
Chapter 3
Irregularities of Distribution and Average Decay
of Fourier Transforms

Luca Brandolini, Giacomo Gigante, and Giancarlo Travaglini

Abstract In Geometric Discrepancy we usually test a distribution of N points
against a suitable family of sets. If this family consists of dilated, translated and
rotated copies of a given d -dimensional convex body D � Œ0; 1/d , then a result
proved by W. Schmidt, J. Beck and H. Montgomery shows that the correspondingL2

discrepancy cannot be smaller than cdN .d�1/=2d . Moreover, this estimate is sharp,
thanks to results of D. Kendall, J. Beck and W. Chen. Both lower and upper bounds
are consequences of estimates of the decay of k O�D .��/kL2.˙d�1/

for large �, where
O�D is the Fourier transform (expressed in polar coordinates) of the characteristic
function of the convex bodyD, while ˙d�1 is the unit sphere in R

d . In this chapter
we provide the Fourier analytic background and we carefully investigate the relation
between the L2 discrepancy and the estimates of k O�D .��/kL2.˙d�1/

.

3.1 Introduction

More than 40 years ago W. Schmidt [51, 52] proved the following theorem on
irregularities of point distribution related to discs.

Theorem 1 (Schmidt). For every distribution P of N points in the torus T2 there
exists a disc D � T

2 of diameter less than 1 such that, for every " > 0,
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jcard .P\D/ �N jDjj � c" N
.1=4/�" ;

where jAj denotes the volume.

This result has to be compared with the following earlier results of K. Roth [50]
and H. Davenport [26].

Theorem 2 (Roth). For every distribution P of N points in Œ0; 1�2 we have the
following lower bound

Z
T2

jcard .P \ Ix/�Nx1x2j2 dx1 dx2 � c logN ;

where Ix D Œ0; x1� � Œ0; x2� for every x D .x1; x2/ 2 Œ0; 1�2. Hence for every
distribution P of N points in the torus T2 there exists a rectangle R � T

2, having
sides parallel to the axes and such that

jcard .P\R/�N jRjj � c log1=2 N :

Theorem 3 (Davenport). For every integerN � 2 there exists a distribution P of
N points in the torus T2 such that

Z
T2

jcard .P \ Ix/�Nx1x2j2 dx1 dx2 � c logN :

Schmidt’s theorem has been improved and extended by J. Beck [3] and H.
Montgomery [42], who have independently obtained the following L2 result
(see also [2, 4, 11]).

Theorem 4 (Beck, Montgomery). Let B � T
d be a convex body. Then for every

distribution P of N points in T
d we have

Z 1

0

Z
SO.d/

Z
Td

ˇ̌
card .P\ .�� .B C t/// � �dN jBjˇ̌2 dt d� d� � cdN

.d�1/=d :

Hence for every distribution P of N points in T
d there exists a translated, rotated

and dilated copy B 0 of B such that

ˇ̌
card

�
P\B 0� �N ˇ̌

B 0 ˇ̌ˇ̌ � cN .d�1/=2d :

J. Beck and W. Chen have proved that the above L2 estimate is sharp (see [2],
see also [13, 22, 35]).

Theorem 5 (Beck and Chen). Let B � R
d be a convex body having diameter less

than 1. Then for every positive integer N there exists a distribution P of N points
in T

d such that
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Z 1

0

Z
SO.d/

Z
Td

jcard .P\ .� .B C t/// � jBjj2 dt d� � cd N
.d�1/=d :

The large gap between the sharp L2 estimates which appear in Theorem 2
and in Theorem 4 seems to be related to the different behaviors of the Fourier
transforms of the characteristic functions of balls and polyhedra. The case of the
ball is enlightening: the main ingredients in the proofs of the results in Theorems 4
and 5 are provided by the sharp estimates of the L2 average decay of the Fourier
transform O�B of the characteristic function of a convex body B:

Z
˙d�1

j O�B .��/j2 d� (3.1)

(here ˙d�1 D ˚
x 2 R

d W jxj D 1
�

is the unit sphere in R
d ) so that the study of the

above problem on irregularities of distribution turns out to be strictly related to the
study of (3.1) (see e.g. [6, 11, 13, 61, 62]).

The purpose of this chapter is to exploit the above relation in a detailed and self-
contained way. In the second section we prove the L2 results for the average decay
of Fourier transforms of characteristic functions of convex bodies. The third section
contains Lp results for polyhedra. In the fourth section we deduce lattice point
results. The fifth and the sixth section are the main part of this chapter and show
how to obtain different proofs of Theorems 4 and 5, depending on the estimates
proved before.

During this chapter positive constants are denoted by c, c0, c1, . . . (they may vary
at every occurrence). By cd , c", cB , . . . we denote constants which depend on d , ",
B , . . . For positive A and B , we write A � B when there exist positive constants c1
and c2 such that c1A � B � c2A.

3.2 Decay of the Fourier Transform: L2 Estimates
for Characteristic Functions of Convex and More
General Bodies

3.2.1 Introduction

Let B � R
d be a convex body, i.e. a convex bounded set with non empty interior,

and let d� be the surface measure on @B . The study of the decay of the Fourier
transforms O�B .�/ and O� .�/ has a long history and provides several applications
to different fields in mathematics (see [56, Ch. VIII, 5, B]). Of course we have
O�B .�/ ! 0 as j�j ! C1, by the Riemann-Lebesgue lemma. However more is
true, since

j O�B .�/j � cB j�j�1 ; (3.2)
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for every � 2 R
d . Indeed, write � D �� in polar coordinates (� � 0, � 2 ˙d�1)

and for every � 2 ˙d�1 define, for s 2 R, the parallel section function 	.s/ D
	� .s/ equal to the .d � 1/-volume of the set B \ ˚

�? C s�
�
. In order to prove

(3.2) it is enough to assume � D .1; 0; : : : ; 0/, so that � D .�; 0; : : : ; 0/. Then, if
x D .x1; x2; : : : ; xd /, we have

O�B .�/ D
Z
B

e�2
i��x dx D
Z
R

e�2
i�x1	 .x1/ dx1 D O	.�/ : (3.3)

Observe that the variation of the function 	� is bounded uniformly in � , then
(see e.g. [64, p.221]) we get (3.2). The case of the cube Q D Œ�1=2; 1=2�d , shows
that (3.2) cannot be improved. Indeed

O�Q .�/ D
dY
jD1

sin
�

�j

�

�j

;

so that, for the directions orthogonal to the facets (i.e the .d � 1/-faces) of this
cube, e.g. for � D .�; 0; : : : ; 0/, we have O�Q .�; 0; : : : ; 0/ D sin .
�/ =
� and then
we have

lim sup
j�j!C1

j�j ˇ̌ O�Q .�/
ˇ̌
> 0 :

In the same way it is easy to see that if � D �� and � is not orthogonal to any facet
of the cube, then

ˇ̌ O�Q .�/
ˇ̌ � c� �

�2. More generally, if � is not orthogonal to any
face (of any dimension), then

ˇ̌ O�Q .�/
ˇ̌ � c� �

�d , hence this last inequality holds
for almost all directions.

The case of the (unit) ball D D ˚
x 2 R

d W jxj � 1
�

is of course peculiar, O�D is a
radial function and we have

O�D.�/ D j�j�d=2 Jd=2 .2
 j�j/ ; (3.4)

for every � 2 R
d . Here Jd=2 is the Bessel function of order d=2. By the asymptotics

of Bessel functions (see [57, Ch. IV, Lemma 3.11], see also [63] for the basic
reference on Bessel functions) we know that

O�D.�/ D 
�1 j�j�.dC1/=2 cos .2
 j�j � 
 .d C 1/ =4/C Od
�
j�j�.dC3/=2� (3.5)

as j�j ! C1.
In certain cases O�B .�/ admits interesting upper bounds of geometric nature.

When d D 2 we shall see in Lemma 14 that for every convex body B � R
2 we

have, for large � D �� ,
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j O�B.�/j � cB �
�1
(
	

 
���1 C sup

y2B
y � �

!
C	

�
��1 C inf

y2B y � �
�)

; (3.6)

where 	 is the parallel section function. It is easy to show that (3.6) is false when
d � 3. Indeed let P be the octahedron in R

3 given by the convex hull of the six
points .˙1;˙1; 0/, .0; 0;˙1/ ; and let � D .0; 0; 1/. Then

O�P .��/ D
Z
P

e�2
i�x3 dx1 dx2 dx3 D O	.�/ :

Since

	.�/ D .1 � j�j/2C ;

then the RHS of (3.6) is � ��3. Now observe that the piecewise smooth function
	.�/ has continuous derivative at ˙1, but it is only continuous at 0. Then an
integration by parts shows that

lim sup
�!C1

�2
ˇ̌
ˇ O	.�/

ˇ̌
ˇ > 0 :

Then neither (3.6) nor an average version of it can be true. On the other hand a
deeper analysis shows that (3.6) holds true for every d as long as @B is smooth and
it has everywhere finite order of contact (see [1] and [16]).

In general (3.6) cannot be reverted. Indeed let B be a ball and recall (3.4), then
the zeros of the Bessel function (see [63]) show that the inequality (3.6) can be
reverted for no d . A. Podkorytov has shown that (3.6) can be inverted “in mean”
(Podkorytov, 2001, personal communication).

A very important case is given by the class of convex bodies B such that @B
is smooth with everywhere positive Gaussian curvature. In this case the decay of
O�B.�/ resembles the decay for the ball. Indeed we have (see [16, 30, 32, 33] or [56,
Ch. VIII, 5, B])

j O�B.�/j � cB j�j�.dC1/=2 ; (3.7)

for every � 2 R
d .

When @B is flat at some points or irregular, the bound in (3.7) may fail and a
pointwise estimate for O�B.�/ may lead to poor results in the applications. As a way
to overcome this difficulty, we observe that in several problems (see e.g. [10,11,15,
46,48,49,62]) the Fourier transform has to be integrated over the rotations, so that it
may be enough to study suitable spherical averages of O�B.�/. In the next subsection
we will study the L2 spherical means

	Z
˙d�1

j O�B .��/j2 d�

 1=2
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for the case of arbitrary convex bodies, while in the following section we will
consider Lp spherical means for polyhedra.

3.2.2 L2 Spherical Estimates for Convex Bodies

The main result in this field shows that if B � R
d is a convex body, then the L2

spherical average of O�B decays of order .d C 1/ =2. Of course this agrees with the
case of the ball, where no spherical average is necessary. The following theorem
has been proved by A. Podkorytov in the case d D 2 [45] and L. Brandolini, S.
Hofmann and A. Iosevich for any dimension d [6].

Theorem 6. Let B � R
d be a convex body. Then there exists a positive constant

c D cd such that

k O�B .��/kL2.˙d�1/
� c .diam .B//.d�1/=2 ��.dC1/=2 : (3.8)

Proof. For every " > 0 consider a convex body B 0 � B such that @B 0 is smooth
with positive Gaussian curvature and jBnB 0j < " (here jAj denotes the Lebesgue
measure of the set A). Assume

k O�B0 .��/kL2.˙d�1/
� c��.dC1/=2

with c depending on B , but not on B 0. Then

k O�B .��/kL2.˙d�1/
� k O�B0 .��/kL2.˙d�1/

C �� O�BnB0 .��/��
L2.˙d�1/

� c��.dC1/=2 C "

and (3.8) follows by choosing suitable B 0 (and ") as � diverges. Then it is enough
to prove (3.8) assuming B smooth, since the constant c .diam .B//.d�1/=2 must be
independent of the smoothness of @B . For � ¤ 0 let

! .t/ D e�2
 it��
�2
i j�j2 �:

Then div! .t/ D e�2
 it�� and the divergence theorem yields

O�B .��/ D
Z
B

e�2
i�� �t dt D � 1

2
i�

Z
@B

e�2
i�� �t .�.t/ � �/ d� .t/ ; (3.9)

where �.t/ is the outward unit normal to @B at t and d� denotes the surface measure
on @B . Now write the unit sphere˙d�1 as a finite union of spherical caps Uj having
small radius and centers at points �j 2 ˙d�1, in such a way that every spherical cap
Uj supports a cutoff function j , so that the j ’s provide a smooth partition of unity
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Fig. 3.1 The set ˝

of˙d�1. Although this partition of unity is independent ofB , the family
˚
j .�.t//

�
is a partition of unity on @B . We then write

O�B .��/ D � 1

2
i�

X
j

Z
@B

e�2
i�� �t .�.t/ � �/ j .�.t// d� .t/

and it is enough to prove that for every j we have

Z
˙d�1

ˇ̌
ˇ̌Z
@B

e�2
i�� �t .�.t/ � �/ j .�.t// d� .t/
ˇ̌
ˇ̌2 d� � c .diam .B//.d�1/=2 ��.d�1/ :

(3.10)

Now suppose j is given, write  for j , � for �j , and let ˝ � @B be the support
of  .�.t//, so that from now on the inner integral in (3.10) will be on ˝ . We may
assume  supported in a small spherical cap having center at � D .0; : : : ; 0;�1/. We
need to consider directions which are essentially orthogonal and directions which
are essentially non orthogonal to ˝ , and tell them apart. In order to do this, let
 W R ! Œ0; 1� be a C1 cutoff function such that  .t/ D 1 for jt j � c1 and
 .t/ D 0 for jt j � c2, for 0 < c1 < c2 < 1. We write

Z
˙d�1

ˇ̌
ˇ̌
Z
˝

e�2
i�� �t .�.t/ � �/  .�.t// d� .t/
ˇ̌
ˇ̌2 d�

D
Z
˙d�1

ˇ̌
ˇ̌Z
˝

e�2
i�� �t .�.t/ � �/  .�.t// d� .t/
ˇ̌
ˇ̌2 .1 �  .��d // d�

C
Z
˙d�1

ˇ̌
ˇ̌Z
˝

e�2
i�� �t .�.t/ � �/  .�.t// d� .t/
ˇ̌
ˇ̌2  .��d / d�

D S C NS :

We term “singular” the directions essentially orthogonal to the hyperplanes tangent
to ˝ and “non singular” the remaining ones (Fig. 3.1).
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Note that the phase �2
i�� � t has a stationary point in the singular directions.
However this is not an obstacle, and the proof in [6] starts with the easy but
somehow unexpected remark that the L2 spherical mean “makes this stationary
point disappear”, as we shall see in a moment. In order to estimate S we write

S D
Z
˝

Z
˝

Z
˙d�1

e�2
i�� �.t�u/f .t; u; �/ d�d� .u/ d� .t/ ;

where

f .t; u; �/ D .�.t/ � �/  .�.t// .�.u/ � �/  .�.u// .1 �  .� � �//

is smooth in � . Note that t�u in the above integral is essentially parallel to˝ . Then,
writing the integral in d� in local coordinates, we can apply [56, Ch. 8, Prop. 4] and
obtain

ˇ̌
ˇ̌Z
˙d�1

e�2
i�� �.t�u/f .t; u; �/ d�

ˇ̌
ˇ̌ � c

�
.1C � jt � uj/�N

�

for a large positive integer N . Then

S � c

Z
˝

Z
˝

1

.1C � jt � uj/N d� .u/ d� .t/

� c

Z Z
fjt�uj���1g

1

.1C � jt � uj/N d� .u/ d� .t/

C c

Z Z
fjt�uj���1g

1

.1C � jt � uj/N d� .u/ d� .t/

� c� .˝/

 Z
fx2Rd�1Wjxj���1g

dx C ��N
Z
fx2Rd�1Wjxj>��1g

jxj�N dx

!

