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    Abstract     Osteosarcoma (OS) is the most common primary bone malignancy 
diagnosed in children and adolescents with a high propensity for local invasion and 
distant metastasis. Despite current multidisciplinary treatments, there has not been a 
drastic change in overall prognosis within the last two decades. With current treat-
ments, 60–70 % of patients with localized disease survive. Given a propensity of Wnt 
signaling to control multiple cellular processes, including proliferation, cell fate 
determination, and differentiation, it is a critical pathway in OS disease progression. 
At the same time, this pathway is extremely complex with vast arrays of cross-talk. 
Even though decades of research have linked the role of Wnt to tumorigenesis, 
there are still outstanding areas that remain poorly understood and even controversial. 

      Wnt Signaling in Osteosarcoma 

             Carol     H.     Lin    ,     Tao     Ji    ,     Cheng-Fong     Chen    , and     Bang     H.     Hoang     

        C.  H.   Lin    
  The Hyundai Cancer Institute, CHOC Children’s Hospital ,   Orange ,  CA   USA    

  Department of Orthopaedic Surgery and Chao Family Comprehensive Cancer Center , 
 University of California ,   101 The City Drive South, Irvine ,  Orange ,  CA   92868 ,  USA     

    T.   Ji     
  Department of Orthopaedic Surgery and Chao Family Comprehensive Cancer Center , 
 University of California ,   101 The City Drive South, Irvine ,  Orange ,  CA   92868 ,  USA   

  Musculoskeletal Tumor Center ,  People’s Hospital, Peking University ,   Beijing , 
 People’s Republic of China     

    C.-F.   Chen     
  Department of Orthopaedic Surgery and Chao Family Comprehensive Cancer Center , 
 University of California ,   101 The City Drive South, Irvine ,  Orange ,  CA   92868 ,  USA   

  Department of Orthopaedics, Therapeutical and Research Center of Musculoskeletal Tumor , 
 Taipei Veterans General Hospital ,   Taipei ,  Taiwan     

    B.  H.   Hoang ,  M.D.      (*) 
  Department of Orthopaedic Surgery and Chao Family Comprehensive Cancer Center , 
 University of California ,   101 The City Drive South, Irvine ,  Orange ,  CA   92868 ,  USA   
 e-mail: bhhoang@uci.edu  

mailto:bhhoang@uci.edu


34

The canonical Wnt pathway functions to regulate the levels of the transcriptional 
co-activator β-catenin, which ultimately controls key developmental gene expres-
sions. Given the central role of this mediator, inhibition of Wnt/β- catenin signaling 
has been investigated as a potential strategy for cancer control. In OS, several secreted 
protein families modulate the Wnt/β-catenin signaling, including secreted Frizzled-
related proteins (sFRPs), Wnt inhibitory protein (WIF), Dickkopf proteins (DKK-
1,2,3), sclerostin, and small molecules. This chapter focuses on our current 
understanding of Wnt/β-catenin signaling in OS, based on recent in vitro and in vivo 
data. Wnt activates noncanonical signaling pathways as well that are independent 
of β-catenin which will be discussed. In addition, stem cells and their association 
with Wnt/β-catenin are important factors to consider. Ultimately, the multiple 
canonical and noncanonical Wnt/β-catenin agonists and antagonists need to be further 
explored for potential targeted therapies.  
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        Introduction 

 Osteosarcoma is the most common primary bone malignancy which occurs 
frequently in a bimodal distribution, with peak incidences in the second decade of 
life and after the age of 60 [ 1 ]. With the current multidisciplinary treatments, 
60–70 % of patients with localized disease survive [ 2 ]. OS has a high tendency 
for local invasion and early metastasis. Unfortunately, with metastatic disease, the 
rate of 5 year overall survival is greatly reduced to 20–30 %, and the 5-year event-
free survival for patients with relapse is 20 % [ 3 ,  4 ]. Metastasis occurs primarily to 
the lungs and bones. Even though initial scans may not show evidence of pulmonary 
disease, it is thought that micrometastasis is extremely common, making it diffi cult 
to successfully eradicate this tumor. Despite aggressive efforts to strengthen and 
modify chemotherapy, the outcome of patients with OS has not signifi cantly 
improved over the past few decades [ 5 ]. 

