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    Abstract     Osteosarcoma is a cancer characterized by formation of bone by malignant 
cells. Routine bone scan imaging with Tc-99m-MDP is done at diagnosis to evalu-
ate primary tumor uptake and check for bone metastases. At time of relapse the 
Tc-99m-MDP bone scan also provides a specifi c means to assess formation of bone 
by malignant osteosarcoma cells and the potential for bone-seeking radiopharma-
ceuticals to deliver radioactivity directly into osteoblastic osteosarcoma lesions. 
This chapter will review and compare a bone-seeking radiopharmaceutical that 
emits beta-particles, samarium-153-EDTMP, with an alpha-particle emitter, 
radium-223. The charged alpha particles from radium-223 have far more mass and 
energy than beta particles (electrons) from Sm-153-EDTMP. Because radium-223 
has less marrow toxicity and more radiobiological effectiveness, especially if inside 
the bone forming cancer cell than samarium-153-EDTMP, radium-223 may have 
greater potential to become widely used against osteosarcoma as a targeted therapy. 
Radium-223 also has more potential to be used with chemotherapy against osteosar-
coma and bone metastases. Because osteosarcoma makes bone and radium-223 acts 
like calcium, this radiopharmaceutical could possibly become a new targeted means 
to achieve safe and effective reduction of tumor burden as well as facilitate better 
surgery and/or radiotherapy for diffi cult to resect large, or metastatic tumors.  

  Keywords     Osteosarcoma   •   Internal radiotherapy   •   Radium-223   •   Samarium-153   
•   Alpha particle   •   Beta particle   •   Bone scan for screening   •   Double strand DNA 
breaks   •   Resistance is futile   •   Radiobiological effectiveness (RBE)  
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        Osteosarcoma Biology Favors Use of Bone-Seeking 
Radiopharmaceuticals 

 The pathologic diagnosis of osteosarcoma is characterized by formation of bone [ 1 ]. 
For detection of new bone formation by osteosarcoma, the “routine”  99m Tc-MDP bone 
scan is the best screening test. Because osteoblastic osteosarcoma tumors make 
new bone, the  99m Tc-MDP bone scan is a specifi c and sensitive test. This should be 
routinely done at diagnosis and after relapse in patients with osteosarcoma. Avid 
uptake of the bone-seeking  99m Tc-MDP radioactive tracer into osteosarcoma lesions 
identifi es the possibility of using a bone-seeking radiopharmaceutical for targeted 
therapy. Although currently bone-seeking radiopharmaceuticals are used in the setting 
of palliative care for patients with bone metastases this chapter will review principles 
for not only current use, but also future use of internal radiation to control osteosar-
coma. Preclinical work and human studies have provided information to understand 
the advantages and limitations of beta emitters such as samarium-153-EDTMP 
compared to a new bone-seeking alpha emitter, radium-223 [ 2 ].  

    Radiation for Osteosarcoma Cancer Control 

 The use of radiation for local control of osteosarcoma has been a controversial 
topic. Early studies with radiation alone resulted in a high rate of osteosarcoma 
local relapse and lack of durable local control [ 3 ]. Radiotherapy of osteosarcoma 
can also result in skin toxicity, wound complications, and increased risk of infection 
[ 4 ]. Proton irradiation, carbon ion radiotherapy, and photons using intensity- 
modulated radiation therapy (IMRT) have been shown to provide some benefi t for 
axial osteosarcoma and metastatic osteosarcoma tumors which are diffi cult or 
impossible to resect [ 5 – 13 ]. Stereotactic radiotherapy (i.e., 1–5 large fractions of 
radiation) has been useful for metastases of brain, spine [ 14 ] and in lungs [ 15 ,  16 ]. 
Because patients with osteosarcoma metastases and/or axial sites have very high 
rates of relapse and poor prognosis, new and better means of defi nitive local control 
are needed [ 17 ,  18 ]. Radiotherapy of osteosarcoma lesions is likely most effective 
when combined with chemotherapy [ 13 ,  19 – 23 ].  

