
Advances in Intelligent Systems and Computing 263

Thouraya Bouabana-Tebibel
Stuart H. Rubin Editors

Integration
of Reusable
Systems

Advances in Intelligent Systems and Computing

Volume 263

Series editor

Janusz Kacprzyk, Polish Academy of Sciences, Warsaw, Poland
e-mail: kacprzyk@ibspan.waw.pl

For further volumes:
http://www.springer.com/series/11156

http://www.springer.com/series/11156

About this Series

The series ‘‘Advances in Intelligent Systems and Computing’’ contains publications
on theory, applications, and design methods of Intelligent Systems and Intelligent
Computing. Virtually all disciplines such as engineering, natural sciences, com-
puter and information science, ICT, economics, business, e-commerce, environ-
ment, healthcare, life science are covered. The list of topics spans all the areas of
modern intelligent systems and computing.

The publications within ‘‘Advances in Intelligent Systems and Computing’’ are
primarily textbooks and proceedings of important conferences, symposia and
congresses. They cover significant recent developments in the field, both of a
foundational and applicable character. An important characteristic feature of the
series is the short publication time and world-wide distribution. This permits a
rapid and broad dissemination of research results.

Advisory Board

Chairman

Nikhil R. Pal, Indian Statistical Institute, Kolkata, India
e-mail: nikhil@isical.ac.in

Members

Emilio S. Corchado, University of Salamanca, Salamanca, Spain
e-mail: escorchado@usal.es

Hani Hagras, University of Essex, Colchester, UK
e-mail: hani@essex.ac.uk

László T. Kóczy, Széchenyi István University, Gy}or, Hungary
e-mail: koczy@sze.hu

Vladik Kreinovich, University of Texas at El Paso, El Paso, USA
e-mail: vladik@utep.edu

Chin-Teng Lin, National Chiao Tung University, Hsinchu, Taiwan
e-mail: ctlin@mail.nctu.edu.tw

Jie Lu, University of Technology, Sydney, Australia
e-mail: Jie.Lu@uts.edu.au

Patricia Melin, Tijuana Institute of Technology, Tijuana, Mexico
e-mail: epmelin@hafsamx.org

Nadia Nedjah, State University of Rio de Janeiro, Rio de Janeiro, Brazil
e-mail: nadia@eng.uerj.br

Ngoc Thanh Nguyen, Wroclaw University of Technology, Wroclaw, Poland
e-mail: Ngoc-Thanh.Nguyen@pwr.edu.pl

Jun Wang, The Chinese University of Hong Kong, Shatin, Hong Kong
e-mail: jwang@mae.cuhk.edu.hk

Thouraya Bouabana-Tebibel
Stuart H. Rubin
Editors

Integration of Reusable
Systems

123

Editors
Thouraya Bouabana-Tebibel
Laboratoire de Communication dans les

Systèmes Informatiques
Ecole Nationale Supérieure d’Informatique
Algiers
Algeria

Stuart H. Rubin
SPAWAR Systems Center Pacific
San Diego
USA

ISSN 2194-5357 ISSN 2194-5365 (electronic)
ISBN 978-3-319-04716-4 ISBN 978-3-319-04717-1 (eBook)
DOI 10.1007/978-3-319-04717-1
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014931756

� Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief
excerpts in connection with reviews or scholarly analysis or material supplied specifically for the
purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the
work. Duplication of this publication or parts thereof is permitted only under the provisions of
the Copyright Law of the Publisher’s location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Software reuse and integration has been described as the process of creating
software systems from existing software rather than building software systems
from scratch. Whereas reuse solely deals with the artifacts creation, integration
focuses on how reusable artifacts interact with the already existing parts of the
specified transformation. As a consequence, every integration can be seen as
consisting of an analysis of the parts and of their subsequent synthesis into the new
whole.

Although significant progress has been made on software reuse and integration,
some important issues remain to be fixed. One of these addresses scalability by
showing how to make best use of reusable components for very large systems.
‘‘Cloud-Based Tasking, Collection, Processing, Exploitation, and Dissemination in
a Case-Based Reasoning System’’ proposes a novel computational intelligence
methodology, which can learn to map distributed heterogeneous data to actionable
meaning for dissemination. This approach provides a core solution to the tasking,
collection, processing, exploitation, and dissemination problem. The expected
performance improvements include the capture and reuse of analyst expertise, and,
for the user, prioritized intelligence based on the knowledge derived from dis-
tributed heterogeneous sensing. ‘‘Simulation-Based Validation for Smart Grid
Environments: Framework and Experimental Results’’ describes a simula-
tion-based approach to understanding and examining the behavior of various
components of a Smart Grid in the context of verification and validation. To
achieve this goal, it adopts the discrete event system specification methodology,
which allows the generalization and specialization of entities in the model and
supports a customized simulation with specific scenarios.

Another issue is how to do sufficient formal specifications to support reliable
construction and functioning of very large and complex systems. High-level rep-
resentation mechanisms, including rigorous techniques for specification and ver-
ification, are needed. ‘‘An Institution for Alloy and Its Translation to Second-Order
Logic’’ deals with the Alloy formal method for which it lays out the foundations to
fully integrate the formalism in a platform which supports a huge network of
logics, logic translators, and provers. This makes possible for Alloy specifications
to borrow the power of several, nondedicated proof systems. ‘‘A Framework for
Verification of SystemC Designs Using SystemC Waiting State Automata’’ pre-
sents the SystemC waiting-state automaton which is a compositional abstract

v

http://dx.doi.org/10.1007/978-3-319-04717-1_1
http://dx.doi.org/10.1007/978-3-319-04717-1_1
http://dx.doi.org/10.1007/978-3-319-04717-1_2
http://dx.doi.org/10.1007/978-3-319-04717-1_2
http://dx.doi.org/10.1007/978-3-319-04717-1_3
http://dx.doi.org/10.1007/978-3-319-04717-1_3
http://dx.doi.org/10.1007/978-3-319-04717-1_4
http://dx.doi.org/10.1007/978-3-319-04717-1_4

formal model for verifying properties of SystemC. It is first shown how to extract
automata for SystemC components. Next, an approach is proposed to infer rela-
tions between predicates generated during symbolic execution. The correctness of
the abstract analysis is proven by model checking. ‘‘Formal MDE-Based Tool
Development’’ proposes a rigorous methodology to create formal tools for
GUI-based domain-specific languages. It aims at providing a productive and
trustworthy development methodology to safety critical industries. The method-
ology combines metamodel-based GUI generators with executable backends
automatically generated from formal specifications. As for ‘‘Formal Modeling and
Analysis of Learning-Based Routing in Mobile Wireless Sensor Networks,’’ it
presents a formal model for a learning-based routing protocol specific to wireless
sensor networks. The model is based on a Bayesian learning method, using a
Structural Operational Semantics style. It is analyzed by means of the rewriting
logic tool Maude.

Reuse and integration are key concepts in information retrieval and data min-
ing. They structure and configure the stored information in a way to facilitate its
extraction and enhance its usefulness. ‘‘On the Use of Anaphora Resolution for
Workflow Extraction’’ addresses the problem of workflow extraction from textual
process descriptions and presents a framework to support the development of
extraction applications. Resolution approaches are presented, and syntactic and
semantic evaluation functions are developed. These functions which are based on
precision, recall, and F-measure are used to assess the quality of the data-flow.
Furthermore, the data mining community has turned a significant fraction of its
attention to time series data. Virtually, the availability of plentiful labeled
instances is assumed. However, this assumption is often unrealistic.
Semi-supervised Learning seems like an ideal paradigm, because it can leverage
the knowledge of both labeled and unlabeled instances. ‘‘A Minimum Description
Length Technique for Semi-Supervised Time Series Classification,’’ first, dem-
onstrates that in many cases a small set of human annotated examples are sufficient
to perform accurate classification. Second, it provides a novel parameter-free
stopping criterion for semi-supervised learning. The experimental results suggest
that the approach can typically construct accurate classifiers even if given only a
single annotated instance.

Another key element in the success of reuse is the ability to predict variabilities.
‘‘Interpreting Random Forest Classification Models Using a Feature Contribution
Method’’ presents an approach to show how feature contributions measure the
influence of variables/features on the prediction outcome and provide explanations
as to why a model makes a particular decision. It demonstrates how feature
contributions can be applied to understand the dependence between instance
characteristics and their predicted classification and to assess the reliability of the
prediction.

In reuse, there is also a need for a seamless integration between the models
output from domain analysis and the inputs needed to for domain implementations
such as components, domain specific languages, and application generators.
‘‘Towards a High Level Language for Reuse and Integration’’ proposes a language

vi Preface

http://dx.doi.org/10.1007/978-3-319-04717-1_5
http://dx.doi.org/10.1007/978-3-319-04717-1_5
http://dx.doi.org/10.1007/978-3-319-04717-1_6
http://dx.doi.org/10.1007/978-3-319-04717-1_6
http://dx.doi.org/10.1007/978-3-319-04717-1_7
http://dx.doi.org/10.1007/978-3-319-04717-1_7
http://dx.doi.org/10.1007/978-3-319-04717-1_8
http://dx.doi.org/10.1007/978-3-319-04717-1_8
http://dx.doi.org/10.1007/978-3-319-04717-1_9
http://dx.doi.org/10.1007/978-3-319-04717-1_9
http://dx.doi.org/10.1007/978-3-319-04717-1_10

which gathers specialization and composition properties. The language is designed
in a way to be specific to complex system domains. It supports, on the other hand,
a component-based structure that conforms to a user-friendly component assem-
bly. It is conceived in the spirit of SysML concepts and its programs generate
Internal Block Diagrams.

Aspect orientation is a promising solution to software reuse. By localizing
specific features in code aspects, not only a modular separation of concern is
devised, but software development can also be incrementally transitioned to
improve productivity and time-to-market. ‘‘An Exploratory Case Study on
Exploiting Aspect Orientation in Mobile Game Porting’’ critically examines
how aspect orientation is practiced in industrial-strength mobile game applica-
tions. The analysis takes into account technical artifacts, organizational structures,
and their relationships. Altogether these complementary and synergistic view-
points allow to formulate a set of hypotheses and to offer some concrete insights
into developing information reuse and integration strategies.

Another area of potentially interesting research in reuse and integration is to
identify what should be made reusable and which reusable corporate artifacts and
processes will give the highest return on investment. ‘‘Developing Frameworks
from Extended Feature Models’’ proposes an approach to develop a framework
based on features defining its domain. The approach shows developers how to
proceed, making them less prone to insert defects and bad smells in the outcome
frameworks. It allows that even subjects with no experience in framework
development can execute this task correctly and spending less time.

Researchers also argue for better methods to support specification and rea-
soning on knowledge component depositories. In ‘‘About Handling
Non-conflicting Additional Information’’ the focus is on logic-based Artificial
Intelligence systems that must accommodate some incoming symbolic knowledge
that is not inconsistent with the initial beliefs but that however requires a form of
belief change. First, the study investigates situations where the incoming piece of
knowledge is both more informative and deductively follows from the preexisting
beliefs. Likewise, it considers situations where the new piece of knowledge must
replace or amend some previous beliefs, even when no logical inconsistency
arises.

Safety and reliability are important issues which may be adequately addressed
by reuse and integration. ‘‘A Multi-Layer Moving Target Defense Approach for
Protecting Resource-Constrained Distributed Devices’’ proposes a Moving Target
Defense approach for protecting resource-constrained mobile devices through
fine-grained reconfiguration at different architectural layers. It introduces a cov-
erage-based security metric to identify the configuration that best meets the current
requirements. Likewise, in ‘‘Protocol Integration for Trust-Based Communication’’
a secure scheme based on trust is proposed to protect against packet dropping in
mobile ad hoc networks. For this purpose, four already existing methods are inte-
grated in a complementary way to the basic routing protocol in order to provide the
required security.

Preface vii

http://dx.doi.org/10.1007/978-3-319-04717-1_11
http://dx.doi.org/10.1007/978-3-319-04717-1_11
http://dx.doi.org/10.1007/978-3-319-04717-1_12
http://dx.doi.org/10.1007/978-3-319-04717-1_12
http://dx.doi.org/10.1007/978-3-319-04717-1_13
http://dx.doi.org/10.1007/978-3-319-04717-1_13
http://dx.doi.org/10.1007/978-3-319-04717-1_14
http://dx.doi.org/10.1007/978-3-319-04717-1_14
http://dx.doi.org/10.1007/978-3-319-04717-1_15

Currently, most reuse research focuses on creating and integrating adaptable
components at development or at compile time. However, with the emergence of
ubiquitous computing, reuse technologies that can support adaptation and recon-
figuration of architectures and components at runtime are in demand.

This edited book includes 15 high-quality research papers written by experts in
information reuse and integration to cover the most recent advances in the field.
These papers are extended versions of the best papers which were presented at
IEEE International Conference on Information Reuse and Integration and IEEE
International Workshop on Formal Methods Integration, held in San Francisco in
August 2013. They have been selected among 111 accepted papers and have been
accepted for publication in this book after they have been extended and have
undergone a peer review process.

Thouraya Bouabana-Tebibel
Stuart H. Rubin

viii Preface

Contents

Cloud-Based Tasking, Collection, Processing, Exploitation,
and Dissemination in a Case-Based Reasoning System 1
Stuart H. Rubin and Gordon K. Lee

Simulation-Based Validation for Smart Grid Environments:
Framework and Experimental Results . 27
Wonkyu Han, Mike Mabey, Gail-Joon Ahn and Tae Sung Kim

An Institution for Alloy and Its Translation
to Second-Order Logic . 45
Renato Neves, Alexandre Madeira, Manuel Martins and Luís Barbosa

A Framework for Verification of SystemC Designs Using
SystemC Waiting State Automata . 77
Nesrine Harrath, Bruno Monsuez and Kamel Barkaoui

Formal MDE-Based Tool Development . 105
Robson Silva, Alexandre Mota and Rodrigo Rizzi Starr

Formal Modeling and Analysis of Learning-Based Routing
in Mobile Wireless Sensor Networks . 127
Fatemeh Kazemeyni, Olaf Owe, Einar Broch Johnsen
and Ilangko Balasingham

On the Use of Anaphora Resolution for Workflow Extraction 151
Pol Schumacher, Mirjam Minor and Erik Schulte-Zurhausen

A Minimum Description Length Technique for Semi-Supervised
Time Series Classification . 171
Nurjahan Begum, Bing Hu, Thanawin Rakthanmanon
and Eamonn Keogh

ix

http://dx.doi.org/10.1007/978-3-319-04717-1_1
http://dx.doi.org/10.1007/978-3-319-04717-1_1
http://dx.doi.org/10.1007/978-3-319-04717-1_2
http://dx.doi.org/10.1007/978-3-319-04717-1_2
http://dx.doi.org/10.1007/978-3-319-04717-1_3
http://dx.doi.org/10.1007/978-3-319-04717-1_3
http://dx.doi.org/10.1007/978-3-319-04717-1_4
http://dx.doi.org/10.1007/978-3-319-04717-1_4
http://dx.doi.org/10.1007/978-3-319-04717-1_5
http://dx.doi.org/10.1007/978-3-319-04717-1_6
http://dx.doi.org/10.1007/978-3-319-04717-1_6
http://dx.doi.org/10.1007/978-3-319-04717-1_7
http://dx.doi.org/10.1007/978-3-319-04717-1_8
http://dx.doi.org/10.1007/978-3-319-04717-1_8

Interpreting Random Forest Classification Models Using
a Feature Contribution Method . 193
Anna Palczewska, Jan Palczewski, Richard Marchese Robinson
and Daniel Neagu

Towards a High Level Language for Reuse and Integration 219
Thouraya Bouabana-Tebibel, Stuart H. Rubin, Kadaouia Habib,
Asmaa Chebba, Sofia Mellah and Lynda Allata

An Exploratory Case Study on Exploiting Aspect Orientation
in Mobile Game Porting . 241
Tanmay Bhowmik, Vander Alves and Nan Niu

Developing Frameworks from Extended Feature Models 263
Matheus Viana, Rosângela Penteado, Antônio do Prado
and Rafael Durelli

About Handling Non-conflicting Additional Information 285
Éric Grégoire

A Multi-Layer Moving Target Defense Approach
for Protecting Resource-Constrained Distributed Devices 299
Valentina Casola, Alessandra De Benedictis and Massimiliano Albanese

Protocol Integration for Trust-Based Communication 325
Fatma Laidoui and Thouraya Bouabana-Tebibel

Author Index . 341

x Contents

http://dx.doi.org/10.1007/978-3-319-04717-1_9
http://dx.doi.org/10.1007/978-3-319-04717-1_9
http://dx.doi.org/10.1007/978-3-319-04717-1_10
http://dx.doi.org/10.1007/978-3-319-04717-1_11
http://dx.doi.org/10.1007/978-3-319-04717-1_11
http://dx.doi.org/10.1007/978-3-319-04717-1_12
http://dx.doi.org/10.1007/978-3-319-04717-1_13
http://dx.doi.org/10.1007/978-3-319-04717-1_14
http://dx.doi.org/10.1007/978-3-319-04717-1_14
http://dx.doi.org/10.1007/978-3-319-04717-1_15

Cloud-Based Tasking, Collection, Processing,
Exploitation, and Dissemination
in a Case-Based Reasoning System

Stuart H. Rubin and Gordon K. Lee

Abstract The current explosion in sensor data has brought us to a tipping point in
the intelligence, surveillance, and reconnaissance technologies . This problem can be
addressed through the insertion of novel artificial intelligence-based methodologies.
The scope of the problem addressed in this chapter is to propose a novel computa-
tional intelligence methodology, which can learn to map distributed heterogeneous
data to actionable meaning for dissemination. The impact of this approach is that it
will provide a core solution to the tasking, collection, processing, exploitation, and
dissemination (TCPED) problem. The expected operational performance improve-
ments include the capture and reuse of analyst expertise, an order of magnitude
reduction in required bandwidth, and, for the user, prioritized intelligence based on
the knowledge derived from distributed heterogeneous sensing. A simple schema
example is presented and an instantiation of it shows how to practically create fea-
ture search spaces. Given the availability of high-speed parallel processors, such an
arrangement allows for the effective conceptualization of non-random causality.

Keywords Boolean features ·Case-based reasoning (CBR) ·Cloud-based tasking ·
Data exploitation · Schema instantiation

S. H. Rubin (B)

SSC-PAC, San Diego, CA 92152-5001, USA
e-mail: stuart.rubin@navy.mil

G. K. Lee (B)

Department of Electrical and Computer Engineering, San Diego State University,
San Diego, CA, USA
e-mail: glee@mail.sdsu.edu

T. Bouabana-Tebibel and S. H. Rubin (eds.), Integration of Reusable Systems, 1
Advances in Intelligent Systems and Computing 263, DOI: 10.1007/978-3-319-04717-1_1,
© Springer International Publishing Switzerland 2014

2 S. H. Rubin and G. K. Lee

1 Introduction

The explosion in sensor data presents a massive challenge in the intelligence, surveil-
lance, and reconnaissance technologies that may only be solved through the insertion
of novel artificial intelligence-based methodologies. The nature of the problem is that
heterogeneous data (i.e., structured and unstructured) must be reduced in size by an
order of magnitude prior to dissemination. The focus of this position chapter is
to suggest a novel computational intelligence methodology that can learn to map
distributed heterogeneous data to actionable meaning for dissemination. This frame-
work can provide a core solution to the tasking, collection, processing, exploita-
tion, and dissemination (TCPED) problem. Further, it is expected that the approach
will demonstrate the viability of the methodologies core concepts and thus justify
a scaled-up investment in its development. The expected operational performance
improvements include the capture and reuse of analyst expertise, an order of magni-
tude reduction in required bandwidth, and, for the user, prioritized intelligence based
on the knowledge derived from distributed heterogeneous sensing.

To date, there have been many varied approaches to the TCPED problem ([1–7],
for example). A common problem with these approaches is that either they employ
NP-hard technologies that do not scale well (e.g., neural networks), or they attempt
to apply logics, which are incomplete to tasks that inherently depend upon the devel-
opment of quality heuristics—the learning of which is a science in itself.

Consider a schema-definition methodology; could such a strategy be scaled up for
cloud-based computing? Will analysts who are non-programmers find it to be user
friendly? Can the realized schemas for such applications as weather prediction or web
searching find significant causal Boolean features? Boolean features are True/False
responses to arbitrarily complex effective questions that collectively (along with at
least one situational variable) define a situational context. Can schemas be symmet-
rically instantiated for greater speed of discovery? Can features be autonomously
acquired, which enable correct predictions to be made that could not practically be
made in their absence? While uncommon features may well be discovered (e.g., in
the weather prediction application, finding changes in the temperature other than
crossing the freezing boundary), we are looking to see that some common features
are among them (e.g., changes in the barometric pressure).

According to Sam Fusaro [8], we are missing a capability for predictive analysis.
The operational effectiveness of the approach presented here will bear proportion to
the extent to which our approach can capture causality and thus model the cognitive
process.

A fundamental principle of the tasking, collection, processing, exploitation,
and dissemination (TCPED) is that intelligence processes must remain operational
regardless of the amount of available bandwidth. A cloud-based system is needed to
provide decentralized control. It is also advantageous because it is self-organizing and
highly survivable. The goal of this chapter is to suggest that schema instantiation and
case-based reasoning may be employed to resolve the large data processing issues in
cloud computing. The approach presented here contributes to spectrum dominance

Cloud-Based Tasking, Collection, Processing, Exploitation 3

by evolving a feature-based understanding of the environment. One property of the
proposed methodology is that it can be trained to meet most bandwidth constraints by
virtue of its learning from skilled analysts. This is important for increasing the scale
of the Intelligence, Surveillance, Reconnaissance, and Targeting (ISR&T) picture
that will fuse data (and capabilities) from the cloud communities [9]. Furthermore,
cloud computing will enable an individual client to utilize sensors regardless of their
location.

Cloud computing has fewer problems than a network of heterogeneous machines.
A grid computing system is suggested for the cloud computing system’s back end. In
this way, the cloud system can access the processing power of all available computers
on the back end to make our methodologies potentially complex iterative calculations
tractable. The cloud also integrates cloud communities that include the intelligence
information collection communities.

2 An Illustrative Example

Suppose that we have the following case base, where ci are cases, wj are weights, the
ij are situational variables (features), and d is the associated dependency class. Here,
an asterisk, “*”, represents a situational variable whose value is unknown, or was not
recorded. Also, cases are acquired at the logical head, moved to the logical head when
fired, and expunged from the logical tail when necessary to release space. Table 1
presents the schema for an arbitrary case base. The cases are shown in logical order,
which is used by the uniform or 3-2-1 skew [10, 11]. The use of this skew is optional
(i.e., in comparison with uniform weighting) and is useful for domains where the
value of the data deteriorates in linear proportion to its time of collection—valuing
more recent data more highly. The selection of a particular skew is domain specific.
For example, the rate of radioactive decay is known to be proportional to how much
radioactive material is left (excluding the presence of certain metals). The nuclear
decay equation may be used as a skew for various radioactive materials and is given
by A(t) = A0e−λt . Here, A(t) is the quantity of radioactive material at time t, and A0
= A(0) is the initial quantity. The term λ is a positive number (i.e., the decay constant)
defining the rate of decay for the particular radioactive material. A countably infinite
number of other skews may be applicable.

In the following assignment of skew-weights, the skew vector, S, favors the logical
head of the case base in keeping with Denning’s principle of temporal locality [12].
Cases, which were most-recently acquired or fired, and thus appear at or nearer to
the logical head of a case-base, are proportionately more heavily weighted under
the 3-2-1 skew. Of course, this differs from a uniform skew. The closer a case is to
the top of its linked list, the greater its weight or importance. A heuristic scheme
(i.e., the 3-2-1 skew) for achieving this with a dependency class, d, consisting of
|d| cases is to assign the head case a weight of 2|d|

|d|(|d|+1)
. The map just below the

head map has a weight of 2(|d|−1)
|d|(|d|+1)

. Finally, the tail map of the segmented case base

4 S. H. Rubin and G. K. Lee

has a weight of 2
|d|(|d|+1)

. The ith map from the head has a weight of 2(|d|−i+1)
|d|(|d|+1)

, for
i = 1, 2, …, |d|. For example, using a vector of four weights, the 3-2-1 skew (S) is
S = (0.4, 0.3, 0.2, 0.1)T. There are a countably infinite number of possible skews,
such that

∑
sk = 1.0.

The evaluation of the members of a dependency class is the contiguous weighted
sum of its constituent elements (see below). A subsequent example will show how
the weights are computed using the uniform and 3-2-1 skews, which again may be
selected because they best fit domain characteristics. The weights are uniform if the
skew is not known, or if there is no decay in the value of a case once recorded.

Table 1 shows a doubly-linked list. Zero indicates a list end. The list-head of the
previous list is m and of the next list is one. The list-head of the free list (i.e., unused
array elements) begins with the list-head of the previous list if the rows are fully
utilized. Otherwise, the list-head of the free list points to the first row in the list of
unutilized rows, in sequence. It simply contains every freed row, in arbitrary order.

Shift values are maintained for each non-Boolean variable (Table 1). These shifts
are initialized to one minus the minimum field values, or zero—whichever is greater.
If the resultant shift exceeds zero, each non-Boolean variable is initially shifted up by
the computed shift value. Whenever a new contextual or situational variable has value
less than or equal to the negation of its corresponding shift, then the shift takes the
absolute value of that variable plus one. Non-Boolean variables not previously shifted
(e.g., the context) will be shifted up by that amount, while all previously shifted ones
(e.g., field values) will be shifted up by the values new—old shifts. Whenever a case
is expunged, if the expunged non-Boolean variables have values of one, then new
field minimums are found (i.e., an O(m) process) and if their values exceed one, the
associated shifts and the previously shifted variables are both reduced by the amount
that those values exceed one. Thus, all non-Boolean non-asterisk variables will have
value of at least one. This prevents divide-by-zero errors in normalization as well as
problems in adjusting zero-valued weights.

Next, define a context by cj for j = 1, 2, …, n. The nearness of a pair of cases, ci
and cj, where the context is taken as cj, is given by:

match(i) =
∑n

k=1 wk
∣
∣ci,k − c j,k

∣
∣

∣
∣participating si tuational variables

∣
∣
, i �= j.

It follows that since all weights and participating variable differences are nor-
malized, match(i) ∈ [0, 1]. A participating situational variable is one that does not
include an “*” in its field. If there are no such fields, then the pair of cases is omitted
from the computation. If there are no such pairs of cases, then the match cannot be
computed and thus is undefined.

The ranges of non-Boolean variables are normalized using double-precision com-
putations. The non-Boolean vectors must be defined by positive elements. This is
necessary to insure that any paired case differential, |ci,k − cj,k|, will never exceed
unity. There must be at least one non-Boolean vector containing no asterisks. This is
necessary to prevent divide-by-zero errors. The sums used for normalization are saved

Cloud-Based Tasking, Collection, Processing, Exploitation 5

Table 1 The case base schema

Wts w1 w2 w3 … wn →
Ind i1 i2 i3 … in →
Feature Non-B Bool Non-B … Bool →
Shift 0 - 0 … - …
c1 10 0 5 … 1 →
c2 15 1 10 … 0 →
c3 * * 15 … 0 →
… … … … … … …
cm 5 1 10 … 1 →
Wts Dep. Prv. Nxt.
Ind D - -
Feature d - -
Shift - - -
c1 1 0 2
c2 2 1 3
c3 2 2 m
… … … …
cm 1 3 0

Table 2 An arbitrary case base

Wts w1 w2 w3 w4 Dep.
Ind i1 i2 i3 i4 → D
Feature NB Bool NB Bool → d
c1 0.333 0 0.125 1 → 1
c2 0.5 1 0.25 0 → 2
c3 * * 0.375 0 → 2
c4 0.167 1 0.25 1 → 1

for the subsequent normalization of any context. The sums for situational variables i1
and i3 in Table 1 are 30 and 40, respectively (asterisks are skipped). Normalization of
these variables is shown in Table 2. Boolean and non-Boolean contextual differences
will all be comparable (i.e., resulting in a uniform contribution of their importance,
conditioned by their associated weight), since no paired case differential, |ci,k −cj,k|,
will ever exceed unity.

The dependency class selected to be fired will be the weighted match (i), which
has a minimal class value (see below). In the event of a tie, the dependency averaging
(i.e., substituting the case dependencies relative position from the logical head for its
match (i) value), nearer (at) the logical head of the case base is selected as the winner
as a result of temporal locality [12]. The single case dependency, which is nearer (at)
the logical head, is selected as the winner in the event of a second tie (e.g., d = 1
in Table 2 because (1 + 4)/2 = (2 + 3)/2, but c1 is the logical head). Using 3-2-1
skew weighting, d = 1 wins again because (2/3∗1 + 1/3∗4) < (2/3∗2 + 1/3∗3).

6 S. H. Rubin and G. K. Lee

Relative fused possibilities are produced (e.g., using the uniform or 3-2-1 skew),
which evidence that the decision to favor one class dependency over another may
be more or less arbitrary. Of course, in some domains it may be more appropriate to
present the user with an ordered list of alternative dependency classes, along with
their weighted match (i) values, and let the user decide. The decision is necessarily
a domain-specific one.

There are domains for which it is useful to know that the case base does not
embody the desired matching case(s) and all but perhaps the slightest “guessing” is
to be enjoined. This can be achieved by placing a squelch, greater than or equal to zero,
on the minimum match (i). Here, if this minimum computed match (i) just exceeds the
set squelch, then the system will respond with, “I’m very unsure of the correct action”.
The correct action dependency (d) will be paired with the context and acquired as a
new case, at the earliest opportunity, if the dependency should prove to be incorrect.
This dependency may or may not comprise a new action class. The logical tail
(LRU’d member) of the case base may be expunged, as necessary, to make room
for the new case acquisition. The qualifying phrases are, “very unsure”, “somewhat
unsure”, “somewhat sure”, “very sure”, depending on the difference, (minimum
match (d)—squelch, where d represents a dependency class). Notice that an exact
match would have a difference of—squelch. Thus, any difference<–squelch/2 would
be associated with the qualifier, “very sure”. Any –squelch/2≤difference≤ squelch/2
would be associated with the qualifier, “somewhat sure”. Any squelch/2 < difference
≤ squelch would be associated with the qualifier, “somewhat unsure”. Finally, any
squelch < difference would be associated with the qualifier, “very unsure”. The most
appropriate value for the squelch may be determined experimentally and is domain
specific.

Notice that the acquisition of a new case here not only insures that its situational
context will be known until, if ever, the case falls off of the logical tail of the case
base, but contexts in its immediate field (i.e., having minimal differences with it) will
likewise be associatively known. Cases identified as erroneous may be (a) overwrit-
ten with the correct dependency, if known, (b) expunged, or (c) bypassed through
the acquisition of a correct case at the logical head of the case base so that the erro-
neous case will eventually fall off of the logical tail of the case base. The choice
of methodology here is domain specific in theory. In practice, alternative (a) is the
usual favorite, where the domain is deterministic. Alternative (b) is the usual favorite,
where correct actions are not forthcoming. Alternative (c) is the usual favorite, where
the domain is non-deterministic (assumed herein).

Next, consider the arbitrary case base shown in Table 2. Here, we observe two
dependency classes and two case instances mapping to each class. The goal is to find
a normalized set of weights, wj, which will serve in mapping an arbitrary context to
the best-matching case situation and thus to the most appropriate action class, if any.
We may take the squelch to be 0.1 here on the basis of trial and error for this example.
If the minimum computed match (i) >0.1, then the system will reply to the effect that
it is very unsure of the correct action. A correct case will be acquired at the logical
head, if the correct action is known, should the dependency prove to be incorrect.
In this event, the LRU’d case at the logical tail may be expunged to make room.

Cloud-Based Tasking, Collection, Processing, Exploitation 7

Ideally, each case situation is to be compared with each other case situation,
exactly once, for the purpose of computing the global weight vector, W. The number

of comparisons here is m −1+m −2+ . . .+2+1, or m(m−1)
2 , which is O(m2) on a

serial machine. This is only tractable for limited values of m. However, an excellent
heuristic for reducing the order of magnitude of comparisons on large case bases
without significantly reducing the quality of results is to compare the ciel (square
root of the number of class members) with that defining number of members in each
class including its own, though compared cases must be distinct. This is particularly
useful for supporting the evolution of new features because it trades the time required
for an exact evaluation of the weights for an (initial) rough estimation of any new
features worth—allowing many more candidate features to be explored.

Once the feature set is stable, if ever, the full serial O(m2) class comparisons may
be resumed. If m parallel processors can be utilized, then the runtime complexity
here can be reduced to O(m). This is certainly tractable, where we define tractability
based on an efficient sort executing on a serial machine (e.g., MergeSort having
average and worst case times of O(N log N) [13]).

The count of comparisons is made in order from the logical head, since these are
the most recently acquired/fired cases and thus are intrinsically the most valuable
based on temporal locality [12]. For example, in Table 2, cases c1 and c4 are members
of the first class dependency and cases c2 and c3 are members of the second class

dependency. Thus, c1 is compared against
⌈√

2
⌉

= 2 members of its dependency

class as well as two members of the second dependency class. Note that when a class
member is being compared against its own class, the initial class member may be
counted towards the computed limit in the number of comparisons (though skipped
when i = j). Furthermore, if each class is dynamically linked based on order from
the logical head so that one need not traverse other class members to get to the
next member of the same class and each such class maintains a pointer to the next
class in order, then, the number of comparisons is

⌈√
m − 1

⌉ + ⌈√
m − 2

⌉ + . . . +⌈√
2
⌉

+ 1, which is O(m) on a serial machine. (In practice, this is not too difficult

to accomplish using two passes through the case base, or O(m) extra storage.) If m
parallel processors can be utilized, then the runtime complexity can be reduced to
O(log m). If m2 parallel processors can be utilized, then this can be reduced to O(c),
or constant time. Naturally, the use of m2 parallel processors would only be practical
for limited values of m.

Returning to our example in Table 2, c1 will be compared against c2, then against
c3, and next against c4. Then, c2 will be compared against c3, then against c4. Finally,
c3 will be compared against c4. Note that ci is not compared against ci because this
would serve to distort the resultant weights towards uniformity. Uniformity vies
against variable (feature) selection. Also, the evolution of the weights is context free
in terms of other weights. However, it is actually context sensitive because predicted
dependency classes found to be in error are re-acquired as new cases having correct
dependencies. The situational part of these new cases defines a new well for matching

8 S. H. Rubin and G. K. Lee

similar cases [14]. Absolute values are not raised to any power on account of the
availability of Boolean features, whose differences are immutable under any power.
This also provides for faster computation as the power function is relatively slow in
comparison with the arithmetic operators.

First, let us compare c1 against c2. These two situations belong to distinct classes
(D). Here, we want to assign maximal weights, wj, to the situational variables that
are the most quantitatively different. Going across w1 to w4 in Table 2 for c1 and
c2, |c1 − c2| is computed as: |0.333 − 0.5| = 0.167, |0 − 1| = 1, |0.125 − 0.25| =
0.125, |1−0| = 1. We note that the qualitative features are at least as important as any
other situational variable. This is evidenced by their more extreme absolute values
relative to the non-Boolean situational variables. Here, W = (0.167, 1, 0.125, 1).

Next, let us compare c1 against c3. These two situations belong to distinct classes
(D). Here, we want to assign maximal weights, wj, to the situational variables that
are the most quantitatively different. Going across w1 to w4 in Table 2 for c1 and
c3, |c1 − c3| is computed as: *, *, |0.125 − 0.375| = 0.25, |1 − 0| = 1. Here,
W = (*, *, 0.25, 1).

Next, let us compare c1 against c4. These two situations belong to the same
class (D). Here, we want to assign maximal weights, Wj, to the situational variables
that are the most quantitatively the same. Going across w1 to w4 in Table 2 for c1
and c4, |c1 − c4| is computed as: |0.333 − 0.167| = 0.166, |0 − 1| = 1, |0.125 −
0.25| = 0.125, |1 − 1| = 0. The Boolean situational variable differences need be
complimented and the remaining non-asterisk variables subtracted from 1.0 because
we need to weight the variables that are most similar most heavily. Here, W = (0.834,
0, 0.875, 1).

Next, let us compare c2 against c3. These two situations belong to the same class
(D). Here, we want to assign maximal weights, wj, to the situational variables that
are the most quantitatively the same. Going across w1 to w4 in Table 2 for c2 and
c3, |c2 − c3| is computed as: *, *, |0.25 − 0.375| = 0.125, |0 − 0| = 0. The Boolean
situational variable differences need be complimented and the remaining non-asterisk
variables subtracted from 1.0 because we need to weight the variables that are most
similar most heavily. Here, W = (*, *, 0.875, 1).

Next, let us compare c2 against c4. These two situations belong to distinct classes
(D). Here, we want to assign maximal weights, wj, to the situational variables that
are the most quantitatively different. Going across w1 to w4 in Table 2 for c2 and
c4, |c2 − c4| is computed as: |0.5 − 0.167| = 0.333, |1 − 1| = 0, |0.25 − 0.25| =
0, |0 − 1| = 1. Here, W = (0.333, 0, 0, 1).

Next, let us compare c3 against c4. These two situations belong to distinct classes
(D). Here, we want to assign maximal weights, wj, to the situational variables that
are the most quantitatively different. Going across w1 to w4 in Table 2 for c3 and
c4, |c3 − c4| is computed as: *, *, |0.375 − 0.25| = 0.125, |0 − 1| = 1. Here,
W = (*, *, 0.125, 1).

Now, it is time to compute the normalized weight vectors. First, the raw computed
weight vectors, W, are given in Table 3. Next, each ci,j is normalized going across
for j = 1 to n. Table 4 presents the results. The computed weights are then summed

Cloud-Based Tasking, Collection, Processing, Exploitation 9

Table 3 The raw computed weights

Wts w1 w2 w3 w4 Init.
∑

c1,2 0.167 1 0.125 1 2.292
c1,3 * * 0.25 1 1.25
c1,4 0.834 0 0.875 1 2.709
c2,3 * * 0.875 1 1.875
c2,4 0.333 0 0 1 1.333
c3,4 * * 0.125 1 1.125

Table 4 The normalized rows

Wts w1 w2 w3 w4 Fin.
∑

c1,2 0.0729 0.4363 0.0545 0.4363 1.0
c1,3 * * 0.2 0.8 1.0
c1,4 0.3079 0 0.323 0.3691 1.0
c2,3 * * 0.4667 0.5333 1.0
c2,4 0.2498 0 0 0.7502 1.0
c3,4 * * 0.1111 0.8889 1.0
∑

0.6306 0.4363 1.1553 3.7778 6.0
Avg 0.2102 0.1454 0.1926 0.6296 1.1778
Norm 0.1785 0.1234 0.1635 0.5346 1.0

and divided by the number of non-asterisked, situational variables and normalized
to yield the final normalized four weights.

Suppose we had the situational context defined by c1 in Table 2. Clearly, the correct
dependency class is 1. Let us see how this might be predicted.

First, let us compare c1 against c1. The raw context, c1 = (10, 0, 5, 1). Next, we
perform a column-normalization by dividing the non-Boolean variables by the pre-
viously saved column sums. Thus, c1 = (10/30, 0, 5/40, 1) = (0.333, 0, 0.125, 1).
Going across w1 to w4 in Table 2 for c1, |c1 − c1| is computed as: |0.333 − 0.333| =
0, |0 − 0| = 0, |0.125 − 0.125| = 0, |1 − 1| = 0. Thus, match (i = 1) = 0, which is
minimal and thus is correctly matched. (Note that skewed averages are still necessary
if non determinism is allowed. Here however, the case situation, c1, occurs only once
in Table 2—insuring that the correct dependency is d = 1).

Next, let us compare the situational context = (10, 1, 5, 0) against the four cases
in Table 2 to find the best match and thus the predicted value for the dependency.
Boolean matches are more significant and thus we would expect the dependency
class to be 2 here.

Let us compare this situational context against c1. Next, we perform a column-
normalization by dividing the non-Boolean variables by the previously saved column
sums. Thus, c1 = (10/30, 1, 5/40, 0) = (0.333, 1, 0.125, 0). Going across w1 to
w4 in Table 2 for c1, |c1 − context| is computed as: |0.333 − 0.333| = 0, |0 − 1| =
1, |0.125 − 0.125| = 0, |1 − 0| = 1.

10 S. H. Rubin and G. K. Lee

Thus, match(1) = 0.1785(0) + 0.1234(1) + 0.1635(0) + 0.5346(1)

4
= 0.1645.

The denominator is four here because none of the situational variables union the
context, in Table 2, has an asterisk and thus are all participating.

Next, let us compare this situational context against c2. Going across w1 to w4
in Table 2 for c2, |c2 − context| is computed as: |0.5 − 0.333| = 0.167, |1 − 1| =
0, |0.25 − 0.125| = 0.125, |0 − 0| = 0. Thus,

match(2) = 0.1785(0.167) + 0.1234(0) + 0.1635(0.125) + 0.5346(0)

4
= 0.0126.

Next, let us compare this situational context against c3. Going across w1 to w4 in
Table 2 for c3, |c3−context| is computed as: *, *, |0.375−0.125| = 0.25, |0−0| = 0.

match(3) = 0.1785(0) + 0.1234(0) + 0.1635(0.25) + 0.5346(0)

2
= 0.0204.

The denominator is two here because a total of two situational variables union the
context, in Table 2, have asterisks and thus are not participating—being substituted
for by zero above. Four situational variables reduced by two non-participating ones,
leaves two participating situational variables.

Next, let us compare this situational context against c4. Going across w1 to w4 in
Table 2 for c4, |c4 − context| is computed as: |0.167 − 0.333| = 0.166, |1 − 1| =
0, |0.25 − 0.125| = 0.125, |1 − 0| = 1. Thus,

match(4) = 0.1785(0.166) + 0.1234(0) + 0.1635(0.125) + 0.5346(1)

4
= 0.1462.

Next, we compute the uniform skew value for each class. c1 and c4 have d =
1 and c2 and c3 have d = 2. Thus, match (class1) = (match(1) + match(4))/2 =
(0.1645 + 0.1462)/2 = 0.1554. Match (class2) = (match(2) + match(3))/2 =
(0.0126 + 0.0204)/2 = 0.0165. Clearly, the second class (i.e., d = 2) is the better
selection by a factor of almost ten. Here, the minimum match (i) – squelch = 0.0165 –
0.1 = –0.0835 < –squelch/2 and thus we would be “very sure” of it being the correct
class. Also, the first class is above the set squelch of 0.1 and thus we would be “very
unsure” of it being the correct class.

Had the 3-2-1 skew been used instead of the uniform skew, then the first member
of each class would have been weighted more heavily, since it is closer to the logical
head. The 3-2-1 skew only considers an element in positional relation to elements in
the same class. The 3-2-1 skew for two elements is (2/3, 1/3). Thus, match (class1) =
(0.6667∗0.1645+0.3333∗0.1462) = 0.158. Match (class2) = (0.6667∗0.0126+
0.3333 ∗ 0.0204) = 0.015. Here, the use of the 3-2-1 skew has once again selected
the second class (i.e., d = 2), as desired. We are slightly more sure of it being the
correct class under the 3-2-1 than uniform skew because 0.015 – 0.1 = –0.085 <

–0.0835 < –squelch/2.

Cloud-Based Tasking, Collection, Processing, Exploitation 11

Table 5 The case base after acquisition

Wts w1 w2 w3 w4 Dep.
Ind i1 i2 i3 i4 → D
Feature NB Bool NB Bool → d
c1 0.333 1 0.125 0 → 3
c2 0.333 0 0.125 1 → 1
c3 0.5 1 0.25 0 → 2
c4 * * 0.375 0 → 2
c5 0.167 1 0.25 1 → 1

Suppose however that it was learned that the correct dependency for the context
was not d = 2, but rather something else—say d = 3, without loss of generality.
Table 5 shows the resulting logical ordering of the updated case base. (Note that
Table 5 would depict a nondeterministic case base if the context was an exact match
for an existing situation, but the associated action differed.) If this table was limited to
the storage of four cases, then case c5 would be expunged to make room for case c1.
Physical case movement or search is not required. Again, this would involve updating
the pointers to a doubly-linked global list. In Table 5, the global head pointer would
be updated to point to case c1 upon acquisition. Case acquisition or firing results in
logical movement to create a new list head, where not redundant. The next pointer
is updated to point to the previous head, or c2. The next lower case having the same
dependency, or case c5, is eventually visited through global traversal. Counts of the
number of members having the same dependency are maintained for the computation
of the uniform or 3-2-1 skew. Case c5 is last on the global list. Thus, it can be expunged
by adding it to the free list and changing the last on the list to point to its immediate
predecessor, or case c4. Thus, the tail is updated to point to c4.

Suppose that case c4 were to be fired. It is logically moved to the head of the global
list. Thus, the head pointer is set to c4. Case c4s next pointer is set to the previous
head, or case c1. Case c4s predecessor’s next pointer (case c3) is set to point to case
c4s successor (case c5).

Notice how the chance of generating an erroneous dependency (and its associated
possibility) decreases with each case acquisition— given a segmented and relatively
stable domain. This is because each case situation induces a proximal matching field
for every context. The utility of this matching field is proportionate to the combined
degree to which the situational variables were discriminators during training. This
completes our example of case acquisition.

Next, consider the situational variables, ij. Again, using m parallel processors, a
runtime complexity of O(log m) is achievable. This is very fast and such speed can be
put to good use in the evolution of new and better features. Table 4 shows the weights,
W = (0.1785, 0.1234, 0.1635, 0.5346). In order of non-increasing significance they
are w4, w1, w3, and w2. Observe that despite the missing data for the first two weights
for one case (i.e., c3 in Table 2), w1 is not among the first two weighted-features to
be replaced. w2 is the least-significant non-zero weighted-feature, or the first to

12 S. H. Rubin and G. K. Lee

be replaced. (Zero-valued weights need time to compute at least one comparative
evaluation before being adjudicated.) We have seen that missing data does not affect
the value assigned to a weight, as desired. The capability to handle this situation is
generally required for feature evolution.

One evolutionary strategy is to run numerous distinct tables, having n situational
variables each, in parallel. Each table holds predominantly distinct situational vari-
ables (features), though limited duplication is permitted to accelerate feature gener-
ation time. After all of the variables have received computed weights, the n greatest
weights, and associated distinct variables (features) are concatenated in one table and
renormalized. At least one non-Boolean situational variable containing no asterisks
is required in the final table. Care must be exercised that no feature is “dangling”—
due to reference to a missing situational variable(s), or even other feature(s). The
requirement to compute new normalized elements requires that the original data (see
Table 1) be the starting point each time—along with the appropriate sums (i.e., in
view of a change in the included fields). This strategy is most useful where many
parallel/distributed processors are available. More discussion on the use of parallel
platforms and its need is provided in [15]. A stable sort, such as the n-way Merge-
Sort [13], is used to sort the weight vectors. A stable sort maintains the relative
order of records with equal values. This is important for feature evolution. Here, new
situational features are inserted at the right. Thus, in the event of a tie, preexisting
situational features will be more highly valued, since they have survived the longer
test of time. Again, MergeSort has best and worst case times of O(N log N) and
MergeSort’s best case takes about half as many iterations as its worst case [13].

If no situational variable that is referenced by a feature(s) is allowed to be replaced
and no feature that is referenced by another feature(s) is allowed to be replaced, then
a second serial-processor strategy may be more efficient. The (non-zero lowest-
weight) non-referenced variables and features can be replaced (or augmented) with
new variables and/or features. To be replaced, the non-referenced variable or feature
must have a weight, which is less than the average weight of all variables and features
(except itself) having non-zero weights. Thus, better results can be expected if the
number of features referencing other features is minimized (or eliminated). This is
necessary to insure that relatively valuable non-referenced variables are not lost.
Here, a few of the non-zero lowest-weight features can be found using a single-
pass algorithm, which is O(n) on a sequential machine. The computation of Table 6
follows the same process as was illustrated for the computation of Table 3. The
sums are unaffected. Tables 6 and 7 contain a replaced feature, i2. The new feature,
though far from perfect, evidences better discrimination than the one it replaced.
The theoretical ideal weight vector, W, would have minimal cardinality such that
all wj are equal. Ideally, a single situational variable would suffice to determine the
dependency class. Table 7 computes the new weight vector, W = (0.1163, 0.2995,
0.1411, 0.4431).

Table 8 shows the acquisition of a new case by our arbitrary case base as set forth in
Table 1. This case includes a new Boolean feature, i5. Notice that this feature could not
be computed for any but the new case due to the unavailability of data. Nevertheless,
the system is designed so that the computed weight, w5 = 0, can co-exist with the

Cloud-Based Tasking, Collection, Processing, Exploitation 13

Table 6 The raw computed weights using the new w2

Wts w1 w2 w3 w4 Init.
∑

c1,2 0.167 1 0.125 1 2.292
c1,3 * * 0.25 1 1.25
c1,4 0.834 1 0.875 1 3.709
c2,3 * * 0.875 1 1.875
c2,4 0.333 1 0 1 2.333
c3,4 * * 0.125 1 1.125

Table 7 The normalized rows using the new w2

Wts w1 w2 w3 w4 Fin.
∑

c1,2 0.0729 0.4363 0.0545 0.4363 1.0
c1,3 * * 0.2 0.8 1.0
c1,4 0.2249 0.2696 0.2359 0.2696 1.0
c2,3 * * 0.4667 0.5333 1.0
c2,4 0.1428 0.4286 0 0.4286 1.0
c3,4 * * 0.1111 0.8889 1.0
∑

0.4406 1.1345 1.0682 3.3567 6.0
Avg 0.1469 0.3782 0.1780 0.5595 1.2626
Norm 0.1163 0.2995 0.1411 0.4431 1.0

Table 8 An acquisition for the arbitrary case base

Wts w1 w2 w3 w4 w5 Dep.
Ind i1 i2 i3 i4 i5 → D
Feature NB Bool NB Bool Bool → d
c1 20 1 20 0 1 → 2
c2 10 0 5 1 * → 1
c3 15 1 10 0 * → 2
c4 * * 15 0 * → 2
c5 5 1 10 1 * → 1

other weights, W, despite the single data point. In fact, having few data points (e.g.,
the square root of the number of class members), turns out to be an advantage for
the evolution of new features. This is because having few data points supports a
more uniform coverage of the feature search space. Most importantly, features are
generated through the instantiation of schema, which involve situational variables
and relational operators. Features may also be taken from case-base dependencies.
A simple schema is presented in Fig. 1, discussed in more detail in [16].

14 S. H. Rubin and G. K. Lee

Fig. 1 A simple weather features schema

3 A Knowledge-Based Solution

The tasking, collection, processing, exploitation, and dissemination problem calls
for a knowledge-based approach. The scope of this approach requires the acquisition
and generalization of massive amounts of distributed knowledge to succeed. The
nature of TCPED problems requires the piecing together of often diverse knowledge
segments to arrive at a solution. The search for such solutions can be made tractable
through the use of schemata (Figs. 1, 2, 3).

A simple schema is presented in Fig. 1. The search space for this schema is
3 × 6 × 2 = 36 possible instances. The first random select statement allows for
three choices (i.e., for pressure, humidity, or temperature). The six combinations for
the second random select statement is derived from taking n = 4 things, r = 2 at a
time, where the number of combinations, c, is defined by c = n!

r !(n−r)! . Finally, we
see that there are two random choices for the final set of relational operators, {>,<}.
Figures 2 and 3 show sample features, which are instances of their parent schema,
which is found in Fig. 1. Again, they may be automatically discovered and validated
through computational search. Figures 2 and 3 present one of 36 possible instances
of this schema.

3.1 Case-Based Reasoning

A case base consists of a set of situations and a sequence of actions such that the set is
mapped to an appropriate sequence by way of experience, hence the term, experiential
knowledge. This knowledge differs from rules in that it generally embeds causality,
rather than literally explain it. Thus, cases are far easier to capture, maintain, and
select for application.

Cases also differ from rules in that they are mapped to, rather than applied in the
form of a logical inference engine. The problem is that it is generally impossible
to directly capture causality. Any attempt to do so (e.g., through the use of rules)
invariably leads to secondary interactions, which grow to become ever-more difficult
to predict with scale. Cases are not associated with this difficulty because they are

Cloud-Based Tasking, Collection, Processing, Exploitation 15

Fig. 2 A “pressure” instance of the schema

Fig. 3 A “humidity” instance of the schema

limited to the capture of experience, which may differ from the underpinning cause
and effect. Case bases are also far less costly to maintain, for this reason, as has been
borne out by industrial experience.

Automating TCPED processes requires the scalability and the ease of mainte-
nance found in case-based systems, but needs the causal capture found in rule-based
systems. The latter is necessary for the capture of analyst expertise and to minimize
the number of case instances and thus the time needed for training the system.

3.2 An Example

Situational knowledge consists of a set of conditional variables and Boolean features,
which when satisfied imply a dependency. Dependencies define some system action
and are indexed by class membership. For example, a UAV might run client-side
software to record its GPS latitude and longitude (two variables), terrain data as
reported by its sensors (variables); detect a road (feature), a river (feature), and an
overpass (feature) [17]. This data (and potentially much more) is relayed to a cloud,
which is running a weighted feature-based Case-Based Reasoning (CBR) system as
a service. It maintains and evolves weights on all situational variables and features.
If it finds no exact match for this mix of variable data and Boolean features, then
in accordance with the novel methodology, it maps the data to the closest matching
case.

This case implies a certain action, which is indexed and is a member of a specific
(new) class. Moreover, a squelch is set to insure that the system will report when it
does not know a proper match for a supplied context, or its level of confidence in the
found match is below some preset threshold.

Here, that action class might be, “send text message to coalition cloud partner with
UAV situational context + the tag, Boolean feature “Force Status?”. The coalition
cloud, running the same algorithm on a distinct case base, has evolved say high

16 S. H. Rubin and G. K. Lee

weights on the GPS coordinate variables and the Force Status Boolean feature. This
triggers its own member of an action class, say, “Friend”. This is text messaged back to
the cloud that the UAV is communicating with. This action, by definition, advertises
a Boolean feature, “Friend”, which augments (or substitutes into) the existing set
of weighted situational variables and features. Now, the inference engine has the
original set of six situational variables and features (five if one is replaced) plus this
one. A new best-fit case is matched as before. (Note that the tagged Boolean feature,
“Friend” need not be available and if not the firing pattern would be as previously
described.) This time the triggered associated action class is say, “do not transmit
imagery—all secure”. Here, we see that operational bandwidth is conserved. The
things to take away from this example is that if the following five conditions are
all satisfied, then it will be practical to evolve dynamic solutions to the TCPED
problems.

1. The cases can be rapidly acquired by the cloud servers.
2. Erroneous cases can be identified and expunged or updated.
3. The situational weights can be accurately evolved.
4. New features can be evolved, and/or received from fired dependency categories,

to replace lower-quality features (i.e., those having the least non-zero weights).
5. The cloud servers can communicate using relatively low (available) bandwidth.

3.3 The Need for an Open Architecture

The payoff from pursuing this approach is that problems can be solved that are not
explicitly programmed for. The problem with expert systems is that the knowledge
acquisition bottleneck [18] makes it impractical to avoid programming with scale
(e.g., NASA’s software tool for building expert systems—CLIPS). In the system
proposed in this chapter, knowledge truly evolves from cases and the cases derive
from analyst expertise. This expertise can be captured in the form of schema and
exploited using cloud computing. The languages, used to define the schema, can be
bootstrapped using this approach. The risk occurs if an open architecture is not
utilized. This is because high-end schema-definition languages are more or less
domain specific. Thus, they will improve over time and given an open architecture,
the migration to upgrades, in the cloud, will be transparent to analysts on the front
end. It is important that knowledge be retained through all upgrades.

3.4 Smart Tagging, Indexing, and Advertising

Several institutions, including the US Navy, are pursuing cloud strategies for
ISR/TCPED [19]. Processes are locally written and stored in the cloud. These
processes can consist of Boolean features and effective dependencies. For example,

Cloud-Based Tasking, Collection, Processing, Exploitation 17

suppose a stream of data is sent to the cloud. We need smart and adaptive
methodologies to manage mission data so we are not shipping the same product
back five different ways and storing it 12 different times in accordance with current
practice [20]. Rather, Boolean features are triggered by that stream. The matching set
of situational variables and features triggers the best-matching case situation, which
triggers the associated dependency if the certainty is above squelch (i.e., above a set
minimum numeric quality criterion).

This cloud service does two basic things. First, it tags the data stream with a
meaning (e.g., “Force Status?”). Second, it corresponds with a specific Boolean
feature, which indicates that it was fired. That is, it advertises that the data was
tagged with “Force Status?” indicated. Advertised data may be posted in any calling
or called case base (i.e., intra and inter cloud). The risk here occurs where the memory
space is too small to allow purchase of the advertised feature when even the least-
weighted situational feature is needed and should not be arbitrarily lost. Another
payoff of cloud computing is that adequate memory is generally not a problem.

This is potentially far more than “separating the wheat from the chaff” [19].
The approach to the problem in [19] is to process this data in situ so as to limit
communication transmissions to mission critical data by autonomously extracting
necessary information from the data stream amidst a sea of extraneous material.
While this is helpful, we take the process to the next logical step. That is, we iteratively
tag data streams and use the collective sequence of tags to direct further tagging. This
is semantic scaffolding (also known as bootstrapping).

One rarely knows what data is needed so the iterative indexing of features effec-
tively enables what is known in computer science as, “data-directed translation”.
Here, the various tags provide a context for subsequent tags. In human terms, this
is building a cognitive picture. This feature, “Force Status?” always resets upon the
next iteration of the inference engine. Tagging and advertising data are accomplished
through the use of index tables, which are maintained in RAM for rapidity of access
using limited communication paths. The resulting system rapidly evolves a correct
complex behavior. This is attributed to the case interactions through smart tagging
and indexing capabilities to advertise relevant data. The complexity of this process
will be quadratic if each of m cases is compared against each other on a serial archi-
tecture, or linear in the cloud, where at least m distributed/parallel processors are
available. However, if each case is compared against the square root of the number
of cases in each class, then the complexity is reduced to linear on a serial archi-
tecture, or logarithmic in the cloud, where at least m distributed/parallel processors
are available. This order of magnitude reduction in the number of ideal dependency
category comparisons speeds up the discovery of new features by speeding up their
evaluation and ranking. There will be insignificant impact on the quality of the
resultant features because the cases, in each class taken for comparison, will be
the most-recently acquired or fired (i.e., logically ordered). These cases will have
the greatest utility.

18 S. H. Rubin and G. K. Lee

4 On Boolean Features

Networks of case bases allow one bases’ fired dependency category to serve as
another’s situational feature. Other features follow from the instantiation of domain-
specific schema. For example, a temperature variable might need to distinguish the
three natural states of water—solid, liquid, and gas. Here are a few tuples that serve to
illustrate a simple schema and its instantiations, Schema: (Temperature◦F, Freezing?,
Boiling?), (32◦, 1, 0), (72◦, 0, 0), and (212◦, 0, 1). The use of Boolean features is
very common and effective as a descriptor.

As few as 20 Boolean features can provide universal situational identifications.
For example, a parlor game exists called, “20 questions”. Players take turns asking
questions, which can be answered with a simple “Yes” or “No”. The information,
as measured by Shannon’s entropy statistic, needed to identify an arbitrary object,
from among 220 objects, is at most 20 bits [21]. The best questions will divide the
field of remaining choices by two each time. Indeed, this is how binary search algo-
rithms operate. Transforming this result, if binary decision points can differentiate
an arbitrary object, then Boolean features can similarly characterize it. The better
the questions, or equivalently the better the Boolean features the fewer that will be
needed on average.

While these Boolean features are simplistic, they can be far more complex. For
example, consider boosted/bagged neural networks, trained to recognize a particular
face over streaming video. Note that if a network of architecturally distinct subsys-
tems is trained, it is called, boosting. However, if identical subsystems are given
distinct training, it is called, bagging. Schemas define alternative weight vectors,
which program the neural networks recognition capabilities. Such weight vectors
are obtained on the basis of external training. Furthermore, Zero Instruction Set
Computer (ZISC) hardware can provide more than enough speed for real- time full-
motion HD video Boolean feature recognition (e.g., less than 10 microseconds) [22].
Additional discussion on the use of Boolean features is given in [23].

5 The Role of Analysts

A new case is formed from the triggered features (i.e., both schemata instances and
advertised dependencies) and the analyst-supplied action dependency. This machine
training makes more efficient use of existing analysts through the capture and reuse of
their expertise by the system as mediated through cloud-based architectures. The ISR
tipping point continues to increase the demand for additional intelligence analysts
to perform TCPED mission functions in traditional ways [20]. The expertise for the
human piece of the intelligence analysis and exploitation that will be needed must
be effectively captured for reuse, or we will not have the manpower to reduce the
volumes of data that must be moved around.

Cloud-Based Tasking, Collection, Processing, Exploitation 19

Notice the advantage provided by iterative processing using an inference engine.
That is, each iteration of the inference engine can transform the data stream by
transforming it with the results of its processing (i.e., tagging). Such tagging can result
in the iterative expansion and contraction of the grammatical object. This defines the
universal, or Type 0, grammar. It then follows that no semantics is theoretically too
sophisticated for it to effectively capture and process [24]. Intelligent systems that
will not be found to be lacking in capabilities are needed in many applications.

Tags can also be formed by reaching back in the data stream and using previous
processing results to tag the current stream. For example, once the data was tagged
with “Force Status?” the set of features that is triggered on the next iteration of the
inference engine recognizes that a request for information was sent to a federated
cloud. What would a trained analyst do at this point? (S)he might notice from the
reach-back that no hostile forces are in the vicinity. Knowing this and that no problems
are indicated is sufficient to enable the analyst to tag the data stream with “Friend”.
This message is subsequently routed back to the cloud that made the request. This
is defined as an executable tag, meaning that it is transmitted.

Notice that this methodology provides for the iterative fusion and reduction of
multiple data streams using federated clouds running software as a service. Process-
ing is done using the clouds platform as a service, which can execute in real time. One
key to the success of the full- scale methodology is providing the analysts with an
easy to use front end that (1) can capture their observations and decisions in software
for reuse and (2) can execute as a service in the cloud environment. The creation
of dependencies and most Boolean features does not require excessively complex
software. Such software is said to be lightweight or thin-client because it can be
composed exclusively on the client’s platform.

5.1 Case Specification and Schema Definition

The qualitative statement of intelligence needs derives transparently from the infer-
ence engine in finding the best match for the specified contextual situation. The user’s
intent and system objectives are embedded in a replay of analyst actions. They are
not literally defined per se, but rather are an emergent property of system complexity.

Once schemas and cases are specified by the analysts, the evolution of better
features is transparent. This is possible because the cases are partitioned into classes
on the basis of their dependencies. Cases having the same dependency are assigned
greater weights on their variables (features) that have near similar normalized values.
Conversely, cases having distinct dependencies are assigned higher weights on their
variables (features) that have the most different normalized values. This supports
the evolution of the ideal feature set, occurs in the cloud, and converges on the
capture of causality. Causality takes the form of a weighted set of appropriate Boolean
features. Predicted dependency categories, found to be in error, are reacquired as new
(nondeterministic) cases having correct dependencies. The situational part of these
new cases defines a contextual well for matching similar cases [14].

20 S. H. Rubin and G. K. Lee

The unique case-based weighted inference engine iteratively tags and removes
tags from the data to evolve a simulation of our cognitive processes. Traditional
CBR systems were designed to do this, but our novel CBR system autonomously
evolves better features and more optimal weights. It also embodies data management
to rank the utility of each acquired and fired case through logical movement. This
also enables the square-root comparison method to work using relatively little data.
Moreover, it can work with multiple alternative actions (i.e., non-determinism).

Knowledge acquisition is far easier than it would be using an expert system.
Analysts could not work with the latter due to the inherent complexity of capturing
causality. Moreover, unlike conventional programming, analysts need not be exact
when specifying schemas. That is, the crispness associated with conventional com-
puter programming is mollified to form a fuzzy space of alternatives. Our complex
system may pass messages back and forth internally and between clouds before
allowing a recommendation to emerge in satisfaction of the commander’s intent and
mission objectives. One property of the output of such a system is that it can be
trained to meet most bandwidth constraints by virtue of its exercise by the analyst(s).

5.2 A Revolutionary Answer to an Evolutionary Need

A recent TCPED study estimated a future need for over 300 additional intelligence
analysts [20]. Their knowledge and skills need to be captured for replay in training
the cloud-based CBR systems. Otherwise, adding more analysts is an evolutionary
answer to a revolutionary need. Analysts may opt to use sophisticated, but easy to
work with agent based modeling toolkits to parse the data and insert the proper tags
(e.g., ABLE, SOAR 6 in JAVA, SimPlusPlus in C++, but no programming required,
et al.). They will also write top-down and/or bottom-up schema (see below), which
are used to constrain the feature space. A treatise on the use of experts and analysts
is given in [15].

6 On Unsupervised Feature Learning

While schema definition effectively provides for semi-supervised learning because
the machine is dependent on the human and vice versa, the question arises if the
unsupervised learning of features is practical. First, in order to be tractable in the large,
knowledge is required to guide search. Thus, our question at once is transformed
into, “What is the most efficient representation(s) for knowledge?” and, “What is the
paradigm(s) for knowledge acquisition?”

The answer to the first question is to employ more constrained schema, more
parallel computation, and a better way to associate the problem definition with an
associated schema. Top-down and bottom-up methods have been given for schema
generalization. These methods depend upon having a symbolic representation.

Cloud-Based Tasking, Collection, Processing, Exploitation 21

This representation needs to be composable to create a search space of alternatives.
The selection among alternatives is knowledge based (e.g., using rules or preferably
cases).

The answer to the second question is to use the same case-based weighted feature
acquisition system. In other words, the dependencies at this level may be feature
schema, which are more general than the independent features leading to their selec-
tion. These dependencies capture greater knowledge than embodied by the indepen-
dent features leading to their selection.

Next, we consider the basis for feature-based schema selection. Features are
defined by the absence of noise [14, 17–30]. In other words, features are randomiz-
able. Such randomization can be lossless (i.e., invertible), or with greater or lesser
degrees of loss (e.g., in the “real” world). For example, an upper right angle and a
lower right angle can be learned by a neural network and associated with the con-
cept of right angle. However, the learned information is not compressed and in this
sense it is not randomized. Hence, we say that a feature has not been extracted. All
manner of methods have been used to extract the concept (e.g., positive and negative
examples, grammatical inference, etc.). However, they all fall short in what we refer
to as conceptualization.

Patterns may be stored and recursively adapted within limits to match meta-
patterns. New patterns may be learned. In essence, such mapping procedures can
facilitate recognition. But, randomization is not limited to structural randomization.
It may be functional as well. For example, a large flat rock and a chair are functionally
randomizable. Again, we see the need for symbolic representations of knowledge.
While symmetric knowledge can be discovered through the use of an inference engine
(e.g., a sandy beach is like a bed), random knowledge cannot. It must be limited to the
product of exhaustive search. Such search must involve conceptual tokens (i.e., words
and phrases) because only they are randomizations of the intended concept (e.g.,
neural weights are not randomizations). The compression of fundamental memories
in a neural network requires context (e.g., is it that they are right angles or that
they are sharp?). As such, context must be separable. This can only be accomplished
through the use of symbolic representations. This suggests the use of neural networks
as a frontend for symbolic representation and the symbolic composition of schemata
using system dependencies (i.e., knowledge-based composition of schemata).

Sometimes a single schema is sufficient for an instance of it to capture a general
concept. At other times, a more or less linear independent association of schema
instances is necessary to capture a general concept. This is because randomization
is an iterative process. The end point of randomization is recursively enumerable,
but not recursive. Thus, while fewer schemata instances are necessary over time, one
never truly knows if a relative minimum has been attained. That is why conceptual-
ization is time dependent [23].

22 S. H. Rubin and G. K. Lee

7 Five Research Challenges

There are five research challenges, amongst others, which need to be addressed [16].

1. Develop a schema definition methodology suitable for small-scale testing and
realizable software to facilitate the implementation of self-modifying code.

2. Investigate and report on how to best constrain the implied search.
3. Investigate tagging using advertised features (i.e., self-referential feedback in

machine learning)—this will also prove the utility of intra and inter cloud com-
munication if successful.

4. Evaluate the quality of the evolved features as determined by the evolution of
their associated weights towards a set having minimal statistical variance (i.e., a
surrogate criterion for high utility features). Also, if the number of descriptive
features is allowed to vary then a successful feature evolution will usually, but
not always reduce the number of maintained features. (While having a minimal
number of maximally-descriptive features is desired, that minimum is domain
specific and cannot be known in the general case.)

5. Evaluate the subjective quality of the feature evolution process—including the
number and relevance of the features evolved.

With research challenges, one must also ask some questions which may lead to
potential reinforcements of proposed approaches or lead to other approaches not
initially considered.

1. Can the schema-definition methodology utilize the massively distributed envi-
ronment provided by cloud computing? Can libraries of schema templates be
defined and used as is common for object-oriented programming languages?
Will schemas be easy for analysts to use to constrain the search space? Can ran-
dom instances of analyst-specified weather prediction schemas and/or symmetric
instances of analyst-specified weather prediction features yield significant causal
Boolean features?

2. That random instantiation of schemas works was empirically demonstrated in
1998 in an unpublished computer program. Will the random instantiation of
schemas, or the symmetric extension of features, if either, prove to be a more
productive methodology for analyst use? This topic is suitable for a patent disclo-
sure(s) and/or research paper(s). It is likely to be best realized through economies
of scale. Can Bernstein’s concept of multiple analogies, where having multiple
derivational paths increases the likelihood of having a valid result, be empirically
confirmed.

3. Can correct (i.e., meaningful) weather predictions be made using two or more
cycles of the inference engine such that at least one advertised Boolean feature
tag, which was not present in the first cycle, and is subsequently posted, leads
to the firing of a correct action dependency? This demonstrable event, which
implies successful schema definition and instantiation, provides clear indication
that the methodology can scale, be cloud-based, and address TCPED intelli-
gence processes. That is the impact. The needed bandwidth will be relatively low

Cloud-Based Tasking, Collection, Processing, Exploitation 23

because text, not say HD video, will be streamed, for the most part, over the
network.

4. Ideally, a minimum number of features will all have about the same weight and
suffice to determine the proper dependencies. Statistical variance, in the weights,
will be computed along a path from the initial weight vector and associated
feature set to an evolved weight vector and associated feature set. A plotted
approximation of a decreasing exponential curve will evidence that the quality
of the Boolean features is successfully improving. Furthermore, if the number of
maintained features is allowed to vary based on the magnitude of the associated
evolved weights, then a decreasing number of maintained features, in general,
will likewise support the improving quality of the evolving features.

5. The features evolved for the application domain (e.g., weather prediction) will
be evaluated by their number (less is better), their relevance as defined by their
associated weights (greater is better), and most importantly by their use in the
actual domain. While uncommon meteorological features may well be discov-
ered here (e.g., changes in the relative humidity), we are looking to see that
some common meteorological features are among them (e.g., changes in the
barometric pressure). Freely available weather history reports can be obtained
from the Web, from <http://weathersource.com/past-weather/weather-history-
reports/free>. This data can be used to support feature evolution. Successful
evaluation of the five categorical questions collectively provides clear evidence
that the proposed methodology works as described. Each loosely coupled CBR
system in the cloud will benefit from each other’s quality improvements. The
features and their weights are continuously evolved on the back end (e.g., the
cloud’s grid computing system) to dynamically optimize performance.

The approach suggested here advances beyond others research by providing the
following ten fundamental capabilities.

1. It evolves causal behavior—it does not require the user to find rules to specify
it.

2. It utilizes schema-definition languages to define and evolve candidate features.
3. Candidate features are also automatically derived from every fired dependency.

This is also supported by low bandwidth intra and inter-cloud networking.
4. It compares cases against the same as well as distinct classes of case dependen-

cies to evolve near optimal features and associated weight sets for the supplied
TCPED problems.

5. The weight sets may be rapidly evolved, using a novel “square-root class com-
parison method” to more quickly converge upon the best features.

6. Cases are acquired, fired, and expunged to free space using dynamic memory
management and logical (i.e., not physical) movement for speed.

7. System training is transparently provided by teams of distributed analysts, using
intelligent agents so that their expertise is readily captured for replay.

8. Every action is associated with an evaluation of its certainty. Actions having low
certainties are subject to being squelched (i.e., filtered).

http://weathersource.com/past-weather/weather-history-reports/free
http://weathersource.com/past-weather/weather-history-reports/free

24 S. H. Rubin and G. K. Lee

9. It learns from analyst training to iteratively find meaning in multiple data streams.
Dependency actions can disseminate this meaning, in the cloud, using an order
of magnitude less bandwidth. This is made possible through the use of smart
tagging and advertising.

10. All of the novel advancements above utilize the massive parallelism available
through platform as a service using federated cloud architectures.

A successful approach for conceptualizing causality, and thus modeling the cog-
nitive process, will define a solution for the entire intelligence process, or TCPED.
There is a small risk of failure here. However, the methodology overviewed herein
shows that TCPED intelligence processes can be automated to a much greater extent
than is presently possible. That is the payoff.

8 Conclusion

Determining causal relationships from observations and experiments is fundamen-
tal to human reasoning, decision making, and the advancement of science. In the
final analysis, this methodology converges on effectively capturing causality—to
the extent that it is not randomly based. It shows that the evolution of features and
the machine learning of cases provide a unified framework for the capture of intelli-
gence. Furthermore, the definition of schemas, for the production of novel features,
is defined by randomness and symmetry [11, 25, 27].

The methodology is robust and can handle limited noise and/or missing data.
In particular, evolution can occur on top of an existing case base—even if the data
needed to evaluate the new variables (features) cannot be had for the preexisting
cases. A squelch is set to insure that the system will report when it does not know
a proper match for a supplied context. Cases are logically acquired at the head of
the base and moved there whenever fired. The least-recently used (LRU’d) cases are
expunged from the tail when necessary to free space

Weights are evolved by processing each case against each other in a segmented
case base and partitioning the cases on the basis of having the same or distinct class
dependencies. Greater weights are used if the situational variables being compared
are different and the associated action dependencies belong to distinct classes. Simi-
larly, greater weights are used if the situational variables being compared are similar
and the associated action dependencies belong to the same class. Situational vari-
ables are normalized and unified with Boolean features. The methodology can be
O(log m) in runtime complexity if m parallel processors are utilized and the square
root of the number of class members is used for comparison purposes. This allows
for the rapid evolution of new features—decreasing the entropy of the supplied data.
Contexts are mapped to the class whose components have minimal weighted error
(i.e., evaluate closest to zero). These components are typically uniformly weighted,
or weighted using the 3-2-1 skew. The latter reflects the age-weighted properties of

Cloud-Based Tasking, Collection, Processing, Exploitation 25

data, or a domain-specific alternative skew may be designed. Methods are supplied
for acquiring new variables (features) and replacing those found to be less relevant.

This methodology shows that the evolution of features and the machine learning
of cases provide a unified framework for the capture of intelligence. Furthermore, the
definition of schemas, for the production of novel features, is defined by randomness
and symmetry. Finally, networks of segmented case bases allow one bases fired
dependency class to serve as another’s situational feature. Such networks define
generalized and-or graphs (GAGs). These graphs have the representational power of
Type 0 grammars. Successful situational features are more likely to be taken from
segmented case base dependencies, where they were previously discovered. Here,
new cases and segmented bases can be formed through the association of triggered
dependency classes and the most-recent distinct actions.

Acknowledgments The authors thank SSC-PAC for financial support. This research document
was produced, in part, by a U.S. government employee as part of his official duties.

References

1. Kumar, S., Dharm, R.: A contemporary approach to hybrid expert systems: case-based reason-
ing. In: International Conference on Computer and Communication Technology, ICCCT-2010,
pp. 736–740 (2010)

2. Maurer, M., Brandic, I., Sakellariou, R.: Simulating autonomic SLA enactment in clouds using
case-based reasoning. In: Lecture Notes in Computer Science. LNCS, vol. 6481, pp. 25–36.
Springer, Heidelberg (2010)

3. Ben Mustapha, N., Zghal, H.B., Aufaure, M.A., Ben Ghezala, H.: Semantic search using
modular ontology learning and case-based reasoning. In: Proceedings of the International
Conference on Extending Database Technology/International Conference on Database Theory.
ACM (2010)

4. Smiti, A., Elouedi, Z.: Using clustering for maintaining case-based reasoning systems. In:
Proceedings of the 5th IEEE International Conference on Modeling, Simulation and Applied
Optimization, ICMSAO (2013)

5. Pawlish, M., Varde, A.S., Robila, S.A.: Cloud computing for environment-friendly data centers.
In: Proceedings of the 3rd International Workshop on Cloud Data Management, ACM (2012)

6. Bahga, A., Madisetti, V.K.: Analyzing massive machine maintenance data in a computing
cloud. IEEE Trans. Parallel Distrib. Syst. 23(10), 1831–1843 (2012)

7. Horn, G.: A vision for a stochastic reasoner for autonomic cloud deployment. In: Proceedings
of the 2nd Nordic Symposium on Cloud Computing and Internet Technologies, ACM (2013)

8. Rosenberg, B.: Harnessing the full power of sensor fusion. In: Defense Systems. http://
defensesystems.com/Articles/2009/09/02/C4ISR1-Sensor-Fusion.aspx (2009)

9. Costlow, T.: Military pushes for smaller and capable sensor inputs for UAVs. Defense Syst.
5(11), 26–27 (2011)

10. Rubin, S.H.: System and method for geodesic data mining. US Patent No. 7,840,506 B1, 23
Nov 2010

11. Rubin, S.H.: Is the kolmogorov complexity of computational intelligence bounded above? In:
Proceedings of the IEEE International Conference on Information Reuse and Integration (IRI),
Las Vegas, pp. 455–461 (2011)

12. Deitel, H.M.: An Introduction to Operating Systems. Prentice Hall, Inc., Upper Saddle River
(1984)

http://defensesystems.com/Articles/2009/09/02/C4ISR1-Sensor-Fusion.aspx
http://defensesystems.com/Articles/2009/09/02/C4ISR1-Sensor-Fusion.aspx

26 S. H. Rubin and G. K. Lee

13. Merge sort, Wikipedia, the free encyclopedia, http://en.wikipedia.org/wiki/Merge_sort
14. Rubin, S.H., Murthy, S.N.J., Smith, M.H., Trajkovic, L.: KASER: knowledge amplification by

structured expert randomization. IEEE Trans. Syst. Man Cybern. B Cybern. 34(6), 2317–2329
(2004)

15. Rubin, S., Lee, G.: Requirements for an intelligent system for experts. In: Proceedings of the
ISCA International Conference on Computers and Their Applications, Honolulu (2010)

16. Rubin, S., Lee, G.: Cloud-based tasking, collection, processing, exploitation, and dissemina-
tion. In: Proceedings of the IEEE International Conference on Information Reuse and Integra-
tion, San Francisco (2013)

17. Kim, Z.: Real-time road detection by learning from one example. In: Proceedings of the IEEE
Workshop on Application of Computer Vision, pp. 455–460 (2005)

18. Feigenbaum, E.A., McCorduck, P.: The Fifth Generation: Artificial Intelligence and Japan’s
Computer Challenge to the World. Addison-Wesley Pub. Co., Reading (1983)

19. Davis, S.A.: Information dominance, agile acquisition, and intelligence integration, Q&A
with Terry Simpso. PEO C4I’s Principal Deputy for Intelligence. United States Navy, Space
and Naval Warfare Systems Command, Office of Public Affairs and Corporate, Communi-
cations (Feb 25, 2011) www.public.navy.mil/spawar/Press/Documents/Publications/2.23.11_
TerrySimpson.pdf

20. CHIPS Magazine, Interview with J. Terry Simpson, PEO C4I Principal Deputy for Intelligence.
www.doncio.navy.mil/CHIPS/ArticleDetails.aspx?ID=2289 (April-June 2011)

21. Twenty Questions, Wikipedia. http://en.wikipedia.org/wiki/Twenty_Questions#cite_note-1
22. Deck, W.C.: Target tracking with the zero instruction set computer, VDM, Saarbrücken (2010)
23. Rubin, S., Lee, G.: Predictor-corrector equations for feature extraction. In: Proceedings of the

ISCA International Conference on Computers and Their Applications, Honolulu (2013)
24. Honavar, V., Slutzki, G. (eds.): Grammatical Inference. Lecture Notes in Artificial In-telligence,

vol. 1433. Springer, Berlin (1998)
25. Chaitin, G.J.: Randomness and mathematical proof. Sci. Am. 232(5), 47–52 (1975)
26. Rubin, S.H.: System and method for knowledge amplification employing structured expert

randomization (KASER), Patent No. US 7,047,226. 16 May 2006
27. Rubin, S.H.: On randomization and discovery. Inf. Sci. 177(1), 170–191 (2007)
28. Rubin, S.H.: Chapter 17—Knowledge amplification by structured expert randomization—

KASERs in SoS design. CRC book. System of Systems—Principles and Applications, pp.
421–450. Taylor & Francis Group, Boca Raton (2009)

29. Rubin, S.H.: Chapter 13—On creativity and intelligence in computational systems. In:
Advances in Reasoning-Based Image Processing, Analysis, and Intelligent Paradigms. pp.
383–421. Springer, ISRL 29 (2011)

30. Rubin, S.H.: Multilevel constraint-based randomization adapting case-based learning to fuse
sensor data for autonomous predictive analysis. NC 101614, 06 Feb 2012

http://en.wikipedia.org/wiki/Merge_sort
www.public.navy.mil/spawar/Press/Documents/Publications/2.23.11_TerrySimpson.pdf
www.public.navy.mil/spawar/Press/Documents/Publications/2.23.11_TerrySimpson.pdf
www.doncio.navy.mil/CHIPS/ArticleDetails.aspx?ID=2289
http://en.wikipedia.org/wiki/Twenty_Questions#cite_note-1

Simulation-Based Validation for Smart Grid
Environments: Framework and Experimental
Results

Wonkyu Han, Mike Mabey, Gail-Joon Ahn and Tae Sung Kim

Abstract Large and complex systems, such as the Smart Grid, are often best
understood through the use of modeling and simulation. In particular, the task of
assessing a complex system’s risks and testing its tolerance and recovery under var-
ious attacks has received considerable attention. However, such tedious tasks still
demand a systematic approach to model and evaluate each component in complex
systems. In other words, supporting a formal validation and verification without need-
ing to implement the entire system or accessing the existing physical infrastructure
is critical since many elements of the Smart Grid are still in the process of becoming
standardized for widespread use. In this chapter, we describe our simulation-based
approach to understanding and examining the behavior of various components of
the Smart Grid in the context of verification and validation. To achieve this goal, we
adopt the discrete event system specification (DEVS) modeling methodology, which
allows the generalization and specialization of entities in the model and supports
a customized simulation with specific variables. In addition, we articulate metrics

A preliminary version of this chapter appeared under the title “Simulation-Based Validation for
Smart Grid Environments,” in Proceedings of the 14th IEEE International Conference on Infor-
mation Reuse and Integration, San Francisco, USA, August 14–16, 2013. All correspondences
should be addressed to Dr. Gail-Joon Ahn at gahn@asu.edu.

W. Han (B) · M. Mabey · G.-J. Ahn (B)

Laboratory of Security Engineering for Future Computing (SEFCOM), Arizona State University,
Phoenix, AZ, USA
e-mail: whan7@asu.edu

M. Mabey
e-mail: mmabey@asu.edu

G.-J. Ahn
e-mail: gahn@asu.edu

T. S. Kim
Chungbuk National University, Cheongju-si, South Korea
e-mail: kimts@chungbuk.ac.kr

T. Bouabana-Tebibel and S. H. Rubin (eds.), Integration of Reusable Systems, 27
Advances in Intelligent Systems and Computing 263, DOI: 10.1007/978-3-319-04717-1_2,
© Springer International Publishing Switzerland 2014

28 W. Han et al.

for supporting our simulation-based verification and validation and demonstrate the
feasibility and effectiveness of our approach with a real-world use case.

Keywords Smart grid · Discrete event system specification · Risk assessment ·
Simulation · Validation

1 Introduction

The Smart Grid is a pervasive new concept intended to provide sophisticated fea-
tures to the electrical grid, including energy resource sharing, distribution, and load
balancing [1–4]. A wide variety of research has been conducted to determine what
technological aspects and risks should be considered in the creation of the Smart
Grid, such as smart metering technology [5], information system development [6],
future standards, and so on (Table 1).

As for the future standards, the National Institute of Standards and Technology
(NIST) released the final version of their Smart Grid “Framework 2.0” roadmap in
February of 2012 [7]. In this version, they provide a conceptual model to describe the
overall Smart Grid system, and propose eight research areas which should be stan-
dardized with high priority. The most significant difference between this release and
their previous one (i.e., Release 1.0) is the emphasis on improving interoperability
among various distributed systems and reducing the number of threats in the Smart
Grid. In addition, there exist several functional and non-functional requirements asso-
ciated with the Smart Grid. For instance, the Energy Power Research Institute (EPRI)
published the Integrated Energy and Communication Systems Architecture (IECSA),
which describes many functional requirements and scenarios and is helpful for under-
standing specific domains of the Smart Grid [8]. Also, the Organization for the
Advancement of Structured Information Standards (OASIS) and Zigbee published
the Energy Market Information Exchange (EMIX) and Smart Energy profile (SEP)
2.0, respectively, which are additional specifications with the goal to develop com-
mon object models which can be applied in a Smart Grid system [9, 10]. Also, EPRI
releases various use cases (or scenarios) that still need to be verified and validated
by scientists and engineers.1

Even though the common interest of these research groups clearly expresses the
growing risks to the Smart Grid, there exists no systematic method to leverage use
cases and articulate critical flaws in a dynamic and large-scale system in the Smart
Grid. Since it is more difficult to discover vulnerabilities and threats in a large sys-
tem, a simulation-based verification and validation process is indispensable. Also, a
simulation-based approach helps perform verification and validation without requir-
ing considerable time and resources, needing to implement the entire system, or
accessing the existing physical infrastructure, which could hamper its operations

1 As of January 2013, 213 use cases are available at http://smartgrid.epri.com/Repository/
Repository.aspx.

http://smartgrid.epri.com/Repository/Repository.aspx
http://smartgrid.epri.com/Repository/Repository.aspx

Simulation-Based Validation for Smart Grid Environments 29

Table 1 Domains in the smart grid conceptual model [7]

Domain Actors in the domain

Customers The end users of electricity. May also generate, store, and manage the use of
energy. Traditionally, three customer types are discussed, each with its
own sub-domain: home, commercial/building, and industrial

Markets The operators and participants in electricity markets
Service provider The organizations providing services to electrical customers and utility

companies
Operations The managers of the movement of electricity
Bulk generation The generators of electricity in bulk quantities. May also store energy for later

distribution
Transmission The carriers of bulk electricity over long distances. May also store and

generate electricity
Distribution The distributors of electricity to and from customers. May also store and

generate electricity

or cause failures on running systems. Also, such an effective approach is critical
since many elements of the Smart Grid are still in the process of becoming standard-
ized for widespread use. In this chapter, we propose a novel framework to harness
the power of simulation in the verification and validation processes for Smart Grid
environments. Our framework leverages use case repositories to change its form to
identifiable simulation entities and performs automatic validation tasks with corre-
sponding assessment library. We also adopt one of the well-known formal modeling
methodology, discrete event system specification (DEVS), to achieve scalability and
ease of use. The DEVS modeling methodology allows modelers to articulate the
states of each entity so that our framework can easily identify and trace all activities
during the simulation.

The rest of this chapter is organized as follows. We give an overview of the related
work in Sect. 2 including NIST’s conceptual model and validation work. Section 3
describes our framework, called the Simulation-Based Validation Framework, along
with DEVS-based model validation. In Sect. 4, we discuss details of our design
and implementation of a specific use case to verify that our framework is capable
of performing validations against system models as expected, along with details of
our evaluation results. Section 5 concludes the chapter and addresses several future
directions.

2 Related Work

This section presents the NIST conceptual model and existing validation approaches
for the Smart Grid.

30 W. Han et al.

2.1 NIST Conceptual Model

The NIST conceptual model divides the Smart Grid into seven domains,2 each of
which contains various actors and applications. Actors can be physical devices, soft-
ware programs, or organizations which own those devices. Applications are des-
ignated tasks performed by actors. Domains consist of actors who have the same
objectives and maintain similar characteristics when they are communicating within
the same domain. In the Customer domain, all customers are not just consuming elec-
tricity, but managing their energy usage and generating Distributed Energy Resources
(DER). The Market domain consists of all operators and participants including com-
mercial service providers, energy brokers, and end users. Actors in the Operation
domain deliver electricity from generators to end users. The Service Provider domain
shares information to cooperate with other domains such as the Market, Operation,
and Customer domains. Organizations in the Service Provider domain provide energy
installation, facility maintenance, billing services, and account management. Com-
panies in the Bulk Generation domain generate electricity for customers and trans-
mit/distribute energy via the Transmission and Distribution domains, respectively.
During these various domain activities, each domain exchanges information with
each other to operate their tasks.

2.2 Validation Approaches in the Smart Grid

Various concerns in the Smart Grid have received attention for several years. One
of the leading research groups, called the Cyber Security Working Group (CSWG),
made a three year plan (beginning April 2011) to develop a standardized framework
which consists of examining use cases, evaluating threats, and suggesting counter-
measures [11]. In their plan, a use case is first selected for the threat evaluation. Risk
assessment is then performed to identify what vulnerabilities the use case is associ-
ated with and how they would impact the overall Smart Grid system. From the risk
assessment, high-level requirements and mitigation solutions can be specified. After
the risk assessment, either a new architecture is developed to prevent the identified
risks or existing standards are assessed for possible flaws. These procedures describe
how early-stage validation is critical to the next generation of Smart Grid standards.
Although the CSWG framework is well-organized, it lacks details on how use cases
should be examined and evaluated in their framework.

Another relevant evaluation model is the Electricity Subsector Cybersecurity
Capability Maturity Model (ES-C2M2) [12]. This model includes 10 domains and
4 maturity indicator levels that are used to measure how secure each system is.
However, this approach uses its own conceptual model which makes it hard to per-
form the evaluation tasks in a standardized manner. Also, measuring the indicator

2 Ericsson et al. [6] suggested four domains: Generation, Transmission, Distribution and Markets,
respectively, which is mostly covered in NIST model.

Simulation-Based Validation for Smart Grid Environments 31

level may be subjective. Other researchers have taken different approaches such as
agent-based [13, 14], model-based [15, 16], and attack-scenario-based [17] evalua-
tion. Even though these approaches demonstrated interesting evaluation results, their
work omitted real use cases. To assess the assurance of each component in the Smart
Grid, it is necessary to have a comprehensive but generic framework for considering
real use cases systematically.

3 Simulation-Based Validation Framework

This section describes our framework, called the Simulation-Based Validation
Framework, which leverages the benefits of simulation with the validation process.

3.1 Overview

As mentioned in Sect. 2, threats in the Smart Grid continue to gain attention; however,
there still lacks a systematic, comprehensive, and repeatable framework with which
to validate a wide variety of use cases. To accommodate these goals, our framework
consists of three core components: (i) Entity Generator initiates a simulation by
generating a number of entities described in an existing use case; (ii) Simulation
Execution Block establishes relations between the entities and executes the assess-
ment based on specified requirements and model definitions; and (iii) Viewer displays
messages that are exchanged between entities during the state transition. Our sys-
tematic process allows for the validation to be repeated. Figure 1 shows how three
components cooperate with each other.

