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Abstract Model interpretation is one of the key aspects of the model evaluation
process. The explanation of the relationship between model variables and outputs
is relatively easy for statistical models, such as linear regressions, thanks to the
availability of model parameters and their statistical significance. For “black box”
models, such as random forest, this information is hidden inside the model struc-
ture. This work presents an approach for computing feature contributions for random
forest classification models. It allows for the determination of the influence of each
variable on the model prediction for an individual instance. By analysing feature
contributions for a training dataset, the most significant variables can be determined
and their typical contribution towards predictions made for individual classes, i.e.,
class-specific feature contribution “patterns”, are discovered. These patterns repre-
sent a standard behaviour of the model and allow for an additional assessment of the
model reliability for new data. Interpretation of feature contributions for two UCI
benchmark datasets shows the potential of the proposed methodology. The robust-
ness of results is demonstrated through an extensive analysis of feature contributions
calculated for a large number of generated random forest models.
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1 Introduction

Models are used to discover interesting patterns in data or to predict a specific out-
come, such as drug toxicity, client shopping purchases, or car insurance premium.
They are often used to support human decisions in various business strategies. This
is why it is important to ensure model quality and to understand its outcomes. Good
practice of model development [1] involves: (1) data analysis (2) feature selection,
(3) model building and (4) model evaluation. Implementing these steps together with
capturing information on how the data was harvested, how the model was built and
how the model was validated, allows us to trust that the model gives reliable predic-
tions. But, how to interpret an existing model? How to analyse the relation between
predicted values and the training dataset? Or which features contribute the most to
classify a specific instance?

Answers to these questions are considered particularly valuable in such domains
as chemoinformatics, bioinformatics or predictive toxicology [2]. Linear models,
which assign instance-independent coefficients to all features, are the most eas-
ily interpreted. However, in the recent literature, there has been considerable focus
on interpreting predictions made by non-linear models which do not render them-
selves to straightforward methods for the determination of variable/feature influ-
ence. In [3], the authors present a method for local interpretation of Support Vector
Machine (SVM) and RandomForest models by retrieving the variable corresponding
to the largest component of the decision-function gradient at any point in the model.
Interpretation of classification models using local gradients is discussed in [4]. A
method for visual interpretation of kernel-based prediction models is described in
[5]. Another approach, which is presented in detail later, was proposed in [6] and
aims at shedding light at decision-making process of regression random forests.

Of interest to this chapter is a popular “black-box” model—the random forest
model [7]. Its author suggests two measures of the significance of a particular vari-
able [8]: the variable importance and the Gini importance. The variable importance
is derived from the loss of accuracy of model predictions when values of one variable
are permuted between instances. Gini importance is calculated from the Gini impu-
rity criterion used in the growing of trees in the random forest. However, in [9], the
authors showed that the above measures are biased in favor of continuous variables
and variables with many categories. They also demonstrated that the general repre-
sentation of variable importance is often insufficient for the complete understanding
of the relationship between input variables and the predicted value.

Following the above observation, Kuzmin et al. propose in [6] a new technique
to calculate a feature contribution, i.e., a contribution of a variable to the prediction,
in a random forest model. Their method applies to models generated for data with
numerical observed values (the observed value is a real number). Unlike in the vari-
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able importancemeasures [8], feature contributions are computed separately for each
instance/record. They provide detailed information about relationships between vari-
ables and the predicted value: the extent and the kind of influence (positive/negative)
of a given variable. This new approach was positively tested in [6] on a Quantita-
tive Structure-Activity (QSAR) model for chemical compounds. The results were
not only informative about the structure of the model but also provided valuable
information for the design of new compounds.

The procedure from [6] for the computation of feature contributions applies to ran-
dom forest models predicting numerical observed values. This chapter aims to extend
it to random forestmodels with categorical predictions, i.e., where the observed value
determines one from a finite set of classes. The difficulty of achieving this aim lies in
the fact that a discrete set of classes does not have the algebraic structure of real num-
bers which the approach presented in [6] relies on. Due to the high-dimensionality
of the calculated feature contributions, their direct analysis is not easy. We develop
three techniques for discovering class-specific feature contribution “patterns” in the
decision-making process of random forest models: the analysis of median feature
contributions, of clusters and log-likelihoods. This facilitates interpretation of model
predictions as well as allows a more detailed analysis of model reliability for unseen
data.

The chapter is organised as follows. Section 2 provides a brief description of
random forest models. Section 3 presents our approach for calculating feature con-
tributions for binary classifiers, whilst Sect. 4 describes its extension to multi-class
classification problems. Section 5 introduces three techniques for finding patterns
in feature contributions and linking them to model predictions. Section 6 contains
applications of the proposed methodology to two real world datasets from the UCI
Machine Learning repository. Section 7 concludes the work presented in this chapter.

2 Random Forest

A random forest (RF) model introduced by Breiman [7] is a collection of tree pre-
dictors. Each tree is grown according to the following procedure [8]:

1. the bootstrap phase: select randomly a subset of the training dataset—a local
training set for growing the tree. The remaining samples in the training dataset
form a so-called out-of-bag (OOB) set and are used to estimate theRF’s goodness-
of-fit.

