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Preface

Mathematics has been vital to the development of civilization. From ancient to
modern times mathematics has been fundamental to advances in science, engineer-
ing, and philosophy. Informatics, as an applied scientific area, represents a leading
and broadly oriented base of technology, within key products of contemporary and
future engineering trends in many scientific fields of knowledge, such as automation,
machinery, computers, mechanics, robotics, telecommunications, electronic compo-
nents, high tech, industrial science, and technical knowledge.

There is a major link between mathematics and informatics. These are disci-
plines with the same basic properties and interactions that positively affect the
development of both disciplines. Thanks to informatics, mathematical approaches
and mathematical methods established themselves in many other disciplines. The
interdisciplinary applications of mathematics and informatics are the subject of the
present book.

The applications presented here are sometimes difficult to classify mathemati-
cally, since tools from several areas of mathematics may be applied. We focus on
these applications not by discussing the nature of their discipline but rather their
interaction with mathematics.

The 26 papers of the book are independent of each other and they cover many
scientific subjects. These are an outgrowth of the 2nd International Conference on
Applications of Mathematics and Informatics in Military Sciences (2nd AMIMS),
April 12–13, 2013. Hellenic Military Academy, and bring together a wide variety
of mathematical methods with applications to science, engineering, and technology.
Also studied is the theoretical background required for methods, algorithms, and
techniques used in various applications as well as the direction of theoretical results
in these applications. Open problems and future areas are also highlighted.

The book presents several results with an extensive discussion on applied
operations research, scientific computing and applications, simulation of operations,
logistics chain, game theory and allocation strategies, cryptology and computa-
tional number theory, security, wireless communications, statistical modeling and
applications, invisibility regions and regular meta-materials, unmanned vehicles,
modern radar techniques/SAR imaging, satellite remote sensing, coding, geospatial

v



vi Preface

problems, and robotic systems. Furthermore, this work will prove useful as a
reference in the respective subjects and as a basis for further study and research.

The key features of the book are the following:

• Working groups meeting in composite sessions to address a wider spectrum of
topics, which are of interest to their associated composite group.

• Developing courses of action or methodologies to reconcile issues identified.
• Cooperating prospects between various scientific and technology communi-

ties/converging a range of interdisciplinary objects with a large width of applica-
tions.

We hope that the book will be especially useful to graduate students and
specialists in the interdisciplinary applications of mathematics and informatics, as
well as to readers who are working in science and engineering.

Vari Attikis, Greece Nicholas J. Daras



Foreword

Applications of Mathematics and Informatics in Science and Engineering includes
both research and survey papers on applied operations research, scientific computing
and applications, simulation of operations, logistics, game theory and allocation
strategies, cryptology and computational number theory, security, wireless com-
munications, statistical modeling and applications, invisibility regions and regular
meta-materials, unmanned vehicles, modern radar techniques, satellite remote
sensing, coding, geospatial problems, and robotic weapon systems.

The book will be especially useful to graduate students and specialists in the
interdisciplinary applications of mathematics and informatics, as well as to all those
who are interested in science and engineering.
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Parametric Design and Optimization
of Multi-Rotor Aerial Vehicles

C. Ampatis and E. Papadopoulos

Abstract This work addresses the problem of optimal selection of propulsion
components for a multi-rotor aerial vehicle (MRAV), for a given payload, payload
capacity, number of rotors, and flight duration. Considering that the main compo-
nents include motors, propellers, electronic speed controllers (ESC), and batteries,
a steady state model is developed for each component using simplified analysis.
Based on technical specifications of commercially available batteries, motors and
ESCs, component functional parameters identified earlier were expressed as a
function of component size, in terms of an equivalent length. Propeller models
were developed using available experimental data. Airframe dimensions and total
weight were expressed as a function of propeller diameter, number of rotors,
and maximum thrust. Using Matlab’s “fmincon” function, a program was developed
which calculates the optimal design vector using the total energy consumption and
vehicle diameter as objective function. Using the developed program, the influence
of the payload and of the number of rotors on the design vector and the MRAV
size was studied. The results obtained by the program were compared to existing
commercial MRAVs.

Keywords Multi-rotor aerial vehicle (MRAV) design • Parametric design •
Constrained optimization • Energy and size minimization
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2 C. Ampatis and E. Papadopoulos

Introduction

Recently, Multi-Rotor Aerial Vehicles (MRAV) are encountered in an increasing
number of military and civilian applications. A particular advantage an MRAV
has over other aerial vehicles is its unique ability for vertical stationary flight
(VTOL). Micro and mini MRAVs with payload capabilities of up to 100 g and
2 kg respectively [1] offer major advantages when used for aerial surveillance and
inspection in complex and dangerous indoor and outdoor environments. In addition,
improvements and availability in cost-effective batteries and other technologies are
rapidly increasing the scope for commercial opportunities.

In most MRAV configurations, rotors are in the same plane and symmetrically
fixed on the airframe. The number of rotors is always even in order to balance
the torque produced by the rotors. An exception is the trirotor, where one rotor
is placed on a tilting mechanism in order to balance the excess toque. Additional
configurations include MRAVs with multiple pairs of coaxial-counter rotating
rotors. However, researchers push the limits by studying different configurations
where the rotors are not in the same plane but placed arbitrarily in 3D space [2], or
even having the ability of thrust vectoring [3, 4].

In any configuration, an MRAV design consists of basic components, such as
batteries, electric motors, and propellers, which constitute the vehicle propulsion
system. One of the most critical stages in MRAV design is the proper motor–
propeller matching. The electric motor market offers a large range of motors
for almost any application, thus an MRAV designer does not need to design the
motor. Propellers used for MRAV applications are taken from the remote controlled
(RC) aircraft market, therefore they are designed for RC aircrafts. However, an
MRAV hovers for a great percent of the total flight time, therefore needs propellers
designed for maximum hover efficiency. Recently, the MRAV industry produced
such propellers but in a limited range. Recent studies resulted in optimized designs
of micro and mini rotorcraft vehicle propellers that are easy to manufacture, such as
curved plate plastic propellers, [5, 6].

Apart from optimizing each MRAV component separately, an MRAV designer
would benefit from an automated design method that would take into account all
design requirements to yield an optimized combination of commercially available
components. Although studies on automated design methods exist [7, 8], no
method exists that takes into account both the propulsion system modeling and the
functional parameters of existing components.

In this paper, we propose an MRAV design method, which selects the optimum
propulsion system components. Given the MRAV design requirements such as
payload, payload capacity, number of rotors, and flight duration, a Matlab program
calculates the propulsion system components and MRAV size which leads to an
energy-efficient design, or to a design with the smallest size. To achieve this we use
simplified models for each component, and expressions of component functional
parameters as a function of component size, using their commercially available
technical specifications.
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Component and System Modeling

The components to be modeled include the electric motors, the electronic speed
controller, batteries, propellers, and the airframe. Combining the simplified models
will lead to a system model for the MRAV steady state operation.

Electric Motor Model

The electric motors used in MRAV applications are outrunner Brushless Direct
Current (BLDC) ones. This is due to their high efficiency and high torque constant
.KT /, which allows direct propeller coupling (no gearbox). Although a BLDC
motor is a synchronous 3-phase permanent magnet motor, it can be modeled
as a permanent magnet DC motor. This leads to a classic three-constant model,
see Fig. 1.

In Fig. 1, Vk is the supply voltage (V), i˛ is the current through the motor coils
(A), e˛ is the back-electromotive force (EMF) (V), R˛ is the armature resistance
(�), M is the torque produced by the motor (Nm), and ! is its shaft angular velocity
(rad/s). The equations describing the motor are:

Vk D ea C iaRa (1)

ea D Ke! D KT! D N=KV (2)

whereKe is the motor back EMF constant (Vs/rad),KT is the motor torque constant
(Nm/A), N is the motor rpm, and KV is motor speed constant (rpm/V). The KT is
related to KV by:

Ke D KT D 30

�

1

KV

(3)

The total torque produced by the motor is:

M D KT ia (4)

Fig. 1 Electric motor model
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The output torque is:

Mmot D KT .ia � i0/ (5)

where i0 is the no-load current. The motor input power is:

Pin D Vkia (6)

the motor output power is:

Pmot D Mmot! D KT .ia � i0/ ! D ea .ia � i0/
D .Vk � iaRa/ .ia � i0/ (7)

and the motor speed in rpm is:

N D .Vk � iaRa/KV (8)

Given the parametersKT ,R˛ , and i0 we can calculate the performance of the motor.

Electronic Speed Controller Model

Electronic speed controllers regulate motor speed within a range depending on the
load and battery voltage. The important quantity here is the ESC power losses,
caused by its power MOSFETs. The major parameters that affect ESC power losses
are the transistor drain-to-source “ON” state resistance RDS.ON/, transistor charac-
teristics on transient operation, and the frequency switching the transistor “ON” and
“OFF.” Power losses at full throttle, when transistors are fully “ON,” depend only
on RDS.ON/, while at partially opened throttle, when the transistors switch between
“ON” and “OFF,” additional power losses occur.

The range of RDS.ON/ lies between 3 and 15m� and its value is proportional
to transistor size. Considering that ESC power losses are a small portion of input
power, and the fact that ESC manufacturers do not include in ESC documentation
the type of transistors used, we model the ESC as a constant value resistor of
RDS.ON/ D 5m�. BLDC motor ESCs use three pairs of transistors to manage the
three phase current, so the total resistance of the ESC will be:

RESC D 3RDS.ON/ D 0:015� (9)

Another important quantity of ESC is the maximum current iESC they can handle.
This appears as a design constraint.
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Battery Model

Due to their high energy density and discharge rate, MRAVs use Lithium Polymer
(LiPo) batteries. A LiPo pack consists of identical LiPo cells each with a nominal
voltage of 3.7 V. Parallel connection of battery packs raises the battery total capacity,
while keeping the nominal total voltage the same. Therefore, the nominal total
voltage of a LiPo battery is:

Vb D nc3:7 (10)

where nc is the number of cells connected in series in a battery pack. The battery has
an internal total resistance Rbat;tot. When connected to a load its output voltage is:

Vb;out D Vb � iRbat;tot (11)

where i is the load current.
Each cell has internal resistance Rsc, capacity Csc, and maximum discharge rate

DRc . The total battery capacity is:

Ctot D npCsc (12)

where np is the number of battery packs connected in parallel. Each cell’s power is:

Psc D 3:7DRcCsc (13)

Each cell’s energy is:

Esc D 3:7Csc (14)

A battery’s total power is:

Pbat;tot D Pscncnp (15)

while its total energy is:

Ebat;tot D Escncnp (16)

To calculate Rbat;tot we apply Kirchoff’s law to a battery consisted of np identical
packs connected in parallel, each of which consists of nc identical cells connected
in series. Each battery pack has an internal resistance:

Ri D ncRsc; i D 1; : : : ; np (17)

The battery total resistance is:

Rbat;tot D
npY

jD1
Rj

, npX

iD1

0

@ 1

Ri

npY

jD1
Rj

1

A D .ncRsc/
np

np .ncRsc/
np�1 D

ncRsc

np
(18)
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Propeller Model

Propellers used on MRAVs are mostly the same propellers used in remote controlled
(RC) airplanes. Propeller performance is described by its thrust T (N), power
P (W), and torque M (Nm). To model performance in static conditions, we use
manufacturer data such as propeller diameterDp and its pitch p at 75 % of its radius.
Performance quantities are then related to propeller speed, diameter, and pitch. This
is achieved through a number of coefficients.

The thrust coefficient is given by:

CT D T
.
� .N=60/2 D4 (19)

where T is thrust (N), � is air density (kg=m3), N is propeller speed (rpm), and D
is the propeller diameter (m).

The power coefficient is given by:

CP D P
.
� .N=60/3 D5 (20)

where P is power (W).
The torque coefficient is given by:

CM DM
.
� .N=60/2 D5 (21)

where M is torque (Nm). Using the fundamental relation between power, torque,
and speed we get:

CM D CP=2� (22)

These coefficients are next related to propeller diameter and pitch. Using the
Blade Element Momentum Theory (BEMT) and a series of assumptions [9], we get
the following equations for thrust and power coefficients:

CT D �3

4

1

2
�Cla

 
�0:75

3
� 1
2

r
4

�3
CT

2

!
(23)

CP D 2

�2
C
3=2
Tp
2
C 1

8
�Cd0 (24)

where � is propeller solidity, Cl˛ is the slope of blade airfoil lift coefficient–
incidence angle curve, �0:75 is propeller pitch angle at 75 % of the propeller radius
R, and Cd0 is a blade’s airfoil drag coefficient for zero lift.

To further simplify this model to a restricted propeller size range and geometry,
we make the following assumptions. Considering that we refer to geometrically
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scaled propellers, propeller solidity � will be constant regardless of propeller size.
Additionally, if the propeller size range is no more than one order of magnitude,
then the Reynolds number does not change dramatically, so we can assume that the
aerodynamic quantities Cl˛ and Cd0 are constant. Consequently, thrust and power
coefficients are only a function of propeller pitch angle �0:75. From the definition of
geometric pitch we get:

p D 2�R tan � (25)

and therefore, the geometric pitch at 0.75R will be:

p0:75 D 2� 3
4
R tan �0:75 D � 3

4
Dp tan �0:75 (26)

Solving Eq. (26) for �0:75 we get:

�0:75 D arctan
�
4=3� � p0:75=Dp

�
(27)

Consequently, using Eqs. (23), (24), and (27) we can relate CT and CP to the ratio
p0:75=Dp only. Normally, �0:75 is in the range of 5–30, resulting a p0:75=Dp range of
0.2–1.35. In this region the function CT .p0:75=Dp/ is linear and this can be shown
through a numerical solution. Additionally, by observing Eq. (24) we see that CP is
proportional to CT 3=2, therefore it is proportional to .p0:75=Dp/

3=2, and this can be
also shown through a numerical solution in the p0:75=Dp range.

Consequently, we get the simplified expressions for thrust and power coefficients:

CT D k1
�
p
ı
Dp

�C k2 (28)

CP D k3
�
p
ı
Dp

�3=2 C k4 (29)

where constants k1 to k4 can be calculated using experimental data of geometrically
scaled propellers.

Note that to obtain energy efficient propellers at hover, the ratio CT =CP must
be as high as possible. Solving Eqs. (23) and (24) or (28) and (29), we see that this
occurs when the ratio p=Dp is as low as possible, i.e., for a given propeller diameter
the lowest pitch yields more efficient propellers.

System Model

The system model results from the combination of the propulsion system model and
the equilibrium of forces acting on the vehicle. The propulsion system consists of
the battery and nmot triples of ESC, and of the motors and propellers connected in
parallel, as shown in Fig. 2.
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Fig. 2 Propulsion system

Fig. 3 Propulsion system physical model

The physical model of the propulsion system shown in Fig. 3 combines each
component model and outputs the total thrust produced by the nmot rotors. Assuming
that all the rotors have the same speed, the current drawn will be the same for each
motor.

Applying Kirchoff’s law to the circuit of Fig. 3 we get:

Vk C iRESC D Vb � nmotiRbat;tot (30)

ea D Vb � i .Ra CRESC C nmotRbat;tot/ (31)

The rotor speed is given by:

N D ŒVb � i .Ra CRESC C nmotRbat;tot/�KV (32)

The above equation is valid only at full throttle, when the ESC transistors are fully
on; otherwise, at partially open throttle, the ESC output voltage is less than the
maximum, thus the motor voltage will be less than Vk .
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Equation (32) shows that the motor equivalent resistance is:

Rtot D Ra CRESC C nmotRbat;tot (33)

In this paper we examine the case where the vehicle during a total flight time ttot

has two operational modes. (a) A maximum thrust mode for a percentage ATP of the
total flight time ttot, in which motors are at full throttle state producing the maximum
static thrust, and (b) a hover mode, in which the vehicle hovers for the rest of the
flight time. At maximum thrust, the vehicle has the ability to accelerate with an
instantaneously maximum acceleration, therefore it has the ability to lift its total
weight fw times.

(a) Maximum thrust mode: The rotor speed is:

Nacc D ŒVb � iaccRtot� KV (34)

which is equivalent to the following:

Nacc D ŒVk;acc � iaccRa�KV (35)

where Vk;acc is the motor supply voltage equal to the maximum ESC output
voltage.

A balance of forces, with a the acceleration, yields:

˙F D mtota) nmotTacc �mtotg D mtota D .fw � 1/mtotg

) nmotCT � .Nacc=60/
2 D4

p D fwmtotg
(36)

The maximum instantaneous linear acceleration will be:

a D .fw � 1/ g (37)

The total mass of the vehicle is:

mtot D mbat;tot C
�
mmot Cmp CmESC

�
nmot Cmfrm Cmpl (38)

wherembat;tot is the battery total mass,mmot is the motor mass,mp is the propeller
mass, mESC is the ESC mass, mfrm is the airframe mass, and mpl is the payload
mass.

The equation of motor–propeller power is:

Pm D P ) fVb � iaccRtotg .iacc � i0/ D CP� .Nacc=60/
3 D5

p (39)

The motor–propeller torque balance yields:

Mm DM ) KT .iacc � i0/ D CP� .Nacc=60/
2 D5

p=2� (40)
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The system input power is:

PIN;acc D Vbiaccnmot (41)

while the system energy consumption is:

EIN;acc D PINttotATP (42)

(b) Hover mode: In this mode, the motor speed is:

Nhov D ŒVk;hov � ihovRa�KV (43)

where Vk;hov is ESC output voltage that satisfies Vk;hov < Vk;acc.

The balance of forces yields:

˙F D 0) nmotThov D mtotg)
nmotCT � .Nhov=60/

2 D4
p D mtotg

(44)

The equation of motor–propeller power is:

Pm D P )

fVk;hov � ihovRag .ihov � i0/ D CP� .Nhov=60/
3 D5

p (45)

while the motor–propeller torque balance gives:

Mm DM )

KT .ihov � i0/ D .1=2�/CP � .Nhov=60/
2 D5

p (46)

The system input power is:

PIN;hov D Vbihovnmot (47)

and the system energy consumption is:

EIN;hov D PIN;hovttot .1 � ATP / (48)

Battery total power is constrained by:

PIN;acc � Pbat;tot (49)

while the battery total energy is given by:

EIN;hov CEIN;acc D Etot D Ebat;tot (50)
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Parameterization

The system equations given in the previous section depend on the functional
parameters, which define components performance. Here, these parameters are
expressed as a function of component length. This length is taken as the cubic
root of a component’s volume (cubic length) and is referred to as the equivalent
length. We do the same with propellers using available experimental measurements.
Furthermore, we develop equations that correlate airframe size as a function of
propeller diameter, number of rotors, and maximum thrust.

Electric Motor

The electric motors we chose for parameterization are the outrunner BLDC motors
from AXI manufacturer. The choice is based on the technical specifications available
and on the reliability and performance of these motors.

Here, the equivalent length of each motor is related to the outer dimensions of
the motor and not to its stator dimensions. The parameters we want to relate to the
equivalent length are the motor armature resistanceR˛ , torque constantKT , no load
current i0, and motor mass mmot. Additionally, motor maximum sustained current
(or current capacity) imax and motor maximum speed Nm;max are parameters that
limit motor performance and must be related to equivalent length.

Consequently, we need to develop five equations as functions of equivalent
length. After investigation of various correlations of these parameters to the
equivalent length, we concluded the following functions due to their optimal fit
to manufacturer data. Below, R2 refers to coefficient of determination, and lmot to
motor equivalent length (m).

KT =Ra D 2:6533 � 104l3:6032mot ; R2 D 0:902 (51)

K2
T

ı
Ra D 1:7548 � 105l5:4833mot ; R2 D 0:94 (52)

M0 D KT i0 D 5:7721 � 102l3:1888mot ; R2 D 0:908 (53)

Mmax D KT .imax � i0/ D 4:5004 � 105l4:2222mot ; R2 D 0:96 (54)

Nm;max D .nc;max3:7 � i0Ra/KV )
Nm;max D 25604e�17:687lmot ; R2 D 0:35 (55)

where nc;max is the maximum number of battery cells in series connection that is
proposed by manufacturer.
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To relate motor mass to motor equivalent length, we calculated the mean motor
density �mot:

�mot D 2942 kg
ı

m3 (56)

Using (56), the motor mass is:

mmot D �motl
3
mot (57)

Electronic Speed Controller

We chose to parameterize ESCs from JETI due to the availability of technical
specifications and their performance. Although the ESC is modeled as a constant
resistance, additional parameters are needed that relate its operational limit and mass
properties to its equivalent length lESC (m). These parameters are the ESC maximum
sustained current iESC and ESC mean density �ESC.

Using ESC technical specifications, correlations of maximum sustained current
iESC and ESC equivalent length lESC are obtained as:

iESC D 8:4545 � 106l3:2451ESC ; R2 D 0:88 (58)

The mean ESC density calculated as:

�ESC D 2580 kg
ı

m3 (59)

yielding the ESC mass as:

mESC D �ESCl
3
ESC (60)

Battery

We chose to parameterize batteries from Kokam for the same reasons as before. The
parameters to be related to battery total equivalent length lbat include total power
Pbat;tot, total energy Ebat;tot, total resistance Rbat;tot, and mass mbat.

Battery technical specifications concern single battery cells of 3.7 V nominal
voltage. However, we need information for any combination of parallel and series
connected cells. We assume that np cells connected in parallel result in a larger
single cell with volume Bvol, power Pbat, energy Ebat, and internal resistance Rbat.

Assuming that the battery consists of npnc identical cells of volume Bvol;sc each,
then an equivalent battery will consist of nc equivalent cells each of which has
volume:

Bvol D npBvol;sc (61)
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Therefore, each equivalent cell volume will be:

Bvol D l3bat

ı
nc (62)

Applying curve fitting to manufacturer data, the following equation for single cell
internal resistance was obtained:

Rsc D 2:84668 � 10�7B�0:951154
vol;sc (63)

Correspondingly, the equivalent cell internal resistance is:

Rbat D 2:84668 � 10�7B�0:951154
vol ; R2 D 0:95 (64)

Using (18), (63), and (64), the battery total resistance is:

Rbat;tot D ncRsc
ı
np D nc2:84668 � 10�7 �Bvol

ı
np
��0:951154.

np )

Rbat;tot D ncRbatn
�.1�0:951154/
p � ncRbatn

�0:05
p (65)

However, np will never be large; therefore using the approximation np0:05, battery
total resistance will be:

Rbat;tot D ncRbat (66)

Applying curve fitting to manufacturer data, we observe that cell energy and
power are proportional to its volume. Therefore, using the mean value of the ratios
cell energy to cell volume and cell power to cell volume yield:

Pbat D 7:0899 � 106Bvol (67)

Ebat D 9:0833 � 108Bvol (68)

Using (67) and (68), the battery total power and energy are:

Pbat;tot D ncPbat (69)

Ebat;tot D ncEbat (70)

The mean battery cell density is calculated as:

�bat D 1907:8 kg
ı

m3 (71)

Yielding the battery total mass:

mbat D �batBvolnc (72)
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Propeller

The propellers we chose to parameterize are taken from APC. The parameters to
be related to propeller diameter Dp and geometric pitch p are the thrust and power
coefficient, CT and CP respectively.

Previously, it was shown through Eqs. (28) and (29) that for zero flight velocity,
CT and CP are functions of the ratio p=Dp . The constants k1 through k4 in these
equations depend on propeller design and the Reynolds number. Here, we are
interested in propellers with diameter of 80–500 mm, therefore we use experimental
data for these dimensions, so as to satisfy Reynolds number.

Experiments on commercially available propellers used in remote controlled
aircrafts were conducted at the University of Illinois, Urbana-Champaign (UIUC)
in a wind tunnel [10]. Here, data regarding SPORT type APC propellers are used.
From the CT and CP measurements for these propellers, those that refer to static
conditions are used here. We observed that CT and CP are not affected much by
propeller speed; therefore we calculated mean values of CT and CP for various
speeds. These measurements concern propeller diameter of 7 in to 14 in. Finally, the
CT and CP were correlated to the ratio p=Dp , obtaining the following functions:

CT D 0:0266
�
p=Dp

�C 0:0793;R2 D 0:31 (73)

CP D 0:0723
�
p=Dp

�3=2 C 0:0213;R2 D 0:83 (74)

The propeller mass is related to propeller diameter Dp as:

mp D 0:97573D2:5741
p ; R2 D 0:98 (75)

Number of Rotors

The number of MRAV rotors can be even or odd. MRAVs with odd number of
rotors need an additional degree of freedom (tilting) for one rotor, so that it can
vector its thrust and regulate excess torque produced by the rotors. This requires
extra mechanisms (revolute joint) and an extra actuator to move the rotor. To take
this into account, we assume that these extra mechanisms increase vehicle mass with
a percentage fM;odd of the mass of one of the rods holding the motors. Additionally,
actuator power increases total power with a percentage fP;odd of one motor power.
Reasonable values for these coefficients are fM;odd D 0.5 and fP;odd D 0.01.
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Fig. 4 MRAV airframe components

Airframe

Here, we are interested in the dimensions and mass properties of an MRAV airframe
of simple design, with respect to the number of rotors nmot, propeller diameter Dp ,
and airframe loading during flight.

A common rotor configuration is assumed. All rotors are in the same plane and
motors are equidistant lying on a circle with its center coincident to vehicle center.
The number of rotors is in the range of 3–8.

To approximate airframe mass its components and material must be assumed.
A reasonable design consists of nmot rods to hold the motors, and a central part of
the three circular plates holding the rods and enclosing the battery and electronics.
Additionally, airframe material is carbon fiber due to its high strength to weight
ratio, and the accessories like screws and glue are a percentage ffr;ac of each rod
mass. An illustration of such an airframe is presented in Fig. 4.

Airframe dimensions are defined by propeller diameter and vehicle loading
during flight. On Fig. 5, airframe dimensions are shown. These include propeller
diameter Dp , rotor spacing rs , central disk-rotor spacing cs , center disk radius Rrc,
motor mounting position radius Rrm, and radius Rrob of the circle containing the
whole vehicle. Note that the radius Rrm is the same for each rod. For a given
propeller diameter, the dimensions rs and cs define the rest airframe dimensions.

The spacing rs is important for a number of reasons. Primarily, if rs is too
small, there is a danger of adjacent rotor collision during flight due to rod
elasticity. As was shown experimentally in [2] and [6], if rs is too small, then
propeller performance deterioration due to adjacent propellers airflow interaction is
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Fig. 5 Airframe dimensions

negligible. Furthermore, rs cannot be too small because then the central disk will be
very small to accommodate the battery and control unit. Additionally, rs cannot be
the same for all multi-rotors, i.e., a quadrotor must have a larger rs than a hexarotor.
For the same reason, cs must vary for different number of rotors.

Based on the design trials with respect to the above explanation, rs and cs were
expressed as a function of propeller radiusRp . Central disk thickness was expressed
as a reasonable function of Rrc. For the calculation of carbon tubes’ diameter and
thickness, we developed equations that take into account material strength, tube
maximum deflection, and tube loading. These equations allow calculation of the
airframe mass.

Component Optimal Selection

In the previous sections, component performance was related to component equiv-
alent length. Next, a method is developed for optimal selection of these lengths,
which are parameters of the design vector. This vector minimizes an objective
function, which is either the vehicle total energy, or the vehicle diameter Drob.

Design Parameters

The design requirements are described by a number of parameters set by the
designer. These include the payload mpl, the total flight time ttot, the payload
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capacity described by fw indicating how many times the vehicle can lift its own
weight, and the factor ATP which indicates the percentage of total flight time that
the vehicle is at maximum thrust mode.

The design vector consists of the number of battery cells nc in series, the
equivalent battery length lbat, the equivalent motor length lmot, the equivalent
ESC length lESC, the propeller diameter Dp , the ratio p=Dp , and the number of
rotors nmot.

Design Vector Domain

The design vector domain results from the size limits of the components that were
parameterized earlier. Outside these regions the functions developed earlier may not
be valid. Hence, the design vector domain is:

0:01 � lbat � 0:15 .m/ (76a)

0:01 � lmot � 0:08 .m/ (76b)

0:005 � lESC � 0:05 .m/ (76c)

0:05 � Dp � 0:5 .m/ (76d)

0:2 � pıDp � 1:5 .m/ (76e)

1 � nc � 10 (76f)

Calculation Procedure

In every optimization step, the requirements vector .mpl; ttot; fw; ATP / is constant,
while the design vector .nc; lbat; lmot; lESC;Dp; p=Dp; nmot/ changes until the mini-
mization of objective function is reached.

The calculation procedure follows the following sequence. The battery nominal
voltage Vb is calculated using Eq. (10). Using Eq. (36) we get:

Nacc D 60
 

fwmtotg

nmotCT �D4
p

!1=2
(77)

Using Eq. (40) we get:

iacc D KV CP �
N2

acc

603
D5
p C i0 (78)

Using Eq. (35) we get:

Vk;acc D Nacc

KV

C iaccRa (79)
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The motor maximum speed without load is:

Nmax D ŒVb � i0Rtot� KV (80)

Using Eq. (41), the maximum total input power PIN;acc is calculated, while using
Eq. (42) the total input energy at maximum thrust mode EIN;acc is calculated. Using
Eq. (44) we get:

Nhov D 60
 

mtotg

nmotCT �D4
p

!1=2
(81)

Using Eq. (46) we get:

ihov D KV CP �
N2

hov

603
D5
p C i0 (82)

Using Eq. (43) we get:

Vk;hov D Nhov

KV

C ihovRa (83)

The total input energy at hover EIN;hov is obtained using Eq. (48), while using
Eq. (50) the total input energy Etot is found.

Constraints

The constraints result from the independent variable physical consistency. They are
given as follows:

Vacc � Vb � 0;Nacc �Nmax � 0; imax � iESC � 0
iacc � imax � 0; ihov � iacc � 0; PIN;acc � Pbat;tot � 0 (84)

Etot �Ebat;tot � 0;�iacc � 0;�imax � 0

Optimization Methodology

For the calculation procedure, a Matlab program was developed that employs the
“fmincon” function (minimum of constrained nonlinear multivariable function)
which uses one target deterministic constrained optimization method for nonlinear
multivariable objective function.
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Our target was to determine the most energy-efficient design or the smallest one.
Hence, the objectives were the minimization of battery energy Ebat:tot or vehicle
diameter Drob, respectively.

In order to check that “fmincon” will not be trapped in local minimums, we
also developed a program that scans the whole design vector domain, using nested
loops. We observed no differences between these methods after some test runs.
Consequently, “fmincon” calculates the total minimum for our objective functions.

Design Scenarios

Here we carry out some test runs in order to study the influence of payload and
number of rotors on the design vector and the MRAV size. In all design scenarios
below, the requirement parameters are set to: ttot D 15min; fw D 2;ATP D
0:1; ffr;ac D 0:15; fM;odd D 0:5, and fP;odd D 0:01. Finally, we compare our
program results to commercially available MRAVs designs.

Study of Parameters Influence

Payload Influence

In this case payload changes from 0 to 1.5 kg, while the number of rotors is constant
and equal to 4.

In Fig. 6 the influence of payload on the design vector is shown. In general, we
observe that as the payload increases, component equivalent length increases due to
power increase. As expected, the ratio p=Dp is always constant and takes the lowest
value permitted, indicating that for a given propeller diameter, the propeller pitch
should always be the lowest. In addition, total energy minimization yields a more
efficient but a larger design than that obtained by minimizing vehicle size. However,
these differences are not large.

In Fig. 7, the influence of payload on total mass and on battery mass is illustrated.
We observe that the battery mass is always lower for the minimization of total
energy. However, vehicle total mass is not sensitive to the two objective functions.
This happens because a smaller vehicle has smaller and therefore lighter motors and
rotors. Additionally, observing the battery mass chart, we can say that battery mass
increases linearly with payload. For the quadrotor, we can say that we need 1.5 kg
batteries for 1 kg payload, and because the flight time is 15 min, then we can say
that for 1 kg payload we need 100 g batteries for every minute of flight.
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Fig. 6 Influence of payload on the design vector for the number of rotors equal to 4. Objective
functions comparison
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Fig. 7 Influence of payload on the total and battery mass for the number of rotors equal to 4.
Objective functions comparison

Number of Rotors Influence

In this case, the number of rotors changes from 3 to 8, while the payload is constant
and equal to 1 kg.

In Fig. 8, the influence of rotors number on the design vector is presented. We
observe that for energy minimization, the best design has 8 rotors, but this is true
for a payload of 1 kg, see Fig. 9. Additionally, we observe the expected decrease in
components equivalent length when the number of rotors increases.

Test Cases

To determine whether the developed design methodology is valid and yields designs
close to reality, we compare program results to two existing commercial MRAVs.
The first is the quadrotor Walkera HM Hoten X Quadcopter, a small MRAV
designed for a payload less than 100 g. The other is the Octocopter X88-J2, a large
MRAV designed for aerial photography and for payloads up 1.5 kg, see Fig. 10.

Table 1 presents the quadrotor comparison, with data retrieved from [11]. The
payload includes the electronics and control unit. We observe that the program
yields results very close to reality. The difference lies on battery configuration
and mass. The existing vehicle uses two battery cells in series with total energy
2 � 3:7V � 1Ah D 7:4Wh, while the optimized needs 1 � 3:7V � 1:6Ah D 6Wh.
Therefore, the optimized vehicle seems to be more energy efficient.

In Table 2 an octorotor comparison is presented, with data taken from [12]. Here
we observe that the optimized vehicle is 8 % heavier but 25 % smaller. Also, the
optimized vehicle batteries have double capacity because there are two battery cells
in series. Thus, the optimized vehicle has total energy 2�3:7V�21:4Ah D 159Wh,
while the existing vehicle has total energy 4 � 3:7V � 10:6Ah D 157Wh. We see
that the total energy is almost the same for both the designs.
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Fig. 8 Influence of the number of rotors on the design vector for payload equal to 1 kg. Objective
functions comparison
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Fig. 9 Influence of payload on the number of rotors for minimum energy

Fig. 10 (Left) The quadrotor Walkera HM Hoten X Quadcopter. (Right) The Octocopter X88-J2

Table 1 Optimized and actual Walkera HM Hoten X Quadcopter comparison

Model Walkera Hoten X Quadcopter Optimization Difference

#Motors 4 4 0
Payload capacity (fw) 2 2 0
Total flight time (min) 10 10 0
Total mass (kg) 0.332 0.283 �0.05
Payload (kg) 0.1 0.100 0.00
Vehicle mass (kg) 0.269 0.237 �0.03
Battery capacity (Ah) 1 1.6 0.6
Battery #cells 2 1 �1
Battery mass (kg) 0.064 0.046 �0.02
Propeller diameter (m) 0.186 0.184 0.00
Vehicle diameter (m) 0.500 0.510 0.01
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Table 2 Optimized and actual Octocopter X88-J2 comparison

Model X88-J2 Octocopter Optimization Difference

#Motors 8 8 0

Payload capacity (fw) 1.51 1.51 0

Total flight time (min) 17.5 17.5 0

Total mass (kg) 3.11 3.23 0:12

Payload (kg) 1.13 1.13 0:00

Vehicle mass (kg) 2 2.10 0:10

Battery capacity (Ah) 10.6 21.4 10:8

Battery #cells 4 2 �2
Battery mass (kg) 1.11 1.22 0:11

Propeller diameter (m) 0.305 0.24 �0:07
Vehicle diameter (m) 1.205 0.91 �0:29

Conclusions

This work focused on the parametric design and optimization of a multi-rotor
aerial vehicle (MRAV). Using simplified models of propulsion system components
such as motors, propellers, electronic speed controllers (ESC), and battery, a
total model for an MRAV was created and the whole system performance at
hovering and at maximum thrust was described. Additionally, based on the technical
specifications of commercially available batteries, motors, and ESCs, component
functional parameters were expressed as a function of component size, in terms of
an equivalent length. As a result, we were able to calculate system performance
as a function of a design vector which consists of each individual component
equivalent length. A Matlab program was developed which calculates the optimal
design vector using the “fmincon” function. The total energy consumption and the
vehicle diameter were considered as objective functions. As a result, for a given
payload, payload capacity, number of rotors, and flight duration, the optimal size
of each component that minimizes energy or MRAV size was calculated. Finally,
using the developed program, we were able to study the influence of the payload,
and of the number of rotors, on the design vector and the MRAV size. The results
obtained by the program were compared to existing commercial MRAVs, showing
that the developed methodology yields designs close to reality. In addition, this
methodology provides an MRAV designer with the tools to improve an existing
design.
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Scattering Relations for a Multi-Layered Chiral
Scatterer in an Achiral Environment

Christodoulos Athanasiadis, Evangelia Athanasiadou, Sotiria Dimitroula,
and Eleftheria Kikeri

Abstract In this work we study scattering of a plane electromagnetic wave by
a multi-layered chiral body in free space. In the interior of the scatterer exists
a core which is either a perfect conductor or a dielectric. We obtain integral
representations of the scattered fields which consist of a chiral and an achiral
counterpart incorporating the boundary and transmission conditions. We introduce
a dimensionless version of the scattering problem and we prove the reciprocity
principle and a general scattering theorem for the far-field patterns. Finally, we
define Herglotz functions and we state the general scattering theorem in terms of
the far-field operator which expresses the superposition of the far-field pattern.

Introduction

This paper is concerned with the reciprocity principle and general scattering
theorem for the far-field patterns corresponding to the scattering of time-harmonic
electromagnetic plane waves upon a multi-layered chiral scatterer with either a
perfectly conducting core or a dielectric. This type of scatterer is consisted of a finite
number of layers with a homogeneous isotropic chiral medium. On the surfaces of
this nested body, transmission conditions are imposed which express the continuity
of the medium and the balance of forces acting on it.

A chiral object is a body that cannot be brought into congruence with its mirror
by translation and rotation. Chirality is common in a variety of naturally occurring
and manmade objects. DNA in a molecular scale, helices, medicine drugs and air
defence industry are some examples in which chirality appears. From a technical
point of view, chirality is introduced into the classical Maxwell equations via the
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Drude-Born-Fedorov constitutive relations in which the electric and magnetic field
are connected through a new material parameter, the well known chirality measure.
A large part of the work on scattering problems in chiral media exists in the book of
Lakhtakia [20] as well as in [21, 22].

Twersky had made a major contribution to this research area with his papers
[23–25] where he proved reciprocity, scattering and optical theorems for acoustic
and electromagnetic scattering. Solvability and reciprocity principle for conduc-
tive boundary value problems and for the far-field patterns corresponding to an
impedance boundary value problem have been proved in [10] and [11] respectively.
Reciprocity relation and scattering theorems when the incident wave is a Herglotz
function have been proved in [15, 16] for acoustic and electromagnetic scattering.
DeFacio developed the impedance theory for electromagnetic scattering by an obsta-
cle with a finite non-intersecting boundaries in [19]. In [5, 6] acoustic scattering
amplitudes were constructed for a multi-layered scatterer, and scattering theorems
were proved for time-harmonic electromagnetic waves in a piecewise homogeneous
medium respectively. Multi-layered ellipsoidal scatterers with sound-soft and -hard
core were used in [3] and [4] in which the first three low-frequency coefficients
were obtained under ellipsoidal geometry. Dassios et al. proved reciprocity relations
and general scattering theorems for far-field patterns in spherical coordinates in
elasticity in [18]. Scattering relations for a homogeneous chiral obstacle have been
proved in [8] while low-frequency electromagnetic scattering theory for a multi-
layered chiral obstacle was developed in [2], where the scattering problem was
reduced to an iterative sequence of problems in potential theory and the leading
term approximation of the electric far-field pattern was constructed.

In section “Formulation”, we proceed by formulating the corresponding scatter-
ing problems for the electric field. In section “The Electric Far-Field Pattern”, we
construct the electric far-field patterns and we determine their chiral and achiral
part. In section “Scattering Relations”, we restate the problem in terms of a
dimensionless version and we prove the reciprocity, general scattering theorem and
optical theorem. Finally in section “Herglotz Functions”, we introduce Herglotz
functions and the far-field operator and we restate a general scattering theorem in
terms of Herglotz functions.

Formulation

Let D be a multi-layered chiral scatterer which is a bounded, closed, convex subset
of R

3 with a C2-boundary S0. The interior of D is divided by means of closed
and non-intersecting C2-surfaces into layers Dj with Sj D @Dj \ @DjC1; j D
1; 2; : : : ; N . There is one normal unit vector On.r/ at each point of any surface
Sj pointing at Dj while the surface Sj�1 surrounds Sj . Each of the layers, Dj ,
is occupied by a homogeneous,isotropic,chiral medium with electric permittivity
�j , magnetic permeability 	j and chirality measure ˇj for j D 1; 2; � � �N and
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vanishing conductivity. The layerDNC1 is the core of the scattererD, within which
is the origin and its surface, SN satisfies the perfect conductor boundary condition
or the transmission conditions. The exterior D0 of the scatterer is an infinite
homogeneous isotropic achiral medium with electric permittivity "0, magnetic
permeability 	0 and vanishing conductivity. We assume that all physical parameters
are real numbers.

We will consider the scattering of time-harmonic electromagnetic plane waves
by a multi-layered chiral scatterer D. Let .Ei ;Hi / be a time-harmonic incident
electromagnetic plane wave and .Es;Hs/ be the corresponding scattered field.
The total electromagnetic field .E0;H0/ in D0 is given by

E0 D Ei C Es; (1)

H0 D Hi CHs : (2)

The scattered field .Es;Hs/ satisfies the Silver-Muller radiation condition [15] while
the total electromagnetic exterior field .E0;H0/ satisfies the Maxwell equations
in D0,

r � E0 D i!	0H0; (3)

r �H0 D �i!"0E0; (4)

where ! is the angular frequency. In each layer Dj j D 1; � � �N , the total field
satisfies the modified Maxwell equations, in view of Born-Drude-Fedorov [22]
constitutive relations

r � Ej D i!	j

2j

�2j
Hj C ˇj 
2jEj ; (5)

r �Hj D �i!"j

2j

�2j
Ej C ˇj 
2jHj ; (6)

where 
2j D
�2j

1 � �2j ˇ2j
and �2j D !2"j	j are real physical parameters [22]. Note

that the solutions of (3)–(6) are divergence free.
By eliminating the magnetic field, in (3)–(6) we conclude to the following modified
Helmholtz type equation

r � r � Ej � 2ˇj 
j 2r � Ej � 
j 2Ej D 0 in Dj for j D 0; � � �N; (7)

where ˇ0 D 0 in free space and 
0 D �0 D !p"0	0 is the free space wave number
in the exterior region D0 of the scatterer. It is easy to see that the following relation
holds valid [9],
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�2j D
"j	j

"0	0
�20 ; j D 0; � � �N: (8)

The electric scattered field satisfies the Silver-Muller radiation condition,

lim
r!1

h
r � r � Es.r/C i�0rEs.r/

i
D 0; (9)

uniformly in all directions Or 2 S2. We introduce the transmission conditions,

On � Ej D On � EjC1; (10)

On �Hj D On �HjC1; (11)

on j D 0; 1; � � � ; N � 1. Substituting the magnetic field in (11) from (5) we get

On�r � Ej D "jC1
"j


2j


2jC1
On�r � EjC1 C 
2j

�
ˇj � "jC1

"j
ˇjC1

�
On� EjC1: (12)

We assume that the core of the multi-layered scatterer is a perfect conductor with
boundary condition,

On � EN .r/ D 0; on SN ; (13)

or the core is a dielectric with transmission conditions

On � EN D On � ENC1; (14)

On � r � EN D "NC1
"N


2N

2NC1

On � r � ENC1 C 
2N
�
ˇN � "NC1

"N
ˇNC1

�
On � ENC1:

(15)

From now on, the problem that consists of (7), (9),(10), (12) and (13) will be denoted
as .P1/ and the problem that consists of (7), (9), (10), (12), (13) and (14), (15) will
be denoted as .P2/. Note that the above transmission problem is well posed and has
been studied in [1, 7, 14]. The same problem can be, also, studied by eliminating
the electric field in (3)–(6) following an analogous procedure as the one of the
electric field.

In this work we will focus on the far-field patterns and the proofs of reciprocity
and general scattering theorems.

The Electric Far-Field Pattern

The electric far-field pattern E1.Or/ is related to the scattered electric field Es and it
is given by the relation [17]
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Es.r/ D E1.Or/h.�0r/CO
�
1

r2

�
; r !1 (16)

uniformly in all directions where h.x/ D eix=.ix/ is the zeroth-order spherical
Hankel function of the first kind. In order to obtain the electric far-field pattern
we construct an integral representation of the total exterior electric field where
the transmission and boundary conditions are incorporated. We have the following
integral representation of the scattered field

Es.r/ D
Z

S0

Œ.r � Es.r0// � . On � Q� .r; r0//

� . On � Es.r0// � .rr0 � Q� .r; r0//�ds.r0/; r 2 D0 (17)

where Q� .r; r0/ is the free-space dyadic Green’s function

Q� .r; r0/ D .QIC ��2
0 rr/

ei�0jr�r0j

4�jr � r0j (18)

with QI D Oe1 Oe1COe2 Oe2COe3 Oe3 is the identity dyadic and Oej ; j D 1; 2; 3 are the cartesian
unit vectors. Inserting (1) in (17) and taking into account that Ei is a solution of the
Eq. (7) for j D 0 we obtain

E0.r/ DEi .r/C
Z

S0

Œ.r � E0.r0// � . On � Q� .r; r0//

� . On � E0.r0// � .rr0 � Q� .r; r0//�ds.r0/: (19)

Making use of the transmission conditions (10), (12) on S0, (19) is equal to

E0.r/ DEi .r/ � "1

2
0

"0

2
1

Z

S0

On � Œ.r � E1.r0// � Q� .r; r0/�ds.r0/

C 
20
"1

"0
ˇ1

Z

S0

On � ŒE1.r0/ � Q� .r; r0/�ds.r0/

�
Z

S0

On � ŒE1.r0/ � .rr0 � Q� .r; r0//�ds.r0/: (20)

We apply successively the dyadic form of the divergence theorem, taking into
account that Ej and Q� are solutions of (7) inDj ; j D 1; � � �N andD0, respectively;
we introduce the transmission conditions (10), (12) and we obtain (20).

If the core is a perfect conductor, we use the boundary condition (13) and we
obtain that

E0 D Ei .r/C Esc.r/C Esa.r/ (21)
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where the indexes in Esc and Esa go for the chiral and the achiral parts of the electric
scattered field Es , respectively and are given by

Esc.r/ D�
"N

"0
ˇ2N �

2
0

Z

SN

.r � EN .r0// � . On � Q� .r; r0//ds.r0/

� �20
NX

jD1

"j

"0
ˇ2j

Z

Dj

.r � Ej .r0// � .rr0 � Q� .r; r0//dv.r0/

� �20
NX

jD1

"j

"0
ˇj

Z

Dj

.r � Ej .r0// � Q� .r; r0/dv.r0/

� �02
NX

jD1

"j

"0
ˇj

Z

Dj

Ej .r0/ � .rr0 � Q� .r; r0//dv.r0/; r 2 D0 (22)

and

Esa.r/ D
	0

	N

Z

SN

.r � EN .r0// � . On � Q� .r; r0//ds.r0/

C �20
NX

jD1

�
1 � "j

"0

�Z

Dj

Ej .r0/ � Q� .r; r0/dv.r0/

C
NX

jD1

�
	0

	j
� 1

�Z

Dj

.r � Ej .r0// � .rr0 � Q� .r; r0//dv.r0/ r 2 D0:

(23)

The volume integrals express the contribution of each layer to the exterior field,
whereas the surface integrals express the impact of the core.

If the core is dielectric, then in relations (22), (23) the surface integrals on SN
disappear and the volume integrals Dj have an extra term for j D N C 1.

Using the asymptotic relations

jr � r0j D r � Or � r0 CO
�
1

r

�
; r !1; (24)

r � r0

jr � r0j D OrCO
�
1

r

�
; r !1; (25)

in (18) we get the following asymptotic forms

Q� .r; r0/ D i�0

4�
.QI � OrOr/h.�0r/e�i�0 Or�r0 CO

�
1

r2

�
; r !1; (26)

rr0 � Q� .r; r0/ D �20
4�
.QI � Or/h.�0r/e�i�0 Or�r0 CO

�
1

r2

�
; r !1: (27)
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If the core is a perfect conductor then substituting (26)–(27) into (22)–(23) we obtain

E1.Or/ D E1
c .Or/C E1

a .Or/ (28)

where

4�E1
c .Or/ Di�30

"N

"0
ˇ2N

Z

SN

.r � EN .r0// � . On � .QI � OrOr//e�i�0 Or�r0

ds.r0/

C �40
NX

jD1

"j

"0
ˇ2j

Z

Dj

.r � Ej .r0// � .QI � Or/e�i�0 Or�r0

dv.r0/

C i�30
NX

jD1

"j

"0
ˇj

Z

Dj

.r � Ej .r0// � .QI � OrOr/e�i�0 Or�r0

dv.r0/

C �40
NX

jD1

"j

"0
ˇ2j

Z

Dj

Ej .r0/ � .QI � Or/e�i�0 Or�r0

dv.r0/; (29)

and

4�E1
a .Or/ D� i�0

	0

	N

Z

SN

.r � EN .r0// � . On � .QI � OrOr//e�i�0 Or�r0

ds.r0/

� i�30
NX

jD1

�
1 � "j

"0

�Z

Dj

Ej .r0/ � .QI � OrOr/e�i�0 Or�r0

dv.r0/

� �20
NX

jD1

�
	0

	j
� 1

�Z

Dj

.r � Ej .r0// � .QI � Or/e�i�0 Or�r0

dv.r0/: (30)

If the core is dielectric, then the far-field patterns E1
c , E1

a are given by (29), (30)
where again the surface integrals do not exist and the volume integrals sum up to
j D NC1. Summarizing the previous results we conclude to the following theorem.

Theorem 1. The electric far-field patterns of the scattering problems .P1/ and .P2/
are given by (28) where E1

c and E1
a are the chiral and achiral counterparts of the

corresponding far-field patterns.

Scattering Relations

In this section we will prove scattering theorems for the scattering problems .P1/
and .P2/. In order to do so, it is more convenient to restate the problem considering
a dimensionless version [8] scaling all lengths using ˛, a typical length scale for the
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chiral scatterer. Therefore the scattering problems .P1/ and .P2/ take the following
form [8]

r � E0 � i.�0˛/H0 D 0 ;r �H0 C i.�0˛/E0 D 0; in D0 (31)

while in the layers Dj ; j D 1; 2; � � �N

r � Ej � i.�j ˛/
�

j

�j

�2
Hj � ˇj˛
2jEj D 0;

r �Hj C i.�j ˛/
�

j

�j

�2
Ej � ˇj˛
2jHj D 0;

(32)

forj D 1; � � �N . The transmission conditions become

�j On � Ej D On � EjC1;

ıj On �Hj D On �HjC1
(33)

on Sj j D 0; 1; � � �N � 1, where �0 D !
p
	0"0, �j D

r
	j

	jC1
and ıj D

r
"j

"jC1
are real. If the core is dielectric, the Eq. (32) are valid for j D N C 1 as well while
the transmission conditions (33) are also valid for j D N as well.

The scattered field is now a pair .Es; Hs/ and satisfy the Silver-Muller radiation
condition

Or �Hs C Es D o.1
r
/; r !1: (34)

We can consider that all lengths have been scaled using ˛, and thus we can set
˛ D 1. It is also more helpful to introduce the fields U and U0 where U0 is the dual
of U. More precisely,

if U D E then U0 D iH (35)

if U D H then U0 D �iE: (36)

Therefore, the relation (32) can be rewritten as follows

r � Uj � 
2j ˇjUj �

2j

�j
U

0

j D 0; j D 0; � � �N: (37)

and Eq. (31) for the exterior region D0 becomes

r � U D �0U0

;

r � U
0 D �0U;

(38)
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where .U0/0 D U. The corresponding far-field pattern .E1; H1/ is given by

Es.r/ D E1.Or/h.�0r/CO
�
1

r2

�
; r !1;

Hs.r/ D H1.Or/h.�0r/CO
�
1

r2

�
; r !1;

(39)

uniformly in all directions Or 2 S2 in the unit sphere. We assume that the incident
electromagnetic wave is also dimensionless and it has the form [15]

Ei .rI Od;p/ D i.�0˛/p ei�0 Od�r;

Hi .rI Od;p/ D Od � Ei .rI Od;p/;
(40)

setting ˛ D 1. The unit vector Od describes the direction of propagation, the vector p
the polarization and they connect with the relation Od �p D 0. Henceforth, the depen-
dence of the total, scattered and far-field patterns on the direction of propagation and
polarization will be denoted by .E0.rI Od;p/; H0.rI Od;p//, .Es.rI Od;p/; Hs.rI Od;p//
and .E1.rI Od;p/; H1.rI Od;p//, respectively.

Moreover, we have the following notation for the total fields Em;n, Hm;n form D
1; 2 and n D 0; � � �N . The indexm goes for the first or the second total field and the
index n for the layer Sj of the multi-layered scatterer. Instead of the electromagnetic
pair .E; H/, we shall use the fields U and U0 as defined in (35)–(36) for the total,
incident, scattered and far-field pattern. In addition, we introduce the Twersky [25]
notation

fU1; U2gS0 WD
Z

S

Œ. On � U1/ � U0

2 � . On � U2/ � U0

1�ds: (41)

We will proceed by stating and proving the reciprocity principle.

Theorem 1. The far-field pattern U 1 satisfies the reciprocity principle

q � U1.OrI Od;p/ D p � U1.�OdI �Or;q/ (42)

for all Od; Or 2 S2 and p;q 2 C
3 with p � Od D q � Or D 0.

Proof. In view of bilinearity of the form (41) we get

fU1;0;U2;0gS0 DfUi
1;U

i
2gS0 C fUi

1;U
s
2gS0

C fUs
1;U

i
2gS0 C fUs

1;U
s
2gS0 : (43)

Using the transmission conditions and applying successively the Gauss’ theorem we
take
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fU1;0;U2;0gS0 D
r
	N

	0

"N

"0
fU1;N ;U2;N gSN : (44)

For the problem .P1/ taking into account the boundary condition of the core which
is now transformed into

On � UN D 0 on SN ; (45)

we have

fU1;0;U2;0gS0 D 0: (46)

If the core is dielectric, we apply again Gauss’ theorem for U1;N , U2;N inDNC1 and
we conclude to (46). Applying again the Gauss’ divergence theorem on the exterior
region and taking into account the Maxwell equations for the exterior domain (31),
setting ˛ D 1, we take for the incident part

fUi
1;U

i
2gS0 D 0: (47)

We consider a sphere Sr centered at the origin with radius r large enough to include
the scatterer in its interior. Applying the Gauss theorem in the exterior domain
we have

fUs
1;U

s
2gS0 D fUs

1;U
s
2gSr : (48)

LettingR!1 we pass to the radiation zone and using the radiating condition (34)
the surface integral on S0 becomes zero,

fUs
1;U

s
2gS0 D 0: (49)

Substituting the previous relations in (43) we get

fUi
1;U

s
2gS0 D �fUs

1;U
i
2gS0 (50)

which is equal to

fUi
1;U

s
2gS0 D fUi

2;U
s
1gS0 : (51)

Taking into account the integral representations of the electric and magnetic fields
as in (6.24) in [15] and that q � Or we get

q � U1.OrI Od;p/ D �i
4�
fUs.�I Od;p/; Ui .�I �Or;q/gS0 (52)
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Combining it with (51) we get

q � U1.OrI Od;p/ D � i

4�
fUs.�I �Or;q/;Ui .�I �Od;p/gS0

D p � U1.�OdI �Or;q/: (53)

which proves the theorem. �

Theorem 2. The far-field pattern U1 satisfies the relation

q �U1.OrI Od;p/C Np �U1. OdI Or;q/ D � 1

2�

Z

S2
U1.Or0I Od;p/ �U1.Or0I Or;q/ds.r0/ (54)

for all Od; Or 2 S2 and p, q 2 C
3 with Od � p D Or � q D 0.

Proof. In view again of the bilinearity of (41) we obtain

fU0.�I Od;p/;U0.�I Or;q/gS0 DfUi .�I Od;p/;Ui .�I Or;q/gS0
C fUi .�I Od;p/;Us.�I Or;q/gS0
C fUs.�I Od;p/;Ui .�I Or;q/gS0
C fUs.�I Od;p/;Us.�I Or;q/gS0 (55)

The term

fUi .�I Od;p/;Ui .�I Or;q/gS0 D 0 (56)

becomes zero from the divergence theorem and the fact that Ui .r0I Od;p/, Ui .r0I Or;q/
are solutions of (37).

The total fields

fU0.�I Od;p/;U0.�I Or;q/gS0 D 0 (57)

following the procedure of Theorem (1) and taking into account the fact that all the
physical parameters of the scattering problem are real numbers.

Moreover, from (52) we obtain

fU i
1 .�I Od;p/;Us

2.�I Or;q/gS0 D 4�i Np � U1. OdI Or;q/ (58)

and

fUs
1.�I Od;p/;Ui

2.�I Or;q/gS0 D 4�iq � U1.OrI Od;p/: (59)
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For the scattered fields we consider a sphere Sr centered at the origin with radius
r, large enough to include the chiral scatterer in its interior. Applying the Gauss
theorem in the region exterior to S0 and interior to Sr , we obtain

fUs.�I Od;p/;Us.�I Or;q/gS0 D fUs.�I Od;p/;Us.�I Or;q/gSr (60)

Letting r ! 1, we can use the asymptotic forms (39) for the scattered fields.
Taking into account that On � U01 D iU1 we conclude that

fUs.�I Od;p/;Us.�I Or;q/gS0 D
Z

S1

jh.�or 0/j2.2iU1.Or0I Od;p/ � U1
2 .Or0I Or;q//ds.r0/

D 2i
Z

S2
U1.Or0I Od;p/ � U1.Or0I Or;q/ds.Or0/ (61)

Substituting (56), (57), (58), (59) and (61) into (55) we conclude to (54). �

Theorem 3. The following relation holds:

� D �4�Re. Np � U1. OdI Od;p// (62)

Proof. Since D0 is achiral, we can follow the same procedure as in [25] where we
can see that

� D
Z

S2
jU1.Or; Od;p/j2ds.Or/ (63)

Using Theorem 2 and substituting Or D Od and p D q we conclude to relation (62).�

Herglotz Functions

Next, we will prove a general scattering theorem when the incident field is a
Herglotz pair with kernel g. Such a pair is of the form

Ug.r/ D i�0
Z

S2
g. Oq/ ei�0 Oq�rds. Oq/;

U
0

g.r/ D ��0
Z

S2
Oq � g. Oq/ ei�0 Oq�rds. Oq/;

(64)

where g 2 L2.S2/ and g � Oq D 0. We note that these functions given by (64) are
solutions of (38) [15, 16]. When the incident field is a Herglotz pair of the form,

Ui
g.r/ D

Z

S2
Ui .rI Oq; g. Oq//ds. Oq/; (65)
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then the corresponding scattered field and far-field pattern are given by

Us
g.r/ D

Z

S2
Us.rI Oq; g. Oq//ds. Oq/;

U1
g .Or/ D

Z

S2
U1.OrI Oq; g. Oq//ds. Oq/:

(66)

Theorem 1. For the problems .P1/ and .P2/ the following scattering relations
are valid

fUs
g; Ui

hgS0 D �4�i < U1
g ; h >; (67)

fUs
g; Us

hgS0 D �2i < U1
g ; U1

h > (68)

where <;> denotes the inner product in L2.S2/.

Proof. Relation (67) comes from (52) while relation (68) comes from (61) when the
incident field is Ui

h .
Next, we define the far-field operator that corresponds to the far-field pattern U1

as follows F W L2.S2/! L2.S2/,

.F g/.Or/ D
Z

S2
U1.OrI Oq; g. Oq//ds. Oq/ (69)

with far-field equation F g D U1
g [15]. The far-field operator is very important

in solving inverse scattering problems. Many methods have been developed in
this direction as the dual space method [14], linear sampling method [12] and
factorization of the far-field operator [13]. The following corollary derives from
the general scattering Theorem 2 considering superpositions of the incident and
scattered fields on the unit sphere. �

Corollary 1. The electric far-field operator F corresponding to the problems .P1/,
.P2/ satisfies the following relation

< Fg;h > C < g;Fh >D � 1

2�
< Fg;Fh > (70)

Proof. In order to arrive at this result we apply theorem (2) for p D g. Od/ and q D
h.Or/; and we integrate over the unit sphere twice following an analogous procedure
as in [8, 16]. �
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Conclusions

The above study can lead to results for simple scatterers (perfect conductor or a
dielectric) when the physical parameters satisfy "j D "jC1; 	j D 	jC1; ˇj D
ˇjC1 for j D 0; � � � ; N � 1 [3]. Moreover, if the physical parameters were complex
numbers then, in general scattering Theorem 2 and in Corollary 1, there would
be an extra term that would derive from the total fields. In optical Theorem 3 the
extra term describes the absorbing cross section [8]. We should also note that if
chirality measure is zero, ˇ D 0, then we conclude to already known results for the
achiral case.
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In the magneto-hydrodynamic approximation, the flow of a viscous incompress-
ible homogeneous ideal plasma with kinematic viscosity  > 0 can be described in
˝ in terms of two 3-vector fields, the plasma velocity u D u.t; x/, and the magnetic
field B D B.t; x/.

We also assume that the plasma has a scalar pressure p D p.t; x/, a mass density
�, a (finite) constant electric conductivity � , a magnetic constant permeability � ,
and a current density j D j.t; x/. We will examine two cases j D ��1curl.B/ and
j D �u � B , imposing the boundary condition u j @X D 0.

Consider that the first density is valid in a general quasi-stationary approximation
model of the Maxwell equations while the second one requires that the elec-
tric field e must be very weak, and this model describes the evolution of the
electromagnetic field in magneto-hydrodynamics. Following a common practice in
magneto-hydrodynamics, we eliminate e.

Assuming a modification of Ohm’s law based on some physical reasoning, u and
B fulfill equations of the following form:

@u

@t
� �u D �.u � r/u � 1

�
grad p C 1

�
j � B � f1 (1)

@B

@t
� 1

��
�B D curl .u � B/ � .��/�1f2 (2)

div.u/ D 0; div.B/ D 0 (3)

where fi D fi .t/, i D 1; 2 are suitable continuous functions and � is the Laplace
operator.

Now we introduce the transformation magnetic field z D B � b with z � n D 0

(n denotes the outward unit normal to @X ), where b is an undisturbed magnetic field
b in assuming the case that b is generated by currents outside of NX . Adopting all the
currents are slowly variable, so that @b

@t
D 0, b is given by the Biot-Savart law, and

fulfills the conditions div.b/ D 0 and curl.b/ D 0 in X .
Moreover remembering that z is assumed to be tangential we require that for

every t 2R there exists a function � 2 W 1; 2.@X;B.@X/; / such that

z D d� (4)

on @X .
Then the equations we actually consider are obtained from the previous ones by

replacing B with zC b and since @b
@t
D 0 yields

@u

@t
� �u D �.u � r/u � 1

�
grad p C 1

�
j � .zC b/ � f1 (5)

@z

@t
� 1

��
�z D curl.u � .zC b// � .��/�1f2 (6)

div.u/ D 0; div.z/ D 0 (7)
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Next let H be the Hilbert space

H WD
�

u2L2.X;B.X/; �3/ W
Z

X

u � r .x/ d�3.x/ D 0
�

(8)

for every  in W 1; 2.X;B.X/; �3/ and let Zz D �.��/�1�z be the non-

negative self-adjoint magneto-hydrodynamic operator from D.Z/ WD
n
z 2 H \

W 2; 2.X;B.X/; �3/ W �z 2 H; curl z � n D 0 on @X; z j @X D d� j
@X with a � into W 1; 2.@X;B.@X/; �/

o
into H .

We also consider the non-negative self-adjoint “magneto-hydrodynamic-Stokes”
operator Y WD �P2� from D.Y / D W 2; 2.X;B.X/; �3/ \ W 1; 2

0 .X;B.X/; �3/,
into the Hilbert space L2.X;B.X/; �3/, where P2 denotes the projection operator
from L2.X;B.X/; �3/ onto H and let e�tY , e�tZ , t 2 R

C be the semigroups
generated by Y and Z respectively.

Then for " � 0 we obtain the following system of “approximating” operator-
differential equations:

@u

@t
C Y u D P2Œ�..e�"Y u/ � r/uC j � .e�"ZzC b/ � f1� (9)

@z

@t
CZz D curl.u � e�"Zz/C curl.u � b/ � .��/�1f2 (10)

div.u/ D 0; div.z/ D 0 (11)

In other words writing our approximating systems in the form

�
d

dt
C A

�
x.t/ D F.t; x.t//; t 2 R (12)

we are leading to solve an evolution (Ohm-Navier-Stokes) equation of the type (12)
in the product ordered Hilbert space E WD H � H with elements x D .u; z/,
endowed with scalar product .x1; x2/ D .u1; u2/C a.z1; z2/ and the usual ordering,
where A WD .Y;Z/ is a non-negative self-adjoint operator on D.Y / �D.Z/, a is a
suitable positive constant, and F absorbs all nonlinearities.

For more details concerning physical notions, terminology and techniques in
thermo-magneto-hydrodynamics, Navier-Stokes and Ohm-Navier-Stokes equations
we refer to [1, 4–6, 8–13, 15, 16, 19, 20, 22, 26, 27] and [29–31].

New results concerning the regularity of the (classical or strong) solutions of (12)
are obtained by means of a linearization method and of regularity properties of the
solutions of the corresponding linear evolution equations of the type:

�
d

dt
C A

�
y.t/ D f .t/ (13)

where f is a given E-valued function on R.
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Preliminaries and Notation

Throughout this work we use standard notations. R (C) denotes the real (complex)
numbers.

We shall denote by D.A/ the domain and by R.A/ the range of the operator A
acting on E, and by I the identity operator on E. We shall also denote by B.X/ the
� -algebra of Borel subsets of a topological space X .

Further we denote by .X;B.X/; 	/ a Borel measure 	 on B.X/ and by
Lp.X;B.X/; 	/ the corresponding Lp-spaces, 1 � p � 1. In particular
.Rn;B.Rn/; �n/ denotes the Borel-Lebesgue measure on R

n.
In what follows we use the exponential notation e�tA, t 2 R

C (RC WD Œ0;C1/)
to denote the analytic semigroup T .t/, t 2 R

C acting on E, whose infinitesimal
generator is the operator �A acting on the ordered Hilbert space E and satisfying a
well-known estimation:

��e�tA�� �M0 e
�ıt (14)

for some M0 > 0, ı > 0, whenever t 2RC. See also [2, 23–25, 28] and [32].
Next we remind the mean of the classical and the strong solution.

A function u W R! D.A/ is called a classical solution on R of (12) or (13) if it is
strongly differentiable for every t in R and satisfies (12) or (13) for every t in R.

By analogy a function u W R ! D.A/ is called a strong solution on R of (12)
or (13) if it is strongly differentiable for �1-almost every t in R and satisfies (12)
or (13) for �1-almost every t in R.

Hammerstein operators are closely related to Eq. (12). So in many cases we
study (12) by reducing this to a nonlinear Hammerstein-type integral equation:
x D T x, where T is a suitable Hammerstein-type integral operator.

Let E be a general Banach space with norm k�k
We denote by Cb.R; E/ the Banach space of bounded continuous functions u W

R! E endowed with supremum norm

juj WD sup fku.t/k W t 2Rg (15)

and let C.R; E/ be the Fréchet space of continuous functions u W R! E.
Let also Mp.R; E/ (1 � p < 1) be the Banach space of Bochner-measurable

functions u W R! E for which:
Z tC1

t

ku.s/kp d�1.s/ < C1; for every t 2R (16)

under the norm:

jujMp WD sup

8
<

:

�Z tC1

t

ku.s/kp d�1.s/
� 1

p

W t 2R
9
=

; (17)
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It is well-known that (as linear manifolds) we have:

Mp.R; E/ �M1.R; E/; 1 � p <1 (18)

An element u in Cb.R; E/ is said to be (Bohl-Bohr) almost periodic if, given
" > 0, there is a positive real number l WD l."/ such that any interval of R of length
l contains at least one point � (called an "-almost period of u) for which:

ju� � uj D sup fku.t C �/ � u.t/k W t 2 Rg < " (19)

Bochner’s criterion asserts that u 2 Cb.R; E/ is almost periodic if the set:

H.u/ WD fu� ; � 2Rg (20)

of all translates of u is relatively compact in Cb.R; E/.
By AB.R; E/ will be denoted the closed subspace of Cb.R; E/ of all almost

periodic functions in Cb.R; E/.
A function u in Mp.R; E/ is said to be Stepanoff- (or S p-) almost periodic if,

given " > 0, there is a positive real number l WD l."/ such that any interval of R of
length l contains at least a point � (called an "-Sp-almost period of u) for which:

ju� � ujMp WD sup

8
<

:

�Z tC1

t

ku.s C �/C u.s/kp d�1.s/
� 1

p

< " W t 2R
9
=

; (21)

By ASp.R; E/ will be denoted the closed subspace of Mp.R; E/ of all
Sp-almost periodic functions from R into E, 1 � p <1.

Clearly ASp.R; E/ � AS1.R; E/, whenever 1 � p <1.
More details about almost periodicity (Bohl-Bohr, Stepanoff) can be found in

[3, 7, 17] and [18].

Almost Periodic Solutions of Eq. (13)

Theorem 1. Let f 2 ASp.R; E/, for some p in Œ1;1/. Then equation (13) has at
least one strong solution u in AB.R; E/.

Proof. Clearly it is sufficient to consider the case p D 1 since ASp.R; E/ �
AS1.R; E/, 1 � p <1.

Let the function u W R! E defined by the formula:

u.t/ WD
Z t

�1
e�.t�s/Af .s/d�1.s/ D

Z C1

0

e�sAf .t � s/d�1.s/; t 2R (22)
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The (Bochner) integral in (22) exists since for every t 2R,

ku.t/k D
����
Z 1

0

e�sAf .t � s/d�1.s/
���� �

Z 1

0

��e�sAf .t � s/�� d�1.s/

�M0

Z C1

0

e�ıs kf .t � s/k d�1.s/ �M0

1X

nD0

Z nC1

n

e�ıs kf .t � s/k d�1.s/

�M0

1X

nD0

Z nC1

n

e�ın kf .t � s/k d�1.s/

DM0

1X

nD0

�
e�ın

Z nC1

n

kf .t � s/k d�1.s/
�

DM0

1X

nD0

�
e�ın

Z t�n

t�n�1
kf .p/k d�1.p/

�
�M0

 1X

nD0
e�ın

!
jf jM1

�M0.1 � e�ı/�1 jf jM1 (23)

Therefore u2Cb.R; E/.
From (22) it follows by the chain rule of strong differentiation that there exists:

Pu.t/ WD d

dt

Z t

�1
e�.t�s/Af .s/d�1.s/ D dC

dt

Z t

�1
e�.t�s/Af .s/d�1.s/ (24)

(strong derivative and right strong derivative), for �1-almost everywhere t 2R.
Further using the continuity of t 7! e�tAx, for all x in E we get:

`im
h!0C h

�1
Z tCh

t

e�.tCh�s/A .f .s/ � f .t// d�1.s/ D 0 (25)

`im
h!0C h

�1
Z tCh

t

�
e�.tCh�s/A � I � f .t/d�1.s/ D 0 (26)

�1-almost everywhere t 2 R.
Then making use of (22), adding and subtracting the termsR tCh
t

e�.tCh�s/Af .s/d�1.s/;
R tCh
t

f .t/d�1.s/ D hf .t/, we have (for h > 0):

h�1.u.t C h/ � u.t//

D h�1
Z tCh

�1
e�.tCh�s/Af .s/d�1.s/ � h�1

Z t

�1
e�.t�s/Af .s/d�1.s/

D h�1	
Z tCh

�1
e�.tCh�s/Af .s/d�1.s/ �

Z t

�1
e�.t�s/Af .s/d�1.s/



Almost Periodic Solutions of Navier–Stokes–Ohm Type Equations in MHD 49

C
Z tCh

t

e�.tCh�s/Af .t/d�1.s/ �
Z tCh

t

e�.tCh�s/Af .t/d�1.s/C hf .t/

�
Z tCh

t

f .t/d�1.s/



(27)

Since

Z tCh

�1
e�.tCh�s/Af .s/d�1.s/

D
Z t

�1
e�.tCh�s/Af .s/d�1.s/C

Z tCh

t

e�.tCh�s/Af .s/d�1.s/;

it follows by (27):

h�1 .u.t C h/ � u.t//

D h�1
 Z t

�1
e�.tCh�s/Af .s/d�1.s/C

Z tCh

t

e�.tCh�s/Af .s/d�1.s/

�
Z t

�1
e�.t�s/Af .s/d�1.s/C

Z tCh

t

e�.tCh�s/Af .t/ d�1.s/

�
Z tCh

t

e�.tCh�s/Af .t/d�1.s/C hf .t/ �
Z tCh

t

f .t/ d�1.s/

!

D h�1
�Z t

�1
e�.tCh�s/Af .s/d�1.s/ �

Z t

�1
e�.t�s/Af .t/d�1.s/

�

C h�1
 Z tCh

t

e�.tCh�s/Af .t/d�1.s/ �
Z tCh

t

e�.tCh�s/Af .t/d�1.s/
!

C h�1
 Z tCh

t

e�.tCh�s/Af .t/d�1.s/ �
Z tCh

t

f .t/d�1.s/

!
C f .t/

D h�1
Z t

�1
�
e�.tCh�s/A � e�.t�s/A� f .s/d�1.s/

C h�1
Z tCh

t

e�.tCh�s/A .f .s/ � f .t// d�1.s/

C h�1
Z tCh

t

�
e�.tCh�s/A � I � f .t/ d�1.s/C f .t/ (28)

On the other hand applying classical arguments we deduce:



50 E.S. Athanasiadou et al.

Z t

�1
�
e�.tCh�s/A � e�.t�s/A�f .s/ d�1.s/

D
Z t

�1
�
e�hA � I � e�.t�s/Af .s/ d�1.s/

D �e�hA � I �
Z t

�1
e�.t�s/Af .s/d�1.s/ (29)

Combining (28) and (29) we find:

h�1 .u.t C h/ � u.t//

D h�1 �e�hA � I �
Z t

�1
e�.t�s/Af .s/d�1.s/

C h�1
Z tCh

t

e�.tCh�s/A .f .s/ � f .t// d�1.s/

C h�1
Z tCh

t

�
e�.tCh�s/A � I � f .t/ d�1.s/C f .t/ (30)

Now letting h! 0C in (30) and because of (25), (26) we obtain:

Pu.t/ D `im
h!0C h

�1 .u.t C h/ � u.t// D �Au.t/C f .t/; (31)

for almost every t 2R.
Therefore by (31) we conclude that u W R ! E is a bounded strong solution

of (13) in Cb(R, E).
Now it follows by (22) that:

ju� � uj �M0 .1 � e�ı/�1 jf� � f jM1 (32)

which proves that u 2 AB.R; E/. �

Theorem 2. Let f 2 C.R; E/ \ ASp.R; E/, for some p in Œ1;1/. Then equation
.13/ has exactly one classical solution u in AB.R; E/.

Proof. We modify the proof of the preceding Theorem 1. Again it is sufficient to
consider the case p D 1.

Let the function u in Cb.R; E/ defined by (22) and (23).
Then we have again the inequality (24) and (25), (26) hold for every t 2R.

Hence letting again h! 0C in (30) we deduce:

u0.t/ D �Au.t/C f .t/; for every t 2 R (33)

On the other hand by (22) implies that (32) also holds.
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Then (32) and (33) yields the fact that u W R! E is a bounded classical solution
of (13) in AB.R; E/.

For the uniqueness let u1 be another classical solution of (13) in AB.R; E/.
Then � D u � u1 is a classical solution in Cb.R; E/ of the homogeneous linear

differential equation:

�0.t/ D �A�.t/ (34)

and since � 2 Cb.R; E/ it follows �.t/ D 0, for every t in R (cf. [33]), that is
u D u1. �

Almost Periodic Solutions of (12)

Let ˚ be the corresponding Nemytskii operator of the nonlinear operator F W R �
E ! E appearing in (12), i.e., for every y W R! E;˚y is defined by the formula:

˚y.t/ WD F.t; y.t//; t 2 R

Now we state the following conditions concerning the Nemytskii operator ˚ .
Let .B; k�kB/, .B1; k�kB1/ be Banach spaces of E-valued functions on R.

Condition (˚1): ˚y 2 B provided y 2 B1 and there exists a constant 
.B;B1/ WD

 > 0 such that:

k˚y1 � ˚y2kB � 
 ky1 � y2kB1 ; for all y1; y22B1 (35)

Condition (˚2): ˚y 2B provided y 2B1 and there exists a real-valued function

.B;B1/ WD 
 W R! R

C such that:

k˚y1.t/ � ˚y2.t/k � 
.t/ ky1.t/ � y2.t/k ; for all y1; y22B1 and t 2R (36)

Theorem 3. Let .˚1/ hold when B WD B1 WD ASp.R; E/ and 
M0

.pı/
1
p
< 1, for some

p in Œ1;1/. Then there exists at least one strong solution u of (12) in ASp.R; E/.

Proof. Let p 2 Œ1;1/.
Consider a “pick” Hammerstein-type operator

Kp W ASp.R; E/! ASp.R; E/; (37)

which to any y in ASp.R; E/ associates (according to Theorem 1) a strong solution

Kpy.t/ WD
Z C1

0

e�sA˚y.t � s/d�1.s/; t 2 R (38)
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in AB.R; E/ � ASp.R; E/ of the linear evolution equation:

dx.t/

dt
C Ax.t/ D ˚y.t/ (39)

Next let y1; y22ASp.R; E/ and � 2 R.
Thus applying (14), .˚1/ and Fubini-Tonelli Theorem we have:

Z �C1

�

��Kpy2.t/ �Kpy1.t/
��p d�1.t/

D
Z �C1

�

�����

Z C1

0
e�sA˚y2.t � s/d�1.s/ �

Z C1

0
e�sA˚y1.t � s/d�1.s/

�����

p

d�1.t/

�
Z �C1

�

Z C1

0

���e�sA.˚y2.t � s/ � ˚y1.t � s//d�1.s/
���
p
d�1.s/ d�1.t/

�
Z �C1

�

Z C1

0
M
p
0 e

�ıps ���.˚y2.t � s/ � ˚y1.t � s// d�1.s/
���
p
d�1.s/ d�1.t/

DMp
0

Z C1

0
e�ıps

Z �C1

�
k.˚y2.t � s/ � ˚y1.t � s//kp d�1.t/ d�1.s/

� 
pMp
0

Z C1

0
e�ıps

Z �C1

�
ky2.t � s/ � y1.t � s/kp d�1.t/ d�1.s/

D 
pMp
0

Z C1

0
e�ıps

Z ��sC1

��s
ky2.�/ � y1.�/kp d�1.�/ d�1.s/

� 
pMp
0

Z C1

0
e�ıps d�1.s/ jy2 � y1jpMp.R; E/

D 
pMp
0

1

pı
jy2 � y1jpMp.R; E/

(40)

This shows that Kp is a contraction operator on ASp.R; E), and its fixed point u is
a strong solution of (12) in ASp.R; E/. �

Theorem 4. Let .˚2/ holds when B1 WD AB.R; E/, B WD ASp.R; E/, for some
p 2 Œ1;1/ with 
 2 Cb.R;R

C/ and M0 j
 j ı�1 < 1. Then there exists at least one
strong solution u of (12) in AB.R; E/.

Proof. Consider a “pick” Hammerstein-type operator

T W AB.R; E/! AB.R; E/ (41)

which to any y in AB.R; E/ associates (according to Theorem 1) a strong solution

Ty.t/ WD
Z C1

0

e�sA˚y.t � s/ d�1.s/; t 2R (42)
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in AB.R; E/ of the linear evolution equation:

dx.t/

dt
C Ax.t/ D ˚y.t/ (43)

Now let y1; y22AB.R; E/.
Hence applying (14) and assumption on (˚1) we see that:

kTy2.t/ � Ty1.t/k

D
����
Z C1

0

e�sA˚y2.t � s/d�1.s/ �
Z C1

0

e�sA˚y1.t � s/d�1.s/
����

�
Z C1

0

��e�sA .˚y2.t � s/ � ˚y1.t � s//
�� d�1.s/

�M0

Z C1

0

e�ıs k.˚y2.t � s/ � ˚y1.t � s//k d�1.s/

�M0

Z C1

0

e�ıs j
.t � s/j k.y2.t � s/ � y1.t � s//k d�1.s/

�M0 j
 j
Z C1

0

e�ıs k.y2.t � s/ � y1.t � s//k d�1.s/

�M0 j
 j ı�1 jy2 � y1j (44)

for every t 2 R.
Therefore T is a contraction operator on AB.R; E/, and its fixed point u is a

strong solution of (12) in AB.R; E/. �

Theorem 5. Let .˚2/ holds when B WD B1 D AB.R; E/ and 
 2 Cb.R;R
C/

with M0 j
 j ı�1 < 1. Then there exists exactly one classical solution u of (12)
in AB.R; E/.

Proof. Consider the Hammerstein-type operator:

K W AB.R; E/! AB.R; E/ (45)

which to any y inAB.R; E/ associates (according to Theorem 2) the unique classical
solution

Ky.t/ WD
Z C1

0

e�sA˚y.t � s/ d�1.s/; t 2R (46)

in AB.R; E/ of the linear evolution equation:

dx.t/

dt
C Ax.t/ D ˚y.t/ (47)
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Now let y1; y22AB.R; E/ and t 2R.
Hence applying (14) and assumption on (˚1) we see that:

kKy2.t/ �Ky1.t/k

D
����
Z C1

0

e�sA˚y2.t � s/d�1.s/ �
Z C1

0

e�sA˚y1.t � s/d�1.s/
����

�
Z C1

0

��e�sA .˚y2.t � s/ � ˚y1.t � s//
�� d�1.s/

�M0

Z C1

0

e�ıs k.˚y2.t � s/ � ˚y1.t � s//k d�1.s/

�M0 j
 j
Z C1

0

e�ıs k.y2.t � s/ � y1.t � s//k d�1.s/

�M0 j
 j ı�1 jy2 � y1j (48)

for every t 2R.
HenceK is a contraction operator onAB.R; E/, and its fixed point u is the unique

classical solution of (12) in AB.R; E/. �

Positive Almost Periodic Solutions of Eqs. (12) and (13)
in the Ordered Hilbert Space E

In this section we characterize existence and uniqueness of EC-valued almost
periodic solutions of the Eqs. (12) and (13).

LetE be an ordered Banach space endowed with the usual strong topology � , the
ordering � and with the corresponding (strong) closed positive cone EC (cf. [14]).

Let also .X; S; 	/ be a � -finite measure onX and let F.X;E/ the ordered vector
space of functions from X into E with cone F.X;EC/.

Firstly we define the ordered vector space Io; 	.X;E/ of elementary o-integrable
functions (with respect to .X; S; 	/) in the subspace Eo; 	.X;E/ of elementary
o-measurable functions of F.X;E/.

Then we extend the space Io; 	.X;E/ to the ordered vector space L1o; 	.X;E/
(with positive cone Po; 	.X;E

C/) of o-integrable functions in the subspace
Mo; 	.X;E/ of o-measurable functions of F.X;E/.

Moreover we shall denote by
R
X

u.t/ d	.t/ the E-valued well defined o-integral
of an element u in L1o; 	.X;E/.

In particular if the measure .X; S; 	/ denotes the Borel-Lebesgue measure
.J;B.J /; �1/ on a finite or infinite subinterval of R with endpoints a; b we shall
use the notations

R b
a

u.t/ d�1.t/ WD R
X

u.t/ d	.t/ and P.J;EC/ WD P.X;EC/.
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Finally we emphasize that 0 � R
X

u1.t/ d	.t/ �
R
X

u2.t/ d	.t/, for every
u1; u2 2 L1o; 	.X;E/ with 0 � u1.t/ � u2.t/, for 	-almost everywhere t in X .
For more details see [21].

Concerning Eq. (13) we have the next results.

Theorem 6. Let f in P.R; EC) \ ASp.R; E/, for some p in Œ1;1/. Then
equation (13) has at least one positive strong solution u in AB.R; EC/.

Proof. As a consequence of the preceding assumptions formula (22) defines a
positive function u in Cb.R; E

C/. From here the claim follows applying similar
arguments as in Theorem 1. �

Theorem 7. Let f in P.R; EC/ \ C.R; EC/ \ ASp.R; E/, for some p in Œ1;1/.
Then Equation (13) has exactly one positive classical solution u in AB.R; EC/.

Proof. As in the preceding Theorem we conclude that e�tAf 2 P.R; EC/,
whenever t � 0. Therefore again formula (22) defines a positive function u in
Cb.R; E

C), and the claim is a consequence of Theorem 2. �

Now we shall turn our attention to the Eq. (12) assuming that the convolution
e�A 	 ˚y belongs in P.R; EC), for every y 2 P.R; EC/ \ Cb.R; E

C/, where:

.e�A 	 ˚y/.t/ WD
Z C1

0

e�sA˚y.t � s/ d�1.s/; t 2 R: (49)

We also consider the following condition.

Condition (˚3): ˚y 2 AB.R; EC/ \ P.R; EC/ whenever y 2 AB.R; EC/ and
there exists 
 2 Cb.R;R

C/ such that:

k˚y1.t/�˚y2.t/k � 
.t/ ky1.t/�y2.t/k ; for all t 2 R andy1; y22AB.R; EC/
(50)

Theorem 8. Let .˚3/ holds and M0 ı
�1 j
 j < 1. Then (12) has exactly one

classical positive solution u in AB.R; EC/.

Proof. The assertion follows since the Hammerstein-type positive operator

K W AB.R; EC/! AB.R; E
C/ (51)

which to any y in AB.R; EC/, associates (according to Theorem 7) exactly one
positive classical solution Ky in AB.R; EC/ of the linear evolution equation:

dx.t/

dt
C Ax.t/ D ˚y.t/ (52)

is a contraction operator on the closed coneAB.R; EC/ of the ordered Banach space
AB.R; E/, and its fixed point is the unique positive classical solution of (12) in
AB.R; E

C/. �
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Admission Control Policies in a Finite Capacity
Geo/Geo/1 Queue Under Partial State
Observations

Apostolos Burnetas and Christos Kokaliaris

Abstract We consider the problem of admission control in a discrete time
Markovian queue with a finite capacity, a single server, and a geometric arrival
and departure processes. We prove the threshold structure of the optimal admission
policy under full information on the number of customers in the system. We also
consider the admission control problem under partial state information, where the
decision maker is only informed whether the system is empty, full, or in some
intermediate state. We formulate this problem as a Markov Decision Process with
the state representing the posterior distribution of the number of customers and
apply a heuristic algorithm from the literature to approximate the optimal policy.
In numerical experiments we demonstrate that the pair of the mean and variance of
the posterior distribution may be effectively used instead of the full distribution, to
implement the optimal policy. We also explore the behavior of the profit function
and the value of information with respect to several system parameters.

Introduction

We consider the problem of admission control in a finite capacity discrete time
Markovian queue under full and partial state information. Admission control is a
general approach for dynamically adjusting the input stream to a service system.
It models the trade-off between the payoff received by serving more customers and
the cost due to higher system congestion. Admission control can be applied directly
by allowing or denying entrance to an incoming customer, or indirectly by adjusting
an admission fee.
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Many systems in practice implement some form of admission control under
various forms. The dynamic decision of whether to admit or reject an incoming
customer is based on the information on system congestion at the time of arrival,
which is assumed to be readily available to the decision maker. Nevertheless, there
exist situations where this is not the case. In many service systems, particularly those
related to telecommunications, call centers etc., it may impossible or expensive for
the admission controller to constantly keep track of the exact queue length. Instead,
it is often more practical to maintain a coarser picture of the true system state.
In such cases the decision can only be based on the information available. A new
trade-off is introduced in this manner, between on the one hand the lower cost of
tracking the system state and on the other hand the losses incurred due to the less
efficient implementation of the admission control policy.

In this paper we explore the comparison between full and partial information in
a stylized setting which allows analytical solution of the full information problem.
In particular, we model a single server finite capacity Markovian queue in discrete
time. We consider direct admission/rejection control policies that may be based on
the number of customers in the system in the full information case, or in a partial
information setting where the system manager is informed when the system is full
or completely empty but does not know the actual number of customers waiting in
intermediate states. This information is easier to track if it can be detected when the
server becomes idle and when customers are turned away because of overflows.

The contribution of the paper is in admission control under partial state observa-
tions. Both areas are extensively covered in the literature and our outline cannot be
comprehensive. On the one hand, admission control has been studied in depth from
many different viewpoints, albeit mostly in a continuous time setting. [16] presents
an early overview of admission policies in various queueing settings and considers
both central control as well as customer equilibrium strategies. The admission
control problem in an M/M/1 queue is used in [5] to motivate the application of
event-based dynamic programming. Admission control is also a useful management
tool in finite capacity multiclass service systems, where there is the additional trade-
off between receiving the admission fee and saving system resources for future
arrivals of customers in higher paying classes. [10] and [12] consider a multiclass
system with no waiting queue, while recently [9] model a series system with finite
buffers where admission control interacts with the blocking effect. In a discrete time
setting, [1] analyze both admission and service control problems in a Geo=Geo=c
queue with a infinite capacity where instead of an admission reward there is a cost
rate for idle servers and the controller selects dynamically between two positive
arrival rates.

