Chapter 39
Financial, Real, and Quasi Options: Similarities
and Differences

Justus Wesseler

39.1 Introduction

“Es sei hier nur noch erwihnt, dass die Bachelierschen Betrachtungen jeder
mathematischen Strenge génzlich entbehren™ [17, p. 417]. This quote refers to a
comment of Andrei Nikolajewitsch Kolmogoroff on the works of Louis Bachelier.
What is remarkable about this quote is that it has been published in 1930s but it took
more than 60 years to recover the contribution of Bachelier [9] to the evaluation of
financial and real assets and to appreciate the contributions of among others Albert
Einstein, Adriaan Fokker, Andrei N. Kolmogoroff, Max Planck, and Norbert Wiener
for evaluating financial and real options. They laid the foundations for evaluating
the movement of particles under uncertainty. The interest of Albert Einstein was
not to describe the precise place of a molecule but the probability that a molecule
would be at a certain place at a certain time considering its initial position [12].
The mathematics have been further developed by Max Planck and Adriaan Fokker.
The Fokker-Planck equation describes the evolution of a probability distribution
over time. A similar result has been obtained by Kolmogoroff and known as
the Kolmogoroff forward or backward equation. These equations have become a
central tool for deriving analytical as well as for developing numerical solutions
for investments under uncertainty (e.g. [10, 38]). An important building block of
models has been the Wiener Process, named after Norbert Wiener, who formalized
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random walks more rigorous than Einstein did,' while first known applications of
real options at least date back to the ancient Greeks [6].

While all these developments did happen in the field of mathematics and physics
it took until the late 1960s that these methods had been picked up by economists to
first evaluate the prices of financial assets under uncertainty where the price of an
asset can be seen as being equivalent to a particle in physics. It took again about
10 more years before a number of papers did appear to use the same mathematical
tools to evaluate real instead of financial assets. In the early 1970s Kenneth Arrow
and Anthony Fisher did publish their seminal paper on valuing environmental
preservation under uncertainty and irreversibility [2]. In the same year Claude
Henry published his paper on investment and uncertainty and the irreversibility
effect [13]. Both, the Arrow and Fisher as well as Henry contribution point out
that irreversibility effects create a bias towards delayed investment in comparison
to assessments that do not consider uncertainty, irreversibility, and flexibility in
decision making explicitly. Arrow and Fisher call the size of the bias the quasi option
value while Henry calls it the irreversibility effect.

The main message it that even so the expected value of an investment under
uncertainty is positive, the value of the investment considering postponement might
be even larger—implying that the profit maximizing strategy is to postpone the
investment. This is similar to the evaluation of a financial call option. Exercising
a call option might be profitable, the option is “in the money”, but further waiting to
exercise the option can increase profits.

In the following the three approaches, the financial, real, and quasi option
approach will be presented in a discrete time discrete state model. In Sect. 39.3
the three approaches will be compared. The differences and similarities will be
illustrated using a numerical example. Section 39.4 discusses applications and
challenges for modeling in particular with respect to the bioeconomy as well as
an outlook for future research while Sect. 39.5 concludes.

39.2 The Three Approaches

39.2.1 The Financial Call Option

A financial call option gives the holder of the call option the right but not the
obligation to buy a financial instrument S, S : [0, 7] — R at time #,, expiring
at time T, T € Mt with an exercise price K, K € R, T at a given price, C,
today, 7o [21]. The call can only be exercised at maturity date 7 (European Call
Option), the price movement can either be up, u, or down, d, with probabilities ¢

I'The Wiener process is a Markov process with a normal distributed variance that increases linear
in time.
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and 1 — q. Therefore,

C, = max[0,uS — K] with probability ¢
/"
C

N\
C; = max[0,dS — K] with probability 1—gq.

The question to be answered in the context of this paper is how much a potential
holder of the call option should pay for the call option today.
Following Cox et al. [8] the “fair price” of the call option will be:

C=I[pCi+ 1—-pCal/(A+T), (39.1)
with p = (H') ~and 1 —p == (1;”) r the riskless interest rate, r € R over

the period 0 —> T,u—1 > 0 the upward move of the stock price and d — 1 <
0 the downward movement of the stock price, C, = max[0,uS — K] and C; =
max[0, dS — K], while the probability of an up-ward move is ¢ and the probability
of a downward move is 1 — g. The result of Eq.39.1 is obtained by assuming that
risks in the movement of the financial instrument can be hedged using a portfolio
of riskless bonds and n shares of the financial instrument S. Since the value of the
portfolio depends on §, it matches the risk of the call. p and (1- p) change if a
dividend equivalent to nS(r — 1) will be paid. In that case p = 1 and 1—-p=
n= 1 . The remarkable result of Eq.39.1 is that the “fair price’ of the call option is
1ndependent of the probabilities of the upward, ¢, or downward (1 — ¢) movement
of the price of the financial instrument.” If investors agree on the size of the upward
and downward movement, and, the riskless interest rate is the same everyone, then
all investors would price the call the same, independently of their attitudes towards
risk. This is a noteworthy property which will be relevant when the real option and
quasi option value approach will be discussed.