2. the growing phase: grow the tree by splitting the local training set at each node
according to the value of one variable from a randomly selected subset of variables
(the best split) using classification and regression tree (CART) method [10].

3. each tree is grown to the largest extent possible. There is no pruning.

The bootstrap and growing phases require an input of random quantities. It is
assumed that these quantities are independent between trees and identically distrib-



196 A. Palczewska et al.

uted. Consequently, each tree can be viewed as sampled independently from the
ensemble of all tree predictors for a given training dataset.

For prediction, an instance is run through each tree in a forest down to a terminal
node which assigns it a class. Predictions supplied by the trees undergo a voting
process: the forest returns the class with the maximum number of votes. Draws are
resolved through a random selection.

To present our feature contribution procedure in the following section, we have
to develop a probabilistic interpretation of the forest prediction process. Denote by
C = {C1, C2, . . . , CK } the set of classes and by ΔK the set

ΔK = {
(p1, . . . , pK ) :

K∑

k=1

pk = 1 and pk ≥ 0
}
.

An element of ΔK can be interpreted as a probability distribution over C . Let ek

be an element of ΔK with 1 at position k—a probability distribution concentrated
at class Ck . If a tree t predicts that an instance i belongs to a class Ck then we
write Ŷi,t = ek . This provides a mapping from predictions of a tree to the set ΔK of
probability measures on C . Let

Ŷi = 1

T

T∑

t=1

Ŷi,t , (1)

where T is the overall number of trees in the forest. Then Ŷi ∈ ΔK and the prediction
of the random forest for the instance i coincides with a class Ck for which the k-th
coordinate of Ŷi is maximal.1

3 Feature Contributions for Binary Classifiers

The set ΔK simplifies considerably when there are two classes, K = 2. An element
p ∈ ΔK is uniquely represented by its first coordinate p1 (p2 = 1 − p1). Con-
sequently, the set of probability distributions on C is equivalent to the probability
weight assigned to class C1.

Before we present our method for computing feature contributions, we have to
examine the tree growing process. After selecting a training set, it is positioned in
the root node. A splitting variable (feature) and a splitting value are selected and the
set of instances is split between the left and the right child of the root node. The
procedure is repeated until all instances in a node are in the same class or further
splitting does not improve prediction. The class that a tree assigns to a terminal node
is determined through majority voting between instances in that node.

1 The distribution Ŷi is calculated by the function predict in the R package randomForest
[11] when the type of prediction is set to prob.
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We will refer to instances of the local training set that pass through a given node
as the training instances in this node. The fraction of the training instances in a
node n belonging to class C1 will be denoted by Y n

mean . This is the probability that a
randomly selected element from the training instances in this node is in the first class.
In particular, a terminal node is assigned to class C1 if Y n

mean > 0.5 or Y n
mean = 0.5

and the draw is resolved in favor of class C1.
The feature contribution procedure for a given instance involves two steps: (1)

the calculation of local increments of feature contributions for each tree and (2) the
aggregation of feature contributions over the forest. A local increment corresponding
to a feature f between a parent node (p) and a child node (c) in a tree is defined as
follows:

L I c
f =

{
Y c

mean − Y p
mean, if the split in the parent is performed over the feature f,

0, otherwise.

A local increment for a feature f represents the change of the probability of being
in class C1 between the child node and its parent node provided that f is the splitting
feature in the parent node. It is easy to show that the sum of these changes, over all
features, along the path followed by an instance from the root node to the terminal
node in a tree is equal to the difference between Ymean in the terminal and the root
node.

The contribution FC f
i,t of a feature f in a tree t for an instance i is equal to the

sum of L I f over all nodes on the path of instance i from the root node to a terminal
node. The contribution of a feature f for an instance i in the forest is then given by

FC f
i = 1

T

T∑

t=1

FC f
i,t . (2)

The feature contributions vector for an instance i consists of contributions FC f
i of

all features f .
Notice that if the following condition is satisfied:

(U) for every tree in the forest, local training instances in each terminal node are of
the same class

then Ŷi representing forest’s prediction (1) can be written as

Ŷi =
(

Y r +
∑

f

FC f
i , 1 − Y r −

∑

f

FC f
i

)
(3)

where Y r is the coordinate-wise average of Ymean over all root nodes in the forest.
If this unanimity condition (U) holds, feature contributions can be used to retrieve
predictions of the forest. Otherwise, they only allow for the interpretation of the
model.
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Table 1 Selected records from the UCI Iris Dataset. Each record corresponds to a plant. The plants
were classified as iris versicolor (class 0) and virginica (class 1)

iris.row Sepal.Length (f1) Sepal.Width (f2) Petal.Length (f3) Petal.Width (f4) Class

x1 52 6.4 3.2 4.5 1.5 0
x2 73 6.3 2.5 4.9 1.5 0
x3 75 6.4 2.9 4.3 1.3 0
x4 90 5.5 2.5 4.0 1.3 0
x5 91 5.5 2.6 4.4 1.2 0
x6 136 7.7 3.0 6.1 2.3 1
x7 138 6.4 3.1 5.5 1.8 1
x8 139 6.0 3.0 4.8 1.8 1
x9 145 6.7 3.3 5.7 2.5 1
x10 148 6.5 3.0 5.2 2.0 1