The issue of various information levels in a queue has also been studied
extensively, mostly from the point of view of delay-related information provided
to strategically acting customers. [4] consider a M=M=1 queue with balking
and identify conditions so that providing customers with more accurate information
on expected delay may improve or hurt system performance. [2] also consider the
effect of various information levels on customer equilibrium in a queue with server
vacations and setup times for server restart. On the other hand, the following two
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papers are closer to the way we use partial information in this paper. [6] analyze
the admission control problem in a discrete time queue where there is a k-period
delay in the observation of queue lengths and prove a generalized threshold structure
for the optimal policy. Finally, [7] consider a multiserver system with no waiting
room where the controller observes only the instances where a customer is rejected
because the system is full. They prove the form of the optimal policy for the single
server case and propose heuristic rules for multiple server systems.

In this paper we model the admission control problem under partial information
as a partially observed Markov decision process. The idea of modeling a partially
observed system as an MDP with state variable, the posterior distribution of the
unobserved state, goes back to the early days of stochastic dynamic programming.
[14] and [13] show the fundamental property that the finite horizon value function
is piecewise linear and convex in the generalized state and propose a computation
algorithm. Because of the computational complexity of the problem there exists a
rich literature on both exact and approximate computational approaches. [8] and
[17] survey various algorithms. In our paper we employ the Perseus approximation
algorithm proposed by [15].

The rest of the paper is structured as follows. In section “Model Description” we
describe the control problem and model both the full information and the partially
observed systems as Markov decision processes. In section “Complete Information
Policy” we establish the threshold structure of the optimal admission policy under
full information. To do this we show by induction that the finite horizon value
function is concave in the number of customers. In section “Partially Observable
System” we turn to the partial observations model and analyze the application of the
Perseus algorithm for approximating the optimal policy. In section “Computational
Results” we discuss some computational experiments which demonstrate that the
mean and variance of the posterior distribution may be effectively used instead of
the full distribution, to implement the optimal policy. We also perform sensitivity
analysis of the profit function and the value of information with respect to various
parameters. Section “Conclusions” concludes.

Model Description

Consider a discrete time finite-capacity Geo=Geo=1=M queue. In each period n
there is a single arrival of a new customer with probability p, and a departure of a
customer being served with probability q. More than one arrivals or departures in a
single period may not occur. The service discipline is first-come-first-served.

The system manager employs admission control. Specifically any arriving
customer may be admitted into the system or rejected. Customers who arrive when
the system is full are rejected. When a customer is admitted, an admission reward R
is obtained. On the other hand, waiting customers incur a holding cost equal to h per
period and per customer present in the system. The system manager’s objective is to
maximize the infinite horizon expected discounted net profit, with discount factor ˇ.
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We analyze the admission control problem under two distinct cased regarding the
information available to the decision maker. In the first case (complete information),
the system manager is aware of the number of customers present in the system at the
beginning of every period and can use this information for the admission/rejection
decision. In the second case (partially observable) the manager only knows whether
the server is busy or idle and whether the system is full or there are empty spaces.
In other words, the information on the state of the system is restricted to either
n D 0, n D M , or 0 < n < M , where n is the number of customers present at the
beginning of the period.

We first consider the full information model. In this case the admission control
problem can be expressed as a Markovian Decision Process as follows. The stateXt
denotes the number of customers present in the system at the beginning of a period,
thus the state space is finite: S D f0; 1; : : : ;M g. The action set is A D f1; 2g, where
a D 1; 2 denote the admission and rejection actions, respectively. We adopt the
following convention regarding the decision-making process. At the beginning of
period t the decision maker observes the state Xt and makes a decision on whether
to admit or reject a potential customer arrival during the period. The events of arrival
and/or departure occur at the end of the period. Therefore, the fact that the decision
is made before observing whether there is indeed an arrival or not, is without loss of
generality,because there is no state change between decision making and arrival.

Given the timing of events described above, let V.i/ denote the value function,
i.e., the optimal expected discounted net profit under infinite horizon, given initial
state i :

V.i/ D sup
f

Ef

" 1X

tD0
ˇt .ˇR 1.At / � hXt/ jX0 D i

#
; i 2 S; (1)

where f denotes a dynamic policy of admitting or rejecting customers, At the event
that a customer is admitted in period t , and 1.A/ the indicator function. The value
function V satisfies the following optimality equations

V.i/ D� hi CmaxfpˇRC ˇp.1 � q/V .i C 1/
C ˇ..1 � p/.1 � q/C pq/V.i/C ˇ.1 � p/qV.i � 1//;
ˇqV.i � 1/C ˇ.1 � q/V .i/g; i D 1; : : : ;M � 1;

V .0/ DmaxfpˇRC ˇpV.1/C ˇ.1 � p/V.0/; ˇV.0/g
V.M/ D� hM C ˇqV.M � 1/C ˇ.1 � q/V .M/: (2)

Note that the admission reward R is discounted since it is assumed that the arrival
occurs at the end of the period.

The finite horizon version of the optimality equations is similar

Vn.i/ D� hi CmaxfpˇRC ˇp.1 � q/Vn�1.i C 1/
C ˇ..1 � p/.1 � q/C pq/Vn�1.i/C ˇ.1 � p/qVn�1.i � 1//;
ˇqVn�1.i � 1/C ˇ.1 � q/Vn�1.i/g; i D 1; : : : ;M � 1;
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Vn.0/ DmaxfpˇRC ˇpVn�1.1/C ˇ.1 � p/Vn�1.0/; ˇVn�1.0/g
Vn.M/ D � hM C ˇqVn�1.M � 1/C ˇ.1 � q/Vn�1.M/ (3)

where V0.i/ D 0 and Vn.i/ denotes the optimal expected discounted profit
for horizon n. Since the state and action spaces are finite, it follows immedi-
ately from standard results of Markov Decision Process analysis (e.g., [11]) that
limn!1 Vn.i/ D V.i/ <1 uniformly in i D 0; : : : ;M .

The partially observable case is considered next. Now the timing of events is as
above; however, the decision maker is not aware of the exact system state Xt when
making the admission/rejection decision. Instead, we assume that at the beginning
of period t , after all transitions of the previous period have been completed, the
decision maker obtains a signal �t about the system state, where �t D 0; 1; 2 when
Xt D 0; 0 < Xt < M;Xt D M , respectively. The acceptance/rejection decision is
made after this signal is received. The problem is again to identify an admission
policy that makes decision based only on the available state information and
maximizes the infinite horizon expected discounted net profit.

In the partial information framework we adopt the Bayesian Dynamic Program-
ming approach (c.f. [13]) according to which the state of the system is defined as
the posterior probability distribution of the unobservable true state, given the current
partial information and the previous history of decisions and information evolution.

Let �t .i/; i D 0; : : : ;M denote the posterior probability that there are i

customers in the system at the beginning of period t . The probability vector �t D
.�t .0/; : : : ; �t .M// is defined as the state of the partially observable system and
referred to as the information vector. The state space is the .M C 1/-dimensional
simplex ….

The one-step payoff and the update of the information vector are defined as
follows. Let paij denote the transition probability of the unobservable state (i.e., the
number of customers in the system) from i to j under decision a, and raj�
the probability of obtaining signal � at the end of the period if the decision at
the beginning of the period is a and the state after transition is j . Similarly, let
waij� denote the single period payoff. Given the model description and the timing of
events described so far, these quantities can be easily determined. Specifically, the
transition probabilities given a D 1 are equal to

p100 D 1 � p; p101 D p;
p1M;M�1 D q; p1MM D 1 � q
p1i;i�1 D .1 � p/q; p1i i D .1 � p/.1 � q/C pq; p1i;iC1 D p.1 � q/; (4)

for i D 1; : : : ;M � 1, while given a D 2 they are equal to

p200 D 1;
p2i;i�1 D q; p2i i D 1 � q; (5)
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for i D 1; : : : ;M . The signal probabilities are easily seen to be equal to

ra00 D 1; raM2 D 1; raj1 D 1; j D 1; : : : ;M � 1; a D 1; 2 (6)

and zero otherwise.
The single period payoffs are equal to

waij� D �hi C ˇR1.i < M; a D 1; j D i C 1/: (7)

Given the above, first let

qai D
MX

jD0

2X

�D1
paij r

a
j�waij� (8)

be the expected one-period payoff given that the (unobservable) state is i and action
a is taken. Furthermore, the probability of observing signal � given an information
vector � at the beginning of the period and decision a is equal to

r.� j�; a/ D
MX

iD0

MX

jD0
�.i/paij r

a
j� : (9)

From Bayes’ theorem it follows that the updated information vector Q�.�; a; �/, i.e.,
the posterior distribution of the unobserved state at the beginning of a period, given
information vector � , decision a and signal � at the previous period is given by

Q�.j j�; a; �/ D
PM

iD0 �.i/paij raj�
r.� j�; a/ ; j D 0; : : : ;M: (10)

The Bellman optimality equations are now derived as follows. Let v.�/ denote
the optimal infinite horizon expected discounted net profit, given that a prior
distribution � for the initial state. Then v satisfies:

v.�/ D max
aD1;2

(
X

i

�.i/qai C ˇ
X

�

r.� j�; a/v. Q�.j j�; a; �//
)

(11)

The finite-horizon version of the optimality equations, which also provides a com-
putational approximation for the optimal value function and the optimal policy is

vn.�/ D max
aD1;2

(
X

i

�.i/qai C ˇ
X

�

r.� j�; a/vn�1. Q�.j j�; a; �//
)
; n D 1; 2; : : : ;

(12)

with v0.�/ D 0.
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Complete Information Policy

In this section we derive the structure of the optimal policy under full information.
We show that the optimal policy has a threshold structure. The derivations are based
on proving by induction that the finite horizon complete information value function
Vn.i/ is nonincreasing and concave in i for all n. The approach is analogous to that
in concavity proofs for continuous time problems under uniformization. However in
the discrete time setting it is possible to have both arrival and departure events in a
single period. This introduces a change in the dynamics which requires a new proof.

Let

�n.i/ D Vn.i C 1/ � Vn.i/; n � 0; i D 0; 1;M � 1 (13)

denote the benefit, i.e., the net difference in profit induced to the system when one
more customer is present in the queue. From the optimality equations (3) it follows
that it is optimal to admit a customer at stage n in state i > 0, i.e., a�

n .i/ D 1 if and
only if

ˇpRC ˇp.1 � q/Vn�1.i C 1/C ˇ..1 � p/.1 � q/C pq/Vn�1.i/

C.1 � p/qVn�1.i � 1// � ˇqVn�1.i � 1/C ˇ.1 � q/Vn�1.i/g;

which after algebra reduces to

Hn�1.i/ 
 ˇpRC ˇp.1 � q/�n�1.i/C ˇpq�n�1.i � 1/ � 0: (14)

Similarly, it is optimal to admit a customer in state i D 0, i.e., a�
n .0/ D 1 if and

only if

ˇpRC ˇpVn�1.1/C ˇ.1 � p/Vn�1.0/ � ˇVn�1.0/;

or equivalently,

Hn�1.0/ 
 ˇpRC ˇp�n�1.0/ � 0: (15)

We next analyze the structure of the optimal admission control policy. The benefit
of admitting a new customer is due to the admission fee and is constant regardless
of the state. On the other hand, the holding cost is increasing in the number of
customers in the system. It is thus expected that it is beneficial to admit an arriving
customer only when the system is not too congested. In the next proposition it is
shown that the value function Vn.i/ is concave in i , i.e., the benefit function �n.i/

is nonincreasing in i . This property implies the threshold structure of the optimal
policy.
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Theorem 1. 1. The benefit function �n.i/ is nonincreasing in i for all n.
2. There exist integers cn; n D 1; 2; : : :, such that the optimal policy at stage n is to

accept an arrival in state i if and only if i � cn.

Proof. We will prove both parts of the theorem by simultaneous induction on n. For
n D 0 part (1) holds since �0.i/ D 0 for all i . For some n � 1 assume that

�n�1.i/ � �n�1.i C 1/; i D 0; : : : ;M � 2:

We will first show part 2 for n and then part 1 to complete the induction step.
Consider the optimal action in state n. From the induction hypothesis it follows

that the function Hn�1.i/, defined in (14) and (15), is nonincreasing in i . Let cn D
max.i D 0; : : : ;M W Hn�1.i/ � 0/, with the convention max; D �1. From the
monotonicity of Hn�1 it follows that a�

n .i/ D 1 if and only if i � cn, thus part 2 of
the theorem is true for n.

We next show part 1 for n, i.e., that

�n.i/ � �n.i C 1/; i D 0; : : : ;M � 2: (16)

We first consider i D 1; : : : ;M � 3. From the form of the optimal
policy at stage n, there are only four possible cases for the optimal actions
a�
n .i/; a

�
n .i C 1/; a�

n .i C 2/ as listed below. For each case we compute �n.i/

and �n.i C 1/ and show that (16) holds.

Case (i): a�
n .i/ D a�

n .iC1/ D a�
n .iC2/ D 1. In this case it follows from (3) that

Vn.i/ D � hi C pˇRC ˇp.1 � q/Vn�1.i C 1/
C ˇ..1 � p/.1 � q/C pq/Vn�1.i/C ˇ.1 � p/qVn�1.i � 1/;

Vn.i C 1/ D � h.i C 1/C pˇRC ˇp.1 � q/Vn�1.i C 2/
C ˇ..1 � p/.1 � q/C pq/Vn�1.i C 1/C ˇ.1 � p/qVn�1.i/;

Vn.i C 2/ D � h.iC2/CpˇRCˇp.1 � q/Vn�1.i C 3/
Cˇ..1 � p/.1 � q/C pq/Vn�1.i C 2/C ˇ.1 � p/qVn�1.i C 1/:

Therefore,

�n.i/ D � hC ˇp.1 � q/�n�1.i C 1/
C ˇ..1 � p/.1 � q/C pq/�n�1.i/C ˇ.1 � p/q�n�1.i � 1/;

�n.i C 1/ D � hC ˇp.1 � q/�n�1.i C 2/
C ˇ..1 � p/.1 � q/C pq/�n�1.i C 1/C ˇ.1 � p/q�n�1.i/

and (16) holds since the coefficients of all �n�1.�/ terms are
nonnegative.
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Case (ii): a�
n .i/ D a�

n .i C 1/ D 1; a�
n .i C 2/ D 2. In this case we have

Vn.i/ D � hi C pˇRC ˇp.1 � q/Vn�1.i C 1/
C ˇ..1 � p/.1 � q/C pq/Vn�1.i/C ˇ.1 � p/qVn�1.i � 1/;

Vn.i C 1/ D � h.i C 1/C pˇRC ˇp.1 � q/Vn�1.i C 2/
C ˇ..1 � p/.1 � q/C pq/Vn�1.i C 1/C ˇ.1 � p/qVn�1.i/;

Vn.i C 2/ D � h.i C 2/C ˇ.1 � q/Vn�1.i C 2/C ˇqVn�1.i C 1/:

Therefore,

�n.i/ D � hCˇp.1 � q/�n�1.i C 1/
Cˇ..1 � p/.1 � q/Cpq/�n�1.i/Cˇ.1 � p/q�n�1.i � 1/;

�n.i C 1/ D � h�ˇpRCˇ.1 � p/.1 � q/�n�1.i C 1/Cˇ.1 � p/q�n�1.i/;

and

�n.i C 1/��n.i/ D �ˇpR�ˇp.1 � q/�n�1.i C 1/�ˇpq�n�1.i/

C b.1 � p/.1 � q/.�n�1.i C 1/ ��n�1.i//

C ˇp.1 � q/.�n�1.i/ ��n�1.i � 1//
D �Hn�1.i C 1/
C b.1 � p/.1 � q/.�n�1.i C 1/ ��n�1.i//

C ˇp.1 � q/.�n�1.i/ ��n�1.i � 1//:

In the last equation Hn�1.i C 1/ � 0 because a�
n .i C 1/ D 1, while

the remaining two terms are nonpositive from the induction hypothesis.
Therefore �n.i C 1/ ��n.i/ � 0 and (16) holds.

Case (iii): a�
n .i/ D 1; a�

n .i C 1/ D a�
n .i C 2/ D 2. Similarly, substituting the

corresponding forms of Vn.i/; Vn.i C 1/; Vn.i C 2/ from (3) and after
some algebra we obtain

�n.i/ D �h�ˇpRCˇ.1 � p/.1 � q/�n�1.i/Cˇ.1 � p/q�n�1.i � 1/;
�n.i C 1/ D � hC ˇ.1 � q/�n�1.i C 1/C ˇq�n�1.i/;

thus,
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�n.i C 1/ ��n.i/ D ˇpRC ˇp.1 � q/�n�1.i C 1/C ˇpq�n�1.i/

C b.1 � p/.1 � q/.�n�1.i C 1/ ��n�1.i//

C ˇp.1 � q/.�n�1.i/ ��n�1.i � 1//
D Hn�1.i C 1/
C b.1 � p/.1 � q/.�n�1.i C 1/ ��n�1.i//

C ˇp.1 � q/.�n�1.i/ ��n�1.i � 1//:

In the last equation Hn�1.i C 1/ < 0 because a�
n .i C 1/ D 2, while the

remaining two terms are also nonpositive from the induction hypothesis.
Therefore �n.i C 1/ ��n.i/ � 0 and (16) holds.

Case (iv): a�
n .i/ D a�

n .i C 1/ D a�
n .i C 2/ D 2. Proceeding similarly as above we

obtain

�n.i/ D � hC ˇ.1 � q/�n�1.i/C ˇq�n�1.i � 1/;
�n.i C 1/ D � hC ˇ.1 � q/�n�1.i C 1/C ˇq�n�1.i/;

thus, (16) holds.

To complete the proof of (16), we must show that �n.0/ � �n.1/ and �n.M �
2/ � �n.M �1/. These relations follow by considering cases for the corresponding
optimal actions in states 0; 1; 2, andM �2;M �1, respectively. The derivations are
completely analogous and are omitted.

This completes the induction and the proof of the theorem. �

Partially Observable System

In this section we consider the system under partial state observations. The
admission policy now cannot depend on the number of customers in the system,
which is not observable, but rather on the information vector � at the beginning
of the period which is a sufficient statistic summarizing the previous history of
actions and signals. Since the state space … of the partially observable Markov
decision process consists of all .M C 1/-dimensional probability vectors � , thus it
is uncountable, the task of computing optimal policies is significantly harder than in
the full information case. The main theoretical result on which most computational
algorithms are based was derived in [13] and states that the finite horizon value
function vn.�/ is convex and piecewise linear in � . Specifically, for each n � 1

there exist vectors ˛.n/k 2 R
MC1; k D 1; : : : ; mn such that

vn.�/ D max
kD1;:::;mn

˛
.n/

k � �; � 2 …; (17)
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where � denotes inner product. Vectors ˛.n/k are computed recursively in n, based on
the value iteration of optimality equations (12) as follows. Assume that all vectors
˛
.n�1/
k ; n D 1; : : : ; mn�1 have been computed for iteration n� 1. Then, for iteration
n, substituting

vn�1. Q�.j j�; a; �// D max
kD1;:::;mn�1

˛
.n�1/
k � Q�.j j�; a; �/

and the value of Q�.j j�; a; �/ from (10) into (12), we obtain

vn.�/ D max
aD1;2

8
<

:
X

i

�.i/qai C ˇ
X

�

max
kD1;:::;mn�1

X

i

X

j

˛
.n�1/
kj paij r

a
j��.i/

9
=

; ; (18)

from which it follows that vn.�/ is also piecewise linear in � , and the list of vectors
a
.n/

k can be derived.
Equation (17) implies that for each n the state space … can be partitioned in mn

subsets such that in subset k the value function is linear with gradient ˛.n/k , and the
same action is optimal for all vectors in the subset. Of course, since mn is typically
much larger than the number of actions, an action may be optimal in more than
one subsets. On the other hand some of the subsets in the partition may be empty,
because the iterative computation in (18) may yield vectors that never attain the
maximum in (17).

Property (17) introduces a significant simplification in the computation of the
optimal policy. However the number of ˛-vectors generally increases exponentially
in n, and identifying them is essentially equivalent to computing all vertices of a
convex polyhedron. This is the reason that, although several approaches have been
proposed for computing the optimal policy using (17), (e.g., [14], [3]), in all of them
the task of exact computation is intractable even for modest size problems.

Because of the complexity of exact computation of the optimal policy, a large
number of approximation algorithms have been proposed in the literature. Most of
them consider a subset B of states in …, and approximate the iterative computation
in (18) by computing a smaller number of terms in the maximum. This results in a
smaller number of vectors and thus in underestimating the value function vn at each
iteration. The various algorithms differ in the way the subset B is constructed and
in the method employed to approximate (18).

In this paper we employ the algorithm Perseus proposed and analyzed in [15]. In
this algorithm the subset B is constructed by selecting a number of vectors � 2 …
via simulation. In our implementation the vectors are generated from a uniform
distribution in …. The main idea of the Perseus algorithm is that at iteration n the
iterative computation of the a vectors is not performed for all points in B separately.
Instead, if a new vector ˛0 is computed according to (18) for some � 2 B , then
it is applied to all other points in b 2 B to check whether ˛0 � b > vn�1.b/.
For all b that satisfy this inequality the computation in (18) is omitted, since an
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improvement in the value of the previous iteration has already been achieved. The
algorithm capitalizes on the fact that one new vector produced in some iteration
generally increases the value function for other points as well. Therefore, by only
limiting the complicated iterative computation for a subset of points in B significant
computational reduction is achieved, at the expense of missing some vectors ˛
that could be derived if these computations had not been omitted. The algorithm
terminates when a convergence criterion on the difference in values between two
successive iterations is met.

The output of the Perseus algorithm is a set of vectors ˛k; k D 1; : : : ; m and
a corresponding set of optimal decisions a�

k ; k D 1; : : : ; m determined for each
vector ˛k from (18). These are used as follows. At the beginning of each period the
decision maker computes the information vector � , i.e., the posterior distribution
of the number of customers in the system given the previous history of actions and
observations. Then a maximizing vector ˛k0 is identified such that

ak0� D max
kD1:::m ˛k � �:

The action taken is a�
k0

, corresponding to vector ˛k0 . After the admission/rejection
decision is made, the arrival and/or departure events occur, the decision maker
receives the corresponding observations and proceeds to compute the updated
information vector for the next period so that the cycle repeats.

Computational Results

In this section we perform two sets of computational experiments to obtain further
insights on the behavior of the partial information problem as well as the implication
of the lack of full observations on the system profits.

A general remark for the discussion in this section is that the optimal policy
and profit under complete information are computed by implementing the value
iteration of the dynamic programming algorithm in (3). Since the state and action
spaces are finite, the computations are exact at each iteration n. The infinite horizon
policy and profit are approximated by using a convergence stopping criterion. On the
other hand, the profit and optimal policy under partial information are computed
approximately using the Perseus algorithm instead of the exact computation of all
˛ vectors, as discussed in the previous section. Therefore, when we refer to the
optimal profit and optimal policy under partial information in this section, we will
always mean the approximation obtained by Perseus.

In the first set of experiments we employ the Perseus algorithm for a queue with
capacity M D 10, arrival and departure probabilities p D 0:5 and q D 0:7,
respectively, holding cost rate h D 2, discount factor ˇ D 0:7, and two values
of the admission reward (a) R D 4 and (b) r D 5. We apply Perseus on a set B of
105 information vectors. The algorithm stops when for all points in B the absolute
difference in the approximate value function between two successive iterations does
not exceed a threshold � D 10�7.
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Fig. 1 Optimal policy as a function of the mean and variance of the information vector for R D 4

and R D 5

In order to present the results graphically, we proceed as follows. For each
information vector � 2 B we compute the expected value 	.�/ D PM

jD0 j�.j /
and the variance var.�/ D PM

jD0.j � 	.�//2�.j /. We then plot all points
.	.�/; var.�//; � 2 B , in colors that correspond to the optimal decision at each
point, black for admission and red for rejection. The two plots corresponding to the
two values of the admission reward R are presented in Fig. 1.

In these plots we first observe that, as expected, when the admission reward is
increased the admission decision is optimal for a larger set of information vectors.
It is also interesting that the admission and rejection regions are almost perfectly
separated in both plots. This indicates that the mean–variance pair of the information
vector is a good surrogate for determining the optimal action. Specifically, we
observe that for each value of the variance, there is a threshold on the mean such
that admission is optimal when the estimated mean number of customers in the
system is below the threshold. This property can be viewed as a generalization of
the complete information policy, where there is a fixed admission threshold on the
observed number of customers. Here the threshold is on the expected number of
customers and increases as the variance increases. This shows that the increased
uncertainty about congestion induces the owner to accept more customers and is
somewhat counterintuitive.

The second set of computational experiments is aimed at sensitivity analysis
as well as exploring the value of information. We vary certain system parameters
and perform a comparison of the expected profit between the complete information
and partial observation models, in order to assess the impact of the lack of
full information on system performance. The numerical analysis is performed as
follows. We consider a baseline case of parameter values M D 10; p D 0:5; q D
0:7; h D 2;R D 4; ˇ D 0:7. We then vary in turn the admission reward R in
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Fig. 2 Expected profit as a function of R starting with empty system under complete information
(CI) and partial observations (PO)

Fig. 3 Expected profit as a function of p starting with empty system under complete information
(CI) and partial observations (PO)

the range Œ2; 5�, the arrival probability in the range Œ0:1; 0:9�, and the departure
probability in the same range. For each parameter we present V.0/, i.e., the optimal
expected discounted profit under complete information starting with an empty
system and v..1; 0; : : : ; 0//, i.e., the same profit value under partial information
for the information vector corresponding to zero customers in the system with
probability 1. The results are presented in Figs. 2, 3 and 4, respectively.

From these experiments we observe that in general the profit is increasing in
R, p, and q. All these properties are intuitive. In particular, as R increases, there
is a greater incentive to admit more customers, thus profits increase overall. When
the arrival probability p increases, the system has a larger customer base which
increases the owner’s flexibility in terms of the admission policy. We have also
observed in the numerical analysis that the acceptance threshold is decreasing, so
that a smaller proportion of arriving customers is accepted at the optimal policy.
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Fig. 4 Expected profit as a function of q starting with empty system under complete information
(CI) and partial observations (PO)

Nevertheless, the profit increases overall. Similarly, as the departure probability
increases, customers are served more efficiently, and thus the system owner can
afford to admit more thus increasing profits. This is also confirmed by the fact that
the admission thresholds increase with increasing q.

Regarding the profit reduction due to lack of information, we observe that it is
in general nonnegligible. This implies that there may be significant value for the
system manager to invest in improving the information available in the system. The
fact that the loss is increasing in p and q shows that the value of information is
higher when there is a larger customer base as well as when the service is more
efficient. With respect to R, the value of information seems to be the highest for
intermediate values of the parameter.

Conclusions

In this paper we considered the problem of admission control in a discrete
time Markovian queue with partial state observations. We proved the threshold
structure of the optimal admission policy under full information and formulated an
approximation algorithm for computing the optimal policy under partial information
using the posterior distribution as a modified state. Using numerical analysis we
demonstrated that the pair of the mean and variance of the posterior distribution may
be effectively used instead of the full distribution, to implement the optimal policy.
We also explored the behavior of the profit function and the value of information
with respect to several system parameters.
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This work could be extended to a number of directions. First, a more general
system with many servers or a more general arrival process could be considered.
Furthermore, one might also consider other types of control policies, such as
dynamically varying the service rate or the number of servers. These policies are
generally useful in systems such as call centers etc., where staffing is allowed to vary
in a dynamic fashion. Although proving properties of the full information policy
might become intractable under many of these generalizations, one could develop
numerical approximations. Under partial observations the Perseus algorithm should
still be applicable.

In the area of computations for the partial information problem, it would be of
interest on the one hand to explore to what extent the size and structure of the sample
set B affects the speed and quality of results of the approximation algorithm. On the
other hand, it would also be interesting to take a closer look at the issue of using
the mean–variance, or alternative statistics, to approximate the optimal policy under
partial information and quantify the accuracy of the approximation by simulating
the system under the original policy and that based on the surrogate information.
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Error Bounds for Trapezoid Type Quadrature
Rules with Applications for the Mean and
Variance

Pietro Cerone, Sever S. Dragomir, and Eder Kikianty

Abstract In this paper, we establish some inequalities of trapezoid type to give
tight bounds for the expectation and variance of a probability density function.
The approach is also demonstrated for higher order moments.

Introduction

The trapezoid rule is a method to approximate the integral
R b
a
f .x/ dx, by approxi-

mating the area under the curve of f .x/ as a trapezoid:

Z b

a

f .x/ dx � .b � a/f .a/C f .b/
2

:

Some inequalities have been established to give bounds for the error of this approx-
imation, and we summarised the result in the following proposition (cf. Cerone and
Dragomir [5]).
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Proposition 1. Let g W I � R ! R be a function and u; v 2 I with u < v.
Consider the approximation of the integral of g on Œu; v� by the trapezoid rule, that
is, find abound for the quantity:

ˇ̌
ˇ̌g.u/C g.v/

2
.v � u/ �

Z v

u
g.t/ dt

ˇ̌
ˇ̌ : (1)

The following bounds for (1) holds for any u; v 2 I with u < v:

a. If g is of bounded variation on Œu; v�, then

ˇ̌
ˇ̌g.u/C g.v/

2
.v � u/ �

Z v

u
g.t/ dt

ˇ̌
ˇ̌ � 1

2
jv � uj

ˇ̌
ˇ̌
ˇ

v_

u

.g/

ˇ̌
ˇ̌
ˇ : (2)

b. If g is Lipschitz continuous with Lipschitz constant L, then

ˇ̌
ˇ̌g.u/C g.v/

2
.v � u/ �

Z v

u
g.t/ dt

ˇ̌
ˇ̌ � 1

4
L.v � u/2 (3)

c. If g00 exists and bounded, then

ˇ̌
ˇ̌g.u/C g.v/

2
.v � u/ �

Z v

u
g.t/ dt

ˇ̌
ˇ̌ � 1

12
.v � u/3kg00k1: (4)

d. If g0 exists and is absolutely continuous on Œu; v�, then

ˇ̌
ˇ̌g.u/C g.v/

2
.v � u/ �

Z v

u
g.t/ dt

ˇ̌
ˇ̌

�

8
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
:

1

4
kg0k1.v � u/2; if g0 2 L1Œu; v�I
kg0kp.v � u/1C

1
q

2.q C 1/ 1q
; if g0 2 LpŒu; v�, 1

p
C 1

q
D 1, p > 1;

1

2
kg0k1.v � u/; if g0 2 L1Œu; v�.

(5)

We refer the reader to Cerone and Dragomir [5] for more details on the trapezoid
type inequalities.

One of the applications of integral inequalities is to obtain bounds for the
expectation, variance and moments of continuous random variables defined over
a finite interval [1]. In Barnett et al. [1], it is noted that some Ostrowski type
inequalities may be used to obtain these bounds (see, e.g., Brnetić and Pečarić [2]).
We refer the readers to the monograph by Barnett et al. [1], for an overview of these
inequalities.
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There are other inequalities which provide bounds for means and variances.
Chernoff [7], for instance, proved that for any Gaussian random variable X

and absolutely continuous function G, we have Var.G.X// � E.G0.X//2. This
inequality is then generalised for higher-order derivatives in Houdré and Kagan [9].
A characterisation of distributions (normal, gamma, negative binomial or Poisson)
is given in [10] by means of a Chernoff type inequality. We refer to the papers
by Cacaoullos [3], Cacoullos and Papadatos [4], Chang and Richards [6] and
Dharmadhikari and Joag-Dev [8], for further inequalities involving variances.

In this paper, we aim to provide some inequalities of trapezoid type to give
tight bounds for the expectation and variance of a probability density function f .
In section “Main Results”, we give approximations for the first and second moments
of a function f W Œa; b�! R around the midpoint of the domain, i.e.,

Z b

a

�
x � aC b

2

�
f .x/ dx and

Z b

a

�
x � aC b

2

�2
f .x/ dx:

We make use of the trapezoid type inequalities to obtain error bounds for the
approximation. In section “Applications to Mean and Variance”, we apply the
results to obtain bounds for the expectation and variance of a probability density
function f . Remark 1 demonstrates the applicability of the approach for higher
order moments.

Main Results

Firstly, we note that inequality (4) also holds when we weaken the assumption, as
presented in the next proposition.

Proposition 2. Let g W I ! R be a function and u; v 2 I with u < v. If g0 is
absolutely continuous and g00 2 L1Œu; v�, then,

ˇ̌
ˇ̌g.u/C g.v/

2
.v � u/ �

Z v

u
g.t/ dt

ˇ̌
ˇ̌ � 1

12
.v � u/3kg00k1;

for all u; v 2 I .

Proof. Since g00 exists almost everywhere, we have

1

2

Z v

u
.t�u/.v�t /g00.t/ dt D 1

2

�
.t�u/.v � t /g0.t/

ˇ̌
ˇ̌
v

u

�
Z v

u
.uC v � 2t/g0.t/ dt

�

D 1

2

�
.2t � u � v/g.t/

ˇ̌
ˇ̌
v

u

� 2
Z v

u
g.t/ dt

�

D g.u/C g.v/
2

.v � u/ �
Z v

u
g.t/ dt:
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Thus,

ˇ̌
ˇ̌g.u/Cg.v/

2
.v�u/�

Z v

u
g.t/ dt

ˇ̌
ˇ̌ � 1

2

Z v

u
.t�u/.v�t /jg00.t/j dt

� 1
2
kg00k1

Z v

u
.t�u/.v�t / dtD 1

12
kg00k1.v�u/3;

as desired. �

Utilising (1) we have the approximation for the first moment of a function f .

Lemma 1. Let f W Œa; b� ! R be an integrable function. We have the following
approximation for the first moment of f :

Z b

a

�
x � aC b

2

�
f .x/ dx � b � a

3

 Z b

aCb
2

f .x/ dx �
Z aCb

2

a

f .x/ dx

!
: (6)

Proof. Setting f 
 g, u D aCb
2

and v D x in (1), and integrate it over Œa; b�,
we have

ˇ̌
ˇ̌
ˇ

Z b

a

f .x/C f � aCb
2

�

2

�
x � aC b

2

�
dx �

Z b

a

 Z x

aCb
2

f .t/ dt

!
dx

ˇ̌
ˇ̌
ˇ : (7)

Now,

Z b

a

f .x/C f � aCb
2

�

2

�
x � aC b

2

�
dx D 1

2

Z b

a

�
x � aC b

2

�
f .x/ dx:

We also have

Z b

a

 Z x

aCb
2

f .t/ dt

!
dx

D
�
x � aC b

2

�Z x

aCb
2

f .t/ dt

ˇ̌
ˇ̌
b

a

�
Z b

a

�
x � aC b

2

�
f .x/ dx

D b � a
2

Z b

aCb
2

f .t/dt � b � a
2

Z aCb
2

a

f .t/dt �
Z b

a

�
x � aC b

2

�
f .x/ dx:

Thus, (7) becomes

ˇ̌
ˇ̌
ˇ
3

2

Z b

a

�
x � aC b

2

�
f .x/ dx � b � a

2

 Z b

aCb
2

f .t/dt �
Z aCb

2

a

f .t/dt

!ˇ̌
ˇ̌
ˇ :
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Multiplying the above by 2
3

completes the proof. �

Let f be an integrable real-valued function defined on Œa; b�, and set

T1.f / WD
Z b

a

�
x � aC b

2

�
f .x/ dx� b � a

3

 Z b

aCb
2

f .x/ dx �
Z aCb

2

a

f .x/ dx

!
:

In the next theorem, we give bounds for jT1j, i.e. the error bounds for the
approximation in Lemma 1, for different classes of functions.

Theorem 1. Let f W Œa; b�! R be an integrable function.

a. If f of bounded variation on Œa; b�, then,

jT1.f /j �

8
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
:̂

.b�a/2
12

2

64
1

2

b_

a

.f /C1
2

ˇ̌
ˇ̌
aCb
2_

a

.f /�
b_

aCb
2

.f /

ˇ̌
ˇ̌

3

75

b�a
6

Z b

a

ˇ̌
ˇ̌

x_

aCb
2

.f /

ˇ̌
ˇ̌ dx

� 1

6
.b�a/2

b_

a

.f /:

(8)
b. If f is L-Lipschitz, then

jT1.f /j � 1

72
L.b � a/3: (9)

c. If f 0 is absolutely continuous and f 00 2 L1Œa; b�, then

jT1.f /j � 1

576
kf 00k1.b � a/4: (10)

d. If f 0 is absolutely continuous, then

jT1.f /j �

8
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
:

1

72
kf 0k1.b � a/3; if f 0 2 L1Œa; b�I
qkf 0kp.b � a/2C

1
q

3.2q C 1/.q C 1/ 1q 21C 1
q

; if f 0 2 LpŒa; b�, 1p C 1
q
D 1, p > 1;

1

12
kf 0k1.b � a/2; if f 0 2 L1Œa; b�.

(11)

Proof. Let f be a function of bounded variation on Œa; b�. Setting f 
 g, u D x

and v D aCb
2

in (2), we have
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ˇ̌
ˇ̌
ˇ
f .x/C f � aCb

2

�

2

�
x � aC b

2

�
�
Z x

aCb
2

f .t/ dt

ˇ̌
ˇ̌
ˇ �

1

2

ˇ̌
ˇ̌x � aC b

2

ˇ̌
ˇ̌
ˇ̌
ˇ̌

x_

aCb
2

.f /

ˇ̌
ˇ̌:

Integrating the above on Œa; b�, we have

ˇ̌
ˇ̌
ˇ

Z b

a

f .x/C f � aCb
2

�

2

�
x � aC b

2

�
dx �

Z b

a

 Z x

aCb
2

f .t/ dt

!
dx

ˇ̌
ˇ̌
ˇ

�
Z b

a

ˇ̌
ˇ̌
ˇ
f .x/C f � aCb

2

�

2

�
x � aC b

2

�
�
Z x

aCb
2

f .t/ dt

ˇ̌
ˇ̌
ˇ dx

� 1

2

Z b

a

ˇ̌
ˇ̌x � aC b

2

ˇ̌
ˇ̌
ˇ̌
ˇ̌

x_

aCb
2

.f /

ˇ̌
ˇ̌ dx: (12)

Following the proof of Lemma 1, the first term of (12) is 3
2
jT1.f /j. Furthermore,

we have

Z b

a

ˇ̌
ˇ̌x � aC b

2

ˇ̌
ˇ̌
ˇ̌
ˇ̌

x_

aCb
2

.f /

ˇ̌
ˇ̌ dx �

8
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂:

max
x2Œa;b�

ˇ̌
ˇ̌

x_

aCb
2

.f /

ˇ̌
ˇ̌
Z b

a

ˇ̌
ˇ̌x � aC b

2

ˇ̌
ˇ̌ dx

max
x2Œa;b�

ˇ̌
ˇ̌x � aC b

2

ˇ̌
ˇ̌
Z b

a

ˇ̌
ˇ̌

x_

aCb
2

.f /

ˇ̌
ˇ̌ dx

�

8
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
:̂

max

8
<̂

:̂

aCb
2_

a

.f /;

b_

aCb
2

.f /

9
>=

>;
.b � a/2

4

b � a
2

Z b

a

ˇ̌
ˇ̌

x_

aCb
2

.f /

ˇ̌
ˇ̌ dx

�

8
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
:̂

.b � a/2
4

2

64
1

2

b_

a

.f /C 1

2

ˇ̌
ˇ̌
aCb
2_

a

.f / �
b_

aCb
2

.f /

ˇ̌
ˇ̌

3

75

b � a
2

Z b

a

ˇ̌
ˇ̌

x_

aCb
2

.f /

ˇ̌
ˇ̌ dx

DW I:
Thus, (12) becomes

3

2
jT1.f /j � 1

2
I � 1

4

b_

a

.f /:
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Multiplying the above by 2
3

gives us (8). Let f be L-Lipschitz. We apply similar
steps as above and utilise (3) to obtain

3

2
jT1.f /j �

Z b

a

1

4
L

ˇ̌
ˇ̌x � aC b

2

ˇ̌
ˇ̌
2

dx D 1

48
L.b � a/3:

Multiplying the above with 2
3

gives us (9). Let f 0 be absolutely continuous and
f 00 2 L1Œa; b�. We apply similar steps as above and utilise Proposition 2 to obtain

3

2
jT1.f /j �

Z b

a

1

12
kf 00k1

ˇ̌
ˇ̌x � aC b

2

ˇ̌
ˇ̌
3

dx D 1

384
kf 00k1.b � a/4:

Multiplying the above with 2
3

gives us (10). Let f 0 exists and absolutely continuous.
We apply similar steps as above and utilise (5). We have

Z b

a

1

4
kf 0k1

�
x � aC b

2

�2
dx D 1

48
kf 0k1.b � a/3: (13)

The second case of the right-hand side of (5) becomes

1

2.q C 1/ 1q
kf 0kp

Z b

a

ˇ̌
ˇ̌x � aC b

2

ˇ̌
ˇ̌
1C 1

q

dx D qkf 0kp.b � a/2C
1
q

.2q C 1/.q C 1/ 1q 22C 1
q

: (14)

The third case of the right-hand side of (5) becomes

Z b

a

1

2
kf 0k1

ˇ̌
ˇ̌x � aC b

2

ˇ̌
ˇ̌ dx D 1

8
kf 0k1.b � a/2: (15)

Multiplying (13), (14) and (15) with 2
3

gives us the right-hand side of (11). �

Proposition 3. The constant 1
12

in the first case of (8) is best possible.

Proof. Let f W Œa; b� � R ! R be defined as follows: f .x/ D 1 when a � x <
aCb
2

, f .x/ D 0 when x D aCb
2

, and f .x/ D �1 when aCb
2

< x � b: We have
W aCb

2
a .f / D 1;

Wb
aCb
2

.f / D 1; and
Wb
a.f / D 2: Let us assume that (8) holds for

constants A > 0 instead 1
12

, i.e.

jT1.f /j � A.b � a/2
2

64
1

2

b_

a

.f /C 1

2

ˇ̌
ˇ̌
aCb
2_

a

.f / �
b_

aCb
2

.f /

ˇ̌
ˇ̌

3

75 : (16)

With the above choice of f , (16) becomes: 1
12
.b � a/2 � A.b � a/2; which asserts

that A � 1
12

. �
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Proposition 4. The constant 1
576

in (10) is best possible.

Proof. Let us assume that (10) holds for constants B > 0 instead 1
576

, i.e.

jT1.f /j � Bkf 00k1.b � a/4: (17)

Let f W Œa; b� � R! R be defined as follows: f .x/ D �x � aCb
2

�2
when a � x �

aCb
2

and f .x/ D � �x � aCb
2

�2
when aCb

2
< x � b: We note that f 00 exists almost

everywhere and kf 00k1 D 2. With this choice of f , (17) becomes: 1
288
.b � a/4 �

2B.b � a/4, which asserts that B � 1
576
: �

Utilising (1) we have the approximation for the second moment of a function f .

Lemma 2. Let f W Œa; b� ! R be an integrable function. We have the following
approximation for f :

Z b

a

�
x � aC b

2

�2
f .x/ dx � 1

8
.b � a/2

Z b

a

f .t/ dt � 1

24
f

�
aC b
2

�
.b � a/3:

(18)

Proof. Set f 
 g, u D aCb
2

and v D x in (1) and let F.x/ D R x
a
f .t/ dt to obtain:

ˇ̌
ˇ̌
ˇF.x/ � F

�
aC b
2

�
� f .x/C f

�
aCb
2

�

2

�
x � aC b

2

�ˇ̌
ˇ̌
ˇ : (19)

If we multiply (19) with
ˇ̌
x � aCb

2

ˇ̌
, and integrate it on Œa; b�, we have

ˇ̌
ˇ̌
ˇ

Z b

a

�
F.x/ � F

�
aC b
2

���
x � aC b

2

�
dx

�1
2

Z b

a

�
x � aC b

2

�2
f .x/ dx � 1

2
f

�
aC b
2

�Z b

a

�
x � aC b

2

�2
dx

ˇ̌
ˇ̌
ˇ : (20)

Now, observe that

Z b

a

�
F.x/ � F

�
aC b
2

���
x � aC b

2

�
dx

D
Z b

a

F.x/

�
x � aC b

2

�
dx

D 1

2

Z b

a

F.x/d

 �
x � aC b

2

�2!
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D 1

2

"
.F.b/ � F.a// .b � a/

2

4
�
Z b

a

�
x � aC b

2

�2
f .x/ dx

#

D 1

8
.b � a/2

Z b

a

f .t/ dt � 1
2

Z b

a

�
x � aC b

2

�2
f .x/ dxI

and

Z b

a

�
x � aC b

2

�2
dx D 1

12
.b � a/3:

Then, (20) becomes

ˇ̌
ˇ̌
ˇ

Z b

a

�
x�aCb

2

�2
f .x/ dx�1

8
.b�a/2

Z b

a

f .t/ dtC 1

24
f

�
aCb
2

�
.b�a/3

ˇ̌
ˇ̌
ˇ

as desired. �
Let f W Œa; b�! R be an integrable function and set

T2.f / WD
Z b

a

�
x � aC b

2

�2
f .x/ dx � 1

8
.b � a/2

Z b

a
f .t/ dt C 1

24
f

�
aC b
2

�
.b � a/3:

In the next theorem, we have bounds for jT2j, i.e. the error bounds for the
approximation in Lemma 2, for different classes of functions.

Theorem 2. Let f W Œa; b�! R be an integrable function.

a. If f is of bounded variation, then

jT2.f /j � 1

48

b_

a

.f /.b � a/3: (21)

b. If f is L-Lipschitz function, then

jT2.f /j � 1

128
L.b � a/4: (22)

c. If f 0 is absolutely continuous and f 00 2 L1Œa; b�, then

jT2.f /j � 1

960
kf 00k1.b � a/5: (23)
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d. If f 0 is absolutely continuous, then

jT2.f /j �

8
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
:

1

128
kf 0k1.b � a/4; if f 0 2 L1Œa; b�I

qkf 0kp.b � a/3C
1
q

.3q C 1/.q C 1/ 1q 23C 1
q

; if f 0 2 LpŒa; b�, 1
p
C 1

q
D 1;

1

24
kf 0k1.b � a/3 if f 0 2 L1Œa; b�:

(24)

Proof. Let f be of bounded variation. Let F.x/ D R x
a
f .t/ dt , we have the

following by (2):

ˇ̌
ˇ̌
ˇF.x/�F

�
aCb
2

�
�f .x/Cf

�
aCb
2

�

2

�
x�aC b

2

�ˇ̌
ˇ̌
ˇ �

1

2

ˇ̌
ˇ̌x�aCb

2

ˇ̌
ˇ̌

ˇ̌
ˇ̌
ˇ̌
ˇ

aCb
2_

x

.f /

ˇ̌
ˇ̌
ˇ̌
ˇ
:

(25)

If we multiply (25) with
ˇ̌
x � aCb

2

ˇ̌
, we get

ˇ̌
ˇ̌
ˇ

�
F.x/�F

�
aCb
2

���
x�aCb

2

�
�1
2

�
f .x/Cf

�
aCb
2

���
x�aCb

2

�2 ˇ̌ˇ̌
ˇ

� 1

2

ˇ̌
ˇ̌x � aC b

2

ˇ̌
ˇ̌
2

ˇ̌
ˇ̌
ˇ̌
ˇ

aCb
2_

x

.f /

ˇ̌
ˇ̌
ˇ̌
ˇ
:

(26)

Integrate (26) on Œa; b� and follow the proof of Lemma 2 we have:

jT2.f /j � 1

2

Z b

a

ˇ̌
ˇ̌x � aC b

2

ˇ̌
ˇ̌
2

ˇ̌
ˇ̌
ˇ̌
ˇ

aCb
2_

x

.f /

ˇ̌
ˇ̌
ˇ̌
ˇ
dx

D 1

2

2

64
Z aCb

2

a

�
x�aCb

2

�2 aCb
2_

x

.f / dxC
Z b

aCb
2

�
x�aCb

2

�2 x_

aCb
2

.f / dx

3

75

� 1

2

aCb
2_

a

.f /

Z aCb
2

a

�
x�aCb

2

�2
dxC1

2

b_

aCb
2

.f /

Z b

aCb
2

�
x � aC b

2

�2
dx

D 1

2

b_

a

.f /

Z aCb
2

a

�
x � aC b

2

�2
dx D 1

48

b_

a

.f /.b � a/3:
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Let f be L-Lipschitz. We apply similar steps as above and utilise (3) to obtain:

jT2.f /j � 1

4
L

Z b

a

ˇ̌
ˇ̌x � aC b

2

ˇ̌
ˇ̌
3

dx D 1

128
L.b � a/4:

Let f be a function such that f 0 is absolutely continuous and f 00 2 L1Œa; b�. We
apply similar steps as above and utilise Proposition 2 to obtain:

jT2.f /j � 1

12
kf 00k1

Z b

a

�
x � aC b

2

�4
dx D 1

960
kf 00k1.b � a/5:

Let f be a function such that f 0 exists and absolutely continuous. We apply similar
steps as above and utilise (5) to obtain:

1

4
kf 0k1

Z b

a

ˇ̌
ˇ̌x � aC b

2

ˇ̌
ˇ̌
3

dx D 1

128
kf 0k1.b � a/4:

The second case in the right-hand side of (5) becomes

1

2.q C 1/ 1q
kf 0kp

Z b

a

ˇ̌
ˇ̌x � aC b

2

ˇ̌
ˇ̌
2C 1

q

dx D qkf 0kp.b � a/3C
1
q

.3q C 1/.q C 1/ 1q 23C 1
q

:

The last case in the right-hand side of (5) becomes

1

2
kf 0k1

Z b

a

�
x � aC b

2

�2
dx D 1

24
kf 0k1.b � a/3:

This completes the proof. �

Proposition 5. The constant 1
48

in (21) is best possible.

Proof. We now prove the sharpness of the constant 1
48

. Let f W Œa; b� � R! R be
defined as follows: f .x/ D 0 when x D aCb

2
, and f .x/ D 1 otherwise. Therefore,Wb

a.f / D 2. Let us assume that (21) holds for a constant C > 0 instead of 1
48

, i.e.

jT2.f /j � C
b_

a

.f /.b � a/3: (27)

With the above choice of f , (27) becomes: 1
24
.b� a/3 � 2C.b� a/3, which asserts

that C � 1
48

, hence the constant 1
48

is best possible. �

Proposition 6. The constant 1
960

in (23) is best possible.
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Proof. Assume that (23) holds for a constant K instead of 1
960

, i.e.

jT2.f /j � Kkf 00k1.b � a/5: (28)

Let f W Œa; b� ! R defined by f .x/ D 1
2

�
x � aCb

2

�2
. So, f 00.x/ D 1 for all

x 2 Œa; b� and thus kf 00k1 D 1. Therefore, (28) becomes: 1
960
.b�a/5 � K.b�a/5,

which yields K � 1
960
: �

Remark 1. Utilising a similar technique to that of Lemma 2, we are able to obtain
the approximations for higher order moments that can be derived from (1). Set f 

g, u D aCb

2
and v D x in (1), let F.x/ D R x

a
f .t/ dt , multiply with

ˇ̌
x � aCb

2

ˇ̌n

(n � 1) and integrate with respect to x on Œa; b�

Z b

a

�
x � aC b

2

�nC1
f .x/ dx � 2.nC 1/

nC 3

"
1

nC 1
�
b � a
2

�nC1 Z b

a

f .t/ dt

�
Z aCb

2

a

f .x/ dx

Z b

a

�
x�aCb

2

�n
dx�1

2
f

�
aCb
2

�Z b

a

�
x�aCb

2

�nC1
dx

#
:

The integral
R b
a

�
x � aCb

2

�k
dx vanishes when k is odd; and when k is even,

Z b

a

�
x � aC b

2

�k
dx D .b � a/kC1

2k.k C 1/ :

Applications to Mean and Variance

In this section we provide some applications of Theorems 1 and 2 to obtain bounds
for expectation and variance of a probability density function.

Let f be a probability density function on Œa; b�. Let EŒa;b�.f / WD
R b
a
xf .x/ dx:

Thus, T1 becomes

Z b

a

�
x � aC b

2

�
f .x/ dx � b � a

3

 Z b

aCb
2

f .x/dx �
Z aCb

2

a

f .x/dx

!

D EŒa;b�.f / � aC b
2

Z b

a

f .x/ dx � b � a
3

Z b

aCb
2

f .x/dx C b � a
3

Z aCb
2

a

f .x/dx

D EŒa;b�.f /�
Z b

aCb
2

f .x/dx

�
aCb
2
C b�a

3

�
�
Z aCb

2

a

f .x/dx

�
aCb
2
�b�a

3

�

D EŒa;b�.f / � aC 5b
6

Z b

aCb
2

f .x/dx � 5aC b
6

Z aCb
2

a

f .x/dx DW TE.f /:



Error Bounds for Trapezoid Type Results 89

Then, we have the following results for f W Œa; b�! R:

1. If f is of bounded variation, then

jTE.f /j � 1

6
.b � a/2

b_

a

.f /: (29)

2. If f is L-Lipschitz function, then

jTE.f /j � 1

72
L.b � a/3: (30)

3. If f 0 is absolutely continuous and f 00 2 L1Œa; b�, then

jTE.f /j � 1

576
kf 00k1.b � a/4: (31)

4. If f 0 is absolutely continuous, then

jTE.f /j �

8
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
:

1

72
kf 0k1.b � a/3; if f 0 2 L1Œa; b�I
qkf 0kp.b � a/2C

1
q

3.2q C 1/.q C 1/ 1q 21C 1
q

; if f 0 2 LpŒa; b�, 1p C 1
q
D 1;

1

12
kf 0k1.b � a/2; if f 0 2 L1Œa; b�.

(32)

Consider ı W a D x0 < x1 < x2 < � � � < xn�1 < xn D b and set

T ıE.f / W DEŒa;b�.f /�
n�1X

iD0

0

@xiC5xiC1
6

Z xiC1

xiCxiC1
2

f .x/dxC5xiCxiC1
6

Z xiCxiC1
2

xi

f .x/dx

1

A :

Write (29) for Œxi ; xiC1�, i 2 f0; : : : ; n � 1g and then use the generalised triangle
inequality, we get:

jT ıE.f /j �
1

6

n�1X

iD0
h2i

xiC1_

xi

.f / � 1

6
max

i2f0;:::;n�1g
h2i

n�1X

iD0

xiC1_

xi

.f / D 1

2
�2.ı/

b_

a

.f /

where �.ı/ WD max
i2f0;:::;n�1g

hi and hi D xiC1 � xi , assuming f is of bounded

variation. If f is L-Lipschitz function, then (30) becomes

jT ıE.f /j �
1

72
L

n�1X

iD0
h3i �

1

72
L�3.ı/:
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If f is twice differentiable and f 00 is bounded, then (31) becomes

jT ıE.f /j �
1

576
kf 00k1

n�1X

iD0
h4i �

1

576
�4.ı/kf 00k1:

If f 0 is absolutely continuous, then (32) becomes

jT ıE.f /j �

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
:

1

72
kf 0k1

n�1X

iD0
h3i I

qkf 0kp
n�1X

iD0
h
2C 1

q

i

3.2q C 1/.q C 1/ 1q 21C 1
q

I

1

12
kf 0k1

n�1X

iD0
h2i I

�

8
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
:

1

72
kf 0k1�3.ı/; if f 0 2 L1Œa; b�I
qkf 0kp�2C 1

q .ı/

3.2q C 1/.q C 1/ 1q 21C 1
q

; if f 0 2 LpŒa; b�;
1

12
kf 0k1�2.ı/; if f 0 2 L1Œa; b�;

where p > 1 and 1
p
C 1

q
D 1.

Remark 2. We note that TE.f / can be simplified as follows:

EŒa;b�.f / � aC 5b
6
C 2.b � a/

3

Z aCb
2

a

f .x/dx; or,

EŒa;b�.f / � 5aC b
6
� 2.b � a/

3

Z b

aCb
2

f .x/dxI

in which the partition over Œa; b� can be halved.

Let f be a probability density function on Œa; b�. Let VarŒa;b�.f / WDR b
a
x2f .x/ dx � ŒEŒa;b�.f /�2. Thus,

Z b

a

�
x � aC b

2

�2
f .x/ dx

D
Z b

a

x2f .x/ dx � .aC b/
Z b

a

xf .x/ dx C
�
aC b
2

�2 Z b

a

f .x/ dx

D VarŒa;b�.f /C ŒEŒa;b�.f /�2 � .aC b/EŒa;b�.f /C
�
aC b
2

�2
:
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Therefore, T2 becomes

Z b

a

�
x�aCb

2

�2
f .x/ dx�1

8
.b�a/2

Z b

a

f .x/ dxC 1

24
f

�
aCb
2

�
.b�a/3

D VarŒa;b�.f /C ŒEŒa;b�.f /�2 � .aC b/EŒa;b�.f /C
�
aC b
2

�2

�1
8
.b � a/2 C 1

24
f

�
aC b
2

�
.b � a/3

D VarŒa;b�.f /C
�
EŒa;b�.f / � aC b

2

�2
�1
8
.b � a/2C 1

24
f

�
aC b
2

�
.b � a/3

DW TV .f /:

Then, we have the following results:

1. If f is of bounded variation, then

jTV .f /j � 1

48

b_

a

.f /.b � a/3: (33)

2. If f is L-Lipschitz function, then

jTV .f /j � 1

128
L.b � a/4: (34)

3. If f 0 is absolutely continuous and f 00 2 L1Œa; b�, then

jTV .f /j � 1

960
kf 00k1.b � a/5: (35)

4. If f 0 is absolutely continuous, then

jTV .f /j �

8
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
:

1

128
kf 0k1.b � a/4; if f 0 2 L1Œa; b�I

qkf 0kp.b � a/3C
1
q

.3q C 1/.q C 1/ 1q 23C 1
q

; if f 0 2 LpŒa; b�, 1p C 1
q
D 1;

1

24
kf 0k1.b � a/3; if f 0 2 L1Œa; b�:

(36)
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Consider ı W a D x0 < x1 < x2 < � � � < xn�1 < xn D b and set

T ıV .f / WD VarŒa;b�.f /C
n�1X

iD1

"�
EŒxi ;xiC1�.f / �

xi C xiC1
2

�2

�1
8
.xiC1 � xi /2 C 1

24
f

�
xi C xiC1

2

�
.xiC1 � xi /3

#
:

Write (33) for Œxi ; xiC1�, i 2 f0; : : : ; n� 1g and then use the generalised triangle
inequality, we get:

jT ıV .f /j �
1

48

n�1X

iD0
h3i

xiC1_

xi

.f / � 1

48
max

i2f0;:::;n�1g
h3i
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iD0

xiC1_

xi

.f / D 1

2
�3.ı/

b_

a

.f /

where �.ı/ WD max
i2f0;:::;n�1g

hi and hi D xiC1 � xi , assuming f is of bounded

variation. If f is L-Lipschitz function, then (34) becomes

jT ıV .f /j �
1

128
L

n�1X

iD1
h4i �

1

128
L�4.ı/:

If f is twice differentiable and f 00 is bounded, then (35) becomes

jT ıV .f /j �
1
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kf 00k1�5.ı/:

If f 0 is absolutely continuous, then (36) becomes
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q
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where p > 1 and 1
p
C 1

q
D 1.
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Correlated Phenomena in Wireless
Communications: A Copula Approach

S.N. Livieratos, A. Voulkidis, G.E. Chatzarakis, and P.G. Cottis

Abstract Copulas are multivariate joint distributions of random variables with
uniform marginal distributions. A quite interesting topic in statistical modelling
is how the inefficiencies, appearing when the classical linear (Pearson) correlation
coefficient is employed, can be overcome. Copulas are increasingly being involved
to address such challenges. In the present article, the concept of copulas is employed
in the framework of wireless communications and is related to multivariate corre-
lated fading phenomena as well as to the relevant fade mitigation techniques. The
multivariate copula-based models employed in the present work are general and can
be customized to any continuous multivariate random variables.

Keywords Wireless fades • Copulas • Fade mitigation techniques • Multipath
fading • Rain attenuation

Introduction

Atmospheric phenomena such as reflection, diffraction, and scattering adversely
affect the performance of wireless communication systems as they pose severe
limitations to wave propagation. As a result, signal transmission may be severely
impaired by the existence of various obstacles such as buildings, mountains, or
foliage or due to precipitation mechanisms such as rainfall. Moreover, interference
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Channel fading
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Fig. 1 Indicative fading classification

can further aggravate signal transmission. In general, the wireless channel
characteristics are non-stationary and non-predictable and are subjected to fading
normally perceived as signal attenuation.

The various types of fading associated with specific fading mechanisms can be
classified into two main categories: large-scale fading and small-scale fading [1].
Large-scale fading is dependent on the distance between transmitter and receiver,
whereas small-scale fading is caused by small changes in position (of the order
of half wavelength) or by changes in the transmission environment (surrounding
objects, moving obstacles crossing the line of sight (LOS) between transmitter and
receiver, etc.). Likewise, fading can be classified with regard either to its duration or
to where it happens (outdoor or indoor). A high-level overview of the various fading
types is given in Fig. 1 [2].

To successfully model wireless channels, accurate wave propagation models are
required. Such models aim at describing the changes caused to the transmitted waves
as they propagate from the transmitter to the receiver and suffer from path loss,
interference, noise, and various types of fading. In practical wireless communication
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systems, the channel state cannot be estimated at the receiver perfectly. Therefore,
and regardless of the fading mechanism involved, it is essential to examine the effect
of channel estimation errors, on the structure and performance of the receivers by
analyzing their performance over correlated fading channels. Indicative examples
of fading mechanisms that give rise to correlated microwave terrestrial or satellite
transmissions are: (i) fading due to rain attenuation induced on spatially diversified
links or (ii) multipath fading. Both the above types of fading are mitigated by
well-known diversity combining techniques such as maximal ratio combining and
optimal combining. The performance of those diversity techniques deteriorates due
to imperfect channel estimation. Hence, to formulate realistic radio channel models,
appropriate statistical propagation models are required.

The performance assessment of wireless links in the presence of correlated
fading should employ multivariate distributions that represent the joint statistics of
different fading mechanisms. In most cases, the relevant distribution is heuristically
defined, if possible. The modelling difficulties that arise are related to the nature of
the physical phenomena involved and to the algebraic complexity introduced. The
commonly adopted performance metrics assessing availability and reliability are
the outage probability and the average bit error probability for various transmission
rates and quality of service (QoS) levels.

Up to now, various multivariate fading distributions have been employed, such
as the Rayleigh, Rice, and Nakagami distributions for short-term fading, caused
primarily by multipath propagation, or the lognormal distribution for long-term
fading, caused primarily by rain attenuation and shadowing. It should be noted,
though, that, in complex propagation environments, more than one type of fadings
exist simultaneously [3].

Although correlated fades rarely take large values at the same time, if such an
incident happens, it happens in a highly correlated way. The classic linear (Pearson)
correlation coefficient fails to appropriately model the interdependence of fading
events caused by different mechanisms as their underlying correlation is not linear,
particularly as to the tails of the fading distributions. The Rayleigh or the Rice fading
models, being stimulated by an inherent Gaussian random process, are basically
Gaussian-oriented and do not efficiently model simultaneous deep fades that are
affected by an underlying interdependence. Hence, it becomes evident that the
benefit expected from diversity in wireless communications, which derives from
the assumption that the diversity channels employed should be as de-correlated
as possible, must be reconsidered and be modelled via multivariate distributions
that can effectively describe the joint statistical behavior between random variables
that are not linearly correlated. In this respect, the classic Pearson correlation
factor cannot properly represent their underlying interdependence. In particular
the n -variate Nakagami distribution describes multipath propagation of relatively
large delay time-spread, employing clusters of reflected waves [4]. This distribution
incorporates as special cases the Rayleigh distribution and the one-sided Gaussian
model distribution, also approximating the Rician fading distribution. Though it
performs well for the main part of these distributions, the approximation fails in the
tails, which is critical since bit errors or outages occur mainly during deep fades [5].
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As for terrestrial or satellite links operating above 10 GHz, where rain attenuation
is the primary impairing factor, double site diversity constitutes an effective fade
mitigation technique. The basic assumption is that the rain attenuation affecting
the (two) diversity links involves two random variables modelled via the bivariate
lognormal or, in some cases, the bivariate gamma distribution. The diversity gain
determined when deep rain fades occur simultaneously, particularly in tropical
zones, does not match the experimental data [6]. Among other reasons, this is
attributed to the nonlinear underlying correlation between the two correlated random
variables representing the rain attenuation over the two earth-space paths.

Another failure when modelling fading phenomena takes place when short-term
fading due to multipath modelled by the Nakagami, Rice, or Rayleigh distribution,
coexists with long-term fading due to shadowing modelled by the lognormal
distribution [7]. The representation of such complex propagation environments
leads to complicated mathematical models inconvenient to accurately evaluate
the performance of wireless links. Concluding, the development of alternative
mathematical models is necessary to overcome the aforementioned inefficiencies.

Basic Theory of Copulas

One method to model correlated random variables which has recently become
quite popular is copula which, in Latin, means “a link, tie or bond.” Copulas
introduce a bond between correlated random variables and where first employed
in mathematics or statistics by Abe Sklar [8, 9]. Copulas are functions that make
feasible to obtain a joint distribution having a particular correlation by combining
univariate distributions. Let X D .X1;X2; : : : ; Xn/ be a vector of n random
variables modelling n correlated fades having marginal cumulative distribution
functions (CDFs) Fi ; i D 1; 2; : : : ; n, respectively. The relevant multivariate CDF
is defined by

F .x1; x2; : : : ; xn/ D Pr fX1 � x1; : : : ; Xn � xng (1)

and completely determines the correlation of random variables Xi , i D 1; 2; : : : ; n.
As pointed out in the previous section, the analytic representation of F might
be too complex, making any algebraic evaluations or even numerical estimations
practically impossible, thus restricting its practical use. The multivariate Gaussian
distribution has become popular because it can easily describe interrelated fades. On
the other hand, it has not been proven capable of fitting real data in fading commu-
nications channels. The use of copula functions overcomes the issue of estimating
multivariate CDFs. This is accomplished by splitting the relevant procedure into two
steps:
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i. Determine the marginal CDFs Fi ; i D 1; 2; : : : ; n of the particular fading
phenomena involved; estimate the parameters of CDFs by fitting the available
data using well-established statistical methods;

ii. Determine the correlation structure of the random variables Xi ; i D 1; 2; : : : ; n

and select a suitable copula function.

The goal is twofold: to select the most appropriate marginal CDFs in order to fit
the real data of each fading mechanism and the copula function that performs better
in properly linking the various marginal CDFs and fitting the joint measurements
available.

An n-dimensional copula, hereafter denoted by C , is a multivariate CDF with
marginals uniformly distributed in Œ0; 1� that possesses the following properties:

i. C W Œ0; 1�n ! Œ0; 1�;
ii. As CDFs are always increasing functions, C .u1; : : : ; un/ is increasing with

respect to any component ui , i D 1; 2; : : : ; n.
iii. C is grounded, that is C .u1; : : : ; un/ D 0, if ui D 0, i D 1; 2; : : : ; n.
iv. The marginal with respect to component ui is obtained by C .1; : : : ; ui ; : : : ; 1/ D

ui , that is, by setting uj D 1 for any j , j ¤ i , and as it must be uniformly
distributed.

From the above properties, it is deduced that, if F1; : : :, Fn are univariate
distribution functions, C .F1.x1/; : : : ; Fn.xn// is a multivariate CDF with margins
F1; : : : ; Fn, since Ui D Fi.xi /, i D 1; : : : ; n, are uniformly distributed random
variables. Copulas constitute a useful tool to derive and process multivariate
distributions. Based on the definitions, the following relation describes the basic
properties of copula functions.

C .x1; x2; : : : ; xn/ D Pr fX1 � x1; : : : ; Xn � xng
D Pr fF1.X1/ � F1.x1/; : : : ; Fn.Xn/ � Fn.xn/g
D Pr fU1 � u1; : : : ; Un � ung D C .u1; : : : ; un/

D C .Pr fX1 < x1g ; : : : ;Pr fXn < xng/ (2)

The founding theorem for copulas [8, 9] states that, given a joint multivariate
distribution function and the constituent marginal distributions, a copula function
exists that relates them. This theorem known as Sklar’s Theorem is very important
in explaining copula functions because it provides a way to analyze the correlation
structure of multivariate distributions without any requirements for setting any
specifications concerning the related marginal distributions such as that they must
be or have the same parameters. Also, it defines how multivariate CDFs modelled
by copulas are used in many practical applications. According to Sklar’s Theorem,
if F is an n-dimensional CDF with continuous margins Fi , i D 1; 2; : : : ; n, then F

has the following unique copula representation (canonical decomposition):

F .x1; x2; : : : ; xn/ D C .F1.x1/; : : : ; Fn.xn// (3)
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From (3) it can readily be deduced that, for continuous multivariate distributions,
the univariate margins can be separated from the multivariate correlation. The latter
can be represented by a suitable copula function which should be formed based on
statistically stable experimental data and efficient regression techniques.

An additional property of copula functions follows:
Let F be an n-dimensional CDF with continuous margins F1; : : : ; Fn and copula

C . Then, for any u D .u1; : : : ; un/ in Œ0; 1�n the following relation holds which can
be obtained in a straightforward wayW

C .u1; : : : ; un/ D F .F �1
1 .u1/; : : : ; F

�1
n .un// (4)

where F �1
i is the generalized inverse of Fi .

From (4) it is deduced that copulas allow joining together correlated distributions
when the constituent marginal distributions are deterministically known. For an
n-variate joint distribution F, the associated copula is a distribution function C that
satisfies

F .x1; x2; : : : ; xn/ D C .F1.x1/; : : : ; Fn.xn/I#/ (5)

where # is the dependence parameter of the copula measuring the correlation
depth between the constituent marginal distributions. The above equation can be
the starting point of how copulas can be empirically applied to various problems.
Although # is in general, a vector of parameters, for bivariate applications it is a
scalar correlation measure to be specified. Thus, a bivarate distribution is expressed
in terms of the constituent marginal distributions and a function C that binds
them together making use of # . An essential advantage of copula functions is that
the various marginal distributions involved may belong to different families. For
example, a bivariate distribution might involve the normal distribution representing
one random variable and the gamma distribution representing the other. Though in
many cases traditional representations of multivariate distributions necessitate that
all the random variables involved must have the same marginals, this is not necessary
when employing copulas. In this context, the assumption of identically distributed
random variables which might be an inefficient simplification in many cases is not
necessary when employing copulas.

In general, copulas allow to consider marginal distributions and correlation as
two separate though related issues. For many practical applications, the correlation
parameter is the main prerequisite for proper estimation. The assumption of linear
correlation, which can fully determine elliptic multivariate distributions, must be
reconsidered when modelling non-elliptic multivariate distributions. As an example
of the weakness of assuming linear correlation, consider two random variables,
X which is Gaussian N.0; 1/ and X2. Evidently, the knowledge of X fully
determines X2, that is, the two variables are 100% correlated. However, based on
the classic definition of the Pearson correlation coefficient, it is deduced that their
covariance is zero, that is
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Cov.X;X2/ D 0 (6)

Consequently their correlation coefficient � is also zero which means that they are
not correlated.

It should be noted that, as copulas are multivariate distributions of uniformly dis-
tributed random variables, they may be expressed in terms of marginal probabilities
(CDFs). If a copula is a product of two marginals, independence is deduced allowing
the separable estimation of each marginal.

How to Use Copulas in Practice

Based on the previous sections, the question arising is how to select the copula
appropriate for a specific problem involving multiple correlated random variables.
Often, the choice is based on the usual criteria of familiarity, ease of use, and
analytical tractability. The estimation of the marginal distribution and its parameters
is not affected by the choice of the copula function used for modeling the
dependence of the random variables involved. Hence, any statistical distribution
that effectively fits the available experimental data could be adopted to describe
the one-dimensional phenomenon whereas the parameters of the distribution can be
obtained following well-known fitting/regression methods.

However, there might be some cases where the estimation of conditional
measures such as the conditional mean E.X=Y D y/ or variance V.X=Y D y/

might be affected by the choice of the copula function used to model the dependence
between the random variables X and Y . More precisely if X and Y are continuous
random variables with distribution functions FX.x/ and FY .y/ respectively, their
CDF satisfies the following expression:

F XY .x; y/ D F XY


F �1
X .u/; F �1

Y .v/
�

D Pr
˚
X � F �1

X .u/; Y � F �1
Y .v/

� D C .u; v/ (7)

Equation (7) shows how the copula function C bridges the marginal and the joint
distribution. The existence of C is guaranteed by Sklar [8, 9]. The uniqueness of C ,
once FX; FY ; and F XY are defined, is ensured as long as the random variables are
continuous. In many instances there may be various options for the marginals and
little or no idea about the joint distribution function.

Commonly used copulas are:

(i) the Gumbel copula for extreme distributions:

C Gu
# .u1; u2/ D exp

�
�
	
.� ln u1/

# C .� ln u2/
#

1=#�

, # 2 Œ1;1/ (8)
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(ii) the Gaussian copula for linear correlation

C Ga
R .u/ D ˚n

R

�
˚�1.u1/; : : : ; ˚�1.un/

�
(9)

C Ga
R .u; v/ D

Z ˚�1.u/

�1

Z ˚�1.v/

�1
1

2�

q
1 �R212

exp

"
s2 � 2R12st C t 2
2
�
1 �R212

�
#
dsdt

(10)

where R12 is the standard linear correlation coefficient of the corresponding
bivariate normal distribution

(iii) the t-copula for dependence in the tail [10]

C t
;R.u/Dtn;R

�
t�1 .u1/; : : : ; t

�1
 .un/

�
(11)

C t
;R.u; v/D

Z t�1 .u/

�1

Z t�1 .v/

�1
1

2�

q
1�R212

"
1C s

2�2R12stCt 2

�
1�R212

�
#�.C2/=2

dsdt

(12)

where R12 is simply the usual linear correlation coefficient of the correspond-
ing bivariate t distribution if  > 2.

The Gaussian copula derives from the multivariate Gaussian distribution. Other
methods of deriving copulas may employ geometry and (4). For example, for two
marginal distributions, one following the beta distribution with parameters ˛ and
ˇ, and the other following the lognormal distribution with parameters 	 and � , the
following copula may be employed

C Fr
# .u1; u2/ D �

1

#
ln

"
1C

�
e�#u1 � 1� �e�#u2 � 1�

e�# � 1

#
, # 2 Rn f0g (13)

which is a member of the Frank’s family.
Upon substituting the relevant distribution functions, a new joint distribution

comes up. Parameter # determines the depth of correlation between the marginals.
A high-level overview of the fading problems encountered in wireless commu-

nications suggests that there are experimental data available for various types of
fading (random variables) upon which prediction models should be developed and
verified by other similar data, if possible. Copulas allow to build new prediction
tools avoiding the use of complicated multivariate distribution functions which are
rarely available and too complex. In the attempt to determine the copula function
that fits real data, various methods must be followed such as minimizing particular
cost functions and identifying the parameter # affecting the correlation depth. The
sensitivity of # to the various electric or spatial characteristics of the physical
problems involved is examined so that a numerical trend for its determination can
be obtained. Consequently, a probabilistic prediction of the fade values is attempted
for various engineering configurations of the physical problem as an estimator of
the actual system performance.
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Methodologically the following procedure is proposed. The first step that has
to be taken is to formulate the problem each time in hand. As an example assume a
MIMO system with two antennas operating over fading channels. A copula function
must be formed to determine the relevant outage probability. If SNRi , i D 1; 2 is
the signal-to-noise ratio achieved over the i -th channel and the selection combining
criterion is adopted, that is the receiver selects the channel exhibiting the maximum
SNR, the statistics of system outage are given by:

Poutage D Pr fSNR1.dB/ � SNRTH.dB/; SNR2.dB/ � SNRTH.dB/g (14)

where the threshold SNR level appearing in (14) depends on the application,
transmission rate, modulation scheme, etc.

If the CDFs of each SNRi , i D 1; 2, are estimated, only the joint statistics must
be modelled to determine the outage probability given by (14). To initiate the copula
modelling, measurement data are required for the estimation of the CDFs of the
individuals SNRs. For this estimation there is no need to derive a closed form
distribution function. It must be focused on determining the CDF sample values
as accurately as possible. If specific SNR thresholds are employed, the inverse
CDFs can correspond to values in Œ0; 1� related to the uniform random variables
Ui ; i D 1; 2; as in (2). In other words, the one-dimensional datum for each random
variable (fade) does not have to be fitted by a closed form statistical distribution
since

Pr fX1 � x1; : : : ; Xn � xng D C .Pr fX1 < x1g ; : : : ;Pr fXn < xng/ (15)

However, the joint statistical data have to be represented by various copula functions
under specific error criteria. The most widely criterion is the least squares one giving
rise to following optimization problem.

minimize
X

md


Pjom � C .Psom_1; Psom_2I#/

�2
(16)

where

Psom_1 D Pr fSNR1 < SNRTHg (17)

Psom_2 D Pr fSNR2 < SNRTHg (18)

C .Psom_1; Psom_2I#/ D Pjop (19)

and the acronyms md, jom, som, and jop stand for measurement data, joint outage
measured, single outage measured, and joint outage predicted, respectively.

The copula family that minimizes the cost function expressed in (16) performs
better and may be the copula selected to describe the phenomenon under consid-
eration and be adopted for prediction purposes. The nature of the regression is to
determine the appropriate value of the dependence factor, # , for each copula family
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employed to minimize the cost function given by (16). Hence, after having selected
the copula family, the dependence factor # is also determined. It should be noted that
# depends on system parameters such as frequency, polarization, site separation, etc.
Therefore, to generalize a copula prediction method, a plethora of measurements
are required to generate a statistically stable model for # , involving the spatial and
electromagnetic parameters, allowing the use of the same copulas be employed in
similar cases under different operational characteristics.

Conclusions

The copula approach needs to specify the marginal distribution of the random
variable involved along with the copula function that correlates them. The copula
function can be adjusted to take into account the measurements of the correlated
constituent random variables. Employing proper correlation parameters can lead
to more efficient representations of joint distributions. The copula method being
advantageous in capturing correlation regardless of the marginal type is expected to
be very useful when dealing with fading in wireless channels.
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Stochastic Analysis of Cyber-Attacks
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Abstract After studying the stochastic process of cyber-attacks against a cyber
system, we investigate the set of intermediate times between successive cyber-
attacks. Then, we give basic definitions and properties on the expected number of
cyber-attacks in a closed time interval and present renewal theorems, as well as a
description of exact and asymptotic probability distributions for the main occurrence
moments of cyber-attacks. Further, we outline stationary renewal processes of
cyber-attacks. The paper concludes with asymptotic properties for the counting
function of cyber-attacks.
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Introduction

Cyber warfare has recently become of increasing importance to the military, the
intelligence community, and the business world. The task of securing applications
against cyber-attacks is one of the most urgent for now. As an immediate conse-
quence, there are a growing number of scientific papers devoted to cyber-attack’s
study [1–8].
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Of course, the main challenge in analysis and identification of cyber-attacks is
the asynchronous nature of the problem. However, for obvious reasons of better
organization, any cyber system E must be absolutely aware of the expected number
of cyber-attacks in a closed time interval, as well as the most likely occurrence
moments for cyber-attacks. Further, for justifiable reasons of effectiveness, the cyber
system must be aware of the time length between successive cyber-attacks in order
to attempt to achieve its plans within the time which elapses between two successive
cyber-attacks.

This paper answers these questions and deals with a short stochastic and renewal
analysis of cyber-attacks. Specifically, in section “The Stochastic Process of Cyber-
Attacks,” we consider the stochastic variable A .t/ .t � 0/ denoting the total
number of cyber-attacks against a given cyber system E up to the moment time
t from the beginning 0 of a surveillance period. The first main result shows that
the distribution function for the associated cyber-attacks process is a Poisson
distribution (Theorem 1). Next, in section “Intermediate and Waiting Times in
a Process of Cyber-Attacks,” we consider intermediate times between successive
cyber-attacks, and we prove that if W is the waiting time up to the th cyber-attack,
then the set .W W  D 1; 2; : : : / forms a stochastic process with probabilities given
by an Erlang distribution (Theorem 2). Moreover, it is showed that the successive
intermediate times between successive cyber-attacks against E are independent
and equidistributed random variables, with common exponential density function
(Theorem 3). The randomness character for a stochastic process of cyber-attacks
against the cyber system E is stated in Theorems 4 and 5 and some reasonable
generalizations are given in section “Generalizations for the Stochastic Process
of Cyber-Attacks.” Section “The Renewal Counting Function of Cyber Attacks:
Definitions and Properties” deals with renewal processes of successive cyber-attacks
without exponential distribution. Now, A .t/ is the renewal counting function of
cyber-attacks against E. In sections “The Renewal Counting Function of Cyber
Attacks: Definitions and Properties” and “Renewal Theorems on Cyber-Attacks,”
we give basic definitions and renewal properties on the expected number of cyber-
attacks in any time interval Œ0; t �. Section “Exact and Asymptotic Distributions
for the Occurrence Moments of Cyber-Attacks” describes the exact and asymptotic
distributions for the next cyber-attack occurrence moment, the preceding cyber-
attack occurrence moment, and the successive cyber-attacks’ occurrence moments.
Finally, section “Stationary Renewal Processes of Cyber-Attacks” is devoted to sta-
tionary renewal process of cyber-attacks, while Sect. 10 formulates some asymptotic
properties for the counting function A .t/.

The Stochastic Process of Cyber-Attacks

Let E be a cyber system exposed to serious threats of cyber warfare. Let also A.t/
be a stochastic variable denoting the total number of cyber-attacks against E up to
the moment time t from the beginning t0 D 0 of a surveillance period.



Stochastic Analysis of Cyber-Attacks 107

In what follows, we will always assume that

(i) The number A.0/ of E’s cyber-attacks at the beginning t0 D 0 is equal to zero.
(ii) For any h > 0, the differences A .t/� A.s/ and A .t C h/ � A.s C h/

are equidistributed events (we say that E’s cyber-attacks have stationary
increases).

(iii) For any  > 2 and any t1 < t2 < : : : < t , the differences A .t2/ � A.t1/,
A .t3/ � A.t2/,. . . , A .t/� A.t�1/ are independent events (we say that E’s
cyber-attacks have independent increases).

(iv) There is at most one attack occurring into any infinitesimal time inter-
val .t; t C h/.

Definition 1. The random variable A.t/ with Properties (i), (ii), (iii), and (iv) is
said to be a stochastic process of cyber-attacks for E. (For a concise and lucid
introduction to simple stochastic processes, the reader is referred to [9]).

We will first make some comments.

Remark 1. Property (ii) has the following mathematical interpretation:P.A .tCs/�
A.s/ D k/ D ak.t/ for any k D 0; 1; : : : and t � 0, s � 0. As usually,
P.A.s/ D k/ denotes the probability that exactly k cyber-attacks against E arise
from the beginning of a specified time period.

Remark 2. Analogously, Property (iv) has the following mathematical interpreta-
tion: there is a constant � > 0 such that a1 .h/ D P .A .t C h/ � A .t/ D 1/ D
�h C o.h/ and a0 .h/ D P .A .t C h/ � A .t/ D 0/ D 1 � �h C o.h/, where
the “remainder” o.h/ is sufficiently small, in the sense that limh!0 .o.h/=h/ D 0.
Notice that the above two relationships on a1 .h/ and a0 .h/ imply that the
probability of the event “there are more than one cyber-attacks occurring in the
time interval .t; t C h/” is equal to ak.h/ D o.h/, k > 1.

The exact meaning of the second relationship in Remark 2 is limh!0Ca1.h/ D �

and, in this connection, we give the following definition for the parameter � which
can also be viewed as a speed of cyber-attacks’ occurrence.

Definition 2. The parameter � is the stochastic process intensity of cyber-attacks
against E.

Using the fact that A.t/ has independent increases, we obtain the next result.

Theorem 1. The distribution function for a process of cyber-attacks against E with
intensity � is a Poisson distribution with parameter �:

Pk.t/ WD P .A.t/ D k/ D e��t .�t/
k

k Š
; k D 0; 1; 2; : : :

Proof. From the fact that A.t/ has independent increases, and the total probability
theorem, it follows that
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P0.t C h/ D P0.t/P0.h/ and

P.t C h/ D
X

kD0
P�k .t/ Pk .h/;  D 1; 2; : : : :

So, by Remark 2,

P0 .t C h/ � P0 .t/
h

D ��P0 .t/C o.h/

and

P .t C h/ � P .t/ D P .t/ ŒP0 .h/ � 1�C P�1 .t/ P1 .h/C
X

jD2
P�j .t/ Pj .h/ D ��P .t/ hC P�1 .t/ P1 .h/C o.h/;

respectively. The last equation is a consequence of the relationship ak.h/ D o.h/
whenever k > 1, since

X

kD2
P�k .t/ Pk .h/ D

X

kD2
Pk .h/ D

X

kD2
a .h/ D o.h/:

Letting h ! 0, and using one more time the relationship ak.h/ D o.h/
whenever k > 1, we see that the probabilities P .t/ satisfy the differential
equations .dP0=dt/ .t/ D ��P0 .t/ and .dP=dt/ .t/ .t/ D ��P .t/ C P�1 .t/,
 D 1; 2; : : :, with initial conditions P0 .0/ D 1 and P .0/ D 0,  D 1; 2; : : :

Hence, P0 .t/ D e��t . Substituting P0 .t/ into the equation .dP1 .t/=dt/ D
��P1 .t/ C P0 .t/, and solving with respect to P1 .t/, we obtain P1 .t/ D �te��t .
Continuing similarly, we prove the desired assertion. �

Remark 3. We are often limited to stochastic processes of cyber-attacks which are
homogeneous with respect to the time, in the sense that the transition probabilities
pi; j .t/ WD P .A .t C s/ D j =A .t/ D i/ for any s � 0 are stationary (i.e.,
independent of s D 0). Since, in such a case, the infinitesimal transition probabilities
pi; j .h/ WD P .A .t C h/ � A .t/ D j =A .t/ D i/ for “small” h > 0 are also
stationary, an application of Property (iii) shows that the conditional probabilities
of the two events:

1. “(exactly) one cyber-attack occurs in time interval .t; t C h/,” and
2. “no one cyber-attack occurs in time interval .t; t C h/”
coincide with the corresponding unconditional probabilities. So, from Remark 2, it
follows that pi; 1 .h/ D a1 .h/ ; pi; 0 .h/ D a0.h/, and pi; j .h/ D o.h/ whenever
j > 1. These equalities reveal a “forgetfulness” property for the stochastic processes
of cyber-attacks against E: after any cyber-attack occurrence in time, the process
fA .t/ W t > �g is independent of the process fA .t/ W t D �g.
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Intermediate and Waiting Times in a Process of Cyber-Attacks

In this section we are not only interested for the valueA .t/, but also for the moments
t1; t2; t3; : : : of occurrence of successive attacks.

Definition 3. The intermediate times T1; T2; T3; : : : between successive occur-
rences of cyber-attacks against E can be defined by using the waiting times W up
to the th attack as follows

T1 D W1; T2 D W2 �W1; : : : ; T D W �W�1; : : :

Conversely, the waiting time W up to the th cyber-attack occurrence can be
defined in terms of the intermediate times:

W1 D T1; W2 D T1 C T2; : : : ; W D T1 C T2 C � � � C T; : : :

Theorem 2. The set .W W  D 1; 2; : : : / is an Erlang distribution with form
parameter  and scalar parameter �:

F .t/ D 1 �
�1X

kD0
e��t .�t/

k

k Š

and density

f.t/ D �e��t .�t/
�1

. � 1/ Š ; t > 0:

Proof. Evidently, for any  D 1; 2; : : :.; we have W > t if and only if A .t/ < .
Thus

P.W > t/ D P.A.t/ < v/ D
�1X

kD0
Pk.t/:

Combination with Theorem 1 proves the first assertion. As for the proof of the
second statement, observe that

f .t/ dt D P .“ � 1 cyber�attacks occurred in the time interval .0I I t / and

the th cyber�attack occurs in the interval .t; t C dt/ ”/ :

Since, by Property (iii), cyber-attacks in time intervals .0; t/ and .t; t C dt/ are
independent events, we write

f.t/dt D P.A .t//
D . � 1/P ..“one cyber-attack occurs in the time interval .t; t C dt/”/ :
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Hence, by Theorem 1

f.t/ dt D �e��t .�t/
�1

. � 1/ Š dt:

�

Remark 4. From Theorem 2, it follows that the time W1 of waiting up to the first
cyber-attack occurrence is exponentially distributed with density f .t/ D �e��t ,
t > 0. Further, W1 is independent of the origin time.

The same exponential law rules the stochastic behavior of the intermediate
times T1; T2; : : : between successive cyber-attacks.