39.2.2 The Real Option Value

The valuing of call options on financial instruments has been translated to the
valuation of investments under uncertainty and flexibility. An investment oppor-
tunity has properties similar to those of a call option. An investor has the right
but not the obligation to invest. The question is whether or not to exercise the
option immediately, or to postpone and decide at a later point in time whether or

2This not necessarily applies to dividend paying financial instruments.
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not to invest. To introduce the problem, consider a simple investment where the
value of the investment option depends on the movement of the net product price,
p,p € R, of the product to be produced. Investment option 7, I : [0,1] — R
at time fo, expiring at time ¢;, T € R" and T — oo. The investment option
can only be exercised today, #, or at maturity #;. The product price py, can either
move up with size u, u — 1 > 0 and probability ¢, or move down with size d,
d — 1 < 0 and probability 1 — ¢. The value of the immediate investment is
Vo = po+ q”’r’—" + (1 — q)d"’T“. The value of the investment opportunity if one
has to invest at ¢y is £29 = max[Vy — I, 0]. The value of postponed investment to
nis Vit = 221 +r) or vd = d’:—“(l + r) and the value of investment at 71 is
Fy, = max[V; — 1, 0]. V] and F) are random variables form the perspective at ¢y, and
the value at #y is E[F] = {(gmax[V} — 1,0] + (1 — q) max[V,! — 1,0])/(1 + r)}
and the optimal decision to be taken at o is Fy = max[Vy — I, E(F})]. Assuming
I < d’rﬁ(l + r) + po it pays to invest immediately. In case @(1 +r)+p <1<
”’:—"(1 +r) it pays to delay and decide after uncertainty has been resolved whether or
not to invest. Gains from waiting arise as long as d’rﬂ(l +r)+p <1< ”’rﬂ(l +7r)
as in this case by Jensen’s Inequality —/ + po+¢ 2 4 (1 —q)d:ﬂ < q(—II? + o).

39.2.3 The Quasi Option Value

The quasi-option value approach originates from the paper by Arrow and Fisher [2].
The basic question being asked if whether or not converting a piece of land with
amenity values in a different form of use such as e.g. housing when future benefits
from preservation as well as development are uncertain but uncertainty be resolved
over time generates opportunity costs that are not captured by standard cost-benefit-
analysis using expected values of uncertain future benefits from preservation as well
as development. They show a bias towards development exists, if the assessment will
be based on expected values. The bias reduces the opportunity costs of development
and Arrow and Fisher name the bias quasi option value. The bias is a result of
ignoring that as time passes new information arrives and uncertainty about future
states of nature will be reduced. The model is a bit more complex than the real
option model presented as benefits from development say investment as well as
benefits from preservation say non-investment are considered while in the basic real
option model presented benefits from non-investment are zero.

Two future states of nature are considered, A; and A, with the future denoted
as t1. If A; occurs development is the better option while if A, occurs preservation
is the better one. If A, occurs but development has been chosen at 7y the decision
cannot be reversed to preservation. The benefits and costs from development include
onetime development costs either ¢y or ¢ and present and future benefits b0 and
ba1. The preservation option includes only present and future benefits b, and b ;.
The net-present-value of the opportunity to either preserve or develop at 7y, NPV
includes the following mutually exclusive payment streams where all values are
expressed in present values:
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bao — cao + bar
max NPV = bp(] + bdl — Cd1 (392)

pr + bpl.

Immediate development would take place if byo — cq0 — bpo + ba1 — max{(bg; —
cq1),bpi} > 0. As the future will be uncertain, benefits and costs at #; can be
replaced by their expected value resulting in by9—cq0—bpo+ E [bg1 | —max{ E[(baq; —
ca1)], E[bpi]} > 0. This approach would be appropriate as the standard method
applied in cost-benefit analysis, if new information is unavailable. If the arrival of
new information can be used, the maximum of the following two alternatives will
be the optimal decision:

max NPV = bao — cqo + E[bai] develop immediately (39.3)

bpo + max{E[(bs1 — cq1)]. E[b,1] postpone decision.

The development option will be chosen if b0 —cq0 + E[bg1] —bpo —max{ E[(bs1 —
cq1)], E[bp1] > 0. Now the decision under uncertainty and irreversibility includ-
ing and excluding future information can be compared. The difference yields:
max{E[(bs1 — ca1)], E[bp1] — max{E[(ba1 — cq1)], E[bp1]. Again, by Jensen’s
Inequality this difference is larger than or equal to zero. This difference is the
quasi option value that needs to be considered for an appropriate assessment of
an investment that includes irreversibilities and uncertainties.