3.2 Entity Generator

The most important role of the Entity Generator component is to create entities that
are identifiable by the Simulation Execution Block. To achieve this goal, the Use Case
Representation module modifies the original use case into a composition of entities,
actors, and activities. Each entity is then defined using either a certain expression or
formal language and entered into the Model Definition, which allows the Simulation
Execution Block to understand what the entity is. For example, most use cases utilize
UML diagrams to illustrate functional/non-functional features of actors and activities
in the entity. In particular, exchanging messages between actors plays a major role
to describe relations of actors and their activities.

We noticed that exchanging messages between actors can be a key criterion to
make state-based diagrams, which are message-based state derivations that define
the number of states with regard to the number of messages. A use case has a

32 W. Han et al.

Simulation Execution BlockEntity
Generator

Viewer

Scenario T
ranslator

V
alidation C

oordinator

Sim
ulation Player

Use Case
Representation

Model
Definition

Identifiable
Entity

Provide
Entities

Provide
Formalized
Meta Entity

Record
Constraints

Provide
Scenario

Request
Scenario

Execution

Report
Simulation

Result

Request
Scenario
Update

Update
State

Assessment Library

Provide
Library

Fig. 1 Simulation-based validation framework

number of incoming messages, which are denoted by M I = {M I
1 , M I

2 , . . . , M I
U },

and outgoing messages, which are denoted by M O = {M O
1 , M O

2 , . . . , M O
V } where

| M I |= U and | M O |= V . The entire state set of this entity is defined as
SE = {(SE

1 , SE
2 , . . . , SE

i , . . . , SE
k) | SE

i = (x, y), where x ∈ M I , y ∈ M O and
k = U ∗ V }. The total number of states in the entire set is | SE |= U ∗ V , which
has too many states because some states may not be used if, according to the use
case definition, certain pairs of incoming and outgoing messages cannot be coupled.
To accommodate this, we minimize |SE | by serializing messages which yields the
reduced set, denoted by SR = M I ∪ M O . Note that the controlling logic of the
entity is created along with the states during message-based state derivation. With
message-based state derivation, most flow charts and sequence diagrams can be trans-
lated to the state diagram easily and can be recognized by the Simulation Execution
Block.

While translating use cases into identifiable entities, conditions and constraints,
called Meta Entities, are added to the entity in the Model Definition. Another item
of note is that the entity made by the Entity Generator is not connected to any
other entities in this phase. Identifying entities from the use case and making a
formalized Meta Entity are labor intensive, and it may require load balancing and
optimization modules to save any substantial amount of time while completing this
process.

Simulation-Based Validation for Smart Grid Environments 33

Fig. 2 Validation coordinator using DEVS formalism

3.3 Simulation Execution Block

Once entities are generated, establishing relations between entities should be car-
ried out. The Scenario Translator creates these relations by deciding what messages
are exchanged between all unique pairs of entities. A scenario is a distinct com-
bination of entities, denoted by S = {S1, S2, . . . , SN }. When Scenario Translator
receives Request Scenario Update, Scenario Translator provides the next scenario
(Si+1). The Validation Coordinator is a core element of our framework. It searches
all possible validation methods in the Assessment Library which maintains require-
ments and testing modules. The Validation Coordinator makes selections from the
Assessment Library and with those selections creates a validation set, denoted as
W = {W1, W2, . . . , WM }, and sends a Request Scenario Execution message to the
Simulation Player. Once it receives a Report Simulation Result message from the
Simulation Player, the same action is continued until WM is finished, which con-
cludes one round of scenario validation. The Simulation Execution Block repeats the
process again until the last scenario SN is completed. This automated validation pro-
cedure can be easily expanded by adding another library, allowing for the evaluation
of numerous use cases by simply changing scenarios.

Since all the components in our framework cooperate interactively each other,
providing an adequate description of these interactions using a single algorithm
would be prohibitively difficult. Instead, we adopt the DEVS modeling methodology
to describe such dynamic interactions [18]. Figure 2 shows the internal and external
structures of the Validation Coordinator (VC). When the execution begins, the VC

34 W. Han et al.

Algorithm 1: Simulation Execution Block

Input: A set of entities, E .
Output: A set of results, R.
/* Simulation Translator: generate set of scenarios */
S ←− ScenarioTranslator(E);
foreach si ∈ S do

/* Validation Coordinator: generate set of validation */
W ←− AssessmentLibrary(s);
foreach w j ∈ W do

a ←− arrival time;
/* Simulation Player: run i th scenario and j th validation */
r ←− SimulationPlayer(si , w j);
c ←− completion time;
R.Append(r, a, c);

return R;

stays in the Wait forSi state until a scenario is sent from the Scenario Translator. Once
the scenario is received, the VC sends Si to the Simulation Player and then transitions
to the Make Validation Set state. The Simulation Player then generates atomic models
and establishes relations between atomic models. In the Make Validation Set state,
the VC obtains a validation set W = {W1, W2, . . . , WM }, where |W | = M , from the
Assessment Library with the time delay λt .

With an initial j value equal to zero, the VC moves to the Proceed next W j state.
Before moving to the next state, the VC sends W j (j th validation at the i th scenario)
to the Simulation Player. Then, the VC waits until it receives Ri, j (a, c) (result of
the j th validation at the i th scenario, arrival at time a and completion at time c)
at the Wait for Wc state. When received, the VC updates j ←− j + 1 and compares
the values of j and M . If j < M , the VC repeats the process; otherwise (j = M) the
VC moves to the Go to Next Scenario state. After comparing the values of i and N ,
if i < N then the VC goes through another round of simulation; otherwise (i = N)
the VC moves to the Simulation End state. During simulation, the Viewer updates
simulation results periodically. To sum up, the overall Simulation Execution Block
algorithm is shown in Algorithm 1, including all the sub modules of the Simulation
Execution Block.

Note that although we adopt the DEVS modeling methodology to describe the
VC in this work, any other methodology can be leveraged in our framework.

3.4 Viewer

The Viewer enables the user to monitor what events occur and what results the
simulation generates. Its functionality is not only to display the results of a simulation,
but also to educate the user what risks are involved and how they can be resolved.
Through the Viewer, the effectiveness and reliability of countermeasures can be
evaluated.

Simulation-Based Validation for Smart Grid Environments 35

4 Case Study: Implementation Details and Evaluation Results

To demonstrate the feasibility and reliability of our framework, this section starts
with a use case from a real-time pricing scenario and articulates critical components
in this use case. Next, we describe how requirements specified in this use case can be
realized in our framework. Also, we elaborate upon the results from our evaluation.

4.1 Requirements for Real-Time Pricing

In the Real-Time Pricing (RTP) scenario detailed in [8], each of the domain stake-
holders correspond with each other to circulate pricing information and exchange
their constraints, such as power outage, ancillary services, etc. The motivation for
RTP arises from the disparity between the amount of electricity generated by power
plants and the amount of energy demanded by customers. Ideally, power companies
would be able to accurately predict exactly how much demand there would be at
any given time, but the reality is that sporadic usage spikes and ebbs create energy
surpluses and shortages all the time, resulting in either wasted energy production or
shortages in the amount of electric power delivered to customers.

Intuitively, there is a direct relationship between the demand for electricity and
its price, increasing during periods of peak usage,3 and decreasing when demand
is low, such as during the night. However, Service Providers typically use what is
called a fixed price list or fixed tariff, which does not reflect a fine-grained view of
market circumstances. Hence, the RTP approach, which updates prices hourly, pro-
vides greatly improved price data and is able to vitalize the energy market. In other
words, it would significantly contribute to the fulfillment of the business continuity
objective that is one of the important requirements for critical infrastructure, includ-
ing the Smart Grid. Hourly price calculation models have been proposed by many
researchers [2, 19, 20]. For our case study, we selected Allcott’s model [21] since
this approach formulates accurate price changes according to customers’ demand.
The following is a slightly modified RTP calculation equation.4 Based on Allcott’s
model, we additionally introduce a distributed energy resource (DER) factor,

∑
i dit ,

in Eq. 1 and an ancillary service cost, Pa , in Eq. 2.

Qs
t (Pt) =

∑

j

k j t +
∑

i

dit (1)

3 Peak usage times may vary for each Energy Service Provider, but are generally weekday after-
noons from 2 pm to 6 pm in Arizona. The relevant reference is available at http://www. azen-
ergy.gov/SavingTips/TimeOfUse.aspx.
4 α = RT Pusers

Allusers
, Pt = real-time price, P̄ = fixed tariff price, Pc = capacity market cost,

Pa = ancillary service cost, η = elasticity of demand variable, εt =error fixing variable.

http://www.azenergy.gov/SavingTips/TimeOfUse.aspx

36 W. Han et al.

Qd
t (Pt , P̄, Pc) = {α(Pt + Pc + Pa)η + (1 − α)(P̄ + Pc + Pa)η} · εt (2)

Qs
t (Pt) = (1 + m)Qd

t (Pt , P̄, Pc) (3)

Equation 1 is the total generation function that sums power plants’ generation and
DER generation where t is a specific time period, j is a power plant instance, and
i is a customer. Equation 2 defines the expected customer’s demand. Allcott used
three kinds of prices which are Pt , P̄ and Pc and we added one more price factor Pa .
Equation 3 shows the equilibrium equation which determines the real-time price. For
this calculation, we adopt a reserve margin index m which can be obtained at [22].

In order to identify the target requirements for our case study, we first provide
a summary of the decision process: the Bulk Generation company announces the
initial raw prices at which it will sell energy in the energy market. After adding
transmission and distribution costs, each company finalizes their base price. At the
same time, each energy service provider gathers customers’ estimated energy demand
and sends an aggregated demand amount to the energy market, where the real-time
price is calculated.

Based on this decision process, we notice that protecting customers’ privacy and
maintaining price data integrity are essential in RTP. However, since the latter require-
ment is closely coupled with RTP model, our simulation mainly focuses on how an
RTP scenario can be realized in our framework and how our simulation can detect
key components involved in the RTP decision process.

4.2 Design and Implementation

To design an RTP use case in our framework, we adopt the conceptual model from
NIST. We use only four of the domains by making the assumption that there is zero
cost incurred by the Transmission and Distribution domains. In the Bulk Generation
domain, there are five types of power plants according to their energy source: coal,
natural gas, nuclear, hydro electric, and renewable. Customers’ residency styles in the
Customer domain (represented in our model by the Customer Building Automation
System) can be one of four types: detached, semi-detached, apartment, and terraced
[23]. Data types of our case study are shown in Table 2.

Once electricity is generated, the next step performs load-balancing and pricing
for the electricity. The energy scheduler balances total supply and expected demand
by mediating between the Bulk Generation entity and the Service Provider entity
(equivalent to the Energy Service Provider). The real-time pricing decision is made
by the Base RTP Calculator in the Market domain, but prices may fluctuate since
customers’ energy usage may be affected by the set price. Once the real-time price is
calculated, pricing information is delivered to the customers. Figure 3 illustrates these
components and its relationships along with the real-time price decision process.

Simulation-Based Validation for Smart Grid Environments 37

Table 2 Input data types

CBAS domain Bulk generation domain

Variable name Data type Variable name Data type
CustomerID int BulkID int
CustomerType String BulkType String
Period int BulkCapacity double
CorrespondingESP int BulkDestination double
EnergyDemand double[] Period int
DERCapacity double LoadElectricity double
DERLoad double RawPrice double
AncillaryService String Constraints String
Constraints String

Initializing
Information

Initializing
Information

Adjusted
Gen Info

Generation
& Price Info

DER Gen
Ancill Bids

Customer
RTP data

Base RTP
data

DER Gen
Ancill Bids

Generation Manager

CBAS Manager ESP Manager

Market Manager

Customer RTP
Calculator

Load
Fore-
caster

Energy
Sche-
duler

Ancill-
Sche-
duler

Base
RTP

Calcul-
ator

S
im

ulation P
layer

Coal Nuclear
Renew-

able

Detach-
ed

Apart-
ment

Terrac-
ed

Simulation
Manager

Fig. 3 RTP scenario generation

Based on our framework, to realize the RTP use case with the DEVS modeling
methodology, we utilize a DEVS supporting simulator called MS4.5 By adopting the
DEVS supporting simulator, we realize the procedures illustrated in Fig. 2. One of
the advantages of using MS4 is that it provides a simulation viewer, eliminating the
need to construct our own specialized viewer.

As shown in Fig. 4, the overall appearance is quite similar to the RTP design.
To support our framework, four simulation entities representing the four domains

5 MS4 software is available at http://www.ms4systems.com/pages/ms4me.php.

http://www.ms4systems.com/pages/ms4me.php

38 W. Han et al.

S
im

ul
at

io
n

V
ie

w
er

 P
an

e
al

lo
w

s
vi

ew
in

g
si

m
ul

at
io

n
pr

og
re

ss
 s

te
p

by
 s

te
p

S
im

ul
at

io
n

V
ie

w
er

 s
ho

w
s

ov
er

 a
ll

en
tit

ie
s,

 r
el

at
io

ns
 a

nd
 s

ta
te

s

S
im

ul
at

io
n

P
la

ye
r

se
nd

s
si

m
ul

at
io

n
ex

ec
ut

io
n

in
fo

S
in

gl
e

E
nt

ity
 s

am
e

as
at

om
ic

 m
od

el
 in

 D
E

V
S

D
om

ai
n

E
nt

iti
es

sa
m

e
as

co
up

le
d

m
od

el
in

 D
E

V
S

S
im

ul
at

io
n

C
on

tr
ol

le
r

M
od

el
 N

av
ig

at
or

hi
er

ar
ch

ic
al

 v
ie

w

S
im

ul
at

io
n

S
ta

tis
tic

s
tim

e
ad

va
nc

in
g

an
d

tr
an

si
tio

n
st

at
is

tic
s

S
im

ul
at

io
n

E
ve

nt
 L

og
 r

ec
or

ds
 a

ll
ev

en
ts

 o
cc

ur
re

d
in

 s
im

ul
at

io
n

6

7

5

8

9

4

3

2

1

F
ig

.4
Si

m
ul

at
io

n
en

tit
ie

s
in

M
S4

si
m

ul
at

or

Simulation-Based Validation for Smart Grid Environments 39

were implemented. State transitions in each entity and message exchanges among
entities were analyzed for each step (see simulation controller). After the simulator
completely executed the use case, we produced simulation statistics. Moreover, result
graphs were generated for further analyzing the simulation results.6

4.3 Simulation Results

To perform a realistic simulation, we considered two Energy Service Providers in the
state of Arizona (SRP and APS)7 and used production information and retail energy
prices for their power plants. In addition, we took the customers’ daily energy usage
behavior available from [23]. By applying real-world data, simulating an RTP use
case is more reliable and meaningful.

Table 3 shows the number of exchanged messages when the number of power
plants is 9 and the number of customers is 200 (100 for each ESP). It shows that
56 % of all intra-domain messages (1,046/1,881) are exchanged within the Market
Operation (MO) domain, which means MO is the key infrastructure to protect for
supporting a reliable RTP decision process. Furthermore, 64 % of all inter-domain
messages (800/1,243) are generated between the ESP and the Customer Building
Automation System (CBAS). Hence, the network between the ESP and the CBAS
needs to be carefully supervised to prevent potential data leakage.

The next set of results depicts the simulation under different scenarios. The RTP
ratio, denoted by α, represents the percentage of customers that have elected to use
the RTP model for their service. Three test scenarios with different values of α were
considered with diverse residency types as follows.

S = {Sα=0.1, Sα=0.3, Sα=0.5}

W = {WDetached , WSemi Detached , WApartment , WT erraced}

As shown in Table 4, the standard deviation of each residency type is considerably
reduced when the value of α increases. This result shows how radical price changes
can be produced when the value of α is small, which can cause severe distrust in the
RTP system. In Figs. 5 and 6, detached residency type shows how α value impacts
overall RTP system’s safety. When α = 0.1, RTP fluctuation is huge compared to
α = 0.3 or α = 0.5. This means that RTP may face unexpected, huge fluctuations
when RTP is in its early stages of customer adoption. Moreover, SRP’s maximum
real-time price is 5.63 times its fixed tariff price, as shown in Fig. 7, and APS’s
maximum real-time price is 5.15 times its fixed tariff price, as shown in Fig. 6.

6 The simulation viewer also provides state updates, message exchange animations, as well as a
mechanism for advancing time.
7 The information of each energy service provider is available at https://www.srpnet.com and
http://www.aps.com/en/residential/Pages/home.aspx, respectively.

https://www.srpnet.com
http://www.aps.com/en/residential/Pages/home.aspx

40 W. Han et al.

Table 3 Number of exchanged messages

Intra-domain Inter-domain

Bulk generation (BG) 18 Simulation player ↔ Domains 6
Market operation (MO) 1,046 BG ↔ MO 19
Energy service provider (ESP) 409 MO ↔ ESP 418
Customer building automation system (CBAS) 408 ESP ↔ CBAS 800
Total 1,881 Total 1,243

Table 4 Standard deviation comparison

Scenario Detached SemiDetached Apartment Terraced
SRP APS SRP APS SRP APS SRP APS

α = 0.1 0.049313 0.172181 0.077588 0.107786 0.103452 0.057526 0.053144 0.1214
α = 0.3 0.02106 0.027133 0.019465 0.02707 0.023043 0.028997 0.016388 0.02779
α = 0.5 0.011554 0.015463 0.011423 0.016457 0.008256 0.020822 0.012499 0.016702
Total 0.031302 0.105675 0.046573 0.064329 0.061451 0.03866 0.032567 0.072146

0 5 10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

daily hour

$/
kw

h

alpha=0.1
alpha=0.3
alpha=0.5
fixed tariff

Fig. 5 SRP RTP fluctuation (detached type only)

These radical price changes may cause further distrust in RTP, hence countermeasures
to mitigate these changes, such as modifying the elasticity constant or revising high
prices, should be considered.8

We conducted another experiment to test the elasticity of price. As presented in
Eq. 2, η is a crucial factor which determines the fluctuation of real-time prices. Typ-
ically η is between −0.04 and −0.15 [20, 24–26]. In order to test which η value
is valid for our case study, we changed η value at intervals of 0.04 and measured
the deviation of prices by taking |PRICERT P − PRICEFixed|. As shown in Fig. 8, the
result at η = −0.12 deviates much less than η = −0.04 and η = −0.08. Due to the
nature of Eq. 2 (expected customer’s demand), we can reduce RTP fluctuation by

8 In order to reduce redundancy, we mainly address compulsive cases from our evaluation results
in this chapter.

Simulation-Based Validation for Smart Grid Environments 41

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

daily hour

$/
kw

h

alpha=0.1
alpha=0.3
alpha=0.5
fixed tariff

Fig. 6 APS RTP fluctuation (detached type only)

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

daily hour

$/
kw

h

alpha=0.1
alpha=0.3
alpha=0.5
fixed tariff

Fig. 7 SRP RTP fluctuation (apartment type only)

setting a small value for η when making a decision on a real-time price. However,
finding an appropriate fluctuation level is our goal for RTP simulation, instead of
mainly reducing RTP fluctuation. Hence, we measured a break-even η value that sat-
isfies the same gross sales amount of electricity between two cases: under fixed-tariff
scenario and under RTP scenario. This helps us understand what price is acceptable
for both fixed tariff users and RTP users. We assumed that customers’ demand has
not been changed by the real-time price. We found that when η = −0.083, gross
sales have the same value for all scenarios. This result leads us to determine that an
appropriate η value is also important for RTP, and improper values of η may cause
distrust of the system because of the large fluctuations in the simulation results.

Through our case study of RTP, we evaluated the feasibility of our framework.
First, our framework provides an easy transformation from entity design to simu-
lation execution, which enables us to understand RTP use case without requiring

42 W. Han et al.

0 5 10 15 20 25
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Daily Hour

R
T

P
 D

ev
ia

tio
n

($
/k

w
h)

eta = −0.04
eta = −0.08
eta = −0.12

Fig. 8 Changes in elasticity of price (ESP = SRP, Type = Detached, α = 0.3)

significant effort. Second, our simulation-based approach using the DEVS modeling
methodology gives us various practical results that can answer the critical require-
ments of RTP that have not been previously identified or validated.

5 Conclusion and Future Directions

As the Smart Grid system has become more complex, its validation and verification
process depends heavily upon realistic use cases, such as new requirements, energy
resource relocation, and so on. Moreover, such a critical process is a tedious and diffi-
cult task without the support of an appropriate systematic approach. To resolve these
problems, we have proposed the Simulation-Based Validation Framework using the
DEVS modeling methodology. Our framework consists of three core components:
Entity Generator, Simulation Execution Block and Viewer. We demonstrated how
the Entity Generator can create individual entities in an identifiable format, and
the Simulation Execution Block can generate a number of scenarios (with entities
made by the Entity Generator) and execute the simulation while the Viewer provides
updates on simulation’s progress. Also, by performing various simulation experi-
ments on a real-time pricing use case, we showed how critical issues in use cases
can be simulated and discovered based on the proposed framework.

In our future work, we will articulate various requirements with our framework and
further enhance our approach to support use case generation and validation intuitively,
particularly focusing on security requirements. In particular, the following areas can
be further studied:

Business intelligence Simulation-based approaches utilize various kinds of use
cases to search for and find any possible risks that can impact running systems. As
James [27] claimed that “acknowledging the business impact of cyber,…leveraging

Simulation-Based Validation for Smart Grid Environments 43

timely business intelligence,…[and] broaden[ing] awareness” are crucial to estab-
lishing resilient cyber systems, such characteristics of simulation-based approach can
be also extended to the area of business intelligence. For instance, our framework
can provide useful data for producing various scenarios that need to be investigated.
Moreover, predictive analysis can be performed by our framework. Watson et al. [28]
introduced the importance of a business intelligence system that fosters “the use of
information and analytics.” As shown in Sect. 4.3, forecasting variables of interest
and testing scenarios with different conditions in our framework would be tremen-
dously helpful to make business decisions in an effective manner.

Risk management As our RTP use case illustrates the impact of economical
issues and the price of electricity on Smart Grid systems, our framework can be
further extended to assess potential risks in large-scale distributed systems. Varaiya
et al. [29] pointed out that the price of electricity is the biggest risk with respect to
the economic challenges of Smart Grid systems. Chao [30] even claimed that fixed
uniform price policies remain a considerable barrier and may prevent the success of
the Smart Grid. Although RTP is an essential factor to realize the Smart Grid, our
study showed that fluctuations of RTP should be restricted due to potential risks and
it is necessary to mitigate such fluctuations to a manageable and acceptable risk level
for preventing customers from evading the use of RTP systems. Consequently, our
approach would help discover potential risks and evaluate diverse mitigation methods
to minimize potential risks. In addition, our approach can be further extended to
support other domains by articulating uses cases for those target domains.

Acknowledgments This work was partially supported by grants from the National Science Foun-
dation and the Department of Energy.

References

1. Garcia, R.C., Contreras, J., van Akkeren, M., Garcia, J.B.C.: A garch forecasting model to
predict day-ahead electricity prices. IEEE Trans. Power Syst. 20(2), 867–874 (2005)

2. Mohsenian-Rad, A.-H., Leon-Garcia, A.: Optimal residential load control with price prediction
in real-time electricity pricing environments. IEEE Trans. Smart Grid 1(2), 120–133 (2010)

3. Arora, M., Das, S.K., Biswas, R.: A de-centralized scheduling and load balancing algorithm for
heterogeneous grid environments. In: Proceedings of the International Conference on Parallel
Processing Workshops (ICPPW’02), pp. 499–505 (2002)

4. Molderink, A., Bakker, V., Bosman, M.G.C., Hurink, J.L., Smit, G.J.M.: Domestic energy
management methodology for optimizing efficiency in smart grids. In: Proceedings of the
IEEE Bucharest PowerTech 2009, 1–7 July 2009

5. Metke, A.R., Ekl, R.L.: Security technology for smart grid networks. IEEE Trans. Smart Grid
1(1), 99–107 (2010)

6. Ericsson, G.N.: Cyber security and power system communication—essential parts of a smart
grid infrastructure. IEEE Trans. Power Delivery 25(3), 1501–1507 (2010)

7. Nist framework and roadmap for smart grid interoperability standards. http://www.nist.
gov/public_affairs/releases/upload/smartgrid_interoperability_final.pdf (2012). Accessed Feb
2012

8. Energy power research institute, real-time pricing—top level. http://smartgrid.epri.com/
Repository/Repository.aspx (2012). Accessed Feb 2012

http://www.nist.gov/public_affairs/releases/upload/smartgrid_interoperability_final.pdf
http://www.nist.gov/public_affairs/releases/upload/smartgrid_interoperability_final.pdf
http://smartgrid.epri.com/Repository/Repository.aspx
http://smartgrid.epri.com/Repository/Repository.aspx

44 W. Han et al.

9. Cox, W., Holmberg, D., Sturek, D.: Oasis collaborative energy standards, facilities, and zigbee
smart energy. In: Grid-Interop Forum 2011 (2011)

10. Zigbee smart energy 2.0 draft 0.9 public application profile. http://www.zigbee.org/Standards/
ZigBeeSmartEnergy/ZigBeeSmartEnergy20PublicApplicationProfile.aspx (2012). Accessed
July 2012

11. Cybersecurity working group final three-year plan. http://collaborate.nist.gov/twikisggrid/bin/
view/SmartGrid/CSWGRoadmap (2011). Accessed Apr 2011

12. Electricity subsector cybersecurity capability maturity model (es-c2m2). http://energy.gov/oe/
services/cybersecurity/electricity-subsector-cybersecurity-capability-maturity-model (2012).
Accessed May 2012

13. Lin, J., Sedigh, S., Miller, A.: Modeling cyber-physical systems with semantic agents. In: Pro-
ceedings of the IEEE 34th Annual Computer Software and Applications Conference Workshops
(COMPSACW) 2010, 13–18 July 2010

14. Pipattanasomporn, M., Feroze, H., Rahman, S.: Multi-agent systems in a distributed smart
grid: design and implementation. In: IEEE/PES Power Systems Conference and Exposition
(PSCE’09), pp. 1–8 Mar 2009

15. Stevens, F., Courtney, T. Singh, S., Agbaria, A., Meyer, J.R., Sanders, W.H., Pal, P.: Model-
based validation of an intrusion-tolerant information system. In: Proceedings of the 23rd IEEE
International Symposium on Reliable Distributed Systems (SRDS’04), pp. 184–194 Oct 2004

16. Nicol, D.M., Sanders, W.H., Trivedi, K.S.: Model-based evaluation: from dependability to
security. IEEE Trans. Dependable Secure Comput. 1(1), 48–65 (2004)

17. Jonsson, E., Olovsson, T.: A quantitative model of the security intrusion process based on
attacker behavior. IEEE Trans. Softw. Eng. 23(4), 235–245 (1997)

18. Zeigler, B.P., Praehofer, H., Kim, T.G.: Theory of Modeling and Simulation: Integrating Dis-
crete Event and Continuous Complex Dynamic Systems. Academic Press, San Diego (Feb
2000)

19. Allcott, H.: Real time pricing and electricity markets. http://www-prd-0.gsb.stanford.edu/
facseminars/events/applied_microecon/documents/ame_03_09_allcott.pdf (2009). Accessed
Jan 2009

20. Taylor, Thomas N., Schwarz, Peter M., Cochell, James E.: 24/7 hourly response to electricity
real-time pricing with up to eight summers of experience. J. Regul. Econ. 27, 235–262 (2005)

21. Allcott, H.: Real-time pricing and electricity market design. https://files.nyu.edu/ha32/
public/research/Allcott-Real-TimePricingandElectricityMarketDesign.pdf (2013). Accessed
Mar 2013

22. Levelized cost of new generation resources in the annual energy outlook 2013. http://www.eia.
gov/forecasts/aeo/electricity_generation.cfm (2013). Accessed Jan 2013

23. Ghaemi, S., Brauner, G.: User behavior and patterns of electricity use for energy saving.
Internationale Energiewirtschaftstagung an der TU Wien, IEWT (2009)

24. Patrick, R.H., Wolak, F.A.: Estimating the customer-level demand for electricity under real-
time market prices. Technical report, National Bureau of Economic Research, Washington (Apr
2001)

25. Herriges, J.A., Baladi, S.M., Caves, D.W., Neenan, B.F.: The response of industrial customers
to electric rates based upon dynamic marginal costs. Rev. Econ. Stat. 75(3), 446–454 (1993)

26. Boisvert, R.N., Cappers, P., Goldman, C., Neenan, B., Hopper, N.: Customer response to rtp in
competitive markets: a study of niagara mohawk’s standard offer tariff. Energy J. 28(1), 53–74
(2007)

27. White, J.: 12 steps toward cyber resilience. InfoSecurity Professional INSIGHTS 2(2).
https://www.isc2.org/infosecurity-professional-insights-archives.aspx?terms=12-Steps-
toward-Cyber-Resilience (2013)

28. Watson, H.J., Wixom, B.H.: The current state of business intelligence. Computer 40(9), 96–99
(2007)

29. Varaiya, P.P., Wu, F.F., Bialek, J.W.: Smart operation of smart grid: risk-limiting dispatch. Proc.
IEEE 99(1), 40–57 (2011)

30. Chao, Hung-po: Price-responsive demand management for a smart grid world. Electr. J. 23(1),
7–20 (2010)

http://www.zigbee.org/Standards/ZigBeeSmartEnergy/ZigBeeSmartEnergy20PublicApplicationProfile.aspx
http://www.zigbee.org/Standards/ZigBeeSmartEnergy/ZigBeeSmartEnergy20PublicApplicationProfile.aspx
http://collaborate.nist.gov/twikisggrid/bin/view/SmartGrid/CSWGRoadmap
http://collaborate.nist.gov/twikisggrid/bin/view/SmartGrid/CSWGRoadmap
http://energy.gov/oe/services/cybersecurity/electricity-subsector-cybersecurity-capability-maturity-model
http://energy.gov/oe/services/cybersecurity/electricity-subsector-cybersecurity-capability-maturity-model
http://www-prd-0.gsb.stanford.edu/facseminars/events/applied_microecon/documents/ame_03_09_allcott.pdf
http://www-prd-0.gsb.stanford.edu/facseminars/events/applied_microecon/documents/ame_03_09_allcott.pdf
https://files.nyu.edu/ha32/public/research/Allcott-Real-TimePricingandElectricityMarketDesign.pdf
https://files.nyu.edu/ha32/public/research/Allcott-Real-TimePricingandElectricityMarketDesign.pdf
http://www.eia.gov/forecasts/aeo/electricity_generation.cfm
http://www.eia.gov/forecasts/aeo/electricity_generation.cfm
https://www.isc2.org/infosecurity-professional-insights-archives.aspx?terms=12-Steps-toward-Cyber-Resilience
https://www.isc2.org/infosecurity-professional-insights-archives.aspx?terms=12-Steps-toward-Cyber-Resilience

An Institution for Alloy and Its Translation
to Second-Order Logic

Renato Neves, Alexandre Madeira, Manuel Martins and Luís Barbosa

Abstract Lightweight formal methods, of which Alloy is a prime example,
combine the rigour of mathematics without compromising simplicity of use and
suitable tool support. In some cases, however, the verification of safety or mission
critical software entails the need for more sophisticated technologies, typically based
on theorem provers. This explains a number of attempts to connect Alloy to specific
theorem provers documented in the literature. This chapter, however, takes a differ-
ent perspective: instead of focusing on one more combination of Alloy with still
another prover, it lays out the foundations to fully integrate this system in the Hets
platform which supports a huge network of logics, logic translators and provers.
This makes possible for Alloy specifications to “borrow” the power of several, non
dedicated proof systems. The chapter extends the authors’ previous work on this
subject by developing in full detail the semantical foundations for this integration,
including a formalisation of Alloy as an institution, and introducing a new, more
general translation of the latter to second-order logic.

Keywords Model finding · Theorem proving · Second–order logic

R. Neves (B) · L. Barbosa (B)

INESC TEC (HASLab), University of Minho, Braga, Portugal
e-mail: nevrenato@gmail.com

L. Barbosa
e-mail: lsb@di.uminho.pt

A. Madeira
Department of Mathematics, University of Aveiro, Aveiro, Portugal
e-mail: madeira@ua.pt

M. Martins
Center for Research and Development in Mathematics and Applications—Department of
Mathematics, University of Aveiro, Aveiro, Portugal
e-mail: martins@ua.pt

T. Bouabana-Tebibel and S. H. Rubin (eds.), Integration of Reusable Systems, 45
Advances in Intelligent Systems and Computing 263, DOI: 10.1007/978-3-319-04717-1_3,
© Springer International Publishing Switzerland 2014

46 R. Neves et al.

1 Introduction

In [17] the authors discussed the integration of Alloy [9] in Hets platform of logics,
logic translators and provers, by sketching its formalisation as an institution [6, 7]
and defining its encoding into Casl [14], an extension of multi-sorted first order
logic with partiality and free types. The motivation was clear: to offer a systematic
way to connect Alloy to a huge network of logics and logical systems in order to
complement the model finder strategies of the former with suitable theorem provers
already linked into the latter.

Actually, Alloy, based on a single sorted relational logic whose models can be
automatically tested with respect to bounded domains, is a most successful tool for
the working software engineer. Its simple but powerful language combined with an
analyser which can promptly give counter-examples depicted graphically, makes it
increasingly popular both in academia and industry: Successful stories report on the
discovery of faults in software designs, supposedly faultless, by taking advantage
of Alloy. The tool, however, may also bring a false sense of security, as absence
of counter-examples does not imply model’s correctness. Therefore, in the project of
critical systems our research claims the use of Alloy should be framed into broader
toolchains involving more general, even if often less friendly, theorem provers. In
such a toolchain properties can be first tested within the Alloy analyser; if no
counter-examples are found, a theorem prover would be asked to generate a proof,
at least in what concerns critical design fragments.

There is a number of results on connecting Alloy to specific theorem provers.
The perspective taken in [17], however, and complemented in this chapter goes
a step further by “plugging” Alloy into the Hets network, providing a number
of effective and sound connections to several logical systems and tools at once.
Currently, Hets integrates several world-class reasoners, namely Isabelle [18],
LEO- II [4], SPASS [21], Vampire [19], Darwin [2], among many others. Plugging
Alloy to Hets, makes thus possible the translation of its models to a number of
languages in the network, and naturally, borrowing for free the corresponding proof
support. Experiments can then be carried out in different tools, typically tuned to
specific application areas.

Actually,Hets [15] may be regarded as a “motherboard” for logics where different
“expansion cards” can be plugged. The latter are individual logics (with associated
analysers and proof tools) as well as logic translations to “transport” properties and
proofs between them. To make them compatible, logics are formalised as institutions
[6] and logic translations as comorphisms. This is the price to be paid: the integration
of Alloy in this network entails the need for formalising Alloy as an institution
and providing a translation to a relevant logic in the Hets network.

The present chapter addresses this challenge by developing in full detail the
semantical foundations for this integration, including a formalisation of Alloy as
an institution, and introducing a new, more general translation of it to second-order

An Institution for Alloy and Its Translation to Second-Order Logic 47

Fig. 1 HETS sub-network extended with ALLOY

logic (SOL) [12]. This new translation allows a more natural embedding of Alloy,
when compared to the previous, essentially first-order translation to Casl intro-
duced in [17]. Moreover, this translation establishes a connection between Alloy
and higher-order provers, such as LEO- II and Isabelle, using the logic THF [3]
which integrates second-order features. The original translation to Casl, presented
in [17], is re-framed in this context, because, in practice, it opens doors to a broad
number of theorem provers, namely for first-order systems. Both translations are
depicted in Fig. 1 as dashed arrows.

Related work. The idea of connecting Alloy to a theorem prover is not new—
see, for example, references [1, 10, 20]. The usual approach is to translate Alloy
models into the input language of a given theorem prover and (re-)formulate the
proof targets accordingly. For instance, [20], one of the most recent proposals in
this trend, translates models into a first-order dialect supported by the KeY theorem
prover.

Paper structure. The formalisation of Alloy as an institution and the definition
of suitable comorphisms is presented in Sects. 3, 4 and 5. Before that, in Sect. 2,
a brief overview of the theory of institutions is provided as a background for the
chapter. Section 6 reports on a (fragment of a) case study in the medical domain on
the combined use of Alloy and Hets, to illustrate the potential and limits of the
approach proposed here. Finally, Sect. 7 concludes.

48 R. Neves et al.

2 Background: Institutions

2.1 Institutions and Comorphisms

An institution [7] is a formalisation of the concept of a logical system, introduced
by Joseph Goguen and Rod Burstall in the late 70’s, as a response to the increasing
number of logics emerging for software specification. Its original aim was to develop
as much computing science as possible in a general and uniform way, independently
of particular logical systems. This has now been achieved to an extent even greater
than originally thought, as the theory of institutions became the most fundamental
mathematical theory underlying the algebraic specification discipline.

Definition 1. An institution is a tuple

(SignI , SenI , ModI , {|=I
Σ }Σ∈|SignI |)

where

• SignI is a category of signatures and signature morphisms,
• SenI : SignI ∈ Set is a functor relating signatures to the corresponding sen-

tences, where Set is the category of Sets,
• ModI : (SignI)op ∈ Cat is a functor giving for each signature Σ , the category

of its models, where Cat is the category of categories,
• |=I

Σ → |ModI(Σ)| × SenI(Σ) is the satisfaction relation between models and
sentences such that, for each morphism ϕ : Σ ∈ Σ ∗ in SignI , and for any
M ∗ ∈ |ModI(Σ ∗)| and ρ ∈ SenI(Σ),

M ∗ |=I
Σ ∗ SenI(ϕ)(ρ) iff ModI(ϕ)(M ∗) |=I

Σ ρ

The reduct of M ∗ through a signature morphism ϕ is defined by ModI(ϕ)(M ∗),
and denoted by M ∗� ϕ. Dually, M ∗ is called a model ϕ–expansion of M ∗� ϕ.

Example 1. To illustrate the concept of an institution, consider, in this example, the
construction of an institution for first-order logic (FOL).

Signatures. SignFOL is a category whose objects are triples (S, F, P), where S
is the set of sort symbols, F a family of function symbols indexed by their arity,
F = {Fw∈s |w ∈ S≤, s ∈ S} and P a family of relational symbols also indexed
by their arity, P = {Pw|w ∈ S≤}. A signature morphism in this category is also a
triple (ϕst ,ϕop,ϕrl) such that for ϕ : (S, F, P) ∈ (S∗, F ∗, P ∗), if σ ∈ Fw∈s , then
ϕop(σ) ∈ F ∗

ϕst (w)∈ϕst (s)
, and if π ∈ Pw then ϕrl(π) ∈ P ∗

ϕst (w).

Sentences. For each signature object (S, F, P) ∈ |SignFOL|, SenFOL(S, F, P) is
the smallest set of first order sentences:

An Institution for Alloy and Its Translation to Second-Order Logic 49

t √ t ∗, for t, t ∗ ∈ terms
π(t1, . . . , tn), for t1, . . . , tn ∈ terms and π ∈ Pw

¬ρ, for ρ ∈ SenFOL(S, F, P)

ρ ◦ ρ∗, ρ, ρ∗ ∈ SenFOL(S, F, P)

∀x : s . ρ, s ∈ S, ρ ∈ SenFOL(S, F
 {x}∈s, P)

where a term of sorts is a syntactic structure σ(t1, . . . , tn), such that σ ∈ Fs1,..., sn∈s

and t1, . . . , tn are terms of sort s1, . . . , sn , respectively. A signature morphism ϕ
defines a term translation function terms(ϕ), given by

terms(ϕ)(σ(t1, . . . , tn)) = ϕop(σ)(terms(ϕ)(t1), . . . , terms(ϕ)(tn)).

Given a signature morphism ϕ in SignFOL, sentences are mapped in the following
way:

SenFOL(ϕ)(t √ t ∗) = terms(ϕ)(t) √ terms(ϕ)(t ∗)
SenFOL(ϕ)(π(t1, . . . , tn)) = ϕrl(π)(terms(ϕ)(t1), . . . , terms(ϕ)(tn))
SenFOL(ϕ)(¬ρ) = ¬SenFOL(ϕ)(ρ)

SenFOL(ϕ)(ρ ◦ ρ∗) = SenFOL(ϕ)(ρ) ◦ SenFOL(ϕ)(ρ∗)
SenFOL(ϕ)(∀x : s . ρ) = ∀x : ϕst (s) . SenFOL(ϕ∗)(ρ),

where ϕ∗ canonically extends ϕ with ϕ∗
op(x) = x

Models. For each signature (S, F, P) ∈ |SignFOL|, ModFOL(S, F, P) is a category
whose objects are models with the following components : a carrier set |Ms |, for each
s ∈ S; a function Mσ : |Mw| ∈ |Ms |, for each σ ∈ Fw∈s ; a relation Mπ → |Mw|,
for each π ∈ Pw.
For any signature morphism ϕ : (S, F, P) ∈ (S∗, F ∗, P ∗), and any (S∗, F ∗, P ∗)–
model M ∗, ModFOL(ϕ)(M ∗), or M ∗� ϕ, is defined as:

• for any s ∈ S, |(M ∗� ϕ)s | = |M ∗
ϕst (s)

|
• for any σ ∈ Fw∈s , (M ∗� ϕ)σ = M ∗

ϕop(σ)

• for any π ∈ Pw, (M ∗� ϕ)π = M ∗
ϕrl (π)

Satisfaction. For any Σ–model M ∈ |ModFOL(Σ)|, with Σ ∈ |SignFOL|, the
satisfaction relation is inductively defined in the following way:

M |=FOL
Σ t √ t ∗ iff Mt = Mt ∗

M |=FOL
Σ π(t1, . . . , tn) iff (t1, . . . , tn) ∈ Mπ

M |=FOL
Σ ¬ρ iff M �|=FOL

Σ ρ

M |=FOL
Σ ρ ◦ ρ∗ iff M |=FOL

Σ ρ∗ whenever M |=FOL
Σ ρ

M |=FOL
Σ ∀x : s . ρ iff for any model x–expansion M ∗ of M , M ∗ |=FOL

Σ ∗ ρ

50 R. Neves et al.

A comorphism is a mapping that “embeds” a structurally “simpler” institution
into a more “complex” one.

Definition 2. Formally, given two institutions I, I ∗, a comorphism from I to I ∗ is
a triple (Φ,α,β) consisting of

• a functor Φ: SignI ∈ SignI ∗
,

• a natural transformation α: SenI ◦ SenI ∗
.Φ,

• a natural transformation β: ModI ∗
.Φop ◦ ModI ,

such that, for any Σ ∈ |SignI |, M ∗ ∈ |ModI ∗
(Φ(Σ))| and ρ ∈ SenI(Σ),

βΣ(M ∗) |=I
Σ ρ iff M ∗ |=I ∗

Φ(Σ) αΣ(ρ)

Definition 3. Let (Φ,α,β) be a comorphism. We say that (Φ,α,β) is conservative
whenever, for each Σ–model M in I, there exists a Φ(Σ)–model M ∗ in I ∗ such that
M = βΣ(M ∗).

The notion of conservative comorphism is typically used to “borrow” proof support
from an institution in a sound way. In this chapter we resort to such notion to com-
plement Alloy’s proof environment by “borrowing” the proof support from other
logical systems within Hets.

Definition 4. Given an institution I, one defines the institution of presentations
over I by extending signatures Σ ∈ |SignI | to pairs (Σ, Γ), where Γ →
SenI(Σ), signature morphisms to presentation morphisms and restricting models
M ∈ |ModI(Σ)| to the ones in which Γ is satisfied, i.e., such that M |=I

Σ Γ .

The latter definition (from [6]) is very useful to deal with comorphisms where
the source institution is too “complex” to be transformed into the target one in a
straightforward way. Actually, as discussed later in the chapter, due to a sort of
“hidden” rules in semantics of Alloy, each comorphism defined in Sects. 4 and 5
does not go to the institution of the target logic, but to the corresponding institution
of presentations.

The notion of an amalgamation square is often essential for proving the satisfaction
conditions of institutions and comorphisms. This justifies recalling it here.

Definition 5. A commuting square of functors,

is a weak amalgamation square if and only if, for each M1 ∈ |A1|, M2 ∈ |A2|, such
that F1(M1) = F2(M2), there is an object M ∗ ∈ |A∗| such that G1(M ∗) = M1 and
G2(M ∗) = M2. When M ∗ is unique the amalgamation square is called strong.

An Institution for Alloy and Its Translation to Second-Order Logic 51

The model amalgamation of an institution consists of the model amalgamation
of the diagrams in ModI (external square) induced by the pushout of signatures in
SignI (internal square),

i.e., for each M1 ∈ |ModI(Σ1)|, M2 ∈ |ModI(Σ2)|, such that ModI(θ1)(M1) =
ModI(θ2)(M2), there is an object M ∗ ∈ |ModI(Σ ∗)| called the amalgamation of
M1 and M2, such that ModI(ϕ)(M ∗) = M1 and ModI(ϕ∗)(M ∗) = M2. The square
is strong if M ∗ is unique.

Consider comorphism (Φ,α,β). The model amalgamation of β–transformations
and functor reducts of ModI consists of the weak model amalgamation of the fol-
lowing commutative square,

i.e., for each MΦ ∈ |ModI ∗
(Φ(Σ))|, M ∗ ∈ |ModI(Σ ∗)|, such that βΣ(MΦ) =

ModI(ϕ)(M ∗), there is a model M ∗
Φ ∈ |ModI(Φ(Σ ∗))|, such that

ModI ∗
(ϕ∗)(M ∗

Φ) = MΦ and βΣ ∗(M ∗
Φ) = M ∗. When M ∗ is unique, the amalgamation

square is called strong.

3 Alloy as an Institution

Alloy [9] is based on a single sorted relational language extended with a transitive
closure operator. Roughly speaking, an Alloy specification is divided into declara-
tions, of both relations and signatures, and sentences. Signatures will be called kinds
from now on to distinguish them from signatures in an institution. Actually, kinds
are nothing more than unary relations whose purpose is to restrict other relations.
This is in line with the motto of Alloy which regards everything as a relation. Ad-
ditionally, kinds may be given parents by an annotation with the keyword extends,

52 R. Neves et al.

establishing the obvious inclusion relation. When two kinds are in different subtrees
(i.e. one is not a descendant of the other) they are supposed to be mutually disjoint.
Finally, kinds may be of type Abstract, i.e., included in the union of its descendants,
Some, i.e., required to have at least one element, or One, i.e., exactly with one ele-
ment. The Alloy analyser checks an assertion against a specification by seeking for
counter-examples within bounded domains.

In this section we define an institution for Alloy, A = (SignA, SenA, ModA,

|=A). We proceed as follows:

Signatures. Objects in SignA are tuples, (S, m, R, X), composed by:

• A family of sets containing kinds and indexed by a type,
S = {St }t∈{All,Abs,Som,One}. SAll is the set of all kinds, SAbs the set of the abstract
ones, SSom the non-empty ones, and, finally, SOne collects the kinds containing
exactly one element. Notice that, for all St , St → SAll .

• m : SAll ∈ SAll is a function that gives the parent of each kind, i.e., m(s) = s∗
means that s∗ is the parent of s. Top level kinds are considered the parents of
themselves, and therefore, m takes the form of a forest structure.

• A family of relational symbols R = {Rw|w ∈ (SAll)
+}.

• A set of unary relational symbols X , representing the variable symbols declared
on quantified expressions. Despite being the same than the elements in SOne, once
encoded they must be treated differently.

Morphisms ϕ : (S, m, R, X) ∈ (S∗, m∗, R∗, X ∗) in this category are triples ϕ =
(ϕkd ,ϕrl ,ϕvr) such that:

• ϕkd : S ∈ S∗ is a function that, for any St ∈ S, if π ∈ St then ϕkd(π) ∈ S∗
t , and

the following diagram commutes:

• ϕrl is a family of functions such that, ϕrl = {ϕkd : Rw ∈ R∗
ϕkd (w)}w∈(SAll)

+ ;
• ϕvr : X ∈ X ∗ is a function.

Sentences. Consider Exp a functor of the same type of SenA. Given a signature
Σ = (SΣ, mΣ, RΣ, XΣ) ∈ |SignA|, the set of expressions Exp(Σ) is the smallest
one containing

π, π ∈ (SΣ)All ∪ (RΣ)w ∪ XΣ

^e, e ∈ Exp(Σ) and |e| = 2
∼e, e ∈ Exp(Σ)

e −> e∗, e, e∗ ∈ Exp(Σ)

e � e∗, e, e∗ ∈ Exp(Σ), |e| = |e∗|, and � ∈ {+,−, &}
e . e∗, e, e∗ ∈ Exp(Σ), and |e| + |e∗| > 2

An Institution for Alloy and Its Translation to Second-Order Logic 53

where the length |e| of an expression e is computed as follows:

|π| = |w|, for π ∈ (RΣ)w
|π| = 1, for π ∈ (SΣ)All ∪ XΣ

|^e| = |e|
|∼ e| = |e|
|e � e∗| = |e|, for � ∈ {+,−, &}
|e . e∗| = (|e| + |e∗|) − 2
|e −> e∗| = |e| + |e∗|

Finally, the set of sentences, SenA(Σ), is the smallest one containing:

e in e∗ e, e∗ ∈ Exp(Σ), for |e| = |e∗|
not ρ ρ ∈ SenA(Σ)

ρ implies ρ∗ ρ, ρ∗ ∈ SenA(Σ)

(all x : e) ρ e ∈ Exp(Σ), |e| = 1, and ρ ∈ SenA(Σ ∗), where
Σ ∗ = (SΣ, mΣ, RΣ, XΣ
 {x})

Note that other standard boolean connectives may be built from the above. For
instance, the conjunction, denoted in Alloy with symbol and, is usually defined
with the implication and negation constructors.

Given a signature morphism ϕ : Σ ∈ Σ ∗ in SignA, expressions and sentences
are mapped as follows:

Exp(ϕ)(π) = ϕkd(π), for π ∈ (SΣ)All

Exp(ϕ)(π) = ϕrl(π), for π ∈ (RΣ)All

Exp(ϕ)(π) = ϕvr (π), for π ∈ XΣ

Exp(ϕ)(^e) = ^Exp(e)
Exp(ϕ)(e −> e∗) = Exp(ϕ)(e)−> Exp(ϕ)(e∗)
Exp(ϕ)(e � e∗) = Exp(ϕ)(e) � Exp(ϕ)(e∗)
Exp(ϕ)(e . e∗) = Exp(ϕ)(e) . Exp(ϕ)(e∗)

SenA(ϕ)(e in e∗) = SenA(ϕ)(e) in SenA(ϕ)(e∗)
SenA(ϕ)(not ρ) = not SenA(ϕ)(ρ)

SenA(ϕ)(ρ implies ρ∗) = SenA(ϕ)(ρ) implies SenA(ϕ)(ρ∗)
SenA(ϕ)((all x : e) ρ) = (all x : Exp(ϕ)(e)) SenA(ϕ∗)(ρ), where ϕ∗

canonically expands ϕ with ϕ∗
vr (x) = x .

Models. For each signature (S, m, R, X) ∈ |SignA|, a model
M ∈ |ModA((S, m, R, X))| has,

54 R. Neves et al.

1. a carrier set |M |;
2. an unary relation Mπ → |M |, for each π ∈ SAll ;
3. a relation Mπ → Mw, for each π ∈ Rw;
4. a singleton relation, Mπ → |M |, for each π ∈ X ,

satisfying the following properties for any π,π∗ ∈ SAll ,

1. Mπ → Mm(π)

2. if π ∈ SSom , then Mπ �→ ∅
3. if π ∈ SOne, then #Mπ = 1
4. if π ∈ SAbs , then Mπ → ⋃

τ∈m◦(π) Mτ

5. if π,π∗ are not related by the transitive closure of m, then
Mπ ∩ Mπ∗ = ∅
Evaluation of expressions in such models, is done in the following way:

M∼e = (Me)
◦

Me + e∗ = Me + Me∗
Me − e∗ = Me − Me∗
Me & e∗ = Me ∩ Me∗
Me . e∗ = Me . Me∗
Me −> e∗ = Me × Me∗
M^e = (Me)

+

A signature morphism, ϕ : Σ∈Σ ∗, is mapped to ModA(ϕ) : ModA(Σ ∗) ∈
ModA(Σ), giving for each M ∗ ∈ |ModA(Σ ∗)|, its ϕ-reduct, M ∗� ϕ ∈ |ModA(Σ)|.
The latter is defined as follows:

|(M ∗� ϕ)| = |M ∗|
(M ∗� ϕ)π = M ∗

ϕkd (π), for any π ∈ (SΣ)All

(M ∗� ϕ)π = M ∗
ϕrl (π), for any π ∈ (RΣ)w

(M ∗� ϕ)π = M ∗
ϕvr (π), for any π ∈ XΣ

Satisfaction. Given a Σ-model M , for Σ ∈ |SignA|, the satisfaction relation is
defined for each Σ-sentence as follows:

M |=A
Σ e in e∗ iff Me → Me∗

M |=A
Σ not ρ iff M �|=A

Σ ρ

M |=A
Σ ρ implies ρ∗ iff M |=A

Σ ρ∗ whenever M |=A
Σ ρ

M |=A
Σ (all x : e)ρ iff M ∗ |=A

Σ ∗ (x in e) implies ρ,

for all model x–expansions M ∗ of M , with Σ ∗ canonically extending Σ with the
variable x .

An Institution for Alloy and Its Translation to Second-Order Logic 55

The next step is to prove that A = (SignA,SenA,ModA, |=A) forms an institu-
tion. The proof will proceed through a number of auxiliary results

Lemma 1. On the conditions above the commuting diagram below is a strong amal-
gamation square.

Proof. Proof in Appendix A.1. ≥�
Lemma 2. For any signature morphism ϕ : Σ ∈ Σ ∗ in SignA, any Σ–expression
e, and any Σ ∗–model M ∗,

(M ∗� ϕ)e = M ∗
Exp(ϕ)(e)

Proof. Proof in Appendix A.2. ≥�
Finally, we can prove the satisfaction condition for A and conclude its cha-

racterisation as an institution.

Theorem 1. The satisfaction condition holds for A.

Proof. Let ϕ : Σ ∈ Σ ∗ be a SignA morphism, ρ a Σ–sentence, and M ∗ a Σ ∗–
model:

Consider first the case ρ := e in e∗:

M ∗� ϕ |=A
Σ e in e∗

⇔ {|= defn. }

(M ∗� ϕ)e → (M ∗� ϕ)e∗

⇔ {Lemma 2 }

M ∗
Exp(ϕ)(e) → M ∗

Exp(ϕ)(e∗)

⇔ {|= defn. }

M ∗ |=A
Σ ∗ Exp(ϕ)(e) in Exp(ϕ)(e∗)

⇔ {SenA defn. }

M ∗ |=A
Σ ∗ SenA(ϕ)(e in e∗)

56 R. Neves et al.

Proofs for the negation and implication are analogous.
When ρ := (all x : e) ρ:

M ∗� ϕ |=A
Σ (all x : e) ρ

⇔ {|= defn. }

For all model x–expansions (M ∗� ϕ)∗ of M ∗� ϕ,
(M ∗� ϕ)∗ |=A

Σ x (x in e) implies ρ

⇔ {Lemma 1; I.H. }

For all model x–expansions M ∗∗ of M ∗,
M ∗∗ |=A

Σ ∗x SenA(ϕ∗)((x in e) implies ρ)

⇔ {|= defn. }

M ∗ |=A
Σ ∗ (all x : SenA(ϕ)(e)) SenA(ϕ∗)(ρ)

⇔ {SenA defn. }

M ∗ |=A
Σ ∗ SenA(ϕ)((all x : e) ρ)

≥�
We have proved that A = (SignA, SenA, ModA, |=A) is an institution.

4 From Alloy to SOL

Second-order logic (SOL), extends first–order logic with quantification over func-
tions and predicates, a feature required to canonically encode the notion of transi-
tive closure primitive in Alloy. The corresponding institution, SOL = (SignSOL,

SenSOL, ModSOL, |=SOL), extends the one in example 1, by allowing quantification
over functions and predicates in SenSOL.

This section describes a conservative comorphism from Alloy to the institution
of presentations over SOL, where the notion of presentations is used as a key tactic
for dealing appropriately with Alloy’s implicit rules over kinds.

We proceed as follows: Let us define (Φ,α,β) : Alloy∈ SOLpres .

Signature functor. For any signature (S, m, R, X) ∈ |SignA|, Φ gives a tuple
((S∗, F, P), Γ) where,

• S = {U }
• Fw =

{
{π|π ∈ X} if w = U

∅ otherwise

An Institution for Alloy and Its Translation to Second-Order Logic 57

• Pw =

⎧
⎪⎨

⎪⎩

{π|π ∈ SAll} ∪ {π|π ∈ Rs, |s| = 1} if w = U

{π|π ∈ Rs, |s| > 1} if w = (U, . . . , U), |w| > 1

∅ otherwise

and Γ is the least set containing the following sets of axioms:

1. {(∀u : U)π(u) ◦ π∗(u)|π ∈ SAll , π∗ = m(π)}
2. {(∃u : U)π(u)|π ∈ SOne ∪ SSom}
3. {(∀u, u∗ : U) (π(u) ∧ π(u∗)) ◦ u = u∗|π ∈ SOne}
4. {(∀u : U)π(u) ◦ (

∨
π∗∈m◦(π) π∗(u))|π ∈ SAbs}

5. {¬(∃u : U)π(u) ∧ π∗(u)|π,π∗ ∈ SAll , π,π∗ not related by the transitive closure
of m}

6. {(∀u1, . . . , un : U)π(u1, . . . , un) ◦ ∧n
i=1 si (ui)|π ∈ Rs1,...,sn }

Sentence transformation. Given any signature Σ = (SΣ, mΣ, RΣ, XΣ) ∈
| SignA|,αΣ : SenA(Σ) ∈ SenSOLpres

(Φ(Σ)) is defined as:

αΣ(not ρ) = ¬αΣ(ρ)

αΣ(ρ implies ρ∗) = αΣ(ρ) ◦ αΣ(ρ∗)
αΣ((all x : e) ρ) = (∀x : U) αΣ x ((x in e) implies ρ), where

Σ x = (SΣ, mΣ, RΣ, XΣ + {x})
αΣ(e in e∗) = (∀V : U1 . . . Un) ηV (e) ◦ ηV (e∗), such that

V = (v1, . . . , vn), and |V | = |e|,

with ηV
1 being defined as follows:

ηV (π) = π(V),π ∈ (SΣ)All ∪ (RΣ)w
ηv(π) = π = v,π ∈ XΣ

η(v1,v2)(^e) = (∃R : U1, U2)R(v1, v2) ∧ αΣ R (e in R and e.R in R) ∧
(∀S : U1, U2)αΣ R,S ((e in S and e.S in S) implies R in S),
where Σ R = (SΣ, mΣ, RΣ + R, XΣ) and
Σ R,S = (SΣ, mΣ, RΣ + R + S, XΣ)

ηV (∼e) = ηV ∗(e), such that V ∗ = (vn, . . . , v1)

ηV (e + e∗) = ηV (e) ∨ ηV (e∗)
ηV (e − e∗) = ηV (e) ∧ ¬ηV (e∗)
ηV (e & e∗) = ηV (e) ∧ ηV (e∗)
ηV (e −> e∗) = ηV ∗(e) ∧ ηV ∗∗(e∗), where V ∗ is the prefix of V such that

|V ∗| = |e| and V ∗∗ the suffix of V such that |V ∗∗| = |e∗|
ηV (e . e∗) = (∃y : U)η(V ∗,y)(e) ∧ η(y,V ∗∗)(e∗), where V ∗ is the prefix of V

such that |V ∗| + 1 = |e|, V ∗∗ the suffix of V such that
|V ∗∗| + 1 = |e∗|

1 To represent a tuple of n elements, v1, . . . , vn , we use notations (v1, . . . , vn) and v1, . . . , vn
interchangeably, the latter being usually chosen if potential ambiguity is ruled out by the context.

58 R. Neves et al.

Model transformation. Consider a signature Σ = (SΣ, mΣ, RΣ, XΣ) ∈ |SignA|,
and a Φ(Σ)–model M .

Then βΣ : |ModSOL pres
(Φ(Σ))| ∈ |ModA(Σ)| is defined as:

|βΣ(M)| = |MU |, where |MU | is the carrier of U in M ,
βΣ(M)π = Mπ , for any π ∈ (SΣ)All ∪ (RΣ)w,
βΣ(M)π = {Mπ}, for any π ∈ XΣ

Lemma 3. On the conditions above, the commuting diagram below is a strong
amalgamation square,

Proof. Proof in Appendix A.3 ≥�
Note that Lemma 3 says that, for any (S∗, F ∗, P ∗)–model M the xβ–expansion of

its transformation by β(S,m,R,X), is equal to the transformation by

β(S,m,R,X+{x}) of its x–expansion, whenever the value taken by both x’s in the cor-
responding expansions is the same.

Lemma 4. Let Σ = (SΣ, mΣ, RΣ, XΣ) be a signature in SignA, M ∗ a Φ(Σ)-
model M ∗, and e a Σ-expression. Then, for any tuple (v1, . . . , vn) ∈ XΣ with
n = |e|, we have

M ∗ |=SOLpres

Φ(Σ) η(v1,...,vn)(e) iff βΣ(M ∗) |=A
Σ (v1−> . . . −>vn) in e

Proof. Proof in Appendix A.4 ≥�
Theorem 2. On the conditions above the satisfaction condition holds in (Φ,α,β).
I.e., given a signature Σ ∈ |SignA|, a Φ(Σ)-model M ∗, and a Σ-sentence ρ

M ∗ |=SOLpres

Φ(Σ) αΣ(ρ) iff βΣ(M ∗) |=A
Σ ρ

Proof. Proof in Appendix A.5 ≥�
Theorem 3. The triple (Φ,α,β) defined above is a conservative comorphism (in
SOLpres).

Proof. Let M be an (S, m, R, X)-model. Now, lets consider the Φ(S, m, R, X)-
model M ∗ defined by:

An Institution for Alloy and Its Translation to Second-Order Logic 59

1. |M ∗
U | = |M |

2. M ∗
π = Mπ , for any π ∈ SAll ∪ Rw

3. M ∗
π = a where {a} = Mπ , for any π ∈ X

Clearly β(S,m,R,X)(M ∗) = M and M ∗ satisfies Γ . Hence β is surjective and,
therefore, (Φ,α,β) is conservative. ≥�

5 From Alloy to Casl

Casl, the Common Algebraic Specification Language [14], was developed within
the CoFI initiative with the purpose of creating a suitable language for specifying
requirements and to design conventional software packages. Casl specifications
extend multi-sorted first order logic with partial functions, subsorting and free types,
i.e., types whose elements are restricted to be generated by the corresponding con-
structors and whose distinct constructor terms must denote different elements; we
use free types and the notion of presentations to encode Alloy’s transitive closure
in Casl. Signatures in Casl are as in SOL, but extended with a family of partial
functions symbols P F indexed by their arity, and a partial order ≤ over the symbols
in S. As usual, P F ∩ F = ∅.

Currently, Casl is regarded as the de facto standard language for algebraic spec-
ification. It is integrated into Hets along with many of its expansions, acting, as
suggested in Fig. 1, as a glue language inside the Hets network of logics.

A comorphism (Φ ∗,α∗,β∗) : Alloy∈Caslpres may be defined in a very similar
way to the comorphism defined in the Sect. 4. Let us, then, analyse the things that
change in each component.

Signature functor. For any signature (S, m, R, X) ∈ |SignA|, Φ ∗ gives a tuple
((S∗, F, P F, P), Γ) where

S∗ = {U, Nat}
P F = ∅

Fw =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

{π|π ∈ X} if w = U

{0} if w = Nat

{suc} if w = Nat, Nat

∅ for the other cases

Pw =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

{π|π ∈ SAll} ∪ {r |r ∈ Rs, |s| = 1} if w = U

{r |r ∈ Rs, |s| > 1} if w = (U, . . . , U), |w| > 1

{πr |π ∈ Rs, |s| = 2} if w = Nat, U, U

∅ for the other cases

and Γ contains two additional rules:

60 R. Neves et al.

1. { free type Nat ::= (0 | suc(Nat)) }
2. {(∀u, v : U) πr (0, u, v) ⇔ r(u, v) ∧ (∀n : Nat) πr (suc(n), u, v) ⇔ (∃x : U)

πr (0, u, x) ∧ πr (n, x, v)|πr ∈ Rs, |s| = 2}.
Sentence transformation. Given any signature Σ ∈ |SignA|, where

Σ = (SΣ, mΣ, RΣ, XΣ), α∗
Σ : SenA(Σ) ∈ SenCASLpres

(Φ(Σ)) is defined in
the same way as α (introduced in Sect. 4), with the following replacing the case of
transitive closure over expressions:

η∗
V (^r) = (∃n : Nat) πr (n, V)

Note that only the transitive closure of atomic relations is considered. This is
done, however, without loss of generality: for an arbitrary expression we just declare
an extra binary relation and state that the latter is equal to the former.

Model transformation. Nothing changes in the model transformation component,
i.e., for each Σ ∈ |SignA|, βΣ = β∗

Σ .

Theorem 4. On the conditions above the satisfaction condition holds in (Φ ∗,α∗,β∗).

Proof. We can prove the satisfaction condition by using the following treatment in
the case of transitive closure:
When e := ^r, r ∈ Rw, with |w| = 2:

M ∗ |=Caslpres

Φ(Σ) ηV (^r)

⇔ {α definition }

M ∗ |=caslpres

Φ(Σ) (∃n : Nat) πr (n, V)

⇔ {|= defn. and πr in Γ defn. }

M ∗
V ∈ M ∗

(r+)

⇔ {elements of V are constants, β definition }

βΣ(M ∗)V → βΣ(M ∗)(r+)

⇔ {Expression evaluation and |= definition }

βΣ(M ∗) |=A
Σ V in ^r

Then for all other cases the proof is analogous to the one performed in the last
section. ≥�

An Institution for Alloy and Its Translation to Second-Order Logic 61

Theorem 5. The above comorphism is conservative.

Proof. We have just to define a model in the same way as in Theorem 3. In addition,
the following must also be included:

(a) M ∗
Nat = N;

(b) For any π in Rs,s , M ∗ has a relation, πr , defining the transitive closure of r .

Clearly, M ∗ satisfies the additional rules 1, 2 in Γ . ≥�
We have proved that (Φ ∗,α∗,β∗) is a comorphism, and furthermore that is con-

servative. This means that (Φ ∗,α∗,β∗) is a sound method for validating Alloy’s
specifications through the proof environment of Casl.

6 ALLOY and HETS at Work

6.1 An Introduction to DCR Graphs

DCR graphs, short for Distributed Condition Response Graphs, were introduced in
[8] to specify workflow models in an implicit way through a number of conditions.
A functional style and precise semantics make DCR graphs excellent candidates for
modelling critical workflows.

Formally, a DCR graph consists of a set E of events and two relationscondition,
response → E × E which restrict control flow, regarded as a sequence of event
executions. In detail,

• (e, e∗) ∈ condition iff e∗ can only be executed after e;
• (e, e∗) ∈ response iff whenever e is executed the control flow may only come

to terminal configuration after the execution of e∗.

A mark, or execution state, in a DCR G, is a tuple (Ex, Res) ∈ P(E) × P(E),
where Ex is the set of the events that already occurred and Res the set of events
scheduled for execution. A valid execution step in G is a triple (M, M ∗, e) where
M, M ∗ ∈ P(E)×P(E) and e ∈ E such that, for M = (Ex, Res), M ∗ = (Ex ∗, Res∗),

1. {e∗|condition(e∗, e)} → Ex
2. Ex ∗ = Ex ∪ {e}
3. Res∗ = (Res\{e}) ∪ {e∗|response(e, e∗)}.

Mukkamala [16] suggests a translation of DCR graphs to Promela so that the
specification of workflows can be checked with the Spin model checker. The encod-
ing, however, is not easy. For example, the language has only arrays as a basic data
structure, thus events and relations have to be encoded as arrays, relations becoming
two-dimensional bit arrays. Moreover, Spin based verification is limited by possible
state explosion.

62 R. Neves et al.

An encoding into Alloy, on the other hand, seems an attractive alternative. Not
only it comes out rather straightforwardly, due to the original relational definition
of DCR graphs, but also the Alloy analyser is eager to avoid potential state space
explosion by restricting itself to bounded domains. This restricts, of course, the scope
of what can be verified in a specification. However, as illustrated below, Alloy
plugged into the Hets family offers a really interesting alternative to the verification
of DCR based workflows.

6.2 DCR Graphs in ALLOY

DCR graphs are encoded in ALLOY as follows,

abstract sig Event {
condition : set Event,
response : set Event

}

sig Mark {
executed : set Event,
toBeExecuted : set Event,
action : set Mark −> set Event

}

fact {

all m,m’ : Mark, e : Event |
(m −> m’ −> e) in action <=>

(condition.e in m.executed and

m’.executed = m.executed + e and

m’.toBeExecuted = (m.toBeExecuted - e) + e.response)

}

This includes the declaration of two kinds (sig), one of events and another to
define markings. Relations are declared in an object oriented style as fields of kinds
(objects). For example, what the declaration of action entails is, as expected, a
subset of the product Mark × Mark × Event. Finally note how the invariant for valid
execution steps is directly captured in the fact above. Other DCR properties can
be directly checked in ALLOY. For example,

all m,m’ : Mark, e : Event |
(m −> m’ −> e) in action and e in m’.toBeExecuted

implies e in e.response

formalises the claim that ‘after executing an event e, if in the next mark e is still to
be executed, then response contains a reflexive pair at e”.

An Institution for Alloy and Its Translation to Second-Order Logic 63

Of course, this property cannot be proved in Alloy for an arbitrary domain. To
do it another tool inside the network has to be called, provided that Alloy is already
plugged there. Applying the comorphism to Casl defined in the Sect. 6 we get the
following encoding of the property:

forall m : U . Mark(m) =>

forall m’ : U . Mark(m’) =>

forall e : U . Event(e) =>

(forall v1,v2,v3 : U . v1 = m /\ v2 = m’ /\ v3 = e => action(v1,v2,v3)) /\
(forall v : U . v = e => exists y : U . y = m’ /\ toBeExecuted(y,v)) =>

(forall v : U . v = e => exists y : U . y = e /\ response(y,v))

which, after a few reduction steps simplifies to

forall m,m’,e : U .

Mark(m) /\ Mark(m’) /\ Event(e) =>

(action(m,m’,e) /\ toBeExecuted(m’,e) => response(e,e))

which is can then be verified by the SPASS theorem prover.

6.3 A Medical Workflow

Consider now the following example of a DCR graph representing a medical work-
flow as introduced in [16]. It concerns the administration of a medicine to a patient.
The workflow diagram obtained from the Alloy analyser is depicted in Fig. 2.

As mentioned in the introduction, Alloy may give a false sense of security as
the scope set for a simulation session may not be wide enough to produce a counter
example. To illustrate this situation consider the following property in which we
assume transRun = ^(action.Event). In English it reads: “starting with an empty
mark (∅,∅), if by continuously executing events a mark is reached where SecEffect
was executed and no further events are to be executed, then this mark has no executed
events”. In Alloy,

all m,m’ : Mark |
(no m.(executed+toBeExecuted) and

m’ in m.transRun and

SecEffect in m’.executed and

no m’.toBeExecuted)

implies no m’.executed

An analysis of the workflow diagram shows the property is false. Actually, if the
left side of the implication is true, it may happen that the right hand side is false:

64 R. Neves et al.

Fig. 2 A medical workflow diagram

the former says there are executed events while the latter contradicts it. The Alloy
analyser, however, is unable to find a counter-example within a scope below 15 (recall
the default scope is 3). The problem of this, is that with a scope smaller than 15 (10
marks +5 events) the Alloy analyser can never reach a mark where the left side of
the implication is true, and therefore no counter examples are found.

On the other hand, after encoding intoCasl and calling another prover in theHets
network, such as Vampire, the result pops out in a few seconds. A Hets session for
this example is reproduced in Fig. 3. In general the Alloy analyser has difficulties
when dealing with similar properties and diagrams with just two more events. In
some cases the search, if successful, may exceed 30 min.

We have checked several other properties2 using both Alloy, with scope 15,
and automatic theorem provers available in Hets, namely SPASS and EProver,
through the second encoding proposed in this chapter. The experimental results seem
to confirm the advantages of the hybrid approach proposed here, with automatic
theorem provers taking the job whenever Alloy is unable to proceed or requires
an excessive processing time. In some cases, namely when dealing with encodings
of Alloy models that make heavy use of transitive closure, another member of the
Hets network—an interactive theorem prover—has to be called.

2 Full models at github.com/nevrenato/IRI_FMI_Annex.

An Institution for Alloy and Its Translation to Second-Order Logic 65

Fig. 3 A Hets session

7 Discussion and Conclusions

The chapter laid the first steps toward establishing a rigorous methodology for mod-
elling and validating software designs by connecting Alloy to a network of logics
and logical tools, rather than, to a single one.

Going generic has, as one could expect, a price to be paid. In our case, this was the
development of a proper formalisation of the Alloy underlying logical system as an
institution, together with conservative comorphisms into institutions of presentations
over SOL and Casl as entry points in the Hets network. The work reported here
extends [17] in working out all the proof details and, mainly, providing a new, sound
translation to SOL.

Adopting an institutional framework brings to scene a notational burden the work-
ing software engineer may find hard to bear. It should be noted, however, this is done
once and for all: our results, once proved, provide a simple method to translate
Alloy models not only into both SOL and Casl specifications. On the other hand,
following this approach has a number of advantages. First of all this is a sound way
to integrate systems based on a formal relationship between their underlying logical
systems. This contrasts with ad hoc combinations, often attractive at first sight but not

66 R. Neves et al.

always consistent, which abound in less careful approaches to Software Engineering.
A second advantage concerns the possibility of, once an institutional representation
for Alloy is obtained, combining it with other logical systems through a number
of techniques available in the institutional framework. For example, in [13] we have
developed a systematic way to build a hybrid logic layer on top of an arbitrary
institution.

Hybrid logic [5] adds to the modal description of transition structures the ability
to refer to specific states, which makes it a suitable language to describe properties of
individual states in any sort of structured transition system. A typical application of
this method discussed in [11] is the design of reconfigurable systems, where each state
corresponds to an execution configuration and transitions are labelled by triggers.
The institutional rendering of Alloy makes possible that the hybridisation of its
models and their integration in the development cycle of reconfigurable software.

A second motivation was defining a tool chain for the validation of workflows
represented by DCR graphs. Results obtained so far suggest that Alloy, suitably
integrated into a wider network of theorem provers, provides an intuitive alternative
to the Promela formalisation presented in [16]. More experimental work, however,
is necessary to substantiate this claim on general grounds.

Acknowledgments This work is funded by ERDF—European Regional Development Fund
through the COMPETE Programme (operational programme for competitiveness) and by
National Funds through FCT, the Portuguese Foundation for Science and Technology, within
projects FCOMP-01-0124-FEDER-028923, project FCOMP-01-0124-FEDER-022690 and NORTE-
01-0124-FEDER-000060.

Appendix A: Proofs

A.1 Lemma 1

The following commuting diagram of Alloy signature morphisms is a strong amal-
gamation square.

Proof. Let M1 be an (S, m, R, X +{x})–model, and M2 an (S∗, m∗, R∗, X ∗)–model,
such that ModA(x)(M1) = ModA(ϕ)(M2). Thus, for any π ∈ St , M1π = M2ϕkd (π),
for any π ∈ Rw, M1π = M2ϕrl (π), for any π ∈ X, M1π = M2ϕvr (π), and |M1| =
|M2|.

An Institution for Alloy and Its Translation to Second-Order Logic 67

Then, let us define an (S∗, m∗, R,∗ , X ∗ + {x})-model M ∗ by stating that: For all
π ∈ S∗

t , M2π = M ∗
π; for all π ∈ R∗

w, M ∗
π = M2π; for all π ∈ X ∗, M2π = M ∗

π; |M2| =
|M ∗|, and M1x = M ∗

x . Clearly, M1 = ModA(ϕ∗)(M ∗) and M2 = ModA(xϕ)(M ∗).
Also it is not difficult to show that M ∗ is unique. Therefore the diagram above is a
strong amalgamation square. ≥�

A.2 Lemma 2

For any signature morphism ϕ : Σ ∈ Σ ∗ in SignA, any Σ–expression e, and any
Σ ∗–model M ∗,

(M ∗� ϕ)e = M ∗
Exp(ϕ)(e)

Proof. Consider first the case e := π, for π ∈ (RΣ)w:

(M ∗� ϕ)π

= {Reduct defn. }

M ∗
ϕrl (π)

= {Exp defn. }

M ∗
Exp(ϕ)(π)

Proofs for when π ∈ (SΣ)All or π ∈ XΣ are analogous.
When e := e + e∗:

(M ∗� ϕ)e+e∗

= {Expression evaluation }

(M ∗� ϕ)e + (M ∗� ϕ)e∗

= {Induction hypothesis }

M ∗
Exp(ϕ)(e) + M ∗

Exp(ϕ)(e∗)

= {Expression evaluation }

M ∗
Exp(ϕ)(e)+Exp(ϕ)(e∗)

= {Exp defn. }

M ∗
Exp(ϕ)(e+e∗)

Proofs for the remaining operators are analogous. ≥�

68 R. Neves et al.

A.3 Lemma 3

The following commuting square of model morphisms and model transformations
is a strong amalgamation square,

Proof. Let M1 be an (S, m, R, X + {x})–model and M2 a (S∗, F ∗, P ∗)–model such
that ModA(xβ)(M1) = β(S,m,R,X)(M2). I.e., for any π ∈ SAll ∪ Rw ∪ X , M1π =
M2π and |M1| = |M2|.

Then let us define an (S∗, F ∗+{x}, P ∗)–model M ∗ such that for any s ∈ S∗, |M ∗
s | =

|M2s |; for any σ ∈ F ∗
w, M ∗

σ = M2σ; for any π ∈ P ∗
w, M ∗

π = M2π; M ∗
x = {M1x }.

Clearly, we have M1 = β(S,m,R,X+{x})(M ∗) and M2 = ModSOLpres
(x)(M ∗). More-

over, it is not difficult to show that M ∗ is unique. Therefore the diagram above is a
strong amalgamation square. ≥�

A.4 Lemma 4

Let Σ = (SΣ, mΣ, RΣ, XΣ) be a signature in SignA, M ∗ a Φ(Σ)-model M ∗, and
e a Σ-expression. Then, for any tuple (v1, . . . , vn) ∈ XΣ with n = |e|, we have

M ∗ |=SOLpres

Φ(Σ) η(v1,...,vn)(e) iff βΣ(M ∗) |=A
Σ (v1−> . . . −>vn) in e

Proof. When e := π,π ∈ (RΣ)w ∪ (SΣ)All :

M ∗ |=SOLpres

Φ(Σ) η(v1,...,vn)(π)

⇔ {η defn. }

M ∗ |=SOLpres

Φ(Σ) π(v1, . . . , vn)

⇔ {|= defn. }

(M ∗
v1

, . . . , M ∗
vn

) ∈ M ∗
π

⇔ {vi elements are constants }

M ∗
v1

× · · · × M ∗
vn

→ M ∗
π

An Institution for Alloy and Its Translation to Second-Order Logic 69

⇔ {β defn. }

βΣ(M ∗)v1 × · · · × βΣ(M ∗)vn → βΣ(M ∗)π

⇔ {Expression evaluation; |= defn. }

βΣ(M ∗) |=A
Σ (v1−> . . . −>vn) in π

When e := π,π ∈ XΣ :

M ∗ |=SOLpres

Φ(Σ) ηv(π)

⇔ {η defn. }

M ∗ |=SOLpres

Φ(Σ) v = π

⇔ {|= defn. }

M ∗
v = M ∗

π

⇔ {v and π are constants }

{M ∗
v} → {M ∗

x }
⇔ {β defn. }

βΣ(M ∗)v → βΣ(M ∗)π
⇔ {|= defn. }

βΣ(M ∗) |=A
Σ v in π

When e := e . e∗:

M ∗ |=SOLpres

Φ(Σ) ηV (e . e∗)

⇔ {η defn. }

M ∗ |=SOLpres

Φ(Σ) (∃y : U) η(V ∗,y)(e) ∧ η(y,V ∗∗)(e∗)

⇔ {|= defn. }

There is a y-expansion M ∗∗ of M ∗ such that
M ∗∗ |=SOLpres

Φ(Σ)y η(V ∗,y)(e) and M ∗∗ |=SOLpres

Φ(Σ)y η(y,V ∗∗)(e∗)

⇔ {I.H., lemma 3, |= defn. }

There is a y–expansion M ∗∗ of M ∗ such that

70 R. Neves et al.

βΣ y (M ∗∗) |=A
Σ y (V ∗−>y) in e and (y−>V ∗∗) in e∗

⇔ {lemma 3, |= defn. }

βΣ(M ∗) |=A
Σ V in e . e∗

When e := ^e:

M ∗ |=SOLpres

Φ(Σ) η(v1,v2)(^e)

⇔ { η defn. }

M ∗ |=SOLpres

Φ(Σ) ∃R.
(
R(v1, v2) ∧ αΣ R (e in R and e.R in R)∧

∀S. αΣ R,S ((e in S and e.S in S) implies R in S)
)

⇔ { |= defn. }

There is an R-expansion M R of M ∗ such that
M R |=SOLpres

Φ(Σ)R R(v1, v2) ∧ αΣ R (e in R and e.R in R)

and for any S-expansion M R,S of M R ,
M R,S |=SOLpres

Φ(Σ)R,S αΣ R,S

(
(e in S and e.S in S) implies R in S

)

⇔ {|= defn, α defn. }

There is an R-expansion M R of M ∗ such that(
M R |=SOLpres

Φ(Σ)R R(v1, v2) and M R |=SOLpres

Φ(Σ)R (∀u1, u2).
(
η(u1,u2)(e) ◦ η(u1,u2)(R)

) ∧ (
η(u1,u2)(e.R) ◦ R(u1, u2)

))

and for any S-expansion M R,S of M R ,
M R,S |=SOLpres

Φ(Σ)R,S

(
(∀u1, u2).(η(u1,u2)(e) ◦ η(u1,u2)(S))∧

(η(u1,u2)(e.S) ◦ S(u1, u2))
) ◦ (

(∀u1, u2).R(u1, u2) ◦ S(u1, u2)
)

⇔ { α defn., |= defn. }

There is an R-expansion M R of M ∗ such that
M R |=SOLpres

Φ(Σ)R R(v1, v2) and
(

for any (u1, u2)-expansion (M R)(u1,u2) of M R ,
(
(M R)(u1,u2) |=SOLpres

Φ(Σ)R,u1,u2
η(u1,u2)(e) implies

(M R)(u1,u2) |=SOLpres

Φ(Σ)R,u1,u2
η(u1,u2)(R)

)
and

(
(M R)(u1,u2) |=SOLpres

Φ(Σ)R,u1,u2
η(u1,u2)(e.R) implies

(M R)(u1,u2) |=SOLpres

Φ(Σ)R,u1,u2
R(u1, u2)

))

and for any S-expansion M R,S of M R ,

An Institution for Alloy and Its Translation to Second-Order Logic 71

(
for any (u1, u2)-expansion (M R,S)(u1,u2) of M R,S

(
(M R,S)(u1,u2) |=SOLpres

Φ(Σ)R,S,u1,u2
η(u1,u2)(e) implies

(M R,S)(u1,u2) |=SOLpres

Φ(Σ)R,S,u1,u2
η(u1,u2)(S)

)
and

(
(M R,S)(u1,u2) |=SOLpres

Φ(Σ)R,S,u1,u2
η(u1,u2)(e.S) implies

(M R,S)(u1,u2) |=SOLpres

Φ(Σ)R,S,u1,u2
S(u1, u2)

))
implies

that for any (u1, u2)-expansion (M R,S)(u1,u2) of M R,S
(
(M R,S)(u1,u2) |=SOLpres

Φ(Σ)R,S,u1,u2
R(u1, u2) implies

(M R,S)(u1,u2) |=SOLpres

Φ(Σ)R,S,u1,u2
S(u1, u2)

)

⇔ {I.H., Lemma 3 }

There is an R-expansion M R of M ∗ such that
βΣ R (M R) |=A

Σ R (v1−>v2) in R and
(

for any (u1, u2)-expansion (M R)(u1,u2) of M R ,
(
βΣ R,u1,u2 ((M R)(u1,u2)) |=A

Σ R,u1,u2
(u1−>u2) in e implies

βΣ R,u1,u2 ((M R)(u1,u2)) |=A
Σ R,u1,u2

(u1−>u2) in R
)

and
(
βΣ R,u1,u2 ((M R)(u1,u2)) |=A

Σ R,u1,u2
(u1−>u2) in e.R implies

βΣ R,u1,u2 ((M R)(u1,u2)) |=A
Σ R,u1,u2

(u1−>u2) in R
))

and for any S-expansion M R,S of M R ,(
for any (u1, u2)-expansion (M R,S)(u1,u2) of M R,S

(
βΣ R,S,u1,u2 ((M R,S)(u1,u2)) |=A

Σ R,S,u1,u2
(u1−>u2) in e implies

βΣ R,S,u1,u2 ((M R,S)(u1,u2)) |=A
Σ R,S,u1,u2

(u1−>u2) in S
)

and
(
βΣ R,S,u1,u2 ((M R,S)(u1,u2)) |=A

Σ R,S,u1,u2
(u1−>u2) in e.S implies

βΣ R,S,u1,u2 ((M R,S)(u1,u2)) |=A
Σ R,S,u1,u2

(u1−>u2) in S
))

implies

that for any (u1, u2)-expansion (M R,S)(u1,u2) of M R,S
(
βΣ R,S,u1,u2 ((M R,S)(u1,u2)) |=A

Σ R,S,u1,u2
(u1−>u2) in R implies

βΣ R,S,u1,u2 ((M R,S)(u1,u2)) |=A
Σ R,S,u1,u2

(u1−>u2) in S
)

⇔ {inclusion defn., |= defn. }

There is an R–expansion M R of M ∗ such that
βΣ R (M R) |=A

Σ R (v1−>v2) in R and

βΣ R (M R) |=A
Σ R e in R and e.R in R

and for all S–expansions M R,S of M R

βΣ R,S |=A
Σ R,S (e in S and e.S in S) implies R in S

72 R. Neves et al.

⇔ {transitive closure defn. }

βΣ(M ∗) |=A
Σ (v1−>v2) in ^e

When e := ∼e:

M ∗ |=SOLpres

Φ(Σ) η(v1,...,vn)(∼e)

⇔ {α defn. }

M ∗ |=SOLpres

Φ(Σ) η(vn ,...,v1)(e)

⇔ {I.H }

βΣ(M ∗) |=A
Σ (vn−> . . . −>v1) in e

⇔ {Galois connection }

β(M ∗) |=A
Σ (v1−> . . . −>vn) in (∼e)

When e := e + e∗:

M ∗ |=SOLpres

Φ(Σ) ηV (e + e∗)

⇔ {α defn., |= defn. }

M ∗ |=SOLpres

Φ(Σ) ηV (e) or M ∗ |=SOLpres

Φ(Σ) ηV (e∗)

⇔ {I.H }

βΣ(M ∗) |=A
Σ V in e or βΣ(M ∗) |=A

Σ V in e∗

⇔ {|= defn., sum defn. }

βΣ(M ∗) |=A
Σ V in e + e∗

Proofs for the remaining cases are analogous. ≥�

A.5 Theorem 2

The satisfaction condition holds in (Φ,α,β) : Alloy ∈ SOLpres . I.e., given a
signature Σ ∈ |SignA|, a Φ(Σ)-model M ∗, and a Σ-sentence ρ

M ∗ |=SOLpres

Φ(Σ) αΣ(ρ) iff βΣ(M ∗) |=A
Σ ρ

Proof. When ρ := e in e∗:

An Institution for Alloy and Its Translation to Second-Order Logic 73

M ∗ |=SOLpres

Φ(Σ) αΣ(e in e∗)

⇔ {α defn. }

M ∗ |=SOLpres

Φ(Σ) (∀V : U1, . . . , Un) ηV (e) ◦ ηV ∗(e∗)

⇔ {Satisfaction defn. }

For any V -expansion M ∗∗ of M ∗,
M ∗∗ |=A

Φ(Σ)∗ ηV (e∗) whenever M ∗∗ |=A
Φ(Σ)∗ ηV (e)

⇔ {Lemma 4 and |= defn. }

For any V -expansion M ∗∗ of M ∗,
βΣ ∗(M ∗∗) |=A

Σ ∗ V in e ◦ V in e∗

⇔ {Inclusion defn., Lemma 3 }

βΣ(M ∗) |=A
Σ e in e∗

When ρ := not ρ:

M ∗ |=SOLpres

Φ(Σ) αΣ(not ρ)

⇔ {α defn. }

M ∗ |=SOLpres

Φ(Σ) not αΣ(ρ)

⇔ {|= defn. }

M ∗ �|=SOLpres

Φ(Σ) αΣ(ρ)

⇔ {I.H. }

βΣ(M ∗) �|=A
Σ ρ

⇔ {|= defn. }

βΣ(M ∗) |=A
Σ not ρ

For implication the proof is analogous
When ρ := (all x : e) ρ:

M ∗ |=SOLpres

Φ(Σ) αΣ((all x : e) ρ)

⇔ {α defn. }

M ∗ |=SOLpres

Φ(Σ) (∀x : U)αΣ((x in e) implies ρ)

74 R. Neves et al.

⇔ {|= defn. }

For any x-expansion M ∗∗ of M ∗,
M ∗∗ |=SOLpres

Φ(Σ)x αΣ x ((x in e) implies ρ)

⇔ {I.H. }

For any x-expansion M ∗∗ of M ∗,
βΣ x (M ∗∗) |=A

Σ x (x in e) implies ρ

⇔ {Lemma 3 }

For any x-expansion βΣ x (M ∗∗) of βΣ(M ∗),
βΣ x (M ∗∗) |=A

Σ x (x in e) implies ρ

⇔ {|= defn. }

βΣ(M ∗) |=A
Σ (all x : e) ρ

≥�

References

1. Arkoudas, K., Khurshid, S., Marinov, D., Rinard, M.: Integrating model checking and theo-
rem proving for relational reasoning. In: 7th International Seminar on Relational Methods in
Computer Science (RelMiCS 2003). Lecture Notes in Computer Science, vol. 3015, pp. 21–33
(2003)

2. Baumgartner, P., Fuchs, A., Tinelli, C.: Implementing the model evolution calculus. Int. J. Artif.
Intell. Tools 15(1), 21–52 (2006)

3. Benzmüller, C., Rabe, F., Sutcliffe, G.: Thf0—the core of the tptp language for higher-order
logic. In: Proceedings of the 4th International Joint Conference on Automated Reasoning,
IJCAR ’08, pp. 491–506. Berlin, Heidelberg, Springer (2008)

4. Benzmüller, C., Theiss, F., Paulson, L., Fietzke, A.: LEO-II—a cooperative automatic theorem
prover for higher-order logic. In: Armando A., Baumgartner P., Dowek G. (eds.) Automated
Reasoning, 4th International Joint Conference, IJCAR 2008, Sydney, Australia, August 12–15,
2008, Proceedings. LNCS, vol. 5195, pp. 162–170. Springer (2008)

5. Braüner, T.: Proof-theory of propositional hybrid logic. Hybrid Logic and Its Proof-Theory
(2011)

6. Diaconescu, R.: Institution-independent Model Theory. Birkhäuser, Basel (2008)
7. Goguen, J.A., Burstall, R.M.: Institutions: abstract model theory for specification and program-

ming. J. ACM 39, 95–146 (January 1992)
8. Hildebrandt, T.T., Mukkamala, R.R.: Declarative event-based workflow as distributed dynamic

condition response graphs. In Proceedings of the 3rd PLACES Workshop, EPTCS, vol. 69, pp.
59–73 (2010)

9. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. The MIT Press, Cambridge
(2006)

10. Macedo, N., Cunha, A.: Automatic unbounded verification of Alloy specifications with Prover9.
CoRR, abs/1209.5773 (2012)

An Institution for Alloy and Its Translation to Second-Order Logic 75

11. Madeira, A., Faria, J.M., Martins, M.A., Barbosa, L.S.: Hybrid specification of reactive systems:
an institutional approach. In: Barthe G., Pardo A., Schneider G. (eds.) Software Engineering
and Formal Methods (SEFM 2011, Montevideo, Uruguay, November 14–18, 2011). Lecture
Notes in Computer Science, vol. 7041, pp. 269–285. Springer (2011)

12. Manzano, M.: Extensions of First Order Logic. Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, Cambridge (1996)

13. Martins, M.A., Madeira, A., Diaconescu, R., Barbosa, L.S.: Hybridization of institutions. In:
Corradini A., Klin B., Cîrstea C. (eds.) Algebra and Coalgebra in Computer Science (CALCO
2011, Winchester, UK, August 30–September 2, 2011). Lecture Notes in Computer Science,
vol. 6859, pp. 283–297. Springer (2011)

14. Mossakowski, T., Haxthausen, A., Sannella, D., Tarlecki, A.: CASL: The common algebraic
specification language: semantics and proof theory. Comput. Inform. 22, 285–321 (2003)

15. Mossakowski, T., Maeder, C., Lüttich, K.: The heterogeneous tool set, Hets. In: Grumberg O.,
Huth M. (eds.) Tools and Algorithms for the Construction and Analysis of Systems (TACAS
2007—Braga, Portugal, March 24 - April 1, 2007). Lecture Notes in Computer Science, vol.
4424, pp. 519–522. Springer (2007)

16. Mukkamala, R.R.: A formal model for declarative workflows: dynamic condition response
graphs. PhD thesis, IT University of Copenhagen (2012)

17. Neves, R., Madeira, A., Martins, M.A., Barbosa, L.S.: Giving alloy a family. In: Zhang C., Joshi
J., Bertino E., Thuraisingham B. (eds.) Proceedings of 14th IEEE International conference on
information reuse and intergration, pp. 512–519. IEEE Press (2013)

18. Nipkow, T., Wenzel, M., Paulson, L.C.: Isabelle/HOL: A Proof Assistant for Higher-Order
Logic. Springer, Berlin (2002)

19. Riazanov, A., Voronkov, A.: The design and implementation of vampire. AI Commun. 15(2–3),
91–110 (August 2002)

20. Ulbrich, M., Geilmann, U., El Ghazi, A.A., Taghdiri, M.: A proof assistant for alloy specifi-
cations. In: Flanagan C., König B. (eds.) Proceedings of the 18th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems (TACAS), Lecture Notes
in Computer Science, vol. 7214, pp. 422–436. Springer (2012)

21. Weidenbach, C., Dimova, D., Fietzke, A., Kumar, R., Suda, M., Wischnewski, P.: SPASS version
3.5. In: Schmidt R.A. (ed.) Proceedings of the 22nd International Conference on Automated
Deduction, CADE 2009, Lecture Notes in Artificial Intelligence, vol. 5663, pp. 140–145.
Springer (2009)

A Framework for Verification of SystemC
Designs Using SystemC Waiting State
Automata

Nesrine Harrath, Bruno Monsuez and Kamel Barkaoui

Abstract The SystemC waiting-state automaton is a compositional abstract formal
model for verifying properties of SystemC at the transaction level within a delta-
cycle: the smallest simulation unit time in SystemC. In this chapter, how to extract
automata for SystemC components where we distinguish between threads and meth-
ods in SystemC. Then, we propose an approach based on a combination of symbolic
execution and computing fixed points via predicate abstraction to infer relations
between predicates generated during symbolic execution. Finally, we define how to
apply model checking to prove the correctness of the abstract analysis.