    The Problem of Multiple Bone and/or Metastatic 
Sites of Osteosarcoma 

 Osteosarcoma bone metastases at diagnosis are associated with a very poor prognosis 
[ 24 ,  25 ]. Although the use of ifosfamide was helpful in this group [ 25 ], patients with 
high alkaline phosphatase or metastatic disease in two organs had less than a 5 % 
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     Table 1    Alpha has high energy and short range   

 Effective 

 Bone-seeking 
radiopahrmaceutical 

    Particles 
emitted 

 Energy 
(MeV)  Range (um)  Half-life (days) 

 Radium-223  Alpha  27.8  ~50  11.4 
 Samarium-153  Beta   0.2  ~500   1.9 

survival in the French series [ 24 ]. Combined lung and bone metastases and/or 
relapse at the site of primary tumor sometimes contribute to treatment failure and 
death from osteosarcoma because of diffi culty in local control of multiple sites. 
Bone-seeking radiopharmaceuticals can offer a potential means to simultaneously 
treat multiple osseous and osteoblastic non-osseous sites of osteosarcoma (Table  1 ). 
This is because lung or other visceral metastases of osteosarcoma can be osteoblas-
tic and thus incorporate bone-seeking radiopharmaceutical. As shared earlier, the 
bone scan with avid uptake of  99m Tc-MDP is the best screening test to identify 
potential candidates for this approach.

       Properties of Samarium-153-EDTMP, a Beta-Emitting 
Radiopharmaceutical 

 Samarium-153 manufacture occurs by placing a capsule of samarium-152 oxide 
into a nuclear reactor. Neutron capture produces the unstable samarium-153 iso-
tope. Decay of samarium-153 to stable europium-153 produces a beta particle 
(electron) and a photon (gamma ray) which is also useful for gamma camera imaging 
(Tables  1  and  2 ) [ 26 ,  27 ]. Samarium-153-EDTMP has been studied since early work 
by William Goeckeler in 1987 showing that the ethylene diamine tetramethylene 
phosphonate (EDTMP) chelate was not only one of the most effective chelates to 
deliver the beta-emitting samarium-153 isotope to the bones, but also was also asso-
ciated with very little release from bone once it was deposited in the bone mineral 
hydroxyapatite [ 28 ].

    Table 2    Gamma imaging using bone-seeking radiopharmaceuticals   

 Radiopharmaceutical 
imaging agent 

 Energy 
(keV) 

 Decay 
(%abundance) 

 Gamma camera 
imaging 

 Tc-99m-MDP  141  (89 %)  Yes 
 Samarium-153-EDTMP  103  (29 %)  Yes 
 Radium-223   81  (15 %)  Yes 

  84  (26 %)  Yes 
 269  (14 %)  Yes 
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       Preclinical Studies of Samarium-153-EDTMP in Relation 
to Osteosarcoma 

 The potential usefulness of samarium-153-EDTMP for treating osteosarcoma was fi rst 
described by Lattimer et al. in dogs with spontaneously occurring osteosarcoma 
primary tumors [ 29 ]. Dogs with smaller osteoblastic tumors had more durable 
responses than dogs with larger tumors; this may be due to more intense and uniform 
deposition of the samarium-153-EDTMP radiopharmaceutical. Aas et al. showed 
that a dose of 36–57 MBq/kg (1–1.5 mCi/kg) samarium-153-EDTMP provided 
approximately 20 Gy to primary osteosarcoma tumors in dogs with reduction in 
pain as well as delaying the onset of metastatic disease [ 30 ]. It is not known whether 
treatment effi cacy was due to rapid reduction of tumor burden or treatment of micro-
metastases already in the lungs at the time of presentation. 

