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    Abstract     The Notch pathway has been described as an oncogene in osteosarcoma, but 
the myriad functions of all the members of this complex signaling pathway, both 
in malignant cells and nonmalignant components of tumors, make it more diffi cult 
to defi ne Notch as simply an oncogene or a tumor suppressor. The cell-autonomous 
behaviors caused by Notch pathway manipulation may vary between cell lines but 
can include changes in proliferation, migration, invasiveness, oxidative stress resis-
tance, and expression of markers associated with stemness or tumor-initiating cells. 
Beyond these roles, Notch signaling also plays a vital role in regulating tumor 
angiogenesis and vasculogenesis, which are vital aspects of osteosarcoma growth 
and behavior in vivo. Further, osteosarcoma cells themselves express relatively 
low levels of Notch ligand, making it likely that nonmalignant cells, especially 
endothelial cells and pericytes, are the major source of Notch activation in osteosar-
coma tumors in vivo and in patients. As a result, Notch pathway expression is not 
expected to be uniform across a tumor but likely to be highest in those areas imme-
diately adjacent to blood vessels. Therapeutic targeting of the Notch pathway is 
likewise expected to be complicated. Most pharmacologic approaches thus far have 
focused on inhibition of gamma secretase, a protease of the presenilin complex. 
This enzyme, however, has numerous other target proteins that would be expected 
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to affect osteosarcoma behavior, including CD44, the WNT/β-catenin pathway, and 
Her-4. In addition, Notch plays a vital role in tissue and organ homeostasis in 
numerous systems, and toxicities, especially GI intolerance, have limited the 
 effectiveness of gamma secretase inhibitors. New approaches are in development, and 
the downstream targets of Notch pathway signaling also may turn out to be good 
targets for therapy. In summary, a full understanding of the complex functions of 
Notch in osteosarcoma is only now unfolding, and this deeper knowledge will help 
position the fi eld to better utilize novel therapies as they are developed.  

  Keywords     Osteosarcoma   •   Notch   •   DLL4   •   Jag1   •   Angiogenesis   •   Metastasis   
•   Dormancy   •   Cancer stem cells  

           Introduction: The Notch Signaling Pathway 

 The Notch signaling pathway, a key component in normal bone development that is 
implicated as a key mediator in a number of various cancers, is initiated when a 
membrane-bound ligand belonging to the Delta–Serrate–Lag (DSL) family (jagged 1/
Jag1, Jag2, delta-like-1/DLL1, DLL3, and DLL4) on the surface of a cell interacts with 
a membrane-bound Notch receptor (Notch1–4) on another cell. This interaction 
induces a two-step proteolytic cleavage of the receptor, fi rst by ADAM10 (also known 
as Kuz) or ADAM17 (also known as TACE) and then by the γ-secretase complex 
which is made up of at least four individual proteins: presenilin, nicastrin, anterior 
pharynx-defective 1 (APH-1), and presenilin enhancer 2 (PEN-2). These cleavage 
events release the  i ntra c ellular domain of  N otch (ICN). Now activated, ICN enters the 
nucleus where it forms a transcriptional complex with  Ma ster m ind- like  1 (MAM1) to 
regulate transcriptional complexes containing the DNA-binding protein  C BF1/
RBPjk/ S u(H)/ L ag1 (CSL). This complex initiates the transcription of  H airy/ E nhancer 
of  S plit-1 (Hes1), Hes5, Hes7, HES-related with YRPW motif (Hey1/HERP2), Hey2 
(HERP1), and HeyL which encode basic helix loop helix (bHLH) transcription factors 
that perform a range of cellular activities that include promoting progenitor cell sur-
vival and suppressing differentiation [ 1 ,  2 ]. This pathway is displayed schematically in 
Fig.  1 . The Notch signaling pathway, via cell–cell contacts, highly regulated feedback 
loops, and lateral inhibition/induction mechanisms, has been shown to infl uence 
multiple cellular processes including cell fate decisions, proliferation, apoptosis, migra-
tion, angiogenesis, and plasticity. In terms of bone homeostasis, skeletal cells express 
Notch1, Notch2, and low levels of Notch3, although Notch1 and 2 are considered 
responsible for the effects of Notch in the skeleton [ 3 ] (Notch signaling reviewed in [ 4 ,  5 ]).