� c� .˝/ ��.d�1/ :

Now we need to prove the same estimate for NS. If we were free to integrate by
parts several times,1 it should then be easy to handle NS and to end the proof. Since
the constants in our estimates need to be independent of the smoothness of @B , we
need a more refined argument. As a first step, let us see ˝ as the graph of a convex
smooth function x 7! ˚ .x/. Then, writing ˙d�1 3 � D .�1; : : : ; �d / D .� 0; �d /
we have

1Actually the convexity hypothesis allows us to integrate by parts at least once without using any
regularity assumption on @B . In this way we get the bound ��1 (uniformly in � ), which is enough
to prove the theorem in the dimensions d D 2 and d D 3.
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NS D
Z
˙d�1

ˇ̌
ˇ̌
ˇ̌
ˇ
Z
Rd�1

e�2
i�.� 0�xC�d˚.x//

0
B@ .r˚ .x/ ;�1/q

jr˚ .x/j2 C 1

� �

1
CA

� 

0
B@ .r˚ .x/ ;�1/q

jr˚ .x/j2 C 1

1
CA dx

ˇ̌
ˇ̌
ˇ̌
ˇ

2

 .� � �/ d�

D
Z
˙d�1

ˇ̌
ˇ̌
Z
A
e�2
i�.� 0�xC�d˚.x//h .�;r˚ .x// dx

ˇ̌
ˇ̌2  .� � �/ d� ;

where A is the support of



0
B@ .r˚ .x/ ;�1/q

jr˚ .x/j2 C 1

1
CA

and h is a smooth function in the variables � and r˚ .x/. Note that our choice of
˝ implies that r˚ is uniformly bounded on A and that j� 0j � c > 0 for a suitable
choice of c.

We will work uniformly in � � � D ��d , so that �d will not play a role. We will
then concentrate on � 0 or, better, on � 0= j� 0j 2 ˙d�2. As we did for ˙d�1 we now
write ˙d�2 as a finite union of spherical caps having small radius and supporting
cutoff functions � which give a smooth partition of unity on ˙d�2. It is enough
to consider the cutoff function � supported on a small spherical cap centered at
.1; 0; : : : ; 0/ 2 ˙d�2. We then have to bound

Z
˙d�1

ˇ̌
ˇ̌Z

A
e�2
i�.� 0�xC�d˚.x//h .�;r˚ .x// dx

ˇ̌
ˇ̌2  .�d / �

�
� 0

j� 0j
�
d� : (3.11)

None of the previous steps has said anything on the coordinates �2; : : : ; �d�1
inside � . We then introduce the change of variables � D � .�; �/, where � is a
real variable, � D .�1; �2; : : : ; �d�3; �d�2/, with .�; �/ defined in a neighborhood V
of the origin in R

d�1 and

� D �
� 0; �d

� D .�1; �2; �3; : : : ; �d�2; �d�1; �d /

D
0
@
s
1 � j� j2
1C �2

; �1; �2; : : : ; �d�3; �d�2; �

s
1 � j� j2
1C �2

1
A

D
0
@
s
1 � j� j2
1C �2

; �; �

s
1 � j� j2
1C �2

1
A :
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Then (3.11) takes the form

Z
V

ˇ̌
ˇ̌Z

Rd�1

e�2
i�.� 0�xC�d˚.x//h .�;r˚ .x// dx

ˇ̌
ˇ̌2 J .�; �/ d� d� (3.12)

where J .�; �/ is the Jacobian of the change of variables, times a smooth function.
Let x0 D .x2; : : : ; xd�1/. Since �d D ��1, the inner integral in (3.12) equals

Z
Rd�2

e�2
i�� �x0

Z
R

e�2
i��1.x1C�˚.x1;x0//h
�
�;r˚ �x1; x0�� dx1dx0 : (3.13)

Now let

s D g�;x0 .x1/ D x1 C �˚
�
x1; x

0� :
Since r˚ is small we have g0

�;x0

> c > 0, so that we may write (3.13) as

Z
Rd�2

e�2
i�� �x0

Z
R

e�2
i��1sH
�
�; �; s; x0� ds dx0 ; (3.14)

where

H
�
�; �; s; x0� D

h
�
� .�; �/ ;r˚

�
g�1
�;x0

.s/ ; x0
��

g0
�;x0

�
g�1
�;x0

.s/
�

is smooth in � and bounded.
Let us introduce the difference operator��:

�� Œf .s/� D f
�
s C .2�/�1

�
� f .s/ :

Since ���
�
e�2
i��1s D �

e
i�1 � 1
�
e�2
i��1s and since

Z
R

��� .f / g D
Z
R

f��� .g/ ;

then (3.14) equals

1

e
i�1 � 1

Z
Rd�2

e�2
i�� �x0

Z
R

���
�
e�2
i��1sH �

�; �; s; x0� ds dx0

D 1

e
i�1 � 1
Z
Rd�2

e�2
i�� �x0

Z
R

e�2
i��1s��

�
H
�
�; �; s; x0� ds dx0 :
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Then, by Minkowski integral inequality and by the boundedness of
�
e
i�1 � 1��1

on V , we have

p
NS � c

Z
R

(Z
V

ˇ̌
ˇ̌Z

Rd�2

e�2
i�� �x0

��

�
H
�
�; �; s; x0� dx0

ˇ̌
ˇ̌2 J .�; �/ d� d�

) 1=2
ds :

Let us rewrite the inner integrals as

Z
V

ˇ̌
ˇ̌Z

Rd�2

e�2
i�� �x0

��

�
H
�
�; �; s; x0� dx0

ˇ̌
ˇ̌2 J .�; �/ d� d�

D
Z
Rd�2

Z
Rd�2

Z
V

e�2
i�� �.x0�y0/��

�
H
�
�; �; s; x0���

�
H
�
�; �; s; y0�

� J .�; �/ d� d� dx0 dy0 :

We define

DNf D
NX
kD0

X
j˛jDk

sup
�

ˇ̌
ˇ̌ @˛
@�˛

f .�/

ˇ̌
ˇ̌

so that we can integrate by parts several times in � and obtain, for every positive
integer N ,

ˇ̌
ˇ̌Z
V

e�2
i�� �.x0�y0/��

�
H
�
�; �; s; x0���

�
H
�
�; �; s; y0� J .�; �/ d� d�

ˇ̌
ˇ̌

� c

Z
V

1

.1C � jx0 � y0j/N
� DN

�
��

�
H
�
�; �; s; x0���

�
H
�
�; �; s; y0� J .�; �/� d� d�

� c

Z
V

1

.1C � jx0 � y0j/N
� DN

�
��

�
H
�
�; �; s; x0��DN

�
��

�
H
�
�; �; s; y0� J .�; �/� d� d� :

Since H and J are smooth in � , the term

DN
�
��

�
H
�
�; �; s; y0� J .�; �/�

is bounded. For the remaining term

DN
�
��

�
H
�
�; �; s; x0��



170 L. Brandolini et al.

we seek a better estimate. Observe that for every ˛ we have

@˛

@�˛
��

�
H
�
�; �; s; x0� D ��

@˛H

@�˛

�
�; �; s; x0�

D @˛H

@�˛

�
�; �; s C 1

2�
; x0
�

� @˛H

@�˛

�
�; �; s; x0�

D 1

2�

Z 1

0

�
d

dr

@˛H

@�˛

��
�; �; s C r

2�
; x0
�

dr :

Since @˛H
@�˛

is smooth in r˚ , we can bound d
dr
@˛H
@�˛

(uniformly in � and �) by a linear

combination of @2˚
@xi @xj

. Being ˚ convex, its Hessian matrix is positive definite and
we can bound every matrix entry by the trace �˚ , so that we have

DN��

�
H
�
�; �; s; x0� � c

1

�

Z 1

0

K

�
g�1
�;x0

�
s C r

2�

�
; x0
�

dr ;

where

K D �A�˚ :

Summarizing,

p
NS

� c

Z
R

(Z
V

ˇ̌
ˇ̌Z

Rd�2

e�2
i�� �x0

��

�
H
�
�; �; s; x0� dx0

ˇ̌
ˇ̌2 J .�; �/ d� d�

) 1=2
ds

� c

Z
R

	Z
Rd�2

Z
Rd�2

Z
V

e�2
i�� �.x0�y0/��

�
H
�
�; �; s; x0���

�
H
�
�; �; s; y0�

� J .�; �/ d� d� dx0 dy0�1=2 ds

� c

Z
R

	Z
Rd�2

Z
Rd�2

1

.1C � jx0 � y0j/N

�
Z
V

DN
�
��

�
H
�
�; �; s; x0�� d� d� dx0dy0


 1=2
ds

� c��1=2 sup
�

Z
R

	Z
Rd�2

Z 1

0

K

�
g�1
�;x0

�
s C r

2�

�
; x0
�

dr

�
Z
Rd�2

1

.1C � jx0 � y0j/N dy0dx0

 1=2

ds :
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By the Cauchy-Schwarz inequality the last term is smaller than

c��1=2 sup
�

	Z
Rd�2

1

.1C � jz0j/N d z0

 1=2

�
Z
R

	Z
Rd�2

Z 1

0

K

�
g�1
�;x0

�
s C r

2�

�
; x0
�

dr dx0

 1=2

ds

� c��.d�1/=2 sup
�

p
diam .B/

�
	Z

R

Z
Rd�2

Z 1

0

K

�
g�1
�;x0

�
s C r

2�

�
; x0
�

dr dx0 ds


 1=2

� c��.d�1/=2 sup
�

p
diam .B/

�
	Z 1

0

Z
R

Z
Rd�2

K
�
g�1
�;x0

.s/ ; x0� dx0 ds dr


 1=2

� c��.d�1/=2pdiam .B/

	Z
Rd�2

K .y/ dy


 1=2
:

Finally,

Z
Rd�2

K .y/ dy D
Z
A
�˚ .y/ dy D

dX
jD1

Z
A

@2˚

@y2j
.y/ dy

D
Z
A 0

1

Z
A1.y0/

@2˚

@y21

�
y1; y

0� dy1 dy0 C : : :

where A 0
1 is the projection of A on the hyperplane y1 D 0, and

A1

�
y0� D ˚

y1 W �y1; y0� 2 A
�
:

Since @2˚

@y21
� 0 then

Z
A1.y0/

@2˚

@y21

�
y1; y

0�dy1 � @˚

@y1

�
supA1

�
y0� ; y0� � @˚

@y1

�
infA1

�
y0� ; y0�

� 2 sup
A

jr˚ j

and therefore
Z
Rd�2

K .y/ dy � c
ˇ̌
A 0 ˇ̌ :
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Thus

p
NS � c��.d�1/=2pdiam .B/

p
jA 0j � c��.d�1/=2 .diam .B//.d�1/=2 :

ut
Remark 7. The above proof shows that the term .diam .B//.d�1/=2 in the statement
of Theorem 6 can be replaced by the term

.� .@B/C diam .B/p/1=2 ;

where p is the maximum of .d � 2/-dimensional surface area of the projections
of B on .d � 1/-dimensional hyperplanes. When B has large eccentricity, this
provides a better estimate.

3.2.3 Estimates for Bounded Sets

In certain problems the spherical mean k O�B .��/kL2.˙d�1/
can be replaced by

“easier” averages such as

Z
A��j�j�B�

j O�B .�/j2 d�:

In this way we can get non trivial lower bounds (which for spherical averages are
impossible e.g. because of the zeros of the Bessel functions) and also deal with
sets more general than convex bodies. The following result is taken from [11], see
also [27].

Theorem 8. Let B � R
d and assume the existence of positive constants c1 and c2

such that

c1 jhj � j.Bn .B C h// [ ..B C h/ nB/j � c2 jhj (3.15)

for every h 2 R
d . Then there exist four positive constants ˛; ˇ; �; ı such that

˛ ��1 �
Z

f���j�j�ı�g
j O�B.�/j2 d� � ˇ ��1 (3.16)

for every � � 1.