3.1 Example

We will demonstrate the calculation of feature contributions on a toy example using
a subset of the UCI Iris Dataset [12]. From the original dataset, ten records were
selected—five for each of two types of the iris plant: versicolor (class 0) and virginica
(class 1) (see Table 1). A plant is represented by four attributes: Sepal.Length (f1),
Sepal.Width (f2), Petal.Length (f3) and Petal.Width (f4). This dataset was used to
generate a random forest model with two trees, see Fig. 1. In each tree, the local
training set (LD) in the root node collects those records which were chosen by the
random forest algorithm to build that tree. The LD sets in the child nodes correspond
to the split of the above set according to the value of a selected feature (it is written
between branches). This process is repeated until reaching terminal nodes of the tree.
Notice that the condition (U) is satisfied—for both trees, each terminal node contains
local training instances of the same class: Ymean is either 0 or 1.

The process of calculating feature contributions runs in 2 steps: the determination
of local increments for each node in the forest (a preprocessing step) and the calcula-
tion of feature contributions for a particular instance. Figure 1 shows Y n

mean and the
local increment L I c

f for a splitting feature f in each node. Having computed these
values, we can calculate feature contributions for an instance by running it through
both trees and summing local increments of each of the four features. For example,
the contribution of a given feature for the instance x1 is calculated by summing local
increments for that feature along the path p1 = n0 → n1 in tree T1 and the path
p2 = n0 → n1 → n4 → n5 in tree T2. According to Formula (2) the contribution
of feature f2 is calculated as

FC f 2
x1 = 1

2

(
0 + 1

4

)
= 0.125

and the contribution of feature f3 is
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Fig. 1 A random forest model for the dataset from Table1. The set LD in the root node contains
a local training set for the tree. The sets LD in the child nodes correspond to the split of the above
set according to the value of selected feature. In each node, Y n

mean denotes the fraction of instances
in the LD set in this node belonging to class 1, whilst L I n

f shows non-zero local increments

FC f 3
x1 = 1

2

(
− 3

7
− 9

28
− 1

2

)
= −0.625.

The contributions of features f1 and f4 are equal to 0 because these attributes are
not used in any decision made by the forest. The predicted probability Ŷx1 that x1
belongs to class 1 (see Formula (3)) is

Ŷx1 = 1

2

(3
7

+ 4

7

)

︸ ︷︷ ︸
Ŷ r

+ (
0 + 0.125 − 0.625 + 0

)

︸ ︷︷ ︸
∑

f FC f
x1

= 0.0

Table 2 collects feature contributions for all 10 records in the example dataset.
These results can be interpreted as follows:

• for instances x1, x3, the contribution of f2 is positive, i.e., the value of this feature
increases the probability of being in class 1 by 0.125. However, the large negative
contribution of the feature f3 implies that the value of this feature for instances x1
and x3 was decisive in assigning the class 0 by the forest.

• for instances x6, x7, x9, the decision is based only on the feature f3.
• for instances x2, x4, x5, the contribution of both features leads the forest decision
towards class 0.
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Table 2 Feature contributions for the random forest model from Fig. 1

Ŷ Sepal.Length (f1) Sepal.Width (f2) Petal.Length (f3) Petal.Width (f4) Prediction

x1 0.0 0 0.125 −0.625 0 0
x2 0.0 0 −0.125 −0.375 0 0
x3 0.0 0 0.125 −0.625 0 0
x4 0.0 0 −0.125 −0.375 0 0
x5 0.0 0 −0.125 −0.375 0 0
x6 1.0 0 0 0.5 0 1
x7 1.0 0 0 0.5 0 1
x8 0.5 0 0.125 −0.125 0 ?
x9 1.0 0 0 0.5 0 1
x10 0.5 0 0 0 0 ?

• for instances x8, x10, Ŷ is 0.5. This corresponds to the case where one of the trees
points to class 0 and the other to class 1. In practical applications, such situations
are resolved through a random selection of the class. Since Ŷ r = 0.5, the lack of
decision of the forest has a clear interpretation in terms of feature contributions:
the amount of evidence in favour of one class is counterbalanced by the evidence
pointing towards the other.

4 Feature Contributions for General Classifiers

When K > 2, the set ΔK cannot be described by a one-dimensional value as above.
We, therefore, generalize the quantities introduced in the previous section to a multi-
dimensional case. Y n

mean in a node n is an element of ΔK, whose k-th coordinate,
k = 1, 2, . . . , K , is defined as

Y n
mean,k = |{i ∈ T S(n) : i ∈ Ck}|

|T S(n)| , (4)

where T S(n) is the set of training instances in the node n and | · | denotes the number
of elements of a set. Hence, if an instance is selected randomly from a local training
set in a node n, the probability that this instance is in class Ck is given by the k-th
coordinate of the vector Y n

mean . Local increment L I c
f is analogously generalized to

a multidimensional case:

L I c
f =

⎧
⎪⎨

⎪⎩

Y c
mean − Y p

mean, if the split in the parent is performed over the feature f,

(0, . . . , 0)︸ ︷︷ ︸
K times

, otherwise,
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where the difference is computed coordinate-wise. Similarly, FC f
i,t and FC f

i are
extended to vector-valued quantities. Notice that if the condition (U) is satisfied, Eq.
(3) holds with Y r being a coordinate-wise average of vectors Y n

mean over all root
nodes n in the forest.