Theorem 3. The successive cyber-attacks’ intermediate occurrence times
T1; T2; : : : are independent and equidistributed random variables, with common
exponential density

f .t/ D �e��t ; t > 0:

Proof. It suffices to prove that the joint density of T1; T2; T3; : : : ; T is given by
the product

g .t1; t2; t3; : : : ; t/ D
Y

iD1

�
�e��ti �; ti > 0:

To do so, note that if f .w1; w2; w3; : : : ;w/ is the joint density of the waiting times
w1 < w2 < � � � < w , then

g .t1; t2; t3; : : : ; t/ D f .w1; w2; w3; : : : ;w/

jdetJ .w1; w2; w3; : : : ;w/ j I

where det J .w1; w2; w3; : : : ;w/ is the Jacobian of the transformation

ti D wi � wi�1I i D 1; 2; : : : ;  .w0 D 0/:

Since detJ .w1; w2; w3; : : : ;w/ D 1, we get

g .t1; t2; t3; : : : ; t/ D f .w1; w2; w3; : : : ;w/ :

Now, to determine f , we consider the following two events:

Ki WD “no cyber� attack occurs into .wi�1;wi / ”

and

Mi WD “one cyber� attack occurs into .wi ;wi C dwi / .”
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Since the events K1; M1, . . . , K , M are independent, we have

f .w1; w2; : : : ;w/ dw1dw2 : : : dw D P .K1/P .M1/ : : : P .K/ P .M/ :

But, on the other hand, from the fact that A.t/ has stationary increases and from
Remark 2, it follows that

P .Ki/ D P .A .wi / � A .wi�1/ D 0/ D P.A.wi � wi�1/ D 0/
and

P .Mi/ D �dw0:

By Theorem 1, the desired conclusion follows. �

Remark 5. The converse of Theorem 3 is also valid.

The Randomness Character of a Stochastic Process
of Cyber-Attacks

Theorem 4. The conditional distribution of the occurrence moments t1 < t2 <

� � � < t for the first  successive cyber-attacks (assuming that A.t/ D ) is exactly
the same as the distribution of an ordered random sample of v uniformly distributed
observations on the time interval Œ0; t �. In other words, the corresponding non-
ordered moments t 01 < t 02 < � � � < t 0 of occurrence of cyber-attacks constitute a
uniformly distributed random sample in the time interval Œ0; t �.

Proof. Let

1. f .t1; t2; : : : ; t/ be the joint density of the ordered moments t1 < t2 < � � � < t ,
2. 2 be the event: “(exactly)  cyber-attacks occur in the time interval Œ0; t �,” and
3. … be the event: “no cyber-attack occurs in the time interval Œt; t �.”

Then

f .t1; t2; : : : ; t=2/ D
(
f .t1;t2;:::;t /P .… /

P .2 / ; when 0 < t1 < t2 < � � � < t < t
0; otherwise:

Since the moments t1; t2; : : : ; t coincide with the waiting times w1;w2; : : : ;w
(:tiDwi ), we have

f .t1; t2; : : : ; t/ D
nY

iD1

�
� e�� ti �:
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Further, P .…/ D P .A .t � t/ D 0/ D e�� .t�t / and

P .2/ D e�� t .� t/


 Š
:

Hence,

f .t1; t2; : : : ; t=2/ D
�
 Š
t
; when 0 < t1 < t2 < � � � < t < t

0; otherwise
:

The corresponding conditional density of t 01; t 02; : : : ; t 0 is

f .: : :=2/
 Š

:

�

Besides Theorem 4, the randomness ruling the cyber-attacks’ appearance brings
another consequence: If we know the total number of cyber-attacks against E in a
time interval, then the number of cyber-attack occurrences in a subinterval depends
only on the length of this subinterval and is unfolded according to the pattern of the
Bernoulli distribution.

Theorem 5. If fA.t/ W t � 0g is the stochastic process of cyber-attacks against E,
then, for every 0 < s � t and k � , the conditional distribution of A .s/, assuming
that A .t/ D , is the binomial distribution

b

�
k


; p

�

with p D s=t . In other words, whenever 0 < s � t and k � , it holds

P.A .s/ D k=A .t/ D / D
�


k

�	 s
t


k	
1 � s

t


�k
:

Proof. It is clear that

P .A .s/ D k=A .t/ D / D P .A .s/ D k; A .t/ D /
P .A .t/ D /

D P .A .s/ D k; A .t/�A .s/ D �k/
P .A .t/ D / D P .A .s/ D k/P .A .t�s/ D �k/

P .A .t/ D / :

The last equality is a consequence of Properties (ii) and (iii) (section “The Stochastic
Process of Cyber-Attacks”). The desired assertion follows now from Theorem 2.

�
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Remark 6. We have the following generalization. If fA.t/ W t � 0g is the
cyber-attacks’ stochastic process, then, whenever 0 < s1 < s2 < � � � < sk < t

and i <  (i D 1; 2; : : : ; k), the conditional distribution of A .s1/,. . . , A .sk/,
given that A .t/ D , is the polynomial distribution

P .A .s1/ D 1; : : : ; A .sk/ D k=A .t/ D / D  Š
kC1Y

iD1

p
0

i

i

0
i Š

where we have used the notation

pi WD si � si�1 � 1
t

; i D 1; 2; : : : ; k .s0 WD 0/;

pkC1 WD 1 � .p1 C p2 C � � � C pk/

and

0
i WD i � i�1; i D 1; 2; : : : ; k .0 WD 0/

0
kC1 WD  �

�
0
1 C 0

2 C � � � C 0
k

�
:

Remark 7. If fA1.t/ W t � 0g and fA2.t/ W t � 0g are two independent processes
of cyber-attacks against E, then, whenever k D , the conditional distribution of
A1.s/, assuming that A1 .t/C A2 .t/ D , is the binomial distribution

b

�
k


; p

�
;

with p WD �1=.�1 C �2/. �1 and �2 represent the intensities of the cyber-attacks’
processes fA1.t/ W t � 0g and fA2.t/ W t � 0g, respectively. In other words, for
any k D  we have

P .A1 .s/ D k=A1 .t/C A2 .t/ D / D
�


k

� �
�1

�1 C �2
�k�

�2

�1 C �2
��k

:

The reciprocal is also valid: If fA1.t/ W t � 0g and fA2.t/ : t � 0g are two
independent integer-valued positive stochastic processes, satisfying

P .A1 .s/ D k=A1 .t/C A2 .t/ D / � b
�
k


; p

�

then fA1.t/ W t � 0g and fA2.t/ W t � 0g are cyber-attacks’ stochastic processes
with intensities �	 and � , respectively, where � is an arbitrary positive constant and
	 WD p=.1 � p/.
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Generalizations for the Stochastic Process of Cyber-Attacks

There is a proper modification on the stochastic process intensity � > 0 of cyber-
attacks against E. If � depends on time t , then fA.t/ W t � 0g is referred to be a
non-homogeneous stochastic process of cyber-attacks against E.

A second generalization is the decimation. It results from a modification of
the relationship ak.h/ D o.h/, in such that a way that more than one cyber-
attack occur in “small” time intervals, given at least one cyber-attack occurrence.
Under this presupposition, Properties (i), (iii), and (iv) of section “The Stochastic
Process of Cyber-Attacks” can be used to show that the set fA .t/ W t � 0g is a
stochastic process of cyber-attacks with stationary and independent increases. The
characteristic function of this process is

chA .u/ D exp .� Œch .u/ � 1�/

where ch .u/ is the characteristic function of fpkg:

ch .u/ D
1X

kD1
pk exp .i ku/:

Such a process is said to be a generalized stochastic process of cyber-attacks
against E. (The usual homogeneous process of cyber-attacks corresponds to the
degenerated distribution at the point 1: p1 D 1 and p2Dp3 D � � � D 0.) The
significance of a generalized stochastic process of cyber-attacks results from his
representation as a finite sum A .t/ D PN.t/

D1 X , where fN .t/ W t � 0g is a
Poisson process. The X are independent and equidistributed random variables,
independent of N .t/. If X are only independent and equidistributed random,
then fA .t/ W t � 0g is said to be a composite stochastic process of cyber-attacks.
In such a case, the characteristic function of fA .t/ W t � 0g is again chA, but now
ch.u/ D chX .u/, where chX is the random characteristic function of X .

The Renewal Counting Function of Cyber-Attacks: Definitions
and Properties

A natural generalization is obtained by considering cyber-attacks against E

with independent and equidistributed intermediate successive times, but without
exponential distribution density. Now, the function A.t/; t � 0 will be called the
renewal counting function of cyber-attacks against E, while the set fA.t/ W t � 0g
constitutes the associated counting function of cyber-attacks.

Definition 4. i. The expected number M.t/ WD E.A.t// of cyber-attacks in Œ0; t �
is called the renewal counting function of cyber-attacks against E.
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Fig. 1 Successive occurrence moments of cyber-attacks as function of time representing the
occurrence moments of the preceding and next cyber-attack

ii. The density of cyber-attacks against E at occurrence moment t is defined by

	.t/ WD limsup�t!0

p .there are cyber � at tacks in .t; t C�t//

�t
:

iii. The th cyber-attack occurrence moment is the random variable

S D T1 C T2 C � � � C T:

Of course, S D W .
iv. The function of time representing the occurrence moment of the next cyber-

attack against E


 .t/ WD SA.t/C1 � t ; t > 0 :

It describes the time length between a moment t and the next cyber-attack
moment (see Fig. 1 above).

v. The function of time representing the occurrence moment of the preceding
cyber-attack against E is the random variable

ı .t/ WD t � SA.t/ ; t > 0 :

It describes the length of the time interval between a moment t and the preceding
cyber-attack moment (see Fig. 1 above).

vi. The function of time for the occurrence moments of successive cyber-attacks
against E is the random variable

ˇ.t/ WD 
 .t/C ı .t/ .D SA.t/C1 � SA.t// ; t > 0 :

Proposition 1. Let .T W  D 1; 2; : : :/ be the renewal process of cyber-attacks
against E with distribution F.t/ WD P.T D t /. Then, the renewal counting
function M.t/ of cyber-attacks is given by

M .t/ D
1X

kD1
Fk .t/ <1; t > 0;
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Fig. 2 A .t/ � k if and only
if Sk � t

where Fk .t/ is the kth convolution of F(t) with itself:

F1 .t/ WD F.t/;

F2 .t/ WD
Z t

0

F2�1 .t � x/ dF1 .x/

F3 .t/ WD
Z t

0

F3�1 .t � x/ dF1 .x/
�
D
Z t

0

F3�2 .t � x/ dF2 .x/
�

. . .

Fk .t/ WD
Z t

0

Fk�i .t � x/ dFi .x/.1 D i D k � 1/

. . .

Proof. Observe that A.t/ � k if and only if Sk � t (see Fig. 2 above).
Thus

P .A .t/ D k/ D P.Sk D t / D Fk .t/
for any t > 0 and k D 1; 2; : : :, and therefore

M .t/ D E .A .t// D
1X

kD0
P .A .t/ D k/ D

1X

kD0
Fk .t/ .t > 0/:

It remains to show that the series

M .t/ D
1X

kD1
Fk .t/

converges whenever t > 0. To do so, we note that

Fk .t/ WD
Z t

0

Fk�i .t � x/ dFi .x/ D

Fk�i .t /
Z t

0

dFi .x/ D Fk�i .t / � Fi .t/ ; 1 � i � k � 1:
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It follows that

F	�Ck .t/ D ŒF� .t/�	Fk .t/ ; 0 � k � � � 1;

which guarantees that the series M .t/ D P1
kD1 Fk .t/ converges for any t > 0

satisfying F� .t/ < 1. Since, for any t > 0 there is an index �, such that F� .t/ < 1,
the proof is complete. �

The principal property of M .t/ is stated in the next proposition.

Proposition 2. The renewal counting function of cyber-attacks against E fulfills
the renewal convolutive equation

M .t/ D F .t/C F 	M .t/ ; t � 0:

Proof. The conditional value of M .t/, given the occurrence moment of the first
cyber-attack against E (after which the cyber-attacks have the same stochastic
behavior) is

M.t=x/ D E.A.t/=T1 D x/ D
�
0; if x > t

1CM .t � x/ ; if x � t :

In fact, if the time x of the first cyber-attack exceeds t , then there is no cyber-attack
occurrence in .0; t �. On the contrary, if the time x is less than or equal to t , then
the time interval .0; t � contains surely (at least) one cyber-attack occurrence plus the
number M .t � x/ of expected cyber-attacks occurrence moments during the time
interval .x; t �. Hence,

M .t/ D E .A .t// D
Z 1

0

M .t=x/dF .x/

D
Z t

0

Œ1CM .t � x/�dF .x/ D F .x/C
Z 1

0

M .t � x/dF .x/ :

�

We will now discuss the role of the renewal counting function for cyber-attacks
in solving most of the general equations.

Definition 5. An integral equation

G .t/ D g .t/C
Z t

0

G .t � x/ dF .x/; t � 0

where g .t/ is a given function, F .t/ is a given renewal process distribution of
cyber-attacks, and G .t/ is the unknown function, is said to be a renewal equation
of cyber-attacks against E.
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Combination with Proposition 2 implies that

g .t/ D F .t/ .D P .T D t //:

In the next theorem, we shall see that the solution of any renewal equation of
cyber-attacks can be expressed with the aid of the corresponding renewal counting
function M .t/ of cyber-attacks.

Theorem 6. Let .T W  D 1; 2; : : :/ be a renewal process of cyber-attacks
against E with (common) general density f .x/ and (common) distribution

F .t/ WD P .T D t / D
Z t

0

f .x/ dx;  D 1; 2; : : : :

For any piecewise bounded function g .t/, there is only one piecewise bounded
function G .t/ satisfying:

G .t/ D g.t/ C
Z t

0

G .t � x/ dM .x/; t � 0:

Proof. By Proposition 1 and the convolution associative property, we have M 	
g.t/ D F 	 G .t/. Hence, the function G .t/ D g .t/ C M 	 g .t/ satisfies
the equation .t/ D g .t/ C F 	 G .t/. It remains to show that G .t/ is uniquely
defined. To do so, assume that H .t/is any function, bounded on every finite time

interval and satisfying H D g C F 	 H . Observe that H D g C
	P�1

kD1 Fk


	

g C F 	 H whenever  D 2; 3; : : : Thus, letting  ! 1, we get

H D g C lim!1
n	P�1

kD1 Fk


	 g

o
C lim!1 fF 	 gg. But, Proposition 1

and g’s piecewise boundedness property imply that lim!1
n	P�1

kD1 Fk


	 g

o
D

�P1
kD1 Fk

� 	 g DM 	 g. Further, H s piecewise boundedness property guarantees
that

lim!1 jF 	H .t/j D lim!1
ˇ̌
ˇ̌
Z t

0

H .t � x/dF .x/
ˇ̌
ˇ̌ D

lim!1 Œfsup0DxDt jH .t � x/jgF .t/� D 0:
Hence H D g CM 	 g, which means that H D G. �

Corollary 1. i. The expected value for the time interval length required to express
the number of cyber-attacks against E up to the final moment of this interval as
the sum of the number A .t/ of cyber-attacks up to the moment t plus one more
attack is equal to the product of the expected value for the waiting time up to the
first cyber-attack occurrence and the expected value for the sum of cyber-attacks
number A .t/ up to the moment t plus one more cyber-attack occurrence:

E.SA.t/C1/ D E.T1/E.A .t/C 1/:
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ii. The expected value for the time interval length required to express the number
of cyber-attacks against E up to the final moment of this interval as the sum
of the number A .t/ of cyber-attacks up to the moment t plus one more attack
is equal to the product of the expected value for the waiting time up to the first
cyber-attack occurrence and the sum of cyber-attacks’ expected value in the
time interval .0; t/ plus one more cyber-attack:

E
�
SA.t/C1

� D E .T1/ ŒM .t/C 1� :

Proof. Applying the renewal reasoning of Proposition 2, one can show that G.t/ D
E.SA.t/C1/ satisfies the following renewal equation of cyber-attacks:

G.t/ D E .T1/C
Z t

0

G .x � t / dF .x/:

If we take g.t/ D E .T1/ D constant in Theorem 6, then

G.t/ D E .T1/C
Z t

0

E .T1/ dM .x/ D E .T1/ Œ1CM .t/� : �

Corollary 2. Given any occurrence moment t , the expected value for the interval
time length separating this moment t and the occurrence moment occurrence of the
next cyber-attack against E is

E .
 .t// D E .T1/ Œ1CM .t/� � t:

Renewal Theorems on Cyber-Attacks

We will now turn to the so-called renewal theorems on the cyber-attacks. If the
expected value for the waiting time T1 is

	 WD E .T1/ ;

then it is reasonable to expect a mean

1=	

of cyber-attacks per unit of time. The next theorem on cyber-attacks gives the
asymptotic mean of cyber-attacks against E per unit of time.

Theorem 7 (The elementary renewal theorem for cyber-attacks). Let
.T W v D 1; 2; : : :/ be a renewal process of cyber-attacks against E. Then:

limt!1
M .t/

t
D 1

	
:
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Proof. By the obvious inequality t < SA.t/C1 and Corollary 1, we have

liminf t!1
M .t/

t
D 1

	
:

To prove the converse inequality, we consider the truncated renewal process of
cyber-attacks against E defined by

T c WD
�
T; if T D c
c; if T > c

;  D 0; 1; 2; : : :

where c is an arbitrary positive constant. If W c
 and Ac .t/ represent the “waiting

time up to the th cyber-attacks” and the “associated counting function of cyber-
attacks,” respectively, then the uniform boundedness property of T c leads to the
inequality

t C c D E �SAc.t/C1
� D 	c Œ1CMc .t/� ;

where

	c WD E
�
T c
� D

Z c

0

Œ1 � F .x/� dx and Mc .t/ D E .Ac .t// :

Since Mc .t/ DM .t/, this inequality gives

limsupt!1
M .t/

t
D 1

	c
:

Since limc!1	c D 	, we obtain

limsupt!1
M .t/

t
D limc!1

1

	c
D 1

	
:

�

Corollary 3. (The Blackwell’s renewal theorem on cyber-attacks) As the cyber
warfare’s duration grows, the cyber-attacks’ mean in an interval time of length h
approaches the quantity h=	:

M .t C h/ �M .t/ �!
t!1

h

	
;whenever h > 0:

There are two variations of Corollary 3. The first variation will be used in the next
section; the second one will be generalized in section “Marginal Theorems for the
Counting Function of Cyber-Attacks.” We need the following:
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Definition 6. Let F .t/ D P .T D t / be the distribution of a renewal process

.T W  D 1; 2; : : :/
of cyber-attacks against E.

i. An occurrence moment t0 is said to be an increase moment of cyber-attacks
occurrence if F .t0 C "/ � F .t0 � "/ > 0 ." > 0/.

ii. We say that the distribution F is a graduated distribution if there is a constant
C > 0 such that every increase occurrence moment of cyber-attacks occurrence
lies in the set

f0; C; 2C; 3C; : : :g :
The largest value for this constant C is the distribution width for the occurrence
moments of cyber-attacks occurrence.

Remark 8. If the cyber-attacks’ occurrence moments distribution is a (piecewise)
continuous function, then this distribution is not graduated. On the contrary, if we
agree that the renewal process .T W  D 1; 2; : : :/ of cyber-attacks is a discrete
process, then it is clear that the corresponding distribution of cyber-attacks’ moment
times is graduated with integer width.

We are now in the position to state the following

Theorem 8 (The fundamental renewal theorem on cyber-attacks). Let F .t/ D
P .T D t / be the distribution of a renewal process .T W  D 1; 2; : : :/ of cyber-
attacks against E. Let also g .t/ be a monotone absolutely integrable function.

Let finally G .t/ be the unique solution of the renewal equation of cyber-attacks.

1. If F .t/ is not a graduated distribution, then

limt!1G .t/ D 1

	

Z 1

0

g .x/ dx:

2. If F .t/ is a graduated distribution with width C , then

lim!1G .˛ C C / D C

	

1X

kD0
g .˛ C C /

whenever ˛ > 0.
Let us finally give a second variation of Theorem 8:

Theorem 9. Let F .t/ D P .T D t / be the distribution for a renewal process
.T W  D 1; 2; : : :/ of cyber-attacks against E, with 	 WD E .T1/ <1.

i. If F .t/ is not a graduated distribution, then

limt!1 ŒM .t/ �M .t � h/� D h

	

for any positive constant h.



122 N.J. Daras

ii. If F .t/ is a graduated distribution with width C , then the same as above
limiting relation holds only for positive constants h which are integer multiples
of C .

Exact and Asymptotic Distributions for the Occurrence
Moments of Cyber-Attacks

The Case of the Next Cyber-Attack Occurrence Moment

For a probabilistic description of the random variable 
 .t/ ; t > 0 (see Defini-
tion 4.iv), it is useful to consider the function GT .t/ WD P.
 .t/ > T /, T > 0.

Definition 7. The function GT .t/ is called the exact distribution of the next cyber-
attacks occurrence moments. The limit

GT WD limt!1GT .t/

(if it exists) is called the asymptotic distribution of the next cyber-attacks occurrence
moments during a time length T .

Remark 9. Since 
 .t/ > T is equivalent to the non-occurrence of cyber-attacks
against E during the time interval .t; t C T /, we can write

GT .t/ D P.A.t C T / � A.t/ D 0/:

Example 1. Especially for a Poisson renewal process of cyber-attacks with
intensity � and exponentially distributed lengths of intermediate time intervals
between successive cyber-attacks according to the rule F .T / D 1� e��T , we have
P.
 .t/ > T / D P.A .T / D 0/ D e��T . This means that in a Poisson renewal
process of cyber-attacks against E, the timing of the following attack occurrence is
also an exponentially distributed random variable. This is due to the “forgetfulness”
property of the exponential distribution.

In the sequel, we will determine a renewal equation describing cyber-attacks
against E with unique solution given by the exact distribution GT .t/ of the next
cyber-attacks occurrence moments. Then, we will find the asymptotic distribution
for the occurrence moments of the next cyber-attacks. For this purpose, let us
observe that

P .Œ
 .t/ > T �=ŒT1 D x�/ D
8
<

:

1; when x > t C T
0; when t C T � x > t
GT .t � x/ ; when t � x > 0:
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By the total probability theorem, we have

GT .t/ D
Z 1

0

P .Œ
 .t/ > T �=ŒT1 D x�/ dF .x/ D

1 � F .t C T /C
Z t

0

GT .t � x/ dF .x/:

Hence, from Theorem 6, it follows that the solution of the raised renewal equation
of cyber-attacks has the representation

GT .t/ D 1 � F .t C T /C
Z t

0

Œ1 � F .t C T � x/� dM .x/:

If 0 ¤ E .T1/ D 	 <1 (in reality this is always valid), the function 1�F .t C T /
is absolutely integrable and monotone. So, by Theorem 7, we infer

limt!1GT .t/ D 1

	

Z 1

0

Œ1 � F .x C T /� dx D 1

	

Z 1

T

Œ1 � F .y/� dy <1:

We have thus proved the

Theorem 10. Let F .t/ D P .T D t / be the distribution function for a renewal
process .T W  D 1; 2; : : :/ of cyber-attacks against E.

i. The exact distribution of the next cyber-attacks occurrence moments is the
function

GT .t/ D 1 � F .t C T /C
Z t

0

Œ1 � F .t C T � x/� dM .x/; T > 0:

ii. If 	 ¤ 0, then the asymptotic probability of the next cyber-attacks occurrence
moments during a time length T exists and is equal to

GT D 1

	

Z 1

0

Œ1 � F .y/� dy:

The Occurrence Moments of Successive Cyber-Attacks

The asymptotic probability distribution for the occurrence moments of two succes-
sive cyber-attacks against E during a time interval of length T is the limit

KT WD limt!1P .ˇ .t/ > T /
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(if it exists). To determine KT , it suffices to proceed by applying Theorem 8 to the
renewal equation of cyber-attacks against E:

KT .t/ D 1 � F .max ft; T g/C
Z t

0

KT .t � y/dF .y/ ;

which is satisfied by the exact probability distribution function

KT .t/ WD P .ˇ .t/ > T / :

In any case, we are leaded to the following conclusion.

Theorem 11. If F .t/ D P .T D t / is the distribution function for a renewal
process .T W  D 1; 2; : : : / of cyber-attacks against E, then the asymptotic
distribution of two successive cyber-attacks occurrence moments during a time
length T equals

KT D 1

	

Z 1

T

y dF .y/:

Remark 10. It follows that the distribution of any two successive cyber-attacks
occurrence moments during a time length T toward cyber warfare’s end approaches
the limit

L .T / WD limt!1P .ˇ .t/ D T / D 1

	

Z T

0

y dF .y/:

The last equality guarantees that the expected time length between two successive
cyber-attacks toward the end of the cyber warfare is

Z T

0

t dL .t/ D 1

	

Z 1

0

y2 dF .y/:

Hence

1

	

Z 1
y2 dF .y/ D 1

	

�Z 1

0

y dF .y/

�2
D 	:

In other words, the expected length for the time interval between two successive
cyber-attacks toward cyber warfare’s end is not less than the expected time length
between two successive cyber-attacks. This is called “the sample partiality of time
lengths between successive cyber-attacks.”

Example 2. In Example 1, we have seen that, for a Poisson renewal process of
cyber-attacks against E in a cyber warfare with intensity �, and exponentially
distributed lengths of intermediate time intervals between successive cyber-attacks
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according to the probability distribution F .t/ D 1�e��T , the exact distribution for
the occurrence moments of next cyber-attacks during a time length T is given by the
exponential function P .
 .t/ > T / D e��t . In the present example, we will show
that, under the same hypotheses, the preceding cyber-attacks occurrence moments
distribution is a mixed distribution with exponential continuous part and discrete
part which is concentrated at ı .t/ D t with probability e��t . In fact, it is clear that
ı .t/ D t and ı .t/ > x .x < t/ if and only if the time interval .t � x; t/ does
not contain any cyber-attack occurrence. Hence, the distribution for the occurrence
moments ı .t/ of preceding cyber-attacks against E can be written as

P.ı .t/ D x/ D
�
1 � e��x; when 0 D x < t
1; when x D t:

Further, the expected value of ı .t/ is

E .ı .t// D
Z t

0

P .ı .t/ > x/dx D
Z t

0

e��xdx D 1

�

�
1 � e��t� :

Since, by Example 1,

E .
 .t// D 1

�
;

we conclude that

E .ˇ .t// D E .
 .t//C E .ı .t// >
1

�
D 	:

Especially for large t , the value E .ˇ .t// becomes the double of the expected time
length between successive cyber-attacks.

Remark 11. The random variables 
 .t/ and ı .t/ of occurrence times of the next
and preceding cyber-attack, respectively, are independent with joint distribution:

P.
 .t/ > x; ı .t/ > y/

D
�
e��.xCy/; when x > 0 and 0 < y < t
0; when y � t:

Stationary Renewal Processes of Cyber-Attacks

Since the starting moment of a cyber warfare is not uniquely defined, the distribution
of the waiting time T1 up to the first cyber-attack may be different from the
distributions of T2, T3,.. In such a case, we say that the process is a modified renewal
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process of cyber-attacks against E (or a renewal process of cyber-attacks against E

with hysteresis). If, in particular, the density f1 .t/ of T1 is of the form

f1 .t/ D 1

	
Œ1 � F .t/� ;

where

1. 	 D E .Ti / (i D 2; 3; : : : )
2. F .t/ D the common distribution of T2, T3,..,

we say that the renewal process is a stationary renewal process of cyber-attacks
against E. Then, the distribution of T1 is

F1 .t/ D 1

	

Z T

0

Œ1 � F .t/� dt:

As it is pointed out in section “The Case of the Next Cyber-Attack Occurrence
Moment,”

GT D 1

	

Z 1

T

Œ1 � F .t/� dt:

Equivalently, the limit distribution P .
 .t/ D T / for the next cyber-attacks occur-
rence moments during a time length T is again

G .T / D 1

	

Z T

	

Œ1 � F .t/� dt:

Thus, for a renewal process of cyber-attacks against E, which began from long ago,
the distribution of the waiting time T1 up to the first cyber-attack is equal to the limit
distribution for the occurrence moments of the next cyber-attacks. This justifies the
notation “stationary renewal process of cyber-attacks against E.”

Theorem 12. Let As .t/ be the counting function of a stationary renewal process
of cyber-attacks against E.

i. The renewal counting function of cyber-attacks is

Ms .t/ WD E .As .t// D t

	
:

ii. The distribution of the next cyber-attacks occurrence moments is

P .
s .t/ � T / D F1 .t/ ; T > 0:

Proof. i. As in Proposition 2, one can show that

Ms .t/ D F1 .t/C
Z t

0

F1 .t � x/ dM .x/;
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where M .t/ is the renewal counting function that corresponds to the
cyber-attacks’ process with distribution F .t/. From Theorem 6, it follows
that Ms .t/ is a solution of the integral equation

Ms .t/ D F1 .t/C
Z t

0

Ms .t � x/ dF .x/:

But, since this equation has unique solution, it is sufficient to show thatMs .t/ D
t=	 satisfies the above renewal equation. Substitution of Ms .t/ and F1 .t/ by

t

	
and

1

	

Z t

0

Œ1 � F .x/� dx

respectively, gives

Z t

0

d .xF .x// D
Z t

0

t dF .x/

which is a tautology.
ii. Similarly, one can verify that the exact distribution G.s/

T .t/ D P .
s .t/ > T /

of the next cyber-attacks occurrence moments has the integral representation
G
.s/
T .t/ D 1� F1 .t C T / C F1 	 GT .t/, with GT .t/ WD P .
 .t/ > T / (see

Definition 7). By the total probability theorem, it holds GT .t/ D gT .t/CM 	
gT .t/ where gT .t/ WD 1 C F .t C T /. Substituting into the convolutive
equation and taking into account the relationship Ms .t/ D F1 	M .t/, we are
led to the following equations

G
.s/
T .t/ D 1 � F1 .t C T /C

Z t

0

gT .t � y/dMs .y/ :

Since Ms .y/ D .y=	/, we conclude that

G
.s/
T .t/ D 1 � F1 .t/ :

�

Remark 12. In a stationary renewal process of cyber-attacks against E the asymp-
totic formulae of the elementary renewal theorem on cyber-attacks trivializes to an
obvious identity. The same is true for the asymptotic formulae in the fundamental
renewal theorem on cyber-attacks against E, as well as for the asymptotic relation-
ship in the variation of fundamental renewal theorem on cyber-attacks against E.
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Marginal Theorems for the Counting Function
of Cyber-Attacks

We will now formulate asymptotic properties for the counting function A .t/ of
cyber-attacks against E in a renewal process . T W  D 1; 2; : ::/ where the
intermediate times T2, T3,.. between successive cyber-attacks are independent and
equidistributed random variables with common distribution F .t/. At first such a
property is given in the following

Theorem 13 (The central marginal theorem for the counting function of cyber-
attacks). If 	 D E .T2/ <1 and �2 D Var .T2/ <1, then for every T > 0, it
holds

limt!1P

0

B@
A .t/ � t

	q
t �2

	3

� T

1

CA � ˚ .T / ;

where ˚ is the reduced normal distribution function.

Proof. Let T > 0 be fixed. If

t � 	
�
p


�!
!1; t!1 .�T / ;

then, an application of the central marginal theorem for the random variable W D
T2C T3C � � � C T , representing the waiting time up to the th cyber-attack, shows
that

lim!1; t!1P .S > t/ D lim!1P
�
S � 	
�
p


> �T
�
D

1 � ˚ .�T / D ˚ .T / :

Hence, the desired assertion follows from the equivalence of the events “S > t”
and “A .t/ < .” �

Corollary 4 (The strong law of large numbers for the counting function of
cyber-attacks). If 	 D E .T2/ <1 and �2 D Var .T2/ <1, then the following
holds.

i. It is certain that the value of the ration A .t/=t approaches the number 1=	 as
the cyber warfare’s duration t increases:

P

�
limt!1

A .t/

t
D 1

	

�
D 1:
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ii. As the cyber warfare’s duration t increases, the value of the ratio

� ŒA .t/�

t
WD A .t C h/ � A .t/

t

approaches the number �2=	3:

limt!1 �ŒA.t/�

t
D �2

	3
.

Remark 13. According to an equivalent formulation of Theorem 13, the counting
function A .t/ of cyber-attacks has asymptotic normal distribution with asymptotic
mean and variance as in Corollary .
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minimum amplitude of territories which the invader will occupy. The defender’s
forces should swoop rapidly to any point of the defence locus in order to protect
their territories. The selection of the “optimal” position in which the defender’s
forces should be placed is a difficult problem and it aims at the minimization of
enemy’s penetration. The minimization methods result to non-linear equations and
there are many classical numerical algorithms for solving such equations. The most
known one is Newton’s method. Since the selection of a suitable initial point is
not a trivial task, we will study the behaviour of these numerical procedures for
various initial points and small perturbations of the data in order to present stable
procedures which compute efficiently the solution of non-linear equations, leading
to the optimal selection of the position, on which the forces of the defender should
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Introduction

In military, we need to determine in advance a way that gives the proper placement
of the defence forces, so as to effectively protect each critical interval on the line of
the defensive front. For this purpose, it must be (entirely or even with a high degree
of reliability of information) known all the movements to be performed on the part
of the attacking. It is clear that basic priorities of the attacker are the following
six objectives.

1. Maximizing the “controlled area of land from attacking (: territory control)”.
2. Maximizing the ratio of the “controlled the land area from attacking” to “the

multitude of losses of the attacking” (: attack attrition), namely the maximization
of territorial gains which will have the attacking while minimizing the number of
losses.

3. Maximizing the “duration of the armed conflict (: duration of the armed
conflict)”, i.e. the possibility of extension of the duration of the armed conflict
for so long as is necessary in order to defeat the opposing defense force.

4. Maximizing the “multitude of losses of the defending (: defensive force attri-
tion)”.

5. Maximizing the ratio “number of losses of the defending” to “the multitude of
losses of the attacking”.

6. Maximizing the “duration control of the land from the attacking force (: territory
controlled per duration)”.

Of course, there are other key objectives—priorities that can be set on the part
of the attacking, for example are the control of certain specific areas (: control
of specified territory). It goes without saying that there exist further objectives-
priorities that can be set in behalf of the attacker; for example one may refer to the
attempt for controlling certain specific areas. For each combination of these basic
objectives or priorities of the attacking, the defence must devise a corresponding
appropriate strategy to minimize the weight of the results obtained by the efforts of
the attacking.

Without any doubt, to achieve all these goals, the positioning of the defence
forces before attacker’s penetration is of crucial importance in military. Since the
penetration point is unknown, the computation of the point or points where the
defender’s forces should be placed is not a trivial problem. The defender should
handle attacker’s forces efficiently, minimizing the conquested territories. For this
purpose, the defender has to select the optimal defence forces positions in order to
minimize enemy’s penetration. On the other hand, the scope of the invader is the
maximization of the territory control, the defensive’s force attrition, the duration
of the control of the territories and the maximization of the ratios of the territory
control over attack attrition and the defensive force attrition over offensive force
attrition. For every combination of the basic targets of the attacker, the defender has
to find a tactic in order to minimize its loses.

In this paper we present numerical solutions of the defence force optimal
positioning problem. To do so, we first study the optimal mobile defence problem
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when the opponent penetrates from one point or from several different points of the
front line [5, 6]. Next, we recall and apply well-known numerical methods solving
non-linear equations [1, 2, 4].

Optimal Mobile Defence When the Opponent Penetrates
from One Point of the Front Line

There are two basic types of defence. The distributed static and the concentrated
mobile defence. In the first one, the units marshal behind the front line and in the
second a significant percentage of the units are available for immediate intervention
to any point where the units attack the invader.

Throughout this paper the following assumptions are supposed to hold.

i. The opponent forces are moving into positions on either side of one straight line
of length M of the defence front line.

ii. The opponent forces have estimated the size of the enemy.
iii. The initial thrusting of the attacking force will be attempted by a single

unknown point (0, z) of the segment length M, which may not be known before
the outbreak of the first attack(and, therefore, the estimation of the variable z by
the defending will be made using stochastic methods).

iv. The invader is moving perpendicularly to the defence front line with velocity vA.
v. In peacetime, all weapon power of the defending units remain in military base

located at the point .x; y/ from which these units can pounce at speeds equal to
vD to a point .I; z/ located on a defensive arc behind the defensive line in order
to cope with the attacking force.

The pursuit of the defending force is to minimize the penetration of the
attacking behind the defensive line. To this end, the Military Base (within which
the weapon units of the defending forces were guarded) should be grounded
near the defensive line, on a point .x; y/ which should be selected in such a
way that each defensive weapon unit can pounce quickly to a corresponding
point on the defensive arc of which effectively prevents further penetration of
the attacking from the defensive line. Thus, it is reasonable to accept that if the
penetration attempt by a point .0; z/ of the defensive line,

vi. the time that will be required on the part of the attacking force to move an
interval of length I is equal to the time needed for the transfer of the defending
forces from the point (x, y) of the CBD in (I, z) of the defensive arc. In other
words, we assume the following relationship

I

vA
D
q
.x � I /2 C .y � z/2

vD
; (1)

where vA is the velocity of the attacker.

The exact location of the infiltration point .0; z/ can only be estimated by
the defender. Let p.z/ be the probability density distribution determined by the
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perception of defence forces about the strategic value of the enemy’s targets,
the morphology of the ground and other similar factors. Because the attacking
force aims to break the defensive front attempting a point .0; z/ of the critical interval
length M on the front line of defence, we have the following obvious relationship

Z M

0

p .z/ d z D 1: (2)

We will study the following three cases.

i. vA D vD
ii. vA < vD

iii. vA > vD

The Velocity of the Attacker Is Equal to the Velocity
of the Defender

If vA D vD , then from Eq. (1) the infiltration of the attacker is given by

I D I.x; yI z/ D x2 C .y � z/2

2 x
: (3)

Thus, the expected enemy’s penetration NI .x; y/ is

NI .x; y / D
Z M

0

p.z/ I.x; y; z/ d z: (4)

Our aim is the selection of an optimal positioning point .x�; y�/ for the military
base in order to minimize the expected enemy’s penetration:

NI .x�; y�/ D min
x;y

NI .x; y/ D min
x;y

�Z M

0

p .z/ I .x; y; z/ d z

�
: (5)

The minimization is achieved when the following two conditions hold:

@

@x

�Z M

0

p .z/ I .x; y; z/ d z

� ˇ̌
ˇ̌
xDx�;yDy�

D 0 (6)

and

@

@y

�Z M

0

p .z/ I .x; y; z/ d z

� ˇ̌
ˇ̌
xDx�;yDy�

D 0: (7)

From Leibniz’s rule we have
Z M

0

@

@ x
Œp .z/ I .x; y; z/� d z

ˇ̌
ˇ̌
xDx�;yDy�

D 0 (8)
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and

Z M

0

@

@ y
Œp .z/ I .x; y; z/� d z

ˇ̌
ˇ̌
xDx�;yDy�

D 0; (9)

respectively. Differentiating Eq. (3) with respect to x and y, we get

@ I

@ x
D 1

2
� .y � z/2

2 x2
and

@ I

@ y
D y � z

x
; (10)

respectively. Thus,

Z M

0

p .z/
@I

@ x
d z

ˇ̌
ˇ̌
xDx�;yDy�

D
Z M

0

p .z/

 
1

2
� .y� � z/2

2 x2�

!
d z D 0 (11)

and

Z M

0

p .z/
@I

@ y
d z

ˇ̌
ˇ̌
xDx�;yDy�

D
Z M

0

p .z/
.y� � z/

x�
d z D 0: (12)

Solving (12) with respect to y�, we have

y�
Z M

0

p .z/ d z D
Z M

0

zp .z/ d z:

Hence, from (2), it follows

y� D
Z M

0

zp .z/ d z DW 	; (13)

where 	 is the expected (mean) value of the variable z. This expected value
represents the point along the front line whereby the attacker is expected to penetrate
the defender’s line. Thus,

y� D 	: (14)

Substituting y� into (11) and using (2) we finally obtain

x2� D
Z M

0

.	 � z/2 p .z/ d z DW �2; (15)

where �2 is the variation of variable z. Therefore, the defender has to place its forces
to a point .x�; y�/ with abscissa

x� D �: (16)

The following theorem is proved.
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Theorem 1 (� �	 theorem of Gupta [5, 6]). Suppose that the speed of movement
of the attacking force is equal to the speed of movement of the defending. The
defender commander will be able to minimize in the ground defends the expected
aggressive penetration, having had time to send each weapon unit against a
unit weapon the attacker, if the commander has previously garnered all available
weapon of units on the point .�; 	/.

Lemma 1. In particular, if the stochastic variable z follows a uniform distribution,
i.e. whether p.z/ D 1=M , and if the speed of movement of the attacking is equal to
the speed of movement of the defending, then the following applies.

i. In order to minimize the penetration, the defender has to place its forces to the
point

.�; 	/ D
	
M
.p

12 ; M=2



(17)

since, because of Theorem 1 the point where the defender’s forces should be
placed is .�; 	/, with

�2D
Z M

0

1

M
.	�z/2 d zDM

2

12
and 	D

Z M

0
zp .z/ d zD

Z M

0

z

M
d zDM

2
: (18)

ii. The penetration I of the attacker and the location z of the point of the defense
locus through which the attacker will penetrate in the defender’s ground is
given by

I D
M2

12
C �M

2
� z
�2

2Mp
12

: (19)

The Velocity of the Attacker Is Less than the Velocity
of the Defender

Let � D vA
vD

. If vA < vD (thus � < 1) we have the following equation

I 2 ��2 D .x � I /2 C .y � z/2:

The positive solution of the previous equation is given by

I D
�x C

r
x2 C .��2 � 1/

	
x2 C Œy � z�2




.��2 � 1/ : (20)
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As in section “The Velocity of the Attacker Is Equal with the Velocity of the
Defender” our scope is to find an optimal point .x�; y�/ minimizing enemy’s
penetration NI .x; y / D RM

0
p .z/ I .x; y; z/ d z. As in the preceding case, we will

assume that in the beginning, the density p.z/ of the stochastic variable z follows
the uniform density distribution p.z/ D 1

M
. Then, optimization conditions (8) and

(9) become

1

M

Z M

0

@I .x; y; z/

@ x
d z

ˇ̌
ˇ̌
xDx�;yDy�

D 0 (21)

and

1

M

Z M

0

@I .x; y; z/

@ y
d z

ˇ̌
ˇ̌
xDx�;yDy�

D 0: (22)

Computing the partial derivatives with respect to x and y from Eq. (20), we
conclude to

@ I

@ x
D 1

��2 � 1

0

BB@�1C
��2 x

r
x2 C .��2 � 1/

	
x2 C Œy � z�2




1

CCA (23)

and

@ I

@ y
D � .y � z/
p
x2 C Œy � z� 2

: (24)

Substituting (24) into (22) we have

Z M

0

� .y � z/
p
x2 C Œy � z� 2

d z

ˇ̌
ˇ̌
ˇ
xDx�;yDy�

D
Z M

0

� .y� � z/
p
x2� C Œy� � z� 2

d z D 0; (25)

which after integration gives

y� DM=2: (26)

Similarly, substitution of (23) into (21), with y� DM=2, we obtain

x� ��2
Z M

0

d z
q
x2� C .��2 � 1/ �M

2
� z
� DM: (27)

Integrating we conclude to
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x���2
p
��2 � 1 ln

2

64

q
��2 x2

�

��2�1 C M2

4
C M

2q
��2 x2

�

��2�1 C M2

4
� M

2

3

75 DM: (28)

Equation (28) is transcendental and can be solved using methods of numerical
analysis. Under specific assumptions it is possible to find an analytic solution for
(28). For example, if � D .vA=vD/ D 0:5, then x� D 0:0994M .

The Velocity of the Attacker Is Greater than the Velocity
of the Defender

If vA > vD and � D .vA=vD/ D> 1 then Eq. (1) gives I 2 D .x � I /2 �2 C
.y � z/2 �2 and therefore

I D
x ˙

r
x2 � .1 � ��2/

	
x2 C Œy � z�2




.1 � ��2/
D

8
ˆ̂̂
<̂

ˆ̂̂
:̂

x�
q
x2�.1���2/ .x2CŒy�z�2/

.1���2/

xC
q
x2�.1���2/ .x2CŒy�z�2/

.1���2/
:

(29)

The general solution of (29) has two branches. The first one corresponds to the
solution with the positive sign in the numerator of (29) and the second one to that
with the negative sign in the numerator. In order to decide which branch has to be
chosen, let us assume that z D y. Then, Eq. (29) becomes

I D I .x; y; z/ D x
�
1˙ ��1�

.1 � ��2/
D

8
ˆ̂̂
<

ˆ̂̂
:

x .1���1/
.1C��1/ .1���1/

D x
1C��1

x .1C��1/
.1C��1/ .1���1/

D x
1���1 :

(30)

Let t be the time that elapses before the first contact is made between the defence
units and the attacker. Then, I D t vA and x � I D t vD . Thus, the penetration
I D I.x; yI z/ of the attacker beginning from the point .0; y/ of the defence locus
equals to

I D I .x; yI z/ D x �

1C � D
x

1C ��1 : (31)

Comparing Eqs. (30) and (31), with the penetration starting from the point .0; z/ D
.0; y/ of the defence locus, we conclude that we have to choose the branch of the
Eq. (29) which corresponds to the negative sign in the numerator of (29). Thus,
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I D
x �

r
x2 � .1 � ��2/

	
x2 C Œy � z�2




.1 � ��2/
: (32)

Using again Eqs. (8) and (9) we will determine an optimal point .x�; y�/ where
the defence forces should be placed in order to minimize the expected attacker’s
penetration NI .x; y/. In this case, we will assume from the beginning that the density
p.z/ of the stochastic variable z follows the uniform distribution, thus p.z/ D 1

M
.

Then, Eqs. (8) and (9) become

1

M

Z M

0

@I .x; y; z/

@ x
d zjxDx�;yDy�

D 0 (33)

and

1

M

Z M

0

@I .x; y; z/

@ y
d zjxDx�;yDy�

D 0: (34)

Differentiating Eq. (31) with respect to x and y we get

@ I

@ x
D 1

1 � �2

0

B@1 � x ��2
q
��2x2 � .1 � ��2/ .y � z/2

1

CA (35)

and

@ I

@ y
D y � z
r
x2 � .1 � ��2/

	
x2 C Œy � z�2


 ; (36)

respectively. Thus Eq. (34) becomes

Z M

0

y � z
r
x2 � .1 � ��2/

	
x2 C Œy � z�2


d zjxDx�;yDy�

D
Z M

0

y� � z
r
x2� � .1 � ��2/

	
x2� C Œy� � z�2


d z D 0 (37)

and integrating Eq. (37) we conclude

y� DM=2: (38)
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Similarly, from Eqs. (33) and (35), with y� D M
2

, we get

x���2
p
1 � ��2

Z M

0

d z
q

x2
�
��2

��2�1 �
�
M
2
� z
�2 DM: (39)

Integrating Eq. (39) we obtain the following transcendental equation

Arc tan

�p
�2 � 1 M

2x�

�
D �

p
�2 � 1 M

2x�
(40)

which can be solved with respect to x� only using methods of numerical analysis.

Optimal Positioning Defender’S Forces in Mobile Defence
when the Attacker Penetrates from Different Points
of the Front Line

It is possible for the attacker to penetrate from different points of the front line. Let
n be the number of these points and let M be the length of the front line. Then, the
defender has to organize its mobile defence forces looking for optimal positioning
points

X1 WD
M1X

jD1
X
.j /

1 D X.1/
1 CX.2/

1 C : : :CX.M1/
1

of the available units. The actual points .0; z1/ ; .0; z2/ ; : : : ; .0; zn/ from which
the attacker will penetrate are initially unknown. The defender has to estimate
these points. Assume the front line is partitioned into n subintervals. Let
p .z1/ ; p .z2/ ; : : : ; p .zn/ be the n discrete or continuous densities defined from
factors such as the importance that gives the attacker to the targets, the landscaping
of surfaces of the front line which may allow easier penetration from that point.
Then,

Z M1

0

p .z1/ d z1 D
Z M2

M1

p .z2/ d z2 D � � � D
Z Mn

Mn�1

p .zn/ d zn D 1:

In case that the attacker penetrates from two different points, the defender has to

i. divide the interval of length M of the front line to two equal subintervals, the
lower Œ0;M1� and the upper ŒM1;M2� each one of length M

2

ii. carry the half of its forces
�
X1
2

�
to every subinterval.

Under these assumptions, the � � 	 theorem of Gupta guarantees the following.
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Theorem 2 ([5, 6]). If the speed of movement of the attacking force is equal to the
speed of movement of the defending, then the defending commander will be able to
minimize the expected penetration of the attacking behind the defensive line, having
had time to send the unit each weapon against each attacking unit if the Governor
has previously garnered half x1

2
the number of weapons of units in (�1; 	1) and the

other x1
2

weapon of units in (�2; 	2). Here 	1; 	2 are the expected points of enemy’s
penetration at the lower and upper subinterval of length M

2
correspondingly and

�1; �2 the standard deviations of 	1 and 	2, respectively.

Lemma 2. If vD D vA and if the two stochastic variables z1 and z2 follow the
uniform distribution, i.e.

p .z1/ D p .z2/ D .1= .M=2// .D 2=M/ ;

the following holds.

i. The defending commander minimizes the expected enemy’s penetration behind
the lower subinterval of the defence locus if initially has placed the half

�
X1
2

�
of

its forces to the point

.�1; 	1/ D
	
M
.
2
p
12 ; M=4



: (41)

Further, the defending commander minimizes the expected enemy’s penetration
behind the upper subinterval of the defence locus if initially has placed the half�
X1
2

�
of its forces to the point

.�2; 	2/ D
	
M
.
2
p
12; 3M=4



: (42)

ii. Under the same assumptions, the following equations between the penetrations
I1 and I2 and penetration points z1 and z2 hold.

I1 D
M2

24
C �M

4
� z1

�2

M
.p

12

and

I2 D
M2

24
C � 3M

4
� z2

�2

M
.p

12
: (43)

Remark 1. According to the formula (43) of Lemma 2, the positioning of the
defence forces to the points .�1; 	1/ and .�2; 	2/ given by (41) and (42) restricts
the expected maximal attacker’s penetration by dividing it with a length of order of

M
.p

12 D 0:2887M metric units, in contrast with Lemma 1 where the positioning
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of the defence forces to the point .�; 	/ of formula (17) restricts the expected
maximal attacker’s penetration by dividing it with a double length of order of

2M
.p

12 D 0:5773M metric units. The increase of 50% to the value of the

expected penetration is caused because in case of Lemma 2 the concentration of
the defence forces to the points .�1; 	1/ and .�2; 	2/ is halved.

In the second simpler case, where again the enemy penetrates from two different
points, the defender has to

i. divide the interval of length M of the front line to two equal subintervals such
that the lower subinterval Œ0;M1� to be of length M

3
and the upper one ŒM1;M2�

to be of length 2M
3

ii. carry the half of its forces
�
X1
2

�
to every subinterval.

Under these assumptions, the � � 	 theorem of Gupta guarantees the following.

Theorem 3 ([5, 6]). If vD D vA, then the enemy’s penetration is minimized if the
half of the defence forces are initially placed at the point (�1; 	1) and the remaining
half of the defence forces at the point (�2; 	2), where 	1; 	2 are the expected points
of enemy’s penetration at the lower and upper subinterval of length M

3
and 2M

3

respectively and �1; �2 are the standard deviations of 	1 and 	2 correspondingly.

Lemma 3. In case that the two stochastic variables z1 and z2 follow the uniform
distribution, i.e.

p .z1/ DM=3 .D 3=M/ and p .z2/ D 1= .2M=3/ .D 3=2M/

and if vD D vA the following holds.

i. The defending commander minimizes the expected enemy’s penetration behind
the lower subinterval of the defence locus if initially has placed the half .X1=2/
of its forces to the point

.�1; 	1/ D
	
2M

.
3
p
12 ; M=3



: (44)

Further, the defending commander minimizes the expected enemy’s penetration
behind the upper subinterval of the defence locus if initially has placed the half
.X1=2/ of its forces to the point

.�2; 	2/ D
	
2M

.
3
p
12 ; 2M=3



: (45)

ii. Under the same assumptions, the following equations between the penetrations
I1 and I2 of the attacker and the penetration points z1 and z2 hold.

I1 D
M2

27
C �M

3
� z1

�2

4M
.
3
p
12
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and

I2 D
M2

27
C � 2M

3
� z2

�2

4M
.
3
p
12

: (46)

Remark 2. According to the formula (46) of Lemma 2, the expected maximal

attacker’s penetration is divided by a length of order of 4M
.
3
p
12 D 0:3849M

metric units, in contrast with Lemma 1 where the positioning of the defence forces
to the point .�; 	/ of formula (17) restricts the expected maximal attacker’s

penetration by dividing it with a double length of order of 2M
.p

12 D 0:5773M

metric units.

Numerical Examples

In this section, we present several numerical examples computing the optimal
position where the defender’s forces should be placed in order to be minimized
enemy’s penetration. In the following examples we assume that the stochastic
variable z follows the uniform distribution.

There are many methods in order to solve a non-linear equation of the form (28)
and (40). The most known ones are the bisection method, fixed point methods such
as Newton’s and secant method and many others [2–4]. Newton’s method converges
quadratically except in case that there are multiple roots where it converges linearly.
In this case, the modified instead of the classical Newton’s method can be used in
order to have again quadratic convergence.

Quadratic convergence is not appeared very often in practice, since in most cases
we have linear or almost linear convergence. Aitken’s�2 method [2] accelerates the
convergence of a linearly convergent sequence. Steffensen’s method is similar with
that of Aitken’s and under the assumptions mentioned in [2] converges quadratically.

In all methods a small tolerance named tol is used relaxing the notion of zero.
Different tolerances may lead to different results and thus the selection of a suitable
tolerance is not always a trivial task. In the evaluated examples, a tolerance of order
of 10�10 is used. The convergence and the stability of the presented methods are also
given. The order of the convergence of a method is given by the following definition.

Definition 1. The order of the convergence of a method is p if there is a constantC :

jxkC1 � x�j
jxk � x�jp ; 8k 2 N:

If p D 1; 2; 3, the convergence is linear, quadratic and cubic respectively.
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Fig. 1 Optimal distance from the front line

All the methods are tested for various sets of data and tables comparing the above
well-known numerical algorithms; in respect of absolute error, convergence and
complexity are given.

Example 1. In this example we study the case where the velocities of defender’s
and attacker’s forces are equal, thus vD D vA and the attacker penetrates from one
point of the defence locus. In Fig. 1 is shown the optimal distance from the front
line and an optimal point where the defender’s forces should be placed for M D 1.

Example 2. In this example we solve the Eq. (28) of section “The Velocity of the
Attacker Is Less than the Velocity of the Defender” assuming that vD D 2vA, thus
� D 0:5 and for M D 0:5 computing the optimal position where the defender has
to place its forces in order to minimize enemy’s penetration. In Fig. 2 is presented
the graph of the Eq. (28).

For solving efficiently Eq. (28) we applied all the methods mentioned above
using the following initial data: x0 D 0:0859; tol D 10�10 and nmax D 1000.
In Bisection we used as initial interval the Œ�0:9141; 1:0859� and in Secant as
x1 D 0:1.

In Table 1, the approximations of the solution x� of the Eq. (28), the number of
required steps and the required time in seconds of each method are presented.

As it is shown in Table 1, all the methods converge to the solution 0:0994M
(in this example M D 0:5). The required time is of the order of 10�4 s for every
method. The solution x� is approached with an accuracy of order 10�10. The most
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Fig. 2 Graph of Eq. (28)

Table 1 Comparison of the well known numerical methods

Method Steps k Time x0 x1 : : : xk

Bisection 27 6:7889 � 10�4 0:0859 �0:4141 . . . 0:049718565011024

Fixed point 24 5:1831 � 10�4 0:0859 0:065417753601010 : : : 0:049718565060335

Newton 5 6:9059 � 10�4 0:0859 0:039168049901939 : : : 0:049718564996934

Secant 8 2:7506 � 10�4 0:0859 0:1 : : : 0:049718564996933

Aitken’s 11 2:6263 � 10�4 0:0859 0:065417753601010 : : : 0:049718565010434

Steffensen’s 3 2:1178 � 10�4 0:0859 0:049984089135137 : : : 0:049718564996934

steps require the Bisection method and the less Steffensen’s. The convergence of
Newton’s, Aitken’s and Steffensen’s method is quadratic as

jxkC1 � x�j
jxk � x�j2 � 40:21

for all k and

jxkC1 � x�j
jxk � x�j3 !C1:

In Fig. 3 is shown the approximations of the solution for every method in respect
of required steps. The solution has been computed with an absolute error of order
of 10�10 for all methods.
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Fig. 3 Approximating the solution of Eq. (28)

In Fig. 4, is shown the point .x�; y�/ D �0:0994M; M
2

� D .0:0497; 0:25/ where
the defender should place its forces in order to minimize enemy’s penetration. The
attacker in this figure penetrates from point.0; z/ D .0; 0:3/ of the defence locus and
its penetration is I D 0:027381341895084.

Example 3. In this example we solve the problem of optimal positioning when
the velocity of the attacker is greater than the velocity of the defender. We study the
cases when vA

vD
D � D 1:5; 2; 2:5; 3; 3:5; 4, for M D 1 and M D 2. We solve the

Eq. (40) of section “The Velocity of the Attacker Is Greater than the Velocity of
the Defender” for every combination ofM and � in order to find an optimal position
where the defender should place its forces minimizing enemy’s penetration applying
some steps of Bisection in order to approximate the solution and continuing with
Newton’s method for computing the solution with an absolute errors of order of
10�10. In Figs. 5 and 6 is presented the penetration I.z/ [given by Eq. (29)] of the
attacker as a function of the penetration point .0; z/ for � D 1:5; 2; 2:5; 3; 3:5; 4 and
M D 1 and M D 2, respectively.

The values of z for which the value under the root of Eq. (29) is negative are not
presented in Figs. 5 and 6.

Example 4. In this example we compute the optimal positions where the defender
should place its forces in order to minimize enemy’s penetration, when the attacker
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Fig. 4 Optimal positioning of defender’s forces.
red square: attacker’s forces
green circle: defender’s forces (Colour figure online)

penetrates from two different points. As previously, we assume that the stochastic
variable z follows the uniform distribution. The defender has to partition the initial
interval Œ0;M � to two subintervals, the lower one Œ0;M1� and the upper one
ŒM1;M2� and place the half of its forces to the point .�1; 	1/ of the lower and
.�2; 	2/ of the upper subinterval. In this example we have studied two cases. In the
fist one we have partitioned the initial interval to two subintervals of equal length M

2

and in the second one into two subintervals of length M
3

and 2M
3

, respectively. The
computed points, where the defender should place its forces are shown in Table 2.

In Fig. 7 is shown the optimal distance from the front line in the case that the
defender’s and attacker’s velocities are equal (vD D vA), the attacker penetrates
from two different points and the defender has partitioned the initial interval of
lengthM D 1 to two subintervals of lengths 1

3
and 2

3
, respectively (see Theorem 3).

From Lemma 3 the penetrations of the attacker’s forces I1 and I2 are given from
Eq. (46).
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Fig. 5 Attacker’s penetration for various values of � D vA
vD

Fig. 6 Attacker’s penetration for various values of � D vA
vD
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Table 2 Optimal positioning of defence forces

Intervals Œ0;M1� ŒM1;M2� Lower subinterval Upper subinterval

Length M
2

M
2

.�1; 	1/ D �
M
2

p
12; M

4

�
.�2; 	2/ D �

M
2

p
12; 3M

4

�

Length M
3

2M
3

.�1; 	1/ D �
2M
3

p
12; M

3

�
.�2; 	2/ D �

2M
3

p
12; 2M

3

�

Fig. 7 Optimal distance from the front line
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Invisibility Regions and Regular Metamaterials

George Dassios

Abstract For more than half a century people are trying to develop effective
methods of remote sensing. RADAR and SONAR systems are the most advertised
techniques toward this end, and the contemporary level of sophistication of both of
these modalities is really amazing. In fact, so many things have been achieved with
these identification methods that the inverse question has been naturally raised: Is it
possible to isolate a region of space where nothing can be detected via scattering
techniques? Much to our surprise the answer to this question is “yes” and the way
to achieve it is knowing as “cloaking.” This is possible through the construction of a
material, called “metamaterial” surrounding the cloaked region, which has particular
preassigned properties. Cloaking has a history of less than a decade and almost all
realistic cloaking regions share the shape of a sphere. However, spherically cloaked
regions demand metamaterials with singular conductivity tensors, a consequence
of the highly focusing effects of the spherical system as it collapses down to its
center. We will demonstrate an ellipsoidal cloaking region, which, as a consequence
of the fact that the ellipsoidal system springs from its characteristic focal ellipse,
the necessary metamaterial that creates the invisibility region is regular throughout,
leaving this way its realization at the level of engineering construction.

Introduction

The fact that there exist hidden primary or secondary (such as scatterers) sources
goes back to Helmholtz, who, as far back as 1853 [17], demonstrated that it
is possible to have currents within a conductive medium which generate a null
field in its exterior. Electroencephalography, Magnetoencephalography, and Electric
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Impedance Tomography are intimately related with this observation. Devaney and
Wolf [8], Friedlander [9], Kerker [19] and Bleistein and Cohen [1] have investigated
further this idea of hidden primary sources at the level of radiation problems.
Nevertheless, it is the last decay that the idea of cloaking, as a technique of making
objects “invisible,” has gained a lot of attention [2–6, 10, 12–16, 20–23]. There
are actually two ways to prove the existence of cloaked regions. One is based on
spectral methods, where one proves that it is possible to choose the coefficients of
an appropriate eigenfunction expansion in such a way that the excitation field does
not enter the region we want to hide [5]. The other one utilizes the invariants of the
governing equations with respect to coordinate transformations in such a way that
a single point singularity in the domain of the transformation blows up to a three-
dimensional cloaked region in its range [11]. A fairly extended literature on the
subject is reported in [12].

Cloaking at the highly symmetric environment of the spherical geometry causes
singularities which are due to focusing effects. The situation though is much more
regular if we extend our investigation to the more realistic and much more general
geometry of the ellipsoidal system, which essentially governs the geometry of the
anisotropic space. Since, as far as the mathematics is concerned, the fundamental
part of the cloaking problem focuses on the control of the differential operator,
and since the basic differential operator appearing in the spectral form of the wave
equation is Laplacian, we restrict our attention to the problem of the conductivity
profile that secures electrostatic cloaking. This is actually the problem of Electric
Impedance Tomography. Therefore, the present work is focused on the construction
of a particular three-dimensional cloak which can be adapted to almost any shape.
In contrast to the isotropic behavior of a spherical cloak the cloak we propose
here has complete anisotropy which can be chosen at will. In fact, in utilizing
the invariants of the differential equations in spherical geometry, we arrive at
two possibilities. The first one is to blow-up a point, in which case we obtain
perfect cloaking but singular metamaterial tensor, and the second one is to blow-
up a small sphere, in which case we obtain almost perfect cloaking but regular
metamaterial tensor. On the other hand, as we demonstrate in the present report
using ellipsoidal geometry, it is possible to avoid both of these difficulties and
achieve at the same time perfect cloaking and regular metamaterial tensor.

This report is organized as follows. In section “The Case of Spherical Symmetry”
we discuss in brief, the corresponding spherical problem in order to indicate the
mathematical difficulties that generated. In section “The Ellipsoidal System” we
provide a short introduction to the ellipsoidal coordinate system which makes
the paper self readable. Then the transformation and its inverse is introduced
and discussed in section “The Ellipsoidal Transformation.” Finally the material
tensor, which guides the field to avoid the cloaking region, is calculated in
section “The Material Tensor.”
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The Case of Spherical Symmetry

We demonstrate the problem of electrostatic cloaking in spherical geometry with
the following well-known example [12]. Suppose that a sphere centered at the origin
with radius 2 is a homogeneous conductor with conductivity equal to one. That is

Q� D QI (1)

where Q� denotes the conductivity tensor, in its dyadic form, and QI is the identity
dyadic. Applying the diffeomorphism

F.x/ D y D
� jxj
2
C 1

�
Ox (2)

where Ox stands for the unit vector along x, it follows that the initial sphere is
mapped into a spherical shell. In particular the boundary of the sphere jxj D 2

stays invariant, while the origin is blown up to the sphere of radius one, forming the
interior boundary of the shell. The metric dyadic of the inverse transformation,

x D 2.jyj � 1/Oy (3)

where y assumes the spherical representation .r; #; '/, leads to

Qg D 4Or˝ OrC 4.r � 1/2 O# ˝ O# C 4.r � 1/2 sin2 # O'˝ O' (4)

which has the determinant

jQgj D 64.r � 1/4 sin2 #: (5)

In view of the form

� D 1
pjgj

3X

iD1

3X

jD1

@

@xi

�p
jgjgij @

@xj

�
(6)

that the Laplacian assumes in the general coordinate system

xi D xi .q1; q2; q3/; i D 1; 2; 3 (7)

we calculate the conductivity dyadic in the spherical shell to be equal to

Q� D
p
jQgjQg�1 D 2.r � 1/2 sin# Or˝ OrC 2 sin# O# ˝ O# C 2

sin#
O'˝ O': (8)

Since the determinant of the conductivity dyadic is given by

j Q� j D 8.r � 1/2 sin# (9)
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it follows that the conductivity becomes singular in the inner boundary r � 1 of
the shell.

One way to avoid this singular behavior is to start with an initial manifold that
instead of a single point is a small sphere of radius ", and prove that the conductivity
dyadic does not become singular anymore, but the field in the cloaked region is of
the order of "n, where n is the dimensionality of the space [12]. This corresponds to
a weak interior field which vanishes as the radius " approaches zero.

The Ellipsoidal System

We start with the essentials of the ellipsoidal system in order to fix the notation
[18, 24]. The definition of an ellipsoidal system demands the determination of a
reference ellipsoid

x21
a21
C x22
a22
C x23
a23
D 1 (10)

where 0 < a3 < a2 < a1 < C1, which fixes the foci of the system and establishes
the standards of every spatial direction. The reference ellipsoid (10) plays the role
of the unit sphere in the case of the spherical system. The six foci of the ellipsoidal
system are located at the points .˙h2; 0; 0/, .˙h3; 0; 0/, and .0;˙h1; 0/, where

h21 D a22 � a23 (11)

h22 D a21 � a23 (12)

h23 D a21 � a23 (13)

and they are related by the equation

h21 � h22 C h23 D 0: (14)

The back bone of the ellipsoidal system is given by the focal ellipse

x21
h22
C x22
h21
D 1; x3 D 0 (15)

and the focal hyperbola

x21
h23
� x

2
3

h21
D 1; x2 D 0: (16)
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In the first octant, the ellipsoidal coordinates (�; 	; ) are related to the Cartesian
coordinates by

x1 D
�	

h2h3
; h2 < � < C1 (17)

x2 D
q
�2 � h23

q
	2 � h23

q
h23 � 2

h1h3
; h3 < 	 < h2 (18)

x3 D
q
�2 � h22

q
h22 � 	2

q
h22 � 2

h1h2
; 0 <  < h3 (19)

while the other seven octants are specified by considering the appropriate signs of
the xi ’s. The variable � Dconstant specifies an ellipsoid and therefore it corresponds
to the radial variable of the spherical system. In particular, the focal ellipse (6)
corresponds to the value � D h2. The pair (	; ) identifies a point on the ellipsoid
� Dconstant and therefore it can be considered as the (� , ') pair of the spherical
orientation system.

By varying the variable � we obtain a family of ellipsoids

x21
�2
C x22
�2 � h23

C x23
�2 � h22

D 1; �2 2 .h22;C1/: (20)

Similarly, the variation of the variable 	 defines the family of hyperboloids of
one sheet

x21
	2
C x22
	2 � h23

C x23
	2 � h22

D 1; 	2 2 .h23; h22/ (21)

and the variation of the variable  defines the family of hyperboloids of two sheets

x21
2
C x22
2 � h23

C x23
2 � h22

D 1; 2 2 .0; h23/: (22)

For a detailed analysis of the ellipsoidal system we refer to [7].

The Ellipsoidal Transformation

Suppose we want to cloak an ellipsoidal region that is given by (10), or, in view
of (20), by � D a1. Then we choose an ellipsoidal system (�; 	; ) having (1) as
reference ellipsoid and define the transformation
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f.�; 	; / D R.�/ 	
h2h3

Ox1 C
q
R2.�/ � h23

q
	2 � h23

q
h23 � 2

h1h3
Ox2

C
q
R2.�/ � h22

q
h22 � 	2

q
h22 � 2

h1h2
Ox3 (23)

where

R.�/ D
s
�21 � a21
�21 � h22

.�2 � h22/C a21 (24)

with �1 > a1 and 0 6 2 6 h23 6 	2 6 h22 6 �2. Transformation (23) maps the
focal ellipse � D h2 to the reference ellipsoid � D a1 and leaves the outer ellipsoid
� D �1 invariant. Hence, f restricts to a one to one map from the interior of the
ellipsoid � D �1 except the focal ellipse, to the ellipsoidal shell a1 < � < �1. Note
that f is singular on the focal ellipse. This mapping connects the two points � and R
on the coordinate curve (	; / D constant and therefore, it is completely determined
by the scalar transformation (24). Consequently,

�.R/ D
s
�21 � h22
�21 � a21

.R2 � a21/C h22 (25)

and the inverse of f is given by

f�1.R; 	; / D �.R/ 	
h2h3

Ox1 C
q
�2.R/ � h23

q
	2 � h23

q
h23 � 2

h1h3
Ox2

C
q
�2.R/ � h22

q
h22 � 	2

q
h22 � 2

h1h2
Ox3: (26)

The value of a1 determines the size and the shape of the cloaked region, the value
of �1 determines the invariant exterior boundary, and the ellipsoidal distance �1�a1
controls the thickness of the cloak.

The Material Tensor

The Dirichlet problem for the Laplace equation in a domain V refers to finding a
harmonic function u in V which takes the preassigned values h on the boundary @V .
If the domain V is equipped with the Riemannian metric .gij /, then
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�u.x1; x2; x3/ D 1
pjgj

3X

iD1

3X

jD1

@

@xi

�p
jgjgij @

@xj

�
u.x1; x2; x3/ (27)

where (gij ) is the inverse of .gij / and jgj denotes the determinant of the metric
tensor. The map

�g.h/ D
3X

iD1

3X

jD1

�p
jgjnigij @

@xj

�
u; r 2 @V (28)

known as the Dirichlet-to-Neumann map remains invariant under any diffeomorphic
transformation that reduces to the identity on the boundary [10]. This observation
allows to interpret the effect of the transformation as a change of the material tensor
that characterizes the medium in V . In other words, the mathematical transformation
is absorbed by the physical characteristics of the medium. The material properties
of the medium are represented by the symmetric tensor

�ij Dpjgjgij : (29)

Therefore, we have to calculate the metric that corresponds to the inverted transfor-
mation mapping f �1. This will lead us to the metric Qgij and to the material tensor

Q�ij � Dpj Qgj Qgij : (30)

After long and tedious calculations with the inverted ellipsoidal transformation f �1,
we obtain the following expression for the inverted metric

QgRR D R2

�2.R/

�
�21 � h22
�21 � a21

�2
.�2.R/ � 	2/.�2.R/ � 2/
.�2.R/ � h23/.�2.R/ � h22/

(31)

Qg		 D .�2.R/ � 	2/.	2 � 2/
.	2 � h23/.h22 � 	2/

(32)

Qg D .�2.R/ � 2/.	2 � 2/
.h23 � 2/.h22 � 2/

(33)

where, due to the orthogonality of the ellipsoidal system, every other component of
the metric tensor vanishes. Furthermore,

p
j Qgj D �21�h22

�21�a21
R.�2.R/�	2/.�2.R/�2/.	2�2/

�.R/

q
�2.R/�h23

q
�2.R/�h22

q
	2�h23

q
h22�	2

q
h23�2

q
h22�2
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D �21 � h22
�21 � a21

R	

x1x2x3

.�2.R/ � 	2/.�2.R/ � 2/.	2 � 2/
h21h

2
2h
2
3

(34)

which finally implies the material tensor

Q� D
0

@
Q��� 0 0

0 Q�		 0

0 0 Q�

1

A (35)

where

Q��� D�
2
1 � a21
�21 � h22

�2	

x1x2x3

.�2 � h23/.�2 � h22/.	2 � 2/
h21h

2
2h
2
3

�
�
�21 � a21
�21 � h22

.�2 � h22/C a21
�� 1

2

(36)

Q�		 D�
2
1 � h22
�21 � a21

	

x1x2x3

.	2 � h23/.h22 � 	2/.�2 � 2/
h21h

2
2h
2
3

�
�
�21 � a21
�21 � h22

.�2 � h22/C a21
� 1
2

(37)

Q� D�
2
1 � h22
�21 � a21

	

x1x2x3

.h23 � 2/.h22 � 2/.�2 � 	2/
h21h

2
2h
2
3

�
�
�21 � a21
�21 � h22

.�2 � h22/C a21
� 1
2

: (38)

It is of interest to note that the material tensor (36)–(38) above remains bounded
away from zero, as well as from infinity, on both boundaries of the cloak, i.e., on
� D a1 and on � D �1. The relative problem for the case of a spherical cloak leads to
a material tensor that vanishes in the inner boundary of the cloak [12]. It seems that
the singular behavior of the spherical case is due to the fact that the transformation
map blows up the origin to a full sphere, while in the ellipsoidal case a point on
the focal ellipse is mapped just to two symmetric points on the inner boundary of
the cloak. In other words, the inverse map exhibits a strong focusing effect in the
spherical case, sending a two-dimensional manifold to a single point, while in the
ellipsoidal case, the inverse map sends just two points to one. On the other hand, in
both the spherical and the ellipsoidal case, there are submanifolds in the interior of
the cloak where the material tensor vanishes because the determinant of the metric
vanishes there, but this is due to the particular system.
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Evaluating UAV Impact in the Tactical Context
of a Mechanized Infantry Scout Platoon
Through Military Simulation Software

E. Mavratzotis, G. Drakopoulos, A. Voulodimos, A. Vatikalos, K. Kouvelis,
S. Papadopoulos, and M. Sakelariou

Abstract Military simulation has been established as a computational and scientific
tool for assessing the performance in combat of equipment, ranging from land
mines to aircraft, and the suitability of tactics, ranging from platoon to division
level. To this end, specialized software has been developed, replacing the traditional
Prussian dice-throwing, turn-based war games. JANUS is such a suite, allowing
human-in-the-loop simulations from squadron to battalion scale based on realistic
combat models based on historical conflict data. This paper presents the initial
results of a recent large scale campaign of experiments aimed to assess the effects
of incorporating a UAV to a typical Hellenic mechanized infantry scout platoon.
To the authors best knowledge, this is the first campaign of experiments undertaken
by the Hellenic Military Academy. Therefore, there have been key contributions
in a number of levels. On the software side, there are the development of a
realistic mechanized infantry platoon advance scenario for JANUS, the creation and
insertion of an appropriate UAV to JANUS unit database, the assessment of JANUS
strengths and limitations for simulations of this scale, and the software development
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for parsing JANUS voluminous output report text files. From a mathematical
perspective, there is the statistical analysis and interpretation of simulation results.
Finally, there is the experimental aspect, where heavy emphasis has been placed on
selecting the experiment independent, dependent, and control variables. Of equal
importance was the skill level evaluation of the class III Cadets which have been
volunteered as JANUS operators as well as their subsequent training. Ultimately, the
software, mathematical, and experimentation aspects combined yield a framework
for conducting large-scale defense experiments. As for the simulation per se, results
indicate a considerable advantage to UAV possession as a reconnaissance asset, as
scout platoons equipped with a UAV were able on average to fire more rounds over
longer distances and inflict more losses to enemy forces. Ultimately, these factors
enabled friendly units to accomplish their objectives.

Keywords Constructive simulation • Combat model • Defense experimentation
• UAV • Military simulation • Wargames • Scout platoon • Descriptive
statistics • Termination criteria • JANUS

Introduction

During recent years a rapid increase of the worldwide military conflicts complexity
in tactical, operational, and strategic level has been observed. Said complexity
combined with requirements regarding operational cost curbing, environmental
protection, as well as increased force protection measures, led to the realization
that Western armed forces need to focus on modernizing personnel training, on
developing and testing doctrines reflecting the context within current conflict occurs,
and on implementing new systems or upgrading existing ones in order to satisfy any
set of realistic operational constraints and to furthermore achieve the expected goals
in the best possible way [1]. Within the typical framework of a nations’ armed forces
the set of requirements along with the associated expected outcome is determined
by the General Staff whereas the assessment of a proposed operational solution
is carried out among others by a dedicated military simulation group tasked with
defense experimentation. Given the highly technical nature of military simulation
and the complex nature of conflict itself, in order to deliver meaningful answers
to upper echelons this simulation group should be fully familiar with both the
underlying mathematical model [2] and the actual simulation system, typically a
combination of specialized software and hardware.

Overview and Goals

KEPYES, the Hellenic Army IT center, has a Military Simulation and Wargames
staff section which operates within the general framework of developing, evaluating,
and deploying defense experimentation tools and systems in order to assist the
Hellenic Army General Staff select the best possible alternative among Hellenic
Army operational options.
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During spring of 2012 KEPYES Military Simulation and Wargames designed
and oversaw the first stage of a larger campaign of experiments [2–4]. In these
experiments a group of class III Cadet Officers from the Hellenic Military Academy
initially were trained in the use of the latest edition of JANUS version 7.3 war game.
Subsequently, they assumed the role of a typical in size and composition mechanized
infantry platoon commander in the JANUS digital battlefield. An extensive series of
simulations evaluated the impact of providing a suitably equipped UAV as a recon-
naissance asset to the scout platoon. Besides this obvious objective, two longer-term
goals were to create a defense experimentation framework and a statistical analysis
framework in order for reaching conclusions quickly and accurately.

Methodology

In this section the experimentation methodology is outlined. The experiment setup is
explained, followed by a detailed outline of the simulation scenario as it was played
in JANUS platform, and finally the actual JANUS parameters are listed.

Simulation Setup and Operator Selection

At the early experiment design stages, given that JANUS was the simulation
platform of choice, human-in-the-loop simulation methodology [2] has been
selected. The latter implies that human operators with continuous, real-time
interaction with simulated forces and/or equipment were to be part of the simulation
process. In general, human operators must be selected in such a way as not to
interfere in any conceivable way with the simulation outcome, unless of course
their performance or another aspect of their behavior is to be observed.

As it was stated in the goals section, the immediate experimentation objective
was to quantify the effects of adding a UAV to a scout platoon assets. Therefore,
any human operator interference had to be isolated. To this end, the original pool
of 60 class III Cadet Officers was divided into two equally sized groups A and B in
a way that the distributions of the military science course weighted averages were
almost identical within the two groups. Cadets of group A were operating a UAV
whether those of group B were relying on existing target acquiring systems (Fig. 1).

For the experiment purposes, two personal figures of merit for each Cadet have
been computed. Tmili is based only on military science courses and is an indicator of
each Cadet military skill level, whereasGi is based on all courses and is an indicator
of each Cadet overall skill level. The subscript i ranges over the N Cadets that have
been volunteered for this experiment.

Tmili is calculated in the following manner. Each applied military training course
a had a weight of 0:75, each staff course b had a weight of 0:15, and each leadership
course c had a weight of 0:1. Let aAi , bAi , and cAi be the course grades for cadet i for
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Fig. 1 Weighted course grade average of the Cadets

the first year of studies and aBi , bBi , cBi for the second. Then, the weighted average
of the first- and second-year courses yield TmilAi and TmilBi , respectively according
to the formulae

TmilAi D 0:75
X

aAi

aAi C 0:15
X

bAi

bAi C 0:1
X

cAi

cAi ; 1 � i � N

TmilBi D 0:75
X

aBi

aBi C 0:15
X

bBi

bBi C 0:1
X

cBi

cBi ; 1 � i � N

and finally

Tmil D 0:6TmilBi C 0:4TmilAi ; 1 � i � N
Let pAi and pBi be the course grade for Cadet i , where pA and pB ranges over
courses taught in first- and second-year of study, respectively. First, pAi and pBi are
normalized as percentiles of the respective maximum grades

gAi D
pAi

max
˚
gAi
� 100; 1 � i � N

gBi D
pBi

max
˚
gBi
� 100; 1 � i � N

Then

GA
i D

1ˇ̌
gAi
ˇ̌
X

gAi

gAi ; 1 � i � N

GB
i D

1ˇ̌
gBi
ˇ̌
X

gBi

gBi ; 1 � i � N
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and finally

Gi D 0:6GB
i C 0:4GA

i ; 1 � i � N

The final ranking Wi for each Cadet was the weight linear combination of the
military ranking Tmili and the general ranking Gi as follows

Wi D 0:6Tmili C 0:4Gi ; 1 � i � N

Once the rankings were available, they have been sorted and every other Cadet
has been assigned to group B. This simple scheme yielded two groups whose skill
distributions were very similar. Class III Cadet groups A and B can be considered
homogeneous for our statistical analysis purposes for the following reasons.

• They are of relatively young age and, thus, their overall experiences are still
limited.

• They have quite similar social background and they have received formal primary
and secondary education under a centralized education system.

• They have received the same level of training with the same intensity. This is
particularly true both for the infantry tactical training at the team and platoon
levels and for the JANUS software suite itself.

As a final notice, although the original Cadet pool was of mixed gender, creating
separate two subgroups, one for male and one for female Cadets, within each group
A and B served no apparent purpose, as human influence to the experiment outcome
had to be isolated. Instead, a gender-neutral policy was deemed appropriate for the
purposes of this experiment.

Scenario

The scenario is built around blue force alpha, a reinforced mechanized infantry
scout platoon operated by a Cadet Officer comprised of 2 Leopard 2A4 and 2
VBL armored scout vehicles. Blue force alpha spearheads the advance of its parent
company, blue force beta, which has been ordered to capture an objective point code
named P3. On the other side, there is red force, a reinforced tank platoon consisting
of 4 M-48A3 MOLF, 1 mechanized infantry squadron, 2 M901 ITV, and 2 armored
scout vehicles. Red force, operated as combat outpost, has been assigned the triple
task to prevent blue forces from observing the defensive actions undertaken by other
red forces in the area, to make blue forces assume battle formation, and to inflict
casualties on the blue forces. To this end, red force has deployed its elements in four
areas A, B, C, and D, all strategically located close to P3.

The weather conditions correspond to a clear summer day in with excellent
visibility with both sides equally lit as the scenario starts at seven am local time.
The terrain is mostly plains surrounded by hills with lots of vegetation, providing
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Fig. 2 Simulation network architecture

sufficient cover for both the attacker and the defender. Neither side has access to
indirect fire or non-conventional weapons. Finally, all vehicles are in their respective
basic configuration and personnel is carrying only standard issued equipment
and weaponry. In short, this scenario represents a very common case of infantry
combat (Fig. 2).

Part of the scenario were also the following simulation termination criteria, which
have been derived from both national infantry military regulations and from NATO
guidelines.

• T1: Blue force beta occupies and maintains a garrison to P3 in less than 3 h
(victory).

• T2: Blue force beta fails to capture P3 within 3 h (defeat-unacceptable advance
delay).

• T3: Blue force alpha losses exceed 30% (defeat-scout platoon in need of
replacements).

The actual combat scenario proceeds as follows. As blue force alpha advances,
it inevitably encounters the red force elements. At each of these contact points, the
blue force alpha commander must assess the current tactical situation and judge as
accurately as possible whether blue force alpha can by itself engage and overcome
the opposition or not. In the former case, blue force alpha attacks, while, in the latter
case, blue force alpha goes into defilade mode and waits for the arrival of blue force
beta. In each of these cases, there are four possible outcomes (Fig. 3).

• Blue force alpha can overcome the opposition and its commander decides to
attack. In this case, blue force alpha clears the advance path in minimal time with



Evaluating UAV Impact in the Tactical Context of a Mechanized Infantry Scout. . . 167

Fig. 3 Main points of target overlay (EXCON view in JANUS)

zero or few casualties. It is the optimal case from the blue perspective, but this
case in the “run times” of the scenario appears rarely.

• Blue force alpha can overcome the opposition but its commander decides to wait
for blue force beta, the latter being strong enough to overcome any red force
element. However, local victory comes at the expense of time. This may endanger
the entire mission if termination criterion T2 is met and, thus, commanders who
wait too often are penalized.

• Blue force alpha cannot overcome the opposition and its commander decides to
wait for blue force beta. As in the previous case, the overall advance is delayed
and the termination condition T2 may hold true. However, blue force alpha
remains intact and, hence, there is no risk for triggering termination condition T3.

• Blue force alpha cannot overcome the opposition but its commander decides to
attack. In this case, blue force alpha either destroys the opposing forces after
having suffered heavy losses or it is itself destroyed. Therefore, termination
criterion T3 may be satisfied with high probability, which is the toll for an
excessively aggressive tactic.

The above implies that the termination conditions T2 and T3 are complementary
in the sense that the former excludes an overtly quiet tactic with no or few blue force
alpha engagements, while the latter prohibits too risky tactics with blue force alpha
engaging opposition at each opportunity. Between these two extrema there is middle
ground for a number of tactics as well as limited margin for judgement errors on
behalf of blue force alpha commander.

Blue force alpha commander judgement is formulated by skill, accounting for
training and experience combined, as well as the reconnaissance data collected by
blue force alpha vehicles and UAV, wherever applicable. Given that Cadet skill
level distributions within groups A and B are identical as explained earlier, any
difference in blue force alpha combat power should be attributed to reconnaissance
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data quality difference. In turn, since blue force alpha has identical composition
across all scenario runs, it follows that any observed blue force alpha performance
change should be ultimately attributed to UAV availability or lack thereof.

Experiment Variables and Experiment Hypotheses

Based on combat power definition [6] “[: : :] elements are maneuver, firepower,
protection, leadership and information guide the employment of all infantry forces
[: : :],” the dependent variables of interest in this campaign of experiments were the
number of blue casualties and the occupation (or not) of the final objective by the
friendly forces. The latter variable is qualitative in nature and outlines the general
scenario outcome as a strategic planner would see it. The former variable contains
information regarding the actual engagement and is mostly of interest to tactical
planners. Other dependent variables to be assessed were the engagement average
distance, the time taken to reach each objective, the percentage of missed shots,
the number of objectives captured, and the kill exchange ratio of between blue and
red forces.

The only control variable was whether blue force alpha had a UAV (or not) at
its disposal. In order to ensure that there were no other hidden control variables
affecting the experiment outcome, every parameter taken into account by operation
planners, such as red force strength, terrain, and weather, has been the same across
all scenario runs. Identifying all such possible control variables and the way JANUS
handles them required familiarization with the combat simulation software suite.
The independent variables were the strength and deployment pattern of the red force,
the weather, the terrain, and the strength of blue force alpha and beta.

Finally, the null hypothesis was that the UAVs had no effect to the overall platoon
combat power.

JANUS Run-Time Settings and UAV Settings

The weather conditions were typical of a summer Mediterranean day with a clear
sky and full sunlight, namely Ambient Light Level 3, with a visibility of 12Km, 90
degrees wind direction, 11 Km/h wind velocity, 6 Km cloud ceiling, 30% relative
humidity, and 29 degrees of Celsius. Blue and red forces were equally lit and neither
of them could exploit weather conditions to their advantage.

Defilade time, namely the time required for a stationary unit status to switch from
exposed status to partial defilade, was 30 s. Detection cycle, the time required for
a unit to complete a target detection cycle, was 3 s. Target list cycle, defined as
the longest time for direct fire units to acquire targets and update their target list,
was 50 s. Return to duty time, the amount of time a soldier system will be inactive
while performing first aid, was 15 min. The hit and kill probability has been the
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Table 1 JANUS database
parameters for the new UAV

Parameter Value

Speed (Km/h) 48–96
Flight time (min) 60–90
Altitude (m) 152
Sensor type Classified
Machine type Electrical rotor
Range of control Classified

Table 2 Simulation results

Performance indicator Group A Group B

Percentage of victorious runs 10 0

Average shots (standard deviation) 90 .36:77/ 74 .30:41/

Average engage distance 1;581m 1;369m
Average casualties 16 20

same in each of the 30 runs for each of the two groups. Finally, in each scenario
execution JANUS linear congruential pseudo-number generator seed was always
the same integer value.

Although JANUS database has a UAV type, early trial scenario runs have shown
that its specifications and operating mode are unsuitable for a scout platoon. Thus,
a new UAV type had to be created. The specifications used for the creation of a
T-mini UAV model in JANUS database are summarized in Table 1. A run speed
factor of 4:00 will run at approximately 10 min of simulated time for every minute
of real time.

Results

Using the JANUS Analyst Workstation and its Post Processing capabilities, a large
report file in text format has been generated for each scenario run from the JANUS
binary event recording files. These ASCII report files were in turn parsed using
a custom shell script in order for data of interest to the specific experiment to be
isolated and extracted among the detailed account of each combat event.

In total 8 scenario run from both Cadet groups that were deemed as outliers
and were not examined further. Simulation data from the remaining 52 runs were
processed using descriptive statistics and survival analysis in MATLAB and STATA
and yielded the results of Table 2. Points A, B , C , and D have been used as
references in Figs. 4 and 5.

As it is shown in Table 2, 10% of group A commanders accomplished the mission
in contrast to group B, where no commander managed to do so. Additionally, blue
forces in group A on average fired 20% more rounds over a 14% longer distance
and, in principle at least, had better chances to inflict losses to the red force elements
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Fig. 4 Average distance of shots for blue force alpha

Fig. 5 Average number of casualties for blue force alpha

from a safer distance. At the same time, blue forces in group A suffered on average
20% less casualties. Notice that the above results are statistically significant as p
was less than 0:05.