Proof. We first show that

Z
fj�j��g

j O�B.�/j2 d� � c ��1 : (3.17)
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In order to prove (3.17) it is enough to show that for every integer k � 0 we have

Z
f2k�j�j�2kC1g

j O�B.�/j2 d� � c 2�k : (3.18)

By (3.15) and the Parseval identity we have

c2 jhj �
Z
Rd

j�B.x C h/� �B.x/j2 dx D
Z
Rd

ˇ̌
e2
i��h � 1

ˇ̌2 j O�B.�/j2 d� :

We split the set
˚
2k � j�j � 2kC1� into a bounded number of subsets such that in

each one of them we have (for a suitably chosen h with jhj � 2�k) the inequalityˇ̌
e2
i��h � 1ˇ̌ � c. This proves (3.18), so that the estimate from above in (3.16)

follows from (3.17). Again (3.18 ) implies

Z
fj�j���g

j�j2 j O�B.�/j2 d� � c3 C c4

log2.��/X
kD1

Z
2k�j�j�2kC1

j�j2 j O�B .�/j2 d� (3.19)

� c3 C c4

log2.��/X
kD1

22k
Z
2k�j�j�2kC1

j O�B .�/j2 d� � c3 C c5

log2.��/X
kD1

22k2�k � c�� :

Then, by (3.17) and (3.19),

c1 jhj �
Z
Rd

j�B.x C h/ � �B.x/j2 dx

D
Z
Rd

ˇ̌
e2
i��h � 1

ˇ̌2 j O�B.�/j2 d�

� 4
2 jhj2
Z

fj�j���g
j�j2 j O�B.�/j2 d� C 4

Z
f���j�j�ı�g

j O�B.�/j2 d�

C 4

Z
fj�j�ı�g

j O�B.�/j2 d�

� c
h
�� jhj2 C ı�1��1iC 4

Z
f���j�j�ı�g

j O�B.�/j2 d� ;

so that, if jhj D ��1, � is suitably small and ı suitably large, we have

Z
f���j�j�ı�g

j O�B.�/j2 d� � c1

4
jhj � c

4

h
�� jhj2 C ı�1��1i � c1

8
��1 ;

and this ends the proof. ut
It is easy to see that a convex body satisfies (3.15).
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Remark 9. M. Kolountzakis and T. Wolff [37] have proved that for every set B �
R
d having positive finite measure we have

Z
fj�j��g

j O�B.�/j2 d� � c ��1 :

We can use Theorem 8 to prove that (3.8) is best possible up to the constant
involved.

Theorem 10. Let B � R
d be a convex body. Then

lim sup
�!C1

�.dC1/=2 k O�B .��/kL2.˙d�1/
> 0 : (3.20)

Proof. If (3.20) fails, then there exists a function " .�/ such that " .�/ ! 0 as � !
C1 and

k O�B .��/kL2.˙d�1/
� " .�/ ��.dC1/=2

for � > 1. This contradicts the lower bound in (3.16). ut
We have pointed out that when B is a ball we cannot bound the spherical mean

k O�B .��/kL2.˙d�1/
from below by ��.dC1/=2 because of the zeroes of the Bessel

function. The next result shows that this lower estimate fails also for a cube, so
that it fails for the two most popular convex bodies.

Lemma 11. Let d � 2 and Q D Qd D Œ�1=2; 1=2�d . Then for every positive
integer k we have

�� O�Q.k�/��
L2.˙d�1/

� c k�.dC3=2/=2 :

Proof. Let

˙ 0 D ˙d�1 \ ˚
x 2 R

d W x1 � jxk j ; k D 2; : : : ; d
�
:

By the symmetries ofQ and by Theorem 6 applied to the .d � 1/-dimensional cube
Qd�1 we have

�� O�Q.k�/��2
L2.˙d�1/

� c
�� O�Q.k�/��2

L2.˙ 0/

� c

Z 
=4

0

Z
˙d�2

ˇ̌
ˇ̌ sin.
k cos.�//


k cos.�/
O�Qd�1

.k sin.�//

ˇ̌
ˇ̌2 sind�2.�/ dd�

D c k�2
Z 
=4

0

jsin.
k cos.�//j2 �d�2
Z
˙d�2

ˇ̌ O�Qd�1
.k sin.�//

ˇ̌2
dd�
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� c k�d�2
Z 
=4

0

ˇ̌
sin.2
k sin2 .�=2//

ˇ̌2
��2 d�

� c k�d�2
 Z k�1=2

0

k2�2 d� C
Z 
=4

k�1=2

��2 d�
!

� c k�d�3=2 :

ut

3.2.4 A Maximal Estimate for the Planar Case

In Theorem 6 we have seen that for every convex body B we have the upper bound
k O�B .��/kL2.˙d�1/

� c��.dC1/=2. On the other hand we shall see that in certain lattice
point problems it is important to have a bound in the angular variable � which is
uniform with respect to �. This means to study the maximal function

MB .�/ D sup
�>0

�.dC1/=2 j O�B .��/j :

We need the following definition (see [57]).

Definition 12. Let X be a measure space and let 0 < p < 1. We define the space
Lp;1 .X/ (also called weak Lp) by the quasi norm

kf kLp;1.X/ D sup
�>0

� jfx 2 X W jf .x/j > �gj1=p : (3.21)

We shall prove that MB 2 L2;1 .˙1/, i.e. that

sup
�>0

�2 j� 2 Œ0; 2
� W MB .�/ > �j < 1 ;

where � D .cos �; sin �/. Observe that L2 .˙1/ � L2;1 .˙1/, but MB does not
necessarily belong to L2 .˙1/. Indeed, consider the unit square Q D Œ�1=2; 1=2�2,
then

O�Q .��/ D sin .
� cos �/


� cos �

sin .
� sin �/


� sin �
: (3.22)

By symmetry it is enough to consider � 2 �
0; 


4

�
, and observe that, for any such � ,

there exists �� satisfying the following conditions (for a suitable integer k � 0):

1

4
� �� sin .�/ � 3

4
;

1

4
C k � �� cos .�/ � 3

4
C k
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(because the line �� intersects at least one of the squares
�
1
4

C k; 3
4

C k
� � 1

4
; 3
4


).

Hence, by (3.22) we have

MB .�/ � c �
�1=2
�

1

sin �
� c ��1=2 :

so that MB … L2.
Before proving the weak type estimate we need the following two results, due

to A. Podkorytov (see [45], see also [13]).

Lemma 13. Let f W R!Œ0;C1/ be supported and concave in Œ�1; 1�. Then, for
every j�j � 1,

ˇ̌
ˇ Of .�/

ˇ̌
ˇ � 1

j�j
�
f

�
1 � 1

2 j�j
�

C f

�
�1C 1

2 j�j
��

: (3.23)

Proof. It is enough to prove (3.23) when � > 1. The assumption on the concavity
of f allows us to integrate by parts obtaining

ˇ̌
ˇ Of .�/

ˇ̌
ˇ � 1

2
�
f .1�/C 1

2
�
f .�1C/C 1

2
�

ˇ̌
ˇ̌Z 1

�1
f 0.t/e�2
i�t dt

ˇ̌
ˇ̌ :

Let ˛ be a point where f attains its maximum. Then f will be non-decreasing in
Œ�1; ˛� and non-increasing in Œ˛; 1�. We can assume 0 � ˛ � 1, so that f .�1C/ �
f .�1 C 1= .2�//. To estimate f .1�/ we observe that when ˛ � 1 � 1= .2�/ one
has f .1�/ � f .1 � 1= .2�//. On the other hand, since f is concave, in case ˛ >
1 � 1= .2�/ we have f .1�/ � f .˛/ � 2f .0/ � 2f .1� 1= .2�//.

To estimate the integral we observe that, by a change of variable,

I D
Z 1

�1
f 0.t/e�2
i�t dt D �

Z 1C 1
2�

�1C 1
2�

f 0
�
t � 1

2�

�
e�2
i�t dt :

So that

2I D
Z 1

�1
f 0.t/e�2
i�t dt �

Z 1C 1
2�

�1C 1
2�

f 0
�
t � 1

2�

�
e�2
i�t dt

D
Z �1C 1

2�

�1
f 0.t/e�2
i�t dt C

Z 1

�1C 1
2�

�
f 0.t/ � f 0

�
t � 1

2�

��
e�2
i�t dt

C
Z 1C 1

2�

1

f 0
�
t � 1

2�

�
e�2
i�t dt

D I1 C I2 C I3 :
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To estimate I1 from above we note that

jI1j �
Z �1C 1

2�

�1
f 0.t/dt D f

�
�1C 1

2�

�
� f .�1C/ � f

�
�1C 1

2�

�
;

since 0 � ˛ � 1.
The estimate for I3 is similar in case ˛ � 1 � 1=.2�/. If ˛ > 1 � 1=.2�/, then

jI3j �
Z ˛C 1

2�

1

f 0
�
t � 1

2�

�
dt �

Z 1C 1
2�

˛C 1
2�

f 0
�
t � 1

2�

�
dt

D 2f .˛/� f

�
1 � 1

2�

�
� f .1�/ � 2f .˛/ � 4f .0/ � 4f

�
1 � 1

2�

�
:

As for I2; since f 0 is non increasing, we have

jI2j �
Z 1

�1C 1
2�

�
f 0
�
t � 1

2�

�
� f 0.t/

�
dt

D f

�
1 � 1

2�

�
� f .�1C/� f .1�/C f

�
�1C 1

2�

�

� f

�
1 � 1

2�

�
C f

�
�1C 1

2�

�
;

ending the proof. Note that no constant c is missing in (3.23). ut
Lemma 14. Let B be a convex body in R

2 and � D .cos �; sin �/. For a small
ı > 0 we consider the chord

�B.ı; �/ D �.ı; �/ D
	
x 2 B W x �� D �ı C sup

x2B
x ��



: (3.24)

Then

j O�B.��/j � 1

�

�ˇ̌
ˇ̌�
�
1

2�
; �

�ˇ̌
ˇ̌C

ˇ̌
ˇ̌�
�
1

2�
; � C 


�ˇ̌
ˇ̌
�
;

where j�j denotes the length of the chord (Fig. 3.2).

Proof. Without loss of generality we choose� D .1; 0/. Then, as in (3.3),

O�B.�1; 0/ D
Z C1

�1

�Z C1

�1
�B.x1; x2/ dx2

�
e�2
ix1�1 dx1 D Oh.�1/ ; (3.25)
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B

Fig. 3.2 Geometric estimate of O�B

where h.s/ is the length of the segment obtained intersecting B with the line
x1 D s. Observe that h is concave on its support, say Œa; b�. We can therefore apply
Lemma 13 to obtain, after a change of variable,

ˇ̌
ˇ Oh.�1/

ˇ̌
ˇ � 1

j�1j
�
h

�
b � 1

2 j�1j
�

C h

�
a C 1

2 j�1j
��

� 1

j�1j
�ˇ̌
ˇ̌�B

�
1

2 j�1j ; 0
�ˇ̌
ˇ̌C

ˇ̌
ˇ̌�B

�
1

2 j�1j ; 

�ˇ̌
ˇ̌
�
:

ut
We can now prove the following maximal estimate (see [8]).

Theorem 15. Let B � R
2 be a convex body. Then the maximal function

MB .�/ D sup
�>0

�3=2 j O�B .��/j

belongs to L2;1 .˙1/, see (3.21).

Proof. As in the proof of Theorem 6 we assume @B smooth with everywhere non-
vanishing curvature (and the constants in our inequalities will not depend on the
smoothness of @B). By Lemma 14 we have, for � D .cos �; sin �/,

sup
�>0

�3=2 j O�B .��/j � sup
�>0

�1=2
ˇ̌
�B.�

�1; �/
ˇ̌C sup

�>0

�1=2
ˇ̌
�B.�

�1; � C 
/
ˇ̌
;
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so that we study the maximal function

˝B .�/ D sup
ı>0

ı�1=2 j�B.ı; �/j :

By the above non-vanishing assumption, the chord �B.ı; �/ reduces to a single point
as ı ! 0. Let z.�/ be this point. Let us choose a direction �0 and for every � close
to �0 let �.�/ denote the arc-length on @B between z.�0/ and z.�/. Assume that we
have proved the inequality

˝2
B .�/ � 2 sup

˛¤0
j� .� C ˛/ � � .�/j

˛
: (3.26)

Then we have

˝2
B .�/ � 2 sup

˛>0

1

˛

Z �C˛

�

ˇ̌
� 0 .'/

ˇ̌
d' ;

so that, by the Hardy-Littlewood maximal function theorem (see e.g. [64, 7.9]), we
have

sup
ˇ>0

ˇ2 jf� 2 Œ0; 2
/ W MB .cos �; sin �/ > ˇgj

� c sup
ˇ>0

ˇ2

ˇ̌
ˇ̌
ˇ
(
� 2 Œ0; 2
/ W sup

˛>0

1

˛

Z �C˛

�

ˇ̌
� 0 .'/

ˇ̌
d' > ˇ2

) ˇ̌
ˇ̌
ˇ

� c

Z 2


0

ˇ̌
� 0 .'/

ˇ̌
d' � c :

In order to prove (3.26) we observe that if ı is small, then the normal to @B at the
point z .�/ cuts the chord �B.ı; �/ into two parts ��.ı; �/ and �C.ı; �/. Let us
consider only the segment �C.ı; �/ and let

˝C .�/ D sup
ı>0

ı�1=2 j�C.ı; �/j :

We may assume that @B is locally the graph of a smooth function f defined on an
interval Œ0; a� with f .0/ D f 0 �0C� D 0: Then, by the mean value theorem,

˝2C .�/ � sup
0<x<a

x2

f .x/
� sup

0<z<a

2z

f 0 .z/
� sup

0<z<a

2

f 0 .z/

Z z

0

�
1C �

f 0 .t/
2�1=2

dt

� 2 sup
0<˛<


2

j� .� C ˛/ � � .�/j
˛

:

ut
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3.3 Decay of the Fourier Transform: Lp Estimates
for Characteristic Functions of Polyhedra

In Theorem 6 we have seen that k O�B .��/kL2.˙d�1/
� c ��.dC1/=2 independently of

the shape of the convex body B . If we replace B by a ball or, more generally by
a convex body with smooth boundary @B which has everywhere positive Gaussian
curvature, then, by (3.7), the same estimate holds true for every 1 � p � C1.
However, if we replace B by a polyhedron P , then the situation should be different
(see Sect. 3.2.1, where we have observed that O�P .�/ decays as fast as j�j�d
along almost all directions, but only as j�j�1 along the directions perpendicular
to the facets). In this section we will prove sharp estimates for the decay of
k O�P .��/kLp.˙d�1/

and in particular we shall see that this decay is faster than
��.dC1/=2 when 1 � p < 2 and it is slower than ��.dC1/=2 when 2 < p � C1.