Take an instance i and let Ck be the class to which the forest assigns this instance.
Our aim is to understand which variables/features drove the forest to make that
prediction. We argue that the crucial information is the one which explains the value
of the k-th coordinate of Ŷi . Hence, we want to study the k-th coordinate of FC f

i for
all features f .

Pseudo-code to calculate feature contributions for a particular instance towards
the class predicted by the random forest is presented in Algorithm 1. Its inputs consist
of a random forest model RF and an instance i which is represented as a vector of
feature values. In line 1, k ∈ {1, 2, . . . , K } is assigned the index of a class predicted
by the random forest RF for the instance i . The following line creates a vector of
real numbers indexed by features and initialized to 0. Then for each tree in the forest
RF the instance i is run down the tree and feature contributions are calculated.
The quantity Spli t Feature(parent) identifies a feature f on which the split is
performed in the node parent . If the value i( f ) of that feature f for the instance i
is lower or equal to the threshold Spli tV alue(parent), the route continues to the
left child of the node parent . Otherwise, it goes to the right child (each node in the
tree has either two children or is a terminal node). A position corresponding to the
feature f in the vector FC is updated according to the change of value of Ymean,k ,
i.e., the k-th coordinate of Ymean , between the parent and the child.

Algorithm 1 FC(RF ,i)
1: k ← f orest_predict (RF, i)
2: FC ← vector( f eatures)
3: for each tree T in forest F do
4: parent ← root (T )

5: while parent ! = TERMINAL do
6: f ← Spli t Feature(parent)
7: if i[ f ] <= Spli tV alue(parent) then
8: child ← le f tChild(parent)
9: else
10: child ← rightChild(parent)
11: end if
12: FC[ f ] ← FC[ f ] + Y child

mean,k − Y parent
mean,k

13: parent ← child
14: end while
15: end for
16: FC ← FC / nTrees(F)
17: return FC

Algorithm 2 provides a sketch of the preprocessing step to compute Y n
mean for all

nodes n in the forest. The parameter D denotes the set of instances used for training
of the forest RF . In line 2, T S is assigned the set used for growing tree T . This set
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is further split in nodes according to values of splitting variables. We propose to use
DFS (depth first search [13]) to traverse the tree and compute the vector Y n

mean once
a training set for a node n is determined. There is no need to store a training set for
a node n once Y n

mean has been calculated.

Algorithm 2 Ymean(RF, D)

1: for each tree T in forest F do
2: T S ← training set for tree T
3: use DFS algorithm to compute training sets in all other nodes n of tree T and compute the

vector Y n
mean according to formula (4).

4: end for

5 Analysis of Feature Contributions

Feature contributions provide the means to understand mechanisms that lead the
model towards particular predictions. This is important in chemical or biological
applications where the additional knowledge of the forest’s decision-making process
can inform the development of new chemical compounds or explain their interactions
with living organisms. Feature contributions may also be useful for assessing the
reliability of model predictions for unseen instances. They provide complementary
information to the forest’s voting results. This section proposes three techniques for
finding patterns in the way a random forest uses available features and linking these
patterns with the forest’s predictions.

5.1 Median

The median of a sequence of numbers is such a value that the number of elements
bigger than it and the number of elements smaller than it is identical. When the
number of elements in the sequence is odd, this is the central elements of the sequence.
Otherwise, it is common to take the midpoint between the twomost central elements.
In statistics, the median is an estimator of the expectation which is less affected by
outliers than the sample mean. We will use this property of the median to find a
“standard level” of feature contributions for representatives of a particular class. This
standard level will facilitate an understanding of which features are instrumental for
the classification. It can also be used to judge the reliability of forest’s prediction for
an unseen instance.

For a given random forest model, we select those instances from the training
dataset that are classified correctly.We calculate themedians of contributions of every
feature separately for each class. The medians computed for one class are combined
into a vectorwhich is interpreted as providing the aforementioned “standard level” for
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this class. If most of the instances from the training dataset belonging to a particular
class are close to the corresponding vector of medians, we may treat this vector
justifiably as a standard level. When a prediction is requested for a new instance,
we query the random forest model for the fraction of trees voting for each class and
calculate feature contributions leading to its final prediction. If a high fraction of
trees votes for a given class and the feature contributions are close to the standard
level for this class, we may reasonably rely on the prediction. Otherwise we may
doubt the random forest model prediction.

It may, however, happen that many instances from the training dataset correctly
predicted to belong to a particular class are distant from the corresponding vector of
medians. This might suggest that there is more than one standard level, i.e., there are
multiplemechanisms relating features to correct classes. Thenext subsection presents
more advanced methods capable of finding a number of standard levels—distinct
patterns followed by the random forest model in its prediction process.

