Correlated Phenomena in Wireless
Communications: A Copula Approach
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Abstract Copulas are multivariate joint distributions of random variables with
uniform marginal distributions. A quite interesting topic in statistical modelling
is how the inefficiencies, appearing when the classical linear (Pearson) correlation
coefficient is employed, can be overcome. Copulas are increasingly being involved
to address such challenges. In the present article, the concept of copulas is employed
in the framework of wireless communications and is related to multivariate corre-
lated fading phenomena as well as to the relevant fade mitigation techniques. The
multivariate copula-based models employed in the present work are general and can
be customized to any continuous multivariate random variables.

Keywords Wireless fades ¢ Copulas ¢ Fade mitigation techniques ¢ Multipath
fading * Rain attenuation

Introduction

Atmospheric phenomena such as reflection, diffraction, and scattering adversely
affect the performance of wireless communication systems as they pose severe
limitations to wave propagation. As a result, signal transmission may be severely
impaired by the existence of various obstacles such as buildings, mountains, or
foliage or due to precipitation mechanisms such as rainfall. Moreover, interference
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can further aggravate signal transmission. In general, the wireless channel
characteristics are non-stationary and non-predictable and are subjected to fading
normally perceived as signal attenuation.

The various types of fading associated with specific fading mechanisms can be
classified into two main categories: large-scale fading and small-scale fading [1].
Large-scale fading is dependent on the distance between transmitter and receiver,
whereas small-scale fading is caused by small changes in position (of the order
of half wavelength) or by changes in the transmission environment (surrounding
objects, moving obstacles crossing the line of sight (LOS) between transmitter and
receiver, etc.). Likewise, fading can be classified with regard either to its duration or
to where it happens (outdoor or indoor). A high-level overview of the various fading
types is given in Fig. 1 [2].

To successfully model wireless channels, accurate wave propagation models are
required. Such models aim at describing the changes caused to the transmitted waves
as they propagate from the transmitter to the receiver and suffer from path loss,
interference, noise, and various types of fading. In practical wireless communication
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systems, the channel state cannot be estimated at the receiver perfectly. Therefore,
and regardless of the fading mechanism involved, it is essential to examine the effect
of channel estimation errors, on the structure and performance of the receivers by
analyzing their performance over correlated fading channels. Indicative examples
of fading mechanisms that give rise to correlated microwave terrestrial or satellite
transmissions are: (i) fading due to rain attenuation induced on spatially diversified
links or (ii) multipath fading. Both the above types of fading are mitigated by
well-known diversity combining techniques such as maximal ratio combining and
optimal combining. The performance of those diversity techniques deteriorates due
to imperfect channel estimation. Hence, to formulate realistic radio channel models,
appropriate statistical propagation models are required.

The performance assessment of wireless links in the presence of correlated
fading should employ multivariate distributions that represent the joint statistics of
different fading mechanisms. In most cases, the relevant distribution is heuristically
defined, if possible. The modelling difficulties that arise are related to the nature of
the physical phenomena involved and to the algebraic complexity introduced. The
commonly adopted performance metrics assessing availability and reliability are
the outage probability and the average bit error probability for various transmission
rates and quality of service (QoS) levels.

Up to now, various multivariate fading distributions have been employed, such
as the Rayleigh, Rice, and Nakagami distributions for short-term fading, caused
primarily by multipath propagation, or the lognormal distribution for long-term
fading, caused primarily by rain attenuation and shadowing. It should be noted,
though, that, in complex propagation environments, more than one type of fadings
exist simultaneously [3].

Although correlated fades rarely take large values at the same time, if such an
incident happens, it happens in a highly correlated way. The classic linear (Pearson)
correlation coefficient fails to appropriately model the interdependence of fading
events caused by different mechanisms as their underlying correlation is not linear,
particularly as to the tails of the fading distributions. The Rayleigh or the Rice fading
models, being stimulated by an inherent Gaussian random process, are basically
Gaussian-oriented and do not efficiently model simultaneous deep fades that are
affected by an underlying interdependence. Hence, it becomes evident that the
benefit expected from diversity in wireless communications, which derives from
the assumption that the diversity channels employed should be as de-correlated
as possible, must be reconsidered and be modelled via multivariate distributions
that can effectively describe the joint statistical behavior between random variables
that are not linearly correlated. In this respect, the classic Pearson correlation
factor cannot properly represent their underlying interdependence. In particular
the n -variate Nakagami distribution describes multipath propagation of relatively
large delay time-spread, employing clusters of reflected waves [4]. This distribution
incorporates as special cases the Rayleigh distribution and the one-sided Gaussian
model distribution, also approximating the Rician fading distribution. Though it
performs well for the main part of these distributions, the approximation fails in the
tails, which is critical since bit errors or outages occur mainly during deep fades [5].



