
139

Two Simple Constructive algorithms
for the Distributed Assembly Permutation
Flowshop Scheduling Problem

Sara Hatami, Rubén Ruiz and Carlos Andrés Romano

C.	Hernández	et	al.	(eds.),	Managing Complexity, Lecture Notes in Management
and	Industrial	Engineering,	DOI	10.1007/978-3-319-04705-8_16,	
©	Springer	International	Publishing	Switzerland	2014

S.	Hatami	()
Departamento	de	Estadística	e	Investigación	Operativa,	
Facultad	de	Ciencias	Matemáticas,	Universitat	de	València,	València,	Spain
e-mail: hatami@alumni.uv.es

R.	Ruiz
Grupo	de	Sistemas	de	Optimización	Aplicada,	Instituto	Tecnológico	de	Informática,	
Universitat	Politècnica	de	València,	Ciudad	Politécnica	de	la	Innovación,	
Edifico	8G,	Acc.	B.	Camino	de	Vera	s/n,	46021	València,	Spain
e-mail: rruiz@eio.upv.es

C.	Andrés	Romano
Research	Group	in	Reengineering,	Operations	Management,	Group	Work	and	Logistics,	
Excellence,	Industriales,	Universitat	Politècnica	de	València	Cno,	
De	Vera	s/n,	46022	Valencia,	Spain
e-mail: candres@omp.upv.es

Abstract	 Nowadays,	it	is	necessary	to	improve	the	management	of	complex	sup-
ply chains which are often composed of multi-plant facilities. This paper proposes a
Distributed	Assembly	Permutation	Flowshop	Scheduling	Problem	(DAPFSP).	This	
problem	is	a	generalization	of	 the	Distributed	Permutation	Flowshop	Scheduling	
Problem	(DPFSP)	presented	by	Naderi	and	Ruiz	(Comput	Oper	Res,	37(4):754–768,	
2010).	The	first	stage	of	the	DAPFSP	is	composed	of f identical production facto-
ries.	Each	center	is	a	flowshop	that	produces	jobs	that	have	to	be	assembled	into	
final	products	in	a	second	assembly	stage.	The	objective	is	to	minimize	the	makes-
pan. Two simple constructive algorithms are proposed to solve the problem. Two
complete sets of instances (small-large) are considered to evaluate performance of
the proposed algorithms.

Keywords	 Distributed	assembly	flowshop · Permutation flowshop · constructive
algorithms

1 Introduction

Assembly systems have been widely studied in the last decade given their practi-
cal interest and applications. An assembly flowshop is a hybrid production system
where various production operations are independently and concurrently performed

140 S.	Hatami	et	al.

to make parts that are delivered to an assembly line [4]. Tozkapan et al. [8] consid-
ered a two-stage assembly scheduling problem by minimizing the total weighted
flow	time	as	an	objective	function.	Al-Anzi	and	Allahverdi	[1] addressed the model
presented by [8]	and	minimized	the	total	completion	time	of	all	the	jobs	by	using	
metaheuristics	to	solve	their	model.	This	is	just	a	small	extract	of	the	many	existing	
papers in this regard.

From	a	manager’s	point	of	view,	scheduling	in	these	systems	is	more	complicat-
ed	than	in	single-factory	settings.	In	single-factory	problems,	the	only	objective	is	
to	find	a	job	schedule	for	a	set	of	machines,	while	an	important	additional	decision	
in	the	distributed	problem	is	allocating	jobs	to	suitable	factories.

In this paper, flowshop scheduling is used as a production system for each fac-
tory	or	supplier	in	the	distributed	problem.	The	flowshop	scheduling	problem	(FSP)	
is composed of a set of M of m	machines	where	each	job	of	a	set	N of n	jobs	must	be	
processed	in	each	machine.	The	number	of	operations	per	job	is	equal	to	the	num-
ber of machines. The ith	operation	of	each	job	is	processed	in	machine	i. Therefore,
one	job	can	start	in	machine	i only after it has been completed in machine i−1,	and	
if machine i	is	free.	The	processing	times	of	each	job	in	the	machines	are	known	
in	advance,	non-negative	and	deterministic.	In	FSPs,	a	number	of	assumptions	are	
made [2].

In	the	FSP,	there	are	n!	possible	job	permutations	for	each	machine.	Therefore,	
the total number of solutions for a flowshop problem with m	machines	is	( n!)m. To
simplify	the	problem,	it	is	assumed	that	all	machines	have	the	same	job	permuta-
tion.	With	this	simplifying	assumption	the	FSP	is	referred	to	as	Permutation	Flow-
shop	Scheduling	Problem	(PFSP)	with	n!	possible	solutions.	This	problem	is	one	of	
the most researched topics in the scheduling literature [6, 7,	etc.].	The	DPFSP	can	
be	viewed	as	a	generalized	version	of	the	PFSP.

