
Chapter 8
On the Distribution of Solutions to Diophantine
Equations

Ákos Magyar

Abstract Let P be a positive homogeneous polynomial of degree d , with integer
coefficients, and for natural numbers � consider the solution sets

ZP;� D fm 2 Zn W P.m/ D �g:

We’ll study the asymptotic distribution of the images of these sets when projected
onto the unit level surface fP D 1g via the dilations, and also when mapped to the
flat torus Tn. Assuming the number of variables n is large enough with respect to
the degree d we will obtain quantitative estimates on the rate of equi-distribution
in terms of upper bounds on the associated discrepancy. Our main tool will be
the Hardy-Littlewood method of exponential sums, which will be utilized to obtain
asymptotic expansions of the Fourier transform of the solution sets

!P;�.�/ D
X

m2Zn; P.m/D�
e2�im�� ;

relating these exponential sums to Fourier transforms of surface carried measures.
This will allow us to compare the discrete and continuous case and will be crucial
in our estimates on the discrepancy.

8.1 Introduction

A fundamental problem in number theory is to find integer solutions of diophantine
equations, that is equations of the form
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P.m1; : : : ; mn/ D �

where P is a polynomial with integer coefficients. The approaches fall into two
broad categories, algebraic and analytic, the latter being especially useful when the
number of variables is large with respect to the degree of the polynomial.

If the polynomial P is also positive and homogeneous of (even) degree d , then
for each natural number �, there is a finite solution set

ZP;� D fm 2 Zn W P.m/ D �g: (8.1)

One may view these sets as the set of lattice points on the level surfaces fP D �g and
by homogeneity they can be projected onto the unit level surface SP WD fP D 1g via
the dilationsm ! ��1=dm. We will study the rate of equi-distribution of the images
of the solution sets Z0

P;� on the unit level surface SP as � ! 1. Of course one
needs some more conditions on the polynomialP in order to have solutions at all of
the diophantine equationP.m/ D �. For example ifP.m/ D m8

1C.m2
2C: : :Cm2

n/
4

then even for large n there are only a sparse set of �’s (namely which can be written
as a sum of an 8-th and a 4-th power) for which there are solutions, and even for
those values of � one cannot have equi-distribution as the first coordinate m1 can
take very few values. A natural condition on the polynomialP , introduced by Birch
[4], is that of P being non-singular in the sense that

rP.z/ D .@1P.z/; : : : ; @nP.z// ¤ 0; for all z 2 Cn; z ¤ 0:

Also, there are local or congruence obstructions. For example, the polynomial
P.m/ D md

1 C p.md
2 C : : : C md

n/ is non-singular, but the equation P.m/ D �

can only have an integer solution if � is congruent to a d -th power modulo p.
Nevertheless, as it is implicit in the work of Birch [4], that if P is non-singular
and if the number of variables n is large enough with respect to the degree d ,
then there is an infinite arithmetic progression � depending on P , which can be
explicitly determined, such that for each � 2 � the equation P.m/ D � has the
expected number of solutions � �n=d�1, in fact the number of solutions can be
asymptotically determined. We will refer to such a set � as a set of regular values
of the polynomial P .

As mentioned earlier, one of the problems we will be interested in is the asymp-
totic distribution of the images of the solution sets Z0

P;� D f��1=dmI P.m/ D �g
as � ! 1 (� 2 �), on the unit level surface SP . First, one can show that there
is a natural measure �P on the surface SP , such that the sets Z0

P;� become weakly
equi-distributed with respect to the measure d�P . That is for any smooth function �
one has that

1

N�

X

x2Z0

P;�

�.x/ !
Z

SP

�.x/ d�P .x/; as � ! 1; � 2 �;
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where N� is the number of solutions of the equation P.m/ D �. To get quantitative
information on the rate of equi-distribution, we define below the discrepancy of a
finite setZ � SP with respect to caps. For a unit vector � 2 Rn and positive number
a, define the cap

Ca;� WD fx 2 SP W x � � � ag;

where x �� is the dot product of the vectors x and �. Note that Ca;� is the intersection
of the surface SP with the half-space defined by x � � � a, and we will refer to �
as the direction of the cap. The associated discrepancy of a finite set Z � SP ,
consisting of N points, with respect to caps of a given direction � is given by

D.Z; �/ D sup
a>0

j jZ \ Ca;� j �N �P .Ca;�/j; (8.2)

where jAj denotes the size of a set A.
It turns out that for the solution sets Z0

P;� the discrepancy depends heavily on the
direction of the cap. To see this consider the polynomialP.m/ D m2

1C : : :Cm2
n, so

that one is interested in the distribution of lattice points on spheres, projected back
to the unit sphere. It is well-known that for n � 5, the size of the solution sets are
N� � �

n
2�1. If � D .0; : : : ; 0; 1/ then for certain values of a, the boundary of the

cap contain as many as � �
n�3
2 points from the set Z0

P;�. Indeed, after scaling back
with a factor of �1=2, the boundary of the cap is given by the equation.
m2
1 C : : :Cm2

n�1 D � for some � depending on � and a. Thus the discrepancy

cannot be smaller than �
n�3
2 � N

1� 1
n�2

� . In contrast, we will show that if the
direction of the cap points away from rational points as much as possible, then one
can obtain much better bounds on the discrepancy. To be more precise let us call a
point ˛ 2 Rn�1 diophantine, if for every " > 0 there exists a constant C	 > 0 such
that for all q 2 N

kq˛k D min
m2Zn�1

jq˛ �mj � C" q
� 1
n�1�": (8.3)

Correspondingly a point � 2 Sn�1 is called diophantine if for every 1 � i � n

for which �i ¤ 0, the point ˛i 2 Rn�1 is diophantine, where the coordinates of ˛i

are obtained by dividing each coordinate of � by �i and deleting the i -th coordinate.
It is easy to see that the complement of diophantine points has measure 0 in Rn�1
and hence in Sn�1 as well, see [Lemma 3, Sec. 2.2]. We will show, see also [13], in
dimensions n � 4, that the discrepancy is bounded by above by

D.Z0
P;�; �/ � C�;" N

1
2C 1

2.n�2/

� (8.4)



490 Á. Magyar

for all " > 0, when � is diophantine. This is especially significant in large
dimensions as it is known from the works of Beck and Schmidt [3, 15], see also
[12], that for any set of N points on the unit sphere Sn�1, the L2 average of the

discrepancy with respect to spherical caps is at least N
1
2� 1

2.n�1/ . For general non-
singular, positive and homogeneous polynomials P , the same observation shows
that for rational directions (p.e. when � D .0; : : : ; 0; 1/), the discrepancy is at least

N
1� 1

n�d

� , while we’ll show that in diophantine directions it is bounded by N1�
d
�

with 
d D 1

.d�1/2dC1 , in large enough dimensions.
We will also study the equi-distribution of the solutions when mapped to the

flat torus Tn D Rn=Zn. Let ˛ D .˛1; : : : ; ˛n/ 2 Rn and consider the map T˛ W
Zn ! Tn, defined by T˛.m/ D .m1˛1; : : : ; mn˛n/ .mod 1/ . Then the images of
the solution sets take the form

˝�;˛ D f.m1˛1; : : : ; mn˛n/I P.m1; : : : ; mn/ D �g � Tn:

It is clear that if one of the coordinates of the point ˛ is rational then the
corresponding coordinate of the points in the image set can take only finitely many
different values and the sets ˝�;˛ cannot become equi-distributed as � ! 1.
It turns out that this is the only obstruction for non-singular polynomials P in
sufficiently many variables. Indeed we will see that if ˛ 2 .RnQ/n, then for any
� 2 C1.T n/ we have that

N�1
�

X

P.m/D�
�.m1˛1; : : : ; mn˛n/ !

Z

Tn
�.x/ dx; (8.5)

as � ! 1 through regular values of the polynomial P . To obtain quantitative
bounds on the rate of equi-distribution, we will assume that each coordinate of the
point ˛ is diophantine, that is kq˛ik � C"q

�1�" , for all " > 0 and for all q 2 N
with an appropriate constant C" > 0. Identify the torus with the set Œ� 1

2
; 1
2
/n and let

K � .� 1
2
; 1
2
/n be a compact, convex set with nonempty interior. The discrepancy

of the image set ˝�;˛ with respect to the convex bodyK is defined by

D.K; ˛; �/ D
X

P.m/D�
�K.m1˛1; : : : ; mn˛n/�N� voln.K/;

where �K is the indicator function of the set K . We will show that for diophantine
points ˛ one has the upper bound

jD.K; ˛; �/j � CP �
n
d �1�
d ; (8.6)

for some constant 
d > 0 depending only on the degree d .
Let us remark that the above is a special case of a more general phenomenon;

namely if .X;�/ is a probability measure space, and if T D .T1; : : : ; Tn/ is a
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commuting, fully ergodic family of measure-preserving transformations, then the
images of the solution sets

˝�;x WD fT m11 : : : T mnn .x/I P.m1; : : : ; mn/ D �g � X;

become equi-distributed as � ! 1; .� 2 �/, for almost every x 2 X [11].
To prove such results one needs estimate certain maximal operators associated to
averages over the solution sets P.m/ D �, however, as in this generality one cannot
hope for quantitative bounds on the rate of equi-distribution, we will not discuss
such results below.

Crucial to all these results is the structure of the Fourier transform of the indicator
function of the set of lattice points on the level surface fP D �g. This is an
exponential sum of the form

O!�.�/ D
X

m2Zn; P.m/D�
e�2�i m�� : (8.7)

Note that O!�.0/ D N�, that is the number of solutions to the equation P.m/ D �,
a quantity which has been extensively studied in analytic number theory. Indeed
for the special case P.m/ D m2

1 C : : : C m2
n asymptotic formulae for the number

of solutions were obtained by Hardy and Littlewood, by developing the so-called
“circle method” of exponential sums. Their methods were later further extended by
Birch and Davenport [4, 5], to treat higher degree non-diagonal forms; in fact they
have shown that

N� D O!�.0/ D cp�
n
d �1

1X

qD1
K.q; 0; �/CO.�

n
d �1�ı/; (8.8)

for some ı > 0. The expression K.�/ D P1
qD1 K.q; 0; �/ is called the singular

series, and it capturers all the local arithmetic information about the polynomial
P . Without recalling the precise definition of the terms K.q; 0; �/ here (see
Sect. 8.3.1.4), it is enough to note here that for regular values � 2 � the singular
series K.�/ bounded below by a fixed constant AP > 0. It turns out that one
can derive similar asymptotic formulas for the exponential sums O!�.�/, which are
uniform in the phase variable �. Namely, we will show that

O!�.�/ D cP �
n
d �1

1X

qD1
mq;�.�/C E�.�/; (8.9)

where

sup
�

jE .�/j � C �.
n
d �1/.1�
/:
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Moreover

mq;�.�/ D
X

l2Zn

K.q; l; �/  .q� � l/ Q�P .� 1
d .� � l=q//;

where  is a smooth cut-off function supported near the origin, and Q�P is the
Euclidean Fourier transform of the surface measure �P

Q�P .�/ D
Z

SP

e�2�i x�� d�P .x/:

To describe the meaning of this formula, note first that for � near the origin

m1;�.�/ D  .�/ Q�P .� 1
d .�//;

since K.1; 0; �/ D 1. The term cP �
n
d �1 Q�P .� 1

d �/ can be interpreted as the Fourier
transform of a smooth density supported on the level surface fP D �g. Thus the
first term in the approximation formula may be viewed as an approximation near
the origin via the Fourier transform of a surface carried measure. Notice also that all
other terms are similar involving the Fourier transform Q�P .� 1

d .� � l=q// , and may
be viewed as higher order approximations near the rational points l=q. In fact if �
is near a rational point l=q, then the sum expressing mq;�.�/ has only one nonzero
term taken at l D Œq��, the nearest integer point to q�.

Let us sketch below how this formula will allow us to compare the discrete and
the continuous case and to estimate the rate of equi-distribution of the solution sets
in terms of the discrepancy.

