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Abstract  Nowadays, it is necessary to improve the management of complex sup-
ply chains which are often composed of multi-plant facilities. This paper proposes a 
Distributed Assembly Permutation Flowshop Scheduling Problem (DAPFSP). This 
problem is a generalization of the Distributed Permutation Flowshop Scheduling 
Problem (DPFSP) presented by Naderi and Ruiz (Comput Oper Res, 37(4):754–768, 
2010). The first stage of the DAPFSP is composed of f identical production facto-
ries. Each center is a flowshop that produces jobs that have to be assembled into 
final products in a second assembly stage. The objective is to minimize the makes-
pan. Two simple constructive algorithms are proposed to solve the problem. Two 
complete sets of instances (small-large) are considered to evaluate performance of 
the proposed algorithms.

Keywords  Distributed assembly flowshop · Permutation flowshop · constructive 
algorithms

1 � Introduction

Assembly systems have been widely studied in the last decade given their practi-
cal interest and applications. An assembly flowshop is a hybrid production system 
where various production operations are independently and concurrently performed 
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to make parts that are delivered to an assembly line [4]. Tozkapan et al. [8] consid-
ered a two-stage assembly scheduling problem by minimizing the total weighted 
flow time as an objective function. Al-Anzi and Allahverdi [1] addressed the model 
presented by [8] and minimized the total completion time of all the jobs by using 
metaheuristics to solve their model. This is just a small extract of the many existing 
papers in this regard.

From a manager’s point of view, scheduling in these systems is more complicat-
ed than in single-factory settings. In single-factory problems, the only objective is 
to find a job schedule for a set of machines, while an important additional decision 
in the distributed problem is allocating jobs to suitable factories.

In this paper, flowshop scheduling is used as a production system for each fac-
tory or supplier in the distributed problem. The flowshop scheduling problem (FSP) 
is composed of a set of M of m machines where each job of a set N of n jobs must be 
processed in each machine. The number of operations per job is equal to the num-
ber of machines. The ith operation of each job is processed in machine i. Therefore, 
one job can start in machine i only after it has been completed in machine i−1, and 
if machine i is free. The processing times of each job in the machines are known 
in advance, non-negative and deterministic. In FSPs, a number of assumptions are 
made [2].

In the FSP, there are n! possible job permutations for each machine. Therefore, 
the total number of solutions for a flowshop problem with m machines is ( n!)m. To 
simplify the problem, it is assumed that all machines have the same job permuta-
tion. With this simplifying assumption the FSP is referred to as Permutation Flow-
shop Scheduling Problem (PFSP) with n! possible solutions. This problem is one of 
the most researched topics in the scheduling literature [6, 7, etc.]. The DPFSP can 
be viewed as a generalized version of the PFSP.

This paper studies the Distributed Assembly Permutation Flowshop Scheduling 
Problem (DAPFSP). It is a combination of the DPFSP and the Assembly Flowshop 
Scheduling Problem (AFSP), and consists of two stages: production and assembly. 
The first stage comprises of a set F of f factories or production centers where a set 
N of n jobs has to be scheduled. All factories are capable of processing all jobs and 
each factory is a PFSP with a set M of m machines. Factories are assumed to be 
identical. Processing times are denoted by p j Nij , , ∈ . The second stage is a single 
assembly factory with an assembly machine, MA, which assembles jobs by using a 
defined assembly program to make a set T of t different final products. Each prod-
uct has a defined assembly program. Nh and Ji are used, respectively, to represent 
product’s h assembly program and the jobs that belong to the product’s h assembly 
program, N J J Nh j h: ,{ } ∈ . Each product h has Nh jobs and job j is needed for the 

assembly of one product. Therefore, N nh
h

t

=
=

∑
1

. Product h assembly can start only 

when all jobs that belong to Nh have been completed in the different factories. The 
considered objective is to minimize the makespan at the last assembly factory.