39.3 A Comparison

For comparing the three models a numerical example illustrating similarities and
differences will be used. The numerical examples use the parameter values of
Chap. 2 in [10] used as well in [11] and [25]. For the purposes of comparison, the
nomenclatura by Dixit and Pindyck will be used. The equivalent nomenclatura used
either within financial economics or the quasi option literature has been listed in
Table 39.1. The irreversible investment costs / are 1,600. The current price p at
t =0, po is 200. The future price after one period at t = 1, py,is either in the case
of an upward jump, u, p{ = 300 or in the case of a downward jump, d, pf = 100.
For simplicity, it is assumed that p reflects the net-price, revenues minus reversible
costs and that the prices will stay constant until infinity after the end of period one.
The probability of an upward jump q is equivalent to the probability of a downward
jump 1 —¢q with ¢ = 1—¢q = 0.5. The discount rate r will be constant with r = 0.1.
Hence, the value of the investment, if exercised today will be
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Table 39.1 Numerical example comparing the three approaches

J. Wesseler

Numerical
example FOV ROV QOV
1,600 Exercise price Irreversible investment Development costs
2,200 Current stock price Current project value, V' Benefits from immediate
development
3,300 Future stock price Future Price of Future benefits from
(underlying) high underlying asset development high
high
1,100 Future stock price Future Price of Future benefits from
(underlying) low underlying asset low development low
773 Value of the call Value of the option to Value of the development
invest opportunity considering
irreversibility and arrival of
additional information
600 Intrinsic option Value of immediate Benefits from immediate
value investment, V — [ development
173 Option time value Value of
waiting/flexibility
227 QOV

The value of the investment at t =

ZOO_ ri

=0 (T5ry°

Pl
—P0+q

+(1-

Vo—poJqu(lJr &t a —61)2(1+ o

d
92 =200 + 1500 + 500 = 2, 200.
.

= 3,300 and in the case of a price decrease Vld =

1 in the case of a price increase will be V' =

ZOO p
=0 (1+r)* —

1,100. The expected value of an immediate investment is NPV; = V, — I = 600
The expected value of a postponed investment valued at ¢t = 0is NPV ,; = q(V}* —

I)/(1 + r) = 733). The difference NPV, ;

— NPV; =

173 is the value of waiting

or in the terminology of financial options the option time value.
In the quasi-option approach of Arrow and Fisher the quasi option value is
u u d : .
E[max{0, NPV', ;}] — max{0, E[g(NPV',;) + (1 — q)(NPV’,;)]} yielding 0.5 -

1,545.45 — 0.5(1,545.45 — 454.54) = 227.23.3 The quasi option value is higher
than the value of waiting. The difference between the quasi option value and the
value of waiting yields: (1 — q)NPVi — (gNPV',; — NPV;). Collecting terms and
simplifying yields QOV — VOW = ; +r — I + po. Hence, the difference is the
difference in foregone benefits and costs by a postponed investment as pointed
out by Mensink and Requate [20]. This includes two components, the benefits
arising when immediate investments being made p, but reduced by the savings on

3Note, the opportunity costs in this example are considered to be zero.
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investment costs that can be made by investing later, ; ir . The foregone benefits and

costs have been considered within the real option value approach but not explicitly in
the quasi option value approach. In case there are no immediate benefits, i.e. pg = 0
and decisions will be made continuously, ¢ — 0, ROV and VOW will be equivalent.
In case decisions will be considered at incremental time steps the QOV needs to be
reduced by foregone benefits and costs to yield the same result for the irreversibility
effect within the real option value and quasi option value approach. The foregone
benefits and costs can be negative in case py < 1_’£r. In this case, the VOW will
be larger than the QOV. For the numerical example, setting py = O results in a
value of waiting of about 418 while the quasi option value remains the same.* The
foregone benefits as well as the savings in investment costs would be captured by
standard benefit-cost-analysis comparing delayed with immediate investment and
what matters are the gains from additional information.

Applying the financial option pricing, p and (1 — p) change if a dividend

equivalent to nSr will be paid. In that case p = =4 and 1 — p = ;‘:;. Using the

evaluation of financial options with u = 0.5, d =u1.dS, i=01,p=(1-p) =0.5,
C, = 3,300—1,600 = 1,700, and C; = 0, yields a value of C = 1,700-0.5/1.1 =
773. If dividend payments will be included, then the value of the call as well as the
real option value will depend on the size of g as ¢ has an effect on the expected rate
of price changes. A higher ¢ in this case will increase the probability of immediate

investment.