Theorem 16. Let P be a convex polyhedron in R
d , d � 1. Write � 2 R

d in polar
coordinates, � D �� (� � 0, � 2 ˙d�1). Then, for � � 2, we have

k O�P .��/kL1.˙d�1/
� c

logd�1 .�/
�d

; (3.27)

k O�P .��/kLp.˙d�1/
� cp �

�1�.d�1/=p ; for 1 < p � 1 : (3.28)

Proof. The proof is by induction on the dimension d . For d D 1 the bound is true
since in this case the average is trivial and we have

O�Œ�1=2;1=2� .�/ D sin .
�/


�
:

We then assume the result true for d � 1. Let P have m facets F1; : : : ; Fm with
outward unit normal vectors �1; : : : ; �m. As in (3.9) the divergence theorem yields

O�P .�/ D
Z
P

e�2
i��x dx D
mX
jD1

i� � �j
2
 j�j2

Z
Fj

e�2
i��x dx : (3.29)

Let x D .x1; x2; : : : ; xd / D .x1; x
0/ and write � D .cos .'/ ; sin .'/ /, with 0 �

' � 
 and  2 ˙d�2. We single out one facet F , which we may assume to stay in
the hyperplane x1 D 0, with outward normal � D .1; 0; : : : ; 0/. Then

i� � �
2
 j�j2

Z
F

e�2
i��x dx D i cos .'/

2
�

Z
F

e�2
i� sin.'/�x0

dx0 (3.30)

D i cos .'/

2
�
O�F .� sin .'/ / ;

where we see O�F as a .d � 1/-dimensional Fourier transform. Then, by the
induction hypothesis,
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1

�

Z 


0

Z
˙d�2

j O�F .� sin .'/ /j sind�2 .'/ dd'

� c
1

�

Z 2=�

0

'd�2 d' C c
1

�

Z 
=2

2=�

logd�2 .� sin .'//

.� sin .'//d�1 sind�2 .'/ d'

� c ��d C c
logd�2 .�/

�d

Z 
=2

2=�

1

'
d' � c

logd�1 .�/
�d

;

while for 1 < p < C1 we have

1

�p

Z 


0

Z
˙d�2

j O�F .� sin .'/ /jp sind�2 .'/ dd'

� cp
1

�p

Z 1=�

0

'd�2 d' C c
1

�p

Z 
=2

1=�

.� sin .'//�p�.d�2/ sind�2 .'/ d'

� cp �
�p�.d�1/ C cp

1

��2pCd�2

Z 
=2

1=�

'�p d' � cp �
�p�.d�1/

so that (3.29) and (3.30) give (3.27) and (3.28). ut
The following weak type estimates (see (3.21)) will be useful too.

Theorem 17. Let P be a polyhedron in R
d , d � 2. Write � 2 R

d in polar
coordinates, � D �� (� � 0, � 2 ˙d�1). Then, for � � 2, we have

k O�P .��/kL1;1.˙d�1/
� c

logd�2 .�/
�d

:

Proof. Since here d � 2, the first step of the induction needs some work. Assume
d D 2, and let P be a polygon in R

2 with counterclockwise oriented vertices˚
aj
�m
jD1. For each side

�
aj ; ajC1


(assume amC1 D a1) let uj be a unit vector

parallel to this side and with the same orientation, and let �j be the outside unit
normal to this side. Then the divergence theorem gives

O�P .��/ D
Z
P

e�2
i�� �x dx D � 1

2
i�

mX
jD1

� � �j
Z
Œaj ;ajC1�

e�2
i�� �x dx

D � 1

4
2�2

mX
jD1

�� � �j e
�2
i�� �aj � e�2
i��ajC1

�� � uj
:

Hence O�P .� cos .'/ ; � sin .'// is dominated by a finite sum of terms of the form
��2 ˇ̌cos

�
' � 'j

�ˇ̌�1
and since the functions cos�1 �' � 'j

�
are in L1;1 .T/, the

result for d D 2 follows. For d > 2 we argue as in Theorem 16 and we reduce to a
finite sum of terms of the form
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i cos .'/

2
�
O�F .� sin .'/ / ;

where F is a facet of P . Then, by induction, we have

�

ˇ̌
ˇ̌
	
.cos .'/ ; sin .'/ / 2 ˙d�1 W

ˇ̌
ˇ̌ i cos .'/

2
�
O�F .� sin .'/ /

ˇ̌
ˇ̌ > �


 ˇ̌
ˇ̌

D �

Z 


0

ˇ̌
ˇ̌
	
 2 ˙d�2 W j O�F .� sin .'/ /j > 2
��

jcos .'/j

 ˇ̌
ˇ̌ sind�2 .'/ d'

� c ��d C c

Z 
=2

2=�

cos .'/

�

logd�3 .� sin .'//

.� sin .'//d�1 sind�2 .'/ d'

� c ��d
Z 
=2

2=�

cos .'/
logd�3 .�'/

'
d' � c��d

Z �
=2

2

logd�3 .t/
t

dt

� c
logd�2 .�/

�d
:

ut
The estimates from above in Theorems 16 and 17 are sharp in many, but not all,

cases. We first consider simplices but the proof of the following theorem works with
no modifications for polyhedra having a facet not parallel to any other. We need a
technical lemma which may be well known.

Lemma 18. Let ˙ be a finite measure space and let f 2 L1 .˙/. Then for any
0 < ˛ < j˙ j we have

kf k1 � ˛ kf k1 C log

� j˙ j
˛

�
kf k1;1 :

Proof. Let g be the non-increasing rearrangement of f (see [57]). Then

kgk1 D kf k1 ;

ug .u/ � kgk1;1 D kf k1;1 ;

so that

kf k1 D
Z j˙ j

0

g .u/ du D
Z ˛

0

g .u/ du C
Z j˙ j

˛

g .u/ du

� ˛ kf k1 C kf k1;1
Z j˙ j

˛

1

u
du D ˛ kf k1 C log

j˙ j
˛

kf k1;1 :

ut



3 Irregularities of Distribution and Fourier Transforms 183

Theorem 19. Let P be a simplex in R
d , d � 2. Again we write � 2 R

d in polar
coordinates, � D �� (� � 0, � 2 ˙d�1). Then, for every � � 1,

i) k O�P .��/kL1;1.˙d�1/
� c

logd�2 .�/
�d

ii) k O�P .��/kL1.˙d�1/
� c

logd�1 .�/
�d

iii) k O�P .��/kLp.˙d�1/
� cp �

�1�.d�1/=p ; if 1 < p � 1 :

Proof. We prove ii/ and iii/ first. The proof is by induction on the dimension d and
we first consider the planar case, showing that a triangle T � R

2 satisfies

Z 2


0

j O�T .��/jp d� � c��p�1 ; (3.31)

for p > 1, where � D .cos �; sin �/ and � � 1. As in the proofs of the previous
theorems we use the divergence theorem. Let

! .t/ D i

2
�
e�2
i���t� ;

with t D .t1; t2/. Then

div .! .t// D @

@t1

�
i

2
�
e�2
i���t cos �

�
C @

@t2

�
i

2
�
e�2
i���t sin �

�

D e�2
i���t cos2 � C e�2
i���t sin2 � D e�2
i���t ;

and by the divergence theorem we obtain

O�T .��/ D
Z
T

e�2
i���tdt D
Z
@T

! .t/ � �.t/ dt ;

where � is the outward unit vector, which takes only the three values �1; �2; �3 on
the three sides �1, �2, �3 respectively. Then, if ds is the measure on @T;

O�T .��/ D � � �1
2
�

i

Z
�1

e�2
i���sds C � � �2
2
�

i

Z
�2

e�2
i���sds

C � � �3
2
�

i

Z
�3

e�2
i���sds

D A.�;�/CB.�;�/C C.�;�/ :

We may assume that �1 has extremes
�˙ 1

2
; 0
�
. Of course it suffices to show that for

a given small ı > 0 we have
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Z � 

2 Cı

� 

2 �ı

j O�T .��/jp d� � cp �
�p�1 :

Indeed j� � �1j D jsin � j and changing variables we obtain

Z � 

2 Cı

� 

2 �ı

jA.�;�/jp d� D 1

.2
�/p

Z � 

2 Cı

� 

2 �ı

ˇ̌
ˇ̌
ˇsin �

Z 1=2

�1=2
e�2
i�s cos �ds

ˇ̌
ˇ̌
ˇ
p

d�

D 1

.2
�/p

Z � 

2 Cı

� 

2 �ı

ˇ̌
ˇ̌ sin .
� cos �/


� cos �
sin �

ˇ̌
ˇ̌p d�

� cp
1

�pC1

Z c1�

0

ˇ̌
ˇ̌ sin .u/

u

ˇ̌
ˇ̌p du � cp �

�p�1 :

As for B.�;�/ and C.�;�/, if
ˇ̌
� � 


2

ˇ̌ � ı we reduce to terms of the form

1

�p

Z c0

c

ˇ̌
ˇ̌ sin .2
�x/

�x

ˇ̌
ˇ̌p dx

with 0 < c < c0 < 
=4, so that

Z � 

2 Cı

� 

2 �ı

jB.�;�/jp d� C
Z � 


2 Cı

� 

2 �ı

jC.�;�/jp d� � c��2p

and (3.31) follows. The proof of the planar case when p D 1 is similar.
Now let S be a simplex in R

d with facets F1; : : : ; FdC1. We may assume F1
contained in the hyperplane x1 D 0 with outward normal �1 D .1; 0; : : : ; 0/. Let U
be a small neighborhood of �1 in ˙d�1, then by (3.29) we have

k O�P .��/kLp.˙d�1/

� c
1

�

ˇ̌
ˇ̌
ˇ̌
	Z

U

ˇ̌
ˇ̌
Z
F1

e�2
i�� �xdx

ˇ̌
ˇ̌p d�


 1=p
�

mX
jD2

(Z
U

ˇ̌
ˇ̌
ˇ
Z
Fj

e�2
i�� �xdx

ˇ̌
ˇ̌
ˇ
p

d�

) 1=p ˇ̌ˇ̌
ˇ̌ :

As in the proof of Theorem 16, the induction assumption implies

1

�

Z
U

ˇ̌
ˇ̌Z
F1

e�2
i�� �xdx

ˇ̌
ˇ̌ d� � c ��d logd�1 .�/

and

1

�

	Z
U

ˇ̌
ˇ̌Z
F1

e�2
i�� �xdx

ˇ̌
ˇ̌p d�


 1=p
� c��1�.d�1/=p ; for 1 < p � 1 :
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We now have to estimate each term
Z
U

ˇ̌
ˇ̌Z
F

e�2
i�� �xdx

ˇ̌
ˇ̌p d�

from above, when F D F2; : : : ; Fm. Since we are integrating each facet separately
we may rotate and translate F until it belongs to the hyperplane x1 D 0. After this
transformation the normal �1 to the facet F1 is no longer parallel to .1; 0; : : : ; 0/.
Being U a neighborhood of �1 in ˙d�1 we can choose a small ı > 0 such that

U � f.cos .'/ ; sin .'/ / W ı � ' � 
 � ı;  2 ˙d�2g :
Applying Theorem 16 to the .d � 1/-dimensional Fourier transform of the charac-
teristic function of F we get

1

�

Z
U

ˇ̌
ˇ̌Z
F

e�2
i�� �x dx

ˇ̌
ˇ̌ d� � c

1

�

Z 
�ı

ı

Z
˙d�2

j O�F .� sin .'/ /j sind�2 .'/ d'd

� c
1

�

Z 
�ı

ı

logd�2 .� sin .'//

.� sin .'//d�1 sind�2 .'/ d' � c
logd�2 .�/

�d
;

while, for 1 < p � C1,

1

�p

Z
U

ˇ̌
ˇ̌Z
F

e�2
i�� �x dx

ˇ̌
ˇ̌p d�

� c
1

�p

Z 
�ı

ı

Z
˙d�2

j O�F .� sin .'/ /jp sind�2 .'/ d'd

� c
1

�p

Z 
�ı

ı

.� sin .'//�p�.d�2/ sind�2 .'/ d' � c ��2p�.d�2/ :

Hence ii/ and iii/ are proved.
To prove i/ assume, by way of contradiction, that for any arbitrary small " there

exists a suitable large � such that

k O�P .��/kL1;1.˙d�1/
� "��d logd�2 .�/ :

By Lemma 18 we have

k O�P .��/kL1.˙d�1/

� ��d k O�P .��/kL1.˙d�1/
C "��d logd�2 .�/

Z j˙d�1j

��d

u�1 du

� jP j ��d C " log .j˙d�1j/ ��d logd�2 .�/C "d��d logd�1 .�/ ;

which, for small " contradicts ii/. ut
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The above theorem is false in the case d D 1, and this is simply due to the zeros
of O�P when P is an segment. When d � 2 the lower bound .iii/ in Theorem 19 is
false for a cube. The following analog of Lemma 11 can be easily proved.

Theorem 20. Let Q D Qd D Œ�1=2; 1=2�d be the unit cube in R
d , d � 2. Then

for 1 < p � C1 and for every positive integer k we have

�� O�Q.k�/��
Lp.˙d�1/

� c k�.3pC2d�3/=2p :

So far we have seen that balls and polyhedra share the same spherical Lp

order of decay if and only if p D 2. It is natural to look for convex bodies with
“intermediate” order of decay. On this problem we have significative results only
for d D 2 (see, [7, 12, 13, 62]). It can be shown that for every 2 < p � C1 and
every order of decay a 2 .1C 1=p; 3=2/ there exists a convex planar bodyB having
piecewise smooth boundary and satisfying

k O�B .��/kLp.˙1/ � c ��a ; lim sup
�!C1

�a k�B .��/kLp.˙1/ > 0 : (3.32)

For p < 2 the situation is different: if we keep the piecewise smooth boundary
assumption, then there is no intermediate decay between the one of the disc and
the one of the polygons (observe that in (3.32) we have a lim sup). The reason
is that if @B is piecewise smooth, but B is not a polygon, then @B contains an
arc with positive curvature, and by the argument in [9], this is enough to get the
lower estimate ��3=2 for the lim sup. If we pass to arbitrary convex bodies, then it is
possible to construct convex bodies with intermediateLp order of decay. Moreover,
for no convex planar body B we have k O�B .��/kL1.˙1/ D o

�
��2 log �

�
(see [7, 62]).

