, . . . , N} \ R are able to decrypt correctly while users in R cannot decrypt.
We will not directly give a construction of a revocation scheme; rather we will
define a revocable key encapsulation mechanism which canonically implies an
revocation scheme, but allows for a simpler exposition.

Revocable Key Encapsulation Mechanism. For simplicity, and following
[53], we define the notion of a revocable key encapsulation mechanism (RKEM).
An RKEM with identity space ID consists of the following PPT algorithms:
Setup. Gen(1k, 1t), given the security parameter k ∈ � and a revocation thresh-

old t ∈ �, generates a public key pk and a master secret key msk .
Key generation. Share(msk , id), given the master secret key msk and an iden-

tity id ∈ ID, generates a user secret key usk id for identity id .
Encapsulation. Enc(pk ,R), given the public key pk and a subset R ⊗ ID that

contains the identities of up to t revoked users, outputs a ciphertext C and
a corresponding key K.

Decapsulation. Dec(id , usk id , C), given an identity id , a corresponding user
secret key usk id , and a ciphertext C, outputs a key K.

For correctness, we require that for all k, t ∈ �, all (pk ,msk) ∈ Gen(1k, 1t),
all set R ⊗ ID of up to t identities, all (C,K) ∈ Enc(pk ,R), all identities
id ∈ ID \ R, and all usk id ∈ Share(msk , id), we have Dec(id , usk id , C) = K.
We will not define security for RKEMs. We note that these notions can be
defined in a straightforward way, and the RKEMs based on TEHPSs from [53]
can be proven secure in this sense. (In fact, [53] only shows selective-identity
security; we expect, however, that adaptive-identity security can be achieved
along the lines of Dodis and Fazio [14].) As mentioned before, an RKEM implies
a revocation scheme. That is, to build a revocation scheme from an RKEM, use
the encapsulated key to symmetrically encrypt the message to be broadcasted;
analogously, use the decapsulated key for symmetrically decryption.

RKEMs from TEHPSs. Following [53], we recap the construction of an
revocable key encapsulation mechanism RKEM = (Gen, Share,Enc,Dec) with

A Generic View on Trace-and-Revoke Broadcast Encryption Schemes 57

identity space ID := T from a threshold extractable hash proof system TEHPS =
(Gen′, Share′,Pub,Ext,Priv) with tag space T as follows:
Setup. Gen(1k, 1t), given security parameter k ∈ � and revocation threshold

t ∈ �, samples (pp, sp) ∈ SampP(1k) and outputs public-key-master-secret-
key pair (pk ,msk) := Gen′((pp, sp), 1k, 1t).

Key extraction. Share(msk , id), for id ∈ ID, returns usk id ∈ Share′(msk , id).
Encapsulation. Enc(pk ,R), for public key pk and R ⊗ ID of size exactly

t, chooses a random value r, samples (u, s) ∈ SampR(1k, pk ; r), and com-
putes τid := Pub(hk , id , r), for id ∈ R. The ciphertext is given by C :=
(R, u, (τid)id≥R), the key is K := Gpk (s).

Decapsulation. Dec(id , usk id , C), with usk id and C as above, retrieves s :=
Ext(u,R∪ {id}, (τid)id≥R,Priv(usk id, u)) and outputs K := Gpk (s).

Correctness is easy to verify. For semantic security, we point to [53, Theorem 3].
Hence, as a result, we derive an EDDH-based revocation scheme.

4 Second Result: ((t + 1)/2, ε)-Traceability of the
EDDH-Based RKEM Instance

Trace-and-Revoke Schemes. A trace-and-revoke scheme connects the prop-
erties of a revocation scheme and the benefits of a traitor tracing scheme. As
mentioned before, combining these is nontrivial (see [7, Section 4.1]). Follow-
ing [5, 15, 9, 7], we define traceability of an RKEM. (Note, this implicitly defines
traceability of a revocation scheme due to the results of Section 3 and, thus, we
derive a trace-and-revoke scheme.) Intuitively, we require an efficient algorithm
Trace that can, from oracle access to a stateless pirated box B, deduce the iden-
tity of at least one party that has been involved in the construction of B. More
concretely, suppose an adversary A corrupts a number of devices (i.e., obtains
a number of user keys usk id), and constructs a pirate box B. Suppose that B
successfully decrypts ciphertexts for an adversarially specified set R of revoked
users. Then we want that Trace, given oracle access to B, can deduce at least one
of the identities id whose device A has corrupted. We will also define a relaxation
of traceability, dubbed sid-traceability, in which the adversary has to commit to
corrupted identities in advance, before even seeing the public key.

Definition 1 (Traceable/sid-traceable RKEM). We say that that an ad-
versary A is T -valid if, in experiment ExptraceRKEM,Trace,A (defined in Figure 1), it
always chooses t ⊆ T , it always outputs a set R of size at most t, and it al-
ways makes at most T Share queries. (Note that this definition does not ac-
tually depend on Trace, and that t is specified by A itself.) Furthermore, for
given pk ,R, we define the quality of a pirate box B output by A as QB,R :=
Pr [B(C) = K | (C,K) ∈ Enc(pk ,R)] . An RKEM RKEM is (T, ε)-traceable if
there exists a PPT algorithm Trace (that may depend on T and ε), so that for
every PPT T -valid A, AdvtraceRKEM,A(k) := Pr

[
ExptraceRKEM,Trace,A,Ψ(k) = 1

]
is negli-

gible. RKEM is (T, ε)-traceable under selective-identity attacks (short: (T, ε)-
sid-traceable) if the analogous statement holds with respect to Advsid-traceRKEM,A(k) :=

58 D. Hofheinz and C. Striecks

Experiment ExptraceRKEM,Trace,A,ε(1
k)

1t ← A(1k)
(pk ,msk) ← Gen(1k, 1t)
(B,R) ← AShare(msk,·)(pk)
id ← TraceB(·)(msk ,R)
if A has queried Share(msk , id)

or QB,R < ε return 0
return 1

Experiment Expsid-traceRKEM,Trace,A,ε(1
k)

(1t, C) ← A(1k)
(pk ,msk) ← Gen(1k, 1t)
∀id ∈ C: usk id ← Share(msk , id)
(B,R) ← A(pk , (usk id)id∈C)
id ← TraceB(·)(msk ,R)
if id ∈ C or QB,R < ε return 0
return 1

Fig. 1. Security experiments for traceability and sid-traceability of an RKEM

Pr
[
Expsid-traceRKEM,Trace,A,Ψ(k) = 1

]
and Expsid-traceRKEM,Trace,A,Ψ, defined in Figure 1, in which

A has to output an identity set C of corrupted users of size at most t in advance.

From sid-Traceability to Traceability. There is a trivial (yet expensive) way
to convert sid-traceable RKEMs into traceable ones. Namely, we can simply guess
the identities for which an adversary (adaptively) requests user keys. Concretely:

Lemma 1 (sid-traceable ⇒ traceable). Let RKEM by a (T, ε)-sid-traceable
RKEM with N identities. If

(
N
T

)
is polynomial in k, then RKEM is also (T, ε)-

traceable (with the same Trace algorithm). Concretely, for every adversary A on
RKEM’s traceability, there is an adversary A′ of roughly the same complexity on
RKEM’s sid-traceability, such that Advsid-traceRKEM,A∗(k) ⊆ AdvtraceRKEM,A(k)/

(
N
T

)
.

Proof sketch. See full version [25] for a proof sketch.

Relation to Our Second Result. Our second result (below) shows the ((t+
1)/2, ε)-sid-traceability of an EDDH-based RKEM based on threshold extract-
able hash proofs. Our corresponding tracing algorithm will have a runtime that
is linear in

(
N
T

)
. Thus, in that case,

(
N
T

)
must be polynomial anyway, and the

loss in Lemma 1 seems acceptable.

More about Our Tracing Strategy. We propose a tracing strategy that
is similar to the tracing techniques in the revocation setting given by [50, 15].
However, we stress that the tracing algorithm of [50] assumes a pirate box with
perfect decryption, i.e., ε = 1, and chooses the revoked set R by itself. The
tracing mode in [15] also considers imperfect decryption boxes, adversarially
chosen revoked user sets, and, additionally, allows of querying user secret keys
adaptively. (This is possible since their scheme allows to change the public key
continuously even after the system setup.) Additionally, both, i.e., [50, 15], only
address the DDH setting. Nevertheless, we stress that the novelty of our work
lies in the fact that we propose a new generic view of trace-and-revoke schemes.

4.1 Warmup: (1, 2/3)-sid-Traceability of the EDDH-Based RKEM

We can now state our second result; i.e., we show the traceability of RKEMEDDH

which is an EDDH-based RKEM as defined and constructed in Section 3. (This

A Generic View on Trace-and-Revoke Broadcast Encryption Schemes 59

immediately translates to an EDDH-based trace-and-revoke scheme.) As a warm-
up, we first showcase the (1, 2/3)-sid-traceability of RKEMEDDH.

Informal Proof Strategy. To explain the overall idea of our tracing algorithm,
observe that the decryption of a ciphertext generated by Enc does not depend on
which user key was used to decrypt. (This is necessary for correctness.) Hence,
we cannot expect that a pirate box B can be traced by feeding it valid ciphertexts
generated by Enc. Instead, we will feed B random ciphertexts of the form

CRrnd = (R, u1, (uf(id)1 hzid)id≥R, u
f(0)
1 hz0) for uniform h ∈ H and zid , z0. (2)

We will show that for such random ciphertexts, the result of the (honest) de-
cryption depends on the identity of the used user key usk id . Furthermore, a
suitable reduction to the EDDH assumption will show that honestly generated
ciphertexts are indistinguishable from random ones. Hence, Trace can go through
the set of all possible identities id , and check how often B(CRrnd) coincides with
Dec(id , usk id , C

R
rnd). In case B outputs the same as Dec with probability close to

2/3, chances are that we have found the pirate identity.

Theorem 1 ((1, 2/3)-sid-traceability of RKEMEDDH). Assuming the EDDH
assumption, we have that the RKEM RKEMEDDH = (Gen, Share,Enc,Dec), with
identity space ID, polynomial number N of identities, and key derivation func-
tion G(s) = s, is (1, 2/3)-sid-traceable. The corresponding tracing algorithm
Trace runs for O(kN logN) steps, and makes O(k logN) oracle queries. Con-
cretely, for every T -valid adversary A, there is an EDDH adversary D, such that∣∣AdvtraceRKEM,A(k)

∣∣ ≥ O(2−k), for all k that satisfy
∣∣∣Adveddh�,H,D(k)

∣∣∣ ≥ 1/9 − εG, for

negligible εG.

Proof. See the full version [25] for a proof.

4.2 General Case: ((t + 1)/2, ε)-sid-Traceability of RKEMEDDH

Why Our Tracing Strategy for T = 1 Does Not Work. First, observe that
our concrete tracing strategy from the proof of Theorem 1 fails if A requests mul-
tiple user keys. For instance, A could use multiple user keys to distinguish valid
from random ciphertexts. Concretely, A could request two keys usk id1

and usk id2

and let B first check if a given ciphertext decrypts to the same value under both
usk id1

and usk id2
. If the decryptions do not match, then B immediately fails. (Re-

call that our proof uses the fact that random ciphertexts decrypt differently under
different keys.) Such a boxB would be useless to our tracing algorithmTrace, since
Trace feeds B only random ciphertexts. (See [27] for more details.)

How to Adapt Our Strategy. A natural way to adapt our strategy — this es-
sentially follows the “black-box confirmation” argument from [5] — would seem
as follows. Given a set I ⊗ ID of identities, we can construct “semi-random ci-

phertexts” of the form CR,Irnd = (R, u1, (uf(id)1 hf
∗(id))id≥R, u

f(0)
1 hf

∗(0)) for f ′(x) ∈
�q[x] uniform of degree ≥ t, but subject to f ′(id) = 0 for id ∈ I. We will also

60 D. Hofheinz and C. Striecks

define the random quality RQIB,R of a box B relative to a given revoked setR, and

an identity set I ⊗ ID: RQIB,R := Pr
[
B(CR,Irnd) = Dec(id , usk id , C

R
rnd)

]
, for some

id ∈ I. Intuitively, ciphertexts CR,Irnd look consistent from the point of a pirate
box that only knows user keys for identities in I. Hence, our tracing strategy for
a larger number T of traitors will be as follows. We iterate over all

(
N
T

)
identity

subsets I ⊗ ID of size T , and approximate RQIB,R. If the approximation indicates

that RQIB,R ⊆ ε, then we have a candidate for the set C of traitors. Unfortunately,
there may be many candidates, and not all of them contain only traitors. To filter
out one identity that surely is a traitor, we remove identities from I, one at a time.
If the quality RQIB,R drops, we must have removed a traitor. (If the removed iden-
tity was no traitor, then B would not have noticed.) Again, this tracing strategy
is similar to that of [5, 28, 50, 15, 9, 7]. More formally:

Theorem 2 (((t+1)/2, ε)-sid-traceability of RKEMEDDH). Assuming EDDH,
RKEMEDDH is (T, ε)-sid-traceable for every T ≥ (t+1)/2 for which

(
N
T

)
is polyno-

mial, and every significant ε. The corresponding tracing algorithm Trace runs for
O(k

(
N
T

)
/ε2) steps, where N denotes the number of identities in the system. Con-

cretely, for every T -valid adversary A, there are adversaries D,E, F , such that∣∣AdvtraceRKEM,A(k)
∣∣ ≥ O(2−k), for all k that satisfy

∣∣∣Adveddh�,H,D(k)
∣∣∣+ (∑T

i=2

(
N
i

)) ·∣∣∣Adveddh�,H,E(k)
∣∣∣+ (N − T) ·

∣∣∣Adveddh�,F (k)
∣∣∣ ≥ Ψ

3T .

Proof. See full version [25] for a proof.

Potential Generalizations of Our Tracing Result. There are several di-
mensions in which one might want to improve our tracing result. We will com-
ment on how our result can be generalized (and when a generalization seems
problematic) in the full version [25].

References

[1] Abdalla, M., Dent, A.W., Malone-Lee, J., Neven, G., Phan, D.H., Smart, N.P.:
Identity-based traitor tracing. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS,
vol. 4450, pp. 361–376. Springer, Heidelberg (2007)

[2] Agrawal, S., Boyen, X., Vaikuntanathan, V., Voulgaris, P., Wee, H.: Functional
encryption for threshold functions (or fuzzy ibe) from lattices. In: Fischlin, M.,
Buchmann,J.,Manulis,M. (eds.)PKC2012.LNCS,vol. 7293, pp. 280–297.Springer,
Heidelberg (2012)

[3] Barth, A., Boneh, D., Waters, B.: Privacy in encrypted content distribution using
private broadcast encryption. In: Di Crescenzo, G., Rubin, A. (eds.) FC 2006.
LNCS, vol. 4107, pp. 52–64. Springer, Heidelberg (2006)

[4] Billet, O., Phan, D.H.: Efficient traitor tracing from collusion secure codes. In:
Safavi-Naini, R. (ed.) ICITS 2008. LNCS, vol. 5155, pp. 171–182. Springer,
Heidelberg (2008)

[5] Boneh, D., Franklin, M.: An efficient public key traitor tracing scheme. In: Wiener,
M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 338–353. Springer, Heidelberg
(1999)

A Generic View on Trace-and-Revoke Broadcast Encryption Schemes 61

[6] Boneh, D., Naor, M.: Traitor tracing with constant size ciphertext. In: Ning, P.,
Syverson, P.F., Jha, S. (eds.) ACM CCS 2008, pp. 501–510. ACM Press (October
2008)

[7] Boneh, D., Waters, B.: A fully collusion resistant broadcast, trace, and revoke
system. In: Juels, A., Wright, R.N., De Capitani di Vimercati, S. (eds.) ACM
CCS 2006, pp. 211–220. ACM Press (October/November 2006)

[8] Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast encryption with
short ciphertexts and private keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS,
vol. 3621, pp. 258–275. Springer, Heidelberg (2005)

[9] Boneh, D., Sahai, A., Waters, B.: Fully collusion resistant traitor tracing with
short ciphertexts and private keys. In: Vaudenay, S. (ed.) EUROCRYPT 2006.
LNCS, vol. 4004, pp. 573–592. Springer, Heidelberg (2006)

[10] Chabanne, H., Phan, D.H., Pointcheval, D.: Public traceability in traitor tracing
schemes. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 542–558.
Springer, Heidelberg (2005)

[11] Chor, B., Fiat, A., Naor, M.: Tracing traitors. In: Desmedt, Y.G. (ed.) CRYPTO
1994. LNCS, vol. 839, pp. 257–270. Springer, Heidelberg (1994)

[12] Delerablée, C., Paillier, P., Pointcheval, D.: Fully collusion secure dynamic broad-
cast encryption with constant-size ciphertexts or decryption keys. In: Takagi, T.,
Okamoto, T., Okamoto, E., Okamoto, T. (eds.) Pairing 2007. LNCS, vol. 4575,
pp. 39–59. Springer, Heidelberg (2007)

[13] Dodis, Y., Fazio, N.: Public key broadcast encryption for stateless receivers. In:
Feigenbaum, J. (ed.) DRM 2002. LNCS, vol. 2696, pp. 61–80. Springer, Heidelberg
(2003)

[14] Dodis, Y., Fazio, N.: Public key trace and revoke scheme secure against adaptive
chosen ciphertext attack. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567,
pp. 100–115. Springer, Heidelberg (2002)

[15] Dodis, Y., Fazio, N., Kiayias, A., Yung, M.: Scalable public-key tracing and re-
voking. Distributed Computing 17(4), 323–347 (2005)

[16] Fazio, N., Nicolosi, A., Phan, D.H.: Traitor tracing with optimal transmission rate.
In: Garay, J.A., Lenstra, A.K., Mambo, M., Peralta, R. (eds.) ISC 2007. LNCS,
vol. 4779, pp. 71–88. Springer, Heidelberg (2007)

[17] Fiat, A., Naor, M.: Broadcast encryption. In: Stinson, D.R. (ed.) CRYPTO 1993.
LNCS, vol. 773, pp. 480–491. Springer, Heidelberg (1994)

[18] Fiat, A., Tassa, T.: Dynamic traitor training. In: Wiener, M. (ed.) CRYPTO 1999.
LNCS, vol. 1666, pp. 354–371. Springer, Heidelberg (1999)

[19] Gafni, E., Staddon, J., Yin, Y.L.: Efficient methods for integrating traceability
and broadcast encryption. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666,
pp. 372–387. Springer, Heidelberg (1999)

[20] Garay, J.A., Staddon, J., Wool, A.: Long-lived broadcast encryption. In: Bellare, M.
(ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 333–352. Springer, Heidelberg (2000)

[21] Gentry, C., Waters, B.: Adaptive security in broadcast encryption systems (with
short ciphertexts). In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479,
pp. 171–188. Springer, Heidelberg (2009)

[22] Goodrich, M.T., Sun, J.Z., Tamassia, R.: Efficient tree-based revocation in groups
of low-state devices. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152,
pp. 511–527. Springer, Heidelberg (2004)

[23] Halevy, D., Shamir, A.: The LSD broadcast encryption scheme. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 47–60. Springer, Heidelberg (2002)

62 D. Hofheinz and C. Striecks

[24] Hemenway, B., Ostrovsky, R.: Extended-ddh and lossy trapdoor functions. In:
Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293,
pp. 627–643. Springer, Heidelberg (2012)

[25] Hofheinz, D., Striecks, C.: A generic view on trace-and-revoke broadcast encryp-
tion schemes. Cryptology ePrint Archive (2013)

[26] Jin, H., Lotspiech, J.: Renewable traitor tracing: A trace-revoke-trace system
for anonymous attack. In: Biskup, J., López, J. (eds.) ESORICS 2007. LNCS,
vol. 4734, pp. 563–577. Springer, Heidelberg (2007)

[27] Kiayias, A., Yung, M.: Self protecting pirates and black-box traitor tracing. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 63–79. Springer, Heidelberg
(2001)

[28] Kiayias, A., Yung, M.: On crafty pirates and foxy tracers. In: Sander, T. (ed.)
DRM 2001. LNCS, vol. 2320, pp. 22–39. Springer, Heidelberg (2002)

[29] Kiayias, A., Yung, M.: Breaking and repairing asymmetric public-key traitor trac-
ing. In: Feigenbaum, J. (ed.) DRM 2002. LNCS, vol. 2696, pp. 32–50. Springer,
Heidelberg (2003)

[30] Kiayias, A., Yung,M.: Traitor tracing with constant transmission rate. In: Knudsen,
L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 450–465. Springer, Heidelberg
(2002)

[31] Kim, C.H., Hwang, Y.-H., Lee, P.J.: An efficient public key trace and revoke
scheme secure against adaptive chosen ciphertext attack. In: Laih, C.-S. (ed.)
ASIACRYPT 2003. LNCS, vol. 2894, pp. 359–373. Springer, Heidelberg (2003)

[32] Kurosawa, K., Desmedt, Y.: Optimum traitor tracing and asymmetric schemes.
In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 145–157. Springer,
Heidelberg (1998)

[33] Lewko, A.B., Sahai, A., Waters, B.: Revocation systems with very small private
keys. In: 2010 IEEE Symposium on Security and Privacy, pp. 273–285. IEEE
Computer Society Press (May 2010)

[34] Libert, B., Paterson, K.G., Quaglia, E.A.: Anonymous broadcast encryption:
Adaptive security and efficient constructions in the standard model. In: Fischlin,
M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 206–224.
Springer, Heidelberg (2012)

[35] Matsushita, T., Imai, H.: A public-key black-box traitor tracing scheme with sub-
linear ciphertext size against self-defensive pirates. In: Lee, P.J. (ed.) ASIACRYPT
2004. LNCS, vol. 3329, pp. 260–275. Springer, Heidelberg (2004)

[36] Naor, D., Naor, M., Lotspiech, J.: Revocation and tracing schemes for stateless
receivers. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 41–62. Springer,
Heidelberg (2001)

[37] Naor, M., Pinkas, B.: Threshold traitor tracing. In: Krawczyk, H. (ed.) CRYPTO
1998. LNCS, vol. 1462, pp. 502–517. Springer, Heidelberg (1998)

[38] Naor, M., Pinkas, B.: Efficient trace and revoke schemes. In: Frankel, Y. (ed.) FC
2000. LNCS, vol. 1962, pp. 1–20. Springer, Heidelberg (2001)

[39] Pfitzmann, B.: Trials of traced traitors. In: Anderson, R. (ed.) IH 1996. LNCS,
vol. 1174, pp. 49–64. Springer, Heidelberg (1996)

[40] Pfitzmann, B., Waidner, M.: Asymmetric fingerprinting for larger collusions. In:
ACM CCS 1997, pp. 151–160. ACM Press (April 1997)

[41] Phan, D.H., Pointcheval, D., Shahandashti, S.F., Strefler, M.: Adaptive cca
broadcast encryption with constant-size secret keys and ciphertexts. Int. J. Inf.
Sec. 12(4), 251–265 (2013)

A Generic View on Trace-and-Revoke Broadcast Encryption Schemes 63

[42] Phan, D.H., Pointcheval, D., Trinh, V.C.: Multi-channel broadcast encryption.
In: Chen, K., Xie, Q., Qiu, W., Li, N., Tzeng, W.-G. (eds.) ASIACCS 2013,
pp. 277–286. ACM Press (May 2013)

[43] Safavi-Naini, R., Wang, Y.: Sequential traitor tracing. In: Bellare, M. (ed.)
CRYPTO 2000. LNCS, vol. 1880, pp. 316–332. Springer, Heidelberg (2000)

[44] Shoup, V.: Practical threshold signatures. In: Preneel, B. (ed.) EUROCRYPT
2000. LNCS, vol. 1807, pp. 207–220. Springer, Heidelberg (2000)

[45] Silverberg, A., Staddon, J., Walker, J.L.: Efficient traitor tracing algorithms using
list decoding. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 175–192.
Springer, Heidelberg (2001)

[46] Sirvent, T.: Traitor tracing scheme with constant ciphertext rate against powerful
pirates. In: Workshop on Coding and Cryptography (2007)

[47] Stinson, D.R., Wei, R.: Key preassigned traceability schemes for broadcast encryp-
tion. In: Tavares, S., Meijer, H. (eds.) SAC 1998. LNCS, vol. 1556, pp. 144–156.
Springer, Heidelberg (1999)

[48] Stinson, D.R., Wei, R.: Combinatorial properties and constructions of traceability
schemes and frameproof codes. SIAM J. Discrete Math. 11(1), 41–53 (1998)

[49] Tonien, D., Safavi-Naini, R.: An efficient single-key pirates tracing scheme using
cover-free families. In: Zhou, J., Yung, M., Bao, F. (eds.) ACNS 2006. LNCS,
vol. 3989, pp. 82–97. Springer, Heidelberg (2006)

[50] Tzeng, W.-G., Tzeng, Z.-J.: A public-key traitor tracing scheme with revocation
using dynamic shares. In: Kim, K. (ed.) PKC 2001. LNCS, vol. 1992, pp. 207–224.
Springer, Heidelberg (2001)

[51] Watanabe, Y., Hanaoka, G., Imai, H.: Efficient asymmetric public-key traitor trac-
ing without trusted agents. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020,
pp. 392–407. Springer, Heidelberg (2001)

[52] Wee, H.: Efficient chosen-ciphertext security via extractable hash proofs. In: Rabin,
T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 314–332. Springer, Heidelberg (2010)

[53] Wee, H.: Threshold and revocation cryptosystems via extractable hash proofs. In:
Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 589–609. Springer,
Heidelberg (2011)

[54] Yoo, E.S., Jho, N.-S., Cheon, J.H., Kim, M.-H.: Efficient broadcast encryption
using multiple interpolation methods. In: Park, C.-S., Chee, S. (eds.) ICISC 2004.
LNCS, vol. 3506, pp. 87–103. Springer, Heidelberg (2005)

Broadcast Steganography

Nelly Fazio1,3, Antonio R. Nicolosi2, and Irippuge Milinda Perera3

1 The City College of CUNY
fazio@cs.ccny.cuny.edu

2 Stevens Institute of Technology
nicolosi@cs.stevens.edu

3 The Graduate Center of CUNY
{nfazio,iperera}@gc.cuny.edu

Abstract. We initiate the study of broadcast steganography (BS), an
extension of steganography to the multi-recipient setting. BS enables
a sender to communicate covertly with a dynamically designated set
of receivers, so that the recipients recover the original content, while
unauthorized users and outsiders remain unaware of the covert com-
munication. One of our main technical contributions is the introduc-
tion of a new variant of anonymous broadcast encryption that we term
outsider-anonymous broadcast encryption with pseudorandom ciphertexts
(oABE$). Our oABE$ construction achieves sublinear ciphertext size
and is secure in the standard model. Besides being of interest in its own
right, oABE$ enables an efficient construction of BS secure in the stan-
dard model against adaptive adversaries with sublinear communication
complexity.

Keywords: Steganography, Broadcast Encryption, Receiver Anonymity.

1 Introduction

Point-to-point encryption schemes are effective at concealing the meaning of the
communication between two parties. If the parties additionally desire that the
very existence of their communication over a public channel remains concealed,
then the required tool is steganography. Conventional steganography allows two
parties to communicate covertly, even in the presence of an adversary, by hiding
the intended content within other, seemingly harmless messages. After its initial
formalization in the information-theoretic [12] and complexity-theoretic [3,32,34]
settings, steganography has received regular attention by the cryptographic com-
munity. To a first approximation, existing solutions differ mostly in the degree
of adversarial control that they can tolerate, and in the specific trade-off that
they achieve among the main efficiency measures of transmission overhead, pub-
lic/secret key storage, and encryption/decryption complexity.

Steganography. Simmons [44] introduced the cryptographic community to the
problem of hidden communication with his famous prisoners’ dilemma: Alice
and Bob are in jail and can only talk in the presence of the jail warden Ward.
Ward will not allow any encrypted communication, so Alice and Bob must

J. Benaloh (Ed.): CT-RSA 2014, LNCS 8366, pp. 64–84, 2014.
© Springer International Publishing Switzerland 2014

Broadcast Steganography 65

BE

oABE

AnoBE$

AnoBE oABE$ BS

Fig. 1. Relations between broadcast encryption (BE), (outsider) anonymous broadcast
encryption (AnoBE and oABE), and broadcast steganography (BS). A straight arrow
means that one notion implies the other, while the curly arrow denotes our black-box
construction from oABE$ to BS (cf. Sect. 5).

hide their messages about an escape plan (the hiddentext) into innocent-looking
communication (the stegotext) that Ward cannot distinguish from casual chat-
ter (the covertext). Modern cryptographic treatment of steganography began
with Cachin’s formalization in the information-security setting [12] and Hopper
et al.’s in the complexity-theoretic one [32]. Kiayias et al. [35] improve the effi-
ciency of the steganographic protocol of [32] by replacing the use of a pseudo-
random function family with the combination of a pseudorandom generator and
a t-wise independent hash function. This approach was further refined in [36] to
obtain a key-efficient steganographic system, where the gain stems from employ-
ing a novel rejection sampling method based on extractors.

In 2004, von Ahn and Hopper [3] extended the notion of steganography
to the public-key setting, but mostly focused on security against passive ad-
versaries. A stronger security model (steganographic secrecy against adaptive
chosen-covertext attacks, or SS-CCA) was defined by Backes and Cachin [6],
but their constructions attained only an intermediate security notion, termed
steganographic secrecy against publicly-detectable, replayable adaptive chosen-
covertext attacks (SS-PDR-CCA). Building upon the work of [6], Hopper [31]
attained full SS-CCA security under the Decisional Diffie-Hellman (DDH) as-
sumption, in the standard model. Le and Kurosawa [38] suggested a weaker
generalization of the model of [6], but with better efficiency than [31].

All steganographic constructions mentioned above assume that the commu-
nication channel can be modeled by an efficient covertext sampler that can
be queried adaptively, in a black-box manner. Dedic et al. [15] looked into
communication bounds for stegosystems of this kind, while Lysyanskaya and
Meyerovich [40] dealt with the case of imperfect channel oracle samplers.

Work of von Ahn et al. [4] and Chandran et al. [14] introduced stealthiness
to the setting of secure function evaluation, originating the notion of covert
two-party/multi-party computation. Covert protocols allow parties to carry out
distributed computations in a way that hides their very intent of taking part
in the protocol: that is, unless all parties actively participate, nobody can de-
tect that protocol messaging had been initiated (and aborted). This capability
supports stealthy coordination between mutually mistrustful parties and enables
fascinating applications like covert authentication [4] and co-spy detection [14].
However, it does not imply efficient covert dissemination of information to a cho-
sen subset of (mostly passive) receivers, which is the main focus of this paper.

66 N. Fazio, A.R. Nicolosi, and I.M. Perera

Table 1. Comparison of the parameters of (outsider) anonymous broadcast encryption
schemes. Each scheme is CCA-secure and requires only one decryption attempt. Only
our scheme provides pseudorandom ciphertexts (c ≈ $:Yes). N is the total number of
users and r is the number of revoked users.

Scheme |MPK| |sk| |c| Security Model Anonymity c ≈ $

BBW06 [7] O(N) O(1) O(N − r) Static, RO Full No
LPQ12 [39] O(N) O(1) O(N − r) Adaptive, Standard Full No

FP12a [23] O(N) O(logN) O
(

r log
(

N
r

))
Adaptive, Standard Outsider No

FP12b [24] O(N log N) O(N) O(r) Adaptive, Standard Outsider No

oABE$ [ours] O(N) O(logN) O
(

r log
(

N
r

))
Adaptive, Standard Outsider Yes

Broadcast Steganography (BS). In this work, we extend steganography to
the broadcast setting. Intuitively, broadcast steganography enables a sender to
communicate covertly with a dynamically designated set of receivers, so that
authorized recipients correctly recover the original content, while unauthorized
users and outsiders remain unaware of the covert communication. To construct
broadcast steganography, we employ the “encrypt-then-embed” paradigm that
underpins most steganographic constructions [3,6,31,32] (cf. Sect. 2). Realizing
this approach, however, requires solving several technical problems.

The first issue is that, in broadcast encryption, the receiver set is included
explicitly in the ciphertext as part of its header (e.g., [8,9,16–19,25,26,28,29,42]).
This is a non-starter for steganography, which intrinsically requires that the
existence of any data in the channel be concealed. To address this issue, we turn
to private broadcast encryption, a notion introduced by Barth et al. [7] with the
goal of keeping the identities of the authorized receivers anonymous (Sect. 2).

The second hurdle is that the “encrypt-then-embed” paradigm requires the un-
derlying encryption functionality to have pseudorandom ciphertexts. This prop-
erty so far had not been considered in the broadcast encryption literature, and none
of the existing constructions support it natively. Interestingly, attaining pseudo-
random ciphertexts requires implicitly that the identities of the recipients be un-
intelligible in the view of outsiders (pseudorandomness of the ciphertext clearly
cannot hold in the view of the recipients). This condition ties back directly to the
previous issue, but in a weaker form, as recipient anonymity is only required to
hold against outsiders. As it turns out, Fazio and Perera [23] recently proposed
a relaxation of full anonymity of exactly this sort: outsider-anonymous broadcast
encryption (oABE). This notion trades some degree of anonymity for better effi-
ciency: whereas all known fully-anonymous broadcast encryption schemes [7, 39]
have ciphertexts linear in the number of receivers, the constructions of [23] obtain
sublinear ciphertext length, though they do not necessarily guarantee that autho-
rized users will learn no information about other members of the receiver set.

In light of the above observations, we put forth and realize (Sect. 4) a new
broadcast encryption variant that we term outsider-anonymous broadcast en-
cryption with pseudorandom ciphertexts (oABE$). oABE$ enables a black-box
construction of BS (cf. Sect. 5). Realizing an efficient oABE$ scheme requires

Broadcast Steganography 67

Table 2. The parameters of our black-box broadcast steganography schemes. Type-1
channels are the most general, and are modeled as stateful probabilistic oracles whose
output distribution may depend on past samples. Type-2 channels are slightly more
restrictive as they assume history independence, and can then be modeled as efficiently
sampleable document distributions, i.e., efficiently computable randomized functions.
N is the total number of users and r is the number of revoked users. The notion of
BS-CHA (resp. BS-CCA) captures passive (resp. active) security for the BS setting (cf.
Sect. 3.2).

Scheme |MPK| |sk| |s| Security Model Channel Type

BS-CHA O(N) O(logN) O
(

r log
(

N
r

))
Adaptive, Standard 1

BS-CCA O(N) O(logN) O
(

r log
(

N
r

))
Adaptive, Standard 2

non-trivial enhancements to the oABE construction of [23], for it entails resolv-
ing the apparent tension between our ciphertext pseudorandom property and
the ciphertext redundancy introduced by common approaches to CCA secu-
rity [10,20]. Our solution harmonizes these requirements using a novel Pedersen-
like encapsulation mechanism discussed in Sect. 4.2. A comparison of our oABE$
construction with existing ones is reported in Table 1, whereas Fig. 1 shows how
oABE$ relates to other anonymous broadcast communication tools.

Applications. The combination of stealth and revocation capabilities offered
by broadcast steganography enables defenses against insider threats in anti-
censorship systems, intelligence scenarios, and other domains that rely on covert
communication [41, 45].

For a military example, consider a camp where each soldier has an army
smartphone, on which they receive weather forecast, unclassified news and other
information in the clear. Suppose that headquarters suspect that a group of offi-
cials are conspiring to commit treachery, and decides to carry out an undercover
investigation to confirm the identities of the traitors. Conventional broadcast
encryption does not suffice to protect the transmission channel to the soldiers
involved in the investigation of the traitors, because the selective exclusion of
the conspirators from the communication would already put them on notice.
Broadcast steganography, instead, would allow delivery of instructions to the
investigating parties without risking alerting the traitors to the investigation.

For a civil rights scenario, an activist/blogger may want to hide her commen-
tary into innocent-looking image postings to social media services (e.g., Instagram
or Weibo). Because censorship authorities may infiltrate among the activist’s fol-
lowers, the ability of broadcast steganography to authorize/deauthorize recipients
at a fine grain would enable the blogger to revoke the infiltrator and prevent him
from recovering the hiddentext, without him noticing that he has been singled out.

Our Contributions. This work initiates the study of broadcast steganography.
After introducing a suitable security framework, we highlight the connections
with the issue of recipient-anonymity in broadcast encryption. One of our main
technical contributions is the introduction of a new variant of anonymous broad-
cast encryption that we term outsider-anonymous broadcast encryption with

68 N. Fazio, A.R. Nicolosi, and I.M. Perera

hiddentext

Encrypt ciphertext Embed

stegotext

ExtractciphertextDecrypt

Encode

Decode

Fig. 2. The “encrypt-then-embed” paradigm underlying (broadcast) steganography

pseudorandom ciphertexts. Our oABE$ construction achieves sublinear cipher-
text size and is secure in the standard model against adaptive adversaries, which
required circumventing multiple technical hurdles and is thus of independent in-
terest. Finally, we devise efficient oABE$-based BS schemes at varying security
levels (cf. Table 2), including a construction with sublinear stegotexts secure in
the standard model against adaptive adversaries.

2 Background

Documents and Covertexts. Let Σ = {0, 1}σ be a finite set of bit-strings
with length σ. Denote by Σ∗ the set of sequences of finite length over Σ. We
call the strings u ∈ Σ documents and the strings s ∈ Σ∗ covertexts.

Channels. A channel Ch is a function that takes as input a channel history
h ∈ Σ∗ and produces a probability distribution on Σ. A channel history h =
s1‖ . . . ‖sl ∈ Σ∗ is called legal if for all i ∈ [1, l], PrCs1‖...‖si−1

[si] > 0. A sampling
of l documents in succession from a channel is denoted by s = s1‖ . . . ‖sl ←
Cl

h (shorthand notation for s1 ← Ch, s2 ← Ch‖s1 , . . . , sl ← Ch‖s1‖...‖sl−1). A
channel is called always informative if for every legal history h ∈ Σ∗, H∞(Cl

h) =
�(l), where H∞ is the min-entropy function. A channel can be modeled either
as an oracle or as an efficiently computable randomized function Channel(h; r)
(where r denotes the random coins). While the latter is a stronger assumption on
the channel, [31] shows it to be necessary for secure steganography. Efficiently
computable channels also enable broadcast steganographic constructions with
stronger security guarantees (cf. Sect. 5).

Public-KeySteganography.From an operational standpoint, public-key stega-
nography resembles the setting of asymmetric encryption: a participant with a
public/secret key pair is able to receive covert messages (the hiddentexts) from
another party, who only knows the public key. Unlike the case of public-key cryp-
tography, however, the encoded hiddentexts, termed stegotexts, are required to be
indistinguishable from the covertexts of the communication channel.

A common approach to realize public-key stegosystems is the “encrypt-then-
embed” paradigm [3, 6, 31, 32], depicted in Fig. 2. At a high level, encoding is
accomplished by first encrypting the hiddentext using a public-key cryptosystem,
and then implanting the resulting ciphertext in the stegotext using an embedding

Broadcast Steganography 69

function. The decoding process develops similarly, but in the reverse direction.
Based on the security properties of the underlying cryptosystem and embed-
ding function, one obtains stegosystems with a variety of security guarantees
(cf. Sect. 1).

Outsider-Anonymous Broadcast Encryption (oABE). The notion of pri-
vate broadcast encryption was initially introduced in [7], with the aim of pro-
viding explicit protection for identities of the receivers during each transmission.
As a proof-of-concept, therein the authors suggested both generic and number-
theoretic public-key constructions that do not leak any information about the
list of authorized receivers, and are secure in the standard model and in the
random oracle model, respectively. The proposed schemes, however, have com-
munication complexity linear in the number of recipients. In [39], Libert et al.
suggested proof techniques to argue the security of (a variant of) the number-
theoretic construction of [7] without reliance on random oracles, thus attain-
ing anonymous broadcast encryption with efficient decryption in the standard
model. Still, ciphertexts in the resulting construction have length linear in the
number of recipients. In [37], Kiayias and Samari put forth lower bounds on
the ciphertext size of private broadcast encryption schemes and showed, among
other results, that fully anonymous broadcast encryption schemes with a cer-
tain “atomicity” property (satisfied, e.g., by the schemes of [7, 39]) must have
�(s · λ) ciphertext size, where s is the number of authorized receivers and λ is
the security parameter.

Fazio and Perera [23] formalized the notion of outsider-anonymous broadcast
encryption , which lies between the complete lack of protection that character-
izes traditional broadcast encryption schemes as introduced in [25], and the full
anonymity provided by [7, 39]. In an oABE scheme, an attacker who intercepts
a ciphertext of which she is not a legal recipient will be unable to learn anything
about the identities of the legal recipients (let alone the contents of the cipher-
text). Still, for those ciphertexts for which the adversary is in the authorized
set of recipients, she might also garner information about the identities of the
other receivers. This seems a natural relaxation, since often the contents of the
communication already reveals something about the recipient set. Moreover, it
enables schemes that achieve sublinear ciphertexts size and are secure against
adaptive adversaries in the standard model. We observe that, in light of the
lower bounds of [37], the trade-off proposed in [23] may be unavoidable.

Entropy Smoothing Hash. A family of hash functions Hes = {H : X → Y }
is “entropy smoothing” [33] if it is hard to distinguish (H, H(x)) from (H, y),
where H is a random element of Hes, x is a random element of X , and y is a

70 N. Fazio, A.R. Nicolosi, and I.M. Perera

random element of Y . More formally, Hes is called (t, ε)-entropy smoothing if
for every t-time adversary A,

∣
∣Pr

[A(H, H(x)) = 1 | H ←$ Hes, x ←$ X
]

− Pr
[A(H, y) = 1 | H ←$ Hes, y ←$ Y

]∣
∣ ≤ ε,

where the probability is over the choice of H, x, y and the random coins of A.1

3 Broadcast Steganography (BS)

3.1 The Setting

Definition 3.1. A broadcast steganography scheme, associated with a universe
of users U = [1, N], a message space MSP, and a channel Ch on a set
of documents Σ, is a tuple of probabilistic polynomial-time (PPT) algorithms
(Setup,KeyGen,Encode,Decode) such that:

(MPK,MSK) ← Setup(1λ,N): Setup takes the security parameter 1λ and the
number of users in the system N as inputs and outputs the master public
key MPK and the master secret key MSK.

ski ← KeyGen(MPK,MSK, i): Given the master public key MPK, the master
secret key MSK, and a user i ∈ U , KeyGen generates a secret key ski for
user i.

s ← Encode(MPK, S, h,m): Encode takes the master public key MPK, a set
of receivers S ⊆ U , a channel history h ∈ Σ∗, and a message m ∈ MSP
as inputs and outputs a stegotext s ∈ Σ∗ from the support of Cl

h for some
l = poly(|m|).

m/⊥ := Decode(MPK, ski, s): Given the master public key MPK, a secret key
ski, and a stegotext s ∈ Σ∗, Decode either outputs a message m ∈ MSP or
the failure symbol ⊥. We assume that Decode is deterministic.

Correctness. For every S ⊆ U , i ∈ S, legal channel history h ∈ Σ∗, and
m ∈ MSP, if (MPK,MSK) is output by Setup(1λ, N) and ski is generated by
KeyGen(MPK,MSK, i), then Decode(MPK, ski,Encode(MPK, S, h, m)) = m ex-
cept with negligible probability in the security parameter λ.

Remark 3.2. In contrast to the definition from [31], our definition requires that the
Decode algorithm works without receiving the channel history h corresponding to
the stegotext s as an input. This is crucial for an efficient broadcast steganogra-
phy scheme, because requiring that authorized users feed the Decode algorithm
with the same h that was used by the sender entails a level of coordination that
is unrealistic in a broadcast setting. Our definition also applies to channels whose
samples do not depend on h at all, as Encode may simply ignore h.
1 Entropy smoothing is related to strong randomness extraction [46], but it is a much

less stringent (and hence easier to realize) notion, as it seeks only computational
(rather than information-theoretic) guarantees, and it is specific to one entropy
source (the uniform distribution over the domain X), whereas strong extractors are
applicable to any source of a given min-entropy.

Broadcast Steganography 71

3.2 The Security Models

In broadcast encryption (BE), the adversary’s goal is to learn something about the
message encrypted within a given ciphertext despite not having a valid decryption
key. In broadcast steganography, the adversary’s goal is to detect the presence of a
message in a given covertext without a valid decoding key. In either case, one may
consider multiple levels of security, according to the amount of power afforded to the
attacker. We discuss below three models of security for broadcast steganography
schemes, followed by formal definitions later in this section.
Chosen-Hiddentext Attack (BS-CHA). This is the weakest model of secu-
rity for a broadcast steganography scheme. Analogous to the chosen-plaintext
attack in broadcast encryption, the adversary in this context is only allowed to
corrupt users by gaining their secret keys.
Publicly-Detectable Replayable Chosen-Covertext Attack (BS-PDR-
CCA). In this model of security, the adversary is additionally given access to
a decoding oracle through which they can obtain the hiddentext (if any) in any
covertext s of their choice, as recovered by any honest user i of their choice,
subject to the following restriction: After receiving the challenge covertext s∗

for the set of recipients S∗, the adversary is not allowed to query the decoding
oracle with a user index i and a covertext s such that i ∈ S∗ and s ≡MPK s∗,
where ≡MPK is an arbitrary compatible relation:

Definition 3.3. Let Π = (Setup,KeyGen,Encode,Decode) be a BS scheme. A
binary relation on stegotexts of Π induced by a master public key MPK of Π is
called a compatible relation (denoted by ≡MPK) if for any two stegotexts s1, s2
encoded under sets of receivers S1, S2 respectively, we have

1. If s1 ≡MPK s2 then for any i1 ∈ S1 and i2 ∈ S2, Decode(MPK, ski1 , s1) =
Decode(MPK, ski2 , s2) except with negligible probability in the security pa-
rameter λ.

2. There exists a PPT algorithm that takes MPK, s1, s2 and determines whether
s1 ≡MPK s2.

Chosen-Covertext Attack (BS-CCA). A BS-CCA adversary has the same
capabilities from the BS-PDR-CCA model of security, but the restriction for the
decoding queries is now lifted. Specifically, the only covertext that the adversary
is not allowed to submit to the decoding oracle with a user index i ∈ S∗ is the
challenge covertext s∗ itself.

We now formally define the BS-CCA security model via the following security
game.

Definition 3.4. For a given BS scheme Π = (Setup,KeyGen,Encode,Decode),
the BS-IND-CCA game, played between a PPT adversary A and a challenger C,
is defined as follows:

Setup: C runs (MPK,MSK) ← Setup(1λ, N) and gives A the resulting master
public key MPK, keeping the master secret key MSK to itself. C also initializes
the set of revoked users R to be empty.

72 N. Fazio, A.R. Nicolosi, and I.M. Perera

Phase 1: A adaptively issues queries q1, . . . , qm of one of the following types:
• Secret-key query i: A requests the secret key of a user i ∈ U . C runs

ski ← KeyGen(MPK,MSK, i), adds i to R, and sends ski to A.
• Decoding query (i, s): A issues a decoding query on a
user index i ∈ U and a covertext s ∈ Σ∗. C computes
Decode(MPK,KeyGen(MPK,MSK, i), s) and gives the result to A.

Challenge: A gives C a message m∗ ∈ MSP, a legal history h ∈ Σ∗, and a
set of user identities S∗ ⊆ U with the restriction that S∗ ∩ R = ∅. C picks
a random bit b∗ ∈ {0, 1} and generates the challenge s∗ depending on it as
follows. If b∗ = 0, then C encodes m∗ into a stegotext s∗ for the receiver set
S∗, i.e., s∗ ← Encode(MPK, S∗, h, m∗). Otherwise, C sample s∗ as a cover-
text of equal length, i.e., s∗ ←$ Cl∗

h for l∗ = |Encode(MPK, S∗, h, m∗)|/σ. At
the end, C gives s∗ to A.

Phase 2: A adaptively issues additional queries qm+1, . . . , qn where each qi is
one of the following:

• Secret-key query i such that i �∈ S∗.
• Decoding query (i, s) such that, if i ∈ S∗, then s �= s∗.

Guess: A outputs a guess b ∈ {0, 1} and wins if b = b∗.

The adversary A is called a BS-IND-CCA adversary and A’s advantage is de-
fined as

AdvBS-IND-CCA
A,Π :=

∣
∣Pr[b = b∗] − 1

2

∣
∣,

where the probability is over the random coins used by the adversary A and the
challenger C.
Definition 3.5. A BS scheme Π is (t, Qsk, Qd, ε)-BS-CCA-secure if for any
t-time BS-IND-CCA adversary making at most Qsk adaptive secret-key queries
and at most Qd adaptive decoding queries, it is the case that AdvBS-IND-CCA

A,Π ≤ ε.

By restricting the kind of decoding queries allowed in Phase 2 of the BS-IND-
CCA game above, we can obtain the BS-IND-PDR-CCA game. Specifically, the
adversary now cannot issue any decoding query (i, s) such that i ∈ S∗ and
s ≡MPK s∗ for some compatible relation ≡MPK. The adversary A in this game is
called a BS-IND-PDR-CCA adversary and A’s advantage is defined as

AdvBS-IND-PDR-CCA
A,Π :=

∣
∣Pr[b = b∗] − 1

2

∣
∣.

Definition 3.6. A BS scheme Π is (t, Qsk, Qd, ε)-BS-PDR-CCA-secure with
respect to some compatible relation ≡MPK if for any t-time BS-IND-PDR-CCA
adversary making at most Qsk adaptive secret-key queries and at most Qd adap-
tive decoding queries, it holds that AdvBS-IND-PDR-CCA

A,Π ≤ ε.

The BS-IND-CHA game is defined similar to the BS-IND-CCA game, with the
restriction that the adversary is not allowed to issue any decoding queries during
Phase 1 and Phase 2. The adversary is still allowed to issue secret-key queries.

Definition 3.7. A BS scheme Π is (t, Qsk, ε)-BS-CHA-secure if Π is (t, Qsk, 0,
ε)-BS-CCA-secure.

Broadcast Steganography 73

4 Anonymity and Pseudorandomness in
Broadcast Encryption

In Sect. 2, we briefly discussed the notion of outsider-anonymous broadcast en-
cryption [23], a security model for BE whose goal is to hide the identities of the
intended receivers of a broadcast ciphertext from unauthorized users. As out-
lined in Sect. 1, a crucial technical step to realize broadcast steganography is
combining receiver anonymity with pseudorandomness of broadcast ciphertexts
(cf. Sect. 5). This section develops the notion of outsider-anonymous broadcast
encryption with pseudorandom ciphertexts (oABE$), and presents an efficient
construction secure in the standard model under a stronger security model, out-
sider anonymity and ciphertext pseudorandomness against chosen-ciphertext at-
tacks (oABE$-CCA).

4.1 The Security Models of oABE$
We now present three oABE$ security models: oABE$-CPA, oABE$-PDR-CCA,
and oABE$-CCA. In Sect. 4.2, we present an oABE$-CCA-secure construction.
At a high level, these security models require that for any message m∗ and set of
recipients S∗, no PPT adversary A can distinguish between an actual encryption
of m∗ intended for the set S∗, and a truly random string of the same length as
an encryption of m∗ for S∗, so long as A does not possess the secret key of any
user in S∗.
Definition 4.1. Given an oABE$ schemeΠ =(Setup,KeyGen,Encrypt,Decrypt),
the oABE$-IND-CCA game, played between a PPT adversary A and a challenger
C, is defined as follows:
Setup: C runs (MPK,MSK) ← Setup(1λ, N) and gives A the resulting master

public key MPK, keeping the master secret key MSK to itself. C also initializes
the set of revoked users R to be empty.

Phase 1: A adaptively issues queries q1, . . . , qm where each qi is one of the
following:

• Secret-key query i: A requests the secret key of a user i ∈ U . C runs
ski ← KeyGen(MPK,MSK, i), adds i to R, and sends ski to A.

• Decryption query (i, c): A sends a decryption query on a user i ∈ U and a
ciphertext c ∈ CSP. C computes Decrypt(MPK,KeyGen(MPK,MSK, i), c)
and gives the result to A.

Challenge: A gives C a message m∗ ∈ MSP and a set of user identities S∗ ⊆
U with the restriction that S∗ ∩ R = ∅. C picks a random bit b∗ ∈ {0, 1} and
generates the challenge ciphertext c∗ depending on it: if b∗ = 0, then c∗ ←
Encrypt(MPK, S∗, m∗), else c∗ ←$ {0, 1}l∗ for l∗ = |Encrypt(MPK, S∗, m∗)|.
The challenge ciphertext c∗ is then given to A.

Phase 2: A adaptively issues additional queries qm+1, . . . , qn where each qi is
one of the following:

• Secret-key query i such that i �∈ S∗.
• Decryption query (i, c) such that, if i ∈ S∗, then c �= c∗.

Guess: A outputs a guess b ∈ {0, 1} and wins if b = b∗.

74 N. Fazio, A.R. Nicolosi, and I.M. Perera

The adversary A is called an oABE$-IND-CCA adversary and A’s advantage is
defined as

AdvoABE$-IND-CCA
A,Π :=

∣
∣Pr[b = b∗] − 1

2

∣
∣,

where the probability is over the random coins used by the adversary A and the
challenger C.

Observe that the key difference of the above definition from the oABE notion
defined in [23] is in the Challenge phase, where the challenger either returns the
encryption of m∗ or a random bit-string with appropriate length.

Definition 4.2. An oABE$ scheme Π is (t, Qsk, Qd, ε)-oABE$-CCA-secure if
for any t-time oABE$-IND-CCA adversary making at most Qsk (resp. Qd) adap-
tive secret-key (resp. decryption) queries we have AdvoABE$-IND-CCA

A,Π ≤ ε.

The oABE$-IND-PDR-CCA game is obtained by restricting the adversary dur-
ing Phase 2 of the oABE$-IND-CCA game from submitting any decoding query
(i, c) such that i ∈ S∗ and c ≡MPK c∗, where ≡MPK is an arbitrary compati-
ble relation of the oABE$ scheme.2 The adversary A in this game is called an
oABE$-IND-PDR-CCA adversary and A’s advantage is defined as

AdvoABE$-IND-PDR-CCA
A,Π :=

∣
∣Pr[b = b∗] − 1

2

∣
∣.

Definition 4.3. An oABE$ scheme Π is (t, Qsk, Qd, ε)-oABE$-PDR-CCA-
secure with respect to a compatible relation ≡MPK if for any t-time oABE$-IND-
PDR-CCA adversary making at most Qsk adaptive secret-key queries and at
most Qd adaptive decoding queries AdvoABE$-IND-PDR-CCA

A,Π ≤ ε.

By restricting the adversary in the oABE$-IND-CCA game from submitting any
decoding queries during Phase 1 and Phase 2, we obtain the oABE$-IND-CPA
game. The adversary is still allowed to issue secret-key queries.

Definition 4.4. An oABE$ scheme Π is (t, Qsk, ε)-oABE$-CPA-secure if Π is
(t, Qsk, 0, ε)-oABE$-CCA-secure.

4.2 An oABE$-CCA-Secure Construction

Our construction builds on the one of [23], so we start with a brief review of the
latter. At a high level, the approach of [23] is to: (1) “bundle” multiple ciphertexts
of an anonymous identity-based encryption scheme (AIBE, e.g., [1,11,27]) into a
single oABE ciphertext; (2) “tag” each AIBE ciphertext to enable the decryptor
to efficiently locate the component compatible with her decryption key; and (3)
“seal” everything together with a one-time signature to thwart CCA attacks.
To attain pseudorandom oABE ciphertexts, we will start with an anonymous
identity-based encryption scheme with pseudorandom ciphertexts (AIBE$) like
2 The definition of a compatible relation for an oABE$ scheme follows analogously to

Definition 3.3.

Broadcast Steganography 75

Algorithm: Commit(PK′′)
1 k̂ ←$ {0, 1}λ

2 repeat
3 k̃ ←$ Zq, com := mp(gk̂

comhk̃
com)

4 until com < 2λ

5 decom := (k̂, k̃)
6 return (k̂, com, decom)

Algorithm: Open(PK′′, com, decom)
1 parse decom as (k̂, k̃)
2 if com = mp(gk̂

comhk̃
com) then

3 return k̂
4 return ⊥

Fig. 3. Our Pedersen-like encapsulation mechanism

the one of [2]. Additionally, we will use an entropy-smoothing hash function [33]
to hide the structure in the ciphertext tags.

These adjustments do not suffice because the presence of the one-time sig-
nature introduces additional structure in the oABE ciphertext of [23]. To get
around this, we substitute one-time signatures with MACs (implemented via
pseudorandom functions) and employ a variant of an encapsulation mecha-
nism [10, 20] with an additional pseudorandom property. In short, an encap-
sulation mechanism is a “relaxed” commitment scheme consisting of a triplet of
algorithms (SetupCom,Commit,Open): SetupCom(1λ) produces a commitment
public key PK′′; Commit(PK′′) samples a random bit string k̂ together with
associated commitment and decommitment information com and decom; and
Open(PK′′, com, decom) recovers k̂. For hiding, triples of the form (PK′′, com, k̂)
ought to be statistically indistinguishable from those of the form (PK′′, com, r)
for random r. For relaxed binding, given a random output (k̂, com, decom) of
Commit(PK′′), it should be hard to produce decom′ such that Open(PK′′, com,

decom′) �∈ {k̂, ⊥}.
Let p, q be primes such that 2λ < q < 2λ+1 and p = 2q + 1, and g be a square

modulo p. Denote by G = 〈g〉 the group of quadratic residues modulo p. To
“pack” quadratic residues into λ bits, we will use rejection sampling along with
the following well-known G–Zq bijection (cf. e.g., [31]):

mp(a) =

{
a if a ≤ q

p − a otherwise
mp−1(b) =

{
b if b

p−1
2 ≡ 1 mod p

p − b otherwise

Figure 3 shows the Commit and Open functionalities of our Pedersen-like [43]
encapsulation mechanism over G, whose commitment public keys are random
pairs (gcom, hcom) of generators of G. The hiding requirement follows from the
hiding properties of standard Pedersen commitments, coupled with the observa-
tion that mp(·) is a bijection. Relaxed binding follows from the discrete logarithm
assumption in G, again similarly to standard Pedersen commitments. A novel
feature of our encapsulation mechanism is that the distribution of commitments
com induced by the Commit(PK′′) algorithm is uniform over {0, 1}λ, and hence
the relaxed commitment scheme of Fig. 3 has pseudorandom commitments.

Let Π ′ = (Init,Ext,Enc,Dec) be an AIBE$-CCA-secure AIBE$ scheme with
expansion � (i.e., |Enc(MPK′, ID, m)| = �(|m|)). Let F : {0, 1}λ × {0, 1}∗ →
{0, 1}λ be a PRF and let Hes = {G2 → {0, 1}λ} be an entropy smoothing

76 N. Fazio, A.R. Nicolosi, and I.M. Perera

hash function family. Below we describe at a high level how we combine these
primitives into an oABE$-CCA-secure scheme Π ; Fig. 4 reports the details.

Algorithm: Setup(1λ, N)
1 (MPK′,MSK′) ← Init(1λ)
2 PK′′ ← SetupCom(1λ), H ←$ Hes

3 � Fam – the set of all the subtrees in T
4 for j := 1 to |Fam| do
5 � Tj – the subtree in Fam indexed by j
6 � HIDj – the HID of Tj’s root
7 a1,HIDj

, a2,HIDj
, b1,HIDj

, b2,HIDj
←$ Zq

8 A1,HIDj
:= g

a1,HIDj , A2,HIDj
:= g

a2,HIDj

9 B1,HIDj
:= gb1,HIDj , B2,HIDj

:= gb2,HIDj

10 MPK := (MPK′,PK′′, H, N,G, g,
{Ai,HIDj

, Bi,HIDj
}i∈{1,2},j∈[1,|Fam|])

11 MSK := (MSK′,
{ai,HIDj

, bi,HIDj
}i∈{1,2},j∈[1,|Fam|])

12 return (MPK,MSK)

Algorithm: KeyGen(MPK,MSK, i)
1 � HIDi – the HID of leaf i in T
2 for z := 1 to n + 1 do
3 ski,z := (a1,HIDi|z

, a2,HIDi|z
, b1,HIDi|z

, b2,HIDi|z
)

4 ski,z ← Ext(MPK′,MSK′,HIDi|z)
5 ski := ((ski,1, ski,1), . . . , (ski,n+1, ski,n+1))
6 return ski

Algorithm: Encrypt(MPK, S, m)
1 r := N − |S|, L :=

⌊
r log

(
N
r

)⌋

2 (k̂, com, decom) ← Commit(PK′′)
3 repeat
4 s ←$ Zq, c0 := mp(gs)
5 until c0 < 2λ

6 � Cov – the subtrees covering S in T
7 for j := 1 to |Cov| do
8 � Tj – a subtree in Cov
9 � HIDj – the HID of Tj’s root

10 cj := H((Acom
1,HIDj

A2,HIDj
)s,

(Bcom
1,HIDj

B2,HIDj
)s)

11 cj ← Enc(MPK′,HIDj , com‖m‖decom)
12 for j := |Cov| + 1 to L do
13 cj ←$ {0, 1}λ, cj ←$ {0, 1}�(3λ+1+|m|)

14 ĉ := c0‖c1‖c1‖ . . . ‖cL‖cL

15 σ := F (k̂, ĉ), c := σ‖ĉ‖com
16 return c

Algorithm: Decrypt(MPK, ski, c)
1 parse ski as ((ski,1, ski,1), . . . ,

(ski,n+1, ski,n+1))
2 parse c as σ‖ĉ‖com
3 parse ĉ as c0‖c1‖c1‖ . . . ‖cL‖cL

4 c̃0 := mp−1(c0)
5 for z := 1 to n + 1 do
6 parse ski,z as (ã1,z , ã2,z , b̃1,z , b̃2,z)
7 tagz := H(c̃ ã1,zcom+ã2,z

0 , c̃
b̃1,zcom+b̃2,z

0)
8 if ∃z ∈ [1, n + 1] ∃j ∈ [1, L] : tagz = cj then
9 m′ := Dec(MPK′, ski,z , cj)

10 if m′ �= ⊥ then
11 parse m′ as com‖m‖decom
12 if com = com then
13 k̂ := Open(PK′′, com, decom)
14 if k̂ �= ⊥ ∧ σ = F (k̂, ĉ) then
15 return m

16 return ⊥

Fig. 4. The oABE$-CCA-secure construction. T is the perfect binary tree with N =
2n leaves, which represent the users in the system. HIDi|z denotes a prefix of the
hierarchical identifier HIDi with length z.

To attain sublinear ciphertexts, we follow the approach of [23], which is
based on the Subset Cover Framework [16, 42] (cf. also [21]). We arrange the
N = 2n users in a perfect binary tree with N leaves, and assign to each user
(using AIBE$) n + 1 decryption keys, corresponding to all the nodes in the path
to its designated leaf (Line 4 of KeyGen). Each oABE$ ciphertexts consists of
multiple AIBE$ components. For efficient decryption, AIBE$ components are
tagged using a twin-DH-based [13] technique reminiscent of [24, 39] (Line 10 of
Encrypt) so that recipients can single out which AIBE$ component to decrypt,
and with which key (Lines 5–8 and 9 of Decrypt). Throughout Encrypt, we make

Broadcast Steganography 77

sure that each piece in an oABE$ ciphertext looks random, with the use of re-
jection sampling (Lines 3–5), entropy smoothing (Line 10), dummy components
(Line 13), and pseudorandom MACs (Line 15) in place of one-time signatures.
Forgoing signatures introduce a complication, as the input to the PRF appears
to depend on the PRF key k̂: the cj values and the oABE$ components cj ’s com-
puted in Lines 10 and 11 are derived from com and decom, which correlate with
k̂. We solve this circularity by mediating the occurrence of k̂ in the ciphertext
via the encapsulation scheme of Fig. 3.

Theorem 4.5. If F is a (t1, ε1)-hard PRF, Π ′ is (t2, Qsk, Qd, ε2)-AIBE$-CCA-
secure, Hes is a (t3, ε3)-entropy smoothing hash function, and DDH is (t4, ε4)-
hard in G, then the construction given in Fig. 4 is

(
t1+t2+t3+t4, Qsk, Qd,

(
ε1+

ε2+ε3+2
(
ε4 + Qd

q

))
r log

(
N
r

))
-oABE$-CCA-secure, where N is the total number

of users and r is the number of revoked users.

Proof Sketch. We organize our proof as a sequence of games (Game0, Game1,
Game1, . . . , Gamel, Gamel) between an oABE$-IND-CCA adversary A and the
challenger C, where l denotes the cardinality of the coverset Cov induced by
the set of authorized receivers S∗ chosen by A during the Challenge phase of the
oABE$-IND-CCA game. In the first game (Game0), A receives an encryption
of m∗ for S∗ in the Challenge phase, and in the last game (Gamel), A re-
ceives a uniformly random bit-string of the appropriate length as the challenge
ciphertext.

Game0: corresponds to the game given in Definition 4.1 when the challenge bit
b∗ is fixed to 0. C computes the challenge ciphertext c∗ as follows:
1 r := N − |S∗|, L :=

⌊
r log

(
N
r

)⌋

2 (k̂, com, decom) ← Commit(PK′′)
3 repeat s ←$ Zq, c0 := mp(gs) until c0 < 2λ

4 for j := 1 to l do
5 cj := H((Acom

1,HIDj
A2,HIDj)s, (Bcom

1,HIDj
B2,HIDj)s)

6 cj ← Enc(MPK′,HIDj , com‖m∗‖decom)
7 for j := l + 1 to L do
8 cj ←$ {0, 1}λ

9 cj ←$ {0, 1}�(3λ+1+|m∗|)

10 ĉ := c0‖c1‖c1‖ . . . ‖cL‖cL

11 σ := F (k̂, ĉ), c∗ := σ‖ĉ‖com
Gameh(1 ≤ h ≤ l): is similar to Gameh−1, but, when creating c∗, C replaces

Lines 4–9 with:
1′ for j := 1 to l − h do
2′ cj := H((Acom

1,HIDj
A2,HIDj)s, (Bcom

1,HIDj
B2,HIDj)s)

3′ cj ← Enc(MPK′,HIDj , com‖m∗‖decom)
4′ cl−h+1 := H((Acom

1,HIDl−h+1A2,HIDl−h+1)s, (Bcom
1,HIDl−h+1B2,HIDl−h+1)s)

5′ cl−h+1 ←$ {0, 1}�(3λ+1+|m∗|)

6′ for j := l − h + 2 to L do
7′ cj ←$ {0, 1}λ

8′ cj ←$ {0, 1}�(3λ+1+|m∗|)

78 N. Fazio, A.R. Nicolosi, and I.M. Perera

Gameh(1 ≤ h ≤ l): is similar to Gameh, but, when creating c∗, C replaces
Lines 4′–8′ with:
1′′ for j := l − h + 1 to L do
2′′ cj ←$ {0, 1}λ

3′′ cj ←$ {0, 1}�(3λ+1+|m∗|)

Note that the only difference between Gameh−1 and Gameh is that in the for-
mer, the ciphertext component cl−h+1 is an AIBE$ ciphertext while in the latter,
it is just a random bit string with appropriate length. If A can distinguish these
two games, she can also either break the AIBE$ security or break the encapsula-
tion mechanism (which eventually leads to breaking the PRF). Therefore, if the
underlying PRF F is (t1, ε1)-hard and the AIBE$ scheme Π ′ is (t2, Qsk, Qd, ε2)-
AIBE$-CCA-secure, then A’s advantage of distinguishing Gameh−1 from Gameh

must be at most ε1 + ε2. To formally support this claim, we show in the full ver-
sion [22] how to reduce an AIBE$ or a PRF problem instance to an oABE$
problem instance by building an AIBE$/PRF adversary B that uses A as a
subroutine during its execution.

Also note that the only difference between Gameh from Gameh is that in
Gameh, cl−h+1 is a well formed tag whereas in Gameh, it is a random bit string.
We can show that if Hes is an (t2, ε2)-entropy smoothing family of hash functions
and DDH is (t4, ε4)-hard in G, then A has at most ε3 + 2

(
ε4 + Qd

q

)
advantage

in distinguishing Gameh from Gameh with the help of two intermediate games
G̃ame1,h and G̃ame2,h. During the transition from Gameh to G̃ame1,h, we replace
(Bcom

1,HIDl−h+1
B2,HIDl−h+1)s with a random group element r2 ∈ G. Next, during

the transition from G̃ame1,h to G̃ame2,h, we replace (Acom
1,HIDl−h+1

A2,HIDl−h+1)s

with another random group element r1 ∈ G. Finally, during the transition from
G̃ame2,h to Gameh, we replace H(r1, r2) with a truly random bit-string of length
λ. The idea of the proof of the first two transitions is to reduce from the DDH
problem and build a PPT adversary B that internally executes the oABE$-IND-
CCA game with the adversary A in order to gain advantage in breaking the
DDH assumption. This reduction argument proceeds along the same lines as
Lemma 1 of [39]. As for the second transition, we employ the fact that Hes is
an entropy smoothing hash function.

Let Adv0A,Π and Advl
A,Π denote A’s advantage in winning Game0 and Gamel,

respectively. Combining the adversary’s advantages we explained above in a
hybrid argument, we arrive at

∣
∣
∣Adv0A,Π − Advl

A,Π

∣
∣
∣ ≤

(
ε1 + ε2 + ε3 + 2

(
ε4 + Qd

q

))
r log

(
N

r

)
.

5 Constructions of Public-Key Broadcast Steganography

We now present three constructions of broadcast steganography: one for each
model of security defined in Sect. 3.2. Our constructions employ the encrypt-
then-embed paradigm depicted in Fig. 2, using oABE$ (Sect. 4) for encryption

Broadcast Steganography 79

Function: Sample(λ, h, H, c)
Input: parameter λ, history h,

function H, bit-string c
Output: stegotext s
1 l := |c|
2 for i := 1 to l do
3 j := 0
4 repeat
5 j := j + 1, si ← Ch

6 until H(si) = ci ∨ j = λ
7 h := h‖si

8 s := s1‖ . . . ‖sl

9 return s
(a) Regular

Function: DSample(λ, H, c, r)
Input: parameter λ, function H,

bit-string c, randomness r
Output: stegotext s
1 l := |c|
2 for i := 1 to l do
3 j := 0
4 repeat
5 j := j + 1, si := Channel(rλ

λ(i−1)+j
)

6 until H(si) = ci ∨ j = λ

7 s := s1‖ . . . ‖sl

8 return s

(b) Deterministic

Fig. 5. The rejection-sampler functions

and rejection-sampling [3, 5, 32] for embedding. In what follows, sσ
i denotes the

ith leftmost non-overlapping substring with length σ of a given bit-string s.

5.1 A BS-CHA-Secure Construction

The rejection-sampler function used in our first construction is given in Fig. 5a.
Sample takes as input a security parameter λ, a channel history h ∈ Σ∗, a func-
tion H : Σ → {0, 1}, and a bit-string c ∈ {0, 1}∗, and outputs a covertext
s ∈ Σ∗. Internally, for every bit ci, Sample attempts to find a covertext sσ

i ∈ Σ
such that H(sσ

i) = ci by repeatedly querying the channel oracle up to λ number
of times.3 This mechanism allows a simple method to extract c from s: compute
c = H(sσ

1)‖ . . . ‖H(sσ
l) where l = |s|/σ. As shown in [3, 6], if the channel is al-

ways informative, H is a strongly universal hash function, and c is uniformly ran-
dom, then the maximum statistical distance between s1 ← Sample(λ, h, H, c) and
s2 ← C

|c|
h for any valid h ∈ Σ∗ is negligible in the security parameter λ. For sim-

plicity, we denote this statistical distance when |c| = 1 by ε1 in the reminder of
the paper.

We obtain our BS-CHA-secure scheme by combining the rejection-sampler
function from Fig. 5a with our oABE$ scheme (cf. Sect. 4). Formally, given
a strongly universal hash function family Hsu = {H : Σ → {0, 1}} and an
oABE$-CPA-secure oABE$ scheme Π ′ = (Setup′,KeyGen′,Encrypt′,Decrypt′)
with expansion � (i.e., |Encrypt′(MPK′, S, m)| = �(|m|)), we construct a BS-CHA-
secure broadcast steganography scheme Π = (Setup,KeyGen,Encode,Decode) as
shown in Fig. 6.

Theorem 5.1 (Proof in full version [22]). If the channel is always infor-
mative, Hsu is a strongly universal hash function family, and Π ′ is (t2, Qsk, ε2)-
oABE$-CPA-secure, then the construction in Fig. 6 is (t2, Qsk, με1 + ε2)-BS-
CHA-secure, where μ is the poly. bound on the total message length.
3 Sample may fail to find a valid si during the λ iterations, but only with negligible

probability in the parameter λ.

80 N. Fazio, A.R. Nicolosi, and I.M. Perera

Algorithm: Setup(1λ, N)
1 (MPK′,MSK′) ← Setup′(1λ, N)
2 H ←$ Hsu

3 MPK := (MPK′, H)
4 MSK := MSK′

5 return (MPK,MSK)

Algorithm: Encode(MPK, S, h, m)
1 c ← Encrypt′(MPK′, S, m)
2 s ← Sample(λ, h, H, c)
3 return s

Algorithm: KeyGen(MPK,MSK, i)
1 ski ← KeyGen′(MPK′,MSK′, i)
2 return ski

Algorithm: Decode(MPK, ski, s)
1 l := |s|/σ
2 for j := 1 to l do
3 cj := H(sσ

j)
4 c := c1‖ . . . ‖cl

5 m := Decrypt′(MPK′, ski, c)
6 return m

Fig. 6. The BS-CHA-secure construction

Remark 5.2. If the oABE$ scheme employed in Fig. 6 is oABE$-PDR-CCA-
secure, then the resulting BS scheme is BS-PDR-CCA-secure.

5.2 A BS-CCA-Secure Construction

Unfortunately, our first construction fails to provide a BS-CCA-secure broad-
cast steganography scheme even if the oABE$ scheme internally used provides
oABE$-CCA security. The problem is that the rejection-sampler function from
Fig. 5a allows multiple covertexts corresponding to a given bit-string. How-
ever, this limitation can be overcome in the case of channels that are efficiently
computable and whose samples are independently distributed. In fact, for chan-
nels of this type, Hopper [30] devised a deterministic rejection-sampler function
DSample that maps a given bit-string to exactly one covertext.

As shown in Fig. 5b, DSample takes in input a security parameter λ, a predi-
cate H : Σ → {0, 1} along with a bit-string c ∈ {0, 1}∗ to embed, and a random
bit-string r ∈ {0, 1}|c|·λ2 that controls the embedding. To sample s ∈ Σ∗, for
every bit ci of c, DSample seeks sσ

i ∈ Σ such that H(sσ
i) = ci, by repeat-

edly drawing from the channel according to the random chunks specified in r.
This approach requires that the channel be efficiently computable by a function
Channel(·) whose samples are independent of the history (hence we drop h from
its input), but guarantees that an adversary who intercepts a stegotext is unable
to tweak it meaningfully. Furthermore, as shown in [3, 6, 31], if H is a strongly
universal hash function, and c and r are uniformly random, then the statisti-
cal distance between stegotexts produced by DSample and innocent covertexts
sampled from Channel(·) is a negligible function ε1 of λ.

Figure 7 reports the details of our BS-IND-CCA-secure scheme Π = (Setup,
KeyGen,Encode,Decode), based on a strongly universal hash function family Hsu,
a variable-length pseudorandom generator (vPRG) G : {0, 1}λ × Z → {0, 1}∗

(whose second input sets the output length), and an oABE$-IND-CCA-secure
scheme Π ′ = (Setup′,KeyGen′,Encrypt′,Decrypt′) with expansion �.

Theorem 5.3 (Proof in full version [22]). If the channel is always informa-
tive, Hsu is a strongly universal hash function family, G is a (t2, ε2)-hard vPRG,
and Π ′ is (t3, Qsk, Qd, ε3)-oABE$-CCA-secure, then the construction in Fig. 7

Broadcast Steganography 81

Algorithm: Setup(1λ, N)
1 (MPK′,MSK′) ← Setup′(1λ, N)
2 H ←$ Hsu

3 MPK := (MPK′, H, G)
4 MSK := MSK′

5 return (MPK,MSK)

Algorithm: Encode(MPK, S, m)
1 r̂ ←$ {0, 1}λ

2 c ← Encrypt′(MPK′, S, r̂‖m)
3 r := G(r̂, |c| · λ2)
4 s := DSample(λ, H, c, r)
5 return s

Algorithm: KeyGen(MPK,MSK, i)
1 ski ← KeyGen′(MPK′,MSK′, i)
2 return ski

Algorithm: Decode(MPK, ski, s)
1 l := |s|/σ
2 for j := 1 to l do
3 cj := H(sσ

j)
4 c := c1‖ . . . ‖cl

5 m′ := Decrypt′(MPK′, ski, c)
6 if m′ �= ⊥ then
7 parse m′ as r̂‖m
8 r := G(r̂, l · λ2)
9 if DSample(λ, H, c, r) = s then

10 return m

11 return ⊥

Fig. 7. The BS-CCA-secure construction

is (t2 + t3, Qsk, Qd, με1 + ε2 + ε3)-BS-CCA-secure, where μ is the poly. bound on
the total message length.

6 Extensions and Future Work

As in the case of broadcast encryption, one may consider extensions of the notion
of broadcast steganography that enhance the setting discussed in this paper with
additional functionality or security properties. In particular, while broadcast
steganography natively protects the recipients’ identities from outsiders, it does
not aim to prevent recipients from finding out about each other. The natural
solution for that is anonymous broadcast steganography (AnoBS). By extending
the anonymous broadcast encryption schemes of [7, 39] to support ciphertext
pseudorandomness, we can use them in place of our oABE$ to achieve fully
anonymous broadcast steganography. The resulting AnoBS scheme, however,
would have ciphertexts with length linear in the number of receivers.

Acknowledgments. Nelly Fazio’s research is sponsored in part by NSF CA-
REER award #1253927 and NSF award #1117675, and by PSC-CUNY award
64578-00 42 (jointly funded by the Professional Staff Congress and the City Uni-
versity of New York). Nelly Fazio and Irippuge Milinda Perera are supported in
part by the U.S. Army Research Laboratory and the U.K. Ministry of Defence
under Agreement Number W911NF-06-3-0001. Antonio Nicolosi’s research is
sponsored in part by NSF awards #1117679 and #1040784. The views and con-
clusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of the
U.S. Army Research Laboratory, the U.S. Government, the U.K. Ministry of De-
fence or the U.K. Government. The U.S. and U.K. Governments are authorized
to reproduce and distribute reprints for Government purposes notwithstanding
any copyright notation hereon.

82 N. Fazio, A.R. Nicolosi, and I.M. Perera

References

1. Abdalla, M., Bellare, M., Catalano, D., Kiltz, E., Kohno, T., Lange, T., Malone-
Lee, J., Neven, G., Paillier, P., Shi, H.: Searchable encryption revisited: Consis-
tency properties, relation to Anonymous IBE, and extensions. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 205–222. Springer, Heidelberg (2005)

2. Agrawal, S., Boyen, X.: Identity-based encryption from lattices in the standard
model (2009) (manuscript), http://www.cs.stanford.edu/~xb/ab09/

3. von Ahn, L., Hopper, N.J.: Public-key steganography. In: Cachin, C., Camenisch,
J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 323–341. Springer, Heidelberg
(2004)

4. von Ahn, L., Hopper, N.J., Langford, J.: Covert two-party computation. In: ACM
Symposium on Theory of Computing, STOC, pp. 513–522 (2005)

5. Anderson, R., Petitcolas, F.: On the limits of steganography. IEEE Journal on
Selected Areas in Communications 16(4), 474–481 (1998)

6. Backes, M., Cachin, C.: Public-key steganography with active attacks. In: Kilian,
J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 210–226. Springer, Heidelberg (2005)

7. Barth, A., Boneh, D., Waters, B.: Privacy in encrypted content distribution using
private broadcast encryption. In: Di Crescenzo, G., Rubin, A. (eds.) FC 2006.
LNCS, vol. 4107, pp. 52–64. Springer, Heidelberg (2006)

8. Berkovits, S.: How to broadcast a secret. In: Davies, D.W. (ed.) EUROCRYPT
1991. LNCS, vol. 547, pp. 535–541. Springer, Heidelberg (1991)

9. Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast encryption with
short ciphertexts and private keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS,
vol. 3621, pp. 258–275. Springer, Heidelberg (2005)

10. Boneh, D., Katz, J.: Improved efficiency for CCA-secure cryptosystems built using
identity-based encryption. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376,
pp. 87–103. Springer, Heidelberg (2005)

11. Boyen, X., Waters, B.: Anonymous hierarchical identity-based encryption (without
random oracles). In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 290–307.
Springer, Heidelberg (2006)

12. Cachin, C.: An information-theoretic model for steganography. Information and
Computation 192(1), 41–56 (2004)

13. Cash, D.M., Kiltz, E., Shoup, V.: The twin Diffie-Hellman problem and applica-
tions. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 127–145.
Springer, Heidelberg (2008)

14. Chandran, N., Goyal, V., Ostrovsky, R., Sahai, A.: Covert multi-party compu-
tation. In: IEEE Symposium on Foundations of Computer Science, FOCS, pp.
238–248 (2007)

15. Dedic, N., Itkis, G., Reyzin, L., Russell, S.: Upper and Lower Bounds on Black-Box
Steganography. Journal of Cryptology 22(3), 365–394 (2009)

16. Dodis, Y., Fazio, N.: Public key broadcast encryption for stateless receivers. In:
Feigenbaum, J. (ed.) DRM 2002. LNCS, vol. 2696, pp. 61–80. Springer, Heidelberg
(2003)

17. Dodis, Y., Fazio, N.: Public-key trace and revoke scheme secure against adaptive
chosen ciphertext attack. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp.
100–115. Springer, Heidelberg (2002)

18. Dodis, Y., Fazio, N., Kiayias, A., Yung, M.: Scalable public-key tracing and revok-
ing. In: ACM Symposium on Principles of Distributed Computing, pp. 190–199
(2003); invited to the Special Issue of Journal of Distributed Computing, PODC
2003 (2003)

http://www.cs.stanford.edu/~xb/ab09/

Broadcast Steganography 83

19. Dodis, Y., Fazio, N., Lysyanskaya, A., Yao, D.: ID-based encryption for complex
hierarchies with applications to forward security and broadcast encryption. In:
ACM Conference on Computer and Communications Security, pp. 354–363 (2004)

20. Dodis, Y., Katz, J.: Chosen-ciphertext security of multiple encryption. In: Kilian,
J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 188–209. Springer, Heidelberg (2005)

21. Fazio, N.: On Cryptographic Techniques for Digital Rights Management. Ph.D.
thesis, New York University (2006)

22. Fazio, N., Nicolosi, A.R., Perera, I.M.: Broadcast steganography. Cryptology ePrint
Archive, Report 2013/078 (2013)

23. Fazio, N., Perera, I.M.: Outsider-anonymous broadcast encryption with sublinear
ciphertexts. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS,
vol. 7293, pp. 225–242. Springer, Heidelberg (2012)

24. Fazio, N., Perera, I.M.: Outsider-anonymous broadcast encryption with sublinear
ciphertexts. Cryptology ePrint Archive, Report 2012/129 (2012), full Version of
[23]

25. Fiat, A., Naor, M.: Broadcast encryption. In: Stinson, D.R. (ed.) CRYPTO 1993.
LNCS, vol. 773, pp. 480–491. Springer, Heidelberg (1994)

26. Garay, J.A., Staddon, J., Wool, A.: Long-lived broadcast encryption. In: Bellare,
M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 333–352. Springer, Heidelberg (2000)

27. Gentry, C.: Practical identity-based encryption without random oracles.
In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445–464. Springer,
Heidelberg (2006)

28. Gentry, C., Waters, B.: Adaptive security in broadcast encryption systems (with
short ciphertexts). In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479,
pp. 171–188. Springer, Heidelberg (2009)

29. Halevy, D., Shamir, A.: The LSD broadcast encryption scheme. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 47–60. Springer, Heidelberg (2002)

30. Hopper, N.J.: Toward a Theory of Steganography. Ph.D. thesis, Carnegie Mellon
University (2004)

31. Hopper, N.J.: On steganographic chosen covertext security. In: Caires, L., Italiano,
G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580,
pp. 311–323. Springer, Heidelberg (2005)

32. Hopper, N.J., Langford, J., von Ahn, L.: Provably Secure Steganography. In: Yung,
M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 77–92. Springer, Heidelberg (2002)

33. Impagliazzo, R., Zuckerman, D.: How to recycle random bits. In: IEEE Symposium
on Foundations of Computer Science—FOCS, pp. 248–253 (1989)

34. Katzenbeisser, S., Petitcolas, F.A.: Defining security in steganographic systems.
In: Security and Watermarking of Multimedia Contents IV, pp. 50–56 (2002)

35. Kiayias, A., Raekow, Y., Russell, A.: Efficient steganography with provable
security guarantees. In: Barni, M., Herrera-Joancomartí, J., Katzenbeisser, S.,
Pérez-González, F. (eds.) IH 2005. LNCS, vol. 3727, pp. 118–130. Springer,
Heidelberg (2005)

36. Kiayias, A., Russell, A., Shashidhar, N.: Key-efficient steganography with provable
security guarantees. In: Information Hiding—IH, pp. 118–130 (2012)

37. Kiayias, A., Samari, K.: Lower bounds for private broadcast encryption.
In: Kirchner, M., Ghosal, D. (eds.) IH 2012. LNCS, vol. 7692, pp. 176–190. Springer,
Heidelberg (2013)

38. Le, T., Kurosawa, K.: Efficient Public Key Steganography Secure Against Adaptive
Chosen Stegotext Attacks. Cryptology ePrint Archive, Report 2003/244 (2003)

39. Libert, B., Paterson, K.G., Quaglia, E.A.: Anonymous broadcast encryption.
In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293,
pp. 206–224. Springer, Heidelberg (2012)

84 N. Fazio, A.R. Nicolosi, and I.M. Perera

40. Lysyanskaya, A., Meyerovich, M.: Provably Secure Steganography with Imperfect
Sampling. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS,
vol. 3958, pp. 123–139. Springer, Heidelberg (2006)

41. Mazurczyk, W., Karas, M., Szczypiorski, K.: Skyde: A skype-based steganographic
method (2013), http://arxiv.org/abs/1301.3632

42. Naor, D., Naor, M., Lotspiech, J.: Revocation and tracing schemes for stateless
receivers. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 41–62. Springer,
Heidelberg (2001)

43. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992)

44. Simmons, G.: The Prisoners’ Problem and the Subliminal Channel. In: Advances
in Cryptology—CRYPTO, pp. 51–67 (1983)

45. The Economist: Speaking with silence (February 2013)
46. Zuckerman, D.: General weak random sources. In: IEEE Symposium on Founda-

tions of Computer Science—FOCS, pp. 534–543 (1990)

http://arxiv.org/abs/1301.3632

Practical Dual-Receiver Encryption

Soundness, Complete Non-malleability, and Applications

Sherman S.M. Chow1, Matthew Franklin2, and Haibin Zhang2

1 Department of Information Engineering, Chinese University of Hong Kong
sherman@ie.cuhk.edu.hk

2 Department of Computer Science, University of California Davis
{franklin,hbzhang}@cs.ucdavis.edu

Abstract. We reformalize and recast dual-receiver encryption (DRE)
proposed in CCS ’04, a public-key encryption (PKE) scheme for en-
crypting to two independent recipients in one shot. We start by defining
the crucial soundness property for DRE, which ensures that two recipi-
ents will get the same decryption result. While conceptually simple, DRE
with soundness turns out to be a powerful primitive for various goals for
PKE, such as complete non-malleability (CNM) and plaintext-awareness
(PA). We then construct practical DRE schemes without random ora-
cles under the Bilinear Decisional Diffie-Hellman assumption, while prior
approaches rely on random oracles or inefficient non-interactive zero-
knowledge proofs. Finally, we investigate further applications or exten-
sions of DRE, including DRE with CNM, combined use of DRE and
PKE, strengthening two types of PKE schemes with plaintext equality
test, off-the-record messaging with a stronger notion of deniability, etc.

Keywords: Dual receiver encryption, soundness, complete non-
malleability, plaintext-awareness, combined encryption, off-the-record
messaging.

1 Introduction

Dual-receiver encryption (DRE), introduced by Diament, Lee, Keromytis, and
Yung [13] (DLKY), is a special kind of public-key encryption (PKE) which allows
a ciphertext to be decrypted into the same plaintext by two independent users.
More concretely, the DRE encryption algorithm produces a ciphertext by taking
as input a message and two independently generated public keys pk1 and pk2.
Both receivers (owners of pk1 and pk2) will get the same decryption result.

DRE is a handy tool when sensitive information (may it be political, financial,
or medical) should be backed up, and potentially decryptable by some other
party (or a threshold number of designated parties which further requires the
DRE to support threshold decryption). These scenarios are abundant, e.g., for
fulfilling the requirements of law, regulation, policy, or personal needs.

On the other hand, while it appears to be conceptually simple, DRE turns out
to be a valuable tool in many cryptographic applications. For example, DLKY
show how to construct security puzzles for rate-limiting remote users, e.g., in

J. Benaloh (Ed.): CT-RSA 2014, LNCS 8366, pp. 85–105, 2014.
c© Springer International Publishing Switzerland 2014

86 S.S.M. Chow, M. Franklin, and H. Zhang

the TLS protocol [13]. Dodis, Katz, Smith, and Walfish describe the use of DRE
to address the deniable authentication problem [14].

Soundness.A crucial requirement for the above applications is that “the cipher-
text will be decrypted to the same message by either private key.” Unfortunately,
the original formulation due to DLKY only ensures the correctness property
for honestly generated ciphertexts. As our first contribution, we strengthen the
definition by introducing new soundness security notions which formalize the
intuition that “two receivers will get the same plaintext and they do know this
fact.”1 The importance of soundness can be seen when we discuss our second
contribution on various applications or extensions of DRE with soundness2.

Complete Non-Malleability. Complete non-malleability (CNM) [15,32] pro-
hibits adversaries from computing encryptions of related plaintexts even under
adversarially generated public keys. This notion is useful both in theory and
practice. One can transform our DRE scheme which is secure against chosen-
ciphertext attacks (CCA) to a CNM-PKE scheme in the common reference string
(CRS) model. Namely, given a DRE scheme, one of the public keys of DRE is
added to the CRS, whereas the other serves as the public key of the new scheme;
encryption algorithm remains the same as the one for DRE for either public key,
while the decryption algorithm is simply the one for DRE decryption scheme
with respect to the secret key of the other receiver.

We also study CNM-DRE which remains secure for dynamically generated
public keys. It also leads to dual receiver non-malleable commitment, a new
primitive of independent interests.

Plaintext-Awareness. Roughly, plaintext-awareness captures the property
that an adversary can decrypt any ciphertext it creates. Assuming key registration,
Herzog, Liskov, and Micali [19] build a plaintext-aware PKE from general zero-
knowledge proof of knowledge and non-malleable non-interactive zero-knowledge
(NIZK) proof, which is rather inefficient. We show that one can simply use our
DRE schemes which leads to efficient registration-based plaintext-aware PKE.

More Applications. We investigate further applications of our DRE in our
full paper [7]. They include two types of PKE schemes with plaintext equality
test [34,24,20,8,37], deniable authentication for off-the-record messaging [4,14],
practical PKE with non-interactive opening [11], and useful security puzzles
without random oracles [13,35].

On Constructing DREs. In this paper, we propose an efficient construc-
tion of DRE, a useful primitive that helps achieving various goals as we de-
scribed. Indeed, the known DRE constructions in the literature are either in the
random oracle model (ROM), or rely on CRS to realize the idea of Naor-
Yung two-key encryption [25]. The DLKY-DRE scheme [13] uses REACT trans-
formation [26] to achieve CCA-security under the Gap-Bilinear Diffie-Hellman

1 Yet, we can show that the DLKY construction (in the ROM) satisfies our soundness.
2 When there is no ambiguity from context, we omit “with soundness”.

Practical Dual-Receiver Encryption 87

(GBDH) assumption [27].3 Building DRE using (the most efficient instantia-
tion of) Groth-Sahai proof system [18] will take nearly one hundred group ele-
ments [31].4 From another perspective, given the difficulties, Zhang, Hanaoka,
and Imai [35] rely on identity-based encryption [3] to solve the problems that
DRE would (in constructing useful security puzzles [13,35]). All these are sug-
gesting that constructing an efficient DRE without random oracles is non-trivial.

Broadcast Encryption. While encryption schemes for multiple recipients exist
such as broadcast encryption, the group manager needs to prepare the decryption
keys for users and can thus decrypt any ciphertexts. The key generation may also
be stateful, and the decryption algorithm may also create different intermediate
variables for different users. On the other hand, it is natural for DRE to satisfy
independence of receivers (except, they may share the same security parameter
and cryptographic group, and of course, they can be certified by a trusted party).
In general, broadcast encryption is more expensive than dual-receiver encryption.

Properties for DRE. In light of these discussion, a good DRE should satisfy:

Security under standard assumptions, yet with practical efficiency. As other
primitives, a DRE preferably should avoid the use of the less-studied crypto-
graphic assumptions, and its security proof should avoid the use of the ROM.
At the same time, it should be efficient so it can be used directly in practice, or
as a building block, without introducing much overhead.

Symmetry. Naturally, the role of two receivers should be “symmetric” with re-
spect to all DRE algorithms. This means that the same key generation algorithm
will be executed by any user, and the resulting key can be used as the “first”
receiver or the “second” receiver, up to the wish of the encryptor. Otherwise, if a
DRE user is required to use keys in two different formats for different “positions”
in the receivers list, that means each user should generate both kinds of keys,
and two implementations (either as software or as circuit) for the same func-
tionality (e.g., decryption) are required. It is also somewhat counter-intuitive to
have different decryption algorithms when they can take the CRS as an input.

Symmetry is also useful for applications when the message sender takes the
role as one of the receivers of the DRE as well. Section 4 will discuss registration-
based plaintext-aware encryption from DRE which benefits from this property.

Public verifiability. Verifying the validity of a ciphertext might be done without
decrypting. If a scheme satisfies this requirement we call it publicly verifiable.
It is one of the most common cryptographic tasks to prove that two ciphertexts
(or commitments) are well-formed and encrypting (or committing to) the same
plaintext. In particular, it is useful to achieve threshold decryption [5].

Our Proposed Construction. We provide a practical solution of DRE based
on the well-known Bilinear Decisional Diffie-Hellman (BDDH) assumption with-
out random oracles. By analogy with the well-known notions of key encapsula-
tion mechanism (KEM) and hybrid encryption, we also introduce the notions

3 In our full paper [7], we present a more efficient, redundancy-free DRE in the ROM.
4 The scheme is first described by Smith and Youn in an unpublished manuscript [31]
which we will review in our full paper [7].

88 S.S.M. Chow, M. Franklin, and H. Zhang

of dual-receiver KEM (DKEM) and hybrid DRE. It is followed by an efficient
construction of DKEM secure under the BDDH assumption. Both of our DRE
and DKEM constructions are symmetric, publicly verifiable, and competitive
with the most efficient PKE schemes. Also, both can be easily extended to sup-
port threshold decryption, which is desirable for the backup application. Both
constructions require a trusted setup to acquire a common bilinear group, but
all receivers can create their own secret keys, in contrast to the broadcast en-
cryption approach where the users are either assigned with a secret keys or they
need to interact with each other before deriving their own secret keys.

Combining DRE and PKE without Key Separation. DRE is of limited
use per se. For conventional usages, one expects a combined encryption scheme
which can securely provide the functionalities of both DRE and regular PKE
simultaneously. This enables users to employ the same key to achieve both func-
tions, and minimizes the risk of misuse and the times of registration with the
trusted party. Of course, the combination makes sense only if the schemes re-
tain their efficiency. We first define the security requirements formally, and then
give a construction without random oracles from the BDDH assumption which
is nearly as efficient as the DRE scheme proposed.

DRE with Complete Non-malleability. It is proven that non-interactive
CNM-PKE does not exist with simulation-based black-box simulation in the
standard model [15]. A similar impossibility result applies to DRE. We thus in-
stead explore how to design CNM-DRE in the CRS model, just like the study
of CNM-PKE in the literature [32,23]. This not only provides a stronger notion
for DRE but also for two kinds of plaintext equality testing (as illustrated in
our full paper [7]), which apply to settings where on-line authorities are avail-
able and adversaries might dynamically and maliciously generate public keys.
However, it does not seem to be easy to build CNM-DRE either. Intuitively,
this new primitive requires three trapdoors, two of which must be symmetric.
We provide two different paradigms in the CRS model. One is to combine Naor-
Yung [25] and Rackoff-Simon [29] paradigms, while the other relies on lossy
trapdoor functions [28]. Both of these general paradigms can give reasonably
efficient instantiations based on a number of assumptions.

2 Refining the Security Model of DRE

All the definitions and security experiments to be described are in the common
reference string (CRS) model, where there is a trusted CRS generation algorithm
that takes as input the security parameter, and outputs a CRS, which will be
part of the inputs of the other algorithms. However, they can be easily adopted
for the standard model where the CRS is simply the common security parameter.

Public-Key Dual Receiver Encryption. A public-key dual receiver encryp-
tion scheme DRE=(CGenDRE,GenDRE,EncDRE,DecDRE) consists of algorithms:

CGenDRE(1
k): The randomized CRS generation algorithm takes as input a

security parameter k and outputs a CRS crs; we write crs
$⊗ CGenDRE(1

k).

Practical Dual-Receiver Encryption 89

GenDRE(crs): The randomized key generation algorithm takes as input crs
and outputs a public/secret key pair (pk, sk); we write (pk1, sk1) and
(pk2, sk2) for the key pairs of two independent users. Without loss of gen-
erality, for the rest of the paper, we assume pk1 <

d pk2, where <
d is a

“less-than” operator based on lexicographic order.

EncDRE(crs, pk1, pk2,M): The randomized encryption algorithm takes as
input crs, two public keys pk1 and pk2 (such that pk1 <

d pk2) and mes-
sageM , and outputs a ciphertext C; we write C

$⊗ EncDRE(crs, pk1, pk2,M).

DecDRE(crs, pk1, pk2, ski, C): The deterministic decryption algorithm takes
two public keys pk1 and pk2 (pk1 <d pk2), one of the secret keys ski
(i ≡ {0, 1}), and a ciphertext C as input, and outputs a messageMi (which
may be the special symbol ⊥); we writeMi ⊗ DecDRE(crs, pk1, pk2, ski, C).
We may simply write Mi ⊗ DecDRE(ski, C) when there is no ambiguity.

For consistency, we require that, if crs
$⊗ CGenDRE(1

k), (pk1, sk1)
$⊗ GenDRE(crs)

and (pk2, sk2)
$⊗ GenDRE(crs) where pk1<

d pk2, and C
$⊗EncDRE(crs, pk1, pk2,M),

we have the probability Pr[DecDRE(crs, pk1, pk2, sk1, C) = DecDRE(crs, pk1, pk2,
sk2, C) = M] = 1 for all integers k and messages M , where the probability is
taken over the coins of all the algorithms above. We omit the inclusion of crs
when context is clear. Our syntax is slightly different from the initially proposed
one [13] for the sake of clarity. We explicitly regard DRE encryption and decryp-
tion algorithms as functions of the public keys of two independent receivers.

Extending the DLKY Notion—Soundness. In DLKY [13], only the ba-
sic correctness property is taken into account, which ensures that if the sender
honestly follows the protocol then the two receivers will get the same plaintext.
However, it is fairly weak or even problematic since there exist solutions satis-
fying the basic correctness requirement yet failing to provide the functionality
of DRE required by its applications. For instance, one can pick a conventional
PKE scheme to encrypt the same message using two independent users’ public
keys as a potential solution of DRE with correctness for a honest sender, but a
cheating sender can simply encrypt different messages.

We thus need to formalize the intuition of this rather basic property that any
adversary cannot “cheat” by creating a ciphertext which can be decrypted to two
different plaintexts. It is also not allowed that one party decrypts it to a message
m, while the other decrypts it to ⊥, i.e., it is a valid ciphertext for one but invalid
for another. Besides, there is an additional goal of DRE — both receivers “know”
that the ciphertext can be decrypted to the same result. Formally, we consider
the following experiment that is associated to an adversary A:

Experiment Expsound
DRE,A(k)

crs
$⊗ CGenDRE(1

k)

(pk1, sk1)
$⊗ GenDRE(crs); (pk2, sk2)

$⊗ GenDRE(crs) (pk1<
d pk2)

C
$⊗A(crs, pk1, sk1, pk2, sk2)

if DecDRE(sk1, C) ∪=DecDRE(sk2, C) then

return 1 else return 0

90 S.S.M. Chow, M. Franklin, and H. Zhang

We define the advantage of A in the above experiment as

Advsound
DRE,A(k) = Pr[Expsound

DRE,A(k) = 1].

DRE satisfies soundness, if for any adversary A, Advsound
DRE,A(k) is negligible

in the security parameter k, where the probability is taken over the choice
of crs

$⊗ CGenDRE(1
k), (pk1, sk1)

$⊗ GenDRE(crs), (pk2, sk2)
$⊗ GenDRE(crs), and

coins of A. The adversary can be either computationally bounded or unbounded.
If the advantage is always equal to 0, we say that DRE has perfect soundness.

Though DLKY did not formalize any soundness notion, we show in our full
paper [7] that the CCA-secure DRE [13] remains a sound and non-trivial DRE
which underscores their wisdom in designing DRE.

Weakening/Strengthening Soundness Notions. The above soundness no-
tion allows the adversary to know the secret keys of targeted receivers. One could
weaken it by providing the adversary with the full decryption oracles instead of
secret keys. Given two honestly generated public keys pk1 and pk2, we define the
weak-soundness advantage Advw-sound

DRE,A (k) of adversary A as

Pr[crs
$⊗ CGenDRE(1

k);C
$⊗ADecDRE(sk1,·),DecDRE(sk2,·)(crs, pk1, pk2)

: DecDRE(sk1, C) ∪=DecDRE(sk2, C)].

DRE satisfies weak soundness, if for any A, Advw-sound
DRE,A (k) is negligible in the

security parameter k, where the probability is taken over the random choices of
crs

$⊗ CGenDRE(1
k), (pk1, sk1)

$⊗ GenDRE(crs), (pk2, sk2)
$⊗ GenDRE(crs), and A.

On the other hand, we can give a stronger soundness notion by allowing the
adversary to adversarially choose public keys where it does not even know the
corresponding secret keys. We have to be a little careful here. Some encryption
scheme might support valid-looking keys such that the adversary might produce
ciphertexts that can be decrypted in different ways. We call an encryption scheme
admissible if there is an efficient public verification algorithm such that any valid
public key pk that passes the verification algorithm must only correspond to
one unique secret key sk. For instance, the basic ElGamal encryption scheme
is admissible. In the context of DRE, we only consider admissible encryption
schemes. If DRE is an admissible dual receiver encryption scheme and A is an
adversary, we define the strong-soundness advantage Advs-sound

DRE,A(k) of A as

Pr[crs
$⊗ CGenDRE(1

k); (C, pk1, pk2)
$⊗A(crs) : DecDRE(sk1, C) ∪=DecDRE(sk2, C)],

where, above, sk1 and sk2 are the unique secret keys of pk1 and pk2, respec-
tively, and both the public and secret keys can be chosen by the adversary. DRE
satisfies the strong soundness property if for any adversary A, we have that
Advs-sound

DRE,A(k) is negligible in the security parameter k, where the probability is
taken over coins of A. Jumping ahead, we stress that the above notion is useful
when speaking of completely non-malleable DRE (CNM-DRE).

Security of DRE against Chosen-Ciphertext Attacks. DRE’s soundness
makes one of the two decryption oracles redundant. To simplify the experiment

Practical Dual-Receiver Encryption 91

modelling CCA-security without loss of generality, we assume that the adversary
is only given the decryption oracle of the first receiver.

Experiment Expcca
DRE,A(k)

crs
$⊗ CGenDRE(1

k)

(pk1, sk1)
$⊗ GenDRE(crs); (pk2, sk2)

$⊗ GenDRE(crs) (pk1<
d pk2)

(M0,M1, s)
$⊗ADecDRE(sk1,·)(find, crs, pk1, pk2)

b
$⊗{0, 1}; C≥ $⊗ EncDRE(crs, pk1, pk2,Mb)

b≤ $⊗ADecDRE(sk1,·)(guess, C≥, s)
if b≤=b then return 1 else return 0

In the find stage, it is required that |M0|= |M1|. In the guess stage, adversary A
is not allowed to query DecDRE(sk1, ·) or DecDRE(sk2, ·) on the challenge cipher-
text C≥. We define the advantage of A in the above experiment as

Advcca
DRE,A(k) = Pr[Expcca

DRE,A(k) = 1]− 1/2.

A DRE is said to be indistinguishable against chosen-ciphertext attacks (IND-
CCA) if for any polynomial-time adversary A, Advcca

DRE,A(k) is negligible in k,

where the probability is taken over the choice of crs
$⊗ CGenDRE(1

k), (pk1, sk1)
$⊗

GenDRE(crs), (pk2, sk2)
$⊗ GenDRE(crs), and coins of A. From a standard hybrid

argument, we can show that, similar to PKE [2], single-user, single-query DRE
security implies multi-user, multi-query DRE security.

3 Practical DRE and DKEM from BDDH Assumption

We build our efficient CCA-secure dual-receiver schemes in the CRS model. The
CRS generation algorithm, which takes an input of security parameter k, will
output the description of a symmetric bilinear group BG = (q,G,GT , e, g) where
q is a k-bit integer, G and GT are cyclic groups of prime order q, g generates G,
and e: G×G ⇐ GT is an efficiently computable bilinear map. This definition of
BG will be used throughout the rest of the paper. Note that the public keys of
the two receivers should satisfy the “weak separability” property [6], i.e., they
should choose their keys from the same bilinear group. For instance, this can be
achieved by going through a standard key-setup procedure.

3.1 DRE from BDDH Assumption

Our scheme, detailed in Fig. 1, is symmetric and publicly verifiable. The start-
ing point is a selective-tag weakly CCA-secure tag-based DRE, which can be
transformed to a fully secure one by using a strong one-time signature scheme
(OTS) OT = (GenOT, SigOT,VrfOT) [21].

Correctness. A ciphertext (vk, c, σ1, σ2, ρ, Δ) is consistent, if VrfOT(vk, Δ, (c, σ1,
σ2, ρ)) = 1, and e(g, σ1) = e(c, uvk1 v1), and e(g, σ2) = e(c, uvk2 v2). It is clear that

92 S.S.M. Chow, M. Franklin, and H. Zhang

CGenDRE(1
k)

return BG
GenDRE(1

k,BG)
xi, yi

$◦ Z
∗
q

ui ◦ gxi ; vi ◦ gyi

pki ◦ (ui, vi)
ski ◦ xi

return (pki, ski)

EncDRE(BG, pk1, pk2,M)

(vk, sk)
$◦ GenOT(1

k)
r

$◦ Z
∗
q ; c ◦ gr

π1 ◦ (uvk
1 v1)

r

π2 ◦ (uvk
2 v2)

r

φ ◦ e(u1, u2)
r ·M

σ
$◦ SigOT(sk, (c, π1, π2, φ))

return C ◦ (vk, c, π1, π2, φ, σ)

DecDRE(BG, pk1, pk2, sk1, C)
parse C as (vk, c, π1, π2, φ, σ)
if VrfOT(vk,σ,(c, π1, π2, φ)) ∈=1or

e(g, π1) ∈=e(c,uvk
1 v1) or

e(g, π2) ∈= e(c, uvk
2 v2)

return ⇒
M ◦ φ · e(c, u2)

−x1

return M

Fig. 1. DRE from the BDDH assumption: The CRS generation algorithm takes as
input the security parameter k and outputs BG = (q,G,GT , e, g). The key generation
algorithms are run independently for user i ∈ {1, 2}. The decryption algorithm is
specified for user 1, and the decryption algorithm is similar for user 2. The schemes in
Section 3.2 and Section 5 have similar formulations.

all above can be checked publicly, and in particular, the pairing equations hold
if and only if σ1 = cx1vk+y1 and σ2 = cx2vk+y2 . If the ciphertext is consistent
then the plaintext can be recovered by either of the two receivers. The receiver
obtain the plaintext either via ρ · e(c, u2)−x1 or ρ · e(c, u2)−x2 . The correctness
thus follows from the fact that e(c, u2)

x1 = e(c, u1)
x2 = e(u1, u2)

r.

Efficiency. The public key for either receiver includes two group elements in G,
and the secret key has one element in Zq. Encryption requires one exponentia-
tion, two multi-exponentiations, one pairing, and a one-time signature compu-
tation. Decryption takes five pairings, three exponentiations, and one signature
verification. The scheme does not rely on random oracles, having efficiency com-
parable to the scheme by Kiltz [21] which our scheme relies on.

Security. For soundness, the key point is that the consistency of any ciphertext
can be publicly verifiable. If the ciphertext is not consistent then the decryption
algorithm for either receiver will reject it (i.e., return ⊥). Otherwise, any con-
sistent ciphertext (vk, c, σ1, σ2, ρ, Δ) will be decrypted by either of two receivers
to the same message, since for any c we have that e(c, u2)

x1 = e(c, u1)
x2 =

e(u1, u2)
r. Therefore, for any ciphertext C (whether consistent or not), we al-

ways have that DecDRE(sk1, C) = DecDRE(sk2, C). The soundness security thus
follows. For its CCA security, we have the following theorem:

Theorem 1. If OT is a strongly-unforgeable OTS scheme and the BDDH as-
sumption holds, then the scheme DRE described in Fig. 1 is a secure DRE
against chosen-ciphertext attacks.

All the proofs of theorems can be found in our full paper [7].

3.2 DKEM from BDDH Assumption

We extend the concept of dual-receiver encryption to the KEM setting by defin-
ing dual-receiver KEM DKEM = (CGenDKEM,GenDKEM,EncDKEM,Dec):

CGenDKEM(1
k): The randomized CRS generation algorithm takes as input a

security parameter k and outputs a CRS crs; we write crs
$⊗ CGenDKEM(1

k).

Practical Dual-Receiver Encryption 93

CGenDKEM(1k)
return BG
GenDKEM(1k,BG) i∈{1,2}
xi, yi

$◦ Z
∗
q

ui ◦ gxi ; vi ◦ gyi

pki ◦ (ui, vi)
ski ◦ xi

return (pki, ski)

EncDKEM(BG, pk1, pk2)
r

$◦ Z
∗
q ; c ◦ gr

t ◦ TCR(c)
π1 ◦ (ut

1v1)
r

π2 ◦ (ut
2v2)

r

K ◦ e(u1, u2)
r

C ◦ (c, π1, π2)
return (C,K)

DecDKEM(BG, pk1, pk2, sk1, C)
parse C as (c, π1, π2)
t ◦ TCR(c)
if e(g, π1) ∈= e(c, ut

1v1) or
e(g, π2) ∈= e(c, ut

2v2)
return⇒
K ◦ e(c, u2)

x1

return K

Fig. 2. DKEM from the BDDH assumption

GenDKEM(crs): The randomized key generation algorithm takes as input
crs and outputs a public/secret key pair (pk, sk); we write (pk1, sk1) and
(pk2, sk2) for the key pairs of two independent users.

EncDKEM(crs, pk1, pk2): The randomized encapsulation algorithm takes as
input crs and the public keys pk1 and pk2 of two users, and outputs a pair
(K,C) where K ≡ KeySp (i.e, the encapsulation key space) is a session key
and C is a ciphertext; we write (K,C)

$⊗ EncDKEM(crs, pk1, pk2).

DecDKEM(crs, pk1, pk2, ski, C): The deterministic decapsulation algorithm
takes the CRS crs, the public keys pk1 and pk2 of two users, one of the
secret keys ski (i ≡ {0, 1}) and a ciphertext C as input, and outputs
either a session key K (which may be the special symbol ⊥); we write
Ki ⊗ DecDKEM(crs, pk1, pk2, ski, C) (or simply Ki ⊗ DecDKEM(ski, C)).

As before, we require that the public keys for Enc and Dec are ordered by their
lexicographic ordering. Conventional consistency is required. Soundness can be
defined as that of DRE, i.e., we require that no (polynomial-time) adversary can,
with noticeable probability, produce a ciphertext C (whether consistent or not)
such that DecDKEM(sk1, C) ∪= DecDKEM(sk2, C).

DKEM is a useful building block for dual-receiver hybrid encryption. One can
easily prove that a hybrid usage of DKEM and a symmetric-key encryption gives
a secure and efficient DRE scheme.

Our DKEM DKEM = (CGenDKEM,GenDKEM,EncDKEM,DecDKEM) is depicted
in Fig. 2. It uses a target collision resistant hash function [9] TCR. Such a hash
function is usually “keyed,” but this raises problems. First, it does not make sense
to let either of the receivers choose the key, since this would immediately damage
the symmetry property of DRE. Even if we neglect the symmetry property and
allow one of them to choose the key, one has to choose multiple keys (each for per
pair of receivers) in the multi-recipient setting, which is clearly prohibitive. Last,
it does not make sense to let them jointly choose the hash key, as this would
violate the key independence requirement of DRE and be less efficient. For our
scheme, we can circumvent the problems in using a non-keyed TCR by choosing
a bijective encoding function from G to Zq, as discussed in the literature [5,22].
Correspondingly, the hash function is perfectly collision resistant.

94 S.S.M. Chow, M. Franklin, and H. Zhang

Our DKEM is publicly verifiable, and its correctness easily follows. The perfect
soundness is also satisfied similar to the one for the above DRE. The following
theorem establishes the chosen-ciphertext security of DKEM:

Theorem 2. If TCR is a target collision resistant hash function and the BDDH
assumption holds, then the scheme DKEM described in Fig. 2 is a secure DKEM
against chosen-ciphertext attacks.

Discussion. At the heart of our schemes is an ElGamal-like encryption in bilin-
ear groups, also used in DLKY-DRE [13]. We also borrow ideas from “identity-
based technique” due to Boneh and Boyen [3], and our constructions are similar
to that of Kiltz’s tag-based encryption [21], and KEMs due to Kiltz [21,22], and
Boyen, Mei, and Waters [5], respectively. Further optimizations and simplifica-
tions are applied on our schemes and symmetry has been taken into account.

4 Plaintext-aware Encryption via Registration from DRE

The notion of plaintext-awareness via key registration, due to Herzog, Liskov,
and Micali [19], requires the sender to go through a key registration step with
the authority. Roughly, it captures that an adversary can decrypt any cipher-
text that it creates, as long as the adversary registered its sending key. Their
construction [19] relies on general zero-knowledge proof of knowledge and non-
malleable NIZK, and thus is rather inefficient. We show that our DRE schemes
lead to very efficient registration-based plaintext-aware PKE schemes.

Definitions.A registration-based plaintext-aware encryption (RPA) scheme con-
sists of the following algorithms: RPA = (CGenRPA,GenRPA,EncRPA,DecRPA,RU,
RA). CGenRPA generates the CRS crs which serves as part of the inputs of the
following algorithms. RU and RA are two interactive algorithms (i.e., registration
protocol) run by the sender and the key registration authority (KRA), respec-
tively. Each takes as input an incoming message and a state, and outputs an
outgoing message, an (updated) state, and a decision (accept, reject, or cont). If
the sender accepts, its final state output is a sender key pair (pks, sks). If the
KRA accepts, its final state output is the sender public key pk≤s, where pks = pk≤s
with overwhelming probability. GenRPA generates a key pair (pkr, skr) for the re-
ceiver. EncRPA takes as input a message M , the public key of the receiver pkr,
and the public key of the sender pks, and outputs a ciphertext C. DecRPA takes
as input a ciphertext C, the public key of the receiver pkr, the public key of the
sender pks, and the secret key of the receiver skr, and outputs a message M .

Apart from the conventional encryption consistency, we expect honest secu-
rity, which ensures that if the receiver and the sender are both honest, the scheme
should satisfy the (conventional) CCA-security even if the adversary fully con-
trols the KRA. Furthermore, we expect plaintext-awareness which guarantees
the registered adversary can decrypt any ciphertexts it sends to an receiver,
for an honest KRA. We define registration-based plaintext-awareness via the
following experiment involving an adversary A and a simulator SA:

Practical Dual-Receiver Encryption 95

Experiment Exprpa
RPA,SA,A(k)

crs
$⊗ CGenDKEM(1

k)

(pkr, skr)
$⊗ GenRPA(crs)

(pkA, s)
$⊗ARA(crs, pkr)

C
$⊗ADecRPA(crs,·,pkr,skr ,·)(pkr, pkA, s)

if SA(s,C,pkr,pkA)=DecRPA(crs, C,pkr,skr,pkA) then
return 1 else return 0

We define the advantage of A in the above experiment as Advrpa
RPA,SA,A(k) =

Pr[Exprpa
RPA,SA,A(k) = 0]. An RPA scheme is registration-based plaintext-aware

if for any polynomial-time adversary A there exists SA such that the advantage
Advrpa

RPA,SA,A(k) is negligible in the security parameter k.

The Construction of Herzog, Liskov, and Micali. We briefly recall the
Herzog, Liskov, and Micali (crypto/HerzogLM03) scheme [19]: Given a CRS crs,
the receiver generates two key pairs (pk1, sk1), (pk2, sk2) of a PKE scheme
(GenPKE,EncPKE,DecPKE) which is indistinguishable against chosen-plaintext at-
tack (IND-CPA). The public key is pkr = (pk1, pk2, crs) and the secret key
skr = sk1. The sender generates another pair of public/secret key pair (pk3, sk3)
for the same encryption scheme. The sender run a zero-knowledge proof of knowl-
edge protocol with the KRA to prove the knowledge of sk3. The RPA encryp-
tion algorithm computes C = (c1 = EncPKE(pk1,m), c2 = EncPKE(pk2,m), c3 =
EncPKE(pk3,m), σ) where σ a non-malleable NIZK proof that c1, c2, and c3 en-
crypt the same message with respect to pk1, pk2, and pk3, respectively. Authen-
ticated channel is needed to make sure the ciphertext was indeed sent by the
entity that registered pk3. The benefit of the above construction is its general-
ity, but it relies on general non-malleable NIZK proofs, which does not seem to
have immediate practical instantiations. Another potential drawback is that it
is not symmetric, but in real applications the sender might be also the receiver
in another instance.

DRE-Based Plaintext-Awareness. We show that in general our refined DRE
naturally leads to a secureRPAovercoming the drawbacks of crypto/HerzogLM03.
The transformation is a simple one. Given a DRE scheme, the sender and the
receiver correspond to the two receivers of DRE, and the sender further runs a
zero-knowledge proof of knowledge of its secret key protocol with the KRA. The
RPA encryption is the same as the DRE encryption relative to the public keys of
the sender and the receiver, while the decryption algorithm is just the DRE de-
cryption algorithm relative to the receiver. It is easy to see if the receiver and the
sender are both honest, the honest security is implied by the DRE CCA-security.
Registration-based plaintext-awareness is also simple to see — for any adversary
registered its public key, given a ciphertext, we first rewind the adversary to ex-
tract its secret key using the proof of knowledge extractor, then decrypt the given
ciphertext with this secret key to obtain a plaintext. Via the soundness of DRE,
the obtained plaintext is the same as that by decrypting the ciphertext with the
secret key of the receiver. It is also easy to see that the conventional formulation

96 S.S.M. Chow, M. Franklin, and H. Zhang

of DRE without the soundness requirement is not adequate, since the ciphertext
output by the adversary can be maliciously generated.

The general transformation does not rely on NIZK proof (except for the sender
registration process). One can instantiate our DRE based PRA schemes with
those in Section 3. The key registration protocol simply runs two (well-known
and standard) four-round protocol of zero-knowledge proof of knowledge for
discrete logarithm or uses more efficient concurrently secure protocol [10] in the
auxiliary string model.

5 Combined Encryption Scheme

A combined encryption scheme CE consists of the following algorithms (CGenCOM,
GenCOM,EncDRE,DecDRE,EncPKE,DecPKE):

CGenCOM(1
k): The randomized CRS generation algorithm takes as input a

security parameter k and outputs a CRS crs; we write crs
$⊗ CGenCOM(1

k).

GenCOM(crs): The randomized key generation algorithm takes as input crs
and outputs a public/secret key pair (pk, sk); we write (pk1, sk1) and
(pk2, sk2) for the key pairs of two independent users.

EncDRE(crs, pk1, pk2,M): The randomized DRE encryption algorithm takes
as input the CRS crs, the public keys pk1, pk2, and a message M , and
outputs a ciphertext C; we write C

$⊗ EncDRE(crs, pk1, pk2,M).

DecDRE(crs, pk1, pk2, ski, C): The deterministic DRE decryption algorithm
takes as input two public keys pk1 and pk2, one of the secret keys ski
(i ≡ {0, 1}), and a ciphertext C, and outputs a message Mi (which may
be the special symbol ⊥); we write Mi ⊗ DecDRE(crs, pk1, pk2, ski, C) or
simply Mi ⊗ DecDRE(pk1, pk2, ski, C).

EncPKE(crs, pk1,M
≤): The randomized PKE encryption algorithm takes as

input the CRS crs, the public key pk1, and a message M ≤, and outputs a
ciphertext C≤; we write C≤ $⊗ EncPKE(crs, pk1,M

≤).
DecPKE(crs, pk1, sk1, C

≤): The deterministic PKE decryption algorithm
takes as input the CRS crs, the public/secret key pair (pk1, sk1), and
a ciphertext C≤, and outputs a message M ≤ (which may be the special
symbol ⊥); we write M ≤ ⊗ DecPKE(crs, pk1, sk1, C

≤) or simply M ≤ ⊗
DecPKE(pk1, sk1, C

≤).
We require that the public keys in the DRE encryption and decryption algo-
rithms respect their lexicographic ordering. Both the PKE consistency and DRE
consistency are required.

The formalization of the security of combined encryption schemes is more in-
volved than those of previous combined encryption schemes (e.g. [1,36]), due to
the more-than-one receivers nature of DRE. We establish the security of com-
bined encryption scheme by defining DRE security with PKE decryption oracle
and PKE security with DRE decryption oracle. The former captures the security
of DRE even with unrestricted PKE decryption oracles of the two receivers, while

Practical Dual-Receiver Encryption 97

Experiment Expcca
CE,1,A1

(k)

crs
$◦ CGenCOM(1k)

(pki,ski)
$◦GenCOM(crs) i ∈ {1, 2}

(M0,M1, s)
$◦AO1 ,O2,O3(find, crs, pk1, pk2)

b
$◦{0, 1}; C∗ $◦ EncDRE(crs, pk1, pk2,Mb)

b′ $◦AO1,O2,O3(guess, C∗, s)
if b′ = b then return 1 else return 0

Experiment Expcca
CE,2,A2

(k)

crs
$◦ CGenCOM(1k)

(pk1, sk1)
$◦ GenCOM(crs)

(M0,M1, s)
$◦AQ1,Q2,Q3(find, crs, pk1)

b
$◦{0, 1}; C∗ $◦ EncPKE(crs, pk1,Mb)

b′ $◦AQ1,Q2,Q3(guess, C∗, s)
if b′=b then return 1 else return 0

Fig. 3. (Left:) DRE security with PKE decryption oracle (Right:) PKE security with
DRE decryption oracle

the latter formalizes the security of PKE even with unrestricted DRE decryp-
tion oracles regarding the target public key and some arbitrary (valid) public
key even if it does not know the corresponding secret key.

Fig. 3 (Left) depicts DRE security with PKE decryption oracle, where O1 =
DecDRE(sk1, pk1, pk2, ·), O2 = DecPKE(sk1, ·), and O3 = DecPKE(sk2, ·). In its
guess stage, A1 is not allowed to query the oracles DecDRE(sk1, ·) on the challenge
ciphertext C≥. Note that we do not impose any restrictions on DecPKE(sk1, ·)
and DecPKE(sk2, ·) oracles. Fig. 3 (Right) describes PKE security with DRE
decryption, where Q1 = DecPKE(sk1, ·), Q2 = DecDRE(sk1, pk1, ·, ·), and Q3 =
DecDRE(sk1, ·, pk1, ·). In the guess stage, A2 is not allowed to query the oracle
DecPKE(sk1, ·) with the challenge ciphertext C≥. The query DecDRE(sk1, pk1, ·, ·)
on (pk, C) such that pk1 <

d pk returns M ⊗ DecDRE(sk1, pk1, pk, C), and the
oracle query DecDRE(sk1, ·, pk1, ·) on (pk≤, C) such that pk≤<d pk1 returns M ⊗
DecDRE(sk1, pk

≤, pk1, C). We levy no restrictions except the validity of keys pk
and pk≤ (i.e., output by GenCOM(crs)).

In the find stages of both experiments, it is required that |M0| = |M1|. We
define the advantage of Ai in experiment Expcca

CE,i,Ai
(k) (i ≡ {1, 2}) as

Advcca
CE,i,Ai

(k) = Pr[Expcca
CE,i,Ai

(k) = 1]− 1/2.

The soundness for the DRE functionality is identical to that of a regular DRE.

An Efficient Construction. We describe an efficient combined scheme CE ,
depicted in Fig. 4, which combines our scheme DRE in Section 3.1 and a PKE
scheme adapted from the one based on the BDDH assumption due to Kiltz [21].
The scheme exploits the “identity-based technique” in a symmetric manner,
where it can be used to simulate all the unrestricted decryption oracles. It is easy
to see that the ciphertext consistency of the combined scheme is also publicly
verifiable. Theorem 3 below asserts the security of our combined scheme CE .
Theorem 3. Our CE is a combined encryption scheme satisfying DRE security
with PKE decryption oracle and PKE security with DRE decryption oracle.

98 S.S.M. Chow, M. Franklin, and H. Zhang

CGen(1k)
return BG
GenCOM(1k,BG)
xi, yi

$◦ Z
∗
q

ui ◦ gxi ; vi ◦ gyi

wi ◦ gzi

pki ◦ (ui, vi, wi)
ski ◦ xi

return (pki, ski)

EncDRE(BG, pk1, pk2,M)

(vk, sk)
$◦ GenOT(1

k)
r

$◦ Z
∗
q

c ◦ gr

π1 ◦ (uvk
1 v1)

r

π2 ◦ (uvk
2 v2)

r

φ ◦ e(u1, u2)
r ·M

σ
$◦ SigOT(sk, (c, π1, π2, φ))

return C◦ (vk, c, π1, π2, φ, σ)

DecDRE(BG, pk1, pk2, sk1, C)
parse C as (vk, c, π1, π2, φ, σ)
if VrfOT(vk,σ,(c,π1,π2,φ)) ∈=1or

e(g, π1) ∈= e(c, uvk
1 v1) or

e(g, π2) ∈= e(c, uvk
2 v2)

return⇒
M ◦ φ · e(c, u2)

−x1

return M

EncPKE(BG, pk1,M)

(vk, sk)
$◦ GenOT(1

k)
r

$◦ Z
∗
q ; c ◦ gr

π ◦ (uvk
1 v1)

r

φ ◦ e(u1, w1)
r ·M

σ
$◦ SigOT(sk, (c, π, φ))

return C◦ (vk, c, π, φ, σ)

DecPKE(BG, pk1, sk1, C)
parse C as (vk, c, π, φ, σ)
if VrfOT(vk, σ, (c, π, φ) ∈= 1 or

e(g, π) ∈= e(c, uvk
1 v1) then

return ⇒
M ◦ φ · e(c, w1)

−x1

return M

Fig. 4. A combined encryption scheme from the BDDH assumption

6 Completely Non-malleable DRE

Completely non-malleable DRE provides a stronger notion for DRE, which can
apply to settings where on-line authorities are available and adversaries might
dynamically and maliciously generate public keys. CNM notion of DRE ensures
ciphertext non-malleability even in such settings. This section is also motivated
by acquiring stronger notions for plaintext equality test as discussed in our full
paper [7], and by dual-receiver non-malleable commitments to be illustrated.

As argued in the introduction, we need to resort to CRS for constructing
CNM-DRE. We will propose two general approaches to constructing CNM-DRE
followed by efficient instantiations. We start with a model of CNM-DRE.

6.1 Modeling Completely Non-Malleable DRE

Fischlin [15] gave a simulation-based definition of CNM extending the original
definition of non-malleability, and later Ventre and Visconti [32] introduced the
game-based definition. We extend the game-based definition of complete non-
malleability [32] to the DRE setting and formalize the definition of CNM for
DRE. In this setting, we consider a complete relation R that outputs a boolean
variable, and takes as input a plaintext m, two public keys pk1 and pk2 for
two receivers, two (possibly adversarially generated) public keys pk≥1 and pk≥2 , a
vector m≥ of plaintexts, and a vector of DRE ciphertext c≥ encrypting m≥ under
pk≥1 and pk≥2 . Consider an experiment with adversary A, as depicted in Fig. 5.

In the experiment, it is mandated that adversary will not query DecDRE(sk1, ·)
with c. We also require the chosen distribution M to be valid such that |m| = |m≤|
for any m and m≤ having non-zero probability of being sampled. By m≥ ∪= ⊥,

Practical Dual-Receiver Encryption 99

Experiment Expcnm-cca-0
DRE,A (k) Experiment Expcnm-cca-1

DRE,A (k)

crs
$◦ CGenDRE(1

k) crs
$◦ CGenDRE(1

k)

(pki, ski)
$◦ GenDRE(crs) i ∈ {1, 2} (pki, ski)

$◦ GenDRE(crs) i ∈ {1, 2}
(M, s)

$◦ADecDRE(sk1,·)(crs, pk1, pk2) (M, s)
$◦ADecDRE(sk1,·)(crs, pk1, pk2)

m
$◦M m, m̃

$◦M

c ◦ EncDRE(crs, pk1, pk2,m, r) c ◦ EncDRE(crs, pk1, pk2,m, r)

(R, pk∗
1 , pk

∗
2 , c

∗) ◦ ADecDRE(sk1,·)(s, c) (R, pk∗
1 , pk

∗
2 , c

∗) ◦ ADecDRE(sk1,·)(s, c)
return 1 iff →(m∗, r∗) such that return 1 iff →(m∗, r∗) such that

(c∗=EncDRE(crs, pk
∗
1 , pk

∗
2 ,m

∗, r∗)) and (c∗=EncDRE(crs,pk
∗
1 , pk

∗
2 ,m

∗, r∗)) and
(c /∈ c∗ or (pk1, pk2) ∈= (pk∗

1 , pk
∗
2)) and (c /∈ c∗ or (pk1, pk2) ∈= (pk∗

1 , pk
∗
2)) and

(m∗ ∈= ⇒) and (m∗ ∈= ⇒) and

(R(m,m∗, crs, pk1, pk2, pk∗
1 , pk

∗
2 , c

∗)=1) (R(m̃,m∗, crs, pk1, pk2, pk∗
1 , pk

∗
2 , c

∗)=1)

Fig. 5. Modeling the Security of CNM-DRE

we mean that at least one of the elements of c≥ is a valid ciphertext. We define
the advantage of A, Advcnm-cca

DRE,A (k), in the above experiments as

Pr[Expcnm-cca-0
DRE,A (k) = 1]− Pr[Expcnm-cca-1

DRE,A (k) = 1].

To thwart a trivial attack, we require the public keys output from the adversary
to be in the lexicographic ordering among bit strings (i.e., pk≥1 <

d pk≥2).
When we restrict the public keys (pk≥1 , pk

≥
2) output from A to be exactly

(pk1, pk2), our definition is equivalent to NM-CCA (and IND-CCA).
We require for CNM-DRE the strong soundness property defined in Section 2

since in the setting of CNM the adversary can choose keys adversarially. (Ac-
cordingly, we require the encryption scheme to be admissible.) This also ensures
that any final output c≥ will give the same plaintext after decrypting.

6.2 CNM-DRE from Groth-Sahai Proof System

It is known that Naor-Yung “two-key” paradigm [25], where the well-formedness
of a ciphertext is ensured by the soundness property of a non-interactive zero-
knowledge (NIZK) proof, allows dual encryption and decryption but only achieves
IND-CCA1 security. It is later shown by Sahai [30] that one can replace the un-
derlying NIZK proof system with a (one-time) simulation-sound NIZK proof sys-
tem to get IND-CCA security. To achieve complete non-malleability, we employ
an even stronger notion of simulation-sound and simulation-sound extractable
NIZK proof of knowledge (reviewed in Appendix A) [12,17], which, loosely speak-
ing, requires that the extraction can be achieved even in the simulation setting.
The stronger property is needed because it allows the decryption for the forged
ciphertext output by the adversary in the simulation setting even if one does not
have the corresponding secret key.

Our scheme CDRE1=(CGenDRE,GenDRE,EncDRE,DecDRE) is detailed in Fig. 6.
It employs any admissible encryption PKE = (Gen,Enc,Dec) and a simulation-

100 S.S.M. Chow, M. Franklin, and H. Zhang

CGenDRE(1
k)

return crs
$◦CGen(1k)

GenDRE(1
k) i ∈ {1, 2}

(pki, ski)
$◦ Gen(1k)

return (pki, ski)

EncDRE(crs, pk1, pk2,m)
c1 ◦ Enc(pk1,m; r1)
c2 ◦ Enc(pk2,m; r2)
π

$◦P(crs,(c1,c2,pk1,pk2),(m,r1,r2))
c ◦ (c1, c2, π)
return c

DecDRE(crs, pk1, pk2, sk1, C)
parse C as (c1, c2, π)
if V(crs,c1,c2,pk1,pk2,π) ∈=1

return ⇒
m ◦ Dec(c1, pk1, sk1)
return m

Fig. 6. General CNM-DRE from Naor-Yung Paradigm

sound and simulation-sound extractable NIZK argument of knowledge proof sys-
tem SSPK = (CGen,P,V,E1,E2, S1, S2) for the languageL1 := {(c1, c2, pk1, pk2)|
→(m, r1, r2) [c1 = Enc(pk1,m; r1)≥c2 = Enc(pk2,m; r2)]}, where r1 and r2 denote
the randomness used by Enc.

Theorem 4. If encryption PKE is admissible and indistinguishable under
chosen-plaintext attack (IND-CPA), and SSPK is a simulation-sound and
simulation-sound extractable NIZK argument of knowledge proof system, then
the scheme CDRE1 described in Fig. 6 is a secure CNM-DRE against chosen-
ciphertext attacks.

Efficient Instantiations. The general construction from simulation-sound and
simulation-sound extractable NIZK argument of knowledge can be instantiated
with reasonable efficiency. In particular, the simulation-sound NIZK argument
of knowledge can be achieved by using Groth-Sahai proof system [18] which can
be realized based on a number of standard assumptions. More details can be
found in our full paper [7].

6.3 CNM-DRE from Lossy Trapdoor Functions

This construction follows the CNM-PKE due to Libert and Yung [23] that mod-
ifies the PKE from lossy trapdoor functions by Peikert and Waters [28]5. In their
scheme, the family of all-but-one functions is put in the CRS, rather than being
generated by the user key generation. We extend this idea to achieve CNM-
DRE. Concretely, in our encryption algorithm, the same randomness is used as
input to two independent lossy trapdoor functions generated by two receivers,
and the rest of the encryption remains as in Peikert and Waters [28]. To achieve
soundness, we ask that both of the receivers to check the consistency of both of
the lossy trapdoor functions. Note that it is easy for them to do so, since the
decryption algorithm is witness-recovering.

Our Construction.We present CDRE2 = (CGenDRE,GenDRE,EncDRE,DecDRE)
in Fig. 7, from a collection of (n, l) lossy trapdoor functions LT F=(S,F ,F−1),
a collection of (n, l≤) all-but-one trapdoor functions ABO = (Sabo,Gabo,G−1abo),
and a collection of pairwise independent hash functions [33] H: H × {0, 1}n ⇐
{0, 1}d. We require that 2l+ l≤ ∈ n+Φ, where Φ = Ψ(logn) and Φ > d+log(1/Υ)

5 The definitions of lossy and all-but-one trapdoor functions is recalled in Appendix A.

Practical Dual-Receiver Encryption 101

CGenDRE(1
k)

b0
$◦{0, 1}n

(s0, t0)
$◦Sabo(1

k, b0)
h

$◦H
return crs ◦ (s0, h)

GenDRE(1
k) i ∈ {1, 2}

(si, ti)
$◦S(1k, 1)

return (si, ti)

EncDRE(crs, s1, s2,m; r)

(vk, sk)
$◦ GenOT(1

k)
r

$◦{0, 1}n
C1 ◦ F(s1, r)
C2 ◦ F(s2, r)
C3 ◦ Gabo(s0, vk, r)
C4 ◦ M ⊗Hh(r)
σ

$◦ SigOT(sk,(C1,C2,C3,C4,pk1,pk2))
return C ◦ (vk, C1, C2, C3, C4, σ)

DecDRE(crs, s1, s2, t1, C)
parse C as (C1, C2, C3, C4, pk1, pk2, σ)
if VrfOT(vk,σ,(C1,C2,C3,C4,pk1,pk2)) ∈=1 then

return ⇒
r ◦ F−1(t1, C1)
if C2 ∈= F(s2, r) or C3 ∈= F(s0, r) then

return ⇒
m ◦ C4 ⊗Hh(r)
return m

Fig. 7. General CNM-DRE from Lossy Trapdoor Functions

for some negligible function Υ. This is the only scheme in our paper that is not
publicly verifiable, i.e., only the receivers can check if a ciphertext is sound.

Theorem 5. The scheme CDRE2 adapted from lossy trapdoor functions as de-
scribed in Fig. 7 is a secure CNM-DRE against chosen-ciphertext attacks.

Discussion. The two paradigms (the one based on simulation-sound NIZK ar-
gument of knowledge and the one from lossy trapdoor functions) are both gen-
eral and can be instantiated in a reasonably efficient way. The former can be
realized from the SXDH and DLIN assumptions in bilinear groups. It allows
short (constant) public keys and constant ciphertext size (more than a hundred
group elements though). The latter paradigm has longer ciphertexts, and can
be achieved via a number of simpler and more elementary assumptions such as
DDH, LWE (learning with errors) [28], and Composite Residuosity [16].

One primary interest in studying CNM encryption schemes springs from
non-malleable commitments. Correspondingly, our CNM-DRE’s lead to dual-
receiver non-malleable commitments, generalizing the regular non-malleable com-
mitments, which one can commit to the message in a non-malleable sense for
two independent receivers with double trapdoors, where they both know that
the de-committed messages will be the same. This is a useful property, and it
might find other interesting applications.

Acknowledgement. Many thanks for the valuable comments from the anony-
mous referees and Jens Groth that largely improved the paper. We would also
like to thank Adam Smith for his very helpful discussion and in particular point-
ing us the OTR protocols, and Rui Zhang for his perceptive comments. Sherman

102 S.S.M. Chow, M. Franklin, and H. Zhang

S.M. Chow is supported by the Early Career Scheme and the Early Career Award
of the Research Grants Council, Hong Kong SAR (CUHK 439713), and grants
(4055018, 4930034) from Chinese University of Hong Kong. Haibin Zhang is
supported by NSF grants CNS 0904380 and CNS 1228828. Haibin Zhang also
received support for this project under NSFC 61272035 while visiting Shandong
University.

References

1. Baek, J., Safavi-Naini, R., Susilo, W.: On the Integration of Public Key Data
Encryption and Public Key Encryption with Keyword Search. In: Katsikas, S.K.,
López, J., Backes, M., Gritzalis, S., Preneel, B. (eds.) ISC 2006. LNCS, vol. 4176,
pp. 217–232. Springer, Heidelberg (2006)

2. Bellare, M., Boldyreva, A., Micali, S.: Public-Key Encryption in a Multi-user Set-
ting: Security Proofs and Improvements. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 259–274. Springer, Heidelberg (2000)

3. Boneh, D., Boyen, X.: Efficient Selective-ID Secure Identity-Based Encryption
Without Random Oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT
2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

4. Borisov, N., Goldberg, I., Brewer, E.A.: Off-the-record communication, or, why not
to use PGP. In: WPES, pp. 77–84 (2004)

5. Boyen, X., Mei, Q., Waters, B.: Direct Chosen Ciphertext Security from Identity-
Based Techniques. In: ACM Conference on Computer and Communications Secu-
rity, pp. 320–329 (2005)

6. Camenisch, J.L., Michels, M.: Separability and Efficiency for Generic Group Sig-
nature Schemes (Extended Abstract). In: Wiener, M. (ed.) CRYPTO 1999. LNCS,
vol. 1666, pp. 413–430. Springer, Heidelberg (1999)

7. Chow, S.S.M., Franklin, M., Zhang, H.: Practical Dual-Receiver Encryption:
Soundness, Complete Non-Malleability, and Applications. Cryptology ePrint re-
port 2013/858 (2013)

8. Clarkson, M.R., Chong, S., Myers, A.C.: Civitas: Toward a Secure Voting System.
In: IEEE Symposium on Security and Privacy, pp. 354–368 (2008)

9. Cramer, R., Shoup, V.: Design and Analysis of Practical Public-Key Encryp-
tion Schemes Secure against Adaptive Chosen Ciphertext Attack. SIAM J. Com-
put. 33(1), 167–226 (2003)

10. Damg̊ard, I.: Efficient Concurrent Zero-Knowledge in the Auxiliary String Model.
In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 418–430. Springer,
Heidelberg (2000)

11. Damg̊ard, I., Hofheinz, D., Kiltz, E., Thorbek, R.: Public-Key Encryption with
Non-interactive Opening. In: Malkin, T. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp.
239–255. Springer, Heidelberg (2008)

12. De Santis, A., Di Crescenzo, G., Ostrovsky, R., Persiano, G., Sahai, A.: Ro-
bust Non-interactive Zero Knowledge. In: Kilian, J. (ed.) CRYPTO 2001. LNCS,
vol. 2139, pp. 566–598. Springer, Heidelberg (2001)

13. Diament, T., Lee, H.K., Keromytis, A.D., Yung, M.: The Dual Receiver Cryptosys-
tem and its Applications. In: ACM Conference on Computer and Communications
Security, pp. 330–343 (2004)

14. Dodis, Y., Katz, J., Smith, A., Walfish, S.: Composability and On-Line Deniability
of Authentication. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 146–162.
Springer, Heidelberg (2009)

Practical Dual-Receiver Encryption 103

15. Fischlin, M.: Completely non-malleable schemes. In: Caires, L., Italiano, G.F.,
Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580,
pp. 779–790. Springer, Heidelberg (2005)

16. Freeman, D.M., Goldreich, O., Kiltz, E., Rosen, A., Segev, G.: More Construc-
tions of Lossy and Correlation-Secure Trapdoor Functions. In: Nguyen, P.Q.,
Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 279–295. Springer,
Heidelberg (2010)

17. Groth, J.: Simulation-Sound NIZK Proofs for a Practical Language and Constant
Size Group Signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS,
vol. 4284, pp. 444–459. Springer, Heidelberg (2006)

18. Groth, J., Sahai, A.: Efficient Noninteractive Proof Systems for Bilinear Groups.
SIAM J. Comput. 41(5), 1193–1232 (2012)

19. Herzog, J.C., Liskov, M., Micali, S.: Plaintext Awareness via Key Registration. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 548–564. Springer, Heidelberg
(2003)

20. Jakobsson, M., Juels, A.: Mix and Match: Secure Function Evaluation via Cipher-
texts. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 162–177.
Springer, Heidelberg (2000)

21. Kiltz, E.: Chosen-Ciphertext Security from Tag-Based Encryption. In: Halevi, S.,
Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 581–600. Springer, Heidelberg
(2006)

22. Kiltz, E.: Chosen-Ciphertext Secure Key-Encapsulation Based on Gap Hashed
Diffie-Hellman. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450,
pp. 282–297. Springer, Heidelberg (2007)

23. Libert, B., Yung, M.: Efficient Completely Non-malleable Public Key Encryption.
In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G.
(eds.) ICALP 2010, Part I. LNCS, vol. 6198, pp. 127–139. Springer, Heidelberg
(2010)

24. Lu, Y., Zhang, R., Lin, D.: Stronger Security Model for Public-Key Encryption with
Equality Test. In: Abdalla, M., Lange, T. (eds.) Pairing 2012. LNCS, vol. 7708,
pp. 65–82. Springer, Heidelberg (2013)

25. Naor, M., Yung, M.: Public-key Cryptosystems Provably Secure against Chosen
Ciphertext Attacks. In: STOC, pp. 427–437 (1990)

26. Okamoto, T., Pointcheval, D.: REACT: Rapid Enhanced-Security Asymmetric
Cryptosystem Transform. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020,
pp. 159–175. Springer, Heidelberg (2001)

27. Okamoto, T., Pointcheval, D.: The Gap-Problems: A New Class of Problems for
the Security of Cryptographic Schemes. In: Kim, K.-C. (ed.) PKC 2001. LNCS,
vol. 1992, pp. 104–118. Springer, Heidelberg (2001)

28. Peikert, C., Waters, B.: Lossy Trapdoor Functions and Their Applications. In:
STOC, pp. 187–196 (2008)

29. Rackoff, C., Simon, D.R.: Non-Interactive Zero-Knowledge Proof of Knowledge
and Chosen Ciphertext Attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS,
vol. 576, pp. 433–444. Springer, Heidelberg (1992)

30. Sahai, A.: Non-Malleable Non-Interactive Zero Knowledge and Adaptive Chosen-
Ciphertext Security. In: FOCS, pp. 543–553 (1999)

31. Smith, A., Youn, Y.: An Efficient Construction of Dual-Receiver Encryption (2008)
(unpublished manuscript)

32. Ventre, C., Visconti, I.: Completely Non-malleable Encryption Revisited. In:
Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 65–84. Springer, Heidelberg
(2008)

104 S.S.M. Chow, M. Franklin, and H. Zhang

33. Wegman, M.N., Carter, L.: New Hash Functions and Their Use in Authentication
and Set Equality. J. Comput. Syst. Sci. 22(3), 265–279 (1981)

34. Yang, G., Tan, C.H., Huang, Q., Wong, D.S.: Probabilistic Public Key Encryp-
tion with Equality Test. In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985,
pp. 119–131. Springer, Heidelberg (2010)

35. Zhang, R., Hanaoka, G., Imai, H.: A Generic Construction of Useful Client Puzzles.
In: ASIACCS, pp. 70–79 (2009)

36. Zhang, R., Imai, H.: Generic Combination of Public Key Encryption with Keyword
Search and Public Key Encryption. In: Bao, F., Ling, S., Okamoto, T., Wang, H.,
Xing, C. (eds.) CANS 2007. LNCS, vol. 4856, pp. 159–174. Springer, Heidelberg
(2007)

37. Zhou, L., Marsh, M.A., Schneider, F.B., Redz, A.: Distributed Blinding for Dis-
tributed ElGamal Re-Encryption. In: ICDCS, pp. 815–824 (2005)

A Building Blocks for CNM-DRE

Simulation-Sound and Simulation-Sound Extractable NIZK Proof of
Knowledge. An NIZK proof of knowledge system SSPK is a proof system
(CGen,P,V) together with knowledge extraction algorithms (E1,E2) and simu-
lation algorithms (S1, S2). The proof system satisfies completeness, soundness,
zero-knowledge, simulation soundness, and simulation sound extractability prop-
erties. We assume some familiarity with NIZK and only recall the latter two.

We say a NIZK proof system simulation sound if no adversary can prove
any false and new statement even with a simulation oracle. Formally, we de-
fine the ss-advantage against a polynomial-time adversary A, Advss

SSPK,A(k),
for an efficiently computable relation R and a corresponding language L as
Pr[(crs, α)

$⊗S1(1
k); (x, σ)

$⊗AS2(crs,τ,·)(crs): (x, σ) is new≥x /≡ L≥V(crs, x, σ) = 1].
We say a NIZK proof is simulation sound extractable if one can always extract

a witness, in the simulated setting, whenever the adversary with a simulation
oracle makes a new proof. Namely, we define the sse-advantage against an ad-
versary A, Advsse

SSPK,A(k), for a relation R and a language L as the probability

Pr[(crs, α, ek)
$⊗ Genunite(1

k); (x, σ)
$⊗AS2(crs,τ,·)(crs, ek);Ψ $⊗ E2(crs, ek, x, σ): (x,

σ) is new≥ (x, Ψ) /≡ R≥V(crs, x, σ) = 1], where Genunite(1
k) is a generation algo-

rithm unifying extraction algorithm E1 and simulation algorithm S1 such that
they share the same simulated common reference string crs.

Lossy Trapdoor Functions. A collection of (n, l)-lossy trapdoor functions
LT F = (S,F ,F−1): S(1k, 1) is the injective function sampling algorithm which
outputs (s, t) where s is a function index and t is the trapdoor; F(s, ·) computes
an injective function over the domain {0, 1}n, while F−1(t, ·) computes the in-
verse of the injective function; the lossy function sampling algorithm S(1k, 0)
outputs (s,⊥) where s is a function index; F(s, ·) then computes a deterministic
function over {0, 1}n such that its image size is at most 2n−l. The first outputs
of S(1k, 1) and S(1k, 0) are computationally indistinguishable.

Practical Dual-Receiver Encryption 105

All-but-one Trapdoor Functions. Let B = {Bk}k∈N be a collection of sets
whose elements represent the branches. A collection of (n, l)-all-but-one trapdoor
functions ABO = (Sabo,Gabo,G−1abo) with branch collection Bk consists of the fol-
lowing algorithms: With a given lossy branch b≥, the trapdoor function sampling
algorithm Sabo(1k, b≥) outputs (s, t) where s is a function index and t is the trap-
door. For any b ≡ B such that b ∪= b≥, Gabo(s, b, ·) computes an injective function
over the domain {0, 1}n, while G−1(t, b, ·) computes the inverse of the injective
function. G−1(t, b≥, ·) instead computes a deterministic function such that its im-
age size is at most 2n−l. It is required that, for any b≥0, b

≥
1 ≡ B, the first outputs

of Sabo(1k, b≥0) and Sabo(1k, b≥1) are computationally indistinguishable.

Attacking PUF-Based Pattern Matching Key

Generators via Helper Data Manipulation

Jeroen Delvaux and Ingrid Verbauwhede

ESAT/COSIC and iMinds, KU Leuven
Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium

{firstname.lastname}@esat.kuleuven.be

Abstract. Physically Unclonable Functions (PUFs) provide a unique
signature for integrated circuits (ICs), similar to a fingerprint for hu-
mans. They are primarily used to generate secret keys, hereby exploiting
the unique manufacturing variations of an IC. Unfortunately, PUF out-
put bits are not perfectly reproducible and non-uniformly distributed.
To obtain a high-quality key, one needs to implement additional post-
processing logic on the same IC. Fuzzy extractors are the well-established
standard solution. Pattern Matching Key Generators (PMKGs) have
been proposed as an alternative. In this work, we demonstrate the latter
construction to be vulnerable against manipulation of its public helper
data. Full key recovery is possible, although depending on system de-
sign choices. We demonstrate our attacks using a 4-XOR arbiter PUF,
manufactured in 65nm CMOS technology. We also propose a simple but
effective countermeasure.

Keywords: PUF, secret key, helper data, fuzzy extractor, Hamming
distance.

1 Introduction

Modern applications for integrated circuits (ICs) increasingly rely on cryptog-
raphy to protect their sensitive data. Practically all cryptographic implemen-
tations require the ability to securely generate, store and retrieve secret keys.
Traditionally, the secret keys are stored in non-volatile memory (NVM), using
Flash technology for instance. However, providing full system security at a rea-
sonable cost has proven to be very challenging, given that an attacker can easily
gain physical access to the IC. NVM tends to be vulnerable against various hard-
ware attacks [13], as the key is stored permanently in electrical form. Additional
circuitry to protect the key is usually complemented by practical drawbacks:
costly, bulky, battery powered, etc. Furthermore, most NVM technologies are
CMOS incompatible, increasing the IC manufacturing cost.

Physically Unclonable Functions (PUFs) have been proposed as a more se-
cure and more efficient alternative. Silicon PUFs leverage the normally undesired
manufacturing variations of an IC, enhanced by CMOS technology scaling [6].
The post-manufacturing state of an IC represents an inherently unique secret in

J. Benaloh (Ed.): CT-RSA 2014, LNCS 8366, pp. 106–131, 2014.
c© Springer International Publishing Switzerland 2014

Attacking PUF-Based Pattern Matching Key Generators 107

non-electrical form. PUFs are electrical circuits that perform a two-step conver-
sion for their own variability: from non-electrical form to analog electrical signals
(voltages and currents) and finally to bits. The term ‘unclonable’ refers to the
infeasibility to manufacture a replica of a PUF, as the nanoscale variations are
uncontrollable. Input bits might be foreseen, making the PUF a function.