Keywords SystemC · Automata · Symbolic execution · Predicate abstraction ·
Formal verification · Model checking

1 Introduction

Traditionally, embedded systems were developed by separating the hardware part
from the software part. It takes several iterations in the design process to reach
an implementation that is functionally correct and satisfies the performance

N. Harrath (B) · B. Monsuez
ENSTA ParisTech, Department of Electronics and Computer Engineering,
91762 Palaiseau, France
e-mail: nesrine.harrath@ensta-paristech.fr
http://www.ensta-paristech.fr

B. Monsuez
e-mail: bruno.monsuez@ensta-paristech.fr

N. Harrath · K. Barkaoui
CNAM Paris, VESPA/CEDRIC, 75003 Paris, France

K. Barkaoui
e-mail: kamel.barkaoui@cnam.fr
http://cedric.cnam.fr

T. Bouabana-Tebibel and S. H. Rubin (eds.), Integration of Reusable Systems, 77
Advances in Intelligent Systems and Computing 263, DOI: 10.1007/978-3-319-04717-1_4,
© Springer International Publishing Switzerland 2014

78 N. Harrath et al.

requirements. Those iterations consume large amounts of costly development time,
especially since they occur in a phase of the design strategy where there is already a
lot of implementation details involved. Yet, this technique is no long appropriate for
nowadays embedded systems design due to market pressure that require quick, valid,
efficient and safe systems. Thus, due to the design trends mentioned above, new mod-
eling languages that support both hardware and software parts have emerged. Among
others, we mention the SystemC language [1], which is a system level design lan-
guage that supports design space exploration and performance evaluation efficiently
throughout the whole design process even for large and complex HW/SW systems.
SystemC is a C++ based modeling platform that supports system-level modeling,
architectural exploration, performance modeling, software development, functional
verification, and high-level synthesis.

SystemC allows the description of both hardware and software, and the designs
are executable on different levels of abstraction. As a consequence, co-simulation,
i.e., the simultaneous execution of hardware and software, can be used for valida-
tion and verification throughout the whole design process. However, simulation is
necessary but not sufficient. First, because it is not complete, since it can neither be
applied to all possible input scenarios (in particular for real-time and non-terminating
systems), nor can it be assured that all possible executions are covered in the case
of non-deterministic systems. Besides, it is very difficult to ensure the consistency
between different abstraction levels, or to reuse verification results in later devel-
opment stages, although during co-simulation, models in SystemC can be stepwise
refined throughout the conceptual design. Finally, and more precisely, the evaluation
of the simulation results should be done manually by the designer, which needs to
be computed automatically. This is why we need to exploit new methodologies for
program analysis and verification to help designers detect and correct errors in early
stages of the conceptual design before proceeding to implementation.

Several attempts have been made to model SystemC designs in a formal way. But
each of them has some restrictions and limitations: either the model they propose
describe SystemC designs at a low level (RTL or cycle accurate) (e.g. [2] and [3])
and does not treat the transactional level (TLM). Or, they don’t support the notion of
delta-cycle (e.g. [4]). There is one interesting approach similar to ours: the work of
Shyamasundar et al. [5]. They give a compositional approach that incorporates the
reactive synchronous features of SystemC succinctly. Our approach also removes the
previous constraints and propose a compositional approach for describing SystemC
designs at the transaction level within a delta-cycle using the SystemC waiting-
state automaton. It succinctly captures the reactive features of SystemC components
communicating through either high level transactions or low-level signal and event
communications.

In [6], we define the reactive compositional semantics of SystemC and we intro-
duce the use of abstraction techniques. But, in this chapter, we focus on the validation
of the correctness of the previous analysis with respect to the system specifications.
We validate but also we illustrate how we can generate an abstract representation of
SystemC components without loss of precision.

A Framework for Verification of SystemC 79

2 Background on SystemC

SystemC is a System-Level Modeling language based on C++ that is intended to
enable system level design in response to the need of a very fast executable specifi-
cation to validate and verify system concepts. Using the SystemC library, a system can
be specified at various levels of abstraction. For hardware implementation, models
can be written either in a functional style or in the register-transfer level. The software
part of a system can be naturally described in the C or C++ language.

2.1 The SystemC Language

Syntactically, a SystemC program consists of a set of modules, a module contains
one or more processes to describe the parallel aspect of the design. A module can also
contain other modules, representing the hierarchical nature of the design. Processes
inside a module are of three types: METHOD, THREAD and CTHREAD. However,
METHOD and CTHREAD processes can be modeled as THREADs without loss
of generality. Processes are communicating via signals. Modules communicate via
channels. Channels are abstracted and are accessed via their interface methods. The
simulation kernel, together with modules, ports, processes, events, channels, and
interfaces constitute core language of C++. That is accompanied by a collection
of data types. Over this core, SystemC provides many library-defined elementary
channels, such as signals, FIFOs, semaphore, and Mutex. On top of this are defined
more sophisticated libraries, including master/slave library, and process networks. A
transaction-level modeling library (TLM 1.0) was announced in 2005. SystemC has
been developed with heavy inter-module communication.

The semantics of SystemC combine the semantics of C++ with the simulation
semantics of the kernel. The simulation semantics is event driven rather than cycle
driven. But at the same time, SystemC has a discrete model of time, which means that
it has also cycle-level semantics. Also time is modeled through macro-time(execution
time) in some pre-defined quantifiable unit; a process waits for a given amount of
time, expiration of which is notified through an event.

2.2 The Formal Semantics of SystemC

In this Subsection, we briefly present how we define the behavioral semantics of a
subset of SystemC language using the Structural Operational Semantics (SOS) of
Plotkin [7]. Those semantics are presented in details in [6]: we define small step
semantics that capture at the same time formal semantics of SystemC structures as
well as synchronous and asynchronous interactions between concurrent threads at
both the delta cycle level (low level) and the transaction level (high level). The goal
of developing SystemC formal semantics is to provide a complete and unambiguous
specification of the language. Besides, giving a general semantics to SystemC is

80 N. Harrath et al.

an instance of the problem of formalizing a general purpose programming language
that contains concurrency. This problem has already been studied for other languages
such as Java [8], with the aim of performing formal verification.

We suppose that each module communicate through local and environment vari-
ables. The local variables are internal signals, internal variables, and the program
counter for the process. The environment variables are input/output events, input/out-
put channels, and global variables. As regards to the execution semantics of SystemC
scheduler [9], there is at most one process that is reacting to the environment. To
describe how a statement changes the configurations of the environment, we write
the transitions rules for processes as mentioned below:

〈stmt,σ∈ E−→
Eo

〈
stmt ∗,σ∗〉

where:

• stmt is a SystemC statement that corresponds to the location of the program counter,
before the reaction, and stmt’ is the statement with the location of the program
counter after the transition,

• σ and σ∗ are the states before and after the reaction respectively. They represent a
function: V ≤ CH √→ values, where V is the set of local and shared variables and
CH is the set of channels.

• E is the environment (set of events and variables that activate the process) while
the transition is executed, Eo is the output emitted during the transition. In general,
an environment is a 5-tuple E = (E I , Eδ, ET ,V,RQ) where:

– E I is the set of immediate events,
– Eδ is the set of next delta events,
– ET is the set of timed events,
– V is the set of next delta updates for variable.
– RQ is a sequence consisting of pending requests to update channels. A request

is a pair (ch, exp(σ)) where ch ◦ CH and exp(σ) represents the value assigned
to ch.

We resort to the configuration above to be conform to the syntax of the SystemC
waiting-state automata (WSA) (see Sect. 3). The SystemC WSA is an abstract com-
positional model that we use to model and verify SystemC components in a bottom-
up approach. We use all the information about the environment variables defined
over the transitions to extract the preconditions and the post-conditions for each
transition in the WSA. Besides, The operational semantics that we define describe
also the simulation semantics of SystemC where we consider a network of synchro-
nous and asynchronous components that are communicating, in a concurrent manner,
through either high-level transactions or low-level signal and event communications.
Thus, the behavior of the scheduler is incorporated in the definition of the operational
semantics of SystemC, so we don’t need to separately model the SystemC scheduler.

A Framework for Verification of SystemC 81

3 Modeling SystemC with WSA

The SystemC waiting-state automaton, as first presented in [10], is a compositional
model that we use to represent the SystemC components in a bottom-up approach.
It is based on the analysis of the wait/noti f y mechanism of SystemC which plays
an important role in the SystemC scheduler. Besides, the SystemC WSA provides
the ability to model the process either at a high level where we abstract details from
system description or at a low level where we consider interactions between processes
with respect to the delta cycle semantics: The delta-cycle semantics guarantee that
the combinational logic behavior can be simulated even if there are combinational
feedback loop within the circuit. The simulation time does not advance during a
delta-cycle, and as a result all processes that execute during the delta-cycle appear
to be executing simultaneously.

We have chosen to model SystemC designs using automata because it is suitable
to model parallelism between different components which is essential for hardware
description. This choice will be different if we have distributed systems where a few
heterogeneous components communicate in parallel or for sequential processes. As
for model checking, we define an internal finite representation with a sufficiently
small number of states for SystemC designs using automata. This representation is
amenable to verify additional properties of modules: structural properties (liveness
and determinism), properties related to the QoS (quality of service) and functional
properties.

3.1 Syntax

The SystemC waiting-state automaton (WSA) is defined as a transition system A
over a set V of variables. A SystemC WSA, over a set V of variables, is a tuple
A = (S; E; T), where S is a finite set of states , E a finite set of events and T a finite
set of transitions where every transition is a 6-tuple (s; ein; p; eout ; f ; s∗):

• s and s∗ are two states in S, representing respectively the initial state and the final
state;

• ein and eout are two sets of events : ein ∀ E; eout ∀ E ;
• p is a predicate defined over variables inV , i.e., FV (p) ∀ V , where FV(p) denotes

the set of free variables in the predicate p;
• f is an effect function that modifies the variables V , it is a first order formulas

defined over the set of predicates;

We often write s
ein ,p−−−→
eout , f

s∗ for the transition (s; ein; p; eout ; f ; s∗). The effect func-

tion set F(A) of the automaton A(V) is the set of all effect functions in A(V) :
F(A) = { f |∃t ◦ T s.t. proj5

6 (t) = f }, where proj5
6 denotes the fifth projection of

a 6-tuple (or the fifth element of the transition relation). We also use T (s) to denote
the set of transitions from a given state s, i.e., T (s) = {t |t ◦ T and proj1

6 = s}.

82 N. Harrath et al.

Naturally, we expect that a SystemC automaton represents faithfully the process
from which it is derived. However, in a SystemC process, the transition from a wait-
ing state to another is only triggered by the events and the predicates determine
which state the process will enter after being wake up, which means that transition
from the same state must have the same set of incoming events ein . We say that a
SystemC waiting-state automaton A = (S; E; T) is faithful if for every two transi-
tions t and t ∗, proj1

6 (t) = proj1
6 (t

∗) ⇒ proj2
6 (t) = proj2

6 (t
∗) and for every state

s ◦ S,⎧t◦T (s) proj3
6 (t) always holds.

3.2 Main Properties of SystemC WSA Model

The SystemC WSA [10, 11] is defined first as an abstraction of SystemC semantics,
i.e., it is an abstract representation of SystemC designs that only includes the process
related information (execution and activation events). Besides, it is a compositional
model where each component is developed in a way that the possible interference
from its environment is already taken into account, so components are guaranteed
to be interference free. In fact, in a concurrent system, components interact with
each other, and the correct functioning of different components is often mutually
dependent. Therefore, achieving compositionality in the presence of concurrency is
much more difficult than in sequential programming. Thereby, the SystemC WSA is
efficient to verify functional and non-functional properties (as we prove in [10] and
[11]): the model verifies first that each component of the system is locally correct since
each component behavior is modeled using a finite automaton and then it verifies that
the whole system is correctly operating even in a fully concurrent environment. The
model helps to detect if there exists deadlocks or non deterministic behavior. The
non-functional properties includes synchronization, sharing, interaction and time
properties. The model verifies these properties due to the way it is automatically built
because the process of building the automata [6] is based on the presence/absence
of events in the environment which activate the component. Besides, the model is
annotated with information about the continuous time [11] that a transition may take
to move from one state to another.

4 Mapping SystemC Designs to SystemC WSA

In our approach, we get the description of a system in SystemC. Then we distinguish
the constituent components of the system and their communication relation. This
section presents another extension of our previous work [6], where we define how
to extract the abstract automaton for each SystemC component although we previ-
ously mentioned that different SystemC components are approximately similar if we
consider the semantic point of view.

The processes in a SystemC design, either SC_METHOD or SC_THREAD, build
up the components of the system. Each process is modeled as a SystemC waiting
state automaton. The communication and coordination between processes is also

A Framework for Verification of SystemC 83

mentioned in the operational semantics of SystemC (Sect. 2.2). The behavior of the
whole system is compositionally obtained by joining the automata of the processes
and their communication scenarios. But first we need to determine the constituent
components of the system. Then, we generate the abstract model for each component
separately.

4.1 Determining the Constituent Components

Each process of a SystemC design (SC_METHOD or SC_THREAD) is considered
as a component of the system. The SC_METHOD is an uninterruptible process and
has no wait statements. Its automaton must have only one state which is the initial
state and the transitions are triggered iff one or more event in the sensitivity list of
the process occur or change value. However, the SC_THREAD synchronizes with
the environment only through the wait statements and each wait statement presents a
state in the abstract model of the process. Transitions are built from the control flow
graph of the process. After determining the components of the system, an abstract
automaton is derived for each component. These automata are captured through the
wait statements in the control flow graph of the related processes.

But before, we need to symbolically execute the program in order to generate
the control flow graph of the components. Therefore, we use a conjoint symbolic
execution (SE) [12] that executes the program using symbolic values of the variables
instead of real ones. We call it conjoint symbolic execution because it includes both
symbolic execution together with the formal semantics of SystemC (for more details
and due to the space limitation, you may refer to [6]).

Thus, the program is first visualized as a control flow graph (CFG). The nodes of
this graph represent the basic commands and guard expressions of the process, and
the edges stand for flow of control between the nodes. We annotate the (CFG) with
exemplary of logical expressions defined over variables: the assignment statement is
transformed into equality and the path condition (PC) that we define over conditional
instructions. The PC is a (quantifier-free) boolean formula defined over the symbolic
inputs, it accumulates constraints which the inputs must satisfy so that the execution
follows the particular associated execution path. We suppose here that the PC is also a
first-order formulas which always hold when control flow reaches a specific program
point such as a loop entry. Therefore a path condition (PC) is also included in the
state that will keep track of all the decisions made along the execution, working as
an accumulation of assertions made on that symbolic variables, refining their values
domains and helping decide which of the then or the else branches should be taken.
We can see that, by construction, the SE only generates feasible paths.

In the following, we show how the automata of the SC_METHOD processes and
the SC_THREAD processes are derived respectively.

84 N. Harrath et al.

Fig. 1 Algorithm to construct the SystemC waiting-state automata of SC_METHOD processes

4.2 WSA for SC_METHOD: Algorithm to Extract Automata
for SC_METHODS

Figure 1 shows the algorithm to construct the waiting-state automata of
SC_METHOD processes. The waiting-state automaton of an SC_METHOD process
has only one state which is the initial state. The transitions are added to the abstract
automaton of the process using the paths from and to the initial state of the control
flow graph. The occurrence of events on each combination of the signals in the sensi-
tivity list of the process, can activate the process independently. Therefore, for each
path, at most 2N − 1 transitions will be added; where N is the number of the signals
in the sensitivity list of the process. The entry-conditions and the exit-conditions sets
of the transitions of the waiting state automaton are equal to the condition set and
the action set of the path, respectively.

4.3 WSA for SC_THREAD: Algorithm to Extract Automata
for SC_THREADS

Figure 2 shows the algorithm to construct the waiting-state automata of
SC_THREAD processes. For each path from one waiting state to the next wait-
ing state, there exists a transition. The entry-conditions and the exit-conditions sets
of the these transition are equal to the condition and action sets of the corresponding
path, respectively. The first transition of the waiting state automaton starts from the
first waiting state. For each subsequent waiting state, a state is added from which the
second transition in the waiting-state automaton starts. Here, loops are treated like
the loops in SC_METHOD processes with a little bit difference, considering wait
statements in them.

A Framework for Verification of SystemC 85

Fig. 2 Algorithm to construct the SystemC waiting-state automata of SC_THREAD processes

5 Applying Predicate Abstraction to SystemC Programs:
Overview of the Automation Chain for Predicate Inference

Abstraction techniques like predicate abstraction [13] which is a special variant
of abstract interpretation are widely used for semantics based static analysis of
software. These techniques are based on two main key-concepts: the correspondence
between the concrete and the abstract semantics through the Galois connections, and
the feasibility of a fixed point computation of the abstract semantics, through the fast
convergence of widening operators.

In the previous section, we briefly enumerate the usefulness of symbolic execu-
tion to generate the set of the execution traces by generating the control flow graph
of the SystemC program. However, the symbolic execution is itself not approxima-
tive, but as precise as possible (which corresponds to generating abstract formulas
instead of real ones). Instead, the necessary approximation is performed by explicit
abstraction operations, which make use of an arbitrary finite set of predicates over

86 N. Harrath et al.

Fig. 3 An overview about the automation approach for predicate inference

the variables of the program. A similar approach that combines the use of symbolic
execution together with predicate abstraction is already presented in [14]. To apply
abstraction techniques to SystemC programs, we need to distinguish between two
cases (Fig. 3): First, we study programs without loops where we compute the set of
weakest preconditions to merge the set of transitions between each two waiting states
in the control flow graph. Second, we study a special case of programs with loops
where we use another technique for abstract analysis which is invariants generation
for loops. In this section, we illustrate the use of predicate abstraction on some trivial
examples.

5.1 Background

Predicate abstraction [13], in particular, is one of the successful abstraction tech-
niques. In predicate abstraction, the concrete system is approximated by only keeping
track of certain predicates over the concrete state variables. Each predicate corre-
sponds to an abstract boolean variable. Any concrete transition corresponds to a
change of values for the set of predicates and it is subsequently translated into an
abstract transition. Using this technique, it is possible to not only reduce the complex-
ity of the system under verification, but also, for software systems, to extract finite
models that are amenable to model checking algorithms. The technique of predicate
abstraction was first used for verifying low level languages such as C. But, later with
the emergence of new languages like SystemC, this technique was also applied on
them [15]. Let us consider the following definitions:
Definition 1 Let A = (S, T, I) be the state graph of a program P where S is the set
of states, T is the set of transitions and I the set of initial states. Let ⎪S a lattice of
abstract states and (α : P(S) √→ ⎪S, γ : ⎪S √→ P(S)) a Galois connection 1 , where
the abstraction function α associates with any set of concrete states a corresponding
abstract state (the abstract state space is a lattice where larger abstract states represent

1 a Galois connection is a pair of functions (α, γ) satisfying α(γ(⎪s)) =⎪s and ϕ ⇒ γ(α(ϕ)). Given
γ, α is implicitly defined by α(ϕ) = ∩{⎪s ◦ ⎪S|ϕ ⇒ γ(⎪s)}.

A Framework for Verification of SystemC 87

larger sets of concrete states). The concretization function γ associates with every
abstract state the set of concrete states that it represents. We assume that the abstract
model can make a transition from a state⎪s to a state⎪s∗ iff there is a transition from
s to s∗ in the concrete model, where⎪s is the abstract state of s and⎪s∗ is the abstract
state of s∗ . We denote the transition relation:

R := {(⎪s,⎪s∗)|∃s, s∗ ◦ S : R(s, s∗) ∼ α(s) =⎪s ∼ α(s∗) =⎪s∗}

Definition 2 Formally, we assume that the program maintains a set of n predicates
{p1, .., pn} ordered by implication. A predicate pi denotes the subset of states that
satisfy the predicate {s ◦ S|s |= pi }. The range of the abstraction consists of boolean
formulas constructed using a set of boolean variables {B1, .., Bn} defined over the set
of predicates and ordered by implication. When applying all predicates to a specific
concrete state, we obtain a vector of n boolean values, which represents an abstract
state⎪s. If X ranges over sets of concrete states and Y ranges over boolean formulas
in {B1, .., Bn} then the abstraction and the concretization function α and γ have the
following properties:

α(X) =
⎨

{Y |X ⇒ γ(Y)}

γ(X) =
⎩

{X |α(X) ⇒ Y }

The main challenge in predicate abstraction is to identify the predicates that are nec-
essary for proving the given property. In [16], the predicate abstraction was applied
to C programs, the authors have defined an algorithm for inferring predicates based
on branch statements and using weakest precondition (WP).

In this present work we suppose that the abstraction is applied on transitions
instead of states like in [17].
Definition 3 A predicate transformer [18] is a total function between two predi-
cates on the state space of a statement. We distinguish two kinds of predicate trans-
formers: the weakest-precondition and the strongest-postcondition. Technically,
predicate transformer semantics perform a kind of symbolic execution of statements
into predicates: execution runs backward in the case of weakest-preconditions, or
runs forward in the case of strongest-post-conditions. We focus here only on the
weakest-precondition transformer.

Given S a statement, the weakest-precondition of S is a function mapping any
postcondition Q to a precondition. Actually, the result of this function, denoted
wp(S, Q), is the weakest precondition on the initial state ensuring that execution of
S terminates in a final state satisfying p. We show in Fig. 4 the definition of weakest-
precondition for some examples of sequential statements.

88 N. Harrath et al.

Fig. 4 Rules for weakest-precondition

5.2 Handling Programs Without Loops

We define each execution trace generated during symbolic execution as follows:
it starts from a state that represents a wait statement and then we consider all the
consecutive transitions that lead to the next wait statement in the control flow graph.
Otherwise, σ0 and σn represent wait states and all the intermediate states from σ1
to σn−1 represent the regular sequential constructs (including assignments, channel
statements, event statements, guarded statements).

〈stmt0,σ0∈
e1

in ,p1

−−−−→
e1

out , f 1
〈stmt1,σ1∈ . . .

en
in ,pn

−−−−→
en

out , f n
〈stmtn,σn∈

The goal of this analysis is to explain how to generate one-transition system from a set
of consecutive transitions (an execution trace). To do so, we define an abstraction rule
that starts from an initial subset of predicates and defines different transformations
applied to that subset. The purpose of this transformation is to build a candidate
predicate for each transition in the SystemC waiting-state automata.

Algorithm We consider P the set of predicates and F the set of functions. We use
the standard definitions for constructively computing weakest precondition (wp).
For all the pair of wait states (paths from a wait statement to the next wait statement
in the control flow graph (CFG)) we compute the weakest precondition between the
points, and add it to the SystemC waiting-state automaton if the weakest precondition
is satisfied.

But first, we define the function FE that describes the changes in the set of output
events when we merge consecutive transitions. FEout eliminates an output event eout

from the set of output events when it figures in the following input events in the
forward transitions, otherwise it adds eout to the set of output events.

FE (eout , Eout) =d f

{
Eout\{eout } i f eout ◦ Ein

Eout ≤ eout otherwise

We formally define the following abstraction rule that transforms a series of tran-
sitions in an execution trace into a one-transition trace with only one entry state and
one exit state:

A Framework for Verification of SystemC 89

〈stmt1,σ1∈
e∗

in ,p∗
−−−−→
e∗

out , f ∗ 〈stmtn,σn∈

〈stmt1,σ1∈
e1

in ,p1

−−−−→
e1

out , f 1
. . .

en
in ,pn

−−−−→
en

out , f n
〈stmtn,σn∈

(1)

where e∗
in = ⋃i=n

i=1 ei
in and e∗

out = ⋃
i FE (ei

out , Eout).
Now, we use predicate abstraction to infer the relation between the set of predicates

pi and the functions f i in order to define how we generate p∗ and f ∗: For each
predicate pi , we select the subset of functions Fi ∅ F that modifies pi in the
transitions that are triggered before pi. More precisely, any free variable of Fi is
incorporated as terms of the predicate pi , i.e., the predicate pi is modified by Fi

during the execution of the trace. The goal is then to compute for each pi the set
of weakest preconditions of the last function from the subset Fi with respect to pi.
Besides, we consider the same order of the functions f i as in the initial execution
trace, because in our study we will consider only the last function that modifies each
predicate since the intermediate transitions are simultaneous. This is why, we call
f i
F : the last function in Fi that modifies pi. We consider the following execution

trace where we consider only parameters predicate p and the effect function f :

p1

−→
f 1

p2

−→
f 2

p3

−→
f 3

. . .
pn−1

−−−→
f n−1

pn

−→
f n

For each predicate pi , each subset Fi of functions that modifies pi and each function
f i
F ◦ Fi that modifies the predicate pi the last, we define the new set of predicates

as follows:

p∗1 = p1

p∗2 = p2 ∼ WP(f 2
F , p2)

p∗3 = p3 ∼ WP(f 3
F , p3)

..

p∗n = pn ∼ WP(f n
F , pn)

WhereWP is the weakest precondition for the function f i
F that verifies the predicate

pi . The previous formulas are valid only with one condition: when the free variables
FV of the predicate pi (where pi is true in the present environment) are included in
the modified variables MV of f i

F (where f i
F represents the previous environment

in which the transition is taking place); i.e., FV(pi) ∅ MV(f i
F). We use the con-

junction ∼ to accumulate predicates and the order of predicates is preserved. We use
also the symbol ◦ to compose functions.
Then, we define the predicate p∗ for the equation 1 as follows:

p∗ =
⎨

i

p∗i

90 N. Harrath et al.

f ∗ is the composition of all the functions f i
F , i.e:

f ∗ = f 1
F ◦ .. ◦ f n

F︸ ︷︷ ︸
n times

.

We get as a result the configuration below which conforms to the SystemC waiting-
state automaton definition:

〈stmt0,σ0∈
e∗

in ,p∗
−−−−→
e∗

out , f ∗ 〈stmtn,σn∈

We do the same for all execution traces. The abstraction rule as defined in Eq. (1) is
only valid for program without loops.
Example Consider the following program with two variables x and y, this program
executes two tests on x and y and modifies both variables. We illustrate the previous
results on this example.

1 i f (x = 1){
2 x = x + 1;
3 y := y + 1;
4 } else {
5 i f (y > 0) {
6 y := y − 1;
7 }}

We have two execution traces in this example:

(x=1)−−−→ −−−−→
x=x+1

−−−−→
y=y+1

(x ∩=1)−−−→ (y>0)−−−→ −−−−→
y=y−1

For each trace, we determine the p∗ then the f ∗. But first, we fix the set of candidate
predicates and functions. For lines 1, 4 and 5, we associate respectively the set of
predicates p1, p4 and p5. For lines 2, 3 and 6, we associate respectively the set of
the following functions: f 2, f 3 and f 6. They are defined as follows:

{
p1 = (x = 1), p4 = (x ∩= 1) and p5 = (y > 0)

f 2 = (x = x + 1), f 3 = (y = y + 1) and f 6 = (y = y − 1)

Let us consider the set of pairs (f 2, p1) and (f 6, p5). we define now: p∗1 =
WP(f 2, p1) and p∗2 = WP(f 6, p5), the goal is to infer the new predicates from the
initial set of predicates and consider functions (actions) that modify each predicate.
This is the case of (p1, f 2) and (p5, f 6) since f 2 is the last and the only function
that modifies p1 and f 6 is the last and the only function that modifies p5. We get as
a result two predicates:

A Framework for Verification of SystemC 91

{
p∗1 = WP(x = x + 1, (x = 1)) = (x = 2)

p∗2 = WP(y = y − 1, (y > 0)) = (y ≥ 0).

Now we determine the function f ∗: let us consider first F = {x = x + 1, y =
y + 1, y = y − 1}, we consider the same order of the functions as in the execution
trace and as we previously explain. We extract from F the subsets of functions that
modify the same predicate from the initial set of predicates. Here, we have three
subsets: F1 = {x = x + 1}, F2 = {y = y + 1} and F3 = {y = y − 1}. From F1 we
extract the function f ∗1 = f 2 since we have just one element in this subset. From
F2 we extract the last and the only function that modifies the variable y, we get then
the following funtion: f ∗2 = f 3. As a result f ∗ = f ∗1 ◦ f ∗2 = f 2 ◦ f 3. Besides, we
consider for the second path the function f ∗∗ = f 6.

To conclude, the first trace is transformed into one transition trace of the form:

s0
p∗

−→
f ∗ s1, such that p∗ = (x = 1) and f ∗ = (x = x + 1) ◦ (y = y + 1).

The second trace is also transformed into the following transition: s∗
0

p∗∗
−→

f ∗∗ s∗
1 such

that p∗∗ = p∗2 ∼ p4 and f ∗∗ = (y = y − 1).
As a result, we obtain the following transitions:

s0
(x=1)−−−−−−−−−−−→

(x=x+1)◦(y=y+1)
s1

s∗
0

(x ∩=1)∼(y≥0)−−−−−−−−→
y=y−1

s∗
1

5.3 Handling Programs with Loops

As a simple example of SystemC threads including loops, we consider the following
program that computes the maximal element of a table of positive integers T. The
ultimate goal of this analysis is to prove that after executing this program, all elements
of the array are less than or equal to max.

1 max=0;
2 i=0;
3 while(i < T. length){
4 i f (T[i] > max) max= T[i] ;
5 i++;
6 }

Since loops constructs are of a notorious difficulty in the formal verification of
programs, we will focus here on loops and how to use predicate abstraction to auto-
matically infer invariants for loops. Several attempts have been made to automatically
infer invariants for loops using predicate abstraction, it was first introduced by [13]
and later used in [19]. Our method is based on predicate abstraction, a novel feature
of our approach is that it infers predicates by iteration and in a simple way. Thus, we

92 N. Harrath et al.

start first by symbolically executing the program in order to generate a set of can-
didate predicates (CP) from the set of the path conditions (PC) we generate during
symbolic execution.

The symbolic execution of the example is as follows (see Appendix A): at the
entry node, we assume nothing about the program state, so the path condition is set
to true. Then, the first assignment statement is executed {max:=0;}, we distinguish
between conditions and assignments: assignments are written between accolades.
max=0 always holds-this is the postcondition of true under the assignment statement.
Next is the loop entry, we distinguish between two cases: the loop is not entered if the
condition (i < T .length) is false or it is unfolded at least once if (i < T .length).
We generate two additional paths conditions: PC1 = i < T .length and PC2 =
i >= T .length. Once PC1 is verified, we enter the loop body and we execute the if
statement. The if statement is of the form if b then p else q, it results in two branches.
When the condition b is true we execute p else we execute q. Therefore, we have two
path conditions b = true, b = false, each PC represents a branch. Then, we resume the
execution of p and q and for each statement we present its symbolic execution. In our
example, we generate two PCs: PC3 = T [i] > max and PC4 = T [i] <= max .
Finally, we execute the assignment statement i:=i+1 that increments i by 1, this
statement has just one node and can be reached via several paths. Then, we execute
first the assignment statements inst.1 − 2 (line 1 and 2) of the program. The effect
of the two assignments manifests itself in the two additional assumptions max = 0
and i = 0. Now, the active statement of the program is the while loop.

If we consider the formula we build before entering the loop as an invariant for
the loop, we can then consider the formula ϕ0 (Appendix A) as a first candidate for
the loop invariant. Our technique is similar to the work of [20] where authors infer
invariants for loops in Java programs. Their method is based on a combination of
symbolic execution and computing fixed points via predicate abstraction. Next step
in our execution process is to enter the loop and to proceed to symbolic execution. We
execute inst.3 (line 3), here we have two cases: the loop is entered when the condition
i < T .length is true and the loop is not entered when the condition is not true. Thus,
we build two additional formulas: (max = 0) ∼ (i = 0) ∼ (i < T .length) and
(max = 0)∼(i = 0)∼(i ≥ T .length). Next step is to execute the if statement inst.4
(line 4), here we have two additional branches and so two additional formulas where
each formulas represent the abstract execution of each branch. The idea through
this technique is to accumulate the conditions during symbolic execution and each
time we enter the loop we add a new invariant. In the example above, we generate
a new invariant candidate when we enter a second time the loop: the invariant ϕ1
(Appendix A). Naturally, we consider the disjunction of ϕ0 and ϕ1 as our new
invariant candidate (ϕ0 ∨ ϕ1). We resume the symbolic execution of the program
since ϕ0 and ϕ0 ∨ ϕ1 are not equivalent, we may generate a new invariant ϕ2.
This technique using only symbolic execution may not terminate. Thus, we resort
to predicate abstraction. We can proceed again to symbolic execution to generate a
new formula ϕ2 for the loop, and then stop or go on accordingly. The problem with
this plan is that it may not terminate this is why we resort to predicate abstraction
to over-approximate the computing of the fixed point for the loop and generate a

A Framework for Verification of SystemC 93

set of candidate predicates that satisfies each formula generated during symbolic
execution and using the previous steps. We need first to fix a set of predicates so we
consider the following set of formulas {ϕ0,ϕ1}. Now, we generate a set of candidate
predicates C P that satisfies both ϕ0 and ϕ1. Each predicate p in C P must satisfy
(ϕ0 ∨ ϕ1) → p.

We consider the following set of predicates for this example:
CP =

{i = 0︸ ︷︷ ︸
p1

, 0 ⇔ i
︸ ︷︷ ︸

p2

, i ⇔ T .length
︸ ︷︷ ︸

p3

,∃ j (0 ⇔ j < i → T [j] ⇔ max)
︸ ︷︷ ︸

p4

}

Algorithm In general the candidate predicates CP might be chosen by following
heuristics, e.g. include all parts of the invariant candidate accumulated before the
first unfolding of the loop, the loop guard, the weakest precondition computation
and parts of the kth iteration of the loop.

For this example the set of all invariants must verify the formula below, this
formula is the conjunction of predicates p2, p3 and p4 in CP .

∃k,∃ j

{
0 ⇔ k < T .length, 0 ⇔ j < T .length

∃k.(k < j ∼ T [k] ⇔ T [j]) → max = T [j]

5.4 The Correctness of the WSA Model with Respect
to the Concrete Semantics

The SystemC WSA is an abstract representation of the concrete semantics of SystemC
programs. It transforms a set of consecutive states into only a pair of states under
certain conditions. This transformation is ensured through the definition of an abstract
function α that approximates the concrete semantics by keeping track of certain
predicates over the concrete state variables.

To prove that the abstract model is correct, we show that there exists an inverse
function (concretization function γ) that transforms the abstract semantics into the
concrete ones without loss of precision. α and γ are defined over the control flow
graph (CFG) and the WSA as follows:

CFG
α
�
γ

WSA

Definition For each pair of states s̃ ◦ W S A and s̃∗ ◦ W S A, there exists at least
a pair of states s ◦ C FG and s∗ ◦ C FG such that: γ(s̃) = s and γ(s̃∗) = s∗.
For each transition relation R in the WSA model, there exists at least one concrete

94 N. Harrath et al.

Fig. 5 Simple bus structure

trace T in the CFG such that: γ(R(s̃, s̃∗)) = T (s, s∗) including unfaisable traces, i.e.,
γ(W S A) = C FG ≤ {un f aisable traces}. Otherwise, γ(W S A) ∅ C FG, i.e., γ is
an increasing function over the abstract semantics defined using the WSA model.

Conclusion The SystemC WSA is faithful to the concrete semantics of the program, it
abstracts only faisable paths from the concrete semantics. We explain in the previous
paragraph that there exists an increasing concretization function that transforms the
WSA model into a new graph that contains all possible execution cases including
unfaisable paths.

5.5 Simple Bus Case Study

We illustrate our results with predicate abstraction presented in [6] on an example
more intricate: The simple bus case study. The Simple Bus is a well-known trans-
action level example, designed to perform also cycle-accurate simulation. It is made
of about 1200 lines of code that implement a high performance, abstract bus model.
The complete code is available at the SystemC web site [1].

Figure 5 shows the bus structure. It uses an overall form of synchronization, where
modules attached to the bus execute on the rising clock edge, and the bus itself exe-
cutes on a falling clock edge. Multiple masters can be connected to the bus. Each
master is identified by a unique priority, that is represented by an unsigned integer
number. The lower this priority number is, the more important the master is. Each
master communicates with the bus via an interface, which describes the communi-
cation between masters and the bus. Three modes are possible: (1) Blocking Mode
where data is moved through the bus in a burst mode. Hence, the transaction cannot
be interrupted by a request with a higher priority. (2) Non-Blocking Mode where the
master read or write a single data word. After the transaction is completed, the caller
must take care of checking the status of the last request, which can be issued and
placed on the queue (BUS, REQUEST), served but is not completed (BUS, WAIT),

A Framework for Verification of SystemC 95

completed without errors (BUS, OK), or finally did not complete due to an error
(BUS, ERROR). (3) Direct Mode, where the direct interface functions perform the
data transfer through the bus, but without using the bus protocol. They are usually
used to debug the state of the memory. The slave interface describes the communica-
tion between the bus and the slaves. Multiple slaves can be connected to the bus. Each
slave models some kind of memory that can be accessed through the slave interface.
Two modes are possible: (i) Direct interface where it can perform immediate read or
write of data without using the bus protocol. (i i) Indirect interface where the slave
can read or write a single data element. The functions return instantaneously and the
caller must check the status of the transfer.

The arbiter is responsible for choosing the appropriate master when there is more
than one master connected to the bus. The arbiter performs the selection according
to the following rules: (1) if the current request is a locked burst request, then it is
always selected, (2) if the last request had its lock flag set and is again requested,
then it is selected from the collection queue and returned, otherwise (3) the request
with the highest priority is selected from the collection queue and returned.

This structure includes several SystemC components and nicely makes use of the
principles of using SystemC at the transaction level. Besides some of the sample
properties, e.g. liveness and safety, cannot be verified using simulation. They require
the usage of formal techniques such as model checking (Sect. 6).

To illustrate our method for predicate inference, we take as an example the code
of the bus arbiter (Fig. 6). The arbiter that manage priorities between the masters
each time they want access to the bus. The code, as mentioned in Fig. 6, includes
three independent loops, our goal is to analyze each loop independently and generate
the set of abstract formulas for each loop. We define first the set of following tests
generated from the loops conditions:

• test1(req) : (req → status = SB_W AI T) ∼ (req → lock = SB_L OC K
_SET)

test1: verifies if the request is successful and that it
asks for a lock. It verifies as well, whether it was
in the WAIT state.

• test2(req) : (req → lock = SB_L OC K _G R AN T E D)

test2: verifies if the request for a lock is guaranteed.

Interpretation of the analysis From the previous analysis, we generate the abstract
formulas that describes the abstract behavior of the second loop in the arbiter example.
As we previously explained the second loop extract from the table of requests the first
request that verifies test2. Due to space limitations in this paper, we won’t present
the steps how to analyze the behavior of loops and how to use the passage to limit to
generalize the final result. As a result, we propose the following abstract formulas:

P2 : ∃ i,∃ j, 0 ⇔ i < requests.si ze() ∼ test2(requests[i]) ∼ 0

⇔ j ⇔ i ∼ ¬test2(requests[j])

96 N. Harrath et al.

Fig. 6 Simple bus arbiter code

We use the same analysis to extract the abstract formulas for the first loop and the
third one, we generate the formulas P1 and P3 defined as follows:

P1 : ∃ i,∃ j, 0 ⇔ i < requests.si ze() ∼ test1(requests[i]) ∼ 0

⇔ j ⇔ i ∼ ¬test1(requests[j])
P1 : ∃ i,∃ j, 0 ⇔ i < requests.si ze() ∼ test2(requests[i]) ∼ 0

⇔ j ⇔ i ∼ ¬test2(requests[j]).

P3 : ∃i,∃ j, 0 ⇔ i < requests.si ze() ∼ 0 ⇔ j < requests.si ze()∼
(i == j) ∨ requests[i] < requests[j] → priori t y ∼ requests[i] → lock ∩=
SB_L OC K _N O ∼ request[i] → lock = SB_L OC K _G R AN T E D.

A Framework for Verification of SystemC 97

The analysis of the Simple Bus code shows then that we browse at most three
times the list of queries in order to select what is the next request to be transmitted.
The previous result is represented using the three logical formulas P1, P2 and P3.
Each formula represents a loop in the arbiter code.

6 Applying Model Checking Techniques on SystemC

Model checking [21] is a technique to automatically verify finite state concurrent
systems. It consists in proving if an abstract finite model M defined in a certain logic
verifies a property p expressed in the same logic.

Model checking has been successfully adopted for both hardware and software
verification. Without loss of generality, the core techniques of model checking rely on
the analysis of reachability property of the set of states. Therefore, it is required that
the states and the corresponding transitions of the design under verification should
be clearly defined. For hardware, the states are the valuation of the flip-flops and
the transitions are the combination logic in the circuit; for software, they are the
valuations of variables and the statements in the program, respectively.

As shown in Fig. 7, we apply model checking on SystemC using the SystemC
waiting-state automata as follows: First, we need to translate the SystemC WSA
with timed language constructs into an intermediate model so that we can easily
apply model checking techniques. We can use either timed automata [22, 23], a
transition system annotated with a set of real-valued variables called clocks that
increase synchronously with time and associates guards and update operations with
every transition, or existing abstract models like Kripke structures. Then, we use
temporal logics to express the property we want to verify on the abstract model.

Many approaches apply model checking techniques to verify SystemC. These
approaches differ on the models they use to interpret the SystemC semantics. Never-
theless, they either fail to not handle all SystemC constructs like [24], or are bound
not to scale up specially when the system require non-deterministic behavior [25].

To deal with all these limitations, we propose an efficient model checking approach
based on the SystemC waiting-state automta because:

1. the state explosion problem is already reduced in the waiting-state automaton
model since we consider only specific states to extract the automata,

2. we don’t need to model separately the SystemC scheduler since it is already
included in our formal semantics for SystemC [6]. Thus, the scheduling of the
concurrent behavior of the system can not influence the execution paths of the
design and so the waiting-state automata,

3. the number of states in the waiting-state automata to explore is enormously
reduced,

4. our predefined semantics supports all SystemC constructs and communication
mechanisms (channels, signals, etc.),

98 N. Harrath et al.

Fig. 7 Applying MC to SystemC WSA

5. signals and variables with large domain, e.g. integers, are already taken into
account and present no problem in our modeling approach since they are
symbolically modeled,

6. to deal with unbounded loops that are not supported in some model checking
techniques like the approach of [26], we used predicate abstraction as shown in
Sect. 5.

Checked properties In the following, we enumerate the main properties to verify
on the SystemC waiting-state automata.

• Safety property: it concerns variables values which have to satisfy certain con-
straints. This is already reflected during the symbolic execution of SystemC
designs, since we use symbolic values of variables instead of real ones. But, we
need to prove the previous assumption using model checking.
We express this property as a set of assertions defined over the set of predicates
used in transitions. the failure of those assertions involves refinement of the initial
model. If we take the example in Sect. 5.3, we need to verify after symbolically
executing the code that all the element of the table are sorted.

• Transaction properties (TLM): check whether a request or a response is (in) valid
or whether a transaction is successful. If we take the case of the simple bus
(Sect. 5.5), we prove that each data written into the bus arrives to its destina-
tion without loss of information.

• System level properties: check on the order of occurrence of event notifications
and the order of transactions. This property concerns the order of notification of
input events in the abstraction rule (Sect. 5.2) and how to manage the set of requests
in the simple bus case study (Sect. 5.5).

We express the previous properties as follows:
Safety property:

A transition from a state σi to σi+1 is called safe when it has no assertion failure.
It is written sa f e(si , si+1). Thus, we need to verify that each execution trace defined
in Sect. 5.2 satisfy the property defined as follows:

allSa f e(σ0,σn) =
⎨

0⇔i⇔n

sa f e(σi ,σi+1)

A Framework for Verification of SystemC 99

The relation allSafe is used to express that all the consecutive states from σ0 to σn

are safe. Thus, we say that a state in the SystemC WSA is reachable iff all the
execution traces that lead to that state are safe. We prove this by induction over each
execution trace.
Transaction property:
We label each write transaction into the bus as M_WRITE_DATA and each read
transaction from the bus as S_READ_DATA. The checked property consists in ver-
ifying whether the number of data written into the bus is equal to the number of
requets read from the bus. We express it as follows:

assume number_of (M_W RI T E_D AT A) ⇔ number_of (S_RE AD_D AT A)

System-level property:
The first property verifies whether the abstraction rule respects the order of notifica-
tion of the input events. The second property verifies that each request in the table
of requests verifies at least one property in {P1, P2, P3}.
for each input event (Sect. 5.2) ein ◦ E ⇒ FE = true
for each request (Sect. 5.5) Rq ◦ requests[n] ⇒ P1 ∨ P2 ∨ P3 = true

7 Related Works

Over the last years, research activities were mainly focused on exploiting modeling
flexibility and exploring different levels of communication and behavior abstraction.
More recent work concentrates on formalization and verification. The aim of our work
is to propose an effective framework to model, verify and validate SystemC designs
using the SystemC waiting-state automata (WSA). Although, the WSA presents
many advantages like its refinability and modularity, there is a necessity to auto-
matically build the SystemC waiting-state automata from the control flow graph as
mentioned by [27]. In [6], we present a complete and detailed analysis of the compo-
sitional semantics of SystemC programs. This analysis is conform to the semantics of
both SystemC language and the SystemC WSA, we also introduce the use of abstrac-
tion techniques to build the WSA from SystemC programs. But, in this chapter we
first distinguish between WSA for threads and methods and we define algorithms
for each of them. Second, we illustrate the use of the abstract analysis on real exam-
ples of SystemC programs and finally, we apply the model checking to validate the
previous analysis.

Now, we briefly present the important works that study SystemC semantics: Große
and Drechsler in [2, 3], focused on the verification at the gate level. Their work
consists in verifying properties of synchronous sequential circuits using the LTL
(Linear Temporal Logic). The main drawback of this approach is that it was somehow
limited to the gate level and doesn’t support the transaction level. Mueller et al.
[9] translate SystemC program simulation using Abstract State Machines (ASMs).
The ASMs have been extensively used in the definition of different modeling and

100 N. Harrath et al.

hardware description languages, but it still be not efficient since it does not capture
the synchronization between processes at the waiting states. Later Gawanmeh et al.
[28], use also ASM to model SystemC designs.

Habibi et Tahar [29], translate the logic properties and the UML behavior of Sys-
temC codes into Abstract State Machines using the AsmL language (a specification
executable language developed by Microsoft). This model is then used to generate
Finite State Machines (FSMs), their study focus on solving the state exploration
problem using the grouping technique. Instead, our approach has the component
assembly nature, where predefined abstractions are done during composition. State
exploration is of a less difficulty in our model, at least at the symbolic level since we
are using traces abstraction to build the automata.

Kroening et al. [4], represent SystemC models using the Labeled Kripke Structures
(LKSs). In fact, the LKS model provides a syntactic way of partitioning a SystemC
model into a hardware and a software part. But states in their model include all
possible intermediate states within a process, not just those waiting-states as in our
model. They also make a classification of processes as runnable processes, waiting
processes, etc., which is basically the implementation idea of SystemC scheduler
and is avoided in our model.

Karlsson et al. [30], propose a formal representation of SystemC models at a high
level of abstraction using Petri-nets. Although this approach is efficient to represent
SystemC designs in a formal model but it still be inadequate for complex systems
where interactions are intricate. Another disadvantage of this approach is that it
does not support verification of properties like concurrency and interactions between
processes at the delta-cycle level.

Moy et al. [31], use the Lussy tool to extract information about the system archi-
tecture and behavior in the transaction level. They also use abstraction on their
design to build an intermediate model, that they call HPIOM (Heterogeneous Parallel
Input/Output Machines). Their global approach consists in extracting an automaton
for each process and an automaton for each TLM SystemC component. They also
use abstraction techniques to avoid state explosion on HPIOM automata.

For model checking, several works have recently emerged. We mention for exam-
ple work of [32, 33] and [34]. In [32], authors translate a SystemC design into Petri
nets and then apply CTL model checking. However, the resulting Petri nets become
very large even for small SystemC descriptions which is avoided in our model.

Work of [33] translates a SystemC TLM design into Promela. The Promela model
is then checked by the model checker SPIN. The translation is entirely manual and
properties related to events and transactions are not considered. Finally, author in
[34] maps SystemC designs into UPPAAL timed automata. But we can do more in
term of expressiveness of the properties.

A Framework for Verification of SystemC 101

8 Conclusion and Prospects

Verification of reactive systems, critical systems or embedded systems is a very
important issue today. In this chapter, we have presented a new semi-automatic
approach for verifying SystemC designs based on the SystemC waiting-state automata
model (WSA). We show how to generate the automaton for each component where
we distinguish between threads and methods and we define the algorithm for each
automaton. Then, we explore predicate abstraction techniques to build automatically
the SystemC WSA. Thus, we distinguish between two cases for program analysis,
first we consider programs without loops where we define our abstract formulas using
the computation of weakest precondition to merge transitions and second we take a
special case of programs with loops for which we define how to symbolically infer
invariants using symbolic execution.

Future work include case studies of large examples besides the long-term compila-
tion work and using further abstract techniques for programs analysis. Furthermore,
we intend to make the process of building waiting-state automata fully automatic.
Another line of future work, which is more speculative, concerns different techniques
for validation, one could investigate the use of a specific model checker to prove the
correctness of the previous results in properties defined for model checking purposes.

Appendix A: A Symbolic execution for the example program

• inst. 1 − 2
(max = 0) ∼ (i = 0)
︸ ︷︷ ︸

ϕ0

→

while(i < T.length){
if(T[i] > max) max= T[i];
i++;
}

• inst.3

(max = 0) ∼ (i = 0) ∼ (i < T .length) →

if(T[i] > max) max= T[i];
i++;
while(i < T.length){
if(T[i] > max) max= T[i];
i++;
}

102 N. Harrath et al.

∼(max = 0) ∼ (i = 0) ∼ (i ≥ T .length) →

exit

• inst.4
(max ∗ = 0) ∼ (i = 0) ∼ (i < T .length) ∼ (T [i] > max ∗) ∼ (max = T [i]) →

i++;
while(i < T.length){
if(T[i] > max) max= T[i];
i++;
}

∼(max = 0) ∼ (i = 0) ∼ (i < T .length) ∼ (T [i] ⇔ max) →
i++;
while(i < T.length){
if(T[i] > max) max= T[i];
i++;
}

∼(max = 0) ∼ (i = 0) ∼ (i ≥ T .length) →

exit

∧⇒

(max ∗ = 0) ∼ (i = 0) ∼ (i < T .length)∼
(T [i] > max ∗) ∼ (max = T [i])
⎧

(max = 0) ∼ (i = 0) ∼ (i < T .length)∼
(T [i] ⇔ max)

→

i++;
while(i < T.length){
if(T[i] > max) max= T[i];
i++;
}

• inst.5

(max ∗ = 0) ∼ (i ∗ = 0) ∼ (i ∗ < T .length) ∼ (T [i ∗] > max ∗) ∼ (max = T [i ∗])
⎧
(max = 0) ∼ (i ∗ = 0) ∼ (i ∗ < T .length) ∼ (T [i ∗] ⇔ max) ∼ (i = i ∗ + 1)

︸ ︷︷ ︸
ϕ1

→

while(i < T.length){
if(T[i] > max) max= T[i];
i++;
}

A Framework for Verification of SystemC 103

• ϕ0 ∨ ϕ1 →
while(i < T.length){
if(T[i] > max) max= T[i];
i++;
}

• 0 ⇔ i ∼ i ⇔ T .length ∼ ∃ j.(0 ⇔ j < i → T [j] ⇔ max) →
while(i < T.length){
if(T[i] > max) max= T[i];
i++;
}

• 0 ⇔ i ∼ ∃ j.(0 ⇔ j < i → T [j] ⇔ max) ∼ i ≥ T .length →
{}

References

1. Main page of the SystemC Initiative. http://www.systemc.org
2. Drechsler, R., Große, D.: Reachability analysis for formal verification of SystemC. In: Euromi-

cro Symposium on Digital Systems Design, pp. 337–340 (2002)
3. Drechsler, R., Große, D.: Formal verification of LTL formulas for SystemC designs. In: IEEE

International Symposium on Circuits and Systems, vol. 25, pp. 45–248 (2003)
4. Kroening, D., Sharygina, N.: Formal verification of SystemC by automatic hardware/software

partitioning. In: the Third ACM and IEEE International Conference on Formal Methods and
Models for Co-Design, pp. 101–110 (2005)

5. Shyamasundar, R.K., Doucet, F., Gupta, R., Kruger, I.H.: Compositional Reactive Semantics
of SystemC and Verification in RuleBase. In: Proceedings of the GM R&D Workshop, pp.
227–243. Bangalore, India (2007)

6. Harrath, N., Monsuez, B.: Compositional Reactive Semantics of System-Level Designs Written
in SystemC and Formal Verification with Predicate Abstraction. accepted in the International
Journal of Critical Computer-Based Systems (IJCCBS) (2013)

7. Plotkin, G.D.: A structural approach to operational semantics. Logic Algebraic Program.
60–61, pp. 17–139 (2004)

8. Havelund, K., Pressburger, T.: Model checking Java programs using Java pathfinder. Int. J.
Softw. Tools Technol. Transfer (STTT) 2(4), 366–381 (2000)

9. Mueller, W., Ruf, J., Rosenstiel, W.: SystemC Methodologies and Applications. Kluwer Aca-
demic Publishers, Boston (2003)

10. Zhang, Y., Védrine, F., Monsuez, B.: SystemC waiting-state automata. In: On First International
Workshop on Verification and Evaluation of Computer and Communication Systems, pp. 5–6.
eWiC, BCS (2007)

11. Harrath, N., Monsuez, B.: Timed SystemC waiting-state automata. In: On Third International
Workshop on Verification and Evaluation of Computer and Communication Systems. eWiC,
BCS (2009)

12. King, J.C.: Symbolic execution and program testing. Commun. ACM (Assoc. Comput. Mach.)
19(7), 385–394 (1976)

13. Flanagan, C., Qadeer, S.: Predicate abstraction for software verification. In: Proceedings of
the 29th Annual ACM Symposium on Principles and Programming Languages (POPL), pp.
191–202 (2002)

http://www.systemc.org

104 N. Harrath et al.

14. Bubel, R., Hähnle, R., Weiße, B.: Abstract interpretation of symbolic execution with explit
state updates. In: On the International Symposia on Formal Methods for Components and
Objects, pp. 247–277 (2008)

15. Clarke, E., Grumberg, O., Talupur, M., Wang, D.: High level verification of control intensive
systems using predicate abstraction. In: Proceedings of First ACM and IEEE International
Conference on Formal Methods and Models for Co-Design, IEEE Computer, Society, 25 Sept
(2004)

16. Chaki, S., Clarke, E., Große, A., Strichman, O.: Abstraction with Minimum Predicates.
Springer, Berlin/Heidelberg (2003)

17. Podelski, A., Rybalchenko, A.: Transition predicate abstraction and fair termination. In: Sym-
posium on Principles of Programming Languages (POPL) (2005)

18. Dijkstra, E.W.: A Discipline of Programming. Prentice Hall PTR, Upper Saddle River (1997)
19. Leino, K.R.M., Logozzo, F.: Loop invariants on demand. In: Yi, K. (ed.) Proceedings, 3rd Asian

Symposium on Programming languages and Systems (APLAS). 3780 of LNCS, pp. 119–134
(2002)

20. Schmitt, P.H., Weiß, B.: Inferring invariants by symbolic execution. In: Proceedings of the 4th
International Verification, Workshop (VERIFY’07), pp. 195–210 (2007)

21. Clarke, E., Grumberg, I., Peled, D.: Model Checking. The MIT Press, Cambridge (1999)
22. ALUR, R., DILL, D.: Automata for modeling real-time systems. In: Proceedings of 17th

International Colloquium on Automata, Languages and Programming (ICALP’90). Lecture
Notes in Computer Science, vol. 443, pp. 322–335. Springer, Berlin (1990)

23. ALUR, R., DILL, D.: A theory of timed automata. Theoret. Comput. Sci. 126(2), 183–235
(1994)

24. Große, D., Dreschsler, R.: CheckSyC: An efficient property checker for RTL SystemC designs.
In: IEEE International Symposium on Circuits and Systems, pp. 4167–4170 (2005)

25. Moy, M., Maraninchi, F., Maillet-Contoz, L.: LusSy: A Toolbox for the analysis of systems-
on-a-chip at the transactional level. In: IEEE ACSD, pp. 26–35 (2005)

26. Drechsler, R., Große, D.: CheckSyC: An Efficient Property Checker for RTL SystemC Designs.
In: Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS), vol.
4, pp. 4167–4170 (2005)

27. Herber, P.: A Framework for Automated HW/SW Co-Verification of SystemC Designs using
Timed Automata. Berlin, 145 (2010)

28. Gawanmeh, A., Habibi, A., Tahar, S.: An executable operational semantics for SystemC using
abstract state machines. Technical Report, Concordia University, Department of Electrical and
Computer Engineering, pp. 24 (2004)

29. Habibi, A., Moinudeen, H., Tahar, S.: Generating finite state machines from systemc. In: Gielen,
G.G.E. (ed.) DATE Designers’ Forum. European Design and Automation Association, Leuven,
Belgium, pp. 6–81 (2006)

30. Karlsson, D., Eles, P., Peng, Z.: Formal verification of SystemC designs using a petri-net based
representation. In: Proceeding on the Conference on Design, Automation and Test in Europe,
pp. 1228–1233 (2005)

31. Maillet-Contoz, L., Moy, M., Maraninchi, F.: Lussy: a toolbox for the analysis of systems on-a-
chip at the transactional level. In: Proceedings of Fifth International Conference on Application
of Concurrency to System Design, pp. 26–35 (2005)

32. Karlsson, D., Eles, P., Peng, Z.: Formal verification of SystemC designs using a petrinet based
representation. In: Proceedings of Design, Automation and Test in Europe, pp. 1228–1233
(2006)

33. Traulsen, C, Cornet, J., Moy, M., Maraninchi, F.: A SystemC/TLM semantics in promela and
its possible applications. In: SPIN, pp. 204–222 (2007)

34. Herber, P., Fellmuth, J., Glesner, S.: Model checking SystemC designs using timed automata.
In: IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System,
Synthesis, pp. 131–136 (2008)

Formal MDE-Based Tool Development

Robson Silva, Alexandre Mota and Rodrigo Rizzi Starr

Abstract Model-driven engineering (MDE) focuses on creating and exploiting
(specific) domain models. It is common to use domain-specific languages (DSL) to
describe the concrete elements of such models. MDE tools can easily build DSLs,
although it is not clear how to capture dynamic semantics as well as formally verify
properties. Formal methods are a well-known solution for providing correct soft-
ware, but human-machine interaction is usually not addressed. Several industries,
particularly the safety-critical industries, use mathematical representations to deal
with their problem domains. Such DSLs are difficult to capture, using just MDE
tools for instance, because they have specific semantics to provide the desired (core)
expected behavior. Thus, we propose a rigorous methodology to create GUI (Graph-
ical User Interface) based DSLs formal tools. We aim at providing a productive and
trustworthy development methodology to safety critical industries.

Keywords MDE · Formal Methods · DSLs · GUI-based formal tools

1 Introduction

Model Driven Engineering (MDE) is a software development methodology whose
goal is on creating and exploiting domain models. In MDE, metamodeling is essential
because it provides an abstract notation suitable to describe problem domains in terms
of Domain Specific Languages (DSLs).

R. Silva (B) · A. Mota (B)

Informatics Center—Federal University of Pernambuco, Recife, PE, Brazil
e-mail: robson.rss@gmail.com

A. Mota
e-mail: acm@cin.ufpe.br

R. R. Starr
Embraer S.A., São José dos Campos, SP, Brazil
e-mail: rodrigo.starr@embraer.com.br

T. Bouabana-Tebibel and S. H. Rubin (eds.), Integration of Reusable Systems, 105
Advances in Intelligent Systems and Computing 263, DOI: 10.1007/978-3-319-04717-1_5,
© Springer International Publishing Switzerland 2014

106 R. Silva et al.

DSLs [17] are languages designed to fill the lack of expressivity of general purpose
languages, in their application domain, focusing on the key concepts and features of
that domain.

There are several ways of creating DSLs based on metamodels. The Eclipse
Modeling Framework (EMF) is the most well-known solution [24]. Within EMF, the
definition of a DSL syntax is usually given using meta-languages such as ECore [24]
(used to specify metamodels) and OCL (Object Constraint Language) to handle static
semantics [20]; OCL can also describe basic dynamic behavior of a language through
pre/post-conditions on operations [7]. But OCL is not used to prove properties about
the DSL; only runtime checking (Testing).

Metamodeling frameworks still do not have a standard way to provide static and/or
dynamic semantics in a rigorous way. Furthermore, it is rarely used to formally verify,
by means of an automatic inference engine and theorem prover, certain properties
about the DSL being specified. So, instead of using only metamodeling frameworks
to define DSLs we need to rely on the support of formal methods.

Formal methods are mathematically based languages, tools and techniques used
to specify, develop and verify systems. Nowadays, we have several of them, where
from JML [1], Perfect Developer [3] (PD for short) and SCADE [4] we can even
synthesize code automatically. But formal methods usually do not address graphical
user interfaces (GUIs).

This work proposes a rigorous methodology to create a GUI-based DSL formal
tool from a formal specification of a DSL (L) capturing the: syntax and static seman-
tics of L (SSL), as well as its dynamic semantics (DSL). From L we can check
desirable properties, adjust if necessary, and translate part of it (SSL) in terms of
modeling artifacts. Particularly, from SSL we show how a metamodel M M and a set
of constraints SCM M over M M can be extracted automatically by using systematic
translation rules that we have developed.

From M M and SCM M we generate a user-friendly constraint preserving front-
end (interface between the user and back-end) for the DSL. Additionally, from the
formal specification L we create an executable back-end (which concentrates on
business-like functionalities) using a code synthesizer. Finally, we systematically link
the front and back-ends. We investigate the soundness of our translations indirectly
by exercising invariants and operation contracts through the constraint-preserving
generated GUI.

To illustrate the methodology, we create a Fault Tree (FT) Analysis tool [22].
We specify an FT using the Perfect language [3] (PL for short) and prove some
properties using the PD Tool [3]. We extract a metamodel and constraints from this
specification using a tool we have created, called PL2EMF [22].

We aim at providing a productive and trustworthy development methodology to
safety critical industries. Although we base our work on a formal specification, that
the MDE community can consider too difficult and of great effort to work in practice,
we argue that for the problem domain of critical systems, where there are several
mature Mathematical models available, such a formal specification would be simply
such Mathematical models rewritten in terms of a formal language with tool support.

Formal MDE-Based Tool Development 107

Fig. 1 EMF models relationships

This work is organized as follows. Section 2 gives an overview of the underlying
concepts used in our proposed methodology, which is presented in Sect. 3. Sections
4 and 5 detail the steps of our methodology. Section 6 shows our case study. Section
7 presents related works and Sect. 8 our conclusions and future work.

2 Background

Model Driven Engineering. MDE is a software development philosophy in which
models, constructed using concepts related to the domain in question, play a key role
in the software development process. The idea is on building high-level technology-
independent models focused exclusively on the problem domain. These models
can be transformed into code for various platforms and technologies. Unlike other
approaches, with mechanisms for automatic transformations, MDE becomes very
productive. One can even reuse the knowledge about the domain besides the reuse
of software components.

Eclipse Modeling. The Eclipse Modeling Project follows the MDE approach. It
is structured into projects that provide several capabilities, such as: abstract and
concrete syntax development, model-to-model and model-to-text transformations.

The EMF framework includes a metamodel (EMF’s Ecore metamodel) for
describing the structure of EMF models that is the basis for constructing user-level
models. Figure 1 shows how these concepts are related. The Graphical Modeling
Framework (GMF) [8] is an MDE framework that provides the graphical concrete
syntax for a DSL and maps it to its abstract syntax (metamodel). GMF is widely used
to develop graphical Eclipse-based editors for EMF-based DSL languages.

Figure 2 gives the basic usage flow for developing a graphical editor using GMF.
The starting point is the definition of an Ecore metamodel. From this metamodel,
GMF provides wizards to create additional models related to the graphical concrete
syntax. The graphical model specifies the shapes of the aimed editor. The tooling
model states the available tools. The mapping model binds the information from the

108 R. Silva et al.

Fig. 2 Overview of GMF development flow

domain model, graphical model and tooling model. The generator model is used as
input for the GUI code generator.

For several technical reasons, implementing a graphical editor with GMF is a hard-
working and error prone task even for experienced users. Thus we use EuGENia [13]
that assumes some high-level annotations in the Ecore metamodel [13]. From this
annotated metamodel, EuGENia automatically produces the required GMF interme-
diate models (see dotted lines in Fig. 2) to generate a fully-functional GUI editor.

Spoofax Language Workbench. Spoofax is a language workbench for developing
textual DSLs with full-featured Eclipse editor plugins [23]. It integrates language
processing techniques for parser generation, meta-programming, and IDE develop-
ment in a single environment [10].

With Spoofax, a DSL grammar can be written, in a declarative and modular way,
using the SDF. Using this single formalism the complete syntax (lexical and context-
free) of a language can be defined and integrated [9].

Based on a grammar expressed in SDF grammar, the Spoofax language workbench
automatically provides basic editor facilities such as syntax highlighting and code
folding, which can be customized using high-level descriptor languages. Using its
parser generator tool, a parser can be created from this grammar. This generated
parser can be used in an interactive environment, supporting error recovery in case
of incorrect syntax or incomplete programs [10].

We express the semantic definitions, using Stratego language, by means of rewrite
rules that provide an integrated solution for analysis, program transformation, code
generation rules and more sophisticated editor services such as error marking, refer-
ence resolving, and content completion [10].

Defining transformations rules by using the Stratego Language, the Spoofax
Workbench provides the automatic generation of a functional program transforma-
tion infrastructure that is able to perform the transformations we defined.

All of these generated services and infrastructure are integrated with Eclipse. This
allows the application to be delivered as a stand-alone plugin.

Constraints. We use the Epsilon platform to handle instances of the metamodel. We
indeed use its validation language (EVL) [12].

Formal MDE-Based Tool Development 109

The Epsilon Object Language (EOL) [14] is the core of the platform. Its model
navigation and modification facilities are based on OCL. As we use EVL, EOL is
used as well. EVL has been designed atop the Epsilon platform, and therefore instead
of pure OCL, it uses the OCL-based EOL as a query and navigation language [12].

EVL enhances OCL by modeling behavioral aspects as well, bringing several
improvements such as: support for detailed user feedback, for warnings/critiques,
for dependent constraints, and for semi-automatically repairing inconsistent model
elements and so on [12]. On the other hand, it lacks static and/or dynamic formal
semantics and the capability to verify formally, by means of (automatic) theorem
prover, DSL properties. So, instead of using only EVL/EOL we rely on formal
specification language.

The Perfect Developer Tool. (PD for short) is part of the Escher Verification Studio
[3]. PD provides a theorem prover to reason about the requirements, contracts and
code. It is also able to synthesize code.

A specification in PL has a set of related classes, each one with their variables,
invariants, schemas, functions, pre and post-conditions, constructors, (loop) invari-
ants, variants, properties, axioms, assertions, and so on. Schemas are operations that
change the state and functions are side-effect free operations. Schema names are
prefixed with the symbol ‘!’ to denote that they change the system state. A class
definition in PL is divided into sections (abstract, internal, confined and interface),
each one with its specific elements.

Variables declared in the abstract section represent the abstract data model of
the class (its abstract state-space). Inside this section we can have, for example,
invariants that define what must be true regardless of the current model state. We
can have several levels of data refinements of the abstract class data model. The
internal section (not shown here), is used to declare the data refined. For each level
of refinement, it is required to define a retrieve relation between the previous level
and the current level of refinement. The confined (not shown here) and interface
sections are used to declare the public interface of a class. The main difference
between the elements declared in these sections is that the elements of confined are
only accessible by derived classes and the elements of interface are also visible by
non-derived classes [3].

To illustrate some PL elements we show part of the specification of the Fault Tree
(FT for short) formalism (Fig. 3). Basically, an FT [19] is a kind of combinatorial
model commonly used to find how an undesired event of interest (called the top event)
might be caused by some combination of other undesired events (failures). The most
common elements of an FT are: AND- and OR-Gates, Basic Events. Further details
are presented in, see Sect. 6.

We start by defining the class FTEdge, left-hand side of Fig. 3, we have one
attribute with type from Comp and other with type from Gate. This means these
variables can be assigned to any descendants of Comp and Gate, respectively. The
same is valid for nodes:set of from Comp, in the FT class. This says that nodes
can contain an arbitrary number of elements (descendants of) Comp. In Fig. 3 (FT
class), we can see the schema addFTNode. It changes the state of the system by

110 R. Silva et al.

Fig. 3 FTEdge and a fragment of the main class, FT, of the formal specification

adding a new node n, passed as parameter, if it was not already in the set of nodes
(˜checkFTNode(n)). Additionally, if node n is the top event (n.idc = “TOP_EVENT”),
it must be a gate (n within from Gate) and there must not be another event labeled
as top event (function existsTOPEventId, without parameters). If this precondition
holds, the postcondition of this operation states that the attribute nodes! (after the
operation) is equal to itself before the operation, nodes, appended with the new
node n.

Invariants must always hold. Any instance of the FT model must satisfy the fol-
lowing (the list is not exhaustive):

inv1 There is a unique top event:
#(those n::nodes :- n.idc = “TOP_EVENT”) <= 1

inv2 Source and target of an edge must be different:
(̃exists e::edges :- e.src.idc = e.tgt.idc)

inv3 The id’s are unique:
forall n1::nodes :- (̃exists n2::nodes.remove(n1) :- n1.idc = n2.idc)

inv4 One source component must have only one target:
forall f::edges :- (̃exists e::edges.remove(f) :- f.src.idc = e.src.idc)

3 Proposed Methodology

Figure 4 shows the general idea of the methodology. In Step A we create a DSL formal
specification (L) composed of a syntax and static semantics (SSL), and dynamic
semantics (DSL) parts. Therefore, L is a formal specification of a DSL. This allows
us to formally check desired properties.

Formal MDE-Based Tool Development 111

Fig. 4 Methodology high-level view

When the DSL semantics, in particular, is too abstract, one can refine it into more
concrete descriptions (by refinement). The refinement is considered optional, inside
the Step A, because: (i) the chosen formalism may not be able to support it; (ii)
depending on the nature of the specification being designed, refinement may not be
necessary.

The syntax and static semantics (SSL) parts of L are used to create a corresponding
metamodel M M and a set of constraints SCM M over M M (Step B). See Sect. 4 for
details. With M M and SCM M we create the constraint preserving GUI (Step D).
From the complete DSL formal specification, we propose using a verifiable formal
code generator to create a back-end for this DSL (Step C). Finally, we integrate front
and back-end (Step E). Before applying the previous steps, we need to choose the
right techniques and tools to provide the appropriate technological support. Such
choices must follow the requirements:

Req–1: The formalism chosen must have tool support able to prove properties and
synthesize code (back-end) from a formal specification. Optionally, it can support
refinement.
Req–2: Automatically extract a metamodel and a set of constraints over this meta-
model from a formal specification.
Req–3: The target metamodel notation should be supported by modeling tools able
to generate graphical editors (front-end) that manipulate instances of this metamodel.
Req–4: The constraint language should be able to specify and evaluate constraints
on models of the chosen metamodel notation.
Req–5: The link between back-end and front-end should be designed in a way that
it is transparent for the user of the final application.

�
In this chapter, we show one of many possible technological instantiations:

Req–1: it suffices to use the Perfect Language and the PD Tool [3];
Req–2: we developed an extractor as an Eclipse Plugin Tool, called PL2EMF, using
the Spoofax Language Workbench [23], more details in Sect. 4;
Req–3: we use the EMFatic language, supported by EMF and GMF;
Req–4: we use the EVL language;

112 R. Silva et al.

Fig. 5 Detailed metamodel extraction

Req–5: as we chose to use Eclipse Modeling, we establish the link between back
and front-end by creating an integration plugin, presented in Sect. 5.

4 Metamodel Extractor

In this section, we show how we designed our metamodel and constraints extraction
strategy and implemented this in a tool called PL2EMF.

4.1 Overview

We implemented a Metamodel Extractor named PL2EMF to obtain a metamodel,
expressed in EMFatic, and constraints, in EVL, from a formal specification written
in the Perfect Language. The extraction is performed by a set of translation rules
(Sect. 4.3) based on a subset of the PL grammar (Sect. 4.2). These are the main
artifacts used to generate our tool by means of the Spoofax Language Workbench.

There are several other Language Workbench, such as XText [5], JetBrains MPS
[26]. However, we chose to use Spoofax due to its support for the Stratego Lan-
guage (a language for program transformations). It is very productive to implement
translation rules and for manipulating Abstract Syntax Trees. Figure 5 shows, more
detailed, how this translation strategy works. Classes in PL become classes of the
metamodel and their variables, in the abstract section, become class features. The
set of class invariants are translated to a set of constraints. The remaining parts of
the Perfect specification are ignored.

Formal MDE-Based Tool Development 113

Fig. 6 PL grammar expressed in SDF: main module

4.2 Syntax

In Fig. 6 we show the PL context-free grammar, written in the SDF language, tailored
to metamodeling needs. Additionally, we define the PL lexical syntax (not shown)
also using SDF. For the complete grammar, please see [3].

In line 01, of Fig. 6, we can see the name (PerfLang) of our main module. A
module can import other modules. We import the Common module (line 02).

A module can contain a number of sections. The exports section in line 03, is
used to define the syntactic aspects (visible to other modules that import it). In this
case, we have: start symbols (line 04) and context-free syntax (line 06).

Like in a traditional BNF, here syntax is defined by means of productions.
We have a lexical syntax section (to declare tokens. We omit this) and a
context-free syntax section (for operators, statements and so on). In module
PerfLang (Fig. 6) we declare the context-free syntax (starting in line 06).

Productions in SDF, differently from a BNF, have the form a1...an → a0, where
a1...an are n strings. When these strings match with an input text, they trigger the

114 R. Silva et al.

production rule and create the symbol a0. That is, productions take a list of symbols
and produce another symbol. The terminology of terminal and non-terminal is not
very suitable for SDF, since only single characters are terminals and almost everything
else is a non-terminal. For this reason, every element of a production is called a
symbol [21].

SDF includes a declarative disambiguation construct to uniquely identify a sym-
bol in the abstract syntax: the cons(n) annotation, where n uniquely identifies
a symbol [11]. It also provides several regular expression operators to simplify
common patterns that appear in defining productions in order to reduce the effort
and enhance expressivity in defining grammars. In line 07 of Fig. 6 the declara-
tion ClDeclaration* means zero or more symbols ClDeclaration. That
is, it is allowed to declare zero or more PL classes in one file. The declaration
{Predicate","}+, line 26, means one or more symbols Predicate separated
by "," are allowed.

4.3 Translation Rules

This section presents how our translation rules are written in Stratego transformation
language. The translation rules take a PL specification (according to our grammar)
and produce a corresponding metamodel and constraints as output.

Basic transformations are defined using conditional term rewrite rules that are
combined with strategies to control the application of rules. With Stratego, basic
rules can be defined separately from the strategy that applies them. This allows a
modular understanding [25]. The rules defined using Stratego act over the abstract
syntax tree of a PL specification.

The abstract syntax tree is expressed in terms of an Annotated Term Format
(ATerms, for short). An ATerm is a structured representation generated after a parser
reads the input text (a PL specification). Given the grammar using SDF, this parser
is generated automatically by the Spoofax Workbench.

A basic unconditional rewrite rule, using Stratego language, has the following
form: r: t1 -> t2, where r is the rule name, t1 is the left-hand side and t2
the right-hand side term pattern. The rule r applies to a term t when the pattern
t1 matches t, resulting in the instantiation of t2. Conditional basic rules have the
form: r: t1 -> t2 where s (s is a condition). We also use rules of the form:

r:
t1 -> t2
with
x := y;
...

Using the with clause, instead of where, we can set values of new local variables
as well as call other rules.

Our rules produce its output by string interpolation, using the $[...] brack-
ets. This constructs the metamodel as text fragments. Variables can be inserted using

Formal MDE-Based Tool Development 115

brackets without a dollar: [...]. String interpolation allows the combination of
text with variables. Any indentation used is preserved in the end result, except the
indentation leading up to the quotation.

The rules are divided in four groups: Class declaration, Abstract Declarations,
Corresponding Types (not shown) and Invariants. For conciseness, we show only
one (or two) rule(s) of each group. See [22] for all the rules.

Class Declaration. Rule 1 (line 01) starts the translation and it triggers all the other
rules. It represents a complete class declaration, whose main elements are its modifier
(modif), its name (name), and its body (body).

Rule 1 triggers other three rules, where the rule associated to modif is not pre-
sented here. Rule 3 (line 08) deals with name producing class class_id as
output. Rules 4 (line 10) and 5 (line 13) deals with body.

Rule 4 deals with a non-inherited (not shown) and Rule 5 with an inherited class
producing the text fragment “extends ID {”as output. Both rules delegate the
processing of the abstract declarations (abstract variables and invariants) to Rule 6
(line 16).

01: to-emfatic:
02: ClassDecl(modif,name,body) -> $[[modif’] [name’] [body’] }]
03: with
04: body’ := <to-emfatic> body;
05: name’ := <to-emfatic> name;
06: modif’ := <to-emfatic> modif
07:
08: to-emfatic: ClDeclName(x) -> $[class [x]]
09:
10: to-emfatic: ClBodyA(decls) -> $[{ [decls’]]
11: with decls’ := <to-emfatic> decls
12:
13: to-emfatic: ClBodyB(c, decls) -> $[extends [c] { [decls’]]
14: with decls’ := <to-emfatic> decls
15:

Abstract declarations. Rule 6 (line 16) iterates over the abstract declarations of PL
code, delegating to other rules (e.g. Rule 9) the remainder translation.

Rule 9 (line 19) maps a variable declaration in PL to a class feature in EMFatic
that follows the pattern: modifiers featureKind emfType id. For us, we can ignore
modifiers. The featureKind is the kind of the class feature, that can be attr (an
EAttribute), val (an EReference with containment = true) and ref (an EReference,
containment = false). The emfType is the type of the feature and id is the identifier.

Rule 14 (line 42) is responsible to start the generation of the EVL code. It defines
the constraints over instances of the resulting metamodel. The class_id is the
name of the class (in PL) taken as source of the translation rules.

16: to-emfatic: AbsMbrsDecls(d*) -> $[[d’*]]
17: with d’* := <to-emfatic> d*
18:
19: to-emfatic: AbsVarDecl(x, t) ->
20: $[
21: [f] [t’] [x];
22:]
23: with
24: f := <feature-kind> t;t’ := <to-type> t
25:

116 R. Silva et al.

26: feature-kind: f -> x
27: where
28: switch !f
29: case !f => PredefType(t) : x := "attr"
30: ...
31: end
32:
33: to-type: PredefType(t) -> x
34: where
35: switch !t
36: case "bool" : x := "boolean"
37: ...
38: end
39:
40: to-type: ClAsType(t) -> t
41:

Invariants. Rule 14 generates the EVL code that defines the context in which the list
of invariants LstPredicates(p*) applies to.

For each invariant inv, Rule 15 (line 48) generates a constraint section named
CONSTRAINT_NAME to encapsulate inv and trigger Rules 16.x to translate inv
in terms of EVL.

Rule 16.1 (line 57) handles universal quantified invariant over a collection of
items (in PL). In this rule, x is an item of the collection coll, expr is an boolean
Expression involving x.

42: to-evl: ClInv(LstPredicates(p*)) ->
43: $[context class_id {
44: [p’*]
45: }]
46: with p’* := <to-evl> p*
47:
48: to-evl: Predicate(Expression(inv)) ->
49: $[
50: constraint CONSTRAINT_NAME {
51: check: [inv’]
52: message: "Put an error message here."
53: }
54:]
55: with inv’ := <to-expr> inv
56:
57: to-expr: ForAllExpr(BoundVarDecl(x, coll),
58: Expression(expr)) -> $[[coll’].forAll([x] | [expr’])]
59: with
60: coll’ := <to-expr> coll; expr’ := <to-expr> expr

4.4 Tool

The artifacts presented in Sects. 4.2 and 4.3 is used as input for the Spoofax Work-
bench to generate our translation tool. After Spoofax generates the PL2EMF tool,
we now can use to it translate a PL formal specification given as input to generate
the corresponding metamodel and constraints. For example, in Fig. 7(i), we show the
PL2EMF tool using as input the Fault Tree formal specification presented in Sect. 6.

As mentioned in Sect. 3, only the syntax and static semantics (SSL) of a DSL
L are considered in the translation. The removal of the PL elements that are not
considered in the extraction is responsibility of a preprocessing phase.

Formal MDE-Based Tool Development 117

Fig. 7 (i) Fault tree formal specification; (ii) its abstract syntax using ATerms; (iii) Generated FT
metamodel and (iv) Constraints

In Fig. 7(ii), we can see the abstract syntax tree of our PL expressed using the
Annotated Term Format (ATerms). The notation ATerms is the format adopted by
Spoofax for representation of abstract syntactic trees. Recall from Sect. 4.3 that rules
defined using the Stratego language also act over ATerms of a PL specification.

Fig. 7 shows the (iii) metamodel and (iv) constraints resulting from the application
of the translation rules over the FT formal specification. It is important to note that
the developer (specifier) can add EuGENia annotations manually in the generated
metamodel to improve its graphical concrete syntax. Annotations are responsible to
give, for example, the shapes of a circle and an arrow to BasicEvent and FTEdge class,
respectively. See our case study in Sect. 6. A significant name for the constraints,
CONSTRAINT_NAME, is also a manual task.

5 Link

In this section we show how to link front (GMF) and back-ends (PD). This is accom-
plished via a plugin that makes the communication of these artifacts transparent to
the end user.

This plugin uses the Epsilon Wizard Language [15], an extension of EOL. From
within GMF editors we can execute EWL wizards to access underlying elements of
models (instances of a metamodel), shown graphically in the GUI, and identify the
user’s graphical requests.

We see each wizard as an operation that the user can request via the GUI. This
request triggers EOL operations that read the part of the model related to the request,
manipulating it to deliver the correct data for the back-end corresponding operation.
When the back-end returns the results, these communications occur in the reverse
order.

118 R. Silva et al.

Fig. 8 Detailed link strategy

Fig. 9 Components of an FT

Figure 8 shows our integration strategy with more detail. From a Perfect Spec-
ification, we generate, using PD, the back-end as a stand-alone library (a jar file).
Our experience has shown that the back-end as a library is more appropriate for our
purposes. The integration plugin can view this library as one of its own. This facil-
itates the interaction, since from PD we can generate the back-end using the same
target programming language that the integration plugin has been built. To provide a
common access point for all operations provided by a DSL specification, we define
a wrapper. It is able to handle any problem that can occur resulting from an incorrect
external call. That is, it acts as a firewall between the back-end and external calls.

6 Case Study

This section presents a Fault Tree Analysis Tool.

FT Overview and Formal Specification. Recall from Sect. 2 that an FT is a directed
acyclic graph (a tree), where each vertex is an FT component. Components can be
basic events or gates. Gates can be AND- or OR- logical ports. We declare the class
Comp as deferred to allow dynamic binding, see Figs. 9 and 10. Variables of type
Comp can receive any instance from any of its descendant classes. In Comp, the
functions idc and desc have the same name of their class attributes to allow public
access.The class Gate specializes the class Comp, without any additional attributes
or operations (Fig. 10). It contains two constructors (not shown) that calls the com-
ponent’s constructors. AND-Gates, and similarly OR-Gates, are just a specialization
of Gate and Comp.

Formal MDE-Based Tool Development 119

Fig. 10 FT components specification

We assume that basic events have an exponentially distributed life time. Then, its
failure probability at time t is computed by using the function prob f (t)
= 1 − e−λt , t ≥ 0 where λ is its failure rate and e ≈ 2.718281828. As we can see,
the class BasicEvent extends Comp by adding the attribute lambda (λ) that holds its
failure rate. Additionally, a constant (E) is declared to represent the e constant and
the function prob f is translated according to PL notation. As the main goal of this
paper is to present our methodology (Sect. 3), we assume simplifications concerning
the failure probability calculation of the top event: (i) in AND-Gates, input events are
considered to be independents and (ii) in OR-Gates, their input events are mutually
exclusive.

Then, traversing the FT (Fig. 3), and making multiplications (AND-gates) and
sums (OR-gates) we can calculate the top event failure probability (indeed an
approximation) of a fault tree. The function definition that makes this calculation can
be found in [22]. For more details about FT Quantitative Analysis, please see [19].

Formal Verifications. For the Fault Tree specification, PD generated 71 verification
conditions, from which 70 were confirmed automatically and the last one with user
aid. For more details about these verification conditions, please see [22].

120 R. Silva et al.

Fig. 11 FT EMF model and constraints

FT GMF Editor. By applying the translation rules (Sect. 4) with the aid of our tool
P L2E M F [22], on our FT Formal Specification (Sects. 2 and 6) we obtain automat-
ically the metamodel and constraints showed in Fig. 11. From this metamodel, we
apply EuGENia that automatically generates the graphical editor. Figure 12a presents
the FT Analysis Tool obtained following our rigorous proposed methodology. In the
left-hand side we have a palette, where we can select components (gates and basic
events) and connection edges.

Calculating Top Event Failure Probability. Consider a fault-tolerant multiprocessor
computer system with multiple shared memory modules connected by a bus [19].
The system is operational if at least one processor (in a total of three), one memory
module (in a total of two) and the bus are operational. This system is modeled by the
FT presented in the right-hand side of Fig. 12b. We assume exponentially distributed
failure time. Let λP = 0.00125, λM = 0.00643 and λB = 0.00235 be the failure
rate of each processor, memory and bus, respectively. From this, the failure time
distribution function of a processor is given by prob f (t)P = 1 − e−0.00125t , t ≥ 0.

To calculate the Top Event Failure Probability using our FT Analysis Tool, we
right-click in the drawing blank area with the mouse and select the option Wizards
→ Calculate Top Event Failure Probability. As a result, an input dialog (not shown)
is presented where the user can provide the time (t). Suppose that we provide 10.0
as input for t . After clicking on the OK button, the failure probability of the FT
Top Event is calculated and presented as can be seen in Fig. 12b. This calculation
happens in operations located in the back-end part of the tool. These operations are
called by means of the integration plugin that links the back and front-end of the FT
Analysis Tool (Fig. 12).

Validating the Fault Tree Tool. The work reported in [16] presents a system in which
software application that can read, write and modify the content of the storage device
Disk1. The system periodically replicates the produced data of one storage device
(Disk1) in two storage replicas (Disk2 and Disk3) to allow recovering in case of

Formal MDE-Based Tool Development 121

Fig. 12 FT Tool used to model a fault-tolerant multiprocessor computer system

data loss or data corruption. The system is also composed of one Server and Hub
that connects the Disk2 and Disk3 to the server (left corner of Fig. 13). The system
is considered to have failed if it is not possible to read, write or modify data on
Disk1 and if no data replica is available. Hence, if Disk1 or the Server or the Hub,
or either replica storages are faulty, the system fails. The respective FT is presented
on right-hand side of Fig. 13.

