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Abstract By means of special operators and operations, the so-called D-operators
and the star-product, a special algebraic description for Nonlinear Polynomial
Discrete Systems in two dimensions is developed. By using this description we can
check if these nonlinear systems are “similar” or “equivalent” with linear systems,
in the sense that the evolution of both systems, under the same initial conditions, are
related to each other. Different kinds of solutions to the problem seem to determine
different degrees of complexity for the original nonlinear systems.

Introduction

Difference equations or Discrete systems of equations which are in use for the
creation of Models in a variety of domains are, in principle, non-linear. On the other
hand, most of the existing results refer upon linear systems and various linearization
processes are in practice, not always successfully. The reason is that the initial
systems possess complexities and due to this fact, basic characteristics do not inherit
into linearization. It is therefore a necessity to rethink about linearization processes,
their tools and degrees of acceptance for the obtained results. Mathematical Control
Theory provides a unifying framework for posing and studying such problems
[1, 4]. In this respect, we treat equations or systems known as non-linear discrete
systems of polynomial type and deal with non-linearities by using mainly algebraic
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tools based upon the so-called star-product (cf. section “Preliminaries”). The star-
product corresponds to the composition of polynomial functions, in other words to
the substitution of one polynomial into another. This star-product allows to describe
the evolution of the system along naturally defined operations, the D-operator (cf.
section “2D Polynomial Discrete Systems”). This operation is compatible with the
cascade connection of one system with another. In a series of papers, problems of
evolution and stability of those systems have been studied [3, 5, 8]. In the present
note, inspired by similar problems in Control Theory [1, 7], we set down the
problem of equivalence of two such systems, in the framework of D-operators,
and we look for conditions in order to transform one system into a (sometimes
given) equivalent one, with the same future evolution. We deal with the equation
F � T D T � G of D-operators, and we are looking for solutions T, when F and
G are given (cf. section “T -Similarity”). For a specific system F and when the
given system G is a linear one, the problem of Model Complexity arises. It turns
out that in this case a notion of complexity could be introduced, which realizes the
intrinsic non-linearity of the system. The solution T may be a polynomial operator,
a series of operators, a series of series, to be invertible or not and to converge or
not. Each one of these situations determines a type of non-linearity complexity
for the underlying Model (cf. section “Levels of Model Complexity”). Here are
the contents of this work. In the beginning we give the preliminary notion of a
D-operator and develop the algebraic tools which allow the transformation of the
given equation in an algebraic-like object. After that, we deal with the main object
of study, the 2D-Nonlinear Discrete-Polynomial Systems. Initially we define an
equivalence relation among D-operations, which turns out to be the appropriate one
to characterize the evolution of the underlying systems (Theorem 2). This relation
is used to define the notion the T-similarity (Definition 2), between two pairs of
sequences and reduce this algebraically to corresponding D-operators (Theorem 2).
The determination of the operator T in the equation F � T D T � G, requires a lot
of machinery in order to solve the occurring linear-like systems. This is achieved in
an algorithmic manner and in each stage of this process, a set of initial conditions
should be chosen. Theorem 3.4 ensures that under middle restriction, for a given
nonlinear discrete polynomial system the linear T-similarity problem accepts a
series-solution. Along the same considerations, a table for the levels of Model
Complexity is established. All the above situations are illustrated through some
indicative arithmetic examples, which conclude this presentation. Exact proofs as
well as applications to specific problems would be given in a forthcoming work [7].