5.2 Cluster Analysis

Clustering is an approach for grouping elements/objects according to their similarity
[14]. This allows us to discover patterns that are characteristic for a particular group.
As we discussed above, feature contributions in one class may have more than one
“standard level”. When this is discovered, clustering techniques can be employed to
find if there is a small number of distinct standard levels, i.e., feature contributions of
the instances in the training dataset group around a few points with only a relatively
few instances being far away from them. These few instances are then treated as
unusual representatives of a given class.We shall refer to clusters of instances around
these standard levels as “core clusters”.

The analysis of core clusters can be of particular importance for applications. For
example, in the classification of chemical compounds, the split into clusters may
point to groups of compounds with different mechanisms of activity. We should note
that the similarity of feature contributions does not imply that particular features are
similar. We examined several examples and noticed that clustering based upon the
feature values did not yield useful results whereas the samemethod applied to feature
contributions was able to determine a small number of core clusters.

Figure2 demonstrates the process of analysis of model reliability for a new
instance using cluster analysis. In a preprocessing phase, feature contributions for
instances in the training dataset are obtained. The optimal number of clusters for
each class can be estimated by using, e.g., the Akaike information criterion (AIC),
the Bayesian information criterion (BIC) or the Elbow method [14, 15]. We noticed
that these methods should not be rigidly adhered to: their underlying assumption is
that the data is clustered and we only have to determine the number of these clusters.
As we argued above, we expect feature contributions for various instances to be
grouped into a small number of clusters and we accept a reasonable number outliers
interpreted as unusual instances for a given class. Clustering algorithms try to push
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Fig. 2 The workflow for assessing the reliability of the prediction made by a random forest (RF)
model

those outliers into clusters, hence increasing their number unnecessarily. We recom-
mend, therefore, to treat the calculated optimal number of clusters as the maximum
value and consecutively decrease it looking at the structure and performance of the
resulting clusters: for each cluster we assess the average fraction of trees voting for
the predicted class across the instances belonging to this cluster as well as the average
distance from the centre of the cluster. Relatively large clusters with the former value
close to 1 and the latter value small form the group of core clusters.

To assess the reliability of themodel prediction for a new instance, we recommend
looking at two measures: the fraction of trees voting for the predicted class as well
as the cluster to which the instance is assigned based on its feature contributions. If
the cluster is one of the core clusters and the distance from its centre is relatively
small, the instance is a typical representative of its predicted class. This together with
high decisiveness of the forest suggests that the model’s prediction should be trusted.
Otherwise, we should allow for an increased chance of misclassification.

5.3 Log-likelihood

Feature contributions for a given instance form a vector in a multi-dimensional
Euclidean space. Using a popular k-mean clusteringmethod, for each class we divide
vectors corresponding to feature contributions of instances in the training dataset into
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Fig. 3 The box-plot for feature contributions within a core cluster for a hypothetical random forest
model

groups minimizing the Euclidean distance from the centre in each group. Figure3
shows a box-plot of feature contributions for instances in a core cluster in a hypothet-
ical random forest model. Notice that some features are stable within a cluster—the
height of the box is small. Others (F1 and F4) display higher variability. One would
therefore expect that the same divergence of contributions for features F3 and F4
from their mean value should be treated differently. It is more significant for the
feature F3 than for the feature F4. This is unfortunately not taken into account when
the Euclidean distance is considered. Here, we propose an alternative method for
assessing the distance from the cluster centre which takes into account the variation
of feature contributions within a cluster. Our method has probabilistic roots and we
shall present it first from a statistical point of view and provide other interpretations
afterwards.

We assume that feature contributions for instances within a cluster share the
same base values (μ f )—the centre of the cluster. We attribute all discrepancies
between this base value and the actual feature contributions to a random perturbation.
These perturbations are assumed to be normally distributed with the mean 0 and the
variance σ 2

f , where f denotes the feature. The variance of the perturbation for each
feature is selected separately—we use the sample variance computed from feature
contributions of instances of the training dataset belonging to this cluster. Although
it is clear that perturbations for different features exhibit some dependence, it is
impossible to assess it given the number of instances in a cluster and a large number
of features typically in use.2 Therefore, we resort to a common solution: we assume

2 A covariance matrix of feature contributions has F(F + 1)/2 distinct entries, where F is the
number of features. This value is usually larger than the size of a cluster making it impossible to
retrieve useful information about the dependence structure of feature contributions. Application of
more advanced methods, such as principal component analysis, is left for future research.
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that the dependence between perturbations is small enough to justify treating them
as independent. Summarising, our statistical model for the distribution of feature
contributions within a cluster is as follows: feature contributions for instances within
a cluster are composed of a base value and a random perturbation which is normally
distributed and independent between features.

Take an instance i with feature contributions FC f
i . The log-likelihood of being

in a cluster with the centre (μ f ) and variances of perturbations (σ 2
f ) is given by

L Li =
∑

f

(
− (FC f

i − μ f )
2

2σ 2
f

− 1

2
log(2πσ 2

f )
)
. (5)

The higher the log-likelihood the bigger the chance of feature contributions of
the instance i to belong to the cluster. Notice that the above sum takes into account
the observations we made at the beginning of this subsection. Indeed, as the second
term in the sum above is independent of the considered instance, the log-likelihood
is equivalent to

∑

f

(
− (FC f

i − μ f )
2

2σ 2
f

)
,

which is the negative of the squared weighted Euclidean distance between FC f
i

and μ f . The weights are inversely proportional to the variability of a given feature
contribution in the training instances in the cluster. In our toy example of Fig. 3,
this corresponds to penalizing more for discrepancies for features F2 and F3, and
significantly less for discrepancies for features F1 and F4.