       Role of Notch Signaling in Normal Osteoblast Development 

 Mesenchymal stem cells (MSCs) can give rise to multiple lineages in response to 
environmental molecular cues: the presence of MyoD leads to the differentiation of 
MSCs into myocytes, PPARγ leads to the generation of adipocytes, the Sox family 
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of genes drive chondrocytogenesis, and runt-related transcription factor-2 (RunX2) 
and osterix lead to osteoblastogenesis [ 6 – 8 ]. Normal osteoblast development and 
subsequent bone formation are meticulously regulated not only by RunX2 and 
osterix but also by a cascade of regulatory signaling that includes morphogens, 
signaling molecules, and transcriptional regulators [ 9 – 16 ]. A partial list of these 
factors includes the Wnt/β-catenin, TGFβ/bone morphogenic protein (BMP), FGF, 
Notch and Hedgehog signaling pathways, ATF4, TAZ, RANKL, and NFATc1 
transcription factors [ 16 – 19 ]. Signaling molecules like RunX2, BMPs, and the 
Wnt/β- catenin canonical pathway are conducive to osteoblastogenesis, while oth-
ers, such as the Notch signaling pathway, obstruct osteoblast differentiation [ 20 – 22 ]. 
In osteoblasts, RunX2 regulates the transcription of genes including osteocalcin, 

  Fig. 1    Schematic diagram of Notch pathway signaling. Notch ligands, consisting of the jagged 
(Jag1 and Jag2) and delta-like (DLL1, DLL3, and DLL4) families, typically are presented on the 
surface of signal-sending cells, though these receptors can be shed by proteolytic cleavage in some 
circumstances. Prior to ligand binding, the Notch family receptors (Notch1, Notch2, Notch3, and 
Notch4) remain fi xed at the plasma membrane, and the CSL transcription complex remains bound 
to corepressor elements, shutting off transcription of CSL target genes. Upon binding ligand, 
Notch1 is subject to a two-step proteolytic cleavage by ADAMS family protease and then 
γ-secretase. Cleavage by γ-secretase frees the cytoplasmic domain of the Notch1 from the plasma 
membrane; this fragment is termed  in tracellular  N otch 1  (ICN1). ICN1 binds to CSL, displacing 
corepressor elements and recruiting coactivator elements, including  Ma ster m ind- L ike (MAML), 
turning on transcription of CSL target genes, including the Hes, Hey, Herp, NRARP, and Deltex 
families. Notch1 also mediates transcription of non-CSL target genes, which is termed the nonca-
nonical Notch pathway. Regulation of Notch2, Notch3, and Notch4 is similar       
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bone sialoprotein, osteopontin, type I collagen, fi bronectin, galectin 3, MMP13, 
osteoprotegrin (OPG), Tram2, Lnx2 (an intracellular scaffolding protein that may 
play a role in Notch signaling), and Tnfrsf12a (a tumor necrosis factor receptor 
family member) by binding to sequences that resemble the 5′-ACACCA-3′ motif 
upstream from their transcription start sites [ 23 – 28 ]. Because of its importance in 
this process, RunX2 is labeled the “master regulator” of osteoblast differentiation; 
indeed homozygous RunX2 mutant mice have cartilaginous skeletons that fail to 
mineralize, owing to a complete arrest in osteoblast differentiation [ 24 ,  29 ,  30 ]. 
For further details of the role of RunX2 in osteoblast development and in osteosar-
coma, please see the chapter on this book entitled “Developmental Pathways 
Hijacked by Osteosarcoma.” 

 The Notch signaling pathway plays an important and complex role in bone homeo-
stasis [ 22 ,  31 – 34 ]. In bone marrow, Notch signaling normally acts to maintain a pool 
of mesenchymal progenitors by suppressing osteoblast differentiation by inhibiting 
RunX2 [ 3 ]. In osteoblasts, the Notch pathway has several mechanisms that inhibit 
osteoblastogenesis. Notch antagonizes Wnt signaling: ICN2 colocalizes with glyco-
gen synthase kinase-3β (GSK3β) to mediate the degradation of    β-catenin [ 22 ,  35 ]. It 
has been shown that NFATc1 and osterix form a complex that activates osterix-depen-
dent transcription [ 36 ]; ICN and mastermind form a complex with Foxo1 which 
inhibits NFAT-mediated osteoblastogenesis, osteoblastic bone formation, as well as 
osteoclastogenesis and bone resorption [ 37 ,  38 ]. Furthermore, Engin et al. show that 
Notch both stimulates early osteoblastic proliferation by upregulating cyclin D, cyclin 
E, and osterix and represses osteoblast maturation through the binding of ICN to 
RunX2 [ 31 ]. Hilton et al. and others demonstrate an additional mechanism by which 
Notch signaling inhibits RunX2: RunX2 transcriptional activity is inhibited by its 
direct interactions with the HLH and Orange domains of Hey1 [ 3 ,  34 ]. The enzyme 
necessary for Notch receptor cleavage and activation, ADAM10, is expressed in cells 
of the osteoblast lineage and is localized at sites of active bone formation. Catalytically 
active ADAM10 was found to colocalize with Notch2 at these bone-forming sites 
[ 39 ]. This suggests that ADAM10 may play a role in controlling osteoblast differen-
tiation; alternatively, it has been suggested that ADAM10 may work rather to cleave 
Notch receptor ligands to provide soluble activators of the receptor [ 39 ,  40 ]. 