39.4 Modifications, Applications, and Outlook

The three approaches discussed have been presented in discrete time discrete state.
Most applications deviate from discrete time, discrete state by analyzing investments
in a continuous time, continuous state framework. Model applications include not
only irreversible costs but also irreversible benefits, optimal abandonment, entry
and exit, uncertainty over several variables such as reversible and irreversible costs
and benefits, discount rates, and many more as discussed in more detail in recent
reviews by Mezey and Conrad [22] and Perrings and Brock [23]. In the following,
the discrete time discrete state model discussed in Sect.39.3 will be presented in
continuous time continuous state by choosing as an example the introduction of a
new technology.

39.4.1 An Illustrative Case: Introducing Transgenic Crops

Consider a decision maker or a decision making body, similar to an EU Agency, or,
the United States Environmental Protection Agency (USEPA) that has the authority

4Please not in this case Vp“ = 3,000 and V;’ = 1,000.
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to decide whether or not a particular transgenic crop, e.g. a toxin producing crop
like Bt-corn,’ should be released for commercial planting. The agency can approve
an application for release or postpone the decision. The objective of the agency is
to maximize the welfare of consumers living in the economy and ignore positive
and negative transboundary effects. The supply for all transgenic crops is perfectly
elastic and demand perfectly inelastic per unit of time. Ex-ante effects of the
decision to release transgenic crops on the up-stream sector of the economy are
ignored by the agency. The welfare effect of releasing a specific transgenic crop
can be described as the net-present-value from 7" until infinity of the additional
net benefits at the farm level, V', which will be further defined below, minus the
difference between irreversible costs, I, and irreversible benefits, R. R and [ are
assumed to be known and constant.

This is a useful simplification for two reasons. Firstly, not much is known about
the magnitude of irreversible costs /. As will be shown later, the model can be
solved for the irreversible costs and provide information about an acceptable level,
which can then be compared with available information. Secondly, information
about the irreversible damages from pesticide use on a per hectare level, which are
the irreversible benefits of planting transgenic crops, R, are available and can easily
be included into the model.

As the agency has the possibility to postpone the decision on whether or not to
release the transgenic crop, the agency has to maximize the value resulting from
this decision, F(V'), to maximize the welfare. This objective can be described as
maximizing the expected value from releasing the transgenic crop:

max F(V) = max E[(Vr — (I — R)) e 7] (39.4)

where E is the expectation operator, 7' the unknown future point in time when the
transgenic crop is released into the environment and p the discount rate.

As the release of a transgenic crop has almost no effect on the fixed costs, the net-
benefits from a transgenic crop at farm level for a specific region are the total sum of
gross margins over all farms. The welfare effect at farm level, hence, is the difference
between the sums of gross margins from transgenic crops minus the total sum of
gross margins from the alternative non-transgenic crop (further called conventional
crop). From now on this difference will be called the additional net-benefit from
transgenic crops B. The instantaneous additional net-benefit, B, at time T, By, is
then the difference in gross margin between the transgenic and traditional crops. The
gross margin for each crop type is defined as the difference between the revenues
and variable costs at 7. Other additional benefits arising from the application of the
new technology, such as, e.g., through “peace of mind”, are assumed to be balanced
by concerns about the new technology, on average, and, therefore are ignored.

SModified corn that produces the §-endotoxins of the soil bacterium Bacillus thuringiens which
control the European Corn Boxer.
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The benefits and costs used to calculate By are those that are reversible. The
instantaneous additional net-benefits under the given level of information are known
with certainty. Future additional net-benefits are uncertain as new information about
prices, costs and yields arrives continuously. The uncertainty can be modelled by
choosing a stochastic process that describes the future development path of the
additional net-benefits Br.

The geometric Brownian motion has frequently been used to model uncertain
returns from agricultural crops [28], returns from pig-raising [24] and on-farm
investments [16, 29, 39]. Richards and Green [30] suggest decomposing returns
from agricultural crops. They model crop prices as a geometric Brownian motion
and crop yields as a geometric Brownian motion combined with a Poisson process,
where the geometric Brownian motion represents “normal” years and the Poisson
process years with extreme yields. Because additional net-benefits are chosen as
the stochastic variable, we assume that extreme yields are smoothed, and, hence, a
decomposition of prices and yields is not necessary.

A mean-reverting process could also model additional net-benefits where it is
assumed that additional net-benefits decrease over time. The decrease could be
explained e.g. by the observation that pests are becoming resistant to plant produced
pesticides and weeds to broadband herbicides. Wesseler [34] compares the results of
modelling additional net-benefits with a geometric Brownian motion and a mean-
reverting process and shows that the different processes could result in different
decisions.® This leads to the problem of identifying the relevant process. The
identification of the relevant process based on time series data is difficult, as the
results are ambiguous [27]. Dixit and Pindyck [11] therefore recommend identifying
the process based on theoretical arguments.

This case uses the geometric Brownian motion to model the uncertain future
additional net-benefits, for the following two reasons: firstly, it is reasonable to
assume that technical change for a transgenic crop will be continuous and secondly,
the process is analytically tractable.

