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Preface

v

Topics in Modal Analysis II, Volume 8 represents one of the eight volumes of technical papers presented at the 32nd IMAC,
A Conference and Exposition on Structural Dynamics, 2014, organized by the Society for Experimental Mechanics, and held
in Orlando, Florida, February 3–6, 2014. The full proceedings also include volumes on Dynamics of Coupled Structures;
Nonlinear Dynamics; Model Validation and Uncertainty Quantification; Dynamics of Civil Structures; Structural Health
Monitoring; Special Topics in Structural Dynamics; and Topics in Modal Analysis I.

Each collection presents early findings from experimental and computational investigations on an important area
within structural dynamics. Topics in Modal Analysis II represents papers on enabling technologies for modal analysis
measurements such as sensors and instrumentation and applications of modal analysis in specific application areas. Topics
in this volume include:

Finite element techniques
Modal parameter identification
Modal testing methods
Shock and vibration

The organizers would like to thank the authors, presenters, session organizers, and session chairs for their participation in
this track.

Cincinnati, OH, USA Randall Allemang
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Chapter 1
Integrating Multiple Algorithms in Autonomous
Modal Parameter Estimation

R.J. Allemang and A.W. Phillips

Abstract Recent work with autonomous modal parameter estimation has shown great promise in the quality of the
modal parameter estimation results when compared to results from experienced user interaction using traditional methods.
Current research with the Common Statistical Subspace Autonomous Mode Identification (CSSAMI) procedure involves
the integration of multiple modal parameter estimation algorithms into the autonomous procedure. The current work uses
possible solutions from different traditional methods like Polyreference Time Domain (PTD), Eigensystem Realization
Algorithm (ERA) and Polyreference Frequency Domain (PFD) that are combined in the autonomous procedure to yield
one consistent set of modal parameter solutions. This final, consistent set of modal parameters is identifiable due to the
combination of temporal information (the complex modal frequency) and the spatial information (the modal vectors) in a Z
domain state vector of relatively high order (5–10). Since this Z domain state vector has the complex modal frequency and
the modal vector as embedded content, sorting consistent estimates from hundreds or thousands of possible solutions is now
relatively trivial based upon the use of a state vector involving spatial information.

Keywords Autonomous • Modal parameter estimation • Pole weighted vector • State vector • Experimental structural
dynamics

Nomenclature

Ni Number of inputs
No Number of outputs
NS Short dimension size
NL Long dimension size
N Number of vectors in cluster
¨i Discrete frequency (rad/s)
[H(¨i)] FRF matrix (No �Ni)
r Mode number
œr S domain polynomial root
œr Complex modal frequency (rad/s)
œr � rCj!r

� r Modal damping
!r Damped natural frequency
zr Z domain polynomial root
f rg Base vector (modal vector)
f�rg Pole weighted base vector (state vector)

R.J. Allemang (�) • A.W. Phillips
Structural Dynamics Research Laboratory, Department of Mechanical and Materials Engineering, College of Engineering
and Applied Science, University of Cincinnati, Cincinnati, OH 45221-0072, USA
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DOI 10.1007/978-3-319-04774-4__1, © The Society for Experimental Mechanics, Inc. 2014
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2 R.J. Allemang and A.W. Phillips

1.1 Introduction

The desire to estimate modal parameters automatically, once a set or multiple sets of test data are acquired, has been a subject
of great interest for more than 40 years. Even in the 1960s, when modal testing was limited to analog test methods, several
researchers were exploring the idea of an automated test procedure for determining modal parameters [1–3]. Today, with the
increased memory and compute power of current computers used to process test data, an automated or autonomous, modal
parameter estimation procedure is entirely possible and is being evaluated by numerous researchers and users.

Before proceeding with a discussion of how multiple modal parameter estimation algorithms can be combined into
autonomous modal parameter estimation, some discussion of the current autonomous modal parameter estimation procedure
is required. In general, autonomous modal parameter estimation refers to an automated procedure that is applied to a modal
parameter estimation algorithm so that no user interaction is required once the process is initiated. This typically involves
setting a number of parameters or thresholds that are used to guide the process in order to exclude solutions that are not
acceptable to the user. When the procedure finishes, a set of modal parameters is identified that can then be reduced or
expanded if necessary. The goal is that no further reduction, expansion or interaction with the process will be required.

For the purposes of further discussion, the autonomous modal parameter estimation procedure is simply an efficient
mechanism for sorting a very large number of solutions into a final set of solutions that satisfies a set of criteria and
thresholds that are acceptable to the user. When multiple modal parameter estimation algorithms are combined into a
single autonomous procedure, this yields more estimates of the modal parameters which contribute to a statistically more
significant result. Currently, the user of autonomous modal parameter estimation is assumed to be very experienced and
is using autonomous modal parameter estimation as a sophisticated tool to highlight the most likely solutions based upon
statistics. The experienced user will realize that the final solutions may include unrealistic solutions or non-optimal solutions
and further evaluation will be required.

1.2 Background

In order to discuss the impact and use of multiple modal parameter estimation algorithms in autonomous modal parameter
estimation, the importance of spatial information to the solution procedure is critical. Therefore, some background is needed
to clarify terminology and methodology. This background has been provided in previous papers [4–7] and will only be
highlighted here in terms of spatial information, modal parameter estimation and autonomous modal parameter estimation.

1.2.1 Spatial Information

Spatial information, with respect to experimental modal parameter estimation, refers to the vector information and dimension
associated with the inputs and outputs of the experimental test. Essentially, this represents the locations of the sensors in the
experimental test. It is important to recognize that an experimental test should always include multiple inputs and outputs
in order to clearly estimate different modal vectors and to resolve modal vectors when the complex natural frequencies are
close, what is called repeated or pseudo-repeated roots.

Since the data matrix, normally involving frequency response functions (FRF) or impulse response functions (IRF), is
considered to be symmetric or reciprocal, the data matrix can be transposed, switching the effective meaning of the row and
column index with respect to the physical inputs and outputs.

ŒH .!i/�No�Ni
D ŒH .!i/�

T
Ni�No

(1.1)

Since many modal parameter estimation algorithms are developed on the basis of either the number of inputs (Ni) or the
number of outputs (No), assuming that one or the other is larger based upon test method, some nomenclature conventions
are required for ease of further discussion. In terms of the modal parameter estimation algorithms, it is more important to
recognize whether the algorithm develops the solution on the basis of the larger (NL) of Ni or No, or the smaller (NS ) of Ni

or No, dimension of the experimental data. For this reason, the terminology of long (larger of Ni or No) dimension or short
(smaller of Ni or No) dimension is easier to understand without confusion.
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Therefore, the nomenclature of the number of outputs (No) and number of inputs (Ni) has been replaced by the length of
the long dimension of the data matrix (NL) and the length of the short dimension (NS) regardless of which dimension refers
to the physical output or input. This means that the above reciprocity relationship can be restated as:

ŒH .!i/�NL�NS
D ŒH .!i/�

T
NS�NL

(1.2)

Note that the reciprocity relationships embedded in Eqs. 1.1 and 1.2 are a function of the common degrees of freedom
(DOFs) in the short and long dimensions. If there are no common DOFs, there are no reciprocity relationships and the
data requirement for modern modal parameter estimation algorithms (multiple references) will not be met. Nevertheless, the
importance of Eqs. 1.1 and 1.2 is that the dimensions of the FRF matrix can be transposed as needed to fit the requirement
of specific modal parameter estimation algorithms. This impacts the size of the square matrix coefficients in the matrix
coefficient, polynomal equation and the length of the associated modal (base) vector.

1.2.2 Autonomous Modal Parameter Estimation

The interest in automatic modal parameter estimation methods has been documented in the literature since at least the mid
1960s when the primary modal method was the analog, force appropriation method [1–3]. Following that early work, there
has been a continuing interest in autonomous methods that, in most cases, have been procedures that are formulated based
upon a specific modal parameter estimation algorithm like the Eigensystem Realization Algorithm (ERA), the Polyreference
Time Domain (PTD) algorithm or more recently the Polyreference Least Squares Complex Frequency (PLSCF) algorithm
(which thebasis of the commercial version of the PLSCF, the PolyMAX ® method and the rational fraction polynomial
algorithm with Z-domain generalized frequency (RFP-z)) [8]. A relatively complete list of autonomous and semi-autonomous
procedures that have been reported can be found in a recent paper [4].

Each of these past procedures have shown some promise but have not yet been widely adopted. In many cases, the
procedure focused on a single modal parameter estimation algorithm and did not develop a general procedure. Most of the
past procedural methods focused on modal frequency (pole) density but depended on limited modal vector data to identify
correlated solutions. Currently, due to increased computational speed and availability of memory, procedural methods can
be developed that were beyond the computational scope of available hardware only a few years ago. These methods do not
require any initial thresholding of the solution sets and rely upon correlation of the vector space of hundreds or thousands of
potential solutions as the primary identification tool.

The discussion in the following sections of the use of multiple modal parameter estimation algorithms in autonomous
modal parameter estimation is based upon recent implementation and experience with an autonomous modal parameter
estimation procedure referred to as the Common Statistical Subspace Autonomous Mode Identification (CSSAMI) method.
The strategy of the CSSAMI autonomous method is to use a default set of parameters and thresholds to allow for all possible
solutions from a given data set. This strategy allows for some poor estimates to be identified as well as the good estimates.
The philosophy of this approach is that it is easier for the user to evaluate and eliminate poor estimates compared to trying to
find additional solutions. The reader is directed to a series of previous papers in order to get an overview of the methodology
and to view application results for several cases [4–7].

Note that much of the background of the CSSAMI method is based upon the Unified Matrix Polynomial Algorithm
(UMPA) [8]. This means that this method can be applied to both low and high order methods with short or long dimension
modal (base) vectors. This also means that most commercial algorithms could take advantage of this procedure. Note that
high order, matrix coefficient polynomials normally have coefficient matrices of a dimension that is based upon the short
dimension of the data matrix, NS. In these cases, it may be useful to solve for the complete, unscaled or scaled, modal
vector of the large dimension, NL. This will extend the temporal-spatial information in the modal (base) vector so that the
vector will be more sensitive to change. This characteristic is what gives the CSSAMI autonomous method a robust ability
to distinguish between computational and structural modal parameters.

1.2.3 Pole Weighted Modal Vectors

The key to estimating the modal parameters utilizing the CSSAMI autonomous procedure is formulating clusters of pole
weighted modal vectors, or state vectors, from the estimates of modal parameters that are represented in a consistency
diagram. These state vectors are formed from the modal vector estimates found as the consistency diagram is developed.
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When comparing modal (base) vectors, at either the short or the long dimension, a pole weighted vector can be constructed
independent of the original algorithm used to estimate the poles and modal (base) vectors. For a given order k of the pole
weighted vector, the modal (base) vector and the associated pole can be used to formulate the pole weighted vector as follows:

f�gr D

8
ˆ̂
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ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
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�k
r f gr
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�1r f gr
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>>>>>>>>>=

>>>>>>>>>;
r
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ˆ̂
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r f gr

:

:

:
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z1r f gr

z0r f gr

9
>>>>>>>>>=

>>>>>>>>>;
r

(1.3)

While the above formulation (on the left) is possible, this form would be dominated by the high order terms if actual
frequency units are utilized. Generalized frequency concepts (frequency normalization or Z domain mapping) are normally
used to minimize this issue by using the Z domain form (zr ) of the complex modal frequency (œr) as shown above (on the
right). The Z domain form of the complex natural frequency is developed as follows:

zr D e�
�.�r=�max/ (1.4)

zm
r D em���.�r =�max/ (1.5)

In the above equations, �max can be chosen as needed to cause the positive and negative roots to wrap around the unit
circle in the Z domain without overlapping (aliasing). Normally, �max is taken to be five percent larger than the largest
frequency (absolute value of the complex frequency) identified in the roots of the matrix coefficient polynomial.

Figures 1.1 and 1.2 are graphical representations of the pole weighted vector (state vector) defined in Eq. 1.3. In this
example, the modal (base) vector (at the bottom of Fig. 1.1) is a real-valued normal mode that looks like one period of a
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sine wave. The successive higher orders, up to order eight, are shown in different colors moving up the vertical axis of this
figure. The effect of scaling of the modal (base) vector by the higher powers of the Z domain frequency value causes the
base vector to rotate in the real and imaginary space. Figure 1.2 shows the rotation affect clearly. Note that the choice of the
order (k) of the pole weighted vector, therefore, just generates additional length and rotation in the pole weighted vector and
gives varying sensitivity to comparisons between estimates. Futhermore, note that the choice of order (k) is independent of
algorithm. State vectors are a natural part of the numerical formulation for all modal parameter estimation algorithms but
this pole weighted vector (state vector), which looks similar, can be formed independently once the modal (base) vector is
estimated and, thus, is not constrained by the algorithm. The choice of the order of the pole weighted vector (k) will depend
upon the length of the modal (base) vector and is under continuing study at present.

Since the magnitude of the Z domain frequency value is unity, there is no magnitude weighting involved. This rotation
gives a method for a single vector to represent the modal (base) vector shape together with the complex-valued frequency.
With respect to sorting and separating modal vectors that have similar shapes but different frequencies or similar frequencies
but different modal vector shapes, this becomes a powerful parameter, together with modal vector correlation tools like the
modal assurance criterion (MAC), for modal parameter estimation and for autonomous modal parameter estimation.

1.3 Multi-algorithm, Extended Consistency Diagrams

Consistency diagrams, historically called stability diagrams, have almost always been utilized and developed for a specific
modal parameter estimation algorithm. As such the numerical implementation can be different as a function of basis
dimension (NS or NL), model order and/or subspace iteration. This would make it very hard to combine different algorithms
into a single consistency diagram. However, every algorithm, at the point of the numerical implementation of the consistency
diagram, has multiple sets of complex modal frequency and complex-valued modal vectors. The modal vectors may be of
different length (NS or NL) as a function of algorithm. This potential mismatch in modal (base) vector length can be solved
by restricting the long dimension to the DOFs of the short dimension or, more preferably, adding an extra step in the solution
procedure to estimate the missing portion of the long dimension vectors, extending them from the short dimension DOFs to
the long dimension DOFs. The latter approach is used in the following two figures as an example of extended consistency
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Fig. 1.3 Extended consistency diagram—Conventional version

diagrams based upon multiple modal parameter estimation algorithms. In these examples, the results from the individual
algorithms are simply stacked into the extended consistency diagram with common sorting and evaluation settings. It should
be noted that the order of the stacking of the different algorithms will affect the look of the consistency diagram but the
CSSAMI autonomous procedure uses all of the estimated parameters and pays no attention to the sequential ordering and
stability calculation involved in the consistency diagram.

The data used for this, and all following examples in this paper, is FRF data taken from an impact test of a steel disc
supported in a pseudo free-free boundary condition. The steel disc is approximately 2 cm. thick and 86 cm. in diameter
with several small holes through the disc. The center area of the disc (diameter of approximately 25 cm.) has a thickness of
approximately 6 cm. There are seven reference accelerometers and measured force inputs from an impact hammer are applied
to thirty-six locations, including next to the seven reference accelerometers. The frequency resolution of the data is 5 Hz.
While the disc is not as challenging as some industrial data situations that contain more noise or other complicating factors
like small nonlinearities, the disc has a number of pseudo-repeated roots spaced well within the 5 Hz frequency resolution
and a mix of close modes involving repeated and non-repeated roots which are very challenging. Based upon the construction
of the disc, real-valued, normal modes can be expected and the inability to resolve these modes can be instructive relative
to both modal parameter estimation algorithm and autonomous procedure performance. For the interested reader, a number
of realistic examples are shown in other past papers including FRF data from an automotive structure and a bridge structure
[4, 7].

Figure 1.3 is an example of using a conventional, sequential sorting procedure involving criteria for frequency, damping
and modal vector consistency.

Figure 1.4 is an example using a pole weighted vector (state vector) method of producing a similar consistency diagram.
In this example, every estimate from every matrix coefficient polynomial solution from every algorithm is converted into a
pole weighted vector of a specific order, in this case tenth order. Then, the consistency diagram is developed by using vector
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correlation methods (MAC) to identify consistency. A similar set of symbols, as those used in Fig. 1.3, are used to define
increased levels of consistency as numerical solutions are added.

Both methods work very well but the implementation of Fig. 1.4 is computationally easier and not subject to a frequency
drift in the symbol path that can occur in the conventional implementation shown in Fig. 1.1. Note that the solid square
symbols at the top of both consistency diagrams represent the solution found from the CSSAMI autonomous modal parameter
estimation procedure applied to the information represented by each consistency diagram.

Note that all of the above algorithms are using the same matrix polynomial equation normalization procedure which
tends to yield clear consistency diagrams. Each consistency diagram can yield twice as many estimates of the desired modal
parameters if both low and high matrix coefficient normalizations are utilized. This is also under current study.

1.4 Autonomous Modal Parameter Estimation with Extended Consistency Diagrams

The CSSAMI autonomous procedure utilizes all solutions indicated by a symbol in the consistency diagram. If some symbols
are not present, it means the user has decided not to view solutions identified by those symbols. This provides a way to remove
solutions from the autonomous procedure that are clearly not reasonable. However, experience with the CSSAMI autonomous
procedure has shown that some solutions that are often eliminated by users in an attempt to have a clear consistency diagram
are often statistically consistent and useful.

Figure 1.5 shows the solutions that are included in the autonomous procedure. The graphical representation on the
left represents a MAC matrix involving the pole weighted vectors for all possible solutions from Fig. 1.3. The graphical
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Fig. 1.5 Pole weighted MAC of all consistency diagram solutions—Before and after threshold applied

representation on the right represents the pole weighted vectors that remain after threshold and cluster size limitations are
imposed. Each cluster that remains is evaluated, cluster by cluster, independently to estimate the best modal frequency and
modal vector from that cluster. Note that both the positive frequency and negative frequency (complex conjugate) roots are
included and identified separately as clusters. Figure 1.5 represents nearly 1,000 solution estimates spanning four different
algorithms and 19 different solutions form each algorithm.

Once the final set of modal parameters, along with their associated statistics, is obtained, quality can be assessed
by many methods that have been used in the past. The most common example is to perform comparisons between the
original measurements and measurements synthesized from the modal parameters. Another common example is to look at
physical characteristics of the identified parameters such as reasonableness of frequency and damping values, normal mode
characteristics in the modal vectors, and appropriate magnitude and phasing in the modal scaling. Other evaluations that may
be helpful are unweighted and weighted modal assurance criterion (MAC) evaluation of the independence of the complete
modal vector set, mean phase correlation (MPC) of each vector or any other method available. Naturally, since a significant
number of pole weighted vectors are used in a cluster to identify the final modal parameters, traditional statistics involving
mean and standard deviation are now available.

1.5 Summary and Future Work

With the advent of more computationally powerful computers and sufficient memory, it has become practical to evaluate
sets of solutions involving hundreds or thousands of modal parameter estimates and to extract the common information
from those sets. If multiple modal parameter estimation algorithms can be combined into a single autonomous procedure,
the statistics related to the common modal parameter estimation become even more meaningful. In most experimental cases
studied so far, autonomous procedures give very acceptable results, in some cases superior results, in a fraction of the time
required for an experienced user to get the same result.

Future work will involve evaluating alternate numerical methods for combining algorithms into a single consistency
diagram (equation normalization, order of the pole weighted vector, etc.) and as well as modal vector solution methods for
identifying the best causal results (Do we get a normal mode when we expect a normal mode?). Numerical solution methods
that identify both real-valued modal vectors (normal modes) and complex-valued modal vectors, when appropriate, would
be truly autonomous.

However, it is important to reiterate that the use of these autonomous procedures or wizard tools by users with limited
experience is probably not yet appropriate. Such tools are most appropriately used by users with the experience to accurately
judge the quality of the parameter solutions identified.
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Chapter 2
Effects of Magneto-Mechanical Coupling on Structural
Modal Parameters

M. Kirschneck, D.J. Rixen, Henk Polinder, and Ron van Ostayen

Abstract Structures that are exposed to a magnetic field experience magnetic forces. As these forces are geometry dependent
they vary with the displacement of the structure that can result in an additional stiffness. Furthermore eddy currents
induced by the movement of the structure can lead to an increased dissipation resulting in a higher damping value for
the mechanical part of the system. This paper introduces calculation techniques for predicting these effects and validates
them with measurements done on a simple set up in the lab.

Keywords Modal parameter identification • Magneto-mechanical coupling • Monolithic eigenvalue problem

2.1 Introduction

All ferro-magnetic objects, that are exposed to a magnetic field, experiences local forces. For an object at rest in a magnetic
field these local forces cancel each other out and the net force on the object is zero. But when the magnetic field is such that
the local forces do not balance each other out the object experiences a net force. In such a case the magnetic force has an
effect on the mechanics of the system. At the same time the change of geometry due to movement will affect the magnetic
field. These kind of systems are called two way magneto-mechanically coupled systems. In such as system the dynamical
behavior of can be altered compared to its behavior without that coupling. This also has an impact on the modal parameters
that the system displays under no coupling conditions. Certain configurations and geometries contribute to the impact of the
effect of the magneto-mechanical coupling. In this paper such a system is introduced and it is shown how the change on
modal parameters can be simulated and predicted.

There has been extensive research on magneto-mechanical systems. In fact many transducer that transforms electric
energy to mechanic energy or the other way around, i.e. electric machines, are magneto-mechanical coupled systems.
Therefore the research on magneto-mechanical coupled systems began by the discovery of forces due to electric currents
and their mentioning by Maxwell [7].

In light weight structures the opposing aims of making a structure as stiff as possible and as light as possible is commonly
found. For these kind of structures that are exposed to magnetic fields, the exact knowledge of the dynamics of the structure
might be crucial. The knowledge might allow to reduce the weight of the structure further. The same is true for electric
machines that operate in places where weight reduction is essential. The rotors and stators of these machines are exposed to
magnetic fields while being required to be as stiff and as light as possible. Applications can be found in electric cars or large
off-shore direct-drive wind turbines.
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Recent research on dynamics of magneto-mechanical coupled system concentrated on one way coupled formulations
[4, 8, 9]. The reason for this is that 3D magnetic calculations are expensive and are avoided unless absolutely necessary.
Research on 3D two way coupled problems has been done but not applied to modal analysis [2].

2.2 The Test Setup

The test set up consists of a stator yoke, two permanent magnets and a flexible beam. Figure 2.1 shows a photo of the test
set up and a 3D schematic of it. The coil that can be seen in the picture was not used for the experiments. The stator yoke is
fixed to the table by clamps. The flexible beam is fixed to a table that can be moved. This construction allows to move the
front part of the beam in and out of the air gap of the stator yoke. The two permanent magnets are located in the air gap and
create the magnetic field that passively interacts with the structural dynamics (Table 2.1). Because neither the stator yoke nor
the beam are slotted eddy currents are possible in the system and heat dissipation can occur.

2.2.1 Emerging Effects

The beam is constructed in such a way that the first bending frequency in one direction is much lower than in the other
directions. The bending mode shown in Fig. 2.1b will decrease the air gap length on one side of the beam while it is
increased on the other side of the beam. This will change the magnetic field in the air gap. Due to fringe effects the magnetic
flux density will rise on the side where the air gap length is reduced and diminish where the air gap lengthened. The resulting
magnetic force that acts on the beam and pulls the beam in both air gaps towards the yoke will also change. Because the
force does not depend linearly on the air gap length but is proportional to 1=l , where l is the air gap length, the forces will
no longer even each other out and the beam will see a force pulling it in the same direction as the displacement. From a
dynamical point of view this can be seen as an additional negative stiffness that is introduced into the system when the beam
oscillates. As a result the oscillation frequency of the first bending mode will decrease.

Additionally the time changing magnetic field will induce eddy currents in the stator yoke counter acting the change of the
magnetic field. The result is that the peak of the magnetic field has a short delay compared to the peak of the displacement.

permanent magnet beam

yoke

1st Bending Mode

Fig. 2.1 The test rig used for measurements

Table 2.1 Specification of
permanent magnets as
documented by the suppliers (if
documented)

Property Value

Height 2 mm
Length 20 mm
Width 10 mm
Remanence flux density 1.32–1.37 T
Coercity 860–995 kA

m
Relative permeability 1.056–1.26
Conductivity 5882–9090.9 S

m
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The force acting on the beam is therefore smaller while it moves away from the equilibrium position than when it moves
towards it. This slows the oscillation down resulting in an increased damping. However the force is not linearly dependent
on the velocity of the beam. This distorts the oscillation behavior of the beam slightly.

2.2.2 Mathematical Description of the System

The system consists of two domains: the mechanical structural dynamics of the beam and the magnetic field. It is therefore
necessary to use a coupled model of these two physics to describe it completely [6]. The mechanical system can be described
as a second order system

� Rui C @�ij

@xj
C fi; ext D 0 (2.1)

where � denotes the stress tensor and fext the external force. The magnetic field can be described by the magnetic vector
potential A

r � 1

	
r � A D �
 @A

@t
C 1

	
r � Br (2.2)

where 	 represents the permeability of the material, Br the remanence flux density of the magnets and 
 the conductivity of
the material.

Both parts of the system can store energy. Assuming a conservative system the energy between the mechanical system
and the magnetic domain can be exchanged in both directions. The total energy in the system can therefore be calculated by

W D Wmech CWmag D Wkin CWpot CWmag

This can be seen as a potential energy for small displacements (the magnetic potential is not defined for all points in the
domain due to singularities at corners. However as long as the integration path does not encircle such a singularity the energy
is conservative.) As stated in [5] the change of the magnetic field energy can be described by

dWmag D id�C fmagdu (2.3)

where � is the flux linkage, i the currents in any eventual coils, fmag the magnetic force and u the displacement. In this
system however we can ignore the first term on the right hand side as there are no coils present. Extending this kind of
analysis to the whole system it can be concluded that the only ways of energy entering or leaving the system is by means of
external forces fext , coils, mechanical friction and ohmic losses.

dW D d � Pu C 
 � ieddy C icoild�C fext � du (2.4)

the above mentioned energy exchange by force fmag �du becomes in this case an internal energy conversion from the magnetic
domain to the mechanical domain and vis versa. It can be seen from (2.3) the magnetic force can be calculated using the
principle of virtual work

fmag D @Wmag

@u
(2.5)

2.2.3 Parameter Identification

In order to determine the magnet properties of the steal used for beam and yoke impedance measurements were conducted.
The permeability of metals depends on the manufacturing process. Therefore it is hard to predict this property beforehand.
However, this property can be determined by measuring the impedance of a coil winded around the beam or the yoke. This
property depends mainly on the conductivity of the material and the permeability. For structural steal that is used in this case
the conductivity is roughly known. Therefore the impedance can be used to approximate the permeability.

By simulating the same system in a 3D FEM program the permeability of the material can be estimated. Figure 2.2
shows the comparison between the measured values for the inductance and resistance and the calculated values for different
permeabilities and conductivities of the iron material. The instrument used was lacking the capability to measure below a
frequency of 20 Hz. It is presumed that due to the skin effect in the iron the inductance drops rapidly for some frequencies
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Fig. 2.2 Impedance measurements of the stator yoke

below 20Hz. Being able to measure this drop at very low frequencies would increase the impact of different permeability and
conductivity values on the inductance leading to a more accurate determination of the material properties. At the frequencies
measured it can be seen in Figs. 2.3 and 2.2 that the variation of the values has little effect on the inductance making a
property identification difficult.

It should also be noted that the devices used has a higher accuracy at higher frequencies. At 20 Hz the error is around
1% of the measured. Therefore it is more important to properly fit the measured data to the simulated one at higher
frequencies (Table 2.2).

2.3 3D FEM Model

Above it was discussed that the oscillation are not linear oscillation but slightly distorted. However, in the computer model
the assumption is made that the coupled system oscillates linearly around the equilibrium position.

In order to calculate the eigenparameters of this model a monolithic formulation is necessary as it has been done in [3],
in [10] for electro-mechanical coupling and in [1] for piezo elements. A 3D analysis of the magnetic field is necessary
because the change in magnetic field density can only be predicted accurately by taking the fringe effects around the edges
of the magnets and the beam into account. A 2D model would neglect parts of the edges of the system and hence also part
of the fringe effects. As a result the calculated change of magnetic force density due to the movement of the geometry that
depends on the magnetic flux density would also be underestimated in a 2D model. This would lead to an underestimation
of the effect of interest too.

The FEM formulation for the uncoupled system can be looked up in literature [6, 15]. The derivation can be started
from the energy of the system and by derivation with respect to the dofs qu the stiffness and mass matrices for the uncoupled
system can be derived. The continuous function A.x/ and u.x/ are approximated by the shape functions N.x/ and the degrees
of freedom q D ŒquqA� of the discrete system.

u D N.x/ � qu

A D N.x/ � qA
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Fig. 2.3 Impedance measurements of the beam

Table 2.2 Chosen parameters
for the models

Property Value

Remanence flux density 1:32 T
Relative permeability 1:06

Conductivity 0:6 � 106 S
m

Relative permitivity 1 F
m

Properties of stator-yoke
Conductivity 107 S

m
Relative permitivity 1 F

m
Relative permeability 20

Properties of beam
Conductivity 107 S

m
Relative permitivity 1 F

m
Relative permeability 20

Mass matrix Rayleig damping coefficient 40

Stiffness matrix Rayleig damping coefficient 6 � 10�6

Applying these approximations to the energies we can derive the matrices for the discrete system.

Kuu D @2Wpot

@q2u
D @2

@q2u

1

2

Z

�

uTCud� (2.6)

with C being the material stiffness matrix which is constant assuming a linear elastic material and a first order finite element.
The Mass matrix can be calculated by taking the second derivative of the kinetic energy with respect to the acceleration

of the displacement

Mu D @2Wkin

@ Pq2u
D @2

@ Pq2u
1

2

Z

�

PuT � Pud� (2.7)
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Rayleigh damping was used to approximate the damping behavior of the beam. The coefficients of the Rayleigh damping ˛
and ˇ were determined by measuring the damping ratio of the system without any interaction with the magnetic field. It was
assumed that the damping ratio is the same for 417 Hz and 370 Hz. The Rayleigh damping coefficients were tuned in a 3D
FEM model without any magnetic coupling until the measured damping ratio for the two frequencies was reached.

Du D ˛Mu C ˇKuu (2.8)

The magnetic stiffness matrix was calculated in the same way as the mechanical stiffness matrix. Instead of the potential
energy the magnetic energy was used.

KAA D @2Wmag

@q2A

Z

�

.r � A/T
1

	
.r � A/d� (2.9)

the magnetic mass matrix MA can be calculated out of the source term 
 @A
@t

using the Galerkin method.

MA D @2

@qA@ PqA

Z

�

AT 
 PAd� (2.10)

For the calculation of the magnetic force vector Fmag the Maxwell stress tensor T was used [11,12,14]. This tensor is derived
from the principle of virtual work that can be derived from (2.3). It can be shown analog to [10] that the magnetic force can
be calculated by

Fmag D @

@qu

Z

�

.r � A/T
1

	
.r � A/d� (2.11)

The magnetic force represents the first coupling (in this case from the magnetic domain to the mechanical domain). Due to
the distortion of the domain caused by the displacement u the magnetic stiffness and mass matrix as well as the magnetic
force vector depend on the displacement u. For the magnetic stiffness and mass matrix this dependency is crucial because
this dependency will cause a coupling between the mechanical displacement and the magnetic field.

With these matrices we can formulate the non linear set of equations that describe the coupled system.

Muu � Rqu C Duu � Pqu C Kuu � qu D Fext C Fmag.qu;qA/ (2.12)

MA.qu/ � PqA C KAA.qu/ � qA D Jext C 1

	
.r � Br /

Each physics for themselves is linear. Coupling the two physical domains will cause the complete set of PDEs to become
non linear. Therefore in order to do a modal analysis they need to be linearized. As the oscillation of interest is around the
undeformed configuration of the structure and the static magnetic field generated by the permanent magnets, the linearization
point is given by those to states.

For such a linearization point (2.12) can be transformed into a linear monolithic system of equations:
�

Mu 0

0 0

�

„ ƒ‚ …
M

� Rqu

RqA
�

C
�

Du 0

0 MA

�

„ ƒ‚ …
D

� Pqu

PqA
�

C
�

Kuu KuA

KAu KAA

�

„ ƒ‚ …
K

�
qu

qA

�

„ƒ‚…
q

D
�

Fext
Jext C LPM

�

„ ƒ‚ …
L

(2.13)

The coupling matrices KuA and KAu can be derived from the magnetic force and therefore from the energy stored in the
magnetic field.

KuA D @Fmag
@qA

D @

@qA

�
@

@q u
Wmag

�

D @

@q u

�
@

@qA

Wmag

�

D @

@q u
.Jint / D KAu (2.14)

Looking at Eq. (2.14) it can be assumed that the total stiffness matrix is symmetric. However, in the FEM code used for the
simulation the stiffness coupling matrix KuA is derived in another way which ruins this symmetry.

Using the Maxwell stress tensor T the specific magnetic force acting on a structure can be computed by

fmag D r � T D r �
�

H BT � I
H � B
	

�

(2.15)
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where I denotes the identity matrix. The force acting on a whole domain can therefore be represented by the integral of the
specific force on that domain

Fmag D
Z

�

fmagd� D
Z

�

r � Td� (2.16)

Using the divergence theorem we can write this integral as an integral over the surface of the domain @�

Fmag D
Z

@�

n � T.A/d@� (2.17)

where n is the normal vector pointing outwards of the domain boundary. For a domain where the gradient of the magnetic
field throughout the domain is almost zero the magnetic forces created within the domain are negligible. This is an assumption
that holds for iron because the permeability of that iron is so high that the resulting gradients of the magnetic field are small
compared to the gradients at its surface. In that case only the forces on the surface of the domain contribute to the total
magnetic force. Therefore the projection of the magnetic forces from within the domain on its surface is negligible and
therefore the therm n � T actually represents the local stress on the surface of the domain.

Starting the derivation of the stiffness matrix with (2.17) yields a different matrix than the derivation starting with (2.11).
The same result has been discovered in [13] for electro-static field forces.

Starting from (2.17) we can the derive the coupling matrix KuA

KuA D @

@qA

Z

@�

n � T.A/d@� (2.18)

The matrices formulated in (2.13) can be rewritten in the quadratic eigenvalue problem:

�
K C j � �rD � �2rM

�
qr D 0 (2.19)

where qr represent the eigenvector and �r the eigenvalues. Solving this eigenvalue problem yields the modes and resonance
frequencies of the coupled system.

2.4 Measurements

Using a laser doppler vibrometer (LDV) hammering tests where conducted to measure the frequency and damping behavior
of the first bending mode of the beam. These measurements where done in three different positions of the beam: completely
out of the air gap, completely inserted in the air gap and half way inserted in the air gap. The modal parameters where
evaluated by fitting a decaying sinusoidal function to the data using a least square evaluation.

minimize
y0; !n; �

 
X

t

.x.t/ � y.t � t0//2
!

for t 2 Œt0; t0 C�t� (2.20)

with y.t/ D y0 � e�2 � !n .�C
p
�2�1/

where �, !n and y0 are the parameters to identify. I is the cost function and x.t/ the measurement data. The measured data
x.t/ and the decaying sinusoidal function y.t/ are aligned by setting x.t0/ D max.x.t// and choosing an arbitrary length
�t . The measured parameters are shown in Table 2.3.

Table 2.3 Simulation results and
measurements

3d-Model Measurement

Frequency Damping Frequency Damping

No EM coupling 417:1 Hz � D 1:66% 417 Hz � D 1:66%
With EM coupling 371:7 Hz � D 3:32% 370 Hz � D 3:6%
Half EM coupling 387:1 Hz � D 2:62% 384:6 Hz � D 2:25%
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2.5 Results

The measurements show clearly a trend towards more damping and a lower system in the system than before. Table 2.3 shows
the simulated and measured eigenfrequencies and damping ratios of the system. For the case where the beam is completely
inserted in the air gap, the frequency change is over estimated by the 3D model while the damping is underestimated.
Considering that the system introduced is not linear the expected agreement with the linear 3D model cannot be perfect. It
was shown that it is possible to do a approximation using the linearized set of equations and a linear modal analysis.

2.6 Conclusion and Outlook

A monolithic eigenvalue formulation for magneto-mechanical coupled problems was introduced. It could be shown that a
3D FEM model using this formulation can predict the eigenbehavior of magneto-mechanical coupled systems. Although
the measured data deviates slightly from the simulated data it is clear that the effects of interest are qualitatively correctly
predicted by the model.

In future research the demonstrated methods will be applied to wind turbine generators in order to allow a coupled modal
analysis of the system and to analyze to what extend the structural dynamics are influenced by the magnetic field.
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Chapter 3
Extraction of Modal Parameters of Micromachined Resonators
in Higher Modes

AVSS Prasad, K.P. Venkatesh, Navakanta Bhat, and Rudra Pratap

Abstract In this paper, a micro machined resonator is fabricated using SOI MUMPs process. A total of 50 out-of-plane
mode shapes and their corresponding modal parameters (resonant frequency and damping) are extracted. With the applied
voltage, due to joule heating, natural frequency (fn) and Quality (Q) factor change. This can be effectively used for tuning
the resonator. A detailed modal analysis is carried out using an FEM simulator to compute the modal parameters across all
the modes and results are within 5% of the data measured using a Laser Vibrometer. Q is estimated using the half-power
point approach for the first 42 modes. It is also observed that Q goes up by a factor > 2 for modes beyond 27, as only a
portion of the structure contributes to modal displacement. At higher voltages, thermal softening is observed due to local
heating which results in structure behaving like a coupled resonator. Under these conditions, peak splitting is observed. This
structure can be used in different sensor and actuator applications depending on the mode of operation.

Keywords SOIMUMPs • Natural frequency • Damping • Higher modes • Modal parameters • Thermal softening

3.1 Introduction

Micromachined resonators have potential applications in RF-MEMS, clock oscillators, resonant sensors such as biological
mass detectors, optical communication systems, displays, barcode readers and biomedical imaging systems [1–3]. The actu-
ation mode used for a given device depends on the target application. There are several actuation schemes that are proposed
and they can be classified into electrostatic, piezoelectric, electromagnetic and electrothermal types [4]. The response of a
resonator to any actuation mechanism depends on two important characteristics of the resonator—it’s resonant frequency and
quality factor [5]. It is an easy task to estimate resonant frequencies using numerical tools. However, it is very challenging
to experimentally capture the higher modes of vibration of the resonator as the amplitude of vibrations reduces drastically in
higher modes.

A resonator can be used in a variety of applications depending on the mode shape and resonant frequency. For example an
electrothermal actuator can be used as an accelerometer in the first mode and as a micro mirror in second and third modes [1].
So it is essential to determine resonant frequencies and mode shapes which dictate the suitability of their application. Many
researchers are exploring ways to capture higher modes of vibration. Liang-chia chen [6] reported data till seventh mode
of vibrations for an AFM cantilever. Mitchell [7] in early 1998 has reported data for a macro scale plate (with dimensions
18 � 18 � 1

8
in) upto the ninth normal mode. Venkatesh [1] was successful in capturing the first 28 modes of electrothermal

actuator using a microsystem analyzer.
The current study is partly motivated by a need to explore higher modes of vibration in MEMS devices for sensing

purposes. In devices constructed using high Q materials like silicon, most of the damping in oscillations is due to squeeze
film effects [8–10]. It has been reported in the literature [2] that it is possible to reduce this kind of damping and increase
the Q factor of MEMS resonators by exciting them in higher modes. During this study, it is found that we are able to easily
capture high modes of oscillations because the vibrating structure is of micro scale.
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Fig. 3.1 Image of
micromachined electrothermal
actuator

Table 3.1 Mechanical and
physical parameters of the
electrothermal actuator

Parameter Value

Length of straight beams connecting to the substrate, L 3,500 m
Width of straight beams connecting to the substrate, w 200 m
Thickness of structure, t 25 m
Proof mass size 200 � 200 m2

Young’s modulus, E 130 GPa
Poisson ratio, � 0.22
Density, � 2,300 kg/m3

Co-efficient of thermal expansion, ˛ 2:33 � 10�6/ıC

In this study we used a MEMS resonator (a electrothermal acutator) fabricated using SOI MUMPs process [11] from
MEMSCAP. Structure of the fabricated device is shown in Fig. 3.1. This structure consists of a proof mass suspended by a
set of meandering beams. These meanders are connected to the substrate by means of a set of straight beams that are anchored
on one side. For ease of probing, contact pads are provided on these straight beams at the end, where they are anchored on
the substrate. Table 3.1 provides the details of geometric and material properties of the structure used in simulations.

In our experiments with this resonator, we could capture up to 50 out-of-plane modes with single excitation. FEM based
numerical simulations have confirmed that the captured mode shapes and the measured frequencies are very close to the
theoretically predicted values. Details of experiments and numerical simulations, carried out, are discussed in the subsequent
sections.

3.2 Theory

In this section we outline the numerical and experimental procedures that are used to calculate the natural frequency of the
resonator.

3.2.1 Functional Description

This structure can be operated by applying potential between any two pads. In this study, voltage is applied between the
pads A1 and B1. Physically all the pads are anchored on the substrate and therefore from thermal point of view all pads will
be at the ambient temperature. Rest of the structure is floating in a cavity of 400 m. As the applied voltage is increased,
due to joule heating, temperature of the beam tends to increase. The actual temperature distribution depends on electrical
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conductivity, thermal conductivity, convection, radiation properties and their dependency on temperature. As temperature
goes up, beams tend to become softer and therefore reduced stiffness. By virtue of the design, temperature along the beam
of interest will not be uniform and also localized heating is expected.

3.2.2 Numerical Procedure

Modal analysis of the structure is carried out using commercially available finite-element simulator, ANSYS [12]. The
numerical computation of natural frequencies and the mode shapes involves different steps. First, the geometric modelling
is done using CoventorWare, a MEMS specific design tool. For geometric modeling, one has to give the mask data and
fabrication steps required in realizing the 3D structure. The generated 3D model is imported into ANSYS and the structure is
meshed with 50,000 eight-noded brick elements, and zero-displacement and zero rotation boundary conditions are applied on
the substrate. Modal analysis is carried out to estimate the eigen values and eigen vectors of the structure. Natural frequencies
and the corresponding mode shapes for all out-of-plane modes are extracted in the post processing step.

3.2.3 Experimental Procedure

The working principle of the setup is schematically shown in Fig. 3.2. The experimentation involves electrical excitation (say
Vinput D Vdc CVac) that causes the suspended structure to vibrate. The laser spot from the interferometer in the scanning head
is positioned on a scan point on the object by means of mirrors and is scattered back. The back scattered laser light interferes
with the reference beam in the scanning head. A photo detector records the interference. A decoder in the vibrometer provides
a voltage which is proportional to the velocity of the scanned point parallel to the measurement beam. The voltage is digitized
and processed as the vibrometer signal [4,13]. The output signal can be obtained as velocity or displacement signal using the
velocity or the displacement decoder.

In the device under investigation, due to peltier effect, hot and cold junctions are formed when voltage applied between
two pads. Due to thermal expansion, the structure tends to bend. Upon application of a sinusoidal signal, structure starts to
vibrate about its equilibrium position. To experimentally capture the modal parameters (resonant frequency and damping) of
the structure, a pseudorandom signal of voltage Vdc C Vac is applied during the experimentation. After averaging the FRF of
the output signal over 50 times, we determine the resonant frequency of the structure using the frequency response curve,
and the corresponding mode shapes are obtained from presentation mode of the vibrometer.

3.3 Results and Discussion

We now present the results of the numerical and experimental studies. In contrast to such studies at macroscales, we used
experimental results here to validate the numerical results since the finite element model of the structure is likely to have
more errors due to uncertainties in material properties and geometric parameters.
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Table 3.2 Comparison between
experimental and numerical
results

Mode fexp fNum % error Mode fexp fNum % error

No. (kHz) (kHz) j fexp�fnum

fexp
j � 100 No. (kHz) (kHz) j fexp�fNum

fexp
j � 100

1 3.17 3.1634 0.21 26 161.27 159.57 1.05
2 3.67 3.5704 2.71 27 168.15 161.32 4.06
3 8.91 8.9503 0.45 28 169.97 163.98 3.52
4 10.88 11.01 1.19 29 172.4 172.47 0.04
5 19.48 18.96 2.67 30 184.95 182.95 1.08
6 22.05 21.567 2.19 31 199.7 198.25 0.73
7 26.91 26.881 0.11 32 201.89 200.36 0.76
8 27.67 27.727 0.21 33 217.16 215.62 0.71
9 30.8 30.48 1.04 34 218.54 217.49 0.48
10 32.8 31.338 4.46 35 221.16 219.39 0.80
11 33.8 33.66 0.41 36 224.98 219.39 2.48
12 48.77 48.111 1.35 37 225.21 227.91 1.20
13 68.07 67.689 0.56 38 226.64 229.7 1.35
14 69.02 71.986 4.30 39 232.82 231.47 0.58
15 75.41 73.26 2.85 40 236.67 235.75 0.39
16 79.71 78.113 2.00 41 240.51 236.98 1.47
17 86.2 84.085 2.45 42 242.74 246.6 1.59
18 87.86 85.293 2.92 43 256 247.47 3.33
19 89.14 87.624 1.70 44 257.6 255.65 0.76
20 92.84 90.556 2.46 45 258.66 255.93 1.06
21 96.39 94.437 2.03 46 261.12 259.99 0.43
22 102.66 101.57 1.06 47 274.23 273 0.45
23 109.22 106.7 2.31 48 295 295.17 0.06
24 150.01 147.87 1.43 49 304.86 303.12 0.57
25 153.03 149.95 2.01 50 308.77 305.53 1.05

3.3.1 Natural Frequency

Figure 3.3 shows the frequency response of the structure. Natural frequency is estimated from the frequency response using
peak picking approach. Table 3.2 provides the experimental and numerical values of natural frequencies for the first 50 out-
of-plane modes of the resonator. It was noticed that error is within 5% of the experimentally obtained results across all the
modes. The corresponding mode shapes are shown in Fig. 3.4.
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3.3.2 Damping

Quality factor (a measure of damping) is estimated from the frequency response using half power point approach, given by

Q D fn

.f1 � f2/ (3.1)

where fn is the natural frequency and f1 and f2 are the 3dB frequencies. Figure 3.5 shows the Q factor distribution across
several modes of the structure. It can be noticed that Q factor is fairly high for microstructure (1,000s), in comparison to its
macro counterparts. It can also be seen that Q factor goes up by a factor > 2 after 27th mode, which can be attributed to the
fact that only a portion of the structure is contributing to modal displacement. Figure 3.6 shows the variation of Q factor with
the natural frequency. Using MATLAB, curve fitting is done to derive an empirical relation between the two and the same is
found to be a power relation. To be specific, Q / f 1:25

n .
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3.3.3 Influence of Loading

The fabricated thermal actuator is characterized by applying varying potentials (VDC C VAC). With varying DC bias voltage,
resonant frequency was found to be changing due to thermal dependent softening of the beams [14]. For example, natural
frequency measured is varying between 3.1 and 2.9 KHz, when VDC is swept from 3 to 12V and VAC is of 5V. Figure 3.7
shows the frequency response for higher values of DC voltage (greater than 13V). We observe that for VDC � 13, the
frequency response starts splitting into an equivalent response of a system with two coupled resonators. At higher voltages,
one can see two effects (a) increase in the resonant frequency with temperature and (b) peak splitting. Increase in frequency
is due to the fact that the effective mass of the spring is reducing due to excessive softening of the spring. As these results
are very repeatable and consistent, one can change the bias voltage to tune the resonant frequency of a given structure.

Figure 3.8 gives temperature profile along the length of the beam for a given applied voltage. It is evident from this figure
that there is a huge temperature gradient along the beam. Also, beam tends to become very hot in a localized fashion. From
the temperature distribution point of view, temperature is low at the bend due to the fact that there is an additional thermal
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mass that leads to more thermal conduction. These results can be used to design structures where one can create hot spots at
the required locations along the length of the beam. It is also observed that the adjacent beams gain higher temperature due
to convection effect.

3.4 Conclusion

We have experimentally determined 50 modes of out-of-plane vibrations of a MEMS resonator. Experimentally measured
frequencies are compared with the numerically computed values (using Ansys). Good correlation is observed between the
two and percentage error is less than 5%. This work shows that micro resonators can be easily excited in fairly higher modes,
in contrast to their macro counterparts. The accuracy of results shows that the simulation models can be used for analysis of
these structures and their suitability for different applications.

We have successfully extracted damping for the first 42 modes of vibration of the fabricated structure. It was noticed that
quality factor increases by a factor > 2 for modes beyond 27. Same can be used in several applications involving high Q
applications, such as biological mass detectors. Our experiments show change in natural frequency and Q factor with the
applied bias voltage due to joule heating. This particular characteristic can be used to control different design parameters
(fn, Q factor). This can be achieved by generating controlled hot spots that lead to softening of the spring.

Acknowledgements The authors would like to thank the staff at MNCF for extending their support during the actual measurement phase. We also
thank MCIT for their financial support under the project Centre of Excellence in Nanoelectronics Phase-II.
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Chapter 4
Normalization of Experimental Modal Vectors to Remove
Modal Vector Contamination

A.W. Phillips and R.J. Allemang

Abstract When modal vectors are estimated from measured frequency response function (FRF) data, some amount of
contamination in terms of random and bias errors is always present. The sources of these errors may be the experimental data
acquisition process (calibration inconsistencies, averaging limitations, leakage errors, etc.) or due to limitations of the modal
parameter estimation methods (mismatch between measured FRF data and the model form). These random and bias errors
include uncertainty in complex magnitude about the central axis of the modal vector as well as rotation of the central axis. In
a number of practical applications, particularly those involving close modal frequencies, the contamination of a modal vector
will often have a significant influence from the modal vector that is near in frequency. In these situations, the numerical
procedure for estimating the final, scaled modal vector, in terms of residue, generally involves a linear estimation method
that, with MIMO FRF data, utilizes a weighted least squares solution procedure. This numerical solution process is reviewed
and a real normalization of the weighting vectors used for estimating each modal vector in the MIMO FRF case is shown
to reduce the contamination from nearby modal vectors. Theoretical evaluations for both proportional and non-proportional
analytical cases are evaluated, as well as, results for a real application with pseudo-repeated modal frequencies and associated
modal vectors that has historically demonstrated the problem.

Keywords Residue estimation • Modal vector contamination • Modal participation weighting • MAC • Modal vector
estimation

Nomenclature

Ni Number of inputs
No Number of outputs
NS Short dimension size
NL Long dimension size
�r Complex modal frequency (rad/sec)
�r � r C j !r

� r Modal damping
!r Damped natural frequency
r Mode number
!i Discrete frequency (rad/sec)
[H(!i)] FRF matrix (No�Ni)
Apqr Residue for response DOF p, input DOF q, mode r
MAC Modal assurance criterion
riMAC MAC (real versus imaginary)
riwMAC Weighted MAC (real versus imaginary)
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4.1 Introduction

As modal parameter estimation has evolved over the last 40 years or so, the way that modal vectors are estimated from
experimental data has changed, as well. Although the technological advances from single measurement modal parameter
estimation to autonomous multiple input, multiple output (MIMO) modal parameter estimation has resulted in improved
estimates, the recent developments in autonomous parameter estimation methods has revealed that, while the random errors
are reduced, these estimates may still contain small amounts of bias contamination from nearby modes. The results of this
contamination are slightly complex estimates of the modal vectors when normal modal vectors are anticipated. The challenge
for the analyst is how to deal with this contamination.

In testing situations where modal vectors show some contamination, the problem is often ignored or eliminated through
a real normalization procedure of the final modal vectors. Frequently, this process is justified because the contamination
appears to be dominantly random. However, when the contamination is biased, this justification becomes uncertain. Even
with the most sophisticated modal parameter estimation algorithms and numerical procedures, the form of the contamination
will often be biased to look like a nearby mode. This indicates that, while the estimated modal vectors may satisfy whatever
algorithm and numerical procedures are being utilized, the estimated modal vectors still contain characteristics that can be
perceived as non-physical.

4.2 Background

The estimation of modal vectors in modern modal parameter estimation algorithms normally involves a two-step process. In
the first step, the modal participation vectors, fLgr, are estimated from the eigenvectors of a companion matrix, formulated
on the basis of either the short dimension, NS, or the long dimension, NL, of the measured FRF data matrix. Then in a second
step, the corresponding modal vectors, f§gr, are found from a weighted least squares set of linear equations involving the
selected modal frequencies and modal participations from the eigenvalues and eigenvectors of the companion matrix. In
modern algorithms, due to the available speed and memory of modern computers used in testing and data analysis, these two
steps are often combined, in what appears to the user, as a single step.

The following sections review the relevant theoretical concepts and equations required for discussing the estimation of
final, scaled modal vectors. The final scaled modal vectors are often presented as the residues of the partial fraction model
of the MIMO FRF data matrix [1]. Alternatively, the final, scaled modal vectors can be presented as a vector proportional to
the residue vector with associated modal scaling, such as Modal A .MAr/.

4.2.1 Modal Vectors from Weighted Estimation of Residues

The equations that relate the complex modal frequencies, complex modal vectors, complex-valued modal participation
vectors and residue vectors to the FRF data are well-known and are restated in the following equations for discussion
purposes [1]:
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 0.00  0.00  0.15  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  1.00

 0.06  0.05  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.01  0.66  0.00

 0.04  0.06  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.81  0.01  0.00

 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  1.00  0.00  0.00  0.00

 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  1.00  0.00  0.00  0.00  0.00

 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.90  0.00  0.00  0.00  0.00  0.00

 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.92  0.00  0.00  0.00  0.00  0.00  0.00

 0.00  0.00  0.00  0.00  0.00  0.00  0.93  0.00  0.00  0.00  0.00  0.00  0.00  0.00

 0.00  0.00  0.00  0.00  0.00  0.94  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00

 0.00  0.00  0.00  0.00  1.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00

 0.00  0.00  0.00  1.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00

 0.00  0.00  1.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.15

 0.00  0.99  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.06  0.05  0.00

 0.97  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.04  0.06  0.00

 1.00  0.02  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.03  0.05  0.00

 0.02  1.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.05  0.04  0.00

 0.00  0.00  1.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.15

 0.00  0.00  0.00  1.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00

 0.00  0.00  0.00  0.00  1.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00

 0.00  0.00  0.00  0.00  0.00  1.00  0.06  0.00  0.00  0.00  0.00  0.00  0.00  0.00

 0.00  0.00  0.00  0.00  0.00  0.06  1.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00

 0.00  0.00  0.00  0.00  0.00  0.00  0.00  1.00  0.09  0.00  0.00  0.00  0.00  0.00

 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.09  1.00  0.00  0.00  0.00  0.00  0.00

 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  1.00  0.00  0.00  0.00  0.00

 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  1.00  0.00  0.00  0.00

 0.03  0.05  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  1.00  0.27  0.00

 0.05  0.04  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.27  1.00  0.00

 0.00  0.00  0.15  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  1.00
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Fig. 4.1 MAC of modal vectors and conjugate modal vectors

where:

Apqr D Lpr qr OR Apqr D  pr qr

MAr

(4.5)

In the above equations, and particularly in Eq. 4.5, it should be noted that the residue should be purely imaginary
for a normal mode case utilizing displacement over force FRF data. For the anticipated normal mode situation, there is
no constraint on the numerical characteristics of either the modal participation coefficient or the modal vector coefficient
individually as long as the product of these two terms yields the correct residue characteristic.

4.2.2 Modal Assurance Criterion

The traditional modal assurance criterion (MAC) computation [2], restated in Eq. 4.1, is widely used in modal parameter
estimation and structural dynamics [3–6] to sort the numerous possible solutions of modal vectors from either modeling or
experiment.

MACcd D
ˇ
ˇ
ˇf cgH f dg

ˇ
ˇ
ˇ
2

f cgH f cg f dgH f dg
D f cgH f dg f dgH f cg

f cgH f cg f dgH f dg
(4.6)

Once modal vectors are estimated in any modal parameter estimation procedure, the MAC computation is often utilized
to evaluate the quality of the solutions. This begins with an evaluation of the MAC between all of the modal vectors in the
final set to ascertain whether the modal set is an independent set of vectors. This often involves the modal vectors associated
with the conjugate poles. Since the conjugate poles and vectors are estimated separately, if non-conjugate relationships exist
between the associated modal vector estimates (between the modal vector for a pole and the modal vector of the conjugate
pole), the MAC between these two vectors will not be unity as expected. A number of users have noted that this often
correlates with modal vectors that are exhibiting some unexpected characteristics or contamination.

Figure 4.1 is a graphical representation of this situation. While the MAC values are acceptable, the comparisons between
modal vectors and the associated conjugate modal vectors do exhibit slightly lowered consistency or correlation.
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Unlike the historical approach to estimation of the modal vectors, many recent modal parameter estimation algorithms,
including the autonomous procedures, are based upon numerical processing methods like singular value decomposition
(SVD). The solutions that are identified, based upon the data associated with a cluster of estimates of the same modal vector,
have no direct physical or causal constraint. An example of a physical or causal constraint would be the expectation of real-
valued, normal modes for systems where no expectation of non-proportional damping is likely. SVD methods will identify
the most dominant unitary (orthogonal and unit length) vectors in a cluster, yielding a complex-valued vector in general.
Experience has shown that when modes are very close in frequency with minimal spatial resolution, the complex-valued
vectors will still show significant independence.

However, when these complex-valued vectors are examined closely, the non-dominant portion of the complex-valued
vector often correlates very highly with one or more nearby modal vectors. This can be examined by several variants of the
MAC calculation and the weighted MAC calculation. This is discussed in the next section and is the subject of a companion
paper associated with this work [7].

4.2.2.1 Special Forms of the Modal Assurance Criterion

To understand the nature of the possible modal vector contamination in a complex-valued modal vector, three conventional
MAC calculations can be performed (1) between the real parts of the modal vectors and the complex-valued modal vectors
(rMAC), (2) between the imaginary parts of the modal vectors and the complex-valued modal vectors (iMAC) and (3)
between the real parts of the modal vectors and the imaginary parts of the modal vectors (riMAC). These three MAC
calculations and the interpretation of these MAC values will be sensitive to the rotation and normalization of the complex-
valued modal vector estimates. The following use and discussion assumes that the complex-valued modal vectors have
been rotated so that the central axis of the complex-valued modal vector is centered on the real axis. These three MAC
computations identify (1) that the real part of the modal vector is the dominant part of the complex-valued modal vector
(rMAC), (2) that the imaginary part of the modal vector is the dominant part of the complex-valued modal vector (iMAC)
and (3) that the real and imaginary parts of the modal vector are, or are not, related to one another. All MAC computations
in this case are, as always, bounded from zero to one. If near normal modes are expected, (1) the rMAC should be close to
one, (2) the iMAC should be close to zero and (3) the riMAC should also be close to zero. Note in the following definitions,
complex-valued modal vectors c and d can again be any of the modal vectors that the user wishes to include in the evaluation.
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The above MAC evaluations identify whether, and how, the contamination of a complex-valued modal vector is related
to another of the identified modal vectors. However, the MAC computation is normalized to unity vector length, vector
by vector, for the vectors used in the calculation. A weighted MAC can be used to determine the degree or scale of the
contamination. The following three definitions of the weighting for each of the above MAC calculations limits the associated
MAC value to a fraction of the zero to one scale. If near normal modes are expected, (1) the weighting and rwMAC should
be close to one, (2) the weighting and iwMAC should be close to zero and (3) the combined weighting and riwMAC should
also be close to zero. Note in the following definitions, complex-valued modal vectors c and d can again be any of the modal
vectors that the user wishes to include in the evaluation.

rwMACcd D rWc � rMACcd where rWc D
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iwMACcd D iWc � iMACcd where iWc D



Imf cgH / . Im f cg
�

f cgH f cg
(4.11)

riwMACcd D rWc � iWd � riMACcd (4.12)

4.2.3 Modal Vector Contamination: Simple Example

For the following example, the presentation is illustrative of the nature and appearence of the complex modal vector
contamination. It is not a rigorous definition of the specific form and source of contamination that results from the solution
of the companion matrix.

For the basic partial fraction model, the numerator or residue will be a purely imaginary number for the case of a normal
mode, assuming that the FRF is in displacement over force form. The residue for all modes in the summation will also be
plus/minus purely imaginary numbers.

fH .!/g D
2NX

rD1

fAgr

j! � �r
(4.13)

Assuming that the numerical solution procedure does not completely eliminate the estimate of one residue from the next,
the question is then, what will be the nature of the contamination? For mode r, the residue Apqr for a particular measurement
Hpq will be a purely imaginary number but, if there is contamination coming from the next mode higher (or lower) in
frequency, this will alter the desired residue Apqr, adding both real and imaginary contamination coming from mode s in the
following way:
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Even if the nearby residue is also purely imaginary, the contamination of the Apqr will be biased in both the real and
imaginary part by a contribution that is proportional to the nearby mode. Due to the magnitude of the imaginary part of
Apqr this contribution may not be noticeable but, as the real part of the residue Apqr should be zero, the contamination of
the real part of the residue will be quite noticeable. This was demonstrated in two recent papers [7, 11] and the form of this
contamination has been known for some time [8].

4.3 Normalization of the Modal Weighting (Participation) Vector

Identifying the potential contamination of modal vectors is helpful to the thorough understanding of modal parameter
estimation algorithms and autonomous procedures, as well as, being instructive for potential removal of the contamination.
If some sort of real normalization is desirable (to match up well with an undamped, analytical model, for example),
understanding of the contamination that is being removed is a prerequisite to any procedure. Random contamination may
simply be ignored, smoothed or averaged out, but if the contamination is related to nearby modes, it may indicate that the
modal parameter estimation may need further evaluation or that more data from additional reference DOFs is required.

4.3.1 Central Axis Rotation

In order to establish a uniform procedure for normalizing the modal participation vector which will be used as the weighting
vector when estimating modal vectors from MIMO FRF data, each potentially complex valued vector must first be rotated to
an orientation where the dominant information of the vector in complex space is aligned with the real axis. This is required
since the vector is the result of the solution of an eigenvalue-eigenvector problem involving the complex-valued MIMO FRF
data.
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Given an original (contaminated) modal participation vector for mode r, a central axis rotation method is utilized to
determine the dominant axes. These dominant axes can be identified via the singular value decomposition of the relationship
between the real part, fLRgr, and imaginary part, fLIgr, of the modal participation vector for mode r as follows:

ŒU; †;V� D svd


ŒfLIgr fLRgr�

T ŒfLIgr fLRgr�
�

(4.15)

Recognize that this decomposition is an attempt to locate the two dominant axes of a 2-D ellipse that encompasses
the modal participation vector data in the complex plane. Following the decomposition, the central axis angle is estimated
using the true (four quadrant) arctangent of the right singular vector relationship. Note that, regardless of the number of
DOF positions represented in the modal vector, the right singular vector matrix will always be two by two in dimension
representing the 2-D characteristics of the ellipse.
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�

(4.16)

After identifying the central axis angle, the original complex vector is rotated by multiplying by the complex rotational
phasor.
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This rotation and normalization procedure assures that the resulting vector is dominantly real, based upon all of the vector
information, rather than a single DOF that is chosen arbitrarily (for example, rather than selecting the DOF associated with
the largest modal vector coefficient).

4.3.2 Modal Vector Complexity

Modal vector complexity is often defined in terms of mean phase deviation as an indication of how the phase deviates from
0 ı and/or 180 ı. This definition allows some ambiguity in what is meant by a complex mode. It may simply mean that the
elements of the estimated modal vector contain complex values. For this case, the elements of the modal vector may be
rotated by an angle in the complex plane, but are otherwise colinear. Or it may mean that the modal vector contains complex
values that cannot be made real by a simple comple phasor rotation. For this case, the modal coefficients are not all colinear
in the complex plane. For this development, it is the second definition that is used.

The mean phase deviation (MPDr) for modal vector r has been defined historically as a number between zero and unity
where zero represents a real valued modal vector (normal mode) and where unity represents a complex valued modal vector
with no recognizable dominant real or imaginary characteristic, once an attempt has been made to rotate the vector to a
dominant central axis position. This fraction is often multipled by 100 to represent the precentage of complex valued modal
vector characteristics. In terms of the definitions utilized in the previous section, assuming that the modal vector has already
been rotated to its most dominant real orientation, the MPDr is defined as the norm of the imaginary part of the rotated vector
divided by the norm of the real part of the rotated vector, as shown in Eq. 4.18. Thus, the MPDr gives a dispersion ratio
around the central axis of the rotated modal vector bounded between zero and one.

Mean Phase Deviation (MPDr):
Once the MPDr is defined in terms of the fraction between zero and unity, the associated mean phase correlation for modal

vector r is defined as in Eq. 4.19.
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Mean Phase Correlation (MPCr):

MPCr D 1� MPDr (4.19)
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The mean phase correlation can then be interpreted as an indicator of normalcy; from a purely normal mode (1.0) to a
purely complex mode (0.0).

4.3.3 Proposed New Methodology

The proposed new methodogy involves a real normalization of the modal participation vectors, fLprg, that are used as the
weighting factors in the corresponding estimates of the modal vectors f qrg. No limitation or normalization is placed upon
the modal vectors f qrg. In this way, the final residue vector fApqrg is still estimated as a completely complex valued vector
as noted in Eq. 4.5. The real normalization of the modal participation vectors fLprg currently is implemented by dropping the
imaginary part of the modal participation vectors fLprg after the vectors have been rotated to the most dominant central axis
as defined in Eqs. 4.15–4.17.

This simple procedure does not eliminate complex-valued modal vectors when they exist due to non-proportional
damping but shows dramatic improvement in the estimation of the residue vectors when the structure is thought to satisfy
the conditions of proportional damping (normal modes). In these cases, the product of the modal participation vectors
and the modal vectors, as noted in Eq. 4.5, yields residues that are very close to purely imaginary vectors as would be
expected for the normal mode case involving displacement over force FRF data. The next two sections demonstrate these
characteristics. The academic example shows that the real normalization of the modal participation vectors has no negative
effects on the estimation of the expected final modal vectors while the practical example indicates that for a case where
modal contamination has been noted, the real normalization of the modal participation vectors greatly reduces this observed
phenomena.

4.4 15 DOF Analytical Example

A 15 DOF analytical example is used to generate a set of MIMO FRFs with known properties to be certain that the real
normalization procedure gives expected results in the two cases. Three different cases were utilized to perform this evaluation.
Case I involved a proportionally damped model, Case II involved a non-proportionally damped model (5 % complexity) and
Case III involved a non-proportionally damped model (20 % complexity).

To clarify the three cases in terms of the previous modal vector complexity concepts, the percentage of non-proportional
damping (NPD) utilized the MPDr as a descriptor metric, multiplied times 100 to give the result in percentage form. For
proportional damping (PD) used in Case I, the MPDr for the vectors was essentially zero when a small amount of random
noise was included. For Case II where the non-proportional damping is described as 5 % NPD, the complexity of the
analytical vectors was nominally around 5 % MPD. For Case III where the non-proportional damping is described as 20 %
NPD, the complexity of the analytical vectors was nominally around 20 % MPD. For comparison, a 100 % NPD would be
100 % MPD implying that the vector is completely complex and there is no central vector at all.

The comparison of the three cases is presented in Fig. 4.2. The left column is the real weighting and the right column
is the complex weighting for each case. As can be noted, no significant difference exists between the cases. A comparison
of the resultant estimated poles and vectors with the MCK analytical values reveals that the estimation of complex vectors
using real weighting is essentially the same, differing only by very small amounts that can be related to the random noise
that has been added to the synthesized FRF data.

The conclusion that can be drawn from Fig. 4.2, as well as inspecting the final modal frequencies and modal vectors
that are estimated from these consistency diagrams, is that the real normalization of the modal participation vector that is
used as a weighting vector appears to have no impact on getting the correct modal vector, regardless of proportional or non-
proportional damping.

4.5 C-Plate Example

The data used for the following section is MIMO FRF data taken from an impact test of a steel disc supported in a pseudo
free-free boundary condition. The steel disc is approximately 2 cm thick and 86 cm in diameter with several small holes
through the disc. The center area of the disc (diameter of approximately 25 cm) has a thickness of approximately 6 cm. There
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Fig. 4.2 15 DOF consistency diagram, real and complex weighting, proportional and non-proportional damping
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 0.00  0.00  0.15  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  1.00

 0.06  0.05  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.01  0.66  0.00

 0.04  0.06  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.81  0.01  0.00

 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  1.00  0.00  0.00  0.00

 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  1.00  0.00  0.00  0.00  0.00

 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.90  0.00  0.00  0.00  0.00  0.00

 0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.92  0.00  0.00  0.00  0.00  0.00  0.00

 0.00  0.00  0.00  0.00  0.00  0.00  0.93  0.00  0.00  0.00  0.00  0.00  0.00  0.00

 0.00  0.00  0.00  0.00  0.00  0.94  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00

 0.00  0.00  0.00  0.00  1.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00

 0.00  0.00  0.00  1.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00

 0.00  0.00  1.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.15
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Fig. 4.3 C-Plate MAC of modal vectors and conjugate modal vectors—Complex weighting

are seven reference accelerometers and measured force inputs from an impact hammer are applied to thirty-six locations,
including next to the seven reference accelerometers. The frequency resolution of the data is 5 Hz. While the disc is not as
challenging as some industrial data situations that contain more noise or other complicating factors like small nonlinearities,
the disc has a number of pseudo-repeated roots spaced well within the 5 Hz frequency resolution and a mix of close modes
involving repeated and non-repeated roots which are very challenging. Based upon the construction of the disc, real-valued,
normal modes can be expected and the inability to resolve these modes can be instructive relative to both modal parameter
estimation algorithm and autonomous procedure performance. For the interested reader, a number of realistic examples are
shown in other past papers including FRF data from an automotive structure and a bridge structure [9, 10].

4.5.1 C-Plate Example: Estimates with Complex Weighting

For this example, the entire frequency range from 200 to 2,500 Hz was fit by the Rational Fraction Polynomial Algorithm
with Z-frequency weighting (RFP-Z) in a single parameter estimation run using traditional complex participation weighting.
The CSSAMI autonomous modal parameter estimation procedure was utilized to remove user bias from the selected results
[9–11] using the same input parameters to the RFP-Z algorithm and the CSSAMI procedure. The following results are similar
regardless of the base modal parameter estimation algorithm chosen.

It can be observed in the MAC plot (Fig. 4.3) that there exists a coupling contamination between the 2,300 Hz repeated
root modes. This is further revealed by the symbols in the consistency diagram (Fig. 4.4) where the green delta symbol
indicates that no stable pole and vector was identifed. In addition, the small size of the symbol indicates that the vector that
has been found is significantly complex-valued. Using the weighted and unweighted versions of the riMAC (Fig. 4.5), it
is evident that each of the repeated root pairs has some contamination from its twin. Finally, expanding the region of the
consistency diagram around the 2,300 Hz modal pair (Fig. 4.6), it is clear that while a consistent frequency and damping are
identified, there is no consistent modal vector identified from iteration to iteration.

While this solution represents the theoretical concept of generalized weighting vectors for each mode that can be complex-
valued, the results for this case yield solutions that are slightly non-physical when the nature of the structure under test is
considered.
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4.5.2 C-Plate Example: Estimates with Real Weighting

For this example, the entire frequency range from 200 to 2,500 Hz was again fit by the Rational Fraction Polynomial
Algorithm with Z-frequency weighting (RFP-Z) in a single parameter estimation run. The final results were again determined
from the CSSAMI autonomous procedure. All conditions match the modal parameter estimation process used in the last
section. This time, however, instead of using the complex valued modal participation vectors as weighting vectors, real
normalization of the modal participation vector (first rotated to its dominant central axis) was used to generated real-valued
weighting vectors.

Dramatically improved results can be observed in the following figures. It can be observed in the MAC plot (Fig. 4.7) that
the coupling contamination between the 2,300 Hz repeated root modes has been eliminated. Further, it can be observed that
the cross MAC between each vector and its complex conjugate is also improved. This improvement is further revealed by the
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Fig. 4.7 MAC of modal vectors and conjugate modal vectors—Real weighting

symbols in the consistency diagram (Fig. 4.8). Whereas before the symbols indicated a complex-valued, inconsistent modal
vector, in this case, the large blue diamonds indicate a consistent, nearly normal mode. The nearly two orders of magnitude
change in the weighted riMAC (Fig. 4.9), also indicates the significant reduction in contamination. Finally, expanding the
region of the consistency diagram around the 2,300 Hz modal pair (Fig. 4.10), it is clear that both the pole and the modal
vector are identified consistently from iteration to iteration.
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4.6 Summary and Future Work

A relatively simple change to the weighting vectors used in the weighted estimation of the residues for each mode has
dramatically improved the results with little to no observable negative effects. For the examples chosen, the use of central
vector rotation and real normalization of the modal participation vectors appears to improve the quality and characteristics
of the final, scaled modal vectors (residues) significantly.

Future work will involve alternative numerical methods for decoupling the contaminated modal vectors and a more
rigorous evaluation of the source of contamination derived from the companion matrix solution with the goal of eliminating
the contamination earlier in the parameter estimation process. A more complete understanding of why this technique works
so well is still needed.
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Chapter 5
Effective Use of Scanning Laser Doppler Vibrometers for Modal Testing

Ben Weekes and David Ewins

Abstract Vibration measurement using a scanning laser Doppler vibrometer (SLDV) has a number of advantages over the
use of accelerometers: setup is rapid, the sensor is non-contacting, and many more measurement points can be acquired in
a given testing period. Use of SLDVs can therefore drastically reduce concerns of spatial aliasing, and makes identification
of local modes simple. However, effective use of SLDVs for modal analysis can be difficult given that line-of-sight between
the SLDV head and tested surface must be maintained, and so significant parts of the structure may be unrepresented in
the analysis. This has been addressed in recent trials of hybrid accelerometer/SLDV test geometries applied to aerospace
structures, in which a relatively sparse accelerometer array is combined with detailed SLDV inspections of local regions.
In these trial inspections a number of difficulties particular to combining the respective test geometries, and then matching
the combined test geometry to an FE model, were experienced and solutions developed. Also discussed are the effects of
acquiring ‘pockets’ of SLDV data with many measurement points that can bias the metrics on which experimental modal
analysis and model updating procedures are based. In this paper, effective use of the SLDV as a tool for modal analysis and
model updating is explored in some detail.

Keywords SLDV • Laser • Vibrometry • Modal analysis • Model updating

5.1 Introduction

5.1.1 Scope of Paper

This paper is intended to aid the reader in deciding whether SLDV would be beneficial for their application of experimental
modal analysis, and in learning how to use the SLDV effectively. Operating principles for SLDV in general are reviewed,
then use of the SLDV in modal analysis, followed by a case study which shows how model updating results can be affected.

5.1.2 Introduction to SLDVs

Laser Doppler vibrometers (LDVs) are a type of optical interferometer which measure velocity at a point on a surface by
detection of the Doppler shift of light—a phenomenon in which back-scattered (or reflected) light is frequency shifted if
the emitting/reflecting body is moving relative to the source/viewer of the light. The laser notionally emits light of a single
frequency, and so by mixing the returned light with a reference monochromatic light source on a photo-detector, a beat
signal which can be measured with an extremely high accuracy is produced. The demodulated output takes the form of a
voltage proportional to the measured velocity. As an optical sensor, there are a number of differences in the application of
LDV compared to transducers which are attached to a test-piece. First, it must be noted that the laser potentially exists in
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a different inertial frame to the test-piece, i.e., relative vibration of either the LDV or the test-piece will be detected. This
can be problematic since the LDV is usually mounted to a tripod which contacts the floor, whilst in a modal test the test-
piece is often isolated on soft suspension. There are also potential optical issues; adequate laser light must be returned to the
photo-detector for the demodulation electronics to function else a ‘drop-out’ wherein the outputted velocity signal becomes
a spurious and strongly negative occurs. This issue is compounded by the issue of laser speckle [1, 2]; surfaces which are
optically rough (i.e., non-specular) will see the laser light incident upon the surface self-interfere, which given the highly
monochromatic and coherent content causes localised bright and dark regions. The speckle pattern observed is a spatial
phenomenon, and so the usual means to achieve a measurement when a dark speckle is incident upon the photo-detector is
simply to fractionally move the laser spot such that a brighter part of the speckle pattern is then incident upon the sensor.

SLDVs are LDVs with the addition of a pair of scanning mirrors and typically also a video feed. For each test configuration
a calibration is performed such that the laser spot can be located on the surface of the test-piece by interaction with the video
feed. The scanning mirrors allow the laser to be steered, moving the measurement location. However, there must be line-of-
sight between the mirrors and all desired measurement locations, limiting the scope of the test that can be performed by a
single SLDV head in a single location. It is possible to use additional mirrors to expand the possible area of inspection, but
movement of the mirrors will be also be measured. Note that multi-laser vibrometer systems are a subject of developmental
interest [3].

SLDVs, like LDVs, comprise a single sensor, and so although data can be acquired at many locations, the measurements
are sequential. The apparent time-saving from use of SLDVs and the increase in the number of measurements which can
be taken are by virtue of how rapidly an SLDV can be set up compared to an array of physically-attached transducers
and their associated wiring. Since the SLDV measurement is sequential, the full excitation signal must be repeated at each
measurement location (with repeat measurements as necessary), and so for the SLDV measurement locations to be compared
the test should either be repeatable, or statistically rigorous.

5.2 Use of SLDVs in Modal Analysis

A flow chart for a typical modal analysis is given in Fig. 5.1, showing the often iterative nature of the validation process.
Virtual testing (or pre-test) comprises test strategy and test plan, which can be summarised as ‘what test?’ and ‘how?’ [4]. A
finite element (FE) model is used to aid test planning to help define specific aspects of the test, particularly regarding optimal
locations for degrees of freedom (DOFs) for the frequency bandwidth of interest. An experimental modal analysis (EMA) is
performed as prescribed by the test plan, for which a modal solution is calculated. Given that the FE model used to generate
the test plan is not validated, it is unsurprising that the modal analysis may fail to adequately describe the dynamics of the
structure, and so a new test plan and further experimental analysis may be required. Once an acceptable modal solution is
believed to have been found the FE model can be correlated against the EMA and attempts can be made to update the model.
Again, the model updating process can fail if the model cannot be reconciled with the experimental data, requiring revisions
to be made to the model structure, which in turn may show some deficiency in the EMA. Once a model which accurately
approximates the observed dynamics of the part or structure has been found and successfully updated the model can be
considered valid, and can be used in rigorous predictive analyses which would be too expensive to perform experimentally.

The SLDV is a transducer which yields data much like an accelerometer (albeit measuring velocity, not acceleration),
but as discussed above a successful modal analysis demands a ‘complete’ dataset. The SLDV allows many measurement
locations to be captured, but redundant capture may not benefit modal analysis. In this Section test planning for SLDVs is
discussed, and the fundamental line-of-sight limitation is addressed by use of a combination of SLDV and accelerometers.
Also discussed is how to combine and import these hybrid datasets into existing modal analysis software.

5.2.1 Changes to Test Design

The differences between performing an ad-hoc experimental analysis and an EMA can be somewhat subtle, but are informed
by the ultimate use for the data. In Fig. 5.2 the models through which the data move are shown schematically; measurements
capture responses to an input, from which data a modal description (solution) is found. The FE model is a spatial description
of the test article, from which a modal solution can also be found, allowing the EMA and FE data to be correlated and model
updating to be performed. The EMA and FE datasets are fundamentally mismatched since the EMA will typically comprise
tens to hundreds of DOFs, whilst the FE model could easily comprise many thousands to millions of DOFs—most often, the
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FE model is reduced to match the EMA rather than interpolation/extrapolation to expand the EMA dataset. When updating
the model, the EMA geometry defines the reduced FE geometry, i.e., the number, orientation and distribution of the degrees
of freedom. The test plan for the EMA is therefore more nuanced than an ad-hoc experiment-only analysis of vibration,
with a complete modal description usually sought such that the system equations are not under-determined. Hence, use of
virtual testing wherever possible to guide the experiment. However, there is some difficulty in creating a practical SLDV
test geometry using virtual test tools because of the additional constraint in measurement locations required to maintain
line-of-sight. Further, once a realisable SLDV test geometry has been created in the virtual test software, it is difficult to then
perform measurements at the prescribed measurement locations without resorting to manually programming the locations at
length. Without further development of tools to ease this process of creating and performing a SLDV test based on a pre-test,
the speed advantage of SLDVs is limited. An alternative approach would be to simply define many measurement locations
such that there is no concern of spatial aliasing between modes; the pre-test and test geometries need not be identical in
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this case if sufficiently many measurement locations are defined. The limitation of this approach is that a single view-point
of the laser will for non-2D (i.e., non-planar) test objects often fail to adequately capture the dynamics of the structure,
necessitating supplementary transducers to provide additional DOFs out of the line-of-sight of the SLDV. The caveat in the
use of additional transducers in such a manner is that the metrics on which the correlation is based will (by default) be
significantly weighted by the many SLDV points, and so the relative weight of the supplementary DOFs (which are clearly
of importance to be warranted) is reduced.

The capture of many non-coincident measurement locations by SLDV inherently increases capture of local modes. The
identification of local modes is usually an advantage of using the SLDV, since it is often desirable to update the model based
only on the lower order global modes, discarding the modes identified as local. This is because the low-order global modes
are more likely to be a structural concern, and local modes often feature only subassemblies, which are likely to be subject
to a boundary condition comprised of joints which are difficult to model (and therefore likely to be updated in a spurious
way, to the detriment of the more important global modes). In the model updating process the model is iteratively updated
multiple times, making it easier to discard the EMA local modes and rely upon the FE local modes not correlating against
the EMA global modes and therefore not affecting the model update.

5.2.2 Import of SLDV Data: The Universal File Format

Modal analysis of structures which behave in a strongly linear manner is highly developed, with a number of software
suites available in which to perform capture1 and analysis2 of the relevant data. However, these capture suites tend to
require an array of transducers such that concurrent capture can be performed at all DOFs. Since capture is performed
on discrete transducers by means of a simple voltage input, these systems can easily accommodate various transducers such
as accelerometers and strain gauges. Such software suites currently lack the means to acquire data from SLDVs, which
is unsurprising since interfacing with SLDVs requires calibration of the scanning mirrors to the video feed (test specific),
defining the scan geometry on the video feed, measurement sequencing, etc., with the bespoke hardware/software giving
interfacing difficulties. The software which comes with SLDV systems is usually adequate to perform a test and to review
the results as FRFs, ODSs and sometimes as mode shapes, damping values, etc., but for more detailed analyses it is often
desirable to output the captured time-histories or FRF data to perform the modal analysis in proven modal analysis software.

5.2.2.1 Origin of the Universal File Format

The standard means of conveying modal test data is the universal file format (often .unv, .uff, .asc), an ASCII (i.e., text) based
format defined by the Structural Dynamics Research Corporation (SDRC) [5] in the late 1960s and early 1970s to permit
transfer of data between early computer design and test systems. Such is the legacy of the format that the data fields are
typified by 80 character limits to fit 80 column punch card records. As an ASCII-based format, the files can be opened with
any text editor, and with the formatting guide the files can be understood by a human operator.

5.2.2.2 Important UFF Datasets for Modal Analysis

Universal files comprise datasets of various types [5]. There is provision for time history and FRF data in dataset type 58, and
mode shape data in dataset type 55. Also present in universal files are datasets containing the header information (metadata),
units, geometry, and coordinate systems. In exporting data from one software package to another using universal files it is
often necessary to adjust the data manually if there is some disparity between the universal file interpretations for the software
packages. Despite the supposed standardisation offered by the format, there is some ambiguity and variation in how the UFF
interpreters are written, e.g., translation and rotation matrices may be defined to map from global to local coordinate systems,
or vice versa. There are also legacy dataset types which can lead to difficulties with incomplete support, e.g., geometry dataset
type 2,411 vs. type 15. Units are often imported incorrectly, especially in the case of units of acceleration, e.g., g, instead
of mm/s2 when the units dataset specifies SI units. The author has found cases of FRF plots scaled correctly in the modal

1e.g.: LMS Test.Lab, DataPhysics SignalCalc, MC P International SmartOffice.
2e.g.: LMS Test.Lab, DataPhysics SignalCalc, Spectral Dynamics STAR Modal, HDM nCode, MC P International SmartOffice.
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analysis software since the SI units in the axes labels were taken from the universal file, whilst subsequent processing of the
data in the same software package assumed units in g. Depending on the tools available in the modal analysis software and
the permitted access to the underlying data, error-checking the imported data can be difficult.

5.2.2.3 UFF and SLDV

The strength of the universal file format is its widespread use and the relative simplicity in directly interrogating the files
when troubleshooting. However, when dealing with many DOFs (as is typical for SLDV data) the files can become unwieldy
and difficult to edit. The files can also become large, although the more recent binary dataset 58b can reduce file sizes. There
is no fundamental incompatibility between UFF files and SLDV data: the difficulties stem from managing the increased
amount of data from the multitude of SLDV measurement points and in combining datasets from various capture systems of
supporting transducers (see Sect. 2.3).

5.2.3 Management of Hybrid Datasets

As is described in the case study below (Sect. 3), the authors have tended to use hybrid accelerometer-plus-SLDV datasets.
This requires some management of the respective accelerometer and SLDV datasets, which are generated by two different
capture systems. As such, both datasets have their own node numbering and coordinate systems, and capture different
temporal derivatives. Additional complexity is often incurred since most SLDV systems lack range-finding, and so assume
all measurement points lie on a plane, with the measurement perpendicular to the plane (see Sect. 2.4). A simple program
was written to combine the datasets, taking the following approach:

1. Take an accelerometer coordinate system as the master (often there is only one), and by means of three or more reference
points common to both datasets, map the SLDV coordinates into the accelerometer system (e.g., using [6]).

2. Define local coordinate systems for all SLDV points to reorient each measurement axis to the incident angle of the
laser. This requires the assumption that the test-piece is relatively planar, and an approximate location for the SLDV.
This assumption is acceptable when the stand-off between the SLDV and test-piece is large relative to the geometric
complexity of the test object in the stand-off direction.

