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Preface

Discrepancy theory concerns the problem of replacing a continuous object with a
discrete sampling. The roots of the theory are in H. Weyl’s fundamental work on
uniformly distributed sequences [55]. Just sequences have been sought for a long
time and in 1935, J.G. van der Corput conjectured their non-existence:

If s1; s2; s3; : : : is an infinite sequence of real numbers lying between 0 and 1, then
corresponding to any arbitrarily large k, there exist a positive integer n and two subintervals,
of equal length, of .0; 1/, such that the number of sv .v D 1; : : : ; n/ that lie in one of the
subintervals differs from the numbers of such sv that lie in the other subinterval by more
than k.

The conjecture was proved in 1945 by T. van Aardenne-Ehrenfest [53] and then
put in a quantitative form by her in 1949 [54]. In 1954, her quantitative result was
improved by K.F. Roth [46], who observed that the study of the discrepancy of an
infinite sequence in the unit torus T is equivalent to the study of the discrepancy
of a finite set in T

2, thereby introducing a geometric point of view in the study of
irregularities of point distribution, or discrepancy theory. For many years, the main
results were obtained by Roth and W.M. Schmidt. However, over the last 30 years,
many mathematicians and computer scientists have developed the original theory
and explored new directions and applications.

Discrepancy theory is currently at a crossroads between number theory, com-
binatorics, Fourier analysis, algorithms and complexity, probability theory, and
numerical analysis. Its current applications range from traditional science and
engineering to modern computer science and financial mathematics.

The theoretical aspects of the theory are mathematical in nature and cover two
major areas of research:

1. Classical and geometric discrepancy theory (e.g., low discrepancy sequences,
geometric discrepancy, number theoretical aspects)

2. Combinatorial discrepancy theory (e.g., hypergraph coloring, arithmetic struc-
tures, discrepancy games)

v
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The applied and constructive aspects of the theory are mathematical and compu-
tational in nature and include the following two major areas of research:

3. a. Algorithms and complexity (e.g., complexity of construction of point sets,
pseudorandomness, derandomization, data structures in computational geom-
etry)

b. Quasi Monte Carlo methods and numerical integration (e.g., high dimensional
integration, complexity of integration, computational finance)

There are several excellent books on discrepancy theory (Beck and Chen [7];
Drmota and Tichy [22]; Matoušek [32], [33, new edition 2010]; and Chazelle [14])
and the book chapter of Beck and Sós in the Handbook of Combinatorics [10],
but perhaps no one of them actually showed the present variety of points of view
and applications covering the areas 1–3. In the last 15 years, several conferences
on discrepancy theory addressed the integrated view on discrepancy theory, like
Discrepancy Theory and its Application, Kiel 1998 (org.: Matoušek, Srivastav),
Oberwolfach 2004 (org.: Chazelle, Chen, Srivastav), and Discrepancy Theory and
Related Areas, Varenna 2007 (org.: Chen, Srivastav, Travaglini). In these meetings
a vivid exchange of ideas and concepts between different fields in discrepancy
theory was visible, as well as the need for an integrated presentation of discrepancy
theory and its applications, which might be helpful to bridge the various areas,
with focus on the state of the art. Such a book should also be an invitation to
researchers and students to find a quick way into the different methods and to
motivate interdisciplinary research.

For the above reasons, we started planning a book consisting of several chapters,
written by experts in the specific fields, and focused on different aspects of the
theory. The chapters are not traditional expository papers, but rather detailed
introductions to different areas of discrepancy theory, and should provide an
effective and reasonably self-contained basis for study and further research. Let us
briefly describe the new contribution of the book to the topics 1–3.
1. Classical and Geometric Discrepancy Theory: The irregularity of the distri-
bution of a finite point set in d -dimensional Euclidean space with respect to a
collection of geometric structures in the unit cube is a classical problem. It has two
major aspects. First of all, there are lower bounds which confirm that such irregu-
larity must exist for every point set. Of equal importance are upper bounds which
restrict the size of such irregularities by good placements of the points of the point
set. Here the collection of geometric structures may concern rectangles, squares,
polygons, balls, convex regions, with contraction, translation and/or rotation, and
the size of the irregularity depends on the choice of the collection of geometric
structures involved. A classical result here is the full determination of the size of
the mean square discrepancy with respect to the collection of aligned rectangular
boxes by Roth [46,48], together with the breakthrough by Chen and Skriganov [16]
on explicit constructions. New insights have also been presented by the number
theoretic work of Skriganov (1994–2001) involving point sets obtained from lattices
over totally real number fields.
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Lower bound techniques, such as the orthogonal function method of Roth,
the Fourier transform technique of Beck, and the integral geometric method of
Alexander, have found applications in the study on algorithms and complexity.
Upper bound considerations have found applications in quasi Monte Carlo methods
and numerical integration. Apart from the pioneering work of Roth, there have been
many notable successes, particularly the work of Alexander and Beck on lower
bounds and the work of Beck, Chen, and Skriganov on upper bounds.

Four chapters in the book will address these aspects and new developments.
In Chap. 1, William Chen and Maxim Skriganov provide a detailed study

of upper bounds, using arguments from diophantine approximation, probability
theory, number theory, and Fourier analysis. The chapter is also an introduction to
basic concepts and proofs, like probabilistic and deterministic techniques and their
comparison, van der Corput sets, Fourier–Walsh analysis, explicit constructions, and
orthogonality.

In Chap. 2, Dmitriy Bilyk will present the recent breakthrough by Bilyk,
Lacey, and Vagharshakyan on the L1 discrepancy problem related to rectangles
in dimension d � 3. This was called the Great open problem in the first chapter of
the book of Beck and Chen [7]. Until recently, there was only one deep result by
Beck [6] in dimension 3. Bilyk will bring the reader to the core of the problem and
will show the connections of discrepancy to other areas of mathematics, in particular
to the small ball inequality which arises in harmonic analysis as well as in the study
of the small deviation probabilities for the Brownian sheet.

As we said, a famous problem in the classical geometric theory concerns the
study of discrepancies related to discs and more generally to convex bodies; see
Schmidt [49], Beck [4, 5], Beck and Chen [8], and Montgomery [37]. Most of
these results depend on suitable estimates for the average decay of certain Fourier
transforms, a topic which has been recently investigated by a number of authors,
among them Brandolini, Colzani, and Travaglini [11], and Brandolini, Hofmann,
and Iosevich [12]. In Chap. 3, Luca Brandolini, Giacomo Gigante, and Giancarlo
Travaglini will present in a detailed and unified way recent Fourier analysis results
and their connections to the above discrepancy problem.

Finding the integer solutions of a Pell equation is equivalent to finding the
integer lattice points in a long and narrow tilted hyperbolic region, where the
slope is a quadratic irrational. Motivated by this relationship, in Chap. 4, József
Beck presents a systematic study of point counting with respect to translated or
congruent families of any given long and narrow hyperbolic region. The main results
exhibit a fascinating new phenomenon about the extra large discrepancy called
superirregularity and demonstrate, in a quantitative sense, that in point counting
with respect to translated/congruent copies of any long and narrow hyperbolic
region, superirregularity is inevitable. The techniques involved depend on ideas
from number theory, combinatorics, probability theory, and Fourier analysis.
2. Combinatorial Discrepancy Theory: The basic problem in combinatorial
discrepancy theory is to color the nodes of a finite hypergraph with two colors in
a way that ideally in every hyperedge the number of nodes in the two colors is the
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same. The minimum deviation from this optimal situation is called the discrepancy
of the hypergraph.

There is a relation between combinatorial discrepancy and classical geometric
discrepancy, usually known as the transfer lemma, which allows the transfer of
results between geometric discrepancy theory and combinatorial discrepancy theory.
On the other hand, for many important problems in combinatorial discrepancy
theory the transfer lemma is too weak, and intrinsic combinatorial methods are
required.

The foundation of combinatorial discrepancy theory was laid by the work of
Beck [3], Beck and Fiala [9], Spencer [52] (the six-standard-deviation theorem),
and Lovász, Spencer, and Vesztergombi [30]. Combinatorial discrepancies arise
in several areas of combinatorics, like Ramsey theory, uni-modular matrices, and
extremal set systems. Over the last 10 years a number of new results have appeared,
leading to new techniques and sometimes to optimal discrepancy bounds. Among
them are the trace bound for the hereditary discrepancy of Chazelle and Lvov
[15], the new bounds for geometric set systems of Matoušek, Welzl, and Wernisch
[36], Matoušek [31], Chazelle [13], and the resolution of the linear discrepancy
conjecture for totally unimodular matrices by Doerr [19]. A new aspect has been
the investigation of multicolor discrepancy by Doerr and Srivastav [20], where some
unexpected phenomena arise by passing from two colors to several colors.

Among the interesting classes of hypergraphs are certainly those with some
arithmetic structures, like the hypergraph of arithmetic progressions in the first
n integers (Roth [47]; Matoušek and Spencer [35]) and their generalizations,
like products and sums of arithmetic progressions (Doerr, Srivastav and Wehr
[21]; Hebbinghaus [27]; Přívětivý [45]) or hyperplanes in finite vector spaces
(Hebbinghaus, Schoen and Srivastav [28]).

Quite recently, an efficient randomized algorithm for the construction of a
2-coloring satisfying Spencer’s famous six-standard-bound was given by Bansal [1],
and in a derandomized version by Bansal and Spencer [2], resolving a long-standing
open problem.

In this book, three chapters are concerned with the development of combinatorial
discrepancy theory and some of the mentioned directions.

In Chap. 5 on multicolor discrepancy of arithmetic structures, Nils Hebbinghaus
and Anand Srivastav present the discrepancy theory for hypergraphs with arithmetic
structures, e.g., arithmetic progressions in the first N integer, their various general-
izations, like cartesian products, sums of arithmetic progressions, central arithmetic
progressions (Bohr sets) in Zp , and linear hyperplanes in finite vector spaces.
At the beginning, the theory of multicolor discrepancy is described, like upper
and lower bounds for general hypergraphs and the multicolor generalization of
several classical 2-color theorems. It is shown that at several places phenomena not
visible in the 2-color theory show up, among them the multicoloring of products of
hypergraphs. The focus of the chapter are proofs of lower bounds for the multicolor
discrepancy for the hypergraphs mentioned above, where often the application of
Fourier analysis or linear algebra techniques is not sufficient and has to be combined
with combinatorial arguments.



Preface ix

Chapter 6 by Nikhil Bansal comprises recent breakthrough work on algorithms
in combinatorial discrepancy theory. Since 1985 it has been an open problem,
whether there is a polynomial-time algorithm which computes for a hypergraph
with n nodes and n hyperedges a 2-coloring satisfying Joel Spencer’s famous six-
standard-deviation bound of O.

p
n/ published in the Transaction of the American

Mathematical Society in 1985. In 2010 N. Bansal [1] solved this problem, with a
randomized algorithm based on semi-definite programming and a kind of twofold
randomization. In 2011 Bansal and Spencer [2] were able to derandomize the algo-
rithm. Some other exciting developments related to Bansal’s work, for example the
linear algebra technique of Lovett and Meka [50] and the tightness of the determi-
nant bound for hereditary discrepancy due to Matoušek [34], are discussed as well.

Combinatorics is more and more touched by computational advances in com-
puter science, and practical and efficient algorithms are sought. This is in particular
true for discrepancy theory, where we wish to construct point sets or colorings
satisfying the best known discrepancy bounds or finding experimental evidence for
discrepancy bounds, e.g., the unsolved conjecture of Paul Erdős on the discrepancy
of arithmetic progressions in the integers which is part of the polymath project
initiated by Timothy Gowers in 2009. In Chap. 7, Lasse Kliemann shows how to
efficiently compute low-discrepancy colorings using high-performance computing.
As a benchmark problem he chooses the hypergraph of arithmetic progressions in
the first N integers, for which the optimal discrepancy is �.N1=4/ up to constants;
Roth [47], Matoušek, Spencer [35]. With Bansal’s algorithm one can compute, in
randomized polynomial time, a coloring with discrepancy O.N1=4.logN/k/ using
semidefinite programs. But as the semidefinite programs grow in the number of
hyperedges, the time complexity is too high even for moderately largeN . Kliemann
devised a new evolutionary algorithm based on estimation of distribution (EDA) on
modern multicore computers. The algorithms compute the optimum�.N1=4/ up to
a constant factor for at least up to N D 250;000, where we have the astronomical
number of 377 � 109 arithmetic progressions.
3. Applications and Constructions: A fundamental problem is the efficient con-
struction of point sets with low geometric discrepancy. Classical constructions are
the point sets of Halton [26], Faure [23], and Niederreiter [38]. New constructions
are based on the so-called rank-1 lattice rules by Sloan, Kuo and Joe [51], Kuo
[29], Dick [17], and Nuyens and Cools [42,43]. A comprehensive theory of general
tractability was developed by Gnewuch and Woźniakowski [24, 25]. The books
of Novak and Woźniakowski [39–41] summarize the current state of the art in
tractability theory.

Among the prominent applications of discrepancy theory are counting problems
in number theory, for example the investigation of the distribution of the solutions of
a diophantine equation, or the numerical integration in d -dimensional space, where
d is large (e.g., between 30 and 360 in financial mathematics), the so-called quasi
Monte Carlo method.

In many experiments the quasi Monte Carlo method is superior to the widely
applied Monte Carlo simulation, where random points are used (see Owen [44]).
However, the dispute for which applications this observation holds is ongoing



x Preface

and an interesting area of research (see Niederreiter [38], Matoušek [32], Dick
and Pillichshammer [18]). On the other hand, a flow of results, particularly
by Woźniakowski (1998–2001), determining the complexity of approximation of
numerical integration, have shown the worst case limits of approximation. Other
results can be found in recent volumes of the Journal of Complexity.

In Chap. 8, Ákos Magyar studies the distribution of the solutions of a diophantine
equation when projected onto the unit level surface via the dilations, and also
when mapped to the flat torus Tn. He obtains quantitative estimates on the rate
of equi-distribution in terms of upper bounds on the associated discrepancy. The
main technical tool is the Hardy–Littlewood method of exponential sums utilized to
obtain asymptotic expansions of the Fourier transform of the solution sets.

Chapter 9 by Josef Dick and Friedrich Pillichshammer is devoted to the applica-
tion of discrepancy theory to quasi Monte Carlo integration, with an emphasis on
explicit error bounds. The chapter is a presentation of the state-of-the-art methods
for quasi Monte Carlo integration.

Last, but not least, we return to the basic problem of the geometric discrepancy,
where the known bounds and methods have been described in the first chapter. Now
we are concerned with efficient constructions of point sets and computation of the
discrepancy. In Chap. 10, Carola Doerr, Michael Gnewuch, and Magnus Wahlström
present randomized and de-randomized algorithms for the construction of low
discrepancy point sets and the calculation of the star discrepancy, prove complexity
results, and show interesting and promising connections to integer programming.

Acknowledgements We thank Dr. Volkmar Sauerland for his technical support in preparing the
manuscript of this book.
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40. E. Novak, H. Woźniakowski, Tractability of Multivariate Problems. Volume Ii: Standard
Information for Functionals. EMS Tracts in Mathematics, vol. 12 (European Mathematical
Society (EMS), Zürich, 2010)
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45. A. Přívětivý, Discrepancy of sums of three arithmetic progressions. Electron. J. Combinator.
13(1), 49 (2006)

46. K.F. Roth, On irregularities of distribution. Mathematika 1, 73–79 (1954). doi:10.1112/
S0025579300000541

47. K.F. Roth, Remark concerning integer sequences. Acta Arithmetica 9, 257–260 (1964)
48. K.F. Roth, On irregularities of distribution. IV. Acta Arithmetica 37, 67–75 (1980)
49. W.M. Schmidt, Lectures on Irregularities of Distribution (Tata Institute of Fundamental

Research Lectures on Mathematics and Physics, 56, Tata Institute of Fundamental Research,
Bombay, 1977)

50. S. Shachar Lovett, R. Meka, Constructive discrepancy minimization by walking on the edges.
CoRR abs/1203.5747 (2012)

51. I.H. Sloan, F.Y. Kuo, S. Joe, Constructing randomly shifted lattice rules in weighted Sobolev
spaces. SIAM J. Numer. Anal. 40(5), 1650–1665 (2002). doi:10.1137/S0036142901393942

52. J. Spencer, Six standard deviations suffice. Trans. Am. Math. Soc. 289(2), 679–706 (1985)
53. T. van Aardenne-Ehrenfest, Proof of the impossibility of a just distribution of an infinite

sequence of points over an interval. Proc. Nederlandse Akademie van Wetenschappen 48,
266–271 (1945)

54. T. van Aardenne-Ehrenfest, On the impossibility of a just distribution. Proc. Koninklijke
Nederlandse Akademie van Wetenschappen 52, 734–739 (1949)

55. H. Weyl, Über die Gleichverteilung von Zahlen mod. Eins. Math. Ann. 77, 313–352 (1916).
doi:10.1007/BF01475864

http://dx.doi.org/10.1007/BF02574066
http://dx.doi.org/10.1090/S0002-9939-2012-11334-6
http://dx.doi.org/10.4171/116
http://dx.doi.org/10.1090/S0025-5718-06-01785-6
http://dx.doi.org/10.1016/j.jco.2005.07.002
http://dx.doi.org/10.1016/j.jco.2005.07.002
http://dx.doi.org/10.1145/272991.273010
http://dx.doi.org/10.1112/S0025579300000541
http://dx.doi.org/10.1112/S0025579300000541
http://dx.doi.org/10.1137/S0036142901393942
http://dx.doi.org/10.1007/BF01475864


Contents

Part I Classical and Geometric Discrepancy

1 Upper Bounds in Classical Discrepancy Theory . . . . . . . . . . . . . . . . . . . . . . . . 3
William Chen and Maxim Skriganov

2 Roth’s Orthogonal Function Method in Discrepancy
Theory and Some New Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Dmitriy Bilyk

3 Irregularities of Distribution and Average Decay
of Fourier Transforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Luca Brandolini, Giacomo Gigante, and Giancarlo Travaglini

4 Superirregularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
József Beck

Part II Combinatorial Discrepancy

5 Multicolor Discrepancy of Arithmetic Structures . . . . . . . . . . . . . . . . . . . . . . 319
Nils Hebbinghaus and Anand Srivastav

6 Algorithmic Aspects of Combinatorial Discrepancy . . . . . . . . . . . . . . . . . . . . 425
Nikhil Bansal

7 Practical Algorithms for Low-Discrepancy 2-Colorings . . . . . . . . . . . . . . . 459
Lasse Kliemann

Part III Applications and Constructions

8 On the Distribution of Solutions to Diophantine Equations . . . . . . . . . . . 487
Ákos Magyar

9 Discrepancy Theory and Quasi-Monte Carlo Integration . . . . . . . . . . . . . 539
Josef Dick and Friedrich Pillichshammer

xiii



xiv Contents

10 Calculation of Discrepancy Measures and Applications . . . . . . . . . . . . . . . 621
Carola Doerr, Michael Gnewuch, and Magnus Wahlström

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 679

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 685



List of Contributors

Nikhil Bansal Department of Mathematics and Computer Science, Eindhoven
University of Technology, Eindhoven, The Netherlands

Jószef Beck Department of Mathematics, Rutgers University, New Brunswick, NJ,
USA

Dmitriy Bilyk School of Mathematics, University of Minnesota, Minneapolis,
MN, USA

Luca Brandolini Dipartimento di Ingegneria, Università di Bergamo, Bergamo,
Italia

William Chen Department of Mathematics, Macquarie University, Sydney, NSW,
Australia

Josef Dick School of Mathematics and Statistics, The University of New South
Wales, Sydney, NSW, Australia

Carola Doerr Université Pierre et Marie Curie - Paris 6, LIP6, équipe RO, Paris,
France and Department 1: Algorithms and Complexity, Max-Planck-Institut für
Informatik, Saarbrücken, Germany

Giacomo Gigante Dipartimento di Ingegneria, Università di Bergamo, Bergamo,
Italia

Michael Gnewuch Mathematisches Seminar, Kiel University, Kiel, Germany

Nils Hebbinghaus Department of Computer Science, Kiel University, Kiel,
Germany

Lasse Kliemann Department of Computer Science, Kiel University, Kiel,
Germany

Akos Magyar Department of Mathematics, University of British Columbia,
Vancouver, BC, Canada

xv



xvi List of Contributors

Friedrich Pillichshammer Institute of Financial Mathematics, University of Linz,
Linz, Austria

Maxim Skriganov Steklov Mathematical Institute, St. Petersburg, Russia

Anand Srivastav Department of Computer Science, Kiel University, Kiel,
Germany

Giancarlo Travaglini Dipartimento di Statistica e Metodi Quantitativi, Università
di Milano-Bicocca, Milano, Italia

Magnus Wahlström Department 1: Algorithms and Complexity, Max-Planck-
Institut für Informatik, Saarbrücken, Germany



Part I
Classical and Geometric Discrepancy



Chapter 1
Upper Bounds in Classical Discrepancy Theory

William Chen and Maxim Skriganov

Abstract We discuss some of the ideas behind the study of upper bound questions
in classical discrepancy theory. The many ideas involved come from diverse areas
of mathematics and include diophantine approximation, probability theory, number
theory and various forms of Fourier analysis. We illustrate these ideas by largely
restricting our discussion to two dimensions.

1.1 Introduction

Classical discrepancy theory, or irregularities of distribution, began as a branch of
the theory of uniform distribution but has independent interest. It is often viewed
as a quantitative and substantially more precise version of the theory of uniform
distribution, in the sense that one seeks to obtain very accurate bounds on various
quantities arising from the difference between the discrete and the continuous. Here
the discrete concerns the actual point count in a given region, which clearly takes
integer values, whereas the continuous refers to the expectation of the point count,
which depends on the area or volume of the region concerned and therefore can take
non-integer values.

We shall first state the problem in a rather general form. Let k � 2 be a fixed
integer. Our domain U will be a set of unit Lebesgue measure in k-dimensional
Euclidean space Rk .
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4 W. Chen and M. Skriganov

Suppose that A is a set of measurable subsets of U , endowed with an integral
geometric measure, normalized so that the total measure is equal to unity. Suppose
further that P is a set of N points in U . For every subset A 2 A of U , let

ZŒPIA� D #.P \ A/

denote the number of points of P that fall into A. This is the actual point count of
P in A, with corresponding expectationN�.A/. By the discrepancy of P in A, we
mean the difference

DŒPIA� D ZŒPIA� �N�.A/:

Often, we consider the extreme discrepancy of P in U , taken to be theL1-norm

kDŒP�k1 D sup
A2A

jDŒPIA�j: (1.1)

However, for upper bound considerations, it is far more interesting and challenging
to consider the correspondingL2-norm

kDŒP�k2 D
�Z

A
jDŒPIA�j2 dA

�1=2
; (1.2)

as well as the correspondingLq-norms where 2 < q < 1.
For any given choice of U and A , we are interested in studying the growth of

the functions (1.1) and (1.2) as functions of N , the number of points of P . It is
the cornerstone of discrepancy theory that these quantities become arbitrarily large
in many interesting cases, following the early conjecture of van der Corput [37, 38]
and the pioneering work of van Aardenne-Ehrenfest [35,36] and Roth [29]. A lower
bound result is thus of the form

kDŒP�k1 > f .N/ for all sets P of N points in U ;

or of the form

kDŒP�k2 > f .N / for all sets P of N points in U :

For upper bounds, we first make a simple observation. Consider a set P of N
points, where all the points coincide. Then clearly any subset A 2 A of U either
contains all points of P or contains no point of P . In either case, we expect the
discrepancy DŒPIA� to have rather large absolute value for many of these sets A.
This is an example of an extremely badly distributed point set. Such examples must
never be allowed to play a role in upper bound considerations. After all, if the lower
bound asserts that all distributions are bad, then a complementary upper bound must
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say that some distributions are close to as good as they possibly can be. Hence an
upper bound result must be of the form

kDŒP�k1 < g.N/ for some sets P of N points in U ;

or of the form

kDŒP�k2 < g.N / for some sets P of N points in U :

Our task is therefore to construct such a point set P , or to show that one exists.
Of course, the ultimate task is to establish lower and upper bounds where the

two functions f .N / and g.N / have the same order of magnitude. This has been
achieved in a few instances, and we shall discuss the upper bound aspects of some
of these in some detail in this article.

There are well known choices of U and A where the quantities (1.1) and (1.2)
exceed Nı for some positive exponent ı. We refer to these as large discrepancy
phenomena. On the other hand, there are also well known choices of U and A
where, for suitably chosen point sets P , the quantities (1.1) and (1.2) can be
bounded above by .logN/ı for some positive exponent ı. We refer to these as small
discrepancy phenomena. As a general rule, upper bound questions are somewhat
harder for small discrepancy phenomena, as we shall attempt to illustrate in the
course of this article.

Notation. For any complex-valued function f and any positive function g, we write
f D O.g/ to denote that there exists a positive constant C such that jf j � Cg,
and write f D Oı.g/ if the positive constant C may depend on a parameter ı. We
also use the Vinogradov notation, where f � g if f D O.g/, and f �ı g if
f D Oı.g/. We also write f � g and f �ı g to denote respectively g � f and
g �ı f , but here both f and g must be positive functions. The letters N, Z and
R denote respectively the set of all natural numbers, i.e. positive integers, the set of
all integers and the set of all real numbers. We also write N0 to denote the set of all
non-negative integers. For any real number z, we write e.z/ D e2� iz, and write Œz�
and fzg to denote respectively the integer part and the fractional part of z, i.e.

Œz� D maxfn 2 Z W n � zg and fzg D z � Œz�:

For any finite set S , we denote by #S the cardinality of S . For any probabilistic
variable �, we denote by E� the expected value of �.

1.2 Large Discrepancy: Main Results

The work on large discrepancy problems can best be summarized by the follow-
ing ground-breaking result of Beck [4]. Consider the k-dimensional Euclidean
space Rk . We take as our domain U the unit cube Œ0; 1�k , treated as a torus for
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simplicity. Let B � Œ0; 1�k be a compact and convex set that satisfies a technical
condition

r.B/ � N�1=k ; (1.3)

where r.B/ denotes the radius of the largest inscribed ball in B , and N is the
cardinality of the point sets P under consideration. While this technical condition
does not really affect the argument in a serious way, it is nevertheless necessary
in order for us to avoid degenerate cases. Let T denote the group of all orthogonal
transformations in Rk , normalized so that the total measure is equal to unity. For any
contraction � 2 Œ0; 1�, orthogonal transformation � 2 T and translation x 2 Œ0; 1�k ,
we consider the similar copy

B.�; �; x/ D �.�B/C x

of B . We then consider the collection

A D fB.�; �; x/ W � 2 Œ0; 1�; � 2 T ; x 2 Œ0; 1�kg

of all similar copies ofB , where the integral geometric measure is given by a natural
combination of the standard Lebesgue measures of � and x and the measure of T .
More precisely, for any set P of N points in Œ0; 1�k , we have the L2-norm

kDŒP�k2 D
�Z

Œ0;1�k

Z
T

Z 1

0

jDŒPIB.�; �; x/�j2 d� d� dx
�1=2

: (1.4)

We also have the simpler L1-norm

kDŒP�k1 D sup
�2Œ0;1�
�2T

x2Œ0;1�k

jDŒPIB.�; �; x/�j: (1.5)

The following result is due to Beck [4].

Theorem 1. Suppose that B � Œ0; 1�k is a compact and convex set that satisfies the
condition (1.3). Then for every set P of N points in Œ0; 1�k , we have

kDŒP�k2 �B N
1=2�1=2k : (1.6)

This leads immediately to the corresponding statement for the L1-norm.

Theorem 2. Suppose that B � Œ0; 1�k is a compact and convex set that satisfies the
condition (1.3). Then for every set P of N points in Œ0; 1�k , we have

kDŒP�k1 �B N
1=2�1=2k : (1.7)
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The lower bound (1.6) is essentially best possible, in view of the following result
of Beck and Chen which can be established as a simple case of their more general
result in [1].

Theorem 3. Suppose that B � Œ0; 1�k is a compact and convex set. Then for every
natural numberN , there exists a set P of N points in Œ0; 1�k such that

kDŒP�k2 �B N
1=2�1=2k : (1.8)

The proof of Theorem 3 is an extension of the original ideas needed to establish
the following result using ideas in Beck [3]; see also Beck and Chen [5, Section 8.1].

Theorem 4. Suppose that B � Œ0; 1�k is a compact and convex set. Then for every
natural numberN � 2, there exists a set P of N points in Œ0; 1�k such that

kDŒP�k1 �B N
1=2�1=2k.logN/1=2: (1.9)

We shall discuss Beck’s ideas in Sect. 1.4 and sketch a proof of the special case
k D 2 of Theorem 4. Most important of all, however, the argument gives us a very
good understanding of the exponent in the estimates (1.6)–(1.9).

We shall then sketch a proof of the special case k D 2 of Theorem 3 in Sect. 1.5.

1.3 A Seemingly Trivial Argument

We start by making an inadequate attempt to establish the special case k D 2 of
Theorem 4. Such simple and perhaps naive attempts often play an important role in
the study of upper bounds. Remember that we need to find a good set of points, and
we often start by toying with some specific set of points which we hope will be good.
Often it is not, but sometimes it permits us to bring in some stronger techniques at a
later stage of the argument.

For simplicity, let us assume that the number of points is a perfect square, so
that N D M2 for some natural number M . We may then choose to split the unit
square Œ0; 1�2 in the natural way into a union ofN D M2 little squares of side length
M�1, and then place a point in the centre of each little square, as shown in Fig. 1.1
below.

Suppose thatADB.�; �; x/, where � 2 Œ0; 1�, � 2 T and x 2 Œ0; 1�2, is a similar
copy of a given fixed compact and convex set B . We now attempt to estimate the
discrepancyDŒPIA�. Let S denote the collection of the N DM2 little squares S
of side length M�1. The additive property of the discrepancy function then gives

DŒPIA� D
X
S2S

DŒPIS \ A�: (1.10)
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Fig. 1.1 A basic construction
of N DM2 points in the unit
square

Next, we make the simple observation that

DŒPIS \A� D 0 if S � A or S \ A D ;:

The identity (1.10) then becomes

DŒPIA� D
X
S2S

S\@A¤;

DŒPIS \A�; (1.11)

where @A denotes the boundary ofA. Finally, observe that both 0 � ZŒPIS\A� �
1 and 0 � N�.S \ A/ � 1, so that jDŒPIS \ A�j � 1, and it follows from (1.11)
and the triangle inequality that

jDŒPIA�j � #fS 2 S W S \ @A ¤ ;g � M D N1=2: (1.12)

This estimate is almost trivial, but very far from the upper bound N1=4.logN/1=2

alluded to in Theorem 4.
We make an important observation here that the term #fS 2 S W S \ @A ¤ ;g

in (1.12) is intricately related to the length of the boundary curve @B of B; note
that the set A is a similar copy of the given compact and convex set B . Indeed, in
the general case of the problem in k-dimensional space, the corresponding term is
intricately related to the .k � 1/-dimensional volume of the boundary surface @B of
B . It is worthwhile to record the important role played by boundary surface in large
discrepancy problems.

1.4 A Large Deviation Technique

In this section, we continue our study of the special case k D 2 of Theorem 4.
Again, let us assume that the number of points is a perfect square, so that N D M2

for some natural number M . Again, we choose to split the unit square Œ0; 1�2 in the
natural way into a union of N D M2 little squares of side length M�1. As before,
let S denote the collection of the N D M2 little squares S of side length M�1.

For every little square S 2 S , instead of placing a point in the centre of the
square, we now associate a random point fpS 2 S , uniformly distributed within the
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little square S and independent of all the other random points in the other little
squares. We thus obtain a random point set

QP D ffpS W S 2 S g: (1.13)

Suppose that a fixed compact and convex set B � Œ0; 1�2 is given. Let

G D
�
B.�; �; x/ W � 2

�
0;
11

10

�
; � 2 T ; x 2 Œ0; 1�2

�
:

Note that the collectionG contains the collectionA and permits some similar copies
of B which are a little bigger than B . Then one can find a subset H of G such that

#H � NC1;

where C1 is a positive constant depending at most on B , and such that for every
A 2 A , there exist A�; AC 2 H such that

A� � A � AC and �.AC n A�/ � N�1: (1.14)

We comment that such a set H may not exist if we make the restriction H � A
instead of the more generous restriction H � G .

Suppose that A 2 H is fixed. Then, analogous to the discrepancy function
(1.10), we now consider the discrepancy function

DŒ QPIA� D
X
S2S

DŒ QPIS \A� D
X
S2S

S\@A¤;

DŒ QP IS \ A�; (1.15)

and note as before that

#fS 2 S W S \ @A ¤ ;g � M D N1=2: (1.16)

For every S 2 S , let

	S D
�
1; if fpS 2 A;
0; otherwise:

The observation

DŒ QPIA� D
X
S2S

.	S � E	S/ D
X
S2S

S\@A¤;

.	S � E	S/ (1.17)

sets us up to appeal to large deviation type inequalities in probability theory.
For instance, we can use the following result attributed to Hoeffding; see, for
instance, Pollard [27, Appendix B].
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Lemma 5. Suppose that 	1; : : : ; 	m are independent random variables that satisfy
0 � 	i � 1 for every i D 1; : : : ; m. Then for every real number 
 > 0, we have

Prob

 ˇ̌̌
ˇ̌
mX
iD1
.	i � E	i /

ˇ̌̌
ˇ̌ � 


!
� 2e�2
2=m:

In view of (1.17), we now apply Lemma 5 with

m D #fS 2 S W S \ @A ¤ ;g � C2N
1=2;

where C2 is a positive constant depending at most on the given set B , and with


 D C3N
1=4.logN/1=2;

where C3 is a sufficiently large positive constant. Indeed,


2

m
� C2

3

C2
logN;

and it follows therefore that

2e�2
2=m � 1

2
N�C1 � 1

2
.#H /�1

provided that C3 is chosen sufficiently large in terms of C1 and C2. Then

Prob
�
jDŒ QPIA�j � C3N

1=4.logN/1=2
	

� 1

2
.#H /�1;

and so

Prob
�
jDŒ QPIA�j � C3N

1=4.logN/1=2 for some A 2 H
	

� 1

2
;

whence

Prob
�
jDŒ QPIA�j � C3N

1=4.logN/1=2 for all A 2 H
	

� 1

2
:

In other words, there exists a set P� of N D M2 points in Œ0; 1�2 such that

jDŒP�IA�j � C3N
1=4.logN/1=2 for every A 2 H :

Suppose now that A 2 A is given. Then there exist A�; AC 2 H such that
(1.14) is satisfied. It is not difficult to show that
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jDŒP�IA�j � max
˚jDŒP�IA��j; jDŒP�IAC�j
CN�.AC n A�/

� C3N
1=4.logN/1=2 C 1:

Theorem 4 for k D 2 in the special case when N D M2 is therefore established.
Finally, we can easily lift the restriction thatN is a perfect square. By Lagrange’s

theorem, every positive integer N can be written as a sum

N D M2
1 CM2

2 CM2
3 CM2

4

of the squares of four non-negative integers. We can therefore superimpose up to
four point distributions in Œ0; 1�2 where the number of points in each is a perfect
square. This completes the proof of Theorem 4 for k D 2.

1.5 An Averaging Argument

In this section, we indicate how the argument in the previous section can be adapted
to establish Theorem 3 in the case k D 2.

We construct the random point set P , given by (1.13), as before. Suppose that
a fixed compact and convex set B � Œ0; 1�2 is given. Let A 2 A be fixed. Then
(1.15), (1.16) and (1.17) are valid. If we write �S D 	S � E	S , then

jDŒ QPIA�j2 D
X

S1;S22S
S1\@A¤;
S2\@A¤;

�S1�S2 :

Taking expectation over all the N D M2 random points, we have

E
�
jDŒ QPIA�j2

	
D

X
S1;S22S
S1\@A¤;
S2\@A¤;

E .�S1�S2/ : (1.18)

The random variables �S , where S 2 S , are independent since the distribution of
the random points are independent of each other. If S1 ¤ S2, then

E .�S1�S2/ D E .�S1/E .�S2/ D 0:

It follows that the only non-zero contributions to the sum (1.18) come from those
terms where S1 D S2, so that

E
�
jDŒ QP IA�j2

	
� #fS 2 S W S \ @A ¤ ;g �B N

1=2:
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Integrating now over all A 2 A and changing the order of integration, we obtain

E
�Z

A
jDŒ QPIA�j2 dA

�
�B N

1=2:

It follows that there exists a set P� of N D M2 points in Œ0; 1�2 such that
Z
A

jDŒP�IA�j2 dA �B N
1=2;

establishing Theorem 3 for k D 2 in the special case when N D M2.
The generalization to all positive integers N follow from Lagrange’s theorem as

before, and this completes the proof of Theorem 3 for k D 2.
We remark that the argument in Sects. 1.3–1.5 can be extended in a reasonably

straightforward manner to arbitrary dimensions k � 2. Also the argument in this
section on Theorem 3 can be extended to Lq-norms for all even positive integers q,
and hence all positive real numbers q, without too many complications.

1.6 A Comparison of Deterministic and Probabilistic
Techniques

In this section, we make a digression and use Fourier transform techniques to try
to understand and relate various approaches to upper bounds in large discrepancy
problems.

Consider the unit cube U D Œ0; 1�k , treated as a torus, in Euclidean space Rk .
Suppose that a natural number N is given, and that N D Mk for some natural
numberM . We shall partition U into a union ofN D Mk cubes of sidelengthM�1
in the natural way, and denote by S the collection of these small cubes. For every
cube S 2 S , we denote by pS the point in the centre of S . Then

P D fpS W S 2 S g (1.19)

is a collection of N D Mk points in U D Œ0; 1�k .
Let � be a probabilistic measure on U . For every cube S 2 S , let �S denote the

translation of � by pS , so that

Z
U

f .u/ d�S D
Z
U

f .u � pS/ d�

for any integrable function f . Furthermore, let �S denote the probabilistic variable
associated with the probabilistic measure �S . Then

QP D f�S W S 2 S g

is a random set of N D Mk points in U D Œ0; 1�k .
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Let A denote a compact and convex set in U D Œ0; 1�k . For every x 2 Œ0; 1�k , let
A.x/ D AC x denote the translation of A by x. Now consider the average

D2
�.N IA/ D

Z
U

: : :

Z
U

�Z
Œ0;1�k

jDŒ QPIA.x/�j2 dx
� Y
S2S

d�S : (1.20)

In other words, for every realization of QP , we consider the mean square average
of the discrepancy function over all translations of A. We then average over all the
different realizations of QP, with the understanding that the probabilistic measures
�S , where S 2 S , are independent.

We can describeD2
�.N IA/ rather precisely in terms of the Fourier transforms of

the measure � and of the characteristic function A of the set A.

Proposition 6. For any natural number N D Mk, any compact and convex set A
in U D Œ0; 1�k and any probabilistic measure � on U , we have

D2
�.N IA/ D N

X
0¤t2Zk

jcA.t/j2.1� jO�.t/j2/CN2
X

0¤t2Zk

jcA.M t/j2j O�.M t/j2:

(1.21)

Before we proceed to establish this proposition, we shall first of all endeavour
to understand the significance of the each of the two terms on the right hand side
of (1.21).

Suppose first of all that � is the Dirac measure ı0 concentrated at the origin. Then
the Fourier transform O�.t/ D 1 identically, so the first term on the right hand side of
the identity (1.21) vanishes, and we have

D2
ı0
.N IA/ D N2

X
0¤t2Zk

jcA.M t/j2: (1.22)

On the other hand, note that under this measure ı0, the only realization of the random
set QP is the set P given by (1.19). This represents a deterministic model.

Suppose next that � is the uniform measure � supported by the cube

�
� 1

2M
;
1

2M

�k
; (1.23)

so that d� D �.u/ du, where

�.u/ D NŒ�1=2M;1=2M�k .u/

denotes the characteristic function of the cube (1.23), suitably normalized. It is well
known that for every t D .t1; : : : ; tk/ 2 Zk , the Fourier transform
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O�.t/ D N

kY
iD1

sin.�M�1ti /
�ti

;

with suitable modification when ti D 0 for some i D 1; : : : ; k. Since O�.M t/ D 0

for every non-zero t 2 Zk , the second term on the right hand side of the identity
(1.21) vanishes, and we have

D2
�.N IA/ D N

X
0¤t2Zk

jcA.t/j2.1 � jO�.t/j2/:

On the other hand, note that under this uniform measure �, each of the probabilistic
variables �S , where S 2 S , represents a random point uniformly distributed within
the cube S . This represents a probabilistic model the special case k D 2 of which
has been described earlier in Sects. 1.4–1.5.

In summary, the two terms on the right hand side of the identity (1.21) may be
interpreted as respectively the probabilistic and the deterministic part of the quantity
D2
�.N IA/.

Proof of Proposition 6. Applying Parseval’s identity to the inner integral in (1.20),
we obtain

D2
�.N IA/ D

Z
U

: : :

Z
U

X
0¤t2Zk

jcA.t/j2
ˇ̌̌
ˇ̌X
X2S

e.t � �X/

ˇ̌̌
ˇ̌
2 Y
S2S

d�S

D
X

0¤t2Zk

jcA.t/j2
Z
U

: : :

Z
U

X
X;Y 2S

e.t � �X/e.�t � �Y /
Y
S2S

d�S

D
X

0¤t2Zk

jcA.t/j2 X
X;Y 2S

Z
U

: : :

Z
U

e.t � �X/e.�t � �Y /
Y
S2S

d�S

D
X

0¤t2Zk

jcA.t/j2
0
BB@N C

X
X;Y 2S
X¤Y

Z
U

Z
U

e.t � �X/e.�t � �Y / d�X d�Y

1
CCA :

(1.24)

For X ¤ Y , we clearly have
Z
U

Z
U

e.t � �X/e.�t � �Y / d�X d�Y D
Z
U

Z
U

e.t � .�X � pX//e.�t � .�Y � pY // d� d�

D e.�t � pX/e.t � pY /
Z
U

e.t � �X/ d�
Z
U

e.�t � �Y / d� D jO�.t/j2e.�t � pX/e.t � pY /;
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and so

X
X;Y 2S
X¤Y

Z
U

Z
U

e.t � �X/e.�t � �Y / d�X d�Y D jO�.t/j2
X

X;Y 2S
X¤Y

e.�t � pX/e.t � pY /

D jO�.t/j2
0
@ X
X;Y2S

e.�t � pX/e.t � pY /�N

1
A

D jO�.t/j2
0
@
ˇ̌
ˇ̌̌X
X2S

e.t � pX/

ˇ̌
ˇ̌̌2 �N

1
A : (1.25)

The identity (1.21) follows easily on combining (1.24), (1.25) and the orthogonality
relationship

ˇ̌̌
ˇ̌ X
X2S

e.t � pX/

ˇ̌̌
ˇ̌ D

�
N; if t 2 MZk;
0; otherwise:

This completes the proof. ut
In the special cases when N D Mk and when we have sufficient knowledge

on the Fourier transform of the characteristic function of the given compact and
convex set B , we expect to be able to establish the inequality (1.8) in Theorem 3
for the set P given by (1.19). This will give a deterministic proof of Theorem 3, an
alternative to the probabilistic proof briefly described in Sects. 1.4–1.5. However,
there is virtually no documentation of results of this kind in the literature, apart
from the special case when N D M2 is odd and the set B is a cube, described in
Chen [10, Section 3].

Nevertheless, the question arises as to whether a deterministic technique or a
probabilistic technique gives a better upper bound. Much of the description in
this section arises as a consequence of work done in this direction by Chen and
Travaglini [14] for the case when B is a ball of fixed radius, so there is no
contraction. Note also that since B is a ball, orthogonal transformation is redundant.
Hence there is only translation.

Returning to the beginning of this section, we let A denote a ball in U D Œ0; 1�k ,
of fixed radius not exceeding 1

2
. We shall consider translations A.x/ D AC x of A,

where x 2 Œ0; 1�k . We have the following surprising result.

Proposition 7. Suppose that k 6	 1 mod 4.

a) If k is sufficiently large, then the inequality D�.M
k IA/ < Dı0.M

kIA/ holds
for all sufficiently large natural numbersM .

b) For k D 2 and ball A of radius 1
4
, the inequality Dı0.M

kIA/ < D�.M
k IA/

holds for all sufficiently large natural numbersM .
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Suppose that k 	 1 mod 4.

c) If k is sufficiently large, then the inequality D�.M
k IA/ < Dı0.M

kIA/ holds
for infinitely many natural numbersM .

d) The inequality Dı0.M
kIA/ < D�.M

kIA/ holds for infinitely many natural
numbersM .

e) For k D 1, the inequality Dı0.M
kIA/ < D�.M

kIA/ holds for every natural
numberM .

The case k 6	 1 mod 4 is the standard case, whereas the case k 	 1 mod 4
is the exceptional case. This exceptional case is intimately related to the work
of Konyagin, Skriganov and Sobolev [23] concerning the peculiar distribution of
lattice points with respect to balls in these dimensions. We shall give a very brief
description of the underlying ideas.

It is fairly straightforward to show that for every fixed dimension k, we have

D2
�.M

kIA/ � �k=2k3=2rk�1Mk�1

2� .1C k=2/
(1.26)

if M is sufficiently large, where r denotes the radius of the ball A.
To study the term D2

ı0
.MkIA/, we make use of the identity (1.22). Suppose that

A is a ball of radius r centred at the origin. Then the Fourier transform cA can be
described in terms of Bessel functions. Roughly speaking, we can write

D2
ı0
.MkIA/ D Mk

X
0¤t2Zk

rkjtj�kJ 2k=2.2�rMjtj/; (1.27)

where the Bessel function term J 2k=2.2�rMjtj/ is dominated by

1

�2rMjtj cos2
�
2�rMjtj � .k C 1/�

4

�
:

Suppose that k 6	 1 mod 4. Then elementary calculation gives

max

�
cos2

�
2�rM � .k C 1/�

4

�
; cos2

�
4�rM � .k C 1/�

4

��
>

1

100
;

for instance, ensuring a significant contribution to the sum in (1.27) from those t
satisfying jtj D 1 or from those t satisfying jtj D 2, sufficient for us to show that

D2
ı0
.MkIA/ � krk�1Mk�1

1000�22k
: (1.28)



1 Upper Bounds in Classical Discrepancy Theory 17

For sufficiently large k, one has

�k=2k3=2

2� .1C k=2/
<

k

1000�22k
:

Combining this with (1.26) and (1.28) gives part (a) of Proposition 7.
Suppose that k 	 1 mod 4. Then the Bessel function term J 2k=2.2�rMjtj/ in

(1.27) is dominated by

1

�2rMjtj cos2
�
2�rMjtj ˙ �

2

	
D 1

�2rMjtj sin2.2�rMjtj/:

For many values ofM , the terms sin2.2�rMjtj/ can be simultaneously small for all
small jtj, making Dı0.M

kIA/ unusually small. This goes towards explaining parts
(c) and (d) of Proposition 7.

1.7 Small Discrepancy: The Classical Problem

To illustrate the work on small discrepancy problems, we shall consider the
pioneering work of Roth [29] on the classical problem in connection with aligned
rectangular boxes in the unit cube. Consider the k-dimensional Euclidean space Rk .
We take as our domain U the unit cube Œ0; 1�k . For every x D .x1; : : : ; xk/ 2 Œ0; 1�k ,
we consider the aligned rectangular box

B.x/ D Œ0; x1/ 
 : : : 
 Œ0; xk/;

anchored at the origin. Here the condition that the intervals do not include the
right hand endpoints is unimportant but a very convenient technical device. On
the other hand, the assumption that all such boxes are anchored at the origin is
purely historical, but is necessary if one wants to have a deeper understanding of the
problem. We then consider the collection

A D fB.x/ W x 2 Œ0; 1�kg

of all such aligned rectangular boxes in U , where the integral geometric measure is
given by the natural Lebesgue measure of x. More precisely, for any set P of N
points in Œ0; 1�k , we have the L2-norm

kDŒP�k2 D
�Z

Œ0;1�k
jDŒPIB.x/�j2 dx

�1=2
: (1.29)
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We also have the simpler L1-norm

kDŒP�k1 D sup
x2Œ0;1�k

jDŒPIB.x/�j: (1.30)

The following result is due to Roth [29].

Theorem 8. For every set P of N points in Œ0; 1�k , we have

kDŒP�k2 �k .logN/.k�1/=2: (1.31)

This leads immediately to the corresponding statement for the l1-norm.

Theorem 9. For every set P of N points in Œ0; 1�k , we have

kDŒP�k1 �k .logN/.k�1/=2: (1.32)

It is well known that Theorem 9 is not sharp. In dimension k D 2, Schmidt [32]
has shown that for every set P of N points in Œ0; 1�2, we have

kDŒP�k1 � logN: (1.33)

An alternative proof of this can be found in Halász [18]. On the other hand, the
recent work of Bilyk and Lacey [6] and of Bilyk, Lacey and Vagharshakyan [7] has
shown that for every dimension k � 3, there exists a positive constant ı.k/ such
that for every set P of N points in Œ0; 1�k , we have

kDŒP�k1 � .logN/.k�1/=2Cı.k/: (1.34)

See Chap. 2 in this volume for a detailed discussion of this question.
The lower bound (1.31) is essentially best possible, in view of the following

result of Roth [31].

Theorem 10. For every natural number N � 2, there exists a set P of N points
in Œ0; 1�k such that

kDŒP�k2 �k .logN/.k�1/=2: (1.35)

The special cases k D 2 and k D 3 have been established earlier by
Davenport [15] and Roth [30] respectively.

The first proof of Theorem 10 is based on a probabilistic variant of the idea first
used to establish the following result of Halton [19].

Theorem 11. For every natural number N � 2, there exists a set P of N points
in Œ0; 1�k such that

kDŒP�k1 �k .logN/k�1: (1.36)
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The special case k D 2 has been known for over 100 years through the work of
Lerch [24].

Note that in dimension k D 2, Theorem 11 shows that Schmidt’s lower bound
(1.33) is best possible. In dimensions k � 3, there remains a significant gap between
the lower bound (1.34) and the upper bound (1.36). This is sometimes referred to as
the Great Open Problem.

1.8 Diophantine Approximation and Davenport Reflection

We begin by making a fatally flawed attempt to establish1 the special case k D 2 of
Theorem 11.

Again, for simplicity, let us assume that the number of points is a perfect square,
so that N D M2 for some natural number M . We may then choose to split the
unit square Œ0; 1�2 in the natural way into a union of N D M2 little squares of
sidelengthM�1, and then place a point in the centre of each little square. Let P be
the collection of these N D M2 points.

Let � be the second coordinate of one of the points of P . Clearly, there are
preciselyM points in P sharing this second coordinate. Consider the discrepancy

DŒPIB.1; x2/� (1.37)

of the rectangle B.1; x2/ D Œ0; 1/ 
 Œ0; x2/. As x2 increases from just less than � to
just more than �, the value of (1.37) increases by M . It follows immediately that

kDŒP�k1 � 1

2
M � N1=2:

Let us make a digression to the work of Hardy and Littlewood [21, 22] on the
distribution of lattice points in a right angled triangle. Consider a large right angled
triangle T with two sides parallel to the coordinate axes. We are interested in the
number of points of the lattice Z2 that lie in T . For simplicity, the triangle T is
placed so that the horizontal side is precisely halfway between two neighbouring
rows of Z2 and the vertical side is precisely halfway between two neighbouring
columns of Z2, as shown in Fig. 1.2.