One of JANUS known limitations [5], circumvented in modern simulation
platforms, is its lack of human behavior modeling. In any scenario execution
friendly and enemy units carry out their orders with a varying degree of efficiency
independent of combat events and general troop morale and affected primarily by
unit operational status and type—for instance a sniper is better in target acquiring
than a regular infantryman. Simulation results should be interpreted therefore under
this light.
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Conclusions

This paper outlines a summary of the results obtained from of a recent large
scale campaign of experiments, which took place at the premises of the Hellenic
Military Academy using the JANUS military simulation suite. These experiments
have been conducted under the supervision of KEPYES Military Simulation and
Wargames staff section with the assistance of class III Cadet volunteers acting as
JANUS operators. To the best knowledge of the authors, this is the first time that a
campaign of experiments of this scale took place at the Hellenic Military Academy.
This implied that KEPYES Military Simulation and Wargames staff section had to
develop most analytical and software tools from start, including a bash script for
parsing JANUS long output, STATA and MATLAB functions to compute statistical
quantities of interest, and to determine the dependent, independent, and control
variables. Though not a trivial task, an initial Hellenic experimentation framework,
covering software, mathematical, and experimentation aspects, has been established
to serve as a future guideline.

In parallel to developing this framework, the actual simulation runs took place.
The simulation scenario entails the advance of a mechanized infantry scout platoon,
a common and realistic situation in ground combat, and aims at evaluating the
effects of adding a UAV to this platoon as a reconnaissance asset. Results obtained
through statistical analysis revealed that UAV possession considerably improves
battlefield survival probability. A quantitative review indicated that UAVs compared
to existing observation and target acquisition systems extended effective visibility,
which in turn translated to more accurate shots over 14% longer distances on average
as well as to 20% less casualties on average.

Major efforts have been placed on ensuring that human factor did not influence
the simulation outcome. To this end, it was imperative that the JANUS volunteer
operator pool be divided into two equally sized groups A and B of comparable
capabilities. This has been achieved by ranking the Cadets according to a weighted
average of their course grades, sorting the result, and assigning every other Cadet
to group B. This practice resulted in two groups whose ranking distributions were
extremely similar. Group B operators relied only on reconnaissance data from their
scout platoon vehicles, whereas group A operators could additionally deploy a UAV.

To obtain more accurate conclusions besides the general trend, more experiments
need to be conducted regarding the UAV integration into army tactical echelons.
Moreover, it should be underlined that a detailed knowledge of combat model used
by the simulation software is a prerequisite for defense experimentation.
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Balanced Integer Solutions of Linear Equations

Konstantinos A. Draziotis

Abstract We use lattice-based methods in order to get an integer solution of the
linear equation a1x1 C � � � C anxn D a0; which satisfies the bound constraints
jxj j � Xj : Further we study the corresponding homogeneous linear equation under
constraints and finally we apply our method to Knapsack problem.
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Introduction-Statement of Results

Let aj 2 Z � f0g; .0 � j � n/: We consider the linear equation

f .x1; : : : ; xn/ D
nX

jD1
aj xj D a0: (1)

We are interested in the integer solutions of (1) under the constraints jxj j � Xj ; for
someXj 2 Z>0: This is an NP-complete problem, but without the bound constraints
is solved in polynomial time. This problem has some important applications in
discrete optimization, in designing integrated circuits [1] and is also applied in
Merkle-Hellman and the Chor-Rivest knapsack cryptography systems [10, 12].
Further we shall apply our method to the knapsack problem of density 1 and
dimension � 40:
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In [1] the authors found a method for the solutions of Eq. (1) under the bound
constraints 0 < xj < Xj : Their method contains two parts, one deterministic
(application of LLL) having polynomial time complexity and the other heuristic.
Further, in [15] the method of Rosser starts with the matrix M D .In; aT /; a D
.a1; : : : ; an/ and a new matrix M 0 is obtained (using linear integer transformations)
with M 0 D .U;dT /; d D .0; 0; : : : ; gcd.a1; : : : ; an// and U 2 SLn.Z/: Then the
general solution can be expressed in terms of the row vectors of M 0: Many recent
methods are based on the original idea of Rosser.

Also there is another approach to this problem which is based to the Closest
Vector Problem (CVP). Let y D .y1; y2; : : : ; yn/ (the target vector) be a solution of
(1), not necessarily small (for instance, one can use Euclidean algorithm). Let L be
the lattice generated by the solutions of the homogeneous equation

Pn
jD1 aj xj D 0:

We solve the CVP instanceCVP.L; y/ and we get the solution, say t D .t1; t2; ::; tn/
(cvp vector). Then x D {target vector} � {cvp vector} D y�t is an integer solution
of (1) and has small absolute value jjxjj: For this approach for instance see [13].
Implementations of CVP can be found in fplll [14] and in Magma [2]. Here we use
fplll. We shall provide some examples which compare the CVP approach with our
algorithm and we shall conclude (based on experiments) that the better strategy is
to combine the two methods (for n � 60). For large values of n; say n � 80, the
CVP-solver of fplll (and Magma) is (relatively) slow. So in this case our strategy is
to apply our algorithm which is fast for large values of n: For instance, we made
some tests for n D 100 and our algorithm terminated (with a small solution) in less
than 5 s in all the examples while fplll needed at least 3 h of running time in a 3Ghz
Dual Core Pc (without getting any solution). Further, the algorithm given in [1] is
also fast for large values of n (since it uses LLL) but in general it gives longest
vectors than ours (see example .ii/ in section “Examples”).

Before we state our basic result we must set up some notation. Let fe1; : : : ; enC2g
be the standard basis of RnC2; that is ej D .: : : ; ıij ; : : :/; where ıij is the delta of
Kronecker and is located in the j th entry of the vector ej : We define the vectors

bj D 1

Xj
ej C aj enC2 .1 � j � n/:

Let L be the lattice of RnC2 spanned by the vectors fb1; : : : ;bng: In matrix form L

is spanned by the rows of the n � .nC 2/ matrix

B D Œb1; ::;bn� D

2

6664

1
X1

0 � � � 0 0 a1

0 1
X2
� � � 0 0 a2

� � � � � � � � � � � � � � �
0 0 � � � 1

Xn
0 an

3

7775 :

(For reasons that later will become clear, we added the column with zeros). Let
fb0
1; : : : ;b

0
ng be its LLL-reduced basis. We set b0

j D .b0
j1; : : : ; b

0
j;nC2/: We consider

the Gram-Schmidt orthogonalization process
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b0�
1 D b0

1; b0�
i D b0

i �
i�1X

jD1
	ijb0�

j ; (2)

where

	ij D
b0
i �b0�

j

B2
j

; Bj D jjb0�
j jj:

Also if b�c is the floor function, we define dxc D bx C 0:5c with x 2 R: That is the
closest integer to x:

We shall prove the following Theorem.

Theorem 1. Let gcd.a1; : : : ; an/ D 1: If the following two assumptions hold

A1: .anXn/
2 C .ajXj /2 < 1

2nC1 .XnXj /
2; j D 1; 2; : : : ; n � 1; Xj 2 Z>0;

A2:

�
a0

B2
n

�
D a0;

then there is an integer solution .x1; : : : ; xn/ of Eq. (1), such that

jxj j < c.n/
nY

iD1
Xi ; j D 1; 2; : : : ; n; c.n/ D

p
3.1:25/.n�1/=2: (3)

Further, we obtain this solution in polynomial time.

Assumption A1 guarantees that LLL-reduction will generate (some) solutions of
the homogeneous linear Eq. (thus balanced multipliers for the gcd.a1; : : : ; an/).
Further, this assumption is crucial for the computation of integer solutions of Eq. (1).
Assumption A2 can be rewritten

a0 � a0

B2
n

C 1

2
< a0 C 1;

thus,

B2
n

�
a0 � 1

2

�
� a0 < B2

n

�
a0 C 1

2

�
: (4)

This assumption guarantees that our procedure will end up with a solution to Eq. (1).
The type of lattice we used here looks like the one used by Coppersmith in [3], which
is used in order to attack the RSA cryptosystem. Although the bound is seemingly
theoretical, in practice we get the desired solution (if there is any) jxj j � Xj ;

without the strong assumption A1: As far as I know, the methods given in the
bibliography for the solution of the problem (1) under jxj j � Xj provide us with a
small solution, but there is not any theoretical result that guarantees that the method
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will work. Our method provides a theoretical result, in the sense that if assumptions
A1;A2 are fulfilled, then the method shall work and also experiments show that the
method will end up with solutions satisfying jxj j < Xj ; instead of inequality (3).

If xj 2 N and a0 D 0 (i.e., the homogeneous version of our problem) then the
problem of deciding if there is any integer solution is NP-complete [11]. We study
a variant of this problem [see Lemma 1 and Proposition 2]. In fact we prove that if
there is a Shortest Vector Problem (SVP) oracle then we can find an integer solution
of
Pn

jD1 aj xj D 0; with jxj j <
p
2max1�i�nfjai jg .1 � j � n/: Finally, If

aj > 0 and we restrict the solutions xj 2 f0; 1g; then we have the 0 � 1 Knapsack
or subset sum problem. The decisional version is NP-complete [6]. This has many
applications in public key cryptography. We shall apply our method in this problem.

We give a brief outline of the paper. In the next section we give some preliminar-
ies propositions about LLL and in section “Auxiliary Results” some basic auxiliary
results which we shall use for the proof of our theorem in section “Proof of the
Theorem”. In section “The Homogeneous Case” we study the homogeneous linear
equation and in section “Examples” we provide some examples. In the last section
we use our approach to knapsack problem and give some examples.

Preliminaries on LLL

Our method uses LLL-reduction algorithm, but with a different lattice than the one
used in [1]. Lattices have many applications in cryptanalysis, for example [3, 9].
Here we shall not provide analytically the theory of lattices and LLL-algorithm. For
instance, the reader can study [7, 17].

Definition 1. A subsetL � Rn is called a lattice if there exists linearly independent
vectors b1;b2; : : : ;bk of Rn such that

L D
n kX

jD1
˛jbj W ˛j 2 Z; 1 � j � k

o
WD L.b1;b2; : : : ;bk/:

The vectors b1;b2; : : : ;bk are called a lattice basis of L:

All the bases have the same number of elements, and this common number is called
the dimension or rank of the lattice.

Lemma 1. Let b1;b2; : : : ;bk be an LLL-reduced basis of the lattice L � Rn and
x1; x2; : : : ; xt linearly independent vectors in L: Then for all j � t we have

jjbj jj2 � 2n�1 maxfjjx1jj2; : : : ; jjxt jj2g:

Proof. [17, Theorem 7.10]. �
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Auxiliary Results

LetL be the lattice of RnC2 spanned by the vectors fb1; : : : ;bng and let fb0
1; : : : ;b

0
ng

be its LLL-reduced basis. We set

b0
j D .b0

j1; : : : ; b
0
jn; b

0
j;nC1; b0

j;nC2/:

Further, from Gram-Schimdt orthogonalization process we get the vectors,

b0�
i D . Ob�

i1; : : : ;
Ob�
in;
Ob�
i;nC1; Ob�

i;nC2/; .1 � i � n/;

where Ob�
ij D

b�
ij

Xj
and OA D Œ Ob�

ij �1�i;j�n: We shall prove the following Lemma.

Lemma 1.

nY

jD1
Xj D 1

j det OAj :

Proof. Let B;B 0 be the matrices Œb1; : : : ;bn�T ; Œb0
1; : : : ;b

0
n�
T ; respectively (we

work row-wise). Then there is a matrix U D Œ�ij �1�i;j�n 2 SLn.Z/ such that
B 0 D UB: Indeed, we consider the n � n matrix U1 D diag

�
1
X1
; : : : ; 1

Xn

�
: We apply

LLL to the rows of B; thus we get B 0: The linear changes and swaps of rows made
by LLL in B also applied to U1; since B D ŒU1; aT � where, a D .a1; : : : ; an/: Then
we get a new n � n matrix U2 which equals to

�ij
Xj

�
1�i;j;�n: So

j detU1j D j detU2j D 1Qn
jD1 Xj

:

Also,

j detU2j D 1Qn
jD1 Xj

j detU j;

thus j detU j D 1: Now we shall prove that

j detŒb�
ij �j D j detŒ�ij �j D 1: (5)

Indeed, from B 0 D UB we get

b0
i D

nX

jD1
�ijbj D

�
b0
i1; : : : ; b

0
in;	;	

�
;
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where �ij ; b0
ij are related by �ij D Xjb0

ij : From relations (2) we get

Ob�
1j D b0

1j ;
Ob�
2j D b0

2j � 	21b0
1j ; : : : .1 � j � n/

thus, multiplying by Xj we get

b�
1j D �1j ; b�

2j D �2j � 	21�1j ; : : : .1 � j � n/;

so (5) is proved. We conclude that

j det OAj D 1Qn
jD1 Xj

j detŒb�
ij �j D

1Qn
jD1 Xj

:

�

Also we get the following Proposition.

Proposition 2. Assume that

.anXn/
2 C .ajXj /2 < 1

2nC1 .XnXj /
2; (6)

for all j such that 1 � j � n � 1: Then

b0
j;nC1 D b0

j;nC2 D 0 for 1 � j � n � 1:

Further,

b0
n;nC1 D 0; jb0

n;nC2j D 1:

Proof. We set rj D anbj � ajbn: These are independent in L; so from Lemma 1
we get

jjb0
j jj2 � 2nC1 max

1�j�n�1fjjrj jj
2g � 2nC1 max

1�j�n�1

n a2n
X2
j

C a2j

X2
n

o
:

Since

.anXn/
2 C .ajXj /2 < 1

2nC1 .XnXj /
2

we get

2nC1	 a2n
X2
j

C a2j

X2
n



< 1 .1 � j � n � 1/:
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Thus jjb0
j jj2 < 1: Now we assume that b0

j;r 6D 0 for r 2 fn C 1; n C 2g and
1 � j � n � 1: Since b0

j;n; b
0
j;nC1 2 Z we get jjb0

j jj2 � 1; contradicting to the
previous inequality. The first part of the Proposition follows.

Since LLL-algorithm makes only linear transformation of the form

bj $ bi or bj  bj � rbi ; r 2 Z; j > i

and the .nC 1/th column consists only from zeros, we get b0
n;nC1 D 0: Further, the

gcd of the last column remain the same in every step of the LLL-process. Since we
assumed that gcd.a1; : : : ; an/ D 1 we get

1 D gcd.a1; : : : ; an/ D gcd.b0
1;nC2; b0

2;nC2; : : : ; b0
n;nC2/ D gcd.0; 0; : : : ; 0; b0

n;nC2/

D jb0
n;nC2j:

�

Remark 3. From assumption (6) we get

janj < 1

2.nC1/=2 Xj ; .1 � j � n � 1/ and jaj j < 1

2.nC1/=2 Xn:

We shall show that, under the assumption (6), we have Ob�
i;nC1 D Ob�

i;nC2 D 0 for

1 � i � n � 1 and Ob�
n;nC1 D 0; Ob�

n;nC2 D ˙1: Indeed, it is easy for b0�
1 since it is

equal to b0
1 D .: : : ; 0; 0/: Also for

b0�
2 D b0

2 � 	21b0�
1 D .	;	; : : : ; 0; 0/ � 	21.	;	; : : : ; 0; 0/ D .	;	; : : : ; 0; 0/:

Inductively we can show that b0�
i D .	;	; : : : ; 0; 0/; for 1 � i � n � 1: For

b0�
n D .	;	; : : : ; 0;˙1/ � 	n2.	;	; : : : ; 0; 0/ � � � � � 	n;n�1.	;	; : : : ; 0; 0/
D .	;	; : : : ; 0;˙1/:

So we proved the following.

Corollary 4. Under the assumption (6) we get

b
0�
i D . Ob�

i1; : : : ;
Ob�
in; 0; 0/ .1 � i � n � 1/ and Ob�

n;nC1 D 0; j Ob�
n;nC2j D 1:

The Homogeneous Case

We get the following Lemma concerning the integer solutions of the corresponding
homogeneous linear equation.
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Lemma 1. Under the assumption A1; we can find an integer solution .x1; : : : ; xn/
of the homogeneous linear equation

Pn
jD1 aj xj D 0; with jxj j < Xj ; in

polynomial time.

Proof. Every vector of the LLL-reduced basis of the lattice L is of the form

	 �1
X1
; : : : ;

�n

Xn
; ˇ;

nX

jD1
�j aj � ˇa0



;

with �j ; ˇ 2 Z (note also that the two last coordinates are integers). From the
previous Proposition we get ˇ D 0 and

Pn
jD1 �j aj D 0 for the first n � 1 vectors

of the LLL-reduced basis. Thus, the n-tuples
˚
�ij W 1 � j � n

�

for i D 1; 2; : : : ; n� 1 are solutions of the equation a1x1C � � � C anxn D 0: Where
�ij are as in Lemma 5. Moreover, since jjb0

i jj2 < 1 for each i D 1; 2; : : : ; n� 1; we
conclude that j�ij j < Xj for each j 2 f1; 2; : : : ; n � 1g: �

In the previous Lemma we used LLL reduction. It is known that LLL runs
in polynomial time and it provides vectors that are exponentially longer than the
shortest vectors. Assume now that we have a SVP oracle. That is a probabilistic
algorithm which computes with high probability, a shortest vector of a lattice in
polynomial time. LLL-algorithm behaves as a SVP oracle for small dimensions
.� 40/ and further BKZ � 20 reduction algorithm for dimensions � 50 (see [5],
Fig. 1) (remark that we do not have any proof that BKZ runs in polynomial time,
but in practice for dimensions � 50 is fast) . Assuming the existence of a SVP
oracle, let b; a shortest vector of our lattice, which has the form

	 �1
X1
; : : : ;

�n

Xn
; ˇ;

nX

jD1
�j aj � ˇa0



; �j 2 Z:

Assume that there is some j0 with jaj0 j 6D janj and set

X D X1 D � � � D Xn D
p
2 max
1�j�n jaj j:

Since jjbjj � jjrj jj; .1 � j � n � 1/ we get

jjbjj2 � jjrj0 jj2 D
a2n C a2j0
X2

< 1:

Thus necessarily, ˇ D 0, since if not jjbjj � 1: So ˇ D 0 and

ˇ̌
ˇ
�j

X

ˇ̌
ˇ < 1;

nX

jD1
�j aj D 0:

So we proved the following.
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Proposition 2. Assume that there is a SVP oracle and at least one jaj j 6D janj:
Then we can compute in polynomial time an integer solution .x1; : : : ; xn/ of the
homogeneous equation

Pn
jD1 aj xj D 0; with jxj j <

p
2 max
1�i�n jai j:

Proof of the Theorem

We set bnC1 D enC1 � a0enC2: As usual L D L.b1; : : : ;bn/ and L0 D
L0.b0

1; : : : ;b
0
n/ be the LLL-reduced basis of L:We consider the lattice OL generated

by the set fb0
1; : : : ;b

0
n;bnC1g: We apply size reduction to OL that is

row.nC 1/ row.nC 1/ � d	nC1;ncrow.n/: (7)

Note that at this stage 	nC1;j D 0; for 1 � j � n � 1: Also, from Proposition 2
we get

	nC1;n D 1

B2
n

.bnC1 � b0
n/ D

1

B2
n

�
.0; 0; : : : ; 1;�a0/ � .	;	; : : : :; 0;˙1/

� D ˙a0
B2
n

:

From assumption A2; we get d	nC1;nc D a0 if b0
n;nC2 D �1 and d	nC1;nc D �a0 if

b0
n;nC2 D 1: That is always

b0
nC1;nC2 D �a0 � d	nC1;nc � b0

n;nC2 D 0:

We continue with

row.nC 1/ row.nC 1/ � d	nC1;j crow.j / for j D 1; 2; : : : ; n � 1:

Let b0
nC1 the size reduced (last) row. Then b0

nC1 has the form . Ox1; : : : ; Oxn; 1; 0/: The
new basis fb0

1; : : : ;b
0
n;b

0
nC1g has the property 	nC1;j < 1=2 for 1 � j � n: Since

	nC1;j D
b0
nC1 � b0�

j

B2
j

; Bj D jjb0�
j jj

we get (using Corollary (4)) the system,

Ox1 Ob�
j1 C � � � C Oxn Ob�

jn D "j ; 1 � j � n (8)

where

Ob�
ij D

b�
ij

Xj
and j"j j D j	nC1;j j B2

j <
B2
j

2
:
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Since B2
j D jjb0�

j jj2 < jjb0
j jj2; we get

j"j j <
jjb0

j jj2
2

<
1

2
.1 � j � n � 1/:

For the case j D n we get

j"nj D j	nC1;nj B2
n <

1

2
B2
n <

1

2
2 D 1: (9)

We used that B2
n < 2: Indeed, from the first part of inequality (4) we get

B2
n <

2a0

2a0 � 1 :

Since a0 2 Z � f0g; we get

0 <
2a0

2a0 � 1 < 2;

thus B2
n < 2: Let OA be the matrix of the system, that is OA D Œ Ob�

ij �1�i;j�n: If we

substitute the j th column of OA with the column vector ."1; : : : ; "n/T we get the
matrix OAj : Then

j Oxj j D
ˇ̌
ˇ
det OAj
det OA

ˇ̌
ˇ:

From Lemma (1), the system (8) has determinant j det OAj D 1Qn
iD1 Xi

: Thus

j Oxj j D j det OAj j
nY

iD1
Xi : (10)

We apply Hadamard inequality to det OAj : We shall get

j det OAj j2 <
nY

iD1
jjrowŒ OAj �i jj2: (11)

The i th row of the matrix OAj is

rowŒ OAj �i D
	b�

i1

X1
; : : : ; "i ; : : : ;

b�
in

Xn



;
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where "i is in the j -entry. The square of its length for j 6D n is

jjrowŒ OAj �i jj2 < B2
i C "2i < 1C "2i < 1C

1

4
D 5

4
D 1:25:

For the case j D n we get

jjrowŒ OAj �njj2 D
	b�

n1

X1


2 C � � � C
	b�

n;n�1
Xn�1


2 C "2n < B2
n C 1 < 3:

Thus, from inequality (11) we get

j det OAj j <
p
3.1:25/.n�1/=2 D c.n/:

So from relation (10) we get

j Oxj j < c.n/
nY

iD1
Xi ; j D 1; 2; : : : ; n:

Since all the previous computations can be done in polynomial time (LLL and size
reduction), the Theorem follows.

Remark 1. In the case where a0 < 0; instead of relation (9) we have the better
inequality j"nj < 1=2; since B2

n < 1: Thus c.n/ D .1:25/n=2:

Examples

The first example is given only to explicitly show how we apply our method.

.i/. Let

84 � 105x1 C 4 � 106x2 C 15688x3 C 6720x4 C 15x5 D 371065262:

This is example 1 of [1] and they get the solution x D .36; 17; 39; 8;�22/;
with jjxjj ' 60:44: Assumption A1 is fulfilled if

max
1�j�4 jaj j <

1

8
X5; ja5j < 1

8
max
1�j�5 jXj j:

So it is enough to choose

X D X1 D � � � D X5 D 8 � 84 � 105 C 1:
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We consider the matrix

M D

2

666664

1
67200001

0 0 0 0 0 8400000

0 1
67200001

0 0 0 0 4000000

0 0 1
67200001

0 0 0 15688

0 0 0 1
67200001

0 0 6720

0 0 0 0 1
67200001

0 15

3

777775

Applying LLL to the rows of M we get

MLLL D

2

666664

� 10
67200001

21
67200001

0 0 0 0 0

0 0 15
67200001

� 35
67200001

� 8
67200001

0 0
1

67200001
� 2
67200001

� 25
67200001

� 1
67200001

� 72
67200001

0 0
5

67200001
� 10
67200001

� 95
67200001

� 76
67200001

72
67200001

0 0
2

67200001
� 4
67200001

� 42
67200001

� 21
67200001

1
67200001

0 �1

3

777775

Then applying size reduction to the lattice OL generated by the set
fb0
1; : : : ;b

0
5;b6g; where b6 D .0; 0; 0; 0; 0; 1;�a0/; we get

OMLLL D

2

66666664

� 10
67200001

21
67200001

0 0 0 0 0

0 0 15
67200001

� 35
67200001

� 8
67200001

0 0
1

67200001
� 2
67200001

� 25
67200001

� 1
67200001

� 72
67200001

0 0
5

67200001
� 10
67200001

� 95
67200001

� 76
67200001

72
67200001

0 0
2

67200001
� 4
67200001

� 42
67200001

� 21
67200001

1
67200001

0 �1
36

67200001
17

67200001
39

67200001
8

67200001
� 2
6109091

1 0

3

77777775

We take the 6th row and multiply each entry with X; then we shall get the
vector x: If we want the coordinates of the solution vector to satisfy

jx1j < 30; jxj j < 50 .2 � j � 5/;

then taking X1 D 30;X2 D X3 D X4 D X5 D 50 we get the following
solution x D .26; 38; 39; 8;�22/: This solution has absolute value 64:72:
Notice that it is larger (with respect to Euclidean length) than the previous
solution, but it has the advantage that satisfies our constraints.

.ii/. We consider now n D 50:
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faj gj D Œ872934629013064; 362643350651979; 231593889792433; 1084529488472651; 152647947850799;

739407904067188; 1078361055147110; 522287723336618; 1048278073142822; 71464720981315;

1026144865997912; 401128969656441; 1104125375426692; 223040948030783; 259134135114376;

477165086702863; 693696459173357; 956101007737750; 1076391779531258; 887808907972169;

154289043341408; 1123813906929138; 100640784930380; 1028038257417354; 126747913149526;

345001039716371; 173180910604612; 376756743710801; 462057825850822; 105084485099476;

193285152829384; 663950233902816; 1005024177016821; 350981819196027; 1049577315489835;

455051495653072; 1014366278972062; 905067265314795; 972603957926899; 1110054606397627;

768533772552959; 798515502008744; 705587377794293; 64248048456242; 771519628719865;

190006526706907; 481482852515889; 916067763534188; 768875611228651; 666640039086558�

a0 D 17297404087862459

Using our algorithm with Xj D 3 .1 � j � n/ we get (using Sage [16])

x1DŒ1; 0; 1; 2; 0; 0; 1;�1; 0; 0; 1; 2;�1; 0; 0; 0; 0; 0; 1; 1; 1; 0; 0; 2; 2; 0; 0;�1;
1; 1;�1;�1; 0; 0; 1; 0; 1; 1; 1; 1; 1; 0; 1; 0; 1; 0; 0; 1; 1; 0�

with Euclidean length 6:324: It took less than 5 s in order to find it. This
solution satisfies our bound jxj j � Xj D 3: Using the algorithm of [1] we get

x2DŒ0; 0; 0; 1; 1; 2;�1; 3; 0; 1; 2; 1; 2; 2; 0; 0; 0; 0; 1;�1; 0;�1; 0; 2; 1; 0; 0; 1;
2; 0;�1; 0; 1; 0; 0; 0; 1; 0; 1; 1; 0; 0; 0; 0; 1; 0; 0; 1; 1; 0�

which has Euclidean length 7:141: Now using CVP method (as implemented
in fplll) we manage to get the vector

x3DŒ0; 0; 0; 1; 0; 1; 1; 0; 1; 0; 2; 0; 1; 0; 0; 0; 1; 1; 1; 0; 0; 0; 0; 1;
0; 0; 0; 1; 0; 0; 0; 0; 1;�1; 1; 0; 0; 1; 0; 0; 0; 2; 1; 0; 0; 0; 1; 0; 0; 1�

which has norm 5. It took almost 4 min in order to compute it. We worked
as follows. Let L be the lattice generated by the homogeneous equationPn

jD1 aj xj D 0: Then we choose as target vector, a vector t which is
a solution of

Pn
jD1 aj xj D a0: If c is the output of the CVP instance

CVP.L; t/; then a small solution is given by x D t� c: We noticed that, if the
target vector has large length then fplll provide us with a large solution x (but
smaller than the length of target vector). That is the CVP solvers are “sensitive”
to the choice of the target vector. In order to get the previous solution x3 we
used as target vector, the vector x1 from the application of our method. So it
seems that a nice strategy in order to get a small solution is to combine the
CVP solvers and our algorithm (which shall give us the target vector). In case
we have large n; say n � 80 then the CVP solver of fplll(and Magma)1 is
slow. Thus, we conclude (at least experimentally) that for large dimensions it
is better to use our algorithm and for smaller say n < 80 a combination of
CVP and our method.

1For a detailed account how these solvers work see [8].
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An Application to Knapsack Problem

The subset sum or knapsack problem is the following. Given a list of n positive
integers fa1; : : : ; ang and an integer s such that maxfaigi � s � Pn

iD1 ai find a
binary vector x D .xi /i such that

Pn
iD1 xiai D s: The decisional version is known

to be NP-complete [6]. The variant, multiple knapsack problem is used in many
loading and scheduling problems in operational research.

We use the following lattice

B D Œb1; ::;bnC1� D

2

664

N1
X1

0 ��� 0 0 N1a1

0
N1
X2

��� 0 0 N1a2��� ��� ��� ��� ���
0 0 ��� N1

Xn
0 N1an

0 0 ��� 0 N2 �N1s

3

775 ;

for some positive integers N1;N2: When we apply LLL-algorithm to the previous
lattice we get vectors of the form

	�1N1
X1

; : : : ;
�nN1

Xn
; ˇN2;N1

� nX

jD1
�j aj � ˇs

�

:

This is because LLL-algorithm uses transformations of the form

bj $ bi or bj  bj � rbi ; r 2 Z; j > i:

Since we expect small vectors from LLL; we probably get vectors of the form

	�1N1
X1

; : : : ;
�nN1

Xn
;N2; 0




with �j 2 f0; 1g (in fact for small dimensions n � 40 is very probable, at least
experimentally, to get vectors of the previous form). Then a solution of the knapsack
is .�1; : : : ; �n/: We shall fix N1;N2 and we randomly choose X1; : : : ; Xn 2
f1; 2; : : : ; kg with k say � 10:

After making many experiments with dimension n � 40 we concluded that
whenever the algorithm of Coster et al. [4] is working is faster than ours. But there
are cases where the algorithm of [4] is not working as we will see below. For large
values of n say n > 40 and density very close to 1 our algorithm is slow. All the
examples below have density very close to 1.

Example 1. .n D 20/. Let

a D Œ231578; 90066; 426782; 989541; 428396; 861588; 366246; 430412; 329226; 299869;

179689; 288142; 916676; 447222; 1040519; 271141; 652751; 132316; 548527; 907547�
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and s D 6507929: Using the algorithm of Coster et al. with N D 15 we did not
manage to get a solution. Our algorithm with N1 D 90;N2 D 80 and using random
denominators from the set f1; 2; 3; 4; 5g; in the 38th round we got the solution x D
.0; 1; 1; 1; 1; 1; 1; 0; 0; 0; 0; 1; 1; 1; 1; 0; 1; 0; 0; 0/:

Example 2. .n D 30/. We set

a D Œ257957069; 211449890; 453588748; 460393904; 806269638; 965676997; 722998227;

557173347; 544414881; 605777707; 308224438; 609694552; 614806334; 86201849;

3033849; 54567875; 749134183; 136657534; 339166263; 622170807; 339856371; 565613209;

66643022; 732672773; 874884984; 522967114; 168924289; 405266804; 946333809; 879669424�

and s D 6835888107: Again using Coster et al, with N D 10 we did not manage to
get any solution. Using our algorithm with N1 D 250;N2 D 230 and using random
denominators from the set f1; 2; 3g; we got

x D .1; 0; 1; 1; 0; 1; 0; 1; 0; 0; 0; 0; 1; 1; 0; 0; 0; 1; 1; 1; 0; 1; 0; 1; 1; 0; 1; 0; 0; 0/

in the 439th round. We got these results in some minutes.

Example 3. .n D 35/. We set

Œ25757712619; 1703301249; 29787913497; 12224812308; 10842851796;

12515371588; 32028450775; 34098294238; 3343156310; 27995252025; 8010200960;

15769634246; 23243451953; 18423819032; 4905368619; 18951710032; 18461896729;

31018788743; 33944716414; 30577978749; 19433865371; 21833994553; 16822791334;

9873829642; 32574703247; 16993191260; 34144724289; 6412642125; 15206763392;

17781019093; 29173151234; 25267831499; 32387438669; 18801581598; 19492385639�:

and s D 206027365036: Again using Coster et al, with various values of
N 2 f5; 10; 15g we did not get any solution. Using our algorithm with N1 D
25000;N2 D 20000 and using random denominators from the set f1; 2; 3; 4g; we
got

x D .1; 1; 0; 1; 0; 0; 0; 0; 1; 0; 1; 0; 1; 1; 1; 0; 0; 0; 0; 0; 0; 1; 0; 0; 1; 0; 0; 1; 1; 0; 0; 0; 1; 0; 0/

after 163.2 min.



188 K.A. Draziotis

References

1. Aardal, Karen; Hurkens, Cor.; Lenstra, Arjen K.; Solving a linear Diophantine equation with
lower and upper bounds on the variables. Integer programming and combinatorial optimization
p.229–242, Lecture Notes in Comput. Sci., 1412, Springer, Berlin, 1998.

2. Bosma, Wieb, Cannon, John and Playoust, Catherine; The Magma algebra system. I. The user
language, J. Symbolic Comput.Vol. 24 (1997).

3. Coppersmith, D.: Finding small solutions to small degree polynomials. Lecture Notes in
Computer Science 2146 (2001) p.20–31.

4. Coster J.M., Joux A., LaMacchia B.A., Odlyzko A.M., Schnorr C-P., and Stern J., Improved
low-density subset sum algorithms. Computational Complexity, 2:111–128, 1992.

5. Gama N. and Nguyen P.Q., Predicting Lattice reduction, Eurocrypt 2008, LNCS 4965, p.31–51
(2008)

6. Garey, M.R.;Johnson, D.S.; Computers and intractability : A guide to the theory of
NP-completeness. W.H.Freeman and Company, NY (1979).

7. Galbraith, S.; Mathematics of Public Key Cryptography, Version 1.1, December 1, 2011, http://
www.math.auckland.ac.nz/~sgal018/crypto-book/crypto-book.html.

8. Hanrot G., Pujol X. and D.Stehle. Algorithms for the Shortest and Closest Lattice Vector
Problems. IWCC’11.

9. Lagarias, J.C., Odlyzko, A.M.: Solving low-density subset sum problems. J. Assoc. Comput.
Mach. 32(1) (1985) 229–246.

10. Lenstra, H.W.; On the Chor-Rivest knapsack cryptosystem; Journal of Cryptology, Volume 3,
Number 3 (1991), p.149–155.

11. Lueker, G.S; Two NP-complete problems in nonnegative integer programming, report 178
CSL, Princeton University (1975).

12. Merkle, R., Hellman, M.; Hiding information and Signatures in trapdoor cryptosystem, IEEE
Trans.Inf.Theory IT-24(1978), p.525–530.

13. Nguyen, P.Q., Stern, J., The two faces of Lattices in Cryptography, Cryptography and lattices.
1st international conference, CaLC 2001, Providence, RI, USA, March 29–30, 2001. Revised
papers. Berlin: Springer. Lect. Notes Comput. Sci. 2146, 146–180 (2001).

14. Pujol X., Stehle D., fplll mathematic software (version 4.0), http://xpujol.net/fplll.
15. Rosser, J. B.; A note on the linear Diophantine Equation, American Maths. Monthly 48(1941).
16. Stein, W.A. et al. Sage Mathematics Software (Version 4.5.1), The Sage Development Team,

2012, http://www.sagemath.org.
17. Vasilenko, O.N.; Number-Theoretic Algorithms in Cryptography, Translations of Mathemati-

cal Monographs (AMS), Volume 232 ,Translated by Alex Martsinkovsky.

http://www.math.auckland.ac.nz/~sgal018/crypto-book/crypto-book.html
http://www.math.auckland.ac.nz/~sgal018/crypto-book/crypto-book.html
http://xpujol.net/fplll
http://www.sagemath.org


A Short Exposition of Topological Applications
to Security Systems

D. Panagopoulos and S. Hassapis

Abstract In this article several practical applications of algebraic topology are
presented. After a short technical review of the necessary theory applications to
sensor networks are presented. A very short reference of applications to data
analysis follows.

Introduction

For many years algebraic topology has been considered as an abstract mathematical
field with none or few practical applications. However many abstract mathematical
ideas have found unexpected applications in real-life problems. This is also the case
with algebraic topology during the past couple of years. Theories and techniques
created by mathematicians in order to answer abstract problems are being used to
answer problems such as protein docking, image analysis, data analysis and space
coverage by sensor networks.

This article focuses, mainly, on the last two cases, i.e., applications of algebraic
topology to sensor networks and data analysis. A brief introduction to the necessary
mathematical background is given in the beginning of the article. In the second
section applications to sensor networks are presented while in the third section
approaches related to data analysis are discussed.
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Mathematical Background

Algebraic Homology

In this section we give a short introduction to Homology theory. We begin with the
definition of a (simplicial) complex.

Definition 1. Let V be a finite set. A collection K of subsets of V is called a
complex if ˛ 2 K and ˇ � ˛ implies ˇ 2 K.

A set in C with k C 1 elements is called a k-simplex and we define its dimension
to be k. If ˇ � ˛ then we call ˇ a face of ˛. We call ˇ a proper face if in addition
ˇ ¤ ˛.

In this article complexes will, mostly, refer to geometric objects. A 0-simplex
will be a point, a 1-simplex an arc, a 2-simplex a triangle and so on. In Fig. 1 there
is an example of a complex which is consisted of a triangle fu0; u1; u2g and a line
fu2; u3g (and of course all their faces).

Given a complex K, we define Cn.K/ to be the vector space whose base is the set
of n-simplices of K with coefficients over a field. The base element that corresponds
to the n-simplex fu0; : : : ; ung is denoted by Œu0; : : : ; un�.

For example for the complex of Fig. 1 we have that C2.K/ is a one dimensional
vector space with base Œu0; u1; u2� while C1.K/ is a four dimensional vector space
with base Œu0; u1�; Œu0; u2�; Œu1; u2�; Œu3; u4�. For each n we define the boundary
operator #n W Cn.K/! Cn�1.K/ to be the linear map with

#.Œu0; : : : ; un�/ D
nX

iD0
.�1/i Œu0; : : : ;bui ; : : : ; un�

where bui means that ui is deleted. A straight forward calculation [7, p. 105] verifies
that #n�1 ı #n D 0. Hence we have a chain complex

C�.K/ W � � �
#nC2�! CnC1.K/

#nC1�! Cn.K/
#n�! Cn�1.K/

#n�1�! � � �

Fig. 1 A simple example of
a simplicial complex
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Fig. 2 Four sets in the plane and their corresponding nerve

Fig. 3 The Rips complexes of four points on the vertices of a unit square. On the left for � in Œ0; 1/,
in the middle for values in Œ1;

p
2/ and on the right for values in Œ

p
2;C1/

Definition 2. Let C�.K/ be a chain complex as above. The n-th Homology group
Hn.K/ is the group quotientKer#n=Im#nC1. The rank of the n-th homology group
is called the n-th betti number.

Let K be a complex and A a subcomplex contained in it. Then we can construct
the quotient K=A. Geometrically K=A is obtained from K by collapsing A to a
single point. The homology of K=A is called the relative homology of K with
respect to A and is symbolized by H�.K;A/.

Finally, for our purposes we will require the following two constructions.

Definition 3. [3, 5] Let S be a set of sets. We define the nerve NrvS of S to be the
set of subsets of S with no empty intersection:

NrvS D fX � S W
\
X ¤ ;g

The nerve is always a complex. In Fig. 2 an example with four sets in R
2 is given and

on the right-hand side the corresponding complex is depicted. If S contains disks,
then the corresponding complex is called the Čech complex.

Definition 4. [3] Let V D fv1; : : : ; vng be a set of points of a metric space .X; d/.
Then for a real number � > 0 we define the Rips (or Rips-Vietoris) complex R� to
be the complex whose k-simplices are fvi0 ; : : : ; vik g with d.vij ; vil / � �.
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Euler Integral

In this subsection we define the Euler integral. Initially, we need to define the Euler
characteristic.

Definition 5. Let X be a complex, the Euler characteristic �.X/ is the alternating
sum

P
n.�1/ncn where cn is the number of n-simplices.

The definition generalizes the well-known Euler characteristic in the
two-dimensional complexes. The relation of the Euler characteristic to the n-th
homology group is given by the following theorem.

Theorem 6. [7, p. 146] Let X be a complex, then

�.X/ D
X

n

.�1/nrankHn.X/:

From the above theorem it is clear that the Euler characteristic is a homotopy
invariant. Hence it can be defined for many topological spaces. For example:

1. for a finite set X the Euler characteristic equals the number of points in X ,
2. �.X/ Dvertices�edgesCfacesD2 for plane graphs,
3. for a subset X of R2 with n holes �.X/ D 1 � n,
4. �.X/ D 2 � 2g for an orientable surface X of genus g.

A simple argument based on the Mayer-Vietoris sequence [7] gives that for two
complexes A;B

�.A [ B/ D �.A/C �.B/ � �.A \ B/:
This fact allows us to set up an integration theory using Euler characteristic.

Definition 7. [1, 2] Let X be a complex and CF.X/ the abelian group of functions
from X to Z with generators the characteristic functions 1� , where � is a closed
simplex of X . Then for a function h D P

˛ c˛1˛ 2 CF.X/ the Euler integral with
respect to the Euler characteristic is defined to be

Z

X

hd� D
X

˛

c˛�.˛/:
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Homology and Sensor Networks

Hole Detection

Perhaps the most important question about a sensor network is whether it covers
an entire area or not. Furthermore, if there exists a hole in the coverage we should
have ways to detect it. This problem is easily solved if the location of each sensor
of the network is known. On the other hand there exist scenarios where our sensors,
or at least most of them, do not have any information about their location. This
might be due to the fact that our sensors are too small to carry positioning systems
or because these systems are too expensive. Maybe in the near future swarms of
low-cost sensors will be spread in an area for collecting data. For example, Smart
Dust was a research proposal [10] to DARPA to build wireless sensor nodes with a
volume of one cubic millimeter. The project led to a working mote smaller than a
grain of rice (Fig. 4).

The first step in using homology is to create a complex from the sensor network.
Assuming that each sensor covers a disk of radius rc , and of course that it can detect
the presence and the identity of any other sensors in that disk, we can create the
Čech complex C of the coverage disks (see Fig. 5). For the Čech complex of a set
fU˛g of sets the following theorem holds:

Fig. 4 A smart dust-like network whose sensor nodes are delivered by a helicopter and data
received by a handheld device [10]
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Fig. 5 Left: a simple sensor network of coverage disks. Right: the corresponding Čech complex.
Note that the triangle is not filled since the three circles on the left do not have a common
intersection

Theorem 1. [11, 12] Let fU˛g be a collection of disks and C the corresponding
Čech complex, then the union

S
˛ U˛ has the homotopy type of C .

Thus, if H1.C / ¤ 0 we can deduce that our network contains a hole.
Unfortunately, in many cases, there exists no way of constructing the Čech complex
for a sensor network. That is the main reason for introducing the Rips complex.
Although the Rips complex does not capture the topology of the cover, it gives a
good approximation. Furthermore, the Čech complex is nested between two Rips
complexes as described in the following theorem :

Theorem 2. [3, 12] Let X be a set of points in R
2 and C� the Čech complex of the

cover of X by balls of radius �=2 and R�0 ; R� the Rips complexes for constants �0; �.
Then R�0 � C� � R� whenever �

�0
� 2p

3
.

Remark 3. For �0 < � we have R�0 � R� and hence the inclusion maps
i W R�0 ! R� define a map between homology groups i� W H�.R�0/! H�.R�/. The
study of these maps will prove useful later in 4. It is the beginning of a promising
theory called persistent homology.

In [4] a divide and conquer method is introduced that utilizes the homology of
the Rips complex to detect not only the presence of holes in the network’s coverage
but also their location.

As noted above, there exist cases where the Rips complex fails to detect the
holes in the network’s coverage. This problem can be resolved by strengthening our
assumptions. In particular, suppose that the following assumptions hold:

A1. Sensors broadcast their unique IDs. Each sensor can detect the identity of any
sensor within a range rs via a strong signal and within a larger range rw via a
weak signal.

A2. Each sensor covers a disk of radius rc , where rc � rb=
p
3.

A3. rc; rs; rw satisfy rc � rs
p
1=3 and rw � rs

p
13=3.
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A4. The sensors are placed on a bounded subset D of the plane. Moreover sensors
can detect the presence (but not the location or direction) of the boundary within
a fixed fence detection radius rf � 0. #D is connected and piecewise linear.

A5. The restricted domainD�C is connected, where C D fx 2 D W jjx � #Djj �
rf C 1

2
rs
�
.

A6. The curve(s) fx 2 D W jjx�#Djj D rf g have internal injectivity radius at least
rs=
p
2 and external injectivity radius at least rs .

In [12] the following theorem is proved:

Theorem 4. For a network satisfying A1-A6 let Fs; Fw be the subcomplexes of
Rs;Rw respectively whose vertices correspond to the sensors that lie within the
fence detection radius. The region D � C is contained in the cover if there is a
homology class in H2.Rs; Fs/ which is nonzero in H2.Rw; Fw/.

Target Enumeration

In this section we outline the use of the Euler integral to the target enumeration
problem of a sensor network. In particular, given a network of sensors which are
only able to detect the presence of an other sensor or of certain “targets” within a
disk of radius rc and where relaying of messages is done between sensors within
distance rc , we want to enumerate the targets in the network’s coverage. It should
be emphasized that each sensor counts only the number of targets in it’s covering
disk. It cannot identify the targets nor it can detect the direction of the other sensors
or the targets. Hence, if a target is contained in the intersection of the covers of two
sensors it is counted twice.

Assuming that the sensors cover an entire subspace X of R
2 and that for

every target ˛ the subset U˛ of X is the set containing all the sensors which detect
the target, then we can define a function h W X ! N, where h.x/ is the number of
targets ˛ which can be detected by the sensor located at x (h.x/ D #f˛ W x 2 U˛g).
The following theorem states that we can use the Euler integral to enumerate the
targets in X .

Theorem 5. [1, 2] Given h W X ! N the counting function of compact target
supports in X satisfying �.U˛/ D n ¤ 0 for all targets ˛. Then #˛ D 1

n

R
X
hd�.

Naturally, the assumption that at every point of X a sensor is located is not realistic.
In practice, we assume that the sensors are located on the vertices of a triangulation
ofX . In that case the values of h are known only for the vertices and we can integrate
the piecewise linear interpolation of h [2].
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Further Applications

We should point out that there exist more applications of algebraic homology to
sensor networks. For example, let the following assumptions hold:

B1. the sensors broadcast their unique IDs and each node can detect the ID of any
node within radius rb ,

B2. sensors cover a disk of radius rc � rb
p
3,

B3. sensors lie in a compact connected subset of the plane whose boundary is
connected and piecewise linear,

B4. every sensor on the boundary knows the IDs of its two adjacent boundary nodes
which both lie within distance rb .

Then the sensor cover contains D if there exists Œa� 2 H2.R; #D/ such that #a ¤ 0
[11]. This fact enables us to detect reductant sensors. (The non-reductant sensors
are part of a minimal generator ofH2.R; #D/). Thus, the network can for, example,
conserve energy by placing in sleeping mode the reductant sensors.

Another example mentioned in [11] has to do with the problem of determining
whether an evader can avoid detection in a network whose sensors are on the move
or come online and offline at various times. Under some reasonable assumptions
there exists an affirmative answer to this problem.

Finally, in [4] a method for detecting wormhole attacks on a network is presented.
In this kind of attack involving two malicious/infected sensors, a signal received
by one sensor is transmitted over a low-latency link and replayed by the other
creating the analogous of a wormhole. Thus, the network is tricked into believing
that the sensors in the vicinity of the wormhole are in close distance. If the two
malicious/infected sensors are located far apart, this can cause several problems to
the network. For example, the network might choose to channel signals through the
wormhole something that can cause congestion and deplete the power reserves of
the sensors near the wormhole [8]. The basic idea in [4] is that a wormhole creates
a hole in the network and hence a non-trivial homology element. To distinguish
holes created by wormholes from ordinary coverage holes we can use the fact
that removing a cycle created by an ordinary hole divides the coverage into two
components while a cycle created by a wormhole does not.

Data Analysis

General Methods: A First Approach

Another unexpected application of topology is to data analysis. The main advantage
of using topological methods is that these methods are noise tolerant.

Quite naturally the first application is to use topology to classify different
datasets. A dataset may be viewed as a set of points of some n-dimensional real
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space R
n (this set is often called cloud set). From the dataset we can construct

a complex (i.e., a Rips complex) and calculate it’s homology groups and the
corresponding betti numbers. It is then possible to try to classify different datasets
by examining their respective betti numbers. Several researchers have conducted
tests attempting to classify data coming from a great variety of sources.

A method proposed in [3, 13] is given a cloud set X to use a continuous function
f W X ! R and a covering [˛A˛ for the image A of f to obtain a covering
[X˛ , where X˛ D f �1.A˛/, of X . Finally, a clustering algorithm is used on the set
fX˛g and the result is used to create a complex. In [3, 13] examples of the technique
applied to data coming from a diabetes study, hand-drawn copies of the digit “two”
and on a library of 3D models can be found.

Persistent Homology

The study of the evolution of the homology of a Rips complex R� obtained from
a dataset for various values of � (c.f. 4) can be used in various applications. For
example, it can be used for identifying the main topological characteristics of
an object that is sampled. The main topological characteristics are those that are
persistent while � changes.

In [15] a Rips complex R� from a set of text documents is constructed. Each
vertex represents a document and the distance between two documents is calculated
by an appropriate function. By selecting various values for the constant �, we can
construct a sequence of Rips complexes R�i . From this sequence the persistent
homology is calculated. It is hopped that in this way different corpora can be
identified.

Another possible application of persistence is to fine tune the Lazy Learning
machine learning algorithm. Given a dataset Lazy Learning selects a small subset
and performs regression to predict the outcome for a given input. In [9] it is
suggested that there is a correlation between the size of the subsets used by the
Lazy learning algorithm and the barcode diagrams obtained by persistent homology.
In that paper six different datasets were tested. For each dataset a series of
Rips complexes R�i were constructed for a sequence of constants �0; : : : ; �m. The
complexes were used to calculate the persistence homology. The resulting barcode
diagrams were compared with the mean regression error of the Lazy Learning
method where discs of radius �i were used for regression.

More general, the persistence of homology has several practical applications
from optical character recognition [6] protein docking and image analysis [5, 14].
The basic idea is to use a Morse function on a given dataset to create a filtered
complex which can be used to calculate the persistent homology.
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Conclusion

The authors would like to point out that this is a very short exposition. Many details
are omitted while a large number of applications is left out. We only hope that this
article will motivate the readers to search for more detailed information. The field
is relatively new and will certainly welcome researchers from diverse backgrounds
ranging from mathematics to software engineering.
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SAR Imaging: An Autofocusing Method
for Improving Image Quality and MFS Image
Classification Technique

A. Malamou, C. Pandis, A. Karakasiliotis, P. Stefaneas,
E. Kallitsis, and P. Frangos

Abstract In the first part of this paper several aspects of the SAR imaging are
presented. Firstly, the mathematical theory and methodology for generating SAR
synthetic backscattered data are developed. The simulated target is a ship, which
is located on the sea surface. A two-dimensional and a three-dimensional target
(ship) implementations are included in the simulations. Both cases of airborne and
spaceborne SAR are simulated. Furthermore, the case of varying target scattering
intensity is presented. In addition an application of an autofocusing algorithm,
previously developed by the authors for the case of Inverse Synthetic Aperture
Radar (ISAR) and Synthetic Aperture Radar (SAR) geometry for simulated data,
is presented here for the case of real-field radar data, provided to us by SET
163 Working Group. This algorithm is named “CPI-split-algorithm”, where CPI
stands for “Coherent Processing Interval”. Numerical results presented in this paper
show the effectiveness of the proposed autofocusing algorithm for SAR image
enhancement.

In the second part of this paper the Modified Fractal Signature (MFS) method is
presented. This method uses the “blanket” technique to provide useful information
for SAR image classification. It is based on the calculation of the volume of a
“blanket”, corresponding to the image to be classified, and then on the calculation
of the corresponding fractal signature (MFS) of the image. We present here some
results concerning the application of MFS method to the classification of SAR
images. The MFS method is applied both in simulated data (comparison of a focused
and an unfocused image) and in real-field data provided to us by SET 163 Working
Group (comparison of a “town” area, “suburban” area and “sea” area). In these
results it is clearly seen that the focusing of the SAR radar image clearly correlates
with the value of MFS signature for the simulated data, and that the type of area can
be distinguished by the value of MFS signature for the real data.
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Keywords Autofocusing • Post processing algorithm • Synthetic aperture radar
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Part 1: SAR Imaging Techniques: Application
of an Autofocusing Algorithm for Improving Image Quality
in the Case of Simulated and Real Radar Data

Introduction

Synthetic aperture radar (SAR) has been widely used not only for military but also
for non-military purposes. It is a radio frequency (RF) sensor that can be used in a
wide variety of applications such as long-range imaging, remote sensing and global
positioning. The radar signal has the ability to penetrate through clouds, haze, rain,
fog and precipitation with very little attenuation, thus it can perform with high image
resolution at long range, regardless the weather conditions. Moreover the radar can
illuminate with variable look angle and can select a wide area of coverage. One of its
main uses is in target detection and recognition for civilian or military applications.
The extended range of SAR applications led to the development of a number of
airborne and spaceborne SAR systems. The range-Doppler information collected
by the SAR antenna leads to the synthesis of the SAR image of the target with high
resolution [1, 2].

The purpose of this paper is to examine several aspects of the SAR imaging. Both
cases of airborne and spaceborne SAR are simulated. Also a two-dimensional and
a three-dimensional target (ship) implementations are included in the simulations.
Furthermore the case of varying target scattering intensity is presented. Hence,
the simulations contribute to analyse, clarify and understand better the cases
encountered in real-field radar data.

In addition, due to target movement, the SAR image is usually degraded by
defocus, distortion or displacement. In this paper the post processing CPI-split
autofocusing algorithm [3] is also applied to the case of real-field data of a
moving ship (airborne SAR), provided to us by SET 163 Working Group (see
acknowledgement below for more details), in order to obtain a focused SAR image
of a moving target [5, 6].

Simulated Target Geometry and Mathematical Formulations

The SAR geometry which is used in our SAR imaging simulations of a ship target
is presented in Fig. 1. In general, in SAR geometry, the antenna of the radar can be
mounted either on an aircraft (case of an airborne platform) or on a satellite (case
of a spaceborne platform). In both cases, the radar illuminates the target during
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Fig. 1 SAR geometry

the flight [1]. According to our SAR geometry simulation presented in Fig. 1, the
aircraft or satellite travels along positive y-axis, with constant velocity v, along a
flight path from �N=2 to N=2, where N is the number of bursts during one CPI.
As it is shown in Fig. 1, the centre of the flight path is considered to be point A.
Moreover, the radar antenna is assumed to emit Stepped Frequency (SF) pulses,
where M stepped frequencies are emitted per burst (m D 1 to M ) and N bursts per
CPI [1, 2].

The target of observation is a ship located on the sea surface. A two-dimensional
(2-D) geometry as well as a three-dimensional (3-D) geometry of the ship is
simulated below. Regarding both 2-D and 3-D simulations the basic dimensions
of the ship are: length a and width b. In Fig. 1 two coordinate systems are presented.
The coordinate system of the target (ship) to be imaged is called “local” coordinate
system O’XYZ. The other coordinate system is called “earth” coordinate system
Oxyz. The origin O’ of the “local” coordinate system is placed in the mass centre
of the ship. The distance R0 is the distance between the centre of the flight path and
the origin O’ of the “local” coordinate system. According to the above geometry the
vector of the distance R is given by the following formula:

R D x0 Ox � vnTb Oy � hOz (1)

where h is the radar platform altitude, . Ox; Oy; Oz/ are the unit vectors along the
.x; y; z/ axes, respectively, Tb D M � PRI is the burst duration (PRI is the Pulse
Repetition Interval of the transmitted radar waveform) and n is the burst index
(n D �N=2; � � � ;�1; 0; 1; � � � ; N=2). The simulated target (ship) is considered to
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Fig. 2 Position of ship point scatterer .i; j /

be formed from a set of point scatterers, where in Fig. 2 one of the ship scatterers
(X.i;j /; Y.i;j / ) is shown. The angle  is the grazing angle of the incident radar
electromagnetic (EM) wave and the angle � is the azimuthal angle of observation of
the target within the CPI. The angle � is determined by the following equation:

cos � D
�

x20 C h2
x20 C h2 C v2n2T 2b

� 1
2

(2)

The total distance from the SAR antenna to an arbitrary ship scatterer is given by
the following equation:

Ri;j D RC ŒA� � ri;j (3)

where ŒA� is the transformation matrix from the “local” coordinate system to the
“earth” coordinate system:

A D
�

cos� sin�
� sin� cos�

�
(4)

and � is the angle between the “local” and the “earth” coordinate systems. The angle
� also determines the orientation of the ship with respect to the “earth” coordinate
system Oxyz (axis Ox, in particular).

The distance ri;j is the distance between the origin O’ of the “local” coordinate
system and an arbitrary ship scatterer and is given by the formula:

ri;j D .Xi;j ; Yi;j / D Xi;j OX C Yi;j OY (5)

As a result, combining the above equations, the total distance from the SAR
antenna to an arbitrary ship scatterer is given by the formula:

Ri;j D RC Œ.Xi;j cos� C Yi;j sin�/ Ox C .�Xi;j sin� C Yi;j cos�/ Oy� (6)
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It can be easily seen that the incident wavevector k is given by:

k D k cos � cos � Ox � k sin � � Oy � k cos � sin � Oz (7)

where � is given by (2) and k is the wavenumber for the emitted SF waveform:

k D !m

c
D 2�fm

c
(8)

where fm D f0C .m� 1/�f , (m D 1; 2; � � � ;M ) is the emitted stepped frequency
(SF) [1, 2] and !m is the corresponding emitted angular frequency.

Hence, the phase �i;j for the .i; j / scatterer of the target is calculated from
analytic (geometric) calculation of the distanceRi;j between the radar and the .i; j /
scatterer of (6), as well as from the analytic expression for the incident wavevector
k of (7), as follows:

�i;j D 2 � k � Ri;j (9)

Then, from (6), (7) and (9) above, the following formula for the “local scattering
phase” is obtained, assuming that the target is stationary:

�mi;j D
4�fm

c
Œcos � cos .Xi;j cos� C Yi;j sin�/C sin �.Xi;j sin� � Yi;j cos�/�

(10)

whereas the phase corresponding to distance from position B of the platform to the
centre of the target (ship) O’ is compensated by the radar processor during SAR
image synthesis [see also (1)]:

�mi;j D
4�fm

c
.x0 cos � cos C h cos � sin C vnTb sin �/ (11)

Furthermore,m is the stepped frequency index (m D 1; 2; � � � ;M ); n is the burst
index (n D 1; � � � ; N � NCPI) for a number of simulated CPI’s ( NCPI); N is the
number of bursts during one CPI and (X.i;j /; Y.i;j /) are the local coordinates of the
ship scatterers. In this simulation one CPI is simulated (NCPI D 1) and as a result N
bursts are simulated for this particular time period.

In the case of the 3-D target (ship) simulation, the mathematical expression for
the phase of the backscattered signal at SAR receiver changes in order to simulate
the 3-D target. An extra term is added to include the contribution of the z-axis
scatterers in the signal.

�mi;j D
4�fm

c
.x0 cos � cos C h cos � sin C vnTb sin �/

C 4�fm

c
Œcos � cos .Xi;j;k cos� C Yi;j;k sin�/

C sin �.Xi;j;k sin� � Yi;j;k cos�/� �Zi;j;k cos � sin (12)
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The backscattered radar data are simulated through the following formula:

x.m; n/ D
X

d

si;j expŒj�
m
i;j �C u.m; n/ (13)

where d is the number of the scatterers of the target and si;j is the scattering intensity
for the .i; j / scatterer. In the simulations below we examine not also the case where,
without loss of generality, all scatterers have the same strength in amplitude ( si;j D
1 for all i; j ), but also the case where some scatterers have greater intensities than
other and as a result they have greater contribution in the signal. The term �i;j is the
phase of the backscattered signal (10) or (12), while u.m; n/ is the two-dimensional
additive white Gaussian noise component.

In the numerical simulations below, the raw data matrices are formed through
(13). It is worthy to mention that the dependence on “slow-time” index n in (10)
and (12) becomes effective through the aspect angle � , see (2).

The SAR images are constructed from the raw data matrices through the
traditional “Range-Doppler” imaging technique, involving FFT processing in both
range and Doppler directions [2].

Numerical Simulations Regarding the Application
of an Autofocusing Algorithm for Improving SAR Image Quality

SAR Imaging simulation of a 2-D ship target (airborne scenario)
The simulated ship geometry is shown in Fig. 3. It is a point scatterer model

which consists of 233 scatterers. The corresponding radar and geometry parameters
are shown in Table 1. Note here that through suitable selection of these parameters
“square resolution” of SAR images is obtained [4].

In Fig. 4 the produced SAR image regarding the SAR geometry and simulation
parameters described above is presented.
SAR Imaging simulation of a 2-D ship target with varying scattering intensity

In this simulation scenario, five scatterers have greater intensities than the others
and as a result they have greater contribution in the signal. This can be easily seen
in Fig. 5.
SAR Imaging simulation of a 3-D ship target

This simulation scenario examines the SAR imaging of a three-dimensional
target. The target is the point scatterer model of a ship presented above, with the
addition of some scatterers along the Z axis. These scatterers represent a mast in the
centre of the ship. In Fig. 6 the produced SAR image (two-dimensional imaging)
regarding the 3-D ship target is presented.
SAR Imaging simulation of a 2-D ship target (spaceborne scenario)

In the case of the spaceborne simulation scenario the antenna of the radar is
placed on a satellite. The basic SAR geometry stays the same (Fig. 1) but the
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Fig. 3 Geometry of the simulated ship target

Table 1 SAR simulation
parameters

Parameter Value (units)

Carrier frequency, f0 10 (GHz)
Radar bandwidth, B 300 (MHz)
Number of frequencies, M 64
Pulse repetition frequency, PRF 2.74 (KHz)
Burst duration, Tb 0.0234 (s)
Coherent processing interval, CPI 3 (s)
Number of bursts, N 128
Number of CPIs, NCPI 1
Range distance to center of target, R0 10 (km)
Height of SAR platform, h 2 (km)
Position angle of the ship, � 0
Velocity of platform, v 100 (m/s)

parameters of the simulation such as the distance between the radar and the target
and the velocity of the radar platform, alter. The corresponding parameters regarding
the airborne and spaceborne scenarios are shown in Table 2.

In Fig. 7 the produced SAR image for the simulated spaceborne scenario is
presented.
Numerical results of the application of the proposed autofocusing algorithm for
improving image quality in the case of real radar data
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Fig. 4 SAR image for one CPI (airborne scenario/two dimensional target)

Fig. 5 SAR image for one CPI with varying scattering intensity (airborne scenario)
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Fig. 6 SAR image for one CPI (airborne scenario/three dimensional target)

Table 2 SAR simulation parameters airborne–spaceborne scenario

Parameter Airborne value (units) Speceborne value (units)

Carrier frequency, f0 10 (GHz) 10 (GHz)
Radar bandwidth, B 300 (MHz) 300 (MHz)
Number of frequencies, M 64 64
Burst duration, Tb 23.4 (ms) 0.085 (ms)
Number of bursts, N 128 128
Range distance to center of target, R0 10 (km) 1,000 (km)
Height of SAR platform, h 2 (km) 2 � 105 (m)
Velocity of platform, v 100 (m/s) 2,900 (m/s)

In this section we incorporate the post processing CPI-split autofocusing algo-
rithm recently introduced by our research group [3, 8] in the case of real-field radar
data. This algorithm has already been tested for simulated data in the cases of SAR
and ISAR geometry [3, 7, 8]. The application of our proposed algorithm produced
excellent focusing of SAR and ISAR images for several cases of moving targets
[3, 7, 8].

The real-field radar data, which are examined here, were provided to us by
SET 163 Working Group (see the “Acknowledgement” below for more details).
This radar transmits linear frequency modulated waveform (LFM), whereas in
our simulation scenarios the radar antenna is assumed to emit Stepped Frequency
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Fig. 7 SAR image for one CPI (spaceborne scenario)

Fig. 8 SAR images for five CPI’s (real radar data provided by “SET 163 Working Group”)



SAR Imaging: An Autofocusing Method for Improving Image Quality... 209

Table 3 Entropy values

SAR Image Entropy Minimum entropy combination

1st CPI 6.4684
2nd CPI 6.2411
3rd CPI 6.1885
4th CPI, unfocused 6.7877
5th CPI 6.7082
4th CPI, focused 6.5991 Stage 4, segment 2, combination 7 [3]

Fig. 9 SAR image before (a) and after (b) the application of the proposed autofocusing algorithm

(SF) pulses. These raw radar data yield ultimately (after appropriate SAR signal
processing) a moving ship target, which is being imaged by the SAR radar. In Fig. 8
five SAR images of consecutive CPI’s are presented.

In order to compare the quality of the above SAR images, the entropy value
of each image is computed [3, 4]. In Table 3 the entropy values for the five
SAR images presented in Fig. 8 are listed. The CPI-split autofocusing algorithm
is employed in the CPI which entropy value exceeds a threshold that represents
an acceptable SAR image quality [3]. The images with entropy values below the
entropy threshold are called “focused” images, while the images with entropy
values over the threshold are called “unfocused”. We have applied the autofocusing
algorithm to the previously presented SAR images for 5 CPIs. As seen in Table 3,
the 4th CPI has the greater entropy value and therefore is the “unfocused” CPI. The
entropy threshold was set to 6.7.

In Fig. 9 the SAR images for the 4th CPI are presented, before and after the
application of the autofocusing algorithm.

The SAR image for the 4th CPI after the application of the autofocusing
algorithm is clearly more focused than the SAR image before the application of
the autofocusing algorithm. This result is also validated by the entropy values
presented in Table 3. The entropy value of the SAR image (4th CPI) before the
application of the autofocusing algorithm is greater than the entropy value of the
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SAR image (4th CPI) after the application of the autofocusing algorithm. Moreover
the entropy value of the “focused” image is within the acceptable entropy values
(below the entropy threshold). The real-field data results presented above show
that the proposed algorithm is effective in producing focused SAR images. Based
on SAR image entropy minimization criterion, the proposed algorithm neglects
data leading to ISAR images of poor quality and uses only data leading to ISAR
images of superior quality. The simulations’ results verify the adaptiveness of the
autofocusing procedure to different SAR imaging conditions.

Part 2: Application of the Modified Fractal Signature Method
to SAR Image Classification

Introduction

The Modified Fractal Signature (MFS) method has already been used for document
analysis, classification and pattern recognition [9] as well as for biomedical image
classification [10]. Fractals are a mathematical tool used to describe a high degree
of geometrical complexity in several group of data as well as images. The fractal
dimension particularly is an important characteristic of fractals because it contains
information about their geometric structure. As a result the computation firstly of
fractal dimension and consequently of fractal signature is of great importance with
regard to radar image classification.

This method includes fractal analysis [11, 12] of surfaces derived from radar
images, both from simulated data and from real radar data, provided to us by SET
163 Working Group, using a “blanket” technique [9, 10] described below. The main
idea concerning this technique is the fact that different classes of images yield
different values of fractal signature (FS) and fractal dimension (FD), upon which
classification of different types of images is possible. In this paper we are interested
in the classification of SAR radar images, and, in particular, in the discrimination
of “focused” or “unfocused” SAR images [8]. In addition, preliminary results
regarding the classification of real SAR radar images (“Oslo Fjord”) to “town” area,
“suburban” area and “sea” area are presented.

Mathematical Formulation of the MFS Method

In this section the implementation of the “blanket” (MFS) method [9, 10] is
described. Initially, the SAR image is converted to a grey-level function g.x; y/.
Subsequently the whole SAR image is divided into several non-overlapping sub-
images, and the fractal signature is calculated for each sub-image. The overall
fractal signature of the initial image is calculated ultimately by summation of the
corresponding values of the sub-images [9]. In addition in order to compute the
fractal dimension, we need to measure the area of the grey level surface.
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Fig. 10 “Blanket” of thickness 2ı defined by its upper uı.x; y/ and lower bı.x; y/ surface

In the blanket technique, all points of the three-dimensional space at distance
ı from the grey level surface g.x; y/ are considered. These points construct a
“blanket” of thickness 2ı covering the initial surface. The covering blanket is
defined by its upper surface uı.x; y/ and its lower surface bı.x; y/ as it is presented
in Fig. 10.

The algorithm used to compute the upper and lower surface includes the
following steps. Initially, the iteration ı equals zero (ı D 0), the grey-level function
equals the upper and lower surfaces, namely: u0.x; y/ D b0.x; y/ D g.x; y/. For
iteration ı D 1; 2; � � � the blanket surfaces are calculated through the following
iterative formulae :

uı.x;y/ D maxŒuı�1.x; y/C 1; max
j.m;n/�.x;y/j�1

uı�1.m; n/� (14)

bı.x;y/ D minŒbı�1.x; y/ � 1; min
j.m;n/�.x;y/j�1

bı�1.m; n/� (15)

Subsequently, the volume of the “blanket” is calculated from uı.x; y/ and
bı.x; y/ by:

Volı D
X

.x;y/

Œuı.x; y/ � bı.x; y/� (16)

Furthermore, the fractal signature Aı is calculated by

Aı D Volı

2ı
or Aı D Volı � Volı�1

2
(17)
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Fig. 11 SAR images (a) focused image of ship, (b) unfocused image of ship

Finally, concerning the calculation of the corresponding fractal dimensionD, the
following formula is used [9]:

Aı ' ˇı2�D (18)

where ˇ is a constant, from which the fractal dimension can be calculated from
successive fractal signature values as follows

D ' 2 � log2 Aı1 � log2 Aı2
log2 ı1 � log2 ı2

; where ı D 1; 2; � � � (19)

Numerical Results

SAR radar images from simulated data
Firstly, the application of the MFS method on Synthetic Aperture Radar (SAR)

images from simulated data is presented. For classification purposes, two SAR
images are examined: the first is a “focused” image of a ship and the second
is an “unfocused” image of a ship (Fig. 11). The case of the “focused” and
“unfocused” ISAR image (the target was a rapidly manoeuvring aircraft) has
already been examined in [13]. The main idea is whether the two images can be
discriminated using the fractal signature and fractal dimension values that occur
after the application of the MFS method.

In Fig. 12, the fractal signature Aı as a function of iteration ı and the fractal
dimension D as a function of iteration ı for the cases of the “focused” and the
“unfocused” image are presented.

It is apparent from the results in Fig. 12 that the criteria of “fractal signature” and
“fractal dimension” for SAR image characterization work in a satisfactory way for
the above simulations. It appears that the conclusions about image characterization
follow for small values of iteration ı. It can be easily understood, that for large
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Fig. 12 SAR images (a) fractal signature Aı as a function of iteration ı, (b) fractal dimension D
as a function of iteration ı for the cases of the “focused” and the “unfocused” ship

Fig. 13 SAR image of “Oslo fjord” (provided by “SET 163 Working Group”)

number of iterations (ı), the proposed algorithm of Eqs. (14) and (15) appears to
select the ˙1 values of the previous iteration, so that the value of fractal signature
equals, in this limit, the number of the pixels of the image.

SAR radar images from real radar data (“Oslo fjord”).
Subsequently, the application of the MFS method to Synthetic Aperture Radar

(SAR) images from real radar data (SAR image of “Oslo fjord”) provided to us by
SET 163 Working Group is presented. The SAR image examined here is shown
in Fig. 13. Three sub-images were obtained from the initial SAR image: the first
includes a “town” area, the second a “suburban” area and the third a “sea” area.

In Fig. 14, the fractal signature Aı as a function of iteration ı and the fractal
dimension D as a function of iteration ı for the cases of three sub-images: “town”
area, “suburban” area and “sea” area are presented.

It appears that the proposed algorithm provides interesting characterization
results for the cases of “town” area, “suburban” area and “sea” area.
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Fig. 14 (a) fractal signature Aı as a function of iteration ı, (b) fractal dimension D as a function
of iteration ı for the cases of “town” area, “suburban” area and “sea” area

Conclusions

In this paper several aspects of the SAR imaging are examined. The cases of
airborne and spaceborne SAR are simulated and also a two-dimensional and a three-
dimensional targets (ship) are implemented as well as the case of varying target
scattering intensity. Hence, the simulations contribute to better analyse, clarify and
understand the cases of real-field radar data. In addition the proposed “CPI-split
autofocusing algorithm” is incorporated for the case of real-field radar data. The
real-field data results presented above show that the proposed algorithm is effective
in producing focused SAR images. The simulations’ results verify the adaptiveness
of the autofocusing procedure to different SAR imaging conditions.

Furthermore, an iterative MFS technique [9, 10] is applied aiming in SAR
radar image characterization (both simulated and real data). As confirmed by the
results presented above, the proposed algorithm provides interesting characteri-
zation results. It is apparent that the criteria of “fractal signature” and “fractal
dimension” for SAR image characterization work in a satisfactory way for the above
simulations. In these results it is clearly seen that the focusing of the SAR radar
image clearly correlates with the value of “fractal signature” and “fractal dimension”
for the simulated data. Also the type of area can be distinguished with the value of
“fractal signature” and “fractal dimension” for the real-field radar data.
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Optimal Preventive Maintenance
of a Production-Inventory System
When the Action of “Idling” Is Permissible

Constantinos C. Karamatsoukis and Epaminondas G. Kyriakidis

Abstract In this paper we consider a manufacturing system in which an input
generating installation .I / supplies a buffer .B/ with a raw material, and a
production unit .PU / pulls the raw material from the buffer with constant rate
d > 0. The capacity of the buffer is equal to K units of raw material. The input
rate P is assumed to be a discrete random variable whose possible values belong
to the set fd; d C 1; : : : ; d C K � xg where x 2 f0; : : : ; Kg is the content of the
buffer. The installation deteriorates as time evolves and the problem of its preventive
maintenance is considered. There are three possible decisions when the installation
is at operative condition: .i/ the action of allowing the installation to operate,
.i i/ the action of leaving the installation idle, and .i i i/ the action of initiating a
preventive maintenance of the installation. The objective is to find a policy (i.e.,
a rule for choosing actions) that minimizes the expected long-run average cost per
unit time. The cost structure includes operating costs of the installation, maintenance
costs of the installation, storage costs, and costs due to the lost production when a
maintenance is performed on the installation and the buffer is empty.

Using the dynamic programming equations that correspond to the problem and
some results from the theory of Markov decision processes we prove that the
average-cost optimal policy initiates a preventive maintenance of the installation
if and only if, for some fixed buffer content x, the degree of deterioration of the
installation is greater or equal to a critical level i�.x/ that depends on x. The
optimal policy and the minimum average cost can be computed numerically using
the value iteration algorithm. For fixed buffer content x, extensive numerical results
provide strong evidence that there exists another critical level Qi.x/ � i�.x/ such
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that the average-cost optimal policy allows the installation to operate if its degree
of deterioration is smaller than Qi.x/ and leaves the installation idle if its degree
of deterioration is greater or equal to Qi.x/ and smaller than i�.x/. A proof of this
conjecture seems to be difficult.

Keywords Dynamic programming • Maintenance • Production-inventory system

Introduction

The preventive maintenance of a production-inventory system is an effective way to
reduce operating costs and the occurrence of failures. The reliability of a production
system is a crucial issue in cases such as public utilities (e.g., electric power plants)
and defense systems (e.g., missile shield or airplane engine compressor blades
see [4]). The growing interest in preventive maintenance has led many researchers to
develop mathematical models which propose several kinds of maintenance policies.

The paper of Wang [13] is a survey of different kinds of maintenance policies in
deteriorating systems. Dekker [1] provides a review of various maintenance models
and many applications of these models in real life. Markov Decision Models have
been proved a powerful tool for the description and the solution of problems which
are related to the maintenance of a system (or a component of a system). In the
papers of Douer and Yechiali [3], Van der Duyn Schouten and Vanneste [12], Sloan
(2004), the maintenance problems are modeled and analyzed by suitable Markov
Decision Models.

In maintenance literature, it is generally assumed that a system is inspected in
discrete time epochs, and the deteriorating components of the system are classified
into conditions. In the papers of [7], Karamatsoukis and Kyriakidis (2010) and
[5] the preventive maintenance depends not only on the working condition of a
deteriorating installation of the system but also on the content of a buffer in which
a raw material is transferred from the installation. The capacity of the buffer is
assumed to be fixed and the raw material is transferred to the buffer at a constant
rate p. A production unit pulls the raw material with a constant rate d .p > d/.
The state of the system is represented by the pair .i; x/, where i is the degree of
the deterioration of the installation and x is the buffer content. If the installation
is at an operative condition, there are two possible actions: to initiate a preventive
maintenance on the installation or to allow the installation to operate. The preventive
and corrective maintenance are nonpreemptive, i.e., they cannot be interrupted, and
they bring the installation to a perfect condition. It is assumed that the preventive
and corrective repair times (expressed in time units) are geometrically distributed.

In the present paper we modify a model (see Kyriakidis and Dimitrakos [7])
in which a deteriorating installation transfers raw material to a buffer and a
production unit pulls the raw material from the buffer. The production unit is always
in an operative condition. If the installation is found to be at a failed condition, a
corrective maintenance must be commenced. We assume that the input rate P is
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a discrete random variable, whereas the rate d at which the production unit pulls
raw material from the buffer is constant. It is assumed that the possible values of P
belong to the set d; d C 1; :::; d CK � x where x 2 0; :::; K. Furthermore, if the
installation is found to be at an operative condition, the possible actions are different
from Kyriakidis’s and Dimitrakos’s [7] model (there is another possible action
which is to leave the installation idle). It is proved that the average-cost optimal
policy initiates a preventive maintenance of the installation if and only if, for some
fixed buffer content, the degree of deterioration of the installation is greater or equal
to a critical level i�.x/ that depends on x. Extensive numerical results provide
strong evidence that there is another critical level Qi.x/ � i�.x/, such that the
average-cost optimal policy, for some fixed buffer content x, allows the installation
to operate if its degree of deterioration is smaller than Qi.x/ and leaves it idle if its
degree of deterioration is greater or equal to Qi.x/ and smaller than i�.x/. A proof
of this conjecture seems to be difficult.

The rest of the paper is organized as follows. The description of the model
is given in section “The Model.” In section “The Form of the Optimal Policy”
it is shown that, for fixed buffer content, the optimal policy is of control-limit
type. In section “Numerical Results” two numerical examples are presented and
in section “Conclusions” the main conclusions of the paper are summarized.

The Model

In this paper we generalize the results obtained in the paper of [7] that are concerned
with the preventive maintenance of a production-inventory system which consists
of three components. We consider a manufacturing system in which an input-
generating installation .I / supplies a buffer .B/ with raw material and a production
unit .PU / pulls the raw material from the buffer with constant rate d > 0. The three
components of the system are depicted in Fig. 1.

The capacity of the buffer is equal to K units of raw material. The input rate P
is assumed to be a discrete random variable whose possible values belong to the set
fd; d C 1; : : : ; d CK � xg where x 2 f0; : : : ; Kg. When the buffer is full, the rate
P at which the installation supplies the buffer can take only the value d .

An example of this manufacturing system (see [8]) could be an automobile
general assembly where the production unit represents the assembly line and the
installation represents one of many parallel operations that directly supply the line.
In the military industry we can assume that this system produces tanks or light
weapons.

Fig. 1 The three components of the system
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The system is inspected at discrete, equidistant time epochs � D 0; 1; : : : (say
every hour), and the installation is classified into mC 2 conditions 0; 1; : : : ; mC 1
which describe increasing degrees of deterioration. State 0 represents a new
installation before any deterioration occurs whereas statemC1 represents the failure
state of the installation. The intermediate states 1; : : : ; m are operative. If at a time
epoch � the state of the installation is i < m C 1 and the content of the buffer is
x < K then the content of the buffer at the epoch � C 1 will be min.xCp� d;K/.
This increase of the buffer content will happen even if the state of the installation
at the time epoch � C 1 is the failure state m C 1. If the action of allowing the
installation to operate is chosen, the transition probability of moving from condition
i at time epoch � to working condition j at time � C 1 is equal to pij . If the action
of leaving the installation idle is chosen, the transition probability of moving from
condition i at time epoch � to working condition j is equal to qij . It is assumed
that pij � qij ; 0 � j � i and qij � pij ; i < j � m C 1 because the operation
of the installation causes, possibly, more serious deterioration. We assume that the
probability of eventually reaching the condition m C 1 from any initial state i is
nonzero.

There are four possible actions u 2 f0; 1; 2; 3g, which are selected at each
time epoch. The possible actions are: (i) the action of allowing the installation to
operate .u D 0/, (ii) the action of leaving the installation idle .u D 1/, (iii) the
action of starting a preventive maintenance of the installation .u D 2/, and the
(iv) the action of starting a corrective maintenance of the installation .u D 3/.
If at a time epoch the installation is found to be at working condition m C 1

(failure state), the action .u D 3/ is compulsory. If at a time epoch the installation
is found to be at an operative condition i 2 f0; : : : ; mg, then we may choose the
action u D 0 or action u D 1 or action u D 2. Both preventive and corrective
maintenance are nonpreemptive, i.e., they cannot be interrupted and they bring
the installation to a perfect condition 0. It is assumed that the preventive and
corrective maintenance repair are geometrically distributed with the probability
of success a and b, i.e. the probability that they last t � 1 time units is equal
to .1 � a/t�1a and .1 � b/t�1b, respectively. This assumption can be considered
as realistic for situations in which the repair consists of successive efforts to
bring the installation to a perfect condition. For example, the repair may have
the form of successive attempts to replace a part of the deteriorating machine or
to assemble two parts that are disconnected or restore a setting of the machine.
If the probability of success is fixed we can assume that times are geometrically
distributed (see [5, 9, 12]).

The cost rates during a preventive and a corrective maintenance are equal to cp
and cf , respectively. If at a time epoch the installation is found to be at an operative
state i 2 f0; : : : ; mg, and action u D 0 is chosen, an operating cost is incurred
until the next time epoch, which is equal to ci , or Qci , if the buffer is full. We also,
suppose, that during any maintenance (preventive or corrective) or if action u D 1

is chosen, the buffer is not supplied with raw material. We assume that, when a
preventive or corrective is performed or the action u D 1 is chosen and the buffer is
empty, a cost due to lost production is incurred which is equal to C per unit time.
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We also suppose that the cost of holding a unit of the raw material in the buffer for
one unit of time is equal to h > 0.

We introduce the state PM to denote the situation that a preventive maintenance
is performed. Then the state of the system is:

S D f0; : : : ; mC 1; PM g � f0; : : : ; Kg

where .i; x/ 2 S is the state in which i is the working condition of the installation
and x is the content of the buffer.

The following conditions on the cost structure, on the transition probabilities,
and on the expected maintenance times are assumed to be valid:

Condition 1. c0 � c1 � � � � � cm; Qc0 � Qc1 � � � � � Qcm. That is, the working
condition of the installation deteriorates, the operating cost increases.

Condition 2. Qci � ci ; 0 � i � m. That is, when the buffer is full the installation
slows down and that causes smaller operating costs.

Condition 3. 0 < b < a � 1. That is, the expected time required for a preventive
maintenance is smaller than the expected time required for a corrective maintenance.

Condition 4. cp � cf . That is, the cost rate of a preventive maintenance does not
exceed the cost rate of a corrective maintenance.

Condition 5. (Increasing Failure Rate Assumptions). For each k D 0; : : : ; mC 1,
the function Dk.i/ D PmC1

jDk pij and Gk.i/ D PmC1
jDk qij are nondecreasing in

i; 0 � i � m.

It can be shown (see [2], pp. 122–123) that this condition is equivalent to the
following one:

Condition 6. For any nondecreasing functions h.j /; h0.j /; 0 � j � m C 1 the
quantities

PmC1
jDk pij h.j / and

PmC1
jDk qij h0.j / are nondecreasing in i; 0 � i � m.

We consider a Markov Decision Model in which we aim to find a stationary
policy which minimizes the long-run expected average cost per unit time. In the
next section we prove that the optimal policy has a particular structure.

The Form of the Optimal Policy

Let ˛.0 < ˛ < 1/ be a discount factor. The minimum n-step expected discounted
cost V ˛

n .i; x/, where .i; x/ is the initial state, can found for all n D 1; 2; : : :

recursively, from the following equations:

V ˛
n .i; x/ D min

8
<

:ciChxC˛
dCK�xX

pDd

mC1X

jD0
P r.PDp/pij V ˛

n�1.j;min.xCp�d;K//;
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hx C C.d � x/C C ˛
mC1X

jD0
qij V

˛
n�1.j; .x � d/C/;

V ˛
n .PM; x/

9
=

; ; 0 � i � m; 0 � x � K: (1)

V ˛
n .PM; x/ D cp C hx C C.d � x/C C ˛aV ˛

n�1.0; .x � d/C/
C˛.1 � a/V ˛

n�1.PM; .x � d/C/;
0 � x � K;

V ˛
n .mC 1; x/ D cp C hx C C.d � x/C C ˛bV ˛

n�1.0; .x � d/C/
C˛.1 � b/V ˛

n�1.mC 1; .x � d/C/;
0 � x � K;

with initial value

V ˛
0 .i; x/ D 0; .i; x/ 2 S:

Note that .d � x/C D max.d � x; 0/ and .x � d/C D max.x � d; 0/ represent the
one-period demand lost and the buffer content, respectively, when the buffer content
equals x at the beginning of that period and if action 1 or 2 or 3 is chosen. In Eq. (1),
the first term corresponds to action u D 0, the second term corresponds to action
u D 1, and the third term to action u D 2. The quantity V ˛

n .i;K/ coinsides with the
right side of (1) with x D K if, in the first term inside the curly brackets we replace
ci with Qci .

The following lemma is needed to prove that the optimal policy is of control-limit
type.

Lemma 1. For each n D 0; 1; : : : we have that

.i/ V ˛
n .i; x/ � V ˛

n .i C 1; x/; 0 � i � m; 0 � x � K
.ii/ V ˛

n .PM; x/ � V ˛
n .mC 1; x/; 0 � x � K

Proof. We prove the lemma by induction on n. The lemma holds for n D 0 since
V ˛
0 .i; x/ D 0. We assume that the lemma holds for n � 1. We will first prove the

part .i i/ holds for n and then we will prove the part .i/ holds for n.
Part .i i/:

V ˛
n .PM; x/

DcpChxCC.d�x/CC˛aV ˛
n�1.0; .x�d/C/C˛.1�a/V ˛

n�1.PM; .x�d/C/
� cfChxCC.d�x/CC˛aV ˛

n�1.0; .x�d/C/C˛.1�a/V ˛
n�1.mC1; .x�d/C/
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D cf C hx C C.d � x/C C aV ˛
n�1.mC 1; .x � d/C/ � ˛aD

� cfChxCC.d � x/C C aV ˛
n�1.mC 1; .x � d/C/ � ˛bD D V ˛

n .mC 1; x/

whereD D V ˛
n�1.mC1; .x�d/C/�V ˛

n�1.0; .x�d/C/. The first inequality follows
from the Condition 4 and induction hypothesis of part .i i/. The second inequality
follows from the Condition 3 and from inequalityD � 0 which is a consequence of
part .i/ of the induction hypothesis.
Part .i/: We have to show that

V ˛
n .i; x/ � V ˛

n .i C 1; x/; 0 � i � m � 1; 0 � x � K; (2)

and

V ˛
n .m; x/ � V ˛

n .mC 1; x/; 0 � x � K: (3)

The inequality (3) is easily verified for x 2 f0; : : : ; K � 1g, using part (ii) above:

V ˛
n .m; x/ D

(
cmChxC˛

dCK�xX

pDd

mC1X

jD0
P r.PDp/pmjV ˛

n�1.j;min.xCp�d;K//;

hx C C.d � x/C C ˛
mC1X

jD0
qmj V

˛
n�1.j; .x � d/C/;

V ˛
n .PM; x/

)
� V ˛

n .PM; x/ � V ˛
n .mC 1; x/:

Similarly, we obtain the inequality for x D K. For x 2 f0; 1; : : : ; K � 1g and
i 2 f0; : : : ; m � 1g we obtain

V ˛
n .i; x/ D

(
ciChxC˛

dCK�xX

pDd

mC1X

jD0
P r.P D p/pij V ˛

n�1.j;min.x C p � d;K//;

hx C C.d � x/C C ˛
mC1X

jD0
qij V

˛
n�1.j; .x � d/C/; V ˛

n .PM; x/

)

�
(
ciC1ChxC˛

dCK�xX

pDd

mC1X

jD0
Pr.PDp/piC1;j V ˛

n�1.j;min.xCp�d;K//;

hx C C.d � x/C C ˛
mC1X

jD0
qiC1;j V ˛

n�1.j; .x � d/C/; V ˛
n .PM; x/

)

D V ˛
n .i C 1; x/:
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The above inequality follows from Condition 1 and the inequalities:

dCK�xX

pDd

mC1X

jD0
P r.P D p/pij V ˛

n�1.j;min.x C p � d;K//

�
dCK�xX

pDd

mC1X

jD0
P r.P D p/piC1;j V ˛

n�1.j;min.x C p � d;K//;

and

mC1X

jD0
qij V

˛
n�1.j; .x � d/C/ �

mC1X

jD0
qiC1;j V ˛

n�1.j; .x � d/C/

which are implied by part .i/ induction hypothesis and Condition 6. Hence, the
inequality (2) has been proved for x 2 f0; : : : ; K � 1g. Similarly, we obtain the
inequality (2) for x D K. �

Since, the state space of the system is finite and the state .0; 0/ is accessible from
every other state under any stationary policy it follows that there exist numbers
v.s/; s 2 S and a constant g such that the following average-cost optimality
equations hold (see Corollary 2.5 in [10] p. 98):

v.i; x/ D min
n
ciChx�gC

dCK�xX

pDd

mC1X

jD0
P r.PDp/pij v.j;min.x C p � d;K//;

hx C C.d � x/C � g C
mC1X

jD0
qij v.j; .x � d/C/; v.PM; x/

o
;

0 � i � m; 0 � x � K; (4)

v.PM; x/ D cpChxCC.d�x/C�gCav.0; .x�d/C/C.1�a/v.PM; .x�d/C/;
0 � x � K;

v.mC 1; x/ D cp C hx C C.d � x/C � g C bv.0; .x � d/C/
C.1 � b/v.mC 1; .x � d/C/;
0 � x � K:

The first term in curly brackets in Eq. (4) corresponds to action u D 0 (allow to
operate), the second term corresponds to u D 1 (leave the installation idle), and the
third term to action u D 2 (initiate a preventive maintenance).
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In view of part .i/ of Lemma 1 and Theorem 2.2 in [10], we have the following
result:

Corollary 1.

v.i; x/ � v.i C 1; x/; 0 � i � m; 0 � x � K:

The following proposition gives that the optimal policy is of control-limit type.