3. Scale the velocity FRF data to acceleration by factor of j!.
4. Append SLDV data to accelerometer data, correcting node numbering (and associated references such as coordinate

systems, driving point(s), etc.).

The UFF output of this bespoke software required some options regarding definition of the coordinate systems, units,
and legacy UFF dataset formats depending on the modal analysis software which was to interpret the data, as discussed
in Sect. 2.2. There remain some residual issues with the combined data, concerning the specific frequency resolution—the
dissimilar capture hardware can give mismatches in the available sampling rates, clock, and buffer sizes. Some modal solvers
can solve for such dissimilar frequency abscissa, although they rely upon resampling the data which may induce tangible
error. Mismatched frequency abscissa can potentially see a single mode represented as multiple modes with nominally the
same mode shape, separated by one or more discrete frequency increment. Ultimately, the ideal is to build a capture tool
which unifies clocks, excitation bandwidth and sample frequencies.

5.2.4 Matching SLDV Test Geometries to FE Models

Accelerometer and SLDV geometries are typically generated by different means. The accelerometer array is located by
the considered, deliberate act of attaching individual physical transducers to the test-piece. The SLDV measurement ‘grid’
is usually defined by drawing scan objects on the calibrated video feed, adding single measurement points, line sections,
or polygons to cover areas. For large objects viewed on a relatively low resolution video feed, the spatial accuracy with
which a measurement point can be placed can be noticeably coarse. In the case of scan objects which cover areas, the actual
measurement points are usually set to comprise a number of key points around the perimeter of the object, with a number of
measurement points in the enclosed area, typically uniformly spaced (rectangular grid, tessellated triangles, etc.) with respect
to the pixels of the video feed. Unless the SLDV has the facility for range-finding, the two-dimensional geometry defined
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by the pixels in the video feed is the only geometry information available, and is often converted into units of measurement
by simple scaling. Since the geometry lacks a depth dimension, the geometry is limited to a plane (Fig. 5.3). Further, the
velocity measurement is typically considered to be perpendicular to the plane, rather than along the laser beam axis. This
places limitations on the test design since the assumption that the velocity is out of plane could lead to significant inaccuracy
in a model correlation.

An accelerometer array geometry is usually fitted to the FE model most easily by simple minimum distance (Fig. 5.4a).
There are often small errors in the matching process due to mismatches between the FE and EMA geometries, which are
typically corrected more easily for accelerometers simply because there are usually fewer accelerometer measurement points.
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Since the SLDV data is usually from a single viewpoint, a simple projection along one axis is typically adequate to match
the SLDV data to an FE model, although correction of the measurement angle is necessary if the SLDV measurement axis
was deflected significantly.

5.3 Case Study

The UB100X is a University of Bristol test assembly which was designed to represent a highly simplified helicopter tail
cone with wing (Fig. 5.5). The parts of the assembly considered in this paper are UB100X-B (component B), a box structure
which represents a simplified helicopter tail-cone, and UB100X-C (component C), which represents a wing attached by
four interference-fit pin joints to UB100X-B. Component B was welded together from aluminium plate, and has a number of
features: large holes in two opposite faces, heavy flanges at one end, and brackets for attachment of component C. Component
C is simply an aluminium plate with the corresponding brackets to component B. The brackets are bolted rigidly to the
structure.

5.3.1 Virtual Testing and Experimental Analysis

The assembled box and wing structure was to be tested using a combination of accelerometers and SLDV, but given the
difficulty in representing SLDV measurement locations with current virtual test tools it was decided to consider only the
accelerometers, and to supplement the accelerometer array with an SLDV test geometry using operator judgement. First,
component B was considered in the virtual test software without the wing (component C) attached, on the premise that the
SLDV can easily measure many points on the attached wing (and usefully the SLDV avoids adding mass and damping to
the wing). Component B was considered in isolation to avoid the confusion of the many aliased modes that would result in
the BCC configuration with no degrees of freedom (DOFs) on component C. However, it is acknowledged that this is not
ideal since the modes of B will differ somewhat from the modes of component B with component C attached.3 The FE mesh
comprised TET10 elements, and was generated automatically from a CAD model using MSC PATRAN. Using automated
DOF placement it was found extremely difficult to place the DOFs for both unique determination of modes and for human
visualisation of the modes, with the software tending to cluster the available DOFs at one end of the box (Fig. 5.6a). This test
geometry is also found to be difficult to copy onto the genuine structure, and it would be easy to make an error in attaching,
wiring and cataloguing the accelerometers since the test geometry is non-intuitive to the operator. This automated placement
was achieved using an oft-used means of automatically placing a large number of DOFs (here, 80) using normalised modal
displacement (NMD), and then reducing the number of DOFs (here, to 25) by considering the effect on the MAC. A test

Fig. 5.5 Composite photograph
showing the inspiration for the
UB100X structure—the
AgustaWestland 159 ‘Wildcat’
tail cone and wing

3Note also that it was observed in experimental data taken on the box without the wing, that the model upon which the virtual test was based did
not behave with as much symmetry about the longitudinal axis as the genuine article, which explains some of the difficulty with the virtual test.
Tests on the box structure alone are omitted here for brevity, but it is noteworthy that the box-only model could not be validated for updating,
whilst the BCC model was adequate for updating.
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Fig. 5.6 UB100X-B accelerometer test geometry from (a) automated DOF placement using normalised modal displacement and DOF reduction
using MAC, (b) operator intuition
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Fig. 5.7 AutoMAC matrix for the prototype test geometry on UB100X-B shown in Fig. 5.6b

geometry with the same pattern of DOFs applied to each panel surface was manually-defined in the virtual test software,
as shown in Fig. 5.6b. This geometry was found to give minimal aliasing of the mode shapes over the frequency range 0–
250 Hz (see autoMAC matrix, Fig. 5.7), and the modes which correlate due to aliasing are observed to occur at dissimilar
frequencies.
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Fig. 5.8 Photograph of
experimental setup

Fig. 5.9 Test structure UB100X components B and C, (a) FE model, (b) EMA test geometry

The complete UB100X BCC model was meshed, again from a CAD model using TET10 elements in MSC PATRAN,
with the pin-joints considered rigid (i.e., the whole assembly was effectively monolithic). The experimental analysis was
performed using a Polytec PSV-300 SLDV system and a LMS SCADAS to control the accelerometer capture. A photograph
of the experimental configuration is given in Fig. 5.8. The experiment was performed using a single exciter, which was a
necessary concession to the capabilities of the SLDV system (although note that newer systems can perform MIMO). The
combined accelerometer and SLDV test geometry can be seen in Fig. 5.9. An autoMAC matrix for an a posteriori reduction
of the FE model using the test geometry points is given in Fig. 5.10. This autoMAC matrix is observed to be largely well-
conditioned, although there are some significant off-diagonal terms. Examples of the aliased modes are given in Fig. 5.11,
typified by similar behaviour on the faces which the SLDV can observe, but various symmetric and non-symmetric shapes on
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Fig. 5.10 A posteriori autoMAC matrix for the UB100X-B CC model shown in Fig. 5.9a, reduced using the EMA points in Fig. 5.9b

the faces of the box section that the SLDV could not observe. Note that with better integration of SLDV into the virtual test,
this autoMAC matrix could have been found a priori and a better-informed test performed. The SLDV was approximately
perpendicular to the areas on which it measured (the wing, and some of one face of the box section) largely as a convenience
to aid assimilation of the datasets (Sect. 2), but a location of the SLDV head which also gave a view of the top of the box
would have significantly reduced the instances of aliased modes.

5.3.2 Experimental Modal Analysis and Model Correlation

The experimental SLDV and accelerometer FRF data were combined in a bespoke MathWorks MATLAB program,
performing the functions described in Sect. 2.3 and outputting a master universal file. The combined dataset was imported
once more into LMS Test.Lab, and a modal solution found. The experimental mode shapes were exported, again as a universal
file, into DDS FEMtools for correlation and model updating.

Despite the relative simplicity of the component BCC model and the previous poor results from a component B-only
correlation, the correlation between the test data and non-updated model were observed to be mostly extremely good, albeit
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Fig. 5.11 (a–g) FE modes 10, 12, 14, 15, 19, 23, 26, respectively. These FE modes are given as examples of the high off-diagonal mode pairs in
the autoMAC matrix in Fig. 5.10. The reduced geometry which aliased these mode shapes is given in Fig. 5.9b, from which it is clear that whilst
the SLDV allows adequate description of these high-order mode shapes on the wing, critically, the sides of the box are inadequately characterised

with some high off-diagonal terms in the MAC matrix (Fig. 5.12) caused by aliasing of modes in areas the SLDV could not
measure. The FE and EMA modes were paired based on a minimum MAC of 50 %, with no repeated pairings (i.e., each
mode could only be paired once) and no restriction between the difference in frequency of the modes. This relative lack of
constraint and relatively low minimum MAC is acknowledged to be potentially sub-optimal, but it can be instructive to see
how well the FE and EMA agree with minimal intervention.

The UB100X BCC structure was observed to exhibit effectively no local modes; the box has inherent symmetries, and
as a welded assembly is assumed to have a fairly uniform mechanical impedance (i.e., distributed stiffness). Additionally,
considered individually both the box and wing feature many modes in the frequency range of interest (0–250 Hz), and so it is
unsurprising that when considered as a system (B attached to C) that all modes see some participation from both components.
In the case of the UB100X BCC assembly, the lack of local modes instead saw the spatial resolution advantage of the SLDV
translated into being able to match a large number of EMA global modes to the FE, namely 20 pairs.

5.3.3 Model Updating

In order to explore the influence of the SLDV measurements on the model updating process, multiple model updates were
trialled with the complete EMA dataset, and a reduced EMA dataset representative of the spatial resolution which could be
reasonably achieved with accelerometers. In the reduced EMA dataset there were six SLDV DOFs left on the wing (corners
plus mid-points), which gave a total of 31 DOFs (which including a force reference on the driving point would populate a 32
channel acquisition system). The model updating was performed in several different ways, as is often the case when trying
to understand the sensitivity of a model to changes in parameters, as explained under Sects. 3.3.1 and 3.3.2. The common
settings between all updates were mass-density (¡) and Young’s modulus (E) were parameterised, with no constraint on the
amount they could be varied. The responses were a target mass, and to optimise the frequencies and MAC for the paired
modes. Updating was stopped when the correlation criterion fell below a certain level, or no improvement was seen between
model iterations.
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Fig. 5.12 FEA/EMA MAC Matrix for the UB100X BCC structure before model updating

5.3.3.1 Model Updating Using Global Parameters of Component Subsets

The first updating method which was trialled was to define subsets of the BCC structure, then allow the parameters
(density and Young’s modulus) to vary globally for each subset. The subsets are shown in Fig. 5.13. The idea behind this
parameterisation was to identify which components of the model were not representative of the real structure. The structure
was fabricated from sheet and billet aluminium, and so it seems implausible that these properties should vary much locally,
excepting at joints. There remains a question over the properties of the welds, but these do appear to be of a very high quality
and so are assumed to be similar to the parent aluminium structure. This means of parameterisation is appealing because
if such a model update can be validated the component parts of the model are each described by a single material, and not
many materials per component.

The results from the updating are given in Table 5.1. The effect of reducing the number of measurement points on the
structure was significant, with the complete dataset strongly altering the properties of the wing (component C), the welds,
and the flanges, whilst the reduced dataset saw the strong alteration of the welds, the brackets and the pins. The results
for the reduced dataset appear more plausible since it identifies the joints between the wing and box section. The complete
dataset saw the mass of the wing more than double (with the increase in stiffness presumably compensating for the otherwise
reduced resonant frequencies), which is highly unrealistic.
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Fig. 5.13 FE model of
components B (box section) and
C (wing), broken into subsets:
wing (component C), brackets,
pins, welds, flanges, bulk
(remainder of component B).
Parameter updating for density
and Young’s modulus based on
allowing individual materials for
each of these subsets are given in
Table 5.1

Table 5.1 Values for density and
Young’s modulus after model
updating based on component
subsets

¡ �¡/¡ (%) E �E/E (%)

Starting values 2,700 – 6.90EC 10 –
Complete dataset Component B (bulk) 2,556 �5.33 7.06EC 10 2.32

Component C 6,303 133.44 1.17EC 11 69.86
Welds 298 �88.96 4.89EC 10 �29.13
Brackets 2,764 2.37 9.16EC 10 32.75
Pins 2,785 3.15 8.80EC 10 27.54
Flanges 2,059 �23.74 5.40EC 09 �92.17

Reduced dataset Component B (bulk) 2,885 6.85 6.99EC 10 1.30
Component C 1,883 �30.26 5.84EC 10 �15.36
Welds 1,670 �38.15 3.56EC 10 �48.41
Brackets 10,911 304.11 4.44EC 09 �93.57
Pins 3,459 28.11 1.20EC 11 73.48
Flanges 2,836 5.04 7.15EC 10 3.62

The complete EMA dataset and a reduced version of the same dataset were considered

5.3.3.2 Model Updating Using Local Parameters

A second round of updating was performed, this time allowing local parameterisation for all FE nodes. In Figs. 5.14 and
5.15 the updated model is shown for the complete and reduced datasets, respectively. As was observed in the updating using
global parameters on subsets of the model (Sect. 3.3.1), the updating results vary significantly for the complete and reduced
datasets. Whilst the results from the two datasets bear a resemblance, the reduced dataset sees greater local variation and
contrast in the density and Young’s modulus parameters. This is particularly apparent on the wing section, in which the
Young’s modulus map sees strong increases around all four attachment points to the box section. ‘Shadows’ of the paired
modes are apparent in the local variations of the parameters, and given that different numbers of modes could be paired for
the two datasets this accounts for some of the difference in the updating results.

A further model update was performed, taking the updated models from Sect. 3.3.1, and then allowing local parame-
terisation as described above. The underlying idea was that the first round of updating using global parameters of subsets
should have given a better model to start from, with the local updating then requiring fewer iterations and less strong local
variation of the parameters to converge. Again, the model updating was performed twice, first on the complete and secondly
on the reduced datasets, with the results shown in Figs. 5.16 and 5.17, respectively. This two-stage approach appears to have
lessened the amount of local updating on component B, although component C appears much the same, with the patterns in
the maps of density and Young’s modulus both seeming to indicate some deficiency in the modelling of the joints. The two-
stage approach applied to the reduced dataset yielded results different to both local-only updating of the complete dataset
(Fig. 5.14), and local-only updating on the reduced dataset (Fig. 5.15). The strong and well-defined updates around the
component C joints in the local-only update of the reduced model are not as clear, and there is more local variation of the
parameters on the sides of component B.
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Fig. 5.14 UB100X model after update using local parameters. Change in: (a, b) density; (c, d) Young’s modulus

Fig. 5.15 UB100X model after update using local parameters on the reduced test geometry. Change in: (a, b) density; (c, d) Young’s modulus

Fig. 5.16 UB100X model after update using global subsets, then local parameters. Change in: (a, b) density; (c, d) Young’s modulus

The natural frequencies for the paired modes for each of the updating trials discussed in this paper are given for the
complete and reduced datasets in Fig. 5.18. From this plot it is clear that the mode pairing for the complete dataset (blue
points) is better than for the reduced dataset (red points). This is not surprising, since the reduced dataset gives an increase
in instances of aliased modes. Note that a restriction was placed on the frequency difference allowed in mode pairing for
the reduced dataset (no greater than 50 %), while no restriction on frequency was necessary for the complete dataset. The
lower numbers of paired modes for the reduced dataset, and higher numbers of spurious pairings strongly supports the use of
SLDV in this application. The small number of poor mode shape pairings observed with the complete dataset may have been
improved by locating the SLDV in a different position relative to the test-structure such that multiple faces of component B
could be observed.
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Fig. 5.17 UB100X model after update using global subsets, then local parameters on the reduced test geometry. Change in: (a, b) density; (c, d)
Young’s modulus

0
0

50

100

150

200

250

50 100 150
FEA

E
M

A

200 250

Before Updating (20 Pairs).

Before Updating (Reduced EMA, 16 Pairs)

Local Updating (Reduced EMA, 18 Pairs)
Subset Updating (Reduced EMA, 18 Pairs)
Subset, Local Updating (Reduced EMA, 6 Pairs)

Local Updating (20 Pairs)
Subset Updating (20 Pairs)

Subset , then Local Updating (16 Pairs)

Fig. 5.18 Frequency-frequency plot for paired mode shapes (MAC� 50 %). No restriction on frequency difference was set for the complete
dataset, whilst a maximum frequency difference of 50 % was set for the reduced dataset to minimise pairing of aliased modes

5.4 Conclusions

In this paper, various means of performing modal testing using SLDVs were discussed, with particular attention to the
challenges encountered in importing measured data into existing modal analysis software packages. A case study of the
application of a hybrid SLDV and accelerometer test geometry was demonstrated, and the correlation with a basic FE
model through to high order modes was shown to be extremely good. The SLDV was shown to be a useful tool for modal
analysis, although the line-of-sight limitation of such a device when trying to characterise the structural dynamics of a three-
dimensional structure must be considered. Development of virtual testing tools to optimise use of SLDV is highly desirable
and would significantly increase the benefit in the use of SLDVs for modal analysis.

Various model updating trials were detailed including use of a reduced number of degrees of freedom. It was shown that
the use of many degrees of freedom increased the number of model and test mode shapes which could be paired, and reduced
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instances of spatial aliasing. The updated model was clearly affected by the change in the number of degrees of freedom,
although the merit in the increased number of measurement locations is difficult to qualify and is likely application-specific.
Interpretation of results from model updating is often difficult, and the model updating process itself will—for better or
worse—converge towards a solution based solely on the parameters, responses and metric for correlation defined by the
operator. However, the option to match the response of the finite element model to an experimental measurement at a greater
number of locations as afforded by use of SLDV often appears appealing.
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Chapter 6
Precise Frequency Domain Algorithm of Half Spectrum and FRF

J.M. Liu, W.D. Zhu, M. Ying, S. Shen, and Y.F. Xu

Abstract In operational modal analysis, the half spectrum is needed. Its corresponding time wave is the half part of
correlating function with positive time delay. In classic modal analysis, the frequency response function (FRF) is needed.
Its corresponding time wave is the unit impulse response function (UIRF). In current commercial modal analysis software,
the frequency domain algorithm is used to compute half spectrum or FRF first. For algorithm of frequency domain based
on FFT, its computation speed is very high, but there are errors caused by the periodic assumption of FFT both for half
spectrum and FRF. For algorithm of time domain, the half part of correlating function with positive time delay or the UIRF
are computed directly with the best preciseness, but the computation speed is slow and unpractical. The precise frequency
domain algorithm put forward here is still based on FFT, with innovation in computing mode. The half spectrum computed
out by the new algorithm, can reach the same precise as the time domain algorithm but the computation speed level is similar
to traditional frequency domain algorithm. To compute the FRF, let the length of output wave be two times of input data wave,
the length of unit impulse wave corresponding to FRF is the same as the input data wave. By this way, the errors caused
by periodic assumption of FFT can be totally eliminated both for impact exciting and continuous exciting. For continuous
exciting, the initial response is needed to be considered. This consideration can be fulfilled by a few times iteration. The
precise of FRF by new algorithm is very close to time domain algorithm. The computation speed of the new algorithm is
accelerated more than ten times comparing with the algorithm of time domain. A new coherence function definition, which
is suitable for half spectrum, for FRF of the traditional algorithm and new algorithm in frequency domain, as well as for FRF
of algorithm in time domain, is introduced. It can be used to evaluate the preciseness of FRF and half spectrum. For impact
test, if only the data of one impact is available, the value of traditional coherence function is one in all the spectrum lines,
without any physical meaning, but the value of new coherence function will still reflect the ratio of signal to noise in each
spectrum lines.

Keywords Half spectrum • FRF • Algorithm of frequency domain • Coherence function

6.1 Introduction

In OMA operational modal analysis, the half spectrum is needed. Its corresponding time wave is the half part of correlating
function with positive time delay [1]. The tradition algorithm of half spectrum is in frequency domain, for below steps:

(1) Computing cross spectrum.
(2) By IFFT transforming the cross spectrum to obtain the correlating function coefficients.
(3) Throw away the part of negative time delay, FFT transform the part with positive time delay to obtain the half spectrum.
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Fig. 6.1 Exciting and response
wave

Fig. 6.2 The response wave is
been moved ahead m point

When input wave X(r) is known (r D 0, 1, 2, : : : , L� 1) and output wave Y(r) is also known, r D 0, 1, 2, : : : , LCN � 1,
the correlating function with positive time delay is defined as

Rxy.m/ D 1

L

L�1X

rD0
X.r/Y .r Cm/ (6.1)

mD 0, 1, 2, : : : , N � 1
Here the point number of output wave must be greater than input wave with N points, to ensure the result of computation

is correct.
For one time averaging, LDN.
With algorithm in frequency domain, FFT point number is N, the length of input wave and output wave both are N points,

correlating function coefficients of mD�N/2, : : : ,� 2,� 1, 0, 1, 2, : : : , N/2� 1 can be computed out. Only the points of
positive time delay, from 0 to N/2, that is mD 0, 1, 2, : : : , N/2� 1 are used to obtain half spectrum. Among N/2 points of
coefficients, when r Cm�N, Y(r Cm) is not exist, because of FFT periodic assumption, it is replaced by Y(r Cm�N). In
this way, the error will be produced. The error varies with different m value. When mD 0, there is no error. When mD 1, in
the sum of N products, only one product is incorrect. With m increasing, the number of incorrect products will also increase.

For impact exciting, in traditional algorithm of frequency, the length of input wave is the same as output wave, equals to
FFT points number for each averaging. The length of UIRF also equals to FFT points number. This computation mode does
not in accordance with real condition. If the length of exciting wave is N point, and the length of UIRF is also N point, 2 N
points of response wave will be produced. Thus for each averaging, the reasonable computation mode should be 2 N points
of response wave and N points of impact wave to obtain UIRF of N points.

Here one example is given to show the defect of equal length computation mode. In Fig. 6.1, the above part is exciting
wave of N points, the below part is the response wave of N points. For real structure, the response is always produced after
exciting force. The real structure can be called “cause and outcome” system [2]. For test modal analysis, all the test objects
are “cause and outcome” system. If the response wave is being moved ahead m points, illustrated as Fig. 6.2, the response
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Fig. 6.3 The theoretical
response wave (below part is
after above part)

will produced before exciting force, this kind of system does not exist in real world. By equal length mode with one time
averaging, the FRF and UIRF of Fig. 6.2 can be obtained, the value of coherence function in all spectrum lines are one, no
abnormal signal will be displayed. The impact wave of N points and UIRF of N points will produce response wave of 2 N
points, illustrated as Fig. 6.3. In Fig. 6.3, in above part 0 to 1,023 points of response wave are displayed, in below part 1,024
to 2,047 points of response wave are displayed. In above part, the first m points are all 0. In below part, there are wave in
first m points, which is the same as the first m points of response wave in the Fig. 6.2. It can be proved theoretically that the
UIRF of Fig. 6.2 is the UIRF of Fig. 6.1 moving ahead m points [3]. In the process, the points of negative time are moved
to the end of UIRF because of periodic assumption. In the unequal length mode, the Fig. 6.2 can be found abnormal by the
new coherence function. When losing point error happened because of hardware defect, the phenomena similar to Fig. 6.2
may appear. In traditional equal length mode, this kind error can’t be found.

For continuous exciting, in the traditional equal length mode, the initial response wave is not considered. By changing
computation mode and iteration, the initial response wave can be considered and the preciseness of FRF can be improved
greatly.

6.2 Precise Frequency Domain Algorithm

6.2.1 Half Spectrum

By improving the traditional frequency algorithm, precise half spectrum can be obtained.
(1) Computing averaged cross spectrum first. In each averaging, input data is N points of input wave adding N points 0,

output data is 2 N points of output wave. Averaging times is obtained by total points’ number of data divided by N and minus
1, the FFT number is 2 N. The averaged process can be looked as traditional frequency algorithm, the FFT number is 2 N
and overlap coefficient is 50 %. In each averaging, there are 2 N points of input data and output data, the last N points of
input data are set to zero.

(2) IFFT transforms the averaged cross spectrum, obtain the correlating coefficients.
(3) Throw away the part of negative delayed time, the left coefficients that are the part of positive delayed time, should be

multiplied by two and proceeds N points FFT transform. The precise half spectrum will be obtained.
For each averaging, FFT number is 2N, for X(r), only when r D 0, 1, 2, : : : , N � 1, there is data, the other points’ value

is The correlating coefficient of positive delayed time obtained by above algorithm is:

Rxy.m/ D 1

2N

N�1X

rD0
X.r/Y .r Cm/ (6.2)

mD 0, 1, 2, : : : , N � 1
Because when r D 0, 1, 2, : : : , N � 1, r Cm< 2N, Y(r Cm) exist, thus there is no error in the correlating coefficient of

positive delayed time. Each coefficient should be multiplied by two.
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New algorithm can be looked as traditional algorithm with overlap coefficient 50 %, the back half of input data set
to 0, obtain the correlating coefficient of positive time delay. Each coefficient times two. The result is the same as direct
computation in time domain.

If in traditional algorithm with overlap coefficient 50 %, the first half of input data set to 0, obtain the correlating coefficient
of negative time delay. Each coefficient times two. The result is the same as direct computation in time domain.

To obtain the whole coefficients, two times of computation are needed, the positive time delay and negative time delay
will be computed separately. The preciseness is the same as direct computation in time domain.

In present, there is no definition of coherence function of half spectrum.
With new algorithm, the coherence function can be defined to evaluate the preciseness of half spectrum.
The averaged coefficientRxy.m/ obtained by new algorithm can be look as directly computed out in time domain by total

data, with the best preciseness. For each averaging, the one time averaging coefficient kRxy(m) can be obtained, here k is kth
averaging. The error of one time coefficient is

kexy.m/ D kRxy.m/� Rxy.m/ (6.3)

By these error series, obtain the power spectrum kPe(f ).
Averaged error power spectrum is

Pe.f / D 1

n

nX

kD1
kPe.f / (6.4)

Here n is averaging times.
By FFT transform of Rxy.m/, obtain the power spectrum Pxy(f ), f D i * SF/N, Here iD 0, 1, 2, : : : , N/2, SF is sampling

frequency, the coherence function is defined as


2.f / D Pxy.f /=
�
Pe.f /C Pxy.f /

�
(6.5)

When averaging time is one, for new algorithm, Pe(f )D 0, all the coherence function value is one. For tradition frequency
domain algorithm, Pe(f )¤ 0 even averaging times is one.

6.2.2 Impact Test

For each impact, input data length is N, adding N points 0, let the length be 2 N.
For the response wave, the data length is 2 N, or N points adding N points 0. The second method is suitable for previous

saved data. For the adding N points 0 it is assumed that the response wave is decried to 0. If response wave does not decried
enough in position N, the input and output data need adding negative exponent window at the same time, after parameters
identification completed, correct the damping ratio [4].

First FRF is computed with traditional method, the FFT number is 2 N. When FRF obtained, IFFT transform of FRF,
obtain the UIRF of 2 N points. Throw away the backward N points. Proceeding FFT transform to the forward N points,
obtain the FRF amplitude and phase.

For each impact the exciting signal of N points, convolve with UIRF of N points, the theoretical response wave of 2 N
points can be obtained. The computing process can be accelerated by FFT, that is, the exciting data and UIRF both adding
N points 0, obtain the spectrum of FFT with 2 N points. IFFT of the product of two spectrums will obtain the theoretical
response wave of 2 N points [2]. Here the product of two spectrums is not the same as cross spectrum, in cross spectrum, the
input data spectrum will be conjugated.

When response wave have added 0, comparing the forward N points with the theoretical response wave, obtain the error
series of N points. When response wave have not added 0, comparing the 2 N points with the theoretical response wave,
obtain the error series of 2 N points. To measured response wave and error series with FFT transform of N point, obtain
averaged power spectrum of Py(f ) and error power spectrum Pe(f ), f D i * SF/N, here iD 0, 1, 2, : : : , N/2, SF is sampling
frequency, the coherence function is defined as


2.f / D Py.f /=
�
Pe.f /C Py.f /

�
(6.6)

For one time averaging, the coherence function value is still meaningful.
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The preciseness of FRF evaluation can be reflected by fitting coefficient

fit D yrms=

q

e2rms C y2rms (6.7)

The greater is the value, the better.
Where yrms and erms are roots of mean square of measured response wave and error series separately.
The error coefficient is defined as

error D erms=yrms (6.8)

It can also be used to reflect the FRF evaluation preciseness, the smaller is the value, the better.
The relationship of fitting coefficient with error coefficient is

fit D 1p
1C error2

(6.9)

The relationship of fitting index with coherence function is

fit D
r
X

Py.f /=

X

Py.f /=
2.f /
�

(6.10)

Where
P

means the sum of all the spectrum lines. If
P

means only part of the spectrum lines, the fitting coefficient of
part frequency domain district can be obtained by Eq. 6.10.

6.2.3 Continuous Exciting

For continuous exciting of MIMO test, the least square deconvolution algorithm of time domain, to obtain the UIRF first,
is best in preciseness [3]. But the computation time is very long. The iteration algorithm of time domain is put forward in
our previous paper [3] which is suitable for short data. The iteration algorithm of frequency domain is put forward in our
previous paper [5] which is suitable for long data. These two algorithms can reach or very close to the best preciseness,
but the computation time is greatly shortened by hundred or thousand times comparing to the least square deconvolution
algorithm of time domain.

6.3 Examples

6.3.1 Precise Half Spectrum and Coherence Function

Figures 6.4 and 6.5 is one measured point half spectrum of one bridge modal test, Shanghai Lufu Arch Bridge [6]. The
half spectrum is computed out by the precise frequency domain algorithm. The measured point and reference point both
measures the horizontal vibration. The sampling frequency is 10 Hz. In Fig. 6.4, averaged times is four, the data length for
analysis is 5*1,024D 5,120 points, sampling time is 512 s. In Fig. 6.5, averaged times is eight, the data length for analysis
is 9*1,024D 9,216 points, sampling time is 922 s. There are three curves in each figure, above is amplitude of half spectrum
with log style, middle is the phase of half spectrum, bellow is the coherence function. The difference of three curves in
Figs. 6.4 and 6.5 is small.

The coherence function is computed according to Eq. 6.5. It is different to the coherence function of traditional cross
power spectrum, is decided only by the cross coefficients of positive delayed time. In Figs. 6.4 and 6.5, the fit coefficient is
calculated with Eq. 6.10.

Figures 6.6 and 6.7 is traditional cross power spectrum of same measured point and reference point with averaged times
four and eight separately.
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6.3.2 Impact Test and Coherence Function

An educational beam with both ends pinned connection, is illustrated as Fig. 6.8, to obtain the FRF between point A and
point B with impact test method.
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Fig. 6.9 FRF and new coherence function with one time averaging

Exciting point is A, for harmer to knock in vertical direction. Accelerometer is fixed in point B for measuring vertical
direction. Five times impacting are recorded. The sampling frequency is 12,800 Hz, FFT point number is 4,096. The
analyzing frequency range is 0 to 1,250 Hz. The analysis result is illustrated as Figs. 6.9, 6.10, 6.11, 6.12, and 6.13 with
different averaging times. In the figure, the above part is FRF amplitude with log style, middle part is FRF phase, below part
is coherence function and new coherence function (green color).

With new coherence function definition, only one impact will obtain the stable coherence function, so the impact times
can be greatly reduced. Furthermore, the new coherence function has clearer engineering meaning than tradition coherence
function. Let’s assume in one test, the sampling length is too short in one impact, which will cause serious leakage in FRF
calculation. But in the traditional coherence function, the serious leakage can’t be reflected. With new coherence function,
only by one time averaging, the serious leakage will be reflected.

The traditional coherence function can’t reflect the leakage caused by too short of sampling length of one impact, the
leakage is reduced by adding negative exponent window, the exponent window index is decided according to analyzer’s
experience.
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Fig. 6.11 FRF and new coherence function with three times averaging
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Fig. 6.12 FRF and new coherence function with four times averaging

6.4 Conclusions

The half spectrum obtained by the new algorithm of frequency domain is best in preciseness, which is the same as computed
directly by time domain, with the computation speed of traditional frequency domain algorithm. The coherence function can
be used to evaluate the ratio of signal to noise at different spectrum lines.

For impact test, the computation mode introduced here can avoid the error caused by the periodic assumption. Even for
one time averaging the coherence function can still reflect the ratio of signal to noise and leakage at different spectrum lines.
The traditional coherence function can’t reflect the leakage even that it is serious. With the new coherence function, the
impact test averaging times can reduced to one, the test time can be greatly reduced. The coherence function is often used
as weighting coefficients of modal parameters identification algorithm in frequency domain, the new coherence function has
clearer engineering meaning than tradition coherence function, by using new coherence function as weighting coefficients,
the modal parameters identification algorithm will also be improved.

For continuous exciting of MIMO test, the iteration algorithm of time domain and frequency domain can be used to
consider the initial response influence. The iteration algorithm of time domain is suitable for short data. The iteration
algorithm of frequency domain is suitable for long data. The coherence function definition is similar to impact test.

For both impact test and continuous exciting, the new coherence function can be used to evolve the quantified FRF total
preciseness.
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Fig. 6.13 FRF and new coherence function with five times averaging
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Chapter 7
Identification of a Time-Varying Beam Using Hilbert
Vibration Decomposition

M. Bertha and J.C. Golinval

Abstract The present work is concerned by modal identification of time-varying systems. For this purpose, a method based
on instantaneous frequency identification and synchronous demodulation is used to extract modal components from recorded
signals. The proposed method of iterated sifting process is based on the Hilbert Vibration Decomposition (HVD) technique
which is used to extract the instantaneous dominant vibrating component at each iteration. A source separation preprocessing
step is introduced to treat multiple degree-of-freedom systems in an optimal way. Sources are used as reference signals to
get a single instantaneous frequency of each mode for the demodulation on all the channels. The algorithm is presented and
is applied to numerical simulation of a randomly excited time-varying structure for illustration purpose. The investigated
structure is made up of a beam on which a non-negligible mass is traveling. The variable location of the mass results in
changes in modal parameters.

Keywords Modal identification • Time-varying systems • Instantaneous modal parameters • Hilbert transform • Signal
decomposition

7.1 Introduction

During the last decade, a lot of new processing techniques appeared in the field of modal identification of time-varying
systems. The Hilbert-Huang transform (HHT) introduced by Huang et al. in [1] is a powerful and highly adaptive technique
able to deal with non-stationary signals. First, the use of the Empirical Mode Decomposition (EMD) method results in a set
of so-called Intrinsic Mode Functions (IMFs) which are ideally mono-component signals. Then the instantaneous frequency
and instantaneous amplitude of each IMF are obtained by use of the Hilbert transform.

More recently, the Hilbert Vibration Method (HVD) proposed by Feldman [2] was introduced with the ambition of being
more accurate than the EMD method. In the following, the HVD method will serve as a basis for the developments reported
in the present paper.

The paper is organized as follows. First the main ideas of the EMD and HVD methods are recalled and their practical
limitations are highlighted. Then a description of the proposed method is presented along with its application on synthetic
responses of a randomly excited time-varying system. The system considered here consists in a beam simply supported at its
both ends on which a non-negligible mass is moving. Finally, a conclusion and some words on future work close the paper.

7.2 The Hilbert-Huang Transform as a Tool to Compute Instantaneous
Properties of Multi-Component Signals

The Hilbert-Huang transform works in two steps: (1) the signal is decomposed in IMFs using the EMD and (2) the
instantaneous properties of the IMFs are extracted using the Hilbert transform.
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7.2.1 The Empirical Mode Decomposition as Sifting Process

The main idea of the HHT method is to sift the processed signal by successively removing slow oscillations from the signal
using the EMD method. Practically, the EMD method works by first identifying all the minima and maxima in the signal.
With the minima and maxima, the lower and upper envelopes of the signal are calculated by use of cubic-spline fitting,
respectively. The mean of the lower and upper envelopes is a slowly oscillating function which is removed from the original
signal. The process is then repeated until the remaining signal has the following two properties [1]:

• the difference between the number of extrema and zero crossing is maximum 1,
• the local mean value of the lower and upper envelope of the signal is zero.

When these two conditions are fulfilled, the component is considered as an IMF and is extracted from the original signal.
The process is iterated until it is not possible anymore to extract an IMF.

Once all useful IMFs are extracted, their instantaneous characteristics are calculated by use of the Hilbert transform.

7.2.2 The Hilbert Transform and the Analytic Signal for the Extraction
of Instantaneous Characteristics

Let x.t/ be a real-valued signal. Its Hilbert transform H .x/ is defined as the convolution product between the signal and
h.t/ D 1

� t
:

y.t/ D H .x/ D 1

�
p:v:

Z C1

�1
x.�/

t � � d� (7.1)

The Cauchy principal value of the integral has to be taken to solve this improper integral because of the singularity occurring
for � D t .

A (non-exhaustive) list of properties of the Hilbert transform are given hereafter:

Inverse transform: H .H .x// D �x which implies that H�1 D �H;

Differentiation: the (kth-)derivative of the Hilbert transform is the Hilbert transform of the (kth-)derivative �k
�tk Œd .x/�

D H

 �kx

�tk
�

;

The Bedrosian’s theorem [3]: the Bedrosian’s theorem states that if a signal x.t/ is a product of two components; one
slowly and the other fast varying, then the Hilbert transform of x.t/ is equal to the slowly varying function times the
Hilbert transform of the fast varying one. So, if f .t/ and g.t/ represent the slowly and fast varying functions and x.t/ D
f .t/ g.t/, then H .x.t// D f .t/H .g.t//. The separation condition between slow and fast parts is that the Fourier spectra
of f and g must not overlap.

By adding to the real-valued signal its Hilbert transform multiplied by the imaginary units, an analytic signal z.t/
is formed:

z.t/ D x.t/C iH .x.t// : (7.2)

In this form, the signal can now be seen as a rotating phasor in the complex plane characterized at each time instant by an
amplitude A.t/ and a phase angle �.t/:

z.t/ D x.t/C iH .x.t//

D A.t/ ei �.t/: (7.3)

The instantaneous amplitude and phase are extracted directly from the analytic signal by the amplitude and argument
calculations of z:

A.t/ D jz.t/jI (7.4)

�.t/ D †z.t/I (7.5)



7 Identification of a Time-Varying Beam Using Hilbert Vibration Decomposition 73

and the instantaneous angular frequency of the signal is then obtained by time differentiation of the phase angle

!.t/ D d�.t/

dt
(7.6)

In the case of a multi-component signal, the instantaneous amplitude and frequency obtained are those of the resultant
signal (vector summation of each phasor). In that way, the amplitude of the signal is always lower or equal than the sum of the
amplitudes of each component (triangle inequality) and the instantaneous frequency may be negative. This latter point occurs
when the resultant phasor rotates backwards in the complex plane. Such a negative frequency has no physical meaning.

The HVD method presented in the next section uses the analytic form of the signal to split it into its mono-
component parts.

7.3 The Hilbert Vibration Decomposition Method

The Hilbert Vibration Decomposition method presented by M. Feldman [2] is an iterative algorithm that exploits the analytic
form to extract the dominant vibration component from a signal. The method is based on the fact that if we observe the
phase (or frequency) of the analytic form of a multi-component signal, its global evolution is driven by the dominant mono-
component (the one with the highest amplitude) of the signal. The other components appear as oscillations around the phase
(frequency) of the dominant mode. It can be shown [2] that the latter oscillation parts vanishes when integrated over the
time. To isolate the dominant mode component present in the signal the phase (or frequency) is low-pass filtered. Finally,
the component corresponding to the dominant mode is extracted from the signal using a synchronous demodulation based
on the phase (or frequency) of the dominant mode. Once the dominant component is extracted, the whole process is repeated
on the remaining components.

7.4 Drawbacks of the HHT and HVD Methods

For some multi-component signals the EMD and HVD methods may fail to sift properly all their constitutive mono-
component signals. As recalled in Sect. 7.2.1 the EMD method extracts at each step the mono-component with the fastest
oscillations. In Sect. 7.3 we saw that the HVD method extracts components from highest to lowest amplitudes. This implies
that if the constitutive mono-component signals cross themselves in frequency or if the component with the highest frequency
vanishes, the EMD method will not be able anymore to follow this component and will jump to the component having the
new highest frequency. Similarly, if components cross themselves in amplitude the HVD method will always extract the
component with the highest instantaneous amplitude.

To illustrate this problem, let us consider a simple two degree-of-freedom system which is made time-variant by
introducing a time-dependent stiffness. The system is shown in Fig. 7.1 and its properties are listed hereafter:
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Fig. 7.2 Time responses and extracted instantaneous frequencies and components. First row: time response of each DoF. Second row: identified
instantaneous frequencies for each DoF. Third and fourth rows: components corresponding to the identified instantaneous frequencies

• m1 D 3 kg;
• m2 D 1 kg;
• k1 D 20;000 N/m;
• k2 D 25;000& 5;000 N/m (linear decrease in the time span);
• c1 D 3 Ns/m.

The system is submitted to an impulse at DoF x2 and the response of the whole system is simulated during 15 s. A standard
Newmark integration scheme was used for the time integration in which the stiffness matrix is updated at each time step to
take into account the dependence of k2 with respect to the time.

Applying the standard HVD method on the two channels separately leads to some undesirable behavior. Each time one
intrinsic component becomes dominant in the signal, the method follows it and a mode switching phenomenon occurs during
the extraction process. Moreover, as it can be seen in Fig. 7.2, the mode switching does not occur at the same time on each
channel, which makes the correction of these switches more difficult. When the frequency curve jumps from one mode to
the other, the corresponding demodulated component also follows this jump.
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7.5 Modified Hilbert Vibration Decomposition Method

7.5.1 Addition of a Source Separation Step to Avoid Mode Switching

In signal processing, source separation methods are used to recover initial signals, the sources, from a set of recorded
signals which are mixtures of the initial sources. A large variety of methods exist trying to separate them as much as
possible based on decorrelation, independence or other probabilistic properties. One can cite, among others, the Principal
Component Analysis (PCA) (also known as Proper Orthogonal Decomposition (POD) or Karhunen-Loève transform (KLT)),
the Smooth Orthogonal Decomposition (SOD), the Independent Component Analysis (ICA) and the Second-Order Blind
Source Identification (SOBI). Some of these techniques have been already used in the field of structural dynamics as for
example POD [4], SOD [5] and SOBI [6].

In the present work, the application of a source separation method will help to overcome the previously cited limitations
of the HVD method. When several responses recorded on the structure under test are available, the source separation will
highlight a particular mode in each identified source. Then, applying the standard steps of the HVD method on the sources
rather than directly on the recorded signals will reduce the risk of frequency or amplitude crossing between different modes.

As an example, the identification of the system described in Sect. 7.4 was performed again using separated sources (given
by the SOD method in the present case) as references for the instantaneous phase identification. As it is observed in Fig. 7.3,
this procedure leads to well decomposed components. Furthermore, while in the previous identification we get four frequency
curves (two instantaneous frequencies for each channel), we have this time only two instantaneous frequencies for the whole
system, one frequency curve per mode.
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Fig. 7.3 Source separation step introduced in the algorithm. First row: separated sources. Second row: identified instantaneous frequency for each
source. Third and fourth rows: components corresponding to the identified instantaneous frequencies for each DoF
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7.5.2 Instantaneous Phase/Frequency and Mode Deflection Shapes Calculation

Once the source separation method has generated a set of different sources, the Hilbert transform is applied on the first one.
The unwrapped phase of the dominant source is computed taking the phase angle of the analytic signal and removing all the
2 � radians jumps. At this stage the phase curve contains the phase evolution of the dominant mode plus some deviations
due to other modes and noise. In the original HVD method, the next steps would be to differentiate the phase to get the
instantaneous frequency and low-pass it. In the present approach, we choose to work directly on the phase signal so that the
low-pass filter step becomes a trend detection step. For that purpose, several techniques exist such as the Hodrick-Prescott
filter [7].

To make a long story short, let us recall that the Hodrick-Prescott filter models the signal (the unwrapped phase �.t/ in
our case) at the summation of a trend � , oscillatory components c and noise �:

�.t/ D �.t/C c.t/C �.t/ (7.7)

The goal of the filter is to find the optimal trend � that minimizes the following objective function:

min
�

"
TX

tD1
.�t � �t /2 C �

T�1X

tD2
..�tC1 � �t / � .�t � �t�1//2

#

; (7.8)

� being a smoothing parameter. This objective function is a trade-off between two parts. The first term of (7.8) penalizes
large variations of the signal around the trend while the second term is a smoothing function penalizing too fast variations of
the trend.

Finally a Vold-Kalman filter (VKF) [8] is used instead of synchronous demodulation for its ability of extracting
simultaneously a set of mono-components. The Vold-Kalman filter is a technique able to recover from a signal the
component(s) xk.t/ corresponding to the phase(s) �k.t/. The model used for the signal under interest is a summation of
components and noise

x.t/ D
X

k

ak.t/ e
i �k.t/

„ ƒ‚ …
xk.t/

C �.t/ (7.9)

in which ak.t/ is the complex amplitude of the kth component xk.t/ and �.t/ is the noise in the signal.
The way to recover the components xk.t/ is based on the minimization of two equations. First the data equation

x.t/ �
X

k

ak.t/ e
i �k.t/ D ı.t/ (7.10)

in which the error ı.t/ should be minimal. The second one is the structural equation ensuring the smoothness of the solution
using the difference operator rpC1 applied on ak.t/

rpC1ak.t/ D "k.t/; (7.11)

where "k.t/ should also be minimized.
All the complex amplitudes ak.t/ are computed in a least square sense considering these two set of equations. Now

making a parallelism between Eq. (7.9) and modal expansion, we can equate the complex amplitude of the component k
from (7.9) to the unscaled time-varying component in the kth mode of vibration.

Vold � Kalmanfilter W x.t/ DP
k ak.t/ e

i �k.t/

l l
Modalexpansion W x.t/ DP

k Vk.t/ �k.t/

The full algorithm of the method is illustrated in a block diagram in Fig. 7.4.
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x(t)

Source separation
x(t) → s(t)

Analytic signal
z(t) = s1(t) + iH(s1(t))

Phase extraction
φ(t) = Ðz(t)

Trend extraction
φ(t) → φ(k)(t)

VKF
x(k)(t), Vk(t)

Sifting process
x(t) := x(t) − x(k)(t)

Fig. 7.4 Flow chart of the
method

7.6 Numerical Application

The numerical application considered in this study consists of a beam on which a moving mass is traveling. The beam is
2 m-long and is simply supported at both ends; two random external force excitations are applied in the vertical and lateral
directions at a quarter of the total length of the beam. Five equally spaced measurement points are selected to record the time
response of the beam in the vertical and lateral directions. A mass of 3 kg travels the whole beam in 60 s during which the
external forces are applied. The response of the system is computed using the LMS-Samcef Mecano [9] software in which
a slider element is used to make the connection between the beam and the lumped mass. The measured time responses are
sampled at a rate of 1,000 Hz and to better simulate a real measurement process, a normally distributed noise is added on
each signal with a signal-to-noise ratio of 1 %. The simulated system and the measurement set-up are illustrated in Fig. 7.5.
The properties of the system are the following:

• Beam length: l D 2 m
• Beam cross section 80 mm (width) � 20 mm (height)
• Density: � D 2;700 kg/m3

• Young’s modulus: E D 70;000MPa
• Poisson’s ration: 0.33
• Moving mass: 3 kg
• Pinned connections: x.0/ D y.0/ D z.0/ D x.l/ D y.l/ D z.l/ D 0

The eigenfrequencies of the beam subsystem are listed in Table 7.1 with their corresponding mode-shapes.
Using cross correlation between time signals, it can be verified that the responses in the lateral and vertical directions

are completely separated, so that the two sets of measurements can be treated separately. In Fig. 7.6 wavelet spectra of the
response of the first node in both lateral Fig. 7.6a and vertical Fig. 7.6b directions are shown. In this figure, the white dashed
lines correspond to the natural frequencies of the beam subsystem (when the mass is located on one support, before beginning
its motion). It can be observed that, for a given mode, the natural frequency decreases as the mass is moving and comes back
to its initial value every time the mass passes upon a vibration node. This is due to the fact that the additional inertia force
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Fig. 7.5 Beam travelled by the
moving mass

Table 7.1 Modal parameters of
the simply supported beam only
(LTI system)

Mode Nbr. Frequency (Hz) Mode shape

Mode 1 11.54 First vertical bending
Mode 2 46.05 First lateral bending
Mode 3 46.15 Second vertical bending
Mode 4 103.74 Third vertical bending
Mode 5 182.72 Second lateral bending
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Fig. 7.6 Wavelet spectra of two degrees of freedom. The time varying behaviour of the structure is clearly visible. (a) Node 1—Lateral direction.
(b) Node 1—Vertical direction

induced by the moving mass does not produce any work on that mode at this time. Conversely, when the mass is located at
an anti-node of vibration for a particular mode, the inertia effect is maximum and produces the maximum decay in frequency
for that mode.

7.6.1 Identification of Instantaneous Frequencies

The algorithm proposed in Fig. 7.4 is now applied on each set of recorded signals. Based on the time-frequency plots
Fig. 7.6a,b it is chosen to extract two modes from the set of lateral measurements and three modes from the vertical ones.

The evolution of the five identified instantaneous frequencies are shown using white dashed curves in Fig. 7.7a,b for the
lateral and vertical modes respectively. Wavelet spectra of node 1 are used in the background of the plots and it can be seen
that the identified instantaneous frequencies match very well the highest amplitude in the spectra.

7.6.2 Component Extraction and Calculation of Mode Deflection Shapes

Once that the instantaneous eigenfrequencies are well identified, the next step is to extract the intrinsic components
corresponding to each frequency in all the channels. This is done by the use of the Vold-Kalman filter and results in a set of
mono-components and complex amplitudes. Referring to (7.9), these complex amplitudes are used as unscaled instantaneous
mode-shapes.
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Fig. 7.7 Identified instantaneous frequencies. (Numbers on the right of each time-frequency plot indicates the sequence of the modes extraction.)
(a) Instantaneous frequencies of lateral bending modes. (b) Instantaneous frequencies of vertical bending modes

For seek of illustration, the three first vertical bending modes obtained at three different times are given in Fig. 7.8 along
with the mode-shapes of the beam subsystem. Note that the lateral bending modes show the same behavior but are not
reported here. In the first row of Fig. 7.8, the considered time is 15 s. At this time, the mass is located at a quarter of the
length of the beam, which corresponds to an anti-node of vibration for the second mode. As seen in Fig. 7.8b, the second
mode is highly perturbed by the moving mass.

In Fig. 7.8f,h, the deformed shapes corresponding to modes 3 and 2 at 20 and 30 s respectively are shown. In both
configurations, the mass is located at a node of vibration for the considered mode and the instantaneous mode-shape is
similar to the corresponding mode-shape of the beam subsystem.

Finally, Fig. 7.8a,d,g reveal that the first bending mode is not very sensitive to the presence of the moving mass.
From the set of identified instantaneous mode-shapes, it is possible to perform a correlation with the mode-shapes of the

beam subsystem using the classical modal assurance criterion (MAC). As the instantaneous modes are identified at each
time step, the time dimension has to be taken into account. So for each time step, the MAC matrix between the identified
mode-shapes and the mode-shapes from the finite element analysis (FEA) of the beam subsystem is reshaped in a column
vector. In Fig. 7.9, the instantaneous MAC values are shown between identified bending modes in the lateral Fig. 7.9a and
vertical Fig. 7.9b directions respectively.

The previously observed perturbations of the mode-shapes due to the presence of the moving mass at vibration nodes or
anti-nodes are also visible in Fig. 7.9a,b. As for the identified instantaneous frequencies, the time-varying MAC values drop
periodically when the mass is passing on an antinode of vibration and come back close to unity when the mass is passing on
a node of vibration.

7.7 Conclusion

In this paper, two well known techniques (the HHT and the HVD methods) used for non-stationary signal decomposition
were considered and their limitations in the case of crossing frequencies or amplitudes of intrinsic components were
highlighted. As these methods work on single signals, it was shown that, in the case of a multiple degree-of-freedom system,
applying them separately on each channel can lead to non-unique frequency curves and consequently to non-corresponding
demodulated components on all the channels. To alleviate this problem, a source separation technique was introduced into
the algorithm of the original HVD method. It was shown that both limitations were removed as a single frequency curve
was calculated for each mode. Thanks to the better estimation of the instantaneous frequencies, mono-components and
instantaneous mode-shapes were calculated.
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Fig. 7.8 Plots of the vertical bending mode-shapes at three times: 15, 20 and 30 s. The mode-shapes of the beam subsystem are plotted in black
and the instantaneous mode-shapes of the time-varying system in color. The blue dot shows the location of the mass for the three considered times.
(a) Mode 1—t D 15 s. (b) Mode 2—t D 15 s. (c) Mode 3—t D 15 s. (d) Mode 1—t D 20 s. (e) Mode 2—t D 20 s. (f) Mode 3—t D 20 s.
(g) Mode 1—t D 30 s. (h) Mode 2—t D 30 s. (i) Mode 3—t D 30 s
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Fig. 7.9 Modified MAC matrix to take the time variability into account. (a) Lateral bending modes. (b) Vertical bending modes
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Chapter 8
Recovery of Operational Deflection Shapes from Noise-Corrupted
Measurement Data from CSLDV: Comparison Between Polynomial
and Mode Filtering Approaches

P. Castellini, P. Chiariotti, E.P. Tomasini, M. Martarelli, D. Di Maio, B. Weekes, and D.J. Ewins

Abstract Continuous Scanning LDV measurement methods allow estimates to be made of high spatial density vibration
deflection shapes (ODSs) in very short testing times. The correct reconstruction of the ODS depends on the quality of the
acquired data. Speckle and other types of noise, usually resulting from surface treatment of the specimen can be detrimental
in this recovery process.

This paper presents a comparison between two alternative methods for recovering ODSs from CSLDV data. The well-
known method is based on the fact that the amplitude modulated response can be processed by calculating the peak
amplitudes and phases of the spectral sidebands and, eventually, the deflection shapes can be calculated by conversion
of these peak amplitudes into polynomial coefficients. The second method exploits the idea that, if the mode shapes of the
structure under test are known a priori, e.g. from a numerical model or from an analytical formulation, it is possible to settle
a procedure that searches for similarities between those known mode shapes (the candidate mode shapes) and ODSs that
actually modulate the CSLDV signal. This procedure can be considered a pattern matching technique that is able to identify
the resonance frequency related to each ODS and the mode shapes that better match with ODSs excited making it possible
to filter out the uncorrelated noise.

Both methods have been applied to data acquired from measurements on the tailcone of a Lynx helicopter, which contained
levels of noise disrupting the correct peak amplitudes data processing. Comparison with step-scan results was done in order
to have a reference technique and to understand how optical noise issues could affect the measurement.

Keywords CSLDV • Speckle noise • Mode matching techniques • Tailcone helicopter vibration • Experimental modal
analysis

8.1 Introduction

This paper presents a research work focussed on Continuous Scanning LDV measurement methods applied to a tail cone
of a helicopter. The initial objective was to be able to reconstruct from a single time record acquired by using straight
line continuous scan method several Operational Deflection Shapes (ODSs). It was demonstrated that continuous scanning
technology is capable of acquiring information of more than one ODS inside a single time record and therefore cancelling the
need of designing a grid of measurement points [1]. The application of this technology gave promising results on a simple
cantilever specimen but when applied to a real test structure then it was soon evident the level of SNR of the LDV was
causing several problems for the post-processing of the acquired time data. The test structure available in Bristol University,
and presented in this paper, is a Lynx helicopter which has got a military matt coating. That was cause of poor signal quality
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for the LDV and, in fact, step scanning measurement method had to be performed by taping a grid of measurement points over
the tail cone of the helicopter. The reconstruction of ODSs from CSLDV multi-tonal approach were not that bad for the first
few modes but quite poor for the other selected for this experimental exercise. Based on the assumption that response mode
are measured but information calculated from some sidebands corrupt the ODS reconstruction a different post-processing
approach is adopted and presented in this paper.

CSLDV data processing methods are based on targeted FFT for the recovering of sideband spectra related to ODSs
modulating the LDV output. However the method requires to operate with really good quality measurement data which
can be compensated only by the experience of the experimentalist who recognises the sideband spectra from the noise.
However, in presence of low SNR the typical sideband spectra are merged into the noise floor and therefore mode shapes
can be hardly recovered. To overcome this problem, when mode shapes are known from a priori knowledge, for instance
from a numerical/analytical model, those mode shapes can be taken as candidate mode shapes and a pattern matching-like
procedure applied to estimate the resonance frequencies of the structure under test. The procedure searches for similarities
between the candidate mode shapes and the ODS modulating the time history measured by the CSLDV technique. A time
domain approach for the recovery of the resonance frequencies of a beam has been described in [2]. In that work only
simulated measurement data have been taken into consideration. However, unlike the time domain approach the extraction
of the mode shapes from CSLDV data can be performed in frequency domain. In that case the pattern matching is not based
on actual mode shapes but on sideband spectra. A detailed description of the algorithm is given in [3]. In this paper the
application of this technique to a complex test case is shown and the results obtained compared with the ones achieved with
the conventional CSLDV method.

8.2 Measurement of ODSs of LINX Tail Cone Using CSLDV

An experimental attempt on a real component, by using the presented measurement approach, is applied to a tail cone of
a helicopter, as shown in Fig. 8.1. The helicopter is a LYNX model which is stored in the dynamic laboratory of BLADE
(University of Bristol) and it used for several vibration experiments. The aim of this section is to attempt the use of continuous
scanning and multi-tonal excitation waveforms to aircraft structures like the LYNX.

8.2.1 Step Scanning Method

The tail cone was tested so as to obtain the mode shapes and natural frequencies. These could be used for generating
the multi-tonal excitation waveforms for the continuous scanning method and for comparing the measured ODS at the

Fig. 8.1 Tail cone of LINX
helicopter and measurement
setup
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Fig. 8.2 Example of FRF measured from the Lynx on a reflective tape

Table 8.1 Natural frequencies
and loss factor measured from
tail cone (step scanning method)

Mode-2 Mode-3 Mode-4 Mode-5 Mode-6 Mode-7 Mode-8

Natural Frequency [Hz] 14.64 18.79 26.18 38.95 41.84 45.76 58.83
Loss factor [%] 2.5 0.9 1.9 3.2 3.5 3.8 4.8

resonances. Before proceeding with the measurements, the tail cone was marked using reflective tapes, white square patches,
as it can be seen in Fig. 8.1. An electromagnetic shaker was attached, opposite the scanned area, by the gear box shown by
a blue arrow in Fig. 8.1. That position was merely chosen to excite the lateral modes of the tail cone and this paper is not
aiming to identify pure modes of the tail cone. The helicopter was supported using inner tyre tubes for achieving “free-free”
supporting conditions.

This procedure was needed in order to improve the LDV signal quality because of the matt green paint. A broadband
excitation, using chirp waveform, was produced in a frequency bandwidth of 500 Hz and within which several modes were
measured, as shown in Fig. 8.2. The first order modes were selected after modal analysis, as reported in Table 8.1, and mode
shapes are reported in Fig. 8.3.

8.2.2 Investigation of Stepped Scan and Continuous Scan Signals

This section reports some insights gathered from the LDV output time signals when it was used as either as stepped or
continuous scanning mode. In order to better-understand how the velocity signal output from the velocity decoder varies
when the laser-spot is stationary or moving on a test surface, an illustrative qualitative study is now given. The tested SLDV
system was a Polytec PSV-300 SLDV, trained upon the Lynx tail as previously described. The velocity output and a reference
signal from the force transducer (conditioned by a Kistler 5134) were acquired simultaneously using the Polytec system. The
tail was excited at 39.5 Hz, and all combinations of the following scenarios were tested:

1. With/without retro-reflective tape.
2. Stationary/moving spot.
3. With/without tracking filter.

In Fig. 8.4 200 cycles of the velocity output are plotted directly against the force reference—the signal is qualitatively
evaluated by simply considering deviation from the underlying closed form (an approximately elliptical parametric function
of time). In each of the sub-Figures in Figs. 8.4, 8.5, and 8.6 the laser spot was stationary, with the top sub-Figures taken
on retro-reflective tape and the bottom sub-Figures taken on the bare Lynx paint; the left sub-Figures without the tracking
filter and the right sub-Figures with the tracking filter. For the stationary spot on retro-reflective tape the signal is observed
to be of a high quality. Without the retro-reflective tape there is a slight reduction in signal quality, which worsens with use
of the tracking filter. Spectra for some of the above data are given in Fig. 8.5. It is clear that the noise floor increases for all
frequencies between the stationary spot and moving spot cases. Although this example is merely qualitative, the conclusions
are clear:

1. Signal quality is reduced by ‘on the fly’ measurement.
2. Use of retro-reflective tape is preferred when practicable.
3. Use of the tracking filter should be restricted to already high-quality signals—the tracking filter can increase periodic

noise components.

Figure 8.6 shows 8 s of LDV output signal measured for a scan rate of 0.1 Hz. It is clear to see that the signal quality is
not that great and so some spectral sidebands can be corrupted by noise.
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Fig. 8.3 Mode shapes of the tail cone obtained by modal analysis (step scanning method); tail cone top view

8.2.3 Continuous Scanning LDV Method

In this paragraph the CSLDV method is illustrated. This experiment was designed so as to perform a straight-line scan along
the tail cone, as shown by a red line in Fig. 8.1. Hence, the scanning laser was then used in continuous mode rather than
stepped one. Having obtained the natural frequencies a multi-tonal excitation waveform could be built using the natural
frequencies, as reported in Table 8.2.

A straight-line was scanned along the tail cone across some of the measurement points used for the step scanning
measurements. Four sets of measurements were produced on the tail cone using three different scan rates for scanning
the line and these are reported in Table 8.3.

Seven ODSs, as reported in Fig. 8.7, were reconstructed from the CSLDV time histories; amplitude and measurement
positions were scaled between �1 and 1 to simplify the comparison.

8.2.4 Mode Matching Analysis

Results from processing the CSLDV data measured on the Linx Tail cone using the mode matching approach are discussed
in this paragraph.
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Fig. 8.4 200 cycles of output
from a force transducer on the
exciter versus output from the
laser vibrometer for (top-left)
retro-reflective tape, tracking
filter disabled; (top-right)
retro-reflective tape, tracking
filter enabled; (bottom-left) bare
Lynx surface, tracking filter
disabled; (bottom-right) bare
Lynx surface, tracking filter
enabled

Since a comprehensive numerical model of the Linux tail was not available at the time of the analysis the mode shapes
calculated from the step scanning were taken as reference to build up the set of candidate mode shapes. It was decided to use
only the real part of the selected mode shapes. The set of candidate mode shapes in reported in Fig. 8.2. The plot shows that
some modes are quite similar to each other in terms of shape: this is mainly due to the fact that the tail represents a quite small
section of the whole helicopter structure, and therefore differences in terms of global modes cannot be appreciated. It can
be expected the pattern-matching algorithm will suffer on separating mode shapes characterised by this level of similarity.
Modes from the step scanning were thus curve-fitted in order to extract the corresponding polynomials. In such a way it
is possible to collect a set of kernels that represents the sideband patterns that should be present, if correctly excited and
measured, within the CSLDV spectrum.

Figure 8.8 shows the shape of such kernels (gray stars) superimposed to the CSLDV spectrum (black line) in the frequency
range where each mode is expected. The columns of Fig. 8.8 refer to the different tests performed (from Test#1 to Test#4).
Looking at the CSLDV spectrum for the different tests, it is clear that the signal quality worsens from Test#1 to Test#4. This
is due to several factors, among whom an important role is played by the presence of periodic speckle noise. Moreover the
superposition of sidebands related to adjacent modes contributes to further spoil the CSLDV spectrum.

The mode shapes recovered for each test are reported in Table 8.4 where the thick represents they are correctly found.
The technique demonstrates to be quite robust to the noise, being able to recognize modes also on Test#3 and Test#4,

where the CSLDV spectrum gets more difficult to be analyzed because of noise. On the other hand, the algorithm fails in
recovery modes from V to VII simply because the kernels extracted from the step scanning test do not correspond to the
sideband patterns that are effectively present on the CSLDV spectrum. This can be due to the not perfect matching between
the step scanning acquisition and the continuous scanning one. Indeed, if the scanning line is not perfectly aligned with the
grid of points of the step scanning measurement, the two measurements can highlight different mode shapes. This happens,
for instance, if we consider the role played by torsional modes on the measurements: the line scan cannot distinguish between
bending and torsional modes of the tail, but modes contribute differently depending on the portion of the tail that is scanned.
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Fig. 8.5 Spectra showing unscaled force transducer output (blue) and vibrometer output (red) for: (top) stationary measurement spot, tracking
filter on; (middle) moving measurement spot, tracking filter off; (bottom) moving measurement spot, tracking filter on. In all cases above the
measurement was taken on the painted surface of the Lynx
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Fig. 8.6 LDV output signal measured on the tail cone using Continuous Scan method and multi-tonal excitation waveform

8.3 Conclusions

This paper presents an experimental work performed on the tail cone of the Lynx helicopter which is available at University
of Bristol. Modal testing was performed on the test structure using two measurement methods: stepped and continuous
scanning methods. The paper aimed to demonstrate that (i) continuous scanning can perform measurements on a specimen
without using surface treatments and that (ii) in presence of poor signal quality the deflection shapes can still be recovered
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Table 8.2 Components of multi tonal excitation waveform for performing continuous scanning
measurement

Mode-2 Mode-3 Mode-4 Mode-5 Mode-6 Mode-7 Mode-8
Tone-1 Tone-2 Tone-3 Tone-4 Tone-5 Tone-6 Tone-7

Frequency (Hz) 14.6 18.8 26.2 38.9 41.8 45.7 58.8

Table 8.3 Measurement
parameters for CSLDV method

Scan rate(Hz) Acquisition time(s) Sampling rate(Sample/s) Number of Sample(Sample)

Test-1 0.2 60 1,000 60,000
Test-2 0.1 100 1,000 100,000
Test-3 1.1 31.429 1,000 31,429
Test-4 1.1 20 1,000 20,000
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Fig. 8.7 Comparison between ODSs and mode shapes (CSLDV vs. Stepped)

either by using spectral harmonic coefficients or by mode matching. The measurements were performed using multi-tonal
excitation waveforms so as to demonstrate that continuous scanning can actually record in one single time record information
of many response modes, instead of capturing many FRFs measurements.

The results demonstrated that ODSs can be recovered and some of those can be compared quite well with the mode shapes
obtained from the stepped scan method. It also showed that the mode matching is an important method for recovering ODSs
from LDV time signals which can present high level of noise. Unfortunately, the lack of an FE model of the tail cone of the
helicopter was preventing to use clean mode shapes for comparisons.
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Fig. 8.8 Candidate mode shapes
obtained by the numerical model
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Table 8.4 Recovered (
p

) and
not recovered (�) mode shapes
by mode matching algorithm

Test #1 Test #2 Test #3 Test #4

Mode I
p p � p

Mode II
p p p p

Mode III
p p p p

Mode IV
p p p p

Mode V � � � �
Mode VI � � � �
Mode VII � � � �
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Chapter 9
Exploiting Imaging Techniques to Overcome the Limits of Vibration
Testing in High Excitation Level Conditions

M. Martarelli, P. Castellini, P. Chiariotti, and E.P. Tomasini

Abstract Traditional vibration testing procedures fail when extremely high excitation levels are reached. On the other hands,
large displacements are well suitable to be analysed by imaging techniques based on high-speed cameras.

This work aims at identifying the exploitability of imaging techniques for output-only experimental modal analysis, the
so-called Operational Modal Analysis (OMA). Mode shapes evaluated from image-extracted Frequency Response Functions
(FRFs) have been compared with mode shapes extracted from mobility FRFs measured by Laser Doppler Vibrometry. The
test has been performed on a simple structure showing large displacements but using excitation levels that made it possible
to still consider Laser Doppler Vibrometry the reference technique. Once assessed that, even at limited excitation levels,
results from the two approaches are similar, the validity of the image-based approach in high excitation level tests can
be derived accordingly. Sensitivity to image processing parameters, as spatial resolution and averaging, has been evaluated
quantitatively exploiting the Modal Assurance Criterion (MAC) to correlate the mode shapes from the image-based approach
with those extracted exploiting Laser Doppler Vibrometry.

Keywords Vision system • Scanning laser doppler vibrometry • Operational modal analysis • High displacement
measurement • Image processing

9.1 Introduction

With the increasing interest on vibration monitoring and structural behaviour characterisation of large and heavy structures,
as for instance bridges or wind turbines, conventional vibration testing techniques have to deal with operational high
displacements which can saturate the sensor measurement range. Such circumstance can occur also when components work
under extremely high excitation levels, as for instance landing gears, which operates in non-linear conditions. In these
cases, typical instrumentation can range from contact sensors (e.g. accelerometers attached to the structure) to non-contact
measurement systems, as radar [1] or lidar [2].

A valid alternative, which is recently gaining more and more interest for its versatility, is represented by measurements
based on imaging techniques [3–5]. Cameras technology has done lots of progresses within the last years and today’s imaging
measurement systems are characterised by high resolution and accuracy also in dynamic condition. For this reason image
processing-based measurement techniques are gaining importance in diverse application fields, from health care to quality
control, from fluid dynamics to structural dynamics. If considered within the structural vibration field, it should be recalled
that cameras record the displacement of the structure. When dealing with large displacements, especially in the low frequency
range, this is certainly an advantage rather than measuring the vibration velocity/acceleration of the structure under test. The
high resolution standards that have been reached by camera’s developers make the imaging approach close to a full-field
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measurement technique. The negative effects of a too coarse resolution, which can be a possibility when framing a large
structure subjected to large displacements, can be minimized, choosing the correct optics, but not completely avoided. This
probably represents the main drawback of the image-based approach.

However, apart from this, image-based measurement systems present other practical characteristics that make them good
candidates for Operational Modal Analysis (OMA). First of all these techniques are non-invasive and this avoid to struggle in
placing sensors and long cables on the structure. Data Acquisition systems are less expensive as well, since there is no need
to manage several channels. Information gathered from the measurement points are synchronous and, by properly placing
the cameras, different directions of vibration can be assessed. In this scenario, a question that still needs to be discussed is
related to how performances of these systems and the coupled imaging processing strategies affect the final results in OMA.

The performances of an imaging system based on a high-speed camera, when used for OMA on a lightweight beam
subject to large displacement, are compared to those of a Laser Doppler Vibrometry based measurement system. Laser
Doppler Vibrometer (LDV) is considered as the reference technique in this application, even though in conventional OMA
measurements accelerometers are considered the reference sensors, because the structure under test is a lightweight beam,
and it would have been misleading to use accelerometers, mainly because of the mass loading effect.

The main task of the paper is therefore to discuss advantages and limits of an image-based approach in relation to the
vibratory characteristics of the structure and to present an exhaustive analysis of the OMA results in dependence to different
image processing strategies and parameters, e.g. spatial resolution and averaging. The paper is organized as follows. The two
test set-ups (the camera-based one and the LDV one) are described at first in Sect. 2. Data processing is then discussed in
Sect. 3. Results from the two measurement approaches are reported in Sect. 4 where their dependence from different image
processing approaches is discussed.

9.2 Camera-Based and LDV-Based Tests Set-Up

Experiments were performed on a thin steel beam excited along its thickness direction by an electro-dynamic shaker. The
measurement set-up is shown in Fig. 9.1. The steel beam was observed by a Scanning LDV (SLDV) from the top and by a
high-speed camera from the side. Back illumination was used to improve the quality of the image acquired. That illumination
was realised by a halogen lamp and a frosted glass placed in between the lamp and the beam. The camera was aligned in
order to observe the object under test in backlight lighting. This camera set-up makes it possible to observe bending modes
as vertical motion of the beam shadow and torsional modes as variation of the local thickness of the beam shadow.

The acquisition sensor was a 14 bit CMOS sensor of 4.3 Mpixel (2,400� 1,800). The data rate of 2 Gpx/s guaranteed a
frame rate of 480 fps at full frame and 4,000 fps at 1,520� 64 pixels. At this frame rate the CMOS embedded memory of
3 GB made it possible to record a video up to 4 s long. Figure 9.2 reports a sample of the beam installed on the shaker as
seen by the camera point of view. The red box displays the Area of Interest (AoI) that was actually framed and recorded by
the camera.

The reference vibration measurement was performed by a SLDV over a grid of 61� 5 points on the beam top surface, see
Fig. 9.3. The input force was measured by a force sensor PCB Model 208C01 attached to the beam via a stiff push-rod. The
reference FRF data set was acquired on a frequency range of 2 kHz, with a resolution of 1.25 Hz.

Shaker

Cantilever beam

Frosted glass

Halogen
lamp

SLDV

Camera
Fig. 9.1 Dynamic test rig for
both the image acquisition and
the SLDV reference one
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Fig. 9.2 Camera framing on the
steel beam

Fig. 9.3 SLDV measurement
grid

9.3 Image Processing Method

The image sequence recorded by the camera was processed in order to extract the displacement of the beam. Each frame
was analyzed independently. A set of vertical sections of the image were considered across the beam front view framed
by the camera and grey level fluctuations were extracted on each section. In order to evaluate the sensitivity of the modal
analysis results to spatial resolution two data sets have been extracted from the image: one with poor spatial resolution
(61 sections) and the other one with better spatial resolution (1,220 sections). In addition, the data set with better resolution
was exploited to test the sensitivity to spatial averaging. Ten and twenty consecutive sections of the 1,220 sections data set
were averaged together in order to reduce the measurement noise and to attenuate the pixel-lock effect that occurs when an
image edge transits from a pixel line to another one. This effect is due to the digital nature of the CMOS sensor, and it can
be significantly reduced by averaging when the edge line is tilted with respect to the image reference system, allowing rather
accurate sub-pixels interpolation. Since edges can be distinguished as sharp discontinuity of the grey level, they have been
extracted by searching the maximum of the grey level profile first derivative. This process also makes it possible to reach
a sub-pixel resolution. An example of the process on a single section is shown in Fig. 9.4. Square boxes represent found
edges, respectively the upper and the lower ones. This option of extracting the two beam edges was considered with the aim
of averaging the upper and lower profile. The averaging will bring two positive effects on the image processing:

• a further increase of the noise rejection,
• a cancellation of torsional modes.

In fact, when working with back light lighting, the average of the upper and lower edge should give the motion of the
neutral axis of the beam, i.e. to show only bending modes, while the difference between upper and lower edge should be
sensitive to torsional modes. In the presented case, torsional modes should not be excited in the structure, and averaging
upper and lower edge position helps in mitigating eventual torsional modes residues still vibrating.
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Fig. 9.4 Image processing flow-chart

9.4 Analysis of Results

The sensitivity of OMA to the different image processing strategies is presented here. OMA was performed on the image
data considering the spectra referenced to the driving point. For simplicity this transfer function is called hereafter FRF. The
modal analysis algorithm exploited was the Polymax [6]. Results from standard EMA (experimental Modal Analysis) on
SLDV data are considered as the reference data. Comparison with the reference data set was at first performed in terms of
spatially averaged FRFs. Once assessed the compatibility of the two measurement data sets in terms of FRFs, the analysis
was moved to mode shapes.

9.4.1 Sensitivity to Spatial Resolution

Sensitivity to the spatial resolution was considered at first. The FRFs obtained by spatially averaging the FRFs extracted on
each data set are compared in Fig. 9.5, while mode shapes are reported and compared in Fig. 9.6. When looking at FRFs,
it can be noticed that the SNR (Signal to Noise Ratio) of data obtained from the vision system is worse than the SNR that
characterises the SLDV data. The increase in spatial resolution makes the quality of modal data worse, as it is evident from
the mode shapes plotted in Fig. 9.6. This effect is even clearer in high frequency modes.

9.4.2 Sensitivity to Spatial Averaging

The effect of the spatial averaging starting from the set of 1,220 points is reported in Figs. 9.7 and 9.8 respectively in terms
of spatially averaged FRFs and extracted mode shapes. The spatial average increases the SNR as highlighted by both the
FRFs and the mode shapes.

9.4.3 Sensitivity to Edge Effects

The effect of the spatial averaging considering both the upper and lower section of the beam profile in the image is shown in
Figs. 9.9 and 9.10. As expected, the average influences the high frequency modes. This is even clearer on the 8th mode. This
behavior can be justified by the fact that the 8th mode shape is mostly torsional and the averaging process cancels it out.
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Fig. 9.5 FRF sum for the three
different data set: SLDV, image
data sampled with 61 points and
image data sampled with 1,220
points

Mode n.1 Mode n.2 Mode n.3

Mode n.4 Mode n.5 Mode n.6

Mode n.7 Mode n.8

SLDV

61 points

1220 points

Fig. 9.6 Mode shapes for the
three different data set: SLDV,
image data sampled with 61
points and image data sampled
with 1,220 points

The natural frequencies estimated with the different processing strategies are reported in Table 9.1. The maximum
variation is contained within 1.09 Hz: this is a value that can be considered intrinsic in the uncertainty of the modal analysis
algorithms.

A quantitative comparison between mode shapes estimated with the different processing strategies can be given by
exploiting the Modal Assurance Criterion (MAC), shown in Fig. 9.11. This plot reports the trend of the MAC values for
all the mode shapes except the 4th one. That mode indeed has a low MAC value (an average of 4.15 for all the image
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Fig. 9.7 FRF sum for the four
different data set: SLDV, image
data sampled with 1,220 points
and image data sampled with
1,220 points averaged over 10
points (122 points), image data
sampled with 1,220 points
averaged over 20 points (61
points)

Fig. 9.8 Mode shapes for the
four different data set: SLDV,
image data sampled with 1,220
points and image data sampled
with 1,220 points averaged over
10 points (122 points), image
data sampled with 1,220 points
averaged over 20 points (61
points)

processing strategies) since the mode shape extracted from the vision system data is manifestly uncorrelated with the one
obtained from the SLDV FRF set (see Figs. 9.6, 9.8, and 9.10). The improvement in terms of spatial resolution (from 61 to
1,220 points) worsens the correlation (the configuration with 1,220 points has the lowest MAC level, at least in the medium-
high frequency range). However, if combined with the averaging process, the better resolved approach (1,220 points) shows
the highest MAC level.
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Fig. 9.9 FRF sum for the four
different data set: SLDV, image
data sampled with 61 points on
the upper section and image data
sampled with 61 points, average
of the upper and lower profile

Fig. 9.10 Mode shapes for the
four different data set: SLDV,
image data sampled with 61
points on the upper section and
image data sampled with 61
points, average of the upper and
lower profile

9.5 Conclusion

This paper aimed at discussing the suitability of image-based measurement techniques for providing valid data for
Operational Modal Analysis. This is an important aspect to be analysed, since LDV-based methods fail when extremely
high excitation levels, and therefore also high displacements, are reached. The study has been conducted on a simplified
test rig by comparing the outputs of standard LDV-based EMA and the outputs of OMA, when OMA is performed on data
extracted from a high speed camera. Despite this work aims at proposing the image-based approach as a valid alternative
in high excitation levels tests, measurements presented referred to excitation levels where LDV could still be considered
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Table 9.1 Natural freqeuncies estimated for the different processing strategies

Camera(Hz)

SLDV (Hz)
61 points
upper profile

61 points upper
and lower profile 1,220 points

1,220 points 10 pixels
average (122 points)

1,220 points 20 pixels
average (61 points) Mean

Standard
deviation

74.73 76.04 75.01 75.64 75.38 76.29 75.67 0.51
129.32 126.10 126.07 126.11 126.07 126.08 126.09 0.02
240.62 238.02 237.99 238.03 238.07 238.08 238.04 0.04
474.47 467.52 467.08 467.53 468.58 468.79 467.90 0.74
767.63 764.91 763.09 765.05 765.28 765.03 764.67 0.89
966.78 956.91 956.85 956.81 956.72 956.68 956.80 0.09
1,191.91 1,187.60 1,186.80 1,187.71 1,187.44 1,187.30 1,187.37 0.35
1,643.61 1,640.76 1,639.10 1,640.98 1,641.27 1,642.08 1,640.84 1.09

Fig. 9.11 MAC value—SLDV
mode shapes taken as reference

the reference technique. However, if the method succeeds in giving comparable results in low excitation level condition,
the scalability to high excitation levels should be in favour of the image-based approach. Effects of different processing
strategies have been discussed. The comparison with standard EMA results has been performed in terms of both Modal
Assurance Criterion and SNR. The main drawbacks of the vision system can be recognised in the fact that the camera is
sensitive to the target displacement: when the vibration frequency increases, the displacement can fall to values lower than
system resolution and the SNR decreases significantly. In addition, in the Back Light Lighting setup used in this paper, it is
not possible to observe correctly torsional mode shapes. Depending from the image processing strategy different situations
can be obtained. If only upper (or lower) edge is extracted torsional modes are mixed up with bending ones. If upper and
lower edges are extracted their average allows to reject torsional modes while their difference enhances torsional modes,
although those modes are buried in the noise.
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Chapter 10
An Experimental Modal Channel Reduction Procedure
Using a Pareto Chart

William H. Semke, Kaci J. Lemler, and Milan Thapa

Abstract This paper’s focus is on an experimental sensor placement procedure developed to assist in placing accelerometers
in critical locations for modal testing. The procedure is an efficient method to reduce the number of channels for a full modal
analysis. A candidate set of measurements are taken at select locations using a non-contact tool and then evaluated using a
Pareto chart to obtain a reduced set of sensor locations. The Pareto chart identifies the points that have the largest response
to an input excitation based on participation. These points correspond to the locations of the largest contributing modal data
based upon their statistical significance. Thus, the experimental procedure aids in the efficient placement of accelerometers.
Most contemporary channel reduction techniques rely on analytical models and simulations to aid in sensor placement, but
are lacking without these preliminary analyses. To illustrate the effectiveness, the experimental channel reduction technique
is applied on a small unmanned aerial vehicle and compared to finite element simulations.

Keywords Modal analysis • Unmanned aerial vehicle • Sensor placement • Pareto chart • ModalVIEW

10.1 Introduction

Modal analysis is the study of the vibration modes and natural frequencies of a structure and is essential to a full
understanding of a structure’s vibration characteristics. Channel reduction is an important topic in modal analysis. With every
extraneous channel there are associated costs. These costs include an extra sensor and the time spent installing, indexing and
logging the sensor as well as processing and analyzing the data obtained from said sensor [1]. Because of this, it is important
to use as few channels as possible while still keeping enough to identify the modes of the structure [2]. A key point in channel
reduction is sensor location selection.

Several methods for identifying important locations for sensors have been developed. One common method is to use a
finite element model in which sensor sets are found which maximize the ability to observe modes while constraining each
sensor to contribute unique information [3]. Another method selects sensor locations that make the corresponding target mode
shape partitions as linearly independent as possible while maximizing the signal strength of the target modal responses within
the sensor data [4]. Yet another method uses a genetic algorithm to identify sensor locations by starting with a relatively small
number of possible final locations and evolving these locations to the best set [5]. There is also a method that locates sensors
at the maximum response position of an orthogonal sequence of vectors [6]. An efficient computational method to create
an optimal sensor configuration using a Pareto approach has been demonstrated to be effective in structural identification
[7]. However, the majority of the methods require extensive finite element modeling, algorithm development, mathematical
modeling or a combination thereof. Therefore, it was desired to develop a relatively quick and easy, non-contact, experimental
method with which to identify important sensor locations for existing complex systems that are difficult and time consuming
to model.

The method presented here uses a Pareto chart to identify important sensor locations from an initial experimental test
set, thus eliminating extensive structural modeling. This experimental procedure was shown to be effective in structural
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testing by Lemler and Semke [8]. A laser vibrometer is a suitable tool to use to acquire the initial measurements of the
candidate set of locations because of its mobility and its capability to gather vibration data in a non-contact manner. Laser
vibrometers measure surface motion using the Doppler shift concept to measure the velocity of surface vibration [9]. Multi-
point laser vibrometers have been used for several years for modal analysis but they have not been used for quickly and
efficiently identifying important sensor locations. A test was performed in which a single beam laser vibrometer was used
to measure the velocity at several locations of the surface of a structure under excitation. These values were then used to
identify locations of high interaction.

The important sensor locations were identified from the laser vibrometer values using a Pareto chart. Pareto charts are a
statistical tool used to identify the variables that are the most significant [10]. This tool has been used in many different fields
including identification of the most effective plasma processing variable that would impact the porosity of an aluminum
oxide coating and for a sustainability root cause analysis method for chemical/energy production systems [11]. The Pareto
chart was originally developed for use in the field of economics, and studies employing the Pareto chart can be found in the
fields of natural and social sciences as well as physical sciences [12]. The use of a Pareto chart to identify significant sensor
locations in modal analysis is illustrated through a case study on a small unmanned aerial system (UAS).

10.2 Theory

The Pareto principle, which states that 80 % of the effects are caused by 20 % of the causes, was based off of the observation
by Vilfredo Pareto that 80 % of the wealth in Italy belonged to 20 % of the population. This principle led to the introduction
of Pareto charts in the field of quality control. A Pareto chart is a vertical bar graph in which the relative frequency of each
of the events is plotted in decreasing order from left to right. A line, representing the cumulative total, is then plotted on top
of the bars. Pareto charts are used to determine the most significant aspects of a body of information by quickly and easily
identifying which elements have the most effect [13]. Resources can then be used on the important aspects and not wasted
on trivial aspects.