Note that the lattice Z2 has precisely one point per unit area, so we can think of
the area of T as the expected number of lattice points in T . We therefore wish to
understand the difference between the number of lattice points in T and the area of
T , and this is the discrepancy of Z2 in T . The careful placement of the horizontal and

1It was put to the first author by a rather preposterous engineering colleague many years ago that
this could be achieved easily by a square lattice in the obvious way. Not quite the case, as an
obvious way would be far from so to this colleague.
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Fig. 1.2 Lattice points in a
right angled triangle

vertical sides of T means that the discrepancy comes solely from the third side of
T . In the work of Hardy and Littlewood, it is shown that the size of the discrepancy
when T is large is intimately related to the arithmetic properties of the slope of this
third side of T . In particular, the discrepancy is essentially smallest when this slope
is a badly approximable number.2

Returning to our attempt to establish the special case k D 2 of Theorem 11,
perhaps our approach is not quite fatally flawed as we have thought earlier, in view
of our knowledge of the work of Hardy and Littlewood. Suppose that a positive
integer N � 2 is given. The lattice

.N�1=2Z/2 (1.38)

contains preciselyN points per unit area. Inspired by Hardy and Littlewood, we now
rotate (1.38) by an angle � , chosen so that tan � is a badly approximable number.
Let us denote the resulting lattice by �. Then � \ Œ0; 1�2 has roughly N points.
Deleting or adding a few points, we end up with a set P of precisely N points in
Œ0; 1�2. It can then be shown that kDŒP�k1 � logN , establishing Theorem 11 for
k D 2. For the details, see the paper of Chen and Travaglini [12].

Indeed, this approach has been known for some time, as Beck and Chen [2] have
already used this idea earlier in an alternative proof of Theorem 10 for k D 2. In fact,
the first proof of this result by Davenport [15] makes essential use of diophantine
approximation and badly approximable numbers, but in a slightly different and less
obvious way. We now proceed to describe this.

Recall that U D Œ0; 1�2 in this case. For the sake of convenience, we shall assume
that the intervals are closed on the left and open on the right. We are also going to
rescaleU . Suppose first of all thatN is a given even positive integer, withN D 2M .
We now rescale U in the vertical direction by a factor M to obtain

V D Œ0; 1/ 
 Œ0;M/:

Consider now the infinite lattice �1 on R2 generated by the two vectors

.1; 0/ and .�; 1/;

2For those readers not familiar with the theory of diophantine approximation, just take any
quadratic irrational like

p
2 or
p
3.
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where the arithmetic properties of the non-zero number � will be described later.
It is not difficult to see that the set

Q1 D �1 \ V D f.f�ng; n/ W n D 0; 1; 2; : : : ;M � 1g

contains precisely M points. We now wish to study the discrepancy properties of
the set Q1 in V . For every aligned rectangle

B.x1; y/ D Œ0; x1/ 
 Œ0; y/ � V;

we consider the discrepancy

EŒQ1IB.x1; y/� D #.Q1 \ B.x1; y// � x1y; (1.39)

noting that the area of B.x1; y/ is equal to x1y, and that there is an average of one
point of Q1 per unit area in V . Suppose first of all that y is an integer satisfying
0 < y � M . Then we can write

EŒQ1IB.x1; y/� D
X
0�n<y

. .�n � x1/ �  .�n//;

for all but finitely many x1 satisfying 0 < x1 � 1, where .z/ D z�Œz�� 1
2

for every
z 2 R. If we relax the condition that y is an integer, then for every real number y
satisfying 0 < y � M , we have the approximation

EŒQ1IB.x1; y/� D
X
0�n<y

. .�n � x1/�  .�n//CO.1/

for all but finitely many x1 satisfying 0 < x1 � 1. For simplicity, let us write

EŒQ1IB.x1; y/� �
X
0�n<y

. .�n � x1/�  .�n//:

The sawtooth function  .z/ is periodic, so it is natural to use its Fourier series, and
we obtain the estimate

EŒQ1IB.x1; y/� �
X

0¤m2Z

�
1 � e.�mx1/

2�im

�0@ X
0�n<y

e.�nm/

1
A : (1.40)

Ideally we would like to square the expression (1.40) and integrate with respect to
the variable x1 over Œ0; 1�. Unfortunately, the term 1 in the numerator on the right
hand side, arising from the assumption that the rectangles we consider are anchored
at the origin, proves to be more than a nuisance.
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To overcome this problem, Davenport’s brilliant idea is to introduce a second
lattice �2 on R2 generated by the two vectors

.1; 0/ and .��; 1/:

It is not difficult to see that the set

Q2 D �2 \ V D f.f��ng; n/ W n D 0; 1; 2; : : : ;M � 1g

again contains precisely M points. Then the set

Q D Q1 [ Q2 D f.f˙�ng; n/ W n D 0; 1; 2; : : : ;M � 1g;

where the points are counted with multiplicity, contains precisely 2M points.
Thus analogous to the discrepancy (1.39), we now consider the discrepancy

F ŒQIB.x1; y/� D #.Q \ B.x1; y// � 2x1y;

noting that there is now an average of two points of Q per unit area in V . The
analogue of the estimate (1.40) is now

F ŒQIB.x1; y/� �
X

0¤m2Z

�
e.mx1/ � e.�mx1/

2�im

�0@ X
0�n<y

e.�nm/

1
A :

Squaring this and integrating with respect to the variable x1 over Œ0; 1�, we have

Z 1

0

jF ŒQIB.x1; y/�j2 dx1 �
1X
mD1

1

m2

ˇ̌
ˇ̌̌
ˇ
X
0�n<y

e.�nm/

ˇ̌
ˇ̌̌
ˇ
2

: (1.41)

To estimate the sum on the right hand side of (1.41), we need to make some
assumptions on the arithmetic properties of the number � . We shall assume that � is
a badly approximable number, so that there is a constant c D c.�/, depending only
on � , such that the inequality

mkm�k > c > 0 (1.42)

holds for every natural number m 2 N, where kzk denotes the distance of z to the
nearest integer.

Lemma 12. Suppose that the real number � is badly approximable. Then

1X
mD1

1

m2

ˇ̌̌
ˇ̌
ˇ
X
0�n<y

e.�nm/

ˇ̌̌
ˇ̌
ˇ
2

�� log.2y/: (1.43)
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Proof. It is well known that

ˇ̌
ˇ̌̌
ˇ
X
0�n<y

e.�nm/

ˇ̌
ˇ̌̌
ˇ � minfy; km�k�1g;

so that

S D
1X
mD1

1

m2

ˇ̌
ˇ̌
ˇ̌
X
0�n<y

e.�nm/

ˇ̌
ˇ̌
ˇ̌
2

�
1X
hD1

2�2h
X

2h�1�m<2h
minfy2; km�k�2g:

The condition (1.42) implies that if 2h�1 � m < 2h, then the inequality

km�k > c2�h

holds. On the other hand, for any pair h; p 2 N, there are at most two values of m
satisfying 2h�1 � m < 2h and

pc2�h � km�k < .p C 1/c2�h;

for otherwise the difference .m1 � m2/ of two of them would contradict (1.42). It
follows that

S ��

1X
hD1

1X
pD1

minf2�2hy2; p�2g

D
X
2h�y

1X
pD1

minf2�2hy2; p�2g C
X
2h>y

1X
pD1

minf2�2hy2; p�2g

�
X
2h�y

1X
pD1

p�2 C
X
2h>y

0
@2�2hy22hy�1 C

X
p>2hy�1

p�2
1
A

�
X
2h�y

1C
X
2h>y

2�hy � log.2y/:

This completes the proof. ut
Combining (1.41) and (1.43) and then integrating with respect to the variable y

over Œ0;M �, we have

Z M

0

Z 1

0

jF ŒQIB.x1; y/�j2 dx1 dy �� M log.2M/:
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Rescaling in the vertical direction by a factorM�1, we see that the set

P D f.f˙�ng; nM�1/ W n D 0; 1; 2; : : : ;M � 1g

of N D 2M points in Œ0; 1/2 satisfies the conclusion of Theorem 10 for k D 2.
Finally, if N is a given odd number, then we can repeat the argument above with

2M D N C 1 points. Removing one of the points causes an error of at most 1.

1.9 Roth’s Probabilistic Technique: A Preview

In this section, we describe an ingenious variation of Davenport’s argument by
Roth [30]. This is a nice preview of his powerful probabilistic technique, which
we shall describe in Sect. 1.11, and which has been generalized in many different
ways and applied in many different situations by many other colleagues.

Let us return to the lattice �1 on R2 generated by the two vectors .1; 0/ and
.�; 1/. For any real number t 2 R, we consider the translated lattice

t.1; 0/C�1 D ft.1; 0/C v W v 2 �1g:

In particular, we are interested in the set

Q1.t/ D .t.1; 0/C�1/\ V D f.ft C �ng; n/ W n D 0; 1; 2; : : : ;M � 1g

which clearly contains precisely M points. Thus analogous to the discrepancy
(1.39), we now consider the discrepancy

EŒQ1.t/IB.x1; y/� D #.Q1.t/ \ B.x1; y//� x1y;

noting that there is now an average of one point of Q1.t/ per unit area in V . The
analogue of the estimate (1.40) is now

EŒQ1.t/IB.x1; y/� �
X

0¤m2Z

�
1 � e.�mx1/

2�im

�0@ X
0�n<y

e.�nm/

1
A e.tm/:

Squaring this and integrating with respect to the new variable t over Œ0; 1�, we have

Z 1

0

jEŒQ1.t/IB.x1; y/�j2 dt �
1X
mD1

1

m2

ˇ̌̌
ˇ̌
ˇ
X
0�n<y

e.�nm/

ˇ̌̌
ˇ̌
ˇ
2

: (1.44)
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Furthermore, if � is a badly approximable number as in the last section, then
integrating (1.44) trivially with respect to the variable x1 over Œ0; 1� and with respect
to the variable y over Œ0;M �, we have

Z 1

0

Z M

0

Z 1

0

jEŒQ1.t/IB.x1; y/�j2 dx1 dy dt �� M log.2M/:

It follows that there exists t� 2 Œ0; 1� such that the set Q1.t
�/ satisfies

Z M

0

Z 1

0

jEŒQ1.t
�/IB.x1; y/�j2 dx1 dy �� M log.2M/:

Rescaling in the vertical direction by a factorM�1, we see that the set

P.t�/ D f.ft� C �ng; nM�1/ W n D 0; 1; 2; : : : ;M � 1g

of N D M points in Œ0; 1/2 satisfies the requirements of Theorem 10 for k D 2.

1.10 Van der Corput Point Sets

In this section, we begin our discussion of those point sets which have been explored
in great depth through our study of Theorems 10 and 11.

Our first step is to construct the simplest point sets which will allow us to
establish Theorem 11 in the case k D 2.

The construction is based on the famous van der Corput sequence c0; c1; c2; : : :
defined as follows. For every non-negative integer n 2 N0, we write

n D
1X
jD1

aj 2
j�1 (1.45)

as a dyadic expansion. Then we write

cn D
1X
jD1

aj 2
�j : (1.46)

Note that cn 2 Œ0; 1/. Note also that only finitely many digits a1; a2; a3; : : : are non-
zero, so that the sums in (1.45) and (1.46) have only finitely many non-zero terms.
For simplicity, we sometimes write

n D : : : a3a2a1 and cn D 0:a1a2a3 : : :
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in terms of the digits a1; a2; a3; : : : of n. The infinite set

Q D f.cn; n/ W n D 0; 1; 2; : : :g (1.47)

in Œ0; 1/ 
 Œ0;1/ is known as the van der Corput point set.
The following is the most crucial property of the van der Corput point set.

Lemma 13. For all non-negative integers s and ` such that ` < 2s holds, the set

fn 2 N0 W cn 2 Œ` 2�s; .`C 1/2�s/g

contains precisely all the elements of a residue class modulo 2s in N0.

Proof. There exist unique integers b1; b2; b3; : : : such that ` 2�s D 0:b1b2b3 : : : bs .
Clearly cn D 0:a1a2a3 : : : 2 Œ` 2�s; .` C 1/2�s/ precisely when 0:a1a2a3 : : : as D
` 2�s; in other words, precisely when aj D bj for every j D 1; : : : ; s. The value of
aj for any j > s is irrelevant. ut

We say that an interval of the form Œ` 2�s ; .`C 1/2�s/ � Œ0; 1/ for some integer
` is an elementary dyadic interval of length 2�s . Hence Lemma 13 says that the
van der Corput sequence has very good distribution among such elementary dyadic
intervals for all non-negative integer values of s.

Lemma 14. For all non-negative integers s, ` and m such that ` < 2s holds, the
rectangle

Œ` 2�s ; .`C 1/2�s/ 
 Œm2s; .mC 1/2s/

contains precisely one point of the van der Corput point set Q.

It is clear that there is an average of one point of the van der Corput point set Q
per unit area in Œ0; 1/ 
 Œ0;1/. For any measurable set A in Œ0; 1/ 
 Œ0;1/, let

EŒQIA� D #.Q \A/ � �.A/

denote the discrepancy of Q in A.
Let  .z/ D z � Œz� � 1

2
for every z 2 R.

Lemma 15. For all non-negative integers s and ` such that ` < 2s holds, there
exist real numbers ˛0; ˇ0, depending at most on s and `, such that j˛0j � 1

2
and

EŒQI Œ` 2�s; .`C 1/2�s/ 
 Œ0; y/� D ˛0 �  .2�s.y � ˇ0// (1.48)

at all points of continuity of the right hand side.

Proof. In view of Lemma 13, the second coordinates of the points of Q in the region
Œ` 2�s; .`C 1/2�s/ 
 Œ0;1/ fall precisely into a residue class modulo 2s . Let n0 be
the smallest of these second coordinates. Then 0 � n0 < 2

s. We now study
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Fig. 1.3 The sawtooth function EŒQI Œ` 2�s; .`C 1/2�s /� Œ0; y/�

EŒQI Œ` 2�s ; .`C 1/2�s/ 
 Œ0; y/�

as a function of y. For simplicity, denote it by f .y/, say. Clearly f .0/DEŒQI ;� D
0. On the other hand, note that

�.Œ` 2�s; .`C 1/2�s/ 
 Œ0; y// D 2�sy

increases with y at the rate 2�s , so that f .y/ decreases with y at the rate 2�s , except
when y coincides with the second coordinate of one of the points of the set Q in
the region Œ` 2�s; .`C 1/2�s/
 Œ0;1/, in which case f .y/ jumps up by 1. The first
instance of this jump occurs when y D n0. See Fig. 1.3.

With suitable ˛0 and ˇ0, the right hand side of (1.48) fits all the requirements.
ut

We can now prove Theorem 11 for k D 2. Let N � 2 be a given integer. It
follows immediately from the definition of Q that the set

Q0 D Q \ .Œ0; 1/ 
 Œ0; N //

contains precisely N points. Let the integer h be determined uniquely by

2h�1 < N � 2h: (1.49)

Consider a rectangle of the form

B.x1; y/ D Œ0; x1/ 
 Œ0; y/ � Œ0; 1/ 
 Œ0; N /:

Let x.0/1 D 0. For every s D 1; : : : ; h, let x.s/1 D 2�sŒ2sx1� denote the greatest
integer multiple of 2�s not exceeding x1. Then we can write Œ0; x1/ as a union of
disjoint intervals in the form

Œ0; x1/ D Œx
.h/
1 ; x1/[

h[
sD1
Œx
.s�1/
1 ; x

.s/
1 /:
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It follows that

EŒQ0I Œ0; x1/ 
 Œ0; y/� D EŒQI Œ0; x1/ 
 Œ0; y/�

D EŒQI Œx.h/1 ; x1/ 
 Œ0; y/�C
hX
sD1

EŒQI Œx.s�1/1 ; x
.s/
1 / 
 Œ0; y/�:

(1.50)

Clearly Œx.h/1 ; x1/ 
 Œ0; y/ � Œx
.h/
1 ; x

.h/
1 C 2�h/ 
 Œ0; 2h/, and the latter rectangle has

area 1 and is of the type under discussion in Lemma 14, hence contains precisely
one point of Q. It follows that

#.Q \ .Œx
.h/
1 ; x1/ 
 Œ0; y// � 1 and �.Œx

.h/
1 ; x1/ 
 Œ0; y// � 1;

and we have the bound

jEŒQI Œx.h/1 ; x1/ 
 Œ0; y/�j � 1: (1.51)

On the other hand, for every s D 1; : : : ; k, the rectangle

Œx
.s�1/
1 ; x

.s/
1 / 
 Œ0; y/

either is empty, in which case we have EŒQI Œx.s�1/1 ; x
.s/
1 / 
 Œ0; y/� D 0 trivially, or

is of the type under discussion in Lemma 15, and we have the bound

jEŒQI Œx.s�1/1 ; x
.s/
1 / 
 Œ0; y/�j � 1: (1.52)

Note that (1.52) still holds in the empty case. Combining (1.49)–(1.52), we arrive at
an upper bound

jEŒQ0I Œ0; x1/ 
 Œ0; y/�j � 1C h � logN: (1.53)

For comparison later in Sect. 1.14, let us summarize what we have done. We
are approximating the interval Œ0; x1/ by a subinterval Œ0; x.h/1 /, and consequently

approximating the rectangle B.x1; y/ by a smaller rectangle B.x.h/1 ; y/. Then we

show that the difference B.x1; y/ n B.x.h/1 ; y/ is contained in one of the rectangles
under discussion in Lemma 14, and inequality (1.51) is the observation that

jEŒQIB.x1; y/� � EŒQIB.x.h/1 ; y�j � 1:

To estimateEŒQIB.x.h/1 ; y/�, we note that the interval Œ0; x.h/1 / is a union of at most
h disjoint elementary dyadic intervals. More precisely, if we write
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x
.h/
1 D

hX
sD1

bs2
�s

as a dyadic expansion, then Œ0; x.h/i / can be written as a union of

hX
sD1

bs � h

elementary dyadic intervals, namely b1 elementary dyadic intervals of length 2�1,
together with b2 elementary dyadic intervals of length 2�2, and so on. It follows that
B.x

.h/
1 ; y/ is a disjoint union of at most h rectangles discussed in Lemma 15, each

of which satisfies inequality (1.52).
Finally, rescaling the second coordinate of the points of Q0 by a factor N�1, we

obtain a set

P D f.cn;N�1n/ W n D 0; 1; 2; : : : ; N � 1g (1.54)

of precisely N points in Œ0; 1/2. For every x D .x1; x2/ 2 Œ0; 1�2, we have

DŒPIB.x/� D EŒQ0I Œ0; x1/ 
 Œ0; Nx2/� � logN;

in view of (1.53) and noting that 0 � Nx2 � N . This now completes the proof of
Theorem 11 for k D 2.

1.11 Roth’s Probabilistic Technique

We now attempt to extend the ideas in the last section to obtain a proof of
Theorem 10 for k D 2.

Let us first of all consider the special case when N D 2h. Then the set (1.54)
used to establish Theorem 11 for k D 2 becomes

P.2h/ D f.cn; 2�hn/ W n D 0; 1; 2; : : : ; 2h � 1g
D f.0:a1a2a3 : : : ah; 0:ah : : : a3a2a1/ W a1; : : : ; ah 2 f0; 1gg;

(1.55)

in terms of binary digits. We have the following unhelpful result3 of Halton and
Zaremba [20].

3In their paper, Halton and Zaremba have an exact expression for the integral under study.
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Proposition 16. For every positive integer h, we have

Z
Œ0;1�2

jDŒP.2h/IB.x/�j2 dx D 2�6h2 CO.h/: (1.56)

Clearly the order of magnitude is .logN/2, and not logN as we would have
liked. Hence any unmodified van der Corput point set is not sufficient to establish
our desired result. To understand the problem, we return to our discussion in the last
section. Assume that N D 2h. Consider a rectangle of the form

B.x1; y/ D Œ0; x1/ 
 Œ0; y/ � Œ0; 1/ 
 Œ0; 2h/:

For simplicity, let us assume that x1 is an integer multiple of 2�h, so that x1 D x
.h/
1

and (1.50) simplifies to

DŒPIB.x1; 2�hy/� D EŒQ0I Œ0; x1/
Œ0; y/� D
hX�

sD1
EŒQI Œx.s�1/1 ; x

.s/
1 /
Œ0; y/�;

where the � in the summation sign denotes that the sum includes only those terms
where x.s�1/1 ¤ x

.s/
1 . Note that when x.s�1/1 ¤ x

.s/
1 , we have

Œx
.s�1/
1 ; x

.s/
1 / D Œ` 2�s; .`C 1/2�s/

for some integer `, so it follows from Lemma 15 that

DŒPIB.x1; 2�hy/� D
hX�

sD1
.˛s �  .2�s.y � ˇs///; (1.57)

where, for each s D 1; : : : ; h, the real numbers ˛s and ˇs satisfy j˛s j � 1
2
. If we

square the expression (1.57), then the right hand side becomes

hX�

s0D1

hX�

s00D1
.˛s0 �  .2�s0.y � ˇs0///.˛s00 �  .2�s00.y � ˇs00///:

Expanding the summand, this gives rise eventually to a constant term

hX�

s0D1

hX�

s00D1
˛s0˛s00

which ultimately leads to the term 2�6h2 in (1.56).
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Note that this constant term arises from our assumption that all the aligned
rectangles under consideration are anchored at the origin, and recall that Roth’s
attempt to overcome this handicap, discussed in Sect. 1.9, involves the introduction
of a translation variable t . So let us attempt to describe Roth’s incorporation of this
idea of a translation variable into the argument here.

To pave the way for a smooth introduction of a probabilistic variable, we shall
modify the van der Corput point set somewhat. Let N � 2 be a given integer, and
let the integer h be determined uniquely by

2h�1 < N � 2h: (1.58)

For every n D 0; 1; 2; : : : ; 2h � 1, we define cn as before by (1.45) and (1.46). We
then extend the definition of cn to all other integers using periodicity by writing

cnC2h D cn for every n 2 Z;

and consider the extended van der Corput point set

Qh D f.cn; n/ W n 2 Zg:

Furthermore, for every real number t 2 R, we consider the translated van der Corput
point set

Qh.t/ D f.cn; nC t/ W n 2 Zg:

It is clear that there is an average of one point of the translated van der Corput
point set Qh.t/ per unit area in Œ0; 1/ 
 .�1;1/. For any measurable set A in
Œ0; 1/ 
 .�1;1/, we now let

EŒQh.t/IA� D #.Qh.t/ \A/ � �.A/

denote the discrepancy of Qh.t/ in A.
Consider a rectangle of the form

B.x1; y/ D Œ0; x1/ 
 Œ0; y/ � Œ0; 1/ 
 Œ0; N /:

As before, let x.0/1 D 0. For every s D 1; : : : ; h, let x.s/1 D 2�sŒ2sx1� denote the
greatest integer multiple of 2�s not exceeding x1. Then, analogous to (1.51), we
have the trivial bound

jEŒQh.t/I Œx.h/1 ; x1/ 
 Œ0; y/�j � 1; (1.59)

so we shall henceforth assume that x1 D x
.h/
1 , so that

EŒQh.t/IB.x1; y/� D
hX�

sD1
EŒQh.t/I Œx.s�1/1 ; x

.s/
1 / 
 Œ0; y/�: (1.60)
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Corresponding to Lemma 15, we can establish the following result without too
much difficulty.

Lemma 17. For all positive real numbers y and all non-negative integers s and `
such that s � h and ` < 2s hold, there exist real numbers ˇ0 and 
0, depending at
most on s, ` and y, such that

EŒQh.t/I Œ` 2�s ; .`C 1/2�s/ 
 Œ0; y/� D  .2�s.t � ˇ0//�  .2�s.t � 
0//

at all points of continuity of the right hand side.

Combining (1.60) and Lemma 17, we have

EŒQh.t/IB.x1; y/� D
hX�

sD1
. .2�s.t � ˇs// �  .2�s.t � 
s/// (1.61)

for some real numbersˇs and 
s depending at most on x1 and y. We shall square this
expression and integrate with respect to the translation variable t over the interval
Œ0; 2h/, an interval of length equal to the period of the set Qh.t/. We therefore need
to study integrals of the form

Z 2h

0

 .2�s0.t � ˇs0// .2�s00.t � ˇs00// dt;

or when either or both of ˇs0 and ˇs00 are replaced by 
s0 and 
s00 respectively.

Lemma 18. Suppose that the integers s0 and s00 satisfy 0 � s0; s00 � h, and that the
real numbers ˇs0 and ˇs00 are fixed. Then

Z 2h

0

 .2�s0.t � ˇs0// .2
�s00.t � ˇs00// dt D O.2h�js0�s00j/:

Proof. The result is obvious if s0 D s00. Without loss of generality, let us assume
that s0 > s00. For every a D 0; 1; 2; : : : ; 2s

0�s00 � 1, in view of periodicity, we have

Z 2h

0

 .2�s0.t � ˇs0// .2�s00.t � ˇs00// dt

D
Z 2h

0

 .2�s0.t C a2s
00 � ˇs0// .2�s00.t C a2s

00 � ˇs00// dt

D
Z 2h

0

 .2�s0.t C a2s
00 � ˇs0// .2�s00.t � ˇs00// dt;
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Fig. 1.4 An illustration of the summation (1.62)

with the last equality arising from the observation that

 .2�s00.t C a2s
00 � ˇs00// D  .a C 2�s00.t � ˇs00// D  .2�s00.t � ˇs00//:

It follows that

2s
0�s00

Z 2h

0

 .2�s0.t � ˇs0// .2
�s00.t � ˇs00// dt

D
2s

0

�s00�1X
aD0

Z 2h

0

 .2�s0.t C a2s
00 � ˇs0// .2�s00.t � ˇs00// dt

D
Z 2h

0

0
@2

s0�s00�1X
aD0

 .2�s0.t C a2s
00 � ˇs0//

1
A .2�s00.t � ˇs00// dt:

It is not difficult to see that

2s
0

�s00�1X
aD0

 .2�s0.t C a2s
00 � ˇs0// D  .2�s00.t � ˇs0// (1.62)

at all points of continuity, as shown in Fig. 1.4.
We therefore conclude that

2s
0�s00

Z 2h

0

 .2�s0.t � ˇs0// .2
�s00.t � ˇs00// dt

D
Z 2h

0

 .2�s00.t � ˇs0// .2
�s00.t � ˇs00// dt D O.2h/;

and the desired result follows immediately. ut
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It now follows from (1.61) and Lemma 18 that

Z 2h

0

jEŒQh.t/IB.x1; y/�j2 dt �
hX�

s0D1

hX�

s00D1
2h�js0�s00j � 2hh; (1.63)

noting that the diagonal terms contributeO.2hh/, and the contribution from the off-
diagonal terms decays geometrically.

Note that the estimate (1.63) is independent of the choice of x1 and y. We also
recall the trivial estimate (1.59). It follows that integrating (1.63) trivially with
respect to x1 over the interval Œ0; 1/ and with respect to y over the interval Œ0; N /,
we conclude that

Z N

0

Z 1

0

Z 2h

0

jEŒQh.t/IB.x1; y/�j2 dt dx1 dy

D
Z 2h

0

�Z N

0

Z 1

0

jEŒQh.t/IB.x1; y/�j2 dx1 dy

�
dt � 2hhN:

Hence there exists t� 2 Œ0; 2h/ such that

Z N

0

Z 1

0

jEŒQh.t
�/IB.x1; y/�j2 dx1 dy � hN: (1.64)

Finally, we note that the set Qh.t
�/\.Œ0; 1/
Œ0; N // contains preciselyN points.

Rescaling in the vertical direction by a factor N�1, we observe that the set

P� D f.z1; N�1z2/ W .z1; z2/ 2 Qh.t
�/g

contains precisely N points in Œ0; 1/2, and the estimate (1.64) now translates to

Z
Œ0;1�2

jDŒP�IB.x/�j2 dx � h � logN;

in view of (1.58). This completes the proof of Theorem 10 for k D 2.
We conclude this section by trying to obtain a different interpretation of the effect

of the translation variable t . Consider a typical term

EŒQh.t/I Œx.s�1/1 ; x
.s/
1 / 
 Œ0; y/�

in the sum (1.60). If x.s�1/1 ¤ x
.s/
1 , then x.s/1 cannot be an integer multiple of 2�.s�1/

and therefore must be an odd integer multiple of 2�s , and so

Œx
.s�1/
1 ; x

.s/
1 / D Œ` 2�s; .`C 1/2�s/ 

�
`

2
2�.s�1/; .

`

2
C 1/2�.s�1/

�
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for some even integer `. One can then show that

EŒQh.2
s�1/I Œ` 2�s; .`C1/2�s/
Œ0; y/� D EŒQhI Œ.`C1/2�s; .`C2/2�s/
Œ0; y/�:

This means that instead of translating vertically, as on the left hand side above, one
may shift horizontally, as on the right hand side above. Another way to see this is
to note from Lemma 13 that the interval Œ` 2�s; .` C 1/2�s/ is associated with a
residue class Rs modulo 2s , whereas the interval Œ` 2�s; .` C 2/2�s/ is associated
with a residue classRs�1 modulo 2s�1, so the interval Œ.`C1/2�s; .`C2/2�s/must
be associated with the residue class Rs�1 n Rs modulo 2s . But then Rs�1 n Rs is
clearly Rs translated by 2s�1.

1.12 Digit Shifts

In this section, we shall attempt to replace the vertical translation studied in the last
section by horizontal shifts, as pioneered by Chen [9].

Let N � 2 be a given integer, and let the integer h be determined uniquely by

2h�1 < N � 2h: (1.65)

For every n D 0; 1; 2; : : : ; 2h � 1, we define cn as before by (1.45) and (1.46). As
we are not translating vertically, there is no need4 to extend the definition of cn to
other integers as in the last section, and we consider the set5

Qh D f.cn; n/ W n D 0; 1; 2; : : : ; 2h � 1g
D f.0:a1a2a3 : : : ah; ah : : : a3a2a1/ W a1; : : : ; ah 2 f0; 1gg;

in terms of binary digits. Furthermore, for every t D .t1; : : : ; th/ 2 Zh2 , where Z2 D
f0; 1g, write

c.t/n D 0:.a1 ˚ t1/.a2 ˚ t2/.a3 ˚ t3/ : : : .ah ˚ th/ if cn D 0:a1a2a3 : : : ah

in binary notation, where ˚ denotes addition modulo 2, and consider the shifted van
der Corput point set

4This is not the case if we wish to study Theorem 10 for k > 2.
5Note that the set Qh here is different from that in the last section. However, since we are working
with rectangles inside Œ0; 1/ � Œ0; 2h/, our statements here concerning Qh remain valid for the set
Qh defined in the last section.
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Q.t/
h D f.c.t/n ; n/ W n D 0; 1; 2; : : : ; 2h � 1g;

obtained from Qh by a digit shift t.
It is clear that there is an average of one point of the shifted van der Corput point

set Q.t/
h per unit area in Œ0; 1/
 Œ0; 2h/. For any measurable set A in Œ0; 1/
 Œ0; 2h/,

we study the discrepancy function

EŒQ
.t/
h IA� D #.Q.t/

h \ A/ � �.A/:

Consider a rectangle of the form

B.x1; y/ D Œ0; x1/ 
 Œ0; y/ � Œ0; 1/ 
 Œ0; N /:

Analogous to (1.59), we have the trivial bound

jEŒQ.t/
h I Œx.h/1 ; x1/ 
 Œ0; y/�j � 1; (1.66)

so we shall henceforth assume that x1 D x
.h/
1 , so that

EŒQ
.t/
h IB.x1; y/� D

hX�

sD1
EŒQ

.t/
h I Œx.s�1/1 ; x

.s/
1 / 
 Œ0; y/�: (1.67)

We now square this expression and sum it over all digit shifts t 2 Zh2 . For simplicity
and convenience, let us omit reference to Qh and y, and write

EŒQ.t/
h I Œx.s�1/1 ; x

.s/
1 / 
 Œ0; y/� D EsŒt1; : : : ; th�:

Then we need to study sums of the form

X
t2Zh2

Es0 Œt1; : : : ; th�Es00 Œt1; : : : ; th�:

Analogous to Lemma 18, we have the following estimate.

Lemma 19. Suppose that the real number y 2 Œ0; N / is fixed, and that the integers
s0 and s00 satisfy 0 � s0; s00 � h. Then

X
t2Zh2

Es0 Œt1; : : : ; th�Es00 Œt1; : : : ; th� D O.2h�js0�s00j/: (1.68)

Proof. First of all, for fixed t1; : : : ; ts , the value of EsŒt1; : : : ; th� remains the same
for every choice of tsC1; : : : ; th, as these latter variables only shift the digits of cn
after the s-th digit, and so
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c
.t1;:::;ts ;tsC1;:::;th/
n 2 Œx.s�1/1 ; x

.s/
1 / if and only if c.t1;:::;ts ;0;:::;0/n 2 Œx.s�1/1 ; x

.s/
1 /:

Next, the case when x.s
0�1/

1 D x
.s0/
1 or x.s

00�1/
1 D x

.s00/
1 is also trivial, as the summand

is clearly equal to zero, so we shall assume that x.s
0�1/

1 ¤ x
.s0/
1 and x.s

00�1/
1 ¤ x

.s00/
1 .

Now the case when s0 D s00 is easy, since we haveEŒt1; : : : ; thI x.s�1/1 ; x
.s/
1 � D O.1/

trivially. Without loss of generality, let us assume that s0 > s00. For fixed t1; : : : ; ts00 ,
in view of the comment at the beginning of the proof, we have

X
ts00C1;:::;th2Z2

Es0 Œt1; : : : ; th�Es00 Œt1; : : : ; th�

D 2h�s0
0
@ X
ts00C1;:::;ts02Z2

Es0 Œt1; : : : ; ts0 ; 0; : : : ; 0�

1
AEs00 Œt1; : : : ; ts00 ; 0; : : : ; 0�:

We shall show that

X
ts00C1;:::;ts02Z2

Es0 Œt1; : : : ; ts0 ; 0; : : : ; 0�

D
X

ts00C1;:::;ts02Z2

EŒQ
.t1;:::;ts00 ;ts00C1;:::;ts0 ;0;:::;0/

h I Œx.s0�1/1 ; x
.s0/
1 / 
 Œ0; y/�

D EŒQ
.t1;:::;ts00 ;0;:::;0/

h I Œ` 2�s00 ; .`C 1/2�s00/ 
 Œ0; y/�; (1.69)

where ` is an integer and Œx.s
0�1/

1 ; x
.s0/
1 /  Œ` 2�s00 ; .`C 1/2�s00/. Then

X
ts00C1;:::;th2Z2

Es0 Œt1; : : : ; th�Es00 Œt1; : : : ; th� D O.2h�s0/;

from which it follows that

X
t1;:::;th2Z2

Es0 Œt1; : : : ; th�Es00 Œt1; : : : ; th� D O.2h�s0Cs00/;

giving the desired result. To establish (1.69), simply note that for fixed t1; : : : ; ts00 , if
a point

c
.t1;:::;ts00 ;0;:::;0/
n 2 Œx.s0�1/1 ; x

.s0/
1 /;

then each distinct choice of ts00C1; : : : ; ts0 will shift this point into one of the 2s
0�s00

distinct intervals of length 2�s0 that make up the interval Œ` 2�s00 ; .`C 1/2�s00/. ut
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It now follows from (1.67) and Lemma 19 that

X
t2Zh2

jEŒQ.t/
h IB.x1; y/�j2 �

hX�

s0D1

hX�

s00D1
2h�js0�s00j � 2hh; (1.70)

noting that the diagonal terms contributeO.2hh/, and the contribution from the off-
diagonal terms decays geometrically.

Note that the estimate (1.70) is independent of the choice of x1 and y. We also
recall the trivial estimate (1.66). It follows that integrating (1.70) trivially with
respect to x1 over the interval Œ0; 1/ and with respect to y over the interval Œ0; N /,
we conclude that

Z N

0

Z 1

0

X
t2Zh2

jEŒQ.t/
h IB.x1; y/�j2 dx1 dy

D
X
t2Zh2

Z N

0

Z 1

0

jEŒQ.t/
h IB.x1; y/�j2 dx1 dy � 2hhN:

Hence there exists t� 2 Zh2 such that

Z N

0

Z 1

0

jEŒQ.t�/
h IB.x1; y/�j2 dx1 dy � hN: (1.71)

Finally, we note that the set Q.t�/
h \ .Œ0; 1/
 Œ0; N // contains preciselyN points.

Rescaling in the vertical direction by a factor N�1, we observe that the set

P� D f.z1; N�1z2/ W .z1; z2/ 2 Q
.t�/
h g

contains precisely N points in Œ0; 1/2, and the estimate (1.71) now translates to

Z
Œ0;1�2

jDŒP�IB.x/�j2 dx � h � logN;

in view of (1.65). This completes the proof of Theorem 10 for k D 2.

1.13 A Fourier–Walsh Approach to van der Corput Sets

In this section, we sketch yet another proof of Theorem 10 for k D 2 by highlighting
the interesting group structure of the van der Corput point set
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P.2h/ D f.0:a1a2a3 : : : ah; 0:ah : : : a3a2a1/ W a1; : : : ; ah 2 f0; 1gg:

This is a finite abelian group isomorphic to the group Zh2 . We shall make use of the
characters of these groups. These are the Walsh functions.

To define the Walsh functions, we first consider binary representation of any
integer ` 2 N0, written uniquely in the form

` D
1X
iD1

�i .`/2
i�1; (1.72)

where the coefficient �i .`/ 2 f0; 1g for every i 2 N. On the other hand, every real
number y 2 Œ0; 1/ can be represented in the form

y D
1X
iD1

�i .y/2
�i ; (1.73)

where the coefficient �i .y/ 2 f0; 1g for every i 2 N. This representation is unique
if we agree that the series in (1.73) is finite for every y D m2�s where s 2 N0 and
m 2 f0; 1; : : : ; 2s � 1g.

For every ` 2 N0 of the form (1.72), we define the Walsh function w` W Œ0; 1/ !
R by writing

w`.y/ D .�1/
1P
iD1

�i .`/�i .y/

: (1.74)

Since (1.72) is essentially a finite sum, the Walsh function is well defined, and takes
the values ˙1. It is easy to see that w0.y/ D 1 for every y 2 Œ0; 1/. It is well known
that under the inner product

hwk;w`i D
Z 1

0

wk.y/w`.y/ dy;

the collection of Walsh functions form an orthonormal basis of L2Œ0; 1�.
For every `; k 2 N0, we can define `˚ k by setting

�i .`˚ k/ D �i.`/C �i .k/ mod 2

for every i 2 N. Then it is easy to see that for every y 2 Œ0; 1/, we have

w`˚k.y/ D w`.y/wk.y/: (1.75)
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For every x; y 2 Œ0; 1/, we can define x ˚ y be setting

�i .x ˚ y/ D �i .x/C �i .y/ mod 2

for every i 2 N. Then it is easy to see that for every ` 2 N0, we have

w`.x ˚ y/ D w`.x/w`.y/: (1.76)

We shall be concerned with the characteristic function

B.x/.y/ D
�
1; if y 2 B.x/;
0; otherwise;

of the aligned rectangleB.x/ D Œ0; x1/
 Œ0; x2/, where x D .x1; x2/. Then we have
the discrepancy function

DŒP.2h/IB.x/� D
X

p2P.2h/

B.x/.p/ � 2hx1x2: (1.77)

Clearly the characteristic function in question can be written as a product of one-
dimensional characteristic functions in the form

B.x/.y/ D Œ0;x1/.y1/Œ0;x2/.y2/;

where y D .y1; y2/. Since the Walsh functions form an orthonormal basis for
the space L2Œ0; 1�, we shall use Fourier–Walsh analysis6 to study a characteristic
function of the form Œ0;x/.y/. We have the Fourier–Walsh series

Œ0;x/.y/ �
1X
`D0

e`.x/w`.y/;

where, for every ` 2 N0, the Fourier–Walsh coefficients are given by

e`.x/ D
Z x

0

w`.y/ dy:

In particular, we have e0.x/ D x for every x 2 Œ0; 1/.
Instead of using the full Fourier–Walsh series, we shall truncate it and use the

approximation

6Simply imagine that we use Fourier analysis but with the Walsh functions replacing the
exponential functions.
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.h/

Œ0;x/.y/ D
2h�1X
`D0

e`.x/w`.y/: (1.78)

Note that there exists a uniquem 2 N0 such that m2�h � x < .mC 1/2�h. Then


.h/

Œ0;x/.y/ D
8<
:
1; if 0 � y < m2�h;
2hx �m; if m2�h � y < .mC 1/2�h;
0; if .mC 1/2�h � y < 1;

where the quantity

2hx �m D 2h
Z .mC1/2�h

m2�h

Œ0;x/.y/ dy

represents the average value of Œ0;x/.y/ in the interval Œm2�h; .mC 1/2�h/.
The approximation (1.78) in turn leads to the approximation


.h/

B.x/.y/ D 
.h/

Œ0;x1/
.y1/

.h/

Œ0;x2/
.y2/ D

2h�1X
`1D0

2h�1X
`2D0

el.x/Wl.y/

of the characteristic function B.x/.y/. Here l D .`1; `2/,

el.x/ D f`1.x1/f`2.x2/ and Wl.y/ D w`1.y1/w`2.y2/: (1.79)

Corresponding to this, we approximate the discrepancy function (1.77) by

D.h/ŒP.2h/IB.x/� D
X

p2P.2h/


.h/

B.x/.p/� 2hx1x2

D
X

p2P.2h/

2h�1X
`1D0

2h�1X
`2D0

el.x/Wl.p/� 2he0.x/

D
2h�1X
`1D0

2h�1X
`2D0

.`1;`2/¤.0;0/

0
@ X

p2P.2h/

Wl.p/

1
Ael.x/;

noting that

X
p2P.2h/

W0.p/ D #P.2h/ D 2h: (1.80)
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It is well known in the theory of abelian groups that the sum

X
p2P.2h/

Wl.p/ 2 f0; 2hgI (1.81)

see, for instance, [25, Chapters 5 and 9] or [26, Chapter 5]. We therefore need to
have some understanding on the set

L.h/ D
8<
:l 2 Œ0; 2h/ 
 Œ0; 2h/ W l ¤ 0 and

X
p2P.2h/

Wl.p/ D 2h

9=
; :

Then

D.h/ŒP.2h/IB.x/� D 2h
X

l2L.h/
el.x/: (1.82)

Recall the discussion at the beginning of Sect. 1.11. The estimate (1.56) shows
that the set P.2h/ is insufficient for us to establish Theorem 10 in the case k D 2.
To overcome this problem, we use digit shifts in Sect. 1.12. Here, for every t 2 Z2h2 ,
we consider the set

P.2h/˚ t D fp ˚ t W p 2 P.2h/g

where, for every

p D .0:a1 : : : ah; 0:ah : : : a1/ 2 P.2h/ and t D .t 01; : : : ; t 0h; t 00h ; : : : ; t 001 / 2 Z2h2 ;

we have the shifted point7

p ˚ t D .0:b01 : : : b0h; 0:b00h : : : b001 /;

with the digits b01; : : : ; b0h; b001 ; : : : ; b00h 2 f0; 1g satisfying

b0s 	 as C t 0s mod 2 and b00s 	 as C t 00s mod 2

for every s D 1; : : : ; h. Then

7Here we somewhat abuse notation, as t clearly has more coordinates than p. In the sequel, Wl.t/
is really Wl.0˚ t/, notation abused again.
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D.h/ŒP.2h/˚ tIB.x/� D
X

p2P.2h/


.h/

B.x/.p ˚ t/� 2hx1x2

D
2h�1X
`1D0

2h�1X
`2D0

.`1;`2/¤.0;0/

0
@ X

p2P.2h/

Wl.p ˚ t/

1
Ael.x/

D
2h�1X
`1D0

2h�1X
`2D0

.`1;`2/¤.0;0/

Wl.t/

0
@ X

p2P.2h/

Wl.p/

1
A el.x/;

in view of (1.76) and the second identity in (1.79). It follows that

D.h/ŒP.2h/IB.x/� D 2h
X

l2L.h/
Wl.t/el.x/:

Squaring this expression and summing over all t 2 Z2h2 , we obtain

X
t2Z2h2

jD.h/ŒP.2h/˚ tIB.x/�j2 D 4h
X

t2Z2h2

0
@ X

l2L.h/
Wl.t/el.x/

1
A
2

D 4h
X

t2Z2h2

X
l0 ;l002L.h/

Wl0.t/Wl00.t/fl0.x/fl00.x/

D 4h
X

l0 ;l002L.h/

0
@X

t2Z2h2

Wl0.t/Wl00.t/

1
Afl0.x/fl00.x/: (1.83)

Lemma 20. For every l0; l00 2 N2
0, we have

X
t2Z2h2

Wl0.t/Wl00.t/ D
�
4h; if l0 D l00;
0; otherwise:

Proof. Note first of all that in view of (1.75) and the second identity in (1.79), with
l0˚ l00 D .`01; `02/˚.`001 ; `002/ D .`01˚`001 ; `02˚`002 /, we haveWl0.t/Wl00.t/ D Wl0˚l00.t/.
For simplicity, write

S D
X

t2Z2h2

Wl0.t/Wl00.t/ D
X

t2Z2h2

Wl0˚l00.t/:
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If l0 D l00, so that l0 ˚ l00 D 0, then Wl0˚l00.t/ D W0.t/ D 1 for every t 2 Z2h2 , and
so clearly S D #Z2h2 D 4h. If l0 ¤ l00, so that l0 ˚ l00 ¤ 0, then there exists t0 2 Z2h2
such that Wl0˚l00.t0/ ¤ 1. As t runs through the group Z2h2 , so does t ˚ t0, so that

S D
X

t2Z2h2

Wl0˚l00.t ˚ t0/ D
X

t2Z2h2

Wl0˚l00.t/Wl0˚l00.t0/ D SWl0˚l00.t0/;

in view of (1.76) and the second identity in (1.79). Clearly S D 0 in this case. ut
Combining (1.83) and Lemma 20, we deduce that

1

4h

X
t2Z2h2

jD.h/ŒP.2h/˚ tIB.x/�j2 D 4h
X

l2L.h/
jel.x/j2; (1.84)

so that on integrating trivially with respect to x 2 Œ0; 1�2, we have

1

4h

X
t2Z2h2

Z
Œ0;1�2

jD.h/ŒP.2h/˚ tIB.x/�j2 dx D 4h
X

l2L.h/

Z
Œ0;1�2

jel.x/j2 dx: (1.85)

To estimate the right hand side of (1.85), we need to use a formula of Fine [17]
on the Fourier–Walsh coefficients of the characteristic function Œ0;x/.y/.

Let �.0/ D 0. For any integer ` 2 N with representation (1.72), let

�.`/ D maxfi 2 N W �i .`/ ¤ 0g; so that 2�.`/�1 � ` < 2�.`/: (1.86)

Then the formula of Fine gives

Z 1

0

je`.x/j2 dx D 4��.`/

3
:

If we write �.l/ D �.`1/C �.`2/ for l D .`1; `2/, then in view of the first identity in
(1.79), we have

Z
Œ0;1�2

jel.x/j2 dx D 4��.l/

9
;

and the identity (1.85) becomes

1

4h

X
t2Z2h2

Z
Œ0;1�2

jD.h/ŒP.2h/˚ tIB.x/�j2 dx D 4h

9

X
l2L.h/

4��.l/: (1.87)

To estimate the sum on the right hand side of (1.87), we need some reasonably
precise information on the set L.h/. The following result is rather useful.
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Lemma 21. For every y 2 Œ0; 1/ and every s 2 N0, we have

2s�1X
`D0

w`.y/ D 2sŒ0;2�s /.y/:

Proof. If y 2 Œ0; 2�s/, then it follows from (1.73) that �i .y/ D 0 whenever 1 � i �
s. On the other hand, for every ` D 0; 1; 2; : : : ; 2s � 1, it follows from (1.72) that
�i .`/ D 0 for every i > s. It follows that for every ` D 0; 1; 2; : : : ; 2s � 1, we have

1X
iD1

�i .`/�i .y/ D 0;

and so w`.y/ D 1. On the other hand, if y 2 Œ2�s ; 1/, then it follows from (1.73)
that there exists some j 2 f1; : : : ; sg such that �j .y/ D 1. We now choose k 2
f1; 2; : : : ; 2s � 1g such that �j .k/ D 1 and �i .k/ D 0 for every i ¤ j . Then
wk.y/ ¤ 1. It is easy to see that as ` runs through the set 0; 1; 2; : : : ; 2s � 1, then so
does `˚ k, so that

2s�1X
`D0

w`.y/ D
2s�1X
`D0

w`˚k.y/ D wk.y/
2s�1X
`D0

w`.y/;

in view of (1.75). The result follows immediately. ut
Lemma 22. For every s1; s2 2 f0; 1; : : : ; hg, let

�.s1; s2/ D
2s1�1X
`1D0

2s2�1X
`2D0

X
p2P.2h/

Wl.p/:

Then

�.s1; s2/ D
�
2s1Cs2 ; if s1 C s2 � h;

2h; if s1 C s2 � h:

Proof. Writing p D .p1; p2/ and l D .`1; `2/ and noting the second identity in
(1.79) and Lemma 21, we have

2s1�1X
`1D0

2s2�1X
`2D0

X
p2P.2h/

Wl.p/ D
X

p2P.2h/

0
@2

s1�1X
`1D0

w`1 .p1/

1
A
0
@2

s2�1X
`2D0

w`2.p2/

1
A

D 2s1Cs2
X

p2P.2h/

Œ0;2�s1 /.p1/Œ0;2�s2 /.p2/

D 2s1Cs2
X

p2P.2h/

Œ0;2�s1 /�Œ0;2�s2 /.p/:
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It is not difficult to deduce from Lemma 14 that every rectangle of the form

Œm12
�s; .mC 1/2�s/ 
 Œm22

s�h; .m2 C 1/2s�h/ � Œ0; 1/2

where m1;m2 2 N0, and area 2�h, contains precisely one point of P.2h/. Let
us say that such a rectangle is an elementary rectangle. Suppose first of all that
s1 C s2 � h. Then the rectangle Œ0; 2�s1 / 
 Œ0; 2�s2 / is contained in one elementary
rectangle anchored at the origin, and so contains at most one point of P.2h/. Clearly
it contains the point 0 2 P.2h/, and so

X
p2P.2h/

Œ0;2�s1 /�Œ0;2�s2 /.p/ D 1:

Suppose then that s1 C s2 � h. Then the rectangle Œ0; 2�s1 / 
 Œ0; 2�s2 / is a union of
precisely 2h�s1�s2 elementary rectangles, and so contains precisely 2h�s1�s2 points
of P.2h/, whence

X
p2P.2h/

Œ0;2�s1 /�Œ0;2�s2 /.p/ D 2h�s1�s2 :

This completes the proof. ut
Note that with s1 D s2 D h, Lemma 22 gives

2h�1X
`1D0

2h�1X
`2D0

X
p2P.2h/

Wl.p/ D 4h:

In view of (1.80) and (1.81), we conclude that #L.h/ D 2h � 1. We now study the
set L.h/ in greater detail.

Lemma 23. For every s1; s2 2 f1; : : : ; hg, let

L.s1; s2/ D
8<
:l 2 Œ2s1�1; 2s1/ 
 Œ2s2�1; 2s2/ W

X
p2P.2h/

Wl.p/ D 2h

9=
; :

Then

a) for every l 2 L.s1; s2/, we have �.l/ D s1 C s2;
b) we have

#L.s1; s2/ D
8<
:
2s1Cs2�h�2; if s1 C s2 � hC 2;

1; if s1 C s2 D hC 1,
0; otherwise:
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Furthermore, every l 2 L.h/ belongs to L.s1; s2/ for some s1; s2 2 f1; : : : ; hg that
satisfy s1 C s2 � hC 1.

Proof. Note that if l 2 L.s1; s2/, then �.l/ D �.`1/C �.`2/ D s1 C s2, in view of
(1.86). This establishes part (a). To prove part (b), note that in view of (1.81), we
have, in the notation of Lemma 22,

#L.s1; s2/ D 2�h
2s1�1X

`1D2s1�1

2s2�1X
`2D2s2�1

X
p2P.2h/

Wl.p/

D 2�h.�.s1; s2/ ��.s1 � 1; s2/ ��.s1; s2 � 1/C�.s1 � 1; s2 � 1//:

Part (b) now follows easily from Lemma 22. Finally, it is easily checked that

hX
s1D1

hX
s2D1

s1Cs2DhC1

1C
hX

s1D1

hX
s2D1

s1Cs2�hC2

2s1Cs2�h�2 D 2h � 1 D #L.h/:

The last assertion follows immediately. ut
Using Lemma 23, we deduce that

X
l2L.h/

4��.l/ D
hX

s1D1

hX
s2D1

s1Cs2DhC1

4�h�1 C
hX

s1D1

hX
s2D1

s1Cs2�hC2

2s1Cs2�h�24�s1�s2

D
hX

s1D1

hX
s2D1

s1Cs2DhC1

4�h�1 C
hX

s1D1

hX
s2D1

s1Cs2�hC2

2�s1�s2�h�2

D
hX

s1D1

hX
s2D1

s1Cs2DhC1

4�h�1 C
hX

kD2

hX
s1D1

hX
s2D1

s1Cs2DhCk

2�h�k�h�2

D 4�h�1hC 4�h�1
hX

kD2

hX
s1D1

hX
s2D1

s1Cs2DhCk

2�k

< 4�h�1hC 4�h�1h
hX

kD2
2�k < 4�hh:

Combining this with (1.87), we obtain

1

4h

X
t2Z2h2

Z
Œ0;1�2

jD.h/ŒP.2h/˚ tIB.x/�j2 dx <
h

9
� logN;
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noting that N D 2h in this case. Hence there is a digit shift t� 2 Z2h2 such that

Z
Œ0;1�2

jD.h/ŒP.2h/˚ t�IB.x/�j2 dx � logN;

essentially establishing Theorem 10 in the case k D 2, apart from our not having
properly analyzed the effect of the approximation of the certain characteristic
functions by their truncated Fourier–Walsh series.

