
T. Borangiu et al. (eds.), Service Orientation in Holonic and Multi-Agent Manufacturing
and Robotics, Studies in Computational Intelligence 544,

47

DOI: 10.1007/978-3-319-04735-5_4, © Springer International Publishing Switzerland 2014

Resource, Service and Product: Real-Time Monitoring
Solution for Service Oriented Holonic Manufacturing

Systems

Octavian Morariu2, Cristina Morariu1, and Theodor Borangiu2

1 Cloud Computing Research Department, Cloud Troopers Intl.
Cluj Napoca, Romania

cristina@cloudtroopers.ro
2 University Politehnica of Bucharest, Dept. of Automation and Applied Informatics

Bucharest, Romania, 060042
{octavian.morariu,theodor.borangiu}@cimr.pub.ro

Abstract. Service orientation of holonic manufacturing systems represents a
major milestone in increasing efficiency, flexibility and standardization for
manufacturing enterprises. SOA governance assures the capability for dynamic
composition of services at runtime without human intervention, allowing the
system to automatically align itself to the business drivers. In this context there
is a need for accurate and real time monitoring of the shop floor activities dur-
ing the manufacturing process. This paper presents a shop floor monitoring so-
lution based on distributed multi-agent system architecture capable of real time
data collection and presentation for production tracking. The solution provides a
monitoring portal where system administrators can track key performance indi-
cators in real time. The paper discusses the strategies for handing the monitor-
ing data in real time and also long term, focusing on the consolidation of
information in persistent data structures.

Keywords: Shop-floor monitoring, production tracking, simulation, monitoring
portal, real time data, alerts, multi agent systems.

1 Introduction

Holonic manufacturing systems evolution in the last decade was driven by the techno-
logical advances in the underlying areas and by the business environment changes.
This class of manufacturing systems has gained capabilities that allow real time deci-
sion making based on unpredictable events that provides a high degree of flexibility
and adaptability to change as described by Borangiu [1][2][3]. In this context there
are three inter-related vectors that define the effectiveness of the manufacturing sys-
tem: robustness, composability and observability. In any complex manufacturing
system there is a risk that a failure of a module has the potential of stopping the entire
system. In other words, a partial system failure can lead to a complete failure if it
cannot be detected, isolated and handled in a timely manner. In Service Oriented

48 O. Morariu, C. Morariu, and T. Borangiu

manufacturing systems, the impact of partial system failure is litigated by promoting a
loosely coupled architecture, assuring isolation both between individual modules and
the underlying runtime platform. In practice, there are two approaches that are used
together for isolation of modules: data isolation and execution isolation. Data isola-
tion refers to the internal state and information stored in a module. Execution isolation
refers to the runtime platform independence for each module. Recent research done
by Morariu et al. [4][5] has identified ways to assure this isolation by promoting
loosely coupled systems, connected through service busses. Lack of one or both types
of isolation can have catastrophic effects on the entire system even in case of a minor
module failure. In order to achieve robustness, manufacturing systems need to be-
come compositions of loosely coupled modules. This raises another important prob-
lem of how to locate and compose these modules into a functioning manufacturing
system. Traditionally the composition was static and it was the responsibility of the
system architect, due to intricacies of document and protocol standards and poor dis-
covery and publishing services. With the emergence of standards in manufacturing
domain like ISA 95/99, MIMOSA and others, the support for runtime and dynamic
service composition has become available. Another critical aspect of any manufactur-
ing system is the possibility to know what it is doing, the current state it is in, and the
state history from the beginning of the execution to the current state. In other words,
in order to know whether the manufacturing system is working correctly, it must pro-
vide means to be observed, or monitored in real time. However, the notion of ob-
servability as an abstract term in service oriented architecture (SOA) goes beyond just
monitoring the system by inspecting the state of its services. For manufacturing sys-
tems, observability can have more concrete meanings, like energy consumption at
shop floor level, resource utilization, time per operation, average make-span etc.

In 2010, Gartner Research published the Application Performance Monitoring
(APM) Conceptual Framework [6] which defines five directions for APM: end-user
experience, run-time application architecture, business transactions, component moni-
toring and reporting. While these directions are generally valid for generic APM solu-
tions targeted for end user applications, for Manufacturing Systems Performance
Monitoring (MSPM) a derived schema is more relevant. This is more evident if the
manufacturing system design is based on SOA design patterns in conjunction with
meta-heuristic algorithms or local intelligence for autonomous decision making. In
these conditions the overall performance of the system is not a simple composition of
the performance measured or estimated on each individual sub-module. For these
reasons we propose a derived conceptual model for manufacturing systems perform-
ance monitoring, as illustrated in Fig. 1.