The Pareto principle has been shown to identify the locations for effective modal analyses measurements. The
recommended testing procedure when using the sensor location identification method is outlined as follows. First, the
structure should be mounted in a test rig so that it is in the desired modal configuration for the modal test. This can be
free-free, fixed, or different boundary conditions. An excitation source and type then needs to be decided upon and installed.
This could be a shaker with random or sinusoidal excitation, an impact hammer, or other such device. The same excitation
device should be used for both the sensor location identification method and the modal test. The excitation device should
also be installed in the same location and direction for both tests. The location(s) should be such that all of the modes of the
structure are excited. Next, a grid pattern needs to be laid out on the structure at which to take measurements. The density
and locations of the grid points need to be decided upon carefully as this is a critical part of the test. The density, especially,
can affect the results of the sensor location identification test. All of the potential sensor locations can then be quickly and
efficiently scanned for a full structure evaluation. This is accomplished by taking and recording measurements of the motion
at each of the grid points. This data can then be processed to produce the Root Mean Square (RMS) values of the voltage at
each point. A laser vibrometer is a good tool to use in this step as it is a quick, non-contact way of obtaining measurements
but other tools, such as an accelerometer, can be used as well. The next step is to construct a Pareto chart to see which of
the measured locations experience the largest relative amplitude under the excitation. An appropriate Pareto level then needs
to be decided upon to identify the cutoff point in the Pareto chart. This information is then used to identify the significant
locations at which to place sensors. These significant locations can then be instrumented with accelerometers and a full
modal analysis can be performed. The modal analysis yields Frequency Response Functions (FRFs) from which the natural
frequencies and mode shapes can be extracted. These values can then be analyzed to understand the modal characteristics of
the structure. In summary, the basic procedure for implementing the sensor placement technique using a Pareto chart is as
follows:

1. Install the test specimen in an appropriate mount for the test conditions desired.
2. Create a grid pattern of candidate sensor locations.
3. Excite the structure and record the dynamics response at each candidate position.
4. Calculate the RMS amplitude at all positions.
5. Construct a Pareto chart of all the candidate position RMS values.
6. Establish an appropriate Pareto level that captures the desired structural responses.
7. Instrument the reduced sensor set.
8. Conduct a complete modal analysis of the structure.
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10.3 Test Description

Several tests were performed using the sensor location identification method at different levels of channel reduction and the
results were compared to a base test to analyze which setups still captured all of the necessary information. The tests were
performed on the Super Hauler UAS produced by Bruce Tharpe Engineering. The Super Hauler is constructed of plywood,
balsa wood and Monokote and has a 3.7 m wingspan and a dry weight of 22 kg [14]. As outlined in the basic procedure,
Step 1 was to isolate the Super Hauler by suspending it on bungee cords in a test rig so that all the wheels were 3.2 cm off
of the ground. This setup simulates a free-free boundary condition for modal testing [15]. The instrumented Super Hauler
in the test rig can be seen in Fig. 10.1. The laser vibrometer that was used for the tests was a Polytech OFV 2601 Laser
Vibrometer Controller with a Polytech CLV Laser Unit and a Polytech CLV 700 Laser Head. The laser vibrometer was
mounted on a stand and directed to measure the vibration of the aircraft. The candidate locations for preliminary testing were
chosen (Step 2) and are shown in Fig. 10.2. All measurements were in the vertical direction except for the two on the vertical
stabilizer which were in the horizontal direction.

Step 3 was to excite the Super Hauler using a small shaker and collect the data. The shaker used was the Mini
SmartShaker™ with an integrated power amplifier from The Modal Shop Inc. The shaker was attached to the aircraft through
the use of a suction cup. The shaker was set to random excitation with the amplitude set to an appropriate excitation level,
in this test case it was 30 % of the maximum gain setting on the amplifier. The amplitude of excitation is chosen to provide
sufficient excitation for a strong signal while small enough not to damage the shaker or aircraft. A signal-to-noise ratio of
greater than C5 dB is desired, which typically produces consistent results from multiple tests.

It is recommended that, when using this method, the response is measured at grid points over the entire structure. However,
this method is very sensitive to grid size since it can’t distinguish if it is repeatedly capturing the same mode and so, if the grid
is too fine, it could identify multiple points as significant that all correspond to the same response. Therefore, good candidate
measurement locations are critical in using this method. The grid needs to be fine enough that all of the modes of interest
(i.e. bending, torsion) are captured but not so fine that the same behavior is captured by several locations. A good candidate
grid can be established from the structural response of similar structures, finite element results, or previous experience.
However, additional points to those that are deemed potentially significant should be included as there could be unexpected
participating modes. This method can help capture these unexpected modes that occur due to complex structural interactions

Fig. 10.1 The Super Hauler
Unmanned Aerial Vehicle in the
test rig while instrumented with
accelerometers. The airframe is
approximately 3.7 m long and
3.1 m wide
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Fig. 10.2 Excitation (blue) and
measurement (red) locations for
laser vibrometer tests
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or complex structural response. For example, for the airframe example, a midpoint location on the wing must be included or
the model cannot predict any nodes along the length of the wing, thereby failing to capture higher order wing bending. To
capture wing and tail torsional modes, points on the leading edge and the trailing edge are necessary. In general, the number
of candidate locations in any direction determines the order of the polynomial of the shape function in that direction. The
best fit shape function is at maximum one order less than the number of nodes. Therefore, the proper number of candidate
nodes in orthogonal directions must be chosen to capture all the potential modes of interest. Sound judgment is required
to limit the number of candidate locations while still capturing all the motion of interest. This balance helps streamline the
procedure to make it most efficient, but the process is valid for any number of candidate locations.

10.4 Results

The first step in the test procedure was to move the laser vibrometer to a measurement location and focus the laser to get a
strong, clear signal. Next, the shaker was activated to vibrate the aircraft with random excitation. LabVIEW Signal Express
was used to record the data from the vibrometer over a ten second period and export it to an Excel worksheet. These steps
were repeated until three sets of data were gathered from each measurement location.

Voltage measurements were taken by the laser vibrometer at the selected test location and the Root Mean Square (RMS)
of the amplitude was found at each point. A representative RMS value for each measurement location was then found by
calculating the average of three RMS values from the three data sets at each location, per Step 4 of the basic procedure. The
average RMS values can be seen in Fig. 10.3.

Figure 10.3 was created using Minitab with 95 % confidence intervals. It can be seen that the nodes are distinctly different
and the relatively small size of the error bars indicate that the tests are repeatable.

Once the average RMS values were calculated, the Pareto chart statistical method was used to select the important nodes
at which accelerometers need to be placed, as indicated in Step 5. The Pareto chart method was applied to this test by first
assuming all of the motion of the aircraft was captured by the measured locations. The average RMS values were then
ordered from largest to smallest and the individual percentages of the total were calculated. These percentages were then
summed to find a running cumulative percentage of the total aircraft motion captured. These results were then graphed and
are shown in Fig. 10.4. The average RMS values for each of the locations are shown in Table 10.1. A thorough screening
of potential sensor locations must be conducted to help ensure that all the motion of interest is captured. The use of a laser
vibrometer makes this process effective due to the efficiency of collecting data.

This chart and table can be used to determine which locations should be measured (Step 6). To capture 75 % of the
measured motion, nodes 5, 6 and 7, which are the nodes on the wings, should be instrumented. Alternatively, to capture 90 %
of the measured motion of the aircraft, nodes 8 and 9 on the horizontal stabilizer would have to be instrumented as well. To
capture even more motion, nodes 10 and 11 on the vertical stabilizer could be instrumented as well to bring the measured
motion up to 95 %.
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Fig. 10.4 Pareto chart for the
laser vibrometer test

Table 10.1 Data used to create
the Pareto chart

Location Avg RMS % of total Cum %

Node 7 0.1382 42 42
Node 6 0.0640 19 61
Node 5 0.0412 13 74
Node 8 0.0239 7 81
Node 9 0.0201 6 87
Node 10 0.0120 4 91
Node 11 0.0080 2 93
Node 4 0.0065 2 95
Node 1 0.0057 2 97
Node 2 0.0053 2 99
Node 3 0.0046 1 100
Total 0.3294

10.5 Modal Testing

A modal analysis was performed to investigate the validity of the sensor location identification method, to illustrate the
different sensor set results (Step 7). Four tests were performed with different levels of instrumentation. These tests included
a base test with sensors placed at each measurement location from the laser vibrometer test, a test corresponding to the 95 %
Pareto level, one corresponding to 90 % and one corresponding to 75 %. The accelerometer locations for each of the tests
can be seen in Fig. 10.5. All of the accelerometers were mounted to measure acceleration in the Z direction except for the
ones on the vertical stabilizer, which were mounted to measure in the Y direction.

The final step (Step 8) was to conduct a complete modal analysis of the structure. The aircraft was excited at several
different locations, all in the Z direction, that are identified by the red dots in Fig. 10.6 and a load cell was attached in line
with the shaker’s stinger to measure input force.

The accelerometers and excitation devices were routed through a National Instruments data acquisition board that was
connected directly to a computer. Data capture and analysis was performed using ModalVIEW, software designed specifically
for modal testing and analysis. The natural frequencies presented are the average of eight tests. These eight tests are
comprised of two tests at each of the four excitation locations.

The measurement type was set to FRF-EMA in ModalVIEW for an experimental modal analysis. The sampling rate
was left at the default of 1651.61 Hz with the resolution set to 0.1 Hz. The shaker was activated so that the Super Hauler
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Table 10.2 Summary of natural
frequencies for the experimental
modal analysis

Base 95 % 90 % 75 % Description

12.4 12.4 12.4 12.4 Mode 1 wing bending
17.3 17.5 17.5 17.5 Tail torsion, antisymmetric wingtip bending
20.8 20.8 20.8 21.0 Wingtip, wing, tail, HS, VS torsion, wingtip bending
26.7 26.0 26.0 25.9 Wing torsion, slight HS bending
28.9 28.2 28.1 28.1 Symmetric wing torsion
30.2 30.8 30.8 30.7 Antisymmetric wingtip bending, tail wag
33.8 36.5 36.1 – HS, VS torsion
39.9 39.7 39.8 39.8 HS bend/torsion, mode 2 wing bending, VS torsion
45.0 44.9 44.9 44.7 Mode 2 wing bending, HS bend/torsion, VS torsion

was excited with random excitation. ModalVIEW was then prompted to record data from the accelerometers and when
ModalVIEW was done sampling the shaker was turned off. This was repeated so that two data sets were gathered at each
excitation location.

Once all of the vibration data was gathered, analysis was performed using ModalVIEW. The FRFs generated were
analyzed and a list of natural frequencies was created. ModalVIEW was then used to build a model of the Super Hauler.
The accelerometers were assigned to their respective nodes and degrees of freedom. The modal response of the structure can
be animated illustrating the motion of each mode shape at its natural frequency. A summary of the natural frequencies found
in the tests can be seen in Table 10.2 and the corresponding mode shapes can be seen in Fig. 10.7.

It can be seen that all of the natural frequencies that were observed in the base model were also observed in the 95 % test.
However, as would make sense from the channels that were removed, any motion in the fuselage was undetectable using the
95 % data. Since there was relatively little activity in the fuselage when compared to the rest of the structure, the inability
to observe that motion is fairly insignificant. This test only uses 11 sensors versus 16 sensors for the base test resulting in a
31 % reduction in sensors.
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Fig. 10.7 Mode shapes and frequencies obtained from the experimental modal testing on the UAS

The 90 % test also captured all of the natural frequencies that were seen in the base model. However, any motion in the
fuselage or vertical stabilizer was undetectable using the 90 % data. The inability to observe this motion could be acceptable
since the fuselage and vertical stabilizer don’t experience much motion and all of the modes were detected. This test uses 10
sensors versus 16, resulting in a 38 % reduction in sensors.

The 75 % test captured almost all of the natural frequencies that were seen in the base model, missing one mode at 33.8 Hz.
However, any motion in the fuselage or tail was undetectable in this test. The inability to detect a mode at 33.8 Hz can be
traced to this fact since that mode consists of horizontal and vertical stabilizer motion. This lack of important information
leads to the conclusion that this is too much channel reduction and that all of the important surfaces of the aircraft should be
instrumented. This test uses 6 sensors versus 16, resulting in a 63 % reduction in sensors.

It can be seen that, according to this test, 90 % of the motion should be captured by sensors if all of the modes are to be
recognized. The values chosen in this case were chosen because they coincide with the significant structural components of
the aircraft while resulting in nearly a 40 % reduction in required channels. Since the correct level is case dependent, this
value should be left to user discretion.

10.6 Finite Element Modeling

A finite element model was made of the UAV to simulate the dynamic behavior of the aircraft and to find the natural
frequencies and mode shapes. ANSYS was used for the modeling where the wings and tail sections were meshed with plate
elements and the fuselage with beam elements. The meshed model is shown in Fig. 10.8. In this simple model the wings
and tail are constructed of plate elements of constant thickness and composition while the beam elements are a hollow tube
with constant wall thickness and composition. The actual composition of the aircraft is much more complex. For example
the wings are made of multiple ribs of wood with spars running through them and are covered with a plastic film while the
fuselage is made of truss segments connected to plywood sheets. While this structure is very complex, the simplified FE
model illustrates much the same behavior with far less modeling effort.

A modal analysis was performed on the structure in a free configuration to identify the natural frequencies and mode
shapes of the structure, summaries of the results are shown in Table 10.3 and Fig. 10.9. The number of elements used was
varied to assess the influence on mode shapes and frequencies and it was observed that adding more degrees of freedom
to this model did not change the results significantly. It was found that reducing the number of beam elements used did
eliminate any fuselage bending, resulting only in wing and tail motion.
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Fig. 10.8 Finite element model
of the Super Hauler UAS meshed
with shells and beams

Table 10.3 Summary of natural
frequencies for the numerical
analysis

Freq (Hz) Description

12.8 Mode 1 wing bending
17.0 Tail torsion, antisymmetric wingtip bending
19.7 Tail horizontal wag
20.8 Tail vertical wag
43.4 Mode 2 wing bending, tail torsion

Fig. 10.9 Mode shapes and frequencies obtained from the experimental modal testing on the UAS

The results for many of the modes of vibration were consistent between the FE results and the experimental results. The
first two modes of both the experimental and simulated methods had excellent correlation in both shape and frequency. The
first mode showed bending in the wings in the same direction and the second mode produced bending of the wings in opposite
directions and tail torsion, much as was found in the experimental testing. These two modes are also the most significant
participators in the motion of the system as they contain over 99 % of the effective mass of the system. In looking at the
channel reduction procedure, the nodes identifies as being the most significant are all strong participants in the first two mode
shapes. Very good correlation was also observed around 45 Hz, which is Mode 9 in the experimental results and Mode 5
in the numerical. It is believed that more detailed modeling of the aircraft would result in even better correlation with these
and other modes. In more detailed analyses done to date of the wing sections with the ribs and spars, the onset of torsional
modes was identified at frequencies around 30 Hz. These were not observed in the simplified model. This seems reasonable
as a plate has greatly increased torsional resistance than a series of ribs connected by spars. However, the simple model does
indeed capture much of the dynamics of the airframe.
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10.7 Conclusion

A novel modal sensor location identification method was shown to provide a quick, relatively simple, non-contact
experimental way to determine important sensor locations through the use of a Pareto chart. A laser vibrometer was used to
measure the response at several locations along the aircraft and the RMS values were calculated. A Pareto chart was used to
identify which of these locations are important to instrument by identifying which locations contribute to most of the motion
experienced by the aircraft. This method would be most effectively used by measuring the motion at several locations on the
structure and placing sensors at the nodes that capture a certain percentage of the motion that was measured. This provides
the user with the flexibility to choose the percentage of motion that is important for that structure.

A study was done on channel reduction and three tests with different levels of channel reduction were performed and
analyzed. While maintaining the ability to detect the modes of interest, the number of channels used was reduced from 16
channels down to 10 channels, which is a 38 % reduction in channels. This reduction not only saves money by using less
sensors and supporting equipment, but also saves time that would have been spent on data collection and analysis on the
extra channels.

Finite element simulations were conducted that also demonstrated the ability to simulate mode shapes and natural
frequencies. Relatively simple models of complex systems can generate accurate modal results. The nodes identified by
the channel evaluation tool also correspond to the locations of large modal participation in the FE results. Over 99 % of the
effective mass of the system is captured in the first two modes, which correspond to the nodal locations with the highest
participation found in the experimental study.

In addition, this experimental procedure can be used in conjunction with numerical simulations for model validation
and other sensor placement optimization techniques. The procedure also can augment the evaluation and assessment of
their structural behavior of previously constructed structures. Future utilization and expansion of the methodology presented
includes the correlation of the Pareto chart method to other sensor placement techniques. Also, studies providing additional
guidelines for candidate sensor locations could improve the efficacy of the method. In general, this purely experimental
procedure provides an effective method for enhanced modal analysis and can serve as a supplement to the procedures
currently engaged in by the modal analysis community.
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Chapter 11
Unique Isolation Systems to Protect Equipment in Navy Shock Tests

Herb LeKuch, Kevork Kayayan, and Neil Donovan

Abstract Shock Tech Seamount ™ elastomer isolation systems have successfully enabled many electronic systems to be
shock qualified for Navy shipboard installations. The Seamount ™ (Tall Arch) isolator is well known in Navy applications for
its effective shock and vibration protection of commercial electronic equipment (COTS). This paper reviews the Seamount’s
unique arch design and its controlled shock response including acceleration time history measurements, shock response
spectrum (SRS) and Fourier analysis from different Mil-S-901D barge tests. We describe the isolators and the results of a
series of Navy barge tests involving two candidate isolation systems (tested with dummy loaded racks) followed by test of
a fully populated rack. Measured vertical response was 20–25 G’s; the shock input ranged from 40 to 75 G’s. SRS analysis
showed substantial reduction of pseudo velocities (PV) levels to less than 70 ips at the mid to higher frequencies of equipment
versus 100–120 ips at the same frequencies of the input shock spectrum.

Keywords Seamount • Mil-S-901D • Shock isolation • SRS • Electronic rack

11.1 Introduction

Navy electronic systems are often installed in isolated racks for protection from severe shock and vibration. Figure 11.1
shows a 901D LLC isolated rack and display console. The isolation system is designed to substantially reduce the dynamic
forces at the equipment, and control the relative movement of the enclosure* during the shock event. Large racks are usually
deck mounted. Isolators are widely separated at the base of the rack and combined with stabilizer mounts for stability of the
unit to off-axis loads. This external isolation design typically has four to six mounts at the base of the rack and two or more
as stabilizers at the top, rear of the rack. Vertical motion is mainly controlled by the base mounts in compression/tension.
The orientation and combination of stabilizers and base mounts control pitch, sway and lateral motions of the rack. Internally
isolated racks are also available from 901D that are hard mounted and require no bulkhead support.

The purpose of the isolation system is to attenuate the shock loads in the load path between the ship and the equipment.
The primary objective is to reduce the peak G’s to levels that COTS equipment can withstand. Allowable limits are based
on equipment design specifications; experience suggests that 20–25 G’s (or less) is an acceptable level for most electronics.
Recent work by Shocktech/901D has also focused on the frequency content of the shock and the pseudo velocities (PV) at
critical frequencies of the equipment in the region of 50–150 Hz [1].

• the terms—rack, enclosure and cabinet are used interchangeably.

Figure 11.2 shows several isolated electronic racks and other equipment mounted to the test deck within the barge. The
deck is characterized as 8 Hz or 14 Hz (or other frequency) depending on the requirements of the test specification It replicates
the installation of the cabinet on-board ship. For this unit, there were four base mounts and two stabilizers. The welded fixture
bolts to the deck and is for attachment of the stabilizers at the upper, rear of the rack. Response accelerometers are installed

H. LeKuch (�) • K. Kayayan • N. Donovan
Shock Tech Inc., Route 59, Monsey, NY 10952, USA
e-mail: hlekuch@pipeline.com

R. Allemang (ed.), Topics in Modal Analysis II, Volume 8: Proceedings of the 32nd IMAC, A Conference and Exposition
on Structural Dynamics, 2014, Conference Proceedings of the Society for Experimental Mechanics Series,
DOI 10.1007/978-3-319-04774-4__11, © The Society for Experimental Mechanics, Inc. 2014

111

mailto:hlekuch@pipeline.com


112 H. LeKuch et al.

Fig. 11.1 901D LLC isolated
rack and display console

Fig. 11.2 Examples of
equipment mounted to the test
deck

on the rack. Input is measured on the deck near the fixture. Velocity and displacement-time are calculated by integration of
the acceleration time history. Physical measurements of the deflection of the isolators and/or relative movement of the rack
are often made using clay cones, or equivalent, that ‘squash’ in shock.

11.2 Seamount Isolators

Identified by its unique tall arch shape, Seamounts exhibit large deflection capabilities in all directions [2, 3]. The isolators
are molded at Shock Tech’s facilities in Monsey, NY. Repeated load cycling tests have verified the mount’s durability and
accurate shock control. The proprietary elastomer compound used in the mount is a compressible, moderately well damped
neoprene having a predictable rate of strain energy dissipation and nominal temperature variation [4]. Three mounts are
shown in Fig. 11.3. Dimensions of each are 7 inches high, 8 inches wide and 4.5 inches deep. A large range of stiffness can
be achieved in each direction by modifying the configuration and contour of the arch. To a vertical shock, energy control is
mainly accomplished by buckling of the mount in compression and extension in tension. In the lateral directions, the mount
undergoes off-axis deformation of its arch shape and progressive shear of the elastomer material. Tension, shear and roll
exhibit nearly linear stiffness. Damping is strain dependent but usually accounted for as a velocity dependent force in shock
calculations. Dynamic stiffness is greater than static stiffness by a measured factor. There are several families of Seamounts
including thin wall and thin wall versions—Fig. 11.4. The half-arch mount is used with light loads and in 901D internally
isolated racks.

As noted, shock attenuation effectiveness of the isolator is a function of the rate of energy absorption and dissipation
in elastic deformation of isolator shape and material. By modifying these factors, the stiffness and hysteresis curves can
be shifted and/or modified for more energy capacity and load carrying capability in limited space. The stiffness rate is
strongly influenced by the transition from bearing on the column-like section to ‘ovalizing’ of the arch. There is also a close
relationship of the durometer of the elastomer compound and mount stiffness. The Seamount is modular; multiple isolators
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Fig. 11.3 Three Seamount
examples

Fig. 11.4 Examples of thin wall
and half-arch mounts

can be grouped for heavier loads. Features of the mounts are contoured wall construction, constant cross section in the
buckling region, defined engineering characteristics including moderate damping, and broad temperature extremes. Using
the Seamount for all ship’s decks (universal shipboard application regardless of deck frequency) is a principal objective of
the Seamount design.

11.2.1 Description of the Isolator

The Seamounts are designed for nearly constant force resistance in compression—the direction usually experiencing the
greatest shock in barge test. Its buckling design produces bilinear stiffening in compression over the first third of stroke and
softening over larger amplitude deflection. Figure 11.5 shows the load cycle in compression for three cycles. Load range
is 125–300 lbs per mount, stiffness related to the durometer of the elastomer compound, four load increments, high stroke
efficiency of 0.55 (defined as the ratio of maximum free displacement to isolator height), a nominal 15 year service life, and
rated at 5–6 Hz shock response frequency. Mounts can be oriented and positioned to support the unit in any direction. The
compression to lateral stiffness ratio is approximately 2:1, tension is nearly linear to 200–250 % extension, then yields but
without a well defined value.

Molded with custom formulated synthetic elastomer, durometer 40–75 Shore A scale, high resilience—excellent return
to original position after the load is removed, dynamic to static stiffness 1.25–2 depending on elastomer compound, good
tensile strength in excess of ship service conditions, temperature range 30–120 deg F at ˙25 % stiffness variation,�20 deg F
to 150 deg F at 35 % variation, stable over large deflections, repeatable use and consistent results, extremely rugged and
durable.

11.3 Family of Seamounts

Ranging from 75 lbs to over 300 lbs static load rating, the isolators differ mostly in wall thickness and contour at the mid-
height buckling region. Table 11.1 is a comparison of mounts. The mounts can be modified with different elastomers having
well defined damping characteristics to 30–35 % of critical damping. Production mounts are normally at 12–17 % damping
factor. Compression stiffness exhibits a softening curve, lateral (roll and shear) and tension are essentially linear over their
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Fig. 11.5 Typical load deflection
(LD) data

Table 11.1 Comparison of Seamounts

Load range (lbs) Primary function Natural frequency (Hz) Shock frequency (Hz)

Light 75–275 Shock 6–7 5–7

Moderate 100–250 Shock 7–8 5–7

Heavy 100–300 Shock 7–10 5–7

full stroke. Seamounts are stable over their entire vertical stroke to nearly 4.5 inches compression and tension, 3.5 inches in
roll and shear.

11.4 Barge Test Program

11.4.1 Dummy Loaded Isolated Racks

Using dummy loaded racks, a series of barge shock tests were conducted with 901D LLC open frame racks and Seamount
shock isolation system (base and stabilizer mounts) from Shock Tech Inc. These were evaluation tests to measure the shock
attenuation of each isolation system and to select one of the two candidate designs for future use with a populated enclosure.
The test installation is shown in Figs. 11.6 and 11.7. The rack is basically a formed metal construction, bolted assembly from
among 901D’s standard designs, PN 100-CA-1318. Door and panels were removed. Stacked steel plates were substituted for
the equipment and the distribution of weight approximated that of the populated rack which would be tested at a later time.
The welded fixture at the side of the rack was for use in measuring side displacement and sway of the rack during shock.
The magnitude of the barge shock is subject to a number of variables including explosive charge, water temperature, weight
of equipment on the deck and location of the input accelerometer, In consecutive shots from the same standoff distance,
acceleration input readings can vary by ˙20 to 25 %.
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Fig. 11.6 Test installation rack

Fig. 11.7 Test installation on
barge.

Two isolation systems were tested. They were similar having six mounts at the base but stiffer stabilizer mounts for
configuration (2). Base isolators were two PN 70776–65 at the front, two PN 70776–55 midway and two PN 2100013–4
at the rear. Soft system stabilizers were two PN 2100031–00. Configuration 2 stabilizers were two PN 2100063–4 and two
PN 2100031–00. Isolation mounts exhibit ‘buckling’ type stiffness characteristics in compression and nearly linear stiffness
in tension, roll and shear. The total dummy load weighed 1,250 lbs (875 lbs steel plates and 375 lbs rack and mounts). Its,
CG approximately 14.4 inches from the front of the rack and 30.1 inches above its base. Performance was based primarily
on peak G’s, relative displacement and visual inspection of the rack. More recently the acceleration time histories, Fourier
spectrum, and pseudo velocity shock spectrum’s (PV) were compared for evaluation of shock severity.

11.5 Test Series

Testing was conducted in accordance with Mil-S-90D guidelines using the extended floating shock platform (EFSP). The
EFSP is a standard 16-foot by 28-foot FSP that has been extended by adding an 18-foot section. Testing was conducted using
Navy standard 60-pound HBX-1 charges suspended at a depth of 24 feet below the surface of the water and at a 20-foot
standoff from the barge.

The dummy loaded rack with isolation configuration 1 (soft stabilizers) was tested in shot 1. Configuration 2 (stiff
stabilizers) was tested in shot 2. Both shots on the 8 Hz deck. Shots 3 and 4 were on the 14 Hz deck, isolation system
configuration 2. The rack was instrumented with six accelerometers and one displacement sensor. An accelerometer on
the deck measured deck acceleration in the vertical direction. No athwartship or fore/aft input measurements were made.
Accelerometers are shown in Figs. 11.8, 11.9, and 11.10. Foam blocks measured the rack’s maximum side motion.
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Fig. 11.8 Accelerometer
locations mid height, front
column of rack

Fig. 11.9 Accelerometer
locations top, rear - near
stabilizer mounts

Fig. 11.10 Accel

11.5.1 Shock Severity: Acceleration and Pseudo Velocity (PV)

A common method to evaluate the effectiveness of one isolation system versus another is to compare the shock attenuation
of the two designs (Attenuation RatioDPeak response G’s/Peak input G’s). This can be confusing when there is a significant
contribution of high acceleration spikes extremely short duration) in the time-histories. To augment the acceleration method,
we compared SRS levels particularly at the mid frequency region where COTS electronics are sometimes damaged.
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Table 11.2

Dummy loaded isolated racks Summary of results

Test Shot Input Response Response Response Response Response Response

1V 2V 3SS 4FB 5V 6SS 7FB
G’s 53 18.5 21.5 13.8 19.7 9.4 9.8

8 Hz deck 1 PV ips-80 Hz 12 16 10 18 9 9
Config (1) PV ips-120 Hz 20 48 30 22 26 16

G’s 50.6 21.9 30.6 25.2 25.1 18.6 17.9
8 Hz deck 2 PV ips-80 Hz 22 34 23 19 8 11

Config (2) PV ips-120 Hz 24 97 66 16 41 26
G’s 37.3 24 34.2 19.1 28 20.2 20.3

14 Hz deck 3 PV ips-80 Hz 11 46 2 37 26 23
Config (2) PV ips-120 Hz 20 49 25 25 43 20

G’s 42.6 24 26.9 17.3 30.6 11.5 34.4
14 Hz deck 4 PV ips-80 Hz 20 36 28 46 16 29

Config (2) PV ips-120 Hz 28 38 19 25 20 22
14 Hz deck Populated G’s 69.5 19.8

rack

Gaberson [5, 6] noted that the PV level is proportional to maximum stress and that this is the damage factor, not
acceleration. Based on the literature, a PV threshold of 100 ips is often used for shock design of structures. In general, 100
ips is considered severe, 80 ips moderate and 60 ips as not-damaging. This may be relatively simple to calculate for standard
shapes. However when the equipment is more complex such as chassis, components, and PC boards, the PV threshold is
thought to be lower and we used 60 ips as a guideline in our comparison of isolation. In other words, one design could
be preferred over another if it exhibited a greater AR and lower PV levels in the region of interest. Relative displacement
of the rack is important too. Did the isolated unit remain within allowable limits and do the isolators exhibit permanent
offset? Typical damage of COTS electronics are solder fractures at electrical connections to components on the PC board
and pull-out of inserts in thin wall chassis. It is an especially complex problem if there is dynamic coupling between the rack,
equipment chassis and its components.

11.5.2 Analysis of Measured Data

UERDTools [7] software (available from the US Navy Carderock) was used to analyze accelerometer data. This integrated
software package enabled easy comparison along with clear display plots of measured acceleration, SRS and FFT content.
Test data had been pre-filtered at 250 Hz by the test lab in accordance with Navy practice. Peak accelerations are shown in
the time-history plots. SRS plots were made at a 5 % damping factor. Data from the input and mid-height accelerometers
are shown (1 V, 2 V, 3SS, 4FB). Accelerometer measurements from a second set of accelerometers on the test rack (accel
5 V, 6SS, 7FB) are comparable to the first set. Results are summarized in Table 11.2. It should be noted that the input shock
was measured only in the vertical direction therefore an attenuation ratio (response g’s/input g’s) can be determined only in
this direction. In general, input accelerations in the athwartship and fore/aft directions are approximately 40–60 % of vertical
shock.

11.6 Survey of Barge Test Shock Results: Acceleration—Time, SRS, Fourier Analysis

11.6.1 8 Hz Deck Measurements

Input (1 V)—vertical—located on the barge deck near to the rack. Acceleration measurements in the vertical direction are
nearly the same for both isolation configurations (50.6–53 G’s). The general appearance shows a fundamental shock pulse of
moderate peak amplitude with ‘G’ spikes superimposed on the main pulse. The predominant frequency is 7.8 Hz as would
be expected with the 8 Hz deck. There is also a prominence at 5–6 Hz that is likely the isolation system frequency in the
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Fig. 11.11 SRS

Fig. 11.12 FFT

vertical direction. The Fourier spectrum (FFT) also shows the main frequency of nearly 8 Hz. Contributions of the higher
frequencies are exhibited in the 50–200 Hz region of the FFT. The basic form of the SRS is a positive ‘rise’ peaked at
8 Hz, then decreasing with nearly constant negative slope, ramping up with a rise in PV levels in the 70–120 Hz region and
declining again afterwards—Figs. 11.10, 11.11, and 11.12.

Response (2 V)—vertical—located mid height of the rack on its right outer column. It is a measure of the response in
the vertical direction and reflects the shock reduction across the isolation system. Comparing it to (1 V) is the ratio of shock
attenuation achieved with each configuration. Configuration (1), the softer system, shows a peak of 18.5 G’s versus an input
of 53 G’s and a relatively smooth PV curve with only a minor rise in the 70–120 Hz region. In terms of PV, there is nearly a
70 % reduction compared to (1 V) in the same frequency region. The FFT spectrum shows the 8 Hz predominant frequency
and very little energy content at the higher frequencies. Configuration (2), stiffer stabilizers, measures 21.9 peak G’s versus
an input of 50.64 G’s. Its SRS and Fourier spectrum are very similar to configuration 1. There appears to be only a small
difference in vertical response; vertical shock isolation effectiveness of each configuration is excellent (Figs. 11.13, 11.14,
and 11.15).

Response (3SS)—side to side direction—the presence of higher frequencies is more pronounced than in the vertical
response. Peak G’s measure 30.6 G’s, configuration (2) versus 20.4 G’s configuration (1). The sharp peaks are attributed to
high frequency effects. High PV content, configuration (2) is also evident in the 70–120 Hz region reaching nearly 96 ips
in the form of a rounded second rise centered at about 110 Hz. It corresponds to the high frequency, high amplitude FFT
spectrum over the same frequency region. The source of the high frequency vibrations is uncertain but a contributor may
be the cantilevering effect and structural ringing of the four-column stiffened frame of the rack. The dummy loaded rack
is basically a relatively tall, open structure having a narrow footprint in the side direction. The dummy loads are groups
of steel plates bolted to the rack at the columns at several levels. Because of the column’s structural design, mid-height
bending is more pronounced in the side directions than front/back. PV shows a declining slope and is less than 70 ips for
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Fig. 11.13 Accel

Fig. 11.14 SRS

Fig. 11.15 FFT

both configurations except at the 70–120 Hz region. The deck (1 V) also shows a similar PV rise in the 70–120 Hz region in
the vertical direction (Figs. 11.16, 11.17, and 11.18).

Response (4FB)—front/back—The acceleration history, SRS and FFT spectrum are very similar to side (3SS) response
except less high frequency content. The stiffer isolation system, configuration (2) shows 25.2 G’ s versus 13.8 G’s for
configuration (1). The two-rise SRS plots closely match with high PV in the 70–120 Hz region. Similarly, the Fourier
spectrum corresponds to the SRS with a spread of acceleration peaks in the high frequency region. Frequencies are widely
distributed out to 220 Hz. As with 3SS, the 4FB peak ‘G’ is a very sharp spike in the acceleration-time history—first 20 ms
(Figs. 11.19, 11.20, and 11.21).

11.6.2 Correlation of the Fourier Spectrum and SRS

Comparison of response measurements shows a close correlation of the Fourier spectrum and SRS with respect to the
presence of high frequencies and the levels at which they are exhibited. As the higher frequencies become more prominent
in the Fourier spectrum (for example at 70–120 Hz) they show-up as increased PV levels in the same frequency region
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Fig. 11.16 Accel

Fig. 11.17 SRS

Fig. 11.18 FFT
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Fig. 11.19 Accel

Fig. 11.20 SRS

Fig. 11.21 FFT
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Fig. 11.22 Accel

Fig. 11.23 SRS

in the SRS. Similarly, where the amplitude and distribution of the higher frequencies are pronounced in the FFT, the SRS
frequencies are also prominent.

11.6.3 14 Hz Deck Measurements

Following the 8 Hz deck barge tests, configuration (2) stiffer stabilizer, same isolation base as configuration (1) was shock
tested twice on the 14 Hz deck—20-foot standoff. Tests were done in the same orientation as in the 8 Hz tests (rack facing
sideways and also rotated at 90ı) to the explosive charge.

Input (1 V)—vertical direction. Measured acceleration was nearly the same in both orientations, ranging from 37.3
to 45.6 G’s. The SRS of each exhibited a relatively simple rounded peak shape in terms of PV versus frequency with a
single rise near the 14 Hz deck frequency. The Fourier spectrum clearly showed the predominant 14 Hz mode and minimal
energy content at higher frequencies. There were no significant differences in the input shock measurements in the two shots
(Figs. 11.22, 11.23, and 11.24). It is surprising that the two input shocks matched so closely. Often there is a variation perhaps
by as much as 20–25 % of peak acceleration from one shot to another.

Response (2 V)—Side response was nearly the same in both 14 Hz deck tests. The different orientations of the rack
showed no significant differences in measurements. Peak acceleration ranged from 19.5 to 24.1 G’s with a spike accounting
for the 24.1 peak. The SRS was comparable in both tests. The Fourier spectrum displays a predominant mode at the 14 Hz
deck frequency. Spectrum amplitudes were minimal at the higher frequencies. Overall PV levels were considerably reduced
from the input shock (1 V) SRS levels, and less than 36 ips in the 70–120 Hz region (Figs. 11.25, 11.26, and 11.27).
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Fig. 11.24 FFT

Fig. 11.25 Accel

Fig. 11.26 SRS

Response (3SS)—The response in the side direction exhibited similar characteristics in both tests. There was no
significant effect from the re-orientation of the rack. Unlike the SRS and Fourier spectrum in the vertical direction,
lateral acceleration responses show significant frequency content and higher PV in the 70–120 Hz region. The maximum
acceleration is 26.3 G’s. The mode at 5–6 Hz is an indicator of isolation system motion (Figs. 11.28, 11.29, and 11.30).
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Fig. 11.27 FFT

Fig. 11.28 Accel

Fig. 11.29 SRS

Response (4FB)—these acceleration-time measurements are very similar to (3SS) and show a similar distribution of PV
in the 70–120 region. In general, peak PV’s are less than 36 ips and mainly exhibit a declining slope of the spectrum at the
higher frequencies above 14 Hz. The isolation system exhibits a 6–7 Hz principal mode in this direction (compression/tension
of the stabilizer mounts) (Figs. 11.31, 11.32, and 11.33).
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Fig. 11.30 FFT

Fig. 11.31 Accel

Fig. 11.32 SRS

11.6.4 Barge Test of a Fully Populated Rack

To give one example of a recent test—the shock measured on the 14 Hz deck of the barge near to the mounting fixture was
69.5 g’s at the 20-foot standoff. The acceleration is shown in Fig. 11.34. The response was slightly less than 20 g’s. The
relative vertical displacement of the rack in this test was 3.5–3.8 inches. Sway displacement (motion all around the rack at the



126 H. LeKuch et al.

Fig. 11.33 FFT
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upper corners) was slightly less than 3 inches. The shock response, which had decayed to less than 5 G’s at 0.6 s, increased
to nearly 12 G’s when the bubble pulse occurred at about 0.65 s.

The shock response spectra (SRS) data, Fig. 11.35; the isolated response was substantially less than the input at
frequencies above 10 Hz. There is an especially large difference between the input and response pseudo velocities in the
50–150 Hz region and above. The predominant frequency of the isolation system is 5–6 Hz. The peak of the green curve
shows the barge test deck frequency of 14 Hz. Pseudo velocities (PV) of the response were less than 50 ips versus 70–80 ips
of the input at the same frequencies.

11.7 Summary and Conclusions

In the 8 Hz deck tests, the soft stabilizer system (configuration 1) exhibited large displacement particularly in the side
direction however the measured shock response was well under allowable acceleration limits in all directions. Stabilizers
were changed to a stiffer design (configuration 2) for greater restraint of the dummy loaded rack and reduction of sway at the
front upper corners. Configuration 2 was also designed for improved balance and redistribution of load on the base mounts.
Barge testing verified the expectation of reduced motion and sway to within acceptable limits. Response acceleration was
nearly 25 G in the vertical axis. The maximum was 31 G’s in the side direction. PV levels remained within design guidelines.
Testing on the 14 Hz deck validated the selection of the stiffer stabilizer isolation system for use with the populated rack.
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Fig. 11.35 SRS

The combined method of comparing peak acceleration values and a survey of SRS results to determine whether or not there
has been a noticeable reduction in PV levels is considered a useful tool for the design and evaluation of isolation systems.

Comparing results of 8 Hz and 14 Hz barge tests, it was shown that the same isolation system satisfactorily reduced shock
levels at the rack to acceptable levels. This was further verification that an isolation system proven for the 8 Hz deck could
also meet 14 Hz shock requirements. SRS and FFT analyses were helpful and confirmed the predicted use of the Seamount
isolation design. The two slightly different isolator configurations effectively bracketed the expected response. Having the
same base mounts, only the stabilizers were different. The preferred isolation system was then used for populated rack tests
with excellent results.
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Chapter 12
Nonlinear High Fidelity Modeling of Impact Load Response in a Rod

Yu Liu, Andrew J. Dick, Jacob Dodson, and Jason Foley

Abstract In this paper, wave propagation through a polyurethane rod is studied by using an experimental system and through
performing high fidelity numerical simulations. The rod model for the polyurethane rod is prepared accounting for the
possibility of a material nonlinearity. Due to a significant impedance mismatch between the titanium transmission bar and
the polyurethane rod along with the high damping level of the polyurethane, only a small amplitude, linear response was
observed and predicted in the polyurethane rod. Ongoing work will focus on impedance matching in order to transfer greater
amounts of energy into the polyurethane rod so that the nonlinear stress-strain relationship can be studied for larger magnitude
response conditions.

Keywords High fidelity • Impact • Rod • Wavelet • Wave propagation

12.1 Introduction

Nonlinear elastic wave propagation has been studied in recent years for a number of applications including the analysis
of seismic motion, non-destructive methods for the evaluation of structures, and analysis for biomedical materials [1–3].
Nonlinear wave propagation can also be come significant when structures are exposed to extreme impact conditions. Large
magnitude impulsive loading can result in significant nonlinear behavior. Short duration loading results in high frequency
content which can also serves to increase the influence of the nonlinear properties on wave propagation. The finite element
method has been identified as a useful tool for studying wave propagation in structures.

The finite element method (FEM) uses elements of various sizes and styles to create a discretized model of a structure.
This model is then used to predict the structural response to impulsive loads. However, the flexibility provided by FEM
results from the use of approximate shape functions which can limit performance under certain conditions. These issues can
significantly affect accuracy when considering high frequency content. When predicting wave propagation, this can result in
the introduction of spurious oscillations in the response resulting in a decreased level of performance. Efforts are underway to
address this shortcoming through the use of more sophisticated shape functions and post-processing of the predicted response
signal [4]. An alternative approach to address issues associated with accurately representing high frequency content is to use
the spectral finite element method.

The spectral finite element method (SFEM) was developed by implementing the finite element method is a spectral-
domain (i.e. the frequency-domain) [5]. By first transforming the linear equation of motion into the frequency-domain,
it is possible to derive exact shape functions describing the behavior of the propagating waves. SFEM makes uses these
exact shape functions to represent the spatial response behavior with perfect accuracy. However, this improved frequency
performance comes at the cost of reduced flexibility from that provided by FEM and, as a result, the use of SFEM is limited
to structures with relatively simple geometry. While SFEM is an intrinsically linear method, research efforts have developed
new approaches to facilitate high fidelity studies of nonlinear wave propagation [6,7]. The frequency-domain implementation
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of this approach can also provide additional limitations due to the wrap-around issues resulting from the periodic nature of
the Fourier transform. By implementing SFEM in a wavelet-domain and then incorporating it in the alternating spectral-
domain/time-domain framework, the Alternative Wavelet-Time Finite Element Method has been developed.

The Alternative Wavelet-Time Finite Element Method (AWT-FEM) was developed to provide high fidelity performance
for studying wave propagation in nonlinear structures and avoid wrap-around issues [8]. AWT-FEM uses a spectrally-
uncoupled wavelet-domain implementation of SFEM (WSFEM) [9]. Similar to the frequency-domain approach, this method
functions by alternating between the wavelet-domain and time-domain in order to calculate the response with WSFEM in the
wavelet-domain and to calculate the nonlinear terms in the time-domain avoiding computationally prohibitive convolution
calculations. AWT-FEM can be applied to rod, beam, and thin plate structures and used to study models derived with
nonlinear properties resulting from material nonlinearities and geometric nonlinearities.

In this research, AWT-FEM is applied to study wave propagation in a polyurethane rod. The polyurethane rod is
modeled with a material nonlinearity in anticipation of significant influence from a nonlinear stress-strain relationship.
An experimental setup is used to observe wave propagation through the polyurethane rod. Numerical simulations are
performed to characterize the response.

In the next section, the nonlinear rod model is presented along with a brief description of AWT-FEM The experimental
system and observed wave propagation are presented in the third section along with the results of numerical simulations.
Concluding remarks are collected in the final section.

12.2 Modeling

In this section, the nonlinear rod model used in this study is derived. The Alternative Wavelet-Time Finite Element Method
is also briefly introduced.

12.2.1 Nonlinear Rod Model

A rod model is derived for a material nonlinearity. A nonlinear constitutive model with a quadratic strain term is used [10–12].
This relationship is defined in Eq. (12.1).

¢ D E
�
–C ’–2

�
; (12.1)

where ¢ represents stress, E is the Young’s modulus, – represents strain, and ’ is the nonlinear coefficient. When ’ > 0, this
represents a hardening nonlinear material. The model is derived by using a linear strain-displacement relationship. By using
the extended Hamilton’s principle, the nonlinear rod model presented in Eq. (12.2) is derived.
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where A represents the cross sectional area, ¡ represents the density, u is the axial displacement, and F .x; t/ is the nonlinear
term. The nonlinear term for a material nonlinearity with a quadratic strain term is defined by Eq. (12.3).
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In order to implement the nonlinear rod model in AWT-FEM, the nonlinear rod model is first transferred into the
wavelet-domain. This is performed by using a spectrally-uncoupled single-scale wavelet transform [13]. The resulting
wavelet-domain equation is presented in Eq. (12.4).

EA
@2 Ouj
@x2

� œ2¡AOuj C OFj D 0; j D 0; 1; : : : ; n � 1; (12.4)

where the hat symbol ( O ) represents wavelet-domain variables.
By neglecting the nonlinear term, the linear equation is used to derive exact shape functions in order to prepare the

dynamic stiffness matrix. The resulting matrix equation is defined by Eq. (12.5). In the wavelet-domain implementation, the
angular frequency from the frequency-domain implementation is replace by¨ D �iœj , resulting from the wavelet transform.
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K
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qj D QN C QE; (12.5)

where K is the dynamic stiffness matrix, QN is the nonlinear force vector, and QE is the external force vector and they are
defined by Eqs. (12.6), (12.7), and (12.8), respectively.
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12.2.2 Alternating Wavelet-Time Finite Element Method

The Alternating Wavelet-Time Finite Element Method provides the means to apply the linear wavelet-domain spectral
finite element method to study nonlinear systems. Since nonlinear terms appear as computationally expensive convolution
operations in spectral domains, the alternating framework is employed to avoid these calculations. With the nonlinear term
represented as an additional force, the linear model is used in the wavelet-domain and the resulting response is transferred
into the time-domain by using an inverse wavelet transform. The process is initiated by first neglecting the nonlinear term and
calculating the response of the linear system. In the time domain, the response is used to efficiently calculate the nonlinear
term. Once calculated, the nonlinear term is transferred to the wavelet-domain by using a wavelet transform. An iterative
process is applied to perform this operation in order to ensure successful convergence for the nonlinear term and accurate
calculation of the nonlinear response. Full details of the AWT-FEM approach can be found in [8].

12.3 Experiments and Numerical Simulations

The experimental setup is introduced in the first subsection. Numerical simulations and the comparisons with experimental
data are presented at the second subsection.

12.3.1 Experimental Setup

The experiment test apparatus was set up at the AFRL Shock Dynamics Laboratory. Analog signal conditioning for the strain
gages is accomplished via a Precision Filter 28000 chassis with 28144A Quad-Channel Wideband Transducer Conditioner
with Voltage and Current Excitation cards. A high rate instrumentation system using a National Instruments chassis paired
with PXI-6133 multifunction input/output cards is used to digitize the analog data. The PXI-6133 samples at 2:5MSa=s with
16 bits of vertical resolution.

The experimental setup is shown in Fig. 12.1. A 72 inch titanium bar is the incident bar. A 21 inch polyurethane bar
with embedded accelerometers is the transmission bar. Uniaxial strain gages are mounted on the incident bar. The gages
are oriented axially on the bar in diametrically opposed pairs to allow bending and extensional cancellation. This is feasible
since the data acquisition system has sufficient number of phases matched channels to independently capture the output from
individual gages. Semiconductor strain gages are used on the incident bar. These have resistances of 120 or 350 � with a
fast response time (10 ns) and correspondingly higher bandwidth (10 MHz) than foil gages (typically 300 kHz). The gage
length is typically 1 mm and the gage factor is about 150, providing orders-of-magnitude improvement in sensitivity. The
traditional disadvantage of semiconductor gages, a strong temperature dependence, is not a concern for these dynamic tests
since the circuits can be balanced immediately prior to a test or run in an AC-coupled mode with minimal temperature
excursions between data acquisition arming and trigger. The strain gages were wired with a floating shield/ground to avoid
ground loops.
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Fig. 12.1 Experimental setup

Fig. 12.2 Complete time history
of the axial strain at the midpoint
of the incident bar

Fig. 12.3 Complete time history
of the acceleration at the
midpoint of the transmission bar

The two bars are pressed against each other via the placement of the wire supports. A steel striker impacts the incident
bar to generate propagating waves into the transmission bar. The two bars stay in contact for most of (if not all) the data
acquisition time. Wave responses at two positions are of interest: the midpoint of the incident bar and the midpoint of the
transmission bar. The response of the axial strain at the midpoint of the incident bar is detected by the strain gages, as shown
in Fig. 12.2. The response of acceleration wave at the midpoint of the transmission bar is measured by the accelerometer, as
shown in Fig. 12.3. An interval-dependent denoising down to level 11 using the Daubechies wavelet with an order of 8 is
performed and the result is plotted as the red dashed-line in Fig. 12.3.
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Fig. 12.4 Comparison between
the simulation and experimental
results of the strain waves at the
midpoint of the incident bar

Fig. 12.5 Comparison between
the simulation and experimental
results of the acceleration waves
at the midpoint of the
transmission bar

12.3.2 Numerical Simulations

In this preliminary study, numerical simulations using the AWT-FEM are performed to reproduce the wave response in
the incident bar and the transmission bar. The two bar are assumed to be rigidly connected in the simulation. An extreme
damping factor is tuned for the polyurethane bar to match the amplitude level of the experimental result.

The wave speed in the titanium bar is 5,160 m=s. A small part of the response with a window of 2 ms after the impact is
chosen to be analyzed. The comparison between the simulation and experimental results of the strain waves at the midpoint
of the incident bar is shown in Fig. 12.4. In the simulation, the propagating wave first arrives at the midpoint at 25:9 ms.
The first reflected wave comes back at 26:3 ms. After that, another two reflections with both boundaries of the incident bar
occur and pass through the midpoint at 26:7 ms and 27 ms. The first two pulses match with the experimental data very
well. The later two pulses travel faster than the corresponding ones in the experimental result. This may be attributed to the
complex dynamic behavior at the interface between the two bars and the influence of the wire support on the incident bar in
the experiments.

The comparison between the simulation and experimental results of the acceleration waves at the midpoint of the incident
bar is shown in Fig. 12.5. The two pulses match well with each other. The difference of the later part of the responses may
be attributed to the influence of the interface and wire supports to the experimental data. Due to the presence of extreme
damping in the transmission rod, it appears that the dynamic compressive wave does not make it to the far end of the bar.
Therefore there is no tensile wave (reflected from the end of the polyurethane bar) to pull apart the interfaces. This can
be illustrated by the velocity wave propagation along the two bars in Fig. 12.6. Multiple reflections can be observed in the
incident bar but no complete wave profile reaches the end of the transmission bar.
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Fig. 12.6 Velocity wave
propagation along the connected
two bars

12.4 Concluding Remarks

In this paper, the alternating wavelet-time finite element method is applied to study the impact wave response in a two rods
system. The high fidelity simulation responses accurately capture the dynamic behaviors in both the incident bar and the
transmission bar. The validity of the proposed method is verified through comparison with experimental data. Due to the
extremely high level of energy dissipation in the polyurethane rod and the large impedance mismatch between the titanium
bar and the polyurethane bar, the magnitude of the wave propagating through the polyurethane rod was very small and no
significant nonlinear properties were observed.

In the future, modifications to the experimental setup will be made in order to minimize the influence of the interface and
wire support. A transmission rod with an impedance much closer to that of the polyurethane rod will also be used in order to
transfer a greater amount of energy into the polyurethane rod. This is expected to provide better conditions for investigating
the potential for a nonlinear constitutive relation.
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Chapter 13
On the Role of Boundary Conditions in the Nonlinear Dynamic
Response of Simple Structures

Yu Liu and Andrew J. Dick

Abstract Nonlinear responses of structures under extreme impact loading with various boundary conditions are studied.
A variety of structures including rods and beams are modeled with material and geometric nonlinearities. High fidelity
responses are obtained by using the alternating wavelet-time finite element method (AWT-FEM). Nonlinear distortion and
dispersion are identified in the response and the influence of the boundary conditions on the nonlinearity is explored.

Keywords Nonlinear • Boundary conditions • Wavelet • Spectral finite element • Wave propagation

13.1 Introduction

Research on nonlinear elastic waves has advanced significantly in both industrial and academic areas, like non-destructive
evaluation [1], seismic motion analysis [2], and biomedical analysis [3]. When a structure is subject to an impact shock with
short duration, the high frequency content will significantly magnify the influence of the nonlinear property in the response.
A high fidelity analysis of the nonlinear response can enable a better understanding of both the structure and the impact load.

The finite element method (FEM) has been widely adopted to study wave propagation. However, for high fidelity
analysis of impact waves, FEM may introduce spurious oscillations which result from erroneously introduced numerical
dispersion [4, 5]. The spectral finite element method (SFEM) is a new powerful numerical technique for high fidelity wave
analysis. Calculations are performed in a spectral-domain such as the frequency-domain by using fast-Fourier transform
(FFT) and exact wave solution are used as spatial interpolation functions. For linear problems, only one element is needed to
obtain a highly accurate response for a given position in a structural component like a rod or a beam. For nonlinear problems,
an alternating frequency-time frame is constructed to avoid convolution operation of nonlinear terms in the spectral-
domain [6, 7]. However, the FFT-based methods have a major drawback. Wrap-around errors may occur resulting from
the periodic nature of the Fourier transform. Signals that do not decay within the given time-window will become wrapped
around in the time-sequence and corrupt the real signal. Semi-infinite elements or non-reflecting boundary conditions are
often added at ends of structures to leak energy out of the system [8]. For problems with physically realistic boundary
conditions, a long time-window is needed to dissipate the energy and may cause convergence issue in the alternating
frequency-time approach for nonlinear problems. This greatly limits the capability of nonlinear SFEM to study the interaction
between propagating waves and different physical boundaries.

Mitra and Gopalakrishnan developed a wavelet-based spectral finite element method to avoid the wrap-around issue
for linear wave propagation. The Fourier transform was replaced by a spectrally-uncouple single-scale wavelet transform.
A wavelet extrapolation technique was employed to represent non-periodic boundary conditions [9]. Based on their work,
the authors of this paper developed a new method named the alternating wavelet-time finite element method (AWT-FEM)
to study nonlinear wave propagation problems [10]. It adapted the spectral-uncoupled wavelet transform into an iterative
alternating wavelet-time approach. It can produce highly accurate responses for nonlinear problems with physical boundary
conditions.
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In this paper, the AWT-FEM is applied to study nonlinear wave propagation in rod and beam structures with different
boundary conditions. The focus of the study is on the influence of different boundary constraints on the nonlinear behavior
in the response. The remainder of this paper is organized in the following manner. The AWT-FEM for a materially nonlinear
rod and a geometrically nonlinear beam models are developed in the second section. In the third section, the results of
numerical simulations are presented. Free-free and clamped-free boundaries for the rod model are first compared. Hinged-
hinged (free to rotate and slide) and pinned-pinned boundaries for the beam model are then analyzed. Concluding remarks
and the direction of future work are provided in the last section.

13.2 Modeling

The AWT-FEM formulation for a materially nonlinear rod and a geometrically nonlinear beam are briefly derived in the first
and second subsections. The iterative alternating wavelet-time framework is then introduced in the last subsection.

13.2.1 Rod Model

A nonlinear stress-strain relationship with a quadratic nonlinear term for one-dimensional (1D) rod is reported in [11–13].
The formula is

¢ D E
�
–C ’–2

�
; (13.1)

where ¢ is the stress, – is the strain, E is the elastic modulus, and ’ is the nonlinear coefficient. When ’ > 0, the quadratic
term exhibits a hardening effect on the constitutive curve. When ’ < 0, a softening effect can be observed.

A linear strain-displacement relationship is assumed. By using Hamilton’s principle, the governing materially nonlinear
homogeneous wave equation for a rod is obtained as

EAu00 � ¡ARu C F .x; t/ D 0; (13.2)

where
F .x; t/ D 2’EAu0u00; (13.3)

the cross section area is represented by A, ¡ is the density, u is the axial displacement, the prime represents a derivative with
respect to the spatial coordinate x, and F .x; t/ is the nonlinear term.

By transforming Eq. (13.2) into the wavelet-domain by using the spectrally-uncoupled single-scale wavelet transform [14],
the spectral governing equation of motion is obtained as

EAOu00
j � ¡Aœ2j Ouj C OFj D 0; j D 0; 1; : : : ; n � 1; (13.4)

where the . O / symbol indicates that the corresponding variables are in the wavelet-domain.
By neglecting the nonlinear term OFj , Eq. (13.4) can be reduced to a linear wave equation. Exact solutions to this linear

equation are reported in [8] and they are adopted as spectrally-dependent shape functions N. The angular frequency ¨ in
the reference is replaced by ¨ D �iœj . By following a standard finite element approach, the following matrix form can be
obtained as

K
�
œj
�

qj D QE C QN; (13.5)

where

K D
Z

EAN
0T
R N

0

Rdx C
Z

¡ANT
RNRdx;

QN D
Z

NT
R
OFjdx;

QE D
Z

NT
R
OPj dx; (13.6)

where K is the spectrally formulated stiffness matrix, QN is the equivalent nodal force term for the nonlinear term, and QE

is the equivalent nodal force term for the distributive external load.
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13.2.2 Beam Model

The von Kármán strain [15] is adopted to define the nonlinear strain-displacement relationship. The constitutive relationship
is assumed to be linear. By using Hamilton’s principle, the governing geometrically nonlinear homogeneous wave equations
for a beam are obtained as

EAu00 � ¡ARu C FR .x; t/ D 0; (13.7)

EIwiv C ¡A Rw C FB .x; t/ D 0; (13.8)

where

FR .x; t/ D EAw0w00; (13.9)

FB .x; t/ D EAw00
�

u0 C 1

2

�
w0�2

�

; (13.10)

the transverse displacement is represented by w, I is the second moment of inertia, FR .x; t/ is the axial nonlinear force term,
and FB .x; t/ is the transverse nonlinear force term. By transforming Eqs. (13.7) and (13.8) into the wavelet-domain by using
the spectrally-uncoupled single-scale wavelet transform [14], the spectral governing equations of motion are obtained as

EAOu00
j � ¡Aœ2j Ouj C OFRj .x/ D 0; (13.11)

EI Owivj C ¡Aœ2j Owj � OFBj .x/ ; j D 0; 1; : : : ; n � 1: (13.12)

By neglecting the nonlinear term OFRj and OFBj , Eqs. (13.11) and (13.12) can be reduced to a set of linear wave equations. The
spectrally-dependent shape functions NR and NB can be found in [8]. The angular frequency¨ in the reference is replaced by
¨ D �iœ. By following a standard finite element approach, the same matrix form as defined in Eq. (13.5) can be obtained.
The dynamics stiffness matrix K becomes

K D

2

6
6
6
6
6
6
6
4

KR11 0 0 KR12 0 0

0 KB11 KB12 0 KB13 KB14

0 KB21 KB22 0 KB23 KB24

KR21 0 0 KR22 0 0

0 KB31 KB32 0 KB33 KB34

0 KB41 KB42 0 KB43 KB44

3

7
7
7
7
7
7
7
5

; (13.13)

where KRij and KBij are components of KR and KB, respectively.

KR D
Z

EAN
0T
R N

0

Rdx C œ2j

Z

¡ANT
RNRdx; (13.14)

KB D
Z

EIN
00T
R N

00

Bdx C œ2j

Z

¡ANT
RNBdx: (13.15)

The equivalent nodal nonlinear force term QN becomes

QN D

8
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
:̂

R
NR1 OFRj dxR
NB1 OFBj dxR
NB2 OFBjdxR
NR2 OFRj dxR
NB3 OFBjdxR
NB4 OFBjdx

9
>>>>>>>=

>>>>>>>;

(13.16)

where the terms NRi and NBi are elements of NR and NB, respectively. The general spectral nodal displacement vector is

defined as qj D
h
Ou1 Ow1 O™1 Ou2 Ow2 O™2

iT
, where O™ is the rotation angle in the wavelet-domain.



138 Y. Liu and A.J. Dick

13.2.3 Alternating Wavelet-Time Finite Element Method

In the wavelet-domain, all the nonlinear terms are in the form of convolutions. Explicit evaluations of convolution operations
in iterative procedures are computationally inefficient. Based on Eq. (13.5) for the rod and beam model, an alternating
iterative procedure between the wavelet-domain and the time-domain is constructed to solve the nonlinear equations. The
initial state is obtained from linear equations by setting the nonlinear terms as zero. For each iteration, new nodal values of
the nonlinear terms are calculated in the time-domain from the current states. The results are transformed into the wavelet-
domain and a spectral finite element approach is employed to obtain new nodal values of the unknowns. All nodal information
is then transformed back to the time-domain to calculate the new values of the residual nonlinear forces terms for use in the
next iteration. This process is continued until a predefined error measure is less than a given tolerance. For more details of
AWT-FEM, refer to [10].

13.3 Numerical Simulations

In this section, results are presented for numerical simulations performed with a nonlinear rod model and a nonlinear
beam model.

13.3.1 Rod

The parameters and the values used in the simulations for a materially nonlinear rod are listed in Table 13.1. In practical
situations, the axial load is often applied onto the free end of a rod. Two different boundary conditions are considered.
Free-free boundaries approximating the conditions for a suspended rod are shown in Fig. 13.1a. Clamped-free boundaries
constrain the axial motion of one end, as shown in Fig. 13.1b. The Daubechies wavelet with an order of N D 14 is used for
the spectrally-uncoupled wavelet transform and can yield sufficient smoothness in the responses. Fifty elements are used for
the AWT-FEM meshing.

An impulse in the velocity is created by the impact load at 0:1 ms. The wave is reflected by the free end and travels back
to the impacted position at 0:9ms. The response at the impacted position is shown in Fig. 13.2. Detailed comparison between
the linear and nonlinear responses are shown in the insert of Fig. 13.2. The differences between them are small. Response
component Vd is defined as the difference between the nonlinear response Vn and the linear response Vl by the formula
Vd D Vn � Vl . The propagation of the nonlinear wave and the nonlinear component Vd are shown in Figs. 13.3 and 13.4,
respectively. In this free-free rod, the absolute value of the nonlinear component Vd has a maximum velocity value of about
21%. At the impacted position, the nonlinear component Vd is small enough to be neglected.

For the clamped-free rod, the wave shape is reversed by the clamped boundary and travels back to the impacted position.
Strong nonlinear behavior is observed at the impacted position, as shown in Fig. 13.5. A distortion of the wave shape resulting

Table 13.1 System parameters
of a rod

Parameter Value

Elastic modulus, E 70 GPa
Cross section, A  � 25 mm �25 mm
Mass density, ¡ 2;800 kg/m3

Rod length, L 2 m
Time window, T 1 ms
Impact duration, Tp 50 s
Impact amplitude, Ta 100 kN
Sampling frequency, f 1;000 kHz
Nonlinear coefficient, ’ 20

a b

Fig. 13.1 (a) Free-free rod;
(b) Clamped-free rod
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from nonlinear dispersion is captured in the insert of Fig. 13.5. The propagation of the nonlinear wave and the nonlinear
component Vd are shown in Fig. 13.6 and 13.7, respectively. In this clamped-free rod, the absolute value of the nonlinear
component Vd has a maximum velocity value of about 47%. This indicates that the fixed constraint at the left-end increases
the influence of the nonlinear dispersion in the response.

13.3.2 Beam

The parameters and the values used in the simulations for a geometrically nonlinear beam are listed in Table 13.2. The impact
load is applied at the middle of the beam. Two different boundary conditions are considered. Hinged-hinged boundaries
enable the beam to slide and have no constraint on the axial motion, as shown in Fig. 13.8a. Pinned-pinned boundaries
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Table 13.2 System parameters
of a beam

Parameter Value

Elastic modulus, E 70 GPA
Cross section, A 25�25 mm
Mass density, ¡ 2;800 kg/m2

Beam length, L 1 m
Time window, T 1 ms
Impact duration, Tp 50 s
Sampling frequency, f 1;000 kHz
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a bFig. 13.8 (a) Hinged-hinged
beam; (b) Pinned-pinned beam
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constrain the axial motions and only enable rotations at both ends, as shown in Fig. 13.8b. The Daubechies wavelet with an
order ofN D 14 is used for the spectrally-uncoupled wavelet transform and can yield sufficient smoothness in the responses.
Fifty elements are used for the AWT-FEM meshing.

Lateral waves in beam are highly dispersive. For the hinged-hinged beam, the comparison between the nonlinear and
linear responses is shown in Fig. 13.9 and the results are very close to each other. The propagation of the nonlinear wave and
the nonlinear component Vd are shown in Figs.13.10 and 13.11, respectively. The absolute value of the nonlinear component
Vd has a maximum velocity value of about 3:5%.

For the pinned-pinned beam, the comparison between the nonlinear and linear responses is shown in Fig. 13.12.
A nonlinear behavior is identified in the insert of Fig. 13.12. The wave shape is being shifted to the left resulting from
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the introduced nonlinear dispersion. As shown in Figs. 13.13 and 13.14, The absolute value of the nonlinear component Vd
has a maximum velocity value of about 17:6%. This indicates that the axial constraints significantly strengthen the nonlinear
behavior introduced by the geometric nonlinearity in the beam.

13.4 Concluding Remarks

In this paper, the alternating wavelet-time finite element method is applied to study the influence of boundary constraints on
the nonlinear behavior in the wave propagation through simple structures. The results of numerical simulations demonstrate
that axial constraints can further strengthen the nonlinear dispersion introduced by both material and geometric nonlinearities
in rod and beam structures. Experimental works will be conducted in the future to verify this numerical study.
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Chapter 14
Evaluation of On-Line Algebraic Modal Parameter
Identification Methods

F. Beltrán-Carbajal, G. Silva-Navarro, and L.G. Trujillo-Franco

Abstract This paper describes the application of a novel time domain and on-line algebraic modal parameter identification
methodology based on differential algebra, module theory and Mikusiński operational calculus for mechanical structures with
multiple degrees-of-freedom. The natural frequencies and damping ratios associated to a mechanical system are estimated
in an on-line fashion from transient state real-time measurements (e.g., displacements or accelerations). The proposed
identification methodology can be also extended for modal parameter identification using experimental frequency response
functions. A comparison with usual modal identification techniques is performed in order to evaluate and establish the main
contributions of the proposed approach. Some numerical and experimental results are included to show the efficient and
robust performance and fast parametric estimation of the proposed algebraic identification approach.

Keywords Modal parameter identification • On-line algebraic identification • Multi-degrees-of-freedom mechanical
structures • Mikusiński operational calculus

14.1 Introduction

Modal parameter identification is a quite challenging and active area for analysis, modeling, design, control and monitoring
of mechanical systems. Certainly, numerous identification algorithms in time or frequency domain have been reported in the
literature, mainly in case of off-line estimation of modal parameters for mechanical system with multiple degrees-of-freedom
(see, e.g., [1–8] and references therein). Most of these techniques, however, are essentially asymptotic, recursive, complex
and slow for on-line parameter estimation implementations, using some minimum sensor number and persisting excitation,
which could be required for efficient adaptive active noise and vibration control and other practical applications on dynamic
mechanical structures [9–11].

On the other hand, a theoretical framework for algebraic parameter identification for continuous-time and invariant linear
systems has recently been introduced by Fliess and Sira-Ramírez [12]. This identification approach is based on well-known
powerful mathematical tools as module theory, differential algebra and operational calculus. It is important to remark that
the operational calculus is a quite general approach based on different integral transformations of functions and generalized
functions (e.g., Fourier, Laplace, Stieltjes, Hilbert, Bessel) [13, 14]. The application of operational calculus in mechanics is
quite common in the transformation of functions from time to frequency domain and to solve differential equations.

In addition, an algebraic identification methodology has been proposed by Beltran-Carbajal and Silva-Navarro [15] to
sequentially and quickly estimate system parameters, such as mass, stiffness and viscous damping, to adaptively control
multiple degrees-of-freedom mass-spring-damper mechanical systems using on-line measurements of input-output data.
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On-line algebraic reconstruction of disturbance harmonic forces has also been introduced for adaptive-like vibration
absorption by Beltran-Carbajal and Silva-Navarro [16]. Furthermore, algebraic identification methods for the simultaneous
parameter estimation of mass, damping, stiffness and rotor eccentricity as well as on-line reconstruction of unknown
centrifugal forces induced by rotor unbalance has been presented for active unbalance control on rotor-bearing systems
by Beltran-Carbajal, Silva-Navarro and Arias-Montiel [17].

This paper proposes an on-line and time domain algebraic identification approach for the estimation of modal parameters
on multiple degrees-of-freedom mechanical structures under free vibration condition. The values of the coefficients of
the characteristic polynomial of the mechanical system are firstly estimated in a real-time manner, and then the natural
frequencies and damping ratios are computed. During the design process, we have considered that only measurements
of some position output variable is available for identification scheme implementations. However, the presented results
can be extended to consider acceleration measurements or experimental records from Frequency Response Functions. For
illustrative purposes, the algebraic modal parameter identification methodology is verified on a two degrees-of-freedom
mechanical system excited by a change in its position initial condition. Some computer simulation results have been included
to show the satisfactory performance of the proposed identification approach for the fast and effective estimation of the
coefficients of the characteristic polynomial, natural frequencies and damping ratios.

14.2 Vibrating Mechanical System

Consider the n Degrees-Of-Freedom (DOF) vibrating mechanical system shown in Fig. 14.1, where xi, iD 1, 2, : : : , n, are
the displacements of n mass carriages moving on rectilinear guides over a rigid platform, and mi, ki and ci denote mass,
stiffness and viscous damping associated to the i-th degree-of-freedom.

The mathematical model of this flexible mechanical system of n DOF under free vibration condition is given by the
ordinary differential equation

MRx C CPx C Kx D 0; x 2 Rn (14.1)

where x is the vector of generalized coordinates (displacements), and M, C and K are symmetric inertia, damping and
stiffness n� n matrices, respectively, given by
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:::

0 0 0 : : : �kn kn C knC1

3

7
7
7
7
7
5

It is easy to verify that the system (14.1) is completely controllable and observable, stable when K is positive definite and
C� 0, and asymptotically stable when C is positive definite (see, e.g., Inman [18]).

It is well-known that, the mathematical model (14.1) can be transformed to modal (principal) coordinates qi, iD 1, 2, : : : ,
n, as follows (see, e.g., [1])

Rqi C 2�i!i Pqi C !2i qi D 0 (14.2)

with

x.t/ D ‰q.t/ (14.3)

Fig. 14.1 Schematic diagram of
a n DOF mass-spring-damper
system



14 Evaluation of On-Line Algebraic Modal Parameter Identification Methods 147

where !i and � i are the natural frequencies and damping ratios associated to the i-th vibration mode, respectively, and ‰ is
the so-called n� n modal matrix given by

‰ D

2

6
6
6
6
6
4

 11  12 : : :  1n�1  1n
 21  22 : : :  2n�1  2n
:::

 n�11  n�12 : : :  n�1n�1  n�1n
 n1  n2 : : :  nn�1  nn

3

7
7
7
7
7
5

(14.4)

In notation of Mikusiński operational calculus [11, 12], the modal analysis representation or modal model (14.2) is
described as

�
s2 C 2�i!i s C !2i

�
qi .s/ D p0;i C p1;i s (14.5)

where p0,i are constants depending on the system initial conditions at the time t0 � 0.
From Eqs. 14.3 and 14.5, one then obtains that

xi .s/ D
nX

jD1

 ij
�
p0;j C p1;j s

�

s2 C 2�j!j s C !2j
(14.6)

Therefore, the physical displacements xi are given by

pc.s/ xi .s/ D r0;i C r1;i s C � � � C r2n�2;i s2n�2 C r2n�1;i s2n�1 (14.7)

with

pc.s/ D s2n C a2n�1s2n�1 C � � � C a1s C a0 (14.8)

where pc(s) is the characteristic polynomial of the mechanical system and ri,j are constants which can be easily calculated by
using the values of the system initial conditions as well as the modal matrix components  ij.

It is widely known that the roots of the characteristic polynomial (14.8) provide the damping factors and damped natural
frequencies, and hence the natural frequencies and damping ratios of the flexible structure. Here, we propose an on-line
algebraic identification approach to estimate the modal parameters of the mechanical system through the real-time estimation
of the positive coefficients ak of the system’s characteristic polynomial using only position measurements of some output
variable.

Remark Note that, the mathematical model (14.1) can describe any general n DOF mechanical system, including exogenous
forces. Direct parameter identification of the system parameters as mass, stiffness and damping can be realized using
algebraic parameter identification methods described in [15–17], where some comparisons with ARX and ARMAX methods
are discussed. However, in typical experimental modal analysis techniques one starts from a modal model (14.2) associated
to a Frequency Response Function, from output only data (e.g., simple excitation via initial conditions) or input-output
data (e.g., impact hammer testing, sine sweep testing using shakers), whose modal parameters are estimated using modal
parameter estimation techniques like Peak Peaking, Curve Fitting, etc. in order to get estimations of the modal parameters
[1]. Here we propose a reliable extension of the algebraic parameter identification methods in [16] for general n DOF modal
models, which are fast and effective.

14.3 On-Line Algebraic Parameter Identification of Modal Parameters

Consider the mathematical model (14.7), where only measurements of some position variable xi is available to be used
in the synthesis of an on-line algebraic identification scheme for the fast and effective estimation of the coefficients ak of
the system’s characteristic polynomial in time domain. Moreover, we assume that the mechanical system is solely excited
by an initial condition change. Therefore, the parameter identification should be performed using the system transient
response alone, avoiding the use of additional force actuators and, consequently, achieving a significant reduction in the
implementation costs.
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In order to eliminate the influence of the unknown constants ri,j, Eq. 14.7 are differentiated four times with respect to the
complex variable s:

2nX

kD0

.2n/Š .2n/Š

kŠ .2n � k/Š .2n � k/Š s
2n�k d 2n�k

ds2n�k
xi .s/C a2n�1

2n�1X

kD0
.2n/Š.2n�1/Š

kŠ.2n�k/Š.2n�1�k/Š s
2n�1�k d2n�k

ds2n�k
xi .s/

C a2n�2
2n�2X

kD0

.2n/Š .2n � 2/Š
kŠ .2n � k/Š .2n � 2 � k/Š s

2n�2�k d 2n�k

ds2n�k
xi .s/C � � �

Ca1
1X

kD0

.2n/Š.1/Š

kŠ .2n � k/Š .1 � k/Š s
1�k d 2n�k

ds2n�k
xi .s/C a0

d2n

ds2n
xi .s/ D 0

(14.9)

where d0

ds0
xi .s/ D xi .s/.

Next, to avoid differentiation with respect to time, Eq. 14.9 are multiplied by s�4 and transformed back to the time domain:

2nX

kD0
.�1/2n�k .2n/Š .2n/Š

kŠ .2n�k/Š .2n�k/Š
Z .k/

t0

.�t/2n�kxi .t/Ca2n�1
2n�1X

kD0
.�1/2n�k .2n/Š .2n�1/Š

kŠ .2n�k/Š .2n�1�k/Š
Z .1Ck/

t0

.�t/2n�kxi .t/

C a2n�2
2n�2X

kD0
.�1/2n�k .2n/Š .2n� 2/Š

kŠ .2n � k/Š .2n � 2 � k/Š
Z .2Ck/

t0

.�t/2n�kxi .t/

C � � � C a1

1X

kD0
.�1/2n�k .2n/Š.1/Š

kŠ .2n � k/Š .1 � k/Š
Z .2n�1Ck/

t0

.�t/2n�kxi .t/C a0.�1/2n
Z .2n/

t0

.�t/2nxi .t/ D 0

(14.10)

where �tD t � t0, and
Z .N /

t0

�.t/ are iterated integrals of the form
Z t

t0

Z �1

t0

: : :

Z �N�1

t0

� .�N / d�N : : : d�1 with
Z .1/

t0

�.t/ D
Z t

t0

� .�/ d� ,
Z .0/

t0

�.t/ D �.t/ and N a positive integer.

The integral-type equations (14.10), after some more integrations, leads to the following linear system of equations:

A.t/™ D B.t/ (14.11)

where ™ D �
a0 a1 � � � an�1 an

	T
denotes the parameter vector to be identified, A(t) and B(t) are n� n and n� 1 matrices,

respectively, described by

A D

2

6
6
6
6
6
4

a11 a1;2 : : : a1n�1 a1n

a21 a22 : : : a2n�1 a2n
:::

an�11 an�12 : : : an�1n�1 an�1n
an1 an2 : : : ann�1 ann

3

7
7
7
7
7
5

; B D

2

6
6
6
6
6
4

b1

b2
:::

bn�1
bn

3

7
7
7
7
7
5

with
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a11 D .�1/2n
Z .2n/

t0

.�t/2nxi .t/

a12 D
1X

kD0
.�1/2n�k .2n/Š.1/Š

kŠ .2n� k/Š .1 � k/Š
Z .2n�1Ck/

t0

.�t/2n�kxi .t/

:::

a1n�1 D
2n�2X

kD0
.�1/2n�k .2n/Š .2n � 2/Š

kŠ .2n � k/Š .2n� 2 � k/Š
Z .2Ck/

t0

.�t/2n�kxi .t/

a1n D
2n�1X

kD0

.2n/Š .2n � 1/Š
kŠ .2n � k/Š .2n� 1 � k/Š s

�1�k d 2n�k

ds2n�k
xi .s/

b1 D �
2nX

kD0
.�1/2n�k .2n/Š .2n/Š

kŠ .2n � k/Š .2n � k/Š
Z .k/
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.�t/2n�kxi .t/

By solving Eq. 14.11 one obtains the parameter vector � as

™ D A�1B D 1

�
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6
6
6
6
4

�1

�2

:::

�n�1
�n

3

7
7
7
7
7
5

(14.12)

Then, we propose the following algebraic identifiers to estimate the coefficients ak of the characteristic polynomial without
problems of singularities when the determinant�D det(A(t)) crosses by zero:

bak D

Z

j�k�1j
Z

j�j
; k D 1; 2; : : : ; 2n � 1 (14.13)

In the above expression we can apply more integrations on the numerator and denominator to get smoother estimations
but introducing slower responses.

Thus, one could implement the algebraic identifiers (14.13) using only those available position measurements xi of any
specific mass carriage. From the estimated coefficientsbak , one can obtain the roots of the characteristic polynomial as follows

b�i D b�i C jb!di ; b�
�
i D b�i � jb!di ; i D 1; 2; : : : ; n (14.14)

where b�i and b!di are estimates of the damping factors and damped natural frequencies of the mechanical system,
respectively. Hence, the estimates of the natural frequencies and damping ratios are given by

b!ni D
q

b�
2
i Cb!

2
di ;

b�i D � b�i
q

b�
2
i Cb!

2
di

(14.15)

Note that, this identification approach can also be extended to the case of acceleration sensors, instead of displacement
measurements. Specifically, one could simply multiply Eq. 14.6 by s2 and describe an acceleration output as

yi .s/ D
nX

jD1

 ij
�
p0;j s

2 C p1;j s
3
�

s2 C 2�j!j s C !2j
(14.16)

where yi(s)D s2xi(s) is some acceleration output variable described in complex s domain, and then follow the proposed
algebraic identification methodology.
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Table 14.1 Mechanical system
parameters for two DOF

m1 D 1.2678 kg m2 D 1.3317 kg k3 D 360 N/m
c1 D 2.9 Ns/m c2 D 1.7 Ns/m –
k1 D 178 N/m k2 D 360 N/m –
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Fig. 14.2 Free vibration
response of the first mass carriage
x1 and experimental FRF
computed from a sine sweep
from 0.1 to 10 Hz and constant
force of 1.0 N

Moreover, one could replace xi(s) into Eq. 14.6 by some Frequency Response Function Hi(!):

Hi .!/ D
nX

iD1
�i .j!/

�
Ai

j! � �i C
A�
i

j! � �i
�

(14.17)

where �i are the system poles, Ai are the residues and �i are polynomial functions representing the influence of the system
initial conditions, and thus synthesize from Eq. 14.6 an algebraic identification scheme for on-line estimation of the modal
parameters using some experimental Frequency Response Function.

14.4 An Illustrative Case: Simulation and Experimental Results

The experimental setup is a rectilinear mechanical plant (Model 210a) provided by Educational Control Products®.
The mechanical system consists of two mass carriages, interconnected by bidirectional cylindrical helical springs. Each
mass carriage suspension has anti-friction ball bearing systems and, therefore, the linear dashpots are included only to
describe small viscous dampings. Each mass carriage has a (rotary) high resolution optical encoder to measure its actual
positions via cable-pulley systems (with effective resolutions of 2,266 pulses/cm or 4.413� 10�3 mm/pulse). The signal and
algebraic identification are obtained through a high-speed DSP board into a standard PC running under Windows XP® and
Matlab®/Simulink®.

The performance of the proposed on-line algebraic modal parameter identification approach was numerically and
experimentally verified on a two-DOF mechanical system with the set of physical system parameters given in Table 14.1.

Therefore, the actual values of the characteristic polynomial coefficients can be easily computed as: a0 D 1.5267� 105,
a1 D 1,778.44, a2 D 967.94, a3 D 3.564, with corresponding modal parameters !n1 D 14.1244 rad/s, �1 D 0.06679,
!n2 D 27.6636 rad/s and �2 D 0.03032. Here we only employ measurements of the position of the first mass carriage x1.

The application of the algebraic identification scheme in Eqs. 14.13, 14.14 and 14.15 was performed in the numerical case
using Runge-Kutta 4/5 methods with fixed step time of 9 ms and for the real-time (experimental) algebraic estimation case
using cumulative trapezoidal numerical integration with fixed sampling time of 9 ms. In both cases the initial conditions were
x1(0)D 0.01275 m, Px1.0/ D 0 m=s, x2(0)D 0 m and Px0.0/ D 0 m=s. The numerical and experimental transient response for
the displacement x1 and FRF computed only for the experimental data are shown in Fig. 14.2.

The algebraic estimation of the coefficients of the fourth order characteristic polynomial of the two DOF system is
described in Fig. 14.3. Note the satisfactory performance of the algebraic identifiers (14.13), (14.14) and (14.15), using only
measurements of the position output variable x1. The effective and fast estimation of the coefficients of the characteristic
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Fig. 14.3 On-line algebraic identification of the characteristic polynomial coefficients of a two-DOF system

Table 14.2 Algebraic estimation
of coefficients of the fourth
characteristic polynomial

Procedure ba0 ba1 ba2 ba3
Actual coefficients 1.5267� 105 1,778.44 967.94 3.564
Algebraic estimation (numerical) 1.527� 105 1,778.0 968.1 3.564
Algebraic estimation (experimental) 1.543� 105 1,793.0 980.4 3.534
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Fig. 14.4 On-line algebraic identification of the modal parameters for the two-DOF system

polynomial, a0, a1, a2 and a3, for the two DOF mass-spring-damper mechanical system is quite evident, which makes
possible the indirect estimation of the modal parameters in a short time about 0.44 s using the transient system response. A
summary of the actual, numerical and experimental estimation of polynomial coefficients is presented in Table 14.2. The on-
line algebraic estimation of the modal parameters is depicted in Fig. 14.4. In fact, the estimated numerical modal parameters
after tD 0.44 s are b!n1 D 14:12 rad=s,b�1 D 0:06679, b!n2 D 27:67 rad=s,b�2 D 0:03029, which are practically similar to
the actual values. The average values of the real-time estimated modal parameters are b!n1 � 14:13 rad=s,b�1 � 0:06684,
b!n2 � 27:83 rad=s,b�2 � 0:02932, which are also good approximations to the actual values in spite of inherent unmodelled
dynamics and noisy measurements.
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14.5 Conclusions

It is proposed an algebraic identification approach for the on-line estimation of the natural frequencies and damping ratios
for linear multiple degrees-of-freedom mechanical systems. The values of the coefficients of the characteristic polynomial
of the mechanical system are firstly estimated in real-time, and then the modal parameters are obtained. In the design
process, we have considered that only measurements of some position output variable is available for the identification
scheme implementation. Nevertheless, one could easily extend the results for situations where acceleration measurements
are preferred. The algebraic modal parameter identification was tested for a two-DOF mechanical system excited by a change
of its position initial condition. In general, the simulation and experimental results show a satisfactory performance of the
proposed identification approach with fast and effective estimations.
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Chapter 15
Ambient Vibration Test of Granville Street Bridge
Before Bearing Replacement

Yavuz Kaya, Carlos Ventura, and Martin Turek

Abstract The Granville Bridge, which carries eight-lanes of Highway 99 over False Creek in Vancouver, British Columbia,
Canada, consists of several concrete approaches and seven steel truss spans. To improve the seismic performance of the
bridge, the bearings under the steel truss spans are replaced. As part of this rehabilitation project, a permanent seismic
monitoring system will be installed both to monitor the vibration characteristics over a long period of time and analyze
the data, and to keep track of the structural health state of the bridge right after extreme events such as earthquake, strong
wind, and ship collision. In support of this project, the University of British Columbia is carrying out a two-phase ambient
vibration test (AVT). This includes measurements at the deck and at each pier of the steel spans to determine both the modal
and vibration characteristics of the bridge before and after the replacement of bearings, and to find optimal locations for the
permanent seismic instrumentation. This paper presents the results of the first phase of AVT.

Keywords Ambient vibration • Fourier amplitude • Modal identification • Natural frequency • Bridge dynamics

15.1 Introduction

The Granville bridge is one of the important bridges that connects downtown Vancouver area with the south Vancouver. It
carries eight-lane of Highway 99 over False Creek in Vancouver, and it consists of several concrete approaches and steel
truss spans. The City of Vancouver is carrying out a rehabilitation project to improve the seismic performance of the bridge.
The project includes the replacement of bearings under the steel trusses with seismic isolation bearings. As part of this
rehabilitation project, a permanent seismic monitoring system will be installed both to monitor the vibration characteristics
over a long period of time and analyze the data, and to keep track of the structural health state of the bridge right after extreme
events such as earthquake, strong wind, and ship collision.