We complete this section by making an important comment for later use. Let
us return to (1.82) and make the hypothetical assumption that the functions el.x/,
where l 2 L.h/, are orthogonal. Then

Z
Œ0;1�2

jD.h/ŒP.2h/IB.x/�j2 dx D 4h
X

l2L.h/

Z
Œ0;1�2

jel.x/j2 dx:

Note that the right hand side is exactly the same as the right hand side of (1.85), so
that we can analyze this as before.

Unfortunately, the functions el.x/, where l 2 L.h/, are not orthogonal in this
instance, so we cannot proceed in this way. Our technique in overcoming this
handicap is to make use of the digit shifts t 2 Z2h2 , and bring into the argument,
one may say through the back door, some orthogonality in the form of Lemma 20.
We shall return to this in Sects. 1.15 and 1.16.

1.14 Generalizations of van der Corput Point Sets

In our discussion of the van der Corput sequence and van der Corput point sets
in Sects. 1.10 and 1.11, we have restricted our discussion to dimension k D 2.
Indeed, historically, the van der Corput sequence is constructed dyadically, and
offers no generalization to the multi-dimensional case without going beyond dyadic
constructions, except for one instance which we shall describe later in this section.

To study the general case in Theorems 10 and 11, one way is to generalize the
van der Corput sequence. Here we know two ways of doing so, one by Halton [19]
and the other by Faure [16]. The Halton construction enables Halton to establish
Theorem 11 in its generality and forms the basis for the proof of Theorem 10 in its
generality by Roth [31]. The Faure construction enables Faure to give an alternative
proof of Theorem 11 in its generality, enables Chen [9] soon afterwards to give an
alternative proof of Theorem 10 in its generality and, more recently, forms the basis
for the explicit construction proof of Theorem 10 by Chen and Skriganov [11, 13].

The generalizations by Halton and by Faure both require the very natural p-
adic generalization of the van der Corput construction. The difference is that while
Halton uses many different primes p, Faure uses only one such prime p but chosen
to be sufficiently large.



1 Upper Bounds in Classical Discrepancy Theory 49

1.14.1 Halton Point Sets

We first discuss Halton’s contribution. Recall the dyadic construction (1.45) and
(1.46) of the classical van der Corput sequence. Suppose now that we wish to study
Theorem 10 or 11 in arbitrary dimension k � 2. Let pi , where i D 1; : : : ; k � 1,
denote the first k � 1 primes, with p1 < : : : < pk�1. For every non-negative integer
n 2 N0 and every i D 1; : : : ; k � 1, we write

n D
1X
jD1

a
.i/
j p

j�1
i (1.88)

as a pi -adic expansion. Then we write

c.i/n D
1X
jD1

a
.i/
j p
�j
i : (1.89)

Finally we write

cn D .c.1/n ; : : : ; c
.k�1/
n /:

Note that cn 2 Œ0; 1/k�1. The infinite sequence c0; c1; c2; : : : is usually called a
Halton sequence, and the infinite set

H D f.cn; n/ W n D 0; 1; 2; : : :g (1.90)

in Œ0; 1/k�1 
 Œ0;1/ is usually called a Halton point set.
Corresponding to Lemma 13, we have the following multi-dimensional version.

Lemma 24. For all non-negative integers s1; : : : ; sk�1 and `1; : : : ; `k�1 satisfying
`i < p

si
i for every i D 1; : : : ; k � 1, the set

(
n 2 N0 W cn 2

k�1Y
iD1
Œ`i p

�si
i ; .`i C 1/p

�si
i /

)

contains precisely all the elements of a residue class modulo ps11 : : : p
sk�1

k�1 in N0.

Proof. For fixed i D 1; : : : ; k � 1, the pi -adic version of Lemma 13 says that the
set

fn 2 N0 W c.i/n 2 Œ`i p�sii ; .`i C 1/p
�si
i /g

contains precisely all the elements of a residue class modulo psii in N0. The result
now follows from the Chinese remainder theorem. ut
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We say that a rectangular box of the form

k�1Y
iD1
Œ`i p

�si
i ; .`i C 1/p

�si
i / � Œ0; 1/k�1

for some integers `1; : : : ; `k�1 is an elementary .p1; : : : ; pk�1/-adic box of volume
p
�s1
1 : : : p

�sk�1

k�1 . Hence Lemma 24 says that the given Halton sequence has very
good distribution among such elementary .p1; : : : ; pk�1/-adic boxes for all non-
negative integer values of s1; : : : ; sk�1.

Lemma 25. For all non-negative integers s1; : : : ; sk�1, `1; : : : ; `k�1 and m satisfy-
ing `i < p

si
i for every i D 1; : : : ; k � 1, the rectangular box

k�1Y
iD1
Œ`i p

�si
i ; .`i C 1/p

�si
i / 


"
m

k�1Y
iD1

p
si
i ; .mC 1/

k�1Y
iD1

p
si
i

!

contains precisely one point of the Halton point set H .

Clearly there is an average of one point of the Halton point set H per unit volume
in Œ0; 1/k�1 
 Œ0;1/. For any measurable set A in Œ0; 1/k�1 
 Œ0;1/, let

EŒH IA� D #.H \A/ � �.A/

denote the discrepancy of H in A.
We have the following generalization of Lemma 15.

Lemma 26. For all non-negative integers s1; : : : ; sk�1 and `1; : : : ; `k�1 satisfying
`i < p

si
i for every i D 1; : : : ; k � 1, there exist real numbers ˛0; ˇ0, depending at

most on s1; : : : ; sk�1 and `1; : : : ; `k�1, such that j˛0j � 1
2

and

E

"
H I

k�1Y
iD1
Œ`i p

�si
i ; .`i C 1/p

�si
i / 
 Œ0; y/

#
D ˛0 �  .p�s11 : : : p

�sk�1

k�1 .y � ˇ0//
(1.91)

at all points of continuity of the right hand side.

We can now prove Theorem 11. Let N � 2 be a given integer. It follows at once
from the definition of H that the set

H0 D H \ .Œ0; 1/k�1 
 Œ0; N //

contains precisely N points. Let the integer h be determined uniquely by

ph�11 < N � ph1 : (1.92)
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Consider a rectangular box of the form

B.x1; : : : ; xk�1; y/ D Œ0; x1/ 
 : : : 
 Œ0; xk�1/ 
 Œ0; y/ � Œ0; 1/k�1 
 Œ0; N /:

Similar to our technique in Sect. 1.10, we shall approximate each interval Œ0; xi /,
where i D 1; : : : ; k � 1, by the subinterval Œ0; x.h/i /, where x.h/i D p�hi Œphi xi � is
the greatest integer multiple of p�hi not exceeding xi , and then consider the smaller
rectangular box

B.x
.h/
1 ; : : : ; x

.h/

k�1; y/ D Œ0; x
.h/
1 / 
 : : : 
 Œ0; x.h/k�1/ 
 Œ0; y/

as an approximation of B.x1; : : : ; xk�1; y/. A slight elaboration of the correspond-
ing argument in Sect. 1.10 will show that the difference

B.x1; : : : ; xk�1; y/ n B.x.h/1 ; : : : ; x
.h/

k�1; y/

is contained in a union of at most k � 1 sets of the type discussed in Lemma 25,
and so

jEŒH IB.x1; : : : ; xk�1; y/� �EŒH IB.x.h/1 ; : : : ; x
.h/

k�1; y/�j � k � 1I (1.93)

note that since y � N , it makes no difference whether we write H or H0 in our
argument.

It remains to estimate EŒH IB.x.h/1 ; : : : ; x
.h/

k�1; y/�. To do so, we need to write

each interval Œ0; x.h/i /, where i D 1; : : : ; h � 1, as a union of elementary pi -adic
intervals, each of length p�si for some integer s satisfying 0 � s � h.

If x.h/i D 1, then Œ0; x.h/i / is a union of precisely one elementary pi -adic interval

of unit length, so we now assume that 0 � x
.h/
i < 1.

Lemma 27. Suppose that 0 � x
.h/
i < 1, with

x
.h/
i D

hX
sD1

bsp
�s
i

as a pi -adic expansion. Then Œ0; x.h/i / can be written as a union of

hX
sD1

bs < hpi

elementary pi -adic intervals, namely b1 elementary pi -adic intervals of length p�1i ,
together with b2 elementary pi -adic intervals of length p�2i , and so on.



52 W. Chen and M. Skriganov

Hence the set B.x
.h/
1 ; : : : ; x

.h/

k�1; y/ is a disjoint union of fewer than
hk�1p1 : : : pk�1 sets of the type discussed in Lemma 26. Hence

jEŒH IB.x.h/1 ; : : : ; x
.h/

k�1; y/�j < hk�1p1 : : : pk�1 �k .logN/k�1: (1.94)

Combining (1.93) and (1.94), we conclude that

jEŒH IB.x1; : : : ; xk�1; y/�j �k .logN/k�1: (1.95)

Finally, rescaling the second coordinate of the points of H0 by a factor N�1, we
obtain a set

P D f.cn; N�1n/ W n D 0; 1; 2; : : : ; N � 1g

of precisely N points in Œ0; 1/k . For every x D .x1; : : : ; xk/ 2 Œ0; 1�k , we have

DŒPIB.x/� D EŒH0I Œ0; x1/ 
 : : : 
 Œ0; xk�1/ 
 Œ0; Nxk/� �k .logN/k�1;

in view of (1.95) and noting that 0 � Nxk � N . This now completes the proof of
Theorem 11.

Next we discuss Roth’s ideas in shaping this Halton construction to give a proof
of Theorem 10. As in the special case k D 2, one needs to introduce a probabilistic
variable. To pave the way for this, we shall modify the Halton point set somewhat.
Let N � 2 be a given integer, and let the integer h be determined uniquely by

ph�11 < N � ph1 ; (1.96)

as before. For every i D 1; : : : ; k � 1 and every n D 0; 1; 2; : : : ; phi � 1, we define

c
.i/
n as before by (1.88) and (1.89). We then extend the definition of c.i/n to all other

integers using periodicity by writing

cnCphi D cn for every n 2 Z;

write cn D .c
.1/
n ; : : : ; c

.k�1/
n /, and consider the extended Halton point set

Hh D f.cn; n/ W n 2 Zg:

Remark. In Roth [31], as well as Chen [8], the construction of the set Hh is slightly
different, but the difference does not affect the argument in any way. Let M D
p1 : : : pk�1. One then defines c.i/n for n D 0; 1; 2; : : : ;Mh � 1 by (1.88) and (1.89),
write cn D .c

.1/
n ; : : : ; c

.k�1/
n / for these values of n, and define cn for all other integer

values of n by the periodicity relationship cnCMh D cn for every n 2 Z.
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Furthermore, for every real number t 2 R, we consider the translated Halton
point set

Hh.t/ D f.cn; nC t/ W n 2 Zg:

It is clear that there is an average of one point of the translated Halton point
set Hh.t/ per unit volume in Œ0; 1/k�1 
 .�1;1/. For any measurable set A in
Œ0; 1/k�1 
 .�1;1/, we now let

EŒHh.t/IA� D #.Hh.t/ \A/ � �.A/

denote the discrepancy of Hh.t/ in A.
Consider a rectangular box of the form

B.x1; : : : ; xk�1; y/ D Œ0; x1/ 
 : : : 
 Œ0; xk�1/ 
 Œ0; y/ � Œ0; 1/k�1 
 Œ0; N /:

As in the earlier proof of Theorem 11, we shall consider the smaller rectangular box
B.x

.h/
1 ; : : : ; x

.h/

k�1; y/ and, corresponding to (1.93), we have

jEŒHh.t/IB.x1; : : : ; xk�1; y/� � EŒH IB.x.h/1 ; : : : ; x
.h/

k�1; y/�j � k � 1: (1.97)

Next, we studyEŒHh.t/IB.x.h/1 ; : : : ; x
.h/

k�1; y/� in detail, and require an analogue of
the expansion (1.60). It is not difficult to see that

EŒH IB.x.h/1 ; : : : ; x
.h/

k�1; y/� D
X
I12I1

: : :
X

Ik�12Ik�1

EŒHh.t/I I 
 Œ0; y/�;

where I D I1 
 : : : 
 Ik�1 and where, for every i D 1; : : : ; k � 1, Ii denotes the
collection of elementary pi -adic intervals in the union that makes up the interval
Œ0; x

.h/
i / in Lemma 27.

Corresponding to Lemma 17, one can show that each summand

EŒHh.t/I I 
 Œ0; y/�

can be written in the form

 .p
�s1
1 : : : p

�sk�1

k�1 .t � ˇI//�  .p
�s1
1 : : : p

�sk�1

k�1 .t � 
I//;

where the real numbers ˇI and 
I depend at most on I and y, and where, for every
i D 1; : : : ; k � 1, the elementary pi -adic interval Ii has length p�sii . Making use of
this, one can then proceed to show, corresponding to Lemma 18, that

Z Mh

0

EŒHh.t/I I0 
 Œ0; y/�EŒHh.t/I I00 
 Œ0; y/� dt D O

 
Mh

k�1Y
iD1

p
�js0i�s00i j
i

!
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for any I0 D I 01 
 : : : 
 I 0k�1 and I00 D I 001 
 : : : 
 I 00k�1 where, for every i D
1; : : : ; k � 1, the elementary pi -adic intervals I 0i ; I 00i 2 Ii have lengths p

�s0i
i and

p
�s00i
i respectively. One then goes on to show that

Z Mh

0

jEŒH IB.x.h/1 ; : : : ; x
.h/

k�1; y/�j2 dt

�
X
I 0

12I1

: : :
X

I 0

k�12Ik�1

X
I 00

1 2I1

: : :
X

I 00

k�12Ik�1

M h

k�1Y
iD1

p
�js0i�s00i j
i

�k M
hhk�1:

Taking the bound (1.97) into account and then integrating trivially with respect to
x1; : : : ; xk�1, each over the interval Œ0; 1/, and with respect to y over the interval
Œ0; N /, we conclude that

Z N

0

Z 1

0

: : :

Z 1

0

Z Mh

0

jEŒHh.t/IB.x1; : : : ; xk�1; y/�j2 dt dx1 : : : dxk�1 dy

D
Z Mh

0

�Z N

0

Z 1

0

: : :

Z 1

0

jEŒHh.t/IB.x1; : : : ; xk�1; y/�j2 dx1 : : : dxk�1 dy

�
dt

�k M
hhk�1N:

Hence there exists t� 2 Œ0;Mh/ such that

Z N

0

Z 1

0

: : :

Z 1

0

jEŒHh.t
�/IB.x1; : : : ; xk�1; y/�j2 dx1 : : : dxk�1 dy

�k h
k�1N: (1.98)

Finally, we note that the set Hh.t
�/ \ .Œ0; 1/k�1 
 Œ0; N // contains precisely N

points. Rescaling in the vertical direction by a factorN�1, we observe that the set

P� D f.z1; : : : ; zk�1; N�1zk/ W .z1; : : : ; zk/ 2 Hh.t
�/g

contains precisely N points in Œ0; 1/k, and the estimate (1.98) now translates to

Z
Œ0;1�k

jDŒP�IB.x/�j2 dx �k h
k�1 �k .logN/k�1;

in view of (1.96). This completes our brief sketch of the proof of Theorem 10.
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1.14.2 Faure Point Sets

We now discuss Faure’s contribution. Suppose again that we wish to study
Theorem 10 or 11 in arbitrary dimension k � 2. Let p denote a prime such that8

p � k � 1. For every non-negative integer n 2 N0, we write

n D
1X
jD1

a
.1/
j p

j�1 (1.99)

as a p-adic expansion. Then we write

c.1/n D
1X
jD1

a
.1/
j p

�j : (1.100)

For i D 2; : : : ; k � 1, we shall write

c.i/n D
1X
jD1

a
.i/
j p
�j ; (1.101)

where the coefficients a.i/j are defined inductively using the infinite upper triangular
matrix

B D

2
66666664

�
0
0

� �
1
0

� �
2
0

� �
3
0

� � � ��
1
1

� �
2
1

� �
3
1

� � � ��
2
2

� �
3
2

� � � ��
3

3

� � � �
: : :

3
77777775

(1.102)

made up of binomial coefficients.
It is convenient to use matrix multiplication modulo p to define the coefficients

a
.i/
j when i > 1. For every i D 1; : : : ; k � 1, consider the infinite column matrix

a.i/ D

2
6666664

a
.i/
1

a
.i/
2

a
.i/
3

a
.i/
4
:::

3
7777775
:

8The assumption that p � k � 1 cannot be relaxed, as noted by Chen [9].
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Then for every i D 2; : : : ; k � 1, we write

a.i/ 	 Ba.i�1/ mod pI

in other words, we write

2
6666664

a
.i/
1

a
.i/
2

a
.i/
3

a
.i/
4
:::

3
7777775

	

2
66666664

�
0
0

� �
1
0

� �
2
0

� �
3
0

� � � ��
1
1

� �
2
1

� �
3
1

� � � ��
2
2

� �
3
2

� � � ��
3
3

� � � �
: : :

3
77777775

2
6666664

a
.i�1/
1

a
.i�1/
2

a
.i�1/
3

a
.i�1/
4
:::

3
7777775

mod p:

For every n 2 N0, write

cn D .c.1/n ; : : : ; c
.k�1/
n /:

The set

F D f.cn; n/ W n D 0; 1; 2; : : :g

in Œ0; 1/k�1 
 Œ0;1/ is usually called a Faure point set.
Analogous to Lemma 25, we have the following result.

Lemma 28. For all non-negative integers s1; : : : ; sk�1, `1; : : : ; `k�1 and m such
that `i < psi holds for every i D 1; : : : ; k � 1, the rectangular box

k�1Y
iD1
Œ`i p

�si ; .`i C 1/p�si / 
 Œmps1C:::Csk�1 ; .mC 1/ps1C:::Csk�1 / (1.103)

contains precisely one point of the Faure point set F .

To prove Lemma 28, we need a simple result concerning the matrix B.

Lemma 29. For the matrix B given by (1.102), we have, for every i D 1; : : : ; k�1,

Bi�1 D

2
66666664

�
0
0

� �
1
0

�
.i � 1/

�
2
0

�
.i � 1/2 �3

0

�
.i � 1/3 � � ��

1
1

� �
2
1

�
.i � 1/

�
3
1

�
.i � 1/2 � � ��

2
2

� �
3
2

�
.i � 1/ � � ��
3

3

� � � �
: : :

3
77777775
:
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Proof (of Lemma 28). Suppose that suitable integers s1; : : : ; sk�1, `1; : : : ; `k�1 and
m are chosen and fixed. For a point .cn; n/ to lie in the rectangle (1.103), we
must have

c.i/n 2 Œ`i p�si ; .`i C 1/p�si / (1.104)

for every i D 1; : : : ; k � 1, as well as

n 2 Œmps1C:::Csk�1 ; .mC 1/ps1C:::Csk�1 /: (1.105)

Comparing (1.99) and (1.105), it is clear that the value of the coefficient a.1/j for
every j > s1 C : : :C sk�1 is uniquely determined. It therefore remains to show that
there is one choice of the vector

.a
.1/
1 ; : : : ; a

.1/
s1C:::Csk�1

/

that satisfies the requirement (1.104) for every i D 1; : : : ; k � 1.
Note next that for every i D 1; : : : ; k � 1, we have

2
6666664

a
.i/
1

a
.i/
2

a
.i/
3

a
.i/
4
:::

3
7777775

	

2
66666664

�
0
0

� �
1
0

�
.i � 1/

�
2
0

�
.i � 1/2

�
3
0

�
.i � 1/3 � � ��

1

1

� �
2

1

�
.i � 1/ �3

1

�
.i � 1/2 � � ��

2
2

� �
3
2

�
.i � 1/ � � ��
3
3

� � � �
: : :

3
77777775

2
6666664

a
.1/
1

a
.1/
2

a
.1/
3

a
.1/
4
:::

3
7777775

mod p:

Let us consider the p-adic expansion

`i p
�si D ˇ

.i/
1 p
�1 C : : :C ˇ.i/si p

�si :

If (1.104) holds, then in view of (1.100) or (1.101), we must have a.i/j D ˇ
.i/
j for

every j D 1; : : : ; si . This can be summarized by writing

Wi

2
6666664

a
.1/
1

a
.1/
2

a
.1/
3

a
.1/
4
:::

3
7777775

	

2
6666664

ˇ
.i/
1

ˇ
.i/
2

ˇ
.i/
3
:::

ˇ
.i/
si

3
7777775

mod p; (1.106)

where the matrix Wi contains precisely the first si rows of the matrix Bi�1. Now
recall that a.1/j are already uniquely determined for every j > S D s1 C : : :C sk�1
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by (1.105), and clearly there are at most finitely many non-zero terms among these.
The system (1.106) can therefore be simplified to one of the form

Vi

2
6666664

a
.1/
1

a
.1/
2

a
.1/
3
:::

a
.1/
S

3
7777775

	

2
6666664



.i/
1



.i/
2



.i/
3
:::



.i/
si

3
7777775

mod p; (1.107)

where the matrix Vi contains precisely the first S columns of the matrix Wi . On
combining (1.107) for every i D 1; : : : ; k � 1, we arrive at a system of S linear
congruences in the S variables a.1/1 ; : : : ; a

.1/
S , with the matrix given by

V D

2
64

V1
:::

Vk�1

3
75 :

It is not difficult to see that for every i D 1; : : : ; k � 1, we have

Vi D

2
666664

�
0
0

� �
1
0

�
.i � 1/ �2

0

�
.i � 1/2 � � � �S�1

0

�
.i � 1/S�1�

1

1

� �
2

1

�
.i � 1/ � � � �S�1

1

�
.i � 1/S�2

: : :
:::�

si�1
si�1

� � � � �S�1
si�1

�
.i � 1/S�si

3
777775
;

a matrix with si rows and S columns. It follows that the matrix V is of generalized
Vandermonde type, with determinant

Y
1�i 0<i 00�k�1

.i 00 � i 0/si 0 si 00 6	 0 mod p;

in view of the assumption that p � k�1. Hence the system of S linear congruences
in the S variables a.1/1 ; : : : ; a

.1/
S has unique solution. Recall once again that the

coefficients a.1/j are already uniquely determined for every j > S , we conclude
that there is precisely one value of n that satisfies all the requirements. ut

The following analogue of Lemma 26 is a simple consequence of Lemma 29.

Lemma 30. For all non-negative integers s1; : : : ; sk�1 and `1; : : : ; `k�1 satisfying
`i < p

si for every i D 1; : : : ; k � 1, and for every real number y > 0, we have

ˇ̌
ˇ̌̌
E

"
F I

k�1Y
iD1
Œ`i p

�si ; .`i C 1/p�si / 
 Œ0; y/
#ˇ̌ˇ̌̌ � 1:
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To study Theorem 11, let N � 2 be a given integer. It follows at once from the
definition of F that the set

F0 D F \ .Œ0; 1/k�1 
 Œ0; N //

contains precisely N points. Let the integer h be determined uniquely by

ph�1 < N � ph:

We can now deduce Theorem 11 from Lemmas 28 and 30 in a way similar to
our deduction of the same result from Lemmas 25 and 26 in Sect. 1.14.1, noting
that Lemma 27 remains valid with pi replaced by p. Indeed, rescaling the second
coordinate of the points of F0 by a factor N�1, we obtain a set

P D f.cn; N�1n/ W n D 0; 1; 2; : : : ; N � 1g;

of precisely N points in Œ0; 1/k and which satisfies the conclusion of Theorem 11.

1.14.3 A General Point Set and a Digit Shift Argument

In this section, we briefly describe a rather general digit shift argument developed by
Chen [9] which enables us to establish Theorem 10 using Halton point sets discussed
in Sect. 1.14.1 or Faure point sets discussed in Sect. 1.14.2. Recall that these point
sets satisfy Lemmas 25 and 28 respectively.

Let p1 � : : : � pk�1 be primes, not necessarily distinct, and let h be a non-
negative integer. We shall say that a set of the form

Z D f.cn; n/ W n D 0; 1; 2; : : :g (1.108)

in Œ0; 1/k�1 
 Œ0;1/ is a 1-set of order h with respect to the primes p1; : : : ; pk�1
if the following condition is satisfied. For all non-negative integers s1; : : : ; sk�1,
`1; : : : ; `k�1 and m satisfying si � h and `i < p

si
i for every i D 1; : : : ; k � 1, the

rectangular box

k�1Y
iD1
Œ`i p

�si
i ; .`i C 1/p

�si
i / 


"
m

k�1Y
iD1

p
si
i ; .mC 1/

k�1Y
iD1

p
si
i

!

contains precisely one point of Z .
If the primes p1; : : : ; pk�1 are distinct, then the Halton set H is a 1-set of every

non-negative order with respect to p1; : : : ; pk�1. If the primes p1; : : : ; pk�1 are all
identical and equal to p, then the Faure set F is 1-set of every non-negative order
with respect to p; : : : ; p, provided that p � k � 1.
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The property below follows almost immediately from the definition.

Lemma 31. Suppose that h be a non-negative integer, and that Z is a 1-set
of order h with respect to the primes p1; : : : ; pk�1. Then for all non-negative
integers s1; : : : ; sk�1 and `1; : : : ; `k�1 satisfying si � h and `i < p

si
i for every

i D 1; : : : ; k � 1, and for every real number y > 0, we have

ˇ̌̌
ˇ̌E
"
Z I

k�1Y
iD1
Œ`i p

�si
i ; .`i C 1/p

�si
i / 
 Œ0; y/

#ˇ̌̌
ˇ̌ � 1:

Let N � 2 be a given integer, and let the integer h be determined uniquely by

ph�11 < N � ph1 : (1.109)

For any 1-set (1.108) of order h with respect to the primes p1; : : : ; pk�1, the set

Z0 D Z \ .Œ0; 1/k�1 
 Œ0; N //

contains precisely N points. Then it can be shown easily that the set

P D f.cn; N�1n/ W n D 0; 1; 2; : : : ; N � 1g;

of precisely N points in Œ0; 1/k and which satisfies the conclusion of Theorem 11.
To study Theorem 10, we again choose the integer h to satisfy (1.109). However,

we need to modify the 1-set Z .
Let M denote the collection of all .k � 1/ 
 h matrices T D .ti;j / where, for

every i D 1; : : : ; k � 1 and j D 1; : : : ; h, the entry ti;j 2 f0; 1; 2; : : : ; pi � 1g.
Clearly the collection M has .p1 : : : pk�1/h elements.

For every n D 0; 1; 2; : : :, let us write

cn D .c1.n/; : : : ; ck�1.n//:

For every i D 1; : : : ; k � 1, we consider the base pi expansion

ci .n/ D 0:ai;1ai;2 : : : ai;hai;hC1 : : : :

For every T 2 M and every n D 0; 1; 2; : : : ;, we shall write

cT
n D .cT

1 .n/; : : : ; c
T
k�1.n//;

where, for every i D 1; : : : ; k � 1, we have

cT
i .n/ D 0:.ai;1 ˚ ti;1/.ai;2 ˚ ti;2/ : : : .ai;h ˚ ti;h/ai;hC1 : : : ;
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where ˚ denotes addition modulo pi . It is not difficult to show that the shifted set

Z T D f.cT
n ; n/ W n D 0; 1; 2; : : :g

in Œ0; 1/k�1
Œ0;1/ is also a 1-set of order hwith respect to the primesp1; : : : ; pk�1.
Consider a rectangular box of the form

B.x1; : : : ; xk�1; y/ D Œ0; x1/ 
 : : : 
 Œ0; xk�1/ 
 Œ0; y/ � Œ0; 1/k�1 
 Œ0; N /:

As in the earlier proof of Theorem 10, we shall again consider the smaller
rectangular box B.x.h/1 ; : : : ; x

.h/

k�1; y/, where, for every i D 1; : : : ; k� 1, we replace

the point xi by x.h/i D p�hi Œphi xi �, the greatest integer multiple of p�hi not exceeding
xi . Then for every T 2 M , we have

jEŒZ TIB.x1; : : : ; xk�1; y/� �EŒZ TIB.x.h/1 ; : : : ; x
.h/

k�1; y/�j � k � 1;

so it remains to study EŒZ TIB.x.h/1 ; : : : ; x
.h/

k�1; y/� in detail. It can be shown that

X
T2M

jEŒZ TIB.x.h/1 ; : : : ; x
.h/

k�1; y/�j2 �k .p1 : : : pk�1/hhk�1;

from which it follows that

Z N

0

Z 1

0

: : :

Z 1

0

 X
T2M

jEŒZ TIB.x.h/1 ; : : : ; x
.h/

k�1; y/�j2
!

dx1 : : : dxk�1 dy

D
X

T2M

�Z N

0

Z 1

0

: : :

Z 1

0

jEŒZ TIB.x.h/1 ; : : : ; x
.h/

k�1; y/�j2 dx1 : : : dxk�1 dy

�

�k .p1 : : : pk�1/hhk�1N:

Hence there exists T� 2 M such that

Z N

0

Z 1

0

: : :

Z 1

0

jEŒZ T� IB.x1; : : : ; xk�1; y/�j2 dx1 : : : dxk�1 dy �k h
k�1N:

Finally, we note that the set Z T� \ .Œ0; 1/k�1
 Œ0; N // contains preciselyN points.
Rescaling in the vertical direction by a factor N�1, we observe that the set

P� D f.z1; : : : ; zk�1; N�1zk/ W .z1; : : : ; zk/ 2 Z T�g

contains precisely N points in Œ0; 1/k, and satisfies the conclusion of Theorem 10.
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1.15 Group Structure and p-adic Fourier–Walsh Analysis

In Sect. 1.13, we exploit the group structure of the van der Corput set P.2h/ to
sketch a proof of Theorem 10 for k D 2. The central argument there is to use
Fourier–Walsh analysis to show that an approximation D.h/ŒP.2h/IB.x/� of the
discrepancy function DŒP.2h/IB.x/� satisfies the identity (1.85) which involves
digit shifts. Under certain hypothetical orthogonality assumptions, we can further
deduce the simpler identity

Z
Œ0;1�2

jD.h/ŒP.2h/IB.x/�j2 dx D 4h
X

l2L.h/

Z
Œ0;1�2

jel.x/j2 dx:

Unfortunately, these hypothetical orthogonality assumptions do not hold.
To have a better understanding of the underlying ideas, it is necessary to study

p-adic versions of the analysis carried out earlier.
For simplicity, let us again restrict our attention to Theorem 10 for k D 2. Let p

be a prime, and consider the base p van der Corput point set

P.ph/ D f.0:a1a2a3 : : : ah; 0:ah : : : a3a2a1/ W a1; : : : ; ah 2 f0; 1; : : : ; p � 1gg:

This is a finite abelian group isomorphic to the group Zhp . We shall make use of the
characters of these groups. These are the base p Walsh functions, usually known as
the Chrestenson or Chrestenson–Levy functions. For simplicity, we refer to them all
as Walsh functions here.

To define these Walsh functions, we first consider p-ary representation of any
integer ` 2 N0, written uniquely in the form

` D
1X
iD1

�i .`/p
i�1; (1.110)

where the coefficient �i .`/ 2 f0; 1; : : : ; p � 1g for every i 2 N. On the other hand,
every real number y 2 Œ0; 1/ can be represented in the form

y D
1X
iD1

�i .y/p
�i ; (1.111)

where the coefficient �i .y/ 2 f0; 1; : : : ; p � 1g for every i 2 N. This representation
is unique if we agree that the series in (1.111) is finite for every y D mp�s where
s 2 N0 and m 2 f0; 1; : : : ; ps � 1g.

For every ` 2 N0 of the form (1.110), we define the Walsh function w` W Œ0; 1/ !
R by writing
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w`.y/ D ep

 1X
iD1

�i .`/�i .y/

!
; (1.112)

where ep.z/ D e2� iz=p for every real number z. Since (1.110) is essentially a finite
sum, the Walsh function is well defined, and takes the p-th roots of unity as its
values. It is easy to see that w0.y/ D 1 for every y 2 Œ0; 1/. It is well known that
under the inner product

hwk;w`i D
Z 1

0

wk.y/w`.y/ dy;

the collection of Walsh functions form an orthonormal basis of L2Œ0; 1�.
The operation ˚ defined modulo 2 previously can easily be suitably modified to

an operation modulo p. Then (1.75) and (1.76) remain valid in this new setting.
As before, we shall use Fourier–Walsh analysis to study characteristic functions

of the form Œ0;x/.y/. We have the Fourier–Walsh series

Œ0;x/.y/ �
1X
`D0

e`.x/w`.y/;

where, for every ` 2 N0, the Fourier–Walsh coefficients are given by

e`.x/ D
Z x

0

w`.y/ dy:

In particular, we have e0.x/ D x for every x 2 Œ0; 1/. Again, as before, instead of
using the full Fourier–Walsh series, we shall truncate it and use the approximation


.h/

Œ0;x/.y/ D
ph�1X
`D0

e`.x/w`.y/:

This approximation in turn leads to the approximation


.h/

B.x/.y/ D 
.h/

Œ0;x1/
.y1/

.h/

Œ0;x2/
.y2/ D

ph�1X
`1D0

ph�1X
`2D0

el.x/Wl.y/

of the characteristic function B.x/.y/. Here l D .`1; `2/,

el.x/ D f`1.x1/f`2.x2/ and Wl.y/ D w`1.y1/w`2.y2/:
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Consequently, we approximate the discrepancy function

DŒP.ph/IB.x/� D
X

p2P.ph/

B.x/.p/ � phx1x2

by

D.h/ŒP.ph/IB.x/� D
X

p2P.ph/


.h/

B.x/.p/ � phx1x2

D
X

p2P.ph/

ph�1X
`1D0

ph�1X
`2D0

el.x/Wl.p/� phe0.x/

D
ph�1X
`1D0

ph�1X
`2D0

.`1;`2/¤.0;0/

0
@ X

p2P.ph/

Wl.p/

1
Ael.x/;

noting that

X
p2P.ph/

W0.p/ D #P.ph/ D ph:

It is well known in the theory of abelian groups that the sum

X
p2P.ph/

Wl.p/ 2 f0; phg:

We therefore need to have some understanding on the set

L.h/ D
8<
:l 2 Œ0; ph/ 
 Œ0; ph/ W l ¤ 0 and

X
p2P.ph/

Wl.p/ D ph

9=
; :

Then

D.h/ŒP.ph/IB.x/� D ph
X

l2L.h/
el.x/:

We have the following special case of a general result of Skriganov [34].

Lemma 32. Suppose that the prime p satisfies p � 8. Then the functions el.x/,
where l 2 L.h/, are orthogonal, so that

Z
Œ0;1�2

jD.h/ŒP.ph/IB.x/�j2 dx D p2h
X

l2L.h/

Z
Œ0;1�2

jel.x/j2 dx: (1.113)
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To progress further, we need to estimate each of the integrals

Z
Œ0;1�2

jel.x/j2 dx D
�Z 1

0

jf`1.x1/j2 dx1

��Z 1

0

jf`2.x2/j2 dx2

�
(1.114)

on the right hand side of (1.113).

Lemma 33. We have

Z 1

0

je0.x/j2 dx D 1

4
C 1

4.p2 � 1/

p�1X
jD1

csc2
�j

p
: (1.115)

Furthermore, for every ` 2 N, we have

Z 1

0

je`.x/j2 dx D p�2�.`/
0
@1
2

csc2
��.`/

p
� 1

4
C 1

4.p2 � 1/

p�1X
jD1

csc2
�j

p

1
A ;

(1.116)

where

�.`/ D
�
0; if ` D 0;

maxfi 2 N W �i .`/ ¤ 0g; if ` 2 N;

denotes the position of the leading coefficient of ` given by (1.110) and �.`/ D
��.`/.`/ denotes its value.

Proof. We have the Fine–Price formula, that for every ` 2 N0,

e`.x/ D p��.`/u`.x/; (1.117)

where

u0.x/ D 1

2
w0.x/C

1X
iD1

p�i
p�1X
jD1

�j .1 � �j /�1wjpi�1 .x/; (1.118)

and where for every ` 2 N,

u`.x/ D .1 � ��.`//�1w�.`/.x/C
�
1

2
� .1 � ��.`//�1

�
w`.x/

C
1X
iD1

p�i
p�1X
jD1

�j .1 � �j /�1w`Cjp�.`/Ci�1 .x/: (1.119)
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Here �.`/ D ` � �.`/p�.`/�1, and � D e2� i=p is a primitive p-th root of unity.
For details, see Fine [17] and Price [28]. The right hand side of (1.119) is a linear
combination of distinct Walsh functions. It follows that for every ` 2 N, we have

Z 1

0

ju`.x/j2 dx D 1

.1 � ��.`//.1 � ���.`// C
�
1

2
� 1

1 � ��.`/
��

1

2
� 1

1 � ���.`/

�

C
1X
iD1

p�2i
p�1X
jD1

j1 � �j j�2

D 2j1� ��.`/j�2 � 1

4
C 1

p2 � 1

p�1X
jD1

j1 � �j j�2: (1.120)

The identity (1.116) follows on combining (1.117) and (1.120) with the observation

j1 � �j j2 D
�
1 � cos

2�j

p

�2
C sin2

2�j

p
D 4 sin2

�j

p
: (1.121)

Similarly, we have

Z 1

0

ju0.x/j2 dx D 1

4
C
1X
iD1

p�2i
p�1X
jD1

j1� �j j�2 D 1

4
C 1

p2 � 1
p�1X
jD1

j1 � �j j�2:

(1.122)

The identity (1.115) follows on combining (1.117), (1.121) and (1.122). ut
Lemma 34. For every ` 2 N0, we have

Z 1

0

je`.x/j2 dx � p2�2�.`/

4
:

Proof. Suppose first of all that ` ¤ 0. Then using the inequality that

csc2
�j

p
� p2

4

for every j D 1; : : : ; p � 1, we see from (1.116) that

Z 1

0

je`.x/j2 dx � p�2�.`/
�
p2

8
C 1

4
C p2.p � 1/

16.p2 � 1/
�

� p2�2�.`/

4
:
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On the other hand, it follows similarly from (1.115) that

Z 1

0

je0.x/j2 dx � 1

4
C p2.p � 1/
16.p2 � 1/ � p2

4
D p2�2�.0/

4

as required. ut
Combining (1.114) and Lemma 34, we conclude that

Z
Œ0;1�2

jel.x/j2 dx � p4�2�.l/

16
;

where �.l/ D �.`1/C �.`2/. Thus we need to estimate the sum

X
l2L.h/

p�2�.l/: (1.123)

Here �.l/ is a non-Hamming weight that arises from the Rosenblum–Tsfasman
weight in coding theory. The idea here is that if the distribution dual to P.ph/ has
sufficiently large Rosenblum–Tsfasman weight, then we can obtain a good estimate
for the sum (1.123).

For a brief discussion on how we may complete our proof, the reader is referred
to the paper of Chen and Skriganov [13].

1.16 Explicit Constructions and Orthogonality

The first proof of Theorem 10 for arbitrary k � 2 by Roth [31] is probabilistic
in nature, as are the subsequent proofs by Chen [9] and Skriganov [33]. The
disadvantage of such probabilistic arguments is that while we can show that a good
point set exists, we cannot describe it explicitly.

On the other hand, the proof by Davenport [15] of Theorem 10 in dimension
k D 2 is not probabilistic in nature, and one can describe the point set explicitly.
However, finding explicit constructions in dimensions k � 3 turns out to be rather
hard. Its eventual solution by Chen and Skriganov [11] is based on the observation
that provided that the prime p is sufficiently large, then the functions el.x/, where
l 2 L.h/, are quasi-orthogonal, so that some weaker version of Lemma 32 in
arbitrary dimensions holds.

However, if we are not able to establish any orthogonality or quasi-orthogonality,
then our techniques thus far fail to give any explicit constructions in dimensions
k � 3. To establish an appropriate upper bound, we may resort to digit shifts, and
our argument is underpinned by the general result below for arbitrary dimensions
k � 2 for some suitably defined Walsh functionWl.t/.
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Lemma 35. For every l0; l00 2 Nk
0 , we have

X
t2Zkhp

Wl0.t/Wl00.t/ D
�
pkh; if l0 D l00;
0; otherwise:

This result can be viewed as an orthogonality result. We may therefore conclude
that orthogonality or quasi-orthogonality in some form is central to our upper bound
arguments here, whether we consider explicit constructions or otherwise.
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Chapter 2
Roth’s Orthogonal Function Method
in Discrepancy Theory and Some
New Connections

Dmitriy Bilyk

Abstract In this survey we give a comprehensive, but gentle introduction to
the circle of questions surrounding the classical problems of discrepancy theory,
unified by the same approach originated in the work of Klaus Roth (Mathematika
1:73–79, 1954) and based on multiparameter Haar (or other orthogonal) function
expansions. Traditionally, the most important estimates of the discrepancy function
were obtained using variations of this method. However, despite a large amount
of work in this direction, the most important questions in the subject remain
wide open, even at the level of conjectures. The area, as well as the method, has
enjoyed an outburst of activity due to the recent breakthrough improvement of
the higher-dimensional discrepancy bounds and the revealed important connections
between this subject and harmonic analysis, probability (small deviation of the
Brownian motion), and approximation theory (metric entropy of spaces with mixed
smoothness). Without assuming any prior knowledge of the subject, we present
the history and different manifestations of the method, its applications to related
problems in various fields, and a detailed and intuitive outline of the latest higher-
dimensional discrepancy estimate.

2.1 Introduction

The subject and the structure of the present chapter is slightly unconventional.
Instead of building the exposition around the results from one area, united by a
common topic, we concentrate on problems from different fields which all share a
common method.
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The starting point of our discussion is one of the earliest results in discrepancy
theory, Roth’s 1954 L2 bound of the discrepancy function in dimensions d � 2

[81], as well as the tool employed to obtain this bound, which later evolved
into a powerful orthogonal function method in discrepancy theory. We provide
an extensive overview of numerous results in the subject of irregularities of
distribution, whose proofs are based on this method, from the creation of the field
to the latest achievements.

In order to highlight the universality of the method, we shall bring out and
emphasize analogies and connections of discrepancy theory and Roth’s method to
problems in a number of different fields, which include numerical integration (errors
of cubature formulas), harmonic analysis (the small ball inequality), probability
(small deviations of multiparameter Gaussian processes), approximation theory
(metric entropy of spaces with dominating mixed smoothness). While some of these
problems are related by direct implications, others are linked only by the method of
proof, and perhaps new relations are yet to be discovered.

We also present a very detailed and perceptive account of the proof of one of
the most recent important developments in the theory, the improved L1 bounds
of the discrepancy function, and the corresponding improvements in other areas.
We focus on the heuristics and the general strategy of the proof, and thoroughly
explain the idea of every step of this involved argument, while skipping some of the
technicalities, which could have almost doubled the size of this chapter.

We hope that the content of the volume will be of interest to experts and
novices alike and will reveal the omnipotence of Roth’s method and the fascinating
relations between discrepancy theory and other areas of mathematics. We have made
every effort to make our exposition clear, intuitive, and essentially self-contained,
requiring familiarity only with the most basic concepts of the underlying fields.

2.1.1 The History and Development of the Field

Geometric discrepancy theory seeks answers to various forms of the following
questions: How accurately can one approximate a uniform distribution by a finite
discrete set of points? And what are the errors and limitations that necessarily arise
in such approximations? The subject naturally grew out of the notion of uniform
distribution in number theory. A sequence! D f!ng1nD1  Œ0; 1� is called uniformly
distributed if, for any subinterval I  Œ0; 1�, the proportion of points!n that fall into
I approximates its length, i.e.

lim
N!1

#f!n 2 I W 1 � n � N g
N

D jI j: (2.1)

This property can be easily quantified using the notion of discrepancy:
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DN.!/ D sup
I�Œ0;1�

ˇ̌
#f!n 2 I W 1 � n � N g �N � jI jˇ̌; (2.2)

where I is an interval. In fact, it is not hard to show that ! is uniformly distributed
if and only if DN.!/=N tends to zero as N ! 1 (see e.g. [60]).

In [115, 1935], van der Corput posed a question whether there exists a sequence
! for which the quantity DN .!/ stays bounded as N gets large. More precisely,
he mildly conjectured that the answer is “No” by stating that he is unaware of such
sequences. Indeed, in [113, 1945], [114], van Aardenne-Ehrenfest gave a negative
answer to this question, which meant that no sequence can be distributed too well.
This result is widely regarded as a predecessor of the theory of irregularities of
distribution.

This area was turned into a real theory with precise quantitative estimates and
conjectures by Roth, who in particular, see [81], greatly improved van Aardenne-
Ehrenfest’s result by demonstrating that for any sequence ! the inequality

DN .!/ � C
p

logN (2.3)

holds for infinitely many values of N . These results signified the birth of a new
theory.

Roth in fact worked on the following, more geometrical version of the problem.
Let PN  Œ0; 1�d be a set of N points and consider the discrepancy function

DN.x1; : : : ; xd / D #fPN \ Œ0; x1/ 
 � � � 
 Œ0; xd /g �N � x1 � � � � � xd ; (2.4)

i.e. the difference of the actual and expected number of points of PN in the box
Œ0; x1/ 
 � � � 
 Œ0; xd /. Notice that, in contrast to some of the standard references,
we are working with the unnormalized version of the discrepancy function, i.e. we
do not divide this difference by N as it is often done. Obviously, the most natural
norm of this function is the L1 norm, i.e. the supremum of jDN .x/j over x 2
Œ0; 1�d , often referred to as the star-discrepancy. In fact the term star-discrepancy is
reserved for the sup-norm of the normalized discrepancy function, i.e. 1

N
kDN k1,

however since we only use the unnormalized version in this text, we shall abuse the
language and apply this term to kDN k1.

Instead of directly estimating the L1 norm of the discrepancy function
kDN k1 D sup

x2Œ0;1�d
ˇ̌
DN.x/

ˇ̌
, Roth considered a smaller quantity, namely its L2

norm kDN k2 . This substitution allowed for an introduction of a variety of Hilbert
space techniques, including orthogonal decompositions. In this setting Roth proved.

Theorem 1 (Roth [81]). In all dimensions d � 2, for any N -point set PN 
Œ0; 1�d , one has

DN


2

� Cd log
d�1
2 N; (2.5)
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where Cd is an absolute constant that depends only on the dimension d . This in
particular implies that

sup
x2Œ0;1�d

ˇ̌
DN .x/

ˇ̌ � Cd log
d�1
2 N: (2.6)

It was also shown that, when d D 2, inequality (2.6) is equivalent to (2.3). More
generally, uniform lower bounds for the discrepancy function of finite point sets (for
all values ofN ) in dimension d are equivalent to lower estimates for the discrepancy
of infinite sequences (2.2) (for infinitely many values of N ) in dimension d � 1.
These two settings are sometimes referred to as ‘static’ (fixed finite point sets) and
‘dynamic’ (infinite sequences). In these terms, one can say that the dynamic and
static problems are equivalent at the cost of one dimension—the relation becomes
intuitively clear if one views the index of the sequence (or time) as an additional
dimension. In this text, we adopt the former geometrical, ‘static’ formulation of the
problems.

According to Roth’s own words, these results “started a new theory” [32]. The
paper [81] in which it was presented, entitled “On irregularities of distribution”,
has had a tremendous influence on the further development of the field. Even the
number of papers with identical or similar titles, that appeared in subsequent years,
attests to its importance: 4 papers by Roth himself (On irregularities of distribution.
I-IV, [81–84]), one by H. Davenport (Note on irregularities of distribution, [38]),
10 by W. M. Schmidt (Irregularities of distribution. I-X, [86–95]), 2 by J. Beck
(Note on irregularities of distribution. I-II, [6, 7]), 4 by W. W. L. Chen (On
irregularities of distribution. I-IV, [27–30]), at least 2 by Beck and Chen (Note on
irregularities of distribution. I-II, [3, 4] and several others with similar, but more
specific names, as well as the fundamental monograph on the subject by Beck and
Chen, “Irregularities of distribution”, [10].

The technique proposed in the aforementioned paper was no less important than
the results themselves. Roth was the first to apply the expansion of the discrepancy
functionDN in the classical orthogonal Haar basis. Furthermore, he realized that in
order to obtain good estimates of kDN k2 it suffices to consider just its projection
onto the span of those Haar functions which are supported on dyadic rectangles of
volume roughly equal to 1

N
. This is heuristically justified by the fact that, for a well

distributed set, each such rectangle contains approximately one point. To be even
more precise, the size of the rectangles R was chosen so that jRj � 1

2N
, ensuring

that about half of all rectangles are free of points of PN . The Haar coefficients
of DN , corresponding to these empty rectangles, are then easy to compute, which
leads directly to the estimate (2.5). This idea is the main theme of Sect. 2.2. Roth’s
approach strongly resonates with Kolmogorov’s method of proving lower error
bounds for cubature formulas, see e.g. [105, Chapter IV]. We shall discuss these
ideas in more detail in Sect. 2.2.3.

A famous quote attributed to G. Polya [79] says,

What is the difference between method and device? A method is a device which you used
twice.
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In agreement with this statement, over the past years Roth’s clever device
has indeed evolved into a powerful and versatile method: it has been applied
an enormous number of times to various problems and questions in discrepancy
theory and other areas. Our survey is abundant in such applications: discrepancy
estimates in other function spaces Sect. 2.3.4, estimates of the star-discrepancy
Sects. 2.4.4, 2.5, the small ball inequality Sects. 2.4.3, 2.5, constructions of low-
discrepancy distributions Sect. 2.6.

Roth’s L2 result has been extended to other Lp norms, 1 < p < 1, only
significantly later by W. Schmidt in [95, 1977], who showed that in all dimensions
d � 2, for all p 2 .1;1/ the inequality

kDN kp � Cd;p log
d�1
2 N; (2.7)

holds for some constantCd;p independent of the collection of points PN . Schmidt’s
approach was a direct extension of Roth’s method: rather then working with
arbitrary integrability exponents p, he considers only those p’s for which the dual
exponent q is an even integer. This allows one to iterate the orthogonality arguments.
Even though it took more than 20 years to extend Roth’s L2 inequality to other
Lp spaces, a contemporary harmonic analyst may realize that such an extension
can be derived in just a couple of lines using Littlewood–Paley inequalities. A
comprehensive discussion will be provided in Sect. 2.3.

While the case 1 < p < 1 is thoroughly understood, the endpoint case p D 1,
i.e. the star-discrepancy, is much more mysterious, despite the fact that it is most
natural and important in the theory as it describes the worst possible discrepancy. It
turns out that Roth’s inequality (2.6) is not sharp for the sup-norm of the discrepancy
function. It is perhaps not surprising: intuitively, the discrepancy function is highly
irregular and comes close to its maximal values only on small sets. Hence, its
extremal (i.e. L1) norm must necessarily be much larger than its average (e.g. L2)
norm. This heuristics also guides the use of some of the methods that have been
exploited in the proofs of the star-discrepancy estimates, such as Riesz products.

In 1972, W. M. Schmidt proved that in dimension d D 2 one has the following
lower bound:

sup
x2Œ0;1�d

ˇ̌
DN.x/

ˇ̌ � C logN; (2.8)

which is known to be sharp. Indeed, two-dimensional constructions, for which
kDN k1 � C logN holds for all N (or, equivalently, one-dimensional sequences !
for whichDN .!/ � C logN infinitely often), have been known for a long time and
go back to the works of Lerch [65, 1904], van der Corput [115, 1935] and others,
see e.g. Sect. 2.6.