Preliminaries

In this section we shall work with algebraic tools, they will be used later in order
nonlinear polynomial discrete systems of dimension two to be described. The
cornerstone of our approach is the so-called D-operator. It has been introduced in
[5], and transforms a pair of sequences to a pair of sequences. In order to present
these ideas in a comprehensive way we shall follow a constructive method, starting
from simpler operators and proceeding gradually.
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Consider a sequence x.t/; t 2 Z with x.t/ D 0, for t < 0. Let us further consider
the ıi operator, i D .i1; i2; : : : ; in/ be a given vector of integers, named multi-index.
This operator defines a new sequence as follows:

ıix.t/ D x.t � i1/x.t � i2/ � � � x.t � in/

If i D i is just a positive integer then ıi x.t/ D x.t � i/, which means that ıi

coincides with the well-known shift operator. A special case is the operator ı0,
which leaves a sequence unchanged, i.e. ı0x.t/ D x.t/. It is called the identity
operator. For the sake of completeness we define by convention that ıex.t/ D 1.
Using this action of the ı-operators upon sequences, we can define an external
operation among ı-operators, named addition, as follows: .ıi Cıj/x.t/ D ıix.t/C
ıjx.t/. An internal operation, named star-product, is defined as the composition of
two sequences. Indeed, if w.t/ D ıix.t/, then ıj � ıix.t/ D ıjw.t/ D ıj.ıix.t//. It
can be proved [6] that ık�.ıiCıj/ ¤ ık�ıiCık�ıi. The latter relation indicates that
the set .�; C; �/ of the ı-operators, equipped with the operations of addition and the
star-product, is not a ring. Expressions of the form A D Pw

nD0

P
i2In

aiıi are called
ı-polynomials, where by In we denote the set of multi-indexes with n elements.
By convention I0 D fıeg. The ı-polynomials also work as functions transforming
sequences to sequences as follows: Let A be a ı-polynomial and x.t/ a sequence,
then

Ax.t/ D
wX

nD0

X

iD.i1;:::;in/2In

aix.t � i1/x.t � i2/ � � � x.t � in/

The star-product between ı-polynomials corresponds, as before, to the composition,
in other words to the substitution of one polynomial into another. Indeed, if A,B are
two ı-polynomials, then A � By.t/ D A ı By.t/ D A.B.y.t//. An addition of ı-
polynomials is defined as .ACB/x.t/ D Ax.t/CBx.t/ and the following property
holds: C �ŒACB� ¤ C �ACC �B . All the above are applied straightforward in the
case of ı-series, too, which is nothing but polynomials with an infinite number of
terms. We can also extend the whole methodology so that to act not to a single
sequence but to a pair of sequences. We can achieve that by means of the ı�-
operator. Indeed, let ıi�j be a ı�-operator, i D .i1; i2; : : : ; in/, j D .j1; j2; : : : ; jm/

two multi-indexes. This operator works as follows:

ıi�jŒx.t/; y.t/� D x.t � i1/ � � � x.t � in/y.t � j1/ � � � y.t � jm/

Therefore, the ı-part of the ı�-operator acts exclusive on the first sequence and the
�-part on the second. If either j D feg or i D feg then ıi�eŒx.t/; y.t/� D ıix.t/,
ıe�jŒx.t/; y.t/� D �jx.t/. We can define the addition as follows:

.ıi�j C ıi0�j0/Œx.t/; y.t/� D ıi�jŒx.t/; y.t/� C ıi0�j0 Œx.t/; y.t/�
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Let A D P�
nD0

P�
mD0

P
.i;j/2In�Jm

cijıi�j be a ı�-polynomial. This polynomial acts
on a pair of sequences as follows:

AŒ.x.t/; y.t/� D
�X

nD0

�X

mD0

X

.i;j/2In�Jm

cijx.t � i1/ � � � x.t � in/y.t � j1/ � � � y.t � jm/

If A is a ı�-series, then AŒx.t/; y.t/� is a Volterra series, containing products
among delays of x.t/ and y.t/. In the case of linear polynomials (or linear series),
AŒx.t/; y.t/� is a linear polynomial (or a linear series) of delays of x.t/ and y.t/.
The star-product among ı�-operators (or ı�-polynomials or ı�-series) corresponds
to the composition among maps. Indeed, let B; C; A be ı�-polynomials, if we
substitute the polynomial B into the ı-part of A and C into the �-part of A, we
get a ı�-polynomial which corresponds to the composition, A ı ŒB; C � and is called
the star-product of the polynomials A; B; C and is denoted by A � ŒB; C �.

