
139

Two Simple Constructive algorithms
for the Distributed Assembly Permutation
Flowshop Scheduling Problem

Sara Hatami, Rubén Ruiz and Carlos Andrés Romano

C. Hernández et al. (eds.), Managing Complexity, Lecture Notes in Management
and Industrial Engineering, DOI 10.1007/978-3-319-04705-8_16,
© Springer International Publishing Switzerland 2014

S. Hatami ()
Departamento de Estadística e Investigación Operativa,
Facultad de Ciencias Matemáticas, Universitat de València, València, Spain
e-mail: hatami@alumni.uv.es

R. Ruiz
Grupo de Sistemas de Optimización Aplicada, Instituto Tecnológico de Informática,
Universitat Politècnica de València, Ciudad Politécnica de la Innovación,
Edifico 8G, Acc. B. Camino de Vera s/n, 46021 València, Spain
e-mail: rruiz@eio.upv.es

C. Andrés Romano
Research Group in Reengineering, Operations Management, Group Work and Logistics,
Excellence, Industriales, Universitat Politècnica de València Cno,
De Vera s/n, 46022 Valencia, Spain
e-mail: candres@omp.upv.es

Abstract  Nowadays, it is necessary to improve the management of complex sup-
ply chains which are often composed of multi-plant facilities. This paper proposes a
Distributed Assembly Permutation Flowshop Scheduling Problem (DAPFSP). This
problem is a generalization of the Distributed Permutation Flowshop Scheduling
Problem (DPFSP) presented by Naderi and Ruiz (Comput Oper Res, 37(4):754–768,
2010). The first stage of the DAPFSP is composed of f identical production facto-
ries. Each center is a flowshop that produces jobs that have to be assembled into
final products in a second assembly stage. The objective is to minimize the makes-
pan. Two simple constructive algorithms are proposed to solve the problem. Two
complete sets of instances (small-large) are considered to evaluate performance of
the proposed algorithms.

Keywords  Distributed assembly flowshop · Permutation flowshop · constructive
algorithms

1 � Introduction

Assembly systems have been widely studied in the last decade given their practi-
cal interest and applications. An assembly flowshop is a hybrid production system
where various production operations are independently and concurrently performed

140 S. Hatami et al.

to make parts that are delivered to an assembly line [4]. Tozkapan et al. [8] consid-
ered a two-stage assembly scheduling problem by minimizing the total weighted
flow time as an objective function. Al-Anzi and Allahverdi [1] addressed the model
presented by [8] and minimized the total completion time of all the jobs by using
metaheuristics to solve their model. This is just a small extract of the many existing
papers in this regard.

From a manager’s point of view, scheduling in these systems is more complicat-
ed than in single-factory settings. In single-factory problems, the only objective is
to find a job schedule for a set of machines, while an important additional decision
in the distributed problem is allocating jobs to suitable factories.

In this paper, flowshop scheduling is used as a production system for each fac-
tory or supplier in the distributed problem. The flowshop scheduling problem (FSP)
is composed of a set of M of m machines where each job of a set N of n jobs must be
processed in each machine. The number of operations per job is equal to the num-
ber of machines. The ith operation of each job is processed in machine i. Therefore,
one job can start in machine i only after it has been completed in machine i−1, and
if machine i is free. The processing times of each job in the machines are known
in advance, non-negative and deterministic. In FSPs, a number of assumptions are
made [2].

In the FSP, there are n! possible job permutations for each machine. Therefore,
the total number of solutions for a flowshop problem with m machines is ( n!)m. To
simplify the problem, it is assumed that all machines have the same job permuta-
tion. With this simplifying assumption the FSP is referred to as Permutation Flow-
shop Scheduling Problem (PFSP) with n! possible solutions. This problem is one of
the most researched topics in the scheduling literature [6, 7, etc.]. The DPFSP can
be viewed as a generalized version of the PFSP.

This paper studies the Distributed Assembly Permutation Flowshop Scheduling
Problem (DAPFSP). It is a combination of the DPFSP and the Assembly Flowshop
Scheduling Problem (AFSP), and consists of two stages: production and assembly.
The first stage comprises of a set F of f factories or production centers where a set
N of n jobs has to be scheduled. All factories are capable of processing all jobs and
each factory is a PFSP with a set M of m machines. Factories are assumed to be
identical. Processing times are denoted by p j Nij , , ∈ . The second stage is a single
assembly factory with an assembly machine, MA, which assembles jobs by using a
defined assembly program to make a set T of t different final products. Each prod-
uct has a defined assembly program. Nh and Ji are used, respectively, to represent
product’s h assembly program and the jobs that belong to the product’s h assembly
program, N J J Nh j h: ,{ } ∈ . Each product h has Nh jobs and job j is needed for the

assembly of one product. Therefore, N nh
h

t

=
=

∑
1

. Product h assembly can start only

when all jobs that belong to Nh have been completed in the different factories. The
considered objective is to minimize the makespan at the last assembly factory.