  Osteosarcoma and Differentiation . Osteosarcoma (OS) may be thought of as a dis-
ease of disrupted osteogenic differentiation [ 8 ,  10 ,  41 – 43 ]. With the prevention of 
the differentiation of MSCs into mature osteoblasts, there is an increased risk for 
malignant transformation as cells continue to proliferate uncontrollably [ 8 ,  44 ]. 
Osteosarcoma cells display similar characteristics to undifferentiated osteoblasts: 
early osteogenic markers like CTGF are high in OS cell lines, while markers of 
differentiation like RunX2, alkaline phosphatase, osteopontin, and osteocalcin are 
low [ 10 ,  41 ,  42 ,  45 ]. Interestingly, the aggressiveness of OS may depend on the 
stage of differentiation that was disrupted: more aggressive OS may develop from 
disruptions in the differentiation of early osteoblast progenitors, while benign 
tumors may arise from disruptions in late-stage osteoblasts [ 8 ,  41 ]. Considering the 
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importance of Notch in normal osteoblast development, the Notch signaling 
pathway has become increasingly interesting to those studying the progression of 
osteosarcoma [ 46 – 52 ]. 

    Notch and the Vasculature 

  Introduction . Blood vessels comprise an extensive tubular network that delivers oxy-
gen and nutrients to all organs and tissues. Vital processes such as embryogenesis, 
wound healing, body temperature stabilization, and homeostatic balance mainte-
nance all require highly adjustable blood supply and nutrient delivery. These demands 
are met through the meticulously regulated growth and expansion of the vascular 
network by angiogenesis. The process of sprouting angiogenesis is highly dynamic 
and requires a multitude of individual processes such as the proliferation of endo-
thelial cells (ECs), selection of leading cells that develop fi lopodia and promote 
endothelial motility, elongation of the new sprout, formation of new cell–cell junc-
tions, conversion into endothelial tubules, specifi cation into arteries, veins, and 
capillaries, recruitment of mural cells (smooth muscle cells, SMCs, and pericytes), 
anastomosis with other vessels, remodeling and pruning, perfusion, and stabilization 
of the newly formed vessel. 

 The Notch signaling pathway is evolutionarily conserved and is an important 
mediator of cell–cell communication during the formation of new blood vessels 
[ 53 ]. Major components of the Notch pathway are expressed in the vasculature [ 54 , 
 55 ], and genetic deletion of Notch pathway components, including Notch1 [ 56 – 58 ], 
Notch2 [ 59 ], Jag1 [ 60 ], DLL1 [ 61 ,  62 ], DLL4 [ 63 ,  64 ], Hey1/Hey2 [ 65 ], CSL [ 66 ], 
or presenilins which make up the γ-secretase complex [ 67 ,  68 ], as well as the 
ectopic activation of Notch1/Notch 4 [ 69 ,  70 ], results in embryonic lethality associ-
ated with defects in sprouting angiogenesis, arterial/venous specifi cation, vascular 
remodeling, and vascular SMC organization (Table  1 ).

        Role of Notch Signaling in Normal Vascular Development 

    Notch and Arterial/Venous Specifi cation 

 One of the earliest roles for Notch is in the developing embryo; Notch functions in 
early vascular development to drive endothelial identity while suppressing venous 
identity [ 64 ,  71 ]. Later in development, arterial endothelial cells have been shown 
to require DLL1 to maintain their cellular identity [ 61 ]. A more detailed review of 
this subject has been published recently [ 72 ].  
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    Notch and Sprouting Angiogenesis 

 Vascular endothelial growth factor (VEGF/VEGF-A) is the key regulator that 
promotes sprouting angiogenesis. In normal/physiologic angiogenesis, VEGF-A 
is secreted by astrocytes in the avascular region leading to the formation of a 
VEGF gradient [ 73 ,  74 ]. VEGF-A binds to the tyrosine kinase receptors VEGFR1 
(Flt1) and VEGFR2 (KDR/Flk1/Flt2) expressed on the cell surface of nearby ECs. 