Let �a be the indicator function of the interval Œa; b� (b being a fixed num-
ber depending on P ), then by taking the inverse Fourier transform �a DR O�a.t/e2�it �dt , and by making a change of variables t ! ��1=d t , one may write

jZ0
P;� \ Ca;� j D

X

P.m/D�
�a.�

� 1
d m � �/ D

Z

R
�
1
d O�a.t� 1

d / O!�.t�/ dt;

and also

�P .Ca;�/ D
Z

SP

�a.x � �/ d�P .x/ D
Z

R
O�a.t/ Q�P .t�/ dt:

Substituting the asymptotic formula (8.9) into this expression one may study the
contribution of each term separately

Iq;�.�/ WD
Z

R
�
1
d O�a.t� 1

d /mq;�.t�/ dt:
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A crucial point is that if jt j 	 q�1 then  .qt� � l/ D 0 unless l D 0, moreover
 .qt�/ D 1, hence

mq;�.t�/ D K.q; 0; �/ Q�P .� 1
d t�/:

Writing

Iq;�.�/ D
Z

jt j�q�1

C
Z

jt j�q�1

D I 1q;�.�/C I 2q;�.�/;

one has, after a change of variables t WD �1=d t , that

I 1q;�.�/ D K.q; 0; �/

Z

jt j��
1
d q�1

O�a.t/ Q�P .t�/ dt:

At this point one exploits the cancelation in the normalized exponential sums
K.q; l; �/ and oscillatory integrals Q�P .�/, expressed in estimates roughly of the
form

jK.q; l; �/j 	 q�cn

j Q�P .�/j 	 .1C j�j/�c0n:

Then, for j�j D 1, one can extend the integral to the whole real line by making a
small error. This gives

I 1q;�.�/ � K.q; 0; �/

Z

R
O�a.t/ Q�P .t�/ dt D K.q; 0; �/ �P .Ca;� /:

Thus by formula (8.8), we have that

cP �
n
d �1

1X

qD1
I 1q;�.�/ � N� �P .Ca;�/: (8.10)

To get upper bounds for the discrepancy one needs to estimate the total contribution
of the rest of terms I 2q;�.�/, exploiting the diophantine properties of the point �. In
fact by making a change of variables t WD qt , and noting that the only nonzero term
of the sum expressing mq;�.

t
q
�/ is taken at l D Œt��, one may write

I 2q;�.�/ D �
1
d

q

Z

jt j�1

O�a
 
t
�
1
d

q

!
K.q; Œt��; �/  .ft�g/ Q�P

 
�
1
d

q
ft�g

!
dt;

where ft�g D t� � Œt�� denotes the fractional part of the point t�. At diophantine
points it is not hard to show that on average jft�gj D kt�k � c" t

�" (see Lemma 6
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in Sect. 8.2.2), thus using the cancelation estimates for K.q; l; �/ and Q�.�/ again,
the terms I 2q;�.�/ add up only to a small error.

The organization of the rest of this chapter is as follows. In the next section
we will derive the asymptotic expansion (8.9) for the polynomial P.m/ D m2

1 C
: : : C m2

d , and prove upper bounds on the discrepancy of lattice points on spheres.
Next, we will extend our approach to general non-singular forms, using the Birch-
Davenport method of exponential sums. Finally, in the last section we will study the
equi-distribution of the images of the solution sets fP.m/ D �g modulo 1, when
mapped to the flat torus Tn via the map T˛.

As for our notations, we will think of the polynomial P hence the parameters
n, d being fixed, and write f D O.g/ or alternatively f 	 g if jf .m/j �
C g.m/ for all m 2 N with a constant C > 0 depending only on the polynomial
P or the parameters n, d . We will also write, f 
 g if g 	 f and f � g

if both f 	 g and f 
 g . If the implicit constant in our estimates depend on
additional parameters "; ı; : : : then we may write f D O";ı:::.g/ or f 	";ı;::: g. The
Fourier transform of a function f defined on Zn will be denoted by Of , as opposed,
somewhat unconventionally, we will denote the Euclidean Fourier transform of a
function � defined on Rn by Q�. This is to avoid confusion as we will often move
between the discrete and continuous settings.

8.2 The Discrepancy of Lattice Points on Spheres

The uniformity of the distribution of lattice points on spheres has been extensively
studied and proved in dimension at least 4, see [7], and later in dimension 3 [6] using
difficult estimates for the Fourier coefficients of modular forms. These methods,
however, do not take into consideration the direction of the caps, and hence the
bounds obtained are subject to the limitations described in the introduction, arising
from caps whose direction has rational coordinates.

We will assume that the direction � of the caps is diophantine in the sense that
�i D �=�i satisfies condition (8.3) for each 1 � i � n such that �i ¤ 0 . In this
case, when Z D f��1=2mI jmj2 D �g , we will obtain the following upper bound
on the discrepancy, defined in (8.2), see also [13].

Theorem 1. Let n � 4 and let � 2 Sn�1 be a diophantine point. Then for every
" > 0, one has

jDn.�; �/j � C�;" �
n�1
4 C" (8.11)

We note that for n � 4, and if n D 4 assuming that 4 does not divide �, one has
that N� 
 �

n
2 �1, thus (8.11) implies that

jDn.�; �/j � C�;" N
1
2C 1

2.n�2/C"
� :
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In dimension n D 4, the best previous estimate for the normalized discrepancy
D.�; �/=N� was given in [7] of the order of ��1=5C" while we get the improvement
��1=4C". In case n D 4 and � D 4k there are only 24 lattice points of length �1=2,
estimates for the discrepancy become trivial in such degenerate cases.

8.2.1 The Fourier Transform of Lattice Points on Spheres

Our first task will be to derive the asymptotic formula (8.9) for the special case
when P.m/ D jmj2 D m2

1 C : : : m2
n. As we have mentioned this can be viewed

as an extension of the asymptotic formula for the number of representations of a
positive integer � as sum of n squares, and as such our main tool will be the Hardy-
Littlewood method of exponential sums. Because of the quadratic nature of the
problem, there are special tools available this case, most notably the transformation
properties of certain theta functions. Also, we will use the so-called Kloosterman
refinement, mainly to include the case n D 4. For a fixed � 2 N and � 2 Tn, set
ı D ��1 and write

e�2� O!�.�/ D
X

jmj2D�
e�2�ıjmj2 e2�im�� D

X

jmj2D�
w.m/; (8.12)

where the weight function w.x/ D e�2�ıjmj2 e2�im�� is bounded and absolute
summable. Using the fact that

R 1
0
e2�i.jmj2��/˛ d˛ D 1 if jmj2 D � and is equal to

0 otherwise, one may write

O!�.�/ D e2�
Z 1

0

S.˛; �/ e�2�i˛� d˛;

where

S.˛; �/ D
X

m2Zn
e2�i jmj2˛ w.m/ D

X

m2Zn
e2�i ..˛Ciı/jmj2Cm��/ (8.13)

is a theta function. It is well-known, at least when � D 0, that it is concentrated near
rational points a=q with small denominator. To exploit this, one dissects the interval
Œ0; 1� into small neighborhoods of the set of rational points RN D fa=qI .a; q/ D
1; q � N g for some specific choice of the parameter N . It is easy to see, using
Dirichlet’s principle, that one can choose intervals around the rational points a=q of
length jIa=q j � 1=Nq. This suggests that

O!�.�/ � c
X

q�N

X

.a;q/D1
e

��i� aq
Z 1

Nq

� 1
Nq

S

�
a

q
C 
; �

�
e�2�i �
 d
:
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The idea behind the Kloosterman refinement is to make a specific choice of this
partition (the so-called Farey dissection) and to estimate carefully the errors arising
from the fact that the length of the intervals corresponding to a fixed denominator
are not quite the same. We will use the following general result

Theorem A (Heath-Brown [9]). Let P W Zn ! Z be a polynomial with integral
coefficients, let �, N be natural numbers and let w 2 L1.Zn/. Then one has

X

P.m/D�
w.m/ D

X

q�N

Z 1
qN

� 1
qN

e�2�i�
S0.q; 
/d
 C E1.�/ (8.14)

where

jE1.�/j � C N�2 X

q�N

X

juj�q=2
.1C juj/�1 max


� 1
qN

jSu.q; 
/j (8.15)

Here C > 0 is an absolute constant and

Su.q; 
/ D
X

.a;q/D1
e
2�i au�a�

q S.a=q C 
/ ; S.˛/ D
X

m2Zn

e2�i˛P.m/w.m/; (8.16)

where aa � 1 .mod q/.

This is proved in [9] for the case � D 0 and for a non-negative weight function
w, however the proof extends without any changes to all � 2 N and w 2 L1.Zn/.
Let us postpone the proof of the above result to the end of this section and see how
it translates to our situation.

By (8.13) we have that

S.a=q C 
/ D
X

m2Zn

e
2�i aq jmj2

e2�i m�� h
;ı.m/;

with h
;ı.x/ D e2�i.
Ciı/jxj2 . Writingm WD qm1Cs, wherem1 2 Zn, s 2 .Z=qZ/n,
and applying Poisson summation, we have

S.a=q C 
/ D
X

s2.Z=qZ/n

e
2�i aq jsj2 X

m12Zn
e2�i .qm1Cs/�� h
;ı.qm1 C s/

D
X

s2.Z=qZ/n

e
2�i aq jsj2 X

l2Zn

Z

Rn
e2�i .qxCs/�� h
;ı.qx C s/ e�2�i x�l dx

D
X

l2Zn

q�n X

s2.Z=qZ/n

e
2�i

ajsj2Cl�s
q

Z

Rn
h
;ı.y/ e

2�iy�.�� l
q / dy

D
X

l2Zn

G.a; q; l/ Qh
;ı.l=q � �/: (8.17)
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Here G.a; q; l/ is a normalized Gaussian sum:

G.a; q; l/ D q�n X

s2.Z=qZ/n

e
2�i ajsj2�s�l

q : (8.18)

The function h
;ı.x/ is of the form e��zjxj2 with z D 2.ı� i
/, hence, after a change
of variables x WD z1=2x, its Fourier transform can be evaluated explicitly,

Qh
;ı.l=q � �/ D .2.ı � i
//�
n
2 e

� �jq��lj2

2q2.ı�i
 / : (8.19)

Let us first estimate the error terms Su.q; 
/ in formula (8.15). Note that on the

range when j
 j � 1= qN � 1= q�1=2, one has Re
�

1
q2.ı�i
/

�
D ı

q2.ı2C
2/ � c , for

some absolute constant c > 0. Thus

j Qh
;ı.� � l=q/j � C q
n
2 �

n
4 e�cjq��lj2 : (8.20)

Also, by (8.17)

Su.q; 
/ D
X

l2Zn

K.q; l; �I u/ Qh
;ı.� � l=q/;

where

K.q; l; �I u/ D
X

.a;q/D1
e
2�i au�a�

q G.a; l; q/; (8.21)

These exponential sums have been extensively studied in number theory, various
estimates are known in the literature, going back to the original work of Klooster-
man. We will use the following estimate, which we will take for granted for now,
however for the sake of completeness will include a proof later.

Theorem B. Let K.q; l; �I u/ be the exponential sum defined in (8.21). Then one
has for every " > 0,

jK.q; l; �I u/j � Cn;" q
n�1
2 C" .�; q1/

1
2 2

r
2 ; (8.22)

where q D q12
r with q1 odd, and .�; q1/ denotes the greatest common divisor of �

and q1.

We remark that using only standard estimates for Gaussian sums would yield to a
weaker bound of O.q�n=2C1/, thus the extra cancelation in the sum over .a; q/ D 1

is crucial. By this and estimate (8.20) we have

max
j
 j� 1

qN

Su.q; 
/ � C" q
1
2C".�; q1/

1
2 2

r
2 : (8.23)
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The factors .�; q1/
1
2 2

r
2 are at most �" on average for q � �

1
2 , hence they do not play

any role in our estimates. Indeed, it is easy to see that

Lemma 2. Let ˇ 2 R. Then for every " > 0, one has

X

q�� 12
qˇ .�; q1/

1
2 2

r
2 � Cˇ;" �

ˇC1
2 C"

Proof. Let 1 � � � �1=2. First, we show that

X

q��
.�; q1/

1
2 2

r
2 � C" �

" �

To see this, write d D .�; q1/ and q1 D dt . Then d divides � and d2rt � �, hence
the left side is majorized by

X

d j�

X

r2N

d
1
2 2

r
2
�

d2r
� C" �

" �

By partial summation, we have

C" �
" .�

ˇ
2 C

X

��� 12
��ˇ�1 / � C" �

ˇC1
2 C":

ut
Going back to the error termE1.�/ defined in (8.15), we have by estimate (8.23)

and Lemma 2

jE1.�/j � Cn;" �
n�1
4 C"; (8.24)

for all " > 0.
The main term in (8.14) takes the form

M.�/ W D
X

q�N

Z 1
qN

� 1
qN

e�2�i�
S0.q; 
/d


D
X

q�N

X

l2Zn

K.q; l; �I 0/
Z 1

qN

� 1
qN

e�2�i�
 Qh
;ı.� � l=q/ (8.25)

We will do now a number of transformations, to obtain the asymptotic formula (8.9),
described in the introduction. First we insert the functions .q�� l/, the restrict the
summation in l to at most one non-zero term. Then we extend the integral to the
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whole real line and identify it with the Fourier transform of the normalized measure
on the unit sphere.