3.4 Lattice Points: Estimates from Above

The literature on lattice points in multi-dimensional domains is very impressive and
deep, see e.g. [28, 34, 39]. Here we focus on the topics which are necessary for (or
close to) the goal of this chapter, i.e. the relation between discrepancy problems and
the average decay of Fourier transforms. First we shall see that the upper bounds in
Theorems 6 and 16 readily provide estimates from above for L2 or Lp discrepancy
problems related to rotations and translations of convex bodies. The lower bounds
for the discrepancy related to the lattice Zd are not strictly necessary for our purpose,
since the typical results on irregularities of point set distribution involve arbitrary
choices of points. However we will present some results of this kind, on the one
hand because the choice of points related to a lattice are very important, on the
other hand because in some cases they compensate the lack of lower bounds for
arbitrary choices of points.
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For a convex body B � R
d and for a large dilation R, let � .RB/ C t be the

rotated and translated copy of RB. Here � 2 SO .d/ ; and since we are interested in
the cardinality of the set Zd \ .� .RB/C t/, which is Zd -periodic in the variable t ,
we take t 2 T

d . Define the discrepancy functionDR on SO .d/ � T
d

DR .�; t/ D card
�
Z
d \ .� .RB/C t/

� � Rd jBj (3.33)

D
X
k2Zd

��.RB/ .k � t/ � Rd jBj :

The Fourier coefficients of the periodic functionD�;R .t/ D DR .�; t/ take values

OD�;R .m/ D
	
0 if m D 0

Rd O��.B/ .Rm/ if m ¤ 0
: (3.34)

Indeed

OD�;R .0/ D
Z
Œ� 1

2 ;
1
2 /
d

�
card

�
Z
d \ � .RB/C t

� � Rd jBj� dt

D �Rd jBj C
X
k2Zd

Z
Œ� 1

2 ;
1
2 /
d
��.RB/ .k � t/ dt

D �Rd jBj C
Z
Rd

��.RB/ .t/ dt D 0 ;

while for m ¤ 0

OD�;R .m/ D
Z
Œ� 1

2 ;
1
2 /
d

�
card

�
Z
d \ � .RB/C t

� �Rd jBj� e�2
 im�t dt

D
X
k2Zd

Z
Œ� 1

2 ;
1
2 /
d
��.RB/ .k � t/ e�2
 im�t dt D

Z
Rd

��.RB/ .t/ e
�2
 im�t dt

D O��.RB/ .m/ D Rd O��.B/ .Rm/ :

ThenD�;R .t/ has Fourier series

Rd
X

0¤m2Zd
O��.B/ .Rm/ e2
 im�t :

The following result is due to D. Kendall2 (see [35], see also [13]).

2D. Kendall seems to have been the first one to realize that certain lattice points problems can be
handled using multi-dimensional Fourier analysis.
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Theorem 21. Let B be a convex body in R
d , d � 1, and let DR be as in (3.33).

Then there exists a positive constant c, depending on d but not on B , such that for
every R � 1 we have

kDRkL2.SO.d/�Td / � c .diam .B//.d�1/=2 R.d�1/=2 :

Proof. By Parseval identity we obtain

kDRk2
L2.SO.d/�Td / D

Z
SO.d/

Z
Td

D2
R .�; t/ dt d� (3.35)

D
Z

SO.d/

X
0¤m2Zd

ˇ̌
ˇ OD�;R .m/

ˇ̌
ˇ2 d� D R2d

X
0¤m2Zd

Z
SO.d/

ˇ̌ O��.B/ .Rm/
ˇ̌2
d�

D R2d
X

0¤m2Zd

Z
SO.d/

ˇ̌ O�B
�
��1 .Rm/

�ˇ̌2
d�

because the Fourier transform commutes with rotations. Then Theorem 6 gives

kDRk2
L2.SO.d/�Td / � c .diam .B//d�1 R2d

X
0¤m2Zd

.R jmj/�.dC1/ (3.36)

� c .diam .B//d�1 Rd�1
Z
x2Rd ; jxj�1

jxj�.dC1/ dx � c0 .diam .B//d�1 Rd�1 :

ut
Remark 22. The above argument can be applied to a more general setting (see [25]).
First consider a body B � R

d and let 0 � ˛ � 1 satisfy

ˇ̌˚
t 2 R

d W dist .t; @B/ � ı
�ˇ̌ � cd ı

˛

for every small ı > 0. Let DR .�; t/ be as in (3.33). Then

	
1

R

Z R

0

Z
SO.d/

Z
Td

ˇ̌
D� .�; t/

ˇ̌2
dt d� d�


 1=2
� c R.d�˛/=2 :

Moreover, the characteristic function �B can be replaced by an arbitrary integrable
function. In this case a modulus of continuity appears in the upper bound.

3.4.1 The Curious Case of the Ball When d � 1 .mod 4/

The above upper estimate is best possible, but it is not always sharp. Indeed, letB be
a ball in R

d and 1 < d 	 1 .mod 4/, then there exists a diverging sequenceRj such
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that the upper bound Rd�1
j in (3.36) can be replaced by c" Rd�1

j log�1=.dC"/ �Rj �,
where " > 0 is arbitrarily small. This interesting fact has been proved by L.
Parnovski and A. Sobolev in [44] (see also [38] and [43]).

We first need the following approximation result (see [44]).

Lemma 23. Let ˛1; ˛2; : : : ; ˛n be real numbers. Then for every positive integer j

there exist integers p1; p2; : : : ; pn; q such that

j � q � j nC1 ; j˛kq � pkj < j�1 for every k D 1; : : : ; n:

Proof. As usual we write fxg D x � Œx� for the fractional part of a real number x.
Split

Œ0; 1/n D
j n[
kD1

Qk ;

where the Qk’s are cubes of sides parallel to the axes and of length j�1. For every
integer 0 � ` � j nC1 consider

.f`˛1g ; f`˛2g ; : : : ; f`˛ng/ D a` 2 Œ0; 1/n :
Since the number of the a`’s is j nC1 C 1, there exists k0 such that the cube Qk0

contains at least j C 1 points a`1 ; a`2 ; : : : ; a`jC1
, say with `1 < `2 < : : : < ` jC1.

Then ` jC1 � `1 � j and, since the above points stay in Qk0 , we have

j�1 � ˇ̌˚
` jC1˛k

� � f`1˛kg
ˇ̌ D ˇ̌�

` jC1 � `1
�
˛k � ��

` jC1˛k
 � Œ`1˛k�

�ˇ̌

for every k D 1; : : : ; n. To end the proof we choose q D ` jC1 � `1 and pk D�
` jC1˛k

 � Œ`1˛k�. ut
Theorem 24. Let 1 < d 	 1 .mod 4/, let B D ˚

u 2 R
d W juj � 1

�
be the unit ball

and for every t 2 T
d consider the discrepancy

DR .t/ D card
�
Z
d \ .RB C t/

� � Rd jBj :

Then for every " > 0 there exists a sequence of integers Rj ! C1 such that

��DRj

��
L2.Td / � c" R

.d�1/=2
j log

�1
dC"

�
Rj
�
:

Proof. For every positive integer j let

Hj D ˚
m 2 Z

d W 0 < jmj � j 2
�
:

Then cardHj � 2dj 2d . Lemma 23 implies the existence of a positive integer Rj
such that
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j � Rj � j 2
d j 2dC1 ;

ˇ̌
sin
�
2
Rj jmj�ˇ̌ � j�1 (3.37)

for every jmj � j 2. Then by (3.35), (3.4), (3.5), (3.34), the assumption d 	
1 .mod 4/ and (3.37) we obtain

��DRj

��2
L2.Td / D

X
m2Zd

ˇ̌
ˇ ODRj .m/

ˇ̌
ˇ2 D Rdj

X
0¤m2Zd

jmj�d J 2d=2
�
2
Rj jmj� (3.38)

D Rdj

X
0<jmj�j 2

jmj�d J 2d=2
�
2
Rj jmj�CRdj

X
jmj>j 2

jmj�d J 2d=2
�
2
Rj jmj�

� Rd�1
j

X
0<jmj�j 2


�2 jmj�.dC1/ sin2
�
2
Rj jmj�

CRd�1
j

X
jmj>j 2


�2 jmj�.dC1/ C O
�
Rd�2
j

�

� c Rd�1
j j�2

Z j 2

1

r�2 dr C c Rd�1
j

Z C1

j 2
r�2 dr C O

�
Rd�2
j

�

� c j�2Rd�1
j C O

�
Rd�2
j

�
:

Since (3.37) implies

log
�
Rj
�
<
��
2j 2

�d C 1
�

log j < c"
�
2j 2

�dC"
;

j 2 > c0
" log

1
dC"

�
Rj
�

for every " > 0, we end the proof. ut

3.4.2 Lattice Points in Polyhedra

For general p we have some rather sharp results in the case of polyhedra.

Theorem 25. Let P be a convex polyhedron in R
d d � 1, and let DR D DP;R as

in (3.33). Then there exist positive constants c and cp such that for every R � 2 we
have

kDRkL1.SO.d/�Td / � c logd .R/ (3.39)

and for 1 < p � C1

kDRkLp.SO.d/�Td / � cp R
.d�1/.1�1=p/ : (3.40)
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Proof. The bound in (3.39) is a particular case of Theorem 30 below. We prove
(3.40) first in the case 1 < p � 2. Then by (3.34), Parseval identity, Hölder
inequality and the inequality k�k`2 � k�k`p we obtain

	Z
SO.d/

Z
Td

jDR .�; t/jp dt d�


 1=p

�
( Z

SO.d/

	Z
Td

jDR .�; t/j2 dt


p=2
d�

) 1=p

D

8̂
<
:̂
Z

SO.d/

8<
:

X
0¤m2Zd

ˇ̌
Rd O��.B/ .Rm/

ˇ̌2
9=
;
p=2

d�

9>=
>;

1=p

�
8<
:
Z

SO.d/

X
0¤m2Zd

ˇ̌
Rd O��.B/ .Rm/

ˇ̌p
d�

9=
;
1=p

D Rd

8<
:

X
0¤m2Zd

Z
SO.d/

ˇ̌ O��.B/ .Rm/
ˇ̌p
d�

9=
;
1=p

:

By Theorem 16 the last term is bounded by

c Rd

8<
:

X
0¤m2Zd

jRmj�p�dC1
9=
;
1=p

� c R.d�1/.1�1=p/
Z C1

1

r�p dr

D cp R
.d�1/.1�1=p/ :

For the case p D C1 a geometric consideration shows the existence of a positive
constant c such that for every � 2 SO .d/ and every t 2 T

d we have

jDR .�; t/j � c Rd�1 :

We end the proof obtaining the case 2 < p < C1 by interpolation:

	Z
SO.d/�Td

jDRjp

 1=p

D
	Z

SO.d/�Td

jDRj2 jDRjp�2

 1=p

� kDRk.p�2/=p
L1.SO.d/�Td /

kDRk2=p
L2.SO.d/�Td /

� c R.d�1/.p�2/=p R.d�1/=p

D c R.d�1/.1�1=p/ :

ut



192 L. Brandolini et al.

A modification of the above argument can be used to study the so-called half-
space discrepancy (see [23, 40]).

The proof of the weak-L1 estimate requires a more delicate argument.

Theorem 26. Let P be a convex polyhedron in R
d and letDR D DP;R as in (3.33).

Then there exists a positive constant c such that for every R � 2 we have

kDRkL1;1.SO.d/�Td / � c logd�1 .R/ :

The proof of this theorem requires two preliminary results.

Lemma 27. Let X; Y be finite measure spaces, and let

kF kL1;1.X;L2.Y // D sup
�>0

�
ˇ̌˚
x 2 X W kF .x; �/kL2.Y / > �

�ˇ̌
< C1 :

Then

kF kL1;1.X�Y / � c kF kL1;1.X;L2.Y // :

Proof. Without loss of generality we may assume kF kL1;1.X;L2.Y // D 1. Being the
statement rearrangement invariant, we may assumeX D Œ0; 1�, Y D Œ0; 1�, endowed
with Lebesgue measure and kF .x; �/kL2.Y / � 1=x. Then, by Chebyshev inequality
we obtain

jf.x; y/ W 0 � x � 1; 0 � y � 1; jF .x; y/j > �gj
� ��1 C ˇ̌˚

.x; y/ W ��1 � x � 1; 0 � y � 1; jF .x; y/j > ��ˇ̌

D ��1 C
Z 1

��1

jfy W 0 � y � 1; jF .x; y/j > �gj dx

� ��1 C
Z 1

��1

�
��2

Z 1

0

jF .x; y/j2 dy

�
dx � ��1 C ��2

Z 1

��1

1

x2
dx � 2��1 :

ut
The triangle inequality for k�kL1;1 fails when we add infinitely many terms (see

[57, p. 215]). The following lemma is a kind of substitute.