The geometric Brownian motion is a non-stationary continuous time stochastic
process with Markov properties where « is the constant drift rate, o the constant
variance rate and dz the Wiener process, with E(dz) = 0 and E(dz)* = dt:

dB = aBdt + oBdz. (39.5)

The geometric Brownian motion is the limit of a random walk [7]; hence it
is consistent with assuming log-normality of the stochastic variable with zero
drift. The expected value of this process grows at the rate «. The use of the
geometric Brownian motion also assumes that B, will not turn negative, which is
similar for continuous differentiation of the process at the boundary of zero (see
[11], Eq. (39.17), p. 191). This assumes that growers will immediately stop (start)
planting without having to bear additional costs as soon as they realize the gross

6See also [31] for similar results.
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margin will turn out to be negative (positive). Which is a reasonable assumption, as
farmers can and do easily move from one crop variety to another.

When today’s additional net-benefits, Br, are known, follow a geometric Brow-
nian motion until infinity and are discounted at p (the risk adjusted rate of return
derived from the capital asset pricing model (CAPM), then the expected present
value of additional net-benefits from transgenic crops, Vr attime t = T is:

00 Br
E[Vr] = BT/ e Wlgr = ——

. (39.6)
1=0 n—a

As Vr is a constant multiple of Br, also V7 follows a geometric Brownian motion
with the same drift parameter « and variance parameter o. If speculative bubbles are
ruled out and as V' (0) = 0, Eq. (39.3) will also be the value of releasing transgenic
crops into the environment. Equation (39.4) can then be rewritten:

max F(B) = max E |:( Br _ I —R)) e_”Ti|.
U—a

As the irreversible costs I and the irreversible benefits R are assumed to be constant,
the option pricing approach using contingent claim analysis as described by Dixit
and Pindyck (1994, Chap. 5)[11] can be applied. This results in the standard second
order differential or Fokker-Planck equation, which has to be solved:

1
5oszF”(B) + (r — 8)BF'(B) — rF(B) = 0. (39.7)
A solution to this homogenous second order differential equation is:
F(B) = A|B%' + 4,B". (39.8)

Solving Eq. (39.8) according to the boundary conditions (Dixit and Pindyck 1994)
provides the following solutions:

B

B*=—-—"68( —R 399
B ( ) (39.9)
A =0 (39.10)
_ (Bi=ph! .
A = T RP1Gh P with (39.11)
1 r-=9§ r—§ 1\* 2r
p=1-1 +\/( - _E) +2 -1, (39.12)

where B* is the optimal level of additional net-benefits B, r the risk-free rate of
return, § the convenience yield, which is the difference between the risk adjusted
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discount rate © and the growth rate o, o the variance parameter of the geometric
Brownian motion of equation (39.2), and B; the positive root of the quadratic
equation (39.7), in the following called 8 for short.

Equation (39.9) says it is optimal to release a transgenic crop into the envi-
ronment immediately, if the additional net-benefits By are equal to the with §
annualised difference between irreversible cost and irreversible benefits multiplied
by the so called “hurdle rate” or option multiplier /(8 — 1).

Equation (39.9) can be rearranged to:

" Br, B Br Br/s
I"=R4+Z2L, P _py 2T
ty g =R

where [* are the maximum incremental social tolerable irreversible costs of
releasing a transgenic crop into the environment. This shifts the attention from
the additional net-benefits to the irreversible cost. The irreversible costs are now
the critical variable, whereas the additional net-benefits are assumed to be known.
This is a more reasonable expression, as far more information is available about
the additional net-benefits from field trails, releases of similar crops or from other
countries. Equation (39.13) can be formulated as a rule that the agency should follow
when it has to decide whether or not a transgenic crop should be released:

(39.13)

Postpone the release of a transgenic crop into the environment, if the irreversible costs
are higher than the irreversible benefits plus the present value of an infinite stream of
instantaneous additional net-benefits, using the convenience yield as the relevant discount
rate, divided by the hurdle rate.

This rule has two important properties, which result out of the use of the
contingent claim analysis (see Appendix). Firstly, future costs and benefits have
been discounted using rates provided by the market. No individual discount rates
have been used. Secondly, uncertainty about the additional net-benefits has been
included by using a riskless hedge portfolio and, hence, the evaluation of the
benefits is independent of attitudes towards risk, which reduces the impact of risk-
preferences on decision-making.

The last formulation of the maximum incremental social tolerable irreversible
costs in Eq.(39.13) illustrates the effect of waiting due to uncertainty and irre-
versibility. The first two terms, R and B/§, illustrate the results of the orthodox
approach. Without recognizing explicitly irreversibility and uncertainty, the benefits
are the sum of the irreversible benefits plus the present value of infinite additional
net-benefits. By including irreversibility and uncertainty, a proportion of the present
value of infinite additional net-benefits, BS—T /B, has to be deducted. This proportion
in this context can be interpreted as the economic value of uncertainty and
irreversibility of releasing transgenic crops.