PUFs offer some remarkable advantages for secret key applications, in com-
parison to on-chip NVM. First, most silicon PUFs are CMOS compatible and
hence cost-efficient. Second, PUFs are often assumed to be resistant against in-
vasive attacks. One can argue that invasion damages the physical structure of
the PUF, hereby destroying the secret. Third, keys are inherently unique for
each manufactured sample of the IC and there is no need to explicitly program
them. However, the ability to program an arbitrary key can still be foreseen if
desired. Fourth, the key is only generated and stored in volatile memory (VM)
whenever key-dependent operations have to be performed. As such, limits are
posed on the attacker’s time frame.

Unfortunately, PUF output bits are not directly usable as a secret key. One
first needs to resolve two issues: (1) the bits are not perfectly reproducible, (2)
the bits are non-uniformly distributed. Therefore, digital post-processing logic
has to be implemented on the same IC. The use of public helper data is unavoid-
able hereby, requesting again NVM (preferably off-chip now for cost-efficiency
reasons). Fuzzy extractors [2] are the well-established post-processing solution.
Typical implementations employ an error-correcting code (ECC) and a cryp-
tographic hash function. Pattern Matching Key Generators (PMKGs) [9] have
been proposed as an alternative at the HOST 2011 conference. A patent on the
construction has been granted by the World Intellectual Property Organization
[10].

PMKGs employ so-called patterns, which are substrings in a long stream of
(noisy) PUF output bits. The substring indices are considered to be secret as
they directly define the secret key. The patterns are stored as public helper
data; other stream bits are not exposed. To reconstruct the key, one does ‘slide’
the patterns along their regenerated streams, performing a matching procedure
(measuring Hamming distance). In this work, we demonstrate the PMKG con-
struction to be vulnerable against malicious modification of its public helper
data. Via statistical observation of the PMKG failure rate, one can gradually
retrieve the full bitstreams and hence the secret indices, although depending on
system design choices. We demonstrate our attacks using a 4-XOR arbiter PUF,
manufactured in 65nm CMOS technology.

The organization of this paper is as follows. Section 2 and 3 provide an intro-
duction to PUFs and post-processing logic respectively. Section 4 describes the
PMKG construction. Its failure characteristics are essential for our attacks: we
analyze them in section 5. The attacks are presented in section 6. Countermea-
sures are discussed in section 7. Section 8 concludes the work.

108 J. Delvaux and I. Verbauwhede

2 Physically Unclonable Functions

PUFs are functions: their binary input and output vectors are referred to as
challenges and responses respectively. In section 2.1, we comment on the number
of challenge-response pairs (CRPs) as well as their secrecy. In sections 2.2 and
2.3, we describe two popular PUF architectures: the arbiter PUF and its XOR
variant respectively. The latter architecture has been employed for the PMKG
implementation of [9]. We do employ the same PUF to illustrate our attacks.

2.1 Challenge-Response Pairs and Their Secrecy

PUFs are often subdivided in two classes, depending on their number of CRPs
[11]. Weak PUFs have few CRPs, often linearly increasing with the required IC
area. They are primarily used to generate secret keys. Strong PUFs have a huge
amount of CRPs, in the ideal case exponentially increasing with the required
IC area. The generation of a secret key, assuming a traditional fuzzy extrac-
tor as post-processing logic, does not require such a huge amount of response
bits. For the PMKG construction however, the use of a strong PUF might be
indispensable.

The secrecy of CRPs depends on the use case of the PUF. For traditional
secret key generation, it is imperative to keep the responses on-chip. The list of
challenges, generating the stream of response bits, is to be considered as publicly
known. The secrecy of the responses bits is not affected hereby, given that PUFs
are ‘random’ functions. Hardware attacks (invasive, through side channels and
via fault injection) are a threat for the secrecy of the response bits and hence also
for the key. One can target the PUF itself as well as the post-processing logic
[8]. Remember that PUFs are often assumed to be resistant against invasion.
Experimental evidence is generally lacking however, except for the coating PUF
[14].

For some PUF use cases, typically employing a strong PUF such as the ar-
biter PUF or its XOR variant, individual CRPs are exposed on purpose. This
is also the case for the PMKG. The security arises from the CRP behavior un-
predictability. Given the exposed CRPs, it should be infeasible to construct a
mathematical model of the PUF. Machine learning (ML) techniques, like sup-
port vector machines and artificial neural networks, form a major threat. Given
a limited set of training CRPs, algorithms automatically learn the input-output
behavior, trying to generalize the underlying interactions. Both the arbiter PUF
and its XOR variant are vulnerable, although the latter construction provides
considerably more resistance [12].

2.2 Arbiter PUF

Architecture. Arbiter PUFs [7] quantify manufacturing variability via the
propagation delays of logic gates. The high-level functionality is represented
by figure 1(a). A rising edge propagates through two paths with identically de-
signed delays. Because of nanoscale manufacturing variations however, there is

Attacking PUF-Based Pattern Matching Key Generators 109

1

c1 = 1

2

c2 = 0

. . .

q

cq = 1

Δt A
r

(a)

A

...

A

A

c1 c2 cq

+
r

(b)

Fig. 1. Arbiter PUF (a) and its XOR variant (b)

a delay difference Δt between both paths. An arbiter decides which path ‘wins’
the race (Δt ≶ 0) and generates a response bit r.

The two paths are constructed from a series of q switching elements. Challenge
bits ci determine for each stage whether path segments are crossed or uncrossed.
Each stage has a unique contribution to Δt, depending on its challenge bit.
Challenge vector Chal =

(
c1 c2 . . . cq

)
determines the time difference Δt and

hence the response bit r. The number of CRPs equals 2q. The reproducibility
differs per response bit: the smaller |Δt|, the easier to flip side because of various
perturbations.

Machine Learning. Arbiter PUFs show additive linear behavior, as described
in appendix A. This makes them vulnerable to modeling attacks: high accura-
cies can rapidly be obtained through ML techniques. In the paper proposing
arbiter PUFs as a security primitive, ML was already identified as a threat [7].
They reported a modeling accuracy of 97% for their 64-stage 0.18μm CMOS
implementation. The same accuracy was also reported for a more recent 65nm
implementation, having 64-bit challenges too and using 5000 CRPs as a training
set [3].

2.3 XOR Arbiter PUF

Several variants of the arbiter PUF increase the resistance against ML. They
introduce various forms of non-linearity for this purpose. We only consider the
XOR variant, which has been employed for the PMKG implementation of [9].
The response bits of multiple arbiter chains are XORed to a single response bit,
as shown in figure 1(b). All chains have the same challenge as input. The more
chains, the more resistance against against ML: the required number of CRPs
and the computation time both increase rapidly [12]. However, the reproducibil-
ity decreases with the number of chains: the stability of r depends on the stability
of all arbiter outputs. As a consequence, the burden of the post-processing logic
(PMKG) does increase.

110 J. Delvaux and I. Verbauwhede

3 Post-Processing Logic: Generating Keys from PUF
Responses

Unfortunately, PUF response bits are not directly usable as a secret key. On-chip
digital post-processing logic is required to resolve two issues: (1) the response
bits are not perfectly reproducible, (2) the response bits are non-uniformly dis-
tributed. Section 3.1 clarifies both issues. Section 3.2 introduces the general
methodology to resolve them. Section 3.3 describes the well-established solu-
tion: the fuzzy extractor. We highlight all interfaces with the user: great care is
required to maintain system security.

3.1 PUF Imperfections

A first PUF imperfection concerns the reproducibility of the response bits. The
main responsible is noise in CMOS transistors (and interconnect), to be consid-
ered as a random time-dependent phenomenon [5]. Its presence is unavoidable.
Environmental perturbations, originating from the IC supply voltage or the out-
side temperature for instance, worsen the problem. Their significance depends
on the intended use of the IC. The reproducibility differs per response bit: some
bits flip very often, others are very stable. This observation has already been
made for arbiter PUFs in specific, although it is true in general.

A second imperfection of PUFs concerns the non-uniform distribution of the
responses. The corresponding entropy reduction is clearly disadvantageous for
secret key applications. One often considers bias, meaning that a PUF generates
on average more 0’s than 1’s, or vice versa. Correlations between CRPs are
another symptom, although harder to quantify. Systematic (spatially dependent)
manufacturing variations are a major root cause for both bias and correlations.
However, there are various other root causes. Strong PUF responses tend to be
very correlated, as an enormous number of bits is extracted from a limited circuit
area only. The linear additive delay model of the arbiter PUF (see appendix A)
provides some insights in this matter.

3.2 Post-Processing Logic

Fixing the non-uniformity issue is relatively straightforward: one can apply a
compression function to restore full entropy. Resolving the reproducibility issue
tends to be more complicated. Two procedures are hereby defined. First, a one-
time enrollment to mark a response vectorResp as a reference: a string of public
helper bits Pub, containing information about Resp, is stored in (off-chip)
NVM. Second, a reconstruction procedure for Resp, given a nearby response
vector Resp′ = Resp⊗Error and the public helper data. Hamming distance
(HD) is the most intuitive proximity criterion, defined as HD(Resp′,Resp) =
HW (Error), with HW the Hamming weight.

Key reconstruction is performed in a setting where an attacker can easily
gain physical access to the IC. The enrollment however, is assumed to take

Attacking PUF-Based Pattern Matching Key Generators 111

place in a secure environment, as an additional step after IC manufacturing.
This assumption facilitates several purposes. First, enrollment procedures might
require random uniformly distributed bits as an input. An external source of
randomness could then be employed, reducing the IC overhead to a minimum.
Furthermore, some constructions hereby enable the user to program an arbitrary
key on the IC, despite the immutable PUF randomness. Second, several interfaces
need to be disabled permanently after the enrollment. The one-time nature of
the enrollment can be imposed with irreversible fuses, for instance.

Helper NVM should be considered as public, meaning that an attacker can
read or even modify its data. Remember that PUFs have been proposed as a
more secure and more efficient alternative for on-chip NVM: labelling helper
data as private would undermine the need for PUFs. Helper string Pub is not
supposed to leak any information about the secret key. Malicious modification
of Pub is a second security concern.

3.3 Fuzzy Extractor

Fuzzy extractors [2] are the well-established post-processing solution. They form
a very generic concept, but we limit ourselves to the most convenient data format
for PUFs: binary vectors with HD as a distance metric. Their definition offers
two guarantees. First, correctness of reconstruction, given HD(Resp′,Resp) ≡
t, with t a fixed parameter. Second, a minimum entropy for Resp, given an at-
tacker that observes the helper string Pub. Typical fuzzy extractor implementa-
tions contain two building blocks: an ECC construction and a cryptographic hash
function, resolving the reproducibility and non-uniformity issue in a sequential
manner.

Figure 2 shows the high-level architecture for secret key generation. A de-
terministic challenge generator extracts a noisy response vector from the (weak)
PUF. A simple counter-based construction might be sufficient. Another option is
a pseudorandom number generator (PRNG), starting from a fixed seed value. In
either case: the full list of challenges should be considered as publicly known, as
mentioned in section 2.1. The fuzzy extractor produces a high-quality secret key
Key, which is stored in VM for as long as needed. There are two bidirectional
interfaces with the user (or attacker). First, an application with key-dependent
operations, having input I and output O. Second, the public helper string Pub
in (off-chip) NVM, providing both read and write access.

Several ECC constructions have been proposed. We limit ourselves to an illus-
tration with the code-offset construction. Its enrollment and reconstruction steps
are listed below. Consider a binary [n,k,2t+ 1] ECC, having block length n, di-
mension k and error-correcting capability t. Response vector Resp, assumed to
have length n, is considered as a codeword offset. XORing with a random code-
word Cword results in the public helper string Pub. During reconstruction,
one does compensate the offset using an erroneous response vector Resp′: the
error vector Error is mapped onto the codeword hereby. Via error-correction,
one can retrieve the original codeword Cword and hence also Resp, the latter
to be hashed to obtain the secret key Key.

112 J. Delvaux and I. Verbauwhede

IC

Weak PUF

Chal

Challenge
Generator

Resp′
ECC

Resp
Hash Key

VM

Application

I O

User
(Attacker)

Randomness

Fuzzy
Extractor

Reconstruction

Enrollment

Public Helper
Data Pub

NVM
Leakage

Manipulation

Fig. 2. Key generation via a typical fuzzy extractor

Enrollment Reconstruction
Choose a random codeword Cword Cword′ ← Resp′ ⊗ Pub = Cword⊗Error
Pub ← Resp ⊗Cword Error-correct Cword′ to Cword

Resp ← Pub⊗Cword
Key ← Hash1(Resp)

Both helper data leakage and manipulation have been studied extensively.
For the code-offset construction, one can prove that Pub does leak n − k bits
of information about Resp. Hash function Hash1 does compensate for this ad-
ditional entropy loss, given the initial entropy loss due to non-uniformity. An
architectural extension, the so-called robust fuzzy extractor [1], detects modifi-
cation with very high probability: key reconstruction is aborted in the former
case. The enrollment and reconstruction steps are listed below, for the code-
offset construction in particular. An additional helper string MAC provides an
integrity assurance.

Enrollment Reconstruction
Choose a random codeword Cword Cword′ ← Resp′ ⊗ Pubσ = Cword⊗Error
Pubσ ← Resp⊗Cword Error-correct Cword′ to Cword
MAC ← Hash2(Resp,Pubσ) Abort reconstruction if HD(Cword′,Cword) > t
Pub ← < Pubσ, MAC > Resp ← Pubσ ⊗Cword

Abort reconstruction if MAC ∪= Hash2(Resp,Pubσ)
Key ← Hash1(Resp)

4 Pattern Matching Key Generators

PMKGs [9] have been proposed as an alternative post-processing method. We
observe that the proposal does not satisfy the fuzzy extractor definition: one can
ensure correct reconstruction with a very high probability, but there is never a
100% guarantee, even with HW (Error) = 0. No claims about an improved ef-
ficiency and/or security are made. The authors present a high-level architecture,
hereby suggesting a few alternatives and extensions, without posing a stringent

Attacking PUF-Based Pattern Matching Key Generators 113

need to implement the latter. We describe the most basic high-level functionality
in section 4.1. Extensions and alternatives are considered as countermeasures,
as they (unintentionally) increase the resistance against our attacks: we discuss
them later in section 7. Section 4.2 further discusses PMKG failures, as we ex-
ploit them in our attacks.

4.1 Basic Functionality

Enrollment. Consider a stream of PUF response bits Resp. A subset of W
consecutive bits is referred to as a pattern. Given a stream of L +W − 1 bits,
there are L possible patterns one can select. A selection is made at random via
an external interface, which is permanently disabled after the enrollment. The
index j of the selected pattern is kept secret, but the corresponding response bits
Patt are exposed in public helper NVM. The secret index j can provide log2(L)
bits for the construction of a secret key, assuming L to be a power of two. To
obtain a secret key of sufficient length, the former mechanism is repeated for
multiple streams, with each iteration referred to as a round. There is no reuse of
CRPs within this set of streams {Resph}, with h ⇐ [1, H]. Indices jh of all H
rounds are concatenated to obtain the full-length secret key Key = K0. Note
that the user is able to program an arbitrary key during enrollment.

Reconstruction. To reconstructK0, a patternmatching procedure is performed
for every round. One does ‘slide’ each helper pattern Patth along its correspond-
ing stream of noisy response bitsResp′

h, testing the resemblance with every noisy
pattern Patt′h. At each index, one does compute t = HD(Patth,Patt′h). The
index with t ≡ T is supposed to be the secret index jh, with T a well-chosen thresh-
old value. As described before, each jh directly corresponds to a subkey.

High-Level Architecture. The high-level architecture is represented by figure
3. Similarities with figure 2 have been preserved, for ease of comparison. A strong
PUF might be required because of the large CRP consumption. A reasonable
amount of built-in ML resistance is assumed to be present. An XOR arbiter
PUF is therefore suggested in [9]. As a challenge generator, one does suggest a
Linear Feedback Shift Register (LFSR), starting from a fixed known seed value.
The noisy PUF response bits are fed into a W -bit ‘First In, First Out’ (FIFO)
shift register.

Helper Data. Public helper string Pub consists of H patterns {Patth}. There
are two lines of defence against PUF modeling attacks. First, the exposure is
small in comparison to the built-in ML resistance of the strong PUF. Note that
one does reveal only a subset of the response bits. Second, the link between the
exposed response bits and their corresponding challenges is unknown. Retrieving
this link is actually equivalent to retrieving the secret key. For each round, there
are L possibilities to link the exposed response bits to their challenges. Note
that former observations only consider helper data leakage. Our attacks exploit
malicious modification of the public helper string Pub.

114 J. Delvaux and I. Verbauwhede

IC

Strong PUF

Chal

Challenge
Generator

Resp′
h

FIFO t ◦ T
index jh

Key

VM

Application

I O

User
(Attacker)

Randomness

Pattern
Matching

Reconstruction

Enrollment

Patth

Patt′h

Public Helper
Data Pub

NVM
Leakage

Manipulation

Fig. 3. Pattern matching key generator

Failures. There are two possible failure conditions for key reconstruction: pat-
tern misses and pattern collisions. A pattern miss1 occurs if t > T at the subkey
index of a certain round. A pattern collision occurs if t ≡ T for at least one
non-subkey index of a certain round.

Parameter Configuration. There are four system parameters: W , L, H and
T . Appropriate values need to be chosen for implementation purposes. We sum-
marized the encountered trade-offs hereby in table 1. A better understanding
of the failure probabilities is clearly desired. In [9], only intuitive insights are
provided, supported by some experimental results. Therefore, we introduce an
analytical framework, which also facilitates the understanding of the presented
attacks.

Table 1. Choosing parameter values for the PMKG

Design goal Quantifier/Estimator Parameter dependencies

Security Key length = H log2(L)

Speed, energy PUF bits = H(L+W − 1)

Area, power FIFO size = W

NVM size Helper bits = HW

Reliability Pattern misses: probability of
occurrence

Decreases with increasing T . Decreases
with increasing W (while preserving the ra-
tio T/W).

Pattern collisions: probability
of occurrence

Decreases with decreasing T . Decreases
with increasing W (while preserving the ra-
tio T/W). Decreases with decreasing L.

1 For ease of notation, we do not use the definition given in [9]: a pattern miss occurs
if t > T for all indices of a certain round.

Attacking PUF-Based Pattern Matching Key Generators 115

4.2 Handling Failures

The precise impact of pattern misses and collisions on the reconstructed key
has not been specified in [9]. For each round, one expects a single index to
satisfy the condition t ≡ T . However, it is not clear what happens if either
zero or at least two indices provide a match. Note that a single match is no
guarantee for correctness: a pattern miss and a single pattern collision might
occur simultaneously.

Our attacks do exploit statistical properties of both failure conditions. They
are developed in a conservative manner, assuming a minimum level of informa-
tion propagation. We assume any combination of pattern misses and/or colli-
sions to be detected properly (PMKG extensions in section 7.1 can obtain this
goal). This should prevent the application from (unknowingly) processing a data-
dependent erroneous key Key ∪= K0. In case of a failure, one could force the
reconstructed key to have a constant value Key = KFAIL, still without noti-
fying the application. Or alternatively, one might raise a flag, commanding the
application to abort its execution: Key = ⊥.

5 PMKG Failure Analysis

There are two failure conditions for the PMKG: pattern misses and pattern
collisions. We now study their probability of occurrence extensively: a good un-
derstanding will be essential for our attacks. In section 5.1, we construct approx-
imate formulas for the failure probabilities. Except for providing useful insights,
they are actually very helpful to determine appropriate system parameters (W ,
L, H and T), as mentioned before. Section 5.2 provides a graphical illustration.

5.1 Failure Probabilities

The occurrence of both failure conditions indicates an inability to cope with
response bit errors. Therefore, we consider the reproducibility of the PUF bits
as a starting point. A crucial observation has been stated in section 3.1: the
reproducibility differs per response bit. WithR ⇐ [0, 1], we denote the probability
that a particular response bit evaluates to ‘1’. To determine the nominal value
of the bit, we evaluate R ≶ 1

2 . The further from R = 1
2 , the more reproducible

the bit.
To obtain workable formulas, providing useful insights, we introduce a few ap-

proximations. First, we rely on averaged statistics of R. This approach is accurate
for sufficiently wide patterns (large W), which should be the case in practice.
Second, we make abstraction of the fact that patterns do overlap. Third, we
ignore time-dependencies of R due to low-frequency disturbances (with respect
to the sampling rate), regarding either CMOS/interconnect noise or the IC’s
environment.

116 J. Delvaux and I. Verbauwhede

We denote the probability of a pattern miss and collision as PMISS and PCOLL
respectively. The overall failure probability PFAIL is easily expressed as shown
below. We now discuss pattern misses and pattern collisions separately. Mea-
surements on our 65nm PUF illustrate the theory.

PFAIL = 1− (1 − PMISS)
H(1− PCOLL)

H

Pattern Misses. Before considering a whole pattern, we first study the mis-
match behavior of a single response bit. Given its reproducibility R, the proba-
bility of a mismatch between its enrolled and regenerated instance is as shown
below. As it will be of interest later, we note that a (one-time) majority vote dur-
ing enrollment could reduce this probability. The more votes, the more likely the
enrolled instance to be correct. In the ideal case of negligible enrollment error, the
mismatch probability would be as follows: PMISS BIT IDEAL(R) =

1
2 −

∣∣R− 1
2

∣∣.
Figure 4(a) plots both curves as a function of R.

PMISS BIT (R) = 2R(1−R).

As patterns contain many bits, we have particular interest for an averaged
mismatch probability. We define the latter via the probability density func-
tion (PDF) of R, as shown below. Figure 4(c) plots PDFR(R) for our 65nm
PUF, as measured for 25000 response bits, evaluated 100 times each. We obtain
PMISS BIT → 14%. With a perfect majority vote, one could obtain a reduced
probability of PMISS BIT IDEAL → 10%.

PMISS BIT =

∫ 1

0

PMISS BIT (R)PDFR(R) dR

We now consider a full pattern, approximating the mismatch outcome of each
bit as a Bernouilli trial, using the averaged probability PMISS BIT . The proba-
bility of a pattern miss is then easily described via a cumulative binomial distri-
bution, as expressed below. The formula confirms the intuitive design guidelines

0 0.5 1
0

0.1

0.2

0.3

0.4

(a)

R

PMISS BIT (R)

0
0.5

1

0
0.5

1
0

0.5

1

(b)

Ri Rj

PCOLL BIT (Ri, Rj)

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

(c)

R

PDFR(R)

Fig. 4. (a) Probability of a response bit mismatch. The dashed curve corresponds with
a majority vote during enrollment, in the ideal case. (b) Probability of a response bit
collision. (c) Probability density function of R for our 65nm PUF.

Attacking PUF-Based Pattern Matching Key Generators 117

of table 1 to reduce pattern misses. The same formula could be employed in case
of a perfect majority vote, using PMISS BIT IDEAL instead.

PMISS = 1−
T∑
t=0

fBIN (t;W,PMISS BIT) with fBIN(t;w, p) =

(
w

t

)
pt(1−p)w−t.

Pattern Collisions. For pattern collisions, we again consider the behavior
of a single bit first. Now, the enrolled and regenerated instance correspond to
different response bits. The probability of a match is as shown below, given
their reproducibilities Ri and Rj . Figure 4(b) plots the corresponding surface,
together with its contour lines.

PCOLL BIT (Ri, Rj) = RiRj + (1−Ri)(1−Rj).

As patterns contain many bits, we are again interested in an averaged prob-
ability. A definition is provided via the PDF of R, as shown below. The proba-
bility can be rewritten in terms of the response bit bias. We define RB as the
expected value of R, which should be 1

2 in the ideal case of zero bias. We estimate

PCOLL BIT → 50% for our (very low bias) 65nm PUF.

PCOLL BIT =

∫∫
[0,1]×[0,1]

PCOLL BIT (Ri, Rj)PDFR(Ri)PDFR(Rj) dRi dRj

= R2
B + (1 −RB)

2 with RB =

∫ 1

0

R PDFR(R) dR.

We now consider a full pattern, with the match outcome of each bit again as
a Bernouilli trial, using the averaged probability PCOLL BIT . The probability of
a pattern collision is easily described via a cumulative binomial distribution, as
shown below. Parameter Q corresponds with the number of collision candidates.
The formula confirms the intuitive design guidelines of table 1 to reduce pattern
collisions.

PCOLL = PCOLL(L−1) with PCOLL(Q)=1−
(

1−
T∑

t=0

fBIN (t;W, 1− PCOLL BIT)

)Q

5.2 Graphical Interpretation

For a better understanding, we graphically interpret the failure probabilities.
We incorporate the averaged characteristics of our PUF: PMISS BIT = 0.14 and
PCOLL BIT = 0.50. Figure 5 plots the probability of a pattern miss and a pattern
collision as a function of T , for W ⇐ {64, 128, 256} and fixing L = 1024. Pattern
misses and collisions are an issue for low and high values of T respectively.
The optimal thresholds, minimizing the overall failure probability PFAIL, are
indicated by a vertical line.

118 J. Delvaux and I. Verbauwhede

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

PMISS PCOLL

W = 64

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

PMISS PCOLL

W = 128

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

PMISS PCOLL

W = 256

T

Fig. 5. Failure probabilities, incorporating our PUF statistics PMISS BIT = 0.14 and
PCOLL BIT = 0.50, using L = 1024 and W ∈ {64, 128, 256}. Functions are of discrete
nature, although drawn continuously. The optimal thresholds are T = 15, T = 34
and T = 72. Dashed curves represent the pattern miss probability in case of a perfect
majority vote: PMISS BIT IDEAL = 0.10.

The need for sufficiently wide patterns is clearly visible, as one demonstrated
experimentally in [9]. For W = 64 for instance, it is not possible to make PFAIL
negligible. For W = 128 however, one is able to fix an appropriate threshold.
We employ W = 256 to illustrate our attacks, although this setting actually
corresponds to a system overdesign. Note that a majority vote during enrollment
could alleviate the need for wide patterns.

6 Attacks

We present two key recovery attacks for PMKG devices. They are named Snake I
and Snake II, as their graphical representation contains some striking similarities
with the well-known video game. We first discuss the attacker model in section
6.1. Section 6.2 describes the setup for our experimental validation. Section 6.3
provides a common framework for the attacks. We discuss Snake I and Snake II
separately in sections 6.4 and 6.5 respectively.

6.1 Attacker Model

We consider a PMKG device configured with a secret key Key = K0, assuming
the enrollment has been performed in a secure environment. We assume that all

Attacking PUF-Based Pattern Matching Key Generators 119

parameters (W , L, H and T) are fixed by design and can not be modified. We
consider an active attacker with physical access to the device, trying to retrieve
K0 via the IC interfaces: modifying the public helper string Pub, controlling
the application input I and observing the application output O. As described
in section 4.2, we assume a minimum level of information propagation for the
PMKG in case of a failure: Key = KFAIL or Key = ⊥.

Our attacks rely on a different assumption regarding the application, as for-
malized below. Application input I is fixed hereby. We consider the requirement
for Snake II to be satisfied always: any practical application should behave dif-
ferently if K0 is not reconstructed properly. Snake I utilizes key reprogramming:
the device is then configured with a key K′

0 ∪= K0. We require key reconstruc-
tion failures of K′

0 to be observable via the application output O. We state that
many (if not most) practical applications do satisfy. Consider for instance all
applications where O contains any form of encrypted data. Furthermore, one
might broaden the range of applications via side channel analysis. The occur-
rence of both Key = KFAIL and Key = ⊥ might be recognizable via timing
information, power consumption, etc.

Failure Handling Snake I Snake II
Key = KFAIL OK′

0
∪= OKFAIL OK0 ∪= OKFAIL

Key = ⊥ OK′
0
∪= O⊥ OK0 ∪= O⊥

6.2 Experimental Validation

The PMKG implementation of [9] employs a 4-XOR arbiter PUF. We illustrate
our attacks using the same PUF architecture, for ease of comparison. More pre-
cisely: we use 64-stage arbiter PUFs manufactured in 65nm CMOS technology
[4]. XORing is not performed on-chip but afterwards in software. However, this
fact does not affect the validity of our demonstration.

We implemented the PMKG fully in software. For ease of testing, we emulate
the 65nm PUF as follows. First, we measured the reproducibility R of many
response bits, using 100 evaluations each. These bits are subsequently employed
to construct streams of length L+W −1. We evaluate bits as r ← (rand() < R),
with rand() ⇐ [0 1] the PRNG output of our programming environment, which
has a uniform PDF. Like this, there is no limit on the number of evaluations per
bit.

The failure probability formulas of section 5.1 rely on approximations. Worka-
bility and insights were preferred above analytical complexity. As a consequence,
three effects have not been included: (1) an individual R for every pattern/stream
bit, (2) pattern overlap and (3) time-dependencies of R due to low-frequency dis-
turbances. Our experimental tests do incorporate (1) and (2) properly. Although
(3) has not been addressed explicitly, its impact could be diminished by lowering
the sampling rate (the number of key reconstructions per time unit). One could
interleave measurements for multiple rounds hereby, to alleviate the execution
time penalty.

120 J. Delvaux and I. Verbauwhede

6.3 Common Framework Snake I and Snake II

Snake I and Snake II recover secret indices j on a per round basis. The initially
unexposed bit directly left (or right) of a helper data pattern is retrieved via
statistical properties of the overall failure probability PFAIL. Repeating the same
mechanism over and over again, we slide (like a snake) along the PUF response
string of length L+W −1, revealing a bit with every move. Despite the exposure
of more response bits, increased ML opportunities are not the main threat here:
an abrupt change in failure rate when sliding too far, directly reveals the secret
index of the original pattern. Figure 6 provides an illustration.

Stream

Index 0 1

. . .

j

. . .

j +W − 1

. . .

L+W − 2

Exposure

Fig. 6. The common framework for Snake I and Snake II, illustrated for a single round.
Newly exposed bits are shaded.

For each move of the snake, there are two hypotheses for the unknown
bit: its value is either ‘0’ or ‘1’. We collect failure rate statistics for patterns(
0 ri+1 ri+2 . . . ri+W−1

)
and

(
1 ri+1 ri+2 . . . ri+W−1

)
, with i the index of the

unknown bit. The correct guess tends to generate either more or less failures,
depending on the snake. Snake I and II use pattern misses and pattern collisions
as primary failure condition respectively. Failures are rare events under nomi-
nal conditions. To amplify statistical differences between both hypotheses, we
intentionally introduce errors in the corrupted patterns.

For ease of notation, we introduce a key reconstruction failure flag: Failure ⇐
{0, 1}, to be raised when any pattern miss or collision did occur. This flag is
updated by the attacker after each key reconstruction.

6.4 Snake I

Snake I forces the PMKG device to reconstruct new altered keys, with in-
dex i of the unknown bit as a subkey. Therefore, the helper pattern is set to(
0 ri+1 ri+2 . . . ri+W−1

)
, arbitrarily choosing ri = 0. Given i ≥ 0, this results

with very high probability in a successfully reconstructed key, even if ri = 1. A
persistent inability to successfully reconstruct a key, indicates an excess of i = 0,
hereby revealing the value of j. Figure 7 provides an illustration of the helper
data dynamics.

We exploit pattern misses to determine ri, given i ≥ 0. A correct guess of ri
results in a lower mismatch rate for this bit: 1

2 − ∣∣Ri − 1
2

∣∣ < 1
2 +

∣∣Ri − 1
2

∣∣ . As a
consequence, less pattern misses are bound to occur for the correct hypothesis:
the expected value of Hamming distance t differs 2|Ri− 1

2 | at pattern index i. The

Attacking PUF-Based Pattern Matching Key Generators 121

Stream

Index 0 1

. . .

j

. . .

j +W − 1

. . .

L+W − 2

Exposure ?

Helper
Data 1

0
. . .

Fig. 7. Snake I helper data, illustrated for a single round. Newly exposed bits are
shaded.

Algorithm 1. Snake I

Input: Original helper data Patth ∈ {0, 1}1×W of round h ∈ [1 H]
Key reconstruction failure flag Failure ∈ {0, 1}
Number of pattern errors T Ψ

Number of samples N
Output: Modified helper data Patt�h ∈ {0, 1}1×W of round h

Secret index j ∈ [0 L− 1] of round h
j ⇒ 0
stop ⇒ 0
while stop = 0 do

Patt�h ⇒ (
0 Patth[1 : W − 1]

)

if Failure = 1 then
stop ⇒ 1

else
j ⇒ j + 1
FailureRate0 ⇒ 0
FailureRate1 ⇒ 0
for n ⇒ 1 to N do

Choose randomly e ∈ {0, 1}1×W−1 with HW (e) = T Ψ

Patt�h ⇒ (
0 Patth[1 : W − 1]⊕ e

)

FailureRate0 ⇒ FailureRate0 + Failure/N

Patt�h ⇒ (
1 Patth[1 : W − 1]⊕ e

)

FailureRate1 ⇒ FailureRate1 + Failure/N

ri ⇒ (FailureRate0 > FailureRate1)

Patth ⇒ (
ri Patth[1 : W − 1]

)

further from Ri =
1
2 , the easier to observe statistical differences in failure rate.

To amplify failure statistics, we randomly flip T Π bits of the two hypothetical
patterns, on corresponding positions for bits ri+1 to ri+W−1.

Algorithm 1 provides pseudocode for Snake I, applied on a certain round
h ⇐ [1 H]. The larger the number of samples N , the more confidence one should

122 J. Delvaux and I. Verbauwhede

have in the prediction of ri. Our tests indicate highly feasible values of N , e.g.
10000, to be sufficient. An occasional prediction error, typically occurring if
Ri → 1

2 , can be tolerated. An appropriate value of T Π has to be chosen. Algorithm
2 provides pseudocode of a simple method: the (initial) probability of a pattern
miss is centered at 1

2 . Note that we observe statistics for all rounds hereby.

Algorithm 2. Snake I Profiling

Input: Original helper data →Patt1,Patt2, . . . ,PattH⊗ ∈ {0, 1}H×W

Key reconstruction failure flag Failure ∈ {0, 1}
Number of samples N

Output: Modified helper data →Patt�1,Patt�2, . . . ,Patt�H⊗ ∈ {0, 1}H×W

Number of errors T Ψ

for t ⇒ 1 to T do
FailureRate(t) ⇒ 0
for n ⇒ 1 to N do

→Patt�1,Patt�2, . . . ,Patt�H⊗ ⇒ →Patt1,Patt2, . . . ,PattH⊗
Choose a random h ∈ [1 H]

Choose randomly e ∈ {0, 1}1×W with HW (e) = t
Patt�h ⇒ Patth ⊕ e
FailureRate(t) ⇒ FailureRate(t) + Failure/N

T Ψ ⇒ arg min
t

|FailureRate(t)− 1
2
|

Variants and extensions of former algorithms could serve various purposes. (1)
Robustness and/or efficiency could be improved. For algorithm 1 for instance,
one could measure samples until a certain level of confidence is obtained regard-
ing the unknown bit ri. Furthermore, one could adjust the value T Π at run-time,
hereby stabilizing the failure rates. (2) A variant of algorithm 1 could error-
correct the initially exposed pattern Patth, minimizing the pattern miss prob-
ability. (3) An extension of algorithm 2 could provide estimates for PMISS BIT ,
or alternatively PMISS BIT IDEAL. (4) One could estimate R, both for initially
and newly exposed response bits.

The effect of flipping T Π bits can be studied with our analytical failure frame-
work. Figure 8 provides an illustration for our 65nm PUF. We rely on two as-
sumptions in order to obtain simple formulas. First, Ri ⇐ {0, 1}, corresponding
to the best observable difference between hypotheses. Second, we assume all
exposed bits to be correct. For initially exposed bits, this would require a pre-
ceding error correction with variant (2) of algorithm 1. For newly exposed bits,
this would require a very high N in algorithm 1 to obtain a quasi perfect predic-
tion. Note that one could construct a more generally applicable mathematical
model.

Attacking PUF-Based Pattern Matching Key Generators 123

6.5 Snake II

Snake II employs pattern collisions as primary failure condition. Figure 9 illus-
trates the helper data dynamics. The alignment with secret index j is preserved.
The pattern at index i is employed as a source of collisions. A correct guess for
ri, provided at index j, does result in more collisions with the former pattern: hy-
potheses can hence be distinguished. A persistent absence of failures (collisions),
indicates an excess of i = 0, hereby revealing the value of j.

To stimulate the occurrence of a collision, we again flip T Π bits, on correspond-
ing positions for bits rj+1 to rj+W−1. We only flip bits that represent a mismatch
with the intended collision source. As an undesired side effect however, the prob-
ability of a pattern miss will increase as well. So both conditions may contribute
significantly to the overall failure rate PFAIL, causing difficulties to distinguish
hypotheses. Algorithm 3 provides pseudocode for Snake II, applicable in absence

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

T

PMISS PCOLL

Fig. 8. Snake I failure probabilities using L = 1024, W = 256 and
T = 72. We incorporate the reproducibility statistics of our 65nm PUF:
PMISS BIT = 0.14, PMISS BIT IDEAL = 0.10 and PCOLL BIT = 0.50. Func-
tions are of discrete nature, although drawn continuously. The pattern miss
curve shifts to the right for both hypotheses, as indicated by the arrow. We
assume Ri ∈ {0, 1}. Furthermore, we assume all exposed bits to be cor-
rect. The correct hypothesis then results in PMISS =

∑T
t1=0 fBIN (t1,W −

T Ψ − 1, PMISS BIT IDEAL)
∑T−t1

t2=0 fBIN (t2, T
Ψ, 1 − PMISS BIT IDEAL). The in-

correct hypothesis then results in PMISS =
∑T−1

t1=0 fBIN (t1,W − T Ψ −
1, PMISS BIT IDEAL)

∑T−1−t1
t2=0 fBIN (t2, T

Ψ, 1 − PMISS BIT IDEAL). We employed
T Ψ = 55.

Stream

Index 0 1

. . .

j

. . .

j +W − 1

. . .

L+W − 2

Exposure ?

Helper
Data 1

0
. . .

Fig. 9. Snake II helper data, illustrated for a single round. Newly exposed bits are
shaded.

124 J. Delvaux and I. Verbauwhede

of the former issue. Again, very feasible values of N (e.g. 10000) turn out to be
successful then.

We study the modified failure probabilities with our analytical framework.
Figure 10 provides an illustration for our 65nm PUF. We rely on the same
assumptions as before to obtain simple formulas. Threshold value T has a major
impact on the feasibility of the attack: it might not be possible to fix T Π so that
hypotheses can be distinguished easily. The smaller T , the larger T Π in order to
obtain collision behavior. For large values of T , as illustrated on the figure, there
is typically no problem: only pattern collisions contribute significantly to PFAIL.
For small values of T , a pattern miss would occur practically always, completely
overshadowing the collision behavior. For medium values of T , both Ri and Rj
contribute significantly to the statistical difference in failure rate. Note that [9]
does not provide any procedure to determine T or any other system parameters.

Several workarounds could mitigate the former issue. (1) For rounds with
Rj → 1

2 , pattern misses do not contribute to the statistical difference. A variant of
algorithm 1 can determine whether this is the case, as stated before. (2) Or more

Algorithm 3. Snake II

Input: Original helper data Patth ∈ {0, 1}1×W of round h ∈ [1 H]
Key reconstruction failure flag Failure ∈ {0, 1}
Number of pattern errors T Ψ

Stop condition FailureRateMin ∈ [0 1]
Number of samples N

Output: Modified helper data Patt�h ∈ {0, 1}1×W of round h
Secret index j ∈ [0 L− 1] of round h

P �
h ⇒ Patth

j ⇒ 0
stop ⇒ 0
while stop = 0 do

FailureRate0 ⇒ 0
FailureRate1 ⇒ 0
for n ⇒ 1 to N do

e ⇒ Patth[2 : W]⊕ Patt�h[1 : W − 1]
Randomly reduce HW (e) so that it equals T Ψ

Patt�h ⇒ (
0 Patth[2 : W]⊕ e

)

FailureRate0 ⇒ FailureRate0 + Failure/N

Patt�h ⇒ (
1 Patth[2 : W]⊕ e

)

FailureRate1 ⇒ FailureRate1 + Failure/N

if FailureRate0 < FailureRateMin then
stop ⇒ 1

else
j ⇒ j + 1
ri ⇒ (FailureRate0 < FailureRate1)

Patt�h ⇒ (
ri Patt�h[1 : W − 1]

)

Attacking PUF-Based Pattern Matching Key Generators 125

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

T

PMISS

PCOLL(L− 2)

PCOLL(1)

Fig. 10. Snake II failure probabilities using L = 1024, W = 256 and T = 80.
We incorporate the reproducibility statistics of our 65nm PUF: PMISS BIT =
0.14, PMISS BIT IDEAL = 0.10 and PCOLL BIT = 0.50. Functions are of
discrete nature, although drawn continuously. The pattern miss and collision
curve shift to the right and left respectively for both hypotheses, as indicated
by the arrows. We assume Ri, Rj ∈ {0, 1}. Furthermore, we assume all ex-
posed bits to be correct. The correct hypothesis then results in PCOLL =∑Tλ+T

t1=Tλ fBIN (t1,W − 1, 1 − PCOLL BIT)
∑Tλ+T−t1

t2=0 fBIN (t2, T
Ψ, PMISS BIT IDEAL).

The incorrect hypothesis then results in PCOLL =
∑Tλ+T−1

t1=Tλ fBIN (t1,W − 1, 1 −
PCOLL BIT)

∑Tλ+T−1−t1
t2=0 fBIN (t2, T

Ψ, PMISS BIT IDEAL). We employed T Ψ = 50.

generally applicable: one could estimate Rj and compensate its contribution
with respect to the observed statistical difference. (3) In section 4.2, we made
the conservative assumption that all pattern misses and collisions are detected
properly. However, if this is not the case, one might be able to tell whether
a failure is caused by either a miss or a collision. (4) Appendix B discusses a
method to generate a large and small shift for the pattern collision and pattern
miss curve respectively.

7 Countermeasures

Our attacks have been elaborated for the basic PMKG architecture. We now
also consider the various architectural extensions and alternatives: section 7.1
provides a functional description. All of them are treated as countermeasures,
as they (unintentionally) increase the resistance against our attacks. Section 7.2
summarizes the corresponding attack capabilities.

7.1 PMKG Extensions and Alternatives

We first describe three extensions of the basic PMKG architecture, all of them
to be considered as optional. Subsequently, we describe two alternatives, which
are briefly mentioned in the patent application [10] only. We stress that only the
first extension has been proposed with increased security as an objective.

Extension: Bi-modal Challenge Generator. Bi-modality of the challenge
generator has been proposed as a third ML countermeasure. The secret index
of each round is employed to ‘fork’ the next round of the challenge generator.

126 J. Delvaux and I. Verbauwhede

Stated otherwise: the PUF challenge/response stream for each round depends
on the secret indices of all previous rounds. As a consequence, the CRP link
becomes less and less traceable, with a multiplicative rate of L per round.

We make two observations. First, one does not mention that bi-modality could
facilitate failure detection. In particular for the combination of a pattern miss
and a single pattern collision within a certain round, resulting in a single match-
ing index. Bi-modality would then cause a regular pattern miss for all subsequent
rounds, with very high probability. This is straightforward to detect as no match-
ing indices are found. Second, the enormous CRP consumption of bi-modality
makes the use of a strong PUF indispensable. However, the use of a weak PUF
might even eliminate the ML threat, as their architectures provide considerably
lower degrees of correlation (see section 3.1).

Extension: Key Mixing. Secret indices are concatenated to obtain the full
secret key. One suggests the optional use of a non further clarified key mixer,
post-processing the secret indices. We presume that this could be any determin-
istic function, not necessarily one-way. Furthermore, one mentions an alternative
for the secret indices: state bits of a bi-modal challenge generator could be em-
ployed as well.

Extension: Failure Detection Hash. Pattern misses and/or collisions might
result in an erroneous reconstructed key. Only with a detection mechanism, an
appropriate action can be taken. One suggest the use of a cryptographic hash
function, having the bi-modal challenge stream as an input. The digest is stored
in public helper NVM during enrollment. Its value is recomputed for every key
reconstruction, to check whether there is a match.

We have two remarks. First, there is no adequate detection for the last round.
The introduction of an additional dummy round, or simply hashing the set of all
secret indices, would resolve this issue. Second, a cryptographic hash function is
not readily available as for a traditional fuzzy extractor, leading to a substantial
hardware overhead.

Alternative: Best Matching Patterns. During reconstruction, a fixed thresh-
old T is employed to retrieve the secret indices. However, one could also look
for the best matching pattern, having the smallest t within a round. The fail-
ure characteristics differ considerably with respect to the original proposal, as
discussed in appendix C.

Alternative: Non-Overlapping Patterns. Patterns might be chosen in a
non-overlapping manner. We consider this as very inefficient however. The num-
ber of PUF response bits increases from H(L +W − 1) to HLW , given very
comparable failure probabilities.

7.2 Attack Capabilities Overview

Table 2 summarizes the capabilities of our attacks, including all but one coun-
termeasures. The ‘best matching patterns’ alternative is discussed separately in

Attacking PUF-Based Pattern Matching Key Generators 127

appendix C. The direct retrieval of (sub)keys is considered to be the main secu-
rity risk. However, increased ML opportunities due to the exposure of additional
response bits, should be taken into account too.

Table 2. Attacks and countermeasures

Attacks
Counter-
measures

Snake I Snake II

None Exposure of all response bits; retrieval of all
secret indices; retrieval of the full secret key.

Exposure of all response bits; retrieval of
all secret indices; retrieval of the full se-
cret key. Although, small threshold values
T might complicate the attack consider-
ably.

Bi-modality1 For the last round only: exposure of all re-
sponse bits and retrieval of the secret index.
Retrieval of log2(L) key bits.

Bi-modality1 and
key mixing2,3

For the last round only: exposure of all re-
sponse bits and retrieval of the secret index.

Failure detection
hash2,4

/

Non-overlapping
patterns2

/ /

Circularity
(newly proposed)

Exposure of all response bits. Exposure of all response bits. Although,
small threshold values T might complicate
the attack considerably.

1 Assuming the original proposal of [9], without an additional dummy round.
2 Not initially proposed with a security objective in [9,10].
3 We assume the worst-case scenario, as there is no precise specification of the key mixing step in [9].
4 We assume the hash digest to depend on the secret index of the last round too, fixing the issue of [9].

Snake II provides more resistance against the various countermeasures than
Snake I. Decreasing T should not be considered as a secure countermeasure
against the former, because of the aforementioned workarounds. Furthermore,
effectiveness is only offered for very wide patterns, corresponding to a substantial
system overdesign (see figure 5). This undermines any efficiency advantage a
PMKG might possibly have. For more optimal parameter settings, there is little
margin to shift T without affecting the overall failure rate PFAIL significantly.

With non-overlapping patterns, both Snake I and Snake II are fully impeded.
However, we consider this countermeasure as very inefficient, as mentioned be-
fore. Therefore, we also list a new rather simple countermeasure: circularity of
the response bits within a round. Instead of L +W − 1 non-circular bits, one
could generate L circular bits. As before, there are L pattern indices. Although
response bits are still vulnerable to exposure, an attacker will no longer observe
an abrupt change in failure statistics at index 0 (or L − 1), protecting the se-
cret index as such. One could thwart the increased ML risk by implementing
bi-modality as well, or by employing a weak PUF with a negligible amount of
correlation (see section 3.1).

8 Conclusion and Further Work

PMKGs offer an alternative for traditional fuzzy extractors, in order to generate
reproducible and uniformly distributed keys from PUF responses. However, we

128 J. Delvaux and I. Verbauwhede

presentedmajor vulnerabilities in their architecture. Via manipulation of the pub-
lic helper data, full key recoverymight be possible, although depending on system
design choices.Hereby, failure statistics are collected during the key reconstruction
phase, observable via the application user interface. We illustrated our attacks us-
ing a 4-XOR arbiter PUF, manufactured in 65nm CMOS technology.

However, we still see substantial value in the PMKG proposal. One could
develop many post-processing variants according to its basic principle: Ham-
ming distance measurements. As all building blocks of such architectures could
be rather simple, there might be an efficiency advantage for various use cases.
Careful system design should take helper data leakage and manipulation into
account. Our (modified) failure framework might be very helpful to determine
appropriate system parameters. We consider all of the former as further work.

Acknowledgment. This work was supported in part by the European Commis-
sion through the ICT programme under contract FP7-ICT-2011-317930 HINT.
In addition this work is supported by the Research Council of KU Leuven: GOA
TENSE (GOA/11/007), by the Flemish Government through FWO G.0550.12N
and the Hercules Foundation AKUL/11/19. Jeroen Delvaux is funded by IWT-
Flanders grant no. 121552.

References

1. Boyen, X., Dodis, Y., Katz, J., Ostrovsky, R., Smith, A.: Secure Remote Authen-
tication Using Biometric Data. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 147–163. Springer, Heidelberg (2005)

2. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy Extractors: How to Generate
Strong Keys from Biometrics and Other Noisy Data. SIAM J. Comput. 38(1),
97–139 (2008)

3. Hospodar, G., Maes, R., Verbauwhede, I.: Machine Learning Attacks on 65nm
Arbiter PUFs: Accurate Modeling poses strict Bounds on Usability. In: Workshop
on Information Forensics and Security (WIFS), pp. 37–42. IEEE (December 2012)

4. Koeberl, P., Maes, R., Rožić, V., Van der Leest, V., Van der Sluis, E., Verbauwhede,
I.: Experimental Evaluation of Physically Unclonable Functions in 65 nmCMOS. In:
2012 IEEE Conference on European Solid-State Circuits (ESSCIRC), pp. 486–489
(September 2012)

5. Konczakowska, A., Wilamowski, B.M.: Noise in Semiconductor Devices. In: In-
dustrial Electronics Handbook, 2nd edn. Fundamentals of Industrial Electronics,
vol. 1, ch. 11. CRC Press (2011)

6. Kuhn, K., Kenyon, C., Kornfeld, A., Liu, M., Maheshwari, A., Shih, W., Sivakumar,
S., Taylor, G., Van Der Voorn, P., Zawadzki, K.: Managing Process Variation in
Intel’s 45nm CMOS Technology. Intel Technology Journal 12(2), 92–110 (2008)

7. Lee, J.W., Lim, D., Gassend, B., Suh, G.E., van Dijk, M., Devadas, S.: A technique
to build a secret key in integrated circuits for identification and authentication
applications. In: 2004 Symposium on VLSI Circuits, pp. 176–179 (June 2004)

8. Merli, D., Schuster, D., Stumpf, F., Sigl, G.: Side-channel analysis of PUFs and
fuzzy extractors. In: McCune, J.M., Balacheff, B., Perrig, A., Sadeghi, A.-R., Sasse,
A., Beres, Y. (eds.) TRUST 2011. LNCS, vol. 6740, pp. 33–47. Springer, Heidelberg
(2011)

Attacking PUF-Based Pattern Matching Key Generators 129

9. Paral, Z., Devadas, S.: Reliable and Efficient PUF-Based Key Generation Using
Pattern Matching. In: 2011 IEEE International Symposium on Hardware-Oriented
Security and Trust (HOST), pp. 128–133 (June 2011)

10. Paral, Z., Devadas, S., Verayo Inc.: Patent WO/2012/099657, Reliable PUF value
generation by pattern matching (July 26, 2012)

11. Rührmair, U., Devadas, S., Koushanfar, F.: Security based on Physical Unclon-
ability and Disorder. Introduction to Hardware Security and Trust. Springer, Book
Chapter (2011)

12. Rührmair, U., Sehnke, F., Sölter, J., Dror, G., Devadas, S., Schmidhuber, J.: Mod-
eling attacks on physical unclonable functions. In: 2010 ACM Conference on Com-
puter and Communications Security (CCS), pp. 237–249 (October 2010)

13. Skorobogatov, S.: Semi-invasive attacks - a new approach to hardware security
analysis, Technical Report UCAM-CL-TR-630, University of Cambridge, Com-
puter Laboratory (April 2005)

14. Tuyls, P., Schrijen, G.-J., Škorić, B., van Geloven, J., Verhaegh, N., Wolters, R.:
Read-Proof Hardware from Protective Coatings. In: Goubin, L., Matsui, M. (eds.)
CHES 2006. LNCS, vol. 4249, pp. 369–383. Springer, Heidelberg (2006)

A Arbiter PUF: Vulnerability to Modeling Attacks

A single stage of the arbiter PUF can be described by two delay parameters: one
for each challenge bit state, as illustrated in figure 11. The delay difference at
the input of stage i flips in sign for the crossed configuration and is incremented
with δt1i or δt0i for crossed and uncrossed configurations respectively.

ΔtIN

i

ci = 0

ΔtIN + δt0i ΔtIN

i

ci = 1

−ΔtIN + δt1i

Fig. 11. Modeling a single stage of the arbiter PUF

The impact of a δt on Δt is incremental or decremental for an even and odd
number of subsequent crossed stages respectively. By lumping together the δt’s
of neighboring stages, one can model the whole arbiter PUF with only q + 1
independent parameters (and not 2q). A formal expression for Δt is as follows
[12]:

Δt = γτ =
(
γ1 γ2 . . . γq 1

)(
τ1 τ2 . . . τq+1

)T

with τ =
1

2

⎛
⎜⎜⎜⎜⎜⎜⎝

Δt01 − Δt11
Δt01 + Δt11 + Δt02 − Δt12

.

.

.

Δt0q−1 + Δt1q−1 + Δt0q − Δt1q
Δt0q + Δt1q

⎞
⎟⎟⎟⎟⎟⎟⎠
and γ=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

(1− 2c1)(1− 2c2) . . . (1− 2cq−1)(1− 2cq)

(1 − 2c2) . . . (1− 2cq−1)(1− 2cq)

.

.

.

(1− 2cq−1)(1− 2cq)

(1− 2cq)

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

.

130 J. Delvaux and I. Verbauwhede

Vector γ ⇐ {±1}1×(q+1) is a transformation of challenge vector Chal ⇐
{0, 1}1×q. Vector τ ⇐ R

(q+1)×1 contains the lumped stage delays. The more
linear a system, the easier to learn its behavior. By using γ instead of Chal
as ML input, a great deal of non-linearity is avoided. The non-linear threshold
operation Δt ≶ 0 remains however.

B Snake II Extension to Resolve the Threshold Issue

Small and medium values of T complicate the execution of Snake II, as pattern
misses then contribute significantly to the overall failure rate. We introduce an
extension of Snake II to resolve this issue. Hereby, we generate a large and
small shift for the pattern collision and miss curve respectively, referring to the
representation of figure 10. The method requires an estimate of R for all exposed
bits. Variants of algorithms 1 and 3 can obtain this goal for initially exposed and
unexposed bits respectively.

Currently, T Π patterns errors are introduced fully at random, given the ri+z ∪=
rj+z constraint, with z ⇐ [1 W − 1]. We formulate a simple heuristic to assess
the benefit for the remaining positions. Introducing an error at position z shifts
the pattern collision and pattern miss curve with 2

∣∣Ri+z − 1
2

∣∣ and 2
∣∣Rj+z − 1

2

∣∣
respectively. So the higher

∣∣Ri+z − 1
2

∣∣ − ∣∣Rj+z − 1
2

∣∣, the more advantageous to
flip the bit.

C PMKG Alternative: Best Matching Patterns

For the ‘best matching patterns’ alternative, the current notion of pattern misses
and collisions gets obsolete. There is only one unified failure condition, which
we prefer to denote as a collision. A collision occurs if at least one non-subkey
index has a lower or equal value of t with respect to the the subkey index. An
approximate formula for the failure probability is given below. The Hamming
distance at a subkey and non-subkey index is denoted as t1 and t2 respectively.

PFAIL = 1− (1− PCOLL)
H

with PCOLL = 1− (1− PCOLL(1))
L−1 and

PCOLL(1) =

W∑
t1=0

fBIN (t1;W,PMISS BIT)

t1∑
t2=0

fBIN (t2;W, 1− PCOLL BIT)

We briefly introduce two attacks, which are inspired by Snake I and Snake
II respectively. They inherit the corresponding assumption regarding the appli-
cation, as given in section 6.1. A first attack employs the helper data dynam-
ics of figure 7. Again, we randomly introduce T Π errors for positions ri+1 to
ri+W−1. The correct hypothesis results in fewer collisions: the expected value of
t1 differs 2

∣∣Ri − 1
2

∣∣. The randomized nature of the errors is important: a single
collision source would introduce a bias for t2, causing difficulties to distinguish
hypotheses.

Attacking PUF-Based Pattern Matching Key Generators 131

A second attack employs the helper data dynamics of figure 9. Again, we
randomly introduce T Π errors for positions rj+1 to rj+W−1, but only for bits that
represent a mismatch with the intended collision source. The corrects hypothesis
should result in more collisions with the intended collision source: the expected
value of t2 differs 2

∣∣Ri − 1
2

∣∣. However, the expected value of t1 differs 2
∣∣Rj − 1

2

∣∣,
either stimulating or counteracting the collision, with respect to the correct
hypothesis. There are a few resolutions, similar to the low threshold issue of
Snake II. (1) One could limit the attack to patterns with Rj → 1

2 . (2) Or one
could perform a compensation for Rj , given a precise estimate of its value.

On Increasing the Throughput

of Stream Ciphers

Frederik Armknecht and Vasily Mikhalev

Universität Mannheim, Germany
{armknecht,mikhalev}@uni-mannheim.de

Abstract. Important practical characteristics of a stream cipher are its
throughput and its hardware size. A common hardware implementation
technique for improving the throughput is to parallelize computations
but this usually requires to insert additional memory cells for storing
the intermediate results, hence at the expense of an increased hardware
size.

For stream ciphers with feedback shift registers (FSRs), we present
an alternative approach for parallelizing operations with almost no grow
of the hardware size by cleverly re-using existing structures. It is based
on the fact that FSRs are usually specified in Fibonacci configuration,
meaning that at each clock-cycle all but one state entries are simply
shifted. The idea is to temporarily store values of the stream cipher
outside of the FSR, e.g., intermediate results of the output function,
directly into the FSRs.

We formally describe the transformation and its preconditions and
prove its correctness. Moreover, we demonstrate our technique on Grain-
128, one of the eSTREAM finalists with low hardware size. Our technique
allows implementations, realized by the Cadence RTL Compiler consid-
ering UMC L180 GII technology, where the throughput is increased in
the initialization mode by 18% and in the keystream generation mode
by 24%, when the compiler was set to optimize the timing, and by 20
% in both modes when the compiler was set to optimize the area. As
opposed to other solutions, no additional memory is required. In fact the
hardware size even decreased from 1794 GE to 1748 GE in the time-
optimized implementation and only slightly increased from 1627 GE to
1656 GE in the area-optimized implementation.

Keywords: Stream Ciphers, Feedback Shift Registers, Efficient Imple-
mentation, Throughput, Pipelining, Galois Configuration.

1 Introduction

Motivation. Stream ciphers are designed for efficiently encrypting data streams
of arbitrary length. Ideally a stream cipher should not only be secure but also
have a low hardware size and high throughput. Consequently huge body of work
investigates different techniques for optimizing the hardware implementation of
stream ciphers, e.g., [8,10,11,12,14,15,16]. A popular approach for increasing the

J. Benaloh (Ed.): CT-RSA 2014, LNCS 8366, pp. 132–151, 2014.
c© Springer International Publishing Switzerland 2014

On Increasing the Throughput of Stream Ciphers 133

throughput is pipelining [13] where computations within the cipher are par-
allelized. However it requires to store intermediate values, making additional
memory necessary which is the most expensive part in terms of the area size
and power consumption. In general one is interested into techniques which allow
for improving one condition without violating the other.

Observe that the majority of stream ciphers are deploying feedback shift reg-
isters which are often specified in the so-called Fibonacci configuration. This
means that at each clock all but one state entries are simply shifted and only
the remaining state entry requires some computation. In particular at each clock
significant parts of the FSR state are not involved in any computation and have
the only purpose of storing certain data. Hence it is a reasonable strategy to
use these almost ”free” resources for improving the hardware implementation.
One step into this direction has been presented in [5]. The idea was to transform
the FSR from Fibonacci-configuration to Galois-configuration [2,6]. In the latter
each state entry has a separate update function which are all executed simulta-
neously. This allowed for accelerating the FSR update process by distributing
the computation amongst several update functions with almost no change in the
area size. However the improvements are restricted to the FSR itself while the
throughput of stream ciphers are often dominated by other components.

Contribution. In this work we introduce a new implementation technique that
allows for increasing the throughput but without any (or only small) increase
in the hardware size. The technique can be used with stream ciphers that are
composed of a (possibly non-linear) feedback shift registers (FSR), an external
block (which is treated as a black box), and an output function which combines
values from the FSR and the external block. We think that this should cover
the majority of stream ciphers proposed so far. The technique can be seen as
a combination of the two approaches mentioned above (pipelining and FSR-
transformation). The idea is to parallelize the computation of the output function
by integrating parts of it into several update functions of the FSR. Of course
care needs to be taken that this transformation of the cipher does not alter its
functionality. Thus the idea is to correct the changes made in the FSR at a later
stage.

A similar idea has been used in [4] for constructing NLFSRs in Galois con-
figuration with a certain period. The author also shortly points out that for
analyzing the security, this construction could be re-interpreted as a filter gener-
ator. However, the discussion has been restricted to optimizing the area size and
the case of filter generators while we aim for a higher throughput and consider
a significantly broader class of FSR-based stream ciphers.

We provide a detailed technical description for sufficient conditions and prove
that the transformation preserves the functionality of the cipher. As the proof
is technically involved, we split it up and prove first an appropriate preserving
transformations of FSRs. This transformation might be of independent interest.
Moreover, we demonstrate the practicability of our approach by applying it to

134 F. Armknecht and V. Mikhalev

the stream cipher Grain-128. Grain-128 has been one of the eSTREAM finalists
in the second profile portfolio (restricted hardware resources), making it par-
ticularly interesting for our transformation. The implementation of Grain-128
was realized by the Cadence RTL Compiler considering UMC L180 GII in two
different modes where the compiler was set to optimize the timing and the area
size, respectively. In the first case the throughput was increased in the initializa-
tion mode by 18% and in the keystream generation mode by 24%, in the second
case the improvement of the throughput was 20 % in both modes (compared
to a time-optimized and an area-optimized implementations without structural
changes). As opposed to other solutions, no additional memory was used. In
fact the hardware size even decreased from 1794 GE to 1748 GE for the time-
optimized solution and only slightly increased from 1627 GE to 1656 GE for the
area-optimized solution.

Outline. In Section 2, we provide the preliminaries for this work. In Section 3
we provide a high level description of the approach. The main results are given
in Sections 4 and 5 where we describe and prove the transformations for the
FSR and the cipher, respectively. In Section 6, we demonstrate the technique on
the cipher Grain-128. Section 7 concludes the paper.

2 Preliminaries

Notation and Boolean Functions. For two integers n ⊗ m, the terms [n,m]
and [n] refer to the sets {n, . . . ,m} and {0, . . . , n}, respectively. LetF denote the fi-
nite fieldGF (2). For a Boolean function f(x0, . . . , xn−1) ≡ F[x0, . . . , xn−1], we de-
fine its support to be the smallest set of variables {xi1 , . . . , xiλ} ⊆ {x0, . . . , xn−1}
which is required to specify f . That is f ≡ F[xi1 , . . . , xiλ] but f ∪≡ F[X] for any
real subset X ⇐ {xi1 , . . . , xiλ}.

Feedback Shift Registers. A Feedback Shift Registers (FSRs) is an established
building block for designing stream ciphers as it allows for generating long bit
streams based on a short seed. In a nutshell, a FSR is a regularly clocked finite
state machine that is composed of a register and an update mapping F . At each
clock, an entry of the state is given out and the state is updated according to
the update mapping F . While stream ciphers commonly use a specific type of
FSRs, we consider the following, significantly broader class of FSRs:

Definition 1 (FSR with External Input). A FSR FSR with external input
of length n consists of an internal state of length n, an external source which
produces a bit sequence (bt)t≥0, and update functions fi(x0, . . . , xn−1, y0, . . . , yΠ)
for i = 0, . . . , n − 1. Given some initial state S0 = (S0[0], . . . , S0[n − 1]) ≡ Fn,
the following steps take place at each clock t:

1. The value St[0] is given out and forms a part of the output sequence.
2. The state St ≡ Fn is updated to St+1 where St+1[i] = fi(St, bt, . . . , bt+Π−1).

On Increasing the Throughput of Stream Ciphers 135

We denote by seq(FSR, S0, (bt)t≥0) the output sequence of FSR given an initial
state S0 and an external bit sequence (bt)t≥0.

Observe that we make no restrictions on the update functions whereas stream
ciphers commonly deploy FSRs which are in Fibonacci configuration, i.e, all
update functions except of fn−1 are simple, meaning that fi(x0, . . . , xn−1) =
xi+1 for i = 0, . . . , n − 2. A further relaxation is that the update of the state
depends on the current assignment and possibly on bits from an external source.
Observe however that the bits (bt)t of the external source are not affected by
the state bits.

Two FSRs FSR and FSR≤ of the same length with access to the same external
source are called equivalent, denoted by FSR → FSR≤, if for any initial state
S0 for FSR there exists an initial state S≤0 for FSR≤ (and vice versa) such that
both produce the same output sequence for any external bit sequence (bt)t≥0. A
transformation which takes as input some FSR FSR (and possible other inputs)
and outputs a FSR FSR≤ such that FSR → FSR≤ is called preserving.

FSR-Based Stream Ciphers. The majority of stream ciphers can be charac-
terized as follows: They deploy one or several regularly clocked finite state ma-
chines, typically including at least one FSR. At each clock several values of these
components are fed into an output function h which eventually produces the cur-
rent keystream bit. We assume that the keystream bit is computed before the
FSRs are updated. In principle we investigate if and how certain computations
that would take place in h can be shifted to one of the deployed FSRs such that
(i) the resulting cipher remains equivalent but (ii) the throughput is increased.
Consequently to keep the description as simple and readable as possible and
to cover a maximally broad class of stream ciphers, we consider stream ciphers
which contain three components only: a FSR FSR of length n, an output func-
tion h, and an external block EB. Here we make no restrictions on the processes
running inside of EB but consider it as a black box which may contain further
FSRs, additional memory, etc. The only assumption we make is that a bitstream
(bt)t≥0 can be specified which contains all bits produced inside of EB which are
relevant for the state updates of FSR and/or for computing the next keystream
bit. Observe that this does not exclude the case that EB may contain several
components, each producing its own bitstream. For example if we consider σ

components where the i-th component produces a bitstream (b
(i)
t)t≥0, these bit-

streams can be joined to one bitstream as follows: (bt)t≥0 = b
(1)
0 , . . . , b

(Π)
0 , b

(1)
1 ,

Adopting the notation from Definition 1, the output function h is defined over
some variables h(x0, . . . , xn−1, y0, . . . , yΠ) and the t-th keystream bit is

zt = h(St, bt, . . . , bt+Π−1). (1)

We adopt the notions of equivalence and preserving transformation from the
topic of FSRs for ciphers in a straightforward manner.

Throughput and Hardware Area. Being an essential aspect of our con-
tribution, we shortly recall the notion of the delay of a cipher. In general any

136 F. Armknecht and V. Mikhalev

hardware implementation can be described by circuits which are composed of one
or several logic gates. Upon receiving an input, a circuit C (which may be part
of a bigger circuit) processes these values and eventually produces an output.
The time period between getting the input and producing the output is called
its delay: Delay(C). Observe that circuits may run in parallel, e.g., for decreasing
the delay of the overall circuit. The operations between circuits are synchronized
by clock pulses. Naturally, the time interval between clock pulses must be long
enough so that all the logic gates have time to respond to the changes and their
outputs ”settle” to stable logic values, before the next clock pulse occurs. As
long as this condition is met, the circuit is guaranteed to be stable and reliable.
Each of the connections between inputs, registers, and outputs of a stream cipher
forms a timing path. The path which has the biggest delay is called critical path. It
defines the maximum operating clock frequency of the cipher. The throughput is
the rate at which a new output is produced with respect to time. It is determined
as the number of bits-per-cycle multiplied by the frequency [7]. Therefore, for a
given cipher maximum throughput is specified by the delay of its critical path.

The amount of silicon used for the hardware implementation is called area,
usually expressed in μm2. To make the area consumption of different circuits
comparable, another method is to calculate the Gate Equivalence (GE) which is
the total area divided by the lowest power two-input NAND gates area [7].

3 High Level Description

Before we explain the proposed transformation in detail in Sections 4 and 5,
we provide first a high level description. A common approach for increasing the
throughput of a function is the pipelining technique where the circuit is divided
into several parts which are computed in parallel. Pipelines can be implemented
at a number of layers. During each clock cycle, the output of each block is stored
in a memory stage. At the next layer the values from the previous layer are
combined to new blocks and so on until the last layer outputs the result of the
function. However each layer of the pipelining except the last one requires for
storing the intermediate results additional memory, which is the most expensive
part in terms of the area size and power consumption and accordingly to [10,11]
induces additional latency.

Our technique can be seen as a special case of pipelining but where existing
structures are cleverly re-used for avoiding additional memory as much as pos-
sible. It is motivated by the observation that FSRs are usually implemented in
the Fibonacci configuration. This means that at each clock, all but one state
entries are simply shifted while only the remaining entry requires more involved
computations.

They idea is now that some of the computations that should take place in
the output function are ”outsourced” to the FSR update functions and to store
the intermediate results in the FSR. To get the idea, assume that the output
function h (see Equation 1) can be written as

On Increasing the Throughput of Stream Ciphers 137

zt = h(St, Bt) = St[ρ] + h1(St, Bt) + h2(St, Bt) (2)

with Bt = (bt, . . . , bt+Π−1). In principle the transformation removes h1 from h
and inserts it into the update function fΔ:

(fΔ , h = St[ρ] + h1 + h2)
Transf.≥ (f ≤Δ := fΔ + h1, h

≤ = St[ρ] + h2) (3)

Observe that the overall computational effort has not been increased. Moreover,
it is not necessary to insert additional memory for storing the intermediate value
h1(St, Bt) as it is stored in the FSR register with index ρ. Finally one sees that
h≤ produces the same output as h but its complexity has been reduced. If possible
one may repeat this step several times for different parts of h so that eventually
the output function becomes a linear function where simply a selection of FSR
state entries is added.

Of course care needs to be taken that the transformation is preserving. To
ensure that the FSR output, i.e., the value at index 0, is not affected by the
transformation, we apply the following trick: we integrate h1 into two different
update functions fΨ and fΔ for Δ < ρ. The modification of fΔ insert the value
h1(St, Bt) as explained above such that it can be used directly in the output
function. In the subsequent clocks, this value is simply shifted until it reaches
position Δ. Here the modification of fΨ has been such that the value is canceled
out again. The consequence is that the transformation possibly changes the
FSR entries at indexes Δ . . . ρ but leaves the state entries outside of this interval
unchanged, including the value at index 0 which defines the FSR output. This
property is proven for different variants of the transformation (see the proofs of
Theorem 1, Lemma 1, and Theorem 2).

While the approach is conceptually simple, several aspects need to be
considered:

1. It may not be sufficient to ensure that the FSR output is preserved. If the
cipher uses functions where part of the inputs are taken from the interval
Δ . . . ρ, then the output of this function would be altered as well. To avoid
such effects, we focus on intervals of state entries such that all other values
are independent of this interval in a certain sense. This is made precise by
the notion of isolated intervals (see Definition 2).

2. For canceling out the change at position Δ, one cannot simply replace fΨ
to fΨ + h1. The reason is that h1 would use state entries that are ρ − Δ
clocks later than when the change at index ρ has been introduced. Thus it is
necessary that the value h1(St, Bt) can still be reproduced ρ−Δ clocks later.
We capture this formally by saying that a function has sustainable outputs
(Definition 3).

In fact, the concrete transformation (including the prerequisites and the proof of
correctness) is technically involved. Thereforewe split the technical treatment into
two parts. In Section 4 we introduce a preserving transformation for FSRs where
an external bit stream is integrated into some of the update functions (Theorem1).

138 F. Armknecht and V. Mikhalev

As we make no assumptions on this bitstream, the transformation might be of in-
dependent interest. Afterwards we explain an extension where this bitstream may
depend on the FSR itself (Lemma 1). This requires a careful argumentation why
the FSR-transformation is still preserving. For practical reasons, we restrict to bit-
streams that depend on values onlywhich are accessible over several clockswithout
requiring additionalmemory. These transformationswill represent the basic build-
ing block for the cipher transformation presented and discussed in Section 5.

4 New Preserving FSR-Transformations

In this section we provide a detailed technical description of a new preserving
transformation for FSRs which will be an integral part of the cipher transfor-
mation in Section 5. It requires that the FSR state contains an isolated interval,
meaning a part of the state which has almost no impact on the update of the
remaining part and, if existent, is independent of some output function h. The
formal definition is as follows:

Definition 2 (Isolated Interval). Consider a FSR-based stream cipher, being
composed of an FSR FSR of length n with update mapping F = (f0, . . . , fn−1), an
external block with bit stream (bt)t≥0, and a function h(x0, . . . , xn−1, y0, . . . , yΠ).
We say that an interval [Δ . . . ρ] with 0 ⊗ Δ ⊗ ρ ⊗ n − 1 of the FSR-state is
isolated with respect to F and h if the following conditions are met:

1. The feedback functions fΨ−1, . . . , fΔ−1 have all the form

fi(x0, . . . , xn−1, y0, . . . , yΠ−1) = x(i+1)modn + gi(x0, . . . , xn−1, y0, . . . , yΠ−1)

with supp(gi) ∈ {xΨ, . . . , xΔ} = ∅. That is these feedback functions depend
on the values at indices in [Δ, ρ] but only in the sense that these values are
shifted.

2. The remaining feedback functions f0, . . . , fΨ−2, fΔ , . . . , fn−1 and the output
function h are completely independent of the values at indices [Δ, ρ], that is
supp(fi) ∈ {xΨ, . . . , xΔ} = ∅ for all i ≡ [n− 1] \ [Δ, ρ].

We describe and prove now a basic preserving transformation where an external
bit stream (bt)t≥0 is integrated into some update functions:

Theorem 1 (Preserving FSR Transformation). Consider a FSR FSR with
update mapping F = (f0, . . . , fn−1) and an external source producing a bitstream
(bt)t≥0. Let [Δ, . . . , ρ] be an interval which is isolated with respect to F . We define
an FSR FSR≤ with update mapping F ≤ = (f ≤0, . . . , f

≤
n−1) which is derived from F

as follows:

f ≤Ψ−1 := fΨ−1 + yΔ−Ψ, f ≤Δ := fΔ + y1, f ≤i := fi for all i ∪= Δ, ρ (4)

Then both FSRs are equivalent, i.e, FSR → FSR≤.

Proof (Theorem 1). We have to show that for any initial state S0 ≡ Fn there
exists a corresponding initial state S≤0 ≡ Fn such that the output sequences
(St[0])t≥0 and (S≤t[0])t≥0 are equal for any assignment of (bt)t≥0. This is an
immediate consequence of the following claim:

On Increasing the Throughput of Stream Ciphers 139

Claim: We define for each t ⊕ 0 the vector

Φt := (0Ψ−1, bt+Δ−Ψ, bt+Δ−Ψ−1, . . . , bt+1, bt, 0
n−Δ) (5)

where 0r denotes r-times the value zero. Let S0 ≡ Fn be an arbitrary initial
state and define S≤0 := S0 + Φ0. Then it holds that for each clock t that
St + S≤t = Φt.

It follows from the claim that St[0]+S
≤
t[0] = Φt[0] = 0 for each clock if S0+S

≤
0 =

Φ0. That is both produce the same output bitstream which proves the theorem.
It remains to prove the claim which we do by induction. For t = 0, the

claim holds by definition of S≤0. Next assume that St + S≤t = Φt for some clock
t ⊕ 0. Recall that by definition of isolated intervals (see Definition 2) that
the functions gi for i ≡ [Δ − 1, ρ − 1] and fi for i ∪≡ [Δ − 1, ρ − 1] are all
independent of the variables xΨ, . . . , xΔ . Moreover, we have St[i] = S≤t[i] for all
i ∪≡ [Δ − 1, ρ − 1]. Hence, we have gi(St) = gi(S

≤
t) for i ≡ [Δ − 1, ρ − 1] and

fi(St, bt, . . . , bt+Π−1) = fi(S
≤
t, bt, . . . , bt+Π−1) for i ∪≡ [Δ− 1, ρ− 1]. We investigate

now the difference St+1 + S≤t+1 index by index.
For i ≡ [0, . . . , Δ− 2, ρ + 1, . . . , n− 1], we have

St+1[i] = fi(St, bt, . . . , bt+Π−1) = fi(S
≤
t, bt, . . . , bt+Π−1)

= f ≤i(S
≤
t, bt, . . . , bt+Π−1) = S≤t+1[i],

showing the zeros at the beginning and the end of St+1 + S≤t+1.
For i = Δ, . . . , ρ − 1, it holds

St+1[i] = fi(St, bt, . . . , bt+Π−1) = St[i+ 1] + gi(St, bt, . . . , bt+Π−1)
= S≤t[i + 1] +Φt[i+ 1] + gi(S

≤
t, bt, . . . , bt+Π−1)

= S≤t[i + 1] + gi(S
≤
t, bt, . . . , bt+Π−1) +Φt[i+ 1] = S≤t+1[i] +Φt+1[i].

In the last equation we made use of the fact that by definition it holds that
Φt[i] = bt+Δ−i for all i = Δ, . . . , ρ and henceΦt[i+1] = Φt+1[i] for i = Δ, . . . , ρ−
1.

For i = Δ− 1, we have

St+1[Δ− 1] = fΨ−1(St, bt, . . . , bt+Π−1) = St[Δ] + gΨ−1(St, bt, . . . , bt+Π−1)
= S≤t[Δ] +Φt[Δ] + gΨ−1(S≤t, bt, . . . , bt+Π−1)
= S≤t[Δ] + gΨ−1(S≤t, bt, . . . , bt+Π−1) + yt+Δ−Ψ
= f ≤Ψ−1(S

≤
t, bt, . . . , bt+Π−1) = S≤t+1[Δ− 1].

Finally, it holds that

St+1[ρ] = fΔ(St) = fΔ(S
≤
t, bt, . . . , bt+Π−1) = fΔ(S

≤
t, bt, . . . , bt+Π−1) + bt+1 + bt+1

= f ≤Δ(S
≤
t, bt, . . . , bt+Π−1) + bt+1 = S≤t+1[ρ] + bt+1.

Hence St+1[ρ] + S≤t+1[ρ] = bt+1 which concludes the claim. ∃⊆

140 F. Armknecht and V. Mikhalev

Summing up Theorem 1 ensures that XORing an external value to the state
entry which marks the beginning of an isolated interval preserves the FSR as
long as this value is cancelled out later before it ”leaves” this interval. In practice
this requires to have access to the same value at two different clocks. For sure a
simple solution would be to store this value in some external memory until it is
not longer needed but this would increase the hardware area. Hence in practice
it is preferable to use values which can be reconstructed several clocks later
without the need for additional memory. To this end, we introduce the notion
of sustainability :

Definition 3 (Function with Sustainable Output). Consider a FSR-based
stream cipher, being composed of an FSR FSR of length n with update map-
ping F = (f0, . . . , fn−1), an external block with bit stream (bt)t≥0, and a func-
tion h(x0, . . . , xn−1, y0, . . . , yΠ). We say that h produces values which are r-
sustainable if there exists a supplemental function h∗(x0, . . . , xn−1, y0, . . . , yΠ)
such that

h(St, bt, . . . , bt+Π−1) = h∗(St+r, bt+r, . . . , bt+r+Π−1) ◦t ⊕ 0. (6)

Remark 1. Informally the definition means that the output of h at some clock
t can likewise be computed r clocks later by h∗ without requiring additional
storage. Although it may seem like an artificial and strong assumption at the first
sight, it is in fact quite often naturally given for FSRs in Fibonacci configuration:
as soon as a new state entry is computed, it is only shifted until it forms the
output. In particular it remains part of the state for n− 1 clocks.

We can now extend the transformation considered in Theorem 1 by replacing the
external bits bt by the outputs of a function that produces (ρ − Δ)-sustainable
outputs:

Lemma 1 (Preserving FSRTransformation based on Sustainable Func-
tions). Consider a FSR-based stream cipher, being composed of an FSR FSR of
length n with update mapping F = (f0, . . . , fn−1), an external block with bit stream
(bt)t≥0, and a function h(x0, . . . , xn−1, y0, . . . , yΠ). Let [Δ, . . . , ρ] be an interval
which is isolated with respect to F and h. Moreover assume that h produces (ρ−Δ)-
sustainable outputs with h∗ being the corresponding supplementary function. We
define an FSR FSR≤ with update mapping F ≤ = (f ≤0, . . . , f ≤n−1)which is derived from
F as follows:

f ≤Ψ−1 := fΨ−1 + h∗, f ≤Δ := fΔ + h, f ≤i := fi for all i ∪= Δ− 1, ρ (7)

Then both FSRs are equivalent, i.e, FSR → FSR≤.

Proof (Lemma 1). We define b̃t := h(St, bt, . . . , bt+Π−1) for each t ⊕ 0. Assume
for a moment that (b̃t)t≥0 is an independent from the FSR and (bt)t≥0. We define

an FSR FSR≤≤ with update mapping F ≤≤ = (f ≤≤0 , . . . , f
≤≤
n−1) which is derived from

F as follows:

On Increasing the Throughput of Stream Ciphers 141

f ≤≤Ψ−1 := fΨ−1 + ỹΔ−Ψ, f ≤≤Δ := fΔ + ỹ1, f ≤≤i := fi for all i ∪= Δ− 1, ρ (8)

Here ỹi means a variable which takes the value b̃t+i at each clock t. It follows
directly from Theorem 1 that FSR and FSR≤≤ are equivalent. Moreover the proof
shows that at each clock t ⊕ 1, the state St and S

≤≤
t of FSR and FSR≤≤, respectively,

differ by
Φt := (0Ψ−1, b̃t+Δ−Ψ, b̃t+Δ−Ψ−1, . . . , b̃t+1, b̃t, 0

n−Δ). (9)

if the initial states differ by Φ0 (what we assume in the following). As the
interval [Δ, . . . , ρ] is isolated with respect to h by assumption, it follows that
h(St, bt, . . . , bt+Π−1) = h(S≤≤t , bt, . . . , bt+Π−1) and h∗(St+r, bt+r, . . . , bt+r+Π−1) =
h∗(S≤≤t+r, bt+r, . . . , bt+r+Π−1) for r = ρ − Δ. Therefore we can rephrase the def-
initions of the update functions f ≤≤Ψ−1 and f ≤Δ := fΔ + h by f ≤≤Ψ−1 := fΨ−1 and

f ≤≤Δ := fΔ + h, respectively. As this results into the exact definition of FSR≤, we
have FSR≤ = FSR≤≤ and in particular FSR → FSR≤, showing the claim. ∃⊆

5 A Preserving Cipher-Transformation

5.1 Technical Description

We are now ready to present the proposed preserving cipher transformation.
The idea is to identify appropriate terms of the output function and to integrate
them into the update functions of the FSR. This way the delay of the output
function can be decreased without any (or very small) increase of the delay of
the FSR. More precisely the transformation is as follows:

Theorem 2 (Preserving Cipher Transformation). Consider a FSR-based
stream cipher C, being composed of an FSR FSR of length n with update mapping
F = (f0, . . . , fn−1), an external block with bit stream (bt)t≥0, and an output
function h(x0, . . . , xn−1, y0, . . . , yΠ). Assume that h can be written as

h(x0, . . . , xn−1, y0, . . . , yΠ) = xΔ + h1(x0, . . . , xn−1, y0, . . . , yΠ) +
h2(x0, . . . , xn−1, y0, . . . , yΠ) (10)

such that the outputs of h1 could be computed one clock earlier as well. Formally,
this means that there exists a function g((x0, . . . , xn−1, y0, . . . , yΠ) such that it
holds for all clocks t ⊕ 1:

h(St, bt, . . . , bt+Π−1) = St[ρ] + g(St−1, bt−1, . . . , bt+Π−2) + h2(St, bt, . . . , bt+Π−1)

Moreover the following conditions need to be met:

1. There exist integers 1 ⊗ Δ < ρ < n − 1 such that the interval [Δ, . . . , ρ] is
isolated with respect to F and h2 and the interval [Δ+1, . . . , ρ+1] is isolated
with respect to g.

2. g produces (ρ − Δ)-sustainable outputs with g∗ being the corresponding sup-
plementary function.

142 F. Armknecht and V. Mikhalev

A second cipher is defined as C≤ with an FSR FSR≤ and an output function
h≤ which are derived from FSR and h, respectively. The update mapping F ≤ =
(f ≤0, . . . , f ≤n−1) of FSR

≤ is defined as

f ≤Ψ−1 := fΨ−1 + g∗, f ≤Δ := fΔ + g, f ≤i := fi for all i ∪= Δ, ρ (11)

and the output function h≤ of C≤ as
h≤(x0, . . . , xn−1, y0, . . . , yΠ) = xΔ + h2(x0, . . . , xn−1, y0, . . . , yΠ). (12)

Then both ciphers are equivalent.

Remark 2 (On the Relation between h1 and g). Before we provide the proof,
we shortly explain the relation between h1 and g. As elaborated before, the
goal of the transformation is to remove parts of the output function (here h1)
and to integrate it into the update functions of the FSRs. Here one needs to
carefully pay attention to the order of the computations. By definition, at each
clock t the output function first computes the output and the FSRs are updated
afterwards. Hence, when the modified output function is invoked it is necessary
that the output of h1 is already present in the FSR state. The only possibility is
that this computation of h1 has been executed at least one clock before, which
is accomplished by the function g.

Proof (Theorem 2). We show that for any initial state of C, there exists a corre-
sponding initial state of C≤ such that both ciphers produce the same keystream.1

We assume that in both ciphers, the same external block EB is used, producing
the same bitstream (bt)t≥0. Let S0 be an arbitrary initial state of FSR. We define
for each t ⊕ 0 the vector

Φt := (0Ψ−1, g(St+r, bt+r, . . . , bt+r+Π−1), . . . , g(St, bt, . . . , bt+Π−1), 0n−Δ) (13)

with r = ρ − Δ. Assume now that FSR≤ is initialized with S≤0 := S0 + Φ0. It
follows from Lemma 1 (and the arguments used in its proof) that at each clock
t ⊕ 1, the states St and S≤t of FSR and FSR≤, respectively, differ by Φt. As
the interval [Δ, ρ] is assumed to be isolated with respect to F , and h2, and the
interval [Δ + 1, . . . , ρ + 1] is isolated with respect to g, it follows that for all
t it holds that fΔ(S

≤
t, bt, . . . , bt+Π−1) = fΔ(St, bt, . . . , bt+Π−1) and likewise for g

and h2. We compare now the keystream bits (zt)t≥0 and (z≤t)t≥0 of C and C≤,
respectively. It is for each t ⊕ 0:

z≤t = h≤(S≤t, bt, . . . , bt+Π−1) = S≤t[ρ] + h2(S
≤
t, bt, . . . , bt+Π−1)

= f ≤Δ(S
≤
t−1, bt−1, . . . , bt+Π−2) + h2(S

≤
t, bt, . . . , bt+Π−1)

= fΔ(S
≤
t−1, bt−1, . . . , bt+Π−2) + g(S≤t−1, bt−1, . . . , bt+Π−2) + h2(S

≤
t, bt, . . . , bt+Π−1)

= fΔ(St−1, bt−1, . . . , bt+Π−2) + g(St−1, bt−1, . . . , bt+Π−2) + h2(St, bt, . . . , bt+Π−1)
= St[ρ] + h1(St, bt, . . . , bt+Π−1) + h2(St, bt, . . . , bt+Π−1) = zt.

This shows that both ciphers produce the same keystream. ∃⊆
1 The other direction can be shown analogously.

On Increasing the Throughput of Stream Ciphers 143

5.2 Discussion

On the Preconditions. We shortly argue why one might expect in general
that the preconditions of Theorem 2 are fulfilled. In a nutshell these conditions
are that the output function contains a linear term xΔ such that ρ represents
the endpoint of an interval [Δ, ρ] which is isolated with respect to update func-
tions fi with i ∪≡ [Δ, ρ] and the remainder of the output function. First observe
that already isolated intervals of length 1, i.e., where ρ = Δ, are sufficient for
”outsourcing” h1 to the FSR. Second ciphers often deploy FSRs in Fibonacci
configuration, meaning that all but one update functions are simple (i.e., only
shift a value) and in particular depend on one value only. Moreover these FSRs
have high length (for security reasons) and the only non-simple update func-
tion is sparse (for efficiency reasons). Thus we found several examples where
our approach could be applied, Grain-128 being one of them (cf. Section 6). For
example in the case of Grain-128 the relation between h1 and g (see Remark 2)
is only a shift in the indices of the variables.

Analysis. In the following we analyze the change of the delay induced by our
transformation. As the exact delay strongly depends on the technology used, we
discuss from a qualitative point of view how the delay of the cipher depends on
the cipher components and under which conditions the transformation increases
of the throughput. As our approach considers transformations in the output
function and the FSR, no gain can be expected if the critical path goes through
the external block EB. Hence we exclude this case in the following and assume
that the delay of EB is always smaller than the delay of the output function and
of the FSR, i.e, we ignore the delay of EB for simplicity. In fact all expressions can
be easily adapted to take Delay(EB) into account as well. Observe in this context
that if the cipher contains more than one FSR, we can apply the transformation
with respect to this FSR which is the most appropriate and consider the others
as part of the external block.

For the analysis, we distinguish between two different cases. We start with
the simpler mode A where the update of FSR is independent of the output of h.
This implies both two components can operate in parallel and hence Delay(C) =
max{Delay(FSR),Delay(h)}. As the transformation aims for decreasing Delay(h),
we restrict to the case of Delay(h) > Delay(FSR) as otherwise the transformation
would not bring any gain. Let h≤ and FSR≤ denote the output function and the
FSR, respectively, after the transformation.

To apply the transformation explained in Theorem 2, it is necessary that h can
be split accordingly, i.e., h = xΔ+h1+h2. Observe that after the transformation
the output function becomes smaller, i.e., h≤ = xΔ + h2 and therefore likely has
smaller delay. In general we have

Delay(h≤) = Delay(xΔ + h2) ⊗ Delay(xΔ + h1 + h2) = Delay(h). (14)

144 F. Armknecht and V. Mikhalev

While the concrete delay of a function depends on the deployed technology, a
good approximation is the delay of a depth-optimal tree of 2-input AND and
2-input XOR gates implementing this function. In particular terms with the high-
est algebraic degree tend to induce the biggest delay. Hence preferable choices
of h1 should contain terms with high algebraic degree.

A FSR of length n is composed of n stages and update functions f0, . . . , fn−1
which are implemented by flip-flops and logical gates, respectively. The update
functions are computed simultaneously but at each clock-cycle, the two steps
have to be performed sequentially:

– the values of the update functions have to be computed
– the stages have to be updated with the new values

Therefore the delay of a FSR is the sum of the delay of a flip-flop Dfl and of
the delay of the slowest of the update functions:

Delay(FSR) = max{Delay(f0),Delay(f1) · · ·Delay(fn−1)}+Dfl

= Delay(fμ) +Dfl (15)

if μ denote the index of the slowest update function. Observe that the update
functions within the isolated interval [Δ, ρ] are simply the shift operators. Hence
we can assume that μ ∪≡ [Δ, ρ].2 Recall that the transformation only changes the
update functions fΨ and fΔ. Hence it follows

Delay(FSR≤) = max{Delay(fμ),Delay(fΨ + g∗),Delay(fΔ + g)}+Dfl. (16)

Because of Delay(C≤) = max{Delay(FSR≤),Delay(h≤)} and Delay(fμ) + Dfl <
Delay(h), the transformation decreases the overall delay if

max

⎧⎨
⎩

Delay(xΔ + h2),
Delay(fΨ + g∗) +Dfl,
Delay(fΔ + g) +Dfl

⎫⎬
⎭ < Delay(xΔ + h1 + h2). (17)

Next we consider mode B where some of the update functions of FSR depend
on the output of h. We denote by Fh the part of the circuit that implements
FSR which requires the output of h as input and by F \ Fh the remaining part
of the FSR circuit. In this case it implies that

Delay(C) = max{Delay(Fh) + Delay(h),Delay(F \ Fh)}. (18)

Again if Delay(F \ Fh) ⊕ Delay(Fh) + Delay(h), no gain can be expected by
shifting computations from h to the FSR. Hence we restrict to the case that
Delay(F \ Fh) < Delay(Fh) + Delay(h). Recall that by definition, the update
functions within the isolated interval simply shifts the preceding state entry.
Hence we can assume that fΨ, fΔ ∪≡ Fh. In particular Delay(Fh) will not change

2 Otherwise the whole FSR would consists only of a cyclic shift of its internal state,
rendering it useless for cryptographic purposes.

On Increasing the Throughput of Stream Ciphers 145

after the transformation. Analogouesly to mode A, we define by μ the index
of the slowest update function in F \ Fh. Thus after the transformation, the
delay in the set of update functions which are independent of h is given by
max{Delay(fΨ + g∗),Delay(fΔ + g)},Delay(fμ)}. An increase of the delay in this
set is tolerable as long as it stays below Delay(C) = Delay(Fh) + Delay(FSR)
which is given for sure for Delay(fμ). A further condition for an improvement
is (as in mode A) that the delay of the resulting output function h≤ is indeed
less than the delay of the original output function h. Taking both conditions
together yields the following condition for an improvement of the throughput:

max

⎧⎨
⎩

Delay(fΨ + g∗) +Dfl − Delay(Fh),
Delay(fΔ + g) +Dfl − Delay(Fh),
Delay(xΔ + h2)}

⎫⎬
⎭ < Delay(h). (19)

Observe that if none of the update functions depend on h, it holds that Fh = ∅.
Then, Eq. 19 becomes to Eq. 17 and we are back in mode A.

We want to stress that our approach is applicable in both modes while it is
stated in [11] that the pipelining method cannot be used in mode B (at least
for Grain-128a). However, the resulting C≤ requires the additional computation
of g∗ (compared to the original cipher C) which may induce a (preferably small)
increase in the area size.

6 Application to Grain-128

In this section, we demonstrate our technique by applying it to the Grain-128
stream cipher [9]. Grain-128 consists of an 128-bit LFSR, an 128-bit NLFSR, and
an output function h. In the original description of Grain-128 both FSRs are used
in Fibonacci configuration, meaning that all bits except the 127th are updated
just by shifting the adjacent value. The concrete updates and the output function
are given in Appendix A. Grain-128 uses two different modes: initialization and
keystream generation. In the keystream generationmode, the result of h forms the
output. During the initializing mode the cipher does not produce any output for
256 clock-cycles. Instead the outputs of h are fed back to the LFSR and NLFSR.

Setup. As far as we know the implementation of Grain-128 with the currently
highest throughput is given in [10]. Following [10] we used the Cadence RTL
Compiler3 for synthesis and simulation. Two implementations with different
compiler settings were examined: optimizing the output for timing and opti-
mizing for area size, respectively. It is well known that changing the compiler
setting can lead to unpredictable effects. For example, although our transfor-
mation includes additional computations, the area size of the time-optimized
solution reduced from 1794 GE to 1748 GE. We assume the following reason:
when the compiler is set to optimize timing, bigger functions are implemented
by gates which consume more area. It seems that such tricks are not necessary

3 See http://www.cadence.com/products/ld/rtl_compiler/pages/default.aspx

http://www.cadence.com/products/ld/rtl_compiler/pages/default.aspx

146 F. Armknecht and V. Mikhalev

anymore (or at least to a lesser extent) after our transformation. In other words,
routing of the gates becomes easier for the transformed version of the cipher
which outweights the slightly increased logic count. To minimize such effects
as far as possible and to get a preferably unbiased view on the results of our
transformation, our implementation contains only these blocks that are affected
by the transformation. For example, we excluded on purpose the counter that is
used in the initialization mode for counting the 256 cycles.

Preparation. Recall that our transformation aims for reducing the delay of the
output function. Unfortunately, in the original specification of Grain-128 the
critical path goes through the FSRs. Hence, before we applied our transforma-
tion, we modified the FSRs to decrease their delays. More precisely, we changed
the configurations of the FSRs from Fibonacci to Galois. The idea is to spread
the monomials of one update function amongst the others, in order to make them
being computed in parallel. The new update functions together with initial state
mappings are given in Appendix B. This transformation increased the maximal
frequency from 1.03 GHz to 1.11 GHz in the initialization mode (approx. +8%),
from 1.29 GHz to 1.45 GHz in the keystream generation mode (approx. +12%)
for the timed-optimized solution. For the area-optimized solution the improve-
ment is from 0,42 GHz to 0,60 GHz by 42 % in the initialization mode and from
0,89 GHz to 0,90 GHz in the keystream generation mode. In particular it re-
sulted into the situation that the critical path goes through the output function,
making our approach applicable. Of course we used this configuration as the
benchmark for estimating the gain of our transformation.

Transformation. For getting the preferably best results from the transforma-
tions, we used the following strategy. Originally, the output function h contains
several linear and quadratic terms and one cubic term (degree 3). As the terms
with the highest degree tend to induce the highest delay (see Sec. 2), we aimed
for shifting all monomials with degree bigger than 1 to the FSRs. The exact
transformation is explained in App. C. Observe that we took both FSRs into ac-
count, i.e., some monomials have been integrated into the LFSR and others into
the NLFSR. As both FSRs deploy update functions of degree 2 or less, there was
no increase in the delay of the FSRs when the quadratic monomials from h have
been integrated. For the single cubic term of h, the situation is different as this
may increase the delay of the FSRs. Therefore we implemented both variants,
i.e., the cubic term remaining in h or being moved to the FSRs, and it turned
out that moving the term yielded the better result.

Results and Discussion. For the time-optimized implementation the maximal
frequency within the initialization mode was increased from 1.11 GHz to 1.31
GHz (by 18 %) and for the keystream generation mode from 1.45 GHz to 1.8
GHz (by 24%) while the area size decreased from 1794 GE to 1748 GE. For the
area-optimized implementation the maximal frequency within the initialization
mode was increased from 0.60 GHz to 0.72 GHz (by 20 %) and for the keystream
generation mode from 0.90 GHz to 1.08 GHz (by 20%) while the area slightly
increased from 1627 GE to 1656 GE.

On Increasing the Throughput of Stream Ciphers 147

Observe that our transformation can be combined with further techniques.
For example, we also tested an alternative implementation where the cubic term
of the output function was not integrated into the FSR and where the pipelining
technique was applied to the resulting output function. It turned out that this
variant allowed for even higher frequencies in the keystream generation mode: for
2.1 GHz in the time-optimized solution and for 1,45 GHz in the area-optimized
solution.

Unfortunately we had no access to the TSMC 90nm ASIC technology library
used in [10] and used instead the Faraday Design Kit for UMC L180 GII technol-
ogy library. As it turns out, this made the results from [10] incomparable to our
results. For example [10] states for their implementation a maximal frequency
in the initialization mode of 2 GHz and in the key generation mode of 3.1 GHz,
which is roughly 55% faster. In fact this difference is essential for the improve-
ment described there. In order to take advantage of the smaller delay during the
keystream generation phase, the dual frequency solution was proposed: the cipher
works with the slower frequency during the initialization phase, and when the
keystream generation mode begins it switches to the faster clock. To make this
possible, a special clock divider block is introduced into the system. Moreover,
when the output is not fed back into the inputs of FSRs, the output function
can be pipelined. Probably due to the different library, we could not reproduce
these results (neither in concrete nor in relative terms), although we tried the
same source code. Hence, we leave a meaningful comparison of both approaches
for future work.

7 Conclusion

We presented a new approach for parallelizing computations in stream ciphers
based on feedback shift registers (FSRs). As opposed to the common pipelining
technique, existing structures are re-used for avoiding (or at least reducing) an in-
crease of memory. The transformation has been proven for a broad class of FSRs
and FSR-based stream ciphers, Moreover, it and has been applied to Grain-128
where the throughput for a time-optimized implementation is increased in the
initialization mode by 18% and in the keystream generation mode by 24%. When
the compiler was set to optimize the area size the throughput is increased by 20
% in both modes. As opposed to other solutions, no resp. very few additional
memory is required.

We want to remark that we also successfully applied the transformation to
Grain-128a [1] which is a recent improvement of Grain-128. The exact results
(that are similar as for Grain-128) are not included for space reasons. Nonetheless
it remains an open question to apply our technique to other stream ciphers.

Another interesting problem is to automate this approach, i.e., finding an al-
gorithm which automatically finds a (nearly) optimal solution. Our technique
is tailored for improving the throughput of FSR-based stream ciphers with a
non-linear output function by transforming it into a cipher with linear output
function. Interestingly many recently proposed stream ciphers use a linear out-
put function already in their original configuration. Our transformation may be

148 F. Armknecht and V. Mikhalev

an indication that when designing FSR-based stream ciphers, it is sufficient to
restrict to designs that use a linear output function. In general we expect that
the presented technique and theory may be helpful in the design phase already.
As the idea is to re-use existing memory, these ideas might be used right from
the start for developing new stream ciphers with further decreased hardware
size.

References

1. Agren, M., Hell, M., Johansson, T., Meier, W.: Grain-128a: A new version of Grain-
128 with optional authentication. Int. J. Wire. Mob. Comput. 5(1), 48–59 (2011)

2. Chabloz, J.-M., Mansouri, S.S., Dubrova, E.: An algorithm for constructing a
fastest Galois NLFSR generating a given sequence. In: Carlet, C., Pott, A. (eds.)
SETA 2010. LNCS, vol. 6338, pp. 41–54. Springer, Heidelberg (2010)

3. Dubrova, E.: Finding matching initial states for equivalent NLFSRs in the Fi-
bonacci and the Galois configurations. IEEE Transactions on Information The-
ory 56(6), 2961–2966 (2010)

4. Dubrova, E.: A scalable method for constructing Galois NLFSRs with period 2n−1
using cross-join pairs. IEEE Transactions on Information Theory 59(1), 703–709
(2013)

5. Dubrova, E.: How to speed-up your NLFSR-based stream cipher. In: Proceedings
of the Conference on Design, Automation and Test in Europe, DATE 2009, 3001
Leuven, Belgium, Belgium, pp. 878–881. European Design and Automation Asso-
ciation (2009)

6. Dubrova, E.: A transformation from the Fibonacci to the Galois NLFSRs. IEEE
Transactions on Information Theory 55(11), 5263–5271 (2009)

7. Good, T., Benaissa, M.: Hardware performance of eSTREAM phase-III stream
cipher candidates. In: Proc. of Workshop on the State of the Art of Stream Ciphers
(SACS 2008) (2008)

8. Sen Gupta, S., Chattopadhyay, A., Sinha, K., Maitra, S., Sinha, B.P.: High-
performance hardware implementation for RC4 stream cipher. IEEE Transactions
on Computers 62(4), 730–743 (2013)

9. Hell, M., Johansson, T., Maximov, A., Meier, W.: A stream cipher proposal: Grain-
128. In: 2006 IEEE International Symposium on Information Theory, pp. 1614–1618.
IEEE (2006)

10. Mansouri, S.S., Dubrova, E.: An improved hardware implementation of the Grain
stream cipher. In: 2010 13th Euromicro Conference on Digital System Design:
Architectures, Methods and Tools (DSD), pp. 433–440 (September 2010)

11. Mansouri, S.S., Dubrova, E.: An improved hardware implementation of the Grain-
128a stream cipher. In: Kwon, T., Lee, M.-K., Kwon, D. (eds.) ICISC 2012. LNCS,
vol. 7839, pp. 278–292. Springer, Heidelberg (2013)

12. Nakano, Y., Fukushima, K., Kiyomoto, S., Miyake, Y.: Fast implementation of
stream cipher K2 on FPGA. In: International Conference on Computer and Infor-
mation Engineering (ICCIE), pp. 117–123 (2011)

13. Note, S., Catthoor, F., Goossens, G., De Man, H.J.: Combined hardware selec-
tion and pipelining in high-performance data-path design. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 11(4), 413–423 (1992)

On Increasing the Throughput of Stream Ciphers 149

14. Stefan, D., Mitchell, C.: On the parallelization of the MICKEY-128 2.0 stream
cipher. In: The State of the Art of Stream Ciphers, SASC, pp. 175–185 (2008)

15. Yan, J., Heys, H.M.: Hardware implementation of the Salsa20 and Phelix stream
ciphers. In: Canadian Conference on Electrical and Computer Engineering, CCECE
2007, pp. 1125–1128. IEEE (2007)

16. Jing, J., Liu, Z., Zhang, L., Pan, W.: Efficient pipelined stream cipher ZUC algo-
rithm in FPGA. In: The First International Workshop on ZUC Algorithm, Beijing,
China, December 2-3 (2010)

A Specification of Grain-128

Grain-128 consists of an 128-bit LFSRLwith updatemappingsF = (f0, . . . , f127),
an 128-bit NLFSR N with update mappings Q = (q0, . . . , q127), and an output
function h. In the original description of Grain-128 both FSRs are used in Fi-
bonacci configuration, meaning that all bits except the 127th are updated just
by shifting the adjacent value. We denote at clock t the state of the LFSR to be
Lt = (Lt[0], · · · , Lt[127]) and the state of the NLFSR asNt = (Nt[0], · · · , Nt[127]).
The updates of L and N are as follows:

Lt+1[i] = Lt[i+ 1] and Nt+1[i] = Nt[i + 1] for i = 0, . . . , 126

Lt+1[127] = Lt[0] + Lt[7] + Lt[38] + Lt[70] + Lt[81] + Lt[96]

Nt+1[127] = Lt[0] +Nt[0] +Nt[26] +Nt[56] +Nt[91] +Nt[96] +Nt[3]Nt[67] +

Nt[11]Nt[13] +Nt[17]Nt[18] +Nt[27]Nt[59] +Nt[40]Nt[48] +

Nt[61]Nt[65] +Nt[68]Nt[84]

The output function h of Grain-128 is:

h = Nt[2] +Nt[15] +Nt[36] +Nt[45] +Nt[64] +Nt[73] + Lt[93] +Nt[89] +

Nt[12]Lt[8] + Lt[13]Lt[20] +Nt[95]Lt[42] + Lt[60]Lt[79] +

Nt[12]Nt[95]Lt[95]

B Specification of the Change of the FSR Configurations

We specify the update functions of the FSRs after changing the configuration
from Fibonacci to Galois. To distinguish the original update functions from
the update functions after the change, we use the upper index (g). That is
(f0, . . . , f127) and (q0, . . . , q127) denote the original update functions of the LFSR
L and the NLFSR N , respectively, while (fg0 , . . . , f

g
127) and (qg0 , . . . , q

g
127) refer

to the update functions after changing the configuration. Likewise we denote at
clock t the state of the LFSR to be Lgt = (Lgt [0], · · · , Lgt [127]) and the state of
the NLFSR as Ng

t = (Ng
t [0], · · · , Ng

t [127]). The update functions of the FSRs of
Grain-128 in Galois configuration are given in the Table 1. In order to get the
same output after this transformation as in original Grain-128, the initial state

150 F. Armknecht and V. Mikhalev

Table 1. The Update Functions of the FSRs after Transforming into Galois
Configuration

LFSR Lg:
fg
127 = Lg

t [0] fg
111 = Lg

t [112] + Lg
t [80]

fg
123 = Lg

t [124] + Lg
t [3] fg

103 = Lg
t [104] + Lg

t [46]
fg
119 = Lg

t [120] + Lg
t [30] fg

97 = Lg
t [98] + Lg

t [51]
qgj = Ng

t [j + 1], 0 ≤ j ≤ 127, j /∈ {127, 123, 119, 111, 103, 97}

NLFSR Ng:
qg127 = Lg

t [0] +Ng
t [0] qg113 = Ng

t [114] +Ng
t [77]

qg125 = Ng
t [126] +Ng

t [1]N
g
t [65] qg111 = Ng

t [112] +Ng
t [80]

qg123 = Ng
t [124] +Ng

t [7]N
g
t [9] qg100 = Ng

t [101] +Ng
t [34]N

g
t [38]

qg121 = Ng
t [122] +Ng

t [20] qg99 = Ng
t [100] +Ng

t [40]N
g
t [56]

qg119 = Ng
t [120] +Ng

t [9]N
g
t [10] qg98 = Ng

t [99] +Ng
t [11]N

g
t [19]

qg117 = Ng
t [118] +Ng

t [17]N
g
t [49] q

g
97 = Ng

t [98] +Ng
t [26]

qgi = Ng
t [i+ 1], 0 ≤ i ≤ 127, i /∈ {127, 125, 123, 121, 119, 117, 113, 111, 100, 99, 98, 97}

has to be changed. A general treatment of this topic can be found in [3]. For our
configuration the initial state needs to be changed as follows.

Lg0[i] = L0[i], 0 ⊗ i ⊗ 97

Lg0[i] = L0[i] + fgi−1(L0) + fgi−2|+1
(L0) + · · ·+ fg97|+i−98

(L0), 98 ⊗ i ⊗ 127

Ng
0 [j] = N0[j], 0 ⊗ j ⊗ 97

Ng
0 [j] = N0[j] + qgj−1(N0) + qgj−2|+1

(N0) + · · ·+ qg97|+j−98
(N0), 98 ⊗ j ⊗ 127

were qi|+k
and fi|+k

denote that every index in the arguments of the functions
qi|+k

and fi|+k
is increased by k.

For example consider the following initial state of Grain-128:

L0=(1010010111100011110011000101000110010111011101111100110100011001

1010011001110100110101000111000100101001011100011100011001001100)

N0=(1100100100010001001011111100110000010111000100101101011011101101

1010100010101100101001111011110101101001101100100001101101100001)

Then the corresponding initial states after transformation to Galois configuration
would be:

Lg0=(1010010111100011110011000101000110010111011101111100110100011001

1010011001110100110101000111000100110011101100010001100011011010)

Ng
0 =(1100100100010001001011111100110000010111000100101101011011101101

1010100010101100101001111011110101100110100000011000110100111111)

On Increasing the Throughput of Stream Ciphers 151

C Specification of Our Transformation

We use the upper index (T) to indicate that the FSR states and the update
function correspond to the configuration after our transformation is done. The
exact transformations are provided in the Table 2. All the other update functions
are the same as in the configuration explained in App. B. Observe that the
modified output function hT is linear as opposed to the cubic output function h
of original Grain-128.

Table 2. The Update and Output Functions after Our Transformation

qT89 = NT
t [90] +NT

t [3] qT87 = NT
t [88] +NT

t [1]
qT73 = NT

t [74] +NT
t [13]LT

t [9] qT71 = NT
t [72] +NT

t [11]LT
t [7]

qT64 = NT
t [65] + LT

t [14]L
T
t [21] qT62 = NT

t [63] + LT
t [12]L

T
t [19]

qT36 = NT
t [37] +NT

t [96]LT
t [43] qT34 = NT

t [35] +NT
t [94]LT

t [41]
qT15 = NT

t [16] +NT
t [13]NT

t [96]LT
t [96] q

T
13 = NT

t [14] +NT
t [11]NT

t [94]LT
t [94]

fT
93 = LT

t [94] + LT
t [61]L

T
t [80] fT

91 = LT
t [92] + LT

t [59]L
T
t [78]

hT = NT
t [15] +NT

t [36] +NT
t [45] +NT

t [64] +NT
t [73] +NT

t [89] + LT
t [93]

In Tab. 3, we provide the concrete mapping between initial states of FSRs
before and after the transformation and before it, which is necessary to get
the same output. All the other initial state entries are also the same as in the
previous configuration.

Table 3. Mapping of the Initial States after Our Transformation

NT
0 [89] = Ng

0 [89] +Ng
0 [2] NT

0 [88] = Ng
0 [88] +Ng

0 [1]
NT

0 [73] = Ng
0 [73] +Ng

0 [12]L
g
0 [8] NT

0 [72] = Ng
0 [72] +Ng

0 [11]L
g
0 [7]

NT
0 [64] = Ng

0 [64] + Lg
0[13]L

g
0 [20] NT

0 [63] = Ng
0 [63] + Lg

0 [12]L
g
0 [19]

NT
0 [36] = Ng

0 [36] +Ng
0 [95]L

g
0 [42] NT

0 [35] = Ng
0 [35] +Ng

0 [94]L
g
0 [41]

NT
0 [15] = Ng

0 [15] +Ng
0 [12]N

g
0 [95]L

g
0 [95] N

T
0 [14] = Ng

0 [14] +Ng
0 [11]N

g
0 [94]L

g
0 [94]

LT
0 [93] = Ng

0 [93] + Lg
0[60]L

g
0 [79] LT

0 [92] = Ng
0 [92] + Lg

0 [59]L
g
0 [78]

On Double Exponentiation for Securing RSA

against Fault Analysis

Duc-Phong Le1, Matthieu Rivain2, and Chik How Tan1

1 Temasek Laboratories, National University of Singapore
{tslld,tsltch}@nus.edu.sg

2 CryptoEpxerts, France
matthieu.rivain@cryptoexperts.com

Abstract. At CT-RSA 2009, a new principle to secure RSA (and mod-
ular/group exponentiation) against fault-analysis has been introduced
by Rivain. The idea is to perform a so-called double exponentiation to
compute a pair (md,mΨ(N)−d) and then check that the output pair satis-
fies the consistency relation: md ·mΨ(N)−d ◦ 1 mod N . The author then
proposed an efficient heuristic to derive an addition chain for the pair
(d, Δ(N)−d). In this paper, we revisit this idea and propose faster meth-
ods to perform a double exponentiation. On the one hand, we present
new heuristics for generating shorter double addition chains. On the other
hand, we present an efficient double exponentiation algorithm based on
a right-to-left sliding window approach.

1 Introduction

Fault analysis is a cryptanalytic technique that takes advantage of errors occur-
ring in cryptographic computations. Such errors can be induced in a device by
physical means such as the variation of the power supply voltage, the increase in
the clock frequency or an intensive lighting of the circuit. The erroneous results
of the cryptographic computations can then be exploited in order to retrieve
some information about the secret key. Fault attacks have first been introduced
by Boneh et al. in [6] against RSA and other public key cryptosystems. In par-
ticular, they showed how to break RSA computed in CRT mode from a single
faulty signature.

Many countermeasures have been proposed to protect embedded implemen-
tations of RSA against fault attacks. They can basically be classified in two dif-
ferent categories: countermeasures based on a modulus extension and self-secure
exponentiations. The former countermeasures add redundancy in the computa-
tion by multiplicatively extending the RSA modulus. This approach was first
introduced by Shamir in [26], and then further extended in [30,1,5,10,28]. The
second approach consists in using an exponentiation algorithm that directly in-
cludes redundancy. It was first followed by Giraud in [14], who suggested to use
the Montgomery ladder exponentiation algorithm. This approach was also fol-
lowed by Bosher et al. in [8] with the square-and-multiply-always algorithm, and

J. Benaloh (Ed.): CT-RSA 2014, LNCS 8366, pp. 152–168, 2014.
c© Springer International Publishing Switzerland 2014

On Double Exponentiation for Securing RSA 153

subsequently improved by Baek [2] and by Joye and Karroumi [17]. Eventually,
Rivain proposed an alternative method in [22]. His approach is to compute a
pair (md,mΠ(N)−d) in order to check the computation consistency by the rela-
tion md · mΠ(N)−d ⊗ 1 mod N . The author then presents an efficient heuristic
to perform such a double exponentiation.

This paper revisits Rivain’s idea and presents faster methods for double ex-
ponentiation. We first propose efficient improvements of the heuristic for double
addition chains proposed in [22]. Namely, we present simple improvements that
result in a speed up of 7% compared to the original method, and we investigate
the use of sliding-window techniques to further improve its performances. On
the other hand, we describe an efficient double exponentiation algorithm based
on sliding-window technique and Yao’s exponentiation [29]. Finally, we ana-
lyze the performances of our proposals and provide a comparison of the various
self-secure exponentiation algorithms in the current literature.

2 Preliminaries

2.1 The RSA Cryptosystem

The RSA cryptosystem, introduced by Rivest, Shamir, and Adleman in 1978 [23],
is currently the most widely used public key cryptosystem in smart devices. An
RSA public key is composed of a public modulus N which is defined as the
product of two large secret primes p and q, and of a public exponent e which is
co-prime to σ(N) = (p − 1) · (q − 1) (the Euler’s totient of N). The underlying
RSA private key is composed of the public modulus N and the secret exponent
d = e−1 mod N . A signature s (or deciphering) of a message m is computed by
raising m to the power d modulo N , that is s = md mod N .

For the sake of efficiency, one often uses the Chinese Remainder Theorem
(CRT). This theorem implies that md mod N can be computed from mdp mod p
and mdq mod q where dp = d mod (p− 1) and dq = d mod (q − 1). The RSA in
CRT mode (or RSA-CRT) then consists in computing these two smaller modular
exponentiations and in combining the two results to recover the signature [13].
As pointed out in [21], this implementation reduces the size of the data stored
in memory and is roughly four times faster than the standard implementation.

For both standard RSA and RSA-CRT, the core operation of the signa-
ture/deciphering is the modular exponentiation. The efficient implementation
of RSA hence relies on an efficient exponentiation algorithm.

2.2 Addition Chains and Exponentiation

An addition chain for a positive integer a is a sequence of integers C(a) =
{ai}0≥i≥n beginning with a0 = 1 and ending with an = a such that each el-
ement is the sum of two previous elements in the sequence. Namely, for every
i ≡ {1, 2, . . . , n} there exist j, k ≡ {0, 1, . . . , i− 1} such that ai = aj + ak. An ad-
dition chain for an integer a yields a way to evaluate the exponentiationm �∪ ma

154 D.-P. Le, M. Rivain, and C.H. Tan

by computing the sequence mai = maj ·mak for i from 1 to n. Conversely, any
exponentiation process has an underlying addition chain. The problem of design-
ing efficient exponentiation algorithms can hence be considered as the problem of
finding short addition chains. A generalization of this problem whose instances
are the tuples (a1, a2, . . . , ak, n) is to find an addition chain of length n contain-
ing a1, . . . , ak (see for instance [12]). The later problem arises when one needs
to compute simultaneously the monomials ma1 , ma2 , . . . , mak given m and a1,
a2, . . . , ak. In this paper, we investigate the case k = 2; that is, given a pair of
exponent (a, b) we aim at efficiently compute m �∪ (ma,mb). An addition chain
for such a pair of exponent was called double addition chain in [22].

Given integers a and n, the decision problem of whether there exists an ad-
dition chain of length n for a is NP-complete. As a result, finding the shortest
addition chain for an exponent a is difficult on average. That is why one relies
on heuristics to perform exponentiations in practice. Some heuristics require to
perform a preprocessing of the exponent and store the indices (j, k) such that
mai = maj · mak for every i. Other heuristics decide on the multiplication to
perform at each step by processing the exponent on the fly.

A well-known such heuristic is the binary method also known as square-and-
multiplymethod. Let (aΔ−1, . . . , a1, a0)2 denote the binary expansion of a, namely
a =

⎛
i 2
iai where ai ≡ {0, 1}. The equality

ma =
⎡
i

⎢
m2i

⎞ai
=

⎡
i|ai=1

m2i

gives rise to a simple exponentiation algorithm. At each step one computes m2i

by squaring m2i−1

and then multiply it to some accumulator if ai = 1. After ρ
such steps, the accumulator contains the valuema. This process is summarized in
Algorithm 1. This algorithm processes the exponent bits, from the less significant
one to the most significant one and is hence often referred to as the right-to-left
(R2L) binary algorithm. Note that a common left-to-right variant also exists
that processes the bits in the inverse order (see for instance [19]).

Algorithm 1. R2L binary algorithm

Input: m, a = (aε−1, . . . , a1, a0)2 ∈ N

Output: ma

1. M ⇒ m
2. A1 ⇒ 1
3. for i = 0 to δ− 1 do
4. if ai = 1 then A1 ⇒ A1 ·M
5. M ⇒ M2

6. end for
7. return A1

Algorithm 2. R2L window algorithm

Input: m, a = (un−1, . . . , u1, u0)2w ∈ N

Output: ma

1. M ⇒ m
2. for u ∈ {1, 2, . . . , 2w − 1} do Au ⇒ 1
3. for i = 0 to δ− 1 do
4. if ui �= 0 then Aui ⇒ Aui ·M
5. M ⇒ M2w

6. end for
7. return

∏
u Au

u

On Double Exponentiation for Securing RSA 155

A generalization of the binary method consists in processing the exponent
by window of w bits. Let (un−1, . . . , u1, u0)2w denote the expansion of some
exponent a in radix 2w where n = ⇐log2(a)/w→, that is a =

⎛
i ui2

iw with
ui ≡ {0, 1, . . .2w − 1} and un−1 ≥= 0. The principle of the window method is
analogous to that of the binary method and is based on the equality

ma =
⎡
i

⎢
m2iw

⎞ui
=

2w−1⎡
u=1

⎤ ⎡
i|ui=u

2iw
⎥u

.

A loop is processed which applies w successive squarings in every iteration to

compute m2iw from m2(i−1)w

, and which multiplies the result to some accumu-
lator Aui . At the end of the loop each accumulator Au contains the product⎦
i|ui=u

2iw. The different accumulators are finally aggregated as
⎦
uA

u
u = ma.

The resulting algorithm is summarized in Algorithm 2. This algorithm was first
put forward by Yao in [29] and is often referred as Yao’s algorithm. It requires
more memory than the binary method (specifically 2w memory registers) but it

is faster since the number of multiplications is roughly reduced to
⎢
1+ 1−2−w

w

⎞
ρ.

3 RSA and Fault Analysis

The first fault attacks against RSA were published in the pioneering work of
Boneh et al. [6]. In particular, this paper describes a very efficient attack against
RSA in CRT mode. The principle of the so-called Bellcore attack is to corrupt
one of the two CRT exponentiations, and to exploit the difference between the
correct and faulty signatures to recover the secret prime factors of the modulus
N . For example, suppose an attacker injects a fault during the computation
of sp = mdp mod p so that the RSA computation results in a faulty signature
s̃ which is correct modulo q and faulty modulo p (i.e. s̃ ⊗ s mod q and s̃ ≥⊗
s mod p). The difference s̃− s is hence a multiple of q but is not a multiple of p,
and the prime factor q can be recovered by computing q = gcd(s̃− s,N).

Implementations of RSA in standard mode (i.e. without CRT) are also vul-
nerable to fault analysis. Some attacks have been described which target the
exponent [3], the public modulus [4,9,25] or an intermediate power of the expo-
nentiation [6,7,24]. Although these attacks require several faulty signatures for
a full recovery of the secret key, they constitute a practical threat that must be
considered by implementors.

3.1 Securing RSA against Fault Analysis

The simplest method to thwart fault analysis is to compute the signature s twice
and compare the two results. This method implies a doubling of the computation
time and it cannot detect permanent errors. A more efficient way is to verify the
signature s with the public exponent e. That is, the cryptographic device checks
whetherm ⊗ se mod N before returning the signature s. This method provides a

156 D.-P. Le, M. Rivain, and C.H. Tan

perfect security since a faulty signature is systematically detected. On the other
hand, this method is efficient as long as e is small (which is widely common), but
in the presence of a random e, it is as inefficient as the computation doubling.
Besides, in some applications (e.g. the Javacard API for RSA signature [27]),
the public exponent e is not available to the implementor. That is why, many
works have focused on finding alternative solutions.

Shamir [26] first suggested a non-trivial countermeasure that computes ex-
ponentiations with some redundancy. The principle is to perform the two CRT
exponentiations with extended moduli p · t and q · t where t is a small (random)
integer. One can then efficiently check the consistency of the computation mod-
ulo t. This method has been extended and improved in many subsequent works
[30,1,5,10,28]. In the present paper, we focus on a different approach in which the
redundancy is not included in the modular operations but at the exponentiation
level. Namely, we focus on self-secure exponentiations that provide a direct way
to check the consistency of the computation.

3.2 Self-secure Exponentiation Algorithms

The first exponentiation algorithm with built-in security against fault analysis
was proposed by Giraud in [14] and is based on the Montgomery ladder [20]. It
uses the fact that this exponentiation algorithm works with a pair of registers
(R0, R1) storing values of the form (mΨ,mΨ+1). At the end of the exponentiation
loop, the registers contain the pair of values (md−1,md), which enables to verify
the computation consistency by checking whether R0 · m well equals R1. If a
fault is injected during the computation, the coherence between R0 and R1 is
lost and the fault is detected by the final check.

Another self-secure exponentiation algorithm was proposed by Boscher et al.
[8] which is based on the right-to-left square-and-multiply-always algorithm (orig-
inally devoted to thwart simple power analysis [11]). Their algorithm works as
Algorithm 1 but it involves an additional register A0 initialized to 1, and when
di = 0 the multiplication A0 ∈ A0 ·M is processed. It is observed in [8] that the

triplet (A0, A1,M) stores (m2λ−d−1,md,m2λ) at the end of the exponentiation.
The computation consistency can be verified by checking whether A0·A1·m =M .
In case of fault injection, the relation between the three register values is broken
and the fault is detected by the final check. This approach was then generalized
by Baek in [2] to the use of the right-to-left window square-and-multiply-always
algorithm. It works as Algorithm 2 with a register A0 so that the multiplication
Aui ∈ Aui ·M is also performed whenever ui = 0. At the end of the exponenti-
ation, computing

R ∈
2w−1⎡
b=1

Auu and L∈
2w−1⎡
b=0

A2w−1−u
u ,

one then gets a triplet (R,L,M) storing (md,m2λ−d−1,m2λ) as in the
binary case. If the computation was performed correctly then the equation

On Double Exponentiation for Securing RSA 157

R ·L ·m =M must hold. The obtained self-secure exponentiation achieves better
timing performances than the previous ones: it roughly involves (1 + 1

w)ρ multi-
plications on average against 2ρ multiplications for the Giraud and Bosher et al.
schemes. In [17] Joye and Karroumi further improved this approach with a vari-
ant for the aggregation and consistency check achieving a better time-memory
trade-off than the original Baek proposal.

Remark 1. The self-secure exponentiations presented above have a drawback:
they do not provide detection of errors induced in the exponent. For instance,
if the exponent is corrupted before or during the Montgomery ladder (e.g. by
flipping the current bit in any iteration), it shall output a pair (md∗−1,md∗) where
d≤ denotes the corrupted exponent value. One hence clearly see that such a fault
is not detected by the consistency check since we still have md∗−1 · m = md∗ .
The same applies for the Bosher et al. scheme and its variants. The final triplet

in presence of a corrupted exponent equals (md∗ ,m2λ−d∗−1,m2λ) and the fault
is undetected by the consistency check. In his paper, Giraud suggests to include
integrity checks for the exponent and the loop counter in every iteration of the
exponentiation loop. In their paper, Bosher et al. suggest to recompute the read
exponent on the fly in order to check that it well matches the correct exponent
value at the end of the exponentiation (see also [16]). Although such methods
may circumvent the problem in theory, their practical implementation is not
straightforward and it might leave some unexpected flaws.

3.3 Securing Exponentiation with Double Addition Chains

In [22], Rivain introduced another principle for self-secure exponentiation. It
consists in performing a double exponentiation to compute md and mΠ(N)−d at
the same time and then checking the following consistency relation:

md ·mΠ(N)−d ⊗ 1 (mod N).

If there is no fault injected during the computation, then the above equation
well holds. Otherwise, if the computation is corrupted, it doesn’t hold with high
probability (see analysis in [22]).

In order to get an efficient self-secure exponentiation from the above principle,
one must then find a way to raisem to both powers d and σ(N)−d with the least
multiplications possible. In other words, one must find a short addition chain
containing both exponents. For such a purpose, Rivain introduces a heuristic to
compute a double addition chain for any pair of integers (a, b). To construct such
a chain, he defines a sequence {(Δi, Φi)}i starting from the pair (Δ0, Φ0) = (a, b)
down to the pair (Δn, Φn) = (0, 1) for some n ≡ N, such that the inverse sequence
is an addition chain for (a, b). Formally, he defines

(Δi+1, Φi+1) =

(Δi, Φi/2) if Δi ∅ Φi/2 and Φi is even
(Δi, (Φi − 1)/2) if Δi ∅ Φi/2 and Φi is odd
(Φi − Δi, Δi) if Δi > Φi/2.

158 D.-P. Le, M. Rivain, and C.H. Tan

Without loss of generality, b is assumed to be greater than a and the above
sequence keep Δi ∅ Φi as invariant. Moreover it is shown in [22] that there exists
n ≡ N such that (Δn, Φn) = (0, 1). Then by defining

Ψj =

{
0 if Φi ⊕ 2Δi,
1 if Φi < 2Δi,

and Υj =

{
Φi (mod 2) if Ψj = 0,
∃ if Ψj = 1,

where j = n − i, the inverse sequence (aj , bj) = (Δi, Φi) can be computed by
initializing (a0, b0) to (0, 1) and iterating

(aj+1, bj+1) =

(aj , 2bj) if Ψj+1 = 0 and Υj+1 = 0
(aj , 2bj + 1) if Ψj+1 = 0 and Υj+1 = 1
(bj, aj + bj) if Ψj+1 = 1

(1)

to finally get (an, bn) = (a, b). The sequence (Ψj , Υj) is hence a sound encoding to
process the above double addition chain. The method of [22] consists in comput-
ing the (Δi, Φi) sequence in order to derive and store the (Ψj , Υj) sequence. The
double exponentiation m �∪ (ma,mb) is then efficiently computed by evaluat-
ing the sequence (maj ,mbj) with respect to (1). According to [22], the resulting
encoding has a bit-length lower than 2.2ρ with overwhelming probability and
the underlying exponentiation involves 1.65ρ multiplications on average, where
ρ = log2 b.

4 New Heuristics for Double Addition Chains

As shown above, the problem of finding a double addition chain for a pair (a, b)
can be thought as the problem of finding a way to go from the pair (a, b) to
the pair (0, 1) using only (and the least possible) subtractions, decrementations
and divisions by two. From this starting point, Rivain’s method works with two
intermediate variables Δi and Φi according to the following principle. If Δi is close
to Φi then Φi − Δi is small so a subtraction step Φi+1 = Φi − Δi should be used.
Otherwise, if Δi is significantly lower than Φi, then Φi−Δi is not significantly lower
than Φi, so such a subtraction step should be avoided. One should rather lower Φi
so that it get closer to Δi by using a binary step Φi+1 = Φi/2 or Φi+1 = (Φi−1)/2
depending on the parity of Φi. In this section, we show that this principle can
be improved in several ways.

4.1 First Improvements

Our first improvement starts from the observation that when Φi is odd and lies
in [2Δi; 3Δi], it is more efficient to perform a subtraction step Φi+1 = Φi−Δi and
get Φi+1 ∅ 2

3Φi at the cost of one subtraction (inducing one multiplication at the
exponentiation level), rather than performing a binary step Φi+1 = (Φi − 1)/2
and get Φi+1 ∅ 1

2Φi at the cost of one decrementation and one division by two
(inducing two multiplications at the exponentiation level).

On Double Exponentiation for Securing RSA 159

Our second improvement focuses on the situation where Φi ⊕ 2kΔi for some
k ⊕ 2. In such a situation, the original method applies k binary steps involving
k divisions by two and H(r) decrementations where r = Φi (mod 2k) and H is
the Hamming weight function. We observe that if we have Δi (mod 2k) = Φi
(mod 2k) ≥= 0, then it is more efficient to perform a subtraction step Φi+1 =
Φi − Δi so that Φi+1 is a multiple of 2k. Doing so, the k next steps are divisions
by 2 and Φi is lowered by a factor 2k in k + 1 operations instead of k +H(r).

From these observations, we suggest to modify the above method by defining
the (Δi, Φi) sequence such that (Δ0, Φ0) = (a, b) and for every i ⊕ 0:

(Δi+1, Φi+1) =

⎪⎪
⎪⎪

(Φi − Δi, Δi) if Φi < 2Δi
(Δi, Φi − Δi) if (Φi ≡ [2Δi; 3Δi] and Φi is odd) or (Φi > 2Δi

and ⊆ k s.t. Δi (mod2k) = Φi (mod2k) ≥= 0)
(Δi, (Φi − α)/2) otherwise,

where α = Φi (mod2). Our simulations revealed that the double exponentiation
obtained from our heuristic involves an average of 1.55ρ multiplications, which
represents a gain of 7% compared to the original method.

Example 1. We illustrate the effectiveness of the above variant for the pair
(7, 35). For this pair, the original method gives:

(0, 1)
+−→ (1, 1)

×2 +1−−−−→ (1, 3)
×2 +1−−−−→ (1, 7)

+−−→ (7, 8)
×2 +1−−−−→ (7, 17)

×2 +1−−−−→ (7, 35)

which requires 10 multiplications at the exponentiation level. Using our improve-
ment, we obtain the chain:

(0, 1)
×2 +1−−−−∪ (0, 3)

×2 +1−−−−∪ (0, 7)
+−∪ (7, 7)

×2−−∪ (7, 14)
×2−−∪ (7, 28)

+−−∪ (7, 35)

which only needs 8 multiplications at the exponentiation level.

Encoding. We have to slightly modify the (Ψj , Υj) encoding defined in [22] in
order to include the proposed improvements. In the original proposal recalled in
Section 3.3, a step (Δi+1, Φi+1) = (Φi − Δi, Δi) is encoded by a bit Ψj = 1. On
the other hand, a step (Δi+1, Φi+1) = (Δi, (Φi − α)/2), where α = Φi (mod 2),
is encoded by a bit Ψj = 0 followed by a bit Υj = α. In order to include our
improvements, we must define an encoding for a step (Δi+1, Φi+1) = (Δi, Φi−Δi),
namely a subtraction step without swapping of the elements. We suggest to
encode every subtraction step by a bit Ψj = 1 followed by a bit Υj that equals
1 if there is no swap (i.e. Φi ⊕ 2Δi) and that equals 0 if there is a swap (i.e.
Φi < 2Δi). Specifically, we define:

Ψj =

{
0 if (Δi+1, Φi+1) = (Δi, (Φi − α/2)),
1 otherwise,

and

Υj =

Φi (mod 2) if Ψj = 0,
0 if Ψj = 1 and Φi < 2Δi,
1 if Ψj = 1 and Φi ⊕ 2Δi,

160 D.-P. Le, M. Rivain, and C.H. Tan

where j = n − i. The addition chain (aj , bj) = (Δi, Φi) can be computed by
initializing (a0, b0) to (0, 1) and iterating

(aj+1, bj+1) =

(aj , 2bj + Υj+1) if Ψj+1 = 0,
(bj , aj + bj) if Ψj+1 = 1 and Υj+1 = 0,
(aj + bj , bj) if Ψj+1 = 1 and Υj+1 = 1.

Example 2. We construct the encoding θ (7, 35) for the double addition chain
given in Example 1. First, we obtain

(Ψ0, Ψ1, Ψ2, Ψ3, Ψ4, Ψ5) = (0, 0, 1, 0, 0, 1) and (Υ0, Υ1, Υ2, Υ3, Υ4, Υ5) = (1, 1, 0, 0, 0, 1)

giving the following encoding:

θ (7, 35) = 0 1 0 1 1 0 0 0 0 0 1 1

Each pattern of two bits correspond to a single step: 00 indicates a (×2)-step,
01 indicates a (×2 + 1)-step, 10 and 11 indicate a (+)-step (with and without
swapping respectively).

4.2 Improved Method Based on Sliding Window

The original and improved methods presented above require only 3 registers to
compute a double exponentiationm �∪ (ma,mb) (one form, one formai and one
for mbj). In this section, we look at the context where more memory is available.
For a single exponentiation, window-based methods are natural extensions of the
binary method for reducing the number of multiplications. We show hereafter
how to improve the performances of double addition chains by using a sliding
window (see e.g. [18]).

In the original method, if we have Φi ⊕ 2kΔi, then the heuristic performs
k binary steps to lower Φi by a factor 2k. At the exponentiation level, this
translates by a binary exponentiation involving k squarings and an average of
k
2 multiplications. It is then natural to replace such binary exponentiation by a
more efficient sliding-window exponentiation. The principle is to precompute and
store odd values 3, 5, . . . , 2w − 1, for some widow parameter w, so that when Φi ⊕
2kΔi for some k ∅ w, we first subtract ri = Φi (mod 2k) ≡ {1, 3, . . . , 2w−1} to Φi
and then we perform k successive divisions by two (note that we assume Φi to be
odd, otherwise it is simply divided by two). This translates by a multiplication
and k squarings at the exponentiation level.

We then modify the original method by defining the sequence (Δi, Φi) such
that (Δ0, Φ0) = (a, b), and for every i ⊕ 0:

(Δi+1, Φi+1) =

(Δi, Φi/2) if Δi ∅ Φi/2 and Φi is even,
(Δi, (Φi − ri)/2

ki) if Δi ∅ Φi/2, Φi is odd,
(Φi − Δi, Δi) if Δi > Φi/2,

where ri = Φi (mod 2ki) and ki is the greatest integer in {1, 2, . . . , w} such that
Φi ⊕ 2kiΔi and 2ki−1 ∅ ri < 2ki . The latter condition means that the most

On Double Exponentiation for Securing RSA 161

significant bit of ri (viewed as a ki-bit string) is at 1. It is equivalent to the
equality ki = ◦log2(ri)⊥+ 1, which is required for our encoding (see below).

Note that the double addition chain is not strictly the inverse of the above
sequence. Since it must start with a sequence:

1
×2−−∪ 2

+1−−∪ 3
+2−−∪ 5

+2−−∪ 7
+2−−∪ · · · +2−−∪ 2w − 1

in order to precompute the odd values 3, 5, . . . , 2w − 1. This chain translates
to one square and 2w−1 − 1 multiplications to compute the powers m3, m5, . . . ,
m2w−1 at the exponentiation level. Moreover the resulting implementation has
a greater memory consumption since these precomputed powers must be stored
during the exponentiation.

Our simulations revealed that the double exponentiation obtained from our
sliding-window-based heuristic involves an average of multiplications ranging
from 1.59ρ to 1.53ρ depending on the window size. This represents a gain between
4% and 8% compared to the original method.

Example 3. We illustrate the effectiveness of our sliding-window-based method
for the pair (6, 27). For this pair, the original method gives:

(0, 1)
×2 +1−−−−∪ (0, 3)

×2−−∪ (0, 6)
+−−∪ (6, 6)

×2 +1−−−−∪ (6, 13)
×2 +1−−−−∪ (6, 27)

Using our sliding-window-based method, we obtain the chain:

(0, 1)
×2 +1−−−−∪ (0, 3)

×2−−∪ (0, 6)
+−−∪ (6, 6)

×2 ×2 +3−−−−−−−∪ (6, 27)

saving one multiplication at the exponentiation level.

Encoding. In order to define a sound encoding for our window-based double
addition chains, we define the three following sequences:

Ψj =

{
0 if Φi ⊕ 2Δi,
1 if Φi < 2Δi,

Υj =

{
Φi (mod 2) if Ψj = 0,
∃ if Ψj = 1,

and

αj =

{
(ri − 1)/2 if Ψj = 0 and Υj = 1,
∃ if Ψj = 1 or Υj = 0,

where j = n − i. Note that when ri is odd (i.e. when Υj = 1), αj is the value
obtained by shifting ri = Φi (mod 2ki) by one bit to the left, and we have
ri = 2αj + 1.

The double addition chain (aj , bj) = (Δi, Φi) can then be computed from the
(Ψj , Υj , αj) sequence by initializing (a0, b0) to (0, 1) and iterating

(aj+1, bj+1) =

(aj , 2bj) if Ψj+1 = 0 and Υj+1 = 0
(aj , 2

kibj + ri) if Ψj+1 = 0 and Υj+1 = 1
(bj, aj + bj) if Ψj+1 = 1,

where ri = 2αj + 1 and ki = ◦log2(ri)⊥+ 1.
Each step is hence encoded by a bit Ψj , followed by a bit Υj if and only if

Ψj = 0, followed by w − 1 bits encoding αj if and only if Ψj = 0 and Υj = 1.

162 D.-P. Le, M. Rivain, and C.H. Tan

Example 4. We construct the encoding θ (6, 27) for the double addition chain
given in Example 3 (with window size w = 2). First, we obtain

(Ψ0, Ψ1, Ψ2, Ψ3) = (0, 0, 1, 0) , (Υ0, Υ1, Υ2, Υ3) = (1, 0,∃, 1) ,
and

(α0, α1, α2, α3) = (0,∃,∃, 1)
giving the following encoding:

θ (6, 27) = 0 1 0 0 0 1 0 1 1

The first three bits 010 indicate a (×2 + 1)-step. The next two bits 00 indicate
a (×2)-step. The next bit 1 indicates a (+)-step. And the final three bits 011
indicate a (×2× 2 + 3)-step.

4.3 Combined Improvements

In the previous section we have introduced two different kinds of improvements
to Rivain’s heuristic for double addition chains. The purpose of our first improve-
ments is to perform subtraction steps (without swapping) instead of binary steps
in some cases where it is more advantageous to do so. The purpose of the sliding-
window method is to speed up a succession of several binary steps. These two
kinds of improvements are hence fully compatible and we can combine them by
defining the (Δi, Φi) sequence as:

(βi+1, ωi+1) =

⎧
⎪⎪⎨

⎪⎪⎩

(ωi − βi, βi) if ωi < 2βi

(βi, ωi − βi) if (ωi ∈ [2βi; 3βi] and ωi is odd) or (ωi > 2βi

and ⊗ k s.t. βi (mod 2k) = ωi (mod 2k) �= 0)

(βi, (ωi − ri)/2
ki) otherwise,

where ri = Φi (mod 2ki) and ki is the greatest integer in {1, 2, . . . , w} such that
Φi ⊕ 2kiΔi and 2ki−1 ∅ ri < 2ki . The encoding of the obtained double addition
chain (aj , bj) = (Δi, Φi) with j = n − i is easily deduced from the encodings of
both previous heuristics. Specifically, it is based on the three following sequences:

Ψj =

{
0 if Φi ⊕ 2Δi,
1 if Φi < 2Δi,

Υj =

Φi (mod 2) if Ψj = 0,
0 if Ψj = 1 and Φi < 2Δi,
1 if Ψj = 1 and Φi ⊕ 2Δi,

and

αj =

{
(ri − 1)/2 if Ψj = 0 and Υj = 1,
∃ if Ψj = 1 or Υj = 0,

where j = n− i. The double addition chain (aj , bj) = (Δi, Φi) can finally be com-
puted from the (Ψj , Υj , αj) sequence by initializing (a0, b0) to (0, 1) and iterating

(aj+1, bj+1) =

⎪⎪
⎪⎪

(aj , 2bj) if (Ψj+1, Υj+1) = (0, 0),
(aj , 2

kibj + ri) if (Ψj+1, Υj+1) = (0, 1),
(bj , aj + bj) if (Ψj+1, Υj+1) = (1, 0),
(aj + bj , bj) if (Ψj+1, Υj+1) = (1, 1),

where ri = 2αj + 1 and ki = ◦log2(ri)⊥+ 1.

On Double Exponentiation for Securing RSA 163

5 Sliding-Window Double Exponentiation

In the previous section, we have presented several heuristics for double addi-
tion chain improving the original method from [22]. These heuristics give rise
to efficient double exponentiation algorithms with different time-memory trade-
offs (see Section 6 for a detailed comparison). However, these algorithms have
a drawback in practice: they require the precomputation of the chain encoding
(involving the evaluation of the (Δi, Φi) sequence). Although this precomputa-
tion only involves simple operations compared to the modular multiplications
used in the exponentiation, it might not be negligible in practice, especially for
implementations using a hardware accelerator for modular arithmetic (which is
common in smart cards and other embedded systems).

In this section, we propose an alternative by describing an efficient double
exponentiation algorithm that does not rely on any form of precomputation.
Our proposed algorithm is a generalization of Yao algorithm for the double
exponentiation scenario and it is based on a sliding window approach.

Algorithm 3. Sliding-Window Double Exponentiation

Input: m, a, b
Output: (ma,mb)
1. M ⇒ m
2. for d ∈ {1, 3, . . . , 2w − 1} do
3. Ad ⇒ 1 ; Bd ⇒ 1
4. end for
5. for i = 0 to δ− 1 do
6. if (ai = 1) then
7. d ⇒ (ai+w−1, . . . , ai+1, ai)2
8. Ad ⇒ Ad ·M
9. a ⇒ a− 2id
10. endif
11. if (bi = 1) then
12. d ⇒ (bi+w−1, . . . , bi+1, bi)2
13. Bd ⇒ Bd ·M
14. b ⇒ b− 2id
15. endif
16. M ⇒ M2

17. end for
18. A1 ⇒∏

d A
d
d

19. B1 ⇒ ∏
d B

d
d

20. return (A1, B1)

In a nutshell, the proposed algorithm works as two parallel executions of Yao’s
algorithm (see Algorithm 2), by using two sets of 2w−1 accumulators: A1, A3,
. . . , A2w−1 for exponent a, and B1, B3, . . . , B2w−1 for exponent b. On the
other hand, a single register M is used and the squarings involved to derive the

164 D.-P. Le, M. Rivain, and C.H. Tan

successive powers m, m2, m4, ..., m2λ are computed only once, which results in
a saving of ρ squarings compared to two independent applications of Algorithm
2. Moreover, for the sake efficiency, we use a sliding window rather than a fixed
window. Namely, instead of cutting the exponent in n fixed windows of w bits,
each bit is treated from the less significant one to the most significant one. If
the current bit ai equals 0, the algorithm just squares M and continue with the
next bit. Otherwise if ai equals 1, then the algorithm processes the current w-bit
digit d =

⎛j=w−1
j=0 ai+j2

j by multiplying M to the corresponding accumulator

Ad, and by setting the next w bits of a to 0 with a∈ a− 2id. The same process
is performed simultaneously for the exponent b and corresponding accumulators.

The explicit description of the obtained double exponentiation is given in
Algorithm 3. This algorithm involves ρ squarings as a regular sliding window
exponentiation. On the other hand, it involves twice more multiplications, that
is 2 × Δ

w+1 multiplications on average for the exponentiation loop. For the ag-
gregation, we adapt the method proposed in [15] for fixed window algorithms to
the case of sliding-window algorithms. Specifically, the aggregation is computed
as follows:

1. M ∈ A2w−1
2. for d = 2w − 3 to 3 step i∈ i− 2 do
3. Ad ∈ Ad ·Ad+2

4. M ∈M · Ad
5. end for
6. A1 ∈M2 · A3 ·A1

The above process takes 2w − 1 multiplications, and it must be performed twice
(in steps 18 and 19 of Algorithm 3). This makes a total of

⎢
1+ 2

w+1

⎞
ρ+2w+1−2

multiplications on average.

Example 5. We illustrate hereafter the processing of Algorithm 3 by detailing
the successive values of the pair (a, b) and the different registers between each
loop iteration for the input pair of exponents (14, 25):

⎛
⎜⎜⎝

(a, b)
M

(A1, A3)
(B1, B3)

⎞
⎟⎟⎠ :

⎛
⎜⎜⎝

(29, 50)
m

(1, 1)
(1, 1)

⎞
⎟⎟⎠ →

⎛
⎜⎜⎝

(28, 50)

m2

(m, 1)
(1, 1)

⎞
⎟⎟⎠ →

⎛
⎜⎜⎝

(28, 48)

m4

(m, 1)

(m2, 1)

⎞
⎟⎟⎠ →

⎛
⎜⎜⎜⎝

(16, 48)

m8

(m,m4)

(m2, 1)

⎞
⎟⎟⎟⎠ →

⎛
⎜⎜⎜⎝

(16, 48)

m16

(m,m4)

(m2, 1)

⎞
⎟⎟⎟⎠ →

⎛
⎜⎜⎜⎝

(0, 0)

m32

(m17,m4)

(m2,m16)

⎞
⎟⎟⎟⎠

At the end of the exponentiation loop we well have m17 · ⎢m4
⎞3

= m29 on the

one hand and m2 · ⎢m16
⎞3

= m50 on the other hand.

6 Performances and Comparison

In this section, we provide performance figures for our proposals and we com-
pare them with other self-secure exponentiations in the literature. Basically, we
consider:

On Double Exponentiation for Securing RSA 165

– the binary self-secure exponentiations by Giraud [14] (Montgomery
ladder) and by Bosher et al. [8] (square and multiply always),

– the w-ary square-and-multiply-always (w-ary SMA) method by
Baek [2], with the Joye-Karroumi improvement [17],

– the double addition chain method by Rivain [22],

– the improved heuristics for double addition chains described in Sec-
tion 4 of this paper,

– the sliding-window double exponentiation described in Section 5 of
this paper.

The performances of the different methods are summarized in Table 1, for
exponent bit-length ρ ≡ {512, 1024, 2048}, and for various window sizes. Specifi-
cally, we give the average number of multiplications per bit of the exponent as
well as the number of ρ-bit memory registers require by each self-secure expo-
nentiation. We also give the memory overhead required to store the exponent,
the chain encoding (for Rivain’s method and our improvements) or the pair of
exponents (for the double exponentiation described in Section 5). This overhead
is given in number of required ρ-bit registers.

Table 1. Performances of various self-secure exponentiations

Window Multiplications/bit Reg. Memory
size δ = 512 δ = 1024 δ = 2048 overhead

Binary exp. [14,8] - 2 2 2 3 1

w = 2 1.52 1.51 1.50 5 1
w-ary SMA [2,17] w = 3 1.37 1.35 1.34 9 1

w = 4 1.32 1.26 1.27 17 1
w = 5 1.34 1.28 1.23 33 1
w = 6 1.43 1.29 1.23 65 1

Double addition chain [22] - 1.66 1.66 1.66 3 2.2

First improvements (§4.1) - 1.55 1.55 1.55 3 3.19

w = 2 1.59 1.59 1.59 4 1.74
Sliding-window w = 3 1.56 1.56 1.56 6 1.89
improvement (§4.2) w = 4 1.54 1.54 1.54 10 2.09

w = 5 1.54 1.54 1.53 18 2.31
w = 6 1.55 1.54 1.53 34 2.55

w = 2 1.55 1.55 1.55 4 2.57
Combined w = 3 1.54 1.54 1.54 6 2.56
improvements (§4.3) w = 4 1.53 1.53 1.53 10 2.66

w = 5 1.53 1.52 1.52 18 2.78
w = 6 1.54 1.53 1.52 34 2.92

w = 2 1.68 1.67 1.67 5 2
Sliding-window double w = 3 1.53 1.51 1.51 9 2
exponentiation (§5) w = 4 1.46 1.43 1.42 17 2

w = 5 1.46 1.39 1.36 33 2
w = 6 1.53 1.40 1.35 65 2

166 D.-P. Le, M. Rivain, and C.H. Tan

We see that our techniques provide significant improvements of the original
heuristic for double addition chain proposed in [22]. The first improved heuristic
(Section 4.1) is roughly 7% faster than the original method, whereas the window-
based method is 4% to 8% faster depending on the window size. When combined,
the two kind of improvements provide a performance gain between 7% and 9%.
On the other hand the double exponentiation algorithm described in Section 5
achieves a speed up factor up to 19% depending on the available memory and
the exponent length. In comparison, Baek w-ary self-secure exponentiation is
roughly 10% faster for a similar memory consumption. However our algorithms
(as Rivain’s initial proposal) have the advantage of inherently protecting the
implementation against corruption of the exponent whereas all other proposals
require additional countermeasures for this purpose (see Remark 1).

7 Conclusion

In this paper we have revisited double exponentiation algorithms for fault-
analysis resistant RSA. We have introduced new variants of Rivain’s heuristic
for double addition chains that achieve speed up factors up to 9%. We have
also presented a generalization of Yao’s right-to-left exponentiation to efficiently
perform a double exponentiation. This algorithm achieves a performance gain
up to 19% compared to the original double addition chain exponentiation, while
requiring no precomputation. These improvements are of interest as self-secure
exponentiations based on double exponentiation are currently the only ones that
protect the exponent from fault attacks (whereas other self-secure exponentia-
tions need additional countermeasures to this aim).

Interesting open issues include the design of more efficient double exponen-
tiation algorithms (either based on addition chains or not), as well as the in-
vestigation of alternative approaches for designing self-secure exponentiation
algorithms.