In support of this project, the University of British Columbia (UBC) is carrying out a two-phase ambient vibration test
(AVT). The first phase of the AVT was carried out on June 12th, 2013 before the bearing replacement started, and the second
phase will be carried out when the bearing replacement project is over, which is expected to happen sometime in December,
2013. The first AVT included measurements at the deck and at each pier of the steel spans to determine both the modal
and vibration characteristics of the bridge before the replacement of bearings. After second AVT, the change in dynamic
characteristics of bridge will be better understood, and optimal locations for the permanent seismic instrumentation can be
determined. This paper presents only the results of the first phase of AVT, which is carried out before bearing replacements.
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15.2 Description of the Bridge

As seen in Fig. 15.1, the Granville Street Bridge is located in N49.2718 and -E123.1339 of geographical coordinates in
Vancouver, British Columbia, Canada, and the longitudinal direction of the bridge is 45ı oriented to east from the true
magnetic north. The bridge, owned by the City of Vancouver, connects downtown Vancouver to south of Vancouver through
Granville Island. Truck traffic and heavier types of tour buses are prohibited to use the bridge even though transit buses are
allowed to transit the bridge, and it is posted for 27 tonne load limit.

Figure 15.2 shows the dimensions of the steel spans, the locations of the pin connections and the expansion joints on the
bridge. The total length of the steel spans is 544 m, and length of each span varies from 28.6 to 121.16 m. Eight piers support
the superstructure of the bridge, and the support conditions between superstructure and each pier is given in Fig. 15.3.

Fig. 15.1 Location of Granville Street Bridge

Fig. 15.2 Dimensions of the steel truss spans of the Granville Street Bridge, and the locations of the pin connections (red circle dots) and expansion
joints (blue square dots). All dimensions are in meter
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Fig. 15.3 Expansion joint at the Pier 7 free to display only in longitudinal direction. Support conditions between the superstructure of the bridge
and each pier: (a) Pier 1: free to move in longitudinal direction and rotation about vertical direction, (b) Piers 2, 3 and 6: fixed in all directions, (c)
Pier 4: left support is free to move in longitudinal direction and rotation about vertical, and the right support is fixed in all directions, (d) Pier 5:
both left and right supports are fixed in all directions, (e) Pier 8: free to move in longitudinal direction and rotation about vertical direction

15.3 Description of the Ambient Vibration Test

The first phase of the AVT of the Granville Street Bridge carried out on Thursday June 12th, 2013. The test started 10:10 in
the morning and lasted at 6:18 in the afternoon of the same day. The site temperature during the AVT was recorded between
13 to 18 ıC: 13 ıC at 10:00 am, reached to 18 ıC at 03:00 pm, and down to16 ıC at 06:00 pm.

Two concrete approaching viaducts, one at each end of the bridge, are included in the AVT. The length of south approach
is 64 m and the north approach is 44.6 m. One of the nine sensors is used as a reference sensor located in the main span of
the bridge. The remaining eight sensors are divided into two groups of four. Each of the groups is used exclusively on one
side of the bridge: one group on the west side and the other on the east side. Two groups of sensors and the reference sensor
located in the main span forms one setup of the AVT. Starting from the south end of the bridge, setups progress to the north
end of the bridge. Using 13 setups of this kind, the entire bridge is monitored by 106 measurement points. The measurement
points within each expansion joint are placed in equal distance. In each setup the north direction of each sensor is oriented
to the longitudinal direction of the bridge (Fig. 15.4).

The test duration for each setup is 30 min, and the sampling rate of the recordings is 128 Hz. Low gain velocity
measurement components of the sensor are used for both data analysis and modal identification. An external GPS attached
to each sensor allowed the synchronization of sensor recordings both within each setup and between the setups.

The reference sensor is set up to run in continuous recording mode during the entire AVT, but it malfunctioned, and
as a result of this some of the recorded data on the reference sensor had been overwritten. Only the last 3 h of data were
able to be retrieved from the reference sensor: from 16:04 to 18:18 pm. Such a short duration of data made it impossible to
calculate the mode shapes of the entire bridge. In addition to that, due to the technical difficulties beyond our control at site,
no measurement had been conducted at measurement point 103, which is located at the concrete viaduct at the north end of
the bridge.

15.4 Data Analysis

The noise components of the ambient vibration data, by its nature, usually appear as a random phenomenon in the data,
whereas the response of the bridge is not random, but consistent at certain frequencies due to the resonance effect of the
bridge. One, therefore, can minimize the effect of noise components by using statistical tools such as segmentation (or
windowing), averaging and smoothing. To do this, the data is divided into equal lengths of segments (running windows) as
indicated in Fig. 15.5, and each running window is shifted from the beginning of the data to the end by a predefined overlap
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Fig. 15.5 Running window moves within the length of the data by a predefined overlap ratio. The data in each running window is analysed
separately, and sequential analysis results are averaged to form the overall output for the entire data

ratio. Each running window is analyzed separately where the analysis of each running window involves removing of mean
value, de-trending, calculation of Fourier Amplitude Spectrum (FAS), and smoothing of FAS. Sequential analysis results are
averaged to form the overall output for the entire data. More detailed information about how to process ambient vibration
data can be found in [1].

15.5 Analysis Results

The maximum RMS velocity in both longitudinal and transverse directions is recorded between pier 1 & 2 of the bridge,
whereas the maximum RMS velocity in vertical direction is between pier 3 & 4 of the bridge. The maximum RMS velocities
measured on the bridge deck are 1.97, 0.98, and 0.44 mm/s, in vertical, transverse, and longitudinal directions, respectively.
Table 15.1 lists the RMS values of the low gain velocities of different time windows of the day at 104 different locations on
the bridge deck.

Figure 15.6 shows the velocities time histories recorded at measurement location 88 on the bridge deck and its FAS
calculated for the three principal directions of the bridge: longitudinal, transverse, and vertical. Due to the recording failure
in reference sensor, mode shapes of the bridge could not be calculated. Table 15.2 lists the modal frequencies of the bride
that is identified from the FAS.
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Table 15.1 RMS values of the low gain velocity recordings, where X, Y, and Z represents the longitudinal, transverse
and vertical direction of the bridge, respectively

RMS values (mm/s) RMS values (mm/s) RMS values (mm/s)

Location Z Y X Location Z Y X Location Z Y X

1 0.185 0.223 0.116 36 0.613 0.220 0.104 71 0.777 0.240 0.144
2 0.531 0.619 0.276 37 0.593 0.216 0.102 72 0.750 0.232 0.139
3 0.309 0.330 0.144 38 0.512 0.171 0.089 73 0.991 0.291 0.149
4 0.396 0.414 0.188 39 0.505 0.165 0.086 74 1.185 0.344 0.178
5 0.126 0.128 0.081 40 0.500 0.162 0.089 75 0.990 0.285 0.183
6 0.406 0.481 0.214 41 0.597 0.203 0.108 76 1.853 0.424 0.228
7 0.734 0.813 0.351 42 0.738 0.259 0.125 77 1.158 0.350 0.169
8 0.872 0.970 0.440 43 0.762 0.277 0.122 78 0.776 0.245 0.135
9 0.850 0.863 0.382 44 0.701 0.223 0.108 79 0.868 0.246 0.130
10 0.779 0.722 0.331 45 0.578 0.159 0.088 80 0.851 0.243 0.123
11 0.747 0.722 0.320 46 0.597 0.154 0.092 81 0.828 0.248 0.127
12 0.753 0.980 0.427 47 0.572 0.170 0.089 82 0.796 0.240 0.121
13 0.619 0.224 0.117 48 0.311 0.142 0.083 83 0.793 0.241 0.122
14 0.602 0.208 0.114 49 0.146 0.113 0.070 84 0.688 0.215 0.111
15 0.994 0.337 0.151 50 0.430 0.172 0.087 85 0.581 0.195 0.101
16 1.013 0.384 0.221 51 0.112 0.076 0.061 86 0.537 0.180 0.093
17 0.855 0.280 0.162 52 0.433 0.168 0.083 87 0.580 0.205 0.106
18 0.822 0.250 0.147 53 0.172 0.077 0.063 88 0.603 0.199 0.102
19 0.848 0.335 0.390 54 0.129 0.098 0.065 90 0.587 0.202 0.104
20 1.117 0.377 0.189 55 0.427 0.469 0.221 91 0.524 0.168 0.092
21 1.971 0.464 0.243 56 0.096 0.056 0.065 92 0.525 0.172 0.099
22 1.131 0.306 0.186 57 0.520 0.609 0.286 93 0.520 0.179 0.101
23 1.734 0.437 0.198 58 0.123 0.101 0.069 94 0.579 0.210 0.115
24 1.115 0.347 0.157 59 0.314 0.331 0.173 95 0.646 0.234 0.127
25 0.892 0.264 0.134 60 0.743 0.831 0.388 96 0.677 0.249 0.146
26 0.891 0.241 0.123 61 0.789 0.834 0.393 97 0.639 0.209 0.110
27 0.873 0.248 0.114 62 0.873 0.825 0.394 98 0.602 0.158 0.094
28 0.848 0.260 0.123 63 0.868 0.913 0.434 99 0.554 0.146 0.088
29 0.895 0.280 0.127 64 0.871 0.936 0.438 100 0.541 0.160 0.094
30 0.873 0.266 0.123 65 0.641 0.686 0.324 101 0.369 0.139 0.080
31 0.674 0.208 0.099 66 0.529 0.189 0.108 102 0.143 0.097 0.084
32 0.580 0.192 0.096 67 0.562 0.186 0.109 104 0.128 0.070 0.054
33 0.595 0.206 0.098 68 0.845 0.278 0.148 105 0.465 0.179 0.090
34 0.587 0.202 0.100 69 0.877 0.314 0.163 106 0.119 0.058 0.051
35 0.628 0.216 0.099 70 0.793 0.259 0.146

15.6 Conclusion

The City of Vancouver decided to install a permanent seismic monitoring system on Granville Street Bridge as part of the
seismic rehabilitation project, which includes the replacement of existing bearings with new isolation bearings. The UBC is
collaborating the City to conduct two phase of AVT on the bridge deck in order to better understand the dynamic behaviour
of the bridge before and after the bearing replacement. The present paper summarizes the first phase of the AVT that is
carried out before the bearing replacement.

The first phase of the AVT of the Granville Street Bridge carried out on Thursday June 12th, 2013, and it took 8 h to
complete the test. The entire bridge is tested by 106 measurement locations using 13 test setups. Due to the malfunctioning
of reference sensor located at measurement point 89, no mode shapes were able to be calculated.

The maximum RMS velocities recorded on the bridge are 1.97, 0.98, and 0.44 mm/s, in vertical, transverse, and
longitudinal directions, respectively. The ambient vibration of the bridge at measurement location 88 indicated that the
modal frequencies of the bridge as 0.79, 1.34, and 1.85 Hz in transverse, longitudinal, and vertical directions, respectively.
Such values change from one measurement location to other due to many factors such as pier height, soil condition at both
ends of the bridge and underneath each pier, boundary conditions between piers and superstructure, etc.
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Fig. 15.6 (a) Time history of the velocity data recorded at measurement location 88, (b) Fourier amplitude spectrum of the data at the same
location

Table 15.2 Model frequencies
identified at measurement
location 88

Mode Frequency (Hz) Direction Mode Frequency (Hz) Direction

1 0.79 T 7 2.21 L
2 1.07 T 8 2.44 V
3 1.13 T 9 2.72 V
4 1.34 L 10 4.13 V
5 1.60 L 11 4.38 V
6 1.85 V

L, T, and V are longitudinal, transverse, and vertical directions of the bridge,
respectively
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The bridge is currently undergoing the seismic rehabilitation project, and the second phase of the AVT will be conducted
after the bearing replacement, which is expected to be finished later 2013. Comparing the results of two AVTs will allow the
UBC to make recommendations about the permanent seismic monitoring to the City of Vancouver.
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Chapter 16
Vibration Testing and Analysis of A Monumental Stair

Mehdi Setareh and Xiaoyao Wang

Abstract Excessive and annoying vibrations in buildings, stadiums, and footbridges have become more common in the past
two decades due to several reasons including the tendency to optimize the use of building materials, use of higher strength and
lighter structural properties, etc. Stair vibrations have also become an important design issue mainly due to the architects’
desire to create more innovative, slender, light, and flexible monumental structures. Large vibrations and movements of
stairs can become serious safety and serviceability problems, as they have the potential to disrupt the evacuation during an
emergency and also people may feel unsafe during the normal use. Even though over the past two decades a large number of
research studies on the floor vibrations have been conducted, very little information is available for stairs. This paper presents
experimental and analytical studies of a large monumental stair. Using an electrodynamic shaker and a series of seismic
accelerometers, a set of modal tests was performed on the structure. This was done to estimate the dynamic properties of
the stair. A computer model of the structure was created using the common practices used in structural engineering design
offices. Comparison of the measured stair responses and the results of computer analysis showed reasonable agreement. A
Cumulative Modal Assurance Criterion (CMAC) was introduced, and was used to identify the degrees of freedom with low
quality measured responses. It was found that CMAC performs better than Enhanced Coordinate Modal Assurance Criterion
(ECOMAC) and Coordinate Modal Assurance Criterion (COMAC) when the response is due to the excitation of a single
mode. Several walking and running tests were conducted on the structure, which showed the structure may not be susceptible
to large levels of vibrations for everyday use.

Keywords Staircase • Vibration serviceability • Human vibrations • Cumulative modal assurance criterion (CMAC)
• Coordinate modal assurance criterion (COMAC) • Enhanced coordinate modal assurance criterion (ECOMAC)

16.1 Introduction

In recent years, a trend in the architecture community to design long-span monumental stairs has started. These structures
are generally slender, light, and flexible, which result in low natural frequencies. They are often susceptible to excessive
vibrations that can become annoying to people. Serviceability problems as related to excessive vibrations of stairs have been
studied by researchers since the 1970s.

Nilsson [1] measured the magnitude of the footfall force of fifteen people descending a stair at 2 steps/s (Hz) and found
that it was up to four times the individuals’ body weights. Alcock and Lander [2] measured the average forcing function for
a single footfall on a stair and concluded that descending at a normal rate generates forces up to two times the body weight.

Bishop et al. [3, 4] measured the forcing functions on stairs, and studied the effects of group loading, in addition to the
acceptable vibration levels for stairs. They found that the presence of people could increase the damping ratio with negligible
effects on the natural frequency. Kerr and Bishop [5, 6] studied the difference between the floor and stair loadings due to
people movements. With the help of twenty-five human subjects, an instrumented platform, and a staircase, they conducted
various tests. They concluded that the most comfortable paces for ascent were near 2 Hz, and below 2.3 Hz for descents.
When running, step frequencies of about 3.3 Hz for ascents and above 3.3 Hz for descents were the most comfortable speeds.
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Bishop et al. [3, 4] studied stair vibration levels that can be acceptable to humans by introducing a non-dimensional factor, R,
to be applied to the acceptable r.m.s. of acceleration based on the limits recommended by BS6472 [7]. They recommended
RD 32 for the light-use stairs (for example in office buildings), RD 24 for heavy-use stairs (for example in public buildings),
and RD 64 for very lightly-used stairs and for cases where group effects are expected. These recommended limits are based
on the vibrations resulting from one person ascending or descending a staircase. However, the authors have not provided
much detail on the basis and origin of these recommendations.

Kerr [8] used two stair mock-ups in the laboratory and conducted a number of tests with the help of twenty-five human
subjects. He concluded that ascending at 2 Hz was most comfortable for walking and 3.3 Hz for running up the stair. When
ascending the stair, the subjects’ maximum speed was about 4.5 Hz. The subjects commented that they could easily descend
at any speed below 4 Hz. The maximum step frequency for descents was about 5.5 Hz.

Kim et al. [9] used six steel and cast-in-place concrete stair mock-ups with relatively high natural frequencies, and found
that, in general, the cast-in-place concrete stairs had better vibration serviceability performance than their steel structure
counterparts. They also reported that the normal walking speed on the stairs was about 1.8 Hz. Davis and Murray [10]
studied the vibration performance of a monumental stair using measurements and computer modeling. They measured the
first mode natural frequency and damping ratio to be 7.3 Hz and 1.1 % respectively. They recommended an acceptable
peak acceleration of 1.7 % g for walking by an individual, and 4.6 % g for when a person runs or for a group walk. These
recommendations were based on Bishop et al. [3, 4], and the authors did not independently verify them.

Arbitrio [11] presented a study of the vibration analysis of a stair using the SAP2000 structural analysis software. He
didn’t conduct any vibration measurements on the structure. Huntington and Mooney [12] also conducted a Finite Element
Analysis of a 39 ft long monumental stair made of steel. Without providing many details, they suggested the application of
tuned mass dampers (TMD) to reduce the vibrations. Similar studies were conducted by Howes and Gordon [13] on two sets
of stairs at the Art Gallery of Ontario, Toronto, Canada, which were designed by the renowned architect, Frank Gehry. They
also installed a TMD in the landing area to reduce the vibrations; however, they did not provide any information on the level
of stair vibration or the effectiveness of the TMD.

Howes et al. [14] studied the structural performance of a stair connecting three levels of a store in Las Vegas, Nevada.
Their study was also limited to an analytical investigation using the SAP2000 structural analysis software. Eid et al. [15]
conducted a simplified vibration analysis of a stair located at a Canadian University. Even though, they measured a damping
ratio of 4 % based on the results of heel drop tests on a similar stair, they adopted a value of 1 % for their computer analysis.

Belver et al. [16] conducted a vibration analysis and testing of a steel staircase located at a British University, which had
excessive vibrations when people ascended or descended. In addition to the structural vibration analysis using the ABAQUS
computer software, they conducted an Operational Modal Analysis (OMA) of the ambient response of the stair. The measured
first mode natural frequency was at 6.3 Hz with damping ratios between 0.4 and 0.6 %.

Kasperski and Czwikla [17] studied the effects of stair geometry on step frequency and dynamic load factor. They found
that the slowest step frequency range was about 0.8–1.9 Hz when skipping a step during ascents. From the results of their
tests they concluded that the normal walks occur at 1.2–1.5 Hz when ascending and 1.6–3.6 Hz for descents. However, the
reported range by the authors for ascents seems to be low and the upper limit for descents to be high.

Cappellini et al. [18] conducted an Experimental Modal Analysis (EMA) of a stair using a shaker and a series of
accelerometers to measure the dynamic properties of the structure. They also conducted an OMA of the same staircase.
From these measurements, they estimated the first two mode natural frequencies and damping ratios to be: f1 D 4.7 Hz,
Ÿ1 D 0.4 %; and f2 D 8.8 Hz, Ÿ2 D 0.3 %. The computed natural frequencies from their Finite Element Model were greatly
overestimated (f1 D 7.7 Hz and f2 D 13.7 Hz).

From the presented brief summary of the literature available on the vibration serviceability of stairs, it is clear that there
are still many issues related to stair vibrations that require further studies. Almost all structural designs of monumental
stairs are carried out by structural engineers using various Finite Element software without conducting any field testing to
verify their designs. Structural engineers generally use simple models considering frame element for linear elements (beams,
stringers, etc.) and shell elements for surface elements (decking, in-fill steel plates, etc.). As indicated above, there are very
few studies available on the comparison of such analytical models with measured data and appropriateness of these models
for predicting stair vibrations. Therefore, this paper presents the results of the modal testing conducted on a monumental stair
after installation and before the addition of non-structural elements, and an analytical study of the structure using a structural
analysis software. The measured and computed dynamic properties of the structure are compared to each other. A Cumulative
Modal Assurance Criterion (CMAC) is introduced and used to identify the degrees of freedom with low quality measured
response of the structure. A brief evaluation of the measured vibration when an individual or group of people ascended or
descended the stair at different speeds is presented.
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Fig. 16.1 Partial view of the
staircase during the vibration
tests

16.2 Description of the Staircase

The staircase, which has a steel structure, is located at the Broad Art Museum in Lansing, Michigan. It connects the first and
second levels of the building. Details of the initial static design of the structure and subsequent modifications to meet the
dynamic requirements have been discussed by Setareh [19].

Since this paper presents the results of the dynamic analysis and testing of the structure after its installation and before
the addition of the non-structural components such as cladding, plywood, cover, etc., only the structural elements of the
stair will be described here. The staircase consists of stringers forming a truss with HSS12X3X5/16 for the top and bottom
chords and HSS3X3X5/16 verticals at 1.22 m (4 ft) on center. The total depth (end to end) of the chords in the landing area
is 1.10 m (43.5 in). Treads and risers are made of 6.4 mm (0.25 in) thick steel plates. Steel plates, 6.4 mm (0.25 in) thick,
placed between the top and bottom chords of the stringers in the first two web panels from each end of the staircase. The
plates are welded to the chords and verticals of the truss. In addition, HSS5X3X5/16 are used as diagonal members in the
remaining truss panels. The bottom chords of the stair stringers are supported at their ends by the concrete beams through
rigid connections. Figure 16.1 is a photo showing a partial view of the stair during the vibration tests, which occurred about
two weeks after its installation.

16.3 Description of the Dynamic Tests

A modal test using an electrodynamic shaker (APS 113) and a number of accelerometers (PCB393C and PCB393B04) were
conducted to estimate the dynamic properties of the structure. In addition, a number of walking tests were performed to
evaluate the vibration acceptability of the staircase. The shaker was placed on a force plate, which was located at the corner
of the stair landing (see Fig. 16.2).

Uniaxial accelerometers were oriented along three perpendicular directions. For vertical direction measurements, 393C
accelerometers were placed on their bases, however, for lateral directions they were clamped to angle pieces as shown in
Fig. 16.2. The accelerometers were placed along the exterior and interior stringers and at the middle of the steps (all along the
truss verticals). Using a roving accelerometer approach, they were relocated from one position to another during the modal
testing. A burst-chirp excitation of 6–19.5 Hz with 30 s on and 15 s off was selected. A measurement frequency resolution
of 0.025 Hz (40 s duration) was used.

In addition to the modal tests, a number of controlled vibration tests with the help of three human subjects were conducted.
An individual and the entire group ascended and descended the stair at various step frequencies. Using a metronome, the
movements of the subjects on the stair were synchronized. Two different step frequencies based on the apparent first mode
resonance frequency were selected: 146 spm (steps per minute) and 195 spm, representing the fourth and third sub-harmonics
of the first mode resonance frequency of 9.8 Hz, respectively. In addition, an average walking step frequency of 120 spm,
representing the most common walking speed was used. The subjects were also asked to move the fastest possible in
addition to random walks (three persons only), and ascending while skipping a step (one person only). For each test, the
subject(s) ascended and descended the stair. At the end of each ascent/descent, the individual(s) stopped motionless while
the measurement was completed.
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Fig. 16.2 Placement of the
shaker and accelerometers during
the modal tests

Fig. 16.3 Analytical model of
the stair using SAP2000

16.4 Analytical Modeling of the Staircase

SAP2000 [20] structural analysis program was used to create a computer model for dynamic analysis. To develop a computer
model, which is consistent with the standard structural engineering design office practice, two noded frame elements were
used to model the linear elements such as the stringers’ top and bottom chords, diagonals, and verticals. The stair steps
(treads and risers) were approximated by orthotropic shell elements. In addition, the landing area and steel infill plates within
the stringers were modeled using isotropic shell elements. Figure 16.3 shows the analytical model.

16.5 Comparison of the Estimated Analytical and Measured Dynamic Properties

Using the ME’ scope modal analysis software [21], the modal properties of the structure were estimated. Since the building
was not completely enclosed during the tests and measurements, there were small variations in the resonance frequencies
of the frequency response functions (FRF) due to temperature variations. For this reason, a local polynomial curve-fitting
technique was adopted to estimate the natural frequencies and damping ratios. The estimated natural frequencies for the first
two modes of vibration were 9.8 Hz and 18.3 Hz, respectively. It is clear that the second mode natural frequency cannot
get excited by people walking or running on the stair [19]. Therefore, this study focuses on the evaluation of the first mode
dynamic parameters and response of the structure. The estimated first mode damping ratio, Ÿ1, from the results of the modal
analysis was 0.42 %.
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The structural analysis using the computer software resulted in the first two modes’ natural frequencies of 11.55 Hz, and
21.05 Hz, respectively. They are about 15 % more than their corresponding measured values. Even though this discrepancy
can be considered acceptable, in particular, since a simplified model of the structure was used, parametric studies were
conducted to estimate the effects of some of the modeling assumptions.

As indicated before, the treads and risers were modeled using the flat shell elements with orthotropic properties. It is
clear that the bending stiffness of the step in the transverse (along the width of the stair) is much larger than the bending
stiffness of a flat steel plate, due to the folded shape of the deck. Setareh and Jin [22] conducted a parametric study to check
the effects of changing the stiffness of steps in two orthogonal (longitudinal and transverse) directions through the use of
bending stiffness property modifiers in the SAP2000 structural analysis software. From this study, it was found that, within
a practical range, first mode natural frequency of the structure is not sensitive to variations of step stiffness. Therefore, it was
concluded that the orthotropic properties of the shell elements do not contribute to the discrepancies between the measured
and computed natural frequencies. Thus, the shell bending stiffness in the longitudinal direction was assumed to be equivalent
to the stiffness of the 6.4 mm (0.25 in.) steel plate. The bending stiffness of the shell was increased in the transverse direction
to incorporate the increase in the moment of inertia due to the folded shape of the steps.

Further studies showed that the folded geometry of the stair can have a greater effect on the natural frequencies of the
structure [22]. However, this requires a much more elaborate modeling scheme and incorporation of solid structural elements,
which are not usually considered by practicing engineers, as they are more costly.

16.6 Comparison of the Measured and Analytical Mode Shapes

The computed and measured mode shapes were compared by using the Modal Assurance Criterion (MAC). The MAC matrix

for the first two modes is

�
0:62 0:07

0:006 0:092

�

. It is clear that the MAC value for the second mode is not acceptable and the first

mode is also low as the ideal value for MAC is 1.0.
Since there was a concern about the quality and accuracy of the measured modal amplitudes for the lateral degrees of

freedom, three methods were used to identify the degrees of freedom that may have resulted in the low MAC value (Note
that only the first mode response is of interest in this study since higher modes cannot get excited by people walking or even
running on the stair). The first method was to use cumulative (or running) MAC (CMAC) value of various measured degrees
of freedom in the structure, defined as:
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The second and third methods used the ECOMAC and COMAC for each degree of freedom as defined by [23]:
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where i‰mj and i‰aj are the measured and analytical modal amplitudes for mode j of the ith degree of freedom, respectively,
n is the total measured degrees of freedom, * represents complex-conjugate, and L is the total number of modes considered.
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Fig. 16.4 Comparison of CMAC, ECOMAC and COMAC for the first mode of the structure
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Since the considered modes at 9.8 Hz and 18.3 Hz are well separated and only the first mode is of interest, the CMAC,
ECOMAC, and COMAC for the first mode are computed here. Figure 16.4 shows the CMAC, ECOMAC and COMAC for all
129 measured degrees of freedom (d.o.f.) during the modal tests. To better understand the effects of inaccuracies in the lateral
measurements, the d.o.f.s are sorted such that the first group (43 d.o.f.s) represents the z-measurements (vertical) followed
by x and y measured d.o.f.s (lateral), respectively. From the results shown, it is apparent that the CMAC can best identify the
d.o.f.s that may result in large decreases in the MAC value. Even though for the most part, the ECOMAC and CMAC show
a similar pattern, for a few d.o.f.s, the ECOMAC indicate reductions in the MAC value, which are not substantiated by the
CMAC value. Figure 16.4 also shows that the COMAC cannot accurately predict the d.o.f.s that may have low correlations
between the analysis and measurement and result in a drop in the MAC value. This is consistent with the conclusion reached
by [23, 24].

Figure 16.5 shows the CMAC variations after the identified d.o.f.s that resulted in large drops in the MAC value have been

removed from the measurements. The resulting MAC matrix is

�
0:84 0:04

0:002 0:32

�

. The MAC value for the first mode seems to

be acceptable for civil structures. As indicated before, the second mode of vibration is not of interest to this study.
It is interesting to note that the second mode MAC value improves greatly if all the measured lateral d.o.f.s are removed.

The resulting MAC is

�
0:99 0:33

0:10 0:78

�

. However, this result in spatial-aliasing as the off-diagonal elements are large, which is

substantiated by the analytical Auto-MAC of

�
1:00 0:33

0:33 1:00

�

. Figure 16.6 shows the measured and analytical first mode shapes

of the structure.
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Fig. 16.6 Measured and analytical first mode shapes of the structure. (a) Measured, (b) analytical

Fig. 16.7 Comparison of the
measured and analytical FRFs

16.7 Comparison of the Analytical and Measured Responses

To check the level of accuracy of the analytical model to predict the structural response of the stair, the SAP2000 model
was subjected to the same dynamic excitation during the modal testing and the responses were compared. To achieve this, a
steady-state analysis of the structure was conducted by applying a harmonic excitation with a unit amplitude at the corner of
the landing. The excitation frequency was varied in order to compute the frequency response functions (FRF) of any desired
point on the stair structure. The measured first mode damping ratio was used to compute the responses of the analytical
model. Figure 16.7 compares the largest measured and computed FRFs in the landing area. As can be noted, the responses
are different by about 23 %, which can be considered within the acceptable range. It has to be noted that further refinement of
the analytical model, in particular inclusion of the folded geometry of the stair, may result in improvements in the estimation
of the dynamic properties of the structure and accuracy in prediction of its response subjected to dynamic loads (such as
people’s footfalls).
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16.8 Evaluating the Stair Vibrations

The measured vibrations with human subjects ascending or descending the stair were used to evaluate the design of the stair
for everyday use. The vibration limits as recommended by [4] were adopted. It has to be noted that the construction of the
stair was not complete at the time of the tests as the non-structural elements were not yet installed.

From the results of the measurements, it was found that when one person ascended or descended the stair rapidly at
146 spm, or 195 spm, the maximum stair vibration could exceed the limit. However, when one or three people ascended or
descended the stair at the normal walking speed of 120 spm, only one location on the stair reached a level more than the
limit. The vibrations due to random walks were all within the acceptable range. The largest vibrations were found when
three people descended the stairs at 195 spm or the fastest they could. Vibrations up to three times the acceptable limits
were recorded. However, such speeds of motion represent running down a stair, which has a low probability of occurrence
especially involving a group of people at a museum (except in the case of an emergency). From the analysis of the vibrations
measured in the field, it was concluded that at its condition during the tests, when a person ascended or descended the stair
at a slow to normal range-of-speed, the movements were within the acceptable range.

16.9 Conclusions

This paper presented a study of vibrations of a monumental stair due to human movements. It considered various field testing
and computer modeling of the structure. Using the standard structural engineering practice for modeling such structures, a
computer model of the structure was created. Comparison of the results of the dynamic tests and computer analysis showed
that the computer model could reasonably predict the dynamic behavior of the structure.

A parametric study of the variations in the modeling assumptions showed that improvements in the structural response
can be achieved by refining the computer model. To identify the degrees of freedom with low quality of collected data, a
CMAC value was defined and computed. Comparing the value of CMAC with ECOMAC and COMAC for the first mode
showed its superiority in identifying the problem degrees of freedom over the ECOMAC and COMAC. The measured and
analytical FRFs for the location with the largest stair response were compared and found to be close within a practically
acceptable range.

From the analysis of the collected responses from a number of tests when human subjects ascended and descended the
stair, it was concluded that the stair vibrations (at the time of the tests) were within the acceptable range as long as people
walked at or below the normal range of speed.
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Chapter 17
Evaluation of Stop Bands in Periodic and Semi-Periodic Structures
by Experimental and Numerical Approaches

P.G. Domadiya, E. Manconi, M. Vanali, L.V. Andersen, and A. Ricci

Abstract Adding periodicity in structures leads to wavemode interaction, which generates pass- and stop-bands. Stop-bands
are related to the periodic nature of the structure. Thus structural periodicity can be shaped in order to design vibro-acoustic
filters to reduce vibration and noise transmission. The aim of this paper is to investigate numerically and experimentally
stop-bands in periodic one-dimensional structures. Two methods for predicting stop-bands are described: the first applies to
infinite structures using a wave approach; the second deals with the evaluation of a structural transmission loss coefficient.
Numerical examples concerning periodic beams are presented. Results are discussed and validated experimentally. Very
good agreement between the numerical and experimental models in terms of stop-bands is showed.

Keywords Guided waves • Vibro-acoustic filters • Periodic structures • Dispersion curves • Stop-bands

17.1 Introduction

Periodic structures, also called band-gap structures, ideally consist of an infinite assembly of identical elements joined in
an identical manner. These structures exhibit stop-bands, where wave motion cannot propagate and thus no energy flow
occurs, and pass-bands, where propagation occurs involving energy flow [1]. The idea to exploit these properties and use
periodic structures as passive filters is dated long time ago. Wave filtering properties of periodic structures have been studied
extensively and widely used in the fields of electromagnetism and optics, e.g. Bragg filters, and they are currently the subject
of numerous studies for innovative applications related to metamaterials [2].

Due to their properties, periodic structures have also found applications in the passive control of noise and vibrations.
Many works on free harmonic motion of periodic structures have been published—examples include periodical rods and
beams, e.g. [3–6], multi-supported beams, e.g. [7, 8], periodical curved beams [9], two-dimensional structures, e.g. [10],
stiffened plates, e.g. [11], etc. A review of some of the relevant and recent works done in the area of structural periodic
structures can be found in [12]. However, band-gap structures have not yet been exploited in noise and vibration reduction
as much as it has been done in electromagnetism and optics.

The main aim of this paper is to introduce and validate experimentally two methodologies for designing structural
vibro-acoustic filters which can attenuate disturbance transmission in practical applications. Two methods for predicting
stop-bands are described: the first applies to infinite structures using a wave approach; the second deals with the evaluation
of a vibration transmission loss coefficient in semi-periodic one dimensional structures. The transmission loss coefficient
is here defined to predict the performance in terms of noise and vibration insulation of a finite number of identical cells
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embedded semi-periodically into an otherwise uniform structure. The analysis presented can be generally applied to periodic
structures that behave as one-dimensional waveguides, and therefore to a wide range of practical cases, e.g. acoustic tubes,
stiffened cylinders, plate strips, wires etc. The paper focuses on one type of wave motion.

Numerical examples are given and results are discussed and validated experimentally. These concern transverse vibration
of infinite and semi-infinite beams with periodic change in the cross-section and with periodically added masses. Very good
agreement between the numerical and experimental models in terms of stop-bands is showed.

17.2 Stop-Bands in Periodic One-Dimensional Waveguides

In this section two methods for evaluating stop-bands in periodic one-dimensional waveguides are presented and discussed.
The structures considered are linear under harmonic motion. No damping is assumed. For ease of reference, in what follows a
period of the structure is termed “cell”. The first method deals with infinite periodic one-dimensional structures; a schematic
representation is given in Fig. 17.1a. The second method applies to a finite periodic structure, containingN cells, embedded
in a uniform structure as illustrated in Fig. 17.1b. Although the latter appears as a more realistic representation of a “physical”
situation, numerical and experimental results showed that stop-bands are almost the same in the finite and the infinite structure
when enough cells are considered. This is showed in Sect. 17.3 which deals with numerical and experimental results.

17.2.1 Periodic One-Dimensional Waveguides

The fundamental behaviour of an infinite periodic structure can be summarised in its dispersion curves which give the relation
between the propagation constant 	 and the frequency !. As depicted in Fig. 17.2, at any frequency ! the motion of a cell
is equal to e�i	 times those of its neighbour [1], where 	 is also known as propagation constant. According to Floquet’s
theorem, displacements at each side of the cell are related by

qR D �qL; (17.1)

where � D exp.�i	/. The cell displacement vector q D ŒqTL;q
T
R�
T is re-arranged to give

q D ƒRqL; (17.2)

whereƒR D ŒI �I�T and I is the identity matrix having the same size as qL. Internal forces at each side of the cell are sorted
in a similar way, viz. f D ŒfTL; f

T
R�
T . In the absence of external excitation, equilibrium at the left side of the cell implies that

ƒLf D 0; (17.3)

Fig. 17.1 (a) Schematic representation of the infinite periodic waveguide; (b) schematic representation of the finite periodic waveguide embedded
in a homogeneous waveguide

Fig. 17.2 Displacements and
forces of a unit cell
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Fig. 17.3 Transmission loss
coefficient in a semi-periodic
waveguide

where ƒL D ŒI ��1I�. Cell displacements and forces are also related by

D.!/q D fI (17.4)

where D is the frequency dependent dynamic stiffness matrix of the cell. For a simple structure it is possible to obtain
this dynamic stiffness matrix from the differential equation of motion [13]. For more complicated structures, or at higher
frequencies, the equations of motion become very complicated at best and numerical approximations are often necessary.
In the Wave Finite Element method [14, 15], the cell in Fig. 17.2 is modelled using a standard finite-element formulation.

In particular the mass M and the stiffness K matrices of the finite-element model are typically obtained using commercial
finite-element packages, greatly simplifying the analysis. At each frequency !, the matrix D D Œ�!2M C K� is
the finite-element dynamic stiffness matrix of the cell. It is worth pointing out that internal nodal degrees of freedom in the
finite-element model of the cell must be removed by a dynamic condensation, while mid-side nodes can be accommodated
as shown in [14].

In order to obtain the dispersion curves using an efficient and robust formulation, the cell dynamic stiffness matrix is
partitioned into

D D
�

DLL DLR

DRL DRR

�

: (17.5)

Substituting Eqs. (17.2) and (17.5) into Eq. (17.4) and premultiplying both side of Eq. (17.4) byƒL, a quadratic polynomial
eigenvalue problem in � is obtained:

D.!; �/qL D ŒDLR.!/�
2 C .DLL.!/C DRR.!//�C DRL.!/�qL D 0: (17.6)

This provides the dispersion curves/dispersion relation, that is the relation between � and !, or, similarly, the dispersion
relation between the propagation constant 	 D i ln.�/ and !. Equation (17.6) can be also easily recast as a standard linear
eigenvalue problem and thus solved using well established and robust numerical routines.

Solutions of Eq. (17.6) come in pairs .�; 1=�/, where � can be written in general as � D exp.�i Q	C Q�/, Q	 representing
the phase change from one cell to the next one, Q� representing the attenuation. When the attenuation Q� is zero, or similarly
j�j D 1, dispersion curves show a pass-band: propagating wave motion occurs involving energy flow to the right and to the
left of the structure. If Q� is different from zero, or j�j ¤ 1, no energy flow occurs and dispersion curves show a stop-band.
Here stop-bands are thus predicted when j�j ¤ 1.

17.2.2 Semi-Periodic One-Dimensional Waveguide

Floquet’s theorem applies to infinite structures; hence, in principle, it does not predict the behaviour of finite structures,
which are more realistic models of a physical situation. For finite structures a more meaningful approach is to evaluate
the transmission loss coefficient. In this section, a method to evaluate the transmission loss coefficient of a finite periodic
structure embedded into a similar uniform structure of infinite extent is illustrated. A schematic representation of the model
is showed in Fig. 17.1b. This well represents the case in which a finite periodic structure, separating two structural elements,
is used to filter vibration or noise.

Consider a point force acting at the left side of the periodic structure as depicted in Fig. 17.3.
Forward and backward flexural waves are sent out into the beam. As an example, transmission to the right region of the

structure is considered. The transmission loss coefficient is here defined as

� D 10 log

� jur j2
jut j2

�

; (17.7)
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where ur is a reference displacement, e.g. close to the forcing point, and ut is the displacement measured at a receiver point
on the other side after a certain number of cells, cf. Fig. 17.3. In order to evaluate the transmission loss coefficient the finite-
element matrices of the periodic structure are calculated and finite-element transmitting boundary conditions are used to
mimic the behaviour of an attached infinite homogeneous structure as described in [16].

With reference to Eq. (17.7), the structure shows a perfect transmission at the frequencies for which � D 0. When
� ¤ 0 transmission is reduced. In particular the maximum values of � estimate the minimum transmission of wave motion.
Therefore the frequency bands that clearly show maximum values of � estimate the stop-bands.

17.3 Numerical Examples and Experimental Results

Some numerical and experimental results are presented in this section. A beam with periodical change in the cross-section
and a beam with periodically attached masses are considered. A schematic representation of the periodic beams is given
in Fig. 17.4.

The first beam is made of steel and the geometric characteristics are: L1 D 0:1 m, L2 D 0:17 m, h1 D 0:01 m,
h2 D 0:025 m, cf. Fig. 17.4a. The second beam is made of aluminum, it has a square-cross section of height h D 0:015 m;
the periodic length is L D 0:1 m and the attached masses are weigh 45 g each, cf. Fig. 17.4b. Bending wave motion
is evaluated, although longitudinal, shear and higher order motion can be investigated using the theory described in the
previous sections.

Experimental results were obtained suspending the beams in the laboratory to simulate simply supported boundary
conditions. The beams were instrumented using miniature piezo-accelerometers able to guarantee a flat frequency response
between 0.5 and 10,000 Hz. A scheme of the experimental set-up, together with the accelerometer positions, is showed in
Fig. 17.5. The natural frequencies extracted from the experimental frequency-response-function verified the simply supported
boundary conditions. The beams were excited using a suspended mini-shaker and instrumented hammers. A stinger was used
to connect the shaker device to the beam and a slow linear sweep varying from 100 to 6,000 Hz was given as input. Various
tests where repeated to optimize the sweep duration and achieve the best possible results. The forcing signal power spectrum
(or its power-spectral-density) were checked to ensure that a correct amount of energy was given at each frequency of
interest. The accelerometers and excitation were acquired using a 24 bit analog to digital converter with built-in anti-aliasing
filters. The sampling frequency was chosen from test-to-test according to the specific needs. The results were compared with
those obtained exciting the beam using instrumented hammers. In the latter case a series of single impacts were given, and
the resulting responses were triggered on the hammer signal and averaged to reduce measurement noise and uncertainties.
In some cases it became too difficult to excite by a single impact due to multiple hammer hits, hence a series of random
hammer impacts for at least 5 min were given and the excitation was treated as a casual input [17]. The results were in very
good agreement with those obtained from the sweep tests.

Figures 17.6, 17.7, and 17.8 show the numerical results obtained applying the theory in Sects. 17.2.1 and 17.2.2. The first
two stop-bands generated using Eq. (17.6) are shown in Fig. 17.6 for the first beam, cf. Fig. 17.4a. The frequency ranges
where j�j ¤ 1 are those corresponding to the stop-bands. These are 240–440 Hz and 1,220–3,200 Hz. Figure 17.7 shows
the transmission loss coefficient calculated as showed in Sect. 17.2.2. The reference displacement ur was evaluated at the
left end of the periodic structure, where a nodal force of unit magnitude was applied. In Fig. 17.7a the displacement ut
was calculated after 3, 6, 9 cells, showing that few periodicities are sufficient to drastically reduce disturbance transmission

Fig. 17.4 Schematic representation of the periodic beams
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Fig. 17.5 Instrumented beams suspended in the laboratory and schemes of the experimental set-up
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Fig. 17.6 Periodic beam with
change in the cross-section.
Dispersion curves

whose dominant frequencies fall within the stop-bands. Figure 17.7b shows the transmission loss coefficient obtained using
the Euler-Bernoulli and the Timoshenko theories when 9 cells were considered. Figure 17.7b shows that the Euler-Bernoulli
theory predicts the beam behaviour quite accurately in the frequency range considered. It can be noticed that both the theories
predict approximately the same position and length of the stop-bands but, as expected, the frequency occurrence of the stop-
bands for the Timoshenko model is lower then the Euler-Bernoulli one.

Figure 17.8 shows a comparison between the results predicted using the two methods. It can be seen that both the methods
predict almost the same stop-bands, although stop-bands can be identified more clearly looking at the dispersion curves
obtained for the infinite periodic beam.

Experimental results are showed in Figs. 17.9 and 17.10. Figure 17.9 shows the amplitude of the frequency-response-
function for the non periodic beam and the periodic beam respectively, when the beams were excited by a series of single
impacts using a miniature impact hammer. Figure 17.9c shows the acceleration-power-spectra of the periodic beam when a
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Fig. 17.7 Beam with periodical change in the cross-section embedded in an uniform infinite beam. Transmission loss coefficient
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Fig. 17.8 Comparison between dispersion curves and the transmission loss coefficient evaluated considering 9 cells. (a) Beam with periodical
change in the cross-section; (b) beam with periodically added masses. Note: Different scales on the left and right ordinate axes

slow linear sweep varying from 100 to 6,000 Hz was applied using a suspended mini-shaker. The effect of the periodicity
in terms of stop-bands can be clearly seen by a comparison between Fig. 17.9a and Fig. 17.9b,c. Comparison between the
transmission loss coefficient obtained experimentally and numerically is given in Fig. 17.10.

The experimental transmission loss coefficient for the periodic beams was evaluated taking the accelerometer 1 as
the reference channel, see Fig. 17.3. Differences between the results is explained considering that experimental results
are affected by the boundary conditions and thus resonances at the natural frequencies of the finite beam are evaluated,
while the numerical results are obtained for a finite-element model of a finite periodic beam to which transmitting boundary
conditions are added. The negative peaks in transmission loss recorded in the experiment within the stop-bands for flexural
wave propagation are assumed to be related to other wave modes, e.g. torsional waves, that are not accounted for within the
applied theoretical models. Considering the simple model used to obtain the numerical results, it can be claimed that the
numerical results are very well validated by the experimental results.
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Fig. 17.9 Experimental results: (a) frequency-response-function—homogenous beam; (b) frequency-response-function—beam with periodical
change in the cross-section; (c) acceleration-power-spectra—beam with periodical change in the cross-section

17.4 Conclusions

Two approaches for predicting vibro-acoustic stop-bands were described: the first applies to infinite periodic structures using
a wave approach; the second deals with the evaluation of a structural transmission loss coefficient, which is defined to
predict the performance in terms of noise and vibration insulation provided by a certain number of periodic cells embedded
semi-periodically into an otherwise uniform structure. Numerical examples concerning a beam with periodical change in
the cross-section and a beam with periodically attached masses were presented. Results were discussed and validated
experimentally. Stop-bands obtained using a simple wave approach (applied to the infinite periodic structure) predicted
those obtained evaluating the transmission loss coefficient for the corresponding finite periodic structure when few cells are
considered. Very good agreement between the numerical and experimental models in terms of stop-bands was found. Results
showed that few repetitions of a cell are sufficient to drastically reduce disturbance transmission whose dominant frequencies
fall within the stop-bands.
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Fig. 17.10 Transmission loss coefficient. Comparison between experimental and numerical results: (a) beam with periodic change in the cross
section; (b) beam with periodically attached masses
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Chapter 18
Operating Mode Shapes of Electronic Assemblies Under Shock Input

Ryan D. Lowe, Jason R. Foley, David W. Geissler, and Jennifer A. Cordes

Abstract Modeling the dynamic response of electronic assemblies is critical to predicting both the reliability and
survivability of systems in harsh environments. However, a large number of unknowns are typically faced when simulating
electronic response in any given scenario, including new/unknown materials, non-ideal interfaces, and uncertainty in input
forces. In order to support the verification and validation of these models, the dynamic response of electronic assemblies to
input shock loads are experimentally measured using a variety of instrumentation: accelerometers, strain gages, and laser
vibrometers. The experimental operating mode shapes are compared with both implicit (i.e., computational modal analysis)
and explicit (i.e., transient response) predictions. Finally, the models are then shown to more accurately predict the dynamic
response and partitioning of vibrational energy under a variety shock loads.

Keywords Electronics • Printed circuit board (PCB) • Model validation • Shock • Modal analysis

18.1 Introduction

Modeling and simulation of electronic assemblies provides a powerful tool for predicting both the reliability and survivability
of systems in harsh environments. Previous work [1] focused on examining the underlying constitutive response of
electronics. This work focuses on the resulting operating mode shapes. A large number of variables beyond the control
of an experimentalist/modeler necessitate experimental validation of simulations to develop confidence in reported results.
New/unknown materials, non-ideal interfaces, and uncertainty in input forces are major challenges in the development of
truly predictive models. This paper discusses a new method for exciting small, stiff printed circuit boards (PCB) for the
purpose of experimentally validating numerically predicted mode shapes. The motivation for the development of the new
method is motivated by the inherent challenges of using traditional methods, such as force hammers to excite small stiff
structures.
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Fig. 18.1 Schematic of the
trampoline experiment with
electronics fixture and the circuit
board under test

Fig. 18.2 Photographs showing (a) initial experiment apparatus and a close-up (b) of the lower fixture with a mounted test board and reference
accelerometer

18.2 Test Setup

The experimental test setup was designed specifically to excite small, stiff PCB samples for model validation. The so-called
“trampoline” dynamic test, is a reverse Hopkinson bar experiment [2]. The trampoline uses an electronics housing fixture
that is compatible with other shock tests. A striker impacts a long incident bar which transmits a dynamic compressive stress
wave into the fixture supporting a circuit board assembly. This is shown schematically in Fig. 18.1.

Standoffs attach the circuit board to a cast aluminum fixture, providing a direct load path into the test articles, which are
41 mm diameter circular printed circuit boards. Photographs of the experimental setup are shown in Fig. 18.2. The incident
bar has been instrumented with semiconductor strain gages and calibrated using a dispersion-correction technique [3]. A
reference accelerometer (shown in Fig. 18.2b) is used to verify the local acceleration due to the applied force.

An OFV-332 Polytec laser vibrometer head [4] is used with the OFV-3020 high speed (20 m/s) controller/demodulator to
provide a non-contact measurement of the surface velocity of the board. Figure 18.3a shows the surface velocity time history
and equivalent acceleration of the center of the printed circuit board. The instantaneous acceleration (unfiltered, shown in
Fig. 18.3b) exceeds 30,000g’s, indicating a far more severe local acceleration than anticipated.

18.3 Finite Element Simulation

Finite element models included the striker, incident bar, fixture, and electronics were simulated with ABAQUS 6.12.1. No
symmetry was assumed in the modeling. The analysis was run as a dynamic explicit simulation with non-linear materials
and non-linear geometry. Eight node brick elements with reduced integration and hourglass control were used to model
all components. All sections have at least four elements through the thickness to approximate bending. Material property
models included linear elastic, linear orthotropic and elastic/plastic material models as appropriate. Friction coefficients
between interfaces were varied as part of the study and are described in later sections. Damping was applied to the FR4-06
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Fig. 18.3 (a) Printed circuit board surface velocity of five unique tests and (b) equivalent instantaneous acceleration (in g’s) of the center of the
printed circuit board in the trampoline experiment for a single test

Fig. 18.4 Representative mesh for high fidelity simulation of PCB response

material based on the first ten natural frequencies. All initial conditions were zero except for the initial velocity of the striker.
The actual and modeled mass of the systems agreed to within 2.5 %. Please see [5] for full details of the model development
including specific material properties. Illustrative images from the model are shown in Fig. 18.4. In addition to the explicit
finite element model a linear modal analysis was performed to identify mode shapes.

A few mode shapes predicted by the finite element simulation are represented in Fig. 18.5. Not all modes are assumed to
contribute to failure in the PCB. Specifically modes that represent significant deflection in the standoffs, but little deformation
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Fig. 18.5 Mode shapes of the PCB predicted with implicit simulation

Fig. 18.6 Effective modal mass
in the out of plane direction
(normal to the PCB)

or bending in the PCB are assumed to have little effect on the survivability of the PCB and its components such as resistors,
capacitors, and integrated circuits. The relative contribution of each mode to the response of the PCB was evaluated using
the effective modal mass. Figure 18.6 shows that only a few modes contribute significantly to the response of the board.
Alarmingly the sum of the effective modal mass for the first 25 modes only represented about half of the actual mass of the
system. In a follow along study that is beyond the scope of this paper variations in material properties and their effect on
natural frequencies were investigated for the same PCB geometry. Figure 18.7 shows the results of six similar simulations
and the effective modal mass for the first 100 modes. By including a large quantity of modes the total effective modal mass
was simulated to within 98 % of the actual mass. Surprisingly modes 60–70 (around 25–30 kHz) contribute significantly to
the total modal mass.
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Fig. 18.7 Sum of effective modal mass in the out of plane direction (w.r.t. the PCB) for an extended number of mode shapes. This chart is a
summary of six cases each with a geometry identical the PCB studied in this paper, but using slightly different material properties

Fig. 18.8 (a) Comparison of base excitation measured underneath PCB on fixture. (b) Frequency domain representation of time history
shown in (a)

18.3.1 Experimental Validation of Model

Model validation using explicit dynamic simulations and implicit modal analysis was performed. First the acceleration
measured underneath the PCB on the aluminum fixture was studied. A thorough understanding of the friction between the
plates of the fixture was required to accurately model the acceleration of the fixture. Figure 18.8 illustrates the similarity
between experiment and simulation in both the time and frequency domain. For the purposes of model validation the results
are deemed acceptable for the intended use of the model.

Quantitative mode shape correlation proved difficult due to the limited sensing ability of the single point velocity
measurement. The frequency content of the time history shown in Fig. 18.3a has dominant peaks that match with
predicted mode shapes, but the predicted modes seem unlikely to physically be observable using our current measurement
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Fig. 18.9 Frequency domain
representation of PCB velocity
time history shown in Fig. 18.3a.
Dominant peaks are located at
3,815 and 22,200 Hz

methods (Fig. 18.9). Furthermore none of the modes with significant modal mass are visible in Fig. 18.3. Unfortunately we
do not believe the results to be sufficient for the purposes of our model validation. Future work in both experimental and
numerical domains is being planned to increase correlation of observed and predicted mode shapes. Experience has shown
that simulation results are highly sensitive to small changes in the location of the mounting screws. The sensitivity of results
to material properties are believed to be much less severe, but the orthotropic constants used for the circuit board are also
candidates for improving experimental/simulation validation.

18.4 Summary

This work investigates the operational mode shapes of small stiff printed circuit board structures using a reverse Hopkinson
test method. The use of these methods was motivated by challenges in using a traditional force hammer to excite high
frequency modes. Details of the test method were provided along with a demonstration of the highly repeatable nature of
the method. Experimental validation was used to judge the results from both explicit and implicit finite element simulations.
The response of the fixture holding the electronics was validated to closely match with experimental results. Unfortunately
the observed mode shapes were not quantitatively validated with numerical predictions. A number of possible error sources
leading to the unsatisfactory result were discussed.
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Chapter 19
Comparison of Modal Parameters Extracted Using MIMO, SIMO,
and Impact Hammer Tests on a Three-Bladed Wind Turbine

Javad Baqersad, Peyman Poozesh, Christopher Niezrecki, and Peter Avitabile

Abstract As part of a project to predict full-field dynamic strain of rotating structures (e.g. wind turbines or helicopter
rotors), a validated numerical model of a structure is required. In this case, a small wind turbine was used. To understand
the dynamic characteristics and validate a finite element model of a three-bladed wind turbine, several experimental modal
analysis tests were conducted on the turbine attached to a 500-lb steel block. The test structure consisted of three 2.3-m blades
mounted to a hub that was attached to the block using a shaft and a lathe chuck. In three separate tests, the structure was
excited using a single shaker, multiple shakers, and an impact hammer; the responses of the structure to the excitations were
measured using 12 triaxial accelerometers. The results reveal several very closely spaced modes present within the turbine in
the test configuration. The natural frequencies and mode shapes obtained by using three different methods were compared to
demonstrate the differences (e.g. strengths and weaknesses) between each excitation technique. The paper reports the results
obtained and lessons learned during the experimental modal tests of the wind turbine.

Keywords Experimental modal analysis • Mode shape • Wind turbine • Multiple shakers

19.1 Introduction

Experimental modal analysis is extensively used to describe the dynamic characteristics of structures and to validate
numerical models. Furthermore, these extracted modal parameters from the modal analyses are essential parts of many
health-monitoring algorithms. Several experimental techniques are used to excite structures and to extract their modal
parameters. Multiple-input multiple-output (MIMO) measurement, single-input multiple-output (SIMO) measurement, and
impact hammer modal testing are three conventional approaches for experimental modal analysis. These three techniques
may not always produce similar results if they are used for large complicated structures. Therefore, comparing the extracted
parameters from these three techniques is desirable.

Modal impact hammer has been commonly used to extract the dynamic characteristics of wind turbine blades or wind
turbine assemblies [1–7]. However, MIMO technique has been usually used for large structures such as a satellite [8] and
inflatable torus [9]. A comparison between the MIMO and SISO (single-input single-output) results for a measurement on a
membrane mirror satellite has been performed by Ruggiero et al. [10]. On the other hand, the number of studies found in the
literature that compares the modal parameters estimated by using the three methods for a wind turbine that includes several
subcomponents and has closely spaced modes is limited.

In the current paper, modal parameters extracted using MIMO, SIMO, and impact hammer modal techniques are compared
to identify the differences between each excitation technique. The test structure, an assembled wind turbine, consisted of
several substructures and has very closely spaced modes (less than 0.1 Hz difference). Therefore, the potential of each
experimental modal approach in extracting the modal parameters of the structure can be examined. The current paper also
summarized the results obtained and lesson learned during the experimental modal test of the wind turbine attached to a steel
block.
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19.2 Theoretical Background

19.2.1 Shaker Test with the Input Oblique to the Global Coordinate System

Often for convenience, shakers are installed in a direction parallel to one of the axes of the global coordinate system (X, Y,
or Z) for SIMO or MIMO tests. The measured acceleration and force at the impedance head (as a reference) are required
to properly obtain the frequency response functions of the structure at all the measurement points including the reference
point to extract the mode shapes. However, installing a shaker parallel to an axis of the coordinate system does not excite
the modes of the structure that have no component along that axis. For the current work, shakers were installed normal to
the contact surface of the blade (at attached points) and oblique to the global coordinate system. For this setup, the direction
of the input force and measured acceleration at an impedance head mounted to the shaker stinger cannot be defined using a
single component of the global coordinate system (X, Y, or Z direction). Furthermore, finding the accurate orientation of the
input force can be a challenge. Therefore, identifying an approach to easily orient the shakers in arbitrary configurations to
conduct a modal test would be of particular interest [11]. The approach to extract the mode shapes when a shaker is installed
in an oblique orientation is now described.

Experimental modal tests are performed to measure the frequency response functions of structures. The frequency
response function (FRF) for a structure (i.e. the system transfer function evaluated in the frequency domain) can be defined as:

hij .j¨/ D
mX

kD1

aijk

.j¨ � pk/
C a�ijk
�
j¨ � p�

k

� (19.1)

where, pk is the k-th mode of the system. Residues (aijk) can be calculated using the following equation:

aijk D qkuikujk (19.2)

where uik and ujk are the k-th mode of the structure at point i and j respectively. As can be seen, the residues are directly
related to the system mode shapes and are scaled by qk, the scaling constant for k-th mode. The residue matrix for the whole
set of measurement can be written as:
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If a particular reference such as 10y (where the shaker is installed) is picked for the measurement, the set of data for a
single reference can be written as:
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where, points 1–40 are measurement points. The drive point measurement (point 10y) is used to scale the residues to get the
scaled mode shapes for all the measurement points including the drive point.

a10y10y D qu10yu10y (19.5)



19 Comparison of Modal Parameters Extracted Using MIMO, SIMO, and Impact Hammer Tests on a Three-Bladed Wind Turbine 187

However, the structure can be excited using an oblique shaker to excite more modes of the system that might not be
excited by a single shaker in y-direction. If the input force excites the system at point 41 and is orientated in an unknown
direction called s, the set of data for a particular mode can be written as:
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and the drive point measurement is:

a41s41s D qu41su41s (19.7)

Equation (19.7) can be used to scale the mode shape for points 1 to 40 in Eq. 19.6. However, once the mode shapes
are scaled using the drive point measurement, point 41 can be excluded from the mode shape description. Thus, the mode
shape of the structure can be extracted without identifying the orientation of the input force. The same procedure can be
repeated for a MIMO measurement. This means that for the mode shape description, no geometric point exists at drive points
(impedance heads).

19.3 Structure Description and Test Setup

As part of a project to predict full-field dynamic strain for a rotating structure and in order to validate a finite element model,
an experimental modal measurement on a wind turbine in a fixed condition needed to be performed. In order to prepare a
test set up for the wind turbine, three blades of a Southwest Windpower Skystream 4.7 were mounted to a central hub while
connected to a 500-lb block using a lathe chuck and a shaft. The 2.3-m blades were made of a composite/plastic material.
The hub included an aluminum component and a steel plate that were connected using 12 steel bolts. In order to isolate the
vibration of the block from the ground and to prevent rattling along the contact surface, some layers of elastic foam were
used. A photograph of the test set-up is shown in Fig. 19.1. Although different excitation techniques (three-shaker, single-
shaker, and an impact hammer) were used for Cases 2–4, the test configuration and measurement steps were similar for all
three cases and are now described.

The location of the sensors was selected using a finite element (FE) model of the wind turbine. By performing an
eigensolution on the numerical model in a fixed boundary condition, FE mode shapes were extracted. Using the FE model,
an appropriate set of sensor locations was selected so that all the modes of interest could be identified (see Fig. 19.2). The
origin of the coordinate system for the turbine is located at the center of the hub where X-axis and Z-axis are in the rotating
plane and Z points toward the tip of Blade 1 (see Fig. 19.2). The Y-axis refers to the transverse displacement of the blade
(i.e. the out-of-plane or flapwise direction).

A 60-channel LMS data acquisition system was used to record the response of the structure and the input force. Because
extracting both flapwise and edgewise modes were desirable, triaxial accelerometers were selected for the testing. Twelve
accelerometers were mounted per blade distributed at locations over all three blades of the turbine. The frequency bandwidth
of the acquisition system for all the measurements (Cases 1–4) was 128 Hz; however, due to spatial resolution, only the
results below 80 Hz are shown in the current paper (mode shapes with natural frequencies higher than 80 Hz have curvatures
that are difficult to show with the limited number of measurement points).

The limitations in the number of available accelerometers and the available channels of the data acquisition system did not
allow all the measurements to be carried out in a single set-up of accelerometers. Therefore, the test was performed on four
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Fig. 19.1 A photograph of the
test set-up showing the wind
turbine attached to the steel-block
(the accelerometers are mounted
to Blade 3)
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Fig. 19.2 A drawing of the test
set-up showing the sensor
locations

separate set-ups; however, this requires extra consideration to mass loading which is discussed further. For the first set-up,
all the accelerometers were installed on Blade 1. The response of the turbine to the excitations was measured by using 12
triaxial accelerometers mounted to Blade 1 (36 channels). Then, the accelerometers were moved to Blade 2 and the response
of the structure was measured. Next, the accelerometers were moved to Blade 3 and same measurements were repeated. The
final set of measurement was performed when four of the triaxial accelerometers were attached to the support block and the
turbine was exited by using impact hammers or shakers.

To compensate for the mass of the accelerometers, dummy masses were installed to emulate the weight of the
accelerometers and connected wires. When the accelerometers are mounted to one blade, a set of dummy masses were used
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on the accelerometer locations of the other two blades. In order to lower the mass loading effects, lighter accelerometers
were used at the points near the tip of the blades. (The use of dummy masses on this type of lightweight blade structure is
critical to the success of measuring and extracting useful mode shapes. If these compensation masses are not used then there
would be a significant mass loading effect and the frequency response functions used for the modal extraction process would
not be of sufficient quality to extract accurate mode shapes).

19.4 Test Cases Studied

19.4.1 Case 1: Impact Hammer Modal Test on the Fixture

The primarily objective of the work was to find the mode shapes of the wind turbine in a fixed configuration. However,
providing a test condition for the turbine that replicates the built-in condition is very difficult. Considering the available
equipment, the turbine was attached to a fixture that included a lathe chuck and a steel block placed on layers of elastic
foam. However, some modes of the fixture might occur in the bandwidth of interest (the bandwidth that was used to extract
the modes of the turbine in fixed condition). Therefore, due to interactions between the modes of the fixture and the wind
turbine, the modes of the fixture needed to be determined before the fixture was attached to the turbine.

In order to identify the modes that were associated with the test rig, a modal impact hammer test was performed on the
fixture alone (see Fig. 19.3). The purpose of this test was to understand the contribution of the test fixture to the overall
dynamics of the complete turbine blade attached to the test fixture. On the other hand, the set up needed to consider the
inertial effects of the turbine but not their mode shapes. In order to emulate the inertia effects of the blades, some masses
were mounted to the shaft. Due to limitation in mountings, the added mass could partially replicate the masses of the blades
(the added mass is only 11 kg while the mass of the turbine was 23 kg). Likewise, the rotational inertia effect of the turbine
blades (that is due to off-center distribution of the mass of the blades) was not considered in this set up. These effects might
cause some discrepancies between the modes extracted in this case and fixture modes extracted when the blades are also
attached to the fixture; this will be addressed in Case 2 when the fixture modes are described.

Using four triaxial accelerometers, a modal impact hammer test was performed on the structure. Because, the flexible
modes of the plate were in higher frequencies than the frequency bandwidth of interest, accelerometers were only mounted
to the corners of the block. Figure 19.4 shows sample FRF and coherence plots of the measurement. The six modes of the
structure extracted using a LMS PolyMAX [12] stability diagram are shown in Fig. 19.5.

Fig. 19.3 A photograph of the
fixture showing the chuck,
masses, and 500-lb block placed
on layers of elastic foam
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Fig. 19.4 Sample FRF and coherence plots for the impact test measurement on the fixture
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Fig. 19.5 Stability diagram, natural frequencies, and mode shapes of the fixture (500-lb block and accessories) on layers of elastic foam

19.4.2 Case 2: MIMO Test on the Wind Turbine Assembly

A MIMO test was performed on the structure using three shakers (see Fig. 19.1). Each shaker was connected to a single blade
and was exciting the turbine using a burst random input. Because there were very closely spaced modes in the structure, a
high resolution was used for the data acquisition (1,024 spectral lines that needed 8 s of data recording). Before performing
the measurement, a principle component analysis was performed to assure that all three shakers were uncorrelated and
independent.

In order to identify the resonant frequencies of the assembly, a LMS PolyMAX [12] stability diagram was used.
Figure 19.6 shows the natural frequencies and mode shapes of the wind turbine attached to the steel block. The color code
shows the grouping of the modes.
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Fig. 19.6 Natural frequencies and mode shapes of the wind turbine attached to the 500-lb block

The modes of the assembled structure that come from the modes of the test setup are called fixture modes in Fig. 19.6.
These modes were identified by comparing their shapes and frequencies to the modes shown in Fig. 19.5. Comparing the
results in Figs. 19.5 and 19.6, the natural frequencies for the modes of the test rig that were related only to the mass of the
structure (modes 4, 5, and 10 in Fig. 19.6 that are respectively equivalent to lateral, longitudinal, and bouncing modes shown
in Fig. 19.5) have slightly changed. However, the modes of the structure that were related to the rotational inertia of the
assembly (modes 6, 12, and 13 in Fig. 19.6 that are respectively equivalent to rotating, rolling, and pitching modes shown in
Fig. 19.5) show a significant change. This can be attributed to the fact that in the model shown in Fig. 19.2, the effect of the
distributed mass of the turbine that would influence the rotational inertia of the structure was not considered.

The modes of a turbine can be categorized as either collective or differential modes. The collective modes are the modes
with the same phase on three blades; the differential modes are the modes that the blades do not have the same phase or
deflection.

19.4.3 Case 3: SIMO Test on the Wind Turbine Assembly

In the SIMO test, the test set up shown in Fig. 19.1 was used; however, only Shaker 1 was exciting the structure. The data
acquisition system used the same set-up as previous measurement in Case 2. Most of the modes of the assembled structure
that were shown in Fig. 19.6 could be extracted by the SIMO measurement. A comparison between the modal parameters
extracted using MIMO, and SIMO measurement techniques is performed in the Sect. 19.5 of the paper.
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Fig. 19.7 A drawing of the
turbine showing the impact
locations/orientations for the
modal impact hammer test
(Y-axis shows out of plane;
X-axis and Z-axis show in-plane
impacts)

19.4.4 Case 4: Modal Impact Hammer Test on the Wind Turbine Assembly

Modal impact hammer test was also performed on the structure. For this measurement, the blades were excited in 15
locations/orientations as shown in Fig. 19.7 using a modal impact hammer with a rubber tip. The force impacts were made
both in flap and edge directions. The data acquisition system was used with the same set up as the previous cases (frequency
bandwidth of 128 and 1,024 Hz spectral lines). The extracted modal parameters are presented in the Sect. 19.5.

19.5 Discussion

19.5.1 Discussion 1: MIMO–SIMO Comparison

As previously described, the modes of the structure were extracted using MIMO and SIMO techniques in two separate tests.
In this section, a comparison between the FRFs extracted with these methods is performed.

To study the differences of the results when the structure is excited with multiple shakers and a single shaker, the measured
FRFs at a measurement point located at the tip of the Blade 1 for MIMO and SIMO tests are shown in Fig. 19.8. As can be
seen, the measured FRF for the MIMO test due to Shaker 1 and the measured FRF for the SIMO test overlap very well. That
occurs because for the SIMO test, only Shaker 1 (attached to Blade 1 where the measured point is located) was exciting the
structure. The FRF measured for the MIMO test due to excitation by Shakers 2 and 3 are also shown in Fig. 19.8. These
FRFs reveal that some modes of the system have better been excited by using Shakers 2 and 3 rather than Shaker 1. For
instance, the two modes of the system that were located near 8 Hz can be more clearly found in the excitation by Shakers 2
and 3 than Shaker 1 (see Fig. 19.8). Therefore, modes of the system were more effectively excited for a MIMO test rather
than a SIMO test; that would lead to extracting more accurate FRFs for the MIMO test.

For a comprehensive comparison between the measured FRFs using two techniques, three measured FRFs from the
MIMO test due to Shaker 1 and SIMO test (that is also due to Shaker 1) and their corresponding coherences are overlaid in
Fig. 19.9. The FRFs related to the measurement points at the tip of the three blades for x and y directions. As can be seen, the
FRFs for point 1y (i.e. the tip of the Blade 1 at the flap direction) compare very well for two techniques. It should be noted
that for the SIMO test, the only shaker that was exciting the system (Shaker 1) was connected to Blade 1; this might describe
why the measured FRFs at tip of that Blade 1 for MIMO and SIMO tests are very similar. However, the FRFs for the tip of
the Blade 2 (Fig. 19.9 middle curve) do not compare as well as the tip of the Blade 1. This might be attributed to the fact that
an energy loss occurred when the energy was transmitted through the hub and connections. In addition, this might be also
attributed the shaker stingers; in the MIMO test the effect of the stingers is symmetrical while in SIMO test is not. As can be
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Blade 2 in the y direction due to shaker excitation attached to Blade 1, (c) measured FRF and coherence at the tip of the Blade 3 in the x direction
due to shaker excitation attached to Blade 1

seen, the coherence of this measurement for the SIMO test is not at the same quality as that for the MIMO test. If the FRFs
are measured for the points that do not have large deflections in the modes, the measured FRFs show a higher difference. As
can be seen in Fig. 19.9 right plot, the measured FRFs for x direction show higher deviations between the two methods and
the coherence for the SIMO test is not as good as the MIMO test.
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Fig. 19.10 Summation and complex mode indicator functions of the measure FRFs for the MIMO test (left) and the impact hammer modal test
(right); the ovals indicate modes that can be seen more distinctly using impact test rather than MIMO test

19.5.2 Discussion 2: Location of the Shakers

Selecting the location and orientation of the shaker is an important part of SIMO and MIMO measurements. A poor selection
of the reference points may lead to weak representation of the mode shapes. A proper selection of the reference points,
however, excites the desirable modes of the structure. Preferably, a shaker should be attached to a point that the mode shapes
show a high value at (far from nodes of the modes). On the other hand, although the tips of the blades show high deflections
for most of the modes, the shakers cannot be attached to those points because the shaker may not be able to generate the
necessary displacement at these points during excitation. Therefore, the shakers were attached to the structure at points near
the root of the blade. In fact, the drive points were located approximately 60 cm far from the center of the turbine so they can
excite the first three flapwise modes of the turbine (the node of the first flapwise and edgewise modes of the single blades are
near the root of the blades). Furthermore, by using an oblique installation of the shakers, both flapwise and edgewise modes
of the structure could be excited.

In order to demonstrate the effects of the location and orientation of the shakers on exciting the modes of the structure, the
stability diagram of the structure for the measured FRFs during MIMO test (Fig. 19.10, left) is compared to impact hammer
test (Fig. 19.10, right). The modes of the structure can be identified by the peaks in the plot. As can be seen, there are some
modes of the structure that have not been effectively excited for the MIMO test while for the impact test (Fig. 19.10, right)
those peaks can be seen more distinctly. This occurs because of the location and orientation of the shakers. The shakers could
excite the first three flapwise modes of the blades at approximately 5.5 Hz. However, the first edgewise modes of the blades
could not be effectively excited (at approximately 21.1 Hz) because the stiffness of the blades in edge direction was much
higher than the flapwise direction. Moreover, the shakers are more inclined toward the flap direction than edge direction
because extracting flapwise modes were considered more important. Therefore, if a better representation of the edgewise
modes were needed, the shakers would have to be installed far from the roots and more oblique toward the edge direction
(it should be noted that installing the shakers close to tip of the blade is also a challenge because of the high flexibility of
the blade near the tip). The impact hammer modal test, however, shows a clear peak at the frequency of the first edgewise
mode of the turbine. This occurs because for the impact test, the force edgewise impacts could be made at points that were
far from the hub. When the force is applied to the turbine at points far from the hub, the edgewise modes of the structure can
be efficiently excited.

19.5.3 Discussion 3: Comparing the Modal Parameters Extracted using SIMO, MIMO, and
Impact Tests

In this section, a comparison between the MIMO and SIMO tests along with a comparison between MIMO and impact tests
are performed. The correlation shows the percentage of change in natural frequency and damping extracted using different
techniques. The mode shapes are correlated using modal assurance criterion (MAC).

Table 19.1 shows a comparison between the MIMO and SIMO tests. The results show that for most of the modes, both
of the techniques show similar results. A strong correlation between the results for the first mode extracted using the two
methods can be seen. However, modes 2 and 3 do not show strong correlations. This can be attributed to the fact that usually
MIMO test can have better distribution of energy over the structure. On the other hand, the location and orientation of the
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Table 19.1 Correlation between extracted modal parameters for MIMO and SIMO tests

MIMO test SIMO test Correlation

Mode # Freq. (Hz) Damp. (%) Freq. (Hz) Damp. (%) Freq. diff. (%) MAC (%)

1 5.3 0.9 5.3 0.7 0.6 97.0
2 5.4 0.7 5.4 0.9 0.2 81.9
3 5.6 0.5 5.6 0.3 0.3 78.0
4 7.7 5.4 – – N/A N/A Fixture mode
5 7.7 3.6 – – N/A N/A Fixture mode
6 8.9 4.8 8.9 4.5 0.3 98.4 Fixture mode
7 14.9 1.3 14.9 1.2 0.0 99.3
8 15.4 0.7 15.4 0.8 0.0 99.9
9 16.1 1.3 16.1 1.4 0.0 99.8
10 18.3 5.8 18.5 2.9 1.2 28.8 Fixture mode
11 21.1 3.3 21.0 2.2 0.8 47.7
12 23.2 4.5 23.2 4.1 0.0 97.9 Fixture mode
13 25.5 2.8 25.5 2.7 0.1 99.0 Fixture mode
14 29.7 1.5 29.7 1.5 0.0 99.3
15 30.2 3.1 30.2 3.1 0.1 98.0
16 36.3 0.6 36.3 0.6 0.0 99.9
17 37.3 2.4 37.4 2.3 0.3 92.6
18 37.9 1.8 37.9 1.8 0.2 95.0
19 51.3 0.7 51.2 0.7 0.1 99.7
20 58.3 0.7 58.3 0.7 0.0 99.4
21 58.9 0.7 58.9 0.7 0.0 99.7
22 62.1 0.5 62.1 0.5 0.0 99.9
23 67.6 0.6 67.5 0.6 0.0 91.2
24 69.1 0.6 69.1 0.6 0.0 99.4

shaker or the amount of energy imparted to the structure for SIMO test could not effectively excite the longitudinal, lateral,
and bounce modes of the fixture (modes 4, 5, and 10); that is why these modes could not be identified for the SIMO test or
they show a weak correlation. The weak correlation between the results for mode 11 also can be attributed to the improper
excitation of that mode by a single shaker as could be predicted using the FRF in Fig. 19.8 (mode 11 is the first edgewise
mode with a node located near the root of the blade).

A correlation between the modal parameters extracted using MIMO test and modal parameters extracted using impact test
are shown in Table 19.2. The results of Table 19.2 show high correlations between the modes of the structure using these two
methods. The first edgewise mode of the turbine also shows a high correlation. However, the lateral and longitudinal modes
of the fixture (modes 4 and 5) could not be extracted using modal impact hammer method. This should be noted that although
making impacts at the points of the blades far from the hub could efficiently excite the edgewise modes of the turbine (for
those modes the turbine deforms along the hub axis and the hub is the nodes of these modes), these impacts did improve
excitation of the transverse and lateral modes of the fixture. Moreover, the bouncing mode of the structure (mode 10) shows
a weak correlation between two methods. These can be attributed to the fact that the small impact force applied by using the
rubber head of the hammer could not excite the global modes of the structure. However, if a better representation of these
modes were needed, some force impacts could have been made on the fixture with a bigger modal hammer.

Comparing the results of Tables 19.1 and 19.2, it is evident that the MIMO test results show a higher correlation to
the impact hammer modal test rather than SIMO test. This can be attributed to the fact that for both MIMO and impact
test measurements, a more uniform distribution of the input energy could be applied to all three blades. However, for the
SIMO test, the input force was applied to the system through a single blade. Therefore, the energy might not be uniformly
distributed for the entire structure.

19.6 Observation

In this section, several important lessons from the paper are pointed out that can be used in future measurements.
For Case 1, extracting modes of the fixture with considering the inertia of the blades was desirable. Therefore, to replicate

the inertia of the blades, a lumped mass was added to the hub. However, the lumped mass could not mimic the rotational
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Table 19.2 Correlation between extracted modal parameters for MIMO and impact hammer tests

MIMO test Impact hammer test Correlation

Mode # Freq. (Hz) Damp. (%) Freq. (Hz) Damp. (%) Freq. diff. (%) MAC (%)

1 5.3 0.9 5.3 0.7 0.2 98.7
2 5.4 0.7 5.4 0.6 0.0 99.5
3 5.6 0.5 5.6 0.5 0.0 97.9
4 7.7 5.4 – – N/A N/A Fixture mode
5 7.7 3.6 – – N/A N/A Fixture mode
6 8.9 4.8 8.9 4.9 0.8 98.6 Fixture mode
7 14.9 1.3 14.9 1.5 0.0 99.9
8 15.4 0.7 15.4 0.7 0.0 99.9
9 16.1 1.3 16.1 1.3 0.0 99.9
10 18.3 5.8 18.9 2.8 3.2 22.0 Fixture mode
11 21.1 3.3 21.1 2.9 0.0 94.6
12 23.2 4.5 23.3 4.1 0.2 98.4 Fixture mode
13 25.5 2.8 25.5 2.6 0.1 99.1 Fixture mode
14 29.7 1.5 29.7 1.5 0.1 99.5
15 30.2 3.1 30.2 3.1 0.0 97.2
16 36.3 0.6 36.2 0.6 0.1 99.9
17 37.3 2.4 37.3 2.4 0.0 97.9
18 37.9 1.8 37.9 1.8 0.2 98.9
19 51.3 0.7 51.3 0.8 0.0 99.8
20 58.3 0.7 58.3 0.7 0.0 99.5
21 58.9 0.7 58.9 0.7 0.1 99.6
22 62.1 0.5 62.1 0.5 0.1 99.9
23 67.6 0.6 67.6 0.6 0.0 99.4
24 69.1 0.6 69.1 0.3 0.1 99.9

effects of the blades. After obtaining the modes of the assembly (Fig. 19.6), a considerable change in some modes of the
fixture (Fig. 19.5) was seen. This change is more significant in the modes that are dependent to the rotational inertia of the
blades. The results of this paper show the significant effects of rotational inertia on the structures where mass is distributed
far from the rotation axis.

Another important lesson that can be learned from this measurement was the effects of impact locations on the extracted
modes. For the impact test, if the measured FRFs for the case when impact forces are only made on a single blade were
used, not all the modes could be extracted; this was observed in the results but was not presented in this paper due to space
limitation. For instance, if the measured FRFs of the test when only Blade 1 was excited were used, mode 2 of the turbine
could not be identified. Therefore, if the input force is distributed on all the components of a structure in a modal test, a better
representation of the modes (or even more modes of the structure) can be extracted. This fact also clarifies why SIMO test
results do not compare very well with the MIMO and impact tests. For SIMO test, the force was imparted to the turbine only
through a single point and on a single blade; therefore, not all the modes might be effectively excited.

19.7 Conclusion

The results of the study revealed there are very closely space modes in the three-bladed turbine attached to the steel block.
The modes of the assembled turbine were categorized into: (1) collective flapwise modes, (2) differential flapwise modes, (3)
collective edgewise modes, (4) differential edgewise modes, and (5) fixture modes. In this paper, the technique for installing
shakers in oblique orientations was implemented for a wind turbine blade; the modes of the structure could be found without
the need for finding the installed angles of the shakers. Comparing the MIMO and SIMO results showed that a complicated
structure such as a wind turbine that has several connections among the subcomponents needs to be excited by several
shakers. Using multiple shakers leads to a uniform distribution of the energy over the entire structure and a better coherence
in the measurement. On the other hand, a single shaker could not effectively excite all the modes of the structure. The results
of the study also showed that impact hammer modal test is still one of the powerful techniques to excite structures for an
experimental modal test. The results revealed that for a complicated structure with several substructures, impact hammer
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modal test leads to better results rather than SIMO test. If only a few impact references are used and all of these references
are located on one blade, then the results may not adequately represent the modes. However, if many impact reference
locations are used on all three blades, then very good results can be obtained.
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Chapter 20
Modal Test Results of a Ship Under Operational Conditions

Esben Orlowitz and Anders Brandt

Abstract Sea vessels are exposed to a complex vibration environment, influenced by the sea as well as by operational
conditions. Particularly, the hydrodynamic load effects are difficult to estimate analytically. Experimental results are therefore
important to verify the analytical models. In the present paper preliminary results from a full-scale modal test of a Ro-Lo
vessel carried out for three different operating conditions are presented. Since little full-scale modal testing seems to have
been conducted on vessels in operation, the experimental setup together with preliminary modal parameters extracted from
the measurements are presented. This preliminary study is focusing on investigating the data with respect to operational
conditions and shows a significant variation of the modal damping of the vessel in operation, with approximately 400 %,
200 % and 400 % difference in the first three global vertical bending modes, respectively.

Keywords Operational Modal Test • Sea vessel • Full-scale measurement • Hydrodynamic loads • Damping

20.1 Introduction

The ship building industry faces the challenges to improve transportation capability, lower fuel consumption or increase
speed, often in combination. Generally, this means lower weight and increased flexibility of the ship structures. Nevertheless
the ships still have to fulfill the demands of classification societies concerning vibration levels and sustain a long service life.

With the introduction of higher tensile steels in hull structures fatigue problems have been more imminent. Precise
numerical models of the dynamics of the ship are therefore needed for fatigue prediction. These models are complicated
by the hydrodynamic loading effects of the water surrounding the hull of the ship and the complex vibration environment
ships face in operation. Hydrodynamic mass is commonly approximated by Lewis method that dates back to the twentieth
century, which is added to the Finite element (FE) model of the ship. Recently this method is being substituted by boundary
element methods combined with FE analysis [1]. It is known that in general the complete hydrodynamic load effect is
not only depending on the additional mass from the water, but the full boundary conditions which are depending on the
operational conditions (speed, sea state etc.), called hydroelastic effects. Especially the damping of the combined system
(ship-sea) is difficult to estimate analytically. A solution is to estimate the damping from full-scale measurements to validate
the numerical model. An investigation of the damping estimates was recommended by the committee of Dynamic Response
at the recent Eighteenth ISSC1 conference [2].

One of the few studies utilizing operational modal analysis (OMA) on full-scale measurements that have been published
[3] has shown that the technique can be successfully applied on a ship and in addition pointed out some of the challenges like
harmonic contamination of the measurement data from the propulsion system of the ship. The measurements were performed
on a roll-on roll-off vessel and the study presented global bending and torsional modes. The authors also mentioned that there
seemed to be a dependency between increasing cruising speed and a decrease in the natural frequencies. Some more research

1International Ship and Offshore Structures Congress.
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has been performed with OMA on scaled ship models. Predominantly to compare with analytical results, e.g. [4] where also
dependency of the modal parameters on cruising speed was investigated, and has shown a significant increase (non-linear)
of both natural frequencies and damping ratios with increasing speed, suggesting that damping must be evaluated at typical
speeds. The increase of the natural frequencies with increasing cruising speed is in contradiction to what was indicated from
the full scale test in [3].

For model experiments good conditions for OMA can be established, since random excitation can be provided, with the
possibility of changing speed. For a full-scale measurement such a condition is difficult to establish because of harmonic
contamination from the propulsion system. In addition a still open question remains on the consistency of the results and the
dependency on the actual operational condition of the ship.

In the present paper the experimental setup and preliminary results from a 45 degree-of-freedom (DOF) three-direction
full-scale measurement on a Roll-on Lift-off (Ro-Lo) vessel operating in the Baltic Sea is presented. OMA techniques are
applied to obtain modal parameters for the first five global modes. This is conducted for three different operation conditions
which is compared in order to study the influence on the global modes.

20.2 Experimental Setup

The measurement was performed under the test trial before delivery of the vessel. This gave many different operational
conditions, but also applied hard constraints on the (measurement) time for each condition. In addition it should be noted
that the ship was tested without any cargo.