We present now the D-operators. They are nothing but a pair of ı�-polynomials,
in other words:

D D
�

A

B

�

D
" P

.i;j/2Ia�Ja
aijıi�jP

.i;j/2Ib�Jb
bijıi�j

#

If the above ı�-polynomials are linear, then we speak about a linear D-operator. If
instead of the ı�-polynomials A and B we have the ı�-series A and B , then the
D-operator is a called a D-series.

Definition 1. Let G and F be two D-operators:

G D
" P

.i;j/2Ig;1�Jg;1
g

.1/

ij ıi�j
P

.i;j/2Ig;2�Jg;2
g

.2/

ij ıi�j

#

; F D
" P

.i;j/2If;1�Jf;1
f

.1/

ij ıi�j
P

.i;j/2If;2�Jf;2
f

.2/

ij ıi�j

#

We say that G D F if and only if Ig;k D If;k , Jg;k D Jf;k , g
.k/
ij D f

.k/
ij , k D 1; 2.

In other words they have the same sets of multi-indexes and the same coefficients.

The next operations is a generalization of the foregoing definitions.

Definition 2. Let us have two D-operators:

D1 D
�

A1

B1

�

; D2 D
�

A2

B2

�

their dot-product and star-product are defined as:

D1 � D2 D
�

A1 � A2

B1 � B2

�

; D1 � D2 D
�

A1 � ŒA2; B2�

B1 � ŒA2; B2�

�

We can extend all the above to the case of ı� series, in a similar way.
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2D Polynomial Discrete Systems

In this section we present how we can use the D-operators in order to describe non-
linear polynomial discrete systems. Let us start with polynomial discrete systems
involving only one sequence. They have the form:

x.t/ D
�X

kD1

X

i2Ik
iD.i1;i2;:::;ik /

cix.t � 1 � i1/x.t � 1 � i2/ � � � x.t � 1 � ik/ (1)

with ci 2 R and Ik , a finite set of multi-indexes of dimension k. We say that we
assign to this system a set of initial conditions I D f�0; �1; : : : ; �s�1g if and only
if x.0/ D �0, x.1/ D �1 , : : :, x.s � 1/ D �s�1, where s is the maximum delay
appeared in (1). Starting from these initial conditions and using (1), we can calculate
all the future evolution of the system, that is the quantities x.s/; x.s C 1/; x.s C
2/; : : : Now, by using the ı-polynomial A D P�

kD1

P
i2Ik

iD.i1;i2;:::;ik /

ciıi, we can re-

write the above system, shortly as x.n/ D Ax.n � 1/. By means of this notation
the evolution of the system is described through the star-product. Indeed, it can be
proved [3] that:

Theorem 1. The evolution of the system 1 can be calculated by the formula: x.t/ D
A � A � � � � � A„ ƒ‚ …

n�t imes

x.t �n/ D Anx.t �n/, t D s; sC1; sC2; : : :, under the assumption

that the same set of initial conditions I , has been used.

Let us come now to 2D Polynomial Discrete Systems, that is systems transforming
a pair of sequences to a pair of sequences in a nonlinear polynomial way. Let us
have the sequences x1.t/; x2.t/ and the system:

x1.t/ D
˛0

X

˛D1

ˇ0

X

ˇD1

X

.i;j/2I˛�Jˇ

iD.i1;:::;ir /
jD.j1;:::;j� /

c
.1/

ij x1.t � i1/ � � � x1.t � i	 /x2.t � j1/ � � � x2.t � j�/

x2.t/ D
˛00

X

˛D1

ˇ00

X

ˇD1

X

.i0;j0/2I0˛�J0ˇ
i0D.i 01;:::;i 0r /

j0D.j 0

1 ;:::;j 0

� /

c
.2/

i0j0x1.t �i 0
1/ � � � x1.t �i 0

	 0/x2.t �j 0
1/ � � � x2.t �j 0

�0/ (2)

where Ia; Iˇ; J0
a; J0̌ sets of multi-indexes with ˛ and ˇ elements respectively. We

say that we assign to this system, the following sets of initial values:

I1 D fa0; a1; : : : ; a
�1g ; I2 D fb0; b1; : : : ; b��1g
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if x1.0/ D a0; x1.1/ D a1; : : : ; x1.
 � 1/ D a
�1 and x2.0/ D b0; x2.1/ D
b1; : : : ; x2.� � 1/ D b��1, where 
 and � are the maximum delays of the x1.t/

and x2.t/ sequences correspondingly.
By means of the D-operators we can rewrite (2) as follows:

x.t/ D Gx.t � 1/; x.t/ D
�

x1.t/

x2.t/

�

; G D
�

G1

G2

�

where G1; G2 are proper ı�-polynomials and G the corresponding D-operator.
The next definition ensures that two systems have the same dynamic behaviour.

Definition 3. We say that two systems x.t/ D Gx.t � 1/ and z.t/ D Fz.t � 1/,
F; G, D-operators, are equivalent, if x.t/ D z.t/, t D 1; 2; : : :, whenever they
operate under identical initial conditions.

It is trivial to be seen that this notion is an equivalence relation. The next theorem
combines equivalence of dynamical systems with equality of D-operators.

Theorem 2. [7] Let us have the systems x.t/ D Gx.t � 1/ and y.t/ D Fy.t � 1/.
These systems are equivalent if and only if the D-operators G and F are equal.

Finally, we can obtain a result similar to that of theorem 1, in the case of 2D
Polynomial Discrete Systems. Indeed, the time evolution of the system (2) can be
given by the formula:

�
x1.t/

x2.t/

�

D D � D � � � � � D„ ƒ‚ …
n�t imes

x.t � n/ D Dnx.t � n/; t D s; s C 1; s C 2; : : :

T -Similarity

In this section we establish conditions which guarantee that the output (evolution)
of a system is identically equal with the output of another system, under the same
initial conditions through a proper change of coordinations procedure, obtained by
means of the star-product and D-series [7, 8]. This will help us later to classify the
nonlinear systems with respect to this property.

Let us present now the relevant definitions.

Definition 1. A D-series T is called invertible if we can find another D-series T0,

such that T0 � T D
�

ı0

�0

�
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Definition 2. Two pairs of sequences x.t/ D
�

x1.t/

x2.t/

�

and y.t/ D
�

y1.t/

y2.t/

�

, are

called T -Similar, if there exists a nonsingular (invertible) series T D
�

T1

T2

�

, such

that y.t/ D Tx.t/.

The meaning of the above definition is that by means of T we can go from x.t/

to y.t/ and vice-versa. Let us now see how we can extend this notion in order for
D-operators to be involved.

Definition 3. Let G D
�

G1

G2

�

, F D
�

F1

F2

�

be two D-operators. They are called

T-similar, if we can find a series T D
�

T1

T2

�

, such that:F1 � ŒT1; T2� D T1 � ŒG1; G2�,

F2 � ŒT1; T2� D T2 � ŒG1; G2� or shortly F � T D T � G.

Theorem 1. T-similarity is an equivalence relation among D-operators.

If F and G are T-similar we write F
T� G. Equivalent classes are denoted by ŒF�.

Theorem 2. [7] Let x.t/ D Gx.t � 1/, y.t/ D Fy.t � 1/ be two 2D Polynomial
Discrete Systems. The sequences x.t/; y.t/ are T-similar, if and only if the D-
operators G; F are T-similar.