   Table 1       Notch signaling pathway knockout mice   

 Knockout  Major effect  Author, Year 

 Notch ligands 
 Jagged 1  Embryonic lethal; severe vascular defects  Xue et al. [ 60 ] 
 Jagged 2  Defects in limb, craniofacial, thymic 

development 
 Jiang et al. [ 207 ] 

 Delta-like 
ligand 1 

 Embryonic lethal; defects in the formation of 
somite borders; defects in arterial identity 

 Hrabe de Angelis et al. [ 62 ]; 
Sorensen et al. [ 208 ] 

 Delta-like 
ligand 3 

 Highly disorganized vertebrae and costal defects; 
disruption of the segmentation clock 

 Dunwoodie et al. [ 209 ] 

 Delta-like 
ligand 4 

 Embryonic lethal; defects in arterial development  Duarte et al. [ 64 ]; Gale et al. 
[ 63 ] 

 Notch receptors 
 Notch1  Embryonic lethal; severe defects in angiogenic 

vascular remodeling 
 Swiatek et al. [ 58 ]; Krebs 

et al. [ 57 ]; Limbourg et al. 
[ 56 ] 

 Notch2  Embryonic lethal; defects in postimplantation 
development 

 Hamada et al. [ 59 ] 

 Notch3  Defects in arterial identity and maturation of 
vascular smooth muscle cells 

 Domenga et al. [ 210 ] 

 Notch4  No apparent defi ciencies  Krebs et al. [ 57 ] 
 Notch1 and 4  More severe than Notch1 KO only  Krebs et al. [ 57 ] 

 Downstream notch targets 
 Hes1  Death occurs in utero or neonatally  Blake et al. [ 206 ] 
 Hey1  No apparent defi ciencies  Fischer et al. [ 65 ] 
 Hey2  Postnatal lethality; cardiac defects  Fischer et al. [ 65 ] 
 Hey1 and 2  Embryonic lethal; global lack of vascular 

remodeling 
 Fischer et al. [ 65 ] 

 Notch-related genes 
 γ-secretase 

complex 
 Presenilin 1  Skeletal and CNS defects  Shen et al. [ 211 ]; Nakajima 

et al. [ 68 ] 
 Presenilin 2  Mild pulmonary fi brosis  Herreman et al. [ 67 ] 

 CSL  Vascular defects  Krebs et al. [ 66 ] 

  The major effects observed in mice with each of the Notch family ligands, receptors, and down-
stream signaling molecules are summarized, together with the relevant publication referenced  
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VEGFR2 is the primary receptor transmitting VEGF signals in ECs [ 75 ,  76 ], while 
VEGFR1, with weaker kinase activity, acts as a VEGF decoy [ 77 ,  78 ]. Newly sprout-
ing blood vessels are made up of two important endothelial cell types:  tip cells , which 
initiate new sprouting, and  stalk cells  which maintain connection with the parent ves-
sel [ 79 – 83 ]. In response to VEGF-A/VEGFR2-mediated signaling, ECs at the leading 
front of angiogenic sprouts develop protruding fi lopodia and become tip cells that 
extend toward sources of pro-angiogenic growth factors. These tip cells respond to 
positive/negative guidance cues to allow for directional growth while preventing unor-
ganized and random vessel development [ 84 ,  85 ]. Once such negative guidance cue 
involves VEGF-mediated induction of DLL4 as a negative feedback regulator, which 
acts to prevent uncontrolled angiogenic sprouting while promoting the timely forma-
tion of a well-differentiated vascular network [ 83 ,  86 ]. Expression of DLL4 stimulates 
Notch1 activation in adjacent ECs that trail tip cells and form the base of the protru-
sion and become stalk cells [ 87 ]. Whereas tip cells mainly express DLL4, stalk cells 
primarily express Jag1 which consequentially antagonizes DLL4 activity by compet-
ing for Notch receptors via DLL4/Notch1/Jag1-mediated lateral inhibition [ 82 – 84 , 
 88 – 90 ]. Stalk cells are important in that they proliferate when stimulated with 
VEGF-A, form the vascular lumen, establish adherins and tight junctions to maintain 
integrity of the new sprout, and maintain connection with parental vessels so as to 
establish luminal/abluminal polarity which leads to basal lamina deposition and mural 
cell recruitment and attachment [ 84 ,  91 ,  92 ]. In stalk cells, Notch signaling potently 
inhibits VEGFR3 [ 93 ,  94 ]; VEGFC/VEGFR3 signaling activates PI3K and its down-
stream target FoxC2, which results in the downregulation of DLL4 in the stalk cell 
[ 95 ,  96 ]. High levels of activated Notch (ICN) lead to the production of soluble 
VEFGR1 which acts to enhance the steepness of the VEGF-A signaling gradient by 
sequestering VEGF-A and inhibiting its action with VEGFR2 in stalk cells [ 97 ]. Stalk 
cells express Hes1 and Hey1 which act to downregulate the levels of VEGFR2, 
VEGFR3, and DLL4, thereby transiently decreasing the responsiveness to VEGF-A 
and further enhancing the stalk cell phenotype [ 81 ,  82 ,  93 ]. This allows new tip cells 
to form along the front to form branching vessels [ 98 ,  99 ]. Vessel branching within the 
developing vascular network is also the consequence of another downstream Notch 
target, Notch- regulated ankyrin repeat protein (Nrarp), which counteracts Notch sig-
naling and is expressed in stalk cells at the branch points [ 100 ,  101 ]. 