98 S.N. Livieratos et al.

As for terrestrial or satellite links operating above 10 GHz, where rain attenuation
is the primary impairing factor, double site diversity constitutes an effective fade
mitigation technique. The basic assumption is that the rain attenuation affecting
the (two) diversity links involves two random variables modelled via the bivariate
lognormal or, in some cases, the bivariate gamma distribution. The diversity gain
determined when deep rain fades occur simultaneously, particularly in tropical
zones, does not match the experimental data [6]. Among other reasons, this is
attributed to the nonlinear underlying correlation between the two correlated random
variables representing the rain attenuation over the two earth-space paths.

Another failure when modelling fading phenomena takes place when short-term
fading due to multipath modelled by the Nakagami, Rice, or Rayleigh distribution,
coexists with long-term fading due to shadowing modelled by the lognormal
distribution [7]. The representation of such complex propagation environments
leads to complicated mathematical models inconvenient to accurately evaluate
the performance of wireless links. Concluding, the development of alternative
mathematical models is necessary to overcome the aforementioned inefficiencies.

Basic Theory of Copulas

One method to model correlated random variables which has recently become
quite popular is copula which, in Latin, means “a link, tie or bond.” Copulas
introduce a bond between correlated random variables and where first employed
in mathematics or statistics by Abe Sklar [8, 9]. Copulas are functions that make
feasible to obtain a joint distribution having a particular correlation by combining
univariate distributions. Let X = (X;,X,,...,X,) be a vector of n random
variables modelling n correlated fades having marginal cumulative distribution
functions (CDFs) F;,i = 1,2,...,n, respectively. The relevant multivariate CDF
is defined by

F()C],)Cz,...,xn)ZPI'{XlS)Cl,...,Xn an} (l)

and completely determines the correlation of random variables X;,i = 1,2,...,n.
As pointed out in the previous section, the analytic representation of F might
be too complex, making any algebraic evaluations or even numerical estimations
practically impossible, thus restricting its practical use. The multivariate Gaussian
distribution has become popular because it can easily describe interrelated fades. On
the other hand, it has not been proven capable of fitting real data in fading commu-
nications channels. The use of copula functions overcomes the issue of estimating
multivariate CDFs. This is accomplished by splitting the relevant procedure into two
steps:
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i. Determine the marginal CDFs F;, i = 1,2,...,n of the particular fading
phenomena involved; estimate the parameters of CDFs by fitting the available
data using well-established statistical methods;

ii. Determine the correlation structure of the random variables X;,i = 1,2,...,n
and select a suitable copula function.

The goal is twofold: to select the most appropriate marginal CDFs in order to fit
the real data of each fading mechanism and the copula function that performs better
in properly linking the various marginal CDFs and fitting the joint measurements
available.

An n-dimensional copula, hereafter denoted by C, is a multivariate CDF with
marginals uniformly distributed in [0, 1] that possesses the following properties:

i. C:[0,1]" —[0,1];

ii. As CDFs are always increasing functions, C (uy,...,u,) is increasing with
respect to any component u;, i = 1,2,...,n.

iii. C is grounded, that is C (uy,...,u,) =0,ifu; =0,i =1,2,...,n.

iv. The marginal with respect to component i; is obtainedby C(1,...,u;,...,1) =
u;, that is, by setting u; = 1 for any j, j # i, and as it must be uniformly
distributed.

From the above properties, it is deduced that, if Fj,..., F, are univariate
distribution functions, C (F(xy), ..., F,(x,)) is a multivariate CDF with margins

Fy,...,F,, since Uy = Fi(x;),i = 1,...,n, are uniformly distributed random

variables. Copulas constitute a useful tool to derive and process multivariate
distributions. Based on the definitions, the following relation describes the basic
properties of copula functions.