Proposition 1. For fixed buffer content x,0 � x � K there exists a critical working
condition i�.D i�.x// 2 f0; : : : ; m C 1g such that the optimal policy initiates a
preventive maintenance of the installation if and only if the working condition of the
installation is greater than or equal to i�.

Proof. Suppose that, for 0 � x < K the optimal policy initiates a preventive main-
tenance of the installation at state .i; x/, where i 2 f0; : : : ; mg. This implies that:

v.PM; x/ � min

(
ciChx�gC

dCK�xX

pDd

mC1X

jD0
P r.PDp/pij v.j;min.xCp�d;K//;

hx C C.d � x/C � g C
mC1X

jD0
qij v.j; .x � d/C/

)
: (5)

To show that the optimal policy prescribes action 1 at state .iC1; x/ it is enough
to verify that

v.PM; x/

� min

8
<

:ciC1Chx�gC
dCK�xX

pDd

mC1X

jD0
P r.PDp/piC1;j v.j;min.xCp�d;K//;

hx C C.d � x/C � g C
mC1X

jD0
qiC1;j v.j; .x � d/C/

9
=

; : (6)

From Conditions 1 and 6 and Corollary 1 it follows that the right side of (6) is greater
or equal to the right-side of (5). Hence (5) implies (6). The same result is obtained
similarly when x D K. �

There is a strong numerical evidence that there exists, for fixed buffer content,
another critical level Qi.x/ � i�.x/ such that the average-cost optimal policy allows
the installation to operate if its degree of deterioration is smaller than Qi.x/ and leaves
the installation idle if its degree of deterioration is greater or equal to Qi.x/ and
smaller than i�.x/. A proof of this conjecture seems to be difficult.
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Table 1 The critical

numbers i�.x/ and Qi.x/ x Qi.x/ i�.x/

0 6 8
1 6 8
2 6 8
3 6 8
4 7 8
5 8 8
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Fig. 2 The average-cost optimal policy generated by value iteration algorithm

Numerical Results

As illustration we consider the following two examples:

Example 1. We suppose that m D 10;K D 5; d D 20; a D 0:5; b D 0:3; cp D
25; cf D 30; h D 1; C D 1; ci D 3.i C 1/; Qci D 1:5.i C 1/; 0 � i � 10; qij D
.12� i/�1; 0 � i � j � 11, and pij D .11� i/�1; 0 � i < j < 11; p10;11 D 1. The
random variable P is uniformly distributed in f20; 21; : : : ; 25 � xg for each value
of x 2 f0; : : : ; 5g.

The iterations of value iteration algorithm are 16. The average cost is equal to
28.58 (Table 1). The optimal control-limit policy is characterized by the following
critical numbers:

The average-cost optimal maintenance policy is depicted in Fig. 2. We observe
that the optimal policy is of control-limit type. For x D 5 the critical numbers i�.5/
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Table 2 The critical

numbers i�.x/ and Qi.x/ x Qi.x/ i�.x/

0 10 10
1 10 10
2 10 10
3 10 10
4 9 9
5 9 9
6 9 9
7 8 8
8 8 8
9 8 8
10 8 8
11 7 7
12 6 8
13 5 8
14 4 8
15 3 8
16 3 8
17 3 8
18 2 8
19 2 8
20 2 8

and Qi.5/ are equal .Qi.5/ D i�.5/ D 8/ which means that the optimal policy never
prescribes the action of leaving the installation idle.

Example 2. We suppose that m D 10;K D 20; d D 5; a D 0:5; b D 0:3; cp D
50; cf D 60; h D 0:5; C D 10; ci D 3.i C 1/; Qci D 2:5.i C 1/; 0 � i � 10; qij D
.12 � i/�1; 0 � i � j � 11, and pij D .11 � i/�1; 0 � i < j < 11; p10;11 D 1.
The random variable P is uniformly distributed in f5; 6; : : : ; 25� xg for each value
of x 2 f0; : : : ; 20g. In the following table we present the critical numbers i�.x/ and
Qi.x/; 0 � x � K (Table 2).

The iterations of value iteration algorithm are 18. The average cost is equal to
43.14. We also observe that for x D 1; : : : ; 11 the critical numbers i�.x/ and Qi.x/
are equal which means that the optimal policy never prescribes the action of leaving
the installation idle.

Conclusions

In this paper we modified a Markov Decision Model, which is proposed by [7], for
the optimal preventive maintenance of an installation that supplies a raw material
to an intermediate buffer and a production unit that pulls the raw material from
the buffer. We assumed that the input rate is a discrete random variable and that
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there are other possible actions when the installation is in an operative condition.
If the maintenance times are geometrically distributed, we proved that the policy
that minimizes the long-run average cost per unit time is characterized by critical
numbers .i�.x/; 0 � x � K/ such that the preventive maintenance of the machine
is initiated only if its degree of deterioration is greater or equal to these numbers.
Extensive numerical results provide strong evidence that there are another critical
numbers .Qi.x/; 0 � x � K/ such that the optimal policy prescribe to leave the
installation idle if its degree of deterioration is smaller than these numbers and
allowing to operate if its degree of deterioration is greater or equal to these numbers.
It holds for any x 2 f0; : : : ; Kg that Qi.x/ � i�.x/. A proof of this conjecture could
be the subject of future research.

References

1. Dekker R. (1996) Applications of maintenance optimization models: a review and analysis,
Reliability Engineering and System Safety 51, 229–240.

2. Derman C. (1970), Finite State Markovian Decision Processes, Academic Press, New York
1970.

3. Douer N., Yechiali U.(1994) Optimal repair and replacement in Markovian systems, Stochastic
Models 10, 253–270.

4. Hopp W., Kuo U.L. (1998) An optimal structured policy for maintenance of partially
observable aircraft engine components, Naval Research Logistics 45, 335–352.

5. Karamatsoukis C.C., Kyriakidis E.G. (2009) Optimal preventive maintenance of a production-
inventory system with idle periods, European Journal of Operational Research 196, 744–751.

6. Karamatsoukis C.C., Kyriakidis E.G. (2010) Optimal preventive maintenance of two stochas-
tically deteriorating machines with an indermediate buffer, European Journal of Operational
Research 207, 297–308

7. Kyriakidis E.G., Dimitrakos T.D. (2006) Optimal preventive maintenance of a production
system with an indermediate buffer, European Journal of Operational Research 168, 75–84.

8. Meller R.D., (1996) The impact of preventive maintenance on system cost and buffer size,
European Journal of Operational Research 95, 577–591.

9. Pavitsos A., Kyriakidis E.G. (2009) Markov decision models for the optimal maintenance of a
production unit with an upstream buffer, Computers and Operations Research 36, 1993–2006.

10. Ross S.M. (1983), Introduction to Stochastic Dynamic Programming,Academic Press, New
York, 1983.

11. Sloan T.W. (2004) A periodic review production and maintenance model with random demand,
deteriorating system, deteriorating equipment, and binomial yield, Journal of Operational
Research Society 55, 647–656.

12. Van Der Duyn Schouten F.A., Vanneste S.G.(1995) Maintenance optimization of a production
system with buffer capacity, European Journal of Operational Research 82, 323–338.

13. Wang H. (2002) A survey of maintenance of deteriorating systems, European Journal of
Operational Research 139, 469–489.



Operational Planning for Military Demolitions:
An Integrated Approach

Matthew G. Karlaftis, Konstantinos Kepaptsoglou, and Antonios Spanakis

Abstract Rapid and efficient implementation of demolition along invasion routes
is critical for ground defence operations. The related process includes a series
of interrelated actions that have to be carefully planned in order to successfully
complete demolition operations; units have to estimate and allocate human and
material resources and establish appropriate access to demolition sites. This paper
provides efficient operational models that can be applied by army engineering units
in order to estimate resources and plan logistic activities for demolitions. Further, a
decision support tool developed for real-time military operations is developed and
presented.

Keywords Military operations • Demolitions • Logistic activities
• Mathematical programming

Introduction

Demolition operations are military defence activities whose aim is to deny enemy
forces from the use of invasion routes; demolitions are detonated along those
invasion routes most likely to be used [1, 2]. While preparation and coordination of
such operations and corresponding tactical plans are the responsibility of division
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or higher-echelon commanders and their staff, technical advice and supervision are
provided by engineering units [4]. Engineering units have to estimate and allocate
human and material resources needed to implement demolition operations as well
as establish the appropriate routes to access demolition sites [1, 3].

Demolitions implemented to create obstacles may be either prepared in advance
as a part of tactical defence plans (deliberate, either charged or uncharged demoli-
tions) or decided and performed during defensive operations (hasty demolitions) [5].
In deliberate demolitions, infrastructures along with necessary equipment, material
and labor resources have already been estimated, reserved and partially prepared,
while tactical plans define in each case those demolitions that have to be imple-
mented. In this case, given potential tactical conditions and plan limitations,
personnel availability and so on, successful implementation relies upon rapid and
effective transportation of personnel, material and equipment to the demolition sites.
Hasty demolitions on the other hand are decided upon tactical conditions and their
objective is to maximize the effects of implementing some of them, given available
resources.

The objective of this paper is to provide efficient operational models that can
be applied by engineering units to estimate resources and plan logistics activities
for both deliberate and hasty demolition implementation. Models are presented,
along with a decision support tool, developed for supporting hasty demolition
planning. The rest of the paper is organized as follows: The second section presents
an overview of the problem. In the third and fourth section, models for planning
deliberate and hasty demolitions are presented while the development of a decision
support system for hasty demolitions is discussed in the fifth section. The paper’s
conclusions are included in the sixth section.

Overview

As mentioned earlier, demolitions may be either deliberate or hasty. For implement-
ing deliberate demolitions, personnel (squads) and equipment must be transported
to demolition sites to make final preparations and detonate demolitions. Squads are
assembled in camps and move to warehouses where equipments (explosives and so
on) are kept. Necessary equipment are loaded and then transported to demolition
sites where demolitions are prepared and detonated so that the obstacles can be
created. Usually, obstacles are positioned along potential invasion routes. Figure 1
is a typical sketch depicting the positions of demolition sites, invasion routes,
warehouses and so on.

Invasion routes are usually known a priori since tactical plans define such
possible routes. Each route includes a number of demolition sites that are already
partially prepared (depending upon whether explosives are already there or not,
these are characterized as charged or uncharged). Squads are dispatched from larger
formations (companies, divisions, etc.) located at different camps and are assigned
to demolitions. Given that part of the routes to demolition sites is already defined
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Fig. 1 Sketch depicting demolition sites and support infrastructure

we are interested in (a) the selection of potential warehouses to carry that equipment
(usually military warehouses carry various equipment for different operations, e.g.
weapons, ammunitions, explosives) and (b) the assignment of squads (initially
located at different camps) to demolition sites.

Ad-hoc demolition operations rely on commander decisions depending upon
tactical conditions. Such a decision arising from tactical conditions is the selection
of potential demolitions to be rapidly prepared and detonated in order to cause a
maximum of the effect to invading forces. In such cases, personnel is dispatched so
that as many obstacles as possible are created within a limited time window.

In general, demolition planning includes those courses of action that must be
undertaken (US Army 1993). Transportation of personnel and resources along with
manoeuver schemes are such actions and must be successfully completed for the
process to be effective.
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Models for Deliberate Demolitions

Given the above, quick implementation of deliberate demolitions relies on the
allocation of personnel and warehouses to demolition sites. We consider a two-step
model for this purpose: In the first step, warehouse sites are assigned to demolitions
while in the second step personnel is allocated to warehouses, so that travel times
are minimized. In both steps capacity and resource requirement constraints are
explicitly considered.

Assume a set of demolition sites I D fig, a set of warehouses J D fj g and a
set of demolition squads M D fmg. For the first step, an assignment model can be
used for allocating warehouses to demolitions:

min Z D
X

i

X

j

tijXij (1)

Subject to:

X

j

Xij D 18i (2)

X

j

EjXij � Bj8j (3)

Xij 2 f0; 1g (4)

where

i W Demolition
j W Warehouse site
tij W Travel time between i and j
Ei W Volume of equipment (explosives etc) needed for demolition i Bi W Capacity

of warehouse j

Xij D
(
1; if warehouse i is assigned to demolition j.

0; otherwise:

According to the objective function (Eq. (1)), total travel time between ware-
houses and demolition sites is minimized. Equation (2) ensures that each demolition
is assigned to one warehouse only while Eq. (3) ensures that warehouse capacity is
not exceeded.

The allocation of personnel to warehouses (second step model) is constrained by
the carrying capacity of each squad. The model can be formulated as follows:

min W D
X

mj

tmj � xmj (5)
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Subject to

X

j

xmj D 18m (6)

X

m

xmj � qm � Bj8j (7)

wij D
(
0; 8 i! j.

1; otherwise:
(8)

ymi � maxfwij � xmj gj8m; i (9)
X

i

ymi �Ei � qm8m (10)

X

i

ymi D 18i (11)

xmj 2 f0; 1g8m; j (12)

ymi 2 f0; 1g8m; i (13)

where

j W Warehouse site
m W Squad
i W Demolition site i
tmj : Travel time between m and j
qm: Quantity of equipment (explosives etc) that can be carried by a squad m
Bj : Quantity of equipment stored in warehouse j to be used for demolitions.
Ei : Quantity of equipment needed to detonate demolition i

xmj D
�
1; if squad m is assigned to warehouse j.
0; otherwise:

ymi D
�
1; if squad m is assigned to warehouse j.
0; otherwise:

Objective function (Eq. (5)) seeks to minimize total travel time between squads
and warehouses. Constraints in Eq. (6) indicate that a squad may be assigned to only
one warehouse, and constraints of Eq. (7) ensure that enough squads are assigned to
demolitions so that all equipment is carried. Constraints in Eq. (8) assign demoli-
tions to warehouses (according to the results of the previous model), constraints
in Eq. (9) make sure that squads are assigned to corresponding demolition sites
and warehouses, constraints in Eq. (10) ensure that each squad does not carry
more equipment than its capabilities and according to constraints in Eq. (11) each
demolition site is assigned to a single squad.
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Model for Hasty Demolitions

Depending upon tactical conditions, it may be necessary to create more obstacles
to invading forces by rapidly implementing and detonating additional (hasty)
demolitions. Squads are simultaneously dispatched, each one carrying equipment to
prepare and detonate a single demolition and return to camp. Therefore, assuming
a set ID i of potential demolitions to be implemented along a set of routes RD r ,
demolitions must be selected so that their effect is maximized in terms of estimated
time delays. The model may be formulated as follows:

max zn D
X

i

t ki xi (14)

Subject to

X

i

Ei � xi � Y (15)

X

i

Oi � xi � P (16)

maxftixig � T (17)

X

i

��
Ei

q

�
C 1

�
� xi � N (18)

xi 2 f0; 1g8i (19)

where

i W Demolition
tj : Estimated delay to the enemy caused by demolition i if implemented
Ei : Necessary quantity of explosives to implement demolition i
Y : Available quantity of explosives
Oi : Necessary personnel to implement demolition i
P : Available personnel
ti : Time to implement demolition i (includes loading/unloading of equipment,

transportation to demolition site, preparation, detonation and return).
T : Maximum time to complete all demolitions
q: Vehicle capacity
N : Available vehicles

xj D
(
1; if hasty demolition i is selected.

0; otherwise:
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Fig. 2 Example area for P/R demolitions model application

According to the objective function (Eq. (13)) the total time to complete all
demolitions must be minimized. Constraints in Eqs. (14) and (15) are equipment and
personnel availability constraints, constraint in Eq. (16) ensures that the maximum
time available to complete all actions is not exceeded and constraint in Eq. (17) is a
maximum vehicle constraint.

Application

In order to demonstrate the application of the models described previously, two
illustrative examples are presented.

Example for Deliberate Demolitions

Figure 2 shows a sketch of the testing area: the demolition sites are denoted by Ki

(i D 1; 2; 12), the warehouses by Wj and the camps by Cr (r D 1; 2).
Table 1 summarizes all the data needed to apply the models.
Additionally, seven squads are assigned to prepare and detonate the demolitions

(1–4 in camp C1 and 5–7 in camp C2), each one being able to carry explosives
of 5 m3. After solving the first step model (using a widely available solver such as
Microsoft Excel Solver), the results are shown in Table 2:

As expected, most demolitions are assigned to their closest warehouses which are
W4 and W5. The results after the second step model are shown in Tables 3 and 5:

By applying both models, squads are assigned to warehouses and corresponding
demolitions, so that travel times are minimized and constraints are met. Demolitions
assigned to the same warehouse are the responsibility of the same squad as long as
its carrying capabilities are not exceeded. Additionally, results show that squad 5
is not assigned to a demolition since more squads than necessary are available to
perform the operation (Table 4).
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Table 2 First step model results

K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 K11 K12

W1 X
W2 X X
W3 X X X
W4 X X X
W5 X X X

Table 3 Second step model
results—assignment of
personnel to warehouses

W1 W2 W3 W4 W5

C1 X
C2 X
C3 X
C4 X
C5 X
C6 X
C7 X

Table 4 Second step model results—assignment of personnel to
warehouses

1 2 3 4 5 6 7 8 9 10 11 12

C1 X
C2 X X
C3 X
C4 X X
C5
C6 X X X
C7 X X X

Table 5 Candidate hasty demolition data

Demolition ID Estimated delay (min) Time to implement (min) Explosives (m3) Personnel

1 40 25 2 4
2 32 38 1.5 3
3 25 95 1 2
4 40 35 2 4
5 35 62 2 3
6 22 47 1 2
7 49 77 2.5 5
8 55 48 3 5
9 35 25 4 3
10 74 39 3.5 5
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Table 6 Hasty demolitions
to be implemented

Demolition ID

1 YES
2 No
3 No
4 YES
5 No
6 No
7 No
8 YES
9 No
10 YES
11 YES
12 No
13 No
14 No
15 No
16 No
17 YES
18 YES
19 No
20 YES

Example for Hasty Demolitions

A set of 20 potential Rapid demolitions, some of which must be selected during
defence operations, is provided in Table 5:

The engineering unit has 40 men to dispatch along with 30 m3 of explosives
and 10 vehicles, each being able to carry 8 m3 of explosives (Table 6). Given
the prevailing tactical conditions, all Rapid demolitions must be completed within
60 min. By applying the model, the following demolitions must be implemented:

Out of the 20 potential demolitions, only 9 are selected for implementation with
a total gain of 420 min (value of the objective function).

Decision Support System for Hasty Demolitions

Decision support systems (DSS) can be valuable during military operations as they
can provide the right information at the right time and level of detail, while keeping
the user confident about their results [8] Goodman and Pohl [6] provide a general
framework for developing military logistics decision support systems and outline the
characteristics of such systems. Extensive reviews on DSS applications in military
operations can be found in Keefer et al. [7] and Tonfoni and Jain [9]. A simple
and effective DSS is presented, aimed at aiding decisions on performing Rapid
demolitions at the medium and lower command levels. The DSS is developed on
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Fig. 3 DSS main window

a Microsoft Excel and VBA platform and supported by the SOLVER application.
The objective is to have the hasty demolitions model incorporated in a user-friendly
tool based on a widespread software package. This way, the DSS can be used in a
personal computer or portable device during defensive operations, to select among
candidate demolitions to be implemented. Figure 3 shows the DSS main window:

The user should enter the following data and solve the model, using the SolverTM

module:

• the expected impact by detonating a single demolition in terms of time,
• the time to approach/clear the demolition site,
• the time to load/unload the equipment,
• the time to prepare and detonate the demolition,
• the necessary equipment and personnel to prepare and detonate each single

demolition,
• the available personnel and the number of vehicles,
• the available quantity of explosives and,
• the time window to complete the operation.

The output consists of the demolition sites that will be finally selected, to achieve
the largest impact under prevailing conditions. Given the typical size of the models
to be solved (up to 20 variables at most), the results are provided in a few seconds.
Figure 4 shows the DSS results window:

The medium and low-level commanders have an easy-to-use tool that can
quickly assist in deciding upon performing hasty demolitions through the previously
described optimization process.
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Fig. 4 DSS results window

Conclusions

Military logistics are an area where operational models have traditionally been
implemented. In this paper, efficient models are developed for planning defen-
sive operations in the tactical level. Specifically, models for planning obstacle
emplacement operations are presented. These models can be solved using popular
software packages and provide insights and aid in planning the logistics of defensive
procedures. Moreover, a simple yet effective DSS was presented to incorporate such
models as well as support command decisions during operations.
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Satellite Telecommunications in the Military:
Advantages, Limitations and the Networking
Challenge

Georgios Katsoulis

Abstract This paper analyzes the impact and benefits resulting from using modern
satellite telecommunications in the military. During the last two decades, satellite
telecommunications have been considered as the most significant and prioritized
tool of information superiority in any operational theatre.
As it will be explained, their extensive use encompasses not only the traditional
strategic military telecommunications but tactical networks as well. However, their
effective and efficient use necessitates the proper evaluation of their capabilities
and their limitations. Starting with a brief historical reference, we proceed by
considering their advantages, together with modern modulation and networking
technologies used to limit their drawbacks.
Finally, it will be shown that the most effective approach to exploit their capabilities
is to include in a common network architecture all available means of wideband
telecommunications, terrestrial and wireless. The idea can be further applied to pro-
vide high performance connectivity for a networked sensors C4ISR infrastructure.

Introduction

During the last 20 years, satellite telecommunications have been recognized as
the most significant and prioritized tool of information superiority in any oper-
ational theatre, by continuously supplying information services to all military
users, irrespective of their position, movement, weather and climate conditions [3].
To accomplish his mission, every military commander needs effective means of
exercising command and control. Command is concerned with the distribution of
force, e.g., the allocation of combat power, while control is concerned with properly
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executing the decisions that have been made. Both command and control necessitate
the capability of gathering, processing, analyzing and disseminating a vast amount
of information, data and orders. This is where the satellite provides the best high
bandwidth-high data rate means of achieving information transmission among a
vast number of headquarters, decision makers, fast-moving vehicles and units of the
various armed forces. Initially used for strategic telecommunication purposes, the
satellite is more and more exploited on mobile networks for tactical use. This is also
the case during a two-sided coastal campaign, where HF-VHF-UHF telecommuni-
cations can be easily intercepted, vessels, vehicles and aircraft can be located and
indications about operational modes, units advancing or deploying and intentions
can be deduced. However, the extensive and sometimes exclusive application of
satellite telecommunications to achieve this goal has almost completely replaced to
the mind of both the tacticians and operational planners, the term “bandwidth” by
the term “satellite.” This is why for every telecommunications operational tasking,
the need for a satellite is first coming into mind, while in fact the need should refer
to the availability of a high bandwidth telecommunications medium. This approach
fails to recognize that a thorough evaluation of both satellite telecommunication
capabilities and limitations should be considered, before deciding what data network
infrastructure best fits our telecommunication needs in both strategic and tactical
levels.

Satellite Technology in General

The space adventure of satellite communications started back in 1957 with the
former USSR launch of SPUTNIK I. This operation verified the idea of Arthur C.
Clarke that a satellite can virtually remain over the same spot on the earth’s surface,
if it executes a 36,000 km radius equatorial orbit.
Historically, the first satellites like ECHO and WESTFORD acted as communica-
tion relays by reflecting incoming signals [5]. The TELSTAR 1 and 2 satellites,
launched by NASA for AT&T Bell Laboratories in 1962 and 1963 respectively,
were the first active wideband communications satellites. The first satellites were
operating on C-Band and first programs were exclusively military, with next
generations including commercial applications. The technology of the 1970s and the
rapid cost reduction of satellite equipment, allowed the shift from a single-country
to regional satellite communications. The 1990s introduced the move to higher RF
frequencies and the implementation of advanced techniques like on-board digital
signal processing. The new millennium has seen extensive video and audio services,
together with low orbit satellites and internetworking capabilities, converting the
satellite to a network node in the sky. In satellite telecommunications, the satellite
functions as a relay that joins users located in great distances among them. The next
table explains four different categories of satellites, concerning their distance from
the earth and their orbit characteristics.
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Orbit Type Altitude Delay Remarks

Geosynchronous
Orbit (GSO)

Circular 35,000 km 250 ms Since the satellite is at a
fixed position in the
sky, the ground
antenna does not need
to track it

Medium Earth
Orbit (MEO)

Circular 1,600–4,200 km 100 ms Satellite tracking needed.
Popular for GPS
navigation satellites

Low Earth Orbit
(LEO)

Circular 160–640 km 10 ms Satellite tracking needed

High Earth Orbit
(HEO)

Elliptical From LEO to MEO 10–260 ms Used for coverage of
high-altitude locations

One revolution’s period is a function of the altitude and varies between 100 min
for the case of the low orbit satellites and 24 h at the distance of 35,786 km.

Advantages of Satellite Communications

Geographical Coverage

Satellite communication links provide coverage over extended geographical areas
(Fig. 1). For a geo-stationary satellite to achieve maximum possible earth coverage,
a 17.5 degrees antenna beamwidth is necessary. For the case of a parabolic antenna
reflector, the 3-dB antenna beamwidth is given by [4]:

� D 70 � �
d

D 70 � C
f � d (1)

where C is the speed of light, � the wavelength of the transmitted signal, f
its frequency and d the parabolic dish diameter. Substituting we get that for a
transmission frequency of 12GHz, a 10cm dish diameter is enough to achieve
maximum possible earth coverage. This property is extensively exploited by media
companies that can reach millions of users by using a single satellite transponder.

Remote Areas and the Open Sea Reach

Moreover, satellite telecommunication can reach anybody anywhere on earth [3].
Consider that other popular broadband telecommunication means such as optical
fibers or cellular networks, still keep low density population areas, remote rural or
mountain areas and the open sea out of their reach. However, these areas constitute
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Fig. 1 Hellas satellite footprint

the common operational territory of the armed forces. This is why, for the users
operating in these areas, satellite communication is the exclusive solution. Among
all the cases mentioned above, satellite communication has been operationally
proved to be the most effective means of providing network access in maritime
environments.

High Capacity Traffic

The frequency bands used in satellite transmissions facilitate the achievement of
high data rates, which can accommodate the data transfer needs of even the most
demanding battlefield. This capacity also pairs with the perfect signal quality,
inherent in satellite telecommunication, to guarantee to the operational commander,
multiple channels of very high capacity traffic potential.
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Communication Cost Independent of Distance

The capability of satellite communication to reach anybody anywhere is combined
with the advantage that the communication cost is independent of the connection
distance. This is not the case of either optical fiber or cellular telecommunication,
where more infrastructure is needed to reach remote users. This fact drastically
increases their deployment cost. For satellite communication, this cost is irrelevant.

Excellent Signal Quality

The distance from the satellite to the earth being high, however, the signal
propagation path is almost vertical from the satellite antenna to the earth’s surface.
The vertical travelling through the atmosphere, especially through the ionosphere,
which is responsible for considerable losses and attenuations to electromagnetic
emissions, permits an excellent signal quality for satellite channel subscribers.

Suitability for Multi and Broadcast Services

The combination of a satellite’s footprint which provides extended area coverage
together with its information carrying capacity, make it suitable for multi and
broadcast services, such as audio, video and internet, transmitted simultaneously
to a large number of users.

Satellite Communications’ Limitations

Geographical Coverage

The extended geographical coverage of satellite communications that was previ-
ously recognized as a great advantage for media transmissions, however, constitutes
a considerable drawback for military communications. This is due to the fact that
the military user would prefer a more directive transmission to friendly users,
while leaving out of reach the third-party observers. This is impossible for the
satellite downlink transmission. Thus, the interception and monitoring of the overall
downlink transmission activity is very easy. This is why satellite communication
is equipped with advanced modulation, coding and cyphering techniques, to avoid
interception and jamming of friendly transmissions [1].
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Latency

Satellite transmission is responsible for considerable latencies, which are very
unpleasant to network communications. Latency is defined as the amount of delay,
measured in milliseconds, which occurs in a round-trip data transmission. For geo-
stationary satellites, the time required to traverse the distance from the satellite to
the earth station, is in the order of 250ms. This is equivalent to a round-trip delay of
2 � 250 D 500ms [5].
These propagation times are much more considerable than those encountered in
terrestrial systems. This latency is responsible for the resulting echo on telephone
circuits. It is also the cause of a number of problems in networking applications,
such as buffer overflows, high queuing delays and significant packet drops. Low
earth orbit satellites and advanced networking solutions constitute one way to
mitigate the latency problem.

Fading

While the transmission signal path is almost vertical through the ionosphere,
travelling through this area is not completely free of problems. The ionosphere
cannot damage the satellite signal by refracting, reflecting or absorbing it, but it
induces considerable time and phase delays. The result is that the receiver on earth
not only receives the proper satellite signal, but also delayed and out of phase
versions of it. This phenomenon is known as multipath fading. Again, advanced
modulation techniques and Forward Error Correction Coding can be used to limit
the effects of fading.

Security of Infrastructure

For a satellite communication network to operate, several earth stations are neces-
sary. First of all, we need the Tracking, Telemetry and Command Stations (TT&C).
We also need a satellite control center, where all decisions related to the maintenance
of the satellite in operational condition are made and where all vital functions of the
satellite are monitored and verified. If those stations are for any reason neutralized,
e.g., from any physical damage or enemy action, the entire communication is gone.
This is why these stations are highly protected. Neighboring nations should also
consider other alternatives, such as maintaining mobile stations’ capabilities or even
emergency installations abroad to allied countries.
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Fig. 2 While jamming the downlink user’s reception requires operating into the narrow
beamwidth of the receiver’s antenna, jamming the uplink satellite reception can be easily
implemented by using a high intensity signal in conjunction with a high directivity antenna. The
jammer’s uplink transmission will thus saturate all available satellite’s resources, denying the
friendly communications

Transponder Transparency and Anti-Jamming Capabilities

The most common satellite transponder is called a transparent transponder. This
kind of transponder merely acts like a focal communications point that receives the
uplink transmission at a certain frequency, amplifies it and then translates it to the
downlink transmission frequency. This simple structure can permit a third-party user
to just transmit a powerful signal over the uplink frequency towards the satellite
and completely saturate the satellite resources, thus denying the communication
to the friendly users. This condition can be avoided if the satellite possesses
transponders with on-board processing capabilities that properly filter the uplink
transmissions by recognizing the friendly signals and rejecting all the others. These
transponders perform a series of operations including digital signal processing
(DSP), regeneration and base band signal processing [1] (Fig. 2).
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Space Segment Cost

Space segment cost is the major cause of a large initial financial investment to be
equipped with satellite communications. Many countries have been focusing their
attention to cooperation with other allied partners, in order to share costs, experience
and technical knowledge on the subject.

Attenuation Due to Rain

The frequency bands above 20GHz, not only can fulfill the most demanding high
data rare requirements, but also have other advantages like the reduced interference
potential and the reduced equipment size. However, the frequencies beyond the Ka
Band are vulnerable to rain attenuation, a condition especially critical in several
parts of the world.

Ways to Enhance Performance

Common Modulation Techniques

Satellite communications are being used for the transmission of both analog
and digital signals. However, modern technology focuses almost entirely on the
transmission of digital signals by the use of digital modulation techniques. This also
accounts for the case of analog signals, which are first converted to digital and then
transmitted using digital modulation techniques. For this reason we generally refer
to data modulation, since any digital signal, audio, video, still image etc. is merely
a collection of digital data. So, the usual choice of modulation used in satellite
communication is either BPSK (Binary Phase Shift Keying) or QPSK (Quadrature
Phase Shift Keying). This kind of modulation is chosen for two reasons. First, due
to its robustness since the most common interference is amplitude interference that
does not affect the phase modulation. Second, because this modulation technique
provides an excellent spectral efficiency, e.g. a perfect management of the available
bandwidth resources.

Both BPSK and QPSK are general cases of M-PSK modulation, where
M D 2k . M represents the number of different symbols-signal waveforms that can
be transmitted and k represents the number of bits per symbol. The transmission
signal of the i th bit is given by [6]:

s.t/ D p2 � Ac � cos.2�fct C �d .t// (2)
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where �d .t/ represents the data. For the BPSK case, M D 2; k D 1, so each
transmitted symbol represents one bit and �d .t/ can assume two possible values,
�1 D 0 representing bit “1” and �2 D � representing bit “0.” For these choices, the
transmitted signal may also be represented by:

s.t/ D d.t/ �p2 � Ac � cos.2�fct/ (3)

where d.t/ D ˙1. For the QPSK case, M D 4; k D 2, so each transmitted symbol
represents two bits, one transmitted by the in-phase component of the carrier and the
other by the quadrature component of the carrier. For QPSK, we generally choose
the four possible transmitted phases �d .t/ representing the symbols �1 D �

4
; �2 D

3�
4
; �3 D ��4 ; �4 D � 3�4 . Consequently,

sQPSK.t/ D si .t/C sq.t/ D
p
2 � Ac � Œcos.�m/ cos.2�fct/ � sin.�m/ sin.2�fct/�

(4)
That gives:

p
2 � Ac � Œdi .t/ cos.2�fct/ � dq.t/ sin.2�fct/� (5)

where di .t/ D ˙1; dq.t/ D ˙1 during each symbol interval and represent the
data bits transmitted on the in-phase and the quadrature components of the carrier
respectively. For a fixed bit rate, QPSK requires half the transmission bandwidth
of BPSK. Conversely, for the same transmission bandwidth, a QPSK system can
transmit twice as many bits per unit time as a BPSK system. For this reason, QPSK
is often preferred to BPSK.

Advanced Modulation Techniques

Direct Sequence Spread Spectrum (DS-SS) Modulation

The power spectral density of a BPSK signal as in (2) is given by [6]:

SBPSK.f / D A2cTb

2
� fsinc2ŒTb � .f � fc/�C sinc2ŒTb � .f C fc/�g (6)

The null-to-null bandwidth of this signal is equal to Bnn D 2Rb . We now define the
waveform c.t/ D ˙1, called the chipping signal, to be a polar random binary wave
like d(t), with the only difference that now the duration between possible transitions
is Tc < Tb . In fact Tb D k � Tc , meaning that there are k chips per bit. Assuming
that the chipping signal c.t/ is synchronized with d.t/, the direct sequence spread
spectrum signal is generated by multiplying c.t/ with (3) to get:

s.t/ D c.t/ � d.t/ �p2 � Ac � cos.2�fct/ (7)
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Fig. 3 One-sided PSD of a simple BPSK (Blue) and a DS-BPSK (Red) signal. Both curves have
the same area but the DS-BPSK curve is spread in frequency by a factor of k. For plotting purposes,
k D 10 was used, e.g. Tb D 10 � Tc . For k much greater than 1, the spreading effect is so high
that the signal is understood as white noise by the third-party observer

Since the signals c.t/ and d.t/ are synchronized, their multiplication results in a
new signal c0.t/ D c.t/ � d.t/, which is just another polar random binary wave
with duration between possible transitions equal to Tc . The power spectral density
of this new signal is identical to (6), with the exception that Tb is replaced by Tc .

SDS�BPSK.f / D A2cTc

2
� fsinc2ŒTc � .f � fc/�C sinc2ŒTc � .f C fc/�g (8)

So, the overall magnitude of the power spectral density of the DS-SS signal is
a factor of k less than that of the original BPSK signal, while its transmission
bandwidth is a factor of k greater. If k is much greater than 1, we get a DS-SS signal
with a power spectral density of such a small magnitude that it is extremely difficult
for a hostile observer to even detect its presence. The receiver possesses and locally
reproduces the same chipping sequence c.t/ that was used to spread the transmitted
signal (Fig. 4, below). After synchronizing the received DS-SS signal (7) with c.t/,
it multiplies it by c.t/ to get:

c2.t/ � b.t/ �p2 � Ac � cos.2�fct/

D .˙1/2 � b.t/ � cos.2�fct/

D b.t/ �p2 � Ac � cos.2�fct/ (9)
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Fig. 4 Multiplication at the receiver by the chipping sequence c.t/, despreads the communication
signal while simultaneously spreading a potential jamming signal

Frequency Hopping Modulation

The main idea of frequency-hopping spread spectrum communications is to provide
protection against hostile jamming by increasing the bandwidth that the information
signal occupies much more than the minimum required for proper signal transmis-
sion. By technically increasing the overall operational frequency range, we force
the jammer to spread its power resources over a wider frequency band, and thus be
less effective compared to a “per-frequency” signal corruption jamming capability
point of view. For this purpose, the signal prior to be transmitted is multiplied
by an intermediate frequency, which is selected pseudo-randomly by a frequency
synthesizer. The frequency selection is performed by the use of a pseudo-noise (PN)
generator that feeds the frequency synthesizer with a 2l -length sequence word. The
intermediate frequency is of the form:

fi D f1 C .i � 1/ ��ffh; i D 1; 2; : : : N (10)

Where N D 2l � 1 is the maximum number of possible frequency hop bins, �ffh

is the separation between the carrier frequencies of adjacent bins and i changes
pseudo-randomly every Tc seconds. This time is equal to the period that the hopping
signal dwells on each particular hop bin. This parameter and its reciprocal Rc D 1

Tc
,

the frequency hopping rate, is very important. The goal is to make the frequency-
hopping rate as fast as possible, to deny the enemy the capability to locate the
friendly emitter. By applying this technique, the entire spectrum of the transmitted
signal is shifted from the initial carrier frequency fc to the new carrier frequencies:

fci D fc C .i � 1/ ��ffh (11)
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over a hopping bandwidth Wss. So the instantaneous frequency of the transmitted
signal is changed periodically according to the particular frequency selection that
the PN-generator dictates to the frequency synthesizer. This change of frequency
is periodic, a necessary condition for the receiver to be able to synchronously
reproduce it and effectively demodulate the received FH signal. However, the
meaning of pseudo-randomness is that the PN sequence selected is used as a
keyword, only known by the transmitter and the receiver and very difficult to be
reproduced by a third-party observer without prior knowledge of the PN-generator
coding structure. So, unless the third-party observer could guess in some way
the PN-sequence, the transmitted waveform is very difficult to jam. The only
possible solution would be the availability of a repeat-back jammer. These devices
effectively intercept and record each transmitted frequency and then try to jam the
communicator’s signal for the short time period it dwells on a particular transmitted
frequency. The solution for the communicator’s side is to drastically reduce the
dwelling time Tc and use an increased frequency hopping bandwidth Wss.

Error Correction Coding Techniques

The idea is to use a coding mechanism in order to provide automatic error detection
and correction capabilities. To implement it, redundant data is added to each portion
of the message data, in such a way that the new encoded data sequence provided
can sustain one or more bits being corrupted, by still providing the correct data
sequence at the receiver’s side. More precisely, for a .n; k/ code, every k-length
data bit sequence is mapped to a n-length .n > k/ coded bit sequence, by adding
n�k redundant bits. The new coded bit sequence provided is algebraically related to
the message bit sequence by the use of an encoding mechanism. That way, we accept
to sacrifice somehow the data rate, with the benefit of increasing the robustness of
the transmission and the message’s sustainability against the errors resulting from
the transmission channel interference. This technique is effective against any noise
source, including the action of an enemy jammer. The more effective the code,
the more redundancy is needed concerning the data bits added, with the drawback
of further reducing the data rate. The most commonly used coding technique is
named linear block coding. To give an idea of how the encoding mechanism is
implemented, consider a simple .n; k/ D .7; 4/ linear block coding example,
described by the following modulo-2 table multiplication:

w D u � G (12)

Figure 5 explains how the coded sequences are derived.
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Fig. 5 Seven-length coded sequences generated out of the four-length data sequences using the
generator matrix G

Fig. 6 Typical TDMA configuration

Multiple Access Techniques

Multiple access schemes refer to the support of a multitude of users over the
same transmission bandwidth, to transmit their signals without interfering with one
another [5]. The classic approach for civil telecommunications is Time Division
Multiple Access (TDMA), which effectively provides very good bandwidth man-
agement. For military communications, the technique of Code Division Multiple
Access (CDMA) is extensively applied, also providing Low Probability of Detection
(LPD) and Low Probability of Intercept (LPI) characteristics. This technique is
further divided into two different types, Frequency-Hopped CDMA (FH-CDMA)
and Direct Sequence CDMA (DS-CDMA) (Fig. 6).
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Time-Division Multiple Access

In TDMA, each user’s transmission occupies the full available transmission band-
width, but for a particular time slot. The transmission time is segmented into
successive intervals called frames. Each frame is further partitioned into time slots
(Fig. 5). The simplest TDMA scheme is called fixed-assignment TDMA. M slots
constitute a frame and each frame is assigned exclusively to each transmitting user,
as it is shown in Fig. 6. A fixed assigned TDMA scheme becomes ineffective if one
or more users have no data to transmit. In that case, the corresponding transmission
slots are wasted. More efficient schemes provide dynamic allocation of slots to
users, as a function of their current needs, rather than a fixed slot assignment.

Direct Sequence Code Division Multiple Access

The chipping signal c.t/ that is used in direct sequence spread spectrum modulation
in both the transmitter and receiver is generated from a kind of sequence named
pseudo-noise (PN) sequences. PN sequences display the property that their correla-
tion integral for a sequence’s period N � Ts (where N is the number of chips that
the chipping sequence contains), is equal to zero, for all different sequences. That is,
if we denote by c1.t/; c2.t/; : : : cM .t/, the orthogonal sequences attributed to users
1; 2; : : :M respectively, the following integral is identically zero over one symbol’s
duration [6]:

Z NTs

0

ci .t/cj .t/dt D 0; for every i ¤ j (13)

For instance, consider the sequences appearing below which display this property.
Those sequences are periodic, since both the transmitter and the receiver must
generate them for a spread spectrum system to work. However, their characteristics
are much like those of a true random binary sequence (Fig. 7). We now consider
that each group of users is assigned a different chipping sequence code, ci .t/; i D
1; 2; : : : N for N users, generated by the corresponding PN code. As described in
the DS-SS paragraph, the first stage of a DS receiver multiplies the incoming signal
by the chipping sequence ci .t/. This operation dispreads the intended transmission,
while operating a correlation-equivalent process to all other transmissions and
rejecting it. This again permits an almost perfect co-existence of different groups
of users over the same transmission bandwidth. In FH-CDMA, many different
users can hop over the hopping bandwidth Wss, with the orthogonality of the
used PN-sequences guaranteeing that no two users simultaneously transmit on
the same frequency hop bin. This condition can be achieved by exploiting the
orthogonality properties of the PN sequences. The effect of feeding each group of
users frequency synthesizer with its own PN sequence, guarantees that independent
hopping successions can co-exist on the same hopping bandwidth. This technique is
effective both as a multiple access and anti-jamming technique, since any interceptor
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Fig. 7 A simple example of orthogonal PN sequences

would observe the majority of the hopping bandwidth Wss occupied, without being
able to attribute a particular emission to a particular hopping network. Figure 8
illustrates a simple example of complete hopping bandwidth coverage, executed by
the simultaneous hopping of four different hopping groups of users to four available
frequency hop bins:
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Fig. 8 Complete bandwidth coverage by a FH-CDMA multiple access scheme, consisting of four
different groups of hopping users to four available frequency hop bins

On-Board Processing

A satellite without on-board processing capabilities cannot perform signal amplifi-
cation and frequency translation. On-board processing adds a lot not only in terms
of efficient management of satellite resources, but also in terms of providing anti-
jamming capabilities to the uplink reception. One case of on-board processing is the
regenerative transponder. This technology provides complete separation of uplink
and downlink transmissions, which in turn increases the bit error rate performance.
The uplink transmission is received, the channel interference is removed and this
enhanced signal version is further sifted to the downlink channel. This operation
prevents the direct addition of uplink noise to the downlink noise. Further on, if
spread spectrum modulation techniques are applied, the on-board processor can be
equipped with a receiver-like dispreading mechanism, which dispreads the uplink
transmission before regenerating it and retransmitting it toward the downlink chan-
nel. The dispreading function also limits the impact of a potential noise jamming
transmission. Moreover, the overall network efficiency is drastically improved if on-
board processing includes routing capabilities. In that case, the satellite on-board
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Fig. 9 Part (a) displays the configuration of a transparent satellite transponder. Part (b) refers to a
satellite with full on-board processing capabilities

router acts as an IP-compliant space-based asset, which transforms the satellite
into a network node in the sky [2, 3]. This technology can be further applied in
inter-satellite links. On-board switching can also be used in conjunction with spot
beams. With this technique, different uplink channels are switched on-board to
their destination earth stations through the proper spot beams. More agile beams
can also be provided on demand and adjusted by an operator, if an on-board
processing mechanism possesses the capability to modify the beam’s width and
channel capacity (Fig. 9).

Spot Beams and Frequency Reuse

Using the spot beams approach, the directivity of the transmitting and receiving
antennas is drastically increased, to the extent that the antenna beamwidth is to the
order of 0.4 degrees. Each satellite is equipped with many such beams. Several
antenna beams provide coverage over different service zones, thus effectively
splitting the earth’s surface to multiple coverage areas of relatively small space,
compared to the satellite’s footprint resulting by the use of traditional antennas. This
technique also permits to reuse the same transmission frequency in different spot
beams. This capability constitutes a bandwidth efficient method, since the network’s
total capacity is increased without sacrificing the available bandwidth resources.
On-board switching can also be used in conjunction with spot beams. With this
technique, different channels can be transmitted simultaneously to the satellite and
further switched on-board to their destination earth stations through the proper spot
beams. Other efficient beamforming techniques can also be used to dynamically
change the transponders’ earth coverage, like the phased array antenna technology.
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Networking Solutions

One commonly accepted method to integrate and combine the capabilities of
different networks, terrestrial and wireless, is to construct an IP-based network.
The convergence of the Internet and telecommunications, enables an IP network
to fulfill the transmission requirements of any service or application, extending
from voice-over-IP (VoIP), video conference over IP and broadcasting over IP,
to any real-time multimedia and multicast application. IP routers can be used to
interconnect networks with heterogeneous characteristics. The IP packets circulate
across different types of networks with their IP format remaining unchanged. By
this technique, the IP layer effectively hides the differences among networks and
routes the proper information to the right user. For this approach to work, all user
terminals should use the IP protocol. This IP transparency enables it to be applied
over existing network protocols, to interconnect network technologies such as PPP
dialup, ATM and DVB-S/DBV-RCS, which support Internet protocols or interwork
with the Internet. One commonly used technique to achieve IP compatibility over
different networks, is the IP packet encapsulation. At each protocol level of the OSI
model, a packet is divided into its header and payload parts. Given that different
network technologies use different frame formats, frame sizes and bit rates for
transporting IP packets, the encapsulation technique arranges that the whole packet
of each protocol, becomes the payload part of the next layer’s down protocol, as
explained in Fig. 10.

Future Perspectives

Networked Sensors and Telecommunications Infrastructure

Today, operational effectiveness is based on rapid and accurate situational awareness
obtained by properly collecting and processing real-time information. This is where
the idea of a networked battlespace comes from, assuming fully extended surveil-
lance, command and control capabilities, based on a common systems architecture.
For this purpose, network-centric technology interconnects all available sensors,
based on land or aboard vehicles, manned or unmanned, together with weapons
and decision makers. From a telecommunications viewpoint, this interconnection
treats every command and control, sensor and/or weapons platform, as a poten-
tially interactive network node. In military terms, this approach is equivalent to
a C4ISR system, which constitutes the connective material that unifies sensors
and telecommunications into a common infrastructure, providing the operational
commander with unprecedented capabilities of operational effectiveness. However,
the integration of so many sensors, fixed or on land, airborne and seaborne vehicles,
creates a huge telecommunications traffic flow, which demands extensive bandwidth
resources. Moreover, the integration of so many platforms and users increases
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Fig. 10 Part (a) explains how each OSI layer adds its own overhead to the original data. Part (b)
explains the encapsulation technique

the telecommunications security and reliability requirements. To handle this infor-
mation volume, the telecommunications network architecture must combine all
available high bandwidth telecommunications means, such as fiber optics terrestrial
network, cellular networks and of course satellites [7]. Very efficient network
protocols are also necessary to interconnect nodes belonging to heterogeneous
networks.

A Modern Satellite Telecommunications Network

A modern design paradigm that implements the idea of the last paragraph would
refer to a satellite equipped with multiple spot beams [1] that split the earth’s surface
coverage into several sectors. In order to effectively manage the limited available
frequency spectrum, the satellite on-board signal processor supports frequency-
band reuse among the beams and also flexibility in bandwidth and transmission
power allocated to each user. Moreover, different areas are covered by different
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Fig. 11 A modern satellite network

service types that require different data rates and bandwidths. On-board switching
permits to avoid duplication of transmission to different sectors by efficiently
routing information among users. Data integrity is protected against channel losses
or jammer action by the use of error correction coding techniques. Modern
modulation techniques such as spread spectrum modulation provide both LPD and
LPI capabilities to the transmitted signals, while also rejecting jammer signals
on-board the satellite by the intervention of the on-board digital signal processor.
The satellite is used to implement an IP-based network, which can provide direct
connections among user terminals, connections for terminals to access terrestrial
networks, and connections between terrestrial networks, fiber-optic or cellular. The
proper fusion of heterogeneous networks into a common infrastructure combines
the advantages of each particular network, while hiding their drawbacks (Fig. 11).

Conclusion

The telecommunications satellite is the only platform to achieve fixed and mobile
users global connectivity, by overcoming distance and geographical barriers. Mod-
ern satellite technology is highly capable of implementing network-based defense
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telecommunication architecture, to link decision-making, information systems and
weapon systems, into a single operational infrastructure. While the bandwidth and
mobility demands of the military commander are constantly being increased, the
satellite is the logical option to provide greater bandwidth with global coverage
beyond the reach of civil terrestrial networks and far away to the open seas.
However, the perfect exploitation of satellite communication benefits is achieved
through a combined infrastructure that suitably integrates and internetworks all
available means of broadband telecommunications and respective protocols, ter-
restrial and wireless, such as fiber optics networks and cellular networks. The
idea is to strategically identify and construct satellite and/or terrestrial flexible
telecommunications and sensor network relay-nodes to internetwork the entire
extent of the battlefield.
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Stabilisation and Tracking for Swarm-Based
UAV Missions Subject to Time-Delay

Georgios P. Kladis

Abstract It is well known that time-delay is often inherent in dynamic systems,
which can be an important source of instability and degradation in the control
performance. In particular, when safety is concerned for Unmanned Aerial Vehicle
(UAV) applications, neglecting the presence of time-delay in the measurable states
may jeopardise or result in catastrophic failures for operations. In this letter
sufficient conditions for the existence of fuzzy state feedback gain are proposed for
the stabilisation/tracking problem of swarm-based UAV missions subject to time-
delays. The nonlinear model of the dynamics are represented by Takagi-Sugeno
(TS) fuzzy models which offer a systematic analysis for stabilisation/tracking
problems. Through a special property motivated by the Razumikhin theorem it
allows the design of the distributed control law to be performed using tools from
Lyapunov theory. The control law is composed of both node and network-level
information. The design follows a two-step procedure. Firstly feedback gains are
synthesised for the isolated UAVs ignoring interconnections among UAVs. The
resulting common Lyapunov matrix is utilised at network level, to incorporate
into the control law the relative differences in the states of the agents, to induce
cooperative behaviour. Eventually stability is guaranteed for the entire swarm. The
corresponding design criteria, proposed, are posed as Linear Matrix Inequalities
(LMIs) where performance for the entire swarm is also stressed. The benefits of this
analysis is that the design of the controller is decoupled from the size and topology
of the network, and it allows a convenient choice of feedback gains for the term that
is based on the relative state information. An illustrative example based on a UAV
tracking scenario is included to outline the potential of the analysis.
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Introduction

Large-scale multi-agent systems can be represented accurately by nonlinear models
in a large domain of operation. However, this coupled with the dimensionality of
the network means the task of designing a control law may be a far from trivial task.
Most of the existing work in cooperative control has focused on the interconnection
of systems with linear dynamics. For example, consensus was examined for multi-
agent systems with general linear dynamics in [16, 20]. In [18, 23] consensus for
agents with single/double or higher integrator dynamics were studied. In reference
[6] the authors focused on the stabilisation of a network of identical agents with
linear dynamics. Unlike the previous methodologies which consider first or higher
order linear models for the vehicles’ motion, in this work, a nonlinear representation
of the dynamics of a group of UAV systems with constraints on angular and linear
velocity is investigated.

In particular, motivated by work in [17] where the global stabilisation of a
complex network of agents is considered by applying local decentralised output
feedback control law, reference [13] developed a distributed control law for
nonlinear systems based on a two-step procedure. This allowed a decoupled design
procedure at both node and network level and offered a systematic analysis for
stabilisation/tracking problems in a reasonably large class of networks of nonlinear
systems represented in the Takagi-Sugeno (TS) framework [24]. The work in [13]
was extended for a more general case of nonlinear systems with a focus on tracking
for a swarm of UAVs, in [14]. However, if a delay perturbation is applied to
the closed loop system used in article [14] it can be easily shown that the entire
swarm leads to instability. Delay, which is often inherent in engineering processes,
may compromise stability or lead to poor performance for the entire process. In
particular, for the UAV application, neglecting its effect whilst designing a control
law for tracking purposes may jeopardise swarm-based missions or even lead to
catastrophic failures. In the literature the stabilisation problem of delayed systems
has been dealt with a number of different ways. For example, in reference [22]
stability is guaranteed for any value of the time-delays while authors in [7] suggest a
stabilisation procedure with a maximum bound on time-delay. For retarded TS fuzzy
models, conditions to guarantee stability for the entire system were investigated by
authors in works [3, 25–27, 30], and references therein.

Thus both steps of the analysis illustrated in [14] need to be modified in order to
accommodate the delay perturbation. In this letter such a modification is suggested
to deal with retarded systems. This is possible, through a special property motivated
by the Razumikhin theorem which allows the design of the distributed control
law to be performed using tools from Lyapunov theory. Due to the structure of
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the TS model, which is a fuzzy blending of linear local models, this allows a
systematic analysis for proving stability, in a Lyapunov sense, of a general class
of nonlinear systems. Interesting work that addresses the design aspects for Takagi-
Sugeno controllers exists in the literature: see for example, [25].

In this work, the model under investigation is the error dynamics of the UAV
as developed in references [15] and [12]. Following the design procedure in [13]
and [14], at the first step, the delayed error dynamics of the UAV system are
isolated, and a node level control law is designed ignoring interconnections. The
node level control law utilises a Parallel Distributed Compensation (PDC) structure
as suggested in [29] and the feedback gains are synthesised, subject to certain design
criteria posed as Linear Matrix Inequalities (LMIs). Subsequently in the second step,
now including dependencies among the delayed UAVs, a distributed control law is
introduced and it is shown that stability is guaranteed for the entire swarm under
delay perturbation.

The novelty of this work is that it proposes a methodology for the analysis of
a delayed network of nonlinear systems. An intermittent step (the creation of an
equivalent TS representation form) allows a decoupled structure of the network into
node level dynamics to be exploited. This structure facilitates a systematic analysis
using Lyapunov theory for stabilisation/tracking. Eventually it is shown that the
resulting common Lyapunov matrix, arising from node level analysis, can be used
to create a Lyapunov function for the network level.

The benefit of the proposed approach is that the analysis and design is performed
at node level, thus the problem of stabilisation/tracking is decoupled from the
network’s scale, topology, and complexity. Also the methodology can be applied
to a reasonably large class of nonlinear systems.

The remainder of the paper is structured as follows: in section “Preliminaries”
the graph theory tools which are used, and their relevance to a network of systems is
presented. In section “UAV Model and the Takagi-Sugeno Model Representation”
the Takagi-Sugeno model is described for a general network of nonlinear multi-
agent systems subject to delay perturbation. Thereafter in section “Swarm Tracking
and Control Law Description Subject to Time-Delay” the architecture of the
controller and the LMI conditions to stabilise the system at node and network
level are described. A swarm-based UAV tracking example is included in section
“Simulation example” demonstrating the proposed analysis. In section “Conclu-
sions” concluding remarks are stated.

Preliminaries

Graph Theory

In this section the graph theory preliminaries for the multi-agent systems application
are stated. Adopting the notation in [19], a graph G is an ordered pair .V;E/,
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where V is the set of nodes .V D f1; : : : N g/ and E is the set of edges, .E D
fc1; : : : ; clg/, which represent every feasible connection among a pair of nodes. In
this work a node coincides with a UAV within the swarm, and the set E denotes
the communication links between UAVs i and j . A network topology G can be
represented in the form of the adjacency matrix A.G/ D Œ˛ij � 2 R

N�N and satisfies:

˛ij D
�
1; 8.i; j / 2 E and i ¤ j
0; otherwise

(1)

The degree D.G/ D Œdij � 2 R
N�N of a graph is a diagonal matrix such that dii DPN

iD1 ˛ij and dij D 0; 8i ¤ j . The Laplacian of a graph L.G/ D Œ`ij � 2 R
N�N is

defined by:

L.G/ D D.G/ � A.G/ D Œ`ij � D

8
<̂

:̂

NX

jD1
˛ij ; i D j

�˛ij ; i ¤ j
(2)

According to [19], for undirected graphs (i.e. ˛ij D ˛ji ) the Laplacian matrix
is symmetric, positive semi-definite and satisfies

PN
jD1 `ij D 0; 8i 2 V . The

Laplacian matrix is important for the swarm-based application, since it can reveal
whether or not stabilisation/tracking or consensus can be reached by the swarm of
UAVs. This depends on their communication topology, which is assumed bidirec-
tional static in this article. For instance, consensus can be guaranteed provided that
all eigenvalues of (2) are positive. This is possible if by construction the graph G
is “connected” (refer to [4] for the definition). In this work by design the Laplacian
matrix is positive semi-definite.

UAV Model and the Takagi-Sugeno Model Representation

Consider a group of systems i D 1; : : : ; N described by:

Pei .t/ D fi .ei .t//C gi .ei .t//ui .t / (3)

where ei .t/ 2 R
n, and ui .t / 2 R

m is the state, and input vector, respectively.
Assume fi .ei .t// and gi .ei .t// are functions that are dependent on the state. The
nonlinear model in (3) can be represented in a compact region of the state-space
X � R

n by a TS fuzzy model.
Adopting the notation in reference [25], for agent i , the TS fuzzy model is formed

by � local linear subsystems. The TS is represented by implications of IF–THEN
form or Input–Output form. The general layout for the �th model rule is:
Model Rule � [25]:
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IF zi1.t/ is M�1 AND. . . AND ziq.t/ is M�q THEN

Pei .t/ D A�e
i .t/C B�ui .t / (4)

where ei .t/ D col.Œei1.t/; : : : ; e
i
n.t/�/ 2 R

n, and A� 2 R
n�n, B� 2 R

n�m are
constant matrices. The vector zi .t / D col.Œzi1.t/; : : : ; z

i
q.t/�/ is a known premise

variable which may depend on the state vector. Every premise variable is a-priori
bounded on a compact space (i.e. zi .t / 2 Œzimin; z

i
max�) since the state is assumed to

belong to X . The symbol M�	.zi	.t// 2 Œ0; 1� denotes the fuzzy sets and r D 2jzj
the number of rules. The notation jzj coincides with the length of the vector. The
fuzzy sets M�	.zi	.t// are generated utilising the sector nonlinearity approach [10].

In Input–Output form, the defuzzification process of system (4) can be repre-
sented by the following polytopic form:

Pei .t/ D
rX

�D1
��.z

i .t //ŒA�e
i .t/C B�ui .t /� (5)

where the ��.zi .t // are normalised weighting functions defined by:

��.z
i .t // Dw�.z

i .t //=

rX

�D1
w�.z

i .t //

w�.z
i .t // D

qY

	D1
M�	.z

i
	.t//

(6)

The weighting terms ��.zi .t // satisfy the convex sum property for all t . Provided
that bounds on the state space are a-priori known, the TS model (5) is an exact
representation of the nonlinear model (3) inside X . Motivated by work in reference
[13] it will be shown in the sequel that such a structure can be utilised in the UAV
context.

It is well known that time-delay is often inherent in dynamic systems, which can
be an important source of instability and degradation in the control performance.
Due to this time-delay is included in the design.

Considering time-delay the TS is represented by implications IF–THEN with
general layout for the �th model rule:
Model Rule � [25]:
IF zi1.t/ is M�1 AND. . . AND ziq.t/ is M�q THEN

Pei .t/ D A1
�e
i .t/C A2

�e
i .t � � i�.t//C B�ui .t / (7)

where A1
� 2 R

n�n, A2
� 2 R

n�n, and � i�.t/ � � is the delay for all i D 1; : : : ; N and
� D 1; : : : ; r , with � > 0. In this letter the assumption is that the premise variables
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do not depend on the input variables u.t/. In Input–Output form, the defuzzification
process of delayed system (7) can be represented in the polytopic form:

Pei .t/ D
rX

�D1
��.z

i .t //ŒA1
�e
i .t/C A2

�e
i .t � � i�.t//C B�ui .t /� (8)

where the ��.zi .t // are defined previously in (6). In this letter, dynamical system (8)
is used instead of (5) for the design of the control law.

Unmanned Aerial Vehicle Modelling: Error Posture Model

According to [28], the motion of the i th point-mass UAV, under assumptions that an
electrically powered UAV is considered flying at constant altitude and ground speed,
the thrust and velocity vector are collinear, and there is no slip in lateral direction,
can be described by:

Pxic.t/ D vier.t/ cos �ic .t/

Pyic.t/ D vier.t/ sin �ic .t/

P�ic .t/ D wier.t/

(9)

In (9) xic , y
i
c , are the position coordinates, �ic is the heading angle, and vier, wier the

linear and angular velocity.
In this analysis the error posture is utilised for the tracking problem for every

agent in the network, as in references [15] and [12]. In particular, utilising the
kinematics in (9) the tracking error is governed by:

ei .t/ D
2

4
cos.� ic .t// sin.� ic .t// 0
� sin.� ic .t// cos.� ic .t// 0

0 0 1

3

5 .Pref.t/ � P i
c .t// (10)

where Pref.xref; yref; �ref/ and P i
c .x

i
c; y

i
c; �

i
c / the reference and current posture for

the vehicle, ei .t/ D Œxie.t/; y
i
e.t/; �

i
e .t/�

T is the tracking error in the state for the
i th UAV in the x � y plane and direction, respectively. The tracking error for a
UAV in lateral motion is depicted in Fig. 1. Following the description in Sect. 3.1 of
reference [12], taking the time derivative of (10), the error dynamics are generated.
Hence, assuming that there is no side-slip (i.e. Pxref sin.�ref/ D Pyref cos.�ref/), and
applying a control action vector uier.t/ D uiF .t/ C ui .t / (proposed in [15]), where
uiF .t/ D Œvref.t/ cos.� ie .t//;wref.t/�

T the feedforward control action vector and
ui .t / D Œvi .t/;wi .t /�T the feedback elements, then the error dynamics satisfy:
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2

64
Pxie.t/
Pyie.t/P�ie .t/

3

75 D

2

64
0 wref.t/ 0

�wref.t/ 0 vref.t/sinc.� ie .t//
0 0 0

3

75 �

2

64
xie.t/

yie.t/

� ie .t/

3

75C

2

64
�1 yie.t/

0 �xie.t/
0 �1

3

75 ui .t/

(11)

where vref.t/, vi .t/ are the reference and current linear velocities, wref.t/, wi .t / the
reference and current angular velocities.

The structure of the error posture dynamics in (11) allow its representation as a
Takagi-Sugeno fuzzy model as shown by authors in [12]. Motivated by the work in
[13] and [14], the two-step procedure is adopted for a network of delayed nonlinear
error posture models in (11) which are structured into the TS form in (8). For the
system, the control action vector ui .t / is designed based on TS concepts, and is
shown in the sequel. The control law has the form referred to in the literature as
PDC [29].

Swarm Tracking and Control Law Description Subject
to Time-Delay

In this section the design of the control law for the stabilisation of the error dynamics
in (8) subject to time-delay is described. The task is for the error state ei .t/ for
i D 1; : : : ; N to converge to zero asymptotically at a local level. In this work the
assumption is that individual systems have common A1

�;A
2
�;B�;8 � D 1; : : : ; r ,

and the communication topology is bidirectional static. Additionally it is assumed
that for the delay term 0 � � i�.t/ � � . As in [13], and [14] the control design for the
stabilisation problem is treated in two steps.

Step 1: Node Level Tracking

The controller ui� .e
i .t//, used to stabilise the error dynamics, subject to delay, for

the i th UAV system at node level, is designed from the rules of the TS fuzzy model
and maintains the same structure as the model rules. Furthermore in this work it is
assumed that the control law is not delay-dependent. The �th control rule at node
level has the following structure:
Control Rule �:
IF zi1.t/ is M�1 AND : : : AND ziq.t/ is M�q THEN ui� .e

i .t// D �F�ei .t/;8i; j D
1; : : : ; N

for � D 1; : : : ; r and where q D jzj. In polytopic form the node level state feedback
control law is equal to:

ui� .e
i .t// D �

rX

�D1
��.z

i .t //F�ei .t/ (12)
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where F� 2 R
m�n are the feedback gains. By substitution of (12) into the dynamics

in (8), the node level closed-loop error dynamics are equal to:

Pei .t/ D
rX

�D1

rX

	D1
��.z

i .t //�	.z
i .t //

�
A�	e

i .t/C A2
�e
i .t � � i�.t//

�
(13)

where A�	 D A1
� � B�F	. According to reference [25] the dynamics in (13) are

expanded into (14) in order to use more relaxed conditions [25].

Pei .t/ D
rX

�D1
��.z

i .t //2
�
A��e

i .t/C A2
�e
i .t � � i�.t//

�

: : :C 2
rX

�D1

rX

�<	

��.z
i .t //�	.z

i .t //

�
 
A�	e

i .t/C A2
�e
i .t � � i�.t//C A	�e

i .t/C A2
	e

i .t � � i	.t//
2

!

(14)

For the stabilisation of the node level error dynamics Lyapunov theory is utilised.
The task is to determine the feedback gains F	, and a symmetric positive definite
matrix P 2 R

n�n, such that a local performance criteria for stability is satisfied. It
will be shown in the sequel that through the use of the Razumikhin theorem [8] a
Lyapunov analysis is possible, feedback gains and a positive definite matrix can be
calculated to satisfy stability conditions posed as Linear Matrix Inequalities (LMIs).

According to [2], the stabilisation of the error dynamics for the system (14)
subject to time-delay is guaranteed via the PDC control law in (12) if there exists
a symmetric positive matrix P > 0 (P 2 R

n�n), S� > 0 (S 2 R
n�n) and matrices

F	 2 R
m�n for �; 	 D 1; : : : ; r such that the following conditions hold:

8
ˆ̂̂
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂̂
ˆ̂:

P > 0

P > S�1
�

A
T
��PC PA�� C �PC PA2

�S�A2
�
TP < 0; 8� D 1; : : : ; r

A
T
�	PC PA�	 C A

T
	�PC PA	� C 2�P

: : :C PA2
�S�A2

�
TPC PA2

	S	A2
	
TP < 0

(15)

with � < 	 s:t ��.zi .t // \ �	.zi .t // ¤ ¿,1 for the third condition. Additionally,
�; 	 D 1; : : : ; r , and � > 1. The proof of (15) follows directly from the Lyapunov
analysis of the dynamics in (14).

1The notation ��.zi .t // \ �	.zi .t // ¤ ¿ implies that the conditions hold for � < 	 except if
��.zi .t // � �	.zi .t // D 0 for all z.t/. The conditions are valid provided that two rules are active
simultaneously.
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Taking the time derivative of the positive definite function vi .t/ D
ei .t/TPei .t/; 8i D 1; 2; : : : ; N the task is to show that this is negative definite for
all ei .t/ ¤ 0. Utilising the closed loop dynamics in (14) the time derivative of the
Lyapunov function vi .t/ is equal to:

Pvi .t/ D
rX

�D1
�2�.z

i .t //

�
ei .t/T

�
A
T
��PCPA��

�
ei .t/C2ei .t/TPA2

�e
i .t�� i�.t//

�
: : :

C
rX

�D1

X

�<	

��.z
i .t //�	.z

i .t //

�
ei .t/T

�
A
T
�	PCPA�	CAT	�PCPA	�

�
ei .t/ : : :

C 2ei .t/TPA2
�e
i .t � � i�.t//C 2ei .t/TPA2

	e
i .t � � i	.t//

�
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�D1
�2�.z
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�
A
T
��PCPA��CPA2

�S�A2
�
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�
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C ei .t�� i�.t//T S�1
� e

i .t � � i�.t//
�
: : :

C
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X
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��.z
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�
A
T
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�D1
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(16)

Based on the Razumikhin theorem [8] for the positive definite function vi .t/
there exist �1 and �2 such that:

�1kei .t/k2 � vi .t/ � �2kei .t/k2 (17)

where �1 and �2 are the minimum and maximum eigenvalues of P. By using (17), it
is assumed that there exists a real � > 1 such that:

vi .t � �/ < �vi .t/ (18)
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for � 2 Œ0; ��, then from (18), (16) reduces to:

Pvi .t/ �
rX

�D1
�2�.z

i .t //

�
ei .t/T

�
A
T
��PC PA�� C PA2

�S�A2
�
TPC �P

�
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��.z
i .t //�	.z

i .t //
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�
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T
�	PC PA�	 C A

T
	�PC PA	�

: : :C PA2
�S�A2

�
TPC PA2

	S	A2
	
TPC 2�P

�
ei .t/

�

(19)
Thus for (19) to be negative definite it is only sufficient to find P > 0, S� > 0 and
matrices F	 2 R

m�n for �; 	 D 1; : : : ; r such that the conditions (15) hold, and the
proof is completed. �

In order to solve the previous problem, the bilinear matrix inequalities (BMIs)
need to be recast into LMIs. This can be performed subject to a congruence
transformation of X, where X D P�1, and the definition of „	 D F	X. Thus
conditions (15) are transformed to LMIs:

8
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂:

X > 0

S� > X

…1
�� < 0; 8� D 1; : : : ; r

…2
�	 < 0; � < 	 s:t ��.z

i .t // \ �	.zi .t // ¤ ¿

(20)

where …1
�� and …2

�	 are equal to:

…1
�� D XA1

�
T C A1

�X �„T
� BT� � B�„� C �XC A2

�S�A2
�
T (21)

and

…2
�	 D XA1

�
T C A1

�X �„T
	BT� � B�„	 C XA1

	
T C A1

	X �„T
� BT	 � B	„�

: : :C 2�XC A2
�S�A2

�
T C A2

	S	A2
	
T

(22)
Provided that the LMIs in (20) are feasible, then a solution can be recovered

from:

F	 D „	X�1 (23)

Remark 1. A faster response for the closed loop system (14) can be considered. This
can be performed if a decay rate � is included in conditions (20). This is equivalent
to ensuring Pvi .t/ C 2�vi .t/ < 0 and replacing the previous constraints …1

�� and

…2
�	 with …

1

�� D …1
�� C 2�X and …

2

�	 D …2
�	 C 4�X,respectively.
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Remark 2. Moreover a generalised eigenvalue problem subject to (20), with mod-
ified …1

�� , …2
�	 and � > 0, can be used as suggested in [1]. Provided that the

initial conditions are a-priori known, the control effort can be constrained to satisfy
k�� .e.t//k2 � . This can be enforced by means of the optimisation problem

min
X;„1;:::;„r

 (24)

subject to the modified LMIs of (20) and

8
ˆ̂̂
<̂

ˆ̂̂
:̂

�
1 e.0/T

e.0/ X

�
� 0

�
X „T

�

„� 
2I

�
� 0

(25)

for � D 1; : : : ; r .

Remark 3. Note that conditions (25) are dependent to e.0/ which is a limitation.
This can be overcome by assuming an upper bound � for ke.0/k. Then as suggested
in [25] conditions (25) can be replaced by

�2I � X (26)

The modified conditions in (20), and (26) or (20), (24) and (25) lead to a good
compromise between complexity and conservatism. It should be noted that the
performance constraints are chosen according to functional and physical limitations
of the aircraft involved. Hence provided the feedback gains F� are chosen for a
common Lyapunov matrix P satisfying conditions (20) (with the modified …1

�� ,
…2
�	), (24) and (25), Pvi .t/C 2�vi .t/ < 0. Thus stability can be guaranteed for any

set of initial conditions ei .0/ 2 X for the delayed system. Thereafter based on the
node level stabilisation, a second step is undertaken illustrated in the next section.

Step 2: Tracking at Network Level

At a network level an additional term which represents the relative state information
among neighbouring UAVs and the reference trajectory is introduced in the control
law so that:

u.ei .t// D �
rX

�D1
��.z

i .t //F	ei .t/C 
F
NX

j; i¤j
`ij e

j .t/ (27)
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where F 2 R
m�n and 
 a positive scalar. Using the control law in (27), at a network

level the error-dynamics, subject to delay, are equal to:

Pei .t/ D
rX

�D1

rX

	D1
��.z

i .t //�	.z
i .t //

�
A�	e

i .t/CA2
�e
i .t�� i�.t//C
B� F

NX

jD1
`ij e

j .t/

�

(28)

In a compact form (28) can be conveniently written using the Kronecker product
notation [9] (refer to properties in Appendix A), as:

Pe.t/ D ŒA.z.t//C 
B.z.t//.L˝ In/�e.t/CA2.z.t//e.t � �.t// (29)

where

A.z.t// D diag

8
<

:

rX

�D1

rX

	D1
�1��

1
	A�	; : : : ;

rX

�D1

rX

	D1
�N� �

N
	A�	

9
=

; (30)

A2.z.t// D diag

(
rX

�D1
�1�A2

�; : : : ;

rX

�D1
�N� A2

�

)
(31)

and

B.z.t// D diag

(
rX

�D1
�1�B�F; : : : ;

rX

�D1
�N� B�F

)
(32)

and e.t/, e.t � �.t// is the concatenation of the state vectors ei .t/, ei .t � � i�.t// so
that e.t/ D col.Œe1.t/; : : : ; eN .t/�/, and e.t��.t// D col.Œe1.t��1� .t//; : : : ; eN .t�
�N� .t//�/, respectively. Using Lyapunov theory, a candidate Lyapunov function for
the swarm is defined as

V.t/ D
NX

iD1
ei .t/TPei .t/ (33)

where the symmetric positive definite matrix P is from the earlier node level
synthesis in section “Step 1: Node Level Tracking”. Taking the time derivative
of (33), and substituting for the control law (27) in (28), it results in

PV .t/ D V1 C V2 (34)

where

V1 D
NX

iD1

rX

�D1

rX

	D1
��.z

i .t//�	.z
i .t//

�
ei .t/T

�
A
T
�	PCPA�	

�
ei .t/C2ei .t/T PA2�e

i .t��i�.t//
�

(35)
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and

V2 D 2
eT .t/.IN ˝ P/B.z.t//.L˝ In/e.t/ (36)

For the swarm of UAVs, subject to delay, to track the virtual leader system, which
is moving according to a prescribed reference trajectory, it is sufficient to show that
PV .t/ < 0. Utilising the stabilisation procedure from the first step of the design

process in section “Step 1: Node Level Tracking”, for the choice of a common
Lyapunov matrix P and feedback gains F	, V1 < 0. Hence all that needs to be
shown is that V2 is negative semi-definite for all e.t/ ¤ 0. It is evident from the TS
model that the input matrix B� is time-varying because of (11); however, the first
column is constant: i.e. B� D ŒB1;B2��. Here by choice:

F D �ŒB1; 0�TP (37)

which means that B.z.t// D I ˝ B1BT1 P. As a result of this choice in (36):

V2 D �2
eT .t/.L˝ PB1BT1 P/e.t/ (38)

The Laplacian L is positive semi-definite, by definition in (2), and by construction
PB1BT1 P � 0, it follows that�.L˝PB1BT1 P/ � 0 by Corollary 4.2.13 [9]. Thus (34)
is negative definite for all e.t/ ¤ 0 and the error dynamics of the swarm, subject to
delay, is stable.

Simulation Example

In this section a tracking scenario is considered where a swarm of UAVs is deployed
to collectively follow the prescribed trajectory of a virtual leader from any initial
conditions satisfying bounds on the state space. The path is assumed to be a-priori
known. The reference track considered for the virtual leader in this example is
referred to in the literature as the Dubins path [5].

The Dubins path comprises of line segments and circular arcs of type CLC
or CCC (C D Circular arc, L D Line segment) or another combination of the
previous two. By the former the two segments of the circumference of circles are
joined by their common tangent. By the latter, CCC is formed by three consecutive
tangential circular arcs. The physical interpretation of the particular path is a
combination of the shortest line for rectilinear motion and the shortest circular
arc for turning. In this work the path is constructed with the use of principles
of Euclidean Geometry. The design procedure can be found in thesis [21] for the
interested reader. Example trajectories for CLC paths with common external and
internal tangents, respectively, are depicted in Fig. 2. The two waypoints depicted
have poses of Pstart.100; 100; 80

o/ and Pfinal.150; 150; 45
o/. It should be noted that

for the previous poses there exist four different Dubins paths, the left to left turn
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Fig. 1 Posture error P.xe; ye; �e/ for an aerial vehicle in lateral motion

(LSL), the left to right turn (LSR), the right to right turn (RSR) and the right to
left turn (RSL). From the previous four trajectories for the node to node path the
one that yields the minimum energy requirements motivated by the work in [11] is
chosen as the virtual leader trajectory.

Description of the Takagi Sugeno UAV Model

For the purpose of illustration consider a swarm of identical UAV models. The TS
fuzzy model has been derived as described in section “UAV Model and the Takagi-
Sugeno Model Representation”. For the model illustrated in (11) zi1.t/ D wref.t/,
zi2.t/ D vref.t/sinc.� ie .t//, zi3.t/ D yie.t/ and zi4.t/ D xie.t/ are chosen as the
premise variables with zi1.t/ 2 Œ�0:513; 0:513�, zi2.t/ 2 Œ18:0048; 20�, zi3.t/ 2
Œ�10; 10� and zi4.t/ 2 Œ�10; 10�. In addition �ie .t/ 2 Œ��=4; �=4�. Hence the
number of rules of the fuzzy system is equal to r D 16 and the length of the premise
vector is equal to q D 4. It should be noted that the latter bounds are not chosen
in an arbitrary manner, and are selected in order not to lose controllability of the
system. Utilising the sector nonlinearity approach in [10] the membership functions
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M�	.zi .t // are determined and the weighting terms are calculated according to (6).
All sixteen rules are developed as prescribed in section “UAV Model and the
Takagi-Sugeno Model Representation” Eq. (4), where A� and B� are shown in
the sequel. Finally, the defuzzification is carried out with respect to Eq. (5). Hence
the equivalent TS fuzzy model (5) for the full nonlinear is derived. For model (5):

A� D
2

4
0 �"1�wr;max 0

"1�wr;max 0 	i�
0 0 0

3

5B� D
2

4
�1 "3�eimax

0 "4�e
i
max

0 �1

3

5 (39)

where wr;max D 0:513 .rad=s/, eimax D 10 .m/ and

"1� D
� �1; for 1 � � � 8
C1; otherwise

"4� D .�1/�C1

"3� D
� C1; otherwise
�1; for � 2 f1; 2; 5; 6; 9; 10; 13; 14g

	i� D
�
18:0048; for 1 � � � 4 and 9 � � � 12
20; otherwise

The membership function are depicted in Fig. 3. To illustrate the proposed results on
the time-delay systems it is assumed the i th UAV error posture model is perturbed
by time-delay and the delayed system is given as:

2

4
Pxie.t/
Pyie.t/P�ie .t/

3

5

D
2

4
0 awref.t/ 0

�awref.t/ 0 avref.t/sinc.� ie .t//
0 0 0

3
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� ie .t/

3
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C
2

4
0 .1�a/wref.t/ 0

�.1�a/wref.t/ 0 .1�a/vref.t/sinc.� ie .t��.t///
0 0 0

3

5

2

4
xie.t��.t//
yie.t��.t//
� ie .t��.t//

3

5

C
2

4
�1 yie.t/

0 �xie.t/
0 �1

3

5 ui .t/ (40)

where retarded coefficient a satisfies a 2 Œ0; 1�. It should be noted that the bounds
on a correspond for a completely retarded system if a equals zero and otherwise
non-delayed system. It is assumed that a D 0:7 and �.t/ D 10sin.10t/ in this
example. In polytopic form the TS is equal to:
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Fig. 2 Common external (left) and internal (right) tangent between two circular arcs. The solid red
lines in source and destination waypoints depict the entry and exit heading angles at the particular
poses (Colour figure online)

Pei .t/ D
rX

�D1
��.z

i .t //Œ˛A�e
i .t/C .1 � ˛/A�e

i .t � �.t//C B�ui .t /� (41)

where A� and B� are defined in (39), for the specified parameters. It can be easily
shown that the closed system is not stable under delay perturbation and with the
control law used in article [14]. Thus the analysis illustrated in section “Step 1:
Node Level Tracking” is applied to synthesise the feedback gains and the positive
definite matrix, at node level, and to be later utilised for the stabilisation of the entire
swarm.

Tracking a Virtual Leader

In this example a swarm of UAVs (N D 20) is deployed to collectively follow
a virtual leader system. It is assumed that the leader is moving according to a
reference track (Dubins path) which is known a-priori from the preflight planning.
The UAVs are interconnected through control law (27), and the contribution factor
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for the global information is chosen as 
 D 0:7. The adjacency matrix is depicted
in Fig. 4, and the Laplacian matrix has the form in (2). The graph considered here
is G.20; 184/ and the task is for the error state ei .t/! 0 as t !1.

Following the procedure introduced in section “Swarm Tracking and Control
Law Description Subject to Time-Delay”, firstly the LMIs are synthesised at node
level for the closed loop error posture model (13). This leads to the choice of the
feedback gains F	 and a common positive definite matrix P by minimising (24)
subject to the LMI conditions in (25), and the transformed conditions from (20).
The gains F� and S� for � D 1; : : : ; 16 are shown in Appendix B and the positive
definite matrix returned is:

P D 10�5
2

4
0:0029 �0:0002 �0:0028
�0:0002 0:0009 0:0101

�0:0028 0:0101 0:1344

3

5

From the minimisation problem of (24) subject to LMIs (25), and the transformed
conditions from (20), � D 0:1, � D 1, and  D 9:6768e � 007. Altering the
elements in �, and � results in different responses of the system. This gives the
designer the possibility of obtaining another control performance according to
design specifications.

From Fig. 7 the bounds on the state space ei .t/ are not violated and thus the
TS model represents exactly the nonlinear retarded model of the error dynamics
of the UAV. Utilising the stabilisation procedure at node level, F is chosen as (37)
at the second step according to section “Step 2: Tracking at Network Level”. Hence
the overall control law (27) is synthesised and is added to the feed-forward control
action vector uiF .t/ D Œvref.t/ cos.� ie .t//;wref.t/�

T to generate uier.t/. The control
input uier.t/ consists of the angular wier.t/ and the linear vier.t/ velocities which are
fed to the delayed i th UAV model (9). Thereafter the measured state of the vehicle
is used to calculate the tracking error as in (10). The initial conditions for each UAV
were chosen in a random manner (whilst satisfying the a-priori assumed bounds on
the state space).

The swarm trajectories which are converging to the virtual leader reference track
are depicted in Fig. 5. Figure 6 shows the heading angle of each UAV versus the
virtual leader’s. The states of the tracking error (ei .t/ D Œxie.t/; y

i
e.t/; �

i
e .t/�

T ) are
given in Fig. 7. The firing of the weighting functions ��.zi .t // are depicted in Fig. 8.
The control action vector uier.t/ is given in Fig. 9.

The benefit of the proposed analysis is that the design of the controller is
decoupled from the size of the network and its topology. This is due to the fact that
there are only r LMIs that are utilised to stabilise each node locally. Additionally,
due to the decoupled structure of the network it allows a convenient choice for
gain F. The advantage is that through the special choice of feedback gains (37)
for the relative state information, the methodology can be applied to a large class of
nonlinear large-scale network of systems, subject to delay perturbation.
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Fig. 3 Membership functions for zi .t / premise vector with saturation points not shown

Conclusions

This work proposes a systematic analysis for tracking problems in swarm-based
UAV missions with linear and angular velocity constraints, subject to time-delay.
The communication topology among the UAVs is represented using graph theory
tools. The intermediate step of representing a network of nonlinear systems with TS
models circumvents the difficulty in designing a control law when dependencies
among the time-delayed UAVs are considered. A special choice of feedback
gains for the relative state information allows the methodology to be applied to
a reasonably large class of nonlinear systems. The distributed control law which
is proposed, is composed of both node and network level information. The two-
step design procedure is performed subject to criteria, posed as Linear Matrix
Inequalities (LMIs). An illustrative example, where a swarm of UAVs, subject to
delay, is deployed to collectively follow the track of a virtual leader, was included
to demonstrate the potential of the analysis.
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Appendix

A-Kronecker Product Properties

The Kronecker product of A and B denoted as ˝ is a block matrix C with entries
C D A˝B D Œcij � D ŒAijB�. The Kronecker product is a special case of the tensor
product and satisfies the following identities according to [9]:

1. A˝ .BC C/ D A˝ BC A˝ C
2. .kA/˝ B D A˝ .kB/ D k.A˝ B/
3. .A˝ B/˝ C D A˝ .B/˝ C
4. .A˝ B/.C˝ D/ D AC˝ BD
5. .A˝ B/�1 D A�1 ˝ B�1
6. .A˝ B/T D AT ˝ BT

B-Results Calculated for Tracking Scenario

The gains calculated for the tracking scenario are :
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#

F2 D

"
�4:4262 1:4297 18:2658

0:1705 �0:6984 �9:2015

#

F3 D

"
�2:6445 �5:2920 �70:7494

0:1836 �0:6185 �8:2680

#

F4 D

"
�1:0755 �10:9130 �145:4940

0:1656 �0:6800 �8:9622

#

F5 D

"
�5:5718 6:7533 88:9730

0:1894 �0:6342 �8:4770

#

F6 D

"
�4:3860 2:1222 27:6472

0:1776 �0:7314 �9:6451

#

F7 D

"
�2:3516 �5:6580 �75:4223

0:1934 �0:6346 �8:4904

#

F8 D

"
�1:0922 �10:2054 �135:8902

0:1897 �0:7089 �9:3582

#

F9 D

"
�5:6573 5:4646 73:8794

0:1550 �0:6188 �8:2624

#

F10 D

"
�7:2677 11:4144 152:9849

0:2063 �0:6779 �8:9350

#

F11 D

"
�2:1162 �6:8384 �89:1303

0:1484 �0:6145 �8:2023

#

F12 D

"
�3:9435 �0:8725 �10:0146

0:2061 �0:6930 �9:1316

#

F13 D

"
�5:5398 5:7460 77:3921

0:1552 �0:6345 �8:4794

#

F14 D

"
�6:8592 10:6092 142:0409

0:1969 �0:7049 �9:3047

#

F15 D

"
�1:9847 �6:6967 �87:4434

0:1602 �0:6344 �8:4698

#

F16 D

"
�3:4437 �1:7102 �21:3904

0:2196 �0:7292 �9:6178

#

(42)
From the solution of LMIs the positive definite matrices 1:0e C 007S� for � D
1; : : : ; 16 are equal to:
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Fig. 6 Heading angle profile for each delayed UAV (solid lines) and heading angle of the virtual
leader (dashed line)

S1 D

2

64
1:1368 0:3553 �0:0904

0:3553 2:1092 �0:0600

�0:0904 �0:0600 0:0145

3

75S2 D

2

64
1:2647 0:1497 �0:0439

0:1497 2:2958 �0:1288

�0:0439 �0:1288 0:0304

3

75S3 D

2

64
1:1351 0:3542 �0:0907

0:3542 2:0749 �0:0579

�0:0907 �0:0579 0:0143

3

75

S4 D

2

64
1:2596 0:1325 �0:0440

0:1325 2:3397 �0:1366

�0:0440 �0:1366 0:0310

3

75S5 D

2

64
1:2039 0:3137 �0:0774

0:3137 2:1515 �0:0664

�0:0774 �0:0664 0:0159

3

75S6 D

2
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1:3674 0:0482 �0:0140

0:0482 2:4149 �0:1641

�0:0140 �0:1641 0:0392

3

75

S7 D

2
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1:2043 0:3141 �0:0774

0:3141 2:1193 �0:0641

�0:0774 �0:0641 0:0157

3

75S8 D

2

64
1:3584 0:0321 �0:0153

0:0321 2:4575 �0:1719

�0:0153 �0:1719 0:0395

3

75S9 D

2

64
1:3488 �0:2552 0:1091

�0:2552 2:0853 �0:0646

0:1091 �0:0646 0:0193

3

75

S10 D

2
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1:3920 �0:1348 0:0856

�0:1348 2:3035 �0:1258

0:0856 �0:1258 0:0313

3

75S11 D

2

64
1:3495 �0:2546 0:1088

�0:2546 2:1216 �0:0674

0:1088 �0:0674 0:0196

3

75S12 D

2

64
1:3923 �0:1484 0:0865

�0:1484 2:2525 �0:1171

0:0865 �0:1171 0:0304

3
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S13 D

2

64
1:3952 �0:2173 0:0974

�0:2173 2:1246 �0:0694

0:0974 �0:0694 0:0201

3

75S14 D

2

64
1:4554 �0:0381 0:0604

�0:0381 2:4659 �0:1731

0:0604 �0:1731 0:0415

3

75S15 D

2

64
1:3950 �0:2163 0:0975

�0:2163 2:1614 �0:0724

0:0975 �0:0724 0:0203

3

75

S16 D

2

64
1:4588 �0:0482 0:0598

�0:0482 2:4212 �0:1654

0:0598 �0:1654 0:0410

3

75

(43)
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About Model Complexity of 2-D Polynomial
Discrete Systems: An Algebraic Approach

Stelios Kotsios and Dionyssios Lappas

Abstract By means of special operators and operations, the so-called D-operators
and the star-product, a special algebraic description for Nonlinear Polynomial
Discrete Systems in two dimensions is developed. By using this description we can
check if these nonlinear systems are “similar” or “equivalent” with linear systems,
in the sense that the evolution of both systems, under the same initial conditions, are
related to each other. Different kinds of solutions to the problem seem to determine
different degrees of complexity for the original nonlinear systems.