 Considering that local changes in VEGF/Notch signaling can trigger the conversion 
of stalk cells into tip cells, and that the Notch pathway can act in a highly transient 
and oscillating manner [ 102 ], tip and stalk cell phenotypes are remarkably transi-
tory and interchangeable as ECs dynamically shuffl e position along the angiogenic 
sprout competing for the tip cell position [ 103 ]. This leads to highly regulated and 
organized vessel formation. In normal vascular development, these mechanisms 
work together to balance the numbers of tip cells and stalk cells required for effec-
tive sprouting and network formation [ 82 ,  104 – 107 ]. Tissue oxygenation eventually 
downregulates paracrine VEGF-A production and thus helps establish a quiescent 
state for the new vessels [ 108 ]. This process has been reviewed in detail [ 87 ,  109 ]. 
The role of Notch pathway signaling in regulating normal vascular development is 
shown schematically in Fig.  2 .
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  Fig. 2    Normal angiogenesis and the role of Notch pathway signaling. ( a ) Tip cell development 
through tubulogenesis. Upon exposure to VEGF-A, endothelial cells respond by taking on a tip 
cell signaling phenotype. The initial response is stochastic and cyclical, eventually allowing some 
cells to acquire the full tip cell phenotype, while adjacent cells are prevented from acquiring this 
phenotype through lateral inhibition, which is Notch mediated. Initial sprouting of tips is also a 
cyclic process, with individual tips extending and retracting back into the tip cell, leaving behind 
empty matrix sleeves that help to repattern the extracellular matrix needed in the sprouting blood 
vessel. Cells adjacent to tip cells become stalk cells, extending outwards toward the VEGF-A 
gradient, pushing the tip cell outward from the parent vessel. As the fi lopodia of nearby tip cells 
contact each other, macrophages are recruited to the site of anastomosis, facilitating fusion of 
tubes, with subsequent extension of these tubes. ( b  and  c ) Notch/VEGF signaling during activa-
tion, selection, and sprouting. VEGF-A binds to both VEGFR-1 and VEGFR-2 on adjacent endo-
thelial cells, signaling through both receptors. Predominance of VEGFR-2 signaling favors a tip 
cell phenotype, which VEGFR-1 favors a stalk cell phenotype. VEGFR-2 signaling mediates 
upregulation of DLL4 which, in turn, activates Notch1 on the cells to either side of the endothelial 
cell. DLL4 reduces transcription of VEGFR-2 and promotes secretion of a soluble VEGFR-1 that 
serves as a ligand trap and reduces the ability of stalk cells to respond to VEGF-A. ( d ) Notch/
VEGF signaling during anastomosis and the role of macrophages. Normal macrophages, without 
activation, express cell surface DLL4, Jag1, and Jag2 as well as Notch1, Notch2, and Notch4. 
Notch receptors, especially Notch2, allow macrophages to be recruited to the sites of tip cell anas-
tomosis, where the high levels of DLL4 activate these macrophages. Through a process that is not 
fully understood, the activated macrophage then helps two tip cells to form a stable bridge that 
develops into a full vascular loop       
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       Notch and Vascular Mural Functions 

 Notch signaling also plays an important role in vessel stability by regulating 
vascular mural cell function. Mural cells (SMCs and pericytes) are attached to 
the basal surface of certain vessels and help to stabilize the vessel wall, signal 
to ECs to inhibit their proliferation, promote survival, and regulate blood pres-
sure [ 110 ,  111 ]. Mural cells express Notch1–3, Jag1, and DLL4 [ 112 ]. In vitro, 
it has been shown that endothelial Jag1 activates Notch3 on SMCs to induce 
Notch3 expression and regulate SMC differentiation [ 113 ]. Notch1 signaling is 
critical for mural cell recruitment to new vessels, whereas Notch3 plays a role 
in pericyte/SMC maturation once it arrives at its fi nal destination. This process 
has been reviewed recently [ 72 ]. Notch pathway activity is essential for recruit-
ment of bone marrow-derived pericytes to the blood vessels of Ewing sarcoma 
tumors, and inhibition of the Notch pathway with either shRNA or antibodies 
impeded Ewing sarcoma tumor growth in vivo and caused impaired vasculogen-
esis [ 114 ,  115 ]. Perivascular cells, in addition to the endothelium, also have 
been shown to play an important role in angiogenesis and are deregulated in 
pathological angiogenesis [ 110 ,  115 ].  