 The exact molecular mechanism leading to the development of OS is not 
fully understood. Research endeavors have focused on the Wnt signaling pathway 
since the discovery of the WNT1 gene (originally named Int-1) in 1982 [ 6 ,  7 ]. 
The discovery of the Drosophila segment polarity gene Wingless and the mouse 
proto- oncogene Int-1 initiated the advancement of this signaling pathway now com-
monly referred to as the canonical Wnt signaling pathway [ 8 ]. There are currently 
19 Wnt proteins which have been identifi ed in the human genome [ 9 ,  10 ]. A good 
portion of them are considered target genes of Wnt signaling and play a critical 
role in development and tumorigenesis [ 11 – 15 ] (see   http://www.stanford.edu/
group/nusselab/cgi-bin/wnt/    ). Aberrant signaling by Wnt pathways is linked to a 
wide spectrum of diseases, including neurodegenerative, bone, cardiovascular, and 
especially cancer. Notably, colon cancer has been associated with mutations of the 
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Wnt-regulating gene, adenomatous polyposis coli (APC) [ 16 ,  17 ]. Several studies 
have also suggested that this particular signaling pathway plays an important role in 
the pathophysiology of bone tumors [ 18 ,  19 ].  

    Overview of Wnt/β-Catenin Signaling Pathway and Cancer 

 The Wnt family is a group of secreted glycolipoproteins that initiate a signaling 
cascade to direct cell proliferation, cell fate determination, and differentiation in 
numerous developmental stages, from embryogenesis to adult tissue homeostasis 
[ 15 ,  20 – 23 ]. Aberrant Wnt signaling plays a role in multiple cancers, such as colon, 
gastric, lung, breast, prostate, skin cancers and osteosarcoma [ 19 ,  24 – 28 ]. Given the 
power of this central mediator, understanding the mechanisms to inhibit the Wnt/β- -
catenin signaling pathway is a potential strategy for cancer therapy. 

 In order to understand this pathway, the components of the signaling system are 
important to grasp. In a non-proliferative state, there is an absence or inhibition of 
Wnt, which enables the cytoplasmic β-catenin to form a complex with multiple enti-
ties, including Axin, adenomatous polyposis coli gene product (APC), casein kinase 
1 (CK1), and glycogen synthase kinase 3β (GSK3β) [ 9 ,  20 ,  21 ,  29 ,  30 ] (see Fig.  1 ). 
Once this complex forms, CK1 and GSK3β act in conjunction to phosphorylate 
β-catenin, which is then recognized by the β-Trcp, an E3 ubiquitin ligase subunit. 
β-Trcp targets β-catenin for proteasomal degradation.

   When the signaling cascade is “on,” in the presence of Wnt, binding to targeted 
receptors, comprising Frizzleds (seven-span transmembrane receptor proteins)/low- 
density lipoprotein receptor-related protein 5 and 6 (single-span transmembrane co- 
receptor proteins) and cytoplasmic disheveled (Dvl), causes phosphorylation of the 
complex, leading to inhibition of GSK3β. This creates a cytoplasmic accumulation 
of non-phosphorylated β-catenin, inhibiting its degradation and promoting translo-
cation to the nucleus. Within the nucleus, it creates a complex with transcription 
factors, including T-cell transcription factor (TCF) and lymphoid enhancer-binding 
factor (LEF), and transcriptional co-activators, causing transcriptional activity of 
multiple downstream target oncogenes, such as c-myc, cyclin-D1, and Axin2, thus 
enhancing cellular proliferation [ 9 ,  20 ]. Other secreted factors, such as WIF-1 and 
Frzb/sFRP3 inhibit Wnt binding to frizzled receptors, and Dickkopf (Dkk) proteins 
antagonize the Wnt/LRP interaction. Wnt antagonists will be further explained in 
the latter part of the chapter. 

 The Wnt pathway has been extensively studied in colon cancer. Mutation of the 
APC gene leads to the activation of the Wnt pathway via stabilization of the 
β-catenin. This pathway was fi rst associated with cancer development when it was 
discovered to be activated in both inherited familial adenomatous polyposis (FAP) 
and colorectal cancer. Approximately 90 % of sporadic colon cancers display muta-
tions in APC leading to aberrant Wnt signaling activity [ 31 ,  32 ]. Since this time, 
multiple investigators have sought to uncover the role of the Wnt signaling pathway 
in other malignancies, including OS.  
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    Overview of Wnt/β-Catenin Signaling 
Pathway and Osteosarcoma 