The maximum incremental social tolerable irreversible costs as explained in
Eq.(39.13) will change over time with new information about additional net-
benefits. These changes will not only consist of changes in yields but also of
changes in product prices and variable costs due to regulatory and other polices.



684 J. Wesseler

These policies will have either an increasing or decreasing effect on *. An increase
(decrease) in I™* can be seen as an increase (decrease) in the likelihood to release
transgenic crops earlier, as the higher (lower) the maximum incremental social
tolerable irreversible costs are the lower (higher) the chances that they will be
crossed. The impact of changes in the growth rate « and the standard deviation o
on the annualised hurdle rate are illustrated in Table 39.1. An increase in the growth
rate o increases the maximum incremental social tolerable irreversible costs as the
first derivative of 1* with respect to « is positive (proof in Appendix 2):

art _aB/8) B BIB-1/B)

do  da B—-1 & oo (39.14)
_9B/8) B —,3 235
Y p—1

The overall effect can be decomposed into two effects. The first term on the
right-hand-side of Eq. (39.14) shows the impact on current additional net-benefits B,
which is positive. An increase in « reduces the discounting effect, increases total
benefits, increases the maximum incremental social tolerable irreversible costs and
hence, increases the probability of an earlier release. The second term on the
right-hand-side reduces the effect, as the partial derivative of 8 with respect to « is
negative. This is the effect of a higher growth rate on the option value. An increase
in the growth rate increases the value of releases in the future, which increases
the value of the option to release at a later point in time and hence increases the
probability of a later release. As the effect on the present value is greater then the
effect on the future value the overall effect is positive as mentioned earlier.

An increase in the uncertainty of additional net-benefits has the opposite effect,
as the impact of an increase in the variance parameter ¢ on [* is negative as the
partial derivative of § with respect to ¢ is negative (proof in Appendix 2):

aI*  Ba(B—1)/B)
=T <0 (39.15)

:_ﬂ Zaﬁ

An increase in uncertainty decreases the likelihood of an early release, as the future
benefits increase while future losses can be avoided by waiting. This is the standard
result from the literature on financial economics.

A change in the risk-free rate of return, r, also has a negative impact on the
maximum incremental social tolerable irreversible costs 7* (proof in Appendix 2):

ar* _ Ba(B—1/B)

_IBZﬂ
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The decreasing effect of an increase in the risk-free rate of return can be explained
by the decrease of the opportunity costs of the option to release transgenic crops
(see Appendix 1).

Also of interest is a simultaneous change in the growth and the variance rate.
Considering Young’s theorem this can be modelled by getting the derivative of 1*
with respect to o and o (proof in Appendix 2):

ere oy, _op BO(B7E) . o7
b0t~ a0 P w0 5 . O (39.17)
The first term of Eq. (39.17) shows the change the growth rate o has on the current
additional net benefits, which is positive and multiplied by the negative effect of
o on . Hence, the total effect of the first term on /* is negative. This negative
effect is augmented by the second term also being negative. The overall impact of
a simultaneous marginal change is a decrease in the maximal tolerable irreversible
costs 1*. The positive effect of an increase in the growth rate on the likelihood of
an earlier release is surpassed by the negative effect of an increase in uncertainty on
the likelihood of an earlier release.

The continuous time continuous state result of the simple investment problem
presented above provides well-known results (see e.g. [11, 19]). While considering
uncertainty over one or more variables as long as they follow the same stochastic
process can often still be solved analytically, most models have to be solved
numerically. One of the major building blocks has been the Wiener process. Other
processes include jump processes to consider drastic environmental changes or ex-
post liabilities, mean-reverting processes for deviations from long-term equilibria,
Brownian bridges, and more as discussed in detail in a number of text books such
as [1,14,32] or [11].

Problems can be solved either by using a dynamic programming or a contingent
claim approach. The major problem within the dynamic programming approach is
the right choice of the discount rate or discount rates. This is not a trivial issue as
the debate about climate change policies illustrates. Within the contingent claim
analysis this less of a problem as market are used, but the problem will be the
identification of the appropriate matching portfolio that replicates the uncertainty of
the investment under consideration, i.e. the quasi option value. Nevertheless within
the debate about environmental problems such as the conservation of biological
diversity this would be a promising approach as it would allow to identify the “fair”
market price of biological diversity.

In general, for applications related to the bioeconomy whether at the micro or at
the macro level benefits and costs have to be differentiated between reversible and
irreversible benefits and costs. Also, for many assessments a differentiation between
private and external benefits and costs is useful and in particular if also sustainability
issues are of concern [37].