In the following section, we analyse relations between the log-likelihood and
classification for a UCI Breast Cancer Wisconsin Dataset.

6 Applications

In this section, we demonstrate how the techniques from the previous section can
be applied to improve understanding of a random forest model. We consider one
example of a binary classifier using the UCI Breast Cancer Wisconsin Dataset [16]
(BCWDataset) and one example of a general classifier for the UCI Iris Dataset [12].
We complement our studies with a robustness analysis.

6.1 Breast Cancer Wisconsin Dataset

The UCI Breast Cancer Wisconsin Dataset contains characteristics of cell nuclei
for 569 breast tissue samples; 357 are diagnosed as benign and 212 as malignant.
The characteristics were captured from a digitized image of a fine needle aspirate
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Fig. 4 Medians of feature contributions for each class for the BCW Dataset. The light grey bars
represent contributions for class 0 and the black bars show contributions for class 1

(FNA) of a breast mass. There are 30 features, three (the mean, the standard error and
the average of the three largest values) for each of the following 10 characteristics:
radius, texture, perimeter, area, smoothness, compactness, concavity, concave points,
symmetry and fractal dimension. For brevity, we numbered these features from F1
to F30 according to their order in the data file.

To reduce correlation between features and facilitate model interpretation, the
min-max (minimal-redundancy-maximal-relevance)methodwas applied and the fol-
lowing features were removed from the dataset: 1, 3, 8, 10, 11, 12, 13, 15, 19, 20, 21,
24, 26. A random forest model was generated on 2/3 randomly selected instances
using 500 trees. The other 1/3 of instances formed the testing dataset. The valida-
tion showed that the model accuracy was 0.9682 (only 6 instances out of 189 were
classified incorrectly); similar accuracy was achieved when the model was generated
using all the features.

We applied our feature contribution algorithm to the above random forest binary
classifier. To align notationwith the rest of the paper, we denote the class “malignant”
by 1 and the class “benign” by 0. Aggregate results for the feature contributions for
all training instances and both classes are presented in Fig. 4. Light-grey bars show
medians of contributions for instances of class 0, whereas black bars show medians
of contributions for instances of class 1 (malignant). Notice that there are only a few
significant features in the graph: F4—the mean of the cell area, F7—the mean of
the cell concavity, F14—the standard deviation of the cell area, F23—the average of
three largestmeasurements of the cell perimeter andF28—the average of three largest
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Fig. 5 The left panel shows permutation based variable importance and the right panel displays
Gini importance for a RF binary classification model developed for the BCW Dataset. Graphs
generated using randomForest package in R

measurements of concave points. This selection of significant features is perfectly
in agreement with the results of the permutation based variable importance (the left
panel of Fig. 5) and the Gini importance (the right panel of Fig. 5). Interpreting the
size of bars as the level of importance of a feature, our results are in line with those
provided by the Gini index. However, the main advantage of the approach presented
in this chapter lies in the fact that one can study the reasons for the forest’s decision
for a particular instance.

Comparison of feature contributions for a particular instance with medians of
feature contributions for all instances of one class provides valuable information
about the forest’s prediction. Take an instance predicted to be in class 1. In a typical
case when the large majority of trees votes for class 1 the feature contributions
for that instance are very close to the median values (see Fig. 6a). This happens
for around 80% of all instances from the testing dataset predicted to be in class 1.
However, when the decision is less unanimous, the analysis of feature contributions
may reveal interesting information. As an example, we have chosen instances 194
and 537 (see Table 3) which were classified correctly as malignant (class 1) by
a majority of trees but with a significant number of trees expressing an opposite
view. Figure 6b presents feature contributions for these two instances (grey and light
grey bars) against the median values for class 1 (black bars). The largest differences
can be seen for the contributions of very significant features F23, F4 and F14: it
is highly negative for the two instances under consideration compared to a large
positive value commonly found in instances of class 1. Recall that a negative value
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Fig. 6 Comparison of the medians of feature contributions (toward class 1) over all instances of
class 1 (black bars) with a feature contributions for instance number 3 (light-grey bars) b feature
contributions for instances number 194 (grey bars) and 537 (light-grey bars) from the BCWDataset.
The fractions of trees voting for class 0 and 1 for these three instances are collected in Table 3

contributes towards the classification in class 0. There are also three new significant
attributes (F2, F22 and F27) that contribute towards the correct classification as well
as unusual contributions for features F7 and F28. These newly significant features
are judged as only moderately important by both of the variable importance methods
in Fig. 5. It is, therefore, surprising to note that the contribution of these three new
featureswas instrumental in correctly classifying instances 194 and 537 asmalignant.
This highlights the fact that features which may not generally be important for the
modelmay, nonetheless, be important for classifying specific instances. The approach
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Table 3 Percentage of trees that vote for each class in RF model for a selection of instances from
the BCW Dataset

Instance Id Benign (class 0) Malignant (class 1)

3 0 1
194 0.298 0.702
537 0.234 0.766

Table 4 The structure of clusters for BCW Dataset

Cluster 1 Cluster 2 Cluster 3
Size Avg. distance Size Avg. distance Size Avg. distance

Class 0 12 0.220 16 0.262 213 0.068
Class 1 20 0.241 109 0.111 10 0.336

For each cluster, the size (the number of training instances) is reported in the left column and the
average Euclidean distance from the cluster centre among the training dataset instances belonging
to this cluster is displayed in the right column

presented in this chapter is able to identify such features, whilst the standard variable
importance measures for random forest cannot.