 The biodistribution of samarium-153-EDTMP is almost exclusively skeletal 
with rapid blood clearance and bone lesion to normal bone ratio of 17:1; unbound 
radiopharmaceutical is eliminated in the urine [ 28 ]. Because growth plates are sites 
of active deposition of hydroxyapatite, juvenile 8-week-old rabbits were used to 
investigate potential effects of samarium-153-EDTMP on epiphyses [ 31 ]. Clinically 
signifi cant damage was seen at a dose of 1 mCi/kg when the rabbits were evaluated 
8 weeks later (age = 16 weeks). Although no long-term studies of the effects of 
samarium-153-EDTMP on prepubertal bone growth and repair have been reported, 
samarium-153-EDTMP can facilitate bone healing of bones involved in older cancer 
patients indicating potential for healing after damage by internal radiation.  

    Samarium-153-EDTMP Experience Against 
Cancer in Humans 

 This radiopharmaceutical has been available for palliative treatment of bone metas-
tases including osteosarcoma [ 32 ] since the mid 1990s. The most extensive use of 
samarium-153-EDTMP has been in prostate cancer [ 33 – 35 ]. Although the dose lim-
iting toxicity is thrombocytopenia, repeated doses of samarium-153-EDTMP have 
been safely given to men with prostate cancer [ 36 ,  37 ]. The samarium-153- EDTMP 
radiopharmaceutical also has been used with docetaxel successfully [ 38 ,  39 ]. 

 Samarium-153-EDTMP has also been used in standard doses (1–1.5 mCi/kg) in 
osteosarcoma [ 26 ,  27 ,  32 ,  40 ,  41 ]. Because of the heterogeneity of deposition and/
or diffi culty of standard doses to produce durable responses, samarium-153-EDTMP 
has also been combined with radiotherapy [ 42 ]. A method for dose calculations for 
combined external beam and internal samarium-153-EDTMP radiotherapy in 
osteosarcoma tumors has recently been published [ 43 ]. Once samarium-
153-EDTMP is administered and unbound drug is eliminated in the urine (this 
occurs within 6 h), then a “bone-specifi c” radiosensitization chemotherapy drug 
can be given [ 22 ]. The principle is that once the radiopharmaceutical is bound to 
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the target (bone/bone- forming tumor) and unbound  153 Sm-EDTMP is eliminated 
into the urine, then the radiosensitization effects of chemotherapy are localized to 
regions of bound radiopharmaceutical because visceral organs (e.g., lungs, heart, 
liver, intestines, brain) have very low amounts of bound samarium-153-EDTMP 
radiopharmaceutical.  

    High-Dose Samarium-153-EDTMP 

 Avid and specifi c skeletal and bone-forming tumor localization of samarium-153- 
EDTMP allowed for a 30-fold dose escalation in osteosarcoma [ 44 ]. High-dose 
samarium-153-EDTMP, with or without chemotherapy, requires stem cell support 
because of the potential for prolonged thrombocytopenia, as shown by Turner et al. 
[ 45 ,  46 ]. High-dose samarium-153-EDTMP has been used by different investigators 
to treat osteosarcoma [ 41 ,  44 ,  47 – 50 ]. Although increased radiographic responses 
were seen using gemcitabine radiosensitization 1 day after samarium-153-EDTMP 
infusion, the durability of response against osteosarcoma metastases was not 
improved [ 47 ]. To summarize, it would appear that samarium-153-EDTMP is useful 
in the relatively limited osteosarcoma situations: (a) palliation of bone metastases, 
(b) palliation of metastases of tumors that form bone (i.e., positive on bone scan), and 
(c) in conjunction with external beam radiotherapy for control of unresectable 
osteosarcoma.  