The MSPM framework has four main directions: service monitoring, resource
monitoring, product monitoring and analytics/reporting.

Service Monitoring focuses on the actual web services exposed and used by the
system sub-modules. The monitoring is done at the HTTP/SOAP protocol layer and
the data consists in service status, response time for requests and overall workload.

 Resource, Service and Product: Real-Time Monitoring Solution 49

Fig. 1. Manufacturing System Performance Monitoring Directions

Using this information in real time allows the system to automatically reconfigure
and re-compose complex services in case of an individual service failure. In case of
an increased workload, a threshold mechanism can be used to balance the load to a
secondary service provider. The data gathered here is used to monitor the information
flow in the system. Resource Monitoring refers to the actual robots on the shop floor
that are executing operations during the manufacturing process. The focus here is on
the resource status, the energy consumption and on the resource utilization. These
factors can generate triggers that can change the manufacturing system behaviour, as
changing from a hierarchical operational mode to a heterachical operational mode or
can change the scheduling strategy to avoid a defective resource. Product Monitoring
is used to keep track of the products that are in production at any given time. The data
collection focuses on energy consumption, real time status and make-span for each
intelligent product. The data gathered here is used to monitor the material flow in the
manufacturing system. The concept of intelligent product considered here was first
described by McFarlane et al. [7] and developed further by Meyer [8]. Finally the
analytics and reporting direction represent the mechanisms to consolidate the col-
lected data around relevant key performance indicators (KPIs) for the manufacturing
system. The most important KPIs and their impact on manufacturing system perform-
ance and integration were studied by Ahmad et al. [9], Cai et al. [10] and Zheng et al.
[11]. The MSPM solution should be able to provide both real time reports that would
allow dynamic tuning of the system and long term historical reports that would bring
more predictability in the manufacturing processes.

Holonic manufacturing systems operating in an online scheduling mode, or also
known as heterarchical operation mode, are affected by the risk of myopia, where
intelligent products and agents have a limited information horizon. The implementa-
tion of advanced monitoring solutions can reduce this risk by augmenting the real
time information available in the system with relevant real time KPIs.

50 O. Morariu, C. Morariu, and T. Borangiu

This paper presents a MSPM solution for holonic manufacturing systems that
aligns to these requirements, containing a MAS based architecture for real time data
collection and a web based monitoring portal for real time data visualization and
reporting.

2 Monitoring Solution for Holonic Manufacturing Systems

Multi agent systems have been used previously for control of manufacturing systems
and implement communication and complex behaviour of the actors involved as de-
scribed in the survey done by Monostori et. al [12]. The monitoring solution pro-
posed in this paper is divided in two functional modules: the data collection module,
responsible for gathering real time data from monitored targets and consolidate it in a
persistent storage, and the monitoring portal which provides a user rich user interface
for data visualization. The general architecture of the monitoring solution is illustrated
in Fig. 2.

Fig. 2. Monitoring Solution Architecture

2.1 Data Collection Agents Design

There are four types of agents developed for this solution: resource monitoring agent,
product monitoring agent, service monitoring agent and a controller agent. Along with
these agents, there are three more components important in the architecture: the
monitoring data stream, the monitoring controller agent and the monitoring portal.
The following section provides some implementation details for each of these
components.

 Resource, Service and Product: Real-Time Monitoring Solution 51

2.1.1 Resource Monitoring Agent (RMA)
The resource monitoring agent (RMA) is implemented as a JADE agent with a cyclic
behaviour. The agent does a cyclic poll at 5 seconds interval on the resource in order
to gather information about the resource status, energy usage and the operations per-
formed. The information is serialized and sent to the Controller Agent over the moni-
toring data stream.

Fig. 3. Resource monitoring agent architecture

RMA typically interacts with the shop floor resource through a proprietary API
provided by the resource vendor (Fig. 3). These APIs are provided most of the times
in the form of native libraries, specific for each operating system and platform sup-
ported. For this reason, a generic implementation of the RMA cannot be provided, as
the integration will differ for each resource type. However, the general architecture of
the RMA, validated in the pilot implementation, consists of a JNI (Java Native Inter-
face) interface that provides a wrapper over the native library and allows integration
for the polling mechanism of the agent. The actual metrics available are highly de-
pendent on the API provided by the vendor, but typically these include: resource real
time status, resource power consumption, current operation and operation duration.