In particular the postponement of investments has in recent years become an
issue of importance. The costs of delays caused by regulations can be substantially
undervalued if forgone benefits are irreversible [36]. Economists in general agree
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that the optimal level of regulations is where marginal benefits equal the marginal
costs of regulations [3]. The calculation of marginal benefits and marginal costs will
be complicated if uncertainties and irreversibilities need to be considered, which
holds for almost all regulations in food production. At the micro level in particular
regulatory issues such as labeling requirements and different production standards
become increasingly important resulting in new forms of contractual arrangements
[33]. These arrangements generally include ex-ante regulations as well as ex-
post liability rules in case non-compliance happens. The optimal design of those
arrangements often includes irreversible ex-ante compliance costs while ex-post
liability follows a jump process. Both can be combined to model the economics
of contractual arrangements allowing for more detailed insights about incentives
to participate in new contractual arrangements as well as the incentives to comply
with the arrangements (see e.g. [5]). One of the major insights from that literature
is that irreversible ex-ante regulatory costs provide incentives to delay adoption
of more stringent regulations as irreversible investment costs can be delayed and
costs avoided if future benefits will be low but that also the size of the firm will be
important if irreversible regulatory costs increase nonlinear with firm size.

At the macro level during the last decade the concept of genuine investment as
an indicator for sustainable development has been proposed [4]. Yet, the concept
does not consider possible irreversible benefits and costs and uncertainty of genuine
investments explicitly. This will be another fruitful area of research. First attempts
in that direction can be found in [37] and [35]. Within a real option framework
not the value of the economy as measured by genuine investment but the value of
an economy as measured by the option value and hence changes in option values
would be the relevant indicator for sustainable development. In this context future
opportunities become important and for policy makers the major question will be if
their policies increase or decrease the option value.

Some criticism has been raised against stressing the importance of irreversibili-
ties as in the end all costs are irreversible. This will be correct if decisions are made
within continuous time but this is hardly the case. Take agriculture as an example.
Decisions about the quantity of hog production are made on about a 6 month basis.
These decisions are reversible while the specific investment in the pig barn cannot
be reversed after a 6 month period. There will be substantial losses involved if the
barn has been constructed to last for several years bit production closes after 1 year.
In crop production on annual basis seed expenditures can be considered reversible as
the crops have been harvested within a year and production choice can be adjusted if
economic circumstances change in favor corn instead of wheat. Investments in seeds
and pesticides can be considered irreversible within the cropping season. Decisions
on pesticide use are made under uncertainty as future pest and disease problems
are not know with certainty. They depend on future whether conditions, what
neighboring farmers are doing and more. The expenditures for pesticides within
a cropping season can be considered as irreversible. Analyzing optimal pesticide
use within a real option framework helps to explain why farmers rationally use less
pesticides than standard benefit-costs-analysis would suggest [18].
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39.5 Conclusion

Three approaches have evolved to model investments under uncertainty,
irreversibility, and flexibility. The methods allow considering irreversibilities and
uncertainties of a decision explicitly and enable researchers to recognize the risk
associated with the investment at the theoretical level. Not only irreversible costs
but also irreversible benefits matter as discussed by e.g. [37] and [26]. Including
irreversible benefits and costs into the benefit-cost framework results in a different
decision rule in comparison to the standard deterministic neoclassical framework.
This is now well known in the literature on real options.

A comparison between the real and quasi option approach shows the quasi option
value does not include foregone benefits and costs of a delayed investment, but is a
measure of the economic value of uncertain information.

The decision rule for investments using contingent claim analysis allows solu-
tions to be derived that are independent of risk and time preference. Individuals that
are highly concerned about a new technology and those who are not, but both want
to maximize their income, would come to the same conclusion about the timing
of introduction. The risk-adjusted rate of return p derived from the CAPM in the
example depends on the risk free interest rate r and the market price of risk; hence
the optimal decision to release transgenic crops is not independent of changes in
interest rates.

The effects of policies on the timing of investments were analysed in a two-
step procedure. First, the impacts on model parameters were identified and then
the effect of the parameter changes on the maximum incremental social tolerable
irreversible costs. The most counterintuitive result was the increase in the likelihood
of an earlier investment with a decrease in additional net-benefits. This is explained
by the opposite impact a simultaneous change in the growth rate and the variance
rate has on the maximum incremental social tolerable irreversible costs.

Future applications within the evaluation of genuine investments and analysing
the effect of changes in government regulations on compliance incentives as well as
the optimal design of regulation are fruitful areas for future research in this domain.