Lemma 28. Let fm be a sequence of functions in L1;1 .X/ : Then

������
(X

m

jfmj2
) 1=2������

L1;1.X/

� c
X
m

kfmkL1;1.X/ :
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Proof. We have

������
(X

m

jfmj2
) 1=2������

L1;1.X/

D sup
�>0

�

ˇ̌
ˇ̌
ˇ̌
8<
:x 2 X W

(X
m

jfm .x/j2
) 1=2

> �

9=
;
ˇ̌
ˇ̌
ˇ̌ (3.41)

D sup
�>0

�

ˇ̌
ˇ̌
ˇ
(
x 2 X W

X
m

jfm .x/j2 > �2
) ˇ̌
ˇ̌
ˇ

D sup
�>0

�1=2

ˇ̌
ˇ̌
ˇ
(
x 2 X W

X
m

jfm .x/j2 > �
) ˇ̌
ˇ̌
ˇ D

�����
X
m

jfmj2
�����
1=2

L1=2;1.X/

:

Now we recall that the following q-triangular inequality holds true when 0 < q < 1
(see e.g. [59, Lemma 1.8]):

�����
X
m

gm

�����
Lq;1.X/

� c
X
m

kgmkLq;1.X/ :

Then, as in (3.41),

�����
X
m

jfmj2
�����
1=2

L1=2;1.X/

� c
X
m

��f 2
m

��1=2
L1=2;1.X/

D c
X
m

kfmkL1;1.X/ :

ut
Proof (of Theorem 26). By Lemma 27 we have

kDRkL1;1.SO.d/�Td / � c kDRkL1;1.SO.d/;L2.Td //

D c

�������

8<
:

X
0¤m2Zd

ˇ̌ O��.B/ .Rm/
ˇ̌2
9=
;
1=2
�������
L1;1.SO.d//

� c Rd

�������

8<
:

X
0<jmj�Rd�1

ˇ̌ O��.B/ .Rm/
ˇ̌2
9=
;
1=2
�������
L1;1.SO.d//

C c Rd

�������

8<
:

X
jmj>Rd�1

ˇ̌ O��.B/ .Rm/
ˇ̌2
9=
;
1=2
�������
L1;1.SO.d//

:



194 L. Brandolini et al.

By Lemma 28 we have

Rd

�������

8<
:

X
0<jmj�Rd�1

ˇ̌ O��.B/ .Rm/
ˇ̌2
9=
;
1=2
�������
L1;1.SO.d//

� c Rd
X

0<jmj�Rd�1

�� O��.B/ .Rm/
��
L1;1.SO.d//

� c Rd
X

0<jmj�Rd�1

logd�2 .R jmj/
Rd jmjd

� c logd�2 .R/
Z C1

1

1

r
dr D c logd�1 .R/ :

On the other hand, by Chebyshev inequality and (3.40),

Rd

�������

8<
:

X
jmj>Rd�1

ˇ̌ O��.B/ .Rm/
ˇ̌2
9=
;
1=2
�������
L1;1.SO.d//

� Rd

�������

8<
:

X
jmj>Rd�1

ˇ̌ O��.B/ .Rm/
ˇ̌2
9=
;
1=2
�������
L1.SO.d//

� Rd

�������

8<
:

X
jmj>Rd�1

ˇ̌ O��.B/ .Rm/
ˇ̌2
9=
;
1=2
�������
L2.SO.d//

D Rd

8<
:
Z

SO.2/

X
jmj>Rd�1

ˇ̌ O��.B/ .Rm/
ˇ̌2
d�

9=
;
1=2

� c Rd

8<
:

X
jmj>Rd�1

jRmj�.dC1/
9=
;
1=2

� c R.d�1/=2
	Z C1

Rd�1

r�2 dr


 1=2
� c :

ut
We now prove an upper bound where the discrepancy is averaged only over

rotations. The proof follows a known argument which is usually applied to
get a short proof of Sierpinski’s 1903 estimate for the circle problem (see e.g.
[48, 55, 60, 61]). For a convex polyhedron P � R

d , for � 2 SO .d/, and for a large
dilation R, let � .RP/ be the rotated copy of RP. Define the discrepancy function
DR D DP;R on SO .d/

DR .�/ D card
�
Z
d \ � .R P /

� � Rd jP j :
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The following result has been pointed out to us by Leonardo Colzani.

Lemma 29. Let C be a convex body in R
d such that Interior .C / 
 B .0; 1/, the

unit ball centered at the origin. Then for large R and small " we have

B .q; "/ � .RC "/ C n Interior .R � "/C

for every q 2 @ .RC/.
Proof. Since C is convex we have

R

RC "
C C "

RC "
C � C

so that

.RC "/C 
 RC C "C 
 RC CB .0; "/ (3.42)

and therefore B .q; "/ � .RC "/ C for every q 2 @ .RC/. Applying (3.42) to
Interior .C / with R in place of RC " we obtain

Interior .RC/ 
 Interior .R � "/C C B .0; "/ :

Assume there exists y 2 B .q; "/\ Interior .R � "/C . It follows that

q 2 Interior .R � "/C C B .0; "/ � Interior .RC/

so that q … @ .RC/. ut
Theorem 30. Let d � 2 and let P be a convex polyhedron in R

d . Then there exists
a positive constant c such that, for large R,

kDRkL1.SO.d// � c logd .R/ :

Proof. Let B D ˚
t 2 R

d W jt j � 1
�

and let ' D c�1
2B

� �1
2B

where we choose c

so that
R
' .x/ dx D 1. For every small " > 0 let '" .t/ D "�d' .t="/, so that for

every " > 0 we have
R
Rd
'" D 1 and O'" .�/ D O' ."�/. Let R � 2 and let �RP be the

characteristic function of the dilated polyhedron P . We start the proof introducing
the smooth functions

�Ṙ;";� D �.R˙"/��1P � '" :

By (3.4) and (3.5) we know that

j O' .�/j D c
ˇ̌
ˇ O�1

2B
.�/
ˇ̌
ˇ2 � c0

1C j�jdC1 :
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Then, writing in polar coordinates � D �� ,

ˇ̌
ˇ1�Ṙ;";� .�/

ˇ̌
ˇ D ˇ̌ O�.R˙"/��1P .�/ O'" .�/

ˇ̌
(3.43)

� c Rd j O���1P ..R˙ "/ ��/j 1

1C j"�jdC1 :

By Lemma 29, the support of ��
R;";� is contained in R��1P , while R��1P is

contained in the set where �C
R;";� takes the value 1: Therefore, for all t 2 R

d we
have

��
R;";� .t/ � �R��1P .t/ � �C

R;";� .t/ :

By the Poisson summation formula we have

DR .�/ D �Rd jP j C
X
m2Zd

�R��1P .m/ � �Rd jP j C
X
m2Zd

�C
R;";� .m/

D �Rd jP j C
X
m2Zd

1�C
R;";� .m/ D

�
.RC "/d �Rd

�
jP j C

X
m¤0
1�C
R;";� .m/ ;

and similarly,

DR .�/ �
�
.R � "/d � Rd

�
jP j C

X
m¤0
1��
R;";� .m/ :

Thus,

jDR .�/j � c Rd�1"C c
X
m¤0

ˇ̌
ˇ1�Ṙ;";� .m/

ˇ̌
ˇ :

Hence, by Theorem 16 and (3.43),

Z
SO.d/

ˇ̌
card

�
Z
d \ � .RP/

� �Rd jP jˇ̌ d�

� c Rd�1"C c Rd
X

0¤m2Zd
j O' ."m/j

Z
SO.d/

j O�P ..R˙ "/ � .m//j d�

� c Rd�1"C c
X

0¤m2Zd

1

1C j"mjdC1 jmj�d logd�1 .R jmj/ :
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Now choose " D R1�d . Then a repeated integration by parts yields

Z
SO.d/

ˇ̌
card

�
Z
d \ � .RP/

� � Rd jP jˇ̌ d�

� c C c logd�1 .R/
Z Rd�1

1

1

r
dr C c Rd

2�1
Z C1

Rd�1

logd�1 .r/
rdC2 dr

� c C c logd .R/

C c Rd
2�1

 
R1�d2 logd�1 .R/C

Z C1

Rd�1

logd�2 .r/
rdC2 dr

!

� : : : � cd logd .R/ :

ut
Remark 31. Note that the estimate in the above theorem coincides with the upper
L1 estimate in Theorem 25 where the discrepancy has been averaged also over
translations. The case 1 < p < 1 seems to be different, since either repeating
the steps of the above proof for Lp norms or interpolating between L1 and L1 we
get estimates larger than the one in (3.40).

The previous theorem shows that the discrepancy of a convex body with respect
to Z

d can be quite small after we have averaged over the rotations. Let us make
some remarks on this point. Let us consider for simplicity a square in R

2 with sides
parallel to the axes: the two close dilations (say R and R C ") of the square in the
picture, have almost the same area, but the number of integer points inside differ for
� R (Fig. 3.3).

The same happens for every rational rotation of the square. On the other hand
we know (see Theorem 3) that in certain directions the discrepancy can be as small

Fig. 3.3 Integer points and squares with sides parallel to the axes
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as
p

logR. Then we may expect that the discrepancy of a convex body C with
respect to Z

d is reasonably small for almost every rotation of C . This is a very deep
problem, since when C is the unit disc centered at the origin, then the rotation �
disappears and we have the classical Gauss’ circle problem (so far the best bound
for this problem is due to M. Huxley and it is close to R0:629���). We are now ready
to state the following result (see [8], see also [24, 28, 47]). Let

DR .�/ D card
�
Z
2 \R� .C /�� R2 jC j D �R2 jC j C

X
m2Z2

�R�.C / .m/ ;

where C is a convex planar body and � 2 SO .2/.

Theorem 32. Let C � R
2 be a convex body, let ı > 1=2 and R � 2. Then for

almost every � 2 SO .2/ there exists a constant c D c�;ı such that

jDR .�/j � c R2=3 logı R : (3.44)

Proof. We use Theorem 15 and a smoothing argument similar to the one we have
used in Theorem 30. Let  D 
�1�ft2R2Wjt j�1g be the normalized characteristic

function of the unit disc. For every small " > 0 let  " .t/ D "�2 .t="/, so that for
every " > 0 we have

R
R2
 " D 1 and O " .�/ D O ."�/. Let

DR .�; "/ D �R2 jC j C
X
m2Z2

�
�R�.C/ �  "

�
.m/ ;

observe that, as in the proof of Theorem 30,

DR�" .�; "/C ��2R"C "2
� jC j � DR .�/ � DRC" .�; "/C �

2R"C "2
� jC j :

(3.45)

By the Poisson summation formula we obtain

DR .�; "/ D R2
X

0¤m2Z2
O�C
�
R��1 .m/

� O ."m/ :

Then, for every positive integer j , (3.5) gives

sup
2j�R�2jC1

R�2=3 jDR .�; "/j (3.46)

� c 2�j=6 X
0¤m2Z2

jmj�3=2 1

1C j"mj3=2 sup
2j�R�2jC1

�ˇ̌ O�C
�
R��1 .m/

�ˇ̌ jRmj3=2
�
:
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By Theorem 15 the function

� 7�! sup
2j�R�2jC1

�ˇ̌ O�C
�
R��1 .m/

�ˇ̌ jRmj3=2
�

belongs to L2;1 .SO .2//, uniformly with respect to j and m. Since L2;1 is a
Banach space, then also the sum in (3.46) belongs to L2;1 .SO .2//, with norm
bounded up to a constant by

2�j=6 X
0¤m2Z2

jmj�3=2 1

1C j"mj3=2

D 2�j=6 X
0<jmj�"�1

jmj�3=2 C 2�j=6"�3=2 X
jmj>"�1

jmj�3 � c 2�j=6 "�1=2 :

Choosing " D 2�j=3 and using (3.45) we obtain

����� sup
2j�R�2jC1

R�2=3 jDR .�/j
�����
L2;1.SO.2//

� c : (3.47)

Then

sup
R�2

�
log�ı .R/R�2=3 jDR .�; "/j

�2 D sup
R�2

�
log�2ı .R/R�4=3 jDR .�; "/j2

�

�
C1X
jD1

j�2ı sup
2j�R�2jC1

�
R�4=3 jDR .�; "/j2

�

belongs to L1;1 .SO .2// since by (3.47) the function

sup
2j�R�2jC1

�
R�4=3 jDR .�; "/j2

�

is uniformly in L1;1 and can therefore be summed by the sequence j�2ı if ı > 1=2
(see [58, Lemma 2.3]). Then the function

sup
R�2

�
log�ı .R/R�2=3 jDR .�; "/j

�

belongs to L2;1 .SO .2// and therefore is a.e. bounded. This proves (3.44). ut
Remark 33. M. Skriganov [54] has shown that when C is a polygon we have
jDR .�/j � c" log1C" R for any " > 0 and almost every � . Our technique can be
applied also in the case of a polygon, but we only get a power of the logarithm
larger than the one in [54].
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3.5 Lattice Points: Estimates from Below

In this section we prove that the previous upper bounds are essentially best possible.
We will consider the balls (with the intriguing case d 	 1 .mod 4/ introduced in
Theorem 24) and the simplices.

We need a technical result (see [44]) where, as usual, kˇk denotes the minimal
distance of a real number ˇ from the integers.

Lemma 34. For every " > 0 there exist R0 � 1 and 0 < ˛ < 1=2 such that for
every R � R0 there exists m 2 Z

d such that

jmj � R" ; kR jmjk � ˛ : (3.48)

Proof. We introduce positive integers n D n .R; "/ and k0 D k0 ."/ which will be
chosen later. For every integer k 2 Œ0; k0� we consider the point

mk D .n; k; 0; : : : ; 0/ 2 Z
d

and write B .k/ D p
n2 C k2 D jmkj. We are going to show that for all " > 0

there exist R0 � 1, ˛ 2 .0; 1=2/ and k0 2 N such that for all R � R0 there exist
n � R"=2 and k 2 Œ0; k0� such that kR jmkjk � ˛. Assume the contrary, so that
there exists " > 0 such that for every R0 � 1, ˛ 2 .0; 1=2/ and k0 2 N there exist
R � R0 such that for all n � R"=2 and k 2 Œ0; k0� we have kR jmkjk < ˛. Let

B.1/ .k/ D B .k C 1/� B .k/ ; k D 0; 1; : : : ; k0 � 1

B.2/ .k/ D B.1/ .k C 1/� B.1/ .k/ ; k D 0; 1; : : : ; k0 � 2
:::

B.`/ .k/ D B.`�1/ .k C 1/� B.`�1/ .k/ ; k D 0; 1; : : : ; k0 � `
:::

B.k0/ .0/ D B.k0�1/ .1/� B.k0�1/ .0/

Since kR B .k/k < ˛ we have
��R B.`/ .k/

�� < 2`˛. Now replace k with a real
variable ny and let, for jyj < 1,

QB .y/ D
p
1C y2 D

C1X
jD0

 
1=2

j

!
y2j :
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Differentiating, we obtain

d2j QB
dx2j

�x
n

�
D .2j /Š

 
1=2

j

!
C O

�
1

n2

�

uniformly in x 2 Œ0; k0�. Since B .x/ D n QB .x=n/, we have

d2jB

dx2j
.x/ D n1�2j

 
.2j /Š

 
1=2

j

!
C O

�
1

n2

�!
:

Now observe that

B.`/ .x/ D
Z xC1

x

Z x1C1

x1

� � �
Z x`�1C1

x`�1

d `B

dx``
dx` : : : dx2dx1 ;

so that

B.2j / .x/ D n1�2j
 
.2j /Š

 
1=2

j

!
C O

�
1

n2

�!

uniformly in x 2 Œ0; 1=2�. Now let j � be the smallest integer j such that j � 1C"�1
and choose

k0 D 2j �

n D
2
4
 
2
�
2j ��ŠR

ˇ̌
ˇ̌
ˇ
 
1=2

j �

!ˇ̌
ˇ̌
ˇ
! 1

2j�

�1

3
5 :

Then

R B.2j�/ .x/

D
 
2
�
2j ��Š

ˇ̌
ˇ̌
ˇ
 
1=2

j �

!ˇ̌
ˇ̌
ˇ
!�1 �

2j ��Š
 
1=2

j �

!
C o .1/ D 1

2
sign

 
1=2

j �

!
C o .1/

as R ! C1, so that

���R B.2j�/ .x/
��� D 1

2
C o .1/ :
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Observe that

n D
2
4
 
2
�
2j ��Š

ˇ̌
ˇ̌
ˇ
 
1=2

j �

!ˇ̌
ˇ̌
ˇR
! 1

2j�

�1

3
5 �

 
2
�
2j ��Š

ˇ̌
ˇ̌
ˇ
 
1=2

j �

!ˇ̌
ˇ̌
ˇ
! "

"C2

R
� "2C"

"C2

0 R" :

Choosing ˛ such that 22j
�

˛ < 1=2 and R0 such that

 
2
�
2j ��Š

ˇ̌
ˇ̌
ˇ
 
1=2

j �

!ˇ̌
ˇ̌
ˇ
! "

"C2

R
� "2C"

"C2

0 <
1

2

we obtain a contradiction. ut
Again, let B D ˚

t 2 R
d W jt j � 1

�
be the unit ball and for every t 2 T

d consider
the discrepancy

DR .t/ D card
�
Z
d \ .RB C t/

� � Rd jBj :

We have the following result.