 Clinical tissue samples from osteosarcoma patients have been used to correlate various 
entities of the Wnt pathway and clinical outcome. In our 2004 study, RNA isolated 
from fresh-frozen osteosarcoma tissue was used to examine the expression of the Wnt 
receptor LRP-5 by polymerase chain reaction. LRP-5 RNA expression statistically 
correlated with worse event-free survival in patients [ 33 ,  34 ], and dominant negative 
LRP-5 decreased tumorigenicity and metastasis of OS in vivo in nude mice experi-
ments [ 35 ]. Furthermore, it appears that blocking Wnt/LRP-5 signaling can reduce 
tumor invasiveness by reversing the epithelial-to-mesenchymal transition [ 36 ].  
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  Fig. 1    Overview of Wnt/β-catenin signaling. In the absence or inhibition of Wnt, the cytoplasmic 
β-catenin forms a complex with Axin, adenomatous polyposis coli (APC), casein kinase 1 (CK1), 
and glycogen synthase kinase 3β (GSK3β). CK1 and GSK3β phosphorylate β-catenin. β-Trcp (E3 
ubiquitin ligase subunit) recognizes this complex and targets β-catenin for proteosomal degrada-
tion. In the presence of Wnt binding to targeted receptors frizzleds, low-density lipoprotein 
receptor- related protein 5 and 6 (LPR 5/6), and disheveled (Dvl), the complex becomes phosphory-
lated, leading to the inhibition of GSK3β. Cytoplasmic non-phosphorylated β-catenin accumu-
lates, inhibiting its degradation and promoting translocation to the nucleus. A complex with 
transcription factors, including T-cell transcription factor (TCF), Lymphoid enhancer-binding fac-
tor (LEF), and transcriptional co-activators, lead to transcriptional activity of multiple downstream 
target oncogenes       
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    Role of Wnt Antagonists in Osteosarcoma 

 Secreted Wnt antagonists have been observed to suppress tumorigenesis and 
metastatic potential in osteosarcoma. Two types of secreted Wnt antagonists are 
characterized by their mechanisms of inhibition. The fi rst type directly binds to 
Wnt ligands, promoting an inhibitory response. Wnt inhibitory factor-1 (WIF-1), 
sFRP family and Cerberus are examples of Wnt antagonists that bind directly to 
Wnt ligands and inducing an inhibitory response. The second type of antagonist 
such as the Dickkopf family and sclerostin inhibit the Wnt pathway by binding to 
transmembrane receptors, thereby preventing Wnt signaling activation. 

 The Dickkopf family comprises of four secretory proteins, including Dkk-1, 
Dkk-2, Dkk-3, and Dkk-4. Human Dkk-1 inhibits Wnt signaling pathway by bind-
ing to the transmembrane receptors LRP5/6 [ 37 ]. Dickkopf 3(Dkk-3), also known 
as reduced expression in immortalized cells (REIC), has been shown to impede 
invasion and motility of osteosarcoma cells [ 38 ]. Dkk-3 expression is downregu-
lated in multiple cancer cell lines although its exact oncogenic suppressive mecha-
nism is still unknown. Dkk-3 has been shown to downregulate β-catenin nuclear 
translocation in OS cells leading to inhibition of downstream LEF/TCF activation 
[ 39 ]. The expression of Dkk-3 and dominant-negative LRP5 mutant in OS cell lines 
substantially decreases cell invasion and motility. We further demonstrated the abil-
ity of Dkk-3 to suppress tumorigenesis and pulmonary metastasis in nude mice via 
intratibial injection of Dkk-3 transfected OS cells [ 40 ]. 

 Frzb, a member of secreted frizzled-related protein (sFRP) family, is another 
Wnt antagonist that has been associated with cancer. It has an amino-terminal 
cysteine- rich domain (CRD) that is homologous to the ligand-binding domain of 
Frizzled [ 41 ]. Frzb blocks receptor signaling by primarily binding to the extracel-
lular Wnt ligands, preventing the ligand-receptor interaction [ 42 ]. Frzb re- 
expression has been shown to inhibit tumorigenesis and invasiveness in both 
prostate and fi brosarcoma cancer cells. In vitro studies demonstrated that Frzb can 
inhibit c-Met, a Wnt target gene that plays a key role in sarcoma progression 
[ 24 ,  43 ,  44 ]. Not only is Frzb expression downregulated in soft tissue sarcomas, but 
it is also less expressed in OS tissue and cell lines [ 45 ]. DeAlmeida et al. demon-
strated that a secreted Wnt antagonist comprising of the CRD of Fz8 attached with 
human IgG showed antitumor activity in a teratocarcinoma animal model [ 46 ]. 
This suggests the possibility of creating antagonist fusion proteins as a potential 
class of therapeutic agent. 