Introduction

Difference equations or Discrete systems of equations which are in use for the
creation of Models in a variety of domains are, in principle, non-linear. On the other
hand, most of the existing results refer upon linear systems and various linearization
processes are in practice, not always successfully. The reason is that the initial
systems possess complexities and due to this fact, basic characteristics do not inherit
into linearization. It is therefore a necessity to rethink about linearization processes,
their tools and degrees of acceptance for the obtained results. Mathematical Control
Theory provides a unifying framework for posing and studying such problems
[1, 4]. In this respect, we treat equations or systems known as non-linear discrete
systems of polynomial type and deal with non-linearities by using mainly algebraic
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tools based upon the so-called star-product (cf. section “Preliminaries”). The star-
product corresponds to the composition of polynomial functions, in other words to
the substitution of one polynomial into another. This star-product allows to describe
the evolution of the system along naturally defined operations, the D-operator (cf.
section “2D Polynomial Discrete Systems”). This operation is compatible with the
cascade connection of one system with another. In a series of papers, problems of
evolution and stability of those systems have been studied [3, 5, 8]. In the present
note, inspired by similar problems in Control Theory [1, 7], we set down the
problem of equivalence of two such systems, in the framework of D-operators,
and we look for conditions in order to transform one system into a (sometimes
given) equivalent one, with the same future evolution. We deal with the equation
F 	 T D T 	G of D-operators, and we are looking for solutions T, when F and
G are given (cf. section “T -Similarity”). For a specific system F and when the
given system G is a linear one, the problem of Model Complexity arises. It turns
out that in this case a notion of complexity could be introduced, which realizes the
intrinsic non-linearity of the system. The solution T may be a polynomial operator,
a series of operators, a series of series, to be invertible or not and to converge or
not. Each one of these situations determines a type of non-linearity complexity
for the underlying Model (cf. section “Levels of Model Complexity”). Here are
the contents of this work. In the beginning we give the preliminary notion of a
D-operator and develop the algebraic tools which allow the transformation of the
given equation in an algebraic-like object. After that, we deal with the main object
of study, the 2D-Nonlinear Discrete-Polynomial Systems. Initially we define an
equivalence relation among D-operations, which turns out to be the appropriate one
to characterize the evolution of the underlying systems (Theorem 2). This relation
is used to define the notion the T-similarity (Definition 2), between two pairs of
sequences and reduce this algebraically to corresponding D-operators (Theorem 2).
The determination of the operator T in the equation F 	 T D T 	G, requires a lot
of machinery in order to solve the occurring linear-like systems. This is achieved in
an algorithmic manner and in each stage of this process, a set of initial conditions
should be chosen. Theorem 3.4 ensures that under middle restriction, for a given
nonlinear discrete polynomial system the linear T-similarity problem accepts a
series-solution. Along the same considerations, a table for the levels of Model
Complexity is established. All the above situations are illustrated through some
indicative arithmetic examples, which conclude this presentation. Exact proofs as
well as applications to specific problems would be given in a forthcoming work [7].

Preliminaries

In this section we shall work with algebraic tools, they will be used later in order
nonlinear polynomial discrete systems of dimension two to be described. The
cornerstone of our approach is the so-called D-operator. It has been introduced in
[5], and transforms a pair of sequences to a pair of sequences. In order to present
these ideas in a comprehensive way we shall follow a constructive method, starting
from simpler operators and proceeding gradually.
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Consider a sequence x.t/; t 2 Z with x.t/ D 0, for t < 0. Let us further consider
the ıi operator, i D .i1; i2; : : : ; in/ be a given vector of integers, named multi-index.
This operator defines a new sequence as follows:

ıix.t/ D x.t � i1/x.t � i2/ � � � x.t � in/

If i D i is just a positive integer then ıi x.t/ D x.t � i/, which means that ıi
coincides with the well-known shift operator. A special case is the operator ı0,
which leaves a sequence unchanged, i.e. ı0x.t/ D x.t/. It is called the identity
operator. For the sake of completeness we define by convention that ıex.t/ D 1.
Using this action of the ı-operators upon sequences, we can define an external
operation among ı-operators, named addition, as follows: .ıiCıj/x.t/ D ıix.t/C
ıjx.t/. An internal operation, named star-product, is defined as the composition of
two sequences. Indeed, if w.t/ D ıix.t/, then ıj 	 ıix.t/ D ıjw.t/ D ıj.ıix.t//. It
can be proved [6] that ık	.ıiCıj/ ¤ ık	ıiCık	ıi. The latter relation indicates that
the set .�;C;	/ of the ı-operators, equipped with the operations of addition and the
star-product, is not a ring. Expressions of the form A DPw

nD0
P

i2In
aiıi are called

ı-polynomials, where by In we denote the set of multi-indexes with n elements.
By convention I0 D fıeg. The ı-polynomials also work as functions transforming
sequences to sequences as follows: Let A be a ı-polynomial and x.t/ a sequence,
then

Ax.t/ D
wX

nD0

X

iD.i1;:::;in/2In

aix.t � i1/x.t � i2/ � � � x.t � in/

The star-product between ı-polynomials corresponds, as before, to the composition,
in other words to the substitution of one polynomial into another. Indeed, if A,B are
two ı-polynomials, then A 	 By.t/ D A ı By.t/ D A.B.y.t//. An addition of ı-
polynomials is defined as .ACB/x.t/ D Ax.t/CBx.t/ and the following property
holds: C 	ŒACB� ¤ C 	ACC 	B . All the above are applied straightforward in the
case of ı-series, too, which is nothing but polynomials with an infinite number of
terms. We can also extend the whole methodology so that to act not to a single
sequence but to a pair of sequences. We can achieve that by means of the ı�-
operator. Indeed, let ıi�j be a ı�-operator, i D .i1; i2; : : : ; in/, j D .j1; j2; : : : ; jm/

two multi-indexes. This operator works as follows:

ıi�jŒx.t/; y.t/� D x.t � i1/ � � � x.t � in/y.t � j1/ � � � y.t � jm/
Therefore, the ı-part of the ı�-operator acts exclusive on the first sequence and the
�-part on the second. If either j D feg or i D feg then ıi�eŒx.t/; y.t/� D ıix.t/,
ıe�jŒx.t/; y.t/� D �jx.t/. We can define the addition as follows:

.ıi�j C ıi0�j0/Œx.t/; y.t/� D ıi�jŒx.t/; y.t/�C ıi0�j0 Œx.t/; y.t/�
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Let A DP
nD0

P	
mD0

P
.i;j/2In�Jm cijıi�j be a ı�-polynomial. This polynomial acts

on a pair of sequences as follows:

AŒ.x.t/; y.t/� D
X

nD0

	X

mD0

X

.i;j/2In�Jm

cijx.t � i1/ � � � x.t � in/y.t � j1/ � � � y.t � jm/

If A is a ı�-series, then AŒx.t/; y.t/� is a Volterra series, containing products
among delays of x.t/ and y.t/. In the case of linear polynomials (or linear series),
AŒx.t/; y.t/� is a linear polynomial (or a linear series) of delays of x.t/ and y.t/.
The star-product among ı�-operators (or ı�-polynomials or ı�-series) corresponds
to the composition among maps. Indeed, let B;C;A be ı�-polynomials, if we
substitute the polynomial B into the ı-part of A and C into the �-part of A, we
get a ı�-polynomial which corresponds to the composition, A ı ŒB; C � and is called
the star-product of the polynomials A;B;C and is denoted by A 	 ŒB; C �.

We present now theD-operators. They are nothing but a pair of ı�-polynomials,
in other words:

D D
�
A

B

�
D
"P

.i;j/2Ia�Ja
aijıi�jP

.i;j/2Ib�Jb
bijıi�j

#

If the above ı�-polynomials are linear, then we speak about a linear D-operator. If
instead of the ı�-polynomials A and B we have the ı�-series A and B , then the
D-operator is a called a D-series.

Definition 1. Let G and F be two D-operators:

G D
"P

.i;j/2Ig;1�Jg;1 g
.1/

ij ıi�jP
.i;j/2Ig;2�Jg;2 g

.2/

ij ıi�j

#
; F D

"P
.i;j/2If;1�Jf;1

f
.1/

ij ıi�jP
.i;j/2If;2�Jf;2

f
.2/

ij ıi�j

#

We say that G D F if and only if Ig;k D If;k , Jg;k D Jf;k , g.k/ij D f
.k/
ij , k D 1; 2.

In other words they have the same sets of multi-indexes and the same coefficients.

The next operations is a generalization of the foregoing definitions.

Definition 2. Let us have two D-operators:

D1 D
�
A1
B1

�
; D2 D

�
A2
B2

�

their dot-product and star-product are defined as:

D1 �D2 D
�
A1 � A2
B1 � B2

�
; D1 	D2 D

�
A1 	 ŒA2; B2�
B1 	 ŒA2; B2�

�

We can extend all the above to the case of ı� series, in a similar way.
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2D Polynomial Discrete Systems

In this section we present how we can use theD-operators in order to describe non-
linear polynomial discrete systems. Let us start with polynomial discrete systems
involving only one sequence. They have the form:

x.t/ D
�X

kD1

X

i2Ik
iD.i1;i2;:::;ik /

cix.t � 1 � i1/x.t � 1 � i2/ � � � x.t � 1 � ik/ (1)

with ci 2 R and Ik , a finite set of multi-indexes of dimension k. We say that we
assign to this system a set of initial conditions I D f
0; 
1; : : : ; 
s�1g if and only
if x.0/ D 
0, x.1/ D 
1 , : : :, x.s � 1/ D 
s�1, where s is the maximum delay
appeared in (1). Starting from these initial conditions and using (1), we can calculate
all the future evolution of the system, that is the quantities x.s/; x.s C 1/; x.s C
2/; : : : Now, by using the ı-polynomial A D P�

kD1
P

i2Ik
iD.i1;i2;:::;ik /

ciıi, we can re-

write the above system, shortly as x.n/ D Ax.n � 1/. By means of this notation
the evolution of the system is described through the star-product. Indeed, it can be
proved [3] that:

Theorem 1. The evolution of the system 1 can be calculated by the formula: x.t/ D
A 	 A 	 � � � 	 A„ ƒ‚ …

n�t imes
x.t�n/ D Anx.t�n/, t D s; sC1; sC2; : : :, under the assumption

that the same set of initial conditions I , has been used.

Let us come now to 2D Polynomial Discrete Systems, that is systems transforming
a pair of sequences to a pair of sequences in a nonlinear polynomial way. Let us
have the sequences x1.t/; x2.t/ and the system:

x1.t/ D
˛0X

˛D1

ˇ0X

ˇD1

X

.i;j/2I˛�Jˇ
iD.i1;:::;ir /
jD.j1;:::;j� /

c
.1/

ij x1.t � i1/ � � � x1.t � i� /x2.t � j1/ � � � x2.t � j�/

x2.t/ D
˛00X

˛D1

ˇ00X

ˇD1

X

.i0;j0/2I0
˛�J0

ˇ

i0D.i 01;:::;i 0r /
j0D.j 0

1 ;:::;j
0

� /

c
.2/

i0j0x1.t�i 01/ � � � x1.t�i 0� 0/x2.t�j 0
1/ � � � x2.t�j 0

�0/ (2)

where Ia; Iˇ; J0
a; J

0̌ sets of multi-indexes with ˛ and ˇ elements respectively. We
say that we assign to this system, the following sets of initial values:

I1 D fa0; a1; : : : ; a��1g ; I2 D fb0; b1; : : : ; b��1g



294 S. Kotsios and D. Lappas

if x1.0/ D a0; x1.1/ D a1; : : : ; x1.� � 1/ D a��1 and x2.0/ D b0; x2.1/ D
b1; : : : ; x2.� � 1/ D b��1, where � and � are the maximum delays of the x1.t/
and x2.t/ sequences correspondingly.

By means of the D-operators we can rewrite (2) as follows:

x.t/ D Gx.t � 1/; x.t/ D
�
x1.t/

x2.t/

�
; G D

�
G1
G2

�

where G1;G2 are proper ı�-polynomials and G the corresponding D-operator.
The next definition ensures that two systems have the same dynamic behaviour.

Definition 3. We say that two systems x.t/ D Gx.t � 1/ and z.t/ D Fz.t � 1/,
F;G, D-operators, are equivalent, if x.t/ D z.t/, t D 1; 2; : : :, whenever they
operate under identical initial conditions.

It is trivial to be seen that this notion is an equivalence relation. The next theorem
combines equivalence of dynamical systems with equality of D-operators.

Theorem 2. [7] Let us have the systems x.t/ D Gx.t � 1/ and y.t/ D Fy.t � 1/.
These systems are equivalent if and only if the D-operators G and F are equal.

Finally, we can obtain a result similar to that of theorem 1, in the case of 2D
Polynomial Discrete Systems. Indeed, the time evolution of the system (2) can be
given by the formula:

�
x1.t/

x2.t/

�
D D 	D 	 � � � 	D„ ƒ‚ …

n�t imes
x.t � n/ D Dnx.t � n/; t D s; s C 1; s C 2; : : :

T -Similarity

In this section we establish conditions which guarantee that the output (evolution)
of a system is identically equal with the output of another system, under the same
initial conditions through a proper change of coordinations procedure, obtained by
means of the star-product and D-series [7, 8]. This will help us later to classify the
nonlinear systems with respect to this property.

Let us present now the relevant definitions.

Definition 1. A D-series T is called invertible if we can find another D-series T0,

such that T0 	 T D
�

ı0

�0

�
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Definition 2. Two pairs of sequences x.t/ D
�
x1.t/

x2.t/

�
and y.t/ D

�
y1.t/

y2.t/

�
, are

called T -Similar, if there exists a nonsingular (invertible) series T D
�
T1
T2

�
, such

that y.t/ D Tx.t/.

The meaning of the above definition is that by means of T we can go from x.t/
to y.t/ and vice-versa. Let us now see how we can extend this notion in order for
D-operators to be involved.

Definition 3. Let G D
�
G1
G2

�
, F D

�
F1
F2

�
be two D-operators. They are called

T-similar, if we can find a series T D
�
T1
T2

�
, such that:F1	 ŒT1; T2� D T1	 ŒG1;G2�,

F2 	 ŒT1; T2� D T2 	 ŒG1;G2� or shortly F 	 T D T 	G.

Theorem 1. T-similarity is an equivalence relation among D-operators.

If F and G are T-similar we write F
T� G. Equivalent classes are denoted by ŒF�.

Theorem 2. [7] Let x.t/ D Gx.t � 1/, y.t/ D Fy.t � 1/ be two 2D Polynomial
Discrete Systems. The sequences x.t/; y.t/ are T-similar, if and only if the D-
operators G;F are T-similar.

The most interesting situation is when the D-operator F, is a linear one. In this
case we speak for the linear T -similarity. In other words: Let us suppose that we
have the given nonlinear D-operator G and the linear one L. We want to find a
D-series T, such that L 	 T D T 	G. Now two fundamental questions arise: First,
what is the construction of T ? Is it a simple series (and hence its convergence can be
checked by classical techniques) or series of series (and thus its convergence cannot
be easily checked). Second, how can we obtain the T -series? We shall establish two
theorems dealing with the first question, that of the T -series construction.

• Before we proceed with the calculations we need some terminology.

L� D
1X

aD0
L
.a;1�a/
� ; L

.a;1�a/
� D

X

iD0
l
.a;1�a/
�;i ıai �

1�a
i ; � D 1; 2

T� D
1X

aD0

1X

bD0
T
.a;b/

� ; T
.a;b/

� D
X

.i;j/2I�J

t
.a;b/

�;.i;j/ıi�j ; � D 1; 2

G� D
a0X

aD0

b0X

bD0
G
.a;b/

� ; G
.a;b/

� D
X

.i;j/2I�J

g
.a;b/

�;.i;j/ıi�j ; � D 1; 2
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• By Q0 we denote the matrix:

Q0 D

0

BBB@

L
.1;0/
1 �G.1;0/

1 L
.0;1/
1 �G.1;0/

2 0

L
.1;0/
2 L

.0;1/
2 �G.1;0/

1 0 �G.1;0/
2

�G.0;1/
1 0 L

.1;0/
1 �G.0;1/

2 L
.0;1/
1

0 �G.0;1/
1 L

.1;0/
2 L

.0;1
2 �G.0;1/

2

1

CCCA

• By A we denote the matrix:

A D

2

66666666666666666666666664

l
.1;0/
1;0 � g.1;0/1;0 l

.0;1/
1;0 �g.1;0/2;0 0

l
.2;0/
1;0 l

.0;1/
2;0 � g.1;0/1;0 0 �g.1;0/2;0

�g.0;1/1;0 0 l
.1;0/
1;0 � g.0;1/2;0 l

.0;1/
1;0

0 �g.0;1/1;0 l
.1;0/
2;0 l

.0;1/
2;0 � g.0;1/2;0

l
.1;0/
1;1 � g.1;0/1;1 l

.0;1/
1;1 �g.1;0/2;1 0

l
.2;0/
1;1 l

.0;1/
2;1 � g.1;0/1;1 0 �g.1;0/2;1

�g.0;1/1;1 0 l
.1;0/
1;1 � g.0;1/2;1 l

.0;1/
1;1

0 �g.0;1/1;1 l
.1;0/
2;1 l

.0;1/
2;1 � g.0;1/2;1

:::
:::

l
.1;0/
1; � g.1;0/1; l

.0;1/
1; �g.1;0/2; 0

l
.2;0/
1; l

.0;1/
2; � g.1;0/1; 0 �g.1;0/2;

�g.0;1/1; 0 l
.1;0/
1; � g.0;1/2; l

.0;1/
1;

0 �g.0;1/1; l
.1;0/
2; l

.0;1/
2; � g.0;1/2;

3

77777777777777777777777775

• The pair of equations:

L
.1;0/
i 	T .n;m/1 CL.0;1/i 	T .n;m/2 �T .n;m/i 	 ŒG.1;0/

1 ; G
.0;1/
2 ��T .m;n/i 	 ŒG.0;1/

1 ; G
.1;0/
2 ��

�
X

aCbDk;a¤n;b¤m
a.x1Cy1/Cb.x2Cy2/Dk

a;b;x1;y1;x2;y22N

T
.a;b/
i 	 ŒG.x1;y1/

1 ; G
.x2;y2/
2 � D

D
X

aCb<k
a.x1Cy1/Cb.x2Cy2/Dk

a;b;x1;y1;x2;y22N

T
.a;b/
i 	 ŒG.x1;y1/

1 ; G
.x2;y2/
2 �; i D 1; 2

with the coefficients of the T .n;m/i , nC m D k as unknowns, is called the basic
nonlinear k-degree system.

• The matrix of the coefficients of the term ıi�j, which arises from the left hand
part of the above equation, is denoted by Ci;j.
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• The matrix of coefficients of the above system is denoted by Qk . The corre-
sponding augmented matrix is denoted by Q�

k .T /, where we use this notation to

indicate the dependence from the polynomials T .a;b/i ; aC b < k.
• The set of the solutions of the 1-degree system is denoted by � .
• The set S is defined as:

S D fT 2 � W rank.Qk/ D rank.Q�
k .T //; k D 1; 2; 3; : : :g

We present now the main theorem:

Theorem 3. [7] Let L be a given linear two dimension discrete system and G
a polynomial one. Let T be the series that solves the T -similarity problem, i.e.
L 	 T D T 	G. Then,

(i) If jQ0j D 0 and S ¤ ; then the T-series is a simple series.
(ii) If rank.A/ < 4 and det.Ci;j/ ¤ 0 for every i; j, then the T-series is a series of

series.

Let us pass now to the second problem that of calculating the different parts of the
series T. To achieve that we use the next procedure:

• By solving the system:

L
.1;0/
1 	 T .1;0/1 C L.0;1/1 	 T .1;0/2 D T .1;0/1 	G.1;0/

1 C T .0;1/1 	G.1;0/
2

L
.1;0/
1 	 T .0;1/1 C L.0;1/1 	 T .0;1/2 D T .1;0/1 	G.0;1/

1 C T .0;1/1 	G.0;1/
2 (3)

L
.1;0/
2 	 T .1;0/1 C L.0;1/2 	 T .1;0/2 D T .1;0/2 	G.1;0/

1 C T .0;1/2 	G.1;0/
2

L
.1;0/
2 	 T .0;1/1 C L.0;1/2 	 T .0;1/2 D T .1;0/2 	G.0;1/

1 C T .0;1/2 	G.0;1/
2 (4)

we get the linear parts of the requested series. Since we have to do with a
homogeneous system the relation jQ0j D 0 guarantees that we get an infinite
number of polynomial solutions (T .1;0/i ; T

.0;1/
j are polynomials). Otherwise a

series solution is obtained (T .1;0/i ; T
.0;1/
j are series).

• Now, we go to the quadratic part. It consists from the next equations:

L
.1;0/
1 	 T .2;0/1 C L.0;1/1 	 T .2;0/2 D T .1;0/1 	G.2;0/

1 C T .0;1/1 	G.2;0/
2 C

CT .2;0/1 	G.1;0/
1 C T .0;2/1 	G.1;0/

2 C T .1;1/1 	 ŒG.1;0/
1 ; G

.1;0/
2 � (5)

L
.1;0/
2 	 T .2;0/1 C L.0;1/2 	 T .2;0/2 D T .1;0/2 	G.2;0/

1 C T .0;1/2 	G.2;0/
2 C

CT .2;0/2 	G.1;0/
1 C T .0;2/2 	G.1;0/

2 C T .1;1/2 	 ŒG.1;0/
1 ; G

.1;0/
2 � (6)
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L
.1;0/
1 	 T .0;2/1 C L.0;1/1 	 T .0;2/2 D T .1;0/1 	G.0;2/

1 C T .0;1/1 	G.0;2/
2 C

CT .2;0/1 	G.0;1/
1 C T .0;2/1 	G.0;1/

2 C T .1;1/1 	 ŒG.0;1/
1 ; G

.0;1/
2 � (7)

L
.1;0/
2 	 T .0;2/1 C L.0;1/2 	 T .0;2/2 D T .1;0/2 	G.0;2/

1 C T .0;1/2 	G.0;2/
2 C

CT .2;0/2 	G.0;1/
1 C T .0;2/2 	G.0;1/

2 C T .1;1/2 	 ŒG.0;1/
1 ; G

.0;1/
2 � (8)

L
.0;1/
1 	 T .1;1/1 C L.0;1/1 	 T .1;1/2 D T .0;1/1 	G.1;1/

1 C T .0;1/1 	G.1;1/
2 C

CT .1;1/1 	 ŒG.0;1/
1 ; G

.1;0/
2 �C T .1;1/1 	 ŒG.1;0/

1 ; G
.0;1/
2 � (9)

L
.0;1/
2 	 T .1;1/1 C L.0;1/2 	 T .1;1/2 D T .0;1/2 	G.1;1/

1 C T .0;1/2 	G.1;1/
2 C

CT .1;1/2 	 ŒG.0;1/
1 ; G

.1;0/
2 �C T .1;1/2 	 ŒG.1;0/

1 ; G
.0;1/
2 � (10)

Relations (5), (6) arise by comparing the ıiıj terms, (7), (8) by comparing the
�i�j terms and (9), (10) the ıi�j terms. Substituting the solutions we have already

found from the linear part we get the quadratic quantities T .2;0/i ; T
.0;2/
j ; T

.1;1/

k . We
repeat the procedure for the cubic terms and so on. This method will finally endow
us with the desired series T.

An interesting result, connected with the above iteration, is the next corollary:

Corollary 1. [7] If the linear equations, i.e. (3),(4) accept a series as solution, then
the T is a series of series.

Levels of Model Complexity

Complex systems appears in many fields of contemporary science, and different
communities have different aspects about complexity and how they ranked it [1, 2].
In this section we shall try to approach this issue for 2D Polynomial Discrete
Systems, using the mathematical tools developed previously. Specifically, we have
described a procedure for checking the equivalence of a nonlinear discrete system
with a linear one. This was achieved via a D-series, named T. The construction of
T determines the kind of the model complexity or how “hard” the nonlinearity is.
If, for instance, T converges, then we speak for a “light” complexity, otherwise for
a strong one. If T is a simple series or consists from an infinite sum of series (series
of series), this will influence the kind of complexity since checking convergence in
the latter case is a very difficult task. The nature of L also plays an important role.
If, for instance, it is stable, then the level of complexity is less than the level of
complexity which corresponds to an unstable L. We summarize the different cases
of complexity degrees in the next table:
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T-Series Complexity degree

L Stable L Unstable
A polynomial 0 0C
An invertible, convergence, simple series 1 1C
A convergence simple series 1.5 1.5C
A simple series 2 2C
An invertible, convergence, series of series 3 3C
A convergence series of series 3.5 3.5C
A series of series 4 4C

Examples

Example 1. Let us have the linear system:

x.t/ D x.t � 1/C 2x.t � 2/C 1

2
y.t � 1/

y.t/ D 7

2
x.t � 1/ � 2y.t � 1/C 2y.t � 2/

We want to see how this will be equivalent to another linear one. This is just to
understand the procedures and to see how our approach fits with well-known cases.
The linear system “target”, will be:

u.t/ D �3
2

u.t � 1/C 2u.t � 2/ � 3v.t � 1/

v.t/ D �u.t � 1/C 1

2
v.t � 1/C 2v.t � 2/

Using the D-operators, we get the next descriptions:

�
x.t/

y.t/

�
D
�

ı0 C 2ı1 C 1
2
�0

7
2
ı0 � 2�0 C 2�1

� �
x.t � 1/
y.t � 1/

�

�
u.t/
v.t/

�
D
�� 3

2
ı0 C 2ı1 � 3�0

�ı0 C 1
2
�0 C 2�1

� �
u.t � 1/
v.t � 1/

�

and shortly x.t/ D Gx.t � 1/, Ox.t/ D LOx.t � 1/. We want to find series T1; T2, such
that the following equations hold:

L 	 T D T 	G)
�
L1 	 ŒT1; T2� D T1 	 ŒG1;G2�
L2 	 ŒT1; T2� D T2 	 ŒG1;G2�
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For the sake of the computation we arbitrarily set: T1 D w1;0ı0Cw1;1ı1C h1;0�0C
h1;1�1, T2 D w2;0ı0 C w2;1ı1 C h2;0�0 C h2;1�1; we could of course, take any other
number of terms for the series T1; T2. By equating the coefficients and solving the
corresponding system of equations we get:

w1;0 D h1;0 � 6h2;0 ; w1;1 D h1;1 � 6h2;1
w2;0 D �2h1;0 C 5h2;0 ; w2;1 D �2h1;1 C 5h2;1

and thus a transformation which solves the problem is:

T1 D .h1;0 � 6h2;0/ı0 C .h1;1 � 6h2;1/ı1 C h1;0�0 C h1;1�1
T2 D .�2h1;0 C 5h2;0/ı0 C .�2h1;1 C 5h2;1/ı1 C h2;0�0 C h2;1�1

with hij 2 R. Since the T-similarity problem in this case accepts a polynomial
solution, and L is unstable, we say that the original linear system has a complexity
degree equal to 0+. If we could solve the problem with a stable L, then complexity
degree would be equal to 0.

Example 2. Let us consider now the nonlinear system:

x.t C 1/ D x.t/C y.t/ � x2.t/

y.t C 1/ D x.t/

we want to examine if it can be equivalent with the next linear system (the “target”)
and thus to find its complexity degree.

z.nC 1/ D z.n/ � z.n � 1/C w.n/C 1

2
.1 �p5/w.n � 1/

w.nC 1/ D z.n/C 1

2
.1Cp5/z.n � 1/C w.n � 1/

Using the D-operators, we get the next descriptions: x.t C 1/ D Gx.t/, Ox.t C 1/ D
LOx.t/ where:

G D
�

ı0 C �0 � ı20
ı0

�
; L D

�
ı0 � ı1 C �0 C 1

2
.1 �p5/�1

ı0 C 1
2
.1Cp5/ı1 C �1

�

First of all we see that jQ0j ¤ 0 and thus the problem accepts a simple series as a
solution. This means that it will be of complexity degree either 1 or 3. To calculate
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the series T1; T2, such that the following equations hold: L 	 T D T 	G we follow
the procedure of the previous section and we take:

T1 D .� C A/ı0 C
�
�1
2
.1Cp5/� C� � 1

2
.1Cp5/AC B

�
ı1 C A�0

C
�
� � 1

2
.1Cp5/AC B

�
�1 C 1

2
Aı20 C

1

2
��20 C .AC �/ı0�0

�1
6
Aı30 �

1

6
��30 C

1

2
.AC �/ı0�20 C

1

2
.3AC �/ı20�0 C � � � � � �

T2 D Aı0CBı1C��0C��1C1
2
�20C

1

2
.A��/�20CAı0�0�1

6
�ı30 C

1

6
.� � A/�30

C1
2
Aı0�

2
0C

�
1

2
AC�

�
ı20�0C � � � � � �

where A;B; �;� arbitrary parameters take real values. If we are able to find
values for these parameters which can guarantee the convergence of the series, the
complexity degree will be equal to 1C.
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A Control Scheme Towards Accurate Firing
While Moving for a Mobile Robotic Weapon
System with Delayed Resonators

Fotis N. Koumboulis and Nikolaos D. Kouvakas

Abstract In the present paper a mobile robotic weapon system is considered.
The system comprises of a ground vehicle equipped with a robotic manipulator
carrying a gun. The goal is to perform accurate firing while moving and despite
the vibrations due to uneven ground and reaction weapon forces. The vehicle is
considered to be equipped with passive and active suspension systems. The active
suspension involves delayed resonators feeding back the resonators’ acceleration.
Using the Euler-Lagrange approach, the model of the system is derived in the
form of a nonlinear neutral time delay mathematical description. From the system
design point of view, the goal is formulated as a command following problem with
simultaneous disturbance attenuation, under appropriate constraints. To achieve
these goals, an algebraic control scheme based on the linear approximant of the
system’s model is proposed. The controller is of the measurable output feedback
dynamic type. Despite the complexity of the system’s model, the derived controller
is realizable in the sense that no predictors are required and is simple enough to be
implemented to low level computer platforms. Thus the proposed controller offers
itself to upgrade traditional armed ground vehicles. This upgrade appears to be of
low cost. The good performance of the proposed controller is demonstrated through
computational experiments upon the nonlinear model of the system.

Introduction

Vibration absorption is of great importance for several applications ranging from
ride comfort improvement and passenger safety in conventional vehicles (see [1–6]
and the references therein) and industrial applications (see [7–10] and the references
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therein) to military applications (see [11, 12] and the references therein). Besides
the difficulty that arises from performance constraints, the designer has to take
into account the actuator influence [13–17]. Of special interest, as far as military
applications are concerned, are anti-mine robotic manipulators (see [18–20]). Also,
such robotic systems are used for patrols around a military base or other government
installation or for convoy support operations. Here we focus on such robotic systems
where accurate firing is required while moving. Clearly, vibration minimization and
compensation of the gun reaction force together with target following are required
to be satisfied via an appropriate control scheme.

In the present paper, the mathematical description of a simplified robotic weapon
system is presented. The system comprised of a ground vehicle equipped with a
robotic manipulator carrying a gun. A two-stage control scheme towards performing
accurate firing while moving and despite vibrations due to uneven ground and
reaction weapon forces is designed. The control scheme is developed on the basis
of the linear approximant of the system. The scheme is analyzed using an inner
and an outer control loop. The inner loop controller achieves diagonalization for the
transfer matrix mapping the external commands to the performance outputs as well
as it satisfies a mixed disturbance rejection/disturbance attenuation criterion in order
to reduce the influence of reaction weapon forces and road unevenness. The outer
loop controller produces an appropriate command for the inner controller in order
to follow fast and accurately a moving target. The performance of the proposed
control scheme is demonstrated through simulations. The control scheme appears
to contribute to force multiplication, expansion of the battle-space, extension of the
warfighter’s reach, and last but not least casualty reduction. Finally, it is noted that
the present paper is a generalization of the results presented in [21].

Mathematical Description of a Mobile Robotic
Weapon System

Consider the mobile robotic weapon presented in Fig. 1. Assuming that the vehicle
moves on a straight path, the whole motion can be faced as a 2-D problem. The
mobile robot consists of a platform carrying a two-joint robot which includes a
prismatic and a revolute joint. In Fig. 1 the gun is represented by an abstractive
arrow shape. The vehicle is assumed to move on a horizontal level due to a force that
is always parallel to the road. Ground unevenness is modeled as a force disturbance.
The vibrations of the vehicle are absorbed by four absorbers, two of which act
as active absorbers and the rest two as passive absorbers. The passive absorbers
(vehicle suspension) are two identical conventional spring-damper structures that
connect the platform of the vehicle with the front and rear wheel, respectively. They
are considered to be locked, i.e., no independent motion is allowed. Consequently,
the platform cannot rotate. The active vibration absorbers are two identical mass-
spring-damper trios that utilize acceleration feedback with controlled delay and are
placed on top of the vehicle’s platform at the position of the front and the rear
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Fig. 1 A mobile robotic weapon system

wheel, respectively (see [7–9]). At the center of the platform, a robotic manipulator
that carries a gun is considered. The “gripper” holds the gun from its center of mass.
Three independent preinstalled controllers are considered to be used to regulate the
forward velocity of the vehicle and the robot joints. These controllers are of the P/PD
type with gravity compensation. The first controller feeds back the error between the
respective commands and the forward velocity by appropriate gainKp;1. The second
and the third controller feed back the error between the respective commands and
the joint variables as well as the derivatives of the joint variables, both multiplied by
appropriate gains, Kp;i and Kd;i .i D 2; 3/, respectively.

The mathematical model of the robotic system is in the following general neutral
multi-delay form

E0 Px .t/CE1 Px .t � �/ D A0x .t/C B0u .t/CD0 .x/ � .t/C�0 (1)

where

x D 
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

�T

D 
df qr xr q1 q2 Pdf Pqr Pxr Pq1 Pq2

�T
(2)

u D u1 u2 u3
�T

(3)

� D  �1 �2
�T D fg fr

�T
(4)
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and where d8 is the horizontal distance of the center of mass of the cart from
the point of origin, qr is the passive (front or rear) suspension spring length, xr
is the distance of the (front or rear) active suspension mass from the (front or
rear) wheel, respectively, q1 is the prismatic joint variable, q2 is the revolute joint
variable, u1 is the external command to the preinstalled P controller that regulates
the forward velocity of the cart, u2 is the external command to the preinstalled
P-D controller that regulates the prismatic joint, u3 is the external command to
the preinstalled P-D controller that regulates the revolute joint, fg is the gun
reaction force, and fr is the disturbance force generated from road unevenness.
The matrices in (1) are in the forms E0 2 R

10�10, E1 2 R
10�10, A0 2 R

10�10,
B0 2 R

10�3, D0 2 R
10�2, � 2 R

10�2, and their nonzero elements are the following:
.e0/1;1 D 1, .e0/2;2 D 1, .e0/3;3 D 1, .e0/4;4 D 1, .e0/5;5 D 1, .e0/6;6 D
mc C ml;1 C ml;2, .e0/7;7 D mc C ml;1 C ml;2, .e0/8;7 D ml;1 C ml;2, .e0/8;9 D
ml;1 C ml;2, .e0/7;9 D ml;1 C ml;2, .e0/9;10 D I2, .e0/10;8 D 1, .e1/7;8 D �2gres,
.e1/10;8 D gres=mres, .a0/7;2 D �2

�
kp C kres

�
, .a0/10;2 D kres

mres
, .a0/7;3 D 2kres,

.a0/10;3 D � kres
mres

, .a0/8;4 D �Kp;2, .a0/9;5 D �Kp;3, .a0/1;6 D 1, .a0/6;6 D
�Kp;1 .mc Cml;1 Cml;2/, .a0/2;7 D 1, .a0/7;7 D �2

�
cp C cres

�
, .a0/10;7 D cres

mres
,

.a0/3;8 D 1, .a0/7;8 D 2cres, .a0/10;8 D � cres
mres

, .a0/4;9 D 1, .a0/8;9 D �Kd;2,
.a0/5;10 D 1, .a0/9;10 D �Kd;3, .b0/6;1 D Kp;1 .mc Cml;1 Cml;2/, .b0/8;2 D Kp;2,
.b0/9;3 D Kp;3, .d0/6;1 D cos .x5 .t//, .d0/7;1 D sin .x5 .t//, .d0/8;1 D sin .x5 .t//,
.d0/6;2 D 1, .�0/7;1 D 2 0kp�2 .hv C  res/ kres�g .mc Cml;1 Cml;2/, .�0/10;1 D
�g C .hvC res/kres

mres
.

Note that mc is the cart mass, ml;1 is the first link mass, ml;2 is the second link
mass, mres is the resonator mass, I2 is the second link moment of inertia, hv is the
vehicle height,  res is the resonator spring’s free length,  0 is the passive absorber’s
free length, kres is the resonator spring constant, kp is the suspension spring constant,
cres is the resonator dumping factor, cp is the suspension dumping factor, gres is the
resonator feedback gain, � is the resonator feedback delay, and g is the gravity
acceleration. The performance outputs of the system description (1) are the forward
velocity of the cart y1 .t/ D x6 .t/, the distance of the center of mass (c.m.) of the
gun from the ground y2 .t/ D hv C r0 C x2 .t/C x4 .t/, and the inclination of the
gun: y3 .t/ D x5 .t/. Note that r0 denotes the radius of the wheels. The performance
output vector is given by the relation

y.t/ D
2

4
y1.t/

y2.t/

y3.t/

3

5 D Cx.t/C
2

4
0

hv C r0
0

3

5

where

C D
2

4
0 0 0 0 0 1 0 0 0 0

0 1 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

3

5 (5)
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The measurable outputs of the system are denoted by

 .t/ D

2

664

 1.t/

 2.t/

 3.t/

 4.t/

3

775 D Lx.t/

where

L D

2

664

0 1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

3

775 (6)

To derive the linear approximant of the robotic system, first consider the following
trim conditions

Nu1 D Nw1; Nu2 D Nw2; Nu3 D Nw3; N�1 D 0; N�2 D 0

Nx1 D vnt; Nx2 D  0 � g .mc Cml;1 Cml;2 C 2mres/

2kp

Nx3 D  0 C  res C hv � g

2kp
.mc Cml;1 Cml;2/ � g

kpkres

�
kp C kres

�
mres

Nx4 D Nu2; Nx5 D Nu3; Nx6 D vn; Nx7 D 0; Nx8 D 0; Nx9 D 0; Nx10 D 0

Second, consider the perturbations of the state and input variables

ıy .t/ D y .t/ � Ny; ıx .t/ D x .t/ � Nx; ıu .t/ D u .t/ � Nu

ı� .t/ D � .t/ � N�; ı .t/ D  .t/ � N 

where Ny D C Nx and N D L Nx. Thus, the linear approximant of the system is of the
following generalized neutral form

E0ı Px .t/CE1ı Px .t � �/ D A0ıx .t/C B0ıu .t/CD0 . Nx/ ı� .t/ (7)

ıy .t/ D Cıx .t/ (8)

ı .t/ D Lıx .t/ (9)
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Controller Design

Here, the accurate performance of the system is analyzed in two design goals.
The first is to achieve a desired closed loop transfer matrix while simultaneously
achieving a mixed disturbance rejection/disturbance attenuation scheme and the
second is accurate following of a target. The control scheme will be analyzed using
an inner and an outer control loop. The inner control loop will satisfy the first design
goal while the outer loop will satisfy the second design goal.

Inner Control Loop

The inner loop controller is considered to be of the dynamic multi-delay measure-
ment output type:

ıU .s/ D K .s; z/ ı� .s/CG .s; z/ ıR .s/ (10)

where ıU .s/, ı� .s/, and ıR .s/ are the Laplace transforms of the vector signals

ıu .t/, ı .t/, and ır .t/, respectively, while ır .t/ D 
ır1 .t/ ır2 .t/ ır3 .t/

�T

is the 3 � 1 vector of external inputs. Clearly, it holds that ıR .s/ D
ıR1 .s/ ıR2 .s/ ıR3 .s/

�T
. The Laplace transform of the perturbation of the

measurement output vector is expressed by the relation ı� .s/ D LıX .s/, where
ıX .s/ is the Laplace transform of the perturbation of the state vector ıx .t/. The
elements of the controller matrices are rational functions of s with coefficients being
rational functions of z D e�s� , i.e., ki;j .s; z/ ; gi;j .s; z/ 2 R .s; z/, where R .s; z/ is
the field of rational functions of s with coefficients being rational functions of z. It is
important to mention that for the implementation of the controller (10) the elements
of the controller matrices should be realizable (see [22–24]). After substituting the
controller (10) to system described by (7) to (9) the forced response of the closed
loop system is given by the relation

ıX .s/ D ŒI10 �Hu .s; z/K .s; z/ L�
�1Hu .s; z/G .s; z/ ıR .s/

CŒI10 �Hu .s; z/K .s; z/ L�
�1H� .s; z/ ı� .s/ (11)

where

Hu .s; z/ D Œs .E0 C zE1/ � A0��1B (12)

Hd .s; z/ D Œs .E0 C zE1/ � A0��1D0 . Nx/ (13)

The desired closed loop matrix should have the following three characteristics:
First, the closed loop transfer matrix relating the external inputs to the performance
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outputs is diagonal and invertible. This is the I/O decoupling design requirement.
This design requirement is formally expressed as follows:

C ŒI10 �Hu .s; z/K .s; z/ L�
�1Hu .s; z/G .s; z/

D
2

4
hm;1 .s; z/ 0 0

0 hm;1 .s; z/ 0

0 0 hm;1 .s; z/

3

5 (14)

where the rational functions hm;1 .s; z/, hm;2 .s; z/, and hm;3 .s; z/ are different than
zero and they belong to R .s; z/.

Second, the second row–first column element and the third row elements of the
closed loop transfer matrix relating the disturbances to the performance outputs are
equal to zero. This is a partial disturbance rejection design requirement. This design
requirement is formally expressed as follows:

C ŒI10 �Hu .s; z/K .s; z/ L�
�1Hd .s; z/

D
2

4
.hd /1;1 .s; z/ .hd /1;2 .s; z/

0 .hd /2;2 .s; z/
0 0

3

5 (15)

According to the above design requirement, the gun reaction force being the main
disturbance does not influence the distance of the center of mass (c.m.) of the gun
from the ground and the inclination of the gun. Also, the inclination of the gun,
having the greater influence to the accuracy of the shot, is not influenced by the
disturbance force generated from road unevenness.

Third, the norm of the nonzero elements of the closed loop transfer matrix
relating the disturbances to the performance outputs is enough small, i.e.,

max
˚��.hd /1;1 .s; z/

��1;
��.hd /1;2 .s; z/

��1;
��.hd /2;2 .s; z/

��1
�
< " (16)

where " is an enough small positive real guaranteeing attenuation of the influence
of the disturbances to the performance outputs.

In what follows the elements of the controller matrices in (10) will be selected to
satisfy all three of the above design requirements. The solution of the precompen-
sator to satisfy the I/O decoupling design requirement is

G .s; z/ D
n
C ŒI10 �Hu .s; z/K .s; z/ L�

�1Hu .s; z/
o�1

�
2

4
hm;1 .s; z/ 0 0

0 hm;1 .s; z/ 0

0 0 hm;1 .s; z/

3

5 (17)
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The solution of the feedback matrix to satisfy the partial disturbance rejection
problem in (15) is the following

k2;4 .s; z/ D
��
s.Hu/1;1 .s; z/ k1;4 .s; z/ � 1

�

� ˚.Hd /2;1 .s; z/

1C .Hu/4;2 .s; z/ .k2;1 .s; z/

� k2;2 .s; z//�C .Hd /4;1 .s; z/

1C .Hu/2;2 .s; z/ .k2;2 .s; z/ � k2;1 .s; z//

���
=

˚
s

.Hd /1;1 .s; z/

�
.Hu/2;2 .s; z/C .Hu/4;2 .s; z/

�

�.Hu/1;1 .s; z/
�
.Hd /4;1 .s; z/ .H/2;2 .s; z/

� .Hd /2;1 .s; z/ .Hu/4;2 .s; z/
�
.k1;1 .s; z/ � k1;2 .s; z//

��
(18)

k3;2 .s; z/ D

.Hd /4;1 .s; z/ .Hu/2;2 .s; z/ k2;2 .s; z/

C.Hd /2;1 .s; z/
�
1 � .Hu/4;2 .s; z/ k2;2 .s; z/

��

�k3;1 .s; z/ =

.Hd /4;1 .s; z/

�
.Hu/2;2 .s; z/ k2;1 .s; z/ � 1

�

� .Hd /2;1 .s; z/ .Hu/4;2 .s; z/ k2;1 .s; z/
�

(19)

k3;4 .s; z/ D
��
.Hd /2;1 .s; z/ .Hu/4;2 .s; z/

� .Hd /4;1 .s; z/ .Hu/2;2 .s; z/
�

� �s.Hu/1;1 .s; z/ k1;4 .s; z/ � 1
� ˚
.Hd /2;1 .s; z/

� 1C .Hu/4;2 .s; z/ .k2;1 .s; z/ � k2;2 .s; z//
�

C .Hd /4;1 .s; z/

1C .Hu/2;2 .s; z/ .k2;2 .s; z/ � k2;1 .s; z//

��
k3;1 .s; z/

�
=

˚
s

.Hd /1;1 .s; z/

�
.Hu/2;2 .s; z/C .Hu/4;2 .s; z/

�

�.Hu/1;1 .s; z/
�
.Hd /4;1 .s; z/ .Hu/2;2 .s; z/

.Hd /2;1 .s; z/ .Hu/4;2 .s; z/
�
.k1;1 .s; z/ � k1;2 .s; z//

�


.Hd /2;1 .s; z/ .Hu/4;2 .s; z/ k2;1 .s; z/

C .Hd /4;1 .s; z/
�
1 � .Hu/2;2 .s; z/ k2;1 .s; z/

���
(20)

where .Hu/i;j .s; z/, denotes the .i; j / element ofHu .s; z/ and .Hd /i;j .s; z/ denotes
the .i; j / element of Hd .s; z/.

To satisfy the requirement of disturbance attenuation, the rest of the elements of
the feedback matrices is selected to be real, i.e.,

k1;1 .s; z/ D k1;1 2 R; k1;2 .s; z/ D k1;2 2 R; k1;3 .s; z/ D k1;3 2 R

k1;4 .s; z/ D k1;4 2 R; k2;1 .s; z/ D k2;1 2 R; k2;2 .s; z/ D k2;2 2 R
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k2;3 .s; z/ D k2;3 2 R; k3;1 .s; z/ D k3;1 2 R; k3;3 .s; z/ D k3;3 2 R

For the determination of the above real parameters, a heuristic algorithm is proposed
(see [25–27]).

It is important to mention that a controller selection as in (18) to (20) with the
remaining elements being static can guarantee the solvability of the closed loop
system, i.e.,

det Œs .E0 C zE1/ � A0 � B0K .s; z/ L� 6
 0 (21)

It can be verified that the same selection guarantees the realizability of
the feedback matrix. Furthermore, it can be observed that the rational matrix
C ŒI10 �Hu .s; z/K .s; z/ L�

�1Hu .s; z/ resulting after the above selection of the
elements of the feedback matrix is birealizable. Hence, for the precompensator
in (17) to be invertible and realizable, it suffices to choose the rational functions
hm;1 .s; z/, hm;2 .s; z/, and hm;3 .s; z/ to be delayless and different than zero, i.e.,

hm;1 .s; z/ D hm;1 .s/

hm;2 .s; z/ D hm;2 .s/

hm;3 .s; z/ D hm;3 .s/

Finally, note that for the precompensator to be at least strictly proper, a possible
selection for the models’ transfer functions is

hm;1 .s/ D p1;0

s C p1;0

hm;2 .s/ D p2;0

s2 C p2;1s C p2;0

hm;3 .s/ D p3;0

s2 C p3;1s C p3;0
where pi;j > 0. It is mentioned that the above selection of the decoupled closed
loop transfer functions guarantees asymptotic command following.

Outer Control Loop

As already mentioned the design goal of the outer loop is to follow accurately a
target. Let ˛.t/ be the inclination of the gun with respect to the vertical axis, i.e.,
it holds that ˛ .t/ D x5 .t/ � 3�

2
(see Fig. 2). Let l.t/ be the distance between the
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Fig. 2 A geometric interpretation of the distance between the aiming point and the target

projection of the revolute joint to the ground and the intersection between the gun
axis and the ground level. Clearly it holds that l .t/ D y2 .t/ tan .˛ .t//. Finally, let
l�.t/ be the distance between the projection of the revolute joint to the ground and
the target.

Let ıl.t/ D l.t/ � Nl be the perturbation of l.t/, where

Nl D Ny2 tan . N̨ / D . Nx2 C Nx4 C hv C r0/ tan

�
Nx5 � 3�

2

�
(22)

Thus, it holds that

ıL .s/ D � cot .Nu3/ hm;2 .s; z/ ıR2 .s/C
.hv C r0 C Nx2 C Nx4/ csc .Nu3/2hm;3 .s; z/ ıR3 .s/ (23)

where ıL.s/ denotes the Laplace transform of ıl.t/. It is important to mention that
after substituting the trim condition of the state variables presented in section “Math-
ematical Description of a Mobile Robotic Weapon System” to the relation (22)
we get

Nl D �
h
hv � 0:5gk�1

p .mc Cml;1 Cml;2 C 2mres/

C 0 C r0 C Nu2� cot .Nu3/ (24)

Target following will be achieved by adjusting the distance of the revolute joint
from the ground while preserving constant inclination of the gun, i.e., ıR3 .s/ D 0.
Using ıR3 .s/ D 0 as well as (14) and (15) we observe (with respect to the linear
model) that the inclination of the gun remains constant. Also, from (23) we observe
(with respect to the linear model) that the influence of the disturbances to ıl.t/ has
been eliminated. With respect to the nonlinear model, it is significant to mention
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that through the disturbance rejection controller the influence of the gun reaction to
the distance of the center of mass of the gun from the ground and the inclination
of the gun have been eliminated while the disturbance due to road unevenness has
significantly been reduced.

Let ıl�.t/ D l�.t/ � Nl be the perturbation of l�.t/. Let ıL�.s/ be the Laplace
transform of ıl�.t/. The outer loop controller is proposed to be of the following PID
form

ıR2 .s/ D
�
fp C 1

s
fi C sfd

� �
ıL� .s/ � ıL .s/� (25)

Let l.0�/ D Nl . Hence using ıR3 .s/ D 0, (22) to (24) as well as the definition
of the decoupled closed loop transfer function presented in section “Inner Control
Loop,” the perturbation of the aiming point position is related to the perturbation of
the target positions by the relation

ıL .s/ D Hl.s/ıL
� .s/ (26)

where

Hl .s/ D �
�
fdp2;0 cot .Nu3/ s2 C fpp2;0 cot .Nu3/ s

Cfip2;0 cot .Nu3// =

s3 C .p2;1 � fdp2;0 cot .Nu3// s2

Cp2;0
�
1 � fp cot .Nu3/

�
s � fip2;0 cot .Nu3/

�
(27)

The transfer function (27) is stable if and only if the PID controller parameters
satisfy the following inequalities

fp > tan . Nw3/ (28)

fi > 0 (29)

fd >
fi � fpp2;1 C p2;1 tan .Nu3/
p2;0 � fpp2;0 cot .Nu3/ (30)

To satisfy (28) to (30) the PID controller parameters are selected to be

fp D

p2;0 � �

�
1C �C �2� �2� tan .Nu3/

p2;0
(31)

fi D ��
3�3 tan .Nu3/
p2;0

(32)

fd D

p2;1 �

�
1C �C �2� �� tan .Nu3/

p2;0
(33)
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where � > 0, � > 0 are free parameters. Thus, (27) takes on the form

Hl.s/ D
˚
Œ.1C �C �2/� � p2;1�s2 C Œ�.1C �C �2/�2 � p2;0�s
C�3�3� =Œ.s C �/.s C ��/.s C �2�/� (34)

To complete the determination of the outer control loop, it suffices to find
appropriate � > 0 and � > 0 such that the gun follows quickly and accurately any
change to the distance of the target from the vehicle while simultaneously satisfying
actuator constraints.

Step-Wise Supervisor

The above design scheme is based mainly upon adjustments of the distance of the
revolute joint from the ground. To handle also the cases where the prismatic joint
reaches its upper or lower bound, the following step-wise supervisor is proposed:

Case 1: If the distance of the target from the vehicle increases and the prismatic
joint reaches its upper bound then

Step 1.1: lower the prismatic joint,
Step 1.2: increase the angle of the gun,
Step 1.3: reevaluate the linearized model and controller parameters and apply the

design scheme presented in sections “Inner Control Loop” and “Outer Control
Loop.”

Case 2: If the distance of the target from the vehicle decreases and the prismatic
joint reaches its lower bound then

Step 2.1: lift the prismatic join,
Step 2.2: decrease the angle of the gun,
Step 2.3: reevaluate the linear model and controller parameters and apply the

design scheme presented in sections “Inner Control Loop” and “Outer Control
Loop.”

Simulation Results

The model parameters are considered to be:

mc D 15:2.kg/;ml;1 D 0:81.kg/;ml;2 D 0:628.kg/

mres D 0:177.kg/; kp D 62; 000.N=m/; kres D 3; 490; 000.N=m/

cp D 2; 500.kg=s/; cres D 81:8.kg=s/; gres D 0:01833.kg/

I2 D 0:00081.kg�m2/;  0 D 0:3 .m/ ; r0 D 0:02 .m/
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hv D 0:01.m/; g D 9:81.m=sc2/; � D 0:000387.s/

Kp;2 D 100;Kp;3 D 100;Kd;2 D 10;Kd;3 D 10

Kp;1 D 2; vn D 1.m=s/

The nonzero trim conditions are:

Nu1 D 1.m=s/; Nu2 D 0:25.m/; Nu3 D 6:152.rad/

Nx1 D t .m/; Nx2 D 0:2987.m/; Nx3 D 0:4087.m/

Nx4 D 0:25.m/; Nx5 D 6:152.rad/; Nx6 D 1.m=s/

The inner closed loop I/O transfer matrix parameters are selected to be:

p1;0 D 10; p2;0 D 50; p2;1 D 15; p3;0 D 50; p3;1 D 15

With respect to the feedback matrix, we select " D 5e � 5. Then a set of controller
parameters satisfying the inequality in (16) are:

k1;1 D 0; k1;2 D �466:015; k1;3 D �2:1622; k1;4 D �586:9273

k2;1 D �27:3172; k2;2 D �565:5233; k2;3 D �30:3138

k3;1 D �4:2357; k3;3 D �555:3803

With respect to the outer closed loop, it is observed that for the transfer function
in (34) to have a maximum rise time of 0.575 s, it suffices to choose � D 3 and
� D 2 thus yielding fp D 0:407283, fi D 1:15754, and fd D 0:0321539.

With respect to the gun reaction force (see Fig. 3) it will be assumed that
it simulates the reaction force generated from a rifle shot (e.g., [28]). We will
further assume that the force pattern is repeated every 2 s. With respect to
the road disturbance, it is assumed that it is a random uniform noise in the
form presented in Fig. 4. The target distance is considered to be l� .t/ D
.hv C r0 C Nx2 C Nx4/ tan

� Nx5 � 3�
2

�C sin .4t/. The external commands are selected
to be ır1 .t/ D 0 and ır3 .t/ D 0. The distances of the aiming point from the vehicle
and the target point from the vehicle are presented in Fig. 5. Note that both responses
are visually identical. The forward velocity is presented in Fig. 6. It is important to
mention that the inclination of the gun is not affected neither by the disturbances
nor variations of the other variables. The distance of the center of mass of the gun
from the ground is presented in Fig. 7. The rest of the state variables of the system
remains within acceptable limits.
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Fig. 3 Gun reaction force

Fig. 4 Road disturbance force
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Fig. 5 Distance of the aiming and target points (cont. aiming, dotted target, visually identical)

Fig. 6 Forward velocity of the cart
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Fig. 7 Distance of the center of mass of the gun from the ground

Conclusions

The mathematical description of a simplified robotic weapon system has been
presented. The system comprised of a ground vehicle equipped with a robotic
manipulator carrying a gun. A two-stage control scheme towards performing
accurate firing while moving and despite vibrations due to uneven ground and
reaction weapon forces has been designed. The control scheme has been developed
on the basis of the linear approximant of the system. The scheme has been analyzed
using an inner and an outer loop. The inner loop controller achieved diagonalization
for the transfer matrix mapping the external commands to the performance outputs,
as well as a mixed disturbance rejection/disturbance attenuation scheme. The outer
loop controller produced an appropriate command for the inner controller in order
to follow fast and accurately the moving target. The performance of the proposed
control scheme has been demonstrated through simulations. It has been observed
that all design requirements have been satisfied. The gun aimed accurately at
a moving target despite gun reaction and road unevenness, the influence of the
disturbances to the forward velocity of the vehicle was small and the inclination
of the gun remained unaffected.
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Reliability Analysis of Coherent Systems
with Exchangeable Components

M.V. Koutras and I.S. Triantafyllou

Abstract In this paper we study reliability properties of coherent systems consist-
ing of n exchangeable components. We focus on the aging behavior of a reliability
structure and several results are reached clarifying whether a system displays the
IFR/DFR property or not. More specifically, a necessary and sufficient condition
is deduced for a system’s lifetime to be IFR, while additional signature-based
conditions aiming at the same direction are also delivered. For illustration purposes,
special cases of well-known reliability systems and specific lifetimes’ distributions
are considered and studied in detail.

Keywords Coherent systems • Increasing failure rate • Samaniego’s signature
• Minimal and maximal signatures

Introduction

Over the past three decades, much effort has been devoted to the study of
reliability characteristics of coherent systems and the special class of consecutive-
type structures. This can be attributed to the fact that such systems have been used
to model and establish optimal designs of telecommunication networks, oil pipeline
systems, vacuum systems in accelerators, spacecraft relay stations, etc. A survey of
consecutive-type systems and their generalizations may be found in [1, 3, 5].

Beyond the traditional ways of studying the operation of a reliability system, i.e.,
through its reliability function or the mean time to failure, a useful tool to charac-
terize reliability systems is the concept of signature which was introduced in [10]
(for a review on signatures and their applications see the excellent monograph [9]).
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If the component lifetimes of a coherent system are independent and identically
distributed with common absolutely continuous reliability function F, then, the
system’s reliability function can be expressed as a mixture of the reliability functions
of the order statistics corresponding to F, with the mixture coefficients being
the coefficients in the signature vector [10]. This representation was extended by
Navarro and Rychlik [6] to the case of coherent systems with exchangeable com-
ponent lifetimes and will play an important role in the development of our results.
Furthermore, interesting results concerning the aging properties of a structure and
stochastic relationships between systems’ lifetimes can be established by exploiting
properties of the signature vector of the systems.

Most of the published works in the area deal with reliability systems com-
prising independent components. In the present article we shall present results
concerning systems with exchangeable components. We recall that a random vector
.X1;X2; : : : ; Xn/ is called exchangeable if the following equality holds true

P.X1 � t1; X2 � t2; : : : ; Xn � tn/ D P.X�.1/ � t1; X�.2/ � t2; : : : ; X�.n/ � tn/;

for any permutation � D .�.1/; �.2/; : : : ; �.n// of f1; 2; : : : ; ng, i.e., the joint
distribution (or survival function) of X1;X2; : : : ; Xn is symmetric in t1; t2; : : : ; tn.
The exchangeability means that the components have identical distributions, but
they are not necessarily independent, that is they may affect one another within the
system.

It is worth stressing that the signature of a system with identical components
does not depend on the individual distribution of X1;X2; : : : ; Xn since the equality
P.X1 < X2 < : : : < Xn/ D P.X�.1/ < X�.2/ < : : : < X�.n// holds true for any
permutation � D .�.1/; �.2/; : : : ; �.n//. Therefore, a system with exchangeable
components has the same signature vector as the respective system with independent
and identical components.

Generally speaking, the results presented in this article have the potential to
be applied in military systems, such as telecommunication networks or artillery
target coverage. In section “Aging Properties of a Reliability System,” we discuss
several results pertaining to aging properties of a reliability system. More precisely,
we establish conditions, under which the lifetime T of a structure displays an
increasing failure rate, namely T 2 IFR. In section “Signature-Based Sufficient
Conditions for IFR/DFR Property,” some easier to apply sufficient conditions, based
on system’s signatures, are derived (and proved in detail) referring to the aging
behavior of a reliability structure with n exchangeable components. For illustration
purposes, several examples and special cases of the main results are also presented.

Aging Properties of a Reliability System

Let X1;X2; : : : ; Xn denote the component lifetimes of a reliability structure with n
components and X1Wn � X2Wn � : : : � XnWn the order statistics of X1;X2; : : : ; Xn.
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If T denotes the system’s lifetime, the signature vector of the system is defined as
the probability vector .s1.n/; s2.n/; : : : ; sn.n// with entries

si .n/ D P.T D Xi Wn/; i D 1; 2; : : : ; n:

In words, si .n/ is the proportion of permutations, among the nŠ possible permu-
tations of X1;X2; : : : ; Xn, that result in a minimal cut set failure when exactly
i components break down (i.e., at time Xi Wn which represents the lifetime of a
i-out-of-n: F system). If X1;X2; : : : ; Xn are exchangeable, the signature vector of
the system will depend only on its structure and not on the underlying distribution
of Xi , i D 1; 2; : : : ; n (which in fact are identically distributed but not necessarily
independent).

Samaniego [10] proved that any coherent system with independent and identical
components having absolutely continuous distribution functions can be written as
a mixture of i-out-of-n: F structures, while Navarro and Rychlik [6] showed that
this representation holds also true whenever the components are exchangeable. In
addition, Navarro et al. [8] proved that any coherent system (in the exchangeable
case) can be expressed as a generalized mixture of series or parallel systems.
Recapitulating the aforementioned well-known results, we may state that the
reliability function NF of a coherent structure with n exchangeable components can
be expressed as follows

NF .t/ D P.T > t/ D
nX

iD1
ci .n/gi .t/; for all t > 0; (1)

where

ci .n/ D si .n/ and gi .t/ D NFi Wn.t/ (2)

or

ci .n/ D ai .n/ and gi .t/ D NF1Wi .t / (3)

or

ci .n/ D ˇi .n/ and gi .t/ D NFi Wi .t / (4)

(ai .n/, ˇi .n/ are the so-called minimal component signatures and maximal com-
ponent signatures, respectively). The above representations will be proved useful in
the sequel for the study of the failure rate of a reliability system. Generally speaking,
the failure rate of a continuous distribution is one of its crucial characteristics and
has attracted a lot of research interest because of the wealth of its applications. This
notion is of great importance in reliability theory, biostatistics, actuarial science,
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etc., and due to the wide spectrum of its applications in a diverse number of research
areas, many different names such as hazard rate or force of mortality have been used
for it in the literature.

The typical definition of the failure rate for an absolutely continuous random
variable T with cumulative density function F is given by the formula

r.t/ D f .t/

NF .t/ ;

where NF .t/ D 1� F.t/ is the survival (or reliability) function, while f .t/ D NF 0.t/
denotes the corresponding probability density function.

The next proposition offers a necessary and sufficient condition for a reliability
system T to display an increasing failure rate function (T 2 IFR).

Proposition 1. Assume that T is the lifetime of a system with respective reliability
function

NF .t/ D
nX

iD1
ci .n/gi .t/ (5)

where ci .n/; gi .t/ are as described in (1)–(4). Then, T 2 IFR if and only if the
following condition holds true

X
1�i<j�n ci .n/cj .n/gij .t/ � 0; for all t � 0

where

gij .t/ D g00
i .t /gj .t/C g00

j .t/gi .t/ � 2g0
i .t /g

0
j .t/: (6)

Proof. It is obvious that T 2 IFR if and only if r.t/ D � NF 0.t/
NF .t/ is increasing in t,

for all t � 0. This means that r 0.t/ � 0 for all t � 0, and making use of (5) we
conclude that T 2 IFR if and only if the following inequality holds true

	Xn

iD1 ci .n/g
00
i .t /


 	Xn

iD1 ci .n/gi .t/


�
	Xn

iD1 ci .n/g
0
i .t /


2
; for all t � 0

or equivalently

X
i;j
ci .n/g

00
i .t /cj .n/gj .t/ �

X
i;j
ci .n/g

0
i .t /cj .n/g

0
j .t/ � 0; for all t � 0:
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We next observe that the last inequality can be rewritten as

X

i<j

ci .n/cj .n/.g
00

i .t/gj .t/�g0

i .t/g
0

j .t//C
X

i>j

ci .n/cj .n/.g
00

i .t/gj .t/�g0

i .t/g
0

j .t//�0

or

X

i<j

ci .n/cj .n/.g
00

i .t/gj .t/�g0

i .t/g
0

j .t//C
X

i<j

cj .n/ci .n/.g
00

j .t/gi .t/�g0

j .t/g
0

i .t//�0:

Finally, using a single sum for the terms of the LHS of the above expression we get

X

i<j

ci .n/cj .n/.g
00
i .t /gj .t/ � g0

i .t /g
0
j .t/C g00

j .t/gi .t/ � g0
j .t/g

0
i .t // � 0

and the proof is complete. �

The next corollary deals with the special case where the random vector
X1;X2; : : : ; Xn follows a multivariate Pareto distribution.

Corollary 1. Let us consider a reliability structure whose component lifetimes’
random vector .X1;X2; : : : ; Xn/ follows a multivariate Pareto distribution with
joint survival distribution function

NFa.x1; x2; : : : ; xn/ D P.X1 > x1;X2 > x2; : : : ; Xn > xn/

D
 

nX

iD1
xi � nC 1

!�a
; x1; x2; : : : ; xn > 0;

(a is a positive parameter) and denote by ai .n/; i D 1; 2; : : : ; n the minimal
signatures of the n components. Then T 2 IFR if and only if

aC1
a

nX

iD1

i2ai .n/

.1Ci.t�1//aC2
nX

iD1

ai .n/

.1Ci.t�1//a �
 

nX

iD1

iai .n/

.1Ci.t�1//aC1

!2
; for t>1:

Proof. We shall apply Proposition 1 for the case where coefficients ci .n/ are the
minimal signatures of the reliability structure, i.e., ci .n/ D ai .n/; i D 1; 2; : : : ; n.
Then, under the multivariate Pareto distribution, the functions gi .t/; i D 1; 2; : : : ; n
(and its first and second derivative) take on the following form

gi .t/ D .i.t � 1/C 1/�a; g0
i .t / D �ia.i.t � 1/C 1/�a�1;

g00
i .t / D i 2a.aC 1/.i.t � 1/C 1/�a�2:
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The result is readily deduced by replacing all these quantities in the necessary
and sufficient condition of Proposition 1 and carrying out some trivial algebraic
manipulations. �

Another interesting case emerges if we consider a reliability structure consist-
ing of n exchangeable components that follow the multivariate Farlie-Gumbel-
Morgenstern distribution. In this case we have the following result.

Corollary 2. Let us consider a reliability structure whose component life-
times’ random vector .X1;X2; : : : ; Xn/ follows a multivariate Farlie-Gumbel-
Morgenstern distribution with joint survival distribution function

NFa.x1; x2; : : : ; xn/ D P.X1 > x1;X2 > x2; : : : ; Xn > xn/

D
 
1C a

nY

iD1
.1 � e�xi /

!
exp

 
�

nX

iD1
xi

!
; jaj � 1; ; x1; x2; : : : ; xn > 0:

and denote by ai .n/; i D 1; 2; : : : ; n the minimal signatures of the n components.
Then T 2 IFR if and only if

nX

iD1
ai .n/ie

it
˚
.i C a.1 � et /i�2.i C et .4i.et � 1/ � 1//�

�
nX

iD1
ai .n/e

it .1C a.1 � et /i /

�
 

nX

iD1
ai .n/ie

it .1 � a.1 � et /i�1.2et � 1//
!2
:

Proof. If we choose the minimal signature to play the role of the coefficients
ci .n/; i D 1; 2; : : : ; n in Proposition 1, then under the multivariate Farlie-Gumbel-
Morgenstern distribution we have

gi .t/ D .1C a.1 � et /i /eit ; g0
i .t / D ieit .1 � a.1 � et /i�1.2et � 1//;

g00
i .t / D ieit .et � 1/�2..et � 1/2i C a.1 � et /i .i C et .4i.et � 1/ � 1//:

The desired sufficient and necessary condition for the above system to display
the IFR property is readily derived by employing analogous arguments as in
Corollary 1. �

In the next proposition, we provide a more convenient sufficient condition for a
system to have an IFR lifetime. The charm of this condition is that in its LHS the
part related to the structure of the system (i.e., to the signatures) is separated from
the part related to the component lifetimes.
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Proposition 2. Assume that T is the lifetime of a system with respective reliability
function

NF .t/ D
nX

iD1
ci .n/gi .t/

where ci .n/; gi .t/ are as described in (1)–(4). If the following holds true

 
nX

iD1
c2i .n/

!0

@
nX

iD1
gi .t/g

00
i .t /C

 
nX

iD1
g2i .t/

! 1
2
 

nX

iD1
.g00
i .t //

2

! 1
2

1

A

� 2
 

nX

iD1
ci .n/g

0
i .t /

!2

for all t � 0, then T 2 IFR.

Proof. Making use of the following bound of the product of two linear forms (see,
[11], p. 59)

 
nX

iD1
ui xi

! 
nX

iD1
vixi

!
� 1

2

 
nX

iD1
x2i

! 
nX

iD1
ui xi C .

nX

iD1
u2i /

1=2.

nX

iD1
v2i /

1=2

!

we may write

 
nX

iD1
ci .n/g

00
i .t /

! 
nX

iD1
ci .n/gi .t/

!

� 1

2

 
nX

iD1
c2i .n/

! 
nX

iD1
ci .n/g

00
i .t /C .

nX

iD1
g2i .t//

1=2.

nX

iD1
.g00
i .t //

2/1=2

!
:

The result follows immediately by combining the last inequality with the necessary
and sufficient condition stated in Proposition 1. �

As an illustration, let us consider a series system consisting of two exchangeable
components with lifetimes X1;X2 that follow the bivariate Log-logistic distribution
with parameters ˇ; � . The joint survival function of the lifetimes vector .X1;X2/
can be expressed as (see, e.g., [4])

NF .t; t/ D 1

1C 2.� t/ˇ ;
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where ˇ > 1; � > 0. The maximal signatures of the aforementioned structure are
given by (see, e.g., [7])

ˇ1.2/ D 2; ˇ2.2/ D �1

and the corresponding functions gi .t/ will be (see (4))

gi .t/ D 1

1C i.� t/ˇ ; i D 1; 2:

Since ci .n/ were selected as ci .n/ D ˇi .n/; i D 1; 2; : : : ; n, in the special case
ˇ D � D 2, inequality (6) takes on the form

128t2.2304t8 C 96t6 � 256t4 � 54t2 � 3/
.32t4 C 12t2 C 1/4 � 0:

It is not difficult to verify that the last formula holds true for all real values of t,
such that 0 < t < 0:6335821, therefore we deduce, by applying Proposition 1, that
a series system consisting of two exchangeable log-logistic components belongs to
the IFR class for the aforementioned range of t. It is worth mentioning that the above
result agrees with the one established for the same reliability structure by Eryilmaz
[4] (see Proposition 3.3 therein).

Signature-Based Sufficient Conditions for IFR/DFR Property

In this section, we provide sufficient conditions for a reliability system to own the
IFR (DFR) property. More specifically, we use the notion of Samaniego’s signature
of a reliability system, in order to reach several results that refer to its aging
properties.

Proposition 3. Assume that T is the lifetime of a system with respective reliability
function NF .t/. If the following holds true

min.1; n NF .t//
nX

iD1
si .n/ NF 00

i Wn.t/

�
 

nX

iD1
si .n/ NF 0

i Wn.t/
!2

for all t � 0, then T 2 IFR.
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Proof. Since 0 � si .n/; NFi Wn.t/ � 1, for all i D 1; 2; : : : ; n, we have

nX

iD1
si .n/ NFi Wn.t/ �

� Pn
iD1 si .n/ D 1Pn
iD1 NFi Wn.t/ D n NF .t/

(7)

We next apply the main result of Proposition 1 for ci .n/ D si .n/ and gi .t/ DNFi Wn.t/, and the result we are chasing is immediately reached by using the above
inequalities. �

In the next proposition, we provide a sufficient condition for the IFR property of
a reliability system, based on the lower bound of its signatures.

Proposition 4. Assume that T is the lifetime of a system with respective reliability
function NF .t/ and denote by bn a lower bound of the sequence of non-zero entries
of its signature vector, i.e.,

si .n/ � bn; for all i such that si .n/ ¤ 0:
If the following holds true
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for all t � 0, then T 2 IFR.

Proof. Since

si .n/ � bn; for i D 1; 2; : : : ; n;
we conclude that

nX

iD1
si .n/ NF 0

i Wn.t/ � bn
nX

iD1
NF 0
i Wn.t/:

Recalling the following well-known formula (see, e.g., [2]. p. 46)

NF 0
i Wn.t/ D

nX

rDn�iC1
.�1/r�nCi�1

�
r � 1
n � i

��
n

r

�
NF 0
1Wr .t/ (8)

the result is a straightforward application of Proposition 1. �

A simpler sufficient condition, compared to the one given in Proposition 4, is offered
by the following corollary.

Corollary 3. Assume that T is the lifetime of a system with respective reliability
function NF .t/ and bn a lower bound of the sequence of non-zero entries of its
signature vector. If the following condition holds true
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min.1; n NF .t//
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for all t � 0, then T 2 IFR.

Proof. Recalling inequality (7), it is not difficult to verify that

 
nX

iD1
si .n/ NF 00

i Wn.t/
! 

nX

iD1
si .n/ NFi Wn.t/

!
� .min.1; NFi Wn.t//

 
nX

iD1
si .n/ NF 00

i .t /

!
:

The desired result is now immediately reached by combining the last formula with
(8) and Proposition 1. �

In the next proposition, we provide a sufficient condition for the IFR / DFR property
of a reliability system, based on an upper bound of its signatures.

Proposition 5. Assume that T is the lifetime of a system with respective reliability
function NF .t/ and let Bn denote an upper bound of the system’s signatures, i.e.,

si .n/ � Bn; for i D 1; 2; : : : ; n:

(i) If the following condition holds true
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for all t � 0, then T 2 IFR.
(ii) If the following condition holds true
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for all t � 0, then T 2 DFR.

Proof. Since

si .n/ � Bn; for i D 1; 2; : : : ; n;
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it is obvious that
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and

nX

iD1
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In view of expression (8) we may state the following
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and Proposition 3 guarantees that T 2 DFR.
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Abductive Reasoning in 2D Geospatial Problems
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Abstract Spatial Analysis has been using so far Spatial Reasoning, but it mainly
confines itself to spatial statistical analysis of the observed phenomena searching for
pattern analysis, geostatistical indices etc. Researchers Shakarian P., Subrahmanian
V. S., and Sapino M. L. are the first who examined the possibility of extending
Spatial Analysis in finite, discretized, 2D space with the incorporation of Abductive
Reasoning, which originates from the cognitive field of Artificial Intelligence, and
is related to the analysis of causation of the phenomena under consideration. The
new class of Geospatial Problems was named point-based Geospatial Abduction
Problems (or point-based GAPs). They primarily focused on a version of GAPs
named Improvised Explosive Devices Cache Detection Problem, or IED Cache
Detection Problem, and they carried out experiments with real-world data from
Baghdad. In this paper a technique which reduces the total computational cost in
any version of point-based GAPs will be introduced, and an exact algorithm for the
natural optimization problem of point-based GAPs will be presented along with its
computational complexity results.
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Introduction

Spatial Analysis has been using so far Spatial Reasoning, but it mainly confines
itself to spatial statistical analysis of the observed phenomena searching for pattern
analysis, geostatistical indices etc. A trivial example is the spatial analysis of the
crime phenomenon in a given region, which will result in finding subregions that
are statistically characterized by high rates of crime. The most common strategy
in response is the increase of policing in those subregions. However, that kind
of strategy does not affect the cause of the phenomenon under consideration, i.e.
the criminals, but only the observations of the phenomenon. Thus, the crime will
either shift or spread out to the remaining space, as the increase of policing in a
set of subregions implies the decrease in the rest of the remaining space, which
in turn implies that criminals are offered now new opportunities to carry out their
illegal activities in those exact under-policing subregions. On the contrary, the best
strategy for law enforcement would be the use of a spatial relationship, if such exists,
between the locations where the crimes were committed and the locations of the
hideouts of the criminals which obviously would pin-point the latter, given the fact
that the locations of crime incidents are known to the police, and the criminologists
can distinguish the crime signatures, and thus allocate the crimes accordingly. That
kind of reasoning can be applied in a wide variety of real-world problems named
Geospatial Abduction Problems or GAPs such as the detection of terrorist caches
given the location of their attacks, the detection of dwellings of a wild animal
given the location of its attacks, the detection of environmental pollutants, etc. [13].
Informally, a GAP is a problem in geospatial space of finding a set of partner
locations that best “explain” a given set of locations of observations through a
given spatial relationship. The spatial relationship for any GAP, even for instances
of the same problem, is unique as it expresses the correlation between partner and
observations in the context of a specific domain, in a specific geographical space,
and for a specific period of time.

The complexity of human cognition and the difficulty of its simulation by
mechanic means are proven by the fact that since the Aristotelian logic was
formulated till nowadays various inference rules and kinds of reasoning have
been proposed. Informally, reasoning defines a rough theoretical context in which
valid inference rules can be applied, whereas inference rules are formally defined
mechanisms, algorithms, which produce new valid knowledge [16], or in other
words, logical transformations used to produce conclusions from a premise set.
Some of the most common inference rules are:

• The Modus Ponens rule which is used in Mathematical Logic, where if one
formula implies another one and the first formula is TRUE, then the second one
is also TRUE. Formally: A!B, A`B.

• The Modus Tollens rule, which is also used in Mathematical Logic, where if
one formula implies another one and the latter formula is FALSE, then the first
formula is also FALSE. Formally: A!B, :B` :A.

• The generalized Modus Ponens and Modus Tollens inference rules in the domain
of Fuzzy Logic.
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• The Generalization rule, where if an attribute is TRUE for some instances of a
class, then the attribute is TRUE for any instance of the class.

• The Specification rule, where if an attribute is TRUE for a class, then the attribute
is TRUE for any instance of the class.

On the other hand, there are three fundamental kinds of reasoning:

• Deductive Reasoning
• Inductive Reasoning
• Abductive Reasoning

More specifically, Deductive Reasoning infers conclusions of what is assumed,
thus given the truth of the assumptions, the conclusion is guaranteed to be TRUE.
Assumptions are given in the form of a rule and a fact. For example:

<Rule> All my children are boys.

<Fact> This child is mine.

<Conclusion> This child is a boy.

Inductive Reasoning infers a rule from a set of facts. Even if the set of facts
are TRUE and the derived rule seems to be reasonable, this does not ensure the
soundness of the rule. It must be noted that this kind of reasoning has nothing in
common with the mathematical induction since the latter is a form of Deductive
Reasoning. For example:

<Fact 1> This boy is my child.

<Fact 2> This boy is also my child.

<Rule> All my children are boys.

Abductive Reasoning infers a hypothesis given a set of rules, which consists a
knowledge basis, and a set of facts, that consists a set of observations. For example:

<Rule> All my children are boys.

<Observation> This child is a boy.

<Hypothesis> This child is mine.

Obviously, there is no such thing as “best” reasoning, since the above kinds
of reasoning are not competing against each other. On the contrary, they are
complementary since each one’s start point differs, thus unavoidably each one infers
a different kind of output.

Despite the fact that the term Abductive Reasoning was proposed by the
great American philosopher Peirce in 1890 [6], in order to describe the kind of
reasoning used for evaluating explanatory hypotheses for a given set of observations,
philosophers and scientists were familiar with the context of the term from the
Renaissance at least [1]. Some thinkers have been skeptical that a hypothesis should
be accepted merely, but others have argued that this kind of reasoning is a legitimate
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part of scientific reasoning [15]. Clearly any feasible explanatory hypothesis, or
simply explanation, even if it is supposed to be the inference to the best explanation,
is fraught with uncertainty [15] due to the fact that abduction is equivalent to the
logical fallacy affirming the consequent, or else in Latin “post hoc ergo propter
hoc.” Nevertheless, Abductive Reasoning plays a key role in human cognition. For
example when: scientists produce new theories to explain their data, criminologists
compose the evidence from criminal activities, mechanics try to find out what
problem is responsible for a mechanical breakdown, doctors try to infer which
disease explains a patient’s symptom, even when people generate hypotheses to
explain the behavior of others [15], they all use abduction. What is left is the formal
semantic definition of the term explanation. In philosophy and cognitive science,
there have been at least six approaches; explanations have been viewed as deductive
arguments, statistical relations, schema applications, analogical comparisons, causal
relations and finally, linguistic acts [14]. Geospatial Abduction uses the approach
of causal relation in the context of a specific domain. In other words, Geospatial
Abduction is used to infer as the best explanation in a specific domain the relation
between the locations of the observed phenomena and the partner locations which
cause, facilitate, support or are somehow correlated with the observations [13].

Formalism-Technical Preliminaries

To address the Geospatial Abduction for the new class of problems named point-
based GAPs, researchers Shakarian, Subrahmanian and Sapino proposed an appro-
priate formalism [8, 12, 13], which is adopted in this paper, as follows:

Definition 1 (Space). Geospatial universe or universe or simply space S is a finite
two-dimensional grid of size M � N 2 N

2, where M;N � 1 and N is the set of
natural numbers.

Definition 2 (Point). A point p of a finite 2D space S is a representation of
a unit square on the grid in the form .x; y/ where x; y 2 N. Therefore,
S D fx j x 2 Œ0;M/g � fy j y 2 Œ0; N /g:

In addition, conventionally the coordinates .x; y/ in each such unit cell are not
assigned to its center, but to its lower left corner, and the point with coordinates
(0,0) is the lower left point of the grid. Thus, the space is used to represent a specific
region of interest on the ground and the size of the point in ground distance units
defines the space resolution. The suitable extents of the space are normally easily
defined by the GAP application itself whereas the resolution of the space is defined
“arbitrarily” by the application developer or the analyst.

Definition 3 (Observation—Set of Observations). An observation o is a point of
a finite 2D space S where a phenomenon under consideration appeared. A set of
observations O D fo1; o2 : : : okg is any finite subset of space S where each element
oi is an observation of the phenomenon under consideration.
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Fig. 1 Examples of a set of observations and a feasibility predicate in space. (a) A set of
observations O D fo1; o2; o3g in space S . (b) A feasibility predicate in space S

Figure 1a illustrates the above concepts in a space 18 � 14. Furthermore, any
space S has an associated distance function d that satisfies the following definition.

Definition 4 (Distance Function). A distance function d in metric space .S; d/
is a mapping S � S ! R, where R is the set of real numbers, such that for any
x; y 2 S the following axioms are satisfied:

• d.x; x/ D 0, coincidence axiom.
• d.x; y/ D d.y; x/, symmetry axiom.
• d.x; y/C d.y; z/ � d.x; z/, triangle inequality axiom.

There are numerous distance functions that satisfy the above three axioms. The
more familiar are the Euclidean distance, where de D Œ.x1 � x2/2 C .y1 � y2/2�1=2;
the Manhattan distance, where dm D jx1 � x2j C jy1 � y2j, which are special cases
of the Minkowski orLp-metrics [7]; and the road distance dr..x1; y1/; .x2; y2// that
is defined as the shortest path between two points in a road network.

Definition 5 (Feasibility Predicate). A feasibility predicate feas in a finite 2D
space S is a function feas W S ! ŒTRUE;FALSE� such that feas.p/ D TRUE
for any point p 2 S if and only if (iff) that point can be included in a feasible
solution of the GAP or feas.p/ D FALSE otherwise.

It is noted that the feasibility predicate feas is an arbitrary, yet a fixed predicate.
It is an arbitrary predicate in the sense that both the semantics for feasibility and
its spatial assignment in space are assessed by the analyst. This means that for any
space S there are offered 2n distinct alternative process choices for an analyst, given
that jS j D n. Thus, two analysts, A and B, even for the same geospatial problem
in the space S , will most likely come up to feasA ¤ feasB . At the same time it
is a fixed predicate in the mathematical sense, since for any point p 2 S is either
feas.p/ D TRUE or feas.p/ D FALSE. In terms of computational complexity,
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Fig. 2 Examples of geometric restrictions and their logical composition with feasibility predicate.
(a) Geometric restrictions form jOj concentric rings in space S . (b) The .˛; ˇ/-explanation is a
logical composition in space S

since it is user-defined, it is assumed that it has an O(1) complexity cost. Figure 1b
above illustrates in color a feasibility predicate in space S , white indicates that
feas.p/ D TRUE and black indicates that feas.p/ D FALSE.

At this point we can define the concept of an explanation in the framework
of geospatial abduction. Intuitively, given a set of observations an explanation
is a set of points in space such that every point is feasible and such that for
every observation there is a point in explanation that satisfies certain geometric,
or distance, restrictions. The geometric restrictions, which are set by the analyst or
the domain expert, define the minimum and the maximum allowed metric distances
between the location of an observation and its partner location. Formally:

Definition 6 (.˛; ˇ/-Explanation). Let O be a set of observations in a 2D finite
space S ,E be a finite set of points whereE � S and ˛; ˇ 2 R such that 0 � ˛ < ˇ,
then E is an .˛; ˇ/-explanation of O iff:

Œ8p 2 Ejfeas.p/ D TRUE� ^ Œ8o 2 O9p 2 Ej˛ � d.p; o/ � ˇ�

In Fig. 2 are illustrated, for the running example, the geometric restrictions in
space (Fig. 2a) and the logical composition of the geometric restrictions and the
feasibility predicate (Fig. 2b), given that the size of the grid cell is 500m, ˛ D 850m
and ˇ D 1850m. The composition produces the set of partner locations for the
given set of observations. Any subset of this set that explains all the observations is
a possible solution.

The simplest form of point-based GAPs is the decision problem named the
Simple .˛; ˇ/-Explanation Problem (SEP), where given a finite 2D space S , a
finite set of observations O , a feasibility predicate feas and ˛; ˇ 2 R, such that
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0 � ˛ < ˇ, the question is if there is an .˛; ˇ/-explanation for O . Another variant
of GAPs is the k-SEP problem, which defines an upper bound in the cardinality of
any possible solution. More specifically, it is required that jEj � k for a number
k 2 N, given that k < jOj.

Generally, the GAPs are highly non-trivial to solve for four reasons [13].
First of all, the cardinality of the solution is unknown. Secondly, the feasibility
predicate defines highly irregular in shape areas for partner locations, thus simple
geometric reasoning cannot be applied. Thirdly, in case that the phenomenon under
consideration involves a rational adversary who will take any action to evade
detection (in terms of Game Theory this is an adaptive adversary), then a simple
algorithmic solution would not be sufficient and more sophisticated algorithms must
be applied. Finally, the most GAPs are proven to be NP-complete, in terms of
computational complexity, or in other words intractable to compute in practice.

Since there are many possible explanations for a given set of observations the
truly intriguing variants of point-based GAPs are the ones which try to find an
“optimal” explanation according to some cost function �, where a cost function
is a mapping from the set of explanations to non-negative reals.

Definition 7 (Optimal .˛; ˇ/-Explanation). Suppose S is a finite 2D space, O �
S is a finite set of observations, E � S is a finite set of points, ˛; ˇ 2 R such
that 0 � ˛ < ˇ and � is a cost function. Then E is said to be an optimal
.˛; ˇ/-explanation iff E is an .˛; ˇ/-explanation forO , and there is no other .˛; ˇ/-
explanation E 0 for O such that �.E 0/ < �.E/.