Theorem 35. Let d > 1.

(i) If d 6	 1 .mod 4/, then there exists a positive constant c such that for every
R � 1 we have

kDRkL2.Td / � c R.d�1/=2 :

(ii) If d 	 1 .mod 4/, then for every small " > 0 there exists a positive constant c"
such that for every R � 1 we have

kDRkL2.Td / � c" R
.d�1/=2�" :

Proof. We prove .i/.
Arguing as in (3.38) we obtain

kDRk2
L2.Td / D

X
0¤m2Zd

ˇ̌
ˇ ODR .m/

ˇ̌
ˇ2 D Rd

X
0¤m2Zd

jmj�d J 2d=2 .2
R jmj/

D 
�2 Rd�1 X
0¤m2Zd

jmj�d�1 cos2 .2
R jmj � 
 .d C 1/ =4/C O
�
Rd�2� :

Now let m0 D .1; 0; : : : ; 0/ and assume

ˇ̌
cos

�
2
R

ˇ̌
m0ˇ̌� 
 .d C 1/ =4

�ˇ̌ D jcos .2
R � 
 .d C 1/ =4/j > 1

100
:
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Then

kDRk2
L2.Td / � 
�2 Rd�1 ˇ̌m0ˇ̌�d�1

cos2
�
2
R

ˇ̌
m0ˇ̌� 
 .d C 1/ =4

�C O
�
Rd�2�

D 
�210�2 Rd�1 C O
�
Rd�2� � cRd�1 :

Now assume

ˇ̌
cos

�
2
R

ˇ̌
m0ˇ̌� 
 .d C 1/ =4

�ˇ̌ D jsin .2
R � 
 .d � 1/ =4/j � 1

100
:

Then there exists an integer ` such that 2R D ` C .d � 1/ =4 ˙ ı, for a suitable
jıj � 1=50. Then 4R D 2` C .d � 1/ =2 ˙ 2ı, and since .d � 1/ =4 is not an
integer we have

ˇ̌
cos

�
2
R

ˇ̌
2m0ˇ̌� 
 .d C 1/ =4

�ˇ̌
D jsin .
 f2`C .d � 1/ =2˙ 2ı � 
 .d � 1/ =4g/j

� 1

2
k˙2ı C .d � 1/ =4k � 1

10
:

Then choosingm equal to m0 or to 2m0, we have

kDRk2
L2.Td / � cR d�1 :

We now prove .ii/. Let m be as in Lemma 34. Since d 	 1 .mod 4/ we have

kDRk2
L2.Td / � 
�2 Rd�1 jmj�d�1 cos2 .2
R jmj � 
 .d C 1/ =4/C O

�
Rd�2�

D 
�2 Rd�1 jmj�d�1 sin2 .2
R jmj/C O
�
Rd�2�

� c" R
d�1R�.dC1/" :

ut
For the simplices we have results complementary to the ones in Theorems 25

and 26. Let S be a simplex in R
d and for every t 2 T

d let

DR .t/ D card
�
Z
d \ .� .R S/C t/

�� Rd jS j :

Theorem 36. For every simplex S in R
d (d � 2) and R � 2 we have

i) kDRkL1;1.SO.d/�Td / � c logd�2 .R/
ii) kDRkL1.SO.d/�Td / � c logd�1 .R/

iii) kDRkLp.SO.d/�Td / � R.d�1/.1�1=p/ ; if 1 < p � C1 :
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Proof. For everym0 ¤ 0 we have

kDRkLp.SO.d/�Td / � Rd

8<
:
Z

SO.d/

Z
Td

ˇ̌
ˇ̌
ˇ̌
X
m¤0

O�S .R� .m// e2
 im�t
ˇ̌
ˇ̌
ˇ̌
p

dt d�

9=
;
1=p

� Rd
	Z

Td

Z
SO.d/

ˇ̌ O�S
�
R�

�
m0��ˇ̌p d� dt


 1=p
:

Then .ii/ and .iii/ follow from Theorem 19. The proof of .i/ is a consequence of
Lemma 18 as in the proof of the corresponding part of Theorem 19. ut

3.6 Irregularities of Distribution: Estimates from Below

It is time to go back to the Introduction, where we have referred to the fundamental
results of K. Roth (Theorem 2) and W. Schmidt (Theorem 1). In this section we
present two different approaches to Theorem 4, due to J. Beck and H. Montgomery
respectively. For convenience we shall apply Beck’s argument to prove Theorem 4
and Montgomery’s argument to prove a stronger version of the theorem which holds
true in the particular case when B is a simplex.

We now repeat the main part of the statement of Theorem 4.

Theorem 37. Let d � 2 and let B � R
d be a body of diameter smaller than 1

which satisfies (3.15). Then for every distribution P of N points in T
d we have

Z 1

0

Z
SO.d/

Z
Td

ˇ̌
card .P\ .�� .B C t/// � �dN jBjˇ̌2 dt d� d� � cdN

.d�1/=d :

(3.49)

Proof. For every 0 < � � 1, � 2 SO .d/, t 2 T
d the projection of �� .B/ � t is

injective from R
d to T

d . Given a finite distribution P D ft .j /gNjD1 of N points in
T
d we consider the discrepancies

D
B;P
N D DN D �N jBj C

NX
jD1

�B .t .j //

DB;P
N .�; �; t/ D DN .�; �; t/ D �N�d jBj C

NX
jD1

����1.B/�t .t .j // :
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First we show that the function t 7! DN .�; �; t/ has Fourier series

X
m¤0

0
@ NX
jD1

e2
 im�t .j /
1
A�d O�B .�� .m// e2
 im�t : (3.50)

Indeed

Z
Td

0
@�N�d jBj C

NX
jD1

����1.B/�t .t .j //

1
A dt

D �N�d jBj C
NX
jD1

Z
Td

����1.B/ .t .j /C t/ dt

D �N�d jBj CN

Z
Rd

����1.B/ .u/ du D 0 ;

while for m ¤ 0

Z
Td

0
@�N�d jBj C

NX
jD1

����1.B/�t .t .j //

1
A e�2
 im�t dt

D
NX
jD1

Z
Td

����1.B/ .t .j /C t/ e�2
 im�t dt

D
NX
jD1

Z
Td

����1.B/ .u/ e
�2
 im�.u�t .j // du D

NX
jD1

e2
 im�t .j /�d O�B .�� .m// :

Let 0 < q < 1 and 0 < r < 1. By (3.50) and Theorem 8 we have

1

r

Z r

qr

Z
SO.d/

Z
Td

jDN.�; �; t/j2 dt d� d� (3.51)

D
X
m¤0

ˇ̌
ˇ̌
ˇ̌
NX
jD1

e2
 im�t .j /
ˇ̌
ˇ̌
ˇ̌
2

1

r

Z r

qr

Z
SO.d/

ˇ̌
�d O�B.��.m//

ˇ̌2
d� d�

D c
X
m¤0

ˇ̌
ˇ̌
ˇ̌
NX
jD1

e2
 im�t .j /
ˇ̌
ˇ̌
ˇ̌
2

1

r

Z
fqr�j�j�rg

j O�B .jmj �/j2 j�jdC1 d�
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�
X
m¤0

ˇ̌
ˇ̌
ˇ̌
NX
jD1

e2
 im�t .j /
ˇ̌
ˇ̌
ˇ̌
2

rd
Z

fqr�j�j�rg
j O�B .jmj �/j2 d�

�
X
m¤0

ˇ̌
ˇ̌
ˇ̌
NX
jD1

e2
 im�t .j /
ˇ̌
ˇ̌
ˇ̌
2

rd jmj�d
Z

fqrjmj�j�j�r jmjg
j O�B./j2 d

�
X
m¤0

ˇ̌
ˇ̌
ˇ̌
NX
jD1

e2
 im�t .j /
ˇ̌
ˇ̌
ˇ̌
2

rd jmj�d .1C r jmj/�1 :

(again, A � B means that there exist two positive constants c1 and c2 which do not
depend on N and r and satisfy c1A � B � c2A). Now we apply (3.51) first with
r D 1 and then with r D kN�1=d (we shall choose the constant k later on). We
obtain

Z 1

q

Z
SO.d/

Z
Td

jDN .�; �; t/j2 dt d� d� (3.52)

�
X
m¤0

ˇ̌
ˇ̌
ˇ̌
NX
jD1

e2
 im�t .j /
ˇ̌
ˇ̌
ˇ̌
2

jmj�d�1

� c

(
inf
m¤0

1C kN�1=d jmj
kdN�1 jmj

) 8̂<
:̂
X
m¤0

ˇ̌
ˇ̌
ˇ̌
NX
jD1

e2
 im�t .j /
ˇ̌
ˇ̌
ˇ̌
2  

kdN�1 jmj�d
1C kN�1=d jmj

!9>=
>;

� ˚
N1�1=d k1�d

� (
k�1N 1=d

Z kN�1=d

qkN�1=d

Z
SO.d/

Z
Td

jDN .�; �; t/j2 dt d� d�

)
:

Since

qkN�1=d � � � kN�1=d

there exists a small constant ı > 0 such that, for suitable choices of the constants q
and k we have

ı � qdkd jBj � N�d jBj � kd jBj � 1 � ı :

Being

NX
jD1

����1.B/�t .t .j //
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an integer, we deduce that

jDN .�; �; t/j D
ˇ̌
ˇ̌
ˇ̌�N�d jBj C

NX
jD1

����1.B/�t .t .j //

ˇ̌
ˇ̌
ˇ̌ � ı

for every � , t and � 2 �qkN�1=d ; kN�1=d . Then (3.52) gives

Z 1

q

Z
SO.d/

Z
Td

jDN .�; �; t/j2 dt d� d� � cN1�1=d :

ut
Because of Theorem 24, the dilation in � in (3.49) cannot be deleted. In the

sequel of this section we shall see how to avoid the dilation in particular cases. The
starting point is a lemma due to J. Cassels (see [17, 42]).

Lemma 38. For every positive integer N let

QN D
n
x D .x1; x2; : : : ; xd / 2 R

d W ˇ̌xj ˇ̌ � d
p
2N for every j D 1; 2; : : : ; d

o
:

Then for every finite set ft .j /gNjD1 � T
d

X
0¤m2QN\Zd

ˇ̌
ˇ̌
ˇ̌
NX
jD1

e2
 im�t .j /
ˇ̌
ˇ̌
ˇ̌
2

� N2 : (3.53)

Proof. Let m D .m1;m2; : : : ; md/ an element of Zd . Adding N2 on both sides of
(3.53), we have to prove that

X
jm1j� d

p
2N

: : :
X

jmd j� d
p
2N

ˇ̌
ˇ̌
ˇ̌
NX
jD1

e2
 im�t .j /
ˇ̌
ˇ̌
ˇ̌
2

� 2N 2 ;

and this is a consequence of the following inequality:

X
jm1j�

h
d
p
2N

i : : :
X

jmd j�
h
d
p
2N

i

ˇ̌
ˇ̌
ˇ̌
NX
jD1

e2
 im�t .j /
ˇ̌
ˇ̌
ˇ̌
2

� N
�h

d
p
2N

i
C 1

�d
; (3.54)

where Œ�� denotes the integral part of the real number � . The LHS in (3.54) is
larger than
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X
jm1j�

h
d
p
2N

i

0
@1 � jm1jh

d
p
2N

i
C 1

1
A � � � (3.55)

�
X

jmd j�
h
d
p
2N

i

0
@1 � jmd jh

d
p
2N

i
C 1

1
A
ˇ̌
ˇ̌
ˇ̌
NX
jD1

e2
 im�t .j /
ˇ̌
ˇ̌
ˇ̌
2

D
X

jm1j�
h
dp
2N

i

0
@1 � jm1jh

d
p
2N

i
C 1

1
A � � �

X
jmd j�

h
dp
2N

i

0
@1 � jmd jh

d
p
2N

i
C 1

1
A

�
NX
jD1

NX
`D1

e2
 im�.t.j /�t .`//

D
NX
jD1

NX
`D1

X
jm1j�

h
d
p
2N

i

0
@1 � jm1jh

d
p
2N

i
C 1

1
A e2
 im1.t1.j /�t1.`// : : :

�
X

jmd j�
h
d
p
2N

i

0
@1 � jmd jh

d
p
2N

i
C 1

1
A e2
 imd .td .j /�td .`//

D
NX
jD1

NX
`D1

Kh
d
p
2N

i .t1 .j / � t1 .`// � � �Kh
d
p
2N

i .td .j / � td .`// ;

where

KM.t/ D
MX

jD�M

�
1 � jj j

M C 1

�
e2
 ijt D 1

M C 1

�
sin .
 .M C 1/ t/

sin .
t/

�2

is the Fejér kernel (M 2 N, t 2 T). Since KM.t/ � 0 for every t , we may bound
the terms in (3.55) from below by the “diagonal”