2.1.2 Product Monitoring Agent (PMA)
The product monitoring agent (PMA) is implemented as a JADE agent with a con-
sumer behaviour. The agent runs in a shared JADE container and is notified after each
operation performed. The agent records the operation data and sends these details on
the monitoring data stream.

On the product pallet carrier (containing an Intelligent Embedded Device, IED) a
small footprint monitoring agent runs, implemented specifically for the native embed-
ded platform. This monitoring agent acts as a service client, creating and sending the
notifications to the PMA over SOAP protocol using the build in WiFi network con-
nection (Fig. 4). The monitoring data depends on the IED characteristics, but typically
includes: operation execution time, time spent on the conveyor, cumulated travel
time, current position and current action.

52 O. Morariu, C. Morariu, and T. Borangiu

Fig. 4. Product monitoring agent architecture

2.1.3 Service Monitoring Agent
The service monitoring agent (SMA) is implemented as a Web Filter for the Web
Container in the application server (Fig. 5). The filter calls the JADE API to send a
FIPA INFORM message to the monitoring data stream including the timestamp, the
URL of the service and the payload used to invoke it.

Fig. 5. Service monitoring agent architecture

 Resource, Service and Product: Real-Time Monitoring Solution 53

Web Filter component definition was introduced in Java Servlet specification ver-
sion 2.3. The filter intercepts requests and responses and has full access to the infor-
mation contained in these requests or responses. Filters are useful for many scenarios
where common processing logic can be encapsulated. Historically filters have been
used for access management (blocking requests based on user identity), logging and
tracking users of a web application, data compression, localization, XSLT transforma-
tions of content, encryption, caching, triggering resource related events, mime-type
processing and many others. The implementation of a Web Filter is governed by the
following interfaces: Filter, FilterChain, and FilterConfig in the javax.servlet package.
The actual filter is a implementation of the Filter interface. The filters are invoked in a
chained fashion by the servlet container. The Filter interface declares the doFilter
method, which contains the actual processing of the request/response objects.

In our implementation, the doFilter method sends a message to the Monitoring
Agent containing the service being invoked by the user. The information sent by the
Web Filter to the monitoring agent has the following structure:

Table 1. Web Filter message structure

ID The ID of the thread in which the web filter is called

Client ID Client ID invoking the service

Service URL URL of the service invoked

EndPoint The service endpoint being invoked

Parameters The complete payload used to invoke the service

Time Time elapsed between request and response

2.1.4 Monitoring Data Stream, Controller Agent and Monitoring Portal
The Monitoring Data Stream is implemented as a message queue at JADE agent plat-
form level. This queue allows asynchronous communication between the data produc-
ers, in this case the monitoring agents, and the data consumers: the controller agent
and the monitoring portal.

The Monitoring Controller Agent is a JADE agent that implements a cyclic behav-
iour and consumes the monitoring messages sent to the monitoring data stream. The
agent aggregates the data based on the monitoring target and saves it in the persistent
storage. Monitoring Portal is a web based application that allows real time data dis-
play with AJAX and Partial Page Rendering, and report generation based on the data
saved in the database. The integration and the dataflow between these components is
illustrated in Fig. 2.

54 O. Morariu, C. Morariu, and T. Borangiu

2.2 Data Storage Strategy

The strategy for the data storage is common for all the metrics recorded. For each
metric collected by the target monitoring agents, the data is stored in two database
tables using the following strategy:

• Short term storage (Staging): consists in a rolling table with a fixed number of
rows, having a timestamp as a primary key. This table contains the "last N time in-
tervals" of that particular metric and is used to display real time data in the web
application.

• Long term storage: consists in a table containing averaged data for each metric for
given time intervals (i.e. one hour). This data is generated from the short term stor-
age, at each rollover by the controller agent. The long term storage table is used for
reporting and analytics purposes (Fig. 6).

Fig. 6. Data Flow

The granularity in both short and long term storage is configurable globally and for
each metric individually, allowing higher or lower history in real time views and de-
tailed reporting. The agent uses an incoming message queue where messages from the
other agents are placed in order to be processed. There are typically two types of mes-
sages for each metric. In case the target agent is sending real time data, the data will
be stored in the staging table and the agent will rotate the staging table and promote
aggregate metrics in the long term table. The other scenario is when the agent is send-
ing directly aggregated metrics, which are added directly to the long term storage
tables. Because of the large number of target agents and large amount of data to be
managed, the monitoring controller agent (or main agent) is using a database connec-
tion pool where connections are re-used. This avoids the need to re-authenticate for
each connection and improves the overall performance.