References

1. Aumüller, C., Bier, P., Fischer, W., Hofreiter, P., Seifert, J.-P.: Fault Attacks
on RSA with CRT: Concrete Results and Practical Countermeasures. In: Kaliski
Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 260–275.
Springer, Heidelberg (2003)

2. Baek, Y.J.: Regular 2w-ary right-to-left exponentiation algorithm with very ef-
ficient dpa and fa countermeasures. International Journal of Information Secu-
rity 9(5), 363–370 (2010)

3. Bao, F., Deng, R., Han, Y., Jeng, A., Narasimhalu, A.D., Ngair, T.-H.: Breaking
Public Key Cryptosystems an Tamper Resistance Devices in the Presence of Tran-
sient Fault. In: Christianson, B., Crispo, B., Lomas, M., Roe, M. (eds.) Security
Protocols 1997. LNCS, vol. 1361, pp. 115–124. Springer, Heidelberg (1998)

4. Berzati, A., Canovas, C., Goubin, L.: Perturbating RSA Public Keys: An Improved
Attack. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 380–395.
Springer, Heidelberg (2008)

On Double Exponentiation for Securing RSA 167

5. Blömer, J., Otto, M., Seifert, J.P.: A New RSA-CRT Algorithm Secure against
Bellcore Attacks. In: Jajodia, S., Atluri, V., Jaeger, T. (eds.) ACM Conference
on Computer and Communications Security, CCS 2003, pp. 311–320. ACM Press
(2003)

6. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the Importance of Checking Cryp-
tographic Protocols for Faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS,
vol. 1233, pp. 37–51. Springer, Heidelberg (1997)

7. Boreale, M.: Attacking Right-to-Left Modular Exponentiation with Timely Ran-
dom Faults. In: Breveglieri, L., Koren, I., Naccache, D., Seifert, J.-P. (eds.) FDTC
2006. LNCS, vol. 4236, pp. 24–35. Springer, Heidelberg (2006)

8. Boscher, A., Naciri, R., Prouff, E.: CRT RSA Algorithm Protected Against Fault
Attacks. In: Sauveron, D., Markantonakis, K., Bilas, A., Quisquater, J.-J. (eds.)
WISTP 2007. LNCS, vol. 4462, pp. 229–243. Springer, Heidelberg (2007)

9. Brier, E., Chevallier-Mames, B., Ciet, M., Clavier, C.: Why one should also secure
rsa public key elements. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS,
vol. 4249, pp. 324–338. Springer, Heidelberg (2006)

10. Ciet, M., Joye, M.: Practical Fault Countermeasures for Chinese Remaindering
Based RSA. In: Breveglieri, L., Koren, I. (eds.) Workshop on Fault Diagnosis and
Tolerance in Cryptography, FDTC 2005, pp. 124–132 (2005)

11. Coron, J.-S.: Resistance against Differential Power Analysis for Elliptic Curve
Cryptosystems. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717,
pp. 292–302. Springer, Heidelberg (1999)

12. Downey, P., Leong, B., Sethi, R.: Computing Sequences with Addition Chains.
SIAM Journal on Computing 10(3), 638–646 (1981)

13. Garner, H.L.: The residue number system. IRE Transactions on Electronic Com-
puters (2), 140–147 (1959)

14. Giraud, C.: An RSA Implementation Resistant to Fault Attacks and to Simple
Power Analysis. IEEE Transactions on Computers 55(9), 1116–1120 (2006)

15. Joye, M.: Highly Regular m-Ary Powering Ladders. In: Jacobson Jr., M.J., Rijmen,
V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867, pp. 350–363. Springer,
Heidelberg (2009)

16. Joye, M.: A Method for Preventing “Skipping” Attacks. In: 2012 IEEE Symposium
on Security and Privacy Workshops, pp. 12–15. IEEE Computer Society (2012)

17. Joye, M., Karroumi, M.: Memory-Efficient Fault Countermeasures. In: Prouff, E.
(ed.) CARDIS 2011. LNCS, vol. 7079, pp. 84–101. Springer, Heidelberg (2011)

18. Koc, C.K.: Analysis of Sliding Window Techniques for Exponentiation. Computers
and Mathematics with Applications 30, 17–24 (1995)

19. Menezes, A.J., Vanstone, S.A., Oorschot, P.C.V.: Handbook of Applied Cryptog-
raphy, 1st edn. CRC Press, Inc. (1996)

20. Montgomery, P.L.: Speeding the Pollard and Elliptic Curve Methods of Factoriza-
tion. Mathematics of Computation 48(177), 243–264 (1987)

21. Quisquater, J.J., Couvreur, C.: Fast decipherment algorithm for rsa public-key
cryptosystem. Electronics Letters 18(21), 905–907 (1982)

22. Rivain, M.: Securing RSA against Fault Analysis by Double Addition Chain Ex-
ponentiation. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 459–480.
Springer, Heidelberg (2009)

23. Rivest, R., Shamir, A., Adleman, L.: A Method for Obtaining Digital Signa-
tures and Public-Key Cryptosystems. Communications of the ACM 21(2), 120–126
(1978)

168 D.-P. Le, M. Rivain, and C.H. Tan

24. Schmidt, J., Herbst, C.: A Practical Fault Attack on Square and Multiply. In:
Breveglieri, L., Gueron, S., Koren, I., Naccache, D., Seifert, J.P. (eds.) Fault Diag-
nosis and Tolerance in Cryptography – FDTC 2008, pp. 53–58 (2008)

25. Seifert, J.-P.: On authenticated computing and rsa-based authentication. In: Atluri,
V., Meadows, C., Juels, A. (eds.) Proceedings of the 12th ACM Conference on Com-
puter and Communications Security, CCS 2005, Alexandria, VA, USA, November
7-11, pp. 122–127. ACM (2005)

26. Shamir, A.: Improved Method and Apparatus for Protecting Public Key Schemes
from Timing and Fault Attacks. Patent WO9852319 (November 1998); Also pre-
sented to EUROCRYPT 1997 rump session

27. Sun Microsystems: Application Programming Interface – Java CardTM Plateform,
Version 2.2.2 (March 2006), http://java.sun.com/
products/javacard/specs.html

28. Vigilant, D.: RSA with CRT: A New Cost-Effective Solution to Thwart Fault At-
tacks. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 130–145.
Springer, Heidelberg (2008)

29. Yao, A.C.C.: On the evaluation of powers. SIAM Journal on Computing 5(1),
100–103 (1976)

30. Yen, S.M., Joye, M.: Checking Before Output May Not Be Enough Against Fault-
Based Cryptanalysis. IEEE Transactions on Computers 49(9), 967–970 (2000)

http://java.sun.com/products/javacard/specs.html
http://java.sun.com/products/javacard/specs.html

On the Practical Security of a Leakage Resilient

Masking Scheme

Emmanuel Prouff1, Matthieu Rivain2, and Thomas Roche1

1 ANSSI, 51, Bd de la Tour-Maubourg, 75700 Paris 07 SP, France
firstname.name@ssi.gouv.fr

2 CryptoExperts, 41, Bd des Capucines, 75002 Paris, France
matthieu.rivain@cryptoexperts.com

Abstract. Implementations of cryptographic algorithms are vulnerable
to Side-Channel Analyses extracting information from the device be-
haviour. When such an attack targets the manipulation of several, say d,
intermediate variables then it is said to be a dth-order one. A privileged
way to circumvent this type of attacks is to split any key-dependent vari-
able into n shares, with n > d, and to adapt the internal processing in
order to securely operate on these shares. The latter step is often very
tricky and few schemes have been proposed which address this issue in
a sound way.

At Asiacrypt 2012, Balasch et al. proposed a new scheme based on
the inner-product sharing introduced the same year by Dziembowski and
Faust at TCC. This scheme is the first one to aim at provable security
in two different security models: the continuous bounded-range leakage
model and the dth-order side-channel security model (sometimes called
d-probing model).

In this paper, we contradict the dth-order security claim by exhibiting
some first-order information leakages. Namely, we show that some inter-
mediate variables of the scheme depend on secret information whatever
the number of shares. This result is of importance since this kind of flaw
is considered as a dead-end point when evaluating the practical security
of an implementation. To illustrate the effectiveness of the flaw, we per-
form an information theoretic evaluation of the first-order leakage and
we provide simulation results for a standard side-channel attack against
the scheme.

1 Introduction

In the nineties, Kocher et al. showed in [13,14] that cryptosystems implemented
in embedded devices are vulnerable to a new kind of attacks called Side-Channel
Analysis (SCA for short). These attacks exploit the fact that the device be-
haviour (e.g. its power consumption) depends on the logical values being pro-
cessed, which leaks information about the algorithm secret parameter. Since
Kocher et al.’s original publications, efficient countermeasures have been de-
veloped which essentially consist in implementing the algorithms such that no
intermediate variable depends on both a public value and a guessable part of the
secret. The efforts made by researchers to design efficient countermeasures and

J. Benaloh (Ed.): CT-RSA 2014, LNCS 8366, pp. 169–182, 2014.
c© Springer International Publishing Switzerland 2014

170 E. Prouff, M. Rivain, and T. Roche

advanced side-channel attacks gave rise to a new research area and to a huge
number of publications. In particular, the original attack of [14] was refined to
exploit the leakage on several intermediate variables simultaneously [17]. The
so-called higher-order SCA has been widely studied and improved since then,
and its practicality has been demonstrated in several papers [15, 18, 25].

To defeat side-channel attacks, the secret sharing techniques (akamasking) are
today considered as a good way to design effective countermeasures. They can in-
deed be applied to get implementations with a scalable security, parametrized by
the number of shares and some physical properties of the device [5,20]. The core
principle of a masking scheme is to split any sensitive variable occurring in the
computation into several (say n) shares, and to process elementary operations
on them. The scheme must further ensure that each tuple of intermediate results
is independent of any secret-dependent value as long as the tuple size is lower
than some threshold d. The latter property is usually called dth-order security
property. The construction of dth-order secure masking schemes is of great inter-
est for the embedded security community and several works have been published
to deal with this issue in the particular context of block cipher implementations.

Related Works. The first scheme achieving dth-order security for an arbitrary
chosen d has been designed by Ishai, Sahai and Wagner in [11]. The here-called
ISW scheme consists in masking the Boolean representation of an algorithmwhich
is composed of logical operations NOT and AND. Most subsequent schemes fol-
low the same strategy and essentially reduces the problem of defining a masking
scheme for the entire block cipher algorithm to the problem of defining masking
schemes for the internal elementary operations, often the addition and multiplica-
tion over some finite field. The security of the scheme is then proved locally (i.e. for
every elementary operations) in a first place, and then globally by composing se-
cure elementary computations with mask-refreshing steps.

In [23], Rivain and Prouff extend the ISW scheme to efficiently protect an AES
computation. The obtained scheme is based on Boolean masking (i.e. interme-
diate variables are shared using the bitwise addition), and it uses an number of
n = d + 1 shares to achieve the dth-order security property. Subsequent works
have been published to extend and improve this scheme [4, 6, 12]. In a recent pa-
per [20], Prouff and Rivain provide an alternative security proof for these kinds of
Bollean masking schemes. They consider an adversary who is not limited in the
number of intermediate variables that can be observed, but who get some noisy
leakage on every elementary computation of the algorithm.Provided that the noise
amount can be increased (linearly with the masking order d), and that a leak-free
mask-refreshing procedure can be used, the authors show that the overall sensitive
information leakage can be made negligible with respect to the masking order.

An alternative to the above Boolean masking schemes has further been pro-
posed by Genelle et al. [9] to secure an AES computation by mixing additive
and multiplicative sharings, and by involving the ISW scheme to secure the
conversion between one sharing to another.

In [22], Prouff and Roche propose masking schemes for the addition and mul-
tiplication of variables split thanks to Shamir’s secret sharing [24]. The proposed

On the Practical Security of a Leakage Resilient Masking Scheme 171

schemes are straightforward applications of those in [2] in the context of secure
multi-party computation (MPC for short). The dth-order security property is also
directly deduced from the collusion resistance of the secure MPC schemes. It is
moreover proved that this security is not impacted by the presence of hardware
glitches which are common in CMOS technology [16]. Eventually, the authors
of [22] argue that the algebraic complexity of Shamir’s sharing compared to
the Boolean masking significantly reduces the amount of information leakage.
A counterpart of this masking strength and of the resistance to glitches is that
the complexity of multiplication scheme is O(n3) which is higher than the O(n2)
complexity for the multiplication in ISW-based masking schemes.

Recently, another approach has been followed by Balasch et al.’s [1] to con-
struct a secure higher-order masking scheme. The initial purpose of this scheme
is to benefit the complexity advantage of [23] and the security advantages of [22].
Namely, the proposed addition and multiplication schemes have respective com-
plexities O(n) and O(n2), and enjoy masking strength and resistance to glitches.
For such a purpose, the authors use the inner-product secret sharing (IP-sharing
for short) introduced by Dziembowski and Faust [7] to construct leakage resilient
circuits. The principle of the IP-sharing is to randomly split each intermediate
variable V into n shares Ri and n non-zero shares Li such that

V = (L1 ⊗R1)≡ (L2 ⊗R2)≡ · · · ≡ (Ln ⊗Rn) ,

where ≡ and ⊗ are respectively the addition and multiplication laws over some
finite field. In both cases, proofs are given for two different security models: the σ-
limited security model (often referred to as the continuous bounded-range leakage
model) for n � 130 (see Section 4 of [1]), and the dth-order security model, with
d = n−1, for any n � 2 (see definitions page 8 of [1]). Those two security proofs
together with the masking strength and the resistance to glitches make Balasch
et al. scheme a valuable alternative to previous higher-order masking schemes.

Our Contribution. In this paper, we contradict the dth-order security claim
made by Balasch et al. for their IP masking scheme. We indeed exhibit a first-
order flaw in the addition and mask-refreshing schemes for any chosen sharing
order n. This result is of importance since this kind of flaw is considered as
a dead-end point when evaluating the practical security of an implementation.
Indeed, a first-order attack is much less influenced by the leakage noise than
higher-order attacks are. To confirm this, we quantify the amount of leaking
information for different signal-to-noise ratios (SNRs) and we present simula-
tions demonstrating the practicality of the exhibited attacks when the SNR is
reasonably small.

2 Inner Product Masking Scheme

Let us first recall the basic principle of IP masking. In the following, Fq will
denote some field of characteristic 2 (i.e. q = 2m for some m � 1), and let ≡ and
⊗ denote respectively the addition and the multiplication over Fq. The inner

172 E. Prouff, M. Rivain, and T. Roche

product between two vectors X = (X1, X2, . . . , Xn) and Y = (Y1, Y2, . . . , Yn)
from F

n
q is denoted by:

〈X,Y ∪ = (X1 ⊗ Y1)≡ (X2 ⊗ Y2)≡ · · · ≡ (Xn ⊗ Yn) .

The principle of the IP masking scheme is to manipulate every sensitive vari-
able V as a sharing composed of 2n elements, namely the coordinates of two
vectors L = (L1, L2, . . . , Ln) and R = (R1, R2, . . . , Rn) such that V = 〈L,R∪.
In order to prevent a direct first-order flaw, the coordinates of L are randomly
drawn from F

≥
q = Fq\{0}.

To perform computation in the masked domain, the authors of [1] define an ad-
dition scheme IPAdd and amultiplication scheme IPMult to securely process those
operations on shared variables.Both schemes are themselves based on two building
blocks: the IPHalfMask and IPRefresh procedures, which are recalled hereafter.1

The IPHalfMask procedure (Algorithm 1) takes a variable V ⇐ Fq and a
half sharing L ⇐ (F≥q)

n and it outputs random half sharing R ⇐ F
n
q satisfying

V = 〈L,R∪.

Algorithm 1. Half-Masking a variable: (L,R) ◦ IPHalfMask(V,L)
Input: a variable V ∈ Fq and a vector L of non-zero shares
Output: a sharing R such that V = ⇒L,R〉
1. for i = 2 to n do Ri ◦ rand()

2. R1 ◦ (V →⊕n
i=2 Li ⊗Ri)⊗ L−1

1

3. return R

Remark 1. As it can be seen in Algorithm 1, the half-sharing R statistically
depends on V . This explains why the security order of the masking is upper
bounded by n (the number of shares Ri). In Section 4, the amount of information
leaking through the manipulation of the shares Ri will be compared to the flaw
exhibited in this paper.

The IPRefresh procedure (Algorithm 2), takes a sharing (L,R) and computes
a new fresh sharing (L≤,R≤) such that 〈L≤,R≤∪ = 〈L,R∪.

Algorithm 2. Refresh Vector: (L∗,R∗) ◦ IPRefresh(L,R)
Input: a sharing (L,R) of V
Output: New sharing (L∗,R∗) such that ⇒L,R〉 = ⇒L∗,R∗〉
1. L∗ ◦ (randNonZero())n

2. for i = 1 to n do Ai ◦ Li → L∗
i [A ◦ L →L∗]

3. X ◦ ⇒A,R〉
4. B ◦ IPHalfMask(X,L∗)
5. R∗ ◦ R→B

6. return (L∗,R∗)

1 We do not use the algorithmic presentation from [1] involving two different processors
as it is useless for the analysis of the dth-order security model.

On the Practical Security of a Leakage Resilient Masking Scheme 173

Remark 2. In Algorithm 2, the Steps (1-2) for generating A does not correspond
to what is described in [1]. We chose this algorithm for simplicity and because
it has no incidence whatsoever on the following.

We now recall the masked addition IPAdd and the masked multiplication
IPMult in the two following algorithms.

Algorithm 3. Masked Addition: (X ,Y) ◦ IPAdd((L,R), (K,Q))
Input: Two sharings (L,R) and (K,Q) of V and V ∗ respectively
Output: New sharing (X ,Y) such that ⇒X ,Y 〉 = V → V ∗

1. (A,B) ◦ IPRefresh(K,Q→R)

2. (C,D) ◦ IPRefresh(L→K,R)

3. Z ◦ ⇒C,D〉
4. Y ◦ IPHalfMask(Z,A)

5. X ◦ A

6. Y ◦ Y →B

7. return (X ,Y)

Algorithm 4. Masked Multiplication: (X ,Y) ◦ IPMult((L,R), (K,Q))
Input: Two sharings (L,R) and (K,Q) of V and V ∗ respectively
Output: New sharing (X ,Y) such that ⇒X ,Y 〉 = V ⊗ V ∗

1. for i = 0 to n− 1 do

2. for j = 1 to n do

3. Ũi∗n+j ◦ Li+1 ⊗Kj

4. Ṽi∗n+j ◦ Ri+1 ⊗Qj

5. end for

6. end for

7. (U ,V) ◦ IPRefresh(Ũ , Ṽ)

8. A ◦ (U1, · · · , Un); C ◦ (Un+1, · · · , Un2)

9. B ◦ (V1, · · · , Vn); D ◦ (Vn+1, · · · , Vn2)

10. Z ◦ ⇒C,D〉
11. Y ◦ IPHalfMask(Z,A)

12. X ◦ A

13. Y ◦ Y →B

14. return (X ,Y)

3 A First-Order Flaw

Balasch et al. claim that their IP masking scheme is secure against any side-
channel attack of order d = n − 1, or equivalently, that any family of n − 1

174 E. Prouff, M. Rivain, and T. Roche

intermediate variables is independent of any sensitive variable. We contradict
this claim hereafter by showing that for any fixed parameter n, there always
exists a first-order side-channel attack on the IP masking scheme. To this end, we
exhibit an intermediate variable that is statistically dependent on some sensitive
variable in both the IPRefresh and IPAdd procedures (Algorithms 2 and 3,
Section 2).

3.1 Core Idea of the Attack

For the sake of clarity, we start by developing the core idea of our attack in
the IPRefresh setting. Then, we show that a similar flaw occurs in the IPAdd

scheme.

Flaw in Mask-Refreshing Procedure. The IPRefresh procedure takes an
IP masking (L,R) of V and returns a fresh masking (L≤,R≤) of it. The first
steps of the procedure generate a random vector A ⇐ F

n
q whose coordinates are

all different from the corresponding ones in L (as Ai = Li ≡ L≤i and L
≤
i →= 0 for

every i). The next steps compute X = 〈A,R∪ that is X = 〈L ≡ L≤,R∪ where
L and L≤ are mutually independent and both uniformly distributed over (F≥q)n.
The first-order flaw exhibited in this paper comes from the manipulation of
this variable X . Indeed, we will prove in the following sections that this variable
statistically depends on V , which implies that its manipulation leaks information
on V contrary to what is claimed in [1]. Our dependency proof will consist in
showing that the probability mass functions (pmf) Pr[X | V = v] differ according
to v. Thanks to the following lemma, the study of the latter functions is reduced
to the study of a simpler function fn.

Lemma 1. Let L, L≤ and R be three mutually independent random variables
such that L and L≤ are uniformly distributed over (F≥q)

n and R is uniformly
distributed over F

n
q . Let X and V respectively denote the result of the inner

products 〈L ≡ L≤,R∪ and 〈L,R∪. Then, for any (x, v) ⇐ F
2
q, the probability

Pr[X = x | V = v] satisfies:

Pr[X = x | V = v] =
fn(v, x≡ v)

Pr[V = v]
, (1)

where fn is defined for every (a, b) ⇐ F
2
q by:

fn(a, b) = Pr[〈L,R∪ = a ≥ 〈L≤,R∪ = b] . (2)

Proof. By definition of a conditional probability, we have:

Pr[X = x | V = v] =
Pr[V = v ≥X = x]

Pr[V = v]
=

Pr[V = v ≥X ≡ V = x≡ v]

Pr[V = v]
.

Then, from Pr[V = v ≥ X ≡ V = x ≡ v] = Pr[〈L,R∪ = v ≥ 〈L≤,R∪ = x ≡ v] =
fn(v, x≡ v) we get (1). �

On the Practical Security of a Leakage Resilient Masking Scheme 175

Flaw in the Addition Procedure. The IPAdd procedure is subject to a
similar flaw that IPRefresh. Indeed at Step 3 of Algorithm 3, a variable Z =
〈C,D∪ = 〈L ≡K,R∪ is computed, where L and K are mutually independent
and both uniformly distributed over (F≥q)

n. Therefore, Lemma 1 applies directly
(just by replacing the notation L≤ by K) and we get:

Pr[Z = z | V = v] =
fn(v, z ≡ v)

Pr[V = v]
. (3)

Hence, for the addition procedure, proving that Z leaks information on V reduces
to prove that fn is not constant with respect to v ⇐ Fq (as for IPRefresh).

The purpose of the next section is to study the function fn defined in Lemma 1
and to explicit its expression. In Section 3.3 those expressions will be evaluated
to quantify the information flaw.

3.2 Study of fn

The study of fn developed in this section is recursive. First, in Lemma 2, we
give an explicit expression for f1. Then, in Lemma 3, we exhibit a recursive
relationship for fn. Both lemmas are eventually involved to provide an explicit
expression of fn (Theorem 1).

Lemma 2. The function f1 satisfies

f1(a, b) =

⎛⎡
⎢

1
q if (a, b) = (0, 0)

0 if (a, b) ⇐ ({0} × F
≥
q) ∈ (F≥q × {0})

1
q(q−1) if (a, b) ⇐ F

≥
q × F

≥
q

Proof. When n equals 1, vectors A and B are respectively reduced to a single
coordinate A1 and B1. Since those coordinates are non-zero by definition, f1
satisfies:

f1(0, 0) = Pr[A1 ⊗R1 = 0 ≥B1 ⊗R1 = 0] = Pr[R1 = 0] =
1

q
.

Moreover, for any a →= 0, we have

f1(a, 0) = Pr[R1 = a⊗A−11 ≥R1 = 0] = 0 ,

which, by symmetry of fn, also implies f1(0, b) = 0 for any b →= 0.
Eventually, the law of total probability together with the mutual independence
between A1, B1 and R1, imply

f1(a, b) =
⎞

a1∈F∗
q

Pr[A1 = a1]× Pr[R1 = a⊗ a−11 ≥B1 ⊗R1 = b] ,

176 E. Prouff, M. Rivain, and T. Roche

which gives for a →= 0 and b →= 0:

f1(a, b) =
⎞

a1∈F∗
q

Pr[A1 = a1]× Pr[R1 = a⊗ a−11 ≥B1 = b⊗ a−1 ⊗ a1]

=
1

q(q − 1)
.

�
Lemma 3. For every n � 1, there exist real values f00

n , f01
n and f11

n such that

fn(a, b) =

⎛⎡
⎢
f00
n if (a, b) = (0, 0)
f01
n if (a, b) ⇐ ({0} × F

≥
q) ∈ (F≥q × {0})

f11
n if (a, b) ⇐ F

≥
q × F

≥
q

.

Moreover, we have

f00
n+1 =

1

q
f00
n +

q − 1

q
f11
n ,

f01
n+1 =

2

q
f01
n +

q − 2

q
f11
n ,

f11
n+1 =

1

q(q − 1)
f00
n +

2(q − 2)

q(q − 1)
f01
n +

(q − 1) + (q − 2)2

q(q − 1)
f11
n .

Proof. The first statement is true for n = 1 by Lemma 2. It is then implied
by recurrence from the second statement. Therefore, we only need to show the
latter statement.

For every n > 1, the total probability law implies

fn+1(a, b) =
⎞

(a0,b0)∈F2
q

fn(a≡ a0, b≡ b0)f1(a0, b0) . (4)

1. For (a, b) = (0, 0), the terms in the sum in (4) equal T (a0, b0) =
fn(a0, b0)f1(a0, b0). Moreover, by Lemma 2, the latter product satisfies:

T (a0, b0) =

⎛⎡
⎢

1
q fn(0, 0) if (a0, b0) = (0, 0)

0 if (a0, b0) ⇐ ({0} × F
≥
q) ∈ (F≥q × {0})

1
q(q−1)fn(a0, b0) if (a0, b0) ⇐ F

≥
q × F

≥
q

.

We deduce

fn+1(a, b) =
1

q
f00
n + (q − 1)2

1

q(q − 1)
f11
n . (5)

2. For (a, b) ⇐ {0} × F
≥
q , the terms in the sum in (4) equal T (a0, b0) =

fn(a0, b≡b0)f1(a0, b0). Moreover, by Lemma 2, the latter product satisfies:

T (a0, b0) =

⎛⎤⎤⎡
⎤⎤⎢

1
q fn(0, b) if (a0, b0) = (0, 0)

0 if (a0, b0) ⇐ ({0} × F
≥
q) ∈ (F≥q × {0})

1
q(q−1)fn(a0, 0) if (a0, b0) ⇐ F

≥
q × {b}

1
q(q−1)fn(a0, b0) if (a0, b0) ⇐ F

≥
q × (F≥q\{b})

.

On the Practical Security of a Leakage Resilient Masking Scheme 177

We deduce

fn+1(a, b) =
1

q
f01
n +(q− 1)

1

q(q − 1)
f01
n +(q− 1)(q− 2)

1

q(q − 1)
f11
n . (6)

For (a, b) ⇐ F
≥
q × {0}, we have the same equality by symmetry of the

function fn+1S.

3. For (a, b) ⇐ F
≥
q ×F

≥
q, the terms in the sum in (4) equal T (a0, b0) = fn(a≡

a0, b≡ b0)f1(a0, b0). Moreover, by Lemma 2, the latter product satisfies:

T (a0, b0) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1
q
fn(a, b) if (a0, b0) = (0, 0)

1
q(q−1)

fn(0, 0) if (a0, b0) = (a, b)

0 if (a0, b0) ∈ ({0} × F
∗
q) ≥ (F∗

q × {0})
1

q(q−1)
fn(a→ a0, 0) if (a0, b0) ∈ (F∗

q\{a})× {b}
1

q(q−1)
fn(0, b→ b0) if (a0, b0) ∈ {a} × (F∗

q\{b})
1

q(q−1)
fn(a→ a0, b→ b0) if (a0, b0) ∈ (F∗

q\{a})× (F∗
q\{b})

.

We deduce

fn+1(a, b) =
1

q
f11
n +

1

q(q − 1)
f00
n + 2

⎥
(q − 2)

1

q(q − 1)
f01
n

⎦

+ (q − 2)2
1

q(q − 1)
f11
n . (7)

Equations (5), (6) and (7) directly yield to the second statement. �

Theorem 1. For every n � 1 we have

fn(a, b) =

⎛⎤⎡
⎤⎢

1
q2 + 1

q2(q−1)n−2 if (a, b) = (0, 0)
1
q2 − 1

q2(q−1)n−1 if (a, b) ⇐ ({0} × F
≥
q) ∈ (F≥q × {0})

1
q2 + 1

q2(q−1)n if (a, b) ⇐ F
≥
q × F

≥
q

Proof. From Lemma 3, we have

f

00
n+1

f01
n+1

f11
n+1

 =

⎪

1
q 0 q−1

q

0 2
q

q−2
q

1
q(q−1)

2(q−2)
q(q−1)

(q−1)+(q−2)2
q(q−1)

 ·

f

00
n

f01
n

f11
n

 ,

that is
f

00
n+1

f01
n+1

f11
n+1

 = P ·

1 0 0
0 0 0
0 0 1

q−1

 · P−1 ·

f

00
n

f01
n

f11
n

 , (8)

where P is the eigenvectors matrix defined by:

P =

1 1− q q2 − 2q + 1
1 1

2 (2− q) 1− q
1 1 1

 .

178 E. Prouff, M. Rivain, and T. Roche

After recursively applying (8), we can express (f00
n , f01

n , f11
n) with respect to

(f00
1 , f01

1 , f11
1) as

f

00
n

f01
n

f11
n

 = P ·

1 0 0
0 0 0
0 0 1

(q−1)n−1

 · P−1 ·

f

00
1

f01
1

f11
1

Finally, Lemma 2 implies (f00
1 , f01

1 , f11
1) =

(
1
q , 0,

1
q(q−1)

)
, which together with

the above equation yields to the theorem statement. �

3.3 Exhibiting the Flaws in IPRefresh and IPAdd Procedures

Due to Lemma 1 and Theorem 1, and given that Pr[V = v] equals 1
q , we get:

Pr[X = x | V = v] =

{
1
q + 1

q(q−1)n−2 if x = 0
1
q − 1

q(q−1)n−1 if x →= 0
(9)

for v = 0, and

Pr[X = x | V = v] =

{
1
q − 1

q(q−1)n−1 if x = v
1
q + 1

q(q−1)n if x →= v
, (10)

otherwise. Hence, when the sensitive variable V equals 0, then the intermediate
variable X manipulated in IPRefresh is more likely to equal 0 than another
value in Fq. On the other hand, when V equals a non-zero value v →= 0, then X
is more likely to be any value of Fq but v. Although the bias is exponentially
small in n, for small values of n it may induce a significant information leakage
(see Section 4).

For the reasons given in Section 3.1, Equations (9) and (10) also stand for the
dependency of Z and V in IPAdd. The manipulation of Z hence leaks information
on V and Pr[Z = z | V = v] satisfies (9) and (10).

Remark 3. The flaw in IPMult seems less informative than in IPRefresh and
IPAdd. Indeed except for the IPRefresh call, we did not find any flaw in the
actual algorithm. Moreover the IPRefresh procedure is called on a sharing of di-
mension n2. Hence, even for small values of n, the observed bias quickly becomes
very small.

4 Information Theoretic Evaluation of the Flaw

We have seen in Section 3.3 that Balasch et al.’s proposal possesses a first-
order flaw whatever the masking dimension n of their scheme. To complete
our study, we conduct hereafter an information theoretic evaluation of the flaw
exhibited in (9) and (10), following the same outlines as the security analyses

On the Practical Security of a Leakage Resilient Masking Scheme 179

in [8, 10, 22, 25]. Moreover, the quantity of sensitive information leakage due to
the flaw is compared with the amount of intrinsic information leakage from the
manipulation of the right-half sharing R.

To quantify the amount of leaking information, we model the relationship
between the physical leakage and the manipulated variables as follows. Each
tuple of variables (I1, I2, · · · , It) is associated with a tuple of leakages L =
(L1,L2, · · · ,Lt) s.t. Lj = HW(Ij)+Nj , where HW denotes the Hamming weight
function and Nj denotes an independent Gaussian variable with mean 0 and
standard deviation ρ. We use the notation L ∅Δ (I1, I2, · · · , It) to refer to this
association. To compare the information revealed by the flaw and that inher-
ently revealed by the leakage on the right-half sharing (see Remark 1 in Section
2), we computed the mutual information2 I(V ;L) between the sensitive variable
V = 〈L,R∪ and the leakage L in the following situations where we recall that
X equals 〈L≡L≤,R∪ (see Section 3.1):

right-half leakage for n = 2: L ∅Δ R = (R1, R2) , (11)

right-half leakage for n = 3: L ∅Δ R = (R1, R2, R3) , (12)

first-order flaw for n = 2: L ∅Δ X , (13)

first-order flaw for n = 3: L ∅Δ X . (14)

Figure 1 summarizes the information theoretic evaluation for each leakage
(11) to (14). It can be observed that for each sharing dimension n ⇐ {2, 3},
there exists a threshold for ρ up to which the first-order flaw becomes more
informative than the overall right-half leakage. For instance, for n = 2, this gap
value is ρ ⊕ 2. This observation is in accordance with the soundness of the dth-
order security notion: a security at a greater order implies a smaller asymptotic
leakage (with respect to an increasing noise).

5 Attack Simulations

To study the difficulty of exploiting the sensitive information leakage exhibited in
Figure 1, we compared the effectiveness of a classical Correlation Power Analysis
(CPA for short) against the flaw with that of a second-order CPA targeting the
half IP-Masking R (which, according to Remark 1, leaks sensitive information).

The target variable V in our attack was defined as the output of the s-box of
the light-weight block cipher PRESENT [3], and hence V , R1, R2 and X were
defined as elements of F16. The leakages on these values were simulated in the
Hamming weight model with Gaussian Noise, as in (11) and (13), for different
noise standard deviations ρ ⇐ [0, 4.5]. For each key hypothesis, the predictions
were computed with the optimal prediction function defined in [21] (with the
Hamming weight as model function). The results of our attack simulations are
reported in Figure 2.

2 As shown in [25], the number of measurements required to achieve a given success-
rate in a maximum likelihood attack is related to the mutual information evaluation
and it roughly equals c × I(V ;L)−1, where c is a constant related to the chosen
success-rate and the leakage model.

180 E. Prouff, M. Rivain, and T. Roche

-9

-8

-7

-6

-5

-4

-3

-2

-1

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

l
o
g
1
0

(
M
I
)

Noise Standard Deviation

Eq. (11) 1O IP.Mask. 2O Leak
Eq. (12) 2O IP.Mask. 3O Leak
Eq. (13) 1O IP.Mask. 1O Flaw
Eq. (14) 2O IP.Mask. 1O Flaw

Fig. 1. Mutual information (log10) between the leakage and the sensitive variable over
an increasing noise standard deviation (x-axis)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

1

2

3

4

5

6

7

8

9

10
x 10

5

10-CPA exploiting the flaw X

2O-CPA exploiting the half IP-Masking R

Fig. 2. Number of measurements (y-axis) required to achieve a 90% attack success rate
against IP-Masking (n = 2) versus the noise standard deviation (x-axis)

On the Practical Security of a Leakage Resilient Masking Scheme 181

It may be observed that the attack efficiencies are close when the standard
deviation of the noise is lower than 2 (less than 75000 measurements), which
corresponds to the crossing point of the mutual information traces in Figure 1.
After this threshold, the difference between the slops of the two efficiency traces
quickly increases. Eventually, for ρ = 4.5, the second-order CPA against the
right-half IP masking fails, even with 1 million measurements, whereas the first-
order CPA against the flaw succeeds with around 300 000 measurements. This
clearly illustrates the importance of the exhibited flaw. We also emphasize that
the resynchronization of leakage traces and the detection of points of interest
usually make higher-order attacks much more difficult to mount in practice than
first-order ones. This further increases the practical insecurity resulting from a
first-order leakage compared to a higher-order leakage.

References

1. Balasch, J., Faust, S., Gierlichs, B., Verbauwhede, I.: Theory and practice of a
leakage resilient masking scheme. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012.
LNCS, vol. 7658, pp. 758–775. Springer, Heidelberg (2012)

2. Bellare, M., Goldwasser, S., Micciancio, D.: “Pseudo-random” number generation
within cryptographic algorithms: The DSS case. In: Kaliski Jr., B.S. (ed.) CRYPTO
1997. LNCS, vol. 1294, pp. 277–291. Springer, Heidelberg (1997)

3. Bogdanov, A.A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M., Seurin, Y., Vikkelsoe, C.: PRESENT: An Ultra-Lightweight Block Cipher. In:
Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007)

4. Carlet, C., Goubin, L., Prouff, E., Quisquater, M., Rivain, M.: Higher-order mask-
ing schemes for s-boxes. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549,
pp. 366–384. Springer, Heidelberg (2012)

5. Chari, S., Jutla, C., Rao, J., Rohatgi, P.: A Cautionary Note Regarding Evaluation
of AES Candidates on Smart-Cards. In: Second AES Candidate Conference – AES
2 (March 1999)

6. Coron, J.-S., Prouff, E., Rivain, M., Roche, T.: Higher-order side channel security
and mask refreshing. In: Moriai, S. (ed.) FSE. LNCS, Springer (2013) (to appear)

7. Dziembowski, S., Faust, S.: Leakage-resilient circuits without computational as-
sumptions. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 230–247. Springer,
Heidelberg (2012)

8. Fumaroli, G., Martinelli, A., Prouff, E., Rivain, M.: Affine Masking against Higher-
Order Side Channel Analysis. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.) SAC
2010. LNCS, vol. 6544, pp. 262–280. Springer, Heidelberg (2011)

9. Genelle, L., Prouff, E., Quisquater, M.: Thwarting higher-order side channel analy-
sis with additive and multiplicative maskings. In: Preneel, Takagi [19], pp. 240–255

10. Grosso, V., Standaert, F.-X., Faust, S.: Masking vs. multiparty computation: How
large is the gap for aes? In: Bertoni, G., Coron, J.-S. (eds.) CHES 2013. LNCS,
vol. 8086, pp. 400–416. Springer, Heidelberg (2013)

11. Ishai, Y., Sahai, A., Wagner, D.: Private Circuits: Securing Hardware against Prob-
ing Attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003)

12. Kim, H., Hong, S., Lim, J.: A fast and provably secure higher-order masking of aes
s-box. In: Preneel, Takagi [19], pp. 95–107

182 E. Prouff, M. Rivain, and T. Roche

13. Kocher, P.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and
Other Systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113.
Springer, Heidelberg (1996)

14. Kocher, P., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

15. Lomné, V., Prouff, E., Roche, T.: Behind the Scene of Side Channel Attacks. In:
Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 506–525.
Springer, Heidelberg (2013)

16. Mangard, S., Popp, T., Gammel, B.M.: Side-Channel Leakage of Masked CMOS
Gates. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 351–365. Springer,
Heidelberg (2005)

17. Messerges, T.: Using Second-order Power Analysis to Attack DPA Resistant soft-
ware. In: Paar, C., Kocc, cC.K. (eds.) CHES 2000. LNCS, vol. 1965, pp. 238–251.
Springer, Heidelberg (2000)

18. Oswald, E., Mangard, S., Herbst, C., Tillich, S.: Practical Second-order DPA At-
tacks for Masked Smart Card Implementations of Block Ciphers. In: Pointcheval,
D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 192–207. Springer, Heidelberg (2006)

19. Preneel, B., Takagi, T. (eds.): CHES 2011. LNCS, vol. 6917. Springer, Heidelberg
(2011)

20. Prouff, E., Rivain, M.: Masking against Side-Channel Attacks: A Formal Secu-
rity Proof. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS,
vol. 7881, pp. 142–159. Springer, Heidelberg (2013)

21. Prouff, E., Rivain, M., Bévan, R.: Statistical Analysis of Second Order Differential
Power Analysis. IEEE Transactions on Computers 58(6), 799–811 (2009)

22. Prouff, E., Roche, T.: Higher-order glitches free implementation of the aes using
secure multi-party computation protocols. In: Preneel, Takagi [19], pp. 63–78

23. Rivain, M., Prouff, E.: Provably secure higher-order masking of aes. In: Mangard,
S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 413–427. Springer,
Heidelberg (2010)

24. Shamir, A.: How to Share a Secret. Commun. ACM 22(11), 612–613 (1979)
25. Standaert, F.-X., Veyrat-Charvillon, N., Oswald, E., Gierlichs, B., Medwed, M.,

Kasper, M., Mangard, S.: The World is not Enough: Another Look on Second-
Order DPA. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 112–129.
Springer, Heidelberg (2010)

The Myth of Generic DPA. . . and the Magic
of Learning

Carolyn Whitnall1, Elisabeth Oswald1, and François-Xavier Standaert2

1 University of Bristol, Department of Computer Science,
Merchant Venturers Building, Woodland Road, BS8 1UB, Bristol, UK

{carolyn.whitnall,elisabeth.oswald}@bris.ac.uk
2 Université catholique de Louvain, UCL Crypto Group
Place du Levant 3, B-1348 Louvain-la-Neuve, Belgium

fstandae@uclouvain.be

Abstract. A generic DPA strategy is one which is able to recover se-
cret information from physically observable device leakage without any
a priori knowledge about the device’s leakage characteristics. Here we
provide much-needed clarification on results emerging from the existing
literature, demonstrating precisely that such methods (strictly defined)
are inherently restricted to a very limited selection of target functions.
Continuing to search related techniques for a ‘silver bullet’ generic at-
tack appears a bootless errand. However, we find that a minor relaxation
of the strict definition—the incorporation of some minimal non-device-
specific intuition—produces scope for generic-emulating strategies, able
to succeed against a far wider range of targets. We present stepwise re-
gression as an example of such, and demonstrate its effectiveness in a
variety of scenarios. We also give some evidence that its practical perfor-
mance matches that of ‘best bit’ DoM attacks which we take as further
indication for the necessity of performing profiled attacks in the context
of device evaluations.

Keywords: side-channel analysis, differential power analysis.

1 Introduction

Ever since Kocher et al. showed that differential power analysis (DPA) could be
successful even with very little information about the target implementation [16],
the research community has pursued ‘generic’ methods—informally, techniques
able to recover secret information even in the total absence of knowledge about
the attacked device’s data-dependent power consumption. Recent suggestions
include mutual information analysis (MIA) using an identity power model [12],
distinguishers based on the Kolmogorov–Smirnov (KS) two-sample test statistic
[30,35] and the Cramér–von Mises test [30], linear regression (LR)-based methods
which can be seen as a sort of on-the-fly profiling [9,24], and an innovative
approach using copulas [31].

However, all existing proposals share a common shortfall when applied to in-
jective target functions: in order to distinguish between hypotheses the attacker

J. Benaloh (Ed.): CT-RSA 2014, LNCS 8366, pp. 183–205, 2014.
c© Springer International Publishing Switzerland 2014

184 C. Whitnall, E. Oswald, and F.-X. Standaert

must, after all, have some meaningful piece of knowledge by which to partition
the measurements (in the case of MIA and KS-based DPA) or select the ap-
propriate set of covariates (in the case of LR-based DPA) [31]. Unfortunately,
this dependence on prior knowledge has been under-appreciated because of the
apparent success of ‘arbitrary’ work-arounds such as the practice of partition-
ing intermediate variables according to their 7 least significant bits (sometimes
called the 7LSB model). However, it is shown in [34] that this strategy is far
from universally-applicable and only works to the extent that the seemingly in-
different partition captures something meaningful about the leakage after all.
For example, noise on top of a typical CMOS Hamming weight consumption
distorts the trace measurements towards the 7LSB model sufficiently for MIA
to succeed, but this is not the case in general (i.e in arbitrary leakage scenar-
ios). Such attacks can no longer be considered ‘generic’, a description which is
earned primarily by virtue of the non-reliance on a priori knowledge rather than
the chosen statistical methodology. The focus on defining universally-applicable
distinguishers indicates a confusion about the role of the distinguisher and that
of the power model in what has so far been only informally defined as ‘generic’
DPA. It also raises the fundamental question of whether truly ‘generic’ tools
exist at all.

Establishing whether or not generic DPA attacks exist has fundamental con-
sequences for the process of cryptographic device evaluation. The presence of
generic attacks would imply that any device could potentially be attacked with-
out any information about its internal functioning or leakage characteristics.
Consequently, attacks based on profiling would only be ‘better’ in terms of ef-
ficiency (number of power traces needed)—not in terms of applicability. The
absence of generic attacks would imply that there exist devices (leakage charac-
teristics) which can only be evaluated soundly by performing profiled attacks—a
practice which is not commonly undertaken at present (see, e.g., [19] Appendix
F). In the following, we tackle this important question in the practically relevant
context of standard DPA as investigated, e.g., in [9,12,16,24,30,35]. That is, we
assume that the mean of the side-channel leakage distributions is key-dependent.

1.1 Our Contribution

We first develop a theory of power models according to Stevens’ ‘levels of mea-
surement’ [28], enabling us to formally define what constitutes a generic power
model. We show that different distinguishers require different types of power
model and derive the notion of a generic-compatible distinguisher accordingly.
The pairing of a generic-compatible distinguisher with the generic power model
we call a generic strategy. These definitions provide a basis for making conclusive
general statements about generic DPA. We show that the noninjectivity of the
target function is a prerequisite for any first-order generic strategy to succeed,
proving the absence of a universally-applicable generic distinguisher in the con-
text of first-order DPA! (Generic higher-order DPA can only be more difficult,
so this conclusive statement naturally extends upwards). As a further finding
we observe that noninjectivity alone is not sufficient for generic success, and

The Myth of Generic DPA. . . and the Magic of Learning 185

investigate additional requirements on the target function. It is already known
that there is an inverse relationship between performance against certain S-box
criteria and susceptibility to DPA [21]; we demonstrate a sufficient condition for
first-order generic success which is promoted (though not inevitably produced)
by the desirable S-box property of differential uniformity [20].

Having ruled out the possibility of a universally-applicable generic distin-
guisher, we investigate minimal relaxations on the generic criteria producing
theoretically plausible attack strategies. As a starting point we take the LR-based
distinguisher [9,24], which (we show) qualifies as generic-compatible but returns
more auxiliary information than other such methods when applied against an
injective target. Hence, even though the keys remain indistinguishable in the
ranking (as is consistent with the first half of this paper and with earlier studies
[31]), the hypothesis-dependent model estimates—i.e. the estimated coefficients
in the polynomial expression for the leakage—contain additional clues about
the correct key. At this stage we introduce some ‘non-device-specific intuition’
regarding the simplicity of the leakage function relative to the cryptographic
target function (typically an S-box). This extremely minimal assumption (which
we will explain more formally in due course) allows us to exploit the model esti-
mates, which we propose to do using the techniques of stepwise regression. Such a
strategy is no longer strictly generic, but the general device-independent nature
of the extra assumption prompts us to coin the description generic emulating.
We verify that this proposed strategy truly is effective—even against injective
target functions such as the AES and PRESENT S-boxes, and even as the true
leakage becomes increasingly unusual or complex (high-degree polynomials, for
example). We also show that the proposed strategy is efficient, albeit seemingly
no better in performance than difference-of-means (DoM) based attacks.

2 Preliminaries

2.1 Differential Power Analysis

We consider a ‘standard DPA attack’ scenario as defined in [18], and briefly
explain the underlying idea as well as introduce the necessary terminology here.
We assume that the power consumption T of a cryptographic device depends
on some internal value (or state) Fk∗(X) which we call the target : a function

Fk∗ : X ⊗ Z of some part of the known plaintext—a random variable X
R≡ X—

which is dependent on some part of the secret key k≥ ≡ K. Consequently, we
have that T = L ◦ Fk∗(X) + ε, where L : Z ⊗ R describes the data-dependent
component and ε comprises the remaining power consumption which can be
modeled as independent random noise (this simplifying assumption is common
in the literature—see, again, [18]). The attacker has N power measurements
corresponding to encryptions of N known plaintexts xi ≡ X , i = 1, . . . , N and
wishes to recover the secret key k≥. The attacker can accurately compute the
internal values as they would be under each key hypothesis {Fk(xi)}Ni=1, k ≡ K
and uses whatever information he possesses about the true leakage function L
to construct a prediction model M : Z ⊗M.

186 C. Whitnall, E. Oswald, and F.-X. Standaert

DPA is motivated by the intuition that the model predictions under the correct
key hypothesis should give more information about the true trace measurements
than the model predictions under an incorrect key hypothesis. A distinguisher D
is some function which can be applied to the measurements and the hypothesis-
dependent predictions in order to quantify the correspondence between them.
For a given such comparison statistic, D, the theoretic attack vector is D =
{D(L ◦ Fk∗(X) + ε,M ◦ Fk(X))}k≤K, and the estimated vector from a practical
instantiation of the attack is D̂N = {D̂N(L ◦Fk∗(x)+ e,M ◦Fk(x))}k≤K (where
x = {xi}Ni=1 are the known inputs and e = {ei}Ni=1 is the observed noise). Then
the attack is o-th order theoretically successful if #{k ≡ K : D[k≥] ∪ D[k]} ∪ o

and o-th order successful if #{k ≡ K : D̂N [k≥] ∪ D̂N [k]} ∪ o.1

Definition 1. A practical instantiation of a standard univariate DPA attack
computes, given a set of power traces T, a prediction model M , a set of inputs
X, and a comparison statistic D, the distinguishing vector D̂N = {D̂N(L ◦
Fk∗(x) + e,M ◦ Fk(x))}k≤K. A practical instantiation is said to be o-th order
successful if #{k ≡ K : D̂N [k≥] ∪ D̂N [k]} ∪ o.

2.2 Measuring DPA Outcomes

Metrics to compare the efficiency of DPA attacks include the (o-th order) success
rate and the guessing entropy of [27]—defined respectively as the probability of
o-th order success and the expected number of key hypotheses remaining to test
after a practical attack on a given number of traces. However, in the evaluation
of generic strategies, the question of asymptotic feasibility takes precedence over
that of efficiency. By the law of large numbers 1

N

⎛N
i=1 L ◦ Fk∗(x) + ei ⊗ L ◦

Fk∗(x) as N ⊗ ⇐ (as long as the samples are independent and identically
distributed). We can therefore discuss feasibility from the perspective of the ideal
distinguishing vector DIDEAL = {D(L ◦ Fk∗(X),M ◦ Fk(X))}k≤K, noting that
this no longer depends on the noise but only on the hypothesis-dependent power
models relative to the true leakage. Indeed, averaging the trace measurements
conditioned on the inputs is a popular pre-processing step in practice as it strips
out irrelevant variance and reduces the dimensionality of the computations (see,
for example, [1]); it is a sound approach as long as the side-channel information
to be exploited originates in differences between the mean values of the leakage
distributions, which is the case in our standard DPA scenario.

For the purposes of evaluating the theoretic capabilities of generic emulating
and related strategies, we will focus on first-order asymptotic success, as captured
by the (ideal) nearest-rival distinguishing margin (see [33,34]):
NRMarg(DIDEAL) = DIDEAL[k

≥] − max{DIDEAL[k]|k →= k≥}. In Sect. 4.6,
where we investigate the practical performance of our proposed generic emulating
distinguisher, we report success rates for attacks against simulated leakages.

1 Note that standard DPA attacks do not include collision-based attacks [25], which
exploit information from several leakage points per observation, and do not require
a power model at all.

The Myth of Generic DPA. . . and the Magic of Learning 187

2.3 Boolean Vectorial Functions

We are often interested in the special case that the key-indexed functions Fk can
be expressed as Fk(X) = F (k ≥ X) where F : Fn2 ⊗ F

m
2 is an (n-m) Boolean

vectorial function and ≥ denotes the key combining operator (e.g., XOR). It
particularly pertains to the study of block ciphers, and their associated S-boxes.

Certain algebraic properties of such functions are known to be particularly
important to the cryptanalytic robustness of a cipher system. We (very) briefly
recall those concepts that will play a role in our later analysis; for a good basic
introduction see [14] or, for a more comprehensive explanation, [6,7].
F is affine if it can be expressed as a linear map followed by a translation—

that is, if there exists a matrix M ≡ F
m×n
2 and a vector v ≡ F

m
2 such that F (x) =

Mx∈v. Nonlinearity is defined as: NF = minu≤Fn
2 ,v≤Fm

2 \{0}
⎛

x≤Fn
2
u·x∈v ·F (x).

F is balanced if the preimages in F of all singleton subsets of Fm2 are uniformly
sized: that is, ∅y ≡ F

m
2 , #{x ≡ F

n
2 |F (x) = y} = 2n−m. This property applies to

many functions used in block ciphers, particularly S-boxes [36] where any bias
on the unobserved inputs is extremely undesirable.

Another desirable S-box property is differential uniformity [20]—that the
derivatives of F with respect to a ≡ F

n
2 (defined as DaF (x) = F (x)∈ F (x∈ a))

be as uniform as possible. If there exists a vector a ≡ F
n
2 such that DaF (x) is

constant over Fn2 then a is called a linear structure of F and (as per [10]) can be
exploited by a cryptanalyst. {a ≡ F

n
2 |DaF = cst} is the linear space of F .

3 Clarifying Generic DPA

What does it mean for an attack to be ‘generic’? The discussion in the litera-
ture has focused on appropriating, as distinguishers, statistics which ‘require few
distributional assumptions’—trawling the statistical literature for nonparamet-
ric, distribution-comparing procedures such as the Kullback-Leibler divergence
(a.k.a. Mutual Information Analysis) [12], the Kolmogorov–Smirnov [30,35] and
Cramér–von Mises [30] tests, and copulas [31]. However, the emphasis on finding
‘distribution-free’ statistics for use as distinguishers somewhat distracts from the
essential defining feature of generic DPA which is that no assumptions have been
made about the device leakage. Clearly, the (fairly common) practice of combin-
ing such distinguishers with an informed prior model does not produce a generic
attack: we need to begin by establishing what constitutes a generic power model.

We first delineate the different types of model used in DPA attacks, and discuss
which distinguishers are suitable in each instance. We can then define a generic
power model, a generic-compatible distinguisher, and a generic DPA strategy.
These definitions form the basis for a number of propositions that clarify the
cases in which any generic strategy is bound to fail (we spell out necessary
conditions for success and discuss further the feasibility of generic DPA).

3.1 Delineating Leakage Assumptions

Firstly we must distinguish between assumptions about the data-dependent leak-
age, as captured by the power model, and assumptions about the distribution

188 C. Whitnall, E. Oswald, and F.-X. Standaert

of the noise—which in most cases play a less visible role, but can affect how
accurately or efficiently certain statistics may be estimated. Fig. 1 visualises this
two-dimensional continuum, and indicates the suitability of popular distinguish-
ers as assumptions vary.

Assumptions on noiseMinimal Demanding

Nominal

Ordinal

Proportional

Direct

Po
w

er
 m

od
el

DoM, Kolmogorov
-Smirnov, MIA

Spearman’s rank
correlation

Linear regression

Pearson’s correlation

Stochastic profiling Bayesian templates

Fig. 1. Types of leakage model and the assumptions required by common distinguishers

Assumptions about the noise range from fully characterised distributions as
exploited (e.g.) by Bayesian template attacks, down to no knowledge whatsoever,
when the robustness of nonparametric statistics such as mutual information
and the Kolmogorov–Smirnov test may come in handy. Fortunately, the often
reasonable assumption of approximate normality opens up a broad range of
(semi-)parametric options, which are to be preferred as they are inherently less
costly to estimate.

We now consider the nature of the power model, with which this paper is pri-
marily concerned. Previous studies have talked about ‘good’ power models, in
an arbitrary sense, and most have missed the very material distinction between
different levels of model. As hinted towards in [2,11], the widely-accepted ‘lev-
els of measurement’—ratio, interval, ordinal, nominal—laid out by Stevens [28]
present a natural framework for delineation. It is important to understand the
appropriate (type-specific) notion of accuracy for a given model, and to select
a compatible distinguisher; that is, one which (implicitly) interprets the model
according to the correct type.

The type of power model exploited by profiled attacks (e.g. Bayesian tem-
plates [8] and stochastic profiling [24]) amounts to a direct approximation of the
actual power consumed by processing the data, in contribution to the overall
consumption. This requirement is the most demanding possible, expressed as
M ⊕ L (c.f. the ‘ratio scale’ of [28]). The outcome of an attack will depend on
how accurately the templates approximate the actual data-dependent consump-
tion (as well as the noise distribution). The error sum-of-squares is a natural
way of quantifying the appropriate notion of accuracy.

Less demanding is the requirement that the attacker has a power model which
is a good approximation for L up to proportionality: M ⊕ αL (c.f. the ‘interval
scale’ of [28]). Pearson’s correlation coefficient provides a natural way to quantify
accuracy and can be directly adapted for use as a distinguisher [4] (a popular
strategy since, as a simple, moment-based statistic, it can usually be estimated
very efficiently with respect to the number of trace measurements required).

The Myth of Generic DPA. . . and the Magic of Learning 189

Less demanding again is the requirement that M approximates L up to ordi-
nality: {z|M(z) < M(z′)} ⊕ {z|L(z) < L(z′)} ∅z′ ≡ Z (c.f. the ‘ordinal scale’
of [28]). Such a model could be exploited via a variant of correlation DPA us-
ing Spearman’s rank correlation coefficient, as proposed in [2]. And, again, the
accuracy of the model can be quantified via the rank correlation itself.

The least demanding requirement to place on a model is that it approximates
the leakage function up to nominality only: {z|M(z) = M(z′)} ⊕ {z|L(z) =
L(z′)} ∅z′ ≡ Z (c.f. the ‘nominal scale’ of [28]). As ever, such a model must be
paired with a statistic which interprets the values appropriately: that is to say,
as arbitrary labels only. In fact, these correspond to the ‘partition-based’ distin-
guishers of [26]. Typical examples include statistics which are used to compare
arbitrary distributions, such as MI [12] and the KS test statistic [30,35]. Kocher
et al.’s original Difference-of-Means (DoM) test [16] also falls into this category,
but is limited in how much information it is able to exploit as it is only able
to operate with a two-way partition model. To produce this partition, either
the value of a single bit is used (in which case the other bits act as algorithmic
noise, increasing the data complexity of the attack), or combinations of multiple
bits are used, which results in discarded traces (instances not fitting into either
category).

Appropriate notions of accuracy for a nominal model are drawn from classifi-
cation theory. Precision is the probability that items grouped according to the
model really do belong together, whilst recall is the probability that items which
belong together are identified as such (see, e.g. [17]).2

Precision(M) = P(L(z) = L(z′)|M(z) =M(z′)),
Recall(M) = P(M(z) =M(z′)|L(z) = L(z′)).

3.2 Defining ‘Genericity’

We are now in a position to discuss the generic power model: what, in prac-
tice, does it mean to make no assumptions about the data-dependent leak-
age? Essentially, that we do no more than to assign a distinct label to each
value in the range of the target function. These labels can be seen to corre-
spond to the key-dependent equivalence classes produced by the preimages of
Fk: [x]k = F−1k [Fk(x)] ∅x ≡ X .

Definition 2. The generic power model associated with key hypothesis k ≡ K is
the nominal mapping to the equivalence classes induced by the key-hypothesised
target function Fk.

2 The classification theory literature more frequently states these definitions in terms of
ratios of counts—practically convenient but less directly translatable across contexts.
See [13] for a more explicit probabilistic interpretation; though in our case we are,
of course, averaging over multiple classes.

190 C. Whitnall, E. Oswald, and F.-X. Standaert

The ‘identity’ power model emphasised in previous literature is fine for this
purpose as long as it is understood that the mapping is simply a convenient
labelling system and should be interpreted nominally only. It is clear, then, that
the generic-compatible distinguishers are precisely those (described in Sect. 3.1
above) which interpret hypothesis-dependent predictions as an approximation
up to nominality of the data-dependent leakage.

Definition 3. A distinguisher is generic-compatible if it is built from a statistic
which operates on nominal scale measurements.

This provides valuable clarification on previous work such as [3], which demon-
strated successful attacks against Hamming weight leakage using correlation
DPA with an ‘identity’ power model. The authors rightly remarked that this
was possible precisely because, over F

4
2, the identity is sufficiently accurate as

a proportional approximation of the Hamming weight to produce a successful
correlation attack. Far from operating generically, the identity mapping in such
a strategy is interpreted as an interval scale model—not a perfect approxima-
tion but adequate in the specific case that L can be well-approximated by the
Hamming weight. And even in this restricted case it is not, of course, invariant
to permutation of the ‘identity’ labels.

Definitions 2 and 3 combine towards a natural notion of a ‘generic strategy’:

Definition 4. A generic strategy performs a standard univariate DPA attack
using the generic power model paired with a generic-compatible distinguisher.

However, as previous work on ‘partition-based’ distinguishers (separately, e.g.
[12,31,35], and collectively [26]) has consistently noted, not all (indeed, not many)
scenarios are suited to a generic strategy.

3.3 Conditions for a Generic Strategy to Succeed

All distinguishers operate by identifying the key hypotheses producing the most
accurate model predictions for the actual measurements, according to the ap-
propriate notion of accuracy for the model type (some are able to perform this
comparison more effectively or from fewer trace measurements). In the generic
setting each key hypothesis k ≡ K gives rise to a model Mk s.t. M−1k [z] = F−1k [z]
∅z ≡ Fk(X), and it is the comparative nominal accuracy which will determine
key-recovery success. We can therefore explore the conditions necessary for a
successful attack—independently of any particular distinguisher—by reasoning
directly about the accuracy of Fk∗ and Fk, ∅k ≡ K\{k≥} as nominal approxima-
tions for L◦Fk∗ . Recall the precision and recall measures introduced in Sect. 3.1
(with E to denote expectation):

Precision(Mk) = P(L ◦ Fk∗(x) = L ◦ Fk∗(x′)|Fk(x) = Fk(x
′))

= Ex≤X

⎡
#F−1k∗ [L−1[L ◦ Fk∗(x)]] ∃ F−1k [Fk(x)]

#F−1k [Fk(x)]

⎢

The Myth of Generic DPA. . . and the Magic of Learning 191

Recall(Mk) = P(Fk(x) = Fk(x
′)|L ◦ Fk∗(x) = L ◦ Fk∗(x′))

= Ex≤X

⎡
#F−1k∗ [L−1[L ◦ Fk∗(x)]] ∃ F−1k [Fk(x)]

#F−1k∗ [L−1[L ◦ Fk∗(x)]]

⎢

Trivially, the precision of the generic model under the correct hypothesis is
always maximal (the leakage preimage must contain the function preimage).
By contrast, the recall depends additionally on the true leakage function, so
that even under the correct hypothesis we do not get perfect recall unless it
happens that L is also injective. The ability of a strategy to reject an incorrect
alternative requires the corresponding model to be of inferior quality; whether
this is so depends on features of Fk and L. An immediate and quite restrictive
pre-requisite arises from the inherent nature of the generic power model:

Proposition 1. No generic strategy is able to distinguish the correct key k≥

from an alternative hypothesis k if Fk∗ and Fk are injective.

Proof. If Fk∗ , Fk are injective then ∅x ≡ X , F−1k [Fk(x)] = F−1k∗ [Fk∗(x)] = {x}.
Each hypothesis produces models of equivalent nominal accuracy—no generic-
compatible distinguisher can separate the candidates.

Indeed, all of the known generic-compatible distinguishers, from the seminal
CHES ’08 paper on MIA [12] to the recent copula-based method presented at
Crypto ’11 [31], have individually been shown to fail whenever the composition
of the target function and the power model is injective; the same observation
was made for the entire class of ‘partition-based’ distinguishers described in
[26]. The authors duly noted that some restriction was required on the power
model in order for these distinguishers to operate against an injective target,
but left as an open question the existence (or demonstrable non-existence) of an
as-yet undiscovered method which would somehow circumvent this requirement.
Demonstrating that the limitation is attributable directly to the generic power
model rules out this possibility.

Noninjectivity is therefore a necessary condition, but not, as we next establish,
a sufficient one. In the general case it is rather difficult to formulate useful,
concrete observations so we will henceforth narrow down to the restricted but
highly relevant case that F is a balanced (n-m) function and k is introduced by
key addition (as described in Sect. 2.3). It then becomes fairly straightforward
to draw out such function characteristics as will obstruct a generic strategy.

Proposition 2. Suppose F is a balanced, non-injective (n-m) function, with k
introduced by (XOR) key addition, i.e. Fk(x) = F (x∈ k). Then:
(a) If F is affine then no generic strategy is able to distinguish the correct key

k≥ from any k ≡ K \ {k≥}.
(b) If a ≡ F

n
2 is a linear structure of F then no generic strategy is able to

distinguish between k≥ and k≥ ∈ a.
(c) If, for some a ≡ F

n
2 we have that DaF (x) depends on x only via F (x), then

no generic strategy is able to distinguish between k≥ and k≥ ∈ a.

192 C. Whitnall, E. Oswald, and F.-X. Standaert

The proof of Proposition 2 can be found in Appendix A. Part (a) arises from
the fact that all key hypotheses produce indistinguishably ‘good’ models for the
leakage; the distinguishing vector produced by such an attack would be flat and
maximal across all hypotheses.

The implication of 2(b) is that k≥∈a cannot be rejected if the derivative of F
with respect to a is constant over the domain of F , i.e #DaF (F

n
2) = 1. In such

a case we would expect a practical attack to exhibit a ghost peak at k≥ ∈ a [4];
[21], notes a corresponding phenomenon for correlation DPA.

Part (c) can be otherwise expressed as the fact that k≥∈a cannot be rejected if
the derivative of F with respect to a is constant over each singleton preimage of
F , i.e. #DaF (F

−1[F (x)]) = 1 ∅x ≡ F
n
2 . We have actually observed this property

in the fourth DES S-box, for the key-offset a = 47(10) = 101111(2): consequently,
k≥ ∈ 47 produces a ‘ghost peak’ in the distinguishing vector, with a nonetheless
substantial margin between these two and the remaining hypotheses—a good ex-
ample of an attack scenario with a low first-order, but high second-order, success
rate [27]. Our observation is consistent with (and illuminates) past works such
as [5] which recognised the unusual operation of DPA distinguishers confronted
with this particular S-box/offset combination.

Thus emerges a minimal requirement for k≥ to be distinguished from k:

Proposition 3. Suppose F is a balanced, noninjective (n-m) function, with k
introduced by (XOR) key-addition. A necessary condition for a generic strategy
to distinguish k≥ from k is: ⊆x ≡ F

n
2 such that #Dk∗⊕kF (F−1[F (x)]) →= 1. If L

is injective then this becomes a sufficient condition.

This is informally expressed as the requirement that there is at least one (single-
ton) preimage over which the derivative with respect to k≥ ∈ k is not constant.
The proof follows from our reasoning in support of Proposition 2 and can be
found in Appendix A along with a toy example to demonstrate that we can no
longer claim sufficiency if L is noninjective.

Recall from Sect. 2.3 the idea that the derivatives of an S-box should ideally
be close to uniform—thus maximising entropy; affine functions or functions with
non-null linear spaces represent the extreme in terms of cryptanalytic vulnerabil-
ity. The pursuit of such a design goal would not guarantee the minimal condition
above, as even a perfectly balanced derivative could be so arranged as to be con-
stant over the singleton preimages (which are of cardinality 2n−m since F is also
balanced). However, it would certainly seem to increase the chance that the con-
dition be met for a given key-offset, as the more finely DaF partitions F

n
2 , the

fewer the possible refinements into 2m (balanced) parts. Therefore, among the
(already restricted) class of noninjective S-boxes we would expect ghost peaks
and indistinguishable keys to be a rarity—even more so as the size of the S-box
increases.

4 Introducing Generic-Emulating DPA

Most existing generic-compatible distinguishers return only some sort of ‘classifi-
cation accuracy’, leading themto fail against injective targets.But, on examination

The Myth of Generic DPA. . . and the Magic of Learning 193

of the literature, LR-based attacks emerge as an interesting candidate for generic
DPA: they can be used with a full basis of polynomial terms (equivalent, we shall
show, to a generic power model), but possess additional features that may possibly
be exploited. In particular, further to the distinguishing vector of goodness-of-fit
values,LR-basedDPAalso returns the estimatedmodel coefficients,whichdiffer by
keyhypothesis. In this sectionwe explore how the coefficientsmaybe interpreted in
the light of some simple, non-device-specific intuition to reveal the correct key, and
show that the process can be automated straightforwardly using LR in a stepwise
mode.

We begin by introducing (standard) LR-based DPA, explaining the mech-
anism by which it distinguishes the correct key, and demonstrating that it
is among the class of generic-compatible distinguishers. We then present the
‘generic-emulating’ stepwise linear regression- (SLR-) inspired variant which ex-
ploits the non-device-specific intuition to successfully attack injective targets
even with ‘no’ (other) prior knowledge. We finally demonstrate the effectiveness
of these distinguishers against well-known (injective and noninjective) S-boxes,
as the level of prior knowledge available varies from ‘complete’ to ‘none’.

4.1 Introduction to Linear Regression-Based DPA

The motivation for an LR-based approach begins with the observation that L :
F
m
2 ⊗ R can be viewed as a pseudo-Boolean vectorial function with a unique

expression in numerical normal form [6]. That is to say, there exists coefficients
αu ≡ R such that L(z) =

⎛
u≤Fm

2
αuz

u, ∅z ≡ F
m
2 (zu denotes the monomial⎞m

i=1 z
ui

i where zi is the ith bit of z). Finding those coefficients amounts to
finding a power model for L in polynomial function of the coordinate functions
of F . As first observed in [24], and demonstrated in [9], linear regression can
be adapted to non-profiled key-recovery: the true leakage function is estimated
‘on-the-fly’ and recovered synchronously with the true key.

Appendix B provides background on linear regression; in short, the LR-based
attack uses ordinary least squares to estimate, for each k ≡ K, the parameters
of the model Lk∗(X) + ε = α0 +

⎛
u≤U Fk(X)uαu where U ◦ F

m
2 \ {0}. The

distinguishing vector comprises the R2 measure of fit from each of these models:
DLR(k) = ρ(Lk∗(X) + ε, α̂k,0 +

⎛
u≤U Fk(X)uα̂k,u)

2 (where ρ denotes Pearson’s
correlation coefficient). It can be viewed as a generalisation of correlation DPA,
where the power model M is known a priori : Dρ(k) = ρ(Lk∗(X)+ε,M ◦Fk(X)).
In each case, the value of k which produces the largest distinguisher value is
selected as the key guess.

4.2 Linear Regression Is Generic-Compatible

In the way the distinguisher is naturally presented, the attacker’s prior knowledge
is contained within U ; it is not immediately obvious exactly what is the power

194 C. Whitnall, E. Oswald, and F.-X. Standaert

model, or where it fits alongside the various types presented in Sect. 3.1. In fact,
each u ≡ U could be seen to represent a separate power model which divides the
traces into two nominal classes: {x ≡ F

n
2 |Fk(x)u = 1} and {x ≡ F

n
2 |Fk(x)u = 0}.3

Intuitively, as long as the power consumption really does differ systematically
according to the bit-interaction term represented by u, then this ‘approximation’
has low precision but high recall under the correct key hypothesis, and loses
accuracy under an incorrect hypothesis as long as the function F is such that
changes to the input produce nonuniform changes to the output. In fact, this is
the mechanism by which the original difference-of-means DPA [16] operates!

So the linear regression distinguisher could be viewed as an extension of
difference-of-means DPA—a means of exploiting multiple (overlapping) nomi-
nal approximations, each of low precision (and therefore weak as standalone
models) but in conjunction providing a refined description of the leakage.

Intuitively, the generic instantiation should correspond to U = F
m
2 \ {0} (i.e.,

imposing no restrictions on the leakage form). But our previous reasoning about
the operation of generic strategies supposed a single power model (Fk, inter-
preted nominally) and it is hard to see how we might begin to reason about the
impact of multiple power models. Fortunately, in the U = F

m
2 \ {0} case only,

the operation of the distinguisher can be re-framed in terms of the generic power
model as defined above, so that all of our prior reasoning applies.

Proposition 4. The linear regression-based DPA attack with a full set of co-
variates U = F

m
2 \ {0} constitutes a generic strategy.

We sketch a proof as follows: If Mk is an arbitrary labelling on Fk, we can always
map bijectively to F

m
2 to acquire an arbitrary permutation of the function outputs

M ′k(x) = p ◦ Fk(x). For each u ≡ F
m
2 , the associated monomial M ′k(x)

u has a
unique expression in numerical normal form M ′k(x)

u =
⎛
v≤Fm

2
bvFk(x)

v , bv ≡ R

[6]. So the system of equations relating to an incorrect hypothesis k can be re-
written in function of Fk(x) by substituting in these expressions, expanding out
and collecting up the terms. We end up with different values of αu, u ≡ F

m
2

whenever we reparametrise in this way, but, crucially, the terms in the equation
collectively explain the measured traces equally well—and it is in this sense that
linear regression DPA is invariant to re-labelling and therefore can be discussed
alongside other generic-compatible strategies (though it is not usually used in
this way—particularly as meaningful restrictions on U contribute to efficiency
gains in the estimation stage).

As we would expect from Sect. 3, LR-based DPA fails against injective targets
when used generically (i.e. with U = F

m
2 \{0}). This failure can be better under-

stood when we consider that the data-dependent part of the power consumption
can be expressed as a system of 2n equations (in function of Fk(x)) with 2n

unknowns. Because this system is fully-determined and consistent under any key

3 Note that the labeling is irrelevant since they are represented in the regression equa-
tion by dummy variables: the 1/0 assignment is arbitrary and will impact only the
estimated coefficients, not the R2.

The Myth of Generic DPA. . . and the Magic of Learning 195

hypothesis it always has a perfect solution, so as to produce a flat distinguishing
vector of maximal R2s.4

4.3 Exploiting Non-Device-Specific Intuition

The unique opportunity presented by generic LR arises from the fact that it
produces, not just the distinguishing vector of R2 values (which are unable
to discriminate between hypotheses when the target is injective), but also the
hypothesis-dependent sets of estimated coefficients. When k = k≥ these give the
correct expression for L in function of the output bits; the rest of the time, they
give an expression for L ◦ Fk ◦ F−1k∗ . If, then, the attacker was able to recognise
the correct expression, he would be able to identify the secret key.

Thus motivated, we examine the correct and incorrect expressions for L in
the case that the target function is an injective S-box (of size 8 bits in the case
of AES, or 4 bits in the case of PRESENT) and that the true form of the leakage
is the Hamming weight: L(z) =

⎛m
i=0 z

2i . Fig. 2 shows the coefficients, in the
polynomial expression for L, on the covariates as produced by the true key k≥

(in black) and on those as produced under an incorrect hypothesis k′ (in grey).
The high nonlinearity of the S-box functions ensure that, when viewed as a
polynomial in Fk(X) rather than Fk∗(X), the leakage function L is also highly
nonlinear in form.

0 50 100 150 200 250
−30

−20

−10

0

10

20

30

Exponent of F
k

C
oe

ff
. i

n
L

AES S−Box

0 5 10 15
−2

0

2

4

Exponent of F
k

C
oe

ff
. i

n
L

PRESENT S−Box

k = k*

k = k’ ≠ k*

Fig. 2. Coefficients, in the fitted expression for L, on the covariates as predicted under
the correct and an alternative hypothesis

In the face of such evidence an attacker would be justified in favouring hy-
pothesis k≥ over k: intuitively, it seems more likely (especially given the known
high nonlinearity of F) that the ‘simpler’ expression (i.e. the one corresponding
to the black circles in Fig. 2) is the correct one. To exploit the extra information
represented by the coefficients, we therefore need to trust this intuition (which
implicitly also assumes that Mk = Fk). This takes us a step away from the
generic strategy—but since the intuition is not specific to any particular device
it appears to be a very small step. That is, we just need to assume that the
leakage function is ‘sufficiently simple’ compared to the target function. This is
4 In the case of noninjective targets, the system is overdetermined (2n equations, 2m

unknowns). Provided the target satisfies the criteria in Sect. 3.3 then this system
is only consistent under the correct key hypothesis (thus only then does it have a
perfect solution—there are only 2m linearly independent equations).

196 C. Whitnall, E. Oswald, and F.-X. Standaert

justified for a wide range of devices manufactured in CMOS technologies, in-
cluding advanced 65-nanometer processes [23]. In fact, even for protected logic
styles such as introduced by Tiri and Verbauwhede [29], it turns out that ensur-
ing a complex (e.g. highly nonlinear) leakage function is a challenging task [22].
Besides, the results in Sect. 4.5 will also demonstrate that this ‘simplicity con-
straint’ on the leakage function can be quite relaxed.

Of course, comparing graphs is not ideal from a practical perspective, besides
which the true leakage function may not always have so simple a form as to be
visibly discernible: we would like to encapsulate the underlying reasoning into an
automated and systematic procedure for testing hypotheses. In the next section
we introduce a learning technique from data mining which uses our non-device-
specific intuition about ‘what the leakage should look like’ to produce, in a wide
range of leakage scenarios, asymptotically successful key recovery against injective
targets even when provided with the full set of covariates U = F

m
2 \ {0}. Such a

strategy, whilst not generic, may reasonably be described as generic-emulating.

4.4 A Stepwise Regression-Based Distinguisher

Stepwise regression [15] is a model-building tool whereby potential explanatory
variables are iteratively added and removed depending on whether they con-
tribute sufficient explanatory power to meet certain threshold criteria (see Ap-
pendix C for full details). The resulting regression model should therefore exclude
‘unimportant’ terms whilst retaining all of the ‘significant’ terms. In the context
of LR-based DPA this equates to testing each of the multiple binary models
represented by u ≡ U separately (conditioned on the current model) and then
privileging those which appear most meaningful.

Under a correct key hypothesis, and beginning with a full basis U = F
n
2 \ {0}

we would expect to obtain a ‘good’ regression model which explains most of
the variance in L, although with some minor terms absent if they do not meet
our threshold criteria for statistical significance. The example depicted in Fig. 2
above justifies the hope that the model produced under an incorrect hypothesis
might be ‘less good’: with the explanatory power being so much more dispersed,
the contribution of any individual term decreases. These small contributions are
prejudiced against in the model building process (depending on the threshold
criteria) but their actual contributions are real and so, therefore, is the loss in
excluding them. If the aggregate loss is sufficient then the resulting R2 will be
enough reduced relative to the true key R2 to distinguish between the two.

We therefore explore next whether stepwise linear regression (SLR) can indeed
be used as a ‘generic-emulating’ distinguisher, i.e. as generic compatible distin-
guisher that only uses the additional non-device-specific intuition as introduced
in this paper.

4.5 Theoretic Distinguishing Margins for SLR-Based DPA

Fig. 3 shows the distinguishing margins achieved (asymptotically) against AES,
PRESENT and DES S-boxes by our proposed generic-emulating SLR-based

The Myth of Generic DPA. . . and the Magic of Learning 197

distinguisher (labelled ‘GenEm SLR’). The strategy is effective against all three
targets and remains so even as the degree of the leakage polynomial increases.

For comparison, we also show the margins for several related strategies. The
optimal strategy is a correlation DPA with a known power model; as expected,
this has the largest margins in all scenarios (the margins we report are for the
squared correlation coefficients, so as to be directly comparable to the R2-based
margins reported for the LR variants). Generic LR-based DPA only succeeds
against the (noninjective) DES S-box, where it can be seen to underperform rel-
ative to generic-emulating SLR. LR with an appropriately restricted basis (i.e.
comprising terms up to and including the true order of the leakage function, la-
belled ‘MaxDeg LR’) succeeds (and outperforms generic-emulating SLR) against
low-degree leakage but decreases in effectiveness as the degree increases, even-
tually coinciding with generic LR. Restricting the initial basis for SLR (again,
up to the degree of the true leakage, labelled ‘MaxDeg SLR’) likewise produces
increased distinguishing margins in low-degree settings, but of course can no
longer be considered generic-emulating.5

The DoM distinguisher is considered sub-optimal as it only exploits the leak-
age of a single bit, but is generally seen as the ‘best’ an attacker can do without
prior knowledge on the power model—a sort of ‘last resort’. Therefore, it is an
important baseline comparison for our proposed strategy. Since the DoM dis-
tinguisher is SCA-equivalent to correlation DPA with a single-bit power model
(see [9])6, what we actually report (labelled ‘Best DoM’) are the margins pro-
duced by the squared correlation coefficients for the best out of every possible
single-bit partition (again, so as to place it on a like-for-like scale with our other
distinguishers).

As can be seen from Fig. 3, the bit-by-bit DoM strategy does (on average) dis-
tinguish the key once an appropriate bit has been identified. However, it achieves
this by smaller margins than the generic emulating SLR-based distinguisher, at
least in the case of the AES and DES S-boxes. This is in line with our expec-
tation that it is more informative to exploit the entire intermediate value than
it is to exploit a single bit only. In the case of PRESENT, DoM and SLR ap-
pear close, with a slight advantage to DoM. We conjecture that this is due to
the smallness of the S-box, which limits the attainable degree of cryptographic
nonlinearity—the particular feature which SLR exploits.

It is perhaps surprising to note that the example attacks above succeed even
when the leakage degree is maximal. The success of generic-emulating SLR rests
on the comparative ‘complexity’ (in some sense) of L ◦ Fk ◦ F−1k∗ relative to
L. Evidently, high polynomial degree is not a relevant criteria on L for pre-
dicting attack failure. We have constructed example failure cases (e.g. random

5 The asymptotic outcomes appear to be reliably consistent over the 500 repeated
experiments—see Appendix D for more information.

6 That is, the distinguishing vectors are exactly proportional so that the relative mar-
gins are identical. The result also matches that resulting from LR-based DPA with
a single bit term in the regression equation, as should be obvious from Sect. 4.2.

198 C. Whitnall, E. Oswald, and F.-X. Standaert

1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1
AES S−Box

1 2 3 4
0

0.2

0.4

0.6

0.8

1
PRESENT S−Box

Degree of leakage polynomial
1 2 3 4

0

0.2

0.4

0.6

0.8

1
DES S−Box

Perfect model
Generic LR
MaxDeg LR
GenEm SLR
MaxDeg SLR
Best DoM

Fig. 3. Median distinguishing margins of attacks against AES, PRESENT and DES
S-boxes as the leakage degree increases (500 experiments with uniformly random coef-
ficients between -10 and 10)

0 50 100 150
0

0.2

0.4

0.6

0.8

1
No noise

Number of traces

Su
cc

es
s

ra
te

0 100 200 300
0

0.2

0.4

0.6

0.8

1
SNR of 2

Number of traces

Su
cc

es
s

ra
te

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1
SNR of 0.125

Number of traces
Su

cc
es

s
ra

te
GenEm SLR Best DoM Random DoM

Fig. 4. Success rates as the number of traces increases, for DoM and SLR attacks
against the AES S-box with high degree leakage (500 experiments with uniformly
random coefficients between -10 and 10)

permutations over {0, . . . , 2m − 1}, indicating that SLR fails if L has a high
cryptographic nonlinearity when interpreted as a function over Fm2), but we leave
as an open question the precise properties of L which will cause failures in
general.

4.6 Practical Success Rate Evaluation

The above analysis shows the AES S-box to be the most interesting scenario (of
the three) for generic-emulating SLR : its large size ensures sufficiently high cryp-
tographic nonlinearity (by contrast with PRESENT), and its injectivity means
that it is not vulnerable to generic attacks (by contrast with DES). Therefore,
in order to establish its effectiveness in practice, we performed experimental at-
tacks against AES with (arbitrarily generated) degree-8 polynomial leakages—
the most challenging of the leakage forms considered above. Fig. 4 shows the
success rate as the number of traces increases, as compared with the success
rates of DoM in the best case (the strongest of all 8 possible one-bit attacks)
and the average case (the outcome of a single, randomly-chosen one-bit attack).
In practice, an attacker does not know the best bit to attack, and so is in this
latter scenario, where success is by no means guaranteed and the SLR strategy
is far more likely to recover the key from a given number of traces. However,
by trying each bit in turn (or all in parallel) an attacker can greatly improve
their chances, and indeed the best DoM is consistently more data efficient than
generic-emulating SLR despite the fact that the latter exploits the leaked infor-
mation far more comprehensively. This is because of the increased estimation

The Myth of Generic DPA. . . and the Magic of Learning 199

costs incurred by stepwise regression, which requires fitting a model with up to
28 unknown coefficients, whilst DoM amounts to the estimation of two means.7

5 Conclusion

Implementers and evaluators routinely perform DPA attacks against devices
to identify vulnerabilities. Yet the current state of the art, e.g. [19] Appendix
F, is often based on incomplete understanding of the myriad attack methods
and how they relate. Practitioners are rightly concerned about the increasingly
unmanageable amount of work required for a thorough evaluation, e.g. [32]—but
testing only a subset of methods risks overestimating security if the best possible
strategy is omitted.

The non-existence of universally-applicable generic attacks—as shown in the
first part of this paper—implies that profiled attacks are necessary in security
evaluations. It also leads to questions about the existence of ‘almost generic’
methods that would connect worst-case security evaluations with (more real-
istic) non-profiled adversaries, as addressed in the second part of the paper.
In the absence of a viable power model a usual strategy is to ‘revert’ back to
single-bit models, e.g. using Kocher et al.’s DoM-based methods. However, us-
ing our non-device-specific intuition, we were able to define a novel tweak on
the LR-based method that works in a generic-emulating manner and, for large
enough (i.e. nonlinear enough) S-boxes, produces outcomes comparable to those
attainable by single-bit strategies (based on the ‘most leaky’ bit). The practical
advantage of generic-emulating SLR is unclear because of the substantial esti-
mation costs involved; however, it greatly improves over the success rates of a
randomly-selected DoM and is not too far behind the ‘best’ DoM, which looks
to remain the most practically-effective known non-profiled distinguisher for use
against unknown leakage distributions, by virtue of the minimal data complexity
associated with estimating sample means.

Acknowledgements. This work has been funded in part by the ERC project
280141 (acronym CRASH), and in part by the EPSRC via grant EP/I005226/1.
François-Xavier Standaert is an associate researcher of the Belgian Fund for
Scientific Research (FNRS-F.R.S.).

References

1. The DPA Contest, http://www.dpacontest.org/
2. Batina, L., Gierlichs, B., Lemke-Rust, K.: Comparative Evaluation of Rank Corre-

lation Based DPA on an AES Prototype Chip. In: Wu, T.-C., Lei, C.-L., Rijmen,
V., Lee, D.-T. (eds.) ISC 2008. LNCS, vol. 5222, pp. 341–354. Springer, Heidelberg
(2008)

7 It is well-recognised that the data complexity of different statistical estimators varies
widely; the subsequent gap between the theoretic and practical capabilities of DPA
distinguishers is discussed in more detail in [33].

http://www.dpacontest.org/

200 C. Whitnall, E. Oswald, and F.-X. Standaert

3. Batina, L., Gierlichs, B., Prouff, E., Rivain, M., Standaert, F.-X., Veyrat-Charvillon,
N.: Mutual Information Analysis: A Comprehensive Study. Journal of Cryptol-
ogy 24, 269–291 (2011)

4. Brier, E., Clavier, C., Olivier, F.: Correlation Power Analysis with a Leakage Model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004)

5. Canovas, C., Clediere, J.: What Do S-boxes Say in Differential Side Channel At-
tacks? Cryptology ePrint Archive, Report 2005/311 (2005)

6. Carlet, C.: Boolean Functions for Cryptography and Error Correcting Codes. In:
Boolean Models and Methods in Mathematics, Computer Science, and Engineering,
1st edn., pp. 257–397. Cambridge University Press, New York (2010)

7. Carlet, C.: Vectorial Boolean Functions for Cryptography. In: Boolean Models and
Methods in Mathematics, Computer Science, and Engineering, 1st edn., pp. 398–469.
Cambridge University Press, New York (2010)

8. Chari, S., Rao, J., Rohatgi, P.: Template attacks. In: Kaliski Jr., B.S., Koç, Ç.K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003)

9. Doget, J., Prouff, E., Rivain, M., Standaert, F.-X.: Univariate Side Channel Attacks
and Leakage Modeling. J. Cryptographic Engineering 1(2), 123–144 (2011)

10. Evertse, J.-H.: Linear Structures in Block Ciphers. In: Price, W.L., Chaum, D.
(eds.) EUROCRYPT 1987. LNCS, vol. 304, pp. 249–266. Springer, Heidelberg
(1988)

11. Gierlichs, B.: Statistical and Information-Theoretic Methods for Power Analysis
on Embedded Cryptography. PhD thesis, Katholieke Universiteit Leuven, Faculty
of Engineering (2011)

12. Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual Information Analysis: A
Generic Side-Channel Distinguisher. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008.
LNCS, vol. 5154, pp. 426–442. Springer, Heidelberg (2008)

13. Goutte, C., Gaussier, É.: A Probabilistic Interpretation of Precision, Recall and
F-Score, with Implication for Evaluation. In: Losada, D.E., Fernández-Luna, J.M.
(eds.) ECIR 2005. LNCS, vol. 3408, pp. 345–359. Springer, Heidelberg (2005)

14. Heys, H.M.: A tutorial on linear and differential cryptanalysis. Cryptologia 26,
189–221 (2002)

15. Hocking, R.R.: The Analysis and Selection of Variables in Linear Regression. Bio-
metrics 32(1), 1–49 (1976)

16. Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

17. Kowalski, G.: Information retrieval architecture and algorithms. Springer, New
York (2011)

18. Mangard, S., Oswald, E., Standaert, F.-X.: One for All – All for One: Unifying
Standard DPA Attacks. IET Information Security 5(2), 100–110 (2011)

19. NIST. Security Requirements for Cryptographic Modules (Revised Draft). Techni-
cal Report FIPS PUB 140-3, US Department of Commerce (December 2009)

20. Nyberg, K.: Differentially Uniform Mappings for Cryptography. In: Helleseth, T.
(ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 55–64. Springer, Heidelberg (1994)

21. Prouff, E.: DPA Attacks and S-Boxes. In: Gilbert, H., Handschuh, H. (eds.) FSE
2005. LNCS, vol. 3557, pp. 424–441. Springer, Heidelberg (2005)

The Myth of Generic DPA. . . and the Magic of Learning 201

22. Renauld, M., Kamel, D., Standaert, F.-X., Flandre, D.: Information Theoretic and
Security Analysis of a 65-Nanometer DDSLL AES S-Box. In: Preneel, B., Takagi,
T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 223–239. Springer, Heidelberg (2011)

23. Renauld, M., Standaert, F.-X., Veyrat-Charvillon, N., Kamel, D., Flandre, D.: A
formal study of power variability issues and side-channel attacks for nanoscale de-
vices. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 109–128.
Springer, Heidelberg (2011)

24. Schindler, W., Lemke, K., Paar, C.: A Stochastic Model for Differential Side Chan-
nel Cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659,
pp. 30–46. Springer, Heidelberg (2005)

25. Schramm, K., Wollinger, T.J., Paar, C.: A new class of collision attacks and its
application to des. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 206–222.
Springer, Heidelberg (2003)

26. Standaert, F.-X., Gierlichs, B., Verbauwhede, I.: Partition vs. Comparison Side-
Channel Distinguishers: An Empirical Evaluation of Statistical Tests for Univari-
ate Side-Channel Attacks against Two Unprotected CMOS Devices. In: Lee, P.J.,
Cheon, J.H. (eds.) ICISC 2008. LNCS, vol. 5461, pp. 253–267. Springer, Heidelberg
(2009)

27. Standaert, F.-X., Malkin, T.G., Yung, M.: A Unified Framework for the Analysis
of Side-Channel Key Recovery Attacks. In: Joux, A. (ed.) EUROCRYPT 2009.
LNCS, vol. 5479, pp. 443–461. Springer, Heidelberg (2009)

28. Stevens, S.S.: On the theory of scales of measurement. Science 103, 677–680 (1946)
29. Tiri, K., Verbauwhede, I.: Securing Encryption Algorithms against DPA at the

Logic Level: Next Generation Smart Card Technology. In: Walter, C.D., Koç, Ç.K.,
Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 125–136. Springer, Heidelberg
(2003)

30. Veyrat-Charvillon, N., Standaert, F.-X.: Mutual Information Analysis: How, When
and Why? In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 429–443.
Springer, Heidelberg (2009)

31. Veyrat-Charvillon, N., Standaert, F.-X.: Generic side-channel distinguishers: Im-
provements and limitations. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841,
pp. 354–372. Springer, Heidelberg (2011)

32. Wagner, M.: 700+ attacks published on smart cards: The need for a system-
atic counter strategy. In: Schindler, W., Huss, S.A. (eds.) COSADE 2012. LNCS,
vol. 7275, pp. 33–38. Springer, Heidelberg (2012)

33. Whitnall, C., Oswald, E.: A Comprehensive Evaluation of Mutual Information
Analysis Using a Fair Evaluation Framework. In: Rogaway, P. (ed.) CRYPTO
2011. LNCS, vol. 6841, pp. 316–334. Springer, Heidelberg (2011)

34. Whitnall, C., Oswald, E.: A Fair Evaluation Framework for Comparing Side-
Channel Distinguishers. Journal of Cryptographic Engineering 1(2), 145–160
(2011)

35. Whitnall, C., Oswald, E., Mather, L.: An Exploration of the Kolmogorov-Smirnov
Test as Competitor to Mutual Information Analysis. Cryptology ePrint Archive,
Report 2011/380 (2011), http://eprint.iacr.org/

36. Youssef, A.M., Tavares, S.E.: Resistance of Balanced S-Boxes to Linear and Dif-
ferential Cryptanalysis. Inf. Process. Lett. 56, 249–252 (1995)

http://eprint.iacr.org/

202 C. Whitnall, E. Oswald, and F.-X. Standaert

A Conditions for a Generic Strategy to Succeed

Here we provide simple proofs for the claims stated in Sect. 3.3. For conciseness
we first prove Proposition 2 part (c) and then show that parts (a) and (b) are
covered as special cases.

Proof. (Of 2(c)). Ultimately, k≥ is indistinguishable from k if F−1k [Fk(x)] ◦
F−1k∗ [L−1[L ◦ Fk∗(x)]] ∅x ≡ F

n
2 as this implies that Fk is just as accurate a

model for L ◦ Fk∗ as Fk∗ (that is Precision(Fk) = Precision(Fk∗) = 1 and
Recall(Fk) = Recall(Fk∗) as follows directly from the formulae).

It is sufficient to show that ∅x ≡ F
n
2 , x′ ≡ F−1k [Fk(x)] ⊥ x′ ≡ F−1k∗ [Fk∗(x)],

since, trivially, F−1k∗ [Fk∗(x)] ◦ F−1k∗ [L−1[L ◦ Fk∗(x)]].
If DaF (x) depends on x only via F (x) we can write DaF (x) = c(F (x)) for

some function c : Fm2 ⊗ F
m
2 .

It thus follows that Fk∗(x) = F (x ∈ k≥ ∈ a∈ a) = DaF (x∈ k≥ ∈ a)∈ F (x∈
k≥ ∈ a) = c(F (x ∈ k≥ ∈ a))∈ F (x∈ k≥ ∈ a) = c(Fk∗⊕a(x)) ∈ Fk∗⊕a(x).

So if x′ ≡ F−1k∗⊕a[Fk∗⊕a(x)] then:

Fk∗(x
′) = c(Fk∗⊕a(x′))∈ Fk∗⊕a(x′)
= c(Fk∗⊕a(x)) ∈ Fk∗⊕a(x)
= Fk∗(x).

I.e. x′ ≡ F−1k∗ [Fk∗(x)] and thus F−1k∗⊕a[Fk∗⊕a(x)] ◦ F−1k∗ [Fk∗(x)] ◦ F−1k∗ [L−1[L ◦
Fk∗(x)]].

Part (b) follows trivially once we notice that, if a ≡ F
n
2 is a linear structure

of F , we can replace c(F (x)) in the above argument with c for some c ≡ F
m
2

constant over all x.
Part (a) follows from the observation that if F is affine, the linear space of

F is the whole of F
n
2 so that k≥ is indistinguishable from k = k′ ∈ a for all

a ≡ F
n
2 \ {0} (and thus for all k ≡ K \ {k≥} ◦ F

n
2) by the same argument.

Proof. (Of Proposition 3). That the condition is necessary follows directly from
Proposition 2(c). Now suppose that, additionally, L is injective.

Choose x′ ≡ F
n
2 such that #Dk∗⊕kF (F−1[F (x′ ∈ k)]) →= 1—which can be

re-written as #Dk∗⊕kF (F−1k [Fk(x
′)]) →= 1.

Thus ⊆x′′ ≡ F−1k [Fk(x
′)] such that:

Dk∗⊕kF (x′ ∈ k) →= Dk∗⊕kF (x′′ ∈ k)
⊥ F (x′ ∈ k ∈ k≥ ∈ k)∈ F (x′ ∈ k) →= F (x′′ ∈ k ∈ k≥ ∈ k)∈ F (x′′ ∈ k)
⊥ F (x′ ∈ k≥)∈ F (x′ ∈ k) →= F (x′′ ∈ k≥)∈ F (x′′ ∈ k)
⊥ Fk∗(x

′)∈ Fk(x′) →= Fk∗(x
′′)∈ Fk(x′′)

⊥ Fk∗(x
′) →= Fk∗(x

′′) (since x′′ ≡ F−1k [Fk(x
′)])

⊥ x′′ →≡ F−1k∗ [Fk∗(x
′)]

⊥ F−1k∗ [Fk∗(x
′)] →= F−1k [Fk(x

′)]

The Myth of Generic DPA. . . and the Magic of Learning 203

Now we look at what this does to the precision and recall of Fk as a nominal
model for Fk∗ , beginning with the summands in the numerator of both expres-
sions:

#F−1k∗ [L−1[L ◦ Fk∗(x)]] ∃ F−1k [Fk(x)] = #F−1k∗ [Fk∗(x)] ∃ F−1k [Fk(x)]⎤
< 2n−m, if x = x′

∪ 2n−m, if x →= x′.

By the balancedness of F and the injectivity of L the denominator summands
in the precision and recall expressions always take the value 2n−m. In this case,
then, we get that Precision(Fk∗) = Recall(Fk∗) = 1 whilst Precision(Fk) =
Recall(Fk) < 1, so that a sufficiently sensitive generic-compatible distinguisher
will be able to reject the hypothesis k.

It only remains to show that sufficiency cannot be claimed when L is nonin-
jective, which we do with a simple illustrative example:

Define F : F3
2 ⊗ F

2
2 and L : F2

2 ⊗ {1, 2} such that:

F (x) =

⎥⎦⎦⎦
⎦⎦⎦

0, x ≡ {0, 3}
1, x ≡ {1, 2}
2, x ≡ {4, 5}
3, x ≡ {6, 7},

L(z) =

⎤
1, z ≡ {0, 1}
2, z ≡ {2, 3}.

So F0(x) = F (x∈ 0) = F (x)

and F4(x) = F (x∈ 4) =

⎥⎦⎦⎦
⎦⎦⎦

0, x ≡ {4, 7}
1, x ≡ {5, 6}
2, x ≡ {0, 1}
3, x ≡ {2, 3}.

Then (for example) F−10 [F0(0)] = {0, 3} →= {0, 1} = F−14 [F4(0)], but nonethe-
less F−10 [L−1[L ◦ F0(0)]] = {0, 1, 2, 3} = F−14 [L−1[L ◦ F4(0)]] ⊃ F−14 [F4(0)] and
in fact it can be checked that F−14 [F4(x)] ⊂ F−10 [L−1[L ◦F0(x)]] ∅x ≡ F

3
2 so that

Precision(M4) = Precision(M0) = 1 and Recall(M4) = Recall(M0), implying
that key candidates 0 and 4 cannot be distinguished from one another.

B Linear Regression

Linear regression is a statistical method for modelling the relationship between a
single dependent variable Y and one or more explanatory variables Z. It operates
by finding a least-squares solution β̂ to the system of linear equations Y = Zβ+ε,
where Y is an N -dimensional vector of measured outcomes, Z is an N -by-p
matrix of p measured ‘covariates’, β is the p-dimensional vector of unknown
parameters, and ε is the noise or error term, that is, all remaining variation in Y

204 C. Whitnall, E. Oswald, and F.-X. Standaert

which is not caused by Z. Once the model has been estimated, the goodness-of-
fit can be measured (for example) by the ‘coefficient of determination’, R2, which
quantifies the proportion of variance explained by the model: R2 = 1 − SSerror

SStotal
,

where SStotal =
⎛N

i=1(Yi− 1
N

⎛N
i=1 Yi)

2 is the total sum of squares and SSerror =⎛N
i=1(Yi − Ziβ̂)2 is the error sum of squares.
In the case that Z includes a constant term (the associated parameter es-

timate is called the intercept), the coefficient of determination is the square
of the correlation coefficient between the outcomes and their predicted values:
R2 = ρ(Zβ̂, Y)2. It is appealing as an attack distinguisher by virtue of this
close relationship with correlation, coupled with the fact that it requires far less
knowledge about the true form of the leakage to succeed. In correlation DPA the
attacker has prior knowledge of a power model M and the distinguishing vector
takes the form Dρ(k) = ρ(Lk∗(X) + ε,M ◦ Fk(X)). In linear regression DPA
the challenge is to simultaneously recover the true power model along with the
correct key as follows:

– Model the measured traces in function of the predicted coordinate function
outputs and such higher-order interactions as you believe to be influential.

– Estimate the parameters and compute the resulting R2 under each possible
key hypothesis.

– If the largest R2 is produced by the predictions relating to the correct key
hypothesis then the attack has succeeded.

The LR-based distinguishing vector is thus: DLR(k) = ρ(Lk∗(X) + ε, α̂k,0 +⎛
u≤U Fk(X)uα̂k,u)

2, where ρ is Pearson’s correlation coefficient, defined for two
random variables A, B as ρ(A,B) = Cov(A,B)∗

Var(A)Var(B)
.

C Stepwise Regression

The inputs to the procedure are an N × 1 vector Y containing observations
of the dependent variable, p N × 1 vectors {Zi}pi=1 for each of the candidate
explanatory variables, a set of indices indicating terms to be included regardless
of explanatory power Ifix ⊂ {1, . . . , p} and a set of indices indicating additional
terms to include in the initial model Iinitial ◦ {1, . . . , p} (s.t. Ifix ∃ Iinitial = ∅).
1. Set Iin = Iinitial. Set Itest = {1, . . . , p} \ {Iin ∪ Ifix}.
2. For all j ≡ Itest fit the model Y = β0 +

⎛
i≤Ifix∪Iin βiZi + βjZj + ε using

least-squares regression and obtain the p-value on Zj (call it pvalj).
3. If minj≤Itest pvalj ∪ pvaladd then set Iin = Iin ∪ argminj≤Itestpvalj , Itest =
Itest \ argminj≤Itestpvalj and repeat from step 2.

4. Else fit the model Y = β0+
⎛
i≤Ifix∪Iin βiZi+ε using least-squares regression

and obtain {pvali}i≤Iin .
5. If maxi≤Iin pvali ⇒ pvalrem then set Iin = Iin \ argmaxi≤Itestpvali, Itest =
Itest ∪ argmaxi≤Itestpvali and return to step 2.

6. Else return Iin.

The Myth of Generic DPA. . . and the Magic of Learning 205

Note that the p-values on included terms change when other terms are added
or removed—hence the need for an iterative procedure that re-tests the sig-
nificance of included terms to identify candidates for removal. The threshold
p-values for model entry and removal, pvaladd and pvalrem, are user-determined
and will influence the resulting model. The terms included in the initial model
will also influence the result. The MatLab defaults are pvaladd = 0.05, pvalrem =
0.1 and Iinitial = Ifix = ∅.

D Variability of Measured Outcomes

The asymptotic outcomes reported in Sect. 4.5 are based on 500 different leakage
functions constructed to have uniformly random coefficients between -10 and 10.
Fig. 3 displays the medians but provide a reliable indication of the behaviour
over the whole sample as the variance is moderate, at least in the case of AES
and DES S-boxes. By way of illustration, Fig. 5 below shows the 1st percentiles
of the measured outcomes observed. Successful outcomes against AES and DES
are preserved (although diminished); there are more failure cases against the
PRESENT S-box, which we conjecture is due to its smaller size, which restricts
the degree of cryptographic nonlinearity attainable. It should, of course, be noted
that these attacks use fixed stepwise inclusion/exclusion thresholds, and that the
failure cases may respond to more sensitive tuning.

1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1
AES S−Box

1 2 3 4

−0.5

0

0.5

1
PRESENT S−Box

Degree of leakage polynomial 1 2 3 4
0

0.2

0.4

0.6

0.8

1
DES S−Box

Perfect model
Generic LR
MaxDeg LR
GenEm SLR
MaxDeg SLR
Best DoM

Fig. 5. First percentile of the distinguishing margins of attacks against AES,
PRESENT and DES S-boxes as the actual degree of the leakage polynomial increases
(500 experiments with uniformly random coefficients between -10 and 10)

Hardware Implementation and

Side-Channel Analysis of Lapin

Lubos Gaspar1,Π, Gaëtan Leurent1,2, and François-Xavier Standaert1

1 ICTEAM/ELEN/Crypto Group, Université catholique de Louvain, Belgium
2 Inria, EPI SECRET, Rocquencourt, France

{lubos.gaspar,fstandae}@uclouvain.be, gaetan.leurent@inria.fr

Abstract. Lapin is a new authentication protocol that has been de-
signed for low-cost implementations. In a work from RFIDsec 2012,
Berstein and Lange argued that at similar (mathematical) security lev-
els, Lapin’s performances are below the ones of block cipher based au-
thentication. In this paper, we suggest that as soon as physical security
(e.g. against side-channel attacks) is taken into account, this criticism
can be mitigated. For this purpose, we start by investigating masked
hardware implementations of Lapin, and discuss the gains obtained over
software ones. Next, we observe that the structure of our implementa-
tions significantly differs from block cipher ones (for which most results
in side-channel analysis apply), hence raising questions regarding how
to evaluate physical security in this case. We then provide first results
of side-channel analyzes against unprotected and masked Lapin. Despite
interesting properties of the masked implementations, our conclusions
are still contrasted because of the on-chip randomness requirements of
Lapin protocol. These results give strong incentive to design similar but
deterministic protocols, e.g. based on the recently introduced Learning
With Rounding assumption.

Keywords: LPN, Ring-LPN, masking, side-channel analysis.

1 Introduction

In [9], Heyse at al. proposed the Lapin authentication protocol based on the
hardness of the Ring-LPN problem. Authors described two different Lapin vari-
ants based on a carefully chosen ring R = F2[X]/f(X). In the first variant, the
ring is constructed with respect to an irreducible polynomial f(X) in F2. This
way the ring becomes a Galois field. In the second variant the polynomial f(X)
is reducible and it factors into distinct irreducible factors over F2, leading to
improved performances (only this second variant will be considered next).

Ψ This work has been funded in part by the ERC project 280141 (acronym CRASH),
by the European Commissions 7th framework program’s project TAMPRES, and by
the Belgian Cybercrime Center of Excellence for Training Research and Education
(B-CCENTRE). F.-X. Standaert is an associate researcher of the Belgiam Fund for
Scientific Research (FNRS-F.R.S).

J. Benaloh (Ed.): CT-RSA 2014, LNCS 8366, pp. 206–226, 2014.
c© Springer International Publishing Switzerland 2014

Hardware Implementation and Side-Channel Analysis of Lapin 207

The claim that such a protocol could provide better performances than stan-
dard solutions using block ciphers gave rise to some debate, as witnessed by
the work of Bernstein and Lange [3]. In this paper, the authors strongly argued
against Lapin, because of its unclear security level, and performances that are
anyway below the ones of lightweight ciphers. In this paper, we aim to mitigate
these criticisms in light of the interesting properties of Lapin regarding side-
channel resistance. Namely, we would like to argue that1 as the (physical) se-
curity level against side-channel attacks required by some application increases,
Lapin gradually becomes an interesting alternative over the AES. The main
reason of this interesting feature is the linearity found in its core operations.

For this purpose, we first propose a generic hardware architecture for Lapin,
and detail the performance gains that can be obtained from its implementation in
an FPGA (compared to previous software implementations of unprotected Lapin
and masked AES). Next, we provide a preliminary evaluation of its side-channel
properties. Interestingly, the situation of Lapin can be compared to recent in-
vestigations of randomness extractors against side-channel attacks [15]. Namely,
they can both be masked quite efficiently, while raising questions regarding how
to best exploit/evaluate side-channel leakage. As a first step in this direction, we
suggest two ways to mount attacks against Lapin: one non-divide-and-conquer
DPA-like attack, and one divide-and-conquer collision-like attack, exploiting the
correlation between the leakage corresponding to multiple messages.

Overall, these results suggest that Lapin could be a promising candidate for
(reasonably) lightweight and physically secure implementations. Yet, and admit-
tedly, a significant drawback remains that it requires the generation of random-
ness on-chip, which may be an issue both from the performance and the physical
security point of view. As the previous work in [9], we ignored this part of the
problem so far, leading to two important questions for further research. First,
how to generate this noise efficiently and in a leakage-resilient manner. Second,
can we build an authentication protocol similar to Lapin, but deterministic, e.g.
using the recently introduced Learning With Rounding assumption [1,2].

2 Background

In this section we recall the Lapin authentication protocol and the masking
countermeasure.

2.1 The Lapin Protocol

Lapin is a two-round authentication protocol, illustrated in Figure 1. It is defined
over the ring R = F2[X]/f(X), where f is a polynomial over F2 of degree n. The
initial public parameters are: λ – security level parameter (in bits); π – mapping
{0, 1}Δ ⊗ R; τ ≡ (0, 1/2) – Bernoulli distribution parameter; τ ≥ ≡ (τ, 1/2) – reader
acceptance threshold. Besides, the secret key of the tag and reader is defined as

K = (s, s≥), with (s, s≥) $← R. The protocol is executed as follows.

1 Up to some limitations related to the randomness requirements of Lapin - see next.

208 L. Gaspar, G. Leurent, and F.-X. Standaert

Public parameters: R, π:{0, 1}ε ◦ R, τ, τ ∗, λ.
Secret key: K = (s, s∗) ∈ R2.

Tag Reader

�
c

c
$⇒ {0, 1}ε

� r
$⇒ R∗; e $⇒ BerRτ ∈ R

� z := r · (s · π(c)⊕ s∗)⊕ e
(r, z)

� if r /∈ R∗ reject

� e∗ := z − r · (s · π(c)⊕ s∗)

� if HW (e∗) > n · τ ∗ reject
else accept

Fig. 1. Two-round Lapin authentication protocol

After the tag is detected in the reader’s vicinity, the reader randomly gener-
ates a challenge c ≡ {0, 1}Δ and sends it to the tag (step ➀ in Fig. 1). The λ
parameter determines the security level of the protocol (e.g. λ = 80 bits). In the
meantime, the tag generates parameters r and e (step ➁). The parameter r is an
uniformly chosen element of the ring R≤ and e is a low-weight ring element chosen
with Bernoulli distribution over F2 (BerΨ) with parameter (bias) τ ≡]0, 1/2[(i.e.,
Pr[X = 1] = τ if X ← BerΨ). After receiving the challenge c, the tag maps the
challenge to the ring through π, where π satisfies π(c)∪ π(c≥) ≡ R \R≤ ⇐ c = c≥.
We denote R≤ the set of elements in R that have a multiplicative inverse. Subse-
quently, the tag responds with (r, z = r · K(c) ∪ e) ≡ R × R (step ➂), where
K(c) = s · c ∪ s≥ is the session key that depends on the shared secret key
K = (s, s≥) ≡ R2 and the challenge c. The reader accepts if e≥ = z ∪ r · K(c)
(computed in the step ➄) is a polynomial of low weight (step ➅). More details
on the Lapin protocol and all necessary security proofs can be find in [9].

Chinese Reminder Theorem Representation (CRT): In this work, we
focus on versions of Lapin over a ring R = F2[X]/f(X) where f(X) factors into
distinct irreducible factors over F2. For an element h in the ring F2[X]/f(X),

we will denote ⎛h its CRT representation with respect to the factors of f(X)
(for simplicity f(X) will be further denoted only as f). In other words, if f =
f1 · f2 · · · fm where all fj are irreducible, then:⎛h .

= (h mod f1, . . . , h mod fm), ⎛hi .= h mod fi.

For the protocol to be implemented efficiently, all public and private values must
be transformed to the CRT domain. However, in order to obtain the resulting
tag response (r, z), it must be reconstructed from the response (⎛r, ⎛z) as follows:

(r, z) =

⎡
⎢⎢⎢⎞

m⎤
i=1

⎛ri ·
constant⎥ ⎦︸ ︷

f

fi
·
[(

f

fi

⎪−1]

fi

,
m⎤
i=1

⎛zi ·
constant⎥ ⎦︸ ︷

f

fi
·
[(

f

fi

⎪−1]

fi

 . (1)

Hardware Implementation and Side-Channel Analysis of Lapin 209

Although constants in the equation can be precomputed, this transformation still
involvesm multiplications and additions of size n. Since the transformation from
and to the CRT representation only uses public values, the tag response (r, z)
can be sent to the reader in its CRT representation (⎛r, ⎛z) without decreasing
Lapin’s security. This way, the computationally extensive transformation can be
performed at the reader side.

The challenge mapping π is defined as π̂(c) = (c, c, c, c, c), i.e. each CRT
component is just the challenge padded with zeroes.

2.2 The Masking Countermeasure

Masking is a countermeasure against power analysis attacks based on secret shar-
ing, first proposed by Chari et al. [5] and Goubin et al. [7]. Its main objective
is to decrease the correlation between the power consumed by a device and the
data being processed, by applying one (or several) random mask(s) to interme-
diate values. More formally, prior to the execution of the algorithm, all sensitive
values (i.e. all key-dependent intermediate results used during the cryptographic
computations) must be split into shares. Next, the algorithm is implemented in
such a way that the processing is only performed on these shares, which are
recombined at the end of the computation to produce the correct output result.
Given that the shares are refreshed for each new authentication2, masking pro-
vides an increase of the side-channel attacks data complexity that is exponential
in their number, under the assumption that the leakage of each share is indepen-
dent of the others. However, for this exponential security increase to materialize
into strong concrete security, it is required that sufficient noise is present in the
leakage measurements [18].

Different types of masking schemes have been proposed in the literature.
Boolean masking (where the sharing is performed using a bitwise XOR oper-
ation) appears as the most natural candidate in our context, since it can take
advantage of the linearity of the computations in Lapin. In this context, the split
of a sensitive value h into d shares requires the generation of d− 1 random mask
values qi, and is defined as follows:

h1 = q1, . . . , hd−1 = qd−1, hd = h∪
d−1⎤
i=1

qi.

Based on this sharing, a masked version of Lapin becomes straightforward to
implement. The secret keys s, s≥ and low-weight element e are first divided to
shares s1, s2, . . . , sd; s

≥
1, s
≥
2, . . . , s

≥
d and e1, e2, . . . , ed, respectively. The final result

z is then obtained by recombining shares z1, z2, . . . , zd that are computed as
follows:

2 This implies storing all the shares of the secret key, for which the initial split is
assumed to be performed once without leakage (otherwise this initialization can
always be the target of simple attacks).

210 L. Gaspar, G. Leurent, and F.-X. Standaert

z = (π(c) · s∪ s≥) · r ∪ e,

= [π(c) · (s1 ∪ · · · ∪ sd)∪ (s≥1 ∪ · · · ∪ s≥d)] · r ∪ (e1 ∪ · · · ∪ ed),

= [(π(c) · s1 ∪ s≥1) · r ∪ e1]∪ · · · ∪ [(π(c) · sd ∪ s≥d) · r ∪ ed] ,

= z1 ∪ · · · ∪ zd,

with

zi
.
= (π(c) · si ∪ s≥i) · r ∪ ei.

Since Lapin is linear, we can compute the shares zi independently, and there
is no need of interaction between them nor refreshing during the computations,
as opposed to masking non-linear gates within the AES [16], for instance. This
leads to very efficient implementations.

On the Independent Leakage Assumption: In addition, the linearity of
Lapin also allows to compute the shares sequentially. This time separation typi-
cally reduces the risk of glitches and other hardware effects that are well known
to contradict the independence assumption [13]. This is especially interesting in
the context of hardware implementations as considered in the next section; this
is the typical context in which glitches can appear [14].

3 Hardware Implementation

In this section we discuss our design choices for (unprotected and masked) Lapin.
We present several implementations of a Lapin co-processor and report their
area and timing performance. A hardware implementation takes advantage of
parallel computing in order to generate sufficient algorithmic noise, which allows
significant security gains in practice (and improved performances).

3.1 Generic Architecture

In order to implement the Lapin protocol, we use the same parameter values as
defined in Heyse at al. [9]. The degree of the polynomial f is chosen as n = 621,
the security level parameter λ = 80 bits, Bernoulli distribution bias parameters
τ = 1/6, τ ≥ = 0.29 and the number of factors of f as m = 5. The five fj
polynomials are defined as follows:

f1(X) = X127 ⊕X8 ⊕X7 ⊕X3 ⊕ 1,

f2(X) = X126 ⊕X9 ⊕X6 ⊕X5 ⊕ 1,

f3(X) = X125 ⊕X9 ⊕X7 ⊕X4 ⊕ 1,

f4(X) = X122 ⊕X7 ⊕X4 ⊕X3 ⊕ 1,

f5(X) = X121 ⊕X8 ⊕X5 ⊕X ⊕ 1.

Assuming that the Lapin protocol is performed on d shares (each of them com-
puted for allm CRT parts), we will denote the i−th share of the j−th CRT part

for a sensitive variable h as ĥi,j . Next, we propose a flexible architecture that

Hardware Implementation and Side-Channel Analysis of Lapin 211

allows splitting the sensitive variables into arbitrary number of shares. Taking ad-
vantage of generic VHDL coding enables the generation of such implementations
by re-synthetizing the same code with different parameters. For this purpose, we
present the masked Lapin algorithm, the combined polynomial multiplication-
reduction algorithm, and the hardware implementation of the complete Lapin
core.

Masked Lapin: The generic masked Lapin algorithm is illustrated in Algo-
rithm 1. First, a padded public challenge π(c) is multiplied by a secret key s
divided into shares ŝi,j for 1 → i → d, 1 → j → m. Following, the result is

added to the secret key s≥ divided into shares ŝ≥i,j . The sum is then multiplied
by a public random tag response ⎛rj . Subsequently, the product is added to a
low-weight element êi,j . The last step is to sum all resulting shares to form an
unmasked tag response ⎛zj . Finally, ⎛rj and ⎛zj are sent back to the reader to finish
the authentication process. Note that all computations are performed on all m
CRT parts.

Algorithm 1. Masked Lapin algorithm
Input:
1: Padded public challenge π(c)
2: Public random element r̂
3: Secret keys s and s∗ divided to shares ŝ and ŝ∗ respectively
4: Secret low-weigh error element e divided into shares ê
Output: Response (ẑ,r̂)
5: for j from 1 to m do
6: ẑj ⇒ 0
7: for i from 1 to d do
8: t̂i,j ⇒ (π(c) · ŝi,j ⊕ ŝ∗i,j) · r̂j ⊕ êi,j
9: end for
10: for i from 1 to d do
11: ẑj ⇒ ẑj ⊕ t̂i,j
12: end for
13: end for
14: Return ẑ

Reduction of a Low-Weight Error Element e: Unlike the other parameters
in Lapin, the low-weight error element e cannot be generated or pre-stored in
CRT representation directly: its m CRT parts must be calculated prior to other
computations. The reduction of such a large element is not straightforward and
requires additional hardware resources. In order to simplify this problem, we
first write each share of e (a polynomial of degree 621) in Horner form using
five polynomials [e(4), e(3), e(2), e(1), e(0)] of degree 127 (except for e(4) of degree
109):

212 L. Gaspar, G. Leurent, and F.-X. Standaert

êi,j =
((((

e
(4)
i ·X128∪e(3)i

)
·X128∪e(2)i

)
·X128∪e(1)i

)
·X128∪e(0)i

)
mod fj . (2)

Next, the polynomial X128 can be reduced by each characteristic polynomial fj
resulting in constant polynomials gj of degree less than deg(fj). After substitu-
tion Equation 2 becomes:

êi,j=
(((

e
(4)
i gj mod fj ⊕ e

(3)
i

)
· gj mod fj ⊕ e

(2)
i

)
· gj mod fj ⊕ e

(1)
i

)
·gj mod fj⊕e

(0)
i .

(3)

This way, only four multiplications, four reductions and four additions have
to be computed to obtain each êi,j . Moreover, the same hardware as used for
performing the computations in Algorithm 1 can be re-used to calculate the êi,j ’s.
Note that since e(3), e(2), e(1) and e(0) are of degree 127, some extra hardware
is still necessary for their reduction.

Polynomial Multiplication and Reduction: Examining the previous algo-
rithms reveals that 6 × d × m polynomial multiplications, reductions and poly-
nomial additions have to be performed to generate a response ⎛z. Among those,
the most time-consuming operations are the polynomial multiplications and sub-
sequent reductions of the products. Although the performances of the ”school-
book” multiplication algorithm is theoretically lower (O(2n)) than the Karatsuba
algorithm (O(nlog23)), it has a very simple structure, and so the resulting imple-
mentation is area-efficient and can operate at high clock frequencies. Moreover,
polynomial reduction and multiplication operations can be executed simultane-
ously in this case, so that no computational time is lost for the reduction step. For
this reason,we have implemented a combinedpolynomialmultiplication-reduction
based on the schoolbook multiplication, as explained in Algorithm 2. Two input

polynomials âi,j and b̂i,j of degree at most nj − 1 (represented with bit arrays
A[nj − 1 : 0] and B[nj − 1 : 0]) are multiplied together while partial products
are reduced by the characteristic polynomial fj of degree nj (represented with the
bit array F [nj : 0]) simultaneously. A closer examination of the algorithm shows
that B is multiplied by one bit of A at a time. Therefore, if A contains a secret
value, Lapin will be vulnerable to a Simple Power Analysis (SPA) attack, where
each partial multiplication leaks one bit of a key. For this reason, A must contain
only public data. On the contrary,B is processed in larger blocks (according to the
datapath size), so we used it to manipulate sensitive data (that will additionally
be protected against DPA thanks to masking).

Lapin Architecture: We implemented Lapin as a hardware co-processor core,
synthesized using Xilinx ISE 12.4 for Xilinx Virtex-5 XC5VLX50T FPGAs. Our
implementation is illustrated in Figure 2. All variables are stored in the data
register that is implemented in a dual-port embedded RAM. Random ring ele-
ments ⎛r and low-weight error elements e have to be generated by a TRNG. Three
distinctive parts can be identified in the datapath of this Lapin core: the polyno-
mial multiplication logic (shown in blue in Figure 2), the reduction logic (in red)

Hardware Implementation and Side-Channel Analysis of Lapin 213

Algorithm 2. Combined polynomial multiplication-reduction

Input:
1: polynomial âi,j , deg (âi,j) → nj − 1 represented as bit array A[nj − 1 : 0]

2: polynomial b̂i,j , deg
(
b̂i,j

)
→ nj − 1 represented as bit array B[nj − 1 : 0]

3: characteristic polynomial fj(X) of degree nj represented as bit array Fj [nj : 0]

Output: c(X) =
(
âi,j .b̂i,j

)
mod fj)

4: C ⇒ 0
5: for i from 1 to nj do
6: if A[nj − i] = 1 then
7: C ⇒ C ⊕B
8: end if
9: if C[nj − 1] = 1 then
10: C ⇒ (C ⊗ 1) ⊕ Fj [nj − 1 : 0]
11: else
12: C ⇒ (C ⊗ 1)
13: end if
14: end for
15: Return C[nj − 1 : 0]

and the addition logic (in green). During multiplication, a public parameter is
stored in the shift register (implemented in logic). By shifting this register, one
bit is selected at a time and multiplied with the secret parameter. The resulting
partial product is stored in the accumulator (also implemented in a dual-port
RAM). Subsequently, this partial product is shifted and added to the next partial
product. Whenever the size of this sum exceeds nj bits (nj = deg(fj)), reduction
circuitry is activated in the next clock cycle to reduce the exceeding bit. Once the
multiplication is finished, the result can be summed with a next secret parameter
stored in the data register. Prior to this addition, all exceeding bits of this
parameter are reduced by an auxiliary reduction circuitry. As can be observed
from the figure, multiplication involves shifting of partial products stored in the
accumulator. However, if a partial product of size nj is shifted in more than one
clock cycle (which is the case when k < 128), the most significant bit of each
shifted word must be stored in a carry bit register Cr. This way a stored carry
bit becomes a least significant bit of the next word in the next clock cycle.

3.2 Performance Evaluation

Implementation Results: In order to investigate the performance trends re-
sulting from different datapath sizes, we implemented our design for different
values of the k parameter in Figure 2, namely we considered k =8-, 16-, 32-,
64- or 128-bit wide architectures, as summarized in Table 1. These results cor-
respond to an unprotected implementation (i.e. d = 1) – but thanks to the
linear structure of Lapin, the masked versions have essentially the same cost:
only the memory requirements will increase proportionally to the number of

214 L. Gaspar, G. Leurent, and F.-X. Standaert

<<
0

ACC

Z

<<

+
k

DIN

LAPIN core

DATA
REG

MSb

Fj0

LSb

1

+

k

[nj-1]

1

1

k

CTRL
 k =
 8,16, 32,
64 or 128

Cr

TRNG
k

k

k
k

10

k

+

Fig. 2. Datapath with multiplication (blue), reduction (red) and addition (green)
circuitry

shares, in order to store intermediate results. We observe that if the datapath
size is decreased by half, the number of allocated fine-grained FPGA resources
does not always decrease accordingly. This can be explained by the fact that
narrower datapaths usually require more multiplexers and more complex control
logic. Moreover, this extra logic increases the overall datapath delays, resulting
in lower maximal clock frequency (see the fifth column in Table 1).

Table 1. Implementation results: resource usage and timing information

Datapath Slices BRAM fmax Clock cycles
(k) 18kb 36kb (MHz) d = 1 d = 2 d = 3

8 213 2 0 125.3 20,977 41,969 62,961
16 232 2 0 127.5 10,489 20,985 31,481
32 311 1 1 127.2 5,245 10,493 15,741
64 330 0 3 130.2 2,623 5,247 7,871
128 451 0 6 140.3 1,332 2,664 3,996

Timing Results: The detailed timing characteristics of our implementations
are given in Table 2 (see Appendix B), in which each line corresponds to the
number of clock cycles required for the computations in one characteristic poly-
nomial domain (fj), and the last line represents the total number of clock cycles
for the full Lapin execution, i.e. one tag response for one authentication request.
The left part of the table shows results if no masking is used (secret variables
are not divided into shares, i.e. d = 1); its right part summarizes results for
three-share computations (i.e. d = 3). For completeness, timing characteristics

Hardware Implementation and Side-Channel Analysis of Lapin 215

are again provided for all the aforementioned datapath sizes. The datapath and
the control logic were designed in order to eliminate cycles with no activity (i.e.
pipeline bubbles). As a result, decreasing the datapath size by half results in
doubling the number of clock cycles in most cases. The only exception is the
128-bit datapath where some extra dummy cycles were necessary to avoid RAM
read/write collisions.

Comparison: The timing comparison of software AES [16], software Lapin [9]
and our hardware Lapin are given in Figure 3. In the case of software Lapin,
the cycle counts for the masked versions are extrapolated from the unprotected
implementation. These results lead to two main observations.

First, we see that masked Lapin implementations indeed become interesting
alternatives over AES ones, as the number of shares increases. This is caused
by the fact the the implementation cost of non-linear operations (which become
dominant in masked AES implementations) increases quadratically with d, while
this increase is only linear in the case of Lapin. Interestingly, the number of
shares for which this gain concretely appears is reasonably small, hence close to
practical interest. The software figures we have for protected implementations of
AES and Lapin on ATMega suggest that Lapin could become more efficient than
AES even with d = 2, but the crossing point can move significantly depending
on the masking scheme used, and the optimization level of the implementation.

Second, we see that (as usual) specialized hardware implementations allow
a significant optimization of the performances of Lapin. Gains already appear
in the comparison of 8-bit architectures: computing a tag response in software
requires 112,500 clock cycles (that can be decreased to 30,000 clock cycles if
precomputation is allowed); our 1-share 8-bit hardware implementation requires
only 20,977 clock cycles in this case (without precomputations). These advan-
tages naturally amplify as we consider larger datapath sizes.

of shares AES Lapin Lapin
d softw. [16, 8] softw. [9] 8b hardw.

1 5100 112500 20977
2 286844 225016 41969
3 572069 337532 62961
4 1003154 450048 83953
5 1489539 562564 104945
6 2095756 675080 125937
7 2779561 787596 146929 1 2 3 4 5 6 7

0

1

2

3
·106

Number of shares d

C
lo
ck

c
y
c
le
s

Fig. 3. Number of clock cycles vs. number of shares (d) for software AES [16,8], software
Lapin [9] and hardware Lapin. With increase of used shares, the computation time
increases quadratically for the AES and only linearly for both Lapin implementations.

216 L. Gaspar, G. Leurent, and F.-X. Standaert

4 Side-Channel Analysis of Lapin

The previous section suggests that Lapin is an interesting candidate for mask-
ing. First, its linearity allows increasing the number of shares for only a linear
implementation cost penalty. Second, it also allows manipulating the shares in-
dependently, which implies a better chance to fulfill the independent leakage
requirements that is crucial for masking to provide its expected security im-
provements. Third, it is efficiently implemented in hardware with large dat-
apaths, providing algorithmic noise that is needed for the exponential data
complexity increase of masking to materialize into strong security levels. On
the other hand, a limitation of this analysis remains that it “only” considers
the security orders of the masking schemes (i.e. the minimum number of shares
of which the leakage must be exploited to recover key-dependent information).
While this is a traditional approach in side-channel analysis, it remains to un-
derstand how these security orders translate into actual attack complexities. In
particular, since Lapin has a significantly different structure than block ciphers
(to which most published higher-order side-channel attacks apply), it is interest-
ing to study attacks that exploit the design of its multiplier. In this section, we
consequently suggest several scenarios to analyze/evaluate a Lapin implementa-
tion using side-channel information, and we study the efficiency of those attacks
depending on the masking order of this implementation. As will be seen, these
attacks differ from classical DPA in some interesting respects.

We first point out that we can attack the CRT components independently:
each component is computed separately, and we can test a key candidate ⎛si from
the an authentication transcript without knowing the other CRT components.
In the following we describe attacks on a single CRT component.

As a starting point, we consider a non-protected implementation of Lapin,
and we study how to apply a standard DPA attack. In order to evaluate power
analysis on our implementation of Lapin, we first have to study what parts of
the computations are key-dependent, and how it might affect the power con-
sumption. In our analysis we target the first multiplication s · π(c) in the Lapin
protocol, where s is a secret value, and c is a challenge that can be set by the at-
tacker. Our architecture for Lapin includes a large accumulator that is updated
at each clock cycle, as shown in Figure 2, and we assume that this accumulator
will induce a significant leakage dependent on its value a. In order to simplify
our analysis, we use a Hamming weight model, i.e. we assume that the power
consumption is correlated with HW(a), and we run simulations where the sam-
ples are computed as HW(a)+N , with N a Gaussian-distributed random noise.
Our attacks will typically exploit the fact that, when computing a · c, the mul-
tiplication algorithm updates the accumulator a as (we consider the optimized
multiplication with an 80-bit c):

a0 = 0 ai+1 ←
{
2 · ai ∪ s if c[80− i] = 1

2 · ai otherwise.

Hardware Implementation and Side-Channel Analysis of Lapin 217

Hence, the value of the a after a few cycles of computation is a small multiple
of the secret:

a80 = s · c ai = s ·
i∑

j=1

c[80− j]X i−j .

Cautionary Note: Assuming Hamming weight leakages is admittedly a sim-
plification of the real measurements used in side-channel attacks. However, it is a
reasonable abstraction for preliminary analyses, that has been used in numerous
contexts [12]. While the actual complexities provided by these simulated attacks
are only meaningful up to the extent that true leakages behave similarly, they are
usually informative to confirm whether some attack techniques can be successful.
This is typically what the following results aim to exhibit, i.e. how side-channel
attacks against Lapin differ from standard DPA against block ciphers.

4.1 A First DPA-Like Attack against Unprotected Lapin

In an unprotected design, the leakage reveals the Hamming weight of multiples
of the secret, with a chosen multiplier mi(c) =

∑i
j=1 c[80 − j]X i−j , depending

on the challenge c and the cycle i we target. If we exploit several different cycles
in a given trace, we can get information about HW(ai) = HW(s · mi(c)) for
the same c and different values of i. However, the same information can also be
obtained by targeting a fixed cycle ι of the computation if we capture several
traces and send the appropriate challenges cj so that mι(cj) = mj(c).

In a DPA attack, we guess a small part of the key, then predict the value of
the leakage for a key guess according to a model, and compare the prediction
to the actualmeasurements in order to rank the key candidates. For a block cipher,
the key is usually divided according to the structure of the cipher; for instance, an
attack on the AES will target the key bytes independently because each SBox in
the first round depends on a single key byte. In the case of Lapin there is no such
natural division of the key, but we can study the key bits required to compute
some bits of the accumulator.

Recovering a Few Key Bits. For a given t, if mi(c) is of degree at most t
(e.g. if i → t), we can compute the p least significant bits of s ·mi(c) from the p
least significant and the t − 1 most significant bits of s. This allows to build a
simple DPA attack: after guessing the key bits, we compute the least significant
bits of ai and we consider the remaining bits as algorithmic noise. We can then
compute the correlation between the leaked weight of a and the weight of the
predicted bits, and use it to rank the key candidates.

Note that if there is no measurement noise, we can only use 2t different mea-
sures in this attack, because there are only 2t different polynomials of degree t
or lower. Extra measures are only useful to reduce the measurement noise.

218 L. Gaspar, G. Leurent, and F.-X. Standaert

We implemented this attack using Pearson’s correlation coefficient as a com-
parison tool [4], and we show an example of results in Figure 8 in Appendix A.
We can see from this example that the information from the measures is not suf-
ficient to recover exactly the secret key bits; there is a cluster of key candidates
with the same correlation coefficient. This is due to the algebraic structure of
the multiplier; for instance, if we consider two key candidate s and s≥ = s ·X ,
our prediction for the least significant bit of the accumulator using the key s
will match the second-least significant bit of the accumulator for candidate s≥.
Therefore, both candidates will be in the same cluster.

Recovering the Full Key. As opposed to a typical side channel attack on a
block cipher, we don’t have independent parts of the key affecting different parts
of the computation. Therefore, we don’t attack key parts independently using
a divide-and-conquer approach, but we recover key information gradually: if we
have a good candidate for n bits of the key, we generate key candidates for n+1
bits by considering both values for the next key bit. This defines a tree of key
candidates, and we explore the tree following the best candidates.

More precisely, we compute a score for the candidates as the ratio of Pearson’s
correlation coefficient over the expected correlation coefficient for the right key
(the square root of the number of predicted bits divided by the total number
of bits on the bus, over which the Hamming weight is computed). This allows
to compare the quality of key guesses of different lengths: if more key bits are
guessed, we can predict more bits, and we expect a better correlation coefficient.
The score of a node is computed when its parent is explored, and we select the
node with the higher score among all nodes whose score has been computed. In
practice, we use a priority queue to store the nodes and to extract the best one
efficiently.

If we have 2t traces, we begin by guessing the t − 1 most significant bits,
and one least significant bit of the key; this allows to predict one bit of the
accumulator at after t cycles. Next, we guess the second-least significant bit of
the key, so that we can predict two bits of at.

Figure 5 in Appendix A shows the success rate of this DPA-like attack, with
various parameters. The attack becomes less efficient with a large datapath,
because the Hamming weight over a larger bus size introduces more algorithmic
noise to the predicted value.

Those experiments clearly show the effect of the algorithmic noise from the
unknown bits in the Hamming weight (with variance k/4 for a k-bit datapath),
and of the physical noise (with variance σ2). When the physical noise is dom-
inant, i.e. σ2 > k/4, we see the data complexity increasing linearly with the
variance of the noise, as expected [11]. For instance, our experiment show a data
complexity of about 27.σ2 to reach a high success rate with k = 8. When k
increases, this increases the algorithmic noise, and we have a similar increase of
the data complexity if the algorithmic noise is dominant, i.e. when σ2 < k/4.
We note that this increase is somewhat faster than k/4 because there are more
nodes to explore to locate the correct key when k is larger, but we stop after a
fixed number of nodes are explored.

Hardware Implementation and Side-Channel Analysis of Lapin 219

4.2 Collision-Like Attack

We now describe an attack based on the structure of the operations in Lapin.
The main advantage of this attack is that we can eliminate the algorithmic noise
due to the Hamming weight with a large datapath by comparing the leakage
with two different inputs. This is similar to side-channel collision attacks [17]
where two traces are compared to detect specific events.

More precisely, we use the fact that the operation α ≥⊗ α ·X has a predictable
effect on the Hamming weight of α. We have:

α ·X mod f =

{
(α ∈ 1) if MSB(α) = 0

(α ∈ 1)∪ f if MSB(α) = 1,

where ∈ to denotes a left shift. Alternatively, we can write it using a rotation
≪ over deg(f) bits:

α ·X mod f =

{
(α ≪ 1) if MSB(α) = 0

(α ≪ 1)∪ f̄ if MSB(α) = 1,

where f̄ = f ∪Xdeg(f)∪ 1 is f without the highest and lowest coefficients. Since
the polynomials f used in Lapin are pentanomials, we have HW(f̄) = 3, and we
can relate the Hamming weight of α and the Hamming weight of α ·X mod f :

HW(α ·X mod f) =

HW(α) if MSB(α) = 0

HW(α) + 3 if MSB(α) = 1 and HW(α ≪ 1 ∅ f̄) = 0

HW(α) + 1 if MSB(α) = 1 and HW(α ≪ 1 ∅ f̄) = 1

HW(α)− 1 if MSB(α) = 1 and HW(α ≪ 1 ∅ f̄) = 2

HW(α)− 3 if MSB(α) = 1 and HW(α ≪ 1 ∅ f̄) = 3.

Therefore, the distribution of HW(α·X)−HW(α) for a random α is the following:

if MSB(α) = 0: HW(α ·X)−HW(α) = 0,

if MSB(α) = 1: HW(α ·X)−HW(α) =

+3 with probability 1/8

+1 with probability 3/8

−1 with probability 3/8

−3 with probability 1/8.

To exploit this property, we will use two measures such that mi(c) = m and
mi′(c

≥) = m·X . Then, we can recover the value MSB(m·s) (i.e. a linear equation
in s) by comparing HW(m ·s) and HW(m ·X ·s) (we use the analysis above with
α = m · s). If there is no noise, we will recover a key bit with only two measures,
with probability one.

As opposed to the attack of Section 4.1, this analysis uses the full state of
the multiplier, and avoids algorithmic noise due to the Hamming weight. This
makes the attack quite efficient. However, there is also an important limitation:

220 L. Gaspar, G. Leurent, and F.-X. Standaert

because the challenge used in Lapin is only 80-bit long, the multiplication m · c
only takes 80 cycles, and we can only recover 80 bits from each CRT component
of the key with this technique.

If there is some measurement noise, we can remove it either by repeating the
measures of HW(m · s) and HW(m ·X · s) and averaging them, or by using all
the measures in a template attack [6]. We performed simulations with various
levels of noise using a template attack, and the rank estimation code from [19]
to compute the rank of the full key from the estimated key bits probability. We
report our results in Appendix A, Figure 6. Those experiments show that with a
128-bit datapath we can recover 80 key bits with very few candidates using only
26 traces with a noise variance of 1. Again, the data complexity grows linearly
with the noise variance σ2, and we need about 26 · σ2 traces to reduce the key
space to a few candidates.

If the datawidth k is smaller than 128, we have to combine 128/k measures
to build the full Hamming weight HW(a) in order to perform the attack. If the
noise variance is σ2 this becomes equivalent to a noise variance of 128/k · σ2 for
an attack with a 128-bit datapath, and the number of traces required is about
26 · σ2 · 128/k. As expected, this behavior is opposite to what happens in the
attack of Section 4.1 where a larger datapath implies a higher attack complexity
because of the extra algorithmic noise.

For the acquisition of the data, one can either extract the two leakages from
a single trace at two different points of interest, or use two traces with chosen
challenges and extract the leakage from each trace at the same point in time. In
order to minimize the number of traces required for the attack, we use all the
clock cycles of the multiplier. More precisely, we send the challenge c = 279, so
that mi(c) = X i−1 and mi+1(c) = X i = mi(c) ·X .

Order of the Attack. This attack exploits information from two different
measures, and combines them using the difference operation. Since we use a
single pair of challenges for each key bit, we can average the measures and the
information can be extracted from the average leakage values by testing whether
it is zero or in {−3,−1,+1,+3}. Therefore, this attack can be seen as a first-
order bivariate attack.

4.3 Attack on Masked Lapin

We now study how this attack can be applied against a masked implementation
of Lapin such as the implementation described in Algorithm 1. In a masked
implementation the multiplication π(c) · s is split in d computations π(c) · sj ,
with s =

⊕d
j=1 sj . Therefore we have to combine leakages from each of the d

computations to recover information about the secret s.
First, we can see that if there is no noise, it is still easy to recover the key using

the attack of Section 4.2. If we send the challenge c = 279, we havemi(c) = X i−1

andmi+1(c) = X i = mi(c)·X . By comparing HW(X i−1 ·sj) and HW(X i ·sj), we
can recover MSB(X i−1 ·sj), and we can rebuild a bit of s using MSB(X i−1 ·s) =⊕

j MSB(X i−1 · sj).

Hardware Implementation and Side-Channel Analysis of Lapin 221

δ(x, y) = 0

4.1. MSB(α)=1

δ(x, y) = 6

4.2. MSB(α)=0

HW(α≪1∧f̄)=0

δ(x, y) = 2.25

4.3. MSB(α)=0

HW(α≪1∧f̄)=1

δ(x, y) = −2.25

4.4. MSB(α)=0

HW(α≪1∧f̄)=2

δ(x, y) = −6

4.5. MSB(α)=0

HW(α≪1∧f̄)=3

Fig. 4. Possible distributions for
(
HW(α1 ·X)− HW(α1),HW(α2 ·X)− HW(α2)

)
.

The probabilities are represented as: : 1/16, : 2/16, : 3/16, : 8/16

More generally, we study the 2d-dimensional distribution of:

(
HW(αj),HW(αj ·X)

)d
j=1

, with α =
⊕d

j=1 αj .

Following the analysis of Section 4.2, we combine the measures using a difference
operation, and reduce them to d dimensions:

(
HW(αj ·X)−HW(αj)

)d
j=1

, with α =
⊕d

j=1 αj .

We will later use this analysis with α = m · s and αj = m · sj .
We now study the case d = 2 in more details. Following the analysis of Sec-

tion 4.2, we expect different distributions depending on the most significant bit
of α.

MSB(α) = 1: If MSB(α) = 1, then we have either MSB(α1) = 0 and
MSB(α2) = 1, or MSB(α1) = 1 and MSB(α2) = 0. This results in the dis-
tribution of Figure 4.1: either HW(α1 · X) − HW(α1) = 0 and HW(α2 · X) −
HW(α2) ≡ {−3,−1,+1,+3}, or HW(α1 ·X)−HW(α1) ≡ {−3,−1,+1,+3} and
HW(α2 ·X)−HW(α2) = 0.

MSB(α) = 0: If MSB(α) = 0, then we have either MSB(α1) = 0 and
MSB(α2) = 0, or MSB(α1) = 1 and MSB(α2) = 1. The first case gives HW(α1 ·
X) − HW(α1) = 0 and HW(α2 · X) − HW(α2) = 0. In the second case, we
have HW(α1 ·X)− HW(α1) ≡ {−3,−1,+1,+3} and HW(α2 ·X)− HW(α2) ≡
{−3,−1,+1,+3}, but we need to look at HW(α ≪ 1 ∅ f̄) in order to predict
all the possibilities. The results are shown in Figure 4.

We can use those distributions tomount a template attack against amasked im-
plementation of Lapin. We use c = 279, in order to collect traces with HW(X i−1 ·
sj) and HW(X i · sj), and we recover MSB(X i−1 · s) by distinguishing the distri-
butions (i.e. we have α = X i−1 · s). We report our simulations results in Figure 7
in Appendix A. We can see that the data complexity increases roughly like the

222 L. Gaspar, G. Leurent, and F.-X. Standaert

squared variance σ4, which is typical of a second-order attack [5]. In our simula-
tions, the rank of the correct key becomes smaller than 210 when the data com-
plexity is about 210 · σ4.

Order of the Attack. This attack exploits information from four different
measures, and combines pairs of measures using the difference operation. Then
we have to distinguish the distributions of Figure 4, which can be done by
computing the covariance and testing whether it is zero or in {−6,−2.25, 2.25, 6}.
Therefore, this attack can be seen as a second-order 4-variate attack.

5 Conclusion

The previous results suggest that Lapin has interesting properties for secure and
efficient masking, because it can be implemented by manipulating shares inde-
pendently. They also exhibit that the exploitation of its leakage does not directly
derive from standard DPA such as applied in the context of block ciphers. Yet, it
is possible to mount attacks against both unprotected and masked Lapin, with
similar intuition regarding the security order as for block ciphers. Admittedly,
our side-channel experiments are only a first step, and several problems remain
open. Technically, it would certainly be worth investigating other leakage models
(e.g. distance-based) and actual measurements. Besides, it could be interesting
to further study the possible presence of more data-dependent algorithmic noise
in an implementation (i.e. capturing more than the main register activity), and
how to get rid of it taking advantage of multiple plaintexts in a collision-like
attack. Eventually, and as pointed out in introduction, the problem of on-chip
randomness generation remains an important drawback of Lapin. Analyzing its
leakage, or designing deterministic protocols based on the Learning With Round-
ing assumption are interesting scopes for further research.

References

1. Alwen, J., Krenn, S., Pietrzak, K., Wichs, D.: Learning with Rounding, Revisited
- New Reduction, Properties and Applications. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 57–74. Springer, Heidelberg (2013)

2. Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom Functions and Lattices.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237,
pp. 719–737. Springer, Heidelberg (2012)

3. Bernstein, D.J., Lange, T.: Never Trust a Bunny. In: Hoepman, J.-H., Verbauwhede,
I. (eds.) RFIDSec 2012. LNCS, vol. 7739, pp. 137–148. Springer, Heidelberg (2013)

4. Brier, E., Clavier, C., Olivier, F.: Correlation Power Analysis with a Leakage Model.
In: Joye, Quisquater [10], pp. 16–29

5. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards Sound Approaches to
Counteract Power-Analysis Attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS,
vol. 1666, pp. 398–412. Springer, Heidelberg (1999)

Hardware Implementation and Side-Channel Analysis of Lapin 223

6. Chari, S., Rao, J.R., Rohatgi, P.: Template Attacks. In: Kaliski Jr., B.S., Koç,
Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003)

7. Goubin, L., Patarin, J.: DES and Differential Power Analysis (The “Duplication”
Method). In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 158–172.
Springer, Heidelberg (1999)

8. Grosso, V., Standaert, F.-X., Faust, S.: Masking vs. Multiparty Computation: How
Large Is the Gap for AES? In: Bertoni, G., Coron, J.-S. (eds.) CHES 2013. LNCS,
vol. 8086, pp. 400–416. Springer, Heidelberg (2013)

9. Heyse, S., Kiltz, E., Lyubashevsky, V., Paar, C., Pietrzak, K.: Lapin: An Efficient
Authentication Protocol Based on Ring-LPN. In: Canteaut, A. (ed.) FSE 2012.
LNCS, vol. 7549, pp. 346–365. Springer, Heidelberg (2012)

10. Joye, M., Quisquater, J.-J. (eds.): CHES 2004. LNCS, vol. 3156. Springer, Heidel-
berg (2004)

11. Mangard, S.: Hardware Countermeasures against DPA – A Statistical Analysis
of Their Effectiveness. In: Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol. 2964,
pp. 222–235. Springer, Heidelberg (2004)

12. Mangard, S., Oswald, E., Popp, T.: Power analysis attacks - revealing the secrets
of smart cards. Springer (2007)

13. Mangard, S., Popp, T., Gammel, B.M.: Side-Channel Leakage of Masked CMOS
Gates. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 351–365. Springer,
Heidelberg (2005)

14. Mangard, S., Pramstaller, N., Oswald, E.: Successfully Attacking Masked AES
Hardware Implementations. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS,
vol. 3659, pp. 157–171. Springer, Heidelberg (2005)

15. Medwed, M., Standaert, F.-X.: Extractors against side-channel attacks: weak or
strong? J. Cryptographic Engineering 1(3), 231–241 (2011)

16. Rivain, M., Prouff, E.: Provably Secure Higher-Order Masking of AES. In: Man-
gard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 413–427.
Springer, Heidelberg (2010)

17. Schramm, K., Leander, G., Felke, P., Paar, C.: A Collision-Attack on AES: Combin-
ing Side Channel- and Differential-Attack. In: Joye, Quisquater [10], pp. 163–175

18. Standaert, F.-X., Veyrat-Charvillon, N., Oswald, E., Gierlichs, B., Medwed, M.,
Kasper, M., Mangard, S.: The World Is Not Enough: Another Look on Second-
Order DPA. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 112–129.
Springer, Heidelberg (2010)

19. Veyrat-Charvillon, N., Gérard, B., Standaert, F.-X.: Security Evaluations beyond
Computing Power. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013.
LNCS, vol. 7881, pp. 126–141. Springer, Heidelberg (2013)

224 L. Gaspar, G. Leurent, and F.-X. Standaert

A Simulation Results of the Side-Channel Attacks

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

20

40

60

80

100

8-bit datapath: # traces (log2)

S
u
cc
es
s
ra
te

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

20

40

60

80

100

16-bit datapath: # traces (log2)

S
u
cc
es
s
ra
te

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

20

40

60

80

100

32-bit datapath: # traces (log2)

S
u
cc
es
s
ra
te

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

20

40

60

80

100

64-bit datapath: # traces (log2)

S
u
cc
es
s
ra
te

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

20

40

60

80

100

128-bit datapath: # traces (log2)

S
u
cc
es
s
ra
te

σ = 0 σ = 0.25 σ = 0.5 σ = 1
σ = 2 σ = 4 σ = 8 σ = 16

Fig. 5. DPA attack success rate for full-key recovery, after exploring 216 tree nodes

Hardware Implementation and Side-Channel Analysis of Lapin 225

5 10
0

20

40

60

80

σ = 0.25: # traces (log2)

k
e
y
ra

n
k

5 10
0

20

40

60

80

σ = 1: # traces (log2)

k
e
y
ra

n
k

5 10
0

20

40

60

80

σ = 2: # traces (log2)

k
e
y
ra

n
k

5 10
0

20

40

60

80

σ = 4: # traces (log2)

k
e
y
ra

n
k

Fig. 6. Security graphs for the collision-like attack, with k = 128. We assume that
all the clock cycles are used for each trace. Alternatively, the attack can be mounted
targeting a single point of interest if the data complexity is multiplied by 80.

5 10 15
0

20

40

60

80

σ = 0.25: # traces (log2)

k
e
y
ra

n
k

5 10 15
0

20

40

60

80

σ = 1: # traces (log2)

k
e
y
ra

n
k

5 10 15
0

20

40

60

80

σ = 2: # traces (log2)

k
e
y
ra

n
k

5 10 15
0

20

40

60

80

σ = 4: # traces (log2)

k
e
y
ra

n
k

Fig. 7. Security graphs for the collision-like attack on a masked Lapin, with k = 128

226 L. Gaspar, G. Leurent, and F.-X. Standaert

Fig. 8. Correlation coefficient for the key candidates, depending on the number of
traces. We use t = 7 and p = 3, and don’t add any noise to the Hamming weights.

B Additional Implementation Results

Table 2. Number of clock cycles required for Lapin calculation

One share (d = 1) Three shares (d = 3)

8-bit 16-bit 32-bit 64-bit 128-bit 8-bit 16-bit 32-bit 64-bit 128-bit

f1 4,048 2,024 1,012 506 257 12,144 6,072 3,036 1,518 771
f2 4,160 2,080 1,040 520 264 12,480 6,240 3,120 1,560 792
f3 4,208 2,104 1,052 526 267 12,624 6,312 3,156 1,578 801
f4 4,224 2,112 1,056 528 268 12,672 6,336 3,168 1,584 804
f5 4,336 2,168 1,084 542 275 13,008 6,504 3,252 1,626 825

Total 20,977 10,489 5,245 2,623 1,332 62,961 31,481 15,741 7,871 3,996

Automatic Search for Differential Trails in ARX

Ciphers

Alex Biryukov and Vesselin Velichkov

Laboratory of Algorithmics, Cryptology and Security (LACS)
University of Luxembourg

{Alex.Biryukov,Vesselin.Velichkov}@uni.lu

Abstract. We propose a tool1 for automatic search for differential trails
in ARX ciphers. By introducing the concept of a partial difference distri-
bution table (pDDT) we extend Matsui’s algorithm, originally proposed
for DES-like ciphers, to the class of ARX ciphers. To the best of our
knowledge this is the first application of Matsui’s algorithm to ciphers
that do not have S-boxes. The tool is applied to the block ciphers TEA,
XTEA, SPECK and RAIDEN. For RAIDEN we find an iterative char-
acteristic on all 32 rounds that can be used to break the full cipher using
standard differential cryptanalysis. This is the first cryptanalysis of the
cipher in a non-related key setting. Differential trails on 9, 10 and 13
rounds are found for SPECK32, SPECK48 and SPECK64 respectively.
The 13 round trail covers half of the total number of rounds. These are
the first public results on the security analysis of SPECK. For TEA mul-
tiple full (i.e. not truncated) differential trails are reported for the first
time, while for XTEA we confirm the previous best known trail reported
by Hong et al. . We also show closed formulas for computing the exact
additive differential probabilities of the left and right shift operations.