This	paper	studies	the	Distributed	Assembly	Permutation	Flowshop	Scheduling	
Problem	(DAPFSP).	It	is	a	combination	of	the	DPFSP	and	the	Assembly	Flowshop	
Scheduling	Problem	(AFSP),	and	consists	of	two	stages:	production	and	assembly.	
The first stage comprises of a set F of f factories or production centers where a set
N of n	jobs	has	to	be	scheduled.	All	factories	are	capable	of	processing	all	jobs	and	
each	factory	is	a	PFSP	with	a	set	M of m	machines.	Factories	are	assumed	to	be	
identical. Processing times are denoted by p j Nij , , ∈ . The second stage is a single
assembly factory with an assembly machine, MA,	which	assembles	jobs	by	using	a	
defined assembly program to make a set T of t different final products. Each prod-
uct has a defined assembly program. Nh and Ji are used, respectively, to represent
product’s h	assembly	program	and	the	jobs	that	belong	to	the	product’s	h assembly
program, N J J Nh j h: ,{ } ∈ . Each product h has Nh	jobs	and	job	j is needed for the

assembly of one product. Therefore, N nh
h

t

=
=

∑
1

. Product h assembly can start only

when	all	jobs	that	belong	to	Nh have been completed in the different factories. The
considered	objective	is	to	minimize	the	makespan	at	the	last	assembly	factory.

Despite	the	innumerable	literature	related	to	PFSP	and	AFSP,	it	seems	that	there	
are	 few	 studies	 about	 the	DPFSP.	Naderi	 and	Ruiz	 [5]	presented	 the	DPFSP	 for	
the	 first	 time	 and	 developed	 six	 different	MILPs	 ,	 proposed	 two	 simple	 factory	

141Two	Simple	Constructive	algorithms	for	the	Distributed	Assembly	…

	assignment	rules	and	14	heuristics	based	on	dispatching	rules,	effective	construc-
tive	heuristics	and	VND	methods.	To	the	best	of	our	knowledge,	no	further	literature	
exists	on	DAPFSP,	so	this	is	the	first	effort	that	considers	the	assembly	flowshop	
problem in a distributed manufacturing setting.

The	next	section	presents	introduces	two	simple	constructive	algorithms,	Sect.	3	
describes	a	complete	computational	evaluation	of	the	proposed	algorithms.	Finally,	
Sect.	4	offers	conclusions,	remarks	and	venues	for	future	research.

2 Heuristic Methods

As mentioned in the paper of [5],	the	DPFSP	is	an	NP-Complete	problem	(if	n > f);
accordingly,	 the	DAPFSP	with	 an	 additional	 assembly	 stage	 is	 certainly	 an	NP-
Complete	problem	(or	rather,	one	should	say	that	the	associated	decision	problem	
is). Therefore, it is necessary to develop a heuristic approach to solve large-sized
problems.

For	the	assignment	of	jobs	to	factories,	the	two	rules	( NR1, NR2), of [5] are used.
Using these two factory allocation rules, two heuristics are presented to schedule
jobs.

2.1 Heuristic 1

We	first	introduce	some	necessary	notation.	An	example	with	n	=	9,	m	=	2,	f	=	2	and	
t	=	3,	 this	 is,	9	 jobs,	2	 factories	with	a	 flowshop	of	 two	machines	each	and	 three	
products	 to	assemble,	 is	employed	 to	explain	expressions	and	heuristics	 in	some	
detail.	The	processing	times	of	the	9	jobs	on	the	first	and	second	machines	on	facto-
ries	are	{1,	5,	7,	9,	9,	3,	8,	4,	2}	and	{3,	8,	5,	7,	3,	4,	1,	3,	5},	respectively.	Assembly	
processing times of products on assembly machine are 6, 19 and 12 respectively.
The products’ assembly programs are: N1	=	{3,4,6},	N2	=	{1,2,8,9}	and	N3	=	{5,7}.	
π	represents	a	product	sequence,	e.g.,	π	=	{1,3,2}	is	a	possible	product	sequence	for	
the	given	example.	As	mentioned	before,	each	product	h	is	made	up	of	|Nh|	jobs	and	
πh is	the	partial	job	sequence	of	product	h,	e.g.,	π1:{6,4,3},	π2:{1,9,8,2},	π3:{7,5}.	
A	complete	job	sequence,	πT,	is	constructed	by	putting	together	all	partial	job	se-
quences,	following	the	product	sequence	π,	e.g.,	πT:{6,4,3,7,5,1,9,8,2}.