6.2 Cluster Analysis and Log-Likelihood

The training dataset previously derived for the BCWDataset was partitioned accord-
ing to the true class labels. A clustering algorithm implemented in the R package
kmeans was run separately for each class. This resulted in the determination of three
clusters for class 0 and three clusters for class 1. The structure and size of clusters
is presented in Table 4. Each class has one large cluster: cluster 3 for class 0 and
cluster 2 for class 1. Both have a bigger concentration of points around the cluster
centre (small average distance) than the remaining clusters. This suggests that there
is exactly one core cluster corresponding to a class. This explains the success of the
analysis based on the median as the vectors of medians are close to the centres of
unique core clusters.

Figure7 lends support to our interpretation of core clusters. The left panel shows
the box-plot of the fraction of trees voting for class 0 among training instances
belonging to each of the three clusters. A value close to one represents predictions
for which the forest is nearly unanimous. This is the case for cluster 3. Two other
clusters comprise around 10% of the training instances for which the random forest
model happened to be less decisive. A similar pattern can be observed in the case of
class 1, see the right panel of the same figure. The unanimity of the forest is observed
for the most numerous cluster 2 with other clusters showing lower decisiveness. The
reason for this becomes clear once one looks at the variability of feature contributions
within each cluster, see Fig. 8. The upper and lower ends of the box correspond to the
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Fig. 7 Fraction of forest trees voting for the correct class in each cluster for training part of the
BCW Dataset
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Fig. 8 Boxplot of feature contributions (towards class 1) for training instances in each of the three
clusters obtained for class 1

75%and 25%quantiles, whereas thewhiskers show the full range of the data. Cluster
2 enjoys a minor variability of all the contributions which supports our earlier claims
regarding the similarity of instances (in terms of their feature contributions) in the
core class. One can see much higher variability in two remaining clusters showing
that the forest used different features as evidence to classify instances in each of
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Fig. 9 Log-likelihoods for belonging to the core cluster in class 0 (vertical axis) and class 1
(horizontal axis) for the testing dataset in BCW. Circles correspond to instances of class 0 while
triangles denote instances of class 1

these clusters. Although in cluster 2 all contributions were positive, in clusters 1 and
3 there are features with negative contributions. Recall that a negative value of a
feature contribution provides evidence against being in the corresponding class, here
class 1.

Based on the observation that clusters correspond to a particular decision-making
route for the random forest model, we introduced the log-likelihood as a way to
assess the distance of a given instance from the cluster centre, or, in a probabilistic
interpretation, to compute the likelihood3 that the instance belongs to the given
cluster. It should however be clarified that one cannot compare the likelihood for the
core cluster in class 0with the likelihood for the core cluster in class 1. The likelihood
can only be used for comparisons within one cluster: having two instances we can
say which one is more likely to belong to a given cluster. By comparing it to a typical
likelihood for training instances in a given cluster we can further draw conclusions
about how well an instance fits that cluster. Figure9 presents the log-likelihoods for
the two core clusters (one for each class) for instances from the testing dataset. Shapes
are used tomark instances belonging to each class: circles for class 0 and triangles for
class 1. Notice that likelihoods provide a very good split between classes: instances
belonging to class 0 have a high log-likelihood for the core cluster of class 0 and
rather low log-likelihood for the core cluster of class 1. And vice-versa for instances
of class 1.

3 The likelihood is obtained by applying the exponential function to the log-likelihood.
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Fig. 10 Medians of feature contributions for each class for the UCI Iris Dataset

Table 5 Feature
contributions towards
predicted classes for selected
instances from the UCI Iris
Dataset

Instance Sepal Petal
Length Width Length Width

120 0.059 0.014 0.053 0.448
150 −0.097 0.035 0.259 0.339

6.3 Iris Dataset

In this section we use the UCI Iris Dataset [12] to demonstrate interpretability of
feature contributions for classification models. We generated a random forest model
on 100 randomly selected instances. The remaining 50 instances were used to assess
the accuracy of the model: 47 out of 50 instances were correctly classified. Then
we applied our approach for determining the feature contributions for the generated
model. Figure 10 presents medians of feature contributions for each of the three
classes. In contrast to the binary classification case, the medians are positive for all
classes. A positive feature contribution for a given class means that the value of this
feature directs the forest towards assigning this class. A negative value points towards
the other classes.