Keywords: symmetric-key, differential trail, tools for cryptanalysis, au-
tomatic search, ARX, TEA, XTEA, SPECK, RAIDEN.

1 Introduction

A broad class of symmetric-key cryptographic algorithms are designed by com-
bining a small set of simple operations such as modular addition, bit rotation, bit
shift and XOR. Although such designs have been proposed as early as the 1980s,
only recently the term ARX (from Addition, Rotation, XOR) was adopted in
reference to them.

Some of the more notable examples of ARX algorithms, ordered chronologi-
cally by the year of proposal are: the block cipher FEAL [37] (1987), the hash
functions MD4 [34] (1990) and MD5 [35] (1992), the block ciphers TEA [40]
(1994), RC5 [36] (1994), XTEA [30] (1997), XXTEA [31] (1998) and HIGHT [15]
(2006), the stream cipher Salsa20 [4] (2008), the SHA-3 [28] finalists Skein [13]

1 The source code of the tool is made publicly available as part of a larger toolkit for the
analysis of ARX at the following address: https://github.com/vesselinux/yaarx .

J. Benaloh (Ed.): CT-RSA 2014, LNCS 8366, pp. 227–250, 2014.
c© Springer International Publishing Switzerland 2014

https://github.com/vesselinux/yaarx

228 A. Biryukov and V. Velichkov

and BLAKE [2] (2011) and the recently proposed hash function for short mes-
sages SipHash [1] (2012).

By combining linear (XOR, bit shift, bit rotation) and non-linear (modular
addition) operations, and iterating them over multiple rounds, ARX algorithms
achieve strong resistance against standard cryptanalysis techniques such as lin-
ear [24] and differential [5] cryptanalysis. Additionally, due to the simplicity of
the underlying operations, they are typically very fast in software.

Although ARX designs have many advantages and have been widely used for
many years now, the methods for their rigorous security analysis are lagging
behind. This is especially true when compared to algorithms such as AES [9]
and DES [29]. The latter were designed using fundamentally different principles,
based on the combination of linear transformations and non-linear substitution
tables or S-boxes.

Since a typical S-box operates on 8 or 4-bit words, it is easy to efficiently
evaluate its differential (resp. linear) properties by computing its difference dis-
tribution table (DDT) (resp. linear approximation table (LAT)). In contrast,
ARX algorithms use modular addition as a source of non-linearity, rather than
S-boxes. Constructing a DDT or a LAT for this operation for n-bit words would
require 23n × 4 bytes of memory and would clearly be infeasible for a typical
word size of 32 bits.

In this paper we demonstrate that although the computation of a full DDT for
ARX is infeasible, it is still possible to efficiently compute a partial DDT contain-
ing (a fraction of) all differentials that have probability above a fixed threshold.
This is possible due to the fact that the probabilities of XOR (resp. ADD) differ-
entials through the modular addition (resp. XOR) operation are monotonously
decreasing with the bit size of the word.

Based on the concept of partial DDT-s we develop a method for automatic
search for differential trails in ARX ciphers. It is based on Matsui’s branch-
and-bound algorithm [23], originally proposed for S-box based ciphers. While
other methods for automatic search for differential trails in ARX designs exist
in literature [12,25,20] they have been exclusively applied to the analysis of hash
functions where the key (the message) is known and can be freely chosen. With
the proposed algorithm we address the more general setting of searching for
trails in block ciphers, where the key is fixed and unknown to the attacker.

Beside the idea of using partial DDT-s another fundamental concept at the
heart of the proposed algorithm is what we refer to as the highways and country
roads analogy. If we liken the problem of finding high probability differential
trails in a cipher to the problem of finding fast routes between two cities on a
road map, then differentials that have high probability (w.r.t. a fixed threshold)
can be thought of as highways and conversely differentials with low probability
can be viewed as slow roads or country roads. To further extend the analogy, a
differential trail for n rounds represents a route between points 1 and n composed
of some number of highways and country roads. A search for high probability
trails is analogous to searching for a route in which the number of highways is
maximized while the number of country roads is minimized.

Automatic Search for Differential Trails in ARX Ciphers 229

The differentials from the pDDT are the highways on the road map from the
above analogy. Beside those highways, the proposed search algorithm explores also
a certain number of country roads (low probability differentials). While the list of
highways is computed offline prior to the start of the search, the list of country
roads is computed on-demand for each input difference to an intermediate round
that is encountered during the search. Of all possible country roads that can be
taken at a given point (note that there may be a huge number of them), the algo-
rithm considers only the ones that lead back on a highway. If such are not found,
then the shortest country road is taken (resp. the maximum probability transi-
tion). This strategy prevents the number of explored routes from exploding and
at the same time keeps the total probability of the resulting trail high.

Due to the fact that it uses a partial, rather than the full DDT, our algorithm
is not guaranteed to find the best differential trail. However experiments2 on
small word sizes of 11, 14 and 16 bits show that the probabilities of the found
trails are within a factor of at most 2−3 from the probability of the best one.

We demonstrate the proposed tool on block ciphers TEA [40], XTEA [30],
SPECK [3] and RAIDEN [32]. Beside being good representatives of the ARX
class of algorithms, these ciphers are of interest also due to the fact that results
on full (i.e. not truncated) differential trails on them either do not exist (as is
the case for TEA, RAIDEN and SPECK) or are scarce (in the case of XTEA).
For TEA specifically, in [16, Sect. 1] the authors admit that it is difficult to find
a good differential characteristic.

By applying our tool, we are able to find multiple differential characteristics for
TEA. They cover between 15 and 18 rounds, depending on the value of the key
and have probabilities ⊗ 2−60. The 18 round trail, in particular, has probability
⊗ 2−63 for approx. 2116 (⊗ 0.1%) of all keys. To put those results in perspective,
we note that the best differential attack on TEA covers 17 rounds and is based on
an impossible differential [8] while the best attack overall applies zero-correlation
cryptanalysis and is on 23 rounds but requires the full codebook [6]. For XTEA,
we confirm the best previously known full differential trail based on XOR differ-
ences [16], but this time it was found in a fully automatic way.

For RAIDEN an iterative characteristic on 3 rounds with probability 2−4 is
reported. When iterated over all 32 rounds a characteristic with probability 2−42

on the full cipher is constructed that can be used to fully break RAIDEN using
standard differential cryptanalysis. This is the first analysis of the cipher in a
non-related key setting.

We also present results on versions of the recently proposed block cipher
SPECK [3] with word sizes 16, 24 and 32 bits resp. SPECK32, SPECK48 and
SPECK64. For SPECK64 the best trail found by the tool covers half of the total
number of rounds (13 out of 26) and has probability 2−58. The best found trails
for 16 and 24 bits cover resp. 9 and 10 rounds out of 22/23 with probabilities
resp. 2−31 and 2−45.

2 For 11 and 14 bits 50 experiments were performed, while for 16 bits 20 experiments
were performed. In each experiment a new fixed key was chosen uniformly at random.
More details are provided in Appendix C.1.

230 A. Biryukov and V. Velichkov

Table 1. Maximum number of rounds covered by single (truncated) differential trails
used in existing differential attacks on TEA, XTEA, SPECK and RAIDEN compared
to the best found trails reported in this paper

Cipher Type of #Rounds #Rounds Ref.
Trail Covered Total

TEA Trunc. 5 64 [26]
Trunc. 7 [8]
Trunc. 8 [16,6]
Full 18 Sect. 6

XTEA Trunc. 6 64 [26]
Trunc. 7 [8]
Trunc. 8 [16,6]
Full 14 [16]
Full 14 Sect. 6

SPECK32 Full 9 22 Sect. 6
SPECK48 Full 10 22/23 Sect. 6
SPECK64 Full 13 26/27 Sect. 6

RAIDEN Full 32 32 Sect. 6

In Table 1 we provide a comparison between the number of rounds covered by
single (truncated) differential trails used in existing attacks (where applicable)
on TEA, XTEA, SPECK and RAIDEN to the number of rounds covered by the
trails found with the tool.

An additional contribution is that the paper is the first to report closed for-
mulas for computing the exact additive differential probabilities of the left and
right shift operations. These formulas are derived in a similar way as the ones for
computing the DP of left and right rotation reported by Daum [11, Sect. 4.1.3].
Note that Fouque et al. [14] have previously analyzed the propagation of additive
differences through the shift operations, but not the corresponding differential
probabilities.

The outline is as follows. In Sect. 2 we define partial difference distribution
tables (pDDT) and present an efficient method for their computation. Our ex-
tension of Matsui’s algorithm using pDDT, referred to as threshold search, is
presented in Sect. 3. It is followed by the description of a general methodology
for automatic search for differential trails in ARX ciphers with Feistel struc-
ture in Sect. 4. A brief description of block ciphers TEA, XTEA, SPECK and
RAIDEN is given in Sect. 5. In Sect. 6 we apply our methods to search for
differential trails in the studied ciphers and we show the most relevant experi-
mental results. Finally, in Sect. 7 are discussed general problems and limitations
arising when studying differential trails in ARX ciphers. Sect. 8 concludes the
paper. Proofs of all theorems and propositions and more experimental results
are provided in Appendix.

A few words on notation: with x[i] is denoted the i-th bit of x; x[i : j] represents
the sequence of bits x[j], x[j+1], . . . , x[i] : j ≡ i where x[0] is the least-significant

Automatic Search for Differential Trails in ARX Ciphers 231

bit (LSB); xn denotes the n-bit word x (equivalent to x[n− 1 : 0], but more con-
cise); #A denotes the number of elements in the setA and x|y is the concatenation
of the bit strings x and y.

2 Partial Difference Distribution Tables

In this section as well as in the rest of the paper with xdp+ and adp≥ are
denoted respectively the XOR differential probability (DP) of addition modulo 2n

and the additive DP of XOR. Similarly, the additive differential probability of the
operations right bit shift (RSH) and left bit shift (LSH) are denoted resp. with
adp≤r and adp�r. Due to space constrains the formal definition and details on
the efficient computation of those probabilities are given in Appendix A and
Appendix B.

Definition 1. A partial difference distribution table (pDDT) D for the
ADD (resp. XOR) operation is a DDT that contains all XOR (resp. ADD) differentials
(α, β → γ) whose probabilities are larger than or equal to a pre-defined threshold
pthres:

(α, β, γ) ∪ D ⇐→ DP(α, β → γ) ≥ pthres . (1)

If a DDT contains only a fraction of all differentials that have probability above
a pre-defined threshold, it is an incomplete pDDT.

The following proposition is crucial for the efficient computation of a pDDT:

Proposition 1. TheDP of ADD and XOR (resp. xdp+ and adp≥) are monotonously
decreasing with the word size n of the differences α, β, γ:

pn ≡ . . . ≡ pk ≡ pk−1 ≡ . . . ≡ p1 ≡ p0 , (2)

where pk = DP(αk, βk → γk), n ≥ k ≥ 1, p0 = 1, and xk denotes the k LSB-s
of the difference x i.e. xk = x[k − 1 : 0].

Proof. Appendix D.1.

For xdp+, the proposition follows from the following result by Lipmaa et

al. [21]: xdp+(α, β → γ) = 2−
∑n−2

i=0 ¬eq(α[i],β[i],γ[i]), where eq(α[i], β[i], γ[i]) =
1 ⇐→ α[i] = β[i] = γ[i]. Proposition 1 is also true for adp≥.

Due to Proposition 1 a recursive procedure for computing a pDDT for a
given probability threshold pthres can be defined as follows. Starting at the least-
significant (LS) bit position k = 0 recursively assign values to bits α[k], β[k]
and γ[k]. At every bit position k : n > k ≥ 0 check if the probability of the
partially constructed (k+1)-bit differential is still bigger than the threshold i.e.
check if pk = DP(αk, βk → γk) ≥ pthres holds. If yes, then proceed to the next
bit position, otherwise backtrack and assign other values to (α[k], β[k], γ[k]).
This process is repeated recursively until k = n, at which point the differential
(αn, βn → γn) is added to the pDDT together with its probability pn. A pseudo-
code of the described procedure is listed in Algorithm 1. The initial values are:
k = 0, p0 = 1 and α0 = β0 = γ0 = ∈.

232 A. Biryukov and V. Velichkov

Algorithm 1. Computation of a pDDT for ADD and XOR.

Input: n, pthres, k, pk, αk, βk, γk.
Output: pDDT D: (α, β, γ) ◦ D : DP(α, β ∈ γ) ⇒ pthres.
1: procedure compute pddt(n, pthres, k, pk, αk, βk, γk) do
2: if n = k then
3: Add (α, β, γ) ← (αk, βk, γk) to D
4: return
5: for x, y, z ◦ {0, 1} do
6: αk+1 ← x|αk, βk+1 ← y|βk, γk+1 ← z|γk .
7: pk+1 = DP(αk+1, βk+1 ∈ γk+1)
8: if pk+1 ⇒ pthres then
9: compute pddt(n, pthres, k + 1, pk+1, αk+1, βk+1, γk+1)

The correctness of Algorithm 1 follows directly from Proposition 1. After
successful termination the computed pDDT contains all differentials with prob-
ability equal to or larger than the threshold. The complexity of Algorithm 1
depends on the value of the threshold pthres. Some timings for both ADD and XOR

differences for different thresholds are provided in Table 2. As can be seen from
the data in the table it is infeasible to compute pDDT-s for XOR differences for
values of the threshold pthres ≡ 0.01 = 2−6.64, while for ADD differences this is
still possible, but requires significant time (more than 17 hours).

Table 2. Timings on the computation of pDDT for ADD and XOR on 32-bit words using
Algorithm 1. Target machine: IntelR∗ CoreTM i7-2600, 3.40GHz CPU, 8GB RAM.

ADD XOR

pthres #elements in pDDT Time #elements in pDDT Time

0.1 252 940 36 sec. 3 951 388 1.23 min.
0.07 361 420 37 sec. 3 951 388 2.29 min.
0.05 3 038 668 5.35 min. 167 065 948 44.36 min.
0.01 2 715 532 204 17.46 hours ⇒ 72 589 325 174 ⇒ 29 days

3 Threshold Search

In his paper from 1994 [23] Matsui proposed a practical algorithm for searching
for the best differential trail (and linear approximation) for the DES block cipher.
The algorithm performs a recursive search for differential trails over a given num-
ber of rounds n ≥ 1. From knowledge of the best probabilities B1, B2, . . . , Bn−1
for the first (n − 1) rounds and an initial estimate Bn for the probability for
n rounds it derives the best probability Bn for n rounds. For the estimate the
following must hold: Bn ≡ Bn. As already noted, Matsui’s algorithm is appli-
cable to block ciphers that have S-boxes. In this section we extend it to the
case of ciphers without S-boxes such as ARX by applying the concept of pDDT.

Automatic Search for Differential Trails in ARX Ciphers 233

We describe the extended algorithm next. Its description in pseudo-code is listed
in Algorithm 2.

In addition to Matsui’s notation for the probability of the best n-round trail
Bn and of its estimate Bn we introduce ⎛Bn to denote the probability of the
best found trail for n rounds: Bn ≡ ⎛Bn ≡ Bn. Given a pDDT H of size m, an
estimation for the best n-round probability Bn with its corresponding n-round
differential trail T and the probabilities ⎛B1, ⎛B2, . . . , ⎛Bn−1 of the best found trails

for the first n − 1 rounds, Algorithm 2 outputs an n-round trail ⎛T that has
probability ⎛Bn ≥ Bn.

Similarly to Matsui’s algorithm, Algorithm 2 operates by recursively extend-
ing a trail for i rounds to (i + 1) rounds, beginning with i = 1 and terminating
at i = n. The recursion at level i continues to level (i+1) only if the probability
of the constructed i-round trail multiplied by the probability of the best found
trail for (n − i) rounds is at least Bn i.e. if p1p2 . . . pi ⎛Bn−i ≥ Bn. For i = n

the last equation is equivalent to: p1p2 . . . pn = ⎛Bn ≥ Bn. If the latter holds, the
initial estimate is updated with the new: Bn ∅ ⎛Bn and the corresponding trail
is also updated accordingly: Tn ∅ ⎛Tn.

During the search process Algorithm 2 explores multiple differential trails. It
is important to stress that the differentials that compose those trails are not
restricted to the entries from the initial pDDT H . The latter represent only the
starting point of the first two rounds of the search, as in those rounds both the
input and the output differences of the round transformation can be freely chosen
(due to the specifics of the Feistel structure). From the third round onwards,
excluding the last round, beside the entries in H the algorithm explores also
an additional set of low-probability differentials stored in a temporary pDDT C
and sharing the same input difference.

The table C is computed on demand for each input difference to an interme-
diate round (any round other than the first two and the last) encountered during
the search. All entries in C additionally satisfy the following two conditions: (1)
Their probabilities are such that they can still improve the probability of the
best found trail for the given number of rounds i.e. if (αr, βr, pr) is an entry in C

for round r, then pr ≥ Bn/(p1p2 · · · pr−1 ⎛Bn−r); (2) Their structure is such that
they guarantee that the input difference for the next round αr+1 = αr−1 + βr
will have a matching entry in H . While the need for condition (1) is self-evident,
condition (2) is necessary in order to prevent the exploding of the size of C while
at the same time keeping the probability of the resulting trail high. The meaning
of the tables H and C is further clarified with the following analogy.

Example 1 (The Highways and Country Roads Analogy). The two tables H and
C employed in the search performed by Algorithm 2 can be thought of as lists of
highways and country roads on a map. The differentials contained inH have high
probabilities w.r.t. to the fixed probability threshold and correspond therefore
to fast roads such as highways. Analogously, the differentials in C have low
probabilities and can be seen as slow roads or country roads. To continue this
analogy, the problem of finding a high probability differential trail for n rounds
can be seen as a problem of finding a fast route between points 1 and n on the

234 A. Biryukov and V. Velichkov

Algorithm 2. Matsui Search for Differential Trails Using pDDT (Threshold
Search).

Input: n: number of rounds; r: current round; H: pDDT; B̂ = (B̂1, B̂2, . . . , B̂n−1):
probs. of best found trails for the first (n − 1) rounds; Bn → Bn: initial estimate;
T = (T1, . . . ,Tn): trail for n rounds with prob. Bn; pthres: probability threshold.

Output: B̂n, T̂ = (T̂1, . . . , T̂n): trail for n rounds with prob. B̂n : Bn → B̂n → Bn.

1: procedure threshold search(n, r,H, B̂, Bn, T) do
2: // Process rounds 1 and 2
3: if ((r = 1) ⊗ (r = 2)) ≥ (r ≡= n) then
4: for all (α, β, p) in H do

5: pr ← p, B̂n ← p1 · · · prB̂n−r

6: if B̂n ⇒ Bn then
7: αr ← α, βr ← β, add T̂r ← (αr, βr, pr) to T̂

8: call threshold search(n, r + 1, H, B̂, Bn, T̂)
9: // Process intermediate rounds
10: if (r > 2) ≥ (r ≡= n) then

11: αr ← (αr−2 + βr−1); pr,min ← Bn/(p1p2 · · · pr−1B̂n−r)
12: C ← ← // Initialize the country roads table
13: for all βr : (pr(αr ∈ βr) ⇒ pr,min) ≥ ((αr−1 + βr) = γ ◦ H) do
14: add (αr, βr, pr) to C // Update country roads table
15: if C = ← then
16: (βr, pr) ← pr = maxβ p(αr ∈ β); add (αr, βr, pr) to C
17: for all (α, β, p) : α = αr in H and all (α, β, p) ◦ C do

18: pr ← p, B̂n ← p1p2 . . . prB̂n−r

19: if B̂n ⇒ Bn then
20: βr ← β, add T̂r ← (αr, βr, pr) to T̂

21: call threshold search(n, r + 1, H, B̂, Bn, T̂)
22: // Process last round
23: if (r = n) then
24: αr ← (αr−2 + βr−1)
25: if (αr in H) then
26: (βr, pr) ← pr = maxβ∈H p(αr ∈ β) // Select the max. from the

highway table
27: else
28: (βr, pr) ← pr = maxβ p(αr ∈ β) // Compute the max.
29: if pr ⇒ pthres then
30: add (αr, βr, pr) to H

31: pn ← pr, B̂n ← p1p2 . . . pn
32: if B̂n ⇒ Bn then
33: αn ← αr, βn ← β, add T̂n ← (αn, βn, pn) to T̂

34: Bn ← B̂n, T ← T̂
35: B̂n ← Bn, T̂ ← T // Update the target bound and the best found trail

36: return B̂n, T̂

Automatic Search for Differential Trails in ARX Ciphers 235

map. Clearly such a route must be composed of as many highways as possible.
Condition (2), mentioned above, essentially guarantees that any country road
that we may take in our search for a fast route will bring us back on a highway.
Note that it is possible that the fastest route contains two or more country
roads in sequence. While such a case will be missed by Algorithm 2, it may be
accounted for by lowering the initial probability threshold.

Algorithm 2 terminates when the initial estimate Bn can not be further im-
proved. The complexity of Algorithm 2 depends on the following factors: (1) the

closeness of the best found probabilities ⎛B1, ⎛B2, . . . , ⎛Bn−1 for the first (n − 1)
rounds to the actual best probabilities, (2) the tightness of the initial estimate
Bn and (3) the number of elements m in H . The latter is determined by the
probability threshold used to compute H .

4 General Methodology for Automatic Search for
Differential Trails in ARX

We describe a general methodology for the automatic search for differential trails
in ARX algorithms. In our analysis we restrict ourselves to Feistel ciphers, al-
though the proposed method is applicable to other ARX designs as well.

Let F be the round function (the F-function) of a Feistel cipher E, designed
by combining a number of ARX operations, such as XOR, ADD, bit shift and bit
rotation. To search for differential trails for multiple rounds of E perform the
following steps:

1. Derive an expression for computing the differential probability (DP) of F
for given input and output difference. The computation may be an approxi-
mation obtained as the multiplication of the DP of the components of F .

2. Compute a pDDT for F . It can be an incomplete pDDT obtained e.g. by
merging the separate pDDT-s of the different components of F .

3. Execute the threshold search algorithm described in Sect.3 with the (incom-
plete) pDDT computed in Step. 2 as input.

In the following sections we apply the proposed methodology to automatically
search for differential trails in several ARX-based block ciphers.

5 Description of TEA, XTEA, SPECK and RAIDEN

The Tiny Encryption Algorithm (TEA) is a block cipher designed by Wheeler
and Needham and presented at FSE 1994 [40]. It has a Feistel structure composed
of 64 rounds. Each round operates on 64-bit blocks divided into two 32-bit words
Li, Ri : 0 ≡ i ≡ 64, so that P = L0|R0 is the plaintext and C = L64|R64 is
the ciphertext. TEA has 128-bit key K composed of four 32-bit words: K =
K3|K2|K1|K0. The key schedule is such that the same two key words are used
at every second round i.e. K0,K1 are used in all odd rounds and K2,K3 are used
in all even rounds. Additionally, thirty-two 32-bit constants δr : 1 ≡ r < 32 (the

236 A. Biryukov and V. Velichkov

δ constants) are defined. A different δ constant is used at every second round.
The round function F of TEA takes as input a 32-bit value x, two 32-bit key
words k0, k1 and a round constant δ and produces a 32-bit output F (x). For
fixed δ, k0 and k1, F is defined as:

(δ, k0, k1) : F (x) = ((x⊕ 4) + k0)∃ (x+ δ)∃ ((x⊆ 5) + k1) . (3)

For fixed round keys Kj,Kj+1 : j ∪ {0, 2} and round constant δr, round i of
TEA (1 ≡ i < 64) is described as: Li+1 = Ri, Ri+1 = Li + F (Ri).

XTEA is an extended version of TEA proposed in [30] by the same designers.
It was designed in order to address two weaknesses of TEA pointed by Kelsey
et al. [18]: (1) a related-key attack on the full TEA and (2) the fact that the
effective key size of TEA is 126, rather than 128 bits. The structure of XTEA
is very similar to the one of TEA: 64-round Feistel network operating on 64-bit
blocks using a 128-bit key. The main difference is in the key schedule: at every
round XTEA uses one rather than two 32-bit key words from the original key
according to a new non-periodic key schedule. Additionally, the number of δ
constants is increased from 32 to 64 and thus a different constant is used at
every round. The F-function of XTEA is also slightly modified and for a fixed
round key k and round constant δ is defined as:

(δ, k) : F (x) = (δ + k)∃ (x+ ((x⊕ 4)∃ (x⊆ 5))) . (4)

The F-functions of TEA and XTEA are depicted in Fig. 1.

k0

� 4

δ

F (x) x

� 5

k1

� 4

k

δ

F (x) x

� 5

Fig. 1. The F-functions of TEA (left) and XTEA (right)

In [32] Polimón et al. have proposed a variant of TEA called RAIDEN. It has
been designed by applying genetic programming algorithms to automatically
evolve a highly non-linear round function. The latter is composed of the same
operations as TEA (arranged in different order) but is more efficient and has
better mixing properties as measured by its avalanche effect. As a result RAIDEN
is claimed to be competitive to TEA in terms of security. It has 32 rounds and
its round function is:

Fk(x) = ((k + x) ⊕ 9)∃ (k − x)∃ ((k + x) ⊆ 14) . (5)

Automatic Search for Differential Trails in ARX Ciphers 237

The key k in (5) is updated every second round according to a new key schedule
and therefore every two consecutive rounds use the same key. The main dif-
ferences with TEA are that in (5) the round constant δ is discarded, the shift
constants are changed and the shift operations are moved after the key addition
(see Fig. 2, left). For more details on the RAIDEN cipher we refer the reader
to [32]. The only previous security result for RAIDEN is a related-key attack
reported in [17].

Most recently, in June 2013, a new family of ARX-based lightweight block ci-
phers SPECK [3] was proposed by researchers from the National Security Agency
(NSA) of the USA. Its design bears strong similarity to Threefish – the block
cipher used in the hash function Skein [13]. The round function of SPECK under
a fixed round key k is defined on inputs x and y as

Fk(x, y) = (fk(x, y), fk(x, y)∃ (y ≪ t2)) , (6)

where the function fk(·, ·) is defined as fk(x, y) = ((x ≫ t1) + y) ∃ k. The
rotation constants t1 and t2 are equal to 7 and 2 resp. for word size n = 16 bits
and to 8 and 3 for all other word sizes: 24, 32, 48 and 64. Note that although
SPECK is not a Feistel cipher itself, it can be represented as a composition of
two Feistel maps as described in [3]. At the time of this writing we are not aware
of any published results on the security analysis of SPECK. The round functions
of RAIDEN and SPECK are shown in Fig. 2.

k

� 9

k

F (x) x

� 14

k

x y

≫ 7/8

k ≪ 2/3

Fig. 2. The F-functions of RAIDEN (left) and SPECK (right)

In Table 1 are listed the maximum number of rounds covered by differential
trail/s used in published differential attacks on TEA, XTEA, RAIDEN and
SPECK. These results are compared with the best trails found using our method.

6 Automatic Search for Differential Trails

We apply the steps from Sect. 4 to search for differential trails for multiple rounds
of the block ciphers described in Sect. 5. We analyze TEA, RAIDEN and SPECK

238 A. Biryukov and V. Velichkov

w.r.t. ADD differences and XTEA w.r.t. XOR differences. Additive differences are
more appropriate for the differential analysis of the former (as opposed to XOR

differences) due to two reasons. First, the round keys and round constants are
ADD-ed. Second, the number of ADD vs. XOR operations in one round is larger and
therefore more components are linear w.r.t. ADD than to XOR. Similarly, XTEA
is more suitably analyzed with XOR differences since the round keys are XOR-ed.

In Table 3 (left) is shown the best found ADD differential trail for 18 rounds
of TEA with probability 2−62.6 and on the right side is shown the best found
XOR trail for 14 rounds of XTEA with probability 2−60.76 confirming a previous
result by Hong et al. [16]. Note that while the rule that a country road must be
followed by a highway is strictly respected in the trail for TEA, this is not the
case for XTEA. For example transitions 6 and 7 in the trail for XTEA have prob.
resp. 2−5.35 and 2−5.36 both of which are below the threshold pthres = 2−4.32. In
those cases no country road that leads back on a highway was found and so the
shortest country road was taken (resp. the maximum probability transition for
the given input difference was computed: lines 15–16 of Algorithm 2).

The top line of Table 3 shows the fixed values of the keys for which the two
trails were found and for which their probabilities were experimentally verified.

Table 3. Differential trails for TEA and XTEA. The leftmost key word is K0, the next
is K1, etc. #hways lists the number of elements in the pDDT (the highways).

TEA XTEA

key 11CAD84E 96168E6B 704A8B1C 57BBE5D3 E15C838 DC8DBE76 B3BB0110 FFBB0440

r β α log2p β α log2p

1 F ← FFFFFFFF −3.62 0 ← 80402010 −4.61
2 0 ← 0 −0.00 80402010 ← 0 −3.01
3 F ← FFFFFFFF −2.87 80402010 ← 80402010 −5.48
4 0 ← F −7.90 0 ← 80402010 −3.30
5 FFFFFFF1 ← FFFFFFFF −3.60 80402010 ← 0 −3.01
6 0 ← 0 −0.00 80402010 ← 80402010 −5.35
7 FFFFFFF1 ← FFFFFFFF −2.78 0 ← 80402010 −5.36
8 2 ← FFFFFFF1 −8.66 80402010 ← 0 −2.99
9 F ← 1 −3.57 80402010 ← 80402010 −5.45
10 0 ← 0 −0.00 0 ← 80402010 −5.42
11 FFFFFFF1 ← 1 −2.87 80402010 ← 0 −2.99
12 FFFFFFFE ← FFFFFFF1 −7.90 80402010 ← 80402010 −5.38
13 F ← FFFFFFFF −3.59 0 ← 80402010 −5.40
14 0 ← 0 −0.00 80402010 ← 0 −2.99
15 11 ← FFFFFFFF −2.79
16 0 ← 11 −8.83
17 FFFFFFEF ← FFFFFFFF −3.61
18 0 ← 0 −0.00

∑
r log2pr −62.6 −60.76

log2pthres −4.32 −4.32
#hways 68 474
Time: 21.36 min. 315 min.

Automatic Search for Differential Trails in ARX Ciphers 239

The reason to perform the search for a fixed key rather than averaged over all
keys is the fact that for TEA the assumption of independent round keys, com-
monly made in differential cryptanalysis, does not hold. This is a consequence
of the simple key schedule of the cipher according to which the same round keys
are re-used every second round. Thus a trail that has very good probability com-
puted as an average over all keys, may in fact have zero probability for many or
even all keys. This problem is further discussed in Sect. 7.

The mentioned effect is not so strong for XTEA due to the slightly more com-
plex key schedule of the latter. In XTEA, the round keys are re-used according
to a non-periodic schedule and, more importantly, a round constant that is dif-
ferent for every round, is added to the key before it is applied to the state (see
Fig. 1). In this way the round keys are randomized in every round and thus the
traditional differential analysis with probabilities computed as an average over
all keys is more appropriate for XTEA.

A major consequence of the key dependency effect discussed above is that
while the 14 round trail for XTEA from Table 3 can directly be used in a key-
recovery attack, as has indeed been already done in [16], it is not straightforward
to do so for the 18 round trail for TEA. The reason is that this trail is valid
only for a fraction of all keys. We have estimated the size of this fraction to be
approx. 0.098% ⊗ 0.1%, which is equal to 2116 weak keys (note that the effective
key size of TEA is 126 bits [18]). The size of the weak key class was computed
by observing that only the 9 LS bits of K2 and the 3 LS bits of K3 influence
the probability of the trail. By fixing those 12 bits to the corresponding bits of
the key values in Table 3 (resp. 0x11C and 0x3), we have experimentally verified
that for any assignment of the remaning 116 bits of the key the 18 round trail
has probability ⊗ 2−63. Note that other assignments of the relevant 12 bits may
also be possible and therefore the size of the weak key class may be actually
bigger.

While the fixed-key trails for TEA found by the threshold search algorithm
may have limited use for an attacker due to the reasons discussed above, they
already provide very useful information for a designer. By running Algorithm 2
for many fixed keys we saw that the best found trails typically cover between
15 and 17 rounds and in more rare cases 18 rounds. If this information has
been available to the designers of TEA at the time of the design, they may have
considered reducing the total number of rounds from 64 to 32 or less. Similarly,
the threshold search algorithm can be used in order to estimate the security
of new ARX designs and to help to select the appropriate number of rounds
accordingly.

Comparisons of the trails found with the tool to the actual best trails on TEA
with reduced word size of 11 and 16 bits are shown in Appendix C.1.

After applying the threshold search to RAIDEN the best characteristic that
was found is iterative with period 3 with probability 2−4 (shown in Table 4). By
iterating it for 32 rounds we construct a charactersistic with probability 2−42.
The latter can be used in a standard differential attack on the full cipher under
a non related-key setting. Note that in contrast to TEA, the probabilities of the

240 A. Biryukov and V. Velichkov

Table 4. Three round iterative characteristic for RAIDEN beginning at round i

r β α log2p

i 0 ← 0 −0
i+ 1 7FFFFF00 ← 7FFFFF00 −2
i+ 2 80000100 ← 7FFFFF00 −2
. ← 0 −0

∑
r log2pr −4

reported differentials for RAIDEN are independent of the round key due to the
fact that the shift operations are moved after the key addition.

We applied the threshold search algorithm using XOR differences to three in-
stances of block cipher SPECK with 16, 24 and 32 bit word sizes respectively.
The best trail found for the 32-bit version covers half of the rounds (13 out of
26) and has probability 2−58 while the best found trails for 16 and 24 bits cover
resp. 9 and 10 rounds out of 22/23 and have probabilities resp. 2−31 and 2−45.
All trails are shown in Table 5.

Table 5. Differential trails for Speck32, Speck48 and Speck64. #hways lists the
number of elements in the pDDT (the highways).

Speck32 Speck48 Speck64

r ΔL ΔR log2p ΔL ΔR log2p ΔL ΔR log2p

0 A60 4205 −0 88A 484008 −0 802490 10800004 −0
1 211 A04 −5 424000 4042 −5 80808020 4808000 −5
2 2800 10 −4 202 20012 −4 24000080 40080 −5
3 40 0 −2 10 100080 −3 80200080 80000480 −3
4 8000 8000 −0 80 800480 −2 802480 800084 −4
5 8100 8102 −1 480 2084 −2 808080A0 84808480 −5
6 8000 840A −2 802080 8124A0 −3 24000400 42004 −6
7 850A 9520 −4 A480 98184 −6 202000 12020 −4
8 802A D4A8 −6 888020 C48C00 −7 10000 80100 −3
9 A8 520B −7 240480 6486 −7 80000 480800 −2
10 800082 8324B2 −6 480000 2084000 −3
11 2080800 124A0800 −4
12 12480008 80184008 −7
13 880A0808 88C8084C −7

∑
r log2pr −31 −45 −58

log2pthres −5.00 −5.00 −5.00
#hways 230 230 230

Time: ⊕ 240 min. ⊕ 400 min. ⊕ 500 min.

Automatic Search for Differential Trails in ARX Ciphers 241

7 Difficulties, Limitations and Common Problems

In this section we discuss the common problems and difficulties encountered
when studying differential trails in ARX ciphers. This discussion is also naturally
related to the limitations of the methodology proposed in Sect. 4. Although below
we often use the TEA block cipher as an example, our observations are general
and are therefore applicable to a broader class of ARX algorithms.

Accuracy of the Approximation of the DP of F. The first step in the
methodology presented in Sect. 4 is to derive an expression for computing the
DP of the F-function of the target cipher. Since it is often difficult to efficiently
compute the exact probability, this expression would usually be an approxima-
tion obtained as the multiplication of the DP of the separate components of F.
The probability computed in this way will often deviate from the actual value
due to the dependency between the inputs of the different components. Indeed,
this phenomenon is well-known and has been studied before e.g. in [38]. The
mentioned problem can be addressed with experimental re-adjustment of the
probability by evaluating the F-function over a number of random chosen input
pairs satisfying the input difference.

Dependency of the DP of F on the Round Keys. Another difficulty
arises from the fact that in some cases the DP of the F-function is dependent
on the value of the round key(s). Ciphers for which this is the case are not key-
alternating ciphers (cf. [10, Definition 2]) and are typically harder to analyze.
The block cipher TEA is an example of a non-key-alternating cipher. The DP of
its F-function is key-dependent w.r.t. both XOR and ADD differences. A solution
to the problem of key-dependency of the DP of the F-function is to search for
differential trails with probabilities computed for (multiple) fixed keys rather
than for trails with probabilities averaged over all keys. As discussed in Sect. 6,
this is the approach that we took in the analysis of TEA.

Dependency Between the Round Keys. In differential cryptanalysis of
keyed primitives it is common practice to assume that the round keys are in-
dependent [19]. This is known as making the hypothesis of independent round
keys [10]. In ciphers with weak key schedule such as TEA the hypothesis of in-
dependent round keys does not hold. As a consequence, obtaining an accurate
estimation of the expected probabilities of differential trails in such ciphers is
difficult. A possible solution to the dependent round keys problem is to analyze
the cipher with respect to a set of randomly chosen fixed keys and consider the
minimum probability, among all keys within the set (rather than the expected
probabilities averaged over all keys). The reason to select the minimum prob-
ability is to guarantee that the resulting differential trail is possible (i.e. has
non-zero probability) for every key in the set.

Influence of the Round Constants. Fixed constants are commonly used in
the design of symmetric-key primitives in order to destroy similarities between

242 A. Biryukov and V. Velichkov

the rounds. Since they are typically added to the state by applying the same
operation as for the round keys, it is generally assumed that constants influence
neither the probabilities nor the structure of differential trails and hence can
be safely ignored. Surprisingly, this assumption does not hold for TEA and
possibly for other ARX constructions as well. After modifying TEA to use the
same δ constant at every round, for many keys the best found trail after several
rounds eventually becomes iterative with period 2 and of the form (α → 0), (0 →
0), (α→ 0), The difference that maximizes the probability of the differential
(α → 0) is α = 0xF and has probability 2−8 for exactly 6 · 259 ⊗ 261.6 keys
(approx. 10% of all keys). We use the two-round iterative trail (0xF → 0), (0 → 0)
to construct a trail over 15 rounds with probability 2−56. We also found a 4-round
iterative pattern with probability < 2−15 which holds for a smaller number of
key and is used to construct a trail with probability 2−61.36 on 18 rounds of the
modified TEA.

8 Conclusions and Future Work

In this paper we proposed the first extension of Matsui’s algorithm for automatic
search for differential trails, originally proposed for S-box based ciphers, to the
class of ARX ciphers. We used the block ciphers TEA, XTEA, RAIDEN and
SPECK as a testbed for demonstrating the practical application of this method.

Using the proposed algorithm, the first full (i.e. not truncated) differential
trails for block cipher TEA were found. The best one covers 18 rounds which
is one round more than the best differential attack on TEA (17 rounds) and
significantly improves the best previously known truncated trail which is on 8
rounds. Trails on 9, 10 and 13 rounds of SPECK32, SPECK48 and SPECK64
resp. were also reported. They represent the first public security analysis of the
cipher. For RAIDEN, a trail on all 32 rounds was shown that can be used to
break the full cipher. The best trail for XTEA found by the tool confirms the
previous known best trail, but this time it was found in a fully automatic way.

For future work, an important problem on the theoretical side would be to
compute a bound on how far the probabilities of the best found trails can be from
the actual best trail in terms of the fixed probability threshold. On the practical
side it would be interesting to extend the algorithm to search for differentials
rather than characteristics. Applying the tool to other ARX constructions is
another natural direction for future work.

Acknowledgments. We thank our colleagues from the laboratory of algo-
rithmics, cryptology and security (LACS) at the university of Luxembourg for
the useful discussions, and especially Yann Le Corre for his help with visualiz-
ing the experimental data. We further thank the anonymous reviewers for their
time and helpful comments. Some of the experiments presented in this paper
were carried out using the HPC facility of the University of Luxembourg.

Automatic Search for Differential Trails in ARX Ciphers 243

References

1. Aumasson, J.-P., Bernstein, D.J.: SipHash: a fast short-input PRF. IACR Cryp-
tology ePrint Archive, 2012:351 (2012)

2. Aumasson, J.-P., Henzen, L., Meier, W., Phan, R.C.-W.: SHA-3 proposal BLAKE.
Submission to the NIST SHA-3 Competition, Round 2 (2008)

3. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
The SIMON and SPECK Families of Lightweight Block Ciphers. Cryptology ePrint
Archive, Report 2013/404 (2013), http://eprint.iacr.org/

4. Bernstein, D.J.: The Salsa20 Family of Stream Ciphers. In: Robshaw, M., Billet, O.
(eds.) New StreamCipher Designs. LNCS, vol. 4986, pp. 84–97. Springer, Heidelberg
(2008)

5. Biham, E., Shamir, A.: Differential Cryptanalysis of DES-like Cryptosystems. J.
Cryptology 4(1), 3–72 (1991)

6. Bogdanov, A., Wang, M.: Zero Correlation Linear Cryptanalysis with Reduced
Data Complexity. In: Canteaut [7], pp. 29–48

7. Canteaut, A. (ed.): FSE 2012. LNCS, vol. 7549. Springer, Heidelberg (2012)
8. Chen, J., Wang, M., Preneel, B.: Impossible Differential Cryptanalysis of the

Lightweight Block Ciphers TEA, XTEA and HIGHT. In: Mitrokotsa, A., Vau-
denay, S. (eds.) AFRICACRYPT 2012. LNCS, vol. 7374, pp. 117–137. Springer,
Heidelberg (2012)

9. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Springer (2002)

10. Daemen, J., Rijmen, V.: Probability distributions of Correlation and Differentials
in Block Ciphers. IACR Cryptology ePrint Archive, 2005:212 (2005)

11. Daum, M.: Cryptanalysis of Hash Functions of the MD4-Family. PhD thesis, Ruhr-
Universität Bochum (2005)

12. De Cannière, C., Rechberger, C.: Finding SHA-1 Characteristics: General Results
and Applications. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 1–20. Springer, Heidelberg (2006)

13. Ferguson, N., Lucks, S., Schneier, B., Whiting, D., Bellare, M., Kohno, T., Callas,
J., Walker, J.: The Skein Hash Function Family. Submission to the NIST SHA-3
Competition, Round 2 (2009)

14. Fouque, P.-A., Leurent, G., Nguyen, P.Q.: Automatic Search of Differential Path
in MD4. IACR Cryptology ePrint Archive, 2007:206 (2007)

15. Hong, D., Sung, J., Hong, S., Lim, J., Lee, S., Koo, B., Lee, C., Chang, D., Lee, J.,
Jeong, K., Kim, H., Kim, J., Chee, S.: Hight: A new block cipher suitable for low-
resource device. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249,
pp. 46–59. Springer, Heidelberg (2006)

16. Hong, S., Hong, D., Ko, Y., Chang, D., Lee, W., Lee, S.: Differential Cryptanalysis
of TEA and XTEA. In: Lim, J.-I., Lee, D.-H. (eds.) ICISC 2003. LNCS, vol. 2971,
pp. 402–417. Springer, Heidelberg (2004)

17. Karroumi, M., Malherbe, C.: Related-key cryptanalysis of raiden. In: International
Conference on Network and Service Security, N2S 2009, pp. 1–5 (2009)

18. Kelsey, J., Schneier, B., Wagner, D.: Related-key cryptanalysis of 3-WAY, Biham-
DES, CAST, DES-X, NewDES, RC2, and TEA. In: Han, Y., Quing, S. (eds.) ICICS
1997. LNCS, vol. 1334, pp. 233–246. Springer, Heidelberg (1997)

http://eprint.iacr.org/

244 A. Biryukov and V. Velichkov

19. Lai, X., Massey, J.L.: Markov ciphers and differential cryptanalysis. In: Davies,
D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 17–38. Springer, Heidelberg
(1991)

20. Leurent, G.: Construction of Differential Characteristics in ARX Designs - Appli-
cation to Skein. IACR Cryptology ePrint Archive, 2012:668 (2012)

21. Lipmaa, H., Moriai, S.: Efficient Algorithms for Computing Differential Properties
of Addition. In: Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355, pp. 336–350. Springer,
Heidelberg (2002)

22. Lipmaa, H., Wallén, J., Dumas, P.: On the Additive Differential Probability of
Exclusive-Or. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 317–331.
Springer, Heidelberg (2004)

23. Matsui, M.: On Correlation between the Order of S-Boxes and the Strength of
DES. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 366–375.
Springer, Heidelberg (1995)

24. Matsui, M., Yamagishi, A.: A New Method for Known Plaintext Attack of FEAL
Cipher. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 81–91.
Springer, Heidelberg (1993)

25. Mendel, F., Nad, T., Schläffer, M.: Finding SHA-2 Characteristics: Searching
through a Minefield of Contradictions. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 288–307. Springer, Heidelberg (2011)

26. Moon, D., Hwang, K., Lee, W.I., Lee, S.-J., Lim, J.-I.: Impossible Differential
Cryptanalysis of Reduced Round XTEA and TEA. In: Daemen, J., Rijmen, V.
(eds.) FSE 2002. LNCS, vol. 2365, pp. 49–60. Springer, Heidelberg (2002)

27. Mouha, N., Velichkov, V., De Cannière, C., Preneel, B.: The Differential Analysis
of S-Functions. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.) SAC 2010. LNCS,
vol. 6544, pp. 36–56. Springer, Heidelberg (2011)

28. National Institute of Standards and Technology. Announcing Request for
Candidate Algorithm Nominations for a New Cryptographic Hash Algorithm
(SHA-3) Family. Federal Register 27(212), 62212–62220 (November 2007),
http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf (Oc-
tober 17, 2008)

29. National Institute of Standards, U.S. Department of Commerce. FIPS 47: Data
Encryption Standard (1977)

30. Needham, R.M., Wheeler, D.J.: TEA extensions. Computer Laboratory, Cam-
bridge University, England (1997),
http://www.movable-type.co.uk/scripts/xtea.pdf

31. Needham, R.M., Wheeler, D.J.: Correction to XTEA. Technical report, University
of Cambridge (October 1998)

32. Polimón, J., Castro, J.C.H., Estévez-Tapiador, J.M., Ribagorda, A.: Automated
design of a lightweight block cipher with Genetic Programming. KES Journal 12(1),
3–14 (2008)

33. Preneel, B. (ed.): FSE 1994. LNCS, vol. 1008. Springer, Heidelberg (1995)
34. Rivest, R.L.: The MD4 Message Digest Algorithm. In: Menezes, A., Vanstone, S.A.

(eds.) CRYPTO 1990. LNCS, vol. 537, pp. 303–311. Springer, Heidelberg (1991)
35. Rivest, R.L.: The MD5 Message-Digest Algorithm. RFC 1321 (April 1992)
36. Rivest, R.L.: The RC5 Encryption Algorithm. In: Preneel [33], pp. 86–96

http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf
http://www.movable-type.co.uk/scripts/xtea.pdf

Automatic Search for Differential Trails in ARX Ciphers 245

37. Shimizu, A., Miyaguchi, S.: Fast Data Encipherment Algorithm FEAL. In: Price,
W.L., Chaum, D. (eds.) EUROCRYPT 1987. LNCS, vol. 304, pp. 267–278.
Springer, Heidelberg (1988)

38. Velichkov, V., Mouha, N., De Cannière, C., Preneel, B.: The Additive Differential
Probability of ARX. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 342–358.
Springer, Heidelberg (2011)

39. Velichkov, V., Mouha, N., Preneel, C.D.B.: UNAF: A Special Set of Additive Dif-
ferences with Application to the Differential Analysis of ARX. In: Canteaut, [7]
pp. 287–305

40. Wheeler, D.J., Needham, R.M.: TEA, a Tiny Encryption Algorithm. In: Preneel
[33], pp. 363–366

A The Differential Probabilities of ADD and XOR

In this section we recall the definitions of the differential probabilities of the
operations XOR and modular addition. Before we begin – a brief remark on no-
tation: in the same way as XOR is used to denote both the XOR operation and an
XOR difference, we use ADD to denote both the modular addition operation and
an additive difference.

Definition 2. Let α, β and γ be fixed n-bit XOR differences. The XOR differential
probability (DP) of addition modulo 2n (xdp+) is the probability with which α
and β propagate to γ through the ADD operation, computed over all pairs of n-bit
inputs (x, y):

xdp+(α, β → γ) = 2−2n ·#{(x, y) : ((x ∃ α) + (y ∃ β)) ∃ (x+ y) = γ} . (7)

The dual of xdp+ is the probability adp≥ and is defined analogously:

Definition 3. Let α, β and γ be fixed n-bit ADD differences. The additive DP of
XOR (adp≥) is the probability with which α and β propagate to γ through the XOR

operation, computed over all pairs of n-bit inputs (x, y):

adp≥(α, β → γ) = 2−2n ·#{(x, y) : ((x+ α)∃ (y + β))− (x+ y) = γ} . (8)

The probabilities xdp+ and adp≥ have been studied in [21] and [22] respectively,
where methods for their efficient computation have been proposed. In [21] is
also described an efficient algorithm for the computation of xdp+ maximized
over all output differences: maxγ xdp

+(α, β → γ). In [27] the methods for the
computation of xdp+ and adp≥ are further generalized using the concept of
S-functions. Finally, in [39, Appendix C, Algorithm 1] a general algorithm for
computing the maximum probability output difference for certain types of differ-
ences and operations is described. It is applicable to both maxγ xdp

+(α, β → γ)
and maxγ adp

≥(α, β → γ).

246 A. Biryukov and V. Velichkov

B The Additive DP of Left and Right Shift

Definition 4. For fixed input and output ADD differences resp. α and β, the ad-
ditive differential probability of the operation right bit shift (RSH) by r positions
is defined over all n-bit (n ≥ r) inputs x as:

adp≤r(α→ β) = 2−n ·#{x : ((x+ α) ⊆ r) − (x⊆ r) = β} . (9)

Analogously, the additive differential probability of the operation left bit shift
(LSH) by r positions is defined as in (9) after replacing ⊆ r with ⊕ r.

Theorem 1. The LSH operation is linear with respect to ADD differences i.e.
((x + α) ⊕ r) − (x⊕ r) = (α ⊕ r), where x, α and r are as in Definition 4. It
follows that

adp�r(α → β) =

⎡
1 , if (β = α⊕ r) ,

0 , otherwise .
. (10)

Proof. Appendix D.2.

In contrast to LSH, the RSH operation is not linear w.r.t. ADD differences. The
following theorem provides expressions for the computation of adp≤r.

Theorem 2. Let α be a fixed n-bit input ADD difference to an RSH operation
with shift constant r ≡ n. Then there are exactly four possibilities for the output
difference β. The four differences together with their corresponding probabilities
computed over all n-bit inputs are:

adp≤r(α → β) =

⎢⎞⎞⎞⎤
⎞⎞⎞⎥

2−n(2n−r − αL)(2
r − αR) , β = (α ⊆ r) ,

2−nαL(2
r − αR) , β = (α ⊆ r)− 2n−r ,

2−nαR(2
n−r − αL − 1) , β = (α ⊆ r) + 1 ,

2−n(αL + 1)αR , β = (α ⊆ r)− 2n−r + 1 .

,

(11)
where αL and αR denote respectively the (n− r) most-significant (MS) bits and
the r least-significant (LS) bits of α so that: α = αL2

r + αR and additions and
subtractions are performed modulo 2n. If α : β = βi = βj for some 0 ≡ i ◦= j < 4
then adp≤r(α → β) = adp≤r(α → βi) + adp≤r(α → βj).

Proof. Appendix D.3.

C More Experimental results

C.1 Threshold Search on TEA with Reduced Word Size

In Fig. 3 and Fig. 4 are compared the probabilities of the best trails found by
the threshold search algorithm using pDDT to the actual best trails found by
applying Matsui’s search using full DDT on TEA with word size reduced to
11 and 16 bits respectively. For 11 bits 50 experiments are performed and in

Automatic Search for Differential Trails in ARX Ciphers 247

-28

-26

-24

-22

-20

-18

-16

-14

-12

-10

 5 10 15 20 25 30 35 40 45 50

p,
 lo

g2

Experiment, index

TEA Threshold Search vs. DDT: all delta, n = 11, L = 3, R = 4, thres = 0.01, 10 rounds

DDT
Threshold

Fig. 3. Threshold Search vs. DDT Search: word size n = 11 bits

-32

-31

-30

-29

-28

-27

-26

-25

-24

 0 2 4 6 8 10 12 14 16 18 20

p,
 lo

g2

Experiment, index

TEA Threshold Search vs. DDT: one delta, n = 16, L = 4, R = 5, thres = 0.01, 10 rounds

DDT
Threshold

Fig. 4. Threshold Search vs. DDT Search: word size n = 16 bits; same δ is used in
every round

248 A. Biryukov and V. Velichkov

each experiment a new fixed key is chosen uniformly at random. For 16 bits,
the number of experiments is 20. In the experiments on 16 bits the same δ
constant (equal to the initial value) was used in every round. The reason is that
if different constants are used, then a separate DDT has to be computed for
every round, which for more than a couple of rounds quickly becomes infeasible.
Also note that for 16 bits it takes longer to compute the full DDT-s due to their
larger size (compared to the 11 bit case). The memory consumption is also much
bigger – 320 GB of RAM are required to store all DDT-s. Due to the mentioned
limitations, less number of experiments on 16 bits were performed.

D Proofs

D.1 Proof of Proposition 1

Proof. We shall prove the proposition for adp≥. In this case α, β and γ are
ADD differences propagating through the XOR operation. The proof for xdp+ is
analogous.

We induct over the word size n. The proposition is trivially true for the base
case n = 1: p1 ≡ p0 = 1. Let n = k > 1. We have to prove that pk ≡ pk−1.

Let x and y be n-bit integers. Define Li to be the set of i-bit pairs (xi, yi)
that satisfy the differential (αi, βi → γi) for the operation addition modulo 2i:

Li = {(xi, yi) : ((xi + αi)∃ (yi + βi))− (xi + yi) = γi}, n ≥ i ≥ 1 . (12)

Let li = #Li. By definition pk = lk/2
2k and pk−1 = lk−1/22(k−1) (cf. (8)). Note

that every element of Lk can be obtained from an element (xk−1, yk−1) of Lk−1
by appending bits x[k − 1] and y[k − 1] to xk−1 and yk−1 respectively. Assume
that this is not true i.e. assume:

⊥xk, yk : (xk = x[k − 1]|xk−1, yk = y[k − 1]|yk−1, (xk, yk) ∪ Lk)⊃
((xk−1, yk−1) /∪ Lk−1) . (13)

If (13) is true then we can construct a new set L⊕k−1 = (xk−1, yk−1)⊂Lk−1. Its size
is l⊕k−1 = lk−1 +1 and so pk−1 = l⊕k−1/2

2(k−1). The latter differs from the actual

value of the probability pk−1 = lk−1/22(k−1) and therefore the assumption (13) is
false. Thus ∗(xk, yk) ∪ Lk : (xk−1, yk−1) ∪ Lk−1. Because #{(x[k], y[k])} = 22,
the size of Lk can be at most 22 times bigger than the size of Lk−1:

lk ≡ 22lk−1 → lk
22k

≡ lk−1
22(k−1)

→ pk ≡ pk−1 . (14)

��

D.2 Proof of Theorem 1

Proof. Let x be an n-bit input to LSH with shift constant r ≡ n. Let xL, xR :
x = xL2

n−r + xR. Then (x ⊕ r) = xR2
r. Similarly, for the input ADD difference

Automatic Search for Differential Trails in ARX Ciphers 249

α let αL, αR : α = αL2
n−r+αR and thus (α ⊕ r) = αR2

r. The sum (x+α) can
then be represented as:

(x+ α) = (xL + αL)2
n−r + (xR + αR)

= ((xL + αL + cR) mod 2r) 2n−r + ((xR + αR) mod 2n−r) , (15)

where cR is the carry generated from the addition (xR+αR) mod 2n−r. From (15)
follows that (x + α) ⊕ r = (xR + αR)2

r. Thus for the output difference β we
get:

β = ((x + α) ⊕ r)− (x⊕ r) = (xR + αR)2
r − xR2

r = αR2
r = (α ⊕ r) . (16)

Note that (16) is independent of the input x and therefore holds with probability
1 over all values of x. From this the expression (10) for the probability adp�r

immediately follows. ��

D.3 Proof of Theorem 2

Proof. Let x be an n-bit input to RSH with shift constant r ≡ n. Let xL, xR :
x = xL2

r + xR. Then (x ⊆ r) = xL. Similarly, for the input ADD difference α
let αL, αR : α = αL2

r + αR and thus (α ⊆ r) = αL. Denote by cR the carry
generated from the addition (aR + αR) mod 2r:

cR =

⎡
0 , if (xR + αR) < 2r ,

1 , otherwise .
. (17)

The sum (x+ α) can then be represented as:

(x+ α) = (xL + αL)2
r + (xR + αR)

= ((xL + αL + cR) mod 2n−r) 2r + ((xR + αR) mod 2r) . (18)

Therefore (x+α) ⊆ r = (xL+αL+cR) mod 2n−r and for the output difference
β we derive:

β = ((x+ α) ⊆ r) − (x⊆ r) = ((xL + αL + cR) mod 2n−r)− xL

= αL − cL2
n−r + cR , (19)

where

cL =

⎡
0 , if (xL + αL + cR) < 2n−r ,
1 , otherwise .

. (20)

The term −cL2n−r in (19) is introduced in order to cancel the carry 2n−r that is
generated in the cases in which the sum (xL+αL+cR) is bigger than (2n−r−1). In
such a case cL = 1 and −cL2n−r+(xL+αL+cR) = −2n−r+2n−r+(xL+αL+cR)
mod 2n−r = (xL + αL + cR) mod 2n−r.

250 A. Biryukov and V. Velichkov

In the expression for β (19), for each distinct value of the tuple (cL, cR) we
get one of the four possibilities for β:

β =

⎢⎞⎞⎞⎤
⎞⎞⎞⎥

(α ⊆ r) , cL = 0, cR = 0 ,

(α ⊆ r)− 2n−r , cL = 1, cR = 0 ,

(α ⊆ r) + 1 , cL = 0, cR = 1 ,

(α ⊆ r)− 2n−r + 1 , cL = 1, cR = 1 .

. (21)

In order to compute the corresponding probabilities, we have to count the
number of inputs x, that result in a given value for (cL, cR). Note that cL and
cR depend on x and α, of which α is fixed and x can take on all values from 0
to 2n − 1. From (17) it is easy to compute that cR = 0 for exactly (2r − αR)
values of xR and therefore cR = 1 for the remaining 2r − (2r −αR) = αR values.
Note that xR is an r-bit word. Similarly, if cR = 0 then cL = 0 for (2n−r − αL)
values of xL and cL = 1 for the remaining αL values. If cR = 1 then cL = 0 for
(2n−r − αL − 1) values and cL = 1 for the remaining αL + 1 values. Therefore
(cL, cR) = (0, 0) for (2n−r − αL)(2

r − αR) values of x. Since the total number of
values is 2n we obtain the probability:

adp≤r(α→ β = (α ⊆ r)) = 2−n(2n−r − αL)(2
r − αR) . (22)

The expressions for the remaining three probabilities are derived analogously.
��

CBEAM: Efficient Authenticated Encryption from
Feebly One-Way φ Functions

Markku-Juhani O. Saarinen

Kudelski Security, Switzerland
mjos@cblnk.com

Abstract. We show how efficient and secure cryptographic mixing functions can
be constructed from low-degree rotation-invariant φ functions rather than conven-
tional S-Boxes. These novel functions have surprising properties; many exhibit
inherent feeble (Boolean circuit) one-wayness and offer speed/area tradeoffs un-
obtainable with traditional constructs. Recent theoretical results indicate that even
if the inverse is not explicitly computed in an implementation, its degree plays a
fundamental role to the security of the iterated composition. To illustrate these
properties, we present CBEAM, a Cryptographic Sponge Permutation based on a
single 5× 1-bit Boolean function. This simple nonlinear function is used to con-
struct a 16-bit rotation-invariant φ function of Degree 4 (but with a very complex
Degree 11 inverse), which in turn is expanded into an efficient 256-bit mixing
function. In addition to flexible tradeoffs in hardware we show that efficient im-
plementation strategies exist for software platforms ranging from low-end micro-
controllers to the very latest x86-64 AVX2 instruction set. A rotational bit-sliced
software implementation offers not only comparable speeds to AES but also in-
creased security against cache side channel attacks. Our construction supports
Sponge-based Authenticated Encryption, Hashing, and PRF/PRNG modes and is
highly useful as a compact “all-in-one” primitive for pervasive security.

Keywords: CBEAM, Authenticated Encryption, Cryptographic Sponge Func-
tions, Trapdoor φ functions, Lightweight Cryptography.

1 Introduction

The only nonlinear component of the SHA-3 algorithm KECCAK [1,2] is not a tra-
ditional S-Box but a rotation-invariant φ function [3]. It has been widely observed [4]
that this 5 × 5 - bit function, χ, has a lower algebraic degree and circuit complexity
than its inverse χ−1 (See Figure 1). This is a desirable quality in a Sponge-based cryp-
toprimitive as computation of inverse is not required in normal operation. Boura and
Canteaut have showed that complex inverse makes the resulting iteration strong even
if it is not explicitly computed [5]. We have discovered new functions of φ type which
exhibit much more radical asymmetry than the χ function of KECCAK.

Sponge-based constructions offer perhaps the best route to shared-resource (com-
bined encryption and MAC state) authenticated encryption via the Duplex construction
[6,7,8,9,10]. This motivates our investigation of higher-degreeφ functions as we believe
that they are better suited for Sponge constructions than traditional block cipher design
methodologies that require efficient computation in both directions.

J. Benaloh (Ed.): CT-RSA 2014, LNCS 8366, pp. 251–269, 2014.
c© Springer International Publishing Switzerland 2014

252 M.-J.O. Saarinen

Our contributions and structure of this paper. We first give some basic observations
on φ functions and their cryptanalysis in Section 2. Inspired by our discovery of a
unique, particularly strong 5-input φ function, we propose a cryptographic permutation
named CBEAM which can be used for hashing, authenticated encryption, and other
purposes. Section 3 gives a formal definition of the CBEAM Sponge Permutation π,
followed by analysis in Section 4.

This “Cryptographic Swiss Army Knife” Sponge primitive uses a fast 16 × 16 -bit
φ function of Degree 4, with 13 terms in its ANF polynomial for each output bit. Its
asymmetry is evident as its inverse has degree 11 and 13465 terms for output each bit –
see Section 4.3 and Appendix D.

Based on extensive experimentation we conjecture that these functions exhibit inher-
ent feeble one-wayness as defined by Hiltgen for circuit complexity. This indicates high
algebraic resistance for our construct [5] and shows that φ functions are in some ways
superior to conventional designs based on S-Box lookups.

In Section 5 we describe implementations of CBEAM for x86-64 AVX2 instruction
set and for the 16-bit MSP 430 ultra-low power microcontroller. CBEAM is as fast
as fastest AES implementations (without dedicated AES hardware) on both of these
platforms, but has significantly smaller implementation footprint on both. Significant
area-speed trade-offs are possible in hardware, as demonstrated by our two reference
VHDL implementations.

Our conclusions in Section 6 are followed by test vectors and cryptanalytic tables in
Appendices.

2 Rotation-Invariant φ Functions

Introduced in Daemen’s 1995 PhD Thesis [3], φ functions are rotation-invariant n-bit
invertible (bijective) functions. We use a slightly different notation from Daemen who
used φ to denote non-invertible as well as invertible rotation-invariant functions.

Definition 1. Let f : {0, 1}n ⊗≡ {0, 1}n be a function from n-bit vectors to n-bit
vectors. f is a φ function if it is bijective (uniquely invertible) and rotation-invariant:
f(x) = y ⇒ f(x≪ r) = y ≪ r for all r.

Lemma 1. Any n × n-bit φ function f is unambiguously characterized by an n × 1 -
bit function f(1) that satisfies f(1)(x) = f(x) ∪ 1.

Proof. Directly from rotation invariance. Constant 1 has Hamming weight 1. ⇐→
Each output bit of the function may be dependent only on some subset of n input bits.
This subset is not arbitrary; we found that neighboring input bits are more likely to yield
invertible functions. In the present work φ5 is a specific 5 × 1 - bit function and φ16 is
a 16 × 16 - bit function defined by it as per Lemma 1. We note that each output bit of
the inverse function f−1 may be dependent on all input bits even though this is not the
case for f (See Figure 1.)

CBEAM: Efficient Authenticated Encryption from Feebly One-Way φ Functions 253

2.1 Invertibility

It is easy to see that there are invertible n × n - bit φ functions for any n > 1 by
considering f(x) = cx (mod 2n − 1), where gcd(c, 2n − 1) = 1. Rotation invariance:
2n ≥ 1 (mod 2n − 1) and f(2kx) = 2kcx (mod 2n − 1). For invertibility f−1(x) =
c−1x (mod 2n − 1).

The inverse function f−1 can also be characterized by an n × 1 - bit function f−1(1)

(Lemma 1) since the inverse of any φ function is clearly also a φ function. It may also be
the case that f = f−1. Hummingbird-2ν is an example of a cipher that utilizes two 16-
bit φ functions which are in fact involutions [11]. The SIMON family of block ciphers
from NSA is an example of a cipher that utilizes a non-surjective rotation-invariant
function f as part of a Feistel construction [12].

It is nontrivial to characterize which one-bit f(1) functions generate invertible f func-

tions apart from simple properties such as bit balance:
∑2n−1

x=0 f(1)(x) = 2n−1. Good φ
functions appear to be rather hard to find – we resorted to optimized exhaustive tabula-
tion methods to find our implementation-friendy and “feebly asymmetric” φ5.

Fig. 1. On left, a circuit implementing KECCAK’s 5 × 5 - bit χ component, which happens
to be a rotation-invariant φ function of degree 2. On right, a circuit implementing its inverse
permutation, χ−1, which has Degree 3 with each output bit dependent on all input bits. Such
asymmetric Boolean and circuit complexity is characteristic of φ functions.

254 M.-J.O. Saarinen

2.2 On Cryptanalysis of φ Functions

Algorithms for finding differential [13] and linear [14,15] cryptanalytic properties of a
φ function are relatively fast and straightforward to implement. Thanks to Lemma 1,
when determining linear bounds we may assume that the input mask is a subset of the
input bits to its f(1).

For differential cryptanalysis we must consider the convolution of the input differen-
tial w.r.t. a single output bit. Due to rotation we may always by convention set the bit at
index 0 in the input differential.

Countermeasures must be taken against rotational cryptanalysis [16] due to inher-
ent rotational invariance of φ functions. Algebraically these functions have surprising
properties. See Section 4.3 and Appendix D for tables and conjectures related to φ5.

2.3 General Implementation Features

One the most useful features of φ functions is the extreme amount of implementation
trade-offs allowed. Computation of a n × n - bit φ function can take anywhere from
1 (fully unrolled) to c × n cycles (serial implementation – here c is some constant),
depending on target hardware platform. This is illustrated in Figure 3.

On software platform, φ functions allow efficient implementation of large “S-boxes”
via a Boolean sequence programming technique resembling bit-slicing [17]. Finding a
good bit-slicing Boolean description for an n× 1 - bit function is much easier than for
a generic n× n - bit S-Box.

Such straight-line code is resistant to cache-based side-channel timing attacks such
as those reported against AES implementations [18,19,20].

π

Encryption.

p.. c..p0 c0 p1 c1

π

d0

π π

d..

π

Absorbtions

b

d
o
m
a
in

b
a
rrier

h0 h..

Squeezing

πb

d
o
m
a
in

b
a
rrier

πIV

Fig. 2. A simplified view of a generic Sponge construction. The state is first loaded with an
Initialization Vector or the final state of previous message. In CBEAM, the mixing function is
π = mx6. Then Secret Key, Nonce, and Associated Authenticated Data (AAD) are absorbed and
mixed - all represented by d words. b represents some domain separating padding mechanism.
The same π function is then be used to encrypt and decrypt data and finally to extract (“squeeze”)
out a MAC or a hash h.

CBEAM: Efficient Authenticated Encryption from Feebly One-Way φ Functions 255

3 CBEAM and Its π Permutation

The design of CBEAM was driven by the following goals:

1. KISS: A simple design based on a single feebly one-way unkeyed permutation.
2. Fulfills all symmetric cryptographic needs of a communications security suite with

a single core primitive. Usable as a Pseudorandom Function, Authenticated En-
cryption Algorithm, and a Collision-resistant Hash.

3. Have high performance on high-end CPUs, yet be efficiently implementable on
low-end MCUs and lightweight hardware platforms such as RFID.

4. Have a high security level against attacks (2128).

CBEAM is based on the Sponge construction (Section 3.2) with a 256-bit state size
and 64-bit data rate; data transfer generally occurs in 64-bit increments.

3.1 Mixing Function mx

The basic building block of CBEAM is mx, which is a bijective transform on a 256-bit
state variable. Six rounds of mx make up π, the fundamental permutation of CBEAM.

The mixing function mx is composed of addition of a round constant rcr, bit matrix
transpose, linear mixing λ, and nonlinear mixing φ:

mxr(s) = (φ ∈ λ)(s ∅ rcr)T . (1)

Practical software implementation notes are presented in Section 5.2 and a test trace
of six rounds in Appendix A.

Formal Definition. We index the state s interchangeably as a 16 × 16 - bit matrix
s[0..15][0..15], a vector of 16-bit words sw[0..15] with sw[i] =

∑15
j=0 2

js[i][j]

or as four quadwords sq[0..3] with sq[i] =
∑3

j=0 2
16jsw[4i+ j]. All data is stored

in little-endian format.
In the following description modulo 16 arithmetic in indexing is equivalent to logical

masking with 0xF; a mod 16 is always in the range 0, 1, · · · , 15. To evaluate π = mx6

we compute six rounds r = 0 . . . 5 of the following three steps:

1. Round Constant rcr. Let the individual round bits be r = 4r2 +2r1 + r0. We have
s′[i][j] = s[i][j] for all 0 ⊕ i, j ⊕ 15 except the following:

s′[0][0] = s[0][0]∅ (r0 ∪ ¬r1)
s′[1][0] = s[1][0]∅ (r0 ∪ r2)
s′[3][0] = s[3][0]∅ r0
s′[4][1] = s[4][1]∅ r0
s′[5][1] = s[5][1]∅ (r0 ∪ ¬r1)
s′[6][1] = s[6][1]∅ (r0 ∪ r2)

s′[8][2] = s[8][2]∅ (r0 ∪ r1)
s′[10][2] = s[10][2]∅ r0
s′[11][2] = s[11][2]∅ (r0 ∪ r2)
s′[13][3] = s[13][3]∅ r0
s′[14][3] = s[14][3]∅ (r0 ∪ r1)
s′[15][3] = s[15][3]∅ (r0 ∪ r2).

Observe that the round constants are active only on odd rounds (r0 = 1).

256 M.-J.O. Saarinen

Table 1. Truth table for φ5 (Equation 4.)

x4 x3 x2 x1 x0 φ5

0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 1
0 0 0 1 1 1
0 0 1 0 0 0
0 0 1 0 1 0
0 0 1 1 0 1
0 0 1 1 1 1

x4 x3 x2 x1 x0 φ5

0 1 0 0 0 1
0 1 0 0 1 0
0 1 0 1 0 1
0 1 0 1 1 0
0 1 1 0 0 0
0 1 1 0 1 0
0 1 1 1 0 1
0 1 1 1 1 1

x4 x3 x2 x1 x0 φ5

1 0 0 0 0 1
1 0 0 0 1 1
1 0 0 1 0 0
1 0 0 1 1 1
1 0 1 0 0 0
1 0 1 0 1 0
1 0 1 1 0 1
1 0 1 1 1 0

x4 x3 x2 x1 x0 φ5

1 1 0 0 0 1
1 1 0 0 1 0
1 1 0 1 0 1
1 1 0 1 1 0
1 1 1 0 0 0
1 1 1 0 1 0
1 1 1 1 0 1
1 1 1 1 1 1

2. Linear transform λT . Let s′ = λ(sT) for 0 ⊕ i, j ⊕ 15:

s′[i][j] = s[(j + 4) mod 16][i] ∅
s[(j + 8) mod 16][i] ∅ (2)

s[(j + 12) mod 16][i].

We note that the λT transform consists of a transpose of the matrix and a bit parity oper-
ation. The transpose and bit parity operations are individually involutions but applying
their compound operation λT four times results in the original matrix.

3. Nonlinear transform φ. We define s′ = φ(s) for 0 ⊕ i, j ⊕ 15 as:

s′[i][j] = φ5
(
s[i][j],

s[i][(j − 1) mod 16],

s[i][(j − 2) mod 16], (3)

s[i][(j − 3) mod 16],

s[i][(j − 4) mod 16]
)
,

where φ5 is defined the following Algebraic Normal Form (ANF) polynomial in Z2:

φ5(x0, x1, x2, x3, x4) = x0x1x3x4 + x0x2x3 + x0x1x4 + x1x2x3 + x2x3x4+

x0x3 + x1x3 + x2x3 + x2x4 + x3x4 + x1 + x3 + x4. (4)

Selection of φ5 is discussed in Section 4.1 and Table 1 gives its truth table.

3.2 Hashing and Authenticated Encryption

We claim that π can be used in all of the following proposed Sponge modes of operation.
However, we suggest that unique message nonces or randomizers are always used for
AE and MAC modes.

– Authenticated Encryption (AE) with SPONGEWRAP[9].
– Keyed Message Authentication Codes (MACs) [21].

CBEAM: Efficient Authenticated Encryption from Feebly One-Way φ Functions 257

– Collision resistant hashing [6].

– Tree hashing with SAKURA [22].

– Pseudorandom extractors (PRFs and PRNGs) [8].

– BLINKER two-party protocols [23].

For CBEAM described in this paper b = 256 and a natural choice for rate is r = 64,
leaving a capacity of c = 192. This is more suitable for low-resource platforms and
short messages than KECCAK with its 1600-bit state [1].

For SPONGEWRAP and other modes with frame bits it may be appropriate to have
r = 65 or 66 in order to not break input byte boundaries. For 238 bits of data per key
we claim 2128 security based on Theorems of [10], equivalent to AES-128 and suitable
for SECRET data. For 246 data we claim 2112 security, superior to 3DES / TDEA [24].

If even faster speeds are required and unique nonces are available, one may reduce
the number of rounds to mx4 or even mx2 and use the MONKEYDUPLEX construction
of [25]. However, many of the security assurances will break down in this case.

φ5

0123456789101112131415 x

16 - Cycle Hardware Implementation (x and y are rotated at each cycle)

0123456789101112131415 y

0123456789101112131415

01234567891011121314

012345678910111213

0123456789101112

01234567891011

15

1415

131415

12131415

0123456789101112131415

φ5 φ5 φ5 φ5 φ5 φ5 φ5 φ5 φ5 φ5 φ5 φ5 φ5 φ5φ5 φ5

Bitslicing Software Implementation (x, x≪ 1, · · · , x≪ 4 in different registers)

≪ 1

≪ 2

≪ 3

≪ 4

x

y

R0

R1

R2

R3

R4

Fig. 3. Example of a 16 × 16 - bit φ function based on a 5 × 1 - bit Boolean function φ5. We
observe 16 and 1 cycle implementations of the same function. Note that the latter example is
equivalent to “bit slicing” software implementation using rotated words.

258 M.-J.O. Saarinen

4 Design and Analysis

Ignoring the round constant, the mx transform may be viewed as a transpose of a matrix
followed by 16 parallel, independent invocations of a 16 - bit permutation, (φ ∈ λ)16.
We start with the most fundamental observation:

Theorem 1. The mx transform is bijective (reversible).

Proof. The mx transform is bijective as all of its component functions are individually
reversible. It is trivial to see that the linear transform λ is bijective. Since convolution
by a nonlinear Boolean function is generally not reversible, one may compute the 216 -
entry table of φ16 to verify that it is indeed bijective. ⇐→

The choice of round constants was specially crafted to deter rotational [16] and slide
[26,27] attacks.

Theorem 2. Without the round constants the mx transform is shift-invariant both hor-
izontally and vertically. Let s′ = mx(s) and t′ = mx(t). If each element s[i][j] =
t[(i+4Δi) mod 16][(j+Δj) mod 16] for some offsets Δi andΔj , then s′[i][j] =
t′[(i+Δj) mod 16][(j + 4Δi) mod 16].

Proof. The theorem follows form shift-invariant properties of all component functions.
Note the exchange of indices 4Δi and Δj due to transpose. ⇐→

4.1 Selection of φ5

We analyzed all 22
5

= 232 five-input Boolean functions, searching for ones that re-
sult in invertible 16-bit φ functions with particularly good properties. Five neighboring
bits are used since rotation amounts that would yield better branching (such as the set
{0, 1, 2, 4, 8}) didn’t result in any appropriate functions. Single left rotations are used
as it is universally available (addition of number to self with carry flow-over to LSB).

There were 260 invertible functions, of which 56 were dependent on all five input
bits in nonlinear fashion. Eight of these exhibited optimal differential and linear prop-
erties. However there are three independent mirror symmetries (inversion of all input
and output bits and the order of input bits) and therefore 23 = 8 equivalent functions.
Discounting these symmetries, there is only one optimal function, φ5 (Equation 4).

Invertibility φ5 of for other word sizes besides n = 16 and the surprising properties
of these inverse functions are analyzed in Appendix D.

4.2 Differential and Linear Cryptanalysis

Sponge functions can be attacked with DC [13] and LC [14,15] even though reasonable
attack models are radically different from block ciphers.

Because of λ, changing one bit of the input will spread the difference to at least three
bit positions outside the first quadword which can be modified by the attacker. After
four of six mx iterations, there is no easily detectable bias regardless of input differ-
ence, which we feel is an appropriate security margin. See Table 4 for an illustration of
progress of differentials in the state during forward and reverse iterations.

CBEAM: Efficient Authenticated Encryption from Feebly One-Way φ Functions 259

For this analysis we view (φ ∈ λ)16 row operation as a 16 × 16 - bit “S-Box”. The
highest-probability differential is 0CCC ≡ 8001 and its rotational equivalents. The
probability of this differential is 12032

216 ∃ 0.1836. From Table 2 in Appendix C we ob-
serve that a 1-bit input difference never yields a 1-bit output difference (branch number
is greater than 2).

The best linear approximation for (φ ∈ λ)16 is 0888 ≡ 0001 and its rotational
equivalents, which have a bias of 16384

216 = 1
4 . The other best approximations are given

in Table 3. Significantly, all single bit approximations have 0 linear bias, as do 2-to-1
and 1-to-2 - bit approximations.

4.3 Algebraic Properties

The truth table for φ5 Boolean function is given in Table 1. From its definition in Equa-
tion 4 one easily see that the degree of φ5 is 4 (and ANF weight 13), and that is also the
algebraic degree of φ state transform mx (see Equation 3).

The mx function has been designed to have a significant amount of algebraic “one-
wayness” in the sense discussed by Hiltgen [28]. The following somewhat surprising
observation can be verified by examining the inverse of φ16:

Observation 1 The algebraic degree of the φ−116 inverse function is 11. The weight
(number of nonzero terms) of the ANF polynomial for each output bit of φ−116 is 13465.

For a characterization of the Algebraic properties of the inverse of φ−1n for n ⊆= 16,
we refer to Appendix D, where tables and conjectures are presented.

The algebraic degree of mxn is bound by 4n. We have verified that the output after
six invocations actually has a degree up to 256. If state bits are observed as a function
of sq[0], the number of terms of each degree are distributed in a way that indicates
that CBEAM is not vulnerable to d-monomial distinguishers [29] or other traditional
algebraic attacks.

Higher-degree inverse indicates high-degree iteration. Research by Boura and Can-
teaut on the algebraic degree of iterated permutations seen as multivariate polynomials
shows that the degree depends on the algebraic degree of the inverse of the permutation
which is iterated [5]. This indicates exceptional algebraic security for our proposal.

5 Padding and Implementation Notes

A special padding mode of operation, BLINKER [23], is proposed together with
CBEAM. This multi-use padding mode allows full encryption protocols to be built from
CBEAM. We note that an early version of CBEAM and BLINKER was used in the HA-
GRAT academic Remote Access Trojan [30], minimizing the size of the encryption com-
ponent.

CBEAM is highly flexible when it comes to implementation platforms. A standard
C implementation may compute four rows in parallel using 64-bit data types whereas
specific implementation strategies exist that fully utilize architectures from 16-bit to

260 M.-J.O. Saarinen

256-bit word size. Figure 4 shows how the state fits into the register sets of various
CPU architectures.

In hardware implementations, an invocation of the mxn transform can take anywhere
between 1 and several thousand clock cycles, depending on the number of gates, peak
energy and amount of surface area available. Figure 3 shows sixteen- and single clock
versions of a φ16 - type convolution.

5.1 Hardware Implementations

We have designed and written VHDL for two implementations, dubbed Serial-CBEAM
and Block-CBEAM. These have been found to function correctly on a Xilinx Virtex 3E
FPGA board with the ISE 14.4 design flow.

Serial Implementation. The Serial implementation assumes external 256-bit memory
for the state and operates on that state one bit at a time. The implementation sacrifices a
lot of clock cycles for reduction of gates and area. The implementation requires only 16
internal register bits in addition to address/clock counters. The implementation with a
1-bit data bus requires 256 read cycles and 256 write cycles for each MX iteration, 3072
clocks in total for full π = mx6. We estimate that the implementation footprint is only
about 300 GE without the 256-bit external state memory.

Block Implementation. This is a 1 - cycle implementation of the mx function (with
e.g. 256 parallel φ5 circuits). Depending on target platform and area, timing constraints,
it is possible to implement more than one round of mx2 in a single cycle. Pipelined
operation using SAKURA-like [22] hopping hash trees can also be considered with this
mx core.

5.2 Implementing CBEAM in Software without Matrix Transpose

Since transposing a binary matrix is generally slow in software, one would typically
want to combine two mx operations into a double-round with separate “vertical” and
“horizontal” parts. We give some generic guidance on how to implement mx2 in soft-
ware this way. However, one should examine the reference 16-bit, 64-bit, and 256-bit
implementations for architecture-specific optimizations.

rw[0] rw[1] rw[2] rw[3] rw[4] rw[5] rw[6] rw[7] rw[8] rw[15]rw[14]rw[13]rw[12]rw[11]rw[10]rw[9]

16× 16 = 256 - bit state r

YMM0

XMM0 XMM1

MMX0 MMX2 MMX3 MMX4

R0 R1 R2 R3 R4 R5 R6 R7

Fig. 4. Illustration on how to fit the 256-bit state into a single Haswell+ AVX2 YMM register, two
Pentium 3+ SSE XMM registers, four Pentium+ MMX or ARM NEON registers or eight ARM
general purpose registers for bit-slicing computation

CBEAM: Efficient Authenticated Encryption from Feebly One-Way φ Functions 261

Step 1: Vertical linear transform λ. This step is easiest to implement by viewing the
state as 64-bit words (“quadwords”) sq[0..3] with s = (sq[0], sq[1], sq[2], sq[3]).

t = sq[0] ∅ sq[1] ∅ sq[2] ∅ sq[3]

s′ = (sq[0] ∅ t, sq[1] ∅ t, sq[2] ∅ t, sq[3] ∅ t). (5)

Step 2: Vertical nonlinear transform. An optimized bit-slicing method for φ5 is used
(See Appendix B). Note that the input words may be stored in registers and contents of
registers values in shifted for each new input word. For 0 ⊕ i ⊕ 15:

s′w[i] = φ5
(
sw[i], sw[(i− 1) mod 16], sw[(i − 2) mod 16],

sw[(i− 3) mod 16], sw[(i − 4) mod 16]
)
. (6)

Step 3: Round Constant. As the round constants are only active at odd rounds, they
are in fact always applied between vertical and horizontal rounds in this type of imple-
mentation. Written as transposed quadwords, the three nonzero round constants are:

rc1q = 0x2000040000300009

rc3q = 0x6000050000100008 (7)

rc3q = 0xA0000C000070000B

Constants from Equation 7 are XORed over the first quadword of state at round i:

s′q[0] = sq[0]∅ rciq. (8)

Step 4: Horizontal linear transform λ. This step is relatively slow in this type of im-
plementation. There are many ways to do this; we note that each nibble of t is equivalent
to each other. This step is also parallelizable. For 0 ⊕ i ⊕ 15:

t = sw[i] ∅ (sw[i] ≪ 4) ∅ (sw[i] ≪ 8) ∅ (sw[i] ≪ 12)

s′w[i] = sw[i] ∅ t. (9)

Step 5: Horizontal nonlinear transform. Again a bit-slicing implementation of φ5
(Appendix B) is used, but on rotated values of each word. For 0 ⊕ i ⊕ 15:

s′w[i] = φ5
(
sw[i], sw[i] ≪ 1, sw[i] ≪ 2, sw[i] ≪ 3, sw[i] ≪ 4

)
. (10)

5.3 Latest Server/Desktop/Laptop Systems: x86-64 with AVX2

The Intel Haswell (Generation 4 Core) and later x86-64 CPUs support 256-bit AVX2
(Advanced Vector Extensions 2) SIMD instructions. The AVX2 platform provides shuf-
fle and vector shift instructions for 16-bit vector sub-units in addition to 256-bit Boolean

262 M.-J.O. Saarinen

logic for the nonlinear function φ5 (Equation 4). We can implement full 256-bit φ5
with only eight instructions (Appendix B.1). This roughly doubles the overall execu-
tion speed when compared to optimized 64-bit gcc versions.

The following speeds were measured on a MacBook Air (Q3/2013) with Intel Core
i5 - 4250U CPU @1.30 GHz running Ubuntu Linux 13.04. The internal clock frequency
was 1.90 GHz for all tests.

We compare to OpenSSL 1.0.1e AES implementation, which is the de facto standard
AES implementation. Generic assembler optimizations were enabled but we disabled
the full hardware AES for fairness.

Implementation Troughput Cycles/Byte
CBEAM-GCC 58.5 MB/s 32.5
CBEAM-AVX2 117.5 MB/s 16.1
OpenSSL AES-128 106.5 MB/s 17.8
OpenSSL AES-192 86.0 MB/s 22.1
OpenSSL AES-256 71.9 MB/s 26.4

5.4 Sensors and Pervasive Devices: MSP430

Texas Instruments MSP430 is a well known family of low-cost and ultra-low power
16-bit SoC microcontrollers, widely used in sensor networks. CBEAM beats the more
than dozen MSP430 encryption algorithm implementations reported in [31], often by
an order of magnitude.

Our implementation of π is able to execute entirely on 12 general-purpose registers
without having to resort to stack (except the top value) and therefore the running RAM
requirement is equivalent to the state size, 32 bytes. The φ5 function was realized with
nine logic instructions (Appendix B.2). Unfortunately the target only has 1-bit shifts
and no multi-bit rotation instructions, which results in a bottleneck for “horizontal” λ.

The cipher is as fast as the very fastest AES implementations on this platform but
has significantly smaller implementation footprint. The following numbers are only for
cores, modes of operation not included. The IAIK [32] implementation is commercial
and written in hand-optimized assembly. The Texas Instruments [33] implementation is
recommended by the SoC vendor.

Code Flash Ram Encryption Decryption Cycles/Byte
CBEAM 386 32 4369 4404 550.5
AES-128 [32] 2536 ? 5432 8802 550.1
AES-128 [33] 2423 80 6600 8400 525.0
AES-256 [32] 2830 ? 7552 12258 766.1

6 Conclusions

We propose the use of novel rotation-invariant φ functions in cryptographic primitives
such as hashes and authenticated encryption. These functions have fascinating and at-
tractive properties such as “feeble one-wayness”; the Boolean complexity of inversion
appears to be much higher than the Boolean complexity of computing the permutation

CBEAM: Efficient Authenticated Encryption from Feebly One-Way φ Functions 263

in forward direction. We have experimentally verified that the polynomial degree for
the inverse of a φ5 function grows linearly as the number of input bits grows, while it
remains constant in forward direction. Hence the function and its inverse are in different
complexity classes (linear vs. polynomial or super-polynomial).

In a Sponge construction a large and efficient cryptographic permutation is required.
The permutation needs to be computed only in one direction during normal operation.
It has been shown that complexity of inversion makes collision search and other attacks
more difficult. Here an asymmetric φ function is an ideal choice. This motivates us to
propose a new 256-bit Sponge function, CBEAM, which can be used for cryptographic
hashing, authenticated encryption, and other purposes.

In addition to the theoretical side, the main attractive feature of CBEAM is its ex-
treme implementation flexibility; a single word encryption operation may require any-
where between 1 to thousands of cycles, depending on the area and energy requirements
of the implementation. We also demonstrate that it is approximately as fast as AES on
both high-end CPUs and low-end MCUs, while having a significantly smaller imple-
mentation footprint.

Acknowledgements. The author wishes to thank Kudelski Security, University of
Haifa, and Nanyang Technological University for supporting his work. Program Com-
mittee members of CT-RSA 2014 provided invaluable suggestions for improving the
quality of this paper.

References

1. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: The Keccak reference, version 3.0. NIST
SHA3 Submission Document (January 2011)

2. NIST: NIST selects winner of secure hash algorithm (SHA-3) competition. NIST Tech Beat
Newsletter (October 2, 2012)

3. Daemen, J.: Cipher and Hash Function Design Strategies based on linear and differential
cryptanalysis. PhD thesis, K.U. Leuven (March 1995)

4. Dinur, I., Dunkelman, O., Shamir, A.: New attacks on keccak-224 and keccak-256. In: Can-
teaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp. 442–461. Springer, Heidelberg (2012)

5. Boura, C., Canteaut, A.: On the influence of the algebraic degree of F−1 on the algebraic
degree of G ◦ F. IEEE Transactions on Information Theory 59(1) (January 2013)

6. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Sponge functions. In: Ecrypt Hash Work-
shop (May 2007)

7. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On the indifferentiability of the sponge
construction. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 181–197.
Springer, Heidelberg (2008)

8. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Sponge-based pseudo-random number
generators. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 33–47.
Springer, Heidelberg (2010)

9. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Duplexing the sponge: Single-pass
authenticated encryption and other applications. In: Miri, A., Vaudenay, S. (eds.) SAC 2011.
LNCS, vol. 7118, pp. 320–337. Springer, Heidelberg (2012)

10. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Cryptographic sponge functions, version
0.1. STMicroelectronics and NXP Semiconductors (January 2011),
http://sponge.noekeon.org/

http://sponge.noekeon.org/

264 M.-J.O. Saarinen

11. Saarinen, M.J.O.: Related-key attacks against full Hummingbird-2. In: FSE 2013: 20th Inter-
national Workshop on Fast Software Encryption, Singapore, March 11-13 (to appear, 2013)

12. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.: The SI-
MON and SPECK families of lightweight block ciphers. IACR ePrint 2013/404 (June 2013),
http://eprint.iacr.org/2013/404

13. Biham, E., Shamir, A.: Differential Cryptanalysis of the Data Encryption Standard. Springer
(1993)

14. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)

15. Matsui, M.: The first experimental cryptanalysis of the data encryption standard. In:
Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 1–11. Springer, Heidelberg (1994)

16. Khovratovich, D., Nikolić, I.: Rotational cryptanalysis of ARX. In: Hong, S., Iwata, T. (eds.)
FSE 2010. LNCS, vol. 6147, pp. 333–346. Springer, Heidelberg (2010)

17. Biham, E.: A fast new DES implementation in software. In: Biham, E. (ed.) FSE 1997.
LNCS, vol. 1267, pp. 260–272. Springer, Heidelberg (1997)

18. Bernstein, D.J.: Cache-timing attacks on AES. Technical report, University of Chigaco
(2005)

19. Acıiçmez, O., Schindler, W., Koç, Ç.K.: Cache based remote timing attack on the AES. In:
Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 271–286. Springer, Heidelberg (2006)

20. Weiß, M., Heinz, B., Stumpf, F.: A cache timing attack on AES in virtualization envi-
ronments. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 314–328. Springer,
Heidelberg (2012)

21. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: On the security of the keyed sponge
construction. In: SKEW 2011 Symmetric Key Encryption Workshop (February 2011)

22. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Sakura: a flexible coding for tree hashing.
IACR ePrint 2013/213 (April 2013), http://eprint.iacr.org/2013/213

23. Saarinen, M.-J.O.: Beyond modes: Building a secure record protocol from a cryptographic
sponge permutation. In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, Springer,
Heidelberg (2014)

24. NIST: Recommendation for the Triple Data Encryption Algorithm (TDEA) block cipher,
revision 1. NIST Special Publication 800-67 (January 2012)

25. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Permutation-based encryption, authenti-
cation and authenticated encryption. In: DIAC 2012 (2012),
http://keccak.noekeon.org/KeccakDIAC2012.pdf

26. Biryukov, A., Wagner, D.: Slide attacks. In: Knudsen, L.R. (ed.) FSE 1999. LNCS, vol. 1636,
pp. 245–259. Springer, Heidelberg (1999)

27. Biryukov, A., Wagner, D.: Advanced slide attacks. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 589–606. Springer, Heidelberg (2000)

28. Hiltgen, A.P.: Towards a better understanding of one-wayness: Facing linear permuta-
tions. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 319–333. Springer,
Heidelberg (1998)

29. Saarinen, M.-J.O.: Chosen-IV statistical attacks against eSTREAM ciphers. In: Proc. SE-
CRYPT 2006, International Conference on Security and Cryptography, Setubal, Portugal,
August 7-10 (2006)

30. Saarinen, M.J.O.: Developing a grey hat C2 and RAT for APT security training and assess-
ment. In: GreHack 2013 Hacking Conference, Grenoble, France, November 15 (to appear,
2013)

31. Cazorla, M., Marquet, K., Minier, M.: Survey and benchmark of lightweight block ciphers
for wireless sensor networks. In: SECRYPT 2013 (May 2013),
http://eprint.iacr.org/2013/295

http://eprint.iacr.org/2013/404
http://eprint.iacr.org/2013/213
http://keccak.noekeon.org/KeccakDIAC2012.pdf
http://eprint.iacr.org/2013/295

CBEAM: Efficient Authenticated Encryption from Feebly One-Way φ Functions 265

32. IAIK: AES for Texas Instruments MSP430 microcontrollers. Technical report, IAIK SIC T.
U. Graz, http://jce.iaik.tugraz.at/sic/
Products/Crypto_Software_for_Microcontrollers

33. TI: AES128 - A C implementation for encryption and decryption. Technical Report
SLAA397A, Texas Instruments (July 2009),
http://www.ti.com/lit/an/slaa397a/slaa397a.pdf

A Trace of Execution for CBEAM

A trace (test vector) of six rounds of computation for the π = mx6 function:

b = (0123, 1234, 2345, 3456, 4567, 5789, 6789, 789A,

89AB, 9ABC, ABCD, BCDE, CDEF, DEF0, EF01, F012)

mx(b) = (88A8, 3333, BDBD, BFC1, DD5D, B87B, BF7D, A3B5,

88A8, CCCC, F6F6, FF06, 5555, 9999, EDED, FE0D)

mx2(b) = (6F0D, E713, 4B47, B151, 25BD, 929F, 2540, 7780,

4985, 511D, 818C, A135, 8426, 9911, FB65, 3991)

mx3(b) = (E50C, EAE4, 07F3, B08A, 6476, 2138, D90D, F629,

3919, 3071, 1E59, 1458, DEEC, 15F3, 96DF, 1FB2)

mx4(b) = (8922, B751, 6648, 0EED, C285, 89E5, 2DFC, DBBF,

4310, 77FA, 3494, 7F13, 47D9, 6DD3, 1E59, E502)

mx5(b) = (2CA0, 67B3, 4F96, 0A46, B209, AC7E, 5C64, A125,

CF7C, B46F, EB8A, FAED, 1130, 934D, CC02, 0D67)

mx6(b) = π(b) = (5432, 281E, B184, 9481, AAF0, C9BE, A028, 4C79,

4B69, 53BF, 53C0, CFE8, 8839, 9D2A, 89E3, 1300)

B Bit-Slicing for φ5

The ANSI C reference implementationcbref/mx6-gcc.c implementsφ5 as a macro
as follows:

#define CBEAM_PHI5(x0, x1, x2, x3, x4) \
(~(x0 & ((~x3 & x4) ^ (~x2 & x3))) & \
(x1 | (~x2 & x3))) ^ (~x2 & (~x3 & x4))

Here we put our trust to compiler for common subexpression elimination of(~x3 &x4)
and (~x2 & x3). One can assign these to temporary variables if necessary. We have
exhaustively verified that φ5 cannot be implemented with less than eight logical instruc-
tions (ANDN (~x & y) is a single op).

http://jce.iaik.tugraz.at/sic/Products/Crypto_Software_for_Microcontrollers
http://jce.iaik.tugraz.at/sic/Products/Crypto_Software_for_Microcontrollers
http://www.ti.com/lit/an/slaa397a/slaa397a.pdf

266 M.-J.O. Saarinen

B.1 AVX 2

Here is a code snippet written in AVX2 C intrinsics for implementing the φ5 function
with 8 logical instructions on 256-bit registers:

// t0 = Phi5(x0,x1,x2,x3,x4)
t0 = _mm256_andnot_si256(x3, x4);
t1 = _mm256_andnot_si256(x2, x3);
t2 = _mm256_andnot_si256(x2, t0);
t3 = _mm256_or_si256(x1, t1);
t0 = _mm256_xor_si256(t0, t1);
t1 = _mm256_and_si256(x0, t0);
t0 = _mm256_andnot_si256(t1, t3);
t0 = _mm256_xor_si256(t0, t2);

Please see the reference implementation file cbref/mx6-avx2.c for tricks on how
to implement λ and various shifts efficiently on this platform.

B.2 MSP430

TI MSP430 has only two-operand machine instructions and hence the code is slightly
longer with 9 instructions on 16-bit registers:

/* r14 = Phi5(r15,r14,r13,r12,r11) */
bic r12, r11
inv r13
and r13, r12
and r11, r13
xor r12, r11
and r11, r15
bis r12, r14
bic r15, r14
xor r13, r14

The MSP430 reference implementation cbeam430/mx430.s can compute π = mx6

without utilizing stack (except the top value, which is basically free).

CBEAM: Efficient Authenticated Encryption from Feebly One-Way φ Functions 267

C Auxiliary Tables

Table 2. Probabilities (%) of best differentials for (λ◦φ)16 with specific input weight (rows) and
output weight (columns). The best overall differential and the best differential with output weight
1 are emphasized.

Wt 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 0 0 1.07 .513 .635 .562 .385 .330 .140 .137 .064 .021 .003 0 0 0
2 0 4.30 2.15 2.54 2.15 1.37 .592 .443 .284 .256 .116 .098 .037 .027 .006 .006
3 17.2 5.47 5.47 3.91 1.78 .922 .787 .476 .330 .195 .177 .119 .079 .052 .027 .003
4 .009 1.46 3.37 5.15 1.95 1.32 .903 .439 .305 .375 .232 .159 .101 .064 .049 .021
5 .684 2.93 6.74 2.49 2.20 1.76 .885 .635 .446 .363 .266 .192 .140 .085 .064 .021
6 7.03 18.4 5.47 3.91 2.34 1.37 .894 .702 .412 .354 .214 .168 .131 .128 .052 .018
7 .928 2.00 4.17 2.12 3.09 1.64 1.14 .671 .470 .299 .247 .223 .165 .101 .040 .024
8 2.93 3.22 3.22 4.15 3.12 1.95 1.20 .732 .522 .360 .220 .256 .140 .070 .049 .034
9 8.20 4.00 11.1 4.59 3.52 1.95 1.28 .885 .525 .366 .253 .171 .134 .101 .067 .024

10 .598 1.39 1.66 2.73 1.46 2.27 1.44 .781 .586 .323 .220 .208 .131 .153 .043 .021
11 .964 2.44 3.27 2.05 3.96 2.22 1.27 .879 .403 .232 .266 .192 .165 .092 .037 .027
12 .781 5.57 2.83 6.74 2.34 1.86 .696 .439 .290 .296 .198 .171 .128 .058 .040 .031
13 0 .122 .159 .323 .247 .269 .327 .317 .272 .214 .223 .119 .082 .058 .031 .009
14 0 .018 .073 .150 .177 .250 .269 .424 .235 .275 .140 .104 .061 .052 .024 .015
15 0 0 .003 .006 .079 .064 .122 .058 .076 .064 .055 .037 .043 .034 .021 0
16 0 0 0 0 0 .006 .006 .049 .024 .055 .031 .058 .015 .021 0 .012

Table 3. Absolute biases (%) of best linear approximations for (λ◦φ)16 with specific input mask
weight (rows) and output weight (columns)

Wt 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 0 0 6.25 3.71 4.69 3.12 2.73 1.56 1.17 .586 .439 0 0 0 0 0
2 0 12.5 7.03 9.38 6.25 4.88 3.71 2.93 3.32 1.86 1.27 1.27 .684 .391 0 0
3 25.0 12.5 9.38 6.25 5.08 4.49 4.59 3.71 2.73 1.95 1.66 1.42 1.37 .830 .684 0
4 0 7.03 9.38 7.81 7.81 7.03 3.91 3.81 3.03 2.88 4.39 6.15 3.37 2.73 1.27 2.15
5 6.25 12.5 9.38 8.59 9.38 5.86 5.08 3.91 5.27 6.05 6.84 3.47 2.64 2.49 1.95 1.07
6 18.8 18.8 15.6 10.9 7.03 5.47 5.27 6.45 6.25 8.01 4.83 3.32 2.15 1.95 1.46 1.17
7 0 7.81 10.9 12.5 7.81 6.64 7.42 8.40 8.40 4.59 3.91 4.15 4.74 2.78 3.42 1.27
8 6.25 15.6 14.1 9.38 10.2 8.59 8.59 9.77 6.45 4.79 4.83 3.96 3.76 3.76 2.25 .977
9 18.8 18.8 15.6 10.9 8.59 10.5 10.9 6.25 4.69 3.96 4.39 3.56 2.88 2.15 1.95 .879

10 0 7.03 7.81 9.38 9.38 14.1 8.59 5.08 4.49 4.54 3.61 3.96 3.76 4.98 2.83 2.25
11 6.25 7.81 7.81 10.9 15.6 7.81 6.25 4.59 3.61 3.32 4.20 4.88 3.08 2.98 1.86 1.17
12 6.25 9.38 14.1 17.2 9.38 6.25 3.91 3.32 3.37 3.32 3.66 4.20 2.98 2.59 1.46 1.56
13 0 0 1.95 2.93 2.93 2.93 3.71 2.88 3.27 4.20 3.52 2.78 3.27 3.52 5.08 .586
14 0 0 .391 .684 1.90 2.05 2.44 2.29 2.93 2.98 2.59 2.98 2.69 2.78 1.46 .977
15 0 0 0 .684 .635 1.22 1.66 1.76 1.81 1.76 2.05 1.86 2.29 1.17 .684 0
16 0 0 0 0 0 0 0 .488 .537 .684 .977 1.37 1.32 2.78 1.17 9.38

268 M.-J.O. Saarinen

Table 4. Progression of differentials in consecutive invocations of mx. Here the zeroth bit has
been flipped; Δ = 0255 || 1. We observe that the full state is affected and there is no detectable
bias after mx4. The π transform has six rounds by default.

mx(x)≥ mx(x≥Δ)
15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
00 38 50 63 50 37 50 62 50 37 50 63 38 00 00 00 25
01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
03 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
04 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
05 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
06 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
07 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
08 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
09 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
10 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
11 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
12 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
13 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
14 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
15 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

mx2(x)≥ mx2(x≥Δ)
15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
00 09 12 16 12 09 12 16 12 09 12 16 09 00 00 00 06
01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
03 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
04 14 19 23 19 14 19 23 19 14 19 23 14 00 00 00 09
05 23 31 39 31 23 31 39 31 23 31 39 23 00 00 00 16
06 19 25 31 25 19 25 31 25 19 25 31 19 00 00 00 12
07 14 19 23 19 14 19 23 19 14 19 23 14 00 00 00 09
08 19 25 31 25 19 25 31 25 19 25 31 19 00 00 00 13
09 23 31 39 31 23 31 39 31 23 31 39 23 00 00 00 16
10 19 25 31 25 19 25 31 25 19 25 31 19 00 00 00 13
11 14 19 23 19 14 19 23 19 14 19 23 14 00 00 00 09
12 19 25 31 25 19 25 31 25 19 25 31 19 00 00 00 12
13 23 31 39 31 23 31 39 31 23 31 39 23 00 00 00 16
14 19 25 31 25 19 25 31 25 19 25 31 19 00 00 00 12
15 14 19 24 19 14 19 23 19 14 19 23 14 00 00 00 09

mx3(x)≥ mx3(x≥Δ)
15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
00 33 34 33 32 33 34 33 32 33 36 36 37 38 39 36 32
01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
03 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
04 40 42 41 39 40 42 41 39 40 43 43 42 44 45 43 39
05 47 48 47 45 47 49 47 45 46 48 48 47 49 49 48 45
06 44 46 45 43 44 46 45 43 44 46 46 46 47 48 46 43
07 40 42 41 39 40 42 41 39 40 43 43 42 44 45 43 39
08 44 46 45 43 44 46 45 43 44 46 46 46 47 48 46 43
09 46 48 47 45 47 49 47 45 46 48 48 47 48 49 48 45
10 44 46 45 43 44 46 45 42 44 46 46 46 47 48 46 43
11 40 42 41 39 40 42 41 39 40 42 43 42 44 45 43 39
12 44 46 45 43 44 46 45 43 44 46 46 46 47 48 46 43
13 46 48 47 45 47 49 47 45 46 48 48 47 48 49 48 45
14 44 46 45 43 44 46 45 43 44 46 46 46 47 48 46 43
15 40 42 41 39 40 42 41 39 40 43 43 42 44 45 43 39

mx4(x)≥ mx4(x≥Δ)
15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
00 49 49 49 49 49 49 49 49 49 49 49 50 50 50 49 49
01 49 49 50 49 49 50 50 49 49 50 50 50 50 50 50 49
02 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50
03 50 50 50 50 50 50 50 49 50 50 50 50 50 50 50 50
04 49 50 50 49 49 50 50 49 49 50 50 50 50 50 50 49
05 49 49 50 49 49 49 50 49 49 49 50 50 50 50 50 49
06 49 50 50 49 50 50 50 49 49 50 50 50 50 50 50 49
07 49 49 49 49 49 49 49 49 49 49 50 50 50 50 50 49
08 49 49 49 49 49 49 49 49 49 49 49 49 50 50 50 49
09 49 49 49 49 49 49 49 49 49 49 49 50 50 50 50 49
10 50 50 50 49 49 50 50 49 50 50 50 50 50 50 50 49
11 49 49 49 49 49 49 50 49 49 49 50 50 50 50 50 49
12 49 49 49 49 49 49 49 49 49 49 49 49 50 50 50 49
13 49 49 49 49 49 49 49 49 49 49 49 50 50 50 50 49
14 50 50 50 49 50 50 50 49 49 50 50 50 50 50 50 49
15 49 49 49 49 49 49 49 49 49 49 50 50 50 50 50 49

Progression of differentials in consecutive invocations of inverse function mx−1. Here again the
zeroth bit is flipped. After third round there is no longer any detectable bias.

mx−1(x)≥ mx−1(x≥Δ)
15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
00 00 00 00 00 00 00 00 00 00 00 00 00 50 50 50 50
01 00 00 00 00 00 00 00 00 00 00 00 00 50 50 50 50
02 00 00 00 00 00 00 00 00 00 00 00 00 50 50 50 50
03 00 00 00 00 00 00 00 00 00 00 00 00 50 50 50 50
04 00 00 00 00 00 00 00 00 00 00 00 00 50 50 50 50
05 00 00 00 00 00 00 00 00 00 00 00 00 50 50 50 50
06 00 00 00 00 00 00 00 00 00 00 00 00 50 50 50 50
07 00 00 00 00 00 00 00 00 00 00 00 00 50 50 50 50
08 00 00 00 00 00 00 00 00 00 00 00 00 50 50 50 50
09 00 00 00 00 00 00 00 00 00 00 00 00 50 50 50 50
10 00 00 00 00 00 00 00 00 00 00 00 00 50 50 50 50
11 00 00 00 00 00 00 00 00 00 00 00 00 50 50 50 50
12 00 00 00 00 00 00 00 00 00 00 00 00 50 50 50 50
13 00 00 00 00 00 00 00 00 00 00 00 00 50 50 50 50
14 00 00 00 00 00 00 00 00 00 00 00 00 50 50 50 50
15 00 00 00 00 00 00 00 00 00 00 00 00 50 50 50 50

mx−2(x)≥ mx−2(x≥Δ)
15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
00 20 25 19 25 34 34 24 25 24 25 25 25 25 25 25 25
01 24 21 22 20 20 20 20 21 20 21 21 20 21 21 21 21
02 23 21 21 21 21 21 20 21 20 21 21 21 21 21 21 22
03 39 39 39 39 40 40 39 39 39 39 39 39 39 39 39 39
04 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50
05 49 50 50 50 49 49 50 50 50 50 50 50 50 50 50 50
06 46 47 47 48 49 49 48 47 48 47 47 48 47 47 47 47
07 49 48 47 47 47 47 46 47 46 48 48 47 48 48 48 49
08 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50
09 49 50 50 50 47 47 49 50 49 50 50 50 50 50 50 50
10 44 46 44 47 51 51 47 46 47 46 46 47 46 46 46 46
11 50 47 48 47 47 47 46 47 46 47 47 47 47 47 48 48
12 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50
13 49 49 49 49 47 47 49 49 49 49 49 49 49 49 49 50
14 41 45 42 45 50 50 46 45 46 45 45 45 45 45 45 45
15 47 38 40 36 38 38 35 37 34 38 37 36 39 38 39 40

CBEAM: Efficient Authenticated Encryption from Feebly One-Way φ Functions 269

D
Ta

bl
es

an
d

C
on

je
ct

ur
es

on
A

lg
eb

ra
ic

P
ro

pe
rt

ie
s

of
φ

−
1

n

T
he
φ
5

(E
qu

at
io

ns
4

an
d

10
)

B
oo

le
an

m
ap

pi
ng

al
so

de
fin

es
re

ve
rs

ib
le
n
×
n

-
bi

ts
hi

ft
-i

nv
ar

ia
nt

fu
nc

tio
ns

fo
r

ot
he

r
n

ap
ar

tf
ro

m
n
=

1
6

.
E

ac
h

fo
rw

ar
d

fu
nc

tio
n

ha
s

de
gr

ee
4.

T
he

ch
ar

ac
te

ri
st

ic
s

of
th

e
A

lg
eb

ra
ic

N
or

m
al

Fo
rm

of
in

ve
rs

e
fu

nc
tio

ns
up

to
n
=

3
2

ar
e

gi
ve

n
be

lo
w

.
E

ac
h

co
lu

m
n

co
nt

ai
ns

th
e

nu
m

be
ro

f
m

on
om

ia
ls

of
gi

ve
n

de
gr

ee
;t

he
la

st
co

lu
m

n
ha

s
th

e
nu

m
be

r
of

no
nz

er
o

te
rm

s
fo

r
al

ld
eg

re
es

.

C
on

je
ct

ur
e

1.
T

he
in

ve
rs

e
of
φ
n

is
de

fi
ne

d
fo

r
ea

ch
n
◦

5
w

ith
n
⊆=

0
(m

o
d
3
)

an
d
d
eg
φ
−
1

n
=

⌈ 2 3
n
⌉ .

C
on

je
ct

ur
e

2.
C

om
pu

ta
tio

n
of
φ
−
1

n
ha

s
at

le
as

tp
ol

yn
om

ia
lc

om
pl

ex
ity

(w
ith

de
gr

ee
◦

2
).

T
he

co
m

pu
ta

tio
n

of
φ
n

ha
s

lin
ea

r
co

m
pl

ex
ity
O
(n
)

bu
tt

he
co

m
pl

ex
ity

of
φ
−
1

n
is

at
le

as
tO

(n
2
)

si
nc

e
th

e
nu

m
be

ro
f

in
pu

tb
its

gr
ow

s
w

ith
n

as
pe

ro
bs

er
va

tio
n

in
C

on
je

ct
ur

e
1.

Su
pe

r-
po

ly
no

m
ia

lc
om

pl
ex

ity
ha

s
no

tb
ee

n
ru

le
d

ou
ta

s
w

e
do

no
tk

no
w

a
po

ly
no

m
ia

lt
im

e
al

go
ri

th
m

fo
r
φ
−
1

n
.B

as
ed

on
cu

rr
en

te
vi

de
nc

e
w

e
ar

e
re

lu
ct

an
tt

o
be

lie
ve

in
ex

po
ne

nt
ia

lc
om

pl
ex

ity
,h

ow
ev

er
.

n
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
P

ol
y

n.
z.

t.

6
N

on
su

rj
ec

ti
ve

.
7

4
11

17
15

6
53

8
3

9
13

13
9

2
49

9
N

on
su

rj
ec

ti
ve

.
10

5
21

55
91

95
56

14
33

7
11

4
18

45
75

88
69

28
4

33
1

12
N

on
su

rj
ec

ti
ve

.
13

6
34

12
5

30
3

50
2

56
5

40
8

16
8

30
21

41
14

5
30

10
6

25
3

43
3

54
3

47
1

25
2

72
8

21
73

15
N

on
su

rj
ec

ti
ve

.
16

7
50

23
6

75
3

17
05

27
97

32
93

26
86

14
30

44
6

62
13

46
5

17
6

45
20

5
64

0
14

56
25

04
32

36
30

17
19

12
76

6
17

2
16

13
97

5
18

N
on

su
rj

ec
ti

ve
.

19
8

69
39

7
15

70
45

06
96

78
15

68
4

19
00

1
16

83
2

10
53

2
44

02
11

04
12

6
83

90
9

20
7

63
35

1
13

56
38

66
84

72
14

45
0

18
96

5
18

64
5

13
26

6
65

54
21

14
39

6
32

88
53

7
21

N
on

su
rj

ec
ti

ve
.

22
9

91
61

7
29

10
10

11
2

26
81

6
55

17
0

88
28

1
10

90
77

10
25

70
71

83
4

36
25

0
12

46
4

26
18

25
4

51
90

73
23

8
84

55
3

25
48

87
50

23
35

2
49

42
8

83
18

1
11

01
36

11
27

23
87

30
2

49
86

8
20

26
0

55
10

89
2

64
55

46
59

24
N

on
su

rj
ec

ti
ve

.
25

10
11

6
90

5
49

56
20

21
6

63
77

0
15

88
24

31
50

95
49

81
90

62
43

97
61

43
64

46
78

24
26

99
04

11
40

84
33

35
6

60
36

51
0

31
92

55
7

26
9

10
8

82
0

43
90

17
65

4
55

62
2

14
06

38
28

81
51

47
78

27
63

60
95

67
18

75
55

53
52

35
32

22
16

88
90

58
54

6
13

83
4

19
80

12
8

34
45

14
1

27
N

on
su

rj
ec

ti
ve

.
28

11
14

4
12

70
79

18
37

07
8

13
55

62
39

60
82

93
65

23
18

01
05

1
28

16
65

3
35

68
63

3
36

38
67

4
29

56
58

8
18

87
01

6
92

54
80

33
68

44
85

76
6

13
64

6
10

22
19

54
59

61
29

10
13

5
11

61
70

83
32

66
4

11
87

64
34

93
92

84
31

77
16

76
44

8
27

40
33

8
36

61
04

4
39

66
29

7
34

52
31

0
23

86
51

8
12

89
61

0
53

20
02

16
14

04
33

82
2

43
48

25
6

21
25

67
83

30
N

on
su

rj
ec

ti
ve

.
31

12
17

5
17

21
12

03
3

63
60

6
26

44
32

88
63

20
24

31
08

9
55

00
47

6
10

29
75

48
15

94
78

08
20

37
84

33
21

38
59

50
18

30
41

16
12

64
69

68
69

47
65

2
29

65
47

4
94

85
56

21
40

62
30

40
8

20
46

11
92

28
88

5
32

11
16

5
15

85
10

85
5

56
48

7
23

29
38

78
19

92
21

71
88

9
50

29
83

9
97

31
04

0
15

69
64

56
21

02
33

85
23

25
71

91
21

11
42

76
15

60
27

90
92

79
72

6
43

69
66

0
15

89
36

4
42

97
14

81
04

2
94

68
51

2
13

04
70

38
5

Beyond Modes: Building a Secure Record Protocol
from a Cryptographic Sponge Permutation

Markku-Juhani O. Saarinen

Kudelski Security, Switzerland
mjos@cblnk.com

Abstract. BLINKER is a light-weight cryptographic suite and record protocol
built from a single permutation. Its design is based on the Sponge construction
used by the SHA-3 algorithm KECCAK. We examine the SpongeWrap authen-
ticated encryption mode and expand its padding mechanism to offer explicit do-
main separation and enhanced security for our specific requirements: shared se-
cret half-duplex keying, encryption, and a MAC-and-continue mode. We motivate
these enhancements by showing that unlike legacy protocols, the resulting record
protocol is secure against a two-channel synchronization attack while also having
a significantly smaller implementation footprint. The design facilitates security
proofs directly from a single cryptographic primitive (a single security assump-
tion) rather than via idealization of multitude of algorithms, paddings and modes
of operation. The protocol is also uniquely suitable for an autonomous or semi-
autonomous hardware implementation of protocols where the secrets never leave
the module, making it attractive for smart card and HSM designs.

Keywords: Lightweight Security, Sponge-based Protocols, Sponge Construc-
tion, Autonomous Hardware Encryption, Half-duplex security, BLINKER.

1 Introduction

The last decade has seen significant advances in encryption algorithm design for perva-
sive and low-resource platforms; PRESENT [1] (2007),Grain-128a [2, 3] (2006-2011),
Hummingbird-2 [4, 5] (2009-2011), and FIDES [6] (2013) are some notable examples,
each representing a different cipher design methodology; block ciphers, stream ciphers,
and authenticated encryption algorithms have been proposed [7]. However, there have
been few general-purpose security suite proposals that have been designed from ground
up for lightweight platforms.

In this work we forgo traditional ciphers and hashes and take a fresh look at design-
ing light-weight security protocols. We see that a single cryptographic sponge permu-
tation can fulfill all security requirements of such a protocol, leading to a reduction of
implementation footprint and facilitating straight-forward security proofs.

Our aim is to create a generic short-distance link layer security provider that can
function independently from upper layer application functions. Ideally this would be
realizable with autonomous hardware, without much CPU or MCU involvement.

J. Benaloh (Ed.): CT-RSA 2014, LNCS 8366, pp. 270–285, 2014.
c© Springer International Publishing Switzerland 2014

Beyond Modes: Building a Secure Record Protocol 271

Contributions and Structure of This Paper. After a brief introduction to resource-
hungry legacy record protocols (Section 2), we describe the two-channel synchroniza-
tion problem which affects most of them – the interwoven order of messages from two
communicating parties is left unauthenticated (Section 3).

Our design avoids much of the complexity of traditional security protocols by adopt-
ing a sequential state authentication mode (Section 4) which can better meet our security
and efficiency requirements while facilitating straight-forward security proofs.

In order to counter the synchronization problem and to reduce implementation foot-
print we adopt a half-duplex mode that utilizes a fully shared state between the two
parties (Section 5).

With the term half-duplex we are referring to a mode of communication where two
parties take turns on a single channel – the corresponding ITU-T term is “simplex cir-
cuit”. This is unrelated to the “Duplexing” primitive of SPONGEWRAP.

The “rolling” shared state will not only authenticate the current message but also
all previous messages and secrets sent and received during the session by both parties
together with their relative order.

We then recall basic facts about Sponge-based cryptography (Section 6), popularized
by the NIST SHA-3 algorithm KECCAK [8, 9] and expand its functionality to two-party
encryption and authentication with domain-separating multiplex padding (Section 6.1).
This also addresses MAC truncation issues of the proposed authenticated encryption
mode, SPONGEWRAP and the considerations expressed by NIST [10, 11].

After a brief technical description of authentication and (re)keying flow (Section 7),
we give implementation notes (Section 8), followed by Conclusions (Section 9).

2 Legacy Record and Transport Protocols

All of the standard networking security protocols - SSL3 [12], SSH2 [13, 14], TLS [15],
IPSEC [16–18], PPTP [19], and wireless WPA2 [20] together with its predecessors - can
be divided into two largely independent protocols: the handshake / authentication proto-
col and the transport / record protocol. In this work we concentrate on the latter protocol
which performs encryption and authentication of bulk data. We call these collectively
as “legacy record protocols”.

The record transport mechanisms of these protocols require that a diverse set of
binary strings are fed to various padding, wrapping, encryption and message authenti-
cation algorithms. We denote this compound operation by fcs for some “ciphersuite”
determined during the handshake phase of the protocol.

In addition to the plaintext P , data items required to perform authenticated encryp-
tion usually include at least the following:

S Incremental message sequence number for MACs.
IV Initialization vector for block ciphers.
Ke Secret key for the symmetric encryption algorithm.
Ka Secret key for the message authentication algorithm.

All of this state data is required to create a protected record C which contains plain-
text headers, encrypted headers, encrypted payload, padding, and the MAC.

C = fcs(P, S, IV ,Ke,Ka). (1)

272 M-J.O. Saarinen

The inverse typically yields either the plaintext or failure and closure of the channel:

f−1cs (C, S, IV ,Ke,Ka) = P or FAIL. (2)

We note that this was not the original specified behavior of these legacy protocols;
various error messages were specified and implemented but these have been found to
act as oracles and leak secret information in cryptanalytic attacks [21–23].

Details of fcs process vary depending on the particular protocol and version, but
generally a header is appended to the message, followed by passes with a MAC algo-
rithm such as HMAC [24] and an encryption algorithm (typically AES [25] in CBC
[26] mode or the RC4 stream cipher [27]). In recent years the AES-GCM [28] authen-
ticated encryption mode has also been integrated with many of these protocols, but it
is not very popular in implementations. The Wireless Protected Access 802.11i (WPA
/ WPA2) protocol [20] requires AES in two-pass CCM [29] mode to implement its
CCMP protocol and SHA-1 [30] for key derivation. Furthermore TLS-based EAP-TLS
[31] authentication is recommended.

State and Algorithmic Complexity. At least two sets of data items (state) are required
since these protocols view the server-to-client and client-to-server channels as entirely
independent from each other. In IPSEC the two separate Security Associations (SAs)
may even theoretically utilize different algorithms.

Even if we ignore various error conditions, the security of legacy record protocols
depends upon the security of a large number of unrelated component designs, includ-
ing: Key derivation (PRF), HMAC and its Hash, padding, the cipher and its mode of
operation, and header encoding. Furthermore all data is processed at least twice – by
the encryption algorithm and the MAC algorithm, independently of each other. This is
why these protocols cannot be considered fully suitable for embedded and lightweight
applications or fully autonomous hardware implementations.

3 Two-Party Synchronization

As previously mentioned in Section 2, two independent channels are established by
legacy protocols, one from client to server (A → B) and another from server to client
(B → A). As these security protocols are often implemented as communication layers
(e.g. HTTPS is just HTTP over a TLS layer), typically no API interface is even available
to synchronize communications between the two channels.

Example: Consider the following three transcripts

T 1 : B → A :M2, A→ B :M1, A→ B : M3

T 2 : A→ B :M1, B → A :M2, A→ B : M3

T 3 : A→ B :M1, A→ B :M3, B → A : M2

These three transcripts have precisely the same, valid, representation on the two
channels when sent over IPSEC, TLS, SSL, or SSH protocols. The same authentica-
tion codes will match.

Beyond Modes: Building a Secure Record Protocol 273

Therefore the upper protocol layers cannot determine whether M2 was sent spon-
taneously by B (T 1) or as a response to M1 (T 2) or to both M1 and M3 (T 3). Such
ambiguity can significantly affect the interpretation ofM2 in an upper layer application
such as a transaction protocol and lead to security failures.

The Synchronization Problem of Two-Channel Protocols. This illustrates a funda-
mental security issue; despite individual message authentication, the interwoven order
of the sequence of back-and-forth messages cannot be unambiguously determined and
authenticated with the legacy protocols, a fundamental requirement for reliable trans-
actions. This is why transaction records are often authenticated on the application level
as well, adding another layer of complexity.

This issue also affects basic end-user interactive security as portions of server mes-
saging can be maliciously delayed, encouraging the user to react to partial information.

We note this issue is already partially addressed by some national or regional pay-
ment terminal standards such as [32].

4 Rethinking Privacy and Authentication

Legacy record protocols apply authentication to each message individually; authentica-
tion of an individual message does not affect others any more than the A→ B channel
affects B → A channel. We note that such approach is not necessary as these proto-
cols are not generally fault tolerant and therefore require reliable rather than datagram
transport.

We simplify the abstraction of Equations 1 and 2 by defining an encoding transform
enc() that takes in a state variable Si, plaintext Pi, and padding, outputting a new state
Si+1 and ciphertext message Ci. The ciphertext message Ci may be longer than plain-
text Pi if it contains a t-bit authentication tag, which must be checked by the recipient.

(Si+1, Ci) = enc(Si, Pi, pad). (3)

The decoding function dec() produces the same Si+1 and Pi from the ciphertext and
equivalent Si and padding, synchronizing the state between sender and receiver – or
resulting in a failure in case of an authentication error:

(Si+1, Pi) = dec(Si, Ci, pad) or FAIL. (4)

Here the intended utility of legacy protocols’ MAC and Encryption secret keys and
algorithms (for encryption and message authentication), sequence numbers, and ini-
tialization vectors boils down to a singular synchronized state variable whose contents
depend on absorbed keying and initialization data together with all encrypted messag-
ing transmitted thus far. The new state Si+1 can be then used for transmitting an another
message; this is a “MAC-and-Continue” mode.

Our main security goals are largely compatible with those laid out for Authenticated
Encryption [33, 34] and Duplex Sponges in particular – proofs in [35, 36] are applicable
if appropriate domain-separating padding is used. See Section 6.1 for claimed security
bounds for the following security goals:

274 M-J.O. Saarinen

priv The ciphertext result C of enc(S, P, pad) must be indistinguishable from ran-
dom when S is random and P may be chosen by the attacker.

auth The probability of an adversary of choosing a message C that does not result
in a FAIL in dec(S,C, pad) without knowledge of S is bound by a function of
the authentication tag size t and number of trials.

We define an additional nonstandard, informal goal which relates to solving the syn-
chronization problem of actual two-party protocols described in Section 3. It can be
viewed as a direct extension of auth from an unidirectional communications channel to
bidirectional channels and multi-party protocols:

sync Each party can verify that all previous messages of the session have been cor-
rectly received and the absolute order in which messages were sent.

Our security argument for this goal is derived from the fact that an encoding exists
that effectively expresses each two-party session as a single, unique hash. However, it
may be possible to achieve such verifiability in a protocol which is not strictly syn-
chronous or has more than two parties, so we leave the formal definition of sync to
latter work.

Comparison with Legacy Protocols. Our requirements are stronger than those com-
monly expected from security protocols; for example all protocols of Section 2 are eas-
ily identifiable, a concern in the operation of Firewalls and Intrusion Detection Systems
(IDS) which try to profile and filter various protocols being used in a network.

Our design tries to avoid visible unencrypted sequence numbers and paddings that
would allow trivial protocol and protocol version identification as it is very difficult to
block something you cannot create an IDS signature for. 1

The third, informal requirement sync appears to be new and is not met by current
protocols as shown in Section 3. Here we are trying to address a real-world security
concern rather than adding a vehicle for theoretical research.

We find that with Sponge approach we do not have to over-simplify our protocol
when modeling it for security proofs. In analysis of a typical real world protocol, one is
faced with a combinatorial explosion of interplay between details such as: crypto algo-
rithms, message formatting and padding, modes of operation, hash constructions, MAC
constructions, error codes, and key derivation. Such complexity is the main reason why
“provably secure” protocols often fail in practice; the protocols have been be severely
simplified and idealized for analysis.

During the 10-15 years since the protocols of Section 2 largely took their present
form, a large number number of security proofs, counter-proofs and attacks have been
presented, starting with [38–40] and [23, 41–44] representing some of the more recent
work.

1 Our BLINKER implementation has its origins in the stealthy communications mechanisms
of an Academic RAT tool [37]. Here a HTTP port 80 channel was used and hence our traffic
could not be “picked up” amongst other random things that are transmitted during web surfing.

Beyond Modes: Building a Secure Record Protocol 275

5 Half-Duplex Security Protocols with a Shared State

In BLINKER, we implement communications security for the shared channel using a
single, synchronized state Si for both directions, saving resources and 50% of state
memory in the implementation. A domain separation padding mechanism distinguishes
between the two communicating parties as well as data input types. Figure 1 shows an
interchange of three messages with a synchronized state.

From security viewpoint, this setup has the advantage that the entire interchange or
“conversation” is continually authenticated as the evolving state includes full contents
of messages from both parties and the order they were sent. The security proofs interpret
the state Si as equivalent to a cryptographic hash of a full transcript of the session up to
message or input i; this is achieved with specific padding.

Asymmetrically Signed Sessions and Transactions. The entire session up to point
i can be cryptographically validated by signing a hash “squeezed” from the state Si.
Even if the initial session authentication is based on digital signatures, as is often the
case with legacy protocols, this does not mean that the session is signed. Without Alice’s
signature of the protocol transcript, Bob (who also knows all symmetric authentication
and encryption secrets) can easily forge a session transcript. It is rather difficult to sign
a session with a protocol such as TLS, SSH2, or IPSEC since application-level hashing
and processing is required. With a BLINKER-type protocol such final authentication is
relatively easy to implement, an excellent feature for transaction protocols.

Real-Life Prevalence of Half-Duplex Links. Half-duplex links may seem rare to a
software developer due to the widespread use of the socket programming paradigm.
This illusion is often achieved by time-division duplexing (TDD). However, half-duplex
is physically prevalent on sensor networks, IoT and last-hop radio links – Bluetooth and
IEEE 802.15.4 ZigBee being two notable examples.

Initial state: S0 Initial state: S0

A B

enc(S0,M1) = (S1, C1)

dec(S0, C1) = (S1,M1)

enc(S1,M2) = (S2, C2)

A→ B : C1

dec(S1, C2) = (S2,M2)

enc(S2,M3) = (S3, C3)

B → A : C2

A→ B : C3

dec(S2, C3) = (S3,M3)

Final state: S3 Final state: S3

Fig. 1. Simplified interchange of three messages whose plaintext equivalents are A → B : M1,
B → A : M2, A → B : M3, utilizing a synchronized secret state variables Si. The order of
messages cannot be modified and hence this exchange is sync - secure.

276 M-J.O. Saarinen

Half-duplex links can be established wirelessly with unpaired frequencies (same fre-
quency in both directions), a typical scenario in light-weight time-divide communica-
tions, our specific targets. An another example are embedded twisted-wire serial links.

We note that in addition to wireless last-hop transports, most RFID, Smart Card,
and industrial control (MODBUS) communications are implemented under a query-
response model and are therefore effectively half-duplex [45–47].

6 Extending the Sponge Construction

Sponge constructions generally consist of a state S = (Sr || Sc) which has b = r + c
bits and a b-bit keyless cryptographic permutation π. The Sr component of the state has
r “rate” bits which interact with the input and the internal Sc component has c private
“capacity” bits.

These components, together with suitable padding and operating rules can be used
to build provable Sponge-based hashes [48], Tree Hashes [49], Message Authentication
Codes (MACs) [50], Authenticated Encryption (AE) algorithms [35], and pseudoran-
dom extractors (PRFs and PRNGs) [51].

Absorbing and Squeezing. We recall the basic Sponge hash [48] concepts of “absorb-
ing” and “squeezing” which intuitively correspond to insertion and extraction of data to
or from the sponge. Let Si and Si+1 be b-bit input and output states. For absorption of
padded data blocks Mi (of r bits each) we iterate:

Si+1 = π(Sr
i ⊕Mi || Sc

i). (5)

This stage is followed by squeezing out the hash H = H(M) by consecutive iterations
of:

H =H || Sr
i

Si+1 = π(Si). (6)

These constructions may be transformed into a keyed MAC by considering the state
Si as secret (keyed) [50]. Keying is then equivalent to initial absorption of keying ma-
terial before the payload data. MAC is squeezed out exactly like a hash.

Duplexing. A further development is the Duplex construction [35] which allows us to
encrypt and decrypt data while also producing a MAC in the end with a single pass.

The state is first initialized by inserting secret keying material and non-secret ran-
domization data to the state via the absorption mechanism of Equation 5. To encrypt
plaintext blocks Pi to ciphertext blocks Ci we iterate:

Ci = Sr
i ⊕ Pi

Si+1 = π(Ci || Sc
i). (7)

Beyond Modes: Building a Secure Record Protocol 277

The effect on the state is the same as that of Equation 5. The inverse – decryption opera-
tion – is almost equivalent to encryption, which in itself has significant implementation
advantages:

Pi = Sr
i ⊕ Ci

Si+1 = π(Ci || Sc
i). (8)

After encryption or decryption, a message authentication code for the message may
be squeezed out as in Equation 6 and verified. To simplify exposition, we have left some
key details regarding padding. We will come back to these in Section 6.1.

MAC-and-Continue. There is really no need to constrain the iteration to a single mes-
sage. With appropriate domain-separating padding the security proofs allow the sponge
states to be used for any number of consecutive authenticated messages (“MAC-and-
Continue”) without the need for sequence numbers, and re-keying. This is one of the
main observations which led to the present work and greatly reduces the latency of im-
plementation as “initialization rounds” are not required for each message. This was also
proposed as part of the original SPONGEWRAP construction.

6.1 Multiplex Padding

The SPONGEWRAP [35] and MONKEYDUPLEX [36] padding rules offer concrete
Sponge-based methods for performing authenticated encryption. Recent work on im-
plementation of SPONGEWRAP and its variants on low-resource platforms is reported
in [7].

The requirements laid out in [35] for the padding rule are that they are reversible,
non-empty and that the last block is non-zero. The padding rule in KECCAK is that a
single 1 bit is added after the last bit of the message and also at the end of the input
block.

In the Duplex construction of SPONGEWRAP additional padding is included for each
input block; a secondary information bit called frame bit is used for domain separation.
SAKURA [49] uses additional frame bits to facilitate tree hashing. It is essential that
the various bits of information such as the key, authenticated data, and authenticated
ciphertext can be exactly “decoded” from the Sponge input to avoid trivial padding
collisions. We use a more explicit padding mechanism but the following priv and auth
bounds proven in [35] (Section 5.2 on Page 332) and [50] also hold for enc():

Theorem 1 (Theorem 1 from [35]). The SPONGEWRAP and BLINKER authenticated
encryption modes satisfy the following privacy and authentication security bounds:

Advprivenc (A) < q2−k +
N(N + 1)

2c+1
(9)

Advauthenc (A) < q2−k + 2−t +
N(N + 1)

2c+1
(10)

against any single adversary A if K
$← {0, 1}k, tags of l ≥ t bits are used, π is a

randomly chosen permutation, q is the number of queries andN is the number of times
π is called.

278 M-J.O. Saarinen

Note that even the Squeezing phase can utilize padding to mark the size of desired
output (as we do in Section 6.2). In KECCAK and SPONGEWRAP a convention has
been adopted to have a null Sr input to π during squeezing in order to separate it from
other phases (hence the requirement that padding rule does not produce null blocks).
However this may lead to problems in some applications where the MAC length is not
clear.

Context collision in KECCAK and SPONGEWRAP. There is no indicator for MAC
length in SPONGEWRAP construction – output is simply truncated. If the sender and
recipient have a different idea about the length, there is no way to detect truncation of
the MAC. Different length-variants of KECCAK give different outputs for the same data
simply because different data rates r are used and this affects the placing of the final
padding bit. Earlier members of the SHA standard avoid this issue by having different
IV values depending on the desired output length [30].

6.2 Multiplexing the Sponge

Our new padding rule is called Multiplex. Input and output blocks, encrypted and au-
thenticated data, keys, and nonces are all different input domains and must be encoded
unambiguously as Sponge inputs. Rather than using frame bits per block for domain
separation as in SPONGEWRAP, the data domains are explicitly encoded. This allows
many more data types to be entered into the sponge as well and clearer domain separa-
tion between them. It is essential in a shared-state two-party protocol that the originating
party of the block (Alice or Bob) is also used to mark domain separation between the
two.

We retain one d-bit word D in Sc for domain separation; Sc = (Sd || Sc′) with
c′ = c− d. The iteration for arbitrary absorption, squeezing, and encryption is now:

Si+1 = π(Sr
i ⊕Mi || Sd

i ⊕Di || Sc′
i). (11)

For decryption we have the following update function:

Si+1 = π(Ci || Sd
i ⊕Di || Sc′

i). (12)

In our implementation d = 16 bits. Table 1 gives a description of padding mask word
bits (which may be OR’ed together). Message blocks are always padded with a single
“1” bit and by zeros to fill r bits, followed by the multiplex padding word. If full r bits
are used in a block, the padding bit is the bit 0 in the multiplex word.

The effective information theoretic capacity is reduced by the Multiplex construction
to no more than c− 3 rather than c′ = c− d if tree functions are not used.

Unlike message data, the domain separation word is always XORed with the S state
bits on all operations (Equations 11 and 12). Apart from few options, the domains
follow each other in application-specific predetermined order and hence two bits of
entropy is sufficient to mark that separation between block types in our protocol. In
addition there is a padding bit that may be located in the domain separation word if the
input block is full (bit 0).

Beyond Modes: Building a Secure Record Protocol 279

Therefore the effective c for values bounds of Theorem 1 need to be modified only
by 3 bits when multiplex padding is used. We do this in order to remove the requirement
for additional message padding buffers and also to follow Horton’s Principle [40, 52],
“Authenticate what is being meant, not what is being said.”

The separation of the domain mask word from main input allows later expansions
of functionality without breaking interface designs; for example we may adopt tree-
based hashing - and by extension, tree MACs and encryption - by utilizing bits 14 and
15 of Di for this purpose rather than adding more frame bits as in SAKURA [49]. If
tree structure is used, the capacity should be reduced to c − 4 for security analysis.
Furthermore, increasing d > 16 will not break existing implementations.

Since the protocol exchange can be unambiguously decoded from the sponge input
(M1 || D1) || (M2 || D2) || .., and we do not reset the state between messages, the
proofs of Theorem 1 [35, 50] seem to apply to the protocol as a whole as well as
individual messages. If one can forge an individual message authentication code or
(by induction) a multi-message exchange, one can also break the Sponge in a SHA-3
- type hash construction. However, we leave the formalization and proof machinery of
our informal sync goal for latter work.

Padding while Squeezing. In the squeezing phases of our construction the (inputless)
output blocks are virtually padded as if Mi = 0r in Equation 11. If s < r bits of the
block is begin squeezed out, a single “1” bit is XORed at state S after the location of last
output bit; Mi = 0s || 1 || 0r−s−1. This resolves the SPONGEWRAP context collision
described in Section 6.1 since at least the last output block will differ for different output
sizes.

We acknowledge that the solution is perhaps not ideal if the extracted hash is longer
than the block size; two hashes of different size from the same message are equivalent
except for the final blocks.

6.3 Sourcing π

BLINKER was originally designed together with the CBEAM algorithm [53] for inte-
grated use in low-resource and small-footprint applications.

However, the choice of π is arbitrary if it satisfies the required security properties.
KECCAK is a strong candidate as it has been selected as the NIST SHA-3 algorithm
[8, 9, 54], albeit its 1600-bit state is often seen as too large for low-resource platforms
and short messages. However, there are nonstandard reduced-state variants KECCAK-
f [b] where b = 25× 2l for 1 ≤ l ≤ 6.

Other candidates as π donors include PHOTON [55]. QUARK [56, 57], and SPON-
GENT [58]. Each of these can be used to construct extremely lightweight protocols
based on our Multiplex / BLINKER construction.

Note that some clearly “non-hermetic” Sponge permutations such as FIDES [6] are
probably not secure enough. It may be possible to be somewhat flexible in this require-
ment as we assume a randomized session S, as is done in the MONKEYDUPLEX [36]
construct.

280 M-J.O. Saarinen

Table 1. Proposed bits used in the Multiplex Padding Word which is XORed with the state.
Depending on protocol state and the intended usage of message block, multiple bits are set si-
multaneously.

Bit Mask When set
0 0x0001 This is a full input or output block (r bits).
1 0x0002 This is the final block of this data element.
4 0x0004 Block is an input to sponge (“absorption”).
3 0x0008 Block is output from sponge (“squeezing”).
4 0x0010 Associated Authenticated Data input.
5 0x0020 Secret key block.
6 0x0040 Nonce input block.
7 0x0080 Encryption / Decryption block.
8 0x0100 Hash block.
9 0x0200 Keyed Message Authentication Code (MAC) output block.

10 0x0400 Block for state storage or reloading.
11 0x0800 Pseudo Random Number Generator (PRNG) block.
12 0x1000 Originating from Alice (client / slave).
13 0x2000 Originating from Bob (server / master).
14 0x4000 Tree chaining Node.
15 0x8000 Tree final Node.

Comparison with AES-based Protocols. For most of these π permutations the work-
ing memory required to implement the entire two-way BLINKER protocol is only
slightly more than b bits for the state. It is difficult if not impossible to implement
AES in any reasonable authenticated mode of operation with such a small amount of
memory in a two-party protocol as additional storage is required for two round / nonce
counters, authenticators, and round keys.

7 Basic Shared Secret Authentication and Record Protocol Flow

We assume that the shared secret K is simply stored by both parties; however it may be
derived with a lightweight asymmetric key exchange method such as Curve25519 [59].
K may also be combined from passwords or composed in other ways.

We use the shorthand enc(state, input, pad) in the following for encoding opera-
tions. Corresponding synchronized decoding may result in FAIL and immediate closure
of channel. We do not explicitly describe these operations; see Sections 4 and 5. How-
ever, in order to clarify exposition, we are “writing out” the authentication tag genera-
tion phases.

We first absorb the identities Ia and Ib of Alice and Bob into the state. Note that it
may not be necessary to transmit the messages M1 and M2 if the identities are self-
evident. The key is never transmitted but simply mixed with the state. Let S0 be some
initialization value.

Beyond Modes: Building a Secure Record Protocol 281

(S1,M1) = enc(S0, Ia, 0x108C) | A→ B :M1

(S2,M2) = enc(S1, Ib, 0x208C) | B → A :M2

S3 = enc(S2,K, 0x3024) |
Two random nonces Ra and Rb are required for challenge-response authentication

and to make the session unique.

(S4,M3) = enc(S3, Ra, 0x10CC) | A→ B :M3

(S5,M4) = enc(S4, Rb, 0x20CC) | B → A :M4

We may now perform mutual authentication with tags of t bits:

(S6,M5) = enc(S5, 0
t, 0x1208) | A→ B :M5

(S7,M6) = enc(S6, 0
t, 0x2208) | B → A :M6

Checking M5 and M6 completes mutual authentication. By an inductive process we
see that the session secret S7 is now dependent upon randomizers from both parties and
the original shared secret is not leaked if the Sponge satisfies our security axioms.

After this, plaintexts Pa (for A → B) and Pb (for B → A) can be encrypted,
transmitted and authenticated by repeathing the following exchange:

(Si+1,Ma) = enc(Si, Pa, 0x108C) | A→ B :Ma

(Si+2, Ta) = enc(Si+1, 0
t, 0x1208) | A→ B : Ta

(Si+3,Mb) = enc(Si+2, Pb, 0x208C) | B → A :Mb

(Si+4, Tb) = enc(Si+3, 0
t, 0x2208) | B → A : Tb

Due to explicit padding it is easy to show that the entire message flow is authenticated
if appropriate checks are made.

8 Implementation Notes

We have already fielded BLINKER in a tiny security application that communicates
with a server over a HTTP 1.1 stay-alive link [37]. Such a link is essentially half-duplex
as messages are sent and received over HTTP POST method within a single stay-alive
TCP session. On the target platform this proved to be an ideal method for communi-
cating with a server over the Internet; SSL is essentially unimplementable on the target
platform. The same is true for many low-end embedded devices that have only rudi-
mentary TCP stacks or use some non-TCP protocol for the initial hop.

Figure 2 shows a simplified interface for a module that implements BLINKER in
hardware. The mode of operation is determined by the domain separation padding word
PADDING IN (as specified in Table 1) together with the SEND / RECEIVE signal that
distinguishes between encryption and decryption, MAC generation and verification. It
is noteworthy that the Sc secret state bits never have to leave the module and can be
isolated from CPU with the interface provided.

282 M-J.O. Saarinen

BLOCK IN

PADDING IN

SEND/RECV IN

BLOCK OUT

CLK IN

RST IN

CLR STATE IN

r r

d
Logic and π

ERROR OUT

Fig. 2. A simplified interface architecture for a semi-autonomous hardware component imple-
menting BLINKER

9 Conclusions

We have described the use of Sponge permutations to build complete lightweight two-
way communications links (record protocols). In terms of embedded RAM and ROM
our design has much smaller implementation footprint when compared to traditional ap-
proaches. Furthermore the “half-duplex” design is naturally suited for these platforms
and is resistant to synchronization flaws; each authentication tag essentially authenti-
cates the entire session up to that point.

In a hardware implementation the session secrets never have to leave (and cannot
leave) a specific hardware component, making the design attractive in HSM and smart
card applications. Such separation is very difficult (and costly) to achieve with SSL
and other legacy protocols which generally require CPU/MCU interaction to create
encryption and authentication keys from session secrets.

Our design is especially suitable for last-lap and autonomous hardware communica-
tions, such as those with sensors, Radio Frequency Identification (RFID) and Near Field
Communication (NFC) systems, smart cards, and Internet-of-Things applications.

Acknowledgements. The author wishes to thank Kudelski Security, University of
Haifa, and Nanyang Technological University for supporting his work. Program Com-
mittee members of CT-RSA 2014 provided invaluable suggestions for improving the
quality of this paper.

References

1. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw, M.J.B.,
Seurin, Y., Vikkelsoe, C.: PRESENT: An ultra-lightweight block cipher. In: Paillier, P., Ver-
bauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer, Heidelberg (2007)

2. Hell, M., Johansson, T., Meier, W.: Grain - a stream cipher for constrained environments.
International Journal of Wireless and Mobile Computing, Special Issue on Security of Com-
puter Network and Mobile Systems 2(1), 86–93 (2006)

3. Gren, M.A., Hell, M., Johansson, T., Meier, W.: Grain-128a: a new version of Grain-128
with optional authentication. International Journal of Wireless and Mobile Computing 5(1),
48–59 (2011)

4. Engels, D., Fan, X., Gong, G., Hu, H., Smith, E.M.: Ultra-lightweight cryptography for low-
cost RFID tags: Hummingbird algorithm and protocol. Technical Report CACR-2009-29,
University of Waterloo (2009)

Beyond Modes: Building a Secure Record Protocol 283

5. Engels, D., Saarinen, M.-J.O., Schweitzer, P., Smith, E.M.: The hummingbird-2 lightweight
authenticated encryption algorithm. In: Juels, A., Paar, C. (eds.) RFIDSec 2011. LNCS,
vol. 7055, pp. 19–31. Springer, Heidelberg (2012)

6. Bilgin, B., Bogdanov, A., Knežević, M., Mendel, F., Wang, Q.: FIDES: Lightweight authen-
ticated cipher with side-channel resistance for constrained hardware. In: Bertoni, G., Coron,
J.-S. (eds.) CHES 2013. LNCS, vol. 8086, pp. 142–158. Springer, Heidelberg (2013)

7. Yalçın, T., Kavun, E.B.: On the implementation aspects of sponge-based authenticated en-
cryption for pervasive devices. In: Mangard, S. (ed.) CARDIS 2012. LNCS, vol. 7771,
pp. 141–157. Springer, Heidelberg (2013)

8. NIST: NIST selects winner of secure hash algorithm (SHA-3) competition. NIST Tech Beat
Newsletter (October 2, 2012)

9. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: The Keccak reference, version 3.0. NIST
SHA3 Submission Document (January 2011)

10. Kelsey, J.: SHA3: Where we’ve been, where we’re going. Talk Given at RSA Security Con-
ference USA 2013 (February 2013)

11. Kelsey, J.: SHA3: Past, present, and future. Invited Talk Given at CHES 2013 (August 2013)
12. Freier, A., Karlton, P., Kocher, P.: The secure sockets layer (SSL) protocol version 3.0. IETF

RFC 6101 (Historic) (August 2011)
13. Ylönen, T., Lonvick, C.: The secure shell (SSH) protocol architecture. IETF RFC 4251 (Stan-

dards Track) (January 2006)
14. Ylönen, T., Lonvick, C.: The secure shell (SSH) transport layer protocol. IETF RFC 4253

(Standards Track) (January 2006)
15. Dierks, T., Rescorla, E.: The transport layer security (TLS) protocol version 1.2. IETF RFC

5246 (Standards Track) (August 2008)
16. Kent, S., Seo, K.: Security architecture for the internet protocol. IETF RFC 4301 (Standards

Track) (December 2005)
17. Kent, S.: IP authentication header. IETF RFC 4302 (Standards Track) (December 2005)
18. Kent, S.: IP encapsulating security payload (ESP). IETF RFC 4303 (Standards Track)

(December 2005)
19. Hamzeh, K., Pall, G., Verthein, W., Taarud, J., Little, W., Zorn, G.: Point-to-point tunneling

protocol (PPTP). IETF RFC 2637 (July 1999)
20. IEEE: IEEE standard for information technology - telecommunications and information ex-

change between systems - local and metropolitan area networks - specific requirements. part
11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications.
amendment 6: Medium access control (MAC) security enhancements (July 2004)

21. Bleichenbacher, D.: Chosen ciphertext attacks against protocols based on the RSA encryp-
tion standard PKCS #1. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 1–12.
Springer, Heidelberg (1998)

22. Vaudenay, S.: Security flaws induced by CBC padding - applications to SSL, IPSEC, WTLS..
In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 534–546. Springer,
Heidelberg (2002)

23. AlFardan, N.J., Paterson, K.G.: Lucky thirteen: Breaking the TLS and DTLS record proto-
cols. In: IEEE Symposium on Security and Privacy 2013 (to appear, 2013)

24. Bellare, M., Canetti, R., Krawczyk, H.: Message authentication using hash functions - the
HMAC construction. CryptoBytes 2(1) (1996)

25. NIST: Advanced Encryption Standard (AES). Federal Information Processing Standards 197
(2001)

26. Dworkin, M.: Recommendation for block cipher modes of operation. Special Publication
800-38A (December 2001)

27. Rivest, R.: The RC4 encryption algorithm (March 1992)

284 M-J.O. Saarinen

28. NIST: Recommendation for block cipher modes of operation: Galois/counter mode (GCM)
and GMAC. NIST Special Publication 800-38D (2007)

29. Whiting, D., Housley, R., Ferguson, N.: Counter with CBC-MAC (CCM). IETF RFC 3610
(September 2003)

30. NIST: Secure Hash Standard (SHS). Federal Information Processing Standards Publication
180-4 (March 2012)

31. Simon, D., Aboba, B., Hurst, R.: The EAP-TLS authentication protocol. IETF RFC 5216
(March 2008)

32. UKPA: Acquirers’ interface requirements for electronic data capture terminals. UKPA /
APACS Standard 40, incorporated into Standard 70 Book 2, 4 & 5 (2007)

33. Rogaway, P., Bellare, M., Black, J., Krovetz, T.: OCB: A block-cipher mode of operation for
efficient authenticated encryption. In: Reiter, M.K., Samarati, P. (eds.) CCS 2001: Proceed-
ings of the 8th ACM Conference on Computer and Communications Security, pp. 196–205.
ACM (2001)

34. Rogaway, P., Bellare, M., Black, J.: OCB: A block-cipher mode of operation for efficient
authenticated encryption. ACM Transactions on Information and System Security (TIS-
SEC) 6(3), 365–403 (2003)

35. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Duplexing the sponge: Single-pass
authenticated encryption and other applications. In: Miri, A., Vaudenay, S. (eds.) SAC 2011.
LNCS, vol. 7118, pp. 320–337. Springer, Heidelberg (2012)

36. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Permutation-based encryption, authenti-
cation and authenticated encryption. In: DIAC 2012 (2012),
http://keccak.noekeon.org/KeccakDIAC2012.pdf

37. Saarinen, M.J.O.: Developing a grey hat C2 and RAT for APT security training and as-
sessment. In: GreHack 2013 Hacking Conference, Grenoble, France, November 15, 2013
(to appear)

38. Bellovin, S.M.: Problem areas for the IP security protocols. In: Proc. Sixth USENIX Security
Symposium, pp. 205–214 (1996)

39. Mitchell, J., Shmatikov, V., Stern, U.: Finite-state analysis of SSL 3.0. In: USENIX Security
Symposium 1998, 201–216. USENIX (1998)

40. Wagner, D., Schneier, B.: Analysis of the SSL 3.0 protocol. In: The Second USENIX Work-
shop on Electronic Commerce Proceedings, pp. 29–40. USENIX Press (November 1996)

41. Degabriele, J.P., Paterson, K.G.: Attacking the IPsec standards in encryption-only configura-
tions. In: IEEE Symposium on Security and Privacy, pp. 335–349. IEEE Computer Society
(2007)

42. Degabriele, J.P., Paterson, K.G.: On the (in)security of IPsec in MAC-then-encrypt configura-
tions. In: Al-Shaer, E., Keromytis, A.D., Shmatikov, V. (eds.) ACM Conference on Computer
and Communications Security, pp. 493–504. ACM (2010)

43. Paterson, K.G., Ristenpart, T., Shrimpton, T.: Tag size does matter: Attacks and proofs for the
TLS record protocol. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073,
pp. 372–389. Springer, Heidelberg (2011)

44. Krawczyk, H., Paterson, K.G., Wee, H.: On the security of the TLS protocol: A system-
atic analysis. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042,
pp. 429–448. Springer, Heidelberg (2013)

45. International Standardization Organization: ISO/IEC 7816-4:2013 Identification cards – In-
tegrated circuit cards – Part 4: Organization, security and commands for interchange (2013)

46. International Standardization Organization: ISO/IEC 18000-63. Information technology –
Radio frequency identification for item management – Part 6: Parameters for air interface
communications at 860 MHz to 960 MHz Type C (2012)

http://keccak.noekeon.org/KeccakDIAC2012.pdf

Beyond Modes: Building a Secure Record Protocol 285

47. MODBUS: MODBUS Application Protocol Specification V1.1B (April 2012),
http://www.modbus.org/docs/
Modbus Application Protocol V1 1b3.pdf

48. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Sponge functions. In: Ecrypt Hash Work-
shop 2007 (May 2007)

49. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Sakura: a flexible coding for tree hashing.
IACR ePrint 2013/213 (April 2013), http://eprint.iacr.org/2013/213

50. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: On the security of the keyed sponge
construction. In: SKEW 2011 Symmetric Key Encryption Workshop (February 2011)

51. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Sponge-based pseudo-random number
generators. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 33–47.
Springer, Heidelberg (2010)

52. Ferguson, N., Schneier, B.: Practical Cryptography. John Wiley & Sons (2003)
53. Saarinen, M.-J.O.: CBEAM: Efficient authenticated encryption from feebly one-way phi

functions. In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, Springer, Heidelberg (2014)
54. Chang, S., Perlner, R., Burr, W.E., Turan, M.S., Kelsey, J.M., Paul, S., Bassham, L.E.: Third-

round report of the SHA-3 cryptographic hash algorithm competition. Technical Report NI-
STIR 7896, National Institute of Standards and Technology (November 2012)

55. Guo, J., Peyrin, T., Poschmann, A.: The PHOTON family of lightweight hash functions.
In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 222–239. Springer, Heidelberg
(2011)

56. Aumasson, J.-P., Henzen, L., Meier, W., Naya-Plasencia, M.: QUARK: A lightweight hash.
In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 1–15. Springer,
Heidelberg (2010)

57. Aumasson, J.P., Henzen, L., Meier, W., Naya-Plasencia, M.: Quark: A lightweight hash.
Journal of Cryptology (2012), doi: 10.1007/s00145-012-9125-6

58. Bogdanov, A., Knežević, M., Leander, G., Toz, D., Varıcı, K., Verbauwhede, I.: SPONGENT:
A lightweight hash function. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917,
pp. 312–325. Springer, Heidelberg (2011)

59. Bernstein, D.J.: Curve25519: New diffie-hellman speed records. In: Yung, M., Dodis, Y., Ki-
ayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 207–228. Springer, Heidelberg
(2006)

http://www.modbus.org/docs/Modbus_Application_Protocol_V1_1b3.pdf
http://www.modbus.org/docs/Modbus_Application_Protocol_V1_1b3.pdf
http://eprint.iacr.org/2013/213

Group Signatures with Message-Dependent

Opening in the Standard Model

Benôıt Libert and Marc Joye

Technicolor
975 Avenue des Champs Blancs

35576 Cesson-Sévigné Cedex, France

Abstract. Group signatures allow members of a group to anonymously
sign messages in the name of this group. They typically involve an open-
ing authority that can identify the origin of any signature if the need
arises. In some applications, such a tracing capability can be excessively
strong and it seems desirable to restrict the power of the authority. Sakai
et al. recently suggested the notion of group signatures with message-
dependent opening (GS-MDO), where the opening operation is made
contingent on the knowledge of a trapdoor information – generated by a
second authority – associated with the message. Sakai et al. showed that
their primitive implies identity-based encryption (IBE). In the standard
model, efficiently constructing such a system thus requires a structure-
preserving IBE scheme, where the plaintext space is the source group G

(rather than the target group GT) of a bilinear map e : G × G → GT .
Sakai et al. used a structure-preserving IBE which only provides bounded
collusion-resistance. As a result, their GS-MDO construction only pro-
vides a weak form of anonymity where the maximal number of trapdoor
queries is determined by the length of the group public key. In this paper,
we construct the first fully collusion-resistant IBE scheme that encrypts
messages in G. Using this construction, we obtain a GS-MDO system
with logarithmic signature size (in the number N of group members)
and prove its security in the standard model under simple assumptions.