Several other proofs of Schmidt’s inequality (2.8) have been given later [68,
1979], [11, 1982], [48, 1981]. The latter (due to Halász) presents great interest to
us as it has been built upon Roth’s Haar function method—we will reproduce and
analyze the argument in Sect. 2.4.4. Incidentally, the title of Halász’s article [48]
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(“On Roth’s method in the theory of irregularities of point distributions”) almost
coincides with the title of this chapter.

Higher dimensional analogs of Schmidt’s estimate (2.8), however, turned out to
be extremely proof-resistant. For a long time inequality (2.6) remained the best
known bound in dimensions three and above. In fact, the first gain over the L2

estimate was obtained only 35 years after Roth’s result by Beck [8, 1989], who
proved that in dimension d D 3, discrepancy function satisfies

kDN k1 � C logN � .log logN/
1
8�": (2.9)

Almost 20 years later, in 2008, the author jointly with M. Lacey and A. Vaghar-
shakyan [15, d D 3]; [17, d � 4] obtained the first significant improvement of the
L1 bound in all dimensions d � 3:

Theorem 2 (Bilyk, Lacey, Vagharshakyan). For all d � 3, there exists some � D
�.d/ > 0, such that for all PN  Œ0; 1�d with #PN D N we have the estimate:

kDN k1 � Cd .logN/
d�1
2 C� : (2.10)

The exact rate of growth of the star-discrepancy in higher dimensions remains
an intriguing question; in their book [10], Beck and Chen named it “the great open
problem” and called it “excruciatingly difficult”.

Even the precise form of the conjecture is a subject of ongoing debate among
the experts in the field. The opinions are largely divided between two possible
formulations of this conjecture. We start with the form which is directly pertinent to
the orthogonal function method.

Conjecture 3. For all d � 3 and all PN  Œ0; 1�d with #PN D N we have the
estimate:

kDN k1 � Cd .logN/
d
2 : (2.11)

This conjecture is motivated by connections of this field to other areas of mathemat-
ics and, in particular, by a related conjecture in analysis, the small ball conjecture
(2.111), which is known to be sharp, see Sect. 2.4.2. Unfortunately, this relation is
not direct—it is not known whether the validity of the small ball conjecture implies
the discrepancy estimate (2.11), the similarity lies just in the methods of proof. But,
at the very least, this connection suggests that Conjecture 3 is the best result that
one can achieve using Roth’s Haar function method.

On the other hand, the best known examples [49, 51] of well distributed sets in
higher dimensions have star-discrepancy of the order

kDN k1 � Cd .logN/d�1 : (2.12)
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Numerous constructions of such sets are known and are currently a subject of
massive ongoing research, see e.g. the book [39]. These upper bounds together with
the estimates for a “smooth” version of discrepancy (see Temlyakov [110]), provide
grounds for an alternative form of the conjecture (which is actually older and more
established).

Conjecture 4. For all d � 3 and all PN  Œ0; 1�d with #PN D N we have the
estimate:

kDN k1 � Cd .logN/d�1 : (2.13)

One can notice that both conjectures coincide with Schmidt’s estimate (2.8) when
d D 2. Skriganov has proposed yet another form of the conjecture [99]:

kDN k1 � Cd .logN/
d�1
2 C d�1

d ; (2.14)

which is exact both in d D 1 and d D 2.
In contrast to the L1 inequalities, it is well known that in the average (L2

or Lp) sense Roth’s bound (2.3), as well as inequality (2.7), is sharp. This was
initially proved by Davenport [38] in two dimensions for p D 2, who constructed
point distributions with jjDN k2 � C

p
logN . Subsequently, different constructions

have been obtained by numerous other authors, including Roth [83, 84], Chen [27],
Frolov [44]. It should be noted that most of the optimal constructions in higher
dimensions d � 3 are probabilistic in nature and are obtained as randomizations
of some classic low-discrepancy sets. In fact, deterministic examples of sets with

kDN kp � Cd;p log
d�1
2 N have been constructed only in the last decade by Chen and

Skriganov [33, 34] (p D 2) and Skriganov [98] (p > 1). It would be interesting to
note that their results are also deeply rooted in Roth’s orthogonal function method—
they use the orthogonal system of Walsh functions to analyze the discrepancy
function and certain features of the argument remind one of the ideas that appear
in Roth’s proof.

The other endpoint of the Lp scale, p D 1, is not any less (and perhaps even
more) difficult than the star-discrepancy estimates. The only information that is
available is the two-dimensional inequality (proved in the aforementioned paper
of Halász [48]), which also makes use of Roth’s orthogonal function method:

kDN k1 � C
p

logN; (2.15)

This means that the L1 norm of discrepancy behaves roughly like its L2 norm. It is
conjectured that the same similarity continues to hold in higher dimensions.

Conjecture 5. For all d � 3 and all sets of N points in Œ0; 1�d :

kDN k1 � Cd .logN/
d�1
2 : (2.16)
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However, almost no results pertaining to this conjecture have been discovered for
d � 3. The only known relevant fact is that

p
logN bound still holds in higher

dimensions, i.e. it is not even known if the exponent increases with dimension. The
reader is referred to Sect. 2.4.5 for Halász’s L1 argument.

2.1.2 Preliminary Discussion

While the main subject of this chapter is Roth’s method in discrepancy theory,
we are also equally concentrated on its applications and relations to a wide array
of problems extending to topics well beyond discrepancy. One of our principal
intentions is to stress the connections between different areas of mathematics and
accentuate the use of the methods of harmonic analysis in discrepancy and related
fields. Having aimed to cover such a broad range of topics, we left ourselves with
little chance to make the exposition very detailed and full of technicalities. Instead,
we decided to focus on the set of ideas, connections, arguments, and conjectures
that permeate discrepancy theory and several other subjects.

We assume only very basic prior knowledge of any of the underlying fields,
introducing and explaining the new concepts as they appear in the text, discussing
basic properties, and providing ample references. In particular, we believe this
chapter to be a very suitable reading for graduate students as well as for mathe-
maticians of various backgrounds interested in discrepancy or any of the discussed
areas. In an effort to make our exposition reader-friendly and accessible, we often
sacrifice generality, and sometimes even rigor, in favor of making the presentation
more intuitive, providing simpler and more transparent arguments, or explaining
the heuristics and ideas behind the proof. The reader however should not get the
impression that this chapter is void of mathematical content. In fact, a great number
of results are meticulously proved in the text and numerous computations, which
could have been skipped in a technical research paper, are carried out in full detail.

2.1.2.1 A Brief Outline of the Chapter

Even though our exposition consists of several distinct sections which sometimes
deal with seemingly unrelated subjects, every section naturally continues and
interlaces with the discussion of the previous ones. In the next several paragraphs
we give a brief ‘sneak preview’ of the content of this chapter.

• In Sect. 2.2 we introduce the reader to the main ideas of Roth’s L2 method.
We start with the necessary definitions and background information on Haar
functions and product orthogonal bases and then proceed to explain a general
principle behind Roth’s argument. We then give the proof of the L2 discrepancy
bound, Theorem 1. We present Roth’s original proof which relies on duality
and the Cauchy–Schwarz inequality, as well as a slightly different argument
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which makes use of orthogonality and Bessel’s inequality directly. In the end of
Sect. 2.2 we turn to Kolmogorov’s method of obtaining lower bounds for errors
of cubature formulas on various function classes governed by the behavior of
the mixed derivative. The method is based on the same idea as Roth’s method
in discrepancy theory and provides an important connection between these two
intimately related areas.

• Extensions of Theorem 1 even to Lp spaces with p ¤ 2 turned out to be some-
what delicate and not immediate. However, harmonic analysis provides means
to make these extensions almost automatic. This instrument, the Littlewood–
Paley inequalities, is the subject of Sect. 2.3. The Littlewood–Paley serves as a
natural substitute for orthogonality in non-Hilbert spaces, e.g. Lp . In Sect. 2.3
we discuss the relevant version of this theory—the dyadic Littlewood–Paley
inequalities, starting with the one-dimensional case and then moving forward
to the multiparameter setting. We also discuss the connections of this topic to
objects in probability theory such as the famous Khintchine inequality and the
martingale difference square function. Unfortunately, unlike many other methods
of harmonic analysis, Littlewood–Paley theory has not yet become a “household
name” among experts in various fields outside analysis. It is our sincere hope that
our exposition will further publicize and popularize this powerful method.

• Next, we demonstrate how these tools can be used to extend Roth’s L2

discrepancy estimate to Lp essentially in one line. Further, a large portion of
Sect. 2.3 is devoted to the discussion of discrepancy estimates analogous to
Theorem 1 in various function spaces, such as Hardy, Besov, BMO, weighted
Lp , and exponential Orlicz spaces. All of these results, in one way or another,
take their roots in Roth’s method and the Littlewood–Paley (or similar in spirit)
inequalities.

• In Sect. 2.4 we turn to arguably the most important problem of discrepancy
theory—sharp estimates of the star-discrepancy (L1 norm of the discrepancy
function). We introduce the small ball inequality—a purely analytic inequality
which is concerned with lower bounds of the supremum norm of sums of Haar
functions supported by rectangles of fixed size. The very structure of these sums
suggests certain connections with Roth’s method in discrepancy. And indeed,
even though it is not known if one problem directly implies the other, there
are numerous similarities in the known methods of proof and the small ball
inequality may be viewed as a linear model of the star-discrepancy method.
We state the small ball conjecture and discuss known results and its sharpness,
which indirectly bears some effect on the sharpness of the relevant discrepancy
conjectures.

• In Sect. 2.4.3 we present a beautiful proof of the small ball conjecture in
dimension d D 2. We then proceed to demonstrate an amazingly similar proof
of Schmidt’s lower bound (2.8) for the star-discrepancy in d D 2 as well as
a proof of the L1 discrepancy bound (2.15). All three proofs are based on an
ingenious method known as the Riesz product. To reinforce the connections of
these problems with the classical problems of analysis, in Sect. 2.4.6 we briefly
discuss the area in which Riesz product historically first appeared—lacunary
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Fourier series. We give a proof of Sidon’s theorem whose statement, as well
as the argument used to prove it, resemble both the small ball inequality and the
discrepancy estimates in great detail and perhaps have inspired their respective
proofs.

• The small ball inequality turns out to be connected to other areas of mathe-
matics besides discrepancy—in particular, approximation theory and probability.
In Sects. 2.4.7–2.4.8 we describe the relevant problems: the small deviation
probabilities for the Brownian sheet and the metric entropy of function classes
with mixed smoothness. We demonstrate that the small ball inequality directly
implies lower bounds in both of these problems and hence indirectly ties them to
discrepancy.

• A substantial part of this chapter, Sect. 2.5, focuses on the important recent
developments in the subject, namely the first significant improvement in the small
ball inequality and the L1 discrepancy estimates in all dimensions d � 3. We
thoroughly discuss the main steps and ingredients of the proof, intuitively explain
many parts of the argument and pinpoint the arising difficulties without going too
deep into the technical details. This approach, in our opinion, will allow one to
comprehend the ‘big picture’ and the strategy of the proof. An interested reader
will then be well-equipped and prepared to fill in the complicated technicalities
by consulting the provided references.

• Finally, in Sect. 2.6 our attention makes a 180-degree turn from lower bounds
to constructions of well-distributed point sets and upper discrepancy estimates.
We introduce one of the most famous low-discrepancy distributions in two
dimensions—the van der Corput digit reversing set, whose binary structure
makes it a perfect fit for the tools of dyadic analysis and Roth’s method. We
describe certain modifications of this set, which achieve the optimal order of
discrepancy in various function spaces, in particular, demonstrating the sharpness
of some of the results in Sect. 2.3.4.

The aim of this survey is really two-fold: to acquaint specialists in discrepancy
theory with some of the techniques of harmonic analysis which may be used in this
subject, as well as to present the circle of problems in the field of irregularities
of distribution to the analysts. Numerous books written on discrepancy theory
present Roth’s method and related arguments, see [10, 25, 39, 60, 72, 105]; the
book [73] studies the relations between uniform distribution and harmonic analysis,
[111] views the subject through the lens of the function space theory, while [100]
specifically investigates the connections between discrepancy and Haar functions.
In addition, the survey [35] explores various ideas of Roth in discrepancy theory,
including the method discussed here. Finally, [61] and [14] are very similar in spirit
to this chapter; however, the survey [14] is much more concise than the present text,
and the set of notes [61] focuses primarily on the underlying harmonic analysis.
We have tried to make the to presentation accessible to a wide audience, rather
than experts in one particular area, yet at the same time inclusive, embracing and
accentuating the connections between numerous topics. We sincerely hope that,
despite a vast amount of literature on the subject, this chapter will provide some
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novel ideas and useful insights and will be of interest to both novices and specialists
in the field.

2.1.2.2 Some Other Problems Related to Roth’s Method

Unfortunately, there are still a number of topics that either grew directly out of
Roth’s method or are tangentially, but strongly correlated with it, which we will not
be touching upon in this survey, since these discussions would have taken us very
far afield. They include, in particular, Beck’s beautiful lower bound on the growth
of polynomials with roots on the unit circle [9]. By an argument, very similar to
the Halász’s proof of the two-dimensional star-discrepancy estimate, Beck showed
that there exists a constant ı > 0 such that for any infinite sequence fzng1nD1 of
unimodular complex numbers and polynomials PN .z/ D QN

nD1.z � zn/ the bound

sup
jzj�1

jPN .z/j > Nı (2.17)

holds for infinitely many values of N , thus giving a negative answer to a question
of Erdős.

Another problem considered by Beck and Roth deals with the so-called com-
binatorial discrepancy, a natural companion of the geometric discrepancy. Let
the function � W PN ! f˙1g represent a “red-blue” coloring of an N -point
setPN  Œ0; 1�d . The combinatorial discrepancy of PN with respect to a family

of sets B is defined as T .PN / D inf
�

sup
B2B

ˇ̌̌
ˇ

X
p2PN\B

�.p/

ˇ̌̌
ˇ, i.e. the minimization

of the largest disbalance of colors in sets from B over all possible colorings. In
[5], Beck discovered that, when B is the family of axis-parallel boxes, the quantity
T .N / WD supPN

T .PN / is tightly related to the discrepancy function estimates.
In particular, in d D 2 one has T .N / & logN . In [85] Roth has extended this to
real-valued functions � (continuous coloring) showing that

T .N / & .logN/

N

X
p2PN

j�.p/j: (2.18)

Roth’s argument relied on Haar expansions and Riesz product and almost repeated
the proof of the L1 discrepancy bound in dimension two with an addition of some
new ideas. Recent progress (2.10) on the discrepancy function directly yields an
analogous improvement in the “red-blue” case for d � 3 and can be adjusted to
provide a similar estimate for “continuous” colorings in dimension d D 3.

There are numerous other examples. Chazelle [26] has applied a discrete version
of Roth’s orthogonal function method to a problem in computational geometry,
obtaining a lower bound for the complexity of orthogonal range searching. The
Riesz product techniques, similar to Halász’s, have been used in approximation
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theory for a long time to obtain Bernstein-type inequalities, estimates for entropy
numbers and Kolmogorov widths of certain function classes, see e.g. [106,108,109].
We shall only briefly discuss some of these connections in Sect. 2.4.8.

This diverse set of topics shows the universality and ubiquitousness of the method
and ideas under discussion.

2.1.2.3 Notation and Conventions

Before we proceed to the mathematical part of the text, we would like to explain
some of the notation and conventions that we shall be actively using. Since many
different constants arise in our discussion, we often make use of the symbol “.”:
F . G means that there exists a constant C > 0 such that F � CG. The relation
F � G means that F . G and G . F . The implicit constants in such inequalities
will be allowed to depend on the dimension and, perhaps, some other parameters,
but never on the number of points N .

In other words, in this survey we are interested in the asymptotic behavior of
the discrepancy when the dimension is fixed and the number of points increases.
Therefore, such effects as the curse of dimensionality do not come into play. Finding
optimal estimates as the dimension goes to infinity is a separate, very interesting
and important subject, see e.g. [52]. While one may argue that these questions are
sometimes more useful for applications, we firmly insist that the questions discussed
here, which go back to van der Corput, van Aardenne-Ehrenfest, and Roth, are at
least equally as important, especially considering the fact that in such natural (and
low!) dimensions as, say, 3 or 4 the exact rate of growth of discrepancy is far from
being understood and the relative gap between the lower and upper estimates is quite
unsatisfactory.

Throughout the text several variables will have robustly reserved meanings. The
dimension will always be denoted by d . CapitalN will always stand for the number
of points, while nwill represent the scale and will usually satisfy n � logN . Unless
otherwise specified, all logarithms are taken to be natural, although this is not so
important since we are not keeping track of the constants. The discrepancy function
of an N -point set PN  Œ0; 1�d will be denoted either by DPN or, more often, if
this creates no ambiguity, simply by DN . Recall that, unlike a number of standard
references, we are considering the unnormalized version of discrepancy, i.e. we do
not divide by N in the definition (2.4). The term star-discrepancy refers to the L1
norm of DN .

For a set A  R
d , its Lebesgue measure is denoted either by jAj or by �.A/. For

a finite set F , we use #F to denote its cardinality—the number of elements of F .
Whenever we have to resort to probabilistic concepts, P will stand for probability
and E for expectation.
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2.2 Roth’s Orthogonal Function Method and the L2

Discrepancy

Before we begin a detailed discussion of Roth’s method, we need to introduce and
define its main tool, Haar functions. We shall then explain Roth’s main idea and
proceed to reproduce his original proof of Theorem 1, although our exposition will
slightly differ from the style of the original paper [81] (the argument, however, will
be identical to Roth’s). We shall make use of somewhat more modern notation which
is closer in spirit to functional and harmonic analysis. Hopefully, this will allow us
to make the idea of the proof more transparent. Along the way, we shall try to look
at the argument at different angles and to find motivation behind some of the steps
of the proof.

2.2.1 Haar Functions and Roth’s Principle

We start by defining the Haar basis in L2Œ0; 1�. Let 1I .x/ stand for the characteristic
function of the interval I . Consider the collection of all dyadic subintervals of [0,1]:

D D
�
I D

�
m

2n
;
mC 1

2n

�
W m; n 2 Z; n � 0; 0 � m < 2n

�
: (2.19)

Dyadic intervals form a grid, meaning that any two intervals in D are either disjoint,
or one is contained in another. In addition, for every interval I 2 D , its left and
right halves (we shall denote them by Il and Ir ) are also dyadic. The Haar function
corresponding to the interval I is then defined as

hI .x/ D �1Il .x/C 1Ir .x/: (2.20)

Notice that in our definition Haar functions are normalized to have unit norm in L1
(their L2 norm is khIk2 D jI j1=2). This will cause some of the classical formulas to
look a little unusual to those readers who are accustomed to the L2 normalization.

These functions have been introduced by Haar [47, 1910] and have played an
extremely important role in analysis, probability, signal processing etc. They are
commonly viewed as the first example of wavelets. Their orthogonality, i.e. the
relation

hhI 0 ; hI 00i D
Z 1

0

hI 0.x/ � hI 00.x/ dx D 0; I 0; I 00 2 D ; I 0 ¤ I 00; (2.21)

follows easily from the facts that D is a grid and that the condition I 0 ¨ I 00, I 0,
I 00 2 D implies that I 0 is contained either in the left or right half of I 00, hence hI 00

is constant on the support of hI 0 . It is well known that the system H D 1Œ0;1� [



84 D. Bilyk

fhI W I 2 Dg forms an orthogonal basis in L2Œ0; 1� and an unconditional basis in
LpŒ0; 1�, 1 < p < 1.

In order to simplify the notation and make it more uniform, we shall sometimes
employ the following trick. Denote by D� D D [ fŒ�1; 1�g the dyadic grid on Œ0; 1�
with the interval Œ�1; 1� added to it. Then the family H D fhI gI2D

�

forms an
orthogonal basis of L2.Œ0; 1�/. In other words, the constant function on Œ0; 1� can be
viewed as a Haar function of order �1.

In higher dimensions, we consider the family of dyadic rectangles Dd D fR D
R1 
 � � � 
 Rd W Rj 2 Dg. For a dyadic rectangle R, the Haar function supported
by R is defined as a coordinatewise product of the one-dimensional Haar functions:

hR.x1; : : : ; xd / D hI1.x1/ � : : : � hId .xd /: (2.22)

The orthogonality of these functions is easily derived from the one dimensional
property. It is also well known that the ‘product’ Haar system H d D ff .x/ D
f1.x1/ � : : : �fd .xd / W fk 2 H g is an orthogonal basis ofL2.Œ0; 1�d /—often referred
to as the product Haar basis. The construction of product bases starting from a one-
dimensional orthogonal basis is also valid for more general systems of orthogonal
functions. In view of the previous remark, one can writeH d D fhRgR2Dd

�

, although

most of the times we shall restrict our attention to rectangles in Dd . Thus, every
function f 2 L2.Œ0; 1�d / can be written as

f D
X
R2Dd

�

hf; hRi
jRj hR; (2.23)

where the series converges in L2. If this expression seems slightly unconventional,
this is a result of the L1 normalization of hR. We note that this is not the only way
to extend wavelet bases to higher dimensions [37], but this multiparameter approach
is the correct tool for the problems at hand, where the dimensions of the underlying
rectangles are allowed to vary absolutely independently (e.g. some rectangles may
be long and thin, while others may resemble a cube). This is precisely the setting
of the product (multiparameter) harmonic analysis—we shall keep returning to this
point throughout the text.

One of the numerous important contributions of Klaus Roth to discrepancy
theory is the idea of using orthogonal function (in particular, Haar) decompositions
in order to obtain discrepancy estimates. This idea was introduced already in his
first paper on irregularities of distribution [81]. Even though Haar functions have
been introduced almost simultaneously to some questions connected with uniform
distribution theory and numerical integration (see Sobol’s book [100]), their power
for discrepancy estimates only became apparent with Roth’s proof of the lower
bound for the L2 bound of the discrepancy function.

In addition to introducing a new tool to the field, Roth has clearly demonstrated
a proper way to use it. An orthogonal expansion may be of very little use to us,
unless we know how to extract information from it and which coefficients play the
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most important role. The method of proof of the L2 bound (2.5) unambiguously
suggests where one should look for the most relevant input of the decomposition to
the intrinsic features of the discrepancy function. Further success of this approach in
various discrepancy setting and connections to other areas and problems, described
throughout this chapter, validates the correctness of the idea and turns it into a
method. We formulate it here as a general principle.

Roth’s principle: The behavior of the discrepancy function is essentially
defined by its projection onto the span of Haar functions hR supported by
rectangles of volume jRj � 1

N
, i.e.

DN �
X

R2Dd W jRj� 1
N

hDN ; hRi
jRj hR: (2.24)

In the formulation of this principle, we interpret the symbols ‘�’ and ‘�’ very
loosely and broadly. This principle as such should not be viewed as a rigorous
mathematical statement. It is rather a circle of ideas and a heuristic approach. In
this chapter we shall see many manifestations of this principle in discrepancy theory
(both for upper and lower estimates) and will draw parallels with similar methods
and ideas in other fields, such as approximation theory, probability, and harmonic
analysis.

An intuitive explanation of this principle, perhaps, lies in the fact that, for ‘nice’
distributions of points PN , any dyadic rectangle of area jRj � 1

N
would contain

roughly one point (or the number of empty rectangles is comparable to the number
of points). At fine scales, the boxes are too small and most of the time they contain
no points of PN and hence do not carry much information about the discrepancy.
While rectangles that are too big (coarse scales) incorporate too much cancellation:
the discrepancy of Œ0; 1�d , for example, is always zero. (We should note that large
rectangles, however, often give important additional information, see e.g. [54]).
Therefore, the intermediate scales are the most important ones. Of course, this
justification is too naive and simplistic and does not provide a complete picture.
Some details will become more clear after discussing the proof of (2.5) which we
turn to now.

2.2.2 The Proof of the L2 Discrepancy Estimate

As promised we shall now reconstruct Roth’s original proof of theL2 estimate (2.5).
Following the general lines of Roth’s principle (2.24), we consider dyadic rectangles
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R 2 Dd of volume jRj D 2�n � 1
N

. To be more exact, let us choose the number
n 2 N so that

2n�2 � N < 2n�1; (2.25)

i.e. n � log2 N (although the precise choice of n is important for the argument).
These rectangles come in a variety of shapes, especially in higher dimen-

sion. This fact dramatically increases the combinatorial complexity of the related
problems. To keep track of these rectangles we introduce a special bookkeeping
device—a collection of vectors with non-negative integer coordinates

H
d
n D fr D .r1; : : : ; rd / 2 Z

dC W krk1 D ng; (2.26)

where the `1 norm is defined as krk1 D jr1j C � � � C jrd j. These vectors will specify
the shape of the dyadic rectangles in the following sense: for R 2 Dd , we say that
R 2 Dd

r if jRj j D 2�rj for j D 1; : : : ; d . Obviously, if R 2 Dd
r and r 2 H

d
n , then

jRj D 2�n. Besides, it is evident that, for a fixed r, all the rectangles R 2 Dd
r are

disjoint. It is also straightforward to see that the cardinality

#Hd
n D

 
nC d � 1
d � 1

!
� nd�1; (2.27)

which agrees with the simple logic that we have d � 1 “free” parameters: the first
d �1 coordinates can be chosen essentially freely, while the last one would be fixed
due to the condition krk1 D n or jRj D 2�n.

We shall say that a function f on Œ0; 1�d is an r-function with parameter r 2 Z
dC

if f is of the form

f .x/ D
X
R2Dd

r

"RhR.x/; (2.28)

for some choice of signs "R D ˙1. These functions are generalized Rademacher
functions (hence the name)—indeed, setting all the signs "R D 1, one obtains
the familiar Rademacher functions. It is trivial that if f is an r-function, then
f 2 D 1 and thus kf k2 D 1. Such functions play the role of building blocks
in numerous discrepancy arguments, therefore their L2 normalization justifies the
choice of the L1 normalization for the Haar functions. In addition, the fact that two
r-functions corresponding to different vectors r are orthogonal readily follows from
the orthogonality of the family of Haar functions.

Next, we would like to compute how the discrepancy functionDN interacts with
Haar functions in certain cases. Notice that discrepancy can be written in the form

DN .x/ D
X
p2PN

1Œp;1�.x/ �N � x1 � � � � � xd ; (2.29)
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where 1 D .1; : : : ; 1/ and Œp; 1� D Œp1; 1� 
 � � � 
 Œpd ; 1�. We shall refer to the first
term as the counting part and the second as the volume (area) or the linear part.

It is easy to see that, in one dimension, we have

Z
1Œq;1�.x/ � hI .x/ dx D

Z 1

q

hI .x/ dx D 0 (2.30)

unless I contains the point q. This implies that for p 2 Œ0; 1�d
Z
Œ0;1�d

1Œp;1�.x/ � hR.x/ dx D
dY
jD1

Z 1

pj

hRj .xj / dxj D 0 (2.31)

when p 62 R. Assume now that a rectangle R 2 Dd is empty, i.e. does not contain
points of PN . It follows from the previous identity that for such a rectangle, the
inner product of the corresponding Haar function with the counting part of the
discrepancy function is zero:

* X
p2PN

1Œp;1�; hR

+
D 0: (2.32)

In other words, if R is free of points of PN , the inner product hDN ; hRi is
determined purely by the linear part of DN .

It is however a simple exercise to compute the inner product of the linear part
with any Haar function:

hNx1 : : : xd ; hRi D N

dY
jD1

hxj ; hRj .xj /i D N � jRj2
4d

: (2.33)

Hence we have shown that if a rectangle R 2 Dd does not contain points of PN in
its interior, we have

hDN ; hRi D �N jRj24�d : (2.34)

These, somewhat mysterious, computations can be explained geometrically (see
[95], also [25, Chapter 3]). For simplicity, we shall do it in dimension d D 2, but this
argument easily extends to higher dimensions. LetR  Œ0; 1�2 be an arbitrary dyadic
rectangle of dimensions 2h1
2h2 which does not contain any points of PN and let
R0  R be the lower left quarter of R. Notice that, for any point x D .x1; x2/ 2 R0,
the expression

DN

�
x
� �DN

�
x C .h1; 0/

�CDN

�
x C .h1; h2/

� �DN

�
x C .0; h2/

�

D �N � h1h2 D �N � jRj
4
: (2.35)
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Indeed, since R is empty, the counting parts will cancel out, and the area parts will
yield precisely the area of the rectangle with vertices at the four points in the identity
above. Hence, it is easy to see that

Z
R0

�
DN

�
x
� �DN

�
x C .h1; 0/

�CDN

�
x C .h1; h2/

� �DN

�
x C .0; h2/

��
dx

D �N � jRj
4

� jR0j D �N � jRj2
42

;

(2.36)

while, on the other hand,

Z
R0

�
DN

�
x
� �DN

�
x C .h1; 0/

�CDN

�
x C .h1; h2/

� �DN

�
x C .0; h2/

��
dx

D
Z
R

DN .x/ � hR.x/ dx D hDN ; hRi:
(2.37)

In other words, the inner product of discrepancy with the Haar function supported
by an empty rectangle picks up the local discrepancy arising purely from the area of
the rectangle.

We are now ready to prove a crucial preliminary lemma.

Lemma 6. Let PN  Œ0; 1�d be a distribution of N points and let n 2 N be such
that 2n�2 � N < 2n�1. Then, for any r 2 H

d
n , there exists an r-function fr with

parameter r such that

hDN ; fri � cd > 0; (2.38)

where the constant cd depends on the dimension only.

Proof. Construct the function fr in the following way:

fr D
X

R2Dd
r WR\PND;

.�1/ � hR C
X

R2Dd
r WR\PN¤;

sgn
�hDN ; hRi� � hR (2.39)

By our choice of n (2.25), at least 2n�1 of the 2n rectangles in Dd
r must be free

of points of PN . It then follows from (2.32) and (2.33) that

hDN ; fri � �
X

R\PND;
hDN ; hRi D

X
R\PND;

hNx1 : : : xd ; hRi (2.40)

D
X

R\PND;
N � jRj2

4d
� 2n�1 � 2n�2 � 2

�2n

4d
D cd :
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Remark. Roth [81] initially defined the functions fr slightly differently: he set them
equal to zero on those dyadic rectangles which do contain points of PN , i.e. Roth’s
functions consisted only of the first term of (2.39). While this bears no effect on this
argument, it was later realized by Schmidt [95] that in more complex situations it
is desirable to have more uniformity in the structure of these building blocks. He
simply chose the sign that increases the inner product on non-empty rectangles (the
second term in (2.39)). Schmidt’s paper, as well as subsequent papers by Halász
[48], Beck [8], the author of this chapter and collaborators [15–18], make use of the
r-functions as defined here (2.28). As we shall see in Sect. 2.5.5, in certain cases this
definition brings substantial simplifications, whereas allowing even a small number
of zeros in the definition may significantly complicate matters.

We are now completely equipped to prove Roth’s theorem. Lemma 6 produces
a rather large collection of orthogonal(!) functions such that the projections of DN

onto each of them is big, hence the norm of DN must be big: this is the punchline
of Roth’s proof.

Proof of Theorem 1. Roth’s original proof made use of duality. Let us construct the
following test function:

F D
X
r2Hdn

fr; (2.41)

where fr are the r-functions provided by Lemma 6. Orthogonality of fr’s yields:

kF k2 D
� X

r2Hdn
kfrk22

�1=2
D .#Hd

n /
1=2 � n

d�1
2 ; (2.42)

while Lemma 6 guarantees that

hDN ;F i � .#Hd
n/ � cd � nd�1: (2.43)

Now Cauchy–Schwarz inequality easily implies that:

kDN k2 � hDN ;F i
kF k2 & n

d�1
2 � �

logN
� d�1

2 ; (2.44)

which finishes the proof. ut
As one can see, the role of the building blocks is played by the generalized

Rademacher functions fr, which we shall observe again in many future arguments.
Therefore it is naturally convenient that they are normalized both in L1 and in L2.

One, of course, does not have to use duality to obtain this inequality: we could use
orthogonality directly. This proof initially appeared in an unpublished manuscript of
A. Pollington and its analogs are often useful when one wants to prove estimates in
quasi-Banach spaces and is thus forced to avoid duality arguments, see e.g. (2.95).
For the sake of completeness, we also include this variation of the proof.
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Second proof of Theorem 1. The proof is based on the same idea. Let n be chosen
as in (2.25). We use orthogonality, Bessel’s inequality and (2.33) to write

kDN k22 �
X

jRjD2�n; R\PND;

jhDN; hRij2
jRj D

X
r2Hdn

X
R2Dd

r WR\PND;
N2 � 2�4n

2�n � 42d
(2.45)

& .#Hd
n/ � 2n�1 � 22n�42�3n � nd�1 � �

logN
�d�1

:

The first line of the above calculation may look a bit odd: this is a consequence of
the L1 normalization of the Haar functions. ut

One can easily extend the first proof to an Lp bound, 1 < p < 1, provided
that one has the estimate for the Lq norm of the test function F , where q is
the dual index to p, i.e. 1=p C 1=q D 1. Indeed, it will be shown in the next
section as a simple consequence of the Littlewood–Paley inequalities that for any
q 2 .1;1/ we have the same estimate as for the L2 norm: kF kq � n

d�1
2 , see

(2.85). Hence, replacing Cauchy–Schwarz by Hölder’s inequality in (2.44), one
immediately recovers Schmidt’s result:

kDN kp & .logN/
d�1
2 : (2.46)

Schmidt had originally estimated the Lq norms of the function F in the case when
q D 2m is an even integer, by using essentially L2 techniques: squaring out the
integrands and analyzing the orthogonality of the obtained terms. We point out that
an analog of the second proof (2.45) can be carried out also inLp using the device of
the product Littlewood–Paley square function instead of orthogonality. The reader
is invited to proceed to the next section, Sect. 2.3, for details.

Recently, Hinrichs and Markhasin [54] have slightly modified Roth’s method
to obtain the best known value of the constant Cd in Theorem 1. Their idea is quite
clever and simple. They have noticed that one can extend the summation in (2.45) to
also include finer scales, i.e. rectangles with smaller volume jRj � 2�n. A careful
computation then yields C2 D 0:0327633 : : : and Cd D 1p

21	22d�1
p
.d�1/Š.log 2/

d�1
2

for d � 3, where all logarithms are taken to be natural.

2.2.3 Lower Bounds for Cubature Formulas on Function
Classes: Kolmogorov’s Method

Before finishing the discussion of Roth’s proof, we would like to highlight its strik-
ing similarity to some arguments in the closely related field of numerical integration:
namely, Kolmogorov’s proof of the lower estimate for the error of cubature formulas
in the class MWp

r .Œ0; 1�
d / of functions whose r th mixed derivative has Lp norm at
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most one. For the purposes of our introductory exposition, we shall define these
spaces in a naive fashion. For more general settings and a wider array of numerical
integration results and their relations to discrepancy theory, the reader is referred to
e.g. [39, 75, 105, 110].

Define the integration operator .Tdf /.x1; : : : ; xd / WD R x1
0
: : :
R xd
0
f .y/ dy1 : : :

dyd . For p � 1 and an integer r � 1, define the space MWp
r .Œ0; 1�

d / D
.Td /

r .Lp.Œ0; 1�d //, i.e. the image of Lp under the action of an r-fold composition
of the integration operators. Let B.Lp/ be the unit ball of Lp and B.MWp

r / D
.Td /

r .B.Lp// be its image, i.e. the unit ball of MWp
r or the set of functions whose

r th mixed derivative has Lp norm at most one. We shall encounter these classes
again in Sect. 2.4.8.

The field of numerical integration is concerned with approximate computations
of integrals and evaluations of the arising errors. Let F be a class of functions on
Œ0; 1�d and PN  Œ0; 1�d be a set ofN points. For an arbitrary function f on Œ0; 1�d ,
define the cubature formula associated to PN as

�.f;PN / D 1

N

X
p2PN

f .p/: (2.47)

Denote by �N .F ;PN / the supremum of the errors of this cubature formula over
the class F :

�N .F ;PN / WD sup
f 2F

ˇ̌
ˇ̌�.f;PN / �

Z
: : :

Z
Œ0;1�d

f .x/dx1 : : : dxd

ˇ̌
ˇ̌: (2.48)

The infimum of this quantity over all choices of the point set PN is the optimal
error of the N -point cubature formulas on the class F :

ıN .F / WD inf
PN W #PNDN

�N .F ;PN /: (2.49)

Notice that the star-discrepancy, kDN k1, is equal to N � �N.F ;PN /, where
F is the class of characteristic functions of rectangles Œ0; x/. This is only the
most trivial of the vast and numerous connections between numerical integrations
and discrepancy theory. We recommend, for example, the book [39] for a very
friendly introduction to the relations between these fields. Also, in the present book,
the chapter by E. Novak and H. Woźniakowski is devoted to the discussion of
discrepancy and integration.

We shall also consider the space of functions whose r th mixed derivative satisfies
the product Hölder condition. Recall that a univariate function f is called Hölder if
the condition j�tf .x/j . jt j for the difference operator�tf .x/ D f .xC t/�f .x/
holds for all x. The multiparameter nature of the problems under consideration
dictates that rather than using the standard generalization of this concept, we use
the product version, where the difference operator is applied iteratively in each
coordinate. For a vector t D .t1; : : : ; td /, tj > 0, and a function f on Œ0; 1�d , define
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�tf .x/ D �
xd
td
.: : : �

x1
t1 f / : : :/.x/, where the superscript indicates the variable in

which the difference operator is being applied. We denote byH.Œ0; 1�d / the class of
product Hölder functions—those functions for which

k�tf k1 � C jt1j � : : : � jtd j; (2.50)

and let B.H.Œ0; 1�d // be the unit ball of this space, i.e. functions which are product
Hölder with constant one: k�tf k1 � jt1j � : : : � jtd j. Furthermore, denote by
B.MHr .Œ0; 1�

d // D .Td /
r .B.H.Œ0; 1�d /// the class of functions whose r th mixed

derivative has Hölder norm one.
It is not hard to check that for a smooth function f we have

�tf .x/ D
Z x1Ct1

x1

: : :

Z xdCtd

xd

@df .y/

@x1 : : : @xd
dy; (2.51)

while it is also clear that j�tf .x/j � 2dkf k1. Hence

j�tf .x/j . min

� @df

@x1 : : : @xd

1
dY
jD1

jtj j; 2dkf k1
�
: (2.52)

We shall now demonstrate a method of proof of the lower bounds for the
optimal integration errors ıN .F / for some function classes. This method, which
was invented by Kolmogorov, resembles Roth’s method in discrepancy theory to a
great extent. We shall prove the following theorem by means of an argument whose
main idea the reader will easily recognize.

Theorem 7. For any r 2 N, the optimal integration errors for the classes B.MHr /

and B.MW2
r / satisfy the lower estimates

ıN .B.MHr // & N�r .logN/d�1; (2.53)

ıN .B.MW2
r // & N�r .logN/

d�1
2 : (2.54)

Proof. The main idea of the method is to construct a function which is zero at
all nodes of the cubature formula, but whose integral is large. Similarly to Roth’s
original proof of (2.5), this is achieved by appropriately defining the function on the
dyadic rectangles which contain no chosen points.

We start by proving (2.53). Fix any positive infinitely-differentiable function
b.x/ of one variable supported on the interval Œ0; 1�. For a dyadic box R D
R1 
 : : : 
 Rd 2 Dd , where Rj D �

kj 2
�sj ; .kj C 1/2�sj

�
, define the functions

bR.x1; : : : ; xd / WD
dY
jD1

b.2sj xj � kj /: (2.55)
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The function bR is obviously supported on the rectangle R. As in (2.25) we choose
n so that 2N < 2n � 4N . For each choice of r 2 H

d
n , out of 2n dyadic boxes

R 2 Dd
r , at least a half, 2n�1, do not contain any points of PN . Set

G.x1; : : : ; xd / D c2�rn
X
s2Hdn

X
R2Dd

s WR\PND;
bR.x1; : : : ; xd / (2.56)

for some small constant c > 0. It is evident that �.G;PN / D 0 because all the
terms of G are supported on empty rectanglesR, so thatG.p/ D 0 for all p 2 PN .
At the same time, denoting B D R 1

0
b.x/dx, we have

Z
Œ0;1�d

G.x/dx1 : : : dxd � c2�rn � #Hd
n � 2n�1 � 2�nBd & 2�rnnd�1: (2.57)

Hence we obtain
ˇ̌̌
ˇ�.G;PN / �

Z
Œ0;1�d

G.x/dx

ˇ̌̌
ˇ & 2�rnnd�1 � N�r .logN/d�1: (2.58)

It only remains to check that G 2 B.MHr /. The Hölder norm of the r th mixed
derivative of G can be estimated in the following way

�t

��
@d

@x1 : : : @xd

�r
G

�1
� c

X
s2Hdn


X

R2Dd
s WR\PND;

2�rsj �t

��
@d

@x1 : : : @xd

�r
bR

�1

� c
X
s2Hdn

dY
jD1

2�rsj k�tj .2
rsj b.r/.2sj xj //k1

.
X
s2Hdn

dY
jD1

2�rsj minf1; 2rsj jtj jg

�
dY
jD1

1X
sjD0

2�rsj minf1; 2rsj jtj jg .
dY
jD1

jtj j; (2.59)

where we have used the fact that rectangles R 2 Dd
r are disjoint for fixed r,

the product structure of the functions bR, and the estimate (2.52). Therefore G 2
B.MHr / if the constant c is small enough and hence (2.53) is proved.

We turn to the proof of (2.54). As one can guess from the right-hand side of this
inequality, it will resemble Roth’s proof of the L2 discrepancy estimate (2.5) even
more. The argument will proceed along the same lines as the proof of (2.53), but
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the choice of the analog of the function bR will be more delicate.The r th mixed
derivatives of these functions should form an orthogonal family. Unfortunately,
we cannot start with the Haar function, because even in one dimension its r th
antiderivative .T1/

rhI is not compactly supported anymore if r � 2. In order to
fix this problem, we can define auxiliary functions inductively depending on r . For
a dyadic interval I , whose left and right halves are denoted by Il and Ir , let us set
h0I D hI , h1I D hIl � hIr , and proceeding in a similar fashion hrI D hr�1Il

� hr�1Ir
.

This construction creates the following effect: not only hrI itself, but also all of
its antiderivatives .T1/

khrI of order k � r � 1 are supported on I and have mean
zero, therefore the r th antiderivative .T1/

rhrI is supported on the interval I . Set
	rŒ0;1/ D .T1/

rhrŒ0;1/. For a dyadic interval I 2 Dd , I D �
k2�j ; .k C 1/2�j

�
, we

define 	rI .x/ D 	Œ0;1/.2
j x � k/, assuming that 	rŒ0;1/ is zero outside Œ0; 1/. Then we

have

�
	rI
�.r/
.x/D 2jr.	rŒ0;1/

�.r/
.2j x � k/D 2jrhrŒ0;1/.2

j x� k/D 2jrhrI .x/D jI j�rhrI .x/;
(2.60)

i.e. 	rI D jI j�r .T1/
rhrI . As usually, in the multivariate case, for a dyadic box R we

define

	rR.x1; : : : ; xd / D
dY
jD1

	rRj .xj /; hrR.x1; : : : ; xd / D
dY
jD1

hrRj .xj /: (2.61)

The one-dimensional case then implies that

�
@d

@x1:::@xd

�r
	rR.x/ D jRj�rhrR.x/.

Next, we choose n as before, 2N < 2n � 4N , and define a function similar to
(2.56) and (2.41)

W.x1; : : : ; xd / D 
2�rnn�
d�1
2

X
s2Hdn

X
R2Dd

s WR\PND;
	rR.x1; : : : ; xd /: (2.62)

From the definition of 	rR, we have
R
R
	rR.x/ D jRj R

Œ0;1�d
	r
Œ0;1/d

.x/dx. Repeat-
ing the previous reasoning verbatim we find that�.W;PN / D 0 and

ˇ̌̌
ˇ
Z
Œ0;1�d

W.x/dx

ˇ̌̌
ˇ & 2�rnn�

d�1
2 #Hd

n 2
n�1jRj

ˇ̌̌
ˇ
Z
Œ0;1�d

	r
Œ0;1/d

.x/dx

ˇ̌̌
ˇ (2.63)

� 2�rnn d�1
2 � N�r .logN/

d�1
2 :

To see that W 2 B.MW2
r /, we first observe that hrR form an orthogonal system.

ObviouslyW 2 MW2
r since each 	rR D .Tk/

rhrR. We use orthogonality to estimate
the norm of the r th mixed derivative.
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�

@d

@x1 : : : @xd

�r
W


2

2

D 
22�2rnn�.d�1/
X
s2Hdn

X
R2Dd

s WR\PND;
22rnkhrRk22 (2.64)

� n�.d�1/ � nd�1 � 2n � 2�n � 1:

HenceW 2 B.MW2/ if 
 is sufficiently small. This finishes the proof of (2.54). ut
We would like to point out that in order for this proof to be extended to the classes

B.MWp
r / for p 2 .1;1/, one should estimate the Lp norm of the mixed derivative

of W , which, by the way, has a very similar structure to the test function (2.41)
used by Roth. This can be done in a straightforward way using the material of the
next section—Littlewood–Paley theory. The computation leading to this estimate is
almost identical to (2.88). A more detailed account of various lower bounds for the
errors of cubature formulas in classes of functions with mixed smoothness can be
found, for example, in [105, 110]. The recent books [39] and [75], as well as the
chapters of this book written by the same authors, give very nice accounts of the
connections between discrepancy and numerical integration.

2.3 Littlewood–Paley Theory and Applications
to Discrepancy

While Roth’s method in its original form provides sharp information about the
behavior of the L2 norm of the discrepancy function, additional ideas and tools
are required in order to extend the result to other function spaces, such as Lp ,
1 < p < 1. In particular, the L2 arguments of the previous section made essential
use of orthogonality. Therefore, one needs an appropriate substitute for this notion
in the case p ¤ 2. A hands-on approach to this problem has been discovered by
Schmidt in [95], see the discussion after (2.46).

However, harmonic analysis provides a natural tool which allows one to push
orthogonality arguments from L2 to Lp , as well as to more general function spaces.
This tool is the so-called Littlewood–Paley theory. In this section, we shall give the
necessary definitions, facts, and references relevant to our settings and concentrate
on applications of this theory to the irregularities of distribution.

We would like to point out that in general Littlewood–Paley theory is a vast
subject in harmonic analysis which arises in various fields and settings, has numer-
ous applications, and is available in many different variations. For the purposes of
our exposition we are restricting the discussion just to the dyadic Littlewood–Paley
theory, i.e. its version related to the Haar function expansions and other similar
dyadic orthogonal decompositions. Other versions of this theory (on Euclidean
spaces Rn, on domains, for trigonometric (Fourier) series, in the context of complex
analysis) can be found in many modern books on harmonic analysis, e.g. [46, 101].
A more detailed treatment of the dyadic Littlewood–Paley theory can be enjoyed
in [77].
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2.3.1 One-Dimensional Dyadic Littlewood–Paley Theory

We start by considering the one-dimensional case. Let f be a measurable function
on the interval Œ0; 1�. The dyadic (Haar) square function of f is defined as

Sf .x/ D
 ˇ̌ Z 1

0

f .t/dt
ˇ̌2 C

X
I2D

jhf; hI ij2
jI j2 1I .x/

! 1
2

(2.65)

D
0
@
ˇ̌̌
ˇ
Z 1

0

f .t/dt

ˇ̌̌
ˇ
2

C
1X
kD0

� X
I2D ; jI jD2�k

hf; hI i
jI j hI .x/

�21A
1
2

We stress again that the formula may look unusual to a reader familiar with the
subject due to the uncommon (L1, not L2) normalization of the Haar functions. To
intuitively justify the correctness of this definition, notice that ShI D 1I for any
I 2 D . In particular, if the function has the Haar expansion f D P

I2D
�

aI hI ,
then its square function is

Sf D
� X
I2D

�

a2I 1I

� 1
2

D
0
@ 1X
kD�1

� X
I2DW jI jD2�k

aI hI

�21A
1
2

: (2.66)

Since Haar functions (together with the constant 1Œ0;1�) form an orthogonal basis of
L2Œ0; 1�, Parseval’s identity immediately implies that

kSf k2 D kf k2: (2.67)

A non-trivial generalization of this fact to an equivalence ofLp norms, 1 < p < 1,
is referred to as the Littlewood–Paley inequalities.

Theorem 8 (Littlewood–Paley inequalities, [118]). For 1 < p < 1, there exist
constants Bp > Ap > 0 such that for every function f 2 LpŒ0; 1� we have

ApkSf kp � kf kp � BpkSf kp: (2.68)

The asymptotic behavior of the constants Ap and Bp is known [118] and is very
useful in numerous arguments, especially when (2.68) is applied for very high values
ofp. In particularBp � p

p whenp is large. Also, a simple duality argument shows
that Aq D B�1p , where q is the dual index of p. The reader is invited to consult the
following references for more details: [21, 101, 118].

The dyadic square function arises naturally in probability theory. Denote by Dk

the collection of dyadic intervals in Œ0; 1� of fixed length 2�k . We shall slightly abuse
notation and also denote the �-algebra generated by this family by Dk . Let f be an
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L2 function on Œ0; 1�. We construct the sequence of conditional expectations of f
with respect to the families Dk ,

fk D E.f jDk/ D
X
I2Dk

1

jI j
Z
I

f .x/dx � 1I : (2.69)

The sequence ffkgk�0 forms a martingale, meaning that E.fkC1jDk/ D fk . As
usually for a dyadic interval I of length 2�.k�1/ denote by Il and Ir its left and
right dyadic “children” of length 2�k and let hf iI stand for the average of f over
I . Keeping in mind that 2hf iI D hf iIl C hf iIr , it is then easy to check that the
martingale differences for k � 1 satisfy

dk WD fk � fk�1 D
X

I2Dk�1

��hf iIl1Il C hf iIr1Ir
� � hf iI1I

�
(2.70)

D
X

I2Dk�1

1

2
.�hf iIl C hf iIr /.�1Il C 1Ir / D

X
I2Dk�1

hf; hI i
jI j hI :

Setting d0 D f0, we define the martingale difference square function:

Sf D
� 1X
kD0

jdkj2
� 1

2

: (2.71)

One can see from (2.66) that it is exactly the same object as the dyadic Littlewood–
Paley square function defined in (2.65).

Littlewood–Paley square function estimates (2.68) can also be viewed as a gen-
eralization of the famous Khintchine inequality. Indeed, consider the Rademacher
functions rk.x/ D P

I2Dk
hI .x/. Then at any point x 2 Œ0; 1�d , since dyadic inter-

vals in Dk are disjoint, the square function of a linear combination of Rademacher
functions is constant:

S
�X

k

˛krk
�
.x/ D

� 1X
kD0

X
I2Dk

j˛kj21I
� 1

2

D �X
k

j˛kj2
� 1
2 : (2.72)

Therefore, Littlewood–Paley inequalities imply

X
k

˛krk

p

� S�X
k

˛krk
�
p

D �X
k

j˛kj2
� 1
2 ; (2.73)

which is precisely the Khintchine inequality for p > 1.



98 D. Bilyk

2.3.1.1 The Chang–Wilson–Wolff Inequality

The Littlewood–Paley inequalities are tightly related to the famous Chang–Wilson–
Wolff inequality, which states that if the square function of f is bounded, then f is
exponentially square integrable (subgaussian).