 The antagonist Wnt inhibitor factor 1 (WIF-1) is frequently downregulated in 
cancer cells, including prostate, breast, lung, bladder and in osteosarcoma [ 47 ,  48 ]. 
This secreted protein comprises of a WIF domain for Wnt binding activity and 
epidermal growth factor repeats [ 49 ]. In various cancers, such as lung, breast, gas-
tric, colorectal, and nasopharyngeal, silencing of the WIF-1 promoter by hyper-
methylation is associated with Wnt signaling activation [ 50 – 54 ]. Kansara et al. 
demonstrated that in primary OS, silencing of WIF-1 was also associated with in 
vivo acceleration of tumorigenesis in mice [ 55 ]. Recently, we demonstrated that 

Wnt Signaling in Osteosarcoma



38

re- expressing WIF-1 in OS cells resulted in inhibition of anchorage-independent 
growth and cellular motility. With elevated WIF-1 expression, proteolytic enzyme 
matrix metalloproteinases (MMP-9 and MMP-14) were suppressed from degrading 
extracellular matrix. In vivo, injecting WIF-1 transfected OS cells into nude mice 
showed reduced tumorigenesis and pulmonary metastasis [ 48 ]. 

 Besides naturally occurring antagonists, small molecule Wnt inhibitors are 
also being explored as a potential means to suppress tumorigenesis. Chen et al. 
examined several synthetic compounds via high-stringency cell-based screening 
and discovered two new classes of small molecules that perturb the Wnt pathway. 
The fi rst class of compound inhibits the membrane-bound acyltransferase 
Porcupine, which is involved in Wnt protein production. The second class nulli-
fi es the destruction of Axin, which are known suppressors of the Wnt/β-catenin 
signaling pathway [ 56 ]. 

 More specifi cally, it has been shown that OS progression can be affected by 
small molecule inhibitors that disrupt the Wnt/β-catenin pathway. Previous 
research on the natural compound curcumin showed an inhibitory effect against 
β-catenin/Tcf signaling amongst several cancer cell lines [ 57 ]. Hallet et al. found 
that PKIF118-310 (β-catenin/TCF inhibitor II) given to breast tumor-bearing syn-
geneic mice arrested tumor growth in vivo [ 58 ]. In OS, Leow et al. revealed that 
both curcumin and PKIF118-310 suppressed both intrinsic and activated β-catenin/
Tcf transcriptional activities using luciferase reporter assays. They also showed 
signifi cant reduction of nuclear β-catenin and inhibitory effects on OS cell migra-
tion and invasion in a dose-dependent manner. These anticancer effects correlated 
with decreased expression of downstream targeted oncogenes, such as cyclin D1, 
c-Myc, and survivin [ 59 ]. Other small molecule inhibitors, targeting Met, such as 
PF2362376 (targeting canine OS cell lines) and STA-1474 (heat-shock protein 90 
inhibitor targeting both human and canine OS cell lines) have also shown to 
decrease proliferation and decrease phosphorylation of both Met and PKB/AKT 
[ 60 ,  61 ]. 

 Grandy et al. recently revealed another small molecule inhibitor of Wnt via the 
PDZ domain of dishevelled [ 62 ]. Dishevelled (dvl) is an essential component of 
the Wnt signaling pathway, which transduces Wnt signals from the Frizzled 
receptor to downstream targeted components. Through structure-based ligand 
screening and NMR spectroscopy, these investigators were able to discover a 
small molecule inhibitor (3289-8625) with an affi nity to the PDZ domain of dvl. 
It was shown to suppress the tumorigenesis of prostate cancer PC-3 cells, decrease 
Wnt signaling in the hyaloid vessel system, and may prove to have similar affects 
in OS cells. 

 Sclerostin is yet another glycoprotein that is known to antagonize the Wnt/
β- catenin signaling in osteoblasts by binding to LRP5/LRP6 and subsequently 
inhibiting osteoblast differentiation, activity, and survival [ 63 ,  64 ]. The SOST 
gene encodes for sclerostin, and its inhibition has been an area of interest for treat-
ment of osteoporosis [ 65 ,  66 ].  
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    Controversy of Inactivity of Wnt/β-Catenin Pathway 
in  High- Grade OS 