Despite the innumerable literature related to PFSP and AFSP, it seems that there
are few studies about the DPFSP. Naderi and Ruiz [5] presented the DPFSP for
the first time and developed six different MILPs , proposed two simple factory

141Two Simple Constructive algorithms for the Distributed Assembly …

assignment rules and 14 heuristics based on dispatching rules, effective construc-
tive heuristics and VND methods. To the best of our knowledge, no further literature
exists on DAPFSP, so this is the first effort that considers the assembly flowshop
problem in a distributed manufacturing setting.

The next section presents introduces two simple constructive algorithms, Sect. 3
describes a complete computational evaluation of the proposed algorithms. Finally,
Sect. 4 offers conclusions, remarks and venues for future research.

2 � Heuristic Methods

As mentioned in the paper of [5], the DPFSP is an NP-Complete problem (if n > f);
accordingly, the DAPFSP with an additional assembly stage is certainly an NP-
Complete problem (or rather, one should say that the associated decision problem
is). Therefore, it is necessary to develop a heuristic approach to solve large-sized
problems.

For the assignment of jobs to factories, the two rules ( NR1, NR2), of [5] are used.
Using these two factory allocation rules, two heuristics are presented to schedule
jobs.

2.1 � Heuristic 1

We first introduce some necessary notation. An example with n = 9, m = 2, f = 2 and
t = 3, this is, 9 jobs, 2 factories with a flowshop of two machines each and three
products to assemble, is employed to explain expressions and heuristics in some
detail. The processing times of the 9 jobs on the first and second machines on facto-
ries are {1, 5, 7, 9, 9, 3, 8, 4, 2} and {3, 8, 5, 7, 3, 4, 1, 3, 5}, respectively. Assembly
processing times of products on assembly machine are 6, 19 and 12 respectively.
The products’ assembly programs are: N1 = {3,4,6}, N2 = {1,2,8,9} and N3 = {5,7}.
π represents a product sequence, e.g., π = {1,3,2} is a possible product sequence for
the given example. As mentioned before, each product h is made up of |Nh| jobs and
πh is the partial job sequence of product h, e.g., π1:{6,4,3}, π2:{1,9,8,2}, π3:{7,5}.
A complete job sequence, πT, is constructed by putting together all partial job se-
quences, following the product sequence π, e.g., πT:{6,4,3,7,5,1,9,8,2}.

The shortest processing time (SPT) is a well-known dispatching rule for the
PFSP. Hence the SPT is used to determine the product sequence in the assembly
machine.

Heuristic 1 begins by applying the SPT rule for the assembly operation times to
obtain π, π = {1,3,2}. A heuristic which is based on [3] heuristic (FL) is applied on
the jobs that belong to a given product.

The heuristic evaluates the completion times of the jobs that belong to prod-
uct h, for example if, h = 1. Set Rh is made by sorting jobs in ascending order of

142 S. Hatami et al.

completion times, R1 = {6,3,4}. Where completion times for set of jobs of the prod-
uct 1, N1 = {3,4,6} are C23 = 12, C24 = 16, C26 = 7. The first two jobs of Rh are select-
ed and inserted into Sh, S1 = {6,3}. All jobs’ pairwise exchanges in Sh are checked
and it is updated with the one that results in the best makespan, Cmax({6,3}) = 15 and
Cmax({3,6}) = 16, S1:{6,3}. The next step is removing the third job of Rhand inserting it
in all possible positions of Sh , Cmax({4,6,3}) = 25, Cmax({6,4,3}) = 24 and Cmax({6,4,3}) = 26.
The sequence with the best makespan will be selected, S1 is updated to {6,4,3}. All
possible sequences by carrying out pairwise exchanges between jobs are evalu-
ated again, Cmax({4,6,3}) = 25, Cmax({6,4,3}) = 24, Cmax({3,4,6}) = 27. If a better makespan
is obtained, then Sh is updated. The process continues until all jobs have been
considered. Sh is the partial job sequence for product h, (πh), π1 = {6,4,3}. By fol-
lowing the same method, the partial job sequences for the other products are:
π2 = {1,9,8,2} and π3 = {5,7} with partial makespans of 20 and 18, respectively. πT
is constructed by putting together all πh and jobs are assigned to factories from πT
by using NR1 or NR2, which respectively result in the H11 or H12 heuristics. Hence
πT is {6,4,3,5,7,1,9,8,2}. The final step is to assign jobs in πT to factories by using
NR1/NR2 to obtain the H11/H12. Cmax of H11 and H12 are 55 and 53, respectively. The
Gantt chart of the considered example after applying H11 is shown in Fig. 1.