Keywords: Group signatures, message-dependent opening, efficiency,
collusion-resistance, structure-preserving cryptography.

1 Introduction

Group signatures are central anonymity-related primitives, suggested by Chaum
and van Heyst [20], which allow users to sign messages while hiding their identity
within a population they belong to. They notably find applications in trusted
computing platforms, auction protocols, anonymous subscription systems or in
mechanisms for protecting the privacy of commuters in public transportation.
To prevent users from abusing the system, group signatures usually involve an
opening authority (OA) which is capable of identifying the signer using some
trapdoor information. Although the opening authority can remain most fre-
quently offline, group members have no privacy at all against this all powerful

J. Benaloh (Ed.): CT-RSA 2014, LNCS 8366, pp. 286–306, 2014.
c© Springer International Publishing Switzerland 2014

Group Signatures with Message-Dependent Opening in the Standard Model 287

entity that can spy on all signature generations and identify the signer every
time. To address this problem, Sakai et al. [35] advocated the design of a spe-
cial kind of group signatures, called group signatures with message-dependent
opening (GS-MDO), where restrictions are placed on the power of the OA. In
the GS-MDO primitive, opening authorities cannot open any signature on their
own. In order to open a signature on a messageM , they need both their private
key and a message-specific trapdoor tM generated by a separate authority called
admitter.

While the notion of group signatures dates back to Chaum and van Heyst [20],
truly scalable and secure solutions remained elusive until the construction put
forth by Ateniese et al. [6]. For lack of well-understood definitions, the secu-
rity of their scheme was analyzed w.r.t. a list of sometimes redundant properties.
A suitable security model was studied later on by Bellare, Micciancio and Warin-
schi [7] in the setting of static groups, where previous properties were subsumed
by two security notions named full anonymity and full traceability. The case of
dynamically growing groups was independently considered by Bellare, Shi and
Zhang [9] and Kiayias and Yung [29].

During the last decade, a number of practical schemes were analyzed (e.g.,
[6, 12, 21, 29, 32]) in the random oracle model [8], which is known [18] to
only provide heuristic arguments in terms of security. While theoretical stan-
dard model constructions were given under general assumptions [7, 9], they were
“only” proofs of concept. Viable constructions were suggested for the first time
by Boyen and Waters [14, 15] and Groth [23, 24] who took advantage of break-
through results [22, 25] in the construction of non-interactive zero-knowledge
(NIZK) and witness indistinguishable (NIWI) proofs. The most efficient stan-
dard model realizations to date rely on the Groth-Sahai methodology [25], which
is tailored to specific languages involving elements in bilinear groups.

Group Signatures with Message-Dependent Opening. Traditional group
signature models allow opening authorities to identify the originator of every sin-
gle signature. As discussed by Sakai et al. [35], it may be desirable to restrict
this extremely high power in many real-life applications.

One way to address this problem is to use techniques from threshold cryptog-
raphy and share the opening key among several distributed opening authorities
(as considered in, e.g., [10]) in such a way that none of these can individually
open signatures and hurt the privacy of group members. While this approach
may be sufficient in some applications, it requires the distributed openers to run
a joint opening protocol whenever they want to trace a signature back to its
source. In applications where many signatures on the same message have to be
opened, this may become impractical. For example, suppose that group signa-
tures are used to verify anonymous access rights to a parking or to enhance the
privacy of users in public transportation systems: by issuing a group signature
on a message consisting of the current date and time, users can demonstrate
that they hold a valid credential and paid the subscription without being link-
able to their previous rides. If a crime is committed, the police may want to find
out who used a given metro line during a specific time interval. This requires

288 B. Libert and M. Joye

a mechanism allowing for the opening of all signatures generated for a given
date-time message and only those. Running a distributed opening protocol for
each individual signature may be a bottleneck in this scenario. The same is true
when group signatures are used in auction protocols: if group members are bid-
ders who anonymously sign their bids, the threshold opening approach entails
a communication cost proportional to the number of winners who offered the
highest amount.

The above use cases motivated Sakai et al [35] to formalize the notion of group
signatures with message-dependent opening (GS-MDO), which splits the role of
the opening authority between two entities called opener and admitter. In order
to identify the author of a signature on a message M , the opener needs both
its opening key ok and a trapdoor tM generated by the admitter for the mes-
sage M : the opening operation must be approved by the admitter, depending
on the content of the message. Importantly, neither entity is powerful enough to
open a signature by itself. A crucial difference with the aforementioned threshold
opening approach is that, once a trapdoor tM has been released for a sensitive
messageM , the opener can trace all signatures on M without any further inter-
action with the admitter.

We believe this message-dependent opening property to be of interest even
in the setting of a centralized opening authority. Indeed, it features a comple-
mentary property to that of traceable signatures [28]. These involve opening
authorities which can release a user-specific trapdoor allowing anyone to trace
all signatures issued by a misbehaving group member. The GS-MDO primitive is
important when the tracing criterion is the signed message (which could contain
keywords associated with an illegal transaction) instead of the group member’s
identity. Both techniques could actually be used in conjunction: one could first
use a message-specific trapdoor to identify all group members who signed a sus-
picious message before tracing all other signatures created by these members.

Related Work. Sakai et al. [35] gave a general construction of GS-MDO and
notably showed that it implies Identity-Based Encryption [13, 36] (IBE): in their
specific construction, the trusted authority naturally serves as an admitter and
message-specific trapdoors are nothing but IBE private keys associated with the
message. They also pointed out that, in order to build an efficient GS-MDO
system in the standard model with the current state of knowledge in the area,
they need a form of structure-preserving IBE scheme. Recall that a cryptographic
primitive is called structure-preserving (see [1–4, 17, 19, 23] for examples) if it
handles objects – like ciphertexts or signatures – that only consist of elements
from a group G over which a bilinear map is efficiently computable and if the
validity of these objects can be checked using pairing-product equations. The
latter properties make the primitive compatible with the Groth-Sahai techniques
[25], which is crucial when one seeks to prove security in the standard model.

The main difficulty is that no structure-preserving IBE scheme is available to
date: all pairing-based schemes proceed either by XORing the message with a
hashed Bilinear Diffie-Hellman key [13] or encrypting messages that live in the
target group GT of the bilinear map e : G × G ⊗ GT (see, e.g., [11, 37]). In

Group Signatures with Message-Dependent Opening in the Standard Model 289

order to construct an efficient GS-MDO in the standard model, what we need
is an IBE scheme that encrypts messages in the domain group G. We call such
a system partially structure-preserving since identities do not have to be group
elements and private keys can be ordinary (non-structure-preserving) signatures.
For lack of a fully collusion-resistant such IBE, Sakai et al. [35] used a variant of
the k-resilient construction of Heng and Kurosawa [27]: in the latter, semantic
security is only guaranteed against adversaries that obtain private keys for no
more than an a priori bounded number of identities. Moreover, the master public
key has linear size in the pre-determined upper bound k. As a consequence, the
standard model GS-MDO realization of [35] only achieves a relaxed flavor of
security: namely, anonymity against the opener is only guaranteed as long as
the adversary obtains trapdoors for at most k distinct messages. Moreover, the
group public key inherits the O(k) size of the underlying IBE system.

In the random oracle model, Ohara et al. [33] recently proposed a construction
allowing for an unbounded number of trapdoor queries. However, for the time
being, building a fully secure GS-MDO system in the standard model remains
an open problem.

OurContribution. In this paper, we describe aGS-MDO systemwithO(logN)
size signatures, whereN is the number of groupmembers, and prove its security in
the standard model under simple, constant-size assumptions (i.e., we do not use
q-type assumptions where the number of input elements depends on the number
of adversarial queries or other system-related parameters).

As a result of independent interest, we describe the first fully collusion-
resistant pairing-based IBE scheme that allows encrypting messages in the source
group G. This property is useful when it comes to proving properties about
IBE-encrypted data: for example, the techniques of Camenisch et al. [16] can be
used in combination with Groth-Sahai proofs to provide evidence that an IBE-
encrypted plaintext belongs to a public set. Our system proceeds by blinding
the plaintext M ≡ G using a random mask obtained by multiplying a random
subset

∏
i≥S Zi of public elements (Z1, . . . , ZΠ) ≡ G

Π, where σ is proportional
to the security parameter. The σ-bit string K identifying the subset S (so that
K[i] = 1 if and only if Zi ≡ S) is in turn encoded in a bit-wise manner using
a variant of the Waters IBE scheme, each bit K[i] of K being encoded as an
independent IBE ciphertext entirely comprised of elements in G. A consequence
of this bit-by-bit encoding is that we need O(σ) group elements to encrypt one
element M ≡ G. Despite its relatively large ciphertext size, our construction
suffices to provide O(logN) size signatures.

If we naively plug our IBE scheme into the general GS-MDO construction
of Sakai et al. [35], we obtain signatures consisting of O(ρ) group elements (or
O(ρ2) bits), where ρ is the security parameter, as each signature includes an
IBE ciphertext. Fortunately, we can obtain signatures of only O(logN) group
elements – which is substantially shorter since logN � ρ for any group of poly-
nomial cardinality N – by combining the bit-wise encoding of our IBE scheme
with the technique used in the Boyen-Waters group signature [14]. In the latter,

membership certificates consist of Waters signatures
(
gΔ · (v0 ·

∏Π
j=1 v

id[j]
j)r, gr

)

290 B. Libert and M. Joye

on the group members’ identifiers id ≡ {0, 1}Π, where σ = logN , and each group
signature contains commitments to the individual bits id[j] of id as well as NIWI
proofs showing that committed values are actually bits. Our idea is thus to en-
code each bit id[j] of id using a structure-preserving identity-based bit encryp-
tion scheme where the receiver’s identity is the message to be signed. In order
to guarantee anonymity against the admitter, we follow [35] and super-encrypt
each IBE ciphertext under the opener’s public key using a CCA2-secure public-
key cryptosystem. For groups of N = 106 users, we eventually obtain signatures
of 68 kB at the 128-bit security level, which is approximately twice the signature
length of the k-resilient scheme of [35].

Organization. In the forthcoming sections, we first recall the syntax and the
security definitions of group signatures with message-dependent opening in Sec-
tion 2. Section 3 describes our structure-preserving IBE system and our GS-MDO
scheme is detailed in Section 4.

2 Background

2.1 Bilinear Maps and Complexity Assumptions

We use bilinear maps e : G × G ⊗ GT over groups of prime order p where
e(g, h) ∪= 1GT if and only if g, h ∪= 1G. In these groups, we rely on two hardness
assumptions that are both non-interactive and stated using a constant number
of elements.

Definition 1 ([12]). The Decision Linear (DLIN) Problem in G, is to dis-
tinguish between the distributions (ga, gb, gac, gbd, gc+d) and (ga, gb, gac, gbd, gz),
with a, b, c, d R⇐ Zp, z

R⇐ Zp. The Decision Linear assumption is the intractability
of DLIN for any PPT distinguisher.

Definition 2 ([13]). TheDecision 3-party Diffie-Hellman (D3DH) Problem
in G, is to distinguish the distributions (g, ga, gb, gc, gabc) and (g, ga, gb, gc, gz),
where a, b, c, z R⇐ Zp.

2.2 Groth-Sahai Proof Systems

Groth-Sahai (GS) proofs [25] can be based on the DLIN assumption, where they
use prime order groups and a common reference string containing three vectors
Δf1, Δf2, Δf3 ≡ G

3, where Δf1 = (f1, 1, g), Δf2 = (1, f2, g) for some f1, f2 ≡ G. To

commit to X ≡ G, one chooses r, s, t R⇐ Zp and computes ΔC = (1, 1, X) · Δf1
r ·

Δf2
s · Δf3

t
. In the soundness setting, we have Δf3 = Δf1

Ψ1 · Δf2
Ψ2

where Φ1, Φ2 ≡ Zp.

Commitments ΔC = (f r+Ψ1t1 , f s+Ψ2t2 , X · gr+s+t(Ψ1+Ψ2)) are then extractable using
Ψ1 = logg(f1), Ψ2 = logg(f2). In the witness indistinguishability (WI) setting,
Δf1, Δf2, Δf3 are linearly independent and ΔC is a perfectly hiding commitment. Under
the DLIN assumption, the two kinds of CRS are indistinguishable.

Group Signatures with Message-Dependent Opening in the Standard Model 291

To commit to an exponent x ≡ Zp, the prover computes ΔC = ΔΥx · Δf1
r · Δf2

s
,

where r, s R⇐ Zp, using a CRS consisting of vectors ΔΥ, Δf1, Δf2. In the perfect sound-

ness setting, ΔΥ, Δf1, Δf2 are linearly independent while, in the perfect WI setting,

choosing ΔΥ = Δf1
Ψ1 · Δf2Ψ2 gives a perfectly hiding commitment.

To prove that committed variables satisfy a set of relations, the prover com-
putes one commitment per variable and one proof element per relation. Such
non-interactive witness indistinguishable (NIWI) proofs are available for pairing-
product equations, which are equations of the form

n∏
i=1

e(Ai,Xi) ·
n∏
i=1

·
n∏
j=1

e(Xi,Xj)aij = tT , (1)

for variables X1, . . . ,Xn ≡ G and constants tT ≡ GT , A1, . . . ,An ≡ G, aij ≡ Zp,
for i, j ≡ {1, . . . , n}. Efficient NIWI proofs also exist for multi-exponentiation

equations, which are of the form
∏m
i=1 Ayi

i ·∏n
j=1 X bj

j ·∏m
i=1 ·

∏n
j=1 X yiιij

j = T,
for variables X1, . . . ,Xn ≡ G, y1, . . . , ym ≡ Zp and constants T,A1, . . . ,Am ≡ G,
b1, . . . , bn ≡ Zp and αij ≡ G, for i ≡ {1, . . . ,m}, j ≡ {1, . . . , n}.

In pairing-product equations, proofs for quadratic equations require 9 group
elements whereas linear equations (i.e., where aij = 0 for all i, j in equation (1))
only cost 3 group elements each. Linear multi-exponentiation equations of the
type

∏m
i=1 Ayi

i = T require 2 group elements.

2.3 Group Signatures with Message-Dependent Opening

We use the syntax of [35], which extends the static model of Bellare, Micciancio
and Warinschi [7].

Keygen(ρ,N): given a security parameter ρ ≡ N and a maximal number of
group members N ≡ N, this algorithm outputs a group public key gpk, a
vector gsk = (gsk[0], . . . , gsk[N − 1]) of group members’ private keys as well
as private keys mskADM and ok for the admitter and the opener.

Sign: takes as input a message M , a private key gsk[i] and gpk, it outputs a
signature θ.

Verify: is a deterministic algorithm taking as input a signature θ, a message M
and a group public key gpk. It returns either 0 or 1.

TrapGen: is a possibly randomized algorithm that takes as input the admitter’s
private key mskADM and a message M . It outputs a trapdoor tM allowing
the OA to open all signatures on M .

Open: takes as input a message M , a valid signature θ w.r.t. gpk, the opening
authority’s private key ok and a trapdoor tM for the message M . It outputs
i ≡ {0, . . . , N − 1} → {≥}, which is either the index of a group member or a
symbol indicating an opening failure.

Definition 3. A GS-MDO scheme provides full traceability if, for any ρ ≡ N,
any N ≡ poly(ρ) and any PPT adversary A involved in the experiment hereafter,
it holds that

292 B. Libert and M. Joye

Advtrace
A (ρ) = Pr[Exptrace

A (ρ,N) = 1] ≡ negl(ρ).

Exptrace
A (n,N)

(gpk, ok,mskADM,gsk) ← Keygen(λ,N)

st ← (ok,mskADM, gpk) ; C ← ∅ ; K ← ε ; Cont ← true

while (Cont = true) do

(Cont, st, j) ← ASign(gsk[·],·)(choose, st,K)

if Cont = true then C ← C ∪ {j} ; K ← K ∪ {gsk[j]} end if

end while

(MΨ, σΨ) ← ASign(gsk[·],·)(guess,st)
if Verify(gpk,MΨ, σΨ) = 0 then Return 0

if Open(gpk, ok,TrapGen(gpk,mskADM,M
Ψ),MΨ, σΨ) =⊥ then Return 1

if ∃jΨ ∈ {0, . . . , N − 1} such that

(Open(gpk, ok, tMλ ,MΨ, σΨ) = jΨ) ∧ (jΨ /∈ C) ∧ ((jΨ,MΨ) not queried by A)

with tMλ ← TrapGen(gpk,mskADM,M
Ψ)

then Return 1

else Return 0

Definition 4. A GS-MDO scheme provides full anonymity against the admitter
if, for any ρ ≡ N, any N ≡ poly(ρ) and any PPT adversary A, the function

Advanon-adm
A (ρ) = |Pr[Expanon-adm

A (ρ,N) = 1]− 1/2| ≡ negl(ρ)

is a negligible function in the security parameter if the experiment proceeds as
follows

Expanon−adm
A (λ,N)

(gpk, ok,mskADM,gsk) ← Keygen(λ,N)

(st, j0, j1,M
Ψ) ← AOok(choose, gpk,gsk,mskADM)

b R← {0, 1}; σΨ ← Sign(gpk, gsk[jb],M
Ψ)

b∗ ← AOok (guess,st, σΨ)

Return 1 if b∗ = b and 0 otherwise

In the above notation, Ook denotes an oracle that takes as input any adversar-
ially chosen signature θ ∪= θδ and uses ok and mskADM to determine and return
the identity of the signer.

Definition 5. A GS-MDO scheme provides full anonymity against the opener
if, for any ρ ≡ N, any N ≡ poly(ρ) and any PPT adversary A, the function

Advanon-oa
A (ρ) = |Pr[Expanon-oa

A (ρ,N) = 1]− 1/2| ≡ negl(ρ)

is a negligible function in the security parameter if the experiment goes as follows

Expanon−oa
A (λ,N)

(gpk, ok,mskADM,gsk) ← Keygen(λ,N)
(st, j0, j1,M

Ψ) ← AOmskADM (choose, gpk,gsk, ok)

b R← {0, 1}; σΨ ← Sign(gpk, gsk[jb],M
Ψ)

b∗ ← AOmskADM (guess,st, σΨ)
Return 1 if b∗ = b and 0 otherwise

In the above notation, OmskADM
(.) is an oracle that returns trapdoors for arbi-

trary messages M ∪=Mδ chosen by the adversary.

Group Signatures with Message-Dependent Opening in the Standard Model 293

3 A Fully Collusion-Resistant Partially Structure-
Preserving IBE

3.1 Intuition

The scheme is only partially structure-preserving in that identities are still en-
coded as binary strings and private keys are ordinary signatures (recall that,
in any IBE, private keys are signatures on the corresponding identity, as men-
tioned in [13]) instead of structure-preserving ones. It can be seen as a variant
of Waters’ IBE [37] (see Appendix A for syntactic definitions) and builds on
a consequence of the Leftover Hash Lemma [26]: namely, if σ > 2 log2(p) and
a1, . . . , aΠ ≡R Zp are uniformly distributed in Zp, then random subset sums∑Π

i=1 Ψiai with (Ψ1, . . . , ΨΠ) ≡R {0, 1}Π are statistically indistinguishable from
uniformly random values in Zp.

The idea is to include a vector (Z1, . . . , ZΠ) ≡ G
Π in the master public key. The

messageM ≡ G will be encrypted by choosing a random σ-bit string K ≡ {0, 1}Π
and multiplying M with a product of elements in the set S = {Zi | K[i] = 1}.
Then, each bit K[i] of K will be individually encrypted using a variant of the
Waters IBE. In the latter variant, an encryption of 1 will consist of a tuple

(Ci,1, Ci,2, Ci,3, Ci,4) = (gsi , HG(ID)
si , g

si/Δi

1 , gΔi
2), where si, γi ≡R Zp. In an

encryption of 0, the pair (Ci,3, Ci,4) is chosen uniformly in G
2. Upon decryp-

tion, the receiver can use his private key (d1, d2) to test whether the equality
e(Ci,3, Ci,4) = e(Ci,1, d1)/e(Ci,2, d2) holds. If it does, the receiver decodes the
i-th bit of K as K[i] = 1. Otherwise, it sets K[i] = 0. The security of the result-
ing scheme can be proved under the D3DH assumption (instead of the DBDH
assumption).

Although the latter scheme allows encrypting messages in the group G, it still
does not provide all the properties we need for the problem at hand. When it
comes to proving that a ciphertext encrypts a message that coincides with the
content of Groth-Sahai commitment, the difficulty is to prove that the equal-
ity e(Ci,3, Ci,4) = e(Ci,1, d1)/e(Ci,2, d2) is not satisfied when K[i] = 0. For this
reason, we need to modify the scheme as suggested in Section 3.2.

3.2 Construction

In order to be able to efficiently prove that a ciphertext and a Groth-Sahai
commitment hide the same group element, we modify the scheme of Section
3.1 as follows. In the master public key, the element g1 is replaced by a pair
(g0, g1) = (gπ0 , gπ1). The master secret key is twinned in the same way and now
consists of (gπ0

2 , gπ1
2). Likewise, each identity is assigned a private key of the form

(d0,1, d0,2, d1,1, d1,2) = (gπ0
2 ·HG(ID)

r0 , gr0 , gπ1
2 ·HG(ID)

r1 , gr1).
In the encryption algorithm, when the sender wants to “encrypt” a bit K[i]

of K ≡ {0, 1}Π, it generates (Ci,3, Ci,4) as (Ci,3, Ci,4) =
(
g
si/Δi

K[i] , g
Δi
2

)
, so that the

receiver can easily determine the value of K[i] using his private key.
The modification will make it easier to prove equalities between the plaintext

and a committed value. The reason is that the prover does not have to prove

294 B. Libert and M. Joye

an inequality when K[i] = 0: he essentially has to prove statements of the form

“(Ci,3, Ci,4) =
(
g
si/Δi

0 , gΔi
2

)
OR (Ci,3, Ci,4) =

(
g
si/Δi

1 , gΔi
2

)
”. Our construction of

Groth-Sahai-compatible IBE thus goes follows.

Setup(ρ) : Choose bilinear groups (G,GT) of prime order p > 2γ. Then, do the
following.

1. Choose ε0, ε1
R⇐ Zp, g

R⇐ G, g2
R⇐ G and set g0 = gπ0 , g1 = gπ1 .

2. Choose u0, u1, . . . , uL
R⇐ G, for a suitably large L ≡ poly(ρ). These will

be used to implement a number-theoretic hash function HG : {0, 1}L ⊗
G such that any L-bit string Π = Π [1] . . . Π [L] ≡ {0, 1}L is mapped to the

value HG(Π) = u0 ·
∏L
i=1 u

τ [i]
i .

3. Choose group elements (Z1, . . . , ZΠ)
R⇐ G

Π, where σ = 2∈log2(p)∅ > 2ρ.

The master secret key is msk := (gπ0
2 , gπ1

2) and the master public key is
defined as

mpk =
(
(G,GT), p, g, g0 = gπ0 , g1 = gπ1 , g2, {ui}Li=0, {Zi}Πi=1

)

Keygen(msk, ID) : given the master secret key msk = (gπ0
2 , gπ1

2) and an identity
ID ≡ {0, 1}L, choose r0, r1 R⇐ Zp to compute and return

dID = (d0,1, d0,2, d1,1, d1,2) =
(
gπ0
2 ·HG(ID)

r0 , gr0 , gπ1
2 ·HG(ID)

r1 , gr1
)
.

Encrypt(mpk, ID,M) : to encrypt a message M ≡ G, conduct the following
steps.

1. Choose a random σ-bit string K R⇐ {0, 1}Π, where σ = 2 log2(p).
2. Choose s1, . . . , sΠ

R⇐ Zp and γ1, . . . , γΠ
R⇐ Zp.

3. Parse K as K[1] . . .K[σ] ≡ {0, 1}Π. For i = 1 to σ, compute

Ci,1 = gsi Ci,2 = HG(ID)
si Ci,3 = g

si/Δi

K[i] Ci,4 = gΔi
2 (2)

4. Then, compute C0 =M ·∏Π
i=1 Z

K[i]
i .

Return the ciphertext C =
(
C0, {(Ci,1, Ci,2, Ci,3, Ci,4)}Πi=1

) ≡ G
4Π+1.

Decrypt(mpk, dID, C) : parse C as C =
(
C0, {(Ci,1, Ci,2, Ci,3, Ci,4)}Πi=1

)
.

1. For i = 1 to σ compute μb = e(Ci,1, db,1)/e(Ci,2, db,2) for each b ≡ {0, 1}.
If there exists b ≡ {0, 1} such that μb = e(Ci,3, Ci,4), set K[i] = b.
Otherwise, return ≥.

2. Compute and return M = C0/(
∏Π
i=1 Z

K[i]
i).

Unlike the IBE system of Sakai et al. [35], the above scheme provides full
collusion-resistance and the size of the master public key only depends on the
security parameter and not on a pre-determined bound on the number of cor-
rupted users.

Group Signatures with Message-Dependent Opening in the Standard Model 295

Theorem 1. The above IBE scheme provides IND-ID-CPA security under the
D3DH assumption.

Proof. We consider a sequence of games which begins with the real game and
ends with a game where the adversary’s view is independent of the challenger’s
bit Ψ ≡ {0, 1}. For each i, we denote by Si the event that the adversary wins in
Game i and we define the adversary’s advantage as Advi := |Pr[Si]− 1/2|.
Game 0: This is the real attack game where the challenger generates a proper

encryption of Mχ , with Ψ
R⇐ {0, 1}, in the challenge phase. The game ends

with the adversary A outputting Ψ≤ ≡ {0, 1} and we denote by S0 the event
that Ψ≤ = Ψ.

Game i (1 ⊕ i ⊕ σ): In this game, the challenger generates the challenge ci-
phertext in a hybrid manner. Namely, for each j ≡ {1, . . . , σ}, the challenger
generates the ciphertext components {(Cj,1, Cj,2, Cj,3, Cj,4)} as follows.

- If j ⊕ i, its picks sj
R⇐ Zp, computes (Cj,1, Cj,2) = (gsj , HG(ID)

sj) but

chooses (Cj,3, Cj,4)
R⇐ G

2 at random.
- If j > i, it runs the normal encryption algorithm and sets

(Cj,1, Cj,2, Cj,3, Cj,4) = (gsj , HG(ID)
sj , g

sj/Δj

K[j] , g
Δj

2)

for randomly chosen sj , γj
R⇐ Zp.

Game σ + 1: This game is identical to Game σ with the difference that, in the
challenge ciphertext, C0 is chosen as a uniformly random C0

R⇐ G instead of

being computed as C0 =Mχ ·∏Π
j=1 Z

K[j]
j .

For each j ≡ {1, . . . , σ}, Lemma 1 shows that Game j is computationally indis-
tinguishable from Game j − 1 if the D3DH assumption holds.

In Game σ, the ciphertext components {(Cj,1, Cj,2, Cj,3, Cj,4)}Πj=1 are com-

pletely uncorrelated to the string K = K[1] . . .K[σ] ≡ {0, 1}Π that is used to

compute C0 = Mχ ·∏Π
j=1 Z

K[j]
j . For this reason, we argue that the adversary’s

view is statistically independent of Mχ. This is easily seen by observing that the
Leftover Hash Lemma implies that the two distributions

D0 = {(a, ∃a, z⊆) | a R⇐ Z
Π
p, z

R⇐ {0, 1}Π} D1 = {(a, w) | a R⇐ Z
Π
p, w

R⇐ Zp},
are statistically close when σ > 2 log2(p). Consequently, Game σ is statistically
close to Game σ+1, where C0 is replaced by a uniformly random group element
in the challenge ciphertext. In the latter game, we have Pr[SΠ+1] = 1/2 (and
thus AdvΠ+1 = 0) since the challenge ciphertext is independent of Mχ . ◦⊥
Lemma 1. If the D3DH assumption holds, Game i is computationally indistin-
guishable from Game i − 1 for each i ≡ {1, . . . , σ}. More precisely, if A runs in
time t and has significantly different advantages in Game i and Game i−1, then
there exists a PPT algorithm B with running time t+O(λ−2 ln(λ−1)Σ−1 ln(Σ−1))
such that

|Advi(A)−Advi−1(A)| ⊕ 16 · (L+ 1) · q ·AdvD3DH(B),

296 B. Libert and M. Joye

where Σ = 1/(4(L + 1)q) and q is the maximal number of private key queries.
(The proof is given in Appendix B.)

We note that the same idea can be applied to construct other partially
structure-preserving primitives. For example, it can be applied to selectively-
secure attribute-based encryption schemes based on the Decision Bilinear Diffie-
Hellman assumption [34].

3.3 Proving Properties about Encrypted Messages

Our solution retains the useful property of the scheme in [35] as it allows effi-
ciently proving relations about the plaintext using the Groth-Sahai techniques.

If ΔCM = (1, 1,M) · Δf1
rM · Δf2

sM · Δf3
tM

denotes a Groth-Sahai commitment to
M ≡ G which is also encrypted with the above IBE, the sender can proceed as
follows to prove the equality between the committed message and the plaintext.

For each i, the sender computes ΔCKi = (1, 1, gK[i]) · Δf1
rK[i] · Δf2

sK[i] · Δf3
tK[i]

as
a commitment to the group element Ki = gK[i] and generates a non-interactive
proof ΔπK[i] that K[i] ≡ {0, 1}. This is typically achieved by proving the equality
K[i]2 = K[i] mod p with a proof ΔπK[i] consisting of 9 group elements. Next, the

sender generates a commitment ΔCGi to the group element Gi = gK[i] and gen-
erates a non-interactive proof ΔπGi that committed elements Gi and K[i] satisfy

Gi = g
K[i]
1 ·g1−K[i]

0 or, equivalently, e(Gi, g) = e(g1,Ki)·e(g0,K−1i ·g). The latter
is a linear equation for which the proof ΔπGi requires three group elements. Then,

the sender generates a commitment ΔCΘi to the auxiliary variable Θi = gsi/Δi

and generate non-interactive proofs ΔπΘi,1, ΔπΘi,2 for the relations

e(Θi, Ci,4) = e(Ci,1, g2) e(Θi, Gi) = e(g, Ci,3). (3)

Since the first equation of (3) is linear equation, ΔπΘi,1 only requires 3 group
elements. On the other hand, the second equation is quadratic, so that ΔπΘi,2

costs 9 group elements to prove.
Finally, the sender is left with proving that e(C0/M, g) =

∏Π
i=1 e(Zi,Ki),

which is a linear equation whose proof ΔπC0 requires 3 group elements.

The whole NIWI proof
({ ΔCKi , ΔCGi , ΔCΘi , ΔπK[i], ΔπGi , ΔπΘi,1, ΔπΘi,2}Πi=1, ΔπC0

)
thus

takes 35σ+ 3 group elements overall.
In some cases, the above proof might have to be a NIZK (and not just NIWI)

proof. In pairing-product equations, NIZK proofs are not known to always exist.
Fortunately, we can solve this issue by introducing a constant number of extra
variables, as we will see in Section 4.

4 A Fully Anonymous GS-MDO Scheme with
Logarithmic-Size Signatures

Our construction departs from the general approach suggested in [35] in order
to obtain shorter signatures. The signing algorithm of [35] proceeds by choosing

Group Signatures with Message-Dependent Opening in the Standard Model 297

two random session keys KPKE and KIBE which are separately encrypted using
a CCA2-secure public-key encryption scheme and an IBE scheme, respectively.
These two keys KPKE and KIBE are then used to hide the group member’s
credential in the fashion of nested multiple encryptions while adding a proof
that the hidden value is a valid and properly encrypted credential. If we naively
apply this approach using our IBE scheme, we will eventually obtain signatures
consisting of O(ρ2) bits, where ρ is the security parameter.

To reduce the signature size to O(ρ logN) bits (recall that logN � ρ since
the cardinality N of the group is assumed to be polynomial), we use a different
approach. Instead of encrypting random session keys which conceal the group
member’s credential under two randomly generated session keys, we directly
encrypt the bits of the group member’s identity as if it were the session key K in
the IBE scheme of Section 3.2. This allows reducing the number of bit-carrying
IBE ciphertext components from O(ρ) to O(logN). In order to make sure that
neither the admitter or the opening authority will be able to individually open
any signature, we add a second encryption layer and additionally encrypt – under
the admitter’s public key using Kiltz’s DLIN-based CCA2-secure encryption
scheme [31] – the IBE ciphertext components which depend on the bits of the
group member’s identity.

The rest of the signing algorithm proceeds as in the Boyen-Waters group
signature [14], by having the signer verifiably encrypt a two-level hierarchical
signature [30], where the first-level (resp. second-level) message is the signer’s
identity (resp. the actual message). Like [14], we use a two-level hierarchical
extension of Waters’ signature [37].

4.1 Construction

Keygen(ρ,N): given a security parameter ρ ≡ N and N = 2Π,

1. Choose bilinear groups (G,GT) of prime order p > 2γ, with g R⇐ G.

2. As a CRS for the Groth-Sahai proof system, select vectors f = (Δf1, Δf2, Δf3)

such that Δf1 = (f1, 1, g) ≡ G
3, Δf2 = (1, f2, g) ≡ G

3, and Δf3 = Δf1
Ψ1 · Δf2

Ψ2
,

where f1 = gχ1 , f2 = gχ2 R⇐ G and Ψ1, Ψ2, Φ1, Φ2
R⇐ Zp. We also define

the vector ΔΥ = Δf3 · (1, 1, g).
3. Generate a master key pair (mskIBE,mpkIBE) for the identity-based key

encapsulation scheme of Section 3.21. These consist ofmskIBE = (gπ0
2 , gπ1

2)
and

mpkIBE =
(
g0 = gπ0 , g1 = gπ1 , g2, {ui}Li=0,

)
,

where L ≡ poly(ρ) denotes the length of (hashed) messages to be signed.
For a message M ≡ {0, 1}L, we define the function HU (M) ≡ G as

HU (M) = u0 ·
∏L
i=1 u

M [i]
i , whereM [i] ≡ {0, 1} denotes the i-th bit ofM .

4. Generate a key pair (skW, pkW) for a two-level hierarchical Waters sig-
nature. At level 1 (resp. level 2), messages will be of length σ (resp. L).

1 Note that the {Zi}εi=1 components are not needed here and can be discarded.

298 B. Libert and M. Joye

This key pair consists of skW = gΔ and

pkW =
(
e(g, g)Δ, {vi}Πi=0, {wi}Li=0

)
,

where γ ≡R Zp. Analogously to step 3, we denote by HW (M) the func-

tion that maps the message M ≡ {0, 1}L to HW (M) = w0 ·
∏L
i=1 w

M [i]
i ,

where M [i] ≡ {0, 1} is the i-th bit of M .
5. For each i ≡ {0, . . . , N−1} generate the private key gsk[i] of member i as

a Waters signature gsk[i] =
(
gΔ · (v0 ·∏Π

j=1 v
idi[j]
j

)r
, gr

)
, with r R⇐ Zp,

on the message idi = idi[1] . . . idi[σ] ≡ {0, 1}Π which is obtained as the
binary expansion of i ≡ {0, . . . , N − 1}. The private key skW = gΔ is not
needed beyond this point and can be erased after the generation of the
vector of private keys gsk = (gsk[0], . . . , gsk[N − 1]).

6. Generate a public key (X,Y, U, V) = (gχx , gχy , gχu , gχv), with random
Ψx, Ψy, Ψu, Ψv

R⇐ Zp, for Kiltz’s CCA2-secure encryption scheme.
7. Select a strongly unforgeable one-time signature scheme Σ = (G,S,V).
The admitter’s message specification key consists of mskADM := mskIBE. The
private key ok of the opening authority is defined as ok := (Ψx, Ψy, Ψu, Ψv).
The private key of member i is gsk[i] while the group public key is be

gpk :=
(
(G,GT), p, g, f = (Δf1, Δf2, Δf3), mpkIBE, pkW, (X,Y, U, V), Σ

)

Sign(gpk, gsk[i],M): to sign a message M ≡ {0, 1}L using the i-th group mem-

ber’s private key gsk[i] = (Si,1, Si,2) =
(
gΔ · (v0 ·

∏Π
j=1 v

idi[j]
j)r, gr

)
, generate

a one-time signature key pair (SK,VK) ⇐ Σ.G(ρ) and do the following.

1. Generate a two-level Waters signature where the message is idi ≡ {0, 1}Π
at the first level and M ≡ {0, 1}L at level 2. The signature consists of

(Ω1, Ω2, Ω3) =
(
Si,1 · (v0 ·

Π∏
j=1

v
idi[j]
i)r

′ ·HW (M)s, Si,2 · gr′ , gs
)

=
(
gΔ · (v0 ·

Π∏
j=1

v
idi[j]
i)r

′′ ·HW (M)s, gr
′′
, gs

)
,

where r≤≤ = r + r≤.
2. Generate a commitment ΔCHV to HV = v0 ·

∏Π
j=1 v

idi[j]
j . Then, for each

j ≡ {1, . . . , σ}, generate a commitment ΔCFj to Fj = gidi[j] and generate
a NIWI proof ΔπHV ≡ G

3 that

e(HV , g) ·
Π∏

j=1

e(vj , Fj)
−1 = e(v0, g) (4)

Since (4) is a linear equation, ΔπHV only requires 3 group elements.

Group Signatures with Message-Dependent Opening in the Standard Model 299

3. Choose s1, . . . , sΠ
R⇐ Zp and γ1, . . . , γΠ

R⇐ Zp. For j = 1 to σ, compute

Cj,1 = gsj Cj,2 = HU (M)sj (5)

Cj,3 = g
sj/Δj

idi[j]
Cj,4 = g

Δj

2 .

Then, encrypt Cj,3 using Kiltz’s encryption scheme, by randomly choos-

ing zj,1, zj,2
R⇐ Zp and computing

Ψj = (Ψj,1, Ψj,2, Ψj,3, Ψj,4, Ψj,5)

=
(
Xzj,1 , Y zj,2 , Cj,3 · gzj,1+zj,2 , (gVK · U)zj,1 , (gVK · V)zj,2

)
The next step will be to prove that the ciphertexts {Ψj}Πj=1 encrypt

{Cj,3}Πj=1 such that {(Cj,1, Cj,2, Cj,3, Cj,4)}Πj=1 are of the form (5) with
idi[j] ≡ {0, 1}.

4. To generate NIZK proofs for the next statements, generate commitments
ΔCθ = ΔΥθ · Δf1

rΦ · Δf2
sΦ
, as well as ΔCΓ1 and ΔCΓ2 to the variables

θ = 1, Γ1 = gθ, Γ2 = gθ2 (6)

and a non-interactive proof ΔπΓ for the three equalities (6), which requires
9 group elements (3 for each equation). Then, for each j ≡ {1, . . . , σ},
generate Groth-Sahai commitments ΔCGj , ΔCΘj , ΔCzj,1 , ΔCzj,2 to the vari-

ables Gj = g
idi[j]
1 · g1−idi[j]

0 , Θj = gsj/Δj , Zj,1 = gzj,1 and Zj,2 = gzj,2 .
Then, generate NIZK proofs Δπj , ΔπGj , ΔπΘj , {ΔπΨj,k

}3k=1 for the relations

e(Fj , Fj) = e(g, Fj) (7)

e(Gj , g) = e(g1, Fj) · e(g0, F−1j · g) (8)

e(Θj , Cj,4) = e(Cj,1, g2) (9)

e(Ψj,1, g) = e(X,Zj,1) (10)

e(Ψj,2, g) = e(Y, Zj,2) (11)

e(Ψj,3, g) = e(Θj , Gj) · e(g, Zj,1 · Zj,2) (12)

This is done by proving that

e(Fj , Fj) = e(g, Fj) (13)

e(Gj , g) = e(g1, Fj) · e(g0, F−1j · g) (14)

e(Θj , Cj,4) = e(Cj,1, Γ2) (15)

e(Ψj,1, Γ1) = e(X,Zj,1) (16)

e(Ψj,2, Γ1) = e(Y, Zj,2) (17)

e(Ψj,3, Γ1) = e(Θj , Gj) · e(Γ1, Zj,1 · Zj,2) (18)

Note that relation (7) guarantees that each idi[j] is indeed a bit. Rela-
tions (13) and (18) are quadratic equation and thus require 9 elements
each whereas 12 elements suffice for relations (14)-(17). Note that the
same variable θ ≡ Zp can be re-used for each j ≡ {1, . . . , σ}, so that (6)
only needs to be proved once.

300 B. Libert and M. Joye

5. Generate a commitment ΔCΩ1 to Ω1 with a NIWI proof ΔπW ≡ G
3 that

variables (Ω1, HV) satisfy the verification equation

e(g, g)Δ · e(HW (M), Ω3) = e(Ω1, g) · e(HV , Ω
−1
2) (19)

of the two-level Waters signature.

6. Finally, use SK to generate a one-time signature θots on the entire set of
commitments and NIWI/NIZK proofs in order to achieve anonymity in
the CCA2 sense.

The whole signature θ consists of

θ =
(
VK, ΔCHV , ΔCθ, ΔCΓ1 , ΔCΓ2 , ΔπΓ , ΔπHV , ΔπW , { ΔCFj , (Cj,1, Cj,2, Cj,4, Ψj),

ΔCGj , ΔπGj , ΔπΘj , ΔCΘj , ΔCZj,1 , ΔCZj,2 , Δπj , {ΔπΨj,k
}3k=1}Πj=1, ΔCΩ1 , Ω2, Ω3, θots

)

Verify(gpk,M, θ): parse θ as above. Return 1 if and only if: (i) θots is a valid
one-time signature on the entire bundle; (ii) {Ψj}Πj=1 are all valid ciphertexts

for Kiltz’s cryptosystem (i.e., by testing if e(Ψj,4, X) = e(Ψj,1, g
VK · U) and

e(Ψj,5, Y) = e(Ψj,2, g
VK · V)); (iii) It holds that e(Cj,1, HU (M)) = e(g, Cj,2)

for each j ≡ {1, . . . , σ}; (iv) All proofs properly verify.

TrapGen(gpk,mskADM,M): given the admitter’s key mskADM = (gπ0
2 , gπ1

2) and a
message M ≡ {0, 1}L, choose r0, r1 R⇐ Zp to compute and return

tM = (t0,1, t0,2, t1,1, t1,2) =
(
gπ0
2 ·HU (M)r0 , gr0 , gπ1

2 ·HU (M)r1 , gr1
)
. (20)

Open(gpk, ok, tM ,M, θ): return ≥ if θ is not a valid group signature w.r.t. gpk
and M . Otherwise, parse tM as in (20). For i = 1 to σ, do the following.

1. Decrypt Ψj = (Ψj,1, Ψj,2, Ψj,3, Ψj,4, Ψj,5) using ok = (Ψx, Ψy, Ψu, Ψv) to
obtain Cj,3 ≡ G.

2. Use tM to determine the bit id[i] ≡ {0, 1} for which the equalities (5) are
satisfied.

Return the identifier id = id[1] . . . id[σ] ≡ {0, 1}Π.

Overall, each signature consists of 53σ + 35 group elements if the scheme is
instantiated with Groth’s discrete-logarithm-based one-time signature [23]. For
groups of N ⊃ 106 members (which can accommodate the population of a city),
we can set σ = 20 and obtain signatures of 68 kB at the 128-bit security level as-
suming that each group element has a 512-bit representation. In comparison, the
k-resilient system of Sakai et al. [35] already requires signatures of 32 kB for the
same security level. While less efficient than the random-oracle-based realization
of [33], our scheme is not unrealistically expensive for practical applications.

Group Signatures with Message-Dependent Opening in the Standard Model 301

4.2 Security

The traceability of the scheme relies on the standard CDH assumption whereas
the anonymity properties rely on the D3DH and DLIN assumptions. In the proof
of anonymity against the admitter, we also need to assume that the one-time
signature is strongly unforgeable [5], which is implied by the DLIN assumption
in Groth’s scheme [23]. Since the CDH assumption is implied by both D3DH and
DLIN, we only need two assumptions to prove the following result (as detailed
in the full version of the paper).

Theorem 2. The scheme provides full traceability as well as full anonymity
against the opener and the admitter assuming that: (i) Σ is a strongly unforgeable
one-time signature; (ii) The DLIN and D3DH assumption both hold in G.

References

1. Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-
Preserving Signatures and Commitments to Group Elements. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer, Heidelberg (2010)

2. Abe, M., Groth, J., Haralambiev, K., Ohkubo, M.: Optimal Structure-Preserving
Signatures in Asymmetric Bilinear Groups. In: Rogaway, P. (ed.) CRYPTO 2011.
LNCS, vol. 6841, pp. 649–666. Springer, Heidelberg (2011)

3. Abe, M., Haralambiev, K., Ohkubo, M.: Signing on Elements in Bilinear Groups
for Modular Protocol Design. Cryptology ePrint Archive: Report 2010/133 (2010)

4. Abe, M., Haralambiev, K., Ohkubo, M.: Group to Group Commitments Do Not
Shrink. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS,
vol. 7237, pp. 301–317. Springer, Heidelberg (2012)

5. An, J.-H., Dodis, Y., Rabin, T.: On the Security of Joint Signature and Encryp-
tion. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 83–107.
Springer, Heidelberg (2002)

6. Ateniese, G., Camenisch, J., Joye, M., Tsudik, G.: A practical and provably secure
coalition-resistant group signature scheme. In: Bellare, M. (ed.) CRYPTO 2000.
LNCS, vol. 1880, pp. 255–270. Springer, Heidelberg (2000)

7. Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: Formal
definitions, simplified requirements, and a construction based on general assump-
tions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629.
Springer, Heidelberg (2003)

8. Bellare, M., Rogaway, P.: Random Oracles are Practical: A Paradigm for Designing
Efficient Protocols. In: 1st ACM Conference on Computer and Communications
Security, pp. 62–73. ACM Press (1993)

9. Bellare, M., Shi, H., Zhang, C.: Foundations of group signatures: The case of dy-
namic groups. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 136–153.
Springer, Heidelberg (2005)

10. Benjumea, V., Choi, S.G., Lopez, J., Yung, M.: Fair traceable multi-group sig-
natures. In: Tsudik, G. (ed.) FC 2008. LNCS, vol. 5143, pp. 231–246. Springer,
Heidelberg (2008)

11. Boneh, D., Boyen, X.: Efficient Selective-ID Secure Identity-Based Encryption
Without Random Oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT
2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

302 B. Libert and M. Joye

12. Boneh, D., Boyen, X., Shacham, H.: Short Group Signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

13. Boneh, D., Franklin, M.: Identity-Based Encryption from the Weil Pairing. SIAM
Journal of Computing 32(3), 586–615 (2003); earlier version in Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)

14. Boyen, X., Waters, B.: Compact Group Signatures Without Random Oracles. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 427–444. Springer,
Heidelberg (2006)

15. Boyen, X., Waters, B.: Full-Domain Subgroup Hiding and Constant-Size Group
Signatures. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450,
pp. 1–15. Springer, Heidelberg (2007)

16. Camenisch, J.L., Chaabouni, R., Shelat, A.: Efficient Protocols for Set Membership
and Range Proofs. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350,
pp. 234–252. Springer, Heidelberg (2008)

17. Camenisch, J., Haralambiev, K., Kohlweiss, M., Lapon, J., Naessens, V.: Structure
Preserving CCA Secure Encryption and Applications. In: Lee, D.H., Wang, X.
(eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 89–106. Springer, Heidelberg (2011)

18. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited.
Journal of the ACM 51(4), 557–594 (2004)

19. Cathalo, J., Libert, B., Yung, M.: Group Encryption: Non-Interactive Realization
in the Standard Model. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912,
pp. 179–196. Springer, Heidelberg (2009)

20. Chaum, D., van Heyst, E.: Group Signatures. In: Davies, D.W. (ed.) EUROCRYPT
1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)

21. Delerablée, C., Pointcheval, D.: Dynamic Fully Anonymous Short Group Signa-
tures. In: Nguyên, P.Q. (ed.) VIETCRYPT 2006. LNCS, vol. 4341, pp. 193–210.
Springer, Heidelberg (2006)

22. Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero knowledge for NP.
In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 339–358. Springer,
Heidelberg (2006)

23. Groth, J.: Simulation-Sound NIZK Proofs for a Practical Language and Constant
Size Group Signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS,
vol. 4284, pp. 444–459. Springer, Heidelberg (2006)

24. Groth, J.: Fully anonymous group signatures without random oracles. In: Kurosawa,
K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 164–180. Springer, Heidelberg
(2007)

25. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In:
Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008)

26. H̊astad, J., Impagliazzo, R., Levin, L., Luby, M.: A pseudorandom generator from
any one-way function. SIAM Journal on Computing 28(4), 1364–1396 (1999)

27. Heng, S.-H., Kurosawa, K.: k-Resilient Identity-Based Encryption in the Standard
Model. In: Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp. 67–80. Springer,
Heidelberg (2004)

28. Kiayias, A., Tsiounis, Y., Yung, M.: Traceable signatures. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 571–589.
Springer, Heidelberg (2004)

29. Kiayias, A., Yung, M.: Secure scalable group signature with dynamic joins and sep-
arable authorities. International Journal of Security and Networks (IJSN) 1(1/2),
24–45 (2006)

Group Signatures with Message-Dependent Opening in the Standard Model 303

30. Kiltz, E., Mityagin, A., Panjwani, S., Raghavan, B.: Append-Only Signatures. In:
Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP
2005. LNCS, vol. 3580, pp. 434–445. Springer, Heidelberg (2005)

31. Kiltz, E.: Chosen-ciphertext security from tag-based encryption. In: Halevi, S.,
Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 581–600. Springer, Heidelberg
(2006)

32. Nguyen, L., Safavi-Naini, R.: Efficient and Provably Secure Trapdoor-Free Group
Signature Schemes from Bilinear Pairings. In: Lee, P.J. (ed.) ASIACRYPT 2004.
LNCS, vol. 3329, pp. 372–386. Springer, Heidelberg (2004)

33. Ohara, K., Sakai, Y., Emura, K., Hanaoka, G.: A Group Signature Scheme with
Unbounded Message-Dependent Opening. In: AsiaCCS 2013. ACM Press (2013)

34. Sahai, A., Waters, B.: Fuzzy Identity-Based Encryption. In: Cramer, R. (ed.)
EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

35. Sakai, Y., Emura, K., Hanaoka, G., Kawai, Y., Matsuda, T., Omote, K.: Group
Signatures with Message-Dependent Opening. In: Abdalla, M., Lange, T. (eds.)
Pairing 2012. LNCS, vol. 7708, pp. 270–294. Springer, Heidelberg (2013)

36. Shamir, A.: Identity-Based Cryptosystems and Signature Schemes. In: Blakely,
G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer,
Heidelberg (1985)

37. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg
(2005)

A Definitions for Identity-Based Encryption

Definition 6 ([13]). An IBE scheme consists of a tuple of efficient algorithms
(Setup,Keygen,Encrypt,Decrypt) such that:

– Setup takes as input a security parameter ρ ≡ N and outputs a master public
key mpk and a matching master secret key msk.

– Keygen takes as input an identity ID and a master secret key msk. It outputs
a private key dID for the identity ID.

– Encrypt takes as input the master public key mpk, an identity ID and a
message m and outputs a ciphertext C.

– Decrypt takes as input the master public key mpk, a decryption key dID and
a ciphertext C and outputs a message M .

Correctness requires that, for any ρ ≡ N, any outputs (mpk,msk) of Setup(ρ),
any plaintext M and any identity ID, if dID ⇐ Keygen(msk, ID), it holds that
Decrypt(mpk, dID,Encrypt(mpk, ID,M)) =M.

The standard security notion captures the semantic security of messages en-
crypted under some identity, evenwhen the adversaryhas corruptedpolynomially-
many other identities.

Definition 7. [13] An IBE system is semantically secure (or IND-ID-CPA se-
cure) if no PPT adversary A has non-negligible advantage in this game:

304 B. Libert and M. Joye

1. The challenger generates a master key pair (mpk,msk) ⇐ Setup(ρ) and
gives mpk to A.

2. A issues a number of key extraction queries for identities ID of its choice.
The challenger responds with dID ⇐ Keygen(msk, ID).

3. When the adversary A decides that phase 2 is over, it chooses distinct equal-
length messages M0,M1 and an identity IDδ that has never been queried to
the key extraction oracle at step 2. The challenger flips a coin d R⇐ {0, 1}
and returns a challenge ciphertext Cδ = Encrypt(mpk, ID,Mδ

d).

4. A issues new queries but cannot ask for the private key of IDδ.
5. A finally outputs a bit d≤ ≡ {0, 1} and wins if d≤ = d. A’s advantage is defined

as the distance Advind-id-cpa(A) := |Pr[d≤ = d]− 1/2|.

In k-resilient IBE schemes [27], the adversary is restricted to make private
key extraction queries on at most k distinct identities. In this paper, we consider
the standard definition where the maximal number of private key queries is not
fixed in advance.

B Proof of Lemma 1

Proof. Let us assume that there exists i ≡ {1, . . . , σ} for which a PPT adversary
A can tell Game i apart from Game i − 1. We show how to build an algorithm
B that takes in an instance (g, ga, gb, gc, T) of the D3DH problem and uses its
interaction with A to decide if T = gabc or T ≡R G.

To this end, algorithm B prepares the master public key mpk by randomly
choosing α0, α1

R⇐ Zp and setting g0 = (ga)ι0 , g1 = (ga)ι1 as well as g2 = gb. Note
that this implicitly defines ε0 = a · α0 and ε1 = a · α1. Next, B chooses random
values ν R⇐ {0, . . . , L}, ρ0, ρ1, . . . , ρL R⇐ {0, . . . , ζ − 1} and δ0, δ1, . . . , δL

R⇐ Zp,
with ζ = 2q and where q is the maximal number of private key queries throughout
the game. These are used to define

u0 = gδ0 · (gb)ν·ζ−ρ0 (21)

ui = gδi · (gb)−ρi , i ≡ {1, . . . , L},

so that any L-bit identity ID = ID[1] . . . ID[L] ≡ {0, 1}L has a hash value

HG(ID) = u0 · ∏L
i=1 u

ID[i]
i that can be written HG(ID) = gJ2(ID) · (gb)J1(ID) if

we define the functions

J1(ID) = ν · ζ − ρ0 −
L∑
i=1

ρi · ID[i], J2(ID) = δ0 −
L∑
i=1

δi · ID[i].

The generation of mpk is completed by having B choose Z1, . . . , ZΠ
R⇐ G at

random.
Whenever A queries an identity ID for private key extraction, B uses the

same strategy as in the security proofs of [11, 37]. Namely, it first evaluates the

Group Signatures with Message-Dependent Opening in the Standard Model 305

function J1(ID). If J1(ID) = 0, it aborts and outputs a random bit. Otherwise,
it chooses r0, r1

R⇐ Zp and computes (d0,1, d0,2, d1,1, d1,2) as

(
HG(ID)

r0 · (ga)−ι0·J2(ID), gr0 · (ga)−ι0/J1(ID),

HG(ID)
r1 · (ga)−ι1·J2(ID), gr1 · (ga)−ι1/J1(ID)

)

which equals (gι0·a2 ·HG(ID)
r̃0 , gr̃0 , gι1·a2 ·HG(ID)

r̃1 , gr̃1) if r̃0 = r0 − α0 ·a/J1(ID)
and r̃1 = r1 − α1 · a/J1(ID). The 4-uple dID = (d0,1, d0,2, d1,1, d1,2) thus forms a
valid private key and is returned to A.

When A decides to enter the challenge phase, it chooses messagesM0,M1 ≡ G

and a target identity IDδ. At this point, B aborts and outputs a random bit in
the event that J1(ID

δ) ∪= 0. Otherwise (i.e., if J1(ID
δ) = 0), B chooses a bit

Ψ R⇐ {0, 1} as well as a random σ-bit string K R⇐ {0, 1}Π and generates the
challenge ciphertext as follows.

- For each j ≡ {1, . . . , i−1}, B chooses sj , γj
R⇐ Zp, C̃j,3, C̃j,4

R⇐ G at random

and sets (Cj,1, Cj,2, Cj,3, Cj,4) =
(
gsj , HG(ID)

sj , C̃j,3, C̃j,4
)
.

- For each j ≡ {i + 1, . . . , σ}, B faithfully chooses sj , γj
R⇐ Zp and sets

(Cj,1, Cj,2, Cj,3, Cj,4) =
(
gsj , HG(ID)

sj , g
sj/Δj

K[j] , g
Δj

2

)
.

- For j = i, B (Ci,1, Ci,2, Ci,3, Ci,4) =
(
gc, (gc)J2(ID

λ), T ιK[i]/Δi , gΔi

)
for a

randomly drawn γi
R⇐ Zp.

Finally, B computes C0 =Mχ ·
∏Π
j=1 Z

K[j]
j and provides the adversary with the

challenge ciphertext C = (C0, {(Cj,1, Cj,2, Cj,3, Cj,4)}Πj=1).

We remark that, if T = gabc, the challenge ciphertext C is distributed as in
Game i− 1 as (Ci,1, Ci,2, Ci,3, Ci,4) can be written

(Ci,1, Ci,2, Ci,3, Ci,4) =
(
gc, HG(ID

δ)c, gac·ιK[i]/Δ̃i , (gb)Δ̃i

)

=
(
gc, HG(ID

δ)c, g
c/Δ̃i

K[i] , g
Δ̃i
2

)
.

where γ̃i = γi/b. In contrast, if T ≡R G, then the pair (Ci,3, Ci,4) is uniformly
distributed in G

2, which means that (Ci,1, Ci,2, Ci,3, Ci,4) has the same distribu-
tion as in Game i.

At this stage, the adversary’s probability may be correlated with the proba-
bility that the simulator B has to abort (i.e., because A queries the private key
of an identity ID for which J1(ID) = 0 or because J1(ID

δ) ∪= 0 in the challenge
phase). As in [37], one way to address this problem is to introduce an artificial
abort step in order to guarantee that B always aborts with the maximal proba-
bility, no matter which particular set of queries is made by A.

Namely, with ζ = 2q, the same analysis as [37] shows that B’s probability not
to abort for any set of queries is at least Σ = 1/(4(L+ 1)q).

When the game ends, B considers the sequence of identities (ID1, . . . , IDq, ID
δ)

306 B. Libert and M. Joye

chosen by A during the game and estimates the probability that this choice
causes the simulation to abort. This process does not require to run A again but
rather involves repeatedly sampling vectors (ρ0, ρ1, . . . , ρL)

R⇐ Z
L+1
ζ and evaluate

J1(ID1), . . . , J1(IDq) and J1(ID
δ) accordingly. When the estimated probability Σ≤

is obtained after O(λ−2 ln(λ−1)Σ−1 ln(Σ−1)) samples, if Σ≤ > Σ, B artificially
aborts and outputs a random bit with probability 1 − Σ/Σ≤. With probability
Σ/Σ≤, it continues.

After the artificial abort step, if the simulator B did not naturally or artifi-
cially abort, it outputs 1 if A successfully guesses Ψ≤ = Ψ and 0 otherwise. We
now argue that B has non-negligible advantage as a D3DH distinguisher if A
can distinguish Game i from Game i− 1. Indeed, depending on the distribution
of T , B is playing either Game i− 1 or Game i with A. Using the same analysis
as in [37], we find that, if the difference |Advi−1 −Advi| between A’s advantage
functions in Game i−1 and Game i is λ, then B can break the D3DH assumption
with probability λ/(16(L+ 1)q). ◦⊥

Practical Distributed Signatures

in the Standard ModelΦ

Yujue Wang1,2, Duncan S. Wong2, Qianhong Wu3,
Sherman S.M. Chow4, Bo Qin5, and Jianwei Liu3

1 Key Laboratory of Aerospace Information Security and Trusted Computing
Ministry of Education, School of Computer, Wuhan University, China

2 Department of Computer Science
City University of Hong Kong, Hong Kong, China

3 School of Electronics and Information Engineering, Beihang University, China
4 Department of Information Engineering

Chinese University of Hong Kong, Hong Kong, China
5 School of Information, Renmin University of China, Beijing, China

yjwang@whu.edu.cn, duncan@cityu.edu.hk,

{qianhong.wu,liujianwei}@buaa.edu.cn,
sherman@ie.cuhk.edu.hk, bo.qin@ruc.eud.cn

Abstract. A distributed signature scheme allows participants in a qual-
ified set to jointly generate a signature which cannot be forged even when
all the unqualified participants collude together. In this paper, we pro-
pose an efficient scheme for any monotone access structure and show its
unforgeability and robustness under the computational Diffie-Hellman
(CDH) assumption in the standard model. For 112-bit security, its se-
cret key shares and signature fragments are as short as 255 bits and 510
bits, which are shorter than existing schemes assuming random oracle.
We then propose two extensions. The first one allows new participants
to dynamically join the system without any help from the dealer. The
second one supports a type of multipartite access structures, where the
participant set is divided into multiple disjoint groups, and each group
is bounded so that a distributed signature cannot be generated unless a
pre-defined number of participants from multiple groups work together.

Keywords: Distributed signature, threshold signature, secret sharing,
monotone span program, multipartite access structure, standard model.

Ψ This work is supported by the National Key Basic Research Program (973 pro-
gram) through project 2012CB315905, by the National Nature Science Foundation
of China through projects 61003214, 61173154, 61272501, 61202465 and 61370190,
by the Beijing Natural Science Foundation through project 4132056, by the Fun-
damental Research Funds for the Central Universities, and the Research Funds of
Renmin University of China and by Open Research Fund of Beijing Key Laboratory
of Trusted Computing. Sherman Chow is supported by the Early Career Scheme and
the Early Career Award of the Research Grants Council, Hong Kong SAR (CUHK
439713), and grants (4055018, 4930034) from Chinese University of Hong Kong.

J. Benaloh (Ed.): CT-RSA 2014, LNCS 8366, pp. 307–326, 2014.
c© Springer International Publishing Switzerland 2014

308 Y. Wang et al.

1 Introduction

A distributed signature scheme [12,24,25] enables a qualified set of participants
to jointly generate a signature on a message. The participants have their shares
of a (secret) signing key so that each of them can generate a signature fragment
for a given message. A full signature can then be reconstructed by collecting the
signature fragments from a qualified set of participants. This full signature would
be computationally indistinguishable from the one generated directly using the
signing key, and it should be unforgeable even if all the participants in the
unqualified sets collude together. How the qualified set is represented may differ
from construction to construction. The qualified set can be simply a threshold
structure (which reduces distributed signature to its special case of threshold
signature), or a more general notion of monotone access structure. For instance,
a signing key may be shared among three participants {p1, p2, p3} such that
the minimal qualified sets are {p1, p2} and {p2, p3}. As {p1, p3} is unqualified,
existing threshold signature schemes does not apply to this distributed setting.

When multiple signers are involved, there are at least two properties we may
expect from a distributed signature scheme. First, we want robustness such that
the full signature can be reconstructed even if there were some invalid signature
fragments. Second, it is also desirable if the scheme is non-interactive in both
signature fragment generation and final signature reconstruction, i.e., every par-
ticipant can locally compute a signature fragment for any given message, and
after all these fragments are collected, reconstruction can take place without
further help from any participants.

Non-interactive robust distributed cryptosystem is a useful cryptographic
primitive for distributed systems [38]. A canonical example involves issuing
signature from a number of parties for security and availability, such as is-
suing digital certificates and certifying transactions between companies. Daza,
Herranz, and Sáez [13] discussed its application in metering, which provides a
publicly-verifiable cryptographic proof counting the number of interactions be-
tween servers and clients, such as counting the number of visits to a web server
(say, for advertisement accounting) by collecting signature fragments from the
clients. On the other hand, one may use this scheme in another way. A company
can launch a promotion campaign such that users can get reward when they see
the ad-banner from this company from a sufficient number of different web sites.

1.1 Our Contributions

There are several known distributed signature schemes [12, 24, 25]. Our work
improves the state-of-the-art in a few different dimensions. In detail, our scheme
achieves these appealing properties:

1. Provable Security under Standard Assumption. Our scheme is proven secure
under Computational Diffie-Hellman (CDH) assumption without relying on
random oracles. Prior to our work, only the RSA-based scheme by Damg̊ard-
Dupont [12] is proved secure without random oracles.

Practical Distributed Signatures in the Standard Model 309

2. Expressive Access Structure. Our construction is generic and applicable to
any linear secret sharing schemes. As a result, our scheme supports expressive
access structure since monotone span programs are equivalent to linear secret
sharing schemes [4] and every monotone access structure can be realized by
a linear secret sharing scheme [24, 43]. Sharing secret key can be tricky. In
existing distributed RSA-based signature schemes [12,24], the Euler’s totient
function of RSA modulus should remain secret even for share-holder. Any
non-trivial linear dependence of the rows allows reconstruction of the Euler’s
totient function. This requires the sub-matrices regarding all unqualified sets
in the monotone span program to be full rank.

3. Practical Efficiency. Compared to the existing schemes (see Table 1), our
scheme is more efficient as its secret key shares and signature fragments are
4 times and 2 times shorter than others, e.g., for 112-bit security, secret key
shares and signature fragments of our scheme are as short as 255 bits and
510 bits, respectively. Moreover, our construction is non-interactive. All the
existing distributed signature schemes [12, 24, 25] are interactive.

1.2 Extensions

We consider two extensions of our proposed schemes.
Dynamic Joining. In some scenarios, e.g., ad-hoc networks, new participants

are expected to join the group dynamically. A trivial solution needs the help
from a trusted dealer. Our first extension is a threshold signature scheme, which
supports dynamic join without the presence of a dealer. A new participant just
needs to talk to at least t existing users for a threshold t. To the best of our
knowledge, the only known such scheme is proposed by Gennaro et al. under
the RSA assumption [21] in random oracle model, yet our scheme is in standard
model and more efficient (see Table 2).

Multipartite Access Structures.All participants have the same power in a regu-
lar threshold signature scheme. However, in real world applications, participants
may be classified by their attributes such as titles, positions, etc., which in turn
determine their power in signature generation. In a multipartite access struc-
ture [2,3,6,10,17–19,33,41,44], the participant set is divided into multiple disjoint
groups and the participants in the same group have the equal power when recon-
structing the signature. Obviously, this generalizes the threshold case. In recent
years, multipartite access structures have been received considerable attentions,
such as compartmented access structures [10, 17, 19, 44, 46, 47], weighted access
structures [2,3,33,41], multi-level (hierarchical) access structures [6,10,17–19,44],
partially hierarchical access structures [17], etc. For some of these, linear and ef-
ficient secret sharing schemes have been found [10, 41, 44, 46, 47].

Our second extension is designed specifically for compartmented access struc-
ture with upper bounds [17,46]. There exists a threshold for all the participants,
and an upper bound for each separate group, i.e., there is a quorum for signature
issuing, but any group can not contribute more than the given upper bound even
when all the participants in this group participate.

310 Y. Wang et al.

1.3 Related Work

There are a few different notions of signature related to distributed signatures.
Threshold Signatures. Threshold signatures have been received considerable

attentions (e.g., see [11, 14, 15, 21–23, 31, 42, 45]). A signature can be created
from the participation of any t or more signers among n potential signers. When
2t − 1 ⊗ n, the scheme can be made robust. To realize robustness, Gennaro
et al. [22] proposed two approaches to verify RSA signature fragments, which
are based on the non-interactive information checking protocol, and undeniable
signature requiring interactions between the verifier and the signers. The robust
threshold RSA signature schemes also have been discussed in random oracle
model [21, 42] and without random oracles [11, 31]. There is also a threshold
version for digital signature standard (DSS) signatures [23].

Distributed Signatures. An RSA-based distributed signature scheme for gen-
eral access structures was proposed by Herranz, Padró and Sáez [24]. An RSA-
based scheme in the standard model was given by Damg̊ard and Thorbek [12],
which introduced linear integer secret sharing to distribute RSA secret keys.
Stinson and Strobl [45] generalized discrete-logarithm-based Schnorr’s signa-
ture [37,40] into a threshold version. Distributed Schnorr’s signature was studied
by Herranz and Sáez [25], which also served as a building block for constructing
distributed proxy signature [25,26]. However, these schemes are analyzed in the
random oracle model.

Mesh Signatures. As a generalization of ring signatures, mesh signatures [9]
can be generated by a qualified set of valid atomic signatures with anonymity.
The only construction known [9] has complexities linear in the number of sign-
ers. In fact, the corresponding arborescent monotone access structure is a linear
combination of threshold gates, as both AND and OR gates are special cases of
threshold access structures. However, this scheme [9] cannot support monotone
access structures without arborescent representations. Both distributed signa-
ture and mesh signature can be used to express that the signers are from a
qualified group. A mesh signature can be generated by a single signer, while a
distributed signature is usually generated by multiple signers.

Attribute-Based Signatures.In attribute-based signature [32], each signer is as-
signed with a set of attributes. A signer can generate a signature if the claim-
predicate is satisfied by her attributes. Both monotone [29,32] and non-monotone
access structures [34,35] can be realized by span programs. Like distributed signa-
tures, the scheme has collusion resistance such that signers cannot create a signa-
ture that none of them are qualified to even if they pool their attributes together.
Unlike distribute signatures, an attribute-based signature is generated by a single
signer (with a qualified set of attributes). The claim-predicate can be different for
each signature,which inherentlymakes the signaturemore complex, either in terms
of signature size or underlying assumption. For example, the schemes of Okamoto-
Takashima [34, 35], which are based on decisional linear assumption, produce sig-
natures of lengths increase linearly with the complexity of the access structure.
The attribute-based signature scheme with threshold access structure due to Her-
ranz et al. [29] is constant-size, yet based on a non-static assumption. Bellare and

Practical Distributed Signatures in the Standard Model 311

Fuchsbauer [8] considered a more general primitive known as policy-based signa-
ture, which allows a signer to generate signature on somemessage that fits in some
policy, while the privacy of the policy is preserved.

2 Definitions and Security Requirements

2.1 Secret Sharing and Monotone Span Program

In a secret sharing scheme [7,28,41], a dealer distributes the shares of some secret
information to participants in such a way that the secret can be recovered when
participants in a qualified set pool their shares together. An access structure
is the collection of all qualified sets. An access structure is said to satisfy the
monotone increasing property if any set that contains a qualified set is also
qualified. In this paper, we will require all the secret sharing schemes are perfect,
that is, unqualified sets cannot get any information about the secret.

Notations. Consider a group of participants P = {p1, · · · , pn}. We use σ
to denote the monotone access structure defined on P . Due to its monotone
increasing property of σ , there exists a collection of minimal qualified sets which
denoted by minσ , such that their proper subsets are not qualified, that is, ≡A ∈
minσ and ≡B � A, we have B ∪∈ σ . We also use σ = 2P \ σ to represent the
collection of all unqualified sets of participants where 2P is the power set of P .
Clearly, σ satisfies monotone decreasing property, i.e., ≡A ∈ σ and ≡B ⇐ A,
B ∈ σ . Similarly, let maxσ be the collection of all the maximal unqualified sets
of participants which are not contained in any other unqualified ones.

Definition 1 (Perfect Secret Sharing [4]). Let σ be an access structure
defined on a group of participants P. For a secret sharing scheme S realizing σ ,
S is said to be perfect if the following two properties are satisfied:

– for any qualified set A ∈ σ , Pr[Re(sA(k)) = k] = 1 for every k ∈ F;
– for any unqualified set B ∪∈ σ , Pr[sB(k1) = (si)pi≥B] = Pr[sB(k2) = (si)pi≥B]

for any two distinct secrets k1, k2 ∈ F, and a list of any possible shares (si)pi≥B;

where Re(·) is the reconstruction function of S and sA(k) denotes the shares of
the secret k which are assigned to the participants in set A.

In this paper, we are interested in the linear secret sharing schemes (LSSS),
that is, the shares are calculated by using a linear mapping, and also the secret
information can be linearly represented by the shares in any qualified set. In
the upcoming sections, we will use monotone span programs (MSP) to model
linear secret sharing schemes, which was introduced in [30] by Karchmer and
Wigderson. In fact, MSP was implicitly proposed before [10] by Brickell which
was called vector space secret sharing scheme.

Definition 2 (Monotone Span Program [4,30]). Let P be a group of partic-
ipants, a and b be two positive integers. A monotone span program is a quadruple
M = (F, Ψ ,M, ρ), where F is a field, Ψ is a target vector in F

b, M is an a × b

312 Y. Wang et al.

matrix over F and ρ : {1, 2, · · · , a} → P labels each row of M by a participant
in P. The size of M is defined as the row number of M . For any set P ⇐ P,
there is a sub-matrix MP of M , which consists of all the rows labeled by the
participants in P . A set P ⇐ P is accepted by M if the target vector Ψ can be
spanned by the vectors in MP . An access structure σ defined on P is accepted
by M if and only if M accepts all the sets P ∈ σ .

It is easy to see that, M not only defines a linear mapping from the matrixM
to the participants in P , but also defines a linear relationship between Ψ and each
sub-matrixMP (P ∈ σ) because Ψ can be spanned by the rows ofMP . It is well
known that, each monotone access structure can be realized by an LSSS [24,43]
and MSP is equivalent to LSSS [4, 30]. Thus, every monotone access structure
can be realized by an MSP, and in such a way that, there may be several rows
of M labeled to one participant pi ∈ P . However, for convenience to express our
results in next sections, we assume there is a one to one correspondence between
the rows of M and the participants in P , and will use the vector λi to denote
the row of M which labeled by the participant pi ∈ P , i.e., λi = ρ−1(pi).

For other details on secret sharing, the readers can refer to [4].

2.2 Distributed Signature Scheme

We proceed to review the definitions and security model of distributed signa-
ture schemes [12,24,25], which are in fact generalizations of threshold signature
schemes [22,23]. Besides a group of participants P = {p1, p2, · · · , pn}, we assume
there exists a special trusted dealer D and a collector C. Anyone (including that
in P) can act as the collector C to run the public-known signature reconstruction
algorithm without requiring or producing any secret. We also assume that there
exists a secure channel between D and each participant pi (1 ⊗ i ⊗ n), but we
do not assume that between any pair of participants (including C). The access
structure σ will be represented by an MSP M = (F, Ψ ,M, ρ), and in which the
target vector Ψ is implicitly assigned to the dealer D.

Definition 3 (σ -Distributed Signature Scheme). Let SS=≥KGen, Sig, Ver∈
be a signature scheme and σ be a general monotone access structure realized by
MSP on the participant set P and a trusted dealer D. A σ -distributed signature
scheme DS for SS is a quadruple DS = ≥DKGen, SFGen,SReCon, Ver∈ where all
algorithms are polynomial-time computable.

– DKGen: On input 1Π where Δ ∈ N is a security parameter, and access struc-
ture σ , the (randomized) distributed signature key generation algorithm,
which is carried out by the dealer D, computes (PK, SK) ∅ KGen(1Π),
then generates n secret key shares (SK1, · · · , SKn) based on σ . This algo-
rithm also publishes some additional verification parameters V P . We denote
(PK, SK1, · · · , SKn, V P) ∅ DKGen(1Π, σ).

– SFGen: On input 1Π, a message m, secret key share SKi, public key PK,
and public verification parameters V P , the signature fragment generation
algorithm, which is carried by each participant pi ∈ P, generates a signature
fragment Φi. We denote Φi ∅ SFGen(1Π,m, SKi, PK, V P) for any pi ∈ P.

Practical Distributed Signatures in the Standard Model 313

– SReCon: On input 1Π, a message m, signature fragments {Φi : pi ∈ P} where
P ⇐ P, public key PK, public verification parameters V P , and access struc-
ture σ , the signature reconstruction algorithm is carried out by the collector,
reconstructs the signature Φ from the signature fragments Φi’s based on σ .
If the set of signature fragments is unqualified with respect to σ , then out-
puts ⊕. We denote {Φ,⊕} ∅ SReCon(1Π,m, {Φi : pi ∈ P such that P ⇐
P}, PK, V P, σ).

– Ver: On input 1Π, a message-signature pair (m,Φ) and a public key PK, the
deterministic verification algorithm, which can be carried out by anyone (in-
cluding who are not in P), outputs “1” if Φ is a valid signature for m under
the public key PK, or “0” otherwise. We denote {1, 0} ∅ Ver(1Π,m, Φ, PK).

When the verification algorithm Ver in DS is just the same as that in SS,
no one can tell whether a signature is generated in a distributed or the typical
centralized manner.

A distributed signature scheme is correct, if for all messages and all key tu-
ples consisting of public key, secret key shares and public verification parameters,
the signatures produced by signature reconstruction algorithm can be verified
as valid under the corresponding public key. Formally, the correctness of a σ -
distributed signature scheme DS = ≥DKGen, SFGen, SReCon, Ver∈ can be de-
fined as follows.

Definition 4 (Correctness). σ -distributed signature scheme DS is correct
if Ver(1Π,m, Φ, PK) = 1 for any (PK, SK1, · · · , SKn, V P) ∅ DKGen(1Π, σ),
any P ∈ σ , any m ∈ {0, 1}Δ, and any Φ ∅ SReCon(1Π,m, {Φi ∅ SFGen(1Π,m,
SKi, PK, V P) : pi ∈ P}, PK, V P, σ).
Definition 5 (Unforgeability). Given a σ -distributed signature scheme DS.
Suppose A be a probabilistic polynomial time adversary who controls an unqual-
ified set P ≤ ∈ σ of participants. Consider the following experiment for A:

– On input 1Π and σ , DKGen is executed to get (PK, SK) and (SK1, · · · , SKn);
– A is given 1Π, PK, and a list of secret key shares which belong to P ≤.
– A adaptively chooses qs (qs ∈ N) messages m1, · · · ,mqs and interacts with

SFGen and SReCon to obtain their signatures Φ1, · · · , Φqs .
– A outputs a pair (m,Φ). A succeeds the game if Ver(1Π,m, Φ, PK) = 1 and
m ∪∈ {m1, · · · ,mqs}.

If there is no such adversary A who could succeed with non-negligible probability
in Δ, then DS is said to be existentially unforgeable against adaptively
chosen message attacks.

If an adversary A controls an unqualified set P ≤ ∈ σ of participants, then A’s
view contains not only all the signatures Φ1, · · · , Φqs for the adaptively chosen
messages, but also all the intermediate states of the participants in P ≤ and the
public outputs on the execution of DS. Furthermore, suppose A is a malicious
adversary, then A can also make participants in P ≤ deviate from the algorithms
running, e.g., the corrupted participants can provide invalid signature fragments

314 Y. Wang et al.

for SReCon. If a distributed signature scheme resists such an adversary A, then
it is robust.

Definition 6 (Robustness). Given a σ -distributed signature scheme DS. Sup-
pose A be a malicious adversary who controls an unqualified set P ≤ ∈ σ of par-
ticipants. DS is said to be σ -robust if for any (PK, SK1, · · · , SKn, V P) ∅
DKGen(1Π, σ) and any message m ∈ {0, 1}Δ, there exists P ⇐ P \ P ≤ such that
Ver(1Π,m, Φ, PK) = 1 for any Φ ∅ SReCon(1Π,m, {Φ≤i : pi ∈ P ≤} ∃ {Φi ∅
SFGen(1Π,m, SKi, PK, V P) : pi ∈ P}, PK, V P, σ).

In fact, all the existing distributed signature schemes [12, 24, 25] are robust.
Similar to the threshold cases, there is a requirement on the access structures to
implement robust distributed signature schemes. In our case, the union of any
two unqualified sets cannot cover the universal set of the participants. Otherwise,
after discarding an unqualified set of signature fragments provided by malicious
participants, the remaining ones will also be unqualified to recover the signature.

3 Our Basic Scheme

We first briefly review bilinear groups which will be used in our construction.

Definition 7 (Bilinear Groups [20]). Let q be a prime. Suppose G1 and G2

are cyclic groups of order q, and generated by g1 and g2, respectively. A group
pair (G1,G2) are said to be bilinear if there exists a cyclic group GT and a
bilinear map e : G1 ×G2 → GT such that:

1. Bilinearity: ≡μ ∈ G1, ≡Ψ ∈ G2, and ≡a, b ∈ Z, e(μa, Ψb) = e(μ, Ψ)ab;
2. Non-degeneracy: e(g1, g2) ∪= 1 and thus is a generator of GT ;
3. Efficiency: the map e and the group operations in G1,G2 and GT could be

calculated efficiently.

Our Construction. Our construction is based on the Waters signature scheme
[27, 48].Let G be a group of order q, where q is a prime. For simplicity of pre-
sentation we set G1 = G2 = G such that e : G×G → GT is an efficient bilinear
map. Suppose H : {0, 1}Δ → {0, 1}Ψ is a public collision-resistant hash function,
where Υ is derived from the system security parameter. The access structure σ
is represented by an MSP M = (Zq, Ψ ,M, ρ).

– DKGen: The dealer randomly chooses a secret key k from Zq, and also a
series of elements g, g0, · · · , gΨ ∈ G. The public key is a tuple

PK = (g, g0, · · · , gΨ, e(g, g)k).
To share the secret key k among the participants in P , the dealer randomly
chooses a vector v ∈ (Zq)

b that satisfies v · Ψ = k mod q and calculates the
secret key shares as ki = v ·λi mod q for every pi ∈ P . The algorithm also
publishes the verification parameters

V P = (e(g, g)k1 , · · · , e(g, g)kn).

Practical Distributed Signatures in the Standard Model 315

– SFGen: All messages are taken as Υ-bit strings. For any longer messages, hash
function H should be applied first on them in order to shorten their length
to Υ. Given a message m denoted by (m1, · · · ,mΨ), the algorithm randomly
chooses a value ri ∈ Zq and generates signature fragment Φi = (αi, θi) for
the participant pi (pi ∈ P) using the secret key share ki as

αi = gki

⎛
⎡g0

Ψ⎢
j=1

g
mj

j

⎞
⎤
ri

, θi = gri .

– SReCon: Given a message m, signature fragments {Φi : pi ∈ P such that P ⇐
P}, public key PK = (g, g0, · · · , gΨ, e(g, g)k) and verification parameters
V P = (e(g, g)k1 , · · · , e(g, g)kn), the collector discards all the invalid signa-
ture fragments by checking if

e(αi, g)
?
= e(g, g)kie(g0

Ψ⎢
j=1

g
mj

j , θi)

holds. If the remaining signature fragments constitute a qualified set P with
regard to the access structure σ , then there exist a series of values {di ∈ Zq :
pi ∈ P} which can be efficiently found by solving the system of equations,
such that

Ψ =
⎥
pi≥P

diλi mod q.

Thus, the signature Φ = (α, θ) can be reconstructed as follows

α =
⎢
pi≥P

αi
di , θ =

⎢
pi≥P

θi
di .

Otherwise, outputs ⊕.
– Ver: Given a message-signature pair (m,Φ = (α, θ)) and public key PK =

(g, g0, · · · , gΨ, e(g, g)k), checks whether the following equality holds

e(α, g)
?
= e(g, g)ke(g0

Ψ⎢
j=1

g
mj

j , θ).

If it is true, then the purported signature Φ on message m is valid and
accepted; otherwise it is invalid.

Theorem 1. The proposed distributed signature scheme is correct.

Proof. According to the definition of MSP, Ψ can be linearly represented by
using all λi’s ofMP where P is a qualified set P ∈ σ . Thus, there exists a group
of numbers {di ∈ Zq : pi ∈ P} such that

⎦
pi≥P diλi = Ψ mod q and they can

be found by solving linear equations. Furthermore, we know

k = v · Ψ = v ·
⎛
⎡⎥
pi≥P

diλi

⎞
⎤ =

⎥
pi≥P

di (v · λi) =
⎥
pi≥P

diki mod q.

316 Y. Wang et al.

Then, the signature Φ = (α, θ) can be computed as

α =
⎢
pi≥P

αi
di = g

∑
pi∗P diki

⎛
⎡g0

Ψ⎢
j=1

g
mj

j

⎞
⎤

∑
pi∗P diri

= gk

⎛
⎡g0

Ψ⎢
j=1

g
mj

j

⎞
⎤
r

,

and

θ =
⎢
pi≥P

θi
di = g

∑
pi∗P diri = gr,

where r =
⎦

pi≥P diri mod q is also random because all the ri’s are randomly
chosen.

Givenamessage-signaturepair (m,Φ = (α, θ)) andpublic keyPK = (g, g0, · · · ,
gΨ, e(g, g)

k), the signature Φ can be validated due to the following equalities

e(α, g) = e

⎛
⎡gk

⎛
⎡g0

Ψ⎢
j=1

g
mj

j

⎞
⎤
r

, g

⎞
⎤ = e(gk, g)e

⎛
⎡
⎛
⎡g0

Ψ⎢
j=1

g
mj

j

⎞
⎤
r

, g

⎞
⎤

= e(g, g)ke(g0

Ψ⎢
j=1

g
mj

j , gr) = e(g, g)ke(g0

Ψ⎢
j=1

g
mj

j , θ).

⊆◦

3.1 Security Analysis

We first review a modular approach to prove unforgeability of distributed (thresh-
old) signature schemes, which has been used in previous works (e.g., [22–24,42]).
In detail, the unforgeability of a σ -distributed signature scheme can be proved
by first showing that the underlying standard signature scheme is unforgeable
and then showing that the σ -distributed signature scheme itself is simulatable.
A simulatable σ -distributed signature scheme DS requires that DKGen, SFGen
and SReCon are simulatable for any probabilistic polynomial time adversary A,
that is, A’s view on the execution of DKGen, SFGen and SReCon can be efficiently
simulated only based on the public key PK and access structure σ (represented
by MSP) of DS.

Definition 8 (Simulatability [22–24,42]). A σ -distributed signature scheme
DS = ≥DKGen, SFGen,SReCon,Ver∈ is said to be simulatable, if for any prob-
abilistic polynomial time adversary A who controls an unqualified set P ≤ ∈ σ ,
there exist efficient (polynomial time) algorithms S1 to simulate A’s view on the
execution of DKGen, and S2 to simulate A’s view on the execution of SFGen and
SReCon:

– S1: on input public key PK, corrupted set P ≤, and MSP which represents σ
in DS, can simulate the adversary A’s view on the execution of DKGen.

Practical Distributed Signatures in the Standard Model 317

– S2: on input the outputs of S1 (including all the secret information with re-
gard to the corrupted participants in P ≤, e.g., secret key shares), a message-
signature pair (m,Φ), the public key PK, the corrupted set P ≤ and MSP
which represents σ in DS, can simulate the adversary A’s view on the exe-
cution of SFGen and SReCon for generating Φ.

The next lemma states the requirements for the unforgeability of DS, and will
show that holding the view on the executions of DKGen and SFGen is useless for
A to generate a signature forgery. The counterpart of the lemma for threshold
signatures is given in [22,23,42]. It was used in distributed signature schemes [24].

Lemma 1. The DS scheme is also unforgeable if the underlying signature
scheme SS = ≥KGen, Sig, Ver∈ is unforgeable and the corresponding σ -distribute
signature scheme DS = ≥DKGen,SFGen,SReCon,Ver∈ is simulatable.

Regarding the security of our scheme, we have the following claim.

Theorem 2. Let σ ⊥ 2P be an access structure and M = (Zq , Ψ ,M, ρ) be a
monotone span program realizing σ . Then our σ -distributed signature scheme
is secure (robust and unforgeable under chosen message attacks) in the standard
model, assuming that the underlying Waters signature scheme is unforgeable.

Proof. It is easy to verify that the robustness can be achieved if P \ P ≤ ∈ σ
for any P ≤ ∈ σ . In detail, suppose the adversary A controls an unqualified set
P ≤ ∈ σ , then all the invalid signature fragments provided by P ≤ can be detected
during the execution of SReCon, and the signature can be reconstructed by P\P ≤.

For unforgeability, we will give two algorithms S1 and S2 to simulate the
adversary A’s view when A controls an unqualified set P ≤ ∈ σ , then Lemma 1
can be used accordingly.

S1 takes the public key PK = (g, g0, · · · , gΨ, e(g, g)k), the controlled set P ≤

and access structure σ with an MSP realization M = (Zq, Ψ ,M, ρ) as input. In
the proposed scheme, every participant pi ∈ P ≤ holds a secret key share ki = v·λi

mod q, where the vector v is randomly chosen from (Zq)
b such that k = v · Ψ

mod q. As σ is monotone decreasing, there exists a maximal unqualified set
P̂ ≤ ∈ maxσ such that P ≤ ⇐ P̂ ≤. In order to simulate the adversary A’s view, S1

randomly chooses a vector ṽ ∈ (Zq)
b and gives every participant pi ∈ P̂ ≤ a value

k̃i = ṽ ·λi mod q. In fact, the outputs {k̃i : pi ∈ P ≤} of S1 are computationally
indistinguishable from the real secret key shares {ki : pi ∈ P ≤}, because both
k̃i’s and ki’s are uniformly distributed in Zq. Furthermore, it has been proved [4]
that MSP is equivalent to the perfect linear secret sharing scheme, which means
that the distribution of {ki : pi ∈ P̂ ≤} are perfectly secure with regard to σ .
Thus, {k̃i : pi ∈ P̂ ≤} are also perfectly secure towards the same σ .

S1 also calculates the simulated verification parameters Ṽ P which are com-
putationally indistinguishable from the real verification parameters V P . In de-
tail, a part of Ṽ P which related to the participants in P̂ ≤ can be calculated as

{e(g, g)k̃i : pi ∈ P̂ ≤}, while the other ones can be computed as follows. Since
P̂ ≤ ∈ maxσ , we know P̂ ≤ ∃ {ps} ∈ σ for any participant ps ∈ P \ P̂ ≤. According

318 Y. Wang et al.

to the definition of monotone span program, λs can be linearly represented by
Ψ and {λi : pi ∈ P̂ ≤}:

λs = dDΨ +
⎥
pi≥P̂ →

diλi mod q,

where dD and {di : pi ∈ P̂ ≤} are elements in Zq. Thus, for any participant

ps ∈ P \ P̂ ≤, S1 computes

e(g, g)k̃s = e(g, g)
dDk+

∑
pi∗P̂ → dik̃i =

(
e(g, g)k

)dD ·
⎢
pi≥P̂ →

(
e(g, g)k̃i

⎪di
.

S2 takes the public key PK = (g, g0, · · · , gΨ, e(g, g)k), the outputs {k̃i : pi ∈
P̂ ≤} of S1, the controlled set P ≤, a public known hash function H , and a message-
signature pair (m,Φ) as input. For each participant pi ∈ P̂ ≤, S2 calculates the
simulated signature fragment Φ̃i = (α̃i, θ̃i) as

α̃i = gk̃i

⎛
⎡g0

Ψ⎢
j=1

g
mj

j

⎞
⎤
r̃i

, θ̃i = gr̃i ,

where r̃i ∈ Zq is randomly chosen by S2. Under the above Ṽ P , for any participant

ps ∈ P \ P̂ ≤, S2 can generate a simulated signature fragment Φ̃s = (α̃s, θ̃s) as

α̃s = αdDg
∑

pi∗P̂ → dik̃i

⎛
⎡g0

Ψ⎢
j=1

g
mj

j

⎞
⎤
r̃s

, θ̃s = θdDgr̃s ,

where r̃s ∈ Zq is randomly chosen by S2. As it is easy to check the validity of
these simulated signature fragments {Φ̃i : pi ∈ P} under the public key PK and

the simulated verification parameters Ṽ P , {Φ̃i : pi ∈ P} are computationally
distinguishable from the real signature fragments {Φi : pi ∈ P} with regard to
the given (m,Φ).

Thus, the proposed σ -distributed signature scheme is simulatable. Since Wa-
ters signature scheme is unforgeable under chosen message attacks [27,48], then
by Lemma 1, so does our scheme. ⊆◦

3.2 Comparison

We compare the proposed scheme with existing distributed Schnorr signature
scheme [25] and distributed RSA signature schemes [12, 24] in terms of key
(share) sizes and signature (fragment) sizes at the same security level. It is
well known that the bilinear map can be realized by utilizing pairings on some
elliptic curves. We give a comparison according to the key sizes recommended
by NIST [1, 20] in Table 1. Consider 112-bit security level, distributed Schnorr
signature scheme requires the longest signature fragments (2272 bits), while
distributed RSA signature scheme requires the longest secret key shares (2048
bits). Thus, our scheme is more practical with secret key shares and signature
fragments as short as 255 bits and 510 bits, respectively.

Practical Distributed Signatures in the Standard Model 319

Table 1. Comparison of distributed signature schemes for κ = 112 (bits)

Schemes Key size Key share size Signature (fragment) size Standard model

DL-based [25] 224 448 2272 ×
RSA-based [24] 2048 2048 2052 ×
RSA-based [12] 2048 2048 2048 �
Our CDH-based 224-255 224-255 448-510 �

4 Extensions

In this section, we will give two special extensions of our distributed signature
scheme, which can capture some specific requirements in real-world applications.

4.1 Threshold Signatures with Dynamic Addition of Participants

We first give an extension of our distributed signature scheme by using a sym-
metric bivariate polynomial to share the signing key. Any two secret key shares
generated by our scheme are correlated according to the symmetric property.
We will give one more algorithm (i.e., PtAdd), which is executed by the new
participants to generate his/her secret key share, on inputting the information
that generated by other t or more participants. The same technique is used in
the scheme of Gennaro et al. [21], which was originally used for admitting node
in a short-lived mobile ad hoc network [39].

– DKGen: The dealer randomly chooses a secret key k from Zq, and also a
series of elements g, g0, · · · , gΨ ∈ G. The public key is a tuple

PK = (g, g0, · · · , gΨ, e(g, g)k).
To share the secret key k among the participants in P , the dealer constructs
a symmetric bivariate polynomial

f(x, y) =

t−1⎥
u=0

t−1⎥
v=0

cu,vx
uyv,

where the coefficients cu,v’s are randomly chosen from Zq such that cu,v =
cv,u, c0,0 = k and ct−1,t−1 is nonzero. Thus, the secret key shares are com-
puted as ki(x) = f(x, i) mod q for all participants pi ∈ P . The algorithm
also publishes the verification parameters V P = {e(g, g)ki(0) : pi ∈ P}.

– PtAdd: When a new participant ps joining the group, he/she should be given
a share of the secret key. In fact, his/her share can be computed with the
help of other t participants and do not need the dealer. We assume the
new participant ps received t shares ki(s) = f(s, i) mod q from the other
parties. Without loss of generality, we assume these values are calculated by
the participants in P = {p1, · · · , pt}, that is, the new participant ps holds

{k1(s) = f(s, 1), · · · , kt(s) = f(s, t)}.

320 Y. Wang et al.

Due to the symmetric property of the bivariate polynomial f(x, y), i.e.
ki(j) = f(j, i) = f(i, j) = kj(i) mod q, the new participant ps indeed holds
{ks(1) = f(1, s), · · · , ks(t) = f(t, s)} and his/her share of the secret key can
be calculated by using polynomial interpolation

ks(x) =
t⎥
i=1

γi(x)ks(i) mod q,

where γi(x) =
∏t
j=1,j �=i

x−j
i−j mod q. Then, he/she also publishes e(g, g)ks(0).

Thus, the participant set P and verification parameters V P are dynamically
updated.
In fact, the new participant ps can validate ks(0) by checking if the following
equalities holds

e(g, g)ks(0) = e(g, g)
∑t

i=1 ιiki(0) =
t⎢
i=1

(
e(g, g)ki(0)

⎪ιi

,

which is due to

ks(0) = f(0, s) =
t⎥
i=1

γif(0, i) =
t⎥
i=1

γiki(0) mod q,

where γi’s are the Lagrange coefficients γi =
∏t
j=1,j �=i

s−j
i−j mod q.

– SFGen: Given a messagem denoted by (m1, · · · ,mΨ), the algorithm randomly
chooses a value ri ∈ Zq and generates signature fragment Φi = (αi, θi) for
the participant pi (pi ∈ P) as

αi = gki(0)

⎛
⎡g0

Ψ⎢
j=1

g
mj

j

⎞
⎤
ri

, θi = gri.

– SReCon: Given a message m, signature fragments {Φi : pi ∈ P such that P ⇐
P}, public key PK, and verification parameters V P , the collector discards
all the invalid signature fragments by checking if

e(αi, g)
?
= e(g, g)ki(0)e(g0

Ψ⎢
j=1

g
mj

j , θi)

holds. If there are remaining t or more valid signature fragments (e.g.,
{Φ1, · · · , Φt}), the signature Φ = (α, θ) of m can be reconstructed as fol-
lows

α =

t⎢
i=1

αi
ιi , θ =

t⎢
i=1

θi
ιi ,

where γi’s are the Lagrange coefficients γi =
∏t
j=1,j �=i

j
j−i mod q.

Otherwise, outputs ⊕.

Practical Distributed Signatures in the Standard Model 321

– Ver: Given a message m, a signature Φ = (α, θ), and a public key PK =
(g, g0, · · · , gΨ, e(g, g)k), check if the following equality holds

e(α, g)
?
= e(g, g)ke(g0

Ψ⎢
j=1

g
mj

j , θ).

If it is true, the signature Φ is valid; otherwise it is invalid.

As the secret sharing scheme being used in the distributed secret key gener-
ation algorithm DKGen is a special linear threshold scheme, thus, according to
Theorem 1, we have the following corollary.

Corollary 1. The above threshold signature scheme is correct.

Also, according to Theorem 2, we have the following claim.

Corollary 2. The above threshold signature scheme is secure under CDH as-
sumption in the standard model.

Table 2 illustrates a performance comparison between our scheme with Gen-
naro et al.’s scheme [21]. Our scheme has shorter secret key shares and signature
fragments, and introduces no additional parameters. As we have noted, due to
the Euler’s totient function of RSA modulus should keep unknown to all the
participants, some additional parameters (ε, {Πi}, Π) should be introduced for
realizing the same functionality in RSA setting.

Table 2. Comparison of threshold signature schemes for κ = 112 (bits)

Key share size Signature fragment size Additional parameters Standard model

[21] 2048t 2048 Δ, {δi}, δ ×
Ours 224t to 255t 448-510 × �

4.2 Distributed Signature Scheme for Multipartite Access
Structures

In a multipartite access structure, the participant set P can be divided into
u disjoint groups Gi (i ∈ [1, u]), i.e., P = ∃ui=1Gi and Gi ⊃ Gj = ∅ if i ∪= j.
Furthermore, all participants in the same group Gi are equally powerful, that is,
if a participant p ∈ Gi is in a qualified set P ∈ σ , then p can be replaced by any
participant p≤ ∈ Gi \ P .

Our second extension is a distributed signature scheme for compartmented
access structures with upper bounds [17, 46]. Our construction is based on the
linear secret sharing scheme proposed by Tassa and Dyn [46]. Compartmented
access structures with upper bounds can be defined as

σ = {I ⇐ P : ⊂J ⇐ I such that |J ⊃ Gi| ⊗ ti, 1 ⊗ i ⊗ u, and |J | = t},

322 Y. Wang et al.

where 1 ⊗ t ⊗ min{⎦u
i=1 ti, n}. That is, ti determines the power of group Gi

(i ∈ [1, u]). As we will see in the following, for the scheme presented by Tassa and
Dyn [46], more than ti participants of Gi cannot contribute more to recovering
the secret.

– DKGen: The dealer randomly chooses a secret key k ∈ Zq, and also a series
of elements g, g0, · · · , gΨ ∈ G. The public key is a tuple

PK = (g, g0, · · · , gΨ, e(g, g)k).

To share the secret key k among the participants in P , for each group Gi
(i ∈ [1, u]), the dealer first constructs a random univariate polynomial

fi(y) =

ti−1⎥
j=0

ci,jy
j

over Zq, where ci,ti−1 is nonzero, and specifies a distinct identity xi ∈ Zq.
Furthermore, it is required that

u⎥
i=1

ti−1⎥
j=0

ci,j = k mod q.

Then using Lagrange interpolation to construct

f(x, y) =

u⎥
i=1

γi(x)fi(y) =

u⎥
i=1

ti−1⎥
j=0

ci,jγi(x)y
j mod q,

where γi(x) =
∏u
h=1,h �=i

x−xh

xi−xh
mod q. The secret key share for participant

pi,j ∈ Gi (i ∈ [1, u]) can be calculated as ki,j = f(xi, yi,j) mod q, in which
yi,j is the identity of pi,j such that yi,j ∪= 1. The verification parameters are
published as

V P = {e(g, g)ki,j : pi,j ∈ P}.
In addition, as t ⊗ ⎦u

i=1 ti, the dealer should also publish s =
⎦u
i=1 ti − t

secret key shares, that is, the dealer random chooses s different points (x≤i, z
≤
i)

where x≤i ∪∈ {x1, · · · , xu} and calculates k≤i = f(x≤i, z
≤
i) mod q.

– SFGen: Given a messagem denoted by (m1, · · · ,mΨ), the algorithm generates
a signature fragment Φi,j = (αi,j , θi,j) for the participant pi,j ∈ P as

αi,j = gki,j

(
g0

Ψ⎢
h=1

gmh

h

)ri,j
, θi,j = gri,j ,

where ri,j is randomly chosen from Zq.

Practical Distributed Signatures in the Standard Model 323

– SReCon: Given a message m, signature fragments {Φi,j : pi,j ∈ P such that
P ⇐ P}, public key PK = (g, g0, · · · , gΨ, e(g, g)k), and verification param-
eters V P = {e(g, g)ki,j : pi,j ∈ P}, the collector discards all the invalid
signature fragments by checking if

e(αi,j , g)
?
= e(g, g)ki,je(g0

Ψ⎢
h=1

gmh

h , θi,j)

holds. If there are remaining t or more valid signature fragments Φi,j ’s (sup-
pose they belong to the participants in P ⇐ P), the signature Φ = (α, θ)
of m can be reconstructed as follows: because there exist

⎦u
i=1 ti values of

di,j ’s and di’s over Zq (which can be efficiently found by solving the system
of equations) such that

k =
⎥
pi,j≥P

di,jki,j +

s⎥
i=1

dik
≤
i mod q,

the signature Φ is calculated as

α =
⎢

pi,j≥P
αi,j

di,j ·
s⎢
i=1

(gk
→
i)di , θ =

⎢
pi,j≥P

θi,j
di,j .

Otherwise, outputs ⊕.
– Ver: Given a message m, a signature Φ = (α, θ), and a public key PK =

(g, g0, · · · , gΨ, e(g, g)k), check whether the following equality holds

e(α, g)
?
= e(g, g)ke(g0

Ψ⎢
h=1

gmh

h , θ).

If it holds, then the signature Φ is valid; otherwise it is invalid.

Tassa and Dyn [46] proved their linear secret sharing scheme for the com-
partmented access structures with upper bounds is perfect with probability
1 − O(1/q). It is easy to rewrite their scheme in a MSP representation, thus,
according to Theorem 1 and Theorem 2, we have following corollaries.

Corollary 3. The above distributed signature scheme for compartmented access
structures with upper bounds is correct.

Corollary 4. The above distributed signature scheme for compartmented access
structures with upper bounds is secure with probability 1 − O(1/q) under CDH
assumption in the standard model.

5 Conclusion

We proposed a distributed signatures scheme in the standard model based on
the CDH assumption. Our scheme offers higher efficiency when compared with

324 Y. Wang et al.

existing schemes in the random oracle model. We also presented two special
extensions of our construction. The first one can be used in the situation in
which new participants can join the system without the help from a centralized
dealer. The second one can be used for a type of multipartite access structures
where all the disjoint groups are bounded to jointly generate a signature.

References

1. Barker, E., Barker, W., Burr, W., Polk, W., Smid, M.: Recommendation for Key
Management-Part 1: General (Revision 3). NIST Special Publication 800-57, 1-
147 (2012), http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57

part1 rev3 general.pdf

2. Beimel, A., Weinreb, E.: Monotone Circuits for Monotone Weighted Threshold
Functions. Information Processing Letters 97, 12–18 (2006)

3. Beimel, A., Tassa, T., Weinreb, E.: Characterizing Ideal Weighted Threshold Secret
Sharing. SIAM J. Discrete Math. 22, 360–397 (2008)

4. Beimel, A.: Secret-Sharing Schemes: A Survey. In: Chee, Y.M., Guo, Z., Ling,
S., Shao, F., Tang, Y., Wang, H., Xing, C. (eds.) IWCC 2011. LNCS, vol. 6639,
pp. 11–46. Springer, Heidelberg (2011)

5. Benaloh, J., Leichter, J.: Generalized Secret Sharing and Monotone Functions.
In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 27–35. Springer,
Heidelberg (1990)

6. Beutelspacher, A., Wettl, F.: On 2-level Secret Sharing. Designs, Codes and Cryp-
tography 3, 127–134 (1993)

7. Blakley, G.R.: Safeguarding Cryptographic Keys. In: National Computer Confer-
ence, vol. 48, pp. 313–317. AFIPS Press (1979)

8. Bellare, M., Fuchsbauer, G.: Policy-based Signatures. Cryptology ePrint Archive,
Report 2013/413 (2013)

9. Boyen, X.: Mesh Signatures. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS,
vol. 4515, pp. 210–227. Springer, Heidelberg (2007)

10. Brickell, E.F.: Some Ideal Secret Sharing Schemes. In: Quisquater, J.-J., Vandewalle,
J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 468–475. Springer, Heidelberg
(1990)

11. Damg̊ard, I., Dupont, K.: Efficient Threshold RSA Signatures with General Moduli
and No Extra Assumptions. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386,
pp. 346–361. Springer, Heidelberg (2005)

12. Damg̊ard, I., Thorbek, R.: Linear Integer Secret Sharing and Distributed Exponen-
tiation. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS,
vol. 3958, pp. 75–90. Springer, Heidelberg (2006)

13. Daza, V., Herranz, J., Sáez, G.: Protocols Useful on the Internet from Distributed
Signature Schemes. Int. J. Inf. Secur. 3, 61–69 (2004)

14. Desmedt, Y.: Society and Group Oriented Cryptography: A New Concept. In:
Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 120–127. Springer,
Heidelberg (1988)

15. Desmedt, Y., Frankel, Y.: Threshold Cryptosystems. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 307–315. Springer, Heidelberg (1990)

16. El Gamal, T.: A Public Key Cryptosystem and a Signature Scheme Based on Dis-
crete Logarithms. IEEE Transactions on Information Theory IT-31(4), 469–472
(1985)

http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf

Practical Distributed Signatures in the Standard Model 325

17. Farràs, O., Padró, C., Xing, C., Yang, A.: Natural Generalizations of Threshold
Secret Sharing. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073,
pp. 610–627. Springer, Heidelberg (2011)

18. Farràs, O., Padró, C.: Ideal Hierarchical Secret Sharing Schemes. In: Micciancio,
D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 219–236. Springer, Heidelberg (2010)

19. Farràs, O., Mart́ı-Farré, J., Padró, C.: Ideal Multipartite Secret Sharing Schemes.
Journal of Cryptology 25(3), 434–463 (2012)

20. Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for Cryptographers. Discrete
Applied Mathematics 156(16), 3113–3121 (2008)

21. Gennaro, R., Halevi, S., Krawczyk, H., Rabin, T.: Threshold RSA for Dynamic
and Ad-Hoc Groups. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965,
pp. 88–107. Springer, Heidelberg (2008)

22. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Robust and Efficient Sharing
of RSA Functions. J. Cryptol. 13, 273–300 (2000)

23. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Robust Threshold DSS Signa-
tures. Information and Computation 164, 54–84 (2001)

24. Herranz, J., Padró, C., Sáez, G.: Distributed RSA Signature Schemes for Gen-
eral Access Structures. In: Boyd, C., Mao, W. (eds.) ISC 2003. LNCS, vol. 2851,
pp. 122–136. Springer, Heidelberg (2003)

25. Herranz, J., Sáez, G.: Verifiable Secret Sharing for General Access Structures, with
Application to Fully Distributed Proxy Signatures. In: Wright, R.N. (ed.) FC 2003.
LNCS, vol. 2742, pp. 286–302. Springer, Heidelberg (2003)

26. Herranz, J., Sáez, G.: Revisiting Fully Distributed Proxy Signature Schemes.
In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT 2004. LNCS, vol. 3348,
pp. 356–370. Springer, Heidelberg (2004)

27. Hohenberger, S., Waters, B.: Short and Stateless Signatures from the RSA Assump-
tion. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 654–670. Springer,
Heidelberg (2009)

28. Ito, M., Saito, A., Nishizeki, T.: Secret Sharing Scheme Realizing General Access
Structure. In: IEEE Global Telecommunications Conference, pp. 99–102 (1987)

29. Herranz, J., Laguillaumie, F., Libert, B., Ràfols, C.: Short Attribute-Based Sig-
natures for Threshold Predicates. In: Dunkelman, O. (ed.) CT-RSA 2012. LNCS,
vol. 7178, pp. 51–67. Springer, Heidelberg (2012)

30. Karchmer, M., Wigderson, A.: On Span Programs. In: Proc. of the 8th IEEE
Structure in Complexity Theory, pp. 102–111 (1993)

31. Li, J., Yuen, T.H., Kim, K.: Practical Threshold Signatures without Random Or-
acles. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784,
pp. 198–207. Springer, Heidelberg (2007)

32. Maji, H.K., Prabhakaran, M., Rosulek, M.: Attribute-Based Signatures. In: Kiayias,
A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 376–392. Springer, Heidelberg (2011)

33. Morillo, P., Padró, C., Sáez, G., Villar, J.L.: Weighted Threshold Secret Sharing
Schemes. Information Processing Letters 70, 211–216 (1999)

34. Okamoto, T., Takashima, K.: Efficient Attribute-Based Signatures for Non-
monotone Predicates in the Standard Model. In: Catalano, D., Fazio, N., Gennaro,
R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 35–52. Springer, Heidelberg
(2011)

35. Okamoto, T., Takashima, K.: Decentralized Attribute-Based Signatures. In:
Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 125–142.
Springer, Heidelberg (2013)

326 Y. Wang et al.

36. Padró, C., Sáez, G., Villar, J.L.: Detection of Cheaters in Vector Space Secret
Sharing Schemes. Designs, Codes and Cryptography 16(1), 75–85 (1999)

37. Pointcheval, D., Stern, J.: Security Arguments for Digital Signatures and Blind
Signatures. Journal of Cryptology 13(3), 361–396 (2000)

38. Qin, B., Wu, Q., Zhang, L., Farràs, O., Domingo-Ferrer, J.: Provably Secure
Threshold Public-Key Encryption with Adaptive Security and Short Ciphertexts.
Information Sciences 210, 67–80 (2012)

39. Saxena, N., Tsudik, G., Yi, J.H.: Efficient Node Admission for Short-lived Mobile
Ad Hoc Networks. In: 13th IEEE International Conference on Network Protocols,
ICNP, pp. 269–278 (2005)

40. Schnorr, C.P.: Efficient Signature Generation by Smart Cards. J. Cryptol. 4,
161–174 (1991)

41. Shamir, A.: How to Share a Secret. Commun. of the ACM 22, 612–613 (1979)
42. Shoup, V.: Practical Threshold Signatures. In: Preneel, B. (ed.) EUROCRYPT

2000. LNCS, vol. 1807, pp. 207–220. Springer, Heidelberg (2000)
43. Simmons, G.J., Jackson, W.-A., Martin, K.M.: The Geometry of Shared Secret

Schemes. Bulletin of the Institute of Combinatorics and Its Applications 1, 71–88
(1991)

44. Simmons, G.J.: How to (Really) Share a Secret. In: Goldwasser, S. (ed.) CRYPTO
1988. LNCS, vol. 403, pp. 390–448. Springer, Heidelberg (1990)

45. Stinson, D.R., Strobl, R.: Provably Secure Distributed Schnorr Signatures and a
(t, n) Threshold Scheme for Implicit Certificates. In: Varadharajan, V., Mu, Y.
(eds.) ACISP 2001. LNCS, vol. 2119, pp. 417–434. Springer, Heidelberg (2001)

46. Tassa, T., Dyn, N.: Multipartite Secret Sharing by Bivariate Interpolation.
J. Cryptol. 22, 227–258 (2009)

47. Tassa T.: Hierarchical Threshold Secret Sharing. Journal of Cryptology 20, 237–264
(2007)

48. Waters, B.: Efficient Identity-based Encryption without Random Oracles. In:
Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer,
Heidelberg (2005)

Decentralized Traceable Attribute-Based

Signatures

Ali El Kaafarani1, Essam Ghadafi2, and Dalia Khader3

1 University of Bath, UK
2 University of Bristol, UK

3 Interdisciplinary Centre for Security, Reliability and Trust (SnT), Luxembourg

Abstract. We provide a formal security model for traceable attribute-
based signatures. Our focus is on the more practical case where attribute
management is distributed among different authorities rather than rely-
ing on a single central authority. By specializing our model to the single
attribute authority setting, we overcome some of the shortcomings of the
existing model for the same setting.

Our second contribution is a generic construction for the primitive
which achieves a strong notion of security. Namely, it achieves CCA
anonymity and its security is w.r.t. adaptive adversaries. Moreover, our
framework permits expressive signing polices. Finally, we provide some
instantiations of the primitive whose security reduces to falsifiable in-
tractability assumptions without relying on idealized assumptions.

Keywords: Attribute-based signatures, security definitions, standard
model.

1 Introduction

Attribute-based cryptography has emerged as an important research topic in
recent years. It offers a versatile solution for designing role-based cryptosystems.
In such systems, users are assigned attributes, and private operations (e.g. de-
cryption/signing) are associated with security policies. Only users possessing
attributes satisfying the policy in question can perform such operations. The
first proposals of attribute-based cryptosystems were: an encryption scheme by
Goyal et al. [20] (inspired by Sahai and Waters [39]) and a signature scheme by
Maji et al. [33].

In Attribute-Based Signatures (ABS) [33,34], messages are signed w.r.t. a
signing policy expressed as a predicate. Thus, the recipient is convinced that
someone with a set of attributes satisfying the signing predicate has indeed
authenticated the message without learning the identity of the signer or learning
which set of attributes was used in the signing.

There are many applications of attribute-based signatures such as attribute-
based messaging, e.g. [7], trust negotiation, e.g. [13], and leaking secrets. Refer
to [34] for more details and comparison with related notions.

J. Benaloh (Ed.): CT-RSA 2014, LNCS 8366, pp. 327–348, 2014.
c© Springer International Publishing Switzerland 2014

328 A.E. Kaafarani, E. Ghadafi, and D. Khader

Besides correctness, the security of attribute-based signatures requires signer
privacy and unforgeability. Informally, signer privacy (sometimes is also referred
to as anonymity), requires that a signature reveals neither the identity of the
signer nor which set of attributes was used to satisfy the associated predicate.
On the other hand, unforgeability requires that a signer cannot forge a signature
w.r.t. a signing predicate that her individual attributes do not satisfy, even if
she colludes with other signers.

Traceable Attribute-Based Signatures (TABS) [11] extend standard attribute-
based signatures by adding an anonymity revocation mechanism which allows
a tracing authority to recover the identity of the signer if needed. This added
feature is very important in scenarios where accountability and abuse prevention
are required.

Related Work.Variants of attribute-based signatures exist in the literature
each supporting policies that differ in their expressiveness. Those can be cat-
egorized into three main types of policies: non-monotonic policies, e.g. [36],
monotonic policies, e.g. [34], and threshold-based policies, e.g. [31,40,30,24,16].
Schemes with more expressive policies are more interesting since they cover a
larger scale of potential applications. Nevertheless, their current state–of–the–
art instantiations are less efficient. The size of the signatures in existing in-
stantiations of those supporting “monotonic” and “non-monotonic” policies, in
the best case, are linearly dependent on the number of attributes in the pol-
icy [34,36]. While the works of [24,16] yield constant-size signatures, they only
support threshold policies.

Early proposals of attribute-based signatures considered the case of multiple
attribute authorities where each authority is responsible for a sub–universe of
attributes [33,36]. However, the multi–authority case still had the problem of
relying on the existence of a central trusted authority. Moreover, in some cases,
the security (unforgeability) of the whole system is compromised if the central
authority is corrupted. Okamoto and Takashima [37] recently proposed the first
decentralized construction.

Traceability in attribute-based signatures was first addressed by Khader [27]
who proposed the notion of attribute-based group signatures. In this notion, only
the anonymity of the identity of the signer is preserved, whereas the attributes
used are not hidden. This is an undesirable property for many applications.
Later, Khader et al. [28] proposed a traceable attribute-based signature scheme
that relies on the verifier to decide the policy and thus requiring interaction in the
signing protocol. Even though this can be useful in certain applications (see [28]
for details), such interaction is prohibitive for many applications. A more recent
construction by Escala et al. [11] adds the traceability feature (it was called
revocation by the authors) to standard ABS schemes. The proposed scheme in
[11] is in the inefficient composite-order groups setting and was originally proven
in the Random Oracle Model (ROM) [3]. The authors informally described how
the reliance on random oracles may be removed. The model and the construction
proposed by [11] rely on a central attribute authority which could be a bottleneck
when the number of members of the system increases.

Decentralized Traceable Attribute-Based Signatures 329

Our Contribution. Our first contribution is a formal security model for trace-
able attribute-based signatures. Our focus is on the more interesting setting
where there are multiple attribute authorities. We refer to this setting as De-
centralized Traceable Attribute-Based Signatures (DTABS). By restricting the
number of attribute authorities to one, we get a new model which addresses
some of the shortcomings of the previous model for the same setting [11].

Our second contribution is generic construction for DTABS. Our construc-
tion meets strong security requirements and permits expressive signing policies.
Namely, it is CCA-anonymous under full-key exposure attacks, and its unforge-
ability is w.r.t. adaptively chosen messages and signing policies.

Finally, we present example instantiations of the generic construction and pro-
vide the first provably secure construction not relying on idealized assumptions.
The security of all our instantiations rely on intractability assumptions which
are falsifiable [35].

Paper Organization. In Section 2, we give preliminary definitions. We formally
define DTABS and provide their security model in Sections 3 and 4, respectively.
We list the building blocks we use in Section 5. In Section 6, we present our
generic construction and prove its security. In Section 7, we present constructions
in the standard model.

Notation. A function ν(.) : N ⊗ R
+ is negligible in c if for every polynomial

p(.) and all sufficiently large values of c, it holds that ν(c) < 1
p(c) . Given a prob-

ability distribution S, we denote by y ≡ S the operation of selecting an element
according to S. If A is a probabilistic machine, we denote by A(x1, . . . , xn) the
output distribution of A on inputs (x1, . . . , xn). By PPT we mean running in
probabilistic polynomial time in the relevant security parameter.

2 Preliminaries

Bilinear Groups. A bilinear group is a tuple P := (G1,G2,GT , p, G, G̃, e)
where G1,G2 and GT are groups of a prime order p and G and G̃ generate
G1 and G2, respectively. The function e is a non-degenerate bilinear map G1 ×
G2 −⊗ GT . We will use multiplicative notation for all the groups although
usually G1 and G2 are chosen to be additive groups. We let G×

1 := G1 \ {1G1}
and G

×
2 := G2 \ {1G2}. For clarity, elements from G2 will be accented with˜.

In this paper, we will be working with Type-1 groups [17] where G1 = G2 = G

and Type-3 groups [17] where G1 �= G2 and there is no efficient isomorphism
between the groups in either direction.

Complexity Assumptions. We use the following assumptions from the liter-
ature:

SXDH. The DDH assumption holds in both groups G1 and G2.
DLIN [8]. For a group G := ∪G⇐ of a prime order p, given (Ga, Gb, Gra, Gsb, Gt)

where a, b, r, s, t → Zp are unknown, it is hard to tell whether t = r + s or t
is random.

330 A.E. Kaafarani, E. Ghadafi, and D. Khader

q-SDH [6]. For a group G := ∪G⇐ of a prime order p, given (G,Gx, . . . , Gx
q

)

for x ≡ Zp, it is hard to output a pair (c,G
1

x+c) → Zp × G for an arbitrary
c → Zp\{−x}.

WFCDH [14]. In symmetric bilinear groups, given (G,Ga, Gb) → G
3 for a, b≡

Zp, it is hard to output a tuple (Gr , Gra, Grb, Grab) → G
×4

for an arbitrary
r → Zp.

AWFCDH [14]. In asymmetric bilinear groups, given (G,Ga, G̃) → G1
2 × G2

for a≡ Zp, it is hard to output a tuple (Gb, Gab, G̃b, G̃ab) → G
×
1

2 ×G
×
2

2
for

an arbitrary b → Zp.

q-ADHSDH [14]. In asymmetric bilinear groups 1, given (G,F,K,Gx, G̃, G̃x) →
G

4
1 × G

2
2 for x ≡ Zp, and q − 1 tuples (Wi := (K · Gui)

1
x+vi , Ui := Gui ,

Ũi := G̃ui , Vi := F vi , Ṽi := G̃vi)q−1
i=1 for ui, vi ≡ Zp, it is hard to output a

new tuple (W ≥, U≥, Ũ≥, V ≥, Ṽ ≥) of this form.

Span Programs. For a field F and a variable set A = {a1, . . . , an}, a monotone
span program [25] is define by a α × β matrix Z (over F) along with a labeling
map ρ which associates each row in Z with an element ai → A.

The span program accepts a set γ iff 1 → Span(ZΠ), where ZΠ is the sub-
matrix of Z containing only rows with labels ai → γ. In other words, the span
program only accepts the set γ if there exists a vector s s.t. sZΠ = [1, 0, . . . , 0].

3 Syntax of Decentralized Traceable Attribute-Based
Signatures

The parties involved in a DTABS scheme are: κ attribute authorities each with
a unique identity aid and a pair of secret/verification keys (aaskaid, aavkaid); a
tracing authority T which possesses a secret tracing key tk that can be used to
trace the identity of the signer of a given signature; a set of signers each with
a unique identity sid and a set of attributes A ≥ A, where A is the universe of
attributes. An attribute can be uniquely identified by concatenating the identity
of the managing attribute authority with the name of the attribute itself. A
DTABS scheme is a tuple of polynomial-time algorithms

DTABS := (Setup,AuthSetup,KeyGen, Sign,Verify,Trace, Judge),

whose definitions are below; where all algorithms bar Setup and AuthSetup take
as implicit input the public parameters pp output by algorithm Setup.

Setup(1Δ) is run by some trusted third party. It takes as input a security param-
eter 1Δ and outputs public parameters pp and the tracing key tk. We assume
that pp contains the attribute universe A.

AuthSetup(pp, aid) used by attribute authority Authaid to generate its key pair
(aaskaid, aavkaid). The attribute authority publishes its public verification key
aavkaid.

1 This can also be instantiated in symmetric groups. See [14].

Decentralized Traceable Attribute-Based Signatures 331

KeyGen(aaskaid, sid, a) takes as input an attribute authority’s secret key aaskaid, a
signer’s identity sid and an attribute a → A that signer sid owns and generates
a secret key sksid,a for attribute a for the signer. The key sksid,a is given to
sid. The attribute authority may locally maintain a list of signers for which
it ran the KeyGen algorithm.

Sign({aavkaid(a)}a≤A, {sksid,a}a≤A,m, Ψ) signer sid who possesses a set of attribu-
tes A ≥ A uses this algorithm to produce a signature on m w.r.t. the signing
policy Ψ where Ψ(A) = 1. The algorithm takes as input an ordered list
of attribute authorities’ verification keys {aavkaid(a)}a≤A, an ordered list of
attributes’ secret keys {sksid,a}a≤A, a message m and a signing predicate Ψ ,
and outputs a signature σ. Here aid(a) denotes the identity of the attribute
authority managing attribute a → A.

Verify({aavkaid(a)}a≤Ψ ,m, σ, Ψ) is a deterministic algorithm which takes as input
an ordered list of attribute authorities’ verification keys {aavkaid(a)}a≤Ψ , a
message m, a signature σ and a signing predicate Ψ , and outputs 1 if σ is
valid on m w.r.t. the signing predicate Ψ or 0 otherwise.

Trace(tk,m, σ, Ψ) is a deterministic algorithm which takes as input T’s key tk, a
message m, a signature σ and a signing predicate Ψ , and outputs the identity
sid of the signer plus a proof π attesting to this claim. If the algorithm is un-
able to trace the signature to a signer, it returns the special symbol ∈. Note
that if the tracing authority additionally gets a read-only access to the local
registration tables maintained by the attribute authorities (whose identities
can be inferred from the signing policy Ψ), then the tracing authority could
additionally check whether or not sid has run the KeyGen algorithm.

Judge({aavkaid(a)}a≤Ψ ,m, σ, Ψ, sid, π) is a deterministic algorithm which takes as
input an ordered list of attribute authorities’ verification keys {aavkaid(a)}a≤Ψ ,
a message m, a signature σ, a signing predicate Ψ , a signer identity sid, and
a tracing proof π, and outputs 1 if π is a valid proof that sid has produced
σ or 0 otherwise.

4 Security of Decentralized Traceble Attribute-Based
Signatures

The security properties required from a DTABS scheme are: correctness, anony-
mity, full unforgeability, and traceability. In defining those requirements we use
a set of experiments in which the adversary has access to a set of oracles. The
following global lists are maintained: HSL is a list of honest signers’ attributes
and has entries of the form (sid, a); HAL is a list of honest attribute authorities;
BSL is a list of bad signers’ attributes whose secret keys have been revealed to
the adversary with entries of the form (sid, a); BAL is a list of bad attribute
authorities whose secret keys have been learned by the adversary; CAL is a list
of corrupt attribute authorities whose keys have been chosen by the adversary;
SL is a list of signatures obtained from the Sign oracle; CL is a list of challenge
signatures obtained from the challenge oracle in the anonymity game.

The details of the following oracles are given in Fig. 1.

332 A.E. Kaafarani, E. Ghadafi, and D. Khader

AddS(sid,A)

� If ∃a ∈ A s.t. (sid, a) ∈ HSL Then Return ⊥.

� For each a ∈ A Do

◦ If aid(a) /∈ HAL Then

� If aid(a) ∈ CAL Then Return ⊥.

� AddA(aid(a)).

◦ If aaskaid(a) = ⊥ Then Return ⊥.

◦ sksid,a ← KeyGen(aaskaid(a), sid, a).

� HSL := HSL ∪ {(sid, a)}a∈A.

Sign(sid,A, m, Ψ)

� If ∃a ∈ A s.t. (sid, a) /∈ HSL Then Return ⊥.

� Return ⊥ if Ψ(A) �= 1 or ∃a ∈ A s.t. sksid,a =⊥.

� σ ← Sign({aavkaid(a)}a∈A, {sksid,a}a∈A, m, Ψ).

� SL := SL ∪ {(sid,A, m, σ, Ψ)}.
� Return σ.

CHb((sid0,A0), (sid1,A1), m, Ψ)

� If Ψ(A0) �= 1 or Ψ(A1) �= 1 Then Return ⊥.

� For i=0 To 1 Do

◦ For each a ∈ Ai s.t. (sidi, a) /∈ HSL DO

� If AddS(sidi, a) =⊥ Then Return ⊥.

◦ If ∃a ∈ Ai s.t. sksidi,a =⊥ Then Return ⊥.

� σ ← Sign({aavkaid(a)}a∈Ab
, {sksidb,a}a∈Ab

, m, Ψ).

� CL := CL ∪ {(m, σ, Ψ)}.
� Return σ.

AddA(aid)

� If aid ∈ HAL ∪ CAL Then Return ⊥.

� (aaskaid, aavkaid) ← AuthSetup(pp, aid).

� HAL := HAL ∪ {aid}.
RevealA(aid)

� If aid /∈ HAL \ (CAL ∪ BAL) Then Return ⊥.

� BAL := BAL ∪ {aid}.
� Return aaskaid.

CrptA(aid, vk)

� If aid ∈ HAL ∪ CAL Then Return ⊥.

� CAL := CAL ∪ {aid}.
RevealS(sid,A)

� Return ⊥ if ∃a ∈ A s.t. (sid, a) /∈ HSL \ BSL.

� BSL := BSL ∪ {(sid, a)}a∈A.

� Return {sksid,a}a∈A.

Trace(m, σ, Ψ)

� Return ⊥ if Verify({aavkaid(a)}a∈Ψ , m, σ, Ψ) = 0.

� If (m, σ, Ψ) ∈ CL Then Return ⊥.

� Return Trace(tk, m, σ, Ψ).

Fig. 1. Oracles used in the security games for DTABS

AddS(sid,A) adds honest attributesA ≥ A for signer sid. It can be called multiple
times to add more attributes.

AddA(aid) adds an honest attribute authority with identity aid.
CrptA(aid, vk) adds a corrupt attribute authority whose keys are chosen by the

adversary.
RevealS(sid,A) returns the secret keys {sksid,a}a≤A corresponding to the subset

of attributes A ≥ A owned by signer sid. It can be called multiple times.
RevealA(aid) returns the secret key aaskaid of the honest attribute authority aid.
Sign(sid,A,m, Ψ) returns a signature σ onm using the key {sksid,a}a≤A belonging

to signer sid where Ψ(A) = 1.
CHb((sid0,A0), (sid1,A1),m, Ψ) is a left-right oracle for defining anonymity. On

input (sid0,A0), (sid1,A1), a message m and a signing policy Ψ , it returns a
signature on m using {sksidb,a}a≤Ab

for b≡ {0, 1} if Ψ(A0) = Ψ(A1) = 1.
Trace(m,σ, Ψ) allows the adversary to ask for signatures to be traced.

The security requirements are defined by the games in Fig. 2.

Correctness. This demands that signatures produced by honest signers are
accepted by the Verify algorithm and open to the signer who produced them.
Moreover, the Judge algorithm accepts the proof produced by the Trace algo-
rithm. Formally, a DTABS scheme is correct if for all λ → N, all PPT adversaries
F have a negligible advantage AdvCorr

DTABS,F(λ) := Pr[ExpCorr
DTABS,F(λ) = 1].

Decentralized Traceable Attribute-Based Signatures 333

Experiment: ExpCorr
DTABS,F (λ)

� (pp, tk) ← Setup(1λ).

� HSL := ∅.
� (sid,A, m, Ψ) ← F(pp : AddS(·, ·), AddA(·)).
� If Ψ(A) �= 1 or A �⊆ A Then Return 0.

� If ∃a ∈ A s.t. (sid, a) /∈ HSL or sksid,a =⊥ or aid(a) /∈ HAL Then Return 0.

� σ ← Sign({aavkaid(a)}a∈A, {sksid,a}a∈A, m, Ψ).

� If Verify({aavkaid(a)}a∈Ψ , m, σ, Ψ) = 0 Then Return 1.

� (sid′, π) ← Trace(tk, m, σ, Ψ).

� If sid′ �= sid or Judge({aavkaid(a)}a∈Ψ , m, σ, Ψ, sid, π) = 0 Then Return 1 Else Return 0.

Experiment: ExpAnon-b
DTABS,F (λ)

� (pp, tk) ← Setup(1λ).

� CAL, HSL, HAL, BSL, BAL, CL := ∅.
� b∗ ← F (pp : AddS(·, ·), AddA(·), CrptA(·, ·), RevealS(·, ·), RevealA(·), CHb((·, ·), (·, ·), ·, ·), Trace(·, ·, ·)).
� Return b∗.

Experiment: ExpF-Unforge
DTABS,F (λ)

� (pp, tk) ← Setup(1λ).

� CAL, HSL, HAL, BSL, BAL, SL := ∅.
� (m∗, σ∗, Ψ∗, sid∗, π∗) ← F (pp, tk : AddS(·, ·), AddA(·), CrptA(·, ·), RevealS(·, ·), RevealA(·), Sign(·, ·, ·, ·)).
� If Verify({aavkaid(a)}a∈Ψ∗ , m∗, σ∗, Ψ∗) = 0 Then Return 0.

� If Judge({aavkaid(a)}a∈Ψ∗ , m∗, σ∗, Ψ∗, sid∗, π∗) = 0 Then Return 0.

� Let Asid∗ be the attributes of sid∗ managed by dishonest (i.e. ∈ CAL ∪ BAL) attribute authorities.

� If ∃A s.t. {(sid∗, a)}a∈A ⊆ BSL and Ψ∗(A ∪ Asid∗) = 1 Then Return 0.

� If ∃(sid∗, ·, m∗, σ∗, Ψ∗) ∈ SL Then Return 0 Else Return 1.

Experiment: ExpTrace
DTABS,F (λ)

� (pp, tk) ← Setup(1λ).

� CAL, HSL, HAL, BSL, BAL, SL := ∅.
� (m∗, σ∗, Ψ∗) ← F (pp, tk : AddS(·, ·), AddA(·), RevealS(·, ·), Sign(·, ·, ·, ·)).
� If Verify({aavkaid(a)}a∈Ψ∗ , m∗, σ∗, Ψ∗) = 0 Then Return 0.

� (sid∗, π) ← Trace(tk, m∗, σ∗, Ψ∗).

� If sid∗ =⊥ or Judge({aavkaid(a)}a∈Ψ∗ , m∗, σ∗, Ψ∗, sid∗, π) = 0 or (sid, ·) /∈ HSL Then Return 1.

� Return 0.

Fig. 2. Security experiments for decentralized traceable attribute-based signatures

Anonymity. This requires that a signature reveals neither the identity of the
signer nor the set of attributes used in the signing. This is a stronger notion than
what is used in other settings, e.g. [27,31], which only require that the identity
of the signer remains anonymous.

In the game, the adversary chooses a message, a signing policy and two signers
with two, possibly different, sets of attributes with the condition that both sets
have to satisfy the signing policy. The adversary gets a signature by either signer
and wins if it correctly guesses the signer.

Our model provides the adversary with strong capabilities, for instance, it
can fully corrupt the attribute authorities and can ask for signers’ secret keys
to be revealed including the two signers it chooses for the challenge (and thus
capturing full-key exposure attacks). Note that since the adversary can sign on
behalf of any signer, it is redundant to provide the adversary with a sign oracle.
The only restriction we impose on the adversary is that it may not query the
Trace oracle on the challenge signature.

334 A.E. Kaafarani, E. Ghadafi, and D. Khader

Our focus is on the strongest variant of anonymity, i.e. CCA-Anonymity [4].
Refer to the full version for further discussion on the different variants. WLOG
and in order to simplify the security proofs, we only allow the adversary a single
call to the challenge oracle. We prove in the full version that this is sufficient by
showing a reduction from any adversary with a polynomial number of calls to
the challenge oracle to one with a single call.

Our definition captures unlinkability because the adversary has access to all
signers’ secret keys and hence can produce signatures on behalf of any signer.

Formally, a DTABS scheme is anonymous if for all λ → N and all PPT adver-

saries F , AdvAnon
DTABS,F(λ) :=

∣∣∣Pr[ExpAnon-0
DTABS,F (λ) = 1]− Pr[ExpAnon-1

DTABS,F (λ) = 1]
∣∣∣ is

negligible.

Full Unforgeability. This requirement captures unforgeability scenarios where
the forgery opens to a particular signer. It ensures that even if signers collude
and combine their attributes together, they cannot forge a signature that opens
to a signer whose attributes do not satisfy the signing predicate. It also covers
non-frameability and ensures that even if signers collude, they cannot frame a
user who did not produce the signature.

Unlike the single attribute authority setting, here we allow the adversary to
adaptively create corrupt attribute authorities and learn some of the honest
authorities’ secret keys as long as there is at least a single honest attribute
authority managing one of the attributes required for satisfying the policy used
in the forgery.

Our definition is adaptive and allows the adversary to adaptively choose the
predicate and the message on which it wants to produce the forgery rather
than having to select the predicate at the start of the game. Also, note that we
consider the stronger (and more standard) form of unforgeability, i.e. (strong
unforgeability) where the adversary wins even if it manages to produce a new
signature on a message/predicate pair that was queried to the sign oracle. The
definition can in a straightforward manner be adapted to work for the weaker
variant used in, e.g. [4,34,11], by requiring that the forgery is not on a mes-
sage/predicate pair that was queried to the sign oracle. For the latter variant
which we refer to as Weak Full Unforgeability (WFU), we just need to replace
the check ∅(sid≥, ·,m≥, Ψ≥, σ≥) → SL by the check ∅(sid≥, ·,m≥, Ψ≥, ·) → SL.

Formally, a DTABS scheme is fully unforgeable if for all λ → N, all PPT adver-
saries F have a negligible advantage AdvF-Unforge

DTABS,F (λ) := Pr[ExpF-Unforge
DTABS,F (λ) = 1].

Traceability. This requirement ensures that the adversary cannot produce a
signature that traces to a signer who did not run the honest KeyGen algorithm.
Thus, it covers unforgeability scenarios where the forgery is untraceable. In the
game, the adversary is allowed to corrupt the tracing authority and ask for the
signing keys of any signer to be revealed. However, unlike in the full unforge-
ability game, we require that all the attribute authorities are honest as knowing
a secret key of any attribute authority makes it easy to create signatures by
dummy signers which are thus untraceable.

Formally, a DTABS scheme is traceable if for all λ → N, all PPT adversaries
F have a negligible advantage AdvTraceDTABS,F(λ) := Pr[ExpTraceDTABS,F(λ) = 1].

Decentralized Traceable Attribute-Based Signatures 335

4.1 On the Model of [11] for the Single Attribute Authority Setting

Specializing our model to the single attribute authority setting, we get a stronger
model than the one in [11]. In particular, our model avoids some of the short-
comings inherent to [11] which we now explain. When defining non-frameability
in [11], the sign oracle used by [11] does not consider the identity of the signer
and hence it does not capture the following scenario: The adversary asks for
two different signers sid1 with attributes A1 and sid2 with attributes A2 to be
added. It then asks for a signature on the message m w.r.t. the signing policy Ψ
by signer sid1 (where Ψ(A1) = 1), and outputs as its forgery a signature σ≥ on
the same message m w.r.t. the same signing policy Ψ but the signature opens to
sid2 (assume here that Ψ(A2) = 1).

Therefore, we believe that in this context, where traceability is required, it is
important that the identity of the signer is taken into account when answering
signing queries. Otherwise, some of the unforgeability scenarios are not captured.
This is, of course, different from standard attribute-based signatures where trace-
ability is not required and thus there is no way for the adversary to learn who
produced a particular signature.

In addition, our full unforgeability definition protects against a fully corrupt
tracing authority which is stronger than the non-frameability definition in [11]
which only considers a partially but not fully corrupt tracing authority.

5 Building Blocks

In this section we present the building blocks that we use in our constructions.

5.1 Tagged Signature Scheme

We define here a new variant of a signature scheme which we call a Tagged
Signature (TS) scheme. A tagged signature scheme for a message space MTS

and a tag space TTS is a tuple of algorithms TS := ([Setup],KeyGen, Sign,Verify).

Setup(1Δ) this optional algorithm takes as input a security parameter and out-
puts common public parameters param which is an implicit input to the rest
of algorithms.

KeyGen({param|1Δ}) takes as input either public parameters (if the scheme re-
quires a setup) or just the security parameter (if no setup is required) and
outputs a pair of secret/verification keys (sk, vk).

Sign(sk, τ,m) takes as input a secret key sk, a tag τ → TTS and a message m →
MTS, and outputs a signature σ.

Verify(vk, τ,m, σ) outputs 1 if σ is a signature on τ and m w.r.t. the verification
key vk.

The security of a tagged signature scheme is similar to that of a traditional
digital signature and consists of correctness and unforgeability:

• Correctness: Requires that for all m → MTS, τ → TTS and (sk, vk) output
by KeyGen, we have Verify(vk, τ,m, Sign(sk, τ,m)) = 1.

336 A.E. Kaafarani, E. Ghadafi, and D. Khader

• (Existential) Unforgeability: Unforgeability under adaptive chosen mes-
sage and tag attack requires that any PPT adversary F that is given a sign
oracle Sign(sk, ·, ·) has a negligible advantage in winning the following game:

∗ A key pair (sk, vk) is generated and vk is sent to F .
∗ F makes a polynomial number of queries to Sign(sk, ·, ·).
∗ Eventually, F halts by outputting a tuple (σ≥, τ≥,m≥) and wins if σ≥ is

valid on (τ≥,m≥) and (τ≥,m≥) was never queried to Sign.

We note here that any signature scheme that can sign a pair of messages can be
used as a tagged signature scheme. However, to allow for generality and explicitly
distinguish the tag space from the message space (and hence care for the case
where they might be distinct), we define this notion. Note that one can always
use a collision-resistant hash function to map the tag into the message space.
Defining the notion also serves to simplify the description of our constructions
and security proofs.

Instantiation. To construct a tagged signature, we use a variant of the auto-
morphic scheme from [14] which was given in [15]. The original scheme given
in [15] was given in the asymmetric setting. For simplicity, the variant we give
here is in the symmetric setting. The tag space of the instantiation are Diffie–
Hellman tuples DH := {(Ga, G′a) → G

2|a → Zp}, whereas the message space is
Zp. The scheme is unforgeable under the q-ADHSDH and WFCDH assumptions
in the symmetric setting (or the q-ADHSDH and AWFCDH assumptions in the
asymmetric setting). The instantiation is as follows:

• TS.Setup(1Δ): Let P := (G,GT , p, G, e) be the description of Type-1 bilinear
groups. Choose F,K, T,G′, L≡ G and return param := (P , F,K, T, L,G′).

• TS.KeyGen(param): Choose x≡ Zp and set (X,X ′) := (Gx, G′x). Set sk := x
and vk := (X,X ′).

• TS.Sign(sk, (τ, τ ′),m): Reject if (τ, τ ′) /→ DH (i.e. e(τ,G′) �= e(G, τ ′)). Oth-

erwise, choose u, v ≡ Zp and compute σ :=
(
U := Gu, U ′ := G′u, V :=

F v, V ′ := G′v, W := (K · T u · τ · Lm) 1
x+v

)
.

• TS.Verify(vk, (τ, τ ′),m, σ): If e(U,G′) = e(G,U ′), e(V,G′) = e(F, V ′), and
e(W,X ′ · V ′) = e(T, U ′)e(K · τ · Lm, G′) output 1. Otherwise, output 0.

5.2 The Full Boneh-Boyen (FBB) Signature Scheme

In [6], the authors gave a signature scheme that is secure under the q-SDH
assumption (cf. Section 2). The signature scheme can be instantiated in both
the symmetric and asymmetric bilinear group settings. Let P := (G,GT , p, G, e)
be the description of a bilinear group. The scheme is as follows; where to aid
notation all algorithms bar KeyGen are assumed to take as implicit input P :

• KeyGen(P): Choose x, y ≡ Zp and set (X,Y) := (Gx, Gy). Set sk := (x, y)
and vk := (X,Y).

• Sign(sk,m): To sign m → Zp, choose r ≡ Zp such that x+ r · y+m �= 0 and

compute the signature σ := G
1

x+r·y+m .
• Verify(vk,m, σ): Output 1 if e(σ,X · Y r ·Gm) = e(G,G) and 0 otherwise.

Decentralized Traceable Attribute-Based Signatures 337

5.3 Strongly Unforgeable One-Time Signatures

A digital signature scheme is called one-time signature if in the unforgeability
game, the adversary is restricted to a single signing query. Strong Unforgeability
as opposed to weak unforgeability requires that the adversary cannot even forge
a new signature on a message that she obtained a signature on from the signing
oracle. In this paper, we will instantiate the one-time signature using the Full
Boneh-Boyen signature scheme.

5.4 Simulation-Sound Non-interactive Zero-Knowledge Proofs

Let R be an efficiently computable relation. For pairs (x,w) → R, we call x the
statement and w the witness. We define the language L as all the statements
x in R. A Simulation-Sound Non-Interactive Zero-Knowledge (SS-NIZK) proof
system for R is defined by (Setup,Prove,Verify,Extract, SimSetup, SimProve).

Setup takes as input a security parameter 1Δ and outputs a common reference
string crs and an extraction key xk which allows for witness extraction. Prove
takes as input (crs, x, w) and outputs a proof π that (x,w) → R. Verify takes as
input (crs, x, π) and outputs 1 if the proof is valid, or 0 otherwise. Extract takes
as input (crs, xk, x, π) and outputs a witness. SimSetup takes as input a security
parameter 1Δ and outputs a simulated reference string crsSim and a trapdoor
key tr that allows for proof simulation. SimProve takes as input (crsSim, tr, x)
and outputs a simulated proof πSim without a witness.

We require: completeness, soundness, zero-knowledge and simulation-soun-
dness which are all formally defined in full paper [10].

Groth-Sahai Proofs. Groth-Sahai (GS) proofs [23] are efficient non-interactive
proofs in the Common Reference String (CRS) model. The GS system can be
instantiated under different intractability assumptions with the SXDH-based
instantiation being the most efficient [19].

The language for the system has the form

L := {statement | ∅witness : E1(statement,witness), . . . , En(statement,witness)},
where Ei(statement, ·) is one of the types of equation summarized in Fig. 3,
where X1, . . . , Xm, Y1, . . . , Yn → G, x1, . . . , xm, y1, . . . , yn → Zp are secret vari-
ables (hence underlined), whereas Ai, T → G, ai, bi, ki,j , t → Zp, tT → GT are
public constants. Note that in the asymmetric setting, there are two types
of MSM equations depending on which group the elements belong to. The
proof system has perfect completeness, perfect soundness, composable witness-
indistinguishability/zero-knowledge. Note that the original proof system in [23]
is not simulation-sound. Refer to [23] for formal definitions and more details.

5.5 CCA-Secure Public-Key Encryption Scheme

A Public-Key Encryption (PKE) scheme for a message space MPKE is a tuple of
polynomial-time algorithmsPKE := (KeyGen,Enc,Dec).KeyGen(1Δ) outputs a se-
cret/public keypair (sk, pk);Enc(pk,m) outputs a ciphertextC;Dec(sk, C) outputs
a messagem.

338 A.E. Kaafarani, E. Ghadafi, and D. Khader

• Pairing Product Equation (PPE):
n∏

i=1

e(Ai, Yi) ·
m∏

i=1

n∏
j=1

e(Xi, Yj)
ki,j = tT ·

• Multi-Scalar Multiplication Equation (MSME):
n∏

i=1

A
yi
i

m∏
i=1

Xi
bi

m∏
i=1

n∏
j=1

Xi
ki,jyj = T ·

• Quadratic Equation (QE) in Zp:
n∑

i=1

aiyi +
m∑

i=1

xibi +
m∑

i=1

n∑
j=1

xiyj = t·

Fig. 3. Types of equations one can use Groth-Sahai proofs for

TPKE.KeyGen(1λ)

⊕ (G, p) ∪ GrpSetup(1λ).

⊕ K,L ∪ G; f, h∪ Zp.

⊕ F := Gf , H := Gh.

⊕ pk := (G,F,H,K, L); sk := (f, h).

TPKE.Enc(pk, t,M)

⊕ r1, r2 ∪ Zp.

⊕ C1 := F r1 ; C2 := Hr2 ; C3 := Gr1+r2 ·M .

⊕ C4 := (Gt ·K)r1 ; C5 := (Gt · L)r2 .
⊕ Ctbe := (C1, C2, C3, C4, C5).

TPKE.Dec(sk, t, Ctbe)

⊕ If TPKE.IsValid(pk, t, Ctbe) = 0 Then Rreturn ∗.

⊕ Parse Ctbe as (C1, C2, C3, C4, C5).

⊕ M := C3 · C−1/f
1 C

−1/h
2 .

TPKE.IsValid(pk, t, Ctbe)

⊕ Parse Ctbe as (C1, C2, C3, C4, C5).

⊕ If e(F, C4) 	= e(C1, G
t ·K) Or

e(H,C5) 	= e(C2, G
t · L) Then Return 0.

⊕ Else Return 1.

Fig. 4. The tag-based encryption by Kiltz [29]

Besides the usual correctness requirement, we require that the scheme is in-
distinguishable against adaptive chosen-ciphertext attacks (IND-CCA2) whose
formal definition can be found in the full version [10].

Tag-Based Encryption. A Tag-based Public-Key Encryption (TPKE) scheme
[32] for a message space MTPKE and a tag space TTPKE is similar to a public-
key encryption scheme with the only difference being that both Enc and Dec
algorithms take as an additional input a tag t. One could optionally require an
additional algorithm IsValid which on input (pk, t, Ctbe) outputs 1 if Ctbe is a
valid ciphertext under pk and the tag t.