    Advantages of Radium-223, an Alpha Particle Emitting 
Bone- Seeking Radiopharmaceutical Compared to the Beta 
Emitter, Samarium-153-EDTMP 

 Once a radionuclide is deposited in bone and/or in or near a cancer cell or tumor 
vessel in bone, the rate of rate of radioactive emissions (half-life), range, and energy 
of particle emissions (MeV) are quite different within the target zone for alpha versus 
beta emitters [ 51 – 54 ]. Energy, tissue penetration range, gamma camera imaging, and 
physical characteristics of these bone-seeking radiopharmaceuticals are a summa-
rized in Tables  1 ,  2 , and  3 , respectively. Figure  1  depicts mass and energy character-
istics of ionizing radiation (gamma rays, electrons or beta particles, protons, and 
alpha particles) as well as different type of DNA damage from the ionizing radiation 
particles. Figure  2  illustrates the radioactive decay cascade of radium-223.

     All radium isotopes are unstable and decay to produce radiation. Prior experience 
with radium for treatment of cancer in the early twentieth century used radium-226 
which has long half-life and signifi cant safety problems associated with decay to 
long-lived radon daughters (i.e., radioactive radon gas) and off-target radiation side 
effects from radioactive radon (Fig.  3 ). Hence, the radium-226 isotope is now 
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considered unsuitable for safe internal radiotherapy [ 55 ]. However, radium-223 has 
favorable decay characteristics: radon daughter decay is rapid (4 s), providing much 
less of a chance for “off target” radon diffusion (Fig.  3 ).

   Preclinical studies of radium-223. Production and characterization of clinical 
grade radium-223 has been previously described in detail [ 55 ,  56 ]. Because 
radium-223 is an alkaline earth metal, it acts like calcium. The radium-223 isotope 
has been shown to specifi cally deposit alpha particles at sites inside the intended 
skeletal metastases and/or bone-forming osteosarcoma target lesions [ 56 – 60 ]. 
Preclinical studies in rodents with radium-223 showed avid skeletal deposition, 
relative sparing of the bone marrow, and nearly no soft tissue uptake [ 57 ,  61 ]. 
Extremely high doses of radium-223 in Balb c mice [1,250, 2,500, and 3,750 kBq/kg 
(25–75× the recommended monthly dose of 50 kBq/kg)] caused some effects on 
marrow, but the 4-week LD50 was not reached [ 62 ]. In this study, the greatest effect 
was on osteoblasts and osteocytes; it also confi rmed marrow sparing and inability 
of the short-range alpha particles from radium-223 to completely ablate radiation- 
sensitive hematopoietic stem cells. 

 Experience with radium-223 in a phase I [ 59 ] and a randomized phase II trial in 
men with metastatic prostate cancer confi rmed excellent activity against bone 
metastases and a low toxicity profi le (i.e., a high therapeutic index) [ 58 – 60 ,  63 ]. 
Using doses of 5, 25, 50, or 100 kBq/kg, a dose response relationship was seen in 
pain index at week 2 [ 60 ] and the highest dose group also had signifi cantly decreased 
levels of alkaline phosphatase. Two-year follow-up of the phase II trial shows over-
all survival benefi t of 65 weeks vs 46 weeks comparing radium-223 versus placebo 
(HR 0.476; cox regression  p  = 0.017). There were no long-term hematologic toxici-
ties or secondary malignancies reported in this small phase II cohort ( N  = 33) [ 63 ]. 
Results of a randomized phase III, double-blind, placebo controlled trial of [ 2 ,  64 ] 
radium-223 in prostate cancer at a dose of 50 kBq/kg monthly × 6 and 2:1 random-
ization between active and placebo ( N  = 921) were presented at ASCO 2012 [ 64 ] 
and recently published in the New England Journal of Medicine. This study resulted 