The shortest processing time (SPT) is a well-known dispatching rule for the
PFSP.	Hence	the	SPT	is	used	to	determine	the	product	sequence	in	the	assembly	
machine.

Heuristic	1	begins	by	applying	the	SPT	rule	for	the	assembly	operation	times	to	
obtain	π,	π	=	{1,3,2}.	A	heuristic	which	is	based	on	[3]	heuristic	(FL)	is	applied	on	
the	jobs	that	belong	to	a	given	product.

The	heuristic	 evaluates	 the	 completion	 times	of	 the	 jobs	 that	 belong	 to	prod-
uct h,	 for	example	if,	h	=	1.	Set	Rh	 is	made	by	sorting	jobs	in	ascending	order	of	

142 S.	Hatami	et	al.

 completion times, R1	=	{6,3,4}.	Where	completion	times	for	set	of	jobs	of	the	prod-
uct 1, N1	=	{3,4,6}	are	C23	=	12,	C24	=	16,	C26	=	7.	The	first	two	jobs	of	Rh are select-
ed and inserted into Sh, S1	=	{6,3}.	All	jobs’	pairwise	exchanges	in	Sh are checked
and it is updated with the one that results in the best makespan, Cmax({6,3})	=	15	and	
Cmax({3,6})	=	16,	S1:{6,3}.	The	next	step	is	removing	the	third	job	of	Rhand inserting it
in all possible positions of Sh , Cmax({4,6,3})	=	25,	Cmax({6,4,3})	=	24	and Cmax({6,4,3})	=	26.	
The sequence with the best makespan will be selected, S1	is	updated	to	{6,4,3}.	All	
possible	 sequences	 by	 carrying	 out	 pairwise	 exchanges	 between	 jobs	 are	 evalu-
ated again, Cmax({4,6,3})	=	25,	Cmax({6,4,3})	=	24,	Cmax({3,4,6})	=	27.	 If	 a	 better	makespan	
is obtained, then Sh	 is	 updated.	 The	 process	 continues	 until	 all	 jobs	 have	 been	
considered. Sh	 is	the	partial	job	sequence	for	product	h,	(πh),	π1	=	{6,4,3}.	By	fol-
lowing	 the	 same	 method,	 the	 partial	 job	 sequences	 for	 the	 other	 products	 are:	
π2	=	{1,9,8,2}	and	π3	=	{5,7}	with	partial	makespans	of	20	and	18,	respectively.	πT
is	constructed	by	putting	together	all	πh	and	jobs	are	assigned	to	factories	from	πT
by	using	NR1	or	NR2,	which	respectively	result	in	the	H11	or	H12	heuristics.	Hence	
πT	is	{6,4,3,5,7,1,9,8,2}.	The	final	step	is	to	assign	jobs	in	πT to factories by using
NR1/NR2 to obtain the H11/H12. Cmax of H11 and H12	are	55	and	53,	respectively.	The	
Gantt	chart	of	the	considered	example	after	applying	H11	is	shown	in	Fig.	1.

2.2 Heuristic 2

The	idea	of	the	second	heuristic	is	to	give	priority	to	products	whose	jobs	are	com-
pleted in the production stage sooner. This concept is noted as the earliest start time
to assemble product h, Eh. The procedure that is used in H11 and H12 to find partial
job	sequences	of	products	(πh) also is used in heuristic 2. Eh, is calculated by using
NR1 or NR2	to	assign	jobs	in	each	partial	job	sequence	to	factories.	For	example,	the	
earliest start times for assembling products by considering NR2 are E1	=	15,	E2	=	15,	
E3	=	12.	π	is	built	by	sorting	Eh in ascending order.

6

6

83

3

7

7

5

5

4

4

1

1

9

9

2

2

Pro. 1 Pro. 3 Pro. 2

Factory 1

Factory 2

Assembly
factory

8

Fig. 1  Gantt chart of H11	for	the	example

143

3 Computational Evaluation

Two complete sets of instances have been generated to test the proposed heuristics.
Four	instance	factors	( n.m, f,t) are combined at the levels provided for small and
large	instances.	In	small	instances,	number	of	jobs	( n)	is	tested	at	5	levels,	8,	12,	
16,	20	and	24,	number	of	machines	( m)	has	4	levels,	2,	3,	4	and	5,	both	factors	of	
number	of	factories	( f)	and	number	of	products	( t)	have	3	levels,	2,	3	and	4.	In	the	
large	instances,	all	factors	have	3	levels	and	are;	n	=	{100,	200,	500},	m	=	{5,	10	20},	
f	=	{4,	6,	8}	and	t	=	{30,	40,	50}.