One can easily prove that standard classification problems like k-means [4, 5]
are a special case of GAPs by making three simple assumptions: a) ˛ D 0,
b) ˇ > max.M;N / and c) Àp 2 S jfeas.p/ D FALSE [13].

Normally in philosophy and in science additional requirements are enforced to an
explanation, the parsimony requirements. In SEP no such requirement is enforced,
since any explanation will suffice. On the other hand, k-SEP and cost-based SEP
enforce parsimony requirements. Another parsimony requirement, which expresses
the famous principle known as the Occam’s razor: “Pluritas non est ponenda sine
necessitate,” is irredundancy. In Geospatial Abduction this means that between two
explanations the simplest one must be chosen. The formal definition follows:

Definition 8 (Irredundant .˛; ˇ/-Explanation). An .˛; ˇ/-explanation E is irre-
dundant iff no strict subset of E is an .˛; ˇ/-explanation.

One may think that by enforcing the irredundancy requirement in GAPs the
uniqueness of the solution is guaranteed, but this is far from being true. A closer look
easily shows that there still exist an exponential number of such solutions, thus an
algorithm that simply returns irredundant solutions could produce non-deterministic
results [13]. The best one can do is to attempt to find explanations of minimal
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cardinality. This requirement poses the Minimal Simple .˛; ˇ/-explanation Problem
(MINSEP) which is the natural optimization problem associated with k-SEP [8].
Formally:

Definition 9 (MINSEP).

INPUT: a finite 2D space S , a finite set of observations O , a feasibility predicate
feas and ˛; ˇ 2 R such that 0 � ˛ < ˇ.

OUTPUT: An .˛; ˇ/-explanation E such that jEj D minimal.

Algorithms

In this chapter a technique which reduces the total computational cost in any version
of GAPs will be proposed, and an exact algorithm for the natural optimization
problem of GAPs, the MINSEP, will be presented.

Even though mathematically for point-based GAPs, it is sufficient to require for
the relation between ˛; ˇ and space S that ˛; ˇ < inf fM;N g, this obviously does
not maximize the utility of the set of observations. In order to accomplish that the
requirement for the relation between ˛; ˇ and space S has to be rewritten as follows:

8p.x; y/ 2 O then M;N jŒbxCˇc �M�^ŒbyCˇc � N�^Œdx�ˇe � 0�^Œdy�ˇe � 0�

But in reality, in most applications, the analyst faces the exact opposite problem;
the size of the given space is bigger than the necessary. Thus, in order to succeed
effective computation, space must somehow be reduced to the exact size needed.
A technique that reduces the given space S to the absolutely necessary space S 0 is:
given that xmin, xmax, ymin and ymax are the minimum and the maximum values of
coordinates for the observation set, then it is easy to show that any explanation, with
respect to the geometric restrictions, is strictly in the space S 0 which equals to the
Minimum Bounding Rectangular box (MBR) with coordinates in space S :

.Xmin; Ymin/ D .dxmin � ˇe; dymin � ˇe/

.Xmax; Ymax/ D .bxmax C ˇc; bymax C ˇc/

The reduction is completed with the parallel shift of the coordination system to
the point with coordinates .dxmin � ˇe; dymin � ˇe/, in order for space S 0 to have
coordinates (0,0) in its lower left point of the grid. One can easily show that the size
of space S 0 DM 0 �N 0 is:

M 0 D .bxmax C ˇc � dxmin � ˇe/;where M 0 2 Œ1;M �

N 0 D .bymax C ˇc � dymin � ˇe/;where N 0 2 Œ1; N �
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Fig. 3 Examples of the reduction for the given space, the MBRs for the set of observations and
the set of partner locations. (a) The reduction of space S to space S 0 and the MBRs of the set of
observations. (b) The set of partner locations for the .1:7; 3:7/-explanation

Practically, for the running example since ˇ D 1850=500 D 3:7 metric units in
space S , then the coordinates of space S 0 are calculated as follows and the result is
illustrated in Fig. 3a.

.Xmin; Ymin/ D .d4 � 3:7e; d4 � 3:7e/ D .d0:3e; d0:3e/ D .1; 1/

.Xmax; Ymax/ D .b13C 3:7c; b9C 3:7c/ D .b16:7c; b12:7c/ D .16; 12/

In order to achieve more effective computation the use of MBRs can be applied in
the set of observations as well. Instead of searching for partner locations generally in
space S 0 for any observation oi , the search can be focused in an appropriate subspace
Si � S 0. Suppose that MBRex

i is an MBR which contains any point that is no more
than ˇ metric units away from the observation oi and thatMBRin

i is an MBR which
contains any point that is at least ˛0 metric units away from the observation oi , where
˛0 � ˛ such that ˛0 D minde.oi ; pj /jŒd.oi ; pj / D ˛�. Obviously, if the distance
function used in space is the Euclidean distance de , then ˛0 D ˛. Now, it is easy to
see that space Si is defined as Si D MBRex

i �MBRin
i . Trivially it can be proven

that both MBRex
i and MBRin

i are squares, where geometrically the first one equals
to a square in which a circle of radius ˇ is inscribed, while the latter equals to a
square inscribed in a circle of radius ˛0. The MBRex

i in space S is defined by the
coordinates:

.xmin.i/; ymin.i// D .dxi � ˇe; dyi � ˇe/

.xmax.i/; ymax.i// D .bxi C ˇc; byi C ˇc/
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Whereas the MBRin
i in space S is defined by the coordinates:

.xmin.i/; ymin.i// D
 &
xi �

p
2

2
� ˛0
'
;

&
yi �

p
2

2
� ˛0
'!

.xmax.i/; ymax.i// D
 $
xi C

p
2

2
� ˛0
%
;

$
yi C

p
2

2
� ˛0
%!

For the running example, and if it is supposed that d D de , then it is
easily computed that the MBRex

1 is defined in space S by the pair of points
.xmin.1/; ymin.1// D .1; 6/ and .xmax.1/; ymax.1// D .7; 12/. In the same way, the
MBRex

2 is defined by the pair .7; 6/ and .13; 12/, theMBRex
3 by the pair .10; 1/ and

.16; 7/, whereas MBRin
1 by the pair .3; 8/ and .5; 10/, the MBRin

2 by the pair .9; 8/
and .11; 10/, and finally the MBRin

3 by the pair of points .12; 3/ and .14; 5/. These
results are illustrated in Fig. 3a. Additionally in Fig. 3b is illustrated the .1:7; 3:7/-
explanation of maximum cardinality, or in other words the set of partner locations,
in space S for the running example.

Despite the fact that the SEP problem has a proven computational complexity
in PTIME [8, 12, 13], its outputs are not reliable because any .˛; ˇ/-explanation E,
independently of its cardinality, suffices. Thus, an algorithm for SEP would produce,
with high probability, an explanation that is redundant. On the other hand, real-
world data from Baghdad for the IED Cache Detection Problem, which were
experimentally tested in order to show that the Geospatial Abduction framework
is viable, proved that the cardinality of the solution plays a key role in the accuracy
[8, 12, 13]. But shifting from a SEP problem to a k-SEP problem (or in other
words the GAP variant which imposes cardinality constraints to the acceptable
explanations) is not cost-free, since it automatically implies NP-completeness. So,
since an exact solution to k-SEP takes exponential time (in k), it follows that any
efficient algorithm would be nothing more than a fundamental trade-off between
accuracy and computational cost. In the end, among the three approximation
algorithms that were tested, the algorithm which was chosen to be implemented
in SCARE (Social-Cultural Abductive Reasoning Engine) was not the fastest one,
but the algorithm that consistently returned the solution of the smallest cardinality
[8, 12, 13].

The algorithm NAIVE-MINSEP-EXACT below includes the technique that was
presented above, which reduces the total computational cost, and provides an exact
solution for MINSEP by leveraging the NAIVE-KSEP-EXACT algorithm [8].

It must be noted that the NAIVE-MINSEP-EXACT algorithm is flexible enough
to include the domain’s expert assessment, if such exists, of the expected cardinality
of the solution, k. If this kind of information is unavailable or its use bears high risk,
then a simple modification will be needed in the body of the algorithm. Just a simple
replacement in the 5th and 6th step of the number k with the cardinality of the set of
observations jOj suffices. Furthermore, the search for the size of the minimal size
explanation is performed by applying the technique “divide and conquer,” which
guarantees that no more than log2 k (respectively log2 jOj) trials will be needed at
the most [2].
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Algorithm 1 NAIVE-MINSEP-EXACT

INPUT: Space S , set of observations O , feasibility predicate feas, distance function d 2 R,
˛; ˇ 2 R such that 0 � ˛ < ˇ and k 2 N.
OUTPUT: Set E 	 S such that jEj � k and E D minimal .

1. Define distance ˛0 and space S 0.
2. Let M be a matrix array of pointers to binary string f0; 1gjOj. M is of the same dimensions
as S 0.

Each element in M is initialized to NULL. For a given p 2 S 0, MŒp� is the place in the array.
3. Let L be a list of pointers to binary strings. L is initialized as NULL.
4. For each oi .xi ; yi / 2 O do the following:

a. Determine all points pj .xj ; yj / 2 S 0 such that
.xj ; yj / 2 Œdxi � ˇe; bxi C ˇc�^ Œdyi � ˇe; byi C ˇc� and

.xj ; yj / 62
hl
xi �

p

2

2
� ˛0

m
;
l
yi �

p

2

2
� ˛0

mi
^
hj
xi C

p

2

2
� ˛0

k
;
j
yi C

p

2

2
� ˛0

ki
and

feas.pj / D TRUE.
b. For each of these points pj .xj ; yj /:

If MŒp� D NULL, then
(1) Initialize a new array where only bit i is set to 1.
(2) Add a pointer to MŒp� in L.
Else, set bit i of the existing array to 1.

5. Let n 2 N
� such that n � k. For any n elements of L (actually the n elements pointed to by

elements of L), we shall designate l1; l2 : : : lj : : : ln as the elements. The i -th bit of element
lj .i/ will be referred as lj .i/.

6. Exhaustively generate all possible combinations of n elements, for every n � k, starting from
n D k

2
and by applying the technique “divide and conquer” until one such combination

of minimal n is found where 8i 2 Œ1; jOj�jPn
jD1.lj .i// > 0.

7. If no such combination is found, then
return NO
Else, return the first combination that was found.

Complexity

In this section the computational complexity of the NAIVE-MINSEP-EXACT
algorithm is studied by leveraging the complexity results of the NAIVE-KSEP-
EXACT algorithm [8, 12, 13]. It is noted that k-SEP has a proven NP-completeness
[13] via a reduction from the well known NP-complete problem Geometric Cover-
ing by Discs (GCD) [3].

Proposition. The complexity of the NAIVE-MINSEP-EXACT algorithm is:

O

�
log2 k

.k � 1/Š � .d� � .ˇ
2 � ˛2/e � jOj/.kC1/

�

Proof. Obviously, the computations S 0; ˛0 2 PTIME. In addition the cost to set up
the matrix array of pointers M is O(1) and not the size of the matrix, since all the
pointers in M are initially null, thus there is no need to iterate every element in M ,
and only lists in M can be initialized as needed. �



344 A. Koutsioumpas

Since each observation oi 2 O has at most d� � .ˇ2 � ˛2/e partner points,
which are located in space Si D MBRex

i � MBRin
i , then list L has at most

d� � .ˇ2 � ˛2/e � jOj elements. Thus, there are
�d� �.ˇ2�˛2/e�jOj

n

�
iterations taking

place at most in the sixth step, which are as many as the n-tuples in the list L.
Each iteration has a complexity cost of n � jOj, as there must be compared jOj
bits of each n-bit string. Hence, the combined cost of computations equals to:�d� �.ˇ2�˛2/e�jOj

n

� � n � jOj .
Additionally, since we are looking for the minimal n 2 N

�, where n � k, and
we use the “divide and conquer” technique we will need at the most log2 k trials ,
thus log2 k times the combined cost of computations. It is noted that if we have not
adopted the “divide and conquer” technique, then the computational cost would bePk

nD1
�d� �.ˇ2�˛2/e�jOj

n

� � n � jOj. Next, we are searching for an upper bound for the
computational cost of the algorithm’s 6th step.

Lemma. 8n 2 N
� , where n < k, can be proven that:

 
d� � .ˇ2 � ˛2/e � jOj

n

!
� n � jOj <

 
d� � .ˇ2 � ˛2/e � jOj

k

!
� k � jOj

Proof. Let A D d� � .ˇ2 � ˛2/e � jOj, then it must be proven that for any n < k:

 
A

n

!
� n � jOj <

 
A

k

!
� k � jOj ,

AŠ

nŠ � .A � n/Š � n � jOj <
AŠ

kŠ � .A � k/Š � k � jOj ,

1

.n � 1/Š � .A � n/Š <
1

.k � 1/Š � .A � k/Š ,

.k � 1/Š � .A � k/Š < .n � 1/Š � .A � n/Š (1)

Since n < k, where n 2 N
�, then there exists t 2 N

� such that:

n D k � t (2)

From (1), (2) )

.k � 1/Š � .A � k/Š < .k � .t C 1//Š � .A � .k � t //Š ,

.k� .t C 1//Š � .k� .t C 1/C 1/ � .k� .t C 1/C 2/ : : : � .k� 2/ � .k� 1/ � .A� k/Š
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< .k � .t C 1//Š � .A � k/Š � .A � k C 1/ � .A � k C 2/ : : : � .A � .k � t // ,

.k�t /�.k�tC1/ : : :�.k�2/�.k�1/ < .A�kC1/�.A�kC2/ : : :�.A�.k�t // (3)

In the products of the inequality k� 1 terms, which are naturals, appear at the most.
Obviously, the inequality holds if each term of the right product is larger from the
corresponding term of the left product, or that each one of the following inequalities
holds:

k � t < A � k C 1 (4.1)

k � t C 1 < A � k C 2 , k � t < A � k C 1 (4.2)

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

k � 2 < A � k C t � 1 , k � t < A � k C 1 (4.k-2)

k � 1 < A � k C t , k � t < A � k C 1 (4.k-1)

It is observed that each one of the above inequalities (4.1). . . (4.k-1) collapses to the
same expression:

2 � k < AC t C 1 (5)

Hence, since .t C 1/ 2 N
� and .t C 1/ � 2 (directly from the definition of t ) it

suffices, from (5), to prove that for any n < k, where n 2 N
�:

2 � k < A , 2 � k < d� � .ˇ2 � ˛2/e � jOj ,

k <
d� � .ˇ2 � ˛2/e

2
� jOj (6)

But

d� � .ˇ2 � ˛2/e
2

>
�

2
> 1 (7)

And

k < jOj (8)

From (7),(8) the inequality in (6) holds. Thus, it is proven that for every n 2 N
�,

where n < k, the following inequality holds:
 
d� � .ˇ2 � ˛2/e � jOj

n

!
� n � jOj <

 
d� � .ˇ2 � ˛2/e � jOj

k

!
� k � jOj

�
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Now, the proof of the proposition can be continued. Since the above lemma is
proven, then trivially it can be proven that 8n 2 N

�, where n � k, the following
inequality stands:

 
d� � .ˇ2 � ˛2/e � jOj

n

!
� n � jOj �

 
d� � .ˇ2 � ˛2/e � jOj

k

!
� k � jOj

Thus, an upper bound for the computational cost of the algorithm’s 6th step is:

log2 k �
 

d� � .ˇ2 � ˛2/e � jOj
k

!
� k � jOj D log2 k � .d� � .ˇ2 � ˛2/e � jOj/Š

kŠ � .d� � .ˇ2 � ˛2/e � jOj � k/Š
� k � jOj

D log2 k � .d� � .ˇ2 � ˛2/e � jOj � k/Š � .d� � .ˇ2 � ˛2/e � jOj � .k � 1// : : : � .d� � .ˇ2 � ˛2/e � jOj/
.k � 1/Š � .d� � .ˇ2 � ˛2/e � jOj � k/Š

�jOj

< O

�
log2 k

.k � 1/Š
� .d� � .ˇ2 � ˛2/e � jOj/.kC1/

�

It must be noted that, if number k is unavailable, then it suffices to replace k with
jOj in the above expression. As this term dominates the complexity of the other
steps, this will be the complexity of the NAIVE-MINSEP-EXACT algorithm. �

Conclusions

In this paper a technique which reduces the total computational cost in any
version of point-based Geospatial Abduction Problems (point-based GAPs for
short) was introduced, and an exact algorithm for the natural optimization problem
of point-based GAPs, named MINSEP, was presented along with its computational
complexity results.

Even though the use of GAPs has already been extended from point-based
explanations to region-based explanations [9, 10, 13] and Geospatial Abduction
has even been examined as a game between adaptive adversaries (in terms of
game theory) [11], the field is very promising for future work. First of all, the
extension of Geospatial Abduction must be explored in dimensions greater than
two [8]. In particular, priority should be given to the 3D surface of earth, which is
produced by geospatial digital data such as Digital Elevation Model (DEM), Digital
Terrain Model (DTM) etc. Secondly, the possibility of replacing the deterministic
feasibility predicate with a probability distribution function (PDF) must be explored,
or analogously the replacement of the deterministic ˛; ˇ distances with a PDF based
on distance [8]. Finally, Geospatial Abduction should be able to capture topological
relations between each observation and the set of partner locations, for example, [8]
an observation cannot have a partner across a body of water.
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it developed along the centuries, mostly in the frame in which two parties, say
nobleman and general, or concealed lovers, communicated in writing by send-
ing each other messages, which could only be understood when knowing some
additional data—secret keys—and the details for the procedure of encrypting and
decrypting the messages—algorithm. Algorithms were often assembled from a
collection of useful basic ideas, known by tradition.

Traditional Secret Key Cryptography

Transposing the alphabet of a spoken language into a sequence of numeric codes
is always useful for discussing cryptographic ideas. Suppose thus that the Latin
alphabet a; b; : : : ; z is encoded in ascending order by the numbers 0; 1; : : : ; 24. The
idea of permuting the letters cyclically by a constant � was purportedly used by
Caesar in the Gallic wars—hence the name of Caesar code. For instance, for � D 3,
the word ATHENS becomes DWKHQV. For decryption, use � D 25 � 3 D 22.
One can improve the security of this code, by using context specific keys, key
sequences, and other well-defined combination—such variations were investigated
in the 16th century by the French diplomat Blaise de Vigenère. The purpose was to
counter the obvious weakness of the Caesar code with respect to frequency attacks:
provided a sufficiently large cipher code, and knowing that letters like e; a;m occur
much more frequently than z; h; q, one can easily determine the value of � , thus
compromising the whole encryption. Since these ideas can in addition be combined
with some commonly known text modifications, the bag of tricks for artisanal
cryptography offered sufficient variety for satisfying the needs until the advent of
the 20th century. In parallel with the development of new, particular algorithms of
encryption, the analysis of methods for discovering both keys and the particularities
of an encryption procedure—like for instance, the frequency analysis mentioned
for the Caesar cipher—developed itself into the science of cryptanalysis. Today,
cryptanalysis and cryptography are regarded as the two complementary aspects of
the science of cryptology. While the creation of private codes and keys could be
considered to some extent as a playful, even enjoyable undertaking, which requires
some rigor though, for preventing countermeasures of the cryptanalyst, the classical
encryption has one more important limitation: the peers need to be in anticipated
agreement regarding both of the encryption algorithm and the keys. This leads to
several consequences: the first is that one would wish the algorithm to be so strong,
that it suffices to exchange the keys while keeping the same algorithm over longer
periods. The second is that one needs well-trained and faithful couriers for the keys.

In order to illustrate the methods and challenges of classical ciphers, we propose
to the reader to try and decrypt the following small text, which was encrypted by
a scheme developed by the 10-year-old daughter of the first author starting from
a children’s game encryption, found in a book, and which they use for discussing
within a gang of good friends. The cipher text is:
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TGGMCITGWKKNKVCTZCOKNUKECFGOZCCFCWK

It is obtained by a combination of the ideas discussed above.

The Advent of Computing Machines . . .

In the 20th century, military confrontations became more devastating, and the power
of data processing with the help of machines increased without precedent. However,
until World War II and even later, the basic scheme for secure communication
remained the same: the secret communicators shared some common algorithm,
which could eventually be performed by a machine, and they were using some
shared secret key, for the diffusion of which many lives were put in danger. One
of the most documented episodes of warfare use of cryptography was the German
development of their encryption machine Enigma II on the basis of a simpler, earlier
version Enigma I, which had been a commercial product before the war.1 Little did
they know that this unfortunate combination of economic and military application
had led to the fact that a team of young Polish mathematicians from Poznan were in
possession of a means for breaking Enigma I. When hired by the British authorities,
the work for breaking the enhanced version was, against the German expectation,
an achievable one, and the breaking of Enigma had its important consequences for
the outcome of the war [10, 19].

. . . and of Personal Computers and Networked Communications

The advent of computers brought on the one hand the massive improvement
of computational capacities, then, in the early 1970s, and on the other as the
US-army built the ARPA-net, the advent of networked communications, an ancestor
of the Internet. In light of this progress, cryptography was led into simplifying
the definition of its object and tasks. Some very useful principles have been
established, which stay to hold. First, it was understood that there is little security
in the use of proprietary, secret algorithms—the choice of cryptographers going
in the direction of simple, publicly known and well-understood and cryptanalized
algorithms. As long as the bag of tricks is known, it can even happen more easily
that a flaw escapes in the design of a proprietary algorithm. As a consequence
the assumed gain of security obtained from keeping a secret of the cryptographic
procedure is counterbalanced by the insecurity stemming from the lack of reliable
cryptanalysis. In simple words, the modern attitude to security is resumed in the

1The development of Enigma I during the early days of mechanical office machine, shows that
there has always existed an important requirement for cryptography also in business.
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paradigm publically known and cryptanalized algorithm and secret keys. As a
consequence, the protection of keys becomes the center of the security concerns
and is offered the due attention: the system is as secure as the keys are. In addition,
the new approach to cryptography promises that, due to the collective scrutiny of
the cryptographic community, in time the most efficient and reliable algorithms are
naturally selected, while weaknesses and possible attacks eventually show up in the
processes. An algorithm is more reliable when it has longly resisted public scrutiny
by the community, and not when it is based on sophisticated secret tricks.

We mentioned that in early times of cryptography, secret keys were transported
by couriers, which brought their life in danger for this purpose, while even later, in
times of telegraphic transmission of keys, the problem of building secure channels
for key transmission was a crucial one. In the seventies, the first networked system
of computers became conceivable. It physically realized by the American army, in
the form of the ARPA net, which first connected between 1972–1974 a number of
Universities on the East and West Coast, for research and experimental purposes.
The notion of remote computer-communication became tangible for the users of
the net.

Under these conditions, it became obvious that the old systems for secure key
distribution could no longer satisfy the needs of security for this technological
advance and some new ideas were called for, in order to solve the problem in a
simple, time-efficient, and reliable way.

The idea was provided by the concept of public-key cryptography, which was
born in Stanford from the joint work of W. Diffie and R. Hellman who studied
public key infrastructures, and R. Merkle who studied secret key distribution. Here
is the way Diffie and Hellman presented the problem in [8], which mentions the
joint work with Merkle: In turn, such applications (fast computers) create a need
for new types of cryptographic systems, which minimize the necessity of secure key
distribution channels and supply the equivalent of a written signature.

Public Key Cryptography Arises

The idea was remarkably simple and elegant. Its natural properties were strikingly
reflected 30 years later, when it became publicly known and verified, that J. Ellison,
an engineer and cryptographer working for MI5s General Communication Head-
Quarters GCHQ, had developed exactly the same concepts and schemes as Diffie,
Hellman and Merkle, yet seven years earlier. The research was only declassified
after the year 2000; it was a matter of academic debate, if a person working for secret
services, outside the academic community should be granted credit for scientific
developments. Beyond these it is in any way remarkable that the same ideas could
be developed twice in a totally independent way.

Traditionally, a protected communication was established by using secret key
cryptography. In a wide area communication network, in which numerous peers
could communicate over large distances, the chances for establishing a common
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secret key prior to communication are low, so there was demand for a procedure
which would allow a pair of peers A and B—Alice and Bob, as cryptographers
often used to name them—to dispose of a shared secret key, without any prior
communication, either direct or by means of a parallel, secured channel. Only some
public known data base�, and algorithm could be accepted as premise for achieving
the purpose.

The concept of public key cryptography, introduced by the three authors men-
tioned above, is simply described by the following: If X is a peer who wants to
engage in secure network communication, he should start by generating a set of data,
which is bundled into his own secret key SX . A subset of this data, bundled in the
public key PX will be made public to all peers he might be wishing to communicate
with—it will be, for instance, part of the data base �, or it may be transmitted over
any unsecured channel. The two keys should enjoy the following two properties:

1. Both keys can be used for encrypting texts according to some algorithm yet to be
defined.

2. Messages encrypted by SX can be decrypted by PX and vice versa. Moreover,
the keys should be sufficiently random: the chances for two peers generating
accidentally the same secret key should be close to zero.

3. It should be computationally unfeasible to derive SX from PX .

For ascertaining the third condition, one usually derives the public key PX from
the secret one, by using some kind of trap-door function f . Under this term, one
understands an invertible function, such that the value of f is very easy to compute,
but the inverse is computable in theory, but infeasible in practice, provided the data
is sufficiently large. A typical such example is the map f W N � N ! N which
associates two primes p; q to their product n D p � q. This can be computed very
efficiently even for quite large primes. However, the inverse problem, of factoring
n is assumed. There is no proof for the fact that there cannot exist some fast—e.g.
polynomial algorithm, thus one whose run-time is a polynomial in the number m D
log2.n/ of bits of the input number n—for factoring integers. However, the problem
is one of the most intensively researched ones in algorithmic number theory; after
decades of collective work, the most efficient algorithm for factoring, the Number
Field Sieve (NFS) requires the order of

ecm
1=3

binary operations, to be very hard.
On the basis of the premises 1.–3., if Alice and Bob want to communicate,

then Alice sends to Bob messages encrypted by PB , which she may retrieve from
the public key repository. However, only Bob can decrypt the message, so the
communication is secured. Based on this idea, a further useful application emerged:
it is often useful to be able to certify the ownership of some message, to sign the
message in a unique and non-repudiable way. In this case, secrecy is less of a
concern than ownership is. The solution consists of associating a short cryptographic
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hash-valueH to the message, which is encrypted by the secret key SA. Any receiver
will then be able to regenerate the hash value on his own, decrypt the encrypted hash
with PA, and then compare the two results. If they match, Bob has a proof that it
was Alice who sent the message.

Within the next 20 years the public key cryptography and the academic paradigm
of cryptology spread out and reached probably even most of the banks and
diplomatic transmissions, which traditionally used to consider the use of private
algorithm as a particularly welcome increase of security.2

Classical Public Key Cryptosystems

In the next two years after the abstract definition of public key cryptography, two
major algorithms that implement this idea and are still in use today, were invented.3

The first one was using the discrete logarithm problem in the multiplicative group
of finite fields as a trap door. If p is some large prime and g 2 F

�
p generates the

multiplicative group modulo p and a D gc 2 F
�
p , then it is easy to compute

f .x/ D b D ax; for arbitrary x:

However, to recover x from b, the Discrete Logarithm Problem in finite fields, is a
computationally hard problem—thus adequate for a trap door function. For the fac-
toring problem, there is no proof that no faster algorithms can be found—however,
the best one discovered until today has a comparable asymptotic complexity to the
number field sieve for factoring integers, mentioned above.

Diffie and Hellman proposed an algorithm for exchange of a shared secret over
an insecure channel, and is widely known as the Diffie-Hellman key exchange
algorithm. It functions as follows: If p and g 2 F

�
p are like before—these being

public data—then Alice and Bob start by choosing some random one-time keys
AR;BR, which are elements of Z=..q�1/ �Z/. Then Alice sends to BobMA D gAR
and receives from Bob MB D gBR . The reader can verify that by using the private
data and the data received, both Alice and Bob may retrieve S D gAR �BR , which is
the data from which the common secret key is extracted. However an eavesdropper,
who is always called Eve in cryptography, would only know gAR and gBR , but
not AR or BR. The system can be broken by breaking the Discrete Logarithm.
But, does the converse also hold? This is not known. The particular, more special

2This fact was reflected again in the fact that the producers of cryptographic machinery were
involved in customer tailoring algorithms for this purpose. In the late nineties, manufacturers of
cryptographic hardware still had only a precious few customers insisting on the “privilege” of
purchasing machines which run according to some unique and “secret” algorithm.
3It is also noteworthy that, after J. Ellis had defined the abstract notion of public key cryptosystems,
in a similar way to Diffie, Hellman and Merkle, the same algorithms were discovered in MI5 too,
by C. Crook and M. Williamson, only in the reverse order.
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problem in which one should retrieve gxy 2 F
�
p from gx; gy has received the name

DH-Problem, for obvious reasons. More recently, variants of the Diffie–Hellman
key exchange have been proposed, which can be proved to be equivalent to the DH
problem: i.e., they can be broken if and only if the DH problem is broken. The key
exchange algorithm does not offer the possibility to generate signatures; however,
J. L. Massey and J. K. Omura proposed in 1983, a variant based also on the discrete
logarithm trap door function, which allows also public key encryption, and thus
signatures.

We should mention that in general public key algorithms are much slower
than secret key encryption. Therefore it is most likely that one would use them
for establishing a shared secret key, after which a communication session can be
encrypted with a common agreed secret key algorithm, using the established key.
For this purpose the original Diffie–Hellman algorithm is sufficient. Incidentally
this two-step approach to encryption is the core idea in the SSL/TLS protocol,
developed between 1992–2002, and which is currently used in all confidential https
communications on the Internet—for instance, when you book an electronic flight
ticket, or buy a book from Amazon.

The first proper public key encryption algorithm was provided one year later,
in 1977, by R. Rivest, A. Shamir, and L. Adleman at MIT. Their algorithm, widely
known as RSA after the initials of their names, uses the problem of factoring integers
as a trap door. A secret key consists of SA D fp; q; dg, where p; q are two large
primes satisfying some additional randomness conditions and

0 < d < .p � 1/.q � 1/; with .d; pq.p � 1/.q � 1// D 1

is a random number; if e 2 N is such that

ed 
 1 mod .p � 1/.q � 1/;

the public key consists only of PA D .n; e/, with n D p � q. In some instances, e
is a fixed number for the whole system, so d will be determined by the holder of
the secret key using the same defining congruence. With these prerequisites, if M
is a short message it will be identified with a number in Z=.n � Z/ and its public
key encryption Me 
 Me mod n can be computed in the open, but can only be
decrypted by Alice, the holder of d , since

M 
Md
e DMed mod n:

Conversely, if Alice encryptsM with d , then anyone can recoverM and upon doing
so will have a proof Alice having produced the encryption: indeed, only the owner
of the secret key could produce this encryption, which can thus act as a private
signature of Alice.

Despite initial attempts of the NSA to inhibit the publicizing of the ideas of
public key encryption and RSA, these were brought to the public already in 1977 by
Martin Gardner in his widely read column “Mathematical Games” in the Scientific
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American magazine and were eventually published in the communications of the
ACM [31]: the way to public key cryptography was open!

In the same year 1978, R. McEliece proposed a somewhat different cryptosystem,
which was inspired from coding theory. The trap door function is drawn in this case
from general linear codes, a context in which the parameters of a linear code are
specially adapted to the purpose of public key cryptography. The resulting algorithm
has an advantage compared to the number theory-based algorithm mentioned above
and some further, based on elliptic curves, that we shall discuss below, since it is
faster. However, the keys may be as large as 1MB , which compares poorly to the
128B required by RSA for a comparable level of security.4

Cryptanalysis

In 1978, Hellman and Merkle invented a public key cryptosystem that did not rely
on number theory, but rather on the NP-complete knapsack problem.

The first major success of public key cryptography was that the expectation
became true, and the domain of cryptanalysis—concerned with the analysis of
possible attacks against cryptographic schemes—became a flourishing academic
domain of investigation. One of the most spectacular successes was due to the
development of the lattice reduction algorithm by A. Lenstra, H. Lenstra Jr., and L.
Lòvasz, the LLL-algorithm. Given a lattice L � Z

n, there exists a base consisting
of the shortest vectors. Classical algorithms for finding such a base are known
from the work of Charles Hermite. Only, in the case when the base is presented
by an initial generating system of very large vectors, the process is exponential.
The algorithm was developed from techniques used by Lòvasz in integer program-
ming; the idea was to use an approximate Gram-Schmidt-orthogonalization which
provides some close to minimal vectors in L . The advantage is that the algorithm
runs in polynomial time and has therefore a wide variety of applications both in
cryptography and in number theory itself. One of the first applications of LLL was in
showing that the keys of the knapsack cryptosystem could be cracked in polynomial
time: in order to do so, one had only to solve a particularly simple subfamily of
problems belonging to the knapsack family. This result showed the advantage of
public academic scrutiny of cryptographic schemes, since it had only taken five
years to reveal the weaknesses of one of them. But it also blocked the way for
applications of the knapsack. Some improved versions have been presented, that
could never be attacked—but they never made it to public applications.

The most important effect of cryptanalysis was less visible. The community
quickly developed its own language and defined a variety of subtle attack scenarios,

4One compares the security of two fundamentally different algorithms, by estimating the parameter
sets required, such that breaking the given algorithms by means of the best state-of-the-art
algorithm would require comparably large amounts of time.



Computational Number Theory and Cryptography 357

in which the eavesdropper Eve was offered increasing levels of advantages: thus Eve
can simply tap a wire communication, but she might also collect large amounts of
data signed by Alice, or even induce her into signing a chosen suite of messages.
Thus, possible attacks could be investigated for these various levels of disclosure.
The procedure is very fruitful, since the algorithms to which no attack is found,
even under the most generous premises for Eve, is for good reasons assumed to
offer reliable security.

Later, the encryption hardware began being regarded as a point of attack, as it
was observed that physical measurements on a chip while it is computing an RSA
encryption, for instance, may reveal some bits of the secret key. Additional measures
were then developed to protect from these side channel attacks. This way, well-
defined attack scenarios are used for checking the security of various cryptosystems
and protocols.

The development of cryptography is triggered by the two opposite demands,
for efficiency and for security. It occurred more than once, that the wish for
efficiency led to the use of some extreme key configurations. These provided
particularly efficient arithmetic, thus effective computation of the cryptographic
scheme. However, as in the case of the knapsack problem, the question could have
been asked, if by restricting to particular families of the key space, one did not
move into a particular instance of the general, hard problem, to which the trap door
function was associated. The question was first answered by the observation that no
algorithms are currently known that could take advantage of the particular family
of keys used. But eventually, an attack was discovered, which discarded the use of
certain keys, or even whole cryptographic schemes. As an example, it is for instance,
useful to have a universal, short public exponent e for the RSA scheme. This had
been used in practice in the late 1980s. But M. Hagstad and then D. Coppersmith
showed that if e is too small, it is easy to gather sufficiently many messages signed
by the same key SA, and then use simple arithmetic in order to crack that key.
Therefore, the smallest fixed key currently allowed by standards is e D 216 C 1,
and this may change with the growth of computing and storage capacities.

We have already discussed the fact that for the number theoretical public key
systems introduced so far, an efficient attack of the underlying number theoretic
problem (factoring or discrete logarithm) breaks the schemes. Conversely however,
it is not known if general attacks can be found that break the scheme without
offering an efficient general solution for the inversion of the trap door function.
Such questions about provable security became actual in the late nineties. We have
already mentioned that by modelling the DH-problem, which is a particular form of
the discrete logarithm, the best results available in this direction were obtained by
U. Maurer [23] and V. Shoup, and various coauthors, e.g. in [6].
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Dickman’s Theorem and the Trap Door Functions

In the thirties of the last century, J. Dickson considered the question of estimating
the largest prime factors of some random integer n. Using heuristic estimates on the
repartition of primes, he found for instance that if pjn is the largest prime dividing
n, then p D O.nln 2/. More generally, an integer n > 1 is defined to be y-smooth if
none of its prime factors exceeds y. The function

 .x; y/ D ]f 1 � n � x W n is y-smooth g

counts the smooth numbers less than x. With these definitions, Dickman also proved
that for all u > 0 there is a real number �.u/ such that

 .x; x1=u/ � �.u/x:

The function �.u/ was described in terms of a differential equation, in which u was
fixed for x !1.

Half a century later, the gap was filled by Canfield, Erdős and Pomerance [5],
who proved that

Theorem 1 (Canfield, Erdős and Pomerance). For all real sequences with
u!1 under the constraint u < .1 � �/ ln x= ln ln x, one has

 .x; x1=u/ D xu�uCo.u/ (1)

As a consequence one concludes that with probability P > 1=2 one out of

LnŒ1=2; 1� WD e
p

log.n/ log log.n/

random integers belonging to the interval .0; n/ will be y-smooth, for
y D O.LŒ1=2; 1�/. Bounds of the type

LnŒc; d � D ed log.n/c log log.n/1�c ; 0 < c < 1

are called subexponential for obvious reasons: they grow much faster than any
polynomial in m D log.n/ but substantially slower than em. All the state-of-the-
art, subexponential algorithms for solving either a variant of the discrete logarithm
problem, or for factoring integers, take advantage in some way of this consequence
or variants thereof.

We exemplify here the ideas on the instance of the quadratic sieve method, which
is a classical fast algorithm for factoring integers. It has its origin in the following
simple observation of Fermat: if m is a composite integer, then the congruence

x2 
 c mod m
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will have at least four solutions, and there are x; y such that x 6
 ˙y mod m, but
x2 
 y2 mod m. Then .xCy;m/ is a non-trivial factor ofm. Theorem 1 helps find
such pairs x; y, as follows: for numbers x.i/ in some interval dpneC i; 0 � i � B ,
one computes the remainder5

r.i/ D x.i/2 rem m

and retains only those values of x, for which r is a B-smooth number. After
gathering sufficiently many such relations, one may hope that the product of some
r.i/ is a square: namely, that there is an index subset J � Œ0; B� such that

Y

i2J
r.i/ D R2; R 2 Z:

Letting then

X D
Y

i2J
x.i/;

we obtain the congruence

X2 
 R2 mod m:

If in addition, X 6
 ˙R mod m, which should happen with probability � 1=2,
then .X ˙ R;m/ is a non-trivial factor of m. The method relies on some empirical
assumptions on the repartition of factors of r.i/: namely, that the distribution
of these residues is such that one may apply the relation (1) for estimating the
probability that one of these numbers is B-smooth. These allow to establish an
optimal bound

B � exp.
p

log.m/ log log.m// D LnŒ1=2; 1�:
In our case B D L.nI 1=2/ and the quadratic sieve runs in time polynomial in
B-experience having so far confirmed the underlying heuristical assumptions.

The following nice example is taken from the book of R. Crandall and C.
Pomerance [7]: let m D 1649, with 41 D dpme. We find

412 
 32 mod mI 422 
 115 mod mI 432 
 200 mod m:

Since 32 � 200 D 25C3 � 52 D 802, we let R D 80 and

X D 41 � 43 D 422 � 1 
 114 mod m;

finding that 1142 
 802 mod m and eventually 17 D .114 � 80; 1649/, which is a
non-trivial factor.

5In computational algebra, the notation x rem y stands for the unique representative of the
equivalence class of x mod y which lays in the interval Œ0; y/.
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For the discrete logarithm problem in F
�
p , which consists of determining x such

that gx 
 b mod p, one uses smooth numbers as follows: Fix a smoothness bound
y and let q1; : : : ; qr < y be all the primes up to y. For random values of m, one
computes u D gm rem p and keeps only those values of u which are y-smooth.
After collecting sufficiently many relations, one will then be able to compute the
discrete logarithms li such that qi 
 gli mod p. Next, one tries random values
of k searching for ones that make v D bg�k rem p be a y-smooth number. The
precomputed values li will then help determine x D k C logp.v/ from the prime
decomposition of v. This algorithm also relies on heuristic assumptions, on the basis
of which the running time is LpŒ1=2;

p
2�.

At the end of the 1980s, John Pollard found a way for applying the idea of the
quadratic sieve to integers in number fields rather than Q. The method was first
applied to the factorization of the Fermat number F9 D 22

9 C 1. In the following
years, it was generalized and improved by a series of mathematicians, starting
with A. Lenstra and M. Manasse. The resulting number field sieve is currently the
asymptotically fastest factoring method and it runs in time O.LnŒ1=3; c�/, for some
constant c < 2.

Similar methods are known for the discrete logarithm method: they use number
fields in case of larger characteristics, and function fields for small characteristics.
Like in the case of factoring, their running time is also O.LnŒ1=3; c�/. Current
records reach as high as 7–800 binary digits for factoring composite of general
form and � 5–600 for the discrete logarithm in prime fields. During more than one
decade, the discrete logarithm was hardest in finite fields Fp` for which ` � log.p/:
these orders of magnitude could not be attacked by either number or function field
sieves.

Recently A. Joux from INRIA Nancy developed a series of new ideas for
improving discrete logarithms in finite non-prime extensions. There are several
versions and applications of these ideas. First, they succeed in filling in the gap
that existed between the function field and the number field sieve, by providing
algorithms in the order of LpŒ1=3; c�, and also for the case of extension fields with
` � log.p/. They allow to solve the discrete logarithm problem in quasi-polynomial
for field Fp` when ` � p; the result has been presented at Eurocrypt 2013 and is
published in [1]. The ideas find another application in discrete logarithm in the fields
of characteristic two extension degree F2q�k with q a prime and k an integer related
to q. Joux also announced a variant of his method to yield an algorithm for discrete
logarithms in general fields of characteristic two, running in LqŒ1=4; c�, where q is
the size of the field [18]. This would be the first known algorithm of this efficiency.
The developments in this field are still quite fluid, but certainly within the following
months to a few years, some important and efficient versions of discrete logarithm
algorithms in a variety of fields will be well described and understood.
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Elliptic Curves

The cryptographic schemes discussed so far use multiplicative groups .Z=n � Z/�
or F

�
q and related trap door function. Having (computational) access to a larger

family of well-understood abelian groups would certainly enlarge the possibilities
for cryptographic and algorithmic applications.

In 1984 René Schoof made the way by opening the discovery of a polynomial
time algorithm for counting the number of points on an elliptic curve over a finite
field. This brought the groups of algebraic geometry in the realm of applications
and algorithms. Within one year, H. W. Lenstra Jr. proposed an important variant
of Pollard’s rho-method for factoring, based on elliptic curves: the elliptic curve
method or ECM. Also, V. Miller and N. Koblitz proposed independently the use of
elliptic curves for cryptography. The ECM method has a run-time comparable to
the quadratic sieve, but it behaves particularly well for numbersm which have some
small prime factors, i.e. sensibly smaller than

p
m: the run time is namely estimated

to be LpŒ1=2;
p
2�, where p is the smallest prime dividing m.

We recall that an ordinary elliptic curve over a finite field Fq D Fp` of
characteristic p > 3 is the set of solutions

Eq.a; b/ WD fP D .X; Y / W Y 2 D X3 C aX C b;X; Y 2 Fqg � F
2
q :

There is an abelian addition ˚ defined on this curve, which has the point at infinity
O as neutral element. The neutral element can be understood as arising when the
addition law, which is based on rational functions, leads to a division by zero. The
formally correct definition is obtained by embedding the curve in a projective space.
The curve is ordinary, if it is not singular and not supersingular, two conditions that
can be verified in terms of q; b;Fq . Thus

Eq.a; b/ D .Eq.a; b/;˚/
becomes an abelian group. The classical theorem of Hasse gives the following
bounds for the size of this finite group:

jEq.a; b/ � q C 1/j < 2pq: (2)

An elliptic curve can be defined in a similar way over the algebraic closure Fq .
Its N -torsion is

E ŒN � D fP 2 E W ŒN �P D Og;
where ŒN �P denotes the N -fold addition of P to itself. The torsion subgroup is—
with one exception—a two-dimensional free Z=.N �Z/-module, and a vector space,
for prime N . If � 2 Fq is a primitive N�th root of unity, there is a non-degenerate
bilinear, skew symmetric pairing:

h�; �i W E ŒN � � E ŒN �! h�i; (3)
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the Weil pairing. In particular, if P;Q are linear independent torsion points, then

hP; Œx�Qi D .hP;Qi/x ; (4)

an identity in the multiplicative group .FqŒ��/�.
The idea of the ECM factoring method of Lenstra adapts an older algorithm of

Pollard, which was designed to work in multiplicative groups, to the larger family of
elliptic curves. It can be described briefly as follows: if n is a number to be factored,
one draws random numbers a; b such that a point P D .X; Y / is known with

Y 2 D X3 C aX C b; 0 � X; Y < n:
Assume now that n has a prime divisor p such that m WD jEp.a; b/j is a B-smooth
integer for some fixed, not too large integer B . If K D B Š, then in the process
of computing the multiple ŒK�P by additions and doublings on the curve modulo
n, one will most probably encounter a factorization of n: some denominator will
be divisible by p (point at infinity!), but not by all the primes dividing n. Lenstra
proved that for uniform randomly distributed a; b, the numbersm are close to being
uniformly distributed in the Hasse interval (2). Theorem 1 then implies that by
choosing B D LpŒ1=2; 1� random curves, one will find a curve for which m is
B-smooth with probability> 1=2. This explains the main steps of the algorithm and
of its proof. The interested reader may use Silverman’s [34] and Washington’s [35]
textbooks for a detailed rigorous introduction to elliptic curves and their applications
to cryptography.

Counting Points

The idea of Schoof is both elegant and important, beyond even the immediate
algorithmic and cryptographic applications: it opened a new area of research for
practical algorithms for counting points on finite abelian varieties. This research
area is still growing, while the main domain of application goes beyond the
limits of cryptography, since at least a decade. The algorithms are more and more
used for larger computations related to mathematical questions such as the Birch
Swinnerton-Dyer conjecture, and other properties of L-series. See also [30] for an
elementary theoretical application of point counting.

Initially, Schoof [32] started from the following simple remark: if

Ep.a; b/ W Y 2 D X3 C aX C b
is an elliptic curve defined over the finite field Fp , of which one assumes that
it is ordinary, then Riemann’s conjecture for elliptic curves implies that, in the
endomorphism ring of the curve End.Ep;Fp/ defined over the algebraic closure
of Fp , the Frobenius verifies the quadratic equation

˚2 � t˚ C p D 0: (5)
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Since Ep is fixed by ˚ , we have

jEp.a; b/j D p � t C 1

for the number of points fixed by the Frobenius. Counting the points is thus
equivalent to determining the value of the trace of the Frobenius t ; since the Hasse
inequality (2) states that

t < 2
p
p;

it suffices to determine the remainder t rem ` for a set of small primes with:

L D
Y

` > 2
p
p:

Therefore, the core step of the algorithm consists in modeling the `-torsion EpŒ`�
into an algebra

B D FpŒX; Y �=
�
 `.X/; Y

2 � .X3 C aX C b/� ;
P D �

X C . `.X//; Y C .Y 2 � .X3 C aX C b//� 2 B:

in which `.X/ is the `-division polynomial which has as roots all the x-coordinates
of `-division points. Therefore, any such point enjoys the properties which define
the generic `-torsion point P 2 B. It is then a straightforward computation, to
determine t rem ` from the identity

˚2P C pP D t˚P:

The seminal idea of Schoof, to determine the parameters of the Riemann
�-function from projections in torsion spaces, and thus counting points on varieties
over finite fields was both improved for simple varieties, such as elliptic curves, and
extended to more general abelian varieties. In the first case, the primary thing to
do was to reduce the size of the algebra B—which can be done by finding smaller
factors of  `.X/ mod p.

The breakthrough in this direction was indicated by Noam Elkies (cf. [9, 33]),
who brought modular forms in the game, thus showing how to find in half of
the cases some factors f .X/j `.X/ of linear degree, compared to the quadratic
degree in ` of the division polynomial. The `-torsion EpŒ`� Š F

2
` as a vector space;

fixing two linear independent points P;Q 2 EpŒ`�, we see that G WD Gal .B=Fp/
acts on the vector space EpŒ`� by acting on the base P;Q. We obtain herewith a
representation � W G ! GL2.F`/, with respect to which �.˚/ verifies the same
quadratic equation. Let ı be the discriminant of the quadratic polynomial in (5),
which is the same as the characteristic polynomial of the image of �.˚/ 2 GL2.F`/.
Then, according to the value of the Legendre symbol

�
ı
`

� 2 f1; 0;�1g, the matrix
�.˚/ is diagonalizable, has normal upper triangular form or has eigenvalues in F`2 .
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In the first case, there are two eigenpoints P;Q of the Frobenius and the orbit of
their x coordinates under multiplication on the curve is galois invariant. We obtain
herewith the eigenpolynomials

fP .X/ D
.`�1/=2Y

kD1
.X � .Œk�P /x/ j  `.X/; where

deg.fP / D .` � 1/=2; and deg. `/ D .`2 � 1/=2;

together with a new algebra B
0, obtained by replacing  ` with fP . For the

computation of FP , Elkies considered the function field CŒŒj.q/��. Some classical
arguments on Eisenstein series and �0.`/-modular forms, imply that for each j -
invariant jm of an `-isogenous curve to Ep—or also, for each zero of the modular
equation ˚`.X; j.q//—there is a polynomial fj .X/ 2 C ŒŒj.q/��ŒX� which has the
x-coordinates of the kernel of the respective isogeny as zeroes. The polynomials
can be constructed in the function field by manipulations of q-expansions and
they have the useful property that all the coefficients are algebraic integers. The
insight of Elkies was to show that one can substitute for jm the value of some
zero ˚`.X; j.Ep// mod p and reduce the coefficients of fj .X/ modulo p, thus
obtaining some eigenpolynomial corresponding to the value of jm. Indeed, if E
is any curve over Q which reduces to Ep at some prime ideal above p, then its
j -invariant reduces to the one of Ep and so do the invariants of its `-isogenies.
Therefore, if the modular equation has linear factors jm over Fp , by inserting these
in the expression for fj .X/, upon reduction at the same prime, the coefficients
of the polynomial fj map to the ones of some eigenpolynomial. Using improved
algorithms for manipulation of series [4], one can compute the eigenpolynomials in
time O.log3.p//, the running time being dominated by the computation of zeroes
of ˚`.X; j.Ep// mod p. Further improvements can be achieved by using the galois
structure of the resulting algebras [25]. The galois theory of finite, commutative
algebras has wider applications in algorithmic context and was generalized in [27].

For curves defined over finite fields of small characteristic p, it is possible
to project (5) in the pN -torsion group. Using different flavors of cohomology
combined with Newton iterations, various authors starting with T. Satoh, K. Kedlaya
and A. Lauder developed in this way, the most efficient point counting algorithms
for elliptic curves. Some of them are generalized to super elliptic curves, elliptic
surfaces, etc. However, this approach works best only for very small characteristics.

Cryptography

The elliptic curve-based cryptographic schemes which have survived scrutiny and
became part of current standards on public key cryptography are essentially variants
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of the Diffie-Hellman key exchange scheme and are based on the difficulty of
solving the discrete logarithm problem: find x such that

Œx�P D Q; for P;Q 2 Ep.a; b/

being points on an elliptic curve, such thatQ is known to generate a cyclic group of
high order. Unlike in finite fields, the discrete logarithm problem on elliptic curves
is not known to allow any sub-exponential time solutions. The best known methods
have run time O.

p
p/, where p is the characteristic of the (prime) field over which

Ep is defined. As a consequence, one can work in much smaller groups than in the
case of the multiplicative groups of finite fields, still achieving the same estimated
security of a scheme, with respect to state-of-the-art attacks. This advantage led to a
new wave of interest for elliptic curve cryptography in connection with the security
of mobile phones.

The Weil pairing requires certain caution though. One may in principle use the
identity (4) in order to reduce the discrete logarithm problem on the elliptic curve to
one in the multiplicative group of the field Fr WD FqŒ��. Since discrete logarithms in
multiplicative groups allow for subexponential algorithms, being thus much more
efficient, the size of this extension Fr plays an important role and the reduction
might cause problems when Fr is not too large. The use of the Weil pairing for
the discrete logarithm on supersingular elliptic curves was pointed out for the first
time by Gerhard Frey. The problem came to light when Frey was asked to estimate
a software using these curves—on which a particularly efficient implementation
of the group laws is possible—for its security. He showed that for these specific
curves, the Weil pairing reduced the elliptic curve logarithm problem to one in finite
fields of critically small size—Fr D Fqk for k 2 f2; 3; 6g, thus leading to serious
security problems. The idea was taken over by A. J. Menezes, P. C. van Oorschot
and S. A. Vanstone and is currently known in the literature under the name of MOV
attack. The attack is in general inefficient, but discarded the use of supersingular
curves for cryptographic purposes, for the reasons mentioned above. Interestingly,
more than a decade later, due to the increasing demand for efficient cryptography
using short bandwidth, in application to securing cell phone communications,
the supersingular curves found a revival. Recently, some research is invested in
finding good combinations of finite fields and supersingular curves, such that on the
one hand time savings can be made in the arithmetic, and on the other hand
the field Fr D Fq6 is intractable for the number field sieve discrete logarithm.
This example shows that there still is a certain volatility about development of
practical cryptographic system, which however overlaps the reliable overall results
of cryptanalysis.

A further example where efficiency is sought at the critical border line of the
MOV attacks are the so-called Koblitz curves, defined over fields K D Fp` of small
characteristic and having a; b 2 Fp . Since p is small, it is of course likely that the
field Fr  K required for a MOV attack is a not very large extension of K, even
when the curves are not supersingular.



366 P. Mihăilescu and M.Th. Rassias

In the last years, D. Boneh and A. Joux developed the idea of identity-based
cryptography. In order to cope with increasing demand of various cryptographic
keys, the idea is to provide the possibility in some limited networks for the user
to have access to his secret key, essentially by means of his own identity. The most
spread implementation of this idea also uses Weil pairing, and is thus called pairing-
based cryptography. The recent developments in discrete logarithms for fields of
small characteristics described above have thus an important impact, requiring
significant increases in the size of the keys used.

Despite standardization, which made cryptographic developments obsolete on
the Internet, there are thus reasons why research in this particular area is still
very fertile. We recommend the detailed and lively survey of Heß et. al. [16]. The
interested reader is referred to [20–22, 24, 26, 28] for further reading.

Key Management and Biometry

Since the security of a cryptosystem relies on its keys, it is an important task to
manage these keys in a secure and efficient way. In a public-key environment, one
discerns the following essentially distinct aspects:

A. Managing secret keys. Since these are data without meaning for humans, they
should necessarily be stored on some electronic media, thus leading to the
security concern that only the authorized key possessor should have access to
the use of these keys.

B. Trusting public keys. We have seen that in the public key setting, Alice needs
to use some public key of Bob. This can either be provided by Bob during the
communication, or read from a common, public data base. But in both cases,
since the key is obtained over the network, Alice wishes to be certain that the
public key received really belongs to Bob. Otherwise, Eve might for instance
provide an own key, while convincing Alice that she obtained the public key
of Bob. In this way Eve would be in the position of decrypting messages that
Alice had encrypted in the assumption they should only be accessible to Bob,
the rightful owner of the secret key belonging to the public one that she received.

There are various solutions for solving both of the above problems. For the first,
keys can be stored on some card device, that needs to be activated by some password.
Alternatively, the same principle can be replicated on any variety of secure storage
media, including an encrypted hard disk. Alternatively, the user may have access
to secure applications that manage keys locally on his behalf. In this case, the
activation password will be application-dependent.

For the second problem, the key idea is called certification. Some trusted
authority, which has verified the physical identity of Bob matching to his pubic key,
will add a signature on this public key, made with the secret key of the authority.
The signature put by the trusted authority upon Bob’s key is also called a certificate.
The trusted authority’s public key will be accessible in a non-forgeable way, so Alice
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can verify the signature, thus gaining trust for the fact that Bob’s key is genuine.
In practice, in order to generate a chain of trust reaching from Bob to Alice it
may sometimes be necessary to build up a chain of certificates: trusted authority
T1 certifies Bob’s key, T2 certifies the one of T1, reaching to Tk which is the last
authority the key of which is unconditionally trusted by Alice.

Public Key Infrastructure

The principle is very useful and works well in local networks belonging to an
environment which has an own hierarchy of trust which can be naturally mapped
to the certificate hierarchy. Such are, for instance, large enterprises, administrations
and government institutions. Since auxiliary problems of secure key generation,
certificate production and verification, secure storage, etc. follow from these key
management problems, producing professional solutions to the key management
problem of large intranets became a market and the typical software solutions are
called Public Key Infrastructures (PKI), being systems that allow to implement all
the above-mentioned functionalities within the intranet of some institution.

Note that in this case the fact of having a common institutional frame is a major
help, since it allows to distribute the trust according to well-defined rules that belong
to the institution and are very likely to exist independently of the cryptographic
setting. It is, however, not always the case that secured communication needs to
be established within a closed intranet. In that case, although numerous major
companies offer the facility of key generation and distribution, thus offering
themselves like some kind of trusted authority for the customer, the level of trust
that can be offered to such commercial solutions is rather low and would not suffice
for offering reliable confidentiality.

The Open System Approach

An alternative idea was invented by Paul Zimmerman, who has developed a public
domain software for secure mail exchange, called Pretty Good Cryptography, and
which is meanwhile available also as professional software. Zimmerman’s idea
of trust in an open network is strikingly simple: it is likely to assume that the
communicating peers—Alice and Bob—can agree upon some commonly trusted
instance, say Tim. In that case Bob can either already hold a certificate signed by
Tim, or one signed by a person that holds a certificate signed by Tim, and so on.
If this chain of verifications breaks up, then Bob will be able to provide Alice with
a set of certificates that convince her that Tim indirectly trusts Bob. Otherwise, Bob
will have to ask Tim for a certificate which shall be provided a posteriori. In this way
the ring of certificates of each peer grows dynamically, by request and need. While
the trust system here is perfectly non-hierarchical and symmetric—now peer has an
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unconditional level of trust, some other problems must be taken into consideration.
For instance, the fact that the trust chain can be quite unreliable, especially when
growing too long. InstanceAmay trustB within a certain frame, andB may trustC ,
but at the end A might not have a sufficient level of trust in C at all, and would not
have signed a certificate if directly asked for one.

These elementary concerns have not been mentioned here with the aim of an
exhaustive discussion, but rather in order to raise the awareness about the multiple
facets of the problem of secure key management, while indicating the most impor-
tant approaches for a solution, with their known advantages and disadvantages.

Passwords and Biometry

We have mentioned that in the case of problem A above, Alice may end up having a
multitude of secret keys distributed through various applications she may work with
on a permanent basis. And the access to her secret keys will be granted by some
password, that should sufficiently identify her. This and other contexts in which
access is granted based on passwords leads to new issues. First, in order to grant
the password with sufficient security, there should exist both a minimal dynamics—
requiring periodical password changes—as a sufficient randomness in the passwords
themselves, which is seldom granted when using passwords that can be memorized
by humans. Add to this the expectation that the password of the same peer, for
different applications or environments should differ—so that the compromising of
one password does not put in danger the whole range of domains accessed by Alice.
We see that the access control by means of passwords poses problems itself.

The identification of persons by means of their physical body or dynamics—
called biometric recognition—is a specialty that grew from forensic needs develop-
ing itself in the computer era into a self-contained branch of computer science at
the intersection of image processing, pattern recognition and security. Whether the
biometry of concern is provided by fingerprints, iris or face traits, voice or writing
patterns, biometric recognition has always the following specific characteristics:

a. Identification is a stochastic process and not a deterministic one, as for instance in
the case of a password verification by means of some one-way function. Since the
biometrics of a person are sampled at two distinct places in time and space, they
will not be identical. Due to this and a series of additional factors of incertitude
introduced by the physical and computer-processing, identification will always
be subject to error. The standard way to measure these average errors is by
overlapping the two possible error sources: false accept, when another person is
falsely accepted for Alice and false reject when Alice’s identity is not accepted
on the basis of her biometry and she is rejected. The equal error rate (EER) is the
optimal performance of a system in which the two error rates are identical.
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b. Unless the data caption system has a reliable method for distinguishing
live, natural biometrics from artificial counterfacts, impersonation attacks are
possible.

c. Biometrics are unique, so a biometric trait once compromised for a certain type
of application, is irreplaceable and ulterior use of that biometrics has lost its
security.

Despite these quite restrictive conditions of use, biometric identification has the
important advantage of commodity: it can make the necessity of multiple, dynamic
passwords obsolete. As a consequence, biometry is already in use for access control
applications of low security sensitiveness: access to lounges, clubs, hotel rooms or as
replacement for visitor’s cards. It can also replace the login password for personal
computers. When it comes to security applications, neither the potential uses nor
the attacks are so well delimited and classified as is the case in cryptography.
Consequently the security claims one encounter in the vast literature of the field
does not offer the reliability expected from the context of cryptography. One should
therefore recall as a rule of thumb the fact that the probability of a successful
attack against a biometric system is quite well approximated by the EER of the
system. Since EER of one in a million are seldom—being claimed for some systems
using iris recognition, it can be seen that biometric identification is practical and
comfortable, but yet not acceptable in conjunction with cryptographic applications.
The use of multiple biometrics—including multifinger recognition—is therefore an
area of active research, in which one of the subtle issues to consider is the fact that
it should not be possible to uncouple the individual biometrics.

Quantum Technology and Other Cryptosystems

The main intensively used public key cryptography methods rely on the number
theoretic problems described above. There have been numerous interesting attempts
to use the large list of NP complete problems in order to derive some trap door
function—the knapsack problem is only one of the most famous ones. We can hardly
go into the detail necessary in order to pay justice both to the interest of the attempts
and the reasons for their failure or restricted use.

Before discussing below several alternative cryptosystems which survived the
scrutiny of cryptananlyst and are still discussed as possible alternatives, we turn
here our attention to the contribution of physics.

The Advent of Quantum Theory

Since the early 1980s the Canadian mathematicians G. Brassard and C. Crépeau
suggested the use of quantum effects for security applications: the simple idea
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was that Eve could not tap a quantum communication wire, without destroying the
information content transmitted, so security would be provided by a self-destruction
mechanism introduced by quantum mechanics in the confidential information
transmitted. The physical and cryptographical aspects of the idea have been in active
research ever since. Unlike the mathematical systems already described, or also
others that follow, which can be conceived and analyzed on paper, after which their
practical realization reduces to quite a simple task of programming, the difficulties
encountered in this case were and remain of physical nature. In the first decade of
this century, several practical implementations of quantum6 cryptography have been
announced, reaching over distances of up to 100 km. It is thus the distance and the
stability of quantum transmission via fiber-optics which is the bottleneck for this
system.

In the nineties of the last century, various ingenious experiments and ideas for
alternative computing infrastructures were imagined or even tested. One may men-
tion along these lines, L. Adleman’s—one of the inventors of RSA—experiments
for computing with bacteria.7 Perhaps the most persisting future projection in this
context is the concept of quantum computing; in this case there is a physical idea
behind, which is stable enough in order to lead to formal mathematical models of
computations that might be performed on quantum computers; one can use for a start
the short introduction given in [10]. Using existing models of quantum computers,
mathematicians since more than a decade have been developing algorithms that run
according to the given model. It is, for instance, known that quantum computers can
invert all the trap door functions used in the cryptographic schemes described above,
in polynomial time. Developing models for quantum computing is an ongoing
area of intensive research activity in which some of the most eminent theoretical
mathematicians and physicists find appealing questions. For instance, the Fields
medalist Michael H. Freedman leads the Q-Section of Microsoft where he applies
topological methods to quantum computation (cf. [3, 11–15]).

The quantum computers information unit is a qubit; unlike a bit, a qubit can,
simply speaking, carry any superposition of the states 0 and 1. The calculation
on a quantum computer with n qubits ends with measurement of all the states,
collapsing each qubit into one of the two pure states. It is the fact that computations
happen in a state of superposition of all quantum states which leads to the distinct
superior capacities of quantum computers. Somehow similar to the case of quantum
cryptography, there is a major physical problem in the realization of quantum
computers, and that is realizing stable qubits, stability being with respect to the
influence of the environment and in particular other qubits. There are persistent
announcements of small progress in the technology of quantum computing, keeping

6The reader should not confuse quantum cryptography with quantum computing, where quantum
effects are wished to help computations, not only secure information transmission: the physical
challenges are even larger in the latter case.
7The idea showed to be in principle feasible, but never reached more than the representation of the
decimal digits on such “computers.”
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the hope alive that one might live the day when first experimental quantum
computers carrying more than 3–4 qubits will be routinely available. For instance,
in order to factor an RSA key of the currently standard length of 1024 bits, a
quantum computer should have in the order of magnitude of 1024 qubits. With this
prerequisite however, the number would be factored within milliseconds.

Alternative Cryptosystems

Public key cryptography is sensibly slower than secret key encryption, by a factor of
roughly 1,000, as a thumb rule. This led to the wish to design some fast asymmetric
schemes that do not use the kind of arithmetics that are the bottlenecks for the DH
and RSA systems.

A successful solution in this respect was invented by three number theorists:
J. Hoffstein, J. Pipher and J.H. Silverman [17]; they designed the cryptosystem
NTRU (Number Theorists are Us), which uses arithmetic in a ring of truncated poly-
nomials, such that decryption—the slower operation—can be done in O.n log.n//
rather than O.n2 log.n// or more operations, as is the case for RSA. Here, the
constant n is roughly the key size. In the case of NTRU, this is slightly larger
for comparable security; for instance, a comparable security to the one provided
by RSA keys of 1024 bits may require NTRU bits of 4000 bits. This key increase
is affordable, for the performance advantage gained. The security of the system is
based on the problem of finding shortest vectors in large lattices. While the best
methods for solving this problem continuously improve, this fact can be easily
compensated for, by accordingly small increases of the key sizes. The system NTRU
has been developed a lot during the last 15 years and was accepted five years ago
also as an IEEE standard.

Recently, Dan Bernstein gave a new revival to McElieces algorithms, by devel-
oping a variant which is technically improved for efficiency and uses, among others,
some algorithms for polynomial simultaneous evaluation and interpolation, which
developed in part after the original invention of the cryptosystem. Bernstein refers
to his variant as Mcbits [2] and uses the argument that unlike the number theoretical
cryptosystems, this scheme is resistant to the state-of-the-art models of quantum
computing. One may of course argue that the day when quantum computers
become routinely available, it should be expectable that quantum encryption is
available too, thus making mathematical cryptography somehow obsolete. The
practical bottleneck of Mcbits in present days is the size of the keys, with ranges
to several megabytes. It is otherwise an efficient algorithm which can be taken
into consideration in environments in which communicating large keys is less of
a bottleneck than the computation time for encryption/decryption.

A further family of interesting public key schemes uses non-commutative
groups—such as for instance braid groups, (e.g. cf. [29]). Their developers also
make a point out of the fact that the scheme is resistant to quantum computing.
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Conclusion

Cryptography was born in the early ages as a skill of mental combinations put at
the service of privacy and military protection. It developed over time into a highly
mathematized discipline, which unites the science of concealing with the analysis
of attacks into one single unit, cryptorology. While the last decades of research and
the development of computers have offered satisfactorily wide methods for solving
the elementary needs of security, it seems that the prognoses for the future are
more captivated by the advent of physical solutions offered by quantum mechanics,
both to the cryptanalysis of the most widely spread public key schemes but also,
constructively, for the implementation of new, purely physical cryptosystems.
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Improvement of Order Performance
of a Supplier

Christodoulos Nikou and Socrates J. Moschuris

Abstract Defence procurement is a multi-criteria decision problem and a large part
of a Department of Defence (DoD) annual budget. For example, in the fiscal year
2009, contract obligations for the US DoD included $370 billion for defence-related
supplies and services [3], and in Great Britain the respective amount for 2011–2012,
was 20.1 billion pounds (UK NAO-National Audit Office (2013), Improving Gov-
ernment Procurement, London, United Kingdom). This paper develops a procedure
for the evaluation/improvement of the ordering process in Military Critical Items
to help procurement personnel report quickly and accurately to the Hierarchy of an
agency/company. In this attempt, Perfect Order (PO) concept, Principal Component
Analysis and Multivariate EWMA control chart were combined onto real data
collected from members of the Armed Forces with the required confidentiality.

Introduction

A key starting point in developing and implementing an effective results-oriented
management framework is an agency’s strategic planning effort [56], and in that
planning, strategies are set forth by its Leaders, in order to serve appropriately the
needs of its “customers” [15]. Strategic and tactical decisions have a horizon of
2–10 years, and of few months to 2 years respectively [5]. [57] included supplier
agenda in military leadership. Usually leading/senior staff in an agency/company
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does have limited time for strategic and tactical decisions; consequently, suggesting
something to them to decide, should be precise, schemed and presented in an
understandable way. Decision Analysis assists in reducing complexity and provides
a formal mechanism for integrating the results so that a course of action can be
provisionally selected [17].

In this paper, by taking into account the above-mentioned role of Decision
Analysis, we evaluated real data collected through confidential questionnaires
of members of the Hellenic armed forces. Our attempt was to examine how
data in Defence Procurement could be simplified and presented more clearly to
the hierarchy through the use of descriptive statistics, Confidence Intervals and
Multivariate Statistical Analysis. Additionally, we drew attention to the variability of
special causes/noise (unusual occurrences that are not normally part of the process)
that may indicate an out of control process by using multivariate control charts. All
this could provide the decision makers a tool that would reduce the subjectivity of
their decisions, and this could be used to report quickly and accurately to Hierarchy
about the supplier performance monitoring process. It is formed after a survey in
the fields of supplier performance evaluation (vendor rating) and supplier selection
methods/models, the armed forces logistic principles and the use of statistical
methods, in a professional area where to the best of our knowledge there is still work
to be done with advanced statistical techniques. These fields are both selected firstly
because suppliers should be evaluated not only at the selection stage, but through
their cooperation with an agency [30]. Secondly, because performance evaluation
procedures focus on the criteria of quality, delivery, total cost and service [49, 55]
seen also in supplier selection literature as key success factors [9, 35] and as basic
targets for an acquisition strategy [30].

The rest of the paper is organized as follows: In the next section we review parts
of relevant literature and present our conceptual framework. Then, the phases that
comprise the evaluation procedure are described, and conclusions, limitations and
directions for future research are cited.

Literature Review

Generally speaking, dealing with suppliers is a task that needs to draw much
of an agency’s attention. Suppliers account for 50–80 % of a major item’s value
and much of the technical innovation incorporated into a new weapon, comes
from the suppliers [54]. Several papers deal with the supplier selection issue
[3, 6, 8, 11, 18, 31, 33, 44], and it is considered a crucial process that addresses
how organizations select strategic suppliers to enhance their competitive advantage
[22]. Supplier performance evaluation is also important in order for an agency to be
in place to verify suppliers initially stated skills, and includes contract management,
periodic vendor rating as well as programs/actions for their development [30]. It is
also an issue that has been seen several times in the relevant academic literature
[4, 7, 23, 36, 46, 49, 58]. Rating a supplier who co-operates with a company
is a mechanism toward the development of the business relations between that
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agency and its suppliers, who can also pinpoint ways to improve their levels of
co-operation [40]. Two of the four principles that Procter & Gamble has adopted in
its effort to integrate/coordinate its supply chain, are the real-time communication
with the suppliers that the company has established long-term relations with, and
the use of commonly accepted metrics, focused on the delivery of items/services to
the customer [40].

In this article we focus on a specific area of defence procurement that has to
do with suppliers of Military Critical Items (MCI). MCI are a subpart of the list
of defence-related products as these are mentioned in the [13]. MCI are items
with special technical characteristics, requiring special treatment and maintenance
procedures, whose failure could cause loss of life, permanent disability or major
injury, loss of a system, or significant equipment damage [12, 25] . From a supply
positioning model perspective, MCI may correspond to critical and bottleneck
items [31]. In a short sentence, MCI are items that have a major impact to the safety
and accomplishment of a mission. Material procured under Urgent Operational
Requirement/Urgent Sustainment Requirement (UOR,USR) may be included in
MCIs. UOR,USR procedures are used for the rapid purchase of new or additional
equipment, or for an enhancement or essential modification to any existing equip-
ment, in order to support a current or imminent military operation [52].

When reviewing [61], which is the result of transposing European Directive
81,2009 into Greek Law for the public defence procurement, we saw that in chapters
dealing with selection and performance evaluation of potential suppliers, a set of
indicative criteria is mentioned for the award of a contract, while the supplier who
receives the contract is monitored by its contractual obligations. [22] stated that their
review of supplier selection literature indicated a lack of consensus in providing
definitive guidance to supply managers involved in strategic purchasing. [21], in
their seminal work for supplier evaluation and selection problem indicate a variety
of methods applied, showing that no unanimity exists for the best one. Furthermore,
[50] argued for the need to enhance public sector with the tools that are currently at
the disposal of private sector procurement offices. He also stated that it is vital for the
public sector to be characterized by transparency. Military Logistics, part of which
is the acquisition of military items, are important for the success of a mission, due to
the fact that they act as a force multiplier by increasing the timeliness and endurance
of an acting force [51]. Greek Land Forces Doctrine [20] urges for simplicity and
agility in the SCM procedures, as time is one of the critical factors in military opera-
tions. [35] provided us with a list of common vendor rating methods, where no Mul-
tivariate Statistical Methods (MSM) are referred and with a matrix of supplier eval-
uation factors where the ordering process is seen as one of the most frequent ones.
Additionally, in NSPA procurement regulations [41], no use of MSM is observed.
[45] argued that statistics can assist in truth by converting knowledge into useful
knowledge. Consequently, many criteria that are seen in the supplier selection field
could be used in the MCI supplier performance evaluation under statistical methods,
in an attempt to enhance methods applied in the public sector using ideas from the
private sector, aiming at meritocracy, transparency, and efficient MCI logistics.
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Conceptual Framework

It is supposed that we operate within the frame of a defence agency under public
procurement law dealing with an MCI supplier who is under evaluation. The
theoretical basis for the construct of our tool is provided by Principal Component
Analysis (PCA), used for supplier selection issues [2, 44, 47] in order to reduce
variables under study without losing valuable information from the initial data [24].

Real data were evaluated, collected through confidential questionnaires filled in
by members of the Armed Forces under the Statistical confidentiality-Principle No 5
of the European Statistics Code of Practice transposed into Greek Law via [60], and
the National Security Regulation. Then we applied some preliminary statistical tools
to examine the shape and spread of sample data and confidence intervals to have an
estimate on the population’s answers. Afterwards, by using PCA, we made an effort
to represent data as simply as possible without sacrificing valuable information.
We also tried to monitor quality aspects with control charts so that occurrences of
special causes can be identified.

Figure 1 depicts schematically our intention about what we call in this article,
The Order Performance Improvement Procedure.

Fig. 1 The order performance improvement procedure
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Fig. 2 Factors of the perfect order concept

Question Synthesis

Data collected, are answers to one of the questions included in the questionnaire.
We constructed the specific question, based on the Perfect Order (PO) concept
[30, 38] and the most common mistakes in an ordering process [30]. The factors
that the members of the armed forces were asked to rate by their importance and
rate of appearance, on a five point Likert Scale are depicted in Fig. 2 and represent
variables 1 to 9 (V1..V9). PO was chosen as the basis for this question, for the
reasons mentioned below:

• It is considered as a complex index for evaluating the capability of a supply chain
to work properly [30].

• Experience plays a vital role in a successful human capital function in acquisition
planning [55]. Thus, we followed the practice of a big multinational company
such as P&G, which, puts a lot of importance to the measurement of its POs as it
considers them having much importance at their client’s opinion. Clients in our
case are considered to be the Operational Units supported by the military SCM.

The suitability of the factors in Fig. 2 can also be verified by the fact that many
of them could be related to the factors mentioned by [14] as the most usual in
case studies referring to supplier scoring and assessment (i.e. on-time performance/
shipment-arrival delays, supply quality/defective material, delivery frequency/lack
of stock, supplier viability/funding problems, information coordination capability/
inability of contractual lead time).
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Fig. 3 An example of the descriptive statistics used in this paper

Evaluation Procedure

In [10] it is argued that in order to implement effective strategies for sourcing, mul-
tifunctional teams should be used (i.e. teams that include members from purchasing,
manufacturing, engineering and planning). Intra-departmental collaboration is pro-
moted as a key factor for the success of acquisition strategies [20, 55]. The idea
of using evaluation multifunctional teams in the supplier selection procedure is
supported by several authors [6, 11, 47]. We suggest the formation of an expert
team-ET from members of the agency, based on their knowledge of the military
procurement area and relevant post graduate studies. The evaluation of a supplier
in cases of complex items should be done by a team having a legal advisor [30].
As MCIs are important for the success of a mission and usually complex items,
the ET proposed in this article may include a representative of the agency’s legal
department and a member from the financial department due to the prerequisites
set in Greek Law [59], where it is stated that for any action that has an economic
burden, the first compulsory step for the initialization of a planning process is the
reassurance of the budgetary financial capital. Its main tasks are the following:

• To apply the Order Performance Improvement Procedure under the idea of
Perfect Order and of PCA, along with the provision of an interpretation to its
(PCA) results.

• To examine the feasibility of applying the idea of the Order Performance
Improvement Procedure or the PO concept itself, adjusted to military procure-
ment particularities, in the national military logistics software.

Descriptive Statistics

Descriptive Statistics is used in order to derive conclusions about the charac-
teristics of the population under study, excluding any other generalizations and
predictions [1]. Figure 3 presents synoptically the selected descriptive statistics of
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a Variable (V5), retrieved from MINITAB Statistical Software. In the first box,
it is examined whether or not the observations of the sample follow a normal
distribution, by using the P-value and the Anderson Darling (A-D) test (a smaller
A-D value indicates that the distribution fits the data better). In V5 it is clear that
observations do not follow a normal distribution. Consequently, if normality was a
prerequisite for applying other statistical methods to reduce variability which is an
obstacle for the achievement of Quality [34], a BOX-COX transformation would be
necessary. In this case, we could study V5 by using distributions for data that do
not follow a normal distribution, such as the Polynomial Logistic Distribution [28].
In the second box, statistics that provide a general idea of the shape and spread
of sample data are presented so that the hierarchy of the agency can get a quick
idea of them. In the third box, Confidence Intervals (CIs) are presented. Mean
CI, which is of our interest, can be used with no assumption for the population
distribution, since in our case Central Limit Theorem applies [29]. In its practical
application within the Armed Forces field, the hierarchy can get a fast and efficient
estimation for the mean of the population under study, and with that to explore ways
to improve the ordering process. For example, a CI with a low upper level may
imply that the subject variable is not highly ranked as vital for the improvement of
the ordering process. A broad range between low and upper level at a high level
of Confidence (95 %) may mean that no consensus exists among the personnel of
the military agency about the importance of the variable under study. Alternatively,
it could also imply that this Variable plays a role whose importance depends on
the position that the members serve their duty in the agency. Furthermore, CIs may
appear very useful for alerting Hierarchy in cases that involve human factors such
as moral or training factors, which can affect significantly a military procurement
system [20, 48].

Principal Component Analysis

In military decision making, Analytical Hierarchical Procedure (AHP) is often seen
as a method that integrates the judgment, experience, and intuition of decision mak-
ers [32]. In this article we preferred PCA, having in mind what [27] mentioned for
inadequate measurement systems, considering them the main reason why changes
are not completed successfully. PCA is one of the most widely used multivariate
statistical techniques for dimensionality reduction, identifying a lower uncorrelated
dimensional variable set that can explain most of the variability of the original
variable set [32]. It is useful in cases of many variables with few observations and
it benefits from AHP since PCA outputs are derived from real data and loadings
are assigned to factors in proportion with the degree of variance/information they
contain.

Algebraically, are particular linear combinations of p random variables that can
explain most of the variability of the original variable set [24]. Let the random vector
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Fig. 4 PCA results in variables 1–9

X that has a sample of observations (n) for a set of p variables (i.e. Xi D [X1,X2,
: : :, Xp]) and its covariance (or correlation) matrix R. PC development does not
require multivariate normal assumptions. The original variables X are transformed
into linear combinations Z D aTXi..p that are uncorrelated, where Zi D [Z1, Z2,
. . . , Zp]. By Eigen value analysis of R, these Zi (i D 1,: : : p) are ordered so that
the Zi with the highest Eigen value of R corresponds to the first PC and describes
the largest amount of the variability in the original data and so on. A visual aid to
determine an appropriate number of PCs is the scree plot [24] and PCs that may
remain in the model are those with an Eigen value greater than one criterion [2].
Alternatively, a desired limit for the percentage of total variance explained in the
model could be set out, and by that to choose the number of PCs to retain in the
model. In this paper, MINITAB statistical software is used to perform PCA to 9
variables (V1–V9) that represent factors of the PO concept. Figure 4 provides the
results of the PCA at a sample of 30 questionnaires. The conclusions derived from
the above figure are the following:

• Scree Plot and relevant academic literature [2, 26] allow us to reduce the number
of variables up to 4 or 5 (5 if a very high percentage of variance to explain is
required). Four components could be an acceptable solution since the residual
components have Eigen Values less than one.

• The first 4 principal components account for 77.9 % of the total variance and
respectively the first 5 for the 85.4 %. The percentage of variance explained by
each component represents its relative importance.

• The coefficients listed under each PC show how to calculate the PC scores.

Correlation Matrix provided in Fig. 5 tests whether the variables reveal a
sufficient level of correlation.

The interpretation of the principal components is subjective [24], thus it should
be performed by a person or a team (i.e. the ET) relevant with the specific
professional area. This subjectivity enhanced us to select an austere level of
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Fig. 5 Correlations matrix

significance-aD0.01 [43], in order to determine the variables that are most highly
correlated with the PCs. These variables may constitute the basis for PC’s inter-
pretation to something objectively close/relevant to them. Figures 4 and 5 lead
to the below mentioned conclusions which were extracted with the assistance of
two senior officers of the military procurement area who had at their disposal a
variety of supplier selection criteria in the form of quality, delivery and cost-related
attributes [21]. The attempt aimed to describe the information of initial variables as
well as possible [42]:

• PC1 could represent “The level of training in e-ordering system and its simplicity
for use”, as it is strongly and directly related to V1.

• PC2 could correspond to “Material Perfect Rate” as it is strongly and conversely
related to V8.

• PC3 could imply a factor called as the “Percentage of Orders Delivered by the
Due Date” or “Military Unit (MU) Waiting Time” as it is strongly and conversely
related to V2.

• PC4 could be strongly and directly related to V5 and V9, but strongly and
conversely related to V3. It could be thought of as a contrasting level of V5,
V9 with V3 to some extent, thus a combination of factors like “Cost Reduction
Efforts” and “MU Rejections”.

Additionally, [35] summarized the ten Cs of the effective supplier evaluation.
Among them, Consistency, Commitment, Cost, and Control systems are those that
may be corresponded to PC1–PC4, since all of them refer to matters of quality,
service/availability, delivery and cost as PCs do.
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Fig. 6 MEWMA of PC1–PC4

Monitoring Quality with Multivariate Exponentially Weighted
Moving Average Control Chart

Multivariate control charts are used to monitor quality with Principal Compo-
nents [24]. A multivariate exponentially weighted moving average (MEWMA) chart
is used to simultaneously monitor two or more related process characteristics in
an exponentially weighted control chart. It shows how several variables jointly
influence a process by a single control limit which determines whether the process
is in control. In this article, EWMA was preferred because it is less affected by
the skewness of a Distribution than Shewhart-style charts, relatively robust in the
face of non-normally distributed characteristics [16], and better in detecting small
and moderate sustained shifts [37]. However, it should be noticed that the scale on
multivariate charts is unrelated to the scale of any of the variables. Thus, out-of-
control signals in MEWMA do not reveal which initial variable/s caused the signal,
consequently MEWMA is considered to be more difficult to interpret than classic
Shewhart control charts. In Fig. 6 MEWMA of PC1 to PC4 is provided. Value of
r (the weight of the multivariate exponentially weighted moving average) must be
a number between 0 and 1 and the influence/importance of the past observations in
the shape of MEWMA is decreased exponentially as r values rise [16]. The value
used in this paper was 0.1, in order to keep past and present observations at the same
level of importance.

MEWMA in our case serves as a tool that quickly detects large or small shifts
in a process so that they can be presented to the Hierarchy of the agency aiming
to draw the attention to the appearance of special causes. It indicated that the
Test failed at points 3, 4 and 5; those points fall above the upper control limit
indicating that differences in weight and length over time are not due to common
causes. Special causes seem to appear in questionnaires 3, 4 and 5, which may need
additional examination, i.e. the members that filled in these questionnaires could be
interviewed to see why their replies show unusual differentiation from the rest.
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Managerial Implications and Conclusions

In an era where defence spending may be used as a component of a quality indicator
of a country’s governance [19], this paper combines real data with conceptual
framework based on principal component analysis, aiming at assisting the hierarchy
of an agency to take quick, but less subjective decisions by reducing the volume of
data that need to be evaluated. It pointed out that aspects of Quality, Delivery and
Cost are considered to be very important for the improvement of a supplier’s order
procedure, regardless of him being in the public or private sector. Consequently, in
the public sector, this improvement (order performance) could be achieved by the
renegotiation of monitoring procedures in existing contracts and the introduction of
stricter terms and motives for success in terms of quality and delivery, such as the
factors described with PCs 1 to 4. Alternatively, a quality award could be set up for
the “best” supplier as far as the contractual obligations are concerned. The paper
also suggested the creation of an expert team promoting co-operation by applying
intradepartmental co-operation, a necessity when dealing with suppliers of critical
items [30]. Additionally, it demonstrated the idea of Perfect Order and its utility as a
future evaluation tool of a military supply chain, using MSA techniques to retrieve
data from existing software.

While this study has provided the frame for the achievement of low cost with
insignificant loss of information and no need for a priori assignment of weights
for the variables involved, the decision for the number of the PCs to be retained
should depend on the criticality of a project. If only strategically critical items
were studied, it might be decided to retain in the model 5 PCs in order to have a
bigger percentage of information for evaluation. The hierarchy of the agency should
determine the above-mentioned criticality, by participating actively in decisions
for the procurement procedures, following [39] who mentioned management’s
involvement as one of the leading issues in procurement strategy.

Limitations and Future Research Directions

We are obliged to take into account limitations set in the National Safety Regulations
and Statistical confidentiality-Principle No 5 of the European Statistics Code of
Practice transposed into Greek Law via [60], thus all our sources/references are
available unrestricted. Nevertheless, since this study has not answered all questions
concerning this problem, potential future inquiries would be to replicate this study
by using a less austere level of significance with respective interpretation/analysis,
the development of a procedure for the managers to decide the number of PCs
to retain, and the evaluation of the results/conclusions that order performance
procedure provides in cases of domestic and international aspects of logistics, if
these are examined separately.
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On the Design of Agent Agreement Protocol
using Linear Error-Correcting Codes

Panayotis E. Nastou, Panos Pardalos, Paul Spirakis, and Yannis C. Stamatiou

Abstract In a number of situations, it is necessary for two agents who may have
never communicated in the past to, jointly, create a shared information item which
can serve as a basis for subsequent protocols that the agents may wish to execute
(e.g., negotiation or encryption protocols). One way to create this shared piece of
information is to have the two agents start with one random bit string each and
then engage in a protocol that enables them to transform, gradually, bit differences
(in their strings) into bit agreements. In a previous work, an efficient protocol was
proposed which was based on the use of the Extended Golay error-correcting code
in order to locate and “correct” bit differences. In this work we generalize this
protocol in order to use any generic error-correcting code and derive theoretical
performance bounds on the efficiency, based on the characteristics of the employed
code. The proposed generalized protocol is fair, in that the final strings (which have
the same bits in the majority of positions) depend on the strings possessed by both
agents while each agent contributes to the same degree in the formation of these
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strings. Finally, the proposed protocol is lightweight (both computationally and with
respect to message exchanges) and, thus, can be implemented in embedded systems
and resource limited devices.

Introduction

In a number in real-life situations that involve two negotiating agents it is required,
by the agents as a first step, to establish a shared piece of information. Furthermore,
the two agents may have never met each other in the past and, thus, they have
not had the opportunity to establish this information beforehand. This problem is
an instance of a wide class of problems termed agreement problems. The general
setting of these problems is that there are two (possibly not knowing each other)
communicating agents that wish to engage in a protocol in order to reach agreement
in the sense of establishing a shared information item after the end of the protocol.
This information item will be based on their initial, separate information items
(which need not be related to each other) and the interactions that take place during
the protocol execution.

As an example of this class of problems, the two communicating agents may
have as a goal the establishment of communications channel using a shared
key encryption scheme. Consequently, they would, first, need to create a shared
information item that will serve as the encryption/decryption key. This shared key
establishment process, which is part of the key management problem, is important in
any application that requires the creation of secure communications channels over
unprotected networks (see, for instance, [8], e.g., for a concise survey on various key
management schemes for ad-hoc network devices). In other application scenarios,
the two agents may wish to only reach an agreement on a common piece of
knowledge. This knowledge may be, for example, the expectation of a random
variable defined over date that follows a specific probability distribution (see, for
instance, [1] for a comprehensive discussion of agreement problems and their
computational complexity properties).

The problem we consider in this paper is simpler but retains the basic feature of
all these problems, i.e., the establishment of a shared piece of information. More
specifically, the goal of the agents we consider is the establishment of a common bit
string, with no special properties, using simple bit operations. These are arithmetic
and logical operations while the agents also perform operations involving look-ups
in small bit transformation tables.