   Table 3     153 Sm-EDTMP and Radium-223: physical characteristics   

 Radiopharmaceutical  Samarium-153- EDTMP   Radium-223 

 Half-life ( t  1/2 )  46 h  11.4 days 
 Radiation emitted  Beta (electron)  Alpha (×4) 
 Relative mass  1  7,000 
 MeV particle emission  0.66 max  27.8 
 Energy  0.22 average 
 Linear energy transfer (LET)  0.015–0.4 keV/um  60–230 keV/um 
 Type of DNA damage  Single strand breaks  Double strand breaks 
 Cytotoxic to G 0  cells (dormant metastases)  No  Yes 
 # Hits to kill cancer cells  100–1,000  1–4 
 Effective range (um)  >500  50–100 
 Elimination of unbound  Urine—within 4–6 h  GI tract (1–3 days) 
 Bone–red marrow ratio  4.4  10.3 
 Safety  Medium  VERY High 
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in the FDA approval of radium-223 in May 2013. Compared to placebo radium-223 
was associated with signifi cantly improved overall survival (median, 14.9 months 
vs. 11.3 months; hazard ratio, 0.70; 95 % CI, 0.58–0.83;  P  < 0.001) and was also 
associated with prolonged time to fi rst skeletal-related event (median 15.6 months 

  Fig. 1    Radioactive particle mass, energy, and DNA damage.  Top : photons have no mass; protons have 
¼ the mass energy of alpha particles. Thus, alpha particles have much greater mass and energy than 
electrons (beta particles).  Bottom : Graphic representation of the high energy of alpha particles causing 
double strand breaks which are more diffi cult for cancer cells to repair than single stand breaks       
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vs 9.8 months, respectively; HR = 0.658; 95 % CI, 0.522–0.830;  p  = 0.00037). 
Hematologic adverse events were uncommon (any grade 3 or 4 neutropenia in 
2.2 % and 0.7 % and any grade 3 or 4 thrombocytopenia in 6.3 % and 2 % of the 
radium-223 and placebo groups, respectively). Although targeting of osteoblastic 
osteosarcoma tumors would expected to be much more specifi c than prostate cancer, 
currently this is an unlabeled use of the radiopharmaceutical. 

 At MD Anderson Cancer Center a single osteosarcoma patient with head, neck, 
and skull base osteosarcoma with skeletal metastases was provided 2 doses of 
radium-223 in December 2009 and January 2010 [ 65 ]. Decrease in alkaline phos-
phatase and improvement in pain for approximately 2 months was seen. Bone scan 
showing the clinical response of this patient is illustrated in Fig.  4 . At MD Anderson 
Cancer Center, a phase I dose trial in osteosarcoma is open to accrual (  www.clini-
caltrials.gov     # NCT01833520). The purpose is to determine safety of escalating 
doses of radium-223 in osteosarcoma patients with osteoblastic tumors as well as to 
determine best quantitative imaging to evaluate responses using Tc-99m-MDP 
Spect-CT, NaF-18 PET, and F-18 deoxyglucose.

984960 sec 0.002 sec4 sec 2166 sec 130 sec 286 sec

.52 sec

Radium223 Decay

219

Pb207

(stable)

  Fig. 2    Radium-223 decay cascade. On average, the initial ejection of the high LEt alpha particle 
takes a relatively long time ( t  1/2  11.4 days is almost a million seconds). Subsequent quick decay of 
unstable isotopes of radon (4 s), polonium (2 ms), lead (2,166 s) bismuth (130 s), and polonium or 
thallium isotopes (287 s) yields an additional three alpha particles + two beta particles in the same 
before the stable Pb-207 isotope is fi nally formed. Alpha particle emissions account for about 94 % 
of the emitted energy of radium-223. In 1 month (<3 half-lives) ~10 % of radioactivity remains; in 
7 weeks (6 half-lives) only about 1/64 (<2 %) of initial radium-223 radioactivity remains       
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       Possible Roles of Bone-Seeking Radiopharmaceuticals 
in Osteosarcoma Therapy 