 There is some controversy over the impact of Wnt/β-catenin pathway in high-grade 
osteosarcoma. Unlike previous data, Cai, et al. in 2010 published results suggesting 
that loss of Wnt/β-catenin pathway activity may contribute to osteosarcoma prolif-
eration [ 67 ]. Nuclear β-catenin rather than cytoplasmic β-catenin was examined in 
osteosarcoma biopsies/cell lines and osteoblastomas by immunohistochemistry. 
Nuclear β-catenin was not detected in 90 % of the OS biopsies and cell lines and the 
rest of the cases showed weak nuclear staining. After treating OS cells with GSK3β 
inhibitor (Wnt pathway activator), immunofl uorescence β-catenin nuclear staining 
was positive in all cell lines and cellular proliferation rates were reduced. These 
investigators noted that only nuclear staining, and not membranous/cytoplasmic 
staining of β-catenin, can determine the degree of Wnt activity, since it is within the 
nucleus that transcription occurs for target gene expression. On the contrary, other 
groups such as Goentoro et al. demonstrated that the fold change, and not absolute 
level of β-catenin, determines the impact of Wnt activity and transcriptional changes 
[ 68 ]. With limitations of in vitro models, the theory from Cai et al. has yet to be 
proven within the context of an in vivo environment.  

    Targeting Noncanonical Wnt Pathways 
(β-Catenin- Independent Pathways) 

 Besides the canonical pathway, Wnt has been known to affect β-catenin-independent 
pathways as well, including Wnt/calcium, Wnt/Rho GTPase, and Wnt/JNK pathways 
[ 10 ]. Over the past two decades, more noncanonical Wnt pathways have been 
described, although they are less understood and are initiated by Wnt/Frizzled signal-
ing, rather than β-catenin transcriptional function. These signals are transduced via 
Frizzled family receptors and co-receptors ROR2 and RYK [ 69 ]. In the Wnt/calcium 
pathway, Wnt5a/Frizzled-2 modulates the calcium-sensitive proteins, calcium/
calmodulin-dependent kinase II and protein kinase C, thus increasing the intracellular 
calcium fl ux [ 70 ]. Wnt/Frizzled activates cyclic GMP-specifi c phosphodiesterase 
(PDE6) leading to depletion of cellular cGMP and inactivation of protein kinase G 
(PKG), and subsequently causing increase intracellular calcium concentration. 
The calcium-dependent effector molecules of this pathway are Nemo-like kinase 
(NLK) and nuclear factor of activated T cells (NFAT). The NLK inhibits TCF/β-
catenin signaling via phosphorylation of TCF/LEF family transcription factors, while 
the NFAT inhibits ventral patterning in Xenopus, respectively [ 71 – 73 ]. 

 The Wnt/planar cell polarity (PCP) pathway, consisting of Wnt5a and Wnt11, 
initiates signaling through its interaction with frizzled (Fz), activating dishevelled 
(Dvl) and forming Dvl/effector complexes [ 71 ,  74 ,  75 ]. The Dvl downstream 
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pathway, including both Ras homolog gene family A (RhoA) and Jun Kinase (JNK), 
regulates actin cytoskeleton, cell motility, and adhesion [ 9 ,  76 ]. It impacts temporal 
and spatial control of embryonic development seen in both Xenopus embryos and 
cuticular hairs in Drosophila. 

 The JNK pathway is also a mediator of noncanonical Wnt signaling which is 
activated via Wnt-Ror2 signaling. By using siRNA to suppress Wnt5a or Ror2, 
Enomoto et al. demonstrated reduced invasiveness and invadopodia formation in 
OS cells [ 77 ].  

    Wnt/B-Catenin Signaling and Stem Cells 

 The Wnt/β-catenin pathway not only has a role in tumorigenesis but has also been 
suggested to exert diverse regulatory effects on cancer stem cells (CSC) [ 78 ]. Stem 
cells in general are defi ned as having the ability to self-renew along with creating 
specialized cells. Several groups of investigators have examined the Wnt pathway 
and its effects on specifi c stem cell functions [ 6 ]. As early as the 1990s, Korinek 
et al. demonstrated the association between mutated TCF4 and subsequent deple-
tion of intestinal stem cells. Studies on the role of stem cells in hair follicle forma-
tion have suggested that Wnt inhibitors play a prominent role in regulating the stem 
cell microenvironments [ 79 ]. The transgenic overexpression of LEF1 resulted in not 
only follicle stem cell growth but also differentiation of the hair lineage [ 80 ]. 