NX
jD1

Kh
d
p
2N

i .t1 .j / � t1 .j // � � �Kh
d
p
2N

i .td .j / � td .j // D N

�
Kh

d
p
2N

i .0/
�d

D N
�h

d
p
2N

i
C 1

�d
:

ut
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Theorem 39. Let S be a simplex in R
d , d � 2, the sides of which have length

smaller than 1. Then there exists a constant cd > 0 such that for every finite set
ft .j /gNjD1 � T

d we have

Z
SO.d/

Z
Td

ˇ̌
ˇ̌
ˇ̌�N jS j C

NX
jD1

���1.S/�t .t .j //

ˇ̌
ˇ̌
ˇ̌
2

dt d� � cd N
.d�1/=d :

Proof. As a consequence of Parseval identity, Theorem 19 and Lemma 38 we obtain

Z
SO.d/

Z
Td

ˇ̌
ˇ̌
ˇ̌�N jS j C

NX
jD1

���1.S/�t .t .j //

ˇ̌
ˇ̌
ˇ̌
2

dt d�

D
X
m¤0

ˇ̌
ˇ̌
ˇ̌
NX
jD1

e2
 im�t .j /
ˇ̌
ˇ̌
ˇ̌
2 Z

SO.d/
j O�S .� .m//j2 d�

�
X

0¤m2QN

ˇ̌
ˇ̌
ˇ̌
NX
jD1

e2
 im�t .j /
ˇ̌
ˇ̌
ˇ̌
2 Z

SO.d/
j O�S .� .m//j2 d�

� c
X

0¤m2QN

ˇ̌
ˇ̌
ˇ̌
NX
jD1

e2
 im�t .j /
ˇ̌
ˇ̌
ˇ̌
2

jmj�d�1

� c inf
m2QN

�
jmj�d�1� X

0¤m2QN

ˇ̌
ˇ̌
ˇ̌
NX
jD1

e2
 im�t .j /
ˇ̌
ˇ̌
ˇ̌
2

� c N�1�1=dN 2 D c N 1�1=d :

ut
Remark 40. Using Theorem 8 the above argument gives a new proof of Theorem 37
(see [42]).

Corollary 41. Let S be a simplex in R
d the sides of which have length smaller than

1. Then, for every finite set ft .j /gNjD1 � T
d there exists a (translated and rotated)

copy S 0 of S such that

ˇ̌
ˇ�N jS j C card

�
S 0 \ ft .j /gNjD1

�ˇ̌
ˇ � cd N

.d�1/=2d :
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3.7 Irregularities of Distribution: Estimates from Above

We are going to check the quality of the estimates from below obtained in the
previous section. We will see that for any given body B and for every positive
integer N one can find a finite set ft .j /gNjD1 � T

d , such that a suitable L2 mean

of the discrepancy is smaller than cN .d�1/=2d . Observe that we cannot choose
the points at random. Indeed, such a Monte Carlo choice of the N points gives
a

p
N discrepancy (see e.g. (3.61) below), and this is not enough to match the

N.d�1/=2d lower estimates in Theorems 37 and 39 (although for large dimension
d the exponent .d � 1/ =2d approaches 1=2). We shall get the N.d�1/=2d estimate
first using an argument related to lattice points problems, and then a probabilistic
argument.

For an overview of upper estimates related to irregularities of distribution,
see [20].

3.7.1 Applying Lattice Points Results

A very natural way to choose N points in a cube consists in putting them on a grid.
Suppose for the time being that we have N D Md points (Fig. 3.4). Then let

P D PM D 1

M
Z
d \

�
�1
2
;
1

2

�d
D ft .j /gNjD1 (3.56)

(the ordering of the t .j /’s is irrelevant).
This choice of P immediately relates our point distribution problem to certain

lattice point problems similar to the ones that we have considered in the previous

sections. Indeed, if B is a body in
�� 1

2
; 1
2

�d
and P is as in (3.56) we have

card .B \ PM/ D card
�
MB \ Z

d
�
:

Fig. 3.4 Points on a grid
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Before going on, observe that here M is an integer, while in the lattice point
problems we have considered so far, the dilation parameterR is real. In other words,
the choice of the piece of lattice in (3.56) implicitly contains some (but not all the)
dilations.

Now we show that the lower estimate in Theorem 37 cannot be improved. This
result has been originally proved by J. Beck and W. Chen [2]. We give two proofs:
the first one is based on Theorem 21, while the second one is probabilistic in nature
(see [2, 14, 22], see also [36, 41]). Since the second proof works under assumptions
more general than convexity, we will state two different theorems (the first one is
contained in the second one).

Theorem 42. Let B � R
d be a convex body of diameter smaller than 1. Then for

every positive integer N there exists a finite set ft .j /gNjD1 � T
d such that

Z
SO.d/

Z
Td

ˇ̌
ˇ̌
ˇ̌�N jBj C

NX
jD1

���1.B/�t .t .j //

ˇ̌
ˇ̌
ˇ̌
2

dt d� � cd N
.d�1/=d :

Here cd depends only on the dimension d .

Proof. We apply Theorem 21. Assume first that N D Md for a positive integerM .

For any a 2 �� 1
2
; 1
2

�d
let

AN D ft .j /gNjD1 D �
aCM�1

Z
d
� \

�
�1
2
;
1

2

�d

(the role of a will be clear later on). Then

Z
SO.d/

Z
Td

ˇ̌
card .AMd \ .�.B/C t// �Md jBjˇ̌2 dt d�

D
Z

SO.d/

Z
Td

ˇ̌
card .AMd \ .�.B/C t C a// �Md jBjˇ̌2 dt d�

D Md

Z
SO.d/

Z
Œ� 1

2M ;
1
2M /

d

ˇ̌
card

�
M�1

Z
d \ .�.B/C t/

� �Md jBjˇ̌2 dt d�

D Md

Z
SO.d/

Z
Œ� 1

2M ;
1
2M /

d

ˇ̌
card

�
Z
d \ .�.MB/C Mt/

� �Md jBjˇ̌2 dt d�

D
Z

SO.d/

Z
Td

ˇ̌
card

�
Z
d \ .�.MB/C v/

� �Md jBjˇ̌2 dvd� ;

since the function

t 7! card
�
M�1

Z
d \ .�.B/C t/

� �Md jBj



212 L. Brandolini et al.

is M�1
Z
d periodic and the cube

�� 1
2
; 1
2

�d
contains Md disjoint copies of�� 1

2M
; 1
2M

�d
. By Theorem 21 we have

Z
SO.d/

Z
Td

ˇ̌
card .AMd \ .�.B/C t// �Md jBjˇ̌2 dt d� � cdM

d�1 � cdN
1�1=d :

(3.57)

To end the proof we need to pass from N D Md to an arbitrary positive
integer N . By a theorem of Hilbert (Waring problem, see [29]) there exists a
constant H D Hd such that every positive integer N can be written a sum of at
most H d th powers:

N D
HX
jD1

Md
j

with M1;M2; : : : ;MH positive integers. Now choose a1; a2; : : : ; aH 2 �� 1
2
; 1
2

�d
such that �

aj CM�1
j Z

d
�

\ �
ak CM�1

k Z
d
� D ¿ (3.58)

whenever j ¤ k. For j D 1; 2; : : : ;H let

AMd
j

D
�
aj CM�1

j Z
d
�

\
�
�1
2
;
1

2

�d
:

By (3.58) the union

AN D
H[
jD1

AMd
j

is disjoint, so that AN contains exactly N points. Since

card .AN \ B/ �N jBj D
HX
jD1

�
card

�
AMd

j
\ B

�
�Md

j jBj
�
;

the theorem follows from (3.57). ut

3.7.2 Deterministic and Probabilistic Discrepancies

In the proof of the next theorem the points will be chosen in a probabilistic way.
Since we will start from the piece of lattice ft .j /gNjD1 introduced in (3.56), it will
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Fig. 3.5 Jittered sampling

be possible, as in the first proof, to assume N D Md . We will choose one point at
random inside each one of the N small cubes having sides parallel to the axes and
of length 1=M (Fig. 3.5).

The above choice is sometimes called jittered sampling.
We have the following generalization of Theorem 42.

Theorem 43. Let B � T
d be a body of diameter smaller than 1 satisfying (3.15).

Then for every positive integer N there exists a finite set ft .j /gNjD1 � T
d such that

Z
SO.d/

Z
Td

ˇ̌
ˇ̌
ˇ̌�N jBj C

NX
jD1

���1.B/�t .t .j //

ˇ̌
ˇ̌
ˇ̌
2

dt d� � cd N
.d�1/=d :

Before starting the proof we introduce the following slightly more general point
of view.

Given the finite point set distribution P D ft .j /gNjD1 in (3.56), we introduce the
following randomization of P , see [2, 14, 22] and also [5, 36, 41]. Let d� denote a
probability measure on T

d and for every j D 1; : : : ; N , let d�j denote the measure
obtained after translating d� by t .j /. More precisely, for any integrable function g
on T

d , let

Z
Td

g.t/ d�j D
Z
Td

g.t � t .j // d� : (3.59)

As before, let dt denote the Lebesgue measure on T
d . For every sequence VN D

fv1; : : : ; vN g in T
d and every t 2 T

d , � 2 SO .d/ let

D.t; �; VN / D D.VN / D �N jBj C
NX
jD1

���1.B/�t
�
vj
�
:

As in (3.50),DN .t/ D D.t; �; VN / has Fourier series
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X
0¤m2Zd

0
@ NX
jD1

e2
 im�vj
1
A O�B.� .m// e2
 im�t :

We now average

	Z
SO.d/

Z
Td

D2.t; �; VN / dt d�


 1=2

in L2.Td ; d�j / for every j D 1; : : : ; N , and consider

Dd�.N / D
	Z

Td

: : :

Z
Td

Z
SO.d/

Z
Td

D2.t; �; VN / dt d� d�1.v1/ : : : d�N .vN /


 1=2
:

We now use an orthogonality argument to obtain an explicit identity for Dd�.N /.
Indeed by Parseval identity, (3.59) and (3.56) we have
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Z
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: : :
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ˇ̌
2
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X
0¤m2Zd

j O�B.� .m/ j2
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Z
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Z
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 im�vj e�2
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D
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BB@N C

NX
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j¤`

Z
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Z
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 im�.vj�t .j //e�2
 im�.v`�t .`// d�.vj /d�.v`/

1
CCAd� :

Then

D2
d�.N /

D
Z

SO.d/

X
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j O�B.� .m/ j2
0
BB@N C j O�.m/j2
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j;`D1
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D
Z

SO.d/

X
0¤m2Zd

j O�B.� .m/ j2
0
@N C j O�.m/j2

0
@ NX
j;`D1

e2
 im�.t.j /�t .`// �N
1
A
1
Ad�

D N
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0¤m2Zd

�
1 � j O�.m/j2�

Z
SO.d/

j O�B.� .m/ j2 d�

C
X

0¤m2Zd
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ˇ̌
NX
jD1

e2
 im�t .j /
ˇ̌
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2 Z

SO.d/
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So that

D2
d�.N / D N

�
jBj � k���1B � �k2

L2.SO.d/�Td /

�
C kD.�; �;P/ � �k2

L2.SO.d/�Td / :

(3.60)

The following are particular cases.

(a) Let d� D dt (the Lebesgue measure on T
d ). Then the second term in the RHS

of (3.60) vanishes since O�.m/ D 0 for m ¤ 0, and we find the Monte-Carlo
discrepancy:

D2
dt.N / D N

Z
SO.d/

X
0¤m2Zd

j O�B.� .m//j2 d� D N
�
jBj � jBj2

�
: (3.61)

(b) Let d� D ı0 (the Dirac ı at 0). Then we have the piece of grid

M�1
Z
d \

�
�1
2
;
1

2

�d
;

and the first term in the RHS of (3.60) vanishes because O�.m/ D 1 for everym.
As for the second term, note that for t .j / in (3.56) we have

NX
jD1

e2
 im�t .j / D
	
N if m 2 MZ

d

0 otherwise,
: (3.62)

We then obtain the grid discrepancy:

D2
ı0
.N / D N2

Z
SO.d/

X
0¤m2Zd

j O�B.M� .m//j2 d� :

In the next case we shall choose one point at random inside each one of theMd

small cubes having sides parallel to the axes and length 1=M .
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(c) Let d� D d� D �.t/dt, with

�.t/ D N�Œ�1=.2M/;1=.2M/�d .t/ :

Then, for m D .m1;m2; : : : ; md/ we have

O�.m/ D N
sin.
m1=M/


m1

sin.
m2=M/


m2

� � � sin.
md=M/


md

and, for everym ¤ 0; (3.62) gives
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e2
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1
A

D 0 ;

so that the second term in the RHS of (3.60) vanishes. In this way we have the
jittered sampling discrepancy:
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Z
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Z
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Proof (of Theorem 43). By (3.63) we can select a point uj from each one of the
cubes

(
t .j /C

�
� 1

2M
;
1

2M

�d) N
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in such a way that
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Since the support of the function � .t/ has diameter
p
d=M we have

�
���1.B/ � ��2 .t/ D ���1.B/ .t/

for every t not belonging to the set

(
x 2 R

d W min
y2@.��1.B//

jx � yj �
p
d=M

)
:

By our assumptions this set has measure � cd M
�1, uniformly in � , so that

N

�
jBj �

Z
SO.d/

Z
Td

�
���1.B/ � ��2 .t/ dt d�

�
� cd N M�1 D cd N

1�1=d :

(3.64)

ut
Remark 44. When B is a ball of radius r andN D Md the inequality (3.64) can be
reversed (see [22]), and there exist positive constants c1 and c2, depending at most
on d and on r , such that

c1 N
1�1=d � N

�
jBj �

Z
Td

.�B � �/2 .t/ dt

�
� c2 N

1�1=d :

Remark 45. In the case of the ball it is possible to show that the discrepancy
described in Theorem 42 is larger than the one described in Theorem 43 for small
d and it is smaller for large d (see [22]). For d 	 1 .mod 4/ the situation is more
intricate because of the results in Theorem 24 (see [22] or [21]).
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