We use this model to show how constraints validation work through the front-end.
Note that we added two extra edges: one extra edge from the gate that represents the
top event SysFail to itself (Fig. 13) and other from the basic event that represents the
Hub to the gate that represents the failure of replicas. Selecting the option Validate
in the Edit menu, we get an error message saying that the invariants inv2 (source
and target of an edge must be different) and inv4 (one source component must have
only one target components) (Fig. 13). This small example shows that the invariants
that hold in the FT formal specification, also hold in the GUI created from its meta-
model. We checked other invariant violation possibilities and all of them matched
the expected results as characterized in the PL formal specification.

FT Tool Link. In Fig. 14, we show how the link of the FT tool was implemented. In
the left-hand side we see the library, backendftree.jar, generated automatically, by
PD, from the FT formal specification. In the top right-hand side we see the EWL
wizard. It is responsible to interact with the GUI, when the user requests an FT failure
probability.

122 R. Silva et al.

Fig. 13 FT Analysis tool used to model a data replication system

7 Related Works

The work [6] presents the benefits of integrating formal methods with MDE. It
discusses the advantages of both and how they can be used to cover or weaken
the disadvantages of the other. It proposes a strategy to integrate both worlds using
the Abstract State Machine (ASM) with EMF. ASMs are always used to provide
semantics to languages defined in the MDE. In relation to our work, the two main
differences are: (i) our semantic model is not strict to an specific formalism; (ii) our
metamodel is obtained automatically.

The goal of [27] is to take advantage of the strengths of heterogeneous formal
methods in particular situations bridging them using MDE. The key point is to rep-
resent heterogeneous formal models into MDE as domain specific languages by
metamodeling. Transformation rules developed based on the built metamodels of
the formal models are used to define the semantic mapping between them. Both
graphical and textual formal models are covered and the metamodels of formal mod-
els can be reused in different bridge constructions.

The work [18] presents how CSP-OZ can be integrated with UML and Java in the
design of distributed reactive system. The advantages of such an integration lies in the
rigor of the formal method and in checking adherence of implementations to models.
The integration starts by generating a significant part of the CSP-OZ from the UML
model. From this specification, properties can be verified. This CSP-OZ specifica-
tion is also the basis for generating JML contracts (complemented by CSP jassda)
for the final implementation. Tools for runtime checking are used to supervise the
adherence of the final Java implementation to the generated contracts. Large parts of

Formal MDE-Based Tool Development 123

Fig. 14 FT tool link plugin

the integration approach are automated. However, as the development of tools that
support the approach was not the focus, they are only prototypes. The work reported
in [2] presents a practical and generic solution to define the precise dynamic seman-
tics of DSLs by means of an experiment where Abstract State Machines (ASMs)
are used to give the dynamic semantics of Session Programming Language (SPL).
SPL is a DSL defined for the development of telephony services over the Session
Initiation Protocol (SIP). This experiment is performed in the context of an MDE
framework called AMMA (Atlas Model Management Architecture). However, unlike
our proposed methodology, in [2] there is no formal verification of properties over
the dynamic semantics of a DSL.

8 Conclusion and Future Work

This work proposed a methodology for creating GUI-based formally verified tools
through the combination of metamodel-based GUI generators (an approach that
follows MDE principles) with executable back-ends automatically generated from
formal specifications.

We presented an instantiation of our methodology using the Perfect Language
(and tool). With PL we describe a Mathematical model used in Engineering and

124 R. Silva et al.

with PD tool we synthesize the back-end code automatically. To create the front-
end, we applied metamodeling eclipse tools to a metamodel extracted from the PL
specification using a tool named PL2EMF that we developed.

Based on this instantiation we developed a case study to illustrate our methodology.
First, we formalized a simplified version of a Fault Tree model. Then we applied our
methodology and created a simplified version of a formally verified GUI-Based Fault
Tree Analysis Tool. This tool brings benefits that include: (i) the easiness to build
huge Fault Tree models; (ii) validate its structure against constraints derived from
formal invariant; and (iii) calculate, from formally verified generated code, the failure
probability of the Fault Tree top event.

We investigated the soundness of our translation rules by exercising the GUI.
Valid properties in the Perfect Developer contracts were confirmed via the GUI as
well as invalid ones.

As future work we intend to prove the soundness and completeness of the trans-
lation rules defined in this work, use different formal methods and metamodel-based
GUI generators technologies to build several GUI-Based formal tools for different
DSLs of real case studies. We also wish to test the consistency between front and
back-end manipulating test-models (instances of a DSL) in this tool.

Acknowledgments This work is supported by CNPq grant 476821/2011-8.

References

1. Chalin, P., Kiniry, J.R., Leavens, G.T., Poll, E.: Beyond assertions: advanced specification and
verification with JML and ESC/Java2. In: Boer, F.S., Bonsangue, M.M., Graf, S., Roever, W.-P.
(eds.) Formal Methods for Components and Objects. Lecture Notes in Computer Science, vol.
4111, pp. 342–363. Springer, Heidelberg (2006). http://dx.doi.org/10.1007/11804192_16

2. Di Ruscio et al., D.: A practical experiment to give dynamic semantics to a DSL for telephony
services development. Technical report, Laboratoire d’Informatique de Nantes-Atlantique
(LINA) (2006).

3. Escher: Escher verification studio v5.0 (Academic license). http://www.eschertech.com.
Accessed Oct 2012

4. Esterel Technologies: SCADE suite product. http://www.esterel-technologies.com/products/
scade-suite/. Accessed Jan 2012

5. Eysholdt, M., Behrens, H.: Xtext: implement your language faster than the quick and dirty
way. In: Proceedings of the ACM International Conference Companion on Object Oriented
Programming Systems Languages and Applications Companion, SPLASH ’10, pp. 307–309.
ACM, New York, USA (2010)

6. Gargantini, A., Riccobene, E., Scandurra, P.: Integrating formal methods with model-driven
engineering. In: Software Engineering Advances, 2009. ICSEA ’09. 4th International Confer-
ence on, pp. 86–92 (2009)

7. Gargantini, A., Riccobene, E., Scandurra, P.: A semantic framework for metamodel-based
languages. Autom. Softw. Eng. 16(3–4), 415–454 (2009). http://dx.doi.org/10.1007/s10515-
009-0053-0

8. GMF: Graphical modeling framework project (GMF). http://www.eclipse.org/modeling/gmp/.
Accessed Jan 2013

9. Heering, J., Hendriks, P.R.H., Klint, P., Rekers, J.: The syntax definition formalism sdfreference
manual. SIGPLAN Not. 24(11), 43–75 (1989)

http://dx.doi.org/10.1007/11804192_16
http://www.eschertech.com
http://www.esterel-technologies.com/products/scade-suite/
http://www.esterel-technologies.com/products/scade-suite/
http://dx.doi.org/10.1007/s10515-009-0053-0
http://dx.doi.org/10.1007/s10515-009-0053-0
http://www.eclipse.org/modeling/gmp/

Formal MDE-Based Tool Development 125

10. Kats, L.C.L., Visser, E.: The spoofax language workbench: rules for declarative specification of
languages and IDEs. In: Cook, W.R., Clarke, S., Rinard, M.C. (eds.) In: Proceedings of the 25th
Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA 2010, pp. 444–463. ACM, Reno/Tahoe, Nevada (2010)

11. Kats, L.C., Visser, E., Wachsmuth, G.: Pure and declarative syntax definition: paradise lost and
regained. SIGPLAN Not. 45(10), 918–932 (2010)

12. Kolovos, D.S., Paige, R.F., Polack, F.A.C.: On the Evolution of OCL for Capturing Structural
Constraints in Modelling Languages. In: Abrial, J.-R., Glässer, U. (eds.) Rigorous Methods
for Software Construction and Analysis. Lecture Notes in Computer Science, Vol. 5115, pp.
204–218. Springer, Heidelberg (2009). http://dx.doi.org/10.1007/978-3-642-11447-2_13

13. Kolovos, D.S., Rose, L.M., Abid, S.B., Paige, R.F., Polack, F.A.C., Botterweck, G.: Taming
EMF and GMF using model transformation. In: Proceedings of the 13th International Confer-
ence on Model Driven Engineering Languages and Systems: Part I, MODELS’10, pp. 211–225.
Springer, Heidelberg (2010)

14. Kolovos, D., Paige, R., Polack, F.: The epsilon object language (EOL). In: Rensink, A.,
Warmer, J. (eds.) Model Driven Architecture Foundations and Applications. Lecture Notes
in Computer Science, vol. 4066, pp. 128–142. Springer, Heidelberg (2006)

15. Kolovos, D., Rose, L., García-Domínguez, A., Paige, R.: The Epsilon Book. http://www.eclipse.
org/epsilon/doc/book/ (2012). Accessed 4 July 2012

16. Maciel, P.R.M., Trivedi, K.S., Jr., R.M., Kim, D.S.: Dependability modeling. In: Cardellini, V.,
Casalicchio, E., Kalinka, R.L., Júlio C.E., FranciscoJ.M. (eds.) On performance and depend-
ability in service computing: concepts, techniques and research directions. pp. 53–97. IGI
Global, Hershey (2012). doi:10.4018/978-1-60960-794-4.ch003

17. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific languages.
ACM Comput. Surv. 37(4), 316–344 (2005)

18. Moller, M., Olderog, E.R., Rasch, H., Wehrheim, H.: Integrating a formal method into a software
engineering process with uml and java. Form. Asp. Comput. 20(2), 161–204 (2008)

19. NASA: Fault Tree Handbook with Aerospace Applications. NASA Office of Safety and Mission
Assurance, Washington (2002)

20. OMG: Object constraint language (OCL). http://www.omg.org/spec/OCL/2.3.1/PDF.
Accessed Jan 2013

21. SDF: Stratego/XT manual. Chapter 6. Syntax Definition in SDF. http://hydra.nixos.org/build/
5114850/download/1/manual/chunk-chapter/tutorial-sdf.html. Accessed May 2013

22. Silva, R.: GUI-based DSL Formal Tools Project. http://www.cin.ufpe.br/~rss7/mscproj/ (2013)
23. Spoofax: The spoofax language workbench v1.1. http://spoofax.org/ (2013). Accessed Feb

2013
24. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling Framework,

2nd edn. Addison-Wesley, Boston (2008)
25. Stratego: Stratego/XT manual. Part III. The Stratego language. http://hydra.nixos.org/build/

5114850/download/1/manual/chunk-chapter/stratego-language.html. Accessed May 2013
26. Voelter, M., Solomatov, K.: Language modularization and composition with projectional lan-

guage workbenches illustrated with MPS. In: van den Brand, M., Malloy, B., Staab, S. (eds.)
Software Language Engineering, 3rd International Conference, SLE 2010. Lecture Notes in
Computer Science. Springer (2010)

27. Zhang, T., Jouault, F., Bézivin, J., Zhao, J.: A MDE based approach for bridging formal models.
In: Proceedings of the 2008 2nd IFIP/IEEE TASE, pp. 113–116. TASE ’08. IEEE Computer
Society, Washington, USA (2008)

http://dx.doi.org/10.1007/978-3-642-11447-2_13
http://www.eclipse.org/epsilon/doc/book/
http://www.eclipse.org/epsilon/doc/book/
http://dx.doi.org/10.4018/978-1-60960-794-4.ch003
http://www.omg.org/spec/OCL/2.3.1/PDF
http://hydra.nixos.org/build/5114850/download/1/manual/chunk-chapter/tutorial-sdf.html
http://hydra.nixos.org/build/5114850/download/1/manual/chunk-chapter/tutorial-sdf.html
http://www.cin.ufpe.br/~rss7/mscproj/
http://spoofax.org/
http://hydra.nixos.org/build/5114850/download/1/manual/chunk-chapter/stratego-language.html
http://hydra.nixos.org/build/5114850/download/1/manual/chunk-chapter/stratego-language.html

Formal Modeling and Analysis
of Learning-Based Routing in Mobile Wireless
Sensor Networks

Fatemeh Kazemeyni, Olaf Owe, Einar Broch Johnsen
and Ilangko Balasingham

Abstract Limited energy supply is a major concern when dealing with wireless
sensor networks (WSNs). Therefore, routing protocols for WSNs should be designed
to be energy efficient. This chapter considers a learning-based routing protocol
for WSNs with mobile nodes, which is capable of handling both centralized and
decentralized routing. A priori knowledge of the movement patterns of the nodes is
exploited to select the best routing path, using a Bayesian learning algorithm. While
simulation tools cannot generally prove that a protocol is correct, formal methods can
explore all possible behaviors of network nodes to search for failures. We develop a
formal model of the learning-based protocol and use the rewriting logic tool Maude
to analyze both the correctness and efficiency of the model. Our experimental results
show that the decentralized approach is twice as energy-efficient as the centralized
scheme. It also outperforms the power-sensitive AODV (PS-AODV), an efficient but
non-learning routing protocol. Our formal model of Bayesian learning integrates a
real data-set which forces the model to conform to the real data. This technique seems
useful beyond the case study of this chapter.

F. Kazemeyni (B) · O. Owe · E. B. Johnsen
Department of Informatics, University of Oslo, Oslo, Norway
e-mail: kazemeyni@gmail.com

O. Owe
e-mail: olaf@ifi.uio.n

E. B. Johnsen
e-mail: einarj@ifi.uio.no

F. Kazemeyni · I. Balasingham
The Intervention Center, Oslo University Hospitals, University of Oslo, Oslo, Norway

I. Balasingham
Department of Electronics and Telecommunication, Norwegian University of Science and
Technology, Trondheim, Norway
e-mail: ilangkob@medisin.uio.no

T. Bouabana-Tebibel and S. H. Rubin (eds.), Integration of Reusable Systems, 127
Advances in Intelligent Systems and Computing 263, DOI: 10.1007/978-3-319-04717-1_6,
© Springer International Publishing Switzerland 2014

128 F. Kazemeyni et al.

Keywords Wireless sensor networks · Mobility · Learning · Routing · Formal
modeling and analysis · Probabilistic modeling · Rewriting logic · Maude

1 Introduction

Wireless sensor networks (WSNs) consist of sensor nodes which collaborate with
each other to gather data and transmit the data to sink nodes. Sensor nodes usually
have limited energy resources. They use routing protocols to find the path to transmit
data to a designated sink node. Transmission is one of the most energy expensive
activities in WSNs. So, routing protocols should be designed to be efficient. The
nodes store the total paths in a routing table. Having such routing tables is not
always feasible, especially in large-scale ad-hoc networks. If nodes move frequently,
the cost of finding paths increases dramatically. In addition, the rate of packet loss
increases because of the frequent disconnection between the nodes. In these cases,
learning methods could increase the system’s performance. These methods predict
the best action, by learning from previous actions.

Protocol evaluation is usually done through simulators, e.g. NS-2. Instead, we
use formal techniques, which provide us with an abstract way to model protocols.
Formal techniques can prove the protocol’s correctness, by inspecting all reachable
states of a system. Simulators cannot prove the correctness of protocol’s properties,
due to non-deterministic behaviors of WSNs (e.g. mobility and timing), but provide
quantitative information about the protocol.

This chapter introduces an approach to formally model the learning methods in
WSN routing protocols. For this purpose, we aim to have a general model for learning-
based routing protocols. This model is used to analyze and validate these kinds of
protocols both quantitatively and formally. The motivation is to have a simplified
model which includes the important features of the learning and adapting protocols
and additionally the movement patterns of the nodes. We define routing protocols
which estimate the most probable routing path for mobile WSNs, considering the
Nodes’ frequent movement. Each node’s movement may have a pattern which is
calculated, for every pair of nodes, as the probability of being connected. These
probabilities are used to find the most probable existing path. We define a centralized
and a decentralized approach for the routing protocol. In the centralized protocol, the
routing paths are computed centrally by so-called processing nodes, using Dijkstra’s
Shortest Path Algorithm [1]. They have information of the whole network. Nodes
request the best and most available routing path from the processing node. The
processing node uses a modification of Dijkstra’s Shortest Path Algorithm [1]. The
notion of best is determined as a function of the cost of the links, i.e., communication
links between the nodes of the network. In our model, these costs are determined
based on the likelihood of availability and reliability of these edges. The best route is
the one with the highest probability of successful message delivery. The centralized
protocol is not very efficient because of the interactions between nodes and the
processing node(s). In the decentralized protocol, nodes are responsible for finding

Formal Modeling and Analysis of Learning-Based Routing 129

the path. We model a protocol in which each node learns which neighbor has the best
transmission history by using the Bayesian learning method [2].

We design and develop a formal, executable model of our protocol as a transition
system in a SOS style. This model is analyzed using Maude [3], i.e., a formal model-
ing tool based on rewriting logic [4]. To have a more realistic analysis of our model,
we introduce the concept of facts in our model. Facts are deterministic actions that
must occur according to prescheduled times, complementing the non-deterministic
actions in the model. Probability distributions are applied to abstractly model the
probabilistic behaviors of the network. We feed our model with the real data-set as
a fact-base. By feeding a model with real mobile traces, we obtain a more reliable
analysis, in addition to taking advantage of the formal analysis. Note that using facts
does not restrict the actions that can be performed in the model, it only adds extra
actions that are expected to happen. Our model is used to analyze both performance
and correctness.

This chapter is an extended version of a previous workshop publication [5]. The
extensions include improving the presented formal model by modifying some of
the rewrite rules, and adding more details about the implementation of the model
in Maude. Also more experiments and more in depth analysis on the results of the
model’s performance are included in this chapter.

Related Work. The efficiency of routing protocols are discussed in several recent
research studies. The authors of [6] provide an overview of features and mecha-
nisms of energy-aware routing protocols. Studies, such as [7] and [8], aim at reduc-
ing the power consumption of the routing process, using cluster head election and
multi-hop transmission. Another energy aware localized routing protocol is intro-
duced in [9], and is based on distance-based power metrics. In [10], an energy-aware
routing protocol for disruption-tolerant networks is introduced. In the case of a net-
work disaster, this protocol uses the rescue vehicles (nodes) to reduce the required
number of message transmissions. The routes are chosen based on the transmission
delays. There are a few works which consider frequent movements of the nodes
and its role in the successful message transmission and the energy efficiency of
the network. Q-probabilistic routing [11] is a geographical routing algorithm which
uses Bayesian algorithm to find the routing path. This protocol achieves a trade-off
between the network’s energy usage and the number of message retransmission.
Parametric Probabilistic Sensor Network Routing Protocol [12] is another protocol
which uses probabilities, based on the nodes’ distances, for message retransmission.
The PROPHET protocol [13] introduces the delivery predictability factor to choose
the messages which are sent to the other nodes, in networks which do not guarantee
fully connected networks. Recently, reinforcement learning methods have been used
in the network protocols to improve their efficiency and adaptability. Papers [14] and
[15] propose WSN protocols that adaptively learn to predict optimal strategies, in
order to optimize their efficiency. There are centralized and also decentralized routing
protocols. We have defined an adaptive and learning-based centralized and decen-
tralized protocols, to be able to propose a general framework to model the learning
observables in WSNs and performing the required analyses and comparisons. These

130 F. Kazemeyni et al.

protocols are based on the main features of the energy-efficient and learning-based
routing protocols. In the routing protocol used in this chapter, we consider a WSN
with mobile nodes. The links between nodes may exist with different probabilities.
This protocol uses the Bayesian reinforcement learning method. The most similar
protocol to the protocol used in this chapter is the Q-probabilistic routing protocol
[11] which uses the Bayesian algorithm. This protocol achieves a trade-off between
the energy usage and the number of retransmissions. The main difference between
our protocol and the Q-probabilistic protocol is that we assume that nodes are mobile
and do not have any information about their location, whereas the Q-probabilistic
protocol does not talk about mobility of nodes and assumes that each node knows
its location and the distance to the destination.

Formal methods are much less explored with respect to analysis of WSNs, but
recently start to appear. The TinyOS operating system has been modeled as a hybrid
automaton [16], and the UPPAAL tool has been used to model the LMAC proto-
col [17] and also to verify the temporal configuration parameters of radio commu-
nication [18]. A CREOL extension for heterogeneous environments includes radio
communication [19]. Ölveczky and Thorvaldsen show that Maude is a well-suited
modeling tool for WSNs [20]. Maude is used to model and analyze the efficiency of
the OGCD protocol [20] and the LMST protocol [21]. A process algebra has been
introduced specifically for active sensor processes such as sensing [22]. We follow
this line of research and use Maude as a tool to develop a learning-based routing
protocol for WSNs. There are very few works which study learning techniques in
formal methods. A reinforcement method (Q-learning) which is used in a Q-routing
protocol is modeled in [23], using the SPIN model checker. In contrast to our work,
this chapter does not introduce a generalization for learning rules in the context of
formal models. The results of the formal model in [23] are only qualitative, while we
provide a realistic analysis both qualitatively and quantitatively, using a real dataset.

Paper Overview. Section 2 introduces reinforcement learning. Section 3 presents the
generalized routing protocol which is modeled later in this chapter. Section 4 presents
the main contribution of the chapter, which is integrating learning of observables in a
probabilistic model. Section 5 discusses the modeling of the routing protocols, using
the learning rules. Section 6 describes the implementation, the case study and the
analysis results. Section 7 concludes the chapter.

2 Reinforcement Learning

Reinforcement learning is concerned with predicting the actions which maximize
the accumulated rewards for agents [24]. Agents learn which actions to choose by
observing the rewards obtained from previous actions. Figure 1 represents the inter-
actions of an agent and the environment. The actions are chosen by agents and change
the states. As a result, agents receive a reinforcement learning signal in the form of a
reward. Reinforcement learning is formulated as a Markov Decision Process, which

Formal Modeling and Analysis of Learning-Based Routing 131

Fig. 1 A learning flowchart

consists of a tuple (ST, A, P, R) where ST is a set of environment states, A is a set
of actions, P(st ′|st, a) is the probability of being in state st ′ after choosing action a
in state st , and R(st, a, st ′) is the reward associated with this action.

Bayesian inference is an extension of reinforcement learning which updates the
probability estimation of actions (called hypotheses), based on Bayes rules [25]. In
Bayesian inference, a set of actions is defined and agents learn to estimate the prob-
ability of the actions and choose the action with the highest probability. Assume that
there are k actions A = {a1, a2, ...ak}, and D is the set of training actions (including
the information which is obtained from the accumulated history of observations).
P(a) denotes the prior probability of action a (before any observation from the set
of training actions), P(D|a) is the probability of D given action a (indicating the
perceived likelihood of observing the action which is actually observed), and P(D)

is the prior probability of the set training actions which is obtained from the previous
actions (P(D) = ∑

a∈A P(D|a)P(a)). Then, P(a|D) is the probability of action
a given the set of actions D. The Bayesian method finds the maximum posteriori
action aM AP , which is the most probable action a ∈ A:
aM AP = argmaxa∈A P(a|D), which is equal to argmaxa∈A(

P(D|a)×P(a)
P(D)

), and con-
sequently

aM AP = argmaxa∈A(P(D|a) × P(a)), (1)

where, argmaxa∈A P(a|D) returns the action a ∈ A for which P(a|D) attains its
maximum value. Note that the action a which maximizes the value of P(D|a)×P(a),
also maximizes the value of P(D|a)×P(a)

P(D)
. We use the Bayesian method for predicting

the best action for routing.

3 The Selected Routing Protocol

This section explains the general learning-based routing protocols for WSNs, based
on the node movement patterns and the probability associated to the communi-
cation links. Assume that we have a WSN with nodes which move frequently.
We want to find the best routing path between the sensor and the sink. We con-
sider the best path to be the one which is the most reliable and has the high-
est probability of availability during the message transmission. We assume that

132 F. Kazemeyni et al.

a WSN is a graph G = (S, L), where S = {n1, n2, ..., nN } is the set of nodes
and L = {li, j | →i, j ∈ S s.t. ni is within radio range of n j } is the set of the
communication links in G. We want to find the path that is most likely to deliver a
message between two nodes. Each link in the graph has a weight, in terms of a set
of probabilities which specify the effectiveness of the link in the message transmis-
sion. We define the links’ weight as a combination of the in-range probability of the
link and the reliability of the link. The link’s reliability is important, as well as its
availability. If a link is available but it is not reliable, messages may get lost. Each
link li, j ∈ L has a probability which we call the in-range probability or E Pli, j . This
probability is calculated using the history of the availability of the network links.
We note that if two nodes are not within radio range from each other, a link between
them is not available, because nodes cannot receive each others’ messages. Nodes
meet when they enter the radio communication range of each other. Assume that an
initial probability is defined for each link li, j , between two nodes i and j . The chance
that two moving nodes meet each other (be in each others’ range) during a period of
time could increase or decrease the initial probability using the following definition
similar to [26]:
E Pli, j = E Pli, j × (1 − f) + f if i and j meet within a predefined time interval T ,
E Pli, j = E Pli, j × (1 − f) otherwise,
where f , the adapting factor 0 < f < 1, is a predefined value which specifies the
rate of probability update. The factor f , the initial probability of the links, and the
time interval T , depend on the specific properties of a network. The specification
can range from conservative, e.g. E Pli, j = 0 f or all i, j ∈ S, to optimistic, e.g.
E Pli, j = N × (πω2/c) f or all i, j ∈ S, where ω and c are the radius of the radio
range and the total area under study, respectively. Here, we assume all nodes are
uniformly distributed within the area of study. The reliability of a link depends on
different factors. For example, the physical nature of the environment between two
nodes changes the reliability of their link in time. For simplicity, we consider the
average historical reliability of the link li, j as a probability R Pli, j , which is obtained
from the network’s history based on the observed reliability so far in the commu-
nication between the nodes i and j . The probability which is assigned as weight to
each network link li, j , denoted as Pli, j , is the combination of these two independent
probabilities: R Pli, j and E Pli, j , namely Pli, j = R Pli, j × E Pli, j .

When the total information of the routing paths is not available, specially in
the decentralized approaches where the knowledge of each node for transmitting a
message is limited to its neighbors, we use acknowledgment (ACK) messages to
infer the probability of availability of the routing paths to each destination node.
The source node s can calculate the acknowledgment probability APs,e,d for the

messages to the destination d through the neighbor node e, as APs,e,d = ack Nume
s,d

msgNume
s,d

,

where msgNume
s,d and ack Nume

s,d are the total number of the sent data messages
from node s to d and the total number of the ACK messages from node d to s,
respectively, in both cases through the neighbor node e. In the case of not having the
total information of the routing path, we use the Bayesian learning method to predict
which path has the highest chance to deliver a message successfully, based on the

Formal Modeling and Analysis of Learning-Based Routing 133

acknowledgment probability. Assume M = {e1, e2, ..., em} is the set of neighbors
of node s. According to the Bayesian learning method, there are m hypotheses H =
{he1, he2 , ..., hem }, each refers to selecting neighbor node ek ∈ M . We need to find
hM AP based on Formula 1. In our protocol, for each source node s and destination
node d, P(D|hek) is the rate of successful message transmission, if node s chooses
neighbor node ek to transmit the message toward d, which means P(D|hek) =
APs,ek ,d . and P(h) is initially assigned to Pls,ek

= R Pls,ek
× E Pls,ek

.
Each time that node s wants to send a message, it calculates P(D|hek) for all

neighbors ek ∈ M and chooses the hypothesis (neighbor node) with the highest
probability. If the message is transmitted successfully, an acknowledgment is sent
from d to the source node s. By receiving this message, s is rewarded by updating the
reward table (ack Nume

s,d). This reward affects the next predictions by improving
APs,e,d . This ratio can give us an estimate about the probability of the availability of
a path. The accuracy of this estimation improves during the time, by observing more
transmissions. Consequently, this ratio shows the chance of a successful transmission
through that path. We assume that the learning time is less than the movement time
to avoid possible learning failures (e.g. missing a movement).

To compare centralized and decentralized learning, we define two versions of this
protocol, one centralized and another, more robust and flexible, which is decentral-
ized. There is a trade-off between using these approaches. In the centralized approach,
central nodes needs to have information about the total system. Gathering and storing
the information are costly, and sometimes impossible. The decentralized approaches
are often less accurate, but more efficient. When processing nodes are not reachable,
the decentralized protocol is the only feasible option.

3.1 The Centralized Approach

In the centralized approach, we use a modified Dijkstra’s algorithm to find the most
probable path. This modification returns all the nodes in the best path, while Dijkstra’s
algorithm only returns the best path’s weight. To calculate a link’s weight, we use
the links’ probability, instead of the nodes’ distance which is used by the original
Dijkstra algorithm. This is a centralized process which is performed in the processing
node. When sensor nodes move, they inform the processing node about their new
position. Each time a node needs a path, it sends a message to the processing node
and asks for the path. The processing node sends a reply message to the node which
includes the result path.

3.2 The Decentralized Approach

In the decentralized protocol, each node decides locally which node should be chosen
as the next node in the routing path. Nodes only have the information of themselves

134 F. Kazemeyni et al.

and their neighbors, not the total information of the network. There are some meth-
ods which can be used in these situations, such as the “ant colony” [27]. But these
methods frequently rebroadcast messages asking for routing paths, which makes
them less energy-efficient. Instead, we let each node collect information from previ-
ous transmissions to learn how to predict the best route. We note that nodes do not
have all the information ideally needed to decide about the total path, but use what is
available to them, to pass a message to the node about which path to the destination is
the most probable. In the decentralized approach, each node uses the Bayesian learn-
ing method to predict the neighbor with the highest chance of successful message
delivery.

4 Integrating Learning of Observables in a Probabilistic
Model of WSNs

This section integrates the reinforcement learning aspects discussed in the Sect. 3.2
with a probabilistic WSN model, presented in SOS style [28]. An SOS rule has the
general form

(Rule Name)

Conditions
conf −∗ conf ′

This rule locally transforms configurations or sub-configurations which match
conf into conf ′ if the premises Conditions hold. In a probabilistic rule the Conditions
or conf ′ may depend on a sample drawn from a probability distribution. Non-
determinism may be controlled by such rules. As an example, such a rule may look
like

(Rule Name)

Conditions
smp = sample(π)

conf −∗ if smp then conf ′else conf

where π is a Boolean valued probability distribution. This rule locally transforms
configurations or sub-configurations which match conf into conf ′ if the Conditions
hold and if the sample drawn from π is true.

By controlling all sources of non-determinism by probabilistic rules, one may
obtain a model which gives rise to representative runs. One may then perform statis-
tical model checking on the model, simply by statistically analysing the results of a
sufficient number of representative runs. This is the approach taken in this chapter.
The presence of non-deterministic rules may result in non-representative rules (as
typically is the case with Maude simulations) and we therefore avoid such rules in

Formal Modeling and Analysis of Learning-Based Routing 135

our model. As a consequence we need to control the independent speed of distributed
nodes probabilistically. We do this by including the scheduling of nodes in the model.

For our purposes, a configuration is a multiset of nodes, messages and time infor-
mation. Following rewriting logic conventions, we let whitespace denote the associa-
tive and commutative constructor for configurations, and we assume pattern matching
modulo associativity and commutativity. Distributed computing is modeled by rules
involving only one node, together with messages and time information. Nodes and
messages have respectively the form

• obj (o, n, r t), where o is the node’s identifier, n is the list of neighbors, and r t is
the reward table.

• msg(m, s, d), where m is the content of the message (its name and parameters),
and s and d are the source and the destination nodes.

In order to handle scheduling of the nodes, a discrete time is added to the global
configuration of the system, and execution marks and scheduled execution marks sorts
are added as subsorts of Configuration. The global time has the form t ime(t), where
t has a floating point value. Execution marks have the form exec(o) and scheduled
execution marks have the form [t, exec(o)] where o is the node’s identifier and t is
the scheduled time.

The auxiliary function sampleBe(δ) samples the Bernoulli distribution with rate
δ; and sampleExp(δ) samples an exponential distribution with rate δ. These distri-
butions are assumed to be predefined. The sampleBe(δ) function returns a Boolean
value and the sampleExp(δ) function returns a float value, by considering the expo-
nential probability distribution with rate δ. Their definition can be found in standard
textbooks, e.g. [29].

Generic Execution Rules for Enabled Transitions We use a ticketing system to
obtain probabilistic scheduling of enabled transitions, adapting an approach used with
PMaude [30]. The idea is that a node needs a ticket to execute, after which its ticket
is delayed for some time determined by an exponential probabilistic distribution.
The probabilistic scheduling works in combination with time advance: time cannot
advance when a node has an enabled ticket, and time can only advance until the next
scheduled time/ticket in the configuration. Object execution is captured by a set of
rules with the general form of

(Rule Name)

Conditions
exec(o) obj (o, n, r t) −∗ done(o) obj (o, n′, r t ′)

where the left-hand and/or the right-hand side may additionally involve messages
and the global time. We let done(o) indicate that node o has been executing and
can be rescheduled. If more than one transition is needed to describe the activity
of o at a given time, one may use additional rules with a conclusion of the form
exec(o) obj (o, n, r t) . . . −∗ exec(o) obj (o, n′, r t ′) . . ., taking care that any non-
determinism is resolved probabilistically, and that there are rules producing done(o)

136 F. Kazemeyni et al.

when the activity of o at time t finishes. (In a Maude implementation, one may use
equations to describe such activity, leaving exec(o) −∗ done(o) as a rule, which
then will be used after the equations.)

The scheduling is done in the Probabilistic ticketing rule, where δ is a predefined
value used in the exponential probabilistic distribution. The tickets are enabled one
by one, using the Enabling rule. The Tick rule advances the time, to that of the next
execution ticket, as defined by the function maxTimeAdv. We let maxTimeAdv(conf)
return the maximum possible time advance (i.e., the minimum scheduled time), but
such that it returns 0 if there are any exec messages in conf . Note that this rule must
consider the whole system in order to not miss any scheduled execution tickets. Thus
we need a way to express that conf is the whole system, not just a subconfiguration.
For this purpose we define a system to have the form {conf }, i.e., a configuration conf
enclosed in curly brackets, where (as above) conf is a multiset of nodes, messages,
and time information, and with exactly one global time, t ime(t). The Tick rule is the
only rule about the whole system in our model.

(Probabilistic ticketing)

t ′ = t + sampleExp(δ)
done(o) time(t) −∗ [t ′, exec(o)] time(t)

(Tick)

t ′ = maxT imeAdv(conf), t ′ > t
{conf time(t)} −∗ {conf time(t ′)}

(Enabling)

[t, exec(o)] time(t) −∗ exec(o) t ime(t)

The Rule for Lossy Links Links may be lossy. It means that in the model, each
link has an associated probability which reflects the link’s reliability. Therefore,
the chance of losing messages sent between nodes o and o’ depends on the link
between o and o’. Message loss is captured by rule Lossy Link. Messages are lost
if sampleBe(δ) is true, otherwise they are not lost.In our model, send(M, o, o′)
represents messages not yet delivered, whereas msg(M, o, o′) represents messages
being successfully delivered.

(Lossy Link)

haslinkProbability(conf , o, o′,)
noLoss = sampleBe(δ)

send(M, o, o′) conf −∗ if noLoss then msg(M, o, o′) conf else conf

In the rule, haslinkProbability(conf , o, o′,) expresses that information about relia-
bility of the link from o to o′ can be found in conf and that the link probability is δ.
We will not model a general theory for link probability, and how such information

Formal Modeling and Analysis of Learning-Based Routing 137

can be embedded in a configuration, but we give details on this for our case studies
(letting each link have a fixed probability).

In order to ensure that applications of the Lossy Link rule are not delayed, which
may give rise to non-determinism, we redefine the maxTimeAdv function such that
maxTimeAdv(conf) gives 0 if there are any send messages in conf , thereby ensuring
that a send message produced by o at time t is lost or delivered at time t . As no
other object o′ can execute at time t , the message cannot be received at time t , which
means that message delivery to o′ may not happen while o′ is active (which could
cause non-determinism).

4.1 The Rule for Reinforcement Learning

Regarding the learning theory (Fig. 1), we define three categories of rules to model
a learning process.

The Rule for Forcing Observed Facts In contrast to non-deterministic configuration
changes, there are some deterministic actions in the system (we call them facts),
that must be forced to perform according to prescheduled points in time. In this
model, facts are specified in a fact-base F B. These facts represent actions that are
observed from the environment (e.g. the movement of nodes in a real network). So
we schedule them to happen in the model as they happen in reality. These actions
should be performed at the prescheduled times. Actions in F B have the general form
of action(o, data, t), where data is defined based on the system which is under
study. In this case study, actions in F B are defined as node movements which cause
a node to meet new nodes. Here, data represents the neighbors which node o meets at
time t . In the Facts rule, node o modifies its neighbor list n when receiving an action
message, by appending the new neighbors mentioned in data to n. By including F B
in the configuration, the maxTimeAdv(conf) function (in the Tick rule) considers the
smallest time of unexecuted actions in F B as well as the nodes’ execution tickets to
choose the maximum possible time advance. Thereby we avoid missing any action
in F B.

(Facts)

F B ′ = F B\{action(o, data, t)}
action(o, data, t) ∈ F B
n′ = append(n, data)

obj (o, n, r t) time(t) F B −∗ obj (o, n′, r t) t ime(t) F B ′

The Rule for Predicting Actions When node s wants to send data to node d, it
generates a message. This message is transmitted through a path of nodes leading
to d. Each time a node o in the path transmits a message (with source node s and
destination d), it needs to predict which neighbor o′ ∈ n has the best chance to
pass the message successfully. This prediction is based on the Formula 1 and by

138 F. Kazemeyni et al.

having the previous reward information (in the reward table r t) which is updated by
the rewards that were obtained from the previous successful transmissions (through
acknowledgment messages). The reward table r t has a row corresponding to the
delivery rate to destination d if choosing neighbor o′. The value stored, i.e., r t[(o, d)]
is a pair (u, v) where u is the number of successful transmissions and v is the total
number of transmissions.

We use two auxiliary functions, reward and incSum, to update a reward table r t
of an object o for a given neighbor o′ and destination d, increasing the number of
successful transmissions and the total number of transmissions, respectively:

reward(r t, o′, d) = r t[(o′, d) ≤∗ (u + 1, v)]
incSum(r t, o′, d) = r t[(o′, d) ≤∗ (u, v + 1)]

where u and v are given by r t[(o′, d)] = (u, v). The rule for prediction is then

(Predict)

o′′ = prediction(n, r t, d)
r t ′ = incSum(r t, o′′, d)

msg(data(s, d, path), o′, o) exec(o) obj (o, n, r t)
−∗ send(data(s, d, (path; o)), o, o′′) done(o) obj (o, n, r t ′)

More details on the prediction function can be found in the Sect. 5.

The Rule for Rewards Each node is rewarded after a successful action when receiv-
ing an acknowledgment message. The reward table of a node stores the information
of the message transmissions, captured by the Reward rule.

(Reward)

o′ = next (o, path)
r t ′ = reward(r t, o′, d)

msg(ack(path), d, o) exec(o) obj (o, n, r t) −∗ done(o) obj (o, n, r t ′)

In the case that the path contains loops, one should not reward a node several
times, and the next function should be relative to the last occurrence of o in path,
returning the next node in the path. This will be detailed in the Sect. 5.

The application of these general rules are shown in the model of the centralized
and the decentralized protocols.

5 Application of the Learning Rules

We have applied the learning rules in a case study, which includes the generalized
learning-based routing protocol of Sect. 3. The case study is implemented in rewriting
logic, using the Maude tool. In this section, we present SOS style rules for the

Formal Modeling and Analysis of Learning-Based Routing 139

decentralized protocol reflecting the learning process in a more abstract way. In this
model nodes have the form

node(o, e, n, r t)

where o is the node’s identifier, e is a pair of (power, energy), where power is
the power capability and energy is the total remaining energy in the node, n is the
node’s neighbor information, and r t is the reward table. The execution rules for
enabled transitions, the rules for lossy links, and the Facts rule, can be used in this
case study as they are presented in Sect. 4. The Predict and Reward rules depend on
the protocol and need some modifications to reflect the details and requirements of
different protocols. According to the requirements of this case study, the prediction
rule is split into three rules. The Predict1 rule performs when the destination node is in
the neighborhood. The second rule is related to the situation that the destination is not
in the neighborhood and the node uses the learning method to choose a node to pass
the message. In the Predict3 rule, there is no neighbor to transmit the message, and
the data being sent is lost. Each unicast message transmission is sent by consuming
the minimum message transmission power of the nodes. When the destination node
receives a data message, it broadcasts an ack message to all the nodes in the routing
path, using its maximum transmission power (the Acknowledgment rule). We assume
that destination nodes (e.g. sink nodes in a WSN) have unlimited power available to
be able to send ack messages using their maximum transmission power. The ackAll
function is used in the Acknowledgment rule to send ack messages to useful transfers,
letting a node o be rewarded with respect to a neighbor o′ if there is a tail part of
the path going from o to o′ and reaching the destination without revisiting o. The
Reward rule updates the reward table of nodes after receiving an ack message.

(Predict1)

d ∈ n
rt ′ = incSum(r t, d, d)

e′ = (power, energy − powermin)

msg(data(id, s, d, path), o′, o) exec(o) node(o, e, n, r t)
−∗ send(data(id, s, d, (path; o)), o, d) done(o) node(o, e′, n, r t ′)

(Predict2)

n\{o′} √= nil
d /∈ n

o′′ = prediction(n, r t, d, o, o′, t, 0, 0)
r t ′ = incSum(r t, o′′, d)

e′ = (power, energy − powermin)

msg(data(id, s, d, path), o′, o) exec(o) node(o, e, n, r t)
−∗ send(data(id, s, d, (path; o)), o, o′′) done(o) node(o, e′, n, r t ′)

140 F. Kazemeyni et al.

(Predict3)

n\{o′} = nil
msg(data(id, s, d, path), o′, o) exec(o) node(o, e, n, r t)

−∗ done(o) node(o, e, n, r t)

(reward)

e′ = (power, energy − powermin)

r t ′ = reward(r t, o′, d)
msg(ack(id, o′), d, o) exec(o) node(o, e, n, r t)

−∗ done(o) node(o, e′, n, r t ′)

(acknowledgement)

e′ = (power, energy − powermax)

msg(data(id, s, d, path), o, d) exec(d) node(d, e, n, r t)
−∗ ack All(id, d, path) done(d) node(d, e′, n, r t)

ack All(id, d, [o]) = ◦
ack All(id, d, (o; o′; path)) = if o ∈ path then ack All(id, d, (o′; path))

else msg(ack(id, o′), d, o) ack All(id, d, (o′; path))

The Predict2 rule uses the prediction function. It is a recursive function which
chooses one of the node’s neighbors with the best estimation regarding the related link
reliability(lr) and in-range probability(ep) and the accumulated rewards in the reward
table regarding each neighbor. It also calls the calcRew function which calculates the
stored rewards in the reward table for each neighbor node. The ; symbol connects an
element or a sublist to a list, and [o] denotes the singleton list of o alone. Functions
firstNode(r t), secondNode(r t), numOfRecMsg(r t), and numOfSentMsg(r t), return
the node’s neighbor, the destination, the number of messages sent through this neigh-
bor, and the number of these messages received by the destination, respectively.

function prediction((n1; n2), r t, o, o′, o′′, t, i, f) =
if f ′ > f and t < time(n1)

then prediction(n2, r t, o, o′, o′′, t, nodeI D(n1), f ′)
else prediction(n2, r t, o, o′, o′′, t, i, f)

where f ′ = (calcRew(r t, i, o) × (lr(n1) × ep(n1))).

Formal Modeling and Analysis of Learning-Based Routing 141

function calcRew((r t1; r t2), o1, o2) =
if firstNode(r t1) = o2 and secondNode(r t1) = o2

then numOfRecMsg(r t1)/numOfSentMsg(r t1)

else calcRew(r t2, o1, o2).

6 Implementation and Analysis

In order to implement and analyze the proposed model, we transform the SOS style
model to rewriting logic (RL) [4]. It can be executed on the rewriting logic tool
Maude, which provides a range of model verification and analysis facilities. As
before, a system configuration is a multiset of objects and messages inside curly
brackets. Following rewriting logic (RL) conventions, whitespace denotes the asso-
ciative and commutative constructor for configurations. In our Maude model, the
term

∀O : Node | Attributes〉

denotes a Node object, where O is the object identifier, and Attributes a set
of attributes of the form Attr : X where Attr is the attribute name and X the
associated value. RL extends algebraic specification techniques with transition rules:
The dynamic behavior of a system is captured by rewrite rules supplementing the
equations which define the term language. From a computational viewpoint, a rewrite
rule t −∗ t ′ may be interpreted as a local transition rule allowing an instance of
the pattern t to evolve into the corresponding instance of the pattern t ′. In our model,
successful messages have the general form

(M from O to O’)

where M is the message body (possibly with parameters), O the source, and O’ the
destination. In broadcast messages, the destination is replaced by all which is a
constructor indicating that the message is sent to all nodes within range. In our model,
each link has a probability which reflects the link’s reliability. Therefore, the chance
of losing messages depends on that link, captured by the rule

rl (send M from O to O’)
−∗ if sampleBernoli(LinkP(O,O’)) then (M from O to O’) else None fi .

letting send M from S to O’ represent messages not yet delivered, and where
LinkP(O,O’) is the probability reflecting the reliability of the link between Nodes
O and O’, and None is the empty configuration.

A complete set of Maude rules of both the centralized and the decentralized
protocol is presented in [31].

We used the dataset of iMotes devices in the Intel Research Cambridge Corporate
Laboratory [32] to evaluate the performance of the centralized and the decentralized

142 F. Kazemeyni et al.

models. An iMote is a small and self-contained device, which is able to communicate
with the other iMotes through radio links. This dataset represents Bluetooth sightings
of the iMotes nodes which are carried by some 16 admin staff and researchers of
Intel’s lab for six days, in January 2005. One iMote is placed at a kitchen as the
stationary node. Only the information of 9 iMotes are available, because the others
had been reset frequently. Each row of the dataset includes a pair of these iMote nodes
which meet (are within each others’ radio communication range), in addition to the
starting time and the length of this meeting. The information about the reliability of
links is not available in the dataset. So, we assigned the same value of 3/4 to all the
links between all the nodes. That is, we assume that the links are fairly reliable, which
is a reasonable assumption, otherwise the very attempt to use such a WSN should be
questioned. Note that as mentioned in Sect. 3, links may be available but not reliable
(e.g. because of environmental conditions such as foggy weather). In other words,
a message that is transmitted between two nodes which are in each others’ range,
may still be lost because of link unreliability. In the decentralized protocol, a sender
node chooses a neighbor node from its current set of neighbors. In the centralized
protocol, the path is already chosen by the processing node. If the next node in the
path is not in the neighborhood, the message will be lost.

We assume that nodes use a given transmission power to reach their neighbors (the
node’s minimum power), and also that this transmission power is two times larger
than the cost of receiving a message; broadcasting is done with the maximum power.
Using such power ratio frees our experiment from any particular radio model. In our
experiments, we assume all nodes can reach a processing node and nodes (except the
stationary one) move according to the dataset’s specification. Every node has an initial
energy budget of 1000 units. Finally, we run experiments to investigate the protocol’s
efficiency (energy-cost), effectiveness (delivery rates) and also to investigate some
of its formal properties.

6.1 Investigating the Protocol’s Efficiency

In the first experiment, each node sends one single data message to the sink. The
purpose of this experiment is to study the overhead cost of the learning phase in these
protocols, as well as the cost incurred by the nodes in the centralized approach in
updating the processing node every time they move. Figure 2 compares the average
remaining energy of all the nodes which send the data message by using centralized
and decentralized protocols after running the simulation for 3000 time ticks. The
figure shows that the decentralized protocol consumes nearly 1/3 less energy than
the centralized protocol at the end of simulation run. Since there is one message
being delivered, we claim that the process of keeping the processing node updated
is to be blamed as a non-trivial consumer of energy. One could argue that we should
have compared our protocols with another protocol, for instance the power-sensitive
AODV [33] (a modified version of AODV which finds the cheapest routing path
instead of the shortest one). We argue that we would not learn anything because the

Formal Modeling and Analysis of Learning-Based Routing 143

Fig. 2 The comparison of the average energy consumption of the centralized and the decentralized
routing protocols for one data message

power-sensitive AODV does not have a learning phase and since there is only one
message being sent, therefore the comparison of the power-sensitive AODV would
not be realistic.

We did another experiment to study the power consumption of the network when
all the nodes regularly send data messages. This experiment which studies several
data messages, includes a comparison to the power-sensitive AODV protocol. In
this experiment, each node sends 50 data messages. The data messages are sent from
different nodes to the sink node, at random times during the simulation. Figure 3 rep-
resents the average of the remaining energy of all nodes during running the decen-
tralized, the centralized and the power-sensitive AODV routing protocol models.
Again, each simulation runs for 3000 time ticks, and we assume there is no message
interference in the network. This experiment, which is more faithful to the normal
operation of a WSN, allows one to better appreciate the cost of the route requests in
the centralized protocol (in addition to the cost of maintaining the processing node
up-to-date).

For comparison with our protocols, we now add the power-sensitive AODV pro-
tocol to our experiment. In the power-sensitive AODV, we assume that the links are
not probabilistic and they always exist and the messages always reach the sink. Note
that those are rather optimistic assumptions. In the power-sensitive AODV, each time
that a node needs to send a message after it moves, it needs to request a new routing
path to the sink. This process is done by broadcasting several route request messages
through intermediary nodes. These messages are followed by route reply messages.

144 F. Kazemeyni et al.

Fig. 3 The comparison of the average remaining energy of nodes in the decentralized protocol, the
centralized protocol (1) and the centralized protocol (2)

This routing path discovery process is costly for the network. We assume that nodes
also use their minimum power to broadcast the messages in the power-sensitive
AODV. As before, both the centralized and the decentralized protocols spend some
time in the beginning for learning. We also investigated two scenarios for the cen-
tralized protocol. In the first scenario (denoted as “centralized protocol (1)”), we
assume, as in the previous experiment, that communicating with the processing node
is as costly as communicating with a neighbor node. The second scenario (denoted
as “centralized protocol (2)”) has similar situation as the first scenario except that
nodes use twice as much power to communicate with the processing node. While
this improves the chances that a processing node is reached, it also consumes more
energy, i.e., these scenarios investigate the power consumption of the network when
the cost of reaching the processing node increases. The results show that in the long
term the decentralized protocol consumes 45.9, 53.5 and 59.7 % less power than the
first and second scenarios of the centralized protocol and the power-sensitive AODV
protocol, respectively. In addition, we note that (i) the centralized and the decentral-
ized protocols consume less energy than the power-sensitive AODV protocol, and (ii)
the decrease in the average amount of remaining energy is relatively less pronounced
for the decentralized protocol, which is a desirable feature as well. For a better repre-
sentation of the protocols’ energy consumption characteristics, we generated graphs
which show the maximum, average and minimum amount of the energy consumed by
all the nodes in a simulation. The scenario is the same as considered in Fig. 3. These
graphs are generated for the decentralized protocol (Fig. 4), the centralized protocol

Formal Modeling and Analysis of Learning-Based Routing 145

Fig. 4 The comparison of maximum, average and minimum amount of the remaining energy of
the nodes in the decentralized protocol

Fig. 5 The comparison of maximum, average and minimum amount of the remaining energy of
the nodes in the centralized protocol (1)

146 F. Kazemeyni et al.

Fig. 6 The comparison of maximum, average and minimum amount of the remaining energy of
the nodes in the centralized protocol (2)

(1) (Fig. 5) and the centralized protocol (2) (Fig. 6). As expected the gap between
maximum and minimum is relatively tighter in the centralized version, suggesting
that it is more robust.

In our last experiment in this section, all nodes continue moving and sending
messages at random intervals until the first node dies, i.e., it runs out of energy. In
both the centralized and the decentralized protocols, we show the minimum amount
of energy among all nodes. Here we compare only the centralized protocol (1) and
the decentralized protocol. Figure 7 shows that the first node dies in the centralized
protocol after approximately 5000 time ticks, while the most deplete node in the
decentralized protocol still has almost half of its initial energy budget. This exper-
iment suggests that the life time of the network when applying the decentralized
protocol is at least twice as long than when using the centralized protocol.

6.2 Investigating the Protocol’s Delivery Rate

While the above experiments explain the energy efficiency of the discussed routing
protocols we also need to consider their effectiveness, i.e., what are their actual
delivery rates. After all a highly efficient protocol that does not lead to a good
delivery rate is of very little practical use.

Formal Modeling and Analysis of Learning-Based Routing 147

Fig. 7 The comparison of minimum remaining energy of nodes in the decentralized and the cen-
tralized protocol

Considering the successful message transmission rate as the metric of interest,
the centralized protocol, as expected, is more effective than the decentralized. On
average, the successful message transmission rate of the centralized protocol is
87.1 %, while it is 83.6 % for the decentralized protocol. According to the average
power consumption in Fig. 3, the decentralized protocol uses nearly 50 % less power
than the centralized protocol at the cost of being merely about 4 % less effective.
We believe this is quite acceptable trade-off. Furthermore, we note that even though
the decentralized protocol made wrong decisions in a few cases, in other cases the
centralized approach was not able to deliver its message due to unreachability of the
processing nodes. That is, the decentralized protocol revealed itself as a very good
alternative to the centralized one, as well to the power-sensitive AODV protocol.

6.3 Investigating the Formal Properties of the Protocol

In addition to the quantitative analysis of the performance of the discussed routing
protocols, we took the advantage of the formal modeling methods to prove the validity
of the model, according to a correctness property. The correctness of the routing
protocols is formalized as a Linear Temporal Logic (LTL) formula

�(MSG(m, s, d) ⇒ MPP(m, s, d))

148 F. Kazemeyni et al.

The predicate MSG(m, s, d) is true if a data message m is sent from node s to
node d. The predicate MPP(m, s, d) is true if the chosen routing path for m is the
most probable path between nodes s and d. Note that this formula does not guarantee
the delivery of messages (due to the unreliability of links). This formula means that
in all states of the system, the most probable paths (based on the information up to
the current time) are chosen for messages. MPP is defined separately for the two
versions of protocol. The centralized protocol uses available global information and
the decentralized one uses available local information to calculate the value of MPP.
The Maude environment has a search tool that searches for failures (the negation of
the correctness property) through all possible behaviors of the model. We used this
tool to search all the reachable states of the system to find out if the most probable
path is always chosen. For this experiment, nodes only send one message to have a
limited search state space. The search tool did not find any violation of the property,
meaning that the expected routing path is chosen in all the reachable traces of the
model’s run, thus asserting the correctness of the learning-based routing protocol.

7 Conclusion

In this chapter, we have proposed a model for learning-based protocols. We have
integrated the rules required for learning the observables with a probabilistic model
of WSNs. The model includes the concept of a fact-base, which consists of the
scheduled actions that happen in certain orders. We have defined a routing protocol
which includes the Bayesian learning method to predict the best routing path. This
protocol has centralized and decentralized versions. We have used Maude to model
the routing protocol and to formalize the Bayesian learning method. Besides applying
Maude facilities to analyze the model, we provided more realistic analysis by feeding
the model by a real dataset and managing quantitative data analysis. The results show
a trade-off between two versions of the protocol. The centralized one is slightly more
effective (higher delivery rate), while the decentralized one is much more efficient.
Both versions of the protocol outperform the PS-AODV protocol in term of efficiency
and are also more robust, especially the decentralized one. We have qualitatively
analyzed the protocol and proved that the protocol satisfies its correctness property.

In future work, we are going to refine the protocol by capturing more detailed
patterns from the node movements, e.g. temporal patterns. We also plan to perform
probabilistic reasoning of the model via statistical model checking.

References

1. Dijkstra, E.W.: A note on two problems in connection with graphs. Numer. Math. 1, 269–271
(1959)

2. Mitchell, T.M.: Machine Learning (ISE Editions). McGraw-Hill, Boston (1997)

Formal Modeling and Analysis of Learning-Based Routing 149

3. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Quesada, J.F.: Maude:
specification and programming in rewriting logic. Theoret. Comput. Sci. 285, 187–243 (2002)

4. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theoret. Comput.
Sci. 96, 73–155 (1992)

5. Kazemeyni, F., Owe, O., Johnsen, E.B., Balasingham, I.: Learning-based routing in mobilewire-
less sensor networks: applying formal modeling and analysis. In: Proceedings of IEEE 14th
International Conference on Information Reuse and Integration—Workshop on Formal Meth-
ods Integration (FMi’13), pp. 1–8. IEEE (2013)

6. Olagbegi, B.S., Meghanathan, N.: A review of the energy efficient and secure multicast routing
protocols for mobile ad hoc networks. CoRR, abs/1006.3366 (2010)

7. Liu, M., Cao, J., Chen, G., Wang, X.: An energy-aware routing protocol in wireless sensor
networks. IEEE Sens. 9(1), 445–462 (2009)

8. Wang, J., Cho, J., Lee, S., Chen, K-C., Lee, Y-K.: Hop-based energy aware routing algorithm
for wireless sensor networks. IEICE Trans. 93-B(2), 305–316 (2010)

9. Stojmenovic, I., Lin, X.: Power-aware localized routing in wireless networks. IEEE Trans.
Parallel Distrib. Syst. 12(11), 1122–1133 (2001)

10. Uddin, M.Y.S., Ahmadi, H., Abdelzaher, T., Kravets, R.: A low-energy, multi-copy inter-contact
routing protocol for disaster response networks. In: Proceedings of 6th Annual IEEE commu-
nications society conference on Sensor, Mesh and Ad Hoc Communications and Networks
(SECON’09), pp. 637–645. IEEE Press (2009)

11. Arroyo-Valles, R., Alaiz-Rodriguez, R., Guerrero-Curieses, A., Cid-Sueiro, J.: Q-probabilistic
routing in wireless sensor networks. In: Proceedings of 3rd International Conference on Intel-
ligent Sensors, Sensor Networks and Information (ISSNIP’07), pp. 1–6 (2007)

12. Barrett, C.L., Eidenbenz, S.J., Kroc, L., Marathe, M., Smith, J.P.: Parametric probabilistic
routing in sensor networks. Mob. Netw. Appl. J. 10, 529–544 (2005)

13. Lindgren, A., Doria, A., Schelén, O.: Probabilistic routing in intermittently connected networks.
ACM SIGMOBILE Mob. Comput. Commun. Rev. 7, 19–20 (2003)

14. Wang, P., Wang, T.: Adaptive routing for sensor networks using reinforcement learning. In:
Proceedings of the Sixth International Conference on Computer and Information Technology
(CIT ’06), pp. 219–219. IEEE Computer Society (2006)

15. Pandana, C., Liu, K.J.R.: Near-optimal reinforcement learning framework for energy-aware
sensor communications. IEEE J. Sel. Areas Commun. 23, 209–232 (2002)

16. Coleri, S., Ergen, M., Koo, T.J.: Lifetime analysis of a sensor network with hybrid automata
modelling. In: Proceedings of first ACM International Workshop on Wireless Sensor Networks
and Applications (WSNA’02), pp. 98–104. ACM (2002)

17. Fehnker, A., van Hoesel, L., Mader, A.: Modelling and verification of the LMAC protocol for
wireless sensor networks. In: Proceedings of the 6th International Conference on Integrated For-
mal Methods (IFM’07). Lecture Notes in Computer Science, vol. 4591, pp. 253–272. Springer
(2007)

18. Tschirner, S., Xuedong, L., Yi, W.: Model-based validation of QoS properties of biomedical
sensor networks. In: Proceedings of the 8th ACM & IEEE International conference on Embed-
ded software (EMSOFT’08), pp. 69–78. ACM (2008)

19. Johnsen, E.B., Owe, O., Bjørk, J., Kyas, M.: An object-oriented component model for het-
erogeneous nets. In: Proceedings of the 6th International Symposium on Formal Methods for
Components and Objects (FMCO 2007). Lecture Notes in Computer Science, vol. 5382, pp.
257–279. Springer (2008)

20. Ölveczky, P.C., Thorvaldsen, S.: Formal modeling, performance estimation, and model check-
ing of wireless sensor network algorithms in real-time maude. Theoret. Comput. Sci. 410(2–3),
254–280 (2009)

21. Katelman, M., Meseguer, J., Hou, J.C.: Redesign of the LMST wireless sensor protocol through
formal modeling and statistical model checking. In: Proceedings of the 10th International
Conference on Formal Methods for Open Object-Based Distributed Systems (FMOODS’08).
Lecture Notes in Computer Science, vol. 5051, pp. 150–169. Springer (2008)

150 F. Kazemeyni et al.

22. Dong, J.S., Sun, J., Sun, J., Taguchi, K., Zhang, X.: Specifying and verifying sensor networks:
an experiment of formal methods. In: 10th International Conference on Formal Engineering
Methods (ICFEM’08), Lecture Notes in Computer Science, vol. 5256, pp. 318–337. Springer
(2008)

23. Kulkarni, S.A., Rao, G.R.: Formal modeling of reinforcement learning algorithms applied for
mobile ad hoc network. Int. J. Recent Trends Eng. (IJRTE) 2, 43–47 (2009)

24. Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: a survey. J. Artificial
Intell. Res. 4, 237–285 (1996)

25. Box, G.E.P., Tiao, G.C.: Bayesian Inference in Statistical Analysis (Wiley Classics Library).
Wiley-Interscience, New York (1992)

26. Shakya, S., McCall, J., Brown, D.: Using a Markov network model in a univariate EDA:
an empirical cost-benefit analysis. In: Proceedings of the 2005 Conference on Genetic and
Evolutionary Computation, GECCO’05, pp. 727–734. ACM (2005)

27. Dorigo, M., Stutzle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)
28. Plotkin, G.D.: A structural approach to operational semantics. J. Logic and Algebraic Program.

(JLAP) 60–61, 17–139 (2004)
29. Kalbfleisch, J.G.: Probability and Statistical Inference, Vol. 1: Probability (Springer Texts in

Statistics). Springer, Secaucus (1985)
30. Agha, G., Meseguer, J., Sen, K.: PMaude: rewrite-based specification language for probabilistic

object systems. Electron. Notes Theoret. Comput. Sci. 153(2), 213–239 (2006)
31. Kazemeyni, F., Owe, O., Johnsen, E.B., Balasingham, I.: Learning-based routing in mobile

wireless sensor networks: formal modeling and analysis for WSNs. Technical Report ISBN
82-7368-390-7, Department of Informatics, University of Oslo (2013)

32. Scott, J., Gass, R., Crowcroft, J., Hui, P., Diot, C., Chaintreau, A.: CRAWDAD trace:
cambridge/haggle/imote/intel (v. 2006–01-31). http://crawdad.cs.dartmouth.edu/cambridge/
haggle/imote/intel (2006)

33. Kazemeyni, F., Johnsen, E.B., Owe, O., Balasingham, I.: Formal modeling and validation of
a power-efficient grouping protocol for WSNs. J. Logic Algebraic Program. (JLAP) 81(3),
284–297 (2012)

http://crawdad.cs.dartmouth.edu/cambridge/haggle/imote/intel
http://crawdad.cs.dartmouth.edu/cambridge/haggle/imote/intel

On the Use of Anaphora Resolution
for Workflow Extraction

Pol Schumacher, Mirjam Minor and Erik Schulte-Zurhausen

Abstract In this chapter we present three anaphora resolution approaches for
workflow extraction. We introduce a lexical approach and two further approaches
based on a set of association rules which are created during a statistical analysis
of a corpus of workflows. We implement these approaches in our generic work-
flow extraction framework. The workflow extraction framework allows to derive a
formal representation based on workflows from textual descriptions of instructions,
for instance, of aircraft repair procedures from a maintenance manual. The frame-
work applies a pipes-and-filters architecture and uses Natural Language Processing
(NLP) tools to perform information extraction steps automatically. We evaluate the
anaphora resolution approaches in the cooking domain. Two different evaluation
functions are used for the evaluation which compare the extraction result with a
golden standard. The syntactic function is strictly limited to syntactical comparison.
The semantic evaluation function can use an ontology to infer a semantic distance
for the evaluation. The evaluation shows that the most advanced anaphora resolu-
tion approach performs best. In addition a comparison of the semantic and syntactic
evaluation functions shows that the semantic evaluation function is better suited for
the evaluation of the anaphora resolution approaches.

Keywords Workflow extraction · Process oriented case-based reasoning · Informa-
tion extraction · Anaphora resolution

P. Schumacher (B) · M. Minor · E. Schulte-Zurhausen
Goethe Universität Frankfurt - Institut für Informatik - Lehrstuhl für Wirtschaftsinformatik,
60325 Frankfurt am Main, Germany
e-mail: schumacher@cs.uni-frankfurt.de

M. Minor
e-mail: minor@cs.uni-frankfurt.de

E. Schulte-Zurhausen
e-mail: eschulte@cs.uni-frankfurt.de

T. Bouabana-Tebibel and S. H. Rubin (eds.), Integration of Reusable Systems, 151
Advances in Intelligent Systems and Computing 263, DOI: 10.1007/978-3-319-04717-1_7,
© Springer International Publishing Switzerland 2014

152 P. Schumacher et al.

1 Introduction

Traditionally, workflows are “the automation of a business process, in whole or part,
during which documents, information or tasks are passed from one participant to
another for action, according to a set of procedural rules” [1]. Recently, a broader
notion is emerging, where a workflow describes any flow of activities in the sense
of an instruction whose execution is supported automatically. For instance, a repair
instruction for an aircraft can be described by a workflow including some activities.
The workflow participants are one or several technicians who conduct the repair
activities. This is not any more a classical workflow supporting a business process.

However, the notion of a workflow for such an instruction provides many ben-
efits: Graphical workflow modeling languages can be used to visualize the instruc-
tions making them easy to understand. Workflow management systems can be used
for workflow execution providing a step-by-step guidance for the users. The work-
flow execution can be tracked easily to fulfill regulatory requirements with respect
to quality management, traceability issues etc. The workflows can be reused and
adapted to new situations. This can be supported by reasoning methods like those of
case-based reasoning (CBR) [2]. Recently, process-oriented Case-Based Reasoning
(POCBR) emerged as a new branch of CBR [3]. This field of research investigates
new reasoning approaches to handle procedural knowledge. Several approaches for
retrieval [4–6] and adaptation [7] of workflows have been presented.

Workflow modeling is a laborious task that consumes a lot of human effort for
different artifact A workflow consists of a control-flow and a data-flow. A set of
activities combined with control-flow-structures like sequences, parallel or alter-
native branches, and loops forms the control-flow. In addition, activities consume
resources and create certain products which both can be physical matter (such as
cooking ingredients or a screw) or information. The data-flow describes the interac-
tion of activities with resources and products. Automated assistance can be achieved
by transforming textual descriptions of instructions into formal workflow models. A
large amount of such instruction texts from different domains is readily available,
e.g., on cooking recipes, on computer-how-tos or on the processing of an order from
a customer. Recently, the extraction of workflows from text has been investigated in
research on process-oriented Case-Based Reasoning (POCBR) [8, 9].

Workflow extraction has to face several challenges. It has to identify the activities
and to organize them in a control-flow. Further, the control-flow has to be enriched
with the data-flow. Frequently, the data-flow has to be completed since the textual
description of the data-flow is incomplete due to the human economy of language.
For instance, the references from a component of an aircraft to its constituents are
not expressed explicitly in the text even if the constituents have been mentioned
before. Further, the extraction process has to fulfill non-functional requirements
like robustness and scalability. The issue of domain-dependency requires special
attention. On the one hand side, a framework for workflow extraction should cover
several domains to create some impact. On the other hand, some components of the

On the Use of Anaphora Resolution 153

extraction process need to be domain-specific to achieve valuable results. An optimal
balance between both is a non-trivial research goal.

The chapter is an extended and revised version of our earlier work [10]. We
presented a novel, extensible pipes-and-filters framework for the extraction of work-
flows from textual process descriptions in an arbitrary domain. In this chapter we
perform an additional semantic evaluation. We compare a syntactic evaluation which
is based on an exact match (based on a lexical comparison) of the case with a golden
standard and a semantic evaluation which allows a partial match (by means of an
ontology based similarity measure) of the test case and the golden standard. We
investigate the impact of the evaluation method on the result. The chapter is orga-
nized as follows. In the next section we describe the pipes-and-filters framework.
The third section presents how the framework is applied to set-up a sample domain.
The subsequent section introduces the data-flow creation with a focus on anaphora
resolution approaches. In an evaluation, different anaphora resolution approaches
are compared. We present two function to measure the performance of the data-flow
creation. One function is based on syntactic information and the other one uses syn-
tactic and semantic features. The chapter closes with a discussion of related work, a
brief conclusion and an outlook on future work.

2 Workflow Extraction Framework

Systems which process natural language need to be robust and scalable. A large
corpus of frameworks for generic NLP (Natural Language Processing) tasks exist
(e.g., GATE,1 Stanford Parser2 or OpenNLP3). We have developed a generic frame-
work on top of these that is dedicated especially to workflow extraction from text.
It focuses on the workflow specific structures and operations. The capabilities of the
framework include the identification of activities, organizing them in a control-flow,
and enriching the control-flow by a data-flow. The framework is based on a pipes and
filter architecture [11], i.e., it consists of subsequent extraction components called
filters. The architecture of the framework is domain independent. However, some of
the particular filters are domain specific. The language in process descriptions has a
specific style, e.g., the steps are in the correct order and mainly active voice is used
[12]. For instance, aircraft maintenance manuals are written in simplified technical
English which is a controlled language whose rules are defined in a specification [13].

1 http://www.gate.ac.uk
2 http://www.nlp.stanford.edu/software/
3 http://www.opennlp.apache.org

http://www.gate.ac.uk
http://www.nlp.stanford.edu/software/
http://www.opennlp.apache.org

154 P. Schumacher et al.

Fig. 1 Sample workflow for cooking rocket pasta with vegetable

2.1 Workflow Representation

The target of workflow extraction is a formal representation of the workflow in a
workflow description language [1]. We have chosen an XML-based language [14]
that is part of the CAKE4 system. It is a block-oriented workflow description lan-
guage: The control-flow can contain sequences, XOR-, AND-, LOOP-blocks. These
building blocks cannot be interleaved but they can be nested. In addition an activity
has a set of semantic-descriptors, resources and products. A semantic descriptor is
for example the name of the task or additional information which describes “how”
a task should be performed, e.g., “for 10 min”. Please note that this information
is stored as a text rather than a formal temporal notation. Resources and products
contain a set of semantic information, these describe additional information about
the resources, e.g., amounts or if a resource should be preprocessed like “chopped”.
Figure 1 shows a sample workflow which was extracted of the recipe of Listing 1.1.
The rounded rectangles are the activities, the grey rectangles are the products, and the
grey ovals are semantic-descriptors. The first activity is “saute” with the resources
“onion” and “green pepper”. In addition, it contains the semantic-descriptors “In
a large skillet” and “until tender”. The activities “saute”, “add”, “boil”, “add” and
“mix” are aligned in a sequence. The data-flow of the sample is not complete as it
only contains resources.

2.2 Information Extraction Software

Our framework uses the NLP software SUNDANCE (Sentence UNDerstanding ANd
Concept Extraction) developed by Riloff and Phillips [15]. SUNDANCE performs
the usual NLP task like tokenization or part of speech tagging. Our previous work
has shown that SUNDANCE has good balance between coverage and robustness [8].

SUNDANCE has been inspired by the conceptual dependency theory published
by Schank [16]. The theory aims at illustrating how people think and process informa-
tion. It is based on three kinds of concepts, the nominal, the action, and the modifier. A
sentence or a thought can be represented by those three types of concepts. Nominals

4 Collaborative Agile Knowledge Engine.

On the Use of Anaphora Resolution 155

are things that can be thought of without the need for relating them to other concepts.
It is usually used to represent things or people. The concept of an action is what
a nominal is doing. These actions are usually represented by a verb. The last type
of concept is the modifier, which specifies properties of a nominal or an action. A
sentence is built of one or more concepts and a concept may depend on another one
to get the whole meaning [16].

SUNDANCE allows to specify extraction patterns for the system called case
frames [17]. These patterns are similar to the concepts described in the concept
dependency theory. The SUNDANCE parser assigns syntactic roles (subject, direct
object, and indirect object) to text snippets based on a heuristic. Then the SUN-
DANCE information extraction engine tries to fill a case frame as follows. Each case
frame specifies a trigger phrase. If the trigger phrase is detected in a sentence, then
the according case frame is activated. This means that the activation functions of
the frame try to match the specified linguistic patterns with the syntactic roles. A
slot specifies a syntactic role whose content is to be extracted from the text. A filled
case-frame can be mapped to a task. The trigger phrase is the task-name and the
filled slot contains a list of products- or resources-names.

2.3 Extraction Pipeline

The framework is based on a pipes and filters [11] architecture. Such an application is
a sequence of filters which are connected by pipes. A filter is a self-contained element
which performs a data-transformation-step on the data-stream. The pipes channel the
data-stream from the output of a filter to the input of the subsequent filter. A data-
stream is sent through this pipeline and each filter is applied to the stream. Filters
can be added or deleted without affecting the other filters in the pipeline.

While a classical data-stream is pulsed using bits or bytes, our case-stream uses
cases as a pulse. A case is the smallest unit which can be processed by a filter. At the
beginning of the pipeline, the case initially consists of the textual process description.
While the case passes through the pipeline it is enriched with additional structure.
At the end of the pipeline we have a complete case consisting of the textual process
description and the formal workflow representation.

Our framework extends the original pipes and filters architecture. We allow two
different types of filters. The first one, the so called local filters operate with a focus
on one case. The second one, the window filters collect a part of the case-stream (e.g.,
5000 cases) and operate on that. The model of a window filter is necessary, because
the framework processes a stream of cases which is potentially infinite. The intention
is to use statistical methods for a larger number of textual process descriptions. The
statistical approaches benefit from the pipes and filter principle because we use them
on processed data. This intermediate data is the result of the preceding steps of
the extraction pipeline. It contains less noise and has more structure than the raw
input-data. The filters are hand-crafted by analyzing the textual process descriptions.

156 P. Schumacher et al.

Fig. 2 Overview of the extraction pipeline for the cooking domain

We refrain from using machine learning techniques to create the filters because the
effort to create a training-set is higher than the effort to build the filters by hand.

3 Workflow Extraction

The following section describes the different sub-tasks of the workflow extraction.
We describe the sub-tasks by using the cooking domain to illustrate the general
framework in a sample domain. Figure 2 illustrates the respective pipeline with a
sequence of filters. The filters can not be classified by means of sub-tasks, e.g., the
main task of the “AND Extractor”-filter is to detect a parallel control-flow but it also
creates new activities.

3.1 Linguistic Analysis

In the first filter, the linguistic analysis we use the SUNDANCE natural-language-
processing-system [15] to perform the standard language processing. During this
processing the recipe text is split into sentences (end of sentence detection). In the
next step the sentences are divided into tokens (tokenization). At the end the tokens
are tagged with their part-of-speech and syntactic role (subject, direct object, etc.).
SUNDANCE uses a set of heuristics to perform these tasks.

3.2 Recognition of Activities

They use pattern-matching to extract the activities. The first pattern (“Direct Object
Pattern”) searches for filled case-frames with a verb phrase in active voice and direct
object as slot. The second pattern (“PP Pattern”) is a filled case-frame with an active
verb phrase and a prepositional phrase. If no case-frame can be filled, it is checked
whether a verb or two verbs combined by a conjunction is at the beginning of the sen-
tence, for instance “Cover and cook.”. Sentences like this are quite difficult because

On the Use of Anaphora Resolution 157

they do not fit in a normal grammatical context. Therefore a special pattern (“Two
Verbs + Conjunction”) is needed for this frequently occurring structure.

3.3 Recognition of Resources

The “Resource list extractor” extracts the resources and the “Numeric value extractor”
extracts the related amounts. The resources are cleaned using an expert created stop-
list (“Clean resources using stop-list”). The step “Mine & apply anaphora rules is
explained in Sect. 4. We assume that the noun phrases which are related to activities
are resources. This leads to a quite high recall for the resources. The precision is too
low because a lot of items which are not a resource or product are extracted by the
filters, for instance cookware or tools. After analyzing the data we discovered that
most tools are used with an indefinite article (“a skillet”) while resources usually
have no article or definite article. For resources with an indefinite article we check if
we find a corresponding item in the ingredients list, if so it is considered as resource.
In the case we don’t find any corresponding item we eliminate that resource.

3.4 Building the Control-Flow

Currently our system is able to extract a sequential, parallel (“AND Extractor”) or
disjunctive control-flow (“XOR-Extractor”) for process descriptions of the cooking
domain. Extraction of a sequential control-flow is a straight forward procedure. Usu-
ally textual descriptions describe a process sequentially [12]. For the extraction of
disjunctive of disjunctive or parallel control-flow we analyzed the process descrip-
tions and looked for patterns which suggest a control-flow. We found that a small
number of patterns occurs very frequently which facilitates the extraction of a non-
sequential control-flow. There are different types of patterns. A very simple pattern
is for example the keyword “occasionally”. In a sentence like “Cook, stirring occa-
sionally for about 10 min.” we can extract the activity“cook” and “stir” which are
performed in parallel (see Fig. 3). Instructions which force to choose one of two ingre-
dients induce a disjunctive control-flow. The sentence “Add butter or margarine”,
e.g., suggest two activities “add” with either “butter” or “margarine” as ingredi-
ent (see Fig. 4). These two activities are on alternative paths. We found also some
patterns which use the additional structure which was provided by the description
authors. The authors usually divide the descriptions into steps and we preserve this
information during the extraction process. If we find the keyword “Meanwhile” as
first word of such a step, we can deduce that the activities of the previous step and
the activity of the step in which “Meanwhile” was found are executed in a parallel
control-flow.

158 P. Schumacher et al.

cook, stirring
occasionally + +

cook

stir

Before: After:

Fig. 3 Illustration of the application of the filter AND Extractor

Before:

add

butter or margarine

+ +

add

add

After:
margarine

butter

Fig. 4 Illustration of the application of the filter XOR Extractor

4 Data-Flow Creation and Evolutive Anaphora Resolution

The data-flow describes the flow of resources and products through the workflow.
The creation of a data-flow is a complex problem which is tied to the linguistic
problem of anaphora resolution. An anaphora is a linguistic entity which indicates
a referential tie to some other entity in the same text [18]. An evolutive anaphora
is an anaphoric reference to an object that has been destroyed or created [19]. In
workflow terminology, this is a reference to resources that have been consumed by
an activity. For example, the object “dough” is created by the activity “mix flour,
water and yeast”. In the context of workflow extraction anaphora resolution is the
determination of the activity in which an object is created. The resources consumed by
that activity are called constituents. In the above sample, “flour”, “water” and “yeast”
are the constituents of the anaphoric reference “dough”, produced by means of the
activity “mix”. Now, we introduce our method which is used to resolve evolutive
anaphoras in workflows. We use data-mining techniques to mine anaphora-rules

On the Use of Anaphora Resolution 159

which enables us to determine the activity an anaphora is referring to. The left side
of an anaphora-rule is a set of constituents and the right side contains the anaphora.

Listing 1.1 Sample recipe in XML format

<recipe>
<t i t l e>Rocket Pasta with vegetable</ t i t l e>
<resources><res>di ta l i</ res>
<res>rocket</ res><res>water</ res>
<res>herbs</ res><res>onion</ res>
<res>olives</ res><res>mushrooms</ res>
<res>garlic</ res><res>oregano</ res>
<res>green pepper</ res>
</ resources>
<steps><step>In a large skil let , saute onion
and green pepper until tender . Add garlic
mushrooms, olives and oregano .</ step>
<step>Boil water . Add di ta l i .</ step>
<step>Mix the cooked vegetable with the di ta l i and the rocket .</ step>
</ steps></ recipe>

Listing 1.2 Sample transactions for workflow in Fig. 1.

WorkflowId,TransactionTime,{Items}
0,0,{Ditali , rocket , water , herbs ,onion ,

mushrooms, garlic ,oregano , green pepper}
0,1,{onion , green pepper}
0,2,{garlic ,mushrooms, olives ,oregano}
0,3,{water}
0,4,{ di ta l i}
0,5,{rocket}

4.1 Mining Anaphora-Rules

We use a method for sequential pattern mining that was presented by Agrawal [20]
to mine anaphora-rules, because it is a well established method and straight forward
transfer to the workflow domain is possible. We are going to introduce the problem.
We derive workflow transactions with the fields workflow-id, task-position and the
items used in the transaction. The mining of anaphora-rules precedes the extraction of
control-flow, therefore the workflow is sequential at this stage. Quantities are omitted.
An item-set is a non-empty set of items. A sequence is an ordered list of item-sets. A
set of items can be mapped to a set of contiguous integers. Let o = (o1, o2, ..., om) be
an item-set where oi is an item. Let s = (s1, s2, ..., sn) be a sequence where si is an
item-set A sequence 〈a1, a2, ..., an∈ is contained in another sequence 〈b1, b2, ..., bm∈
if there exist integers i1 < i2... < in such that a1 → bi1 , a2 → bi2 , ..., an → bin . A
workflow supports a sequence s if s is contained as a sequence of activities in this
workflow. The support for a sequence is defined as the fraction of workflows in total
which support this sequence. The problem of mining sequential patterns is to find

160 P. Schumacher et al.

the maximum sequences which have a certain user-specified minimum support. By
restricting the length of the sequential pattern to two item-sets, we get anaphora-rules.
In addition we create a transaction with an item-set corresponding to the ingredient
list and the transaction-time zero. Listing 1.2 displays the transactions which were
created from the workflow in Fig. 1. It assumes that the workflow has the id 0. The
items at the transaction at time 0 are extracted from the corresponding ingredient list
of the original recipe. For the details of the sequential pattern mining algorithm we
refer to the original paper [20]. In addition, the sequences of the sequential patterns
do not need to be maximal. The algorithm delivers a set of anaphora rules with a
corresponding support value. The minimum support value which is used is 0.005.
This value is domain dependent and must be tuned during the adaptation of the filter
for a new domain.

Listing 1.3 Top 10 patterns by support value.

0.025: <item=butter><item=dough>
0.024: <item=butter><item=mixture>
0.024: <item=flour><item=batter>
0.021: <item=eggs><item=batter>
0.021: <item=flour><item=dough>
0.018: <item=yeast><item=dough>
0.016: <item=baking powder><item=batter>
0.016: <item=butter><item=batter>
0.015: <item=garlic><item=mixture>
0.015: <item=vanilla><item=batter>

4.2 Creation of Data-Flow

The rule-set is improved by using two observations about evolutive anaphoras which:

1. Anaphoras are not enumerated in the resource list.
2. Constituents of an anaphora are used before the anaphora or are part of the resource

list.

The first observation enables us to delete a lot of wrong rules. The algorithm creates
rules whose right side contains items which are initial resources. Initial resources
are all the resources which are not produced by an activity in the workflows. Usually
textual process descriptions contain a list with the initial resources. In the domain of
cooking this is the ingredients list, in the aircraft maintenance domain it is the list
of parts needed to perform a reparation. All rules whose right side contains such an
initial resource are omitted. The second observation is essential for the application of
anaphora-rules. During the application, first a candidate list is generated by selecting
all the rules whose right side is matching the anaphora then we check if the second
observation holds. All rules for which the second observation does not hold are
dropped from the candidate list.

On the Use of Anaphora Resolution 161

Fig. 5 Illustration of OPM, ARM and FMS

The creation of the data-flow begins with extraction of the first use of a resource.
In a second step, the products of the activities have to be determined. It is necessary to
perform anaphora resolution to detect the correct products. At the end, the resources
of the activities are completed with the products of the respective preceding activity.
We implemented three different approaches which we are going to introduce.
One pattern method (OPM) (see Fig. 5) is based on the observation, that a lot of
anaphoras contain the token “mixture”. This approach searches for resources which
contain this token. If such a resource is found, we perform a backward search for the
name-giving resource of a mixture e.g., “flour” is the name-giving resource of “flour
mixture”. For those activities it is checked, if they contain multiple resources. A sole
product name-giving resource + “mixture” is created for that activity. At the end, the
data-flow is completed by copying the products as resources to the next activity. For
Fig. 5 the resource “flour mixture” is found at the activity “knead”. After deleting the
token “mixture” we get the resource “flour”. We search for the resource “flour” in
the preceding activities and find it at the activity “combine”. This activity uses four
resources. We assume now, that the activity combine produces the product “flour
mixture”.
Anaphora-rule method (ARM) (see Fig. 5) includes OPM in addition it iterates over
all activities, starting at the first. For each resource of the activity, it is checked, if
there is an association rule with a matching right side. If such a rule is found, it is

162 P. Schumacher et al.

looked if one of the previous activities has a matching resource for the left side of
the rule. We assume then that the anaphora enters the workflow at the activity where
the left side of the rule is found. Therefore we add the right side of the rule (the
anaphora) as sole product of that activity. In the case that multiple rules are found,
the one with the best support value is chosen. In Fig. 5 the search for a right side
of a rule resulted with the resource “dough”. When a match is found, the algorithm
searches the preceding activities for the resources of the left side of the rule “flour,
eggs, water”. These resources are linked to the activity “combine”. Although the
activity has more resources than the left side of the rules enumerates (the resource
“olives” is not included in the rule) the sole product “dough” is created for the activity
“combine”.
Filter method (FM) includes ARM and a domain specific list of items is added. This
list is used to filter out items which are incorrectly extracted as resource. In the
cooking domain this list is used to filter out cooking ware.

5 Evaluation

This section describes our hypothesis and our evaluation approach. The performance
of the different methods was measured using the evaluation functions which are based
on Precision, Recall and F-measure [21]. We developed a syntactic and semantic
version of Precision, Recall and F1-Measure dedicated to workflow extraction. The
syntactic evaluation function uses a simple lexical comparison to decide whether
an element of the extracted workflow is matching a golden standard workflow or
not. The semantic evaluation function uses a similarity measure which derives a
similarity value of an ontology. Each hypothesis is tested with both types of evaluation
functions. We tested the following three hypotheses:

1. The data-flow created by OPM has the best precision in comparison to ARM and
FM.

2. The data-flow created by ARM has a better recall than OPM.
3. The data-flow created by FM has the highest F-measure in comparison to OPM

and ARM.

5.1 Experimental Set-Up

The experiment was performed on a set of 37 recipes. These recipes were selected
randomly from a set of 36 898 recipes which were crawled from a cooking community
website.5 A human expert modeled the data-flow for the recipes in the test set. This
means that the human expert added the resources and products to every task in a

5 www.allrecipes.com

www.allrecipes.com

On the Use of Anaphora Resolution 163

given workflow. These test cases serve as the golden standard for the evaluation.
This evaluation aims at the data-flow therefore the expert got the control-flow which
was automatically extracted as framework for the golden standard workflow. This
approach eliminates the paraphrasing and granularity problem of the control-flow.
The paraphrasing problem is the problem that the same process can be described by
different workflows. The granularity problem is the problem of handling the different
levels of abstraction which can be used to formalize a process using a workflow. The
expert was allowed to use all resources and products that she thought should be in the
data-flow, even if they were not mentioned in the text. So we got a semantically correct
data-flow. The only constraint was that the expert was not allowed to use synonyms
for products which were mentioned in the original recipe texts. If a product was
mentioned in the text, this term must be used in the data-flow. This restriction should
reduce the paraphrasing problem for the data-flow.

5.2 Syntactic-Based Evaluation

We adapted recall, precision, and F-measure to our scenario. Every activity in the
golden standard workflow had per definition a corresponding activity in the evaluated
workflow. We are handling the elements in the products and resources sets separately,
if a product is missing once in the input and once in the output set, it counts twice
even if it’s the same item. We are going to define the evaluation function formally.

Let T and T ∗ be sets of activities of the workflows W and W ∗. W ∗ is the golden
standard workflow. Each activity t ≤ T has a corresponding activity t ∗ ≤ T ∗ which
are equal except for the resource and product sets. Let I and I ∗ be resource sets and
O and O ∗ product sets for the activities t and t ∗. The precision for an activity t ≤ T
is defined as:

precision(t) = | I √ I ∗ | + | O √ O ∗ |
| I | + | O |

The recall for an activity is defined as:

recall(t) = | I √ I ∗ | + | O √ O ∗ |
| I ∗ | + | O ∗ |

This leads to the evaluation functions for a workflow:

precision(W) = 1

| T |
|T |∑

i=1

precision(ti)

recall(W) = 1

| T |
|T |∑

i=1

recall(ti)

164 P. Schumacher et al.

The F1 measure is defined as:

F1(W) = 2
precision(W) ◦ recall(W)

precision(W) + recall(W)

5.3 Semantic-Based Evaluation

Syntactic evaluations approaches can not handle paraphrases. As simple lexical dis-
tances are used to decide whether products or resources are equal. These distances
lead to the problem that two items are classified as not matching even if they are
semantically very close. For example broth and soup would be classified as unequal.
We extended the syntactic evaluation approach to differentiate between semantically
close mismatches and those which are not.