The most interesting situation is when the D-operator F, is a linear one. In this
case we speak for the linear T -similarity. In other words: Let us suppose that we
have the given nonlinear D-operator G and the linear one L. We want to find a
D-series T, such that L � T D T � G. Now two fundamental questions arise: First,
what is the construction of T ? Is it a simple series (and hence its convergence can be
checked by classical techniques) or series of series (and thus its convergence cannot
be easily checked). Second, how can we obtain the T -series? We shall establish two
theorems dealing with the first question, that of the T -series construction.

• Before we proceed with the calculations we need some terminology.

L� D
1X

aD0

L
.a;1�a/

� ; L
.a;1�a/

� D
�X

iD0

l
.a;1�a/

�;i ıa
i �1�a

i ; � D 1; 2

T� D
1X

aD0

1X

bD0

T
.a;b/

� ; T
.a;b/

� D
X

.i;j/2I�J

t
.a;b/

�;.i;j/ıi�j ; � D 1; 2

G� D
a0X

aD0

b0X

bD0

G
.a;b/

� ; G
.a;b/

� D
X

.i;j/2I�J

g
.a;b/

�;.i;j/ıi�j ; � D 1; 2
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• By Q0 we denote the matrix:

Q0 D

0

B
B
B
@

L
.1;0/
1 � G

.1;0/
1 L

.0;1/
1 �G

.1;0/
2 0

L
.1;0/
2 L

.0;1/
2 � G

.1;0/
1 0 �G

.1;0/
2

�G
.0;1/
1 0 L

.1;0/
1 � G

.0;1/
2 L

.0;1/
1

0 �G
.0;1/
1 L

.1;0/
2 L

.0;1
2 � G

.0;1/
2

1

C
C
C
A

• By A we denote the matrix:

A D

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

l
.1;0/
1;0 � g

.1;0/
1;0 l

.0;1/
1;0 �g

.1;0/
2;0 0

l
.2;0/
1;0 l

.0;1/
2;0 � g

.1;0/
1;0 0 �g

.1;0/
2;0

�g
.0;1/
1;0 0 l

.1;0/
1;0 � g

.0;1/
2;0 l

.0;1/
1;0

0 �g
.0;1/
1;0 l

.1;0/
2;0 l

.0;1/
2;0 � g

.0;1/
2;0

l
.1;0/
1;1 � g

.1;0/
1;1 l

.0;1/
1;1 �g

.1;0/
2;1 0

l
.2;0/
1;1 l

.0;1/
2;1 � g

.1;0/
1;1 0 �g

.1;0/
2;1

�g
.0;1/
1;1 0 l

.1;0/
1;1 � g

.0;1/
2;1 l

.0;1/
1;1

0 �g
.0;1/
1;1 l

.1;0/
2;1 l

.0;1/
2;1 � g

.0;1/
2;1

:::
:::

l
.1;0/
1;� � g

.1;0/
1;� l

.0;1/
1;� �g

.1;0/
2;� 0

l
.2;0/
1;� l

.0;1/
2;� � g

.1;0/
1;� 0 �g

.1;0/
2;�

�g
.0;1/
1;� 0 l

.1;0/
1;� � g

.0;1/
2;� l

.0;1/
1;�

0 �g
.0;1/
1;� l

.1;0/
2;� l

.0;1/
2;� � g

.0;1/
2;�

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

• The pair of equations:

L
.1;0/
i �T

.n;m/
1 CL

.0;1/
i �T

.n;m/
2 �T

.n;m/
i � ŒG

.1;0/
1 ; G

.0;1/
2 ��T

.m;n/
i � ŒG

.0;1/
1 ; G

.1;0/
2 ��

�
X

aCbDk;a¤n;b¤m
a.x1Cy1/Cb.x2Cy2/Dk

a;b;x1;y1;x2;y22N

T
.a;b/
i � ŒG

.x1;y1/
1 ; G

.x2;y2/
2 � D

D
X

aCb<k
a.x1Cy1/Cb.x2Cy2/Dk

a;b;x1;y1;x2;y22N

T
.a;b/
i � ŒG

.x1;y1/
1 ; G

.x2;y2/
2 �; i D 1; 2

with the coefficients of the T
.n;m/
i , n C m D k as unknowns, is called the basic