C(x1,x2,...,%,) =Pr{X; <xi,..., X, <X}
=Pr{Fi(X1) < Fi(x1), ..., Fu(Xy) < Fy(x0)}
=Pr{U, <uy,...,U, <up} =C(uy,...,u,)
= C(Pr{X; <xi1},....,Pr{X, < x,}) 2)

The founding theorem for copulas [8, 9] states that, given a joint multivariate
distribution function and the constituent marginal distributions, a copula function
exists that relates them. This theorem known as Sklar’s Theorem is very important
in explaining copula functions because it provides a way to analyze the correlation
structure of multivariate distributions without any requirements for setting any
specifications concerning the related marginal distributions such as that they must
be or have the same parameters. Also, it defines how multivariate CDFs modelled
by copulas are used in many practical applications. According to Sklar’s Theorem,
if F is an n-dimensional CDF with continuous margins F;,i = 1,2,...,n, then F
has the following unique copula representation (canonical decomposition):

F(x1,x,....x,) = C(Fi(x1), ... Fu(xn)) 3)
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From (3) it can readily be deduced that, for continuous multivariate distributions,
the univariate margins can be separated from the multivariate correlation. The latter
can be represented by a suitable copula function which should be formed based on
statistically stable experimental data and efficient regression techniques.

An additional property of copula functions follows:

Let F be an n-dimensional CDF with continuous margins Fi, ..., F, and copula
C. Then, for any u = (uy, ..., u,) in [0, 1]" the following relation holds which can
be obtained in a straightforward way:

C(ui,...,uy) = F(F7 w),..., F () 4)

where F;~! is the generalized inverse of F;.

From (4) it is deduced that copulas allow joining together correlated distributions
when the constituent marginal distributions are deterministically known. For an
n-variate joint distribution F, the associated copula is a distribution function C that
satisfies

F(x1,x2,...,x,) = C(Fi(x1), ..., Fy(x,): 1) 5

where ¥ is the dependence parameter of the copula measuring the correlation
depth between the constituent marginal distributions. The above equation can be
the starting point of how copulas can be empirically applied to various problems.
Although ¥ is in general, a vector of parameters, for bivariate applications it is a
scalar correlation measure to be specified. Thus, a bivarate distribution is expressed
in terms of the constituent marginal distributions and a function C that binds
them together making use of ¢. An essential advantage of copula functions is that
the various marginal distributions involved may belong to different families. For
example, a bivariate distribution might involve the normal distribution representing
one random variable and the gamma distribution representing the other. Though in
many cases traditional representations of multivariate distributions necessitate that
all the random variables involved must have the same marginals, this is not necessary
when employing copulas. In this context, the assumption of identically distributed
random variables which might be an inefficient simplification in many cases is not
necessary when employing copulas.

In general, copulas allow to consider marginal distributions and correlation as
two separate though related issues. For many practical applications, the correlation
parameter is the main prerequisite for proper estimation. The assumption of linear
correlation, which can fully determine elliptic multivariate distributions, must be
reconsidered when modelling non-elliptic multivariate distributions. As an example
of the weakness of assuming linear correlation, consider two random variables,
X which is Gaussian N(0,1) and X?2. Evidently, the knowledge of X fully
determines X2, that is, the two variables are 100% correlated. However, based on
the classic definition of the Pearson correlation coefficient, it is deduced that their
covariance is zero, that is
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Cov(X,X*) =0 (6)

Consequently their correlation coefficient p is also zero which means that they are
not correlated.

It should be noted that, as copulas are multivariate distributions of uniformly dis-
tributed random variables, they may be expressed in terms of marginal probabilities
(CDFs). If a copula is a product of two marginals, independence is deduced allowing
the separable estimation of each marginal.

How to Use Copulas in Practice

Based on the previous sections, the question arising is how to select the copula
appropriate for a specific problem involving multiple correlated random variables.
Often, the choice is based on the usual criteria of familiarity, ease of use, and
analytical tractability. The estimation of the marginal distribution and its parameters
is not affected by the choice of the copula function used for modeling the
dependence of the random variables involved. Hence, any statistical distribution
that effectively fits the available experimental data could be adopted to describe
the one-dimensional phenomenon whereas the parameters of the distribution can be
obtained following well-known fitting/regression methods.