To formulate it rigorously we need to introduce exponential Orlicz function
classes. For a convex function  W RC ! RC with  .0/ D 0, the Orlicz norm
of a function f on the domainD is defined as

kf k WD inf

�
K > 0 W

Z
D

 

� jf .x/j
K

�
dx � 1

�
(2.74)

The corresponding Orlicz space is the space of functions for which the above norm
is finite. For example, if  .t/ D tp , one recovers the usual Lp spaces. In the case
when  .t/ D et

˛
for large values of t (if ˛ � 1, one may take  .t/ D ejt j˛ � 1,

however for ˛ < 1 convexity near zero would be violated) the arising Orlicz spaces
are denoted exp.L˛/. One of the most important members of this scale of function
spaces is exp.L2/, often referred to as the space of exponentially square integrable
or subgaussian functions. It is a standard fact that exponential Orlicz norms can be
characterized in the following ways

kF kexp.L˛/ � sup
q>1

q�1=˛kF kq � sup
�>0

���˛ log
ˇ̌fx W jF.x/j > �gˇ̌ (2.75)

The first equivalence here can be easily established using Taylor series for ex

and Stirling’s formula, while the second one is a simple computation involving
distribution functions, see a similar calculation in (2.120). The last expression
explains the term subgaussian in the context of functions f 2 exp.L2/: in this
space, P.jf j > �/ . e�c�2 .

We can now state the Chang–Wilson–Wolff inequality:

Theorem 9 (Chang–Wilson–Wolff inequality, [24]). The following estimate
holds:

kf kexp.L2/ . kSf k1: (2.76)

This fact can be derived extremely easily as a consequence of the Littlewood–
Paley inequality (2.68) with sharp constants and the characterization (2.75) of the
exponential norm.

kf kexp.L2/ � sup
p�1

p� 1
2 kf kp . sup

p�1
p� 1

2 � p
pkSf kp D sup

p�1
kSf kp � kSf k1;

(2.77)

which proves (2.76). ut
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Observe that this bound strongly resembles the Khintchine inequality. Indeed,
if we use the Littlewood–Paley inequality with sharp constants in (2.73), much in
the same fashion as in (2.77), we obtain the exponential form of the Khintchine
inequality

X
k

˛krk


exp.L2/ .
�X

k

j˛kj2
� 1
2 : (2.78)

In other words, a linear combination of independent ˙1 random variables obeys
a subgaussian estimate. For a precise quantitative distributional version of this
statement see (2.119).

2.3.2 From Vector-Valued Inequalities to the Multiparameter
Setting

It is very important for our further discussion that the Littlewood–Paley inequalities
continue to hold for the Hilbert space-valued functions (in this case, all the arising
integrals are understood as Bochner integrals). This delicate fact, which was proved
in [42], allows one to extend the Littlewood–Paley inequalities to the multi-
parameter setting in a fairly straightforward way by successively applying (2.68)
in each dimension while treating the other dimensions as vector-valued coefficients
[78, 101].

We note that in the general case one would apply the one dimensional
Littlewood–Paley inequality d times—once in each coordinate, see Sect. 2.3.3.
However, in the setting introduced by Roth’s method (where the attention is
restricted to dyadic boxes R of fixed volume jRj D 2�n) one would apply it
only d � 1 times since this is the number of free parameters—once the lengths of
d � 1 sides are specified, the last one is determined automatically by the condition
jRj D 2�n.

Rather then stating the relevant inequalities in full generality (which an interested
reader may find in [15, 78]), we postpone this to (2.87) and first illustrate the use of
this approach by a simple example, important to the topic of our discussion.

Recall that the test function (2.41) in Roth’s proof was constructed as
F D

X
r2Hdn

fr D
X

RW jRjD2�n

"RhR, where "R D ˙1. We want to estimate the Lq

norm of F . Notice that we can rewrite it as F D P
I2D ˛I hI .x1/, where

˛I D
X

RW jRjD2�n

R1DI

"R

1Y
jD2

hRj .xj /; (2.79)
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which allows one to apply the one-dimensional Littlewood–Paley square function
(2.66) in the first coordinate x1 to obtain

kF kq D


X
jRjD2�n

"RhR


q

� Bq


� nX
r1D0

ˇ̌
ˇ̌ X
jRjD2�n

jR1jD2�r1

"RhR

ˇ̌
ˇ̌2�1=2


q

: (2.80)

In the two-dimensional case for any value of r1 all the rectangles satisfying the
conditions of summation are disjoint, and for each point x we have:

nX
r1D1

ˇ̌
ˇ̌ X
jRjD2�n

jR1jD2�r1

"RhR.x/

ˇ̌
ˇ̌2 D

nX
r1D1

X
jRjD2�n

jR1jD2�r1

j"Rj21R.x/ D
X
R2D2;
jRjD2�n

1R.x/ D #H2
n � n;

(2.81)

since "2R D 1 and every point is contained in #H2
n dyadic rectangles (one per each

shape).
In the case d � 3, the expression on the right-hand side of (2.80) can be viewed

as a Hilbert space-valued function. Indeed, fix all the coordinates except x2 and
define an `2-valued function

F2.x2/ D
X
I2D

( X
jRjD2�n; R2DIjR1jD2�r1

"R
Y
j¤2

hRj .xj /

) n
r1D1

hI .x2/: (2.82)

Then the expression inside the Lq norm on the right hand side of (2.80) is exactly
kF2.x2/k`2 . Applying the Hilbert space-valued Littlewood–Paley inequality in the
second coordinate, we get

kF kq D


X
jRjD2�n

"RhR


q

� Bq

 kF2k`2

q

� B2
q


� nX
r1D1

nX
r2D1

ˇ̌̌
ˇ

X
jRjD2�n

jRj jD2�rj ; jD1;2

"RhR

ˇ̌̌
ˇ
2�1=2

q

: (2.83)

And if d D 3, then an analog of (2.81) holds, completing the proof in this case.
In the case of general d we continue applying the vector-valued Littlewood–Paley
inequalities inductively in a similar fashion a total of d � 1 times to obtain

kF kq D


X
jRjD2�n

"RhR


q

� : : :
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� Bd�1
q


� nX
r1D1

� � �
nX

rd�1D1

ˇ̌
ˇ̌ X

jRjD2�n

jRj jD2�rj ;jD1;:::;d�1

"RhR

ˇ̌
ˇ̌2�1=2


q

: (2.84)

Just as explained in (2.81), in this case all the rectangles in the innermost summation
are disjoint and thus

kF kq � Bd�1
q


� X
R2Dd ; jRjD2�n

j"Rj21R
� 1
2

q

D Bd�1
q

�
#Hd

n

	 1
2 � n

d�1
2 : (2.85)

2.3.3 Multiparameter (Product) Littlewood–Paley Theory

For a function of the form f D
X
R2Dd

�

aRhR on Œ0; 1�d ; the expression

Sdf .x/ D
2
4 X
R2Dd

�

jaRj21R.x/
3
5

1
2

D
0
@ X

r2ff�1g[Z
C

gd

ˇ̌̌
ˇ
X
R2Dd

r

aRhR.x/

ˇ̌̌
ˇ
2

1
A

1
2

(2.86)

is called the product dyadic square function of f . We remind that Dd
r is the

collection of dyadic rectangles R whose shape is defined by jRj j D 2�rj for
j D 1; : : : ; d and the rectangles in this family are disjoint.

The product Littlewood–Paley inequalities (whose proof is essentially identical
to the argument presented above) state that

Adp kSdf kp � kf kp � Bd
p kSdf kp: (2.87)

With these inequalities at hand, one can estimate the Lq norm of F in a single line:

kF kq D


X
jRjD2�n

"RhR


q

� kSdf kq D

� X
jRjD2�n

j"Rj21R
� 1
2

q

D
�

#Hdn
	 1
2 � n

d�1
2 :

(2.88)

We have chosen to include a separate illustrative proof of this estimate earlier
in order to demonstrate the essence of the product Littlewood–Paley theory. In
addition, the argument leading to (2.85) gives a better implicit constant than the
general inequalities (Bd�1

q versus Bd
q , according to the number of free parameters).

While we generally are not concerned with the precise values of constants in this
note, the behavior of this particular one plays an important role in some further
estimates, see (2.99).
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The proof of Schmidt’s Lp lower bound (2.7) can now be finished immediately.
Let q be the dual index of p, i.e. 1=p C 1=q D 1 and let F be as defined in
(2.41). Then, replacing Cauchy–Schwarz with Hölder’s inequality in (2.44) and
using (2.88), we obtain:

kDN kp � hDN ;F i
kF kq & n

d�1
2 � �

logN
� d�1

2 : (2.89)

An analog of the second proof (2.45) of Roth’s estimate (2.5) can also be carried out
easily using the Littlewood–Paley square function. We include it since it provides
a foundation for discrepancy estimates in other function spaces. It is particularly
useful when one deals with quasi-Banach spaces and is forced to avoid duality
arguments. We start with a simple lemma:

Lemma 10. Let Ak  Œ0; 1�d , k 2 N, satisfy �.Ak/ � c, where � is the Lebesgue
measure, then for any M 2 N

�

�
fx 2 Œ0; 1�d W

MX
kD1

1Ak .x/ � 1

2
cM g

�
>
1

2
c: (2.90)

Proof. Assuming this is not true, we immediately arrive to a contradiction

cM �
Z MX

kD1
1Ak .x/ dx <

1

2
cM � �

� MX
kD1

1Ak <
1

2
cM

�
(2.91)

CM � �
� MX
kD1

1Ak � 1

2
cM

�
� 1

2
cM CM � 1

2
c D cM:ut

We shall apply the lemma as follows: for each r 2 H
d
n , let Ar be the union of

rectangles R 2 Dd
r which do not contain points of PN . Then �.Ar/ � c D 1

2
and

M D #Hd
n � nd�1. Let E  Œ0; 1�d be the set of points where at least M=4 empty

rectangles intersect. By the lemma above, �.E/ > 1
4
. On this set, using (2.34):

SdDN .x/ D
" X
R2Dd

hDN ; hRi2
jRj2 1R.x/

# 1
2

& .M �N2 2�2n/
1
2 � n

d�1
2 : (2.92)

Integrating this estimate overE and applying the Littlewood–Paley inequality (2.87)
finishes the proof of (2.7):

kDN kp & kSdDN kp & n
d�1
2 � .logN/

d�1
2 :ut (2.93)
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2.3.4 Lower Bounds in Other Function Spaces

The use of the Littlewood–Paley theory opens the door to considering much wider
classes of functions than just the Lp spaces. Discrepancy theory has recently
witnessed a surge of activity in this direction. We shall give a very brief overview
of estimates and conjectures related to various function spaces. All of the results
described below are direct descendants of Theorem 1 and Roth’s method as every
single one of them makes use of the Haar coefficients of the discrepancy function.

2.3.4.1 Hardy Spaces H p

In particular, a direct extension of the above argument provides a lower bound of
the discrepancy function in product Hardy spacesHp , 0 < p � 1. These spaces are
generalizations due to Chang and R. Fefferman of the classical classes introduced
by Hardy, see [22, 23]. The discussion of these spaces in the multiparameter dyadic
setting, which is relevant to our situation, can be found in [12]. The Hardy space
Hp norm of a function f D P

R2Dd ˛RhR is equivalent to the norm of its square
function in Lp , i.e.

kf kHp � kSdf kp: (2.94)

The following result about the Hardy space norm of the discrepancy function was
obtained by Lacey [62]. For 0 < p � 1,

k QDN kHp � Cd;p.logN/
d�1
2 ; (2.95)

where QDN D
X
R2Dd

hDN ; hRi
jRj hR, in other words, QDN is the discrepancy function

DN modified so as to have mean zero over every subset of coordinates. The proof
of this result is a verbatim repetition of the previous proof (2.92)—one simply
estimates the norm of the square function. Observe that a duality argument in the
spirit of (2.44) would not have worked in this case, as Hp is only a quasi-Banach
space for p < 1 and thus no duality arguments are available.

As this example clearly illustrates, in harmonic analysis Hardy spaces Hp serve
as a natural substitute for Lp spaces when p � 1. Indeed, numerous analytic tools,
such as square functions, maximal functions, atomic decompositions [101], allow
one to extend the Lp estimates to the Hp setting for 0 < p � 1. Similarly, the Lp

asymptotics of the discrepancy is continued by the Hp estimates when p � 1.
The Lp behavior of the discrepancy function for this range of p, however,

still remains a mystery. It is conjectured that the Lp norm should obey the same
asymptotic bounds in N for all values of p > 0, which includes Conjecture 5 as a
subcase.
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Conjecture 11. For all p 2 .0; 1� the discrepancy function satisfies the estimate

kDN kp � Cd;p.logN/
d�1
2 : (2.96)

2.3.4.2 The Behavior of Discrepancy in and Near L1

The only currently available information regarding the conjecture above is the result
of Halász [48] who proved that (2.96) indeed holds in dimension d D 2 for the L1

norm:

kDN k1 � C
p

logN: (2.97)

We shall discuss his method in Sect. 2.4. Halász was also able to extend this
inequality to higher dimensions, but only with the same right-hand side. Thus it
is not known whether the L1 bound even grows with the dimension. As to the case
p < 1, no information whatsoever is available at this time.

In attempts to get close to L1, Lacey [62] has proved that if one replacesL1 with
the Orlicz space L.logL/

d�2
2 , then the conjectured bound holds

kDN kL.logL/.d�2/=2 � Cd.logN/
d�1
2 : (2.98)

We remark that an adaptation of the proof of Schmidt’s Lp bound given in the
previous subsection, specifically estimate (2.85), can easily produce a slightly
weaker inequality

kDN kL.logL/.d�1/=2 � Cd.logN/
d�1
2 (2.99)

Indeed, let F once again be as defined in (2.41). It is well known that (see e.g.
[70]) the dual of L.logL/.d�1/=2 is the exponential Orlicz space exp.L2=.d�1//.
Hence we need to estimate the norm of F in this space.

We recall that the constant arising in the Littlewood–Paley inequalities (2.68)
is Bq � p

q for large q and the implicit constant in (2.85) is Bd�1
q . Thus using

the equivalence between the exponential Orlicz norm and the growth of Lp norms
(2.75) we obtain

kF k
exp
�
L2=.d�1/

� � sup
q>1

q�
d�1
2 kF kq . sup

q>1

q�
d�1
2 � Bd�1

q n
d�1
2 (2.100)

� sup
q>1

q�
d�1
2 � q d�1

2 n
d�1
2 D n

d�1
2 ;

and (2.99) immediately follows by duality. Notice that a more straightforward
bound (2.88) would not suffice for this estimate, since in the general d -parameter
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inequality the constant is of the order qd=2, not q.d�1/=2. These estimates are similar
in spirit to the Chang–Wilson–Wolff inequality discussed in Sect. 2.3.1.1.

2.3.4.3 Besov Space Estimates

In a different vein, Triebel has recently studied the behavior of the discrepancy in
Besov spaces [111, 112]. He proves, among other things, that

kDN kSrp;qB.Œ0;1�d / � Cd;p;q;r N
r .logN/

d�1
q ; (2.101)

1 < p; q < 1;
1

p
� 1 < r < 1

p
: (2.102)

Here the space Srp;qB.Œ0; 1�
d / is the Besov space with dominating mixed smooth-

ness. The exact original definition of this class is technical and would take our
discussion far afield. There exists, however, a characterization of the Besov norms in
terms of the Haar expansion (which is reminiscent of the Littlewood–Paley square

function Sf ). For a function f D
X
R2Dd

�

˛R

jRjhR, we have

kf kSrp;qB.Œ0;1�d / �

0
BBB@

X
s2.f�1g[Z

C

/d

2.s1C:::Csd /.r�1=pC1/q
� X

R2Dd
�

W
jRj jD2�sj

j˛Rjp
� q

p

1
CCCA

1
q

(2.103)

whenever the right-hand side is finite.
To give a better idea about these spaces, we would mention that the index p

represents integrability, r measures smoothness, and q is a certain ‘correction’
index. In particular, the case q D 2 corresponds to the well-known Sobolev spaces
which, roughly speaking, consist of functions with r th mixed derivative in Lp

and are similar to the previously defined spaces MWp
r .Œ0; 1�

d /, see Sect. 2.2.3.
Furthermore, when r D 0, S0p;2B.Œ0; 1�

d / is nothing but Lp.Œ0; 1�d /. In particular,
in the case p D q D 2, r D 0, the characterization (2.103) simply states that
fhRgR2Dd

�

is an orthogonal basis of L2.

Thus, if q D 2 and r D 0, one recovers Roth’s L2 and Schmidt’s Lp estimates
from (2.101). Inequalities (2.101) are sharp in all dimensions [53, d D 2], [71,
d � 3], see Sect. 2.6. For more details, the reader is directed towards Triebel’s
recent book [111] concentrating on discrepancy and numerical integration in this
context as well as to his numerous other famous books for a comprehensive treatise
of the theory of function spaces in general.
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2.3.4.4 Weighted Lp Estimates

The recent work of Ou [76] deals with the growth of the discrepancy function in
weighted Lp spaces. A non-negative measurable function ! on Œ0; 1�d is called
an Ap (dyadic product) weight if the following condition (initially introduced by
Muckenhoupt [74]) holds

sup
R2Dd

�Z
R

!.x/dx

��Z
R

!
� 1
p�1 .x/dx

�p�1
< 1: (2.104)

The space Lp.!/ is then defined as the Lp space with respect to the measure
!.x/ dx. The class of Ap weights plays a tremendously important role in harmonic
analysis: they give the largest reasonable class of measures such that the standard
boundedness properties of classical operators (such as maximal functions, singular
integrals, square functions) continue to hold in Lp spaces built on these measures.
By an adaptation of the square function argument (2.92), Ou was able to show that

kDN kLp.!/ � Cd;p;!.logN/
d�1
2 ; (2.105)

i.e. the behavior in weighted Lp spaces is essentially the same as in their Lebesgue-
measure prototypes.

2.3.4.5 Approaching L1: BMO and Exponential Orlicz Spaces

Moving toward the other end of the Lp scale in attempts to understand the precise
nature of the kink that occurs at the passage from the average (Lp) to the maximum
(L1) norm, Bilyk, Lacey, Parissis, and Vagharshakyan [18] computed the lower
bounds of the discrepancy function in spaces which are “close” to L1. One such
space is the product dyadic BMO (which stands for bounded mean oscillation), i.e.
the space of functions f for which the following norm is finite:

kf kBMO D sup
U�Œ0;1�d

0
@ 1

jU j
X
R2Dd

jhf; hRij2
jRj

1
A

1
2

; (2.106)

where the supremum is extended over all measurable subsets of Œ0; 1�d with positive
measure. Notice that in the case d D 1, when U is a dyadic interval, the
expression inside the parentheses is actually equal to 1

jU j
R
U

ˇ̌
f .x/�fU

ˇ̌2
dx, where

fU is the mean of f over U , which yields exactly the standard one-dimensional
BMO. The definition above, introduced by Chang and Fefferman [22], is a proper
generalization of the classical BMO space to the dyadic multiparameter setting. In
particular, the classical H1 � BMO duality is preserved.
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Just as H1 often serves as a natural substitute for L1, in many problems of
harmonic analysis BMO naturally replaces L1. However, Bilyk, Lacey, Parissis,
and Vagharshakyan showed that in this case the BMO norm behaves like Lp norms
rather than L1:

kDN kBMO � Cd.logN/
d�1
2 : (2.107)

In fact, this estimate is not hard to obtain with the help of the same test function
F (2.41) that we have used several times already—all we have to do is estimate its
dual (H1) norm. Just as in (2.88):

kF kH1 � kSF k1 D

� X
R2Dd ; jRjD2�n

j"Rj21R
� 1
2

1

D
�

#Hd
n

	 1
2 � n

d�1
2 ; (2.108)

which immediately yields the result.
In addition, the authors prove lower bounds in the aforementioned exponential

Orlicz spaces, see (2.75). These spaces exp.L˛/ serve as an intermediate scale
between the Lp spaces, p < 1, and L1. In particular, for all ˛ > 0 and for all
1 < p < 1, we have L1  exp.L˛/  Lp . The following estimate is contained
in [18]: in dimension d D 2 for all 2 � ˛ < 1 we have

kDN kexp.L˛/ � C.logN/1�
1
˛ : (2.109)

We note that this inequality can be viewed as a smooth interpolation of lower bounds
between Lp and L1. Indeed, when ˛ D 2 (the subgaussian case exp.L2/), the
estimate is

p
logN—the same as in L2. On the other hand, as ˛ approaches infinity,

the right hand side approaches the L1 bound—logN .
The proof of this estimate closely resembles Halász’s proof of the L1 bound

(see (2.128) below), with the obvious modification that the test function has to
be estimated in the dual space

�
exp.L˛/

�� D L.logL/1=˛ . Hence the same
problems and obstacles that arise when dealing with the star-discrepancy prevent
straightforward extensions of this estimate to higher dimensions. We finish this
discussion by mentioning that both of these estimates, (2.107) and (2.109), were
shown to be sharp, see Sect. 2.6.

2.4 The Star-Discrepancy (L1) Lower Bounds and the Small
Ball Inequality

We now turn our attention to the most important case:L1 bounds of the discrepancy
function. As explained in the introduction, when the set PN is distributed rather
well, its discrepancy comes close to its maximal values only on a thin set, while
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staying relatively small on most of Œ0; 1�d . Therefore the extremal L1 norm of this
function has to be much larger than the averaging L2 norm. This heuristic was first
confirmed by Schmidt [92] who proved

kDN k1 � C logN: (2.110)

Other proofs of this inequality have been later given by Liardet [68, 1979], Béjian
[11, 1982] (who produced the best currently known value of the constantC D 0:06),
and Halász [48, 1981]. The proof of Halász is the most relevant to the topic of the
present survey as it relies on Roth’s orthogonal function idea and takes it to a new
level. However, before we proceed to Halász’s proof of Schmidt’s lower bound, we
shall discuss another related inequality.

2.4.1 The Small Ball Conjecture: Formulations and Simple
Estimates

The small ball inequality, which arises naturally in probability and approximation,
besides being important and significant in its own right, also serves as a model for
the lower bounds of the star-discrepancy (2.11). This inequality is concerned with
the lower estimates of the supremum norm of linear combinations of multivariate
Haar functions supported by dyadic boxes of fixed volume (we call such sums
‘hyperbolic’) and can be viewed as a reverse triangle inequality.

Unfortunately, this inequality does not (more precisely, has not been proved
to) directly imply the lower bound for the L1 norm of the discrepancy function.
It is, however, linked to discrepancy through Roth’s orthogonal function method.
Even though no formal connections are known, most arguments designed for this
inequality can be transferred to the discrepancy setting. In a certain sense, it can be
viewed as a linear version of the star-discrepancy estimate.

We now state the conjectured inequality:

Conjecture 12 (The small ball conjecture). In dimensions d � 2, for any choice of
the coefficients ˛R one has the following inequality:

n
d�2
2


X

R2Dd W jRjD2�n

˛RhR

1 & 2�n
X

RW jRjD2�n

j˛Rj: (2.111)

The challenge and the point of interest of the conjecture is the precise value of
the exponent of n on the left-hand side. If one replaces n.d�2/=2 by n.d�1/=2, the
inequality becomes almost trivial, and, in fact, holds even for the L2 norm:

n
d�1
2


X

R2Dd W jRjD2�n

˛RhR


2

& 2�n
X

RW jRjD2�n

j˛Rj: (2.112)



2 Roth’s Orthogonal Function Method 109

Proof of (2.112). Indeed, using the orthogonality of Haar functions and keeping in
mind that khRk2 D jRj1=2, we obtain


X

R2Dd W jRjD2�n

˛RhR


2

D
0
@ X
jRjD2�n

j˛Rj22�n
1
A

1
2

(2.113)

&
P
jRjD2�n j˛Rj2�n=2�
nd�12n

� 1
2

D n�
d�1
2 � 2�n

X
jRjD2�n

j˛Rj;

where in the last line we have used the Cauchy–Schwarz inequality and the fact that
the number of terms in the sum is of the order nd�12n.

Alternatively, this inequality can be proved by duality. Consider the familiar
function F D P

r2Hdn fr D P
jRjD2�n "RhR, where "R D sgn.˛R/. We know very

well by now, see (2.42), that kF k2 � n
d�1
2 . On the other hand, by orthogonality,

� X
jRjD2�n

˛RhR; F

�
D

X
jRjD2�n

j˛RjkhRk22 D 2�n
X
jRjD2�n

j˛Rj; (2.114)

which immediately implies (2.112). ut
As we have already witnessed on several occasions, the presence of the quantity

d � 1 in this context is absolutely natural, as it is, in fact, the number of free
parameters dictated by the condition jRj D 2�n. The passage to d � 2 for the L1
norm requires a much deeper analysis and brings out a number of complications.

The L2 inequality (2.112) and the conjecture (2.111) should be compared to
Roth’s L2 discrepancy estimate (2.5) and Conjecture 3. The computations just
presented are very close to the proof (2.45) and (2.44) of (2.5). In fact, the
resemblance becomes even more striking if one restricts the attention to the case
when all the coefficients ˛R D ˙1. In this case 2�n

P
jRjD2�n j˛Rj � nd�1 and the

L2 estimate (2.112) becomes


X

R2Dd W jRjD2�n

˛RhR


2

& n
d�1
2 ; (2.115)

while the conjectured L1 inequality (2.111) for ˛R D ˙1 turns into

Conjecture 13 (The signed small ball conjecture). If all the coefficients ˛R D ˙1,
we have the inequality


X

R2Dd W jRjD2�n

˛RhR

1 & n
d
2 : (2.116)
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Recalling that n in Roth’s argument was chosen to be approximately log2 N , one
immediately sees the similarity of these inequalities to (2.5) and (2.11).

We would like to add a few comments about the signed small ball conjecture.
There are some indications that this restricted version may turn out to be sig-
nificantly simpler to prove than the more general Conjecture 12, see Sect. 2.5.5.
However, this variation of the conjecture, unlike its full form, does not appear to
have any real applications. On the other hand, one can formulate a slightly more
generic statement of the conjecture by allowing some coefficients to equal zero, but
not allowing the left-hand side to degenerate:

Conjecture 14 (Generic signed small ball conjecture). Assume that the coefficients
˛R are either ˙1 or 0, and no more than half of all the coefficients are zero. Then
we have the inequality


X

R2Dd W jRjD2�n

˛RhR

1 & n
d
2 : (2.117)

This form of the conjecture is strong enough to yield applications, see Sect. 2.4.8.
Unfortunately, it seems to be just as hard as the general small ball conjecture (2.111).

2.4.2 Sharpness of the Small Ball Conjecture

Choosing ˛R’s to be either independent Gaussian random variables or independent
random signs ˛R D ˙1 verifies that this conjecture is sharp, see e.g. [15] or [108].
We include the proof of the sharpness of inequality (2.111) here for the sake of
completeness.

Lemma 15 (Sharpness of the small ball conjecture). Let f˛RgR2Dd W jRjD2�n be
independent ˙1 random variables. Then, on the average, the converse of the small
ball inequality holds, i.e.

E


X
jRjD2�n

˛RhR.x/

1 . n�
d�2
2 2�n

X
jRjD2�n

j˛Rj D nd=2: (2.118)

Proof. The function
P
jRjD2�n ˛RhR.x/ is constant on dyadic cubes Qk of side-

length 2�.nC1/. The total number of such cubes is M D 2.nC1/d . Let us define M
random variablesXk D P

jRjD2�n ˛RhRjQk
. Since Xk is a sum of #Hd

n independent
˙1 random variables, by the Khintchine inequality we have EjXkj � n.d�1/=2:
Moreover, by a standard inequality (usually attributed to Bernstein, Hoeffding,
Chernoff, or Azuma, see e.g. [55]), concerning sums of random variables, we have

P.jXkj > t/ � 2 exp
� � t2=.4 � #Hd

n/
�
: (2.119)
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Recalling that #Hd
n � nd�1, it is easy to deduce from this inequality that for some

constant C > 0, the random variables Yk D 1

Cn.d�1/=2 Xk have bounded exp.L2/
norm, in other words kXkkexp.L2/ . n.d�1/=2 (this is essentially the exponential
form of the Khintchine inequality, see (2.78)). Indeed, denoting .t/ D exp.t2/, we
obtain

E .Yk/ D
Z 1
0

P
�
 .Yk/ > t

� D
Z 1
0

P
�jXkj > Cn.d�1/=2plog t

�
dt

�
Z 1
0

minf1; 2 exp.�C2nd�1 log t=.4 � #Hd
n//g dt

�
Z 1
0

minf1; t�Kg dt . 1; (2.120)

where K > 1, if C is large enough. Therefore, applying Jensen’s inequality with
the convex function  , we get

 

�
E sup
kD1;:::;M

jYkj
�

� E 

�
sup

kD1;:::;M
jYkj

�
� E sup

kD1;:::;M
 .jYk j/

� E

MX
kD1

 .jYkj/ .M D 2.nC1/d : (2.121)

Since  �1.t/ D p
log t , we arrive to

E


X
jRjD2�n

˛RhR.x/

1 D Cn
d�1
2 E sup jYkj . n

d�1
2 �  �1.2.nC1/d / � nd=2;

(2.122)
which finishes the proof. ut

The sharpness of the Small Ball Conjecture provides evidence that perhaps
the correct estimate for the star-discrepancy should be Conjecture 3: kDN k1 &
.logN/d=2. To validate the evidence we shall now illustrate the connection between
this inequality and the discrepancy estimates. As mentioned earlier, the connection
is not direct, but rather comes from the method of proof. We have already discussed
the similarities between the proofs of theL2 inequalities. Let us now turn to the case
of L1.

The small ball conjecture (2.111) has been verified in d D 2 by M. Talagrand
[102] in 1994. In 1995, V. Temlyakov [107] (see also [106, 108]) has given another,
very elegant proof of this inequality in two dimensions, which closely resembled
the argument of Halász [48] for (2.8). We shall present Temlyakov’s proof first as it
is somewhat “cleaner” and avoids some technicalities. Then we shall explain which
adjustments need to be made in order to translate this argument into Halász’s proof
of Schmidt’s estimate for kDN k1.
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2.4.3 Proof of the Small Ball Conjecture in Dimension d D 2

The proof is based on Riesz products. An important feature of the two-dimensional
case is the following product rule.

Lemma 16 (Product rule). Assume that R; R0 2 D2 are not disjoint, R ¤ R0,
and jRj D jR0j, then

hR � hR0 D ˙hR\R0 ; (2.123)

i.e. the product of two Haar functions is again a Haar function.

The proof of this fact is straightforward. Unfortunately, this rule does not hold in
higher dimensions. Indeed, for d � 3 one can have two different boxes of the same
volume which coincide in one of the coordinates, say R1 D R01. Then, hR1 � hR0

1
D

h2R1 D 1R1 , so we lose orthogonality in the first coordinate. Since, as the reader will
see below, we shall be considering very long products, the orthogonality may be
lost completely. The fact that the product rule fails in higher dimensions is a major
obstruction on the path to solving the conjecture.

For each k D 0; : : : ; n consider the r-functions fk D P
jRjD2�n; jR1jD2�k sgn.˛R/

hR. Obviously, in two dimensions, the conditions jRj D 2�n and jR1j D 2�k
uniquely define the shape of a dyadic rectangle. Hence these are really r-functions,
fk D fr with r D .k; n � k/ and "R D sgn.˛R/. We are now ready to construct the
test function as a Riesz product:

� WD
nY

kD0

�
1C fk

�
: (2.124)

First of all, notice that� is non-negative. Indeed, since fk’s only take the values ˙1,
each factor above is equal to either 0 or 2. Thus, we can say even more than � � 0:
the only possible values of � are 0 and 2nC1. Next, we observe that

R
�.x/dx D 1.

This can be explained as follows. Expand the product in (2.124). The leading term
is equal to 1. All the other terms are products of Haar functions; therefore, by the
product rule, they themselves are Haar functions and have integral zero. So, � is a
non-negative function with integral 1. In other words, it has L1 norm 1: k�k1 D 1.

A similar argument applies to the inner product of
P
jRjD2�n ˛RhR and � .

Multiplying out the product in (2.124) and using the product rule, one can see that

� D 1C
X

R2Dd W jRjD2�n

sgn.˛R/hR C �>n; (2.125)

where �>n is a linear combination of Haar functions supported by rectangles of area
less than 2�n. The first and the third term are orthogonal to

P
jRjD2�n ˛RhR. Hence,

using the trivial case of Hölder’s inequality, p D 1, q D 1,
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X

R2Dd W jRjD2�n

˛RhR

1 �
� X
jRjD2�n

˛RhR; �

�
(2.126)

D
� X
jRjD2�n

˛RhR;
X
jRjD2�n

sgn.˛R/hR

�

D
X
jRjD2�n

˛R � sgn.˛R/ � khRk22 D 2�n �
X
jRjD2�n

j˛Rj;

(2.127)

and we are done (notice that for d D 2 we have n
d�2
2 D 1). ut

2.4.4 Halász’s Proof of Schmidt’s Lower Bound
for the Discrepancy

We now explain how the same idea can be used to prove a discrepancy estimate.
This argument has, in fact, been created by Halász [48, 1981] even earlier than
Temlyakov’s proof of the small ball inequality in d D 2. In place of the r-functions
fk used above, we shall utilize the r-functions fk D P

jRjD2�n "RhR such that
hDN ; fki � c, which were used in Roth’s proof (2.44) of the L2 estimate (2.5) and
whose existence is guaranteed by Lemma 6. The test function is then constructed in
a fashion very similar to (2.124):

˚ WD
nY

kD0

�
1C 
fk

�
� 1 D 


nX
kD0

fk C ˚>n; (2.128)

where 
 > 0 is a small constant, and ˚>n, by the product rule (2.123), is in the span
of Haar functions with support of area less than 2�n. In complete analogy with the
previous proof, we find that k˚k1 � 2. Also,

�
DN ;

nX
kD0

fk

�
� c.nC 1/ � C 0 logN: (2.129)

Up to this point the argument repeated the proof of the two-dimensional small ball
conjecture word for word. In this regard, one can view the small ball inequality
as the linear part of the star-discrepancy estimate. Notice that subtracting 1 in the
definition of ˚ eliminated the need to estimate the “constant” term

R
DN.x/dx. All

that remains is to show that the higher-order terms, ˚>n, yield a smaller input. This
can be done by “brute force”. We first prove an auxiliary lemma which is a natural
extension of Lemma 6.
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Lemma 17. Let fs be any r-function with parameter s. Denote s D ks k1. Then, for
some constant ˇd > 0,

hDN ; fsi � ˇdN2
�s: (2.130)

Proof. It follows from (2.33), that the area part ofDN satisfies jhNx1 �: : :�xd ; fsij .
2s � N2�2s D N2�s . As to the counting part, it follows from the proof of Lemma 6
that 1Œp;1� is orthogonal to the functions hR for all R 2 Dd

s except for the rectangle
R which contains the point p. It is then easy to check that

h1Œp;1/; fsi D h1Œp;1/; hRi . jRj D 2�s: (2.131)

The estimate for the counting part of DN then follows by summing over all the
points of PN . ut

We now estimate the higher order terms in hDN ;˚i. Write ˚>n D F2 C
F3 C : : :C Fn, where

Fk D 
k
X

0�j1<j2<			<jk�n
fj1 � fj2 : : : fjk :

Notice that, due to the product rule, the product fj1 �fj2 : : : fjk is an r-function with
parameter s D .n � j1; jk/, so s D n � j1 C jk . We reorganize the sum according
to the parameter s, n C 1 � s � 2n. To obtain a term which yields an r-function
corresponding to a fixed value of s, we need to have jk D j1 C s � n � n. This can
be done in 2n � s C 1 ways (j1 D 0; : : : ; 2n � s). For each such choice of j1 and
jk we can choose the “intermediate” k � 2 values in

�
s�n�1
k�2

�
ways. Notice that we

must have 2 � k � s � nC 1. We obtain

hDN ;˚>ni D
nX

kD2
hDN ;Fki D

2nX
sDnC1

.2n � s C 1/

s�nC1X
kD2

 
s � n � 1

k � 2

!
� 
k � ˇ2N2�s

� ˇ2n

2nX
sDnC1


2.1C 
/s�n�1 N 2�s � 1

4
ˇ2


2n

1X
sDnC1

�
1C 


2

�s�n�1

D 
2ˇ2

2.1� 
/n;

where we used that N � 2n�1. Since n � log2 N C 2, by making 
 very small
we can assure that this quantity is less than 1

2
C 0 logN , a half of (2.129). We finally

obtain that

kDN k1 � 1

2
hDN ;˚i � 1

2

�
C 0 logN � 1

2
C 0 logN

�
& logN; (2.132)

which finishes the proof of Schmidt’s bound. ut
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2.4.5 The Proof of the L1 Discrepancy Bound

To reinforce the potency of the powerful blend of Roth’s method and the Riesz
product techniques, we describe the proof of the L1 lower bound (2.15) for the
discrepancy function contained in the same fascinating paper by Halász [48] (while
the L1 bound was already known, this result was completely new at the time).
This argument introduces another brilliant idea: using complex numbers. The test
function is constructed as follows

� WD
nY

kD0

�
1C i
p

logN
fk

�
� 1 D i
p

logN

nX
kD0

fk C �>n; (2.133)

where a small constant 
 > 0 and the “�1” in the end play the same role as in the
previous argument, and �>n is the sum of the higher-order terms. Then one can see
that

k� k1 �
�
1C 
2

logN

� n
2

C 1 � e

2=2 C 1 . 1: (2.134)

Just as before, one can show that the input of �>n will be small provided that 
 is
small enough. Hence,

kDN k1 & jhDN ;� ij & 
p
logN

hDN ;

nX
kD0

fki & nC 1p
logN

� p
logN; (2.135)

which finishes the proof of (2.15). ut

2.4.6 Riesz Products: Lacunary Fourier Series

It is not surprising that the Riesz product approach is effective in these problems.
As discussed earlier, the extremal values of the discrepancy function (as well as of
hyperbolic Haar sums) are achieved on very thin sets. Riesz products are known to
capture such sets extremely well. In fact, we can see that Temlyakov’s test function
� D 2nC11E , where E is the set on which all the functions fk are positive, and
in particular the L1 norm is attained. We shall make a further remark about the
structure of this set E in Sect. 2.6.1.3.

But there is an even better explanation of the reason behind the successful
application of the Riesz products in these contexts. In order to understand its
roots we turn to classical Fourier analysis. Riesz products have initially appeared
in connection with lacunary Fourier series [80, 96, 119] and have proved to be
an extremely important tool for these objects. It would be interesting to compare
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the estimates whose proofs we have just discussed with a classical theorem about
lacunary Fourier series due to Sidon [96,97]. Its proof can be found in almost every
book on Fourier analysis, e.g. [46, 56, 119]. We shall reproduce it here in order to
convince the reader that the proofs of the three previous inequalities (the small ball
inequality (2.126) and lower bounds for kDN k1 (2.132) and kDN k1 (2.135) in
dimension d D 2) are natural.

Recall that an increasing sequence f�j g1jD1  N is called lacunary if there exists
q > 1 so that �jC1=�j > q. Let f be a 1-periodic function. We say that f has
lacunary Fourier series if there exists a lacunary sequence � such that the Fourier
coefficients of f ,

Of .k/ D
Z 1

0

f .x/e�2�ikxdx; (2.136)

are supported on the sequence �. In other words, Of .k/ D 0 whenever k 62 �. We
have the following theorem.

Theorem 18 (Sidon [96, 97]).

1. Let f be a bounded 1-periodic function with lacunary Fourier series. Then we
have

kf k1 &
1X
kD1

j Of .k/j: (2.137)

2. Assume that a function f 2 L1Œ0; 1� has lacunary Fourier series. Then

kf k1 & kf k2: (2.138)

In both cases, the implicit constant depends only on the constant of lacunarity q > 1.

Proof. The reader will easily recognize the arguments that follow: the previous
proofs in this section are their direct offsprings. We shall initially operate under
the assumption that q � 3. This condition guarantees that any integer n can be
represented in the form n D P

k "k�k , "k D �1; 0; 1, in at most one way.
We begin by proving the first part of the theorem. Construct the following Riesz

product

PN .x/ D
NY
kD1

�
1C cos.2��kx C ık/

�
; (2.139)

where ık is chosen so that eiık D Of .k/=j Of .k/j. Obviously, PN .x/ is non-negative
for all x. It is also easy to see that cPN .0/ D R 1

0
P.x/ dx D 1. Indeed, writing
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cos t D 1
2
.eit C e�it/ and multiplying the product out, we see that the leading term

is 1 and all others have integral zero. Hence, kPN k D 1.
Moreover, for k � N , we have cPN .�k/ D 1

2
eiık . This again follows from

expanding the Riesz product. We obtain a trigonometric polynomial, in which, due
to our assumption that q � 3, the term e2�i�kx can only arise from the product of
the cosine in the kth factor with the 1’s coming from all the other factors. Besides,
for k > N , evidently cPN .�k/ D 0. Therefore we can apply the Parseval identity:

kf k1 �
ˇ̌
ˇ̌Z 1

0

f .x/PN .x/dx

ˇ̌
ˇ̌ D

ˇ̌
ˇ̌
ˇ
X
k2Z

Of .k/cPN .k/
ˇ̌
ˇ̌
ˇ D 1

2

NX
kD1

j Of .�k/j: (2.140)

Clearly, we can now take the limit as N ! 1. The restriction q � 3 may be
removed in the following fashion. Find the smallest n such that qn > 3, 1� 1

qn�1 >
1
q

, 1 C 1
qn�1 < q and subdivide the sequence f�j g1jD1 into n subsequences of the

form�m D f�mCjng1jD1,m D 0; 1; : : : ; n�1. Then, repeating the argument above,

we can prove an analog of (2.140) for �m, i.e., kf k1 &
P

k2�m j Of .k/j, see [56,
Chapter V] for details. Summing these estimates overm finishes the proof.

We now turn to the proof of the second part of the theorem. It will also
be achieved using a Riesz product. We first assume that q � 3. Let a2N DPN

kD1 j Of .�k/j2 and ck D j Of .�k/j=aN . Define the function

QN.x/ D
NY
kD1

�
1C ick cos.2�i�kx C �k/

�
: (2.141)

It is then clear that jQN.x/j � QN
kD1.1 C c2k/

1=2 � e
1
2

P
c2k D p

e, i.e. kQN k1 �p
e. If q � 3, we can easily show that bQN.�k/ D 1

2
icke

i�k D 1
2aN

Of .�k/ for a
proper choice of �k. Parseval’s identity then yields

kf k1 &
Z 1

0

f .x/QN .x/dx D
X
k2Z

Of .k/bQN.k/

D 1

2aN

NX
kD1

j Of .�k/j2 D 1

2

 
NX
kD1

j Of .�k/j2
! 1

2

:

We finish the proof of (2.138) by letting N approach infinity and recalling that

kf k22 D
�PN

kD1 j Of .�k/j2
	 1
2
. The assumption q � 3 is removed in exactly the same

way as in the first case. ut
One cannot help but notice extremely close similarities between the constructions

of Riesz products for the small ball inequality and discrepancy estimates in
dimension d D 2 and the ones just used in the proof of Sidon’s theorem. Indeed,
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the constructions (2.124) and (2.128) bear strong resemblance to the product (2.139)
used to estimate kf k1, while the idea of the product (2.133) is nearly identical to
the Riesz product (2.141) which produces the bound for kf k1.

The absolute efficiency of Riesz products in the two-dimensional cases of the
small ball inequality and the L1 discrepancy bound is justified by the fact that
the condition jRj D 2�n effectively leaves only one free parameter (e.g., the value
of jR1j defines the shape of the rectangle) and creates lacunarity (jR1j D 2�k ,
k D 0; 1; : : : ; n, in other words, the consecutive frequencies differ by a factor of 2).
As we saw in this subsection, historically Riesz products were specifically designed
to work in such settings (lacunary Fourier series, see e.g. [119], [80, 1918]). From
the probabilistic point of view, Riesz products work best when the factors behave
similarly to independent random variables, which relates perfectly to our problems
for d D 2, since the functions fk actually are independent random variables. The
failure of the product rule explains the loss of independence in higher dimensions.
This approach towards Conjecture 12 is taken in [19].

Before we proceed to the discussion of the recent progress in the multidimen-
sional case, we would like to briefly explain the connections of Conjecture 12
to other areas of mathematics. While the connection of the small ball conjecture
to discrepancy function is indirect, it does have important formal implications in
probability and approximation theory.

2.4.7 Probability: The Small Ball Problem for the Brownian
Sheet

Having read thus far, the reader is perhaps slightly confused by the name small
ball inequality. It would be worthwhile to explain this nomenclature at this point.
It comes from probability theory, namely the small ball problem for the Brownian
sheet, which is concerned with finding the exact asymptotic behavior of the small
deviation probabilityP.kBkL1.Œ0;1�d / < "/ as " ! 0, where B is the Brownian sheet,
i.e. a centered multiparameter Gaussian process characterized by the covariance
relation

EB.s/ � B.t/ D
dY
jD1

min.sj ; tj / (2.142)

for s; t 2 Œ0; 1�d . It is known that the paths of B are almost surely continuous, so we
can safely write L1.Œ0; 1�d / and C.Œ0; 1�d / norms interchangeably.

The circle of small deviation (or small ball) problems is an active and rapidly
developing area of modern probability theory. The common goal of all of these
problems is computing the probability that the values of a random variable or
a random process deviate little from the mean in various senses (i.e. stay in a
small ball for a certain norm). This field is far less understood than the classical
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area of large deviation estimates, and numerous fundamental questions about small
deviations are still open. A detailed account of small ball probabilities for Gaussian
processes can be found in a nice survey [67]. The Brownian sheet B, being the basic
example of a multiparameter process and a natural generalization of the Brownian
motion, presents special interest.

For the sake of brevity, let us denote the logarithm of the probability of the
small deviation of B in the sup-norm by '."/ WD � logP.kBkL1.Œ0;1�d / < "/.
It is well known that in the case when d D 1, i.e. B is the Brownian motion,
'."/ � "�2 for small ". Moreover, even the precise value of the implicit constant is
known in this case: lim"!0 '."/"�2

D �2

8
, see [43]. In higher dimensions, however, the

situation becomes more complicated due to the appearance of logarithmic factors
in this asymptotics. In dimension d D 2, it was shown by Bass [2, 1988] that

'."/ . 1
"2

�
log 1

"

�3
. This estimate was later extended to all dimensions by Dunker,

Kühn, Lifshits, and Linde [40]:

'."/ . 1

"2

�
log

1

"

�2d�1
: (2.143)

On the other hand, it was established much earlier [36, 1982] that the probability of
the small deviation in the L2 norm in all dimensions d � 2 satisfies

� logP.kBkL2.Œ0;1�d / < "/ � 1

"2

�
log

1

"

�2d�2
; (2.144)

and since kBkL2 � kBkL1 , this readily implies '."/ & 1
"2

�
log 1

"

�2d�2
. Thus, one

finds a gap of the order of log 1
"

between the upper and the lower estimates, and the
lower estimate is, in fact, an L2 bound. This is a situation, which closely mirrors
what happens in the case of discrepancy and the small ball inequality. For a while
the experts were not sure which of the two bounds, if any, is correct (notice that the
upper bound (2.143) is too big when d D 1). However, it is now generally believed
that the upper bound (2.143) is sharp for d � 2.

Conjecture 19. In dimensions d � 2, for the Brownian sheet B we have

� logP.kBkC.Œ0;1�d / < "/ ' "�2.log 1="/2d�1; " # 0:

The lower bound for d D 2 in this conjecture has been obtained by Talagrand
[102] using (2.111). The work of Bilyk, Lacey, and Vagharshakyan [15,17] yields a
decrease in the gap between lower and upper bounds in dimensions d � 3. Namely,
there exists � D �.d/ > 0 such that for small "

� P.kBkC.Œ0;1�d / < "/ & "�2.log 1="/2d�2C� : (2.145)
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This improvement was based on the progress in the higher-dimensional small
ball inequality (2.196). We should now explain how the small ball inequality for
Haar functions (2.111) enters the picture in this problem. The argument presented
here follows Talagrand’s ideas.

2.4.7.1 Small Ball Inequality Implies a Lower Bound for the Small
Deviation Probability

Consider the integration operator Td acting on functions on the unit cube Œ0; 1�d

and defined as

.Tdf /.x1; : : : ; xd / WD
Z x1

0

: : :

Z xd

0

f .y1; : : : ; yd / dy1 : : : dyd : (2.146)

Let fukgk2N be any orthonormal basis of L2.Œ0; 1�d / and set �k D Tduk . Then the
Brownian sheet can be represented as

B D
X
k2N


k�k; (2.147)

where 
k are independent N .0; 1/ (standard Gaussian) random variables. This
idea goes back to Levy’s construction of the Brownian motion [66]. The Gaussian
structure is not hard to check. As to the covariance, writing �k.s/ D h1Œ0;s/; uki and
taking into account independence of 
k’s, one can easily compute

E

�X
k2N


k�k.s/

��X
k2N


k�k.t/

�
D
X
k2N

E
2k � �k.s/�k.t/ (2.148)

D
X
k2N

h1Œ0;s/; ukih1Œ0;t /; uki D h1Œ0;s/; 1Œ0;t /i

D ˇ̌
Œ0; s/\ Œ0; t/

ˇ̌ D
dY
jD1

minfsj ; tj g;

where in the second line we use the fact that uk’s form an orthonormal basis.
We shall use specific functions uk and �k . In dimension 1, for a dyadic interval

I , consider the function

uI .x/ D 1

jI j 12
� � 1I1.x/C 1I2.x/C 1I3.x/ � 1I4.x/

�
; (2.149)

where Ij , j D 1; : : : ; 4 are four quarters of I : successives dyadic subintervals of I
of length 1

4
jI j. The point of this choice of u is that both u and its antiderivative

T1u behave similarly to the Haar function. In particular, the system fuI gI2D is
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also an orthonormal basis of L2.Œ0; 1�/. Observe that, up to the normalization, these
functions are identical to the functions hrI with r D 1, defined in Sect. 2.2.3 in the
proof of the lower bounds for the errors of cubature formulas in the class B.MW2

r /,
Theorem 7. In dimensions d � 2, one defines the basis functions indexed by dyadic
rectangles R D R1 
 � � � 
 Rd 2 Dd as a tensor product

uR.x1; : : : ; xd / D uR1.x1/ � : : : � uRd .xd /: (2.150)

The functions �R D TduR are then continuous; moreover, their mixed derivative
@d

@x1:::@xd
�R D uR has L2 norm equal to 1. We shall now formulate a version of the

small ball conjecture for these continuous wavelets.

Conjecture 20. In all dimensions d � 2, for any choice of coefficients ˛R, we have
the inequality

n
d�2
2


X
jRjD2�n

˛R�R

1 & 2�
3n
2

X
jRjD2�n

j˛Rj: (2.151)

Notice that the factor 2� 3n2 is different from the one in the inequality (2.111). This
is a result of normalization: while we have used L1-normalized Haar functions,
khRk1 D 1, the sup-norm of the functions �R is smaller, k�Rk1 � 2�jRj=2 D
2�n=2.

Even though this conjecture is at the first glance somewhat harder than the
small ball conjecture for the Haar functions, the proofs are usually similar. In
fact, Talagrand in his paper [102] proves this conjecture for d D 2, but first he
presents the proof of Conjecture 12 for the Haar functions, (2.111), despite the
fact that strictly speaking it was not necessary—it is simply more transparent,
less obstructed by the technicalities, and clearly explains the main ideas. The
Riesz product arguments can also be adapted to this case. One can even still use
Riesz products built with Haar functions, which brings the amount of technical
complications to an absolute minimum (see the discussion on the last page of [17]).

For now let us assume that the conjectured inequality (2.151) holds. We shall
now show how it implies a lower bound for the small deviation problem. First, we
shall need a well-known fact from probability theory, which we state here in a very
simple form.

Lemma 21 (Anderson’s lemma, [1]). Let Xt , Yt , t 2 T be independent centered
Gaussian random processes. Then for any bounded measurable function � W R ! R

P.sup
t2T

jXt C �.t/j < c/ � P.sup
t2T

jXt j < c/ and (2.152)

P.sup
t2T

jXt C Yt j < c/ � P.sup
t2T

jXt j < c/: (2.153)
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The first inequality of this lemma reflects a general intuition that Gaussian
measures are concentrated near zero. The second inequality can be deduced by
simply applying the first one conditionally.

We now employ Anderson’s lemma to extract just one layer of �R’s from the
decomposition (2.147) of B—namely, we shall leave only those functions �R which
are supported on dyadic boxes of volume jRj D 2�n for a carefully chosen value
of n. This idea strongly resonates with Roth’s principle (2.24): just as in the case
of the discrepancy function DN , the behavior of the small ball probabilities of B
is essentially defined by its projection onto the part of the basis which corresponds
to rectangles with fixed volume. We apply (2.153) with Xt D P

jRjD2�n 
R�R and
Yt D P

jRj¤2�n 
R�R. This would enable us to use the small ball inequality (2.151)
as our next step.