 Palliation of painful bone metastases can be accomplished in a number of ways: 
medical treatment (opiates), or using local control measures including surgery, 
radiofrequency ablation, and/or radiotherapy. Thus, the use of external beam radio-
therapy for treatment of painful osseous metastases is a widely accepted medical 
practice. Techniques are improving and stereotactic radiotherapy for spine metasta-
ses has become a frontline strategy [ 14 ,  66 ]. Larger single fractions seem to be more 
effective; this has been reviewed in meta-analyses of more than 25 clinical trials 
[ 67 – 71 ]. Because of internal lesion deposition and low marrow toxicity the usefulness 
of radium-223 and external beam radiotherapy for control of osteoblastic osteosar-
coma remains to be determined, but is a strategy that may yield more durable control, 
particularly if combined with chemotherapy after localization of the bone-seeking 
isotope to the target lesion(s). 
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  Fig. 3    Safety of Radium-223 compared to other radium isotopes is graphically depicted. Radon (Rn) 
daughter decay is in  red . The very short half-life of Rn daughter for radium-223 (4 s) limits amount of 
diffusion away from the targeted bone tumor deposition of radium-223. In contrast in the early 
twentieth century radium-226 was used clinically. This isotope was less safe and is no longer in clinical 
use because of the radon daughter  t  1/2  of 3.8 days resulted in off-target radiation side effects       
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 Experience with combined use of radiopharmaceuticals with chemotherapy: 
Combining  153 Sm-EDTMP with docetaxel has been reported to have synergy in 
prostate cancer [ 39 ], and with bortezomib in myeloma [ 72 ]. Unfortunately, 
because of delayed thrombocytopenia (usually ~3–6 weeks after a dose), the com-
bination of  153 Sm-EDTMP in routine osteosarcoma is probably not feasible in 
many patients.  

  Fig. 4    Improvement in 3 distant osteosarcoma skeletal metastases after 50 kBq/kg radium-223 × 2 
doses 1 month apart. The bone scan shows supine ( top ) and prone ( bottom ) views: note the less 
avid Tc-99m-MDP uptake of T12 spine, right acetabular, and sacral osteosarcoma bone metastases 
comparing before ( right  with  arrows ) to after treatment ( left  without  arrows ). This patient also had 
improved pain at these sites and serum alkaline phosphatase decrease from 964 to 276 in 7 weeks 
after radium-223 administration       
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    Would Low Marrow Toxicity of Radium-223 Allow 
Concurrent Use with Osteosarcoma Chemotherapy? 

 Radium-223 should be suitable for use in combination with chemotherapy, but 
additional work needs to be done. If the experience with humans is the same as the 
experience of dogs with osteosarcoma treated with samarium-153-EDTMP who had 
a delayed development of lung metastases [ 30 ], it is possible that early treatment with 
radium-223 could affect control in lung metastases. Thus far, the evidence suggests 
that radium-223 should have a higher therapeutic index (low marrow toxicity, more 
effect on malignant bone-forming cells that take up the radiopharmaceutical) than 
samarium-153-EDTMP. Because of current poor survival, patients likely to benefi t 
are those with bone metastases [ 24 ] or axial tumors [ 17 ,  18 ]. Benefi t in these very 
high-risk groups could then provide the rationale for randomized clinical trials and 
wider application of this targeted radiopharmaceutical against osteosarcoma.  

    Conclusion 

 Samarium-153-EDTMP has modest effi cacy in the setting of palliative treatment of 
osteosarcoma metastases, but it is sometimes diffi cult to use repeated doses or with 
chemotherapy. The path length (range) of radium-223 is shorter, and thus, there is 
less hematologic toxicity because fewer marrow stem cells are “innocent bystand-
ers.” It is the author’s view that radium-223 has the potential to signifi cantly improve 
effectiveness of osteosarcoma chemotherapy as well as external beam radiation of 
unresectable tumors. Radium-223 may also possibly provide rapid control of initial 
pain and could possibly contribute to increased necrosis of osteoblastic tumors. 
Furthermore, because radium-223 has the potential to reduce viability of lung osteo-
sarcoma micro-metastases, it also has potential to impact survival and reduce the 
incidence of relapses in the lungs as well as in the bones.     
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