However, there might be some cases where the estimation of conditional
measures such as the conditional mean E(X/Y = y) or variance V(X/Y = y)
might be affected by the choice of the copula function used to model the dependence
between the random variables X and Y. More precisely if X and Y are continuous
random variables with distribution functions Fy (x) and Fy(y) respectively, their
CDF satisfies the following expression:

Fxy(x,y) = Fxy [Fy' (), Fy' (v)]
=Pr{X < Fy'(w.Y < F;'(v)} = C(u,v) (7
Equation (7) shows how the copula function C bridges the marginal and the joint
distribution. The existence of C is guaranteed by Sklar [8, 9]. The uniqueness of C,
once Fy, Fy, and F yy are defined, is ensured as long as the random variables are
continuous. In many instances there may be various options for the marginals and

little or no idea about the joint distribution function.
Commonly used copulas are:

(i) the Gumbel copula for extreme distributions:

C S (w1, ) = exp [— ((— nu)? + (— lnuz)ﬂ)l/q . delloo) (8
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(ii) the Gaussian copula for linear correlation

CHw) =% (2 (), ..., o "(uy)) 9)

o lw) po(v) 1 2 _92Ri-st + 12
CS(u,v) = / / exp [S 128 2+ dsdt
o0 —© Zn,/l—sz 2(1 _Rlz)
(10)
where R\, is the standard linear correlation coefficient of the corresponding

bivariate normal distribution
(iii) the #-copula for dependence in the tail [10]

Cl r=t! o (6, ), ... 1, (un)) (11)

Ct ( ) /‘trl(u) /tv_l(u) 1 |:1+S2—2R125[+[2}_(v+2)/2d di
v RW, V)= s
~o Jeoo oy JI-R2, v (1-R)
(12)

where R, is simply the usual linear correlation coefficient of the correspond-
ing bivariate ¢, distribution if v > 2.

The Gaussian copula derives from the multivariate Gaussian distribution. Other
methods of deriving copulas may employ geometry and (4). For example, for two
marginal distributions, one following the beta distribution with parameters « and
B, and the other following the lognormal distribution with parameters i and o, the
following copula may be employed

1) (e -
e v —1

—duy
Ch(uy,up) = —%m [1 + (e 1)} ., P eR\{0} (13)

which is a member of the Frank’s family.

Upon substituting the relevant distribution functions, a new joint distribution
comes up. Parameter ¢ determines the depth of correlation between the marginals.

A high-level overview of the fading problems encountered in wireless commu-
nications suggests that there are experimental data available for various types of
fading (random variables) upon which prediction models should be developed and
verified by other similar data, if possible. Copulas allow to build new prediction
tools avoiding the use of complicated multivariate distribution functions which are
rarely available and too complex. In the attempt to determine the copula function
that fits real data, various methods must be followed such as minimizing particular
cost functions and identifying the parameter ¥ affecting the correlation depth. The
sensitivity of # to the various electric or spatial characteristics of the physical
problems involved is examined so that a numerical trend for its determination can
be obtained. Consequently, a probabilistic prediction of the fade values is attempted
for various engineering configurations of the physical problem as an estimator of
the actual system performance.
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Methodologically the following procedure is proposed. The first step that has
to be taken is to formulate the problem each time in hand. As an example assume a
MIMO system with two antennas operating over fading channels. A copula function
must be formed to determine the relevant outage probability. If SNR;,i = 1,2 is
the signal-to-noise ratio achieved over the i-th channel and the selection combining
criterion is adopted, that is the receiver selects the channel exhibiting the maximum
SNR, the statistics of system outage are given by:

Pouage = Pr{SNR(dB) < SNRtn(dB), SNRy(dB) < SNRtu(dB)}  (14)

where the threshold SNR level appearing in (14) depends on the application,
transmission rate, modulation scheme, etc.