 In OS cell lines, Tirino et al. identifi ed a subpopulation of CD133+ cells with 
self-renewal properties, higher proliferation, spherical formation, and expression of 
the stem cell-associated gene OCT3/4 [ 81 ]. In addition, elevated aldehyde dehydro-
genase (ALDH) activity in normal stem cells and solid tumor CSC has led to the use 
of ALDH as a means of identifying CSC in sarcomas. Wang et al. found that OS cell 
lines containing a subpopulation of cells with high ALDH activity possess increased 
tumorigenic capacity, proliferative capacities, self-renewal, and expression of stem 
cell markers [ 82 ].  

    Therapy Against Wnt Target Genes in Osteosarcoma 

 Given an abundance of data suggesting Wnt/β-catenin involvement in tumorigenesis, 
there is a need to discover ways to mitigate the Wnt transcriptional activation [ 29 ,  83 ]. 
Several strategies have been proposed to exploit the Wnt pathway for cancer therapy 
[ 22 ,  84 ,  85 ]. The challenge to some of these strategies is that the Wnt pathway is a 
vast network that also regulates normal cell functions, tissue regeneration, and stem 
cell differentiation. Depending on how this pathway is targeted (extracellular, 
cytoplasmic, nuclear), detrimental side effects may be incurred. 

 Targeting the Wnt/β-catenin signaling at the extracellular level is a strategy that 
focuses on secreted Wnt antagonists, including WIF-1, Dkk, and sFRPs. Restoring 
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the expression of these antagonists in the antagonist-defi cient tumors may prove to 
be helpful in reducing the proliferation of OS cells. Another strategy that simulates 
the mechanisms of Wnt antagonists is to create anti-Wnt monoclonal antibodies that 
can induce apoptosis of OS cells by blocking Wnt-Frizzled interaction. Therapeutic 
monoclonal antibodies against Wnt-1 and Wnt-2 have demonstrated inhibition of 
Wnt signaling and suppression of tumor growth in hepatocellular carcinoma and 
melanoma, respectively [ 86 ,  87 ]. This model can also be explored and potentially 
replicated for OS. Besides the extracellular level, we can aim to target the cytoplas-
mic components, such as β-catenin-binding domain of APC, for tumor suppression. 
Shih et al. showed that in colon cancer cells, re-expression of a recombinant adeno-
virus with APC (with known β-catenin binding repeats) can inhibit nuclear translo-
cation of β-catenin as well as β-catenin/Tcf-mediated transactivation [ 88 ]. At the 
nuclear level, targeting the β-catenin/Tcf transcriptional activity along with key 
downstream mediators, such as c-Myc, cyclin D1, survivin, needs to be further 
explored. In OS, the hepatocyte growth factor receptor c-Met is another Wnt target 
gene that is frequently overexpressed. Recent evidence suggests that c-Met can 
transform normal human osteoblasts into OS cells [ 44 ]. Therefore, c-Met is a can-
didate Wnt-related gene that can explored for OS therapeutics. 

 Nonsteroidal anti-infl ammatory drugs (NSAIDS) have been studied and thought to 
impact the Wnt pathway by inhibiting the accumulation of prostaglandin E2, which 
ultimately decreases degradation of the β-catenin. NSAIDs have mainly shown chemo-
preventative effects against colon cancer [ 89 ,  90 ]. Xia et al. demonstrated the effects of 
celecoxib (cyclo-oxygenase-2 inhibitor) on inhibiting β-catenin-dependent survival of 
human OS cell line (MG-63). Not only did β-catenin protein decrease in the cytosol 
and nucleus following celecoxib treatment, but there was also a signifi cant reduction of 
the Wnt target gene c-Myc and CCND1 [ 91 ]. As mentioned previously, using small 
molecule inhibitors identifi ed by high- throughput screens can be helpful to make an 
impact on OS therapy. These inhibitors are known to target β-catenin/TCF antagonists, 
transcriptional co-activator modulators along with the PDZ domain of Dvl [ 92 ].  

    Conclusion 

 Given the complexity of the Wnt signaling network, it is not an easy task to determine 
which group of components is responsible for the interactions that drives OS progres-
sion. With a large permutation of Wnt signaling (given 19 human Wnt family mem-
bers, 11 human Fz receptors, 4 human Dkks, along with multiple regulatory 
proteins), it is challenging to identify specifi c combinations of interaction that may 
be clinically relevant to OS. Although our understanding of the Wnt pathway has 
improved over the last few decades, there are certainly many regulatory mechanisms 
yet to be discovered. From this standpoint, the Wnt pathway offers a plethora of 
targeting potentials for cancer drug development. By understanding the pathophysi-
ology of aberrant Wnt signaling in OS, we are getting closer to designing much more 
precise and personalized treatment for this disease.     
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