Precision and recall are commonly used evaluation functions in information
extraction and there are multiple other function which are derived from them (e.g.,
F1 measure). This leads to the requirement that a semantic aware evaluation function
should be based on precision and recall. The evaluation of ontology alignments and
the evaluation of data-flows is very similar, in both cases it is necessary to determine
the semantic overlap of sets of items. We adapt a generalized version of precision
and recall which was presented for the evaluation of ontology alignments [22]. The
generalized precision on an activity is defined as:

precisionω(t) = ω(I, I ∗) + ω(O, O ∗)
| I | + | O |

The generalized recall is defined as:

precisionω(t) = ω(I, I ∗) + ω(O, O ∗)
| I ∗ | + | O ∗ |

ω(I, I ∗) is the overlap function which is defined as follows:

ω(I, I ∗) =
∑

∀i≤I

⎧⎧⎪

⎧⎧⎨

1, i ≤ I ∗

0, max
i ∗≤I ∗ sim(i, i ∗) < threshold

max
i ∗≤I ∗ sim(i, i ∗), i /≤ I ∗

The sim-function is a function which measures the semantic similarity between
two concepts. The sim function can return small values which indicate that the two
concepts are semantically different. The sum of all these small values would influence
the result, therefore we use a threshold to filter them out. For our experiment in
the cooking domain we used a threshold of 0.25. The position of a concept in an
ontology is used to derive a similarity value. An obvious approach is to count the

On the Use of Anaphora Resolution 165

edges between two concept but the degree of semantic similarity implied by a single
edge is not consistent [23]. Therefore we use a more sophisticated approach. We
use an information-theoretic definition of the similarity which was inferred from an
axiomatic system by Lin [24]. The similarity between two concepts is defined as:

sim(A, B) = log P(common(A, B))

log P(description(A, B))

common(A, B) is the information content needed to state the commonality of A and
B and description(A, B) is the information content to fully describe A and B. The
information content of a concept can be quantified as negative of the log likelihood
of a concept [25]. Let c be a concept of an ontology and r be a randomly chosen
concept of the same ontology. Then the likelihood of the concept c is the probability
that c = r ∨ c ≤ subsumers(r). This quantification is intuitive because it means that
as probability increases, informativeness decreases, so the more abstract a concept
is, the lower the information content [25]. By specifying the general definition of
common and description we can infer a similarity for two concepts A and B in a
taxonomy:

sim(A, B) = 2I C(lcs(A, B))

I C(A) + I C(B)

lcs(A, B) is the concept of the least common subsumer. To measure the informa-
tion content (IC) we use an approach which was presented for ontologies [26]. The
information content (IC) of a concept is defined as:

I C(A) = − log
|leaves(A)|

|subsumers(A)| + 1

| leaves(root) | +1

In a taxonomy leaves(A) is the set of all leaves below the concept A. The set
subsumers(A) contains all concepts which are a generalization of the concept A.
Sanchez et al. presented a benchmark of different combinations of methods for cal-
culating the similarity and the information content [26]. The combination of the
similarity measure and the information content function which we use is according
to [26] the best performing combination benchmark (excluding approaches which
use a corpora). For our evaluation we used the implementation which is included
in the semantic measures library.6 In addition we used the ontology of the Taaable
project. The ontology is specialized on food and cooking. It can be extended by the
community as it is available in a Semantic Media Wiki We used an owl export from
30th August 2013, which contains 2166 different ingredients. These ingredients are
linked with different information e.g., nutritional value, compatible diets etc.7

6 http://www.semantic-measures-library.org
7 http://www.wikitaaable.loria.fr

http://www.semantic-measures-library.org
http://www.wikitaaable.loria.fr

166 P. Schumacher et al.

Table 1 Results of the evaluation for selected cases

Recipe PO P M PARM PF M RO P M RARM RF M FO P M FARM FF M

Mexican Egg 0.55 0.55 0.55 0.67 0.67 0.67 0.61 0.61 0.61
Classic Thumbprint 0.58 0.37 0.37 0.32 0.29 0.29 0.41 0.33 0.33
Cranberry Glazed Roast 0.48 0.46 0.52 0.31 0.31 0.33 0.38 0.37 0.41

5.4 Results

Figures 6a, c and e show that the results of the syntactic evaluation for the three
methods are very close. The best average precision is achieved by Method OPM.
For 7 cases the application of additional filter (Method ARM) reduces the precision
compared to Method OPM. The best average recall is performed by Method FM. We
examine the case of the “Mexican Egg Bake” recipe (Table 1) for which the results
are equal for the three methods. This can happen, when no matching association rule
is found and when no cookware item is filtered out by the stop-list. For the sample
of the “Classic Thumbprint Cookies” recipe (Table 1) a wrong association rules is
chosen, therefore the precision and the recall is lower for Method OPM & Method
ARM as it is for Method OPM. A very interesting case is the one of “Cranberry
Glazed Roast Pork” (Table 1). There we see a drop in precision from Method OPM
to Method ARM. First a wrong rules is used in Method ARM which is corrected
by Method FM, which ended in a higher precision for Method FM. The values of
the recall might raise the question, how it is possible that a filter step produces a
higher recall. Due to the fact that the filter step is preceding the association rule
mining step in the pipeline , we can get a different set of association rules. If the
rule mining step would precede the filter step, then indeed the results would show a
higher precision and a recall which cannot be higher than before the filtering. Fig. 6b,
d and f show the summary of the results for the semantic evaluation. Comparing the
results of the syntactic and semantic evaluation a slight rise of the performance is
observed. Table 2 shows selected cases of the semantic evaluation. The selected
cases are the top three cases based on the difference between the F1-Measure of the
syntactic and the F1-Measure of semantic evaluation for Method FM. In the case
of “Cheesy Italian Tortellini”, “ground meat” and “Italian sausage” is processed in
a task “crumble”. After this task, the recipe and the expert reference only “ground
meat” but the automatically extracted workflow references both items. The semantic
evaluation took into account that “Italian sausage” is a kind of meat. This had a
large impact on the result because those items were used in a lot of tasks. In the
case of “Slow Cooker Chicken Cordon Bleu” the semantic evaluation recognized
that “chicken breast” is related to “chicken” and that “maple syrup” is a kind of
“syrup”. For the case “Chocolate Peanut Bars” the semantic evaluation recognized
the similarity of “butter” and “peanut butter”.

On the Use of Anaphora Resolution 167

OPM ARM FM
0

0.1

0.2

0.3

0.4

0.5

0.6
0.5127 0.4828 0.4892

OPM ARM FM
0

0.1

0.2

0.3

0.4

0.5

0.6 0.5652
0.5335 0.5409

OPM ARM FM
0

0.1

0.2

0.3

0.4

0.5

0.6

0.3034 0.3124 0.313

OPM ARM FM
0

0.1

0.2

0.3

0.4

0.5

0.6

0.3538 0.3661 0.3687

OPM ARM FM
0

0.1

0.2

0.3

0.4

0.5

0.6

0.3812 0.3793 0.3817

OPM ARM FM
0

0.1

0.2

0.3

0.4

0.5

0.6

0.4352 0.4342 0.4385

(a) (b)

(c) (d)

(e) (f)

Fig. 6 Summary of the average results of the evaluation. a Syntactic Precision. b Semantic Pre-
cision. c Syntactic Recall. d Semantic Recall. e Syntactic F1-Measure. f Semantic F1-Measure

Table 2 Three cases with the highest difference (Fsem − Fsyn)

Fsem Fsyn Difference

Chocolate Peanut Bars 0.6281 0.3654 0.2627
Slow Cooker Chicken Cordon Bleu 0.5710 0.2542 0.3169
Cheesy Italian Tortellini 0.6914 0.3482 0.3432

Fsem is the F1-Measure resulting from the semantic evaluation, Fsyn is the F1-Measure resulting
from the syntactic evaluation of Method FM

6 Discussion

The results of the data-flow-evaluation are promising given the complexity of the
data-flow-creation. Both, the syntactic and semantic evaluation indicate that the ben-
efit of the statistical anaphora resolution is low compared to the result which was
achieved with the simple approach of OPM. Especially the precision of the OPM

168 P. Schumacher et al.

Method was the best in both evaluations. The OPM Method is relying on a simple
strict lexical pattern. Therefore there are only few cases in which the application of
this pattern fails. The small gain of the FM Method compared with OPM Method
might be related to our selection of the test cases. The 37 test cases were randomly
chosen from a set of 37 000 cases, therefore it is possible that our test cases do not
contain enough anaphoras. The three methods showed a better performance when
evaluated by the semantic evaluation functions. The presented semantic evaluation
function was able to solve some paraphrases for the cooking, applying the evalua-
tion in a different domain requires additional effort. We used the existing Taaable
ontology, which is a specialized ontology for food and cooking, for evaluation. The
application of the semantic evaluation function in a domain requires that an ontology
is available for the respective domain. For some domains it might be possible to use
a general ontology like DBpedia.8

7 Related Work

We are going to present related work of different research areas. The area of statis-
tical anaphora resolution had been approached by computer linguists. Gasperin and
Briscoe [27] applied an statistical approach for anaphora resolution in bio-medical
texts. They built a system which was based on the naive-Bayes classifier. In con-
trast to our approach their approach needs a training set. Markert et al. [28] pre-
sented an approach that was based on the number of results of a search engine
query. The queries were build with all possible antecedents for that anaphora and the
anaphora itself they were embedded in sample phrases e.g., “fruits such as apples”.
Our approach makes use of the workflow format, which provides an order of task
inducing an order of their resources and products. The user-specified list of products
which is part of the textual process descriptions (e.g., ingredient list in the cooking
domain) is used by our approach. This list is more precise than textual queries based
on word occurrence. TellMe [29] system allows the user to define procedures trough
utterances in natural language that are interpreted by the system and transformed
to formal workflow steps. In comparison to our system, the process of the TellMe
system is interactive; the user might get feedback from the system and can specify
her input. Zhang et al. [30] describe a method to extract processes from instructional
text. Unlike our approach, their process models do not follow the workflow paradigm,
as their control-flow is strictly sequential and they are not supporting a data-flow.
Friedrich et al. [31] developed a system to extract a formal workflow representa-
tion of a textual process descriptions. To avoid noise, a manual preprocessing step
is applied. Our approach is capable to process textual content as it is. The work of
Dufour-Lussier et al. [9] is very similar to ours. They extract a tree representation of
recipes from text. Contrary to our method, the focus is on food components that are
transformed by cooking activities to other food components. The TAAABLE ontol-
ogy is applied to resolve references in the text by matching sets of food components,

8 www.dbpedia.org

www.dbpedia.org

On the Use of Anaphora Resolution 169

e.g., “blueberry” and “raspberry” with “fruits”. They presented in [9] an evaluation
for the data-flow. Their system delivered very good result. However, the test set
was not representative and they were only counting the first occurrence of a product
within a recipe.

8 Conclusion and Future Work

This chapter addresses the problem of workflow extraction from textual process
descriptions and presents a framework to support the development of extraction
applications by a pipes-and-filters architecture. The framework is illustrated by an
application to the cooking domain. Multiple data-flow-creation approaches are eval-
uated with a focus on the anaphora resolution problem. Three different anaphora
resolution approaches are presented. Two approaches are based on association rules
which were created during an analysis of the corpus of workflows. The experimental
evaluation uses workflows as a golden standard which have a semantically correct
data-flow created by a human expert. A syntactic and a semantic evaluation function
was presented. These functions which are based on precision, recall, and F-measure
were used to asses the quality of the data-flow. The results show that the data-flow
has been improved slightly by anaphora resolution. However, the anaphora resolution
methods should be improved by the use of further semantics. It is promising that the
method with the most sophisticated semantics (the FM method) achieved the highest
value of the F-measure. The successful application in the cooking domain highlights
that a pipes-and-filters framework is a good means to combine domain-specific and
domain-independent filters. To prove that our approach is not limited to cooking
recipes, we are going to implement a new domain.

Acknowledgments This work was funded by the German Research Foundation, project number
BE 1373/3-1.

References

1. Workflow Management Coalition: Workflow management coalition glossary and terminol-
ogy. http://www.wfmc.org/standars/docs/TC-1011_term_glossary_v3.pdf (1999). Accessed
23 May 2007

2. Aamodt, A., Plaza, E.: Case-based reasoning: Foundational issues, methodological variations,
and system approaches. AI commun. 7(1), 39–59 (1994)

3. Minor, M., Montani, S., Recio-Garca, J.A.: Process-oriented case-based reasoning. Inf. Syst.
40, 103–105 (2014)

4. Bergmann, R., Gil, Y.: Similarity assessment and efficient retrieval of semantic workflows. Inf.
Syst. 40, 115–127 (2014)

5. Minor, M., Tartakovski, A., Schmalen, D., Bergmann, R.: Agile workflow technology and
case-based change reuse for long-term processes. Int. J. Intell. Inf. Technol. 4(1), 80–98 (2008)

6. Kendall-Morwick, J., Leake, D.: Facilitating representation and retrieval of structured cases:
Principles and toolkit. Inf. Syst. 40, 106–114 (2014)

7. Minor, M., Bergmann, R., Görg, S.: Case-based adaptation of workflows. Inf. Syst. 40, 142–152
(2014)

http://www.wfmc.org/standars/docs/TC-1011_term_glossary_v3.pdf

170 P. Schumacher et al.

8. Schumacher, P., Minor, M., Walter, K., Bergmann, R.: Extraction of procedural knowledge
from the web. In: Proceedings of the Workshop WWW’12, Lyon, France (2012)

9. Dufour-Lussier, V., Le Ber, F., Lieber, J., Nauer, E.: Automatic case acquisition from texts for
process-oriented case-based reasoning. Inf. Syst. 40, 153–167 (2014)

10. Schumacher, P., Minor, M., Schulte-Zurhausen, E.: Extracting and enriching workflows from
text. In: Proceedings of the 2013 IEEE 14th International Conference on Information Reuse
and Integration, pp. 285–292 (2013)

11. Zhu, H.: Software Design Methodology: From Principles to Architectural Styles. Butterworth-
Heinemann (2005)

12. Langer, G.: Textkohärenz und Textspezifität. Europäische Hochschulschriften, vol. 152. Peter
Lang, Ireland (1995)

13. AeroSpace and Defence Industries Association of Europe: ASD simplified technical English.
http://www.asd-ste100.org/ (2013). Accessed 19 Sept 2013

14. Minor, M., Schmalen, D., Bergmann, R.: XML-based representation of agile workflows. In:
Bichler, M., Hess, T., Krcmar, H., Lechner, U., Matthes, F., Picot, A., Speitkamp, B., Wolf, P.
(eds.) Multikonferenz Wirtschaftsinformatik 2008, pp. 439–440. GITO-Verlag, Berlin (2008)

15. Riloff, E., Phillips, W.: An introduction to the sundance and autoslog systems. Technical report,
Technical report UUCS-04-015, School of Computing, University of Utah, (2004)

16. Schank, R.: Conceptual dependence: A theory of natural language understanding. Cogn. Psy-
chol. (3)4, 532–631 (1972)

17. Fillmore, C.: The case for case reopened. Syntax Semant 8(1977), 59–82 (1977)
18. Tognini-Bonelli, E.: Corpus Linguistics at Work. John Benjamins Publishing, Amsterdam

(2001)
19. Higginbotham, J., Pianesi, F., Varzi, A.C.: Speaking of events. Oxford University Press,

New York (2000)
20. Agrawal, R., Srikant, R.: Mining sequential patterns. In: Proceedings of the Eleventh Interna-

tional Conference on Data Engineering, pp. 3–14. IEEE Press, New York (1995)
21. Kowalski, G.: Information system evaluation. In: Information Retrieval Architecture and Algo-

rithms, pp. 253–281. Springer, Berlin (2011)
22. Euzenat, J.: Semantic precision and recall for ontology alignment evaluation. In: Proceedings

of the IJCAI, pp. 348–353 (2007)
23. Pedersen, T., Pakhomov, S.V., Patwardhan, S., Chute, C.G.: Measures of semantic similarity

and relatedness in the biomedical domain. J. Biomed. Inform. 40(3), 288–299 (2007)
24. Lin, D.: An information-theoretic definition of similarity. ICML 98, 296–304 (1998)
25. Resnik, P.: Using information content to evaluate semantic similarity in a taxonomy. In: Pro-

ceedings of the IJCAI, vol. 1, pp. 448–453. Morgan Kaufmann, San Francisco (1995)
26. Sánchez, D., Batet, M., Isern, D.: Ontology-based information content computation. Knowl.

Based Syst. 24(2), 297–303 (2011)
27. Gasperin, C., Briscoe, T.: Statistical anaphora resolution in biomedical texts. In: Proceedings

of the 22nd International Conference on Computational Linguistics, vol. 1. COLING ’08,
Stroudsburg, USA, Association for Computational Linguistics, pp. 257–264 (2008)

28. Markert, K., Modjeska, N., Nissim, M.: Using the web for nominal anaphora resolution. In:
Proceedings of the EACL Workshop on the Computational Treatment of Anaphora, Budapest,
pp. 39–46 (2003)

29. Gil, Y., Ratnakar, V., Fritz, C.: Tellme: learning procedures from tutorial instruction. In: Pro-
ceedings of the 15th International Conference on Intelligent User Interfaces, pp. 227–236
(2011)

30. Zhang, Z., Webster, P., Uren, V.S., Varga, A., Ciravegna, F.: Automatically extracting proce-
dural knowledge from instructional texts using natural language processing. In: Calzolari, N.,
Choukri, K., Declerck, T., Dogan, M.U., Maegaard, B., Mariani, J., Odijk, J., Piperidis, S. (eds.)
LREC. European Language Resources Association (ELRA), Istanbul, pp. 520–527 (2012)

31. Friedrich, F., Mendling, J., Puhlmann, F.: Process model generation from natural lan-
guage text. In: Rolland, C. (ed.) Advanced Information Systems Engineering, vol. 6741,
pp. 482–496. Springer, Heidelberg (2011)

http://www.asd-ste100.org/

A Minimum Description Length Technique
for Semi-Supervised Time Series Classification

Nurjahan Begum, Bing Hu, Thanawin Rakthanmanon and Eamonn Keogh

Abstract In recent years the plunging costs of sensors/storage have made it possible
to obtain vast amounts of medical telemetry, both in clinical settings and more
recently, even in patient’s own homes. However for this data to be useful, it must be
annotated. This annotation, requiring the attention of medical experts is very expen-
sive and time consuming, and remains the critical bottleneck in medical analysis.
The technique of Semi-supervised learning is the obvious way to reduce the need for
human labor, however, most such algorithms are designed for intrinsically discrete
objects such as graphs or strings, and do not work well in this domain, which requires
the ability to deal with real-valued objects arriving in a streaming fashion. In this
work we make two contributions. First, we demonstrate that in many cases a sur-
prisingly small set of human annotated examples are sufficient to perform accurate
classification. Second, we devise a novel parameter-free stopping criterion for semi-
supervised learning. We evaluate our work with a comprehensive set of experiments
on diverse medical data sources including electrocardiograms. Our experimental
results suggest that our approach can typically construct accurate classifiers even if
given only a single annotated instance.

Keywords MDL · Semi-supervised learning · Stopping criterion · Time series

N. Begum (B) · B. Hu (B) · T. Rakthanmanon · E. Keogh
Department of Computer Science and Engineering, Kasetsart University, University of California,
Riverside, CA, USA
e-mail: nbegu001@ucr.edu

B. Hu
e-mail: bhu002@ucr.edu

E. Keogh
e-mail: eamonn@cs.ucr.edu

T. Bouabana-Tebibel and S. H. Rubin (eds.), Integration of Reusable Systems, 171
Advances in Intelligent Systems and Computing 263, DOI: 10.1007/978-3-319-04717-1_8,
© Springer International Publishing Switzerland 2014

172 N. Begum et al.

1 Introduction

Over the past decade, the data mining community has turned a significant fraction
of its attention to time series data. Such data is available in almost all aspects of
human endeavor, including motion capture [3], medical science [38], finance [27],
aerospace, meteorology [18], entertainment, etc. Given such ubiquity of time series
data, it is not surprising that a plethora of algorithms for time series classification
have been proposed in recent years [10, 29, 32]. Virtually all these algorithms assume
the availability of plentiful labeled instances [31, 37]. However, this assumption
is often unrealistic, particularly in the medical community, as it is expensive and
time consuming to manually annotate large medical datasets [5, 9]. Nevertheless,
huge amounts of unlabeled data are readily available. For example, the PhysioBank
archive contains over seven hundred GB of data [11], only a tiny fraction of which are
labeled. Similarly, Google’s Total Library [15] contains millions of digitized books
available, which could be mined after conversion to time series space, given that
plentiful labeled data is available.

Given the enormous intra-patient variability of cardiological signals such as elec-
trocardiograms (ECGs), it is difficult to consider classification problems independent
of patients. For example [35] notes that “…age, sex, relative body weight, chest con-
figuration, and various other factors make ECG variant among persons with same
cardiological conditions”. Thus we cannot easily generalize labeled ECG data from
one patient to another. Therefore, constructing a classifier in order to detect some
medical phenomena, (e.g. ECG arrhythmia) is a non-trivial problem.

In spite of all these challenges, we would like to be able to build accurate classifiers
in the face of very scarce knowledge, as little as a single labeled instance.

Given such circumstances, Semi-supervised Learning (SSL) seems like an ideal
paradigm, because it can leverage the knowledge of both labeled and unlabeled
instances. Although many SSL models have been studied in the literature, the critical
subroutine of finding a robust stopping point for these models has not been widely
explored.

The vast majority of the literature [24, 25, 33, 41] addressing this problem possess
some flaws that have limited their widespread adoption. For example, the approach
proposed in [41] suffers from the problem of early stopping. That is, it is overly
conservative and may refuse to label examples that are (at least subjectively) obvious
enough to be labeled. The approach introduced in [33] fails to identify class bound-
aries accurately, because it tends to produce too many false negatives.

Our work is motivated by the observation of the critical and underappreciated
importance of the stopping criteria. If an otherwise useful algorithm is too conserv-
ative (or too liberal) in its stopping criteria, it is doomed to produce many false neg-
atives (or false positives), and thus it is almost certainly never going to be deployed
in the real world. We illustrate this observation in Fig. 1.

From Fig. 1 left, we can see that in a dataset with a training set size as small as a
single instance, we cannot avoid an unwanted production of lots of false positives with

A Minimum Description Length Technique 173

Fig. 1 left) The initial positive instance (blue/square) along with unlabeled positive (grey/circle)
and negative (grey/small triangle) instances. center) A too liberal stopping criterion produces lots
of false positives (blue/small square). right) A too conservative stopping criterion produces lots of
false negatives (grey/large triangles)

a too liberal stopping criterion (Fig. 1 center). Similarly, if we have a too conservative
stopping criterion, we must invariably encounter lots of false negatives (Fig. 1 right).

In response to the noted limitations of the state-of-the-art stopping criteria for
SSL, we propose a semi-supervised learning framework with a novel stopping cri-
terion using Minimum Description Length (MDL). MDL has been widely used in
bioinformatics, text mining, etc. yet it is still under explored in time series domain.
This is mainly because MDL is defined in discrete space. Some recent publications
[17, 30] provide an in-depth analysis of the potential of applying MDL technique
to real-valued time series data. In this work, we propose a parameter-free algorithm
for finding a stopping criterion for SSL using the MDL technique. Its simplicity will
allow adoption by experts in the medical community.

The rest of the chapter is organized as follows. In Sect. 2, we discuss related
work. We give definitions and the notations in Sect. 3. We demonstrate how our
semi-supervised learning algorithm works and then propose our stopping criterion
using MDL in Sect. 4. In Sect. 5, we provide a detailed empirical evaluation of our
ideas. Finally, we discuss conclusions and directions for future work in Sect. 6.

2 Related Work

Semi-supervised Learning (SSL) can be seen as intermediate between the techniques
of Supervised Learning and Unsupervised Learning. SSL is generally provided with
some supervision information in addition to unlabeled instances [4]. Labeled data is
often hard to obtain, expensive, and may require human intervention. For example,
there is often no replacement of a dedicated domain expert observing and labeling
medical phenomena [26], human activities [28], insect behaviors [39], etc. for con-
structing annotated datasets. In contrast, unlabeled data is abundant and easy to
collect. SSL exploits the use of unlabeled data in addition to labeled data for build-
ing more accurate classifiers [44]. Because of this, SSL is of great interest in both
theory and practice. There have been many SSL techniques studied in the literature.

174 N. Begum et al.

These can be classified into five major classes: SSL with generative models, SSL
with low density separation, graph based techniques, co-training techniques and
self-training techniques [2, 4, 8, 41, 44].

Among all these classes of SSL, Self-training is the most common method used
[1, 22, 34]. The idea is to first train the classifier with a small amount of data, and
then use the classifier to classify unlabeled data. The most confidently classified
unlabeled points, along with their predicted labels, are added to the training set. The
classifier is then re-trained and the procedure repeats, i.e. the classifier uses its own
predictions to teach itself [44]. Self-training approaches have been used for natural
language processing tasks [21, 43] and object detection systems [34]. Because of
their generality and simplicity, we use self-training as the foundation of our research
efforts.

In our work, we focus on the question of finding the correct stopping point for our
self-training classifier. The question of finding a good stopping criterion has tentative
solutions based on MDL, Bayesian Information Criterion, bootstrapping [36, 44],
etc. For time series domain, this question has been surprisingly under explored;
to the best of our knowledge, only [24, 25, 33, 41] have considered it. In [41], a
stopping criterion based on the minimal nearest neighbor distance was introduced.
However, this conservative approach suffers from the shortcoming that it can result
in an expansion of only a small number of positives.

In order to improve the algorithm of [41], the work in [33] proposed a stopping
criterion by using the previously observed distances between candidate examples
from the unlabeled set to the initial positive examples. Although this refinement can
add more positive examples to the labeled set, it is unable to identify accurate positive
and negative instances from the unlabeled set, because it produces too many false
negatives, and therefore not accurate enough in most real life applications [6].

A recently proposed method [24] is called LCLC (Learning from Common Local
Cluster), which is a cluster-based approach rather than an instance-based approach.
Although this method more accurately identifies the decision boundaries, it has two
drawbacks. First, it assumed that “All the instances belonging to a local cluster
have the same class label”. The same examples within the same cluster received
the same class label, and therefore, LCLC can misclassify some examples if the
clustering subroutine does not produce pure clusters. Second, the LCLC algorithm
uses K-means algorithm, and therefore inherits K-means lack of determinism and its
assumption that the data can be represented by Gaussian “balls”.

To overcome the drawbacks of the LCLC approach, the same research group
proposed an ensemble-based approach called En-LCLC (Ensemble based Learning
from Common Local Clusters) [25]. This algorithm performs the clustering process
multiple times with different settings to obtain diverse classifiers. Each instance is
assigned a “soft” probabilistic confidence score and based on these scores, poten-
tial noisy instances, which can confuse the classifier, are eliminated. An Adaptive
Fuzzy Nearest Neighbor (AFNN) classifier is then constructed based on the “softly
labeled” set of positive and negative instances. However, this approach is extremely
complicated and requires many unintuitive parameters to be set. It is not clear how
sensitive the settings of these parameters are.

A Minimum Description Length Technique 175

A recent work on time series SSL [6] has somewhat an ad-hoc stopping criterion,
in which the classification continues until the unlabeled dataset is exhausted of true
positives.

In this chapter, we propose a general Minimum Description Length (MDL) based
stopping criterion, which works at the instance level, is parameter free and leverages
the intrinsic nature of the data to find the stopping point. In time series domain,
MDL has been the cornerstone of several recent efforts to solve classification and
clustering problems [17, 30]. However, to the best of our knowledge, this is the first
work to address time series SSL using MDL.

3 Background and Notation

We begin by defining the data type of interest, Time Series:

Definition 1 Time Series: A time series T = t1, . . ., tm is an ordered set of m real-
valued variables.

We are only interested in the local properties of a time series, thus we confine our
interest to subsequences:

Definition 2 Subsequence: Given a time series T of length m, a subsequence C p of
T is a sampling of length w ≤ m of contiguous positions from T with starting position
at p, C p = tp, . . ., tp + w − 1 for 1 ≤ p ≤ m − w + 1.

The extraction of subsequences from a time series is achieved by the use of a
Sliding Window.

Definition 3 Sliding Window: Given a time series T of length m, and a user-defined
subsequence length of w, all possible subsequences can be extracted by sliding a
window of size w across T and extracting each subsequence C p.

The most common distance measure for time series is the Euclidean distance.

Definition 4 Euclidean Distance: Given two time series (or time series subse-
quences) Q and C both of length m, the Euclidean distance between them is the
square root of the sum of the squared differences between each pair of the corre-
sponding data points:

D (Q, C) ∈
√
√
√
√

m∑

i=1

(qi − ci)2

We illustrate these definitions in Fig. 2.

Note that our use of Euclidean distance in this work does not preclude other
distance measures; however, it has recently been forcefully shown that Euclidean
distance is a very competitive distance measure [40].

176 N. Begum et al.

T

C = Ti

Q

Fig. 2 A long time series T (grey/dashed) with a subsequence Ti (purple/thin) extracted and com-
pared to a query Q (red/bold) under the Euclidean distance

Fig. 3 A complete linkage clustering of time series incartdb I70 [11]. left) Original 32-bit data.
right) The same data with cardinality reduced to eight values (3-bits)

Minimum Description Length (MDL) can be regarded as a formalization of
Occam’s Razor, which states that the best hypothesis for a given set of data is the
one that leads to the best compression of the data [14]. Note that MDL is defined in
the discrete space, but most time series are real-valued. To use MDL in time series
domain, we need to cast the original real-valued data to discrete values. The reader
may imagine that a drastic reduction in the precision of the data could sacrifice accu-
racy. However, recent empirical work suggests that this is not the case. For example,
[17, 30] have performed extensive experiments comparing the effect of using the
original real-valued data versus its quantized version. The results showed that even
drastically reduced cardinality does not result in reduced accuracy. To see this in our
domain we performed a simple time series clustering experiment, as shown in Fig. 3.

Figure 3 suggests that even significantly reducing the cardinality of time series
has minimal effect.

To further test the claim that reducing the cardinality of the data has no statistically
significant effect on classification accuracy, we show the error rates and ranks of the
1-NN classifier on six ECG datasets both in raw and reduced cardinality format
from the UCR archive [19] in Table 1. For each dataset, we assign the best algorithm
the lowest rank.

From Table 1 we can see that for the six datasets shown, classification using the
raw data yields slightly better average rank. However, we cannot claim that the
difference in average ranks of the 1-NN classifier for the two different cardinality
representations is statistically significant, given of the following analysis.

A Minimum Description Length Technique 177

Table 1 Classification error rates and ranks of 1-NN classifier for raw data (32 bit) and cardinality
reduced data (4 bits). The best result for each dataset has been shown in bold/green

Dataset Error rate (Original data) Error rate (Cardinality 16)

ECG200 0.12 (1) 0.13 (2)
ECGFiveDays 0.2 (2) 0.15 (1)
TwoLeadECG 0.25 (1) 0.27 (2)
CinCECG_Torso 0.1 (2) 0.07 (1)
NonInvasiveFatalECG _Thorax1 0.17 (1) 0.24 (2)
NonInvasiveFatalECG _Thorax2 0.12 (1) 0.21 (2)
Average rank 1.33 1.67

CD

12

Raw DataCardinality 16 Data

Fig. 4 Critical difference diagram representing the ranked error rates of the 1-NN classifier for the
two cardinality representations of the data (Table 1)

The null hypothesis we test is, “The performances of a classifier for different
cardinality representations of the data are the same and the observed differences are
merely random”. In order to compare the performances of the classifier as shown in
Table 1, we denote the number of datasets and the number of different cardinality
representations by N and k respectively. In our case, N = 6 and k = 2. We employ
the two-tailed Nemenyi test [23] to test the null hypothesis. According to this test, the
performances of a classifier for different cardinality representations are significantly
different if the corresponding average ranks differ by at least the critical difference
(CD):

C D = qα

√
k (k + 1)

6N

where critical values qα are based on the Studentized range statistic divided by
→

2 [7].
For a significance level α of 0.05, qα = 1.96, yielding a CD of 0.8. From Table 1,

the difference in average ranks between the two different cardinality representations
is 0.34, which is less than CD. Therefore, according to the Nemenyi test, we fail to
reject the null hypothesis.

In Fig. 4, we show a critical difference diagram [7, 16] of the ranked error rates
from Table 1.

From Fig. 4 we see that both variants of the 1-NN classifier for different cardi-
nality representations are connected by a single clique, which means they are not
significantly different from each other.

178 N. Begum et al.

Based on the above and more extensive empirical work in [17, 30], we reduce time
series data to its 16-value (4-bit) cardinality version, using a discrete normalization
function:

Definition 5 Discrete Normalization Function: A discrete function Dis_Norm is the
function to normalize a real-valued subsequence T into b-bit discrete value of range
[1, 2b]. It is defined as below:

Dis_Norm (T) = round

(
T − min

max − min

)

∗
(

2b − 1
)

+ 1

where min and max are the minimum and maximum value in T respectively.
As we previously noted, MDL works in discrete space, therefore we are interested

in determining how many bits are required to store a particular time series T. We call
it the Description Length of T.

Definition 6 Description Length: A description length DL of a time series T is the
total number of bits required to represent it.

DL (T) = w ∗ log2 c

where w is the length of T, c is the cardinality.
One of the key steps of designing our stopping criterion using the MDL technique

is to find a representation or model of our data, and use this model to compress the
data in a lossless fashion. We call this representation, a hypothesis:

Definition 7 Hypothesis: A hypothesis H is a subsequence used to encode one or
more subsequences of the same length.

Naively, the number of bits required to store a time series depends only on the data
format and its length. However, we are interested in knowing the minimum number of
bits to exactly represent the data. This depends on the intrinsic structure of the data.
In general case, this number is not calculable, as it is equivalent to the Kolmogorov
complexity of the time series [20], however, there are many ways to approximate
this, e.g. Huffman encoding, Shanon-Fano coding, etc.

Ultimately, we interest in how many bits are required to encode T given H. We
call this the Reduced Description Length of T.

Definition 8 Reduced Description Length: A reduced description length of a time
series T given hypothesis H is the sum of the number of bits required in order to
encode T exploiting the information in H, i.e. DL(T |H), and the number of bits
required for H itself, i.e. DL(H). Thus, the reduced description length is defined as:

DL (T, H) = DL (H) + DL (T |H)

A Minimum Description Length Technique 179

Fig. 5 Time series A
(maroon/dashed) is rep-
resented by the sum of
hypothesis H (solid/black)
and the difference vector A’
(green/bold)

A

0 4 8 12 16 20
0

4

8

12

16

20

H

A’ = A -H

We can encode T using H in many ways. One simple approach of this encoding is
to store a difference vector between T and H, and we can easily generate the whole
time series T from the hypothesis. Therefore, we use, DL (T |H) = DL (T − H) .

Given the definitions above, let us consider a toy example of our MDL based
encoding. In Fig. 5, A is a sample time series of length 20:

A = 1 2 4 4 5 6 8 8 9 10 11 13 13 14 17 16 17 18 19 19
H is another time series, which is a straight line of length 20:
H = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Without encoding, the naive bit requirement to store A and H is, 2 ∗ 20 ∗ log220 =

173 bits. In contrast, using H as the model of the data, we can encode A as A≤,
which is simply the difference vector obtained by subtracting H from A. We can
see that, A≤ = |A - H|= 0 0 1 0 0 0 1 0 0 0 0 1 0 0 2 0 0 0 0 1. From Fig. 5, the
reader can see that A is a slightly corrupted version of H and that in the difference
vector, there are five mismatches. The bit requirement is now just 20 ∗ log2 20 +
5 ∗ (

log2 20 + [
log2 20

]) = 134 bits, which is significantly less than the naive bit
requirement.

We are now in a position to demonstrate how our semi-supervised learning
approach works with the novel MDL based stopping criterion in the next section.

4 Algorithms

4.1 Semi-Supervised Time Series Classification

Semi-supervised learning technique can help build better classifiers in situations
where we have a small set of labeled data, in addition to abundant unlabeled data [8].
We refer the interested reader to [4] and [44] for a more detailed treatment.

We use the self-training technique to build our classifier for the reasons noted in
Sect. 2. In this work, we require only a single positive instance as the initial training
set. During the training process, the training set will be augmented iteratively by
labeling more unlabeled instances as positive.

Below are the two steps by which the classifier trains itself iteratively:

180 N. Begum et al.

Fig. 6 left) The initial positive instance (blue/square) selects its nearest positive instance
(green/circle). center and right) As we continue iterating, more unlabeled instances are labeled
as positive and added to the training set

Step 1: We find the nearest neighbor of any instance of our training set from the
unlabeled instances.

Step 2: This nearest neighbor instance, along with its newly acquired positive label,
will be added into the training set.

The intuition of this idea is straightforward. The labeled positive example serves
as a model which characterizes what a positive example should “look like”. If an
unlabeled instance is very similar to a positive example, its probability to have the
positive class label is also assumed to be high. By adding such an example to the
training set, the description of the positive class is generalized.

We give an illustrative example of the training procedure of our algorithm in Fig. 6.
Each ellipse corresponds to labeling one unlabeled instance as positive. As we can
see, there is a “chaining effect” of the semi-supervised learning: a set of positive
examples helps labeling more positive examples.

For concreteness, we give the algorithm for self-training time series classification
using just a single labeled instance in Table 2.

In order to demonstrate the benefit of our approach, we compare our method with
the naive one-nearest-neighbor straw man, because the nearest neighbor algorithm is
particularly suitable for time series data, and has the advantage of being parameter-
free and allowing fair comparisons between methods [42]. The naive approach also—
starts with one initial seed. Instead of finding the nearest neighbor of any instance
of the updated training set, the algorithm only considers the nearest neighbors of
this sole seed. Thus the algorithm can be imagined as expanding concentric circles
around the initial seed.

However, this approach possesses a representational flaw as shown in Fig. 7. As
the iteration continues, the probability of mistakenly labeling a negative instance
(red/triangle) as positive also increases.

In contrast, Fig. 6 shows that the selection of an instance with the smallest distance
from the current labeled positive set reduces this probability of misclassifying the
instances too early. This example suggests that the expressiveness of our approach
is greater than the naive nearest neighbor straw man. Note however that this greater

A Minimum Description Length Technique 181

Table 2 Semi-supervised time series classification algorithm with only one labeled instance

Fig. 7 Inner circles (black/thicker) correspond to the earlier iterations. left) The initial positive
instance (blue/square) selects its nearest neighbor as a positive instance (green/circle). middle and
right) False Positives (red/triangle) are added

representation power is all for naught unless it is coupled with the ability to stop
adding instances at the correct time. We consider this issue next.

4.2 Stopping Criterion

In this section, we demonstrate how our algorithm finds the correct stopping point
using an MDL based technique. As shown in Fig. 8, we consider a contrived, but
real ECG dataset from [11]. Inspired by the compression-based approach of [30],
our stopping criterion algorithm attempts to losslessly compress the data by finding
repeated patterns, and it signals termination when further compression is not possible.

In the toy example in Sect. 3 we used a straight line hypothesis to explain the
data. Here we use the seed heartbeat as the hypothesis instead. Our algorithm will
attempt to compress the purple time series by expressing all its instances in terms
of this hypothesis H and the (hopefully small) residual error A≤. After compression,
our original time series is supposed to have shorter length, which we call its Reduced
Description Length.

182 N. Begum et al.

original time series

0 100 200 300 400 500 600

discretized time series

Fig. 8 An original time series is shown in blue and its discretized version is shown in purple

H =

V V V N N N

Fig. 9 top) The initial seed chosen as a hypothesis. bottom) The six instances (of length 100 each)
of the dataset with their class labels (from ground truth)

For clarity, we show the instances of the purple time series separately with their
class labels (‘V’ and ‘N’) in Fig. 9 bottom. Note that these instances are not labeled by
the algorithm; these labels come from the ground truth and are given for the reader’s
introspection only.

As the first step, we randomly give an instance as the seed to our SSL module,
which is the only member of the training set. According to the algorithm in Sect. 4.1,
this module will augment the training set. Let us imagine we do not have a stopping
criterion for this module. In that case, the algorithm will eventually ingest all the
instances of the dataset in the training set.

Given this, let us see how we find a stopping criterion for our SSL module using
MDL. As hypothesis, we take the same initial seed we gave to our SSL module
(Fig. 9 top). We use this hypothesis to encode the remaining five instances of our
purple time series.

Without any encoding, the description length for this time series is DL (T) =
6 ∗ 100 ∗ log2 16 = 6 ∗ 400 = 2400 bits.

Our SSL module will select the nearest neighbor of any of the instance(s) in the
training set from the dataset. We will encode this instance in terms of our heartbeat
hypothesis and keep the rest of the dataset uncompressed. We find a total of 22
mismatches of the encoded instance with the hypothesis (Fig. 10 top). The reduced
description length of the dataset becomes:

DL(T, H) = DL(H) + DL(T |H) + DL(uncompressed)

= 5∗400 + 22 × (4 + √(log2 100)◦) = 2242 bits.

A Minimum Description Length Technique 183

NV V V N N

V V V N N N

Fig. 10 The instances (cyan/thin) in the training set are encoded. The mismatches are colored as
brown∗

V V V N N N

Fig. 11 After correctly encoding the three ‘V’ instances, attempts to encode the ‘N’ instances
require more bits than the raw data representation

This means we achieved data compression, which our algorithm interprets as an
indication that the heartbeat in question really is a true positive.

We simply continue to test to see if unlabeled instances can be added to the
positive pool by this “reduces the number of bits required” criteria.
After the module adds the third instance in the training set, the cumulative mismatch
count in terms of the hypothesis increases to 37, resulting in a reduced description
length of 2007 bits, which means we are still achieving some compression (Fig. 10
bottom).

The compression indicates that the two instances encoded are very similar to the
hypothesis. By visual inspection, the reader will notice that the last three instances in
Fig. 9 are dissimilar to the initial seed. Without a stopping criterion, the SSL module
will eventually include these instances in the labeled set. This means our labeled set
now starts including true negatives. However, our MDL criteria can save us, at least
in this toy example. If we encode the last three instances using our hypothesis, the
overhead to store the mismatches will not allow further compression. This means
adding the true positives, and only the true positives, is the best we can do in terms
of achieving compression for this example.

The effect of encoding the last three ‘N’ instances is shown in Fig. 11. The cumu-
lative mismatch count jumps to 115, 192 and 273, respectively for these instances.
The resulting increase of the reduced description lengths to 2465, 2912 and 3403
bits respectively reinforces the observation that attempting to compress data which is
unlike the hypotheses is not fruitful, and this signals an appropriate stopping criterion.

We illustrate this observation in Fig. 12. As long as the SSL module selects
instances similar to our hypothesis, we achieve data compression (shown in green).
Once this module starts including instances dissimilar to the hypothesis, we can no
longer achieve compression (shown in red). Therefore, this first occurrence of a sub-
sequence that cannot be compressed with the hypotheses is the point where the SSL
module should stop.

184 N. Begum et al.

0 100 200 300 400 500 600

Number of Instances Encoded
The reduced description length
decreases with true positives

The reduced description length
increases with false positives

original time series

1 2 3 4 5 6

2000

3500

R
ed

uc
ed

D
es

cr
ip

tio
n

L
en

gt
h

Fig. 12 top) Reduced description length curve after encoding the instances shown in bottom)

Table 3 Stopping criterion for self-training time series classification algorithm

In Table 3, we modify the algorithm shown in Table 2 to allow this MDL based
stopping criterion.

5 Experimental Results

We begin by stating our experimental philosophy. In order to ensure that our exper-
iments are reproducible, we have built a website which contains all data and code
[45]. In addition, this website contains additional experiments that are omitted here
for brevity.

A Minimum Description Length Technique 185

Fig. 13 Reduced description
length versus number of
encoded instances plot for the
SVDB dataset. green/thick
and red/thin points denote TP
and TN instances respectively

100 300 500 700

2.4

2.8

3.2

3.6 × 105

R
ed

uc
ed

D

es
cr

ip
tio

n
L

en
gt

h

Number of instances encoded

Stopping Point

5.1 MIT-BIH Supraventricular Arrhythmia Database

We consider an ECG dataset from the MIT-BIH Supraventricular Arrhythmia Data-
base (SVDB) [12]. Each recording in this database includes one or more ECG signals
and a set of beat annotations by cardiologists. Out of the 78 half-hour ECG record-
ings in this database beat annotations by cardiologists, we randomly chose record 801
and signal ECG1 for our experiment. Here we formulate the problem of classifying
heartbeats as a 2-class problem and because identifying abnormal heartbeats are of
more interest to cardiologists, our target class (i.e. the positive class) consists of only
abnormal heartbeats. This dataset contains 268 abnormal heartbeats (Premature Ven-
tricular Contraction or PVC, in this case) and our self-training classifier classifies
266 of them correctly.

Starting with a labeled set S with only one initial positive instance, our self-training
classifier augments S by adding one instance at a time. As our algorithm iterates, we
calculate the reduced description length DL S of our labeled set. As expected, with the
augmenting of the labeled set with more and more true positive (TP) instances, DL S

continues decreasing in our experiment. However, from the point we start adding true
negatives (TN) in S, DL S continues increasing. As a sanity check, we augmented
the size of our labeled set up to 700, and found no change in the curve pattern of our
DL S versus number of time series encoded. The results are shown in Fig. 13. From
this figure, we can see that we still allow a tiny number of TP instances beyond the
stopping point suggested by our algorithm. Nevertheless, this does not significantly
hurt the performance of our classifier in terms of accuracy.

5.2 St. Petersburg Arrhythmia Database

Next we consider classifying the heartbeats from the St. Petersburg Institute of
Cardiological Technics 12-lead Arrhythmia Database (INCARTDB) [11] using our
self-training classifier. This database has 75 annotated readings extracted from 32

186 N. Begum et al.

Fig. 14 Reduced description
length of the labeled set versus
number of encoded time series
plot for the INCARTDB
dataset

100 300 500 700

2.55

2.65

2.75

2.85 × 105

Number of instances encoded

R
ed

uc
ed

D
es

cr
ip

tio
n

L
en

gt
h

Stopping Point

Holter records. Each record, sampled at 257 Hz, contains 12 standard leads. Over
175,000 beat annotations are stored in the reference annotation files. An automatic
algorithm produced the annotations and then corrections were made manually. We
randomly chose record I70 and signal II for our experiment. This dataset contains
126 Atrial Premature Beat, and our self-training classifier classifies 120 of them
correctly.

Figure 14 shows that we obtained similar results to the last experiment.
As we augment our labeled set with TP instances, we obtain a decreasing trend

of DL S . The moment we exhaust the TP data and start ingesting TN instances,
DL S starts increasing. The result is obvious; the inclusion of similar patterns to the
hypothesis pattern in the labeled set helps achieving further compression of the data,
and we find decreasing DL S . However, when we start including the TN instances in
our labeled set, DL S keep on increasing, because of the overhead associated with
the encoding of the mismatched portions. From Fig. 14, we stop exactly at the instant
where the TN instances start being included in the labeled set.

5.3 Sudden Cardiac Death Holter Database

This experiment classifies the heartbeats of the Sudden Cardiac Death Holter Data-
base (SDDB) [13], which is archived by Physionet [11] to support research on a wide
variety of substrates responsible for sudden cardiac death syndromes. Such sudden
deaths happen to 400,000 Americans and millions more worldwide each year and
therefore, is of great importance.

The Sudden Cardiac Death Holter Database [13] includes 18 patients with under-
lying sinus rhythm. All these patients had a sustained ventricular tachyarrhythmia,
and most had an actual cardiac arrest. Out of the twenty three records, we randomly
chose record number 52 and signal ECG (1st) for our experiment. This dataset con-
tains 216 R-on-T Premature Ventricular Contraction, and our self-training classifier
classifies 193 of them correctly.

A Minimum Description Length Technique 187

Fig. 15 Reduced description
length of the labeled set versus
number of encoded time series
plot for the SDDB dataset

0 100 200 300 400

1.8

2

2.2

2.4

2.6×105

Number of instances encoded

R
ed

uc
ed

D
es

cr
ip

tio
n

L
en

gt
h

Stopping Point

We show the experimental results for this dataset in Fig. 15. We obtain similar
results to the two datasets described before. However for this dataset, the stopping
point is not exactly at the point where the TN instances start. Beyond the stopping
point, we obtain some TP instances, nevertheless, these are few in number, and the
overall accuracy is not affected significantly.

5.4 Additional Examples

We conclude our experimental results for three additional datasets in Fig. 16. This
datasets are not from a medical domain, and are designed to hint at the generality of
our ideas.

The result in Fig. 16 left corresponds to the SwedishLeaf_TEST dataset [19]. For
this dataset, beyond the stopping point, we obtain a tiny number of TP instances. For
the Fish_TEST dataset [19], we stop exactly at the moment when the TN instances
begin to be included in the labeled set (Fig. 16 center). However, beyond this point,
we obtain very few TP instances, which do not hurt our classifier performance sig-
nificantly. For the FaceAll_TEST dataset [19], we obtain some TP instances beyond
our stopping point (Fig. 16 right). This is because we started with a single instance
to seed in our training set, and this dataset is known to be polymorphic. Given just
a single example, it is hard for the classifier to distinguish between the faces of the
same person, let us say, with and without glasses. Nevertheless, our algorithm could
still identify the point where the vast majority TP instances were classified already,
and the TN instances started to be included in the training set.

5.5 Comparison with Rival Approaches

We perform a comparison between our algorithm and the state-of-the-art algorithm
[41] on the Fish_TEST dataset [19]. From Fig. 17, the readers can easily observe that
our algorithm suggests a better stopping point (Fig. 17 bottom) compared to the too
conservative stopping point (Fig. 17 top) suggested by the state-of-the-art algorithm.

188 N. Begum et al.

0 100 200 300
5.5

5.8

6.1

6.4 × 105

Stopping
Point

0 20 40 60 80 100

1.7

1.8

1.9

2×105

Stopping
Point

0 100 200 300

1.6

1.7

1.8

1.9 × 105

Stopping
Point

R
ed

uc
ed

D

es
cr

ip
tio

n
L

en
gt

h

No. of instances encoded

Fig. 16 Reduced description length of the labeled set versus number of encoded time series plots.
left) SwedishLeaf_TEST Dataset. center) Fish_TEST Dataset. right) FaceAll_TEST Dataset

Number of instances classified
10 30 50 70

1.2

M
in

im
al

D
is

ta
nc

e

0.6

Too Early Stopping

10 30 50 70

1.7

1.8

1.9

2× 10
5

R
ed

uc
ed

D

es
cr

ip
tio

n
L

en
gt

h

Number of instances encoded

Stopping Point

Fig. 17 Comparison of our algorithm (bottom) with the state-of-the-art algorithm (top) [41] for the
Fish_TEST dataset [19]. Results show that the state-of-the-art algorithm stops too early, whereas
our algorithm suggests better stopping point

Experiments on other datasets yielded similar results. In Fig. 18, we show the
results for SVDB, INCARTDB and SDDB datasets respectively.

From Fig. 18 top, we can see that for all the three datasets, the state-of-the-art
algorithm [41] is too conservative and therefore, missed too many true positives. In
contrast, our algorithm suggested a better stopping point (Fig. 18 bottom) with almost
no prohibitive expansion of false positives or false negatives.

5.6 ROC Curve

We measure the performance of our self-training classifier by varying the discrim-
ination threshold, which is the stopping point. We consider all instances before the
stopping point as positive instances and all instances after the point as negative

A Minimum Description Length Technique 189

Number of Instances Classified

M
in

im
al

 D
is

ta
nc

e

100 300 500 700

2.4

2.8

3.2

3.6 × 105

Number of instances encoded

Stopping Point

R
ed

uc
ed

D

es
cr

ip
tio

n
L

en
gt

h

100 300 500 700
0

1

2
Early Stopping

100 300 500 700

0.05

0.15

0.25

0.35 Early Stopping

100 300 500 700

2.55

2.65

2.75

2.85 × 10
5

Stopping Point

0 100 200 300 400

0.1

0.3

0.5
Early Stopping

0 100 200 300 400

1.8
2

2.2
2.4

2.6 ×10
5

Stopping Point

Fig. 18 Comparison of our algorithm (bottom) with the state-of-the-art algorithm (top) [41] for
SVDB (left), INCARTDB (center) and SDDB (right) datasets

Fig. 19 ROC curve for the
SVDB dataset. The stopping
point denotes a point with
majority of the TP instances
identified, with almost no FP
instances selected

0 20 40 60 80 100

0

20

40

60

80

100

Stopping Point

False Positive Rate

T
ru

eP
os

iti
ve

 R
at

e

instances. Out of some potential stopping points, we look for the point where our
algorithm actually suggests stopping the classification process. Experimental results
show that our classifier stops at a point with majority of the TP instances identified
with almost no FP instances selected (Fig. 19).

5.7 When does the Algorithm Fail?

Our MDL based algorithm for finding the stopping criterion of a self-training classi-
fier does not perform well when the patterns of the two classes under consideration
look very similar. As an example, we show the results for the TwoLeadECG_TEST
dataset [19] in Fig. 20.

From Fig. 20, we can see that because the positive and negative instances are
visually very similar, therefore, the expected increase in the Reduced Description
Length separating the two class boundaries is not obvious in this case.

190 N. Begum et al.

100 300 500 700

5.5

5.6

5.7

5.8

5.9 × 105

R
ed

uc
ed

D

es
cr

ip
tio

n
L

en
gt

h

Number of Instances Encoded

Fig. 20 Reduced description length of the labeled set versus number of encoded time series plot
for the TwoLeadECG_TEST dataset. The positive/green and negative/red instances are very similar
looking, and therefore the MDL based approach does not work well

The reader may believe that there must be some difference that allowed the original
annotator of the data to make class distinctions in the first place. However, it must
be noted that the original annotator has access to additional information, including
other telemetry recorded in parallel, which is not available to our algorithm. It is not
clear if even an expert human could do better than our algorithm, given the same
view of the data.

6 Conclusions and Future Work

In this chapter, we proposed a novel method of semi-supervised classification of time
series with as few as a single labeled instance. Previous approaches for stopping
the classification process required extensive parameter tuning, and hence remain
something of a black art. We devised a stopping criterion for the semi-supervised
classification based on MDL, which is parameter free, and leverages the intrinsic
structure of the data. To our knowledge, this is the first work addressing time series
SSL using MDL. Extensive experiments demonstrate that our method allows us to
classify real-world medical datasets with near perfect accuracy.

Our current approach works only on offline time series data; we plan extending it to
perform online semi-supervised time series classification. We also plan to generalize
our algorithm to the setting of multiple classes.

Acknowledgments This research was funded by NSF grant IIS—1161997.

A Minimum Description Length Technique 191

References

1. Besemer, J., Lomsadze, A., Borodovsky, M.: GeneMarkS: a self-training method for prediction
of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory
regions. Nucleic Acids Res. 29(12), 2607–2618 (2001)

2. Blum, A., Mitchell, T.: Combining labeled and unlabeled data with co-training. In: Proceedings
of the 11th ACM Annual Conference on Computational Learning Theory, pp. 92–100 (1998)

3. Bouchard, D., Badler, N.: Semantic segmentation of motion capture using Laban movement
analysis. In: Intelligent Virtual Agents, pp. 37–44. Springer, Heidelberg (2007)

4. Chapelle, O., Schölkopf, B., Zien, A.: Semi-Supervised Learning, vol. 2. MIT press, Cambridge
(2006)

5. Chazal, P.D., O’Dwyer, M., Reilly, R.B.: Automatic classification of heartbeats using ECG
morphology and heartbeat interval features. IEEE Trans. Biomed. Eng. 51, 1196–1206 (2004)

6. Chen, Y., Hu, B., Keogh, E., Batista, G.E.: DTW-D: time series semi-supervised learning from
a single example. In: The 19th ACM SIGKDD, pp. 383–391 (2013)

7. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res.
7, 1–30 (2006)

8. Druck, G., Pal, C., Zhu, X., McCallum, A.: Semi-supervised classification with hybrid gener-
ative/discriminative methods. In: The 13th ACM SIGKDD (2007)

9. Florea, F., Müller, H., Rogozan, A., Geissbuhler, A., Darmoni, S.: Medical image categorization
with MedIC and MedGIFT. In: Medical Informatics Europe (MIE) (2006)

10. Geurts, P.: Pattern extraction for time series classification. In: Proceedings of the 5th European
Conference on Principles of Data Mining and Knowledge Discovery, pp. 115–127 (2001)

11. Goldberger, A.L., et al.: PhysioBank, PhysioToolkit, and PhysioNet: components of a new
research resource for complex physiologic signals. Circulation 101(23), 215–220 (2000)

12. Greenwald, S.D., Patil, R.S., Mark, R.G.: Improved detection and classification of arrhythmias
in noise-corrupted electrocardiograms using contextual information. In: Proceedings of IEEE
Conference on Computing in Cardiology (1990)

13. Greenwald, S.D.: The Development and Analysis of a Ventricular Fibrillation Detector. M.S.
thesis, MIT Department of Electrical Engineering and Computer Science, Cambridge (1986)

14. Grünwald, P.: A Tutorial Introduction to the Minimum Description Length Principle. MIT
Press, Cambridge (2005)

15. Herwig, M.: Google’s Total Library: Putting the World’s Books on the Web (2007)
16. Hills, J., Lines, J., Baranauskas, E., Mapp, J., Bagnall, A.: Classification of time series by

shapelet transformation. Data Min. Knowl. Disc. 2, 1–31 (2013)
17. Hu, B., Rakthanmanon, T., Hao, Y., Evans, S., Lonardi, S., Keogh, E.: Discovering the intrinsic

cardinality and dimensionality of time series using MDL. In: Proceedings of ICDM, pp. 1086–
1091 (2011)

18. Jones, P.D., Hulme, M.: Calculating regional climatic time series for temperature and precipi-
tation: methods and illustrations. Int. J. Climatol. 16(4), 361–377 (1996)

19. Keogh, E., Zhu, Q., Hu, B., Hao, Y., Xi, X., Wei, L., Ratanamahatana, C.A.: The UCR Time
Series Classification/Clustering. www.cs.ucr.edu/~eamonn/time_series_data

20. Li, M., Vitanyi, P.: An Introduction to Kolmogorov Complexity and Its Applications, 2nd edn.
Springer, New York (1997)

21. Maeireizo, B., Litman, D., Hwa, R.: Co-training for predicting emotions with spoken dialogue
data. In: Proceedings of ACL (2004)

22. McClosky, D., Charniak, E., Johnson, M.: Effective self-training for parsing. In: Proceedings of
the Main Conference on Human Language Technology and Conference of the North American
Chapter of the Association of Computational Linguistics, pp. 152–159 (2006)

23. Nemenyi, P.B.: Distribution-free Multiple Comparisons. PhD Thesis, Princeton University
(1963)

24. Nguyen, M.N., Li, X.L., Ng, S.K.: Positive unlabeled learning for time series classification.
In: Proceedings of AAAI (2011)

www.cs.ucr.edu/~eamonn/time_series_data

192 N. Begum et al.

25. Nguyen, M.N., Li, X.L., Ng, S.K.: Ensemble Based Positive Unlabeled Learning for Time Series
Classification. Database Systems for Advanced Applications. Springer, Heidelberg (2012)

26. Ordonez, P., Oates, T., Lombardi, M.E., Hernandez, G., Holmes, K.W., Fackler, J.,
Lehmann, C.U.: Visualization of multivariate time-series data in a Neonatal ICU. IBM J.
Res. Dev. 56(5), 7–1 (2012)

27. Patton, A.J.: Copula-based models for financial time series. In: Andersen, T.G., Davis, R.A.,
Kreiss, J-P., Mikosch, T. (eds.) Handbook of Financial Time Series, pp. 767–785. Springer,
Heidelberg (2009)

28. Philipose, M.: Large-Scale Human Activity Recognition Using Ultra-Dense Sensing. The
Bridge, vol. 35, issue 4. National Academy of Engineering, Winter (2005)

29. Radovanovic, M., Nanopoulos, A., Ivanovic, M.: Time-series classification in many intrinsic
dimensions. In: Proceedings of SIAM SDM, pp. 677–688 (2010)

30. Rakthanmanon, T., Keogh, E., Lonardi, S., Evans, S.: Time series epenthesis: clustering time
series streams requires ignoring some data. In: Proceedings of ICDM (2011)

31. Raptis, M., Wnuk, K., Soatto, S.: Flexible dictionaries for action classification. In: The 1st
International Workshop on Machine Learning for Vision-based Motion Analysis (2008)

32. Ratanamahatana, C.A., Keogh, E.: Making time-series classification more accurate using
learned constraints. In: Proceedings of SIAM SDM (2004)

33. Ratanamahatana, C.A., Wanichsan, D.: Stopping criterion selection for efficient semi-
supervised time series classification. In: Lee, R.Y. (ed.) Software Engineering, Artificial Intelli-
gence, Networking and Parallel/Distributed Computing, Studies in Computational Intelligence,
vol. 149, pp. 1–14. Springer (2008)

34. Rosenberg, C., Hebert, M., Schneiderman, H.: Semi-supervised Self-training of Object Detec-
tion Models. WACV/MOTION, 29–36 (2005)

35. Simon, B.P., Eswaran, C.: An ECG classifier designed using modified decision based neural
networks. Comput. Biomed. Res. 30(4), 257–272 (1997)

36. Sun, A., Grishman, R.: Semi-supervised semantic pattern discovery with guidance from unsu-
pervised pattern clusters. In: Proceedings of the 23rd International Conference on Computa-
tional Linguistics: Posters, pp. 1194–1202 (2010)

37. Sykacek, P., Roberts, S.J.: Bayesian time series classification. In: Jordan, M., Reams, M.,
Solla, S. (eds.) Advances in Neural Information Processing Systems. MIT Press, Cambridge
(2002)

38. Tsumoto, S.: Rule discovery in large time-series medical databases. In: In: Zytkow, J., Rauch, J.
(eds.) Principles of Data Mining and Knowledge Discovery, pp. 23–31. Springer, Heidelberg
(1999)

39. Veeraraghavan, A., Chellappa, R., Srinivasan, M.: Shape and behavior encoded tracking of bee
dances. IEEE Trans. Pattern Anal. Mach. Intell. 30(3), 463–476 (2008)

40. Wang, X., Mueen, A., Ding, H., Trajcevski, G., Scheuermann, P., Keogh, E.J.: Experimental
comparison of representation methods and distance measures for time series data. Data Min.
Knowl. Discov. 26(2), 275–309 (2013)

41. Wei, L., Keogh, E.: Semi-supervised time series classification. In: Proceedings of SIGKDD
(2006)

42. Xi, X., Keogh, E., Shelton, C., Wei, L., Ratanamahatana, C.A.: Fast time series classification
using numerosity reduction. In: Proceedings of the 23rd ACM International Conference on
Machine Learning, pp. 1033–1040 (2006)

43. Yarowsky, D.: Unsupervised word sense disambiguation rivaling supervised methods. In: Pro-
ceedings of ACL (1995)

44. Zhu, X.: Semi-supervised Learning Literature Survey. Technical Report No. 1530. Computer
Sciences, University of Wisconsin-Madison (2005)

45. http://www.cs.ucr.edu/~nbegu001/SSL_myMDL.htm

http://www.cs.ucr.edu/~nbegu001/SSL_myMDL.htm

Interpreting Random Forest Classification
Models Using a Feature Contribution Method

Anna Palczewska, Jan Palczewski, Richard Marchese Robinson
and Daniel Neagu

Abstract Model interpretation is one of the key aspects of the model evaluation
process. The explanation of the relationship between model variables and outputs
is relatively easy for statistical models, such as linear regressions, thanks to the
availability of model parameters and their statistical significance. For “black box”
models, such as random forest, this information is hidden inside the model struc-
ture. This work presents an approach for computing feature contributions for random
forest classification models. It allows for the determination of the influence of each
variable on the model prediction for an individual instance. By analysing feature
contributions for a training dataset, the most significant variables can be determined
and their typical contribution towards predictions made for individual classes, i.e.,
class-specific feature contribution “patterns”, are discovered. These patterns repre-
sent a standard behaviour of the model and allow for an additional assessment of the
model reliability for new data. Interpretation of feature contributions for two UCI
benchmark datasets shows the potential of the proposed methodology. The robust-
ness of results is demonstrated through an extensive analysis of feature contributions
calculated for a large number of generated random forest models.

A. Palczewska (B) · D. Neagu
Department of Computing, University of Bradford, Bradford, BD7 1DP, UK
e-mail: a.m.wojak@bradford.ac.uk

D. Neagu
e-mail: d.neagu@bradford.ac.uk

J. Palczewski
School of Mathematics, University of Leeds, Leeds, LS2 9JT, UK
e-mail: j.palczewski@leeds.ac.uk

R. M. Robinson
School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University,
Liverpool, L3 3AF, UK
e-mail: R.L.MarcheseRobinson@ljmu.ac.uk

T. Bouabana-Tebibel and S. H. Rubin (eds.), Integration of Reusable Systems, 193
Advances in Intelligent Systems and Computing 263, DOI: 10.1007/978-3-319-04717-1_9,
© Springer International Publishing Switzerland 2014

194 A. Palczewska et al.

Keywords Random forest · Classification · Variable importance · Feature contri-
bution · Cluster analysis

1 Introduction

Models are used to discover interesting patterns in data or to predict a specific out-
come, such as drug toxicity, client shopping purchases, or car insurance premium.
They are often used to support human decisions in various business strategies. This
is why it is important to ensure model quality and to understand its outcomes. Good
practice of model development [1] involves: (1) data analysis (2) feature selection,
(3) model building and (4) model evaluation. Implementing these steps together with
capturing information on how the data was harvested, how the model was built and
how the model was validated, allows us to trust that the model gives reliable predic-
tions. But, how to interpret an existing model? How to analyse the relation between
predicted values and the training dataset? Or which features contribute the most to
classify a specific instance?

Answers to these questions are considered particularly valuable in such domains
as chemoinformatics, bioinformatics or predictive toxicology [2]. Linear models,
which assign instance-independent coefficients to all features, are the most eas-
ily interpreted. However, in the recent literature, there has been considerable focus
on interpreting predictions made by non-linear models which do not render them-
selves to straightforward methods for the determination of variable/feature influ-
ence. In [3], the authors present a method for local interpretation of Support Vector
Machine (SVM) and Random Forest models by retrieving the variable corresponding
to the largest component of the decision-function gradient at any point in the model.
Interpretation of classification models using local gradients is discussed in [4]. A
method for visual interpretation of kernel-based prediction models is described in
[5]. Another approach, which is presented in detail later, was proposed in [6] and
aims at shedding light at decision-making process of regression random forests.

Of interest to this chapter is a popular “black-box” model—the random forest
model [7]. Its author suggests two measures of the significance of a particular vari-
able [8]: the variable importance and the Gini importance. The variable importance
is derived from the loss of accuracy of model predictions when values of one variable
are permuted between instances. Gini importance is calculated from the Gini impu-
rity criterion used in the growing of trees in the random forest. However, in [9], the
authors showed that the above measures are biased in favor of continuous variables
and variables with many categories. They also demonstrated that the general repre-
sentation of variable importance is often insufficient for the complete understanding
of the relationship between input variables and the predicted value.

Following the above observation, Kuzmin et al. propose in [6] a new technique
to calculate a feature contribution, i.e., a contribution of a variable to the prediction,
in a random forest model. Their method applies to models generated for data with
numerical observed values (the observed value is a real number). Unlike in the vari-

Interpreting Random Forest Classification Models Using a Feature Contribution Method 195

able importance measures [8], feature contributions are computed separately for each
instance/record. They provide detailed information about relationships between vari-
ables and the predicted value: the extent and the kind of influence (positive/negative)
of a given variable. This new approach was positively tested in [6] on a Quantita-
tive Structure-Activity (QSAR) model for chemical compounds. The results were
not only informative about the structure of the model but also provided valuable
information for the design of new compounds.

The procedure from [6] for the computation of feature contributions applies to ran-
dom forest models predicting numerical observed values. This chapter aims to extend
it to random forest models with categorical predictions, i.e., where the observed value
determines one from a finite set of classes. The difficulty of achieving this aim lies in
the fact that a discrete set of classes does not have the algebraic structure of real num-
bers which the approach presented in [6] relies on. Due to the high-dimensionality
of the calculated feature contributions, their direct analysis is not easy. We develop
three techniques for discovering class-specific feature contribution “patterns” in the
decision-making process of random forest models: the analysis of median feature
contributions, of clusters and log-likelihoods. This facilitates interpretation of model
predictions as well as allows a more detailed analysis of model reliability for unseen
data.

The chapter is organised as follows. Section 2 provides a brief description of
random forest models. Section 3 presents our approach for calculating feature con-
tributions for binary classifiers, whilst Sect. 4 describes its extension to multi-class
classification problems. Section 5 introduces three techniques for finding patterns
in feature contributions and linking them to model predictions. Section 6 contains
applications of the proposed methodology to two real world datasets from the UCI
Machine Learning repository. Section 7 concludes the work presented in this chapter.

2 Random Forest

A random forest (RF) model introduced by Breiman [7] is a collection of tree pre-
dictors. Each tree is grown according to the following procedure [8]:

1. the bootstrap phase: select randomly a subset of the training dataset—a local
training set for growing the tree. The remaining samples in the training dataset
form a so-called out-of-bag (OOB) set and are used to estimate the RF’s goodness-
of-fit.

2. the growing phase: grow the tree by splitting the local training set at each node
according to the value of one variable from a randomly selected subset of variables
(the best split) using classification and regression tree (CART) method [10].

3. each tree is grown to the largest extent possible. There is no pruning.

The bootstrap and growing phases require an input of random quantities. It is
assumed that these quantities are independent between trees and identically distrib-

196 A. Palczewska et al.

uted. Consequently, each tree can be viewed as sampled independently from the
ensemble of all tree predictors for a given training dataset.

For prediction, an instance is run through each tree in a forest down to a terminal
node which assigns it a class. Predictions supplied by the trees undergo a voting
process: the forest returns the class with the maximum number of votes. Draws are
resolved through a random selection.

To present our feature contribution procedure in the following section, we have
to develop a probabilistic interpretation of the forest prediction process. Denote by
C = {C1, C2, . . . , CK } the set of classes and by ΔK the set

ΔK = {
(p1, . . . , pK) :

K∑

k=1

pk = 1 and pk ≥ 0
⎧
.

An element of ΔK can be interpreted as a probability distribution over C . Let ek

be an element of ΔK with 1 at position k—a probability distribution concentrated
at class Ck . If a tree t predicts that an instance i belongs to a class Ck then we
write Ŷi,t = ek . This provides a mapping from predictions of a tree to the set ΔK of
probability measures on C . Let

Ŷi = 1

T

T∑

t=1

Ŷi,t , (1)

where T is the overall number of trees in the forest. Then Ŷi ∈ ΔK and the prediction
of the random forest for the instance i coincides with a class Ck for which the k-th
coordinate of Ŷi is maximal.1

3 Feature Contributions for Binary Classifiers

The set ΔK simplifies considerably when there are two classes, K = 2. An element
p ∈ ΔK is uniquely represented by its first coordinate p1 (p2 = 1 − p1). Con-
sequently, the set of probability distributions on C is equivalent to the probability
weight assigned to class C1.

Before we present our method for computing feature contributions, we have to
examine the tree growing process. After selecting a training set, it is positioned in
the root node. A splitting variable (feature) and a splitting value are selected and the
set of instances is split between the left and the right child of the root node. The
procedure is repeated until all instances in a node are in the same class or further
splitting does not improve prediction. The class that a tree assigns to a terminal node
is determined through majority voting between instances in that node.

1 The distribution Ŷi is calculated by the function predict in the R package randomForest
[11] when the type of prediction is set to prob.

Interpreting Random Forest Classification Models Using a Feature Contribution Method 197

We will refer to instances of the local training set that pass through a given node
as the training instances in this node. The fraction of the training instances in a
node n belonging to class C1 will be denoted by Y n

mean . This is the probability that a
randomly selected element from the training instances in this node is in the first class.
In particular, a terminal node is assigned to class C1 if Y n

mean > 0.5 or Y n
mean = 0.5

and the draw is resolved in favor of class C1.
The feature contribution procedure for a given instance involves two steps: (1)

the calculation of local increments of feature contributions for each tree and (2) the
aggregation of feature contributions over the forest. A local increment corresponding
to a feature f between a parent node (p) and a child node (c) in a tree is defined as
follows:

L I c
f =

⎪
Y c

mean − Y p
mean, if the split in the parent is performed over the feature f,

0, otherwise.

A local increment for a feature f represents the change of the probability of being
in class C1 between the child node and its parent node provided that f is the splitting
feature in the parent node. It is easy to show that the sum of these changes, over all
features, along the path followed by an instance from the root node to the terminal
node in a tree is equal to the difference between Ymean in the terminal and the root
node.

The contribution FC f
i,t of a feature f in a tree t for an instance i is equal to the

sum of L I f over all nodes on the path of instance i from the root node to a terminal
node. The contribution of a feature f for an instance i in the forest is then given by

FC f
i = 1

T

T∑

t=1

FC f
i,t . (2)

The feature contributions vector for an instance i consists of contributions FC f
i of

all features f .
Notice that if the following condition is satisfied:

(U) for every tree in the forest, local training instances in each terminal node are of
the same class

then Ŷi representing forest’s prediction (1) can be written as

Ŷi =
⎨

Y r +
∑

f

FC f
i , 1 − Y r −

∑

f

FC f
i

⎩
(3)

where Y r is the coordinate-wise average of Ymean over all root nodes in the forest.
If this unanimity condition (U) holds, feature contributions can be used to retrieve
predictions of the forest. Otherwise, they only allow for the interpretation of the
model.

198 A. Palczewska et al.

Table 1 Selected records from the UCI Iris Dataset. Each record corresponds to a plant. The plants
were classified as iris versicolor (class 0) and virginica (class 1)

iris.row Sepal.Length (f1) Sepal.Width (f2) Petal.Length (f3) Petal.Width (f4) Class

x1 52 6.4 3.2 4.5 1.5 0
x2 73 6.3 2.5 4.9 1.5 0
x3 75 6.4 2.9 4.3 1.3 0
x4 90 5.5 2.5 4.0 1.3 0
x5 91 5.5 2.6 4.4 1.2 0
x6 136 7.7 3.0 6.1 2.3 1
x7 138 6.4 3.1 5.5 1.8 1
x8 139 6.0 3.0 4.8 1.8 1
x9 145 6.7 3.3 5.7 2.5 1
x10 148 6.5 3.0 5.2 2.0 1

3.1 Example

We will demonstrate the calculation of feature contributions on a toy example using
a subset of the UCI Iris Dataset [12]. From the original dataset, ten records were
selected—five for each of two types of the iris plant: versicolor (class 0) and virginica
(class 1) (see Table 1). A plant is represented by four attributes: Sepal.Length (f1),
Sepal.Width (f2), Petal.Length (f3) and Petal.Width (f4). This dataset was used to
generate a random forest model with two trees, see Fig. 1. In each tree, the local
training set (LD) in the root node collects those records which were chosen by the
random forest algorithm to build that tree. The LD sets in the child nodes correspond
to the split of the above set according to the value of a selected feature (it is written
between branches). This process is repeated until reaching terminal nodes of the tree.
Notice that the condition (U) is satisfied—for both trees, each terminal node contains
local training instances of the same class: Ymean is either 0 or 1.

The process of calculating feature contributions runs in 2 steps: the determination
of local increments for each node in the forest (a preprocessing step) and the calcula-
tion of feature contributions for a particular instance. Figure 1 shows Y n

mean and the
local increment L I c

f for a splitting feature f in each node. Having computed these
values, we can calculate feature contributions for an instance by running it through
both trees and summing local increments of each of the four features. For example,
the contribution of a given feature for the instance x1 is calculated by summing local
increments for that feature along the path p1 = n0 → n1 in tree T1 and the path
p2 = n0 → n1 → n4 → n5 in tree T2. According to Formula (2) the contribution
of feature f2 is calculated as

FC f 2
x1 = 1

2

⎨
0 + 1

4

⎩
= 0.125

and the contribution of feature f3 is

Interpreting Random Forest Classification Models Using a Feature Contribution Method 199

Fig. 1 A random forest model for the dataset from Table 1. The set LD in the root node contains
a local training set for the tree. The sets LD in the child nodes correspond to the split of the above
set according to the value of selected feature. In each node, Y n

mean denotes the fraction of instances
in the LD set in this node belonging to class 1, whilst L I n

f shows non-zero local increments

FC f 3
x1 = 1

2

⎨
− 3

7
− 9

28
− 1

2

⎩
= −0.625.

The contributions of features f1 and f4 are equal to 0 because these attributes are
not used in any decision made by the forest. The predicted probability Ŷx1 that x1
belongs to class 1 (see Formula (3)) is

Ŷx1 = 1

2

⎨3

7
+ 4

7

⎩

︸ ︷︷ ︸
Ŷ r

+ (
0 + 0.125 − 0.625 + 0

)

︸ ︷︷ ︸
∑

f FC f
x1

= 0.0

Table 2 collects feature contributions for all 10 records in the example dataset.
These results can be interpreted as follows:

• for instances x1, x3, the contribution of f2 is positive, i.e., the value of this feature
increases the probability of being in class 1 by 0.125. However, the large negative
contribution of the feature f3 implies that the value of this feature for instances x1
and x3 was decisive in assigning the class 0 by the forest.

• for instances x6, x7, x9, the decision is based only on the feature f3.
• for instances x2, x4, x5, the contribution of both features leads the forest decision

towards class 0.

200 A. Palczewska et al.

Table 2 Feature contributions for the random forest model from Fig. 1

Ŷ Sepal.Length (f1) Sepal.Width (f2) Petal.Length (f3) Petal.Width (f4) Prediction

x1 0.0 0 0.125 −0.625 0 0
x2 0.0 0 −0.125 −0.375 0 0
x3 0.0 0 0.125 −0.625 0 0
x4 0.0 0 −0.125 −0.375 0 0
x5 0.0 0 −0.125 −0.375 0 0
x6 1.0 0 0 0.5 0 1
x7 1.0 0 0 0.5 0 1
x8 0.5 0 0.125 −0.125 0 ?
x9 1.0 0 0 0.5 0 1
x10 0.5 0 0 0 0 ?

• for instances x8, x10, Ŷ is 0.5. This corresponds to the case where one of the trees
points to class 0 and the other to class 1. In practical applications, such situations
are resolved through a random selection of the class. Since Ŷ r = 0.5, the lack of
decision of the forest has a clear interpretation in terms of feature contributions:
the amount of evidence in favour of one class is counterbalanced by the evidence
pointing towards the other.

4 Feature Contributions for General Classifiers

When K > 2, the set ΔK cannot be described by a one-dimensional value as above.
We, therefore, generalize the quantities introduced in the previous section to a multi-
dimensional case. Y n

mean in a node n is an element of ΔK, whose k-th coordinate,
k = 1, 2, . . . , K , is defined as

Y n
mean,k = |{i ∈ T S(n) : i ∈ Ck}|

|T S(n)| , (4)

where T S(n) is the set of training instances in the node n and | · | denotes the number
of elements of a set. Hence, if an instance is selected randomly from a local training
set in a node n, the probability that this instance is in class Ck is given by the k-th
coordinate of the vector Y n

mean . Local increment L I c
f is analogously generalized to

a multidimensional case:

L I c
f =

Y c
mean − Y p

mean, if the split in the parent is performed over the feature f,

(0, . . . , 0)
︸ ︷︷ ︸

K times

, otherwise,

Interpreting Random Forest Classification Models Using a Feature Contribution Method 201

where the difference is computed coordinate-wise. Similarly, FC f
i,t and FC f

i are
extended to vector-valued quantities. Notice that if the condition (U) is satisfied, Eq.
(3) holds with Y r being a coordinate-wise average of vectors Y n

mean over all root
nodes n in the forest.

Take an instance i and let Ck be the class to which the forest assigns this instance.
Our aim is to understand which variables/features drove the forest to make that
prediction. We argue that the crucial information is the one which explains the value
of the k-th coordinate of Ŷi . Hence, we want to study the k-th coordinate of FC f

i for
all features f .

Pseudo-code to calculate feature contributions for a particular instance towards
the class predicted by the random forest is presented in Algorithm 1. Its inputs consist
of a random forest model RF and an instance i which is represented as a vector of
feature values. In line 1, k ∈ {1, 2, . . . , K } is assigned the index of a class predicted
by the random forest RF for the instance i . The following line creates a vector of
real numbers indexed by features and initialized to 0. Then for each tree in the forest
RF the instance i is run down the tree and feature contributions are calculated.
The quantity Spli t Feature(parent) identifies a feature f on which the split is
performed in the node parent . If the value i(f) of that feature f for the instance i
is lower or equal to the threshold Spli tV alue(parent), the route continues to the
left child of the node parent . Otherwise, it goes to the right child (each node in the
tree has either two children or is a terminal node). A position corresponding to the
feature f in the vector FC is updated according to the change of value of Ymean,k ,
i.e., the k-th coordinate of Ymean , between the parent and the child.

Algorithm 1 FC(RF ,i)
1: k ← f orest_predict (RF, i)
2: FC ← vector(f eatures)
3: for each tree T in forest F do
4: parent ← root (T)

5: while parent ! = TERMINAL do
6: f ← Spli t Feature(parent)
7: if i[f] <= Spli tV alue(parent) then
8: child ← le f tChild(parent)
9: else
10: child ← rightChild(parent)
11: end if
12: FC[f] ← FC[f] + Y child

mean,k − Y parent
mean,k

13: parent ← child
14: end while
15: end for
16: FC ← FC / nTrees(F)
17: return FC

Algorithm 2 provides a sketch of the preprocessing step to compute Y n
mean for all

nodes n in the forest. The parameter D denotes the set of instances used for training
of the forest RF . In line 2, T S is assigned the set used for growing tree T . This set

202 A. Palczewska et al.

is further split in nodes according to values of splitting variables. We propose to use
DFS (depth first search [13]) to traverse the tree and compute the vector Y n

mean once
a training set for a node n is determined. There is no need to store a training set for
a node n once Y n

mean has been calculated.

Algorithm 2 Ymean(RF, D)

1: for each tree T in forest F do
2: T S ← training set for tree T
3: use DFS algorithm to compute training sets in all other nodes n of tree T and compute the

vector Y n
mean according to formula (4).

4: end for

5 Analysis of Feature Contributions

Feature contributions provide the means to understand mechanisms that lead the
model towards particular predictions. This is important in chemical or biological
applications where the additional knowledge of the forest’s decision-making process
can inform the development of new chemical compounds or explain their interactions
with living organisms. Feature contributions may also be useful for assessing the
reliability of model predictions for unseen instances. They provide complementary
information to the forest’s voting results. This section proposes three techniques for
finding patterns in the way a random forest uses available features and linking these
patterns with the forest’s predictions.

5.1 Median

The median of a sequence of numbers is such a value that the number of elements
bigger than it and the number of elements smaller than it is identical. When the
number of elements in the sequence is odd, this is the central elements of the sequence.
Otherwise, it is common to take the midpoint between the two most central elements.
In statistics, the median is an estimator of the expectation which is less affected by
outliers than the sample mean. We will use this property of the median to find a
“standard level” of feature contributions for representatives of a particular class. This
standard level will facilitate an understanding of which features are instrumental for
the classification. It can also be used to judge the reliability of forest’s prediction for
an unseen instance.

For a given random forest model, we select those instances from the training
dataset that are classified correctly. We calculate the medians of contributions of every
feature separately for each class. The medians computed for one class are combined
into a vector which is interpreted as providing the aforementioned “standard level” for

Interpreting Random Forest Classification Models Using a Feature Contribution Method 203

this class. If most of the instances from the training dataset belonging to a particular
class are close to the corresponding vector of medians, we may treat this vector
justifiably as a standard level. When a prediction is requested for a new instance,
we query the random forest model for the fraction of trees voting for each class and
calculate feature contributions leading to its final prediction. If a high fraction of
trees votes for a given class and the feature contributions are close to the standard
level for this class, we may reasonably rely on the prediction. Otherwise we may
doubt the random forest model prediction.

It may, however, happen that many instances from the training dataset correctly
predicted to belong to a particular class are distant from the corresponding vector of
medians. This might suggest that there is more than one standard level, i.e., there are
multiple mechanisms relating features to correct classes. The next subsection presents
more advanced methods capable of finding a number of standard levels—distinct
patterns followed by the random forest model in its prediction process.

5.2 Cluster Analysis

Clustering is an approach for grouping elements/objects according to their similarity
[14]. This allows us to discover patterns that are characteristic for a particular group.
As we discussed above, feature contributions in one class may have more than one
“standard level”. When this is discovered, clustering techniques can be employed to
find if there is a small number of distinct standard levels, i.e., feature contributions of
the instances in the training dataset group around a few points with only a relatively
few instances being far away from them. These few instances are then treated as
unusual representatives of a given class. We shall refer to clusters of instances around
these standard levels as “core clusters”.

The analysis of core clusters can be of particular importance for applications. For
example, in the classification of chemical compounds, the split into clusters may
point to groups of compounds with different mechanisms of activity. We should note
that the similarity of feature contributions does not imply that particular features are
similar. We examined several examples and noticed that clustering based upon the
feature values did not yield useful results whereas the same method applied to feature
contributions was able to determine a small number of core clusters.

Figure 2 demonstrates the process of analysis of model reliability for a new
instance using cluster analysis. In a preprocessing phase, feature contributions for
instances in the training dataset are obtained. The optimal number of clusters for
each class can be estimated by using, e.g., the Akaike information criterion (AIC),
the Bayesian information criterion (BIC) or the Elbow method [14, 15]. We noticed
that these methods should not be rigidly adhered to: their underlying assumption is
that the data is clustered and we only have to determine the number of these clusters.
As we argued above, we expect feature contributions for various instances to be
grouped into a small number of clusters and we accept a reasonable number outliers
interpreted as unusual instances for a given class. Clustering algorithms try to push

204 A. Palczewska et al.

Fig. 2 The workflow for assessing the reliability of the prediction made by a random forest (RF)
model

those outliers into clusters, hence increasing their number unnecessarily. We recom-
mend, therefore, to treat the calculated optimal number of clusters as the maximum
value and consecutively decrease it looking at the structure and performance of the
resulting clusters: for each cluster we assess the average fraction of trees voting for
the predicted class across the instances belonging to this cluster as well as the average
distance from the centre of the cluster. Relatively large clusters with the former value
close to 1 and the latter value small form the group of core clusters.

To assess the reliability of the model prediction for a new instance, we recommend
looking at two measures: the fraction of trees voting for the predicted class as well
as the cluster to which the instance is assigned based on its feature contributions. If
the cluster is one of the core clusters and the distance from its centre is relatively
small, the instance is a typical representative of its predicted class. This together with
high decisiveness of the forest suggests that the model’s prediction should be trusted.
Otherwise, we should allow for an increased chance of misclassification.

5.3 Log-likelihood

Feature contributions for a given instance form a vector in a multi-dimensional
Euclidean space. Using a popular k-mean clustering method, for each class we divide
vectors corresponding to feature contributions of instances in the training dataset into

Interpreting Random Forest Classification Models Using a Feature Contribution Method 205

F1 F2 F3 F4

−
0.

10
0.

00
0.

10
0.

20

Feature

F
ea

tu
re

 c
on

tr
ib

ut
io

n

Fig. 3 The box-plot for feature contributions within a core cluster for a hypothetical random forest
model

groups minimizing the Euclidean distance from the centre in each group. Figure 3
shows a box-plot of feature contributions for instances in a core cluster in a hypothet-
ical random forest model. Notice that some features are stable within a cluster—the
height of the box is small. Others (F1 and F4) display higher variability. One would
therefore expect that the same divergence of contributions for features F3 and F4
from their mean value should be treated differently. It is more significant for the
feature F3 than for the feature F4. This is unfortunately not taken into account when
the Euclidean distance is considered. Here, we propose an alternative method for
assessing the distance from the cluster centre which takes into account the variation
of feature contributions within a cluster. Our method has probabilistic roots and we
shall present it first from a statistical point of view and provide other interpretations
afterwards.

We assume that feature contributions for instances within a cluster share the
same base values (μ f)—the centre of the cluster. We attribute all discrepancies
between this base value and the actual feature contributions to a random perturbation.
These perturbations are assumed to be normally distributed with the mean 0 and the
variance σ 2

f , where f denotes the feature. The variance of the perturbation for each
feature is selected separately—we use the sample variance computed from feature
contributions of instances of the training dataset belonging to this cluster. Although
it is clear that perturbations for different features exhibit some dependence, it is
impossible to assess it given the number of instances in a cluster and a large number
of features typically in use.2 Therefore, we resort to a common solution: we assume

2 A covariance matrix of feature contributions has F(F + 1)/2 distinct entries, where F is the
number of features. This value is usually larger than the size of a cluster making it impossible to
retrieve useful information about the dependence structure of feature contributions. Application of
more advanced methods, such as principal component analysis, is left for future research.

206 A. Palczewska et al.

that the dependence between perturbations is small enough to justify treating them
as independent. Summarising, our statistical model for the distribution of feature
contributions within a cluster is as follows: feature contributions for instances within
a cluster are composed of a base value and a random perturbation which is normally
distributed and independent between features.

Take an instance i with feature contributions FC f
i . The log-likelihood of being

in a cluster with the centre (μ f) and variances of perturbations (σ 2
f) is given by

L Li =
∑

f

⎨
− (FC f

i − μ f)
2

2σ 2
f

− 1

2
log(2πσ 2

f)
⎩
. (5)

The higher the log-likelihood the bigger the chance of feature contributions of
the instance i to belong to the cluster. Notice that the above sum takes into account
the observations we made at the beginning of this subsection. Indeed, as the second
term in the sum above is independent of the considered instance, the log-likelihood
is equivalent to

∑

f

⎨
− (FC f

i − μ f)
2

2σ 2
f

⎩
,

which is the negative of the squared weighted Euclidean distance between FC f
i

and μ f . The weights are inversely proportional to the variability of a given feature
contribution in the training instances in the cluster. In our toy example of Fig. 3,
this corresponds to penalizing more for discrepancies for features F2 and F3, and
significantly less for discrepancies for features F1 and F4.

In the following section, we analyse relations between the log-likelihood and
classification for a UCI Breast Cancer Wisconsin Dataset.

6 Applications

In this section, we demonstrate how the techniques from the previous section can
be applied to improve understanding of a random forest model. We consider one
example of a binary classifier using the UCI Breast Cancer Wisconsin Dataset [16]
(BCW Dataset) and one example of a general classifier for the UCI Iris Dataset [12].
We complement our studies with a robustness analysis.

6.1 Breast Cancer Wisconsin Dataset

The UCI Breast Cancer Wisconsin Dataset contains characteristics of cell nuclei
for 569 breast tissue samples; 357 are diagnosed as benign and 212 as malignant.
The characteristics were captured from a digitized image of a fine needle aspirate

Interpreting Random Forest Classification Models Using a Feature Contribution Method 207

F2 F4 F5 F6 F7 F9 F14 F16 F17 F18 F22 F23 F25 F27 F28 F29 F30

Features

F
ea

tu
re

 c
on

tr
ib

ut
io

n

−
0.

05
0.

00
0.

05
0.

10
0.

15

Fig. 4 Medians of feature contributions for each class for the BCW Dataset. The light grey bars
represent contributions for class 0 and the black bars show contributions for class 1

(FNA) of a breast mass. There are 30 features, three (the mean, the standard error and
the average of the three largest values) for each of the following 10 characteristics:
radius, texture, perimeter, area, smoothness, compactness, concavity, concave points,
symmetry and fractal dimension. For brevity, we numbered these features from F1
to F30 according to their order in the data file.

To reduce correlation between features and facilitate model interpretation, the
min-max (minimal-redundancy-maximal-relevance) method was applied and the fol-
lowing features were removed from the dataset: 1, 3, 8, 10, 11, 12, 13, 15, 19, 20, 21,
24, 26. A random forest model was generated on 2/3 randomly selected instances
using 500 trees. The other 1/3 of instances formed the testing dataset. The valida-
tion showed that the model accuracy was 0.9682 (only 6 instances out of 189 were
classified incorrectly); similar accuracy was achieved when the model was generated
using all the features.

We applied our feature contribution algorithm to the above random forest binary
classifier. To align notation with the rest of the paper, we denote the class “malignant”
by 1 and the class “benign” by 0. Aggregate results for the feature contributions for
all training instances and both classes are presented in Fig. 4. Light-grey bars show
medians of contributions for instances of class 0, whereas black bars show medians
of contributions for instances of class 1 (malignant). Notice that there are only a few
significant features in the graph: F4—the mean of the cell area, F7—the mean of
the cell concavity, F14—the standard deviation of the cell area, F23—the average of
three largest measurements of the cell perimeter and F28—the average of three largest

208 A. Palczewska et al.

F9
F30
F16
F18
F17
F6
F5
F29
F25
F2
F27
F22
F7
F4
F14
F28
F23

5 10 15 20 25

MeanDecreaseAccuracy

F9
F30
F16
F18
F5
F25
F17
F29
F22
F2
F6
F27
F7
F14
F4
F28
F23

0 5 10 15 20 25

MeanDecreaseGini

breastrfmtest

Fig. 5 The left panel shows permutation based variable importance and the right panel displays
Gini importance for a RF binary classification model developed for the BCW Dataset. Graphs
generated using randomForest package in R

measurements of concave points. This selection of significant features is perfectly
in agreement with the results of the permutation based variable importance (the left
panel of Fig. 5) and the Gini importance (the right panel of Fig. 5). Interpreting the
size of bars as the level of importance of a feature, our results are in line with those
provided by the Gini index. However, the main advantage of the approach presented
in this chapter lies in the fact that one can study the reasons for the forest’s decision
for a particular instance.