P.kBkL1.Œ0;1�d / < "/ � P

�
X
jRjD2�n


R�R

1 < "

�
(2.154)

� P

�
Cn� d�2

2 2� 3n2
X
jRjD2�n

j
Rj < "
�
;

where C is the implied constant in (2.151). We are left with a standard object in
probability theory: the sum of absolute values of independent N .0; 1/ random
variables. Using the exponential form of Chebyshev’s inequality we can write for a
sequence of independent standard Gaussians 
k:

P

� MX
kD1

j
kj � A

�
� eA Ee�

PM
kD1 j
k j D eA

�
Ee�j
 j

�M
: (2.155)

We now apply this inequality with M D #fR 2 Dd W jRj D 2�ng D 2n � #Hd
n �

2nnd�1 and A D "
C
n
d�2
2 2

3n
2 in order to be able to finish (2.154). We see that

the right-hand side of (2.155) is then bounded by exp. 1
C
"n

d�2
2 2

3n
2 � C12

nnd�1/.
Choosing n to be the maximal integer such that

1

C
"n

d�2
2 2

3n
2 � 1

2
C12

nnd�1; i.e. " � CC12
� n2 n

d
2 ; (2.156)

we find that, since in this case " � 2� n2 n d
2 ,

P

� X
jRjD2�n

j
Rj < "

C
n
d�2
2 2

3n
2

�
� e� 12 C12nnd�1 � e

� C 00

"2

�
log 1

"

�2d�1

: (2.157)

Therefore,
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'."/ D � logP
�kBk1 < "

�
& 1

"2

�
log

1

"

�2d�1
: (2.158)

This finishes the proof of the lower bound in Conjecture 19 assuming that the
smooth (or, rather, continuous) version of the small ball conjecture, Conjecture 20,
holds. ut

Notice that, in another close parallel to Roth’s method in discrepancy theory, we
chose n � log 1

"
, although the exact choice of its value here was more delicate.

2.4.8 Approximation Theory: Entropy of Classes with Mixed
Smoothness

Consider the integration operator Td as described in (2.146). Let us define the
function space MWp.Œ0; 1�d / D Td .L

p.Œ0; 1�d // and set B.MWp/ D Td .B.L
p//

to be the image of the unit ball of Lp.Œ0; 1�d / under the action of Td . In other
words, MWp.Œ0; 1�d / can be viewed as the space of functions on Œ0; 1�d with mixed

derivative @d f

@x1@x2:::@xd
inLp , andB.MWp/ is its unit ball. These function classes have

already been defined in Sect. 2.2.3. It is not hard to see that B.MWp/ is compact
in the L1 metric. Its compactness may be quantified using the notion of covering
numbers. Let B1 denote the unit ball of L1.Œ0; 1�d / and define

N."; p; d/ WD min

�
N W 9˚xk
NkD1  B.MWp/; B.MWp/ 

N[
kD1
.xk C "B1/

�

(2.159)

to be the least number N of L1 balls of radius " needed to cover the unit ball
B.MWp.Œ0; 1�d //, or, equivalently, the size of the smallest "-net of B.WMp/ in the
uniform norm. The task at hand is to determine the correct order of growth of these
numbers as " # 0. The quantity

 ."/ D logN."; p; d/ (2.160)

is referred to as the metric entropy of B.MWp/ with respect to the L1 norm. The
inverse of this quantity is known in the literature as entropy numbers:

"m WD inf

�
" W 9˚xk
2mkD1  B.MWp/; B.MWp/ 

2m[
kD1
.xk C "B1/

�
; (2.161)

in other words, the smallest value of " for which  ."/ � m. It is clear that estimates
of metric entropy or covering numbers may be reformulated in terms of the entropy
numbers, however we shall mostly resort to the former.
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Kuelbs and Li [59] have discovered a tight connection between the small ball
probabilities and the properties of the corresponding reproducing kernel Hilbert
space, which in the case of the Brownian sheet is WM2.Œ0; 1�d /, see Sect. 2.4.9.
We state a partial form of their result tailored to the topic of our presentation.

Theorem 22 (Kuelbs and Li [59]). The rates of asymptotic growth of the metric
entropy  ."/ of the space MW2.Œ0; 1�d / and the logarithm of the small ball
probability of the d -dimensional Brownian sheet '."/ D � logP.kBk1 < "/ are
related in the following way. For ˛ > 0,

'."/ � "�2
�

log
1

"

�˛
if and only if  ."/ � "�1

�
log

1

"

�˛=2
: (2.162)

We shall explore this connection in a more general setting in Sect. 2.4.9 and,
in particular, prove this theorem. For more information and a wider spectrum of
inequalities relating the small deviation probabilities and metric entropy, the reader
is referred to [59, 67, 69].

Theorem 22 together with Conjecture 19 yields an equivalent conjecture:

Conjecture 23. For d � 2, we have

log N."; 2; d/ ' "�1.log 1="/d�1=2 ; (2.163)

as " # 0.

Just as in the case of the small ball probabilities for the Brownian sheet, the
conjecture is resolved in dimension d D 2, which follows from the work of
Talagrand [102]. The upper bound is known in all dimensions [40]. The lower bound

of the order 1
"

�
log 1

"

�d�1C�=2
in dimensions d � 3 can be ‘translated’ from the

corresponding inequality (2.145) for the Brownian sheet.
We would now like to discuss the relation between this conjecture and the

small ball inequality, Conjecture 12. Of course, one can combine the arguments
of the previous subsection for the Brownian sheet with the Kuelbs–Li equivalence
to demonstrate that the lower bound in Conjecture 23 follows from the small ball
conjecture (2.111) or, more precisely, its continuous counterpart (2.151). However,
we would like to illustrate how one can use the small ball inequality to directly
deduce the lower bound for the metric entropy.

2.4.8.1 Small Ball Conjecture Implies a Lower Bound for Metric Entropy

Estimates akin to the small ball inequality (2.111) or (2.151) have been known
for a long time to be useful for obtaining bounds of various approximation theory
characteristics, such as metric entropy, entropy numbers, Kolmogorov widths etc.,
see [106, 108]. We present one possible approach to this connection.
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We shall use the basis functions uR (see (2.150)) and their antiderivatives �R D
TduR defined in the previous subsection. Let � W fR 2 Dd ; jRj D 2�ng ! f˙1g
be a choice of signs on the set of dyadic rectangles with fixed volume 2�n. Define
the functions

F� D c

2
n
2 n

d�1
2

X
jRjD2�n

�R�R; (2.164)

where c > 0 is a small constant. Then by the orthonormality of the functions uR we
have

 @dF�

@x1 : : : @xd


2

2

D
 c

2
n
2 n

d�1
2

X
jRjD2�n

�RuR


2

2

D c2

2nnd�1
2n � #Hd

n � 1; (2.165)

if c is sufficiently small. Since �R D TduR, this estimate implies that F� 2
B.MW2/. Now assume that the continuous version of the small ball conjecture,
Conjecture 20 holds for the functions �R. Take two different choices of signs � and
� 0. Then (2.151) would imply:

F� � F� 0

1 D
 c

2
n
2 n

d�1
2

X
jRjD2�n

.�R � � 0R/�R
1 (2.166)

& 2�
n
2 n�

d�1
2 � n� d�2

2 2�
3n
2

X
jRjD2�n

j�R � � 0Rj

& n�
2d�3
2 2�2n � 2n#Hd

n � n1=22�n;

where we have additionally assumed that � and � 0 differ on a large portion (e.g.,
one quarter) of all dyadic rectangles with volume 2�n. We see that, in this case, F�
and F� 0 are "-separated in L1 with " D 2�nn1=2.

In order to construct a large " net for the set B.MW2.Œ0; 1�d //, it would be
therefore sufficient to produce a large collection A of choices of sign � such that
any two elements of A are sufficiently different, i.e. coincide at most on a fixed
portion of the rectangles.

Coding theory comes in handy in this setup. In fact, a reader familiar with its
basic notions perhaps already recognized the concept of Hamming distance in the
previous sentence. Consider a binary code X of length m, i.e. X  f0; 1gm is just
a collection of strings of m zeros and ones. For any two elements x, y 2 X , their
Hamming distance is defined as

dH .x; y/ D #fj D 1; : : : ; m W xj ¤ yj g; (2.167)

in other words, the number of components in which x and y do not coincide. The
minimum Hamming distance (weight) of the code X is then defined as the smallest
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Hamming distance between its elements, minx;y2X; x¤y dH .x; y/. The following
classical result in coding theory, which we state in the simplest form adapted to
our exposition, provides a lower bound on the size of the maximal code with large
minimum Hamming weight.

Lemma 24 (Gilbert–Varshamov bound [45,117]). Let A.m; k/ denote the maxi-
mal size of a binary code of length m with the minimum Hamming distance at least
k. Then

A.m; k/ � 2mPk�1
jD0

�
m

j

� : (2.168)

The proof of this estimate is so beautifully simple that we decided to include it
here.

Proof. We first observe that given an m-bit string x 2 f0; 1gm, there are precisely�
m
j

�
strings y 2 f0; 1gm such that dH.x; y/ D j . Indeed, we need to choose j bits

out of m that are to be changed. Hence the size of BH.x; k/, the neighborhood of x
of radius k in the Hamming metric (all elements y with dH.x; y/ < k), is equal toPk�1

jD0
�
m
j

�
.

Let now X be the maximal code of length m with minimum Hamming weight
k. Then [x2XBH.x; k/ D f0; 1gm, for otherwise there would exist another element
whose distance to all points of X is at least k, which would violate the maximality
of X . Thus,

2m D #
[
x2X

BH .x; k/ �
X
x2X

#BH.x; k/ D #X �
k�1X
jD0

 
m

j

!
; (2.169)

which proves the lemma. ut
We shall apply this lemma to codesX indexed by the family of dyadic rectangles

fR 2 Dd ; jRj D 2�ng. Hence, the length of the code is m D 2n#Hd
n �

2nnd�1. For any element of such a code x 2 X , we can define a choice of
sign �x by setting �xR D .�1/xR . We would like the code to have the minimal
Hamming weight of the same order of magnitude as the length of the code, i.e.
k � m � 2nnd�1. Take, for example, k D m

4
. One can easily check using Stirling’s

formula mŠ � 1p
2�m

�
m
e

�m
that

 
m

m=4

!
� 1p

m

�
1

4

��m=4�
3

4

��3m=4
. The Gilbert–

Varshamov bound then guarantees that there exists such a code X with size at least

#X � 2mPk�1
jD0

�
m
j

� � 2m

k � �m
k

� D 2m

m=4 � � m
m=4

� (2.170)

� 1p
m

� 2m
�
1

4

�m=4�
3

4

�3m=4
& Cm
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for some constant C > 1 when m is large, since 2 � .1=4/1=4 � .3=4/3=4 > 1. To
summarize, we can find a code such that its Hamming weight is roughly the same as
its length m and its size is roughly the same as the size of the largest possible code,
f0; 1gm (both are exponential in m).

Having chosen such a code X , we define the collection A D f�x W x 2 Xg and
consider the set of functions F D fF�g�2A . According to (2.166) this family is an
"-net of B.MW2/ in the L1 norm with " D 2�nn1=2. The cardinality of this family
satisfies

log #F D log #X & m � 2nnd�1 D 2nn�1=2 � nd� 12 � 1

"

�
log

1

"

�d� 12
; (2.171)

which yields precisely the lower bound in Conjecture 23. ut
In the end we would like to observe that in the proof of this implication we have

employed only a restricted form of the small ball inequality. In the computation
(2.166), the coefficients ˛R D �R � � 0R take only three values: ˙2 and 0.
Besides, zeros are not allowed to occur too often (at most a fixed proportion of
all coefficients). This (up to a factor of 2) is exactly the setting of the generic
signed small ball conjecture, Conjecture 14. Therefore, this version of the conjecture
(but with smooth wavelets �R in place of the Haar functions) is already sufficient
for applications. However, unlike Conjecture 13 (the purely signed variant of the
inequality, see Sect. 2.5.5), the generic setting does not seem to produce any real
simplifications.

2.4.9 The Equivalence of Small Ball Probabilities
and Metric Entropy

The equivalence of Conjecture 19 in probability and Conjecture 23 in approximation
theory proved by Kuelbs and Li [59] is a fascinating connection between two
problems, which at first glance have little in common. We strongly agree with
Michel Talagrand who stated [102]:

It certainly would be immoral to deprive the reader of a discussion of this beautifully simple
fact (that once again demonstrates the power of abstract methods).

Therefore we would like devote a portion of this chapter to the discussion of the
proof of this equivalence.

Before we are able to explain the argument however, we need to recall some
classical results from the theory of Gaussian measures, which we shall state here
without proof. Complete details and background information may be found in such
excellent references as [20, 64], or [69]. We, rather than giving the most general
definitions and statements, will mostly specialize to the particular problem at hand.
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Let P be a Gaussian measure on the Banach space X . The small ball problem for
the measure P is concerned with the asymptotic behavior of the quantity

'."/ D � log P."BX/; (2.172)

where BX is the unit ball of the space X .
In the case we are interested in, the Brownian sheet, the space X is C.Œ0; 1�d /

and the measure P is the law of the Brownian sheet B, i.e. for a set A 2 C.Œ0; 1�d /,
P.A/ D P.B 2 A/. In this notation, the definition of '."/ above coincides with the
one given in Sect. 2.4.7

'."/ D � logP.kBkL1.Œ0;1�d / < "/ D � log P.B1.0; "//; (2.173)

where B1.a; r/ is the L1 ball of radius r > 0 centered at a 2 C.Œ0; 1�d /. Recall
that B has mean zero, so the measure P is centered.

Assume that X , as in our case, is a space of real valued functions on a domain
D  R

d with the property that point evaluations Lx.f / D f .x/, x 2 D, are
continuous linear functionals on X . We can then introduce the covariance kernel of
P, the functionKP W D 
D ! R defined by

KP.s; t/ D
Z
X

f .s/f .t/P.df /: (2.174)

By definition, see (2.142), the covariance kernel of the Brownian sheet B is given
by KP.s; t/ D EB.s/B.t/ D Qd

jD1 minfsj ; tj g.
The reproducing kernel Hilbert space HP is then defined as the Hilbert space of

functions f 2 X with the property that the reproducing kernel of HP is precisely
the covariance kernel of P, i.e. for t 2 D and any f 2 HP, the function evaluation
of f at t can be represented as the inner product of f andKP.�; t/,

f .t/ D hf;KP.�; t/i: (2.175)

In the case when X D C.Œ0; 1�d / and P is the law of the Brownian sheet, this space
happens to be precisely the Sobolev space of functions with mixed derivative in
L2 as defined in the previous subsection, HP D MW2.Œ0; 1�d /. Indeed, MW2 is a
Hilbert space with the inner product given by

hf; giMW2 D h	f ; 	giL2 D
Z
Œ0;1�d

@d f

@x1 : : : @xd
.x/ � @dg

@x1 : : : @xd
.x/dx; (2.176)

where 	f 2 L2.Œ0; 1�d / is such that f D Td	f , in other words 	f is
the mixed derivative of f . It is easy to see that in d D 1, minfs; tg D
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R s
0 1Œ0;t /.�/ d� D �

T11Œ0;t /
�
.s/ for s; t 2 Œ0; 1�. Therefore, in d dimensions

KP.s; t/ D �
Td

�Qd
jD1 1Œ0;tj /

��
.sj / and for any f 2 MW2.Œ0; 1�d / we have

hf;KP.�; t/iMW2 D
Z t1

0

: : :

Z td

0

	f .s/ds D f .t/; (2.177)

henceKP.s; t/ is in fact the reproducing kernel of MW2.
In a certain sense, HP is a subspace of X which carries most of the information

about the measure P. We shall need two standard facts which relate the Gaussian
measure and its reproducing kernel Hilbert space.

Lemma 25. Let P be a centered Gaussian measure on a Banach space X , let HP

be its reproducing kernel Hilbert space and h 2 HP. Then, for any symmetric set
A 2 X we have

exp
� � khk2HP

ı
2
� � P.A/ � P.AC h/ � P.A/: (2.178)

The right inequality here is simply a restatement of Anderson’s lemma, (2.153),
which is intuitively natural since a Gaussian measure is concentrated around the
mean. The left bound, known as Borell’s inequality, shows that the measure of a
shifted set decays not too fast, in a fashion suggested by the Gaussian structure of
the measure. The assumption h 2 HP is crucial for Borell’s inequality as the shifted
measure P.� C h/ is not even absolutely continuous with respect to P unless h lies
in the reproducing kernel Hilbert space.

The second fact that we shall rely upon is the isoperimetric inequality.

Theorem 26 (Gaussian isoperimetric inequality). Let P be a centered Gaussian
measure on the Banach spaceX andK be the unit ball ofHP. For a measurable set
A  X and � > 0, we have

˚�1.P.AC �K// � ˚�1.P.A//C �; (2.179)

where ˚ is the distribution function of a N .0; 1/ (standard Gaussian) random

variable, i.e. ˚.x/ D 1p
2�

Z x

�1
e�t 2=2dt . The equality in (2.179) holds whenever

A is a half-space.

This inequality is a proper extension of the classical Euclidean isoperimetric
inequality to the infinite dimensional setting, where R

d is replaced by a Banach
space X , the volume by the Gaussian measure P, and the surface measure of A
by lim�#0 1� .P.A C �K/ � P.A//. Observe that in the Gaussian case the role of
Euclidean balls is played by half-spaces.

Such a correspondence allows one to transfer geometric volume arguments to
Banach spaces, where volume is not available. Indeed, if one wants to establish the
connection between the covering numbers and the size of the small balls, the first
impulse is to attempt to compare volumes. We have already given an argument along
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these lines in the proof of the Gilbert–Varshamov bound (2.168). In the general case,
Gaussian measures provide an appropriate substitution for the notion of volume,
while the above estimates (2.178) and (2.179) provide the necessary tools.

We are now ready to give the proof of the equivalence between the metric entropy
and small ball probability estimates.

Let N.";K/ be the covering number of K , the unit ball of HP, with respect to
the norm of X , that is the smallest number N such that for some fxkgNkD1  K we
have K  [N

kD1BX.xk; "/, where BX.a; r/ D fx 2 X W kx � akX < rg. Consider
the quantities  ."/ D logN.";K/ (the metric entropy) and '."/ D � log P."BX/.

Lemma 27. We have the following two estimates relating the metric entropy and
the small ball probability:

 .
p
2"=

p
'."// � 2'."/; (2.180)

 ."=
p
2'."// � '.2"/� log 2: (2.181)

Proof. Fix a parameter � > 0 to be chosen later. Let M D M."/ be the
largest number of disjoint balls of X of radius " with centers in �K: BX.xk; "/,
xk 2 �K , k D 1; : : : ;M . Then N.2"; �K/ D N.2"=�;K/ � M."/. Indeed,
doubling the radii of all M."/ disjoint balls we obtain a covering of �K by balls
of radius 2" (if some point x of �K is not covered, then BX.x; "/ does not intersect
any of the original balls, which contradicts the maximality assumption: we have
chosen the largest disjoint family). By Borell’s inequality, we have P.BX.xk; "// �
e��2=2P."BX/. Therefore, by disjointness of the balls B.xk; "/,

1 D P.X/ �
MX
kD1

P.xk; "/ � N.2"=�;K/ � e��2=2 P."BX/: (2.182)

Hence, taking logarithms, one obtains

 .2"=�/ � �2

2
C '."/: (2.183)

Choosing � D p
2'."/ results in  .

p
2"=

p
'."// � 2'."/, which proves (2.180).

In the opposite direction, let the family of balls fB.xk; "/gNkD1, xk 2 �K , be
a covering of �K . Then N � N."; �K/ D N."=�;K/. Besides, the doubled
balls fB.xk; 2"/gNkD1 obviously form a covering of a “thickened” set �K C "BX .
Therefore, using Anderson’s lemma (the second inequality in (2.178)), we arrive to

P.�K C "BX/ �
NX
kD1

P.BX.xk; 2"// � N."=�;K/ � P.2"BX/: (2.184)

We now only need to show that the left-hand side is bounded below by some
constant. Notice that the thickening was necessary, since P.�K/ D 0. We shall
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apply the isoperimetric inequality (2.179) with A D "BX and � D p
2'."/. We

have

P.�K C "BX/ � ˚.˚�1.P."BX//C �/ D ˚
�
˚�1

�
e�'."/

�Cp
2'."/

�
(2.185)

� ˚
� �

p
2'."/C

p
2'."/

� D ˚.0/ D 1

2
;

where we have used the fact that˚.�x/ � e�x2=2. Therefore it follows from (2.184)
that  ."=

p
2'."// � '.2"/� log 2, which is precisely (2.181). ut

Proof of Theorem 22. We now specialize these estimates to the Brownian sheet
B and its reproducing kernel Hilbert space MW2. In this situation P."BX/ D
P.kBkC.Œ0;1�d / < "/ and N.";K/ D N.";MW2.Œ0; 1�d // D N."; 2; d/.

Assume that, as suggested by the discussion in Sect. 2.4.7, '."/ � "�2
�

log 1
"

�˛
.

Setting ı D
p
2"p
'."/

� "2

.log 1
" /
˛=2

and using (2.180), we obtain

 .ı/ . "�2
�

log 1="

�˛
� ı�1

�
log

1

ı

�˛=2
: (2.186)

The other parts of the equivalence (2.162) are proved analogously. ut

2.4.10 Trigonometric Polynomials with Frequencies
in the Hyperbolic Cross

Finally we would like to give a short overview of a different, but closely related
analog of the small ball inequality, namely its version for trigonometric polynomials.
Consider periodic functions defined on T

d . For an integrable function on T
d ,

its Fourier coefficients are defined as Ofk D R
T
f .x/e�2�ik	x dx where k D

.k1; : : : ; kd / 2 Z
d . In the case of trigonometric polynomials, unlike the case of

Haar functions, frequencies are not readily dyadic. Hence it will be useful to split
the frequencies into dyadic blocks. For a vector s D .s1; : : : ; sd / 2 Z

dC we denote

�.s/ WD fk 2 Z
d W �2sj�1� � kj < 2

sj ; j D 1; : : : ; d g; (2.187)

where Œx� stands for the integer part of x. We then define the dyadic blocks of a
function f 2 L1.Td / as parts of the Fourier expansion of f which correspond to
�.s/:

ıs
�
f
�
.x/ WD

X
kW jkj2�.s/

Ofke
2�ik	x; (2.188)
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where we put jkj D .jk1j; : : : ; jkd j/. These blocks play a similar role to the
expressions

P
R2Dd

s
aRhR, where the summation runs over the family of disjoint

dyadic rectangles R with jRj j D 2�sj for j D 1; : : : ; d . Such linear combinations
appeared naturally in the definitions of the r-functions (2.28) and the dyadic
Littlewood–Paley square function (2.86).

The Littlewood–Paley inequalities adapted to this trigonometric setting read

kf kp �

� X

s2Zd
C

jıs.f /j2
� 1

2

p

; (2.189)

which bears a strong resemblance to (2.86)–(2.87). In particular, when d D 1 one
recovers the classical Littlewood–Paley inequalities for Fourier series.

For an even number n, denote by Yn D fs 2 .2ZC/d W s1 C : : : C sd D ng
the set of vectors with even coordinates and `1 norm equal to n. This is essentially
the familiar set Hd

n slightly modified for technical reasons. We shall also define the
dyadic hyperbolic cross as

Qn D
[

s2Zd
C

W s1C:::Csd�n
�.s/: (2.190)

In dimension d D 2, roughly speaking, it consists of the integer points that lie
under the parabola xy D 2n and satisfy x; y < 2n. Considering integer vectors k
with jkj 2 Qn produces a symmetrization which visualizes the meaning of the name
dyadic hyperbolic cross. The pure hyperbolic cross is defined as � .N/ D fk 2 Z

d WQd
jD1 maxf1; jkj jg � N , which makes the term even more obvious.
The trigonometric analog of the small ball inequality (2.111) in dimension d D 2


X
s2Yn

ıs.f /

1 &
X
s2Yn

ıs.f /

1

(2.191)

was obtained by Temlyakov [106] via a Riesz product argument very similar to
Sect. 2.4.3. One can notice easily that the small ball inequality for the Haar functions
can be rewritten in a very similar form

n
d�2
2


X

RW jRjD2�n

˛RhR

1 &
X
r2Hdn


X
R2Dd

r

˛RhR


1

: (2.192)

In fact, (2.191) can be improved to a somewhat stronger version. Define the best
hyperbolic cross approximation of f as

EQn.f /p D inf
t2T .Qn/

kf � tkp; (2.193)
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where T .Qn/ D ft W t.x/ D P
kW jkj2Qn cke

2�ik	xg is the family of trigonometric
polynomials with frequencies in the hyperbolic cross Qn. Then almost the same
argument that proves (2.191) also yields

EQn�3 .f /1 &
X
s2Yn

ıs.f /

1
: (2.194)

To draw a parallel with the Haar function version, the reader can check that (2.192)
holds if the summation on the left-hand side is extended to include rectangles of size
jRj � 2�n—the proof given in Sect. 2.4.3 need not even be changed.

Inequalities (2.191), (2.4.10) have been applied in [106, 108] to obtain estimates
of entropy numbers and Kolmogorov widths of certain function classes with mixed
smoothness. It was also shown in [108] that inequality (2.191) cannot hold unless
d D 2. Moreover, it cannot even hold if we replace the L1 norm on the left by Lp ,
p < 1 or the L1 norm on the right by Lq , q > 1. Analogously to Conjecture 12,
we can formulate

Conjecture 28 (The trigonometric small ball conjecture). In dimensions d � 2, the
following inequality holds

n
d�2
2


X
s2Yn

ıs.f /

1 &
X
s2Yn

ıs.f /

1

(2.195)

The sharpness of (2.195) has been established in [108] by a probabilistic argument
of the same flavor as the one presented in Sect. 2.4.2. For more information about
these inequalities, their applications, and hyperbolic cross approximations the reader
is invited to consult [106, 108] as well as the monographs [104, 105].

2.5 Higher Dimensions

While the failure of the product rule or lack of independence are huge obstacles
to the Riesz product method in higher dimensions, they are not intrinsic to our
problems. After all, this could be just an artifact of the method.

However, there are direct indications that the small ball inequality is much more
difficult and delicate in dimensions d � 3 than in d D 2. Consider the signed
(˛R D ˙1) case, see (2.116). In this case, at every point x 2 Œ0; 1�d the sum on the
left-hand side has #Hd

n � nd�1 terms, while the right-hand side of the inequality
is nd=2. In dimension d D 2, these two numbers are equal, which means that the
L1 norm is achieved at those points where almost all the terms have the same
sign (the function � finds precisely those points). In dimensions d � 3 on the
other hand, nd�1 is much greater than nd=2, while we know that the conjecture is
sharp. This means that for certain choices of coefficients, very subtle cancellation
will happen at all points of the cube, where even in the worst case one sign will
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outweigh the other by a very small fraction, nd=2

nd�1 , of all terms. (Of course, in some
specific cases, say ˛R D 1 for all R, at some points all functions have the same sign

and


X
jRjD2�n

˛RhR

1 � nd�1)

For a long time there have been virtually no improvements over the L2 bound
neither in the small ball conjecture, nor in the star-discrepancy bound. In the seminal
1989 paper on discrepancy [8], J. Beck gains a factor of .log logN/

1
8�" over Roth’s

L2 bound. A corresponding logarithmic improvement for the small ball inequality
can also be extracted from his argument, although he did not state this result and
apparently was not aware of the connections. In turn, the fact that Beck’s work
implicitly contains progress on Conjectures 19 and 23 in dimension d D 3 eluded
most of the experts in small deviation probabilities and metric entropy.

In 2008, largely building upon Beck’s work and enhancing it with new ideas and
methods, the author, M. Lacey, and A. Vagharshakyan [15, 17], obtained the first
significant improvement over the ‘trivial’ estimate in all dimensions greater than
two:

Theorem 29. In all dimensions d � 3 there exists �.d/ > 0 such that for all
choices of coefficients we have the inequality:

n
d�1
2 ��.d/


X

RW jRjD2�n

˛RhR

1 & 2�n
X

RW jRjD2�n

j˛Rj: (2.196)

A modification of the argument to the discrepancy framework (in a way
analogous to the one described in the previous section) was also used to obtain
an improvement (2.10) over Roth’s estimate (2.5) in all dimensions d � 3. (This
theorem has already been stated in the introduction, see Theorem 2; we simply
restate it here in order to show the whole spectrum of theorems obtained by the
method.)

Theorem 30. There exists a constant � D �.d/, such that in all dimensions d � 3,
for any set PN  Œ0; 1�d of N points, the discrepancy function satisfies

kDN k1 & .logN/
d�1
2 C�: (2.197)

The inequality (2.196) also directly translates into improved lower bounds of the
small deviation probabilities for the Brownian sheet (Conjecture 23) and the metric
entropy of the mixed derivative spaces (Conjecture 19).

Theorem 31. There exists a constant � D �.d/, such that in all dimensions d � 3,
the small ball probability for the Brownian sheet satisfies

� logP.kBkC.Œ0;1�d / < "/ &
1

"2

�
log

1

"

�2d�2C�
: (2.198)
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Theorem 32. In dimensions d � 3, the metric entropy of the unit ball of
MW2.Œ0; 1�d / with respect to the L1 norm satisfies

logN."; 2; d/ & 1

"

�
log

1

"

�d�1C�=2
: (2.199)

Due to the equivalence between the two problems, the value of � D �.d/ is the
same in both theorems above.

Since complete technical details of the proof of (2.196), which can be found in
[15–17] as well as Lacey’s notes on the subject [61], would take up more space than
the rest of this chapter, we shall simply present the main ideas of the argument and
the heuristics behind them. An interested reader can then follow the complete proof
in the listed references.

2.5.1 A Short Riesz Product

The Riesz product constructed in (2.124) for the proof of the two-dimensional small
ball conjecture turns out to be just too long for a higher dimensional problem.

Consider a very simple example when all ˛R > 0 and the dimension d is even (or
˛R < 0 for odd d ). If we take the same product as in (2.124),

Q
r2Hdn .1C fr/ with

fr D P
jRjD2�n sgn.˛R/hR, we can easily see that on the dyadic cube of sidelength

2�.nC1/ adjacent to the origin all the functions fr are positive, hence all the factors
of the Riesz product are equal to 2. Therefore,


Y

r2Hdn
.1C fr/


1

& 2#Hdn � 2�d.nC1/: (2.200)

This number becomes huge for large n as #Hd
n � nd�1. Therefore, this construction

does not stand a chance in dimensions d � 3.
Following the idea of Beck, the test function is constructed as a “short” Riesz

product. For r 2 H
d
n , we consider the r-functions fr D P

R2Dd
r

sgn.˛R/hR. Let
q be an integer such that q � an" for small constants a; " > 0. Divide the set
f0; 1; : : : ; ng into q disjoint (almost) equal intervals of length about n=q: I1, I2,. . . ,
Iq numbered in increasing order. Let Aj WD fr 2 H

d
n j r1 2 Ij g. Each group Aj

then contains #Aj � nd�1=q vectors. Indeed, the first coordinate r1 can be chosen
in n=q ways, the next d � 2—roughly in n ways each, and the last one is fixed due
to the condition kr k1 D n. We construct the functions

Fj D
X
r2Aj

fr: (2.201)
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Due to orthogonality, kFj k2 � p
#Aj � n.d�1/=2=pq. We now introduce the

“false” L2 normalization: Q� D aq1=4n�.d�1/=2 (a > 0 is a small constant), whereas
the “true” normalization would be somewhat larger, � D p

qn� d�1
2 . We are now

ready to define the Riesz product

� WD
qY

jD1
.1C Q�Fj /: (2.202)

Let us explain the effects that this construction creates and compare it to the two-
dimensional Temlyakov’s test function (2.124).

First of all, the grouping of r-functions by the values of the first coordinate mildly
mirrors the construction of (2.124). Here, rather than specifying the value of jR1j,
we indicate the range of values that it may take. This idea allows us to preserve some
lacunarity in the Riesz product. In particular, if i < j , then, in the first coordinate,
the Haar functions involved in Fj are supported on intervals strictly smaller than
those that support the Haar functions in Fi . It follows that for any k � q and 1 �
j1 < j2 < : : : < jk � q

Z
Œ0;1�d

Fj1.x/ � : : : � Fjk .x/ D 0; (2.203)

since the integral in the first coordinate is already zero (all the Haar functions are
distinct). In particular,

Z
Œ0;1�d

�.x/dx D 1; (2.204)

as (2.203) implies that all the higher order terms have mean zero. By comparison,
Beck’s [8] construction of the short Riesz product was probabilistic, which made
it much more difficult to collect definitive information about the interaction of
different factors in the product.

Secondly, recall that the Riesz product in (2.124) was non-negative allowing one
to replace the L1 norm with the integral which is much easier to compute. While
in our case positivity everywhere is too much to hope for, it can be shown that the
product is positive with large probability. The “false” L2 normalization Q� makes
the L2 norm of Q�Fj small: k Q�Fj k2 � q�1=4 � n�"=4 � 1. Thus .1 C Q�Fj / is
positive on a set of large measure, therefore, so is the product (2.202). This heuristic
is quantified in (2.212).

However, we cannot take � to be the test function since we do not know
exactly how it interacts with

P
jRjD2�n ˛RhR. As explained in the remarks after

the product rule (2.123), problems arise when the rectangles supporting the Haar
functions coincide in one of the coordinates, in other words, when for two vectors
r, s 2 H

d
n and for some k D 1; : : : ; d , we have rk D sk . We say that a

coincidence occurs in this situation. We say that vectors frj gmjD1  H
d
n are strongly
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distinct if no coincidences occur between the elements of the collection, i.e., for all
1 � i < j � m, 1 � k � d , we have ri;k ¤ rj;k. We can then write

� D 1 C �sd C �:sd ; where (2.205)

�sd D
qX

kD1
Q�k

X
1�j1<j2<:::<jk�q

 
QX
frj1

� � � � � frjk

!
; (2.206)

and the tilde above the innermost sum indicates that the sum is extended over all
collections of vectors frjt 2 Ajt W t D 1; : : : ; kg which are strongly distinct. To put
it simpler, �:sd consists of the terms that involve coincidences, and �sd—of the
ones that don’t.

2.5.2 The Beck Gain

The function �sd is then taken to be the test function. Since all the coincidences
are eliminated, the product rule (2.123) is applicable and an argument similar to
(2.126)–(2.127) can be carried out, provided we can show that k�sdk1 . 1.

2.5.2.1 Simple Coincidences

An enormous part of the proof of Theorem 29 in [15, 17] is devoted to the study of
analytic and combinatorial aspects of coincidences, i.e. the behavior of �:sd . An
important starting point is the following non-trivial lemma, which as a tribute to
József Beck’s ideas [8] we call the Beck gain:

Lemma 33 (Beck gain). For every p � 2 we have the following inequality


X

r¤s2Hdn
r1Ds1

fr � fs


p

. p
2d�1
2 n

2d�3
2 : (2.207)

The main aspect of this lemma is the precise power of n in the estimate. The
exponent 2d�3

2
is in fact very natural. Indeed, d -dimensional vectors r and s have

d parameters each. The condition krk1 D ksk1 D n eliminates one free parameter
in each vector. Additionally, the coincidence r1 D s1 freezes one more parameter.
Hence, the total number of free parameters in the sum is 2d � 3 and each can take
roughly n values. Thus the total number of terms in the sum is of the order of n2d�3
and (2.207) essentially says that they behave as if they were orthogonal. The power
of p doesn’t seem to be sharp (perhaps, 2d�3

2
should also be the correct exponent of

p), but it is important for further estimates that this dependence is polynomial in p,
see e.g. computation (2.227) and the discussion thereafter.



138 D. Bilyk

Another intuitive explanation may be given from the following point of view. It
is not hard to see that


X

r¤s2Hdn
fr � fs


p

D

� X

r2Hdn
fr

�2
�
X
r2Hdn

f 2
r


p

(2.208)

�

X
r2Hdn

fr


2

2p

C #Hd
n � nd�1;

since #Hd
n � nd�1 and the L2p norm of F D P

r2Hdn fr is of the order n
d�1
2 as was

shown in (2.88) using the Littlewood–Paley inequalities. Therefore, by imposing the
condition r1 D s1 one gains

p
n in the estimate, which explains the name that the

authors have given to this estimate.
This lemma, albeit in a weaker form (just for p D 2 and with a larger power of

n) appeared in the aforementioned paper of Beck [8]. In his argument, in order to
compute the L2 norm, Beck expands the square of the sum:


X

r¤s2Hdn
r1Ds1

fr � fs


2

2

D
X

r¤s; u¤v
r1Ds1; u1Dv1

Z
Œ0;1�d

fr � fs � fu � fv dx: (2.209)

Notice that each integral above is equal to zero unless the four-tuple of vectors
.r; s;u; v/ 2 .Hd

n /
4 has a coincidence in each coordinate. Careful and lengthy

combinatorial analysis of the arising patterns of coincidences then leads to the
desired inequality.

The extension and generalization obtained in [15, 17] is achieved by replacing
the process of expanding the square by the applications of the Littlewood–Paley
square function (2.66), which is a natural substitution in harmonic analysis, when
one wants to pass fromL2 to Lp , p ¤ 2. Every application of the Littlewood–Paley
inequality (2.68) yields a constant Bp � p

p. The lemma was initially proved in
d D 3 [15] and then extended to d � 3 [17] by a tricky induction argument. The
reader is invited to see [15, Lemma 8.2], [17, Lemma 5.2] for complete details.

2.5.2.2 Long Coincidences

As we shall see, Lemma 33 is very powerful and yields important consequences,
e.g. (2.212)–(2.213). Yet it is only a starting point in the analysis. One needs to
analyze more complicated instances of coincidences which arise in �:sd . Their
high combinatorial complexity in large dimensions aggravates the difficulty of
the problem. Further success of the Riesz product method requires inequalities of
the type
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Xfr1 � : : : � frk


p
. p˛Mn

M
2 ; (2.210)

where the sum is extended over all k-tuples r1, . . . , rk with a specified configuration
of coincidences andM is the number of free parameters imposed by this configura-
tion; ˛ > 0 is a constant which is conjectured to be 1

2
. Estimates of this type suggest

that free parameters behave orthogonally even for longer coincidences.
These patterns of coincidences may be described by d -colored graphs G D

.V;E/, where the set of vertices V D f1; : : : ; kg corresponds to vectors r1; : : : ; rk,
and two vertices i and j are connected by an edge of color m, m D 1; : : : ; d if the
vectors ri and rj have a coincidence in the mth coordinate: ri;m D rj;m.

In the case of a single coincidence, when k D 2 and the graph describing the
coincidence consists of two vertices and one edge, estimate (2.210) turns precisely
into inequality (2.207) of Lemma 33. At present, inequality (2.210) in full generality
is only a conjecture. In [15, 17] a partial result with a larger power of n is obtained
for k > 2. Namely, it is proved that, if the summation is taken over a fixed pattern
of coincidences of length k, the following estimate holds for some 
 > 0

Xfr1 � : : : � frk


p
. pCkn

�
d�1
2 �


�
	k: (2.211)

In other words, we have a gain proportional to the total length of the coincidence.
This would later allow one to sum the estimates over all possible patterns of
coincidences.

Roughly speaking, this inequality is proved by choosing a large matching
(disjoint collection of edges) in the associated graph. Each edge in the matching
corresponds to a simple coincidence to which an analog of the Beck gain lemma
(2.207) may be applied, see [17, Theorem 8.3] for details. This approach, in
particular, puts a restriction on the size of the gain. Consider, for example, a star-like
graph with d edges of d distinct colors, which connect a single vertex (center) to d
other vertices. The largest matching in such a graph consists of one edge. Therefore,
in general, one cannot expect a matching of size more than k=d , which immediately
yields 
 . 1=d .

2.5.3 The Proof of Theorem 29

In this subsection we shall outline the main steps and ideas of the proof of
Theorem 29 based on the construction of the short Riesz product and the Beck gain.

The ultimate goal of constructing the short Riesz product � (2.202) was to
produce an L1 test function �sd . The fact that �sd has bounded L1 norm is proved
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through a series of estimates which are gathered in the following technical lemma
(see Lemma 4.8 in [17]):

Lemma 34. We have the following estimates:

�.f� < 0g/ . exp.�Ap
q/ I (2.212)

k�k2 . exp.a0pq/ I (2.213)Z
�.x/dx D 1 I (2.214)

k�k1 . 1 I (2.215)

k�:sdk1 . 1 I (2.216)

k�sdk1 . 1 ; (2.217)

where 0 < a0 < 1 is a small constant, A > 1 is a large constant, and � is the
Lebesgue measure.

While we shall not give complete proofs of most of these inequalities, some remarks,
explaining their nature and the main ideas, are in order.

We start with the first two inequalities (2.212)–(2.213) which are consequences
of the Beck gain (2.207) for simple coincidences.

2.5.3.1 The Distributional Estimate (2.212)

Inequality (2.212) is a quantification of the fact discussed earlier that, due to the
false L2 normalization Q�, � is negative on a very small set. Indeed, since � DQq
jD1.1C Q�Fj /, we have

�.f� < 0g/ �
qX

jD1
�.f Q�Fj < �1g/ D

qX
jD1

�
�f�Fj < �1

a
4
p
q


/; (2.218)

where we have replaced the ‘false’ L2 normalization Q� D aq1=4=n.d�1/=2 by the
‘true’ one � D p

q=n
d�1
2 . Let us view the functions Fj as a sum of ˙1 random

variables. If all of them were independent, we would be able to deduce estimate
(2.212) immediately using the large deviation bounds of Chernoff-Hoeffding type,
see e.g. (2.119), much in the same way as in (2.120). However, the presence of
coincidences destroys independence. The Beck gain estimate (2.207) allows one to
surpass this obstacle.

In fact, a weaker version of (2.212) can be proved without referring to the Beck
gain. We have, for all p > 1,
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k�Fj kp D
p
q

n
d�1
2


X
r2Aj

fr


p

.
p
q

n
d�1
2

p
d�1
2 .#Aj /

1
2 . p

d�1
2 : (2.219)

This estimate follows from successive applications of the Littlewood–Paley inequal-
ity (2.68) in the first d � 1 coordinates (the last one is not needed due to the
restriction jRj D 2�n) and is identical to the calculation leading to (2.85). A
constant of the order

p
p arises each time we apply the square function. This

shows, using the equivalent definitions of the exponential Orlicz norms (2.75), that
k�Fj kexp.L2=.d�1// . 1 and hence �

�f�Fj < � 1
a

4
p
qg� . exp.�Cq1=2.d�1//.

To get the desired exp.L2/ bound, one would have to use Littlewood–Paley
just once in order to get the constant of p1=2 on the right-hand side. Therefore,
the strategy to obtain the sharper inequality (2.212) is the following: we apply
the Littlewood–Paley inequality to �Fj just in the first coordinate. The “diagonal”
terms yield a constant, while the rest of the terms are precisely the ones that have
a coincidence in the first coordinate and are governed by the Beck gain. To be
more precise, recall that Fj D P

rW r12Ij fr and apply the Littlewood–Paley square
function in the first coordinate

k�Fj kp . p
pkS1.Fj /kp D p

p


�X
t2Ij

�2
� X

rW r1Dt
fr
�2�1=2

p

(2.220)

D p
p

�2
X
r2Aj

f 2
r C �2

X
r¤s2Aj
r1Ds1

fr � fs


1=2

p=2

. p
p

0
BB@1C �2


X

r¤s2Aj
r1Ds1

fr � fs


1=2

p=2

1
CCA :

The diagonal term above is bounded by a constant since f 2
r D 1 and ��2 D nd�1=q

is roughly equal to the number of elements of Aj . The Beck gain estimate (2.207)
can be applied to the second term to obtain

�2

X

r¤s2Aj
r1Ds1

fr � fs


p=2

. q

nd�1
p

2d�1
2 n

2d�3
2 D qpd�

1
2 n�

1
2 . 1 (2.221)

when p is not too big. Hence for relatively small values of p, the Beck gain term
will not dominate over the diagonal term. For this range of exponents p we obtain
k�Fj kp . p

p. This inequality for the full range of p by (2.75) would have implied
k�Fj kexp.L2/ . 1. Even though this estimate cannot be deduced in full generality,
repeating the proof of (2.75) we can find that �

�f�Fj < �tg� . exp.�C t2/ for
moderate values of t , and (2.212) will follow. ut
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2.5.3.2 The L2 Bound (2.213)

An explanation for the L2 bound (2.213) may again be given using the heuristics
of probability theory. If Fj ’s were independent random variables, we would
immediately have (2.213):

Z qY
jD1

.1C Q�Fj /2 dx D
qY

jD1

Z
.1C Q�Fj /2 dx (2.222)

�
qY

jD1
.1C Q�2kFj k22/ �

�
1C a2p

q

�q
� ea

2pq:

While they are not independent, one can apply a conditional expectation argument
and Beck gain (2.207), since the lack of independence is the result of coincidences.

We can see from the discussion of the first two conclusions of Lemma 34 that,
from the probabilistic point of view, the Beck gain estimate (2.207) compensates for
the lack of independence.

2.5.3.3 The Integral and the L1 Norm of the Riesz Product �

(2.214)–(2.215)

Equality (2.214) has already been explained, see (2.204). It follows from the fact
that the functions Fj , j D 1; : : : ; q are orthogonal already in the first coordinate,
since they consist of Haar functions of different frequencies.

Even though� is not positive unlike in the two-dimensional case, theL1estimate
(2.215) easily follows from the previous three inequalities (2.212)–(2.214) using
Cauchy–Schwarz inequality:

k�k1 D
Z
�.x/dx � 2

Z
f�<0g

�.x/dx � 1C 2�.f� < 0g/1=2 � k�k2 (2.223)

. 1C exp.�Ap
q=2C a0pq/ . 1: ut

2.5.3.4 The L1 Norm of Coincidences (2.216)

Estimate (2.216) is the deepest part of this result and follows from the scrupulous
analysis of coincidences which was outlined in Sect. 2.5.2, especially the bounds
for long coincidences.

Recall that, as explained in Sect. 2.5.2.2, we describe long coincidences by d -
colored graphs. Let the set of vertices be V D V.G/  f1; : : : ; qg and impose an
additional condition that s 2 V.G/ implies rs 2 As . This assumption reflects the
way the vectors in the Riesz product are grouped. Denote by
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SumProduct.G/ WD
X Y

s2V.G/
frs ; (2.224)

where the sum is extended over all tuples of vectors frsgs2V.G/ with rs 2 As whose
pattern of coincidences is described by the graph G. This is precisely the object
whose norm is estimated in the Beck gain inequality for longer coincidences (2.211).

We can then represent the non-distinct part of the Riesz product � as a sum over
all possible configurations of coincidences as follows

�:sd D
X
G

Q�jV.G/j.�1/ind.G/C1 � SumProd.G/ �
Y

s 62V.G/
.1C Q�Fj /: (2.225)

Here the sum is taken over all ‘admissible’ graphs—graphs that describe a realizable
pattern of coincidences. The parameter ind.G/ is simply a proper parameter needed
in order to take care of the overlaps of different patterns of coincidences and to
produce a correct version of the inclusion-exclusion formula. It is defined as the
total number of equalities which describe the given arrangement of coincidences.

For a given pattern G, the factor SumProd.G/ gives all possible products arising
from this pattern, while

Q
s 62V.G/.1 C Q�Fj / is the part of the Riesz product which

is not involved in the given configuration of coincidences. Observe that in general
the function

Q
s 62V.G/.1C Q�Fj / satisfies more or less the same estimates as the full

Riesz product � itself, since it is of nearly identical form.
We shall interpolate between L1 (2.215) and L2 (2.213) estimates of the Riesz

product
Q
s 62V.G/.1 C Q�Fj / to bound its Lp norm and find that, when p gets

sufficiently close to 1, it is bounded by a constant. This is quite natural since its
L1 norm is bounded by a constant and it is a limit of Lp norms as p approaches 1.

To be more precise, we take p D .
p
q/0 D

p
qp
q�1 . In this case, 1

p
D
p
q�2p
q

�1C 2p
q

� 1
2
.

For the sake of brevity we denote �V.G/c WD Q
s 62V.G/.1C Q�Fj /. We then obtain

k�V.G/ck.pq/0 � k�V.G/ck.
p
q�2/=pq

1 � k�V.G/ck2=
p
q

2 . 1 � ea0

p
q	 2p

q . 1: (2.226)

We are now ready to estimate theL1 norm of�:sd , the non-distinct part of� . From
(2.225) we have

k�:sdk1 �
X
G

Q�jV.G/jkSumProd.G/ � �V.G/ck1 (2.227)

�
X
G

Q�jV.G/jkSumProd.G/kpq � k�V.G/ck.pq/0

.
qX

vD2

X
GW jV.G/jDv

q
v
4 n�

d�1
2 	v � qC vn

�
d�1
2 �


�
	v � 1
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.
qX

vD2

 
q

v

!
qvdn.C

0"�
/	v � �
n�
 0 C 1/q � 1

. qn�
 0 . 1

provided that " is small enough. Here we have applied the Beck gain for long
coincidences (2.211) to SumProd.G/ and the interpolation estimate (2.226) to
�V.G/c .

The number of admissible graphs with the given vertex set of v vertices can be
controlled in the following way. Let us initially look at coincidences in a single
coordinate. The number of ways to have a single coincidence is at most 2v (every
vertex either participates in a coincidence or not), for two coincidences the number
of possibilities is at most 3v (every vertex is in the first, second, or none of the
coincidences), etc. Hence the total number of possibilities is no more than 2v C3v C
: : : C .v=2/v . vv. If we now consider coincidences in all coordinates, the number
of patterns is bounded by .vv/d � qvd .

This computation reveals the motivation for some of the previously discussed
estimates as well as the arising limitations.

• First of all, we see from the last two lines of the inequality that the amount of
gain in (2.196) is forced to be bounded by the amount of the Beck gain (2.211).
More precisely, we need " . 
 in order to have qC � n
 . Moreover, the estimate
on the total number of graphs qvd � n"vd suggests that " . 1

d

 . Since 
 . 1

d
as

explained in Sect. 2.5.2.2, this tells us that the gain �.d/ in Theorem 29 coming
from thus argument is at most " . 1=d2.

• Besides, we see that in order to bound the norm of �V.G/c , the index .
p
q/0

needs to be sufficiently close to 1, hence
p
q is rather large. Therefore, it is

really important to be able not only to estimate the norm of the terms involving
coincidences SumProd.G/ in Lp spaces for p � 2, but also to be able to track
how the implicit constants depend on the integrability index p.

The computation (2.227) finishes the proof of (2.216) and leaves us just one little
step away from the proof of Theorem 29.

2.5.4 The L1 Norm of � sd (2.217) and the Conclusion
of the Proof

Since �sd D � � 1 � �:sd , the sought bound (2.217) is trivially implied by the
previous two. We can now conclude the proof of Theorem 29 following the lines of
(2.126)–(2.127):
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X

R2Dd W jRjD2�n

˛RhR

1 &
� X
jRjD2�n

˛RhR; �
sd

�
(2.228)

D
� X
jRjD2�n

˛RhR; Q�
X
jRjD2�n

sgn.˛R/hR

�

D Q�
X

R2Dd W jRjD2�n

˛R � sgn.˛R/ � khRk22

� n� d�1
2 C "

4 2�n �
X
jRjD2�n

j˛Rj;

so, (2.196) holds with � D "=4. ut

2.5.5 The Signed Small Ball Inequality

The signed small ball inequality, i.e. a version with ˛R D ˙1 for eachR, see (2.116)
may be viewed as a toy model of Conjecture 12. It avoids numerous technicalities,
while preserving most of the complications arising from the combinatorial com-
plexity of the higher dimensional dyadic boxes. In [16], the same authors came up
with a significant simplification of the arguments in [15, 17] for the signed case—
it only required the simplest estimate for coincidences (2.207), and not the more
complicated (2.210). It yielded the bound

 X
jRjD2�n

˛RhR
1 & n

d�1
2 C� (2.229)

for ˛R D ˙1 in all dimensions and allowed them to obtain an explicit value of the
gain �.d/ D 1

8d
� ".