First, let  .�/ be a smooth cut-off function which is constant 1 on Œ� 1
8
; 1
8
�n and

is equal to 0 for � … Œ� 1
4
; 1
4
�n. Then by (8.19), one estimates

X

l2Zn

.1 �  .q� � l// j Qh
;ı.� � l=q/j � Cn .

2 C ı2/�

n
4 e

cı

q2.
2Cı2/ 	 �
n
4 q

n
2 ;

where the last inequality follows from the fact that e�u 	 u� n
4 taking the special

value u D ı
q2.
2Cı2/ . Thus, by (8.15), the total error accumulated by inserting the

cut-off functions in (8.25) is bounded by

jE2.�/j � C" �
n
4 � 1

2

X

q�N
q� 1

2C	.�; q/
1
2 � C" �

n�1
4 C	; (8.26)

and the main term takes the form

M2.�/ WD
X

q�N

X

l2Zn

K.q; l; �I 0/ .q� � l/
Z 1

qN

� 1
qN

e�2�i�
 Qh
;ı.� � l=q/: (8.27)

At this point, the integration can be extended to the whole real line, exploiting the
fact that now there is at most one nonzero term in the l-sum. For j
 j � 1

qN
� ı one

has jQs
;ı.� � l=q/j 	 
� n
2 , thus the total error obtained in (8.27) by extending the

integration is

jE3.�/j � C"
X

q�N
q� 1

2C	.�; q/
1
2

Z

j
 j� 1
qN


� n
2 d
 � C" �

n�1
4 C	: (8.28)

Finally, we identify the integrals, and show that

Lemma 3.

I�.�/ WD e2�
Z

R
e�2�i�
 Qh
;ı.�/ d
 D �

n
2�1 Q�.� 1

2 �/; (8.29)

where � is one-half of the surface area measure on the unit sphere in Rn.

Proof. By using (8.19) and making a change of variables: t D �
 to take out the
dependence on �, one has that

I�.�/ D e2��
n
2 �1

Z

R
e�2�it .2.1� i t//� n

2 e
� ��j�j2

2.1�i t / dt:
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Let � WD �1=2�, then out task is to show that

J.�/ WD e2�
Z

R
e�2�it .2.1� i t//�

n
2 e

� �j�j2

2.1�i t / dt D Q�.�/:

We now insert an extra convergence factor e��
 t2 into the integral defining J.�/.
Denoting the resulting integral by J 
 we have J 
 ! J as � ! 0; moreover for
any test function � in the Schwartz space

Z

Rn
O�.�/J.�/ d� D lim


!0

Z

Rd
O�.�/J 
 .�/ d�:

Also,

Z

Rd
O�.�/J 
 .�/ d� D

Z

Rd
�.x/J 
.x/ dx: (8.30)

Note, that by (8.19) we have that Qht;1.�/ D .2.1� i t//�n=2e� �j�j2

2.1�i t / , thus

J 
.x/ D e2�
Z

R
e�2�it e�2�jxj2.1�i t /e��
t2 dt D 
� 1

2 e��.1�jxj2/=
 e��jxj2 :

Inserting this into (8.30), and letting 
 ! 0, we obtain

Z

Rn
O�.�/J.�/ d� D

Z

Rn
�.x/ d�.x/;

and thus J.�/ D Q�.�/, as we wanted to prove. Note that

Q�.0/ D J.0/ D
Z

R
e�2�it dt

.2.1� i t//n=2 D �n=2

� .n=2/
:

This identifies � as one-half of the surface area measure of the unit sphere. ut
Substituting the above formula (8.29) into the expression (8.27), the main term

finally takes the form

M3.�/ WD �n=2�1
X

q�N

X

l2Zn

K.q; l; �I 0/ .q� � l/ Q�.�1=2.� � l=q/: (8.31)

Note, that all error terms (8.15), (8.24), (8.26), and (8.28), we obtained in the
process of transforming the main term into the above expression is of magnitude
O".�

n�1
4 C"/. Summarizing we have proved
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Theorem 4. Let n � 4. Then one has

O!�.�/ D �
n
2 �1 X

q�� 12
mq;�.�/C E�.�/;

where

jE�.�/j � C" �
n�1
4 C" (8.32)

holds uniformly in � for every " > 0. Moreover

mq;�.�/ D
X

l2Zn

K.q; l; �/  .q� � l/ Q�.� 1
2 .� � l=q// (8.33)

where

K.q; l; �/ D q�n X

.a;q/D1

X

s2.Z=qZ/n

e
2�i

a.jsj2��/Cs�l
q :

Here Q� denotes the Fourier transform of the surface-area measure � on Sn�1, and 
is a smooth cut-off function supported on Œ� 1

4
; 1
4
�n which is constant 1 on Œ� 1

8
; 1
8
�n.

8.2.2 Some Properties of Diophantine Points

We will derive here a few elementary properties of diophantine points, needed later
in our estimates on the discrepancy. Crucial among them is the fact if � 2 Sn�1 is a
diophantine point, then kt�k 
 T �" on average for 1 � t � T , where k�k denotes
the distance of a point � 2 Rn to the nearest lattice point. To start, let us call a point
˛ 2 Rn of type " if it satisfies condition (8.3) with a given " > 0.

Lemma 5. For every 	 > 0 the set of points ˛ 2 Œ0; 1�n�1 of type " has measure 1.

Proof. If a point ˛ 2 Rn�1 is not of type 	 then there are infinitely many positive
integers q such that: kq�k � q� 1

n�1�	 . This means that there exists an m 2 Zn

such that: j� � m=qj � q� n
n�1�	 . However the sum of the volumes of all such

neighborhoods around the pointsm=q 2 Œ0; 1�n�1 is bounded by

1X

nD1
qn�1q�n�	 � C";

thus the set of points which belong to infinitely many of such neighborhoods has
measure 0. ut
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This shows that the set of points ˛ 2 Rn�1 which are not diophantine has measure
0. Indeed ˛ is diophantine if it is of type "k D .1=2/k for all k 2 N. Next we show
that kq˛k � 1 on average.

Lemma 6. Let ˛ 2 Œ0; 1�n�1 be diophantine,Q > 1 and 1 � k < n � 1. Then for
every " > 0, we have

X

q�Q
kq˛k�k � C" Q

1C" (8.34)

Proof. Let " > 0. Consider the set of points fq˛g 2 Œ�1=2; 1=2�n�1, for 1 � q �
Q. If q1 ¤ q2 then

jfq1˛g � fq2˛gj � k.q1 � q2/˛k � C" Q
� 1
n�1� "

n ;

thus the number of points in a dyadic annulus 2�j � kq˛k < 2�jC1 is bounded by
2�.n�1/j Q1C" and the sum in (8.34) is convergent for 1 � k < n� 1. ut
Lemma 7. Let � 2 Sn�1 be diophantine, and assume that maxj j�j j D j�nj. Let
t � 1 , ˛ D .˛1; : : : ˛n�1/ , ˛j D �j =�n and q D Œt�n�. Then one has

kt�k � 1

n
kq˛k

Proof. Note that

t�j D t�n˛j D Œt�n�˛j ˙ kt�nk˛j
hence

jq˛j �mj j � jt�j �mj j C kt�nk:

Thus taking mj D Œt�j �, we have

kq˛j k � kt�j k C kt�nk:

Summing for 1 � j � n � 1 proves the lemma. ut
Lemma 8. Suppose � 2 Sn�1 is diophantine, and let t � 1 and T � 1. Then for
every " > 0, one has

kt�k � C" t
� 1
n�1�" (8.35)

Moreover, for 1 � k < n � 1

Z T

1

kt�k�k � C" T
1C" (8.36)
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Proof. By permuting the coordinates of �, one can assume that maxj j�j j D j�nj.
Inequality (8.35) follows immediately from Lemma 7 and the definition of a
diophantine point. Similarly (8.35) is reduced to (8.34) by observing that for a fixed
q, the set of t’s for which q D Œt�n� is an interval of length at most 1=�n � p

n. ut

8.2.3 Upper Bounds on Discrepancy

We have developed all the necessary tools to prove Theorem 8.11, our main result
in this section. The argument will follow the broad outline given at the end of the
introduction, in addition we will use the standard stationary phase estimate on the
Fourier transform of the surface area measure on the unit sphere Sn�1, see for
example [17]

j O�.�/j 	 .1C j�j/� n�1
2 (8.37)

Now, for given a > 0 let �a denote the indicator function of the interval Œa; 1C a�.
The discrepancy may be written as

Dn.�; �/ D
X

jmj2D�
�a.�

� 1
2 m � �/ �N�

Z

Sn�1

�a.x � �/ d�.x/: (8.38)

The function �a can be replaced with a smooth function �a;ı by making a small
error in the discrepancy. Indeed, let 0 � �.t/ � 1 be smooth function supported
in Œ�1; 1�n, such that

R
� D 1. For a given ı > 0 let �ȧ;ı D �a˙ı � �ı , where

�ı.t/ D ı�1�.t ı�1/ and define the smoothed discrepancy as

Dn.�ȧ;ı; �; �/ D
X

jmj2D�
�ȧ;ı.�

� 1
2 m � �/ �N�

Z

Sn�1

�ȧ;ı.x � �/ d�.x/: (8.39)

Lemma 9. One has

jDn.�; �/j � max .jDn.�
C
a;ı; �; �/j; jDn.�

�
a;ı; �; �/j/C O.ıN�/: (8.40)

Proof. Note that ��
a;ı.t/ � �a.t/ � �C

a;ı.t/ thus

X

jmj2D�
��
a;ı.�

� 1
2 m � �/ �

X

jmj2D�
�a.�

� 1
2 m � �/ �

X

jmj2D�
�C
a;ı.�

� 1
2 m � �/

and

N�

Z

Sn�1

�C
a;ı.x ��/ d�.x/ � N�

Z

Sn�1

�a.x ��/ d�.x/ � N�

Z

Sn�1

��
a;ı.x ��/ d�.x/
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Subtracting the above inequalities, (8.40) follows from the fact that

Z

Sn�1

.�C
a;ı � ��

a;ı/ .x � �/ d�.x/ 	 ı

ut
In what follows, we take ı D ��n and write �a;ı for �ȧ;ı , as our estimates work

the same way for both choices of the sign. By taking the inverse Fourier transform
of �a;ı.t/ one has

X

jmj2D�
�a;ı .�

�1=2 m � �/ D
Z

R
�
1
2 Q�a;ı.t� 1

2 / O!�.t�/ dt (8.41)

also
Z

Sn�1

�a;ı .x � �/ d�.x/ D
Z

R

Q�a;ı.t/ Q�.t�/ dt (8.42)

We substitute the asymptotic formula (8.9) into (8.41) and study the contribution of
each term separately. Accordingly, let

Iq;� WD
Z

R
�
1
2 Q�a;ı.t� 1

2 /mq:�.t�/ dt; (8.43)

and

E� D
Z

R
�
1
2 Q�a;ı.t� 1

2 / E�.t�/ dt: (8.44)

To estimate the error term in (8.44) note that

Z

R
�
1
2 j Q�a;ı.t� 1

2 /j dt � C

Z

R
.1C jt j/�1.1C ıjt j/�1 dt � C log �:

Thus by (8.32) one has for every " > 0

jE�j � C" �
n�1
4 C": (8.45)

Next, decompose the integral in (8.43) as

Iq;� D
Z

jt j<1= 8q
C
Z

jt j�1= 8q
D I 1q;� C I 2q;�: (8.46)

Here an important observation is that if jt j < 1= 8q then  .qt� � l/ D 0 unless
l D 0, moreover  .tq�/ D 1 since jtq�j j < 1= 8q for each j . Hence
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mq;�.t�/ D K.q; 0; �/ Q�.� 1
2 t�/:

Thus by (8.43) and a change of variables: t WD t�1=2

I 1q;� D K.q; l; �/

Z

jt j<� 12 = 8q
Q�a;ı.t/ Q�.t�/ dt: (8.47)

Lemma 10. One has for every " > 0

j 
n�n
2�1 X

q�� 12
I 1q;� � N�

Z

Sn�1

�a;ı .x � �/ d�.x/ j � C" �
n�1
4 C" (8.48)

Proof. Using (8.37), one has

Z

jt j�� 12 = 8q
j Q�a;ı.t/ Q�.t�/ j dt � C" �

� n�1
4 C" q n�1

2 (8.49)

Thus by (8.42) and (8.47)

j I 1q;� �K.q; 0; �/

Z

Sn�1

�a;ı .x � �/ d�.x/ j � C" �
� n�1

4 C" q
n�1
2 jK.q; 0; �/j

Substituting � D 0 in (8.33) one has

jN� � 
n�n
2 �1 X

q�� 12
K.q; 0; �/j � C" �

n�1
4 C" (8.50)

Using (8.22) and (8.50), the left side of (8.48) is estimated by

C"

0

B@�
n�1
4 C" C �

n�3
4 C" X

q�� 12
q" .�; q1/

1
2 2

r
2

1

CA � C" �
n�1
4 C" (8.51)

ut
To estimate the remaining error terms one needs to exploit the diophantine

properties of the direction �.