Feature contributions provide valuable information about the reliability of random
forest predictions for a particular instance. It is commonly assumed that themore trees
voting for a particular class, the higher the chance that the forest decision is correct.
We argue that the analysis of feature contributions offers a more refined picture. As
an example, take two instances: 120 and 150. The first one was classified in class
Versicolour (88% of trees voted for this class). The second one was assigned class
Virginica with 86% of trees voting for this class. We are, therefore, tempted to trust
both of these predictions to the same extent. Table5 collects feature contributions for
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these instances towards their predicted classes. Recall that the highest contribution to
the decision is commonly attributed to features 3 (Petal.Length) and 4 (Petal Width),
see Fig. 10. These features also make the highest contributions to the predicted class
for instance 150. The indecisiveness of the forest may stem from an unusual value
for the feature 1 (Sepal.Length) which points towards a different class. In contrast,
the instance 120 shows standard (low) contributions of the first two features and
unusual contributions of the last two features: very low for feature 3 and high for
feature 4. Recall that features 3 and 4 tend to contribute most to the forest’s decision
(see Fig. 10) with values between 0.25 and 0.35. The low value for feature 3 is
non-standard for its predicted class, which increases the chance of it being wrongly
classified. Indeed, both instances belong to class Virginica while the forest classified
the instance 120 wrongly as class Versicolour and the instance 150 correctly as class
Virginica.

The cluster analysis of feature contributions for the UCI Iris Dataset revealed that
it is sufficient to consider only two clusters for each class. Cluster sizes are 4 and
38 for class Setosa, 2 and 25 for class Versicolour and 3 and 28 for class Virginica.
Core clusters were straightforward to determine: for each class, the largest of the
two clusters was selected as the core cluster. Figure11 displays an analysis of log-
likelihoods for all instances in the dataset. For every instance, we computed feature
contributions towards each class and calculated log-likelihoods of being in the core
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clusters of the respective classes. On the graph, each point represents one instance.
The coordinate LH1 is the log-likelihood for the core cluster of class Setosa, the
coordinate LH2 is the log-likelihood for the core cluster of class Versicolour and the
coordinate LH3 is the log-likelihood for the core cluster of class Virginica. Shapes of
points show the true classification: class Setosa is represented by circles, Versicolour
by triangles andVirginica by diamonds. Notice that points corresponding to instances
of the same class tend to group together. This can be interpreted as the existence of
coherent patterns in the reasoning of the random forest model.

6.4 Robustness Analysis

For the validity of the study of feature contributions, it is crucial that the results are not
artefacts of one particular realization of a random forest model but that they convey
actual information held by the data. We therefore propose a method for robustness
analysis of feature contributions. We will use the UCI Breast Cancer Wisconsin
Dataset studied in Sect. 6.1 as an example.

We removed instance number 3 from the original dataset to allow us to perform
tests with an unseen instance. We generated 100 random forest models with 500
trees with each model built using an independent randomly generated training set
with 379 ≈ 2/3 · 568 instances. The rest of the dataset for each model was used for
its validation. The average model accuracy was 0.963. For each generated model,
we collected medians of feature contributions separately for training and testing
datasets and each class. The variation of these quantities over models for class 1 and
the training dataset are presented using a box plot in Fig. 12a. The top of the box is the
75% quantile, the bottom is the 25% quantile, while the bold line in the middle is the
median (recalling that this is the median of the median feature contributions across
multiple models). Whiskers show the extent of minimal and maximal values for each
feature contribution. Notice that the variation between simulations is moderate and
conclusions drawn for one realization of the random forest model in Sect. 6.1 would
hold for each of the generated 100 random forest models.

A testing dataset contains those instances that do not take part in the model
generation. One can, therefore, expect more errors in the classification of the forest,
which, in effect, should imply lower stability of the calculated feature contributions.
Indeed, the box plot presented in Fig. 12b shows a slight tendency towards increased
variability of the feature contributions when compared to Fig. 12a. However, these
results are qualitatively on a par with those obtained on the training datasets. We can,
therefore, conclude that feature contributions computed for a new (unseen) instance
provide reliable information. We further tested this hypothesis by computing feature
contributions for instance number 3 that did not take part in the generation of models.
The statistics for feature contributions for this instance over 100 randomforestmodels
are shown in Fig. 12c. Similar results were obtained for other instances.
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Fig. 12 Feature contributions towards class 1 for 100 random forest models for the BCW dataset,
a Medians of feature contributions for training datasets, b Medians of feature contributions for
testing datasets, c Feature contributions for an unseen instance
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7 Conclusions

Feature contributions provide a novel approach towards black-box model interpre-
tation. They measure the influence of variables/features on the prediction outcome
and provide explanations as to why a model makes a particular decision. In this
work, we extended the feature contribution method of [6] to random forest clas-
sification models and we proposed three techniques (median, cluster analysis and
log-likelihood) for finding patterns in the random forest’s use of available features.
Using UCI benchmark datasets we showed the robustness of the proposed methodol-
ogy.We also demonstrated how feature contributions can be applied to understand the
dependence between instance characteristics and their predicted classification and to
assess the reliability of the prediction. The relation between feature contributions and
standard variable importance measures was also investigated. The software used in
the empirical analysis was implemented in R as an add-on for the randomForest
package and is currently being prepared for submission to CRAN [17] under the
name rfFC.
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