 Resource, Service and Product: Real-Time Monitoring Solution 55

3 Agent Interaction and Scalability

The agent interaction is based on FIPA standard messaging protocol implemented by
JADE [13]. JADE is a software framework designed to make the development of
agent applications easier and in compliance with the FIPA specifications for interop-
erable intelligent multi-agent systems. The goal of JADE is to simplify development
while ensuring standard compliance through a comprehensive set of system services
and agents.

To achieve such a goal, JADE offers the following list of features to the agent
developer:

• FIPA-compliant Agent Platform, which includes the AMS (Agent Management
System), the DF (Directory Facilitator), and the ACC (Agent Communication Chan-
nel). All these three agents are automatically activated at the agent platform start-up.

• Distributed agent platform. The agent platform can be distributed on several hosts
(provided that the required ports are opened in the firewalls). Only one Java Virtual
Machine is executed on each host. Agents are implemented as one Java thread and
Java events are used for effective and light-weight communication between agents on
the same host. Parallel tasks can be executed by one agent, and JADE schedules these
tasks in a more efficient way than the Java Virtual Machine does for threads.

• A number of FIPA-compliant DFs (Directory Facilitator) can be started at run
time in order to implement multi-domain applications. The concept of domain is a
logical one as described in FIPA97 Part 1.

• API provided to allow registration of agent services with one or more domains
(i.e. DF).

• JADE provides an integrated transport mechanism and interface (API) to
send/receive messages to/from other agents

• FIPA97-compliant IIOP protocol is used to connect different agent platforms.
• Light-weight transport of ACL messages inside the same agent platform, as mes-

sages are transferred encoded as Java objects, rather than strings, in order to avoid
marshalling and un-marshalling issues. When the sender or the receiver does not be-
long to the same platform, the message is automatically converted to/from the FIPA
compliant string format. In this way, this conversion is hidden to the agent developer.

• JADE provides a library of FIPA interaction protocols.
• Automatic registration of agents with the Agent Monitoring Service (AMS).
• FIPA naming service, build in the platform, provides agents with a GUID (Glob-

ally Unique Identifier).
• Graphical user interface to manage several agents and agent platforms from the

same agent. The activity of each platform can be monitored and logged.

The above characteristics make JADE a suitable platform for implementing a dis-
tributed data collection framework as it combines the flexibility and portability of
Java with a very low memory footprint and CPU profile. This helps reducing the
overhead of running JADE agents inside virtualized workloads in the cloud. The
JADE container uses typically 32 Mb of memory for the Java heap, which is enough
for most types of data collection.

56 O. Morariu, C. Morariu, and T. Borangiu

Fig. 7. Interaction diagram

The agent interaction in terms of real time data dialogue is presented in Fig. 7 and
is similar for all data collection agents.

From Fig. 7 it can be seen that the normal operation of a data collection agent (tar-
get agent) is to send aggregate data to the main agent. When the end user accesses the
web application and displays a page that requires real time data from a specific re-
source, the web application sends a message to the data collection agent. The data
collection agent starts sending real time data to the main agent, which in turn stores it
in the database. At this point, the database sends the change notification to the web
application and the real time data is displayed to the user. Similarly when the real
time data display control (graph, table, etc.) becomes inactive, the agent is notified to
stop sending real time data. This approach reduces the network overhead of sending
high granularity data, especially in large deployments, involving many agents.

In this agent architecture, scalability is implemented at the monitoring controller
agent (or main agent) layer. This agent can aggregate data from other agents of the
same type in a tree like model. This concept is illustrated in Fig. 8.

Each agent has a start-up switch that determines if the agent is the primary agent or
if it is an intermediary agent used for data aggregation. Currently only the primary
agent is storing data in the database. However, this agent is having an active/active
setup in separate JADE containers, so that it assures high availability.

 Resource, Service and Product: Real-Time Monitoring Solution 57

Fig. 8. Agent Model Scalability

The implementation contains an additional monitor agent that sends a FIPA inform
message to each agent registered with JADE DF service. This assures that any agent
failure can be detected by the monitor and handled accordingly.