2.2 � Heuristic 2

The idea of the second heuristic is to give priority to products whose jobs are com-
pleted in the production stage sooner. This concept is noted as the earliest start time
to assemble product h, Eh. The procedure that is used in H11 and H12 to find partial
job sequences of products (πh) also is used in heuristic 2. Eh, is calculated by using
NR1 or NR2 to assign jobs in each partial job sequence to factories. For example, the
earliest start times for assembling products by considering NR2 are E1 = 15, E2 = 15,
E3 = 12. π is built by sorting Eh in ascending order.

6

6

83

3

7

7

5

5

4

4

1

1

9

9

2

2

Pro. 1 Pro. 3 Pro. 2

Factory 1

Factory 2

Assembly
factory

8

Fig. 1   Gantt chart of H11 for the example

143

3 � Computational Evaluation

Two complete sets of instances have been generated to test the proposed heuristics.
Four instance factors ( n.m, f,t) are combined at the levels provided for small and
large instances. In small instances, number of jobs ( n) is tested at 5 levels, 8, 12,
16, 20 and 24, number of machines ( m) has 4 levels, 2, 3, 4 and 5, both factors of
number of factories ( f) and number of products ( t) have 3 levels, 2, 3 and 4. In the
large instances, all factors have 3 levels and are; n = {100, 200, 500}, m = {5, 10 20},
f = {4, 6, 8} and t = {30, 40, 50}.

Processing times in the production stage are fixed to ∪ [,]1 99 as it is usual in the
scheduling literature. The assembly processing times depend on the number of jobs
assigned to each product h as U N Nh h1 99× × , . The total number of combina-
tions in the small and large instances are 5 4 3 1802× × = and 3 814 = , respectively.
There are five replications per combination for small instances and ten replications
for every large combination. Therefore, the total number of instances is 900 and
810, respectively. All instances are available at soa.iti.es.

3.1 � Heuristics Evaluation on Small Instances

The four proposed methods ( H11,H12,H21,H22) are tested. A MILP model is con-
structed for the small instances are solved with two commercial solver packages
(CPLEX 12.3 and GUROBI 4.6.1). Serial (1 thread) and parallel (2 threads) and two
time limits (900 and 3600 s) are tested with the solvers.

As the proposed heuristics are not expected to find an optimal solution, the Rela-
tive Percentage Deviation (RPD), is measured for comparisons. We measure RPD as
follows: using the optimal solution or the best known solution, ( OPTbest) and ALGSOL,
which reports the makespan obtained by a given algorithm for a given instance:

Table 1 provides the summarized results of the MILP and the average algorithm
deviations from the best known solution for the small instances. They are grouped
by n and f

MILP reports better results when compared to the proposed heuristics. CPU
times to solve small instances with the proposed algorithms are negligible while
most of the instances that are solved with the MILP. Therefore, the 3 % average
deviation of H22 needs to be contextualized.

In order to identify the best algorithm, a means plot and Tukey’s Honest Signifi-
cant Difference (HSD) intervals (99 % confidence) for the four simple constructive
heuristics is shown in Fig. 2. The second heuristic performs better in comparison
with the other simple constructive heuristic and there is no significant difference
between the rules used to assign jobs to factories.

RPD
ALG OPT

OPT
SOL best

best

=
−

×100

Two Simple Constructive algorithms for the Distributed Assembly …

144 S. Hatami et al.

3.2 � Heuristics Evaluation on Large Instances

In this case, for calculating the RPD, only the best known solution is used as the
MILP cannot be employed. A summarized result of the average RPD, considering
number of factories, number of products and number of jobs, is shown in Table 2.
Figure 2 shows a means plot (99 % confidence level Tukey’s HSD intervals) of the
proposed algorithms for large instances.

The second proposed algorithm performs better than the first one also for the
large instances. NR2 as a job assignment rule, reports better results on the first al-
gorithm while job assignment rule on second algorithms does not have any signifi-
cant effect. It is clear on Table 2, generally when the number of factories and jobs
increases, finding a better solution becomes easier, while this trend has a reverse
effect when the number of products increases. Proposed simple constructive algo-
rithms use a very short time in order to solve problems (less than 0.01 s on average),
therefore the details are not reported.