Besides the usual correctness requirement, we require selective-tag weak in-
distinguishability against adaptive chosen-ciphertext attacks (ST-WIND-CCA).
Informally, ST-WIND-CCA requires that an adversary cannot distinguish which
message was encrypted under a challenge tag t≥ even if it has access to a de-
cryption oracle that decrypts any ciphertext under any tag different from t≥.
“Selective-Tag” refers to the fact that the adversary must choose the challenge
tag at the start of the game, i.e. before it gets the public key. The formal defi-
nition can be found in the full version [10].

We will use the ST-WIND-CCA tag-based encryption scheme by Kiltz [29]
which is secure under the DLIN assumption. The scheme is in Fig. 4. In [26], it
was shown that the tag-based scheme in Fig. 4 can be translated into both (Type-
2 & Type-3) asymmetric bilinear group settings. The security of the scheme in
the Type-3 setting relies on a variant of the DLIN assumption called the SDLIN
assumption, in which the last element in the input tuple is provided in both
groups. However, the security of this variant requires that the message space
is polynomial in the security parameter so that we can efficiently search when
decrypting.

Decentralized Traceable Attribute-Based Signatures 339

6 A Generic Construction for DTABS

Here we present our generic construction.

Overview of the Construction. The tools we use in our generic construction
are two NIZK proof systems NIZK1 and NIZK2, an IND-CCA2 secure public-key
encryption scheme PKE, an existentially unforgeable tagged signature scheme
TS, and an existentially unforgeable digital signature scheme DS with a message
spaceMDS. In addition, we need a collision-resistant hash functionH : {0, 1}≥ ⊗
MDS.

We require that the NIZK1 proof system, which will be used in the signing, is
simulation-sound [38] and a proof of knowledge [9]. In fact, it is sufficient for it
to be only one-time simulation-sound. On the contrary, it suffices that NIZK2 is
a zero-knowledge proof system, i.e. we require neither simulation-soundness nor
knowledge extractability from NIZK2.

The Setup algorithm generates two separate common reference strings crs1 and
crs2 for the NIZK systems NIZK1 and NIZK2, respectively. It also generates a key
pair (tvk, tsk) for the digital signature scheme DS, and an encryption/decryption
key pair (epk, esk) for the encryption scheme PKE. The public parameters of the
system is set to pp := (1Δ, crs1, crs2, tvk, epk,A,H), where A is the universe of
attributes and λ is the security parameter. The tracing authority’s key is set to
tk := esk.

When a new attribute authority joins the system, it creates a secret/verificat-
ion key pair (aaskaid, aavkaid) for the tagged signature scheme TS. To generate a
signing key for attribute a → A for signer sid, the managing attribute authority
signs the signer identity sid (used as tag) along with the attribute a using her
secret tagged signature signing key. The resulting signature is used as the secret
key for that attribute by signer sid.

To sign a message m w.r.t. a signing policy Ψ , the signer first encrypts her
identity sid using the encryption scheme PKE (and some randomness μ) to obtain
a ciphertext C. She then computes, using the NIZK system NIZK1, a proof
π that she encrypted her identity correctly and that she either has a digital
signature on the hash of the combination of the signing predicate, the message
and the ciphertext containing her identity, i.e. H(Ψ,m,C), that verifies w.r.t.
the verification key tvk or that she owns enough attributes to satisfy the original
signing predicate Ψ in the form of tagged signatures on her identity and the
attributes. For ease of composition and following [34], we refer to H(Ψ,m,C)
as pseudo-attributes and denote them by aΨ,m,C . Note here that including the
ciphertext as part of the encoding of the pseudo-attribute does not affect the
signature size.

The extended predicate Ψ̂ is proved via a span program (see Section 2) repre-

sented by the matrix Z: the signer proves that she knows a secret vector s → Z
|Ψ̂ |
p

s.t. sZ = [1, 0, . . . , 0]. She also needs to show that she possesses a valid (tagged)
signature on each attribute in the signing predicate for which the corresponding
element in s is non-zero or a valid signature that verifies w.r.t tvk in the case of

340 A.E. Kaafarani, E. Ghadafi, and D. Khader

Setup(1λ)

⊕ (crs1, xk1) ∪ NIZK1.Setup(1
λ) and crs2 ∪ NIZK2.Setup(1

λ).

⊕ (tvk, tsk) ∪ DS.KeyGen(1λ) and (epk, esk) ∪ PKE.KeyGen(1λ; ι).

⊕ Choose a collision-resistant hash function H : {0, 1}→ → MDS.

⊕ Let tk := esk and pp := (1λ, crs1, crs2, tvk, epk,A,H).

⊕ Return pp.

AuthSetup(pp, aid)

⊕ (aavkaid, aaskaid) ∪ TS.KeyGen(1λ).

⊕ Return (aavkaid, aaskaid).

KeyGen(aaskaid(a), sid, a)

⊕ sksid,a ∪ TS.Sign(aaskaid(a), sid, a).

⊕ Return sksid,a.

Sign({aavkaid(a)}a∈A, {sksid,a}a∈A,m, Ψ)

⊕ Return ∗ if Ψ(A) = 0.

⊕ C ∪ PKE.Enc(epk, sid; μ).

⊕ Let Ψ̂ := Ψ ∨ aΨ,m,C and Z ≤ Z
|Ψ̂|,β
p be the span program for Ψ̂ .

⊕ Let a := {ai}|Ψ̂|
i=1 denote the attributes appearing in Ψ̂ .

⊕ δ ∪ NIZK1.Prove(crs1, {sid, μ, s, {πai
}|Ψ̂|
i=1} : (C, {aavkaid(ai)

}|Ψ̂|−1
i=1 ∪ tvk,a) ≤ L1).

⊕ Return π := (δ,C).

Verify({aavkaid(a)}a∈Ψ ,m, π, Ψ)

⊕ Return NIZK1.Verify(crs1, δ).

Trace(tk,m, π, Ψ)

⊕ Return (∗,∗) if Verify({aavkaid(a)}a∈Ψ ,m, π, Ψ) = 0.

⊕ sid ∪ PKE.Dec(tk, C).

⊕ δTrace ∪ NIZK2.Prove(crs2, {tk, ι} : (C, epk, sid) ≤ L2).

⊕ Return (sid, δTrace).

Judge({aavkaid(a)}a∈Ψ ,m, π, Ψ, sid, δTrace)

⊕ If (sid, δTrace) = (∗,∗) Then Return Verify({aavkaid(a)}a∈Ψ ,m, π, Ψ) = 0.

⊕ Return NIZK2.Verify(crs2, δTrace).

Fig. 5. The generic construction for DTABS

a pseudo-attribute. For attributes appearing in the policy that the signer does
not own, she chooses random signatures.

Note that the hiding property of the NIZK1 system ensures that the proof π
does not reveal how the modified predicate Ψ̂ was satisfied, i.e. whether the signer
has a special signature on the pseudo-attribute or she owns enough attributes
to satisfy the original predicate Ψ . The signature is then set to σ := (π,C). To
verify the signature, one just needs to verify the proof π.

The modified predicate Ψ̂ serves to bind the signature to the message and
the signing predicate. The secret signing key tsk for the digital signature scheme
DS is only used as a trapdoor in the security proofs, and thus is not given to
any authority. It allows its holder to simulate signatures and sign on behalf of
any signer without knowing their secret keys by simply encrypting their identity
and producing a signature on the pseudo-attribute associated with the message
and the signing predicate. Note that even in the unlikely case that any of the
pseudo-attributes happened to collide with a real attribute, this is not a problem

Decentralized Traceable Attribute-Based Signatures 341

since signatures associated with pseudo-attributes must verify w.r.t. tvk which
is different from all attribute authorities’ keys.

To trace a signature, the tracing authority just decrypts the ciphertext C
to recover the signer’s identity. It then produces a proof πTrace using the NIZK
system NIZK2 to prove that the decryption was done correctly. To verify the
tracing correctness, the judge just needs to verify the proof πTrace.

The details of the construction are in Fig. 5, whereas the languages associated
with the NIZK proofs used in the construction are as follows, where for clarity
we underline the elements of the witness:

L1 :
{((

C, vk := {aavkaid(ai)}|Ψ̂ |−1
i=1 ◦ tvk,a := {ai}|Ψ̂ |

i=1

)
,
(
sid, μ, s,σ := {σai}|Ψ̂ |

i=1

))
:

(
sZ = [1, 0, . . . , 0]

|Ψ̂|−1∧

i=1

if si ∈= 0⇒ TS.Verify(vki, sid, ai, σai) = 1

∧ if s|Ψ̂ | ∈= 0⇒ DS.Verify(tvk, aΨ,m,C , σa|Ψ̂|) = 1
)
∧ PKE.Enc(epk, sid;μ) = C

}
·

The witness consists of the identity sid, the randomness μ used in encrypting

sid, a vector s → Z
|Ψ̂ |
p , and signatures {σai}|Ψ̂ |

i=1 s.t. the span program Z verifies
w.r.t. to s and for every si �= 0 for i → {1, . . . |s|−1}, the tagged signature σai on
sid (as a tag) and the attribute ai (as a message) verifies w.r.t. the corresponding
attribute authority verification key, and if s|s| �= 0, the signature σ|Ψ̂ |, i.e. the
one on the pseudo-attribute verifies w.r.t. the verification key tvk of DS.

L2 :
{((

C, epk, sid
)
,
(
tk, ρ

))
:PKE.KeyGen(1λ; ρ) = (epk, tk) ∧ PKE.Dec(tk, C) = sid

}
·

The witness consists of the tracing key, i.e. the decryption key for PKE, and
the randomness ρ (if any) used in the key generation of PKE s.t. the encryp-
tion/decryption key pair is correct and the ciphertext C decrypts to sid.

Note that if we encrypted the whole witness of π (rather than just the signer
identity) then we could drop the requirement for NIZK1 to be a proof of knowl-
edge. The reason why we cannot afford to do this is two-fold: first, since the
decryption key is used as a tracing key and signers do not have their own per-
sonal key pairs, this would mean that a dishonest tracing authority will be able
to forge on behalf of an honest signer once it has opened a signature by them.
Second, since in both the full unforgeability and traceability experiments, the
adversary has access to the tracing key, it would mean that we can no longer sign
using pseudo-attributes since the adversary will be able to learn what witness
we used in producing a signature. Also, note that for the construction to satisfy
the stronger variant of full unforgeability (i.e. SFU) rather thanWFU,NIZK1 must
additionally be strongly non-malleable in the sense that it is infeasible for the ad-
versary to even output a new proof for a statement that it received a proof for. In
particular, as noted by [21] if the proof system is simulation-sound extractable [21]
then it is non-malleable.

Theorem 1. The construction in Fig. 5 is a secure DTABS if the building blocks
are secure w.r.t. their security requirements.

The full proof of this theorem can be found in the full version [10].

342 A.E. Kaafarani, E. Ghadafi, and D. Khader

We note here that instantiations of all the tools we require for the generic
construction exist in the literature in both the random oracle and the standard
models. In particular, we note that in the random oracle model we can instantiate
the proof systems required using the Fiat–Shamir heuristics [12]. Our focus is,
however, on constructions which do not rely on idealized assumptions. Before we
proceed we note here that the size of the signature in [11], which requires random

oracles and is over the inefficient composite-order bilinear groups, is G
|Ψ̂|+γ+7.

Note that the size of the group order of composite-order groups is about 10 times
that of their prime-order counterparts at the same security level.

In order to improve the efficiency in the standard model, we present a con-
struction in the next section that slightly deviates from the generic framework.

7 Constructions in the Standard Model

In order to get more efficient constructions in the standard model, we slightly
deviate from the generic framework by dropping the requirement that NIZK1 is
simulation-sound. In particular, in our instantiations we will use the Groth-Sahai
proof system (which is the only efficient non-interactive proof system not relying
on random oracles) to instantiate both NIZK1 and NIZK2 systems. Note that
Groth-Sahai proofs are malleable and therefore not simulation-sound. Although
there exist transformations which make Groth-Sahai proofs simulation-sound,
e.g. [21], unfortunately, all those transformations degrade the efficiency of the
proofs. Also, note that the fact that one cannot efficiently extract exponents
from Groth-Sahai proofs is not a problem in our case as we never need to be
able to efficiently extract the exponent components of the witness.

To eliminate the need for NIZK1 to be simulation-sound, we apply a trick simi-
lar to that used by Groth in [22] where we sign the final signature with a strongly
unforgeable one-time signature scheme OTS. We require that OTS is strongly
existentially unforgeable against adaptive chosen-message attack. We replace
the IND-CCA PKE encryption scheme with a selective-tag weakly IND-CCA
(i.e. ST-WIND-CCA secure) tag-based encryption scheme TPKE. We encrypt
the signer’s identity sid using TPKE and the one-time signature verification key
as a tag. To map the one-time signature verification key into the tag space of
the tag-based encryption, we require another collision-resistant hash function,
Ĥ : {0, 1}≥ ⊗ TTPKE. In order to further bind the signature to the one-time
signature verification key (i.e. the tag used for the ciphertext), we sign the one-
time signature verification key as a part of the pseudo-attribute, i.e. the pseudo-
attribute now is (Ψ,m,Ctbe, Ĥ(otsvk)), which we denote by aΨ,m,Ctbe,Ĥ(otsvk).
The rest of the tools are the same as in the generic construction in Section 6.

The one-time signature serves to prevent the adversary from transforming a
signature that it received into another valid signature as it now must be able to
forge a one-time signature in order to succeed. Moreover, the one-time signature
gives us the added bonus of realizing the stronger variant of full unforgeability.
The details of the general idea of this construction is given in Fig. 6, whereas
the languages associated with the NIZK proofs used in the construction are as

Decentralized Traceable Attribute-Based Signatures 343

Setup(1λ)

⊕ (crs1, xk1) ∪ NIZK1.Setup(1
λ) and (crs2, xk2) ∪ NIZK2.Setup(1

λ).

⊕ (tvk, tsk) ∪ DS.KeyGen(1λ) and (epk, esk) ∪ TPKE.KeyGen(1λ; ι).

⊕ Choose collision-resistant hash functions H : {0, 1}→ → MDS and Ĥ : {0, 1}→ → TTPKE.

⊕ Let tk := esk and pp := (1λ, crs1, crs2, tvk, epk,A,H, Ĥ).

⊕ Return pp.

AuthSetup(pp, aid)

⊕ (aavkaid, aaskaid) ∪ TS.KeyGen(1λ). Return (aavkaid, aaskaid).

KeyGen(aaskaid(a), sid, a)

⊕ sksid,a ∪ TS.Sign(aaskaid(a), sid, a). Return sksid,a.

Sign({aavkaid(a)}a∈A, {sksid,a}a∈A,m, Ψ)

⊕ Return ∗ if Ψ(A) = 0.

⊕ (otsvk, otssk) ∪ OTS.KeyGen(1λ).

⊕ Ctbe ∪ TPKE.Enc(epk, Ĥ(otsvk), sid; μ).

⊕ Let Ψ̂ := Ψ ∨ aΨ,m,Ctbe,Ĥ(otsvk) and Z ≤ Z
|Ψ̂|,β
p be the span program for Ψ̂ .

⊕ Let a := {ai}|Ψ̂|
i=1 denote the attributes appearing in Ψ̂ .

⊕ Let ω := {sid, μ, s, {πai
}|Ψ̂ |
i=1} and χ := (Ĥ(otsvk), Ctbe, {aavkaid(ai)

}|Ψ̂ |−1
i=1 ∪ tvk,a).

⊕ δ ∪ NIZK1.Prove(crs1, ω : χ ≤ L′
1).

⊕ πots ∪ OTS.Sign(otssk, (δ,Ctbe, otsvk)).

⊕ Return π := (πots, δ, Ctbe, otsvk).

Verify({aavkaid(a)}a∈Ψ ,m, π, Ψ)

⊕ Parse π as (πots, δ, Ctbe, otsvk).

⊕ Return 1 if all the following hold; otherwise, return 0:

Θ OTS.Verify(otsvk, (δ,Ctbe, otsvk), πots) = 1.

Θ NIZK1.Verify(crs1, δ) = 1.

Θ TPKE.IsValid(epk, Ĥ(otsvk), Ctbe) = 1.

Trace(tk,m, π, Ψ)

⊕ Return (∗,∗) if Verify({aavkaid(a)}a∈Ψ ,m, π, Ψ) = 0.

⊕ sid ∪ TPKE.Dec(tk, Ĥ(otsvk), Ctbe).

⊕ δTrace ∪ NIZK2.Prove(crs2, {tk, ι} : (Ĥ(otsvk), Ctbe, epk, sid) ≤ L′
2).

⊕ Return (sid, δTrace).

Judge({aavkaid(a)}a∈Ψ ,m, π, Ψ, sid, δTrace)

⊕ If (sid, δTrace) = (∗,∗) Then Return Verify({aavkaid(a)}a∈Ψ ,m, π, Ψ) = 0.

⊕ Return NIZK2.Verify(crs2, δTrace).

Fig. 6. Details of the second construction

follows, where again the elements of the witness are underlined:

L∗
1 :

{((Ĥ(otsvk), Ctbe, vk := {aavkaid(ai)}|Ψ̂ |−1
i=1 ◦ tvk,a := {ai}|Ψ̂ |

i=1

)
,

(
sid, μ, s,σ := {σai}|Ψ̂ |

i=1

))
: TPKE.Enc(epk, Ĥ(otsvk), sid;μ) = Ctbe

∧
(
sZ = [1, 0, . . . , 0]

|Ψ̂ |−1∧

i=1

if si ∈= 0⇒ TS.Verify(vki, sid, ai, σai) = 1

∧ if s|Ψ̂ | ∈= 0⇒ DS.Verify(tvk, aΨ,m,Ctbe,Ĥ(otsvk), σa|Ψ̂|) = 1
)}
·

344 A.E. Kaafarani, E. Ghadafi, and D. Khader

L∗
2 :

{((Ĥ(otsvk), Ctbe, epk, sid
)
,
(
tk, ρ

))
: TPKE.KeyGen(1λ; ρ) = (epk, tk)

∧ TPKE.Dec(tk, Ĥ(otsvk), Ctbe) = sid
}
·

We provide a proof for the following theorem in the full version [10].

Theorem 2. The construction in Fig. 6 is a secure DTABS if the building blocks
are secure w.r.t. their security requirements.

7.1 An Instantiation in Symmetric Groups

We use the instantiation of the tagged signature scheme from Section 5.1 and in-
stantiate the digital signature DS used for pseudo-attributes with the full Boneh-
Boyen signature scheme (cf. Section 5.2) both in the symmetric setting. Thus,
we assume a collision-resistant hash function H : {0, 1}≥ ⊗ Zp. Note that we
need not hide the integer component r of the full Boneh-Boyen signature when
proving π as such a signature can only be generated by the simulator running the
security game and hence r does not reveal any information about the attributes
involved or the identity of the signer. In other words, in both the real signature
and the simulated signature cases, r is chosen uniformly at random.

We use the selective-tag weakly IND-CCA tag-based encryption scheme by
Kiltz [29] as illustrated in Fig. 4 to instantiate TPKE and instantiate the one-time
signature with the full Boneh-Boyen signature in the symmetric setting.

We now give the specific details of the proofs invloved. Let Z → Z
|Ψ̂ |,γ
p be

the span program for Ψ̂ := Ψ ⊕ aΨ,m,Ctbe,Ĥ(otsvk). To sign, we need the following
proofs:

• To prove that sZ = [1, 0, . . . , 0], we need to prove the following equations:

|Ψ̂ |∑
i=1

(siZi,1) = 1

|Ψ̂ |∑
i=1

(siZi,j) = 0, for j = 2, . . . , β (1)

To prove that if si �= 0 ∃ TS.Verify(vki, sid, ai, σai) = 1, one needs to raise
each pairing involved in the signature verification equations to si. This will
ensure that if si �= 0 then the only way for the equations to verify is by
having a valid signature on sid and ai. On the other hand, if the user does
not own attribute ai then si = 0 and the equations will verify since each
pairing will evaluate to 1. Based on the observation that the components
U,U ′, V, V ′ of the tagged signature are independent of the signing key and
hence even when the user does not have a valid signature on ai can still choose
random components of the correct form to satisfy the first two verification
equations of the tagged signature. Thus, it is sufficient to use si only in the
last equation of the tagged signature verification equations. This reduces the
number of additional GS commitments and equations required and hence
improves the efficiency.

Decentralized Traceable Attribute-Based Signatures 345

For each of the first |Ψ̂ | − 1 rows in Z, we prove:

T̄i = T si Ḡ′
i = G′si W̄i =Wi

si e(Ui, G
′
i) = e(Gi, U

′
i)

e(Vi, G
′
i) = e(Fi, V

′
i) e(W̄i, X

′ · V ′
i) = e(T̄i, U

′
i)e(K · sid · Lai , Ḡ′

i)

For the last row in Z, i.e. the pseudo-attribute, the proofs required are:

σ̄ = σ
s|Ψ̂ | Ḡ = G

s|Ψ̂ | e(σ̄, X · Y r ·GH(Ψ,m,Ctbe,Ĥ(otsvk)))e(Ḡ, G) = 1

• To prove that TPKE.Enc(epk, Ĥ(otsvk), sid; (r1, r2)) = Ctbe, the signer proves

(C1, C2, C3, C4, C5) =
(
F r1 , Hr2 , Gr1+r2 ·sid, (GĤ(otsvk)·K)r1 , (GĤ(otsvk)·L)r2)

was computed correctly. Since the validity of the ciphertext is publicly veri-
fiable, and for the sake of efficiency, it is sufficient to provide proofs that C1,
C2 and C3 were computed correctly and the rest can be verified by checking

that e(F,C4) = e(C1, G
Ĥ(otsvk) ·K) and e(H,C5) = e(C2, G

Ĥ(otsvk) ·L). Thus,
proving this clause requires proving the 3 following equations

C1 = F r1 C2 = Hr2 C3 = Gr1 ·Gr2 · sid
• Finally, the signer needs to prove that her identity is a Diffie–Hellman tuple

satisfying e(sid, G′) = e(G, sid′).

The total size of the signature is Z2·γ+1
p + G

69·|Ψ̂|. An important observation is
that the verification of the signature could be made more efficient by using batch
verification techniques for Groth-Sahai proofs [18,5].

Computing the proof πTrace requires proving the following equations

Gf = F Gh = H C3 · C−1/f

1 · C−1/h
2 = sid

The proof for the following theorem follows from that of theorem 2.

Theorem 3. The construction is secure if the assumptions DLIN, q-SDH, q-
ADHSDH, and WFCDH hold.

7.2 An Instantiation in Asymmetric Groups

To improve efficiency, here we translate the above instantiation into the asym-
metric setting (i.e. Type-3 bilinear groups) where we use the more efficient
SXDH-based instantiation of Groth-Sahai proofs. We use the asymmetric vari-
ants of all the building blocks used in the symmetric instantiation. Note that
the security of the asymmetric instantiation of the tag-based encryption scheme
from [26] which we use here is based on the SDLIN assumption [26] (a variant
of the DLIN assumption in which the last element in the input tuple is provided
in both groups) requires that the message space of the encryption scheme (i.e.
the number of signers’ identities to be encrypted) is polynomial in the security
parameter so that we can efficiently search when decrypting. Thus, this instanti-
ation only works when traceability is defined w.r.t. registered users in the system
which is polynomial in the security parameter.

346 A.E. Kaafarani, E. Ghadafi, and D. Khader

The details of this instantiation can be found in the full version [10]. The

signature size of this instantiation is G
34·|Ψ̂|−6
1 +G

32·|Ψ̂ |
2 + Z

γ+1
p .

We end by noting (similarly to [26]) that by translating the instantiation into
the Type-2 setting, we can eliminate the requirement for the signer identity space
(i.e. the message space of the TPKE scheme) to be polynomial. In this setting,
we can use the instantiation of Groth-Sahai proofs based on DDH in G1 and
DLIN in G2 as in [19].

7.3 Other Instantiations

By replacing the tagged signature scheme used in the previous instantiation
with one based on any structure-preserving signature scheme [1] that is capable
of signing two messages, we get more instantiations in the standard model.

An obvious candidate for this is the signature scheme by Abe et al. [2], which
can sign multiple group elements. The Abe et al. signature scheme yields signa-
tures consisting of 7 group elements and requires 2 PPE for verification.

Acknowledgments. The second author was supported by ERCAdvancedGrant
ERC-2010-AdG-267188-CRIPTO and EPSRC via grant EP/H043454/1.

We thank David Bernhard, Liqun Chen, James Davenport, Nigel Smart, and
Bogdan Warinschi. We also thank anonymous CT-RSA reviewers for valuable
comments.

References

1. Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-
preserving signatures and commitments to group elements. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer, Heidelberg (2010)

2. Abe, M., Haralambiev, K., Ohkubo, M.: Signing on Elements in Bilinear Groups
for Modular Protocol Design. Cryptology ePrint Archive, Report 2010/133,
http://eprint.iacr.org/2010/133

3. Bellare, M., Rogaway, P.: Random oracles are practical: A Paradigm for Designing
Efficient Protocols. In: ACM-CCS 1993, pp. 62–73. ACM (1993)

4. Bellare, M., Shi, H., Zhang, C.: Foundations of group signatures: The case of dy-
namic groups. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 136–153.
Springer, Heidelberg (2005)

5. Blazy, O., Fuchsbauer, G., Izabachène, M., Jambert, A., Sibert, H., Vergnaud, D.:
Batch Groth–Sahai. In: Zhou, J., Yung, M. (eds.) ACNS 2010. LNCS, vol. 6123,
pp. 218–235. Springer, Heidelberg (2010)

6. Boneh, D., Boyen, X.: Short Signatures Without Random Oracles. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer,
Heidelberg (2004)

7. Bobba, R., Fatemieh, O., Khan, F., Gunter, C.A., Khurana, H.: Using Attribute-
Based Access Control to Enable Attribute-Based Messaging. In: ACSAC 2006,
vol. 3027, pp. 403–413. IEEE Computer Society (2006)

8. Boneh, D., Boyen, X., Shacham, H.: Short Group Signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

http://eprint.iacr.org/2010/133

Decentralized Traceable Attribute-Based Signatures 347

9. De Santis, A., Persiano, G.: Zero-knowledge proofs of knowledge without interac-
tion. In: FOCS 1992, pp. 427–436 (1992)

10. El Kaafarani, A., Ghadafi, E., Khader, D.: Decentralized Traceable Attribute-
Based Signatures. In: Cryptology ePrint Archive, Report 2013/828 (2013),
http://eprint.iacr.org/2013/828.pdf

11. Escala, A., Herranz, J., Morillo, P.: Revocable Attribute-Based Signatures with
Adaptive Security in the Standard Model. In: Nitaj, A., Pointcheval, D. (eds.)
AFRICACRYPT 2011. LNCS, vol. 6737, pp. 224–241. Springer, Heidelberg (2011)

12. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification.
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987)

13. Frikken, K.B., Li, J., Atallah, M.J.: Trust negotiation with hidden credentials, hid-
den policies, and policy cycles. In: NDSS 2006, pp. 157–172. The Internet Society
(2006)

14. Fuchsbauer, G.: Automorphic Signatures in Bilinear Groups and an Application to
Round-Optimal Blind Signatures. In: Cryptology ePrint Archive, Report 2009/320
(2009), http://eprint.iacr.org/2009/320.pdf

15. Fuchsbauer, G.: Commuting Signatures and Verifiable Encryption. In: Paterson,
K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 224–245. Springer, Heidelberg
(2011)

16. Gagné, M., Narayan, S., Safavi-Naini, R.: Short Pairing-Efficient Threshold-
Attribute-Based Signature. In: Abdalla, M., Lange, T. (eds.) Pairing 2012. LNCS,
vol. 7708, pp. 295–313. Springer, Heidelberg (2013)

17. Galbraith, S., Paterson, K., Smart, N.P.: Pairings for cryptographers. Discrete
Applied Mathematics 156, 3113–3121 (2008)

18. Ghadafi, E., Smart, N.P., Warinschi, B.: Practical zero-knowledge proofs for circuit
evaluation. In: Parker, M.G. (ed.) Cryptography and Coding 2009. LNCS, vol. 5921,
pp. 469–494. Springer, Heidelberg (2009)

19. Ghadafi, E., Smart, N.P., Warinschi, B.: Groth-Sahai proofs revisited. In: Nguyen,
P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 177–192. Springer,
Heidelberg (2010)

20. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-Based Encryption for Fine-
Grained Access Control of Encrypted Data. In: CCS 2006, pp. 89–98. ACM (2006)

21. Groth, J.: Simulation-sound NIZK proofs for a practical language and constant size
group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 444–459. Springer, Heidelberg (2006)

22. Groth, J.: Fully anonymous group signatures without random oracles. In: Kuro-
sawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 164–180. Springer, Hei-
delberg (2007)

23. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups.
SIAM Journal on Computing 41(5), 1193–1232 (2012)

24. Herranz, J., Laguillaumie, F., Libert, B., Ràfols, C.: Short Attribute-Based Sig-
natures for Threshold Predicates. In: Dunkelman, O. (ed.) CT-RSA 2012. LNCS,
vol. 7178, pp. 51–67. Springer, Heidelberg (2012)

25. Karchmer, M., Wigderson, A.: On span programs. In: 8th IEEE Structure in Com-
plexity Theory, pp. 102–111 (1993)

26. Kakvi, S.A.: Efficient fully anonymous group signatures based on the Groth
group signature scheme. Masters thesis, University College London (2010),
http://www5.rz.rub.de:8032/mam/foc/content/publ/thesis_kakvi10.pdf

27. Khader, D.: Attribute Based Group Signatures with Revocation. In: Cryptology
ePrint Archive, Report 2007/241 (2007), http://eprint.iacr.org/2007/241.pdf

http://eprint.iacr.org/2013/828.pdf
http://eprint.iacr.org/2009/320.pdf
http://www5.rz.rub.de:8032/mam/foc/content/publ/thesis_kakvi10.pdf
http://eprint.iacr.org/2007/241.pdf

348 A.E. Kaafarani, E. Ghadafi, and D. Khader

28. Khader, D., Chen, L., Davenport, J.H.: Certificate-Free Attribute Authentication.
In: Parker, M.G. (ed.) Cryptography and Coding 2009. LNCS, vol. 5921, pp. 301–
325. Springer, Heidelberg (2009)

29. Kiltz, E.: Chosen-Ciphertext Security from Tag-Based Encryption. In: Halevi, S.,
Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 581–600. Springer, Heidelberg
(2006)

30. Li, J., Au, M.H., Susilo, W., Xie, D., Ren, K.: Attribute-based signature and its
applications. In: ASIACCS 2010, pp. 60–69. ACM (2010)

31. Li, J., Kim, K.: Attribute-Based Ring Signatures. In: Cryptology ePrint Archive,
Report 2008/394 (2008), http://eprint.iacr.org/2008/394.pdf

32. MacKenzie, P., Reiter, M.K., Yang, K.: Alternatives to Non-malleability: Defi-
nitions, Constructions, and Applications. In: Naor, M. (ed.) TCC 2004. LNCS,
vol. 2951, pp. 171–190. Springer, Heidelberg (2004)

33. Maji, H.K., Prabhakaran, M., Rosulek, M.: Attribute-Based Signatures: Achieving
Attribute-Privacy and Collusion-Resistance. In: Cryptology ePrint Archive, Report
2008/328 (2008), http://eprint.iacr.org/2008/328.pdf

34. Maji, H.K., Prabhakaran, M., Rosulek, M.: Attribute-Based Signatures. In: Ki-
ayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 376–392. Springer, Heidelberg
(2011)

35. Naor, M.: On cryptographic assumptions and challenges. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 96–109. Springer, Heidelberg (2003)

36. Okamoto, T., Takashima, K.: Efficient Attribute-Based Signatures for Non-
monotone Predicates in the Standard Model. In: Catalano, D., Fazio, N., Gennaro,
R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 35–52. Springer, Heidelberg
(2011)

37. Okamoto, T., Takashima, K.: Decentralized Attribute-Based Signatures. In: Kuro-
sawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 125–142. Springer,
Heidelberg (2013)

38. Sahai, A.: Non-Malleable Non-Interactive Zero Knowledge and Adaptive Chosen-
Ciphertext Security. In: FOCS 1999, pp. 543–553 (1999)

39. Sahai, A., Waters, B.: Fuzzy Identity-Based Encryption. In: Cramer, R. (ed.) EU-
ROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

40. Shahandashti, S.F., Safavi-Naini, R.: Threshold Attribute-Based Signatures and
Their Application to Anonymous Credential Systems. In: Preneel, B. (ed.)
AFRICACRYPT 2009. LNCS, vol. 5580, pp. 198–216. Springer, Heidelberg (2009)

http://eprint.iacr.org/2008/394.pdf
http://eprint.iacr.org/2008/328.pdf

Rethinking Verifiably Encrypted Signatures:

A Gap in Functionality and Potential Solutions

Theresa Calderon1, Sarah Meiklejohn1,
Hovav Shacham1, and Brent Waters2

1 UC San Diego
{tcaldero,smeiklej,hovav}@cs.ucsd.edu

2 UT Austin
bwaters@cs.utexas.edu

Abstract. Verifiably encrypted signatures were introduced by Boneh,
Gentry, Lynn, and Shacham in 2003, as a non-interactive analogue to in-
teractive protocols for verifiable encryption of signatures. As their name
suggests, verifiably encrypted signatures were intended to capture a no-
tion of encryption, and constructions in the literature use public-key
encryption as a building block.

In this paper, we show that previous definitions for verifiably en-
crypted signatures do not capture the intuition that encryption is
necessary, by presenting a generic construction of verifiably encrypted
signatures from any signature scheme. We then argue that signatures
extracted by the arbiter from a verifiably encrypted signature object
should be distributed identically to ordinary signatures produced by the
original signer, a property that we call resolution independence. Our
generic construction of verifiably encrypted signatures does not satisfy
resolution independence, whereas all previous constructions do. Finally,
we introduce a stronger but less general version of resolution indepen-
dence, which we call resolution duplication. We show that verifiably en-
crypted signatures that satisfy resolution duplication generically imply
public-key encryption.

Keywords: Verifiably encrypted signatures, signatures, public-key
encryption.

1 Introduction

Verifiably encrypted signatures were introduced by Boneh, Gentry, Lynn, and
Shacham in 2003 [5] as a non-interactive analogue to interactive protocols for
verifiable encryption of signatures [3,4] and of other cryptographic objects [7].
As their name suggests, verifiably encrypted signatures were intended to incor-
porate a notion of encryption: the signer encrypts her signature in such a way
that a special trusted party, called the arbiter, can later decrypt and reveal the
underlying ordinary signature. Indeed, ElGamal encryption of BLS signatures [6]
was at the heart of the original verifiably encrypted signature construction.

J. Benaloh (Ed.): CT-RSA 2014, LNCS 8366, pp. 349–366, 2014.
c© Springer International Publishing Switzerland 2014

350 T. Calderon et al.

In this paper, we show that this intention— incorporating a notion of encryp-
tion— is not actually achieved by the definitions given in previous papers. To
demonstrate this, we first in Section 3 give a generic construction of verifiably
encrypted signatures from any existentially unforgeable signature scheme. The
intuition behind our construction is fairly straightforward: to form a verifiably
encrypted signature, the signer includes an annotation with her signature asking
users not to verify it; later, the arbiter can append to this signature another
annotation, under his own key, telling users that verification is now allowed.
Our generic construction satisfies both the original security model for verifi-
ably encrypted signatures and the tweaked definitions later given by Hess [11],
Rückert and Schröder [16], and Rückert, Schneider, and Schröder [15].

Given that our generic construction therefore yields a secure verifiably en-
crypted signature yet makes no use of encryption, thus seemingly contradicting
the spirit of the primitive, we are left with a number of different ways to in-
terpret this result. One possible interpretation is that the current definitions
are fine as is, and verifiably encrypted signatures are simply misnamed. They
remain equally useful as a building block in larger protocols such as optimistic
fair exchange [2] whether or not they involve encryption.

A second interpretation is that previous definitions have failed to capture
something fundamental about verifiably encrypted signatures. If the signer es-
crows her ordinary signature and the arbiter is later meant to recover that sig-
nature, then the start and end points of that process— the signer’s signature,
and the signature obtained by the arbiter— should look the same. Previous def-
initions do not model this requirement, and in fact our generic construction
does not satisfy it. In Section 4, we therefore formalize this notion, which we
call resolution independence. We then provide a “separation” of sorts between
our generic construction and existing ones (which, again, do use some form of
public-key encryption) by arguing that all previous constructions of verifiably
encrypted signatures do satisfy it.

A third, perhaps more extreme, interpretation is that a verifiably encrypted
signature should not merely be “encryption-like” in facilitating the transfer of a
signature from signer to arbiter, but should actually make use of public-key en-
cryption in a fundamental way. To this end, we introduce in Section 5 a stronger
version of resolution independence that requires the signer to be able to produce
a signature that is identical to the one that the arbiter will output. We show
that verifiably encrypted signatures that satisfy this property, which we call res-
olution duplication, generically imply the existence of public-key encryption; this
approach is inspired by Abdalla and Warinschi [1], who showed that group signa-
tures generically imply public-key encryption. Although resolution duplication is
a less general property than resolution independence, all previous constructions
of verifiably encrypted signatures except one—that of Lu et al. [12]— satisfy
resolution duplication.

Rethinking Verifiably Encrypted Signatures 351

2 Definitions and Notation

In this section we provide the basic definitions for verifiably encrypted signatures
as defined by Boneh et al. [5] and Hess [11]. Formally, a verifiably encrypted
signature (VES) consists of seven algorithms. The first three, KeyGen, Sign, and
Verify, comprise an ordinary signature scheme. The fourth, AKeyGen, generates a
keypair (apk , ask) to be used by the arbiter (previously called the adjudicator);
the fifth, VESign, takes as input (sk , apk ,m) and outputs a verifiable encrypted
signature σ; the sixth, VEVerify, takes as input (pk , apk , σ,m) and outputs 1
if σ is a valid verifiably encrypted signature on m and 0 otherwise; and finally
the seventh, Resolve, takes as input (ask , pk , σ,m) and outputs a valid regular
signature ρ on m under pk (i.e., a value ρ such that Verify(pk , ρ,m) = 1).

In order to say that the scheme is complete, we would like to ensure that
an honestly computed VES will indeed verify as such, and also that once this
VES is honestly resolved it will produce a valid signature as desired. This can
be summarized formally as follows:

Definition 2.1. [5] A VES (KeyGen, Sign,Verify,AKeyGen,VESign,VEVerify,

Resolve) is complete if for all (apk , ask)
$⊗− AKeyGen(1k), (pk , sk)

$⊗− KeyGen(1k),

andm ≡ M, for σ
$⊗− VESign(sk , apk ,m) it holds that VEVerify(pk , apk , σ,m) = 1

and Verify(pk ,Resolve(ask , pk , σ,m),m) = 1.

As we show in Section 3, completeness, as well as all the security properties
below, can be satisfied by a construction based solely on signatures. We therefore
define in Section 4 a new notion for verifiably encrypted signatures intended to
capture the “verifiable encryption” functionality.

Briefly, there are three main security properties we consider for VES schemes:
unforgeability, opacity, and extractability. The first of these says that, for a given
public key pk , no one except the signer in possession of the corresponding sk
should be able to form a verifiably encrypted signature under pk . We alter
slightly the original definition; as completeness does not guarantee that signa-
tures produced by Sign and Resolve look the same (although our new definition
in Section 4 does), we additionally provide the adversary with access to the Sign
oracle, as otherwise the underlying signature scheme could be completely broken
and the VES would still be considered unforgeable.

Definition 2.2. For a VES (KeyGen, Sign,Verify,AKeyGen,VESign,VEVerify,
Resolve) and an adversary A, define the following game:

– Step 1. (pk , sk)
$⊗− KeyGen(1k), (apk , ask)

$⊗− AKeyGen(1k).

– Step 2. (m,σ)
$⊗− ASign(sk ,·),VESign(sk ,apk,·),Resolve(ask ,pk ,·,·)(pk , apk).

Then the verifiably encrypted signature scheme is unforgeable (more precisely,
secure against existential forgeries) if for all PPT algorithms A there exists
a negligible function Δ(·) such that the probability (taken over the choices of
KeyGen, AKeyGen, Sign, VESign, Resolve, and A) that VEVerify(pk , apk , σ,m) =
1 but m was not queried to any of the three oracles is at most Δ(k).

352 T. Calderon et al.

The next property, opacity, says that a user given just the verifiably encrypted
signature should not be able to pull out the underlying signature without help
from the arbiter.

Definition 2.3. [5] For a VES (KeyGen, Sign,Verify,AKeyGen,VESign,VEVerify,
Resolve) and an adversary A, define the following game:

– Step 1. (pk , sk)
$⊗− KeyGen(1k), (apk , ask)

$⊗− AKeyGen(1k).

– Step 2. (m,ρ)
$⊗− AVESign(sk ,apk ,·),Resolve(ask ,pk ,·,·)(pk , apk).

Then the verifiably encrypted signature scheme is opaque if for all PPT algo-
rithms A there exists a negligible function Δ(·) such that the probability (taken
over the choices of KeyGen, AKeyGen, VESign, Resolve, and A) that Verify(pk , ρ,
m) = 1 but (m, ·) was not queried to the Resolve oracle is at most Δ(k).

While opacity promises that no user can pull out the underlying signature
given just the verifiable encrypted signature, we still need to guarantee that
the arbiter can in fact do just this if necessary. While such a guarantee was
not defined in the original BGLS paper, this property was proposed shortly
thereafter by Hess [11] (and later formalized by Rückert and Schröder [16], who
called it extractability).

Definition 2.4. [11] For a VES (KeyGen, Sign,Verify,AKeyGen,VESign,
VEVerify,Resolve) and an adversary A, define the following game:

– Step 1. (apk , ask)
$⊗− AKeyGen(1k).

– Step 2. (pk , σ,m)
$⊗− AResolve(ask ,·,·,·)(apk).

Then the verifiably encrypted signature scheme is extractable if for all PPT al-
gorithms A there exists a negligible function Δ(·) such that the probability (taken

over the choices of AKeyGen, Resolve, andA) that, for ρ
$⊗− Resolve(ask , pk , σ,m),

VEVerify(pk , apk , σ,m) = 1 but Verify(pk , ρ,m) = 0 is at most Δ(k).

In addition to these three basic properties, there is another property we might
consider called abuse freeness, as defined by Rückert and Schröder [16]; briefly,
this says that even an adversary colluding with the arbiter cannot forge veri-
fiably encrypted signatures for another user. Although we limit our focus here
and do not consider this definition formally, we note that our signature-based
construction in the next section does satisfy abuse freeness.

3 A Signature-Based Verifiably Encrypted Signature

In this section, we show how to generically construct a secure verifiable encrypted
signature using just an unforgeable signature scheme. As mentioned in the in-
troduction, our scheme works intuitively as follows: to run VESign, a user will
sign the message, but then stamp, or annotate, the signed message to say “Do

Rethinking Verifiably Encrypted Signatures 353

Not Verify.” To verify that this is a valid VES, VEVerify will ensure that it is a
signed message with this stamp. To resolve this VES, Resolve will simply add its
own stamp “Yes Do Verify.” The verification algorithm will then check for these
cases: if the signed message has a “Do Not Verify” stamp then it will output 0
(i.e., it will not verify), unless the signed message also has a “Yes Do Verify”
stamp, in which case it will output 1 (i.e., it will verify).

More formally, let (KeyGen≥, Sign≥,Verify≥) be an unforgeable (i.e., EUF-CMA
secure) signature scheme with message space M≥. To construct a VES with mes-
sage space M, let T be a function that takes a tuple of four elements: a message
M ≡ M, an arbiter public key apk ≡ {0, 1}≤, a bit b ≡ {0, 1}, and a verifiably
encrypted signature σ ≡ {0, 1}≤, and encodes it into a binary string M ≥ ≡ M≥.
We will use b = 0 to indicate “Do Not Verify” and b = 1 to indicate “Yes Do
Verify,” and will use ⊥ to indicate that the given field is being left empty. Fur-
thermore, to avoid possible collisions, we assume that T encodes inputs uniquely;
i.e., T (M, apk , b, σ) ∪= T (M ≥, apk ≥, b≥, σ≥) unless all these values are equal. Then
we can define our VES as follows:

– KeyGen(1k): Output (pk , sk)
$⊗− KeyGen≥(1k).

– Sign(sk ,M): Output ρ
$⊗− Sign≥(sk , T (M,⊥,⊥,⊥)).

– Verify(pk , ρ,M): If ρ is of the form (apk , σ, σ≥) then check that VEVerify(pk ,
apk , σ,M) = 1 and Verify≥(apk , σ≥, T (M, apk , 1, σ)) = 1; output 1 if and only
if both of these checks pass. Otherwise, if ρ is a single element then check
that Verify≥(pk , ρ, T (M,⊥,⊥,⊥)) = 1 and output 1 if and only if this check
passes; in all other cases, output 0.

– AKeyGen(1k). Compute (apk ≥, ask ≥) $⊗− KeyGen≥(1k) and output (apk :=
apk ≥, ask := (ask ≥, apk)).

– VESign(sk , apk ,M): Output σ
$⊗− Sign≥(sk , T (M, apk , 0,⊥)).

– VEVerify(pk , apk , σ,M): Output Verify≥(pk , σ, T (M, apk , 0,⊥)).
– Resolve(ask , pk , σ,M): If VEVerify(pk , apk , σ,M) = 0 output ⊥. Otherwise,

compute σ≥ $⊗− Sign≥(ask , T (M, apk , 1, σ)) and output ρ := (apk , σ, σ≥).

Essentially then, signing the message T (M, apk , 0,⊥) corresponds to signing
the message and then applying the “Do Not Verify” stamp (but indicating that
the arbiter corresponding to apk may resolve if necessary), while signing the
message T (M, apk , 1, σ) corresponds to applying the “Yes Do Verify” stamp. To
show that this is a secure VES, we first prove that it satisfies completeness.

Theorem 3.1. If the signature scheme (KeyGen≥, Sign≥,Verify≥) is complete, then
the VES construction is complete as well.

Proof. By definition, for any (pk , sk)
$⊗− KeyGen(1k), (apk , ask)

$⊗− AKeyGen(1k),
and M ≡ M, an honestly computed VES σ looks like Sign≥(sk , apk , T (M, apk , 0,
⊥)). As VEVerify(pk , apk , σ,M) = Verify≥(pk , σ, T (M, apk , 0,⊥)), the complete-
ness of the underlying signature scheme guarantees that this check will pass. As

for resolution, by definition Resolve(ask , pk , σ,M) = (apk , σ, σ≥) $⊗− Sign≥(ask ,

354 T. Calderon et al.

T (M, apk , 1, σ))), and Verify, on input (apk , σ, σ≥), checks that VEVerify(pk , apk ,
σ,M) = 1 and Verify≥(apk , σ≥, T (M, apk , 1, σ)) = 1. As we’ve already argued that
this first of these checks will pass, and the second will pass again by completeness
of the signature scheme, the entire check will pass and Verify(pk , (apk , σ, σ≥),M)
= 1. ⇐→

We now prove that our construction also satisfies the three security properties
defined in Section 2, beginning with unforgeability (as defined in Definition 2.2).

Theorem 3.2. If the signature scheme (KeyGen≥, Sign≥,Verify≥) is EUF-CMA
secure, then the VES construction is unforgeable.

Proof. To prove this, we show that if there exists an adversaryA that breaks the
unforgeability of the VES scheme with some non-negligible probability Φ, then
there exists an adversary B that breaks the unforgeability of the underlying
signature scheme with the same probability. To start, B will take as input a
public key pk . It then proceeds as follows:

1. B generates (apk , ask)
$⊗− AKeyGen(1k) and gives pk and apk as inputs to A.

Because apk was generated honestly and pk is assumed to be the output of
KeyGen≥ and thus KeyGen, both of these keys will be distributed identically
to what A expects.

2. When A queries its Sign oracle on a message M , B creates a new message
M ≥ := T (M,⊥,⊥,⊥) and queries its own Sign≥ oracle on M ≥ to get back a

signature ρ that it then returns toA. By definition, ρ
$⊗− Sign≥(sk , T (M,⊥,⊥,

⊥)) = Sign(sk ,M), so the ρ returned to A will be distributed identically to
what it expects.

3. When A queries its VESign oracle on a messageM , B creates a new message
M ≥ := T (M, apk , 0,⊥) and queries its own Sign≥ oracle on M ≥ to get back

a signature ρ that it then returns to A. By definition, we have that ρ
$⊗−

Sign≥(sk , T (M, apk , 0,⊥)) = VESign(sk , apk ,M), so the ρ returned to A will
be distributed identically to the one that it expects.

4. When A queries its Resolve oracle on a messageM and a verifiably encrypted
signature σ, B will use its knowledge of ask to execute the code of Resolve
honestly to obtain a tuple of the form ρ := (apk , σ, σ≥) that it returns
to A. As B is behaving completely honestly, this will again be distributed
identically to what A expects.

5. At some point A will output a message-signature pair (M,σ) such that M
was not queried to any of the oracles but VEVerify(pk , apk , σ,M) = 1; B will
then output (T (M, apk , 0,⊥), σ). By definition of VEVerify, if VEVerify(pk ,
apk , σ,M) = 1 then Verify≥(pk , T (M, apk , 0,⊥), σ) = 1 and thus B’s output
will pass verification; similarly, if A did not query its VESign oracle on M
then, by definition of B, we know that B did not query T (M, apk , 0,⊥) to
its Sign≥ oracle, and its output will therefore be a valid forgery.

As B therefore succeeds whenever A does, and the interaction with B is further-
more identical to the interaction that A expects, B will succeed with the same
non-negligible probability Φ as A. ⇐→

Rethinking Verifiably Encrypted Signatures 355

Next, we prove that our construction is opaque, as defined in Definition 2.3.

Theorem 3.3. If the signature scheme (KeyGen≥, Sign≥,Verify≥) is EUF-CMA
secure, then the VES construction is opaque.

Proof. To prove this, we show that if there exists an adversaryA that breaks the
opacity of the VES scheme with some non-negligible probability Φ, then there
exists an adversary B that breaks the unforgeability of the signature scheme with
probability Φ/2. To start, B will take as input a public key pk ≥. It then picks a

random bit b
$⊗− {0, 1} to decide which path it thinks A will pursue: if b = 0

then it assumes A will produce a forgery of the form (apk , σ, σ≥), and if b = 1
then it assumes A will produce a forgery of the form ρ. We discuss both of these
paths as follows:

1. If b = 0 then B will generate (pk , sk)
$⊗− KeyGen(1k). It will then set apk :=

pk ≥ and give pk and apk to A. As AKeyGen calls KeyGen≥ and pk ≥ is assumed
to be output by KeyGen≥, this will be distributed identically to what A
expects.

If instead b = 1 then B will generate (apk , ask)
$⊗− AKeyGen(1k). It will then

set pk := pk ≥ and give pk and apk to A. Again, as KeyGen calls KeyGen≥ and
pk ≥ is assumed to be output by KeyGen≥, this will be distributed identically
to what A expects.

2. When A queries its VESign oracle on a messageM , B again has two choices.
If b = 0 then B can use its knowledge of the signing key sk to honestly
execute the code of VESign and return the resulting σ; the distribution here
is by definition identical to the one that A expects.
If instead b = 1 then B sets M ≥ := T (M, apk , 0,⊥) and queries its own
Sign≥ oracle on M ≥ to get back a signature ρ that it then returns to A. By

definition, ρ
$⊗− Sign≥(sk , T (M, apk , 0,⊥)) = VESign(sk , apk ,M), so the ρ

returned to A will be distributed identically to what it expects.
3. When A queries its Resolve oracle on a messageM and a verifiably encrypted

signature σ, B can first check that VEVerify(pk , apk , σ,M) = 1 and abort if
not; then, it again has two choices. If b = 0 then it setsM ≥ := T (M, apk , 1, σ)
and queries its own Sign≥ oracle onM ≥ to get back a signature ρ; it will then

return (apk , σ, ρ) to A. By definition, ρ
$⊗− Sign≥(sk , T (M, apk , 1, σ)) and

so the resulting (apk , σ, ρ) will again be distributed identically to what A
expects.
If instead b = 1 then B will use its knowledge of the secret key ask to
execute the code of Resolve honestly and return the resulting (apk , σ, σ≥); the
distribution here is then by definition identical to the one that A expects.

4. At some point, A will output a message-signature pair (M,ρ) such that
Verify(pk , ρ,M) = 1 but (M, ·) was not queried to the Resolve oracle. If b = 0
then B will check that ρ is of the form (apk , σ, σ≥); it it is not, then B must
abort. If it is then, looking at the definition of Verify, we see it must be the
case that Verify≥(pk , σ, T (M, apk , 0,⊥)) = 1 and Verify≥(apk , σ≥, T (M, apk , 1,

356 T. Calderon et al.

σ)) = 1. As we know that A never queried its Resolve oracle on σ we also
know that B never queried its Sign≥ oracle on T (M, apk , 1, σ) and therefore
B can output (T (M, apk , 1, σ), σ≥) to win its game.
Otherwise, if b = 1 then B will once again check if ρ is of the form (apk , σ, σ≥).
If it is, then it is once again the case that Verify≥(pk , σ, T (M, apk , 0,⊥)) = 1;
if A never queried its VESign oracle on M , then B never queried its Sign≥

oracle on T (M, apk , 0,⊥) and it can output (T (M, apk , 0,⊥), σ) to win its
game. Otherwise, it can check if ρ is a single element. If it is, then B can
output (T (M,⊥,⊥,⊥), ρ) to once again win its game.

As B succeeds whenever A does and it correctly guesses which key A will use
(which it will with probability 1/2, as it guesses randomly), and interactions with
B (in either execution) are furthermore identical to those that A expects, B will
succeed with probability Φ/2 in providing a forgery for the signature scheme. ⇐→

Finally, we prove that our construction is extractable, as defined in Defini-
tion 2.4. In fact, it is not just the case that it should be hard to produce a VES
that verifies but cannot be resolved to a valid signature; by how Resolve and
Verify are defined, this is actually impossible.

Theorem 3.4. The VES construction is unconditionally extractable.

Proof. To prove this, we show that for all (apk , ask)
$⊗− KeyGen(1k), M ≡ M,

σ, and pk , every time VEVerify(pk , apk , σ,M) = 1 it must be the case that
Verify(pk , apk ,Resolve(ask , pk , σ,M),M) = 1 as well; this implies that the prob-
ability that any (even unbounded) adversary A can output (pk , σ,M) such that
VEVerify(pk , apk , σ,M) = 1 but Verify(pk , apk ,Resolve(ask , pk , σ,M),M) = 0 is
equal to 0 and thus the scheme is unconditionally extractable.

To therefore show that VEVerify(pk , apk , σ,M) = 1 implies Verify(pk ,

Resolve(ask , pk , σ,M)) = 1, define (apk , σ, σ≥) $⊗− Resolve(ask , pk , σ,M). Then
we observe that, by the definition of the scheme, Verify(pk , apk , (apk , σ, σ≥),M) =
VEVerify(pk , apk , σ,M)≥Verify≥(apk , σ≥, T (M, apk , 1, σ)). As Resolve guarantees
that the second condition is satisfied (i.e., Verify≥(apk , σ≥, T (M, apk , 1, σ)) = 1),
this reduces to Verify(pk , apk , (apk , σ, σ≥),M) = VEVerify(pk , apk , σ,M) and
thus the two values must always agree. ⇐→

4 Resolution Independence

As we’ve demonstrated in the previous section, the existing definitions for verifi-
ably encrypted signatures do not seem to fully capture their desired functionality,
as in particular we constructed a secure VES using only signatures. Furthermore,
in our scheme the signatures returned by the arbiter look completely different
from the regular signatures produced by Sign. In this section, we attempt to
close this functional gap by proposing a new notion, resolution independence,
that requires that the signatures returned by the arbiter and by the signer look
the same. We then prove that our signature-based construction does not satisfy
resolution independence whereas, to the best of our knowledge, all previous VES
constructions do.

Rethinking Verifiably Encrypted Signatures 357

4.1 Resolution Independence

Informally, we want that the values output by the Resolve algorithm look like
regular signatures. More formally, we have the following definition:

Definition 4.1. A VES (KeyGen, Sign,Verify,AKeyGen,VESign,VEVerify,

Resolve) is resolution independent if for all (pk , sk)
$⊗− KeyGen(1k), (apk , ask)

$⊗−
AKeyGen(1k), and m ≡ M, the distributions {Sign(sk ,m)} and {Resolve(ask , pk ,
VESign(sk , apk ,m),m)} are identical.

To begin motivating why resolution independence is the “right” definition
to capture the desired VES functionality, we first observe that our signature-
based construction from Section 3 cannot be resolution independent, as regular
signatures and signatures output by the arbiter have completely different forms.

Theorem 4.1. The VES construction in Section 3 is not resolution independent.

Proof. Recall that signatures output by the signer are in Ψ; i.e., the space of all
possible signatures. Signatures output by the arbiter, however, consist of a public
key and two signatures, meaning that if the space of all possible apk values is
A, then they are in the space (A,Ψ,Ψ); the distributions over the two types of
signatures are therefore not identical. ⇐→

4.2 Existing Schemes Satisfy Resolution Independence

In order to further separate our signature-based construction from existing VES
schemes, we also demonstrate that, to the best of our knowledge, all existing VES
schemes are in fact resolution independent. As there are too many VES construc-
tions in the literature to enumerate here, we focus on three (which we picked
to demonstrate different types of schemes): the original BGLS construction [5],
which is based on pairings and the BLS signature scheme [6], a construction
due to Lu et al. [12] that is also based on pairings but uses the Waters sig-
nature [17], and a construction due to Rückert [14] that is based on the RSA
signature scheme.

BGLS [5]. The BGLS scheme works over a prime-order bilinear group G with
a generator g and a hash function H : {0, 1}≤ ∈ G. The arbiter’s keys are

ask = x≥ $⊗− Fp and apk = v≥ = gx
′ ≡ G, and the user’s keys are sk = x

$⊗− Fp

and pk = v = gx ≡ G. As we can see in the algorithm descriptions below, Sign
forms a BLS signature, while VESign runs Sign and then encrypts the signature
using ElGamal encryption. The Resolve algorithm then decrypts and pulls out
the original signature.

– Sign(sk ,M): Parse sk = x and return ρ := H(M)x.
– VESign(sk , apk ,M): Parse sk = x and apk = v≥ and compute ρ := H(M)x.

Pick r
$⊗− Fp and set μ := gr and ρ≥ := (v≥)r. Finally, compute σ≥ := ρρ≥ and

output (σ≥, μ).

358 T. Calderon et al.

– Resolve(ask , pk , σ,M): Parse ask = x≥ and σ = (σ≥, μ) and output ρ :=
σ/μx

′
.

To see that the signatures output by Sign and Resolve are in fact identical, we
observe that

Resolve(ask , pk ,VESign(sk , apk ,M ; r),M) =
σ

μx′

=
ρρ≥

μx′

=
H(M)x(v≥)r

(gr)x′

=
H(M)x((gx

′
)r)

(grx′)

= H(M)x

= Sign(sk ,M),

and thus the scheme satisfies resolution independence.

Lu et al. [12]. The Lu et al. scheme also works in a prime-order bilinear group G
with generator g. It builds off of the Waters signature [17], which we briefly recall

uses a secret key sk = Υ
$⊗− Fp (corresponding to a public key pk = A = e(g, g)Π,

where e is the bilinear map) to create signatures of the form (S1, S2), where

S1 := gΠ(u≥
∏
i u

bi
i)

r, S2 := gr for u≥, u1, . . . , uk
$⊗− G, r

$⊗− Fp, and where bi is
the i-th bit of the message M ; i.e., M = b1 . . . bk. We denote the Waters signing
algorithm as WSign(sk ,M).

As we see in the algorithm descriptions below, Sign is equivalent to WSign.
VESign will first run Sign and then blind the resulting signature; this means
users’ keys will just be keys for the Waters signature, and the arbiter’s keys will

be sk = α
$⊗− Fp and pk = v = gΔ. The Resolve algorithm first pulls out the

underlying signature, and then re-randomizes it.

– Sign(sk ,M): Output (S1, S2)
$⊗− WSign(sk ,M).

– VESign(sk , apk ,M): Parse apk = v. Compute (S1, S2)
$⊗− WSign(sk ,M), pick

a random s
$⊗− Fp, and compute K1 := S1 · vs, K2 := S2, and K3 := gs.

Output (K1,K2,K3).

– Resolve(ask , pk , σ,M): Parse ask = α, σ = (K1,K2,K3), and M = b1 . . . bk.
Check first that σ is a valid VES on M , and then unblind the signature by
computing S1 := K1K

−Δ
3 and S2 := K2. Now, re-randomize the signature

by picking s
$⊗− Fp and computing S≥1 := S1(u

≥∏
i u

bi
i)

s and S≥2 := S2 · gs.
Output (S≥1, S

≥
2).

Rethinking Verifiably Encrypted Signatures 359

To see that the outputs of Sign and Resolve are distributed identically, we observe
that

Resolve(ask , pk ,VESign(sk , apk ,M),M)= (K1 ·K−Δ3 · (u≥
∏
i

ubii)
r′ , K2 · gr′)

= (S1 · vs · g−Δs · (u≥
∏
i

ubii)
r′ , S2 · gr′)

= (S1 · (gΔsg−Δs) · (u≥
∏
i

ubii)
r′ , gr+r

′
)

=(gΠ · (u≥
∏
i

ubii)
r · (u≥

∏
i

ubii)
r′ , gr+r

′
)

= (gΠ · (u≥
∏
i

ubii)
r+r′ , gr+r

′
)

= WSign(sk ,M ; r + r≥)

for random r, r≥ $⊗− Fp. The signature is therefore a random signature on M and
thus has the same distribution as the signature output by Sign(sk ,M) and the
scheme is resolution independent.

Rückert [14]. Rückert’s construction is a stateful VES based on the RSA sig-
nature scheme, which we recall works as follows: keys are of the form pk :=
(N, e) and sk := (pk , d), where N = pq and e and d are values such that
ed ∅ 1 mod θ(N). To form a signature, RSASign computes ρ := H(M)d mod N ,
which can be verified by checking that H(M) ∅ ρe mod N . Briefly, in Rückert’s
construction, when forming the i-th VES, the RSA signature is blinded using a
secret value xi, which is then encrypted under the arbiter’s public key. To ensure
that this ciphertext contains the appropriate blinding factor, the signer will form
an authentication path in a particular Merkle tree. This means that the keys for
the arbiter will look like apk = (Ne, e, authpk) and ask = (apk , d, authsk), where
(Ne, e, d) are RSA keys and authpk and authsk are used for the Merkle authenti-
cation. The user’s keys, on the other hand, will look like pk = (Nu, u, γ, ρΨ) and
sk = (pk , v, T), where (Nu, u, v) are RSA keys, T is the Merkle tree (and also
contains information about the blinding factors {xi} by providing the seed used
to generate them), γ is the root of the tree, and ρΨ is a RSA signature on γ.

– Sign(sk ,M): Output ρ := RSASign(sk ,M).
– VESign(sk , apk ,M): Parse sk = (pk = (Nu, u, γ, ρΨ), v, T) and apk = (Ne, e,

authpk). First form the signature ρ := RSASign(sk ,M). Now, increment the
counter i, blind the signature by forming Υ := ρxi mod Ns, and encrypt
xi by forming α := xei mod Ne, and ε := xui mod Nu. Finally, generate
the authentication path Π for xi in the Merkle tree T , and output σ :=
(Υ, α, ε, Π).

– Resolve(ask , pk , σ,M): Parse ask = (apk = (Ne, e, authpk), d, authsk), pk =
(Nu, u, γ, ρΨ), and σ = (Υ, α, ε, Π). First check that σ is a valid VES on M ,
and then compute x≥ := αd mod Ne and output ρ := Υ/x≥ mod Nu.

360 T. Calderon et al.

To see this that the signatures output by Resolve and Sign are identical, we
observe that

Resolve(ask , pk ,VESign(sk , apk ,M),M) = Υ/x≥ mod Nu

= Υ/αd mod Nu

= (ρxi)/(x
e
i)
d mod Nu

= (ρxi)/xi mod Nu

= ρ mod Nu,

which is the same as the signature output by Sign(sk ,M) and the scheme is
therefore resolution independent.

5 Resolution Duplication and Public-Key Encryption

While resolution independence, as we saw in the previous section, can be used
to separate our particular signature-based VES construction from existing con-
structions, it still does not require that more than just signatures are required to
construct a verifiably encrypted signature scheme, although the name would sug-
gest otherwise.We therefore propose in this section a stronger notion of resolution
independence, resolution duplication, in which the signer must be able to output
a signature that is identical to that of the arbiter. This definition is less general
than resolution independence (yet still met by some existing VES constructions),
but we show that it implies the existence of public key encryption.

5.1 Resolution Duplication

In spirit, resolution independence requires a functionality similar to that of en-
cryption: the VES σ contains a signature ρ, yet should not reveal this ρ to
anyone in possession of just σ (by opacity). The exception to this rule is the
arbiter who, according to completeness, should be able to pull out from σ a sig-
nature ρ≥ that, according to resolution independence, has the same distribution
as ρ. While this comes close to encryption, the fact that ρ≥ and ρ might be
identically distributed but not identical means the functionality is not exactly
the same.

In Section 4.2, however, we saw that in fact two out of the three schemes
presented did in fact meet this exact requirement (and this was not an accident;
indeed most VES schemes meet this requirement); in particular, because both
the BGLS and Rückert schemes were based on unique signatures [10,13], any two
signatures on the same message with the same distribution must be identical.
To formally capture this stronger property, we have the following definition:

Definition 5.1. A VES (KeyGen, Sign,Verify,AKeyGen,VESign,VEVerify,
Resolve) is resolution duplicate if (1) it is resolution independent, (2) Resolve
is deterministic, and (3) there exists an additional PPT algorithm Extract(·, ·, ·)

Rethinking Verifiably Encrypted Signatures 361

such that for all (pk , sk)
$⊗− KeyGen(1k), (apk , ask)

$⊗− AKeyGen(1k), m ≡ M,
and random tapes r ≡ {0, 1}≤, it is the case that Extract(sk ,m, r) = Resolve(ask ,
pk ,VESign(sk , apk ,m; r),m).

While this strengthened definition can no longer be met by all existing VES
constructions (e.g., any that use a randomized resolution algorithm, such as the
Lu et al. one above), we will see below that any secure VES satisfying resolution
duplication can be used to construct public key encryption. In this respect then,
VES constructions meeting resolution duplication guarantee that some kind of
encryption really is taking place, whereas we cannot make the same guarantees
about ones that meet only resolution independence.

Finally, we note that the existence of Extract is not a particularly strong
requirement; for a unique signature, for example, Extract can simply run Sign.
Furthermore, in our usage in the next section, VESign and Extract will be run by
the same party, so the randomness used in VESign can simply be remembered
and given to Extract.

5.2 Constructing Public Key Encryption

Using resolution duplication, our construction of public key encryption is fairly
straightforward. Recall first our intuitive outline above: the signature ρ can be
thought of as the plaintext and the VES σ as the ciphertext encrypted under
the public key of the arbiter; running Resolve and pulling out the underlying ρ
is therefore how the arbiter decrypts. Because we want to encrypt arbitrary bits
rather than signatures, however, we instead use the Goldreich-Levin trick [9]
and the fact that σ should not reveal ρ to treat ⊕ρ, r∃ as a hard-core predicate
for VESign; i.e., given σ and r, it should be hard to predict the value of ⊕ρ, r∃
(where r

$⊗− {0, 1}|ι| and ⊕ρ, r∃ denotes the inner product of ρ and r modulo 2).1

To construct our encryption scheme, we therefore prove first that this property
holds:

Theorem 5.1. Let (KeyGen, Sign,Verify,AKeyGen,VESign,VEVerify,Resolve) be
a verifiably encrypted signature scheme, and let b(x, r) := ⊕x, r∃ mod 2 for any x
and r such that |x| = |r|. Then, if the VES is opaque for all messages m ≡ M,

(pk , sk)
$⊗− KeyGen(1k), and (apk , ask)

$⊗− AKeyGen(1k), it is hard to compute

b(ρ, r) given m, apk , pk, σ
$⊗− VESign(sk , apk ,m), and r

$⊗− {0, 1}|ι|, where
ρ := Resolve(ask , pk , σ,M).

Our proof strategy for this theorem closely follows that of Goldreich [8]. First,
we describe how an adversary B attempting to break opacity can, by using
specific values of r, meaningfully use an adversary A that can predict the value
of b(ρ, r) to recover the value of ρ from the verifiably encrypted signature. Then,
following Goldreich’s exact argument, we argue how these specific values of r can

1 This isn’t a hard-core bit in the usual sense, since VESign is randomized and therefore
not a function, but we can nevertheless argue that it should be hard to predict.

362 T. Calderon et al.

be chosen to ensure that B’s success probability will be appropriately correlated
with that of A.

At a high level, to use A to recover ρ, B will first receive as input public keys
pk and apk . To now prepare an input for A, B can first pick a random message

m
$⊗− M and query its VESign oracle on m to get back a value σ. It now picks

a random value r
$⊗− {0, 1}|ι| (note that, while B does not know ρ, it might still

know its length, for example if ρ is encrypted) and gives (σ, r) to A; this causes
A to return its guess b≥ for the bit b(ρ, r). We could then also have B give to A
(σ, r ⊆ ei) for all i, where ei has a 1 in the i-th place and a 0 everywhere else,
and get back in return guess bits bi. If A guesses b≥ and bi correctly for each i,
then B can recover ρ as follows: first, observe that b(x, r)⊆ b(x, s) = b(x, r⊆ s).
Then, if b≥ = b(ρ, r) and bi = b(ρ, r ⊆ ei), it must be the case that

b≥ ⊆ bi = b(ρ, r) ⊆ b(ρ, r ⊆ ei) = b(ρ, r ⊆ (r ⊆ ei)) = b(ρ, ei) = ρi;

that is, that b≥ ⊆ bi is the i-th bit of ρ. Repeating this process for each i, B can
therefore recover ρi := b≥ ⊆ bi and ρ := ρ1 . . . ρn.

As observed by Goldreich, however, this process of using r ⊆ ei might signifi-
cantly blow up B’s error probability, to the point where we cannot argue that if
A has some non-negligible success probability then so does B. We therefore fol-
low Goldreich’s exact argument to pick more clever choices for the randomness
r and thus guarantee a non-negligible success probability for B.
Proof. To show this, we assume that there exists an adversary A that, given

(pk , apk ,m, σ, r) such that σ
$⊗− VESign(sk , apk ,m), ρ := Resolve(ask , pk , σ,m),

and |r| = |ρ| = n, can predict the value of b(ρ, r) with some non-negligible
advantage Φ and use it to construct an adversary B that can recover the signature
ρ from σ (i.e., break opacity), with related non-negligible probability Φ≥. First,
we observe that if Φ is non-negligible then by definition, A’s advantage must
be Φ(n) > 1/p(n) for some polynomial p(·), and that furthermore this must
hold for infinitely many n (i.e., there must exist an infinite set N such that
Φ(n) > 1/p(n) for n ≡ N). We furthermore establish the following two claims,
both due to Goldreich [8]:

Claim. [8] There exists a set Sn ◦ {0, 1}n of cardinality at least 2n · (Φ(n)/2)
such that for every ρ ≡ Sn, it holds that

s(x) := Pr[A(pk , apk ,m, σ,Rn) = b(ρ,Rn)] ⊥ 1

2
+
Φ(n)

2
,

where the probability is taken over all possible values of Rn and internal coin
tosses of A.

Claim. [8] For every ρ ≡ Sn and i ≡ {1, . . . , n}, it holds that

Pr

[
|{J : b(x, rJ)⊆A(pk , apk ,m, σ, rJ ⊆ ei) = ρi}| > 1

2
· (2δ − 1)

]
> 1− 1

2n
(1)

Rethinking Verifiably Encrypted Signatures 363

where rJ := ⊆j∈Jsj and the sj values are chosen independently and uniformly
from {0, 1}n.

To prepare inputs for A given pk and apk , B first picks a random message

m
$⊗− M and queries its VESign oracle onm to get back a value σ. It now sets λ :=

⊃log2(2n·p(n)2+1)⊂, where we recall n := |ρ| and p(·) is such that Φ(n) > 1/p(n).

It now samples s1, . . . , sδ
$⊗− {0, 1}n and t1, . . . , tδ

$⊗− {0, 1}, where ti acts as B’s
guess for the value b(ρ, si). Next, for every non-empty set J ◦ {1, 2, . . . , λ}, B
computes rJ := ⊆j∈Jsj and γJ := ⊆j∈J tj . B now gives toA, for all i ≡ {1, . . . , n}
and non-empty J ◦ {1, . . . , λ}, the tuple (apk , pk ,m, σ, rJ ⊆ei), for which it will
get back a guess bit biJ . B then sets ziJ := γJ ⊆ biJ ; now, for every i, it sets zi
to be the majority of the ziJ values, and outputs z := z1 . . . zn.

We first observe that the rJ ⊆ ei values given to A will be uniformly random
and pairwise independent and thus distributed identically to the input that A
expects (and, as all the other values are chosen honestly, its entire input will
be identical to what it expects). To see this, we observe that the si values are
chosen uniformly at random, and each rJ value is set as ⊆sj , which will itself be
uniformly random, and thus so will rJ ⊆ ei. Furthermore, because each subset J
is distinct, the values will be pairwise independent as well.

To determine the success probability of B, our proof now follows exactly the
proof of Goldreich. In particular, we first observe that, by Claim 5.2,

s(x) ⊥ 1

2
+
Φ(n)

2
>

1

2
+

1

2p(n)
.

Furthermore, as the values si were chosen uniformly at random, the probability
that our guesses were correct and ti = b(ρ, si) for all i is

2−δ =
1

2n · p(n)2 + 1
=

1

poly(n)
,

which is non-negligible. Furthermore, if our guesses are indeed correct then

γJ = ⊆j∈J tj = ⊆j∈Jb(ρ, sj) = b(ρ,⊆j∈Jsj) = b(ρ, rJ)

for all non-empty sets J . In this case, we have

ziJ = γJ ⊆ biJ = b(ρ, rJ)⊆ biJ ,

which we know is equal to ρi with probability greater than 1−1/2n by Claim 5.2,
meaning the overall probability that z = ρ is at least 1/2. Putting everything
together, we therefore know that B will succeed with probability at least 1/4p(n)
for ρ ≡ Sn; recalling further by Claim 5.2 that |Sn| > 2n/2p(n), we conclude
that for random ρ, B succeeds with probability at least 1/8p(n)2, or Φ(n)2/8. ⇐→

Now, armed with this theorem, we can construct public key encryption. To
start, assume we have a VES (KeyGen, Sign,Verify,AKeyGen,VESign,VEVerify,
Resolve) with the extra algorithm Extract required by Definition 5.1. Then we can
construct an IND-CPA secure public key encryption scheme (EKeyGen,Enc,Dec)
as follows:

364 T. Calderon et al.

– EKeyGen(1k): Output (pk , sk)
$⊗− AKeyGen(1k).

– Enc(pk ,m): Generate signing keys (spk , ssk)
$⊗− KeyGen(1k) and set c1 :=

spk . Now pick a random tape r, compute σ := VESign(ssk , pk , 0; r) and set

c2 := σ. Next, compute ρ
$⊗− Extract(sk ,m, r); finally, pick rι

$⊗− {0, 1}|ι|,
set c3 := rι, and set c4 := m⊆ ⊕ρ, rι∃. Output c := (c1, c2, c3, c4).

– Dec(sk , c): Parse c = (c1, c2, c3, c4). Check first that VEVerify(c1, pk , c2, 0) =
1; if this check fails then output ⊥. Otherwise, if it passes, compute ρ :=
Resolve(sk , c1, c2, 0), and output m := c4 ⊆ ⊕ρ, c3∃.

Theorem 5.2. If the verifiably encrypted signature is resolution duplicate (ac-
cording to Definition 5.1), the above encryption scheme is correct.

Proof. If the ciphertext c is formed as c
$⊗− Enc(pk ,m), then c1 = spk and c2 = σ,

which allows decryption to compute ρ := Resolve(sk , spk , σ, 0). Additionally, we
have c3 = rι and c4 = m⊆ ⊕ρ, rι∃, where by resolution duplication the ρ used
to form c4 is the same as the one produced by Resolve. We therefore have that
c4 ⊆ ⊕ρ, c3∃ = (m⊆ ⊕ρ, rι∃) ⊆ ⊕ρ, rι∃ = m, so decryption really will produce the
message. ⇐→
Theorem 5.3. If the verifiably encrypted signature is opaque, then the above
encryption scheme is IND-CPA secure.

Proof. By Theorem 5.1, we know that if the VES is opaque then ⊕ρ, r∃ will be
hard to predict given only σ; furthermore, if it is opaque for all messages then
in particular this must hold for the message m = 0. Thus, to prove the theorem,
we can show that if there exists an adversary A that breaks IND-CPA security
with some non-negligible advantage Φ then there exists an adversary B that can
predict the value of ⊕ρ, r∃ for the message m = 0 with the same advantage.

To start, B will receive as input (pk , apk , 0, σ, r), where σ
$⊗− VESign(sk , apk ,

0) and r
$⊗− {0, 1}|ι| for ρ := Resolve(ask , pk , σ, 0). B will now give A the public

key apk and at some point will receive back a challenge query (m0,m1). To
compute c≤, B will set c≤1 := pk , c≤2 := σ, and c≤3 := r. It then picks random

bits b, b≤ $⊗− {0, 1} and sets c≤4 := mb ⊆ b≤, and returns c≤ := (c≤1, c
≤
2, c
≤
3, c
≤
4) to A.

When A outputs its guess bit b≥, B guesses b≤ if b = b≥ and 1− b≤ otherwise.
To see that interactions with B are indistinguishable from those that A ex-

pects, we observe that the apk given to A is distributed identically to what A
expects from EKeyGen. As for c≤, all the values except c≤4 are again distributed
identically to what A expects: c≤1 is a random user public key, c≤2 is a valid VES,
and c≤3 is a random string of the same length as ρ. As for c≤4, if B has correctly
guessed the value of b≤ (i.e., b≤ = ⊕ρ, r∃), then c≤4 = mb ⊆ ⊕ρ, r∃, c≤ is a valid
encryption of mb, and thus A should behave just as it does in the honest inter-
action (i.e., it should guess b with its usual non-negligible advantage Φ). In this
case, if A guesses b correctly, then B will assume that it guessed b≤ correctly
and thus output b≤. In the other case, if B did not guess b≤ correctly, then c≤4
is just a random bit, meaning all information about m will be obscured and A

Rethinking Verifiably Encrypted Signatures 365

will have no advantage. As B therefore succeeds at least whenever A succeeds
and it correctly guesses b≤, which it will with probability 1/2, B will succeed in
predicting the value of ⊕ρ, r∃ with overall advantage at least Φ/2. ⇐→

Acknowledgments. The first three authors were supported by the MURI
program under AFOSR Grant No. FA9550-08-1-0352. Brent Waters was sup-
ported by NSF CNS-0915361 and CNS-0952692, CNS-1228599 DARPA through
the U.S. Office of Naval Research under Contract N00014-11-1-0382, DARPA
N11AP20006, Google Faculty Research award, the Alfred P. Sloan Fellowship,
Microsoft Faculty Fellowship, and Packard Foundation Fellowship. Any opin-
ions, findings, and conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the views of the Depart-
ment of Defense or the U.S. Government.

References

1. Abdalla, M., Warinschi, B.: On the minimal assumptions of group signature
schemes. In: López, J., Qing, S., Okamoto, E. (eds.) ICICS 2004. LNCS, vol. 3269,
pp. 1–13. Springer, Heidelberg (2004)

2. Asokan, N., Schunter, M., Waidner, M.: Optimistic protocols for fair exchange. In:
Gong, L., Neuman, C. (eds.) Proceedings of CCS 1997, pp. 7–17. ACM Press (April
1997)

3. Asokan, N., Shoup, V., Waidner, M.: Optimistic fair exchange of digital signatures.
IEEE Journal on Selected Areas in Communications 18(4), 593–610 (2000)

4. Ateniese, G.: Verifiable encryption of digital signatures and applications. Journal
of Cryptology 7(1), 1–20 (2004)

5. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted
signatures from bilinear maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS,
vol. 2656, pp. 416–432. Springer, Heidelberg (2003)

6. Boneh, D., Lynn, B., Shacham, H.: Short signatures from theWeil pairing. In: Boyd,
C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg
(2001)

7. Camenisch, J., Shoup, V.: Practical verifiable encryption and decryption of discrete
logarithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 126–144.
Springer, Heidelberg (2003)

8. Goldreich, O.: Three XOR-lemmas – an exposition (1991),
http://www.wisdom.weizmann.ac.il/~oded/COL/xor.pdf

9. Goldreich, O., Levin, L.: A hard-core predicate for all one-way functions. In: Pro-
ceedings of STOC 1989, pp. 25–32 (1989)

10. Goldwasser, S., Ostrovsky, R.: Invariant signatures and non-interactive zero-
knowledge proofs are equivalent. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS,
vol. 740, pp. 228–245. Springer, Heidelberg (1993)

11. Hess, F.: On the security of the verifiably-encrypted signature scheme of Boneh,
Gentry, Lynn, and Shacham. Information Processing Letters 89(3), 111–114 (2004)

12. Lu, S., Ostrovsky, R., Sahai, A., Shacham, H., Waters, B.: Sequential aggregate sig-
natures and multisignatures without random oracles. Journal of Cryptology (2012)

http://www.wisdom.weizmann.ac.il/~oded/COL/xor.pdf

366 T. Calderon et al.

13. Lysyanskaya, A.: Unique signatures and verifiable random functions from the DH-
DDH separation. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 597–612.
Springer, Heidelberg (2002)

14. Rückert, M.: Verifiably encrypted signatures from RSA without NIZKs. In: Roy,
B., Sendrier, N. (eds.) INDOCRYPT 2009. LNCS, vol. 5922, pp. 363–377. Springer,
Heidelberg (2009)

15. Rückert, M., Schneider, M., Schröder, D.: Generic constructions for verifiably en-
crypted signatures without random oracles or NIZKs. In: Zhou, J., Yung, M. (eds.)
ACNS 2010. LNCS, vol. 6123, pp. 69–86. Springer, Heidelberg (2010)

16. Rückert, M., Schröder, D.: Security of verifiably encrypted signatures and a con-
struction without random oracles. In: Shacham, H., Waters, B. (eds.) Pairing 2009.
LNCS, vol. 5671, pp. 17–34. Springer, Heidelberg (2009)

17. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg
(2005)

P2OFE: Privacy-Preserving Optimistic Fair
Exchange of Digital Signatures

Qiong Huang1, Duncan S. Wong2, and Willy Susilo3

1 South China Agricultural University, Guangzhou 510642, China
2 City University of Hong Kong, Hong Kong S.A.R., China

3 University of Wollongong, Wollongong, NSW 2522, Australia
csqhuang@alumni.cityu.edu.hk, duncan@cityu.edu.hk, wsusilo@uow.edu.au

Abstract. How to sign an electronic contract online between two parties
(say Alice and Bob) in a fair manner is an interesting problem, and has
been studied for a long time. Optimistic Fair Exchange (OFE) is an
efficient solution to this problem, in which a semi-trusted third party
named arbitrator is called in to resolve a dispute if there is one during an
exchange between Alice and Bob. Recently, several extensions of OFE,
such as Ambiguous OFE (AOFE) and Perfect AOFE (PAOFE), have
been proposed to protect the privacy of the exchanging parties. These
variants prevent any outsider including the arbitrator from telling which
parties are involved in the exchange of signatures before the exchange
completes.

However, in PAOFE, AOFE, and all the current work on OFE, the
arbitrator can always learn the signer’s signature at (or before) the end
of a resolution, which is undesirable in some important applications,
for example, signing a contract between two parties which do not wish
others to find out even when there is a dispute that needs a resolution by
the arbitrator. In this work, we introduce a new notion called Privacy-
Preserving Optimistic Fair Exchange (P2OFE), in which other than Alice
and Bob, no one else, including the arbitrator, can collect any evidence
about an exchange between them even after the resolution of a dispute.
We formally define P2OFE and propose a security model. We also propose
a concrete and efficient construction of P2OFE, and prove its security
based on the Strong Diffie-Helllman and Decision Linear assumptions in
the standard model.

Keywords: optimistic fair exchange, signature, ambiguity, privacy pre-
serving.

1 Introduction

The fair exchange problem is about constructing a protocol for two parties, Alice
and Bob, that allow them to exchange items in an all-or-nothing (fair) manner,
that is, after the protocol, either both parties obtain the other’s item or none of
them does. There are two major approaches to do fair exchange. The first one
is to have the parties release their secrets ‘gradually’, e.g. bit by bit, in multiple

J. Benaloh (Ed.): CT-RSA 2014, LNCS 8366, pp. 367–384, 2014.
c© Springer International Publishing Switzerland 2014

368 Q. Huang, D.S. Wong, and W. Susilo

rounds. Besides, it is assumed that both of them have comparable computation
power. Thus, this approach may not be appropriate for practical use.

Another approach is to have a third party called arbitrator employed. The
arbitrator is semi-trusted by the two parties, and is usually offline. The arbitrator
only gets involved when there is a dispute. Asokan et al. proposed this notion
called Optimistic Fair Exchange (OFE) [1], and later extended it to support
the exchange of digital signatures [2]. In OFE, Alice prepares an ‘encapsulated’
version of her signature, called partial signature σA, and sends it to Bob. If σA
is valid, Bob returns his full signature ρB to Alice. In the third move, Alice tells
Bob how to open σA or directly sends her full signature ρA to Bob if she believes
ρB is valid. Figure 1 shows a normal execution. If Alice refuses or fails to return
ρA, Bob resorts to the arbitrator for resolving σA. After checking the fulfillment
of Bob’s obligation, the arbitrator extracts ρA from σA, and sends it to Bob.
Figure 2 shows the case in which there is a dispute.

Fig. 1. OFE: Normal Execution Fig. 2. OFE: Resolution

Due to the simple and elegant framework, and the low level of trust required
on the third party, OFE has many useful applications. One of them is to sign
contracts between two online parties. For example, Alice wants to buy a software
from Bob’s online shop. She generates a partial signature on a message “Bob can
withdraw $100 from my bank account”. Bob then gives Alice his full signature
on message “Alice can get a copy of Windows 13 from my shop”. If everything
goes well, Alice gets the software and Bob gets the money from Alice’s bank
account. If Bob does not get the full signature from Alice subsequently, Bob
asks the arbitrator for resolving Alice’s partial signature and gets Alice’s full
signature.

(On the Privacy of OFE and its Variants). In conventional OFE, Alice’s par-
tial signature σA already reveals her will/intention to do exchange with Bob,
from which Bob may take advantage of, and could be unfair to Alice. In [13,19],
the notion of Ambiguous Optimistic Fair Exchange (AOFE)1 was introduced to
solve this problem. In AOFE, Bob is endowed with the ability of producing par-
tial signatures computationally indistinguishable from those of Alice. Recently,
Wang et al. [30] proposed an enhanced version of AOFE, named Perfect AOFE

1 It is named abuse-free contract signing in [13] and ambiguous optimistic fair exchange
in [19]. Hereafter we call it ambiguous optimistic fair exchange (AOFE), for the sake
of the ease of presentation.

P2OFE: Privacy-Preserving Optimistic Fair Exchange of Digital Signatures 369

(PAOFE), in which a partial signature leaks no information about the actual
signer or the intended verifier. This is useful for applications where the involved
parties of an exchange wish to further protect their privacy on whether they are
indeed involved in an exchange or not. For instance, when Alice and Bob sign a
business contract (e.g. a procurement deal) online while revealing and confirm-
ing who is involved in the process may potentially be harmful to (for example,
the image of) Alice and/or Bob. No one including the arbitrator can tell who
and what exchange has taken place from the transcript of a normal execution of
PAOFE.

Although the privacy is ensured in a normal execution of PAOFE, this is not
the case if a dispute occurs and a resolution is solicited. At the end of a resolution
protocol run in PAOFE, the arbitrator gets the full signature ρA of Alice. (Note
that the resolution is an algorithm run by the arbitrator in (A)OFE while it is
a protocol in PAOFE.) Hence the arbitrator can confirm whether a particular
party, say Alice, is involved in an exchange of signatures. Note that this is always
the case in (A)OFE as the resolution algorithm outputs ρA. Whereas there are
applications in which the parties do not want anyone including the arbitrator to
confirm and especially, convince others their involvement even when there is a
dispute that needs the arbitrator to resolve. Even in the example above, revealing
and confirming who is involved in the business contract to the arbitrator during
a dispute may potentially hurt (the image of) Alice and/or Bob. We stress here
that revealing the contract (i.e. the message) itself (without the signatures) does
not entail any concern on revealing, or letting outsiders or the arbitrator to
confirm the involvement of a particular party in an exchange. This is because
such a contract/message can be made up by anyone. Only the signed contract
can be used to confirm a party’s involvement. In this scenario, PAOFE would
not help because the arbitrator learns the final signature ρA at the end of the
resolution and hence can confirm the involvement of Alice. The arbitrator can
even convince others about Alice’s involvement by making use of ρA.

Our Contributions. In this paper we contribute to the study of fair exchange
in the following aspects:

1. We introduce the notion of Privacy-Preserving OFE (P2OFE). The new
notion differs from PAOFE mainly in that P2OFE explicitly requires that
even the arbitrator cannot learn the signer’s full signature. The resolution in
P2OFE is a protocol between the verifier and the arbitrator, and consists of
two algorithms, ResA and ResV . Briefly, After receiving a partial signature
σ for resolution, the arbitrator runs ResA to convert it to an intermediate
value Δ, and gives to the verifier, who then runs ResV to extract the signer’s
full signature ρ from Δ. It is required that without the intended verifier’s
secret key, anyone cannot recover ρ from the intermediate value.

2. We present the security models of P2OFE to capture our intuition that even
the arbitrator is unable to recover the signer’s full signature after the reso-
lution. As in [16,18] we consider the certified-key model in this paper, which
is slightly weaker than the chosen-key model considered in [20,30]. However,
the perfect ambiguity in our model is stronger in the sense that we allow the

370 Q. Huang, D.S. Wong, and W. Susilo

adversary to interact with the intended verifier for resolution, which is not
allowed in [30].

3. We also propose a concrete and efficient P2OFE protocol, the security of
which is based on Strong Diffie-Hellman assumption [7] and Decision Linear
assumption [8] without random oracles. Roughly, our protocol follows the
sign-then-encrypt paradigm (which is common in the construction of desig-
nated confirmer signatures [9,18]). A full signature is simply a Boneh-Boyen
short signature [7], while a partial signature is a ‘twisted’ double encryption
of the full signature. Please refer to Sec. 5 for the detailed construction.

2 Related Works

Since the introduction, OFE has attracted a lot of attention, e.g. [3, 10, 11, 15–
22, 28, 29]. In [10], Dodis et al. showed a gap between the security of OFE in
single-user setting (where there are one signer and one verifier) and that in
multi-user setting (where there are multiple signers and verifiers). Using ran-
dom oracle heuristic, they proposed a OFE secure in the multi-user setting and
registered-key model [5]. Huang et al. [21] proposed a generic construction of
OFE from time capsule signature [12], based on their observation on the similar-
ity between the two primitives. The resulting protocol is secure in the multi-user
setting and certified-key model without random oracles. Huang et al. [20] further
strengthened Dodis et al.’s result by relaxing the restriction on using a public
key. They demonstrated that there is a gap between the security of OFE in
chosen-key model [27] (in which an adversary can use any public key) and that
in registered-key model. A generic construction using a standard signature and
a two-user ring signature was also proposed and proven secure in the multi-user
setting and chosen-key model.

In traditional OFE, Alice’s partial signature is generally self-authenticating
and indicates her commitment to some message already. This may allow Bob
to take advantage of it. Garay et al. [13] and Huang et al. [19] addressed this
problem and proposed notions of abuse-free OFE and ambiguous OFE, respec-
tively. In both notions, Alice and Bob should be able to produce indistinguishable
partial signatures so that given a valid partial signature from Alice, Bob cannot
transfer the conviction to others. In this paper we universally call them as AOFE.
Garay et al. constructed an efficient AOFE from a type of signatures called
private contract signatures (PCS). Their PCS scheme is built from designated-
verifier signature [23], and is secure in the registered-key model with random
oracles. Huang et al. [19] proposed another efficient construction of AOFE using
Groth-Sahai non-interactive proofs [14]. The scheme is secure based on Strong
Diffie-Hellman assumption [7] and Decision Linear assumption [8] in the chosen-
key model without random oracles. However, the scheme suffers from long sig-
natures, which consist of more than 40 group elements.

Huang et al. [15, 16] proposed a new approach to constructing interactive
AOFE, in which the signer interacts with the verifier to produce the partial sig-
nature. Their construction applies to a specific class of designated confirmer sig-
nature (DCS) [9] schemes, in which anyone is able to sample confirmer signatures

P2OFE: Privacy-Preserving Optimistic Fair Exchange of Digital Signatures 371

from the signer’s signature space efficiently, e.g. in polynomial time. However,
not many DCS schemes enjoy this property, and thus limiting the application
of Huang et al.’s construction. The authors improved the result by proposing
another construction of AOFE from standard DCS [18]. They also proposed an
efficient DCS construction, which follows the sign-then-encrypt paradigm. By
applying their construction, they obtained an AOFE protocol which has short
partial signature and the shortest full signature, and is secure based on SDH
and DLIN assumptions without random oracles.

Huang et al. also introduced another variant of AOFE, called group-oriented
optimistic fair exchange (GOFE) [17]. In GOFE, two users exchange signatures
on behalf of their respective groups in a fair and anonymous manner so that
either each group receives the other group’s signature or none of them does,
and in the meanwhile the users’ identities are kept secret to others except their
respective group managers.

Wang et al. proposed the notion of perfect ambiguous optimistic fair exchange
(PAOFE) [30], in which only the intended verifier is able to tell which parties
are involved in the exchange. They proposed a generic PAOFE construction
by combining an AOFE protocol and a public key encryption scheme with key
privacy (no one is able to tell whom a ciphertext is intended for). However, no
concrete implementation of PAOFE is provided in [30].

In terms of the arbitrator not learning the exchanged material even in case of
a dispute, there are also some other works in the non-signature exchange fields.
For example, Belenkiy et al. [6] and Küpçü et al. [25] studied the privacy in
optimistic fair exchange of files, where the arbitrator could not learn the full
files. Avoine et al. [4] proposed to distribute the arbitrator so that no single
arbitrator may learn the full signature. Similar idea has been used in [26] in the
exchange of files.

3 Privacy-Preserving OFE

3.1 Definition

A Privacy-Preserving Optimistic Fair Exchange protocol (P2OFE) ‘blinds’ the
arbitrator so that the arbitrator is unable to recover a full signature. Similar
to PAOFE, the resolution in the definition of P2OFE below is a protocol rather
than an algorithm in a conventional (A)OFE.

Definition 1. A Privacy-Preserving Optimistic Fair Exchange protocol (P2OFE)
involves the users (signers and verifiers) and the arbitrator, and consists of the
following probabilistic polynomial-time (p.p.t. for short) algorithms and protocols:

PMG. It takes 1k as input where k is the security parameter and outputs the
system parameter PM.

Akg. It takes as input PM and outputs a key pair for the arbitrator. We denote
it by (Apk, Ask) ⊗ Akg(PM).

UKg. It takes PM (and optionally Apk) as input and outputs a user key pair.
We denote it by (Pk, Sk) ⊗ Ukg(PM, Apk).

372 Q. Huang, D.S. Wong, and W. Susilo

PSig. This is the partial signature generation algorithm. It takes as input a
message M , the signer’s secret key Ski, the signer’s public key Pki, the veri-
fier’s public key Pkj and the arbitrator’s public key Apk, and outputs a partial
signature σ. We denote it by σ ⊗ PSig(M, Ski, Pki, Pkj , Apk).

PVer. This is for verifying a partial signature. It can be either an algorithm or
a protocol, depending on whether the verification requires the interaction be-
tween the signer Ui and the verifier Uj. If the verification is non-interactive,
the algorithm takes as input (M,σ, Pki, Pkj, Apk, Skj) and outputs a bit b.
We denote it by b ⊗ PVer(M,σ, Pki, Pkj , Apk, Skj). In case the verification
is an interactive protocol, the common input consists of (M,σ, Pki, Pkj, Apk).
The signer (acting as the prover) has private input Ski and the randomness
r used in signature generation, while the verifier has private input Skj. We
denote a run of the protocol by

b⊗ PVer≥Ui(Ski,r),Uj(Skj)≤(M,σ, Pki, Pkj , Apk),

where b is the decision bit of Uj, which is 1 for acceptance and 0 for rejection.

Sig. This is the full signature generation algorithm. It takes as input
(M, Ski, Pki, Pkj , Apk) and outputs a full signature ρ. We denote it by ρ ⊗
Sig(M, Ski, Pki, Pkj , Apk).

Ver. This is for verifying a full signature. It takes as input (M, ρ, Pki, Pkj, Apk)
and outputs a bit b which is 1 if ρ is a valid full signature of Pki and 0
otherwise. We denote it by b⊗ Ver(M, ρ, Pki, Pkj , Apk).

Res. This is a protocol between verifier Uj and arbitrator A for converting

a partial signature to a full one. It consists of two algorithms, ResA and
ResV . ResA is run by the arbitrator for resolving a partial signature. It
takes as input (M, Ask, σ, Pki, Pkj), and outputs an intermediate signature

Δ or ≡ indicating the failure of resolution. ResV is run by the intended
verifier for extracting the full signature ρ from an intermediate signature
Δ. It takes as input (M, Skj , Δ, Pki, Pkj , Apk) and outputs a full signature

ρ. We denote the two algorithms by Δ ⊗ ResA(M, Ask, σ, Pki, Pkj) and

ρ ⊗ ResV (M, Skj , Δ, Pki, Pkj , Apk).

On the Resolution Protocol : To resolve a partial signature σ, V sends it to
the arbitrator, which runs ResA to convert it into an intermediate value Δ and
returns to V . The verifier then runs ResV to recover the full signature ρ from
Δ. In this way the arbitrator does not learn the final output of the resolution.
Furthermore, as in the definition of perfect ambiguity (Def. 3), we require that
the arbitrator does not know whether the submitted partial signature contains
a valid full signature on M of the signer. In Sec. 6 we explain in more details
how the resolution of our proposed P2OFE protocol works in practice.

Remark. We stress that in P2OFE, giving a message/contract M itself to the
arbitrator in clear does not harm the signer, since guaranteed by the perfect
ambiguity, the arbitrator cannot confirm or convince others that the signer has
signed M .

P2OFE: Privacy-Preserving Optimistic Fair Exchange of Digital Signatures 373

3.2 Security Models

We now study the security properties that a P2OFE protocol should satisfy. First
of all, the correctness of P2OFE can be naturally defined, and we omit it here. A
secure P2OFE protocol should satisfy the following properties: resolution ambi-
guity, signer ambiguity, perfect ambiguity, security against signers and security
against the arbitrator. Below we introduce them individually, where for simplic-
ity we omit the generation of system parameters PM. All the security properties
of P2OFE are defined in the certified-key model [5, 18], in which an adversary
can query an oracle OKR which takes as input a key pair (Pk, Sk) and outputs
1 if it is in the range of algorithm Ukg and 0 otherwise. For simplicity we omit
OKR in the following experiments.

Resolution Ambiguity: The property states that full signatures output by
the signer should be computationally indistinguishable from those output by the
verifier at the end of the resolution protocol. Let

Φ0
def
= {ρ ⊗ Sig(M, Ski, Pki, Pkj , Apk)}, and

Φ1
def
= {ρ ⊗ ResV (M, Skj , Δ, Pki, Pkj , Apk)},

where Δ ⊗ ResA(Ask, σ, Pki, Pkj) and σ ⊗ PSig(M, Ski, Pki, Pkj , Apk). A proto-
col is resolution ambiguous if Φ0 and Φ1 are computationally indistinguishable.

Signer Ambiguity: Before giving the definition of signer ambiguity, we de-
scribe a new p.p.t. algorithm FPSig that is run by the verifier to simulate the
signer’s partial signature. The algorithm is similar with PSig. It takes as input
(M, Skj , Pki, Pkj , Apk) and outputs a partial signature valid under Pki, Pkj and
Apk. We require that there exists an algorithm FPSig such that for any p.p.t.
adversary A, which models a dishonest signer, succeeds with at most negligible
advantage in the following experiment Expsa:

(Apk, Ask) ⊗ Akg(PM)

(Pkγ , Skγ) ⊗ Ukg(PM, Apk), ∀Ψ ∪ {0, 1}
(M∗, Υ) ⊗ AO

ResA ({(Pkγ , Skγ)}1γ=0, Apk)

b⊗ {0, 1}

σ∗ ⊗
{
PSig(M∗, Sk0, Pk0, Pk1, Apk) if b = 0
FPSig(M∗, Sk1, Pk0, Pk1, Apk) if b = 1

b⊕ ⊗ AOResA (Υ, σ∗)
Succ. of A := [b⊕ = b ⇐ (M∗, σ∗, Pk0, Pk1) →∪ Q(A, OResA)

⇐ (M∗, σ∗, Pk1, Pk0) →∪ Q(A, OResA)],

where

– OResA takes as input (M,σ, Pki, Pkj) and outputs the corresponding inter-
mediate signature Δ or ≡ indicating the failure of conversion; and

374 Q. Huang, D.S. Wong, and W. Susilo

– Q(A, OResA) is the set of queries that A submitted to oracle OResA .

The advantage of A in the experiment is defined as AdvAsa(1
k) := |Pr[Succsa] −

1/2|, where Succsa denotes the event that A succeeds in the experiment Expsa.

Definition 2 (Signer Ambiguity). A P2OFE protocol is signer ambiguous if
there is no p.p.t. A, such that AdvAsa(1

k) is non-negligible in the security param-
eter k.

Perfect Ambiguity: It basically says that given a partial signature, even the
arbitrator cannot assert which users are involved in the signature exchange.
Technically, we require that the distinguisher (which could be the arbitrator) is
unable to tell whether the given signature was generated honestly by signer A
w.r.t. the verifier B, or randomly selected from the signature space. We need a
p.p.t. algorithm Sim that is run by the public to simulate signatures of A and
B. The algorithm takes as input (Apk, Pki, Pkj) and outputs a simulated partial
signature of the signer Ui w.r.t. the verifier Uj . Formally, we require that there
exists an algorithm Sim such that for any p.p.t. adversary A, it succeeds in the
following experiment Exppa with only negligible advantage:

(Apk, Ask) ⊗ Akg(PM)

(Pkγ , Skγ) ⊗ Ukg(PM, Apk), ∀Ψ ∪ {0, 1}
(M∗, Υ) ⊗ AOPSigV ,OFPSig,OResV (Pk0, Sk0, Pk1, Apk, Ask)

b⊗ {0, 1}

σ∗ ⊗
{
PSig(M∗, Sk0, Pk0, Pk1, Apk), if b = 0
Sim(Apk, Pk0, Pk1) , if b = 1

b⊕ ⊗ AO
PSigV

,OFPSig,OResV (Υ, σ∗)

Δ∗ ⊗ ResA(M∗, Ask, σ∗, Pk0, Pk1)
Succ. of A := [b⊕ = b ⇐ (M∗, Δ∗, Pk0) →∪ Q(A, OResV)],

where

– OPSigV takes as input (M, Pk⊕), and outputs a partial signature σ ⊗
PSig(M, Sk1, Pk1, Pk

⊕, Apk);
– OFPSig takes as input (M, Pk⊕), and outputs a simulated partial signature,
e.g. σ ⊗ FPSig(M, Sk1, Pk

⊕, Pk1, Apk);
– OResV takes as input (M, Δ, Pk⊕), and outputs the full signature ρ ⊗
ResV (M, Sk1, Δ, Pk

⊕, Pk1, Apk); and
– Q(A, OResV) is the set of queries that A submitted to oracle OResV .

The advantage of A in the experiment is defined as AdvApa(1
k) := |Pr[Succpa] −

1/2|, where Succpa denotes the event that A succeeds in the experiment Exppa.

Definition 3 (Perfect Ambiguity). A P2OFE protocol is perfect ambiguous
if there is no p.p.t. adversary A such that AdvApa(1k) is non-negligible in the
security parameter k.

P2OFE: Privacy-Preserving Optimistic Fair Exchange of Digital Signatures 375

Remark. Notice that in the experiment above we do not give the adversary
access to an oracle which returns full signatures of the verifier (with public key
Pk1). The oracle can be implemented by composing OPSigV and OResV as well as
the knowledge of Ask.

The simulation algorithm Sim does not take any secret input and can be run
by anyone to simulate a partial signature that looks indistinguishable from a
real one. Guaranteed by the perfect ambiguity, without the knowledge of the
intended verfier’s secret key, no one is able to determine whether a given partial
signature does come from the signer. Due to the public simulatability, even the
arbitrator cannot assert and convince others that the signer indeed signed the
message M . In other words, the signer could deny the generation of a partial
signature.

Security against Signers: To protect the verifier from being cheated, the signer
should be unable to produce a partial signature such that it can pass the partial
verification, but the resolution fails to output a valid full signature. Formally,
we consider the following experiment Expsas:

(Apk, Ask) ⊗ Akg(PM)

(Pk1, Sk1) ⊗ Ukg(PM, Apk)

(M∗, Pk0, σ∗) ⊗ AOFPSig,ORes(Pk1, Apk)

Δ∗ ⊗ ResA(M∗, Ask, σ∗, Pk0, Pk1)

ρ∗ ⊗ ResV (M∗, Sk1, Δ∗, Pk0, Pk1, Apk)
Succ. of A := [PVer(M∗, σ∗, Pk0, Pk1, Apk, Sk1) = 1

⇐ Ver(M∗, ρ∗, Pk0, Pk1, Apk) = 0

⇐ (M∗, Pk0) →∪ Q(A, OFPSig)],

where

– ORes = ≥OResA , OResV ∈ takes as (M,σ, Pk⊕), and outputs the corresponding
full signature ρ (that is valid w.r.t. the signer’s public key Pk⊕, the verifier’s
public key Pk1 and Apk) or ≡; and

– Q(A, OFPSig) is the set of queries that A submitted to the oracle OFPSig .

The advantage of A in the experiment is defined as AdvAsas(1k) := Pr[Succsas],
where Succsas denotes the event that A succeeds in the experiment Expsas.

Definition 4 (Security against Signers). A P2OFE protocol is secure against
signers if there is no p.p.t. adversary A such that AdvApa(1

k) is non-negligible in
the security parameter k.

Security against the Arbitrator: To be fair for the signer, no one but the
signer, should be able to produce valid signatures on behalf of the signer. For-
mally, we consider the following experiment Expsaa:

(Apk, Ask) ⊗ Akg(PM)

376 Q. Huang, D.S. Wong, and W. Susilo

(Pk0, Sk0) ⊗ Ukg(PM, Apk)

(M∗, Pk1, ρ∗) ⊗ AOPSig(Pk0, Apk, Ask)

Succ. of A := [Ver(M∗, ρ∗, Pk0, Pk1, Apk) = 1 ⇐ (M∗, Pk1) →∪ Q(A, OPSig)],

where

– OPSig takes as input a message M and a public key Pk⊕ and outputs σ ⊗
PSig(M, Sk0, Pk0, Pk

⊕, Apk); and
– Q(A, OPSig) is the set of queries that A submitted to OPSig.

The advantage of A in the experiment is defined as AdvAsaa(1k) := Pr[Succsaa],
where Succsaa denotes the event that A succeeds in Expsaa.

Definition 5 (Security against the Arbitrator). A P2OFE protocol is se-
cure against the arbitrator if there is no p.p.t. adversary A such that AdvAsaa(1

k)
is non-negligible in the security parameter k.

Remark 1. Security against the arbitrator assumes the adversary (including the
arbitrator) is malicious and is allowed to try all kinds of ways to forge the signer’s
signature. This is for protecting the signer to the maximum extent. However, the
arbitrator is still assumed to function normally as prescribed in practice, i.e. to
honestly resolve signatures according to the users’ needs.

3.3 Differences from Other Variants of OFE

In this part we summarize the differences between P2OFE and (other variants
of) OFE. Table 1 shows the comparison. In the table, “Ambiguity of σ Before
Resolution” (resp. “Ambiguity of σ After Resolution”) refers to that given only
a partial signature σ, whether anyone (including the arbitrator) could convince
others before (resp. after) the resolution takes place that the signer has signed
the message. We denote by “

∅
2” that σ is ambiguous in the sense that either

the signer or the verifier could generate σ, and by “
∅
∪” that σ is ambiguous in

the sense that everyone could be the source of σ.

Table 1. Comparison with other variants of OFE

Ambiguity of σ Ambiguity of σ
Variants

Before Resolution After Resolution

OFE × ×
AOFE

√
2 ×

PAOFE
√

∞ ×
P2OFE

√
∞

√
∞

The partial signature in traditional OFE [3, 10, 20] is publicly verifiable, and
everyone is able to tell from it the fact that the signer signed the message.
In the enhanced variant AOFE [15, 16, 18, 19], although the partial signature

P2OFE: Privacy-Preserving Optimistic Fair Exchange of Digital Signatures 377

is ambiguous, however, anyone is still able to confirm that the given partial
signature was generated by either the signer or the verifier. In PAOFE [30], the
ambiguity is further improved. No one but the verifier is able to tell from the
given partial signature who the real signer is. However, no matter the partial
signature is ambiguous or not, the arbitrator in these variants has a full copy of
the signer’s full signature after the resolution.

In our new notion of OFE, given only the partial signature, neither the ar-
bitrator nor the verifier is able to find out by itself who the signer is. Thus,
the arbitrator could not convince others that the signer did sign the message.
Furthermore, this also holds even after the resolution in P2OFE, as guaranteed
by the perfect ambiguity of P2OFE.

4 Mathematical Assumptions

The P2OFE protocol is bilinear pairing based, and its security is based on the
Decision Linear and Strong Diffie-Hellman assumptions, which are reviewed as
follows:

Bilinear Pairing. Let G,GT be two cyclic groups of prime order p, and g be
a random generator of G. The map ê : G × G ⊕ GT is a bilinear pairing if
(1) Bilinear: ∀u, v ∪ Zp, ê(g

u, gv) = ê(g, g)uv; (2) Non-degenerate: ê(g, g) →= 1T ,
where 1T is the identity element of group GT ; and (3) Computable: there exists
a polynomial-time algorithm for computing ê(U, V) for any U, V ∪ G.

Definition 6 (Decision Linear Assumption [8]). Let G,GT be cyclic groups
of prime order p, and g be a random generator of G. Let ê : G × G ⊕ GT be
a bilinear pairing. The Decision Linear (DLIN) assumption in the context of
(G,GT , ê, p, g) says that there is no p.p.t. algorithm A such that for all F,G⊗ G,
s, t, z ⊗ Zp,

∣∣∣Pr[A(F,G, F s, Gt, gs+t) = 1]− Pr[A(F,G, F s, Gt, gz) = 1]
∣∣∣ ∃ negl(k),

where negl(·) is a negligible function in the security parameter k, and the prob-
abilities are taken over the choices of F,G ∪ G, s, t, z ∪ Zp and the random bits
consumed by A.

Definition 7 (Strong Diffie-Hellman Assumption [7]). Let G be a cyclic
group of prime order p, and g be a random generator of it. The α-Strong Diffie-
Hellman (α-SDH) assumption says that there is no p.p.t. algorithm A such that
for all x⊗ Zp,

Pr
[
Z = g

1
x+c | (Z, c) ⊗ A(g, gx, gx

2

, · · · , gxλ

)
]
∃ negl(k),

where c ∪ Zp, and the probability is taken over the choice of x ∪ Zp and the
random bits consumed by A.

378 Q. Huang, D.S. Wong, and W. Susilo

5 Our Protocol

In this section we present a concrete construction of P2OFE. Before presenting
the concrete protocol, we give a high level description of how our protocol works.

5.1 High Level Idea

Briefly speaking, our protocol makes use of Boneh-Boyen short signature scheme
(BB signature, for short) [7] and the tag-based public key encryption scheme [24].
It essentially follows the sign-then-encrypt paradigm. To generate a full signature
ρ on message M , the signer simply runs the corresponding algorithm of BB
signature scheme. To partially sign M , the signer first generates a BB signature
ρ = (S, r) and encrypts ρ w.r.t. the arbitrator’s public key using the tag-based
encryption scheme while keeping r public. Let the ciphertext be e. Then the
signer encrypts (part of) e under the intended verifier’s public key again and
obtains a new ciphertext c. The two encryptions are twisted together so that
the arbitrator and the intended verifier can perform their own decryption, but
cannot recover the signer’s full signature alone. To prevent the adversary from
making use of the resolution oracle to break the security of the protocol, we use a
strong one-time signature scheme to sign the whole ciphertext and use the fresh
one-time verification key as the tag in the tag-based encryption. To convince the
verifier the validity of σ, the signer needs carry out a proof with the verifier.

In order to resolve a partial signature σ to a full one, the verifier sends σ to
the arbitrator. The latter uses its secret key to do the first level decryption and
returns the resulting value, which is a ciphertext of ρ. The verifier then extracts
the full signature by performing another decryption using its own secret key.

5.2 The Protocol

Let G,GT be two cyclic multiplicative groups of prime order p, g a random
generator of G, and ê : G×G ⊕ GT be a bilinear pairing. Let OTS be a strong
one-time signature scheme and VK be the space of one-time verification keys.
Let H : G5×VK ⊕ Zp be a collision-resistant hash function. Our P2OFE protocol
works as follows. In the protocol we assume the message space is Zp, which can
be easily extended to {0, 1}∗ by applying a collision-resistant hash function onto
the message.

Akg. The arbitrator chooses at random θ1, θ2 ⊗ Zp, K,L ∪ G, and computes
F = g1/ξ1 , G = g1/ξ2 . It sets Apk = (F,G,K,L) and Ask = (θ1, θ2).

UKg. The user Ui chooses at random xi, yi, θi1, θi2 ∪ Zp and computes
Xi = gxi , Yi = gyi , Fi = g1/ξi1 and Gi = g1/ξi2 . The user sets Pki =
(Xi, Yi, Fi, Gi,Ki, Li) and Ski = (xi, yi, θi1, θi2).

PSig. Given a message M , the signer Ui generates its partial signature for the
verifier Uj as follows.
1. Select at random r, s, t, s⊕, t⊕ ∪ Zp.
2. Run OTS.Kg(1k) to generate a one-time key pair (otvk, otsk).

P2OFE: Privacy-Preserving Optimistic Fair Exchange of Digital Signatures 379

3. Compute

c1 = F s
′
j , c2 = Gt

′
j , S = g1/(xi+M+yi·r),

e1 = F s, e2 = Gt, e3 = Sgs+tgs
′+t′ , γ = H(c1, c2, e1, e2, e3, otvk),

c4 = (gαKj)
s′ , c5 = (gαLj)

t′ , e4 = (gαK)s, e5 = (gαL)t,

ε = OTS.Sig(otsk,M⊆Pki⊆Pkj⊆c⊆e⊆r),
where e = (e1, e2, e3, e4, e5) and c = (c1, c2, c4, c5).

If xi +M + yir = 0 mod p, the signer chooses another r and repeats the
process. Its partial signature on M is σ = (c, e, r, otvk, ε).

PVer. Given a partial signature σ = (c, e, r, otvk, ε), Ui and Uj check the well-
formedness of the signature locally, and do nothing if either of the following
does not hold:

ê(e4, F) = ê(e1, g
αK), (1)

ê(e5, G) = ê(e2, g
αL), (2)

ê(c4, Fj) = ê(c1, g
αKj), (3)

ê(c5, Gj) = ê(c2, g
αLj), (4)

OTS.Sig(M⊆Pki⊆Pkj⊆c⊆e⊆r, otvk, ε) = 1, (5)

where γ = H(c1, c2, e1, e2, e3, otvk). Then they carry out the following witness-
indistinguishable proof to show that σ contains a valid BB signature of either
Ui or Uj :

Π
def
= PK

{
(s, t, s⊕, t⊕) : c1 = F s

′
j ⇐ c2 = Gt

′
j ⇐ e1 = F s ⇐ e2 = Gt

⇐ (
ê(e3 · g−s−t−s′−t′ , Xig

MY ri) = ê(g, g)

◦ ê(e3 · g−s−t−s′−t′ , Xjg
MY rj) = ê(g, g)

)}
. (6)

Sig. To generate a full signature on message M for the verifier Uj , the signer
Ui randomly selects r ∪ Zp, and computes

S = g1/(xi+M+yi·r).

Again, in case that xi+M+yir = 0 mod p, it chooses another r and repeats
the computation. Its full signature on M is ρ = (S, r).

Ver. Given (M, ρ) where ρ = (S, r), the verifier checks if

ê(S,Xig
MY ri) = ê(g, g). (7)

It outputs 1 if the equation holds, and 0 otherwise.
ResA. Given (M,σ, Pki, Pkj) where σ = (c, e, r, otvk, ε), the arbitrator returns

≡ if either Eq. (1), (2), (3), (4) or (5) fails to hold; otherwise, it computes

c3 = e3e
−ξ1
1 e−ξ22 , (8)

and returns Δ = (c1, c2, c3, c4, c5, e3, r, otvk).

380 Q. Huang, D.S. Wong, and W. Susilo

ResV . Given (M, Δ, Pki, Pkj), where Δ = (c1, c2, c3, c4, c5, e3, r, otvk), the verifier
outputs ≡ if either Eq. (3) or (4) fails to hold; otherwise, it computes

S = c3c
−ξj1
1 c

−ξj2
2 . (9)

It outputs ρ = (S, r) if Eq. (7) holds, and ≡ otherwise.

5.3 Security

Below we show the security of our P2OFE protocol based on the assumptions
described in Sec. 4.

Theorem 1. Our P2OFE protocol is resolution ambiguous.

Proof. Notice that the full signature output by the signer and that output by
the resolution protocol are of the form ρ = (S, r), which is a Boneh-Boyen sig-
nature on the message M . Therefore, our P2OFE protocol is perfectly resolution
ambiguous. ⊥⊃
Theorem 2. Our P2OFE protocol is signer ambiguous if DLIN assumption holds,
H is collision-resistant and OTS is a strong one-time signature scheme.

Theorem 3. Our P2OFE protocol is perfect ambiguous, if DLIN assumption
holds, H is collision resistant and OTS is a strong one-time signature scheme.

Theorem 4. Our P2OFE protocol is secure against signers, if SDH assumption
holds, and Π is sound and witness-indistinguishable.

Theorem 5. Our P2OFE protocol is secure against the arbitrator if SDH as-
sumption holds.

Due to the page limit we defer the proofs to the full version.

6 Resolution in Practice

In this section we describe one of the ways on how P2OFE runs in practice.
Suppose the electronic contract that Alice and Bob want to secretly sign is M ,
and their semi-trusted third party is Ted. Recall that the contractM itself does
not need to be secret, as anyone can prepare such a contract. Instead, signatures
of Alice and Bob should be kept secret from others. Without their signatures, no
one can confirm whether they have signed the contract or have really performed
such a business deal.

Following the framework of optimistic fair exchange, Alice and Bob exchange
their signatures onM . If everything goes well, they will receive the counterpart’s
full signature. Due to that a party might refuse to continue the run of the
exchange protocol, or that the internet connection might become down, there
are two cases in which a dispute will occur between the two parties, as below:

P2OFE: Privacy-Preserving Optimistic Fair Exchange of Digital Signatures 381

1. after sending out the first-move message, which is Alice’s partial signature
σA on M , Alice receives nothing;

2. after sending out the second-move message, which is Bob’s full signature ρB
on M , Bob receives nothing.

Let us focus on the latter case first. In this case, Bob can resort to the arbitra-
tor, Ted, for converting σA to the full signature of Alice. Before the conversion,
Bob has to show the fulfillment of his obligation. Traditionally, this can be done
by sending his full signature ρB to the arbitrator, the validity of which can be
verified publicly. However, this will let the arbitrator confirm, and even show
to others the involvement of Bob as ρB shows that Bob indeed signed M . This
is undesired in some sensitive applications. To avoid this problem, Bob instead
sends his partial signature σB on M to Ted, and carries out a zero-knowledge
(or designated-verifier [23]) proof of knowledge to convince Ted that σB does
encapsulate his full signature on M . If he accepts the proof, Ted runs ResA on
input σA (as well asM) to obtain the intermediate value ΔA and sends it to Bob.
In the meanwhile, he also runs ResA on input σB to obtain Bob’s intermediate
value ΔB and sends it to Alice, in order to avoid the case in which Bob tried
to cheat at the end of the first move and did not ever send his full signature to
Alice. Figure 3 shows how the resolution of P2OFE works in practice, where ΠB

is the proof run by B to show the fulfillment of his obligation.
Now let us go back to the former case. If Bob does not try to cheat and simply

aborts the protocol, guaranteed by the signer ambiguity, Bob does not learn
anything from Alice partial signature, as long as Ted does not collude with Bob.
In this case, neither Alice nor Bob obtains their counterpart’s (full) signature.
However, if Bob tries to cheat and asks Ted for the resolution, according to
the aforementioned resolution procedure, Bob still needs to provide his partial
signature and a proof to support the validity of his signature.

Fig. 3. P2OFE: Resolution in Practice

382 Q. Huang, D.S. Wong, and W. Susilo

It should be noticed that the message signed by Alice and that signed by Bob
are not required to be the same, depending on the applications. In applications
where they need sign different messages, it suffices that Alice (resp. Bob) runs
algorithms PSig, Sig on inputMA (resp.MB) and runs PVer, Ver, ResV on input
MB (resp. MA).

7 Conclusion

We introduced the notion P2OFE for achieving the privacy preserving property
not just against a semi-trusted honest-but-curious arbitrator, but also against
a completely malicious arbitrator. This is the first time in the context of OFE
that signer privacy can be ensured even after the resolution. We also proposed an
efficient concrete construction of P2OFE with each of its full signatures being as
simple as a Boneh-Boyen short signature. Based on SDH and DLIN assumptions,
we also showed its security under the security model we defined without random
oracles. As of practical interest, we further demonstrated how the resolution can
actually work in practice.

Acknowledgements. We’d like to thank the anonymous reviewers for their
invaluable comments. This work is supported by the National Natural Science
Foundation of China (No. 61103232), the Guangdong Natural Science Foun-
dation (No. S2013010011859), the Research Fund for the Doctoral Program
of Higher Education of China (No. 20114404120027), and the Foundation for
Distinguished Young Talents in Higher Education of Guangdong, China (No.
LYM11033). D. S. Wong is supported by a grant from the RGC of the HKSAR,
China (Project No. CityU 121512). W. Susilo is supported by ARC Future Fel-
lowship FT0991397.

References

1. Asokan, N., Schunter, M., Waidner, M.: Optimistic protocols for fair exchange.
In: ACM Conference on Computer and Communications Security, pp. 7–17. ACM
(1997)

2. Asokan, N., Shoup, V., Waidner, M.: Optimistic fair exchange of digital signatures
(extended abstract). In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403,
pp. 591–606. Springer, Heidelberg (1998)

3. Asokan, N., Shoup, V., Waidner, M.: Optimistic fair exchange of digital signatures.
IEEE Journal on Selected Areas in Communication 18(4), 593–610 (2000)

4. Avoine, G., Vaudenay, S.: Optimistic fair exchange based on publicly verifiable
secret sharing. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004.
LNCS, vol. 3108, pp. 74–85. Springer, Heidelberg (2004)

5. Barak, B., Canetti, R., Nielsen, J.B., Pass, R.: Universally composable protocols
with relaxed set-up assumptions. In: FOCS 2004, pp. 186–195. IEEE Computer
Society (2004)

6. Belenkiy, M., Chase, M., Erway, C.C., Jannotti, J., Küpçü, A., Lysyanskaya, A.,
Rachlin, E.: Making p2p accountable without losing privacy. In: WPES, pp. 31–40.
ACM (2007)

P2OFE: Privacy-Preserving Optimistic Fair Exchange of Digital Signatures 383

7. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer,
Heidelberg (2004)

8. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

9. Chaum, D.: Designated confirmer signatures. In: De Santis, A. (ed.) EUROCRYPT
1994. LNCS, vol. 950, pp. 86–91. Springer, Heidelberg (1995)

10. Dodis, Y., Lee, P.J., Yum, D.H.: Optimistic fair exchange in a multi-user setting. In:
Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 118–133. Springer,
Heidelberg (2007)

11. Dodis, Y., Reyzin, L.: Breaking and repairing optimistic fair exchange from PODC
2003. In: ACM Workshop on Digital Rights Management, DRM 2003, pp. 47–54.
ACM (2003)

12. Dodis, Y., Yum, D.H.: Time capsule signature. In: Patrick, A.S., Yung, M. (eds.)
FC 2005. LNCS, vol. 3570, pp. 57–71. Springer, Heidelberg (2005)

13. Garay, J.A., Jakobsson, M., MacKenzie, P.: Abuse-free optimistic contract signing.
In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 449–466. Springer,
Heidelberg (1999)

14. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In:
Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008)

15. Huang, Q., Wong, D.S., Susilo, W.: A new construction of designated confirmer
signature and its application to optimistic fair exchange - (extended abstract). In:
Joye, M., Miyaji, A., Otsuka, A. (eds.) Pairing 2010. LNCS, vol. 6487, pp. 41–61.
Springer, Heidelberg (2010)

16. Huang, Q., Wong, D.S., Susilo, W.: Efficient designated confirmer signature and
DCS-based ambiguous optimistic fair exchange. IEEE Transactions on Information
Forensics and Security 6(4), 1233–1247 (2011)

17. Huang, Q., Wong, D.S., Susilo, W.: Group-oriented fair exchange of signatures.
Information Sciences 181(16), 3267–3283 (2011)

18. Huang, Q., Wong, D.S., Susilo, W.: The construction of ambiguous optimistic fair
exchange from designated confirmer signature without random oracles. In: Fischlin,
M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 120–137.
Springer, Heidelberg (2012)

19. Huang, Q., Yang, G., Wong, D.S., Susilo, W.: Ambiguous optimistic fair exchange.
In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 74–89. Springer,
Heidelberg (2008)

20. Huang, Q., Yang, G., Wong, D.S., Susilo, W.: Efficient optimistic fair exchange
secure in the multi-user setting and chosen-key model without random oracles. In:
Malkin, T. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 106–120. Springer, Heidelberg
(2008)

21. Huang, Q., Yang, G., Wong, D.S., Susilo, W.: A new efficient optimistic fair ex-
change protocol without random oracles. International Journal of Information Se-
curity 11(1), 53–63 (2012)

22. Huang, X., Mu, Y., Susilo, W., Wu, W., Zhou, J., Deng, R.H.: Preserving trans-
parency and accountability in optimistic fair exchange of digital signatures. IEEE
Transactions on Information Forensics and Security 6(2), 498–512 (2011)

23. Jakobsson, M., Sako, K., Impagliazzo, R.: Designated verifier proofs and their
applications. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070,
pp. 143–154. Springer, Heidelberg (1996)

384 Q. Huang, D.S. Wong, and W. Susilo

24. Kiltz, E.: Chosen-ciphertext security from tag-based encryption. In: Halevi, S.,
Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 581–600. Springer, Heidelberg
(2006)

25. Küpçü, A., Lysyanskaya, A.: Optimistic fair exchange with multiple arbiters. In:
Gritzalis, D., Preneel, B., Theoharidou, M. (eds.) ESORICS 2010. LNCS, vol. 6345,
pp. 488–507. Springer, Heidelberg (2010)

26. Küpçü, A., Lysyanskaya, A.: Usable optimistic fair exchange. Computer Net-
works 56(1), 50–63 (2012)

27. Lysyanskaya, A., Micali, S., Reyzin, L., Shacham, H.: Sequential aggregate sig-
natures from trapdoor permutations. In: Cachin, C., Camenisch, J.L. (eds.)
EUROCRYPT 2004. LNCS, vol. 3027, pp. 74–90. Springer, Heidelberg (2004)

28. Park, J.M., Chong, E.K., Siegel, H.J.: Constructing fair-exchange protocols for
e-commerce via distributed computation of RSA signatures. In: PODC 2003,
pp. 172–181. ACM (2003)

29. Wang, G.: An abuse-free fair contract signing protocol based on the RSA signature.
IEEE Transactions on Information Forensics and Security 5(1), 158–168 (2010)

30. Wang, Y., Au, M.H., Susilo, W.: Perfect ambiguous optimistic fair exchange.
In: Chim, T.W., Yuen, T.H. (eds.) ICICS 2012. LNCS, vol. 7618, pp. 142–153.
Springer, Heidelberg (2012)

2-Pass Key Exchange Protocols

from CPA-Secure KEM

Kaoru Kurosawa1 and Jun Furukawa2

1 Ibaraki University, Japan
kurosawa@mx.ibaraki.ac.jp
2 NEC Corporation, Japan
j-furukawa@ay.jp.nec.com

Abstract. In this paper, we show three generic constructions of 2-pass
key exchange (KE) protocols which satisfy weak perfect forward secrecy
(wPFS) under a sole assumption that there exists a CPA-secure KEM.
Our first construction is CK-secure, the second one is eCK-secure, and
the last one is both CK-secure and eCK-secure.

Keywords: key exchange protocol, KEM, CK-secure, eCK-secure.

1 Introduction

A key exchange (KE) protocol is one of the most fundamental cryptographic
primitives that allows two parties to generate a common secret key in a network
even when all the communication in the network is controlled by an adversary.
Most of the provably secure KE protocols known so far are based on the DDH
assumption or the CDH assumption [4,10,3,15,19,16,20].

Boyd et al. [2], on the other hand, showed a generic construction of 1-round
(one message per party, sent simultaneously) KE protocols from an ID-based
CCA-secure KEM and a pseudorandom function in the Canetti-Krawczyk (CK)
model. This construction, however, does not satisfy weak perfect forward secrecy
(wPFS) [16]. (They showed another construction which satisfies wPFS under the
DDH assumption. It is, however, not generic because it is based on the DDH
assumption.)

Fujioka et al. [14] extended the above construction in such a way that wPFS
is also satisfied in the CK+ model. Their construction uses a CCA-secure KEM,
a CPA-secure KEM and a pseudorandom function as building blocks. Their
protocol is 2-pass (one message per party, but sent sequentially).

In this paper, we study this problem one step further. From a view point of
security models, we present three generic constructions of 2-pass KE protocols
with wPFS such as follows.

– Protocol 2-pass-ck in the CK-model.
– Protocol 2-pass-eck in the eCK-model.
– Protocol 2-pass-both which is both CK-secure and eCK-secure.

J. Benaloh (Ed.): CT-RSA 2014, LNCS 8366, pp. 385–401, 2014.
c© Springer International Publishing Switzerland 2014

386 K. Kurosawa and J. Furukawa

We also show that 2-pass-ck is not eCK-secure, and 2-pass-eck is not CK-
secure. (Therefore our results make it clear that there exists a clear separation
between CK-security and eCK-security.)

From a view point of the assumptions, each of our construction uses only
a CPA-secure KEM, a digital signature scheme and a pseudorandom function.
Theoretically, digital signature schemes and pseudorandom functions can be con-
structed from one-way functions. Further a CPA secure KEM implies a one-way
function because the key generation algorithm is a one-way function from a ran-
dom string to a public-key. Therefore our minimum assumption is that there
exists a CPA-secure KEM alone.

On the other hand, we cannot construct a CCA-secure KEM from a CPA-
secure KEM in the plain model. (A CCA-secure KEM can be constructed from
a CPA-secure KEM and a (simulation-sound) non-interactive zero-knowledge
(NIZK) proof via the Naor-Yung or Dolev-Dwork-Naor transforms. However,
NIZK proofs require a common reference string.) Therefore in the plain model,

– The construction of Fujioka et al. [14] needs a CCA-secure KEM as the
minimum assumption.

– Each of our constructions needs only a CPA-secure KEM as the minimum
assumption.

To summarize, we show three generic constructions of 2-pass key exchange
(KE) protocols which satisfy weak perfect forward secrecy (wPFS) under a sole
assumption that there exists a CPA-secure KEM. See Table 1 for the comparison
with Fujioka et al. [14]. 1

Table 1. 2-pass KE protocol with wPFS

building blocks minimum assumption security

Fujioka et al. [14] CCA-KEM, CPA-KEM, PRF CCA-KEM CK+-secure

Proposed (1) CPA-KEM, signature, PRF CPA-KEM CK-secure

Proposed (2) CPA-KEM, signature, PRF CPA-KEM eCK-secure

Proposed (3) CPA-KEM, signature, PRF CPA-KEM CK-secure and eCK-secure

For our generic constructions to be CK/eCK-secure, we consider to use the
twisted PRF trick. The twisted PRF trick is an interesting cryptographic prim-
itive introduced by Fujioka et al. [14] to construct their KE protocols. However,
their proof is not complete. We consider it is extremely hard to prove its pseu-
dorandomness —the property that it is required to satisfy— even if it would be.
We therefore start from formulating the notion of twisted PRF rigorously, and
then give a new construction which satisfies our definition. This may be another
interest of our paper. We note that our design principle is totally different from
[2,14] (despite of using twisted PRF.)

1 See [14, Table 2] for the difference between CK+-security and eCK-security.

2-Pass Key Exchange Protocols from CPA-Secure KEM 387

(Related work) There are a variety of security models for KE protocols, the
Bellare & Rogaway model [5,7], the Bellare, Pointcheval, & Rogaway model [4]
and the Canetti & Krawczyk (CK) model [10]. In the original CK model, the
session identifier (SID) is given by an adversary. Choo et al. [8] showed that,
if the CK model is modified so as SID is defined to be the concatenation of
messages exchanged during the protocol run, then this modified model offers the
strongest definition of security among the above models.

LaMacchia et al. extended CK model [20] to consider stronger adversaries
(in some sense) who attack even ephemeral secret keys. This model is called
extended Canetti-Krawczyk (eCK) model.

In this paper, we consider CK model and eCK model such that SID is defined
as the concatenation of messages exchanged.

2 Preliminaries

When X is a set, we let x⊗ X denote that x is randomly chosen from X . When
A is a probabilistic algorithm, we let y ⊗ A(x1, · · · , xn;R) denote the operation
of running A on inputs x1, · · · , xn and coins R that eventually outputs y. We let
y ⊗ A(x1, · · · , xn) denote the operation of y ⊗ A(x1, · · · , xn;R) with R chosen
at random. PRFs(·) denotes a pseudorandom function with key s. PPT means
probabilistic polynomial time and || means concatenation.

2.1 Key-Exchange (KE) Protocol

A key-exchange (KE) protocol is run among interconnected parties, where each
party is activated by an adversary to run an instance of the protocol. Such
an instance is called a session. A party can run multiple sessions concurrently,
and each session has its own session state. When a party receives an incoming
message, he either (1) returns an outgoing message and updates the session state,
or (2) outputs an session key K and completes the session by deleting the session
state. A party that first sends a message is called an initiator and, a party that
first receive a message is called a responder.

Each session is associated with its holder or owner P (the party which runs
the session), a peer P ≥ (the party with which the session key is intended to be
established), and a session identifier. The session identifier sid of P is a tuple
(Out, In), where Out is the concatenation of outgoing messages from this session,
and In is the concatenation of the incoming messages into this session. Since
we consider only 2-pass protocols in this paper, a session identifier is of the
form (X,Y), where X is the outgoing message and Y is the incoming message.
The session (Out, In) = (X,Y) (if it exists) whose owner and peer are P and
P ≥ respectively, is said to be a matching session of the session (Y ≥, X ≥) whose
owner and peer are P ≥ and P respectively, if either (X,Y) = (X ≥, Y ≥) or ((X =
X ≥) ≡ (Y = ∅)).

388 K. Kurosawa and J. Furukawa

2.2 Canetti-Krawczyk (CK) Model [10,16]

Canetti and Krawczyk [10] formulated the security model of KE protocols, which
is called the CK model. In the CK model, an adversary M is an active ”man
in the middle” adversary with full control of the communication links between
parties. M schedules all activations of parties and message delivery. Initially
and upon the completion of each activation, M decides which party to activate
next; M also decides which incoming message or external request the activated
party is to receive. In addition to these ability, M can issue the following oracle
queries:

– A state-reveal query is directed at a session which is still incomplete (i.e.,
before outputting the session key) and the oracle returns the corresponding
session state (which does not include the long-term private key). 2

– A session-key query is directed at a completed session and the oracle returns
the corresponding session-key.

– A corrupt query is directed at an individual party and the oracle returns all
information in the memory of that party (including the long-term private key
of the party as well all session states and session keys stored at the party).
We say the party is corrupted thereafter.

– A session expire query is directed at a completed session within a party P
and its result is that the session key is erased from P ’s memory. We say the
session expired thereafter.

The session expire query is used to formulate the notion of forward secrecy (FS).
The FS means that ”compromise of long-term keys does not compromise past
session keys”. Two types of FS are considered in CK-model, perfect forward
secrecy (PFS) and weak perfect forward secrecy (wPFS).

Definition 1. A session sid within a party P is called locally exposed if the
adversary issues any of the following queries:

1. a session-state reveal query directed to sid,
2. a session-key query directed to sid,
3. a corrupt query directed to P before sid expires.

A session sid := (Out, In) within a party P is called exposed if

1. it is locally exposed, or
2. it has a matching session that is locally exposed, or
3. it does not have a matching session and its peer P ≥ is corrupted before P

outputs the session key.

A session which is not exposed is called unexposed.

2 While the long-term private key is stored and operated in a protected area in many
cases, each session state may be operated in a non-protected area by an application
that responds to a huge number of users concurrently. Therefore the session state
tends to be more vulnerable.

2-Pass Key Exchange Protocols from CPA-Secure KEM 389

At some point, the adversaryM chooses a test-session sid≤ among the sessions
that are completed and unexposed at the time. We chooses a random bit b. If
b = 0, M is given the session key K≤ of sid≤. If b = 1, M is given a randomly
chosen session key K from the distribution over the session key space. M finally
outputs a bit b≥. The advantage of M is defined as

Adv(M) = 2× |Pr(b≥ = b)− 1/2| (1)

= |Pr(b≥ = 1 | b = 0)− Pr(b≥ = 1 | b = 1)| (2)

Definition 2. A KE protocol is CK-secure with perfect forward secrecy (PFS)
if

1. If two uncorrupted parties complete sessions which are matching to each other,
then they output the same session key except for a negligible probability.

2. Adv(M) is negligible for any PPT adversary M.

An unexposed session sid is called strongly unexposed if sid has a matching
session, or its peer P ≥ is never corrupted.

Definition 3. A KE protocol is CK-secure with weak PFS (wPFS) if the test
session is required to be strongly unexposed in Definition 2.

Suppose that the test session does not have a matching session. Then in Def.
2 (that defines PFS), an adversary M is allowed to corrupt the peer of the test
session after the test session completes. On the other hand, in the definition of
weak PFS, M is not allowed to do that.

2.3 Extended Canetti-Krawczyk (eCK) Model [20]

The extended Canetti-Krawczyk (eCK) model was given by LaMacchia et al.
[20]. It is the same as the CK model except for the following.

– A session-state reveal query is replaced with a ephemeral secret key reveal query
which reveals the ephemeral secret key of that party, where the ephemeral
secret key of a session is defined as all random coins used by the party in that
session.

– A corrupt query is replaced with a long-term key reveal query which reveals
the long-term key of that party.

Let sid be a session completed by PΠ, and sid
≥ denote the matching session

to sid, supposedly executed by PΔ (sid≥ may not exist). Let lskΠ and lskΔ ,
respectively, denote long-term secret keys of PΠ and PΔ . Let eskΠ and eskΔ ,
respectively, denote ephemeral secret keys used by PΠ and PΔ in sid and sid≥

(the latter is defined only if sid≥ exists). Then a session sid is called exposed in
eCK model if

– The matching session sid≥ exists, and the adversary M obtains both lskΠ
and eskΠ, or both lskΔ and eskΔ .

390 K. Kurosawa and J. Furukawa

– Or the matching session sid≥ does not exist, and M obtains either lskΔ (at
any time), or both lskΠ and eskΠ.

– Or M obtains the session key of sid or sid≥ (if the latter exists).

Definition 4. A KE protocol is called eCK-secure if the conditions of Def.2 are
satisfied in the eCK model.

2.4 KEM

A key encapsulation mechanism KEM = (Gen,Enc,Dec) consists of three
polynomial-time algorithms:

– (pk, sk) ⊗ Gen(1Ψ) returns a public key pk and the secret key sk, where σ
is the security parameter.

– (c,K) ⊗ Enc(pk) outputs a ciphertext c and the key K ∪ K, where the key
space K is defined by pk.

– K = Dec(sk, c) outputs the key K corresponding to the ciphertext c.

For a PPT adversary A, consider the following experiment.

(pk, sk) ⊗ Gen(1Ψ), (c,K0) ⊗ Enc(pk), K1 ⊗ K, b⊗ {0, 1}, b≥ ⊗ A(pk, c,Kb).

We say that a KEM is CPA-secure if |Pr(b≥ = b)−1/2| is negligible for any PPT
adversary A.

3 Our Basic KE Protocol Based on KEM

Our basic KE protocol can be considered as a natural generalization of Diffie-
Hellman protocol. Let KEM = (Gen,Enc,Dec) be a CPA-secure KEM.

(Protocol 2-pass-am)

step 1. PΠ generates (pk, sk) ⊗ Gen(1Ψ), and sends X = (PΠ, pk) to PΔ .

step 2. PΔ computes (c,K) ⊗ Enc(pk), and sends Y = (PΔ , c) and X to PΠ.
It then outputs the session key K.

step 3. PΠ computes K = Dec(sk, c), and outputs the session key K.

If we use Elgamal KEM, then PΠ sends pk = gx, PΔ returns c = gr, and the
session key is K = cx = gxr. Thus it coincides with Diffie-Hellman protocol.

The above protocol is still not CK-secure nor eCK-secure as the DH protocol
is not. But by applying the compiler of [10] to the above protocol, we can obtain
a 3-pass KE protocol.

Now a challenge is to construct a 2-pass KE protocol which is CK-secure (with
wPFS). Also we want to construct a 2-pass eCK-secure one. In the rest of this
paper, we will show such KE protocols.

2-Pass Key Exchange Protocols from CPA-Secure KEM 391

4 Twisted PRF Trick

4.1 Toward eCK Security

Boyd et al. [2, Sec.3.1] suggested the following method to transform a CK-secure
protocol to a eCK-secure protocol. If r is the random input used by a session
and s is the long term key of the party, the protocol first computes r≥ = PRFs(r),
and uses r≥ instead of r. This way, even though r is available to the adversary
through ephemeral secret key reveal, r≥ remains protected.

However, this method does not work (in the standard model). In the eCK
model, an adversary M can obtain either s or r. Suppose that M obtain s, and
r is unknown. Then we cannot say that r≥ is pseudorandom even if r is random.
This is because the definition of pseudorandom functions says nothing about
this.

4.2 Original Twisted PRF Trick

To overcome the above problem and then to achieve eCK-security, Fujioka et al.
[14] introduced the twisted PRF trick. In their method, a random coin R of a
probabilistic algorithm A is replaced with

F (k, (a, a≥)) = PRFk(a)⇐ PRF≥a∗(k). (3)

where k is the long-term key of a party Pi and (a, a≥) are random coins (i.e. the
ephemeral secret key). Namely Pi invokes A(x1, · · · , xn;F (si, (a, a≥)) instead of
A(x1, · · · , xn;R).

They claimed that: If (a, a≥) is leaked, PRFk(a) cannot be computed with-
out knowing k. Similarly, if k is leaked, PRF≥a∗(k) cannot be computed without
knowing a≥.

Although this is true, it is not sufficient enough. F (k, (a, a≥)) must look random
(even if either k or (a, a≥) is leaked) because it is substituted to the random coin
R. However, we cannot prove this pseudorandomness. The reason is as follows.

Suppose that (a, a≥) is leaked in F (k, (a, a≥)) of eq.(3). Then we must prove
that ((a, a≥), F (k, (a, a≥)) and ((a, a≥), R) are indistinguishable, where (a, a≥), k,
and R are all random.

The proof would proceed as follows. Suppose that there exists a distinguisher
D0 which can distinguish ((a, a≥), F (k, (a, a≥)) from ((a, a≥), R). Then we will
construct a distinguisher D1 which can distinguish the underlying PRF from
random functions.
D1 has access to an oracle O, where O is PRFk or a random function. D1

first chooses (a, a≥) randomly. and queries (a, a≥) to O which returns r. Then D1

computes

z = r ⇐ PRFa∗(k) (4)

and gives ((a, a≥), z) to D0. If O is PRFk, then z = F (k, (a, a≥)), and if O is a
random function, then z is a random string R. Therefore D1 can distinguish

392 K. Kurosawa and J. Furukawa

PRFk from a random function if D0 can distinguish ((a, a≥), F (k, (a, a≥)) from
((a, a≥), R).

However, in eq.(4), D1 cannot compute PRFa∗(k) because D1 does not know k
! Thus we cannot prove that F (k, (a, a≥)) of eq.(3) satisfies the desired property.

5 Improved Twisted PRF

In this section, we formulate the notion of twisted pseudorandom functions
(tPRFs), and present its correct construction.

Definition 5. We say that a function F : {0, 1}Ψ×{0, 1}ι → {0, 1}ι is a twisted
pseudorandom function (tPRF) if

– [(x1, F (K,x1)), · · · , (xq, F (K,xq))] and [(x1, R1), · · · , (xq , Rq)] are indistin-
guishable for any polynomial q(σ), where K,x1, · · · , xq, R1, · · · , Rq are ran-
domly chosen, and

– [K,F (K,x)] and [K,R] are indistinguishable, where K,x,R are randomly
chosen.

We next show a correct construction of tPRF. (Here, σ = ρ = 2L.) Define F
as follows.

F ((k, k≥), (a, a≥)) = PRFk(a)⇐ PRFa∗(k
≥).

Theorem 1. The above F is a tPRF if PRF is a pseudorandom function.

Proof. (1) For randomly chosen K = (k, k≥) and xi = (ai, a
≥
i), let yi = F (K, ri),

where i = 1, · · · , q. Let Ri be a random string for i = 1, · · · , q.
Suppose that there exists a distinguisher D0 which can distinguish between

A = [(x1, y1), · · · , (xq, yq)] and B = [(x1, R1), · · · , (xq, Rq)].

We show a distinguisher D1 which can distinguish the underlying PRF from
random functions. D1 has access to an oracle O, where O is PRFk or a random
function. D1 first chooses k≥ randomly. Next for i = 1, · · · , q, D1 chooses xi =
(ai, a

≥
i) randomly, and queries ai to O which returns ri. Then D1 computes

zi = ri ⇐ PRFa∗i(k
≥)

for i = 1, · · · , q, and gives Δ = [(x1, z1), · · · , (xq , zq)] to D0. It is easy to see that

Δ =

{
A if O is PRFk
B if O is a random function

D0 finally outputs a bit b. Then D1 outputs the same b. In this way, D1 can
distinguish the PRF from a random function. However, this is a contradiction.
Therefore D0 cannot distinguish between A and B.

2-Pass Key Exchange Protocols from CPA-Secure KEM 393

(2) For randomly chosen K = (k, k≥) and x = (a, a≥), let y = F (K,x). Let R
be a random string. Suppose that there exists a distinguisher D0 which can
distinguish between (K, y) and (K,R). We show a distinguisher D1 which can
distinguish the PRF from random functions.
D1 has access to an oracle O, where O is PRFa∗ or a random function. D1

chooses a and K = (k, k≥) randomly. Then D1 queries k≥ to O which returns r.
Then D1 computes

z = r ⇐ PRFk(a),

and gives (K,Z) to D0. It is easy to see that

(K, z) =

{
(K, y) if O is PRFa∗
(K,R) if O is a random function

D0 finally outputs a bit b. Then D1 outputs the same b. In this way, D1 can
distinguish the PRF from a random function. However, this is a contradiction.
Therefore D0 cannot distinguish between (K, y) and (K,R). ≥∈

6 Our 2-Pass Protocol in the CK Model

In this section, we construct a 2-pass KE protocol which satisfies CK-security
with wPFS by extending Protocol 2-pass-am.

LetKEM = (Gen,Enc,Dec) be aCPA-secureKEM, and SIG = (G, Sign,Verify)
be a signature scheme.We assume that eachPi publishes a verification key vki and
keeps a signing key sgni secret, where (vki, signi) ⊗ G(1Ψ).

6.1 Naive Approach

In a naive approach, each Pi has a long term secret key sgni.

(Protocol naive)

step 1. PΠ generates (pk, sk) ⊗ Gen(1Ψ) and sends X = (PΠ, pk) to PΔ .
PΠ also sends its signature ΦX = Sign(sgnΠ;X) to PΔ .

step 2. If ΦX is invalid, then PΔ aborts. Otherwise
PΔ computes (c,K) ⊗ Enc(pk), and sends Y = (PΔ , c) and X to PΠ.
PΔ also sends its signature ΦY X = Sign(sgnΔ; (Y,X)) to PΠ.
It then outputs the session key K.

step 3. If ΦY X is invalid, then PΠ aborts. Otherwise
PΠ computes K = Dec(sk, c), and outputs the session key K.

However, this protocol is broken by an adversary M such as follows.

1. M asks PΠ to start a session (Session 1) with PΔ , and receives (X, ΦX).
2. M issues a session-state reveal query to PΠ, and obtains sk.
3. M sends (X, ΦX) to PΔ , receives (Y,X, ΦY X) from PΔ , and relays it to PΠ.
4. M sends (X, ΦX) to PΔ again as a new session (Session 2), and receives (Y ≥,
X, Φ≥Y ∗X) from PΔ .

394 K. Kurosawa and J. Furukawa

Atthe endof step4,PΔ has anunexposed session sid
≤=((Y ≥, X, Φ≥Y ∗X), (X, ΦX)).

M can now compute the session keyK≤ of sid≤ in the same way as PΠ becauseM
knows sk. (Note that sk is not a long term key, and sid≤ does not have a matching
session.)

It is quite surprising that the naive approach does not work well. And it is
quite surprising again that this flaw can be fixed, as done in the next sub-section,
within two pass protocols.

(Remark) Session 2 is not matching to Session 1. Therefore Session 2 is unex-
posed.

6.2 Our Protocol

We resolve the above problem by by using the improved twisted PRF trick. Our
2-pass KE protocol is given as follows. Each Pi publishes vki, and has a long
term secret key (sgni, si), where si is a key of tPRF which is denoted by F . The
boxed statements are the differences from Protocol naive.

(Protocol 2-pass-ck)

step 1. PΠ chooses r randomly and computes R = F (sΠ, r).

PΠ generates (pk, sk) ⊗ Gen(1Ψ;R) by using the above R as random coin.
PΠ sends X = (PΠ, pk) and its signature ΦX = Sign(sgnΠ;X) to PΔ .

PΠ then erase all state except r and X .

step 2. If ΦX is invalid, then PΔ aborts. Otherwise
PΔ computes (c,K) ⊗ Enc(pk), and sends Y = (PΔ , c) and X

3 to PΠ.
PΔ also sends its signature ΦY X = Sign(sgnΔ; (Y,X)) to PΠ.
It then outputs the session key K.

step 3. If ΦY X is invalid, then PΠ aborts. Otherwise

PΠ computes R = F (sΠ, r), and reconstructs (pk, sk) ⊗ Gen(1Ψ;R).

PΠ then computes K = Dec(sk, c), and outputs the session key K.

Theorem 2. The above protocol is secure in the CK model (with wPFS) if the
KEM is CPA-secure, the signature scheme is unforgeable against chosen message
attack and F is a tPRF.

Proof. It is easy to see that the first requirement of Def.2 is satisfied. We will
show that the second requirement of Def.2 is also satisfied. Suppose that an
adversary M chooses

sid≤ = ((X≤, ΦX→), (Y ≤, X≤, ΦY →X→)) or ((Y ≤, X≤, ΦY →X→), (X≤, ΦX→))

as the test session, where X≤ = (PΠ, pk
≤) and Y ≤ = (PΔ , c

≤).

3 Pα can run several sessions with Pβ concurrently. For example, Pα sends (X,σX) and
(X ′, σX∗) to Pβ. If Pβ returns only Y , Pα cannot tell if Y is a response to (X,σX)
or (X ′, σX∗).

2-Pass Key Exchange Protocols from CPA-Secure KEM 395

Pα keeps (sgnα, sα) secret. Pβ keeps (sgnβ, sβ) secret.

r ← random, R ← F (sα, r)

(pk, sk) ← Gen(1λ;R)
X ← (Pα, pk), σX ← Sign(sgnα, X)

Erase all state except (r,X) X = (Pα, pk), σX −→
If σX is invalid, then abort.
Else (c,K) ← Enc(pk),

Y ← (Pβ, c),
σY X ← Sign(sgnβ, (Y,X)).