4 Implementation Details and Experimental Results

The data collection agents are implemented using a JADE platform, in Java
programming language. The generic code structure of a data collection agent is con-
sisting in two behaviours: a ticker behaviour and a receiver behaviour. The first is
triggering the polling mechanism that reads the target (resource/product/service) met-
rics. The second behaviour is listening for FIPA messages and processes them as
required. The behaviours are defined by overriding the agentSpecificSetup() method:

protected void agentSpecificSetup() throws AgentInitializationException {
 super.agentSpecificSetup();
 //registering with JADE DF Service
 ServiceDescription sd = new ServiceDescription();
 sd.setType("RESOURCE_MONITORING_AGENT");
 DFAgentDescription dfTemplate = new DFAgentDescription();
 dfTemplate.addServices(sd);

58 O. Morariu, C. Morariu, and T. Borangiu

 SearchConstraints sc = new SearchConstraints();
 sc.setMaxResults(new Long(10));
 ACLMessage subscribe = DFService.createSubscriptionMessage(
 this, getDefaultDF(), dfTemplate, sc);
 //sending a subscription message to the JADE DF service
 //this will allow monitor agent to find us
 send(subscribe);
 //Defining ticker behaviour
 Behaviour ticker = new TickerBehaviour(this, 10000) {
 @Override
 protected void onTick() {
 try{
 collectDataAndSendMessage();
 }catch(Exception e){
 handleException();
 }
 }
 };
 //adding the behaviour to the agent
 addBehaviour(ticker);
 //defining message processor behaviour
 Behaviour messageProcessor = new CyclicBehaviour(this) {
 @Override
 public void action() {
 ACLMessage msg= receive();
 if (msg!=null){
 processMsg(msg);
 }else{
 //wait until a new message arrives in the queue
 block();
 }
 }
 };
 //adding the behaviour to the agent
 addBehaviour(messageProcessor);
}

The methods collectDataAndSendMessage() and processMsg() are implemented dif-
ferently for each agent, depending on what target is the agent connecting to. However,
these methods are defined in the DataCollectionAgent interface, which is imple-
mented by every data collection agent. The UML class diagram showing the two in-
terfaces implemented by the data collection agents is shown in Fig. 9.

 Resource, Service and Product: Real-Time Monitoring Solution 59

Fig. 9. UML class diagram

Each data collection agent is implementing both interfaces and implements the de-
fined methods. Also, the agents provide implementation of specific methods and at-
tributes used to connect and manage the lifecycle of the monitored target: resource,
product or service.

Fig. 10. Production tracking in monitoring portal

60 O. Morariu, C. Morariu, and T. Borangiu

Fig. 10 presents a screenshot from the monitoring portal showing the production
tacking page. The page contains a table presenting a real time view of the products in
the product batch. The information presented in this table contains the ID of the prod-
uct, the product type (in our case T shaped products and H shaped products), the %
complete, the number of operations performed, the entry time and exit time and the
make span.

Fig. 11. Real time resource utilization

Fig. 11 presents a screenshot from the resource monitoring portal. This page shows
real time information about each shop floor resource, including: resource identifier,
the picture of the resource (descriptive purpose), the resource utilization computed for
the current product batch, the current operation executed by the resource, the current
product in the corresponding workstation and the operation being performed. The last
three columns are updated in real time based on data sent by the product monitoring
agents.

The reporting engine is based on Pentaho [14] reporting solution and is offering a
set of predefined reports, including: Resource Operation History, Product Operation
History, Resource Utilization Trend and Product MakeSpan Trend. At the same time,
the system allows plugin like creation of new reports, using the Pentaho report
designer tool.

 Resource, Service and Product: Real-Time Monitoring Solution 61

Fig. 12. Real time resource utilization

Finally, Fig. 12 presents the service monitoring module. In the pilot implementa-
tion the service monitoring agent is monitoring three web services: create customer
order (CreateCO), track customer order (TrackCO) and request offer. The table shows
real time data including the invocations high and low for the time unit (default is 1
day, specifically the last 24 hours), average response time in ms and the success rate.

5 Conclusions

Real time monitoring in a holonic manufacturing system provides valuable informa-
tion that can be used for tuning the system and for long term reporting. Service moni-
toring is also an important aspect specifically targeted to illustrate the information
flow in the SOA oriented manufacturing system. It helps identifying the number of
invocations and the success rates together with the service performance. Real time
monitoring of services provides useful clues when diagnosing information flow bot-
tlenecks in the system. Product monitoring provides real time information about mate-
rial flows and together with resource stock monitoring represent direct integration
points for supply chain applications in regards to the manufacturing system.