    Notch and Macrophage-Mediated Angiogenesis 

 Macrophages have been recognized as key angiogenic effector cells [ 116 ,  117 ]. 
Macrophages are closely associated with sprouting endothelial cells during reti-
nal angiogenesis [ 118 ]. Importantly, tissue macrophages act as cellular chaper-
ones during VEGF-mediated endothelial tip cell induction and anastomosis, 
allowing for the bridging of tip cells to form stable, perfused vessels [ 117 ,  119 ]. 
Inactive macrophages express Notch1, -2, and -4, DLL4, and Jag1-2; once acti-
vated, macrophages increase their expression of Notch1 and Jag1 [ 120 – 122 ]. 
Though it is known that VEGFR1 recruits macrophages to sites of infl ammation 
and active angiogenesis [ 123 ], macrophage recruitment to sites of anastomosis 
remains an active area of research. It has been hypothesized that DLL4 expressed 
in tip cells attracts macrophages via Notch1–DLL4 signaling [ 117 ]. Mice with 
heterozygous mutations for Notch1 have decreased macrophage recruitment 
and, interestingly, also have decreased expression of VEGFR-1 [ 124 ]. Through 
these studies and others, it is clear that both VEGFR1 and Notch1 play an 
important role in macrophage recruitment to sites of angiogenesis. Recent pub-
lications are available with more complete reviews of the role of macrophages 
in angiogenesis [ 72 ,  125 ].   
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    Role of Notch Signaling in Tumor Vascular 

    Notch Signaling at the Primary Tumor 

 Tumor angiogenesis relies on many of the same mechanisms involved in physiolog-
ical angiogenesis. Tumors, restricted to 1–2 mm 3  without an oxygen and nutrient 
source, release large amounts of VEGF in response to their hypoxic environment. 
Unlike normal angiogenesis, however, tumors continuously release pro-angiogenic 
factors despite the ever-growing expansion of blood vasculature into the well- 
oxygenated portions of the tumor. This vasculature not only feeds the tumor and 
allows for uncontrolled proliferation, but it also allows for the metastatic spread of 
the disease to distant loci, since osteosarcoma spreads almost exclusively via the 
hematogenous route. 

 VEGF-A has been shown to be over-expressed in many tumor types [ 126 – 128 ]. 
Although not much is known about the process of vasculogenesis in osteosarcoma, 
multiple studies have shown that VEGF overexpression in osteosarcoma unfavor-
ably impacts the overall survival [ 129 – 131 ]. Similarly, the role of Notch has been 
well documented in other tumor types [ 115 ,  132 ,  133 ] but continues to be an active 
area of study in osteosarcoma. In multiple tumor types, it has been shown that either 
blockade [ 105 ,  106 ,  134 – 136 ] or forced activation of the Notch pathway [ 137 – 142 ] 
can inhibit angiogenesis. Genetic or pharmacologic inactivation/inhibition of either 
DLL4 or Notch1 signaling leads to an increase in the number of fi lopodia and 
sprouting tip cells at the angiogenic front which, together with EC proliferation, 
results in the formation of a hyperdense vascular network with immature, hyper-
plastic, and nonfunctional characteristics [ 81 ,  83 ,  86 ,  104 ,  107 ,  143 ]. Chronic 
blockade of the pathway, however, results in the formation of vascular neoplasms 
[ 144 ]. Conversely, activation of Notch signaling leads to a reduced number of tip 
cells and less dense vascular network [ 86 ,  107 ]. A schematic model of the role of 
Notch in tumor angiogenesis is shown in Fig.  3 .