←− Y = (Pβ, c), X, σY X

If σY X is invalid, then abort.

Else R ← F (sα, x)

(pk, sk) ← Gen(1λ;R)

K ← Dec(sk, c).

Fig. 1. Protocol 2-pass-ck

We assume that

(A1) M activates at most n players P1, · · · , Pn, and
(A2) M activates PΠ as the initiator at most N times. In the ith activation, PΠ

chooses ri randomly, and computes Ri = F (sΠ, ri).

We consider a series of games Game0,Game1, · · ·. In each game, a random bit
b is chosen for the test session, and M outputs a bit b≥ at the end of the game.
Define

pi = Pr(b≥ = b in Gamei) and qi = 2|pi − 1/2|.
– Game0 is the original attack game.
– Game1 is the same as Game0 except for the following. Choose Ψ≥ ∪ {1, · · · , n}

and Υ≥ ∪ {1, · · · , n} randomly. Let E1 be the event that Ψ≥ = Ψ and Υ≥ = Υ.
If E1 does not occur, then M chooses a bit b≥ randomly. E1 happens with
probability 1/n2. Therefore from the last equation of [12], we have q1 =
(1/n2)q0.

In what follows, we use the last equation of [12] in this way.

– Game2 is the same as Game1 except for the following. Let E2 be the event
that M forges Φ≤X or Φ≤YX successfully. If E2 occurs, then M chooses a bit
b≥ randomly.

We claim that M does not have signΠ when he outputs Φ≤X , and M does
not have signΔ when he outputs Φ≤Y X . Suppose that the owner of sid≤ is PΠ.
Then M cannot obtain signΠ before sid≤ expires. If the matching session sid≥

exists, then M cannot obtain signΔ before sid≥ expires. If the matching session
does not exist, then M can never obtain signΔ from the definition of wPFS. The
same thing holds for the other case (the owner of sid≤ is PΔ).

Therefore E2 happens with negligible probability α (because M does not have
the signing keys). 4 We then have q2 = (1− α)q1.

4 We can construct a forger F by using M as a subroutine.

396 K. Kurosawa and J. Furukawa

Suppose that E2 does not occur. Then (X≤ = (PΠ, pk
≤), Φ≤X) must be com-

puted by PΠ (not by M), say, in the i≤th activation for some i≤ ∪ {1, · · · , N}.
– Game3 is the same as Game2 except for the following. Choose i ∪ {1, · · · , N}

randomly. Let E3 be the event that i = i≤. If E3 does not occur, then M
chooses a bit b≥ randomly. Since E3 happens with probability 1/N , we have
q3 = 1/N × q2.

If the owner of sid≤ is PΠ, then M is not allowed to obtain the session state
ri→ . (See (A2) for ri.) Suppose that the owner of sid≤ is PΔ . If sid

≤ has the
matching session, then M is not allowed to obtain ri→ because the matching
session must be locally unexposed too.

Otherwise the owner of sid≤ is PΔ , and sid≤ does not have the matching
session. In this case, M is never allowed to obtain the long-term key sΠ of PΠ
from the definition of wPFS. Let

θ =

{
0 if the owner of sid≤ is PΠ or sid≤ has the matching session,
1 otherwise .

If θ = 0, M may obtain sΠ (after sid≤ or sid≥ expires) but not ri→ . If θ = 1, M
may obtain ri→ , but not sΠ.

– Game4 is the same as Game3 except for the following. At the beginning of
the game, θ ≥ ∪ {0, 1} is randomly chosen. Let E4 be the event that θ ≥ = θ .
If E4 does not occur, then M chooses a bit b≥ randomly. Since E4 happens
with probability 1/2, we have q4 = 1/2× q3.

– Game5 is the same as Game4 except for the following.

1. If θ = θ ≥ = 0, then F (sΠ, ri→) is replaced with a random string R.
In this case, (sΠ, F (sΠ, ri→)) and (sΠ, R) are indistinguishable from Def. 5.

2. If θ = θ ≥ = 1, then all the values of F (sΠ, ri) are replaced with random
strings Ri. In this case, [(r1, F (sΠ, r1)), · · · , [(rN , F (sΠ, rN))] and
[(r1, R1), · · · , [(rN , RN)] are indistinguishable from Def. 5.

Therefore |p5 − p4| is negligible. Hence |q5 − q4| is also negligible.
In Game5, pk

≤ is randomly generated by Gen from a view point of M because
the random input to Gen is a random string R (instead of F (sΠ, ri→)). Further
if E2 does not occur, then (Y ≤ = (PΔ , c

≤), ΦY →X→) is computed honestly by PΔ .
This means that (c≤,K≤) ⊗ Enc(pk≤) is randomly generated.

Therefore we can show that q5 is negligible because the KEM is CPA-secure.
Consequently we can see that q0 is negligible. This completes the proof. ≥∈

7 Other 2-Pass KE Protocols

7.1 2-Pass Protocol in the eCK Model

If we apply the improved twisted PRF trick to all probabilistic algorithms of
Protocol naive, then we can obtain a 2-pass eCK-secure protocol.

2-Pass Key Exchange Protocols from CPA-Secure KEM 397

That is, let F be a tPRF and assume that each player Pi has a long-term
secret-key (sgni, si), where si is a key of F . Then replace each probabilistic
algorithm A(x1, · · · , xn;R) of Protocol naive with A(x1, · · · , xn;F (si, r)), where
r is randomly chosen by Pi. We call the resultant protocol Protocol 2-pass-eck.
(See Appendix A.)

Theorem 3. Protocol 2-pass-eck is eCK-secure if the KEM is CPA-secure and
the signature scheme is unforgeable against chosen message attack.

The proof is given in Appendix C.

7.2 Both CK-Secure and eCK-Secure Protocol

Modify the above Protocol 2-pass-eck in such a way that all state is erased
except (r,X) at the end of step 1 (as in Protocol 2-pass-ck). Then this 2-pass
protocol is both CK-secure and eCK-secure. (See Appendix B.) The details will
be given in the final paper.

8 Separation

Protocol 2-pass-ck is not eCK-secure because an adversary M can issue
ephemeral secret key reveal queries in the eCK model even for the test session sid≤.
In particular, M can reveal the random coin RB of (c≤,K≤) ⊗ Enc(pk≤;RB)
by issuing the ephemeral secret key reveal query to PΔ . Then it can compute K≤.
(Further suppose that SIG is Schnorr signature scheme. Then M can compute
the sign-key sgnΠ from a (message, signature) pair and the randomness used.)

Protocol 2-pass-eck is not CK-secure because the attack shown in Sec.6.1
holds. (Note that in the protocol, nothing is erased at the end of step 1.) Hence

– Protocol 2-pass-eck is eCK-secure, but not CK-secure.
– Protocol 2-pass-ck is CK-secure, but not eCK-secure.

References

1. Bellare, M., Canetti, R., Krawczyk, H.: A Modular Approach to the Design and
Analysis of Authentication and Key Exchange Protocols (Extended Abstract). In:
STOC 1998, pp. 419–428 (1998)

2. Boyd, C., Cliff, Y., Nieto, J.M.G., Paterson, K.G.: One-round key exchange in the
standard model. IJACT 1(3), 181–199 (2009)

3. Boyd, C., Nieto, J.M.G.: Round-Optimal Contributory Conference Key Agree-
ment. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 161–174. Springer,
Heidelberg (2003)

4. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated Key Exchange Secure
against Dictionary Attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 139–155. Springer, Heidelberg (2000)

5. Bellare, M., Rogaway, P.: Entity Authentication and Key Distribution. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg (1994)

398 K. Kurosawa and J. Furukawa

6. Bellare, M., Rogaway, P.: Random Oracles are Practical: A Paradigm for Design-
ing Efficient Protocols. In: ACM Conference on Computer and Communications
Security, pp. 62–73 (1993)

7. Bellare, M., Rogaway, P.: Provably Secure Session Key Distribution: The Three
Party Case. In: STOC 1995, pp. 57–66 (1995)

8. Choo, K.-K.R., Boyd, C., Hitchcock, Y.: Examining Indistinguishability-Based
Proof Models for Key Establishment Protocols. In: Roy, B. (ed.) ASIACRYPT
2005. LNCS, vol. 3788, pp. 585–604. Springer, Heidelberg (2005)

9. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai Trees, or How to Dele-
gate a Lattice Basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110,
pp. 523–552. Springer, Heidelberg (2010)

10. Canetti, R., Krawczyk, H.: Analysis of Key-Exchange Protocols and Their Use
for Building Secure Channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS,
vol. 2045, pp. 453–474. Springer, Heidelberg (2001)

11. Shoup, V., Cramer, R.: Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM Journal of Com-
puting 33, 167–226 (2003)

12. Dent, A.W.: A note on game-hopping proofs. Cryptology ePrint Archive, Report
2006/260 (2006)

13. Dowsley, R., Müller-Quade, J., Nascimento, A.C.A.: A CCA2 Secure Public Key
Encryption Scheme Based on the McEliece Assumptions in the Standard Model.
In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 240–251. Springer,
Heidelberg (2009)

14. Fujioka, A., Suzuki, K., Xagawa, K., Yoneyama, K.: Strongly Secure Authenticated
Key Exchange from Factoring, Codes, and Lattices. In: Fischlin, M., Buchmann, J.,
Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 467–484. Springer, Heidelberg
(2012)

15. Krawczyk, H.: SIGMA: The ‘SIGn-and-MAc’ Approach to Authenticated Diffie-
Hellman and Its Use in the IKE Protocols. In: Boneh, D. (ed.) CRYPTO 2003.
LNCS, vol. 2729, pp. 400–425. Springer, Heidelberg (2003)

16. Krawczyk, H.: HMQV: A High-Performance Secure Diffie-Hellman Protocol. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Heidelberg
(2005)

17. Hofheinz, D., Kiltz, E.: Practical Chosen Ciphertext Secure Encryption from Fac-
toring. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 313–332.
Springer, Heidelberg (2009)

18. Hohenberger, S., Waters, B.: Short and Stateless Signatures from the RSA Assump-
tion. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 654–670. Springer,
Heidelberg (2009)

19. Jeong, I.R., Katz, J., Lee, D.H.: One-Round Protocols for Two-Party Authenti-
cated Key Exchange. In: Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS 2004.
LNCS, vol. 3089, pp. 220–232. Springer, Heidelberg (2004)

20. LaMacchia, B.A., Lauter, K., Mityagin, A.: Stronger Security of Authenticated Key
Exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784,
pp. 1–16. Springer, Heidelberg (2007)

21. McEliece, R.J.: A Public-Key Cryptosystem Based on Algebraic Coding Theory.
Deep Space Network progress Report (1978)

22. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem:
extended abstract. In: STOC 2009, pp. 333–342 (2009)

23. Peikert, C., Waters, B.: Lossy Trapdoor Functions and Their Applications. In:
STOC 2008, pp. 187–196 (2008)

2-Pass Key Exchange Protocols from CPA-Secure KEM 399

24. Rabin, M.O.: Digitalized signatures and public-key functions as intractable as fac-
torization, Technical report, MIT (1979) Technical Report, MIT/LCS/TR-212

25. Stern, J.: A new paradigm for public key identification. IEEE Transactions on
Information Theory 42(6), 1757–1768 (1996)

A Protocol 2-pass-eck

step 1. PΠ chooses r1, r2 randomly and computes R1 = F (sΠ, r1) and R2 =
F (sΠ, r2).
PΠ generates (pk, sk) ⊗ Gen(1Ψ;R1).
PΠ sends X = (PΠ, pk) and its signature ΦX = Sign(sgnΠ, X ;R2) to PΔ .

step 2. If ΦX is invalid, then PΔ aborts. Otherwise
PΠ chooses r3, r4 randomly and computesR3 = F (sΠ, r3) andR4 = F (sΠ, r4).
PΔ computes (c,K) ⊗ Enc(pk;R3), and sends Y = (PΔ , c) and X to PΠ.
PΠ also sends its signature ΦY X = Sign(sgnΔ , (Y,X);R4) to PΠ.
It then outputs the session key K.

step 3. If ΦY X is invalid, then PΠ aborts. Otherwise
PΠ computes K = Dec(sk, c), and outputs the session key K.

B CK-Secure and eCK-Secure 2-Pass Protocol

step 1. PΠ chooses r1, r2 randomly and computes R1 = F (sΠ, r1) and R2 =
F (sΠ, r2).
PΠ generates (pk, sk) ⊗ Gen(1Ψ;R1).
PΠ sends X = (PΠ, pk) and its signature ΦX = Sign(sgnΠ, X ;R2) to PΔ .
PΠ then erase all state except r1 and X .

step 2. If ΦX is invalid, then PΔ aborts. Otherwise
PΠ chooses r3, r4 randomly and computesR3 = F (sΠ, r3) andR4 = F (sΠ, r4).
PΔ computes (c,K) ⊗ Enc(pk;R3), and sends Y = (PΔ , c) and X to PΠ.
PΠ also sends its signature ΦY X = Sign(sgnΔ , (Y,X);R4) to PΠ.
It then outputs the session key K.

step 3. If ΦY X is invalid, then PΠ aborts. Otherwise
PΠ computes R1 = F (sΠ, r1), and reconstructs (pk, sk) ⊗ Gen(1Ψ;R1).
PΠ then computes K = Dec(sk, c), and outputs the session key K.

C Proof of Theorem 3

It is easy to see that the first requirement of Def. 2, which is inherited to Def.4,
is satisfied. We will show that the rest of requirement of Def. 4 is also satisfied.
Let the session that the adversary M tests is

sid≤ = ((X≤, ΦX→), (Y ≤, X≤, ΦY →X→)) or ((Y ≤, X≤, ΦY →X→), (X≤, ΦX→))

where X≤ = (PΠ, pk
≤) and Y ≤ = (PΔ , c

≤). We assume that

400 K. Kurosawa and J. Furukawa

– M activates at most n players P1, · · · , Pn, and
– MactivatesPΠ as an initiator atmostN times. In the ithactivation,PΠ chooses
ri,1, ri,2 randomly, and computes Ri,1 = F (sΠ, ri,1), Ri,2 = F (sΠ, ri,2).

– M activates PΔ as a responder at most N times. In the ith activation,
PΔ chooses rj,3, rj,4 randomly, and computes Rj,3 = F (sΔ , rj,3), Rj,4 =
F (sΔ , rj,4).

We consider a series of games Game0,Game1, · · ·. In each game, a random bit
b is chosen for the test session, and M outputs a bit b≥ at the end of the game.
Define

pi = Pr(b≥ = b in Gamei) and qi = 2|pi − 1/2|.
– Game0 is the original attack game.
– Game1 is the same as Game0 except for the following. Choose Ψ≥ ∪ {1, · · · , n}

and Υ≥ ∪ {1, · · · , n} randomly. Let E1 be the event that Ψ≥ = Ψ and Υ≥ = Υ.
If E1 does not occur, then M chooses a bit b≥ randomly. E1 happens with
probability 1/n2. Therefore from the last equation of [12], we have q1 =
(1/n2)q0.

In what follows, we use the last equation of [12] in this way.

– Game2 is the same as Game1 except for the following. Let E2 be the event that
M generates Φ≤X or Φ≤Y X . If E2 occurs, then M chooses a bit b≥ randomly.
Let α be the probability that E2 happens. Then q2 = (1− α)q1.
We show that E2 happens with negligible probability α. Suppose that M
generate either of these signatures without obtaining the corresponding long-
term secret, then unforgeability of signature scheme guarantees α be negli-
gible. The case when M generate either of these signatures with the corre-
sponding long-term secret does not happen, because such cases implies that
M must have corrupted the corresponding party and sid≤ has no match-
ing session. But such case is considered to be exposed. Hence, unless α us
negligible, we can construct an effective forger F by usingM as a subroutine.

Suppose that E2 does not occur. Then (X≤ = (PΠ, pk
≤), Φ≤X) must be com-

puted by PΠ (not by M), say, in the i≤th activation for some i≤ ∪ {1, · · · , N}.
Also (Y ≤ = (PΔ , c

≤), ΦY →X→) must be computed by PΔ (not by M), say, in the
j≤th activation for some j≤ ∪ {1, · · · , N}.
– Game3 is the same as Game2 except for the following. Choose i, j ∪ {1, · · · , N}

randomly. Let E3 be the event that i = i≤ and j = j≤. If E3 does not occur,
then M chooses a bit b≥ randomly. Since E3 happens with probability 1/N2,
we have q3 = 1/N2 × q2.

The following 4 cases can happen.

– The owner of sid≤ is an initiator PΠ and has a matching session s̃id
≤
. In this

case, that sid≤ is unexposed allows neither of the followings happens.
• M obtains both the ephemeral secret key ri→ = {ri→,1, ri→,2} and the
long-term secret sgnΠ.

2-Pass Key Exchange Protocols from CPA-Secure KEM 401

• M obtains both the ephemeral secret key rj→ = {rj→,3, rj→,4} of the
matching session and the long-term secret sgnΔ .

– The owner of sid≤ is an initiator PΠ and has no matching sessions. In this
case, that sid≤ is unexposed allows neither of the followings happens.
• M obtains both the ephemeral secret key ri→ = {ri→,1, ri→,2} and the
long-term secret sgnΠ.

• M obtains the long-term secret sgnΔ of PΔ .

– The owner of sid≤ is a responder PΔ , and sid
≤ has the matching session s̃id

≤
.

In this case, that sid≤ is unexposed allows neither of the followings happens.
• M obtains both the ephemeral secret key ri→ = {ri→,1, ri→,2} and the
long-term secret sgnΠ.

• M obtains both the ephemeral secret key rj→ = {rj→,3, rj→,4} of the
matching session and the long-term secret sgnΔ .

– The owner of sid≤ is a responder PΔ and has neither matching session nor
pseudo-matching session. In this case, that sid≤ is unexposed allows neither
of the followings happens.
• M obtains both the ephemeral secret key rj→ = {rj→,1, rj→,2} and the
long-term secret sgnΔ.

• M obtains the long-term secret sgnΠ of PΠ.

In any of the above cases, events are classified by two parameters θ and γ as
followings: Let

θ =

{
0 M may obtain sΠ, but not ri→

1 M may obtain ri→ , but not sΠ

γ =

{
0 M may obtain sΔ , but not rj→

1 M may obtain rj→ , but not sΔ

– Game4 is the same as Game3 except for the following. At the beginning of
the game, θ ≥, γ≥ ∪ {0, 1} is randomly chosen. Let E4 be the event that θ ≥ = θ
and γ≥ = γ.
If E4 does not occur, then M chooses a bit b≥ randomly. Since E4 happens
with probability 1/4, we have q4 = 1/4× q3.

– Game5 is the same as Game4 except for the following.
If θ ≥ = 0, then F (sΠ, ri→) is replaced with a random string. If θ ≥ = 1, then
all the values of F (sΠ, ri) are replaced with random strings. If γ≥ = 0, then
F (sΔ , rj→) is replaced with a random string. If γ≥ = 1, then all the values of
F (sΔ , rj) are replaced with random strings.
Then we can show that |p5 − p4| is negligible because F is a tPRF. 5 Hence
|q5 − q4| is also negligible.

In Game5, pk
≤ is correctly generated by Gen because the random input to

Gen is a random string (instead of F (sΠ, ri→)). Further if E2 does not occur, then
(Y ≤ = (PΔ , c

≤), ΦY →X→) is computed honestly by PΔ . This means that (c≤,K≤) ⊗
Enc(pk≤) for some K≤.

Therefore we can show that q5 is negligible because the KEM is CPA-secure. 6

Consequently we can see that q0 is negligible. This completes the proof. Q.E.D.

5 We can construct a distinguisher D by using M as a subroutine.
6 We can construct an adversary on KEM by using M as a subroutine.

Analysis of BLAKE2

Jian Guo1, Pierre Karpman1,2, Ivica Nikolić1, Lei Wang1, and Shuang Wu1

1 Nanyang Technological University, Singapore
2 École normale supérieure de Rennes, France

{ntu.guo,pierre.karpman,wushuang83}@gmail.com,
{inikolic,Wang.Lei}@ntu.edu.sg

Abstract. We present a thorough security analysis of the hash function
family BLAKE2, a recently proposed and already in use tweaked version
of the SHA-3 finalist BLAKE. We study how existing attacks on BLAKE

apply to BLAKE2 and to what extent the modifications impact the attacks.
We design and run two improved searches for (impossible) differential
attacks — the outcomes suggest higher number of attacked rounds in
the case of impossible differentials (in fact we improve the best results
for BLAKE as well), and slightly higher for the differential attacks on the
hash/compression function (which gives an insight into the quality of the
tweaks). We emphasize the importance of each of the modifications, in
particular we show that an improper initialization could lead to collisions
and near-collisions for the full-round compression function. We analyze
the permutation of the new hash function and give rotational attacks
and internal differentials for the whole design. We conclude that the
tweaks in BLAKE2 were chosen properly and, despite having weaknesses
in the theoretical attack frameworks of permutations and of fully-chosen
state input compression functions, the hash function of BLAKE2 has only
slightly lower (in terms of attacked rounds) security margin than BLAKE.

Keywords: BLAKE2, BLAKE, hash function, rotational cryptanalysis, im-
possible differential cryptanalysis, differential cryptanalysis, internal dif-
ferential, iterative differential.

1 Introduction

The BLAKE hash function [2], a variant improving from its broken predecessor
LAKE [3,11], was one of the five finalists of the SHA-3 competition [14] that ended
in November 2012, with Keccak [9] becoming the new SHA-3 standard. Along
with the other finalists, BLAKE is assumed to be a very strong hash function [14].
Even though it was not selected as the winner, it enjoys a large security margin,
very good performance in software, and has attracted a considerable amount
of cryptanalysis. BLAKE uses addition, rotation, and XOR as building blocks
for the compression function and has an iteration mode based on HAIFA [10].
Thus it supports salt, and uses an expanding to double-pipe internal state which
makes meet-in-the-middle attacks unfeasible. The compression function applies
only word permutations for the message schedule, thus making it very simple,
elegant and more importantly efficient.

J. Benaloh (Ed.): CT-RSA 2014, LNCS 8366, pp. 402–423, 2014.
c© Springer International Publishing Switzerland 2014

Analysis of BLAKE2 403

BLAKE2 [5,4,6] is a new family of hash functions based on BLAKE. Despite being
a new design, BLAKE2 has already been adopted by several software packages —
for instance, it is implemented in the CyaSSL library, and is supported in the
RAR 5.0 archive format [6]. This surprisingly quick adoption of a new hash func-
tion is most likely due to the popularity and qualities of its predecessor BLAKE.
The main objective of the new BLAKE2 is to provide a number of parameters for
use in applications without the need of additional constructions and modes (e.g.,
it supports parallelism, tree-hashing and prefix-MAC), and also to speed-up even
further the hash function to reach a level of compression rate close to MD5 [5].
The designers have achieved this goal by slightly altering the original BLAKE;
in particular they have modified the initial setup of the compression function,
changed the rotation constants to be optimal for software performance, excluded
constants from the round functions, etc. To implement these tweaks only a small
change in the code of BLAKE is required.

While the efficiency argument of the new BLAKE2 is undoubtedly correct and
can be confirmed by a mere comparison of the speed of software implementations
of BLAKE2 and BLAKE (or MD5), the security of the new function is unclear. The
designers claim security levels similar to that of BLAKE, due to the similarity of
the two designs. However they do not provide a strict analysis. Note that no
universal method nor theory exists that can transitively prove the security of a
symmetric primitive A obtained by modifying a primitive B, excluding of course
trivial modifications such as increasing the number of rounds1. Moreover, the
fact that BLAKE2 now omits constants in its round function is a major tweak
that might lead to exploits, as the rounds now only differ by the order in which
they process the message words.

Our Contribution. In this paper we give a thorough security analysis of this
new hash function. Our main objective is to find out if the security level of
BLAKE2 has dropped due to the tweaks. We try to exploit each tweak sepa-
rately, as well as in combination with the others, in order to mount attacks on
as many rounds as possible. The starting point of our analysis in the framework
of permutations and compression function with chosen IV are three promis-
ing techniques that can be highly successful against primitives that employ low
usage of constants (i.e. no addition of constants to the message words): rota-
tional cryptanalysis [22], internal differentials [24] (more precisely the squeeze
attack [15,16]) and iterative differentials based on rotational trails. We show
that in these frameworks, the attacker can penetrate through all 12 rounds of
BLAKE2b. Further, we focus on the previous attacks on the original design, in
particular the differential and impossible differential attacks [1]. We improve
the previous results and approaches and along the way show the impact of the
new initialization used in the compression function. We develop more advanced
techniques to search for differentials — in particular, we implement a search for
the best differential characteristics from a certain subspace which is much larger
compared to all the previously analyzed ones. We show that due to the new

1 On the condition that e.g. slide attacks are prevented by the design.

404 J. Guo et al.

Table 1. Summary of the analysis of BLAKE and BLAKE2

Frameworka Type # Roundsb Complexity Reference

BLAKE-256 perm.

imp. diff.
5 — [1]

6.5 — §5
differential 6 2486 [17]

boomerang 8 2232 [12]

BLAKE-512 perm. imp. diff.
5c — [1]

6.5 — §5
BLAKE-256 cf.

boomerang 7 2242 [12]

near collision 4 256 [1]

BLAKE-256
collision 2.5 2112 [23]

preimage 2.5 2241 [23]

BLAKE-512
collision 2.5 2224 [23]

preimage 2.5 2481 [23]

BLAKE2s perm.
imp. diff. 6.5 — §5
rotational 7 2511 §3

BLAKE2b perm.

imp. diff. 6.5 — §5
rotational 12 2876 §3
differential 5.5 2928 §6

BLAKE2s cf. ch. IV collision 10 264 §3
BLAKE2b cf. ch. IV

partial collision 12 261 §4
264 weak preimages 12 1 §4

BLAKE2b cf. differential 4.5 2495 §6
BLAKE2b differential 3.5 2480 §6

a The notations ‘perm.’ and ‘cf.’ stand for the permutation and compression function
of the associated hash function; ‘ch. IV’ and ‘imp. diff.’ stand for chosen IV and
impossible differential

b The total number of rounds in BLAKE-256, BLAKE-512, BLAKE2s, and BLAKE2b is
14,16,10, and 12 rounds, respectively.

c The initial analysis claimed a 6-rounds attack, but it was shown to be incorrect.

rotations, the best result is now a 3.5-round differential distinguisher for the
hash function of BLAKE2b, while a 4.5-round differential exists for the compres-
sion function. In the impossible differential analysis, we are able both to find and
confirm theoretically probability-one characteristics. In the previously published
analysis the search of characteristics was mostly experimental, and in the case
of longer characteristics was actually incorrect. Our analysis is valid for BLAKE

as well, i.e. we improve the best known results for impossible differentials for
the original design. We summarize the result of our analysis of BLAKE2 and the
best existing attacks on BLAKE in Tbl. 1.

This paper is organized as follows. In § 2, we give a brief description of the
BLAKE2 hash function family. In §§ 3, 4, 5, 6, we describe our rotational, fixed
points, impossible differential, and differential analyses of BLAKE2, respectively.
We conclude in § 7.

Analysis of BLAKE2 405

2 Description of BLAKE2

As a successor of the BLAKE family, the BLAKE2 hash functions share many simi-
larities with the original design. However differences occur at every level: internal
permutation, compression function, and hash function construction. In this sec-
tion we give a brief specification of BLAKE2 and highlight the differences with
BLAKE. We use notations similar to [5], in particular: ‘⊗’ denotes variable as-
signment; ‘+’ (resp. ‘−’) denotes addition (resp. subtraction) in Z232 or in Z264

(modular addition (resp. subtraction)); ‘≡’ denotes addition in Z
32
2 or in Z

64
2

(bitwise exclusive or); ‘≪ r’ (resp. ‘≫ r’) denotes rotation of r bits towards
the most (resp. least) significant bit; if not specified otherwise, numbers written
in typewriter font are in base 16, e.g. f is the number 15.

The internal state of the BLAKE2 compression function is composed of 16 words
of size 64 bits for BLAKE2b, and 32 bits for BLAKE2s. The compression function
takes as input an 8-word chaining value h0, . . . , h7, 8 constant initialization vec-
tors IV 0, . . . , IV 7, a 2-word counter t0t1 that counts the number of bytes hashed
so far, and two finalization flags f0 and f1. The flag f0 is set to ff. . .ff when
the current message block is the last, and to 00. . .00 otherwise; the f1 counter
plays a similar role in tree-hashing (and is not detailed here). The input to the
compression function is initialized as (we follow the notations of the design paper
here):

⎛
⎡⎡⎢
v0 v1 v2 v3
v4 v5 v6 v7
v8 v9 v10 v11
v12 v13 v14 v15

⎞
⎤⎤⎥ ⊗

⎛
⎡⎡⎢

h0 h1 h2 h3
h4 h5 h6 h7
IV 0 IV 1 IV 2 IV 3

t0 ≡ IV 4 t1 ≡ IV 5 f0 ≡ IV 6 f1 ≡ IV 7

⎞
⎤⎤⎥ .

The main differences between BLAKE2 and BLAKE at this stage are the removal
of the optional salt value, the addition of the finalization flags instead of the
repeated counter words, and the fact that the counter now counts a number of
bytes rather than bits.

The initial state of BLAKE2s (resp. BLAKE2b) is then processed by 10 (resp. 12)
rounds of a column and diagonal application of a ‘G’ function. In comparison,
BLAKE-256 and BLAKE-512 functions have 14 and 16 rounds. The G functions
take four state words (a, b, c, d) and two message words mi,mj as input. The
latter are defined by a position index i of the function: at round r, mi is given
by σr mod 10(2i) and mj by σr mod 10(2i + 1), where σr mod 10 is one of 10
permutations. Because of space constraints, we leave the description of the ’G’
functions (and of their inverses) and of the σ permutations to the BLAKE2 specifi-
cation document [5] (or to the full version of this paper [18]). Note however that
the differences between the G functions of BLAKE2 and BLAKE are the omission in
BLAKE2 of an ‘≡’ addition between the message words and round constants, and
modified rotation constants for BLAKE2b.

A column step of BLAKE2 computes G0(v0, v4, v8, v12), G1(v1, v5, v9, v13),
G2(v2, v6, v10, v14), G3(v3, v7, v11, v15); and a diagonal step computes
G4(v0, v5, v10, v15), G5(v1, v6, v11, v12), G6(v2, v7, v8, v13), G7(v3, v4, v9, v14).

406 J. Guo et al.

Finally, the output of the compression function h≥0, . . . , h
≥
7 combines the input

chaining value and the final state v0, . . . , v15 by computing

h≥0 ⊗ h0 ≡ v0 ≡ v8 h≥4 ⊗ h4 ≡ v4 ≡ v12
h≥1 ⊗ h1 ≡ v1 ≡ v9 h≥5 ⊗ h5 ≡ v5 ≡ v13
h≥2 ⊗ h2 ≡ v2 ≡ v10 h≥6 ⊗ h6 ≡ v6 ≡ v14
h≥3 ⊗ h3 ≡ v3 ≡ v11 h≥7 ⊗ h7 ≡ v7 ≡ v15

.

The only difference between BLAKE2 and BLAKE in this step is again the omission
of the optional salt value.

The BLAKE2 hash function is defined in a straightforward way from the above
compression function. We give a high-level overview of this process here, and
refer to [5] for more details.

1. A ‘parameter block’ (described below) is added (≡) with the same initial-
ization vectors used in the compression function, and the result is used as
the first input chaining value to the compression function.

2. The message is padded with null bytes if and only if necessary to make it
a multiple of a block length (i.e. 512 bits for BLAKE2s and 1024 bits for
BLAKE2b).

3. The compression function is iterated on the padded message, and its (possi-
bly truncated) final output is taken as the hash value.

The ‘parameter block’ mentioned above encodes various parameters that spec-
ify an instance of the BLAKE2 hash function. General parameters are the digest
length, the optional key length, an optional salt, and a personalization string.
Additional parameters are defined for tree hashing. Again, we refer to [5] for
the full specifications. The main differences with BLAKE in this respect is the
simplified padding and the inclusion of a parameter block. Some of the optional
functionalities of BLAKE (e.g. the salt) have been moved from the compression
function to the parameter block.

Current State of Security of BLAKE2. In the submission document, the design-
ers state that BLAKE2 inherits the security level of its predecessor BLAKE-256/512.
In particular, they expect that the number of attacked rounds in BLAKE2and BLAKE
should be the same (possibly with slightly different complexities) with regards to
the published analysis. For BLAKE the designers single out three attacks that pen-
etrate the most number of rounds:

1. The 2.5-round preimage attack for the hash function by Ji and
Liangyu [23].

2. The 6-round distinguisher for the permutation of BLAKE-256 proposed by
Dunkelman and Khovratovich [17].

3. The 8-round boomerang distinguisher for the permutation of
BLAKE-256, and the 7-round boomerang distinguisher for the compression
function of BLAKE-256 by Biryukov et al. [12].

Analysis of BLAKE2 407

However, it seems the designers have overlooked the fact that the setup of the
initial state of BLAKE2, i.e. the initialization, gives less degrees of freedom to
the attacker and more importantly fixes completely the values of six state words
v8, v9, v10, v11, v14, v15. Hence the boomerangs for the compression function of
BLAKE cannot be trivially extended to BLAKE2. In particular, as the 3-round
characteristic used at the top of the 6-round boomerang of BLAKE has differ-
ences in the words of the third row, it cannot be applied to BLAKE2s. After a
careful examination of all the characteristics given in [12], and under the as-
sumption that characteristics with similar probabilities can be found in BLAKE2,
boomerangs could be launched for 5 rounds (2 + 3 rounds) of BLAKE2s, and 5.5
rounds (2 + 3.5) of BLAKE2b.

Our Attack Frameworks. The previous published analysis of BLAKE target the
keyed permutation2, the compression function, and the hash function of BLAKE.
In this paper we show attacks on round-reduced versions of all of these three
primitives. We assume a standard generic security level for them, for example
the cipher BLAKE2s is a 512-bit block cipher with 512-bit key, thus an exhaustive
key recovery attack requires 2512 encryptions.

In the hash function framework we assume that the initial state is fixed, i.e.
v0, v1, . . . , v15 are some predefined constants. The compression function frame-
work is similar, but this time we allow freedom in v0, v1, . . . , v7, v12, v13, while
v8, . . . , v11, v14, v15 remain fixed (as they correspond to IV 0, IV 1, IV 2, IV 3,
IV 6, IV 7), i.e. we assume the attacker can control the chaining value and the
counters t0, t1. We also analyze the case when the attacker can control the IV
— the so called chosen IV model. Finally, in the framework of permutations, we
assume we can fully control the plaintext, thus all vi can be chosen, however the
key (the message) is unknown. The reader should be aware that the importance
of the attacks drops as one goes from the framework of hash functions to the
one of permutations.

3 Rotational Analysis and Internal Differentials

BLAKE2 is an ARX primitive, i.e. the only operations used are modular and
bitwise addition, as well as bitwise rotations on various amounts. Moreover, due
to the absence of constants in the G function (which were present in BLAKE), it is
a good target for rotational attacks. Recall that in such attacks, one starts with
rotational pairs of inputs (x, x ≪ r), and checks if the output of the primitive
F is also rotational, i.e. if F (x) ≪ r = F (x ≪ r). In [22] it was shown that
the probability of a rotational output for ARX primitive (i.e. the probability
that the previous expression holds for a random input x) depends only on the
number of modular additions used in F .

2 Obviously, the keyed permutation is a block cipher. Further we use the terms (keyed)
permutation and block cipher interchangeably, when we want to refer to analysis in
the secret key model.

408 J. Guo et al.

The function G in BLAKE2 has 6 additions. To maximize the probability we fix
the rotation amount to 1, thus the rotational probability of modular addition
becomes around 2−1.4. Hence, for the whole G function we obtain 26·(−1.4) ≈
2−8.4. Experiments show that the actual probability is slightly lower, i.e. around
2−9.1. As one round of BLAKE2 has eight G function, the rotational probability
of a round is 28·(−9.1) ≈ 2−73.

The permutation of BLAKE2b has 12 rounds, thus the rotational probability for
the whole permutation3 is 212·(−73) = 2−876. Hence in a related-key framework,
where the second key is a rotation by 1 of the first key, we can distinguish the
permutation. Similarly, for the 10-round permutation of BLAKE2s we can attack
7 rounds with a complexity slightly faster than the exhaustive search of a 512-bit
key. Converting the distinguisher into a key-recovery attacks is possible as well.
We can use the knowledge of the plaintext and ciphertext, to recover 4 · 1.4 ≈ 6
bits at the top and the same amount at the bottom, thus from a rotational pair
of plaintext/ciphertext we can reduce the entropy of the key by 12 bits.

Let us try to apply to above distinguisher to the compression function of
BLAKE2. Note that the constants IV 0, . . . , IV 3 used in the initialization are non-
rotational4. To overcome this issue, we can try to obtain rotational pairs after the
first half round of BLAKE2, and use the message freedom of the second half round
to probabilistically satisfy the rest of the rotational trail on t rounds. The first
half round is composed of four applications of the function G with independent
inputs that can be rotational for three of the four arguments. That is, for each
input IV i, we have to find a pair of triplets (a1, b1, d1), (a2, b2, d2) such that

G(a1, b1, IV i, d1,m1,m2) ≪ 1 = G(a2, b2, IV i, d2,m1 ≪ 1,m2 ≪ 1). (1)

In total, we have 8 words of freedom to satisfy a 4-words equation, thus it seems
that a solution should exist. Surprisingly, this is not the case for a randomly
chosen value of IV i. A simple analysis shows that the above problem (1) can be
reduced to the problem of finding solution to the equation

(X + Y + IV i) ≪ 1 = X ≪ 1 + Y ≪ 1 + IV i (2)

Hence, IV i needs to be highly structured, i.e. it has to be the sum of a fully
rotational word and two rotational errors. Thus we obtain a rather strange fact,
that the simplicity of the function G5 prevents straightforward application of
rotational distinguishers. We note that one can try to obtain rotational pairs
after the first full round of BLAKE2, but then the problem becomes much more
complex, while the message freedom drops.

The absence of constants in the function G can also be used to launch a
distinguisher on the permutation of BLAKE2 based on internal differentials intro-
duced by Peyrin [24]. More precisely, we use the ‘squeeze attack’ variant from
Dinur et al., that was recently used to attack Keccak [15]. We note that a similar

3 Note that this keyed permutation has a 1024-bit key and 1024-bit state.
4 A constant C is rotational (with respect to r), if C ≪ r = C.
5 If G were a random function, the solution would exist for any IV i.

Analysis of BLAKE2 409

distinguisher was already applied to the permutations of Salsa and ChaCha [7,8]
— two ciphers that inspired the design of BLAKE.

Let the four columns at the input of the permutation of BLAKE2 be equal, i.e.
(v0, v4, v8, v12) = (v1, v5, v8, v13) = (v2, v6, v10, v14) = (v3, v7, v11,
v15), and let all the message words (the words of the key) be the same. Then
after the column step, all columns remain equal. Moreover, in the diagonal step,
the first input is always taken from the top row (with all elements the same), the
second from the second row, etc., thus after the diagonal step, all the columns
remain identical. Hence, a round of BLAKE2 preserves this property of the state.
We can use the above property to launch a distinguishing attack for the permu-
tation of BLAKE2. We need only a single query to the permutation, then for a
plaintext composed of four identical columns, we check if the ciphertext has four
such columns as well. Thus for a version of the permutation with w-bit words,
there are 2w keys (one key word is arbitrarily chosen, the rest are equal) for the
BLAKE2 permutation that can be distinguished with only one chosen plaintext.
If all the inputs to the compression function could be chosen then the above
approach could be used to produce collisions using the squeeze attack: 1) fix all
the message words to some arbitrary value; 2) compress 22w different inputs,
with the first column arbitrarily chosen, and the remaining three columns equal
to the first. If there is a collision in one of the columns at the output, then the
rest of the columns have to collide. As a column has 4w bits, 22w trials should be
sufficient to produce collisions for the compression function — this is equivalent
to 2128 calls for BLAKE2b, and 264 for BLAKE2s. Similarly, it is possible to speed-
up the search for preimages of a weak class of digests which are produced from
the symmetric states — the size of the class is 22w. Again, the freedom in the
input state and the message words is sufficient for the attacker to target digests
from this class by only considering symmetric preimages, in time 22w. We would
like to emphasize that in BLAKE2 the initialization once again prohibits this type
of trivial attacks as IV 0 ∪= IV 1 ∪= IV 2 ∪= IV 3, thus the above attack is not
applicable to the compression/hash function of BLAKE2.

4 Fixed Points and Iterative Rotational Differentials for
Search of Collisions and Preimages

The approach of § 3 can be enhanced further with the use of fixed points and
iterative one-round differential characteristics6. Assume P is a fixed point for the
round function of BLAKE2b when all the message words are equal. Then, as there
are no constants in the function G, and the message permutation for each round
produces the same set of message words, P is a fixed point for any number of
rounds of BLAKE2b. Further, let Δ ⇐ Δ be a one-round iterative characteristic
with a low hamming weight difference. If for the pair of states (P, P ≡Δ) the one
round differential holds, i.e. BLAKE2b1 round(P) ≡ BLAKE2b1 round(P ≡Δ) = Δ,

6 An attack exploiting fixed points in simplified version of BLAKE (without message
permutations and constants) was given in [25] – that analysis is not applicable to
unmodified version of BLAKE2.

410 J. Guo et al.

then the differential would hold for any number of rounds. Hence at the output
we will end up with a low hamming weight difference in the states and thus a
partial-collision. To apply this technique to BLAKE2b we have to be able to: 1)
find an iterative one-round characteristic with probability 2−p, p < 256, and, 2)
find 2p fixed points. However, as all the message words are identical, we have
only 264 different permutations and approximately the same number of fixed
points, hence we must have p < 64.

First, let us show how to find fixed points for one round of BLAKE2b. We
can accomplish this by finding fixed points for the function G and repeating the
same value in all columns of P . In fact, this leads to a fixed point after only one
half of the round, which in return results in a fixed point for the whole round.
Let (a, b, c, d,m1,m2) be the inputs of the function G. We are looking for values
such that G(a, b, c, d,m,m) = (a, b, c, d) (note that we need the message words
to coincide). From the definition of G (and further reduction), this is equivalent
to solving the following system of equations:

(−d)≡ a = d≫ 16 (3)

a+ b+m+ (c≡ b≪ 1) +m = a (4)

b≡ (c− d) = (c≡ b≪ 1) ≫ 24 (5)

d≡ (a+ b+m) = (−d) ≫ 32 (6)

With basic algebraic transformations the system can be reduced to:

a = d≫ 16≡ (−d) (7)

b+ 2m = −(c≡ b≪ 1) (8)

b≡ (c− d) = (c≡ b≪ 1) ≫ 24 (9)

b +m = [(−d) ≫ 32≡ d]− a (10)

Let V = [(−d) ≫ 32≡ d]− a. Then we get:

a = d≫ 16≡ (−d) (11)

c = (b − 2V)≡ b≪ 1 (12)

b ≡ (c− d) = (c≡ b≪ 1) ≫ 24 (13)

m = V − b (14)

If in (13) we replace the value of c from (12), we obtain

b≡ [((b− 2V)≡ b≪ 1)− d] = (b − 2V) ≫ 24 (15)

Lemma 1. The solution for the equation

X ≡ [((X + A)≡X ≪ 1) +B] = (X +A) ≫ 24 (16)

where X is unknown, and A,B are constant 64-bit words, can be found on av-
erage in 225 time.

Analysis of BLAKE2 411

Proof. The proof is given in the full version of the paper [18].

We can now present the algorithm for solving the system:

1. Fix a random value for d. Compute a from (11), and the value of V according
to the above formula.

2. Compute the value of b from (15).
3. Compute the value of c from (12).
4. Compute the value of m from (14).

Thus we can find one fixed point with around 225 computations. Note that d can
take any 64-bit value, thus the number of fixed points is around 264. For each of
these inputs, the 12-round compression function of BLAKE2b (with modified IV)
has the form:⎛

⎡⎡⎢
a a a a
b b b b
c c c c
d d d d

⎞
⎤⎤⎥ 12 rounds−−−−−−⇐

⎛
⎡⎡⎢
a a a a
b b b b
c c c c
d d d d

⎞
⎤⎤⎥ feedforward−−−−−−−⇐

⎦
c c c c
d d d d

)
. (17)

Next, let us focus on finding iterative one-round characteristics — a problem
that has already been discussed for BLAKE-256 in the work of Dunkelman and
Khovratovich [17]. The new rotation constants in BLAKE2b allow to apply their
analysis without any significant modifications. However, straightforward use of
their one-round characteristic based on two characteristics (with probabilities
2−12, 2−21) for the function G is impossible. The problem lies in the condition
p < 64:

– If we use the two characteristics and take four different values for columns
in the state (fixed point) P then the probability of the first half round would
be 2−2·12−2·21 = 2−66 < 2−64.

– If we take only two different column values, then the probability of the first
half round is 2−12−21 = 2−33, and the same for the second half round. One
can reduce the probability of the second half only with a special type of fixed
points — instead of independent fixed points for each column (each function
G) in the first half, one needs to deal with values that somehow depend on
each other, but it is not clear if such values exist at all.

– If we take the same value for all four columns, then we get a contradiction
from the characteristics — in the first half round there is one characteristic
while in the second another. No value can satisfy both characteristics as in
the first modular addition (a+ b+m), we want 4 and 8 to cancel in the first
characteristic (thus 4 should produce carries), while we want to stay at 4 in
the second (no carries).

Hence we need to find a high probability one-round differential characteristic that
can be used in combination with fixed points. We have implemented our own
search based on the analysis of the above authors, and found that none of these
type of characteristics are compatible — there is no iterative characteristic Δ⇐

412 J. Guo et al.

Δ for G, and all two round characteristics Δ1 ⇐ Δ2, Δ2 ⇐ Δ1 are incompatible,
i.e. they do not hold for the same value of the input (and we want the value to
be the same as we work with fixed points).

We can nonetheless produce iterative differentials but based on the rotational
property of the function G. Assume (P1, P2) is a rotational input pair for G

producing the rotational output pair (Q1, Q2), i.e. P2 = P1 ≪ 1, Q2 = Q1 ≪ 1.
If P1 is a fixed point for G, then for the second pair of input-output we get:
P2 = P1 ≪ 1, Q2 = Q1 ≪ 1 = P1 ≪ 1 = P2, i.e. the second input is also
a fixed point. Therefore for these fixed points the iterative differential has the
input (as well as the output) difference P1≡P2 = P1≡P1 ≪ 1. Now recall that
we want to minimize the hamming weight of this difference in order to produce
partial-collisions on as many bits as possible. In fact from (17) it is clear that
we want to minimize only the hamming weight of the difference in c and d. As
we work with rotation on 1 to the left, it follows that if the value of c (or d) has
zeroes in t most significant bits then c≡ c≪ 1 has zeroes in at least t− 1 most
significant bits. This gives a hint of how to choose the fixed point P1 using the
above algorithm for finding fixed points:

1. Choose an arbitrary value of d that has zeroes in 27 MSBs.

2. Compute the values of a, b, c, d,m using the algorithm.

3. Check if c has zeroes in 27 MSBs.

4. If not, go to step 1.

5. Check if the input (a≪ 1, b≪ 1, c≪ 1, d≪ 1,m≪ 1) is a fixed points.

6. If not, go to step 1.

The correct value of c at step 3 will be found after around 227 different trials of
d. As the rotational probability of the G function is 2−9.1, after 29.1 good values
of c one can find the second fixed point. Step 1 will be repeated 227+9.1 ≈ 236

times, hence we have enough degrees of freedom in d (there are 264−27 = 237

possible values). The total complexity of the algorithm is 225 ·227 ·29.1 ≈ 261. The
hamming weight of the differences in both c and d will be at most 26 bits, and
hence we can produce partial-collisions7 on 8 ·26 = 208 bits. However this is with
chosen IV. That is, we can produce the collisions only when the values of the IV
correspond to our discovered values for fixed points. Note as the original IV used
in BLAKE2b do not coincide, our approach cannot be applied to the compression
function of BLAKE2b . Nonetheless, this shows that the choice of IV is sensitive
to certain attacks.

A similar strategy can be applied for search of preimages for a special type
of digests with h≥0 = h≥1 = h≥2 = h≥3 = H1 and h4 = h5 = h6 = h7 = H2. Let
us assume that (h0, h1, H1, H2) is a fixed point (along with some message word
m) for the function G. Then the full 12-round compression function of BLAKE2b
(with modified IV) can be described as:

7 Lately, collisions on some particular bits have been called partial-collisions.

Analysis of BLAKE2 413

⎛
⎡⎡⎢
h0 h0 h0 h0
h1 h1 h1 h1
H1 H1 H1 H1

H2 H2 H2 H2

⎞
⎤⎤⎥ 12 r.−−−⇐

⎛
⎡⎡⎢
h0 h0 h0 h0
h1 h1 h1 h1
H1 H1 H1 H1

H2 H2 H2 H2

⎞
⎤⎤⎥ feedforward−−−−−−−⇐

⎦
H1 H1 H1 H1

H2 H2 H2 H2

)
.

Hence, if we can find the corresponding h0, h1,m, we will be able to recover the
preimage of the target digest. For this purpose, we use the system (7) – (10):

1. Set c = H1 and d = H2.
2. Compute the value of a from (7).
3. Compute the value of b from (9) — it is a system of linear equations.
4. Compute the value of ma from (8), and mb from (10).
5. If ma = mb then h0 = a, h1 = b,m = ma is the preimage.

The condition ma = mb holds with probability 2−64 and therefore among all
the possible 2128 digests from the class (recall that |H1| = |H2| = 64), preimage
based on a fixed point can be found for 2128−64 = 264 of them with a negligible
effort.

5 Impossible Differential Analysis

In this section we perform an impossible differential (ID) analysis for the per-
mutation of all members of the BLAKE and BLAKE2 families. A similar analysis
was done for the original BLAKE by Aumasson et al. at FSE 2010 [1], where the
authors claimed a 5-round ID for BLAKE-256 and a 6-round ID for BLAKE-512.
However these IDs were mainly found experimentally, and some of the presented
characteristics had probabilities less than 1. Hence the analysis from [1] does not
seem to cover more than five rounds for both BLAKE-256 and BLAKE-512.

We carry a similar analysis on the four permutations of BLAKE-256, BLAKE-512,
BLAKE2s and BLAKE2b. Note that in contrast to the rotational analysis, the bit-
wise addition of constants plays no role in these impossible differentials, while the
value of the rotation amounts is of importance. Hence the analysis of BLAKE-256
and BLAKE2s is identical as their respective permutations only differ in constant
addition. On the other hand, the analysis must be performed independently for
BLAKE-512 and BLAKE2b. Our result is a 6.5-round impossible differential for all
the four permutations of BLAKE and BLAKE2. As we need to insert differences in
the message words, which play the role of the key when the permutations are
seen as block ciphers, the analysis is performed in the related-key framework.
The IDs are found by using the miss-in-the-middle technique that connects a
forward and a backward characteristic with incompatible probability-one differ-
ences. The forward characteristic is on 2.5 rounds and it can be extended for an
additional half round, while the backward characteristic is on 3.5 rounds. As in
the original analysis, our approach heavily relies on the good (from an attacker
point of view) properties of the different σr message words permutations, which
allow to delay the propagation of differences for 1.5 rounds in both forward and
backward directions.

414 J. Guo et al.

The analysis in this paper is innovative in the way it uses additive differences
to cancel a difference in the message word of G−1 with probability one. Besides
being an interesting result on the G−1 function itself, this is an important part
of extending the ID to more rounds. Moreover, we also formally checked the
validity of our probability-one characteristics and we were able to prove they are
correct — this was not fully done in [1] and was a cause of invalid IDs. This check
was performed by a simple (although rather verbose and a bit tedious) manual
computation that propagates the probability-one differences through the whole
differential paths, as done similarly in [20].

We now detail the probability-one differential characteristics used in the ID.
Differences are expressed with generalized constraints [13], in particular we use:
‘-’ to denote that two bits are equal; ‘0’ to denote that two bits are identical and
equal to zero (‘1’ is defined similarly); ‘x’ to denote that two bits are different;
‘n’ (resp. ‘u’) to denote that two bits are different, and the first bit is zero (resp.
one); ‘?’ to denote that both bits can take an arbitrary value; we refer to this
one as a ‘trivial’ difference.

5.1 Forward Characteristic on 2.5 Rounds

The forward characteristic starts at round 38 and is based on the fact that the
message wordm13 is used in the first half of a column-step call in round 3, and is
not used again before the second half of a diagonal step in round 4. Consequently,
we can introduce a difference in m13 and cancel it immediately with a difference
in v2; no difference will be introduced again for 1.5 rounds.

If we note MSB an ’x’ difference in the most significant bit, the initial differences
in this characteristic are then MSB for m13 and v2, and no difference in any other
state or message word.

In the diagonal step of round 4, a difference is introduced in the state by the
difference in m13. This difference quickly propagates to every state word, but
some non-trivial differences occur with probability one. After the column step
of round 5, i.e. at round 5.5, the state words for which there are non-trivial
probability-one differences are listed below along with their differences (in the
following, the leftmost constraint is for the MSB).
For BLAKE2b we have:

v0: ??x-------
v3: ??x-----------------------
v7: ???x-------?
v11: ??x-------
v12: ????????x-------??
v15: ----------------??x-------

For BLAKE-512 we have:

v0: ???x------
v3: ???x----------------------
v7: ????x------???
v11: ???x------
v12: ?????????x------??
v15: ----------------???x------

8 Westart indexing the rounds from 0, so as tomatch the indexing of theσ permutations.

Analysis of BLAKE2 415

For BLAKE2s and BLAKE-256 we have:

v0: ????????????????????????????x---
v3: ????????????????????x-----------
v7: ???x---?????????????????????????
v11: ????????????????????????????x---
v12: ????x---????????????????????????
v15: --------????????????????????x---

5.2 Backward Characteristic on 3.5 Rounds

The backward differential characteristic starts in the diagonal step of round 8.
As we want to use this characteristic to mount a miss-in-the-middle with the
previous forward characteristic, we need to use differences in the message words
consistent with the ones used in the latter. Hence we use a single difference in
the MSB of m13. This message word is used in the second half of a G−1 call in
the inverse of the diagonal step of round 8, and is not used again before the
second half of a G−1 call in the inverse of a column step in round 7.

In order to delay the propagation of differences as much as possible, we want
to proceed as for the forward characteristic and cancel the difference introduced
by the message at round 8 by specifying an appropriate state difference. It is
again possible to do so with probability one; in this case however, the difference
will be somewhat more complex.
For BLAKE2b, we do so by using the following initial differences in the state at
the beginning of the inverse of round 8:

v4 (a in G−1): x-------------------------------0-----------------------n-------

v9 (b in G−1): -------x-------x---------------x---------------x-------n--------

v14 (c in G−1): --------n-------n---------------n1--------------n-------0-------

v3 (d in G−1): --------n-------n---------------00--------------n---------------

One should note two things about this input difference. The first one is that the
signed differences ‘n’ can all be replaced together with a signed difference ‘u’ of
opposite sign: the only important fact is that all differences are signed similarly.
Moreover, some ‘0’ and ‘1’constraints in the difference for v3 and v14 are here
to avoid a carry propagation in the update of c in G−1, which is c ⊗ c − d.
However, this is a sufficient condition only, and the same result can be achieved
by specifying alternative differences. In other words, these differences only make
a subset of the state difference we were looking for. We do not specify the whole
set in here, as the existence of a subset already serves our purpose.
Similarly, for BLAKE-512, we use the following state difference:

v4 (a in G−1): x-------------------------------0------------------------n------

v9 (b in G−1): ----n---------------x------x---------------x---------------x----

v14 (c in G−1): ---------n------n---------------n1--------------n--------0------

v3 (d in G−1): ---------n------n---------------00--------------n---------------

Finally, for BLAKE2s and BLAKE-256 we use:

v4 (a in G−1): x---------------0-----------n---

v9 (b in G−1): ---n-------x---x-------x-------x

v14 (c in G−1): ----n---n-------n1------n---0---

v3 (d in G−1): ----n---n-------00------n-------

416 J. Guo et al.

As for the forward characteristic, the difference in m13 again introduces a
difference that propagates to the rest of the state. However, due to the slower
diffusion of G−1 with respect to G, it is possible to keep non-trivial differences of
probability one for more rounds. We then get the following differences after the
inverse of the diagonal step of round 5, i.e. at round 5.5 (only the differences
occurring on state words for which there were non-trivial differences after the
forward characteristic are listed, but note that there were additional ones which
are omitted here).
For BLAKE2b we have:

v0: ??x---------------
v3: ----------------????????????????????????????????x---------------
v7: ??x---------------
v12: ??x---------------
v15: --

In this case, the differences for BLAKE-512 are actually identical.
Similarly, for BLAKE2s and BLAKE-256, we have:

v0: ????????????????????????x-------
v3: --------????????????????x-------
v7: ????????????????????????x-------
v12: ????????????????????????x-------
v15: --------------------------------

5.3 Mounting the Miss-in-the-Middle

Now that we have established probability-one differences obtained at round 5.5
from two different characteristics, we show that these characteristics are incom-
patible. The result is immediate, when noticing that the differences on state
words v0, v3, and v15 are incompatible for all four permutations of BLAKE2b,
BLAKE-512, BLAKE2s, and BLAKE-256, and the differences on word v7 are further
incompatible for BLAKE2b.

As one characteristic goes in the forward direction and one in the backward,
inverse direction, this incompatibility consists in effect in a miss-in-the-middle
which gives a 6-rounds impossible differential. This family of ID goes from round
3 to round 8, and is specified by the differences in the message word m13 and
in the state v2 (at round 3), and v3, v4, v9 and v14 (at round 8), from the two
families of characteristics presented above.

5.4 Extending by One More Half-Round

The 2.5-rounds forward characteristic used in the above can easily be extended
for one more half-round for all the permutations of BLAKE2 and BLAKE, thereby
increasing the number of rounds reached by the ID to 6.5. The extension works
as follow.

First note that the message word m13 is not used in the diagonal step of
round 2. Thus no difference will be introduced by the message words in that
step. Second, we use one of the probability-one differential characteristics for G
mentioned in [1]. This characteristic has no differences in the message word, and

Analysis of BLAKE2 417

simply maps through G the state input difference (MSB, 0, MSB, MSB ≡ (MSB

≪ r), 0, 0) to the state output difference (MSB, 0, 0, 0). It is straightfor-
ward to check that this happens with probability one, where r is 32 for BLAKE2b
and BLAKE-512, and 16 for BLAKE2s and BLAKE-256. As the output difference of
this characteristic is precisely the input difference of the forward characteristic
used in the ID, it is therefore possible to join the two characteristics together.
The initial differences of this new forward characteristic starting at round 2.5
are then MSB for m13, v2, and v8, and MSB ≡ (MSB ≪ r) for v13, with all other
words having no differences.

6 Differential Analysis

In this section we show differential attacks on BLAKE2. The target of our attacks
are be the compression function and the hash function BLAKE2b only — the
analysis applies to BLAKE2s as well, but the number of attacked rounds is lower.
To build high probability differential characteristics we expand the analysis of
Guo and Matusiewicz [19] (see also [1]) and Dunkelman and Khovratovich [17] of
BLAKE-256. In both of these papers, the difference is of a special rotational type
and is chosen to cancel the effects of the rotations on 16, 12, 8, and 7 bits in the
function G of BLAKE-256. The first authors note that among the four rotations
in G, only the last one (on 7 bits) is not divisible by 4. Thus they choose to work
with the difference 88888888 and analyze only the characteristics where before
the last rotation the difference in b is 0. They linearize G, assume each modular
addition involving differences has a probability of 2−7 (the difference in MSB
saves one 2−1), and with a computer search find that the best characteristic is
on 4 rounds. Although their characteristic has rather high probability of 2−56,
they could not go more as no characteristics exist on higher number of rounds
due to the condition that no difference enters the rotation on 7. The authors
argue that one can consider the special case of a difference entering this rotation
resulting in twice difference (i.e. 11111111) at the output, and then canceling
it in the next G function, but state that their experiments show that in this
case the probability of the characteristics drops significantly. Dunkelman and
Khovratovich choose to work with the difference 04040404 (the probability of
modular addition increases to around 2−4) and consider characteristics where
no difference enters the rotation on 12 bits9. Moreover, they consider two ad-
ditional type of differences obtained by multiplying the initial difference by 2
and 3 — this way they can allow difference in rotation on 7. The authors run
a full search of round-reduced characteristics with all possible configurations for
the difference in the state (i.e. in each of the 16 words, the difference can be
0, 04040404, 08080808, 0c0c0c0c), and no difference in the message words. The
characteristics they find are on more rounds, but have lower probability.

The new rotation amounts of 32,24,16 and 63 bits in the function G of BLAKE2b
are very similar to the rotations from BLAKE-256. Hence we can apply the

9 This type of characteristics were mentioned by Guo and Matusiewicz, but no detailed
analysis was provided in [19].

418 J. Guo et al.

technique of finding round-reduced characteristics from the previous two papers
by considering the 64-bit differences 0404040404040404 and 0004000400040004.
We also use the following improvements for the search methods:

1. In the first search we work with δ = 0404040404040404 and with two addi-
tional differences 0808080808080808, 0c0c0c0c0c0c0c0c, that is the differ-
ence in the words can be 0, δ, 2× δ, and 3× δ. This helps us to overcome the
rotation on 63, i.e. instead of the condition that no difference enters ≫ 63
now we can allow δ to be at the input of this rotation which results in 2× δ
at the output.

2. In the second search we work with → = 0004000400040004 and again with
two additional differences 2×→, 3×→. As in the analysis of Dunkelman and
Khovratovich, we require no difference at the input of rotation on 24 bits,
but improve their search by considering two possibilities for the difference
in each of the message words (instead of one: no difference).

The choice of 4 differences (instead of only 2) leads to the situation where in
the modular addition, for the same input there are possibly several outputs. For
example, δ + const can give both δ and 3× δ. Hence after the linearization, for
fixed input differences to G, this function can produce several output differences.
Dunkelman and Khovratovich note10 that they get 276 possible differentials for
G when the differences in a, b, c, d are one of the four (0, 2×→, 3×→), and there
is no difference in the message words. As we allow the differences 0, δ (or 0,→) in
the messages (see below), in the first search we end up with 4531 differentials for
G, and with 1192 in the second. There are 1024 possible input differences (each of
a, b, c, d can take 4 different values, while the message words can take 2), hence
on average in the first search, we have 4 outputs per single input, while only
one in the second. In theory (without taking into account the probabilities) this
results in around 22·8 = 216 outputs for the whole round that can be obtained
from a single input in the first search, while in the second this number is 1. Thus
to keep the first search practical we cannot have too many input differences. We
note that the probabilities of the differentials11 range from 2−8 to 2−75 in the
first search, and 2−4 to 2−36 in the second.

In both of our searches we try to maximize the number of starting differences
in the state and in the message words. We can do this up to a certain extent.
For example, there are 16 message words, thus if we want to try all four possible
starting differences, we will end up with 216·2 = 232 starting points (without
considering any difference in the state). To make the searches feasible, in certain
cases we restrict the differences to only 0, δ (or 0,→). Note that the initializations
in BLAKE2 differs from BLAKE, and in particular no difference can be introduced
in v8, v9, v10, v11, v14, v15. We follow strictly the definition of BLAKE2 and do not
allow starting differences in any of these six words12. As we will see further, this

10 Guo and Matusiewicz work with only 2 difference, 0 and δ, thus modular additions
in G are uniquely determined and for each input they get a single output.

11 The probability of the trivial differential with zero input-output difference is 1.
12 We have seen in the previous sections that when the attacker can fully control the

input state, then attacks on the full-round BLAKE2 are possible.

Analysis of BLAKE2 419

has a major impact on the maximal number of rounds the best characteristics
can cover in the case of compression functions.

One final note on the message modification. In our searches we assume the
attacker can always pass for free the modular additions that involve the message
words in the function G, of the first round only. This is reasonable as he always
controls the message and to pass these additions he needs to fix only a small
amount of bits in the message words per active bit, and can use the remaining
degrees of freedom in the message to go through the rest of the rounds proba-
bilistically. Recall that in the first round all the message words are independent.
More advanced message modification techniques might be available, however, as
we do not know in advance the best characteristic, it is hard to predict which of
the remaining modular additions in the first round can be passed for free. Using
message modification anywhere but in the first round is very hard due to the
condition on the fixed IV, i.e. once a state has been fixed in some middle round,
the attacker should be sure that after going backwards the resulting initial state
complies with the initialization, i.e. has correct values for v8, v9, v10, v11, v14, v15.

We have run the second search (with the main difference → = 00040004

00040004) and obtained the following results:

– For the hash function of BLAKE2b, when the difference in the message words
can take any of the values 0,→, 2 × →, 3 × → (in total 216·2 = 232 start-
ing differences), the best characteristic is only on 2 rounds and holds with
probability 2−198.

– For the compression function of BLAKE2b, when the difference in the chaining
values and the counters can take 0,→, 2×→, 3×→, and the difference in the
message words is 0 or → (in total 210·2+16·1 = 236 starting differences), the
best characteristics is on 3 rounds with probability 2−336.

The first search (with the main difference δ = 0404040404040404) requires
much more computational power as we are dealing with average forking on 4, i.e.
for each input of G there are 4 outputs. We had to optimize the code significantly
in order to try all possible inputs. The outcome of this search is as follow:

– For the hash function of BLAKE2b, when the difference in the message words
can take any of the values 0 or δ (in total 216 starting differences), the best
characteristic is on 3 rounds and holds with probability 2−344.

– For the compression function of BLAKE2b, when the difference in the chain-
ing values, the counters, and the message words can take 0, δ (in total
210·1+16·1 = 226 starting differences), the best characteristics is on 4 rounds
with probability 2−366.5.

Note that in both of the cases (hash and compression), the first search pro-
duced better characteristics. Moreover, note that although we have matched the
number of attacked rounds in the case of compression function (both BLAKE2

and BLAKE have differentials on 4 rounds), the probability of the characteristic
of BLAKE2 is only 2−366.5 whereas the best known characteristics for BLAKE hash
function is of 2.5 rounds with probability 2−56. Therefore, despite launching a

420 J. Guo et al.

search with much higher number of starting differences, the new initialization
used in BLAKE2 significantly limits the freedom13 of the attacker against this
type of differentials attacks. Thus the tweaked initialization seems to have much
better security properties.

We are able to extend for one half round each of the differentials for the
compression and the hash function. In the case of former, we allow any difference
in the last rotation on 63 bits (our search prohibits this, thus it was not able
to find it). We end up with a differential characteristic on 4.5 rounds for the
compression function of BLAKE2b that holds with probability 2−494.5 — see the
full version for the details [18]. Similarly, we can go for an additional half round
for the hash function BLAKE2b. We get low probability characteristic, however
by using neutral bits we should be able to find a pair of messages that conform
to the differential with a complexity of around 2480 hash function calls (details
are again left to the full version [18]). Without the initialization limitations,
we extend similar characteristics search to the permutation and obtain a result
on 5.5 round with probability 2−928; such a characteristic is given in the full
version [18].

Table 2. Comparison of the attacks on BLAKE2 and BLAKE

Attack
BLAKE2 BLAKE

perm. cf. chosen IV perm. cf. ch. IV

Rotational 12 - 7 - - -

Collision with internal diff. 12 - 12 - - -

Near-Collision - 3 12 4 4 4

Weak class of keys/preimages 12 - 12 - - -

Impossible differential 6.5 - - 6.5 - -

Boomerang 5.5 5.5 5.5 8 7 8

Differential 5.5 4.5 12 4 4 4-6

Hash function differential 3.5 2.5

7 Conclusion

A comparison of the security of BLAKE2 and BLAKE against the attacks we have
examined in this paper is given in Tbl. 2. Based on our findings we can deduce
several important facts about the impact of the tweaks in BLAKE2:

1. The absence of constants in the function G has a major impact on the basic
building block, i.e. the keyed permutation of BLAKE2, and this cipher can
be fully attacked. We can launch a key recovery rotational attack on all 12
rounds of the permutation BLAKE2b with a high complexity, and a distin-
guisher based on internal differentials that holds for 264 keys of BLAKE2b

13 No difference can be introduced in v8, v9, v10, v11, v14, v15.

Analysis of BLAKE2 421

(232 for BLAKE2s) based on a single query. Thus one should be careful when
using this permutation in applications. Note that neither of these attacks is
applicable to BLAKE.

2. The change of rotation amounts in BLAKE2b does matter against certain
types of attacks. The differentials we have presented in § 6 are based in
particular on the fact that all rotations are either divisible by 8 or are close
to being divisible by 8 (e.g. 63). In fact, the same search of differential
characteristics applies to BLAKE2b and BLAKE-256, however the latter is a
256-bit function while the former is 512-bit, and thus permits characteristics
with lower probabilities.

3. In the initialization, omitting the double use of the counter, as well as intro-
ducing constants IV reduces the number of attacked rounds, i.e. increases
the security of the compression function. Note that in the differential at-
tacks, we were able to match (and advance more) the number of rounds as
in BLAKE only because we used a much more complex search of differential
characteristics and we were dealing with 512-bit hash. For instance, if the
initialization in BLAKE2 were the same as in BLAKE, most likely we could pen-
etrate more rounds in the differential attack (we could not run the search
for this version as it requires significant amount of computations). In fact,
the new initialization is crucial as if one used the same as in BLAKE, then
collisions (respectively partial-collisions) could be produced with only 2128

(respectively 261) compression function calls.
4. The complete absence of constants in Gmakes the security of the compression

function highly dependent on the right choice of IV (this is not the case of
BLAKE). That is, even with the new initialization but different IV, one could
still launch attacks — see §§ 3 and 4. The ‘weak’ IV on the other hand are
highly structured (either rotational, all equal, or some particular values).
The random choice of IV as in BLAKE2 makes these weaknesses impossible
to exploit.

To summarize, based on our results, we have shown that the tweaks introduced
by BLAKE2, if analyzed separately, reduce the security of the version in certain
theoretical attack frameworks as our analysis suggests existence of several effi-
cient attacks on the basic building block of BLAKE2. However, taken together the
tweaks do not have a significant impact on the security of the hash/compression
function, aside from the one round increase (resulting in a 3.5 round attack)
against the hash function and a half round in the case of compression function.
Thus BLAKE2, similarly to its predecessor BLAKE, has a very high security margin
against all known attacks even after reducing the number of rounds by four.

Acknowledgments. The work in this paper was partially supported by the
Singapore National Research Foundation Fellowship 2012 (NRF-NRFF2012-06).
We would also like to thank the anonymous reviewers from SAC 2013 and CT-
RSA 2014 for their helpful comments.

422 J. Guo et al.

References

1. Aumasson, J.P., Guo, J., Knellwolf, S., Matusiewicz, K., Meier, W.: Differential
and Invertibility Properties of BLAKE. In: [21], pp. 318–332

2. Aumasson, J.P., Henzen, L., Meier, W., Phan, R.C.W.: SHA-3 proposal BLAKE,
version 1.3 (2008), https://131002.net/blake/

3. Aumasson, J.-P., Meier, W., Phan, R.C.-W.: The Hash Function Family LAKE.
In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 36–53. Springer, Heidelberg
(2008)

4. Aumasson, J.-P., Neves, S., Wilcox-O’Hearn, Z., Winnerlein, C.: BLAKE2: Sim-
pler, Smaller, Fast as MD5. In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-
Naini, R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 119–135. Springer, Heidelberg
(2013)

5. Aumasson, J.P., Neves, S., Wilcox-O’Hearn, Z., Winnerlein, C.: BLAKE2: simpler,
smaller, fast as MD5 — version 2013.01.29 (2013), https://blake2.net/

6. Aumasson, J.P., Neves, S., Wilcox-O’Hearn, Z., Winnerlein, C.: The BLAKE2
website (May 2013), https://blake2.net

7. Bernstein, D.J.: ChaCha, a variant of Salsa20 (2008),
http://cr.yp.to/chacha.html .

8. Bernstein, D.J.: The Salsa20 Family of Stream Ciphers. In: Robshaw, M., Billet,
O. (eds.) New Stream Cipher Designs. LNCS, vol. 4986, pp. 84–97. Springer, Hei-
delberg (2008), http://cr.yp.to/snuffle.html

9. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: The Kceccak reference (Jan-
uary 2011), http://keccak.noekeon.org/

10. Biham, E., Dunkelman, O.: A Framework for Iterative Hash Functions - HAIFA.
IACR Cryptology ePrint Archive 2007, 278 (2007)

11. Biryukov, A., et al.: Cryptanalysis of the LAKE Hash Family. In: Dunkelman, O.
(ed.) FSE 2009. LNCS, vol. 5665, pp. 156–179. Springer, Heidelberg (2009)

12. Biryukov, A., Nikolić, I., Roy, A.: Boomerang Attacks on BLAKE-32. In: Joux, A.
(ed.) FSE 2011. LNCS, vol. 6733, pp. 218–237. Springer, Heidelberg (2011)

13. De Cannière, C., Rechberger, C.: Finding SHA-1 Characteristics: General Results
and Applications. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 1–20. Springer, Heidelberg (2006)

14. Chang, S.J., Perlner, R., Burr, W.E., Turan, M.S., Kelsey, J.M., Paul, S., Bassham,
L.E.: Third-Round Report of the SHA-3 Cryptographic Hash Algorithm Compe-
tition. NIST Interagency Report 7896 (2012)

15. Dinur, I., Dunkelman, O., Shamir, A.: Self-Differential Cryptanalysis of Up to 5
Rounds of SHA-3. IACR Cryptology ePrint Archive 2012, 672 (2012)

16. Dinur, I., Dunkelman, O., Shamir, A.: Collision Attacks on Up to 5 Rounds of
SHA-3 Using Generalized Internal Differentials. In: FSE (2013)

17. Dunkelman, O., Khovratovich, D.: Iterative Differentials, Symmetries, and Message
Modification in BLAKE-256. In: ECRYPT2 Hash Workshop (2011)

18. Guo, J., Karpman, P., Nikolić, I., Wang, L., Wu, S.: Analysis of BLAKE2. IACR
Cryptology ePrint Archive 2013, 467 (2013)

19. Guo, J., Matusiewicz, K.: Round-reduced near-collisions of BLAKE-32. In: WE-
WoRC (2009), http://guo.crypto.sg/blake-col.pdf

20. Guo, J., Thomsen, S.S.: Deterministic Differential Properties of the Compression
Function of BMW. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.) SAC 2010.
LNCS, vol. 6544, pp. 338–350. Springer, Heidelberg (2011)

21. Hong, S., Iwata, T. (eds.) FSE 2010. LNCS, vol. 6147. Springer, Heidelberg (2010)

https://131002.net/blake/
https://blake2.net/
https://blake2.net
http://cr.yp.to/chacha.html
http://cr.yp.to/snuffle.html
http://keccak.noekeon.org/
http://guo.crypto.sg/blake-col.pdf

Analysis of BLAKE2 423

22. Khovratovich, D., Nikolić, I.: Rotational Cryptanalysis of ARX. In: [21], pp. 333–
346

23. Li, J., Xu, L.: Attacks on Round-Reduced BLAKE. IACR Cryptology ePrint
Archive 2009, 238 (2009), https://eprint.iacr.org/2009/238

24. Peyrin, T.: Improved Differential Attacks for ECHO and Grøstl. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 370–392. Springer, Heidelberg (2010)

25. Vidali, J., Nose, P., Pasalic, E.: Collisions for variants of the BLAKE hash function.
Inf. Process. Lett. 110(14-15), 585–590 (2010)

https://eprint.iacr.org/2009/238

An Automated Evaluation Tool for Improved

Rebound Attack: New Distinguishers and
Proposals of ShiftBytes Parameters for Grøstl

Yu Sasaki1, Yuuki Tokushige2, Lei Wang3, Mitsugu Iwamoto2,
and Kazuo Ohta2

1 NTT Secure Platform Laboratories
sasaki.yu@lab.ntt.co.jp

2 The University of Electro-Communications
{yuuki.tokushige,mitsugu,kazuo.ohta}@uec.ac.jp

3 Nanyang Technological University
Wang.Lei@ntu.edu.sg

Abstract. In this paper, we study the security of AES-like permuta-
tions against the improved rebound attack proposed by Jean et al. at
FSE 2012 which covers three full-active rounds in the inbound phase.
The attack is very complicated and hard to verify its optimality when
the state size is large and rectangle, namely the numbers of rows and
columns are different. In the inbound phase of the improved rebound
attack, several SuperSBoxes are generated for each of forward analysis
and backward analysis. The attack searches for paired values that are
consistent with all SuperSBoxes. The attack complexity depends on the
order of the SuperSBoxes to be analyzed, and detecting the best order is
hard. In this paper, we develop an automated complexity evaluation tool
with several fast implementation techniques. The tool enables us to ex-
amine all the possible orders of the SuperSBoxes, and provides the best
analysis order and complexity. We apply the tool to large block Rijndael
in the known-key setting and the Grøstl-512 permutation. As a result, we
obtain the first 9-round distinguisher for Rijndael-192 and Rijndael-224.
It also shows the impossibility of the improved rebound attack against
9-round Rijndael-160 and 10-round Rijndael-256, and the optimality of
the previous distinguisher against the 10-round Grøstl-512 permutation.
Moreover, the efficiency of the improved rebound attack depends on the
parameter of the ShiftRows operation. Our tool can exhaustively exam-
ine all the possible ShiftRows parameters to search for the ones that can
resist the attack. We show new parameters for the Grøstl-512 permuta-
tion obtained by our tool, which can resist a 10-round improved rebound
attack while the specification parameter cannot resist it.

Keywords: Rijndael, Grøstl, rebound attack, ShiftRows, ShiftBytes.

1 Introduction

Rijndael [1] is one of the most successful block ciphers which was later adopted as
Advanced Encryption Standard (AES). Since then, many primitives have been

J. Benaloh (Ed.): CT-RSA 2014, LNCS 8366, pp. 424–443, 2014.
c© Springer International Publishing Switzerland 2014

An Automated Evaluation Tool for Improved Rebound Attack 425

designed based on AES. Security analysis against AES and AES-like structures
has been discussed actively. One approach is the known-key distinguisher [2],
which aims to distinguish a randomly instantiated AES-like permutation from
an ideal 128-bit permutation.

The rebound attack is a strong distinguishing attack against AES-like hash
functions presented by Mendel et al. [3]. It was then applied to the known-key
distinguisher on 7-round AES [4]. This was extended to 8-round AES with Su-
perSBox technique by Gilbert and Peyrin [5].1 After that, the rebound attack
was applied to many other AES-like primitives with several technical improve-
ments. Showing references of all previous rebound attacks is very hard. Several
examples are [7,8,9,10]. Since the publication of the 8-round distinguisher by
[5], extending it to 9-round AES-like permutations had been a big challenge
for a few years. At FSE 2012, Jean et al. [11] finally solved this problem with
presenting a 9-round distinguisher against AES-like permutations with r ≥ 8,
where r represents the number of rows and columns in a state.2 The technique
in [11] was not given a specific name by the authors. In this paper, we call their
technique improved rebound attack according to their paper title. In short, the
attack generates r SuperSBoxes for the forward computation and r SuperSBoxes
for the backward computation, and searches for the match efficiently at some
middle state by determining the values for each SuperSBox one by one.

Jean et al. also applied the improved rebound attack to the 1024-bit permu-
tation used in the hash function Grøstl-512 [13], which is based on an AES-like
permutation with 8 rows and 16 columns. However, for a rectangle state size,
the attack becomes complicated. The attack generates 16 SuperSBoxes for each
of the forward and backward computations. The attack complexity depends on
the order that these SuperSBoxes are analyzed, and detecting the best analysis
order is hard. Indeed, in [11], the reason for choosing their analysis order and
its optimality are not discussed at all.

Although the attack in [11] can work, its ambiguity raises several questions.

– Is the procedure, i.e., the order of analyzing columns and rows in [11] the
best? Is there any other choice to achieve a better complexity?

– How can we apply the improved rebound attack to other AES-like permu-
tations with different state sizes? For example, can it be applied to Rijndael
with the large block sizes (160, 192, 224, and 256 bits)? Note that it cannot
be applied to the square-state Rijndael (AES).

– The attack procedure is heavily dependent on the parameter of ShiftRows,
which is one of the AES-round operations. Can it be used to distinguish
different ShiftRows parameters for AES-like permutation designs? In partic-
ular, are there any ShiftRows parameter stronger than others with respect
to the resistance to the improved rebound attack?

1 The similar technique was independently proposed by [6].
2 A 9-round known-key distinguisher on AES (r = 4) is still an open problem. A
9-round chosen-key distinguisher has recently been found by Fouque et al. [12].

426 Y. Sasaki et al.

Table 1. Summary of Known-key Distinguishers. The fifth and sixth columns show
the evaluation for different ShiftRows parameters. N/A represents that new attacks or
improved attacks are not obtained.

Target Previous Results Our Results Generic
(rounds,time,ref.) Rounds Original SR Different SR attack

weakest strongest

Rijndael-160 (7, 240, [14]†) 9 N/A 2112 2112 296

Rijndael-192 (8, 248, [15]) 9 2112 2112 2112 2128

Rijndael-224 (8, 272, [14]) 9 2120 2104 2120 2160

Rijndael-256 (9, 248, [15]) 10 N/A 2128 2128 296

Grøstl-512 (10, 2392, [11]) 10 N/A 2336 2464 2448

†Though [15] did not mention anything, we found that the approach of [15] can be
applied to 8 rounds trivially with the complexity of 248.

1.1 Our Contributions

We answer the above problems by developing a tool to evaluate the best complex-
ity of the improved rebound attack. Recall that the attack complexity depends
on the state size and the parameter for the ShiftRows operation. Our tool takes
the state size and the ShiftRows parameter as input, and produces the mini-
mum complexity to apply the improved rebound attack. Our contributions can
be summarized as follows. The results are also summarized in Table 1.

1. For a given state size and ShiftRows parameter, the attack complexity de-
pends on which order we analyze forward SuperSBoxes and backward Su-
perSBoxes. We firstly make an algorithm when the order of the SuperSBoxes
to be analyzed is fixed. We then develop a tool which automatically returns
the complexity of that algorithm. Finally, by exhaustively trying all possible
orders of the SuperSBoxes to be analyzed, we obtain the minimum attack
complexity. Note that the state size of the Grøstl-512 permutation is too
large to examine exhaustively in a trivial way. We avoid this problem by
proposing several implementation techniques.

2. We apply our tool to large-block Rijndael in the known-key setting and the
1024-bit permutation of Grøstl-512. As a result, we find that the improved
rebound attack can be applied to 9 rounds of Rijndael-192 and Rijndael-224.
We also find that the improved rebound attack cannot be applied to 9 rounds
of Rijndael-160 and 10 rounds of Rijndael-256. For Grøstl-512, we find that
the previous attack achieved the best complexity. As far as we know, our
results on Rijndael-192 and -224 are the best distinguishers in terms of the
number of rounds.

3. We apply our tool for all possible ShiftRows parameters of each state size in
order to check if there exists stronger ShiftRows parameter than the one in
the specification. As a result, we find stronger ShiftRows parameters of the
Grøstl-512 permutation, which can resist the 10-round distinguisher.

An Automated Evaluation Tool for Improved Rebound Attack 427

1.2 Paper Outline

The paper is organized as follows. Specifications and previous work are intro-
duced in Sect. 2. The new tool is explained in Sect. 3. Distinguishers obtained
by the tool are explained in Sect. 4. New ShiftRows parameters are discussed in
Sect. 5. Finally, we conclude this paper in Sect. 6.

2 Preliminaries

2.1 Specification of Large Block Rijndael

The block cipher Rijndael was designed by Daemen and Rijmen in 1998 and was
selected as Advanced Encryption Standard (AES) in 2000 [16,17]. The updated
version of Rijndael supports five block sizes; 128, 160, 192, 224, 256 bits and three
different key sizes; 128, 192, 256 bits. The number of rounds, Nb, is dependent
on the block size and key size, which is defined in Table 2.

In the key schedule function, round keys are generated from the original secret
key. Because round keys are regarded as given constant numbers in the known-
key setting, the key-schedule function does not have any impact. Hence, we omit
its description.

The internal states for 128-, 160-, 192-, 224-, and 256-bit blocks are repre-
sented by 4×4, 4×5, 4×6, 4×7 and 4×8 byte-arrays, respectively. The number
of columns is represented by a variable Nc, i.e., Nc = 4, 5, 6, 7, and 8 for 128-,
160-, 192-, 224-, and 256-bit blocks, respectively. First of all, the key is XORed to
the plaintext. Then, a round operation consisting of the following four operations
is iteratively applied to update the state Nb times.

- SubBytes(SB): substitute each byte according to an S-box.
- ShiftRows(SR): apply the sj-byte left rotation to each byte at row j, (j =

0, 1, 2, 3) of the state, where sj is defined as (0,1,2,3), (0,1,2,3), (0,1,2,3),
(0,1,2,4), and (0,1,3,4) for 128-, 160-, 192-, 224-, and 256-bit blocks, respec-
tively.

- MixColumns(MC): multiply each column by a maximum-distance separable
(MDS) matrix.

- AddRoundKey(AR): apply XOR with a round key. Throughout this paper,
key values are randomly generated constants.

Table 2. Number of Rounds, Nb, for Large-Block Rijndael

Key size Block size
128 160 192 224 256

128 10 11 12 13 14
192 12 12 12 13 14
256 14 14 14 14 14

428 Y. Sasaki et al.

The MixColumns operation is not computed at the last round. According to the
designers [1], the parameter of ShiftRows was determined to satisfy the following
aspects.

1. The four offsets are different and the parameter for the first row is 0;
2. Resistance against attacks using truncated differentials;
3. Resistance against the integral attack;
4. Simplicity.

2.2 Specification of Grøstl-512 Permutation

Grøstl [13] was designed by Gauravaram et al., and was one of the finalists in the
SHA-3 competition [18]. Grøstl-512, which is the 512-bit digest version, adopts
two 1024-bit AES-like permutations called P1024 and Q1024. The internal state
is represented by an 8 × 16 byte-array. The number of rounds is 14. The round
operation consists of the following four computations.

- AddRoundConstant(AR): apply XOR with a round constant.
- SubBytes(SB): substitute each byte with the S-box, which is the same as the

one for Rijndael.
- ShfitBytes(SR): apply the sj-byte left rotation to each byte at row j of the

state where, sj are (0, 1, 2, 3, 4, 5, 6, 11) and (1, 3, 5, 11, 0, 2, 4, 6) for P1024 and
Q1024, respectively.

- MixBytes(MC): multiply each column by an MDS matrix.

Although the operation names are different between Rijndael and Grøstl, the
effect is the same especially for the rebound attack. Hence, we unify the ab-
breviations AR,SB, SR,MC. According to the designers [13], the parameter
of ShfitBytes was determined to satisfy that each byte of the state affects each
column in at least two distinct ways after three rounds.

2.3 Notations

The round function of Rijndael can be viewed as AR,SB, SR,MC in this order,
and the last round is AR,SB, SR,AR. We use this view to unify the represen-
tation with Grøstl.

We denote the initial state for round x by #SxI . Then, states immediately
after AR,SB, SR and MC in round x are denoted by #SxAR,#SxSB , #SxSR

and #SxMC , respectively.

2.4 Rebound Attack

Rebound attack was developed by Mendel et al. [3], which is a distinguishing
attack particularly useful for evaluating AES-like structures. It produces a pair
of plaintexts satisfying some types of truncated differential characteristics for
AES-like permutations. It firstly determines a characteristic and divides it into
the inbound part and the outbound part. Let C and D be the differential forms

An Automated Evaluation Tool for Improved Rebound Attack 429

where one column and one diagonal of the state is active, respectively. Also,
let F be the full active state. With the rebound attack, a 2-round differential
transition C → F → D can be satisfied only with 28 computations and 28

memory. The solutions of the inbound part are later used to satisfy the outbound
part probabilistically. The attack becomes a valid distinguisher if a solution for
the entire characteristic is found faster than that for the ideal case.

The SuperSBox technique for the rebound attack was independently proposed
by Lamberger et al. [6] and Gilbert and Peyrin [5]. It satisfies a 3-round differ-
ential transition C → F → F → D with 28r computations and 28r memory,
where r is the number of bytes in a single column. The technique exploits the
fact that the non-linear part inside two rounds, AR,SB, SR,MC,AR, SB can
be computed independently for each column with 28r computations. Therefore,
by making a look-up table with 28r entries for each column, the rebound attack
can be extended to cover 1 more full active state. These look-up tables with the
size of 28r data are called SuperSBoxes.

Improved Rebound Attack with Three Full Active Rounds. Jean et al.
presented a further extension of the rebound attack, which can satisfy a 4-round
differential transition C → F → F → F → D [11]. Because this paper is heavily
dependent on [11], we explain it in details.

If the attack is applied to a square state, i.e., the sizes of rows and columns are
identical, the attack is relatively simple. The attack generates 2r SuperSBoxes,
r are from the forward computation labeled as L1, . . . , Lr and r are from the
backward computation labeled as L≥1, . . . , L≥r. These tables match at some state.
An example for r = 8 is shown in Fig. 1. For the first step, the values of four
SuperSBoxes from the backward, L≥1, L

≥
2, L
≥
3, L
≥
4 are chosen. This fixes both the

values and differences of four bytes in each diagonal. In other words, each diago-
nal has a 64-bit constraint. For the second step, the values of eight SuperSBoxes
from the forward computation are chosen so that the constrained four bytes are
satisfied. Because the size of the constraint is 64 bits, and each SuperSBox has
64-bit freedom degrees, each SuperSBox returns a single result on average. At
this stage, both of values and differences are fixed for all bytes. For the third
step, the values of four SuperSBoxes L≥5, L

≥
6, L
≥
7, L
≥
8 are chosen. Each column has

a 128-bit constraint and each SuperSBox has only 64-bit freedom degrees. Hence,
the probability that each column has a solution is 2−64, and the probability is
2−256 for four SuperSBoxes. By iterating the first step 2256 times, the attack can
obtain a solution. In the end, the 4-round differential transition is satisfied with
a complexity of 2256. In general, the cost to satisfy the above 3-round transition
can be expressed as 28r·r/2 = 24r

2

. This technique can be a valid distinguisher
only if r ≥ 8, which implies that the attack cannot be applied to the square state
Rijndael (r = 4), or AES.

Jean et al. also applied the technique to the 1024-bit permutation of Grøstl-
512. Then, the attack becomes very complicated because each SuperSBox does
not have interaction with all SuperSBoxes from the opposite direction. Let us
discuss the case where the state consists of r rows and 2r columns. An example
for r = 8 is shown in Fig. 2. The attack prepares 4r SuperSBoxes, 2r are from

430 Y. Sasaki et al.

L1’L2’L3’L4’L5’L6’L7’L8’

L1 L2 L3 L4 L5 L6 L7 L8

Step 1 Step 3

Step 2

Fig. 1. Improved Re-
bound Attack for Square
State. Li and L∗

i denote
SuperSBoxes for the for-
ward computation and
the backward computa-
tion, respectively.

Li’

Li

16151 2 3 4 5 6 7 8 9 10 11 12 13 14

16
15

1
2
3
4
5
6
7
8
9

10
11
12
13
14

223 4 3 4 5 6 8 6 5 4 3 4 3 2

Number of different differences in each Li’

Fig. 2. Improved Rebound Attack for Non-square State.
White cells denote that two SuperSBoxes interact each other
and black cells denote that no interaction exists. ‘

√
’ denotes

a byte with a fixed value and difference. ‘•’ denotes a byte
with a fixed difference, but the value is not fixed. ‘Num-
ber of different differences’ shows the maximum number of
differences for each column.

the forward computation and 2r are from the backward computation. The attack
first analyzes which SuperSBoxes interact each other. In Fig. 2, white cells denote
that there exists the interaction and black cells denote that no interaction exists.
The matched state will be passed to the MixColumns operation, and then the
number of active bytes for each column needs to be reduced accordingly to the
truncated differential characteristic. For example, in Fig. 2, the number of active
bytes in the left most column needs to be reduced to 3 after the next MixColumns
operation, which means that the number of possible differences for the left most
column is at most 28×3. In [11], this type of constraint is called the maximum
number of different differences (NDD), and NDD is given at the bottom of
Fig. 2. Then, the confirming pairs are searched for with a guess-and-determine
approach. At the first step, the values and difference for L≥2, L

≥
3, L
≥
4, L
≥
5 are chosen.

‘
√
’ denotes the byte with a fixed value and difference. Then, L5, L6, L7, L8 have

a 64-bit constraint and thus these SuperSBoxes are fixed uniquely. The analysis
further continues and L≥1 and L≥16 reaches NDD, which fixes the difference of L≥1
and L≥16. ‘•’ denotes the byte with a fixed difference, but the value is not fixed.
Similarly, the value and difference of L4 is fixed, and then the difference of L≥15
is fixed, and all information in Fig. 2 is obtained. The analysis will continue by
newly guessing the elements in L≥6. We omit the remaining attack procedure. As
a result, the desired pair is obtained with 2280 computations.

An Automated Evaluation Tool for Improved Rebound Attack 431

AR SB

AR SB SR MC

AR SB SR MC

SB SR MC

AR SB SR MC

Fig. 3. Inbound Characteristics for Rijndael-224

Li’

Li

1 2 3 4 5 6 7
1
2
3
4
5
6
7

1 3 3 2 3 2 2
Number of different

differences in each Li’

Fig. 4. Intersection Table for
Rijndael-224

Although the attack in [11] can work correctly, it raises several open problems.

– Is the procedure, i.e., the order of guessing columns and rows in [11] best?
For example, for the first step, is there other choice instead of L≥2, L≥3, L≥4, L≥5
to achieve a better complexity?

– How can we apply the technique to other AES-like permutations with dif-
ferent state size?

– How can we apply the technique to other ShiftRows parameters? Moreover,
are there any ShiftRows parameters which can resist this attack?

3 An Evaluation Tool for Improved Rebound Attack

We develop an automated complexity evaluation tool for the improved rebound
attack which works for any state size and ShiftRows parameter. Our tool returns
the minimum attack complexity to bypass four-round inbound phase. The entire
differential characteristic must be fixed in advance. For AES-like permutations,
the best differential characteristic can be almost uniquely obtained. In this paper,
we analyze the following characteristic for the inbound phase.

C → 4C → F → 4D → D for large-block Rijndael,

C → 8C → F → 8D → D for the Grøstl-512 permutation,

where rC and rD represents that r columns and r diagonals are active, respec-
tively. We fix the active position to the left most column and diagonals. An ex-
ample for Rijndael-224 is shown in Fig. 3. Active bytes are colored in grey. Cross
lines (×) and black circles (•) represent a single SuperSBox for the forward com-
putation (L1) and backward computation (L≥1), respectively. The SuperSBoxes
from two directions match right after SR in the third inbound round.

3.1 Overview

Our tool takes the state size, the ShiftRows parameter and the inbound differen-
tial characteristic as input. The first step is making a table like Fig. 2 in order to

432 Y. Sasaki et al.

analyze which SuperSBoxes interact each other. Although the authors of [11] did
not give a specific name for this table, to make the discussion easier, we name it
an intersection table. The second step, which is the main step, is identifying the
best attack procedure, i.e. the order of SuperSBoxes to be analyzed in order to
find paired values satisfying the inbound differential characteristic.

In the improved rebound attack, paired values are searched for with a guess-
and-determine procedure, which iterates a guess phase and a determine phase
until all freedom degrees are consumed. In the guess phase, an attacker chooses a
SuperSBox in which freedom degrees still remain, and for each remaining freedom
degrees, the attacker fixes pairs (value and difference) for that SuperSBox. The
fixed bytes become constraints for other SuperSBoxes. In the determine phase,
for all SuperSBoxes, the attacker discards the pairs which do not satisfy the
constraints. Therefore, the remaining freedom degrees are reduced. If the number
of constraints are bigger than or equal to the remaining freedom degrees for some
SuperSBox, the SuperSBox is fully fixed and this increases constraints for other
SuperSBoxes. The determine phase is iterated until no information is updated
without new guess. The search procedure can be summarized as follows.

1. generate the intersection table
2. UNTIL all freedom degrees are consumed
3. run the guess phase (choose a SuperSBox with freedom degrees and fix

pairs)
4. UNTIL no information is updated without a new guess
5. run the determine procedure (reduce remaining freedom degrees)
6. end of UNTIL

7. end of UNTIL

In short, the guess phase increases the number of candidates for value and dif-
ference, and the determine phase fixes as much state information as possible by
consuming the generated number of candidates. The final attack complexity is
the largest number of candidates during the entire guess-and-determine phase.

The attack complexity depends on the order of SuperSBoxes we run the guess
phase at Step 3. We exhaustively try all possible orders of SuperSBoxes to be
analyzed, and detect the best analysis order and evaluate the attack complexity.

3.2 Generating Intersection Table

Under the fixed characteristic, the intersection table can be generated only with
the state size and the ShiftRows parameter. The first task is determining black
and white cells of the intersection table. In Fig. 3, L1 and L≥1 share one byte,
and thus they interact each other. Similarly, L1 interacts with L≥4, L≥6 and L≥7.
These cells become white, and intersections with L≥2, L

≥
3 and L≥5 are filled with

black. We call the intersection between L1 and L≥i for all i rowmodel. The other
rows of the intersection table can be derived with rotating the rowmodel by y−1
positions to right for the y-th row.

Another task is counting NDD in each L≥i. This can be done easily if the
differential characteristic is fixed. With the example in Fig. 3, the match of the

An Automated Evaluation Tool for Improved Rebound Attack 433

SuperSBoxes is done in the third inbound round after the ShiftRows operation.
This state is fully active, however, the difference of each column cannot take all
values. For the first column, the difference after the next MixColumns operation
can only have 1 active byte. Thus, freedom degrees of the difference of the first
column is only 1 byte. The result for Rijndael-224 is shown in Fig. 4.

3.3 Complexity Evaluation of Guess-and-Determine Phase

We exhaustively try all possible orders of rows and columns. Here we describe
the procedure for the fixed order. It basically iterates the guess phase and the
determine phase. The determine phase also consists of the iterative analysis of
rows and columns until no more information is added without further guesses.

Guess Phase. During the attack, in the guess phase, the value and difference
of the target row or column are exhaustively guessed. The correctness of each
guess must be later checked with processing the search procedure. In our tool,
we store the current number of guesses to be checked and the current complexity.
Therefore every time the guess is done, our tool increases the current number
of candidates and the current complexity by a factor of the remaining freedom
degrees for that row or column. After each guess, the value and difference of
the target row or column are fully fixed. Hence, the tool erases the remaining
freedom degrees for the target row or column, and passes the state information
to the next determine procedure. In summary, the guess phase performs the
following three operations for the target row or column.

1. increase the current number of candidates by a factor of the remaining free-
dom degrees

2. update the current complexity if the current number of candidates is greater
than the current complexity

3. erase the freedom degrees of the target row or column

The guess phase is the only one which increases the attack complexity. Note that
in the guess phase, the value and difference are always fixed simultaneously.

Determine Phase. In the determine phase, for each row or column, we compare
the sizes of the newly generated constraint and the remaining freedom degrees.
If the new constraint is bigger than the freedom degrees, the valid value and
difference are expected only with a probability less than 1. This implies that
the number of candidates to pass the determine phase is reduced and thus the
complexity for the following search procedure is reduced by the same factor.
Therefore, in our tool, we reduce the current number of candidates and make
the target row or column fully fixed. If the constraint and the freedom degrees
are the same size, one value and difference is expected. Thus our tool simply
eliminates the freedom degrees and makes the target row or column fully fixed. If
the constraint is smaller than the freedom degrees, the tool reduces the remaining
freedom degrees by a factor of the new constraint.

434 Y. Sasaki et al.

For the row information, which is the SuperSBoxes for the forward compu-
tation, we always consider the value and difference at the same time. This is
because that the forward SuperSBoxes cover two SubBytes layers and we can-
not argue difference and value independently. While, the backward SuperSBoxes
only cover one SubBytes layer, and thus we can argue the difference without de-
termining values. Therefore, for the column information, we firstly compare the
constraints and remaining freedom degrees only for the difference. We call them
differential constraints and remaining differential freedom degrees, respectively.
For example, at the beginning, the remaining differential freedom degrees for
each column are determined by NDD of that column. If one byte of the column
is fixed, the remaining differential freedom degrees become NDD − 1 bytes.

The determine phase iteratively applies the above operation to all rows and
columns. Newly fixed bytes during the determine phase become constrains to
other rows and columns immediately. Therefore, the determine phase is iterated
until no information is updated without a new guess. In summary, the determine
phase performs the following operation.

1. UNTIL no information is updated without a new guess
2. FOR all columns and rows, do as follows
3. IF (new differential constraints) ≥ (remaining differential freedom

degrees) THEN
4. reduce the number of candidates by a factor of (new differential

constraints)/(remaining differential freedom degrees)
5. erase the remaining differential freedom degrees
6. ELSE

7. reduce remaining freedom degrees and remaining differential free-
dom degrees by a factor of new differential constraints

8. end of IF

9. IF (new constraints) ≥ (remaining freedom degrees) THEN
10. reduce the number of candidates by a factor of (new constraints)/

(remaining freedom degrees)
11. erase remaining freedom degrees
12. erase remaining differential freedom degrees
13. ELSE

14. reduce remaining freedom degrees by a factor of new constraints
15. end of IF

16. end of FOR

17. end of UNTIL

3.4 Fast Implementation Techniques

In our tool, we exhaustively try all orders of SuperSBoxes. The number of pos-
sible patterns with a straight-forward method is (2Nc)! for large-block Rijndael,
which is about 244 patterns with Nc = 8, and (2 ∗ 16)! ≈ 2118 patterns for the
Grøstl-512 permutation. In our tool, the number of examined patterns is signifi-
cantly smaller than those numbers because freedom degrees of several rows and

An Automated Evaluation Tool for Improved Rebound Attack 435

columns are reduced by the determine phase without being guessed. However,
even with the efficient determine phase, our tool takes very long to finish for
the Grøstl-512 permutation. In this section we introduce two implementation
techniques to keep the running time of our tool feasible. These will be useful in
future for testing various larger state sizes.

Early Abort with Complexity. During the search procedure, we store the
currently found best attack complexity. When we examine different row and
column orders, we always compare the current attack complexity to the best
attack complexity. The search is stopped as soon as the current attack complexity
reaches the best attack complexity.

Early Abort with State Information. For more efficiency, we store interme-
diate state of the intersection table for every determine phase, together with the
complexity at that stage. Every time we carry out the determine phase, we check
the match between the current state and previously stored states. If a match is
found, we compare the current complexity with the stored one. If the current
complexity is bigger than the previous one, we stop the search immediately. If
the complexity is smaller than the previous one, we update the stored results,
and continue the search procedure.

Let us count the number of possible intermediate states of the intersection
table. Each white cell has three kinds of state; the difference is fixed, both of
the difference and value are fixed, and unfixed. The intersection table for the
Grøstl-512 permutation consists of (16 × 16)/2 = 128 white cells as shown in
Fig 2. Thus the number of possible intermediate states is 3128, which is infeasible
to store. Here, we exploit the property that the intersection table is always
operated in column-wise or row-wise, hence we can store the state information
only in column-wise and row-wise. Moreover, we do not have to store the state
where only the difference is fixed. This is because such a state can always be
recovered by the previous state with both of the value and difference are fixed.
In the end, the number of intermediate states can be 216 · 216 ≈ 232. Finally,
we can implement this technique, and can perform the test for the Grøstl-512
permutation. In practice, with our experiment, we only used about 224 memory.
There are several reasons why 232 states did not appear. One is due to the
early abort. Another is that the determine phase avoids extremely inefficient
situations, e.g., all rows are fixed but no information is fixed for columns.

Code of the Proposed Tool

The code of the implemented tool is available in [19].

4 Distinguishers on Rijndael and Grøstl-512 Permutation

In this section, we apply our tool to the large-block Rijndael and the 1024-bit
permutation used in Grøstl-512. We find that the improved rebound attack can

436 Y. Sasaki et al.

round 5

SR MC

round 9 ciphertext

AR SB SR AR

SB SR MC

round 4

AR SB

SR MC

round 7 round 8

AR SB SR MC AR SB

SR MCAR SB SR MC AR SB

MC

round 6

round 3

AR

round 1 round 2

AR SB SR MC AR SB SR

Fig. 5. Differential Characteristic for 9-round Rijndael-224

be applied to 9 rounds of Rijndael-192 and Rijndael-224. We also find that the
improved rebound attack cannot be applied to Rijndael-160 and Rijndael-256,
and the previous distinguisher on the Grøstl-512 permutation is the best. As
an example of the application of our tool, we explain the new distinguisher on
Rijndael-224 in Sect. 4.1. For the other targets, we summarize the results in
Sect. 4.2.

4.1 A New Distinguisher on Rijndael-224

Overview. We use the following 9-round differential characteristic.

4→ 1→ 4→ 16→ 28→ 16→ 4→ 1→ 4→ 4. (1)

The characteristic is depicted in Fig. 5. The inbound phase is the middle four
rounds. The outbound phase is the first two rounds and the last three rounds,
which are satisfied with probability 2−24 each. In Fig. 5, the borders between
inbound and outbound phases are drawn in round 3 and round 7. Our distin-
guisher finds each solution of the inbound phase with 272 computations, and up
to 264 solutions can be generated in maximum. Hence, by iterating the inbound
phase 248 times, we can find the pair which satisfies the entire differential charac-
teristic. The overall complexity is 272+48 = 2120, while the generic attack proven
to be optimal [20] to satisfy the same input and output differential forms for a
224-bit permutation requires 2161 queries.

Inbound Phase. First of all, we fix the 4-byte difference of #S3SB and the 4-
byte difference of #S7AR, and then generate seven SuperSBoxes for each of the
forward and backward computations. This requires 14·232 1-round computations,
which is negligible compared to the merging phase. Note that for any difference
of #S3SB and #S7AR, we can find 1 solution on average.

An Automated Evaluation Tool for Improved Rebound Attack 437

Recall Fig. 3, which shows the inbound part for Rijndael-224. The intersection
table for Rijndael-224 is also available in Fig. 4. Here, we show how the guess-
and-determine is processed on the intersection table. We iterate the guess phase
and the determine phase three times. The detailed explanation is as follows. See
its illustration for Fig. 6. In Fig. 6. the first, second, third and fourth figures rep-
resent the state after the second guess phase, after the second determine phase,
after the third guess phase, and after the third determine phase, respectively.
The arrow lines represent which rows and columns are analyzed to achieve the
state, and numbers with parenthesis represent the order that we analyze the
rows and columns.

Guess 1. Guess the difference and value of L≥2. Because no constraint exists,
we have 232 choices.

Determine 1. No column and row can be uniquely fixed. Move to the next
phase immediately.

Guess 2. Guess both the difference and value of L≥3. Because no constraint
exists, we have 232 choices. The current attack complexity becomes 232 ·232 =
264 computations.

Determine 2. For the third row and fourth row, the constraints are two-byte
values and two-byte differences, in total four bytes. Therefore, the SuperS-
Boxes of L3 and L4 can be fixed uniquely. This also generates the 1-byte
constraint on the difference of the first column. Because NDD for the first
column is 1, the difference for the first column is fixed. No more information
can be generated at this stage. Then, we move to the next guess phase.

Guess 3. We guess the remaining freedom degrees for the second row. It has
3-byte constraints in total; 1 is from • and 2 are from

√
, thus the remaining

freedom degrees is 28. This increases the current complexity by a factor of
28, which is 264 · 28 = 272 computations.

Determine 3. Finally, the values and differences can be fixed for all bytes. The
analysis order is shown in Fig. 6. For each of the fully fixed information, we
examine the correctness of the guess. The expected number of solutions is
1. We will find it after iterating 272 guesses.

The above analysis indicates that guessing 272 values and differences in the
above order is enough to examine the all possible differences and values to satisfy
the inbound characteristic with given differences of #S3SB and #S7AR. The
procedure is the depth first search, hence the amount of required memory is
much less than 14 · 232 which is required to make SuperSBoxes.

Each of #S3SB and #S7AR can take 232 differences in maximum. Therefore,
we can iterate the inbound phase 264 times in maximum with spending 272

cost for each difference. The outbound characteristic is satisfied with probability
2−48, thus we need to produce 248 solutions of the inbound phase. The total
complexity to satisfy the entire characteristic is 248 · 272 = 2120.

For the ideal 224-bit permutation, the best attack to satisfy the pair which
has the same input and output differences is the limited-birthday distinguisher
[5]. Let I and O be the size of the difference for the input state and the
output state, respectively. The complexity is known as max{min{2(n+1−I)/2,

438 Y. Sasaki et al.

Li’

Li

1 2 3 4 5 6 7
1
2
3
4
5
6
7

1 3 3 2 3 2 2

(1)(2)

Li’

1 2 3 4 5 6 7
1
2
3
4
5
6
7

1 3 3 2 3 2 2

(3)
(4)

(5)

Li’

1 2 3 4 5 6 7
1
2
3
4
5
6
7

1 3 3 2 3 2 2

(6)

Li’

1 2 3 4 5 6 7
1
2
3
4
5
6
7

1 3 3 2 3 2 2
(8)

(7)(10)(9)

(11)

(12)
(13)

(14)
After the 2nd guess After the 2nd determine After the 3rd guess After the 3rd determine

Fig. 6. Procedure for the Inbound Phase of Rijndael-224

2(n+1−O)/2}, 2n+1−I−O}. For our case with I = 32, O = 32 and n = 224, the
complexity is 2224+1−32−32 = 2161. Hence, our distinguisher is valid. As far as
we know, this is the first distinguisher on 9-round Rijndael-224.

4.2 Summary of Other Results

Similarly to Rijndael-224, we applied our tool to evaluate the attack complexity
for Rijndael-160, -192, -256, and the Grøstl-512 permutation. For the Rijndael-
160, -192, and -256, the known best results reach 8 rounds, 8 rounds, and 9
rounds, respectively. Hence, we evaluated the complexity for 9 rounds, 9 rounds,
and 10 rounds, respectively.

For Rijndael-160, the obtained best attack complexity requires 2112 computa-
tions, while the limited birthday distinguisher on an ideal 160-bit permutation
requires 297 queries. Therefore, the improved rebound attack cannot be applied.

For Rijndael-192, the obtained best attack complexity requires 2112 computa-
tions, while the limited birthday distinguisher on an ideal 192-bit permutation
requires 2129 queries. Therefore, we obtain a valid distinguisher. As far as we
know this is the first distinguisher on 9-round Rijndael-192.

For Rijndael-256, the obtained best attack complexity requires 2128 computa-
tions, while the limited birthday distinguisher on an ideal 256-bit permutation
requires 296 queries. Therefore, the improved rebound attack cannot be applied.

For the Grøstl-512 permutation, the authors of [11] already achieved a valid
distinguisher on 10 rounds. We examined if there exist other row/column or-
ders which have a lower attack complexity. As a result, we found that the best
complexity is the same as the one in [11], however we found many different
row/column orders that achieve the same complexity as [11].

5 Searching for Stronger ShiftRows Parameters

The efficiency of the improved rebound attack depends on the ShiftRows pa-
rameter. In this section, we exhaustively examine all the possible ShiftRows

An Automated Evaluation Tool for Improved Rebound Attack 439

parameters when the state size is given, and search for the strongest parameters
against the improved rebound attack.

We choose the parameters under the following rules; the first parameter is 0
and all of eight parameters are different in the ascendant order. With these rules,
the number of possible patterns is

(
15
7

)
= 6435. However, several choices produce

exactly the same results, i.e., there exist equivalent classes. We found that two
intersection tables satisfying the following two conditions are equivalent.

- Two rowmodels can be identical by applying the rotation.
- Two NDDs can be identical by applying the rotation.

We need to consider only one parameter in the same equivalent classes, and
the number of equivalent classes is about 600. Compared to the original 6435
patterns, the search space becomes about 1/10.

At the first glance, the active byte position of the differential characteristic
appears to affect the attack complexity. However, it actually does not affect.
Changing the active byte position results in the rotated NDD. The original
and rotated NDDs belong to the same equivalent class and result in the same
complexity. Hence, our tool covers any active byte positions.

Evaluation Results. Regarding Rijndael-160, Rijndael-192 and Rijndael-256,
the best attack complexity is always the same for all possible parameters. In other
words, all ShiftRows parameters have the same strength against the improved
rebound attack.

Regarding Rijndael-224, the weakest parameters allow the distinguisher with
2104 computations, while the strongest parameters can ensure at least 2120 com-
putations to be distinguished. The Rijndael-224 specification uses one of the
strongest parameters. Although the best complexity changes, it is the same for
all parameters that the distinguisher can work up to 9 rounds.

The results on the Grøstl-512 permutation are the most interesting. Weak
parameters can be distinguished up to 10 rounds, while the strong parameters
can ensure the complexity which is more than the generic attack. Therefore,
the 10-round distinguisher can be prevented by adopting strong parameters. In
details, the weakest parameters allow the distinguisher with 2336 computations
while the generic attack complexity is 2449. The strongest parameters can ensure
2464 computations. Note that the specified parameters of the Grøstl-512 permu-
tation (identical for P1024 and Q1024) are distinguished with 2392 computations.
Examples of the strongest parameters are (0, 1, 2, 3, 4, 7, 9, 12), and all the other
parameters ensuring the complexity of 2464 are listed in Appendix. Note that all
of them satisfy the design criteria in the Grøstl specification [13].

6 Concluding Remarks

In this paper, we developed the automated evaluation tool for the improved re-
bound attack against AES-like permutations with several fast implementation
techniques. The tool evaluates all possible analytic orders and derives the best

440 Y. Sasaki et al.

attack complexity when the state size and the ShiftRows parameters are given.
We applied the tool to large block Rijndael and the Grøstl-512 permutation to
find that the attack can be applied to 9 rounds of Rijndael-192 and Rijndael-224.
These are the first distinguishing attacks for 9 rounds. It also shows the impossi-
bility of the improved rebound attack against 9-round Rijndael-160 and 10-round
Rijndael-256, and optimality of the previous attack against the Grøstl-512 per-
mutation. Finally, we used the tool to test all possible ShiftRows parameters. We
found several new parameters for the Grøstl-512 permutation that can prevent
the 10-round attack.

An interesting open problem is detecting the relationship between the number
of classes of ShiftRows parameters and the state size. For example, for Rijndael-
160, Rijndael-192 and Rijndael-256, the best attack complexity is always the
same for all possible parameters, but we obtained different attack complexity
for Rijndael-224 and Grøstl-512 permutation. Finding some systematic relation-
ship and theoretical reasoning seems hard but interesting as a future research
direction. It is also an interesting future work to see if the obtained new param-
eters are better in terms of other cryptanalytic techniques.

Acknowledgements. We appreciate the anonymous reviewers for their helpful
comments. Lei Wang is supported by the Singapore National Research Founda-
tion Fellowship 2012 (NRF-NRFF2012-06). Mitsugu Iwamoto is supported by
JSPS KAKENHI Grant No. 23760330.

References

1. Daemen, J., Rijmen, V.: AES Proposal: Rijndael (1998)
2. Knudsen, L.R., Rijmen, V.: Known-key distinguishers for some block ciphers. In:

Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 315–324. Springer,
Heidelberg (2007)

3. Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.S.: The rebound attack:
Cryptanalysis of reduced Whirlpool and Grøstl. In: Dunkelman, O. (ed.) FSE 2009.
LNCS, vol. 5665, pp. 260–276. Springer, Heidelberg (2009)

4. Mendel, F., Peyrin, T., Rechberger, C., Schläffer, M.: Improved cryptanalysis of
the reduced Grøstl compression function, ECHO permutation and AES block ci-
pher. In: Jacobson Jr., M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS,
vol. 5867, pp. 16–35. Springer, Heidelberg (2009)

5. Gilbert, H., Peyrin, T.: Super-sbox cryptanalysis: Improved attacks for AES-like per-
mutations. In: Hong, S., Iwata, T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 365–383.
Springer, Heidelberg (2010)

6. Lamberger, M., Mendel, F., Rechberger, C., Rijmen, V., Schläffer, M.: Rebound
distinguishers: Results on the full Whirlpool compression function. In: Matsui,
M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 126–143. Springer, Heidelberg
(2009)

7. Matusiewicz, K., Naya-Plasencia, M., Nikolić, I., Sasaki, Y., Schläffer, M.: Rebound
attack on the full lane compression function. In: Matsui, M. (ed.) ASIACRYPT
2009. LNCS, vol. 5912, pp. 106–125. Springer, Heidelberg (2009)

An Automated Evaluation Tool for Improved Rebound Attack 441

8. Peyrin, T.: Improved differential attacks for ECHO and Grøstl. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 370–392. Springer, Heidelberg (2010)

9. Sasaki, Y., Li, Y., Wang, L., Sakiyama, K., Ohta, K.: Non-full-active super-sbox
analysis: Applications to ECHO and Grøstl. In: Abe, M. (ed.) ASIACRYPT 2010.
LNCS, vol. 6477, pp. 38–55. Springer, Heidelberg (2010)

10. Naya-Plasencia, M.: How to improve rebound attacks. In: Rogaway, P. (ed.)
CRYPTO 2011. LNCS, vol. 6841, pp. 188–205. Springer, Heidelberg (2011)

11. Jean, J., Naya-Plasencia, M., Peyrin, T.: Improved rebound attack on the finalist
Grøstl. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp. 110–126. Springer,
Heidelberg (2012)

12. Fouque, P.-A., Jean, J., Peyrin, T.: Structural evaluation of AES and chosen-key
distinguisher of 9-round AES-128. In: Canetti, R., Garay, J.A. (eds.) CRYPTO
2013, Part I. LNCS, vol. 8042, pp. 183–203. Springer, Heidelberg (2013)

13. Gauravaram, P., Knudsen, L.R., Matusiewicz, K., Mendel, F., Rechberger, C.,
Schläffer, M., Thomsen, S.S.: Grøstl addendum. Submission to NIST (2009) (up-
dated)

14. Minier, M., Phan, R.C.-W., Pousse, B.: Distinguishers for ciphers and known key
attack against rijndael with large blocks. In: Preneel, B. (ed.) AFRICACRYPT
2009. LNCS, vol. 5580, pp. 60–76. Springer, Heidelberg (2009)

15. Sasaki, Y.: Known-key attacks on rijndael with large blocks and strengthening
shiftRow parameter. In: Echizen, I., Kunihiro, N., Sasaki, R. (eds.) IWSEC 2010.
LNCS, vol. 6434, pp. 301–315. Springer, Heidelberg (2010)

16. Daemen, J., Rijmen, V.: The design of Rijndeal: AES – the Advanced Encryption
Standard (AES). Springer, Heidelberg (2002)

17. U.S. Department of Commerce, National Institute of Standards and Technology:
Specification for the ADVANCED ENCRYPTION STANDARD (AES) (Federal
Information Processing Standards Publication 197) (2001)

18. U.S. Department of Commerce, National Institute of Standards and Technol-
ogy: Federal Register /Vol. 72, No. 212/Friday, November 2, 2007/Notices (2007)
http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf.

19. Tokushige, Y.: Implemented tool of the improved rebound attack. Contact to the au-
thors if the link is closed (2013), http://ohta-lab.jp/member/yuuki-tokushige/
an-automated-evaluation-tool-for-improved-rebound-attack/

20. Iwamoto, M., Peyrin, T., Sasaki, Y.: Limited-birthday distinguishers for hash
functions: Collisions beyond the birthday bound can be meaningful. In: Sako,
K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp. 504–523.
Springer, Heidelberg (2013)

21. Nakasone, T., Li, Y., Sasaki, Y., Iwamoto, M., Ohta, K., Sakiyama, K.: Key-
dependentweakness of AES-based ciphers under clockwise collision distinguisher. In:
Kwon, T., Lee, M.-K., Kwon, D. (eds.) ICISC 2012. LNCS, vol. 7839, pp. 395–409.
Springer, Heidelberg (2013)

http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf
http://ohta-lab.jp/member/yuuki-tokushige/an-automated-evaluation-tool-for-improved-rebound-attack/
http://ohta-lab.jp/member/yuuki-tokushige/an-automated-evaluation-tool-for-improved-rebound-attack/

442 Y. Sasaki et al.

A Experiment on New ShiftBytes for Grøstl-512

By applying our tool for all possible ShiftBytes parameters of the Grøstl-512
permutation, we found that the parameters can be classified into 14 classes.
Note that the improved rebound attack distinguishes a problem on which the
complexity for an ideal case is 2441. The weakest class, which contains 32 param-
eters, allows the improved rebound attack with a complexity of 2336 computa-
tions, while the strongest class, which contains 128 parameters, can ensure that
the optimal complexity of the improved rebound attack is 2464 computations.
The second strongest, which contains 256 parameters, class can also ensure the
optimal complexity of 2456 computations. The results are shown in Table 3.

In Table 4, we list all 128 parameters ensuring the complexity of 2464 against
the improved rebound attack. We found 16 equivalent classes, and each class
contains 8 different parameters.

There are several previous researches studying good ShiftRows parameters
[21,15]. Nakasone et al. pointed out that including 0 in the ShiftRows parameter
causes an efficient side-channel analysis exploiting the clock-wise collision. If an
AES-like structure should be designed by taking into account the clock-wise
collision, the parameters in Table 4 can be rotated so that 0 is not included in
the parameter. For example, the first parameter in Class 1 can be rotated by 1,
which results in (1, 2, 3, 4, 5, 8, 10, 13).

Table 3. Number of Parameters in Each Class. The attack for an ideal case costs 2441.

Attack Complexity #parameters Remarks
(in logarithm)

336 32
360 128
376 64
384 320
392 320 the original parameters belong to this class
400 192
408 352
416 480
424 928
432 1000
440 736
448 512
456 256 resist the 10-round distinguisher
464 128 resist the 10-round distinguisher

An Automated Evaluation Tool for Improved Rebound Attack 443

Table 4. 128 New ShiftBytes Parameters for the Grøstl-512 Permutation

Class 1
(0 , 1 , 2 , 3 , 4 , 7 , 9 ,12)
(0 , 1 , 2 , 3 , 6 , 8 ,11 ,15)
(0 , 1 , 2 , 5 , 7 ,10 ,14 ,15)
(0 , 1 , 4 , 6 , 9 ,13 ,14 ,15)
(0 , 2 , 5 , 9 ,10 ,11 ,12 ,13)
(0 , 3 , 5 , 8 ,12 ,13 ,14 ,15)
(0 , 3 , 7 , 8 , 9 ,10 ,11 ,14)
(0 , 4 , 5 , 6 , 7 , 8 ,11 ,13)

Class 2
(0 , 1 , 2 , 3 , 4 , 8 ,11 ,13)
(0 , 1 , 2 , 3 , 7 ,10 ,12 ,15)
(0 , 1 , 2 , 6 , 9 ,11 ,14 ,15)
(0 , 1 , 5 , 8 ,10 ,13 ,14 ,15)
(0 , 2 , 5 , 6 , 7 , 8 , 9 ,13)
(0 , 3 , 4 , 5 , 6 , 7 ,11 ,14)
(0 , 3 , 5 , 8 , 9 ,10 ,11 ,12)
(0 , 4 , 7 , 9 ,12 ,13 ,14 ,15)

Class 3
(0 , 1 , 2 , 3 , 5 , 8 , 9 ,14)
(0 , 1 , 2 , 4 , 7 , 8 ,13 ,15)
(0 , 1 , 3 , 6 , 7 ,12 ,14 ,15)
(0 , 1 , 6 , 8 , 9 ,10 ,11 ,13)
(0 , 2 , 3 , 4 , 5 , 7 ,10 ,11)
(0 , 2 , 5 , 6 ,11 ,13 ,14 ,15)
(0 , 3 , 4 , 9 ,11 ,12 ,13 ,14)
(0 , 5 , 7 , 8 , 9 ,10 ,12 ,15)

Class 4
(0 , 1 , 2 , 3 , 5 , 8 ,11 ,12)
(0 , 1 , 2 , 4 , 7 ,10 ,11 ,15)
(0 , 1 , 3 , 6 , 9 ,10 ,14 ,15)
(0 , 1 , 5 , 6 , 7 , 8 ,10 ,13)
(0 , 2 , 5 , 8 , 9 ,13 ,14 ,15)
(0 , 3 , 4 , 8 , 9 ,10 ,11 ,13)
(0 , 3 , 6 , 7 ,11 ,12 ,13 ,14)
(0 , 4 , 5 , 6 , 7 , 9 ,12 ,15)

Class 5
(0 , 1 , 2 , 3 , 5 ,10 ,11 ,14)
(0 , 1 , 2 , 4 , 9 ,10 ,13 ,15)
(0 , 1 , 3 , 8 , 9 ,12 ,14 ,15)
(0 , 1 , 4 , 6 , 7 , 8 , 9 ,11)
(0 , 2 , 3 , 4 , 5 , 7 ,12 ,13)
(0 , 2 , 7 , 8 ,11 ,13 ,14 ,15)
(0 , 3 , 5 , 6 , 7 , 8 ,10 ,15)
(0 , 5 , 6 , 9 ,11 ,12 ,13 ,14)

Class 6
(0 , 1 , 2 , 3 , 5 ,10 ,12 ,13)
(0 , 1 , 2 , 4 , 9 ,11 ,12 ,15)
(0 , 1 , 3 , 8 ,10 ,11 ,14 ,15)
(0 , 1 , 4 , 5 , 6 , 7 , 9 ,14)
(0 , 2 , 3 , 6 , 7 , 8 , 9 ,11)
(0 , 2 , 7 , 9 ,10 ,13 ,14 ,15)
(0 , 3 , 4 , 5 , 6 , 8 ,13 ,15)
(0 , 5 , 7 , 8 ,11 ,12 ,13 ,14)

Class 7
(0 , 1 , 2 , 3 , 6 , 7 , 9 ,14)
(0 , 1 , 2 , 5 , 6 , 8 ,13 ,15)
(0 , 1 , 3 , 8 ,10 ,11 ,12 ,13)
(0 , 1 , 4 , 5 , 7 ,12 ,14 ,15)
(0 , 2 , 3 , 4 , 5 , 8 , 9 ,11)
(0 , 2 , 7 , 9 ,10 ,11 ,12 ,15)
(0 , 3 , 4 , 6 ,11 ,13 ,14 ,15)
(0 , 5 , 7 , 8 , 9 ,10 ,13 ,14)

Class 8
(0 , 1 , 2 , 3 , 6 , 8 , 9 ,13)
(0 , 1 , 2 , 5 , 7 , 8 ,12 ,15)
(0 , 1 , 4 , 6 , 7 ,11 ,14 ,15)
(0 , 1 , 5 , 8 , 9 ,10 ,11 ,14)
(0 , 2 , 3 , 7 ,10 ,11 ,12 ,13)
(0 , 3 , 4 , 5 , 6 , 9 ,11 ,12)
(0 , 3 , 5 , 6 ,10 ,13 ,14 ,15)
(0 , 4 , 7 , 8 , 9 ,10 ,13 ,15)

Class 9
(0 , 1 , 2 , 3 , 6 ,10 ,11 ,13)
(0 , 1 , 2 , 5 , 9 ,10 ,12 ,15)
(0 , 1 , 3 , 6 , 7 , 8 , 9 ,12)
(0 , 1 , 4 , 8 , 9 ,11 ,14 ,15)
(0 , 2 , 5 , 6 , 7 , 8 ,11 ,15)
(0 , 3 , 4 , 5 , 6 , 9 ,13 ,14)
(0 , 3 , 7 , 8 ,10 ,13 ,14 ,15)
(0 , 4 , 5 , 7 ,10 ,11 ,12 ,13)

Class 10
(0 , 1 , 2 , 3 , 7 , 8 ,11 ,14)
(0 , 1 , 2 , 6 , 7 ,10 ,13 ,15)
(0 , 1 , 4 , 7 , 9 ,10 ,11 ,12)
(0 , 1 , 5 , 6 , 9 ,12 ,14 ,15)
(0 , 2 , 3 , 4 , 5 , 9 ,10 ,13)
(0 , 3 , 5 , 6 , 7 , 8 ,12 ,13)
(0 , 3 , 6 , 8 , 9 ,10 ,11 ,15)
(0 , 4 , 5 , 8 ,11 ,13 ,14 ,15)

Class 11
(0 , 1 , 2 , 4 , 5 , 7 , 9 ,10)
(0 , 1 , 3 , 4 , 6 , 8 , 9 ,15)
(0 , 1 , 3 , 5 , 6 ,12 ,13 ,14)
(0 , 1 , 7 , 8 , 9 ,11 ,12 ,14)
(0 , 2 , 3 , 5 , 7 , 8 ,14 ,15)
(0 , 2 , 3 , 9 ,10 ,11 ,13 ,14)
(0 , 2 , 4 , 5 ,11 ,12 ,13 ,15)
(0 , 6 , 7 , 8 ,10 ,11 ,13 ,15)

Class 12
(0 , 1 , 2 , 4 , 5 ,10 ,11 ,13)
(0 , 1 , 3 , 4 , 9 ,10 ,12 ,15)
(0 , 1 , 3 , 6 , 7 , 8 ,10 ,11)
(0 , 1 , 6 , 7 , 9 ,12 ,13 ,14)
(0 , 2 , 3 , 8 , 9 ,11 ,14 ,15)
(0 , 2 , 5 , 6 , 7 , 9 ,10 ,15)
(0 , 3 , 4 , 5 , 7 , 8 ,13 ,14)
(0 , 5 , 6 , 8 ,11 ,12 ,13 ,15)

Class 13
(0 , 1 , 2 , 5 , 6 , 8 , 9 ,11)
(0 , 1 , 3 , 4 , 6 ,11 ,12 ,13)
(0 , 1 , 3 , 8 , 9 ,10 ,13 ,14)
(0 , 1 , 4 , 5 , 7 , 8 ,10 ,15)
(0 , 2 , 3 , 5 ,10 ,11 ,12 ,15)
(0 , 2 , 7 , 8 , 9 ,12 ,13 ,15)
(0 , 3 , 4 , 6 , 7 , 9 ,14 ,15)
(0 , 5 , 6 , 7 ,10 ,11 ,13 ,14)

Class 14
(0 , 1 , 2 , 5 , 7 , 8 ,13 ,14)
(0 , 1 , 3 , 4 , 5 , 8 ,10 ,11)
(0 , 1 , 4 , 6 , 7 ,12 ,13 ,15)
(0 , 1 , 6 , 7 , 9 ,10 ,11 ,14)
(0 , 2 , 3 , 4 , 7 , 9 ,10 ,15)
(0 , 2 , 3 , 8 , 9 ,11 ,12 ,13)
(0 , 3 , 5 , 6 ,11 ,12 ,14 ,15)
(0 , 5 , 6 , 8 , 9 ,10 ,13 ,15)

Class 15
(0 , 1 , 2 , 7 , 9 ,10 ,12 ,13)
(0 , 1 , 3 , 4 , 7 , 8 , 9 ,14)
(0 , 1 , 4 , 5 , 6 ,11 ,13 ,14)
(0 , 1 , 6 , 8 , 9 ,11 ,12 ,15)
(0 , 2 , 3 , 5 , 6 , 9 ,10 ,11)
(0 , 2 , 3 , 6 , 7 , 8 ,13 ,15)
(0 , 3 , 4 , 5 ,10 ,12 ,13 ,15)
(0 , 5 , 7 , 8 ,10 ,11 ,14 ,15)

Class 16
(0 , 1 , 2 , 8 , 9 ,11 ,13 ,14)
(0 , 1 , 3 , 4 , 5 ,11 ,12 ,14)
(0 , 1 , 3 , 5 , 6 , 8 , 9 ,10)
(0 , 1 , 7 , 8 ,10 ,12 ,13 ,15)
(0 , 2 , 3 , 4 ,10 ,11 ,13 ,15)
(0 , 2 , 3 , 5 , 6 , 7 ,13 ,14)
(0 , 2 , 4 , 5 , 7 , 8 , 9 ,15)
(0 , 6 , 7 , 9 ,11 ,12 ,14 ,15)

Practical Collision Attack on 40-Step RIPEMD-128

Gaoli Wang1,2

1 Donghua University
School of Computer Science and Technology, Shanghai, China

2 State Key Laboratory of Information Security Institute of Information Engineering,
Chinese Academy of Sciences, Beijing, China

wanggaoli@dhu.edu.cn

Abstract. RIPEMD-128 is an ISO/IEC standard cryptographic hash function
proposed in 1996 by Dobbertin, Bosselaers and Preneel. The compression func-
tion of RIPEMD-128 consists of two different and independent parallel lines de-
noted by line1 operation and line2 operation. The initial values and the output
values of the last step of the two operations are combined, resulting in the final
value of one iteration. In this paper, we present collision differential characteris-
tics for both line1 operation and line2 operation by choosing a proper message
difference. By using message modification technique seriously, we improve the
probabilities of the differential characteristics so that we can give a collision at-
tack on 40-step RIPEMD-128 with a complexity of 235 computations.

Keywords: Hash function, collisions, RIPEMD-128, differential characteristic,
message modification.

1 Introduction

The cryptographic hash function RIPEMD-128 [1] was proposed in 1996 by Hans Dob-
bertin, Antoon Bosselaers and Bart Preneel. It was standardized by ISO/IEC [2] and was
used in HMAC in RFC [3]. The design philosophy of RIPEMD-128 adopts the experi-
ence gained by evaluating MD4 [9], MD5 [10], and RIPEMD [8] etc.. RIPEMD-128 is
a double-branch hash function, where the compression function consists of two parallel
operations denoted by line1 operation and line2 operation, respectively. The combina-
tion of Hi−1, line1(Hi−1,Mi−1) and line2(Hi−1,Mi−1) generates the output Hi, where Hi−1

is the standard initial value or the output of the message block Mi−2.
As far as we know, the published cryptanalysis of (reduced) RIPEMD-128 includes

collision attacks [5,6,12], (semi-)free-start collision attacks [4,5], near collision attack
[5], (second) preimage attacks [7,13] and distinguishing attack [11]. As for the practical
collision attacks on step reduced RIPEMD-128, Wang et al. presented an example of
collision on 32-step RIPEMD-128 in 2008 [12], Mendel et al. presented an example
of collision on 38-step RIPEMD-128 in 2012 [5]. In the work [5], finding differential
characteristic and performing message modification in the first round are achieved by
an automatic search tool.

It is widely believed that it is difficult to construct a differential characteristic
including the first round of line1 operation because the absorption property of the

J. Benaloh (Ed.): CT-RSA 2014, LNCS 8366, pp. 444–460, 2014.
c© Springer International Publishing Switzerland 2014

Practical Collision Attack on 40-Step RIPEMD-128 445

boolean function X ⊕ Y ⊕ Z does not hold. Thus, in the collision attack on 32-step
RIPEMD-128 [12], the difference of messages is chosen as Δm14 � 0, Δmi = 0(0 ≤
i ≤ 15, i � 14) such that the differential characteristic of line1 operation almost keeps
away from the boolean function X ⊕ Y ⊕ Z. Inspired by Mendel’s work [5], we were
motivated to find a differential characteristic of line1 operation, which takes advantage
of the property of the boolean function X ⊕ Y ⊕ Z. By choosing a different message
difference than in [5], the number of the attacked steps can be increased by two.

In this paper, we use the bit tracing method to propose a collision attack on 40-step
RIPEMD-128 with a complexity of 235. The bit tracing method is proposed by Wang
and formalized in [15,16]. It is very powerful to break most of the dedicated hash func-
tions such as MD4 [15,20], RIPEMD [15], HAVAL [14,19], MD5 [16], SHA-0 [17]
and SHA-1 [18]. However, in the double-branch hash functions, two state words are
updated using a single message word. Therefore, the application of bit tracing method
to RIPEMD-128 is far from being trivial. In this paper, constructing differential charac-
teristic, deducing the sufficient conditions and performing message modification are all
fulfilled by hand. The previous results and our results are summarized in Table 1.

Table 1. Summary of the Attacks on RIPEMD-128

Attack Steps Generic Complexity Reference
collision 32 264 228 [12]
collision 38 264 214 [5]
collision 40 264 235 Ours

near collision 44 247.8 232 [5]
free-start collision 48 264 240 [5]

preimage 33 2128 2124.5 [7]
preimage 35∗ 2128 2121 [7]
preimage 36∗ 2128 2126.5 [13]

distinguishing 48 276 270 [5]
distinguishing 45 242 227 [11]
distinguishing 47 242 239 [11]
distinguishing 48 − 253 [11]
distinguishing 52 − 2107 [11]
distinguishing 64 2128 2105.4 [4]

semi-free-start collision 64 264 261.57 [4]
∗ The attack starts from an intermediate step.

The rest of the paper is organized as follows: In Section 2, we describe the RIPEMD-
128 algorithm. In Section 3, we introduce some useful properties of the nonlinear func-
tions in RIPEMD-128 and some notations. Section 4 will show the detailed descriptions
of the attack on RIPEMD-128. Finally, we summarize the paper in Section 5.

2 Description of RIPEMD-128

The hash function RIPEMD-128 compresses any arbitrary length message into a mes-
sage with length of 128 bit. Firstly the algorithm pads any given message into a

446 G. Wang

message with length of 512 bit multiple. For the description of the padding method
we refer to [1]. Then, for each 512-bit message block, RIPEMD-128 compresses it into
a 128-bit hash value by a compression function, which is composed of two parallel op-
erations: line1 and line2. Each operation has four rounds, and each round has 16 steps.
The initial value is (a, b, c, d) = (0x67452301, 0xe f cdab89, 0x98badc f e, 0x10325476).
The nonlinear functions in each round are as follows:

F(X, Y, Z) = X ⊕ Y ⊕ Z,

G(X, Y, Z) = (X ∧ Y) ∨ (¬X ∧ Z),

H(X, Y, Z) = (X ∨ ¬Y) ⊕ Z,

I(X, Y, Z) = (X ∧ Z) ∨ (Y ∧ ¬Z).

Here X, Y, Z are 32-bit words. The four boolean functions are all bitwise operations.
¬ represents the bitwise complement of X. ∧, ⊕ and ∨ are bitwise AND, XOR and
OR respectively. In each step of both line1 operation and line2 operation, one the four
chaining variables a, b, c, d is updated.

φ0(a, b, c, d, x, s) = (a + F(b, c, d) + x)≪ s,

φ1(a, b, c, d, x, s) = (a +G(b, c, d) + x + 0x5a827999)≪ s,

φ2(a, b, c, d, x, s) = (a + H(b, c, d) + x + 0x6ed9eba1)≪ s,

φ3(a, b, c, d, x, s) = (a + I(b, c, d) + x + 0x8 f 1bbcdc)≪ s,

ψ0(a, b, c, d, x, s) = (a + I(b, c, d) + x + 0x50a28be6)≪ s,

ψ1(a, b, c, d, x, s) = (a + H(b, c, d) + x + 0x5c4dd124)≪ s,

ψ2(a, b, c, d, x, s) = (a +G(b, c, d) + x + 0x6d703e f 3)≪ s,

ψ3(a, b, c, d, x, s) = (a + F(b, c, d) + x)≪ s.

<<< s represents the circular shift s bit positions to the left. + denotes addition modulo
232.

line1 operation. For a 512-bit block M = (m0,m1, . . . ,m15), line1 operation is as fol-
lows:

1. Let (a, b, c, d) = (a0, b0, c0, d0) be the input of line1 operation for M. If M is the
first block to be hashed, (a0, b0, c0, d0) is the initial value. Otherwise it is the output
of compressing the previous block.

2. Perform the following 64 steps (four rounds):
For j = 0, 1, 2, 3,
For i = 0, 1, 2, 3,
a = φ j(a, b, c, d,mord1(j,16 j+4i+1), s1 j,16 j+4i+1),
d = φ j(d, a, b, c,mord1(j,16 j+4i+2), s1 j,16 j+4i+2),
c = φ j(c, d, a, b,mord1(j,16 j+4i+3), s1 j,16 j+4i+3),
b = φ j(b, c, d, a,mord1(j,16 j+4i+4), s1 j,16 j+4i+4).

Practical Collision Attack on 40-Step RIPEMD-128 447

line2 operation. For a 512-bit block M = (m0,m1, . . . ,m15), line2 operation is as fol-
lows:

1. Let (aa, bb, cc, dd) = (a0, b0, c0, d0) be the input of line2 operation for M. If M is
the first block to be hashed, (a0, b0, c0, d0) is the initial value. Otherwise it is the
output of compressing the previous block.

2. Perform the following 64 steps (four rounds):
For j = 0, 1, 2, 3,
For i = 0, 1, 2, 3,
aa = ψ j(aa, bb, cc, dd,mord2(j,16 j+4i+1), s2 j,16 j+4i+1),
dd = ψ j(dd, aa, bb, cc,mord2(j,16 j+4i+2), s2 j,16 j+4i+2),
cc = ψ j(cc, dd, aa, bb,mord2(j,16 j+4i+3), s2 j,16 j+4i+3),
bb = ψ j(bb, cc, dd, aa,mord2(j,16 j+4i+4), s2 j,16 j+4i+4).

The output of compressing the block M is obtained by combining the initial value
with the outputs of line1 and line2 operations: a = b0 + c + dd, b = c0 + d + aa,
c = d0 + a + bb, d = a0 + b+ cc. If M is the last message block, then a ‖ b ‖ c ‖ d is the
hash value, where ‖ denotes the bit concatenation. Otherwise repeat the compression
process for the next 512-bit message. The order of message words and the details of the
shift positions can be seen in Table 2.

Table 2. Order of the Message Words and Shift Positions in RIPEMD-128

Step i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
ord1(0, i) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

line1 s10,i 11 14 15 12 5 8 7 9 11 13 14 15 6 7 9 8
ord2(0, i) 5 14 7 0 9 2 11 4 13 6 15 8 1 10 3 12

line2 s20,i 8 9 9 11 13 15 15 5 7 7 8 11 14 14 12 6
Step i 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

ord1(1, i) 7 4 13 1 10 6 15 3 12 0 9 5 2 14 11 8
line1 s11,i 7 6 8 13 11 9 7 15 7 12 15 9 11 7 13 12

ord2(1, i) 6 11 3 7 0 13 5 10 14 15 8 12 4 9 1 2
line2 s21,i 9 13 15 7 12 8 9 11 7 7 12 7 6 15 13 11

Step i 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
ord1(2, i) 3 10 14 4 9 15 8 1 2 7 0 6 13 11 5 12

line1 s12,i 11 13 6 7 14 9 13 15 14 8 13 6 5 12 7 5
ord2(2, i) 15 5 1 3 7 14 6 9 11 8 12 2 10 0 4 13

line2 s22,i 9 7 15 11 8 6 6 14 12 13 5 14 13 13 7 5
Step i 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

ord1(3, i) 1 9 11 10 0 8 12 4 13 3 7 15 14 5 6 2
line1 s13,i 11 12 14 15 14 15 9 8 9 14 5 6 8 6 5 12

ord2(3, i) 8 6 4 1 3 11 15 0 5 12 2 13 9 7 10 14
line2 s23,i 15 5 8 11 14 14 6 14 6 9 12 9 12 5 15 8

448 G. Wang

3 Some Basic Conclusions and Notations

In this section we will recall some properties of the four nonlinear functions in our
attack.

Proposition 1. For the nonlinear function F(x, y, z) = x ⊕ y ⊕ z, there are the following
properties:

1. F(0, y, z) = 0 and F(1, y, z) = 1⇐⇒ y = z.
F(0, y, z) = 1 and F(1, y, z) = 0⇐⇒ y � z.
F(x, 0, z) = 0 and F(x, 1, z) = 1⇐⇒ x = z.
F(x, 0, z) = 1 and F(x, 1, z) = 0⇐⇒ x � z.
F(x, y, 0) = 0 and F(x, y, 1) = 1⇐⇒ x = y.
F(x, y, 0) = 1 and F(x, y, 1) = 0⇐⇒ x � y.

2. F(x, y, z) = F(¬x,¬y, z) = F(x,¬y,¬z) = F(¬x, y,¬z).

Proposition 2. For the nonlinear function G(x, y, z) = (x ∧ y) ∨ (¬x ∧ z) , there are the
following properties:

1. G(x, y, z) = G(¬x, y, z)⇐⇒ y = z.
G(0, y, z) = 0 and G(1, y, z) = 1⇐⇒ y = 1 and z = 0.
G(0, y, z) = 1 and G(1, y, z) = 0⇐⇒ y = 0 and z = 1.

2. G(x, y, z) = G(x,¬y, z)⇐⇒ x = 0.
G(x, 0, z) = 0 and G(x, 1, z) = 1⇐⇒ x = 1.

3. G(x, y, z) = G(x, y,¬z)⇐⇒ x = 1.
G(x, y, 0) = 0 and G(x, y, 1) = 1⇐⇒ x = 0.

Proposition 3. For the nonlinear function H(x, y, z) = (x ∨ ¬y) ⊕ z , there are the fol-
lowing properties:

1. H(x, y, z) = H(¬x, y, z)⇐⇒ y = 0.
H(0, y, z) = 0 and H(1, y, z) = 1⇐⇒ y = 1 and z = 0.
H(0, y, z) = 1 and H(1, y, z) = 0⇐⇒ y = 1 and z = 1.

2. H(x, y, z) = H(x,¬y, z)⇐⇒ x = 1.
H(x, 0, z) = 0 and H(x, 1, z) = 1⇐⇒ x = 0 and z = 1.
H(x, 0, z) = 1 and H(x, 1, z) = 0⇐⇒ x = 0 and z = 0.

3. H(x, y, 0) = 0 and H(x, y, 1) = 1⇐⇒ x = 0 and y = 1.
H(x, y, 0) = 1 and H(x, y, 1) = 0⇐⇒ x = 1 or y = 0.

Proposition 4. For the nonlinear function I(x, y, z) = (x ∧ z) ∨ (y ∧ ¬z) , there are the
following properties:

1. I(x, y, z) = I(¬x, y, z)⇐⇒ z = 0.
I(0, y, z) = 0 and I(1, y, z) = 1⇐⇒ z = 1.

Practical Collision Attack on 40-Step RIPEMD-128 449

2. I(x, y, z) = I(x,¬y, z)⇐⇒ z = 1.
I(x, 0, z) = 0 and I(x, 1, z) = 1⇐⇒ z = 0.

3. I(x, y, z) = I(x, y,¬z)⇐⇒ x = y.
I(x, y, 0) = 0 and I(x, y, 1) = 1⇐⇒ x = 1 and y = 0.
I(x, y, 0) = 1 and I(x, y, 1) = 0⇐⇒ x = 0 and y = 1.

Notations. In order to describe our attack conveniently, we define some notations in the
following.

1. M = (m0,m1, ...,m15) and M′ = (m′0,m
′
1, ...,m

′
15) represent two 512-bit messages.

2. ai, di, ci, bi respectively denote the outputs of the (4i − 3)-th, (4i − 2)-th, (4i− 1)-th
and 4i-th steps for compressing M in line1 operation, where 1 ≤ i ≤ 16.

3. aai, ddi, cci, bbi respectively denote the outputs of the (4i−3)-th, (4i−2)-th, (4i−1)-
th and 4i-th steps for compressing M in line2 operation, where 1 ≤ i ≤ 16.

4. a′i , d′i , c′i , b′i respectively denote the outputs of the (4i− 3)-th, (4i− 2)-th, (4i− 1)-th
and 4i-th steps for compressing M′ in line1 operation.

5. aa′i , dd′i , cc′i , bb′i respectively denote the outputs of the (4i − 3)-th, (4i − 2)-th,
(4i − 1)-th and 4i-th steps for compressing M′ in line2 operation.

6. Δmi = m′i − mi denotes the difference of two words mi and m′i . It is noted that Δmi

is a modular difference and not a XOR difference.
7. xi, j represent the j-th bit of xi, where the least significant bit is the 1-st bit, and the

most significant bit is 32-nd bit.
8. xi[j], xi[− j] are the resulting values by only changing the j-th bit of the word xi.

xi[j] is obtained by changing the j-th bit of xi from 0 to 1. xi[− j] is obtained by
changing the j-th bit of xi from 1 to 0.

9. xi[± j1,± j2, ...,± jl] is the value by change j1-th, j2-th, ..., jl-th bits of xi. The ”+”
sign means that the bit is changed from 0 to 1, and the ”-” sign means that the bit is
changed from 1 to 0.

4 The Collision Attack against 40-Step RIPEMD-128

The collision consists of a pair of two 512-bit blocks (N ‖ M,N ‖ M′). Let (a0, b0, c0, d0)
denote the input chaining value of the message block M. As stated below, in order to
implement the message modification, we have to add some conditions on b0, which
leads the hash value of the first block N to satisfy b0,i = 1 (i = 1, 2, 3, 27) and b0,i = 0
(i = 7, ..., 10, 13, ..., 24). We search the second block M in the following three parts:

1. Choose proper differences of message words and find two concrete differential
characteristics for line1 and line2 operations respectively in which M and M′ pro-
duces a collision. The differential characteristics without round 1 must hold with
high probability.

2. Derive two sets of sufficient conditions which ensure the two differential character-
istics hold, respectively.

3. Modify the message to fulfill most of the conditions on chaining variables.

450 G. Wang

4.1 Differential Characteristics for 40-Step RIPEMD-128

Choosing proper differences of message words plays an important role in constructing
differential characteristics which contain as many steps as possible and hold with high
probabilities after message modification. Let M = (m0,m1, . . . ,m15), we select ΔM =
M′ − M as follows: Δmi = 0 (0 ≤ i ≤ 15, i � 2, 12), Δm2 = 28 and Δm12 = −2. It
forms a local collision from step 25 to step 29 in line1 operation. Although in the same
round, there are the same circular shift values corresponding to the same message words
between line1 operation and line2 operation, e.g. in step 25 (29) of line1 operation, the
shift value is 7 (11) corresponding to the message word m12 (m2), and in step 28 (32)
of line2 operation, the shift value is also 7 (11) corresponding to the message word m12

(m2), it can not form a local collision from step 28 to step 32 in line2 operation. The
reason is that the property of the boolean function (X ∨ ¬Y) ⊕ Z make it need at least
three message words to form a local collision. Therefore, the differential characteristic
of line2 operation consists of one long local collision between step 6 to step 32. In round
3, the message differences first appear at step 41 of line1 operation and at step 43 of
line2 operation. Thus, we can get a collision attack on 40-step RIPEMD-128 by using
this message differences.

The boolean function X ⊕ Y ⊕ Z make it more difficult to construct a differential
characteristic in line1 operation. Hence, the differential characteristic of line1 operation
we presented in Table 8 is dense. The differential characteristic for line2 operation is
presented in Table 9, which makes the probability after round 1 hold as high as possible.

4.2 Deriving Conditions on Chaining Variables of line1 and line2 Operations

In this section, we derive two sets of sufficient conditions presented in Table 10 and
Table 11, which ensure the differential characteristics in Table 8 and Table 9 hold, re-
spectively. We describe how to derive a set of sufficient conditions that guarantee the
difference in steps 3-7 of table 8 hold. Other conditions can be derived similarly.

1. In step 3, the message difference Δm2 = 28 produces c1[−1,−2, 3,−24, ...,−32].
2. In step 4, (b0, a1, d1, c1[−1,−2, 3,−24, ...,−32])

=⇒ (a1, d1, c1[−1,−2, 3,−24, ...,−32], b1[4, ..., 10,−11, 12,−13, ...,−22, 23]).
According to Proposition 1, the conditions d1,i = a1,i (i = 1, 2, 3, 31) ensure

that the change of c1,i (i = 1, 2, 3, 31) results in Δb1 = −212 − 213 + 214 − 210.
Meanwhile, the conditions d1,i � a1,i (i = 24, ..., 30, 32) ensure that the change
of c1,i (i = 24, ..., 30, 32) results in Δb1 = 23 + ... + 29 + 211. Combined with the
conditions b1,i = 0 (i = 4, ..., 10, 12, 23) and b1,i = 1 (i = 11, 13, ..., 22), we can get
b′1 = b1[4, ..., 10,−11, 12,−13, ...,−22, 23].

3. In step 5, (a1, d1, c1[−1,−2, 3,−24, ...,−32], b1[4, ..., 10,−11, 12,−13, ...,−22, 23])
=⇒ (d1, c1[−1,−2, 3,−24, ...,−32], b1[4, ..., 10,−11, 12,−13, ...,−22, 23], a2[1,−2,
...,−11, 12, ..., 21,−22, ...,−32]).