In fact, given Lemma 34, it is quite easy to produce a proof of the “improvement
of the L2 estimate” (2.229), which is just (2.196) restricted to the signed case ˛R D
˙1. We provide this proof below.

2.5.5.1 The Proof of the Signed Version of Theorem 29

We shall use the same short Riesz product � D Qq
jD1.1C Q�Fj / defined in (2.202).

Recall that Fj D P
r2Aj fr, where Aj WD fr 2 H

d
n W n.j�1/

q
� r1 <

nj

q
g, i.e. the

first component of r lies in the j th subinterval of f1; 2; : : : ; ng. Notice that in the
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signed case the expression inside the L1 norm in the small ball inequality simply
equals the sum of all Fj ’s:

Hn D
X
jRjD2�n

˛RhR D
qX

jD1
Fj : (2.230)

Unlike the general case, we can now take the product � itself to be the dual
test function, rather than extracting its “coincidence-free” part. The coincidences
will be taken care of inside the argument. We first look at the inner product of a

single Fj with � . Denote by �¤j D
qY

iD1; i¤j
.1C Q�Fi / the part of the Riesz product

which consists of all factors except the j th one. Note that its structure is virtually
indistinguishable from that of the full product, hence �¤j satisfies essentially the
same estimates as � itself, see Lemma 34. Another important observation is that
Fj is orthogonal to �¤j : because of the structure of the product there are no
coincidences in the first coordinate, thus, in the first component, Fj and �j consist
of Haar functions of different frequencies. We then obtain

hFj ; � i D h
X
r2Aj

fr; � i D
X
r2Aj

hfr; .1C Q�Fj / � �¤j i

D Q�
X
r2Aj

hf 2r ; �¤j i C Q�h˚j ; �¤j i (2.231)

D Q�.#Aj /C Q�h˚j ; �¤j i;

where ˚j is exactly the expression arising in the Beck gain estimate (2.207)

˚j D
X

r;s2Aj ; r¤s; r1Ds1
fr � fs: (2.232)

The second line of the above computation (2.231) reflects the fact that the integral
of fr� is equal to zero unless we get a coincidence in the first coordinate; and
this coincidence may arise in two ways—when fr hits itself (in which case, since
f 2

r D 1 and
R
�¤j D 1, we simply pick up the cardinality of Aj ) or when it is

paired with a different vector from Aj with the same first coordinate (so that the
Beck gain (2.207) may be applied). We shall see that the former will be the main
term in the estimate, while the latter may be treated as the error term.

Just as in (2.226), interpolation between L1 (2.215) and L2 (2.213) estimates
of the Riesz product �¤j shows that the Lp norm k�¤jkp is at most a constant.

Copying (2.226), we need to take p D .
p
q/0 D

p
qp
q�1 to obtain

k�¤j k.pq/0 � k�¤jk.
p
q�2/=pq

1 k�¤jk2=
p
q

2 . 1 � ea0

p
q	 2p

q . 1: (2.233)
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We can now apply Hölder’s inequality, the Beck gain (2.207), and the previous
inequality to estimate

jh˚j ; �¤j ij � k˚kpqk�¤j k.pq/0 . .
p
q/d�1=2nd�3=2 � q�1=2; (2.234)

where the extra factor of q�1=2 comes from the restriction r; s 2 Aj , which means

that the parameter r1 D s1 2
�
n.j�1/
q

;
nj

q

�
can actually be chosen in n=q ways

rather than n. Recalling that Q� � q1=4n�.d�1/=2, q � n", and .#Aj / � nd�1=q,
together with the fact that k�k1 . 1, we obtain

kHnk1 & jhHn;� ij D
ˇ̌
ˇ̌
ˇ̌
qX

jD1
hFj ; � i

ˇ̌
ˇ̌
ˇ̌ & q Q�

�
#Aj � q d

2 � 34 nd�
3
2

	

� q
1
4 n

d�1
2 � q

dC1
2 n

d�2
2 & n

d�1
2 C "

4 ; (2.235)

provided that " is small enough, so that the second term is of smaller order of
magnitude than the first one. This happens precisely when " < 2

d
which already

yields the aforementioned restriction �.d/ � 1
d

. An even more stringent condition
on " (yet still yielding the same rate of decay in terms of the dimension) arises from
the proof of the L2 estimate of � (2.213).

The reader is reminded that estimate (2.215), k�k1 . 1, which is used in this
proof, only relied on theL2 bound (2.213), which in turn exploited only the simplest
case of the Beck gain (2.207) for a single coincidence. In other words, one does not
need to consider long coincidences—dealing with �:sd can be avoided altogether.
Thus the proof of estimate (2.196) in the signed case circumvents the heavy analytic
and combinatorial investigation of coincidences and indeed allows for tremendous
simplifications of the argument.

We close the discussion of the signed version of the small ball inequality by
outlining two other potential points of view and approaches to the problem.

2.5.5.2 A New Approach: Independence and Conditional Expectation

In dimension d D 2, the signed small ball inequality (2.111) can be easily proved
as a consequence of the independence of the random variables fr, which is easy to
check. Independence implies

P.fr D 1 W r D .k; n � k/; k D 0; : : : ; n/ D
nY

kD0
P.f.k;n�k/ D 1/ D 1

2nC1
> 0;

(2.236)
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i.e. on a set of positive measure the all the functions fr are positive. On this set
therefore

X
jRjD2�n

"RhR.x/ D
nX

kD0
f.k;n�k/.x/ D nC 1; (2.237)

which proves Conjecture 13 in dimension d D 2.
In higher dimensions, due to possible coincidences in vectors r 2 H

d
n , inde-

pendence of the functions fr no longer holds. This shortcoming can be partially
compensated for by delicate conditional expectation arguments. The proof of the
three-dimensional version of inequality (2.229) in [19] yields the best currently
known gain: �.3/ D 1

8
. Unfortunately, at this time it is not clear how to transfer

this method to the discrepancy setting or extend it to higher dimensions.

2.5.5.3 L1 Approximation

An alternative viewpoint stems from the close examination of the structure of the
two-dimensional Riesz products � . Consider again the signed case ˛R D ˙1 and
denote Hn D P

jRjD2�n ˛RhR. It can be shown that kHnk1 � kHnk2 � n1=2.

Indeed, Hölder’s inequality implies that kHnk2 � kHnk1=31 � kHnk2=34 . It is easy to
see that kHnk2 � kHnk4 � n.d�1/=2 D n1=2 (the computation of the L4 norm is
identical to (2.88)). The estimate for the L1 norm of Hn then follows.

Equality (2.125), on the other hand, implies that the L1 norm of Hn � .��>n/
is at most 1C k�k1 D 2, i.e. Hn, the hyperbolic sum of Haar functions of order n,
can be well approximated in the L1 norm by a linear combination of Haar functions
of higher order. In fact, the Small Ball Conjecture 12 would follow if we can prove
that for any choice of ˛R D ˙1 we have

distL1

0
@ X
RW jRjD2�n

˛RhR; H>n

1
A . n

d�2
2 ; (2.238)

whereH>n is the span of Haar functions supported by rectangles of size jRj < 2�n.
These ideas are not new. In fact, in [103, 1980] (see also [104]), more than 10

years prior to the proof of the small ball inequality (2.111) in dimension d D 2,
Temlyakov has used a very similar Riesz product construction in order to prove an
analog of the statement described above, namely, that trigonometric polynomials
with frequencies in a hyperbolic cross (see Sect. 2.4.10) can be well approximated
in the L1 norm by a linear combination of harmonics of higher order.
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2.6 Low Discrepancy Distributions and Dyadic Analysis

Most of the content of this chapter so far has been concerned with proofs of various
lower bounds for the discrepancy. In the last section we would like to illustrate how
Roth’s idea of incorporating dyadic harmonic analysis into discrepancy theory helps
in proving some upper discrepancy estimates.

2.6.1 The Van Der Corput Set

We recall a very standard construction, the so-called “digit-reversing” van der
Corput set [116], also known as the Hammersley point set. This distribution of
points is constructed in the following simple, yet very clever fashion. For N D 2n

define a set Vn consisting of 2n points

Vn D f.0:x1x2 : : : xn; 0:xnxn�1 : : : x1/ W xk D 0; 1I k D 1; : : : ; ng; (2.239)

where the coordinates are written as binary fractions. That means that the binary
digits of the y-coordinate are exactly the digits of the x-coordinate written in the
reverse order. Very roughly speaking, the effect of this construction is the following:
if the x-coordinate changes a little, the y-coordinate changes significantly (although
this is not exactly true), hence this set is well spread over the unit square.

Indeed, its star-discrepancy is optimal in the order of magnitude,

kDVnk1 � nC 1 � logN: (2.240)

This fact has been shown by van der Corput for the corresponding one-dimensional
infinite sequence. Halton [49] and Hammersley [51] later transferred the idea to the
multidimensional setting to construct the sets with the best currently known order
of magnitude of the star-discrepancy, .logN/d�1.

A crucial property of the van der Corput set, which allows one to deduce such
a favorable discrepancy bound is the fact that it forms a dyadic (or binary) net of
order n: any dyadic rectangle R of area jRj D 2�n contains precisely one point
of Vn, and hence the discrepancy of Vn with respect to such rectangles is zero. For
more information on nets, their constructions, and properties, the reader is referred
to Sect. 3 of the Chap. 9 by J. Dick and F. Pillichshammer in the current book as
well as [39].

2.6.1.1 The L2 Discrepancy of the Van Der Corput Set

Different norms of the discrepancy function of variations of this set have been
studied by many authors: [13,18,34,41,50,53,57,63,82,116] to name just a few. We
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do not claim to present a complete survey of these results here—a comprehensive
survey of numerous interesting properties of this elementary and at the same time
wonderful set is yet to be written. Instead, we concentrate only on some estimates
which we find most relevant to the theme of this chapter. Naturally, we shall start
with the L2 discrepancy.

It is well known that, while Vn has optimal star-discrepancy, its L2 discrepancy
is also of the order logN as opposed to the optimal

p
logN . The problem actually

lies in the fact that
Z
DVn .x/dx D n

8
C O.1/ � logN (2.241)

as observed in [13, 34, 50, 53]. Therefore, of course, kDVnk2 & logN .
One can look at this from a different point of view: (2.241) means that in any

reasonable orthogonal (Haar, Fourier, wavelet, Walsh etc) decomposition ofDVn the
zero-order coefficient is already too big, so, by Plancherel’s theorem, the L2 norm
is big. However, it turns out that the input of all the other coefficients is exactly of
the right order, see e.g. [13, 18, 50], hence (2.241) is the only obstacle. Halton and
Zaremba [50] showed that

DVn

2
2

D n2

26
C O.n/; (2.242)

which in conjunction with (2.241) proves this point.
There are several standard remedies which allow one to alter the van der Corput

set so as to achieve the optimal order of the L2 discrepancy. All of them, explicitly
or implicitly, deal with reducing the quantity

R
DVn .x/dx. Here is a brief list of

these methods.

(i) Random shifts.
Roth [82, 83] has demonstrated that there exists a shift of Vn modulo 1 which
achieves optimal L2 discrepancy. The proof was probabilistic: it was shown
that the expectation over random shifts has the right order of magnitude

E˛kDVn; ˛k2 .
p

logN; (2.243)

where Vn; ˛ D ˚�
.x C ˛/ mod 1; y

� W .x; y/ 2 Vn


. A straightforward

calculation shows that E˛
R
DVn.x/dx D O.1/. A deterministic example of

such a shift was constructed recently in [13].
(ii) Symmetrization.

This idea was introduced by Davenport [38] to construct the first example
of a set with optimal order of L2 discrepancy in dimension d D 2. His

example was a symmetrized irrational lattice, i.e.

��
˙ k

N
; fk˛g

��N
kD1

, where

˛ is an irrational number with bounded partial quotients of the continued
fraction expansion and fxg is the fractional part of x. Roughly speaking, the
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symmetrization ‘cancels out’ the zero-order term of the Fourier expansion of
DN . A similar idea was applied to the van der Corput set in [34].

(iii) Digit shifts (digit scrambling).
The method goes back to [50] in dimension d D 2 and [28] in higher
dimensions. In the case of the van der Corput set it works extremely well
and may be easily described. Fix an n-bit sequence of zeros and ones � D
.�k/

n
kD1 2 f0; 1gn . We alter Vn as follows:

V �
n D ˚

.0:x1x2 : : : xn; 0:.xn ˚ �n/.xn�1 ˚ �n�1/ : : : .x1 ˚ �1// W (2.244)

xk D 0; 1I k D 1; : : : ; n


;

where ˚ denotes addition modulo 2. To put this definition into simple words,
we can say that after flipping the digits, we also change some of them to the
opposite (we ‘scramble’ or ‘shift’ precisely those digits for which �k D 1).
This procedure has been thoroughly studied for the van der Corput set. It is
well known that it improves its distributional qualities in many different senses
[41, 57]. In particular, when approximately half of the digits are shifted, i.e.P
�k � n

2
, this set has optimal order of magnitude of the L2 discrepancy

[18, 50, 58].
There is a natural explanation for this phenomenon which continues the line

of reasoning started by (2.241). If one views the digits xi as independent 0� 1
random variables and tries to compute the quantity

R
DVn.x/dx, one inevitably

encounters expressions of the type Exi � xj . And while for i ¤ j we obtain
E xi �xj D 1

4
, in the ‘diagonal’ case this quantity is twice as big, Ex2i D 1

2
. And

this occurs n D log2 N times which leads to the estimate (2.241). However, if
the digit xi is scrambled, we have E xi � .1 � xi / D 0. Therefore, one should
scramble approximately one half of all digits in order to compensate for the
‘diagonal’ effect. The details are left to the reader and can be also found in the
aforementioned references.

The nice dyadic structure of this set makes it perfectly amenable to the methods
of harmonic analysis. For example, in [13] it is analyzed using Fourier series, in
[33, 34, 39, 63] the authors exploit Walsh functions (the Walsh analysis of the van
der Corput sets is nicely described in the chapter by W. Chen and M. Skriganov in
the current volume), while the estimates in [18,53] are based on the Haar coefficients
of DVn . We shall focus on the latter results as they directly relate to Roth’s method,
the main topic of our chapter, and complement previously discussed lower bounds.

2.6.1.2 Discrepancy of the Van Der Corput Set in Other Function Spaces

It has been shown in [18] that the BMO (2.107) and exp.L˛/ (2.109) lower estimates
in dimension d D 2, which we presented in Sect. 2.3.4 are sharp. In particular, for
the digit-shifted van der Corput set V �

n with
P
�k � n

2
and for ˛ � 2 we have

kDV �
n

kexp.L˛/ . .logN/1�
1
˛ : (2.245)
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In the case of the BMO norm, the standard van der Corput set satisfies

kDVnkBMO .
p

logN: (2.246)

These inequalities were based on estimates of the Haar coefficients of the discrep-
ancy function, namely

jhDV �
n
; hRij . min

˚
1=N; jRj
: (2.247)

This estimate for small rectangles is straightforward. The counting and linear part
can be bounded separately. The estimate for the counting part relies on the fact that
V �
n is a dyadic net and thus there cannot be too many points in a small dyadic

box, while the contribution of the linear part as computed in (2.33) is of the order
N jRj2 . jRj. In turn, coefficients corresponding to large rectangles involve subtle
cancellations suggested by the structure and self-similarities of V �

n . We point out
that, in accordance with Roth’s principle (2.24), the cutoff between ‘small’ and
‘large’ rectangles occurs at the scale jRj � 1

N
. The BMO and exp.L˛/ can then

be obtained by applying arguments of Littlewood–Paley type.
Almost simultaneously to these results, the Besov norm of the same digit-shifted

van der Corput set has been estimated using a very similar method in [53], see also
[71]. In fact, this work went much further: all the Haar coefficients of DV �

n
have

been computed exactly. This led to showing that the lower Besov space estimate
(2.101) of Triebel [112] is sharp in d D 2, more precisely

kDV �
n

kSrpqB.Œ0;1�d / . Nr .logN/
1
q (2.248)

for 1 � p; q � 1, 0 � r < 1
p

.

2.6.1.3 The Structure of the Riesz Product and the Van Der Corput Set

We close our discussion of the van der Corput set with an amusing observation
which pinpoints yet another connection between the small ball inequality (2.111)
and discrepancy.

Consider the two-dimensional case of the small ball inequality and assume
that all the coefficients ˛R are non-negative. Recall Temlyakov’s test function

(2.124): � D
nY

kD1

�
1C fk

�
. In this case, since sgn.˛R/ D C1, the r-functions

fk D P
jRjD2�n ; jR1jD2�k hR are actually Rademacher functions. As explained in

the very beginning of Sect. 2.4.6, the Riesz product � captures the set where all
the functions fk are positive. To be more precise, � D 2nC11E , where E D fx 2
Œ0; 1�2 W fk.x/ D C1; k D 0; 1; : : : ; ng.

We shall describe the geometry of the set E . Evidently, it consists of 2nC1 dyadic
squares of area 2�2.nC1/. We characterize the locations of the lower left corners of
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these squares. If t 2 Œ0; 1� and a dyadic interval I of length 2�k contains t , then
hI .t/ D �1 if the .k C 1/st binary digit of t is 0, and hI .t/ D 1 if it is 1. Thus
fk.x1; x2/ D C1 exactly when the .kC1/st digit of x1 and the .n�kC1/st digit of
x2 are the same, either both 0, or both 1. Therefore, .x1; x2/ 2 E when this holds for
all k D 0; 1; : : : ; n, i.e. the first nC 1 binary digits of x2 are formed as the reversed
sequence of the first nC1 digits of x1—but this is precisely the definition of the van
der Corput set VnC1! Therefore

E D VnC1 C Œ0; 2�.nC1// 
 Œ0; 2�.nC1//; (2.249)

i.e. the Riesz product, which produces the proof of the small ball Conjecture 12, is
essentially supported on the standard van der Corput set. Notice also that replacing
fk by �fk results in ‘scrambling’ the kth digit in the van der Corput set.
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Chapter 3
Irregularities of Distribution and Average Decay
of Fourier Transforms

Luca Brandolini, Giacomo Gigante, and Giancarlo Travaglini

Abstract In Geometric Discrepancy we usually test a distribution of N points
against a suitable family of sets. If this family consists of dilated, translated and
rotated copies of a given d -dimensional convex body D  Œ0; 1/d , then a result
proved by W. Schmidt, J. Beck and H. Montgomery shows that the correspondingL2

discrepancy cannot be smaller than cdN .d�1/=2d . Moreover, this estimate is sharp,
thanks to results of D. Kendall, J. Beck and W. Chen. Both lower and upper bounds
are consequences of estimates of the decay of k OD .��/kL2.˙d�1/

for large �, where
OD is the Fourier transform (expressed in polar coordinates) of the characteristic
function of the convex bodyD, while ˙d�1 is the unit sphere in R

d . In this chapter
we provide the Fourier analytic background and we carefully investigate the relation
between the L2 discrepancy and the estimates of k OD .��/kL2.˙d�1/

.

3.1 Introduction

More than 40 years ago W. Schmidt [51, 52] proved the following theorem on
irregularities of point distribution related to discs.

Theorem 1 (Schmidt). For every distribution P of N points in the torus T2 there
exists a disc D  T

2 of diameter less than 1 such that, for every " > 0,
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jcard .P\D/ �N jDjj � c" N
.1=4/�" ;

where jAj denotes the volume.

This result has to be compared with the following earlier results of K. Roth [50]
and H. Davenport [26].

Theorem 2 (Roth). For every distribution P of N points in Œ0; 1�2 we have the
following lower bound

Z
T2

jcard .P \ Ix/�Nx1x2j2 dx1 dx2 � c logN ;

where Ix D Œ0; x1� 
 Œ0; x2� for every x D .x1; x2/ 2 Œ0; 1�2. Hence for every
distribution P of N points in the torus T2 there exists a rectangle R  T

2, having
sides parallel to the axes and such that

jcard .P\R/�N jRjj � c log1=2 N :

Theorem 3 (Davenport). For every integerN � 2 there exists a distribution P of
N points in the torus T2 such that

Z
T2

jcard .P \ Ix/�Nx1x2j2 dx1 dx2 � c logN :

Schmidt’s theorem has been improved and extended by J. Beck [3] and H.
Montgomery [42], who have independently obtained the following L2 result
(see also [2, 4, 11]).

Theorem 4 (Beck, Montgomery). Let B  T
d be a convex body. Then for every

distribution P of N points in T
d we have

Z 1

0

Z
SO.d/

Z
Td

ˇ̌
card .P\ .�� .B C t/// � �dN jBjˇ̌2 dt d� d� � cdN

.d�1/=d :

Hence for every distribution P of N points in T
d there exists a translated, rotated

and dilated copy B 0 of B such that

ˇ̌
card

�
P\B 0� �N ˇ̌

B 0
ˇ̌ˇ̌ � cN .d�1/=2d :

J. Beck and W. Chen have proved that the above L2 estimate is sharp (see [2],
see also [13, 22, 35]).

Theorem 5 (Beck and Chen). Let B  R
d be a convex body having diameter less

than 1. Then for every positive integer N there exists a distribution P of N points
in T

d such that
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Z 1

0

Z
SO.d/

Z
Td

jcard .P\ .� .B C t/// � jBjj2 dt d� � cd N
.d�1/=d :

The large gap between the sharp L2 estimates which appear in Theorem 2
and in Theorem 4 seems to be related to the different behaviors of the Fourier
transforms of the characteristic functions of balls and polyhedra. The case of the
ball is enlightening: the main ingredients in the proofs of the results in Theorems 4
and 5 are provided by the sharp estimates of the L2 average decay of the Fourier
transform OB of the characteristic function of a convex body B:

Z
˙d�1

j OB .��/j2 d� (3.1)

(here ˙d�1 D ˚
x 2 R

d W jxj D 1



is the unit sphere in R
d ) so that the study of the

above problem on irregularities of distribution turns out to be strictly related to the
study of (3.1) (see e.g. [6, 11, 13, 61, 62]).

The purpose of this chapter is to exploit the above relation in a detailed and self-
contained way. In the second section we prove the L2 results for the average decay
of Fourier transforms of characteristic functions of convex bodies. The third section
contains Lp results for polyhedra. In the fourth section we deduce lattice point
results. The fifth and the sixth section are the main part of this chapter and show
how to obtain different proofs of Theorems 4 and 5, depending on the estimates
proved before.

During this chapter positive constants are denoted by c, c0, c1, . . . (they may vary
at every occurrence). By cd , c", cB , . . . we denote constants which depend on d , ",
B , . . . For positive A and B , we write A � B when there exist positive constants c1
and c2 such that c1A � B � c2A.

3.2 Decay of the Fourier Transform: L2 Estimates
for Characteristic Functions of Convex and More
General Bodies

3.2.1 Introduction

Let B  R
d be a convex body, i.e. a convex bounded set with non empty interior,

and let d� be the surface measure on @B . The study of the decay of the Fourier
transforms OB .�/ and O� .�/ has a long history and provides several applications
to different fields in mathematics (see [56, Ch. VIII, 5, B]). Of course we have
OB .�/ ! 0 as j�j ! C1, by the Riemann-Lebesgue lemma. However more is
true, since

j OB .�/j � cB j�j�1 ; (3.2)
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for every � 2 R
d . Indeed, write � D �� in polar coordinates (� � 0, � 2 ˙d�1)

and for every � 2 ˙d�1 define, for s 2 R, the parallel section function �.s/ D
�� .s/ equal to the .d � 1/-volume of the set B \ ˚

�? C s�


. In order to prove

(3.2) it is enough to assume � D .1; 0; : : : ; 0/, so that � D .�; 0; : : : ; 0/. Then, if
x D .x1; x2; : : : ; xd /, we have

OB .�/ D
Z
B

e�2�i�	x dx D
Z
R

e�2�i�x1� .x1/ dx1 D O�.�/ : (3.3)

Observe that the variation of the function �� is bounded uniformly in � , then
(see e.g. [64, p.221]) we get (3.2). The case of the cube Q D Œ�1=2; 1=2�d , shows
that (3.2) cannot be improved. Indeed

OQ .�/ D
dY
jD1

sin
�
��j

�
��j

;

so that, for the directions orthogonal to the facets (i.e the .d � 1/-faces) of this
cube, e.g. for � D .�; 0; : : : ; 0/, we have OQ .�; 0; : : : ; 0/ D sin .��/ =�� and then
we have

lim sup
j�j!C1

j�j ˇ̌ OQ .�/
ˇ̌
> 0 :

In the same way it is easy to see that if � D �� and � is not orthogonal to any facet
of the cube, then

ˇ̌ OQ .�/
ˇ̌ � c� �

�2. More generally, if � is not orthogonal to any
face (of any dimension), then

ˇ̌ OQ .�/
ˇ̌ � c� �

�d , hence this last inequality holds
for almost all directions.

The case of the (unit) ball D D ˚
x 2 R

d W jxj � 1



is of course peculiar, OD is a
radial function and we have

OD.�/ D j�j�d=2 Jd=2 .2� j�j/ ; (3.4)

for every � 2 R
d . Here Jd=2 is the Bessel function of order d=2. By the asymptotics

of Bessel functions (see [57, Ch. IV, Lemma 3.11], see also [63] for the basic
reference on Bessel functions) we know that

OD.�/ D ��1 j�j�.dC1/=2 cos .2� j�j � � .d C 1/ =4/C Od
�
j�j�.dC3/=2

	
(3.5)

as j�j ! C1.
In certain cases OB .�/ admits interesting upper bounds of geometric nature.

When d D 2 we shall see in Lemma 14 that for every convex body B  R
2 we

have, for large � D �� ,
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j OB.�/j � cB �
�1
(
�

 
���1 C sup

y2B
y � �

!
C�

�
��1 C inf

y2B y � �
�)

; (3.6)

where � is the parallel section function. It is easy to show that (3.6) is false when
d � 3. Indeed let P be the octahedron in R

3 given by the convex hull of the six
points .˙1;˙1; 0/, .0; 0;˙1/ ; and let � D .0; 0; 1/. Then

OP .��/ D
Z
P

e�2�i�x3 dx1 dx2 dx3 D O�.�/ :

Since

�.�/ D .1 � j�j/2C ;

then the RHS of (3.6) is � ��3. Now observe that the piecewise smooth function
�.�/ has continuous derivative at ˙1, but it is only continuous at 0. Then an
integration by parts shows that

lim sup
�!C1

�2
ˇ̌
ˇ O�.�/

ˇ̌
ˇ > 0 :

Then neither (3.6) nor an average version of it can be true. On the other hand a
deeper analysis shows that (3.6) holds true for every d as long as @B is smooth and
it has everywhere finite order of contact (see [1] and [16]).

In general (3.6) cannot be reverted. Indeed let B be a ball and recall (3.4), then
the zeros of the Bessel function (see [63]) show that the inequality (3.6) can be
reverted for no d . A. Podkorytov has shown that (3.6) can be inverted “in mean”
(Podkorytov, 2001, personal communication).

A very important case is given by the class of convex bodies B such that @B
is smooth with everywhere positive Gaussian curvature. In this case the decay of
OB.�/ resembles the decay for the ball. Indeed we have (see [16, 30, 32, 33] or [56,
Ch. VIII, 5, B])

j OB.�/j � cB j�j�.dC1/=2 ; (3.7)

for every � 2 R
d .

When @B is flat at some points or irregular, the bound in (3.7) may fail and a
pointwise estimate for OB.�/ may lead to poor results in the applications. As a way
to overcome this difficulty, we observe that in several problems (see e.g. [10,11,15,
46,48,49,62]) the Fourier transform has to be integrated over the rotations, so that it
may be enough to study suitable spherical averages of OB.�/. In the next subsection
we will study the L2 spherical means

�Z
˙d�1

j OB .��/j2 d�
� 1=2
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for the case of arbitrary convex bodies, while in the following section we will
consider Lp spherical means for polyhedra.

3.2.2 L2 Spherical Estimates for Convex Bodies

The main result in this field shows that if B  R
d is a convex body, then the L2

spherical average of OB decays of order .d C 1/ =2. Of course this agrees with the
case of the ball, where no spherical average is necessary. The following theorem
has been proved by A. Podkorytov in the case d D 2 [45] and L. Brandolini, S.
Hofmann and A. Iosevich for any dimension d [6].

Theorem 6. Let B  R
d be a convex body. Then there exists a positive constant

c D cd such that

k OB .��/kL2.˙d�1/
� c .diam .B//.d�1/=2 ��.dC1/=2 : (3.8)

Proof. For every " > 0 consider a convex body B 0  B such that @B 0 is smooth
with positive Gaussian curvature and jBnB 0j < " (here jAj denotes the Lebesgue
measure of the set A). Assume

k OB0 .��/kL2.˙d�1/
� c��.dC1/=2

with c depending on B , but not on B 0. Then

k OB .��/kL2.˙d�1/
� k OB0 .��/kL2.˙d�1/

C  OBnB0 .��/
L2.˙d�1/

� c��.dC1/=2 C "

and (3.8) follows by choosing suitable B 0 (and ") as � diverges. Then it is enough
to prove (3.8) assuming B smooth, since the constant c .diam .B//.d�1/=2 must be
independent of the smoothness of @B . For � ¤ 0 let

! .t/ D e�2� it	�
�2�i j�j2 �:

Then div! .t/ D e�2� it	� and the divergence theorem yields

OB .��/ D
Z
B

e�2�i�� 	t dt D � 1

2�i�

Z
@B

e�2�i�� 	t .�.t/ � �/ d� .t/ ; (3.9)

where �.t/ is the outward unit normal to @B at t and d� denotes the surface measure
on @B . Now write the unit sphere˙d�1 as a finite union of spherical caps Uj having
small radius and centers at points 
j 2 ˙d�1, in such a way that every spherical cap
Uj supports a cutoff function �j , so that the �j ’s provide a smooth partition of unity
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Fig. 3.1 The set ˝

of˙d�1. Although this partition of unity is independent ofB , the family
˚
�j .�.t//



is a partition of unity on @B . We then write

OB .��/ D � 1

2�i�

X
j

Z
@B

e�2�i�� 	t .�.t/ � �/ �j .�.t// d� .t/

and it is enough to prove that for every j we have

Z
˙d�1

ˇ̌
ˇ̌Z
@B

e�2�i�� 	t .�.t/ � �/ �j .�.t// d� .t/
ˇ̌
ˇ̌2 d� � c .diam .B//.d�1/=2 ��.d�1/ :

(3.10)

Now suppose j is given, write � for �j , 
 for 
j , and let ˝  @B be the support
of � .�.t//, so that from now on the inner integral in (3.10) will be on ˝ . We may
assume � supported in a small spherical cap having center at 
 D .0; : : : ; 0;�1/. We
need to consider directions which are essentially orthogonal and directions which
are essentially non orthogonal to ˝ , and tell them apart. In order to do this, let
 W R ! Œ0; 1� be a C1 cutoff function such that  .t/ D 1 for jt j � c1 and
 .t/ D 0 for jt j � c2, for 0 < c1 < c2 < 1. We write

Z
˙d�1

ˇ̌
ˇ̌Z
˝

e�2�i�� 	t .�.t/ � �/ � .�.t// d� .t/
ˇ̌
ˇ̌2 d�

D
Z
˙d�1

ˇ̌̌
ˇ
Z
˝

e�2�i�� 	t .�.t/ � �/ � .�.t// d� .t/
ˇ̌̌
ˇ
2

.1 �  .��d // d�

C
Z
˙d�1

ˇ̌
ˇ̌Z
˝

e�2�i�� 	t .�.t/ � �/ � .�.t// d� .t/
ˇ̌
ˇ̌2  .��d / d�

D S C NS :

We term “singular” the directions essentially orthogonal to the hyperplanes tangent
to ˝ and “non singular” the remaining ones (Fig. 3.1).
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Note that the phase �2�i�� � t has a stationary point in the singular directions.
However this is not an obstacle, and the proof in [6] starts with the easy but
somehow unexpected remark that the L2 spherical mean “makes this stationary
point disappear”, as we shall see in a moment. In order to estimate S we write

S D
Z
˝

Z
˝

Z
˙d�1

e�2�i�� 	.t�u/f .t; u; �/ d�d� .u/ d� .t/ ;

where

f .t; u; �/ D .�.t/ � �/ � .�.t// .�.u/ � �/ � .�.u// .1 �  .� � 
//

is smooth in � . Note that t�u in the above integral is essentially parallel to˝ . Then,
writing the integral in d� in local coordinates, we can apply [56, Ch. 8, Prop. 4] and
obtain

ˇ̌
ˇ̌Z
˙d�1

e�2�i�� 	.t�u/f .t; u; �/ d�

ˇ̌
ˇ̌ � c

�
.1C � jt � uj/�N

	

for a large positive integer N . Then

S � c

Z
˝

Z
˝

1

.1C � jt � uj/N d� .u/ d� .t/

� c

Z Z
fjt�uj���1g

1

.1C � jt � uj/N d� .u/ d� .t/

C c

Z Z
fjt�uj���1g

1

.1C � jt � uj/N d� .u/ d� .t/

� c� .˝/

 Z
fx2Rd�1Wjxj���1g

dx C ��N
Z
fx2Rd�1Wjxj>��1g

jxj�N dx

!

� c� .˝/ ��.d�1/ :

Now we need to prove the same estimate for NS. If we were free to integrate by
parts several times,1 it should then be easy to handle NS and to end the proof. Since
the constants in our estimates need to be independent of the smoothness of @B , we
need a more refined argument. As a first step, let us see ˝ as the graph of a convex
smooth function x 7! ˚ .x/. Then, writing ˙d�1 3 � D .�1; : : : ; �d / D .� 0; �d /
we have

1Actually the convexity hypothesis allows us to integrate by parts at least once without using any
regularity assumption on @B . In this way we get the bound ��1 (uniformly in � ), which is enough
to prove the theorem in the dimensions d D 2 and d D 3.
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NS D
Z
˙d�1

ˇ̌
ˇ̌̌
ˇ̌
Z
Rd�1

e�2�i�.� 0	xC�d˚.x//

0
B@ .r˚ .x/ ;�1/q

jr˚ .x/j2 C 1

� �

1
CA


 �

0
B@ .r˚ .x/ ;�1/q

jr˚ .x/j2 C 1

1
CA dx

ˇ̌
ˇ̌
ˇ̌̌
2

 .� � 
/ d�

D
Z
˙d�1

ˇ̌
ˇ̌Z

A
e�2�i�.� 0	xC�d˚.x//h .�;r˚ .x// dx

ˇ̌
ˇ̌2  .� � 
/ d� ;

where A is the support of

�

0
B@ .r˚ .x/ ;�1/q

jr˚ .x/j2 C 1

1
CA

and h is a smooth function in the variables � and r˚ .x/. Note that our choice of
˝ implies that r˚ is uniformly bounded on A and that j� 0j � c > 0 for a suitable
choice of c.

We will work uniformly in � � 
 D ��d , so that �d will not play a role. We will
then concentrate on � 0 or, better, on � 0= j� 0j 2 ˙d�2. As we did for ˙d�1 we now
write ˙d�2 as a finite union of spherical caps having small radius and supporting
cutoff functions � which give a smooth partition of unity on ˙d�2. It is enough
to consider the cutoff function � supported on a small spherical cap centered at
.1; 0; : : : ; 0/ 2 ˙d�2. We then have to bound

Z
˙d�1

ˇ̌
ˇ̌Z

A
e�2�i�.� 0	xC�d˚.x//h .�;r˚ .x// dx

ˇ̌
ˇ̌2  .�d / �

�
� 0

j� 0j
�
d� : (3.11)

None of the previous steps has said anything on the coordinates �2; : : : ; �d�1
inside � . We then introduce the change of variables � D � .�; �/, where � is a
real variable, � D .�1; �2; : : : ; �d�3; �d�2/, with .�; �/ defined in a neighborhood V
of the origin in R

d�1 and

� D �
� 0; �d

� D .�1; �2; �3; : : : ; �d�2; �d�1; �d /

D
0
@
s
1 � j� j2
1C �2

; �1; �2; : : : ; �d�3; �d�2; �

s
1 � j� j2
1C �2

1
A

D
0
@
s
1 � j� j2
1C �2

; �; �

s
1 � j� j2
1C �2

1
A :
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Then (3.11) takes the form

Z
V

ˇ̌̌
ˇ
Z
Rd�1

e�2�i�.� 0	xC�d˚.x//h .�;r˚ .x// dx

ˇ̌̌
ˇ
2

J .�; �/ d� d� (3.12)

where J .�; �/ is the Jacobian of the change of variables, times a smooth function.
Let x0 D .x2; : : : ; xd�1/. Since �d D ��1, the inner integral in (3.12) equals

Z
Rd�2

e�2�i�� 	x0

Z
R

e�2�i��1.x1C�˚.x1;x0//h
�
�;r˚ �x1; x0�� dx1dx0 : (3.13)

Now let

s D g�;x0 .x1/ D x1 C �˚
�
x1; x

0� :
Since r˚ is small we have g0�;x0

> c > 0, so that we may write (3.13) as

Z
Rd�2

e�2�i�� 	x0

Z
R

e�2�i��1sH
�
�; �; s; x0

�
ds dx0 ; (3.14)

where

H
�
�; �; s; x0

� D
h
�
� .�; �/ ;r˚

�
g�1�;x0

.s/ ; x0
		

g0
�;x0

�
g�1
�;x0

.s/
	

is smooth in � and bounded.
Let us introduce the difference operator��:

�� Œf .s/� D f
�
s C .2�/�1

	
� f .s/ :

Since ���
�
e�2�i��1s

� D �
e�i�1 � 1

�
e�2�i��1s and since

Z
R

��� .f / g D
Z
R

f��� .g/ ;

then (3.14) equals

1

e�i�1 � 1

Z
Rd�2

e�2�i�� 	x0

Z
R

���
�
e�2�i��1s

�
H
�
�; �; s; x0

�
ds dx0

D 1

e�i�1 � 1
Z
Rd�2

e�2�i�� 	x0

Z
R

e�2�i��1s��

�
H
�
�; �; s; x0

��
ds dx0 :
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Then, by Minkowski integral inequality and by the boundedness of
�
e�i�1 � 1��1

on V , we have

p
NS � c

Z
R

(Z
V

ˇ̌
ˇ̌Z

Rd�2

e�2�i�� 	x0

��

�
H
�
�; �; s; x0

��
dx0
ˇ̌
ˇ̌2 J .�; �/ d� d�

) 1=2
ds :

Let us rewrite the inner integrals as

Z
V

ˇ̌
ˇ̌Z

Rd�2

e�2�i�� 	x0

��

�
H
�
�; �; s; x0

��
dx0
ˇ̌
ˇ̌2 J .�; �/ d� d�

D
Z
Rd�2

Z
Rd�2

Z
V

e�2�i�� 	.x0�y0/��

�
H
�
�; �; s; x0

��
��

�
H
�
�; �; s; y0

��


 J .�; �/ d� d� dx0 dy0 :

We define

DNf D
NX
kD0

X
j˛jDk

sup
�

ˇ̌
ˇ̌ @˛
@�˛

f .�/

ˇ̌
ˇ̌

so that we can integrate by parts several times in � and obtain, for every positive
integer N ,

ˇ̌̌
ˇ
Z
V

e�2�i�� 	.x0�y0/��

�
H
�
�; �; s; x0

��
��

�
H
�
�; �; s; y0

��
J .�; �/ d� d�

ˇ̌̌
ˇ

� c

Z
V

1

.1C � jx0 � y0j/N

 DN

�
��

�
H
�
�; �; s; x0

��
��

�
H
�
�; �; s; y0

��
J .�; �/

�
d� d�

� c

Z
V

1

.1C � jx0 � y0j/N

 DN

�
��

�
H
�
�; �; s; x0

���
DN

�
��

�
H
�
�; �; s; y0

��
J .�; �/

�
d� d� :

Since H and J are smooth in � , the term

DN
�
��

�
H
�
�; �; s; y0

��
J .�; �/

�

is bounded. For the remaining term

DN
�
��

�
H
�
�; �; s; x0

���
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we seek a better estimate. Observe that for every ˛ we have

@˛

@�˛
��

�
H
�
�; �; s; x0

�� D ��

@˛H

@�˛

�
�; �; s; x0

�

D @˛H

@�˛

�
�; �; s C 1

2�
; x0
�

� @˛H

@�˛

�
�; �; s; x0

�

D 1

2�

Z 1

0

�
d

dr

@˛H

@�˛

��
�; �; s C r

2�
; x0
�

dr :

Since @˛H
@�˛

is smooth in r˚ , we can bound d
dr
@˛H
@�˛

(uniformly in � and �) by a linear

combination of @2˚
@xi @xj

. Being ˚ convex, its Hessian matrix is positive definite and
we can bound every matrix entry by the trace �˚ , so that we have

DN��

�
H
�
�; �; s; x0

�� � c
1

�

Z 1

0

K

�
g�1�;x0

�
s C r

2�

�
; x0
�

dr ;

where

K D A�˚ :

Summarizing,

p
NS

� c

Z
R

(Z
V

ˇ̌
ˇ̌Z

Rd�2

e�2�i�� 	x0

��

�
H
�
�; �; s; x0

��
dx0
ˇ̌
ˇ̌2 J .�; �/ d� d�

) 1=2
ds

� c

Z
R

�Z
Rd�2

Z
Rd�2

Z
V

e�2�i�� 	.x0�y0/��

�
H
�
�; �; s; x0

��
��

�
H
�
�; �; s; y0

��


 J .�; �/ d� d� dx0 dy0

1=2

ds

� c

Z
R

�Z
Rd�2

Z
Rd�2

1

.1C � jx0 � y0j/N



Z
V

DN
�
��

�
H
�
�; �; s; x0

���
d� d� dx0dy0

� 1=2
ds

� c��1=2 sup
�

Z
R

�Z
Rd�2

Z 1

0

K

�
g�1�;x0

�
s C r

2�

�
; x0
�

dr



Z
Rd�2

1

.1C � jx0 � y0j/N dy0dx0
� 1=2

ds :
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By the Cauchy-Schwarz inequality the last term is smaller than

c��1=2 sup
�

�Z
Rd�2

1

.1C � jz0j/N d z0
� 1=2



Z
R

�Z
Rd�2

Z 1

0

K

�
g�1�;x0

�
s C r

2�

�
; x0
�

dr dx0
� 1=2

ds

� c��.d�1/=2 sup
�

p
diam .B/



�Z

R

Z
Rd�2

Z 1

0

K

�
g�1�;x0

�
s C r

2�

�
; x0
�

dr dx0 ds

� 1=2

� c��.d�1/=2 sup
�

p
diam .B/



�Z 1

0

Z
R

Z
Rd�2

K
�
g�1�;x0

.s/ ; x0
�

dx0 ds dr

� 1=2

� c��.d�1/=2
p

diam .B/

�Z
Rd�2

K .y/ dy

� 1=2
:

Finally,

Z
Rd�2

K .y/ dy D
Z
A
�˚ .y/ dy D

dX
jD1

Z
A

@2˚

@y2j
.y/ dy

D
Z
A 0

1

Z
A1.y0/

@2˚

@y21

�
y1; y

0� dy1 dy0 C : : :

where A 01 is the projection of A on the hyperplane y1 D 0, and

A1

�
y0
� D ˚

y1 W �y1; y0� 2 A


:

Since @2˚

@y21
� 0 then

Z
A1.y0/

@2˚

@y21

�
y1; y

0�dy1 � @˚

@y1

�
supA1

�
y0
�
; y0
� � @˚

@y1

�
infA1

�
y0
�
; y0
�

� 2 sup
A

jr˚ j

and therefore
Z
Rd�2

K .y/ dy � c
ˇ̌
A 0
ˇ̌
:
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Thus

p
NS � c��.d�1/=2

p
diam .B/

p
jA 0j � c��.d�1/=2 .diam .B//.d�1/=2 :

ut
Remark 7. The above proof shows that the term .diam .B//.d�1/=2 in the statement
of Theorem 6 can be replaced by the term

.� .@B/C diam .B/p/1=2 ;

where p is the maximum of .d � 2/-dimensional surface area of the projections
of B on .d � 1/-dimensional hyperplanes. When B has large eccentricity, this
provides a better estimate.

3.2.3 Estimates for Bounded Sets

In certain problems the spherical mean k OB .��/kL2.˙d�1/
can be replaced by

“easier” averages such as

Z
A��j�j�B�

j OB .�/j2 d�:

In this way we can get non trivial lower bounds (which for spherical averages are
impossible e.g. because of the zeros of the Bessel functions) and also deal with
sets more general than convex bodies. The following result is taken from [11], see
also [27].

Theorem 8. Let B  R
d and assume the existence of positive constants c1 and c2

such that

c1 jhj � j.Bn .B C h// [ ..B C h/ nB/j � c2 jhj (3.15)

for every h 2 R
d . Then there exist four positive constants ˛; ˇ; 
; ı such that

˛ ��1 �
Z
f
��j�j�ı�g

j OB.�/j2 d� � ˇ ��1 (3.16)

for every � � 1.

Proof. We first show that

Z
fj�j��g

j OB.�/j2 d� � c ��1 : (3.17)
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In order to prove (3.17) it is enough to show that for every integer k � 0 we have

Z
f2k�j�j�2kC1g

j OB.�/j2 d� � c 2�k : (3.18)

By (3.15) and the Parseval identity we have

c2 jhj �
Z
Rd

jB.x C h/� B.x/j2 dx D
Z
Rd

ˇ̌
e2�i�	h � 1

ˇ̌2 j OB.�/j2 d� :

We split the set
˚
2k � j�j � 2kC1



into a bounded number of subsets such that in

each one of them we have (for a suitably chosen h with jhj � 2�k) the inequalityˇ̌
e2�i�	h � 1ˇ̌ � c. This proves (3.18), so that the estimate from above in (3.16)

follows from (3.17). Again (3.18 ) implies

Z
fj�j�
�g

j�j2 j OB.�/j2 d� � c3 C c4

log2.
�/X
kD1

Z
2k�j�j�2kC1

j�j2 j OB .�/j2 d� (3.19)

� c3 C c4

log2.
�/X
kD1

22k
Z
2k�j�j�2kC1

j OB .�/j2 d� � c3 C c5

log2.
�/X
kD1

22k2�k � c
� :

Then, by (3.17) and (3.19),

c1 jhj �
Z
Rd

jB.x C h/ � B.x/j2 dx

D
Z
Rd

ˇ̌
e2�i�	h � 1

ˇ̌2 j OB.�/j2 d�

� 4�2 jhj2
Z
fj�j�
�g

j�j2 j OB.�/j2 d� C 4

Z
f
��j�j�ı�g

j OB.�/j2 d�

C 4

Z
fj�j�ı�g

j OB.�/j2 d�

� c
h

� jhj2 C ı�1��1

i
C 4

Z
f
��j�j�ı�g

j OB.�/j2 d� ;

so that, if jhj D ��1, 
 is suitably small and ı suitably large, we have

Z
f
��j�j�ı�g

j OB.�/j2 d� � c1

4
jhj � c

4

h

� jhj2 C ı�1��1

i
� c1

8
��1 ;

and this ends the proof. ut
It is easy to see that a convex body satisfies (3.15).
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Remark 9. M. Kolountzakis and T. Wolff [37] have proved that for every set B 
R
d having positive finite measure we have

Z
fj�j��g

j OB.�/j2 d� � c ��1 :

We can use Theorem 8 to prove that (3.8) is best possible up to the constant
involved.

Theorem 10. Let B  R
d be a convex body. Then

lim sup
�!C1

�.dC1/=2 k OB .��/kL2.˙d�1/
> 0 : (3.20)

Proof. If (3.20) fails, then there exists a function " .�/ such that " .�/ ! 0 as � !
C1 and

k OB .��/kL2.˙d�1/
� " .�/ ��.dC1/=2

for � > 1. This contradicts the lower bound in (3.16). ut
We have pointed out that when B is a ball we cannot bound the spherical mean

k OB .��/kL2.˙d�1/
from below by ��.dC1/=2 because of the zeroes of the Bessel

function. The next result shows that this lower estimate fails also for a cube, so
that it fails for the two most popular convex bodies.

Lemma 11. Let d � 2 and Q D Qd D Œ�1=2; 1=2�d . Then for every positive
integer k we have

 OQ.k�/
L2.˙d�1/

� c k�.dC3=2/=2 :

Proof. Let

˙ 0 D ˙d�1 \ ˚
x 2 R

d W x1 � jxk j ; k D 2; : : : ; d


:

By the symmetries ofQ and by Theorem 6 applied to the .d � 1/-dimensional cube
Qd�1 we have

 OQ.k�/2
L2.˙d�1/

� c
 OQ.k�/2

L2.˙ 0/

� c

Z �=4

0

Z
˙d�2

ˇ̌
ˇ̌ sin.�k cos.	//

�k cos.	/
OQd�1

.k sin.	/�/

ˇ̌
ˇ̌2 sind�2.	/ d�d	

D c k�2
Z �=4

0

jsin.�k cos.	//j2 	d�2
Z
˙d�2

ˇ̌ OQd�1
.k sin.	/�/

ˇ̌2
d�d	
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� c k�d�2
Z �=4

0

ˇ̌
sin.2�k sin2 .	=2//

ˇ̌2
	�2 d	

� c k�d�2
 Z k�1=2

0

k2	2 d	 C
Z �=4

k�1=2

	�2 d	
!

� c k�d�3=2 :

ut

3.2.4 A Maximal Estimate for the Planar Case

In Theorem 6 we have seen that for every convex body B we have the upper bound
k OB .��/kL2.˙d�1/

� c��.dC1/=2. On the other hand we shall see that in certain lattice
point problems it is important to have a bound in the angular variable � which is
uniform with respect to �. This means to study the maximal function

MB .�/ D sup
�>0

�.dC1/=2 j OB .��/j :

We need the following definition (see [57]).

Definition 12. Let X be a measure space and let 0 < p < 1. We define the space
Lp;1 .X/ (also called weak Lp) by the quasi norm

kf kLp;1.X/ D sup
�>0

� jfx 2 X W jf .x/j > �gj1=p : (3.21)

We shall prove that MB 2 L2;1 .˙1/, i.e. that

sup
�>0

�2 j� 2 Œ0; 2�� W MB .�/ > �j < 1 ;

where � D .cos �; sin �/. Observe that L2 .˙1/  L2;1 .˙1/, but MB does not
necessarily belong to L2 .˙1/. Indeed, consider the unit square Q D Œ�1=2; 1=2�2,
then

OQ .��/ D sin .�� cos �/

�� cos �

sin .�� sin �/

�� sin �
: (3.22)

By symmetry it is enough to consider � 2 �
0; �

4

�
, and observe that, for any such � ,

there exists �� satisfying the following conditions (for a suitable integer k � 0):

1

4
� �� sin .�/ � 3

4
;

1

4
C k � �� cos .�/ � 3

4
C k
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(because the line �� intersects at least one of the squares
�
1
4

C k; 3
4

C k
�
 � 1

4
; 3
4

�
).

Hence, by (3.22) we have

MB .�/ � c �
�1=2
�

1

sin �
� c ��1=2 :

so that MB … L2.
Before proving the weak type estimate we need the following two results, due

to A. Podkorytov (see [45], see also [13]).

Lemma 13. Let f W R!Œ0;C1/ be supported and concave in Œ�1; 1�. Then, for
every j�j � 1,

ˇ̌
ˇ Of .�/

ˇ̌
ˇ � 1

j�j
�
f

�
1 � 1

2 j�j
�

C f

�
�1C 1

2 j�j
��

: (3.23)

Proof. It is enough to prove (3.23) when � > 1. The assumption on the concavity
of f allows us to integrate by parts obtaining

ˇ̌̌ Of .�/
ˇ̌̌

� 1

2��
f .1�/C 1

2��
f .�1C/C 1

2��

ˇ̌̌
ˇ
Z 1

�1
f 0.t/e�2�i�t dt

ˇ̌̌
ˇ :

Let ˛ be a point where f attains its maximum. Then f will be non-decreasing in
Œ�1; ˛� and non-increasing in Œ˛; 1�. We can assume 0 � ˛ � 1, so that f .�1C/ �
f .�1 C 1= .2�//. To estimate f .1�/ we observe that when ˛ � 1 � 1= .2�/ one
has f .1�/ � f .1 � 1= .2�//. On the other hand, since f is concave, in case ˛ >
1 � 1= .2�/ we have f .1�/ � f .˛/ � 2f .0/ � 2f .1� 1= .2�//.