Lemma 11. Let � 2 Sn�1 diophantine. Then for every " > 0, we have

X

q�� 12
jI 2q;�j � C�;" �

� n�3
4 C" (8.52)
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Proof. First, note that  .q�� l/ D 0 unless l D Œq��, that is the closest lattice point
to the point q� 2 Rn. Using the notation fq�g D q� � Œq�� one may write

mq;�.t�/ D K.q; Œqt��; �/  .fqt�g/ Q�
 
�
1
2

q
fqt�g

!

By making a change of variables t WD qt , it follows from estimates (8.22) and (8.37)
that

jI 2q;�j � C" .�
1
2 =q/�

n�3
2 q� n�1

2 C" .�; q1/
1
2 2

r
2 J�; (8.53)

where

J� D
Z

jt j�1=8
j Q�a;ı.t � 1

2 =q/j kt�k� n�1
2 dt;

and kt�k denotes the distance of the point t� to the nearest lattice point. For q � �1=2

one has

j O�a;ı.t � 1
2 =q/j � C .�

1
2 =q/�1 jt j�1 .1C ıjt j/�1 (8.54)

To estimate the integral J� we use (8.54), and integrate over dyadic intervals 2j �
jt j < 2jC1 (j � �3). For a fixed j we have

Z 2jC1

2j
t�1.1C ıt/�1 kt�k� n�1

2 dt � C" 2
j" .1C ı2j /�1 (8.55)

Summing over j this gives: J� � C" .�
1
2 =q/�1�". Substituting into (8.53) one

estimates

jI 2q;�j � C" �
� n�1

4 C" q" .�; q1/
1
2 2

r
2 (8.56)

Summing over q � �1=2, and using Lemma 2, estimate (8.52) follows. ut
Theorem 1 follows immediately from Lemmas 9–11, and estimate (8.45).

8.2.4 The Kloosterman Refinement

For the sake of completeness we include below the proofs of Theorems A–B. The
present form of Theorem A was given by Heath-Brown [9] in his study of non-
singular cubic forms, the idea going back to Kloosterman. Theorem B follows from
the multiplicative properties of Kloosterman sums and Weil’s estimates [14].
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To start let w be an absolutely summable weight function, P be an integral
polynomial,N a fixed positive integer, and write

I WD
X

P.m/D�
w.m/ D

Z 1�1=NC1

�1=NC1
S.˛/ d˛; (8.57)

with S.˛/ D P
m2Zn e

2�i P 0.m/w.m/ , P 0.m/ D P.m/��. Breaking up the interval
Œ�1=N C 1; 1 � 1=N C 1� according to the Farey dissection of order N (see [8],
Ch. 3.8), we have

I D
X

q�N

X

.a;q/D1

Z
S.a=q C ˇ/ dˇ:

Here for fixed a the inner integral is over the interval

�
a C a0

q C q0 � a

q
;
aC a00

q C q00 � a

q

�
;

where a0=q0; a=q; a00=q00 are consecutive Farey fractions. Since qa0 �q0a D �1 and
qa00 � q00a D 1 the range of ˇ is given by

�.q C q0/�1 � qˇ � .q C q00/�1:

Since for consecutive Farey fractions, we have q C q0; q C q00 � N , one may write
I as

X

q�N

Z 1=qN

�1=qN

X

a

S.a=q C ˇ/ dˇ; (8.58)

where the inner sum is restricted to 1 � a � q, .a; q/ D 1, and

q0 � 1

qjˇj � q .ˇ < 0/; q00 � 1

qˇ
� q .ˇ > 0/: (8.59)

The numbers q0; q00 are completely specified by a as q0 � �q00 � a�1 .mod q/
and N � q < q0; q00 � N , thus (8.58) eventually restricts the summation in a. The
point is that if jˇj � q�1.q C N/�1, then (8.58) places no restriction on a, and
otherwise a D a�1 .mod q/must lie in one of two intervals J.q; ˇ/ � .0; q/. Then
one estimates

X

a2J.q;ˇ/
S.a=q C ˇ/ D

X

.s;q/D1
S.s=q C ˇ/

X

t2J.q;ˇ/

1

q

X

juj�q=2
e
2�i

u.s�t /
q
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D 1

q

X

juj�q=2
Su.q; ˇ/

X

t2J.q;ˇ/
e

�2�i ut
q

	
X

juj�q=2
.1C juj/�1jSu.q; ˇ/j; (8.60)

where

Su.q; ˇ/ D
X

.s;q/D1
e
2�i us

q S.s=q C ˇ/;

using the estimate

1

q

X

t2J.q;ˇ/
e

�2�i ut
q 	 .1C juj/�1:

Since

.qN /�1 � q�1.q CN/�1 D N�1.q CN/�1 � N�2

and

q�1.q CN/�1 � .2qN /�1;

the total contribution to (8.58) arising from the ranges jˇj � q�1.q CN/�1 is

	 N�2 X

q�N

X

juj�q=2
.1C juj/�1 max

1
2�qN jˇj�1

jSu.q; ˇ/j: (8.61)

The remaining range for ˇ gives

X

q�N

Z 1=q.qCN/

�1=q.qCN/
S0.q; ˇ/ dˇ:

If one integrates for jˇj � 1=qN instead, the resulting error is again of the form
of (8.61). Thus summarizing the above estimates, we have

I D
X

q�N

Z 1=q.qCN/

�1=q.qCN/

S0.q; ˇ/ dˇCO.N�2
X

q�N

X

juj�q=2

.1Cjuj/�1 max
1
2

�qN jˇj�1

jSu.q; ˇ/j/:

and Theorem A follows.
From the standard estimate for the Gaussian sums G.a; l; q/ 	 q�n=2, it is

immediate that
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jK.q; l; �I u/j 	 q�n=2C1: (8.62)

Also,G.a; l; q/ is a product of one dimensional sums, thus for q odd, by completing
the square in the exponent, it may be written in the form (see also [14], Ch. 4)

G.a; l; q/ D q�n 	nq
�q
a

�n
e

�2�i 4a jlj2

q G.1; 0; q/n;

where
�
q

a

	
denotes the Jacobi symbol, 	q is a 4th root of unity, and a denotes the

multiplicative inverse of a mod q. Substituting this into (8.21) we have

K.q; l; �I u/ D 	nq q
�nG.1; 0; q/n

X

.a;q/D1

�q
a

�n
e
2�i

a�C4a.u�jlj2/
q : (8.63)

The sum in (8.63) is a Kloosterman sum or Salie sum depending on whether n is
even or odd. Weil’s estimates [14, Ch. 4] imply

jK.q; l; �I u/j � C" q
� n�1

2 C" .�; q/
1
2 : (8.64)

Estimate (8.22) follows by writing q D q1q2, with q1 odd and q2 D 2r ,
applying (8.64) to q1, (8.62) to q2 D 2r and using the multiplicative property

K.q; l; �I u/ D K.q1; l q2; �I u q2
2/K.q2; l q1; �I u q1

2/; (8.65)

where q1q1 � 1 (mod q2), and q2q2 � 1 (mod q1). Property (8.65) is well-known,
and is an easy computation using the Chinese Remainder Theorem. This finishes
the proof of Theorem B.

8.3 The Discrepancy of Lattice Points on Hypersurfaces

We will study now the uniformity of distribution of lattice points on a homogeneous,
non-singular, hypersurface. We will show that if the dimension of the underlying
Euclidean space is large enough with respect to the degree of the hypersurface, then
there are non-trivial upper bounds on the discrepancy with respect to caps.

The analysis will be similar to what we have carried out for spheres, however in
this generality we will use the Birch-Davenport method of exponential sums, which
will allow us to develop uniform asymptotic formulae for the Fourier transform of
the set of lattice points on the hypersurface.

To formulate our main result in this section, let P.m/ be a positive, homogeneous
polynomial of degree d with integer coefficients, and for � 2 N, define the
hypersurface

S� D fx 2 RnI P.x/ D �g
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We will write S for S1, the unit level surface. Recall that the polynomial is called
non-singular if for all z 2 Cn=f0g

rP.z/ D .@1.z/; : : : ; @n.z// ¤ 0 (8.66)

Our main result in this section is the following upper bound of the set of
solutions Z0

P;� D f��1=dmI P.m/ D �g with respect to the family of caps
Ca;� corresponding to a given diophantine direction �, defined in (8.2). Similar but
somewhat weaker results have been obtained in [13].

Theorem 12. Let n > d.d�1/2dC1, and letP.m/ be a positive, homogeneous non-
singular polynomial of degree d with integer coefficients. If � 2 Sn�1 is diophantine,
then we have

jDP .�; �/j � C�;" �
. nd �1/.1�
d /; (8.67)

with 
d D 1

.d�1/2dC1 .

To see why this upper bound is non-trivial, note that as P is positive, we have
that P.x/ � jxjd , thus on average for L � � < 2L, the surface S� contains
� �n=d �1 lattice points. Indeed there are � Ln=d lattice points m in the region
L � P.m/ < 2L, and they lie on L hypersurfaces. As we have mentioned, because
of congruence obstructions, one cannot have that jZn \ S�j � �n=d �1 for all large
�, but it can be shown that this holds all � 2 �, for an infinite arithmetic progression
� � N. Such a set � will be called a set of regular values. Thus one has

Corollary 13. Let n > d.d � 1/2dC1, P.m/ be a positive, homogeneous non-
singular polynomial of degree d with integer coefficients, and let � be a set of
regular values for P . If � 2 Sn�1 is diophantine, then we have

jDP .�; �/j � C�;" N
1�
d
� ; (8.68)

for each � 2 �, with 
d D 1

.d�1/2dC1 , whereN� denotes the number of lattice points
on the surface S�.

8.3.1 The Fourier Transform of the Set of Lattice Points
on Hypersurfaces

We will now generalize the asymptotic formula (8.9) describing the structure of
the Fourier transform of lattice points on spheres, using the Birch-Davenport [4,
5, 16] version of the Hardy-Littlewood method of exponential sums. This method
was developed to count solutions of (systems of) diophantine equations, when the
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number of variables is large enough with respect to the degrees of the polynomials,
and it is one of the most far reaching application of analytic tools in the area of
diophantine equations. In spite of this there are very few accessible description of
this method, so perhaps it is of interest to discuss it in detail in the case of a single
non-singular homogeneous polynomial.

8.3.1.1 Minor Arcs Estimates

To start, let � be a smooth cut-off function which is constant 1 on the unit level
surface S D fP D 1g, and let N D �1=d . Then

O!�.�/ D
X

P.m/D�
e2�i x���.m/ D

Z 1

0

S.˛; �/e�2�i˛� d˛; (8.69)

where

S.˛; �/ D
X

m2Zn
e2�i.P.m/Cm��/�.m=N/ (8.70)

As is usual in the circle-method, we will now define a family of small intervals,
which we will call major arcs on which the exponential sum S.˛; �/ is concentrated.
Let 0 < � � 1 be a parameter, and for a given pair of natural numbers a; q such
that .a; q/ D 1, define the corresponding major arc centered at a=q by

La;q.�/ D f˛ W 2j˛ � a=qj < q�1N�dC.d�1/� g;

moreover let

L.�/ D
[

q�N.d�1/� ; .a;q/D1
La;q.�/:

If ˛ … L.�/, the we say ˛ is in a minor arc. The following properties of the major
arcs are immediate from their definition.

Proposition 14. (i) If �1 < �2 then �1 � L.�2/.
(ii) If � < d

2.d�1/ then the intervals La;q.�/ are disjoint for different values of a
and q.

(iii) jL.�/j � N�dC.d�1/� .