       Notch Signaling at the Metastatic Site 

 Judah Folkman fi rst championed the concept that tumors require an “angiogenic 
switch” in the balance between pro- and anti-antigenic signals to establish a robust 
blood supply capable of supporting rapid tumor growth [ 145 ]. By extension, this 
model would suggest that, for dormant tumors, there is a balance between signals that 
increase angiogenesis and those that impede angiogenesis and that dormant microme-
tastases of osteosarcoma would be relatively poorly vascularized. Indraccolo and 
colleagues showed that expression of DLL4 on blood vessels in close proximity to 
colon cancer cells was necessary for these tumor cells to awaken from dormancy 
[ 146 ]. The same group had shown already that a short-term “spike” in angiogenesis 
was suffi cient to awaken dormant tumors [ 147 ]. This awakening is associated with a 
transcriptional switch from expressing anti-angiogenic proteins to secreting 
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  Fig. 3    Tumor angiogenesis. ( a ) Heterogenic distribution of vasculature and O 2  in a tumor. Because 
oxygen diffusion is limited in tissues to ~1 mm from capillaries, rapidly growing tumors will have 
regions of relative normoxia and other areas of profound hypoxia, with an oxygen gradient between 
these regions. The extremely high levels of VEGF-A secreted in the areas with the worst hypoxia 
override normal angiogenic controls, leading to large numbers of small, dysfunctional, and leaky 
blood vessels that can be observed on arteriograms ( a ,  right hand panel ) as a “vascular blush.” Other 
areas of the tumor do not appear to have any blood supply at all and often are necrotic when examined 
pathologically. (The  right hand panel  in ( a ) is taken from an osteosarcoma patient receiving an arte-
riogram prior to the delivery of intra-arterial chemotherapy. The method is exactly as described previ-
ously [ 205 ].) ( b ) Tumors hijack empty matrix sleeves for migration/invasion. As described above and 
in Fig.  2 , normal angiogenesis involves cyclical extension and retraction of tips, repatterning the 
extracellular matrix, including spreading laminin away from the basement membrane toward the 
VEGF-A source. In tumors, these empty sleeves left behind by tip cell extension and retraction 
become pathways in which the extracellular matrix ceases to be a barrier to tumor cell migration, but 
rather a guide for tumor cells to “fi nd” blood vessels. ( c ) Tumors promote uncontrolled angiogenesis. 
Growing tumors provide a sustained source of VEGF-A, either directly through their own secretion 
or by inducing hypoxia, thereby promoting VEGF-A secretion from nonmalignant cells within the 
tumor, such as tumor-associated fi broblasts. Unlike normal angiogenesis, in which VEGF-A levels 
eventually decline and new vessels are allowed to mature and stabilize, the sustained VEGF-A secre-
tion in the tumor microenvironment causes uncontrolled, sustained angiogenesis, without the matura-
tion and stabilization found in normal angiogenesis. ( d ) High expression of VEGF promotes an all 
tip cell phenotype. In areas with the highest VEGF-A secretion, the concentration of VEGF-A is 
suffi cient to override the cellular processes that induce lateral inhibition and organized vessel forma-
tion. In this environment, endothelial cells may take on an “all tip cell” phenotype, leading to vascular 
leak and highly disorganized blood vessels that completely lack vessel wall components. Note that in 
any given tumor, aspects of abnormal blood vessel development shown in panels A–D may all be 
taking place, each in different regions of the tumor       
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pro-angiogenic ones [ 148 ]. While there is no direct experimental evidence in 
osteosarcoma models to support this role of the vasculature in osteosarcoma metastasis, 
it certainly seems plausible that a similar effect operates in these patients’ lungs. 

 There is a conception among some patients and families that major operations 
for osteosarcoma patients “spread the tumor.” While this has not been scientifi cally 
validated, it has been observed that pulmonary metastasis sometimes develops 
shortly after resection of the primary tumor or lung metastases. Since the healing of 
large wounds results in high levels of circulating growth factors and cytokines such 
as EGF and its related ERBB family ligands, these growth factors and angiogenic 
cytokines could stimulate the expansion of tumor vessels in micrometastases. 
The transient upregulation of Notch ligands on vessels near the dormant microme-
tastases may initiate the angiogenic response that facilitates growth. A more com-
prehensive review of the putative roles of the Notch pathway in regulating tumor 
escape from dormancy in the metastatic site has been published recently [ 149 ].  

    Notch Signaling in Osteosarcoma 

 The Notch pathway has been called “the stem cell master switch” [ 53 ,  150 ] because 
it infl uences multiple processes that drive morphogenesis, lineage specifi cation, 
apoptosis, and proliferation, not only in normal tissues but also in some cancers 
[ 151 ]. Notch dysregulation serves as an oncogene for many cancers including T-cell 
leukemia [ 152 ] and solid tumors of pancreas, breast, prostate, melanoma, and colon 
[ 151 ,  153 – 157 ]. In these malignancies, it contributes to malignancy by promoting 
growth, survival, motility, neo-angiogenesis, drug resistance, invasion, and metasta-
sis [ 158 – 163 ]. In other cancers, Notch functions as a tumor suppressor, impeding 
growth or causing apoptosis in B-lineage ALL [ 164 ], myeloid malignancies [ 165 ], 
squamous cell carcinomas [ 166 ], neuroblastoma [ 167 ], other neural crest-derived 
cancers [ 168 ], and the GI stromal tumor [ 169 ]. It was recently suggested that Notch1 
signaling is activated in human OS and may play a role in tumor invasion and metas-
tasis [ 47 ,  52 ,  170 ]. One possible reason for this association is the reported link 
between Notch pathway activity and behavior of tumor-initiating cells or the puta-
tive cancer stem cells [ 171 – 177 ]. 