Despite the innumerable literature related to PFSP and AFSP, it seems that there 
are few studies about the DPFSP. Naderi and Ruiz [5] presented the DPFSP for 
the first time and developed six different MILPs , proposed two simple factory 
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assignment rules and 14 heuristics based on dispatching rules, effective construc-
tive heuristics and VND methods. To the best of our knowledge, no further literature 
exists on DAPFSP, so this is the first effort that considers the assembly flowshop 
problem in a distributed manufacturing setting.

The next section presents introduces two simple constructive algorithms, Sect. 3 
describes a complete computational evaluation of the proposed algorithms. Finally, 
Sect. 4 offers conclusions, remarks and venues for future research.

2 � Heuristic Methods

As mentioned in the paper of [5], the DPFSP is an NP-Complete problem (if n > f); 
accordingly, the DAPFSP with an additional assembly stage is certainly an NP-
Complete problem (or rather, one should say that the associated decision problem 
is). Therefore, it is necessary to develop a heuristic approach to solve large-sized 
problems.

For the assignment of jobs to factories, the two rules ( NR1, NR2), of [5] are used. 
Using these two factory allocation rules, two heuristics are presented to schedule 
jobs.

2.1 � Heuristic 1

We first introduce some necessary notation. An example with n = 9, m = 2, f = 2 and 
t = 3, this is, 9 jobs, 2 factories with a flowshop of two machines each and three 
products to assemble, is employed to explain expressions and heuristics in some 
detail. The processing times of the 9 jobs on the first and second machines on facto-
ries are {1, 5, 7, 9, 9, 3, 8, 4, 2} and {3, 8, 5, 7, 3, 4, 1, 3, 5}, respectively. Assembly 
processing times of products on assembly machine are 6, 19 and 12 respectively. 
The products’ assembly programs are: N1 = {3,4,6}, N2 = {1,2,8,9} and N3 = {5,7}. 
π represents a product sequence, e.g., π = {1,3,2} is a possible product sequence for 
the given example. As mentioned before, each product h is made up of |Nh| jobs and 
πh is the partial job sequence of product h, e.g., π1:{6,4,3}, π2:{1,9,8,2}, π3:{7,5}. 
A complete job sequence, πT, is constructed by putting together all partial job se-
quences, following the product sequence π, e.g., πT:{6,4,3,7,5,1,9,8,2}.

The shortest processing time (SPT) is a well-known dispatching rule for the 
PFSP. Hence the SPT is used to determine the product sequence in the assembly 
machine.

Heuristic 1 begins by applying the SPT rule for the assembly operation times to 
obtain π, π = {1,3,2}. A heuristic which is based on [3] heuristic (FL) is applied on 
the jobs that belong to a given product.

The heuristic evaluates the completion times of the jobs that belong to prod-
uct h, for example if, h = 1. Set Rh is made by sorting jobs in ascending order of 
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completion times, R1 = {6,3,4}. Where completion times for set of jobs of the prod-
uct 1, N1 = {3,4,6} are C23 = 12, C24 = 16, C26 = 7. The first two jobs of Rh are select-
ed and inserted into Sh, S1 = {6,3}. All jobs’ pairwise exchanges in Sh are checked 
and it is updated with the one that results in the best makespan, Cmax({6,3}) = 15 and 
Cmax({3,6}) = 16, S1:{6,3}. The next step is removing the third job of Rhand inserting it 
in all possible positions of Sh , Cmax({4,6,3}) = 25, Cmax({6,4,3}) = 24 and Cmax({6,4,3}) = 26. 
The sequence with the best makespan will be selected, S1 is updated to {6,4,3}. All 
possible sequences by carrying out pairwise exchanges between jobs are evalu-
ated again, Cmax({4,6,3}) = 25, Cmax({6,4,3}) = 24, Cmax({3,4,6}) = 27. If a better makespan 
is obtained, then Sh is updated. The process continues until all jobs have been 
considered. Sh is the partial job sequence for product h, (πh), π1 = {6,4,3}. By fol-
lowing the same method, the partial job sequences for the other products are: 
π2 = {1,9,8,2} and π3 = {5,7} with partial makespans of 20 and 18, respectively. πT 
is constructed by putting together all πh and jobs are assigned to factories from πT 
by using NR1 or NR2, which respectively result in the H11 or H12 heuristics. Hence 
πT is {6,4,3,5,7,1,9,8,2}. The final step is to assign jobs in πT to factories by using 
NR1/NR2 to obtain the H11/H12. Cmax of H11 and H12 are 55 and 53, respectively. The 
Gantt chart of the considered example after applying H11 is shown in Fig. 1.