We will now derive standard Weyl-type estimates, following [4], for the expo-
nential sum S.˛; �/, when ˛ is in a minor arc. It will be useful to introduce the
notations

DhP.m/ D P.m/ � P.mC h/; �h�.m/ D �.m/�.mC h/;
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and inductively

Dh1;:::;hkP D Dh1.Dh2;:::;hkP /; �h1;:::;hk� D �h1.�h2;:::;hk�/:

Note, that the above expressions are independent of the order of the vectors
h1; : : : ; hk . We will also use repeatedly the expression

j
X

m

�.m/j2 D
X

m;h

�.m/�.mC h/ D
X

m;h

�h�.m/:

Writing �N .m/ D �.m=N/, and taking averages, we have

jN�nS.˛; �/j2 D N�2nX

h1;m

e2�i ˛Dh1P.m/�h���h1�N .m/

� N�nX

h1

jN�nX

m

e2�i ˛Dh1P.m/�h1�N .m/j

Note that the summation is restricted to jh1j 	 N and jmj 	 N . Applying the
Cauchy-Schwarz inequality d � 2 times, one has

jN�nS.˛; �/j2d�1 	 N�n.d�1/ X

h1;:::;hd�1

N�nj
X

m

e
2�i˛D

h1;:::;hd�1P.m/�h1;:::;hd�1 �N .m/j

(8.71)

Note that the implicit constant in (8.71) depends only on the dimension n and the
degree d , and the summation again is restricted to jhi j 	 N and jmj 	 N . The
point is that after taking d � 1 “derivatives”, the polynomialDh1;:::;hd�1P becomes
linear, i.e. it is of the form

Dh1;:::;hd�1P.m/ D
nX

jD1
mj ˚j .h

1; : : : ; hd�1/; (8.72)

where the coefficients ˚j W Zn.d�1/ ! Z are multi-linear forms. In fact writing the
homogeneous polynomial P as

P.m/ D
X

1�j1;:::;jd
aj1;:::;jd mj1 : : : mjd ;

so that the coefficients aj1;:::;jd are independent of the order of the indices
j1; : : : ; jd�1, it is not hard to see that

˚j .h
1; : : : ; hd�1/ D dŠ

X

j1;:::;jd�1

aj1;:::;jd�1;j h
1
j1
: : : hd�1

jd�1
: (8.73)
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For simplicity let us introduce the notations

h WD .h1; : : : ; hd�1/;

�N;h.x/ WD �h1;:::;hd�1�N .x/;

˚.h/ WD .˚1.h/; : : : ; ˚n.h//:

Now, by (8.72) the inner sum in (8.71) is the Fourier transform the function �N;h at
� D ˛˚.h/. To estimate it, note that

ˇ̌
ˇ̌
ˇ

�
d

dx

�k
�N;h.x/

ˇ̌
ˇ̌
ˇ 	 N�k; for all k 2 N;

(where the implicit constant depends only on n; d and k), and that the function�N;h
is supported on jxj 	 N . Thus integrating by parts k-times we have that

j Q�N;h.�/j 	 Nn .1CN j�j/�k;

where Q�N;h denotes the Fourier transform of �N;h.x/ considered as function on Rn.
Thus by Poisson summation

j O�N;h.�/j �
X

l2Zn

j Q�N;h.� � l/j 	 Nn .1CN k�k/�k :

Here we used the notation k�k D maxj k�j k, for a point � D .�1; : : : ; �n/,
where k�j k denotes the distance of the j -th coordinate �j from the nearest integer.
Plugging this, into inequality (8.71) we have

jN�nS.˛; �/j2d�1 	 N�n.d�1/ X

h2Zn.d�1/; jhj�N

.1CN k˛˚.h/k/�k; (8.74)

for all k 2 N. We will fix now k D nC 1, and use the multi-linearity of the forms
˚j .h

1; : : : ; hd�1/, to estimate the right side of inequality (8.74) by the number of
.h1; : : : ; hd�1/Zn.d�1/, jhj j 	 N such that k˛˚.h/k � N�1 . More generally, for
given parameters 
; �, let us introduce the quantities

R.N 
 ;N��; ˛/ D jfh 2 Zn.d�1/I jhj 	 N; k˛˚j .h/k � N��; 1 � j � ngj:
(8.75)

Lemma 15.

.N�njS.˛; �/j/2d�1 	 N�n.d�1/R.N;N�1; ˛/: (8.76)
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Proof. Consider the points f˛ ˚.h/g 2 Œ� 1
2
; 1
2
�n , where f g denotes the fractional

part, and divide the cube Œ� 1
2
; 1
2
�n into Nn cubes Bs of size 1

N
. Now if B0 D

Œ� 1
2N
; 1
2N
�n, then for each fixed h0 D .h1; : : : ; hd�2/, the cube B0 will contain

at least as many points of the form f˛ ˚.h0; hd�1/g , as any of the other cubes
Bs . Indeed, this follows immediately from the linearity of the forms ˚j in the
variable hd�1. Since the center of the cubes Bs are N�1s D . s1

N
; : : : ; sn

N
/ with

�N=2 � sj < N=2 , the right side of (8.74) is bounded by

N�n.d�1/ X

�N
2 �s1;:::;sn<N

2

.1C jsj/�n�1 R.N;N�1; ˛/ 	 N�n.d�1/R.N;N�1; ˛/:

ut
Next, we will use that fact that the quantities R.N 
 ;N��; ˛/ can be compared

to each other for different values of the parameters 
; �, in fact we will need the
following

Lemma 16. Let 0 < � < 1
d�1 . Then we have

N�n.d�1/R .N;N�1; ˛/ 	 N�n.d�1/� R .N �;N�dC.d�1/� ; ˛/: (8.77)

This is based on the following result

Lemma 17 (Davenport [5]). Let L1.u/; : : : ; Ln.u/ be n real linear forms in n
variables u1; : : : ; un, say

Lj .u/ D
X

k

�jk uk;

which are symmetric in the sense that �jk D �kj . Let 1 < K1 < K2 and for
0 < r < 1 let U.r/ denote the number of integer solutions of the system

jukj < rK1; kLj .u/k < rK�1
2 : (8.78)

Then for all 0 < r � 1 we have

U.1/ 	 r�nU.r/: (8.79)

This is Lemma 3.3 in [5] and is an application of the geometry of numbers.
Let us remark here only that the solutions of (8.78) can be viewed as lattice points
.u; v/ 2 Z2n which are inside the convex symmetric body rB , where

B D f.u; v/ 2 R2nI jukj < K1; jvj � Lj .u/j < K�1
2 ; 1 � k; j � ng:
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Proof (of Lemma 16). We will apply Lemma 17 in each variable h1; : : : ; hd�1 . Fix
h0 D .h2; : : : ; hd�1 , write u D h1 and Lj .u/ D ˛ ˚j .u; hh

0/ . From (8.73) it is
clear that the linear forms Lj .u/ are symmetric, thus we can apply Lemma 17, with
K1 D K2 D N , r1 D N��1, r2 D 1 for each h0. Summing over h0 gives

R.N;N�1˛/	Nn.1��/jfh 2 Zn.d�1/I jh1j 	 N�; jh0j	N; k˛ ˚.h/k < N��2g:

Next, set u D h2, fix the remaining variables and apply Lemma 8.69 with K1 D
N; K2 D N2�� and r D N��1. Continuing this procedure for all the variables
h1; : : : ; hd�1 eventually, we have

R.N;N�1˛/ 	 Nn.d�1/.1�ı/R .N � ;N�dC.d�1/� ; ˛/;

which is the same as (8.77). ut
Note that if there is a point h 2 Zn.d�1/ , jhj 	 N such that k˛˚j .h/k <

N�dC.d�1/� and ˚j .h/ ¤ 0, then setting q D j˚j .h/j , we have that

ˇ̌
ˇ̌˛ � a

q

ˇ̌
ˇ̌ < 1

q
N�dC.d�1/�

for some a 2 Zn such that .a; q/ D 1. Thus ˛ 2 L.�/ by the definition of major
arcs, hence if ˛ is in a minor arc, we have

R .N � ;N�dC.d�1/� ; ˛/ D jfh 2 Zn.d�1/I jhj 	 N; ˚1.h/ D : : : D ˚n.h/ D 0g:
(8.80)

which is the number of lattice points h 2 Zn.d�1/ of size jhj 	 N� on the variety

S˚ WD fz 2 Cn.d�1/I ˚1.z/ D : : : D ˚n.z/ D 0g:

By (8.73) it is easy to see that ˚j .h; : : : ; h/ D .d � 1/Š.@=@j /P.h/, thus if we set

4 WD f.h; : : : ; h/I h 2 Cng � Cn.d�1/;

then

S˚ \ 4 D fh 2 CnI @1P.h/ D : : : D @nP.h/ D 0g D f0g;

by our assumption that the polynomial P is non-singular. Then by basic facts from
algebraic geometry it follows that

D WD dim S� � n.d � 1/� n:
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The dimension of the algebraic set S˚ is defined algebraically, however it is
well-known, see [10], Ch. 7, that if it has dimension D then every bounded part
of it can be covered by O.��D/ balls of diameter � for any 0 < � < 1. Combining
this with the fact that S˚ is homogeneous, we have

jfh 2 Zn.d�1/ \ S˚ I jhj	N� gj	jfh0 2 .N��Z/n.d�1/ \ S˚ I jh0j 	 1gj	ND � :

(8.81)

Then by (8.76), (8.77) and (8.81), we have the following estimate on the minor arcs.

Lemma 18. Let 0 < � < 1. If ˛ … L.�/, then we have uniformly in �

jS.˛; �/j 	 N n�n� 2�.d�1/

: (8.82)

We will also need a variant of the above estimate when the cut-off function � is
replaced by the indicator function � of a cube of side length � 1 centered near the
origin. The estimate below is proved in [4], however it easily follows from (8.82).
Indeed, choose a cut off function � such that �� D �, and let P1.m/ D P.m/ C
m � � . Then by Plancherel’s identity

X

m2Zn

e2�i˛P1.m/ �.m=N/�.m=N/ D (8.83)

D
Z

Tn

 
X

m2Zn

e2�i˛P1.m/�m���.N=P /
!
.N n O�.N�// d� 	 N

n� n

2d�1 .log N/n:

Here Tn is the flat torus, and the above estimate follows using (8.82) for the first term
of the integral uniformly in �, and the fact that kNn O�.N�/kL1.Tn/ 	 .log N/n.

Corollary 19. Let 1 � a < q be natural numbers s.t. .a; q/ D 1. The for the
exponential sum

G.a; q; l/ D q�n X

s2.Z=qZ/n

e
2�i

aP.m/�l�s
q ;

one has

jG.a; q; l/j 	 q
� n

.d�1/2d .log q/n: (8.84)

Proof. Set N D q, ˛ D a=q, � D l=q, � D 1=2.d � 1/ and notice that ˛ … L.�/.
Indeed, for q1 � q.d�1/� we have

ˇ̌
ˇ̌a
q

� a1

q1

ˇ̌
ˇ̌ � 1

q1q
� 1

q1
q�dC.d�1/� :
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Then (8.84) follows from (8.83), choosing � to be the indicator function of Œ0; 1/n,
and identifying .Z=qZ/n with Œ0; q/n \ Zn. ut
Corollary 20. If j˛j < P�d=2 then one has

jS.˛; �/j 	 Nn .Nd j˛j/�
n

.d�1/2d�1 :

Proof. Choose � such that j˛j D N�dC.d�1/� , that is .N d j˛j/ 1
d�1 D N� . The

major arcs La;q.�/ are disjoint since .d � 1/� < d=2, moreover ˛ is an endpoint of
the interval L0;1.�/ hence ˛ … La;q.�/. By (8.82) this gives

jS.˛; �/j 	 Nn�n2�.d�1/� D Nn .Nd j˛j/�
n

.d�1/2.d�1/ :

ut

8.3.1.2 Approximations on the Major Arcs

We will now derive an asymptotic expansion for the Fourier transform of the lattice
points on the hypersurface S� D fP D �g along the lines as in Sect. 8.2.
Throughout this section we will assume that n is sufficiently large, in particular
that n > nd WD d.d � 1/2dC1 , set 
d WD 1

.d�1/2dC1 , and for simplicity of notation

introduce the quantity D WD .d � 1/2d�1 .
Going back to the integral defined in (8.69), for a given � , write

O!�.�/ D
Z

˛2L.�/
S.˛; �/ d˛ C

Z

˛…L.�/
S.˛; �/ d˛ D A�.�/C E1

�.�/: (8.85)

It follows from our assumptions on n, that there is a � < 1
2.d�1/ , such that

n�2�.d�1/ > d C n
d

thus (8.71) implies that S.�; �/ 	 Nn�d�n
d for � … L.�/ . Thus we have the
estimate, uniformly in �

jE1
�.�/j 	 Nn�d�n
d : (8.86)

We will fix a � < 1
2.d�1/ so that (8.86) holds, and will do a number of

transformations on the main term A�.�/ which are similar the ones we have used
in the special case of the spheres. For a given ˛ 2 La;q.�/ for some .a; q/ D 1,
q � N.d�1/� , write ˛ D a=q C ˇ, with jˇj � N�dC.d�1/� and m D qm1 C s with
m1 2 Zn, s 2 .Z=qZ/n. Applying Poisson summation as in (8.17), we have
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S.a=q C ˇ; �/ D
X

m2Zn

e
2�i aq P.m/e2�im��Hˇ;N .m/

D
X

s2.Z=qZ/n

G.a; q; l/ QHˇ;N .l=q � �/; (8.87)

where QHˇ;N is the Fourier transform of the function Hˇ;N .x/ D e2�iˇP.m/�.m=N/ ,
and G.a; q; l/ is the exponential sum defined in (8.84). Thus we have

A�.�/ D
X

q�N.d�1/�

X

.a;q/D1

X

l2Zn

G.a; l; q/ J�.� � l=q/; (8.88)

where

J�.� � l=q/ D
Z

jˇj�N�dC.d�1/�

QH.l=q � �; ˇ/e�2�i�ˇ dˇ

We shall approximate the functions A�.�/ with functions B�.�/ where the cut-off
function  .q� � l/ have been inserted in (8.88), that is let

B�.�/ D
X

a;q

X

l2Zn

G.a; l; q/  .q� � l/ J�.� � l=q/

Next, we extend the integration in ˇ and define

M�.�/ D
X

a;q

X

l2Zn

G.a; l; q/  .q� � l/ I�.� � l=q/

with

I�.� � l=q/ D
Z

R

QH.� � l=q; ˇ/e�2�i�ˇ dˇ: (8.89)

A crucial point is to identify the integrals I�.�/, in fact we will show that

I�.�/ D Q��.�/:

First we estimate the errors obtained.