Appendix 39.1: Solving for F(B) Using Contingent Claim
Analysis as Explained by Dixit and Pindyck (Chap. 5, pp.
150-152)

Assuming that an asset or a portfolio of assets exists that allows the risk of the
additional net-benefits to be tracked, the arbitrage pricing principle can be applied
to value the portfolio that includes the additional benefits from transgenic crops [25].
In this case, a portfolio can be constructed consisting of the option to release
transgenic crops into the environment, F(B), and a short position of n = F'(B)
units of the additional benefits of transgenic crops. The value of this portfolio is
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® = F(B) — F'(B)B. A short position will require a payment to the holder of
the corresponding long position of §F’(B)Bdt. The total return from holding this
portfolio over a short time interval (¢, + dr) holding F’(B) constant will be:

d® = dF(B) — F'(B)dB — BF'(B)dt. (39.18)

Applying 1t6’s Lemma’ to dF(B), equating the return of the risk less portfolio to
the risk free rate of return r[F(B) — F’'(B) B]dt and rearranging terms results in the
following differential equation:

1
EO'ZBZFN(B) + (r —8)BF' (B) —rF(B) = 0. (39.19)
A solution to this homogenous second order differential equation is:
F(B) = A, B%' + 4,B". (39.20)
As the value of the option to release transgenic crops into the environment is
worthless, if there are no additional net-benefits, A, has to be 0. The other boundary
conditions are the ‘value matching’, Eq. (39.8), and ‘smooth pasting’, Eq. (39.9),

conditions?®:

F(B*)=V(B*)—1+R (39.21)
F'(B*) = V'(B*). (39.22)

Solving Eq.(39.7) according to the boundary conditions provides the following
solutions:

. B
B*=—68(I—-R 39.23
- ( ) ( )
o (Br=Dh! .
Ay = T RP—13p)P with (39.24)
5_1_"5+ ("5_1)2+2_’>1 (39.25)
=9 02 02 2 o2 ' '

7See, e.g., Sect. 22 [15] for an introduction of Itd-stochastic processes.

8The value matching condition sustains that the value of the option to release the transgenic crop
is equivalent to the value of immediate release. The smooth pasting condition says that at the point
of value matching a marginal change in the value of the option to release the transgenic crop has
to be equal to a marginal change in the value of immediate release [11, pp. 130-132].
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Appendix 39.2: Proof of the Results of the Partial Derivatives

To improve the readability of the equations the following notation will be

introduced:
r—8 1\° n 2r (39.26)
v = - = — .
o? 2 o2

_ (=8 (39.27)
1=\ 2 '
-4
o="2". (39.28)
o
The following assumptions will be made for the proofs:
1. B,r,u,0 > 0.
2. u—a=686>0.
3.B=—x+v>1
Proof. 1: % > 0:
o* B B, ., B, ,08
== _ = ——B822>0 39.29
P I U L W (39:29)
B B, , B, ,08
- = —=p"—>0
82 82’8 ) P da
! ! > 1 9 (39.30)
§ 88 Broa’ '

The left-hand-side of Eq.(39.30) is positive as § is positive and § > 1. Equa-
tion (39.29) would be correct if the right-hand-side of Eq. (39.30) is negative, that is
if d8/da < 0.

ap 1 X
— =4+ =<0 39.31
oo o2 + vo2 ( )
1 X
— —— <0
o2  wvo?
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Proof. 2: % <0:

or*
do

B, 0P
=—p"—<0. 39.32
57 90 < (3932)
Equation (39.32) will be correct if 98/do < 0:

B _20-8) 2(F)+x

. p JU < 0, (39.33)
Equation (39.33) can be rearranged to:
—8vu — —8) —
r=du—xr=9)—r (39.34)

vo3

Equation (39.34) will be correct if the nominator is negative as the denominator is
always positive:

Fr—8v—x(r—-986—-r<0 (39.35)
= r=8)(—xy+v)<r
or B(r—358) <r.

This has to hold for the case (r — §) < 0 and (r —38)>0.
For the case (r — §) < 0 follows that > .~ is correct as f > 1.
For the case (r — &) > 0 Eq. (39.35) can be rearranged to:

r
< . 39.36
V< g T (39.36)
Equation (39.36) can be rearranged to:
( 4 )2+r " 2o (39.37)
r—=4 o2 r—9§ ' '
Equation (39.37) is correct if ;=5 > 1. This holds if (r — §) > 0. O
Proof. 3:
02I* <0:
dado '

Using the result of Eq. (39.32) and differentiation according to o provides:

O*I* 3,3 B 8,8 B
dado 'B - 8 (8 do )

—2873 <0. (39.38)
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Equation (39.38) can easily be rearranged to

B B
—>2p3 . 39.39
5> p . ( )
This is correct if d8/da < 0 which has already been proven. |
Proof. 4. 881 < 0:
ar* 0
== ,3 —2 ’3 (39.40)
ar

Equation (39.40) is correct 1f < 0.

B 1+8v<0
ar o2 or
1 du 0
o2  or
1 1
= __+x+ <0
o2 v
= x+1l<v
= B >1
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