2.2 � Heuristic 2

The idea of the second heuristic is to give priority to products whose jobs are com-
pleted in the production stage sooner. This concept is noted as the earliest start time 
to assemble product h, Eh. The procedure that is used in H11 and H12 to find partial 
job sequences of products (πh) also is used in heuristic 2. Eh, is calculated by using 
NR1 or NR2 to assign jobs in each partial job sequence to factories. For example, the 
earliest start times for assembling products by considering NR2 are E1 = 15, E2 = 15, 
E3 = 12. π is built by sorting Eh in ascending order.
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Fig. 1   Gantt chart of H11 for the example
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3 � Computational Evaluation

Two complete sets of instances have been generated to test the proposed heuristics. 
Four instance factors ( n.m, f,t) are combined at the levels provided for small and 
large instances. In small instances, number of jobs ( n) is tested at 5 levels, 8, 12, 
16, 20 and 24, number of machines ( m) has 4 levels, 2, 3, 4 and 5, both factors of 
number of factories ( f) and number of products ( t) have 3 levels, 2, 3 and 4. In the 
large instances, all factors have 3 levels and are; n = {100, 200, 500}, m = {5, 10 20}, 
f = {4, 6, 8} and t = {30, 40, 50}.

Processing times in the production stage are fixed to ∪ [ , ]1 99 as it is usual in the 
scheduling literature. The assembly processing times depend on the number of jobs 
assigned to each product h as U N Nh h1 99× × , . The total number of combina-
tions in the small and large instances are 5 4 3 1802× × =  and 3 814 = , respectively. 
There are five replications per combination for small instances and ten replications 
for every large combination. Therefore, the total number of instances is 900 and 
810, respectively. All instances are available at soa.iti.es.

3.1 � Heuristics Evaluation on Small Instances

The four proposed methods ( H11,H12,H21,H22) are tested. A MILP model is con-
structed for the small instances are solved with two commercial solver packages 
(CPLEX 12.3 and GUROBI 4.6.1). Serial (1 thread) and parallel (2 threads) and two 
time limits (900 and 3600 s) are tested with the solvers.

As the proposed heuristics are not expected to find an optimal solution, the Rela-
tive Percentage Deviation (RPD), is measured for comparisons. We measure RPD as 
follows: using the optimal solution or the best known solution, ( OPTbest) and ALGSOL, 
which reports the makespan obtained by a given algorithm for a given instance:

Table 1 provides the summarized results of the MILP and the average algorithm 
deviations from the best known solution for the small instances. They are grouped 
by n and f

MILP reports better results when compared to the proposed heuristics. CPU 
times to solve small instances with the proposed algorithms are negligible while 
most of the instances that are solved with the MILP. Therefore, the 3 % average 
deviation of H22 needs to be contextualized.

In order to identify the best algorithm, a means plot and Tukey’s Honest Signifi-
cant Difference (HSD) intervals (99 % confidence) for the four simple constructive 
heuristics is shown in Fig. 2. The second heuristic performs better in comparison 
with the other simple constructive heuristic and there is no significant difference 
between the rules used to assign jobs to factories.

RPD
ALG OPT

OPT
SOL best

best

=
−

×100
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3.2 � Heuristics Evaluation on Large Instances

In this case, for calculating the RPD, only the best known solution is used as the 
MILP cannot be employed. A summarized result of the average RPD, considering 
number of factories, number of products and number of jobs, is shown in Table 2. 
Figure 2 shows a means plot (99 % confidence level Tukey’s HSD intervals) of the 
proposed algorithms for large instances.