Processing	times	in	the	production	stage	are	fixed	to	∪ [,]1 99 as it is usual in the
scheduling	literature.	The	assembly	processing	times	depend	on	the	number	of	jobs	
assigned to each product h as U N Nh h1 99× × , . The total number of combina-
tions in the small and large instances are 5 4 3 1802× × = and 3 814 = , respectively.
There are five replications per combination for small instances and ten replications
for every large combination. Therefore, the total number of instances is 900 and
810, respectively. All instances are available at soa.iti.es.

3.1 Heuristics Evaluation on Small Instances

The	 four	 proposed	methods	 ( H11,H12,H21,H22) are tested. A MILP model is con-
structed for the small instances are solved with two commercial solver packages
(CPLEX	12.3	and	GUROBI	4.6.1).	Serial	(1	thread)	and	parallel	(2	threads)	and	two	
time	limits	(900	and	3600	s)	are	tested	with	the	solvers.

As	the	proposed	heuristics	are	not	expected	to	find	an	optimal	solution,	the	Rela-
tive	Percentage	Deviation	(RPD),	is	measured	for	comparisons.	We	measure	RPD	as	
follows:	using	the	optimal	solution	or	the	best	known	solution,	( OPTbest) and ALGSOL,
which reports the makespan obtained by a given algorithm for a given instance:

Table 1 provides the summarized results of the MILP and the average algorithm
deviations from the best known solution for the small instances. They are grouped
by n and f

MILP	 reports	 better	 results	 when	 compared	 to	 the	 proposed	 heuristics.	 CPU	
times to solve small instances with the proposed algorithms are negligible while
most	of	 the	 instances	 that	are	 solved	with	 the	MILP.	Therefore,	 the	3	%	average	
deviation of H22	needs	to	be	contextualized.

In	order	to	identify	the	best	algorithm,	a	means	plot	and	Tukey’s	Honest	Signifi-
cant	Difference	(HSD)	intervals	(99	%	confidence)	for	the	four	simple	constructive	
heuristics	is	shown	in	Fig.	2. The second heuristic performs better in comparison
with the other simple constructive heuristic and there is no significant difference
between	the	rules	used	to	assign	jobs	to	factories.

RPD
ALG OPT

OPT
SOL best

best

=
−

×100

Two	Simple	Constructive	algorithms	for	the	Distributed	Assembly	…

144 S.	Hatami	et	al.

3.2 Heuristics Evaluation on Large Instances

In	this	case,	for	calculating	the	RPD,	only	the	best	known	solution	is	used	as	the	
MILP	cannot	be	employed.	A	summarized	result	of	the	average	RPD,	considering	
number	of	factories,	number	of	products	and	number	of	jobs,	is	shown	in	Table	2.
Figure	2	shows	a	means	plot	(99	%	confidence	level	Tukey’s	HSD	intervals)	of	the	
proposed algorithms for large instances.

The second proposed algorithm performs better than the first one also for the
large instances. NR2	as	a	job	assignment	rule,	reports	better	results	on	the	first	al-
gorithm	while	job	assignment	rule	on	second	algorithms	does	not	have	any	signifi-
cant effect. It is clear on Table 2,	generally	when	the	number	of	factories	and	jobs	
increases, finding a better solution becomes easier, while this trend has a reverse
effect when the number of products increases. Proposed simple constructive algo-
rithms use a very short time in order to solve problems (less than 0.01 s on average),
therefore the details are not reported.

Algorithms
f × n MILP H11 H12 H21 H22

2 × 8 0.00 14.62 13.61 6.91 5.99
2 × 12 0.01 13.70 12.78 5.74 5.17
2 × 16 0.42 12.52 11.40 5.77 5.10
2 × 20 1.26 9.92 9.28 4.25 3.48
2	×	24 2.70 7.75 7.38 4.07 3.81
3	×	8 0.00 11.35 9.96 4.57 3.15
3	×	12 0.00 9.96 9.13 3.03 2.55
3	×	16 0.06 10.10 9.16 3.77 3.14
3	×	20 0.35 9.86 8.93 2.72 2.19
3	×	24 1.18 7.65 6.37 3.00 2.40
4	×	8 0.00 9.03 8.01 2.16 1.25
4	×	12 0.00 5.63 4.53 1.82 1.38
4	×	16 0.04 7.21 6.34 2.86 2.27
4	×	20 0.23 6.80 6.00 2.96 2.61
4	×	24 0.44 5.13 4.42 2.00 1.59
Average 0.45 9.41 8.49 3.71 3.07