The real time data collection provides the opportunity to create a trigger mecha-
nism for various conditions, like resource breakdown or stock depletion. At the same
time, due to the fact that all monitoring data is concentrated centrally in the Monitor-
ing Data Stream, complex triggers can be defined that can consider multiple input
signals, like energy consumption for a specific operation, in conjunction with the
actual target product where the operations are performed. Currently the prototype of
the monitoring application supports only basic resource monitoring and service moni-
toring, but the trigger mechanism is considered for future developments.

62 O. Morariu, C. Morariu, and T. Borangiu

References

1. Borangiu, T.: A service-orientated arhitecture for holonic manufacturing control. In: Ru-
das, I.J., Fodor, J., Kacprzyk, J. (eds.) Towards Intelligent Engineering and Information
Technology. SCI, vol. 243, pp. 489–503. Springer, Heidelberg (2009)

2. Borangiu, T., Gilbert, P., Ivanescu, N., Rosu, A.: An Implementing framework for holonic
manufacturing control with multiple robot-vision stations. Journal of Engineering Applica-
tions of Artificial Intelligence (2009) ISSN 0952-1976

3. Borangiu, T., Raileanu, S., Anton, F., Parlea, M., Tahon, C., Berger, T., Trentesaux, D.:
Product-driven automation in a service oriented manufacturing cell. In: Proceedings of the
Int. Conf. on Industrial Engineering and Systems Management, IESM 2011, Metz, May
25-27, pp. 978–972 (2011) ISBN 978-2-9600532-3-4

4. Morariu, C., Morariu, O., Borangiu, T.: Manufacturing Service Bus Integration Model for
Implementing Highly Flexible and Scalable Manufacturing Systems. Information Control
Problems in Manufacturing, IFAC Papers Online 14(1), 1850–1855 (2012)

5. Morariu, C., Borangiu, T.: Manufacturing Integration Framework: A SOA Perspective on
Manufacturing. Information Control Problems in Manufacturing, IFAC Papers On-
line 14(1), 31–38 (2012)

6. Cappelli, W.: Magic Quadrant for Application Performance Monitoring. Gartner Research
(2012)

7. McFarlane, D., Sarma, S., Chirn, J.L., Wong, C.Y., Ashton, K.: The intelligent product in
manufacturing control and management. In: 15th Triennial World Congress, Barcelona,
Spain (2002)

8. Meyer, G.G., Främling, K., Holmström, J.: Intelligent products: A survey. Computers in
Industry 60(3), 137–148 (2009)

9. Ahmad, M., Nasreddin, D.: Establishing and improving manufacturing performance meas-
ures. Robotics and Computer-Integrated Manufacturing 18(3), 171–176 (2002)

10. Cai, J., Xiangdong, L., Zhihui, X., Jin, L.: Improving supply chain performance man-
agement: A systematic approach to analyzing iterative KPI accomplishment. Decision
Support Systems 46(2), 512–521 (2009)

11. Zheng, L., Jing, X., Hou, F., Feng, W., Na, L.: Cycle time reduction in assembly and test
manufacturing factories: A KPI driven methodology. In: IEEE International Conference on
Industrial Engineering and Engineering Management, IEEM 2008, pp. 1234–1238 (2008)

12. Monostori, L., Váncza, J., Kumara, S.R.: Agent-based systems for manufacturing. CIRP
Annals-Manufacturing Technology 55(2), 697–720 (2006)

13. Bellifemine, F., Poggi, A., Rimassa, G.: JADE: a FIPA2000 compliant agent development
environment. In: Proceedings of the 5th International Conference on Autonomous Agents,
pp. 216–217. ACM (2001)

14. Bouman, R., Dongen, J.V.: Pentaho Solutions: Business Intelligence and Data Warehous-
ing with Pentaho and MySQL. Wiley Publishing (2009)

15. Shen, W., Wang, L., Hao, Q.: Agent-based distributed manufacturing process planning and
scheduling: a state-of-the-art survey. IEEE Transactions on Systems, Man, and Cybernet-
ics, Part C: Applications and Reviews 36(4), 563–577 (2006)

	Resource, Service and Product: Real-Time Monitoring
Solution for Service Oriented Holonic Manufacturing
Systems

	1 Introduction
	2 Monitoring Solution for Holonic Manufacturing Systems
	2.1 Data Collection Agents Design
	2.2 Data Storage Strategy

	3 Agent Interaction and Scalability
	4 Implementation Details and Experimental Results
	5 Conclusions
	References