Lemma 21. If 0 < � < 1
2.d�1/ then one has uniformly in �

jA�.�/ � B�.�/j 	 Nn�d�n
d :

Proof. If we set

�ˇ.�/ D
X

l

G.a; q; l/ .1 �  .q� � l// QHN;ˇ.� � l=q/;
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then it is enough to show that j�ˇ.�/j 	 Nn�d�n
d uniformly for jˇj �
N�dC.d�1/� and � 2 Tn. Let � D � � ł=q, and estimate QHN;ˇ.�/ by partial
integration:

QHN;ˇ.�/ � Nn

ˇ̌
ˇ̌
Z

Rn
e2�i N

d ˇ P.x/�.x/ e2�iNx�� dx

ˇ̌
ˇ̌

	 NnjN�j�K
ˇ̌
ˇ̌
Z

Rn
.d=d�/K .e2�i N

d ˇ P.x/�.x/ e2�iNx�� dx

ˇ̌
ˇ̌

	 NnjN�j�K .1CNd jˇj/K:

Now, on the support of 1 �  .q� � l/ we have that

N j�j D N j� � l=qj 
 N1�.d�1/� ;

hence for jˇj � N�dC.d�1/� and � < 1=2.d � 1/, choosing 0 < 
 < 1
2

� .d � 1/�
we have

j�ˇ.�/j 	 Nn.N=q/�
K
X

l2Zn

.1C jq� � l j/�
K 	 Nn�
K.1�.d�1/�/:

The Lemma follows by choosingK sufficiently large. ut
In order to estimate the error obtained by extending the integration in ˇ, we will

need the following

Lemma 22. For given �; L > 0 let

I.L; �/ D
Z
e2�iL.P.x/Cx��/�.x/ dx:

Then one has

I.L; �/ 	 .1C L/�
n
D ; (8.90)

with D D .d � 1/2d�1.

Proof. The estimate is obvious for L < 1, so let L � 1. If j�j � C with a large
enough constantC , then the gradient of the phase LjP 0.x/C�j � L on the support
of � and (8.90) follows by partial integration.

Suppose j�j � C and introduce the parameters �; N; ˛ such thatL D N.d�1/� ,
˛ D N�dL. Note that if � < 2d�1=n, then we have N > L

2n
D . Changing variables

y D Nx yields

I.L; �/ D N�n
Z
e2�i˛ .P.y/CNd�1y��/�.y=N / dy:
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We compare the integral to a corresponding exponential sum

N�nS.˛; �/ D N�n X

m2Zn

e2�i˛ .P.m/CNd�1 m��/ �.m=N/:

If y D mC z where m 2 Zn and z 2 Œ0; 1�n, then it is easy to see that

je2�i˛ .P.y/CNd�1y��/ � e2�i˛ .P.m/CNd�1m��/j 	 N�1C.d�1/� ;

since j˛j D N�dC.d�1/� and j�j � C . Thus

jI.L; �/�N�nS.˛/j 	 N�1C2.d�1/� 	 N� 1
2 � L� n

D :

Also, by Corollary 20

jN�n S.˛; �/j 	 jNd˛j� n
D D L� n

D

and (8.90) follows. ut
We remark that a better uniform estimate can be obtained by using real variable

methods, exploiting the fact thatP.x/ � jxjd . However we have chosen to estimate
integral using exponential sums as this method works also for indefinite forms P .
Now, it is easy to prove.

Lemma 23. We have, uniformly in �

jB�.�/ �M�.�/j 	 Nn�d�n
d

Proof. One has by (8.90)

Z

jˇj�N�dC.d�1/�

j QH.� � l=q/j dˇ 	 Nn� n
D 	 Nn�d�n
d :

The factors  .q� � l/ restrict the sum in l to at most one non-zero term, moreover
by (8.84) we have jG.a; q; l/j 	 q� n

DC" 	 q�3 , say. Thus

jB�.�/ �M�.�/j 	 .
X

q�N.d�1/�

X

.a;q/D1
q�3/ N n�d�n
d 	 Nn�d�n
d :

ut
Summarizing, we have the asymptotic formula

O!�.�/ D M�.�/C E�.�/;
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where

M�.�/ D
X

q�N.d�1/�

X

.a;q/D1

X

l2Zn

G.a; q; l/  .q� � l/ I�.� � l=q/;

and

jE�.�/j 	 Nn�d�n
d ;

uniformly in � 2 Tn.

8.3.1.3 The Singular Integral

We will now identify the integrals I�.�/ with the Fourier transform of a certain
natural measure supported on the surface S� D fP D �g. Note that by assumption
that the polynomial P is non-singular and positive, S� is a smooth, compact hyper-
surface in Rn.

There is a unique n � 1-form d�P .x/ on Rnnf0g such that

dP ^ d�P D dx1 ^ : : : ^ dxn; (8.91)

called the Gelfand-Leray form (see [1, 2], Sec.7.1). To see this, suppose that say
@1P.x/ ¤ 0 on some open set U . By a change of coordinates: y1 D P.x/; yj D xj
for 2 � j � n, Eq. (8.91) takes the form

dy1 ^ d�P .y/ D @1H.y/ dy1 ^ : : : ^ dyn

where x1 D H.y/; xj D yj is the inverse map. Thus the form d�P .y/ D
@1H.y/ dy2 ^ : : : ^ dyn satisfies (8.91).

We define the measure �� as the restriction of the n � 1 form d�P to the level
surface S�. This measure is absolutely continuous with respect to the Euclidean
surface area measure dSP;�, more precisely one has

Proposition 24.

d��.x/ D dS�.x/

jP 0.x/j ; (8.92)

where dS� denotes the Euclidean surface area measure on the level surface
fP D �g.

Proof. Choose local coordinates y as before; in coordinates y level surface S� and
surface area measure dS� takes the form

S� D fx1 D H.�; y2; : : : ; yn/; xj D yj I 2 � j � ng;
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and

dS�.y/ D .1C
nX

jD2
@2jH.�; y//

1=2 dy2 ^ � � � ^ dyn:

Using the identity P.H.y/; y2; : : : ; yn/ D y1 , one has

@1P.x/@1H.y/ D 1 ; @1P.x/@jH.y/C @jP.x/ D 0;

This implies that

@1H.y/ D .1C
nX

jD2
@2jH.y//

1=2 � jP 0.x/j�1;

and (8.92) follows by taking y1 D �. ut
A crucial observation is that the measure d��, considered as a distribution on Rn,

has a simple oscillatory integral representation.

Lemma 25. Let P.x/ be a non-singular, homogeneous polynomial, and let � be a
real number. Then in the sense of distributions

��.x/ D
Z

R
e2�i .P.x/��/t dt: (8.93)

This means that for any smooth cut-off function �.t/ and test function �.x/ one has

lim
"!0

Z Z
e2�i.P.x/��/t�.	t/�.x/ dxdt D

Z
�.x/d��.x/: (8.94)

Proof. Let U be an open set on which @1P ¤ 0, and by a partition of unity we can
assume that supp � � U . Changing variables y1 D P.x/; yj D xj the left side
of (8.94) becomes

lim
	!0

Z Z
e2�i.y1��/t�.	t/ Q�.y/j@1H.y/j dydt D

Z
Q�.�; y0/j@1H.�; y0/jdy0;

where y0 D .y2; : : : yn/.
The last equality can be seen by integrating in t and in y1 first, and using the

Fourier inversion formula:

lim
	!0

Z Z
e2�i.y1��/t�.	t/g.y1/ dy1dt D g.�/:

On the other hand S� \ U D fx1 D H.�; y2; : : : yn/; xj D yj g , and ��.y/ D
j@1H.�; y0/j dy0 in parameters y0 D .y2; : : : ; yn/. ut
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Now it is easy to identity the integrals I�.�/ defined in (8.89). Indeed by (8.94),
we have

I�.�/ D
Z

Rn

Z

R
e�2�i .P.x/��/ˇ e2�ix���.x=P / dˇ d�

D
Z

Rn
��.x/e

2�ix���.x=P / d� D Q��.�/

Also, by homogeneity, Q��.�/ D �n=d �1 Q�.�1=d�/ , where � is the Gelfand-Leray
measure restricted the unit level surface S D fP D 1g. Thus we have shown

Theorem 26. Let d � 2, n � d.d�1/2dC1, and let P be a positive, homogeneous,
non-singular polynomial of degree d . Then we have

O!�.�/ D M�.�/C E�.�/; (8.95)

where

M�.�/ D �
n
d �1 X

q�Nd�1�

X

.a;q/D1

X

l2Zn

G.a; q; l/  .q�� l/ Q�.� 1
d .�� l=q//; (8.96)

and

jE�.�/j 	 Nn�d�n
d (8.97)

uniformly in � 2 Tn, where 
d D 1

.d�1/2dC1 .

Let us remark that following the error estimates carefully, in fact it was shown
that

jE�.�/j 	 Nn�d� n
D C2 D Nn�d�n
 0

d

with some constant 
 0
d > 
d for n > d.d � 1/2dC1. This will be utilized in our

estimates on the discrepancy, to swallow certain small factors of size N".
We will also need an estimate on the decay of the Fourier transform of the

measure � , later in our upper bounds on the discrepancy.

Lemma 27. One has

j Q�.�/j 	 .1C j�j/� n
DC1

Proof. Suppose j�j > 1, and choose a cut-off � such that �� D � . Then by (8.94),
we have

Q�.�/ D
Z
e�2�i x���.x/ d�.x/

D lim
ı!0

Z Z
e�2�i x��e2�i.P.x/�1/t�.x/�.ıt/ dxdt
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We decompose the range of integration into two parts

Q�.�/ D
Z

jt j�cj�j

Z

Rn
C
Z

jt j�cj�j

Z

Rn
D I1 C I2

Note that if jt j � C j�j , with a sufficiently small constant c > 0, then one has for
the gradient of the phase

j.tP.x/ � x � �/0j D jP 0.x/ � �j � j�j=2;

thus integrating by partsK times yields

jI2j � CN .1C j�j/�KC1:

For jt j � C j�j we have by (8.90)

j
Z
e2�i.tP.x/�x��/�.x/ dxj 	 jt j� n

D ;

hence

I1 	
Z

jt j�C j�j
jt j� n

D dt 	 j�j� n
D C1;

with D D .d � 1/2d�1. ut

8.3.1.4 The Singular Series

In order to get nontrivial upper bounds on the discrepancy for the set of lattice
points on hypersurfaces, one needs to ensure that there are many lattice points on
the surface. We will do this, by showing the existence of a regular set of values �
corresponding to a non-singular polynomial P . Most of what we discuss below is
standard, for example it is implicit in [4], so we only include the details for the sake
of completeness.

Recall that we have a fixed � slightly smaller than 1
2.d�1/ , so that the asymptotic

expansion (8.96) holds with an error term of size O.Nn�d�n
d /, where N D �1=d

and 
d D 1

.d�1/2dC1 . Taking � D 0 this means that

O!�.0/ D �
n
d �1 X

1�N.d�1/�

K.q; 0; �/CO.Nn�d�n
d /;
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where

K.q; 0; �/ D
X

.a;q/D1
G.a; q; l/ D q�n X

.a;q/D1

X

s2.Z=qZ/n

e
2�i

a.P.s/��/�s�l
q :

To exploit the multiplicativity of the terms K.q; 0; �/ we need to extend the
summation for all q 2 N, and estimate the error obtained. This can be done by
using (8.84) which yields

jK.q; 0; �/j 	 .log q/nq� n
DC1;

thus for a sufficiently small " > 0
X

q�N.d�1/�

jK.q; 0; �/j 	" N
�.d�1/�. nD �2�"/ 	 N�n
d

if n > d.d � 1/2dC1, by our choice of the parameters, D and 
d . Indeed, we have
that .n=D � 2/ > 2n
d , thus choosing � sufficiently close to (but smaller than)
1=2.d � 1/, the above estimate holds. It is well-known, and easy to see from the
Chinese Remainder Theorem, that K.q1; 0; �/K.q2; 0; �/ D K.q1q2; 0; �/ for q1
and q2 being relative primes, which implies that

1X

qD1
K.q; 0; �/ D

Y

p prime

.