Measurements of three operating conditions were conducted with the exact same equipment setup, see Sect. 20.3, and all
measurement points and directions were measured simultaneously.

20.2.1 The Vessel

The Ro-Lo vessel, see Fig. 20.1, is a multipurpose/hybrid cargo ship capable of carrying trucks, cars and containers
simultaneously. This makes the vessel’s center of mass varying relatively much depending on the cargo combination, which
has a large influence on the ship stability. Furthermore the ship is characterized by large mass concentrations fore and aft.
The bridge house is located in the forward part and in the aft part a so-called flume tank2 is located. The flume tank was
empty during all measurements.

Fig. 20.1 The investigated
roll-on lift-off

2The flume tank can be filled with water in order to change the stability of the structure, which could be needed because of the large deviations in
cargo combination.
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Fig. 20.2 Overview drawing of the vessel, including the measurement grid used. All measurement DOF’s are marked with filled circles and a
number

The main data of the vessel is as follows:

– Shipyard: Flensburger Shiffbau-Gessellschaft.
– Total length: 210 m.
– Width (mid main deck): 29.60 m.
– Height to main deck: 10.90 m.
– Draught (design): 8.45 m.
– Deadweight: 19,200 tons.
– Design speed: 20 knots.

20.2.2 Measurement Equipment and Setup

The following Data Acquisition (DAQ) and sensor equipment was used:

– 3x National Instrument 4,497, 16 channel, 24 bit analog inputs cards.
– 45x Dytran 3097A3 accelerometers, 500 mV/g, IEPE.
– Up to 300 m coaxial cables, in total more than 5 km of coaxial cable.
– In-house software for DAQ control, based on MATLAB DAQ-toolbox.

The measurement points (26 in total) were spread out on the main deck of the vessel, two points on the deck house (fore),
and two points on the flume tank (aft) as shown in Fig. 20.2.

The horizontal (x–y) plane was investigated for torsion modes and so all points were measured for vertical vibration
(z-direction). The longitudinal vertical (x–z) plane is only investigated for bending modes, hence only points on one side
of the deck (point 5–15) were measured for horizontal vibrations (y-direction). Longitudinal vibrations (x-direction) are not
considered in the present work, but at the four points at the deck house and flume tank, where all three transversal directions
were measured for further investigations of local phenomena, not included in the present work. At measurement point 5–15
where two directions were measured, small aluminum cubes were used for mounting the accelerometers, see Fig. 20.3.
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Fig. 20.3 Picture of mounting
cubes used for measuring in
multiple directions with single
accelerometers

Table 20.1 Operation conditions
for the three measurements

Speed (knots) Water depth (m) Shaft speed (rpm) Sea state

�10 knots 10˙ 2 20 65 Calm
�18 knots 18˙ 2 20 98 Calm
Anchor 0 100 98 Calm

The measurement time was limited to periods where nearly stationary conditions were established. In the present paper
all three data sets consist of time histories of 30 min.

For hardware reasons the actual sampling frequency was 1 kHz, but for conveniences the time histories were down
sampled to a sampling frequency of 8 Hz before further processing.

20.2.3 Measurement Conditions

As stated above three operating conditions are considered in this paper. Two conditions are identical except cruising speed
at a water depth of approximating 30 m. The two cruising speeds were approximately 10 and 18 knots respectively, constant
during the measurement (with variations less than 2 knots). These cruising conditions are from now on referred to as ‘�10
knots’ and ‘�18 knots’ respectively. The third condition is with the vessel anchored on deep water (�100 m). For all three
conditions the sea was very calm and the wind speed below 5 m/s.

The rotation speed of the propeller was 98 rpm for the �18 knots and anchor condition and 65 rpm for the �10 knots
condition, giving blade pass excitation of 6.5 and 4.3 Hz, respectively, which is far from the modes presented in the present
paper (<2.5 Hz). The measurement conditions are summarized in Table 20.1.

20.3 Results/Experimental Modal Analysis (Output-Only)

The variety of methods for OMA modal parameter estimation is large, many of them being modifications of some basic
methods. In the present paper the Multiple-reference Ibrahim Time Domain (MITD) Method is used [5]. The original basis
function for this method are impulse responses, which in the OMA case are replaced by correlation functions (CF’s), which
are estimated by the (indirect) Welch approach, see e.g. [6] or [7].

The MITD method constructs a block Hankel matrix. For determination of system order and to suppress noise the block
Hankel matrix is decomposed by singular value decomposition is computed (SVD). From the SVD compressed block Hankel
matrix an eigenvalue problem can be established for different system order (number of poles) the solutions of which are
plotted in a stabilization diagram, from which the poles and mode shapes can be manually selected. An example of a
stabilization diagram using the data of the present work is presented in Fig. 20.4.

In Fig. 20.4, around 1.6 Hz, the second mode is seen to be very close to a pole not obtaining the stability criteria. In this
case this unstable pole is the propeller shaft fundamental rotation speed. In addition the damping is very low (0.04 %) which
also indicates a harmonic rather than a mode.
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For the parameter estimation by the MITD method 150 lines from the CFs were used for the block Hankel matrix, which
corresponds to 18.6 s of the CFs. The first five lines were discarded in order to avoid the influence of measurement noise, see
e.g. [6]. The CFs are estimated with points 14 and 15 as references (two x- and y-directions).

With these references a relatively good decoupling of the first five modes is obtained, see the Modal Assurance Criterion
(MAC) matrix in Fig. 20.5.

In the following two subsections a comparison between the results of the two cruising conditions and the results of the
anchor condition are treated separately. The mode shapes for all three conditions are similar and are shown in Fig. 20.6,
which can be justified by inspection of the cross MAC matrices in Figs. 20.7 and 20.8.

20.3.1 Cruising Condition

For the cruising condition the estimated natural frequencies and damping ratios for the first five modes are shown in
Table 20.2, where also the differences are tabulated.
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Fig. 20.6 Mode shapes for the
first five modes of the vessel. (a)
1. vertical bending mode, (b) 1.
horizontal bending mode, (c) 2.
vertical bending mode, (d) 1.
torsional mode and (e) 3. vertical
bending mode
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Table 20.2 Estimated natural frequencies and damping ratios, for the two conditions (�10 and �18 knots) and their differences for the separate
modes

�10 knots �18 knots Difference

Mode # Frequency (Hz) Damping (%) Frequency (Hz) Damping (%) Frequency (%) Damping (%) Comment

1 1.004 0.394 0.843 2.073 �16 C426 1. Vertical bending mode
a2j3 1.861 0.634 1.812 0.988 �3 C56 1. Horizontal bending mode
a3j2 1.890 0.328 1.654 0.972 �12 C196 2. Vertical bending mode
4 2.249 0.687 2.118 1.195 �6 C74 1. Torsional mode
5 2.751 0.399 2.435 1.918 �12 C381 3. Vertical bending mode
aThe order of the 1. horizontal and 2. vertical bending modes are exchanged for the two different conditions. The order from the �10 knots
condition is kept

There are several interesting observations that can be drawn from these extracted modes. Generally the natural frequencies
decrease and the damping ratios increase with increasing cruising speed. Specifically for the vertical bending modes there
are some distinctive results due to increased cruising speed:

• Significant increase in damping for the vertical bending modes, by 200–400 %.
• Decrease in natural frequency (above 10 %) for the vertical bending modes.

From the cross MAC matrix, see Fig. 20.7, it can be seen that the extracted modes show strong similarities despite the
changes in natural frequencies and damping ratios.

It should be noted again that the rotational speed of the propeller is very close to the 2. vertical bending mode for the �18
knots condition and that its influence on the extracted mode is not yet fully studied.

20.3.2 Anchor Condition

For the anchor condition the estimated natural frequencies and damping ratios are shown in Table 20.3. The MAC matrix
between mode shapes from the anchor and the �10 knots condition are presented in Fig. 20.8, showing a relative strong
similarity between the modes. No significant change in natural frequencies occurs compared to the �10 knots condition, but
the damping ratio for the 1. torsional mode due changes significantly.
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Table 20.3 Estimated natural
frequencies and damping ratios,
for the anchor condition

Anchor

Mode # Frequency (Hz) Damping (%) Comment

1 1.033 0.259 1. Vertical bending mode
2 1.869 0.855 1. Horizontal
3 1.927 0.198 2. Vertical
4 2.268 1.336 1. Torsional mode
5 2.810 0.533 3. Vertical bending mode

20.4 Conclusions and Future Work

An experimental setup, consisting of 45 accelerometers distributed over 26 measurement points—measured simultaneously,
has been used on a Ro-Lo vessel during sea trial.

In the present paper a preliminary output-only modal analysis is presented for three different operating conditions of the
vessel: one at anchor and two with cruising speeds of 10 and 18 knots respectively. The environmental condition was similar
with very calm sea and the water depth was similar for the two cruising conditions (30 m).

The five first modes were successfully extracted for all three conditions and from the estimated modal parameters the
following preliminary conclusions can be drawn

• The vertical bending modes show significant dependency on cruising speed.
• The natural frequencies decrease with increasing cruising speed.
• Modal damping increase with increasing cruising speed.
• From 10 to 18 knots cruising speed the modal damping of the vertical bending modes increases with 200–400 %.

The dependency of natural frequencies on cruising speed is in agreement with the full scale measurement presented in
[3], but in contradiction with the results from the scaled model test in [4]. However the modal damping dependency is in
accordance with the obtained results from the scaled model test.

The presented preliminary results are a part of ongoing research at University of Southern Denmark and the next step is
to make a more thorough investigation of modal parameters and their statistic consistency, also including higher modes. This
will also include the harmonic excitation from the propeller blades superimposed onto the responses of the vessel.
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Chapter 21
Measuring Effective Mass of a Circuit Board

Randall L. Mayes and Daniel W. Linehan

Abstract Effective mass is a system property of a base mounted structural mode of vibration in a specific system axis.
Effective mass is usually calculated with the finite element model. A method of deriving effective mass from dynamic
measurements on the hardware was presented previously. The method is applied to a circuit board mounted on a fixture
for the out of plane axis. The uncertainty of the method is evaluated using a nylon plate truth model of about the same
dimensions and weight as the circuit board. The method measures frequency response functions on the fixture supporting
the circuit board. Modes are extracted, and the mode shapes are processed to estimate the effective mass of each fixed base
mode. These results will ultimately be used to support energy based failure analysis on the circuit board.

Keywords Effective mass • Modal participation factor • Experimental

Nomenclature

DoF Degree of freedom
FRF Frequency response function
SDoF Single degree of freedom
f Force
mmk Modal mass for mode k
mTA Mass of the test article
MB Mass of the fixture or base
pmpf(k) Pseudo-modal participation factor for mode k
Pk Modal participation factor in one direction for mode k
Rx Acceleration in one direction
q Generalized coordinate
L Reduction matrix applying the constraint to equations of motion
ˆ Rigid body mode shape vector with ones in the direction of interest
‰ Mass normalized real mode shape matrix
� Eigenvectors resulting from constraint Equations
B Subscript for the fixture or base
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k Subscript for mode number
TA Subscript for the test article

21.1 Motivation and Application

Sandia National Laboratories has proposed a fatigue-damage metric based on the cumulative dissipated energy in a linear
superposition of single-degree-of-freedom (SDoF) modal models as part of a framework for predicting failure of components
subjected to random vibration loading. Edwards [1] showed how this method can predict the total energy absorbed by the test
article in a random vibration environment. In order to utilize the proposed framework, the effective mass, fixed base natural
frequency and damping is required for the SDoF modal models. Usually effective mass is obtained from finite element model
(FEM) calculations, but in many cases, a FEM may not exist. In addition, the FEM may not be verified. It is desirable to
have an experimental method to calculate the fixed base natural frequency, damping and the effective mass of each of the
lower modes of the component. If the test article is available, it can be mounted on a fixture and a free modal test performed
to extract parameters that can be utilized to calculate effective mass as shown by Mayes et al. [2]. In their work they showed
that effective mass could be measured for the first ten modes in one direction within about 4 % of the test article mass. Their
work addressed a test article with a mass of 72 kg for modes from about 35 to 1,350 Hz. Here we wish to extract the effective
mass for a circuit board with a mass of 42.41 g and modal frequencies from 130 to 2,300 Hz.

In order to establish the uncertainty of the method for this class of test article, the effective mass experiment and calculation
is applied to a “truth” structure which is a uniform nylon plate with the same length and width and almost the same weight
as the circuit board. Both will be attached to an aluminum plate fixture with two posts to which the circuit board (or truth
structure) is attached. One can see the circuit board as well as the truth structure attached to the fixture in Fig. 21.1. Since
the truth test article is relatively simple, a FEM of the truth structure was generated to calculate effective mass. The “truth”
effective mass in the out of plane direction is calculated, and the test effective mass will be compared to that to quantify
uncertainty of the effective mass from the test approach. Finally, the test effective mass will be extracted for the real circuit
board and the uncertainty is assumed to be the same as derived from the truth test.

21.2 Effective Mass Concept and History

The effective mass offers a physical interpretation of a physical system with multiple modes of vibration being excited
dynamically from a base, similar to testing that occurs for many systems. The concept was proposed in the early 1970s by
Bamford [3] with others. For a base excited system, it is represented as attached to a massless base, which will be excited
in only one direction with acceleration, Rx, with each mode represented by a single degree of freedom oscillator as shown in
Fig. 21.2. The mass of each oscillator is valued so that it applies the same force to the base as the real system. The springs
are scaled so that the mass vibrates at the appropriate modal frequency. In general, only the modes that have the significant

Fig. 21.1 Circuit board and fixture (left), truth plate and fixture (right)
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Fig. 21.2 Physical picture of
effective mass concept

effective masses are required to represent the response up to some desired frequency. In the figure we show four such modes.
The other modes are truncated. The effective mass of all the truncated modes is added directly to the base as a residual mass.
When the base is accelerated with some vibration specification, the various effective mass oscillators will impose the correct
reaction force on the base in the direction of excitation. As can be seen from this illustration, effective mass is based on a
system that can be represented as having a base input. It depends also on the assumption that the base is rigid.

Effective mass is related to modal participation factor, Pk. The derivations of modal participation factor and effective mass
can be found in the FEMA 451B Topic 4 Notes [10]. A major difference between effective mass and modal participation
factor is that modal participation factor is different depending on the scaling of the modal mass, mmk, whereas effective mass
is a single defined value. In a fixed base eigenvalue problem of an analytical model of the system, the modal participation
factor multiplied by �Rx provides the modal force that will excite a particular mode for the rigid base acceleration, Rx. The
effective mass, which provides the actual base reaction force associated with a particular mode, resolves any question about
mode shape scaling and is calculated as

meff;k D P2
k mmk (21.1)

If‰k
fixed is the fixed base mode shape vector for mode k and M is the mass matrix of the test article, the modal participation

factor can be calculated from the rigid body mode shape vector,ˆ, of the system released and translating in the direction of
acceleration of the base as

Pk D ˆ
T

M‰
k

f ixed =mmk (21.2)

where the rigid body shape values of vector ˆ in the direction of acceleration are equal to one and in orthogonal directions
are equal to zero. The modal participation factor and effective mass are related to direction. If vector ˆ represents the rigid
body mode shape in the y direction, as opposed to the x direction as shown in the figure, a different modal participation factor
(and effective mass) will be calculated for mode k.

As can be seen, this standard approach requires a finite element model. If the finite element model is in error, the modal
participation factor and effective mass will be in error.

21.3 Effective Mass Measurement Approach

The method of Mayes [2] will be utilized for this application. The effective mass of each mode is desired for the out of plane
(vertical) direction for the nylon plate and the circuit board shown in Fig. 21.1. The steps to obtain the effective mass are:

1. Perform a freely supported modal test on the fixture to determine its elastic shapes that might be in the frequency band of
interest. The fixture must be instrumented so that all the rigid body shapes and any elastic shapes extracted are independent
(so the test mode shape matrix may be inverted).

2. Perform a freely supported modal test on the test article mounted to the fixture. The fixture must be instrumented but it is
not required that the test article be instrumented.

3. Constrain the test article and fixture so that all elastic modes of the fixture and rigid body rotation modes and rigid body
lateral modes are constrained to zero. Only one rigid body mode in the vertical direction and elastic modes of the attached
test article remain.

4. Calculate the pseudo modal participation factors from the partially constrained modal results of step 3, which requires the
mode shape of the fixture, the mass of the fixture and the mass of the test article.
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5. Constrain the final rigid body mode to zero displacement using data from step 3 and capture the L matrix and resulting �

modal vectors.
6. Finally calculate the fixed base modal participation factor estimates using pseudo modal participation factors from step 4

and the L and � matrices from step 5. Then Eq. 21.1 can be utilized to calculate the effective mass for each mode.

This work is made possible by the recent theory [4–7] that can be applied to mode shapes gathered from an unconstrained
modal test to constrain the modal degrees of freedom of the test fixture to which the test article is connected. The L matrix is
the matrix that applies the constraints to an unconstrained system in the primal formulation of dynamic substructuring (see De
Klerk, Rixen and Voormeeren’s, framework for all substructuring methods [8]). The � matrix is the matrix of eigenvectors
resulting from the eigenvalue problem solution on the constrained system.

21.4 Abbreviated Effective Mass Measurement Theory

The derivation of the theory for extracting experimental effective mass was published [2] and will not be repeated here. The
pertinent final equations are given below. The required measurements are the modal mass of each mode, the mode shapes
measured on the fixture, the mass of the fixture and the mass of the test article. The mode shapes must include the rigid body
modes and any elastic modes of the fixture that may influence results in the frequency band of interest. No measurement of
the mode shape on the test article is required, but it may provide valuable insight. The mode shapes are constrained so that:

1. elastic modes of the fixture have been constrained; and
2. all rigid body modes are constrained except the one in the direction for which effective mass is desired.

Then one must calculate the pseudo modal participation factors. The first pseudo modal participation factor is for the rigid
body mode and is calculated as

pmpf .1/ D mTA‰
1
B (21.3)

where mTA is the mass of the test article and ‰1
B is the mass normalized mode shape of the rigid body mode on the base (test

fixture) in the direction of interest. The pseudo modal participation factor for each elastic mode is calculated as

pmpf .k/ D �MB‰
k
B (21.4)

where MB is the mass of the base (test fixture) and is the mode shape of the particular elastic mode on the base (test fixture).
The estimate of the modal participation factors are calculated from

Pk D
�
pmpf .1/ pmpf .2/ : : : pmpf .n/

	
ak (21.5)

where ak is the kth column of L� .

21.5 Modal Test of Fixture with Truth Plate

To capture the elastic fixture modes, the bare fixture without test articles was suspended by a small bungee cord and impacted
with a PCB Model 086C01 with white plastic tip. The sensitivity of the hammer was confirmed by impacting a suspended
4.5 kg mass with a calibrated accelerometer, and it reproduced the analytical mass line within 2 %. An elastic mode at about
5,464 Hz was extracted for the bare fixture which looked like a standard first plate twisting mode. Then the truth plate was
attached by two screws to the fixture and the hardware shown in the right side of Fig. 21.1 was suspended with a small bungee
cord. Two sets of FRFs were gathered for accelerometers mounted on the fixture. In one set the impact was at the center of
the fixture, and in the other the impact was at one corner (not one of the corners with a mounting post). Accelerometers were
attached to the fixture as shown in Fig. 21.3. Accelerometers measured in the Y and Z directions for node 101, the XYZ
directions for node 102, the X and Y directions for node 103 and only the Y direction for nodes 104 and 105. Mode shapes
for both FRF data sets were extracted using a Sandia in-house algorithm SMAC [9].
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synthesis for center of plate

The imaginary portion of the driving point FRF for each data set is shown in Figs. 21.4 and 21.5. The actual data are in
blue and the FRF synthesized from the modal parameters are in green. Three distinct modes and one weak one were extracted
from the center of plate impacts and seven were extracted from the corner of the plate data.

The center plate impact tends to excite modes that have effective mass in the direction of impact while the corner plate
impact excites those modes plus anti-symmetric modes that may not have much effective mass in the translation direction.
In addition to the elastic modes extracted from test, the rigid body mode shapes were analytically calculated and added to
these data sets for processing to extract effective mass in the Y direction.

21.6 Finite Element Model Truth Calculations

The truth calculations for the effective mass comparisons came from finite element model simulations utilizing NX
NASTRAN and were performed by ATA Engineering. The fixture was modeled, and its first mode is shown in Fig. 21.6. The
nylon plate was modeled as isotropic and its modulus was tuned to match the first free mode of the nylon plate by itself at
646 Hz. Its first mode is shown in Fig. 21.7. Then the nylon plate was mounted to the fixture by equivalencing the nodes at
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Fig. 21.6 FE model of first
fixture elastic mode

the post. This result produced a natural frequency that was slightly higher than what was seen in the modal test of the fixture
and nylon plate. The boundary condition was adjusted to include some springs representing the joint compliance to better
match the first test mode. Then the modes of the nylon plate were calculated with the fixed and the springs fixed to ground
to give bounds on the effective mass of each mode of the plate. This is why there is a range of effective mass shown in the
previous tables.
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Fig. 21.7 First free elastic mode
of nylon plate

The mode shapes for the nylon plate fixed at the two posts are given in Fig. 21.8. The fixed frequencies for the equivalence
and spring boundary conditions and the constrained test data are shown in Table 21.1. Note that modes 4, 5 and 9 would not
be excited well by impacting at the center or the unsupported corner. They would be excited by impacting at a supported
corner, which we did not impact. There is pretty good agreement for the first couple of fixed frequencies between the FE
spring model and the test data. At higher frequencies there are greater discrepancies, and the test results should be more
accurate for the higher modes, even with the constraining mathematics because the fixed base modes are only very slightly
different than the free modes of the nylon plate attached to the fixture. So there may be a bit of error in the FE model estimates
of effective mass which we are considering “truth.”

21.7 Experimental Effective Mass Extractions

The effective mass extraction procedure was applied to both sets of data to obtain the Y direction effective mass. The best
results for effective mass came from the center plate impact and are given in Table 21.2. These results are normalized to the
total mass of the test article. The difference between the test result and the truth FE result is expressed as the percentage of
the TOTAL mass of the test article.

The results for normalized effective mass from the corner plate impact are given in Table 21.3.
Table 21.3 results provide some additional interesting information. There are three modes that have zero normalized

effective mass out to four decimal places. The fact that these zero effective mass modes are predicted with zero effective
mass is encouraging. The highest effective mass has more error than from the center plate result. The results from impacts
at the corner of the plate will be affected by errors in applied moments and errors in dimensions in moment arms. Impacts at
the center of the plate do not even excite the pitching modes, so those errors are minimized. It should be noted that accurate
dimensions, mass properties and accelerometer placements and hammer impact locations and directions are required to get
accurate rigid body mode shapes and FRFs.

21.8 Test Anomaly

In Tables 21.1 and 21.2 one may notice a test mode with a small effective mass that does not correspond to any FE mode. This
rogue mode was studied further to determine its cause. The modal damping was nearly 10 % for this mode around 640 Hz,
and it was extracted from both data sets. Eventually the cause was discovered. This is a false mode. This can be explained
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Fig. 21.8 Mode shapes of nylon plate fixed at nearest and farthest corner
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Table 21.1 Fixed frequencies
for modes of nylon plate Mode no. Test frequency (Hz)

Equivalenced
FE frequency

Spring FE
frequency

1 238 264 240
2 339 357 344
3 1,081 1,012 1,000
4 – 1,179 1,110
5 – 1,235 1,182
6 1,683 1,836 1,775
7 1,920 2,244 2,070
8 2,705 2,654 2,590
9 – 2,733 2,619

Table 21.2 Normalized test
effective mass from center plate
impact compared to FE model

Test frequency (Hz)
Effective mass
from test

Effective mass
from FE model

Difference as % of total
mass of test article

339.4 0.815 0.816–0.831 �0.1 to �1.6
638.6 0.018 – –
1,081.4 0.069 0.058–0.062 �1.1 to �0.7
2,705 0.040 0.0041–0.0043 �0.01 to �0.03

Table 21.3 Normalized test
effective mass from corner
impact compared to FE model

Test frequency (Hz)
Effective mass
from test

Effective mass
from FE model

Difference as % of total
mass of test article

238.2 0.0000 0.0000 0
340.1 0.788 0.816–0.831 �2.8 to �4.3
650.2 0.016 – –
1,082.6 0.057 0.058–0.062 �0.1 to �0.5
1,683 0.0000 0.0000 0
1,920 0.0000 0.0000 0
2,712 0.028 0.0041–0.0043 2.4

by investigating the FRF, and the autospectra of the drive point accel and the force which are shown in Fig. 21.9. Notice
that in the FRF there are four resonances, but in the accelerometer autospectrum only three resonances. In the hammer force
autospectrum one can see an anomaly (circled in red) which is not uncommon in certain hammers. This is a pollution of the
autospectrum due to the first bending mode of the hammer. After impact the hammer vibrates which causes this dynamic
effect. This effect is not sensed by the accelerometer because the impact is over. This produces a false mode in the data.

21.9 Effective Mass of Circuit Board

The circuit board on the left side of Fig. 21.1 was tested in the same manner as the nylon plate with the center plate hammer
impact. Normalized effective mass extractions are shown in Table 21.4. The uncertainty is assumed to be on the order of 0.02
from the previous work.

21.10 Conclusions

Effective mass was calculated from the center impact reference for three modes to within 2 % of the total mass of the test
article, when compared with a FE truth model. A corner impact reference resulted in effective mass for three additional
modes as zero out to four decimal places, which agreed with the truth model. The corner impact reference data produced
effective mass within 5 % of the total mass of the test article when compared with the truth model. It was found that the
corner impact had a small geometry error which could have impaired its results slightly, since that would affect the mode
shape and modal mass extraction. Accurate rigid body mode shapes as well as extracted elastic mode shapes are required
for the data processing to extract effective mass from experiment. A false mode was discovered in the truth test, which was
due to the dynamics of the hammer, which appeared to have a normalized effective mass of nearly 0.02. The effective mass
extraction process appears to be fairly robust for the truth test geometry and setup since the FRFs seem to exhibit linear
behavior.
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Table 21.4 Normalized test
effective mass for circuit board Test frequency (Hz)

Effective mass
from test

134 0.170
181 0.640
654 0.057
725 0.012
1,065 0.016
1,174 0.003
1,416 0.009
1,650 0.008
2,031 0.001
2,174 0.004
2,283 0.005
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Chapter 22
Acoustic Cavity Modal Analysis for NVH Development of Road
Machinery Cabins

Hongan Xu, Owen Dickinson, John Wang, and Hyunseok Kang

Abstract Noise and vibration comfort is a critical design criterion for road machinery. An acoustic modal analysis provides
useful insights to understanding interior acoustic characteristics and to developing noise mitigation strategies, to improve
operator comfort. In this study, an acoustic cavity modal analysis of a compactor cabin is done by utilizing analytical solution,
FEA and experimental measurements. While the analytical method and FEA calculate the normal modes of a rigid-walled
acoustic cavity, the physical test measures the acoustic modes in-situ that account for the vibro-acoustic coupling effect
between the interior cavity and flexible panels. The discrepancies of resultant modal parameters extracted by testing and
simulation are discussed. In addition, the impacts of the seat and steering column assembly on the acoustic cavity modes are
also investigated. Last but not least, a local vibro-acoustic behavior of the cab and its relation to the interior booming noise is
deeply investigated. From the NVH development standpoint for a practical cabin, the findings of this investigation not only
help troubleshooting cabin noise issues but also lead to improvement in virtual acoustical modal predictions and guide the
design to achieve a robust NVH performance.

Keywords Road machinery cabins • Acoustic transfer function • Low frequency booming noise • Acoustic cavity modal
analysis • Panel-cavity coupling • Panel resonance

22.1 Introduction

The cabin acoustic comfort is one of the most important factors that affect an operator’s work environment. As the legal
regulations become more and more stringent to limit the interior noise level of construction equipment, designing a quiet
cabin appear more critical for both designers and analysis engineers. In order to improve the interior noise performance,
a good understanding of cabin vibro-acoustic characteristics is of critical importance to provide insights into the acoustic
design and noise mitigation strategies.

Typically, the operator cabin is considered as a structural-acoustical system composed of an acoustic enclosure surrounded
by flexible panels that are bonded to the cab frames. Therefore, the interior sound field is significantly affected by the acoustic
cavity resonances, panel vibration modes and the panel-cavity interaction. In this study, the cabin acoustical characteristics
are investigated using analytical solution, FEA calculation, and in-situ experimental analysis, respectively. As the analytical
solution is based on the assumption of a rigid-walled cavity, it does not account for the panel-cavity coupling effect, which
could lead to a remarkable predicting discrepancy from the real acoustical characteristics. In comparison with the analytical
solution, FEA employs the modal coupling theory to accommodate the structure-acoustic interaction in modeling the acoustic
cabin cavity. However, the model coupling approach has two main limitations in that it is only suitable for weak coupling
and it does not satisfy the basic requirement of velocity continuity on the panel-cavity coupling interface. In contrast to
simulation, the experimental acoustic modal analysis provides more meaningful information in characterizing the realistic
vibro-acoustic behavior of the cab cavity in-situ. Hence it continues to be used as a practical troubleshooting tool and
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an informative benchmark for modal correlation. Especially, a local vibro-acoustic behavior that is induced by a panel
resonance can be easily identified via an acoustic mapping of the interior sound field. This case scenario will be examined in
the following discussion.

Good efforts have been made in recent studies to improve the prediction accuracy of acoustic cavity modal characteristics.
Pan and Bies [1] conducted an excellent review on the coupled structural-acoustic system composed of an acoustic space and
a flexible wall surface. Du, Li and Xu, etc. [1, 2] proposed a general Fourier series method predicting the acoustical behavior
of a rectangular cavity with arbitrary impedance boundary conditions. This method not only accounts for the non-uniform
boundary conditions, but also allows a truthful enforcement of the velocity continuity condition on or near the fluid–structure
interface. Sanderson and Onsay [4] carried out an experimental acoustic modal analysis aiming to investigate the impact
of the flexibility of cab panels and the addition of seats on changing acoustic frequencies and mode shapes. Kavarana
and Schroeder [5] proposed a modified FEA method to improve the vibro-acoustic cavity modal correlation. They utilized
an omni-directional sound source to duplicate the test scenario and scale the relative amplitudes of vibro-acoustic modes
using acoustic transfer functions from the measured locations. Tsuji, Enomoto and Maruyama etc. [6] attempted to improve
the simulation accuracy by utilizing the experimental acoustic mode shapes that determine the detailed sound pressure
distribution at the coupled interfaces of the acoustic and structural system. Mamede, Varoto and Oliveira [7] investigated the
vibro-acoustic coupling phenomena by using an experimental study of the interaction between acoustic and structural modes
for a vehicle interior cavity for the low frequency range. Specifically, they focused on the extraction of cavity modal properties
from measured acoustic-structural FRFs. Cherng, Bonhard and M. French [8] studied the influence of the seat orientation
and trimmed material properties on the acoustic cavity modal behaviors using a mock-up passenger compartment.

One of the motivations for the investigation detailed in this report was the incidence of booming noise in a SD upgrade
compactor [9]. The booming noise was perceived as a deep resonant sound with a significant increase in the sound pressure
level (SPL) measured at the operator’s ear position while the drum spins at 2,025 rpm. In order to identify the root cause(s)
of the booming noise, an extensive experimental NVH investigation was carried out. As a key part of booming noise trouble
shooting process, the acoustic cavity modal analysis not only helps the root cause identification, but also benefits the FEA
prediction for the virtual Cab NVH development at early design phases. The objective of this work mainly focuses on but is
not limited to:

1. Revisit the feasibility of using a rigid-walled acoustic cavity to approximate its in-situ counterpart in terms of modal
characteristics.

2. Examine the impact of the seat and steering column on changing acoustic modal frequencies and mode shapes.
3. Investigate the local vibro-acoustic behavior and its relation to the low frequency compactor booming noise.

22.2 Analytical Acoustic Description of a Cavity

At early design stage, the cabin acoustic modes can be approximately determined using analytical solutions for a rigid-
walled rectangular cavity. Figure 22.1 depicts a rectangular acoustical cavity of dimensions Lx �Ly � Lz with an associated
coordinate system.

Fig. 22.1 ISO view of the cabin
and its equivalent box dimensions
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Fig. 22.2 FE cavity model:
(a) no seat and steering column;
(b) with seat and steering column

The exact values for the natural frequencies of a rigid-walled rectangular cavity are well known as:
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(22.1)

where c0 is the speed of sound, Lx is the depth, Ly is the width, and Lz is the height of the cavity. In addition, nx, ny and nz

denote the modal orders in x, y and z directions, respectively. The modal functions for rigid-walled rectangular cavity are
simply the products of cosine functions in three dimensions:

‰nxnynz D cos cos�nxx cos cos�nyy cos cos�nzz (22.2)

where �ns D ns�=Ls (sD x, y, or z)
In this case, Lx D 1.34m and is measured as the average distance between the front windshield to rear window, Ly D 1.54m

and is the distance between two side windows, and Lz D 1.75m is the height of the cavity measured from floor to roof.

22.3 FEA Calculation

FEA is also commonly used at early design phase to predict the fundamental trends of the acoustical cavity. Fig. 22.2 shows
the FE acoustic cavity being modeled with and without steering assembly and seat. The 2nd order solid tetra elements
were used to mesh the cavity. The entire cavity mesh consists of 15,000 elements with an average size of 80 mm. By
accommodating the real geometry layout, FEA is more accurate than analytical solution in predicting rigid-walled cavity
acoustical behavior. Even though the rigid-walled assumption is not realistic due to the fact that the actual cabin consists of a
number of flexible panels, the rigid-walled acoustic modes still provide a benchmarking for investigating the acoustic modal
difference due to the structure-acoustic interaction. Therefore, the rigid-walled cavity model will be utilized in the following
case study.

22.4 Physical Acoustic Cavity Characterization

Two testing cases were performed on the cab shell with and without the seat and steering column, respectively. The cab was
settled on two airbags to simulate a free-free boundary condition, shown in Fig. 22.3a. A low frequency omni-directional
volume velocity sound source was used to excite the cab cavity. The source was placed at the front left corner of the cavity
and isolated with soft foam from the cab body as shown in Fig. 22.3b. A white noise signal from 20 to 500 Hz was used
as the driving signal to excite the acoustic modes of interest. Figure 22.4 illustrates the acoustic instrumentation. An array
consisting of 6 microphones spanned the interior and was moved along the depth (front to rear) and height (floor to roof) of
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Fig. 22.3 (a) Completely detached cab shell sitting on airbags; (b) omni-directional volume velocity sound source

Fig. 22.4 (a) Microphone array setup; (b) measurement grid

the cab which defined a measurement grid. Two wooden strips extending from the front to the rear of the cab support the
roving microphone array. The vertical wooden frames were used to raise and lower the moveable array throughout the space.
The acoustic transfer functions (P/Q) were measured between microphone responses at all grid points with respect to the
volume velocity of the source. The acoustic modal parameters were extracted using PolyMAX method.

22.5 Results and Discussion

22.5.1 Feasibility of Rigid-Walled Assumption in Predicting Acoustic Cavity Modal
Characteristics of the Cab In-Situ

The rigid-walled assumption is frequently used to estimate the cab cavity resonances by design engineers at early cab
development stage. However, the level of accuracy for this approximated prediction is rarely examined due to the lack
of a comprehensive experimental benchmark. This session is aiming at filling this void by quantitatively investigating the
feasibility of rigid-walled acoustic cavity in approximating its in-situ counterpart in terms of modal characteristics.

Due to the fact that most challenging cab noise issues are in the low frequency range, for example, the booming noise, only
1D, 2D and the first 3D modes are considered. Table 22.1 shows the comparisons of the first 7 modal frequencies obtained by
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Table 22.1 Comparison of
acoustic modal frequencies nx

Index
ny nz

Analytical
mode (Hz) FEA mode (Hz) Test mode (Hz)

Analytical FEA Analytical
vs. test vs. test vs. FEA (%)

0 0 1 1 97:2 1 115:9 4 112:1 �13:3 3.4 16.1
0 1 0 2 110:7 2 132:7 2 93:6 18:7 41.8 16.6
1 0 0 3 126:9 3 149:9 6 137:4 �7:6 9.1 15.3
0 1 1 4 147:3 4 185:3 7 171:7 �14:2 7.9 20.5
1 0 1 5 159:8 5 194:8 – – – 18.1
1 1 0 6 168:4 6 215:7 – – – 21.9
1 1 1 7 194:4 8 228:7 9 230:5 �15:6 �0.8 15.0

analytical solution, FEA and test. Note that the modal sequence achieved from test is quite different from the one predicted
by analytical solution and FEA. For instance, the vertical mode (0, 0, 1) is the first mode in analytical solution and FEA but
the fourth mode in test. Also, in test the vertical mode (0, 0, 1) comes after the lateral mode (0, 1, 0) whereas in analytical
solution and FEA the sequence of these two modes is switched. In addition, the natural modes given by test are slightly
lower compared to the FEA prediction. This is because the flexibility of panels surrounding the cavity results in an “elastic”
acoustical boundary condition hence making the cavity acoustically longer than the physical dimensions [4]. For the cab
in-situ, the side panels are made of glass whereas the roof and floor are steel, therefore the cavity wall is softer laterally but
stiffer vertically, which makes the cavity acoustically longer in lateral direction (y-axis) than the vertical direction (z-axis).
It is also noticed that modes (1, 0, 1) and (1, 1, 0) are missing in test, which is due to the elastic cavity wall as well. The
prediction accuracy of analytical solution and FEA can be measured by the percentage discrepancy against experimental
results. The accuracy level of anlytical prediction is between 80 and 90 % and the one of FEA prediction is as high as 90 %
except for the 2nd mode (0, 1, 0) which has a 40 % predicting deviation.

The mode shapes associated with Table 22.1 are plotted in Fig. 22.5. Note that FEA and test have a nearly perfect match
for 1D and 2D modes and a reasonable agreement for the first 3D mode (1, 1, 1). It should be emphasized once again that
the experimental modal sequence needs to be adjusted to match the counterpart mode shapes given by analytical solution
and FEA. Besides, a fairly reasonable agreement is found between analytical solution and FEA, especially in the case of 1D
and 2D modes. This implies that the geometrical deviation between an FE model and its equivalent rectangular box is not so
significant in predicting the lower order acoustic cavity mode shapes.

Figure 22.6 depicts the unique testing modes that are not listed in Table 22.1. Note that the first mode in test is a
longitudinal mode (1, 0, 0) at 79.7 Hz in x-axis, shown in Fig. 22.6a. The third testing mode shown in Fig. 22.6b is a quasi-
vertical mode in z-axis meaning a transition mode between the 2nd lateral mode and the 4th vertical mode. Figure 22.6c,
d present the modes in such a way that they can be somewhat treated as a (0, 0.5, 0.5) mode and a (1, 0.5, 0.5) mode,
respectively. Again, these unique modes can be attributed to the vibro-acoustic coupling effect between the air cavity and the
flexible cab panels.

22.5.2 Impact of the Seat and Steering Column on Experimental Acoustic Modal Parameters

The addition of the seat and steering column introduces a mass coupling effect to the interior sound field which could generate
a substantial impact on the cavity acoustic behaviors [8].

Table 22.2 shows the acoustical natural frequencies and modal damping that were extracted from measurements with and
without the addition of the seat and steering column. The first observation is that the modal frequencies are uniformly shifted
downwards by 1–5 % after adding the seat and steering column. Particularly, the vertical mode #4 shifts more to the lower
value than the lateral mode #3 and the longitudinal mode (mode #5 for with seat and mode #6 for no seat). The addition of
the seat and steering column causes a little frequency shift for the 3D mode (1, 1, 1), which is a combination of longitudinal,
lateral and vertical mode.

However, the results are counter intuitive because the interior volume of the cavity decreases with the addition of the seat
and steering column, which should increase the modal frequencies. The same observation was found in previous publications
[4, 8].

In order to further investigate the acoustic modal behavior, a sum block of measured acoustic transfer functions (P/Q)
is plotted in Fig. 22.7 for the two cases. The sum block is essentially an averaged response of acoustic transfer functions
measured at all microphone locations, which is useful to identify the modes as well as the relative strength of modes. The
averaged acoustic transfer function shows that the two cases generally share a similar trend in terms of peaks and valleys in
the frequency range of interest except for the mode at 121.2 Hz, which is absent with the addition of the seat and steering
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Fig. 22.5 Comparison of cavity mode shapes: (a) analytical solution; (b) FEA; (c) test
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Fig. 22.5 (continued)

column. It is also noted that the modal response increases with the addition of the seat and steering column. Regarding the
relative strength of modes, the vertical mode #4 is the most dominant one for both cases. In practice, this vertical mode may
induce high sound pressure levels if it is coincident with excitation frequencies such as the engine firing orders. Such a mode
should be precisely identified from the FEA model prior to the physical prototype to facilitate the cab NVH development.

The corresponding mode shapes are compared in Fig. 22.8. Note that when the seat and steering column are added, the
vertical mode #4 somehow tends to start coupling with a lateral mode in y-axis. For the longitudinal mode #6, the region
where the maximum pressure response concentrates migrates from the front top left corner to the front bottom right corner.
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Fig. 22.6 Experimental vibro-acoustic cavity modes missed in theoretical and FEA prediction

Table 22.2 Comparison of acoustical natural frequencies and damping extracted from measurements with and without
seat and steering column

With seat and steering column No seat and steering column Frequency difference (%)

Mode Frequency (Hz) Damping (%) Mode Frequency (Hz) Damping (%) (No seat–with seat)/no seat
1 79.1 0.4 1 79.7 1.7 0.8
2 92.8 1.1 2 93.6 1.8 0.9
3 99.3 1.1 3 100.9 0.9 1.6
4 108.1 3.5 4 112.1 2.6 3.6
– – – 5 121.2 2.5 –
5 135.1 3.9 6 137.4 3.2 1.7
6 164.1 1.8 7 171.7 2.3 4.2
7 190.7 1.52 8 191.7 2.2 0.5

Fig. 22.7 Comparison of block
ATF with and without seat and
steering column

22.5.3 Local Vibro-Acoustic Behavior and Its Relation to the Low Frequency Booming Event

As previously mentioned, one of the motivations of this study is to help identify the root cause of a low frequency booming
noise on a compactor. The booming noise was perceived as a deep resonant sound at the operator’s ear position at 34 Hz. The
cab dimension of 1.34 m� 1.54 m� 1.75 m indicates that the lowest flexible acoustic mode would be around 100 Hz which is
much higher than the booming frequency. Besides, the initial diagnostic test subjectively found that the noise level remains
almost the same regardless of positions. It implies that the noise is neither related to a standing wave nor a cavity mode.
Based on the aforementioned facts, the booming event is therefore suspected to be due to a local vibro-acoustic response that
could be induced by a cab panel resonance.

Figure 22.9 plots the averaged acoustic transfer function for the case with no seat and steering column in a range of 30–
200 Hz. Note that there is peak at approximately 35 Hz dictating the entire frequency range. This peak, however, is actually
related to a local panel resonance instead of a cavity mode, which can be verified through plotting the imaginary part of all
measured acoustic transfer functions, as illustrated in Fig. 22.10.
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Fig. 22.8 Comparison of experimental cavity modes with (a) and without (b) seat and steering column. (a) With seat and steering column (b) No
seat and steering column



228 H. Xu et al.

Fig. 22.8 (continued)
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Fig. 22.8 (continued)

Fig. 22.9 Averaged acosutic
transfer function with no seat and
steering column

Fig. 22.10 Imaginary part of the
acoustic transfer functions
measured at all microphone
locations
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Fig. 22.11 Illustustration of a local vibro-acoustic behavior caused by a panel resonance 35 Hz. (a) Contour of pressure distribution at 35 Hz
(b) Cab structural mode at 35 Hz

By definition, the imaginary parts of the frequency response functions for each modal frequency represent the associated
mode shape. Particularly, to identify an acoustic mode, a sign change in the imaginary parts is essentially required. It is
clearly showed in Fig. 22.10 that all the peaks of the imaginary parts point in the same direction. Thus we can conclude that
the peak at 35 Hz is irrelevant to the acoustic cavity resonances.

To validate that the peak at 35 Hz is due to a local panel resonance, we conducted an experimental modal analysis on
the cab structure. A structural mode was found at 35 Hz which is coincident with the booming frequency. For comparison,
the structural mode shape is depicted together with an acoustic pressure mapping contour in Fig. 22.11. While the pressure
distribution contour shows a high pressure concentration next to the rear and side windows, the structural mode shape
indicates a local resonance of the rear and side panels accordingly. Apparently, the root cause of the booming noise is due
to a local vibro-acoustic behavior that is initiated by the structural resonance of the rear and side panels. To suppress this
local vibro-acoustic behavior, a practical countermeasure was implemented to shift the panel resonance away from the drum
excitation frequency and the interior booming noise was tremendously attenuated.

22.6 Conclusion

The acoustic modal behaviors have been characterized qualitatively and quantitatively using analytical solution, FEA and
experimental measurement. The primary findings and conclusions are summarized as below:

1. Based on the assumption of a rigid-walled cavity, the lower order modal frequencies predicted by the analytical solution
and FEA differ 10–20 % and 10 %, respectively, from those obtained by tests. The experimental modal sequence is also
quite different from the analytical and numerical ones. The prediction discrepancies are mainly attributed to the unrealistic
rigid-walled assumption.

2. While the modal frequencies predicted by FEA and analytical solution have a deviation around 15–20 %, the predicted
modal sequence is nearly the same. This could be due to the high irregularity of the cab geometry and the nearly identity
3D aspect ratio (x/y/z) of cab dimensions.

3. Regarding the mode shapes, FEA and test have a nearly perfect match for 1D and 2D modes and a reasonable match for
the first 3D mode (1, 1, 1). Analytical solution and FEA have a reasonable agreement for the 1D and 2D modes. This
implies that the geometrical deviation between an FE model and its equivalent rectangular box is not so significant in
predicting lower order acoustic cavity mode shapes.

4. The addition of the seat and steering column shifts the modal frequencies down to lower values by 1–5 % but makes a
little difference to the mode shapes.
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5. The averaged acoustic transfer function (P/Q) plays an important role in determining the relative strength of acoustical
modes.

6. The local vibro-acoustic behavior is of critical importance in affecting the interior sound field. The root cause of the local
vibro-acoustic behavior is attributed to the panel resonances.
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Chapter 23
Strain-Based Dynamic Measurements and Modal Testing

Fábio Luis Marques dos Santos, Bart Peeters, Marco Menchicchi, Jenny Lau, Ludo Gielen, Wim Desmet,
and Luiz Carlos Sandoval Góes

Abstract The most common and established way of performing experimental modal analysis is to use acceleration or
velocity based transducers that lead to the calculation of the displacement mode shapes. However, there are applications
where the use of strain measurements makes for a more attractive and interesting option. For instance, since strain
measurements are more directly related to stress, fatigue and failure, strain-based measurement methods can be a good
option for structural health monitoring methods and monitoring systems. Moreover, applications where sensor size and
placement might be critical are also good candidates for strain-based methods. Helicopters, wind turbines and gas turbines
are a good example where strain gauges are more suited for vibration measurements. Additionally, any sort of system that
uses strain gauges for static testing can also use the same sensors for dynamic testing without incurring additional sensor
costs, which can be very useful in some situations. Some application cases of dynamic strain measurements and dynamic
strain modal analysis are shown in this work, with test subjects such as a composite helicopter blade, a small wind turbine
blade and a composite beam. Different types of sensors and excitation methods were also used as well as correlation with a
computational model.

Keywords Strain modal analysis • Dynamic strain • Strain field • Modal analysis • Mode shape

23.1 Introduction

Modal testing has been, for a long time, associated with the use of displacement responses (or their derivatives with respect
to time). The use of strain sensors for modal testing [1, 2], on the other hand, has been less accentuated, with the difficulties
of using strain gauges slowing down the advent of strain modal analysis. But the increased interest from both industry and
academia on assessing and evaluating structural integrity on design prototype stages and also monitoring in real-time (with
structural health monitoring systems (SHM)), has led to an increase in the number of dynamic strain applications, to the
development of improved identification and measurement techniques, as well as to improved sensor technology [3, 4].
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Strain gauges have been commonly used for static load testing of mechanical products in the aeronautic, automotive and
mechanical industry. Moreover, fatigue testing [5], durability analysis and lifetime prediction [6] has also been a common
application where strain gauges are used. This sort of testing is a common part of the product development process, and
additional information on product durability and dynamic performance can be assessed by obtaining the modal parameters
of the system, while still using the same instrumentation.

A very important contribution on the field of strain measurement are the fiber optic sensors, or Fiber Bragg Grating
(FBG) sensors [7,8]. Their robustness to magnetic interference, added to the easiness of creating sensor arrays with multiple
sensors, plus the possibility of embedding these sensors in composite structures, makes for an attractive solution for use
in SHM systems. The availability of such an array of sensors, ready to be used and adequate for modal testing, is another
incentive to carrying out a strain modal analysis, saving up on time and instrumentation.

Another application of dynamic strain measurements is related to the strain displacement relations [9]. In many systems,
strain gauges are used as the standard vibration sensor, especially when size or sensor location is an issue. Such is the case
in aerospace applications, like gas turbines, wind turbines and helicopters [10], where size and weight are very restricted,
and any sensor place on a blade should affect its aerodynamic properties as little as possible. One particular use of the strain
measurements and strain to displacement relations is the strain pattern analysis (SPA), where strain measurements are used
to predict blade displacements.

23.2 Theoretical Background

To obtain the strain modal formulation, one can start with the fundamental theory of modal analysis. Modal theory states that
the displacement on a given coordinate can be approximated by the summation of a n number of modes:

u.t/ D
nX

iD1
�iqi .t/ (23.1)

where u is the displacement response in x direction, �i is the i th (displacement) vibration mode, and qi is the generalized
modal coordinate and t is time. For small displacements, given the theory of elasticity, the strain/displacement relation is:

"x D @

@x
u (23.2)

And similarly, the same relationship exists between the strain vibration modes and the displacement modes:

 i D @

@x
�i (23.3)

This way, by the relations on Eqs. (23.2) and (23.3), the expression on (23.1) can be rewritten as:

".t/ D
nX

iD1
 i qi .t/ (23.4)

Moreover, the relationship between the generalized modal coordinate q and an input force F is:

qi D ƒ�1
i �iF ;withƒi D .�!2mi C j!ci C ki / (23.5)

where mi , ci and ki are the i th modal mass, modal damping and modal stiffness, and ! is the excitation frequency.
Substituting (23.5) into (23.4), the relation between a force input and a strain output, in terms of displacement and strain

modes is represented as:

"i D
nX

iD1
 iƒ

�1
i �iF (23.6)

And finally, the strain frequency response function (SFRF) can be obtained, in matrix form:
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ƒ�1
i f i g f�i g D Œ � Œƒ��1 Œ��T (23.7)
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The expansion of (23.7) is:
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where No represents the number of strain gauge measurement stations (or the number of output measurements) and Ni
represents the number of excitation points (or the number of inputs).

The columns of the matrix correspond to the strain responses due to the excitation points along the rows of the matrix.
Some important characteristics can be inferred from Eq. (23.8). First of all, differently from displacement FRFs, the SFRF
matrix is not symmetric, that is, for instance, H"

12 ¤ H"
21. This means that reciprocity is not guaranteed for strain modal

analysis—exciting point a and measuring point b will not yield the same FRF as if exciting point b and measuring point a.
Moreover, any column of the SFRF matrix contains all the information regarding the strain modes ( ), while any row
of the SFRF matrix contains information about the displacement modes (�). This particular property leads to practical
applications—to obtain the strain mode shapes, one must use a fixed excitation point and measure the strain responses.
On the other hand, by using a strain gauge as a fixed reference sensor and moving the excitation point (as with impact
testing), the displacement mode shapes can be obtained.

Due to the similarity of the strain modal formulation and the displacement modal formulation, the same modal
identification methods can be used in both cases, as long as the appropriate caution is taken. In this article, the PolyMAX
identification method [11] was used without any modifications.

Moreover, there is the possibility of obtaining reciprocal FRFs in strain modal testing, if the excitation input is not a
force that acts on displacement, but is actually a direct strain input. This case is achievable if, for instance, a piezo patch
actuator is used, but it will not be covered in this study, as the most common methods of carrying out modal analysis still use
displacement based excitation sources.

The following section on the experimental analysis will show some experimental examples of the characteristics
mentioned above.

23.3 Experimental Analysis

Three analysis cases were chosen to illustrate some of the characteristics of strain modal analysis seen in the previous section.
The first test subject, a small composite wind turbine blade, was tested with strain gauges and an impact hammer, and the
experimental results were compared with a finite element (FEM) simulation model. Then, a composite T-shaped beam was
tested using piezo-based strain sensors, accelerometers and shaker excitation. Finally, a large composite helicopter main rotor
blade was tested with shaker and hammer tests.

23.3.1 Wind Turbine Blade

A small composite wind turbine blade was used on the first strain modal test [12]. For this purpose, 20 strain gauges were
glued to the surface of the blade and an impact hammer with an impedance head was used to excite the structure at several
locations. The blade was fixed at its root, to impose a cantilevered condition. Of the 20 strain gauges, one of them consisted
of a strain gauge rosette to measure purely shear strain, while the other 19 strain gauges were aligned with the radius of the
blade and were measuring normal strain. Figure 23.1 shows the wind turbine blade, its sensor locations represented in the
acquisition software and a finite element model of the blade.

The first step of the experimental procedure is to measure the strain frequency response functions (SFRFs), that are used
later on the modal analysis procedure. Figure 23.2a shows the SFRF of an arbitrary strain gauge, where the resonance peaks
are clearly visible. Moreover, the phase shift due to the resonances is the same for the SFRF, where the phase shifts in 180
degrees whenever there is a resonance peak.

Additionally for this experiment, a reciprocity check was carried out to verify if the theory for strain modal analysis
was correct—for this purpose, two measurement points were picked and the impact hammer was used to excite those
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Fig. 23.1 Small wind turbine blade, sensor locations and FEM model. (a) Composite small wind turbine blade. (b) Sensor locations on wind
turbine blade. (c) Wind turbine blade FEM model
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Fig. 23.2 Wind turbine blade: (a) strain FRF; (b) reciprocity check using a strain gauge—reciprocity is not guaranteed

points. A successful reciprocity check should yield identical or almost identical FRFs for a classical displacement modal
analysis. In the case of the strain modal analysis, as it can be seen on Fig. 23.2b, reciprocity is not guaranteed for the strain
measurements, since the SFRFs do not match each other.

After the reciprocity check, the modal analysis and strain modes identification was carried out. For this purpose, the
PolyMAX identification method was used. A bandwidth from 10 to 210 Hz was taken into account as 6 clear modes
were identified in that frequency range—these modes consist of bending, in-plane and torsional modes. Table 23.1 shows
the natural frequencies and mode types of the identified modes. Finally, the strain modes obtained with the modal analysis
procedure were compared with the strain modes obtained from a FEM analysis of the blade, from the model shown
on Fig. 23.1c. The strain modes of the FEM model are extracted via the strain tensor matrix, where the appropriate strain
directions are taken according to the orientation of the strain gauges on the blade, and the strain gauge location and size are
approximated to one element of the finite element model.
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Table 23.1 Composite wind
turbine blade: natural frequencies
and vibration mode types

Mode Frequency Mode
number (Hz) type

1 17.25 Bending
2 46.29 In-plane
3 63.99 Bending
4 148.97 Bending
5 178.38 Torsional
6 199.79 In-plane

Table 23.2 Strain modes
comparison—experiment and
simulation

Mode Natural frequency Natural frequency Natural frequency
number strain gauges (Hz) accelerometers simulation (Hz) Difference % MAC

1 17.25 17.22 15.6 9.56 0.834
2 46.29 46.30 38.6 16.61 0.8
3 63.99 63.95 65.5 2.35 0.75
4 148.97 147.52 148.4 0.38 0.833
5 178.38 178.33 158.6 11.08 0.33
6 199.79 200.0 183.9 7.95 0.863

1

2

3

4

5

6

1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Modal Assurance Criterion (MAC)

E
xp

er
im

en
ta

lM
od

es

FEM Modes

Fig. 23.3 Modal assurance
criterion—comparison of
computational strain modes and
experimental strain modes for the
wind turbine blade

Two methods of comparison were used to compare the simulation and experimental analysis, the percentage difference
in natural frequency between experiment and simulation, and the modal assurance criterion (MAC). Table 23.2 shows the
natural frequencies comparison and percentage difference, as well as the diagonal MAC value. Additionally, the natural
frequency values obtained using a traditional accelerometer based impact test are also show, for the purpose of comparison.
Moreover, Fig. 23.3 shows the full MAC matrix for all the considered modes.

An initial analysis of the data from Table 23.2 shows that there is good agreement between the simulation model and the
experiment. Regarding the natural frequencies, most of them are within 10 % of difference, except for modes 2 and 5.
Moreover, the MAC values show very good correlation, except for mode 5. The lack of correlation for this mode is
understandable—it is a torsional mode, which means that most of its energy comes from shear strain, while only one of
the strain gauges (the strain rosette) is measuring shear strain, and the others are measuring normal strain.

23.3.2 Composite T-Beam

The composite T-beam used for the experiments is better described in [13]. It is a very simple structure by design, being
composed of carbon fiber reinforced plastics (CFRP) with 8 plies in total, and it has a T-shaped cross section. This sort of
cross section leads to a high bending stiffness, while the torsional stiffness is not affected as much. This means that for a
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Fig. 23.4 Composite T-beam test
set-up and strain sensor.
(a) Composite T-beam test set-up
used for experiments. (b) Piezo
strain sensor. (c) Shaker set-up

Table 23.3 Composite T-beam:
natural frequencies and vibration
mode types

Mode Frequency Mode
number (Hz) type

1 34.12 Torsional
2 59.91 Torsional
3 94.76 Torsional
4 144.26 Torsional
5 203.75 Bending
6 309.32 Torsional
7 386.54 Torsional
8 452.70 Bending

given frequency range, the system has high amount of torsional modes and very few bending modes. Such a characteristic
makes it for a interesting test subject for strain modal analysis, as torsional modes (that lead to a lot of shear strain) are hard
to measure with conventional strain gauges. In this case, circular-shaped piezo strain sensors were used instead of the regular
resistance based strain gauges.

The test set-up for the experiment consisted of 24 piezo strain sensors placed along two lines on each side of the beam,
and 10 accelerometers, used mainly to be able to verify the validity of the strain measurements. The beam was suspended
by two elastic cords and was excited with a burst random signal with a small electrodynamic shaker and the acquisition unit
was an LMS Scadas Mobile with 8 VB8 modules. Figure 23.4 shows the test set-up with some details—Fig. 23.4a shows
the suspended t-beam with the sensors, Fig. 23.4b shows a close up of the round piezo sensors and Fig. 23.4c shows the
electrodynamic shaker used to excite the structure.

The SFRF for the T-beam was acquired and a total 8 modes were clearly identified within the bandwidth of 20–500 Hz. Of
these, 6 of them are torsional modes and 2 are bending modes. Table 23.3 shows the natural frequencies and mode types—
the distinction between bending and torsional modes was made using the accelerometers and displacement mode shapes.
Moreover, as it can be seen from the SFRF (Fig. 23.5a), the bending and torsional modes are also present in the strain
measurements, meaning that the circular piezo sensors were effective in identifying the torsional modes as well as the
bending modes. Figure 23.5b shows the first torsional mode (both the displacement mode shape and the strain mode shapes
are shown), and Fig. 23.5c shows the first bending mode, with strain field and displacement as well.
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Fig. 23.5 Composite T-beam: (a) SFRF from an arbitrary strain sensor; (b) First torsional mode (coloring indicates strain field); (c) First bending
mode (coloring indicates strain field)

Helicopter main rotor blade used for tests FBG sensor on helicopter blade
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Fig. 23.6 Helicopter main rotor blade: (a) Blade used for the tests; (b) Fiber Bragg Grating sensor; (c) Location of sensors on blade, corresponding
to 2 fiber lines

23.3.3 Helicopter Main Rotor Blade

The main rotor blade of a PZL SW-3 helicopter was used for the last strain modal analysis verifications. For this experiment,
the blade was suspended with elastic cords to obtain a free-free boundary condition, as shown in Fig. 23.6a and fiber bragg
grating sensors were used to measure the dynamic strain on the surface of the blade. A close-up of one of these sensors can
be seen on Fig. 23.6. In total, 20 FBG sensors were instrumented on the surface of the blade, following two straight fiber
lines of 10 sensors each. Figure 23.6c shows the position of the sensors on the two fiber lines on the surface of the blade.

The blade was excited using an electrodynamic shaker, and the driving point was chosen close to the tip of the blade, near
the trailing edge, with a sine sweep excitation. Two acquisition units were used—an LMS Scadas Mobile with VB8 modules
and a FiberSensing BraggMETER. A frequency range from 8 to 80 Hz was chosen for the experiment—this range excludes
the first vibration mode of the blade (at around 4 Hz), which was hard to excite with the shaker. From the experiment, 10
vibration modes were identified—5 bending modes, 3 in-plane modes and 2 torsional modes. The natural frequencies and the
mode types for these modes are shown on Table 23.4. The displacement modes of the blade (and their types) were already
known from previous experiments [14].

Figure 23.7a shows a typical SFRF obtained from the experiment. From the figure, it can be seen that most modes are
clearly visible, except for the second torsional mode at 61.14 Hz. This behavior is understandable, since the sensors were
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Table 23.4 Natural frequencies
and mode types for the helicopter
main rotor blade

Mode number Natural frequency (Hz) Mode type

1 10.27 Bending
2 13.9 In-plane
3 20.28 Bending
4 30.44 Torsional
5 33.78 Bending
6 37.61 In-plane
7 49.55 Bending
8 61.14 Torsional
9 67.17 Bending
10 75.82 In-plane
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Fig. 23.7 Helicopter blade—(a) SFRF and vibration modes; (b) bending mode; (c) in-plane mode; (d) torsional mode

instrumented to capture normal strain, while the torsional modes should induce shear strain. Nonetheless, both torsional
modes are still identified by the identification procedure. The first identified strain modes are also shown on Fig. 23.7—the
first bending mode is shown on Fig. 23.7b, the first in-plane mode is shown on Fig. 23.7c and the first torsional mode is
shown on Fig. 23.7d.

Moreover, additional tests were carried out with the blade. The main objective of the second experiment was to assess
if strain gauges could also be used as the reference sensor for a roving hammer impact testing. For this purpose, an
accelerometer measuring the bending direction and a strain gauge aligned with the span of the blade, were collocated on a
chosen reference point. Then, the impact testing was carried out in 55 different points and the identified modes using the
accelerometer as reference were compared with the modes using the strain gauge as reference.

The natural frequencies obtained with the impact test using an accelerometer as reference were almost identical as the
ones obtained from the impact test using the strain gauge as reference, and the MAC between the two sets of modes also
yielded very good results. Figure 23.8 shows the natural frequencies and the MAC color values for the comparison between
the two systems. As it can be seen, the MAC values are very well matched, except for the second torsional mode, which is
not identified when using the strain gauge reference, and also the last mode, which is an in-plane mode, while the impacts
normal to the surface of the blade, so this type of mode is very hard to correlate in these circumstances.

23.4 Results Analysis and Conclusion

In this paper, the concepts of strain modal analysis were introduced and verified experimentally. For this purpose, three
experimental cases were shown—a small composite wind turbine blade, a composite T-beam and a composite helicopter
main rotor blade.

The first experiment was carried out using impact testing and multiple resistive strain gauges. Some basic characteristics
and utilities of the strain modal analysis were shown in this experiment. The first concept is the lack of reciprocity, as
described in the theory section of this work. Moreover, it was shown how the strain mode shapes obtained from test can be
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Fig. 23.8 Modal assurance
criterion—comparison between
impact testing using an
accelerometer (natural
frequencies shown on the side)
and a strain gauge (natural
frequencies shown on top) as
reference

correlated with a finite element model, and how torsional modes, that induce shear strain, are harder to be correlated when
most of the sensors are measuring normal strain.

Secondly, the composite T-beam was tested with an electrodynamic shaker. In this case, round piezo sensors and
accelerometers were used, with the purpose of being able to capture both normal and shear strain, and verify the mode
types by checking the displacement mode shapes. Overall, the sensors were successful in measuring both normal and shear
strain, as seen on the SFRF and the mode shapes.

Finally, some other concepts were verified with the helicopter main rotor blade. Initially, Fiber Bragg Grating sensors
were used to carry out a strain modal analysis of the blade using shaker excitation. The sensors were able to capture all mode
types (bending, in-plane and torsional) but the strain mode shapes were only useful in the visualization of the bending and in-
plane modes. Moreover, a second type of test was carried out—this time, impact testing was done to compare mode shapes
obtained with the test using an accelerometer or a strain gauge as reference. Like suggested by the theory, both practices
yielded displacement mode shapes and the strain gauge was effective in obtaining almost all of the mode shapes, with the
exception of a higher frequency torsional mode.

Future studies include the investigation of sensor placement for better strain field interpretation, hotspot (high stress and
strain) locations, the time and modal relations between strain and displacement and methods of scaling the strain modes.
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Chapter 24
AIRBUS A350 XWB GVT: State-of-the-Art Techniques to Perform
a Faster and Better GVT Campaign

P. Lubrina, S. Giclais, C. Stephan, M. Boeswald, Y. Govers, and N. Botargues

Abstract In April and May 2013, the ONERA-DLR specialized team has performed the GVT (Ground Vibration Testing)
campaigns of the new composite design AIRBUS A350 XWB. The first GVT was performed on the first aircraft prototype
with duration of nine measurement days. Another GVT was performed within two measurement days on the third prototype
with focus on the nose landing gear dynamics.

The very short time devoted to those test campaigns, imposed by a strict and busy planning from AIRBUS A350
XWB FAL (Final Assembly Line), required to adapt test techniques and methods and an optimized workflow to meet the
challenging test requirements.

A strong synergy between AIRBUS, ONERA and DLR teams allowed performing the shortest GVT campaign on a long
range aircraft never before realized. The test program involved mixing PSM (Phase Separation Methods) and PRM (Phase
Resonance Methods), addressing nonlinear behaviours. Due to novel database systems, the most complete modal model
database ever delivered was obtained.

This paper is devoted to describe the processes followed and the methods used in this particularly hard context and how
those contributed to the successful achievement of this demanding test campaign.

Keywords Ground vibration testing • Structural nonlinearities • Modal identification • Phase separation method • Phase
resonance method

24.1 Introduction

In April and May 2013, the ONERA-DLR specialized team has performed the GVT (Ground Vibration Testing) campaigns
of the new composite design AIRBUS A350 XWB. The first GVT was performed on the first aircraft prototype with duration
of nine measurement days. Another GVT was performed within two measurement days on the third prototype with focus on
the nose landing gear dynamics.

The very short time devoted to those test campaigns, imposed by a strict and busy planning from AIRBUS A350 XWB
FAL (Final Assembly Line), required to adapt test techniques and methods (ref. [1–3] notably) and an optimized workflow
to meet the challenging test requirements. If the PSM (Phase Separation Method) was the main method used, some modes
were measured thanks to the PRM (Phase Resonance Method) (Fig. 24.1).
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Fig. 24.1 Artist view of the
A350-XWB-900

Table 24.1 A350-XWB-900 characteristics

Dimensions Capacity Performance

Overall length 66.89 m Pax typical seating 314(3 classes) Range 15 000 km8 000 nm
Fuselage width 5.96 m Freight: Mmo Mach 0.89
Max cabin width 5.61 m LD3 capacity underfloor 36 Max take off weight 268.0 t
Wing span (geometric) 64.91 m Max pallet number underfloor 11 Max landing weight 205.0 t
Height 17.05 m Bulk hold volume 11.3 m3 Max zero fuel weight 192.0 t
Track 10.60 m Total volume 172.3 m3(LD3C bulk) Max fuel capacity 138 000 l

Fig. 24.2 A350 XWB Material
breakdown

24.2 Airbus A350-XWB-900 Description

The A350 XWB is an all new family of mid-sized wide-body twin-engine airliners to shape the efficiency of medium-to-
long haul airline operations, overcoming the challenges of volatile fuel prices, matching rising passenger expectations and
addressing increasing environmental concerns.

The A350 XWB Family consists of three passenger versions with true long-range capability of flying up to
8,500 nm/15,580 km. The current paper deals the first Ground Vibration Test of the family done on the intermediate
version (-900: 314 seats in a typical three-class configuration).

The A350-XWB-900 is powered with two Engines RR Trent XWB (374 kN each one, 84,000 lbs each one) (Fig. 24.2).
The A350 XWB brings together the very latest in aerodynamics, design and advanced technologies. Over 70 % of the

A350 XWB weight efficient airframe is made from advanced materials combining composites (53 %), titanium and advanced
aluminium alloys. The aircraft innovative all new Carbon Fibre Reinforced Plastic (CFRP) fuselage results in lower fuel burn
as well as easier maintenance.

From structural dynamics point of view, the vast number of innovations raised a big challenge by moving away from
known structures.

The A350 XWB final assembly has been thought out with efficiency in mind, in order to reduce the assembly time
compared to current programmes and to enable a more effective test programme. Elements of the aircraft arrive at the A350
XWB assembly facility—located in Toulouse, France—already equipped and tested. Like a well-planned, high-technology
puzzle, the jetliner then comes together through an optimised workflow that moves in steps through several stations within
the integration building.

As a full part of this streamlined process, GVT coming just before painting, it had to guarantee an optimised workflow
fully integrated to the assembly line.
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24.3 GVT General Specifications

GVTs have been performed on first A350 XWB prototypes. Tests were on the critical path of the programme. Impact on
planning has been reduced to the very minimum thanks to an optimised workflow and to enhanced integration with Final
Assembly Line (FAL). At the end:

• First aircraft MSN was exclusively dedicated to main vibration testing during 9 days from 7 am to12 pm 7/7.
• Nose Landing Gear testing has been performed over a week-end.
• FAL working parties were resumed during remaining night shifts.

During this reduced and fixed timeframe, the GVTs had to address two fuel mass configurations, several hydraulic
configurations for control surfaces and several Nose Landing Gear configurations (steering system, shock absorber lengths).

For each configuration, key dynamic structural properties had to be identified:

• eigen-frequencies,
• mode shapes,
• generalized mass and damping,
• transfer function,
• structural non-linear behaviour.

Measurement and excitation strategies had both:

• to be optimised to fit with the strong time constraint,
• to be adjusted live taking into account encountered structural specificities:

– to remain in acceptable levels versus structural/hardware limitations,
– to provide the best measurement quality.

Modal data were directly post-processed and were analysed on site to allow live trouble shooting and early model
calibration.

24.4 GVT Equipments

For conducting such a GVT, it is mandatory to have enough equipment for vibration excitation and for measurement of
vibration response. Due to the size and weight of an aircraft, the frequency range considered is typically low. Except for
special purpose measurements, the upper frequency limit of excitation has been in this case not higher than 50 Hz. The
lower limit of the frequency range depends on the suspension characteristics. Except for dedicated measurements for the
identification of eigenfrequencies of rigid body motion, the lower frequency limit of the measurements was around 1 Hz.
Consequently, the shakers used have a long coil stroke to excite at such low eigenfrequencies with sufficient excitation force
(Fig. 24.3).

For FRF measurements, swept-sine excitation with multiple shakers has been used. The excitation forces are typically
selected for symmetric or anti-symmetric excitation (Fig. 24.4).

For this purpose, the power amplifiers driving the shakers should have “Zero-Phase” characteristic, i.e. no phase shift
between drive signal input to the amplifier and the excitation force output generated by the shaker. Without zero-phase
characteristic, it would be difficult to realize symmetric or anti-symmetric excitation, especially in excitation configurations
where shakers/amplifiers of different type are mixed.

Tripods are required to locate shakers at specific positions on the aircraft. These tripods must be stable enough to carry
the shakers and to compensate the excitation force. In addition, they must be capable of fine tuning the relative position of
shakers with respect to the aircraft. On the other hand, the tripods must include an elastic degree of freedom propitious to
avoid the parasite motion of the shaker due to the possible flexibilities of the tripods, platforms and scaffoldings on which
they are installed.

For risk mitigation purposes, the excitation forces are measured twice with different measurement principles. Primarily,
the excitation forces are measured using piezo-electric force sensors installed at the excitation points of the structure. In
addition, the excitation forces are measured using the coil current provided by the shaker power amplifiers. Displacement
sensors are used to measure the relative displacement of the shaker armature in the shaker housing, e.g. for optimization of
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Fig. 24.3 View of the aileron
exciter (1st GVT)

Fig. 24.4 View of the nose
landing gear exciters (second
GVT)

excitation force signals in the very low frequency range, where the limitation is not the peak force of the shaker, but the
driving point displacement response.

The vibration response is mainly measured in terms of acceleration response using acceleration sensors qualified for the
very low frequency range. More than 500 acceleration sensors have been installed for the GVT on A350 and have been
measured simultaneously.

The whole data acquisition system was based on ONERA’s and DLR’s combined LMS Scadas III frontends controlled
by the Test.Lab software. Distributed data acquisition has been realized by placing 8 LMS Scadas III frontends around the
aircraft. These frontends were connected by fibre-optical cables to allow for data flow in a ring-shaped data bus. The V12-L
acquisition modules inside the LMS Scadas III frontends have been used due to their very low cut-off frequency of 0.05 Hz
of the analogue high-pass filters. As these modules provide 24-bits accuracy of data acquisition, the time consuming process
of acquisition channels range setting is useless.
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Fig. 24.5 Inside the GVT command room container

24.5 GVT Teams

The aircraft access was organized in three shifts. While two shifts were dedicated to vibration testing, the third shift was for
the aircraft manufacturer. Therefore the ONERA-DLR GVT team was split into two teams, one for each shift.

A single team consists of several positions.

1. team manager,
2. technicians for shaker handling,
3. electronics specialists,
4. engineers for data acquisition and data checks,
5. engineers for modal identification,
6. engineers for model correlation.

This kind of team setup guarantees a highly efficient GVT performance which is especially relevant since the time slot
offered by aircraft manufacturers to conduct such a GVT (Fig. 24.5).

In addition to the excitation equipment necessary to perform the PRM in a good way (number of exciters to be controlled
simultaneously) compared to the PSM, it may be noticed another difference between these methods. While the PRM does
not require extensive post-treatment and then human resources, the PSM involves a lot of investigations by several specialists
in modal analysis to assemble a final modal model in “real time” (see Sect. 7.3).

24.6 GVT Methods Applied

Two complementary kinds of excitation methods were applied during the tests:

• Phase Separation Method (PSM).
• Phase Resonance Method (PRM).

The PSM was used most of the time since it has the best compromise between time-consuming and modes providing (ref.
[4]). It is basically a curve-fitting of Frequency Response Functions (FRFs) with a linear modal model. FRFs are obtained
from applying random or swept-sine excitations, with two shakers in general. Preliminary swept sine excitations at low force
or random excitations give a first series of FRFs. Then the Force Notching process, introduced for the Airbus A380-800 GVT
in 2005, is applied by knowing these FRFs. Frequency dependent excitation forces are automatically designed by maximizing
the force levels over the frequency band, without exceeding maximum levels of acceleration required by Airbus.

For very few excitation force patterns, during the second GVT dedicated to the modal identification of the nose landing
gear modes, the multisine simultaneous sweep technique introduced successfully by ONERA and DLR on previous GVT
(ref. [5]) has been applied.

PRM, the standard method used by ONERA and DLR for aircraft GVTs before 2000, is sometimes considered as an
outdated method. Nevertheless PRM is up to now the most accurate and robust method for modal analysis, especially
when nonlinear structural behaviours are encountered. Contrary to PSM, PRM aims to make a structure vibrate as a purely
real mode by finding the best excitation force pattern; then it gives a snapshot of a mode and does not need any complex
mathematical algorithms for post-processing. Accompanied methods such as Force in quadrature and/or Complex Power are
applied to evaluate both structural damping coefficients and generalized mass values.
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Fig. 24.6 Data workflow for PSM

A second asset of PRM is its applicability on highly nonlinear structure. In the case of landing gear dynamics, PSM
could not provide any useful results, as FRFs based curve-fitting rely on linear behaviour and cannot take into account strong
nonlinear phenomena like multi-harmonic responses or jumps. Even if a kind of linearization could be obtained by applying
random excitation, this solution has not been selected during this test as it does not allow significant level of response. Only
PRM can be applied because it guarantees that, even if responses show a nonlinear structural behaviour (such as multi-
harmonic), identified modes are the best linearizations for a constant level of excitation. Applying PRM for different levels
of forces makes an access to the dependencies of eigenfrequency, structural damping and generalized mass with those forces
and the amplitudes of structural responses.

Even if PRM could be very time-consuming, it was mandatory to keep the ability to apply it during a test since its precision
is worth the effort. During the primary test on full aircraft, three modes were identified by PRM since they involve engines-
wings joints which are particularly important for aircraft design. Furthermore, all the nose landing gear modes delivered
during the second GVT were obtained by this modal tuning method.

24.6.1 Data Work Flow

As a rule; the data workflow is organized according to the nature of data used as inputs. For the PRM, the workflow is simple
since only two works stations are involved : the first one for the excitation control and measurement, the second one for the
post-treatment when necessary (Fig. 24.6).

For the PSM (see following figure), three successive kinds of data are handled: time data such as accelerometers and force
cells signals, frequency data (FRFs, auto and cross spectral powers) and finally modes.

After signals have been acquired, Frequency Response Functions (FRFs) are computed thanks to the Single Virtual
Driving Point algorithm. Then a linear modal is obtained by curve-fitting FRFs for each run. All modes coming from these
different runs are finally stored into a database and used for forming the final modal model.

In order to be sure that the maximum level of force is applied to the structure, a feedback step in frequency domain aims
to compute the best excitation profiles according to FRFs at low excitation.

24.6.2 Modal Identification

Since PSM became the dominant method in GVT, modal identification appeared to be the bottleneck of post-processing.
Here modal identification only refers to the curve-fitting process of FRFs by a linear modal model. Even with using mature
commercial tools, it is still a challenge to find a satisfying model on experimental data. In fact, there are two effects that
explain this situation.

Contrary to PRM, PSM method enables analysts to identify several modes for the same run. As curve-fitting algorithms
have become more robust, it is now possible to find “high-frequency” modes, i.e. modes above main structural modes. Hence
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Fig. 24.7 Maximizing level of
force excitation over frequency
range

a balance is achieved between the time saved during curve-fitting, and the time devoted to these modes which were not
analysed in previous GVTs.

As a consequence, there was the counterintuitive need to increase human resources significantly for curve-fitting process,
as more and more modes were identified during GVT.

24.7 ONERA DLR Specific Tools

24.7.1 Force Notching

The force notching is used for maximizing the level of force excitation provided over frequency band (ref. [5]). It relies on
previous knowledge of structure dynamics, such as FRFs obtained at a low level of force excitation. By using the relation
between input and outputs given by FRFs, it is possible to compute a maximum level of force for each frequency. In practice,
the frequency band is automatically split into several sub-bands (see Fig. 24.7), according to amplitude evolution of FRFs.
With this force pattern computation, an excitation template is generated for the sweep-sine which maximizes the force level,
with respect to limitations (maximum acceleration levels, maximum exciter strokes, maximum voltage of amplifiers). The
resulting excitation signal is a swept-sine whose amplitude is modulated over time (see Fig. 24.8).

The new version of the LMS Test.Lab software makes easy the use of computed excitation stimuli files.

24.7.2 SVDP: Single Virtual Driving Point

In general, for an aircraft, swept-sine excitationsare either symmetric or antisymmetric forces applied with two shakers. As
forces are in this case by definition correlated, it is not possible to use the H1 estimator on data directly

H1 .!/ D PXX .!/P
�1
XF .!/

where PXX(!) and PXF(!) are respectively the output and input–output densities of spectral powers.
One solution consists to build augmented matrices from the combination of all runs, for instance two runs in the case

of symmetric and anti-symmetric excitations. Although it is mathematically correct, here the Single Virtual Driving Point
(SVDP) process is preferred since it allows the use of existing Single Input Multiple Outputs (SIMO) processing on each
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Fig. 24.8 Example of
amplitude-modulated excitation
signal

run (ref. [5–7]). The SVDP defines a mathematical construction of a virtual driving point, which would have given rise to
vibratory responses strictly similar to those obtained with correlated forces. SVDP relies on the equivalent complex power

P .!/ D
X

sha ker s

Fs .!/ PXs .!/

P .!/ D FV .!/ PXV .!/

where Fs(!) is a excitation force acting on a driving point s, PXs .!/ the velocity at driving point s, Fv(!) the virtual force and
PXv .!/ the velocity response of the virtual driving point. Once the SVDP process has been applied, SIMO FRFs are obtained

and classical curve-fitting can be directly used on them (Figs. 24.9 and 24.10).

24.7.3 Modal Model Assembly

Considering a linear structural behaviour, it would be sufficient to use only very few excitation points to excite all modes of an
aircraft. However the practical application shows that several excitation configurations are needed during GVT: vertical and
lateral engine excitations, vertical and axial wing excitations, HTP excitation, VTP excitation : : : The general goal is to put as
much energy as possible per mode, i.e. to increase the level of generalized force until maximum per mode. These numerous
tests are mandatory for optimising the reliability of experimental modal model and taking into account nonlinear structural
behaviour. In practice, for each excitation configuration, several runs are performed at different levels of excitations. From
all these runs, each structural mode can be identified a significant number of times. During the modes sorting and filtering
process, the whole set of modes identified by curve-fitting is carefully analysed by structural engineers and sorted by nature.

All identified modes are stored into a database system with multi user access. Each mode is stored not only with its modal
properties but also with numerous fields containing meta information. A specially designed software tool called “Correlation
Tool” was developed to review the modes in the database. The Correlation Tool can be installed on different computers, even
on the customer computer to give online access (read only) to the current modal data.

One feature of this database software is that modes which have been identified from different FRF datasets with almost
identical properties can be grouped in a mode family based on MAC correlation. For each family, the most representative
mode is selected as a member of the final modal model delivered to Airbus. To support the process of correlation of modal
datasets and finally the generation of the final modal model different quality indicators and other criteria are applied, for
example, level of excitation, generalized force and value of Mode Indicator Function (MIF) are used here. The concept of
mode families can also be applied to evaluate scatter on test results or even to analyse the results in terms of non-linear
behaviour. If the members of a mode family are considered to be reliable enough (i.e. confidence in the results assessed
by quality indicators), they can become affiliated to a “master mode” and their damping ratios and eigenfrequencies can be
plotted as a function of force level or other parameter of the database. In this GVT, the work of modal correlation was a
specific challenge. Finally, the huge amount of data was condensed down from about 2,600 poles identified from all FRF
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Fig. 24.9 Example of FRFs for
all accelerometers (imaginary and
real parts)

datasets to only 180 master modes in the final modal model for the main configuration. For sure, this correlation work
had to be performed in a short period of time leading to specific requirements of the graphical user interface ergonomics
(Figs. 24.11, 24.12, 24.13, 24.14, and 24.15).

24.7.4 PRM Environment

Even if this method is test time consuming and needs many exciters to be installed and controlled simultaneously, the faculty
of this traditional modal tuning method to deliver reliable “local” modal parameters in case of significant non linear structural
behaviour (here “local” means for a certain excitation force level introduced in the structure) has motivated its use for only
three engines modes during the first GVT but for all the nose landing gear modes identified during the second GVT.

In addition to the know—how transferred by ONERA and DLR to LMS for a better performance of the Test.Lab NMT
(Normal Mode Testing) workbook, other developments, such as multi-Lissajous ellipses preparation, complex power and
force in quadrature corrections, were carried out to make the pre-test and post-test works easier in using the PRM technique.

24.8 Results

For the main configuration tested (empty fuel) performed in seven working days, we consider as modal identification
inputs the 143 excitations runs performed from 23 excitation force patterns. These ones are mainly symmetrical and anti-
symmetrical forces. The frequency band [1:50 Hz] was divided in two sub-bands, and for each sub-band at least two force
levels were applied. Furthermore, very low frequency excitations were dedicated to rigid body modes and higher frequency
bands up to 80 Hz were applied on engines for sustained engine imbalance purpose.

For the main mass configuration, those modal identifications provided approximately 2,600 poles. From this set of poles,
975 modes were reliable enough to be kept and to contribute to linearity plots. Finally 180 of them, including rigid body
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Fig. 24.10 Example of FRFs :
the real driving points (blue and
green curves) and the SVDP (red
curve)

Fig. 24.11 Auto-MAC matrix

modes, were considered as master modes and constitute the modal model propitious to be used for the FEM updating and
flutter computation. It may be noticed that excitation runs performed from engines Y and Z and wings X and Z provided the
majority of modes.
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Fig. 24.12 MIF and SVDP FRFs of the run analysed

Fig. 24.13 Polar diagram of one
selected mode shape

For the second mass configuration, wing tanks were partially filled. Although only one working day was dedicated to it,
there were enough runs to identify 50 master modes in the modal model of this mass configuration (Figs. 24.16, 24.17, 24.18,
24.19, 24.20, and 24.21).

24.9 Conclusions

Ground Vibration Test is a major milestone on the critical path of aircraft development process. It is performed for several
goals. First of all, it delivers the modal model which can be used for flutter predictions and model updating. The results of
computation are then a support for first flight safety and allow a fast flight domain opening. And finally, they serve as means
of compliance in front of Airworthiness Authorities.