nonlinear k-degree system.
• The matrix of the coefficients of the term ıi�j, which arises from the left hand

part of the above equation, is denoted by Ci;j.
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• The matrix of coefficients of the above system is denoted by Qk . The corre-
sponding augmented matrix is denoted by Q�

k .T /, where we use this notation to

indicate the dependence from the polynomials T
.a;b/
i ; a C b < k.

• The set of the solutions of the 1-degree system is denoted by � .
• The set S is defined as:

S D fT 2 � W rank.Qk/ D rank.Q�
k .T //; k D 1; 2; 3; : : :g

We present now the main theorem:

Theorem 3. [7] Let L be a given linear two dimension discrete system and G
a polynomial one. Let T be the series that solves the T -similarity problem, i.e.
L � T D T � G. Then,

(i) If jQ0j D 0 and S ¤ ; then the T-series is a simple series.
(ii) If rank.A/ < 4 and det.Ci;j/ ¤ 0 for every i; j, then the T-series is a series of

series.

Let us pass now to the second problem that of calculating the different parts of the
series T. To achieve that we use the next procedure:

• By solving the system:

L
.1;0/
1 � T

.1;0/
1 C L

.0;1/
1 � T

.1;0/
2 D T

.1;0/
1 � G

.1;0/
1 C T

.0;1/
1 � G

.1;0/
2

L
.1;0/
1 � T

.0;1/
1 C L

.0;1/
1 � T

.0;1/
2 D T

.1;0/
1 � G

.0;1/
1 C T

.0;1/
1 � G

.0;1/
2 (3)

L
.1;0/
2 � T

.1;0/
1 C L

.0;1/
2 � T

.1;0/
2 D T

.1;0/
2 � G

.1;0/
1 C T

.0;1/
2 � G

.1;0/
2

L
.1;0/
2 � T

.0;1/
1 C L

.0;1/
2 � T

.0;1/
2 D T

.1;0/
2 � G

.0;1/
1 C T

.0;1/
2 � G

.0;1/
2 (4)

we get the linear parts of the requested series. Since we have to do with a
homogeneous system the relation jQ0j D 0 guarantees that we get an infinite
number of polynomial solutions (T .1;0/

i ; T
.0;1/
j are polynomials). Otherwise a

series solution is obtained (T .1;0/
i ; T

.0;1/
j are series).

• Now, we go to the quadratic part. It consists from the next equations:

L
.1;0/
1 � T

.2;0/
1 C L

.0;1/
1 � T

.2;0/
2 D T

.1;0/
1 � G

.2;0/
1 C T

.0;1/
1 � G

.2;0/
2 C

CT
.2;0/
1 � G

.1;0/
1 C T

.0;2/
1 � G

.1;0/
2 C T

.1;1/
1 � ŒG

.1;0/
1 ; G

.1;0/
2 � (5)

L
.1;0/
2 � T

.2;0/
1 C L

.0;1/
2 � T

.2;0/
2 D T

.1;0/
2 � G

.2;0/
1 C T

.0;1/
2 � G

.2;0/
2 C

CT
.2;0/
2 � G

.1;0/
1 C T

.0;2/
2 � G

.1;0/
2 C T

.1;1/
2 � ŒG

.1;0/
1 ; G

.1;0/
2 � (6)
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L
.1;0/
1 � T

.0;2/
1 C L

.0;1/
1 � T

.0;2/
2 D T

.1;0/
1 � G

.0;2/
1 C T

.0;1/
1 � G

.0;2/
2 C

CT
.2;0/
1 � G

.0;1/
1 C T

.0;2/
1 � G

.0;1/
2 C T

.1;1/
1 � ŒG

.0;1/
1 ; G

.0;1/
2 � (7)