1X

rD0
K.pr ; 0; �// DW

Y

p prime

Kp.�/;

where the last equality is used to define the arithmetic factors Kp.�/ D
1P
rD0

K.pr ; 0; �/ . Note that K.1; 0; �/ D 1 and by estimate (8.84) we have that

Kp.�/ D 1 C O.p� n
D C2/ D 1 C O.p�2/ . Thus choosing R D RP sufficiently

large, we have that

1=2 �
Y

p>R p prime

jKp.�/j � 2 (8.98)

An important and well-known fact, which we will explain below, is that the
arithmetic factors Kp.�/ can be interpreted as the density of solutions of the
equation P.m/ D � among the p-adic integers (see [4]). Thus the main term in
the asymptotic formula (8.8) is the product of the densities of the solutions in the p-
adic integers and the density of solutions among the real numbers and is an instance
of the so-called local-global principle.

To see this, define

r.pK; �/ WD jfm 2 .Z=.pKZ/n W P.m/ � � .mod pN /gj;

One has



526 Á. Magyar

Proposition 28.

KX

rD0
K.pr ; 0; �/ D p�n.K�1/r.pK; �/:

Proof. Note that

r.pK; �/ D
X

m .mod pK/

p�K
pKX

bD1
e
2�i.P.m/��/ b

pK ;

since the inner sum is equal to pK or 0 according to whether P.m/ � � .mod pK/

or not. Next one writes b D apK�r , where .a; p/ D 1, 1 � a < pr for r D
0; 1; : : : ; K , and collects the terms corresponding to a fixed r which turn out to be
K.pr ; 0; �/. ut

Let us remark that this implies Kp.�/ D limK!1 p�n.K�1/r.pK; �/ , which can
be viewed as the density of the solutions among the p-adic integers.

To count the number of solutions modulo pK , one uses the p-adic version of
Newton’s method.

Lemma 29. Let p be a prime, � and let k; l be natural numbers such that l > 2k.
Suppose there is anm0 2 Zn for which

P.m0/ � � .mod pl/;

moreover suppose, that pk is the highest power of p which divides all the partial
derivatives @jP.m0/.

Then for K � l , one has p�K.n�1/rP .pK; �/ � p�l.n�1/.

Proof. For K D l this is obvious. Suppose it is true for K , and consider all the
solutionsm1 .mod p

NC1/ of the formm1 D mC pK�ks where s .mod p/. Then

P.mC pK�ks/� � D P.m/ � �C pK�kP 0.m/ � s D 0 .mod pKC1/;

which yields a C b � s D 0 .mod p/ where apK D P.m/ � � and bpk D P 0.m/.
Then bj ¤ 0 .mod p/ for some j hence there are pn�1 solutions of this form. All
obtained solutions are differentmod .pKC1/, andm1 satisfies the hypothesis of the
lemma. ut

We remark that in case of m D 1, k D 0 the above argument shows that there
are exactly p.K�1/.n�1/ solutions m for which m D m0 .mod p/ and P.m/ D
�.mod pK/. It is not hard to establish now the existence of a set of regular values
for the polynomial P .
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Lemma 30. let P.m/ be a homogeneous non-singular polynomial of degree d � 2,
then there exists an infinite arithmetic progression � and constants 0 < cP < CP ,
such that for all � 2 �

cP � K.�/ � CP

Proof. Let �0 D P.m0/ ¤ 0 for some fixed m0 ¤ 0. Let p1; : : : ; pJ be the set of
primes less then R. Let k be an integer s.t. pkj does not divide d�0, for all j � J ,
where d is degree of P.m/. By the homogeneity relation P 0.m0/ � m D d�0 it
follows that pkj does not divide some partial derivative @iP.m0/. Fix l s.t. l > 2k

and define the arithmetic progression
� D f�0 C k

QJ
jD1 plj W k � kQg. Then we claim that � is a set of regular

values. Indeed by Proposition 28 one has for � 2 �

Kpj .�/ D lim
N!1p

�n.N�1/
j rQ.p

N
j ; �/ � p

�l.N�1/
j :

This together with (8.98) ensures that the singular series K.�/ remains bounded
from below, and the error term becomes negligible by choosing k D kP large
enough. ut

Let us remark that along the same lines it can be shown, that all large numbers
are regular values of P.m/, if for each prime p < R and each residue class
s .mod p/, there is a solution of the equations P.m/ D s .mod p/ such that
P 0.m/ ¤ 0 .mod p/. This is the case for example for P.m/ D P

j m
d
j .

8.3.2 Upper Bounds for the Discrepancy

We will prove Theorem 12 by extending the arguments given in Sect. 8.2 to the case
of a general homogeneous non-singular hypersurface. Our main tool again will be
the asymptotic expansion (8.95)

O!�.�/ D �
n
d �1 X

q�N.d�1/�

mq;�.�/C E�.�/;

where

mq;�.�/ D
X

l2Zn

K.q; l; �/  .q� � l/ Q�.� 1
d .� � l=q//:

Note that 0 < � < 1
2.d�1/ and N D �1=d . Moreover we will need the decay

estimates

j Q�.�/j 	 .1C j�j/� n
DC1 (8.99)

jKp.q; l; �/j 	" q
� n
D C1C" (8.100)
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Recall that the discrepancy of the set Z0
P;� D f��1=dmI P.m/ D �g with respect

to caps Ca;� D fx 2 SP W jx � � � ag may be written as

DP .�; �/ D
X

P.m/D�
�a.�

�1=dm � �/ � N�

Z

SP

�a.x � �/ d�.x/;

where N� is the number of solutions of the diophantine equation P.m/ D �, and
�a is the indicator function of an interval Œa; b�, b being a fixed constant such that
jx � �j � b for all x 2 SP and � 2 Sn�1.

We turn to the proof of Theorem 12. As before, it will be enough to estimate the
“smoothed” discrepancy

DP .�a;ı; �; �/ D
X

P.m/D�
�a;ı.�

� 1
d m � �/ �N�

Z

SP

�a;ı.x � �/ d�.x/;

for, say ı D ��n. Taking the inverse Fourier transform of the functions �a;ı , we
have

X

P.m/D�
�a;ı .�

�1=d m � �/ D
Z

R
�
1
d Q�a;ı.t� 1

d / O!�.t�/ dt (8.101)

also
Z

Sn�1

�a;ı .x � �/ d�.x/ D
Z

R

Q�a;ı.t/ Q�.t�/ dt: (8.102)

Moreover, as in (8.43) and (8.44), set

Iq;� WD
Z

R
�
1
d Q�a;ı.t� 1

d /mq;�.t�/ dt;

and

E� WD
Z

R
�
1
2 Q�a;ı.t� 1

2 / E�.t�/ dt:

First, we estimate the error term using (8.95)

jE�j 	 Nn�d�n
d
Z

R
.1C jt j/�1.1C ıjt j/�1 (8.103)

	 �
n
d �1� n

d .log �/ 	 �.
n
d �1/.1�
d /; (8.104)
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Next, we decompose the integral Iq;� as in (8.46), and observe that for jt j < 1= 8q

mq;�.t�/ D K.q; 0; �/ Q�.�1=d t�/:

Lemma 31. We have

j� n
d �1 X

q�N.d�1/�

I 1q;� � N�

Z

SP

�a;ı .x � �/ d�.x/ j 	 �.
n
d �1/.1�
d /: (8.105)

Proof. By the above observation and a change of variables t D �1=d t , we have

X

q�N.d�1/�

I 1q;� D
X

q�N.d�1/�

K.q; 0; �/

Z

jt j<N=8q
Q�a;ı.t/ Q�.t�/ dt:

We extend the integration to the whole real line to exploit (8.102), the error obtained
is bounded by

Z

jt j�N=8q
j Q�a;ı.t/j j Q�.t�/j dt 	

Z

jt j�N=8q
.1C jt j/� n

D dt 	 N� n
D C1q

n
D �1:

Thus
ˇ̌
ˇ̌
ˇ̌�

n
d �1 X

q�N.d�1/�

I 1q;� �
X

q�N.d�1/�

K.q; 0; �/

Z

Sp

�a;ı .x � �/ d�p.x/
ˇ̌
ˇ̌
ˇ̌

	" N
� n
D C1 X

q�N.d�1/�

q� n
D C1C"q

n
D �1 	 N�n
d ; (8.106)

using the facts that .d � 1/� < 1
2

and n
D

� 2 > n
d , choosing " > 0 sufficiently
small. ut
Lemma 32. One has

X

q�N.d�1/�

jI 2q;�j 	 N�n
d : (8.107)

Proof. Since  .q� � l/ D 0 unless l D Œq��, the nearest lattice point to the point
q�, we have that

mq;�.t�/ D K.q; Œqt��; �/  .fqt�g/ Q�
�
N

q
fqt�g

�
:
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By making a change of variables t WD tq, it follows from (8.99) and (8.100)

jI 2q;�j 	" N
� n
D C2 q�1C" J�

where

J� D
Z

jt j�1=8
j Q�a;ı.tN=q/j kt�k� n

DC1 dt:

Note that for q � N.d�1/� < N 1=2

j Q�a;ı.tN=q/j 	 q

N
jt j�1.1C jıt j/�1:

By a dyadic decomposition of the range of integration, using (8.36), we have

jJ�j 	"

q

N

X

j��3
2"j .1C ı2j /�1 	 q N�1C"0 ;

with "0 D nd". Choosing " > 0 sufficiently small, this implies

X

q�N.d�1/�

jI 2q;�j 	"

X

q�N1=2

q"N� n
D C1C"0 	 N� n

DC2 	 N�n
d : (8.108)

ut
Finally, we remark that Theorem 12 follows immediately from estimates (8.103)–

(8.107). ut

8.3.3 The Distribution of the Solutions Modulo 1

We will study the distribution of the images of the solutions of a diophantine equa-
tion P.m/ D � on the flat torus Tn D Rn=Zn, via the map T˛ W .m1; : : : ; mn/ !
.m1˛1; : : : ; mn˛n/ .mod 1/, where ˛ D .˛1; : : : ; ˛n/ 2 Rn is a given point. We
will assume, as before, that P is a positive, homogeneous, non-singular polynomial
of degree d , and n � nd is large enough with respect to the degree. Note that if
one of the coordinates ˛i is rational, say equal to a=q, thenmi˛i can take at most q
different values modulo 1, so the images of the solution sets

˝�;˛ WD f.m1˛1; : : : ; mn˛n/ W P.m1; : : : ; mn/ D �g � Tn (8.109)

cannot become equi-distributed on the torus as � ! 1, even if one restricts to
regular values only. In the opposite case, we have
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Theorem 33. Let ˛ D .˛1; : : : ; ˛n/ be point such that ˛i is irrational for all 1 �
i � n, and � be a smooth function on Tn. If � is a set of regular values of the form
P , then one has

lim
�!1; �2�N

�1
�

X

P.m/D�
�.m1˛1; : : : ; mn˛n/ D

Z

Tn
�.x/ dx; (8.110)

where N� is the number of solutions of the equation P.m/ D �.