The success of such a test relies on several complementary aspects. High-end test hardware and best in class customized
software were developed, implemented and used for productivity and quality. Innovative methods and optimized data-flow
inspired from production line enables a time reduction without decreasing the amount of data. And, of course, the human
factor is also a strong feature during a test. A highly skilled, integrated and flexible team was particularly involved during this
test, and their work is directly linked to the quality of delivered results. Thanks to all these elements, the A350 XWB GVT
has been fulfilled in a record time, with respect to very challenging specifications and with all expected results delivered in
required quality.
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Fig. 24.14 Dual mode shapes plot

Fig. 24.15 Linearity plot (resonance frequency and structural damping ratio/Generalized excitation Force)

Fig. 24.16 Diagram of the
modes numbers from the
different methods for the last
major Airbus GVTs
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Fig. 24.17 Diagram of the GVT
duration and productivities for
the last major Airbus GVTs

Fig. 24.18 Diagram of the mode
productivities of the different
driving points
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Chapter 25
Bayesian System Identification of MDOF Nonlinear Systems
Using Highly Informative Training Data

P.L. Green

Abstract The aim of this paper is to utilise the concept of “highly informative training data” such that, using Markov chain
Monte Carlo (MCMC) methods, one can apply Bayesian system identification to multi-degree-of-freedom nonlinear systems
with relatively little computational cost. Specifically, the Shannon entropy is used as a measure of information content such
that, by analysing the information content of the posterior parameter distribution, one is able to select and utilise a relatively
small but highly informative set of training data (thus reducing the cost of running MCMC).

Keywords System identification • Bayesian inference • Markov chain Monte Carlo • Shannon entropy • Nonlinear
dynamics

25.1 Introduction

This paper is concerned with the system identification of nonlinear dynamical systems using physics-based models. In this
context the overall aim of system identification is to infer, using experimental data, a reliable and robust physical-law
based model of a real system. This requires the selection of an appropriate model structure as well as estimation of the
parameters within that model. This is a procedure which, as a result of measurement noise and modelling uncertainties, is
best approached using probability logic. Adopting a Bayesian framework allows one to take a probabilistic approach to both
parameter estimation and model selection.

Using Bayes’ Theorem, one can express the parameter estimation and model selection levels of inference as

P.�jD;M/ D P.Dj�;M/P.�jM/

P.DjM/
(25.1)

and

P.MjD/ D P.DjM/P.M/

P.D/ (25.2)

respectively. With regards to Eq. (25.1), P.�jD;M/ is termed the “posterior distribution”. The posterior is a probability
density function (PDF) which represents the probability that the parameter vector � 2 R

N� is “true” given some
experimentally obtained training data D and a chosen model structure M. It is proportional to the product of the “likelihood”
P.Dj� ;M/, and the “prior” P.�jM/. The prior is a PDF which represents one’s prior knowledge of the parameters before
the experimental data was realised. The likelihood is a PDF which, given a model structure M with parameters � , represents
the probability that the data D was realised. Consequently then, defining the likelihood involves the selection of a noise model
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which represents the errors due to the measurement and modelling processes. The denominator of Eq. (25.1) is termed the
“evidence”—this is a constant given by

P.DjM/ D
Z

: : :

Z

P.�jD;M/d�1 : : : d�N� (25.3)

thus ensuring that the posterior will integrate to unity. The evidence term also appears in the numerator of Eq. (25.2) such that,
having successfully evaluated Eq. (25.1) for model structureM, the probability that model is a good replication of the physics
of the real system (relative to other competing model structures) can then be evaluated.

Unfortunately, it is often the case that the high-dimensionality and complex geometry of the posterior distribution makes
evaluation of Eq. (25.3) difficult. With regards to parameter estimation, this problem can be overcome through the use
of Markov chain Monte Carlo (MCMC) methods (such as the well-known Metropolis [1] and Hamiltonian Monte Carlo [2]
algorithms) which allow one to generate samples from the posterior PDF in Eq. (25.1) without having to evaluate the evidence
term. Indeed, there are also MCMC methods which allow one to tackle the issue of model selection—the Transitional
MCMC algorithm proposed in [3] can be used to estimate the evidence term in Eq. (25.1) while the Reversible Jump MCMC
algorithm [4] is capable of generating samples from a PDF of varying dimension (thus allowing one to simultaneously
evaluate a set of competing model structures of varying levels of complexity).

While undoubtedly useful, the number of model runs required tend to make MCMC algorithms computationally expensive
(thus restricting their use to relatively small models). The aim of this paper is to investigate whether this cost can be reduced
through the use of small but highly informative sets of training data. To that end, the Shannon entropy is used to quantify the
information content of a set of training data. It is shown that, in the Bayesian parameter estimation of a MDOF nonlinear
dynamical system, this can reduce the cost of running MCMC algorithms.

25.2 Bayesian Framework

In this section the Bayesian framework for the parameter estimation of aND DOF dynamical system is described. While this
is not new, it will help to establish the notation used throughout this work.

This paper is concerned with systems whose state-space equations of motion are of the form:

Px D y (25.4)

and

Py D M�1.Cy CKx C �C f / (25.5)

where x 2 R
ND and y 2 R

ND represent the displacements and velocities of each DOF, M is the mass matrix, C is the
linear damping matrix, K is the linear stiffness matrix, � is a vector which contains the nonlinear terms and f is a vector
which describes the excitation force being delivered to each mass. The training data D consists of N points of recorded time
history from the force vector f as well as the resulting displacement measurements (N from each DOF). For the i th degree
of freedom, the measured and simulated displacement time histories will be written as

x
.i/
1WN D fx.i/1 ; x.i/2 ; : : : ; x.i/N g (25.6)

and

Ox.i/1WN D f Ox.i/1 ; Ox.i/2 ; : : : ; Ox.i/N g (25.7)

respectively. Drawing on the central limit theorem, it is assumed that each measured data point is corrupted by Gaussian
noise of variance �2 such that, after some manipulation, the likelihood can be written as:

P.Dj�;M/ D .2��2/�NND=2 exp

 

� 1

2�2

NDX

iD1
Ji .�/

!

(25.8)

where

Ji .�/ D Œx
.i/
1WN � Ox.i/1WN �Œx.i/1WN � Ox.i/1WN �T : (25.9)

Throughout the following analysis � is treated as an additional unknown parameter for which probabilistic estimates can
also be realised.
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From now on, for the sake of simplicity, the likelihood will be written as:

P.Dj� ;M/ D 1

ZL
exp.J .�// (25.10)

where

J .�/ D � 1

2�2

NDX

iD1
Ji .�/: (25.11)

and ZL is the likelihood normalisation constant.

25.3 Informative Training Data

With aim of being able to identify training data which is “highly informative” with regards to one’s parameter estimates,
the Shannon entropy is used as measure of information content throughout this paper. A similar idea was also developed by
MacKay in [5] (although this was within the context of machine learning).

The Shannon entropy of the posterior distribution is defined as

S D �
Z

P.�jD;M/ ln.P.�jD;M//d� (25.12)

which cannot be evaluated as the geometry of the posterior is unknown. To proceed, a Taylor series expansion about the most
probable parameter estimates .�0/ is used to approximate the posterior as being Gaussian. Before this can be accomplished
one must first define the prior distribution—throughout this paper Gaussian priors of the form

P.�jM/ D 1

ZP
exp

�

�1
2
Œ� � ��

0 �BŒ� � ��
0 �
T

�

(25.13)

are used. ZP is a normalising constant, ��
0 represent the mean of one’s prior parameter estimates and B is a diagonal,

user-defined covariance matrix. Recalling the definition of the likelihood (Eq. (25.10)), the posterior distribution can now be
written as

P.� jD;M/ D 1

ZLZPP.DjM/
exp.G.�// (25.14)

where

G.�/ D J .�/� 1

2
Œ� � ��

0 �BŒ� � ��
0 �
T (25.15)

(J.�// was defined in Eq. (25.11)). Expanding G.�/ about �0 using the Taylor series (as one does when using Laplace’s
method) then, after some manipulation, one can approximate the posterior as being Gaussian:

P.� jD;M/� D 1

Z� exp

�

�1
2
Œ� � �0�AŒ� � �0�

T

�

(25.16)

where the asterisk is used to represent the approximation and Z� is the posterior normalising constant. The elements of the
matrix A are given by

Ai;j D @2G.�/

@.�i /2

ˇ
ˇ
ˇ
ˇ
�0

: (25.17)

which can be approximated using finite difference methods. It is then relatively simple to shown that the Shannon entropy of
P.� jD;M/� is given by

S D ln.Z�/C N�

2
: (25.18)
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Assuming that the matrix A is diagonal (which is equivalent to ignoring parameter correlations) and ignoring terms which
do not change as a function of the training data one can write Eq. (25.18) in a simpler form:

S D
N�X

iD1
ln

�
1

Ai;i

�

: (25.19)

It is important to note that the Shannon entropy also acts as a measure of uncertainty—a highly informative data point will
cause a decrease in the entropy. It is also interesting to note that the inverse of A is the covariance matrix of P.� jD;M/�.
Consequently then, by monitoring the Shannon entorpy, one is actually monitoring the diagonal elements of the covariance
matrix of P.� jD;M/� as a function of the training data. This is equivalent to monitoring the width of the approximately
Gaussian posterior—an informative data point is one which causes are large reduction in the width of the posterior.

25.4 Potential Issues

25.4.1 Most Probable Parameter Estimates

The method presented in Sect. 25.3 relies on one having a reasonable estimate of �0. Consequently, the accuracy of the
information estimates will depend on the accuracy of one’s prior knowledge—Throughout this work, with the aim of
improving one’s prior estimates of �0 the Data Annealing (DA) algorithm [6] has been utilised. Essentially, the DA algorithm
is similar to the well-known Simulated Annealing algorithm except that, to save computational cost, the annealing procedure
is achieved through the gradual introduction of training data into the likelihood. Additionally, in a similar fashion to “Fast
Simulated Annealing” [7], the DA algorithm also utilises a proposal distribution with relatively heavy tails to reduce the
changes of becoming stuck in “local traps” (regions of high probability mass which are not globally optimum). As a result,
DA can be used to improve one’s information estimates with relatively little computational cost.

The assumption that there is a single set of optimum parameters is one of the potential issues with the method outlined in
this paper. In reality there may be several sets of, or in fact a continuous set of, optimum parameters (this are referred to as
being “locally identifiable” and “unidentifiable” cases in [8]). The danger with using small sets of training data is that one may
inadvertently provoke a situation where no one single optimum parameter vector exists. As a first step to addressing this issue,
the DA algorithm can be run multiple times so that multiple estimates of the optimum parameter vector are established—it
should be ensured that these estimates are reasonably repeatable. Secondly, once a highly informative subset of the training
data has been selected, one should utilise an MCMC algorithm which, while being more expensive than “traditional” MCMC,
is capable of sampling from PDFs with complex geometries (in fact, one could argue that these algorithms should always be
employed over more traditional methods). Such algorithms include Adaptive Metropolis Hastings (AMH) [9], Transitional
Markov chain Monte Carlo (TMCMC) [3] and Asymptotically Independent Markov Sampling (AIMS) [10]. TMCMC is
utilised throughout the following analysis as it is both well-established and works well when higher-dimensional problems
are considered.

25.5 Nonlinear System

To demonstrate the concept of highly informative training data, the parameter estimation of a nonlinear 3DOF system will be
analysed (Fig. 25.1). From left-to-right, the masses are connected by springs with linear stiffness coefficients k1, k2, k3, and
dampers with linear damping coefficients c1, c2, c3. The second spring also has a cubic stiffening component with nonlinear
stiffness coefficient k�. The first mass is excited with a Gaussian white noise signal (w in Fig. 25.1). Consequently, the
relevant system matrices are:

K D
2

4
�k1 � k2 k2 0

k2 �k2 � k3 k3
0 k3 �k3

3

5 (25.20)
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Fig. 25.1 3 DOF nonlinear
system

Table 25.1 Mean and standard
deviation of Gaussian priors Parameter Prior mean

Prior standard
deviation

k1 50 10
k2 50 10
k3 50 10
c1 0.05 0.01
c2 0.05 0.01
c3 0.05 0.01
k� 1,000 100
� 0.05 0.02

C D
2

4
�c1 � c2 c2 0

c2 �c2 � c3 c3
0 c3 �c3

3

5 (25.21)

� D
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�k�.x1 � x2/3
�k�.x2 � x1/3

0

9
=

;
(25.22)

f D
8
<

:

w
0

0

9
=

;
: (25.23)

The parameter values were generated from Gaussian distributions (the moments of which are shown in Table 25.1).
These distributions were then used as priors throughout the following analysis. Care was taken to ensure that the author
did not know the true parameter values—only the size of the prior was known. The “full” set of output data consisted of
1,000 displacement measurements (from each DOF). The next section details the selection of a highly informative subset of
this data.

25.6 Results

Five Data Annealing runs were carried out—this took around 6 min to compute. The estimates of the most probable parameter
estimates were found to be reasonably consistent. The Shannon entropy of the training data was then calculated (every 50
points were analysed). This process also took roughly 6 min.

The Shannon entropy is plotted as a function of the number of points in the training data in Fig. 25.2. According to
the figure, the majority of the learning is achieved using the first 300 data points—thus leaving the remaining 700 points
relatively uninformative.

To test this hypothesis, the TMCMC algorithm was used to generate samples from the posterior for varying amounts
of training data. The resulting prior and posterior samples (TMCMC is initiated with samples from the prior) are shown
respectively in Figs. 25.3, 25.4, 25.5 and 25.6 for the cases where 100, 200, 300 and 1,000 points of training data were used.
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Fig. 25.2 Shannon entropy as a
function of the number of points
in the training data
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Fig. 25.3 TMCMC results using 100 points of training data
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Fig. 25.4 TMCMC results using 200 points of training data

It is clear that, through using 300 data points instead of 100, a significant amount of information has been gained. However,
by comparing Fig. 25.5 with Fig. 25.6, it is clear that little benefit can be gained through using the additional points 700.
This is as predicted in Fig. 25.2. It is also interesting to note that the posterior has multiple modes for the 100 point case but
that, through the use of more training data, it appears to be uni-modal for all the other cases (The true parameter values are
shown in Table 25.2).

25.7 Conclusions

This paper was concerned with the Bayesian parameter estimation of nonlinear dynamical systems through the use of Markov
chain Monte Carlo (MCMC) methods. Using the Shannon entropy as an information measure it was shown that, by electing
to use small amounts of “highly informative” training data, the computational cost of running MCMC algorithms can be
greatly reduced. This was then demonstrated with regards to the probabilistic parameter estimation of a MDOF nonlinear
system. It was also shown that, through the use of small amounts of training data, one may induce multi-modal posterior
distributions. This was addressed though the use of Transitional MCMC which is able to sample from posterior distributions
with complex geometries.
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Fig. 25.5 TMCMC results using 300 points of training data
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Fig. 25.6 TMCMC results using 1,000 points of training data

Table 25.2 True parameter
estimates

Parameter True value

k1 40.58
k2 54.30
k3 49.70
c1 0.054
c2 0.068
c3 0.040
k� 1:1� 103
� 0.05
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Chapter 26
Finite Element Model Updating Using the Separable Shadow Hybrid
Monte Carlo Technique

I. Boulkaibet, L. Mthembu, T. Marwala, M.I. Friswell, and S. Adhikari

Abstract The use of Bayesian techniques in Finite Element Model (FEM) updating has recently increased. These techniques
have the ability to quantify and characterize the uncertainties of dynamic structures. In order to update a FEM, the Bayesian
formulation requires the evaluation of the posterior distribution function. For large systems, this functions is either difficult
(or not available) to solve in an analytical way. In such cases using sampling techniques can provide good approximations
of the Bayesian posterior distribution function. The Hybrid Monte Carlo (HMC) method is a powerful sampling method for
solving higher-dimensional complex problems. The HMC uses the molecular dynamics (MD) as a global Monte Carlo (MC)
move to reach areas of high probability. However, the acceptance rate of HMC is sensitive to the system size as well as the
time step used to evaluate MD trajectory. To overcome this, we propose the use of the Separable Shadow Hybrid Monte Carlo
(S2HMC) method. This method generates samples from a separable shadow Hamiltonian. The accuracy and the efficiency
of this sampling method is tested on the updating of a GARTEUR SM-AG19 structure.

Keywords Bayesian • Sampling • Finite element model updating • Markov Chain Monte Carlo • Hybrid Monte Carlo
method • Shadow Hybrid Monte Carlo

26.1 Introduction

Finite element model (FEM) is a numerical method used to model complex engineering problems [1, 2]. FEM is often used to
compute displacements, stresses and strains in complex structures under a given set of loads. Due to the uncertainties (among
other approximations) associated with the process of constructing a finite element model of a structure the analytical results
are different from those obtained from experimental measurements [3, 4]. Thus for practical purposes the FE model needs
to be updated. In recent years the use of the Bayesian framework to build model updating techniques has shown promising
results in this system identification problem [4, 6–8]. This approach allows system modelling uncertainties to be expressed
in terms of probability.

This can be done by representing the parameters that need to be updated as random vectors with a joint probability
distribution function (pdf). This distribution function is known as the posterior distribution function. For sufficiently complex
problems this pdf is not available in analytical form. This is the case for the FEM updating problem where the parameter
search space is non linear and of high dimension. When an analytical solution is not available sampling methods, such as
the Markov Chain Monte Carlo (MCMC), offer the only practical solution to estimating the desired posterior distribution
function [4, 7, 8]. One improvement on the classic MCMC is the Hybrid Monte Carlo (HMC) sampling technique. This
algorithm is able to deal with an updating vector of a large size.

In the HMC the derivative of the target log-density probability is used to guide the Monte Carlo trajectory and leads
towards areas of high probability [5, 7, 11, 18]. An auxiliary variable, called the momentum vector is introduced and the
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updated vector is treated as a system displacement. The total system energy—called the Hamiltonian function- is evaluated
using the Störmer-Verlet (also called leapfrog) algorithm. The leapfrog algorithm requires the log-density derivative, which
can be seen as a guide used to deliver global moves with a higher acceptance probability. The Hamiltonian function
is numerically evaluated using the popular Störmer-Verlet integrator [18]. This integrator does not conserve the energy
especially when the time step used by the leapfrog algorithm or/and the system size is considered large. To overcome this
limitation an algorithm called the Shadow Hybrid Monte Carlo (SHMC) has been proposed [9, 16]. The SHMC uses a
modified Hamiltonian function for sampling and a reweighting to improve the acceptance rate of HMC [9, 16]. However the
SHMC uses a non-separable Hamiltonian which generates the momenta in a computationally expensive way. Furthermore
this method requires an extra tuning parameter to balance the cost of rejection of momenta and positions [9, 16, 17]. In this
paper the Separable Shadow Hybrid Monte Carlo (S2HMC) [17] is implemented. The S2HMC is able to sample the posterior
distribution function of FEM updating parameters by using a separable shadow Hamiltonian function and without involving
any extra parameters.

This method is tested on updating a GARTEUR SM-AG19 aeroplane structure. The efficiency, reliability and limitations
of the S2HMC technique are investigated when a Bayesian approach is implemented on an FEM updating problem.

In the next section, the finite element model background is presented. In Sect. 26.3, an introduction to the Bayesian
framework is introduced where the posterior distribution of the uncertain parameters of the FEM is presented. Section 26.4
introduces the HMC techniques. Section 26.5 introduces the Shadow Hamiltonian function. Section 26.6 introduces the
S2HMC technique which is used to predict the posterior distribution. Section 26.6 presents an implementation on a
GARTEUR SM-AG19 aeroplane structure. Finally, the Sect. 26.7 concludes the paper.

26.2 Finite Element Model Background

In finite element modelling, an N degree of freedom dynamic structure can be described by the second order equation of
motion [8, 12, 16]:

MRx.t/C CPx.t/C Kx.t/ D f.t/; (26.1)

where M, C and K are the mass, damping and stiffness matrices of size N �N, x(t) is the vector of N degrees of freedom
and f(t) is the vector of loads applied to the structure. In the case that no external forces are applied to the structure and if
the damping terms are neglected (C 0), the dynamic equation may be written in the modal domain (natural frequencies and
mode shapes):

h
��!mi

�2
M C K

i
�mi D ©i (26.2)

!m
i is the ith measured natural frequency, �m

i is the ith measured mode shape vector and "i is the ith error vector. In
Eq. 26.2, the error vector ©i is equal to 0 if the system matrices M and K correspond to the modal properties (!m

i and �m
i ).

However, ©i is a non-zero vector if the system matrices obtained analytically from the finite element model do not match the
measured modal properties !m

i and �m
i .

26.3 Bayesian Inferences

In this work the Bayesian method is used to solve the FEM updating problem in the modal domain. Bayesian approaches are
governed by Bayes rule [4, 5, 8, 16]:

P .EjD/ / P .DjE/ P .E/ (26.3)

where E represent the vector of updating parameters and the mass M and stiffness K matrices are functions of the updating
parameters E. The quantity P(E), known as the prior probability distribution, is a function of the updating parameters in
the absence of the data. D is the measured modal properties; the natural frequencies !i and mode shapes � i. The quantity
P(EjD) is the posterior probability distribution function of the parameters in the presence of the data D. P(DjE) is the
likelihood probability distribution function [4, 5, 13].
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The likelihood distribution can be seen as the probability of the modal measurements in the presence of uncertain
parameters [8]. This function can be defined as the normalized exponent of the error function that represents the differences
between the measured and the analytic frequencies.

It can be written as:

P
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ˇE
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2�
ˇ
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iD1!
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XNm
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!mi

�2
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(26.4)

where ˇ is a constant, Nm is the number of measured modes and !i is the ith analytical frequency.
The prior density function represents the prior knowledge about the updating parameters E and quantifies the uncertainty

of the parameters E [8]. This knowledge can be facts like some parameters need to be updated more intensely than others.
For example in structural systems parameters next to joints should be updated more intensely than for those corresponding
to smooth surface areas far from joints. Here the prior probability distribution function for parameters E is assumed to be
Gaussian and is given by [13, 14, 16]:

P .E/ D 1
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2
jjE � E0 jj 2
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(26.5)

where Q is the number of groups of parameters to be updated, E0 represents the mean value (initial value) of the updated
vector, and ˛i is the coefficient of the prior density function for the ith group of updating parameters. The notation k * k
denotes the Euclidean norm of *. In Eq. 26.5, if ˛i is constant for all of the updating parameters then the updated parameters
will be of the same order of magnitude. Equation 26.5 is chosen to be Gaussian because many natural processes tend to have
a Gaussian distribution.

The posterior distribution function of the parameters E given the observed data D is denoted as P(EjD) and is obtained
by applying Bayes’ theorem as represented in Eq. 26.3. The distribution P(EjD) is calculated by substituting Eqs. 26.4 and
26.5 into Eq. 26.3 to give
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where
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In FEM updating the analytical form of the posterior distribution function solution is not available. As discussed sampling
techniques simplify the Bayesian inference by providing a set of random samples from posterior distribution [5, 7, 8,
13, 15]. In the case that Y is the observation of certain parameters at different discrete time instants the total Probability
theorem provides probabilistic information for the prediction of the future responses Y at different time instants. Consider
the following integral:

P


Y
ˇ
ˇ
ˇD
�
D
Z

P


Y
ˇ
ˇ
ˇE
�
P



E
ˇ
ˇ
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�
d ŒE� (26.8)

Equation 26.8 depends on the posterior distribution function. The dimension of the updating parameters makes it very
difficult to obtain an analytical solution. Therefore, sampling techniques, such as Markov Chain Monte Carlo (MCMC)
methods are employed to predict the updating parameter distribution and subsequently to predict the modal properties.
Given a set of Ns random parameter vector drawn from P(EjD), the expectation value of any observed function Y can be
easily estimated.

The integral in Eq. 26.8 can be solved using sampling algorithms [5, 7, 10, 11]. These algorithms are used to generate a
sequence of vectors fE1;E2; : : : ;ENs g where Ns is the number of samples and these vectors can be used to form a Markov
chain. This generated vector is then used to predict the form of the posterior distribution function P(EjD). The integral in
Eq. 26.8 can be approximated as
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QY Š 1

Ns

XNs

iD1G .Ei / (26.9)

where G is a function that depends on the updated parameters Ei. As an example, if GDE then QY becomes the expected
value of E. Generally, QY is the vector that contains the modal properties and Ns is the number of retained states. In this paper,
the SHMC method is used to sample from the posterior distribution function.

26.4 The Hybrid Monte Carlo Method

The Hybrid Monte Carlo method, also known as the Hamiltonian Markov Chain method, is a sampling method for solving
higher-dimensional complex problems [5, 7, 11, 16, 18]. The HMC combines a Molecular Dynamic (MD) trajectory with
a Monte Carlo (MC) rejection step [8, 13]. In HMC, a dynamical system is considered in which auxiliary variables, called
momentum p2RN are introduced. The updated parameters in the posterior distribution are treated as displacements. The
total energy (Hamiltonian function) of the new dynamical system is defined by H(E, p)DV(E)CW(p), where the potential
energy is V(E)D� ln(P(EjD)) and the kinetic energy is W(p)DpTM� 1p/2. The kinetic energy depends only on p and some
chosen positive definite matrix M2RN �N .

The joint distribution derived from the Hamiltonian function can be written in the following form: f (E, p)DK. exp
(�H(E, p)) where K is normalization constant. It is easy to see that f (E, p) can be written as f (E, p)DK. exp
(�V(E). exp(�W(p)) or f (E, p)DK. P(EjD). exp(�pTM� 1p/2). Sampling E from the posterior distribution can be obtained
by sampling (E, p) from the joint distribution f (E, p). Also, the vectors E and p are independent according to f (E, p). The
evolution of (E, p) through time t and time step ıt is given by the following Störmer-Verlet algorithm [7, 8]

p
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2
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2
rV ŒE.t/� (26.10)
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where rV is obtained numerically by finite difference as

@V

@Ei
D V .E C�h/ � V .E ��h/

2h�i

(26.13)

�D [�1,�2, : : : ,�N] is the perturbation vector and h is a scalar which dictates the size of the perturbation of E. After
each iteration of Eqs. 26.10–26.12, the resulting candidate state is accepted or rejected according to the Metropolis criterion
based on the value of the Hamiltonian H(E, p). Thus if (E, p) is the initial state and (E*, p*) is the state after the above
equations have been updated then this candidate state is accepted with probability min(1, expfH(E, p)�H(E*, p*)g). The
obtained vector E will be used for the next iteration and the algorithm stopping criterion is defined by the number of E
samples (Ns).

Theoretically, these moves preserve the total energy H(E, p) where the value of the total energy is constant. This can make
the acceptance rate 100 % since the term expfH(E, p)�H(E*, p*)gD 1. However, the Hamiltonian dynamics is a discretised
problem where the Störmer-Verlet is used to evaluate the pair (E, p) through time. This integrator does not achieve the exact
energy conservation. In this case, the time step needs to be small enough to reduce the error caused by the Störmer-Verlet
integrator.

The HMC algorithm can be summarized as follows:

1. An initial value E0 is used to initiate the algorithm.
2. Initiate p0 such that p0 N(0, M).

3. Initiate the leapfrog algorithm with (E, p) and run the algorithm for L time steps to obtain (E*, p*).

4. Update the FEM to obtain the new analytic frequencies and then compute H(E*, p*).
5. Accept (E*, p*) with probability min(1, expfH(E, p)�H(E*, p*)g).
6. Repeat steps (3–5) to get Ns samples.
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26.5 The Separable Shadow Hamiltonian Function

The S2HMC improves the sampling by changing the configuration spaces. This accelerates the convergence of averages
computed with the method [17]. As a result the S2HMC improves the acceptance rate of HMC at a comparatively negligible
computational cost. The S2HMC uses a processed velocity Verlet (VV) integrator instead of Verlet. The goal of a processing
integrator is to increase the effective order of accuracy by using pre-processing and post-processing steps [17].

The rationale for increasing the effective order of accuracy is that a more accurate integrator has better acceptance rate in
HMC. The S2HMC also uses a modified potential energy function, which is conserved to O(ıt4) by the processed method
instead of just O(ıt2) by the unprocessed method. Moreover the S2HMC requires a reweighting step to compensate for
modification of the potential energy. The shadow Hamiltonian function used in S2HMC is separable and fourth order [17]:

QH .E;p/ D 1

2
pTM�1p C V .E/C ıt2

24
VE

TM�1VE CO
�
ıt4
�

(26.14)

VE is the derivative of the potential energy V with respect to E. The modified or shadow Hamiltonian is a result of applying
backward error analysis to numerical integrators [17]. In the analysis of numerical integrators for Hamiltonian systems, the
shadow Hamiltonian has quantities that are better conserved than the true Hamiltonian. In particular, a fourth order shadow
Hamiltonian is conserved within O(ıt4), where ıt is the discretization time step. For symplectic integrators one can construct
shadow Hamiltonians of arbitrarily high order.

The pre-processing step is given by:

bp D p � ıt

24

�
VE
�
E C ıtM�1bp

� � VE
�
E � ıtM�1bp

��
(26.15)

bE D E C ıt2

24
M�1 �VE

�
E C ıtM�1bp

�C VE
�
E � ıtM�1bp

��
(26.16)

Equations 26.15 and 26.16 require an iterative solution forbp and a direct computation forbE.
The post-processing step is given by:

E D bE � ıt2

24
M�1 �VE

�
E C ıtM�1bp

�C VE
�
E � ıtM�1bp

��
(26.17)

p Dbp C ıt

24

�
VE
�
E C ıtM�1bp

� � VE
�
E � ıtM�1bp

��
(26.18)

Equations 26.17 and 26.18 require an iterative solution for E and a direct computation for p. Finally, in order to calculate
balanced values of the mean, the results must be reweighted. The average of an observable A is giving by [17]:

hAi D
XNs

iD1B:ai
XNs

iD1ai
;where ai D exp .�H .E;p//

exp
�� QH .E;p/

� (26.19)

The S2HMC algorithm can be summarized as follows [17]:

1. An initial value E0 is used to initiate the algorithm.
2. Initiate p0 such that p0 N(0, M).
3. Compute the initial shadow energy QH .E;p/ using Eq. 26.14.
4. Pre-processing: Starting from (E, p), solve iteratively forbp and a directly computebE using Eqs. 26.15 and 26.16.

5. Initiate the leapfrog algorithm with


bE;bp

�
and run the algorithm for L time steps to obtain



bE
�
;bp��

.

6. Post-processing: Starting from


bE

�
;bp��, solve iteratively forbE and a directly computebp using Eqs. 26.17 and 26.18.

7. Update the FEM to obtain the new analytic frequencies and then compute H(E*, p*).
8. Accept (E*, p*) with probability min

�
1; exp

˚ QH .E;p/ � QH .E�;p�/
�

.
9. Repeat steps (3–5) to get Ns samples.

10. Compute weight: To compute the averages of a quantity A(E) using the S2HMC, reweighting of the sequence of A is
needed (26.19).
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26.6 The Modelled Structure and FE Model

All the finite element modeling was simulated using version 6.2 of the Structural Dynamics Toolbox (SDT
®
) under the

MATLAB
®

environment. In this paper, a GARTEUR SM-AG19 aeroplane structure is used to investigate the optimization
capability of the four algorithms. The GARTEUR SM-AG19 structure was used as a benchmark study by 12 members of the
GARTEUR Structures and Materials Action Group 19 [19–23]. One of the aims of the study was to compare the S2HMC and
HMC methods with different time steps [16]. The benchmark study also allowed participants to test a single representative
structure using their own test equipment. The experimental test data used in our analysis is data obtained from DLR Data,
Göttingen, Germany.

The above aeroplane has a length of 1.5 m and a width of 3 m. The depth of the fuselage is 15 cm with a thickness of 5 cm.
Figure 26.1 shows the FE model of the aeroplane. In our models all element materials are considered standard isotropic. The
model elements are Euler–Bernoulli beam elements. The measured natural frequency (Hz) data is: 6.38, 16.10, 33.13, 33.53,
35.65, 48.38, 49.43, 55.08, 63.04, 66.52 Hz.

The parameters to be updated are the right wing stiffnesses (Imin, Imax, Itors), the left wing stiffnesses (Imin, Imax, Itors),
vertical tail stiffnesses (Imin) and the overall structure’s density (�). The constant ˇ of the posterior distribution is set equal
100, and all coefficients ˛i are set equal to 1

�2i
, where �2i is the variance of the parameter Ei. The vector of � i is defined

as � D [5� 105, 50� 10� 10, 50� 10� 10, 5� 10� 9, 50� 10� 10, 5� 10� 9, 5� 10� 10, 5� 10� 10]. The initial position vector
ED [�, VTP� Imin, L� Imin, L� Imax, L� Itors, R� Imin, R� Imax, R� Itors] and its bounds are given in Tables 26.1 and 26.2
where VTP- Vertical Tail Plane, R -Right and L- Left. The time step is ıt D 3 ms and the number of samples is Ns D 1, 000.

Table 26.3 presents the initial value (the mean material or geometric value) of the update vector E, as well as the updated
values obtained by HMC and S2HMC methods for two different time step scenarios (ıtD 0.003 s and ıt D 0.0048 s).

In the first scenario (ıtD 0.003 s), the updated parameters obtained by the S2HMC algorithm are closer to the mean values
i.e. they are physically realistic. There is a noticeable difference between the final updated values obtained by the HMC and
S2HMC. The time step used for simulations in both methods, ıt D 0.003 s, provides a very good acceptance sampling rate—
99.9 %—for both methods. In the second scenario (ıtD 0.0048 s) the updated parameters using the S2HMC method are
much closer to the mean value.

Fig. 26.1 FEM GARTEUR
structure

Table 26.1 The parameter
vector and the mean values

Parameter � (kg/m3) VTP� Imin (10�9 m4) L� Imin (10�9 m4) L� Imax (10�7 m4)

2,700 8.3 8.3 8.3
Parameter L� Itors (10�8 m4) R� Imin (10�9 m4) R� Imax (10�7 m4) R� Itors (10�8 m4)

4.0 8.3 8.3 4.0

Table 26.2 The Max/Min
bounds of the updated vector

Max_position Min_position

� 3,000 2,500
VTP� Imin 10� 10�9 7.3� 10�9

L� Imin 10� 10�9 7.3� 10�9

L� Imax 10� 10�7 7.3� 10�7

R� Imin 10� 10�9 7.3� 10�9

L� Imax 10� 10�7 7.3� 10�7

L� Itors 6� 10�8 3� 10�8

L� Itors 6� 10�8 3� 10�8
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Table 26.3 Initial and updated parameter values

Initial E0 HMC method (•tD 3 ms) S2HMC method (•tD 3 ms) S2HMC method (•tD 4.8 ms)

� 2,700 2,967.2 2,930.9 2,869.9
VTP� Imin 8.3� 10�9 9.893� 10�9 9.844� 10�9 9.483� 10�9

L� Imin 8.3� 10�9 9.991� 10�9 9.959� 10�9 9.910� 10�9

L� Imax 8.3� 10�7 8.593� 10�7 8.585� 10�7 8.512� 10�7

R� Imin 8.3� 10�9 9.9777� 10�9 9.9517� 10�9 9.909� 10�9

L� Imax 8.3� 10�7 7.335� 10�7 7.310� 10�7 7.269� 10�7

L� Itors 4� 10�8 3.639� 10�8 3.622� 10�8 3.633� 10�8

R� Itors 4� 10�8 3.744� 10�8 3.681� 10�8 3.669� 10�8

The reason is that the time step is large enough to allow significant jumps of the algorithm during the searching process.
This also will lead to better results (see Table 26.4). In this setting the HMC method gives poor updating parameters (the
same initial values) not shown in Table 26.3. This can be explained because the time step ıtD 0.0048 s does not conserve
the Hamiltonian function. This time step causes significant numerical errors of the integrator used (VV). In this case, the
Hamiltonian function decreases with time which causes a sudden decrease of the acceptance rate (the acceptance rate
decreases to less than 1 % when the time step is (ıtD 0.0048 s)). The acceptance rate for the S2HMC is 71 %, which is
an acceptable rate compared to that for the HMC method.

Table 26.4 shows the modal results and output errors for the different sampling algorithms. The results show that the
updated FEM natural frequencies are better than the initial FEM for all methods. The S2HMC provides a smaller final sum
error compared to the HMC for both time steps.

In the ıtD 0.003 s case, the error between the first measured natural frequency and that of the initial model is 10.47 %.
With the HMC method this error is reduced to 3.84 % and by implementing the S2HMC it was further reduced to 3.73 %.
A similar observation can be made for the fourth, fifth, sixth, eighth and ninth natural frequencies. The total initial error was
45.9875 % but after using the HMC and S2HMC methods it reduce to 16.2145 % and 15.00 % respectively. Both methods
converge fast and they almost have the same convergence rate (the algorithms start converging in the first 350–400 iterations).

Changing the time step for both methods gives different results. In the case where the time step is increased (ıtD 0.0048 s),
the S2HMC method improves the most. This can be seen in Table 26.4 where the total error is reduced to 14.2353 % with an
acceptance rate of 71 %. However, this is not the case for HMC where the acceptance rate decreases to less than 1 %. Using
this time step, the updated vector obtained from the HMC does not improve the FEM results.

The time step, ıtD 0.003 s, provides a good acceptance sampling rate for both methods: HMC and S2HMC (99.9 %).
Choosing a different time step may reduce the acceptance sampling rate for the HMC method which can significantly affect
the results obtained as well as the convergence rate. At the same time, it may provide a good convergence rate for the S2HMC
method since the S2HMC provides samples when the time step is large.

Figure 26.2 shows the acceptance rate when the time step varies between 3 and 4.8 ms. The acceptance rate for both
methods is 99.9 % when the time step is 3 ms. The acceptance rate starts decreasing when the time step increases for both
methods but this decrease is faster and more significant in the case of the HMC method. When the time step ıtD 3.4 ms,
the acceptance rate for the HMC method decreases slightly to 98.7 % and stays the same for the S2HMC methods (99.9 %).
When the time step used is 3.8 ms, the S2HMC acceptance rate reduces slightly to 97.8 %. However, it reduces significantly
to 53.2 % in the case of the HMC method. Finally, when the time step reaches 4.8 ms, the S2HMC acceptance rate reduces
to 71.3 % which is an acceptable rate comparing to that obtained by the HMC method (less than 1 %).

26.7 Conclusion

In this paper Bayesian FEM methods are used to update a GARTEUR SM-AG19 aeroplane structure. To evaluate the
posterior distribution function, two Markov Chain Monte Carlo (MCMC) sampling techniques have been implemented; the
Separable Shadow Hybrid Monte Carlo method (S2HMC) and the Hybrid Monte Carlo (HMC) technique. In the simulation
the S2HMC method gave better results than HMC for both implementations when the time step is equal to 3 and 4.8 ms.
Moreover, the S2HMC method is more efficient than the HMC method where it provides samples with a large step time
which is not the case with the HMC method. The sampling rate for the HMC method significantly decreases when the time
step increases. Also, a large time step provides better results when the S2HMC method is used to update an FEM.
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Fig. 26.2 The acceptance rate obtained for different time steps using HMC and S2HMC methods
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Chapter 27
Bayesian System Identification of Dynamical Systems Using Reversible
Jump Markov Chain Monte Carlo

D. Tiboaca, P.L. Green, R.J. Barthorpe, and K. Worden

Abstract The purpose of this contribution is to illustrate the potential of Reversible Jump Markov Chain Monte Carlo
(RJMCMC) methods for nonlinear system identification. Markov Chain Monte Carlo (MCMC) sampling methods have
come to be viewed as a standard tool for tackling the issue of parameter estimation using Bayesian inference. A limitation
of standard MCMC approaches is that they are not suited to tackling the issue of model selection. RJMCMC offers a
powerful extension to standard MCMC approaches in that it allows parameter estimation and model selection to be addressed
simultaneously. This is made possible by the fact that the RJMCMC algorithm is able to “jump" between parameter spaces
of varying dimension. In this paper the background theory to the RJMCMC algorithm is introduced. Comparison is made to
a standard MCMC approach.

Keywords Nonlinear dynamics • System identification • Bayesian inference • MCMC • RJMCMC

27.1 Introduction

Since their invention in 1953, Markov Chain Monte Carlo (MCMC) sampling methods have been used in many research areas
where they have proved their capacity of sampling from probability density functions (PDFs) with complex geometries. In the
domain of system identification (SID), MCMC has been extensively used as a tool for parameter estimation. MCMC sampling
methods are part of a group of algorithms that, through the use of generated samples from geometrically complicated PDFs,
can be implemented to estimate the parameters on which a system depends. Because they make use of PDFs, MCMC
algorithms have proven to work extremely well within a Bayesian framework. By joining these two concepts, one can
conduct SID for either linear or nonlinear models efficiently. This is of great interest in structural dynamics, at a time when
nonlinear models still remain difficult to identify and understand.

The aim of this contribution is to give a better understanding of the RJMCMC algorithm and its application in system
identification. A comparison is made between the Metropolis-Hastings (one of the MCMC samplers) algorithm and the
RJMCMC algorithm in order to demonstrate the advantages of the later in model selection. The detailed balance principle is
explained and it is proven that it is respected by both Metropolis-Hastings and RJMCMC algorithms. The power of RJMCMC
is demonstrated through its ability of dealing efficiently with model selection and parameter estimation (simultaneously) for
both linear and nonlinear models.

Work of particular relevance in SID, with the use of Bayesian inference and MCMC algorithms, was conducted by Beck
and Au [1]. The authors proposed a MCMC approach to sample from PDFs with multiple modes. A Metropolis-Hasting
algorithm with a version of the Simulated Annealing algorithm were used together to obtain the “regions of concentration”
of the posterior PDF. In [1] there are two different models used to demonstrate the validity of their proposed method, one
locally identifiable and one unidentifiable (the locally identifiable model had multiple optimum parameter vectors while
the unidentifiable model had a continuum of optimum parameter vectors). Paper [1] tackles the problems of uncertainty
and reliability as well. Rather than selecting the model considering the data as was done in previous work with SID, the
paper proposes a predictive approach which puts together all possible models according to their probability of being the
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right choice, given the data. Other work worth mentioning in the fields of Bayesian Inference and MCMC was conducted
by Worden and Hensman [2] and Green and Worden [3]. The work discussed in [2] is concerned with offering a Bayesian
framework to nonlinear system identification (i.e. parameter estimation and model selection). The importance of the work
presented was particularly related to the use of Bayesian inference and MCMC sampling methods on nonlinear systems.
Two different systems were simulated to demonstrate the validity of the approach: the Duffing Oscillator and the “Bouc-
Wen” hysteresis model. The Metropolis-Hastings MCMC method was used to generate samples, demonstrate parameter
correlations and help in model selection. Green and Worden [3] tackles the problems of parameter estimation and also model
selection for an existing nonlinear system (i.e. the data used was from a real system rather than a simulated one) using a
Bayesian approach through MCMC methods. The nonlinearities introduced were of a Duffing kind (i.e. cubic stiffness) and
friction type (using viscous, Coulomb, hyperbolic tangent and LuGre friction models). Other work on MCMC can be found
by the interested reader in [4].

Even though MCMC is an impressive approach when it comes to parameter estimation, when system identification
is conducted, there is also the need to tackle the model selection issue. As most MCMC methods do not cover model
selection, Green [5] introduced Reversible Jump Markov chain Monte Carlo (RJMCMC), a tool that covers both problems
of system identification, i.e parameter estimation and model selection. In the past few years there has been a lot of research
conducted in model selection using Green’s [5] RJMCMC algorithm. Some mentionable work with RJMCMC was done by
Dellaportas et al. [6], where they employed RJMCMC on the problems of logistic regression and simulated regression, using
a Gibbs sampler, which is an alternative MCMC sampling method used for parameter estimation. In order to demonstrate the
computational efficiency of the algorithm on Nonlinear Autoregressive Moving Average with eXogenous (NARMAX) input
models, Baldacchino et al. [7] presented a comparison between the forward regression method and the RJMCMC method.
A thorough explanation of the RJMCMC method can be found in [8] where Green, the developer of the algorithm, provides
further explanations of the method. There is also some work done in signal processing using RJMCMC and it can be found
in [9] and [10].

The current paper aims to introduce the RJMCMC algorithm in the context of structural dynamics, explaining how the
algorithm works and how it can be related to one particular sampler of MCMC, the Metropolis-Hastings algorithm. The paper
is structured as follows. Section 27.2 will be an introduction to Bayesian inference and its relevance in system identification.
Section 27.3 introduces the background of MCMC sampling methods, in particular the Metropolis-Hastings sampler, together
with its importance in SID. Section 27.4 is concerned with describing background on RJMCMC and linking RJMCMC with
the Metropolis-Hastings algorithm (in the context of structural dynamics). The last section, Sect. 27.5, gives insight on future
work and concludes the present contribution.

27.2 Bayesian Inference

When it comes to structural dynamics, one of the classes of interest is system identification (SID). The main concerns of
SID are parameter estimation (every system will depend on a set of parameters) and model selection. Unfortunately, when
it comes to identifying systems, uncertainties will inevitably arise. This allows one to know a system only to a probabilistic
extent. Probability helps to extract order from randomness and one cannot talk about probability without making use of the
concept of a probability distribution. One of the conditions of probability theory is that the probability distribution must
always integrate to 1.

In this case, the “random variables” one is interested in are the parameters of the system of interest. There has been defined
at this point a set of parameters, � D f �1; �2; : : : ; �Rg which needed to be estimated.

This paper makes use of probability theory through a Bayesian framework. The Bayesian approach is based on degrees
of belief. It is assumed for the moment that one knows the model, denoted by M , so that model selection is not a problem
for the time being. Bayesian inference is being used to address the issue of parameter estimation. Bayes’ theorem states that
the posterior will equal the product of the likelihood and prior, divided by the evidence:

P.�jD;M/ D P.Dj�;M /P.�jM/

P.DjM/
(27.1)

The posterior, P.� jD;M/, is the probability of the parameters � after one has seen some measured data, D, the data
being whatever response was measured. The evidence,P.DjM/, acts as a normalising constant and it ensures the area under
the posterior is unity, as required by probability theory. The prior, P.� jM/, is the probability assigned to the parameters
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before one has seen the data. It represents one’s knowledge about the system from previous experience. For further reading
about priors, relevant information can be found in [11].

The likelihood, P.Dj�;M /, is the probability of seeing the data given the selected model and the parameters that one
wishes to estimate. It is typically viewed as the most important function (in spite of its form, the likelihood is not a probability
distribution when the data is constant and � is varied) to evaluate in Bayes’ theorem. Analytical evaluation of the likelihood
term is often hard to achieve when one has a set of parameters.

Numerical evaluation of the evidence is not feasible once the number of parameters is bigger than 3, as it gets
computationally expensive. MCMC algorithms typically allow one to generate samples without having to evaluate the
evidence term.

27.3 MCMC Sampling Methods

Markov Chain Monte Carlo methods are sampling algorithms that employ the use of random variables. Their purpose is to
solve the issues of generating samples from a probability distribution with complex geometry. MCMC algorithms work by
creating a Markov chain of parameter samples, �i , whose stationary distribution is equal to the desired, target distribution.
The desired distribution is the posterior.

There are many MCMC methods, each with their own advantages and disadvantages, but for the time being and for the
purpose of this paper only, the Metropolis-Hastings (MH) method will be explained as it has been the most employed for
parameter estimation. One begins by choosing a target density, �.�/, (which in this case will be the posterior parameter
distribution). Then, one chooses a proposal density, Q.� 0j�/, which is often a multivariate Gaussian (multivariate because
one must not forget that � is a set of parameters). The next step is to generate a sample � 0 from the proposal density,Q.� 0j�/
and a quantity ˛ is built (as shown below). This is known as the Metropolis acceptance rule and it is used to decide if the
proposed sample will be accepted or if the chain remains at the current state.

To generate N parameter samples using the MH algorithm [12]:
Initialize
for n D 1 W N do

Generate � 0 from Q.� 0j�/ I
Calculate ˛ D �.�0/ Q.�.n/j� 0/

�.� .n// Q.�0j�.n// I
if ˛ � 1 then

�new state accepted;
� .nC1/ D � 0 I

else
�new state accepted with probability ˛ I
� .nC1/ D � .n/ I

end if
end for
For further insights into the Metropolis-Hastings algorithm, the interested reader is directed to [13].
So far the work presented in this contribution has been about parameter estimation when the model is known. However, it

is possible that there are multiple models, M D fM.1/;M .2/; : : : ;M .l/; : : : ;M .L/g that may explain the physical behaviour
of the experimental system. Even if the models are of the same dimension, they could be differently parameterized. If one
takes into consideration that the models might be of different dimensions as well, the issue is amplified. RJMCMC can
handle model selection.

27.4 RJMCMC

With Reversible Jump MCMC one can address parameter estimation and model selection simultaneously. The way the
algorithm works is that it can move/“jump” between parameter spaces of different dimension. The vector set of parameters
is not fixed to each model; it can vary in both length and values. Reversible Jump MCMC is capable of “jumping” from one
model to the other and select the most likely model while generating parameter samples for that particular type of system.
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In the set of models, M , the models will be arranged in the order of their complexity; in this particular case a more
complex model is defined as one with more parameters.

There are three main moves in the RJMCMC method:

• Birth move—which implies that if the birth move condition is satisfied, the algorithm moves to a model with an additional
parameter;

• Death move—which implies that if the death move condition is satisfied, the algorithm “jumps” to a model with one less
parameter;

• Update move—which implies that if neither the birth move condition nor death move condition were satisfied, the
algorithm remains within the same model and the use of the normal MH algorithm is employed, as presented before,
for parameter estimation.

The birth move will be randomly attempted with probability bl , where:

bl D pmin

�

1;
P.l C 1/

P.l/

�

(27.2)

The death move will be randomly attempted with probability dl , where:

dlC1 D pmin

�

1;
P.l/

P.l C 1/

�

(27.3)

Lastly, the update move will be randomly attempted with probability ul , so that

bl C dl C ul D 1 (27.4)

The variable l is an indicator of the current model, the variable p adjusts the proportion of the update move in relation
with the birth and death moves, and the probabilities, P.l/ and P.l C 1/, are prior probabilities of the models at iteration l
and l C 1 respectively.

By using Eqs. (27.2) and (27.3) one can see that:

blP.l/

dlC1P.l C 1/
D 1 (27.5)

It is assumed at this point that one has a set of two potential models of a SDOF system, M D fM.1/;M .2/g, where model
M.1/ has one unknown, � , while modelM.2/ has two unknown parameters, f�; �.2/2 g.

The first model is described by the following equation:

m Ry C c Py C ky D F (27.6)

The second model is described by the following equation:

m Ry C c Py C ky C k
.2/
3 y

3 D F (27.7)

where y 2 D is the data available for the two models and F 2 D is the excitation applied to each system. Figure 27.1 is
a possible representation of the two models. In the context of the two equations of motion and the models presented above,
the mass m is assumed known as well as the damping coefficient, c, while k D � and k D � , k.2/3 D �

.2/
2 are the unknown

parameters.
The RJMCMC algorithm is implemented as follows [7, 9]:
for n D 1 W N do

Get u from U Œ0; 1� �generates a random number from an uniform distributionI
if u 	 b

.n/

l �birth move conditionI then
�do birth move
Get ub from U Œ0; 1� �generates a random number from an uniform distributionI
Evaluate ˛m .detailed below/
if ub 	 ˛m then
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Fig. 27.1 (a) Linear system,
(b) Nonlinear system of
Duffing type

�update to model l C 1 and update model parametersI
else

�stay in model l I
end if

else
if u 	 .b

.n/

l C d
.n/

l / �death move conditionI then
�do death move
Get ud from U Œ0; 1� �generates a random number from an uniform distributionI
Evaluate ˛0m .detailed below/
if ud 	 ˛0m then

�go to model l � 1 and update model parametersI
else

�stay in model l I
end if

else
normal MH algorithm; model remains at l state; update parameters onlyI

end if
end if

end for
The acceptance probabilities of the birth and death moves, respectively ˛m, ˛0m, will be evaluated in Sect. 27.4.2. The

generated u dictates what the proposal will be. An important point to remember is that for l D 1, there is no death move and
for l D L, there is no birth move.

With the models introduced at the beginning of this section one notices a difference in dimensions: the first model has only
one unknown parameter while the second model has two unknown parameters. This makes it a good point to introduce the
concept of detailed balance, a principle that must be respected in order for MCMC or RJMCMC methods to generate samples
from the target PDF. This is simpler to demonstrate for MH as the dimension space remains the same. With RJMCMC it
becomes harder to maintain because the dimension space varies.

27.4.1 Detailed Balance and MH Sampler

The most important aspect of MCMC methods is that detailed balance is respected. In general terms, detailed balance
states that at equilibrium every process should be balanced out by its reverse process. In the context of MH sampling,
detailed balance ensures that ergodicity and a limiting distribution are respected [5]. Further details on ergodicity and limiting
distributions can be found in [12].

The following analysis will make use of the concept of mappings, which are functionals that can relate one state to another
[14]. In the current work, the mapping h W � ! � 0 is defined as the path from � to � 0 with its inverse, h�1 being defined
as the path from � 0 to � . Detailed balance states that, for the standard Metropolis-Hastings algorithm, for a model M that
depends on two parameters, i.e. � D f �1; �2g
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�.�/T .� ! � 0/ D �.� 0/T .� 0 ! �/ (27.8)

The above equation is true no matter what path one chooses to take from � to � 0, which in mathematical terms translates
into: Z

�.�/T .� ! � 0/ d� D
Z

�.� 0/T .� 0 ! �/ d� (27.9)

Putting the above equation in the extended form, results in the following equation:

“

�.�/q.� 0j� 0/˛.� ! � 0/ d�1d�2 D
“

�.� 0/q.�j� 0˛/.� 0 ! �/ d� 01d� 02 (27.10)

Assuming that one had a mapping h, h W � ! � 0, then a relationship can be expressed using the Jacobian matrix, once
the substitution rule was applied:

d� 01d� 02 D
ˇ
ˇ
ˇ
ˇ
@ .� 01; � 02/
@ .�1; �2/

ˇ
ˇ
ˇ
ˇd�1d�2 (27.11)

where
ˇ
ˇ
ˇ
ˇ
@ .� 01; � 02/
@ .�1; �2/

ˇ
ˇ
ˇ
ˇ D det

"
@� 01
@�1

@� 01
@�2

@� 02
@�1

@� 02
@�2

#

(27.12)

So, replacing into the previous equation gives the new expression for detailed balance:

�.�/q.� 0j�/˛.� ! � 0/ D �.� 0/q.�j� 0/˛.� 0 ! �/

ˇ
ˇ
ˇ
ˇ
@ .� 01; � 02/
@ .�1; �2/

ˇ
ˇ
ˇ
ˇ (27.13)

Assuming that the mapping h exists, one can look into its form. One could choose to propose new parameters � 01 and � 02
using Gaussian distributions centred around the current parameters:

� 01 D �1 C a (27.14)

and
� 02 D �2 C b (27.15)

where a and b are generated from a Gaussian. The above is defining the mapping h which can be written now in matrix
form as: �

� 01
� 02

�

D
�
a

b

�

C
�
�1
�2

�

(27.16)

Calculating the Jacobian using Eqs. (27.14) and (27.15) one finds that:

@� 01
@�1

D 1;
@� 01
@�2

D 0;
@� 02
@�1

D 0;
@� 02
@�2

D 1 (27.17)

This means that the determinant becomes equal to 1, no matter what the generated values of a and b might be. The
above explanations will hold and prove detailed balance when using the MH algorithm because the dimension matching
requirement is met.

27.4.2 Detailed Balance and RJMCMC

Detailed balance, when it comes to RJMCMC, gets more complicated to evaluate because each variable is part of a space of
different dimension. This implies that one cannot be sure that the space dimension of the right hand side is necessarily equal
to the space dimension of the left hand side.

Going back to the two models presented at the beginning of the section, one assumes that the mass m is known and that
these will be damped, forced systems with known damping coefficients c. This implies that model M.1/ is dependent only
on the unknown stiffness k D � and that the nonlinear model M.2/ is dependent on the stiffness k D � and the cubic
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stiffness that introduces the nonlinear element, k.2/3 D �
.2/
2 . One can see that there is a mismatch in dimensions. Jumping

from modelM.1/ to modelM.2/ is not possible at this point in time as the detailed balance principle is not respected (a space
of dimension 1 does not equal a space of dimension 2). In order to match the dimensions one must make modelM.1/ depend
on an additional parameter �, such that both spaces are of the same dimension. The parameter ub influences the choice of
�

0

2. This was referred by Green [5] as “dimension matching”. Writing the detailed balance for the two models for RJMCMC
algorithm, one has:

�.� .1//q.� .2/j�.1//˛.� .1/ ! � .2// D �.� .2//q.� .1/j� .2//˛.� .2/ ! � .1//

ˇ
ˇ
ˇ
ˇ
@ .k.2/; k

.2/
3 /

@ .k.1/; ub/

ˇ
ˇ
ˇ
ˇ (27.18)

where, in this case, �.1/ D f k; �g and �.2/ D f k; k.2/3 g .
Again, the mapping will be of the following form:

�
�

� 02

�

D
�
0

	

�

C
�
�

�

�

(27.19)

which assures that the Jacobian, as before, will be unity.
Matching the dimensions above proved that the chosen mapping h is differentiable. Remember from before that the

detailed balance only holds if the chosen mapping is differentiable and unique. The mapping was proven to be differentiable
but one has to prove that it is .1 � 1/. This is very straightforward. There is a theorem, called the inverse function theorem,
that confirms that as long as the Jacobian at a point � is nonzero (which was proved to be true, the Jacobian is 1 all the time)
then the mapping h is unique [14].

The work presented until this point demonstrated detailed balance for the RJMCMC algorithm. This means that one can
evaluate the acceptance probabilities of move, ˛m./ and ˛0m./, on which the conditions of birth and death depend on. The
acceptance probability of the birth move can be evaluated as:

˛m.�
.1/

l
! �l

.2// D min

(

1;
�.�l

.2//

�.�l
.1//g.�/

)

(27.20)

where all the values are known or can be estimated and one can notice that the Jacobian is not included as it is always equal
to 1, no matter the conditions.

The acceptance probability of the birth move can be written also as:

˛m.�
.1/

l
! �l

.2// D min f 1; rmg (27.21)

where rm is the ratio of move and is computed as:

rm D �.�l
.2//

�.�l
.1//g.�/

(27.22)

The acceptance probability of the death move can be evaluated as:

˛0m.�
.2/

l
! �l

.1// D min
˚
1; r�1m


(27.23)

At this point one gets a better grasp of the concepts needed to understand the RJMCMC algorithm and the mathematical
tools for implementing it with either real or simulated data.

27.5 Conclusions

This current contribution introduced the RJMCMC algorithm and provided a comparison between the most widely used
MCMC sampling method, the MH, and RJMCMC. While the first one only covers parameter estimation, the RJMCMC
method is used to cover both issues of SID, parameter estimation and model selection.
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As part of future work on the subject, the authors plan to introduce the RJMCMC in the context of nonlinear dynamical
systems and its applicability will be demonstrated through application to an exemplar system for which alternative models
exist.
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Chapter 28
Assessment and Validation of Nonlinear Identification Techniques
Using Simulated Numerical and Real Measured Data

A. delli Carri and D.J. Ewins

Abstract In the last ten years, particular effort has been spent dealing with the identification of multi degrees of freedom
nonlinear systems. The ever increasing complexity of the structures has gone along with the increasing sophistication of
mathematical techniques, so the structural dynamicist often finds himself with many methods to choose from, each of which
is—however—capable of addressing just subsets of the whole problem.

In IMAC XXXI, a new (modal) parameters identification toolbox approach was introduced, capable of dealing with the
different aspects of the nonlinear phenomenon, namely: detection, characterisation, localisation and quantification. A review
of available methods was also presented.

This paper brings forward the previous idea, assembling a functional toolbox of techniques useful to estimate the dynamics
of nonlinear structures using common test practices, without requiring exotic excitations or setups. These techniques are
validated against a 4DOF numerical test case with multiple nonlinearities and, finally, applied to a real aeronautical test
structure supplied by industry.

Keywords Review • Nonlinear modal testing • Reverse path • Subspace identification • Experimental data

28.1 Introduction

The analysis of nonlinear systems has evolved considerably over the last few years, driven by the ever increasing industry
needs for accuracy and reliability in the understanding and description of their dynamical systems. In general, engineering
structures may be regarded as largely linear in their dynamic behaviour, but they often include a discrete number of features
or elements which are distinctly nonlinear, such as joints. The basic concept that applies is that for every system there
is considered to be an Underlying Linear Model (ULM)—which is usually the model that applies at zero displacement
response—to which there are non-linear elements added.

During IMAC XXXI a toolbox approach was presented [1] designed to extract different levels of information from a
nonlinear system using different methodologies and algorithms. Each piece of information extracted represents a different
aspect and answers a different question about the nonlinear phenomenon, namely:

• Detection: is there nonlinearity?
• Characterisation: which type of nonlinearity is it?
• Localisation: where is the nonlinearity?
• Quantification: what are the nonlinear parameters?
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Method Excitation Response D C L Q E Notes

Hg any (2) any SDOF only

HT any any Indirect detection. May fail in experimental tests

RP broadband disp [2] Subject to numerical issues. Frequency domain

SVD any disp, vel, acc Massive request of input data

CFRF stepped sine disp (any) SDOF only. Many test runs required

NNM harmonic(n) disp (acc) SDOF only. Complex theory. Peculiar test

RFS any disp, vel, acc SDOF only. Massive request of input data

NOFRFs broadband (2) acc Complex theory. Only works for inline DOF

FNSI broadband any [3] Frequency domain

Fig. 28.1 Considered methods and their categorisation: detection (D), characterisation (C), localisation (L), quantification (Q), and experimental
evidence (E)

Figure 28.1 collects all the different methods that have been gathered since the start of this work. It represents a non-
exhaustive database of all the different nonlinear analysis methods currently available in literature. The scope of this paper
is to widen the number of considered methods and to select the best ones for inclusion in a future nonlinear modal testing
toolbox for use in an industrial environment.

The criteria for the inclusion in this toolbox are generally linked to the requirements of the industrial framework, which
demands reliable performance and low cost. This consideration leads to the exclusion of methods that use many test runs
or require non-standard setups or measurements as well as ones that are too simple to be of any use for a complex MDOF
dynamical system.

Based on these assumptions, two of the methods from Fig. 28.1 were chosen for inclusion in the toolbox: (a) the Reverse
Path method (RP) has all the capabilities to identify the nonlinear phenomena but it performs poorly in the quantification step,
and (b) the Frequency-domain Nonlinear Subspace Identification (FNSI) which is able to quantify the nonlinear coefficients
but it needs knowledge about the location and functional form of the nonlinearities, so the two methods complement each
other.

28.2 A Review of the Selected Methods

In this section, two of the methods presented in Fig. 28.1 will be reviewed in a little more detail: the Reverse Path method
has already been covered in the previous iteration of this work [1] but it is now presented with more insight, while the
Frequency-domain Nonlinear Subspace Identification is a recent addition.

These two methods together are able to cover many of the different aspects of the nonlinear phenomenon—from detection
to quantification—using common test practices, without requiring exotic excitation or setups. More important, they both
require time histories data but exploit the frequency domain which leads generally to faster estimation and lower computing
burden.

28.2.1 Reverse Path Method (RP)

The Reverse Path method was initially proposed by Bendat in 1990 [4]. The method is known as Reverse Path since the
input and output quantities are reversed (Fig. 28.3). The processing is performed in the frequency domain using conventional
Multiple-Input-Single-Output (MISO) techniques and estimates of both the Underlying Linear Model and the nonlinearity
locations and types are obtained from a single analysis.
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m1 m2

f1(t)

x1(t) x2(t)

p · g(x2)
Fig. 28.2 A system with
grounded nonlinearity described
by a nonlinear operator g(.) and
coefficient p

g(·)

g(·)

x1(t)

x2(t)

x2(t)

x2(t)

H−1
11 P

H12
H11

H−1
21 P H22

H21

f1(t)

f1(t)

Fig. 28.3 The 2DOF system is
broken into two MISO analyses

To explain the reverse path technique better, the simple 2DOF system presented in Fig. 28.2 is used. This system can be
modeled in the frequency domain as:

�
X1
X2

�

D
�
H11 H12

H21 H22

� �
F1

� P �F .g .x2//

�

(28.1)

The matrix formulation can then be expanded in the equations:

X1 �H�1
11 C H12

H11
� P �F .g .x2// D F1

X2 �H�1
21 C H22

H21
� P �F .g .x2// D F1

(28.2)

Each of these equations can be rearranged in a reverse-path fashion with the forces at the output, actually forming a set of
MISO analyses, one per DOF (Fig. 28.3).

The inputs of the MISO analyses consist of a single measured DOF and all the nonlinearities present in the system. If the
location or the type of nonlinearity is unknown, one can feed guesses into the system and use the multiple coherence function
(28.3) as an index for the goodness of estimation.

The multiple coherence function is a linear relationship that measures the causality between one output and all the input
signals. As the standard coherence, it ranges between 0 (no correlation) and 1 (the output is completely caused by the input).
The coherence function for a nonlinear system will always be less than unity because of the linear nature of the coherence
operator.


2 D GFXG
�1
XXG

H
FX

GFF
(28.3)

As long as the guesses are good, the multiple coherence function will continue to improve over the frequency range and
eventually it will be maximised when all the nonlinearities have been characterised and localised (Fig. 28.11).

The guessing process could be totally blindfolded, iterating over previously defined locations and nonlinear characteris-
tics, but it also permits the user to exploit any knowledge of where or what type of nonlinearity might be present. Once the
best coherence has been achieved, the selected guesses can be used to quantify their coefficients.

The Reverse Path method needs time histories of forces, displacements and velocities acquired using a broadband
excitation. Time histories are needed because they have to pass through the nonlinear operator before they get transformed
into the frequency domain and fed to the system. Displacements are used to construct stiffness-based nonlinearities and



288 A. delli Carri and D.J. Ewins

velocities are used to construct damping-based ones. To retrieve displacements and velocities one could generally integrate
the accelerations with appropriate filtering; this reduces the accuracy of the quantification using the reverse path method, but
does not affect the localisation and characterisation steps.

The Reverse Path method has been shown to work well in experimental environments [2] and has been applied to
various mechanical systems with zero-memory nonlinearities, indicating that the method is robust and well suited for use in
engineering applications.

28.2.2 Frequency-domain Nonlinear Subspace Identification Method (FNSI)

The FNSI method is a natural extension of the well-known Subspace Identification by Van Overschee and De Moor
[5] to nonlinear systems. The main assumption is that the nonlinearities are characterised and localised and there exists
an Underlying Linear Model of vibration in which these nonlinearities act. The method is capable of addressing the
quantification step in a nonlinear identification, contextually retrieving the frequency response functions of the Underlying
Linear Model.

A nonlinear system is governed by the differential equation of motion:

M Ry.t/C C Py.t/CKy.t/C g .y.t/; Py.t// D f .t/ (28.4)

Where M, C, K 2R
r � r are the mass, damping and stiffness matrices, respectively; x(t) and f (t)2R

r are the generalised
displacement and external forces vectors; g(t)2R

r is the nonlinear restoring force vector, and r is the number of degrees of
freedom of the structure obtained after spatial discretisation. The effect of the m discrete nonlinearities are modelled using
the summation:

g .y.t/; Py.t// D
mX

iD1
˛i �Wi � qi .y.t/; Py.t// (28.5)

Each term contains information about the unknown nonlinear coefficient ˛i 2R, the (known) location of nonlinearity
Wj 2R

r and the corresponding (known) functional form qi(�).
Equation 28.4 is then cast in a first-order state-space form

� Px.t/ D Ax.t/C Bnlq.t/C Bf .t/

y.t/ D Cx.t/CDf.t/
(28.6)

with the state vector x D �
yT PyT �T and the nonlinear coefficient matrix Bnl 2R

r �m alongside the classical A, B, C, D matrices
of the state-space realisations.

Given f (t) and y(t), the FNSI method is able to determine the five matrices A, B, C, D, Bnl.
The estimation of the nonlinear coefficients ˛i and Underlying Linear Model FRFs is subsequently carried out via the

recasting of the equations from state space to physical space. The estimated nonlinear coefficients are frequency-dependent
and complex, but a good estimation should deliver real-valued constant coefficients. More information on the algorithm can
be found in [6].

28.3 Simulated Numerical Results

The algorithms were first tested with a simple numerical 4DOF system featuring two nonlinearities (Fig. 28.4). All the
parameters are listed in Table 28.1.

The system is first excited at low level of vibration (0.1 N) exhibiting linear characteristics with a clearly-defined FRF. At
higher vibration levels (10 N) the difference in the FRF become significant, indicating a nonlinear behaviour (Fig. 28.5).

For the purpose of identification, the 4DOF system in Fig. 28.4 was excited with a random signal at 10 N RMS and
displacements computed for each mass. The Sampling Frequency was set to 300Hz. Figure 28.6 shows the measured FRF
and coherence of the system: it is clear that the curves suffer from deterioration and this is almost certainly due to the
nonlinear behaviour.
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Fig. 28.4 Simulated numerical case featuring non-grounded cubic and quadratic stiffness nonlinearities

Table 28.1 Parameters for
simulated numerical case

Mass Stiffness Damping

m1 1 Kg k1 1e4 N/m c1 10 Ns/m
m2 2 Kg k2 1.5e4 N/m c2 10 Ns/m
m3 2 Kg k3 8e3 N/m c3 5 Ns/m

k4 2e5 N/m c4 10 Ns/m
k5 1e4 N/m c5 10 Ns/m
p1 2e14 N/m3

p2 1e9 N/m5
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The Reverse Path method seeks to improve the coherence by breaking the MIMO system into several MISO equivalents,
feeding in the right combination of nonlinearity location and characteristic for each. Each MISO system exhibits a different
coherence level, but since for speed purposes it is preferable to analyse just one MISO system, one shall focus on the DOF
that exhibits the worst overall coherence level. This can be seen in Fig. 28.7 where the worst coherent point is acknowledged
to be DOF#4.

The next step is to try each nonlinear location and characteristic in a blindfolded fashion and look for the combinations
that leads to the most improved coherence index. The left side of Fig. 28.10 depicts the first iteration of this step: as one can
notice, the best improvement in the worst coherence is found with a cubic nonlinearity between DOF#1 and DOF#4. This is
accurate, according to Fig. 28.4 and Table 28.1.

The second iteration is now carried out holding the first one as input to the MISO system (Fig. 28.8). The results are
shown in the right side of Fig. 28.9, revealing another nonlinearity between DOF #3 and #4 with a fifth-order characteristic.
Again, this result is accurate according to Fig. 28.4 and Table 28.1.

Once this step is concluded, the coherence indices are maximised. That means that the output of the MISO system can be
totally explained by linear and nonlinear inputs, so the iterative process can stop (Fig. 28.10).

Once the nonlinearities are fully localised and characterised, it is possible to extract the Underlying Linear Model from
each MISO analysis (Fig. 28.11) and to quantify the nonlinear coefficients (Fig. 28.12).

The nonlinear coefficients of the system considered hereare constant over the frequency range and real-valued, whereas
the parameters extracted by the reverse path method are complex-valued and non-constant over the frequency range, even
for noiseless data. This leads to a heavy underestimation of the parameters and the need for a proper quantification routine.

The quantification step is then addressed by the Frequency-domain Nonlinear Subspace Identification technique presented
in Sect. 28.2.2 above. This algorithm needs to know in advance the locations and characteristics of nonlinearities, which have
already been provided by the Reverse Path method. The FNSI method produces a stabilisation diagram (Fig. 28.13) from
which the user can select the appropriate order to be modelled.

In this case, four columns of stable poles are easily recognisable and the FNSI algorithm can then reconstructs the
underlying linear FRFs (Fig. 28.14).

The extracted nonlinear coefficients are complex-valued and generally non-constant. A good estimation should, however,
lead to mostly real-valued coefficients which are fairly constant over the frequency range. Figure 28.15 shows that the real
part of the extracted coefficients are constant over frequency, excluding some small regions around the resonances. Also, the



28 Assessment and Validation of Nonlinear Identification Techniques Using Simulated Numerical and Real Measured Data 291

1−2 1−3 1−4 2−3 2−4 3−4

x*|x|

x^2

x^3

x^3*|x|

x^4

x^5

dx*|dx|

dx^2

dx^3

[3 3]

ch
ar

. c
as

es

Nonlinearity position

Improved coherence of Worst DOF

1−2 1−3 1−4 2−3 2−4 3−4

x*|x|

x^2

x^3

x^3*|x|

x^4

x^5

dx*|dx|

dx^2

dx^3

P

[6 6]

ch
ar

. c
as

es

Nonlinearity position

Improved coherence of Worst DOF

Fig. 28.9 First (left) and second (right) iteration of the combined characterisation-localisation step of the reverse path method
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magnitudes of the imaginary parts are more than three order smaller than their real parts, so this can be regarded as a valid
estimation. Since a single value for each coefficient is required, the mean value of the real part of each coefficient is extracted
and compared with the actual value from Table 28.1, confirming the goodness of the estimation.

One of the other checks that can be performed to assess the quality of the identification is to compare the extracted
Underlying Linear Model with the corresponding linear model obtained by stripping out the nonlinearities from the system.
In Fig. 28.16 one can notice an almost perfect correspondence between the Underlying Linear Model and the real linear one.
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28.4 Real Measured Data Results

To ensure the algorithms could properly be used in an industrial environment, components from a tail rotor test rig provided
by AgustaWestland were used to assess the congruency of the algorithms in localising, characterising and quantifying the
nonlinear effects. Since the rig is essentially symmetric, only its left side was instrumented (Fig. 28.17) taking into account
its main parts: the blade (5 accelerometers), the trunnion (4 accelerometers) and the spider plate on the hub (1 accelerometer).
The force gauge is located on point #111 of the blade, in the direction out of the rig plane.

Figure 28.18 depicts the FRF of the tail rotor rig excited with random signals at low and high level. It can be easily noticed
that there is a clear difference between the two curves, thus indicating a strong nonlinear behaviour.
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Fig. 28.13 Stabilisation diagram for the 4DOF system
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Fig. 28.14 Reconstructed underlying linear FRFs (red) compared to the raw system FRFs (blue) for DOF#2 (left) and DOF#4 (right) (Colour
figure online)
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Fig. 28.15 Estimated nonlinear coefficients (solid) and their mean values (dashed) extracted with FNSI

For the purpose of testing, the rig was forced with a Random high-level excitation. The processing was divided in two
subset depending on the directions, in order to simplify the process and speed it up.
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The first part of the process involved the y-directions. The first iteration shows that the quadratic stiffness and quadratic
damping effects are dominating the structure, and the first located nonlinearity is the quadratic stiffness between point #60
and point #100. The second iteration locates also a cubic effect between point #60 and #100, thus suggesting a complex
polynomial nonlinearity in that location. This is later confirmed by the third and fourth iterations which add a fourth and fifth
order to the polynomial between the same points. Lastly, the fifth iteration finds the source of the quadratic damping between
the driving point #111 and point #70. At this point the coherence threshold of 97 % is met (Fig. 28.19) and the code stops
searching for nonlinearities (Fig. 28.20).
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Fig. 28.20 Coherence improvements for best (left) and worst (right) behaving DOF for Y-analysis

The second part of the processing involves the z-direction DOF: the first through third iterations find a high order
polynomial nonlinear effect modelling the shearing effect of the joint connecting point #60 to point #310, while the fourth and
fifth iterations find a third order polynomial damping effect that models the shear of the elastomeric bearing connecting point
#70 and point #111. The coherence improved over all the DOF (Fig. 28.21) thus assessing the reliability of the localisation
and characterisation steps (Fig. 28.22).

The quantification step is then performed using the FNSI method. The stabilisation diagram is very cluttered but it shows
some generally stable columns of poles (Fig. 28.23).

It is hard to interpret the diagram, therefore the singular values are used to help the user to choose the right model order
(Fig. 28.24). The 18th order is the one that models 95 % of the system, so this is chosen as the system order.

The Underlying Linear Model FRF of the driving point is compared to the respective low and high levels FRF of the real
system in Fig. 28.25.

28.5 Conclusions and Future Work

This paper represents the second iteration of a work first introduced [1] with the presentation of a novel toolbox approach to
the identification of nonlinear dynamic systems. Most of the methods presented in literature were previously assessed versus
numerical simulated data. In this paper, the most promising methods have been assessed in an experimental environment in
order to evaluate their stability and applicability to real problems.
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Fig. 28.21 Coherence overall
improvement for Z-analysis
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Fig. 28.22 Coherence improvements for best (left) and worst (right) behaving DOF for Z-analysis

The Reverse Path is a powerful algorithm capable of both characterisation and localisation of nonlinear elements. Its
weakest point seem to be the trial-and-error methodology of the guessing step which, combined with the fact there is no
unique solution to the nonlinear problem, may lead to erroneous estimations. Another limitation is that this method is only
capable to address zero-memory nonlinearities such polynomial ones, and it may fail to identify the effects that falls outside
this condition. One way in which the Reverse Path method could be enhanced is by using the so-called Conditioned Reverse
Path [7] which takes into account the linear relationship between nonlinearities and linear DOF, thus eliminating numerical
illness of the matrices and leading to better estimations.

The Frequency-domain Nonlinear Subspace Identification is a method that extends the classical Subspace Identification to
nonlinear systems and it is able to quantify the nonlinear coefficients once the locations and functional forms of nonlinearities
are known. Its main limitation is the difficulty to properly interpret the crowded stabilisation diagram that comes from an
experimental test, thus the need for a routine that streamlines this process for the final user.

Both algorithms can be used together in order to identify the nonlinear characteristics of a system fully, and this is shown
very well with the simulated numerical data (Sect. 28.3). Dealing with an experimental case, much more attention must be
given to the interpretation of the results, since the answers are not known a priori. There is still an open question about the
proper validation of the methods against experimental data: the easiest check that can be performed is the comparison of
the extracted Underlying Linear Model FRFs with low-level excitation FRFs, but this may not always be possible because of
the very nature of some nonlinearities, such as clearance or friction.
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Fig. 28.23 Stabilisation diagram for the AW tail rotor rig
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for the AW rotor rig system

Finally, it is stressed that this is an ongoing work aimed at the creation of a toolbox for studying nonlinear systems. The
more algorithms are added to Fig. 28.1 the easier will become for the experimentalist to have a thorough understanding of
the nonlinear phenomena.
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Chapter 29
Effects of Errors in Finite Element Models on Component Modal Tests

Masayoshi Misawa and Hidenori Kawasoe

Abstract It has become increasingly difficult to perform modal tests for large structures because they are not strong enough
to withstand the force of gravity. This study aimed to predict the dynamic characteristics of large structures with component
modal tests. In this method, to simulate the dynamic behavior of structures, the effect of untested components is considered
as additional mass and stiffness attached to a tested component. Additional mass and stiffness are calculated with mass and
stiffness matrices of both structure and tested component. Because additional mass and stiffness vary with modeling errors
in finite element models, it is difficult to obtain structure frequencies and modes by component modal tests. In this paper,
the method is extended in order to deal with modeling errors. A formulation is given to show that modal tests for different
tested components give an identical predicted frequency when there are no modeling errors. Variation in predicted frequency
obtained for different tested components is the basis of frequency error estimation. Numerical examples are given to show
that the proposed method has the potential to predict the dynamic characteristics of large structures.

Keywords Component modal test • Additional mass • Additional stiffness • System identification • Large space
structures

Nomenclature

f Structure frequency, Hz
K Stiffness matrix
K reduced stiffness
�K Additional stiffness
L Transformation vector used in coordinate reduction
M Mass matrix
M0 Rigid body mass matrix
M Reduced mass
�M Additional mass
ne The number of finite elements
ng The number of groups of mass and stiffness matrices
nT The number of measured frequencies
R Rigid body displacement matrix
T Transformation matrix
x Displacement vector
˛, ˇ, 
 Lagrange multipliers, nT is the total number of measured modes
� Mode vector
�, � Modification coefficients
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� Frequency used in finding additional mass and stiffness, Hz
! Angular frequency, rad/s
˝2 Diagonal matrix with !i

2 (iD 1, 2, : : : , nT )

Subscripts

b Boundary coordinates of component
c Quantity of component
id Quantity of identified model
k Internal coordinates of component
o Quantity of original model
p Translational coordinate with additional mass and stiffness
q Coordinates without additional mass and stiffness
s Quantity of structure
t Quantity of tested component
test Measured quantity

29.1 Introduction

To confirm the dynamic characteristics of a structure, it is necessary to perform a modal test of the fabricated structure.
However, there is a problem in performing modal tests when the structure increases in size. For large flexible structures,
such as deployed antennas and solar paddles for satellite use, gravitational considerations may prevent a fully assembled
ground modal test because these structures are not strong enough to withstand the force of gravity. Component modal tests
can provide a means of predicting the dynamic characteristics of the structure without testing the whole structure.

There are a variety of approaches associated with experimental component modal synthesis (CMS). An experimental
CMS procedure was presented to assemble a global model of the coupled structural dynamics through equivalent mass
and stiffness representations of the components [1]. This procedure relies on accurate response and force measurements
because mass normalized normal modes at boundary coordinates are the basis of the analytical synthesis. Doebling et al. [2]
presented a method for estimating the residual flexibility from structural vibration data for experimental CMS. Morgan et al.
[3] developed the forced response method with experimentally based CMS models and measured response data. An approach
to CMS was presented for application in the testing of large flexible space structures [4]. This approach uses the test-based
characteristics of individual components determined experimentally through modal and static tests. Chen and Cherng [5]
proposed an experimental procedure to measure the generalized dynamic compliance with rotational effects. Rotational
displacements at the boundary are used for the coupling of components. Komatsu et al. [6] improved the predicted dynamic
characteristics of structures with rotational displacements found by introducing a polynomial approximation for the measured
modes.

For verifying constrained modes when fixed-base testing proves impractical, a free-boundary modal test with the
residual flexibility method has been investigated [7, 8]. Martinez et al. [9] presented a method to create a combined
experimental/analytical model of a structure for improving the accuracy of the analytical model. This model is assembled
using a component mode synthesis technique. Free-free modes and the residual flexibility at the boundary of a tested
component are measured and used in the coupling. Admire et al. [10] also used the same approach to develop a constrained
model for deriving constrained modes and frequencies. Tinker [11] described the application of the free-suspension residual
flexibility test method to Space Station modules. After correlation of the Pathfinder finite element model to residual flexibility
test data, constrained frequencies and modes obtained with the model are compared to fixed-base test results. A practical
dynamic flexibility method based on a combination of test and analysis information was also proposed [12]. This method
enables the computation of the approximate value of the dynamic flexibility using the power series expansion. Under two
special situations, this method has a limitation and was improved [13]. Morgan et al. [14] presented an experimentally based
nonbaseband CMS method with residual flexibility for the dynamic analysis of a proportionally damped system.

An alternate approach for verification of constrained models is the mass additive method. This method forces local
deformation near boundaries by adding mass to the boundaries of a tested structure. By subtracting the mass from the
equation of motion of the tested structure, constrained modes are estimated. Admire et al. [15] developed a mass additive
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modal test method, which uses free-boundary mass-loaded modes along with analytical mass and stiffness matrices. The
mass additive method has also been applied to component mode synthesis [16–21]. The basic method of CMS using mass
loaded boundaries has previously been presented [17]. Fictitious masses are used to improve the accuracy of modal-based
structural analyses [18, 19]. To add masses to boundaries causes low frequency modes to contain local displacements near
the boundary which improves subsequent modal coupling. This method (the fictitious-mass modal coupling method) was
applied to a space-type structure with measured component modes to demonstrate the effectiveness of the method [20]. A
method was proposed for coupling substructures using mass additive mode including residual flexibility or constraint modes
of components [21]. This paper showed that the mass additive mode synthesis technique, including constraint modes, worked
well. In an application not related to CMS, Coleman et al. [22] described a mass-additive modal tests as applied to the Space
Shuttle ASTRO-1 payload.

This study aimed to predict the dynamic characteristics of large structures with component modal tests [23–25]. In this
method, to simulate the dynamic behavior of structures, the effect of untested components are considered as mass and spring
attached to a tested component. The feature of this method is to predict natural frequencies and modes of large structures with
component modal tests and needs no CMS. In general, finite element models of complex structures have modeling errors, but
the previous studies assumed that there are no modeling errors because the main purpose is to confirm whether the method
has the potential to predict natural frequencies and modes of structures. In this paper, the method will be extended to cover
the case with modeling errors.

29.2 Development and Procedure of Dynamic Characteristics Prediction of Structures

29.2.1 Indication to Predict Target Frequency and Mode of Structures

In the finite element method, an analytical model of structures is expressed by mass and stiffness matrices, which sometimes
include modeling errors. In the proposed testing method, natural frequencies and their modes of structures are predicted by
component modal tests with additional masses and stiffnesses. Because additional mass and stiffness are calculated with
mass matrix, stiffness matrix, and analytical frequency of structures, modeling errors cause an error in additional mass and
stiffness. This error affects frequencies and modes of structures obtained by component modal tests. One cannot obtain
information on accurate frequencies and modes of structures because this study deals with large structures that are difficult
to perform modal test on the ground due to the force of gravity. For this reason, a procedure to predict target frequency and
its mode with component modal tests is required in case the mass and stiffness matrices have modeling errors.