The second proposed algorithm performs better than the first one also for the 
large instances. NR2 as a job assignment rule, reports better results on the first al-
gorithm while job assignment rule on second algorithms does not have any signifi-
cant effect. It is clear on Table 2, generally when the number of factories and jobs 
increases, finding a better solution becomes easier, while this trend has a reverse 
effect when the number of products increases. Proposed simple constructive algo-
rithms use a very short time in order to solve problems (less than 0.01 s on average), 
therefore the details are not reported.

Algorithms
f × n MILP H11 H12 H21 H22

2 × 8 0.00 14.62 13.61 6.91 5.99
2 × 12 0.01 13.70 12.78 5.74 5.17
2 × 16 0.42 12.52 11.40 5.77 5.10
2 × 20 1.26 9.92 9.28 4.25 3.48
2 × 24 2.70 7.75 7.38 4.07 3.81
3 × 8 0.00 11.35 9.96 4.57 3.15
3 × 12 0.00 9.96 9.13 3.03 2.55
3 × 16 0.06 10.10 9.16 3.77 3.14
3 × 20 0.35 9.86 8.93 2.72 2.19
3 × 24 1.18 7.65 6.37 3.00 2.40
4 × 8 0.00 9.03 8.01 2.16 1.25
4 × 12 0.00 5.63 4.53 1.82 1.38
4 × 16 0.04 7.21 6.34 2.86 2.27
4 × 20 0.23 6.80 6.00 2.96 2.61
4 × 24 0.44 5.13 4.42 2.00 1.59
Average 0.45 9.41 8.49 3.71 3.07

Table 1   Relative Percentage 
Deviation (RPD) of MILP 
and proposed algorithms over 
the best known solution for 
the small instances

Fig. 2   Means plot and 99 % 
confidence level Tukey’s 
HSD intervals of the relative 
percentage deviation for 
simple constructive heuristic 
methods for small instances 
on the left and for large 
instances on the right
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4 � Conclusion and Future Research

To the best of our knowledge, this paper is the first attempt to generalize the Dis-
tributed Permutation Flowshop Scheduling Problem to the Distributed Assembly 
Permutation Flowshop Scheduling Problem, where there is more than one produc-
tion center to process jobs and a single assembly center to make final products from 
produced jobs. Two constructive algorithms are proposed.

Computational evaluations were performed with two groups of small and large 
instances. Results show that in small instances MILP reported results perform bet-
ter than the proposed algorithms. On the other side, the proposed methods consume 
very little CPU time in comparison with the MILP while they still produce reason-
able solutions.

For future works, the setup time and distinct production factories can be consid-
ered in the presented model to make it more realistic. Applying metaheuristics like 
a Genetic Algorithm, Tabu Search, etc., may report better solutions if compared to 
our proposed simple heuristics.
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Number of 
factories ( f)

Number of 
products ( t)

Number of 
jobs ( n)

Aver-
age

Algo-
rithms

4 6 8 30 40 50 100 200 500

H11 5.39 3.72 3.07 3.66 4.20 4.31 6.21 3.69 2.27 4.06
H12 4.91 3.24 2.65 3.23 3.76 3.80 5.53 3.21 2.06 3.60
H21 0.14 0.06 0.02 0.10 0.06 0.07 0.09 0.09 0.04 0.07
H22 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00

Table 2   Relative Percent-
age Deviation (RPD) for the 
proposed algorithms over the 
best known solution for the 
large instances

 


	Part II 
	Production
	Two Simple Constructive algorithms for the Distributed Assembly Permutation Flowshop Scheduling Problem
	1 Introduction
	2 Heuristic Methods
	2.1 Heuristic 1
	2.2 Heuristic 2

	3 Computational Evaluation
	3.1 Heuristics Evaluation on Small Instances
	3.2 Heuristics Evaluation on Large Instances

	4 Conclusion and Future Research
	References