In brief, in the set-up we consider, there are two communicating agents (possibly
not known to each other) each of whom, initially, possess an arbitrary string. The
agents’ goal is the establishment of a shared piece of information, out of their initial
strings, by executing a protocol that is based on the exchange of short messages
and the performance of (locally, at each agent) simple bit operations. The main idea
behind the protocol we propose is that at each step the agent whose turn is takes
a random sample from its local bit string and encodes it using an error-correcting
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code, which is known and used by both agents. Then the agent sends the encoding to
the other agent as well as the positions from the local bit string from where it took the
sample. After receiving this message, the other agent looks at the same positions at
its local bit string and uses the error-correcting encoding in order to deduce whether
its local substring is close to the sample taken by the other agent. In the case of
sufficient proximity, as determined by the error-correcting code, the agent deduces
that the examined substring should be the same as the substring encoded and sent
by the other agent and, thus, “corrects” this substring locally, sending a message to
the other agent to “correct” its corresponding substring too.

In [2] the authors used the Extended Golay error-correcting code and demon-
strated, with simulations, that the involved agents reach, fast, a high percentage of bit
positions, in their local strings, in which their contents agree, i.e., they have the same
bit values. In this paper we generalize this work by deriving theoretical results with
respect to efficiency using arbitrary error-correcting codes. Then anyone wishing
to implement the protocol can instantiate the error-correcting code, plug in the
code’s parameters into our theoretical estimates and derive estimates with respect
to the quality of the protocol before implementation. In general, the resulting family
of protocols (parameterized by the chosen error-correcting code and its features)
can work fast in resource limited devices as well, while it is possible that the
required error-correcting code is already implemented in the device to support its
communication module, which makes the implementation effort of the agreement
protocol much easier.

Related Works and Our Approach

An essential component of our protocol is the identification of proximity between
two substrings sampled from the strings the agents possess. In the case of sufficient
proximity, the two agents can proceed to update the substrings, locally, so as to
increase the number of places where their strings agree. In this section we examine
other works which are based on the proximity concept and show how our work
differs from them.

A recently proposed approach that can be employed to identify bit string
proximity is based on the concepts of secure and fuzzy sketches. As discussed in [3],
an .M;m; Qm; t/-secure sketch is a randomized mapping SS W M ! f0; 1g�, to
which there corresponds a deterministic recovery function Rec which allows the
recovery of an input w from its sketch SS.w/ and any vector w0 sufficiently close
to w (i.e., 8w;w0 2 M that satisfies dis.w;w0/ � t , it holds Rec.w0; SS.w// D w)
and for all random variablesW overM with min-entropym, H̃1.W jSS.W // � Qm.
Dodis, Ostrovsky, Reyzin, and Smith addressed this problem in [3] from a security
perspective. They defined a cryptographic primitive, the secure sketch s, which
produces information about an input w which allows its precise reconstruction
from any sufficiently close value w0. Two such constructions were proposed in the
authors of [3]. They, first, considered the “fuzzy vault” construction proposed by
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Juels and Sudan in [4] in the secure sketch context and then converted it into a
fuzzy extractor. This was achieved by bounding the entropy loss from w, given s.
Then, they observed that the produced information about w reduces its entropy only
minimally (leaking little information about w) and that in the case of a small set of
values, so that the set can be encoded by its characteristic vector, they provided the
cryptographic construction PinSketch. This forms a secure sketch based on a BCH
code, that maintains the exponential improvements in sketch size and running time
while at the same time, it handles the variable set size.

Bringer, Chabanne, and Kindarj showed in [6] how to apply secure sketches
to cancelable biometrics so as to have the advantage of both constructs. They,
further, propose an algorithm that provides a good performance for data obtained
from a fingerprint database by combining several sketching techniques and a
cancelable transformation. In order to archive better performance, they employ the
coding/decoding scheme proposed in [5].

There are, also, other works that employ constructions more complex than the
secure sketches. An implementation of a biometric authentication technique that
uses the fuzzy extractor proposed in [3] is described in [7]. In this work, the adopted
error-correcting code is the shortened Reed-Solomon Œ9600; 1920; 7681�214 , which
also is a complex code (even more than a Reed-Muller and a BCH code). Works
following similar approaches require unnecessarily much computational effort for
the goals of our simple agreement problem, in which our focus is not secrecy but a
fast convergence to agreement, i.e., a shared piece of information.

In this paper, we generalize the work in [2] in which a simple error-correcting
code, the Extending Golay code, was employed to reach agreement between the
agents, dispensing with the need for the employment of complex error correction
codes and the secrecy requirement. In the present work we generalize our findings,
theoretically, by providing theoretical estimates on the efficiency (number of
exchanged messages) of a family of agreement protocols following the one proposed
in [2], parameterized by the error-correcting code they employ. We, thus, provide a
general performance estimate for the agreement problem as a function of the chosen
error-correcting code.

Coding Theory

Coding theory provides concepts and mechanisms to communicating parties so as to
be able to detect errors appeared during transmission and to correct a certain number
of errors. In this section, the fundamental concepts and mechanisms of coding theory
are introduced.
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Basic Concepts

A finite set A D fa1; : : : ; aqg is called the alphabet of a code. The set of all
sequences of symbols of length n over the code alphabet A is denoted as An while
any subset Z ¤ ; of An is called a q-ary block code of length n and it is referred as
an Œn; jZj�-code. For example, a binary code is a code that its alphabet is A D f0; 1g
and a ternary code is the code with alphabet A D f0; 1; 2g. The size q of the code
alphabet is called the radix of the codeZ and each element ofZ is called a codeword
[9]. Since there are jZj codewords, the q-ary code can be used to encode just jZj
source data words. If k D logq jZj is the number of alphabet symbols used to

represent each source data word, the rate R of Œn; jZj�-code is defined by R D k
n

which actually is a ratio of the size of a source data word to the size of a codeword.
Alternatively, a q-ary codeZ can be denoted by Œn; k�which is the notation that will
be used in the rest of the paper.

LetD be the set of all possible data words that are to be transmitted by an entity.
A function enc W D ! Z that assigns to every data word x 2 D a codeword y
is called the encoding function. A codeword y is transmitted through a channel and
the received word r can be considered as the output of the channel. A function dec
that answers if a channel output word is a codeword or not is called the decision or
decoding scheme of the code. If the channel output word is not a codeword then a
decoding error has happened.

If y1; y2 2 An, the function d W An � An ! N that assigns to its pair .y1; y2/
the number of positions that y1 and y2 differ is the Hamming distance d.y1; y2/
between y1 and y2. The set An and the function d form a metric space [9]. The
minimum distance of a code Z is defined to be d.Z/ D miny1;y22Z d.y1; y2/ and
the code Z can be defined by Œn; k; d �. If whenever at least one and at most t errors
occurred on a codeword, the resulting word is not a codeword then the code Z is a
t -error-detecting. Besides, a code Z is an exactly t -error-detecting if it is t -error-
detecting and not a .t C 1/-error-detecting. Based on these definitions, it is easy to
prove that a code Z is a t -error-detecting, if and only if, d.Z/ D t C 1.

Let us review now the correcting capabilities of a code Z. If a codeword y is
transmitted through a channel and r is the output word of the channel then the
number of errors occurred is determined by d.y; r/. Since the smaller the distance
d.y; r/ the higher the probability of the output word r to be a codeword, it is
obvious that the decoding scheme should provide the closest codeword to r . This
scheme is known as the minimum distance decoding scheme. Thus, if the decoding
scheme described previously is able to correct t or less errors in any codeword, then
the code Z is a t -error-correcting code. Besides, a code Z is an exactly t -error-
correcting if it is t -error-correcting and not a .t C 1/-error-correcting. In [9], it is
proven that d.Z/ D p if and only if the code Z is b.p � 1/=2c-error-correcting.
Moreover, it is easy to examine that a code that is exactly t -error-correcting can
correct t errors and can simultaneously detect t C 1 errors.
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For a positive integer m, the set of all codewords y at a distance m from a
codeword x, i.e., d.x; y/ � m, is called as the sphere of radius m about x, and
it is denoted by Sq.x;m/. Two important code parameters are the packing radius
pr.Z/ and the covering radius cr.Z/. The packing radius pr.Z/ is the largest
integer m for which all codewords’ spheres are disjoint while the covering radius
cr.Z/ is the smallest integer m for which all the defined codewords’ spheres cover
An, i.e., every word of An is an element of a code sphere [9]. A code is perfect if
pr.C / D cr.C / holds which means that all defined spheres are disjoint and they
cover the whole word space An.

Linear Codes

Let the code alphabet be the finite field Fq where q D pl and p prime number, i.e.,
A D Fq . Then the space of all possible sequences over A of length n denoted by
An D F n

q D V.n; q/ is a vector space. A code Z � V.n; q/ is linear if it forms
a subspace of V.n; q/. If the dimension of Z is k over V.n; q/, then there are k
linear independent vectors or codewords that form a basis of Z. Consequently, if
fz1; z2; : : : ; zkg is a basis of Z, every codeword of Z can be expressed as a linear
combination of the codewords of the basis, i.e., z D Pk

iD1 �i zi where �i 2 Fq .
Since every �i can take q values, jZj D qk and if the minimum distance between
any two codewords is d, then Z is considered as an Œn; k; d�-code.

Moreover, the size of the basis determines also the space of the source words
which is V.k; q/ with size jV.k; q/j D qk . The codewords of a basis of Z can
be arranged as the rows of a k � n matrix G which is called generator matrix of
Z, and each codeword in Z is precisely the linear combination of Gs rows, that is
Z D fx � Gjx 2 V.k; q/g. If G is of the form G D ŒIkjB� where Ik is the identity
matrix of size k and B is a k � .n � k/ matrix, it is said to be in standard form.

The set of all words y 2 V.n; q/ that satisfy the equality yG� D 0 is a linear
Œn; .n�k/� code and is called the dual code ofZ and it is denoted byZ0. Actually,Z0
contains the words of the space V.n; q/ that are orthogonal with every element ofZ.
Let H D Œ�B� jIn�k�. It holds that HG� D 0 which means that H is the generator
matrix of Z0. Moreover, the matrix H is also named as parity check matrix of Z
since y 2 Z, if and only if, yH� D 0. The parity check matrix H of a linear code
Z is used in the design of an effective decoding scheme. For any y 2 V.n; q/, the
word yH� is called the syndrome of the word y. A word y 2 V.n; q/ is a codeword
of Z, if and only if, its syndrome is 0. The basic idea of a decoding scheme is to
find the codeword z that has the smallest distance from the received word. Thus,
when a codeword y is received, its syndrome is computed. Then find the smallest
word a 2 y C Z D fy C zjz 2 Zg that has the same syndrome with y and the
corresponding codeword is z D y�a. This process is called the syndrome decoding.
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The most important subclass of linear codes is the class of cyclic codes which
provides codes with sophisticated decoding techniques. A linear codeZ D Œn; k; d �
is cyclic, if z D z0z1 : : : zn�1 2 Z implies also that z1 D zn�1z0z1 : : : zn�2 2 Z [9].
Every codeword z D z0z1 : : : zn�1 is associated with a polynomial z.x/ D z0Cz1xC
: : : C zn�1xn�1 of degree n � 1. The codeword z1 can be obtained by multiplying
z.x/ by x modulo xn � 1. In cyclic codes, those polynomials z.x/ are multiples of
a unique polynomial g.x/ called the generator polynomial which is designed by
specifying its roots and divides xn � 1. Let fi .x/, 1 � i � e be the irreducible
factors of xn � 1. Then g.x/ D Q

i2L
f1;2;:::;eg fi .x/. The dimension of a binary
cyclic code is given by k D n � deg.g.x// and the generator matrix is of the form
G D ŒIkjB� where B is a k � .n � k/ matrix. The elements of each row of B are
the coefficients of the polynomials xn�i mod g.x/ where 1 � i � k.

The parity check polynomial h.x/ associated with the parity check matrix H is
related to the generator polynomial as follows:

h.x/ D xn C 1
g.x/

D h0 C h1x C : : : hkxk:

Then the parity check matrix H is a .n � k/ � n matrix. Each row of H is the
binary vector of length n where its elements correspond to the coefficients of the
polynomial xih.x/mod.xn � 1/, with 0 � i � n � k � 1.

Families of Codes

The family of Hamming Codes, discovered by Hamming in 1950, and the Golay
codes, discovered by Golay in 1948, are probably the most well-known of all error-
correcting codes. The Hamming Codes are exactly one-error-correcting codes with
parameters r > 0, n D qr�1

q�1 , k D n � r and d D 3. Moreover, all binary codes of
this family are linear, perfect and cyclic.

In 1948, Marcel Golay introduced the error-correcting codes G11, G12 , G23 and
G24 . The code G24 is the Extended Golay code which is a binary linear and cyclic
Œ24; 12; 8�-code. It is an exactly ternary error-correcting code and can detect any 4
errors. The length of the codeword is n D 24-bit, the length of the data word is
k D 12-bit and the minimum distance d D 8. The G24 is obtained by the perfect
binary linear code G23 by adding a parity bit. The Extended Golay code generator
matrix is G D ŒI12jB�, where B can be defined by:
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B D

2
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1 1 1 0 1 1 1 0 0 0 1 0

1 1 0 1 1 1 0 0 0 1 0 1

1 0 1 1 1 0 0 0 1 0 1 1

1 1 1 1 0 0 0 1 0 1 1 0

1 1 1 0 0 0 1 0 1 1 0 1

1 1 0 0 0 1 0 1 1 0 1 1

1 0 0 0 1 0 1 1 0 1 1 1

1 0 0 1 0 1 1 0 1 1 1 0

1 0 1 0 1 1 0 1 1 1 0 0

1 1 0 1 1 0 1 1 1 0 0 0

1 0 1 1 0 1 1 1 0 0 0 1

3

777777777777777777775

:

It is a self-dual code which means that the parity check matrix of the code is
H D GT .

Another family of binary linear codes that have a good practical value and
decoding properties is the family of Reed-Muller codes. A r-th order binary Reed-
Muller code of length 2m, denoted by RM.r;m/ is an Œ2m; k; 2m�r � error-correcting
code where k is given by

k D
rX

iD0

 
m

r

!
:

Let m boolean variables and f a boolean function on those variables. The values
of the function for every combination of 2m possible combinations form a binary
vector associated with the function. It is known that a function can be expressed in
disjunctive normal form (DNF) as follows [10]

f D 1C
mX

iD1
aixi C

mX

j;iD1
i¤j

aij xixj C : : :C a1;2;:::mx1x2 : : : xm:

Actually, the parameter k counts all possible Boolean functions of degree at most r
in m variables. The generator matrix G is constructed easily by setting the vectors
of length 2m that corresponds to each of the k boolean functions at the rows of the
matrix. It is obvious that the length of a data word that is to be coded should be k.
The dual code of RM.r;m/ code is theRM.m� r�1;m/ [10]. Thus, the generator
matrix of RM.m � r � 1;m/ is the parity check matrix of RM.r;m/.

The cyclic q-ary BCH codes, discovered by Bose, Chaudhuri and Hocquenghem
in 1960 and 1959 respectively, have a great practical importance for error-correction.
A binary BCH code of d � 2t C 1 is a cyclic code whose generator poly-
nomial g.x/ has 2t consecutive roots be; beC1; : : : beC2t�1, n D 2m � 1 D
lcm.ne; neC1; : : : ; neC2t�1/ where neCi is the order of the element beCi of F2m ,
0 � i � 2t � 1 and k D n � deg.g.x//.
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A subclass of BCH codes are the Reed-Solomon codes which are BCH codes of
length q � 1 where q is a prime number. Although it is not a binary code, there are
ways to map a q-ary Reed Solomon code to a binary code. A Reed-Solomon code
can be used for burst-error-correction, which could be very useful in our case when
the similarity of two bit strings is very small, i.e., when there is a large number of
positions in which they differ. This large number of differences can be considered
as burst errors.

Agent Agreement Protocol Based on Error-Correcting Codes

Two agents A1 and A2 contain the bit strings m1 and m2 of equal length N and of
unknown similarity S respectively. An Œn; k; d �-code Z is considered to support the
protocol, which means that the size of the codeword is n, the size of the data word is
k while the number of bit errors of a codeword that can be corrected are t D � d�1

2

˘
.

The Protocol Process

Initially, each of the two agents sets a parameter named agreedBits to zero.
This parameter counts the number of bits that the two agents agree at each step.
Moreover, a set of N bit flags, one flag per bit location of the strings, is retained by
each agent and initially, all flags are set to zero (i.e., total non-agreement). An agent
sets the flag of a bit location to 1 when it agrees with its peer on the value of this bit
and increases the agreedBits parameter by 1.

One of them becomes the sender and selects at random from its string, a k-bit
subset. These data bits are either marked as agreed bits or are unmarked. The basic
idea is that the sender after encoding this k-bit piece of data using theZ code, sends
only the control bits and the indices of the selected bits to the receiver. On the other
hand, the receiver after receiving the transmitted control bits and the indices of the
data bits, collects its data bits determined by the received indices and constructs a
codeword consisting of the receiver data bits and the sender control bits. Based on
the transmitted control bits, the receiver should be able to determine the number of
its data bits that differ from the corresponding data bits of the sender. Conceptually,
we consider the constructed word as the sender’s codeword where some or none of
the data bits have been changed.

If e is the error vector of a codeword r , i.e., r D c ˚ e, then the syndrome can
be calculated by

s D rGT D eGT :

Since in the above concept only the data bits could be modified and the generator
matrix G has the form G D ŒIkjB�, the error vector e can be written e D e10,
where e1 is a k-bit error vector of the data part and 0 is the k-bit zero vector.



398 P.E. Nastou et al.

All syndromes that correspond to all k-bit values of weight 1; 2 and up to t that
e1 could take are calculated and stored in a lookup table named validSyndromes.
These precalculated values are used by the receiver in order to determine if the
constructed codeword could be corrected. The validSyndromes lookup table
contains VSZ D

�
k
1

�C �k
2

�C : : : �k
t

�
integers of k-bit long.

Upon the construction of the codeword described above, the receiver performs
the error detection procedure. If there are no errors, the receiver sends a control mes-
sage to the sender that they agree. Both agents increase the parameter agreedBits
by j , where j is the number of bits of the examined k data bits that the two agents
have not marked them as agreed bits in a previous communication step (0 � j � k).
The size of the control message is just one byte.

However, if the error detection procedure determines that there are errors, then
the receiver calculates the syndrome of the constructed codeword and searches it in
the table validSyndromes. If the search fails, which means that more than t bit
differences occur, the receiver sends a control message to the sender determining
the failure of bit agreement and no action is taking place on both sides. In case
that the search succeeds, which means that the bit differences are less than or equal
to t , the receiver sends a control message to the sender that they agree, the receiver
performs the decoding procedure to retrieve the corrected data bits and updates its
string. Both the sender and the receiver increase the parameter agreedBits by j
as above. It is obvious that in this step the receiver’s string converges to the sender’s
string. In the next protocol step, the two agents change roles and thus the protocol
is fair in the sense that there is a negotiation between the two agents. The protocol
continues while the agreedBits parameter is less than string length N . At the end
of the protocol execution both agents obtain the same string of length N . The above
computation and communication steps of the protocol are presented in Fig. 1.

At each step, the agents exchange only two messages. The size of the first
message is k C 1 integers (k for the bit locations and one for the control bits of
the codeword) or 2.k C 1/ bytes (16-bit integers) while the second message is only
one byte. The computation tasks of the sender are the random generation of k bit
locations, which depends on the performance of the used random number generator,
and the computation of the codeword where n dot products of k-bit vectors are
computed.

Moreover, at each step, the receiver performs the error detection procedure which
is based on counting the number of 1s of the constructed word and computing
the syndrome of the codeword which demands the calculation of k dot products
of n-bit vectors. In case the procedure detects errors, the receiver searches for the
already computed syndrome in the table validSyndromes, and if it exists, the
receiver decodes the constructed word and modifies its bit string. It is obvious that
the operations that are involved in the protocol are simple and fundamental which
means that every processor, either limited or powerful, supports them. As for the
storage involved in the above computations 2�VSZ bytes are needed for the lookup
table validSyndromes.
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Get only Control Bits W

Choose at random a set S of
k bitstream locations.

Construct Codeword R=V(S)|W

Compute CodeWord C.
C=ENCODE(V(S))

If errorDetect(R)
ComputeSyndrome d of R

else

If d in validSyndromes
decode(R)

Failure

Receiving AgentSending Agent

If Success
agreedBits+=#unmarkedBits

agreedBits+=#unmarked bits

else agreedBits+=#unmarked bits

modify(stream)

(S, W)

Success

Success

Fig. 1 A step of the protocol using the correcting mechanism

In [2], the use of the Extended Golay error-correcting code in the above generic
agreement process along with its simulation results are presented. In the next
section, the performance of the protocol is analyzed and a lower bound for the
number of protocol steps is given as function of the bit string lengthN , the similarity
S between the two bit strings and the error-correcting code parameters n; k and d .

Performance Analysis of the Protocol

Since 0 � S � 1 is the similarity of the strings m1 and m2 of equal length N , it
is defined as p D dN 	 .1 � S/e the number of bit locations that they differ. Both
agents start the protocol steps described in section “The Protocol Process” using an
Œn; k; d �-code in order to reach an agreement which means that bit strings m1 and
m2 should be identical at the end of protocol execution.

Since at each protocol step k-bits are picked by bit string m randomly, we
define Um as the set of all possible k-bit strings formed by selecting k bits from
m and ordering them according to their locations in m (ascending order), i.e.,
Um D f.x1; : : : ; xi ; : : : ; xk/g where xi is the content of a bit location of m, and
xi corresponds to a bit location that is greater than the bit location of x1, and less
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than the bit location of xk . It is obvious that jUmj D
�
N
k

�
. Basically, Um is the sample

space of the random process of the agent agreement protocol, since it is the set of
all possible k-bits strings by which an agent can pick a string at each protocol step.

The set of bit locations of m1 and m2 is divided into the following subsets:

B D fall bit locations i such that m1.i/ D m2.i/g (1)

C D fall bit locations j such that m1.j / ¤ m2.j /g (2)

It is obvious that jC j D p and jBj D N � p. Assuming m1 as the reference string,
we construct the following set Fm1 � Um1 where at most t coordinates of x 2 Fm1
are the bit contents ofm1 with locations from C while all other coordinates of x are
the bit contents ofm1 with locations from B . Actually, Fm1 contains all those tuples
of m1 that differ from their corresponding tuples in m2 on at most t coordinates.
This means that if at a protocol step the agent A1 sends a tuple from Fm1 , the agent
A2 will be able to correct its t bits where it differs from A1 since the used error-
correcting code corrects at most t erroneous bits. Consequently, at the end of this
step both agents agree on k bits. Based on definitions (1), (2) and the way the sets
Fm1 , Fm2 are constructed, it is easy to see that jFm1 j D jFm2 j.

The set Fm1 (and Fm2) is formed by constructing all tuples with 0, 1, 2 and at
most t bit locations from C and the rest bit locations from B . Thus, the cardinality
of Fm1 can be calculated by Eq. (3) as

jFm1 j D
tX

iD0

 
p

i

! 
N � p
k � i

!
: (3)

Since Um1 is the sample space of the protocol process, the set F 0
m1
D Um1 � Fm1

contains all those k tuples where more than t coordinates correspond to bit locations
that are from C which means that the used error-correcting code can not correct
codewords that were computed by such tuples. A protocol step where an agent
has picked a tuple from F 0

m1
does not improve the agreement process since the

recipient agent cannot correct its k tuple that corresponds to the received tuple.
The cardinality of F 0

m1
can be calculated by Eq. (4)

jF 0
m1
j D

kX

iDtC1

 
p

i

! 
N � p
k � i

!
: (4)

Actually, the sets Fm1 and F 0
m1

form a partition of the protocol sample space Um1
where tuples from Fm1 are considered as “good” tuples since they improve the
agreement process while tuples from F 0

m1
are considered as “bad” tuples since they

do not improve the agreement process. It is obvious that if t is large (t ! k) which
means that the error-correcting code is strong since it can correct codewords with
large number of errors, the number of “good” tuples is large. This means that the
number of protocol steps that are unsuccessful (in the sense that no bit correction
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happens and thus no improvement of the agreement process) is minimized. Thus,
the number of protocol steps that are needed for the agreement process to terminate
is minimal. Theoretically, a lower bound for the number of the protocol steps
can be obtained if k D t , but this is impractical since there is no such error-
correcting code. In the case of a large t , the error-correcting code guarantees that
the agents will reach an agreement even if their initial bit strings are completely
different (Reed-Solomon error-correcting code can handle burst errors, as it was
analyzed previously). However, an error-correcting step can be applied only if
N � p � k � t ) p < N � k C t holds, i.e., if there is at least one k tuple
where the error-correcting code can have an effect.

On the other hand, if p is increased (i.e., the number of bits that the agents
differ is increased) the terms in the summation of Eq. (3) are decreased while the
terms of the summation of Eq. (4) are increased. Thus, the number of “bad” tuples
is increased and the number of “good” tuples is decreased which means that the
number of unsuccessful protocol steps is increased and the protocol performance
is decreased. However, if p is decreased, the number of “bad” tuples is decreased
while the number of “good” tuples is increased.

If at a protocol step, a tuple from Fm1 or Fm2 is picked, the number of agreed bits
increases at most by i � k where i is the number of bits that have not been agreed
on in previous steps. Moreover, if j bits were corrected at a protocol step then p is
decreased by j and thus at the next protocol step, the probability to pick a “good”
tuple increases since according to the previous analysis the cardinality of Fm1 and
Fm2 increases.

Since at each protocol step, the two agents exchange 2 short messages, the
minimal number of protocol steps should be found. Actually, the agreement process
has to reduce p greedily so that the agents can reach an agreement as fast as possible.
The ideal case is at each protocol step each agent can pick a tuple x 2 Fm1 or
x 2 Fm2 where exactly t coordinates are from C and the others from B . This is
because the receiving agent will correct t bits, which is the maximum number that
the selected code could correct, and thus both agents will not only agree on k bits,
but they will also have resolved their discord on the maximum number of bits that
they could solve at each step. Additionally, if xi and xj are the tuples picked at
the i -th and the j -th protocol steps respectively where j > i and Li and Lj are
the subsets of the corresponding bit locations in m1 and m2, the ideal case is Li
and Lj to be disjoint. Consequently, under these conditions each step provides the
maximum effect.

Based on the conditions described above, there are l D ˙
p

t

�
discrete t -

combinations of C . Thus, after l steps, the two agents would have resolved their
differences. If N � l � k, the two agents have checked all their bits and reached
an agreement. However, if N > l � k although the agents have resolved their
differences, they did not check all their bits, consequently they need at least˙
N�l�k

k

�
more steps to assure that they agree. Since the protocol parameters are the

bit string length N , the similarity S of the initial bit strings and the error-correcting
code parameters k and t , a relation between those parameters that satisfies the above
inequalities is derived as follows:
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N � l � k �
lp
t

m
k <

	p
t
C 1



k

) t

k
.N � k/ < p D dN.1 � S/e

) t

k
.N � k/ < N.1 � S/C 1

) t

k
� .t C 1/

N
< 1 � S

) S < 1 � t

k
C .t C 1/

N
: (5)

Having the size of the bit string and the error-correcting parameters, Inequality (5)
defines a threshold for the initial bit string similarity that the number of protocol
steps is minimized. Based on the above analysis, the minimum number of protocol
steps is calculated as follows:

M D
8
<

:

˙
p

t

�
if S < 1 � t

k
C .tC1/

N˙
p

t

�C
�
N�k�d pt e

k

� 	
1 � t

k
C .tC1/

N



� S � 1:

For a similarity close to 50%, which is the most frequent case, the number of steps
could not exceed 2N .

Conclusions and Future Work

In this paper we considered the problem of agreement between two communicating
agents, in the sense of the establishment of a shared piece of information, or
common knowledge between them, based on some initial information they may
possess, independently of each other.

In this paper we generalized the basic protocol proposed in [2] in which a Golay
error-correcting code was employed in order to help the agents “correct,” fast,
disagreements between their initial information items. In the end, they converge to
information items with few differences, which depend to some extent on the initial
information, achieving a fair solution that is not biased towards the information
of only one of the agents. In the present work the protocol is expressed without
any specific error-correcting code in mind. Instead, the protocol is given only the
parameters that characterize the error-correcting code (e.g., number of bits, number
of detected and corrected errors, etc.) and achieves agreement, using the code as
a black-box, after a number of steps that are expressed as a function of the error-
correcting code parameters in a uniform manner for all codes. In this way, the agents
are free to use any error-correcting code, knowing in advance an estimate of the
effort that it is required to reach agreement. This code may be even built-in in the
operation of the agents for other purposes (e.g., correcting communications errors).
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As a direction of future research, one may extend the proposed protocol to
work with any number of agents. This would entail the definition of an appropriate
interaction sequence among them (e.g., pairwise, for all possible pairs and then
again from the beginning) in order to reach mutual agreement at, roughly, the
same number of steps. As another (perhaps more demanding) direction, one may
consider deriving a theoretical estimate of the average number of steps required
parameterized by the probability distribution function of their initial information
items as well as the random decisions (samplings) that take place during the
execution of the protocol.
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The Byzantine Generals Problem in Generic
and Wireless Networks

Chris Litsas, Aris T. Pagourtzis, and Dimitris Sakavalas

Abstract In this chapter we consider the design of Secure Broadcast protocols
in generic networks of known topology. Studying the problem of Secure Mes-
sage Transmission (SMT) proves essential for achieving Broadcast in incomplete
networks. We present a polynomial protocol that achieves parallel secure message
transmissions between any two sets of nodes of an incomplete network provided that
the weakest connectivity conditions which render the Broadcast problem solvable
hold. Using the above, we show that the SMT protocol can be used as a subroutine
for the simulation of any known protocol for complete networks, which leads us
to protocols for generic networks which remain polynomial with respect to the
measures of consideration. We extend our result to the case of wireless networks
by exploiting the fact that participants are committed to perform local broadcasts,
which greatly facilitates achieving an agreement.

Introduction

A fundamental problem in distributed networks is Secure Broadcast, in which
the goal is to distribute a message correctly despite the presence of Byzantine
faults. In particular, an adversary may control several nodes and is able to make
them deviate from the protocol arbitrarily by stopping, rerouting, or even altering
a message that they should normally relay intact to a certain node. In general,
agreement problems have been primarily studied in complete networks under the
threshold adversary model where a bound t is assumed over the number of corrupted
players. The importance of achieving agreement in an adversarial environment
simultaneously increases with the importance of the applications that demands it.
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As an example consider crucial communications during military operations. The
above problem was first introduced in [1] under the meaningful name Byzantine
Generals Problem.

Problem Definition

In a battlefield the commander (dealer) D may wish to send a command—attack or
retreat—to his generals. The generals now have to obey his command. The problem
is not as easy as is seems because there is always the possibility that some of the
generals are corrupted. To make things worse the dealer may be corrupted as well
and send different messages to his generals. In the latter case it is, at least, desirable
to find a way so that all honest generals take exactly the same decision in order to
avoid a disastrous army breakup.

The participants of a distributed protocol (the generals and the commander) are
also referred as players. The formal definition of the problem follows:

Definition 1 (Secure Broadcast /Byzantine Generals). Consider a set of n play-
ers V D fv1; v2; : : : ; vng and let D 2 V be the dealer. D sends a message
to the other players and also the players are able to communicate in pairs over
authenticated channels. In the end each player vi takes a decision di . The problem
of secure broadcast is:

• In case thatD is honest, i.e., he sends the same messagem to every player, every
honest player must decide on this message m.

• In case D is corrupted, i.e., he sends different messages to his players, then all
honest players must decide on a common message.

For any two members u; v 2 V there are two possibilities: they can either
communicate with each other over an authenticated channel, or they may have no
connection at all. Obviously, the set V together with the set of connections between
its elements forms a graph. Finally, without loss of generality (see [2]), we may
restrict our study to messages m 2 f0; 1g.

Earlier Work and Our Contribution

The problem was introduced by Lamport, Shostak and Pease in [1], where it was
proven that there is a solution if and only if t < n=3 (resiliency), where t is the
number of corrupted players. In terms of complexity we consider the number of
rounds that are needed for the completion of the protocol as well as the total size
of the messages exchanged during the protocol. We are also concerned about the
complexity of the local computations performed by each participant individually.
Since the introduction of the problem, several protocols have been developed to
solve it. For complete graphs that have mainly been studied in the literature, there are
polynomial protocols with respect to each of the three considered measures which
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are optimal with respect to the resiliency [3, 4]. On the other hand, not much work
has been done in the direction of generic (incomplete) networks. A first protocol was
presented by Dolev in [5], where it was proved that the graph must be k-connected,
with t < k=2 (equivalently k � 2t C 1). A drawback of that protocol is that it
requires exponential computational complexity at each node.

In this chapter we present a protocol that achieves secure transmission from any
node to any other node of an incomplete network provided that it is at least .2tC1/-
connected. This protocol is partially based on the classic Dolev’s protocol [5]. In our
case though, the computational complexity is polynomial. Furthermore, we show
how this protocol can be executed in parallel in order to achieve secure transmission
from any set of nodes to any other set of nodes of the graph. Using the above
techniques we show that the protocol can be used as a subroutine for the simulation
of any known protocol for complete networks. Combining the above with, e.g.,
the protocol [3] yields a protocol for generic networks which remains polynomial
with respect to the three measures that we are interested in. We further modify our
protocol in order to develop a protocol especially designed for wireless networks.
It is worth noting that most of previous work in the area of wireless networks
has considered the problem only over very special network topologies, e.g., grid
networks [6]. To the best of our knowledge our protocol is the first efficient one for
secure broadcast in generic wireless networks.

Notation

Hereafter the paths of the graph will be represented by strings of the form �i 2 V �.
The neighborhood of a node v will be denoted by N .v/. Let � 2 V � and w 2 V
then, the order of w in string � is defined to be

ordw.�/ D
(
j�1j if � D �1w�2; �1; �2 2 V �

�1 if w … � .

Solving the Problem in Generic Networks

The protocols (e.g., [1]) that solve the problem in complete networks operate in
rounds. Every single round consists of two phases: the communication phase where
messages are exchanged in parallel between nodes and the local computations phase
where every node processes the information it has received.

In order to reduce the problem of secure broadcast in general networks to the
problem in complete networks, we need a sub-protocol to simulate authenticated
message exchange between any two nodes of the network. Next we present an
algorithm that implements the above task:

(Input:) Nodes v; u and security parameter t .
(Objective:) Authenticated transmission of message m from v to u.
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1. If u 2 N .v/, then node v sends the message m to node u, which decides on this
value.

2. Else

a. Every node w 2 V calculates the same set P D fp1; p2; : : : ; p2tC1g of 2t C 1
disjoint paths from v to u (valid paths).
Every node w 2 V nu stores at most one single path pw 2 P , which is the one
that contains its name. Node u stores the set P of valid paths.

b. Round 0: v sends the message mv to every one of his neighbors that happens
to be a starting node of one of the disjoint paths of P .

c. For i D 1 : : :maxp2P jpj
Round i : Every node w 2 V n fv; ug with pw ¤ ; that received messages in
round .i � 1/ performs (all nodes in parallel):
If w received in the previous step the message m0 from node x, s.t.

�
ordx.pw/ D i � 1

� ^ �ordw.pw/ D i
�

then w relays m0 to the next node in pw.
d. Node u finds the majority of the values he received through valid paths. If there

are at least tC1 identical values (absolute majority), he decides on this value.
If the majority is less than t C 1 (relative majority) then u decides on a default
value ?.

We demand that each node calculates the same set P . We achieve this after
forcing each node to run an appropriate variation of the max-flow algorithm [7]
with the same input, thus also the same output.

Finally, u receives at most 2t C 1 disjoint paths. In case that v is honest, then
given that there are at most t corrupted players, we get that there are at least t C 1
paths consisting purely of honest players. Consequently, the majority of the received
values is the message m. Node u may decide on ? only if v is corrupted.

Complexity

For the length of the longest computed path it holds that maxp2P jpj � n � 2t
because in the worst case each of the 2t paths may consist of one internal node; thus
the remaining path is possible to contain all the rest nodes of the graph. Thus,

RC D max
p2P jpj � n � 2t ) RC D O.n/

Let Mw be the set of messages received by w during the protocol. Every message
sent consists of 1 bit. Each w 2 V n u receives a message at most once, since he
only has to accept messages in round ordw.pw/ � 1 from the node dictated by pw.
Similarly node u will receive a total of 2t C 1 messages. Thus, the algorithm has bit
complexity,
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BC D
X

w2V

X

m2Mw

jmj D
X

w2V nu

X

m2Mw

jmj C
X

m2Mw

jmj �

� nC .2t C 1/) BC D O.n/

The local computations complexity for each node is bounded by the complexity of
the algorithm used for the formation of the set P (essentially by the complexity of
the max-flow algorithm), i.e., LCC D O.n3/.

A Protocol for Generic Networks

Observe that in every network a protocol for multiple message transmissions
between every possible pair .u; v/ of nodes may be created by executing the
2-node transmission protocol in parallel. Using this observation we can simulate
any protocol for complete networks, e.g., [3], by replacing every communication
round with a phase of parallel execution of the 2-node protocol. We next give a
modification of Protocol that operates in parallel for multiple sender–receiver pairs
set B.

(Input:) Set B of node-pairs, security parameter t .
(Objective:) Authenticated transmission between every pair in B.

1. For every .v; u/ 2 B
• If u 2 N .v/ then node v sends the message mv to node u which decides on

this value.
B WD B n .v; u/

Precomputation

2. Initialize: P D ;
For every .v; u/ 2 B
a. Every w 2 V computes the same set Pv;u of 2t C 1 disjoint paths connecting

the pair .v; u/
b. P WD P [ Pu;v

Every node w 2 V computes and stores the set Pw D fp 2 Pjw 2 pg
Message Transmission

3. Round 0: For every .v; u/ 2 B
v sends the message .mv; v; u/ to every one of his neighbors that happens to be
a starting node of one of the disjoint paths of Pv;u.
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4. For i D 1 : : :maxp2P jpj
Round i : Every node w 2 V with Pw ¤ ; that received messages in round
.i � 1/ performs (all nodes in parallel):
w accepts each message .m; v; u/ received from node x, provided that 9p 2
Pw \ Pv;u s.t.

�
ordx.p/ D i � 1

� ^ �ordw.p/ D i
�

and then w relays each of the accepted messages .m; v; u/ to the next node
according to p.

Decision

5. For every .v; u/ 2 B
u finds the majority of the values he received through valid paths of Pv;u � Pu.
If there are at least t C 1 identical values (absolute majority) he decides on this
value for mv . If the majority is less than t C 1 (relative majority) then u decides
on a default value ?.

Complexity

Due to the parallel transmissions, in protocol 1.2.1, the number of rounds remains
at most n � 2t , but the bit complexity is now O.z � n logn/, where z D jBj, and the
factor logn is due to the players’ names included in the message. Finally, the local
computations complexity of each node is O.z � n3/ for the nodes to compute the set
of disjoint paths for every given pair.

Given a protocol for complete networks with round complexity r , bit complexity
b and local computations complexity c, after the simulation of the communication
phase we get a protocol for the generic network model with round complexity,

RC D O.r � .n � 2t//
due to the r executions of the multi-node transmissions protocol. Bit complexity,

BC D O.r � n3 logn/ and BC D O.b � n logn/

because of the r executions of the protocol 1.2.1, or b executions of protocol 1.2 for
b bits to be transmitted over pairs, including the players’ names. Finally the local
computations complexity will be,

LCC D O.c C n5/

as the paths between every possible pair can be precomputed in the beginning of the
protocol and not in every round.
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Broadcast in Wireless Networks

A large class of applications involves wireless networks in which nodes possessing
radio transmitting/receiving devices are spread out on some physical surface
(terrain), and two nodes can communicate if they are within transmission range
of each other and signal interference is low. A common abstraction is to consider
the network as a graph, and assume (collision assumption) that communication is
possible if a node receives a message from only one neighbor in a certain time-slot.

Assumptions

We consider a synchronous wireless network which provides authenticated commu-
nication between neighboring nodes and in which the collision assumption holds.
We also assume that all nodes are incapable of deviating from the given transmission
schedule imposed by the protocol. Finally we assume that there are at least .2t C 1/
disjoint paths connecting D with v;8v … N .D/.

We observe that the dealerD in a radio network is committed to behave honestly
during the transmission of his messagem. This is due to the fact that every message
he transmits is received by all v 2 N .D/. Since communication channels are
authenticated, every honest neighbor will correctly decide on m.

Obviously, Byzantine Generals problem is simplified in radio networks since the
honesty of the dealer yields a 1-round solution in a complete network. Specifically,
in this round D sends the message m to every player v and each v accepts the value
m that he receives. Therefore, in a generic radio network the problem reduces to
every honest player correctly receiving the message of the dealer. The transmission
of the message to all the players can be achieved with an appropriate modification
of the multi-node transmission protocol.

A Protocol for Wireless Networks

Exploiting the specific properties of wireless networks, we can properly modify the
results of the previous section in order to adapt them to the certain context. Namely,
a protocol which achieves broadcast in wireless networks can be designed using the
multi-node transmission protocol for which the sender–receiver pair set B consists
of all the pairs .D; v/; 8v 2 V nN .D/.

In the first round of the protocol, due to the previous observation regarding the
dealer’s honesty, it suffices that D sends message m to all its neighbors and each
w 2 N .D/ decides on value m.
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Fig. 1 Dealer D broadcasts
message m and player v1 is
corrupted

In order for the message to be transmitted correctly across the network, we follow
the message transmission rules of the multi-node transmission protocol with the
difference that every player concatenates all the messages (including the names of
the corresponding receiver nodes) that need to be relayed to all its neighbors and
locally broadcasts them.

Moreover, due to the collision assumption the rounds of the multi-node transmis-
sion protocol will be replaced by phases, which consist of numerous rounds in order
for every player to transmit separately.

Example

Below (Fig. 1) we give an example to illustrate the Wireless Broadcast protocol.
Each v 2 V precomputes the sets of disjoint paths P4; P5:P6.

P4 DfDv1v4;Dv2v4;Dv3v6v4g;
P5 DfDv1v5;Dv2v4v5;Dv3v6v5g;
P6 DfDv1v4v6;Dv2v6;Dv3v6g

Initially D transmits .m;D/ to all v 2 N .v/. Subsequently the protocol is
completed in 3 phases.

1st Phase

Players v1; v2; v3 decide on valuem received from the dealer and each transmits in a
separate round m0, m, m, respectively, along with the corresponding receiver nodes
implied by P4; P5; P6.
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2nd Phase

According to the computed paths, player v4 transmits m;m0 along with the names
of the corresponding receiver nodes v5; v6, in order for v5; v6 to receive messages
m;m0 respectively. Similarly v6 transmits m to relay value m to v5.

3rd Phase

Finally players v4; v5; v6 compute the majority.m;m;m0/ D m, of the messages
received through valid paths (P4; P5; P6) and decide on value m.

Observations

In the wireless network model there is no need for the classic bounds for resiliency
(t < n=3) and connectivity (t < k=2) to hold. Instead, the connectivity bound can
be replaced by the weaker assumption that there are at least .2t C 1/ disjoint paths
connecting D with v;8v 2 V nN .D/.

The necessity of this assumption, in case we want to avoid further transmission
of messages between pairs of players (which would increase the number of rounds
significantly), is guaranteed by the results of [8].

Due to the collision assumption each player must transmit in a separate round.
In order to minimize the number of rounds, each player w concatenates all messages
to be relayed by him (of those he received in the previous phase) and transmits them
to N .w/ with a single transmission.

The space requirements for each node w include the storage of the set Pw, for
which we observe that,

jPwj � .n � jN .D/j � 2/C .2t C 1/ � n � 2) jPwj D O.n/
because node w will store at most one path for each v 2 V n .N .D/ [D [ w/ and
2t C 1, in which it is the last node.

Complexity

As before, maxp2P jpj � n � 2t phases are needed for the messages to be relayed
over the longest possible paths. Each phase i includes rounds.i/—the number of
rounds for all the players that need to relay a message to transmit. In conclusion:

RC D
maxp2P jpjX

iD1
rounds.i/ �

n�2tX

iD1
rounds.i/ �

n�2tX

iD1
n D

D n � .n � 2t/) RC D O.n2/
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Let Mv be the set of messages received by v during the protocol, then

BC D
X

v2V

X

m2Mv

jmj ��
X

v2V

X

m2Mv

c � n logn
���

�
X

v2V
c � n2 logn D c � n3 logn) BC D O.n3 logn/

.	/ In the worst case every concatenated message player w receives will contain
one sub-message for every other player containing its name; therefore8m; jmj D
O.n logn/.

.		/ In total, player w will accept jPwj messages, thus jMvj � n.

Finally the local computations complexity for each node is bounded by the
complexity of the modified max-flow algorithm used for the computation of disjoint
paths between the n � 2t � 2 pairs .D; v/v2V nN .D/,

LCC D O.n4/

As can be observed, the resulting protocol for wireless networks is more efficient,
in all aspects, than the ones proposed for incomplete networks. This is due to the
fact that one can take advantage of the local broadcasts performed by the players in
order to simplify the problem.

Conclusion

Generic Networks

In this chapter we present a polynomial protocol that achieves secure transmission
of messages from any set of nodes to any other set of nodes of an incomplete known-
topology network provided that it is at least .2t C 1/-connected. Using the above,
it is shown that the protocol can be used as a subroutine for the simulation of any
known protocol for complete networks, thus we obtain solutions for the broadcast
problem in incomplete networks which remain polynomial with respect to the three
measures of interest. Essentially we present a reduction from the broadcast problem
in generic networks to the problem in the complete network model.

Further research on the Broadcast problem may include the consideration of net-
works of unknown topology (ad-hoc). One could solve the problem of discovering
the network topology in the presence of byzantine faults as stated in [10] in order to
apply the presented algorithm in the ad-hoc model. Another direction is to design
protocols specifically designed for the model of unknown network topology by
investigating local criteria through which the broadcast will be achieved as presented
in [9].
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Wireless Networks

We developed a broadcast protocol specially tailored for wireless networks adopting
the assumptions that the underlined communication network is of known topology
and that all nodes are incapable of deviating from the given transmission schedule
imposed by the protocol. The relaxation of these assumptions is a promising and
interesting research goal due to the extensive use of ad-hoc networks and the emer-
gence of practical applications which involve the presence of powerful adversaries
which can deviate from the given schedule and create unexpected collisions. One
could attempt to devise special tools, such as selective transmission schedules,
taking into account the new requirements imposed by security considerations; for
example, a message must be transmitted through several disjoint paths, in order to
neutralize the influence of malicious participants.
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real analysis, we provide a multidimensional Hilbert-type integral inequality with
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p
C 1

q
D 1; f .x/; g.y/ � 0; f 2 Lp.RC/; g 2 Lq.RC/;

jjf jjp D
�Z 1

0

f p.x/dx

� 1
p

> 0;

M.Th. Rassias (�)
Department of Mathematics, ETH-Zentrum, CH-8092 Zurich, Switzerland
e-mail: michail.rassias@math.ethz.ch

B. Yang
Department of Mathematics, Guangdong University of Education, Guangzhou,
Guangdong 510303, P. R. China
e-mail: bcyang@gdei.edu.cn

N.J. Daras (ed.), Applications of Mathematics and Informatics in Science and Engineering,
Springer Optimization and Its Applications 91, DOI 10.1007/978-3-319-04720-1__26,
© Springer International Publishing Switzerland 2014

417

mailto:michail.rassias@math.ethz.ch
mailto:bcyang@gdei.edu.cn


418 M.Th. Rassias and B. Yang

jjgjjq > 0; then we have the following Hardy–Hilbert’s integral inequality (cf. [1]):

Z 1

0

Z 1

0

f .x/g.y/

x C y dxdy <
�

sin.�=p/
jjf jjpjjgjjq; (1)

where the constant factor �
sin.�=p/ is the best possible.

If am; bn � 0; a D famg1mD1 2 lp; b D fbng1nD1 2 lq , where

jjajjp D f
1X

mD1
apmg

1
p > 0; jjbjjq > 0;

then we still have the following discrete variant of the above inequality with the
same best constant �

sin.�=p/ ; that is

1X

mD1

1X

nD1

ambn

mC n <
�

sin.�=p/
jjajjpjjbjjq: (2)

Inequalities (1) and (2) are important in mathematical analysis and its applications
(cf. [1–7]).

In 1998, by introducing an independent parameter � 2 .0; 1�, Yang [8] presented
an extension of (1) for p D q D 2. In 2009 and 2011, Yang [4, 5] provided some
extensions of (1) and (2) as follows:

If �1; �2; � 2 R; �1 C �2 D �; k�.x; y/ is a nonnegative homogeneous function
of degree ��; with

k.�1/ D
Z 1

0

k�.t; 1/t
�1�1dt 2 RC;

and

�.x/ D xp.1��1/�1;  .y/ D yq.1��2/�1; f .x/; g.y/ � 0;

f 2 Lp;�.RC/ D
(
f W jjf jjp;� WD

�Z 1

0

�.x/jf .x/jpdx
� 1
p

<1
)
;

g 2 Lq; .RC/; jjf jjp;�; jjgjjq; > 0;

then we have
Z 1

0

Z 1

0

k�.x; y/f .x/g.y/dxdy < k.�1/jjf jjp;� jjgjjq; ; (3)
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where the constant factor k.�1/ is the best possible. Moreover, if k�.x; y/ is
finite and

k�.x; y/x
�1�1.k�.x; y/y�2�1/

is decreasing with respect to x > 0 .y > 0/; then for am;bn � 0;

a 2 lp;� D
8
<

:a W jjajjp;� WD
( 1X

nD1
�.n/janjp

) 1
p

<1
9
=

; ;

b D fbng1nD1 2 lq; ; jjajjp;�; jjbjjq; > 0;

we have

1X

mD1

1X

nD1
k�.m; n/ambn < k.�1/jjajjp;� jjbjjq; ; (4)

where the constant factor k.�1/ is still the best possible.
Clearly, for

� D 1; k1.x; y/ D 1

x C y ; �1 D
1

q
; �2 D 1

p
;

(3) reduces to (1), while (4) reduces to (2). Some further results including a few
multidimensional Hilbert-type integral inequalities are provided in [9–19].

In this chapter, using methods of weight functions and techniques of real
analysis, we present a new multidimensional Hilbert-type integral inequality with
a homogeneous kernel of degree 0 as well as a best possible constant factor related
to the Riemann zeta function and the Gamma function, which is an extension of the
double case as follows:

Z 1

0

Z 1

0

�
coth

�
x

y

�
� 1

�
f .x/g.y/dxdy <

� .�/

2��1 �.�/jjf jjp;' jjgjjq; ; (5)

where �.�/ is the Riemann zeta function and � .�/ is the Gamma function (cf.
[20, 22]). Some equivalent forms and reverses are obtained. Furthermore, we also
consider the operator expressions with the norm and certain particular results. For
a number of fundamental properties of the Riemann zeta function and the Gamma
function, especially in Analytic Number Theory and related subjects, the reader is
referred to [21–27, 31].
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Some Lemmas

If m; n 2 N (N is the set of positive integers), ˛; ˇ > 0; we define

jjxjj˛ WD
 

mX

kD1
jxkj˛

! 1
˛

.x D .x1; � � � ; xm/ 2 Rm/;

jjyjjˇ WD
 

nX

kD1
jykjˇ

! 1
ˇ

.y D .y1; � � � ; yn/ 2 Rn/:

Lemma 1. If s 2 N; 
;M > 0;�.u/ is a nonnegative measurable function defined
in .0; 1�; and

Ds
M WD

(
x 2 RsC W 0 < u D

sX

iD1

	 xi
M



 � 1
)
;

then we have (cf. [7])

Z
� � �
Z

Ds
M

�

 
sX

iD1

	 xi
M




!
dx1 � � � dxs D

Ms� s
	
1







s�
	
s





Z 1

0

�.u/u
s

 �1

du: (6)

Lemma 2 (See [18]). If s 2 N;
 > 0; and " � 0; then

Z
� � �
Z

fx2Rs
C

Wjjxjj
�1g
jjxjj�s�"
 dx1 � � � dxs D

8
ˆ̂<

ˆ̂:

� s. 1
 /

"
s�1�
	
s




 ; " > 0

1 ; " D 0
: (7)

Definition 1. For x D .x1; � � � ; xm/ 2 RmC; y D .y1; � � � ; yn/ 2 RnC, � > 1; we
define two weight functions !.�; y/ and $.�; x/, as follows

!.�; y/ WD jjyjj��ˇ
Z

Rm
C

�
coth
jjxjj˛
jjyjjˇ � 1

�
dx

jjxjjm��
˛

; (8)

$.�; x/ WD jjxjj�˛
Z

Rn
C

�
coth
jjxjj˛
jjyjjˇ � 1

�
dy

jjyjjnC�
ˇ

; (9)

where coth u D .eu C e�u/=.eu � e�u/ is the hyperbolic cotangent function
(cf. [28]).
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By (6), setting

v D Mu
1
˛

jjyjjˇ ;

we find

!.�; y/ D jjyjj��ˇ lim
M!1

Z

Dm
M

�
coth
jjxjj˛
jjyjjˇ � 1

�
dx

jjxjjm��
˛

D jjyjj��ˇ lim
M!1

Z

Dm
M

coth M
jjyjjˇ

Pm
iD1

�
xi
M

�˛� 1˛ � 1
Mm�� Pm

iD1
�
xi
M

�˛�m��
˛

dx

D jjyjj��ˇ lim
M!1

Mm� m
�
1
˛

�

˛m�
�
m
˛

�
Z 1

0

coth
	

M
jjyjjˇ



u
1
˛ � 1

Mm��u
m��
˛

u
m
˛ �1du

D jjyjj��ˇ lim
M!1

M�� m
�
1
˛

�

˛m�
�
m
˛

�
Z 1

0

�
coth

�
M

jjyjjˇ
�

u
1
˛ � 1

�
u
�
˛ �1du

D � m
�
1
˛

�

˛m�1�
�
m
˛

�
Z 1

0

.coth v � 1/v��1dv;

and in view of the Lebesgue term by term theorem (cf. [29]), it follows
Z 1

0

.coth v � 1/v��1dv D
Z 1

0

�
ev C e�v

ev � e�v � 1
�
v��1dv

D
Z 1

0

2e�2vv��1

1 � e�2v dv

D 2
Z 1

0

1X

kD1
e�2kvv��1dv

D 2
1X

kD1

Z 1

0

e�2kvv��1dv

D 2
1X

kD1

1

.2k/�
� .�/

D � .�/

2��1 �.�/; (10)

where

�.�/ D
1X

kD1

1

k�
; � > 1:
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Lemma 3. For �; Q� > 1; we have

!.�; y/ D K2.�/ WD
� m

�
1
˛

�

˛m�1�
�
m
˛

� � .�/
2��1 �.�/.y 2 RnC/; (11)

$.�; x/ D K1.�/ WD
� n

	
1
ˇ




˛n�1�
	
n
ˇ


 � .�/
2��1 �.�/.x 2 RmC/; (12)

w. Q�; y/ WD jjyjj�Q�
ˇ

Z

fx2Rm
C

Wjjxjj˛�1g

�
coth
jjxjj˛
jjyjjˇ � 1

�
dx

jjxjjm�Q�
˛

D K2. Q�/

1 � �Q� .jjyjjˇ/

�
;

and

�Q� .jjyjjˇ/ WD 2Q��1

� . Q�/�. Q�/
Z jjyjj�1ˇ
0

.coth v � 1/v Q��1dv

D O.jjyjj�Q�
ˇ / . Q� > 0Iy 2 RnC/: (13)

Proof. By (10), we obtain (11) and similarly, we get (12).
By (6) for

�.u/ D 0 .u 2 .0; 1=M
//;

we find

w. Q�; y/ D � m
�
1
˛

�

˛m�1�
�
m
˛

�
Z 1

jjyjj�1ˇ
.coth v � 1/v Q��1dv

D � m
�
1
˛

�

˛m�1�
�
m
˛

�

�
"Z 1

0

.coth v � 1/v Q��1dv �
Z jjyjj�1ˇ
0

.coth v � 1/v Q��1dv
#

D � m
�
1
˛

�

˛m�1�
�
m
˛

� � . Q�/
2Q��1 �. Q�/


1 � �Q� .jjyjjˇ/

�
:

Considering a constant 
 2 .1; Q�/; we obtain

lim
v!0C

.coth v � 1/v
 D lim
v!0C

2v


e2v � 1 D lim
v!0C

2
v
�1

2e2v
D 0
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and

lim
v!1.coth v � 1/v
 D 0:

There exists a constant L > 0; such that

coth v � 1 � Lv�
 :

Setting Q� WD Q� � 
 .> 0/; it follows

0 � �Q� .jjyjjˇ/ � 2Q��1L
� . Q�/�. Q�/

Z jjyjj�1ˇ
0

v Q��1dv D 2Q��1L
� . Q�/�. Q�/ Q�

1

jjyjjQ�ˇ
;

and then

�Q� .jjyjjˇ/ D O.jjyjj�Q�
ˇ / .y 2 RnC/:

This completes the proof of the lemma. �

Lemma 4. By the assumptions of Definition 1, if p 2 Rnf0; 1g; 1
p
C 1

q
D 1;

f .x/ D f .x1; � � � ; xm/ � 0; g.y/ D g.y1; � � � ; yn/ � 0;

then

(i) for p > 1; we have the following inequality:

J1 WD
( Z

Rn
C

jjyjj�p��n
ˇ

Œ!.�; y/�p�1

"Z

Rm
C

�
coth
jjxjj˛
jjyjjˇ � 1

�
f .x/dx

#p
dy

) 1
p

�
( Z

Rm
C

$.�; x/jjxjjp.m��/�m
˛ f p.x/dx

) 1
p

; (14)

(ii) for 0 < p < 1 or p < 0; we obtain the reverses of (14).

Proof. (i) For p > 1; by Hölder’s inequality with weight (cf. [30]), it follows

Z

Rm
C

�
coth
jjxjj˛
jjyjjˇ � 1

�
f .x/dx

D
Z

Rm
C

�
coth
jjxjj˛
jjyjjˇ � 1

�" jjxjj.m��/=q
˛

jjyjj.nC�/=p
ˇ

f .x/

#" jjyjj.nC�/=p
ˇ

jjxjj.m��/=q
˛

#
dx

�
( Z

Rm
C

�
coth
jjxjj˛
jjyjjˇ � 1

� jjxjj.m��/.p�1/
˛

jjyjjnC�
ˇ

f p.x/dx

) 1
p



424 M.Th. Rassias and B. Yang

�
( Z

Rm
C

�
coth
jjxjj˛
jjyjjˇ � 1

� jjyjj.nC�/.q�1/
ˇ

jjxjjm��
˛

dx

) 1
q

D Œ!.�; y/� 1q jjyjj
n
pC�
ˇ

�
( Z

Rm
C

�
coth
jjxjj˛
jjyjjˇ � 1

� jjxjj.m��/.p�1/
˛

jjyjjnC�
ˇ

f p.x/dx

) 1
p

: (15)

Then by Fubini’s theorem (cf. [29]), we have

J1 �
( Z

Rn
C

"Z

Rm
C

�
coth
jjxjj˛
jjyjjˇ � 1

� jjxjj.m��/.p�1/
˛

jjyjjnC�
ˇ

f p.x/dx

#
dy

) 1
p

D
( Z

Rm
C

"Z

Rn
C

�
coth
jjxjj˛
jjyjjˇ � 1

� jjxjj.m��/.p�1/
˛

jjyjjnC�
ˇ

dy

#
f p.x/dx

) 1
p

D
( Z

Rm
C

$.�; x/jjxjjp.m��/�m
˛ f p.x/dx

) 1
p

: (16)

Hence, (14) follows.
(ii) For 0 < p < 1 or p < 0; by the reverse Hölder inequality with weight

(cf. [30]), we obtain the reverse of (15). Then by Fubini’s theorem, we can still
obtain the reverse of (14) and thus the lemma is proved.

�

Lemma 5. By the assumptions of Lemma 4,

(i) for p > 1; we have the following inequality equivalent to (14):

I WD
Z

Rn
C

Z

Rm
C

�
coth
jjxjj˛
jjyjjˇ � 1

�
f .x/g.y/dxdy

�
( Z

Rm
C

$.�; x/jjxjjp.m��/�m
˛ f p.x/dx

) 1
p

�
( Z

Rn
C

!.�; y/jjyjjq.nC�/�n
ˇ gq.y/dy

) 1
q

; (17)

(ii) for 0 < p < 1 or p < 0; we have the reverse of (17) equivalent to the reverses
of (14).
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Proof. (i) For p > 1; by Hölder’s inequality (cf. [30]), it follows that

I D
Z

Rn
C

jjyjj
n
q �.nC�/
ˇ

Œ!.�; y/�
1
q

"Z

Rm
C

�
coth
jjxjj˛
jjyjjˇ � 1

�
f .x/dx

#

�
�
Œ!.�; y/�

1
q jjyjj.nC�/� n

q

ˇ g.y/

�
dy

� J1
( Z

Rn
C

!.�; y/jjyjjq.nC�/�n
ˇ gq.y/dy

) 1
q

: (18)

Then by (14), we obtain (17).
On the other hand, assuming that (17) is valid, we set

g.y/ WD jjyjj�p��n
ˇ

Œ!.�; y/�p�1

 Z

Rm
C

�
coth
jjxjj˛
jjyjjˇ � 1

�
f .x/dx

!p�1
; y 2 RnC:

Then it follows that

J
p
1 D

Z

Rn
C

!.�; y/jjyjjq.nC�/�n
ˇ gq.y/dy :

If J1 D 0; then (14) is trivially valid; if J1 D 1; then by (16), relation (14)
reduces to the form of an equality(D 1/. Suppose that 0 < J1 < 1: By (17),
we have

0 <

Z

Rn
C

!.�; y/jjyjjq.nC�/�n
ˇ gq.y/dy D J p1 D I

�
( Z

Rm
C

$.�; x/jjxjjp.m��/�m
˛ f p.x/dx

) 1
p

�
( Z

Rn
C

!.�; y/jjyjjq.nC�/�n
ˇ gq.y/dy

) 1
q

<1:

Therefore,

J1 D
( Z

Rn
C

!.�; y/jjyjjq.nC�/�n
ˇ gq.y/dy

) 1
p

�
( Z

Rm
C

$.�; x/jjxjjp.m��/�m
˛ f p.x/dx

) 1
p

;

and then (14) follows. Hence, (14) and (17) are equivalent.
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(ii) For 0 < p < 1 or p < 0; similarly, we obtain the reverse of (17) which is
equivalent to the reverse of (14) and thus the lemma is proved.

�

Main Results and Operator Expressions

Let

˚.x/ WD jjxjjp.m��/�m
˛ ; �.y/ WD jjyjjq.nC�/�n

ˇ .x 2 RmC; y 2 RnC/;

by Lemmas 3, 4, and 5, we obtain

Theorem 1. Suppose that ˛; ˇ > 0; � > 1; p 2 Rnf0; 1g; 1
p
C 1

q
D 1;

f .x/ D f .x1; � � � ; xm/ � 0; g.y/ D g.y1; � � � ; yn/ � 0;

0 < jjf jjp;˚ D
( Z

Rm
C

˚.x/f p.x/dx

) 1
p

<1;

and

0 < jjgjjq;� D
( Z

Rn
C

�.y/gq.y/dy

) 1
q

<1:

(i) If p > 1; then we have the following equivalent inequalities with the best
possible constant factor K.�/; that is

I D
Z

Rn
C

Z

Rm
C

�
coth
jjxjj˛
jjyjjˇ � 1

�
f .x/g.y/dxdy < K.�/jjf jjp;˚ jjgjjq;� ;

(19)
and

J WD
( Z

Rn
C

jjyjj�p��n
ˇ

 Z

Rm
C

�
coth
jjxjj˛
jjyjjˇ � 1

�
f .x/dx

!p
dy

) 1
p

< K.�/jjf jjp;˚ ; (20)

where

K.�/ D
2

4
� n

	
1
ˇ




ˇn�1�
	
n
ˇ




3

5

1
p "

� m
�
1
˛

�

˛m�1�
�
m
˛

�
# 1
q
� .�/

2��1 �.�/: (21)
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(ii) If 0 < p < 1 or p < 0; then we still have the equivalent reverses of (19) and
(20) with the same best constant factor K.�/:

Proof. (i) For p > 1, by the given conditions, we can prove that (15) becomes a
strict inequality. Otherwise if (15) takes the form of equality, then there exist
constants A and B , which are not all zero, such that for a.e. y 2 RnC; it holds:

A
jjxjj.m��/.p�1/

˛

jjyjjnC�
ˇ

f p.x/ D B jjyjj
.nC�/.q�1/
ˇ

jjxjjm��
˛

a:e: in x 2 RmC: (22)

If A D 0; then it follows that B D 0; which is impossible.
If A ¤ 0; then (22) reduces to

jjxjjp .m��/�m
˛ f p.x/ D Bjjyjjq.nC�/

ˇ

Ajjxjjm˛
a:e: in x 2 RmC;

which contradicts 0 < jjf jjp;˚ <1:
In fact by (7), it follows

Z

Rm
C

jjxjj�m˛ dx D1:

Hence (14) still assumes the form of strict inequality. By Lemma 3 and
Lemma 4, we deduce (20).

Similarly to (18), we still have

I � J
( Z

Rn
C

jjyjjq.nC�/�n
ˇ gq.y/dy

) 1
q

: (23)

Then by (23) and (20), we obtain (19). It is evident by Lemma 5 and the
assumptions that the relations (19) and (18) are also equivalent.

For 0 < " < p.� � 1/; we define Qf .x/; Qg.y/ as follows

Qf .x/ WD

8
<̂

:̂

0; 0 < jjxjj˛ < 1;

jjxjj�� "
p�m

˛ ; jjxjj˛ � 1;

Qg.y/ WD

8
<̂

:̂

0; 0 < jjyjjˇ < 1;

jjyjj��� "
q �n

ˇ ; jjyjjˇ � 1:
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Then for Q� D � � "
p
; by (7), we derive

0 �
Z

fy2Rn
C

Wjjyjjˇ�1g
jjyjj�n�"

ˇ O.jjyjj�Q�
ˇ /dy

� L�
Z

fy2Rn
C

Wjjyjjˇ�1g
jjyjj�n�."CQ�/

ˇ dy

D L� � n
	
1
ˇ




."C Q�/ˇn�1�
	
n
ˇ


 <1;

and in view of (7) and (13), it follows that

jj Qf jjp;˚ jj Qgjjq;�

D
nR

fx2Rm
C

Wjjxjj˛�1g jjxjj�m�"
˛ dx

o 1
p
nR

fy2Rn
C

Wjjyjjˇ�1g jjyjj�n�"
ˇ dy

o 1
q

D 1
"

�
� m. 1˛ /

˛m�1� .m˛ /

� 1
p

(
� n
	
1
ˇ




ˇn�1�
	
n
ˇ




) 1
q

;

and

QI W D
Z

Rn
C

Z

Rm
C

�
coth
jjxjj˛
jjyjjˇ � 1

�
Qf .x/ Qg.y/dxdy

D
Z

fy2Rn
C

Wjjyjjˇ�1g
jjyjj�n�"

ˇ w. Q�; y/dy

D K2. Q�/
Z

fy2Rn
C

Wjjyjjˇ�1g
jjyjj�n�"

ˇ

	
1 �O.jjyjj�Q�

ˇ /


dy

D 1

"
K2. Q�/

2

4
� n

	
1
ˇ




ˇn�1�
	
n
ˇ


 � "OQ� .1/

3

5 :

If there exists a constant K � K.�/; such that (19) is valid when replacing
K.�/ by K; then we obtain
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� m. 1˛ /
˛m�1� .m˛ /

� .Q�/
2Q��1 �. Q�/

"
� n
	
1
ˇ




ˇn�1�
	
n
ˇ


 � "OQ� .1/
#

� " QI < "Kjj Qf jjp;˚ jj Qajjq;�

D K
�

� m. 1˛ /
˛m�1� .m˛ /

� 1
p

(
� n
	
1
ˇ




ˇn�1�
	
n
ˇ




) 1
q

;

and thus K.�/ � K."! 0C/:
Hence K D K.�/ is the best possible constant factor of (19).
By the equivalency, we can prove that the constant factorK.�/ in (20) is the

best possible. Otherwise, by (23) we would reach a contradiction to the fact that
the constant factor K.�/ in (19) is the best possible.

(ii) For 0 < p < 1 or p < 0; similarly, we can still obtain the equivalent reverses
of (19) and (20) with the best constant factor. This completes the proof of the
theorem.

�

Corollary 1. Let the assumptions of Theorem 1 be fulfilled, and additionally,

0 < jjf jj1 WD
Z

Rm
C

f .x/dx <1 and 0 < jjgjj1 WD
Z

Rn
C

g.y/dy <1:

Then,

(i) if p > 1; then we have the following equivalent inequalities with the best
possible constant factor K.�/; that is

Z

Rn
C

Z

Rm
C

coth
jjxjj˛
jjyjjˇ f .x/g.y/dxdy < jjf jj1jjgjj1 CK.�/jjf jjp;˚ jjgjjq;� ;

(24)
( Z

Rn
C

jjyjj�p��n
ˇ

 Z

Rm
C

coth
jjxjj˛
jjyjjˇ f .x/dx � jjf jj1

!p
dy

) 1
p

< K.�/jjf jjp;˚ I
(25)

(ii) if 0 < p < 1 or p < 0; then we still have the equivalent reverses of (24) and
(25) with the same best constant factor K.�/:

For m D n D ˛ D ˇ D 1 in Theorem 1 and Corollary 1, we obtain

Corollary 2. Suppose that � > 1; p 2 Rnf0; 1g; 1
p
C 1

q
D 1;

'.x/ WD xp.1��/�1;  .y/ WD yq.1C�/�1 .x; y > 0/; f .x/ � 0; g.y/ � 0;
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as well as

0 < jjf jjp;' <1 and 0 < jjgjjq; <1:

Then,

(i) for p > 1; we have (5) and the following equivalent inequality with the best
possible constant factor

� .�/

2��1 �.�/;

that is

�Z 1

0

y�p��1
�Z 1

0

�
coth

x

y
� 1

�
f .x/dx

�p
dy

� 1
p

<
� .�/

2��1 �.�/jjf jjp;' I
(26)

(ii) for 0 < p < 1 or p < 0; we obtain the equivalent reverses of (5) and (26) with
the same best constant factor.

Moreover, if

0 < jjf jj WD
Z 1

0

f .x/dx <1 and 0 < jjgjj WD
Z 1

0

g.y/dy <1;

then
(i) for p > 1; we have the following equivalent inequalities with the best possible

constant factor

� .�/

2��1 �.�/;

that is
Z 1

0

Z 1

0

coth
x

y
f .x/g.y/dxdy < jjf jj jjgjj C � .�/

2��1 �.�/jjf jjp;' jjgjjq; ;
(27)

�Z 1

0

y�p��1
�Z 1

0

coth
x

y
f .x/dx � jjf jj

�p
dy

� 1
p

<
� .�/

2��1 �.�/jjf jjp;';
(28)

(ii) for 0 < p < 1 or p < 0; we obtain the equivalent reverses of (27) and (28)
with the same best constant factor.

By the assumptions of Theorem 1 for p > 1; in view of J < K.�/jjf jjp;˚ ; we
define:
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Definition 2. A multidimensional Hilbert-type integral operator

T W Lp;˚.RmC/! Lp;�1�p .R
nC/ (29)

is defined as follows:
For f 2 Lp;˚.RmC/; there exists a unique representation

Tf 2 Lp;�1�p .RnC/;

satisfying

.Tf /.y/ WD
Z

Rm
C

�
coth
jjxjj˛
jjyjjˇ � 1

�
f .x/dx .y 2 RnC/: (30)

For g 2 Lq;� .RnC/; we define the following formal inner product of Tf and g as
follows:

.Tf; g/ WD
Z

Rn
C

Z

Rm
C

�
coth
jjxjj˛
jjyjjˇ � 1

�
f .x/g.y/dxdy: (31)

Then by Theorem 1 for

p > 1; 0 < jjf jjp; ˚ ; jjgjjq;� <1;

we have the following equivalent inequalities:

.Tf; g/ < K.�/jjf jjp; ˚ jjgjjq; � ; (32)

and

jjTf jjp; �1�p < K.�/jjf jjp; ˚ : (33)

It follows that the operator T is bounded with

jjT jj WD sup
f .¤�/2Lp; ˚ .Rm

C
/

jjTf jjp; �1�p
jjf jjp; ˚ � K.�/:

Since the constant factor K.�/ in (33) is the best possible, we obtain

jjT jj D K.�/ D
2

4
� n

	
1
ˇ




ˇn�1�
	
n
ˇ




3

5

1
p "

� m
�
1
˛

�

˛m�1�
�
m
˛

�
# 1
q
� .�/

2��1 �.�/: (34)
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Robustness of Fictitious Play in a Resource
Allocation Game

Michalis Smyrnakis

Abstract Nowadays it is well known that decentralised optimisation tasks can be
represented as so-called “potential games”. An example of a resource allocation
problem that can be cast as a game is the “vehicle-target assignment problem”
originally proposed by Marden et al.

In this article we use fictitious play as “negotiation” mechanism between the
agents, and we examine its robustness in the case where a fraction of non-
cooperative players, s, choose a random action. This addresses situations in which
there is, e.g., a malfunction of some units. In our simulations we consider cases
where the non-cooperative agents communicate their proposed action to the other
agents and cases in which they do not announce their actions (e.g. in the case of a
breakdown of communication). We observe that the performance of fictitious play
is the same as if all players were able to fully coordinate, when the fraction of the
non-coordinating agents, s, is smaller than a critical value Qs. Moreover in both cases,
where non-cooperative agents shared and did not share their action with others, the
critical value was the same. Above this critical value the performance of fictious
play is always affected. Also even in the case where only the 40% of the agents
manage to cooperate and share their information the final reward is the 85% of the
reference case’s reward, where every agent cooperates.

Introduction

Multi-agent systems find an increasing number of applications. Decentralised opti-
misation is an important component of these tasks, where agents should coordinate
in order to achieve a common goal. Ad-hoc sensor networks [1], transportation [2],
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security defence tasks [3], smart grids [4,5] and resource allocation [6,7] are exam-
ples of applications where multi-agent systems are used. These applications share
common characteristics such as high computational demand and communication
restrictions between the agents. Therefore the corresponding optimisation tasks
should be performed decentrally.

Game theory and in particular potential games provide the mathematical frame-
work for decentralised optimisation problems. In a game-theoretic formalisation
the players of the game are the agents of the decentralised optimisation task, the
optimisation function becomes the utility function of the game and players actions
are the actions of the agents in the decentralised optimisation task. Thus the task
of finding a local or a global optimum in the optimisation problem is equivalent
to search for the Nash equilibrium of a game and therefore algorithms from game-
theoretic learning literature can be used to solve decentralised optimisation tasks.

A widely used game-theoretic learning algorithm that can be used as a coor-
dination mechanism in decentralised optimisation tasks is fictitious play. It is
an iterative learning algorithm, where players maintain some beliefs about their
opponent strategies and based on these beliefs they choose the action that maximises
their expected reward. Fictitious play, in contrast to other learning algorithms such
as WOLF [8], genetic algorithms [9] and ant colonies algorithms [10] which are
heuristic algorithms, has been proved that it converges to the Nash equilibrium
of various classes of games and among the others in potential games, hence it
converges to the optimum of the decentralised optimisation tasks.

In this paper we are going to consider the case where due to some hardware
malfunction or communication breakdown, a fraction of agents s will not be able to
perform their tasks and hence they will not be able to coordinate with other agents.
In order to study the effects of s in the fictitious play’s performance we compare
the global reward that agents gain if a fraction s of them cannot coordinate with the
others and choose their actions randomly, with a reference reward. We will use as a
reference reward, the reward the players will gain in the case where all the agents
can fully coordinate.

The rest of the paper is organised as follows: In section “Background” we
briefly describe some basic definitions of game theory and fictitious play. In
section “Simulation Scenario” we present the simulation scenario that we are going
to use, and section “Simulation Results” includes the results that we obtained. In the
final part of our paper we summarise our conclusions.

Background

Decentralised optimisation problems can be naturally expressed as strategic form
games. In strategic form games players choose their actions instantly and their
reward can be represented in a matrix form. A strategic form game � consists
of a set of players 1; 2; : : : ; I. Each player i has a set of available actions
xi 2 Xi , and the combined action of all players defines their joint action,
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x D .x1; : : : xI/ 2 X D X1 � : : : �XI . Finally each player i has a utility function
that is a mapping from the joint action space to the real numbers ri W X ! R.

The mixed strategy of a player i , yi , is defined as an element of the set of all
the probability distributions over the action space of player i , �i . Then similarly
to the joint actions the joint mixed strategy y is defined as an element of the set
product � D �1 � : : : � �I . The special case, where a Player i , puts all the mass
of his probability distribution in a single action, and thus he selects this action with
probability one is called pure strategy of Player i .

For convenience of notation we will often write the joint action as x D .xi ; x�i /,
where �i denotes all the players but i , and analogously for the joint strategy
y D .yi ; y�i /. The expected reward of a player i when he chooses a strategy yi

and his opponents choose the joint strategy y�i is ri .yi ; y�i /.
One of the most common decision rules that a player can use in order to

choose his actions is best response. A player who selects his actions based on the
best response decision rule chooses the action that maximises his expected payoff
given the joint mixed strategy of his opponents. More formally, Player i , when his
opponents’ joint mixed strategy is y�i then his best response is defined as:

BRi.y�i / D argmax
yi2�i

ri .yi ; y�i /: (1)

Nash in [11], based on Kakutani’s fixed point theorem, proved that every game
has at least one equilibrium point which corresponds to a joint mixed strategy Oy
that is a fixed point of the best response correspondence, Oyi 2 BRi. Oy�i /8i . A joint
mixed strategy Oy is a Nash equilibrium when

ri . Oyi ; Oy�i / � ri .xi ; Oy�i / for all i; for all xi 2 Xi : (2)

Equation (2) implies that if a strategy Oy is a Nash equilibrium, then it is not possible
for a player to increase his reward by unilaterally changing his strategy. When
all the players in a game select equilibrium actions using pure strategies then the
equilibrium is referred as pure strategy Nash equilibrium.

In decentralised optimisation tasks the global utility must be an aggregation of
each agent’s utility [12, 13]. One of the desired properties of the individual utilities
is the monotonic relation to the global utility. This suggests that an action which
improves or reduces the utility of an individual should accordingly increase or
reduce the global utility. This relation is satisfied by the utility function of potential
games. In particular a game � is a potential game if its reward function has the
following property [14]:

ri .xi ; x�i / � ri . Qxi ; x�i / D �.xi ; x�i / � �. Qxi ; x�i /

where � is a potential function and the above equality stands for every player i , for
every action x�i 2 X�i , and for every pair of actions xi , Qxi 2 Xi . The potential
function depicts the changes in the players’ payoffs when they unilaterally change
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their actions. Every potential game has at least one pure strategy Nash equilibrium
[14], and thus there is at least one equilibrium that corresponds to a joint action x.

Wonderful life utility [15, 16] is a method to design the individuals’ utility
functions of a potential game so that the global utility function of a decentralised
optimisation problem will act as a potential function. Player is utility when a joint
action x D .xi ; x�i / is played is the difference in global utility obtained by the
player selecting action si in comparison with the global utility that would have been
obtained if i had selected an arbitrarily chosen reference action xi0:

ri .xi ; x�i / D rg.xi ; x�i / � rg.xi0; x�i /

where rg is the global utility function.

Fictitious Play

Fictitious play [17] is the canonical example of iterative game-theoretic learning
algorithms. Players repeatedly play the game � and in each iteration of the
game they update their beliefs about their opponents’ mixed strategies using the
knowledge they have acquired from the previous iterations of the game and they
use best response, Eq. (1), to choose their actions. In particular at the initial iteration
of the game every player maintains some arbitrary, non-negative weights, �0 for each
of his opponents. After playing the first iteration of the game players observe their
opponents’ actions and update their weight function. In particular a Player i updates
the weight function that he maintains about his opponent, Player j , as follows [18]:

�it .x
j / D �it�1.xj /C

�
1 if x

j
t�1 D xj

0 otherwise
(3)

Based on these weights Player i then estimates Player j s strategy using the
following equation:

y
j
t .x

j / D �it .x
j /P

xj2Xj �it .xj /
(4)

This can be also written as:

y
j
t .x

j / D
�
1 � 1

tj

�
y
j
t�1.x

j /C 1

tj
I
x
j
t Dxj (5)

where t j D t CP
xj2Xj �

j
0 .x

j /. Players, based on their estimations about their
opponents’ joint mixed strategy, use the best response decision rule to choose the
action that maximises their expected reward.

In fictitious play, players assume that their opponents use the same mixed strategy
in every iteration of the game. We can also see this from Eq. (5), where all the actions
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have the same weight in the estimation of the opponent’s mixed strategy, even if they
have been observed at the initial iterations of the game. Under the assumption that
the distribution of the opponents’ mixed strategy follows a multinomial distribution
the maximum likelihood estimation of its parameters can be obtained by using
Eq. (4). Bayesian methods and in particular maximun a-posteriory probability [18]
can be used in order to obtain an alternative estimation to maximum likelihood.
In particular if players use a Dirichlet prior distribution for the strategy of their
opponents and evaluate the parameters of the posterior distribution using the
maximum a-posteriori probability estimation, the same estimation of opponents’
mixed strategy is the same with the maximum likelihood estimates. In [19] it
was proved that if the “moderation” process [20] is used instead of the maximum
a-posteriori probability estimator, the estimation of the opponent’s strategy is also
similar to Eq. (4).

It has been proved that fictitious play converges to the Nash equilibrium of 2� n
games [21], 2� 2 games with generic payoff [22], zero sum games [23], games that
can be solved using iterative dominance [24] and potential games [14]

Simulation Scenario

In our simulations we consider the following resource allocation task which can be
expressed as a potential game. Following [16] we assume that in an area A there
are I vehicles that should destroy the J “hostile” targets. Each target has different
attributes, hence the reward that agents receive if they destroy target j or target
Qj will be different. Similarly vehicles have different characteristics and thus the

probability a vehicle i has to destroy target j is different from the probability the
vehicle Qi has to destroy the same target. Moreover each vehicle can choose only
one target to destroy but a target might be engaged by more than one vehicle. This
resource allocation task is cast as a potential game � where each vehicle represents
a player of the game with available actions the targets that the player can engage.
We will write pij for the probability of a player i to destroy a target j and vj for
the value of target j . The utility that a target j produces is the product of its value
with the probability that it will be destroyed by all the vehicles who engage it. More
formally we can write:

rj D vj 	
�
1 �

Y

i WxiDj
.1 � pij /

�
(6)

Because the probability of a vehicle i to destroy a target j is independent of other
agents’ actions we can express the global utility that players receive at the end of
each iteration of fictitious play as the expected value of the destroyed targets.

rglobal D
X

j

rj : (7)
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Player is individual expected reward if he chooses to engage target j is calculated
using wonderful life utility as:

ri .xi D j; x�i / D
X

j

rj .x
i D j; x�i / � rj .xi0; x�i /

where xi0 was set to be the greedy action of player i : xi0 D argmax
j

vj pij :

Simulation Results

In the simulation scenario that we described in the previous section it is possible that
some vehicles will not be able to coordinate with the other vehicles, either because
of a malfunction or a communication breakdown. Therefore there will be a fraction
of non-cooperative agents, s, who will choose their actions randomly instead of
using fictitious play in order to choose their actions. We study the robustness of
fictitious play in this scenario when the non-cooperative agents inform the other
agents about the action they choose (communicating agents) and the case they are
not exchanging any information with other agents (non-communicating agents).

We use as a reference utility the global utility that corresponds to the final
iteration’s joint action of the instance whereas all the players use fictitious play as
coordination mechanism. We then evaluate the change in the utility of the instances
where a fraction s of non-coordination agents choose their action at random with
respect to the reference utility.

In our simulations, in an area A we place 300 vehicles that could engage one
of the 150 targets that appear in A. The probability pij that a vehicle i destroys
a target j and the value of each vehicle vj is uniformly chosen, 0 � pij � 1

and 0 � vj � 1, respectively. We examine the robustness of fictitious play when
0 < s < 1 and we measure the change from the reference utility using the following
equation:

rch D rglobal

rglobal.reference)
: (8)

The results we present are the average over 50 learning episodes, and in each
learning episode agents “negotiated” 50 times. Figures 1 and 2 depict the results for
both cases of communicating and non-communicating agents, respectively.

In both cases we observe that there is a critical point Qs where the outcome of
fictitious play is not influenced by the agents who do not coordinate. As expected
in the case of non-communicating agents, the final reward of fictitious play starts
to decrease for smaller values of s than the case of communicating agents. This is
because they use less information than the communicating agents. Nevertheless the
final reward of fictitious play, as it is depicted in Figs. 1 and 2, is independent of s,
when s � 0:3.
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Fig. 1 Changes in rch when players non-coordinating agents communicate their actions with the
other agents. The x axis represents the percentage of non-coordinating agents and the y axis the
change in the utility as it is evaluated using Eq. (8)

We also examine the relation between the changes in fictitious play rewards and
the number of targets that vehicles can choose to engage. We denote ˇ the ratio
of the number of targets over the number of vehicles, ˇ D # of targets

# of sensors . We examine
how changes in the values of ˇ and s affect the value of rch. In our simulations we
allow 0 � s � 1 and 0 � ˇ � 1. The results we present are the average over 50
learning episodes, where we assume that 300 vehicles should coordinate and each
learning episode run for 50 iterations. The probability pij that a vehicle i destroys
a target j and the value of each vehicle vj are uniformly chosen, 0 � pij � 1 and
0 � vj � 1, respectively. Figures 3 and 4 depict the results that we obtained for the
case where agents shared information with other agents and for the case that they
do not exchange information, respectively.

We observe that when b � 0:15 the outcome of Eq. (8) does not depend on s
in both cases. Also when s � 0:3, the performance of fictitious play is the same
as if everyone were able to fully cooperate and communicate independently of ˇ.
Nevertheless above this critical value of s, s > 0:3, rch is reducing as the value of
ˇ is increasing. Moreover, independently of ˇ, even if the 60% of agents do not
cooperate and share their information, then the final reward will be the 85% of the
reward of the case where everyone cooperates. In the case of players that do not
share their information the final reward is the 75% of the reference reward.
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Fig. 2 Changes in rch when players non-coordinating agents do not communicate their actions
with the other agents. The x axis represents the percentage of non-coordinating agents and the y
axis the change in the utility as it is evaluated using Eq. (8)

The areas where rch is maximised, the light shaded areas of Figs. 3 and 4,
are different. This indicates that rch value decreases faster in the case of non-
communicating agents than the case of communicating agents. In order to verify
this we used Wilcoxon two-sample test. We use as null hypothesis that the sample
of the two cases comes from the same distribution, and therefore the differences
we observe in Figs. 3 and 4 are not statistically significant, against the alternative
hypothesis that the samples are from different distributions. We use Wilcoxon
two-sample test instead of its parametric alternative because based on the Shaphiro–
Wilks normality test we observe that the two samples do not follow a normal
distribution. The p-value of the Wilcoxon two-sample test is smaller than 0.001
and therefore we reject the null hypothesis. Nevertheless if we narrow our sample
and take into account only the cases where 0 � s � 0:4 the two samples are not
statistically different, independently of ˇ, since the p-value of the Wilcoxon two
pair test is 0.2427 and therefore we cannot reject the null hypothesis that the two
samples are from the same distribution. Thus, independently of ˇ, when s � 0:4,
the value of rch in both cases where agents share and cannot share their actions with
the other agents will not be statistically different.
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Fig. 3 Contour plot for the case of communicating agents. The x axis represents s as a fraction
of the total number of people and the y axis ˇ. Dark colours in the contour plot denote lower
performance of fictitious play than the reference utility

Conclusions

Decentralised optimisation tasks can be seen as the task of finding the Nash
equilibria of a potential game. Fictitious play is the canonical example in game-
theoretic learning literature. We studied the robustness of fictitious play algorithm
in cases where some non-cooperative players decide to use a random action instead
of using fictitious play to “negotiate” and choose an action that maximises their
expected reward. We used the resource allocation problem that proposed by [16] as
simulation scenario and observed how the fraction of non-cooperative agents s, and
the ratio of the number of actions over the number of players ˇ, affect the outcome
of the fictitious play algorithm. We observe that there is always a critical value of s,
Qs, where up to this fraction of non-cooperating agents the performance of fictitious
play is the same as if everyone were able to fully cooperate and communicate. Above
the critical value, Qs, the final reward of fictitious play is affected. The critical value Qs
we observed in our simulations for both cases, where non cooperative agents shared
and did not share their action with others, was Qs D 0:3. Moreover in the case where
s D 0:6 the final reward will be the 85% of the reward of the case where everyone
cooperates in the case of agents who share their actions and 75% for agents who
choose not to share their actions.



444 M. Smyrnakis

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Fraction of non−cooperative agents

F
ra

ct
io

n 
of

 a
va

ila
bl

e 
ac

tio
ns

Fig. 4 Contour plot for the case of non-communicating agents. The x axis represents s as a
fraction of the total number of people and the y axis ˇ. Dark colours in the contour plot denote
lower performance of fictitious play than the reference utility

Summarising, fictitious play is robust in the game we examined and its outcome
is not affected from the number of targets and the number of non-coordinating
agents if s � 0:3 even if they cannot share their actions. We believe that, even
though our results are based only on simulations, our findings are applicable to
a number of optimisation and resource allocation problems with decentralised
command structure and in which a fraction of units may fail to cooperate to act
towards a common goal and/or in which communication structures may break down.
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