Denote a translational coordinate with the i-th additional mass and stiffness as pi and the rest as qi. Additional mass is
defined by the difference between reduced masses Ms;pi and Mt;pi . These masses are determined by reducing the mass
and stiffness matrices of both structure and tested component to a mass additive coordinate pi, respectively. The following
displacement relationship is used for coordinate reduction.

xs D xs;piLs;pi (29.1)

where

xs D
�
xs;qi
xs;pi

�

; Ls;pi D
�
C s;pi

1

�

; C s;pi D �


K s;qi qi � .2��/2M s;qi qi

� �1 

K s;qi pi � .2��/2M s;qi pi

�
(29.2)

Note that xs;pi is scalar. Displacement relationship of Eq. (29.1) is the basis of this method. To accurately predict the
dynamic characteristics by component modal tests, it is indispensable that the displacement relationship of Eq. (29.1) holds
when structures vibrate. Only when frequency � is equal to structure frequency, tested component behaves as the part of the
structure vibrating at structure frequency and the displacement relationship holds. Namely, displacements xs,qi at coordinate
qi, which are calculated with a displacement xs,pi at mass additive coordinate pi, are identical to those of structures. The
dynamic equation of the structure is expressed as

��!s2M s CK s

�
xs D 0 (29.3)
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Pre-multiplying Eq. (29.3) by Ls,pi
T and using the displacement relation, one obtains

��!s2Ms;pi CKs;pi

�
xs;pi D 0 (29.4)

where reduced mass Ms;pi and reduced stiffness Ks;pi are expressed by

Ms;pi D Ls;pi
TM sLs;pi ; Ks;pi D Ls;pi

TK sLs;pi (29.5)

Adding
��!s2M t;pi CKt;pi

�
xt;pi to both sides of Eq. (29.4) gives

��!s2�Mi C�Ki

�
xt;pi C

��!s2M t;pi CKt;pi

�
xt;pi D 0 (29.6)

Note that xs,pi D xt,pi because dynamic behavior of the tested component is identical with that of the part of the structure
vibrating at structure frequency. Here the i-th additional mass �Mi and additional stiffness�Ki are expressed as

�Mi D Ms;pi �Mt;pi ; �Ki D Ks;pi �Kt;pi (29.7)

Rewriting Eq. (29.6) into matrix form gives

�

�!s2Lt;pi
T

�
0 0

0 �Mi

�

Lt;pi CLt;pi
T

�
0 0

0 �Ki

�

Lt;pi

�

xt;pi

C
�

�!s2Lt;pi
T

�
M t;qi qi M t;qi pi

M t;pi qi Mt;pi pi

�

Lt;pi CLt;pi
T

�
K t;qi qi K t;qi pi

K t;pi qi Kt;pi pi

�

Lt;pi

�

xt;pi D 0

(29.8)

Equation (29.8) is rewritten by using the displacement relationship of Eq. (29.1) as

�

�!s2
�
M t;qi qi M t;qi pi

M t;pi qi Mt;pi pi C�Mi

�

C
�
K t;qi qi K t;qi pi

K t;pi v Kt;pipi C�Ki

��

xt D 0 (29.9)

This equation shows that frequency and mode of structures can be obtained by component modal tests. Note that Eq.
(29.9) holds for arbitrary tested components. Therefore, modal tests for different tested components with additional mass
and stiffness provide an identical frequency when analytical model has no errors. The identical frequency is the target
frequency of structures. When using several additional masses and stiffness, Eq. (29.9) is obtained from Eq. (29.3) in a
similar way. On the other hand, if modeling errors exist, Eq. (29.1) is just an assumption that xs;piC s;pi is replaced with
xs;qi . Because xs;piC s;pi never equals xs;qi , target mode cannot be obtained. In this case, it can be seen from Eqs. (29.5)
and (29.7) that additional mass and stiffness have errors, and target frequency also cannot be obtained. Since the tested
component used in the modal test has no errors, the mass and stiffness matrices of the tested component (Mt and Kt) in
Eq. (29.9) are exact. Therefore, measured frequency only depends on errors in both additional mass and stiffness which
take different values for different tested components. As a result, there is not an identical frequency among test frequencies
obtained by using different tested components. For this reason, the target frequencies of the structure are predicted by
checking the correspondence between modes obtained for different tested components. This method uses a variation in
the target frequencies as an indication to estimate predicted frequency error. In the following sections, to predict dynamic
characteristics, descriptions of the procedure shown in Fig. 29.1 will be provided.

29.2.2 Modeling Error Reduction

The first step is to calculate structure frequencies fs,o and modes �s,o by solving the following dynamic equation of the
original model.

.2�fs;o/
2M s;oxs;o D K s;oxs;o (29.10)
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calculate ft,o and ft,o

identify Mt,o and Kt,o
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~ ~

Fig. 29.1 Procedure to predict frequency and mode of structure

Mass and stiffness matrices of structures (Ms,o and Ks,o) are assembled with mass and stiffness matrices of each component
(Mc and Kc) according to the finite element method. Frequencies fs,o, mass matrix Ms,o and stiffness matrix Ks,o are used to
calculate additional mass and stiffness.

In the second step, structure frequencies Qfs;test and modes Q's;test are measured through component modal tests. Mass and
stiffness matrices of the tested component (Mt,o and Kt,o) are assembled to calculate additional mass�Mo and stiffness�Ko.
Note that there is no error in the tested component subjected to the modal test. Modeling errors are included only in the finite
element model. Therefore, frequencies Qfs;test and modes Q's;test are frequencies and modes of structures if the modeling error
is small. In this case, target frequencies obtained by using different tested components are almost the same. If the differences
between the target frequencies obtained by different tested components are not minute, modeling errors should be reduced
to predict accurate frequencies and modes of structures. In this case, test frequencies Qfs;test ought to be closer to structure
frequencies than analytical frequencies fs,o because no error is included in tested component.

The next step is to reduce modeling errors. System identification is a powerful tool to reduce errors in mass and
stiffness matrices. Efficient indications of modeling error reduction are physical quantities such as frequencies, modes,
and mass properties (weight, center of gravity, etc.). For this reason, modal and mass property tests are performed for each
tested component, and mass and stiffness matrices of tested components are identified to mate with the measured dynamic
characteristics and mass properties. Then frequencies, modes, and mass properties are calculated using identified mass and
stiffness matrices. If the difference between the calculated results and the measured data is very small, one proceeds to the
next step. If this is not the case, one needs to confirm the effect of the number of modes used in system identification on the
calculated results. When the increase in the number of modes is not effective for reducing the difference, the finite element
model should be reconstructed and the identification process repeated.

System identification technique [26] proposed by the authors was used. The feature of this technique is to keep mass
and stiffness distribution of each finite element. A brief description is provided here to help readers understand numerical
examples. Because the dynamic characteristics of structures depend on mass and stiffness distributions, the identified mass
and stiffness matrices must give mass and stiffness distributions that resemble those of real structures. It will be effective
to consider these distributions for system identification. This method groups the mass and stiffness matrices of each finite
element into several matrices called grouped ones. It is possible to group the mass and stiffness matrices by considering
several physical quantities: mode shape, mass properties, and so on. The analytical (original) mass and stiffness matrices of
element i (mAi and kAi) can be expressed as the sum of the grouped matrices (mAi,j and kAi,j) including only the degrees of
freedom of group j as

mAi D
ngX

jD1
mAi;j ; kAi D

ngX

jD1
kAi;j (29.11)
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The element mass and stiffness matrices are transformed from local to global coordinates and assembled to obtain the
mass and stiffness matrices of the structures as

M t;o D
neX

iD1

ngX

jD1
MAi;j ; K t;o D

neX

iD1

ngX

jD1
KAi;j (29.12)

where

MAi;j D T tmAi;jT ; KAi;j D T tkAi;jT (29.13)

Matrix T is a coordinate transformation matrix. Using modification coefficients � and �, the identified mass and stiffness
matrices are given by

M t;id D
neX

iD1

ngX

jD1
�ijMAi;j ; K t;id D

neX

iD1

ngX

jD1
�ijKAi;j (29.14)

The mass matrix is identified using the constrained minimization theory. The Lagrange function is given by

‰M D 1

2

neX

iD1

ngX

jD1

�
��ijMAi;j �MAi;j

�
�C

6X

aD1

6X

bD1
˛ab

�
RtMR �M 0

�

ab
C

nTX

aD1

nTX

bD1
ˇab

�
'tM' �EnT

�

ab
(29.15)

The constraints in Eq. (29.15) are specified from physical points of view. The first term on the right-hand side of
Eq. (29.15) is the Euclidean norm, the second term is the mass property constraints, and the last term is the mode orthogonal
constraints. Note that the modal mass constraints are not considered because these constraints give non-unique identified
mass matrices [27, 28]. (A)ab shows the (a, b) element of matrix A. The mass matrix is identified by finding a solution
minimizing �M .

Stiffness matrix identification is also done in the same way as mass matrix identification. The Lagrange function to be
minimized is given by

‰K D 1

2

neX

iD1

ngX

jD1

�
��ijKA i;j �KAi;j

�
�C

nTX

aD1

nTX

bD1

ab
�
'tK' � 'tM'�2

�

ab
(29.16)

The first term in the right-hand side of Eq. (29.16) is the Euclidean norm, and the last term is the modal stiffness and the
mode orthogonality constraints. The stiffness matrix is identified by finding a solution minimizing �K .

The next step is to find frequencies and modes of structures analytically. Assembling identified mass and stiffness matrices
of tested components (Mt,id and Kt,id) gives the mass and stiffness matrices of structures (Ms,id and Ks,id). When considering
a structure consisting of two components, one obtains the dynamic equation of the structure as
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(29.17)

If mass and stiffness matrices include modeling errors, exact frequencies of structures are unknown. For this reason, this
method assumes that the solution (frequencies fs,id and modes �s,id) of Eq. (29.17) is the reference for evaluating the accuracy
of test frequency obtained by component modal tests. This will be a reasonable assumption because modeling errors of the
tested component are reduced so as to agree with measured data (frequencies, modes, and mass properties).

29.2.3 Target Frequency Error Estimation

The next step is to measure structure frequencies fs,test and modes �s,test. The measured data provide information to predict
frequency and mode of structures. Mass and stiffness matrices of tested component (Mt,id and Kt,id) are assembled with
identified component mass and stiffness matrices. Additional mass �Mid and stiffness �Kid are calculated with matrices
Ms,id, Mt,id, Ks,id, and Kt,id from Eq. (29.7). Identified frequencies fs,id are also used in additional mass and stiffness
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calculations. Comparing additional mass �Mid and stiffness �Kid with original additional mass �Mo and stiffness �Ko,
one can confirm how system identification reduces modeling errors. The measured frequencies and modes of structures are
obtained by component modal tests with identified additional mass �Mid and stiffness �Kid.

The final step is to predict frequencies and modes of structures. Note that modeling errors affect only additional mass and
stiffness because the tested component subjected to the modal test has no errors in mass and stiffness distributions. If there
is no modeling error in the analytical model, frequencies fs,id and fs,test are identical. Therefore, "1 defined by the following
equation gives an indication showing the frequency error of structures.

"1 D
ˇ
ˇ
ˇ
ˇ
fs;id � fs;test

fs;id

ˇ
ˇ
ˇ
ˇ � 100 .%/ (29.18)

If frequency error "1 is small, the test frequency may be structure frequency. The other indication is defined by the
measured frequencies. As stated in Sect. 29.2.1, predicted frequencies obtained by using different tested components are
identical if there is no modeling error. Therefore, it is reasonable to use an indication defined by Eq. (29.19) to predict
structure frequencies.

"2 D max

ˇ
ˇ
ˇ
ˇ
fs;testi � fs;testj

fs;testi

ˇ
ˇ
ˇ
ˇ � 100 .%/ .i D 1; 2; : : : ; nI j D i C 1; i C 2; : : : ; n/ (29.19)

Though the exact frequencies of structures are unknown, structure frequency can be predicted within some error.
It is important to confirm how additional mass and stiffness vary with the different number of modes used in system
identification. If identified frequencies fs,id vary with the increasing number of modes, those frequencies must approach
structure frequencies.

29.3 Numerical Examples

Figure 29.2 shows an analytical model consisting of two components. Arabic numbers denote the location number. Location 9
is the boundary location of two components. Each element length is 100 mm. Figure 29.2 also shows the test configuration
of the tested components with an additional mass �M and an additional stiffness �K. The subscript of �M and �K shows

Component 2DM2

DK2

Component 1

DK1
DM1

800mm
Component 1

Height =  3mm     Width = 10mm 

(1) Cantilever beam

Cross section
Density = 1.6 × -610

Material properties
Young' s modulus = 7.6 × 104

kg/mm3
N/mm2

1000mm
Component 2

1 2 3 4 5 6 7 8 9 11 13 15 17 19

(2) Component test configuration

X

Z

Y

Fig. 29.2 Analytical model and
component test configuration
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Table 29.1 Selected coordinates
with additional mass and stiffness

Tested component

Mode number Boundary location Component 1 Component 2

1 9 9Y 19Y
2 9 9Y 9Y
3 12 7Y 9Y
4 10 5Y 10Y
5 12 8Y 12Y

Table 29.2 Material properties Young’s modulus (�104 N/mm2) Density (�10�6 kg/mm3)

Exact 7.55 1.63
Analysis 9.06 1.30

Table 29.3 Beam frequencies of
bending mode in the Y direction

Mode number Exact (Hz) Analysis (Hz)

1 1.0 1.2
2 6.4 7.8
3 17.9 21.9
4 35.0 42.9
5 57.9 70.9

a tested component number. In the following, only bending modes in the X–Y plane are considered. Therefore, additional
mass and stiffness are attached to the Y coordinate of a location on the tested component. In this case, a tested component is
set so that the Y-axis may be parallel to the gravitational force when performing component modal tests.

Table 29.1 shows selected coordinates with additional mass and stiffness for each tested component. Because location 9 is
close to the node of the third and fifth modes, it is difficult to obtain these modes by component modal tests. For this reason,
boundary location is change for location 12 with large displacement when target mode is the third and fifth modes. For the
fourth mode, boundary location 10 is selected to accurately obtain the target mode.

29.3.1 Frequencies

Because component modal tests were not performed, different input data for the system identification were taken into account
to construct the simulated test and analytical models. Table 29.2 shows material properties of the beam. Material properties in
“Exact” give simulated test frequencies and modes, and material properties in “Analysis” provide analytical frequencies and
modes when the finite element model has modeling errors. Although one usually cannot understand what kinds of modeling
errors exist in the finite element models in practice, modeling errors are assumed to be known in the numerical examples
to show the effectiveness of the proposed method. However, the assumption never disturbs the purpose of this paper that
predicts frequencies and modes of structures by using a variation in the target frequencies as an indication.

Table 29.3 shows analytical beam frequencies. Because Young’s modulus is more than the exact value by 20 % and the
density is 20 % less than the exact value, the analytical natural frequencies are about 22 % higher than the exact frequencies
due to the modeling errors. There is no significant difference between the analytical and exact modes.

Table 29.4 shows the simulated test frequencies obtained with each tested component when additional mass and stiffness
include modeling errors. Note that only additional mass and stiffness include modeling errors. One should use the finite
element model of the tested component without the modeling errors because the tested component subjected to the modal
test has no errors. When target frequency is the first frequency, frequencies of 1.2, 22.8, 73.5, 153.4 and 262.9 Hz are obtained
when component 1 is the tested component. One has no information on which frequency corresponds to the first frequency
of the beam. For this reason, different tested components are subjected to modal tests to predict the first frequency of the
beam. When component 2 is tested component, one obtains frequencies of 0, 1.2, 17.7, 50.8, and 102.3 Hz. If there are no
errors in additional mass and stiffness, component modal tests for different tested components provide an identical frequency.
This frequency is considered as the target frequency. However, identical frequencies generally cannot be obtained because
of modeling errors. Therefore, the target frequency of the beam is predicted by checking the correspondence between two
modes obtained from tested components 1 and 2, respectively. Frequency of 1.2 Hz in tested component 1 and frequency
of 1.2 Hz in tested component 2 are predicted as the first beam frequency. In the same way, one predicts beam frequencies
for the second and higher frequencies, as shown by bold numbers. The predicted frequency slightly approaches the exact
frequency listed in Table 29.3 due to using the mass and stiffness matrices of the tested component without modeling errors
in the simulated tests. However, there are still differences between the two frequencies.
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Table 29.4 Simulated test
frequencies with additional mass
and stiffness found by the
original finite element model

Target frequency (Hz)

Tested component Mode number 1st 2nd 3rd 4th 5th

1 1 1.2 7.5 20.2 12.5 28.8
2 22.8 24.5 32.3 39.3 68.2
3 73.5 75.3 80.1 90.5 90.5
4 153.4 155.1 159.5 149.0 172.1
5 262.9 264.7 289.7 294.7 263.5

2 1 0.0 0.0 0.0 0.0 0.0
2 1.2 7.1 13.6 14.0 14.2
3 17.7 19.5 19.0 42.5 42.5
4 50.8 52.3 47.6 64.0 64.0
5 102.3 104.1 98.5 104.5 104.5

Table 29.5 Tested component
frequencies (boundary location 9)

Component 1 Component 2

Mode number Test (Hz) Analysis (Hz) Test (Hz) Analysis (Hz)

1 5.2 6.3 0.0 0.0
2 32.3 39.6 0.0 0.0
3 90.5 110.9 21.0 25.7
4 177.7 217.6 57.9 70.9
5 294.7 360.9 113.6 139.1

Table 29.6 Mass properties of
each tested component (boundary
location 9)

Component 1 Component 2

Item Test Analysis Test Analysis

Weight (g) m 39.1 31.3 48.9 39.1
Center of gravity (mm) Xcg 400.0 400.0 400.0 400.0
Moment of inertia (kg mm2) Ixx 3.8 3.0 4.7 3.8

Iyy 8.4� 103 6.7� 103 8.8� 104 6.9� 103

Izz 8.4� 103 6.7� 103 8.8� 104 6.9� 103

29.3.2 System Identification of Tested Components

Reducing modeling errors should be required to accurately predict frequencies and modes of structures. The measured
frequencies and mass properties of the tested components are used for system identification. When boundary is location 9,
natural frequencies of each tested component are shown in Table 29.5. Note that test frequencies do not include modeling
errors. Therefore, frequency difference between “Test” and “Analysis” is only due to modeling errors.

Table 29.6 shows an example of the mass properties of components when boundary is location 9. Since all the finite
elements include identical errors in density, the center of gravity of each tested component is the same in “Test” and
“Analysis”.

The mass and stiffness matrices are grouped by considering mode shape. The beam has four fundamental modes: an axial
mode, two bending modes in different directions, and a torsional mode. Therefore, Groups 1 to 4 are defined as follows:

Group 1: degrees of freedom that influence the axial modes
Group 2: degrees of freedom that influence the bending modes in the Y direction
Group 3: degrees of freedom that influence the bending modes in the Z direction
Group 4: degrees of freedom that influence the torsional modes

Figure 29.3 shows the modification coefficients of the group for each finite element when using the lower three test
frequencies and modes: one Y bending mode and two Z bending modes. For mass matrix identification, exact modification
coefficients are 1.25 because the density is less than the exact value by 20 % in all the finite elements. The modification
coefficients agree with the exact values for components 1 and 2. This shows that the identified mass matrix represents the
true mass distribution of the beam. Although the axial and torsional modes are not used in the identification, the modification
coefficients of groups 1 and 4 agree with the exact value. The reason why the mass matrix is identified is to satisfy the mass
property constraints.

For stiffness matrix identification, exact modification coefficients are 0.83 because the Young’s modulus is 20 % more
than the exact value in all the finite elements. As shown in Fig. 29.4, modification coefficients of groups 1 and 4 remain one
because the axial and torsional modes are not used in the identification. For component 1, modification coefficient of group 2
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Fig. 29.3 Modification coefficient for mass matrix identification. (a) Component 1. (b) Component 2
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Fig. 29.4 Modification coefficient for stiffness matrix identification. (a) Component 1. (b) Component 2

concerning the Y bending mode does not change as element gets close to the tip of the beam. Modification coefficient of
group 3 concerning the Z bending mode approaches the exact values, but it does not change as the element approaches the tip
of the beam. For component 2, modification coefficients of groups 2 and 3 change a little near the free edges. Modal stiffness
can provide the reason [26]. For example, modal stiffness of the first mode is very small at elements near the tip of the beam
because the modal stiffness constraints are satisfied by correcting the grouped matrices of elements near the root of the beam.
Because the number of modes used for the identification is small, these modification coefficients do not approach the exact
value. Therefore, it is expected that the modification coefficient will be improved by increasing the number of modes. The
modification coefficients are found when using the lower seven test frequencies and modes: two Y bending modes and five
Z bending modes. Modification coefficient of group 3 is almost identical with the exact value.

Substituting the modification coefficients � and � for Eq. (29.14) provides the identified mass and stiffness matrices. The
residues of the mass property constraints and the mode orthogonal constraints were calculated to confirm modeling error
reduction of mass matrix. The maximum residue of the constraints is almost zero. Also for stiffness matrix identification,
the maximum residue of the modal stiffness and the mode orthogonality constraints is almost zero. Natural frequencies and
modes computed with the identified mass and stiffness matrices agree well with exact ones of each tested component.

The mass and stiffness matrices of the beam are assembled with the identified mass and stiffness matrices of tested
components. Namely, the dynamic equation of the beam can be obtained. Table 29.7 shows natural frequencies of the beam
obtained by solving this equation. We call these frequencies “identified frequencies” hereafter. Arabic numbers in parenthesis
show frequency error to exact frequency. As the number of test frequencies and modes used in system identification has
an influence on identified mass and stiffness matrices, the lower three and seven modes are used in system identification
to confirm the effect of the number of modes on natural frequencies of the beam. Table 29.7 shows that frequency error
decreases with increasing the number of modes. Identified frequencies are almost identical with the exact frequencies.

Exact additional mass and stiffness are calculated with exact frequencies shown in Table 29.2. Analysis frequencies and
identified frequencies are used to find original and identified additional mass and stiffness, respectively. Errors in additional
mass and stiffness of component 1 are shown in Fig. 29.5 when they are attached to the selected coordinates listed in
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Table 29.7 Identified
frequencies of the beam

Identified frequency (Hz)

Mode number Exact frequency 3 modes 7 modes

1 1.0 1.0 (1.0 %) 1.0 (1.0 %)
2 6.4 6.6 (2.7 %) 6.4 (0.3 %)
3 17.9 18.1 (1.0 %) 17.9 (0.1 %)
4 35.0 35.5 (1.5 %) 34.9 (0.3 %)
5 57.9 58.7 (1.3 %) 57.8 (0.2 %)
6 86.5 88.5 (2.3 %) 86.4 (0.1 %)
7 120.9 123.7 (2.3 %) 120.7 (0.1 %)
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Fig. 29.5 Error variations in additional mass and stiffness for component 1. (a) Additional mass �M1.( b) Additional stiffness �K1

Table 29.8 Simulated test
frequencies with additional mass
and stiffness found by identified
finite element model (three
modes)

Target frequency (Hz)

Tested component Mode number 1st 2nd 3rd 4th 5th

1 1 1.0 6.6 18.0 12.3 28.8
2 22.8 24.1 32.2 35.5 58.6
3 73.5 74.8 78.1 90.5 90.4
4 153.3 154.7 157.7 145.6 172.1
5 262.9 264.3 289.3 294.7 260.8

2 1 0.0 0.0 0.0 0.0 0.0
2 1.0 6.6 14.0 17.4 18.3
3 17.3 16.2 18.1 35.5 31.8
4 50.2 48.4 47.2 57.1 58.7
5 101.6 99.4 98.1 113.4 109.2

Table 29.1 for each mode. The original errors in additional mass are decreased by mass matrix identification and is only 2 %
when using the lower seven modes. Errors in additional stiffness also decrease by increasing the number of modes used for
stiffness matrix identification. For component 2, errors in additional mass and stiffness show the same tendency.

29.3.3 Dynamic Characteristics After Reducing Modeling Errors

Table 29.8 shows the simulated test frequencies of tested components. Frequency shown by boldface is the predicted
frequency of the beam. Because modeling errors are reduced by system identification, simulated tests with different tested
components provide almost the same predicted frequencies. In addition, the predicted frequencies are almost the same as the
identified ones of the beam shown in Table 29.7. When using seven modes in system identification, the predicted frequencies
of tested component 1 are identical with those of component 2. Therefore, if frequency difference between predicted and
identified frequencies is small, and also variation in frequency difference is small for different number of modes used in
system identification, it is reasonable to consider test frequency as structure frequency.

Frequency error is found to predict the natural frequency of structures. Figure 29.6 (1) shows frequency error "1. The
simulated test frequencies listed in Table 29.4 are used to calculate original frequency error. Although the original frequency
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error of the first mode is 0, this does not mean that the first frequency is accurate. The first simulated test frequency equals
the first analysis frequency, but both frequencies include modeling errors. If modeling errors in original mass and stiffness
matrices are small, the second and higher frequencies ought to be accurate. Because original frequency error is not small,
it is difficult to consider the simulated test frequency as beam frequency. By identifying mass and stiffness matrices of
tested components with the lower three modes, frequency error "1 is significantly reduced (maximum error 0.5 %) for both
tested components. When using seven modes for system identification, the component modal tests provide the simulated test
frequency identical with identified frequency. This suggests that one must check the influence of the number of modes used
on identified frequencies because error of identified frequency affects frequency error "1. Figure 29.6 (2) shows frequency
error "2. If mass and stiffness matrices have no modeling errors, predicted frequencies take the same value. Therefore,
frequency error "2 is an indication to predict accurate target frequencies. The maximum frequency error of "2 is 0.5 %.
Because frequency errors "1 and "2 are very small, we conclude that the predicted frequencies are beam frequencies.

Figure 29.7 shows examples of comparison between exact and simulated test modes of the beam. The solid line shows the
exact mode, and the dotted line indicates the test mode obtained by simulated component modal tests. It can be seen from
Fig. 29.7 that the simulated test modes are similar with the exact modes for both the first and third modes. Table 29.9 lists
MAC representing the correspondence between the exact and test modes. MAC is higher than 0.9. For the second, fourth and
fifth modes, MAC is also higher than 0.9. This means that the test modes are almost identical to the exact modes.
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Table 29.9 MAC of exact and
simulated test modes

Mode number 3 modes 7 modes

1 1.00 1.00
2 0.99 0.99
3 0.94 0.94
4 0.90 0.90
5 0.91 0.91

Table 29.10 Material property
errors

Young’s modulus Density
Case Error (%) Error (%)

1 Component 1 20 �20
Component 2 10 5

2 Element 1 20 10
Others 10 5

3 Element 1 30 10
Others 20 10
Element 18 20 40

29.3.4 Effect of Different Modeling Errors on Identified Results

The component mass and stiffness matrices are identified for different modeling errors as listed in Table 29.10 to confirm the
effect of modeling errors on frequencies and modes obtained by component modal tests. Modeling errors of component 1
are different from those of component 2 in Case 1. In Case 2, errors in element 1 (near the fixed edge) and other elements are
different. In addition, different modeling errors are contained in element 18 (near free edge) in Case 3. Identifying component
mass and stiffness matrices with seven modes provides the same results as those stated in Sect. II. A three in all cases. From
the above results, one can conclude that the proposed method has potential to predict the frequencies and modes.

29.4 Conclusions

A component modal testing method was described to obtain the dynamic characteristics of large structures consisting of
several components. In this method, to simulate the dynamic behavior of structures, the effect of untested components
is considered as additional mass and stiffness attached to a tested component. Because additional mass and stiffness are
calculated with mass and stiffness matrices of both structure and tested component, it is difficult to obtain the dynamic
characteristics of large structures by component modal tests when finite element models have modeling errors. In this paper,
the method was extended to cover the case with modeling errors. Modal tests for different tested components with additional
mass and stiffness give an identical frequency, and this frequency is considered as the frequency of structures. It is shown
analytically that the identical frequency cannot be obtained when there are modeling errors. Variation in predicted frequency
obtained for different tested components is the basis of frequency error estimation. A numerical example shows that the
proposed method has potential to be applicable to predicting the dynamic characteristics of large structures even though
there are modeling errors in finite element models.
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Chapter 30
Estimating Frequency-Dependent Mechanical Properties of Materials

Jason R. Foley and Jacob C. Dodson

Abstract Predicting the dynamic response of structures to impulsive input loads is challenging for a variety of practical
and theoretical reasons, but a lack of material properties is the most commonly cited. Material properties are often assumed
to be frequency-independent in the analysis of transient data. However, this presents difficulties when dispersion, interface
dynamics, and other phenomenology participate in the structural response. A frequency-dependent framework is proposed
and implemented to explore the full spectral response of materials under impulsive loads. Experimental data from a modified
split Hopkinson pressure bar is used in conjunction with this model to estimate the complex modulus of polyurethane. The
estimates of the complex modulus are obtained for three different parameterizations of the complex modulus as a function
of frequency, specifically constant, linear, and quadratic models. Results of the estimation are discussed and compared.

Keywords Constitutive modeling • High strain rate • Frequency-dependent properties • Viscoelasticity • Hopkinson
bar • Experimental mechanics

Nomenclature

Note For symbols where both scalar and vector constants are used in this paper, the bold symbol is the vector quantity
and the italics symbol indicates the scalar quantity.

Symbol Description (Units)
˛ Attenuation coefficient (m�1)
" Strain (time domain)(m/m)
Q" Strain (frequency domain) (s�1)

 Complex wavenumber (m�1)
�,	 Lamé constants (–)
� Stress (time domain)(Pa)
Q� Stress (frequency domain) (Pa)
� Integration variable (s)
! Angular/radian frequency (rad/s)
� Error vector (–)
A Estimation parameters (MPa)
E*(!) Dynamic elastic modulus (Pa)
f Frequency (Hz)
i Imaginary number (–)
j Subdomain index (–)
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k Wave propagation coefficient (m�1)
t Time (s)
u, u Displacement (m)
Y Stress relaxation function (Pa�s)

30.1 Introduction

Predicting the dynamic response of structures to impulsive input forces is relevant to many applications. However, transient
analysis of a structure depends on the availability of material properties. These are commonly modeled as either frequency-
independent (i.e., assumed constant over the analysis range) or as a parameterized rate-dependent constitutive model in a
finite element code. However, other phenomenology can influence the apparent stiffness and/or damping of a structure, such
as when dispersion, interface dynamics, viscoelastic damping, and/or nonlinear phenomenology participate in the structural
response. Other analytic frameworks, especially spectral techniques such as spectral element modeling [1], also implicitly
assume knowledge of frequency-dependent properties.

The complex modulus is one widely-used concept that accommodates a range of frequency-dependent responses in
materials, particularly viscoelastic materials such as polymers. A representative rheological representation of a viscoelastic
material is shown below in Fig. 30.1. Nunziato and Sutherland [2] introduced a stress relaxation function at very high
frequencies (ultrasonic) or equivalently short time scales (sub-microsecond). The time-dependent relaxation leads to a
complex modulus; see Lundberg and Ödeen [3] for a discussion and example using strain data to estimate the viscoelastic
properties of materials. Ahonsi et al. [4] solves for the complex wavenumbers (including both attenuation and propagation)
in a PMMA bar at frequencies up to 80 kHz; complex wavenumbers are readily converted into an effective complex modulus.
Ödeen and Lundberg [5] reported using bar accelerations in lieu of strain data. Mousavi et al. have simultaneously estimated
complex extensional and shear moduli and the Poisson’s ratio for both PMMA and polypropylene bars [6, 7] up to frequencies
of 40 kHz. Other material systems include compacted pharamaceutical materials (e.g., cellulose and starch binders) [8] and
nylon [9].

The estimation of complex material properties is a challenging inverse problem, especially at higher frequencies. Welch
and Strømme [10] implemented a form of truth modeling in an analytic study to estimate the valid frequency range for
split Hopkinson pressure bar (SHPB) testing in the presence of practical experimental effects, such as noise and finite
sample rates. Mahata et al. [11] has also contributed a significant amount of theoretical development of how to estimate
the complex properties of viscoelastic materials. Willis et al. [12] performed dynamic characterization experiments using a
piezoelectric exciter in a controlled pressure and temperature chamber, and the complex modulus was subsequently estimated
from a finite element simulation of the system and solved using inverse problem techniques. Soderstrom [13], Rensfelt and
Söderström [14], and Mahata and Söderström [15] have implemented and extended system identification techniques for
estimating material functions, the latter introducing Bayesian methods. Finally, Liu and Subhash [16] has implemented a
time-domain deconvolution technique to estimate the impulse response function of a polymer bar.

30.2 Theory

30.2.1 Complex (Frequency-Domain) Material Properties

The stress �(t) in a linearly viscoelastic (i.e., rate-dependent) material can be expressed as the convolution [17] of the stress
relaxation function Y(t) and the instantaneous strain rate P".t/,

Elastic

Viscoelastic

Fig. 30.1 Simplified rheological
model for viscoelastic media
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�.t/ D Y.t/ 
 P".t/ D
tZ

0

Y .t � �/ P" .�/ d!; (30.1)

where � is an integration variable. Transformation into the frequency domain of Eq. (30.1) yields

Q� .!/ D i! QY .!/ Q" .!/ ; (30.2)

where the time derivative and convolution properties of the Fourier transform have been used [18]. Eq. (30.2) represents a
complex, frequency-domain expression equivalent to Young’s Law. Thus, the complex elastic modulus QE� .!/ is

QE� .!/ D i! QY .!/ D QE’ .!/C i QE’’ .!/ ; (30.3)

where QE’ .!/ and QE’’ .!/ are the real and imaginary components of QE�. The corresponding complex form of Young’s
equation is then

Q� .!/ D QE� .!/ Q" .!/ : (30.4)

30.2.2 One-Dimensional Wave Propagation in a Bar

The One-dimensional equation of motion in a bar is

@�

@x
� �@

2u

@t2
D 0 (30.5)

Taking the Fourier transform of Eq. (30.5), the frequency-domain equation of motion is obtained:

@ Q�
@x

C �!2 Qu D 0; (30.6)

where Q� and Qu represent the frequency-domain stress and particle displacement, respectively. Next, the spatial derivative
(@/@x) is taken,

@2 Q�
@x2

C �!2
@Qu
@x

D 0: (30.7)

Finally, it is trivial to transform the definition of strain,

" .x; t/ � @

@x
Œu .x; t/� ; (30.8)

into the frequency domain,

Q" .x; !/ D @

@x
ŒQu .x; !/� : (30.9)

Substituting Eq. (30.9) into Eq. (30.7) leads to a convenient form of the equation of motion, i.e.,

QE� @2 Q"
@x2

C �!2 Q" D 0: (30.10)

By defining the complex wavenumber 
 as
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 .!/ � i!

r
�

QE� ; (30.11)

the equation of motion is then

@2 Q"
@x2

� 
2 Q" D 0: (30.12)

It should be emphasized that the complex wavenumber 
 contains both real and imaginary terms; these correspond to a
real wave propagation constant k (wavenumber) and an attenuation coefficient ˛, i.e.,


 D ˛ C ik: (30.13)

The general solution to Eq. (30.12) is then

Q" .x; !/ D QP .!/ e�
x C QN .!/ e
x; (30.14)

where QN .!/ and QP .!/ are the coefficients for the positive- and negative-going waves, respectively. The coefficients for each
subdomain are found from the simultaneous solution of system of equations found through enforcing boundary conditions of
a particular configuration. The coefficients will correspondingly be specific to the experiment configuration (the subscript j
denotes which subdomain) as well material. For example, a classic split Hopkinson pressure bar will have three subdomains:
the incident bar, sample, and transmission bar.

30.2.3 Semi-Infinite Two-Bar System

The first configuration considered are two bars of identical diameter in intimate contact. In this case, we assume the
transmission bar is made of highly attenuating material to has no reflection from the end (semi-infinite bar), which leads
to the boundary condition

QN2 ! 0: (30.15)

Two boundary conditions are then enforced at the interface (xD Li) and subsequently transformed to the frequency
domain. First, we note that the frequency-domain displacement and force are

Quj .x; !/ D
Z

Q"j .x; !/ dx D � 1


j .!/
QPj .!/ e�
j .!/x C 1


j .!/
QNj .!/ e
j .!/x (30.16)

and

QFj .!/ D Aj Q�j .!/ D Aj QE�
j .!/ Q"j .!/

D Aj QE�
j .!/

QPj .!/ e�
j .!/x C Aj QE�
j .!/

QNj .!/ e
j .!/x; (30.17)

respectively. An additional response, boundary, or initial condition is necessary to fully determine the system response. This
can come from either a sensor (response) or by making assumptions based on the geometry or other features of the system
response. The three boundary conditions are shown schematically in Fig. 30.2 and summarized below.

BC1: A strain time history "(t), observed at the sensor location xDX1, applies a known strain to the system, i.e.,

e�
1X1 QP1 .!/C e
1X1 QN1 .!/ D Q"1 .!/ (30.18)

which is rewritten as
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Incident bar
j=1

Transmission bar
j=2

BC2
BC3

BC1 Output Strain Gage

Fig. 30.2 Location of sensors and boundary conditions for a split Hopkinson bar

�
e�2
1X1 1 0

	

8
<

:

QP1
QN1
QP2

9
=

;
D Q"1e�
1X1 : (30.19)

BC2: Continuity of velocity at the interface (xDL1) is

i! Qu1 D i! Qu2 (30.20)

since F .Pu/! i! Qu. Substituting Eq. (30.16) and solving for the coefficients leads to

� 1


1
e�
1L1 QP1 .!/C 1


1
e
1L1 QN1 .!/C 1


2
e�
2L1 QP2 .!/ D 0 (30.21)

which can be rewritten as a linear system of equations after dividing through by 
�11 e
1L1 , i.e.,

h
�e�2
1L1 1 
1


2
e�.
1C
2/L1

i
8
<

:

QP1
QN1
QP2

9
=

;
D 0 (30.22)

BC3: Force equilibrium at the interface (xDL1) gives

QF1 � QF2 D 0: (30.23)

Substituting Eq. (30.17) and solving for the coefficients leads to

A1 QE�
1 e

�
1L1 QP1 .!/CA1 QE�
1 e


1L1 QN1 .!/C A2 QE�
2 e

�
2L1 QP2 .!/ D 0: (30.24)

By dividing through by A1 QE�
1 e

�
1L1 , a second linear system of equations is obtained:

h
e�2
1L1 1 A2 QE�

2

A1 QE�

1

e�.
1C
2/L1
i
8
<

:

QP1
QN1
QP2

9
=

;
D 0 (30.25)

The resulting system of equations is

2
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6
4

e�2
1X1 1 0

� e�2
1L1 1 
1

2
e�.
1C
2/L1

e�2
1L1 1 A2 QE�
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9
=
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8
<
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Q"1e�
1X1
0

0

9
=

;
: (30.26)

th the coefficients now determined, this solution can be used to predict the results at other locations in the bar. For example,
if we have observed an isolated strain time history "2(t) at the location xDX2 on the transmission bar, then the coefficients
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can be used to predict the strain at that location, i.e.,

e�
2.!/X2 QP2 .!/ D Q"2 .!/ : (30.27)

The predicted response can then be readily inverse Fourier transformed into the time domain. This is an inverse problem
where minimizing the difference between observed and predicted data will yield the best estimate of the material properties.
This is commonly solved via least squares minimization of the inner product of the error vector (	), i.e., the difference
between the model and data in the time domain,

�T � D
X

i

�
"model2 .ti / � "data2 .ti /

	2
: (30.28)

However, data in the transmission bar can also be considered analytically once the coefficients are determined. In this
case, the complex wavenumber is found analytically by solving for 
2(!),


2 .!/ D � 1

X2
ln

� Q"2 .!/
QP2 .!/

�

: (30.29)

The moduli are then found via fitting to the complex wavenumber.

30.3 Experiment

The experiment consists of a modified Hopkinson pressure bar test apparatus at the AFRL Shock Dynamics Laboratory.
The system consists of two bars: a hollow 7200 aluminum incident bar (major diameter 100, minor diameter 0.900) and a 2100
transmission bar cast from the material of interest, polyurethane. Both the incident and transmission bars are instrumented
using strain gages.

A combination of direct mechanical (i.e., strain-based) and non-contact (laser vibrometer) measurements are performed
on the bars. In the preliminary experimental effort discussed here, the primary measurements are the strain time history
in the incident and the transmission bars on both sides of the interface. Uniaxial strain gages are mounted to the bar at a
single point, the midpoint of each bar, on both the incident and transmission bars. The axial distribution allows tracking of
the stress wave propagating through the system. The gages are oriented axially on the bar in diametrically opposed pairs
to allow bending and/or extensional cancellation. This is feasible since the data acquisition system has sufficient number of
phase-matched channels to independently capture the output from individual gages: the bending and extension are calculated
from the axial strain in post-processing. Semiconductor strain gages are used on the incident bar; these have resistances of
120 or 350 � with a fast response time ( 10 ns) and correspondingly higher bandwidth ( 10 MHz) than foil gages (typically
300 kHz [19]). The gage length is typically 1 mm and the gage factor is about 150 [20], providing orders-of-magnitude
improvement in sensitivity. The traditional disadvantage of semiconductor gages, a strong temperature dependence, is not
a concern for these dynamic tests since the circuits can be balanced immediately prior to a test or run in an AC-coupled
mode with minimal temperature excursions between data acquisition arming and trigger. The strain gages were wired
with a floating shield/ground to avoid ground loops. Bi-axial foil gages were applied to the transmission bar due to the
expected large strain. Additionally, an OFV-522 Polytec laser vibrometer was used (paired with an OFV-500 high speed
(20 m/s) controller/demodulator) to perform a non-contact measurement of the surface velocity of the transmission bar with
a bandwidth of up to 1.5 MHz [21] (Figs. 30.3 and 30.4).

Analog signal conditioning for the strain gages, (i.e., regulated constant-current excitation, analog filtering at 700 kHz,
and amplification), is accomplished via a Precision Filter 28000 chassis with 28144A Quad-Channel Wideband Transducer
Conditioner with Voltage and Current Excitation cards [22]. A high rate instrumentation system using a National Instruments
chassis paired with PXI-6133 multifunction input/output cards is used to digitize the analog data. The PXI-6133 samples at
2.5 MSa/s with 16 bits of vertical resolution [23]. A typical strain time history is shown in Fig. 30.5.
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Fig. 30.3 Schematic of two-bar experiment showing sensor locations and the polymer bar support mechanism

Fig. 30.4 Photos of two-bar experiment highlighting the polymer bar support mechanism
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30.4 Analysis

We initially calculate the velocity at various frequencies from a simple One-dimensional wave propagation model using
time-of-arrival of the waves. The results of this analysis for the aluminum and polyurethane bars are shown in Fig. 30.6
up to 50 kHz. Assuming the density of aluminum and polyurethane are known (�� 2,700 and 975 kg/m3), the resulting
wave speed can be used to provide a first-order estimate of the modulus using the well-known One-dimensional wave speed
relationship,

E D c2�: (30.30)

The corresponding modulus for aluminum is 72 GPa and polyurethane is 64 MPa.
This implicitly makes the assumption of constant properties; the variable wave speed evident in Fig. 30.6 imply that some

frequency dependence exists in the modulus. The frequency dependence of the complex modulus is parameterized using
simple functions and discussed in detail below.

30.4.1 Estimation of Parameterized Frequency Distribution

The simplest parameterization of the frequency dependence is a constant complex modulus, i.e., E*DE0 C iE00DA1 C iA2

where A1 and A2 are estimation parameters. Similarly, a linear parameterization is

E 0 .!/ D A1 C A2!; (30.31)

E 00 .!/ D A3 C A4!; (30.32)

and a quadratic model is

E 0 .!/ D A1 C A2! C A3!
2; (30.33)
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Table 30.1 Estimation parameters, including initial and final iteration values, from analysis of the strain data using constant, linear, and quadratic
parameterizations of the complex modulus

Symbol Min Initial Final Max Units Parameter

Constant
A1 0 64 66.87 1,000 MPa Modulus coefficient (real)
A2 0 0.064 0.1397 100 MPa Modulus coefficient (imaginary)
Linear
A1 0 50 15.54 1,000 MPa Modulus coefficient (real)
A2 �1 0.00025 �0.004907 1 MPa/rad/s Modulus coefficient (real)
A3 0 0.5 1.211 100 MPa Modulus coefficient (imaginary)
A4 �1 0.0001 0.003137 1 MPa/rad/s Modulus coefficient (imaginary)
Quadratic
A1 0 50 21.38 1,000 MPa Modulus coefficient (real)
A2 �1 0.00025 0.7074 1 MPa/rad/s Modulus coefficient (real)
A3 �1 0.1 0.02585 1 MPa/rad2/s2 Modulus coefficient (real)
A4 0 0.500 0.6268 100 MPa Modulus coefficient (imaginary)
A5 �1 0.0001 0.03490 1 MPa/rad/s Modulus coefficient (imaginary)
A6 �1 0.1 �0.01973 1 MPa/rad2/s2 Modulus coefficient (imaginary)

E 00 .!/ D A4 C A5! CA6!
2; (30.34)

where Ai are again estimation parameters. The complex modulus can then be written equivalently as

E�
2 .!/ D E 0 .!/C iE 00 .!/ D �

A1!
2 CA2! C A3

�C �
A4!

2 C A5! C A6
�
i (30.35)

for the quadratic case.
As noted in the theory, the estimation is performed by minimizing the error between the data and model in a least

squares framework. The built-in optimization function lsqnonlin is used in Matlab to obtain the estimates; the gradient-
based minimizer accommodates upper and lower bounds on the estimation parameter [24]. The results of the three cases
(constant, linear, and quadratic) are shown below in Table 30.1.

The time domain results of the fitting, shown in Fig. 30.7, indicate that the linear parameterization generates the best
agreement (as indicated by the lower value of the least squares error, �T�). This counterintuitive result is currently being
explored, but is likely due to the estimator finding a local, as opposed to global, minimum. The corresponding complex
modulus, shown in Fig. 30.8 for frequencies from 0 to 10 kHz, also exhibits a wide range of values. The linear model is
the same order of magnitude as the constant model; however, the imaginary component has a higher value than the real
value. Additionally, the real value is negative for frequencies above about 700 Hz, which is aphysical. The quadratic model
is clearly overpredicting the modulus, but again there is no assurance that the estimated values are at the global minimum.
Additional analysis and global optimization methods will be required to increase the fidelity of these estimates.

30.5 Future Work

The initial work presented here will be extended in several ways. The first is to include data from complementary
experiments, such as dynamic mechanical analysis (DMA), as prior information when estimating the complex modulus
of the material. Other aspects of Bayesian analysis, such as using multiple data sets and describing material properties via
probability distributions, have been introduced in related work using DMA [25] and are currently being applied for complex
modulus estimation from dynamic strain data. Lastly, the one-dimensional analysis will be extended to axisymmetric three-
dimensional cases to capture the effects of dispersive wave propagation.
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30.6 Summary

A frequency-dependent framework was developed and implemented to describe one-dimensional stress wave propagation
through a modified split Hopkinson bar. Experimental data from a modified split Hopkinson pressure bar is used in
conjunction with this model to estimate the complex modulus of polyurethane. The estimates of the complex modulus
are obtained for three different parameterizations of the complex modulus as a function of frequency, specifically constant,
linear, and quadratic models. Results of the estimation are discussed and compared.
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Chapter 31
Flexible Dynamic Modeling of Turret Systems by Means
of Craig-Bampton Method and Experimental Validation

Fatih Altunel and Murat Aykan

Abstract Today’s mechanical systems are designed and manufactured with increasing functionality due to the increase in
the design requirements. This leads to use of higher numbers of degrees of freedom, causing system modeling process become
more complicated, including structural and dynamic aspects. The sources of complexity arise mainly from the connection
mechanisms like gears, bearings and gear boxes and dynamic behavior of the structural parts in motion. Usually, each of these
subsystems is analyzed individually by analytical and/or numerical methods. However, the whole system performance should
be modeled and analyzed in the assembly configuration in order to observe the interaction of subsystems. Furthermore,
critical structural parts should be modeled flexible and connection mechanisms’ dynamic properties need to be identified
accurately. Modeling parts elastically also result in additional degrees of freedom which makes the model difficult to solve
for kinematic analysis. Therefore, Craig-Bampton reduction method is used to reduce the size of elastically modeled parts.
In this study, dynamic modeling process and analysis results of a turret will be presented. Furthermore, comparisons between
the analysis results and the assembled prototype turret tests are presented.

Keywords Craig-Bampton • Dynamical modeling • Turret system • Experimental validation • Flexible modeling

31.1 Introduction

Advancements in various fields of technology moves defense, automotive and aerospace industries forward for better
products. Even though this makes systems more user-friendly and increases the functionality, it makes the mechanical designs
complicated and difficult to simulate. The biggest reason for this is the increasing usage of fragile electronic equipments such
as cameras, sensors and antennas in the designs.

Development of new technologies increases the performance expectations of users. This also forces the designers to
pursue continuous research and development. Furthermore, the duration of a product’s design cycle (conceptual design to
the final prototype) is steadily declining. That’s why; the design-analysis-prototype manufacturing process has to improve
continuously. Today, computer aided design and analysis techniques are used to improve this process. Especially, computer
aided engineering (CAE), (i.e. finite element method (FEM)), improves the design process drastically and makes it possible
to design advanced products. After the introduction and application of FEM around 1960s and 1970s, mechanical system
simulations accelerated the design cycle of the products [1]. Over the years, advanced methods have been developed to speed
up the process. In this scope, even the first stage of prototype testing is now performed by computer simulation. Defense,
automotive and aerospace industries have already added this step to their R&D processes. A sample product design cycle,
shown in Fig. 31.1, is now mostly carried out in the simulated environment.

In the design process, mostly sub-products are analyzed by using computer simulation. Even if a sub-system has no
problems when used on its own, it can pose problems if combined with other sub-systems. That’s why, analyzing only the
sub-systems separately is not sufficient. Thus, system level simulations have to be performed. The biggest advantage of
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Fig. 31.1 Product design cycle

Fig. 31.2 Simulation model
creation

Fig. 31.3 Wiring diagram for the entire system

system level simulations is that problems can be identified before the physical prototype is manufactured and the number of
prototypes and testing time may be reduced. As a result, reducing the number of prototype units, even one unit, is of great
importance in terms of both cost and time.

The increasing complexity of designs is also forcing complex systems to be divided into sub-systems and designed by
different teams. Therefore, in order to have a correct system model, the subsystems need to be brought together and analyzed
as a whole. In this scope, different methods were developed to be used both for sub-system and system level simulations
[2, 3].

In this study, self-propelled defense turret is investigated to determine the dynamic performance of the system by
simulation environment. By developing a flexible dynamical model of the turret;

• Sine-sweep, modal analysis, etc. studies can be performed in simulation environment,
• The dynamic characteristics of the system can be accurately determined,
• Stability control strategy used in precision feedback can be provided,
• Sub-system modification effects can be analyzed without manufacturing new prototypes,
• Performance and working conditions of engine, gearbox, bearings, etc. can be evaluated correctly,
• Effects of foundation stiffness and system level natural frequency to the system performance can be analyzed.

LMS Virtual Lab (VL) was used for flexible dynamic analysis of the turret. In order to get Craig-Bampton modes of the
flexible parts, MSC Nastran was used. This process is summarized in Fig. 31.2.

Mechanical connecting parts like bearings, gears, motor shafts, gearboxes and motors are modelled using springs and
dampers (linear and nonlinear). All of the system components are connected to each other by using specific joints. Wiring
diagram for the entire system is summarized in Fig. 31.3.
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VL environment allows modeling details given below by adding spring-damper components:

• Backlash between gears
• Gap (clearance) inside bearings
• Friction in gears and bearings,
• The elasticities of motors, motor shafts, bearings, gearboxes and gears

These details, which are difficult to define in standard finite element modeling softwares, can be defined by various ways
in VL environment.

31.2 Theory

Finite element analysis of motionless systems and sub-systems is a standardized analysis process. For the past 10 years,
more and more complex systems with actuators are designed and need to be analyzed simulating real boundary conditions.
Therefore, flexible multi body dynamic analysis is required. The main objective in flexible multi body dynamic analysis
is to determine the dynamical flexibility of the system. Once this information is obtained, both the structural and dynamic
performance of the systems during operation can be examined. One of the most important advances is addition of reduced
finite element models of sub-systems and their modal parameters into the dynamical analysis of whole system. The reduction
can be performed by using various algorithms. Some of the most popular ones are Guyan Reduction, Dynamic Reduction,
System Equivalent Reduction Expansion Process and Craig-Bampton methods [4]. Craig-Bampton method is used widely
inside many commercial flexible multibody dynamical analysis softwares. In this method, the motion of the whole structure
is represented as a combination of boundary points (master degrees of freedom) and modes of the structure assuming that
the master degrees of freedom are held fixed. Unlike Guyan reduction, which only accounts for the stiffness matrix, Craig-
Bampton accounts for both the mass and stiffness [5].

VL software uses Craig-Bampton method for flexible multibody dynamic analysis. In this method, as in other methods,
system matrices of a sub-system modeled with thousands of degrees of freedom (DOF) are reduced by defining master nodes.
For example, a sample meshed beam structure shown in Fig. 31.4. The original structure has 5,500 DOF. It is reduced to 12
DOF where each point in circle has 6 DOF.

Equation of motion of an undamped sub-system can be written as:

ŒM � fRug C ŒK� fug D fF g (31.1)

where [M] is the mass matrix, [K] is stiffness matrix, fFg is force vector, fug and füg are the displacement and acceleration
vectors, respectively.

The most important step in reducing the degree of freedom is to group the system matrices into master and slave nodes.
After grouping is performed, Eq. (31.1) is rewritten as follows [6]:
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(31.2)

where the subscripts “m” and “s” refer to master and slave nodes, respectively. At this point, the system equations are
converted into modal coordinates via below transformation matrix:
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�
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�

(31.3)

Fig. 31.4 Reduction of a structure into two connecting master points (12 DOF)
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Fig. 31.5 System mass and
stiffness matrix reduction [6]

Then, reduction is performed at these modal coordinates. In this way, the reduced dynamic equation of motion is obtained
as follows:
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(31.4)

where subscript “q” represents the modal coordinates, “b” stands for reduced boundary representation. If damping is added
to the equation and reduction is performed by using Craig-Bampton method, reduced dynamic equation of motion is written
as follows:
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(31.5)

where � and ! stand for damping ratio and eigenfrequency, respectively. For example, if 104,340 DOF system is reduced
into 24 DOF, then system matrices become as given in Fig. 31.5.

Using the reduction process, dynamic characteristics of elastic parts can be included in the multibody analysis of the entire
system with ease. Pan et al. [7] carried out dynamic simulations of a power generator using this method, and compared with
the test results. While the frequencies found are not exactly the same with the test results, values are considered acceptable
by authors. Thus, he reported that the method is effective and accurate for practical cases. This method is being used as a
standard method for many companies in recent years.

Inside many actuated systems, there are components like gearbox, motor, bearing, etc. that are not suitable to model as
flexible elements by classical FEM tools in terms of time required and complexity level. On the other hand, their flexibilities
must be added to the system analysis since they have an important contribution to the flexibility of the entire system. In this
study, the most suitable approach is considered as including these flexibilities as spring and damper elements to the system.

31.3 Turret Case Study

31.3.1 Prototype Modal and Torque Frequency Sweep Tests

For this study, a prototype of the turret was manufactured. On this prototype, two different tests are performed with the aim
of validating the VL simulation model. Firstly, accelerometers are placed at designated locations on the prototype and then
impact testing is performed by a modal hammer. This process is performed for elevation chassis, azimuth chassis and the
gun. Secondly, turret system is given motion in azimuth direction by applying torque on the azimuth motor, keeping the
accelerometers at the same location as the modal test. Torque sweep is applied for the 1–100 Hz bandwidth and acceleration
response is acquired.
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Fig. 31.6 Representative gun
turret

0.00 1.00Frequency (Hz)

A
m

pl
it
ud

e 
(g

/N
)

Fig. 31.7 FRF graph for point
one for fixed-free boundary
condition, axes values are
normalized

Due to some interface problems, turret could not be integrated on a rigid base. Instead, it was mounted on a six DOF
motion platform. During torque sweep tests, accelerometers were also installed on motion platform in order to see if the
resonances of the motion platform are excited or not. A representative drawing of the turret system on the motion platform
is shown in Fig. 31.6.

31.3.1.1 Barrel, Elevation and Azimuth Chassis Modal Tests

The gun that is used in this turret is too large and complex to be modeled as flexible. On the other hand, the barrel is
considered to have considerably high inertia and flexibility compared to the some other components of the turret. Therefore,
barrel is modeled as flexible to include its dynamic characteristics. Within this scope, the barrel is tested as fixed-free in order
to determine the natural frequencies. Here, fixed means that the barrel is attached to the gun. Test results were also needed
to validate the finite element model of the barrel. Frequency response function graph obtained from the accelerometer at the
gun tip is shown in Fig. 31.7.

Different frequency response function graphs are analyzed and the first bending mode of the barrel is identified. The
corresponding mode shape is shown in Fig. 31.8.

In the scope of turret chassis modal tests, accelerometers are placed onto desired locations of the elevation chassis. Modal
hammer is used to drive the chassis at various accelerometer locations. A sample FRF obtained from one of the sensors is
shown in Fig. 31.9, with peak frequencies emphasized.

Similar studies were carried out on the azimuth chassis. A sample FRF functions from these tests and peak frequencies
are shown in Fig. 31.10.
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Fig. 31.8 Barrel first mode shape

0.00 0.875Frequency (Hz)

A
m

pl
it
ud

e 
(g

/N
)

Fig. 31.9 Elevation chassis FRF at accelerometer 5, axes values are normalized

31.3.1.2 Torque Frequency Sweep Test

Torque frequency sweep tests were carried out on the turret in addition to the modal tests. These tests were performed only
on the azimuth axis. Yet, accelerometers were located on both azimuth and elevation chassis. Sweep tests were performed
between 1 and 100 Hz with a sweep rate of 0.5 Hz. At each frequency step, 16 cycles were covered (Fig. 31.11).

The FRF plot shown in Fig. 31.12 is obtained from the sensor at gyro location on the elevation chassis in azimuth direction.
The barrel affects the elevation gyro response at barrel’s first natural frequency because of its high inertia. Also, according
to the FRF plot (Fig. 31.13) of azimuth gyro location, barrel is effective on azimuth as well.

31.3.2 Two-Mass System Model

The complex system is also simplified as a two-mass system with a torsional spring connection to evaluate the primary
resonances. For the sake of clarity, a two DOF model of the elevation chassis will be derived as shown in Fig. 31.14. In order
to find the fundamental natural frequencies, Valenzuela et al. [8] analyzed a simple two-mass model.
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Fig. 31.10 Azimuth chassis FRF at accelerometer 6, axes values are normalized
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Fig. 31.11 Azimuth frequency sweep test torque graph in terms of time, axes values are normalized
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Fig. 31.12 FRF graph on the elevation gyro after azimuth axis frequency sweep test, axes values are normalized

In this model, there are bearings at each end. The torsion spring (k) represents equivalent torsional stiffness of gearbox,
chassis, engine shaft and gear-pinion assembly which are considered to be connected in series. Jm Represents inertia of
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Fig. 31.13 FRF graph on the azimuth gyro after azimuth axis frequency sweep test, axes values are normalized

Fig. 31.14 Two-mass system
with a torsional spring connection

gearbox, motor, motor shaft and gear-pinion couple. On the other hand, Jl represents inertia of the chassis. If system equation
is written in terms of motor displacement, inertia and flexibility matrices are obtained as follows:

Jt D
 
Jm 0

0 J1
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2
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(31.6)
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where the transmission gear ratio and gear-pinion transmission are represented by N1 and N2, respectively. Also, motor shaft,
gearbox and chassis torsional flexibilities are represented as km, ks and kl, respectively.

Natural frequencies of this two DOF system are calculated and first anti-resonance and resonance are found. Frequency
response function graph of this system is shown in Fig. 31.15.

When prototype modal test FRF peaks and two DOF model results are compared, a small difference is observed. If motor
is fixed in torsional axis on the two DOF model, anti-resonance turns out to be seen as resonance.

31.3.3 Flexible Dynamic Analysis

31.3.3.1 Model Preparation

At the beginning stage of the flexible multibody dynamics model creation, it is necessary to decide which parts are to be
modeled as flexible or rigid. Modelling whole system as flexible makes the simulation very complex and increases the
calculation time. On the other hand, if whole system is modelled as rigid, flexibilities of chassis parts are not included. In this
respect, chassis parts are decided to be modelled as flexible. However, motor, motor shaft, gearbox and gears are modelled
as rigid due to their compact structure where their stiffness and damping is included as springs and dampers Fig. 31.16.

Flexible dynamic model building process is carried out in two stages. First, each flexible part is subjected to modal analysis
before creating the kinematic model. Modal analysis of the flexible parts are performed using MSC Nastran. Assemble
connection points are introduced in these analyses in order to get the reduced model; in other words, the Craig-Bampton
model.
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In the second stage, each reduced part is transferred into VL environment and Craig-Bampton model is obtained. Standard
joints are defined between flexible and rigid bodies in VL environment. For example, revolute (hinge) joint is introduced at
the center of elevation bearing in order to simulate the connection between elevation and azimuth chassis. Similarly, revolute
joint is introduced between motor and motor shaft. Also, since barrels are free to move in the gun axis, translational joint
is defined in that direction between gun and elevation chassis. These connectors restrict or permit the movement in specific
degrees of freedom. Simplified revolute and translational joints are shown in Fig. 31.17.

31.3.3.2 Machine Elements Flexibilities

Gear-pinion clearances, gearbox backlash, motor shaft, gearbox, gear-pinion flexibilities are modeled using torsional spring-
damper and bush elements. Special attention has to be given to the flexibilities of the bearings, motors, shafts, gear-pinion
and gearboxes. Also, backlash in gearbox and gear-pinion should be defined carefully.

Although the electric motors are modelled as solid, motor and motor shaft exhibits some flexibility. In this respect, shaft
flexibility is included in the system with torsion spring.

Motor shaft torsional flexibility is calculated by analytical methods using the commercial software Kisssoft. Its angular
torsion is calculated as shown in Fig. 31.18 with respect to length of the shaft.

Gear and pinion system is modelled by using Hertzian contact analysis. Detailed finite element models of gear and pinion
are shown in Fig. 31.19.

Gearboxes are complex systems for finite element modelling. On this reason they are modelled as torsional spring-damper
and flexibilities are found by testing. Gearbox stiffness function is introduced to the model as shown in Fig. 31.20. As seen
from the graph, backlash is also included.



334 F. Altunel and M. Aykan

20.000

10.000

−10.000

−20.000

−30.000

−40.000

−50.000

−60.000

−70.000

0.000 100.000 200.000

Axial direction Y [mm]

Angle [mrad]

300.000

0.000

Fig. 31.18 Torsion of elevation
chassis motor shaft under torque

Fig. 31.19 Finite element model
of gear-pinion for Hertzian
contact analysis

For the bearings, radial, axial, torsional and conical stiffness values are taken from manufacturer catalogues. Also,
damping for a bearing is applied as shown in Fig. 31.21.

Gearbox and gear-pinion transmission ratio have multiplication affect on neighbour part flexibilities [9]. In this scope,
torsional flexibility of the motor shaft was multiplied with i2 and j2, where appropriate. Here i and j represent gearbox and
gear-pinion transmission ratio, respectively.

31.3.3.3 Simulation Results

Flexible dynamic analysis of the Craig-Bampton model yields acceleration, velocity, displacement, stress, force and torque
transfer, etc. results at any point in the model. Essential information can be obtained for mechanical, electronical and control
design of the turret.

System dynamic transfer function calculation is a critical step in order to have better stabilization control strategy in
elevation and azimuth axes. Azimuth axis angular velocity transfer function which is calculated at the elevation gyro is
shown in Fig. 31.22.

Besides the gyro location, it is possible to obtain the transfer function for other critical locations. For example, transfer
function can be obtained for gun tip (Fig. 31.23) which is very difficult to obtain by prototype testing.

Low frequencies (1–50 Hz) are of great importance in the studies of the control algorithm. It may be necessary to increase
or decrease natural frequencies by mechanical design changes. In this study, design of experiment (DOE) of flexibilities was
carried out. By using VL, effect of tenfold increase or decrease in the torsional flexibility of the motor shaft on the natural
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frequencies can be analyzed. For example, effect of this change on angular velocity of the barrel tip is analyzed as shown in
Fig. 31.24.

Turrets are integrated on specially designed foundations. Dynamic and static strength of the foundation is of critical
importance for the performance of the turret. Backwards bending of the turret during gunfire occurs if foundation is not
tough enough which affects the gunfire performance. Cost, weight, vibration, and harshness studies need to be done in order
to find optimized foundation flexibility. Therefore, gunfire simulations are performed in order to find the optimum foundation
stiffness by using the VL model. Two different foundation stiffnesses as soft and hard are analyzed and vertical motion of
the barrel is obtained. As shown in Figs. 31.25 and 31.26, barrel up-down movement on hard foundation is lower than the
soft foundation. This gives opportunity to tune the foundation flexibility.

Stress and strains on the flexible parts are also obtained for the gunfire simulations. This gives the opportunity to analyze
and optimize the structural durability of the parts. Also, material selection is revised according to these results.

In addition to gunfire and torque sweep simulations, natural frequency analysis of the whole system at specific time
segments can be calculated. Since, system has different flexibilities at different time points, system has different dynamic
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Fig. 31.23 Barrel tip azimuth axis angular velocity transfer function, axes values are normalized

characteristics. In this context, the dynamic properties of the system at different times have to be analyzed for better
understanding of the system behaviour.

31.4 Conclusion

Systems in defense, aerospace and automotive industries have increasing number of electronic and mechanic components.
This brings out problems in vibration, control and integration. These difficulties led to the emergence of new technologies.
Flexible dynamic analysis using Craig-Bampton method is one of these advancements used to solve vibration and control
problems. This method is used to analyze a military turret system in order to determine dynamical properties. Also, simulation
results are compared with the prototype tests.

Stabilization control studies of the turret-like motion systems concentrate mostly after prototype manufacturing. It is not
easy to develop and finalize control algorithms for complex turrets which have flexibilities of structures, nonlinearities,
clearances, contacts, backlashes, etc. Instead of sub-structure analysis, whole system has to be modelled and analyzed
including every critical parameter. For this reason, most of the defense, aerospace and automotive industries are using flexible
dynamic analysis methods to have better analysis models. Using this simulation model, transfer functions, natural frequencies
and mode shapes of the system are calculated before prototype manufacturing. This simulation technique led to lower costs
by decreasing time and number of prototypes.
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Fig. 31.25 Barrel tip displacement at soft foundation, axes values are normalized

Toughness of the foundation on which turret is integrated is of great importance in terms of stability performance and it
affects the system natural frequencies. By using flexible dynamic analysis, it is possible to analyze the effects of foundation
stiffness on turret performance. This simulation environment is used within the scope of this paper and optimized foundation
stiffness is found.

Flexible dynamic analysis can be applied to several loading conditions. In this study, barrel tip angular displacement is
solved by gunfire analysis. In this way, total flexibility of the system is calculated and weak sections can be easily determined.

Flexible dynamic analysis in the design process allows understanding the effects of each gearbox, bearing, gear-pinion,
etc. on the system performance. Thus, design optimization studies can be performed before manufacturing the prototype. In
the scope of this study, this optimization is performed for each machine element and their effects on transfer functions are
analyzed.
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Fig. 31.26 Barrel tip displacement at hard foundation, axes values are normalized

Flexible dynamic analysis methods make a significant contribution from conceptual design to prototype production as
outlined throughout the study. However, like any other software, simulation results also vary according to the degree of
detail modeled and accuracy of the input. The system may also include nonlinear elements which can require laboratory tests
to be performed for each component characterization.
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Chapter 32
Material Characterization of Gyroscope Isolator Using Modal Test Data

Özge Mencek and Murat Aykan

Abstract Gyroscopes are widely used in stabilization of turret systems where high shocks are encountered. Use of isolation
material with them is essential to obtain reliable rotation data considering the intensity of shocks. Usually, each gyroscope
comes with an isolator panel specific to itself. In certain situations, however, a proper isolator configuration is unavailable for
the gyroscope. In this study, analyses required to use a sandwich panel isolator with a gyroscope other than its original one
are presented. Isolation material is modeled as orthotropic and its characteristic properties are obtained from the comparison
between the modal tests and the finite element model by using optimization. Effects of full realization of the boundary
conditions on the modal data are also shown.

Keywords Material characterization • Orthotropic material model • Parametric optimization • Model correlation
• Modal analysis

32.1 Introduction

In structural design, knowledge in material behavior is necessary to obtain reliable simulations. On this account, considerable
amount of research is done for determining the elastic properties of materials. A great number of techniques for the
identification of the elastic properties of either isotropic or orthotropic materials have been proposed. In case of isotropic
materials, identification of material properties is somehow simpler whereas the same procedure for anisotropic materials
requires different approaches. Most of these techniques exploit the dynamic response of a specimen made of the material. In
these techniques, the response of a numerical model of the specimen is connected with its experimental behavior. Unknown
material parameters in the numerical model are updated until the model behavior matches the experimental results as close as
possible. The parameter values used in the finalized numerical model are the results of the identification procedure and yield
the elastic properties of the material. A considerable majority of the studies of this kind used modal tests of the specimen
for comparison with the numerical model. McIntyre and Woodhouse [1] identified both elastic and damping constants of
thin orthotropic plates by measuring and analyzing the low modes of vibration. Deobald and Gibson [2] determined elastic
constants of orthotropic plates with boundary conditions consisting of clamped and free edges. Ayorinde and Gibson [3]
presented a similar approach to determine elastic behavior of orthotropic plates with free edges. In 2000, Gibson published a
paper summarizing the research he and his colleagues conducted and outlining the concept of modal testing for orthotropic
material identification [4]. De Visscher et al. [5] obtained the stiffness and damping properties of orthotropic composite plates
by comparing experimental modal parameters and the corresponding results from a numerical model in combination with
the modal strain energy method. Hongxing [6] proposed a mixed numerical/experimental technique where the experimental
and modal data are correlated through a parameter optimization method. Carne et al. [7] developed a constitutive model
for the elastic response of an aluminum honeycomb material using virtual testing from cell-level computational simulations
and validated this model through comparison with modal test results. Similar to many of these studies, this study consists
of modal testing of a structure including an unknown material and a numerical model of this structure established through
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Fig. 32.1 Representative configuration of test setup for gyroscope A

finite element method. The structure is an isolation layer within a gyroscope where the quantitative material properties of the
isolation layer are to be identified. The aim is to be able to use the obtained material model in case of different gyroscope
geometries.

32.2 Methodology

In this study two different gyroscopes, hereafter called gyroscopes A and B, are used with the same isolation panel. The
isolation layer is a rubberlike material with unknown mechanical behavior. It is sandwiched between two plates of aluminum
as shown in Fig. 32.1.

In order to identify the material properties of the isolation layer, a finite element model (FEM) of the gyroscope A with
the isolation panel is established and modal analysis is done on this environment. Meanwhile, modal tests are performed
on the gyroscope, and then the results obtained from FEM are compared to that of modal tests. Material properties of the
isolation layer are set through optimization, such that the natural frequencies from the FEM match the test results. The
material is taken as an orthotropic one and is modeled accordingly. Then the same isolation panel is attached to the second
gyroscope (gyroscope B). Similarly, modal tests are performed and a FEM is established. Determined material properties
from gyroscope A are used in the FEM of gyroscope B. Results from modal tests and finite element modal analysis are
compared to observe the validity of the material model.

32.3 Gyroscope A

32.3.1 Preliminary Modal Tests

This gyroscope, with its isolation sandwich layer attached, is fixed to a test foundation through bolts as shown in Fig. 32.1
and the accelerometers are located as in Fig. 32.2.

Modal tests are performed with a roving hammer and fixed accelerometers. Hammer is applied on various directions (x, y
and z) at each accelerometer location. Natural frequencies and mode shapes obtained through the analysis of these tests are
presented in Fig. 32.3.

The rectangular area formed by the lines represents the upper face of the gyroscope, where colors blue and yellow stand
for the undeformed and deformed shapes, respectively. The corners of the rectangle, marked with point numbers, represent
the accelerometer locations with numbers being the same as the test setup shown in Fig. 32.2.



32 Material Characterization of Gyroscope Isolator Using Modal Test Data 341

Fig. 32.2 Accelerometer locations and configuration of test setup for gyroscope A

32.3.2 FEM Model

Gyroscope A is modeled with its isolator panel attached in ANSYS
®

environment and a modal analysis is performed on this
model. As mentioned before, the isolation material is modeled as an orthotropic material. For an orthotropic material, nine
properties are to be defined to fully characterize the mechanic behavior. These properties consist of three sets of Young’s
modulus, Poisson’s ratio and shear modulus values; each set defined in x, y and z directions. For an orthotropic material,
elasticity matrix must be positive definite. This is introduced as a constraint in the optimization procedure as follows:

�2xy
Ey

Ex
C �2yz

Ez

Ey
C �2xz

Ez

Ex
C 2�xy�yz�xz

Ez

Ex
< 0 (32.1)

Natural frequencies obtained from the modal tests are set as target parameters. Initial conditions for all moduli are set as
1 MPa. On top of these, damping behavior of the material is introduced as Rayleigh damping. Since any entered damping
data is ignored in modal analysis plant of ANSYS

®
, it was not included in the optimization procedure. Instead, the harmonic

response of the model under constant force is studied over a frequency range covering first six modes. Available data sheet
of the gyroscope had provided the maximum displacement of the gyroscope in the direction normal to upper surface of
the gyroscope. Damping coefficient is adjusted such that the response gave the approximate displacement value at the most
dominant mode in the studied range.

Preliminary results have shown that the process failed to deliver matching natural frequencies. Furthermore, the order of
the corresponding mode shapes differed from that obtained from modal tests. The closest possible natural frequencies and
the corresponding mode shapes are presented in Fig. 32.4.

At this point authors suspected whether the physical boundary condition is fully realized in ANSYS
®

environment. During
the hammer test, the gyroscope is fixed to the foundation through the holes on the lower plate of the isolation sandwich as
shown in Fig. 32.1. By this means there has formed a contact between the surfaces of the lower plate and the foundation.
This contact allows only compression between these two surfaces. In order to realize this boundary condition in ANSYS

®

environment, “compression only” support is defined between these surfaces. However, this support type is nonlinear and it
is disabled during the modal analysis, letting midsection of the lower plate to move freely without any compression from the
bottom. Consequently, results of these modal tests are not comparable with this FEM and it is not possible to form a valid
material model. In order to overcome this inconvenience and mimic the boundary condition in ANSYS

®
environment, a

different approach is employed and the modal tests are updated. Details of this approach and the accordingly updated modal
tests are presented in the next Section.
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Fig. 32.3 First six natural frequencies and corresponding mode shapes of gyroscope A from modal tests

32.3.3 Updated Modal Tests

In order to actualize the boundary condition forced by ANSYS
®
, there needs to be gap between the lower plate and the

foundation while keeping the lower plate fixed through the bolts. In other words, the lower plate should be fixed through the
bolt holes only, without any other contact throughout the plate surface. This is formed by adding washers through the bolts
between the lower plate and the test foundation. The configuration is shown in Fig. 32.5.
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Fig. 32.4 First six natural frequencies and corresponding mode shapes of the gyroscope A from first FEM f1 D 175.33 Hz, f2 D 319.93 Hz,
f3 D 352.99 Hz, f4 D 710.67 Hz, f5 D 757.97 Hz, f6 D 1,269.1 Hz

Fig. 32.5 Representative drawing of plate-foundation connection with washers used

As can be observed, use of washers enables the fixed boundary condition at bolt locations while allowing the middle part
of the lower isolation plate to swing in both up and down directions. By this means, the boundary condition between the
lower isolation plate and the foundation is created at the closest possible measure to the model prepared in ANSYS

®
. Modal

tests are repeated with this configuration and the results are given in Fig. 32.6.
When the results of each modal test are compared, the first observation is the lowered natural frequencies caused by the

introduced motion flexibility. Even without updating the material properties in ANSYS
®

to match the natural frequencies,
the order of the modes is seen to be equivalent with that of FEM. In addition, the mode shapes from the test configuration
without washers include phase distortions between points due to nonlinear boundary condition. On the other hand, the mode
shapes from the latter configurations have nearly no distortions.

Once the natural frequencies and mode shapes are obtained, the material properties can be set accordingly, as explained
in the previous section. Obtained material properties and corresponding modal analysis results are presented in the following
Section.
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Fig. 32.6 First six natural frequencies and corresponding mode shapes of gyroscope A from modal tests, washers used

32.4 Updated FEM and Material Properties

As mentioned earlier, the material properties are determined by an optimization procedure where the natural frequencies
of the FEM are set to match the ones obtained from modal tests. Process revealed that a compromise was needed since
all the natural frequencies did not match at the same time. Being considered as the dominant mode, manipulations are
performed to match the second frequency as close as possible. In the manipulation stage, it is observed that shear moduli
are actually optimized and any change in one of these properties results in notable shifts in natural frequencies and it cannot
be compensated by changing another property. However; changes in Young’s moduli are compensable within each other.
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Table 32.1 Sets of identified
material properties

Material properties (MPa) First set Second set Third set

Ex 1.8 2.7 8
Ey 2 2.4 4
Ez 1 1.2 1.6
Gxy 4.73 4.73 4.73
Gyz 5.14 5.14 5.14
Gxz 1.60 1.60 1.60
�xy,yz,xz 0.49 0.49 0.49
“ (damping coefficient) 6.3117� 10�7 6.2791� 10�7 6.3414� 10�7

Fig. 32.7 First six natural frequencies and corresponding mode shapes of the gyroscope A from second FEM f1 D 151.49 Hz, f2 D 258.66 Hz,
f3 D 292.46 Hz, f4 D 674.67 Hz, f5 D 752.16 Hz, f6 D 1,251.6 Hz

It is observed that increasing or decreasing all Young’s moduli at the same time leaves the natural frequencies unchanged.
Increase in Ex and Ey results in lower natural frequencies while increase in Ez increases the natural frequencies. Once this
observation was made, it is decided to create multiple sets of material properties to see the how the results will be affected
during the tests with gyroscope B. Three different sets of material properties are extracted where Young’s moduli are different
in each set and shear moduli are set fixed. Modal analysis in ANSYS

®
is repeated with each set of material data. Note that

damping coefficients are determined separately, after each moduli set is finalized. Sets of material properties are given in
Table 32.1.

Results of the modal analysis performed in ANSYS with the second set of material properties are presented in Fig. 32.7.

32.5 Gyroscope B

In order to validate the material model obtained in previous sections, the same isolator panel is attached to another gyroscope:
gyroscope B. Modal tests and FEM construction are performed on this configuration in the same manner as in gyroscope A.
Obtained sets of material properties are utilized in FEM and results are compared with modal test results.
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Fig. 32.8 Configuration of test setup for gyroscope B

32.5.1 Modal Tests

Gyroscope B has a different geometry when compared to gyroscope A such that it sits on a smaller area. In order to be able
to use this gyroscope with the gyroscope A’s isolator panel, an adaptor piece is manufactured. Adaptor piece is a simple
aluminum plate of 6 mm thickness with appropriately located through and counter threaded holes. As shown in Fig. 32.8,
upper plate of the isolation panel is bolted all through the adaptor piece while the gyroscope is fixed to this adaptor via
screws. Accelerometers are located on the adaptor piece instead of gyroscope for practical reasons. Based on the observations
of modal tests with gyroscope A, vibratory motion of the system relies mostly on the deformation of isolation material while
the gyroscope behaves rigid. Hence, placement of accelerometers on adaptor piece is assumed to be proper and correct.

As mentioned in previous sections, use of washers at bolt locations is essential in order to correctly compare the modal test
and FEM modal analysis results. These tests are therefore performed using washers. Natural frequencies and corresponding
mode shapes obtained from the analysis of these tests are given in Fig. 32.9 below. The rectangular area represents the upper
surface of the adaptor piece. Yellow and blue lines represent the deformed and undeformed model, respectively.

32.5.2 FEM Model with Preset Material Properties

Similar to gyroscope A, a FEM model is constructed for gyroscope B. Modal analyses with each set of orthotropic properties
are performed. Resulting natural frequencies and percent errors w.r.t. modal test results are given in Table 32.2.

Results show that different sets of material properties result in approximate natural frequencies. When the obtained natural
frequencies are broadly observed and compared to the ones from modal test, each of them has a certain amount of error. The
third natural frequency has the smallest error, where the second and first natural frequencies follow with relatively larger
errors. The mode shapes corresponding to the second data set are shown in Fig. 32.10.

Despite the errors in the natural frequencies, the order of mode shapes is correct when compared to modal test results.
Based on all these observations it can be concluded that the material models have a consistency between each other; however
the exact natural frequencies they generate are not as close to the test results as in gyroscope A.

32.5.3 Sweep Tests and FRFS

Gyroscope B is also subjected to sine sweep test in order to extract the FRF characteristics. The same configuration used in
the modal tests is used as shown in Fig. 32.11.

The gyroscope is subjected to harmonic acceleration loading of a unit earth acceleration for the frequency range of
20–1,500 Hz. The FRFs in Figs. 32.12 and 32.13 are obtained by dividing the acceleration response from each accelerometer
at each frequency increment by 1 g, hence are dimensionless. In order to see the effect of boundary condition on dynamic
response, the measurements are held both with and without washers. Figs. 32.12 and 32.13 present the transfer functions
obtained from measurements with and without washers, respectively.
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Fig. 32.9 First six natural frequencies and corresponding mode shapes of gyroscope B from modal tests, washers used

When the FRFs of each boundary condition are assessed, significant effect of using washers is observed. Other than the
notable change in the natural frequencies, response of the system at lower frequencies is considerably higher when washers
are used. This shows that use of washers is essential in model correlation while it is not recommended in field use due to
high response level at first visible mode.
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Table 32.2 Comparison of modal test and FEM modal analysis results

Test results (Hz) First set results (Hz) Error (%) First set results (Hz) Error (%) Third set results (Hz) Error (%)

f1 287.65 262.21 8.84 262.75 8.66 263.92 8.25
f2 345.24 317.91 7.92 318.45 7.76 319.96 7.32
f3 474.69 484.22 2.01 485.07 2.19 487.32 2.66
f4 520.68 807.51 55.09 808.06 55.19 809.38 55.45
f5 959.74 1,154.3 20.27 1,154.6 20.30 1,155.1 20.36
f6 1,230.21 1,397.1 13.57 1,397.5 13.60 1,398.8 13.70

Fig. 32.10 First six natural frequencies and corresponding mode shapes of the gyroscope B from FEM f1 D 262.75 Hz, f2 D 318.45 Hz,
f3 D 485.07 Hz, f4 D 808.06 Hz, f5 D 1,154.6 Hz, f6 D 1,397.5 Hz

Fig. 32.11 Location of
accelerometers on gyroscope B
for sweep tests
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Fig. 32.12 Transfer functions
obtained from the sweep tests of
gyroscope B, no washers
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Fig. 32.13 Transfer functions
obtained from the sweep tests of
gyroscope B, with washers

32.6 Conclusion

A study performed to obtain material characteristics of an isolation layer in a gyroscope is presented. The material is accepted
to be orthotropic and modeled accordingly. Young’s and shear moduli are determined through an optimization procedure so
that the modal test results and FEM modal analysis results match each other. During the procedure it was observed that the
boundary condition in the FEM is conceptually different than the actual test rig. In order to overcome this inconvenience,
the connection of the test rig is modified and the modal tests are updated. Effect of the details of fixing a test structure
to a foundation on modal test results is shown through this observation. Damping property of the material is determined
by seeking the response of the structure at the dominant mode frequency. Identified material properties are employed in
FEM of another gyroscope with the same isolation layer. Modal tests are performed on this gyroscope as well and the
results are compared to FEM modal analysis results. The results have revealed a certain degree of error at each natural
frequency, whereas the mode shapes came up in the same order. In addition, sweep tests performed of the second gyroscope
are performed. Transfer functions relating the acceleration at the measuring point and the acceleration load are presented.
Sweep tests are carried out with both boundary conditions and the difference between the FRF sets are observed.
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Chapter 33
Loss Factors Estimation Using FEM in Statistical Energy Analysis

Takayuki Koizumi, Nobutaka Tsujiuchi, and Katsuyoshi Honsho

Abstract Statistical energy analysis (SEA) is an effective method for predicting the noise and vibration in the
high-frequency band. To predict the vibration energy in SEA, it is necessary to identify the parameters called loss factors
accurately. But experiments are expensive and time consuming because many test models are necessary to examine the
effects of reducing the vibration energy. So we need to estimate the changes of loss factors when the structure is modified to
reduce the vibration energy. This paper describes an estimation method of loss factors using finite element method (FEM).
We focus on two subsystems dismounted from structure models and modify the design by changing the number of bolts and
the thickness of the panel. Furthermore we construct the accurate FE models of dismounted subsystems by comparing the
prediction results with the experimental results. As a result, we confirm the utility of the loss factors estimated in FEM.

Keywords SEA • Coupling loss factor • Damping loss factor • FEM • Two subsystems

33.1 Introduction

The co-generation system (CGS) is effective for reducing gas emissions which causes global warming, and the number of the
CGS installations is increasing every year. In this system, a gas engine is installed as the power source. This engine causes
the large vibration to the enclosure. For this reason, the reduction of the vibration in the CGS is required. To reduce it, the
modification of the enclosure would be more desirable than the improvement of the engine in view of cost performance and
development period. In modification of the enclosure, it is efficient to analyze the vibration of it.

The finite element method (FEM) is effective to analyze the vibration level accurately in low frequency band, but not in
high frequency. Recently the statistical energy analysis (SEA) has been widely used as the vibration analysis method in high
frequency band [1]. To predict the vibration energy in the SEA, it is important to estimate accurately the parameters called
loss factors. They vary when the structure is modified to reduce the vibration energy. Whenever the structure is modified,
the loss factors need to be estimated again. The experiment is popular to estimate the loss factors accurately. However,
experiments are expensive and time consuming because many test models are necessary to examine the effect of reducing
the vibration energy. Therefore, a new method is desirable to estimate the loss factors effectively without the test model.

In this study, we develop a method to estimate the loss factor in simulation by using the FEM. It enables us to analyze
the frequency response to acceleration in structure with any modification. We focus on the two subsystems dismounted from
structure model and modify the design by changing the number of bolts and thickness of the panel. We construct a finite
element model of dismounted subsystems to compare the experimental with the analytical data. The loss factors in two
subsystems are estimated by the equivalent models on bolt joints in the FEM. We validate the utility of the estimated loss
factors by predicting the vibration energy in the SEA. As a result, the vibration energy is estimated accurately by constructing
the accurate FE models.
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33.2 Theory

SEA is a prediction method for vibration and noise that treats the vibration transmission as a power flow. The power of each
subsystem is represented by the space average in the frequency band. The power flow between subsystems is described by
power balance equations. The power flow equations of the subsystems shown in Fig. 33.1 are written below:

Pi1 D Pl1 C P12 (33.1)

P2 D PL2 C P21 (33.2)

where P1 and P2 are the input power from the external energy sources to the subsystems, PL1 and PL2 are the internal loss
power in subsystem 1 and 2, P12 is the transmitted power from subsystems 1–2.