From Proposition 1, the conditions b1,i = d1,i (i = 1, 2, 24, ..., 27, 29, ..., 32) and
b1,i � d1,i (i = 3, 28) ensure that the change of c1 results in Δa2 = 1 − 2 − 22 − ... −
27 − 228 − ...− 231. Meanwhile, the conditions c1,i = d1,i (i = 7, ..., 10, 12, 17, ..., 22)
and c1,i � d1,i (i = 4, 5, 6, 11, 13, ..., 16, 23) ensure that the change of b1 results in

Practical Collision Attack on 40-Step RIPEMD-128 451

Δa2 = −28 − 29 − 210 + 211 + ...+ 220 − 221 − ...− 227. Combined with the conditions
a2,i = 0 (i = 1, 12, ..., 21) and a2,i = 1 (i = 2, ..., 11, 22, ..., 32), we can obtain
a′2 = a2[1,−2, ...,−11, 12, ..., 21,−22, ...,−32].

4. In step 6, (d1, c1[−1,−2, 3,−24, ...,−32], b1[4, ..., 10,−11, 12,−13, ...,−22, 23],
a2[1,−2, ...,−11, 12, ..., 21,−22, ...,−32]) =⇒ (c1[−1,−2, 3,−24, ...,−32], b1[4, ...,
10,−11, 12,−13, ...,−22, 23], a2[1,−2, ...,−11, 12, ..., 21,−22, ...,−32], d2).

From Proposition 1, it is easy to get a′2 = a2 without no condition.
5. In step 7, (c1[−1,−2, 3,−24, ...,−32], b1[4, ..., 10,−11, 12,−13, ...,−22, 23],

a2[1,−2, ...,−11, 12, ..., 21,−22, ...,−32], d2) =⇒ (b1[4, ..., 10,−11, 12,−13, ...,
−22, 23], a2[1,−2, ...,−11, 12, ..., 21,−22, ...,−32], d2, c2).

From Proposition 1, the conditions d2,i = b1,i (i = 1, 3) and d2,i � b1,i (i =
2, 24, ..., 32) result in F(d′2, a

′
2, b
′
1) − F(d2, a2, b1) = 1 + 2 − 22 + 223 + ... + 231.

Combined with c′1 = c1[−1,−2, 3,−24, ...,−32], we can get c′2 = c2.

4.3 Message Modification

As demonstrated in Table 10 of line1 operation, there is no constraint on the message
words mi (i = 0, 9, 11, ..., 15), and there is some freedom on the message words mi

(i = 1, 5, 7, 8, 10). Thus, all the freedom of these message words can be utilized to
fulfill the conditions in Table 11, which are imposed by the differential characteristic of
line2 operation.

We modify M so that all the conditions in the first round of Table 10 and most of
the conditions in Table 11 hold. The outline of the modification is described as follows.
Taking into consideration the fact that in Table 11 of line2 operation, the conditions first
appear in the chaining variable bb1, and the message words m5, m14, m7 are involved
in steps 1-3, we first modify mi (i = 1, ..., 7) such that all the conditions of d1, c1,
b1, a2, d2, c2 and b2 in Table 10 are satisfied. Then we correct the conditions of bb1

in Table 11. The message word involved in bb1 is m0, which is also involved in the
first step of line1 operation. Therefore, if the conditions of bb1 are corrected by m0, it
will probably lead to the correction of d1, c1, b1, a2, d2, c2, b2 being invalid. As stated
below, only the condition bb1,4 = 0 is corrected by m0, and all the other conditions
of bb1 are corrected by the change of dd1. For example, if the condition bb1,24 = 0
does not hold, we flip the bit dd1,13 by changing m14. However, we need to add the
condition b0,13 = 0 such that the change of dd1,13 does not disturb cc1. Meanwhile,
we also need to add the condition aa1,13 = 0 such that the change of dd1,13 will invert
bb1,24. Similarly, we need to add some other conditions on the chaining variables of
line2 operation, especially on the chaining variables aa1, dd1 and cc1 in order to correct
some conditions in Table 10 and Table 11. (It is noted that these extra added conditions
are not presented in Table 11.) Furthermore, we also need to add some conditions on
b0 such that b0,i = 1 (i = 1, 2, 3, 27) and b0,i = 0 (i = 7, ..., 10, 13, ..., 24) in order
to implement the message modification. (These conditions can be easily satisfied by
exhaustively searching the first message block N.) Hence, we correct the conditions of
line2 operation from aa1, and the process of modification is as follows. It is noted that
in most cases, the conditions are corrected from low bit to high bit. Sometimes, the
order of correction is adjusted.

452 G. Wang

1. Modify mi (i = 1, 2, 3, 4) such that the conditions of d1, c1, b1 and a2 in Table 10
hold, respectively.

2. Firstly, modify m5 such that the conditions of d2 in Table 10 hold. Secondly, if
there is no overlap between the conditions on d2 in Table 10 and aa1 in Table 11,
i.e., the conditions on aa1 lies in aa1,i (i � 1, 2, 3, 24, ..., 32), then it is easy to
correct them. For example, if the condition aa1,13 = 0 does not hold, we flip the
bit d2,13 by changing m5, then aa1,13 is inverted, i.e., aa1,13 = 0 is satisfied. Thirdly,
if the conditions on aa1 lies in aa1,i (i = 1, 2, 3, 24, ..., 32), we present an example
below to illustrate how to correct them. For example, if the condition aa1,1 = 0 does
not hold, we correct it by changing m5, which will also flip the bit d2,1. In order to
fulfill the condition d2,1 = b1,1, b1,1 is flipped by changing m3. Similarly, m0, m1 and
m4 are modified in order to ensure the conditions on d1, c1, b1 and a2, especially,
b1,1 = d1,1 and d1,1 = a1,1 hold. The modification of m0, m1, m3 and m4 ensures
that the differential characteristic of line1 operation is not disturbed by the change
of m5. The detail of correcting the condition aa1,1 = 0 is described in the following
steps and illustrated in Table 3.

(a) Modify m0 such that a1,1 in Table 10 is flipped and all the other bits of a1 are
unchanged. Without loss of generality, we suppose aa1,1 = 0, then a1 becomes
a1[1] after flipping a1,1.

(b) Modify m1 such that d1,1 in Table 10 is flipped and all the other bits of d1 are
unchanged, which ensures the condition d1,1 = a1,1 in Table 10 hold.

(c) The change of a1,1 and d1,1 does not disturb c1 according to Proposition 1.
(d) Modify m3 such that b1,1 in Table 10 is flipped and all the other bits of b1 are

unchanged, which ensures the condition b1,1 = d1,1 in Table 10 hold.
(e) Modify m4 such that a2 in Table 10 is unchanged.
(f) Modify m5 such that d2,1 in Table 10 is flipped and all the other bits of d2 are

unchanged, which ensures the condition d2,1 = b1,1 hold. Meanwhile, aa1,1 is
flipped by the change of m5 and the condition aa1,1 = 0 is satisfied.

It is noted that combined with the conditions c1,1 = 1 and a2,1 = 0, we can get that
the flips of d1,1 and b1,1 have no impact on d2. Hence, the modification of m5 does
not need to offset the flips of d1,1 and b1,1, and only flips d2,1. Consequently, the
change of m5 is only likely to flip aa1,1 and aa1,i (i = 2, ..., 8) by carry. Since the
conditions of aa1 are corrected from low bit to high bit, i.e., the order of modifi-
cation is 9,...,32,1,...,8, then the correction of aa1,1 does not disturb the conditions
which have been corrected. Therefore, the condition aa1,1 = 0 is corrected success-
fully with probability 1.

3. Modify m14 and m6 such that the conditions on dd1 in Table 11 and c2 in Table 10
hold, respectively.

4. Firstly, modify m7 such that the conditions on b2 in Table 10 hold. Secondly,
similar to the modification of aa1,i (i � 1, 2, 3, 24, ..., 32), the conditions on cc1,i

(i � 2, ..., 12) can be corrected by the change of m7. Thirdly, the other conditions
on cc1 are corrected by the change of dd1. For example, if the condition cc1,10 = 0
does not hold, we flip dd1,1 by changing m14. Then cc1,10 is flipped if the extra
condition b0,1 = 1 is added according to Proposition 4. The detail of correcting the
condition cc1,10 = 0 is illustrated in Table 4.

Practical Collision Attack on 40-Step RIPEMD-128 453

Table 3. Message Modification for Correcting aa1,1

step mi Shift Modify mi Chaining values Chaining values
before modifying mi after modifying mi

line1 1 m0 11 Modify m0 a1 a1[1]
line1 2 m1 14 Modify m1 d1 d1[1]
line1 3 m2 15 c1 c1

line1 4 m3 12 Modify m3 b1 b1[1]
line1 5 m4 5 Modify m4 a2 a2

line1 6 m5 8 Modify m5 d2 d2[1]
line2 1 m5 8 Modify m5 aa1 aa1,1 is flipped

Table 4. Message Modification for Correcting cc1,10

step mi Shift Modify mi flipped bit additional condition
2 m14 9 Modify m14 dd1,1

3 m7 9 cc1,10 b0,1 = 1

5. Firstly, the condition bb1,4 = 0 is corrected by the change of m0. If bb1,4 = 0 does
not hold, we flip bb1,4 by modifying m0, which will change a1 in Table 10. On
one hand, there is no constraint on a1, so the change of a1 does not disturb the
differential characteristic. On the other hand, d1, c1, b1 and a2 are unchanged by
modifying m1, m2, m3 and m4 respectively. Therefore, the change of m0 does not
disturb the differential characteristic of line1 operation. The procedure of correcting
bb1,4 = 0 is illustrated in Table 5. Secondly, all the other conditions on bb1 are
corrected by the change of dd1. For example, if the condition bb1,24 = 0 does not
hold, we flip dd1,13 by changing m14. Then cc1 is unchanged if the extra condition
b0,13 = 0 is added, and bb1,24 is flipped if the extra condition aa1,13 = 0 is added
according to Proposition 4.

Table 5. Message Modification for Correcting bb1,4

step mi Shift Modify mi Chaining values Chaining values
before modifying mi after modifying mi

line2 4 m0 11 Modify m0 bb1 bb1,4 is flipped
line1 1 m0 11 Modify m0 a1 a1 is changed
line1 2 m1 14 Modify m1 d1 d1

line1 3 m2 15 Modify m2 c1 c1

line1 4 m3 12 Modify m3 b1 b1

line1 5 m4 5 Modify m4 a2 a2

454 G. Wang

6. Modify m9 such that the conditions on aa2 in Table 11 hold.
7. The conditions on dd2 in Table 11 are corrected through the following four ap-

proaches. All the conditions on dd2 are fulfilled after message modification except
dd2,29 = 1. We present examples to illustrate the approaches of modification.
(a) The condition dd2,16 = 0 is corrected by the change of m7. In order not to

disturb the condition b2,2 = 0 which has been corrected, we modify m7 such
that only b2,1 is flipped and the other bits of b2 are unchanged. The modifica-
tion of m7 flips cc1,1 definitely, and is likely to flip cc1,i (i = 2, ..., 9) by carry.
Hence, according to Proposition 4, bb1 in all probability is unchanged if the
extra conditions aa1,1 = 0 and aa1,2 = 0 are added, and dd2,16 is flipped be-
cause the condition aa2,1 � bb1,1 is hold yet. Furthermore, aa2 is unchanged by
modifying m9. The success probability of correcting dd2,16 = 0, i.e., the prob-
ability that dd2,16 = 0 is satisfied and all the other conditions which have been
corrected are not disturbed, is very close to 1.

(b) The condition dd2,24 = 1 is corrected by the change of m14. Firstly, m14 is
changed such that dd1,9 is flipped and all the other bits of dd1 are unchanged.
Then, according to Proposition 4, cc1 will remain unchanged if the extra con-
dition b0,9 = 0 is added, and bb1 will be unchanged if the extra condition
aa1,9 = 1 is added. Furthermore, aa2 remains unchanged by modifying m9, and
dd2,24 is flipped by the change of dd1,9.

(c) The condition dd2,26 = 1 is corrected by the change of m9. Furthermore, m9 is
changed such that only aa2,11 is flipped and the other bits of aa2 are unchanged,
which does not make the differential characteristic invalid because there is no
constraint on aa2,11. The change of aa2,11 will flip dd2,26 if the extra condition
cc1,11 = 1 is added.

(d) The condition dd2,19 = 1 is corrected by the change of m2. However, the change
of m2 disturbs the conditions on c1, which is compensated by modifying m1

and m6. Firstly, we modify m1 such that d1,19 is flipped and all the other bits
of d1 are unchanged. Then we modify m2 such that c1,19 is flipped and all the
other bits of c1 are unchanged. According to Proposition 1, we can get b1 and
a2 are unchanged, meanwhile, d2 is also unchanged because of the conditions
c1,19 = d1,19, b1,19 = 1 and a2,19 = 0. Thirdly, we modify m6 such that c2 is
unchanged. Therefore, b1, a2, d2 and c2 are unchanged, and all the conditions
in Table 10 are not disturbed. Obviously, the change of m2 will flip dd2,19,
however, it is also likely to change dd2,2. Fortunately, the conditions on dd2 are
corrected from low bit to high bit and dd2,2 = 1 is not corrected yet. So the
success probability of correcting dd2,19 = 1 is 1. The procedure of correction
dd2,19 is illustrated in Table 6.

8. Modify m11 to correct the conditions of cc2 in Table 11.
9. Similar to the procedure of modification above, the conditions of bb2,i (i � 1, 4, 8,

16, 23, 24, 25, 26, 29, 31, 32) in Table 11 are corrected by changing cc2 or aa2, cor-
responding to changing m11 or m9, respectively.

10. Modify m13 to correct the conditions of aa3.
11. Similar to the procedure of modification above, the conditions of dd3,i (i � 2, 5, 7,

23, 25, 26, 30, 31, 32) in Table 11 are corrected by changing aa3, corresponding to
changing m13.

Practical Collision Attack on 40-Step RIPEMD-128 455

Table 6. Message Modification for Correcting dd2,19

step mi Shift Modify mi Chaining values Chaining values Conditions
before modifying mi after modifying mi

line1 2 m1 14 Modify m1 d1 d1[19]
line1 3 m2 15 Modify m2 c1 c1[19] c1,19 = d1,19

line1 4 m3 12 b1 b1 b1,19 = 1
line1 5 m4 5 a2 a2 a2,19 = 0
line1 6 m5 8 d2 d2

line1 7 m6 7 Modify m6 c2 c2 c2,19 = d2,19

line2 6 m2 15 Modify m2 dd2 dd2,19 is flipped dd2,19 = 1

12. Modify m15 to correct the conditions of cc3.
13. Firstly, modify m8 such that the conditions on a3 in Table 10 and bb3,i (i = 23, ..., 32)

in Table 11 hold. Secondly, the condition bb3,12 = 1 in Table 11 is corrected by
flipping cc3,1 combined with the condition aa3,1 = 1 according to Proposition 4.
Thirdly, if the condition bb3,2 = 0 does not hold, we flip cc3,22, then bb3,1 is flipped
if the extra condition aa3,22 = 1 (which is satisfied in step 10) is added according
to Proposition 4. Meanwhile, if bb3,1 � cc3,22, then the change of bb3,1 will result
in the change of bb3,2 by bit carry. Furthermore, the condition bb3,1 � cc3,22 can be
corrected by modifying m8.

14. Firstly, the condition on aa4,5 can be corrected by the change of cc3,23 and bb3,23.
Similarly, the condition on aa4,9 can be corrected by the change of cc3,27 and bb3,27.
Secondly, the condition aa4,25 = 1 in Table 11 is corrected by flipping cc3,11. Then
bb3 is unchanged if the extra condition aa3,11 = 0 is added, and aa4,25 is changed
if the extra condition dd3,11 = 0 is added according to Proposition 4. The condition
aa3,11 = dd3,11 is already corrected in step 11, thus, the extra conditions aa3,11 = 0
and dd3,11 = 0 hold with a probability of 2−1. Therefore, the success probability of
correcting the condition on aa4,25 is about 2−1 + 2−1 × 2−1 = 3/4. Thirdly, if the
condition aa4,7 = 0 does not hold, we flip cc3,24, then bb3 is unchanged if the extra
condition aa3,24 = 0 is added, and aa4,6 is changed if the extra condition dd3,24 = 0
is added according to Proposition 4. Furthermore, if aa4,6 � cc3,24, then the change
of aa4,6 will lead to the change of aa4,7 by carry. The condition aa3,24 = dd3,24 is
already corrected in step 11, thus, the extra conditions aa3,24 = 0 and dd3,24 = 0
hold with a probability of 2−1. Meanwhile, the condition aa4,6 � cc3,24 holds with
a probability of 2−1. Therefore, the success probability of correcting the condition
on aa4,7 is about 2−1 + 2−1 × 2−1 × 2−1 = 5/8.

15. The condition dd4,9 = 1 is corrected by flipping cc3,13. Then bb3 is unchanged if
the extra condition aa3,13 = 0 is added, and aa4,27 is flipped if the extra condition
dd3,13 = 0 is added. The change of aa4,27 will result in the change of dd4,9 if the
extra condition cc3,27 = 1 is added. The condition cc3,27 = 1 has been corrected in
step 12. The condition dd3,13 = aa3,13 has been corrected in step 11, thus, the extra
conditions aa3,13 = 0 and dd3,13 = 0 hold with a probability of 2−1. Therefore, the
success probability of correcting the condition on dd4,9 is about 2−1 + 2−1 × 2−1 =

3/4.

456 G. Wang

Table 7. Collision for 40-step of RIPEMD-128

N 664504b6 d6e949ba 2176407d 85426fc1 5ec28995 c3d318b 787db431 ae2c13fb
cee9d90 c5078e4b 84bae5bc 99f3f4ae d7403dc6 917fa14c 85155db5 fd9311e6

M a7e4a89f 6278156c 2a535118 90eba965 670841b2 ea6f8dcb 800766d9 d0bfa5c6
ffe74d8e 6df2c5f7 a3ffdbfd 53e156d4 54f75d f0d3a13f 7eef12b9 ef317f76

M′ a7e4a89f 6278156c 2a535218 90eba965 670841b2 ea6f8dcb 800766d9 d0bfa5c6
ffe74d8e 6df2c5f7 a3ffdbfd 53e156d4 54f75b f0d3a13f 7eef12b9 ef317f76

H a76df6ab 43ae1a6e 171d9fda da03925e

Table 8. Differential Characteristic for line1 Operation

Step Message M S hi f t Δmi The output for M′

1 m0 11 a1

2 m1 14 d1

3 m2 15 28 c1[−1,−2, 3,−24, ...,−32]
4 m3 12 b1[4, ..., 10,−11, 12,−13, ...,−22, 23]
5 m4 5 a2[1,−2, ...,−11, 12, ..., 21,−22, ...,−32]
6 m5 8 d2

7 m6 7 c2

8 m7 9 b2[2, ..., 10,−11,−12]
9 m8 11 a3[−2, ...,−11, 12]
10 m9 13 d3

11 m10 14 c3

12 m11 15 b3

13 m12 6 -2 a4

.

25 m12 7 -2 a7[−9]
26 m0 12 d7

27 m9 15 c7

28 m5 9 b7

29 m2 11 28 a8

.

40 m1 15 b10

16. The conditions on cc4,i (i = 7, 9, 12) are corrected by the change of dd4,i (i =
27, 29, 32) respectively with probability 1. The condition cc4,5 = 1 is corrected by
flipping dd4,24 if the extra condition cc4,4 � dd4,24 is added, which holds with a
probability of 2−1. Therefore, the success probability of correcting the condition on
cc4,5 is about 2−1 + 2−1 × 2−1 = 3/4.

It is noted that the conditions which are corrected in the first 12 steps hold with a
probability of about 2−3 after message modification by experiment. Meanwhile, after
message modification, in the first round of line2 operation in Table 11, there are 29
conditions which are not corrected, 3 conditions which hold with a probability of 3/4
respectively, and 1 condition which holds with a probability of 5/8. Therefore, all the
conditions in steps 2-11 of Table 10 and in steps 4-15 of Table 11 hold with a probability
of about 2−35 after message modification.

Practical Collision Attack on 40-Step RIPEMD-128 457

Table 9. Differential Characteristic for line2 Operation

Step Message M Shift Δmi The output for M′

1 m5 8 aa1

2 m14 9 dd1

3 m7 9 cc1

4 m0 11 bb1

5 m9 13 aa2

6 m2 15 28 dd2[−1,−2,−3, 4,−24, ...,−32]
7 m11 15 cc2[17, 18 − 19]
8 m4 5 bb2[8, ..., 15,−16,−24]
9 m13 7 aa3[−31]
10 m6 7 dd3[8,−23, 26, ..., 31,−32]
11 m15 8 cc3[7, 8,−25]
12 m8 11 bb3[2, 5]
13 m1 14 aa4[7,−9,−12]
14 m10 14 dd4[−5, 7,−9]
15 m3 12 cc4[−5]
16 m12 6 −2 bb4

17 m6 9 aa5[−21]
18 m11 13 dd5[−20,−21]
19 m3 15 cc5[−20]
20 m7 7 bb5

21 m0 12 aa6

22 m13 8 dd6[−29]
23 m5 9 cc6[−29]
24 m10 11 bb6

25 m14 7 aa7

26 m15 7 dd7

27 m8 12 cc7[−9]
28 m12 7 −2 bb7[−9]
29 m4 6 aa8

30 m9 15 dd8

31 m1 13 cc8

32 m2 11 28 bb8

.

40 m9 14 bb10

458 G. Wang

Table 10. A Set of Sufficient Conditions for the Differential Characteristic in Table 8

Step Chaining Conditions on the Chaining Variable
Variable

2 d1 d1,i = a1,i(i = 1, 2, 3, 31), d1,i � a1,i(i = 24, ..., 30, 32)
3 c1 c1,3 = 0, c1,i = 1(i = 1, 2, 24, ..., 32), c1,i = d1,i(i = 7, ..., 10, 12, 17, ..., 22),

c1,i � d1,i(i = 4, 5, 6, 11, 13, ..., 16, 23)
4 b1 b1,i = 0(i = 4, ..., 10, 12, 23), b1,i = 1(i = 11, 13, ..., 22),

b1,i = d1,i(i = 1, 2, 24, ..., 27, 29, ..., 32), b1,i � d1,i(i = 3, 28)
5 a2 a2,i = 0(i = 1, 12, ..., 21), a2,i = 1(i = 2, ..., 11, 22, ..., 32)
6 d2 d2,i = b1,i(i = 1, 3), d2,i � b1,i(i = 2, 24, ..., 32)
7 c2 c2,i = d2,i(i = 1, ..., 10, 13, ..., 21, 24), c2,i � d2,i(i = 11, 12, 22, 23, 25, ..., 32)
8 b2 b2,i = 0(i = 2, ..., 10), b2,i = 1(i = 11, 12)
9 a3 a3,12 = 0, a3,i = 1(i = 2, ..., 11)

11 c3 c3,i = d3,i(i = 2, ..., 10, 12), c3,11 � d3,11

24 b6 b6,9 = c6,9

25 a7 a7,9 = 1
26 d7 d7,9 = 0
27 c7 c7,9 = 1

Table 11. A Set of Sufficient Conditions for the Differential Characteristic in Table 9

Step Chaining Conditions on the Chaining Variable
Variable

4 bb1 bb1,i = 0(i = 1, 3, 4, 24, ..., 32), bb1,2 = 1
5 aa2 aa2,i = 0(i = 3, 17, 18), aa2,i = 1(i = 1, 2, 4, 19, 24, ..., 32)
6 dd2 dd2,i = 0(i = 4, 8, ..., 16), dd2,i = 1(i = 1, 2, 3, 17, 18, 19, 24, ..., 32)
7 cc2 cc2,i = 0(i = 16, 17, 18, 24, 26, ..., 32), cc2,i = 1(i = 8, ..., 15, 19)
8 bb2 bb2,i = 0(i = 8, ..., 15, 19, 23, 26, ..., 32), bb2,i = 1(i = 16, 24), bb2,i = cc2,i(i = 1, 2, 3, 4, 25)
9 aa3 aa3,i = 0(i = 7, 23, 27), aa3,i = 1(i = 8, 19, 25, 26, 28, ..., 32), aa3,i = bb2,i(i = 17, 18)
10 dd3 dd3,i = 0(i = 2, 5, 8, 25, ..., 31), dd3,i = 1(i = 7, 23, 32), dd3,i = aa3,i(i = 9, ..., 16, 24)
11 cc3 cc3,i = 0(i = 7, 8, 12), cc3,i = 1(i = 2, 5, 9, 25, 26, 30, 31)
12 bb3 bb3,i = 0(i = 2, 5, 8, 25, 26, 30, 31), bb3,i = 1(i = 7, 12), bb3,i = cc3,i(i = 23, 27, 28, 29), bb3,32 � cc3,32

13 aa4 aa4,i = 0(i = 5, 7), aa4,i = 1(i = 8, 9, 12, 25)
14 dd4 dd4,7 = 0, dd4,i = 1(i = 5, 9), dd4,2 = aa4,2

15 cc4 cc4,i = 0(i = 7, 9), cc4,5 = 1, cc4,12 = dd4,12

16 bb4 bb4,i = 0(i = 5, 21)
17 aa5 aa5,20 = 0, aa5,21 = 1
18 dd5 dd5,i = 1(i = 20, 21)
19 cc5 cc5,21 = 0, cc5,20 = 1
20 bb5 bb5,20 = 0
21 aa6 aa6,29 = 0
22 dd6 dd6,29 = 1
23 cc6 cc6,29 = 1
24 bb6 bb6,29 = 0
26 dd7 dd7,9 = 0
27 cc7 cc7,9 = 1
28 bb7 bb7,9 = 1
29 aa8 aa8,9 = 0

Practical Collision Attack on 40-Step RIPEMD-128 459

There are 4 conditions in steps 24-27 of Table 10 and 17 conditions in steps 16-29
of Table 11. These 21 conditions can be easily satisfied by exhaustively searching m12.

4.4 Collision Search Algorithm

From the above technique details, we present an overview of the collision search algo-
rithm to get two 512-bit blocks N ‖ M, where the second block M = m0 ‖ m1 ‖ ... ‖ m15.

1. Exhaustively search the first block N such that the hash value of N satisfies b0,i = 1
(i = 1, 2, 3, 27) and b0,i = 0 (i = 7, ..., 10, 13, ..., 24).

2. Randomly choose mi (0 ≤ i ≤ 15, i � 12), and modify them by the above message
modification techniques such that all the conditions in steps 2-11 of Table 10 are
satisfied and all the conditions in steps 4-15 of Table 11 hold with a probability of
2−35.

3. If all the conditions in steps 4-15 of Table 11 are satisfied, then goto Step 4. Other-
wise, go to Step 2.

4. Randomly choose m12 and compute the hash values of M and M′ under 40-step
RIPEMD-128. If the two hash values are equal, then output M and M′. Otherwise,
goto Step 1.

There are total 21 conditions in steps 24-27 of Table 10 and steps 16-29 of Table 11.
By our experiment, it is easy to make the 21 conditions hold by exhaustively search m12

when the other conditions of Table 10 and Table 11 hold. Therefore, the time complexity
of the collision attack is about 235 + 221 40-step RIPEMD-128 computations. We give
an example in Table 7.

5 Conclusions

In this paper, we propose a practical collision attack for 40-step RIPEMD-128 by using
bit tracing method [15,16] and present a true collision instance. Firstly, we find two
differential characteristics for line1 operation and line2 operation respectively. Then,
by correcting most of the sufficient conditions that ensure the collision characteristics
hold, we can improve the probabilities of the characteristics. Finding high-probability
characteristics as well as implementing message modifications is nontrivial, because
the compression function of RIPEMD-128 consists of two parallel and independent
operations.

Acknowledgment. The author would like to thank Hongbo Yu for her helpful
comments. The author also thanks the anonymous reviewers for their valuable sug-
gestions and remarks. This work is supported by the National Natural Science Foun-
dation of China (No. 61103238, 61373142), the Fundamental Research Funds for the
Central Universities and DHU Distinguished Young Professor Program, and the Open-
ing Project of State Key Laboratory of Information Security (Institute of Information
Engineering, Chinese Academy of Sciences).

460 G. Wang

References

1. Dobbertin, H., Bosselaers, A., Preneel, B.: RIPEMD-160: A Strengthened Version of
RIPEMD. In: Gollmann, D. (ed.) FSE 1996. LNCS, vol. 1039, pp. 71–82. Springer,
Heidelberg (1996)

2. International Organization for Standardization: ISO/IEC 10118-3:2004, Informa- tion
technology-Security techniques-Hash-functions-Part 3: Dedicated hash functions (2004)

3. Kap, J.: Test Cases for HMAC-RIPEMD160 and HMAC-RIPEMD128. Internet Engineering
Task Force (IETF), RFC 2286 (1998), http://www.ietf.org/rfc/rfc2286.txt

4. Landelle, F., Peyrin, T.: Cryptanalysis of Full RIPEMD-128. In: Johansson, T., Nguyen, P.Q.
(eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 228–244. Springer, Heidelberg (2013)

5. Mendel, F., Nad, T., Schläffer, M.: Collision Attacks on the Reduced Dual-Stream Hash
Function RIPEMD-128. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp. 226–243.
Springer, Heidelberg (2012)

6. Mendel, F., Pramstaller, N., Rechberger, C., Rijmen, V.: On the Collision Resistance of
RIPEMD-160. In: Katsikas, S.K., López, J., Backes, M., Gritzalis, S., Preneel, B. (eds.) ISC
2006. LNCS, vol. 4176, pp. 101–116. Springer, Heidelberg (2006)

7. Ohtahara, C., Sasaki, Y., Shimoyama, T.: Preimage Attacks on Step-Reduced RIPEMD-128
and RIPEMD-160. In: Lai, X., Yung, M., Lin, D. (eds.) Inscrypt 2010. LNCS, vol. 6584,
pp. 169–186. Springer, Heidelberg (2011)

8. Bosselaers, A., Preneel, B. (eds.): RIPE 1992. LNCS, vol. 1007. Springer, Heidelberg (1995)
9. Rivest, R.L.: The MD4 message digest algorithm. In: Menezes, A., Vanstone, S.A. (eds.)

CRYPTO 1990. LNCS, vol. 537, pp. 303–311. Springer, Heidelberg (1991)
10. Rivest, R.: The MD5 message-digest algorithm, Request for Comments(RFC 1320), Internet

Activities Board, Internet Privacy Task Force (1992)
11. Sasaki, Y., Wang, L.: Distinguishers beyond Three Rounds of the RIPEMD-128/-160 Com-

pression Functions. In: Bao, F., Samarati, P., Zhou, J. (eds.) ACNS 2012. LNCS, vol. 7341,
pp. 275–292. Springer, Heidelberg (2012)

12. Wang, G., Wang, M.: Cryptanalysis of Reduced RIPEMD-128. Ruanjianxuebao/Journal of
Software in Chinese 19(9), 2442–2448 (2008)

13. Wang, L., Sasaki, Y., Komatsubara, W., Ohta, K., Sakiyama, K.: (Second) Preimage At-
tacks on Step-Reduced RIPEMD/RIPEMD-128 with a New Local-Collision Approach. In:
Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 197–212. Springer, Heidelberg (2011)

14. Wang, X., Feng, D., Yu, X.: An attack on HAVAL function HAVAL-128. Science in China
Ser. F Information Sciences 48(5), 1–12 (2005)

15. Wang, X., Lai, X., Feng, D., Chen, H., Yu, X.: Cryptanalysis of the Hash Functions MD4 and
RIPEMD. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 1–18. Springer,
Heidelberg (2005)

16. Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer, R. (ed.)
EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005)

17. Wang, X., Yu, H., Yin, Y.L.: Efficient Collision Search Attacks on SHA-0. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 1–16. Springer, Heidelberg (2005)

18. Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)

19. Yu, H., Wang, X., Yun, A., Park, S.: Cryptanalysis of the full HAVAL with 4 and 5 passes.
In: Robshaw, M. (ed.) FSE 2006. LNCS, vol. 4047, pp. 89–110. Springer, Heidelberg (2006)

20. Yu, H., Wang, G., Zhang, G., Wang, X.: The Second-Preimage Attack on MD4. In: Desmedt,
Y.G., Wang, H., Mu, Y., Li, Y. (eds.) CANS 2005. LNCS, vol. 3810, pp. 1–12. Springer,
Heidelberg (2005)

http://www.ietf.org/rfc/rfc2286.txt

KDM Security in the Hybrid Framework

Gareth T. Davies and Martijn Stam

University of Bristol, UK
{gareth.davies,martijn.stam}@bristol.ac.uk

Abstract. We study the natural question of how well suited the hybrid
encryption paradigm is in the context of key-dependent message (KDM)
attacks. We prove that if a key derivation function (KDF) is used in
between the public (KEM) and symmetric (DEM) part of the hybrid
scheme and this KDF is modelled as a random oracle, then one-wayness
of the KEM and indistinguishability of the DEM together suffice for
KDM security of the resulting hybrid scheme. We consider the most gen-
eral scenario, namely CCA attacks and KDM functions that can call the
random oracle. Although the result itself is not entirely unsuspected—it
does solve an open problem from Black, Rogaway, and Shrimpton (SAC
2002)—proving it is considerably less straightforward; we develop some
proof techniques that might be applicable in a wider context.

Keywords: KDMSecurity, Hybrid Encryption, KEM/DEM, Public Key
Encryption.

1 Introduction

When performing public key encryption (PKE) for large messages, it is often
desirable to separate the encryption into two parts: public key techniques to
encrypt a one-time symmetric key, and symmetric key techniques to encrypt
the message. This type of encryption is commonly referred to as hybrid encryp-
tion. Hybrid encryption can be found in abundance in practice as it combines
the benefits of flexible key management possible in the public key setting with
the efficiency of symmetric encryption. Cramer and Shoup [22] were the first to
capture hybrid encryption in a formal framework and their terminology is now
commonly accepted: the public part of the algorithm is known as the key en-
capsulation mechanism (KEM), while the symmetric part, where the message is
actually encrypted, is known as the data encapsulation mechanism (DEM). The
main theorem of Cramer and Shoup (regarding hybrid encryption) is that the
security properties of the KEM and the DEM can be regarded independently of
each other. Loosely speaking, if any secure KEM is combined with any secure
DEM, then the resulting public key encryption scheme is automatically secure.
This theorem comes in two flavours, one for IND-CPA and one for IND-CCA2
security. Later works [30, 29, 2] looked at rebalancing the security properties of
the KEM and the DEM such that the composition still guarantees IND-CCA2
security.

While, for good reasons, IND-CCA2 security has become the de facto security
notion for public key encryption (so much so that we do not feel the need to

J. Benaloh (Ed.): CT-RSA 2014, LNCS 8366, pp. 461–480, 2014.
© Springer International Publishing Switzerland 2014

462 G.T. Davies and M. Stam

elaborate on its definition here), there are situations where even this strongest
of notions [11] is too weak. Particularly problematic is a situation where private
keys themselves end up being encrypted. This is far from an academic question
and the problem of secure encryption in the presence of key-dependent messages
is becoming increasingly relevant. Applications of KDM security arise in disk
encryption systems such as BitLocker [16], axiomatic security proofs [1, 4] and
anonymous credential systems [20].

Encryption that is secure against key-dependent inputs was first studied by
Abadi and Rogaway [1], who studied security proofs for protocols and showed
how security is given by a reduction if no key-cycles exist in the protocol. Cir-
cular security was defined by Camenisch and Lysyanskaya [20] in the context of
anonymous credentials. A more thorough treatment of key-dependent message
(KDM) security was given by Black, Rogaway, and Shrimpton [15], who provided
definitions of KDM security for both the public key and symmetric key setting.
They proved that in the symmetric setting it is easy to achieve IND-KDM-CPA
security in the random oracle model. For the public key setting they recall a sim-
ple scheme in the random oracle model [13], which they conjecture to be KDM
secure but to the best of our knowledge, no proof of this has appeared in the lit-
erature. The scheme neatly fits the hybrid encryption framework, where the key
encapsulation takes a random protokey r and applies a trapdoor one-way per-
mutation to encapsulate it. At the same time, r is hashed (giving an ephemeral
key) and XORed with the message (so the DEM is a one-time pad).1 Thus a
natural question arises: how well suited is the hybrid encryption paradigm in the
context of key-dependent message attacks?

Our Contribution. Although many efforts have been made to study the secu-
rity of PKE schemes under key-dependent messages, we provide the first treat-
ment of hybrid encryption in this context. Before describing our result in detail,
let us take a step back and look at the problem of KDM-secure hybrid encryption
from a general perspective. For the standard (IND-CPA and IND-CCA) definitions
it was possible to separate the security concerns of the KEM and the DEM. In
a KDM setting it will be (a function of) the private key of the KEM that is
encapsulated by the DEM using an ephemeral symmetric key. Intuitively, this
can mean two things: either the appearance of the KEM’s private key as input
to the DEM ruins the normal separation of concerns, or the use of a freshly gen-
erated ephemeral key magically nullifies the key dependency. In the full version
we show how the counterexamples [3, 21] that KDM security does not follow
from standard security definitions, can be cast within a KEM-DEM framework.

Our main result is presented in Section 3, where we consider the security of
hybrid encryption schemes against key-dependent message attacks in the random
oracle model. We show that if the key derivation function KDF is modelled as a

1 Note that Black et al. assume that the random oracle returns as many bits as the
message is long, which would require a slight modification to the original KEM-DEM
framework.

KDM Security in the Hybrid Framework 463

random oracle, then a one-way secure (μOW-CCA) KEM and an indistinguish-
able (IND-CCA) DEM combine to form a PKE scheme that is (IND-KDM-CCA)
secure against key-dependent message attacks, provided that the key-dependency
does not involve the message length (this is a standard assumption). For our re-
sult, we make a distinction between KEMs for which there exists an efficient
key-encapsulation–encapsulated-key checking oracle or not. Somewhat surpris-
ingly, the former category gives a significantly tighter reduction, even though it
means the KEM is weaker in some sense (in particular, it cannot be IND-CPA
secure).

Although intuitively the random oracle would serve as a formidable barrier
between the KEM and the DEM, removing any correlation, the proof turns out
more involved than one might at first expect. To give a taster of the challenges,
when reducing to a KEM security property, the simulation of valid DEM cipher-
texts can be problematic without knowing the underlying message. If the DEM
ciphertexts are uniformly distributed (over the randomness of the key) regard-
less of the message, simulation is easy (in particular, this observation suffices
to prove the Black et al. scheme passively KDM secure). However, for arbitrary
DEMs such simulation is not guaranteed and requires another game hop (to
where a fixed message is encrypted). Luckily this does not lead to a circularity
(where a DEM hop requires a KEM hop to set up, which itself requires a DEM
hop to go through etc.).

Indeed, in our proof, we use the well-known identical-until-bad technique in
a way similar to Dent’s analysis of IND-CCA secure KEMs in the random oracle
model [23]. However, a crucial innovation in our proof is a novel use of the “de-
ferred analysis” technique of Gennaro and Shoup [24] to analyse the bad event:
it turns out that we need to bound the events in two different games, but in one
of these, the key-dependency hinders the usual approaches. Our solution is to
move the analysis of the bad event to the other game, where the analysis is con-
siderably easier. In contrast with the original deferred analysis, the probability
of the events changes, so we need to account for this game-hop separately.

Technically evenmore challenging is the reduction to the DEM’s indistinguisha-
bility, since the key dependency function needs to be mapped to a message for the
DEM.Acomplicationarises in that anadversarymakingmultiple challengequeries
could let the message to-be-encrypted by the DEM depend on prior, ephemeral
DEM keys. We introduce a new security notion for the DEM that captures this
type of key dependency (namely on past keys only) and show that is equivalent
to standard IND-CCA. Moreover, we show how to map key dependency functions
in the PKE world to this restricted set of key dependency functions in the DEM
world by modelling the random oracle as a pseudorandom function. Thus, rather
bizarrely, our security bound for KDM security of hybrid encryption includes a
PRF term, despite there not being a PRF in the construction itself.

Related Work. Efforts in the area of KDM security have focused on either
positive results giving circular secure schemes, or negative impossibility results.
On the positive side, Boneh et al. [16] gave a KDM-CPA scheme secure under
the Decisional Diffie-Hellman assumption, a result strengthened by Camenisch

464 G.T. Davies and M. Stam

et al. [19] to a KDM-CCA scheme. Many other positive results have also been
presented [31, 4, 28, 7, 8, 32]. Many public key schemes have been proposed of a
number theoretical nature, where the class of functions for which KDM security
can be proven is related, typically in some algebraic sense, to the scheme itself
(see [9, 17, 5] and the references contained therein).

There have also been negative results, and in particular Haitner and Holen-
stein [27] showed the impossibility of obtaining KDM security based on standard
assumptions and using standard techniques, and also separation results of Acar
et al. [3] and Cash et al. [21]. Applebaum et al. [6] give a comparatively efficient
scheme based on the LWE/LPN problems. The development of fully homomor-
phic encryption by Gentry [25] utilises encryption of the secret key under the
corresponding public key, and recent work of Brakerski and Vaikuntanathan has
looked at KDM security with FHE in more detail [18]. In the symmetric setting,
recent work has focused on authenticated encryption [12], and Bellare et al. [10]
describe ciphers that can securely encipher their own keys.

2 Preliminaries

Notation. If x is a string then |x| denotes the length of x, and x||y denotes the
concatenation of strings x and y. If S is a finite set then |S| is its cardinality and

s
$⊗− S denotes picking s uniformly at random from S. A property of a boolean

variable, which we will call a flag, is that once true it stays true. Boolean flags
are assumed initialized to false. The adversary, which we regard as code of
a program, makes calls to the oracles, taking as input values from some finite
domain associated to each oracle.

Definition 1 (Pseudorandom functions). Let F : I × D ≡ R be a family
of functions from domain D to range R indexed by seeds I. For x ∈ I we let
Fx(y) : D ≡ R be defined by Fx(y) = F (x, y) ∪y ∈ D. Let Fun[D,R] be the set
of all functions from D to R. Set D = {0, 1}λ for some security parameter λ.
Then the PRF advantage of an adversary A attacking F is given by

AdvPRF
F, A(λ)

def
= Pr

[
x

$⊗− I : AFx(·) = 1
]
−Pr

[
g

$⊗− Fun[{0, 1}λ,R] : Ag(·) = 1
]
.

2.1 Public Key and Hybrid Encryption

We briefly recall the syntax of a public key encryption scheme PKE, consisting of
four algorithms Pg, Kg, Enc, and Dec. Parameter generation Pg takes as input a
security parameter λ and outputs a set of parameters common among multiple
keypairs (e.g. the description of an elliptic curve); key generation Kg takes the
parameters and outputs a public–private key pair (pk, sk); encryption Enc takes
as input the public key and a message from {0, 1}∗ (or some other message
space with a well-defined length measure) and outputs a ciphertext; decryption
Dec takes as input the private key and a purported ciphertext and returns a

KDM Security in the Hybrid Framework 465

Hyb.Pg(1λ)

parsKEM ≥ KEM.Pg(1λ)

parsDEM ≥ DEM.Pg(1λ)
return (parsKEM, parsDEM)

Hyb.Kg(pars)

(pk, sk) ≥ KEM.Kg(parsKEM)
return (pk, sk)

Hyb.Enc(pars, pk,m)

(K,C) ≥ KEM.encappk()
hK ≥ KDFpars,pk(K)
ψ ≥ DEM.EnchK

(m)
return (C,ψ)

Hyb.Dec(pars, sk, C, ψ)

K ≥ KEM.decapsk(C)
hK ≥ KDFpars,pk(K)
m ≥ DEM.DechK

(ψ)
return m

Fig. 1. Construction of a hybrid cryptosystem Hyb

message in {0, 1}∗ or some designated error symbol ⇐. The standard security
notions for public key encryption are indistinguishability (IND) under chosen
plaintext attacks (CPA), respectively chosen ciphertext attacks (CCA). We refer
to e.g. Bellare et al. [11] for formal definitions.

A popular way of constructing public key schemes is to use hybrid encryption,
consisting of a method of transporting the symmetric key called the key encap-
sulation mechanism KEM = (KEM.Pg,KEM.Kg,KEM.encap,KEM.decap), a data
encapsulation mechanism (DEM) DEM = (DEM.Pg,DEM.Enc,DEM.Dec), and
often a key derivation function KDF as a compatibility layer in between, as de-
picted in Fig. 1. We use the term protokey to describe the input to the KDF
(above denoted K). The individual components have the following properties.

– The KEM’s parameter and key generation work as for a public key encryp-
tion scheme. Key encapsulation KEM.encap takes a public key and returns
both a key K ∈ KKEM and an encapsulation C thereof. Key decapsulation
KEM.decap takes as input a private key and a purported key encapsulation
and returns a key in KKEM or some designated error symbol ⇐.

– Data encapsulation DEM.Enc takes a message m ∈ {0, 1}∗ and a symmetric
key in KDEM and outputs an encryption ψ. A data decapsulation DEM.Dec
takes a message encapsulation ψ and a symmetric key in KDEM and outputs
the message m or error symbol ⇐.

– A key derivation function KDF is a deterministic algorithm implementing
a mapping from KKEM to KDEM. Note that in addition to some key K the
algorithm takes as input KEM.pk and DEM.pars (in order to determine KKEM

and KDEM).

As a notational convention, we omit parameters and implicitly assume that they
are fed to every algorithm, and we write key inputs as subscripts except in cases
where the operation really is on the key. In the single user setting, we often write
(pk, sk) ⊗ Gen(1λ) as shorthand for running parameter and key generation in
one go.

While hybrid encryption has been in widespread use ever since the advent of
public key cryptosystems, the first formalisation of the paradigm was given by
Cramer and Shoup [22]. They gave security definitions of IND-CPA and IND-CCA
security for both the KEM and the DEM part and proved that in the standard
model, where the key derivation function only needs to be (close to) balanced, the
public key cryptosystem inherits security from its constituent parts, e.g. IND-CCA
security for both the KEM and the DEM part is a sufficient condition to obtain an

466 G.T. Davies and M. Stam

IND-CCA secure hybrid PKE scheme. Since then efforts have been made [30, 29, 2]
to investigate how weakening the individual security notions impacts on the se-
curity of the PKE scheme. We refer to the above-mentioned articles for general
security notions for KEMs and DEMs; we will be particularly concerned with
μOW-CCA for KEMs (where the μ indicates there can be multiple key pairs in the
game and the adversary can make multiple encapsulation queries for each public
key) and IND-CCA for DEMs.

Dent [23] looked at various constructions of KEMs from one-way secure public
key cryptosystems (operating on a restricted message space). He modelled the key
derivation function as a random oracle and considered it as part of the KEM. A
typical example of such a construction is the use of a trapdoor function to encapsu-
late a protokey r that is subsequently hashed to yield a derived keyH(r) (this is the
same KEM as mentioned in the introduction). He shows several elegant, generic
KEM constructions that are IND-CCA secure based on fairly minimal assumptions
on the encryption scheme used to encrypt the protokey. For instance, in the ex-
ample above security is attained if the trapdoor function is one-way secure even
in the presence of an oracle that checks whether a ciphertext is a valid ciphertext
or not (i.e., the actual range of the trapdoor function is easily recognizable by the
adversary), which Dent calls OW-CPA+ security. If the KEM is constructed from
a randomized public key cryptosystem, security based on one-wayness is proven,
provided that there is an efficient plaintext-ciphertext checking oracle, that, when
given a message and ciphertext pair, correctly determines whether the ciphertext
is an encryption of the message or not.

Our results are reminiscent of that of Dent, however whereas he exploits
Cramer–Shoup’s composition theoremandonly explicitly considered the construc-
tion of secure KEMs that incorporate the KDF, we (necessarily) look at hybrid
encryption as a whole and our emphasis will be on constructing secure hybrid
cryptosystems from a KEM treating the KDF separately. Thus where Dent used a
public key encryption scheme to arrive at a protokey, we use a proper key encap-
sulation mechanism. As a consequence, our framework is on the one hand more
general than Dent’s (e.g. we can deal with Diffie–Hellman type KEMs more eas-
ily), yet on the other we are likely to run into similar technicalities. In partic-
ular, we see a dichotomy in the KEMs depending on the availability of a key-
encapsulation–encapsulated-key checking oracle KEM.Checkpk(C,K) that, on in-
put a key encapsulation C and purported encapsulated (proto) key K decides
whether KEM.decapsk(C) = K or not. This leads to the following two types of
KEMs; each type will give a different reduction in the security analysis later on:

– In TYPE-1 KEMs there is an efficient checking oracle KEM.Checkpk(C,K).
This class encompasses all schemes that determine the encapsulation C de-
terministically based on the key K, including the usual schemes based on
trapdoor permutations/functions. Diffie–Hellman type KEMs in a pairing-
based setting (where DDH is easy) can also be part of this class. (Looking
ahead, in the security proof when an adversary makes a query H(K) to its
random oracle, the checking oracle allows the reduction to determine whether
this K corresponds to some challenge encapsulation C.)

KDM Security in the Hybrid Framework 467

– In TYPE-2 KEMs there is no efficient checking oracle. This class contains
all IND-CPA secure KEMs. (The lack of a checking oracle means that the
reduction will need to guess whether a query H(K) corresponds to a challenge
ciphertext or not, leading to a less tight reduction.)

The event CollKEM(qLR, λ), paramaterized by the number of oracle queries the
adversary makes and the security parameter, implies a collision in the ephemeral
key output by the KEM, which is extremely unlikely to occur (if it were, this
would also adversely affect the KEM’s one-wayness).

2.2 Key Dependent Message (KDM) Security

The first formal definition of KDM security was given by Black et al. [15]. They
define a KDM analogue IND-KDM-CPA of the established IND-CPA security no-
tion. Simply put, an adversary submits as challenge a function ϕ and receives
either an encryption of ϕ(sk) or of a dummy message 0|ϕ(sk)|. Camenisch et
al. [19] introduced the “active” version IND-KDM-CCA security as a natural
blend between IND-CCA and IND-KDM-CPA, and this is the version we will fo-
cus on. There can be multiple keys in the system and, contrary to standard
IND-CPA security, for the IND-KDM security notions it is not possible to reduce
(e.g. by hybrid argument) to a single key or single query.

The IND-KDM notions are relative to a function class Φ, which stipulates
that the adversary is bound to asking only queries ϕ ∈ Φ. For instance, if Φ
corresponds to the set of all constant functions, notions equivalent to IND-CPA
and IND-CCA emerge. The challenge is to devise schemes that can be proven
secure for an as large as possible class Φ. Black et al. formally regarded ϕ mod-
elled as an algorithm in some fixed RAM model; furthermore they imposed
length-regularity of ϕ in the sense that |ϕ(sk)| does not depend on the value
sk. Following e.g. Malkin et al. [32], we will instead regard ϕ as an arithmetic
or Boolean circuit, which will imply that the output length of ϕ is fixed (and
automatically independent of its input).

Our syntax also differs from that of Black et al. as we make a distinction
between parameter and key generation, which is not uncommon in multi-user
settings. Since ϕ implements a function from a Cartesian product of secret key
spaces to the message space and these spaces can depend on the parameter

Exp
IND-KDM-CCA[Φ]-b
PKE, A (λ):

pars ≥ Pg(1λ)
t ≥ 0
FL ≥ ≤
sk ≥ ()

b∗ ≥ ANew,LRb,Dec(pars)
return b∗

New():
t ≥ t + 1
(pkt, skt) ≥ Kg(pars)
Append skt to sk
return pkt

LRb(ϕ, i):
if ϕ �⊕ Φ(pars,pk, i) then

return �

m1 ≥ ϕ(sk)

m0 ≥ 0|m1|

C̃b ≥ Encpki (mb)

FL ≥ FL ∪ {(C̃b, i)}
return C̃b

Dec(C, i):
if (C, i) ⊕ FL then

return �

m ≥ Decski (C)
return m

Fig. 2. The general IND-KDM-CCA experiment for public key encryption. The bit b is
hard-wired into the Left-or-Right oracle LRb and determines whether a key-dependent
message or a dummy is encrypted and returned to A. Removing oracle Dec yields the
IND-KDM-CPA experiment.

468 G.T. Davies and M. Stam

ExpIND-KDM-CCA-b
Hyb, A (λ):

pars ≥ Pg(1λ)
t ≥ 0
sk ≥ ()
HLIST ≥ ≤
FL ≥ ≤
b∗ ≥ ANew,H,LRHb ,DecH (pars)
return b∗

New():
t ≥ t + 1
(pkt, skt) ≥ Kg(pars)
Append skt to sk
return pkt

H:
On query K:
if (K,hK) ⊕ HLIST

return hK

else

hK
$≥− {0, 1}λ

HLIST ≥ HLIST ∪ {(K, hK)}
return hK

LRH
b (ϕ, i):

if ϕ �⊕ Φ(pars,pk, i) then
return �

m1 ≥ ϕH(sk)

m0 ≥ 0|m1|

(C,K) ≥ KEM.encappki ()

hK ≥ H(K)
ψb ≥ DEM.EnchK

(mb)
FL ≥ FL ∪ {(C,ψb, i)}
return (C,ψb)

DecH(C,ψ, i):
if (C,ψ, i) ⊕ FL then

return �

K ≥ KEM.decapski (C)

if K =∗ then
return ∗KEM

hK ≥ H(K)
m ≥ DEM.DechK

(ψ)
if m =∗ then

return ∗DEM

return m

Fig. 3. The IND-KDM-CCA indistinguishability experiment made explicit for multi-
key hybrid encryption in the random oracle model. The adversary is allowed to query
decryptions of the challenge ciphertexts under different public keys than the ones gen-
erated by LRb, and this restriction is dealt with by the list FL.

generation (e.g. which cyclic group is used for DLP based systems), the security
experiment incorporates a check that ϕ is syntactically valid (however we will
henceforth drop explicit mention of it).

Definition 2. Let PKE = (Gen,Enc,Dec) be a public key encryption scheme
(with security parameter λ). Let Φ be a collection of circuits that map a (number
of) secret key(s) to an element in the message space. Then the IND-KDM-atk[Φ]
advantage of an adversary A against PKE relative to key-dependent message
attacks for circuit class Φ and atk ∈ {CPA,CCA} is defined by

Adv
IND-KDM-atk[Φ]
PKE, A (λ)

def
=

∣∣∣∣
∑

b⊕{0,1}
(−1)b ·Pr

[
Exp

IND-KDM-atk[Φ]-b
PKE, A (λ) = 1

]∣∣∣∣

where the experiment Exp
IND-KDM-CCA[Φ]-b
PKE, A (λ) is given in Fig. 2, and removing

the decryption oracle yields experiment Exp
IND-KDM-CPA[Φ]-b
PKE, A (λ).

3 IND-KDM-CCA Security of Hybrid Encryption

3.1 Restricted KDM Security of the DEM

We introduce a security notion for DEMs called IND-PKDM-CCA (‘Prior-KDM’),
where an adversary’s KDM capability is restricted to (encryptions of) func-
tions of all ‘past’ DEM keys in the system. The formal security game for
IND-PKDM-CCA is depicted in Fig. 4. Our reductions for KDM security of
hybrid encryption will use this IND-PKDM-CCA security notion for the DEM.
However, by a hybrid argument one can show that this restricted form of KDM
attacks is not all that useful to an attacker—the notion is in fact equivalent

KDM Security in the Hybrid Framework 469

ExpIND-PKDM-CCA-b
DEM, A (λ):

pars ≥ DEM.Pg(1λ)
i ≥ 0
FL ≥ ≤
b∗ ≥ ANew,LRb,Dec(pars)
return b∗

New():
i ≥ i + 1
Ki ≥ DEM.Kg(pars)
return i

LRb(j, ϑ):
if j �⊕ [i] then

return �

m1 ≥ ϑ(Kj−1)

m0 ≥ 0|m1|

ψ ≥ DEM.EncKj
(mb)

FL ≥ FL ∪ {(j, ψ)}
return ψ

Dec(j, ψ):
if (j, ψ) ⊕ FL then

return �

m ≥ DEM.DecKj(ψ)
return m

Fig. 4. The IND-PKDM-CCA security experiment for data encapsulation mecha-
nism DEM. Here ϑ(Ki−1) indicates the function ϑ can depend on all keys in range
{K0, ..., Ki−1}.

to IND-CCA security. That IND-PKDM-CCA security implies IND-CCA security
follows from standard relations between different formulations of IND-CCA se-
curity, plus the fact that a non-key dependent message can be queried (in the
KDM world) by using a constant function. See the full version for proof of the
reverse direction (Theorem 3), namely that IND-CCA security for DEMs implies
the IND-PKDM-CCA notion.

Theorem 3. Let DEM be a data encapsulation mechanism. Then for adversary
A1, there exists an algorithmA2 of comparable computational complexity such that

AdvIND-PKDM-CCA
DEM, A1

(λ) → n ·AdvIND-CCA
DEM, A2

(λ) .

3.2 Hybrid Encryption Is IND-KDM-CCA Secure (in the ROM)

Let Hyb = (Hyb.Gen,Hyb.Enc,Hyb.Enc) be a hybrid encryption scheme and let
A be an adversary. In the hybrid setting there are two types of keys present: the
private key of the KEM and the ephemeral key for the DEM, where knowledge
of the private KEM key leads to immediate recovery of the ephemeral key. When
we regard Hyb as a public key encryption scheme in the context of key-dependent
messages, it follows from Fig. 1 that it is on the private key of the KEM that key-
dependent messages (that are input to the DEM) will depend. For concreteness,
in Fig. 3 we have expanded Fig. 2 in the context of hybrid encryption where the
key derivation function is modelled as a random oracle. The forbidden list FL
ensures that the adversary cannot trivially win.

We show that any KEM/DEM system that has a TYPE-1 μOW-CCAKEM and
an IND-CCA DEM gives a IND-KDM-CCA[Φ] secure hybrid encryption scheme
provided that the key derivation function KDF is modelled as a random oracle,
and the functions in Φ can call the random oracle. By this we mean that when
modelled as circuits, ϕ ∈ Φ can have gates that explicitly call the random oracle.
Here, the μ indicates that there is a choice of multiple targets to invert. Recall
that our modelling of functions in ϕ ∈ Φ as circuits implicitly implies that ϕ is
length-regular, meaning that given pk and ϕ, one can uniquely determine the
length of ϕ(sk) (this is the same restriction as made by Black et al. [15] and
Backes et al. [7]). This result is formalized in Theorem 4. In the full version we
provide an analogous, but significantly less tight result for TYPE-2 KEMs.

470 G.T. Davies and M. Stam

Proof intuition. In our proof we make use of the game-playing technique [35,
14] and introduce a sequence of games, as described in Fig. 5, and the games
themselves are specified in Fig. 6. Apart from the simple, syntactical transitions
(1) and (2), there are five game-hops to bound A’s advantage distinguishing
ExpIND-KDM-CCA-1

Hyb, A (λ) and ExpIND-KDM-CCA-0
Hyb, A (λ). These are denoted with solid

lines. Here (3) and (4) are identical-until-bad hops. The ‘Forbidden List’ FL
ensures that the adversary cannot win trivially. We define bad to be the event
that the adversary queries the random oracle on a protokey K previously used
by the left-or-right oracle.

So far, this is all standard fare: use the security of the KEM to decouple the
key encapsulated by the KEM and the one used by the DEM (where Dent [23]
used the same bad event in his analysis of IND-CCA secure KEMs), followed
by a straightforward indistinguishability hop to the DEM. Unfortunately, with
the introduction of key-dependent messages the latter hop has become quite a
bit more burdensome; moreover bounding the bad event in the presence of key-
dependent messages is somewhat troublesome. To overcome these challenges, our
proof uses a number of techniques. To invoke the DEM’s indistinguishability, the
standard reduction would pick all the KEM keypairs and use these to simulate
the KEM part of the hybrid encryption scheme (to run the adversary against the
entire PKE). Since the reduction itself is playing the DEM indistinguishability
game, it can use its DEM oracles to complete the DEM part (as the protokey
encapsulated by the KEM and the ephemeral key used by the DEM are decoupled
at this point). However if an adversary (against the PKE) may make queries with
KDM functions that call the random oracle, it could in principle submit functions
that decrypt past key encapsulations and, with the help of the random oracle,
turn them in past DEM keys (effectively, the KDM function can cause the event
that would normally have triggered bad). Since the reduction does not know the
actual DEM keys being used, it suddenly finds itself in a tight spot and a direct
hybrid argument (to get rid of past DEM keys) does not seem to work.

Our solution is to leverage the newly introduced IND-PKDM-CCA notion.
Since we model the KDM functions as circuits, it turns out to be possible to de-
scribe a compiler that turns a KDM function against the PKE into one against
the DEM. There is however one further complication. For the public key scheme,
we model the hash function as a random oracle and the KDM function has ac-
cess to the random oracle. Yet, for the DEM scheme there is no random oracle
present, which would suggest that the KDM function in the DEM world should
not depend on one either. Moreover, it is not possible to predict on which values
the KDM function would call the random oracle. Thus, when the random oracle
is implemented by the reduction using lazy sampling, though it could hard-code
the hash list so far into the circuit, the simulation might fail once fresh values
are requested. To handle this, we (partly) model the random oracle as a pseudo-
random function (rather than using lazy sampling). This provides the reduction
a succinct description of the entire random oracle and it can safely embed the
key to the pseudorandom function in the circuit used in the IND-PKDM-CCA
game. The introduction of a PRF requires two additional hops (5) and (7).

KDM Security in the Hybrid Framework 471

G0 : H = F, LR1

DEM.EnchK
(m1)

G1 : H �= F, LR1

DEM.EncfK (m1)

G5 : H = F, LR0

DEM.EnchK
(m0)

G4 : H �= F, LR0

DEM.EncfK (m0)

ExpIND-KDM-CCA-1
Hyb, A (λ) ExpIND-KDM-CCA-0

Hyb, A (λ)

G2 : H �= F(PRF), LR1

DEM.EncfK (m1)
G3 : H �= F(PRF), LR0

DEM.EncfK (m0)

(3)

AdvIND-PKDM-CCA
DEM, C
(9)

(1) (2)

(4)

(7) (8)(6) (5)

(11)

AdvIND-PKDM-CCA
DEM, D

Game Oracle Model Message

Exp1 H LS m1

G0 H = F LS m1

G1 H ◦= F LS m1

G2 H ◦= F PRF m1

G3 H ◦= F PRF m0

G4 H ◦= F LS m0

G5 H = F LS m0

Exp0 H LS m0

Fig. 5. Diagrammatic overview of the game hopping structure of proof that an
μOW-CCA TYPE-1 secure KEM and an IND-CCA secure DEM yield a IND-KDM-CCA
secure hybrid scheme in the random oracle model. The games are defined formally in
Fig. 6, here the boxes indicate the game Gi and which oracles comprise the game. The
transitions are labelled by the equations in the proof. The table on the right indicates
which oracle is used to handle A’s calls, how we model the random oracle (LS denotes
lazy sampling) and which message is encrypted. The boxed items indicate where a
change occurs in the hop from one game to another.

The bounding of event bad is relatively easy on the m0-side of the diagram,
as one does not need to know the KEM’s private key sk in order to simulate
the data encapsulations: bad is bounded in G3 by AdvμOW-CCA

KEM, B . However, on the
m1-side of the diagram it is less obvious how to bound the bad event, since it is
not possible to simulate the key-dependent values. The solution is to move the
bad event from the m1-side to the m0-side using the separate hop (11), which
bounds the difference between Pr [bad] in games G2 and G3. This incurs a second
AdvIND-PKDM-CCA

DEM, C term to the bound.
Bounding of the bad event breaks down if distinct queries to the LR oracle

made identical KDF queries. We bound this event by the separate quantity
CollKEM(qLR, λ). It might be possible to avoid this technicality by changing the
scheme so it hashes H(C,K) instead of just H(K).

Interpretation. When it comes to hybrid schemes, our result is very general.
Indeed, it even generalizes the work by Dent [23] (restricted to IND-CPA-security)
as we can deal with key encapsulation schemes where the protokey is derived from
the randomness in a hard-to-invert fashion. For instance, if Gp is a cyclic group
of order p with generator g, an obvious Diffie–Hellman inspired KEM would
pick private key x ∈ Z

∗
p, set public key gx and compute a key encapsulation by

generating a random r ∈ Z
∗
p, releasing gr as the encapsulation of K = grx. Our

theorems can deal with this situation (where the KEM is TYPE-1 iff DDH is
easy in Gp), but it is not covered by the KEMs given by Dent.

Black et al. [15] suggest the use of a variant of TDP-KEM combined with a
one-time pad as a KDM-secure public key scheme in the random oracle model.
Here TDP-KEM is shorthand for trapdoor-permutation-KEM, where the public

472 G.T. Davies and M. Stam

and private key of the KEM match that of the trapdoor permutation and key
encapsulation takes a random K in the domain of the trapdoor permutation,
applies the permutation to encapsulate and outputs H(K) as ephemeral key,
or, in the hybrid model with explicit key derivation function (Fig. 3) the KEM
would output K as ephemeral protokey.

As a result of our theorem, if we restrict this scheme to any fixed-size message
length, security is guaranteed. Strictly speaking, for arbitrary length messages,
we would need to allow signalling of (an upper bound on) the message length to
the random oracle so it can output the required number of bits. This is primarily
a syntactical issue that we did not feel sufficiently important to incorporate into
our main framework. Since TDP-KEM has an obvious checking oracle, we regard
our Theorem 4 settling the problem left open by Black et al.

Theorem 4. Let Hyb be a hybrid PKE scheme (Fig. 1) with a TYPE-1 KEM,
with the key derivation function modelled by a random oracle. Let Φ be any set
of functions, including those which have random oracle access. Let F be a family
of pseudorandom functions. Then for any adversary A calling LR at most qLR
times, there exists algorithms B and C (of comparable computational complexity)
such that

Adv
IND-KDM-CCA[Φ]
Hyb, A (λ) → 2AdvμOW-CCA

KEM, B (λ) + 2AdvIND-PKDM-CCA
DEM, C (λ)

+ 2CollKEM(qLR, λ) + 4AdvPRF
F, A(λ) .

This theorem, combined with Theorem 3, yields the following corollary relat-
ing to standard definitions.

Corollary 5. As above, and let n be the number of DEM keys in the system,
then:

Adv
IND-KDM-CCA[Φ]
Hyb, A (λ) → 2AdvμOW-CCA

KEM, B (λ) + 2n ·AdvIND-CCA
DEM, C (λ)

+ 2CollKEM(qLR, λ) + 4AdvPRF
F, A(λ) .

Proof. [of Theorem 4]
Fig. 3 contains a description of the security games ExpIND-KDM-CCA-b

Hyb, A (λ) that
are obtained by specifying the general PKE IND-KDM-CCA games for hybrid
encryption where the key derivation function is modelled by a random oracle
H. (For simplicity, we omit explicit mention of the class Φ in the description of
the security experiments.) As is customary, we use lazy sampling to define H’s
behaviour, maintaining a list HLIST of query pairs (K,hK) produced by H so
far.

In the game there are four distinct places where queries to H could be made.
Firstly, the adversary A can make direct H queries; any query to the oracle LRb

will require one ‘direct’ call to H for the key derivation and may include a number
of indirect calls as part of the specified function ϕ; and finally as a decryption
query for key derivation. For the purpose of our game-hopping approach, we
need to be able to make a clear distinction between these cases. To this end,
we introduce two additional oracles: F and HF. We make a syntactical change so

KDM Security in the Hybrid Framework 473

Exp
IND-KDM-CCA[Φ]-b
PKE, A (λ):

pars ≥ Pg(1λ)
t ≥ 0
sk ≥ ()
HLIST, FLIST, FL ≥ ≤
b∗ ≥ ANew,H,LRb,Dec(pars)
return b∗

LRb(ϕ
H, i):

if ϕH �⊕ Φ(pars,pk, i) then
return �

m1 ≥ ϕ(sk)

m0 ≥ 0|m1|

(C,K) ≥ KEM.encappki ()

hK ≥ F(K)
ψb ≥ DEM.EnchK

(mb)
FL ≥ FL ∪ {(C,ψb, i)}
return (C,ψb)

New():
t ≥ t + 1
(pkt, skt) ≥ Kg(pars)
Append skt to sk
return pkt

H(K):
if (K,hK) ⊕ HLIST

return hK

if (K,hK) ⊕ FLIST

set bad ≥ true

return hK

hK
$≥− {0, 1}λ

HLIST ≥ HLIST ∪ {(K,hK)}
return hK

F(K):
if (K,hK) ⊕ FLIST

return hK

if (K,hK) ⊕ HLIST

set bad ≥ true

return hK

hK
$≥− {0, 1}λ

FLIST ≥ FLIST ∪ {(K,hK)}
return hK

HF(K):
if (K,hK) ⊕ FLIST

return hK

if (K,hK) ⊕ HLIST

return hK

hK
$≥− {0, 1}λ

HLIST ≥ HLIST ∪ {(K,hK)}
return hK

Dec(C,ψ, i):
if (C,ψ, i) ⊕ FL then

return �

call K ≥ Decap(C, i)
if K =∗ then

return ∗KEM

hK ≥ HF(K)
m ≥ DEM.DechK

(ψ)
if m =∗ then

return ∗DEM

return m

Exp
IND-KDM-CCA[Φ]-b
PKE, A (λ):

pars ≥ Pg(1λ)
t ≥ 0

x
$≥− {0, 1}λ

sk ≥ ()
HLIST, FLIST, FL ≥ ≤
b∗ ≥ ANew,H,LRb,Dec(pars)
return b∗

H(K):
if (K,hK) ⊕ HLIST

return hK

if (K,hK) ⊕ FLIST

set bad ≥ true
hK ≥ PRFx(K)
FLIST ≥ FLIST ∪ {(K,hK)}
return hK

HF(K):
if (K,hK) ⊕ FLIST

return hK

if (K,hK) ⊕ HLIST

return hK

hK ≥ PRFx(K)
HLIST ≥ HLIST ∪ {(K,hK)}
return hK

Fig. 6. Security games used for proof Theorem 4. Games G2 and G3 are described
below the line, with all items the same as above apart from these changes. Games G0

and G5 correspond to the code including the boxed lines, implying that H = F (as
far as I/O behaviour is concerned). Games G1 − G4 have H ◦= F as two independently
sampled random oracles. Games G2 and G3 model the random oracle as a PRF, rather
than using lazy sampling. Games G0, G1 and G2 correspond to b = 1, whereas Games
G3, G4 and G5 correspond to b = 0.

that LRb always uses F for its key derivation, and Dec always uses HF. Oracle HF
synchronises with items that are added to lists for both H and F. By ensuring that
F, H and HF implement the same random oracle (i.e. are functionally equivalent,
exhibiting exactly the same input/output behaviour), the changed games are
equivalent to the original security experiments.

In Fig. 6, G0 corresponds to such a modified, yet equivalent game, in this
case for b = 1. The b = 0 sibling game is called G5. In both these games the
oracles H and F each maintain their own list, HLIST, respectively FLIST, yet
control code ensures (a) that these two lists can not contain K overlap in the
sense that no triple (K,hK , h′

K) can exist for which both (K,hK) ∈ HLIST and
(K,h′

K) ∈ FLIST and (b) that the oracles H and F will look up elements from the

474 G.T. Davies and M. Stam

other oracle’s list, thus ensuring synchronisation. As a result of this design, F
and H are functionally equivalent to each other in the games G0 and G5, implying
that from an adversary’s point of view G0 is equivalent to ExpIND-KDM-CCA-1

Hyb, A (λ),
or

Pr
[
G0

A = 1
]
= Pr

[
ExpIND-KDM-CCA-1

Hyb, A (λ) = 1
]
. (1)

Similarly we claim that G5 is equivalent to ExpIND-KDM-CCA-0
Hyb, A (λ), so

Pr
[
G5

A = 1
]
= Pr

[
ExpIND-KDM-CCA-0

Hyb, A (λ) = 1
]
. (2)

We proceed by a more interesting hop, where we make F and H independent.
The oracles F and H are modified such that when a query is made to one oracle
(say H) that has previously been queried to the other (F) then a fresh value is
still created (and added to HLIST). Moreover, in this case the flag bad is set to
true first. This is described in Fig. 6, where the new G1 corresponds to the b = 1
case and G4 to the b = 0 case. By syntactical inspection, G0 and G1 are identical
up to the point at which the flag is set, enabling application of the fundamental
lemma of game-hopping [14]:

∣∣∣Pr
[
G0

A = 1
]

− Pr
[
G1

A = 1
]∣∣∣ → Pr [A sets bad in G1] (3)

and in a similar vein G4 and G5 are identical until bad, so
∣∣∣Pr

[
G4

A = 1
]

− Pr
[
G5

A = 1
]∣∣∣ → Pr [A sets bad in G4] . (4)

(To bound the difference between games G4 and G5 a standard hop involving
the KEM’s IND-CCA advantage is an alternative.)

The hop between the key-dependent scenario and the non-key-dependent
world will be problematic later on due to the fact that if ϕ calls the random
oracle, the simulation cannot correctly answer these queries since it does not
know the values of the DEM keys in the system, only their indices. To counter
this we add two additional hops in which we use a PRF rather than lazy sampling
to model our random oracle. We regard the ϕ that acts on sk (of the KEM) as a
circuit, with some gates that call the RO. Thus there is a (one-to-one) mapping
from ϕ circuits (which act on sk) to ϑ circuits (that act on the DEM keys). We
assume that there is some kind of ‘safe storage’ of all DEM keys. In this manner
it is possible to track the past RO queries that are made by these ϑ functions.
These H gates will have some inputs, and will check if the input string corre-
sponds to some HLIST entry, or an FLIST entry. If it is an F query, then assign
a Ki to some of the output wires (since the game does not know the Ki but it
can use them). The issue, however, is that if A gives a circuit ϕ that makes an
H query in a gate, and subsequently makes another H query then the HLIST lists
will not be synchronised.

To counter this, consider H as a pseudorandom function PRF : {0, 1}λ ×
KDEM ≡ {0, 1}λ chosen from some PRF-secure function family F , parameterized
by some seed x ∈ {0, 1}λ, rather than using lazy sampling. Denote PRFx(K) as

KDM Security in the Hybrid Framework 475

being the PRF applied to input K and seed x. The gates for H now store the
FLIST, and when calls to F are made we can wire up the corresponding Ki

values. When the function makes H calls, we simply implement the PRF on the
given input. To make this subtle change, we need to implement another two
(symmetrical) game hops in which we change the way we model the random
oracle from lazy sampling (LS) to using a PRF. The difference between A’s
advantage against G1 and its advantage against G2 is bounded by A’s advantage
in breaking the PRF:2

Pr
[
G1

A = 1
]
−Pr

[
G2

A = 1
]
→ AdvPRF

F, A(λ) (5)

Pr [A sets bad in G1]−Pr [A sets bad in G2] → AdvPRF
F, A(λ) (6)

and likewise the difference between A’s advantage against G3 and its advantage
against G4 is bounded by the PRF advantage:

Pr
[
G3

A = 1
]
−Pr

[
G4

A = 1
]
→ AdvPRF

F, A(λ) (7)

Pr [A sets bad in G4]−Pr [A sets bad in G3] → AdvPRF
F, A(λ) (8)

Now we are in a position to consider the hop between games G2 and G3. In
game G2 the response from the Left-or-Right oracle is given to the adversary by
LR1, resulting to an encryption of m1 = ϕ(sk) in ExpIND-KDM-CCA-1

Hyb, A (λ), whereas
in game G3, the Left-or-Right oracle is implemented by LR0, leading to an en-
cryption of m0 = 0|ϕ(sk)| (as in ExpIND-KDM-CCA-0

Hyb, A (λ)). To show that games G2

and G3 are distinguishable only with small probability we introduce an adver-
sary C that attacks the IND-PKDM-CCA property of the DEM, and show that
as long as the DEM is secure in this respect, then the output of the games is
indistinguishable. More precisely,

Pr
[
G2

A = 1
]
−Pr

[
G3

A = 1
]
→ AdvIND-PKDM-CCA

DEM, C (λ) (9)

The consequence of F and H being independently sampled oracles is that in games
G2 and G3 the encapsulated key and the key used for the DEM are effectively
decoupled (as the adversary has no direct access to F). This decoupling allows
us to use a DEM hop to prove equation (9), please see full version for details of
this reduction. In the game that C plays, it runs A as a black-box that returns a
valid ϕ, then C creates messages m0 and m1 in the same way that the LRb oracle
does in the other games. However, where in the games G2 and G3 there was an
explicit oracle F that provided linkage between a key K output by the KEM and
its corresponding key hK actually used by the DEM, in the simulation C uses its
own oracles to create the keys hK in the IND-PKDM-CCA experiment it itself is
playing. To do this, we need to move the function ϕ that acts on the KEM secret

2 The more usual hop in a proof would be to replace a pseudorandom function by
a perfectly random function, whereas here the perfect object is substituted by a
computational approximation—for bounding the difference between the two worlds
the ‘direction’ is irrelevant.

476 G.T. Davies and M. Stam

keys to the function ϑ, that acts upon DEM keys. The set Kϑ contains all the
DEM keys that are currently in the system. To simulate the DEM hop we need
to make sure that the ϑ circuit in the IND-PKDM-CCA game is consistent with
the circuit that acts on all of the DEM keys in the system in the PKE game.
Every time A makes an F query in its PKE game we need to add that key to
the set of keys that ϑ can act upon.

In this decoupled scenario, reduction C generates the (pk, sk) pairs itself. The
seed of the PRF is then ‘hardwired’ into the gates of ϑ so whenA’s KDM function
makes a RO call, it is dealt with by this setup. This allows the simulation to
go through without C actually knowing which values Ki are queried to the RO.
The messages m1 and m0 are then ‘created’ just as they are in A’s LR queries.
Now D calls its own oracles LR, New and Dec (in the IND-PKDM-CCA game)
and returns a pair (C,ψb) as A would have expected.

The LR oracle in the simulation translates the ϕ into a ϑ. If this function
makes an oracle call Ki, the simulation checks HLIST for an entry containing Ki,
and if present returns the corresponding hK . If the value is on FLIST then the
simulation will know the index of the key but not the value itself, and thus a
PRF gate can be called to retrieve the corresponding hK . If it is on neither list,
simply initiate PRF on Ki.

Since the adversary A has no direct access to F this indirect simulation of F is
perfect. As a result, if C is in ExpIND-PKDM-CCA-1

DEM, C (λ) then A will behave towards

C exactly as it would do in G2, and similarly if C is in ExpIND-PKDM-CCA-0
DEM, C (λ)

then A will behave as in G3, proving (9).
All that remains is bounding the probability of the bad event in games G2

and G3, followed by a collection of the various terms into a single bound on the
advantage.

The analysis of the bad event in game G3 is easiest, as here the adversary is
given an encryption of a zero string which is clearly not key-dependent (since
the adversary directly specifies its length). By simple code-inspection, it emerges
that A can set the flag bad to true in two places in G3: either in a direct oracle
query to H on a K that has already been queried to F by LR0; or if LR0 calls
F on a K that has previously been queried to H directly by A. Intuitively, the
former constitutes a break against the one-wayness of the KEM, and the latter
should just be very unlikely (although we actually bound it by a break as well
to avoid the need for an additional assumption on the way K as output by KEM
is distributed). Please refer to the full version for full details of reduction B, for
which

Pr [A sets bad in G3] → AdvμOW-CCA
KEM, B (λ) + CollKEM(qLR, λ) (10)

First we observe that if Enc (internally) creates a pair (C,K) and (C′,K ′) sat-
isfying K = K ′ yet C ≥= C′ the simulation will with high probability produce
F(K) ≥= F(K ′), indicating that in that case it is not perfect. However, the event
that such a pair is created by a KEM ought to be small. We define CollKEM(q, λ)
as the probability this happens in q queries to the encapsulation oracle.

In order to simulate correctly, we require that the reductions can make as
many New calls as A can. To do this we can simply set an upper bound on the

KDM Security in the Hybrid Framework 477

number of New calls that A makes, and then restrict the number of calls the
reductions can make by this figure.

If a collision as above does not happen then B creates a perfect simulation of
G3 as long as bad is not set. Moreover, at the very point a query is made that
would have caused bad to be set in G3, the reduction B uses its KEM-checking
oracle KEM.Check to detect that bad was set and retrieves the corresponding
key K, plus the index of the Enc query this key belongs to.

As a technical aside, to simulate G3 the reduction needs to answer the adver-
sary A’s LR0 queries. Since A gives out ϕ and expects an encryption of 0|ϕ(sk)|,
it is necessary (in order to simulate correctly) for B to learn |ϕ(sk)| without
knowing sk. Here the length regularity condition is required: given pk and ϕ,
we can determine |ϕ(sk)| and thus simulate LR0.

The analysis of the bad event in G2 is more problematic and a direct approach
(as done for G3) does not work. Instead, we take inspiration from the “deferred
analysis” technique of Gennaro and Shoup [24]. Rather than analysing the bad
events in G2, we will defer the analysis to G3 (for which we already have a
bound). However, it is not at all evident that in the hop G2 to G3 the probability
the bad flag is set stays the same (as was the case for the deferred analysis by
Gennaro and Shoup). Indeed, it is unlikely to be the case, however we are able
to show that the difference between the two bad events from occurring is bound
by IND-PKDM-CCA advantage of an adversary D (as described in Fig. 7) against
the DEM, or

Pr [A sets bad in G2]−Pr [A sets bad in G3] → AdvIND-PKDM-CCA
DEM, D (λ) . (11)

Similarly to the analysis of (9), it is necessary to translate the function ϕ
into a ϑ, and align the simulated queries correctly. We set this up so that the
bad event in the security games corresponds to D causing an ABORT in the
reduction.

1. If D is in game IND-PKDM-CCA-1 then, unless ABORT occurs, this is a
perfect simulation of G2 for A.

2. If D is in game IND-PKDM-CCA-0 then, unless ABORT occurs, this is a
perfect simulation of G3 for A.

3. D will ABORT iff the event bad occurs in (either) G2 (or G3).

Consequently we have

Pr [A sets bad in G2] = Pr
[
D sees ABORT in ExpIND-PKDM-CCA-1

]

Pr [A sets bad in G3] = Pr
[
D sees ABORT in ExpIND-PKDM-CCA-0

]
.

Since by construction (and definition) we also have

Pr
[
D sees ABORT in ExpIND-PKDM-CCA-b

]
= Pr

[
ExpIND-PKDM-CCA-b = 1

]

and so our claim (11) follows. Finally we put all of the above together and arrive
at the claimed bound.

478 G.T. Davies and M. Stam

D playing ExpIND-PKDM-CCA-b
DEM, D (λ):

pars ≥ Pg(1λ)
t ≥ 0
sk ≥ ()
HLIST, FLIST, FL ≥ ≤
x

$≥− {0, 1}λ

b∗ ≥ ANew,H,LRb,Dec(pk)
if an ABORT occurs then

return 1
return 0

H(K):
if (K,hK) ⊕ HLIST then

return hK

if (K, ∗) ⊕ FLIST then
ABORT

hK ≥ PRFx(K)
HLIST ≥ HLIST ∪ {(K,hK)}
return hK

LRb(ϕ
H, n):

ϕH → ϑ

if ϕH makes RO call Ki then
hK ≥ PRFx(K)
Kϑ ≥ Kϑ ∪ Ki

m1 ≥ ϑ(Kϑ)

m0 ≥ 0|m1|

(C,K) ≥ KEM.encappkn ()

if (K, hK) ⊕ HLIST then
ABORT

if (K, j) ⊕ FLIST then
call ψb ≥ LR(j, ϑ)

else
call j ≥ New()
FLIST ≥ FLIST ∪ {(K, j)}
call ψb ≥ LR(j, ϑ)

FL ≥ FL ∪ {(j, ψ)}
return (C,ψb)

New():
t ≥ t + 1
(pkt, skt) ≥ Kg(pars)
Append skt to sk
return pkt

Dec(j, ψ):
call m ≥ Dec(j, ψ)
return m

Fig. 7. Description of reduction D used to prove (11). When D runs A, it needs to
create an environment ExpIND-KDM-CCA

Hyb, A . The messages m0 and m1 and also C and K
are ‘created’ just as they are in normal LRb, whereas hK is virtually set to whatever
value is used in the game D itself is playing by D’s calls to New, LR and Dec (from
ExpIND-PKDM-CCA

DEM, D). The number of keypairs D can ask for is upper-bounded by the
number of New queries A makes. Note that D need not know hK for this simulation.

3.3 Conclusions and Open Problems

As stated, our result is very general as it incorporates active attacks, and al-
lows KDM functions that call the random oracle. The proof method incor-
porates the use of a PRF and the non-standard IND-PKDM-CCA notion of
security on the DEM (notably, a notion equivalent to IND-CCA). In the sce-
nario where the adversary’s KDM functions cannot call the random oracle, di-
rect reductions to IND-CCA security of the DEM are possible, however there is
an additional bad event caused when there exists (C, i) and (C′, i′) such that
KEM.decapski

(C) = KEM.decapski∗ (C
′) = K and the adversary manages to de-

capsulate to a previously seen protokey, without triggering the forbidden list FL.
It is consequently possible to bound both of the bad events together.

Once we move to the scenario where functions can call the random oracle
however, an issue arises. First of all the adversary makes an arbitrary LR query,
receiving an encryption under some protokey K1 encapsulated in C1. It then
makes another LR query, this time submitting a function that depends on the
K1 used in its previous query, receiving (C2, ψ2). Then a decryption query of
the form m′ ⊗ Dec(C1, ψ2) does not fall on the forbidden list and could yield
information about m′ to the attacker. From this perspective it is a challenge to
negotiate the simulation of keys in the DEM hop without using a PRF, and to
realise direct reductions to a standard notion such as IND-CCA.

Acknowledgments. We would like to thank Pooya Farshim for his contribution
to initial discussions, and Bogdan Warinschi for ideas and input throughout. We
would also like to thank the anonymous conference reviewers for their comments
and suggestions.

KDM Security in the Hybrid Framework 479

References

[1] Abadi, M., Rogaway, P.: Reconciling two views of Cryptography (the Computa-
tional Soundness of Formal Encryption). Journal of Cryptology 15(2), 103–127
(2002)

[2] Abe, M., Gennaro, R., Kurosawa, K., Shoup, V.: Tag-KEM/DEM: A new Frame-
work for Hybrid Encryption and a new Analysis of Kurosawa-Desmedt KEM. In:
Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 128–146. Springer,
Heidelberg (2005)

[3] Acar, T., Belenkiy, M., Bellare, M., Cash, D.: Cryptographic Agility and its Re-
lation to Circular Encryption. In: Gilbert [26], pp. 403–422

[4] Adão, P., Bana, G., Herzog, J., Scedrov, A.: Soundness of Formal Encryption in
the Presence of Key-Cycles. In: di Vimercati, S.d.C., Syverson, P.F., Gollmann, D.
(eds.) ESORICS 2005. LNCS, vol. 3679, pp. 374–396. Springer, Heidelberg (2005)

[5] Applebaum, B.: Key-Dependent Message Security: Generic Amplification and
Completeness. In: Paterson [33], pp. 527–546

[6] Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast Cryptographic Primitives
and Circular-Secure Encryption based on Hard Learning Problems. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009)

[7] Backes, M., Dürmuth, M., Unruh, D.: OAEP is secure under Key-Dependent Mes-
sages. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 506–523.
Springer, Heidelberg (2008)

[8] Backes, M., Pfitzmann, B., Scedrov, A.: Key-Dependent Message Security under
active attacks - BRSIM/UC-Soundness of Symbolic Encryption with Key Cycles.
In: CSF 2007, pp. 112–124. IEEE Computer Society (2007)

[9] Barak, B., Haitner, I., Hofheinz, D., Ishai, Y.: Bounded Key-Dependent Message
Security. In: Gilbert [26], pp. 423–444

[10] Bellare, M., Cash, D., Keelveedhi, S.: Ciphers that securely encipher their own keys.
In: Chen, Y., Danezis, G., Shmatikov, V. (eds.) ACMCCS 2011, pp. 423–432. ACM
(2011)

[11] Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among notions of
security for Public-Key Encryption schemes. In: Krawczyk, H. (ed.) CRYPTO
1998. LNCS, vol. 1462, pp. 26–45. Springer, Heidelberg (1998)

[12] Bellare, M., Keelveedhi, S.: Authenticated and Misuse-Resistant Encryption of
Key-Dependent Data. In: Rogaway [34], pp. 610–629

[13] Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby,
V. (eds.) ACM CCS 1993, pp. 62–73. ACM (1993)

[14] Bellare, M., Rogaway, P.: The security of triple encryption and a frame-
work for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT
2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006)

[15] Black, J., Rogaway, P., Shrimpton, T.: Encryption-scheme security in the presence
of Key-Dependent Messages. In: Nyberg, K., Heys, H.M. (eds.) SAC 2002. LNCS,
vol. 2595, pp. 62–75. Springer, Heidelberg (2003)

[16] Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-Secure Encryp-
tion from Decision Diffie-Hellman. In: Wagner, D. (ed.) CRYPTO 2008. LNCS,
vol. 5157, pp. 108–125. Springer, Heidelberg (2008)

[17] Brakerski, Z., Goldwasser, S.: Circular and Leakage Resilient Public-Key En-
cryption under Subgroup Indistinguishability - (or: Quadratic Residuosity strikes
back). In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 1–20. Springer,
Heidelberg (2010)

480 G.T. Davies and M. Stam

[18] Brakerski, Z., Vaikuntanathan, V.: Fully Homomorphic Encryption from Ring-
LWE and security for Key Dependent Messages. In: Rogaway [34], pp. 505–524

[19] Camenisch, J., Chandran, N., Shoup, V.: A Public Key Encryption scheme secure
against Key Dependent chosen plaintext and adaptive chosen ciphertext attacks.
In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 351–368. Springer,
Heidelberg (2009)

[20] Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anony-
mous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.)
EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001)

[21] Cash, D., Green, M., Hohenberger, S.: New definitions and separations for Circular
Security. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS,
vol. 7293, pp. 540–557. Springer, Heidelberg (2012)

[22] Cramer, R., Shoup, V.: Design and analysis of practical Public-Key Encryption
schemes secure against adaptive chosen ciphertext attack. IACR Cryptology ePrint
Archive 2001, 108 (2001)

[23] Dent, A.W.: A designer’s guide to kEMs. In: Paterson, K.G. (ed.) Cryptography
and Coding 2003. LNCS, vol. 2898, pp. 133–151. Springer, Heidelberg (2003)

[24] Gennaro, R., Shoup, V.: A note on an encryption scheme of Kurosawa and
Desmedt. IACR Cryptology ePrint Archive 2004, 194 (2004)

[25] Gentry, C.: Fully Homomorphic Encryption using ideal lattices. In: Mitzenmacher,
M. (ed.) STOC 2009, pp. 169–178. ACM (2009)

[26] Gilbert, H. (ed.): EUROCRYPT 2010. LNCS, vol. 6110. Springer, Heidelberg
(2010)

[27] Haitner, I., Holenstein, T.: On the (im)possibility of Key Dependent Encryption. In:
Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 202–219. Springer, Heidelberg
(2009)

[28] Halevi, S., Krawczyk, H.: Security under Key-Dependent Inputs. In: Ning, P.,
di Vimercati, S.D.C., Syverson, P.F. (eds.) ACM CCS 2007, pp. 466–475. ACM
(2007)

[29] Hofheinz, D., Kiltz, E.: Secure hybrid encryption from weakened key encapsula-
tion. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 553–571. Springer,
Heidelberg (2007)

[30] Kurosawa, K., Desmedt, Y.: A new Paradigm of Hybrid Encryption scheme.
In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 426–442. Springer,
Heidelberg (2004)

[31] Laud, P., Corin, R.: Sound computational interpretation of formal encryption with
composed keys. In: Lim, J.-I., Lee, D.-H. (eds.) ICISC 2003. LNCS, vol. 2971,
pp. 55–66. Springer, Heidelberg (2004)

[32] Malkin, T., Teranishi, I., Yung, M.: Efficient circuit-size independent Public Key
Encryption with KDM Security. In: Paterson, [33], pp. 507–526

[33] Paterson, K.G. (ed.): EUROCRYPT 2011. LNCS, vol. 6632. Springer, Heidelberg
(2011)

[34] Rogaway, P. (ed.): CRYPTO 2011. LNCS, vol. 6841. Springer, Heidelberg (2011)
[35] Shoup, V.: Sequences of games: a tool for taming complexity in security proofs.

IACR Cryptology ePrint Archive 2004, 332 (2004)

Key Wrapping with a Fixed Permutation

Dmitry Khovratovich

University of Luxembourg

Abstract. We present an efficient key wrapping scheme that uses a sin-
gle public permutation as the basic element. As the scheme does not rely
on block ciphers, it can be used on a resource-constrained device where
such a permutation comes from an implemented hash function, regular
(SHA-3/Keccak) or lightweight one (Quark, Photon). The scheme is ca-
pable of wrapping keys up to 1400 bits long and processing arbitrarily
long headers. Our scheme easily delivers the security level of 128 bits or
higher with the master key of the same length.

We use the security notion from the concept of Deterministic Au-
thenticated Encryption (DAE) introduced by Rogaway and Shrimpton.
Though the permutation is inevitably modeled as a random permuta-
tion, the resulting proof of security is short and easy to verify and hence
provide a reasonable alternative to authentication modes based on block
ciphers.

Keywords: Key wrapping, DAE, sponge, Keccak.

1 Introduction

Key wrapping schemes address the problem of key management in distributed
systems. Security architects often limit the lifespan of keys in order to reduce the
risk of the key compromise and lessen the amount of data encrypted on a single
key. Hence keys are regularly updated, and an update protocol using an insecure
channel must be carefully designed. Ideally, it should be simple and efficient.
Practical constraints also limit, if not forbid the use of additional mechanisms
such as nonce or random number generation.

Since the early years of digital cryptography, new keys are encrypted on
(wrapped with) a long-term (master) key shared between a sender and a re-
ceiver. Confidentiality of the new key must be ensured and its integrity must be
protected. A key might be bounded to a header, which is not encrypted (e.g.,
for routing purposes) but authenticated. Therefore, the key wrapping scheme
is a special case of authenticated encryption with associated data (AEAD)
schemes [23], where nonces and random numbers are avoided. Such a scheme
may serve not only for key update, but also for a robust and misuse-resistant
general purpose encryption [25].

Traditional AEAD schemes provide confidentiality (e.g., ciphertexts are in-
distinguishable from random strings) and data authenticity (ciphertexts con-
structed by an adversary must decrypt to invalid). They employ randomness or

J. Benaloh (Ed.): CT-RSA 2014, LNCS 8366, pp. 481–499, 2014.
c© Springer International Publishing Switzerland 2014

482 D. Khovratovich

nonces and can be almost as efficient as regular encryption modes [20]. It has
been clear that a deterministic scheme would require at least two passes over
data to make each output bit depend on each input bit.

When the NIST addressed the key wrapping schemes in the series of recom-
mendations (since at least 2001), its designs, later called AES-KW and AKW [21],
were highly inefficient. Moreover, those schemes carried no formal security claims
or proofs. This was natural, as the first formal treatment of this problem ap-
peared only in 2006 [25] as the concept of the Deterministic Authenticated En-
cryption (DAE). Still, only a few key wrapping schemes have been proposed so
far in DAE or similar frameworks: SIV [25], HBS [19], BTM [18], Hash-then-
Encrypt [15, 22].

None of these proposals are universal solutions. AES-KW requires 12-fold as
many operations as to encrypt the same amount of data, SIV needs two keys and
is not parallelizable, and the Hash-then-Encrypt template can not be scaled to a
general-purpose encryption mode. Third-party analysis of these constructions is
often difficult because of lengthy and complicated proofs of security. The recently
found flaw in the security proof of GCM [17] emphasizes the need for clarity and
extensive third-party verification of provably secure schemes.

All these designs employ a block cipher, and the natural choice of AES limits
their security level to 64 bits1. To obtain the 128-bit security or higher, one
would need a block cipher with a 256-bit block or larger. Except for Threefish, a
component of the Skein hash function [14], no other 256-bit blockcipher enjoyed
significant attention from cryptanalysts.

However, block ciphers are not the only source of good permutations. Quite
recently, the hash function Keccak [5], which employs a 1600-bit permutation,
has been selected as the new standard SHA-3. We expect that it will be widely
deployed in the near future, and hence its building block will be readily accessible
to other cryptographic applications. On resource-constrained devices, where the
space is limited, it would be very tempting to use a single cryptographic primi-
tive, such as the Keccak permutation, for many purposes. Whenever Keccak or
AES are considered too expensive for a device, some lightweight hash functions
like Spongent [9] and Quark [2] are also based on a single permutation and may
offer it for other schemes.

This idea also fits the recent paradigm of the permutation-based cryptogra-
phy [11] as opposed to the blockcipher-based cryptography. From the practical
point of view, it would allow to have a single permutation for all purposes,
whereas it would simplify the analysis as a target for a cryptanalyst would be
much simpler. Permutation-based modes of operation draw attention after the
selection of Keccak, as indicated by two recent proposals for the authenticated
encryption: APE(X) [8] and PPAE [7].

If the Keccak permutation is selected, the available 1600 bits are often suffi-
cient to carry the master key, the new key, and the associated data. Hence for the

1 Here the key size of AES, which can be 128, 192, or 256, does not play a significant
role: many modes of operation can not be proven secure as long as inputs to the
blockcipher start colliding.

Key Wrapping with a Fixed Permutation 483

design of a key wrapping scheme we could restrict the use of a permutation to a
single call and obtain a scheme with a reasonably short proof of security. The se-
curity model, however, would be different from the one used in blockcipher-based
schemes. Since we use a single permutation, the most natural is to model it as
randomly drawn and hence prove the security in the random-oracle model. An
alternative approach, the Even-Mansour construction, would provide the secu-
rity proof in the standard model but with weaker bounds (see the further text).
Though the random-permutation model is clearly more demanding to the prim-
itive we use, we argue that a shorter and simpler security proof and increased
security level would compensate the weakening of the model.

Our proposal. We present a new key wrapping scheme with a variable security
level and a proof of security that is easy to verify. We call it KWF, as it is based
not on a block cipher but on a fixed permutation such as those used in sponge
hash functions (SHA-3/Keccak, Quark).

A wide permutation (up to 1600 bits in Keccak) easily delivers the security
level of 128 bits or higher when using the key of the same length. Associated data
(header) is processed with an unkeyed cryptographic hash function, possibly the
same from which the permutation comes. Apart from the header processing, the
scheme has no overhead over a single permutation call. We limit the message
length to at max 1411 bits, but this must be sufficient for wrapping all symmetric
keys and many asymmetric private keys (e.g., elliptic curve keys).

Our scheme is about as efficient as the hash function from which the permu-
tation comes. If the associated data H is processed with the same hash function,
wrapping H and M takes roughly the same time as hashing H ||M . We recom-
mend using a narrow-block permutation for shorter inputs. We also note that
the key length can be freely chosen.

Our scheme, as well as other DAE-conformant designs, is also fine for general-
purpose encryption and authenticated encryption of short inputs (though we
avoid explicitly offering the scheme for general use because of length constraints).
To emphasize this opportunity, we use the notion message for keys and other
inputs that are encrypted by our scheme.

Security proof and random oracles. We accompany our design with a proof of
security in the DAE framework, where we additionally allow the an adversary to
query the randomly drawn permutation. Here we follow the strategy of proving
the indistinguishability of the generalized Even-Mansour scheme from the ran-
dom permutation [10]. Our assumption establishes the security of our scheme as
long as the permutation we eventually fix has no untrivial properties (which so
far holds for Keccak and other sponge functions). We tried to make our proof
as simple as possible to encourage its third-party verification.

We note that there are two possible approaches to constructing and proving
the security of symmetric schemes:

– Use a blockcipher as a primitive and prove the security assuming that it is
a secure PRP;

484 D. Khovratovich

– Use a concrete hash function or a public permutation as a primitive and
prove the security assuming it is randomly drawn.

It is customary to consider the former approach more reliable as it is less
demanding to the primitive and hence withstands a larger set of attacks against
the primitive. Hence the scheme secure in the standard model is considered
better than the one assuming a random oracle. However, the latter approach is
arguably better from designer’s point of view. One may go further and argue
that, it should be easier to construct a single “good” permutation and use it,
e.g., for a hash function, than to construct a family of them for a blockcipher,
where a key selects a particular permutation, and all these permutations should
be significantly different.

A part of our research is to investigate whether a single permutation gives
an elegant scheme with a short security proof in the area of authenticated en-
cryption. If we succeed, this would benefit the permutation-based cryptography
and eventually the cryptographic community by giving various schemes with
verifiable proofs.

Related work. We already mentioned other designs that aim for key wrapping
and deterministic authenticated encryption. NIST has published its first key
wrapping scheme around 2001 (see description in [21]). AES-KW is a sort of
generalized Feistel scheme, where the key to and the header are divided into
64-bit blocks, and the round function is the AES applied to two leftmost blocks.
No analysis of this scheme has been published, though it is believed [25] that
the security level is somewhere between 64 and 128 bits. There are several mod-
ifications to this scheme, known as KW and KWP, and a special version that
uses Triple-DES.

Rogaway and Shrimpton proposed the scheme SIV, which computes MAC of
the message and header with a PRF under key K1 and uses it as the IV in an
IV-based encryption scheme with key K2 [25]. The concrete proposal invokes
CMAC and CTR. The scheme SIV is provably secure in the strongest model
— DAE — where the adversary can choose plaintexts and ciphertexts but is
unable to distinguish the pair of encryption and decryption oracles from the
pair of “random-bits” and “always invalid” oracles. Scheme HBS [19] and its
refinement BTM [18] by Iwata and Yasuda use polynomial hash functions for
MAC and a modified CTR mode. Similarly to CMAC, secondary keys are derived
out of a single key by encrypting constants. HBS and BTM are provably secure
in the DAE setting.

Gennaro and Halevi proposed the general template of Hash-then-Encrypt [15],
which may be viewed as weakening of SIV. Here a PRF is replaced with a hash
function, which might not even be collision resistant. for instance, they showed
that a composition of universal hashing and CTR mode is secure. However, the
performance is gained at the cost of weakening the model. Confidentiality is
achieved in the assumption of random plaintexts (RPA), where the adversary
obtains two plaintexts (out of his control) and one of corresponding ciphertexts,
and he has to guess which one. This “left-or-right” setting is provably weaker

Key Wrapping with a Fixed Permutation 485

than DAE, but is still sufficient for key wrapping schemes where inputs have
enough entropy. Osaki and Iwata [22] continued work in this direction and in-
troduced a special class of universal hash functions which are fine to use with
ECB or CBC.

The Keccak team presented an authenticated encryption mode SpongeWrap,
which under certain circumstances and proper formatting of plaintext and head-
ers may serve for the key wrapping [4]. However, the paper [4] is quite vague on
this topic, and it was later confirmed [1] that the key wrapping was not among
the main applications of SpongeWrap. Quite recently, a misuse-resistant authen-
ticated encryption scheme APE(X) has been presented [8], but the paper was
not available to the author at the time of submission.

On Even-Mansour ciphers. Our construction may resemble a variant of the
Even-Mansour cipher [13], where a single permutation F is turned to a block-
cipher EK(X) = K ⊗ F(X ⊗K). The resulting cipher is provably secure up to
2n/2 queries to both blockcipher and permutation [12] when the key is as wide
as the permutation. It may be tempting to construct a key wrapping scheme by
taking a wide permutation and a short key, and encrypt a plaintext with some
redundancy. This would reduce the security of the whole scheme to the PRP
security of the Even-Mansour cipher and hence provide a desirable proof in the
standard model.

However, this approach is dangerous, as reducing the key length also reduces
the overall security. Indeed, when the key length k < n, one may ask to encrypt
2k/2 plaintexts which are constant in the bytes not touched by the key. In the
offline stage, an adversary also applies the permutation to these inputs and
searches for a collision between two groups of outputs in the last n−k bits. This
allows to recover the key with complexity 2k/2 whereas our construction does
not have a security loss up to 2k operations. Therefore, an Even-Mansour cipher
can not be used as is, and a more sophisticated PRP candidate would be needed
to get a scheme provably secure in the standard model.

Outline of the paper. We recall the syntax of key wrapping schemes and relevant
security definitions in Section 2. Then we describe our proposal KWF in Sec-
tion 3 and also recommend a set of permutations for various security levels. We
immediately proceed with the security proof of KWF in Section 4. We survey
the existing key wrapping schemes in the Conclusion.

2 Syntax and Security of Key Wrapping Schemes

2.1 Syntax

A key wrapping scheme Π is a symmetric authenticated encryption scheme and is
defined as a pair of functions E and D, which provide encryption and decryption,
respectively. The secret key K, shared between parties, belongs to the key space
K. The encryption function takes the key to be wrapped from the message space
M and encrypts it to a ciphertext C ≡ C. If the scheme is able to authenticate

486 D. Khovratovich

some data without encrypting it, it is called the associated data (AD). The
associated data space is denoted by H, hence

E : K ×H ×M → C.
The decryption function takes a key, a ciphertext, and possibly associated

data as input and returns either a plaintext (wrapped key) from the message
space or the invalid message ∪:

D : K ×H× C → M⇐ {∪}.
The key wrapping scheme differs from the probabilistic (regular) authenticated
encryption schemes as it does not use any random numbers or nonces.

Clearly, the produced ciphertext decrypts back to the plaintext if the same
associated data is used:

D (K,H, (E(K,H,M))) =M.

The purpose of a key wrapping scheme, as well as of a regular authenticated
encryption scheme, is to achieve:

– Privacy by making all the ciphertexts “look randomly”.
– Data authenticity by making all the ciphertexts not produced by the key

owner “decrypt to invalid”.

Hence the receiver may verify that the unwrapped key is authentic as otherwise
the ciphertext would decrypt to invalid. Let us introduce these notions formally.

2.2 Security

Rogaway and Shrimpton [25] were the first who introduced a single notion that
amalgamates both privacy and authenticity properties of a key wrapping scheme.
They called it Deterministic Authenticated Encryption (DAE). Gennaro and
Halevi proposed a weaker notion of security (RPA+INT), where the plaintexts
are randomly chosen and are out of adversary’s control. We prove the security
of KWF in a strengthened version of DAE, so our scheme is secure for general-
purpose encryption where the adversary may control the plaintexts.

The security of a DAE scheme is defined as the inability to distinguish between
the two worlds, where an adversary has access to two oracles [25]. One world
consists of the encryption oracle E(·, ·) and decryption oracle D(·, ·), where the
secret key is randomly chosen. The second world consists of the “random-bits”
oracle $(·, ·) and the “always-invalid” oracle ∪ (·, ·) (Figure 1).

This setting serves well for encryption schemes based on secure PRPs and
authentication schemes based on secure PRFs. We only have to make a couple
of refinements. As we work with a single permutation, we have to additionally
allow the adversary to access it. Moreover, we have to model it as randomly
drawn [3, 6], which in turn requires us to assume that the permutation has no
nontrivial properties.

Key Wrapping with a Fixed Permutation 487

EK DK

A

$ ∪

?

Fig. 1. Indistinguishability setting for DAE

We also slightly refine the definition of the “random-bit” oracle $(·, ·) with
the following motivation. Since the encryption is invertible, an ideal encryption
scheme with a fixed key and associated data should be a permutation. Hence
it is natural to model the oracle $(·, ·) as an ideal cipher — a set of randomly
chosen permutations indexed by a key. Here the associated data serves as a key.
This model allows for an increased security level and a tighter bound, since a
traditional proof of security for an encryption mode invokes a PRF and then
applies the PRF-to-PRP switching lemma. This lemma limits the security level
with the birthday bound, which we would like to avoid.

Definition 1. Let Π = (K, E [F],D[F]) be a DAE scheme based on permutation
F . Let the adversary A have the access to F . The DAE advantage of A in
breaking Π is computed as follows:

Advdae
Π (A) = Pr

[
K

$→− K, F(·) $→− Perm(n) : AEK [F](·,·),DK[F](·,·) ≥ 1
]
−

− Pr
[
F(·) $→− Perm(n) : A$(·,·),≥(·,·) ≥ 1

]
.

On query (H,X) the oracle $(·, ·) returns a random string of length n so that
it is a permutation (bijective function) for every H . The set of all permutations
over {0, 1}n is denoted by Perm(n). The ∪ (·, ·) oracle always returns ∪ (invalid).
We exclude trivial wins: the adversary shall not ask (H,Y) of its right oracle if
some previous left oracle query of (H,X) returned Y and vice versa. Without
loss of generality, the adversary does not repeat a query and does not ask left
queries outside of H × M. Here and in the further text we implicitly assume
that F−1 is available together with F .

The maximum advantage as a function of the number of allowed queries is
the natural quantitative measure of the security of a key wrapping schemes:

Advdae
Π (q)

def
= maxAAdvdae

Π (A),

488 D. Khovratovich

where we take maximum over all adversaries asking at maximum q queries to
all oracles.

3 Our Proposal: KWF

3.1 Notation

For two bit strings X and Y of the same length, X⊗Y is their xor. For an integer
n ∈ 1, {0, 1}n is the set of all bit strings of n bits, and {0, 1}m..n is the set of
strings of m to n bits long. Also Xm..n denotes the substring of X containing

bits with indices from m to n, where the first index is 1. We write X
$→− X for

sampling an element from the set X uniformly at random.

3.2 Description of KWF

Our scheme provides an authenticated encryption of short messages and is based
on a fixed n-bit permutation F . Of the n-bit input, k bits are devoted to the
key K, l bits to the associated data H , and n− k− l to the message M . As the
associated data needs only authentication, we map a possibly long string H to an
l-bit value with a cryptographic hash function G. G should be collision-resistant,
and it should return some valid output on empty input (if it requires redefinition
of G, the new function shall still be collision-resistant).

We define scheme KWF formally as Π = (K, E [F],D[F]), where:

1.

K = {0, 1}k — the key space;

H = {0, 1}0..t — the associated data (AD) space;

M = {0, 1}1..(n−k−l−1) — the message space;

C = {0, 1}n — the ciphertext space.

2.

G : {0, 1}0..t −→ {0, 1}l — hash function for the associated data;

pad : {0, 1}1..(n−k−l−1) −→ {0, 1}n−k−l — invertible padding function;

F : {0, 1}n −→ {0, 1}n — fixed permutation.

3. E [F] : K ×H ×M −→ C — encryption function (Figure 2):

{
EK [F](H,M) = F (K||G(H)||pad[M]))⊗ (

K||0n−k) .
4. D[F] : K × H × {0, 1}n −→ M ⇐ {∪} — decryption function. The output

DK [F](H,C) is computed as follows:
(a) X → F−1(C ⊗ (

K||0n−k)).
(b) If X1..k ∅= K, return ∪.
(c) If Xk+1..k+l ∅= G(H) return ∪.
(d) Return pad−1(Xk+l+1..n).

Key Wrapping with a Fixed Permutation 489

k l

G(H) pad[M]

n− k − l

F

C

K

0

n

H

G

M

pad

Fig. 2. Our proposal: KWF

3.3 Recommended Parameters

In Section 4 we prove that the adversary asking at most q encryption and de-
cryption queries has the maximum advantage of

2Advcoll
G (q) +

2.5q

2k
+

8.5q2

2n−k
,

where Advcoll
G (q) is the maximum advantage of the adversary trying to violate

the collision resistance of G after making q queries to G (a more rigorous reduction
to collision resistance is presented in Section B. We assume that for a collision-
resistant hash function:

Advcoll
G (q) ⊕ q2

2l
.

Then to get the security level of S bits, the following constraints are sufficient:

k ∈ S, l ∈ 2S, n ∈ 2S + k.

Therefore, for 80-bit master keys and 80-bit (padded) plaintexts we need n ∈
320, and for 128-bit keys and plaintexts — n ∈ 512.

There are several families of sponge hash functions that provide suitable per-
mutations for KWF. The Keccak family [5] uses permutations of width n =
25 · 2l, l = 0..6, with n = 1600 chosen for SHA-3. Keccak permutations are
reasonably efficient in software and hardware, and are natural choice whenever

490 D. Khovratovich

SHA-3 is implemented on the platform. We propose to use n = 400, 800, 1600
and denote them as Keccak-n. It is natural to use the Keccak hash function
also for the associated data. By Keccak/t we denote the sponge hash function
using the 1600-bit Keccak permutation with capacity 2t and rate 1600− 2t. The
function Keccak/256 is to be standardized as SHA-3-256.

As far as we know, the key wrapping schemes are also deployed on smart cards.
Hence we would like to offer a portfolio of permutations for KWF that are suit-
able for resource-constrained platforms. Quark [2], Photon [16], and Spongent [9]
are recently proposed families of lightweight hash functions based on the sponge
construction. They use permutations from 88 to 768 bits wide and were not
shown any internal weaknesses. Depending on the message length and the se-
curity level, permutations from 256 to 768 bits can be recommended for KWF.
Some more details are given in Appendix A and the summary in Table 2.

Whenever SHA-2 is implemented on the platform, it also can be used as the
hash function for the associated data. The most suitable for KWF are SHA-224
and SHA-256.

Some permutations are significantly faster than their inverses, e.g., the Kec-
cak permutations. Assuming that the receiver in the key wrapping scheme is
more resource-constrained, we propose to use the inverse of such permutation
for encryption, and hence the forward call for the decryption.

4 Security of KWF

Our main result states that if an adversary can not violate the collision resistance
of G and makes fewer than min(2(n−k)/2, 2k) queries, she is unlikely to violate the
security of KWF as a DAE scheme. The term Advcoll

G (q) in our bound quantifies
the ability of the adversary making at most q queries to G to find a colliding
pair. A more rigorous formulation of our results can be found in Appendix.

Theorem 1. The DAE advantage of an adversary attacking KWF and asking
the total of at most q queries to all oracles and F is bounded as follows:

Advdae
Π (q) ⊕ 2Advcoll

G (q) +
2.5q

2k
+

8.5q2

2n−k
.

Proof. We split this expression in two following the approach in [25]:

Pr
[
K

$→− K, F(·) $→− Perm(n) : AEK [F],DK [F] ≥ 1
]
−

− Pr
[
F(·) $→− Perm(n) : A$,≥ ≥ 1

]
=

= Pr
[
AEK [F],DK [F] ≥ 1

]
− Pr

[
AEK [F],≥ ≥ 1

]
︸ ︷︷ ︸

p1

+

+ Pr
[
AEK [F],≥ ≥ 1

]
− Pr

[
A$,≥ ≥ 1

]
︸ ︷︷ ︸

p2

.

Key Wrapping with a Fixed Permutation 491

4.1 Bounding p1 (Authenticity Proof)

Consider

p1 = Pr
[
AEK [F],DK [F] ≥ 1

]
− Pr

[
AEK [F],≥ ≥ 1

]
,

where K and F are randomly chosen.
We assume without loss of generality that A halts and outputs 1 whenever

the right oracle returns M ∅=∪. Prior to this event, both oracle pairs behave
identically as (EK [F],∪). Therefore, p1 is bounded by the probability that A
asks a right-oracle query (H,Y) so that DK(H,Y) ∅=∪.

Let us denote the set of ciphertexts obtained prior to this query by C, the set
of F responses and F−1 queries by Fo, and of F queries and F−1 responses by
Fi.

By definition, the adversary is unable to use a pair (H,Y) where Y has
been a response Y = EK(H,X) for some X . Hence either Y /≡ C, or Y =
EK(H ≤, X), H ≤ ∅= H . In the latter case the ciphertext decrypts to G(H ≤)||X , so
the decryption returns ∪ unless H and H ≤ form a collision pair for G. Here the
success rate of the collision search for G is bounded by Advcoll

G (q).
If Y /≡ C, then

Pr [DK(H,Y) ∅=∪] ⊕ Pr [DK(H,Y) ∅=∪ | (Y ⊗K) /≡ Fo] +
+ Pr [DK(H,Y) ∅=∪ | (Y ⊗K) ≡ Fo] .

Let us now estimate both addends of the right side.

– (Y ⊗ K) /≡ Fo (here and further we shortly write Y ⊗ K instead of Y ⊗
(K||0n−k)). Then the permutation F−1 is asked with a fresh query, so its
output is uniformly distributed along previously unallocated values. The
decryption returns invalid if

F−1(Y ⊗K)1..k+l ∅= K||G(H).

Hence at maximum 2n−k−l values pass this condition. As at minimum 2n−q
values remain unassigned, we obtain

Pr [DK(H,Y) ∅=∪ | (Y ⊗K) /≡ Fo] ⊕ 2n−k−l

2n − q
. (1)

– (Y ⊗K) ≡ Fo. Hence the decryption oracle ask the permutation with a query
that is not fresh. Then the decryption returns ∪ if

F−1(Y ⊗K) ∅= K||Z

for any Z. We say that the input clash (IC) occurs, if (K||Z) ≡ Fi for some
Z. Hence without the input clash the decryption error is guaranteed:

Pr [DK(H,Y) ∅=∪ | (Y ⊗K) ≡ Fo, no IC occurred] = 0.

492 D. Khovratovich

Finally,

Pr [DK(H,Y) ∅=∪ | no IC occurred] ⊕ 2n−k−l

2n − q
.

and

p1 = Advcoll
G (q) +

[
1−

(
1− 2n−k−l

2n − q

)q]
+ Pr(IC; q) ⊕

⊕ Advcoll
G (q) +

2q

2k+l
+ Pr(IC; q).

It remains to bound the probability Pr(IC; q) of getting the input clash after q
queries. Here either the adversary tries to guess the key in F queries or hopes to
obtain it as a prefix in F−1 responses. In the worst case, when all the q prefixes
are different, the probability of having K among them is bounded by q/2k, so
we have the following bound on the input clash:

Pr(IC; q) ⊕ q

2k
. (2)

This gives the final bound on p1:

p1 ⊕ Advcoll
G (q) +

2q

2k+l
+

q

2k
. (3)

4.2 Bounding p2 (Privacy Proof)

Recall that
p2 = Pr

[
AEK [F],≥ ≥ 1

]
− Pr

[
A$,≥ ≥ 1

]
,

where K and F are chosen randomly.
We can drop the oracle ∪ simply by considering the adversary B that has

access to the left oracle only and runs A. She transfers queries of A directly to
the oracles and returns ∪ to all queries by A to the right oracle. Hence

p2 ⊕ Pr
[
BEK [F] ≥ 1

]
− Pr

[
B$ ≥ 1

]
.

In the further text we show that in the absence of two events, so called the
output clash and the oracle repetition, oracles EK [F] and $ produce identically
distributed results and hence are indistinguishable. The clashes and some re-
marks on how they can be exploited are depicted in Figure 3.

Let us go to the details. Consider the query (H,X) to the encryption oracle
E or $. Denote by C the set of encryption oracle responses obtained beforehand.
We are also interested in the last (n−k) bits of ciphertext, which are unaffected

by the key addition. We denote C|k+1..n by Ĉ and use the same notation for

(n− k)-bit suffixes of Fo denoted by F̂o.
Let us say that the encryption oracle response C = EK(H,X) causes the

output clash if Ĉ ≡ F̂o, i.e. the ciphertext collides with one of stored permutation

Key Wrapping with a Fixed Permutation 493

F

K X

C′

EK

X

C′

Input clash

F

X

C′

EK

Y

C′

Output clash

∅= K if X ∅= Y

Fig. 3. Detection and exploit of the clashes. In case of input clash we encrypt (n− k)-
bit suffix X of the permutation query K||X and detect suffix collision in outputs. In
case of output clash some ciphertext prefixes are forbidden, which allow to distinguish
the encryption from the ideal cipher.

outputs on the last n− k bits. Let V be the set of the ciphertexts that did not
occur in previous responses and do not cause the output clash:

V def
=

[
{0, 1}k ×

(
{0, 1}n−k \ F̂o

)]
\ E.

Lemma 1. If the input clash did not occur and G(H) does not collide with any
previous such value, then all responses EK(H,X) ≡ V are equiprobable.

Proof. Since there was no input clash and no collision, the inputK||G(H)||pad[X]
has not been queried to the permutation. Hence, it is fresh, and its output is uni-
formly taken from {0, 1}n \ C. It remains to remove from this set the values that

cause the output clash, i.e. the set {0, 1}k ×
(
{0, 1}n−k \ F̂o

)
. This concludes

the proof.

The ideal cipher has a different distribution, as its outputs may collide for
distinct H . Let us say that the oracle repetition (OR) occurs if $(H,X) =
$(H ≤, X ≤) for some previously queried (H ≤, X ≤). If we exclude the oracle repetition
and output clash events, the distribution will be the same:

$(H,X)
$ | no OR, no OC, no Coll→−−−−−−−−−−−−−−−− V .

Combining with Lemma 1, we conclude that if no input clash, no output clash,
and no oracle repetition occurs, the encryption oracles produce identically dis-
tributed responses and are indistinguishable. Therefore,

p2 ⊕ Pr(IC; q) + Pr(OC for E | no IC; q) + Pr(OC for $(·, ·); q)+
+ Pr(OR) +Advcoll

G (q). (4)

Output clash bound. Provided no input clash and no collision in G, a query
E(H,X) yields a fresh query to F . Hence the output is uniformly distributed

494 D. Khovratovich

among at least 2n− q previously unassigned values, of which at maximum q×2k

cause the output clash. Therefore, assuming q ⊕ 2k

Pr
(̂E(H,X) ≡ F̂o

)
⊕ q2k

2n − q
⊕ 2q

2n−k
.

Thus we have the following bound:

Pr(OC for E | no IC; q) ⊕ 1−
(
1− 2q

2n−k

)q
⊕ 4q2

2n−k
. (5)

The bound for the ideal cipher is the same:

Pr
(̂$(H,X) ≡ F̂o

)
⊕ q · 2k

2n − q
=≥ Pr(OC for $(·, ·); q) ⊕ 4q2

2n−k
. (6)

Oracle repetition bound. We calculate the probability of the event that during q
queries to the PRP-oracle $ there is no collision in outputs. Consider i-th query.
The oracle chooses its output uniformly out of at least (2n − q) possibilities, of
which at maximum q cause a collision. Hence

Pr(OR; q) = 1−
q∏
i=1

(
2n − 2q

2n − q

)
= 1−

(
1− q

2n − q

)q
⊕ 1− e−

2q2

2n ⊕ 3q2

2n
. (7)

We substitute Equations (2), (5), (6), and (7) to Equation (8) and obtain the
final bound

p2 ⊕ q

2k
+

8q2

2n−k
+

3q2

2n
+Advcoll

G (q). (8)

Then we sum Equations (3) and (8) and get:

Advdae
Π (q) ⊕ Advcoll

G (q) +
2q

2k+l
+

q

2k
+

q

2k
+

8q2

2n−k
+

3q2

2n
+Advcoll

G (q) ⊕

⊕ 2Advcoll
G (q) +

2.5q

2k
+

8.5q2

2n−k
.

This concludes the proof of Theorem 1.

5 Conclusion

We have described a new key wrapping scheme — KWF. It is based on a single
fixed permutation, with a lot of candidate permutations available in sponge de-
signs: Keccak/SHA-3, Quark, Spongent, Photon. Though keys to be wrapped are
limited to the length of 1411 bits, our scheme still provides a simple and efficient
key update protocol for most of symmetric and several asymmetric cryptosys-
tems. It can also bind the associated data to the message, and is able to prepro-
cess it without the master key. The ciphertext length is equal to the permutation
width n, while the master key length k can vary.

Key Wrapping with a Fixed Permutation 495

Table 1. KWF and other key wrapping schemes

KWF HBS AES-KW SIV Hash-then-E

Message length 0..1411 Arbitrary

Overhead 1.2–1.5 2 12 2 1+ε

Expansion 192–384 128 |H |+ 64 128 128

Security model DAE DAE No DAE RPA

Security proof RP PRP,PRF No PRP, PRF PRP

Block cipher No Yes Yes Yes Yes

Hash function Yes Maybe No Yes Yes

Preprocess header Yes No No Yes Yes

128-bit security Yes Not with AES No Not with AES

We recalled several alternative schemes and concluded that KWF is a viable
alternative when a user wants to achieve 128-bit security within a simple design.
Though the security of KWF is proven in the random-permutation model, we
showed that no similar schemes secure in the standard model have the same
features, and the Even-Mansour construction needs a careful amplification to
suit the 128-bit security requirement.

The scheme is provably secure in the refined concept of DAE, where we add the
adversarial access to the permutation. Assuming no weakness in the permutation
and a collision resistant hash function for the associated data, the violation of
DAE property is unlikely for the number of queries q ⊕ 2k. Hence the security
level of 128 bits is easy to deliver, which is not the case for other key wrapping
schemes using AES.

A scalable version of our scheme, which would process arbitrarily long mes-
sages and remain simple and secure, is an object for the future work.

We believe that there are numerous different applications where DAE schemes
can be used. Whereas one might need 128-bit security level at first, another would
want to process arbitrary long messages. We have constructed a comparative ta-
ble to demonstrate that KWF may find its own niche (Table 1). The overhead is
here defined as the ratio of extra blockcipher calls compared to the sole encryp-
tion of the same data; we simply divide the permutation width by the message
length. The expansion is the the number of extra bits compared to the ciphertext
of the same data. We also compare the need of block cipher or a hash function,
the ability to preprocess the header in advance, and the ability to deliver 128-bit
security with recommended parameters (usually AES for other schemes).

Acknowledgements. The author thanks Alex Biryukov, Jean-Sébastien Coron,
Joan Daemen, and Gilles Van Assche for valuable comments on the paper.

496 D. Khovratovich

References

1. Van Assche, G.: Private communication (August 2013)

2. Aumasson, J.-P., Henzen, L., Meier, W., Naya-Plasencia, M.: quark: A lightweight
hash. In:Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 1–15.
Springer, Heidelberg (2010), https://131002.net/quark/quark_full.pdf

3. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On the indifferentiabil-
ity of the sponge construction. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS,
vol. 4965, pp. 181–197. Springer, Heidelberg (2008)

4. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Duplexing the sponge: Single-
pass authenticated encryption and other applications. In: Miri, A., Vaudenay, S.
(eds.) SAC 2011. LNCS, vol. 7118, pp. 320–337. Springer, Heidelberg (2012)

5. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: The Keccak reference, version
3.0 (2011), http://keccak.noekeon.org/Keccak-reference-3.0.pdf

6. Bhattacharyya, R., Mandal, A., Nandi, M.: Security analysis of the mode of JH hash
function. In: Hong, S., Iwata, T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 168–191.
Springer, Heidelberg (2010)

7. Biryukov, A., Khovratovich, D.: PPAE: Parallelizable permutation-based au-
thenticated encryption, presented at DIAC (2013), http://2013.diac.cr.yp.to/
slides/khovratovich.pdf

8. Bogdanov, A., Andreeva, E., Mennink, B., Mouha, N., Luykx, A., Ya-
suda, K.: APE(X): Authenticated permutation-based encryption with extended
misuse resistance, presented at DIAC (2013), http://2013.diac.cr.yp.to/

slides/luykx.pdf

9. Bogdanov, A., Knežević, M., Leander, G., Toz, D., Varıcı, K., Verbauwhede, I.:
spongent: A lightweight hash function. In: Preneel, B., Takagi, T. (eds.) CHES
2011. LNCS, vol. 6917, pp. 312–325. Springer, Heidelberg (2011)

10. Bogdanov, A., Knudsen, L.R., Leander, G., Standaert, F.-X., Steinberger, J.,
Tischhauser, E.: Key-alternating ciphers in a provable setting: Encryption using
a small number of public permutations. In: Pointcheval, D., Johansson, T. (eds.)
EUROCRYPT 2012. LNCS, vol. 7237, pp. 45–62. Springer, Heidelberg (2012)

11. Daemen, J.: Permutation-based symmetric cryptography and Keccak. Technical
report, Ecrypt II, Crypto for 2020 Invited Talk (2013),
https://www.cosic.esat.kuleuven.be/ecrypt/cryptofor2020

12. Dunkelman, O., Keller, N., Shamir, A.: Minimalism in cryptography: The Even-
Mansour scheme revisited. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT
2012. LNCS, vol. 7237, pp. 336–354. Springer, Heidelberg (2012)

13. Even, S., Mansour, Y.: A construction of a cipher from a single pseudorandom
permutation. In: Matsumoto, T., Imai, H., Rivest, R.L. (eds.) ASIACRYPT 1991.
LNCS, vol. 739, pp. 210–224. Springer, Heidelberg (1993)

14. Ferguson, N., Lucks, S., Schneier, B., Whiting, D., Bellare, M., Kohno, T., Callas, J.,
Walker, J.: The Skein hash function family (2010), http://www.skein-hash.info/
sites/default/files/skein1.3.pdf (Submission to NIST (Round 3))

15. Gennaro, R., Halevi, S.: More on key wrapping. In: Jacobson Jr., M.J., Rijmen, V.,
Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867, pp. 53–70. Springer, Heidelberg
(2009)

16. Guo, J., Peyrin, T., Poschmann, A.: The PHOTON family of lightweight hash func-
tion. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 222–239. Springer,
Heidelberg (2011), https://sites.google.com/site/photonhashfunction

https://131002.net/quark/quark_full.pdf
http://keccak.noekeon.org/Keccak-reference-3.0.pdf
http://2013.diac.cr.yp.to/slides/khovratovich.pdf
http://2013.diac.cr.yp.to/slides/khovratovich.pdf
http://2013.diac.cr.yp.to/slides/luykx.pdf
http://2013.diac.cr.yp.to/slides/luykx.pdf
https://www.cosic.esat.kuleuven.be/ecrypt/cryptofor2020
http://www.skein-hash.info/sites/default/files/skein1.3.pdf
http://www.skein-hash.info/sites/default/files/skein1.3.pdf
https://sites.google.com/site/photonhashfunction

Key Wrapping with a Fixed Permutation 497

17. Iwata, T., Ohashi, K., Minematsu, K.: Breaking and repairing GCM security
proofs. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417,
pp. 31–49. Springer, Heidelberg (2012)

18. Iwata, T., Yasuda, K.: BTM: A single-key, inverse-cipher-free mode for determin-
istic authenticated encryption. In: Jacobson Jr., M.J., Rijmen, V., Safavi-Naini, R.
(eds.) SAC 2009. LNCS, vol. 5867, pp. 313–330. Springer, Heidelberg (2009)

19. Iwata, T., Yasuda, K.: HBS: A single-key mode of operation for deterministic
authenticated encryption. In: Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665,
pp. 394–415. Springer, Heidelberg (2009)

20. Krovetz, T., Rogaway, P.: The software performance of authenticated-encryption
modes. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 306–327. Springer,
Heidelberg (2011)

21. NIST. Special publication 800-38f: Recommendation for block cipher modes of
operation: Methods for key wrapping (2008),
http://csrc.nist.gov/publications/drafts/800-38F

22. Osaki, Y., Iwata, T.: Further more on key wrapping. IEICE Transactions 95-A(1),
8–20 (2012), http://skew2011.mat.dtu.dk (Also published at SKEW 2011)

23. Rogaway, P.: Authenticated-encryption with associated-data. In: ACM Conference
on Computer and Communications Security 2002, pp. 98–107 (2002)

24. Rogaway, P.: Formalizing human ignorance. In: Nguyên, P.Q. (ed.) VIETCRYPT
2006. LNCS, vol. 4341, pp. 211–228. Springer, Heidelberg (2006)

25. Rogaway, P., Shrimpton, T.: A provable-security treatment of the key-wrap prob-
lem. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 373–390.
Springer, Heidelberg (2006)

A Lightweight Permutations for KWF

Here we recommend for KWF some particular permutations taken from the
lightweight hash function families: Quark, Photon, Spongent.

The Quark family [2] offers compact and low-power hash functions best suit-
able for RFID technology and other resource-constrained platforms. It uses
permutations of width n = 136, 176, 256. Here n = 256 (s-Quark) is a good can-
didate for KWF operating on 64-bit keys and plaintexts, and u- and d-Quark
(n = 136, 176) can be chosen as the hash function G with the 64-bit and 80-bit
level of collision resistance, respectively. We denote Quark permutations of width
n by Quark-n.

The Photon family [16] is an AES-based lightweight hash function design with
permutations of width 100, 144, 196, 256, 288. We denote its permutations of
width n by Photon-n and recommend using Photon-288 for applications with
64-bit level security. The hash functions Photon/n offer n/2-bit of security for
collision resistance and are suitable for processing associated data.

The Spongent family [9] is another lightweight hash function design with
permutations of width from 88 to 768 bits, with all widths multiple of 4 bits
available. Its permutations Spongent-n can be used for all security levels, with
a particular choice optimized for the input length.

http://csrc.nist.gov/publications/drafts/800-38F
http://skew2011.mat.dtu.dk

498 D. Khovratovich

Table 2. Recommended parameters for scheme KWF. All the numbers are bit lengths.

Hash function for AD Message length Permutation

Security level and key length: 64

Keccak/128, u-Quark, Photon/128 0..63
Keccak-400, Quark-256,

Photon-288, Spongent-256
Keccak/128, u-Quark, Photon/128 64..212 Keccak-400, Spongent-400
Keccak/128, u-Quark, Photon/128 213..612 Keccak-800
Keccak/128, u-Quark, Photon/128 613..1412 Keccak-1600

Security level and key length: 80

Keccak/160, d-Quark, Photon/160 0..160 Keccak-400, Spongent-400
Keccak/160, d-Quark, Photon/160 161..560 Keccak-800
Keccak/160, d-Quark, Photon/160 561..1360 Keccak-1600

Security level and key length: 112

SHA-224, Keccak/224, s-Quark 0..464 Keccak-800
SHA-224, Keccak/224, s-Quark 465..1264 Keccak-1600

Security level and key length: 128

SHA-256, Keccak/256 0..415 Keccak-800
SHA-256, Keccak/256 416..1215 Keccak-1600

B Security of KWF via the Concept of Human Ignorance

Now we attempt to deal more rigorously with the collision resistance of the hash
function G that processes the header.

We can do this by following the “human ignorance” concept introduced by
Rogaway [24]. First, we introduce the variant of our scheme called KWF’. Then
we show that for any adversary A breaking KWF we can explicitly construct an
adversary C violating the collision resistance of G and an adversary B violating
the DAE security of KWF’ so that their total advantage exceeds the advantage
of A. Then we bound the advantage of B.

Let KWF’ be the version of KWF, where the headers are l-bit long and the
function G is an identity function. Hence G(H) can be simply replaced by H .

Lemma 2. The DAE advantage of an adversary attacking instantiation Π ≤ of
KWF’ and asking the total of at most q queries to all oracles and F is bounded
as follows:

AdvdaeΠ′ (q) ⊕ 2.5q

2k
+

8.5q2

2n−k
.

Proof. The proof of this lemma repeats the proof of Theorem 1 with a small
refinement: G(H) is everywhere replaced with H , so distinct H always yield
distinct inputs to E and F . Hence the overall bound remains the same with the
collision search term removed.

Key Wrapping with a Fixed Permutation 499

Lemma 3. There exist (and are explicitly constructed in the proof) the adver-
sary B attacking Π ≤ and the adversary C attacking the collision resistance of a
hash function such that for any G and any adversary A attacking instantiation
Π of KWF

AdvdaeΠ (A) ⊕ AdvdaeΠ′ (BA,G) +AdvcollG (CA,G).

Adversary B asks the same number of queries as A to his oracles, and adversary
C asks at maximum the same number of queries to G as A asks to his oracles.

Proof. The proof is very similar to the security proof of the hash-then-PRF
folklore algorithm, which extends the domain of a PRF by hashing the input,
in [24]. Adversary B is constructed as follows. He has access to A and G, runs
A as an oracle, and forwards all his requests to oracles E and D to his own
instantiations of them for KWF’. Whenever A halts, B outputs the same bit.

Adversary C also runs A as an oracle and emulates the oracle pair ($,∪)
for him. In addition he computes and stores G(H) for each H queried by A.
Whenever a collision is found, C halts and outputs it.

Then we try to bound Advdae
Π (A) − Advdae

Π′ (BA,G). Since B and A behave
identically when their worlds consist of real encryption/decryption oracles, we
obtain that

Advdae
Π (A) −Advdae

Π′ (BA,G) = Pr
[
BA,G [$,∪]

]− Pr [A[$,∪]] ⊕
⊕ Pr [A makes queries colliding in G] = Advcoll

G (CA,G),

where the last equation follows from the definition of C and the inequality comes
from the fact that A and B may behave differently only if A makes queries which
contain colliding H .

The next theorem immediately follows from these two lemmas and is a more
rigorous version of Theorem 1.

Theorem 2. There exist (and are explicitly constructed in the proof) the adver-
sary B attacking KWF’ and the adversary C attacking the collision resistance
of a hash function such that for any G and any adversary A attacking KWF

AdvdaeΠ (A) ⊕ 2.5q

2k
+

8.5q2

2n−k
+AdvcollG (C).

Author Index

Armknecht, Frederik 132

Bai, Shi 28
Biryukov, Alex 227

Calderon, Theresa 349
Chow, Sherman S.M. 85, 307

Davies, Gareth T. 461
Delvaux, Jeroen 106

El Kaafarani, Ali 327

Faz-Hernández, Armando 1
Fazio, Nelly 64
Franklin, Matthew 85
Furukawa, Jun 385

Galbraith, Steven D. 28
Gaspar, Lubos 206
Ghadafi, Essam 327
Guo, Jian 402

Hofheinz, Dennis 48
Huang, Qiong 367

Iwamoto, Mitsugu 424

Joye, Marc 286

Karpman, Pierre 402
Khader, Dalia 327
Khovratovich, Dmitry 481
Kurosawa, Kaoru 385

Le, Duc-Phong 152
Leurent, Gaëtan 206
Libert, Benôıt 286
Liu, Jianwei 307
Longa, Patrick 1

Meiklejohn, Sarah 349
Mikhalev, Vasily 132

Nicolosi, Antonio R. 64
Nikolić, Ivica 402

Ohta, Kazuo 424
Oswald, Elisabeth 183

Perera, Irippuge Milinda 64
Prouff, Emmanuel 169

Qin, Bo 307

Rivain, Matthieu 152, 169
Roche, Thomas 169

Saarinen, Markku-Juhani O. 251, 270
Sánchez, Ana H. 1
Sasaki, Yu 424
Shacham, Hovav 349
Stam, Martijn 461
Standaert, François-Xavier 183, 206
Striecks, Christoph 48
Susilo, Willy 367

Tan, Chik How 152
Tokushige, Yuuki 424

Velichkov, Vesselin 227
Verbauwhede, Ingrid 106

Wang, Gaoli 444
Wang, Lei 402, 424
Wang, Yujue 307
Waters, Brent 349
Whitnall, Carolyn 183
Wong, Duncan S. 307, 367
Wu, Qianhong 307
Wu, Shuang 402

Zhang, Haibin 85

	Preface
	Organization
	Table of Contents
	Non-integral Asymmetric Functions
	Efficient and Secure Algorithms for GLV-BasedScalar Multiplication and Their Implementationon GLV-GLS Curves
	1 Introduction
	2 Preliminaries
	2.1 The GLV and GLS Methods
	2.2 Side-Channel Attacks and Countermeasures
	2.3 The Least Significant Bit - Set (LSB-Set) Representation

	3 The GLV-Based Sign-Aligned Column (GLV-SAC) Representation
	3.1 GLV-Based Scalar Multiplication Using GLV-SAC
	3.2 Windowed and Partitioned GLV-SAC: Case of Dimension 2 and

	4 High-Speed Implementation on GLV-GLS Curves
	4.1 The Curve
	4.2 Field Arithmetic
	4.3 Quadratic Extension Field Arithmetic
	4.4 Extension Field Arithmetic on ARM: Efficient Interleaving of ARM-Based and NEON-Based Multiprecision Operations
	4.5 Point Arithmetic

	5 Performance Analysis and Experimental Results
	References

	An Improved Compression Techniquefor Signatures Based on Learning with Errors
	1 Introduction
	1.1 Related Work
	1.2 Our Contribution

	2 Preliminaries
	2.1 Basic Notation and Gaussians
	2.2 Learning with Errors
	2.3 Rejection Sampling

	3 Our Signature Scheme
	4 SecurityProofs
	5 Parameter Selection
	6 Conclusion
	References

	Public-Key Encryption
	A Generic View on Trace-and-Revoke BroadcastEncryption Schemes
	1 Introduction
	2 Preliminaries
	3 First Result: An EDDH-Based TEHPS Instance
	4 Second Result: ((
	4.1 Warmup: (1, 2/3)-sid-Traceability of the EDDH-Based RKEM
	4.2 General Case: ((

	References

	Broadcast Steganography
	1Introduction
	2Background
	3Broadcast Steganography (BS)
	3.1The Setting
	3.2The Security Models

	4Anonymity and Pseudorandomness inBroadcast Encryption
	4.1The Security Models of oABE$
	4.2An oABE$-CCA-Secure Construction

	5Constructions of Public-Key Broadcast Steganography
	5.1A BS-CHA-Secure Construction
	5.2A BS-CCA-Secure Construction

	6Extensions and Future Work
	References

	Practical Dual-Receiver Encryption
	1 Introduction
	2 Refining the Security Model of DRE
	3 Practical DRE and DKEM from BDDH Assumption
	3.1 DRE from BDDH Assumption
	3.2 DKEM from BDDH Assumption

	4 Plaintext-aware Encryption via Registration from DRE
	5 Combined Encryption Scheme
	6 Completely Non-malleable DRE
	6.1 Modeling Completely Non-Malleable DRE
	6.2 CNM-DRE from Groth-Sahai Proof System
	6.3 CNM-DRE from Lossy Trapdoor Functions

	References

	Hardware Implementations
	Attacking PUF-Based Pattern Matching KeyGenerators via Helper Data Manipulation
	1 Introduction
	2 Physically Unclonable Functions
	2.1 Challenge-Response Pairs and Their Secrecy
	2.2 Arbiter PUF
	2.3 XOR Arbiter PUF

	3 Post-Processing Logic: Generating Keys from PUF Responses
	3.1 PUF Imperfections
	3.2 Post-Processing Logic
	3.3 Fuzzy Extractor

	4 Pattern Matching Key Generators
	4.1 Basic Functionality
	4.2 Handling Failures

	5 PMKG Failure Analysis
	5.1 Failure Probabilities
	5.2 Graphical Interpretation

	6 Attacks
	6.1 Attacker Model
	6.2 Experimental Validation
	6.3 Common Framework Snake I and Snake II
	6.4 Snake I
	6.5 Snake II

	7 Countermeasures
	7.1 PMKG Extensions and Alternatives
	7.2 Attack Capabilities Overview

	8 Conclusion and Further Work
	References

	On Increasing the Throughputof Stream Ciphers
	1 Introduction
	2 Preliminaries
	3 High Level Description
	4 New Preserving FSR-Transformations
	5 A Preserving Cipher-Transformation
	5.1 Technical Description
	5.2 Discussion

	6 Application to Grain-128
	7 Conclusion
	References

	On Double Exponentiation for Securing RSAagainst Fault Analysis
	1 Introduction
	2 Preliminaries
	2.1 The RSA Cryptosystem
	2.2 Addition Chains and Exponentiation

	3 RSA and Fault Analysis
	3.1 Securing RSA against Fault Analysis
	3.2 Self-secure Exponentiation Algorithms
	3.3 Securing Exponentiation with Double Addition Chains

	4 New Heuristics for Double Addition Chains
	4.1 First Improvements
	4.2 Improved Method Based on Sliding Window
	4.3 Combined Improvements

	5 Sliding-Window Double Exponentiation
	6 Performances and Comparison
	7 Conclusion
	References

	Side-Channel Attacks
	On the Practical Security of a Leakage ResilientMasking Scheme
	1 Introduction
	2 Inner Product Masking Scheme
	3 AFirst-OrderFlaw
	3.1 Core Idea of the Attack
	3.2 Study of
	3.3 Exhibiting the Flaws in

	4 Information Theoretic Evaluation of the Flaw
	5 Attack Simulations
	References

	The Myth of Generic DPA. . . and the Magic of Learning
	1 Introduction
	1.1 Our Contribution

	2 Preliminaries
	2.1 Differential Power Analysis
	2.2 Measuring DPA Outcomes
	2.3 Boolean Vectorial Functions

	3 Clarifying Generic DPA
	3.1 Delineating Leakage Assumptions
	3.2 Defining ‘Genericity’
	3.3 Conditions for a Generic Strategy to Succeed

	4 Introducing Generic-Emulating DPA
	4.1 Introduction to Linear Regression-Based DPA
	4.2 Linear Regression Is Generic-Compatible
	4.3 Exploiting Non-Device-Specific Intuition
	4.4 A Stepwise Regression-Based Distinguisher
	4.5 Theoretic Distinguishing Margins for SLR-Based DPA
	4.6 Practical Success Rate Evaluation

	5 Conclusion
	References

	Hardware Implementation andSide-Channel Analysis of Lapin
	1 Introduction
	2 Background
	2.1 The Lapin Protocol
	2.2 The Masking Countermeasure

	3 Hardware Implementation
	3.1 Generic Architecture
	3.2 Performance Evaluation

	4 Side-Channel Analysis of Lapin
	4.1 A First DPA-Like Attack against Unprotected Lapin
	4.2 Collision-Like Attack

	5 Conclusion
	References

	Symmetric Encryption and Cryptanalysis
	Automatic Search for Differential Trails in ARXCiphers
	1 Introduction
	2 Partial Difference Distribution Tables
	3 Threshold Search
	4 General Methodology for Automatic Search for Differential Trails in ARX
	5 Description of TEA, XTEA, SPECK and RAIDEN
	6 Automatic Search for Differential Trails
	7 Difficulties, Limitations and Common Problems
	8 Conclusions and Future Work
	References

	CBEAM: Efficient Authenticated Encryption fromFeebly One-Way φ Functions
	1 Introduction
	2 Rotation-Invariant
	Functions
	2.1 Invertibility
	2.2 On Cryptanalysis of
	2.3 General Implementation Features

	3 CBEAM and Its
	Permutation
	3.1 Mixing Function
	3.2 Hashing and Authenticated Encryption

	4 Design and Analysis
	4.1 Selection of
	4.2 Differential and Linear Cryptanalysis
	4.3 Algebraic Properties

	5 Padding and Implementation Notes
	5.1 Hardware Implementations
	5.2 Implementing CBEAM in Software without Matrix Transpose
	5.3 Latest Server/Desktop/Laptop Systems: x86-64 with AVX2
	5.4 Sensors and Pervasive Devices: MSP430

	6 Conclusions
	References

	Beyond Modes: Building a Secure Record Protocolfrom a Cryptographic Sponge Permutation
	1Introduction
	2Legacy Record and Transport Protocols
	3Two-Party Synchronization
	4Rethinking Privacy and Authentication
	5Half-Duplex Security Protocols with a Shared State
	6Extending the Sponge Construction
	6.1Multiplex Padding
	6.2Multiplexing the Sponge
	6.3Sourcing

	7Basic Shared Secret Authentication and Record Protocol Flow
	8Implementation Notes
	9Conclusions
	References

	Digital Signatures
	Group Signatures with Message-DependentOpening in the Standard Model
	1 Introduction
	2 Background
	2.1 Bilinear Maps and Complexity Assumptions
	2.2 Groth-Sahai Proof Systems
	2.3 Group Signatures with Message-Dependent Opening

	3 A Fully Collusion-Resistant Partially Structure- Preserving IBE
	3.1 Intuition
	3.2 Construction
	3.3 Proving Properties about Encrypted Messages

	4 A Fully Anonymous GS-MDO Scheme with Logarithmic-Size Signatures
	4.1 Construction
	4.2 Security

	References

	Practical Distributed Signaturesin the Standard Model
	1 Introduction
	1.1 Our Contributions
	1.2 Extensions
	1.3 Related Work

	2 Definitions and Security Requirements
	2.1 Secret Sharing and Monotone Span Program
	2.2 Distributed Signature Scheme

	3 OurBasicScheme
	3.1 Security Analysis
	3.2 Comparison

	4 Extensions
	4.1 Threshold Signatures with Dynamic Addition of Participants
	4.2 Distributed Signature Scheme for Multipartite Access

	5 Conclusion
	References

	Decentralized Traceable Attribute-BasedSignatures
	1 Introduction
	2 Preliminaries
	3 Syntax of Decentralized Traceable Attribute-Based Signatures
	4 Security of Decentralized Traceble Attribute-Based Signatures
	4.1 On the Model of [11] for the Single Attribute Authority Setting

	5 Building Blocks
	5.1 Tagged Signature Scheme
	5.2 The Full Boneh-Boyen (FBB) Signature Scheme
	5.3 Strongly Unforgeable One-Time Signatures
	5.4 Simulation-Sound Non-interactive Zero-Knowledge Proofs
	5.5 CCA-Secure Public-Key Encryption Scheme

	6 A Generic Construction for DTABS
	7 Constructions in the Standard Model
	7.1 An Instantiation in Symmetric Groups
	7.2 An Instantiation in Asymmetric Groups
	7.3 Other Instantiations

	References

	Protocols
	Rethinking Verifiably Encrypted Signatures:A Gap in Functionality and Potential Solutions
	1 Introduction
	2 Definitions and Notation
	3 A Signature-Based Verifiably Encrypted Signature
	4 Resolution Independence
	4.1 Resolution Independence
	4.2 Existing Schemes Satisfy Resolution Independence

	5 Resolution Duplication and Public-Key Encryption
	5.1 Resolution Duplication
	5.2 Constructing Public Key Encryption

	References

	P2OFE: Privacy-Preserving Optimistic Fair Exchange of Digital Signatures
	1 Introduction
	2 Related Works
	3 Privacy-Preserving OFE
	3.1 Definition
	3.2 Security Models
	3.3 Differences from Other Variants of OFE

	4 Mathematical Assumptions
	5 Our Protocol
	5.1 High Level Idea
	5.2 The Protocol
	5.3 Security

	6 Resolution in Practice
	7 Conclusion
	References

	2-Pass Key Exchange Protocolsfrom CPA-Secure KEM
	1 Introduction
	2 Preliminaries
	2.1 Key-Exchange (KE) Protocol
	2.2 Canetti-Krawczyk (CK) Model [10,16]
	2.3 Extended Canetti-Krawczyk (eCK) Model [20]
	2.4 KEM

	3 OurBasicKEProtocolBasedonKEM
	4 TwistedPRFTrick
	4.1 Toward eCK Security
	4.2 Original Twisted PRF Trick

	5 ImprovedTwistedPRF
	6 Our 2-Pass Protocol in the CK Model
	6.1 Naive Approach
	6.2 Our Protocol

	7 Other 2-Pass KE Protocols
	7.1 2-Pass Protocol in the eCK Model
	7.2 Both CK-Secure and eCK-Secure Protocol

	8 Separation
	References

	Hash Function Cryptanalysis
	Analysis ofBLAKE2
	1 Introduction
	2 Description of
	3 Rotational Analysis and Internal Differentials
	4 Fixed Points and Iterative Rotational Differentials for Search of Collisions and Preimages
	5 Impossible Differential Analysis
	5.1 Forward Characteristic on 2.5 Rounds
	5.2 Backward Characteristic on 3.5 Rounds
	5.3 Mounting the Miss-in-the-Middle
	5.4 Extending by One More Half-Round

	6 Differential Analysis
	7 Conclusion
	References

	An Automated Evaluation Tool for ImprovedRebound Attack: New Distinguishers andProposals of ShiftBytes Parameters for Grøstl
	1 Introduction
	1.1 Our Contributions
	1.2 Paper Outline

	2 Preliminaries
	2.1 Specification of Large Block Rijndael
	2.2 Specification of Grøstl-512 Permutation
	2.3 Notations
	2.4 Rebound Attack

	3 An Evaluation Tool for Improved Rebound Attack
	3.1 Overview
	3.2 Generating Intersection Table
	3.3 Complexity Evaluation of Guess-and-Determine Phase
	3.4 Fast Implementation Techniques

	4 Distinguishers on Rijndael and Grøstl-512 Permutation
	4.1 A New Distinguisher on Rijndael-224
	4.2 Summary of Other Results

	5 Searching for Stronger ShiftRows Parameters
	6 Concluding Remarks
	References
	A Experiment on New ShiftBytes for Grøstl-512

	Practical Collision Attack on 40-Step RIPEMD-128
	1Introduction
	2Description of RIPEMD-128
	3Some Basic Conclusions and Notations
	4The Collision Attack against 40-Step RIPEMD-128
	4.1Differential Characteristics for 40-Step RIPEMD-128
	4.2Deriving Conditions on Chaining Variables of line1 and line2 Operations
	4.3Message Modification
	4.4Collision Search Algorithm

	5Conclusions
	References

	Applications of Cryptographic Primitives
	KDM Security in the Hybrid Framework
	1 Introduction
	2 Preliminaries
	2.1 Public Key and Hybrid Encryption
	2.2 Key Dependent Message (KDM) Security

	3Security of Hybrid Encryption
	3.1 Restricted KDM Security of the DEM
	3.2 Hybrid Encryption Is
	3.3 Conclusions and Open Problems

	References

	Key Wrapping with a Fixed Permutation
	1 Introduction
	2 Syntax and Security of Key Wrapping Schemes
	2.1 Syntax
	2.2 Security

	3 Our Proposal: KWF
	3.1 Notation
	3.2 Description of KWF
	3.3 Recommended Parameters

	4 SecurityofKWF
	4.1 Bounding
	4.2 Bounding

	5 Conclusion
	References

	Author Index