Comparison of feature contributions for a particular instance with medians of
feature contributions for all instances of one class provides valuable information
about the forest’s prediction. Take an instance predicted to be in class 1. In a typical
case when the large majority of trees votes for class 1 the feature contributions
for that instance are very close to the median values (see Fig. 6a). This happens
for around 80% of all instances from the testing dataset predicted to be in class 1.
However, when the decision is less unanimous, the analysis of feature contributions
may reveal interesting information. As an example, we have chosen instances 194
and 537 (see Table 3) which were classified correctly as malignant (class 1) by
a majority of trees but with a significant number of trees expressing an opposite
view. Figure 6b presents feature contributions for these two instances (grey and light
grey bars) against the median values for class 1 (black bars). The largest differences
can be seen for the contributions of very significant features F23, F4 and F14: it
is highly negative for the two instances under consideration compared to a large
positive value commonly found in instances of class 1. Recall that a negative value

Interpreting Random Forest Classification Models Using a Feature Contribution Method 209

Features

F
ea

tu
re

 c
on

tr
ib

ut
io

n

0.
00

0.
02

0.
04

0.
0

0.
08

0.
10

0.
12

0.
14

F2 F4 F5 F6 F7 F9 F14 F16 F17 F18 F22 F23 F25 F27 F28 F29 F30

F2 F4 F5 F6 F7 F9 F14 F16 F17 F18 F22 F23 F25 F27 F28 F29 F30

Features

F
ea

tu
re

 c
on

tr
ib

ut
io

n

−
0.

10

−
0.

05
0.

00
0.

05
0.

10
0.

15
(a)

(b)

Fig. 6 Comparison of the medians of feature contributions (toward class 1) over all instances of
class 1 (black bars) with a feature contributions for instance number 3 (light-grey bars) b feature
contributions for instances number 194 (grey bars) and 537 (light-grey bars) from the BCW Dataset.
The fractions of trees voting for class 0 and 1 for these three instances are collected in Table 3

contributes towards the classification in class 0. There are also three new significant
attributes (F2, F22 and F27) that contribute towards the correct classification as well
as unusual contributions for features F7 and F28. These newly significant features
are judged as only moderately important by both of the variable importance methods
in Fig. 5. It is, therefore, surprising to note that the contribution of these three new
features was instrumental in correctly classifying instances 194 and 537 as malignant.
This highlights the fact that features which may not generally be important for the
model may, nonetheless, be important for classifying specific instances. The approach

210 A. Palczewska et al.

Table 3 Percentage of trees that vote for each class in RF model for a selection of instances from
the BCW Dataset

Instance Id Benign (class 0) Malignant (class 1)

3 0 1
194 0.298 0.702
537 0.234 0.766

Table 4 The structure of clusters for BCW Dataset

Cluster 1 Cluster 2 Cluster 3
Size Avg. distance Size Avg. distance Size Avg. distance

Class 0 12 0.220 16 0.262 213 0.068
Class 1 20 0.241 109 0.111 10 0.336

For each cluster, the size (the number of training instances) is reported in the left column and the
average Euclidean distance from the cluster centre among the training dataset instances belonging
to this cluster is displayed in the right column

presented in this chapter is able to identify such features, whilst the standard variable
importance measures for random forest cannot.

6.2 Cluster Analysis and Log-Likelihood

The training dataset previously derived for the BCW Dataset was partitioned accord-
ing to the true class labels. A clustering algorithm implemented in the R package
kmeans was run separately for each class. This resulted in the determination of three
clusters for class 0 and three clusters for class 1. The structure and size of clusters
is presented in Table 4. Each class has one large cluster: cluster 3 for class 0 and
cluster 2 for class 1. Both have a bigger concentration of points around the cluster
centre (small average distance) than the remaining clusters. This suggests that there
is exactly one core cluster corresponding to a class. This explains the success of the
analysis based on the median as the vectors of medians are close to the centres of
unique core clusters.

Figure 7 lends support to our interpretation of core clusters. The left panel shows
the box-plot of the fraction of trees voting for class 0 among training instances
belonging to each of the three clusters. A value close to one represents predictions
for which the forest is nearly unanimous. This is the case for cluster 3. Two other
clusters comprise around 10 % of the training instances for which the random forest
model happened to be less decisive. A similar pattern can be observed in the case of
class 1, see the right panel of the same figure. The unanimity of the forest is observed
for the most numerous cluster 2 with other clusters showing lower decisiveness. The
reason for this becomes clear once one looks at the variability of feature contributions
within each cluster, see Fig. 8. The upper and lower ends of the box correspond to the

Interpreting Random Forest Classification Models Using a Feature Contribution Method 211

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

Cluster

P
ro

ba
bi

lit
y

of
 c

la
ss

 0

1 2 3 1 2 3

0.
7

0.
8

0.
9

1.
0

Cluster

P
ro

ba
bi

lit
y

of
 c

la
ss

 1

(a) (b)

Fig. 7 Fraction of forest trees voting for the correct class in each cluster for training part of the
BCW Dataset

F2 F4 F5 F6 F7 F9 F14 F16 F17 F18 F22 F23 F25 F27 F28 F29 F30 F2 F4 F5 F6 F7 F9 F14 F16 F17 F18 F22 F23 F25 F27 F28 F29 F30

F2 F4 F5 F6 F7 F9 F14 F16 F17 F18 F22 F23 F25 F27 F28 F29 F30

−
0.

2
−

0.
1

0.
0

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

0.
3

Feature

F
ea

tu
re

 c
on

tr
ib

ut
io

n

Cluster 1

0.
1

0.
2

0.
3

Feature

F
ea

tu
re

 c
on

tr
ib

ut
io

n

Cluster 2

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

0.
3

Feature

F
ea

tu
re

 c
on

tr
ib

ut
io

n

Cluster 3

Fig. 8 Boxplot of feature contributions (towards class 1) for training instances in each of the three
clusters obtained for class 1

75 % and 25 % quantiles, whereas the whiskers show the full range of the data. Cluster
2 enjoys a minor variability of all the contributions which supports our earlier claims
regarding the similarity of instances (in terms of their feature contributions) in the
core class. One can see much higher variability in two remaining clusters showing
that the forest used different features as evidence to classify instances in each of

212 A. Palczewska et al.

−250 −200 −150 −100 −50 0 50 100−
50

0
−

40
0

−
30

0
−

20
0

−
10

0
0

10
0

Log−likelihood for the core cluster in class 1

Lo
g−

lik
el

ih
oo

d
fo

r
th

e
co

re
 c

lu
st

er
 in

 c
la

ss
 0

Fig. 9 Log-likelihoods for belonging to the core cluster in class 0 (vertical axis) and class 1
(horizontal axis) for the testing dataset in BCW. Circles correspond to instances of class 0 while
triangles denote instances of class 1

these clusters. Although in cluster 2 all contributions were positive, in clusters 1 and
3 there are features with negative contributions. Recall that a negative value of a
feature contribution provides evidence against being in the corresponding class, here
class 1.

Based on the observation that clusters correspond to a particular decision-making
route for the random forest model, we introduced the log-likelihood as a way to
assess the distance of a given instance from the cluster centre, or, in a probabilistic
interpretation, to compute the likelihood3 that the instance belongs to the given
cluster. It should however be clarified that one cannot compare the likelihood for the
core cluster in class 0 with the likelihood for the core cluster in class 1. The likelihood
can only be used for comparisons within one cluster: having two instances we can
say which one is more likely to belong to a given cluster. By comparing it to a typical
likelihood for training instances in a given cluster we can further draw conclusions
about how well an instance fits that cluster. Figure 9 presents the log-likelihoods for
the two core clusters (one for each class) for instances from the testing dataset. Shapes
are used to mark instances belonging to each class: circles for class 0 and triangles for
class 1. Notice that likelihoods provide a very good split between classes: instances
belonging to class 0 have a high log-likelihood for the core cluster of class 0 and
rather low log-likelihood for the core cluster of class 1. And vice-versa for instances
of class 1.

3 The likelihood is obtained by applying the exponential function to the log-likelihood.

Interpreting Random Forest Classification Models Using a Feature Contribution Method 213

Sepal.Length Sepal.Width Petal.Length Petal.Width

Setosa
Versicolour
Virginica

Feature

F
ea

tu
re

 c
on

tr
ib

ut
io

n
0.

00
0.

05
0.

10
0.

15
0.

20
0.

25
0.

30
0.

35

Fig. 10 Medians of feature contributions for each class for the UCI Iris Dataset

Table 5 Feature
contributions towards
predicted classes for selected
instances from the UCI Iris
Dataset

Instance Sepal Petal
Length Width Length Width

120 0.059 0.014 0.053 0.448
150 −0.097 0.035 0.259 0.339

6.3 Iris Dataset

In this section we use the UCI Iris Dataset [12] to demonstrate interpretability of
feature contributions for classification models. We generated a random forest model
on 100 randomly selected instances. The remaining 50 instances were used to assess
the accuracy of the model: 47 out of 50 instances were correctly classified. Then
we applied our approach for determining the feature contributions for the generated
model. Figure 10 presents medians of feature contributions for each of the three
classes. In contrast to the binary classification case, the medians are positive for all
classes. A positive feature contribution for a given class means that the value of this
feature directs the forest towards assigning this class. A negative value points towards
the other classes.

Feature contributions provide valuable information about the reliability of random
forest predictions for a particular instance. It is commonly assumed that the more trees
voting for a particular class, the higher the chance that the forest decision is correct.
We argue that the analysis of feature contributions offers a more refined picture. As
an example, take two instances: 120 and 150. The first one was classified in class
Versicolour (88% of trees voted for this class). The second one was assigned class
Virginica with 86% of trees voting for this class. We are, therefore, tempted to trust
both of these predictions to the same extent. Table 5 collects feature contributions for

214 A. Palczewska et al.

−250−300 −200 −150 −100 −50 0 50

−
25

0
−

30
0

−
20

0
−

15
0

−
10

0
 −

50
0

 5
0

−2000000

−1500000

−1000000

 −500000

 0

 500000

LH2

LH
1

LH
3

Fig. 11 Log-likelihoods for all instances in UCI Iris Dataset towards core clusters for each class.
Circles represent the Setosa class, triangles represent Versicolour and diamonds represent the Vir-
ginica class. Points corresponding to the same class tend to group together and there are only a few
instances that are far from their cores

these instances towards their predicted classes. Recall that the highest contribution to
the decision is commonly attributed to features 3 (Petal.Length) and 4 (Petal Width),
see Fig. 10. These features also make the highest contributions to the predicted class
for instance 150. The indecisiveness of the forest may stem from an unusual value
for the feature 1 (Sepal.Length) which points towards a different class. In contrast,
the instance 120 shows standard (low) contributions of the first two features and
unusual contributions of the last two features: very low for feature 3 and high for
feature 4. Recall that features 3 and 4 tend to contribute most to the forest’s decision
(see Fig. 10) with values between 0.25 and 0.35. The low value for feature 3 is
non-standard for its predicted class, which increases the chance of it being wrongly
classified. Indeed, both instances belong to class Virginica while the forest classified
the instance 120 wrongly as class Versicolour and the instance 150 correctly as class
Virginica.

The cluster analysis of feature contributions for the UCI Iris Dataset revealed that
it is sufficient to consider only two clusters for each class. Cluster sizes are 4 and
38 for class Setosa, 2 and 25 for class Versicolour and 3 and 28 for class Virginica.
Core clusters were straightforward to determine: for each class, the largest of the
two clusters was selected as the core cluster. Figure 11 displays an analysis of log-
likelihoods for all instances in the dataset. For every instance, we computed feature
contributions towards each class and calculated log-likelihoods of being in the core

Interpreting Random Forest Classification Models Using a Feature Contribution Method 215

clusters of the respective classes. On the graph, each point represents one instance.
The coordinate LH1 is the log-likelihood for the core cluster of class Setosa, the
coordinate LH2 is the log-likelihood for the core cluster of class Versicolour and the
coordinate LH3 is the log-likelihood for the core cluster of class Virginica. Shapes of
points show the true classification: class Setosa is represented by circles, Versicolour
by triangles and Virginica by diamonds. Notice that points corresponding to instances
of the same class tend to group together. This can be interpreted as the existence of
coherent patterns in the reasoning of the random forest model.

6.4 Robustness Analysis

For the validity of the study of feature contributions, it is crucial that the results are not
artefacts of one particular realization of a random forest model but that they convey
actual information held by the data. We therefore propose a method for robustness
analysis of feature contributions. We will use the UCI Breast Cancer Wisconsin
Dataset studied in Sect. 6.1 as an example.

We removed instance number 3 from the original dataset to allow us to perform
tests with an unseen instance. We generated 100 random forest models with 500
trees with each model built using an independent randomly generated training set
with 379 ≈ 2/3 · 568 instances. The rest of the dataset for each model was used for
its validation. The average model accuracy was 0.963. For each generated model,
we collected medians of feature contributions separately for training and testing
datasets and each class. The variation of these quantities over models for class 1 and
the training dataset are presented using a box plot in Fig. 12a. The top of the box is the
75 % quantile, the bottom is the 25 % quantile, while the bold line in the middle is the
median (recalling that this is the median of the median feature contributions across
multiple models). Whiskers show the extent of minimal and maximal values for each
feature contribution. Notice that the variation between simulations is moderate and
conclusions drawn for one realization of the random forest model in Sect. 6.1 would
hold for each of the generated 100 random forest models.

A testing dataset contains those instances that do not take part in the model
generation. One can, therefore, expect more errors in the classification of the forest,
which, in effect, should imply lower stability of the calculated feature contributions.
Indeed, the box plot presented in Fig. 12b shows a slight tendency towards increased
variability of the feature contributions when compared to Fig. 12a. However, these
results are qualitatively on a par with those obtained on the training datasets. We can,
therefore, conclude that feature contributions computed for a new (unseen) instance
provide reliable information. We further tested this hypothesis by computing feature
contributions for instance number 3 that did not take part in the generation of models.
The statistics for feature contributions for this instance over 100 random forest models
are shown in Fig. 12c. Similar results were obtained for other instances.

216 A. Palczewska et al.

F2 F4 F5 F6 F7 F9 F14 F16 F17 F18 F22 F23 F25 F27 F28 F29 F30

F2 F4 F5 F6 F7 F9 F14 F16 F17 F18 F22 F23 F25 F27 F28 F29 F30

F2 F4 F5 F6 F7 F9 F14 F16 F17 F18 F22 F23 F25 F27 F28 F29 F30

0.
00

0.
05

0.
10

0.
15

Feature

F
ea

tu
re

 c
on

tr
ib

ut
io

n
0.

00
0.

05
0.

10
0.

15

Feature

F
ea

tu
re

 c
on

tr
ib

ut
io

n
0.

00
0.

05
0.

10
0.

15

Feature

F
ea

tu
re

 c
on

tr
ib

ut
io

n

(a)

(b)

(c)

Fig. 12 Feature contributions towards class 1 for 100 random forest models for the BCW dataset,
a Medians of feature contributions for training datasets, b Medians of feature contributions for
testing datasets, c Feature contributions for an unseen instance

Interpreting Random Forest Classification Models Using a Feature Contribution Method 217

7 Conclusions

Feature contributions provide a novel approach towards black-box model interpre-
tation. They measure the influence of variables/features on the prediction outcome
and provide explanations as to why a model makes a particular decision. In this
work, we extended the feature contribution method of [6] to random forest clas-
sification models and we proposed three techniques (median, cluster analysis and
log-likelihood) for finding patterns in the random forest’s use of available features.
Using UCI benchmark datasets we showed the robustness of the proposed methodol-
ogy. We also demonstrated how feature contributions can be applied to understand the
dependence between instance characteristics and their predicted classification and to
assess the reliability of the prediction. The relation between feature contributions and
standard variable importance measures was also investigated. The software used in
the empirical analysis was implemented in R as an add-on for the randomForest
package and is currently being prepared for submission to CRAN [17] under the
name rfFC.

Acknowledgments This work is partially supported by BBSRC and Syngenta Ltd through the
Industrial CASE Studentship Grant (No. BB/H530854/1).

References

1. Tropsha, A.: Best practices for QSAR model development, validation, and exploitation. Mol.
Inform. 29(6–7), 476–488 (2010)

2. Rosenbaum, L., Hinselmann, G., Jahn, A., Zell, A.: Interpreting linear support vector machine
models with heat map molecule coloring. J. Cheminf. 3(1), 11 (2011)

3. Carlsson, L., Helgee, E.A., Boyer, S.: Interpretation of nonlinear QSAR models applied to
ames mutagenicity data. J. Chem. Inf. Model. 49(11), 2551–2558 (2009)

4. Baehrens, D., Schroeter, T., Harmeling, S., Kawanabe, M., Hansen, K., Muller, K.R.: How to
explain individual classification decisions. J. Mach. Learn. Res. 11, 1803–1831 (2010)

5. Hansen, K., Baehrens, D., Schroeter, T., Rupp, M., Muller, K.R.: Visual interpretation of
kernel-based prediction models. Mol. Inform. 30(9), 817–826 (2011)

6. Kuz’min, V.E., Polishchuk, P.G., Artemenko, A.G., Andronati, S.A.: Interpretation of QSAR
models based on random forest methods. Mol. Inform. 30(6–7), 593–603 (2011)

7. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
8. Breiman, L., Cutler, A.: Random forests. http://www.stat.berkeley.edu/~breiman/

RandomForests (2008)
9. Strobl, C., Boulesteix, A.-L., Zeileis, A., Hothorn, T.: Bias in random forest variable importance

measures: Illustrations, sources and a solution. BMC Bioinf. 8(1), 25 (2007)
10. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees.

Wadsworth & Brooks/Cole Advanced Books & Software, Monterey (1984)
11. Liaw, A., Wiener, M.: Classification and regression by randomforest. R News 2(3), 18–22

(2002)
12. Iris dataset. http://archive.ics.uci.edu/ml/datasets/Iris
13. Cormen, T.H., Stein, C., Rivest, R.L., Leiserson, C.E.: Introduction to Algorithms. 2nd edn.

McGraw-Hill Higher Education, New York (2001)
14. Hand, D.J., Smyth, P., Mannila, H.: Principles of Data Mining. MIT Press, Cambridge (2001)

http://www.stat.berkeley.edu/~breiman/RandomForests
http://www.stat.berkeley.edu/~breiman/RandomForests
http://archive.ics.uci.edu/ml/datasets/Iris

218 A. Palczewska et al.

15. Rajaraman, A., Ullman, J.D.: Mining of Massive Datasets. Cambridge University Press, Cam-
bridge (2012)

16. Breast Cancer Wisconsin Diagnostic dataset. http://archive.ics.uci.edu/ml/datasets/
Breast+Cancer+Wisconsin+%28Diagnostic%29

17. CRAN—The Comprehensive R Archive Network. http://cran.r-project.org/

http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29
http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29
http://cran.r-project.org/

Towards a High Level Language for Reuse
and Integration

Thouraya Bouabana-Tebibel, Stuart H. Rubin, Kadaouia Habib,
Asmaa Chebba, Sofia Mellah and Lynda Allata

Abstract The modeling and design of complex systems continues to face grand
challenges in feedback and control. Existing languages and tools, either textual or
graphical, bring some improvement for such purposes, but much remains to be
done in order to readily insure scalability. In this chapter, we propose a language
which gathers specialization and composition properties. It is our belief that the
latter properties bear the necessary capabilities to overcome the difficulties raised
when developing these systems. The language is designed in a way to be specific to
complex system domains. It supports a component-based structure that conforms to a
user-friendly component assembly. The proposed structure is based on static,
dynamic, functional and parametric parts. It is conceived in the spirit of SysML
concepts. The language also supports textual and graphical specification. The speci-
fied models generate Internal Block Diagrams. A modeling tool is built on the basis
of the Eclipse framework.

Keywords Complex systems · Component-based language · Domain-specific
language · SysML

1 Introduction

Customized Domain Specific Languages (DSL) have gained a lot of popularity in
the last few decades. There are many DSLs with textual or graphical/visual concrete
syntax to support creative thinking, communication, and organization of the work

T. Bouabana-Tebibel (B) · K. Habib · A. Chebba · S. Mellah · L. Allata
Laboratoire de Communication dans les Systèmes Informatiques - LCSI, Ecole Nationale
Supérieure d’Informatique, Algiers, Algeria
e-mail: t_tebibel@esi.dz

S. H. Rubin
SPAWAR Systems Center Pacific, San Diego, USA
e-mail: stuart.rubin@navy.mil

T. Bouabana-Tebibel and S. H. Rubin (eds.), Integration of Reusable Systems, 219
Advances in Intelligent Systems and Computing 263, DOI: 10.1007/978-3-319-04717-1_10,
© Springer International Publishing Switzerland 2014

220 T. Bouabana-Tebibel et al.

to be performed [10]. In contrast to General Purpose Languages (GPL) like C, Java,
and UML, DSLs enable more concise and precise specifications, which even non-
programmer domain experts can understand. This is due to the domain concepts
which are directly represented by syntactic constructs [11]. A DSL may also enable
optimizing sentences by restricting what the user can do. This is typically not possible
with a GPL. Besides, a sentence expressed in a DSL usually makes use of higher-level
constructs than an equivalent sentence in a GPL [22].

On the other hand, component-based development is an attractive approach that
receives much interest from both academia and industry. In recent years, component
models, such as Enterprise Java Beans (EJB) of Sun [21], Component Object Model
(COM) of Microsoft [13], and CORBA Component Model (CCM) of the OMG [14]
have been well developed. In component-based systems, the dependencies between
components are controlled through well-defined interfaces, as communication ports.
Furthermore, components are more independent from each other compared with
procedures in procedure-based systems and with classes/objects in object-oriented
systems. At runtime, these components also have their own life cycles and runtime
environment.

The general idea of our work falls under the context of complex systems modeling
using a component-based language. Complex systems are systems with interdepen-
dent parts [3]. Interdependence means that we cannot identify the system behavior
by just considering each of the parts and combining them. Instead, we must consider
how the relationship between the parts affects the behavior of the whole. Several
features of complex systems makes them difficult for learners to understand, among
which are the large number of entities and interactions between them, non-linearity
of changes, self-organization mechanisms, and exchanges with the environment.

Our principal goal is to facilitate the complex systems specification phase by
offering the developer a language which is simple enough to be quickly learned and
easily handled. The proposed language should take into account two main features.
It will be domain specific to the modeling of complex systems, thus allowing the
specification step to be performed in a way that hides all details that may bother the
developer and complicate the development process. It will, furthermore, be designed
based on component assembly, thus providing independent deployment and compo-
nent reuse.

Systems are mainly characterized by their structural, behavioral, and functional
aspects. Structures refer to the elements of a system. Behaviors refer to the mech-
anisms within a system. Finally functions refer to outcomes or roles in a system
[3]. Systems Modeling Language (SysML) Internal Block Diagrams (IBD) [15], a
standard for complex systems modeling widely used in engineering, support most
of these aspects. However, they sometimes lack flexibility, relative to their high
abstraction level, which may involve difficulties in handling. They, furthermore,
present an exclusive graphical notation that makes it difficult to specify and visu-
alize, in a readable way, scalable model components. Formal verification of such a
visual specification proves, furthermore, to be unrealizable. For all these reasons, we
propose, on one hand, a DSL that integrates both textual and graphical components.
The main advantage behind the textual specification is to provide the beginnings

Towards a High Level Language for Reuse and Integration 221

of a high-level language supporting possible formal verification of the models. We
based, on the other hand, our DSL features on IBD concepts and provided mecha-
nisms to systematically generate IBD models. The whole of the transformation rules
are formally written.

The remainder of this chapter starts with a brief presentation of the system used
to illustrate the proposed DSL. In Sects. 3, 4 and 5 the DSL is presented and the
techniques on which it rests are developed. Section 6 deals with its implementation.
We discuss, in Sect. 7, some related works. We finally conclude, in Sect. 8, with some
observations on the results obtained.

2 Case Study

To illustrate our study, we select a refrigeration system, which is commonly recog-
nized as a benchmark for the representation of complex systems. The system uses a
circulating fluid refrigerant to absorb and remove heat from the space to be cooled,
and radiates that heat of condensation. It is mainly composed of:

• Compressor: transforms the low pressure vapor drawn from the evaporator to high
pressure vapor.

• Condenser: transforms the high pressure refrigerant vapor to liquid state by radi-
ating the heat of condensation.

• Expander: reduces the liquid refrigerant pressure sufficiently to allow the liquid
vaporization (heat absorption).

• Evaporator: transforms the liquid refrigerant drawn from the valve to low pressure
vapor.

Multistage refrigeration systems are widely used where ultra low temperatures
are required, but cannot be obtained economically through the use of a single-
stage system. They use two or more condensers connected in series in the same
refrigerator—albeit with different refrigerants. Figure 1 depicts a part of such systems.

3 SSL Abstract Syntax

The language we propose will be termed SSL for System Specification Language.
The abstract syntax of a given DSL represents the domain concepts. In our case, we
consider the abstract syntax of SysML to extract complex systems concepts.

The block is the basic unit in SysML structure. Modeling with IBD consists in
representing a given system by assembling blocks connected via ports. Ports are
a special class of property used to specify allowable types of interactions between
blocks. Blocks may specify operations or other features that describe the behavior
of a system. They also support multi-level nesting of connector ends. A block can

222 T. Bouabana-Tebibel et al.

Fig. 1 IBD of the refrigeration system

be simple or composed of several sub-blocks. Composition is a property of encap-
sulation.

Like SysML, the SSL architecture will be based on blocks. Such a structure
would be interesting for users familiar with SysML. It is composed of two types of
components:

• Simple components which are elementary components that do not have sub-
components, for example, Expander, Evaporator, and Compressor (see Fig. 1).

• Complex components that encapsulate sub-components, whether simple or
complex, for example, the Condenser which encapsulates a Condenser and a
Compressor.

The component architecture, which we propose is based on the principle of reuse.
In order to favor component reuse, we suggest an appropriate architecture where
the components include distinct static (invariant), dynamic (variable/scalable), func-
tional (role/result) and parametric (parameters/constraints) parts, called compart-
ments. Figure 2 depicts that architecture. The static and functional compartments
assure the reuse property whereas the dynamic part serves to express the composite
property of blocks, which is omnipresent in complex systems. As for the parametric
compartment, it assures the control of physical properties of the system. Both simple
and complex blocks include the static, functional and parametric parts; whereas, the
dynamic part is present only in complex blocks. The latter specificity is closely con-
nected to the idea according to which a composite block is necessarily composed of
instantiated elements; thus, it includes information of a dynamic nature. That frag-
mentary architecture provides much ease in reusing predefined blocks by separate
specifications and instantiated ones within the same specification.

Towards a High Level Language for Reuse and Integration 223

Fig. 2 Component structure

3.1 The Static Aspect

Sub-blocks of a composite block constitute fixed information. They are included in
the static compartment of the block. Communication ports are also considered as
invariant information, and integrated in the static compartment. More specifically,
the static component comprises the following elements. Figure 3 shows the structure
of the Condenser component.

• Component name, which usually represents the component type. It is of the form
BlockName.

• Sub-components, which are the list of the blocks encapsulated in a complex com-
ponent. They are listed using the component name form.

• Ports, which represent the access points of the blocks and allow the latter assembly.
According to SysML IBDs, we distinguish between two port types, namely, stan-
dard and flow ports. They may be named using the service or flow name.

– Standard ports deliver required and provided services between a block and its
environment. This type of port allows data circulation from the provided ports
(which specify the provided services) towards the required ports (which specify
the required services). A block can call all services specified in its required ports
and it must, at the same time, assure all services specified in its provided ports.
For example, Penv1 and Penv2 are the Condenser standard ports.

– Flow ports allow the circulation of any energy or material between the block
and its environment. A flow port is atomic if it allows the circulation of only
one type of flow and it is non-atomic if it allows the circulation of several types
of flow. For example, Pexp and Pcmp are the Condenser flow ports.

224 T. Bouabana-Tebibel et al.

Fig. 3 Structure of the condenser component

3.2 The Dynamic Aspect

Blocks are instantiated. The resulting instances provide information, which varies.
They are thus part of the component dynamic compartment. Communication between
blocks is another part of the dynamic compartment. This communication is modeled
using connections between blocks via their ports. More specifically, the dynamic
compartment comprises the following elements.

• Instances derived from the sub-components already declared in the components
list. We can see, in Fig. 3, two declared instances for the block Condenser. They
are of the form instance: Block.

• Encapsulations provide all instances encapsulated within other instances using
the symbol IN.

• Connections are all links between components. A connection is defined by the
name of the two connected instances separated by a keyword indicating the type of
the connection, which may be ST for standard services and FL for flows. For each
of these connections, the direction of the communication is specified by placing
the sender ahead followed by the keyword and the receiver. We can see the declared
connections for the Condenser block in Fig. 3.

Towards a High Level Language for Reuse and Integration 225

3.3 The Functional Aspect

Every function assured by a system component is described on the functional
compartment of the block. In SSL, such a function expresses the role of the
block. Roles—also called association-ends in object-oriented languages, such as
SysML, are a key idea in modeling the functionalities that a given object may render.
They enable us to distinguish among the numerous roles an object plays, based on
the set of the operations it performs. By analogy to the component-based structure,
which we propose, roles will characterize an instantiated block on the basis of the
connections the latter has with its surroundings. Connections are supported by the
ports associated with each instance. Thus, the roles a block instance plays are merely
provided by the ports it supports. We thus propose to express a role of a block
instance in a function of the block instance to which it is connected. More formally,
we can write:

• Inst = {inst} is a set of block instances
• Rol = {rol} is a set of roles played by block instances
• r : Inst → P(Rol) is a function that returns the role that a block instance plays.

For example, in Fig. 3, roles are expressed using the function r.
The role statement that we assign to block functions provides a formal aspect to the

concept. Practically, a block function (i.e. role) is described in a paraphrased way—
as documentation of the instantiated block. Thus, in the functional compartment,
the user defines the functional specification by answering questions such as: What
is expected from the block instance? How can the services be used? etc. A source
programming code may also accompany the textual description. Besides, global
documentation, describing the functioning of the whole block, is provided in order
to be of assistance in reusing block documentation. In this manner, future users can
thoroughly understand the function realized by the reused component.

One might question the significance of such a concept within SSL. How could
roles be handled to improve systems specification? As we claimed above, roles bring
a specific touch to block instances according to their connections. Identifying and
consequently gathering block instances according to that property may be of inter-
est. Among other advantages, it provides collections of objects grouped according
to identical characteristics. Languages based on set theory, like OCL and Z, may
complete SSL for system properties expression.

3.4 The Parametric Aspect

To enrich the proposed component structure, we add to the previous compartments
another one that allows the integration of mechanisms for system analysis in terms
of performance and reliability. It is a parametric compartment inspired from SysML
parametric diagram, which allows users to specify constraints that control the phys-
ical properties of a system.

226 T. Bouabana-Tebibel et al.

The parametric compartment is composed of two parts. The first part concerns
the constraint parameters. The second part contains the constraints which must be
verified to ensure that the system is functioning correctly. More specifically, the
parametric compartment is composed of the following elements:

• Parameters: they represent the physical properties of a system, such as temperature,
pressure, etc. In the parametric compartment each parameter is defined by its
name, its components or source instance that represents the source of the physical
property.

• Constraints: they express physical controls on a component and define relation-
ships between the physical properties of a system. These constraints are expressed
using mathematical or logical expressions composed of parameters. A constraint
is defined by its name and its parameters that can be of two types:

– In parameters: represent physical properties from other components.
– Out parameters: represent physical properties of the component.

4 SSL Grammar and Concrete Syntax

To develop a new language one can proceed either by building its metamodel or
establishing its grammar. The method differs depending on the language form. In our
case, we mainly aim at creating a textual language that integrates graphics handling.
We, therefore, opt for the grammatical approach.

4.1 Concrete Syntax

SSL concrete syntax is represented by two different sets of notations, either textual or
graphical, respectively supported by textual and graphical editors. The latter may be
indifferently handled by the user, according to his/her preferences, to facilitate model-
ing. Any specification introduced by a user in a given form, either textual or graphical,
is systematically transformed and displayed in the other form. This approach allows
users to check their model validity. Besides, the two forms of notation are checked
for all types of lexical and syntax errors while typing the specification.

To facilitate SSL learning and manipulation, we thought to use some keywords
used in IBD, such as: Block to designate a component, Port, and Flow. We also select
keywords very close to the natural language used to describe complex systems in
terms of components, such as SimpleBlock, ComplexBlock, and Connection.

The program “DiagramIbd SYSTEM” illustrates some visual features of the SSL
text editor. It shows a part of the program specifying the design of the refrigeration
system.

The SSL graphical editor includes a palette that contains all of the icons that
the designer can use to model his system, namely, complex blocks, simple blocks,
standard and flow ports, and standard and flow connections. Figure 4 shows the SSL
graphical editor with a part of the refrigerator system.

Towards a High Level Language for Reuse and Integration 227

228 T. Bouabana-Tebibel et al.

Fig. 4 Refrigerator system scheme using SSL

4.2 The Grammar

SSL is characterized by: (1) a vocabulary inspired from SysML constructs, which
are well recognized to be basic, thus facilitating the user programming, and (2) a
very simple syntax, which respects the component architecture that we proposed. It
is based on a context-free grammar. The general form of the proposed grammar is
presented in what follows:

• R1: <Axiome>→ "DiagramIbd" < DiagramName >< Model > "EndDiagram"
• R2: <Model>→ < SimpleBlock >+< ComplexBlock >

• R3: <SimpleBlock>→"SimpleBlock"<BlockName>< SimpleStaticPart >"EndBlock"
• R3: <SimpleStaticPart>→"Ports"<StandardPorts>*<FlowPorts >* "EndPorts"
• R4: <ComplexBlock>→"ComplexBlock"<BlockName><ComplexStaticPart> <Comple- x

DynamicPart> <ComplexFunctionalPart> <ComplexParametricPart>"End Bloc"
• R5: <ComplexStaticPart>→"Ports"<StandardPort >* <FlowPort >* "EndPorts""Sub-Blocks"

<Blocks> + "EndSubBlocks"
• R6: <ComplexDynamicPart>→"Instances"<BlockInstance> + "EndInstances"Connections"

<StandardConnection> * <FlowConnection>* "EndConnections"
• R7: <ComplexFunctionalPart >→ "FunctionalPart"<Role> ∗"End Functional Part"
• R8: <ComplexParametricPart>→ "ParametricPart"<Parameters>*<Constraints> ∗"End-

ParametricPart"
• R9: <Standard Ports >→"StandardPort"<PortName>"Behavioral"<Service> +|"Standard-

Port"<PortName><Service> +
• R10: <Service>→"Service"<ServiceName>

Towards a High Level Language for Reuse and Integration 229

• R11: <FlowPorts>→"FlowPorts"<PortName>"Behavioral" "Conjugated" <Atomic>
∗| <PortName>"Behavioral""Conjugated"|"FlowPorts"<PortName>"Behavioral" <Atomic>
∗| <PortName>"Behavioral" <Atomic>*

• R12: <Atomic>→"ItemFlow:" <ItemFlowName>
• R13: <StandardConnection>→"StandardConnection"<ConnectionName>"Source:"<Stand-

ardPort1Name> "Target :"<StandardPort2Name>
• R14: <FlowConnection>→"FlowConnection"<ConnectionName>"Source:"<FlowPort1-

Name>"Target :"<FlowPort2Name>
• R15: <Blocks>→< BlockName> "; "
• R16: <BlockInstance>→<InstanceName> ": " < BlockName>
• <Role>→"Role:" < RoleName>"("<InstanceName>")"
• R17: <Parameters>→"Parameters:" <ParameterName">"EndParameters"
• R18: <Constraints>→"Constraint"<ConstraintName><Expression>"EndConstraint"
• R19: < BlockName>→ String
• R20: <PortName>→ String
• R21: <InstanceName>→ String

The production rule R1 is the axiom of the grammar. It states that each program
must begin with the keyword DiagramIbd, followed by its name, and ending with the
keyword EndDiagram. The body of the diagram is represented by the non-terminal
<Model>. Rules R3 and R4 express simple and complex block types.

5 SSL Semantics

Besides being a dedicated language that simplifies complex systems modeling, SSL
guarantees syntactical and functional coherence, while modeling validity thanks to
its semantics that we describe as SSL features in what follows.

5.1 Component Assembly Control

Component assembly counts among the most significant functionalities of the SSL
language. To preserve the semantics consistency of that assembly, we must assure
that components are assembled in accordance with their respective type, which must
fit. According to the SSL structure and concept, component assembly may only be
performed through block encapsulation or port connection.

In reference to block encapsulation, at the static structure level—defined by the
static compartment, blocks may be assembled without any restriction on their type.
Formal verification does not make sense. A simple validation, which is left to the mod-
eler’s appreciation, or based on logical languages like the Object Constraint Language
(OCL) [16], which is used to express properties of systems modeled with UML [17],
or temporal logics, may be performed. At the dynamic structure level—defined by
the dynamic compartment, a rigorous control must be performed on the instantiated

230 T. Bouabana-Tebibel et al.

embedded blocks. The latter requires the same type as that of the blocks previously
declared within the static structure.

Ports connection is declared only at the dynamic structure level, where every
composite block describes: (1) connections between its sub-components and (2) its
own connections with the sub-components. On the other hand, ports convey services
through standard ports and flows through flow ports. They may support several sub-
types given as port names. We state that a connection between two ports is allowed
if and only if:

• Constraint 1: both ports concerned with the connection are of the same type,
which may be standard or flow.

This constraint can be realized syntactically using grammatical rules, as expressed
in what follows with EBNF:

• Constraint 2: a standard port whose service is provided may only be connected
with a standard port whose service is required.

To realize this constraint, we use an OCL invariant which checks that a port
whose service is not “Provided and Required” at the same time, is connected to a
port of a dual service. If the invariant is false then the message ‘SSL Error: Incorrect
Provided/Required Service’ is displayed.
Constraint 2 expression in OCL

• Constraint 3: an output flow port may only be connected with an input flow port.

To realize this constraint, we use an OCL invariant which checks that if the
direction of a flow port is not “InOut” then the direction of the flow port to which it
is connected is opposite. If the checking fails then the message ‘SSL Error: Incorrect
Flow Direction’ is shown.
Constraint 3 expression in OCL

Towards a High Level Language for Reuse and Integration 231

Constraint 4: connected required and provided services—between two standard
ports, must have the same sub-type.

To realize this constraint, we use an OCL invariant which checks that the service
name of the first port is the same as that of the second one. If the invariant returns
false then the message ‘SSL Error: Incorrect Service Name’ is displayed.
Constraint 4 expression in OCL

• Constraint 5: flow circulating between two flow ports must be of the same sub-
type; for example: gas, water, etc.

To realize this constraint, we use an OCL invariant. If the invariant returns false
then the message ‘SSL Error : Incorrect Flow Type’ is displayed.
Constraint 5 expression in OCL

The conditions above constitute formal constraints. SSL is based on a grammar
that allows expression of such system constraints through syntactical controls. We
used production rules, expressed in EBNF, to carry out these controls.

5.2 Sensitivity Study

Language efficiency may be measured according to the model sensitivity, which
consists in a systematic propagation of changes throughout the model. In regard
to SSL, the proposed architecture allows all modifications, undertaken on a given
block, to be automatically propagated in all its instances. This is realized thanks to
the block identifier, which also identifies block instances. Besides, changes between
the textual and graphical models are also automatically propagated.

The grammar rule R5, expressed in EBNF format, shows the relationship between
a block and its instances, where the cross-reference Component = [componentID]
assures that an instance of a block inherits the latter features including its static part.
This inheritance makes it possible to propagate, in all instances of a given block, any
modification carried out on the latter.

232 T. Bouabana-Tebibel et al.

• R5 Instance:

name=ID ":" "(" Component = [componentID] ")"

6 Transformation of the Specification

Our approach involves two principal transformation processes. The first one concerns
IBD generation and the second one is related to the textual and graphical editors.

6.1 From SSL Program to IBD Diagram

To generate IBD diagrams, from the proposed grammar, we resort to a processing
method using metamodels and transformation rules. The ATLAS transformation
(ATL) Eclipse Plugin [4] supports such processing (Fig. 5).

It requires, as inputs, the source metamodel, the target one, the program to trans-
form, and the transformation rules. In our case, the source and target metamodels will
be, respectively, those corresponding to the proposed grammar and the IBD one. As
for the program to transform, it simply corresponds to the program written in SSL.
As output, ATL provides the IBD model in XMI format. This file can be interpreted
to generate the graphical representation, or for any other transformations.

To build the metamodel of the proposed grammar, we used the Xtext Eclipse
Plugin, which systematically derives a metamodel from an EBNF grammar. On the
other hand, our numerous investigations, starting from the OMG document, reveal
the absence of a metamodel describing the IBD specification. Thus, we had to build
it ourselves.

We edited it in the Eclipse Modeling Framework (EMF) Eclipse Plugin, for this
purpose. Figure 6 shows this metamodel. The program to transform to IBD must be
in XMI format. It is generated from the program written in SSL.

Finally, we defined the transformation rules between the two metamodels. The
rule below shows the beginning of the transformation. All transformation rules are
included in a file .atl. They result in an IBD instance expressed in XMI format (see
Fig. 7).

Towards a High Level Language for Reuse and Integration 233

Fig. 5 Transformation process to IBD

Fig. 6 The IBD metamodel

234 T. Bouabana-Tebibel et al.

Fig. 7 IBD resulting in XMI format

6.2 Formal Transformation

We give in what follows a formal representation of IBD and SSL meta-classes as
well as the most important rules used in the transformation. The mapping rules
are formally specified based on functions which transform each meta-class in the
source metamodel to a meta-class in the target metamodel. These rules assure the
transformation of all attributes and associations of the source meta-class.

IBD Meta-classes
The most important meta-classes and elements of the IBD metamodel are:

• B = {b} is the set of blocks.
• Part = {part} is the set of parts (sub-blocks).
• Port = {port} is the set of ports.
• C = {c} is the set of connections.
• BlockPort: B → PR is a function that returns the ports of a block.
• BlockConnections: B → C is a function that returns the connections of a block.
• BlockParts: B → Part is a function that returns the parts (sub-blocks) of a block.
• SourceB: C → B is a function that returns the source block of a connection.
• TargetB: C → B is a function that returns the target block of a connection.
• SourceP: C → Port is a function that returns the source port of a connection.
• TargetP: C → Port is a function that returns the target port of a connection.

Towards a High Level Language for Reuse and Integration 235

SSL Meta-classes
The most important meta-classes and elements of the SSL metamodel are:

• CC = {cc} is the set of complex components.
• SC = {sc} is the set of simple components.
• I = {i} is the set of instances.
• SubC = {subc} is the set of sub-components of a complex block.
• SP = {sp} is the set of standard ports.
• FP = { f p} is the set of flow ports.
• StC = {stc} is the set of standard connections.
• FlC = { f lc} is the set of flow connections.
• CompPorts : CC ∪ SC → P(SP ∪ FP) is a function that returns the standard

ports and the flow ports of a complex component or a simple component.
• CompI nstances: CC → P(I) is a function that returns the encapsulated

instances of a complex block.
• CompConnections: CC ∪ SC → P(StC ∪ FlC) is a function that returns the con-

nections of a complex component or a simple component.
• SourceIns: SC ∪ FC → I is a function that returns the source instance of a standard

connection or a flow connection.
• TargetIns: SC ∪ FC → I is a function that returns the target instance of a standard

connection or a flow connection
• SourceSP: StC → SP is a function that returns the source standard port of a

sstandard connection.
• TargetSP: StC → SP is a function that returns the target standard port of a standard

connection.
• SourceFP: FlC → FP is a function that returns the source flow port of a flow

connection.
• TargetFP: FlC → FP is a function that returns the target flow port of a flow

connection.
• InstanceComp: I → CC ∪ SC is a function that returns the simple block or the

complex block of an instance.

The transformation rules
To generate IBD models from SSL programs, we define the flowing functions

which represent our transformation rules:

• Function ComplexComponent ():

For each cc ∈ CC
Create b ∈ B; BlockParts (b) = InstanceComp (CompInstances (cc));

BlockPorts (b) = CompPorts (cc);
BlockConnetions (b) = CompConnections (cc);

EndFor

236 T. Bouabana-Tebibel et al.

• Function SimpleComponent ():

For each sc ∈ SC
Create b ∈ B; BlockPorts (b) = CompPorts (sc);

BlockConnetions (b) = CompConnections (sc);
EndFor

• Function StandardConnection ():

For each stc ∈ StC
Create c ∈ C; SourceB (c) = InstanceComp (SourceIns(stc));

TargetB (c) = InstanceComp (TargetIns(stc));
SourceP(c) = SourceSP(stc); TargetP(c)= TargetFP(stc);

EndFor

• Function FlowConnection ():

For each flc ∈ FlC
Create c ∈ C; SourceB (c) = InstanceComp (SourceIns(flc));

TargetB (c) = InstanceComp (TargetIns(flc));
SourceP(c) = SourceSP(flc); TargetP(c) = TargetFP(flc);

EndFor

6.3 The SSL Textual and Graphical Editors

We used Graphical Modeling Framwork (GMF) Eclipse plugins to generate a graph-
ical specification from a textual one and vice versa. GMF yields a set of generative
components and runtime infrastructures to develop graphical editors for instances
of a given metamodel. Thus, to get a graphical editor dedicated to the modeling of
programs written with SSL, we provided GMF with the metamodel derived from our
grammar using Xtext. Once the two editors were created, changes between the two
forms of respectively supported specifications are systematically undertaken.

7 Related Works

Various DSLs are widespread in academia and industry domains. HUNT [18] is a
well-known DSL proposed by the OMG to remedy the XMI [19] syntax, which is
rather verbose and not easily readable. HUNT is used for storing models in a human
understandable format. However, it imposes very strict constraints on the notation.
In [8] Mandeep Gill et al. present Ode, a DSL for modeling biological systems based
on mathematical concepts. Ode is inspired by functional programming languages
(e.g., Common LISP).

Towards a High Level Language for Reuse and Integration 237

Other studies have focused on a particular type of DSLs, called Domain-Specific
Modeling (DSMs), which are graphical representations used to develop systems in
a more expressive way. They are usually developed using metamodels. However,
when looking to their development process, there is little to distinguish them from
DSLs [12]. In [10] P. Laforcade provides end-users, acting as both teachers and
designers, with dedicated Visual Instructional Design Languages and authoring tools.
These tools are built to help practitioners in specifying learning scenarios with some
specific terminology and graphical formalism so that the produced artifacts will be
machine-readable. In [9] a DSM called the Sequencer, integrated with the measuring
equipment DEWESoft, enables domain experts to model their own data acquisitions.

A further category of languages combines graphical and textual specifications.
Heidenreich et al. mentioned in [6] that graphical and textual modeling are not
alternatives, but rather complementary. However, few researchers investigated this
field. KIEL [20] is a DSL that aims at enhancing the graphical model-based design
of complex systems. Among other facilities, it enables editing the abstract syntax of
the model as well as modifying the latter via its textual representation.

On the other hand, component-based specification is a privileged approach for
language design due to the modeling flexibility, which it provides. In the academic
arena, Fabresse proposed SCL [7], a minimal language that provides abstractions and
mechanisms suitable for component programming. Elizondo and Ndjatchi, present
in [5] FSCC, a components approach based on composite components. They focus
on deriving the specification of functional properties using a set of connector-specific
functions, which allow deriving functional specifications in a systematic and consis-
tent manner.

In the industry domain, CCM (CORBA Component Model) [14] introduces the
component concept on the famous CORBA language, thus providing a standard
component model - defined by the OMG, enabling the development of distributed
applications. Valentina and Vlado propose in [23] a component-based approach for
modeling Multi-Processor Systems-on-Chip (MPSoC). This approach uses the tech-
nology SaveComp Component Model (SaveCCM) [1], which facilitates the speci-
fication of non-functional properties inherent to embedded systems. Another well-
known language is ArchJava [2], an extension of Java, where objects and components
support different constraints. However, ArchJava does not support behavioral aspect
descriptions; and, the integrity control of component communication constrains the
programmer to the use of complex annotations.

Thus, despite the wide adoption of based-component and domain-specific con-
cepts by the community, we still need languages, which integrate both specificities.
SSL is intended to explicitly integrate these features for the modeling of complex
systems.

238 T. Bouabana-Tebibel et al.

8 Conclusion

In this chapter, we proposed SSL, a component-based domain specific language
supporting textual and graphical specification of complex systems. In SSL, the model
structure is represented by means of connected blocks, its behavior is described
by using the block roles and system properties are expressed as constraints. SSL
provides semantic links between the structural and dynamic concepts and assures a
high level of consistency for the global model. A sensitivity analysis shows that any
change introduced on the static part is automatically reproduced on the dynamic one;
and, a systematic and bidirectional transformation of changes between the textual
and graphical parts is also supported. These textual and graphical specifications
are automatically translated into IBD models. The transformation rules have been
formally specified.

For future work, we aim to integrate our work with the reuse process, based on
an appropriate repository accompanied with an efficient retrieval mechanism.

References

1. Akerholm, M., Moller, A., Hansson, H., Nolin, M.: Towards a dependable component tech-
nology for embedded system applications. In: 10th IEEE International Workshop on Object-
Oriented Real-Time Dependable Systems—WORDS’05, pp. 320–32. Washington, USA (2005)

2. Aldrich, J.C. Chambers, Notkin, D.: ArchJava: connecting software architecture to implemen-
tation. In: ICSE ACM, pp. 187–197 (2002)

3. Bar-Yam, Y.: When systems engineering fails toward complex systems engineering. In: IEEE
International Conference on Systems, Man and Cybernetics, vol. 2, pp. 2021–2028 (2003)

4. Eclipse Project on http://www.eclipse.org
5. Elizondo, P.V., Ndjatch, M.K.C.: Deriving functional interface specifications for composite

components. In: 10th International Conference on Software Composition—SC’11, pp. 1–17.
Springer (2011)

6. Fabresse, L., Dony, C., Huchard, M.: SCL: a simple, uniform and operational language for
component-oriented programming in smalltalk. In: LNCS, vol. 4406, pp. 91–110. Springer
(2007)

7. Heidenreich, F., Johannes, J., Karol, S., Seifert, M., Wende, C.: Derivation and refinement of
textual syntax for models. In: Model Driven Architecture-Foundations and Applications, pp.
114–129. Springer, Enschede, The Netherlands (2009)

8. Gill, M., McKeever, S., Gavaghan, D.: Modular mathematical modelling of biological systems.
In: 2013 Symposium on Theory of Modeling and Simulation—DEVS, pp. 36:1–36:8. San
Diego, USA (2013)

9. Kos, T., Kosar, T., Mernik, M.: Development of data acquisition systems by using a domain-
specific modeling language. Comput. Ind. 63, 181–192 (2012)

10. Laforcade, P.: A domain-specific modeling approach for supporting the specification of visual
instructional design languages and the building of dedicated editors. J. Vis. Lang. Comput.
21(6), 347–358 (2010)

11. Mannadiar, R., Vangheluwe, H.: Domain-specific engineering of domain-specific languages.
In: 10th Workshop on Domain-Specific Modeling, p. 11 (2010)

12. Mernik, M., Heering, J., Sloane, A.: When and how to develop domain-specific languages.
ACM Comput. Surv. 37(4), 316–344 (2005)

13. Microsoft: The Component Object Model Specification (1995)

http://www.eclipse.org

Towards a High Level Language for Reuse and Integration 239

14. Object Management Group: CORBA Component Model (CCM) 3.0 (2004)
15. Object Management Group: Systems Modeling Language, SyML v. 1.3 (2012)
16. Object Management Group: Object Constraint Language, OCL v. 2.3.1 (2012)
17. Object Management Group: Unified Modeling Language UML v. 2.4.1 (2011)
18. Object Management Group: Human-Usable Textual Notation, v1.0 (2004)
19. Object Management Group: MOF 2.0/XMI Mapping Specification, v 2.4.1 (2011)
20. Prochnow, S., von Hanxleden, R.: Statechart development beyond WYSIWYG. In: The

ACM/IEEE 10th International Conference on Model Driven Engineering Languages and
Systems—MODELS’07, LNCS 4735, pp. 635–649 (2007)

21. Sun Microsystems: Enterprise JavaBeans (TM) Specification, Version2.1 (2003)
22. Taha, W.M.: Domain-Specific Languages. In: LNCS, vol. 5658, pp. 148–169. Springer (2009)
23. Zadrija, V., Sruk, V.: Component-based specification for multi-processor system-on chip

design. In: 15th IEEE Mediterranean Electrotechnical Conference, pp. 1044–1049 (2010)

An Exploratory Case Study on Exploiting
Aspect Orientation in Mobile Game Porting

Tanmay Bhowmik, Vander Alves and Nan Niu

Abstract Portability is a crucial requirement in the mobile game domain. Aspect-
oriented programming has been shown to be a promising solution to implement the
portability concerns, and more generally, to be a key technical enabler to transition
mobile application development toward systematic software reuse. In this chapter,
we report an exploratory case study that critically examines how aspect orienta-
tion is practiced in industrial-strength mobile game applications. Our analysis takes
into account technical artifacts, organizational structures, and their relationships.
Altogether these complementary and synergistic viewpoints allow us to formulate a
set of hypotheses and to offer some concrete insights into developing information
reuse and integration strategies in the rapidly changing landscape of mobile software
development.

Keywords Software reuse · Aspect-oriented software development · Mobile game
development · Porting · Software ecosystem · Exploratory case study

1 Introduction

Mobile game is a booming industry whose development challenges can be addressed
by leveraging software engineering principles and sound practices [19]. For many
game vendors, deploying their mobile games to various platforms is key to their
business successes. A critical enabler for realizing the multiple-platform deployment

T. Bhowmik (B) · N. Niu
Department of Computer Science and Engineering, Mississippi State University,
Starkville, MS, USA
e-mail: tb394@msstate.edu

N. Niu
e-mail: niu@cse.msstate.edu

V. Alves
Computer Science Department, University of Brasilia, Brasilia, Brazil
e-mail: valves@unb.br

T. Bouabana-Tebibel and S. H. Rubin (eds.), Integration of Reusable Systems, 241
Advances in Intelligent Systems and Computing 263, DOI: 10.1007/978-3-319-04717-1_11,
© Springer International Publishing Switzerland 2014

242 T. Bhowmik et al.

vision is porting, which is aimed at reusing the existing code instead of creating new
code when moving software from one environment to another [16]. In other words,
porting helps reduce development cost by ensuring that the same game application
can be executed properly across different operational contexts.

Porting can be achieved in practice by several means, such as abstract specifi-
cation, program transformation, and preprocessing [2]. A novel way to implement
portability is aspect-oriented programming [20] in which code modules (known as
aspects) are created to handle a mobile game’s porting features. These aspects define
where porting takes place, when porting needs to be triggered, and how porting
should be carried out [27]. The aspects are then weaved with base modules to form
an integrated system.

Our earlier work [3] has demonstrated the technical feasibility of using aspects
to implement a mobile game’s portability. By localizing porting-related features in
code aspects, not only a modular separation of concern is devised, but the software
development of mobile games can also be incrementally transitioned to product line
engineering where orders of magnitude improvements in productivity and time-to-
market are expected [3].

While we reported positive experience of refactoring portability concerns into
code aspects (e.g., [1]), we also observed practitioner’s hesitation of adopting aspect-
orientation (AO) in mobile game development. The main obstacle seemed to be orga-
nizational rather than technical, e.g., some mobile game vendors enjoyed the culture
of small and highly-coupled project teams and suspected that the newly created (port-
ing) aspects would introduce unnecessary latency in their business processes [26].
These mixed findings motivate us to investigate further about the strategies of coping
with AO-enabled portability in the rapidly changing landscape of mobile software
development.

The goal of our work is to gain an in-depth understanding of the pros and cons
when exploiting AO to address the mobile game’s porting needs. To that end, we
report an industrial case study by examining the software practices in two mobile
game companies, one in Brazil and the other in Canada. We analyze two units (one
game from each company) and study them from both technical and organizational
perspectives. From a technical standpoint, we compare the implementations with
and without the AO support, and find that AO reduces code coupling but causes
increase in size. From an organizational standpoint, we analyze the project teams’
communications and collaborations during game development, and find that AO
could alleviate role coupling but increase business process latency.

The contributions of our work lie in the critical evaluation of AO as a porting
strategy for mobile game development. Our study goes beyond the source code
artifacts and expands to the project team’s organizational characteristics. This novel
synergy between technical and organizational levels is in line with the emerging trend
of studying AO from social perspectives [24, 31]. Our findings therefore offer some
concrete insights into developing AO-enabled reuse strategies in practice. Extending
upon our recent work [4], the study presented here carries out further quantitative data
analyses and explores how porting could be handled from the software ecosystem
perspective [17, 23]. In what follows, we present background information and related

An Exploratory Case Study on Exploiting Aspect Orientation 243

work in Sect. 2. We then detail our research methodology in Sect. 3. Section 4 analyzes
the results, describes the study implications, and discusses the threats to validity.
Section 5 concludes the chapter.

2 Background and Related Work

Mobile game is a fast growing domain. According to Juniper Research [18], the
mobile game market had global revenues of $2.1bn in 2011 and it is estimated to
reach $17.6bn by 2016. Several characteristics of mobile game development are
worth mentioning. The development of mobile games is greatly affected by time-to-
market constraints [2]. Typically, the mobile game development cycle is very short,
lasting between 4–6 months and is often rigid with respect to deadlines, e.g., a game
based on a movie to be released or covering a major sports event could take more
advantage if launched at a specific time frame. Such games are mainly developed
by small companies. The development process is considered especially creative but
still rarely follows a well-defined software engineering process. Thus, the quality
of mobile games has been greatly dependent on the ability of game designers and
developers rather than on good practices from other software domains [1, 19].

It has become increasingly recognized that one of the critical requirements in the
mobile game domain is portability. It was estimated that, in 2011, the cost of porting
represented approximately a third, i.e., $1bn, of total development costs in the mobile
game domain [18]. The need of porting stems from a combination of technical and
business constraints. Manufactures release in ever-shortening time periods different
devices targeting diverse customer profiles. As a result, a large number of mobile
devices coexist to serve different segments of the market with distinct needs and
financial resources. In order to maximize revenue over the heterogeneous space
of devices, mobile operators and publishers are required to develop games for the
greatest possible number of users. This leads the game vendors to provide multiple
versions and variants of the application, each optimized to a specific device [2].

The portability requirement is often stated in the business contract explicitly:
games must be deployed in various devices, each with specific capacities, function-
alities, and retail prices. Take a demanding case as an example, a single game was
required to be ported to 69 different devices [2]. Due to the rapidly changing and
increasingly diverse nature of the mobile game industry, the main challenges involved
in fulfilling the portability requirement include:

• Different features of the devices regarding user interface, such as screen size,
number of colors, screen resolution, sounds, and keyboard layout;

• Total heap capacity and maximum application size;
• Different behavior of the same API (application programming interface), due to

unclear or flexible specification;
• Proprietary APIs and internationalization;

244 T. Bhowmik et al.

• Different software development environments, such as J2ME [28] and Brew [29];
and

• Different profiles in the same environment (e.g., MIDP 1.0 and MIDP 2.0 in J2ME)
and optional packages.

Prior research has supported porting in various ways, including preprocessing
tools [12], practice guidelines [13], program transformations [35], and incremental
approaches [36]. In [2], we compared three porting mechanisms, namely incremental
approach, program transformation, and preprocessing, based on granularity, cohe-
sion, coupling, maintainability, and tool support. Our comparative analysis, together
with those conducted by other researchers (e.g., [22]), shows that portability is a
highly crosscutting concern in software development. In other words, platform vari-
ations affect a large number of modules. For example, memory constraints might
demand omitting some game features in certain devices. Thus, these features become
optional, whose implementation is often tangled with the implementation of other
features. Another example is that device-specific APIs’ invocations tend to be scat-
tered throughout the code base, making it difficult to modularize by using traditional
object-oriented (OO) techniques.

As porting-related concerns tend to cut across technological and organizational
boundaries, researchers offer the new software ecosystem perspective to understand-
ing these broadly scoped phenomena [17]. Messerschmitt and Szyperski [23] gave
one of the earliest definitions of software ecosystem which is composed of a set of
businesses functioning as a unit and interacting with a shared market for software
and services, together with the relationships among them. Bosch [5] argued that
reuse across traditional organizational boundaries was the main reason for software
vendors to become networked in an ecosystem, and posited that software product
line companies, such as mobile game vendors, were likely to transition to an ecosys-
tem approach. The main strategic rationale was that software companies could gain
dominance and sustainability by forging and enriching an ecosystem around their
core applications underpinned by a common technological platform, such as Web
and mobile [5]. We therefore expand our work from technical and organizational
dimensions [4, 25] towards the entire software ecosystem.

A promising technique to facilitate porting is aspect-oriented programming. The
basic idea, as illustrated in Fig. 1, is to modularize features into aspects and to use
the weaving mechanism to bind features into different instances of the product line.
Young [35] was among the first to integrate AspectJ with J2ME and demonstrated
the feasibility of AO implementation on 18 device emulators from different platform
providers including Nokia, Siemens, Blackberry, and Motorola. We advanced the
literature by creating aspects in AspectJ to handle portability concerns [3], as well as
extracting and evolving aspect code to reduce the substantial upfront effort associated
with engineering a mobile game product line from scratch [1]. Despite these recent
endeavors, little is known about how AO is practiced in industrial-strength mobile
game applications. Next, we present a case study to fill the knowledge gap.

An Exploratory Case Study on Exploiting Aspect Orientation 245

Mandatory
Features

Optional
Features

Porting
Aspects

Product Line Build
System

(compile, weave,
pre-verify,
package…)

Weave different
feature

combinations for
each product

BlackBerry

iPhone

Nokia

Motorola

Other
Product
Instances

Fig. 1 Using aspects to build a mobile produce line (adapted from [35])

3 Research Methodology

We report in this section an exploratory case study [34] by collaborating with two
companies on their mobile game projects within the projects’ real-life contexts. Our
overall goal is to gain concrete insights into how AO can help port mobile games in
practice. The main rationale for adopting case study as the basis of our research design
is that the investigation of a contemporary phenomenon is suitable for addressing
the ‘how’ and ‘why’ questions that can otherwise be difficult to be answered through
controlled experiments [11]. Essentially, the benefits and obstacles of using AO to
tackle porting are only likely to be evident for the ongoing real-world projects, under
conditions that cannot be replicated in the lab. In particular, the study of applying AO
in mobile game development cannot be separated from the organizational context
and the effects may take weeks or months to appear.

We therefore designed an exploratory case study to deepen our understanding
about the practical impacts of AO on porting mobile games to multiple platforms.
According to Yin [34], an exploratory case study is appropriate for preliminary
inquiries and is ideal for analyzing what is common and different across cases that
share some key criteria. The intention of adopting an exploratory case study as
the basis for our research design is to gather data with the aim of deriving spe-
cific hypotheses that characterize the benefits and obstacles faced by mobile game
development organizations; rather than attempting to confirming or refuting any pre-
conceived hypotheses. We expect follow-up studies, including those of our own, to

246 T. Bhowmik et al.

test the hypotheses in a more quantitative and definite manner. However, at this stage
of the research, we feel that it is more important to formulate a set of plausible,
coherent, or even competing hypotheses based on preliminary data analysis.

The unit of analysis in our study was the mixture of mobile game application and
its vendor’s project team. This choice allowed us to focus on how porting was handled
within a software vendor in an autonomous way. The study had a purposeful case
sampling due to the mingled product, and project perspectives. Our inclusion criteria
were that: (i) the company does mobile game development as a primary activity; (i i)

the mobile game application is of commercial significance and has survived in the
market for an extended period of time; and (i i i) the development team has explored
the use of AO to fulfill the portability requirement.

We collaborated with two mobile game vendors that met the above criteria. To
honor confidentiality agreements, we will use pseudonyms for the companies and
their products throughout this chapter. Meantime is one of the leading mobile game
developer-publisher-distributors in Latin America, with its headquarters in Recife,
Brazil [1]. It started its operation in 2001 as a small company developing prototype
of games for a small number of specific devices in the context of R&D (research
and development) projects. Nowadays, the company’s in-house development team
has about 30 people, and develops games for several wireless carriers operating
worldwide. Meantime has produced more than 60 games, both proprietary and third-
party titles, in many game genres such as racing games, shooting games, puzzle
games, etc.

We chose Rain of Fire [2], a shooting game developed at Meantime, to be a unit
of analysis in our study. Figure 2 displays a screenshot of the game. In Rain of Fire,
the player is the guard master of a city and controls ballistas and catapults to defend
his or her town from several types of flying dragons with different speeds, powers,
and attack patterns. It is not necessary to kill every dragon, but to destroy as many
as possible in order to prevent the main city buildings from being destroyed.

FC—the other company that we collaborated with—is a small mobile game com-
pany located in Toronto, Canada. FC started in 1998 with six people specializing in
real-time video game development. The company has approximately 50 employees
as of 2009. We chose one of FC’s proprietary games, Genuine Soccer, in our study.
Two screenshots of the game are shown in Fig. 3. Genuine Soccer was first released
in 2002 as an OEM (original equipment manufacturer) game bundled with a specific
mobile device provider to exploit the business opportunities offered by the FIFA
World Cup. After serially building different versions and variants of the product,
FC began adopting software product line technologies to manage Genuine Soccer
in 2005 [26]. In Genuine Soccer, the player can play a single game or in a tourna-
ment. The player can set line up, make trades, and control soccer player’s moves like
bicycle kick, elastico, slide tackle, penetrative pass, etc.

Table 1 summarizes some basic characteristics of the selected mobile games. Both
games were developed by small teams within short cycles. The games were rigid with
respect to deadlines, e.g., FC had taken more advantage by launching some versions
of Genuine Soccer over the period of a major event like the FIFA World Cup. Both
games were built upon the J2ME tenet [28].

An Exploratory Case Study on Exploiting Aspect Orientation 247

Fig. 2 Screenshot of “Rain of Fire”

Fig. 3 Screenshots of “Genuine Soccer”

248 T. Bhowmik et al.

Table 1 Characteristics of the two units of analysis

Rain of Fire Genuine Soccer

Company size1 30 50
Project team Size2 10 9
Product longevity 8 years 9 years
Release cycle ∼4 months ∼4 months
Development

environment
J2ME, Eclipse J2ME, Eclipse

Platforms3 Motorola T720, Nokia series 40,
Nokia series 60

BlackBerry OS, Nokia/Symbian
S60, Google android

Scope & Maturity of
using aspects

Organization-level and repeatable
practice (mature)

Project-level and preliminary
tryouts (immature)

1 Company sizes are approximate as both companies are currently experiencing acquisition or hiring
new staff
2 See Sect. 4 for detailed discussion on the roles within the project team
3 These platforms are what the companies have shared with the authors of this chapter, and are only
representative of the diverse range of mobile platforms actually supported

It is worth pointing out that, though the companies shared with us only a partial
list, there was a wide range of mobile platforms supported by the games. This reflects
portability challenges posed by diverse mobile devices, as discussed in Sect. 2. Due to
our inclusion criteria, both companies have explored AO in game development. While
Meantime has accumulated extensive experience at the organizational level [1–3],
FC restricted the use of aspects within some selected projects. This illustrates mobile
game vendors’ different strategies in adopting AO in practice.

We selected Meantime’s Rain of Fire and FC’s Genuine Soccer as ideal units
of analysis in our exploratory case study [34] for a number of reasons. First, our
selected games are representative in both companies. This indicates that the lessons
learned from our case study are informative about the experiences of the typical
situation. Second, the development of both games represents a longitudinal case in
that the companies are able to assess the role of aspects from an evolutionary and
retrospective perspective. Third, the companies and their project teams under study
were highly cooperative and generous with regards to our research, so we anticipated
a high degree of access to key stakeholders and projects’ data.

4 Results and Analysis

We analyze the results from technical, organizational, and ecosystem perspectives in
Sect. 4.1, present the implications of our findings in Sect. 4.2, and discuss the threats
to validity in Sect. 4.3.

An Exploratory Case Study on Exploiting Aspect Orientation 249

4.1 AO-Enabled Portability in Practice

Technical perspective analysis. In order to inquire about the role of AO in
implementing portability and other mobile game features, we collected source code
artifacts and related documentations. Note that FC shared with us only the OO code,
mainly due to the Genuine Soccer’s incomplete trial-and-error AO implementation.
In contrast, Meantime shared both the OO and AO implementations, which allowed
us to assess the effect of aspects on implementation by measuring metrics like size
and coupling. Our analysis from the technical perspective therefore hinges on Rain
of Fire’s OO and AO code.

The OO and AO implementations Meantime shared with us are developed to allow
Rain of Fire to be deployed into three mobile platforms: Motorola T720, Nokia S40,
and Nokia S60. The game is developed using J2ME’s MIDP profile [28]. For every
platform, the OO implementation has 18 different Java class files with the code
concerning platform dependencies and portability issues distributed among them.
The AO implementation has those 18 Java class files with the same name as they are
in OO, and 3 aspects for the different platforms to localize the portability concerns.

To illustrate the program transformation, Fig. 4a shows an OO code pattern which
is refactored using aspect. Fig. 4b provides the AO counterpart that guarantees the
correctness of the program transformation [3]. As can be seen from this example,
AO causes an increase in size due to aspect refactoring and new declarations. Such
an increase can be directly measured by the number of LOC (lines of code). Table 2
shows the comparison result. In the AO implementation, “Core” represents the LOC
common to all the three platforms, whereas S40, S60, and T720 present the LOC for
specific platforms. It can be noted from Table 2 that LOC is slightly higher when com-
paring each AO instance with the corresponding platform in the OO implementation.
The main reason, as noted in [3], is due to aspect refactoring and new declarations.

The increase in the number of LOC further leads to an increase in the size of the
packaged game application—in Rain of Fire’s case, the increase is reflected in the
jar file size for the application developed on J2ME [28]. Table 3 compares the jar file
size between the OO and AO implementations of Rain of Fire. In this analysis, the
packaged application includes the bytecode files along with all the resources, such as
images and sound files, required to execute the game. The “reduced size” in Table 3
represents the resulting jar file size obtained by using a bytecode optimization tool [3].
While the reductions of OO and AO are comparable, AO does result in a greater size
of the packaged application. In the mobile game domain, such an increase may not
be neglected since the embedded software runs in platforms with limited storage
capacity and processing power. Nevertheless, we expect that the rapid advancement
of mobile hardware technology will make more room for the AO implementation.
The above analyses suggest the following hypothesis:

Hypothesis 1: AO causes increase in size.

250 T. Bhowmik et al.

(a)

(b)

Fig. 4 a OO code snippet. b AO code snippet transforming the above OO code. Illustrations of
Rain of Fire’s OO and AO implementations

Table 2 LOC of the OO and AO implementations of Rain of Fire

OO implementation AO implementation
S40 S60 T720 Core S40 S60 T720

2965 2968 3143 2549 3042 3047 3210

One of the major benefits of using AO is the ability to modularize crosscutting
concerns like portability [20]. In this way, AO is aimed at reducing duplicates that
would otherwise cause considerable maintenance problems. We use the CBO (cou-
pling between objects) metric [8, 37] to assess the coupling levels in the OO and
AO implementations. The basic idea of CBO is that two objects are coupled if the
methods or instance variables belonging to one object are used by the methods of
the other.

An Exploratory Case Study on Exploiting Aspect Orientation 251

Table 3 Jar file size (kB) of Rain of Fire’s OO and AO implementations

OO implementation AO implementation
Size Reduced size Size Reduced size

S40 61.9 58.5 97.0 67.9
S60 61.7 57.3 97.6 61.8
T720 56.1 52.4 93.5 56.7
Total 179.8 168.2 288.2 186.3

Fig. 5 Box plots of Rain of Fire’s CBO (coupling between objects)

Rain of Fire’s AO implementation has both Java classes and AspectJ classes
(aspects) that address the crosscutting concerns. We calculate CBO for the Java
classes in the traditional OO way [8]. However, coupling calculation between the
classes and the aspects is different. An aspect may contain several types of attributes
and modules: advice, intertype declaration, pointcut, and method. We therefore
follow the procedures proposed by Zhao [37] to calculate the coupling in the AO code.

Let us consider a class C and an aspect A. If a module in A (i.e., advice, intertype
declaration, pointcut, or method) uses some methods or instance variables defined
in C , then the number of such instance variables and/or methods is the measure of
dependency between C and A [37]. Note that CBO for two OO classes C1 and C2 is
the sum of two parts: CBO from C1 to C2 and CBO from C2 to C1, whereas CBO
for a class C and an aspect A is calculated in only one direction: CBO from A to C .

Figure 5 shows the box plots [33] of Rain of Fire’s CBO where CBO(oo) represents
the CBO for the 18 classes in the OO implementation, CBO(cao) represents the CBO
for the 18 classes in the AO implementation, and AC represents the CBO for aspects
and classes in the AO implementation. According to Fig. 5, the median of CBO(cao)
is slightly less than that of CBO(oo), and the median of AC is considerably less than
that of the others. Figure 6 shows further descriptive statistics about the CBO levels.

252 T. Bhowmik et al.

Fig. 6 Bar charts of Rain of Fire’s pairwise CBO (coupling between objects)

In Fig. 6, each label on the x-axis represents the identification (ID) of a pair of classes,
and the y-axis represents the average pairwise CBOs among the three platforms:
T720, S40, and S60. Please note that using class names along x-axis to identify a
pair of classes is not feasible because of space constraints. Therefore, we use distinct
identification numbers to represent class pairs. It is noticeable from Fig. 6 that in most
cases CBO(cao) is less than or equal to CBO(oo). In no case do we find CBO(cao)
was greater than CBO(oo). The findings therefore show that the coupling level is
indeed reduced in AO compared to its OO counterpart.

To test whether the difference is statistically significant, we perform a one-way
ANOVA (analysis of variance) over the collected CBO measures. Table 4 lists the
inferential statistics where no statistically significant difference between AO’s CBO
and OO’s CBO is detected at the α=0.05 level (F = 1.128, p = 0.291). Based
on the descriptive and inferential statistical analyses, we formulate the following
hypothesis:

Hypothesis 2: AO reduces code coupling.

Despite the positive effect of AO on CBO, our preliminary analysis could not
render statistically significant results. Fulfilling AO’s fundamental promise of reduc-
ing coupling [20] in mobile game development thus needs improved techniques
and further evaluations, e.g., testing code coupling level by using larger datasets,
devising improved metrics targeting at commercial mobile games that support many
platforms, and corroborating findings from other investigations like [14, 15].

An Exploratory Case Study on Exploiting Aspect Orientation 253

Table 4 ANOVA results for CBO (coupling between objects)

Source Type III sum of squares df Mean square F Sig.

Corrected model 604.730a 1 604.730 1.128 0.291
Intercept 30806.048 1 30806.048 57.467 0.000
Type 604.730 1 604.730 1.128 0.291
Error 47709.556 89 536.062
Total 79219.000 91
Corrected total 48314.286 90
a R squared = 0.013 (Adjusted R squared = 0 .001)

Table 5 Adjacency matrix of meantime’s roles in developing Rain of Fire

A B C D E F G H

A 0 4 4 3 4 4 3 4
B 4 0 2 0 1 1 4 3
C 4 2 0 4 4 4 2 4
D 3 0 4 0 1 1 0 1
E 4 1 4 1 2 4 1 4
F 4 1 4 1 4 2 1 2
G 3 4 2 0 1 1 0 2
H 4 3 4 1 4 2 2 2

A, Project manager; B, Product manager; C , Architect; D, Administrator; E , Programmer; F ,
Non-programming expert; G, User; H , Quality assurance (QA) engineer

Table 6 Adjacency matrix of FC’s roles in developing Genuine Soccer

I J K L M N

I 0 3 2 2 4 2
J 3 0 4 4 4 3
K 2 4 3 3 2 3
L 2 4 3 2 1 2
M 2 2 2 2 0 1
N 3 3 4 2 1 2

I , Project manager; J , Architect; K , Programmer; L , Non-programming expert; M , User; N , QA
engineer

Organizational perspective analysis. We now turn the focus of our analysis from
the technical side to the organizational side. Inspired by the research on sustainable
patterns within software organizations [10], we surveyed the roles and their commu-
nication paths in the mobile game projects. Our goal was to identify the social styles
of mobile game development, discover the organization patterns of the project team,
and analyze AO’s impacts beyond the source code level. To that end, we collected
two completed questionnaires from each company’s project team. We then built
organizational models based on the data, drawing on social network analysis [32].

The survey results show that the mobile game team had only a few roles: 8 in
Meantime and 6 in FC (cf. Tables 5 and 6). According to both companies, these roles

254 T. Bhowmik et al.

Fig. 7 Sociogram for Meantime’s Rain of Fire team

became stable over time, more so than processes and even personnel. Keeping the
number of roles low and their responsibilities explicit made it easier for new people
to assimilate the organizational culture and become part of it.

For each pair of roles, we asked the respondent to use an ordinal scale to rate their
communication: 0—no communication, 1—weak communication, and 2—strong
communication. The ratings were intentionally designed to be coarse grained because
a finer grained (interval) scale might be difficult to apply at the current exploratory
stage. For each company, we aggregated the two responses by adding their individual
ratings without altering the original inputs. The aggregated adjacency matrices are
shown in Tables 5 and 6. Note that, in general, an adjacency matrix should not be
assumed to be symmetric along the diagonal [10]. The rating at cell (p, q) indicates
the strength of the interaction p initiates with q. In FC’s development team, for
instance, the project manger (I) initiates stronger interactions with the user (M) than
the other way around.

We used the SocNetV tool (http://socnetv.sourceforge.net) to perform social net-
work analysis based on the adjacency matrix. In particular, we generated
sociograms [32] via SocNetV’s force-based placement technique. The algorithm first
assigns all nodes with random coordinates, then sets up a repelling force between
all pairs of nodes following an inverse square law [32]. Arcs exert an attracting
force between the nodes they connect according to the values in the adjacency
matrix. The graph reaches a stable state when all of the nodes migrate to posi-
tions where their forces balance. The algorithm creates a spatial representation of an
organization’s interaction graph that offers quick intuitive insights into the coupling
between roles [10].

The sociogram for Meantime’s team and FC’s team is shown in Figs. 7 and 8
respectively. Each node corresponds to an organizational role. Each arc corre-
sponds to a communication path between roles: the stronger the communication

http://socnetv.sourceforge.net

An Exploratory Case Study on Exploiting Aspect Orientation 255

Fig. 8 Sociogram for FC’s Genuine Soccer team

and interaction between a pair of roles, the thicker the arc. The self-loop indicates
that interactions exist between the people who serve in the same role. The mobile
game teams in both companies were highly coupled, as depicted by the dense graphs
in Figs. 7 and 8. The density of Meantime’s sociogram is 0.98 and that of FC’s is 1.
As responded by one member of FC, “in our team, everybody talks to everybody”.

The force-based algorithm places the programmer role at the center of both
projects. This producers-in-the-middle pattern [10] implies that programmers con-
tribute directly to the end product and company revenue. One way to gain insights into
the modularity of the organizational structures is by grouping roles into clusters so
that each cluster is characterized by an internal coherence and/or an external isolation.

The architect role, according to the sociograms, became a strong candidate to
be clustered into a coherent organizational module as the middle programmer role.
In both projects, architect worked very closely with programmers. In fact, beyond
advising and communicating with programmers, the architects in both companies
also participated in implementation, including the implementation of porting strate-
gies. In this way, the organizations perceived buy-in from the guiding architects, and
that perception directly availed itself of architectural expertise.

The clustering analysis also helped detect support roles that were not directly
involved in software development or porting. For example, Meantime’s administrator
was not an expert on mobile porting. Due to communication overhead, there might
be opportunities to gain efficiency by combining support roles. In FC, for instance,
the project manager also acted as product manager and administrator.

The key findings from the social network analysis are that: (1) mobile game
development teams have a few number of roles that are highly coupled, (2) these
roles become stable in the organization, (3) programmers play a central role, and
(4) architects also implement. Some respondents felt that the coupling level was too
high in the project team: “almost all tasks affect the whole team,” “every role has
similar importance and (porting) failures can easily lead the project to a challenged
state,” and “a further division might be helpful.” Accordingly, we derive the following
hypothesis:

256 T. Bhowmik et al.

Hypothesis 3: AO alleviates team coupling.

While extending AO to cope with the organizational structure may help alleviate
team coupling, when asked about having a separate “portability engineer” in the
development team, most respondents felt it was unnecessary. On one hand, it would
be too risky to assign important porting tasks to only one role or one team member.
On the other hand, both companies were cautious about creating any new roles.
One respondent from FC pointed out that unnecessary roles or artificially complex
communications could reduce the throughput and increase the latency of business
process. Respondents from both companies realized that, in mobile game business
processes, speed (e.g., time-to-market) was of the essence. FC’s experience sug-
gested that taking advantage of coupling was to open communication paths between
roles to increase the overall coupling/role ratio, particularly between central process
roles [26]. We therefore speculate that:

Hypothesis 4: AO increases business process latency.

Similar to the two hypotheses formulated from technical perspective, our investi-
gation into the organizational structures reveals both positive and negative impacts of
AO. To some extent, the two hypotheses formed here can be thought of competing.
Specifically, Hypothesis 3 is derived from AO’s premise that localizing crosscutting
concerns and decreasing coupling would be beneficial. On the other hand, Hypothesis
4 argues that leveraging coupling or even furthering coupling would be beneficial,
e.g., occasional close coupling between programmers and testers (QA engineers)
could reduce administrative overhead and latency [10]. We will provide more dis-
cussions on these views in Sect. 4.2.

Software ecosystem perspective analysis. Our final analysis takes the software
ecosystem standpoint on porting. The companies we studied both fit into two of
the taxonomic characteristics described by Bosch [5]: (1) operating system-centric
software ecosystem, and (2) application-centric software ecosystem. In the former,
platform provider examples are J2ME [28] and Brew [29], whereas external devel-
opers are the mobile game companies. In the latter, the platform providers are the
mobile game companies, whereas external developers can be companies specialized
in porting. According to Bosch [5], the application-centric software ecosystem type
is the most viable option for most companies employing a software product line,
since the myriad of product line members attracts a customer base that is potentially
attractive to third-party developers.

Based on a survey on how the mobile game development teams might handle
portability issues in ongoing and upcoming projects, the respondents from both
organizations expressed strong consensus that porting could be addressed by a third-
party company. It was raised that some organizations could become specialized to
work on GUI components, others on specific platform bugs and details, and still
others work only with mobile tests (with mobile phones for a particular country

An Exploratory Case Study on Exploiting Aspect Orientation 257

and corresponding regulations). Indeed, the high customization requirement by the
mobile game domain exceeds the development capacity within the closed mobile
game company’s boundary, thus demanding a software ecosystem approach.

However, it was also raised that the high coupling between the teams, in terms
of dense communication pattern described earlier, was an issue to make porting
to be addressed completely independently by third-party developers. Another key
point raised by the respondents was the need for a well-defined process and some
robust tools for specification and communication. This is consistent with the software
engineering challenges required for transitioning to a software ecosystem, since
the architecture becomes a key artifact in the incurred distributed coordination. We
therefore formulate our final hypothesis as follows:

Hypothesis 5: Mobile game porting is such a broadly scoped concern
that it can be better handled over the software ecosystem than
within a software organization’s product line engineering.

As we have discussed earlier, due to the high team coupling, some mobile
game development companies are not comfortable involving third-party vendors and
handle portability issues themselves. However, the diverse customization required to
handle portability exceeds the development capacity of some mobile game vendors.
These vendors outsource portability handling to third-party developers or vendors,
thereby taking the software ecosystem approach to address portability. In our future
works, we plan to study these two ways of handling portability side by side in order
to obtain further insights about Hypothesis 5.

4.2 Study Implications

In summary, our case study shows that AO caused the increase in size mainly due to
the introduction of programming constructs like pointcut and advice. While this may
not be neglected for memory-sensitive applications and platforms, the size increase
could be offset by the reduced code coupling due to aspect’s ability to localize
the crosscutting concerns like portability that would otherwise become tangled and
scattered. In another word, having a more AO-enabled modular decomposition could
contribute positively to the system’s adaptability and maintainability. However, AO’s
coupling reduction was found to be positive in our study, but not statistically signifi-
cant. This implies that more efficient methods (e.g., devising programming constructs
for embedded systems [6] and domain-specific instrumentations [21]) are needed to
best realize AO’s fundamental promise of reducing coupling [20] for mobile game
development.

The organizational side of our inquiry is novel and can be positioned in the contexts
of Conway’s law [9] and socio-technical congruence [7]. Specifically, if the mobile
game vendor creates porting aspects and weaves them into base modules in the code

258 T. Bhowmik et al.

base, then the software’s interface structure should be congruent with the vendor’s
social structure. This indicates that, in Meantime, aspect programmers already acted
as “portability engineers” though such a role or title has yet to appear.

Making crosscutting concerns explicit and using advanced modularity constructs
to model these concerns are what AO is about. Following Conway’s law [9], AO-
embraced organizations would establish a distinct role that handles crosscutting
responsibilities. For example, a porting role could be made explicit to take charge
of porting games (e.g., racing, puzzle, and arcade) to specific devices. Note that
organizational change is risky, so one should add or refactor roles between releases
to minimize any turmoil that might confuse work in progress.

Relating to our findings over the technical side, AO’s main contributions were
positive but not significant. This helps to explain why FC’s AO investment stayed
at an experimental level, as well as why both companies hesitated to create or des-
ignate roles like “portability engineer”. In fact, our study reveals that the tension
exists between creating any new roles and raising the communication overheads. We
therefore speculate that, for small-sized mobile teams, new titles seem unnecessary
or even counterproductive.

Extending our analysis toward an ecosystem dimension is also fruitful in that view-
ing mobile game development as an application-centric software ecosystem enables
new strategies of handling porting. In particular, delegating porting tasks to some
specialized third-party developers and/or companies might help achieve a sustainable
balance over the entire mobile game supply network. In fact, building on their rich
experiences in porting, Meantime has begun offering porting-related services like
game publishing and distribution. Testing our ecosystem-based hypothesis (Hypoth-
esis 5) can be done in directed or undirected ways [5]. In the directed approach,
the mobile game vendor selects partners that are able to provide the porting service
and negotiates an agreement with the partners typically involving a form of revenue
sharing. This is partially done in the publishing service of the mobile game domain,
but porting is still limited. In the undirected approach, the platform is opened without
constraining who accesses it to do the porting. This is still largely unexplored in the
mobile game domain, but is relevant since it provides a higher potential of scalable
porting and innovation.

4.3 Threats to Validity

Several factors can affect the validity of our exploratory case study. Construct validity
concerns establishing correct operational measures for the concepts being stud-
ied [34]. The main construct in our case study is ‘AO-enabled portability’ in mobile
game development. We intentionally operationalized the main construct in a broad
way by considering technical and organizational viewpoints and their relationships.

Regarding internal validity [34], our major sources of data for this study were the
OO and AO code and the surveys that we conducted with the two game vendors.
The sources of code files should be reliable. For the CBO analysis, we followed the

An Exploratory Case Study on Exploiting Aspect Orientation 259

procedures proposed by Zhao [37] in order to calculate the coupling in the AO code.
However, our reliance on questionnaires and interviews meant that we needed to
trust each participant’s description of their own experiences. Participants may have
omitted important facts, or we may have misinterpreted them. To address the former
threat, we used a coarse grained rating scale for rating the roles’ communications.
To address the latter threat, we plan to carry out some field observations in the short
term as our case study progresses.

The results of our study may not generalize beyond Meantime’s and FC’s organiza-
tional conditions and the Rain of Fire’s and Genuine Soccer’s project characteristics,
a threat to external validity [34]. Both game vendors in our study were headquartered
in wireless-carrier-rich areas and survived in the mobile game business for about a
decade. This might have generated geographical and industrial-segment biases. We
therefore are not certain if our findings apply to mobile game development compa-
nies around the world, or those that came into operation for a short period of time.
Nevertheless, our investigation of the contemporary projects within their real-life
contexts, together with the validation carried out in real industry settings, provides a
firm footing for exploiting AO to handle portability concerns.

Finally, in terms of reliability [34], we expect that replications of our study should
offer results similar to ours. Of course, the characteristics of each mobile game and its
development team under study will differ from our current study, but the underlying
trends and implications should remain unchanged.

5 Conclusions

Portability is a broadly scoped concern in mobile software development in that it has
an implicit or explicit impact on more than one module. Treating portability as an
aspect in mobile game domains is similar to considering persistence as an aspect in
data-dominant domains [30]. However, the challenges presented by portability have
moved beyond the source code or any other technical artifact’s level.

In this chapter, we have conducted an exploratory case study to investigate the state
of practice in porting mobile games via aspect orientation. Not only were the AO and
OO implementations compared and contrasted, but the organizational patterns and the
ecosystem-wide considerations were also analyzed and explored. Overall, we found
that modular code was enabled by AO but at the cost of the increase in size. Although
a less coupled code base is considered better from the implementation point of view,
the mobile game development teams in our study enjoyed high coupling among a few
number of stable roles. Such an incongruence, in our opinion, is a fundamental factor
that affects the wide adoption of AO in the mobile game domain. At the same time,
the incongruence opens up the opportunity of exposing porting-related issues toward
the software ecosystem by delegating certain tasks to highly specialized companies
over the supply chain.

Our future work includes carrying out further empirical studies to lend strength to
the exploratory findings reported here. For example, games targeted at both mobile

260 T. Bhowmik et al.

and tablet platforms can be investigated. We also plan to examine more thoroughly
the AO usage barriers and find novel ways to overcome these barriers. Finally, we
would like to conduct systematic mobile game ecosystem studies, in both directed
and undirected fashions [5, 17, 23, 25], to discover effective reuse strategies across
organizational boundaries.

Acknowledgments We thank the partner companies for the generous support throughout our study,
especially for sharing their data, time, and expertise. The work is in part supported by the U.S. NSF
(National Science Foundation) Grant CCF-1238336.