Table 1  Relative	Percentage	
Deviation	(RPD)	of	MILP	
and proposed algorithms over
the best known solution for
the small instances

Fig. 2  Means	plot	and	99	%	
confidence level Tukey’s
HSD	intervals	of	the	relative	
percentage deviation for
simple constructive heuristic
methods for small instances
on the left and for large
instances on the right

145

4 Conclusion and Future Research

To	the	best	of	our	knowledge,	this	paper	is	the	first	attempt	to	generalize	the	Dis-
tributed	Permutation	Flowshop	Scheduling	Problem	 to	 the	Distributed	Assembly	
Permutation	Flowshop	Scheduling	Problem,	where	there	is	more	than	one	produc-
tion	center	to	process	jobs	and	a	single	assembly	center	to	make	final	products	from	
produced	jobs.	Two	constructive	algorithms	are	proposed.

Computational	evaluations	were	performed	with	two	groups	of	small	and	large	
instances.	Results	show	that	in	small	instances	MILP	reported	results	perform	bet-
ter	than	the	proposed	algorithms.	On	the	other	side,	the	proposed	methods	consume	
very	little	CPU	time	in	comparison	with	the	MILP	while	they	still	produce	reason-
able solutions.

For	future	works,	the	setup	time	and	distinct	production	factories	can	be	consid-
ered in the presented model to make it more realistic. Applying metaheuristics like
a Genetic Algorithm, Tabu Search, etc., may report better solutions if compared to
our proposed simple heuristics.

References

1.	 Al-Anzi	 F,	Allahverdi	A	 (2006)	A	 hybrid	 tabu	 search	 heuristic	 for	 the	 two-stage	 assembly	
scheduling	problem.	Int	J	of	Oper	Res	3(2):109–119

2.	 Baker	KR	(1974)	Introduction	to	sequencing	and	scheduling.	Wiley,	New	York
3.	 Framinan	J,	Leisten	R	(2003)	An	efficient	constructive	heuristic	for	flowtime	minimisation	in	

permutation	flow	shops.	Omega	Int	J	Manage	Sci	31(4):311–317
4.	 Koulamas	C,	Kyparisis	GJ	 (2001)	The	 three	 stage	 assembly	 flowshop	 scheduling	problem.	

Comput	Oper	Res	28(7):689–704
5.	 Naderi	B,	Ruiz	R	(2010)	The	distributed	permutation	flowshop	scheduling	problem.	Comput	

Oper	Res	37(4):754–768
6.	 Pan	QK,	Ruiz	R	(2012)	Local	search	methods	for	the	flowshop	scheduling	problem	with	flow-

time	minimization.	Eur	J	Oper	Res	222(1):31–43
7.	 Pinedo	M	(2012)	Scheduling:	theory,	algorithms	and	systems,	4th	edn.	Springer,	New	York
8.	 Tozkapan	A,	Kirca	O,	Chung	CS	(2003)	A	branch	and	bound	algorithm	to	minimize	the	to-

tal	 weighted	 flowtime	 for	 the	 two-stage	 assembly	 scheduling	 problem.	 Comput	 Oper	 Res	
30(2):309–320

Two	Simple	Constructive	algorithms	for	the	Distributed	Assembly	…

Number of
factories	( f)

Number of
products	( t)

Number of
jobs	( n)

Aver-
age

Algo-
rithms

4 6 8 30 40 50 100 200 500

H11 5.39 3.72 3.07 3.66 4.20 4.31 6.21 3.69 2.27 4.06
H12 4.91 3.24 2.65 3.23 3.76 3.80 5.53 3.21 2.06 3.60
H21 0.14 0.06 0.02 0.10 0.06 0.07 0.09 0.09 0.04 0.07
H22 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00

Table 2  Relative	Percent-
age	Deviation	(RPD)	for	the	
proposed algorithms over the
best known solution for the
large instances

	Part II
	Production
	Two Simple Constructive algorithms for the Distributed Assembly Permutation Flowshop Scheduling Problem
	1 Introduction
	2 Heuristic Methods
	2.1 Heuristic 1
	2.2 Heuristic 2

	3 Computational Evaluation
	3.1 Heuristics Evaluation on Small Instances
	3.2 Heuristics Evaluation on Large Instances

	4 Conclusion and Future Research
	References