 Two popular models for tumorigenesis include the stochastic model and the cancer 
stem cell model. The traditional stochastic model presumes that cancer arises from a 
single cell which has become genetically unstable and initiates tumor growth. The 
cancer stem cell model proposes that tumor-initiating cells share important properties 
with normal stem cells, including self-renewal and resistance to stress [ 42 ]. Over the 
past 5 years or more, the theory of cancer stem cells in osteosarcoma has gained a 
great deal of acceptance, with numerous publications in recent years describing 
phenotype, behavior, and therapeutic potential [ 178 – 194 ]. Logically, cells with stem 
cell-like properties should be superior at tumorigenesis and metastasis. 

M.M. McManus et al.



79

 This concept was studied recently using two murine cell lines, K7M2 and K12, 
which were derived from the same spontaneously occurring murine osteosarcoma. 
K7M2 metastasizes with high frequency to the lung in mouse models, whereas K12 
is much less metastatic [ 195 ]. 

 Several groups have published that K7M2 and K12 cells produce different 
quantities of cytokines and that inhibition of these cytokines alters OS cell behavior 
in vitro [ 195 – 198 ]. For example, we have demonstrated that highly metastatic 
K7M2 cells express and produce more bone morphogenetic protein-2 (BMP-2) and 
VEGF than less metastatic K12 cells. Additionally, we observed that the inhibition 
of these factors diminished the motility and viability of K7M2 cells [ 197 ,  198 ]. 
More recently, we have demonstrated important differences between K7M2 and 
K12 in terms of Notch1 expression and function [ 50 ]. 

 To evaluate the role of Notch in regulating stemness behaviors, we fi rst com-
pared K7M2 and K12 cells with reverse transcription polymerase chain reaction 
(RT-PCR). We analyzed differences in the expression of Notch1, its downstream 
targets, and other important genes in OS biology. We observed a signifi cant upregu-
lation (nearly twofold) of Notch1, Notch2, and Notch4 expression [ 50 ]. We also 
observed the upregulation of the Notch1 target genes Hes1 and Stat3 in highly meta-
static K7M2 cells compared with less metastatic K12 cells. Notch pathway inhibition 
using an inhibitor of γ-secretase (GSI) in K7M2 cells reduced expression of these 
genes down to levels similar to K12 and also reduced migration and invasiveness of 
K7M2. Activation of Notch in K12 using an exogenous ligand increased invasive-
ness and migration, confi rming the vital role of the Notch pathway in regulating 
these processes in this model [ 50 ]. 

 Aldehyde dehydrogenase (ALDH) is another putative cancer stem cell factor 
[ 199 – 202 ] that has been implicated in a variety of human cancers. ALDH is a tetra-
meric protein that oxidizes aldehydes to carboxylic acids and thus enables cells to 
withstand oxidative stress. Its activity has been associated with metastasis, drug 
resistance, and poor prognosis [ 199 – 203 ]. We have shown that K7M2 cells possess 
greater mean ALDH activity and a higher percentage of ALDH-positive cells than 
the less metastatic K12 cells [ 204 ]. GSI treatment of K7M2 cells reduced the 
expression of ALDH and rendered the cells less tolerant of oxidative stress (Fig.  4 ), 
while treatment of K12 cells with the Notch ligand jagged 1 increased ALDH 
expression and rendered cells more tolerant of oxidative stress (Fig.  5 ), confi rming 
that Notch pathway signaling is upstream of ALDH expression [ 50 ].

         Conclusions 

 These studies, taken together, support the concept that Notch pathway signaling 
plays a key role in maintaining a stem cell-like phenotype for osteosarcoma and 
highlights the importance of Notch in osteosarcoma growth and metastasis. It is 
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interesting to note, however, that the phenotype associated with Notch pathway 
expression could be induced by exposure to exogenous Notch ligand, calling into 
question the concept that tumor stem cells represent a discrete subpopulation in 
osteosarcoma. Given the importance of Notch signaling in tumor blood vessels and 
the high level of expression of Notch ligands in the vasculature, it is possible that 
the phenotype we associate with stemness in osteosarcoma really refl ects proximity 
to tumor blood vessels and, therefore, exposure to Notch ligands. As therapies are 
developed to target Notch in cancer patients, the role of Notch in tumor vessel for-
mation and expansion must also be considered.     

  Fig. 4    K7M2 cells are resistant to H 2 O 2  but become sensitive after treatment with DAPT. ( a ) 
K7M2 cells were treated with or without the γ-secretase inhibitor DAPT (10 μM) for 4 days and 
were then cultured with media containing H 2 O 2  (0, 250, or 500 μM) for 6 h. Cell death was ana-
lyzed using PI exclusion assay. ( b ) The percentage of PI+ cells was determined for each group in 
( a ).  Asterisk  indicates that the difference is signifi cant comparing DAPT-treated or non-treated 
samples ( p  < 0.05). Figure taken from [ 50 ], used with permission       
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