References

1. Alves, V., Camara, T., Alves, C.: Experiences with mobile games product line development
at meantime. In: International Conference on Software Product Lines (SPLC), pp. 287–296.
IEEE Press, New York (2008)

2. Alves, V., Cardim, I., Vital, H., Sampaio, P.H.M., Damasceno, A.L.G., Borba, P., Ramalho, G.:
Comparative analysis of porting strategies in J2ME games. In: International Conference on
Software Maintenance (ICSM), pp. 123–132. IEEE Press, New York (2005)

3. Alves, V., Matos, P., Cole, L., Vasconcelos, A., Borba, P., Ramalho, G.: Extracting and evolving
code in product lines with aspect-oriented programming. Trans. Aspect-Oriented Softw. Dev. 4,
117–142 (2007)

4. Bhowmik, T., Alves, V., Niu, N.: Porting mobile games in an aspect-oriented way: an industrial
case study. In: International Conference on Information Reuse and Integration (IRI), pp. 458–
465. IEEE Press, New York (2013)

5. Bosch, J.: From software product lines to software ecosystems. In: International Conference
on Software Product Lines (SPLC), pp. 111–119. Carnegie Mellon University, Pennsylvania
(2009)

6. Cardoso, J.M.P., Carvalho, T., Coutinho, J.G.F., Luk, W., Nobre, R., Diniz, P.C., Petrov, Z.:
LARA: an aspect-oriented programming language for embedded systems. In: International
Conference on Aspect-Oriented Software Development (AOSD), pp. 179–190. ACM Press,
New York (2012)

7. Cataldo, M., Herbsleb, J.D.: Socio-technical congruence: a framework for assessing the impact
of technical and work dependencies on software development productivity. In: International
Symposium on Empirical Software Engineering and Measurement (ESEM), pp. 2–11. ACM
Press, New York (2008)

8. Chidamber, S.R., Kemerer, C.F.: A metrics suite for object oriented design. IEEE Trans.
Software Eng. 20, 476–493 (1994)

9. Conway, M.: How do committees invent? Datamation 14, 476–493 (1968)
10. Coplien, J.O., Harrison, N.B.: Organizational Patterns of Agile Software Development. Pren-

tice Hall, New Jersey (2004)
11. Easterbrook, S., Singer, J., Storey, M.-A., Damian, D.: Selecting empirical methods for soft-

ware engineering research. In: Shull, F., Singer, J., Sjøberg, D.I.K. (eds.) Guide to Advanced
Empirical Software Engineering, pp. 285–311. Springer, London (2008)

12. Enough Software: J2ME Polish. http://www.j2mepolish.org
13. Facon, X.: Porting your MIDlets to new devices. http://www.webpronews.com/porting-your-

midlets-to-new-devices-2003-05
14. Figueiredo, E., Cacho, N., Sant’Anna, C., Monteiro, M., Kulesza, U., Garcia, A., Soares, S.,

Ferrari, F.C., Khan, S.S., Filho, F.C., Dantas, F.: Evolving software product lines with aspects:
an empirical study on design stability. In: International Conference on Software Engineering
(ICSE), pp. 261–270. IEEE Press, New York (2008)

http://www.j2mepolish.org
http://www.webpronews.com/porting-your-midlets-to-new-devices-2003-05
http://www.webpronews.com/porting-your-midlets-to-new-devices-2003-05

An Exploratory Case Study on Exploiting Aspect Orientation 261

15. Figueiredo, E., Sant’Anna, C., Garcia, A., Bartolomei, T.T., Cazzola, W., Marchetto, A.: On
the maintainability of aspect-oriented software: a concern-oriented measurement framework.
In: European Conference on Software Maintenance and Reengineering (CSMR), pp. 183–192.
IEEE Press, New York (2008)

16. Frakes, W.B., Fox, C.J.: Sixteen questions about software reuse. Commun. ACM 38, 75–87
(1995)

17. Jansen, S., Finkelstein, A., Brinkkemper, S.: A sense of community: a research agenda for
software ecosystems (NIER Track). In: International Conference on Software Engineering
(ICSE), pp. 187–190. IEEE Press, New York (2009)

18. Juniper Research: Looking at the future of mobile games. http://www.juniperresearch.com
19. Kanode, C.M., Haddad, H.M.: Software engineering challenges in game development. In:

International Conference on Information Information Technology: New Generations (ITNG),
pp. 260–265. IEEE Press, New York (2009)

20. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.V., Loingtier, J.-M., Irwin,
J.: Aspect-oriented programming. In: European Conference on Object-Oriented Programming
(ECOOP), pp. 220–242. IEEE, Finland (1997)

21. Marek, L., Villazón, A., Zheng, Y., Ansaloni, D., Binder, W., Qi, Z.: DiSL: A domain-specific
language for bytecode instrumentation. In: International Conference on Aspect-Oriented Soft-
ware Development (AOSD), pp. 239–250. ACM Press, New York (2012)

22. Menon, H.: Portability analysis in mobile gaming using J2ME. Master’s Thesis, West Virginia
University, USA (2006)

23. Messerschmitt, D.G., Szyperski, C.: Software Ecosystem: Understanding an Indispensable
Technology and Industry. The MIT Press, Cambridge (2005)

24. Murphy, G.C.: Everyday aspects (keynote presentation). In: International Conference on
Aspect-Oriented Software Development (AOSD), pp. 229–230. ACM Press, New York (2009)

25. Niu, N., Alves, V., Bhowmik, T.: Portability as an aspect: rethinking modularity in mobile
game development. In: International Conference on Aspect-Oriented Software Development
(AOSD), pp. 3–4. ACM Press, New York (2011)

26. Niu, N., Easterbrook, S.: Concept analysis for product line requirements. In: International
Conference on Aspect-Oriented Software Development (AOSD), pp. 137–148. ACM Press,
New York (2009)

27. Niu, N., Easterbrook, S., Yu, Y.: A taxonomy of asymmetric requirements aspects. In: Inter-
national Workshop on Early Aspects (EA), pp. 1–18. Springer, London (2007)

28. Oracle: Jave 2 Platform Micro Edition. http://www.oracle.com/technetwork/java/javame
29. Qualcomm: Brew. http://www.brewmp.com
30. Rashid, A., Chitchyan, R.: Persistence as an aspect. In: International Conference on Aspect-

Oriented Software Development (AOSD), pp. 120–129. ACM Press, New York (2003)
31. Rinard, M.: Sociological aspects of aspect-oriented programming (keynote presentation). In:

International Conference on Aspect-Oriented Software Development (AOSD). ACM Press,
New York (2010)

32. Scott, J.: Social Network Analysis: A Handbook. Sage Publications, London (2000)
33. Tukey, J.: Exploratory Data Analysis. Addison-Wesley, Boston (1977)
34. Yin, R.K.: Case Study Research: Design and Methods. Sage Publications, London (2003)
35. Young, T.J.: Using aspectJ to build a software product line for mobile devices. Master’s Thesis,

University of British Columbia, Canada (2005)
36. Zhang, W., Jarzabek, S., Loughran, N., Rashid, A.: Reengineering a PC-based system into the

mobile device product line. In: International Workshop on Principles of Software Evolution
(IWPSE), pp. 149–160. IEEE Press, New York (2003)

37. Zhao, J.: Measuring coupling in aspect-oriented systems. In: International Software Metrics
Symposium (METRICS), pp. 14–16. Chicago (2004)

http://www.juniperresearch.com
http://www.oracle.com/technetwork/java/javame
http://www.brewmp.com

Developing Frameworks from Extended
Feature Models

Matheus Viana, Rosângela Penteado, Antônio do Prado
and Rafael Durelli

Abstract Frameworks are composed of concrete and abstract classes implementing
the functionality of a domain. Applications can reuse framework design and code
to improve their quality and be developed more efficiently. However, framework
development is a complex task, since it must be adaptable enough to be reused by
several applications. In this chapter we present the From Features to Framework (F3)
approach, which aims to facilitate the development of frameworks. This approach
is divided in two steps: Domain Modeling, in which framework domain is defined
in a extended feature model; and Framework Construction, in which the framework
is designed and implemented by following a set of patterns from its feature model.
Since these steps can be systematically applied, we also present the design of a tool
that supports the use of the F3 approach on framework development. Moreover,
we performed an experiment that showed that the F3 approach makes framework
development easier and more efficient.

Keywords Software reuse · Domain modeling · Patterns · Framework · Domain-
specific modeling languages

M. Viana (B) · R. Penteado · A. do Prado
Department of Computing, Federal University of São Carlos, São Carlos, SP 13565-905, Brazil
e-mail: matheus_viana@dc.ufscar.br

R. Penteado
e-mail: rosangela@dc.ufscar.br

A. do Prado
e-mail: prado@dc.ufscar.br

R. Durelli
Institute of Mathematical and Computer Sciences, University of São Paulo,
São Carlos, SP 13566-590, Brazil
e-mail: rdurelli@icmc.usp.br

T. Bouabana-Tebibel and S. H. Rubin (eds.), Integration of Reusable Systems, 263
Advances in Intelligent Systems and Computing 263, DOI: 10.1007/978-3-319-04717-1_12,
© Springer International Publishing Switzerland 2014

264 M. Viana et al.

1 Introduction

Software engineering focuses on more efficient ways to develop quality software
[1]. One of the most common practices to achieve this goal consists on the reuse of
artifacts. Through reuse, the time spent to develop software is reduced because it is not
developed from scratch and its quality is improved because the reused artifacts were
previously tested [2]. Programming languages offer different ways of reuse, such as
subprograms and inheritance, but all of them are limited to code-level. Therefore,
some solutions, such as frameworks, have emerged to provide reuse other than code.

Frameworks are composed of concrete and abstract classes that implement the
functionality of a domain [3]. Applications reuse the design and code of a framework
by adding their specific characteristics to its functionality [4]. Hence, a framework
can be seen as a skeleton that provides a basic structure for applications, which
customize this structure according to their requirements [5].

Despite the advantages frameworks offer, they are more complex to develop than
applications [6]. Frameworks demand an adaptable design. Their classes will be
reused by applications that are unknown during framework development, thereby
frameworks need mechanisms to identify and to access application-specific classes.
Thus, design patterns and advanced resources of programing languages, such as
abstract classes, interfaces, polymorphism, generics and reflection, are often used
in framework development. In addition to design and implementation complexities,
it is also necessary to determine the domain of applications of the framework, the
features that compose this domain and the rules that constraint these features [7].

In a previous chapter we presented an approach for building Domain-Specific
Modeling Languages (DSML) to facilitate framework reuse [8]. In that approach a
DSML could be built by identifying the features of the framework domain and the
information required to instantiate them. Then application models created with the
DSML could be used as input for an application generator to transform them into
application code. The experiment showed in Viana et al. [8] indicated that, besides
the gain of efficiency obtained from code generation, the use of DSML protects
developers from framework complexities.

In this chapter we present the From Features to Framework (F3) approach, in which
framework domain is defined in an extended version of feature model. Then a set of
patterns guides the developers to design and implement the framework according to
its domain.

As the F3 approach defines specific steps and rules for designing and implementing
the framework, it turns framework development into a systematical process and,
therefore, it can be automatized. Thus, in this chapter we also present the design of
a tool, called F3T, that supports the use of the F3 approach, making the process of
framework development even more efficient.

We also have carried out an experiment in order to verify whether the F3 approach
leads the developer to devise frameworks better than the adhoc one. The experiment
showed that the F3 approach reduced the problems of incoherence, structure, bad

Developing Frameworks from Extended Feature Models 265

smells and interface found in the outcome frameworks and, consequently, reduced
the time spent to develop these frameworks.

The remainder of this chapter is organized as follows: the background concepts
applied in this research are discussed in Sect. 2; the F3 approach is presented in
Sect. 3; the design of the F3T is presented in Sect. 4; an experiment to evaluate the
F3 approach is show in Sect. 5; some related works are discussed in Sect. 6; and
conclusions and further works are presented in Sect. 7.

2 Patterns, Frameworks and Domain Engineering

Patterns are successful solutions that can be reapplied to different contexts. They
provide reuse of experience to help developers to solve common problems [3]. The
documentation of a pattern usually contains its name, the context it can be applied,
the problem it is intended to solve, the solution it proposes, illustrative class models
and examples of use [9].

Frameworks are reusable software that can be instantiated into applications [3].
According to the way they are reused, frameworks can be classified as: white box,
which are reused by class specialization; black box, which work like a set of com-
ponents; and gray box, which are reused by the two previous ways. Unlike library
classes, whose execution flux is controlled by applications, frameworks control the
execution flux accessing the application-specific code [5]. Frameworks are composed
of two main parts: frozen spots, which implement the common functionality of the
framework domain, regardless the application reusing the framework; and the hot
spots, which change according to the specifications of the application reusing the
framework [4].

Domain engineering represents software development related not to a specific
application, but to a domain of applications that share common features [10, 11].
A feature is a distinguishing characteristic that aggregates value to applications.
Thus, feature models are often used to model domains, illustrating the features that
mandatory or optional, variations and require or exclude other features [12].

Different domain engineering approaches can be found in the literature [11, 13,
14]. Although there are differences between them, the basic idea of these approaches
is to identify the features of a domain and to develop the artifacts that implement
these features and are reused in application engineering.

Domains can also be modeled with metamodel languages, which are used to create
Domain-Specific Languages (DSL) [15]. Metamodels are similar to class models,
which makes them more appropriate to developers accustomed to the UML. While
in feature models, only features and their constraints are defined, metaclasses in the
metamodels can contain attributes and operations. On the other hand, feature models
can define dependencies between features, while metamodels depend on declarative
languages to do it [15].

266 M. Viana et al.

3 From Features to Frameworks Approach

The F3 approach allows the definition of a domain at a high level of abstraction and
to systematically construct a framework which implements this domain. Thereby,
framework development is divided into two steps: (A) Domain Modeling, in which
a domain is defined and modeled; and (B) Framework Construction, in which the
framework is designed and implemented according to its domain.

3.1 Domain Modeling

The domain of applications that can be developed with the framework is defined and
modeled in this step. Usually, a domain is defined by analyzing applications that
belong to the desired domain or consulting an specialist in this domain [12–14]. The
first features to be identified are the mandatory ones, because they represent the code
asset of the domain and the minimum necessary to develop an application. Then
optional features and variants can be added and the dependencies between them can
be specified. It is possible to develop a small domain framework at first and keep
increasing it as more features are required.

In the F3 approach, domains are modeled in F3 models, which are feature models
that includes some elements of metamodels, such as attributes, operations and multi-
plicity, so that frameworks can be developed from these models. As in conventional
feature models, features in F3 models must be arranged in a tree-view, in which the
main feature is decomposed in others. However, F3 models do not necessarily form
a tree, since a feature can have a relationship targeting a sibling or even itself. More-
over, the graphical notation of F3 models is similar to the one of UML class models.
This notation has been adopted because it allows that F3 models can be created by
using any UML tool. The elements and relationships in F3 models are:

• Feature: graphically represented by a rounded square, it must have a name and it
can contain any number of attributes and operations;

• Decomposition: relationship that indicates that a feature is composed of another
feature. Its minimum multiplicity indicates whether the target feature is optional
(0) or mandatory (1). Its maximum multiplicity indicates how many instances
of the target feature can be associated to each instance of the source feature. In
white box frameworks an instance of a feature is an application class that extends
the framework class of this feature. The maximum multiplicity can assume the
following values: 1 (simple), for a single feature instance; * (multiple), for a list
of a single feature instance; and ** (variant), for a list of different feature instances.

• Generalization: relationship that indicates that a feature is a variation and it can
be generalized by another feature.

• Dependency: relationship that define constraints for feature instantiation. There
are two types of dependency: requires, when the A feature requires the B
feature, an application that contains the A feature has to include the B feature as

Developing Frameworks from Extended Feature Models 267

Fig. 1 F3 model for the domain of automated vehicles

well; and excludes, when the A feature excludes the B feature, no application
can include both features at the same time.

A simplified F3 model for the domain of automated vehicles is shown in Fig. 1.
This domain is based on Lego Mindstorms NXT 2.0,1 whose hardware can be con-
trolled by Lejos Java API.2 The requirements of this domain are:

1. An automated vehicle is composed of one engine, one locomotion device, zero
or more arms and one or more sensors.

2. Engine provides power for the vehicle. It can be turned on and off and movement
sense (forward/reverse) is controlled by its gear.

3. Locomotion device uses the power generated by the engine to move the vehicle
and to change its direction. There are two types: wheels or caterpillar.

4. Sensors collect information from environment and return a signal. How the vehicle
interprets this signal depends on the purpose of the vehicle. There are three types
of sensor: infra-red, light and touch.

5. Arms can be used to grab objects. They can only move up and down and require
a infrared sensor.

As there are different types of sensor, the relationship between Vehicle and
Sensor is a variant decomposition. A vehicle must have at least one sensor of
any type. However, when it has arms, touch sensor becomes necessary, hence the
requires dependency between Arm and TouchSensor.

3.2 Framework Construction

The F3 approach define a set of patterns to assist developers to design and implement
a framework from the domain model. These patterns solves problems that go from

1 http://mindstorms.lego.com/en-us/products/default.aspx#t
2 http://lejos.sourceforge.net/#t

http://mindstorms.lego.com/en-us/products/default.aspx#t
http://lejos.sourceforge.net/#t

268 M. Viana et al.

Table 1 The F3 patterns that are most commonly applied

Pattern Purpose

Domain feature Indicates the structures that should be created for a
feature

Mandatory decomposition Indicates the code units that should be created when
there is a mandatory decomposition linking two
features

Optional decomposition Indicates the code units that should be created when
there is an optional decomposition linking two
features

Simple decomposition Indicates the code units that should be created when
there is a simple decomposition linking two features

Multiple decomposition Indicates the code units that should be created when
there is a multiple decomposition linking two
features

Variant decomposition Indicates the code units that should be created when
there is a variant decomposition linking two features

Requiring dependency Indicates the code units that should be created when a
feature requires another one

Excluding dependency Indicates the code units that should be created when a
feature excludes another one

the creation of classes for the features to the definition of the framework interface.
Some of the F3 patterns are presented in Table 1.

The documentation of the F3 patterns is organized into topics to help developers
to identify when a certain pattern should be used. This documentation is described
as follows:

• Name: identifies each pattern and summarizes its purpose;
• Context: describes a desired behavior for the framework/domain;
• Scenario/Problem: describes the arrangement of features and relationships in F3

models that can imply the use of the pattern;
• Solution: indicates the code units that should be created to implement the scenario

identified by the pattern;
• Model: shows a generic graphical representation of the scenario/problem and the

solution;
• Implementation: displays a fragment of code, in a programming language, that

illustrates how the solution can be implemented.

For example, the third pattern listed in Table 1, Optional Decomposition, suggests
the creation of an operation that must be overridden in the instances of the source
feature to specify which class is an instance of the target feature. The documentation
of this pattern is:

• Name: Optional Decomposition.
• Context: when a target feature is optional to a source feature, every instance of

the source feature may be associated with a instance of the target feature.

Developing Frameworks from Extended Feature Models 269

Fig. 2 The (a) pattern scenario and (b) its design solution

Fig. 3 Solution applied to the relationship between Vehicle and Arm

• Scenario/Problem: a feature has a decomposition relationship with minimum
multiplicity equals 0.

• Solution: the class implementing the source feature must have an operation to
indicate what class implements the target feature in the applications. By default,
this operation returns null as the target feature is optional.

• Model: the (a) scenario and the (b) design solution are shown in Fig. 2.
• Implementation: the solution in Java language is:

Considering the F3 model in Fig. 1, the Optional Decomposition pattern should
be applied to the decomposition between Vehicle (source) and Arm (target). The
(a) design and (b) implementation solutions are shown in Fig. 3.

4 Tool Design

In this section we show the design of a tool, F3T, that assists developers to apply the
F3 approach in the development of frameworks and reuse these frameworks through
their DSMLs [8]. The F3T is a plug-in for Eclipse IDE, so developers can use the
resources of this tool as well those provided by the IDE. The F3T is composed of

270 M. Viana et al.

Fig. 4 Modules of the F3T

Fig. 5 Metamodel for F3 models

three modules, as seen in Fig. 4: (1) Domain Module; (2) Framework Module; and
(3) Application Module.

4.1 Domain Module

The Domain Module (DM) provides a F3 model editor for developers to define
domain features. This module was designed by using the Eclipse Modeling Frame-
work (EMF) and the Graphical Modeling Framework (GMF) [15]. The EMF was
used to create a metamodel, shown in Fig. 5, in which the elements, relationships and
rules of the F3 models were defined as described in the Sect. 3.1.

The GMF has been used to define the graphical notation of the F3 model Editor.
This graphical notation is defined through three kind of models provided by the GMF:
(1) graphical model, in which the graphical figures representing the editor elements
are defined; (2) tool model, in which the menu bar of the editor is created; (3) map
model, in which the correspondent elements of the metamodel, graphical model and
tool model are linked to each other. For example, in Fig. 6 it is shown how the F3

Developing Frameworks from Extended Feature Models 271

Fig. 6 Defining the Feature element for the F3 model Editor

model feature element was defined in the GMF models. Each number indicate a link
between the models.

4.2 Framework Module

Despite their graphical notation, F3 models actually are XML files. It makes them
more accessible to other tools, such as a generator. Therefore, the Framework Module
(FM) was designed to be a Model-to-Text (M2T) generator that transforms F3 models
into framework source-code and DSML.

The FM was developed with the support of the Java Emitter Templates (JET) in
the Eclipse IDE [16]. The JET is composed of a framework that is a generic generator
and a compiler that translates templates into Java files. These templates are XML
files, in which tags are instructions to generate output based on information extracted
from the models and text is a fixed content inserted in the output independently of
input.

The templates of the FM are organized in two groups: one related to frame-
work source-code (DSC); and another related to framework DSML. Both groups
are invoked from the Main template of the FM. The DSC template invokes the tem-
plates which originate different parts of the framework classes, such as constructors,
attributes, getters, setters, operations and other structures related to the F3 patterns
(DCore). The DSML template invokes templates which originates the GMF models
of the framework DSML. The hierarchy of the FM templates is shown in Fig. 7.

The framework source-code is generated by the FM according to the patterns
defined by the F3 approach. For example, the FM generates a class for each feature

272 M. Viana et al.

Fig. 7 Hierarchy of the templates which compose the FM

found in a F3 model. These classes contain the attributes and operations defined in
its original feature. Generalization relationships result in inheritances and decompo-
sition relationships result in associations between the involving classes. Additional
operations are included in the framework classes to treat feature variations and con-
straints of the domains defined in the F3 models.

For example, from decomposition relationships found in F3 models, the DCore
template generates operations to identify applications classes, as determined by
the Mandatory Decomposition and the Optional Decomposition F3 patterns (see
Sect. 3.2). In this case, the template verifies the minimum multiplicity to determine
whether the decomposition relationship is a optional (0) or a mandatory (1). These
patterns are implemented in the DCore template as the following:

Besides the framework source-code, the FM also generates a DSML from a F3
model. This DSML is generated as EMF/GMF models, similar to those created to
design the F3 model Editor (Figs. 5 and 6), but each DSML element correspond to a
feature of the framework domain.

4.3 Application Module

The Application Module (AM) is an extension to the F3T that has been designed to
generate application source-code from an application models based on a framework
DSML, as defined in Viana et al. [8]. The AM was also created with the support of

Developing Frameworks from Extended Feature Models 273

JET. The AM templates generate classes that extend framework classes and override
operations (hot spots) indicated by the F3 patterns.

Application source-code is generated in the source folder of the project where the
application model is located. The AM generates a class for each feature instantiated
in the application model. Since the framework is white box, the application classes
extend the framework classes created from the features defined in the F3 models. For
example, an application reusing the framework for the domain of automated vehicles
(Figs. 1 and 3) contains the classes MyVehicle and MyArm, respectively extending
the classes Vehicle and Arm of this framework. Part of the MyVehicle class is
presented as follows:

5 Evaluation

We have carried out an experiment to compare the F3 approach with an adhoc one.
This experiment followed all steps described by Wohlin et al. [17] and it can be
defined as: (i) Analyse the F3 approach, described in Sect. 3, (ii) for the purpose of
evaluation, (iii) with respect to efficiency (time) and easiness (problems), (iv) from
the point of view of the developer, and (v) in the context of MSc and PhD students
of Computer Science.

The context of the experiment corresponds to multi-test within object study [17],
since the experiment consisted of experimental tests executed by a group of subjects
to study a single approach, which is the F3 approach.

5.1 Planning

The planning phase was divided into the 6 steps, as follows:

1. Context Selection
The experiment has been performed in laboratory of Computer Science at an

university environment. It involved the participation of MSc and PhD students of
Computer Science with prior experience in software development using Java lan-
guage, design patterns and frameworks.

2. Formulation of Hypotheses
The first question the experiment had to answer was: RQ1: “Which approach

takes to a more efficient framework development in terms of time?”. In order to

274 M. Viana et al.

answer this question, the subjects had to measure the time spent (τ) to develop each
framework. According to this, the following hypotheses were elaborated:

• RQ1: Null hypothesis, H0: The F3 approach is not more efficient than the adhoc
one in terms of time spent in framework development. It can be formalized as:
RQ1H0: τF3 ≥ τadhoc;

• RQ1: Alternative hypothesis, H1: The F3 approach is more efficient than the
adhoc one in terms of time spent in framework development. It can be formalized
as: RQ1H1:τF3 < τadhoc.

The second question the experiment had to answer was: RQ2: “Which approach
facilitates framework development reducing the number of problems in the
frameworks during their development?”. In order to answer this question, we
analyzed the reports of the subjects, in which they documented the problems found
(ρ) in their frameworks during development, as well as the source-code of the outcome
frameworks. By problems we mean defects and bad smells in the source-code of the
frameworks. According to this, the following hypotheses were elaborated:

• RQ2, Null hypothesis, H0: The F3 approach does not facilitate framework devel-
opment, as the number of problems during framework development is not reduced.
It can be formalized as: RQ2H0 : ρF3 ≥ ρadhoc;

• RQ2, Alternative hypothesis, H1: The F3 approach facilitates framework devel-
opment, reducing the number of problems in the frameworks during their devel-
opment. It can be formalized as: RQ2H1:ρF3 < ρadhoc.

3. Variables Selection
The dependent variables of this experiment were “time spent to develop a frame-

work” and “number of problems found in the frameworks”. The independent
variables were:

• Application: Each subject had to develop two frameworks: Fw1, for the domain
of trade and rental transactions; and Fw2 for the domain of automated vehicles.
Both Fw1 and Fw2 were composed of 10 features.

• Development Environment: Eclipse 4.2.1, Astah Community 6.4.
• Technologies: Java version 6.

4. Selection of Subjects
Subjects were selected according to convenience sampling [17]. In this non-

probabilistic technique, the selected participants were the closest and most con-
venient to conduct the experiment. Altogether, 26 Msc and PhD students voluntarily
participated in the experiment.

5. Experiment Design
The experiment followed the design of grouping the subjects in homogeneous

blocks [17], avoiding that their experience level could directly impact in the results.
We used a Participant Characterization Form to determine the experience level of
each subject. In this form the subjects had to answer multiple-choice questions about
their knowledge regarding Java programming, design patterns and frameworks.

Developing Frameworks from Extended Feature Models 275

The design type of the experiment was one factor with two treatments paired
[17]. The factor is the approach used to develop a framework and the treatments
are the adhoc and the F3 approaches. Each subject had to develop two frameworks,
one applying the adhoc approach and the other applying the F3 approach. The order
in which the subjects applied the treatments had no effect in the result. Therefore, the
subjects were divided into two blocks of 13 participants with two tasks, as follows:

• Block 1: Task 1, development of Fw1 applying the adhoc approach; and Task 2,
development of Fw2 applying the F3 approach;

• Block 2: Task 1, development of Fw2 applying the adhoc approach; and Task 2,
development of Fw1 applying the F3 approach;

6. Instrumentation
The subjects received all necessary materials to assist them during the execution

of the experiment. These documents consist of: textual description and models of
the framework domains; manual for creating F3 models; documentation of the F3
patterns; Data Collection Form, in which the subjects had to report the time spent to
develop the frameworks and the problems found during their development; one Test
Application for each framework, which should be used by the subjects to verify the
correctness and the completeness of the outcome frameworks; and Feedback Form,
in which the subjects should describe their difficulties and write their opinion after
the experiment.

5.2 Operation

After defining and planning the experiment, its operation was carried out in two
steps: (1) Preparation and (2) Execution.

1. Preparation
At first, the subjects signed a Consent Form, stating the objectives and confiden-

tiality of the experiment, and filled the Participant Characterization Form in, reporting
their experience in the concepts and technologies utilized in the experiment. After
this, the subjects had a training in: adhoc framework development, in which they
learned design patterns and code structures commonly used in frameworks to iden-
tify application-specific elements; and the F3 approach. After training, the subjects
were able to carry out the experiment tasks.

2. Execution
Before starting the execution of the experiment, the subjects were positioned in

the blocks and received the materials referent to their respective Task 1.
When all subjects were commanded to execute Task 1 (applying the adhoc

approach), they started to measure the time. They used the Astah Community to
create a class model of the framework and then use the Eclipse IDE to implement
its source-code. When they finished framework implementation, they executed its

276 M. Viana et al.

Fig. 8 Dispersion of the total time and number of problems

Test Application to verify whether or not it was developed as expected. If the Test
Application showed a message of a problem, the subjects had to report it in the
Data Collection Form and fix the problem(s) found. Only when the Test Application
returned a successful message, the subject could stop measuring the time. Task 2
(applying the F3 approach) was performed in a similar way to Task 1. In the end, the
subjects received the Feedback Form to comment the difficulties and advantages in
applying each approach.

5.3 Analysis of Data

The experiment data is presented in Table 2. The groups developed the tasks sat-
isfactorily and the collected data was within the expected limits. It means that the
treatments were executed correctly and in accordance with the planning. The analysis
of data is presented in the following subsections.

1. Descriptive Statistics
It can be seen in Table 2 that the F3 approach spent less time in framework develop-

ment than the adhoc approach. Approximately 38.7 % against 61.3 %. The feedback
provided by the subjects showed that, although the subjects have spent part of the
time trying to identify the F3 patterns that should be used, they saved some time
because these patterns assisted them indicating the classes, attributes and operations
that should be created. On the other side, when the subjects were developing the
frameworks applying the adhoc approach, they spent part of the time trying to find
out the code units they should implement. Moreover, most of the subjects reported
that they spent a long time maintaining their frameworks, because the Test applica-
tion returned lots of problem messages. The dispersion of time spent by the subjects
are also represented graphically in a boxplot on left side of Fig. 8.

Developing Frameworks from Extended Feature Models 277

Ta
bl

e
2

R
es

ul
ts

of
th

e
fr

am
ew

or
ks

de
ve

lo
pe

d
by

th
e

su
bj

ec
ts

Su
bj

ec
t

T
im

e
sp

en
t(

m
in

ut
es

)
N

um
be

r
of

pr
ob

le
m

s
In

co
he

re
nc

e
St

ru
ct

ur
e

B
ad

sm
el

ls
In

te
rf

ac
e

To
ta

l
A

dh
oc

F3
A

dh
oc

F3
A

dh
oc

F3
A

dh
oc

F3
A

dh
oc

F3
A

dh
oc

F3

S1
10

8
72

5
1

2
0

2
2

7
0

16
3

S2
11

3
71

7
1

4
1

2
0

4
1

17
3

S3
13

9
83

9
3

11
1

3
1

12
2

35
7

S4
12

4
78

7
1

5
2

2
1

7
2

21
6

S5
10

1
67

4
0

3
0

1
0

3
0

11
0

S6
13

3
81

8
4

7
3

3
3

9
3

27
13

S7
13

1
79

5
3

3
1

2
1

6
2

16
7

S8
11

6
73

6
1

5
0

3
0

5
1

19
2

S9
10

9
79

7
1

4
2

2
1

7
2

20
6

S1
0

10
6

69
4

2
3

0
1

0
3

1
11

3
S1

1
11

9
71

4
1

4
1

2
0

7
0

17
2

S1
2

14
8

83
8

3
6

1
3

3
11

4
28

11
S1

3
11

0
74

4
1

2
1

3
1

5
0

14
3

S1
4

10
7

72
2

1
3

0
3

0
6

1
14

2
S1

5
11

7
76

5
3

5
2

2
1

4
2

16
8

S1
6

97
68

3
1

1
0

2
0

3
0

9
1

S1
7

13
7

80
8

5
9

4
3

3
10

3
30

15

co
nt

in
ue

d

278 M. Viana et al.

Ta
bl

e
2

co
nt

in
ue

d

Su
bj

ec
t

T
im

e
sp

en
t(

m
in

ut
es

)
N

um
be

r
of

pr
ob

le
m

s
In

co
he

re
nc

e
St

ru
ct

ur
e

B
ad

sm
el

ls
In

te
rf

ac
e

To
ta

l
A

dh
oc

F3
A

dh
oc

F3
A

dh
oc

F3
A

dh
oc

F3
A

dh
oc

F3
A

dh
oc

F3

S1
8

12
1

75
4

1
6

2
2

2
2

2
14

7
S1

9
11

5
73

3
0

4
1

2
0

4
0

13
1

S2
0

13
4

81
7

2
6

3
3

1
9

3
25

9
S2

1
14

4
86

9
3

7
3

3
3

12
6

31
15

S2
2

11
1

76
3

2
4

1
1

1
5

1
13

5
S2

3
12

9
83

7
4

8
3

3
2

11
3

29
12

S2
4

12
3

79
5

2
5

1
3

1
7

2
20

6
S2

5
12

7
77

5
3

3
1

1
0

4
1

13
5

S2
6

13
1

78
6

2
4

1
2

2
6

2
18

7
A

V
G

12
1.

15
4

76
.4

23
1

5.
57

69
2

1.
96

15
38

4.
76

92
3

1.
34

61
54

2.
26

92
3

1.
11

53
85

6.
5

1.
69

23
08

%
61

.3
19

8
38

.6
80

2
73

.9
79

6
26

.0
20

41
77

.9
87

4
22

.0
12

58
66

.0
45

5
32

.9
54

55
79

.3
42

7
20

.6
57

28

Developing Frameworks from Extended Feature Models 279

In Table 2 it is also presented the four types of problems that we analyzed in the
outcome frameworks: incoherence, structure, bad smells and interface.

The problem of incoherence indicates that the subjects did not develop the frame-
works with the correct features and constraints (mandatory, optional and alternative
features) of the domain. In other words, they did not designed and implemented
the classes, attributes and operations that could make the framework to behave as
expected by its domain. In Table 2 it can be seen that the F3 approach helped the sub-
jects to develop frameworks with less incoherence problems, approximately, 26 %
in opposition to 74 % for the adhoc approach.

The problem of structure indicates that the subjects did not implement the frame-
works properly, for example, implementing classes with no constructor, non-abstract
when they should be or incorrect relationships. In Table 2 it can be seen that the F3
approach helped the subjects to develop frameworks with less structure problems,
i.e., 22 % in opposition to 78 %.

The problem of bad smells indicates design weaknesses that do not affect func-
tionality, but make the frameworks harder to maintain. This problem is not a defect,
so the Test Applications could not detect it and the subjects did not fixed it. We iden-
tified it by analyzing the source-code of the frameworks. In Table 2 we can remark
that the use of the F3 approach resulted in a design with higher quality than the use
of the adhoc approach, respectively, 33 % against 67 %.

The problem of interface indicates absence of getter/setter operations and the lack
of operations that allows the applications to reuse the framework and so on. Usually,
this kind of problem is a consequence of problems of structure, hence the number
of problems of these two types are quite similar. As it can be observed in Table 2
that the F3 approach helped the subjects to design a better framework interface than
when they developed the framework through the adhoc approach, respectively, 21 %
against 79 %.

In the last two columns of Table 2 it can be seen that the F3T reduced the total
number of problems found in the frameworks developed by the subjects. It is also
graphically represented in the boxplot on right side of Fig. 8.

2. Hypotheses Testing
The objective of this section is to verify with any degree of significance, whether

it is possible to reject the nulls hypotheses (see Sect. 5.1) in favor of the alternative
hypothesis based on the data set obtained. This section is divided into: (1) Hypotheses
Testing—Time and (2) Hypotheses Testing—Problems.

1. Hypotheses Testing—Time: Since some statistical tests are applicable only if
the population follows a normal distribution, we applied the Shapiro-Wilk test
and created a Q-Q chart to verify whether or not the experiment data departs
from linearity before choosing a proper statistical test. As it can be seen in the
upper Q-Q charts in Fig. 9, the experiment data related to the time spent in frame-
work development is normally distributed. Thus, we decided to apply the Paired
T-Test to the experiment data. According to StatSoft,3 we carried out this test by

3 http://www.statsoft.com/textbook/distribution-tables/#t

http://www.statsoft.com/textbook/distribution-tables/#t

280 M. Viana et al.

-2 -1 0 1 2

100

120

140

S
am

pl
e

Q
ua

nt
ile

s

Theoretical Quantiles

-2 -1 0 1 2

70

75

80

85

Theoretical Quantiles
S

am
pl

e
Q

ua
nt

ile
s

Adhoc F3

-2 -1 0 1 2

10

20

30

S
am

pl
e

Q
ua

nt
ile

s

Theoretical Quantiles

Adhoc

-2 -1 0 1 2

0

5

10

15

S
am

pl
e

Q
ua

nt
ile

s

Theoretical Quantiles

F3(a) (b) (a) (b)

Fig. 9 Q-Q charts of time (upper) and problems found (lower)

calculating: the difference of time between both approaches, d = {36, 39, 56,
46, 34, 52, 52, 43, 30, 37, 48, 65, 36, 35, 41, 29, 57, 46, 42, 53, 58, 35, 46, 44,
50, 53}; the standard deviation of this difference, Sd = 9.357597; the number
of degrees of freedom, F = N − 1 = 26 − 1 = 25, where N is the number of
subjects; t0 = 24.3741; and t0.05,25 = 1.708141. Since t0 > t0.05,25 it is possible
to reject the null hypothesis with a two sided test at 0.05 level. Therefore, statis-
tically, we can assume that the F3 approach reduces the time spent in framework
development when compared with the adhoc approach.

2. Hypotheses Testing—Problems: We also used the Shapiro-Wilk test on the data
shown in the last two columns of Table 2, which represent the total number of
problems found in the outcome frameworks by using the F3 approach and the
adhoc one, respectively. As it can be seen in the lower Q-Q charts in Fig. 9, the
collected data indicates a normal distribution. Thus, we also used a Paired T-Test
by calculating: the difference of number of problems between both approaches,
d = { 13, 14, 28, 15, 11, 14, 9, 17, 14, 8, 15, 17, 11, 12, 8, 8, 15, 7, 12, 16, 16,
8, 17, 14, 8, 11 }; the standard deviation of this difference, Sd = 4.463183; the
number of degrees of freedom, F = N − 1 = 26 − 1 = 25, where N is the
number of subjects; t0 = 4.463183; and t0.05,25 = 1.708141. Since t0 > t0.05,25,
it is possible to reject the null hypothesis with a two sided test at 0.05 level.
Therefore, statistically, we can assume that the F3 approach reduces the number
of problems found in the outcome frameworks when compared with the adhoc
approach.

5.4 Threats to Validity

Internal Validity:

• Experience level of participants: different levels of knowledge of the subjects could
affect the collected data. To mitigate this threat, we divided the subjects into two
balanced blocks based on their answers in the Participant Characterization Form.
All subjects had prior experience in application development reusing frameworks
and they were trained in the F3 approach.

Developing Frameworks from Extended Feature Models 281

• Productivity under evaluation: it might influence the experiment results because
subjects often tend to think they are being evaluated. To mitigate this, we explained
to the subjects that no one was being evaluated and their participation was consid-
ered anonymous.

• Facilities used during the study: different computers and installations could affect
the recorded timings. However, the subjects used the same hardware configuration
and operating system.

Validity by Construction:

• Hypothesis expectations: the subjects knew the researchers and knew that the F3
approach was supposed to ease framework development before the experiment.
These issues could affect the collected data and cause the experiment to be less
impartial. In order to keep impartiality, we enforced that the subjects had to keep
a steady pace during the whole study.

External Validity:

• Interaction between configuration and treatment: it is possible that the exercises
performed in the experiment are not accurate for every framework development
in real world applications. Only two frameworks were developed and both had
similar complexity. To mitigate this threat, the tasks were designed considering
framework domains based on the real world.

Conclusion Validity:

• Measure reliability: it refers to metrics used for measuring development effort. To
mitigate this threat we have used only the time spent which was captured in forms
fulfilled by the subjects;

• Low statistic power: the ability of a statistic test in reveal reliable data. To mitigate
we applied two tests: T-Tests to statistically analyze the time spent to develop the
frameworks and Wilcoxon signed-rank test to statistically analyze the number of
problems found in the outcome frameworks.

6 Related Works

Xu and Butler [18] proposed an cascaded refactoring method to develop frameworks.
In this method, a framework is specified by different models, sorted by abstraction
level (from feature model to source-code). Refactorings are performed on these
models following their sequence until the framework is completely developed. In
the F3 approach the domain is also defined in feature models and framework design
and implementation are assisted by patterns, which provide more information to help
developers than refactorings.

Zhang et al. [19] proposed the Feature-Oriented Framework Model Language
(FOFML) to develop frameworks following the MDA approach. In this language,

282 M. Viana et al.

domain features are defined in a graphical metamodel and domain constraints are
specified in a textual role model. Then, framework classes are implemented according
to the features and roles defined in these models. In comparison, our approach define
domain features and constraints in a single model.

Amatriain and Arumi [20] also proposed a method to develop frameworks through
iterative and incremental activities. In their method, the domain of the framework
could be defined from existing applications and the framework could be implemented
through a series of refactorings over these applications. The advantage of this method
is a small initial investment and the reuse of the applications. Although it is not
mandatory, the F3 approach can also be applied in iterative and incremental activities,
starting from a small domain and then adding features. Applications can also be used
to facilitate the identification of the features of the domain. However, the advantage of
the F3 approach is the fact that the design and the implementation of the frameworks
are performed with the support of patterns specific for framework development.

Oliveira et al. [21] presented the ReuseTool, which assists framework reuse by
manipulating UML diagrams. This tool is based in the Reuse Description Language
(RDL), which has been created to facilitate the description of framework instantiation
processes. The RDL is used to make a description of the framework hot spots. in order
to instantiate the framework, application models are created based on this description
and their source-code is generated from these models. Thus, the RDL works as a meta
language that registers framework hot spots and the ReuseTool provides a more
friendly interface for developers to develop applications reusing the frameworks.
In comparison, the F3T was designed to support framework development through
domain modeling and application development through framework DSML.

Common Variability Language (CVL) is an Object Manager Group (OMG) stan-
dardization used for specifying and resolving domain variability [22]. Such as F3
models, CVL is an extended feature model. However, CVL uses a mechanism similar
to OCL to implement domain constraints. In comparison, F3 models define domain
constrains through relationships and properties. Moreover, since F3 models focus on
framework development, the features in this kind of model can contain attributes and
operations.

Pure::variants [23] is a tool that supports the development of applications by
modeling domain features (Feature Diagram) and the components that implement
these features (Family Diagram). Then the applications are developed by selecting a
set of features of the domain. Pure::variants generates only application source-code,
maintaining all domain artifacts in model-level. Besides, this tool has private license
and its free version (Community) has limitations in its functionality. In comparison,
the F3T was designed to be free, use only one type of domain model (F3 model) and
generate the source-code frameworks as domain artifacts. Moreover, the frameworks
developed with he support of the F3T will be able to be reused on the development
of applications with or without the support of the F3T.

Developing Frameworks from Extended Feature Models 283

7 Concluding Remarks and Future Work

In this chapter we proposed the F3 approach to facilitate the development of frame-
works. In this approach the framework domain is defined in F3 models, which include
elements from feature models and metamodels. Then, F3 patterns guide developers to
construct the framework according to its domain. Therefore, the F3 approach provide
two major contributions: F3 models allow developers to define framework function-
ality in a high level of abstraction; and the F3 patterns facilitate framework design
and implementation by indicating the structures that must be created to implement
its functionality.

Our approach promotes reuse in different levels. F3 models represent domains
that can be reused and improved in different frameworks. The F3 patterns represent
reuse of experience on framework development. Moreover, the outcome frameworks
can be reused in the development of several applications, acting as a core asset for a
software product line.

The experiment presented in this chapter indicated that F3 approach facilitates
framework development, because it shows developers how to proceed, making them
less prone to insert defects and bad smells in the outcome frameworks. Our approach
allowed that even subjects with no experience in framework development could
execute this task correctly and spending less time.

The F3T supports framework development and reuse through code generating
from models. This tool provides an F3 model editor for developers to define the
features of the framework domain. Then, framework source-code and DSML can be
generated from the F3 models. Besides the gain of efficiency provided by code gener-
ation, this tool aims to reduce even more the complexities of framework development
and reuse.

In future works we intend to perform more tests considering different domains in
order to identify scenarios that we still have not predicted and then create F3 patterns
to them. Moreover, we also intend to carry out more tests and experiments to evaluate
the F3 approach and its tool.

References

1. Pressman, R.S.: Software Engineering: A Practitioner’s Approach, 7th edn. McGraw-Hill Sci-
ence, New York (2009)

2. Shiva, S.G., Shala, L.A.: Software reuse: research and practice. In: Fourth International Con-
ference on Information Technology, April 2007. pp 603–609

3. Johnson, R.E.: Frameworks = (Components + Patterns). Commun. ACM 40(10), 39–42 (1997)
4. Srinivasan, S.: Design patterns in object-oriented frameworks. Computer 32(2), 24–32 (1999)
5. Abi-Antoun, M.: Making frameworks work: a project retrospective. In: Companion to the 22nd

ACM SIGPLAN Conference on Object-Oriented Programming Systems and Applications,
OOPSLA ’07, pp. 1004–1018. ACM, New York (2007)

6. Kirk, D., Roper, M., Wood, M.: Identifying and addressing problems in object-oriented frame-
work reuse. Empirical Softw. Eng. 12(3), 243–274 (2007)

284 M. Viana et al.

7. Stanojevic, V., Vlajic, S., Milic, M., Ognjanovic, M.: Guidelines for framework development
process. In: Software Engineering Conference in Russia (CEE-SECR), 7th Central and Eastern
European, Nov 2011, pp. 1–9

8. Viana, M., Penteado, R., do Prado, A.: Generating applications: framework reuse supported by
domain-specific modeling languages. In: 14th International Conference on Enterprise Infor-
mation Systems (ICEIS’14), June 2012

9. Fowler, M.: Patterns. IEEE Softw. 20(2), 56–57 (2003)
10. Lee, K., Kang, K.C., Lee, J.: Concepts and guidelines of feature modeling for product line soft-

ware engineering. In: 7th International Conference on Software Reuse: Methods, Techniques
and Tools, pp. 62–77. Springer, London (2002)

11. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-Oriented Domain
Analysis (FODA): Feasibility Study. Carnegie-Mellon University Software Engineering Insti-
tute,Technical report (Nov 1990)

12. Jezequel, J.M.: Model-driven engineering for software product lines. ISRNSoftw. Eng. 2012,
(2012)

13. Gomaa, H.: Designing Software Product Lines with UML: From Use Cases to Pattern-Based
Software Architectures. Addison-Wesley, Upper Saddle River (2004)

14. Bayer, J., Flege, O., Knauber, P., Laqua, R., Muthig, D., Schmid, K., Widen, T., DeBaud, J.:
PuLSE: a methodology to develop software product lines. In: Proceedings of the Symposium
on Software Reusability, pp. 122–131. ACM (1999)

15. Gronback, R.C.: Eclipse Modeling Project: A Domain-Specific Language (DSL) Toolkit.
Addison-Wesley, Upper Saddle River (2009)

16. The Eclipse Foundation. Eclipse Modeling Project. http://www.eclipse.org/modeling Jan
(2013)

17. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Experimentation
in Software Engineering: An Introduction. Kluwer Academic Publishers, Norwell (2000)

18. Xu, L., Butler, G.: Cascaded refactoring for framework development and evolution. In: Software
Engineering Conference. pp. 319–330. Australian (2006)

19. Zhang, T., Xiao, X., Wang, H., Qian, L.: A feature-oriented framework model for object-
oriented framework: an MDA approach. In: 9th IEEE International Conference on Computer
and Information Technology, vol. 2, pp. 199–204 (2009)

20. Amatriain, X., Arumi, P.: Frameworks generate domain-specific languages: a case study in the
multimedia domain. IEEE Trans. Softw. Eng. 37(4), 544–558 (2011)

21. Oliveira, T.C., Alencar, P., Cowan, D.: Design patterns in object-oriented frameworks. Reuse-
tool: an extensible tool support for object-oriented framework reuse. J. Syst. Softw. 84(12),
2234–2252 (2011)

22. Rouille, E., Combemale, B., Barais, O., Touzet, D., Jezequel, J-M.: Leveraging CVL to manage
variability in software process lines. In: 19th Asia-Pacific Software Engineering Conference
(APSEC). vol. 1, pp. 148–157. (2012)

23. Pure Systems. Pure::Variants. http://www.pure-systems.com/pure_variants. 49.0.html, Feb
2013

http://www.eclipse.org/modeling
http://www.pure-systems.com/pure_variants.

About Handling Non-conflicting Additional
Information

Éric Grégoire

Abstract The focus in this chapter is on logic-based Artificial Intelligence (A.I.)
systems that must accommodate some incoming symbolic knowledge that is not in-
consistent with the initial beliefs but that however requires a form of belief change.
First, we investigate situations where the incoming knowledge is both more infor-
mative and deductively follows from the preexisting beliefs: the system must get rid
of the existing logically subsuming information. Likewise, we consider situations
where the new knowledge must replace or amend some previous beliefs. When the
A.I. system is equipped with standard-logic inference capabilities, merely adding
this incoming knowledge into the system is not appropriate. In the chapter, this is-
sue is addressed within a Boolean standard-logic representation of knowledge and
reasoning. Especially, we show that a prime implicates representation of beliefs is
an appealing specific setting in this respect.

Keywords Artificial intelligence · Knowledge representation and reasoning ·
Logic · Belief change

1 Introduction

Intelligent agents must often handle a flux of incoming information.1 In this context,
a very fertile domain of research in knowledge representation and reasoning concerns
the ways according to which symbolic knowledge and beliefs must change in light of

1 Since no distinction between belief, knowledge and information is actually needed for the
purpose of this chapter, we use all these words interchangeably.

This chapter extends a preliminary version published in IEEE-IRI’2013.

É. Grégoire (B)

CRIL Université d’Artois, CNRS UMR 8188 rue Jean Souvraz SP18, F-62307 Lens Cedex, France
e-mail: gregoire@cril.univ-artois.fr

T. Bouabana-Tebibel and S. H. Rubin (eds.), Integration of Reusable Systems, 285
Advances in Intelligent Systems and Computing 263, DOI: 10.1007/978-3-319-04717-1_13,
© Springer International Publishing Switzerland 2014

286 É. Grégoire

new information, taking logic as a representation and reasoning setting. Especially,
much attention has been devoted to this issue in the so-called belief revision, belief
update [1–5] and knowledge fusion [6, 7] approaches [1, 8–12]. A shared focus by
most approaches developed in these domains concerns situations where an incoming
piece of information is logically contradicting the pre-existing knowledge. These
approaches also recommend to record the incoming piece of information together
with the pre-existing knowledge when this does not lead to inconsistency.

In this chapter, we address some frequent situations about non-logical conflicts
where the latter recommendation should not apply. In particular, we consider cases
where the incoming information brings in more precision or details, or, more gen-
erally, is more informative than the preexisting knowledge, without leading to any
logical inconsistency. From a logical point of view, this kind of incoming informa-
tion often takes the form of some logical deductive consequences of the preexisting
knowledge. In this respect, adding the incoming information does not drive to logi-
cal contradiction. However, inserting it is not sufficient: a form of preemption must
also take place so that the incoming information replaces the concerned pre-existing
subsuming knowledge. In this chapter, this issue is investigated when the represen-
tation setting is standard Boolean logic. Likewise, we consider situations where the
incoming knowledge must replace or amend some previous beliefs. Especially, we
show that a prime implicates representation of beliefs is an appealing specific setting
in this respect.

The chapter is organized as follows. In the next section, some motivating examples
are provided. Then, preliminaries about Boolean logic are recalled. Section 4 focuses
on prime implicates and implicants, as they play a keystone role in our approach,
whereas Sect. 5 defines a notion of a clause being about a concept. In Sect. 6, we show
how the various belief change operators can be addressed within a prime implicates
representation framework. Section 7 presents a computational method for making
sure that clauses are not preempted; some experimental results are provided in Sect. 8.
The conclusion motivates some promising paths for further research.

2 Motivating Examples

Let us give some motivating examples, where the incoming symbolic knowledge
does not logically contradict the previous premisses, although it requires some belief
change.

2.1 Subsumed Knowledge that Must Prevail

Assume that a robot reasons and takes decisions according to standard-logic. Cur-
rently, it believes that the target is located either in room A or in room B. Assume
that a new piece of information arises from its analysis of captors and radar data in

About Handling Non-conflicting Additional Information 287

such a way that it can no longer exclude the possibility that there might be no target
at all. It thus concludes that the target is either in room A, or in room B or there is
no actual target. Although the robot must give more credit to this conclusion than
to its initial knowledge, this new piece of information is not actually new for the
robot. Since the robot is logical, the new conclusion was already a consequence of
its former knowledge. Indeed, whenever α can be deduced from a set of premisses,
any conclusion α or β can also be deduced, for any possible β (as well as α or not β).
In other words, if α is true, so is any subsumed information, like α or β. When the
robot believed that it was true that the target is located either in room A or in room B,
it was necessarily also believing that the target is located either in room A, or in room
B or there is no actual target was also true. Note that both pieces of information do
not contradict from a logical point of view using this basic Boolean representation
mode.

Thus, if we merely insert the “new” piece of information inside the set of beliefs
of the robot without removing the relevant former ones, the robot will still be able to
infer that the target is located either in room A or in room B. What we need here is
the ability to replace the existing subsuming beliefs by the new information in such
a way that this latter one prevails.

Unfortunately, this issue is complex both from both conceptual and computational
points of view: contrary to this example, deductive links between the initial beliefs
and a new piece of information are not as apparent as in this example. They can
be hidden through complex reasoning trees. In the worst case, merely proving that
some premisses allow a Boolean formula to be derived and thus that this formula is
subsumed by those premisses is co-NP-Complete.

It could be argued that the absence of logical contradiction between the old and
new information in this example is due to a poor formalization of the available
knowledge. Especially, forms of closed world assumption could here exclude any
other possible location than A or B unless logical inconsistency occurs. In the same
vein, moving to predicate logic would allow to express in an explicit way that there
exists a target. However, the robot should be provided with general capacities to
deduce conclusions that are not explicitly present within its premisses. Actually,
when the robot is to be provided with minimal genuine deductive power, its ability to
infer α or β is true from α is true cannot always be blocked by forms of closed-world
assumptions. The need for a capacity to make some subsumed knowledge prevail
cannot be totally circumvented. Moreover, moving to a logic of a higher degree or
to a non-monotonic logic does not solve this issue in the general case either.

2.2 Rules that Must be Weakened

Here is another example, involving more general versus more specific rules, that also
illustrates a need to make some deductive consequences prevail over the premisses.
Assume that the robot believes that if the target is in room A then it has to drive
directly inside room A. Assume that it learns the new rule if the target is in a room A

288 É. Grégoire

and if the energy level is good then it has to drive directly inside room A. The second
rule is a deductive consequence of the former one and, clearly, it must replace the
initial knowledge. Assume that the robot is given now a third rule asserting that if
the target is in room A and if the road is not blocked then it has to drive directly
inside room A. Again, the two last rules are not logically conflicting. Obviously, the
new rule should not be inserted as such as a new belief or replace the first rule. What
we need here is to fuse the two rules into a new one combining necessary conditions
for entering the room: namely, if the target is in room A and if the road is not blocked
and if the energy level is good then it has to drive directly inside room A. Again, the
rule formed in that way needs to be added to the robot’s knowledge while making
sure that it is not subsumed by shorter rules that are not requiring all those conditions
for entering the room.

It is straightforward that not all rules should be merged in that way. Some rules
simply assert sufficient conditions for a conclusion to hold whereas in this example
rules express a kind of compulsory condition for the conclusion to hold. We thus
need to be able to distinguish between these two kinds of rules, merge them when
appropriate and make sure that the new rule is not subsumed.

2.3 Replacement and Compulsory Knowledge

To generalize the previous example, assume that our logical robot has some knowl-
edge about a given concept, e.g., conditions that must be true to classify a detected
situation as a dangerous one. The robot has thus some information about recognizing
dangerous situations. Now, some new incoming knowledge about urgency situations
that does not logically contradict the robot’s initial knowledge might arise and needs
to prevail. Especially, this incoming knowledge can be intended to replace the in-
formation about what a dangerous situation is. It can also represent some additional
compulsory conditions for a situation to be dangerous. In both cases, the new knowl-
edge might not contradict the robot’s knowledge from a logical point of view. Again,
contrary to belief revision theories, the new information cannot be merely inserted:
some belief change in the robot’s knowledge must occur so that the epistemological
role of the additional information is met.

The study in this chapter investigates these issues and builds on some previous
works. First, a complex tentative formal approach to characterize and solve the sub-
sumption issue has been introduced in [13]. Candidate rationality postulates for belief
change operators that allow beliefs to be preempted by subsumed ones have been
presented in [14]. The formal characterization of this specific handling of subsump-
tion has been extended to a general non-monotonic setting in [15] and applied to
the legal domain in [16]. Starting from this, we present in this chapter a new formal
solution to handling all the aforementioned kinds of new beliefs that is founded on
a prime implicates and prime implicants setting.

About Handling Non-conflicting Additional Information 289

3 Logic-Based Representation Setting

The logical setting in this chapter is standard (clausal) Boolean logic. On the one
hand, it is the simplest possible framework for presenting and addressing the above
subsumption-related issues. On the other hand, recent dramatic progress in Boolean
search and reasoning has now revived Boolean logic as a realistic and attractive
framework for representing large knowledge bases and solving numerous complex
reasoning tasks in artificial intelligence [17].

LetL be a language of formulas over a finite alphabetP of Boolean variables, also
called atoms. Atoms are noted a, b, c, . . . The ∧,∈,¬,→ and ∗ symbols represent
the standard conjunctive, disjunctive, negation, material implication and equivalence
connectives, respectively. A literal is an atom or a negated atom. Formulas are built
in the usual way from atoms, connectives and parentheses; they are noted α,β, γ,
etc. A formula is in conjunctive normal form (CNF) when expressed as a conjunction
of clauses, where a clause is a disjunction of literals. For convenience, clauses can
be represented by their set of involved literals. The empty clause represents false.
Also for convenience, the set of involved literals of a clause can be enriched by the
value false, while still representing the clause. Also for convenience, the disjunction
forming a clause can be safely enriched by a disjunct representing false.

Interpretations are functions assigning either true or false to every atom. A model
of a set of formulas Δ is an interpretation that satisfies every formula of Δ. Δ is
consistent (also said satisfiable) when its set of models is not empty. Δ ≤ α expresses
that the formula α can be deduced from Δ, i.e., that it is true in all models of Δ.

A knowledge base Δ is a consistent finite set of (non-tautological) clauses and the
incoming belief γ is a consistent non-tautological clause. We distinguish between
Δ, which represents the explicit clauses of the base, from the set of all the deductive
conclusions of Δ, noted Th(Δ): Δ ≤ α iff α √ Th(Δ).

A word of caution for readers who are familiar with rule-based systems but not with
logic. We exploit the sound and complete deductive capabilities of Boolean logic.
Especially, we do not only simply allow for mere forward and backward chaining
on → as in traditional rule-based systems. For example, from the rule a → b and
¬b, we derive ¬a using contraposition. Also, keep in mind that a rule of the form
(a ∧ b ∧ ¬c) → (d ∈ e) is logically equivalent to ¬a ∈ ¬b ∈ c ∈ d ∈ e (which is
also represented by {¬a,¬b, c, d, e}) and will be treated as such.

In the following, unless explicitly indicated, when a clause is referred to, it is not
tautological. Also, without loss of generality, we assume that Δ is a consistent finite
set of non-tautological clauses that represents the current knowledge.

Assume that an incoming non-contradictory and non-tautological clause γ is to
be accommodated.

290 É. Grégoire

4 Clause About a Concept

A clause γ = a1 ∈ · · · ∈ an expresses some information about any of its literals, say
e.g. an . Accordingly, we say that the clause γ is about an . More generally, we say
that γ is about any of its strict sub-clauses. More precisely:

Definition 1. When γ can be rewritten as γ = α∈β where α and β are two clauses
with an empty intersection and where α is not the empty clause, γ is said to be about
β. α is called the anti-condition for β in γ.

Note that the condition requiring α not to be the empty clause is a syntactical
requirement: α might be some non-empty clause that turns out to be actually false,
taking other available information into account. When the anti-condition α for β in γ
is interpreted to false, γ entails β: hence the “anti” prefix. However, by convenience,
we will write “condition” instead of “anti-conclusion”. Please, note that the definition
entails that γ is not about itself: γ is about false and about any of its strict subsets. In
our framework, the incoming clause γ can be asserted together with the additional
information that γ is specifically intended to be about one specific given β, or without
any information about such a possible intent. In the first case, this does not prevent
the above definition from concluding that γ is also about other β when γ is not just
a literal.

In the motivating example, assume that the rule if the target is in room A and
if the road is not blocked and if the energy level is ok then it has to drive directly
inside room A is encoded as target-room-A ∧¬ blocked-road ∧ energy-level-ok ◦
move-to-roomA, which is expressed as the clause ¬ target-room-A ∈ blocked-road
∈¬ energy-level-ok ∈ move-to-roomA. This clause is for example about move-to-
roomA: in which case, its anti-condition is ¬ target-room-A ∈ blocked-road ∈¬
energy-level-ok.

5 Prime Implicates Representation of Beliefs

Our developments are deep-rooted in subsumption, strict implicants, prime impli-
cants and prime implicates.

Definition 2. α is a strict implicant of β iff α ≤ β but β ≤∀ α.

Definition 3. Δ strictly subsumes a clause β iff Δ ≤ α for some clausal strict
implicant α of β.

By abuse of words, we will use “subsume” in place of “strictly subsume”.

Definition 4. α is a prime implicant of β iff α is a strict implicant of β and there
does not exist any strict implicant δ of β such that α is a strict implicant of δ.

About Handling Non-conflicting Additional Information 291

Interestingly, when two non-tautological clauses α and β are under their set-
theoretical representation, α is an (a strict) implicant of β iff α is a (strict) subset of
β. Moreover, when a consistent non-tautological clause β is made of n literals, the
prime implicants of β are the consistent sub-clauses of β made of n − 1 literals and
β is not subsumed by a consistent Δ iff none of the prime implicants of β can be
deduced from the same Δ.

The dual concept of prime implicates also plays a central role in this chapter.

Definition 5. A prime implicate of a finite set Δ of formulas is any clause δ that
satisfies both conditions below

(1) Δ ≤ δ
(2) δ′ ≡ δ for every clause δ′ s.t. Δ ≤ δ′ and δ′ ≤ δ

ΔP I denotes the set of all prime implicates in Δ.
From now on, we assume that Δ is a consistent non-tautological belief base.

Accordingly, δ is a prime implicate of Δ iff δ is a minimal (w.r.t. ⊆) non-tautological
clause amongst the set formed of the clauses β such that Δ ≤ β.

In our first motivating example, under the set-theoretical representation of clauses,
α = {RoomA, RoomB} is a prime implicant of β = {RoomA, RoomB, No-Target}.
Thus, Δ = Cn({α}) subsumes β. To make β prevail, we need to deliver a belief base
Δ′ such that Δ′ entails β but does not subsume it. Especially, Δ′ cannot contain α
and β is a prime implicate of Δ′.

Intuitively, the other motivating examples deal with an additional incoming rule
δ = α → β intended to influence existing rules about β in Δ, either by weakening
or by replacing their body by means of α. This is done by other forms of preemption
that we study in this chapter.

Interestingly, a central concept will be prime implicates, again. Prime implicates
have already been investigated in belief revision mainly because they provide a com-
pact and syntax-independent yet complete representation of a belief base (see e.g.
[18] and [19]) and because interesting computational tasks (like satisfiability check-
ing and entailment) are tractable in this framework [20]. In the worst case, computing
the set of prime implicates of Δ containing a clause β (a task that we will often refer
to) is however not in polynomial total time unless P=NP (it is in polynomial total
time when for example the clause is positive and Δ is Horn) [21]. Although the com-
pactness and some of the computational features of a prime implicates representation
happen to be welcome properties, the motivation for focusing on prime implicates
is here different and stems from their intrinsic epistemological nature.

In our setting, we need to make a difference between the basic beliefs of an
agent and the beliefs that it is able to deduce from them. Adopting a prime implicates
representation allows us to do that. The prime implicates represent these basic beliefs.
Amending the beliefs of an agent must address these basic beliefs in the first place,
while safely keeping all the deductive capabilities of the agent leading to derived
beliefs, as we will illustrate this.

292 É. Grégoire

6 Handling the Various Situations

6.1 Preempting Subsuming Knowledge

Let us go back to our first motivating example, where a new piece of knowledge,
the target is located either in room A, or in room B or there is no actual target, is
intended to prevail about the initial information the target is located either in room
A, or in room B.

An operator that does this must introduce the new knowledge TargetIsInRoomA ∈
TargetIsInRoomB ∈ NoTarget and remove any of its prime implicants, e.g. TargetIs-
InRoomA ∈ TargetIsInRoomB. Interestingly, as formulas of Δ are under CNF format,
it is sufficient to remove all the prime implicants of the clause that needs to prevail.

Actually, the problem of making a formula prevail over all its strict implicants in
Δ must sometimes be adapted by replacing Δ by one of its subsets, say Δ′, in the
Definition of strict implicants. Typically, Δ′ is selected as containing the permanent
information involving generic rules or other stable knowledge, whereas the rest of
Δ contains facts that are temporary or related to a specific case or result from the
instantiation of the generic rules to a specific situation. When using such Δ′ only,
we reason about generic rules independently of specific facts and the process of
transforming and removing formulas considers the generic rules, only. Note that
facts subsume any rule that contains them as part of its conclusion.

6.2 Handling Clauses About a Concept

When a new information γ = α ∈ β about β comes in, following the belief change
AGM theory tradition [1], we assume that, by default, γ is merely to be inserted in
Δ, unless this leads to a logical contradiction. As emphasized in the introduction,
other situations can occur leading to other forms of belief change within Δ. In this
case, we require γ to be provided with an indication of its epistemological role.

Mainly, we envision the following main possibilities.

1. Case 1. The new knowledge must be inserted in Δ. This is the by default case.
2. Case 2. The new piece of information must be inserted in Δ and cannot be sub-

sumed.
3. Case 3. It expresses some condition α about a concept β and α must not be

subsumed.
4. Case 4. It expresses some conditions α about a concept β that must replace all

current conditions that are required to hold in order for β to hold.
5. Case 5. It expresses conditions α that are compulsory for a concept β in the sense

that they must occur as one member of the set of compulsory prerequisites for β
to hold.

About Handling Non-conflicting Additional Information 293

Implementing the above cases must be done in a way that accommodates the
agent’s ability to reason deductively. This is easily handled from a conceptual point
of view when the representation is a prime implicates one.

To understand this, assume that a naive implementation of Case 5 requires α to
belong to any clause about β. Clearly, this would be wrong since this would block
some legitimate deductions of the agent. For example, the agent must be able to
deduce the tautology β ∈ ¬β, which does not mention α. Or, if the agent believes
γ, it must remain entitled to deduce γ ∈ β (and γ ∈ ¬β, as well). Actually, what is
needed is that α must belong to any prime implicate that contains β in the resulting Δ.
Hence, we assume that Δ is actually recorded under the form of its prime implicates
base, namely ΔIP.

Case 2.
This case has been described in the previous paragraph. In the next section, we will
describe a computational approach to handle it.

Case 3.
This case is similar to the previous one but restricts the set of prime implicants that
must be removed from Δ. Accordingly, we define restrictive clauses to encompass
the notion of a clause that expresses conditions that must not be subsumed in order
for a concept to hold.

Definition 6. When γ = α ∈ β is about β, γ is restrictive about β in Δ iff

1. γ √ Δ, and
2. β ∀√ T h(Δ) and, when β ∀= false, ¬β ∀√ T h(Δ), and
3. no strict implicant of γ containing β belongs to T h(Δ).

Clearly, when a clause γ about β must be restrictive in Δ, it is sufficient to insert
γ within ΔIP and adapt this latter set so that it remains a prime implicates base, by
possibly removing other formulas from it.

Case 4.
Clearly, γ must be inserted within ΔPI and all other clauses that are strict supersets
of β must be removed from ΔPI .

Case 5.
This concerns situation where γ must be compulsory about β in (the resulting) Δ

according to the following sense.

Definition 7. When γ = α ∈ β is about β. γ is compulsory about β in Δ iff

1. γ √ Δ, and
2. β ∀√ T h(Δ) and, when β ∀= false, ¬β ∀√ T h(Δ), and
3. when β = false, no strict implicant of γ belongs to T h(Δ), and
4. ∼ (α′ ∈ β) √ T h(Δ), α ⊆ α′ unless α′ √ T h(Δ) or β = false.

Properties of compulsory clauses are explored in [22]. When dealing with a prime
implicates representation, implementing this case amounts to make sure that there is
at least one clause in ΔPI that contains γ and that all clauses in ΔPI that contain β
also contain α.

294 É. Grégoire

7 MUS-Finding Algorithms as Basic Tools

A central computational issue is checking whether a clause γ is subsumed or not in
Th(Δ) and, in the positive case, in determining which clauses should be expelled from
Δ in order to break the subsumption links, as in Case 2. A case of subsumption that is
easy to detect occurs when one strict implicant of γ belongs to Δ: a first preprocessing
step can check whether any of the n strict longest sub-clauses of γ is explicit in Δ in
O(nm), where m is the total number of clauses in Δ. Obviously, this preprocessing
cannot cover deductive paths that also make use of formulas from Th(Δ) \ Δ to
prove subsumption. From a computational point of view, checking whether a formula
subsumes another one is actually coNP-complete, and thus intractable in the worst
case.

However, recent dramatic progress in Boolean and search makes it often possible
to get answers within seconds, especially thanks to powerful SAT solvers [17], which
check whether a set of Boolean clauses is consistent or not. In this respect, we
have experimented an original method to deliver clauses that must be expelled to
get rid of subsumption links. It is based on SAT-solvers and on methods [17] for
delivering Minimal Unsatisfiable Subsets of clauses (MUSes): a MUS Γ in Th(Δ)

is an inconsistent set Γ of clauses in Th(Δ) such that each proper subset of Γ is
consistent. More precisely: assume it is to be checked whether Th(Δ) (that contains γ)
subsumes γ through a strict implicant γ′ of γ. The solver considers Δ∪{¬γ′}, which
can only be inconsistent in case of subsumption. Then, it extracts the MUSes, namely
the minimal (w.r.t. inclusion) sets of clauses that are inconsistent. Making sure that
at least one clause in each of the MUSes is dropped ensures that the subsumption
link disappears. Expelling such clauses can be automatic or the knowledge engineer
can be asked whether she (he) really wants to drop them, or even be given the choice
of selecting the clauses to be dropped in the MUSes. When he (she) prefers keeping
these MUSes intact, she (he) is then conducted to revise his (her) former requirement
about the subsumption-freeness status of γ. This solver provides efficient results even
for large Δ, provided that the number of MUSes and the size of the MUSes remain
small [23] (the number of MUSes is exponential in the worst case).

As an alternative to computing all MUSes, the solver also allows a cover of
MUSes to be computed. A cover of MUSes of Δ is made of several MUSes of Δ

such that if the clauses in the cover were dropped from Th(Δ) then Δ would become
consistent. Interestingly, computing a cover of MUSes of Δ can often be done without
computing all MUSes of Δ.

8 Experimental Results

All experimentations have been conducted on a PC (IntelCore 2 Quad 2.66GHz-4Gb
Ram) under Linux Ubuntu 11.10 (3.0.0-16-generic). The solver is freely available
from http://www.cril.univ-artois.fr/~ramon/preempte. In Table 1, a sample of typical
experimental results is provided for the central and computationally-heaviest part of
the algorithm, namely the MUS detection step. It presents the actual performance

http://www.cril.univ-artois.fr/~ramon/preempte

About Handling Non-conflicting Additional Information 295

Table 1 Some experimental results on SAT benchmarks (MUS detecting step)

All MUSes 1 cover of MUSes
Instances #c #var #MUSes #sec #c in MUSes #sec #c in cover

Battleship-5-8-unsat 105 40 1 0.23 105 0.18 105
Battleship-6-9-unsat 171 54 1 1.88 171 0.48 171
Battleship-10-10-unsat 550 100 – Timeout 19.58 417
Battleship-11-11-unsat 726 121 – Timeout 82.21 561
Battleship-12-12-unsat 936 144 – Timeout 172.93 711
5cnf_3500_3900_30f1.shuf. 420 30 – Timeout 17.01 194
5cnf_3900_3900_060.shuf. 936 60 – Timeout 33.99 777
Marg3x3add8ch.shuf.-

as.sat03-1448
272 41 1 177.15 272 7.10 272

Marg3x3add8.shuf.-
as.sat03-1449

224 41 1 8.79 224 3.48 224

Php_010_008.shuf.-
as.sat05-1171

370 80 – Timeout 1.14 370

Rand_net60-30-1.shuf. 10,681 3,600 – Timeout 233.46 10,681
C208_FA_UT_3254 6,153 1,876 17,408 2.94 98 17.49 40
C208_FA_UT_3255 6,156 1,876 52,736 6.67 102 18.97 40

of this step on challenging benchmarks from SAT competitions. The columns indi-
cate for each benchmark instance, its name, its number of clauses (#c), of different
variables (#v) and the total number of MUSes (#MU Ses) in the instance (unless
the algorithm was not able to extract all MUSes; in that case this is denoted by −).
Then, the time spent for finding and extracting all MUSes and one cover of MUSes
is given in seconds, together with the numbers of different clauses in these MUSes
and in this cover of MUSes, respectively. Timeout was set to 250 s. Not surprisingly,
computing a cover of MUSes proved more often time-feasible than computing all
MUSes successively. Actually, it was often possible to extract a cover whereas com-
puting all MUSes was not feasible in the preset computing time. Let us stress that
the benchmarks involve large MUSes, as this is often a factor of difficulty for SAT
solvers. It is well-known that, heuristically, the time spent by MUSes finding algo-
rithms also often increases with the size of MUSes. It is also often acknowledged that
in most real-life belief bases, MUSes are of smaller sizes, based on the finding that
a new incoming belief generally interacts with a small number of our pre-existing
beliefs to form an inconsistent chain of reasoning that is of minimal length (i.e., a
MUS). Accordingly, under this latter assumption, we can expect a time-efficiency
that should often be better than the one exhibited in the described experimentations.

9 Conclusion and Perspectives

So far, the A.I. research community has mainly concentrated on situations where
an incoming piece of information is logically inconsistent with the current beliefs.
In other cases, the incoming belief is just expected to increase the set of current

296 É. Grégoire

ones. Actually, we claim that the belief change domain should also concern other
reasoning paradigms involving an additional piece of information to be handled. Es-
pecially, there are many situations where an additional piece of symbolic knowledge
requires the former beliefs to change, even when no logical inconsistency arises. In
this chapter, we have illustrated some of them. A second claim in this chapter is
about the usefulness of a prime implicates representation of beliefs. By delimiting
a frontier between basic beliefs from what a deductive agent can derive from them,
it helps in modeling belief change operators. Accordingly, the various belief change
paradigms introduced in this chapter are easily handled using a prime implicates
representation. In the future, we plan to investigate detailed properties of these belief
change operators and to continue exploring the extent to which they could be imple-
mented and achieved efficiently. We also plan to extend this study to other logical
settings, especially non-monotonic ones involving forms of negation as failure or
answer-set programming. In this last respect, note that when Δ does not entail any
literal -which might often correspond to the targeted framework where we are only
interested in generic rules and their interactions- negation as failure amounts to mere
logical deduction and ΔPI does not contain any unary clauses. In such a case, this
study directly applies, too.

References

1. Fermé, E., Hansson, S.: AGM 25 years. Twenty-five years of research in belief change. J.
Philos. Logic. 40, 295–331 (2011)

2. Alchourrón, C., Gärdenfors, P., Makinson, D.: On the logic of theory change: partial meet
contraction and revision functions. J. Symb. Logic. 50(2), 510–530 (1985)

3. Katsuno, H., Mendelzon, A.: On the difference between updating a knowledge base and revising
it. In: Proceedings of KR’91, pp. 387–394 (1991)

4. Gärdenfors, P.: Knowledge in Flux: Modeling the Dynamics of Epistemic States. MIT Press,
Cambridge (1988)

5. Hansson, S.O.: A Textbook of Belief Dynamics: Theory Change and Database Updating.
Kluwer Academic Publishers, Dordrecht (1999)

6. Konieczny, S., Pino Pérez, R.: On the logic of merging. In: Proceedings of KR’98, pp. 488–498
(1998)

7. Konieczny, S., Grégoire, É.: Logic-based information fusion in artificial intelligence. Inf. Fu-
sion. 7(1), 4–18 (2006)

8. Doyle, J.: A truth maintenance system. Artif. Intell. 12, 231–272 (1979)
9. Dalal, M.: Investigations into a theory of knowledge base revision (preliminary report). In:

Proceedings of AAAI’88, vol. 2, pp. 475–479 (1988)
10. Revesz, P.Z.: On the semantics of theory change: arbitration between old and new information.

In: Proceedings of PODS’93, pp. 71–82 (1993)
11. Subrahmanian, V.S.: Amalgamating knowledge bases. ACM Trans. Database Syst. 19, 291–331

(1994)
12. Fagin, R., Ullman, J.D, Vardi, M.Y.: On the semantics of updates in databases. In: Proceedings

of PODS’83, pp. 352–365 (1983)
13. Besnard, Ph., Grégoire, É., Ramon, S.: Enforcing logically weaker knowledge in classical

logic. In: 5th International Conference on Knowledge Science Engineering and Management
(KSEM’11), pp. 44–55. LNAI 7091, Springer (2011)

About Handling Non-conflicting Additional Information 297

14. Besnard, Ph., Grégoire, É., Ramon, S.: Preemption operators. In: Proceedings of ECAI 2012,
pp. 893–894 (2012)

15. Besnard, Ph., Grégoire, É., Ramon, S.: Overriding subsuming rules. In: Proceedings of EC-
SQARU’11, pp. 532–544. LNAI 6717, Springer (2011)

16. Besnard, Ph., Grégoire, É., Ramon, S.: Logic-based fusion of legal knowledge. In: Proceeings
of Fusion 2012, pp. 587–592. IEEE Press, Singapore (2012)

17. http://www.satlive.org satlive is a main website of the research community on SAT
18. Zhuang, Z.Q., Pagnucco, M., Meyer, T.: Implementing iterated belief change via prime im-

plicates. In: Orgun, M.A., Thornton, J. (eds) Australian Conference on Artificial Intelligence,
volume 4830 of Lecture Notes in Computer Science, pp. 507–518. Springer (2007)

19. Bienvenu, M., Herzig, A., Qi, G.: Prime implicate-based belief revision operators. In: 20th
European Conference on Artificial Intelligence (ECAI 2012), pp. 741–742 (2008)

20. Darwiche, A., Marquis, P.: A knowledge compilation map. J. Artif. Intell. Res. (JAIR) 17,
229–264 (2002)

21. Eiter, T., Makino, K.: Generating all abductive explanations for queries on propositional horn
theories. In: Computer Science Logic, 17th International Workshop, CSL 2003, 12th Annual
Conference of the EACSL, and 8th Kurt Gödel Colloquium, KGC 2003, Vienna, Austria,
August 25–30, pp. 197–211 (2003)

22. Besnard, Ph., Grégoire, É.: Handling incoming beliefs. In: 6th International Conference on
Knowledge Science Engineering and Management (KSEM’13), LNAI, Springer (2013)

23. Grégoire, É., Mazure, B., Piette, C.: Using local search to find MSSes and MUSes. Eur. J. Oper.
Res. 199(3), 640–646 (2009)

http://www.satlive.org

A Multi-Layer Moving Target Defense
Approach for Protecting Resource-Constrained
Distributed Devices

Valentina Casola, Alessandra De Benedictis and Massimiliano Albanese

Abstract Techniques aimed at continuously changing a system’s attack surface,
usually referred to as Moving Target Defense (MTD), are emerging as powerful
tools for thwarting cyber attacks. Such mechanisms increase the uncertainty, com-
plexity, and cost for attackers, limit the exposure of vulnerabilities, and ultimately
increase overall resiliency. In this chapter, we propose an MTD approach for protect-
ing resource-constrained distributed devices through fine-grained reconfiguration at
different architectural layers. We introduce a coverage-based security metric to quan-
tify the level of security provided by each system configuration: such metric, along
with other performance metrics, can be adopted to identify the configuration that best
meets the current requirements. In order to show the feasibility of our approach in
real-world scenarios, we study its application to Wireless Sensor Networks (WSNs),
introducing two different reconfiguration mechanisms. Finally, we show how the
proposed mechanisms are effective in reducing the probability of successful attacks.

Keywords Moving target defense · Reconfiguration · Proactive security

The work presented in this chapter is supported in part by the Army Research Office under
award number W911NF-12-1-0448 and MURI award number W911NF-13-1-0421.

V. Casola · A. De Benedictis (B)

Department of Electrical Engineering and Information Technology,
University of Naples Federico II, Naples, Italy
e-mail: alessandra.debenedictis@unina.it

V. Casola
e-mail: casolav@unina.it

M. Albanese (B)

Center for Secure Information Systems, George Mason University, Fairfax, VA, USA
e-mail: malbanes@gmu.edu

T. Bouabana-Tebibel and S. H. Rubin (eds.), Integration of Reusable Systems, 299
Advances in Intelligent Systems and Computing 263, DOI: 10.1007/978-3-319-04717-1_14,
© Springer International Publishing Switzerland 2014

300 V. Casola et al.

1 Introduction

In recent years, we have witnessed a growing interest in techniques aimed at contin-
uously changing a system’s attack surface in order to prevent or thwart attacks. This
approach to cyber defense is generally referred to as Moving Target Defense (MTD),
and it is currently considered one of the game-changing themes in cyber security
by the Executive Office of the President, National Science and Technology Council
[1–3]. As stated in [1], Moving Target Defense enables us to create, analyze, evalu-
ate, and deploy mechanisms and strategies that are diverse and that continually shift
and change over time to increase complexity and cost for attackers, limit the exposure
of vulnerabilities and opportunities for attack, and increase system resiliency.

The MTD paradigm can be successfully adopted to enforce security require-
ments in networks composed of distributed and mobile devices, that are typically
characterized by limited hardware and software resources. Achieving high levels of
security in such constrained environments is not a straightforward task, and innova-
tive approaches must be devised. In this chapter we propose an MTD strategy based
on fine-grained reconfiguration to protect resource-constrained distributed devices,
which are characterized by limited processing and storage capabilities, limited bat-
tery life, mobility, highly dynamic topology, and frequent failures. Our reconfigu-
ration approach applies to different architectural layers and takes into account not
only the hardware and software features of the nodes but also specific security and
performance requirements depending on the deployment scenario.

Although changing configuration or system parameters to augment security is a
very intuitive principle1, there is still a lack of metrics to evaluate the security pro-
vided by a system and, consequently, quantify the benefits of reconfiguration. To this
aim, we introduce a coverage-based security metric to quantify the level of secu-
rity provided by a given system configuration. Such metric, along with commonly
adopted performance and cost metrics, is used to identify the configuration that best
meets the current requirements.

In order to show the feasibility of our approach in real applications, we consider
Wireless Sensor Networks (WSNs) as a case study. Different mechanisms have been
proposed to secure WSNs, but of most such efforts have primarily been aimed at lim-
iting power consumption by reducing the computational and storage requirements.
Because of these constraints, the level of security provided by such mechanisms is
quite limited, and more complex solutions are not feasible in practice. In this sce-
nario, an MTD approach would make it possible to achieve better security, without
requiring computation-intensive solutions, by periodically switching among multiple
lightweight cryptosystems. Several reconfiguration mechanisms have been proposed
for WSNs [4], mainly based on network reprogramming. They operate at different
architectural levels but present similar limitations, as they are battery consuming,
introduce a significant overhead, and are potentially not secure.

1 Consider, for instance, the trade-off between the key length in a cryptographic session and the
duration of the session itself.

A Multi-Layer Moving Target Defense Approach 301

In order to address these limitations, we introduce two novel mechanisms for
reconfiguring sensors that provide better performance from several points of view.
We carried out a number of experiments by simulating attack scenarios where an
attacker is able to gather partial information on the adopted cryptosystem and attempts
a brute force attack. We evaluate the effectiveness of the proposed MTD approach
by measuring the probability of successfully completing an attack and show how
reconfiguration dramatically decreases such probability.

The paper, which extends the work presented in [5], is organized as follows.
Section 2 discusses some of the MTD approaches that have been proposed in the
literature, whereas Sect. 3 introduces our approach and presents the reconfigurable
architectural layers we take into account. Section 3.1 presents a coverage metric
to evaluate the level of security provided by a configuration and in Sect. 3.2 the
dependency of security on time is discussed. Section 4 illustrates two innovative
reconfiguration mechanisms for WSNs, whereas Sect. 5 reports experimental results.
Finally, some concluding remarks are given in Sect. 6.

2 Related Work

The idea behind the Moving Target Defense (MTD) is to change one or more prop-
erties of a system in order to present attackers with a varying attack surface, so
that, by the time the attacker gains enough information about the system for plan-
ning an attack, the system’s attack surface will be different enough to disrupt it
[2, 3]. According to the definition in [6], a system’s attack surface is the subset of
the system’s resources (methods, channels, and data) that can be potentially used by
an attacker to launch an attack. It depends on the system’s hardware and software
features, and can be changed by dynamically reconfiguring such features at different
levels of granularity.

A common MTD practice consists in updating the cryptographic keys used for
encryption of communication channels: this introduces some uncertainty for attack-
ers but presents the problem of key distribution, that is a critical phase particularly
subject to attacks. More in general, MTD approaches (also referred to as diversity
techniques) may be applied both at the application level and at a lower level (e.g.,
code location in memory), as suggested in [7]. Several low-level MTD techniques
have been proposed in the literature, based on the idea of automatically generating
diverse variants of a program to disrupt vulnerability exploits. A widely deployed
example is Address Space Randomization, that was introduced in 2000 by the PAX
Team for Linux,2 and has been implemented in most modern operating systems.
The basic idea is to randomize the locations of objects in memory so that an attack
depending on the knowledge about the address of these objects will fail.

Instruction Set Randomization [8] is another technique for obfuscating the
language understood by a system to protect against code-injection attacks: by

2 http://pax.grsecurity.net/

http://pax.grsecurity.net/

302 V. Casola et al.

randomizing the underlying systems instructions, foreign code introduced by an
attack would fail to execute correctly, regardless of the injection approach.

Another type of low-level diversification is altering how data is stored in memory:
in [9] authors present Data Randomization, a technique that provides probabilistic
protection against attacks that exploits memory errors by XOR-ing data with random
masks. Data randomization uses static analysis to partition instruction operands into
equivalence classes: it places two operands in the same class if they may refer to
the same object in an execution that does not violate memory safety. Then it assigns
a random mask to each class and it generates code instrumented to XOR data read
from or written to memory with the mask of the memory operand’s class. Therefore,
attacks that violate the results of the static analysis have unpredictable results.

Jackson et al. [10] present a diversity technique based on the generation, during
the compilation phase, of multiple functionally equivalent machine codes for the
same high-level source: with massive-scale software diversity, every user could get
its own diversified program version, so that it is impossible for attackers to run a
successful attack.

The advantage of low-level diversity is that it does not require an understanding of
the application’s behavior and can be done automatically. However, it is only capable
of thwarting specific classes of attacks, such as code injection and memory corruption
attacks. Looking at higher-level MTD techniques, several approaches have been
proposed, aimed at thwarting the attacker’s reconnaissance effort: reconnaissance
enables adversaries to gather information about the target system including network
topology, configurations, network dynamics. This information can be used to identify
system vulnerabilities, and to design and execute specific exploits.

In this regard, several approaches for dynamically changing nodes IP addresses
for proactive security have been proposed in the literature, [11–13]. In 2001, Kewley
et al. [13] presented a technique called DYNAT (Dynamic Network Address Trans-
lation), aimed at confusing any adversary sniffing the network by obfuscating host
identity information in TCP/IP packet headers when packets enter public parts of
the network. Whenever a client host wants to communicate with a protected server
host, the addressing information contained in the header of its request packets is
translated (encrypted) by a DYNAT shim before routing the packet to the server.
A server gateway receives the packets, reverses the translation in the header fields
(decryption) and obtains the true host identity information, used to pass the packets
to the target server.

Another work funded by DARPA is presented in [12] by Atighetchi et al., that
give an overview of current set of network-level defenses in the DARPA APOD
(Application That Participate in Their Own Defense) project. Among the proposed
network-centric defense mechanisms, the APOD toolkit also provides a port and
address hopping mechanism, based on constantly changing a service’s TCP identity
to both hide the service’s real identity and confuse the attacker during reconnaissance.
Packets intercepted by attackers will reveal random addresses, which are valid only
for a small period of time, e.g., 1 min. For a port attack to be successful, the attacker
must discover the current ports and execute the attack all within one refresh cycle.

A Multi-Layer Moving Target Defense Approach 303

Antonatos et al. [14] introduce a proactive defense mechanism called Network
Address Space Randomization (NASR) whose objective is to harden networks
against worms that use precomputed hitlists of vulnerable targets, by forcing nodes
to frequently change their IP addresses. In order to achieve this goal, the authors
implemented an advanced NASR-enabled DHCP server to expire DHCP leases at
intervals suitable for effective randomization. As the addresses are actually changed
at the end-points of a communication, active connections are disrupted during the
update; moreover, NASR is limited in the address space as it uses LAN addresses,
and requires changes to the end-host operating system, thus making the deployment
costly.

In [15] the authors introduce an MTD technique called OpenFlow Random Host
Mutation (OF-RHM): each host is assigned an address range, selected from the entire
unused address space in the network, and at each mutation interval, a virtual IP is
chosen from this range and associated with the host. A Software-Defined Networking
(SDN) approach is adopted for range allocation and mutation coordination: a cen-
tralized controller (NOX) properly installs flows in OpenFlow switches to forward
requests and perform the address translation actions.

Finally, the MTD defense mechanism proposed in [16] is designed to protect
the identity of nodes in Mobile Ad Hoc Networks by turning the classical Sybil
attack mechanism into an effective defense mechanism. Legitimate nodes use virtual
identities to communicate and periodically change their virtual identity to increase
the uncertainty for attackers observing the network. To preserve communication
among legitimate nodes, the network layer is modified by introducing a mechanism
for mapping virtual identities to real identities, and a protocol for propagating updates
of a node’s virtual identity to all legitimate nodes.

3 Improving Node Security

In this chapter, we propose an MTD framework for reconfiguring resource-
constrained devices at different architectural levels, with the reconfiguration granu-
larity chosen at runtime based on current requirements. By reconfiguring a system,
it is possible to increase the overall security level it provides. Reconfiguration can
be either reactive—i.e., the system is reconfigured in response to a detected or per-
ceived threat or new security requirements—or proactive—the system is periodically
reconfigured to limit the amount of time each configuration is exposed to malicious
observers. Additionally, reconfiguration should be performed in a way to minimize
its impact on the system in terms of resource consumption and performance.

Reconfiguration consists in changing one or more of the system’s parameters. In
our case study focused on WSNs, we identified two main reconfigurable architectural
layers:

• Security layer. Security in an embedded network can be achieved by implement-
ing a proper cryptosystem. Security layer reconfiguration can be performed by

304 V. Casola et al.

switching among different cryptosystems that satisfy specific security require-
ments while meeting certain performance and energy consumption constraints.

• Physical layer. In embedded systems, the software is part of the node’s firmware,
that is typically preloaded on internal read-only memory chips (ROM), in contrast
to a general-purpose computer that loads its programs into random access memory
(RAM) at run-time. Firmware provides the control program of the device and
represents the skeleton where different libraries for the implementation of the
available cryptosystems and APIs can be plugged and activated via proper software
switches. Nodes can be equipped with several versions of the firmware in order to
perform physical reconfiguration when needed.

Clearly, further parameters could be considered for reconfiguration, such as
the application interface, the hardware configuration or the topology, as long as
their reconfiguration is feasible from a technical and energy consumption point of
view. In order to perform complex tasks, embedded nodes communicate with one
another according to specific application interfaces (APIs), defining the format of
the exchanged messages and the communication protocols. Reconfiguration could be
applied at this level by providing different APIs for the same application. API recon-
figuration could be useful to confuse an attacker that is observing the communication
protocol in order to find an exploit to interfere with or control the communication.