Proof. For simplicity, let us introduce the notation m ı ˛ D .m1˛1; : : : ; mn˛n/. By
using the inverse Fourier transform �.ˇ/ D P

l2Zn
O�.l/e2�i ˇ� l , we have

X

P.m/D�
�.m ı ˛/ D

X

l2Zn

O�.l/
X

P.m/D�
e2�i.m1l1˛1C:::mnln˛n/

D
X

l2Zn

O�.l/ O!�.l ı ˛/ D N� O�.0/C T�.˛/; (8.111)

where

T�.˛/ D
X

l2Zn; l¤0
O�.l/ O!�.l ı ˛/: (8.112)

Substituting the asymptotic expansion (8.95) into the above expression we have

T�.˛/ D
X

q�N.d�1/�

X

l¤0
mq;�.l ı ˛/ O�.l/ C

X

l¤0
E�.l ı ˛/ O�.l/:

Using the fact that O�.l/ � CM.1C jl j/�M for all M 2 N, estimate (8.97) implies

X

l¤0
jE�.l ı ˛/ O�.l/j 	 Nn�d�n
d k O�kl1 	 Nn�d�n
d ; (8.113)

where N D �1=d and 
d > 0 is a constant depending on d . Also, by (8.100) one
has

jmq;�.l ı ˛/j 	" N
n�dq� n

D C1C" O�
�
N

q
kql ı ˛k

�
: (8.114)

Since ˛ 2 .R=Q/n by our assumption and l ¤ 0 we have that kql ı ˛k > 0 , thus

mq;�.l ı ˛/ ! 0 as � ! 1:
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Let " > 0 be fixed, then by (8.114) one estimates crudely

X

q�N"

X

l¤0
jmq;�.l ı ˛/ O�.l/j 	 Nn�d X

q�N"

q� n
D C1 	 Nn�d�n"0 : (8.115)

Also, for a fixed q � N"

X

jlj�N"

jmq;�.l ı ˛/ O�.l/j 	 Nn�d�"; (8.116)

by using the decay estimate j O�.l/j 	 .1C jl j/�2n .
Since for regular values � 2 � the number of solutions is N� � �

n
d �1 D

Nn�d , (8.110) follows from (8.114)–(8.116). ut
Let ˛ D .˛1; : : : ; ˛n/ be a point such that each of its coordinates˛i is diophantine

in the sense that kl˛ik � C"jl j�1�" for l 2 Z=f0g, for every " > 0. We will call
such points ˛ diophantine, and we can extend this definition to points ˛ 2 Tn as ˛
diophantine if and only if ˛Cm is such for anym 2 Zn. Note that this condition on
˛ is different from the notion used in Sects. 8.2–8.3, nevertheless (8.3) implies that
the set of diophantine points of the torus has measure 1. Also, it is immediate from
the definition that for any l D .l1; : : : ; ln/ 2 Zn, l ¤ 0 we have that

kl ı ˛k � C" jl j�1�": (8.117)

For diophantine points ˛ we will derive quantitative estimates on the discrepancy
of the sets ˝�;˛ with respect to both smooth functions and compact, convex bodies.
To be more precise, for a smooth function � 2 C1.Tn/ define the associated
discrepancy as

D.�; ˛; �/ WD
X

P.m/D�
�.m ı ˛/ �N�

Z

T n
�.x/ dx: (8.118)

Theorem 34. Let ˛ 2 Tn be a diophantine point, and let � 2 C1.Tn/. Then for
n > nd D d.d � 1/2dC1, one has

jD.�; ˛; �/j 	 �
n
d �1�n�d ; (8.119)

with a constant �d > 0 depending only on the degree d .

Proof. We will argue as in the proof of Theorem 33, using condition (8.117) and
the decay estimates (8.99) and (8.100). To start, observe that by (8.111)–(8.112)

D.�; ˛; �/ D T�.˛/ �
X

q�N.d�1/�

X

l¤0
jmq;�j j O�.l/j C O.Nn�d�n
d /:
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Since ˛ is assumed to be diophantine we have for all " > 0

jD.�; ˛; �/ 	 Nn�d X

q�N.d�1/�

X

l¤0
q� n

D C1
�
1CN

q
kql ı ˛k

�� n
DC1

j O�.l/j (8.120)

	" N
n�d X

q�N.d�1/�

X

l¤0
q� n

D C1
�
1C N

q2C"jl j1C"
�� n

D C1
.1C jl j/�2n:

Now the parameter � in the asymptotic formula (8.95) was chosen such that .d �
1/� < 1=2 , accordingly we will set " D .1 � 2.d � 1/�/=4. This will ensure that

N

q2C"jl j1C" � N";

for 1 � q � N.d�1/� and 0 < jl j < N" , thus by (8.120)

X

q�N.d�1/�

X

0<jlj<N"

jmq;�.l ı ˛/j j O�.l/j 	 Nn�d�".n=D�1/ 	 Nn�d�n�d ;

with, say �d D .1 � 2.d � 1/�/=8D. The rest of the sum is estimated crudely by

Nn�d X

q�N.d�1/�

X

jlj�N"

q� n
DC1.1C jl j/�2n 	 Nn�d�"n:

This finishes the proof of Theorem 34. ut
Finally, we will study the discrepancy of the image sets ˝˛;� with respect to

compact, convex bodies K � .� 1
2
; 1
2
/n, when the flat torus Tn is identified as

a set with Œ� 1
2
; 1
2
/n. Let us remark that in this case one cannot hope for better

upper bounds thanO.�
n
d �1� 1

d /. Indeed, consider the discrepancy with respect to the
family of cubesKc D Œ�c; c�n . The number of solutions of the equation P.m/ D �

is � �n=d�1 but (as P.m/ � jmjd ) each coordinate can take 	 �1=d values, thus
the number of solutionsm D .m1; : : : ; mn/ with m1 being fixed is at least �

n
d �1� 1

d ,
for some value of m1. Fix such an m1 and let c1 D m1˛1 .mod 1/. This means that
the boundary of the cube Kc1 contains at least �

n
d �1� 1

d points of the set ˝˛;� so the
discrepancy changes by at least this much as c passes through c1 and thus one cannot
have a better uniform upper bound on it. We will prove a similar upper bound, of the
formO.�

n
d �1��d / with a constant �d > 0 depending only on the degree d which as

uniform over a large family of convex bodies.
We will use the fact that if K � .� 1

2
; 1
2
/n is a closed convex set with non-empty

interior then there exist convex setsK1 andK2 such that for sufficiently small ı > 0

B.K1; ı/ � K � B.K2; ı/ � .�1; 1/n;
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where B.K; ı/ is the set of points whose distance to the set K is at most ı. To make
our estimates uniform for a large family of convex bodies, define the quantity ıK as
the largest ı > 0 for which there exists a point x such that x C Bı � K and also
K C Bı � Œ� 1

2
; 1
2
�n, where Bı is the closed ball of radius ı centered at the origin.

Lemma 35. Let K � .� 1
2
; 1
2
/n be a closed convex body, and let x be a point in the

interior of K . For given 0 < ı < ıK=10, C0 D 2=ıK , and �1 D ��1
2 D 1 � C0ı;

define the convex bodies K1 D x C �1K , K2 D x C �2K .
If � � 0 is a smooth cut-off function supported in .�1; 1/n such that

R
� D 1,

then we have

�K1 � �ı � �K � �K2 � �ı; (8.121)

where �K stands for the indicator function of a set K , and �ı.x/ D ı�n�.x=ı/.

Proof. From the definition it is immediate that K1 � K � K2 � .� 1
2
; 1
2
/n. By

translation invariance we may assume that x0 D 0 and then it is enough to show that
B.K1; ı/ � K and B.K; ı/ � K2. Since K D x0 C �1K2 D �1K2 both claim can
be shown the same way. Indeed, assume indirect that there is y 2 K1 and z … K

such that jy � zj � ı. Then by the Hahn-Banach Theorem there is a unit vector v
for which

v � y C ı � v � z > max
x2K v � x � ��1

1 y � z;

since ��1
1 y 2 K . Also, by our assumption BıK � K , hence

y � z � v � z � ı > ıK � ı � ıK=2:

This implies

�1ı � .1 � �1/y � z � C0ı ıK=2;

which is a contradiction since �1 < 1 and C0ıK � 2. The same argument shows
that B.K; ı/ � K2 and (8.121) follows. ut

For a closed, convex body K � .� 1
2
; 1
2
/n and a diophantine point ˛, define the

discrepancy

D.K; ˛; �/ D
X

P.m/D�
�K.m1˛1; : : : ; mn˛n/�N�voln.K/;

where �K is the indicator function ofK considered as a function on Tn, and voln.K/
denotes the volume of the body. We have the following uniform estimate on the
discrepancy.
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Theorem 36. Let n > d.d � 1/2dC1 and let P be a non-singular integral
polynomial in n variables, and let ˛ 2 Rn be diophantine and let ı0 > 0. Then
for a closed, convex bodyK � .� 1

2
; 1
2
/n such that ıK � ı0 we have

jD.K; ˛; �/j 	 Nn�d��d ; (8.122)

where �d > 0 is a constant depending only on d , and the implicit constant in (8.122)
depends only on the polynomial P , the point ˛ and on ı0 and is independent ofK .

Proof. Let us use the notation �K;ı D �K � �ı . By (8.121) we have for ı < cı0
(c > 0 being sufficiently small)

X

P.m/D�

�K1;ı.mı˛/�N�
Z

Tn
�K2;ı � D.K; ˛; �/ �

X

P.m/D�

�K2;ı.mı˛/�N�
Z

Tn
�K1;ı:

and also
Z

Tn
.�K2;ı � �K1;ı/ � Cı voln.K/;

with a constant C 	 ı�1
0 . Thus

jD.K; ˛; �/j � max
iD1;2 jD.�Ki ;ı; ˛; �/j CO.Nn�d ı/: (8.123)

To estimate the discrepancy with respect to the smooth functions �Ki ;ı we proceed
as before, with exception that now we have the estimates on their Fourier transform

j O�Ki ;ı.l/j D j O�Ki .l/ O�.ıl/j 	 .1C ıjl j/�2n;

in particular k O�Ki ;ıkl1 	 ı�n. Thus

j
X

l¤0
E�.l ı ˛/ O�Ki ;ıj 	 Nn�d�n
d ı�n: (8.124)

For the main terms, we have

X

0<jlj<N"

jmq;�.l ı ˛/ O�Ki ;ı.l/j 	 Nn�d q�
n
D C1

�
1C N

q2C"jl j1C"

�
�

n
D C1

.1C ıjl j/�2n

	 Nn�d�". n
D

�1/ q�
n
D

C1ı�n; (8.125)
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for q � N.d�1/� , choosing " D .1 � 2.d � 1/�/=4 as before. Also

X

jlj�N"

jmq;�.l ı ˛/ O�Ki ;ı.l/j 	 Nn�dq� n
D C1 X

jlj�N"

.1C ıjl j/�2n

	 Nn�dq� n
D C1 .1C ıN "/�2n N "n: (8.126)

Let ı D N� "
4D then the right side of both (8.125) and (8.126) is O.Nn�d� "

4D

q� n
D C1/. Summing for 1 � q � N.d�1/� and using (8.123) we obtain the estimate

jD.K; ˛; �/j 	 Nn�d� "
4D :

Finally note that the exponent �d WD "
4D

depend only on the parameter � and D,
hence ultimately only on dimension d , while the implicit constants in our estimates
depend on the parameter ı0 and not on the body K . This finishes the proof of
Theorem 36. ut

8.3.4 Some Possible Further Directions

Our estimates on the uniformity of the distribution of solutions to diophantine
equations in many variables are by no means exhaustive. In fact even in the case
of the sphere, it is not clear if our upper bounds are sharp or even what should be the
sharp bounds. A closely related problem is to find lower bounds for the mean square
average of the discrepancy of the lattice points on spheres over the family of all
spherical caps. It is expected that the lattice points are far from optimally distributed
and essentially higher lower bounds can be obtained then the uniform lower bounds
given in [3,15] and [12]. To obtain nontrivial lower bounds one may exploit the fact
that lattice points in small caps are concentrated on lower dimensional spheres.

For higher degree polynomials it is unrealistic to expect sharp bounds in the
generality we have discussed. The special case of the polynomial P.m/ D md

1 C
: : : C md

n (d even) deserves special attention as the number of the solutions of the
equation P.m/ D �, the so-called Waring problem, has been studied extensively. In
fact much sharper asymptotic formulas have been obtained than the ones which
can derived from the Birch-Davenport method [18]. In general we have only
considered positive polynomials of even degree, however there are natural analogues
for indefinite forms. Indeed one may identify the solution set of the diophantine
equation P.m1; : : : ; mn/ D 0 within the box jmi j � N as the set of lattice points
ZP .N / D S \ Zn \ Œ�N;N �n where S D fP D 0g is the zero surface of P . One
can shrink this set by a factor of N and study the discrepancy with respect to caps
as N ! 1.

Let us also remark that weaker bounds we have obtained for the distribution of the
solutions modulo 1 seemed partly because of we have allowed very rough convex
sets K . It might be true that better upper bounds can be given by assuming some
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smoothness of the boundary of the convex body, however it is not even immediately
clear how to improve the bounds on the discrepancy with respect to balls.

Finally, as we mentioned in the introduction, the uniformity of distribution of the
solutions modulo 1, is a special case of a more general phenomenon. It can be shown
[11] that the images of the solution sets fP.m/ D �g become equi-distributed when
mapped to a probability measure space X via a fully ergodic commuting family of
measure preserving transformations. It would be interesting to see if one can get
estimates for the rate of equi-distribution for other measure preserving systems than
the flat torus with the coordinate shifts.
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