L
.1;0/
2 � T

.0;2/
1 C L

.0;1/
2 � T

.0;2/
2 D T

.1;0/
2 � G

.0;2/
1 C T

.0;1/
2 � G

.0;2/
2 C

CT
.2;0/
2 � G

.0;1/
1 C T

.0;2/
2 � G

.0;1/
2 C T

.1;1/
2 � ŒG

.0;1/
1 ; G

.0;1/
2 � (8)

L
.0;1/
1 � T

.1;1/
1 C L

.0;1/
1 � T

.1;1/
2 D T

.0;1/
1 � G

.1;1/
1 C T

.0;1/
1 � G

.1;1/
2 C

CT
.1;1/
1 � ŒG

.0;1/
1 ; G

.1;0/
2 � C T

.1;1/
1 � ŒG

.1;0/
1 ; G

.0;1/
2 � (9)

L
.0;1/
2 � T

.1;1/
1 C L

.0;1/
2 � T

.1;1/
2 D T

.0;1/
2 � G

.1;1/
1 C T

.0;1/
2 � G

.1;1/
2 C

CT
.1;1/
2 � ŒG

.0;1/
1 ; G

.1;0/
2 � C T

.1;1/
2 � ŒG

.1;0/
1 ; G

.0;1/
2 � (10)

Relations (5), (6) arise by comparing the ıi ıj terms, (7), (8) by comparing the
�i �j terms and (9), (10) the ıi �j terms. Substituting the solutions we have already

found from the linear part we get the quadratic quantities T
.2;0/
i ; T

.0;2/
j ; T

.1;1/

k . We
repeat the procedure for the cubic terms and so on. This method will finally endow
us with the desired series T.

An interesting result, connected with the above iteration, is the next corollary:

Corollary 1. [7] If the linear equations, i.e. (3),(4) accept a series as solution, then
the T is a series of series.

Levels of Model Complexity

Complex systems appears in many fields of contemporary science, and different
communities have different aspects about complexity and how they ranked it [1, 2].
In this section we shall try to approach this issue for 2D Polynomial Discrete
Systems, using the mathematical tools developed previously. Specifically, we have
described a procedure for checking the equivalence of a nonlinear discrete system
with a linear one. This was achieved via a D-series, named T. The construction of
T determines the kind of the model complexity or how “hard” the nonlinearity is.
If, for instance, T converges, then we speak for a “light” complexity, otherwise for
a strong one. If T is a simple series or consists from an infinite sum of series (series
of series), this will influence the kind of complexity since checking convergence in
the latter case is a very difficult task. The nature of L also plays an important role.
If, for instance, it is stable, then the level of complexity is less than the level of
complexity which corresponds to an unstable L. We summarize the different cases
of complexity degrees in the next table:
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T-Series Complexity degree

L Stable L Unstable
A polynomial 0 0C
An invertible, convergence, simple series 1 1C
A convergence simple series 1.5 1.5C
A simple series 2 2C
An invertible, convergence, series of series 3 3C
A convergence series of series 3.5 3.5C
A series of series 4 4C

Examples

Example 1. Let us have the linear system:

x.t/ D x.t � 1/ C 2x.t � 2/ C 1

2
y.t � 1/

y.t/ D 7

2
x.t � 1/ � 2y.t � 1/ C 2y.t � 2/

We want to see how this will be equivalent to another linear one. This is just to
understand the procedures and to see how our approach fits with well-known cases.
The linear system “target”, will be:

u.t/ D �3

2
u.t � 1/ C 2u.t � 2/ � 3v.t � 1/

v.t/ D �u.t � 1/ C 1

2
v.t � 1/ C 2v.t � 2/

Using the D-operators, we get the next descriptions:

�
x.t/

y.t/

�

D
�

ı0 C 2ı1 C 1
2
�0

7
2
ı0 � 2�0 C 2�1

� �
x.t � 1/

y.t � 1/

�

�
u.t/

v.t/

�

D
� � 3

2
ı0 C 2ı1 � 3�0

�ı0 C 1
2
�0 C 2�1

� �
u.t � 1/

v.t � 1/

�

and shortly x.t/ D Gx.t � 1/, Ox.t/ D LOx.t � 1/. We want to find series T1; T2, such
that the following equations hold:

L � T D T � G )
�

L1 � ŒT1; T2� D T1 � ŒG1; G2�

L2 � ŒT1; T2� D T2 � ŒG1; G2�
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For the sake of the computation we arbitrarily set: T1 D w1;0ı0 C w1;1ı1 C h1;0�0 C
h1;1�1, T2 D w2;0ı0 C w2;1ı1 C h2;0�0 C h2;1�1; we could of course, take any other
number of terms for the series T1; T2. By equating the coefficients and solving the
corresponding system of equations we get:

w1;0 D h1;0 � 6h2;0 ; w1;1 D h1;1 � 6h2;1

w2;0 D �2h1;0 C 5h2;0 ; w2;1 D �2h1;1 C 5h2;1

and thus a transformation which solves the problem is:

T1 D .h1;0 � 6h2;0/ı0 C .h1;1 � 6h2;1/ı1 C h1;0�0 C h1;1�1

T2 D .�2h1;0 C 5h2;0/ı0 C .�2h1;1 C 5h2;1/ı1 C h2;0�0 C h2;1�1

with hij 2 R. Since the T-similarity problem in this case accepts a polynomial
solution, and L is unstable, we say that the original linear system has a complexity
degree equal to 0+. If we could solve the problem with a stable L, then complexity
degree would be equal to 0.

Example 2. Let us consider now the nonlinear system:

x.t C 1/ D x.t/ C y.t/ � x2.t/

y.t C 1/ D x.t/

we want to examine if it can be equivalent with the next linear system (the “target”)
and thus to find its complexity degree.

z.n C 1/ D z.n/ � z.n � 1/ C w.n/ C 1

2
.1 � p

5/w.n � 1/

w.n C 1/ D z.n/ C 1

2
.1 C p

5/z.n � 1/ C w.n � 1/

Using the D-operators, we get the next descriptions: x.t C 1/ D Gx.t/, Ox.t C 1/ D
LOx.t/ where:

G D
�

ı0 C �0 � ı2
0

ı0

�

; L D
�

ı0 � ı1 C �0 C 1
2
.1 � p

5/�1

ı0 C 1
2
.1 C p

5/ı1 C �1

�

First of all we see that jQ0j ¤ 0 and thus the problem accepts a simple series as a
solution. This means that it will be of complexity degree either 1 or 3. To calculate
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the series T1; T2, such that the following equations hold: L � T D T � G we follow
the procedure of the previous section and we take:

T1 D .� C A/ı0 C
�

�1

2
.1 C p

5/� C � � 1

2
.1 C p

5/A C B

�

ı1 C A�0

C
�

� � 1

2
.1 C p

5/A C B

�

�1 C 1

2
Aı2

0 C 1

2
��2

0 C .A C �/ı0�0

�1

6
Aı3

0 � 1

6
��3

0 C 1

2
.A C �/ı0�2

0 C 1

2
.3A C �/ı2

0�0 C � � � � � �

T2 D Aı0CBı1C��0C��1C1

2
�2

0 C1

2
.A��/�2

0CAı0�0�1

6
�ı3

0 C 1

6
.� � A/�3

0

C1

2
Aı0�2

0C
�

1

2
AC�

�

ı2
0�0C � � � � � �

where A; B; �; � arbitrary parameters take real values. If we are able to find
values for these parameters which can guarantee the convergence of the series, the
complexity degree will be equal to 1C.
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