As for hardware reconfiguration, it is expensive and not feasible on most of the
available devices but needed in case of damage. Network topology could be recon-
figured in terms of the view offered to external observers. This could be achieved by
implementing a mechanism that, for instance, presents virtual identities or introduces
additional fake nodes into the network. Such a mechanism would need additional
protocols and algorithms that are often too expensive for the considered nodes.

The choice of the reconfiguration level impacts both the system’s performance
and the provided level of security. From the performance point of view, changing the
firmware of all the nodes in the network or a subset of them is much more expensive—
in terms of latency and power consumption—than changing the cryptosystem, whose
reconfiguration could be handled in software. On the other side, by changing the entire
application running on a node, it becomes harder for an attacker to exploit software
vulnerabilities and gain complete control of the node.

At the security layer, the cryptosystem itself is designed to cope with a specific
set of attacks and provides an intrinsic level of security, depending on the crypto-
graphic scheme, the algorithm, the length of the keys, etc. Reconfiguration of the
cryptosystem can increase the level of security in two ways, that is by switching to
a cryptosystem that covers a larger set of attacks (e.g., to cope with some detected
or perceived threats), or by selecting an equivalent cryptosystem that uses differ-
ent parameters. Given a certain fixed configuration, the more an attacker is able to
observe, the more he will be able to infer information about the system. By con-
tinuously changing the system’s configuration, the attacker will be presented with
different views of the system over time, and will have to restart the reconnaissance
effort multiple times in order to identify a viable exploit.

A Multi-Layer Moving Target Defense Approach 305

Once the admissible configurations have been identified, the selection of the new
configuration is performed by a security-driven scheduler. The scheduler can be
either a centralized entity making decisions on the global network configuration, or
a decentralized component, independently deployed on each network node, making
local reconfiguration decisions. In a centralized approach, a central entity triggers a
configuration update based on some events (e.g., timer expiration, detected security
threat) and transmits its decision to all the nodes that are involved. In a decentralized
approach, each node is able to schedule, independently from other nodes, when to
update its own configuration. Communication among legitimate nodes is preserved
adopting additional mechanisms, described in details in the following section.

In the remainder of this chapter, we will discuss the methodology adopted to
evaluate the level of security provided by a system configuration, and how to increase
it using a reconfiguration approach.

3.1 Security Level Evaluation

The security of complex systems depends on many technical and organizational
issues that must be properly addressed. The need for a clear definition and selection
of security rules has led system administrators to set up security policies trying to
adopt formal approaches to describe system security configurations. In spite of the
ambiguity of such policies, a common approach to evaluate a system’s security is
through evaluation of its security policy. At present, such an evaluation is performed
by hand whenever enterprises endeavor to extend their trusted domain and cooperate
[17]. This approach also includes well known standards as Common Criteria and
TCSEC [18, 19], that are very suitable to assess and audit the security level provided
by a company, by a specific procedure or, in general, by a system.

The Common Criteria (CC) for Information Technology Security Evaluation
(Common Criteria or CC) [18] are an internationally approved set of standard for
computer security certification. They are used by Government customers in the USA
and the NATO community along with other organizations, particularly in the public
sector, to determine the level of security and assurance of various technology prod-
ucts. However, the assurance levels provided by CC (from EAL1 to EAL7) do not
measure the security of the system itself, but simply state at what level the system
was tested, and do not find a direct application in our approach.

Defining a quantitative measure of the level of security provided by a system
is a complex task. Several security metrics have been proposed in the literature,
mostly based on the analysis of attack graphs or on risk quantification [20–23].
Other approaches, such as the one adopted by the Common Vulnerability Scoring
System (CVSS) [24], try to rate the severity of security vulnerabilities and assign a
score to a system based on the vulnerabilities it is subject to.

Other metrics are linked to the adopted configurations [17, 25], they are centered
on the mechanisms that are available to enforce a subset of security requirements.
We started from these considerations to introduce a metric based on the coverage of

306 V. Casola et al.

Table 1 An example of
Attacks Coverage Table

Conf Attack A Attack B Attack C SL

c1 × L1

c2 × × L2

c3 × × × L3

c4 × × L2

a configuration respect of a set of known attacks. An attack could have several objec-
tives, such as physically taking possession of a node, interfering with communication
at the physical level, exploiting software vulnerabilities to take control of a node,
disturb network operation at routing/application level or intercept sensitive data. In
this discussion we are interested in attacks aimed at interfering, steering or eaves-
dropping communications at the application layer among nodes, and at exploiting
vulnerabilities of the firmware installed on nodes.

Let Threats define the set of threats of interest, belonging to the above discussed
set of attacks. A configuration c is said to cover a threat t ∈ Threats, if either
the cryptosystem implemented at the security layer or the specific firmware version
running on the node include mechanisms to protect the node from such threat.

Once the admissible configurations and the attacks of interest have been identified,
it is possible to build an Attack Coverage Table, that helps define the levels of security
provided by each configuration [26]. Table 1 shows an example of attack coverage
table relative to configurations {c1, c2, c3, c4}, under the hypothesis that three attacks
of interest have been identified, namely Attack A, Attack B and Attack C . An increas-
ing level of security (from L1 to L4 in the example) can be assigned to configurations,
based on the risk associated with the attacks and their coverage properties.

Attack coverage can be defined either as an ON/OFF property (that is an attack is
covered or uncovered), or in terms of the degree of satisfaction of specific require-
ments (e.g. authentication, integrity, confidentiality, key distribution...), using a scor-
ing system (similar to CVSS for vulnerabilities). Coverage with respect to a specific
attack could even be defined in terms of the effort an attacker needs to make the
attack succeed.

The level of security associated with a configuration could simply depend on the
number of covered threats, or it could be set depending on the risk associated with
each threat, either in a static way (the risk associated with a threat is set at deployment
and remains unchanged for the entire operation of the network) or dynamically
(the risk associated with a threat changes dynamically during network operation
depending on current conditions and possible detection events).

3.2 Modeling the Security Level

As previously said, each configuration provides a certain level of security, which
depends on the implemented cryptosystem (cryptographic scheme, algorithms,
and keys) and is characterized by an intrinsic value. Indeed, the longer a system

A Multi-Layer Moving Target Defense Approach 307

L1

L2

L3

T0 T1 T2 t

Security
level

C1 C2 C3

C1 C2 C3

reconf reconf

Fig. 1 Reconfigurations and security level

configuration is exposed to malicious observers, the more the actual level of security
decreases. For this reason, the security level is a monotonically decreasing function,
with its maximum corresponding to the intrinsic security level associated with the
specific implemented cryptosystem.

As illustrated in Fig. 1, using reconfiguration, we can prevent the security level
from falling below a certain threshold, and periodically reset it to the intrinsic value
associated with a new configuration. Dually speaking, we avoid that the probability
of successfully completing an attack increases beyond a certain threshold. In fact,
such probability depends on the considered type of attack and is usually represented
by a monotonically increasing function: the longer an attacker can try to exploit
a system, the higher the success probability is. It is easy to demonstrate that, by
introducing reconfiguration, we can break the monotonicity, such that the probability
of successfully completing an attack actually decreases every time the system is
reconfigured.

Theorem 1. Let [0, T] be an observation interval, and let n ∈ N be an integer
greater than or equal to 2, representing the number of reconfigurations in [0, T].
Then the following inequality holds.

Pr(success ([0, T], n)) ∈ Pr(success ([0, T], 0)) (1)

where Pr(success (I, x)) denotes the probability that the attacker is successful
within the temporal interval I if x reconfigurations are performed during the same
interval. �

In order to prove Theorem 1, we need to consider that the probability that the
attacker will successfully break the cryptosystem between 0 and T when the interval
[0, T] is broken down into n validity intervals—and a different cryptosystem is used

308 V. Casola et al.

in each such intervals—can be written as

Pr(success([0, T], n)) = 1 − Pr(¬success([0, T], n)) (2)

The probability Pr(¬success([0, T], n)) that the attacker does not succeed by
time T is the probability that he does not succeed in any of the n validity intervals.

Pr(¬success([0, T], n)) = Pr(¬success
([

0, 1
n · T

])

→¬success
([1

n · T, 2
n · T

])

→ . . . → ¬success
([n−1

n · T, T
])

)

(3)

The events ¬success
([

0, 1
n · T

])
, . . ., ¬success

([n−1
n · T, T

])
are clearly inde-

pendent, thus Pr(¬success([0, T], n)) can be computed as follows.

Pr(¬success([0, T], n)) =
n−1∏

i=0

(

1 − Pr

(

success

([
i

n
· T,

i + 1

n
· T

])))

(4)

As the probability that the attacker can break the system in a given interval is
directly proportional to the length of the interval itself, we can conclude that, for all
i ∈ [0, n − 1], Pr

(
success

([i
n · T, i+1

n · T
])) = Pr(success([0,T]))

n . This conclusion
relies on the simplifying assumption that the different cryptosystems used in our
framework are equivalent in terms of attack time. Generalizing this result to the case
of heterogeneous cryptosystems is straightforward, but it is omitted for reasons of
space. Additionally, the above conclusion assumes that the interval [0, T] is larger
than the time needed to complete a full brute force attack.3 Then, Eq. 4 can be
rewritten as follows.

Pr(¬success([0, T], n)) = ∏n−1
i=0

(
1 − Pr(success([0,T]))

n

)

=
(

1 − Pr(success([0,T]))
n

)n
(5)

In order to complete the proof, we need the results of another theorem:

Theorem 2. Let x ∈ [0, 1] be a real number and let n ∈ N be an integer number.
The following inequality holds.

(
1 − x

n

)n ∗ 1 − x (6)

�

3 If Pr(¬success([0, T])) = 1, then there may exist a sub-interval [ti , t j] of [0, T] such that
Pr(¬success([ti , t j])) = 1.

A Multi-Layer Moving Target Defense Approach 309

Using the binomial theorem, the expression
(
1 − x

n

)n can be expanded as follows.

(
1 − x

n

)n =
n∑

k=0

(
n

k

) (
− x

n

)k =1 − x +
n∑

k=2

(
n

k

) (
− x

n

)k
(7)

To complete the proof, we need to show that the alternating series
∑n

k=2

(n
k

) (− x
n

)k

is greater than or equal 0. As the first term in the series is positive, we only need to
show that all the terms have decreasing absolute values. In order to do so, we now
show that the ratio between two consecutive terms is greater than 1.

∣
∣
∣
∣
∣

(n
k

) (− x
n

)k

(n
k+1

) (− x
n

)k+1

∣
∣
∣
∣
∣
=

n!
k!·(n−k)!

n!
(k+1)!·(n−k−1)! · x

n

= n · (k + 1)

(n − k) · x
(8)

It is clear that the quantity at the right end side of Eq. 8 is greater than 1, as
n · (k + 1) ∗ n and (n − k) · x ∈ n. Using Theorem 2, we can conclude that

(

1 − Pr (success ([0, T]))

n

)n

∗ 1 − Pr (success ([0, T])) (9)

Combining Eqs. 2, 5, and 9, we can write

1 − Pr (success ([0, T] , n)) ∗ 1 − Pr (success ([0, T])) (10)

Equation 1 follows directly from Eq. 10.
In conclusion, Theorem 1 shows that, in theory, the proposed mechanism is effec-

tive in reducing the probability that the attacker will successfully discover currently
used cryptographic keys in a given amount of time. In other words, it will take more
time for the attacker to break the system. Experiments reported in the next section
confirm this result.

In the following, we will refer to the level of security as a security metric to express
how secure is a configuration with respect to the considered attacks. A security value
can be assigned, based on the attacks coverage table, both to a single node and to a
link, defined as a connection between communicating nodes. Node security is related
primarily to the physical layer (e.g., tamper resistant HW, protected external ROM),
while subnet security depends on the security layer (e.g., cryptographic algorithm,
key length, key agreement mechanisms); as previously discussed, both also depend
on the reconfiguration mechanism itself, that is on time.

Assume that the set SEC of available cryptosystems is a totally ordered set: given
s1, s2 ∈ SEC , there is an ordering relation between them, and s1 ∈ s2 means that
the cryptosystem s1 is not more secure than the cryptosystem s2. It is possible to
have elements in SEC that are equivalent from the security point of view, adopting
for instance the same algorithm but using different parameters (e.g. different keys).

310 V. Casola et al.

Assume the sequence of the M configurations adopted by a node n is given by
≤C1(n), . . . , CM (n)√, and the sequence of time instants in which such configuration
were activated is ≤T1(n), . . . , TM (n)√.

Let the configurations Ci (p) = (imi (p), apii (p), si (p)) and Ci (q) = (imi (q),

apii (q), si (q)) be the i-th active configurations respectively on node p and q. Note
that in order for the nodes to be able to communicate, they should either share the
same security and API configurations, or they should be provided with a mechanism
to always know what is the configuration currently used by other legitimate nodes.
Let Ti (p, q) identify the initial time instant when the status of p and q is such that they
are able to communicate. In the following, we will refer to a link as a directed edge
(p, q) connecting two nodes involved in a communication, with packets traveling
from p to q. A link configuration is defined as Ci (p, q) = (Ci (p), Ci (q)).

Let us refer to SL(p,q)(t) as the level of security, at time t , of a link (p, q). It is
the level of security associated with the cryptosystem used to secure data flow from
p to q, denoted with si (p, q). With SL p(t) we identify the level of security of node
p, depending on its physical configuration imi (p) and on time.

Definition 1 (Level of security of a link). The level of security SL(p,q)(t) of a link
(p, q), provided by Ci (p, q) at time t ∈ [Ti (p, q), Ti+1(p, q)], can be expressed as
a function of the specific cryptosystem adopted si (p, q) and the time elapsed since
the current configuration was activated.

SL(p,q)(t) = f (si (p, q), t − Ti (p, q)) (11)

Definition 2 (Level of security of a node). The level of security SL p(t) of a node
p can be expressed as a function of the specific firmware adopted imi (p) and the
time elapsed since the current physical configuration was activated.

SL p(t) = f (imi (p), t − Ti (p)) (12)

Finally, we can define the Security Level associated to a configuration as:

Definition 3 (Level of security of the network). Assuming that the network is
partitioned in different subnets, each composed of nodes communicating with one
another with a certain interface (security and application layer), the overall level of
security of the network depends both on the security of nodes composing the network,
and of the different subnets, other than on time.

SLnet (t) = A ·
N−1∑

i=0

N−1∑

j=0, j ◦=i

αi j · SL(i, j)(t) · xi j + B ·
N−1∑

i=0

βi · SLi (t) (13)

where

• A and B represent the relative importance of the set of links and the set of network
nodes respectively, and satisfy the following constraint: A + B = 1.

A Multi-Layer Moving Target Defense Approach 311

• the αi j constants represent link weights, and the βi constants represent node
weights and are useful to give more importance to critical nodes or portions
of the network. They are subject to the following constraints:

∑N−1
i=0

∑N−1
j=0, j ◦=i αi j = 1

∑N−1
i=0 βi = 1

(14)

• the xi j variables represent the existence of links and are defined as follows:

xi j =
{

1 i f i ◦= j and ∀ a link between node i and j
0 i f i ◦= j and � a link between node i and j

(15)

4 WSN Reconfiguration: A Case Study

A WSN is an embedded network composed of a base station—able to perform multi-
node data fusion and complex application logic, and often provided with a consistent
source of energy—and several motes, which merely perform local processing on
sensed data. Nodes communicate by exchanging messages over a radio channel:
the base station sends queries to motes in order to sample physical variables (e.g.,
humidity), whereas motes simply reply to these queries by sending unicast messages
to the base station.

Security is a fundamental concern in WSNs, as they are widely adopted in sev-
eral critical application domains. Nevertheless, because of their peculiar features—
constrained processing and storage capabilities, limited battery life, highly dynamic
topology and mobility, frequent failures—providing security is not a straightforward
task. The introduction of security mechanisms has a strong impact on performance
and resource consumption, that often represent a limiting factor. For this reason,
although the adoption of a complex cryptosystem (e.g., based on public key primi-
tives) for all network activities could be desirable from a security point of view, it is
not feasible in practice. The proposed reconfiguration approach is able to overcome
these concerns, as it allows to maintain an acceptable level of security in the network
by leveraging not only the intrinsic features of the adopted cryptosystems, but also
other features, such as the physical configuration and the application interfaces, other
than the reconfiguration mechanism itself. This way, the use of simpler cryptosys-
tems for short periods of time can be preferable to the adoption of a single strong but
computation-intensive cryptosystem.

In this discussion, we refer to TinyOS, the most commonly adopted operating sys-
tem for WSNs. TinyOS applications and the OS itself are built by connecting com-
ponents that represent functional building blocks, such as communication protocols,
device drivers, or data analysis modules. During the default compilation process of
TinyOS, these building blocks are converted into a monolithic, static binary, to enable

312 V. Casola et al.

code optimization and ensure a small memory footprint. This means that the OS and
its applications’ executables lack modularity, and it is not possible to dynamically
replace a single component at runtime. Security mechanisms could be implemented
either as independent TinyOS components or as different static libraries wired in
the same component, whose functions are invoked by applications to ensure security
requirements. Reconfiguration of both the security layer and the application inter-
faces could be easily achieved by including the implementation of all the available
solutions into the firmware installed on the device, and activating the desired config-
uration through software switches and ad hoc protocols. Firmware reconfiguration
can be performed by adopting node reprogramming techniques, that will be illus-
trated in details later. Two innovative approaches to reconfiguration are presented in
the following subsections, along with some implementation details.

4.1 Security Layer Reconfiguration

Assume that, in order to enforce security, queries are signed by the base station for
authentication purposes, and reply messages are encrypted for ensuring confiden-
tiality and integrity. The security layer performing these operations can be designed
to implement different cryptographic protocols, depending on the required secu-
rity level and available resources. The basic idea of the proposed approach is to
dynamically change the security layer, by switching between two or more different
implementations. We assume that each node is provided with a pool of different
cryptosystem implementations, which are identified by a unique ID.

To give a concrete example, we refer to the two cryptosystems presented in [27],
based respectively on Elliptic Curve Cryptography (WM-ECC libraries) and Identity-
based cryptographic techniques (TinyPairing libraries). WM-ECC [28] provides key
agreement algorithms and digital signature that can be used to authenticate packets
in the sensor network. It provides support for all the ECC operations and we used it
to implement a hybrid cryptosystem [27] based on a public key function for ensuring
authentication of the base station, and on a key agreement protocol for establishing
a symmetric key, to be used for encryption/decryption of data packets sent by the
motes. TinyPairing [29] is an open-source pairing-based cryptographic library for
wireless sensors, providing an interesting solution to the key management problem,
that still represents an open issue in WSN security research.

From a security point of view, the cryptosystem based on WM-ECC does
not authenticate public keys, thus allowing man-in-the-middle attacks in the key
exchange phase. Moreover, sensitive data is encrypted with a symmetric cipher, and
this increases overall vulnerability of the network. Instead, TinyPairing adopts an
asymmetric scheme and is much more secure in the initialization phase as it does not
use a key exchange mechanism. As stated in Sect. 3.1, the intrinsic level of security
of the two configurations can be represented by an attack coverage table, identifying,
for each configuration, what attacks it is able to thwart or, dually, what requirements
it is able to satisfy. Table 2 shows an example of attack coverage table for the two

A Multi-Layer Moving Target Defense Approach 313

Table 2 Attack Coverage Table for the considered cryptosystems

Configuration Man-in-the-middle Eavesdropping Brute force Replay attack

WM-ECC Non-auth key Yes Weak symm No
TinyPairing Auth key Yes Asymm No

cryptosystems (configurations) considered here. In this case, coverage is not defined
as a binary property, but through a qualitative score capturing the level of protection
provided by the configuration with respect to each considered attack.

In the simplest reconfiguration scenario, each node can decide independently when
to update, and an identifier of the cryptosystem used to encrypt a message is encoded
in the message itself, so that each receiving node, sharing the same reconfiguration
strategy, is able to properly handle it.

Figure 2 illustrates a typical scenario for security protocol reconfiguration. In the
INIT phase, the base station and the motes agree on the parameters of N different
cryptosystems. The details of the initialization phase depend on the specific cryp-
tosystems (the parameters can be public points for an ECC based cryptosystem, or
system parameters for an identity based [27]). Initialization should be performed in
a secure environment, either in the pre-deployment phase or later. After initializing
the N available cryptosystems, each node can independently choose the valid cryp-
tosystem to adopt for performing cryptographic operations in the current validity
interval. In particular, the base station choses the cryptosystem it will use to digi-
tally sign the outgoing queries and ensure authentication (CRYPTO(i) in figure). Any
mote receiving the query message will use the cryptosystem whose ID is included
in the message itself to verify the signature. Similarly, after verifying the signa-
ture, any mote encrypts data using the locally selected cryptosystem (CRYPTO(j)
and CRYPTO(w) in figure), and the base station will use the ID included in the reply
messages to decrypt them.

As illustrated in Fig. 2, the parameters of the N cryptosystems (i.e., the crypto-
graphic keys) could be either preloaded on all network nodes in the INIT phase, or
dynamically determined in each reconfiguration phase according to available key
agreement mechanisms. All the cryptographic keys can be stored in each node for
the entire lifetime of the network, and they can be used as master keys for generating
new keys.

As discussed in Sect. 3, the introduction of reconfiguration mechanisms impacts
a system’s performance by introducing some overhead depending on the mechanism
itself and the particular architectural level it is applied to. Each reconfiguration solu-
tion that encompasses switching among different implementations of the same func-
tionality is characterized by an unavoidable increase in memory storage, at least to
include the different available versions and the additional mechanisms to implement
the reconfiguration itself. Referring to the application security reconfiguration mech-
anism proposed in this section, each node will be loaded with an application image
including the binaries of all the available security libraries and their initialization

314 V. Casola et al.

Monitoring
Application

Base Station Mote

Init CRYPTO(1)

....

Init CRYPTO(N)

Valid cryptosystem
selection (CRYPTO(i))

Query

Digital signature (i)

(Signed Query , i)

Signature
Verification (i)

Sampling

Data
Encryption (j)(Encrypted Message , j)

Decryption (j)
Query Results Valid cryptosystem

Selection (CRYPTO(w))

Sampling

Data
Encryption (w)

Decryption (w)
Query Results

Valid cryptosystem
selection (CRYPTO(j))

(Encrypted Message , w)

Fig. 2 Security protocol reconfiguration

parameters, along with the software switches needed to dynamically select different
security primitives. Clearly, this could represent a problem for constrained devices
such as sensor nodes, that are typically equipped with a small flash memory and
RAM, therefore a more prudent design of security libraries should be devised in
order to save as much memory as possible. As for energy consumption and required
CPU computational effort, the proposed solution does not affect them, since crypto-
graphic operations belonging to different libraries are activated by simple software
switches. Moreover, there is no latency to swap from a cryptosystem to another and
we do not need to stop the monitoring application during the reconfiguration.

Let us now take a look at possible security weaknesses of this strategy: an attacker
who is aware of the message format may try to manipulate some fields of query
and data packets, such as those coding the cryptosystem ID and its parameters,
so that nodes are no longer able to communicate. As for query messages, their
payload is signed with the base station’s private key, so that, if any field is altered

A Multi-Layer Moving Target Defense Approach 315

during transmission, the signature verification at mote’s side will not succeed, and the
message will be discarded. This aspect of the protocol could be exploited to execute
a denial of service attack, with motes not able to verify the authenticity of queries
and thus refusing to provide the required data. To detect this type of attack, a timeout
is set by the base station every time a query is sent. If no reply is received before
the timer expires, the query is sent again to cope with possible message losses. If
no reply is received after a few attempts, an alert is raised. The cryptosystem ID is
also encoded in each response message, as it is necessary to decrypt the message.
An attacker could alter it as messages are not authenticated, but then the base station
will not be able to decrypt them, and will discard them. This situation may cause the
loss of some response messages. However, as a typical sensor network is composed
of many redundant motes, this situation is not critical.

4.2 Physical Layer Reconfiguration

Several existing approaches for sensor network reprogramming perform a full-image
replacement, consisting in completely replacing the image of the application running
on a node. Deluge [30] is a reliable data dissemination protocol for propagating
large data objects (larger than a node’s memory) from one or more source nodes to
many other nodes over a multi-hop network. As Dutta et al. pointed out in [31], this
approach is unsafe and too battery-consuming. We implemented a different approach
to remotely reconfigure each node in the network. We decoupled the reconfiguration
mechanisms from the components to enforce the new configuration according to a
scheduling policy.

To this aim, we designed a reconfiguration application by augmenting several
components of the Deluge framework. In particular, we implemented new recon-
figuration functionalities to enable a single node to swap to a new image that was
previously preloaded on its storage. The reconfiguration application is defined by
wiring new components specifically designed to manage external reconfiguration
commands, and components designed to manage the images loaded on the node
storage. The proposed reconfiguration application consists of three main compo-
nents, namely (i) a bootloader component, (ii) a reprogramming component, and (iii)
a management component (Fig. 3).

The bootloader component is a persistent layer in the architecture, which can
enforce the chosen reconfiguration mechanisms. This component is intended for
TinyOS and provides needed functionalities to program the node with an already
stored program image. The parameters passed to this component are specified in the
external command and indicate the location of the binary in the external flash mem-
ory to program the node’s microcontroller. When reprogramming is requested, the
bootloader will erase the program flash and write the new binary to it. On completion,
it jumps to the first instruction of the new application.

The reprogramming component is the core of the reconfiguration application. In
our implementation, it accepts commands from the base station, but can be extended

316 V. Casola et al.

External Flash Memory

Hardware Components

Image1 Imagen …

BootLoader

M
an

ag
em

en
t

Reprogramming

ReProg
Store

Manager

Fig. 3 Reconfiguration Application components

to implement a decentralized reconfiguration approach. This component is built by
connecting two primary subcomponents: the ReProg and the StorageManager. The
ReProg component is an extension of the NetProg component of Deluge T2. It handles
a reprogramming request from the network by providing a dedicated API to initialize
a reconfiguration process. When a node wants to perform a reconfiguration, it only
has to invoke this API by specifying the name of the new binary in the flash memory
to load. Subsequently, the ReProg sets the environment variables needed by the
bootloader component and reboots the node. The StorageManager component deals
with image name resolution, mapping names of program images to their respective
physical addresses in the external flash memory.

The management component has a master (base station) and a mote side. It is used
to initialize the mote and deploy different images. Usually this operation is done in
a secure environment and it is accessible only during the initialization. The master-
side management component has been derived from the tos-deluge application of
the Deluge T2 Framework, and it is called mote-manager. This component allows
to inject one or more images into the mote by writing directly into nodes’ external
flash memory volumes. It is also possible to erase a volume and ping the status of a
mote to get information about already injected images.

Finally, the reconfiguration application runs on a workstation connected to the
base station, which implements the reprogramming scheduler. As discussed in the
next section, the reprogramming frequency and the new configuration to load can be
chosen to balance overhead and attack probability.

Clearly, physical layer reconfiguration introduces a greater overhead than security
layer reconfiguration, as it is based on full image replacement. As previously dis-
cussed, due to resources limitations, a node’s memory cannot be preloaded with many
different application images. Consider that the monitoring application we imple-
mented occupies about 16 KB of ROM and 700 Bytes of RAM on a telosB platform,
equipped with a 48 KB ROM memory and a 10 KB RAM.

The proposed solution introduces considerable advantages in terms of overall per-
formance with respect to WSN reprogramming approaches based on code dissemi-
nation. In fact, the reconfiguration time is now not dependent on the image size and
the network topology as the images are not sent over the network but preloaded via
a serial interface. This approach avoids any security risk in the dissemination phase,

A Multi-Layer Moving Target Defense Approach 317

and reduces the battery consumption as it only needs the introduction of a simple
command message to swap from an image to another one. As the available applica-
tion images are all loaded on the node’s external memory, the swapping latency is
considerably reduced with respect to the code dissemination case. We experimented
a reduction of one order of magnitude with respect to the original Deluge approach:
from 50 s to send a 40 Kb image implementing a monitoring application secured with
WM-ECC, to about 6 s to perform the swap.

One known drawback of this approach is the need to stop the monitoring appli-
cation and any ongoing query in order to swap to another image. Nevertheless, as
previously discussed, any available approach that is based on full image replacement
presents even worst issues. A possible solution to mitigate this problem could be that
of delaying the reconfiguration operation if the node is involved in some communi-
cation, or pausing an ongoing communication until reconfiguration is completed. It
is up to network administrators to decide frequencies and strategies for node recon-
figuration. As for possible security weaknesses of this solution, some attacks can
be considered undermining this reconfiguration mechanism. First of all, preload-
ing nodes with all images exposes them to physical compromise. We can assume
that, in presence of strict security requirements, nodes are equipped with tamper-
resistant packages so that they cannot be compromised. Moreover, an attacker may
try to replay control packets sent by the base station and containing a reconfiguration
command, in order to control communication or simply perform a denial of service
attack by forcing motes to continuously swap images. This risk can be prevented by
introducing a sequence number for reconfiguration commands and proper channel
encryption.

5 MTD Evaluation

In order to evaluate the effectiveness of security-driven reconfiguration—even under
adverse conditions—we assume that an attacker is able to understand when the
adopted cryptosystem changes and what type of cryptosystem is used at each time
(e.g., by observing control messages sent over the network by the base station in the
node reconfiguration strategy, or control flags found in data packets in the protocol
reconfiguration strategy).

Many types of cryptographic attacks can be considered. In our case, an attacker can
only observe encrypted packets traveling on the network and containing information
about sensed data, and can perform a brute force attack on captured packets by
systematically testing every possible key for the current (known) cryptosystem—
assuming he is able to determine when the attack is successful. In the worst case
(for the defender), the attacker knows the encryption algorithm and the key length
associated with the algorithm, therefore he can systematically try all possible keys
of that length. In the intermediate case, the attacker knows the encryption algorithm
but does not know the key length associated with it, thus he systematically tries all
possible keys for a given set of key lengths. In the best case, the attacker does not

318 V. Casola et al.

Table 3 Characteristics of cryptosystems

Cryptosystem Key lenght (bits) Time (ms) Max attack time (ms)

WM_ECC_sk 80 0.001251 1.5123E +21
WM_ECC_rc5 160 0.001221 1.7845E +45
TinyPairing 208 13.019531 5.3560E +63

know anything about the adopted cryptosystem, thus he tries all possible keys for a
given set of key lengths and a given set of cryptosystems.

We evaluated our approach with respect to the cryptosystems described in [27],
whose characteristics are summarized in Table 3.

The WM_ECC_sk and WM_ECC_rc5 cryptosystems are both based on the
WM-ECC library, used to execute key exchange and digital signature operations.
They both perform symmetric encryption using respectively a Skipjack cipher with
a 80 bit key and an RC5 cipher with a key of 160 bits. The TinyPairing cryptosystems
is based on TinyPairing and uses a 208 bit key. In Table 3, the time needed to test a
single key is reported for each cryptosystem, along with the maximum attack time,
that is the time necessary to test all the possible keys. The reported execution times
(third column) refer to the execution of the decryption operation on TelosB devices,
equipped with a 4.15 MHz MSP430 microcontroller, a CC2420 radio chip, a 10 KB
internal RAM, and a 48 KB program flash memory.

The maximum attack times reported in the fourth column of Table 3 have been
computed analytically based on the measured time needed to perform a single decryp-
tion operation. It is important to point out that these attack times are significantly
high due to the nature of the attacks we considered. In practice, attacks may be more
sophisticated and efficient than brute force attacks. However, this does not affect
the validity of the proposed MTD approach as we are interested in illustrating how
the probability of successfully completing an attack decreases, compared to a static
configuration scenario.

We carried out our experiments considering both worst and intermediate cases,
and analyzed the cumulative distribution function (cdf) of the attack time. In both
cases, we simulated an attacker sequentially exploring the key space. We considered
an observation interval as long as the attack time of the most complex cryptosystem,
TinyPairing, and validity intervals of decreasing length. A validity interval is the
time interval in which a single system configuration is active. At the end of the
i-th validity interval, the new configuration to activate should be chosen based on
a specific strategy (e.g., related to security or battery consumption requirements)
in order to maximize reconfiguration benefits. However, for the sake of simplicity,
the results shown in this section have been obtained by performing random choices
among the available cryptosystems at each validity interval. In particular, during
an observation interval, we randomly generated 1,000 different sequences of valid
cryptosystems and recorded the time of successful attacks to build the cdf. Clearly,
the sequence length depends on the chosen validity interval.

A Multi-Layer Moving Target Defense Approach 319

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1.E+00 1.E+05 1.E+10 1.E+15 1.E+20 1.E+25 1.E+30 1.E+35 1.E+40 1.E+45 1.E+50 1.E+55 1.E+60

A
tt

ac
k

p
ro

b
ab

ili
ty

 (
%

)

Attack time (milliseconds)

T = 5.35e63ms T = 5.35e45 ms T = 2,68e21 ms

WM -ECC_SK

WM -ECC_RC5

TINYPAIRING

Fig. 4 Worst case attack time cdf for large validity intervals

In the first experiment, we chose three validity interval lengths in such a way to
be comparable to the maximum attack times of the three different cryptosystems.
The resulting attack time’s cdf in the worst case is shown in Fig. 4: the labels in the
figure—note that the x-axis is on a logarithmic scale—identify three inflection points
in the middle of the maximum attack times of each cryptosystem. These correspond
to the maximum values of the attack time probability distribution functions (pdf) for
each cryptosystem.

When analyzing the chart, a seemingly counterintuitive behavior can be identified:
when considering smaller validity intervals the attacker seems to benefit.

The chart can be explained as follows. The WM_ECC_sk cryptosystem can be
certainly broken in 1.5123E+21 ms (worst case for WM_ECC_sk) as shown in
Table 3. This means that, if randomly selecting one cryptosystem among the 3 avail-
able, and choosing a validity interval greater than this threshold, the cryptosystem
will always be broken. As each cryptosystem has a 33 % probability of being selected
at next reconfiguration time—based on our assumptions—in 33 % of cases the system
will be broken. Similar considerations can be made for the other two cryptosystems,
explaining the other inflection points.

As illustrated in Fig. 5, when reducing the length of the validity interval—with
validity intervals larger than the maximum attack time of the weakest cryptosystem—
the attack time increases, with the percentage of successful attacks reducing dramat-
ically. The same behavior is highlighted in Fig. 6, which shows how the probability
of completing a successful attack within a time t varies as the length of the validity
interval changes: as soon as the validity interval drops below the maximum attack
time of the weakest cryptosystem, the rate at which probability decreases becomes
higher.

320 V. Casola et al.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1.E+00 1.E+10 1.E+20 1.E+30 1.E+40 1.E+50 1.E+60

A
tt

ac
k

p
ro

b
ab

ili
ty

 (
%

)

Attack time (milliseconds)

T = 2.68e+21 ms T = 1.34e+21 ms T = 3.35e+20 ms

Fig. 5 Worst case attack time cdf

0%

20%

40%

60%

80%

3.E+19 2.E+20 4.E+20 6.E+20 8.E+20

A
tt

ac
k

p
ro

b
ab

ili
ty

 (
%

)

Validity Interval (milliseconds)

t = 5.35e+45 ms t = 2.68e+21 ms t = 1.34e+21 ms t = 5.36e+19 ms

Fig. 6 Probability of successful attack

Similar results can be obtained when reconfiguration is performed by selecting an
equivalent cryptosystem that uses different parameters (i.e different keys). Figure 7a
shows the attack time’s cdf in the worst case when reconfiguration is performed
by switching among three cryptosystems that implement the WM-ECC library with
the Skipjack cipher, but have different keys. When reducing the validity interval,
the probability of successfully completing an attack significantly decrease as the
intrinsic security level is restored every time a new key is adopted. For comparison
purposes, Fig. 7b shows the attack time’s cdf when three different cryptosystems are
used. As expected, increased diversity results in a lower probability of attack.

Figure 8 compares the attack time’s cdf for the intermediate and the worst cases,
under the assumption that the attacker performs a brute force attack using the set
of key lengths in Table 4. The validity interval of 5,36E+45 milliseconds is long
enough to break both WM_ECC_sk and WM_ECC_rc5. As shown, the attacker’s
success probability is smaller in the intermediate case. Clearly, when the attacker’s
uncertainty about the used cryptosystem is higher, more key lengths will be tested,
making the proposed approach even more effective.

A Multi-Layer Moving Target Defense Approach 321

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1.E+00 1.E+10 1.E+20 1.E+30 1.E+40 1.E+50 1.E+60

A
tt

ac
k

p
ro

b
ab

ili
ty

 (
%

)

Attack time (milliseconds)

T = 1.34e+21 ms T = 3.35e+20 ms T = 8.37e+19 ms

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1.E+00 1.E+10 1.E+20 1.E+30 1.E+40 1.E+50 1.E+60

A
tt

ac
k

p
ro

b
ab

ili
ty

 (
%

)

Attack time (milliseconds)

T = 1.34e+21 ms T = 3.35e+20 ms T = 8.37e+19 ms

(a)

(b)

Fig. 7 Worst case attack time cdf. a Same cryptosystems with different keys. b Three different
cryptosystems

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1.E+00 1.E+08 1.E+16 1.E+24 1.E+32 1.E+40 1.E+48 1.E+56 1.E+64

A
tt

ac
k

p
ro

b
ab

ili
ty

 (
%

)

Attack Time (milliseconds)

worst case intermediate case

T = 5.36e+45 ms

Fig. 8 Worst case vs. intermediate case

322 V. Casola et al.

Table 4 Key lengths set Cryptosystem Key len (bits) Time (ms)

WM_ECC_sk [80] [0.001251]
WM_ECC_rc5 [120,160] [0.001120,0.001221]
TinyPairing [180,208] [11.023211,13.019531]

6 Conclusions

In this chapter, we have proposed an MTD approach for protecting resource-
constrained distribute devices. The proposed approach is based on fine-grained recon-
figuration at different architectural layers. Changing configuration or system para-
meters to augment security is an intuitive principle, but there is still a lack of metrics
to evaluate the security level of a system and quantify the benefits of reconfiguration.
We have introduced two innovative MTD mechanisms to reconfigure the network,
and experimentally showed that the proposed mechanisms are effective in increasing
the complexity for the attacker to successfully complete an attack. In the near future,
we plan to work on different ways to extend and generalize this approach. Indeed,
we are already working on a formal model of reconfiguration. Furthermore, we plan
to define mechanisms to automatically enforce reconfiguration strategies based on
external events or on the system’s state.

References

1. Executive Office of the President, National Science and Technology Council: Trustworthy
cyberspace: Strategic plan for the federal cybersecurity research and development program.
http://www.whitehouse.gov/. Accessed Dec 2011

2. Jajodia, S., Ghosh, A.K., Subrahmanian, V.S., Swarup, V., Wang, C., Wang, X.S. (eds.): Moving
target defense II: Application of game theory and adversarial modeling. 1st edn. Advances in
Information Security, vol. 100, Springer, Berlin (2013)

3. Jajodia, S., Ghosh, A.K., Swarup, V., Wang, C., Wang, X.S. (eds.): Moving target defense:
Creating asymmetric uncertainty for cyber threats. 1st edn. Advances in Information Security,
vol. 54, Springer, Berlin (2011)

4. Wang, Q., Zhu, Y., Cheng, L.: Reprogramming wireless sensor networks: challenges and
approaches. IEEE Netw. 20(3), 48–55 (2006)

5. Casola, V., De Benedictis, A., Albanese, M.: A moving target defense approach for protecting
resource-constrained distributed devices. In: Proceedings of the 14th IEEE International Con-
ference on Information Reuse and Integration (IEEE IRI 2013), San Francisco, CA, Aug 2013

6. Manadhata, P.K., Wing, J.M.: An attack surface metric. IEEE Trans. Software Eng. 37(3),
371–386 (2011)

7. Evans, D., Nguyen-Tuong, A., Knight, J.C.: Effectiveness of moving target defenses. In: Mov-
ing Target Defense: Creating Asymmetric Uncertainty for Cyber Threats, pp. 29–48. Springer,
New York (2011)

8. Kc, G.S., Keromytis, A.D., Prevelakis, V.: Countering code-injection attacks with instruction-
set randomization. In: Proceedings of the 10th ACM conference on Computer and communi-
cations security. CCS ’03, ACM, New York. pp. 272–280 (2003)

http://www.whitehouse.gov/

A Multi-Layer Moving Target Defense Approach 323

9. Cadar, C., Akritidis, P., Costa, M., Martin, J.P., Castro, M.: Data randomization. Technical
report, Microsoft Research (2008)

10. Jackson, T., Salamat, B., Homescu, A., Manivannan, K., Wagner, G., Gal, A., Brunthaler, S.,
Wimmer, C., Franz, M.: Compiler-generated software diversity. In: Moving Target Defense:
Creating Asymmetric Uncertainty for Cyber Threats, pp. 77–98. Springer, New York (2011)

11. Antonatos, S., Akritidis, P., Markatos, E.P., Anagnostakis, K.G.: Defending against hitlist
worms using network address space randomization. Comput. Netw. 51(12), 3471–3490 (2007)

12. Atighetchi, M., Pal, P., Webber, F., Jones, C.: Adaptive use of network-centric mechanisms in
cyber-defense. In: Proceedings of the Sixth IEEE International Symposium on Object-Oriented
Real-Time Distributed Computing (ISORC 2003), pp. 183–192 May 2003

13. Kewley, D., Fink, R., Lowry, J., Dean, M.: Dynamic approaches to thwart adversary intelligence
gathering. In: Proceedings of the DARPA Information Survivability Conference & Exposition
(DISCEX 2011). Vol. 1, pp. 176–185. Anaheim, CA, June 2011

14. Antonatos, S., Akritidis, P., Markatos, E., Anagnostakis, K.: Defending against hitlist worms
using network address space randomization. Comput. Netw. 51(12), 3471–3490 (2007)

15. Jafarian, J.H., Al-Shaer, E., Duan, Q.: Openflow random host mutation: transparent moving
target defense using software defined networking. In: Proceedings of the First Workshop on
Hot Topics in Software Defined Networks. HotSDN ’12, pp. 127–132. ACM, New York (2012)

16. Albanese, M., De Benedictis, A., Jajodia, S., Sun, K.: A moving target defense mechanism for
MANETs based on identity virtualization. In: Proceedings of the First IEEE Conference on
Communications and Network Security (IEEE CNS 2013), Washington, DC, Oct 2013

17. Casola, V., Mazzeo, A., Mazzocca, N., Vittorini, V.: A policy-based methodology for security
evaluation: a security metric for public key infrastructures. J. Comput. Secur. 15(2), 197–229
(2007)

18. Common criteria project: Common criteria for information technology security evaluation 2.1.
Technical report, US NIST (1999)

19. Trusted computer system evaluation criteria. Technical Report DoD 5200.28-STD, US Depart-
ment Of, Defense (1985)

20. Li, X., Parker, T.P., Xu, S.: A stochastic model for quantitative security analyses of networked
systems. IEEE Trans. Dependable Sec. Comput. 8(1), 28–43 (2011)

21. Barth, A., Rubinstein, B.I.P., Sundararajan, M., Mitchell, J.C., Song, D., Bartlett, P.L.: A
learning-based approach to reactive security. IEEE Trans. Dependable Sec. Comput. 9(4),
482–493 (2012)

22. Ahmed, M.S., Al-Shaer, E., Khan, L.: A novel quantitative approach for measuring network
security. In: INFOCOM. pp. 1957–1965 (2008)

23. Pamula, J., Jajodia, S., Ammann, P., Swarup, V.: A weakest-adversary security metric for
network configuration security analysis. In: QoP. pp. 31–38 A novel quantitative approach for
measuring network security. In: INFOCOM. 1957–1965 (2008)

24. Mell, P., Scarfone, K., Romanosky, S.: NIST IR 7435: The common vulnerability scoring
system (CVSS) and its applicability to federal agency systems, Aug (2007)

25. Casola, V., Preziosi, R., Rak, M., Troiano, L.: A reference model for security level evaluation:
policy and fuzzy techniques. J. Univers. Comput. Sci. 11(1), 150–174 (2005)

26. Foley, S.N., Fitzgerald, W., Bistarelli, S., OSullivan, B., Foghl, M.: Principles of secure net-
work configuration: towards a formal basis for self-configuration. Lecture Notes in Computer
Science, vol. 4268. Springer, Berlin Heidelberg (2006)

27. Casola, V., De Benedictis, A., Drago, A., Mazzocca, N.: Analysis and comparison of security
protocols in wireless sensor networks. In: Proceedings of the 30th IEEE Symposium on Reliable
Distributed Systems Workshops (SRDSW 2011), pp. 52–56. Madrid, Spain (Oct 2011)

28. Wang, H., Sheng, B., Tan, C., Li, Q.: WM-ECC: An elliptic curve cryptography suite on sensor
motes. Technical Report WMCS-2007-11, College of William and Mary (Oct 2007)

29. Xiong, X., Wong, D.S., Deng, X.: TinyPairing: a fast and lightweight pairing-based crypto-
graphic library for wireless sensor networks. In: Proceedings of the IEEE Wireless Communi-
cations and Networking Conference (WCNC 2010), Apr 2010

324 V. Casola et al.

30. Hui, J.W., Culler, D.: The dynamic behavior of a data dissemination protocol for network
programming at scale. In: Proceedings of the 2nd International Conference on Embedded
Networked Sensor Systems (SenSys 2004), pp. 81–94. Baltimore, MD (2004)

31. Dutta, P.K., Hui, J.W., Chu, D.C., Culler, D.E.: Securing the deluge network programming
system. In: Proceedings of the Fifth International Conference on Information Processing in
Sensor Networks (IPSN 2006), pp. 326–333. Apr 2006

Protocol Integration for Trust-Based
Communication

Fatma Laidoui and Thouraya Bouabana-Tebibel

Abstract In mobile ad hoc networks (MANETs), nodes have to cooperate in order
to accomplish routing tasks. Nevertheless, they have limited resources, and may
behave in a selfish way. On the other hand, the networking infrastructure supporting
routing is quite weak faced with such misbehaviors. In this chapter, we propose a
trust model for reactive routing in MANETs. The proposed solution applies to any
source routing protocol. It is based on mechanisms inspired by the CONFIDANT
protocol to install and update trust in the network. The model also integrates new
protocols to improve trust in the selected routes. It may adapt to topology changes
caused by the mobility of nodes and takes into account new routes learned after the
route request phase. Finally, it improves the choice of the safest route towards the
destination. Fundamental and elaborate tests prove the efficiency of the solution.

Keywords Mobile ad hoc network · DSR · CONFIDANT · Trust · Security ·
Reactive routing

1 Introduction

Mobile ad hoc networks (MANETs) have known a fulgurating success, more partic-
ularly with the appearance of wireless technology. In that environment, mobile hosts
must behave like routers to forward, hop by hop, data packets through the network.
The existing routing protocols in literature suppose that the environment is ideal to

F. Laidoui
Laboratoire de Communication des Systèmes Informatiques, Ecole Militaire
Polytechnique—EMP, Algiers, Algeria
e-mail: fat.laidoui@gmail.com

T. Bouabana-Tebibel (B)

Laboratoire de Communication des Systèmes Informatiques, École nationale Supérieure
d’Informatique—ESI, Algiers, Algeria
e-mail: t_tebibel@esi.dz

T. Bouabana-Tebibel and S. H. Rubin (eds.), Integration of Reusable Systems, 325
Advances in Intelligent Systems and Computing 263, DOI: 10.1007/978-3-319-04717-1_15,
© Springer International Publishing Switzerland 2014

326 F. Laidoui and T. Bouabana-Tebibel

information exchange and free from malicious attacks. This induced multiple vulner-
abilities on the routing process that threat the reliability of data transmission. Among
the most common attacks, we cite: (1) Packets dropping where the malicious node
absorbs the exchanged packets; this attack may paralyze the whole network due to
the loss of connectivity between nodes, if the number of deleted packets is high. (2)
No-cooperation or selfishness where nodes change their behavior from normal to
selfish by refusing to participate in the routing process with the aim of saving their
own resources. Such a behavior is motivated by the fact that cooperation generates
lots of messages between nodes, which induces high costs of energy.

Many solutions are proposed in the literature to protect networks against no coop-
eration of nodes. Those solutions are essentially based on the overhearing of neigh-
bors’ transmissions [1]. They, nevertheless, suffer from wrong accusations caused
by collusions and interferences, and need complementary mechanisms such as ac-
knowledgments and reputation mechanisms.

Secure routing schemes based on reputation [2–4] focus on the cooperation be-
tween nodes, through packet forwarding, which is considered as the principal func-
tion to assure routing in MANETs. In systems based on reputation, the key idea rests
on direct neighborhood observation in order to decide whether a node is malicious or
not. Accordingly, the reputation of a node increases when it accomplishes correctly
its tasks and decreases otherwise. In such systems, if a node declares another node
as suspicious because of its bad reputation, this information is propagated through
the network and the misbehaving node is quarantined from the rest of the network.
However, direct observations of the neighborhood do not allow objective measure-
ments of nodes behavior. It is, often, necessary that each node takes into account the
opinion of the other nodes about the trustworthiness of the neighborhood, and this
constitutes the major approach of systems based on trust [5–8]. These latter systems
include two components: a routing process and a trust model. The principal goal of
the trust model is to make routing decisions. A node classifies another node as honest
or misbehaving one according to the information gathered about direct observations
and that are sent by the others. This is done in order to cope with uncertainty in
trustworthiness.

In this work, we are interested in securing source routing protocols using trust
mechanisms. We select as source routing protocol the Dynamic Source Routing
protocol (DSR) [9, 10]. Protocols based on trust are mainly conceived to secure
against attacks for which cryptographic functions reveal to be ineffective, such as
no-cooperation of nodes and packets dropping. We focus on no cooperation causing
the dropping of control packets RREQ (Route REQuest) and RREP (Route REPly).
We assure the propagation of trust in the network by using mechanisms drawn from
the CONFIDANT protocol [6]. However, CONFIDANT is based on the classical
source routing route discovery phase, and may miss new routes which are learned
late in the process of route discovery. These routes may be more secure, and should,
consequently, be evaluated. We propose a method that takes into consideration that
issue. On the other hand, to make routing decisions about trust in routes, we use
the MNRS model [11] which we have improved with new parameters in order to
enhance the selection of trustworthy routes.

Protocol Integration for Trust-Based Communication 327

This chapter is organized as follows. In Sect. 2, we discuss works related to ours.
Section 3 describes the background of our solution. We present, in Sect. 4, the pro-
posed secure protocol. In Sect. 5, we discuss the performance of the proposed proto-
col compared with conventional ones. Finally, we conclude with some observations
based on the obtained results and we propose some recommendations for future
research directions.

2 Related Work

To combat no cooperation behaviors, a common idea is to motivate the nodes to
participate in the routing process [12]. This idea is based on either virtual currency
(nuglets) or credit. Its drawback is that it sometimes privileges a rich malicious node
chosen in route discovery than poor ones, because the metric of optimal route is the
length. Besides, solutions based on credit require a central authority to distribute
credits. In [13], the authors propose to send a message via different available routes
in order to attenuate dropping of data packets. However, this idea is difficult to
implement. In addition, it floods the network with several copies of a message. The
study proposed in [14] allows monitoring, detecting, and isolating droppers without
using promiscuous listening. It also can distinguish between selfish and malicious
nodes. However, the authors did not present results to show the effectiveness of their
solution, nor they compare it with existing trust based routing protocols. Authors in
[15] proposed a trust evaluation method that offers a security mechanism for data
protection and secure routing. This mechanism uses global information to provide
trust in the network, which delays the response time. More recently, a simple model
is proposed in [16] to secure routing based on reputation. The mechanism reveals
to be efficient for isolating the network from selfish nodes. The principal drawback
of the solution is the irreversible character of punishment. When a node is classified
as selfish, it is punished for not participating in the routing process until the entire
network is reformed. This may be unfair as the cause of selfishness may be the result
of transmission errors or an inappropriate node location which makes it difficult to
participate in packet forwarding.

Other proposed solutions, in the literature, are based on end-to-end feedbacks,
where the destination acknowledges packet reception to the source. The drawback
of this technique is that it only detects routes containing the misbehaving nodes, but
cannot detect the malicious nodes. That’s why, many sophisticated solutions have
been developed [17] but they considerably overhead the network by acknowledge-
ments. As a compromise, the authors in [18] combined end-to-end feedbacks with
the Probing technique to decrease the overhead due to acknowledgements. Later,
they claim in [19] that the biggest threats appear to be join-leave attacks, used to iso-
late honest peers in the system, and against which no provably robust mechanisms
are known so far. In their proposition, they showed that, in a high level, a scalable
DHT (Distributed Hash Table) can be designed as provably robust against adaptive
adversarial join-leave attacks.

328 F. Laidoui and T. Bouabana-Tebibel

In regard to DSR security, authors in [11] proposed an approach to avoid misbe-
having nodes using reputation mechanisms. In the traditional DSR protocol, when
a node receives a RREQ packet, it drops it if it has been previously processed. A
misbehaving node takes advantage of this action and forwards the RREQ fast so
that RREQ from other nodes are dropped and the discovered path includes itself. To
overcome this issue, a new approach for RREQ packet broadcasting is proposed in
[20]. In Trusted Dynamic Source Routing (TDSR) [20], the trust between nodes is
represented by a trust score composed of direct and indirect trust. Trust relationships
and routing decisions are based on node experienced, observed, or reported routing
as well as forwarding behavior of other nodes. However, TDSR might not determine
the direct trust of neighboring nodes in presence of collisions.

3 Background

The security extension that we propose for DSR is based on the CONFIDANT
protocol to ensure trust. We present in this section, the basic concepts on which both
DSR and CONFIDANT are based.

3.1 Dynamic Source Routing Protocol (DSR)

The Dynamic Source Routing protocol (DSR) [9, 10] is a reactive routing protocol
which uses the source routing concept, i.e. the whole route to cross is inscribed in
the data packet header. DSR includes two main phases: route discovery and route
maintenance. When a node S wants to send data packets to another node D and
does not know any route to that destination, it launches a route discovery process,
by broadcasting a RREQ packet to its neighbors. When a neighbor node receives
RREQ, it checks if it knows a route towards D. If no route is known, it inscribes
itself in the RREQ packet and broadcasts the packet to its neighbors. When node D
or another node knows a route towards D, it unicasts a RREP packet back to S, based
on the nodes which have been crossed during the route request phase and inscribed
in the RREQ. If a node detects a broken link, it sends a RERR (Route ERRor) packet
towards S with a notification about the node responsible for the failure. When S
receives RERR, it deletes from its cache all routes that include the broken link. If
the source has another alternative route towards the same destination, it uses it and
continues packets forwarding. Otherwise, it launches a new request to find another
route towards D.

3.2 CONFIDANT Protocol

CONFIDANT is composed of four modules [6]: the monitor, reputation manager,
trust manager and path manager. The function of the monitor is to collect information
about direct neighbors. It can detect a bad behavior of a node and distinguish it from

Protocol Integration for Trust-Based Communication 329

the good one. It does so using a watchdog mechanism. The reputation manager
module manages a reputation table saved at each node. This table associates every
neighbor node identity with a reputation value. The reputation value reflects direct
observations noticed by a node about another node. It does not enable a node to
decide about the trust of another node. Indeed, a node may have a bad reputation due
to link errors caused by nodes mobility and not because of its selfishness. That’s why
CONFIDANT needs a trust manager. The latter module estimates the trust value of a
node and saves it in a trust table. The trust value reflects indirect observations about a
node. It is estimated by accumulating observations sent by the neighbors. As for the
path manager module, it cleans paths in use and nodes cache from any selfish node. In
regard to the update of reputation and trust values, the authors of CONFIDANT use a
Bayesian model with the Beta distribution Beta(α, β). This model is very used in the
literature for representing reputation and trust values [3, 7, 21, 22]. The advantage of
using the Beta function is that it only needs two parameters which are continuously
updated. These two parameters reflect the current belief. In our work, we use Beta
distribution in which α and β are initialized to one (α = β = 1), which means that
initially, we have no information about the nodes behavior [15].

4 The RTDSR Protocol

Our proposed protocol, named RTDSR (Reinforcement of Trust in DSR), is a security
extension for DSR, that integrates CONFIDANT [6] tasks, Fading [7] and Second
Chance [23] mechanisms, as well as the MNRS model [11].

CONFIDANT provides trust between nodes by analyzing packets forwarding and
neighborhood discovery. The Fading mechanism gives less weight to observations
received in the past. The Second Chance mechanism rehabilitates nodes previously
considered as misbehaving ones. As for the MNRS model, it allows making decision
about the most trustworthy path.

Our first contribution is to integrate, in a complementary and consistency way,
these four techniques to secure DSR. CONFIDANT modules are integrated into the
route request and route reply steps of the DSR discovery phase in order to ensure trust.
The CONFIDANT reputation manager checks if the new calculated reputation value
respects the tolerate reputation threshold, every time it evaluates it. If the checking
fails, we use the Second Chance mechanism to check whether the node has consumed
all its chances. If so, it is blacklisted. Otherwise, the CONFIDANT trust manager is
invoked to estimate the trust in the node and make a decision about its honesty. The
node is blacklisted if its trust value is less than a trust threshold. For each decision
made on either reputation or trust in a given node, the Fading principle is applied to
favor the last evaluation by providing it with a higher weight.

In addition to these components integration, we inject two further modifications on
the composite model. The first one consists in improving trust in the route by taking
into account new paths that are not included in the route request phase. CONFIDANT
protocol aims to prevent malicious nodes from participating in the routing process.

330 F. Laidoui and T. Bouabana-Tebibel

We reinforce this approach by tracking down the misbehaving nodes applying trust
and reputation concepts on the whole process of route discovery which includes both
of route request and route reply phases. This reinforcement constitutes our second
contribution.

We notice that in CONFIDANT mechanism, routes learned after the route request
phase are ignored because of the unicast forward of RREPs, which is used to answer
the source request. However, these new routes may be more secure than the current
one. We suggest to take them into consideration. Thus, at the route reply phase, when
an intermediate node receives RREP, it first checks if it has learned a more secure
route towards the destination. If this is the case, it substitutes the current sub-route
(from this node towards the destination) by the most secure one.

The second modification that we bring to the composite solution enhances trust
in a route by considering new parameters. The revision is made in the MNRS model.
In MNRS, trust in the route is calculated using the average value of trust in all nodes
of the route in both directions (source-destination, destination-source). We propose
to add to this estimation the lowest trust value of the route nodes. We believe that
this new parameter allows to better evaluate the trust in a route. Indeed, a node with
a very little trust value is probably a misbehaving node. Thus, it should disqualify
the route even if the latter average trust value is higher than the other routes. This
revision constitutes our third contribution.

Thus, RTDSR intervenes, on one hand, in the route request and route reply phases
of the DSR protocol using CONFIDANT mechanisms which it improves. It resorts,
on the other hand, to the MNRS model in order to select routes using a new phase
that we call a route selection phase. These three phases are presented below.

4.1 Route Request Phase

When a source wants to send a data packet to a destination and does not know any
route to that destination, it launches a route request phase. We propose to include
in the broadcasted RREQ packet two new fields, namely ptrust and mintrust . ptrust

is the accumulated trust value of nodes from the source to the current node. It is
initialized to zero by the source. This metric is inspired by the MNRS model. As for
mintrust , it is the lowest trust value of the nodes of the path and is initialized to 0.5
at the source [7]. It means that we have no idea about the path trust.

When an intermediate node B receives RREQ from the node A, its CONFIDANT
path manager module checks the trust in the forwarder. If the latter is a dishonest
node, the packet is ignored. Otherwise, if the receiver does not know any route
towards the destination, it inscribes its identifier in the RREQ and updates the ptrust

and mintrust values as follows:

ptrust(new) = ptrust + TBA (1)

mintrust(new) = Min(mintrust,TBA) (2)

Protocol Integration for Trust-Based Communication 331

TB A is assigned by node B to node A and means how can B trusts A. It is provided
by the CONFIDANT trust manager. RREQ is, afterwards, broadcasted to all one hop
neighbors.

When the destination or any intermediate node that knows a route towards the
desired destination receives RREQ, it checks the trust in the RREQ forwarder, and
answers the source by launching the route reply phase. Thus, it adds ptrust , ntrust and
mintrust to RREP. The values of ptrust and mintrust are those inscribed in RREQ.
ntrust is a value that has the same role as ptrust . It reflects the trust degree of the route
from the destination to the current node. RREP is then sent to the source in unicast
using the reverse route inscribed in RREQ. We note that this route remains the same
and does not change during all the route reply phase of DSR when associated with
CONFIDANT.

4.2 Route Reply Phase

When the destination or any intermediate node that knows a route towards the des-
tination receives RREQ, it answers the source with RREP. We distinguish between
two different cases within this phase.

Case 1: no member of the reverse route knows a new route from itself towards
the destination.

In this case, RREP packet is forwarded in unicast until it reaches the source. Each
node A, member of the crossed route, checks the trust in the previous node B. If it
finds that the node is not honest, the packet is ignored. The honesty of the node is
evaluated using the CONFIDANT protocol, namely the monitor, reputation and trust
modules. Otherwise, it updates ntrust and mintrust as follows:

ntrust(new) = ntrust + TAB (3)

mintrust(new) = Min(mintrust,TAB) (4)

Case 2: a node member of the reverse route learns a new route, which is safer,
from itself towards the destination.

The main idea behind this case is to provide more chances to select the most
trustworthy route if possible new routes towards the destination, which are safer, are
learned after the route request phase has been executed. Such a case may occur when
multiple sources within a network launch, at the same time, a route request phase
towards the same destination. In that situation, a given node may learn several routes
towards the destination, but these routes are not all sent to the different sources. Every
source only receives replies to its broadcasted RREQ packets. Figure 1 illustrates this
case. It shows two sources, namely source1 and source2, discovering a route towards
a destination node Dest. The route reply phase of source1 provides the sub-route
(Dest, B, A), whereas that of source2 provides (Dest, F, A). This way, node A which

332 F. Laidoui and T. Bouabana-Tebibel

(2)

(1)

;

(1) route reply phase

(2) reply trust phase

 ; ;
= min(,

, ;
 m =min(,

 ; ;

= min(,

Source1
Source2

C

E

D

F
B

A

Dest

Fig. 1 New learned routes

receives source2 RREP before source1 RREP learns a new route before this latter
receipt. To check which of the two routes is safer, it performs a new phase called the
route trust phase.

4.3 Route Trust Phase

When an intermediate node receives a RREP packet, it checks if it has learned new
sub-routes towards the destination, and if so, it controls whether they are more secure.
The checking is done only if the packet has not crossed yet more than the half of the
route. To check whether the learned route is safer, the receiver compares the current
ntrust with that corresponding to the learned sub-route. If ntrust of the learned sub-
route is lower, then it treats RREP packet as described in case 1; else it substitutes
the current sub-route with the new one and recalculates some trust parameters.

The condition according to which new learned routes are taken into account only
if the packet hasn’t crossed more than the half route, is done in the aim not to force
nodes to recalculate the current route when the packet is near to its source node. Such
revaluation may delay unnecessarily the packets delivery process.

On the other hand, since the route towards the destination changes, it is necessary
that the ptrust value be updated. For this purpose, the current node unicasts a special
request REQtrust (REQuest for ptrust) to the destination. The REQtrust packet con-
tains the field ptrust which is initialized to 0 (ptrust = 0). When each node member
of the learned sub-route receives this request, it updates ptrust by adding its trust
value according to (1), updates mintrust according to (2) and forwards the request
to the next hop. When REQtrust reaches the destination, the latter inscribes ptrust

and mintrust in a REPtrust (Reply for REQtrust) packet and unicasts that packet
to the source of REQtrust. When the source of REQtrust receives REPtrust, it selects
the safest sub-route towards the destination, updates ptrust , mintrust and contin-

Protocol Integration for Trust-Based Communication 333

ues the forwarding of RREP to the next hop. That selection is assured by the route
selection phase. Figure 1 illustrates this selection.

4.4 Route Selection Phase

If several routes are discovered by either a source node or an intermediate node which
learns new sub-routes, these nodes must decide about the safest route. In the same
manner as the MNRS model, we use ptrust , ntrust and the route node number to
make a decision. However, to enhance the security of the selected route, we consider
another parameter which is the lowest trust value of the route nodes. This constraint
is justified by the fact that the presence of a node with a very low trust value in a
route increases the probability of insecurity of this route. This constraint is expressed
by considering mintrust value in the decision process that will be unfolded into two
steps.

First, we estimate the global trust value for each discovered route as follow:

path_trustei = c1 ∗
(

ptrust + ntrust

2

)

∗ wi + c2 ∗ mintrust (5)

wi =
1
ni∑ 1

n
i(i=1 à n)

(6)

path_trustei is the global trust value of the ith path, ni is the nodes number of
the i’th path, n is the total number of discovered routes from the source towards the
destination, wi is a weight assigned to the ith path, c1 is a coefficient that reflects
how important is the selection of the safest route based on the MNRS model, c2 is a
coefficient that reflects how significant is the new added constraint mintrust to select
the safest route.

In our present work, we give a higher weight to the new added constraint and
perform evaluations with c1 = 0.25 and c2 = 0.75.

Finally, the second step consists in selecting the safest route. This one corresponds
to the highest value pah_trust . The value of pah_trust can be estimated by the
following formula:

path_trust = max(path_trusti); i = 1, n (7)

5 Simulation Results

Simulations were performed using the NS2 [24] network simulator. We chose
NS2 because of its popularity among academic researchers. In addition, it already
supports a verified version of DSR. Sixty nodes were randomly placed within a

334 F. Laidoui and T. Bouabana-Tebibel

Table 1 Simulation
parameters

Parameter Value

Topology area 1000 × 1000 m2

Nodes transmission range 250 m
Total simulation time 400 s
Transmission rate 2 packets/s
Pause time 100 s
Speed 10 m/s
Application traffic CBR
Movement model Random waypoint
Types of attack Control packet drop

1000 × 1000 m2 area. The simulation time was 400 s for each simulation. The other
simulation parameters are defined in Table 1.

In order to evaluate RTDSR efficiency, we compared it to DSR, CONFIDANT
and MNRS protocols. We first study in Sect. 5.1 the impact of mobility on RTDSR’s
performance. We test, afterwards, RTDSR’s resilience against data packets dropping.
In Sect. 5.2, we examine the effect of the number of sources in the network on the
performance of RTDSR.

We evaluate, for this purpose, the following metrics:

• Packet Delivery Fraction (PDF) is the ratio of packets successfully received.
• Average End to End Delay (AEED) is the average time required to transmit a

data packet from a source to a destination node.
• Throughput is the ratio of the total data that flow through the network.

5.1 Fundamental Tests

For each evaluated metric, namely the PDF, AEED and throughput, we compare
the performance of the protocols DSR, CONFIDANT, MNRS and RTDSR relative
to two different variables. We first consider the impact of mobility in presence of
50 % of misbehaving nodes. We afterwards set the nodes speed to 10 m/s and test the
resilience of each protocol against packets dropping, with 10, 20, 30, 40 and 50 %
of misbehaving nodes. The misbehaving nodes were selected randomly. In all cases,
the number of sources is equal to 10.

Packet Delivery Fraction

Figure 2 represents PDF measures for DSR, CONFIDANT, MNRS and RTDSR.
Through the curves, we see that RTDSR packet delivery fraction is more important
compared with that of DSR, CONFIDANT and MNRS for the two measured vari-
ables. This is due to the mechanisms supported by RTDSR to improve the selection
of secure routes. Fewer packets pass through misbehaving nodes, which increases
the number of packets correctly received by their destination.

Protocol Integration for Trust-Based Communication 335

0.3

0.4

0.5

0.6

0 10 20 30 40 50

P
D

F

Speed(m/s)

DSR
CONFIDANT
MNRS
RTDSR

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50

P
D

F

Percentage of misbehaving nodes

DSR
CONFIDANT
RTDSR
MNRS

Fig. 2 PDF measures for DSR, CONFIDANT, MNRS and RTDSR

0

500

1000

1500

2000

0 10 20 30 40 50

A
E

E
D

(s
)

Speed(m/s)

DSR
CONFIDANT
RTDSR
MNRS

0

500

1000

1500

0 10 20 30 40 50

A
E

E
D

(s
)

Percentage of misbehaving nodes

CONFIDANT
RTDSR
MNRS

Fig. 3 AEED measures for DSR, CONFIDANT, MNRS and RTDSR

Average End to End Delay

Figure 3 depicts the variation of AEED for the four protocols. The results show that
RTDSR has the lowest value of AEED compared to CONFIDANT and MNRS pro-
tocols. We can explain this arguing that RTDSR assures the selection of more secure
routes against packet dropping. This implies less retransmissions, and consequently
less time to deliver packets. DSR protocol has been evaluated in absence of mis-
behaving nodes. It has the lowest AEED value, because it does not use any secure
mechanism to select routes, and hence spends no time for evaluation.

Throughput

In Fig. 4, we analyze the throughput for the four protocols. The simulation results
show that RTDSR has the highest value in all conditions. This means that RTDSR
is the most efficient protocol for establishing routes exempt of misbehaving nodes.

336 F. Laidoui and T. Bouabana-Tebibel

0

1

2

3

0 10 20 30 40 50

T
hr

ou
gh

pu
t(

kb
/s

)

number of misbehaving nodes

DSR
CONFIDANT
MNRS
RTDSR

0
1
2
3
4
5
6
7

0 20 40 60

T
hr

ou
gh

pu
t(

kb
/s

)

speed(m/s)

DSR
CONFIDANT
MNRS
RTDSR

Fig. 4 Throughput measures for DSR, CONFIDANT, MNRS and RTDSR

0

0.1

0.2

0.3

0 10 20 30 40 50

P
D

F

Speed (m/s)
3-Number of sources = 40

DSR
CONFIDANT
MNRS
RTDSR

0

0.1

0.2

0.3

0 20 40 60

P
D

F

Speed (m/s)
-2-Number of sources = 30

CONFIDANT
MNRS
RTDSR
DSR

0
0.1
0.2
0.3
0.4
0.5

0 20 40 60

P
D

F

Speed (m/s)

-1-Number of sources =20

CONFIDANT
MNRS
RTDSR
DSR

-

Fig. 5 PDF obtained by varying the number of sources in the network

5.2 Elaborate Tests

In this section, we study the impact of sources number on PDF, Throughput and
AEED metrics for DSR, CONFIDANT, MNRS and RTDSR protocols. For this pur-
pose, we conducted our experiment with 20, 30 and 40 sources of 60 nodes. The
analysis is firstly performed by varying nodes mobility. Afterward, we set the nodes
speed to 10 m/s and changed the percentage of misbehaving nodes using 10, 20, 30,
40 and 50 %.

(a) Mobility

Packet delivery fraction
In Fig. 5, the experiments are conducted with 20, 30 and 40 sources of 60 nodes
present in the network, by varying the number of sources. The curves demonstrate
that RTDSR remains the most efficient protocol in spite of the network congestion
and its mobility. Besides, the results show that PDF decreases when the number of
sources increases, which is due to the network congestion.

Protocol Integration for Trust-Based Communication 337

0

5

10

15
T

hr
ou

gh
pu

t (
kb

/s
)

Speed (m/s)
-1- Number of sources = 20

CONFIDANT
MNRS
RTDSR
DSR

0

5

10

T
h

ro
u

g
h

p
u

t
(k

b
/s

)

Speed (m/s)
-2- Number of sources = 30

CONFIDANT
MNRS
RDSR
DSR

0

5

10

0 20 40 60 0 20 40 60

0 10 20 30 40 50

T
hr

ou
gh

pu
t

(k
b/

s)

Speed (m/s)
-3- Number of sources = 40

DSR
CONFIDANT
MNRS
RTDSR

Fig. 6 Throughput obtained by varying the number of sources in the network

0
2000
4000
6000
8000

A
E

E
D

 (
m

s)

Speed (m/s)

-1-Number of sources = 20

CONFIDAN T
MNRS
RTDSR
DSR

0

5000

10000

A
E

E
D

 (m
s)

Speed (m/s)

-2-Number of sources = 30

CONFIDANT
MNRS
RTDSR
DSR

0

5000

10000

0 20 40 60 0 20 40 60

0 10 20 30 40 50

A
E

E
D

 (
m

s)

Speed (m/s)

-3-Number of sources = 40

CONFIDANT
MNRS
RTDSR
DSR

Fig. 7 AEED obtained by varying the number of sources in the network

Throughput
When we compare the performance of RTDSR in term of throughput with DSR,
CONFIDANT and MNRS, we notice in Fig. 6 that it has the highest value, which
means that it is the most resilient against dropping attacks.

Average End to End Delay
Figure 7 shows that RTDSR has the lowest value in comparison with DSR, CONFI-
DANT and MNRS, which proves that it is the most rigid against misbehaving nodes.
This is due to its capacity to find routes more quickly than the other protocols.

(b) Percentage of misbehaving nodes

Packet Delivery Fraction
Curves in Fig. 8 trace the variation of PDF for the four protocols relative to the
percentage of misbehaving nodes. This variation is done in a network containing

338 F. Laidoui and T. Bouabana-Tebibel

0

0.1

0.2

0.3

0 20 40 60

P
D

F

Percentage of misbehaving nodes

-2-Number of sources = 30

DSR
CONFIDANT
MNRS
RTDSR

0

0.2

0.4

0.6

0 20 40 60

P
D

F

Percentage of misbehaving nodes

-1-Number of sources = 20

DSR

MNRS

0

0.1

0.2

0.3

0 10 20 30 40 50

P
D

F

Percentage of misbehaving nodes

-3-Number of sources = 40

DSR
CONFIDANT
MNRS
RTDSR

CONFIDANT

Fig. 8 PDF obtained by varying the number of sources in the network

0

2

4

6

Th
ro

ug
hp

ut
 (K

b/
s)

Percentage of misbehaving nodes

-1-Number of sources = 20

DSR
CONFIDANT
MNRS
RTDSR

0
2
4
6
8

T
hr

ou
gh

pu
t

(K
b/

s)

Percentage of misbehaving nodes

-2-Number of sources = 30

DSR
CONFIDANT
MNRS
RTDSR

0

2

4

6

0 20 40 60 0 20 40 60

0 10 20 30 40 50

Percentage of misbehaving nodes

-3-Number of sources = 40

DSR
CONFIDANT
MNRS
RTDSR

Th
ro

ug
hp

ut
 (K

b/
s)

Fig. 9 Throughput obtained by varying the percentage of misbehaving nodes

respectively 20, 30 and 40 sources. In all schemas, RTDSR has the highest value,
which proves its robustness against misbehaving nodes.

Throughput
Figure 9 shows the impact of the number of sources present in the network on the
throughput for the four protocols by varying the percentage of misbehaving nodes.
In the whole of the experiments, RTDSR is still the most efficient protocol.

6 Conclusion

In this chapter, we proposed a model based on trust concepts to secure source rout-
ing protocols. The proposed solution improves trust provided by the CONFIDANT
protocol using a new mechanism that takes into consideration new routes learned

Protocol Integration for Trust-Based Communication 339

by nodes after the route request phase. To evaluate trust in routes, we used the
MNRS model which we rewrote using a new constraint on nodes. This constraint
contributes to depreciate routes composed of nodes with the lowest value of trust,
which increases the probability of selecting routes free of misbehaving nodes. Simu-
lation results based on fundamental and elaborate tests show that RTDSR is resilient
to packets dropping attacks and maintains good performances. We propose for future
works to formally validate RTDSR using the AVISPA tool.

References

1. Kargl, F., Klenk, A., Schlott, S., Weber, M.: Advanced detection of selfish or malicious nodes
in ad hoc networks. In: Proceedings of 1st European Workshop on Security in Ad-hoc and
Sensor Networks, ESAS 2004, Heidelberg, Germany, pp. 152–165 (2004)

2. Bhalaji, N., Shanmugam, A.: A trust based technique to isolate non-forwarding nodes in DSR
based mobile ad hoc networks. In: The third International Conference on Network Security
and Applications, Chennai, India (2010)

3. Buchegger, S., Mundinger, J., Le Boudec, J.Y.: Reputation systems for self-organized networks.
IEEE Technol. Soc. Mag. 27(1), 41–47 (2008)

4. Michiardi, P., Molva, R.: Core: a collaborative reputation mechanism to enforce node cooper-
ation in mobile ad hoc networks. In: Proceedings of IFIP Conference on Communications and
Multi-media Security, Kluwer, B.V. Deventer, The Netherlands vol. 228, pp. 107–121 (2002)

5. Arya, K.V., Vashistha, P., Gupta, V.: Three phase technique for intrusion detection in mobile
ad hoc network. In: DICTAP 2011, vol. 166, pp. 675–684 (2011)

6. Buchegger, S., Le Boudec, J.Y.: Performance analysis of the confidant protocol. In: ACM 3rd
International Symposium on Mobile Ad hoc Networking and Computing-MobiHoc’02, pp.
226–236 (2002)

7. Buchegger, S., Le Boudec, J.Y.: A robust reputation system for P2P and mobile ad hoc networks.
In: Proceedings of P2PEcon 2004 (2004)

8. Yang, X., Gao, Y.: A routing protocol based on trust for MANETs. In: Zhuge H., Fox G.C.
(eds.) Proc. 4th International Conference on Grid and Cooperative Computing GCC 2005, vol.
3795, pp. 959–964. LNCS, Beijing, China, Nov 30–Dec 3 (2005)

9. Johnson, D. B., Maltz, D.A., Broch, J.: DSR: the dynamic source routing protocol for multi-
hop wireless ad hoc networks. In: Perkins C.E. (ed.) Ad Hoc Networking. Addison-Wesley,
Reading (2001)

10. Johnson, D.B., Hu, Y-C., Maltz, D.A.: The dynamic source routing protocol (DSR) for mobile
ad hoc networks. IETF RFC4728 (2007)

11. Suresh, A., Duraiswamy, K.: Routing protocol with node reputation scheme. J. Comput. Sci.
7(2), 242–249 (2011)

12. Balakrishnan, K., Deng, J., Varshney, P.K.: TWOACK: preventing selfishness in mobile ad
hoc networks. In: Proceedings of Wireless Communication and Networking Conference, New
Orleans, LA, USA (2005)

13. Djenouri, D., Ouali, N., Mahmoudi, A., Badache, N.: Random feedbacks for selfish nodes
detection in mobile ad hoc networks. In: The 5th IEEE International Workshop on IP Operations
and Management-IPOM 2005, Barcelona, Spain (2005)

14. Abd El-Haleem, A.M., Ali, I.A.: TRIUMF: trust-based routing protocol with controlled degree
of selfishness for securing MANET against packet dropping attack. Int. J. Comput. Sci. Issues,
8(4), 1 (2011)

15. Zhao, L., Delgado-Frias, J.G.: MARS: Misbehavior Detection in Ad Hoc Network. IEEE
GLOBECOM, Washington (2007)

340 F. Laidoui and T. Bouabana-Tebibel

16. Sukumran, S., Jaganathan, V., Korath, A.: Reputation based dynamic source routing protocol
for MANET. Int. J. Comput. Appl. 47(4), 42–46 (2012)

17. Choudhury, S., Roy, S.D., Singh, S.A.: Trust management in ad hoc network for secure DSR
routing, novel algorithms and techniques. In: Sobh, T., Elleithy, K., Mahmood, A., Karim, M.A.
(eds.) Telecommunications, Automation and Industrial Electronics, pp. 496–500. Springer, The
Netherlands (2008)

18. Awerbuch, B., Curtmola, R., Holmer, D., Nita-Rotaru, C., Rubens, H.: ODSBR: an on-demand
secure byzantine resilient routing protocol for wireless ad hoc networks. ACM Trans. Inf. Syst.
Sec. 10, 3 (2007)

19. Awerbuch, B., Scheideler, C.: Robust random number generation for peer-to-peer systems.
Theor. Comput. Sci. Elsevier 410(6–7), 453–466.28 (2009)

20. Yong, C., Chuanhe, H., Wenming, S.: Trusted dynamic source routing protocol. In: Wireless
Communications, Networking and Mobile Computing (WiCom) pp. 1632–1636 (2007)

21. Quercia, D., Hailes, S., Capra, L.: B-trust: Bayesian trust framework for pervasive computing.
In: Proceedings of the 4th International Conference on Trust Management (iTrust), Pisa, Italy,
pp. 298–312, May (2006)

22. Marias, G.F., Georgiadis, P., Flitzanis, D., Mandalas, K.: Cooperation enforcement schemes for
MANETs: a survey. Wirel. Commun. Mob. Comput. Wirel. Netw. Sec. 6(3), 319–332 (2006)

23. Bansal, S., Baker, M.: Observation-based cooperation enforcement in ad-hoc networks. Stan-
ford University, Technical Report (2003)

24. NS Manual, VINT Project. 2011, www.isi.edu/nsnam/ns/doc/ns_doc.pdf

www.isi.edu/nsnam/ns/doc/ns_doc.pdf

Author Index

A
Ahn, Gail-Joon, 27
Albanese, Massimiliano, 299
Allata, Lynda, 219
Alves, Vander, 241

B
Balasingham, Ilangko, 127
Barbosa, Luís, 45
Barkaoui, Kamel, 77
Begum, Nurjahan, 171
Bhowmik, Tanmay, 241
Bouabana-Tebibel, Thouraya, 219, 325

C
Casola, Valentina, 299
Chebba, Asmaa, 219

D
De Benedictis, Alessandra, 299
Do Prado, Antônio , 263
Durelli, Rafael, 263

G
Grégoire, Éric, 285

H
Habib, Kadaouia, 219
Han, Wonkyu, 27
Harrath, Nesrine, 77
Hu, Bing, 171

J
Johnsen, Einar Broch, 127

K
Kazemeyni, Fatemeh, 127
Keogh, Eamonn, 171
Kim, Tae Sung, 27

L
Laidoui, Fatma, 325
Lee, Gordon K., 1

M
Mabey, Mike, 27
Madeira, Alexandre, 45
Martins, Manuel, 45
Mellah, Sofia, 219
Minor, Mirjam, 151
Monsuez, Bruno, 77
Mota, Alexandre, 105

N
Neagu, Daniel, 193
Neves, Renato, 45
Niu, Nan, 241

O
Owe, Olaf, 127

P
Palczewska, Anna, 193

T. Bouabana-Tebibel and S. H. Rubin (eds.), Integration of Reusable Systems, 341
Advances in Intelligent Systems and Computing 263, DOI: 10.1007/978-3-319-04717-1,
© Springer International Publishing Switzerland 2014

342 Author Index

Palczewski, Jan, 193
Penteado, Rosângela, 263

R
Rakthanmanon, Thanawin, 171
Robinson, Richard Marchese, 193
Rubin, Stuart H., 1, 219

S
Schulte-Zurhausen, Eric, 151
Schumacher, Pol, 151
Silva, Robson, 105
Starr, Rodrigo Rizzi, 105

V
Viana, Matheus, 263

	Preface
	Contents
	1 Cloud-Based Tasking, Collection, Processing, Exploitation, and Dissemination in a Case-Based Reasoning System
	1 Introduction
	2 An Illustrative Example
	3 A Knowledge-Based Solution
	3.1 Case-Based Reasoning
	3.2 An Example
	3.3 The Need for an Open Architecture
	3.4 Smart Tagging, Indexing, and Advertising

	4 On Boolean Features
	5 The Role of Analysts
	5.1 Case Specification and Schema Definition
	5.2 A Revolutionary Answer to an Evolutionary Need

	6 On Unsupervised Feature Learning
	7 Five Research Challenges
	8 Conclusion
	References

	2 Simulation-Based Validation for Smart Grid Environments: Framework and Experimental Results
	1 Introduction
	2 Related Work
	2.1 NIST Conceptual Model
	2.2 Validation Approaches in the Smart Grid

	3 Simulation-Based Validation Framework
	3.1 Overview
	3.2 Entity Generator
	3.3 Simulation Execution Block
	3.4 Viewer

	4 Case Study: Implementation Details and Evaluation Results
	4.1 Requirements for Real-Time Pricing
	4.2 Design and Implementation
	4.3 Simulation Results

	5 Conclusion and Future Directions
	References

	3 An Institution for Alloy and Its Translation to Second-Order Logic
	1 Introduction
	2 Background: Institutions
	2.1 Institutions and Comorphisms

	3 Alloy as an Institution
	4 From Alloy to SOL
	5 From Alloy to Casl
	6 ALLOY and HETS at Work
	6.1 An Introduction to DCR Graphs
	6.2 DCR Graphs in ALLOY
	6.3 A Medical Workflow

	7 Discussion and Conclusions
	References

	4 A Framework for Verification of SystemC Designs Using SystemC Waiting State Automata
	1 Introduction
	2 Background on SystemC
	2.1 The SystemC Language
	2.2 The Formal Semantics of SystemC

	3 Modeling SystemC with WSA
	3.1 Syntax
	3.2 Main Properties of SystemC WSA Model

	4 Mapping SystemC Designs to SystemC WSA
	4.1 Determining the Constituent Components
	4.2 WSA for SC_METHOD: Algorithm to Extract Automata for SC_METHODS
	4.3 WSA for SC_THREAD: Algorithm to Extract Automata for SC_THREADS

	5 Applying Predicate Abstraction to SystemC Programs: Overview of the Automation Chain for Predicate Inference
	5.1 Background
	5.2 Handling Programs Without Loops
	5.3 Handling Programs with Loops
	5.4 The Correctness of the WSA Model with Respect to the Concrete Semantics
	5.5 Simple Bus Case Study

	6 Applying Model Checking Techniques on SystemC
	7 Related Works
	8 Conclusion and Prospects
	References

	5 Formal MDE-Based Tool Development
	1 Introduction
	2 Background
	3 Proposed Methodology
	4 Metamodel Extractor
	4.1 Overview
	4.2 Syntax
	4.3 Translation Rules
	4.4 Tool

	5 Link
	6 Case Study
	7 Related Works
	8 Conclusion and Future Work
	References

	6 Formal Modeling and Analysis of Learning-Based Routing in Mobile Wireless Sensor Networks
	1 Introduction
	2 Reinforcement Learning
	3 The Selected Routing Protocol
	3.1 The Centralized Approach
	3.2 The Decentralized Approach

	4 Integrating Learning of Observables in a Probabilistic Model of WSNs
	4.1 The Rule for Reinforcement Learning

	5 Application of the Learning Rules
	6 Implementation and Analysis
	6.1 Investigating the Protocol's Efficiency
	6.2 Investigating the Protocol's Delivery Rate
	6.3 Investigating the Formal Properties of the Protocol

	7 Conclusion
	References

	7 On the Use of Anaphora Resolution for Workflow Extraction
	1 Introduction
	2 Workflow Extraction Framework
	2.1 Workflow Representation
	2.2 Information Extraction Software
	2.3 Extraction Pipeline

	3 Workflow Extraction
	3.1 Linguistic Analysis
	3.2 Recognition of Activities
	3.3 Recognition of Resources
	3.4 Building the Control-Flow

	4 Data-Flow Creation and Evolutive Anaphora Resolution
	4.1 Mining Anaphora-Rules
	4.2 Creation of Data-Flow

	5 Evaluation
	5.1 Experimental Set-Up
	5.2 Syntactic-Based Evaluation
	5.3 Semantic-Based Evaluation
	5.4 Results

	6 Discussion
	7 Related Work
	8 Conclusion and Future Work
	References

	8 A Minimum Description Length Technique for Semi-Supervised Time Series Classification
	1 Introduction
	2 Related Work
	3 Background and Notation
	4 Algorithms
	4.1 Semi-Supervised Time Series Classification
	4.2 Stopping Criterion

	5 Experimental Results
	5.1 MIT-BIH Supraventricular Arrhythmia Database
	5.2 St. Petersburg Arrhythmia Database
	5.3 Sudden Cardiac Death Holter Database
	5.4 Additional Examples
	5.5 Comparison with Rival Approaches
	5.6 ROC Curve
	5.7 When does the Algorithm Fail?

	6 Conclusions and Future Work
	References

	9 Interpreting Random Forest Classification Models Using a Feature Contribution Method
	1 Introduction
	2 Random Forest
	3 Feature Contributions for Binary Classifiers
	3.1 Example

	4 Feature Contributions for General Classifiers
	5 Analysis of Feature Contributions
	5.1 Median
	5.2 Cluster Analysis
	5.3 Log-likelihood

	6 Applications
	6.1 Breast Cancer Wisconsin Dataset
	6.2 Cluster Analysis and Log-Likelihood
	6.3 Iris Dataset
	6.4 Robustness Analysis

	7 Conclusions
	References

	10 Towards a High Level Language for Reuse and Integration
	1 Introduction
	2 Case Study
	3 SSL Abstract Syntax
	3.1 The Static Aspect
	3.2 The Dynamic Aspect
	3.3 The Functional Aspect
	3.4 The Parametric Aspect

	4 SSL Grammar and Concrete Syntax
	4.1 Concrete Syntax
	4.2 The Grammar

	5 SSL Semantics
	5.1 Component Assembly Control
	5.2 Sensitivity Study

	6 Transformation of the Specification
	6.1 From SSL Program to IBD Diagram
	6.2 Formal Transformation
	6.3 The SSL Textual and Graphical Editors

	7 Related Works
	8 Conclusion
	References

	11 An Exploratory Case Study on Exploiting Aspect Orientation in Mobile Game Porting
	1 Introduction
	2 Background and Related Work
	3 Research Methodology
	4 Results and Analysis
	4.1 AO-Enabled Portability in Practice
	4.2 Study Implications
	4.3 Threats to Validity

	5 Conclusions
	References

	12 Developing Frameworks from Extended Feature Models
	1 Introduction
	2 Patterns, Frameworks and Domain Engineering
	3 From Features to Frameworks Approach
	3.1 Domain Modeling
	3.2 Framework Construction

	4 Tool Design
	4.1 Domain Module
	4.2 Framework Module
	4.3 Application Module

	5 Evaluation
	5.1 Planning
	5.2 Operation
	5.3 Analysis of Data
	5.4 Threats to Validity

	6 Related Works
	7 Concluding Remarks and Future Work
	References

	13 About Handling Non-conflicting Additional Information
	1 Introduction
	2 Motivating Examples
	2.1 Subsumed Knowledge that Must Prevail
	2.2 Rules that Must be Weakened
	2.3 Replacement and Compulsory Knowledge

	3 Logic-Based Representation Setting
	4 Clause About a Concept
	5 Prime Implicates Representation of Beliefs
	6 Handling the Various Situations
	6.1 Preempting Subsuming Knowledge
	6.2 Handling Clauses About a Concept

	7 MUS-Finding Algorithms as Basic Tools
	8 Experimental Results
	9 Conclusion and Perspectives
	References

	14 A Multi-Layer Moving Target Defense Approach for Protecting Resource-Constrained Distributed Devices
	1 Introduction
	2 Related Work
	3 Improving Node Security
	3.1 Security Level Evaluation
	3.2 Modeling the Security Level

	4 WSN Reconfiguration: A Case Study
	4.1 Security Layer Reconfiguration
	4.2 Physical Layer Reconfiguration

	5 MTD Evaluation
	6 Conclusions
	References

	15 Protocol Integration for Trust-Based Communication
	1 Introduction
	2 Related Work
	3 Background
	3.1 Dynamic Source Routing Protocol (DSR)
	3.2 CONFIDANT Protocol

	4 The RTDSR Protocol
	4.1 Route Request Phase
	4.2 Route Reply Phase
	4.3 Route Trust Phase
	4.4 Route Selection Phase

	5 Simulation Results
	5.1 Fundamental Tests
	5.2 Elaborate Tests

	6 Conclusion
	References

	Author Index