Algorithms
f × n MILP H11 H12 H21 H22

2 × 8 0.00 14.62 13.61 6.91 5.99
2 × 12 0.01 13.70 12.78 5.74 5.17
2 × 16 0.42 12.52 11.40 5.77 5.10
2 × 20 1.26 9.92 9.28 4.25 3.48
2 × 24 2.70 7.75 7.38 4.07 3.81
3 × 8 0.00 11.35 9.96 4.57 3.15
3 × 12 0.00 9.96 9.13 3.03 2.55
3 × 16 0.06 10.10 9.16 3.77 3.14
3 × 20 0.35 9.86 8.93 2.72 2.19
3 × 24 1.18 7.65 6.37 3.00 2.40
4 × 8 0.00 9.03 8.01 2.16 1.25
4 × 12 0.00 5.63 4.53 1.82 1.38
4 × 16 0.04 7.21 6.34 2.86 2.27
4 × 20 0.23 6.80 6.00 2.96 2.61
4 × 24 0.44 5.13 4.42 2.00 1.59
Average 0.45 9.41 8.49 3.71 3.07

Table 1   Relative Percentage
Deviation (RPD) of MILP
and proposed algorithms over
the best known solution for
the small instances

Fig. 2   Means plot and 99 %
confidence level Tukey’s
HSD intervals of the relative
percentage deviation for
simple constructive heuristic
methods for small instances
on the left and for large
instances on the right

145

4 � Conclusion and Future Research

To the best of our knowledge, this paper is the first attempt to generalize the Dis-
tributed Permutation Flowshop Scheduling Problem to the Distributed Assembly
Permutation Flowshop Scheduling Problem, where there is more than one produc-
tion center to process jobs and a single assembly center to make final products from
produced jobs. Two constructive algorithms are proposed.

Computational evaluations were performed with two groups of small and large
instances. Results show that in small instances MILP reported results perform bet-
ter than the proposed algorithms. On the other side, the proposed methods consume
very little CPU time in comparison with the MILP while they still produce reason-
able solutions.

For future works, the setup time and distinct production factories can be consid-
ered in the presented model to make it more realistic. Applying metaheuristics like
a Genetic Algorithm, Tabu Search, etc., may report better solutions if compared to
our proposed simple heuristics.

References

1.	 Al-Anzi F, Allahverdi A (2006) A hybrid tabu search heuristic for the two-stage assembly
scheduling problem. Int J of Oper Res 3(2):109–119

2.	 Baker KR (1974) Introduction to sequencing and scheduling. Wiley, New York
3.	 Framinan J, Leisten R (2003) An efficient constructive heuristic for flowtime minimisation in

permutation flow shops. Omega Int J Manage Sci 31(4):311–317
4.	 Koulamas C, Kyparisis GJ (2001) The three stage assembly flowshop scheduling problem.

Comput Oper Res 28(7):689–704
5.	 Naderi B, Ruiz R (2010) The distributed permutation flowshop scheduling problem. Comput

Oper Res 37(4):754–768
6.	 Pan QK, Ruiz R (2012) Local search methods for the flowshop scheduling problem with flow-

time minimization. Eur J Oper Res 222(1):31–43
7.	 Pinedo M (2012) Scheduling: theory, algorithms and systems, 4th edn. Springer, New York
8.	 Tozkapan A, Kirca O, Chung CS (2003) A branch and bound algorithm to minimize the to-

tal weighted flowtime for the two-stage assembly scheduling problem. Comput Oper Res
30(2):309–320

Two Simple Constructive algorithms for the Distributed Assembly …

Number of
factories ( f)

Number of
products ( t)

Number of
jobs ( n)

Aver-
age

Algo-
rithms

4 6 8 30 40 50 100 200 500

H11 5.39 3.72 3.07 3.66 4.20 4.31 6.21 3.69 2.27 4.06
H12 4.91 3.24 2.65 3.23 3.76 3.80 5.53 3.21 2.06 3.60
H21 0.14 0.06 0.02 0.10 0.06 0.07 0.09 0.09 0.04 0.07
H22 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00

Table 2   Relative Percent-
age Deviation (RPD) for the
proposed algorithms over the
best known solution for the
large instances

	Part II
	Production
	Two Simple Constructive algorithms for the Distributed Assembly Permutation Flowshop Scheduling Problem
	1 Introduction
	2 Heuristic Methods
	2.1 Heuristic 1
	2.2 Heuristic 2

	3 Computational Evaluation
	3.1 Heuristics Evaluation on Small Instances
	3.2 Heuristics Evaluation on Large Instances

	4 Conclusion and Future Research
	References