If the CDFs of each SNR;, i = 1,2, are estimated, only the joint statistics must
be modelled to determine the outage probability given by (14). To initiate the copula
modelling, measurement data are required for the estimation of the CDFs of the
individuals SNRs. For this estimation there is no need to derive a closed form
distribution function. It must be focused on determining the CDF sample values
as accurately as possible. If specific SNR thresholds are employed, the inverse
CDFs can correspond to values in [0, 1] related to the uniform random variables
U;,i = 1,2, as in (2). In other words, the one-dimensional datum for each random
variable (fade) does not have to be fitted by a closed form statistical distribution
since

Pr{X|, <x1,....Xy <x,} =CPr{X; <xi1},...,Pr{X,, < x,}) (15)
However, the joint statistical data have to be represented by various copula functions

under specific error criteria. The most widely criterion is the least squares one giving
rise to following optimization problem.

minimize Z [Pjom - C (Psomfls PsomﬁZ; ﬁ)]z (16)
md
where
Pmm_l = PI'{SNR] < SNRTH} (17)
Pyom 2 = Pr{SNR, < SNRyy} (18)
C (Psomfla PsomﬁZ; 7-9) = Pjop (19)

and the acronyms md, jom, som, and jop stand for measurement data, joint outage
measured, single outage measured, and joint outage predicted, respectively.

The copula family that minimizes the cost function expressed in (16) performs
better and may be the copula selected to describe the phenomenon under consid-
eration and be adopted for prediction purposes. The nature of the regression is to
determine the appropriate value of the dependence factor, ¢, for each copula family
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employed to minimize the cost function given by (16). Hence, after having selected
the copula family, the dependence factor ¥ is also determined. It should be noted that
¥ depends on system parameters such as frequency, polarization, site separation, etc.
Therefore, to generalize a copula prediction method, a plethora of measurements
are required to generate a statistically stable model for ¢, involving the spatial and
electromagnetic parameters, allowing the use of the same copulas be employed in
similar cases under different operational characteristics.

Conclusions

The copula approach needs to specify the marginal distribution of the random
variable involved along with the copula function that correlates them. The copula
function can be adjusted to take into account the measurements of the correlated
constituent random variables. Employing proper correlation parameters can lead
to more efficient representations of joint distributions. The copula method being
advantageous in capturing correlation regardless of the marginal type is expected to
be very useful when dealing with fading in wireless channels.

Acknowledgements This research has been co-financed by the European Union (European Social
Fund-ESF) and Greek national funds through the Operational Program “Education and Lifelong
Learning” of the National Strategic Reference Framework (NSRF)-Research Funding Program:
Thales-Athens University of Economics and Business-New Methods in the Analysis of Market
Competition: Oligopoly, Networks and Regulation.

References

1. Parson D., The Mobile Radio Propagation Channel, New York: Halsted Press (John Wiley &
Sons, Inc.), 1992.

2. Gibson, J.D., “The Mobile Communications Handbook”, 2th ed. CRC Press 2002.

3. I. M. Kostic, “Analytical approach to performance analysis for channel subject to shadowing
and fading,” IEE Proc., vol. 152, no. 6, pp. 821-827, Dec. 2005.

4. M. Nakagami, “The m-distribution—A general formula for intensity distribution of rapid
fading,” in Statistical Methods in RadioWave Propagation, W. G. Hoffman, Ed. Oxford, U.
K.: Pergamon, 1960.

5. P. J. Crepeau, “Uncoded and coded performance of MFSK and DPSK in Nakagami fading
channels,” IEEE Trans. Commun., vol. 40, pp. 487-493, Mar. 1992.

6. S.N. Livieratos and P.G. Cottis, “Availability and Performance of single multiple site diversity
satellite systems under rain fades”, European Transactions on Telecommunications, Vol. 12,
No 1, Jan.-Feb., pp. 55-65, 2001.

7. F. Hansen and F. I. Meno, “Mobile fading-Rayleigh and lognormal superimposed,” IEEE Trans.
Veh. Technol., vol. 26, no. 4, pp. 332-335, Nov. 1977.

8. Sklar A (1959) Fonctions de repartition a n dimensions et leurs marges. Publ Inst Statist Univ
Paris 8:229-231.

9. Sklar A (1973) Random variables, joint distributions, and copulas. Kybernetica 9:449-460.

10. Nelsen R. R. 1999. An Introduction to Copulas. Springer, New York.



	Correlated Phenomena in Wireless Communications:A Copula Approach
	Introduction
	Basic Theory of Copulas
	How to Use Copulas in Practice
	Conclusions
	References