The internal loss power is represented as the loss factor and the subsystem’s frequency and energy as follows:

PL1 D !�11E1 (33.3)

PL2 D !�21E2 (33.4)

where �11 and �22 are the damping loss factors and ! is the angular frequency. E1 and E2 are the space-averaged energy of
the subsystem. The coupling loss power is written below:

P12 D !�12E1 � !�21E2 (33.5)

where �12 and �21 are the coupling loss factors between subsystems 1 and 2. N1 and N2 are the modal density of the
subsystems in a frequency bandwidth. Using the relationship of loss factors �12 N1 D �21 N2, Eq. 33.5 becomes the following:

P12 D !�12N1 .Em1 �Em2/ D !�12N1

�
E1

N1
� E2

N2

�

(33.6)

Equations 33.1 and 33.2 can be written as follows:

Pi1 D !�1E1 C !�12N1

�
E1

N1
� E2

N2

�

(33.7)

Pi2 D !�2E2 C !�21N2

�
E2

N2
� E1

N1

�

(33.8)

Subsystem1

E1,h1,N1

Subsystem2

E2,h2,N2

P1 P1

P12

P21

PL1 PL2

h12

h21

Fig. 33.1 Power flow balance
between two subsystems
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For a structure with a multi-subsystem, the power flow equation in matrix form becomes [1]:
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(33.9)

The energy of each subsystem can be obtained by this equation if the loss factor matrix, which is the second term on the
left-hand side, is given. Therefore obtaining an accurate loss factor is significant.

The structure subsystem energy is calculated by the following equation by the spatial average of vibration velocity v and
mass m:

E DM
˝
v2
˛

(33.10)

For a sound field subsystem inside the structure, the energy is written below by mass m, the spatial average of sound
pressure p, and acoustic characteristic impedance Z0:

E D M
˝
p2
˛

Z2
0

(33.11)

With Eqs. 33.10 and 33.11, the subsystem’s vibration and sound pressure can be calculated if energy is obtained from a
power balance Eq. 33.9:

33.3 SEA Models

33.3.1 Test Object

Figure 33.2 shows a test object that is constructed of a base, a roof, four frames, and four panels. The external size of this
object is 700� 500� 390 mm, and its structural elements are fixed by bolts, nuts and spacers. We dismount two subsystems
from this structure and estimate loss factors by exciting them. Figure 33.3 shows the two subsystems connected with three
bolts. The details of bolt joints are shown in the Fig. 33.4.

33.3.2 The SEA Subsystems

The object is divided into some subsystems in SEA based on the following assumptions.

1. The bended part of the subsystems and the shin panels deal with equivalent thickness.
2. Screw holes are neglected.

Figure 33.5 shows the SEA model. Subsystem 1 is the base, subsystem 2 is the roof, subsystems 3–6 are the frames, and
subsystems 7–9 are the panels. In this study, we particularly focus on the base and panel 8 as the two subsystems connected
using bolts.
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Fig. 33.2 Outline view

Fig. 33.3 Outline of the two
subsystems

Fig. 33.4 The detail of the bolt
joints
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Fig. 33.5 SEA model. 1: base, 2:
roof, 3–6: frame, 7–9: panel

33.3.3 Estimation Method of SEA Parameter

Power Injection Method (PIM) simultaneously estimates damping and coupling loss factors [2]. In this method, vibration
power is injected into each subsystem to measure the vibration energy in each subsystem. Each loss factor is estimated by
using these experimental data. The coupling loss factor is estimated by the following equation:

�ij Š 1

!

˝
Eji

˛

hEiii
Pj
˝
Ejj

˛ (33.12)

where h � i shows the root mean square value. This equation is constituted by the energies of the focused and conterminous
subsystems. The damping loss factors are estimated using the following equation:
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(33.13)

33.4 Excitation of the Two Subsystems Connected Using Bolts

We excite the two subsystems connected using bolts to predict the damping and coupling loss factors. In this study, we
change the thickness of the panel and the number of bolts as structural modifications. We compare the loss factors with two,
three or five bolts. The two subsystems are suspended by rubber ropes for the free-free condition. The Fig. 33.6 shows the
measurement and excitation points on the panel and the base. Each subsystem is excited in periodic chirp signal by using
vibrator. The Figs. 33.7 and 33.8 show the predicted coupling and damping loss factors when the thickness of the panel is
2.3 mm. The Figs. 33.9 and 33.10 show the predicted coupling and damping loss factors when the thickness of the panel
is 1.6 mm. According to these figures, we can find that each loss factor is approximately the same values in all frequency
bands, regardless of changing the number of bolts. Therefore, if the thickness of the panel is same, we only have to consider
one kind of joint condition to estimate the vibrations on all kinds of the joint conditions. So we use the results with the three
bolts as the representative values. In the next chapter, we construct the FE model of the coupled two subsystems with the
three bolts and compare the analytical results with the experimental results.

33.5 The Construction of the Finite Element Model

The analytical time depend on the amount of finite element model. Moreover, for a complicated structure, the accuracy of
analysis decreases. Therefore, we construct the FE model of Panel 8 to analyze the damping loss factor. In this chapter, we
describe the construction of the FE model.
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Fig. 33.6 Measurement and
excited points on each subsystem
(left: panel, right: base)

Fig. 33.7 Coupling loss factors
on jointed models (panel 2.3 mm)

Fig. 33.8 Damping loss factors
on jointed models (panel 2.3 mm)

Fig. 33.9 Coupling loss factors
on jointed models (panel 1.6 mm)

33.5.1 Test Equipment

We construct the FE model to compare the analysis data with the experimental data. We measure accelerations on the
panel and the base as single subsystems by hammering test. They are excited with an impact hammer, and the vibration
accelerations are measured by accelerometers. Each subsystem is stringed in free-free condition. The envelope data of the
vibrations are calculated by impulse responses obtained from the FRF data.
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Fig. 33.10 Damping loss factors
on jointed models (panel 1.6 mm)

Fig. 33.11 FE model of the
panel

Fig. 33.12 FE model of the base

33.5.2 FE Model of Panel and Base

We constructed the FE models of panel 8 and the base. Figures 33.11 and 33.12 shows FE models that were constructed
by using finite element analysis software I-DEAS. The Table 33.1 shows the material properties and the Table 33.2 shows
the parameters to generate the mesh model of each subsystem. Figure 33.13 shows comparison results of accelerations
between FE models and measurement results. They show the analysis results give close agreement with measurement results.
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Table 33.1 Material properties – Young’s modulus [GPa] Density [kg/m3] Poisson’s ratio Structural damping

Steel plate 205 7,500 0.30 0.01

Table 33.2 The parameters to
generate the mesh models

– Mesh length [mm] Node count Element count

Panel 10 3,692 3,570
Base 10 3,712 3,602

Fig. 33.13 Comparison result of vibration response (left: panel, right: base)

Fig. 33.14 Comparison of the mode number (left: panel, right: base)

Moreover, Fig. 33.14 shows the mode number on each subsystem in 1/3 octave band frequency. Good agreement of mode
number is shown in this figure. As a result, we were able to analyze the acceleration in the same level of experiment by using
this FE model.

33.5.3 The FE Model of the Coupled Subsystems

We constructed the FE model of the two subsystems coupled with the three bolts by using the FE models constructed in the
previous section. To construct the accurate FE model of the bolts and spacers, we connected each node corresponding to
the bolt position with bar elements using the TUBE type. The thickness of the panel is 1.6 mm and the distance of the gap
between the panel and the base is 15 mm. To consider the equivalent stiffness of the contact surface, we connected the nodes
surrounding the node corresponding to the bolt positions with RBE element. Figure 33.15 shows the constructed FE model of
the coupled subsystems. By using this FE model, we estimated the coupling loss factors. Figure 33.16 shows the comparison
results of the coupling loss factors between measurement and analytical result. According to this figure, we found the good
agreement of the coupling loss factors. As a result, we confirm the utility of the loss factors estimated in FEM. Therefore we
only have to use this FE model to predict the vibration velocity of the objects in high frequency bands even if the number of
the bolts is changed.
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Fig. 33.15 The FE model jointed
by the three bolts

Fig. 33.16 Comparison results
of the coupling loss factors (panel
1.6 mm)

33.6 Conclusions

The following conclusions were drawn from this study

1. Each loss factor was approximately the same values in all frequency bands on the coupled two subsystems, regardless of
changing the number of bolts.

2. When the thickness of the panel was changed from 1.6 mm to 2.3 mm, each loss factor was increased.
3. We constructed the FE model of the coupled subsystems dismounted from the structure models.
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Chapter 34
Investigation of Crossing and Veering Phenomena in an Isogeometric
Analysis Framework

Stefano Tornincasa, Elvio Bonisoli, Pierre Kerfriden, and Marco Brino

Abstract The dynamic properties of crossing and veering in coupled structures have been studied both numerically and
analytically, but they are difficult to investigate using Finite Element Analysis because of the change in the topological
arrangement due to the different configuration.

Isogeometric Analysis, recently developed method for numerical simulation, could overcome some of the drawbacks of
the change in the configuration such as remeshing, coupling between the nodes of the different models, need of a fine mesh
to allow small change in the configuration to be comparable to the mesh size.

The key of this method is to avoid meshing and using the same basis functions used by the geometry, namely Non-Uniform
Rational B-Splines (NURBS), to define the discretization of a Finite Element model. Other advantages are the possibility of
increasing the order of the functions to obtain smooth stress field across the element interfaces.

An experimental test-rig composed by beams and masses, which allow different configuration and dynamic coupling as
well, is used as test case to validate the accuracy of the results with respect to both experimental data and classical Finite
Element Analysis.

Keywords Crossing and veering phenomena • Isogeometric analysis • Modal analysis of coupled structure • Nitsche’s
method

34.1 Introduction

In a mechanical structure, in particular those composed by different parts assembled together, the variation of a parameter,
such as a dimension, the relative position between components, will cause a change in the dynamic behaviour of that
structure. The parametric analysis of this change in behaviour with respect to the parameter could reveal two phenomena of
interaction between the modes, namely crossing and veering [1].

The first case appears when there is no coupling between eigenspaces and then the mode trajectories will cross without
any interaction while, in the latter, coupling features will cause the modes to interact showing an initial convergence and
then a divergence of the trajectories. These phenomena are well known in aeroelasticity and commonly found in long-span
bridges [2], bladed discs [3], and aircraft wings [4–6].

Since crossing and veering are mostly proven both analytically and numerically, some experimental analyses have been
performed [7] to validate the theoretical results, where the test-rig is a frame where one of the inner bar has a screw which
allows to change the stiffness of itself.

Deeper analysis on the interaction of the modes and investigation on the transition zone have been performed in [8] by
Du Bois and Adhikari.
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Concerning Finite Element Analysis, widely used to perform the parametric analyses, a new technique named
Isogeometric Analysis (IGA) [9] is being developed with the aim of making design (mostly Computer Aided Design) and
simulation (FEM) converge to the same framework and take advantage of the integration of the two environments to manage
the change in the geometrical definition to the mathematical model, by using the Non-Uniform Rational B-Splines (NURBS)
function that define the geometry, directly as basis function in the FE model.

Since its first results, IGA has shown giving several advantages in structural mechanics such as smoothness across the
element boundaries and the possibility of raising the order and gaining smoothness [10], better performance in the simulation
of problems with contacts [11–15] having smooth interface and not gaps and overlaps, due to its tight relationship with CAD
it allows to perform topological optimization directly on the geometrical model [16–19].

In the field of structural vibrations, IGA provides advantageous properties, mostly due to the gain of accuracy at high
orders, with opposite behaviour compared to the high-order standard elements, and the positiveness of the entries of the
mass matrix, due to the non-negative property of NURBS basis functions, which give more stability in transient dynamics
problems.

NURBS-based IGA has some disadvantages which are topics for recent and future developments of the methods, such as
the local or adaptive refinement and the need of using several NURBS patches for a certain complexity of the geometry.

T-Spline [20, 21] is one of the technologies that could replace NURBS and solve both the problems, but a trivariate
version is not yet established in CAD software packages. For this reason a multi-patch geometry is considered for modelling
components with complex shape, but it raise the problem of connecting the patches together. In case of the possibility
to generate a conforming parameterization at the patch interface, a simple node-to-node master–slave relationship can be
defined and the implementation is straightforward, but when this is not possible the coupling can be performing using
Nitsche’s method [22]. This method is known for the imposition of boundary conditions in the weak form, and an extension
can perform the coupling of different domains. The method is in between the Lagrange multipliers and the penalty method,
and it takes the advantage of both, namely the consistency of the Lagrange multiplier approach, and the relative ease of
implementation and and parameter selection of the penalty method.

The surveys by Imregun and Visser [23], in the 1990s, show the emerging of finite element model updating. The problem
of updating a numerical model by using data acquired from a physical vibration test is richly handled by Mottershead and
Friswell [24]. They showed how many issues are to be addressed to produce the desired improvement. The methods are
either direct or iterative. The latter are based on minimizing an objective function that is generally a non-linear function. The
effect of the improvement due to including second order sensitivities was studied by Kim et al. [25]. Another type of method
was proposed by Lin et al. [26] to employ both the analytical and the experimental modal data for evaluating sensitivity
coefficients with the objective of improving convergence to cases where there is a higher error magnitude, which happens
for complex analytical model.

Although several different approaches have been proposed and successfully applied on different structures, the authors
of this paper would propose their experience on avionic equipment. The aim is to define an appropriate and updated
FE model for modal analysis (FEA) and to match the numerical results with an experimental modal analysis (EMA)
campaign. The inverse eigensensitivity approach [24, 27] is proposed as an iterative model updating technique with respect
to an experimental modal test campaign. Its validity and quick convergence has been demonstrated in the literature, but
modal truncation and experimental inaccuracy effects may represent an interesting task for model updating of this kind of
structures. The principal task of this article is the comparison of two different version of the method used to reach a good
matching between the modal characteristics of an avionic structure modeled with a linear FE approach and substructured in
components. The mathematical bases are the same for both methods but the difference is defined in the objective functions
to minimize, and this difference goes to affect the dimensions of the sensitivity matrix that are smaller for the new method
than for the previous one.

In this paper an experimental test-rig already considered in [28] is used as subject to investigate its crossing and veering
phenomena, focusing on the modelling of the test-rig using NURBS, in order to obtain an analysis-suitable geometry, with
the properties suitable for running a structural modal isogeometric analysis.

In the first section, the test-rig and its aims and features are presented, in order to underline some of the characteristics to
focus the attention to.

In the second section, NURBS and isogeometric analysis in general are considered, with description of the main concept
and the differences with respect to standard FEA, and the NURBS model of the test-rig is presented as well, with all the
details to understand how it is modelled.

In the third section it is presented the concept of Nitsche’s method for domain coupling, with details of the entries of the
coupling terms and matrices, with the application to the test-rig.
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In the fourth section, a modal analysis of the test-rig using IGA, with comparison to the results that were previously
obtained using a beam-based FE code and commercial FE software. Then a parametric modal analysis is performed to obtain
the frequency loci plot, where crossing and veering phenomena reveal.

In the last section, the IGA model is updated using the experimental data obtained from the test-rig, to fit the curves with
the experiments.

34.2 The Experimental Test-Rig

The test-rig considered for investigating crossing and veering is shown in Fig. 34.1. It represents a wing-like structure, where
its components can be considered as three thin beams with different orientation and three added masses. The first and the
third beam are fixed in space, and they have orthogonal orientation with respect to each other, while the second beam can
have a chosen continuous orientation thanks to the rotating device between the first and the second beam.

The configuration parameter, in this case, is the angular position of the second beam, where the “0 deg” configuration is
considered as the one where the second and third beams are aligned. This parameter defines a coupling condition among the
different beams, with the aim of having veering among bending modes. Due to its envelope on a common axis, the ideal
theoretical model of beams and lumped added masses have no coupling between bending and torsional eigenspaces, hence
the expectation is to have crossing condition among them.

This structure can be easily modelled in Finite Elements with beams, used for the actual beams and for the cylindrical
parts as well, considering a bulk density in order not to change the mass of those parts.

To compute the parametric analysis with the beam structure, an FE code developed by the authors named LUmped
Parametric Open Source (LUPOS), is used thanks to its parametric concept. In Fig. 34.2 the model in LUPOS is shown.

On this test-rig, Experimental Modal Analysis was performed in order to identify the natural frequencies for 19
configurations, from 0 to 90ı with 5ı step, and they will be considered as a reference to further update the material properties
modelled in all the different solutions.

The three beams are produced in Aluminium alloy, while the beam used as a clamp, and the rotating device are made by
Steel. The remaining components which forms the added masses are made by Aluminium.

Figure 34.3 shows detailed view of what the three added masses are and what are their aims.

Fig. 34.1 The experimental
test-rig: (a) actual model with test
hardware; (b) full CAD model
with configuration parameter
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Fig. 34.2 LUPOS test-rig model
with node numbering

Fig. 34.3 Details of the test-rig: (a) first added mass with rotating graduated device; (b) second added mass with fixing device; (c) third added
mass

34.3 Nurbs-Based IGA and Test-Rig Model

In Isogeometric Analysis, applied to solid structural mechanics, use trivariate NURBS (all the details about are widely
explained in [29]) to define the discretization in a Finite Elements environment. The basic concept is to use a set of NURBS
instead of the usual Lagrange basis functions.

Being NURBS rational B-Splines, the latter is to be considered. B-Spline basis functions are defined by a knot vector,
which is a vector of parameters in ascending order„ D ˚

�1 �2 � � � �nCpC1

, where n is the number of basis functions and p

is the polynomial degree. A particular case (and mostly used in CAD) of knot vector is the open knot vector, which is a knot
vector where the first and last knots are repeated pC 1 times.

A B-Spline basis functions is defined using the following recursive formula, starting from the order pD 0

Ni;0 .�/ D
�
1 if �i 	 � 	 �iC1
0 otherwise

(34.1)

Ni;p .�/ D � � �i
�iCp � �i Ni;p�1 .�/C

�iCpC1 � �
�iCpC1 � �iC1 NiC1;p�1 .�/ (34.2)

In Fig. 34.4 the elements of a cubic (pD 2) B-spline generated with an open knot vector are displayed.
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NURBS, instead, are projection of entity from dimension dC 1 to d, where d is the number of physical spatial dimension
(dD 2 for a plane, dD 3 for 3D) and the added dimension is a parameter called weight, and they are associated to the basis
functions. The NURBS basis functions are then defined as

Ri;p .�/ D Ni;p .�/wi
W .�/

D Ni;p .�/wi
Xn

jD1Nj;p .�/wj
(34.3)

where it can be noticed that if all the weights are equals, the NURBS basis function are weighted B-Splines functions.
To obtain a solid discretization, three sets of knot vectors must be defined „ D ˚

�1 �2 � � � �nCpC1

, H D

˚
�1 �2 � � � �nCpC1


and Z D ˚

�1 �2 � � � �nCpC1

. Thanks to tensor-product structure, the solid NURBS is defined as

R
p;q;r

i;j;k .�; �; �/ D
Ni .�/Mj .�/Lk .�/wi;j;k

Xn

biD1
Xm

bjD1
Xl

bkD1Nbi .�/Mbj .�/ Lbk .�/wbi ;bj ;bk

(34.4)

V .�; �; �/ D
nX

iD1

mX

jD1

lX

kD1
Pi;j;kR

p;q;r

i;j;k .�; �; �/ (34.5)

where Pi,j,k are the coordinates of the control points in the physical space and N,M,L are the elements of the B-splines
generated using knot vectors„, H and Z, respectively.

Taking advantage of the isoparametric concept in finite elements, where the basis functions used to geometrically define
an element are also used to discretize the fields of interest (e.g. displacement field in solid mechanics)

ue .�; �; �/ D
nX

aD1
deaR

e
a .�; �; �/ (34.6)

where ue are the displacements in the physical directions and dea are the Degrees of Freedom to find and the elements of the
solid NURBS have been attributed a unique index a.

The test-rig can be represented, with remarkable simplification, using six trivariate NURBS: three bricks and three
cylinders.

In Fig. 34.5 are shown the different parameterizations of the bricks and the cylinders. For the first, parametric and physical
dimensions are perfectly aligned, while for the latter instead of the usual circumferential vs. radial parameterization (common
when modelling annular sections), the choice is the deformation of a bi-quadratic square, by moving the middle control points
of the four edges. The obtained surfaces, the rectangle and the circle, are extruded adding the third parametric dimension and
creating the control points for the new surface.
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Fig. 34.5 Two main trivariate
NURBS patches with parametric
directions: (a) brick to represent
beam; (b) cylinder to represent
added mass

Modelling the six patches with their own dimensions to represent the beams and the added masses, rigid roto-translation
of the control points allow the patches to be oriented and repositioned in order to compose the desired configuration of the
assembly (Fig. 34.6). The same roto-translation process will be used to orient the second beam to represent the different
parametric configurations.

In Fig. 34.7 is intended to underline the geometrical comparison among the CAD model, the LUPOS model and the IGA
model, to check for geometric consistency.

34.4 Nitsche’s Method for Domain Coupling

Considering the theoretical example in Fig. 34.8, two different domains have two surfaces at the same position (interface)
and the starting statement is the continuity of the displacements and of the normal stress between the two surfaces which
represent the interface.

The basic concept in the method is based on the introduction of a jump and average stress operators, at the interface

Œu� D u1 � u2 (34.7)

f¢g D 1

2

�
¢1 � ¢2

�
(34.8)

The concepts that underline this method will not be explained in this paper, however the complete proof used in this work
can be found in [22, 32].

Nitsche’s method adds other terms to the weak form of the problem, allowing the introduction of coupling entries in the
stiffness matrix, while the mass matrix will remain unchanged instead.
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Considering a linear static case, the governing equation considering all Nitsche’s terms is

h
Kb C Kn C .Kn/

T C Ks
i
fxg D ffext g (34.9)
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Fig. 34.8 Domain composed by
two subdomains �1 and �2, with
an internal interface �

where Kb is the assembly of the stiffness matrices, without any coupling entries

Kb D
2X

iD1

Z

�k

�
Bk
�T

CkBkd� (34.10)

in which B is the strain-displacements matrix and C is the material constitutive elasticity matrix.
The Nitsche’s coupling terms are

Kn D

2

6
4

�
Z

�

N1T n
1

2
C1B1d� �

Z

�

N1T n
1

2
C2B2d�

Z

�

N2T n
1

2
C1B1d�

Z

�

N2T n
1

2
C2B2d�

3

7
5 (34.11)

Ks D

2

6
4

Z

�

˛N1T N1d�

Z

�

˛N1T N2d�
Z

�

˛N2T N1d�

Z

�

˛N2T N2d�

3

7
5 (34.12)

where N is the basis functions matrix, n is the normal vector and ˛ is a stabilization parameter, That needs to be large enough
in order to guarantee positive definitiveness of the discrete assembled operator.

In this work the authors have chosen the stabilization parameter empirically, but some studies in [30, 31] a dependency of
the parameter on size of elements he and material parameters

˛ D �C 	

2

�.p/

he
(34.13)

where � and 	 are the Lamé parameters for linear elastic solid, and �(p) is a function dependent by the polynomial order of
the basis functions.

34.5 Parametric Modal Analysis and Results

For the computation of the natural frequencies an FE Modal Analysis is performed at each configuration, obtaining
parametric results. Modal Analysis practically means to solve the eigenvalue problem starting from the equations of motion
of the undamped system, discretized by Finite Elements

ŒM� fRxg C ŒK� fxg D f0g (34.14)

where fxg is the vector of the Degrees of Freedom of the system, [M] and [K] are respectively the mass and stiffness matrices,
both symmetric, positive and semi-positive definite respectively. In this case the stiffness matrix is the one which includes
all Nitsche’s coupling terms.
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The eigenvalue problem is solved using

det
�
ŒK�� !2 ŒM�� D 0 (34.15)

to find the eigenvalues !2 and the eigenvectors [ˆ], considering only non-trivial solutions.
These values are stored for each configuration, and the eigenvalues (or the natural frequencies) are plot with respect to the

configuration parameter.
The coarsest mesh, that is the mesh with the minimum number of elements needed to exactly represent the required

geometry, must be refined to reach a reasonable accuracy. In terms of modal analysis, and considering that in this particular
case the analysis and comparison is performed considering the first seven modeshapes, only a few numbers of elements
per beam are necessary. In Fig. 34.9 it is shown the discretization used for the analysis. For the beam elements, a single
element through the thickness and one element along the width are enough, while for the length five elements are the
minimum number for representing with enough accuracy the bending of higher modes. The functions are cubic in all the
three parametric dimensions.

For the added masses, a single element would be enough, considering that the they can be considered infinitely rigid with
negligible contribution to the elasticity. Due to Nitsche coupling, a finer discretization is necessary for better let the method
distribute the coupling entries on more elements. The patches have cubic functions for all the parametric dimensions.

In Fig. 34.10 it is shown the comparison of Mode 3 and Mode 6 using LUPOS, a tri-dimensional standard FEM and IGA,
for the 30ı configuration.

The three models have different characteristics, and the most valuable is the number of elements (and/or Degrees of
Freedom) with respect to geometrical accuracy. In Table 34.1 the number of elements and Degrees of Freedom are compared
among the three models.

LUPOS is a reasonable solution for this problem, due to the possibility of modelling the structure with simple beams, and
using thicker beams for modelling the added masses, but is has the drawback of not taking into account the cylindrical feature
of the added masses. For dimensional reasons the sides of the cross section are considered to be of the same dimensions of
the diameter of the actual cylinders, therefore a bulk density must be defined, in order that the masses are equal to the actual
ones. Another LUPOS drawback is that the displacement information is related to the axis of the beams and of the cylinders,
and not of the external surfaces (important for comparison with Experimental Modal Analysis results) but this can be easily
overcome by adding Rigid Joint elements to connect the axis to the desired point of the surface.

SolidWorks model is composed by second-order tetrahedra (10 nodes) therefore, due to the small thickness of the beams
and the accuracy request to approximate the cylindrical feature, the number of elements and Degrees of Freedom is very
high. And moreover, the geometry is not exact but approximated.

IGA model in this particular case is straightforward due to the simplicity of the geometries involved. In the coarsest mesh,
only one element per patch is enough to exactly represent the model.
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IGA

Table 34.1 Comparison of the
dimensions of the three different
test-rig models

Model No. of Elements No. of DoFs

LUPOS 49 294
SolidWorks 3,996 24,840
IGA 27 2,052

A parametric analysis is then performed from configuration 0 to 90ı, with 1ı of step size, obtaining 91 sets of eigenvalues
and eigenvectors. The frequency loci with respect to the configuration parameter are represented in Fig. 34.11 for LUPOS,
SolidWorks and IGA respectively.

The region marked with C, involving Mode 4 and Mode 5 at approximately 70ı is a possible crossing region, while the
region marked with V, involving Mode 5 and Mode 6 between 72 and 76ı is a possible veering region.

Considering that a crossing region is when there is no interaction between the modes and the opposite in case of veering,
one tool to confirm the nature of the interaction is the Modal Assurance Criterion (MAC) index

MACi;j D
�
ˆT
i ˆj

�2

�
ˆT
i ˆi

� 

ˆT
j ˆj

� D cos2˛i;j (34.16)
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Fig. 34.11 Comparison frequency loci plots: (a) LUPOS; (b) SolidWorks; (c) IGA

in which two eigenvectors are compare together and the index, usually inside a range from 0 to 1 (or scaled from 0 to
100 %), mathematically checks how the vectors are parallels, while the engineering interpretation is the similarity of the two
modeshapes. Evaluating the MAC index for all the configurations allows following a frequency loci.

In this case, MAC comparison is performed to check the two marked regions in Fig. 34.11. In Figs. 34.12 and 34.13 the
MAC matrices obtained are shown.

In the first case, even though the distance between the configurations considered is short, the MAC matrix shows a full
switch between mode 4 and mode 5. The values are very close to 100 %, with negligible value on the diagonal, hence no
interaction between those modes is present, hence this region can be classified as crossing region.

In the second case, there is not a full switch, but there are correlations between the modeshapes of the two configurations,
hence the modal information are being passed from a mode to the other. The distance between the configuration is wider,
and the off-diagonal terms are not negligible. For these reasons this region can be classified as veering region.
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34.6 Updating with Inverse Eigensensitivity Approach

The IGA results obtained with parametric modal analysis can be compared to the frequencies obtained from the experimental
campaign on the test-rig. The experimental modal analysis was performed with tri-axial accelerometers with hammer
excitation. 19 configurations from 0 to 90ı, with 5ı angular step, were considered.

Figure 34.14 compares the numerical results vs. the experimental ones.
Although the path of the frequency loci is consistent, they show a shift with respect to the experimental identified points

in the figure. These differences are mostly due to an incorrect estimate of the material parameters (for modal analysis Young
modulus and density) with respect to the actual ones.

Even though for the density the parameter updating could be performed by weighting the actual components and finding
the value of bulk density such that the total weight of the finite element component is equal to the actual one, in this work
both density and elasticity modulus are considered in the computation of these parameters using the Inverse Eigensensitivity
approach.

The model is split considering beams and added masses as sub-structures, hence four parameters can be considered as
updating parameters:

– Eb : Young modulus of the beams;
– �b : density of the beams;
– Em : Young modulus of the added masses;
– �m : density of the added masses;
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Since the contribution of the elasticity of the added masses to the lower frequencies modes is negligible, the updating of
the Young modulus of this substructure can be deactivated, reducing the problem to the updating of three parameters.

The total assembled mass and stiffness matrices are obtained by summing the sub-matrices, expanded to the total degrees
of freedom

ŒM � D
pmX

iD1
ai ŒMi �; ŒK� D

pkX

iD1
bi ŒKi � (34.17)

which are weighted by the independent parameters ai and bi.
The system involved in the iterations of the sensitivity is
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where kˆ(r)k2 Dfˆ(r)gTfˆ(r)g and the matrix is the balanced sensitivity matrix [S]. In order to estimate the coefficients of
the sensitivity matrix [S], by taking derivatives of the M and K-orthogonality properties of eigenvectors, it results [14, 15]:
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hence the eigenvectors derivative are expressed by using the expansion theorem and considering eigenvectors as a base to
describe those terms.

The updating procedure has been achieved solving the following linear system:

f� Eigg D ŒS� f� Parg D ŒU � Œ†� ŒV �T f� Parg ; (34.22)

where the number of updating parameters are usually much smaller than the number of modal residual equations in the
original inverse eigensensitivity method, while [S] is more similar to a square matrix in the proposed modification.

Therefore the updating parameters are obtained in a least square sense, by a Singular Value Decomposition technique

f� Parg D ŒV � Œ†�CŒU �T f� EigenV g ; (34.23)

where [˙]C is the Moore-Penrose generalized inverse matrix of [˙].
The results of Eq. 34.23 are used to update the material parameter at each iteration, which results in

ŒM � D
pmX

iD1
.ai C�ai/ ŒMi �; ŒK� D

pkX

iD1
.bi C�bi/ ŒKi � (34.24)

The procedure is necessarily iterative, but engineering experience is suitable for avoiding not physical solutions. Therefore
the iterative algorithm is not automatic. Furthermore two degree of freedom for piloting the iterations is available at each
iteration: the number of modes to control and how many parameters can be accepted or neglected in the updating parameters.
In fact in this first test the first six modes are always taken into account for all iterations, but for the first five iterations only
the more important four parameters are updated to tune the modal characteristic (density � and Young’s modulus E of the
upper and bottom plates).

In Fig. 34.15 it is presented the results of the frequency loci compared to the experimental data, which now fits better the
actual values. Seven iterations were necessary to reach this result.

It is noticed that the seventh mode was not considered for the updating.
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34.7 Conclusions

In the previous sections, the consistency of an IGA parametric modal analysis for investigating crossing and veering
phenomena in a test structure is presented.

The method was compared with the solutions obtained with beam-based open-source FE code named LUPOS, and with
commercial CAD-CAE software.

The advantages of an IGA model with Nitsche’s method for coupling the different patches were presented, giving more
values to the other advantages that are already present in literature.

A consistency of the results with respect to experimental data was shown using the method of the inverse eigensensitivity
approach.

For future developments, improvement can be taken into account in both numerical and experimental parts. For the latter,
a deeper investigation with modal testing for smaller configuration resolution around the crossing and veering region can be
performed, to check the consistency of the experimental modeshapes with the numerical ones, in the transition zones.

In the numerical part, a geometrical model closer to the CAD original geometry can be built, in order of better model the
joints and the added masses.

More generally, in the IGA field, a more direct relationship to a CAD model built in a commercial software and the
trivariate analysis-suitable model to be used for the simulation is to be developed.
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Chapter 35
Influence of Fan Balancing in Vibration Reduction of a Braking Resistor

F. Braghin, M. Portentoso, and E. Sabbioni

Abstract This paper presents an application of modal analysis, focused on the estimation of the impedance function of a
mechanical system. In particular, the analyses aim to evaluate the forces transmission of a railway braking resistor to be
mounted on the floor of a train carbody. The breaking resistor contains two cooling fans which force the air flow through
the electrical resistances that dissipate the breaking energy by Joule effect: the high speed rotation of these fans represents a
remarkable source of excitation which affects the system and passengers’ comfort. Previous tests showed that the structure
were not adequate to filter the vibrations, thus the transmitted forces to the train carbody were not negligible. A proper
reduction of the fans mechanical imbalance, achieved by new technology, leads to extremely good results which are now
reported in this paper.

Keywords Modal analysis • Structure borne noise • Braking resistor • Mechanical impedance • Mechanical imbalance

35.1 Introduction

Electric braking is frequently used in high speed trains to support or substitute traditional friction brakes. During electric
braking, when the speed of an inverter-controlled AC motor is reduced, the motor acts as a generator and feeds back energy
to the frequency converter. As a result, voltage in the intermediate circuit of the inverter increases. When a specific threshold
is exceeded, the energy must flow to an external braking system in order to avoid drive failures. Braking resistors are designed
to absorb such energy and to dissipate it into heating. The use of brake resistors allows drives to fulfil the requirements of
particularly severe duty cycles, for example those featured by frequent braking, long lasting braking or impulsive braking.

Due to the conversion of electrical energy into heat, braking resistors are usually ventilated. The coupling of the rotating
speed of the cooling fan with some of the eigenfrequencies of the braking resistor may generate vibrations and noise. Of
course, these issues can be worsened if a mechanical imbalance of the fan is present [1, 2].

The influence of fan balancing on the vibrations transmitted by a braking resistor is discussed in this paper. In [1],
the results of experimental tests carried out on a braking resistor prototype were shown. During the tests, emerged that the
prototype was not able to reach the required comfort standard, i.e. it was not able to adequately damp the vibrations produced
by the rotation of the fun. A new prototype was thus designed. Specifically, to address vibration issues, a new technology
was used to reduce fan mechanical imbalance.

Experimental tests were carried fixing the braking resistors to a supporting structure previously developed by the authors
[1]. The structure was built to allow braking resistors certification. At a design stage, in fact, the train the braking resistor has
to be mounted on is not available. Thus a supporting structure having the same mechanical mobility/impedance of the final
installation is needed for certification.
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Fig. 35.1 Tested braking resistor

35.2 Tested Braking Resistors

The tested braking resistor prototype is constituted of:

• resistor banks/elements (active part);
• cooling fan;
• resistor enclosure.

As it can be seen in Fig. 35.1, all these parts are fixed to a frame made of two beams of stainless steel linked by two
crossbars. The resistor enclosure is 2 mm thick in stainless steel and presents two openings on the lateral sides for intaking
and the exhausting cooling air. In particular the intake conduct presents a protruding structure making the breaking resistor
asymmetric. Rivets joint all the components.

The prototype is exactly alike the braking resistor tested in [1], except for the cooling fan. Since the braking resistor
tested in [1] was not able to reach the required comfort standard (i.e. it was not able to adequately damp the vibrations
produced by the rotation of the fun), a new technology was adopted to reduce the mechanical unbalance of the fans (i.e. rotor
mass reduction by 37%, rotor and blades are a single element instead of blades bolded to the rotor, aluminium die casting
instead of standard carpentery). In the following, results concerned with the new braking resistor prototype will be shown
and compared with the ones presented in [1].

35.3 Modal Analysis of the Braking Resistor

Experimental modal analysis was applied to identify the modes of vibration of the structure of the braking resistor
prototype [1].

Experimental tests were performed exciting the structure of the braking resistor along the vertical axis using a dynamo-
metric hammer PCB 086D50. The dynamic response was measured with several mono-axial piezo-accelerometers [1].
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Table 35.1 Modal parameters of
the identified modes

Mode f (Hz) h

1 14.66 0.057
2 21.42 0.041
3 23.27 0.027
4 27.83 0.048
5 31.11 0.010
6 31.42 0.053
7 32.61 0.005
8 33.31 0.006
9 34.76 0.012
10 36.22 0.015
11 49.28 0.084
12 57.18 0.014
13 61.18 0.083

To identify the frequency response of the braking resistor structure, measures were processed according to the following
procedure [3]:

• computation of the spectra applying the FFT algorithm,
• calculation of auto-spectra and cross-spectra averaging 20 tests,
• estimation of the coherence functions and the frequency response functions with the H3 estimator.

Then modal parameters of the braking resistor structure were identified. On the purpose, the frequency response of the
braking resistor structure was modeled according to [4]:

Hnum .�/ D
NX

jD1

��2Aj

��2 C i2hj!j�C !2j
(35.1)

where N is the number of considered modes, Aj is the complex modal parameter, hj is the viscous damping factor, !j is the
natural frequency and i is the imaginary unit.

The identification process was performed minimizing an objective function J that is composed by the sum of square
errors between the numerical and experimental frequency response functions in the frequency range between 10 and 65 Hz.
In order to take into account that the measures reliability is not constant, the square errors are weighted with the experimental
coherence, C.

Therefore the expression of the objective function J is

J D
X

fj2Œ10I65�H z

C
�
fj
� ˇ
ˇH

�
fj
� �Hnum

�
fj
�ˇ
ˇ
2

(35.2)

where ˝ j D 2�fj, while H and Hnum are the experimental and the estimated frequency response functions, respectively.
The Gauss–Newton algorithm [5] has been adopted for the nonlinear minimization.
The modal parameters of the first 13 identified modes are summarized in Table 35.1. Since the rated rotational frequency

of the resistor fan is 49.2 Hz, it excites the 11th mode of the structure near its resonance.

35.4 Experimental Tests and Set-Up

To evaluate forces and vibrations transmitted by the braking resistor, a supporting structure was designed having the same
mechanical impendence of the final installation of the prototype.

To verify the impedance of the supporting structure, impulsive tests were carried out. Figure 35.2 shows the test rig for
impedance assessment. In Fig. 35.2 the six mounting points of the braking resistor are evidenced through red circles as well
as the reference axis for the impulsive excitation. At each of the six mounting points, three single axis PCB Model 333B30
piezo-accelerometers having sensitivity equal to 100 mV/g have been placed (Fig. 35.3), oriented according to the reference
axis shown above.
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Fig. 35.2 Test rig for the braking
resistor

Fig. 35.3 Three single axis
piezo-accelerometer (at mounting
point 5, see Fig. 35.2)

The mechanical impedance of the test frame (Fig. 35.2) was assessed through impulsive tests carried out using a 5.5 kg
PCB Model 086D50 dynamometric hammer with hard plastic tip (084A32) and a 0.32 kg PCB Model 086D05 dynamometric
hammer with medium plastic tip (084B0) both having a sensitivity of 0.23 mV/N.

The impact has been applied as close as possible to the mounting point (where the accelerometers were placed).
Impacts were repeated at least 10 times to be able to filter out random noise and acquired through NI CompactDAQ

chassis equipped with one NI9205 module and PCB Model 482C Series signal conditioners. The sampling frequency was
set equal to 10 kHz.

35.5 Mechanical Impedance of the Supporting Structure

As anticipated, mechanical impedance of the supporting structure the braking resistor is fixed on was identified through
impact tests. The acquired signals were triggered using the force as a trigger signal, a pre-trigger of 0.5 s and a window
length of 4 s, in order to avoid leakage. Then the direct mechanical impedance of the test rig at each mounting point and
along each direction in one-third octave bands was evaluated according to [6]:
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being j the point of application of the force, k the direction of excitation and of measurement, fj_k the impulsive force applied
at point j along direction k, vj_k the velocity at point j along direction k, aj_k the measured acceleration at point j along
direction k, np the number of impacts, the cross-spectral density function between vj_k and fj_k for impact p, Svj k�vj k ;p the
autospectral density function of vj_k for history p, Saj k�fj k ;p the cross-spectral density function between aj_k and fj_k for
impact p and Saj k�aj k ;p the autospectral density function of aj_k for impact p. Note that the evaluated mechanical impedance
Svj k�fj k ;p .!/ =Svj k�vj k ;p .!/, is used in case of uncorrelated input and output noise as in the considered case.

As an example of obtained results, Fig. 35.4 shows the mechanical impedance of the fixture at node 6 along direction x as
well as the corresponding coherence function. It can be seen that the coherence function tends to drop at frequencies higher
than 500 Hz due to the adopted hammer tip.

35.6 Assessment of the Constraint Forces at the Mounting Points of the Braking Resistor

The constraint forces at the mounting points of the braking resistor were assessed through experimental tests carried mounting
the braking resistor inside the previously described supporting structure. The same measurement set-up used to assess the
mechanical impedance of the supporting structure was adopted (see Figs. 35.2, 35.5 and 35.6). Figure 35.5 shows the braking
resistor inside the test frame and highlights the mounting points with a red circle.

In must be underlined that the attachments of the braking resistor with the supporting structure are exactly alike the ones
with the train (Fig. 35.6).

Two working conditions were analysed during the tests:

• half rated speed (1,455 rpm);
• rated speed (2,910 rpm).

Each test lasted 300 s and the collected time histories have been divided into sub-histories of 10 s in order to achieve
statistical significance through an averaging operation on the results. Sampling frequency was set to 13 kHz.

The average spectrum of the speed at the mounting points was calculated according to:
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Fig. 35.5 Mounting points (red
circles) and local reference
system of the braking resistor

Fig. 35.6 Detail of the mounting
point 4 showing the rigid fixing
and the three single axis piezo
accelerometers
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being j the point of application of the force, k the direction of excitation and of measurement, vj_k the velocity at point j along
direction k, aj_k the measured acceleration at point j along direction k, np the number of impacts, the cross-spectral density
function between vj_k and fj_k for impact p, Saj k�aj k ;p the autospectral density function of aj_k for history p, Svj k�fj k ;p the
spectrum of vj_k.

The resulting spectrum of the constraint force was obtained as the product of the experimental mechanical impedance
times the average spectrum of speed:

Sfj k .!/ D ZR
j k .!/ Svj k .!/ (35.5)

where Sfj k is spectrum of the force at the mounting point j indirection k, while ZR
j k is the experimental mechanical impedance

of the mounting point j in direction k (assessed from previous tests).
Finally the one third octave band levels and the wideband force level was evaluated according to the “time-averaged sound

pressure level” (standard ISO 3744, [7]).
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Figure 35.7 shows the spectrum of the constraint forces in one third octave bands for rated speed and half-rated working
conditions at node 1 along z direction for the braking resistor prototype test. On the left bottom corner of the figure the
wideband force level for the two tested conditions is reported.

As it can be seen, a dynamic amplification at approximately 50 Hz is present, due to the coupling between the rotational
speed of the fan and the 11th mode of vibration of the braking resistor. The reduction of mechanical imbalances of the fan
however allowed to significantly reduce the amplitude of the resonance peak with respect to the prototype tested in [1],
whose spectrum is reported for the same working conditions in Fig. 35.8. Specifically the fan of the new prototype allows
a reduction of about 20 dB of the constraint forces in correspondence of the resonance peaks. This allows to fulfil comfort
requirements.
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35.7 Concluding Remarks

In the present paper, an experimental approach for assessing structure borne noise generated by a braking resistor was
presented. The supporting structure was tested to verify that its mechanical impedance is equivalent to that of the final
installation of the braking resistor. The supporting structure was then used to test a prototype of a braking resistor. A first
series of tests carried out considering half rated and fully rated working speed showed that a mechanical imbalance of the
cooling fan could produce significant vibrations, which could jeopardize comfort. The braking resistor was then modified.
Specifically a new production process was applied to reduce the mechanical imbalances of the cooling fan. Experimental
tests on the new prototype showed a significant reduction of vibrations, which can guarantee satisfactory comfort levels.
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Chapter 36
Vibrations of Discretely Layered Structures Using a Continuous
Variation Model

Arnaldo J. Mazzei and Richard A. Scott

Abstract Recently, there has been a large body of work directed towards the use of non-homogeneous materials in
controlling waves and vibrations in elastic media. Two broad categories have been studied, namely, media with continuous
variation of properties and those with discrete layers (cells). Structures with both a finite and infinite number of cells (periodic
layout) have been examined. For the former, direct numerical simulation or transfer matrix methods have been used. The
current work focuses on one-dimensional cases, in particular a two-layer cell. Transfer matrix methods require writing
solutions for each layer of the basic cell and then matching them across the interface, a process that can be quite lengthy. Here
an alternate strategy is explored in which the discrete cell properties are modeled by continuously varying functions (here
logistic functions), which has the advantage of working with a single differential equation. Natural frequencies have been
obtained using a forced motion method and are in excellent agreement with those found using a transfer matrix approach.
Mode shapes for the continuous variation model have been obtained using a finite difference scheme and compare well with
those obtained via the transfer matrix approach.

Keywords Waves in non-homogeneous media • Layered structures vibrations

Nomenclature

Bi Constants of integration
ci Wave speed, ci D

p
E=�i

cr Numerical parameter, cr D c1/c2

E Young’s modulus (Ei, Young’s modulus for i-th material)
f1, f2 Non-dimensional material functions
H(x) Logistic function
Heaviside(x) Step function
L Length of rod, LDL1 CL2

mr Numerical parameter, mr D �1/�2

Si Shape function (i-th)
t Time
u Longitudinal displacement of the rod
w Non-dimensional longitudinal displacement of the rod
x Longitudinal coordinate
xd Non-dimensional longitudinal coordinate
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˛ Numerical parameter for length of individual cell components of the layered rod
� Mass density (�i, density value for i-th material)
� Non-dimensional time
! Natural frequency of longitudinal vibrations for the rod
!d Non dimensional natural frequency of longitudinal vibrations for the rod

36.1 Introduction

There has been an explosion of interest in the past few years in the use and analysis, both theoretical and numerical, of layered
solids for vibration and wave control. Media with continuous variation of properties, such as Functionally Graded Materials
(FGM), and those with discrete layering (specific example of which is infinite periodic array of cells, in the study of block
waves). For studies on discrete layers see references [1–4]. Numerical approaches to waves in non-homogeneous media can
be found in reference [5]. The current work treats a one-dimensional uniaxial problem involving two layers bonded together
with the preliminary goal of determining the natural frequencies and mode shapes. They can be found using a transfer matrix
method which requires determining the solutions for each layer and matching them across the interface, a procedure that can
be quite lengthy and cumbersome. A main thrust of the current work is an exploration of using an alternate method in which
the two-layered cell is modeled by continuously varying functions (here use is made of logistic functions), which has the
considerable advantage of working with a single differential equation. This differential equation does not possess analytic
solution and is not readily amenable to direct numerical analysis using MAPLE

®
software (the software of choice here). The

natural frequencies are obtained using a forced-motion strategy, detailed below, and are found to be in excellent agreement
with those obtained using the transfer matrix method approach for both fixed-fixed and free-fixed boundary conditions. Mode
shapes in the single differential equation are obtained by a finite difference scheme and are found to be in good agreement
with those from the transfer matrix method.

36.2 Basic Problem

Shown in Fig. 36.1 is a two-layer elastic rod with properties as indicated. Consider this layered structure in which E and 


vary in a discontinuous fashion.
In the following some methods for obtaining the natural frequencies and mode shapes of the rod are explored.

36.3 Transfer Matrix Approach

For a thorough discussion of the transfer matrix approach see references [6, 7]. In general the axial displacement u(x, t) of a
segment must satisfy the equation:

@

@x

�

E.x/
@u .x; t/

@x

�

� �.x/@
2u .x; t/

@t2
D 0 (36.1)

where E(x) and �(x) are functions describing the longitudinal variations of Young’s modulus and mass density, respectively.
For constant properties, the equation of motion for the “i-th” segment is:
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Fig. 36.1 Layered material
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36.3.1 Frequencies

Assuming a vibration form ui D Si(x)sin(!t) leads to:

@2Si

@x2
C !2

c2i
Si D 0; i D 1; 2 : : : (36.3)

The solutions of which are
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(36.4)

Two sets of boundary conditions are investigated, namely, fixed-fixed and free-fixed. Fixed-fixed conditions and interface
continuity gives:

S1 D 0; x D 0IS2 D 0; x D L .L D L1 C L2/ I S1 D S2; x D L1I (36.5)

Whereas, force continuity leads to:
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These four conditions lead to a system of algebraic equations in B1, B2, B3 and B4:
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The natural frequencies are found on setting the determinant of the coefficients to zero. After some lengthy manipulations,
one finds:
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where L2 D˛L1, !d D !
c1
L, cr D c1

c2
and mr D �1

�2
, with LD (1C˛)L1 and E1c2

E2c1
D mrcr .

For free-fixed boundary conditions and interface continuity:

dS1
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ˇ
ˇ
ˇ
ˇ
xD0

D 0IS2 D 0; x D L .L D L1 C L2/ I S1 D S2; x D L1I (36.9)

Note that force continuity, Eq. 36.6, still applies. Then the corresponding system of algebraic equations is:

B2 D 0
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For this case the natural frequencies can be found from:
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36.3.2 Mode Shapes

Note that in the fixed-fixed case on setting the determinant to zero (Eq. 36.8) only two of Eq. 36.7 are independent. Also, the
amplitude scale is arbitrary. Then setting B2 D 1, leads to:

B3 cos .cr!d /C B4 sin .cr!d / D 0

sin

�
!d

1C ˛

�

D B3 cos

�

cr
!d

1C ˛

�

C B4 sin

�

cr
!d

1C ˛

�

(36.12)

which, with rd D cr!d, gives:

B4 D �B3 cos .rd /

sin .rd /
(36.13)

and

B3 D
sin
�
!d
1C˛

�

h
cos

�
cr

!d
1C˛

� � cos.rd /
sin.rd /

sin
�
cr

!d
1C˛

�i (36.14)

Then, the mode shapes for the fixed-fixed case are:

S1 D sin .!dxd / ; 0 	 xd 	 0:5

S2 D B3 cos .cr!dxd /C B4 sin .cr!dxd / ; 0:5 	 xd 	 1:0 (36.15)

where xd D x
L

.
In a similar manner, for the free-fixed case, setting B1 D 1, leads to:

B4 D �B3 cos .rd /

sin .rd /

(same as Eq. 36.13) and

B3 D
cos

�
!d
1C˛

�

h
cos

�
cr

!d
1C˛

� � cos.rd /
sin.rd /

sin
�
cr

!d
1C˛

�i (36.16)
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Fig. 36.2 First and second mode shapes for layered rod (fixed-fixed)

Then, the mode shapes are:

S1 D cos .!dxd / ; 0 	 xd 	 0:5

S2 D B3 cos .cr!dxd /C B4 sin .cr!dxd / ; 0:5 	 xd 	 1:0 (36.17)

36.3.3 Numerical Example

Consider the rod shown in Fig. 36.1 and assume the following materials: Aluminum (E1 D 71 GPa, �1 D 2,710 kg/m3) and
Silicon Carbide (E2 D 210 GPa, �2 D 3,100 Kg/m3).

For the fixed-fixed case, taking ˛D 1, Eq. 36.8 leads to the following values for the first two non-dimensional natural
frequencies: !d,1 D 4.1326 and !d,2 D 7.3837. The mode shapes corresponding to these frequencies can be found via
equations (36.15). They are shown in Fig. 36.2.

For the free-fixed case (and ˛D 1), Eq. 36.11 leads to the following values for the first two non-dimensional frequencies:
!d,1 D 2.2725 and !d,2 D 5.6338. The mode shapes can be found via Eq. 36.17 and are shown in Fig. 36.3.

36.4 Continuous Variation Model

In Eq. 36.1 substituting the following non-dimensional variables: xd D x/L , wD u/L and � D!t, gives:

@

@xd

�

f1 .xd /
@w .xd ; �/

@xd

�

� �1L
2

E1
!2f2 .xd /

@2w .xd ; �/

@�2
D 0 (36.18)
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Fig. 36.3 First and second mode shapes for layered rod (free-fixed)

Assuming w(xd, �)D S(xd)sin(!d�) leads to:

d

dxd

�

f1 .xd /
dS .xd /

dxd

�

C f2 .xd / !d
2S .xd / D 0 (36.19)

where the non-dimensional functions f1(xd) and f2(xd) describe the material properties variation. They are given by:
E DE1f1(xd), �D �1f2(xd). Also, LDL1 C L2 and ! D !d

p
E1= .�1L2/ where ! is the natural frequency of vibration

(rad/s).

36.4.1 Finite Difference Approach

Next a finite difference method (FDM) is used for calculating the natural frequencies of the layered structure. As discussed
above, the structure is assumed to be a single cell composed by one metallic phase and one ceramic phase (Aluminum and
Silicon Carbide).

For the FDM, transitions from one material to another (step functions) are approximated via logistic functions:

H.x/ � 1

2
C 1

2
tanh.Kx/ D 1

1C e�2Kx
(36.20)

where a larger K corresponds to a sharper transition at (in the above equation) xD 0.
Here the approach uses a second-order central difference scheme for the internal nodes. The boundary node values are

calculated via the boundary conditions (either fixed-fixed or free-fixed). The partial differential equations are discretized in
space leading to a system of ordinary differential equations in time.

Note that, in the FDM approach, a transition that is not very sharp from one material to another is desirable in order to
produce a reasonable number of nodes in the “transition zone”. This is shown in Fig. 36.4. The figure also shows Heaviside
functions which represent sharp transitions. For this case they are given by (xd D 0.5 locates the transition zone at the center
of the cell):
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f1 .xd / D 1C 1:9577Heaviside .xd � 0:5/
f2 .xd / D 1C 0:1439Heaviside .xd � 0:5/ (36.21)

The logistic function approximations are:

f1 .xd / � 1:9789C 0:9789 tanh .50xd � 25/
f2 .xd / � 1:0720C 0:0720 tanh .50xd � 25/ (36.22)

Subdividing the cell into ten elements, the FDM gives the results shown in Fig. 36.5, for the first two frequencies and mode
shapes of the fixed-fixed case. Increasing the number of elements to 30 produces !d,1 D 3.9845, !d,2 D 6.7176 (accuracy is
increased, as seen via a comparison with values given above).

With ten elements the results for the first two frequencies and mode shapes of the free-fixed case are shown in Fig. 36.6.
In this case a first-order forward difference scheme was used for the leftmost point calculation. Increasing the number of
elements to 30 produces !d,1 D 1.8093, !d,2 D 5.4604.

36.4.2 Forced Motion Approach

Note that, in general, the problem posed by Eq. 36.19 subjected to a specific set of boundary conditions does not have analytic
solutions. In principle solutions can be obtained (numerically) by solving an eigenvalue problem. However a problem arises
in that MAPLE

®
’s off-the-shelf solver (the software utilized here) only gives the trivial solution. The strategy employed next

is similar to one described in reference [8] and consists of using MAPLE
®
’s two-point boundary value solver to solve a

forced motion problem. In this case an axial non-dimensional forcing function F*DF sin(!d�) is introduced into Eq. 36.18,
which leads to the following form for Eq. 36.19:

d

dxd

�

f1 .xd /
dS .xd /

dxd

�

C f2 .xd / !d
2S .xd / D F (36.23)

Then F is taken to be equal to 1. By varying the frequency !d and observing the mid-span deflection of the rod, resonant
frequencies can be found on noting where abrupt changes in the sign of the deflection occurs.
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Fig. 36.6 Frequencies and mode shapes via FDM approach (free-fixed, ten elements)

Using this approach the first and second frequencies, for the fixed-fixed case, are approximately !d,1 D 4.14 and
!d,2 D 7.44, respectively. The changes in the sign of the deflections can be seen in Fig. 36.7 (first frequency) and Fig. 36.8
(second frequency). They show the deflections before and after going through a resonance.

The first and second frequencies for the free-fixed case are approximately!d,1 D 2.29 and !d,2 D 5.65. The changes in the
sign of the deflections can be seen in Fig. 36.9 (first frequency) and Fig. 36.10 (second frequency).

Note that the mode shapes cannot be readily obtained using this method (here the previously discussed FDM is used for
that).
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36.5 Comparisons

In the following the results produced by the numerical approaches utilized above are compared to the values obtained using
the transfer matrix method. These are summarized in Table 36.1.

Note that the forced-motion approach produces very accurate results when compared to the transfer matrix method. It can
be utilized with confidence as an alternate method when the matrix approach becomes mathematically complex.

The FDM produces reasonable results.
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Table 36.1 Results comparison using transfer matrix method as baseline

Transfer matrix FDM Differences (%) Forced motion Differences (%)

Fixed-fixed first frequency 4.1326 3.9845 3.58 4.14 1.08
Fixed-fixed second frequency 7.3837 6.4939 12.05 7.44 0.76
Free-fixed first frequency 2.2725 1.8093 20.38 2.29 0.77
Free-fixed second frequency 5.6338 5.4604 3.08 5.65 0.25
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In relation to the mode shapes, comparisons for the fixed-fixed and free-fixed cases are given in Figs. 36.11 and 36.12,
respectively. One can see that the FDM can produce a somewhat reasonable representation of the shapes. In order to capture
the transition zone effect (seen in the transfer matrix generated modes) it is necessary to use more elements.

Based on the previous results it is seen that the continuous variation model is a promising alternative to transfer matrix
methods.
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36.6 Conclusions

Longitudinal motions of a two-layer elastic rod were treated. Exact natural frequencies (lowest two) and associated mode
shapes were found using a transfer matrix approach, for both fixed-fixed and free-fixed boundary conditions.

Then a single differential equation model was developed using continuous approximations to the actual discontinuous
material properties. Natural frequencies were found from this model using a forced motion method and they were in excellent
agreement with the exact values (for an Aluminum/Silicon Carbide rod).

Mode shapes were obtained using a finite difference scheme and were in reasonable agreement with the exact ones for a
relatively course mesh.
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Chapter 37
Next-Generation Random Vibration Tests

P.M. Daborn, C. Roberts, D.J. Ewins, and P.R. Ind

Abstract This paper describes a radically new approach to the vibration testing of structures in order to demonstrate their
endurance under simulated service conditions. The excitation mechanisms of structures in-service typically fall into one of
three configurations; (i) excitation from a parent structure through mechanical connections (e.g. during transportation), (ii)
excitation from aerodynamic forces distributed over the outer surface of the structure (e.g. aircraft and rockets in flight), or
(iii) A combination of (i) and (ii). In nearly all cases, the in-service excitation is multi-directional, yet it is standard practice
to replicate these environments with three orthogonal single-axis vibration tests. In addition, a considerable mismatch
of the boundary conditions between the in-service and laboratory configurations is common, especially when replicating
aerodynamic environments. This paper presents quantitative evidence of limitations with the status quo and demonstrates a
superior method; Impedance Matched Multi-Axis Testing (IMMAT). Three noteworthy improvements of the new method
are; (i) enhanced replication of the in-service environment, (ii) much shorter test durations, and (iii) a significant reduction
in costs associated with random vibration tests.

Keywords Random vibration • Multi-axis testing • Missile • MIMO • Mechanical impedance

37.1 Introduction

Ground-based vibration tests are widely undertaken to replicate the damaging effects of vibration measured in-service. To
carry out random vibration tests, environmental test houses typically use procedures developed in the 1960s and 1970s [1–3].
The status quo is to attach the structure-under-test to a high mechanical impedance shaker and to sequentially test the structure
in three orthogonal axes. Typically, the direction of the test axis is selected to line up with the principal axis of the structure
and is not based on scientific reasoning. This single axis testing methodology arose in the early days of vibration testing
due to the technology available and was adequate for the expectations of that time. Some important advancements have
been made in some areas; for example the development of Multi-Input-Multi-Output (MIMO) random control has enabled
single-axis twin-shaker vibration tests to be undertaken on missile systems, although issues within the test configuration and
the requirement for three separate single-axis tests still remains. Other notable advancements in the field of environmental
testing are force-limiting techniques and multi-axis testing facilities [4–6], although these are not commonplace by any
means.
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There is much literature which demonstrates that traditional vibration tests are overly severe [7–10]. This is to be expected;
commercial and military establishments are comfortable with the notion that they are overtesting and therefore ensuring that
their structures are robust, safe and serviceable. There is less published material demonstrating that traditional methods can
lead to undertesting at some spectral regions [11–13].

The configuration of in-service structures comes in many varieties with the excitation mechanisms typically falling into
three broad categories:

(i) Excitation from a parent structure through mechanical connections (e.g. during transportation).
(ii) Excitation from aerodynamic forces distributed over the outer surface of the structure (e.g. aircraft and rockets in flight).

(iii) A combination of (i) and (ii).

One of the critical features of the vibration experienced by a structure is the local mechanical impedance of the excitation
medium and/or the parent structure. The impedance of a large shaker system rarely matches the impedance of the parent
structure in (i) and is vastly different from the free-flight aerodynamic conditions in (ii). In addition, in-service structures
typically experience multi-directional excitation whereas the laboratory test is usually carried out in one axis with the
location/region of the excitation location(s) being entirely different from the in-service excitation locations. The compounded
mismatches between the laboratory and in-service configurations lead to unrealistic random vibration tests.

This paper quantifies the deficiencies of some current state-of-the-art random vibration tests and proposes considerable
improvements using a case study which falls into category (iii), though most of the paper is relevant for any structure which
experiences random vibration.

37.2 Objectives

The objectives of the research were as follows:

(i) To quantify the limitations with current methods of random vibration tests.
(ii) To propose a technique that can yield significant improvements.

(iii) To quantify the improvements of the new technique over current methods.

In order to meet the above objectives, a case study was carried out—replicating the induced vibration of an underwing
missile during captive air carriage. Many of the methods described in this paper, and the subsequent conclusions, can be
applied to most structures and are not specific to underwing missiles. In fact, they are applicable wherever random vibration
tests are carried out.

37.3 Case Study: Underwing Missile

An underwing missile falls into category (iii) stated in the introduction and an example of an underwing missile is shown
in Fig. 37.1. In flight, the missile is excited by two mechanisms—aerodynamic forces distributed over the outer surface of
the missile and from the parent structure through mechanical connections. The nature of the vibration response is heavily
dependent on the local impedance of the parent structure; in this case the launcher rail and the wing at the attachment region.
To allow greater freedom within this research, a dummy 1/3rd scale model of the missile was manufactured out of aluminium
and nylon and is shown in Fig. 37.2. The approximate dimensions of the 1/3rd scale model are: lengthD 1,200 mm, outer
diameter (cylindrical section)D 60 mm and inner diameter (cylindrical section)D 54 mm. The mass was approximately 3 kg.

The case study was designed to mimic a real-world missile vibration test program by executing the following procedure:

(i) Carrying out a flight trial.
(ii) Generating a test specification based upon the data in (i).

(iii) Carrying out a vibration test in accordance to the test specification from (ii).

Activities (ii) and (iii) from the above procedure were carried out according to the current state-of-the-art technique for
missile vibration testing; the twin-shaker single-axis MIMO random vibration test. Activities (ii) and (iii) were then repeated
using a new method proposed here; the Impedance Matched Multi-Axis Test (IMMAT) which will be described fully in
Sect. 6.
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Fig. 37.1 Underwing missile
(picture courtesy of the
Federation of American
Scientists)

Fig. 37.2 Scale model (1/3rd) of
underwing missile

Fig. 37.3 Wind tunnel facility at
the University of Bristol

37.4 The Flight Trial

In order to understand the anticipated service environment for a missile system, it is necessary to measure the dynamic
response during flight trials. This will give the specification writer the information required to generate a test specification.
The test specification will then be used to control the laboratory test for that particular missile system.

For this case study, it was not practical to carry out an actual flight trial with the dummy missile so the aerodynamic
environment was provided by a wind tunnel facility within the Aerospace Department at the University of Bristol (Figs. 37.3
and 37.4). The missile was subjected to multiple wind speeds and orientated at various yaw angles (Fig. 37.5). For simplicity,
only data from the maximum wind speed (88 m/s) and at 0ı yaw angle is used in this research.

During the wind tunnel testing, thirteen accelerometers were attached to the missile, some of which are shown in Fig. 37.6
along with the axis definition. The accelerometers were distributed over the outer surface of the missile at six locations (1–6)
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Fig. 37.4 Wind tunnel facility
with dummy missile attached

Fig. 37.5 Missile inside the
wind tunnel at some specified
yaw angle

Fig. 37.6 Dummy missile
showing some of the attached
accelerometers, the launcher rail
and the axis definition

along the X axis. At the tail end of the missile (position 1) a tri-axial accelerometer sensed in all axes (X, Y and Z). At
positions 2–6, single-axis accelerometers sensed in Y and Z only. The duration of the wind tunnel testing was 50 seconds to
allow a suitable number of averages to be taken. The acceleration time histories were converted to frequency domain power
spectral densities (PSDs) and Fig. 37.7 shows some examples of the PSDs obtained during the wind tunnel testing. It should
be noted at this stage that only random vibration is considered during this case study and no attention has be given to other
forms of dynamic motion such as mechanical shock.

37.5 The Twin-Shaker Single-Axis Vibration Test

The twin-shaker single-axis vibration test is the current state-of-the-art for missile testing and it was felt that it should be
investigated as part of this case study. In a twin-shaker test it is possible to excite one axis only. To certify a system fully
in all axes, it is necessary to carry out three individual tests in three orthogonal directions. For simplicity, only Z direction
excitation is considered in this case study (Fig. 37.8).
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Fig. 37.8 Twin-shaker
single-axis vibration test

Prior to carrying out the vibration test, it was necessary to generate a test specification. As the vibration test involved two
shakers (Fig. 37.8), the test specification must be suitable for MIMO random control. It order to replicate current practice,
two response positions (2 and 5) were selected to control the test and were situated close to the two excitation locations
(Fig. 37.8). The test specification consisted of two PSDs and one cross spectral density (CSD). The PSDs and CSD in the
test specification were obtained directly from the wind tunnel environment at the control accelerometer positions and are
shown in Fig. 37.9. It should be noted that harmonics, beginning at 307 Hz, can clearly be seen in the spectral density curves
in Fig. 37.9. These harmonics are from the wind tunnel fan and excite the missile via the roof of the wind tunnel. They have
been included in this case study to simulate the vibration that a missile might experience from its parent structure, e.g. the
vibration induced by the engine through the aircraft wing.

The two electrodynamic shakers were rigidly connected to the missile via fixtures. This fixturing arrangement is typical
of current practice and significantly alters the dynamics of the missile by stiffening and mass loading the local region,
preventing it from bending freely and restricting cross-axis excitation. The shakers provided random excitation to the missile
for 50 seconds with the test being controlled and recorded using the Leuven Measurement Systems (LMS) MIMO Random
Control software and the Supervisory Control and Data Acquisition System (SCADAS) hardware.

The control curves from the twin-shaker test are shown in Fig. 37.10 and indicate good agreement between the test
specification and the vibration test. This demonstrates that at the two control positions the vibration test is providing a good
simulation of the aerodynamic environment from the wind tunnel. In addition, there is good agreement between the CSD
from the wind tunnel and that of the twin-shaker test and of particular importance is the relative phase between the two
control positions. The twin-shaker vibration test was able to go some way to replicating the harmonics of the wind tunnel
fan, but it could not achieve the amplitude of the peaks.

As with the wind tunnel measurements, all thirteen accelerometers were used to measure the vibration in the twin-shaker
test. Of these, two were control accelerometers used to control the vibration test with the remaining eleven being uncontrolled
response measurements. The PSDs from the twin-shaker test are shown in the appendices (Fig. 37.13), with only twelve of the
thirteen shown for convenience. The plots show that the vibration at the uncontrolled positions is a relatively poor simulation
of the complete aerodynamic environment. In particular, there is evidence of considerable overtesting, undertesting and cross-
axis overtesting (Fig. 37.13). Similar results were observed for the CSDs from the twin-shaker test (Fig. 37.14). There were
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many CSDs from the twin-shaker test; it is not necessary to present them all in this paper and the plots in Fig. 37.14
are representative of the full data set. A noteworthy result is the phase of the CSDs and a representative curve is shown in
Fig. 37.11. These plots show that the twin-shaker test was poor at replicating the relative phase between some of the locations
when compared to the original aerodynamic environment. This has significant consequences as it means that the operating
deflection shapes in the laboratory test, and the associated stress patterns are very different to the aerodynamic environments
it is attempting to replicate.

37.6 Impedance Matched Multi-Axis Test (IMMAT)

A new approach to vibration testing has been developed and can offer significant enhancements over traditional vibration
testing methods. This new approach is called Impedance Matched Multi-Axis Testing (IMMAT) and has the following critical
characteristics:

(i) The local impedance from the parent structure is included in the vibration test.
(ii) The structure is excited in all axes simultaneously.

(iii) The attachment of the exciters has minimal influence on the dynamics of the structure.
(iv) The vibration test is controlled at many response locations using MIMO control.

The IMMAT approach was applied to the missile and is shown in Fig. 37.12. The local impedance from the wind tunnel
environment was simulated by including the launcher rail and a section of wood with the same thickness as the wooden
ceiling of the wind tunnel. The missile was excited in three orthogonal axes simultaneously using electrodynamic shakers
attached via flexible drive rods. The vibration response of the IMMAT was controlled at the thirteen accelerometers using the
Leuven Measurement Systems (LMS) MIMO Random Control software and the Supervisory Control and Data Acquisition
System (SCADAS) hardware.

The test specification consisted of all of the PSD and CSD measurements from the wind tunnel environment and was
comprised of thirteen PSDs and 78 CSDs. This resulted in a test specification with approximately 60,000 breakpoints; a
breakpoint is a frequency/amplitude data point, a set of which defines the outline of the test specification and typically
consists of only tens of breakpoints in traditional vibration tests.

The PSDs from the IMMAT are shown in the appendices (Fig. 37.15), with only twelve of the thirteen shown for
convenience. A representative selection of jCSDj plots and CSD phase plots are displayed in the appendices (Figs. 37.16 and
37.17). The plots demonstrate that the IMMAT was able to accurately simulate the wind tunnel environment, including the
wind tunnel fan harmonics.

37.7 Discussion and Conclusions

A case study has been presented which demonstrates some of the limitations with the conventional twin-shaker, single-axis,
vibration test for underwing missiles, in particular, the poor simulation of the aerodynamic environment at uncontrolled
locations during the vibration test. This was apparent in the severity of the overtest at some locations and for portions of the
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Fig. 37.12 Impedance Matched Multi-Axis Test for dummy missile. (a) IMMAT—view from above test setup. (b) IMMAT—view from tail of
the missile. (c) IMMAT—view from below test setup

frequency bandwidth. Of more concern was the observed undertest at some uncontrolled locations. In addition, the evidence
of this may not be discovered during typical qualification programs as often only the control locations are considered.
Furthermore, there was evidence of cross-axis overtesting which means that any subsequent testing in orthogonal axes would
subject the structure to unrealistically high stresses at the relevant frequencies. Other limitations of the twin-shaker test
include the need to carry out three orthogonal tests sequentially to adequately excite all directions. In addition the fixture
arrangement is likely to significantly alter the dynamics of the structure in terms of natural frequencies, modeshapes and
damping. The twin-shaker test is a significant improvement compared to traditional large shaker, single-axis tests which are
still commonplace today for many qualification programs on a variety of structures. The limitations described above could
be considerably exaggerated for vibration tests that involve these large shaker systems.

The new Impedance Matched Multi-Axis Testing (IMMAT) technique potentially offers considerable improvements.
IMMAT includes enhancements such as matching the local impedance of the parent structure and controlling the response of
the structure at many locations using Multi-Input-Multi-Output control and has been successfully demonstrated in this paper.

A noteworthy improvement of IMMAT over current methods includes the excitation of all axes simultaneously with a
considerable reduction in test time and the elimination of problems such as cross-axis excitation. Another major benefit of
the IMMAT approach is the simulation of the original aerodynamic environment, including the power spectral densities,
the cross spectral densities and the relative phase between locations. This ensures that the operating deflection shape of the
structure in the IMMAT is very similar to the aerodynamic environment, leading to similar stress patterns. Finally, test houses
could make substantial long-term cost savings by replacing some of their large shaker systems with a few smaller shaker
systems for random vibration tests.

A.1 Appendix 1: Twin-Shaker Vibration Test Results

See Figs. 37.13 and 37.14.

A.2 Appendix 2: IMMAT Results

See Figs. 37.15, 37.16, and 37.17.
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Fig. 37.15 PSD response plots from IMMAT
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Fig. 37.17 CSD phase plots from IMMAT
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Chapter 38
Optimal Phasing Combinations for Multiple Input Source Excitation

Kevin L. Napolitano and Nathanael C. Yoder

Abstract Multiple input random source excitation has proven to be an excellent method for measuring high-quality
frequency response functions. Multiple-reference deterministic source excitation methods, such as multiple-reference sine
sweeps, have been developed as well. The key to these deterministic methods is ensuring that the reference auto spectral
matrix is invertible. This is achieved by (1) sweeping through each frequency at least as many times as there are numbers of
active references and (2) changing the relative phasing or magnitude between the sources with each pass. This paper presents
a method of defining an optimal set of source phasing combinations for a given the number of sources and a given number of
desired phasing combinations. Assuming each source is fully activated during testing, this set of phasing combinations will
produce a perfectly conditioned source auto spectral matrix.

Keywords Modal testing • Source excitation • Sine sweep • Multiple input • Sine dwell

38.1 Introduction

Multiple input random source excitation has proven to be an excellent method for measuring high-quality frequency response
functions. Deterministic sinusoidal excitation techniques such as (single or multiple) discrete sine wave inputs, or sine
sweeps, are often used when the random signals are not strong enough to overcome the noise floor of the test article [1].
As with random source excitation, allowing all the sources to be active simultaneously helps spread energy throughout a
structure while also reducing overall testing time.

The key to ensuring that any excitation method can produce multiple-input frequency response functions is to ensure
that the reference auto spectrum matrix, [SXX], is well conditioned so that it can be inverted [2, 3]. This is achieved by (1)
stepping or sweeping through each frequency at least as many times as the number of source signals and (2) changing the
relative phasing between the sources with each pass.

This paper defines a method for generating optimal relative phase combinations for a given “M” number of sources, for
a given “N” number of phase cases. Each phase case will be associated with one frame of test data. The optimal solution is
defined as all sources being fully engaged during each phase case and the resulting source auto spectrum matrix [SXX] being
perfectly conditioned, i.e., proportional to the identity matrix.

First the special case where the number of sources matches the number of phasing cases is discussed. The method is
then expanded to an arbitrary number of sources and phase cases, and methods for varying the phasing are discussed. After
discussing how to apply these techniques to two different deterministic signal types, fixed sine and sinusoidal sweep, an
example of the method using multiple-reference burst chirp excitation is presented.
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38.2 Number of Sources Equal to Number of Phase Cases

One way to generate optimal phasing combinations is to first define the baseline set of phases by equally spacing the number
of sources around the unit circle in the complex plane, such that

‚0i D
�
i

M

�

2� (38.1)

where “M” is the number of sources and the subscript “i” corresponds to the ith entry in the initial reference angle vector
f‚0g. An example for a three-source initial angle is presented in Fig. 38.1.

Note that the magnitude of each complex number is equal to 1, which ensures that each source is fully activated. Assuming
that the numbers of phasing cases are equal to the number of independent sources, the optimal source phasing combination
for the Jth frame of data can then be calculated as

f'J g D eiJ f‚0g: (38.2)

A matrix of phasing combinations for an equivalent “M” number of sources and frames of data can be assembled as

Œˆ� D
h
f'1g f'2g � � � f'M g

i
D
h
eif‚0g ei2f‚0g � � � eiM f‚0g

i
(38.3)

Each row in this matrix corresponds to the phase assigned to a given source. Each column in this matrix corresponds to
a separate phase case. For the example shown above with three sources (rows) and three frames (columns), the matrix of
phasing combinations will be
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First, note that the rows of [ˆ] are perpendicular to each other such that

Œˆ� Œˆ�� D N ŒI � (38.5)

2

3

2

1
−i−

1

{Θ0}=
0
3

4p
3

2p

2

3

2

1
+ i−

Fig. 38.1 Example of three
evenly spaced locations along the
unit circle
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where “N” is the number of phasing cases. This equation can be expanded by representing it as a summation of the phase
vectors multiplied by their Hermitian.

Œˆ� Œˆ�� D N ŒI � D
NX

JD1
f'J g f'J g� (38.6)

If the source input is sinusoidal with the phasing combinations specified, then the reference auto spectrum matrix would
also be defined as a summation of the phase vectors multiplied by their Hermitian.

ŒSXX� D
NX

iD1
f'ig f'i g� (38.7)

Thus, the reference auto spectrum matrix is perfectly conditioned; in other words, it is a diagonal matrix in which each of
the diagonals has the same magnitude.

A set of optimal phase combinations for a given number of sources with the same number of phasing cases can also be
calculated as the inverse fast Fourier transform of the identity matrix:

Œˆ� D M 
 IFF T .ŒI �/ (38.8)

For the three-source, three-phase case, the phasing matrix using the inverse fast Fourier transform is
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The matrices in Eqs. 38.4 and 38.9 are essentially equivalent, though the phasing case in which each answer assigns a
given phasing combination is different, and the source assigned a given phasing case is different as well: in this example,
phasing cases (i.e., the columns) 1, 2, and 3 in Eq. 38.4 are mapped to phasing cases 2, 3, and 1 in Eq. 38.9. Likewise, the
sources (i.e., the rows) 1, 2, and 3 in Eq. 38.4 are mapped to sources 2, 3, and 1 in Eq. 38.9.

38.3 Number of Sources Less than Number of Phase Cases

While the inverse fast Fourier transform may provide a simple method of generating optimal phasing combinations, it does
not lend insight into how to generate optimal phasing combinations when the number of phasing cases is greater than the
number of sources. To generate an optimal set of phasing combinations for “N” phasing cases, the formula can be expanded to

f'J g D eiJ f‚0g.M=N/ (38.10)

where “M” is the number of sources and “N” is the number of phasing cases. For example, the three-source case with six
phase cases, or six frames of data, will have a phasing matrix of
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Again, the rows of [ˆ] are perpendicular to each other, and therefore the reference auto spectral matrix, [SXX], will be
diagonal.
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38.4 Phase Variation

There are two ways the phasing matrix [ˆ] can be modified and still produce an ideal source auto spectral matrix. The first is
to provide an arbitrary rotation to the baseline shaker angle vector f‚0g. This makes physical sense because only the relative
phase between the different sources matters. Thus, the general form of the baseline angle is

‚0i D ˛ C
�
i

M

�

2� (38.12)

The second way to modify the phasing matrix [ˆ] is to provide an arbitrary rotation to its rows. Again, this makes physical
sense in that it should not matter if a basis row vector is initially rotated—it should still be perpendicular to the other row
vectors in the matrix. Thus,

�
ˆ
	 D Œˆ� ŒR� (38.13)

where the matrix [R] is a diagonal matrix whose Kth diagonal entry is a rotation of a designated angle bK, eibK .
The variables, ’ and bK, are designated angles from 0 to 2 . These variables can be randomly generated or selected to

meet some criterion with regard to the source signal.
The optimal phasing algorithm can be applied to sine-sweep testing and steady-state sinusoidal testing. Sine-sweep testing

includes both multiple-reference sine chirp and long sweeps. Steady-state sinusoidal testing includes single- or multiple-
frequency sine dwell, of which periodic random excitation is a subset.

38.5 Examples

The algorithm defined above was implemented into two functions using ATA’s IMAT toolbox. These two functions are
pseudorandom and burst_chirp. The first function is used to generate multiple sine-dwell inputs at the analysis frequencies
defined by the desired block size and the sampling frequency of the time-history function. The phasing combinations between
the different sine waves at each frequency are varied with each frame to produce a diagonal [SXX] matrix at each frequency.
The second function is used to generate sine sweeps. Depending on how the user defines the length of each sweep, these can
be fast (burst chirp) sweeps completed within each frame of data, or they can be slow sweeps where it takes several frames
of data to capture a single sweep.

38.5.1 Pseudo Random

An example of a digitally produced pseudo-random excitation is presented below in Fig. 38.2. The key to processing pseudo-
random data is to perform signal processing on the parts of the test data that are at steady state. In this example, sixty frames
of data were produced. A total of twenty phase cases were used, with each phase case used to generate three frames of data.
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Fig. 38.2 Example periodic random time history signal: Source 1 and Source 7
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Fig. 38.3 Reference signal auto spectrum matrix

Table 38.1 Normalized RMS auto spectrum matrix for nine source signals

Source 1 Source 2 Source 3 Source 4 Source 5 Source 6 Source 7 Source 8 Source 9

Source 1 1.00EC 00 1.55E� 08 1.04E� 08 1.13E� 08 1.01E� 08 9.88E� 09 1.10E� 08 1.05E� 08 1.05E� 08
Source 2 1.55E� 08 1.00EC 00 1.17E� 08 1.02E� 08 9.87E� 09 9.91E� 09 9.56E� 09 1.13E� 08 1.01E� 08
Source 3 1.04E� 08 1.17E� 08 1.00EC 00 1.87E� 08 1.06E� 08 1.22E� 08 1.21E� 08 1.04E� 08 1.19E� 08
Source 4 1.13E� 08 1.02E� 08 1.87E� 08 1.00EC 00 1.19E� 08 1.31E� 08 1.23E� 08 1.01E� 08 1.15E� 08
Source 5 1.01E� 08 9.87E� 09 1.06E� 08 1.19E� 08 1.00EC 00 1.46E� 08 1.27E� 08 1.15E� 08 1.11E� 08
Source 6 9.88E� 09 9.91E� 09 1.22E� 08 1.31E� 08 1.46E� 08 1.00EC 00 1.29E� 08 1.13E� 08 1.04E� 08
Source 7 1.10E� 08 9.56E� 09 1.21E� 08 1.23E� 08 1.27E� 08 1.29E� 08 1.00EC 00 1.37E� 08 1.04E� 08
Source 8 1.05E� 08 1.13E� 08 1.04E� 08 1.01E� 08 1.15E� 08 1.13E� 08 1.37E� 08 1.00EC 00 1.76E� 08
Source 9 1.05E� 08 1.01E� 08 1.19E� 08 1.15E� 08 1.11E� 08 1.04E� 08 1.04E� 08 1.76E� 08 1.00EC 00

Condition numberD 1

To protect the exciter from shock-type inputs, the function automatically inserts a “ramp-up” and “ramp-down” time for each
phase case; therefore, the second frame in each set was used to perform signal processing because the time history function
was at steady state during those frames. Signal processing was performed to determine the amount of coupling between
nine source signals by calculating the full reference auto spectrum matrix, [SXX], which is presented in Fig. 38.3. All of the
off-diagonal terms are several orders of magnitude lower than the on-diagonal terms. The RMS value for each term in the
reference auto spectrum matrix is presented in Table 38.1. The condition number of the matrix of RMS values is 1.

38.5.2 Burst Chirp (Fast Sweep)

The optimal phase source method was also used to create burst chirp voltage input source signals for a hypothetical ground
vibration test. The burst chirp input consisted of a logarithmic sweep from 1 to 40 Hz. There were nine source signals and
thirty phase cases (or thirty frames of data). An example plot of one frame for two of the source signals is presented in
Fig. 38.4. The summation of the magnitude of the source signal auto spectrum matrix over all frequencies (normalized by
the peak maximum value) is presented in Table 38.2. The slightly different magnitudes on the diagonals are likely due to the
ramp-up and ramp-down filters applied to the time-history signals. Even so, the condition number is very good at 1.0035.

38.6 Summary

A method for determining optimal phase angle combinations for multiple-reference sinusoidal testing (sweep or steady state)
has been presented in this paper. The key to the method is to select an initial set of phase angles that are equally spaced along
the unit circle in the complex plane; the phase angles are then calculated as fractional powers of these initial angles. Rotations
of the initial angle or rows of the final phasing angle matrix can be used to modify the phasing angle matrix.
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Fig. 38.4 Example burst chirp frame of data with constant relative phase between Source 1 and Source 7

Table 38.2 Normalized and summed auto spectrum matrix for nine source signals

Source 1 Source 2 Source 3 Source 4 Source 5 Source 6 Source 7 Source 8 Source 9

Source 1 1.00EC 00 4.09E� 08 5.82E� 08 4.63E� 08 4.63E� 08 4.22E� 08 5.38E� 08 4.15E� 08 4.48E� 08
Source 2 4.09E� 08 9.97E� 01 4.07E� 08 3.31E� 08 3.33E� 08 3.81E� 08 3.11E� 08 3.57E� 08 2.86E� 08
Source 3 5.82E� 08 4.07E� 08 9.97E� 01 8.61E� 09 6.41E� 08 2.76E� 08 3.99E� 08 2.97E� 08 3.22E� 08
Source 4 4.63E� 08 3.31E� 08 8.61E� 09 9.97E� 01 9.12E� 09 2.67E� 08 4.72E� 08 3.58E� 08 2.59E� 08
Source 5 4.63E� 08 3.33E� 08 6.41E� 08 9.12E� 09 9.97E� 01 3.42E� 08 4.10E� 08 2.87E� 08 5.20E� 08
Source 6 4.22E� 08 3.81E� 08 2.76E� 08 2.67E� 08 3.42E� 08 9.97E� 01 3.40E� 08 3.22E� 08 3.47E� 08
Source 7 5.38E� 08 3.11E� 08 3.99E� 08 4.72E� 08 4.10E� 08 3.40E� 08 9.97E� 01 4.04E� 08 2.75E� 08
Source 8 4.15E� 08 3.57E� 08 2.97E� 08 3.58E� 08 2.87E� 08 3.22E� 08 4.04E� 08 9.97E� 01 3.70E� 08
Source 9 4.48E� 08 2.86E� 08 3.22E� 08 2.59E� 08 5.20E� 08 3.47E� 08 2.75E� 08 3.70E� 08 9.97E� 01

Condition number D 1.0035
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