To estimate the integral we observe that, by a change of variable,

I D
Z 1

�1
f 0.t/e�2�i�t dt D �

Z 1C 1
2�

�1C 1
2�

f 0
�
t � 1

2�

�
e�2�i�t dt :

So that

2I D
Z 1

�1
f 0.t/e�2�i�t dt �

Z 1C 1
2�

�1C 1
2�

f 0
�
t � 1

2�

�
e�2�i�t dt

D
Z �1C 1

2�

�1
f 0.t/e�2�i�t dt C

Z 1

�1C 1
2�

�
f 0.t/ � f 0

�
t � 1

2�

��
e�2�i�t dt

C
Z 1C 1

2�

1

f 0
�
t � 1

2�

�
e�2�i�t dt

D I1 C I2 C I3 :
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To estimate I1 from above we note that

jI1j �
Z �1C 1

2�

�1
f 0.t/dt D f

�
�1C 1

2�

�
� f .�1C/ � f

�
�1C 1

2�

�
;

since 0 � ˛ � 1.
The estimate for I3 is similar in case ˛ � 1 � 1=.2�/. If ˛ > 1 � 1=.2�/, then

jI3j �
Z ˛C 1

2�

1

f 0
�
t � 1

2�

�
dt �

Z 1C 1
2�

˛C 1
2�

f 0
�
t � 1

2�

�
dt

D 2f .˛/� f

�
1 � 1

2�

�
� f .1�/ � 2f .˛/ � 4f .0/ � 4f

�
1 � 1

2�

�
:

As for I2; since f 0 is non increasing, we have

jI2j �
Z 1

�1C 1
2�

�
f 0
�
t � 1

2�

�
� f 0.t/

�
dt

D f

�
1 � 1

2�

�
� f .�1C/� f .1�/C f

�
�1C 1

2�

�

� f

�
1 � 1

2�

�
C f

�
�1C 1

2�

�
;

ending the proof. Note that no constant c is missing in (3.23). ut
Lemma 14. Let B be a convex body in R

2 and � D .cos �; sin �/. For a small
ı > 0 we consider the chord

�B.ı; �/ D �.ı; �/ D
�
x 2 B W x �� D �ı C sup

x2B
x ��

�
: (3.24)

Then

j OB.��/j � 1

�

�ˇ̌ˇ̌�
�
1

2�
; �

�ˇ̌ˇ̌C
ˇ̌
ˇ̌�
�
1

2�
; � C �

�ˇ̌ˇ̌� ;

where j�j denotes the length of the chord (Fig. 3.2).

Proof. Without loss of generality we choose� D .1; 0/. Then, as in (3.3),

OB.�1; 0/ D
Z C1
�1

�Z C1
�1

B.x1; x2/ dx2

�
e�2�ix1�1 dx1 D Oh.�1/ ; (3.25)
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B

Fig. 3.2 Geometric estimate of OB

where h.s/ is the length of the segment obtained intersecting B with the line
x1 D s. Observe that h is concave on its support, say Œa; b�. We can therefore apply
Lemma 13 to obtain, after a change of variable,

ˇ̌
ˇ Oh.�1/

ˇ̌
ˇ � 1

j�1j
�
h

�
b � 1

2 j�1j
�

C h

�
a C 1

2 j�1j
��

� 1

j�1j
�ˇ̌ˇ̌�B

�
1

2 j�1j ; 0
�ˇ̌ˇ̌C

ˇ̌
ˇ̌�B

�
1

2 j�1j ; �
�ˇ̌ˇ̌� :

ut
We can now prove the following maximal estimate (see [8]).

Theorem 15. Let B  R
2 be a convex body. Then the maximal function

MB .�/ D sup
�>0

�3=2 j OB .��/j

belongs to L2;1 .˙1/, see (3.21).

Proof. As in the proof of Theorem 6 we assume @B smooth with everywhere non-
vanishing curvature (and the constants in our inequalities will not depend on the
smoothness of @B). By Lemma 14 we have, for � D .cos �; sin �/,

sup
�>0

�3=2 j OB .��/j � sup
�>0

�1=2
ˇ̌
�B.�

�1; �/
ˇ̌C sup

�>0

�1=2
ˇ̌
�B.�

�1; � C �/
ˇ̌
;
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so that we study the maximal function

˝B .�/ D sup
ı>0

ı�1=2 j�B.ı; �/j :

By the above non-vanishing assumption, the chord �B.ı; �/ reduces to a single point
as ı ! 0. Let z.�/ be this point. Let us choose a direction �0 and for every � close
to �0 let 
.�/ denote the arc-length on @B between z.�0/ and z.�/. Assume that we
have proved the inequality

˝2
B .�/ � 2 sup

˛¤0
j
 .� C ˛/ � 
 .�/j

˛
: (3.26)

Then we have

˝2
B .�/ � 2 sup

˛>0

1

˛

Z �C˛

�

ˇ̌

 0 .'/

ˇ̌
d' ;

so that, by the Hardy-Littlewood maximal function theorem (see e.g. [64, 7.9]), we
have

sup
ˇ>0

ˇ2 jf� 2 Œ0; 2�/ W MB .cos �; sin �/ > ˇgj

� c sup
ˇ>0

ˇ2

ˇ̌̌
ˇ̌
(
� 2 Œ0; 2�/ W sup

˛>0

1

˛

Z �C˛

�

ˇ̌

 0 .'/

ˇ̌
d' > ˇ2

) ˇ̌̌
ˇ̌

� c

Z 2�

0

ˇ̌

 0 .'/

ˇ̌
d' � c :

In order to prove (3.26) we observe that if ı is small, then the normal to @B at the
point z .�/ cuts the chord �B.ı; �/ into two parts ��.ı; �/ and �C.ı; �/. Let us
consider only the segment �C.ı; �/ and let

˝C .�/ D sup
ı>0

ı�1=2 j�C.ı; �/j :

We may assume that @B is locally the graph of a smooth function f defined on an
interval Œ0; a� with f .0/ D f 0

�
0C
� D 0: Then, by the mean value theorem,

˝2C .�/ � sup
0<x<a

x2

f .x/
� sup

0<z<a

2z

f 0 .z/
� sup

0<z<a

2

f 0 .z/

Z z

0

�
1C �

f 0 .t/
�2	1=2

dt

� 2 sup
0<˛<�

2

j
 .� C ˛/ � 
 .�/j
˛

:

ut
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3.3 Decay of the Fourier Transform: Lp Estimates
for Characteristic Functions of Polyhedra

In Theorem 6 we have seen that k OB .��/kL2.˙d�1/
� c ��.dC1/=2 independently of

the shape of the convex body B . If we replace B by a ball or, more generally by
a convex body with smooth boundary @B which has everywhere positive Gaussian
curvature, then, by (3.7), the same estimate holds true for every 1 � p � C1.
However, if we replace B by a polyhedron P , then the situation should be different
(see Sect. 3.2.1, where we have observed that OP .�/ decays as fast as j�j�d
along almost all directions, but only as j�j�1 along the directions perpendicular
to the facets). In this section we will prove sharp estimates for the decay of
k OP .��/kLp.˙d�1/

and in particular we shall see that this decay is faster than
��.dC1/=2 when 1 � p < 2 and it is slower than ��.dC1/=2 when 2 < p � C1.

Theorem 16. Let P be a convex polyhedron in R
d , d � 1. Write � 2 R

d in polar
coordinates, � D �� (� � 0, � 2 ˙d�1). Then, for � � 2, we have

k OP .��/kL1.˙d�1/
� c

logd�1 .�/
�d

; (3.27)

k OP .��/kLp.˙d�1/
� cp �

�1�.d�1/=p ; for 1 < p � 1 : (3.28)

Proof. The proof is by induction on the dimension d . For d D 1 the bound is true
since in this case the average is trivial and we have

OŒ�1=2;1=2� .�/ D sin .��/

��
:

We then assume the result true for d � 1. Let P have m facets F1; : : : ; Fm with
outward unit normal vectors �1; : : : ; �m. As in (3.9) the divergence theorem yields

OP .�/ D
Z
P

e�2�i�	x dx D
mX
jD1

i� � �j
2� j�j2

Z
Fj

e�2�i�	x dx : (3.29)

Let x D .x1; x2; : : : ; xd / D .x1; x
0/ and write � D .cos .'/ ; sin .'/ �/, with 0 �

' � � and � 2 ˙d�2. We single out one facet F , which we may assume to stay in
the hyperplane x1 D 0, with outward normal � D .1; 0; : : : ; 0/. Then

i� � �
2� j�j2

Z
F

e�2�i�	x dx D i cos .'/

2��

Z
F

e�2�i� sin.'/�	x0

dx0 (3.30)

D i cos .'/

2��
OF .� sin .'/ �/ ;

where we see OF as a .d � 1/-dimensional Fourier transform. Then, by the
induction hypothesis,
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1

�

Z �

0

Z
˙d�2

j OF .� sin .'/ �/j sind�2 .'/ d�d'

� c
1

�

Z 2=�

0

'd�2 d' C c
1

�

Z �=2

2=�

logd�2 .� sin .'//

.� sin .'//d�1
sind�2 .'/ d'

� c ��d C c
logd�2 .�/

�d

Z �=2

2=�

1

'
d' � c

logd�1 .�/
�d

;

while for 1 < p < C1 we have

1

�p

Z �

0

Z
˙d�2

j OF .� sin .'/ �/jp sind�2 .'/ d�d'

� cp
1

�p

Z 1=�

0

'd�2 d' C c
1

�p

Z �=2

1=�

.� sin .'//�p�.d�2/ sind�2 .'/ d'

� cp �
�p�.d�1/ C cp

1

��2pCd�2

Z �=2

1=�

'�p d' � cp �
�p�.d�1/

so that (3.29) and (3.30) give (3.27) and (3.28). ut
The following weak type estimates (see (3.21)) will be useful too.

Theorem 17. Let P be a polyhedron in R
d , d � 2. Write � 2 R

d in polar
coordinates, � D �� (� � 0, � 2 ˙d�1). Then, for � � 2, we have

k OP .��/kL1;1.˙d�1/
� c

logd�2 .�/
�d

:

Proof. Since here d � 2, the first step of the induction needs some work. Assume
d D 2, and let P be a polygon in R

2 with counterclockwise oriented vertices˚
aj

m
jD1. For each side

�
aj ; ajC1

�
(assume amC1 D a1) let uj be a unit vector

parallel to this side and with the same orientation, and let �j be the outside unit
normal to this side. Then the divergence theorem gives

OP .��/ D
Z
P

e�2�i�� 	x dx D � 1

2�i�

mX
jD1

� � �j
Z
Œaj ;ajC1�

e�2�i�� 	x dx

D � 1

4�2�2

mX
jD1

�� � �j e
�2�i�� 	aj � e�2�i�	ajC1

�� � uj
:

Hence OP .� cos .'/ ; � sin .'// is dominated by a finite sum of terms of the form
��2

ˇ̌
cos

�
' � 'j

�ˇ̌�1
and since the functions cos�1

�
' � 'j

�
are in L1;1 .T/, the

result for d D 2 follows. For d > 2 we argue as in Theorem 16 and we reduce to a
finite sum of terms of the form
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i cos .'/

2��
OF .� sin .'/ �/ ;

where F is a facet of P . Then, by induction, we have

�

ˇ̌
ˇ̌� .cos .'/ ; sin .'/ �/ 2 ˙d�1 W

ˇ̌
ˇ̌ i cos .'/

2��
OF .� sin .'/ �/

ˇ̌
ˇ̌ > �

� ˇ̌ˇ̌

D �

Z �

0

ˇ̌̌
ˇ
�
� 2 ˙d�2 W j OF .� sin .'/ �/j > 2���

jcos .'/j
� ˇ̌̌
ˇ sind�2 .'/ d'

� c ��d C c

Z �=2

2=�

cos .'/

�

logd�3 .� sin .'//

.� sin .'//d�1
sind�2 .'/ d'

� c ��d
Z �=2

2=�

cos .'/
logd�3 .�'/

'
d' � c��d

Z ��=2

2

logd�3 .t/
t

dt

� c
logd�2 .�/

�d
:

ut
The estimates from above in Theorems 16 and 17 are sharp in many, but not all,

cases. We first consider simplices but the proof of the following theorem works with
no modifications for polyhedra having a facet not parallel to any other. We need a
technical lemma which may be well known.

Lemma 18. Let ˙ be a finite measure space and let f 2 L1 .˙/. Then for any
0 < ˛ < j˙ j we have

kf k1 � ˛ kf k1 C log

� j˙ j
˛

�
kf k1;1 :

Proof. Let g be the non-increasing rearrangement of f (see [57]). Then

kgk1 D kf k1 ;
ug .u/ � kgk1;1 D kf k1;1 ;

so that

kf k1 D
Z j˙ j
0

g .u/ du D
Z ˛

0

g .u/ du C
Z j˙ j
˛

g .u/ du

� ˛ kf k1 C kf k1;1
Z j˙ j
˛

1

u
du D ˛ kf k1 C log

j˙ j
˛

kf k1;1 :

ut
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Theorem 19. Let P be a simplex in R
d , d � 2. Again we write � 2 R

d in polar
coordinates, � D �� (� � 0, � 2 ˙d�1). Then, for every � � 1,

i) k OP .��/kL1;1.˙d�1/
� c

logd�2 .�/
�d

ii) k OP .��/kL1.˙d�1/
� c

logd�1 .�/
�d

iii) k OP .��/kLp.˙d�1/
� cp �

�1�.d�1/=p ; if 1 < p � 1 :

Proof. We prove ii/ and iii/ first. The proof is by induction on the dimension d and
we first consider the planar case, showing that a triangle T  R

2 satisfies

Z 2�

0

j OT .��/jp d� � c��p�1 ; (3.31)

for p > 1, where � D .cos �; sin �/ and � � 1. As in the proofs of the previous
theorems we use the divergence theorem. Let

! .t/ D i

2��
e�2�i��	t� ;

with t D .t1; t2/. Then

div .! .t// D @

@t1

�
i

2��
e�2�i��	t cos �

�
C @

@t2

�
i

2��
e�2�i��	t sin �

�

D e�2�i��	t cos2 � C e�2�i��	t sin2 � D e�2�i��	t ;

and by the divergence theorem we obtain

OT .��/ D
Z
T

e�2�i��	tdt D
Z
@T

! .t/ � �.t/ dt ;

where � is the outward unit vector, which takes only the three values �1; �2; �3 on
the three sides �1, �2, �3 respectively. Then, if ds is the measure on @T;

OT .��/ D � � �1
2��

i

Z
�1

e�2�i��	sds C � � �2
2��

i

Z
�2

e�2�i��	sds

C � � �3
2��

i

Z
�3

e�2�i��	sds

D A.�;�/CB.�;�/C C.�;�/ :

We may assume that �1 has extremes
�˙ 1

2
; 0
�
. Of course it suffices to show that for

a given small ı > 0 we have
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Z � �2Cı
� �2 �ı

j OT .��/jp d� � cp �
�p�1 :

Indeed j� � �1j D jsin � j and changing variables we obtain

Z � �2Cı
� �2 �ı

jA.�;�/jp d� D 1

.2��/p

Z � �2Cı
� �2 �ı

ˇ̌
ˇ̌
ˇsin �

Z 1=2

�1=2
e�2�i�s cos �ds

ˇ̌
ˇ̌
ˇ
p

d�

D 1

.2��/p

Z � �
2Cı

� �2 �ı

ˇ̌
ˇ̌ sin .�� cos �/

�� cos �
sin �

ˇ̌
ˇ̌p d�

� cp
1

�pC1

Z c1�

0

ˇ̌̌
ˇ sin .u/

u

ˇ̌̌
ˇ
p

du � cp �
�p�1 :

As for B.�;�/ and C.�;�/, if
ˇ̌
� � �

2

ˇ̌ � ı we reduce to terms of the form

1

�p

Z c0

c

ˇ̌
ˇ̌ sin .2��x/

�x

ˇ̌
ˇ̌p dx

with 0 < c < c0 < �=4, so that

Z � �
2Cı

� �
2 �ı

jB.�;�/jp d� C
Z � �2Cı
� �2 �ı

jC.�;�/jp d� � c��2p

and (3.31) follows. The proof of the planar case when p D 1 is similar.
Now let S be a simplex in R

d with facets F1; : : : ; FdC1. We may assume F1
contained in the hyperplane x1 D 0 with outward normal �1 D .1; 0; : : : ; 0/. Let U
be a small neighborhood of �1 in ˙d�1, then by (3.29) we have

k OP .��/kLp.˙d�1/

� c
1

�

ˇ̌
ˇ̌̌
ˇ
�Z

U

ˇ̌
ˇ̌Z
F1

e�2�i�� 	xdx

ˇ̌
ˇ̌p d�

� 1=p
�

mX
jD2

(Z
U

ˇ̌
ˇ̌̌Z
Fj

e�2�i�� 	xdx

ˇ̌
ˇ̌̌p
d�

) 1=p ˇ̌ˇ̌̌
ˇ :

As in the proof of Theorem 16, the induction assumption implies

1

�

Z
U

ˇ̌̌
ˇ
Z
F1

e�2�i�� 	xdx

ˇ̌̌
ˇ d� � c ��d logd�1 .�/

and

1

�

�Z
U

ˇ̌
ˇ̌Z
F1

e�2�i�� 	xdx

ˇ̌
ˇ̌p d�

� 1=p
� c��1�.d�1/=p ; for 1 < p � 1 :
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We now have to estimate each term
Z
U

ˇ̌
ˇ̌Z
F

e�2�i�� 	xdx

ˇ̌
ˇ̌p d�

from above, when F D F2; : : : ; Fm. Since we are integrating each facet separately
we may rotate and translate F until it belongs to the hyperplane x1 D 0. After this
transformation the normal �1 to the facet F1 is no longer parallel to .1; 0; : : : ; 0/.
Being U a neighborhood of �1 in ˙d�1 we can choose a small ı > 0 such that

U  f.cos .'/ ; sin .'/ �/ W ı � ' � � � ı; � 2 ˙d�2g :
Applying Theorem 16 to the .d � 1/-dimensional Fourier transform of the charac-
teristic function of F we get

1

�

Z
U

ˇ̌̌
ˇ
Z
F

e�2�i�� 	x dx

ˇ̌̌
ˇ d� � c

1

�

Z ��ı

ı

Z
˙d�2

j OF .� sin .'/ �/j sind�2 .'/ d'd�

� c
1

�

Z ��ı

ı

logd�2 .� sin .'//

.� sin .'//d�1
sind�2 .'/ d' � c

logd�2 .�/
�d

;

while, for 1 < p � C1,

1

�p

Z
U

ˇ̌
ˇ̌Z
F

e�2�i�� 	x dx

ˇ̌
ˇ̌p d�

� c
1

�p

Z ��ı

ı

Z
˙d�2

j OF .� sin .'/ �/jp sind�2 .'/ d'd�

� c
1

�p

Z ��ı

ı

.� sin .'//�p�.d�2/ sind�2 .'/ d' � c ��2p�.d�2/ :

Hence ii/ and iii/ are proved.
To prove i/ assume, by way of contradiction, that for any arbitrary small " there

exists a suitable large � such that

k OP .��/kL1;1.˙d�1/
� "��d logd�2 .�/ :

By Lemma 18 we have

k OP .��/kL1.˙d�1/

� ��d k OP .��/kL1.˙d�1/
C "��d logd�2 .�/

Z j˙d�1j

��d

u�1 du

� jP j ��d C " log .j˙d�1j/ ��d logd�2 .�/C "d��d logd�1 .�/ ;

which, for small " contradicts ii/. ut
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The above theorem is false in the case d D 1, and this is simply due to the zeros
of OP when P is an segment. When d � 2 the lower bound .iii/ in Theorem 19 is
false for a cube. The following analog of Lemma 11 can be easily proved.

Theorem 20. Let Q D Qd D Œ�1=2; 1=2�d be the unit cube in R
d , d � 2. Then

for 1 < p � C1 and for every positive integer k we have

 OQ.k�/
Lp.˙d�1/

� c k�.3pC2d�3/=2p :

So far we have seen that balls and polyhedra share the same spherical Lp

order of decay if and only if p D 2. It is natural to look for convex bodies with
“intermediate” order of decay. On this problem we have significative results only
for d D 2 (see, [7, 12, 13, 62]). It can be shown that for every 2 < p � C1 and
every order of decay a 2 .1C 1=p; 3=2/ there exists a convex planar bodyB having
piecewise smooth boundary and satisfying

k OB .��/kLp.˙1/ � c ��a ; lim sup
�!C1

�a kB .��/kLp.˙1/ > 0 : (3.32)

For p < 2 the situation is different: if we keep the piecewise smooth boundary
assumption, then there is no intermediate decay between the one of the disc and
the one of the polygons (observe that in (3.32) we have a lim sup). The reason
is that if @B is piecewise smooth, but B is not a polygon, then @B contains an
arc with positive curvature, and by the argument in [9], this is enough to get the
lower estimate ��3=2 for the lim sup. If we pass to arbitrary convex bodies, then it is
possible to construct convex bodies with intermediateLp order of decay. Moreover,
for no convex planar body B we have k OB .��/kL1.˙1/ D o

�
��2 log �

�
(see [7, 62]).

3.4 Lattice Points: Estimates from Above

The literature on lattice points in multi-dimensional domains is very impressive and
deep, see e.g. [28, 34, 39]. Here we focus on the topics which are necessary for (or
close to) the goal of this chapter, i.e. the relation between discrepancy problems and
the average decay of Fourier transforms. First we shall see that the upper bounds in
Theorems 6 and 16 readily provide estimates from above for L2 or Lp discrepancy
problems related to rotations and translations of convex bodies. The lower bounds
for the discrepancy related to the lattice Zd are not strictly necessary for our purpose,
since the typical results on irregularities of point set distribution involve arbitrary
choices of points. However we will present some results of this kind, on the one
hand because the choice of points related to a lattice are very important, on the
other hand because in some cases they compensate the lack of lower bounds for
arbitrary choices of points.
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For a convex body B  R
d and for a large dilation R, let � .RB/ C t be the

rotated and translated copy of RB. Here � 2 SO .d/ ; and since we are interested in
the cardinality of the set Zd \ .� .RB/C t/, which is Zd -periodic in the variable t ,
we take t 2 T

d . Define the discrepancy functionDR on SO .d/ 
 T
d

DR .�; t/ D card
�
Z
d \ .� .RB/C t/

� � Rd jBj (3.33)

D
X
k2Zd

�.RB/ .k � t/ � Rd jBj :

The Fourier coefficients of the periodic functionD�;R .t/ D DR .�; t/ take values

OD�;R .m/ D
�
0 if m D 0

Rd O�.B/ .Rm/ if m ¤ 0
: (3.34)

Indeed

OD�;R .0/ D
Z
Œ� 1

2 ;
1
2 /
d

�
card

�
Z
d \ � .RB/C t

� � Rd jBj� dt

D �Rd jBj C
X
k2Zd

Z
Œ� 12 ; 12 /

d
�.RB/ .k � t/ dt

D �Rd jBj C
Z
Rd

�.RB/ .t/ dt D 0 ;

while for m ¤ 0

OD�;R .m/ D
Z
Œ� 12 ; 12 /

d

�
card

�
Z
d \ � .RB/C t

� �Rd jBj� e�2� im	t dt

D
X
k2Zd

Z
Œ� 12 ; 12 /

d
�.RB/ .k � t/ e�2� im	t dt D

Z
Rd

�.RB/ .t/ e
�2� im	t dt

D O�.RB/ .m/ D Rd O�.B/ .Rm/ :

ThenD�;R .t/ has Fourier series

Rd
X

0¤m2Zd
O�.B/ .Rm/ e2� im	t :

The following result is due to D. Kendall2 (see [35], see also [13]).

2D. Kendall seems to have been the first one to realize that certain lattice points problems can be
handled using multi-dimensional Fourier analysis.
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Theorem 21. Let B be a convex body in R
d , d � 1, and let DR be as in (3.33).

Then there exists a positive constant c, depending on d but not on B , such that for
every R � 1 we have

kDRkL2.SO.d/�Td / � c .diam .B//.d�1/=2 R.d�1/=2 :

Proof. By Parseval identity we obtain

kDRk2
L2.SO.d/�Td / D

Z
SO.d/

Z
Td

D2
R .�; t/ dt d� (3.35)

D
Z

SO.d/

X
0¤m2Zd

ˇ̌
ˇ OD�;R .m/

ˇ̌
ˇ2 d� D R2d

X
0¤m2Zd

Z
SO.d/

ˇ̌ O�.B/ .Rm/
ˇ̌2
d�

D R2d
X

0¤m2Zd

Z
SO.d/

ˇ̌ OB
�
��1 .Rm/

�ˇ̌2
d�

because the Fourier transform commutes with rotations. Then Theorem 6 gives

kDRk2
L2.SO.d/�Td / � c .diam .B//d�1 R2d

X
0¤m2Zd

.R jmj/�.dC1/ (3.36)

� c .diam .B//d�1 Rd�1
Z
x2Rd ; jxj�1

jxj�.dC1/ dx � c0 .diam .B//d�1 Rd�1 :

ut
Remark 22. The above argument can be applied to a more general setting (see [25]).
First consider a body B  R

d and let 0 � ˛ � 1 satisfy

ˇ̌˚
t 2 R

d W dist .t; @B/ � ı

ˇ̌ � cd ı

˛

for every small ı > 0. Let DR .�; t/ be as in (3.33). Then

�
1

R

Z R

0

Z
SO.d/

Z
Td

ˇ̌
D� .�; t/

ˇ̌2
dt d� d�

� 1=2
� c R.d�˛/=2 :

Moreover, the characteristic function B can be replaced by an arbitrary integrable
function. In this case a modulus of continuity appears in the upper bound.

3.4.1 The Curious Case of the Ball When d � 1 .mod 4/

The above upper estimate is best possible, but it is not always sharp. Indeed, letB be
a ball in R

d and 1 < d 	 1 .mod 4/, then there exists a diverging sequenceRj such
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that the upper bound Rd�1j in (3.36) can be replaced by c" Rd�1j log�1=.dC"/
�
Rj
�
,

where " > 0 is arbitrarily small. This interesting fact has been proved by L.
Parnovski and A. Sobolev in [44] (see also [38] and [43]).

We first need the following approximation result (see [44]).

Lemma 23. Let ˛1; ˛2; : : : ; ˛n be real numbers. Then for every positive integer j

there exist integers p1; p2; : : : ; pn; q such that

j � q � j nC1 ; j˛kq � pkj < j�1 for every k D 1; : : : ; n:

Proof. As usual we write fxg D x � Œx� for the fractional part of a real number x.
Split

Œ0; 1/n D
j n[
kD1

Qk ;

where the Qk’s are cubes of sides parallel to the axes and of length j�1. For every
integer 0 � ` � j nC1 consider

.f`˛1g ; f`˛2g ; : : : ; f`˛ng/ D a` 2 Œ0; 1/n :
Since the number of the a`’s is j nC1 C 1, there exists k0 such that the cube Qk0

contains at least j C 1 points a`1 ; a`2 ; : : : ; a`jC1
, say with `1 < `2 < : : : < ` jC1.

Then ` jC1 � `1 � j and, since the above points stay in Qk0 , we have

j�1 � ˇ̌˚
` jC1˛k


 � f`1˛kg
ˇ̌ D ˇ̌�

` jC1 � `1
�
˛k � ��

` jC1˛k
� � Œ`1˛k�

�ˇ̌

for every k D 1; : : : ; n. To end the proof we choose q D ` jC1 � `1 and pk D�
` jC1˛k

� � Œ`1˛k�. ut
Theorem 24. Let 1 < d 	 1 .mod 4/, let B D ˚

u 2 R
d W juj � 1



be the unit ball

and for every t 2 T
d consider the discrepancy

DR .t/ D card
�
Z
d \ .RB C t/

� � Rd jBj :

Then for every " > 0 there exists a sequence of integers Rj ! C1 such that

DRj


L2.Td / � c" R

.d�1/=2
j log

�1
dC"

�
Rj
�
:

Proof. For every positive integer j let

Hj D ˚
m 2 Z

d W 0 < jmj � j 2


:

Then cardHj � 2dj 2d . Lemma 23 implies the existence of a positive integer Rj
such that
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j � Rj � j 2
d j 2dC1 ;

ˇ̌
sin
�
2�Rj jmj�ˇ̌ � j�1 (3.37)

for every jmj � j 2. Then by (3.35), (3.4), (3.5), (3.34), the assumption d 	
1 .mod 4/ and (3.37) we obtain

DRj

2
L2.Td / D

X
m2Zd

ˇ̌
ˇ ODRj .m/

ˇ̌
ˇ2 D Rdj

X
0¤m2Zd

jmj�d J 2d=2
�
2�Rj jmj� (3.38)

D Rdj

X
0<jmj�j 2

jmj�d J 2d=2
�
2�Rj jmj�CRdj

X
jmj>j 2

jmj�d J 2d=2
�
2�Rj jmj�

� Rd�1j

X
0<jmj�j 2

��2 jmj�.dC1/ sin2
�
2�Rj jmj�

CRd�1j

X
jmj>j 2

��2 jmj�.dC1/ C O
�
Rd�2j

	

� c Rd�1j j�2
Z j 2

1

r�2 dr C c Rd�1j

Z C1
j 2

r�2 dr C O
�
Rd�2j

	

� c j�2Rd�1j C O
�
Rd�2j

	
:

Since (3.37) implies

log
�
Rj
�
<
��
2j 2

�d C 1
	

log j < c"
�
2j 2

�dC"
;

j 2 > c0" log
1

dC"
�
Rj
�

for every " > 0, we end the proof. ut

3.4.2 Lattice Points in Polyhedra

For general p we have some rather sharp results in the case of polyhedra.

Theorem 25. Let P be a convex polyhedron in R
d d � 1, and let DR D DP;R as

in (3.33). Then there exist positive constants c and cp such that for every R � 2 we
have

kDRkL1.SO.d/�Td / � c logd .R/ (3.39)

and for 1 < p � C1

kDRkLp.SO.d/�Td / � cp R
.d�1/.1�1=p/ : (3.40)
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Proof. The bound in (3.39) is a particular case of Theorem 30 below. We prove
(3.40) first in the case 1 < p � 2. Then by (3.34), Parseval identity, Hölder
inequality and the inequality k�k`2 � k�k`p we obtain

�Z
SO.d/

Z
Td

jDR .�; t/jp dt d�

� 1=p

�
( Z

SO.d/

�Z
Td

jDR .�; t/j2 dt

�p=2
d�

) 1=p

D

8̂<
:̂
Z

SO.d/

8<
:

X
0¤m2Zd

ˇ̌
Rd O�.B/ .Rm/

ˇ̌2
9=
;
p=2

d�

9>=
>;

1=p

�
8<
:
Z

SO.d/

X
0¤m2Zd

ˇ̌
Rd O�.B/ .Rm/

ˇ̌p
d�

9=
;
1=p

D Rd

8<
:

X
0¤m2Zd

Z
SO.d/

ˇ̌ O�.B/ .Rm/
ˇ̌p
d�

9=
;
1=p

:

By Theorem 16 the last term is bounded by

c Rd

8<
:

X
0¤m2Zd

jRmj�p�dC1
9=
;
1=p

� c R.d�1/.1�1=p/
Z C1
1

r�p dr

D cp R
.d�1/.1�1=p/ :

For the case p D C1 a geometric consideration shows the existence of a positive
constant c such that for every � 2 SO .d/ and every t 2 T

d we have

jDR .�; t/j � c Rd�1 :

We end the proof obtaining the case 2 < p < C1 by interpolation:

�Z
SO.d/�Td

jDRjp
� 1=p

D
�Z

SO.d/�Td
jDRj2 jDRjp�2

� 1=p

� kDRk.p�2/=p
L1.SO.d/�Td / kDRk2=p

L2.SO.d/�Td / � c R.d�1/.p�2/=p R.d�1/=p

D c R.d�1/.1�1=p/ :

ut
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A modification of the above argument can be used to study the so-called half-
space discrepancy (see [23, 40]).

The proof of the weak-L1 estimate requires a more delicate argument.

Theorem 26. Let P be a convex polyhedron in R
d and letDR D DP;R as in (3.33).

Then there exists a positive constant c such that for every R � 2 we have

kDRkL1;1.SO.d/�Td / � c logd�1 .R/ :

The proof of this theorem requires two preliminary results.

Lemma 27. Let X; Y be finite measure spaces, and let

kF kL1;1.X;L2.Y // D sup
�>0

�
ˇ̌˚
x 2 X W kF .x; �/kL2.Y / > �


ˇ̌
< C1 :

Then

kF kL1;1.X�Y / � c kF kL1;1.X;L2.Y // :

Proof. Without loss of generality we may assume kF kL1;1.X;L2.Y // D 1. Being the
statement rearrangement invariant, we may assumeX D Œ0; 1�, Y D Œ0; 1�, endowed
with Lebesgue measure and kF .x; �/kL2.Y / � 1=x. Then, by Chebyshev inequality
we obtain

jf.x; y/ W 0 � x � 1; 0 � y � 1; jF .x; y/j > �gj
� ��1 C ˇ̌˚

.x; y/ W ��1 � x � 1; 0 � y � 1; jF .x; y/j > �
ˇ̌

D ��1 C
Z 1

��1

jfy W 0 � y � 1; jF .x; y/j > �gj dx

� ��1 C
Z 1

��1

�
��2

Z 1

0

jF .x; y/j2 dy

�
dx � ��1 C ��2

Z 1

��1

1

x2
dx � 2��1 :

ut
The triangle inequality for k�kL1;1 fails when we add infinitely many terms (see

[57, p. 215]). The following lemma is a kind of substitute.

Lemma 28. Let fm be a sequence of functions in L1;1 .X/ : Then


(X

m

jfmj2
) 1=2

L1;1.X/

� c
X
m

kfmkL1;1.X/ :
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Proof. We have


(X

m

jfmj2
) 1=2

L1;1.X/

D sup
�>0

�

ˇ̌
ˇ̌̌
ˇ
8<
:x 2 X W

(X
m

jfm .x/j2
) 1=2

> �

9=
;
ˇ̌
ˇ̌̌
ˇ (3.41)

D sup
�>0

�

ˇ̌
ˇ̌̌(
x 2 X W

X
m

jfm .x/j2 > �2
) ˇ̌ˇ̌̌

D sup
�>0

�1=2

ˇ̌
ˇ̌
ˇ
(
x 2 X W

X
m

jfm .x/j2 > �
) ˇ̌ˇ̌
ˇ D


X
m

jfmj2

1=2

L1=2;1.X/

:

Now we recall that the following q-triangular inequality holds true when 0 < q < 1
(see e.g. [59, Lemma 1.8]):


X
m

gm


Lq;1.X/

� c
X
m

kgmkLq;1.X/ :

Then, as in (3.41),


X
m

jfmj2

1=2

L1=2;1.X/

� c
X
m

f 2
m

1=2
L1=2;1.X/

D c
X
m

kfmkL1;1.X/ :

ut
Proof (of Theorem 26). By Lemma 27 we have

kDRkL1;1.SO.d/�Td / � c kDRkL1;1.SO.d/;L2.Td //

D c



8<
:

X
0¤m2Zd

ˇ̌ O�.B/ .Rm/
ˇ̌2
9=
;
1=2

L1;1.SO.d//

� c Rd



8<
:

X
0<jmj�Rd�1

ˇ̌ O�.B/ .Rm/
ˇ̌2
9=
;
1=2

L1;1.SO.d//

C c Rd



8<
:

X
jmj>Rd�1

ˇ̌ O�.B/ .Rm/
ˇ̌2
9=
;
1=2

L1;1.SO.d//

:



194 L. Brandolini et al.

By Lemma 28 we have

Rd



8<
:

X
0<jmj�Rd�1

ˇ̌ O�.B/ .Rm/
ˇ̌2
9=
;
1=2

L1;1.SO.d//

� c Rd
X

0<jmj�Rd�1

 O�.B/ .Rm/

L1;1.SO.d//

� c Rd
X

0<jmj�Rd�1

logd�2 .R jmj/
Rd jmjd

� c logd�2 .R/
Z C1
1

1

r
dr D c logd�1 .R/ :

On the other hand, by Chebyshev inequality and (3.40),

Rd



8<
:

X
jmj>Rd�1

ˇ̌ O�.B/ .Rm/
ˇ̌2
9=
;
1=2

L1;1.SO.d//

� Rd



8<
:

X
jmj>Rd�1

ˇ̌ O�.B/ .Rm/
ˇ̌2
9=
;
1=2

L1.SO.d//

� Rd



8<
:

X
jmj>Rd�1

ˇ̌ O�.B/ .Rm/
ˇ̌2
9=
;
1=2

L2.SO.d//

D Rd

8<
:
Z

SO.2/

X
jmj>Rd�1

ˇ̌ O�.B/ .Rm/
ˇ̌2
d�

9=
;
1=2

� c Rd

8<
:

X
jmj>Rd�1

jRmj�.dC1/
9=
;
1=2

� c R.d�1/=2
�Z C1

Rd�1

r�2 dr

� 1=2
� c :

ut
We now prove an upper bound where the discrepancy is averaged only over

rotations. The proof follows a known argument which is usually applied to
get a short proof of Sierpinski’s 1903 estimate for the circle problem (see e.g.
[48, 55, 60, 61]). For a convex polyhedron P  R

d , for � 2 SO .d/, and for a large
dilation R, let � .RP/ be the rotated copy of RP. Define the discrepancy function
DR D DP;R on SO .d/

DR .�/ D card
�
Z
d \ � .R P /

� � Rd jP j :
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The following result has been pointed out to us by Leonardo Colzani.

Lemma 29. Let C be a convex body in R
d such that Interior .C / � B .0; 1/, the

unit ball centered at the origin. Then for large R and small " we have

B .q; "/ � .RC "/ C n Interior .R � "/C

for every q 2 @ .RC/.
Proof. Since C is convex we have

R

RC "
C C "

RC "
C � C

so that

.RC "/C � RC C "C � RC CB .0; "/ (3.42)

and therefore B .q; "/ � .RC "/ C for every q 2 @ .RC/. Applying (3.42) to
Interior .C / with R in place of RC " we obtain

Interior .RC/ � Interior .R � "/C C B .0; "/ :

Assume there exists y 2 B .q; "/\ Interior .R � "/C . It follows that

q 2 Interior .R � "/C C B .0; "/ � Interior .RC/

so that q … @ .RC/. ut
Theorem 30. Let d � 2 and let P be a convex polyhedron in R

d . Then there exists
a positive constant c such that, for large R,

kDRkL1.SO.d// � c logd .R/ :

Proof. Let B D ˚
t 2 R

d W jt j � 1



and let ' D c1
2B

� 1
2B

where we choose c

so that
R
' .x/ dx D 1. For every small " > 0 let '" .t/ D "�d' .t="/, so that for

every " > 0 we have
R
Rd
'" D 1 and O'" .�/ D O' ."�/. Let R � 2 and let RP be the

characteristic function of the dilated polyhedron P . We start the proof introducing
the smooth functions

Ṙ;";� D .R˙"/��1P � '" :

By (3.4) and (3.5) we know that

j O' .�/j D c
ˇ̌̌
O1
2B
.�/
ˇ̌̌2 � c0

1C j�jdC1 :
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Then, writing in polar coordinates � D �� ,

ˇ̌̌
1Ṙ;";� .�/

ˇ̌̌
D ˇ̌ O.R˙"/��1P .�/ O'" .�/

ˇ̌
(3.43)

� c Rd j O��1P ..R˙ "/ ��/j 1

1C j"�jdC1 :

By Lemma 29, the support of �R;";� is contained in R��1P , while R��1P is
contained in the set where CR;";� takes the value 1: Therefore, for all t 2 R

d we
have

�R;";� .t/ � R��1P .t/ � CR;";� .t/ :

By the Poisson summation formula we have

DR .�/ D �Rd jP j C
X
m2Zd

R��1P .m/ � �Rd jP j C
X
m2Zd

CR;";� .m/

D �Rd jP j C
X
m2Zd

1CR;";� .m/ D
�
.RC "/d �Rd

	
jP j C

X
m¤0
1CR;";� .m/ ;

and similarly,

DR .�/ �
�
.R � "/d � Rd

	
jP j C

X
m¤0
1�R;";� .m/ :

Thus,

jDR .�/j � c Rd�1"C c
X
m¤0

ˇ̌
ˇ1Ṙ;";� .m/

ˇ̌
ˇ :

Hence, by Theorem 16 and (3.43),

Z
SO.d/

ˇ̌
card

�
Z
d \ � .RP/

� �Rd jP jˇ̌ d�

� c Rd�1"C c Rd
X

0¤m2Zd
j O' ."m/j

Z
SO.d/

j OP ..R˙ "/ � .m//j d�

� c Rd�1"C c
X

0¤m2Zd

1

1C j"mjdC1 jmj�d logd�1 .R jmj/ :
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Now choose " D R1�d . Then a repeated integration by parts yields

Z
SO.d/

ˇ̌
card

�
Z
d \ � .RP/

� � Rd jP jˇ̌ d�

� c C c logd�1 .R/
Z Rd�1

1

1

r
dr C c Rd

2�1
Z C1
Rd�1

logd�1 .r/
rdC2

dr

� c C c logd .R/

C c Rd
2�1

 
R1�d2 logd�1 .R/C

Z C1
Rd�1

logd�2 .r/
rdC2

dr

!

� : : : � cd logd .R/ :

ut
Remark 31. Note that the estimate in the above theorem coincides with the upper
L1 estimate in Theorem 25 where the discrepancy has been averaged also over
translations. The case 1 < p < 1 seems to be different, since either repeating
the steps of the above proof for Lp norms or interpolating between L1 and L1 we
get estimates larger than the one in (3.40).

The previous theorem shows that the discrepancy of a convex body with respect
to Z

d can be quite small after we have averaged over the rotations. Let us make
some remarks on this point. Let us consider for simplicity a square in R

2 with sides
parallel to the axes: the two close dilations (say R and R C ") of the square in the
picture, have almost the same area, but the number of integer points inside differ for
� R (Fig. 3.3).

The same happens for every rational rotation of the square. On the other hand
we know (see Theorem 3) that in certain directions the discrepancy can be as small

Fig. 3.3 Integer points and squares with sides parallel to the axes
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as
p

logR. Then we may expect that the discrepancy of a convex body C with
respect to Z

d is reasonably small for almost every rotation of C . This is a very deep
problem, since when C is the unit disc centered at the origin, then the rotation �
disappears and we have the classical Gauss’ circle problem (so far the best bound
for this problem is due to M. Huxley and it is close to R0:629			). We are now ready
to state the following result (see [8], see also [24, 28, 47]). Let

DR .�/ D card
�
Z
2 \R� .C /�� R2 jC j D �R2 jC j C

X
m2Z2

R�.C / .m/ ;

where C is a convex planar body and � 2 SO .2/.

Theorem 32. Let C  R
2 be a convex body, let ı > 1=2 and R � 2. Then for

almost every � 2 SO .2/ there exists a constant c D c�;ı such that

jDR .�/j � c R2=3 logı R : (3.44)

Proof. We use Theorem 15 and a smoothing argument similar to the one we have
used in Theorem 30. Let  D ��1ft2R2Wjt j�1g be the normalized characteristic

function of the unit disc. For every small " > 0 let  " .t/ D "�2 .t="/, so that for
every " > 0 we have

R
R2
 " D 1 and O " .�/ D O ."�/. Let

DR .�; "/ D �R2 jC j C
X
m2Z2

�
R�.C/ �  "

�
.m/ ;

observe that, as in the proof of Theorem 30,

DR�" .�; "/C ��2R"C "2
� jC j � DR .�/ � DRC" .�; "/C �

2R"C "2
� jC j :

(3.45)

By the Poisson summation formula we obtain

DR .�; "/ D R2
X

0¤m2Z2
OC
�
R��1 .m/

� O ."m/ :

Then, for every positive integer j , (3.5) gives

sup
2j�R�2jC1

R�2=3 jDR .�; "/j (3.46)

� c 2�j=6
X

0¤m2Z2
jmj�3=2 1

1C j"mj3=2 sup
2j�R�2jC1

�ˇ̌ OC
�
R��1 .m/

�ˇ̌ jRmj3=2
	
:
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By Theorem 15 the function

� 7�! sup
2j�R�2jC1

�ˇ̌ OC
�
R��1 .m/

�ˇ̌ jRmj3=2
	

belongs to L2;1 .SO .2//, uniformly with respect to j and m. Since L2;1 is a
Banach space, then also the sum in (3.46) belongs to L2;1 .SO .2//, with norm
bounded up to a constant by

2�j=6
X

0¤m2Z2
jmj�3=2 1

1C j"mj3=2

D 2�j=6
X

0<jmj�"�1
jmj�3=2 C 2�j=6"�3=2

X
jmj>"�1

jmj�3 � c 2�j=6 "�1=2 :

Choosing " D 2�j=3 and using (3.45) we obtain

 sup
2j�R�2jC1

R�2=3 jDR .�/j

L2;1.SO.2//

� c : (3.47)

Then

sup
R�2

�
log�ı .R/R�2=3 jDR .�; "/j

�2 D sup
R�2

�
log�2ı .R/R�4=3 jDR .�; "/j2

	

�
C1X
jD1

j�2ı sup
2j�R�2jC1

�
R�4=3 jDR .�; "/j2

	

belongs to L1;1 .SO .2// since by (3.47) the function

sup
2j�R�2jC1

�
R�4=3 jDR .�; "/j2

	

is uniformly in L1;1 and can therefore be summed by the sequence j�2ı if ı > 1=2
(see [58, Lemma 2.3]). Then the function

sup
R�2

�
log�ı .R/R�2=3 jDR .�; "/j

�

belongs to L2;1 .SO .2// and therefore is a.e. bounded. This proves (3.44). ut
Remark 33. M. Skriganov [54] has shown that when C is a polygon we have
jDR .�/j � c" log1C" R for any " > 0 and almost every � . Our technique can be
applied also in the case of a polygon, but we only get a power of the logarithm
larger than the one in [54].
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3.5 Lattice Points: Estimates from Below

In this section we prove that the previous upper bounds are essentially best possible.
We will consider the balls (with the intriguing case d 	 1 .mod 4/ introduced in
Theorem 24) and the simplices.

We need a technical result (see [44]) where, as usual, kˇk denotes the minimal
distance of a real number ˇ from the integers.

Lemma 34. For every " > 0 there exist R0 � 1 and 0 < ˛ < 1=2 such that for
every R � R0 there exists m 2 Z

d such that

jmj � R" ; kR jmjk � ˛ : (3.48)

Proof. We introduce positive integers n D n .R; "/ and k0 D k0 ."/ which will be
chosen later. For every integer k 2 Œ0; k0� we consider the point

mk D .n; k; 0; : : : ; 0/ 2 Z
d

and write B .k/ D p
n2 C k2 D jmkj. We are going to show that for all " > 0

there exist R0 � 1, ˛ 2 .0; 1=2/ and k0 2 N such that for all R � R0 there exist
n � R"=2 and k 2 Œ0; k0� such that kR jmkjk � ˛. Assume the contrary, so that
there exists " > 0 such that for every R0 � 1, ˛ 2 .0; 1=2/ and k0 2 N there exist
R � R0 such that for all n � R"=2 and k 2 Œ0; k0� we have kR jmkjk < ˛. Let

B.1/ .k/ D B .k C 1/� B .k/ ; k D 0; 1; : : : ; k0 � 1

B.2/ .k/ D B.1/ .k C 1/� B.1/ .k/ ; k D 0; 1; : : : ; k0 � 2
:::

B.`/ .k/ D B.`�1/ .k C 1/� B.`�1/ .k/ ; k D 0; 1; : : : ; k0 � `
:::

B.k0/ .0/ D B.k0�1/ .1/� B.k0�1/ .0/

Since kR B .k/k < ˛ we have
R B.`/ .k/

 < 2`˛. Now replace k with a real
variable ny and let, for jyj < 1,

QB .y/ D
p
1C y2 D

C1X
jD0

 
1=2

j

!
y2j :
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Differentiating, we obtain

d2j QB
dx2j

�x
n

	
D .2j /Š

 
1=2

j

!
C O

�
1

n2

�

uniformly in x 2 Œ0; k0�. Since B .x/ D n QB .x=n/, we have

d2jB

dx2j
.x/ D n1�2j

 
.2j /Š

 
1=2

j

!
C O

�
1

n2

�!
:

Now observe that

B.`/ .x/ D
Z xC1

x

Z x1C1

x1

� � �
Z x`�1C1

x`�1

d `B

dx``
dx` : : : dx2dx1 ;

so that

B.2j / .x/ D n1�2j
 
.2j /Š

 
1=2

j

!
C O

�
1

n2

�!

uniformly in x 2 Œ0; 1=2�. Now let j � be the smallest integer j such that j � 1C"�1
and choose

k0 D 2j �

n D
2
4
 
2
�
2j �

�
ŠR

ˇ̌̌
ˇ̌
 
1=2

j �

!ˇ̌̌
ˇ̌
! 1

2j�

�1

3
5 :

Then

R B.2j�/ .x/

D
 
2
�
2j �

�
Š

ˇ̌
ˇ̌̌ 1=2
j �

!ˇ̌ˇ̌̌!�1 �
2j �

�
Š

 
1=2

j �

!
C o .1/ D 1

2
sign

 
1=2

j �

!
C o .1/

as R ! C1, so that

R B.2j�/ .x/
 D 1

2
C o .1/ :
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Observe that

n D
2
4
 
2
�
2j �

�
Š

ˇ̌̌
ˇ̌
 
1=2

j �

!ˇ̌̌
ˇ̌R
! 1

2j�

�1

3
5 �

 
2
�
2j �

�
Š

ˇ̌̌
ˇ̌
 
1=2

j �

!ˇ̌̌
ˇ̌
! "

"C2

R
� "2C"

"C2

0 R" :

Choosing ˛ such that 22j
�

˛ < 1=2 and R0 such that

 
2
�
2j �

�
Š

ˇ̌
ˇ̌̌ 1=2
j �

!ˇ̌ˇ̌̌!
"

"C2

R
� "2C"

"C2

0 <
1

2

we obtain a contradiction. ut
Again, let B D ˚

t 2 R
d W jt j � 1



be the unit ball and for every t 2 T

d consider
the discrepancy

DR .t/ D card
�
Z
d \ .RB C t/

� � Rd jBj :

We have the following result.

Theorem 35. Let d > 1.

(i) If d 6	 1 .mod 4/, then there exists a positive constant c such that for every
R � 1 we have

kDRkL2.Td / � c R.d�1/=2 :

(ii) If d 	 1 .mod 4/, then for every small " > 0 there exists a positive constant c"
such that for every R � 1 we have

kDRkL2.Td / � c" R
.d�1/=2�" :

Proof. We prove .i/.
Arguing as in (3.38) we obtain

kDRk2
L2.Td / D

X
0¤m2Zd

ˇ̌̌
ODR .m/

ˇ̌̌2 D Rd
X

0¤m2Zd
jmj�d J 2d=2 .2�R jmj/

D ��2 Rd�1
X

0¤m2Zd
jmj�d�1 cos2 .2�R jmj � � .d C 1/ =4/C O

�
Rd�2

�
:

Now let m0 D .1; 0; : : : ; 0/ and assume

ˇ̌
cos

�
2�R

ˇ̌
m0
ˇ̌� � .d C 1/ =4

�ˇ̌ D jcos .2�R � � .d C 1/ =4/j > 1

100
:
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Then

kDRk2
L2.Td / � ��2 Rd�1

ˇ̌
m0
ˇ̌�d�1

cos2
�
2�R

ˇ̌
m0
ˇ̌� � .d C 1/ =4

�C O
�
Rd�2

�

D ��210�2 Rd�1 C O
�
Rd�2

� � cRd�1 :

Now assume

ˇ̌
cos

�
2�R

ˇ̌
m0
ˇ̌� � .d C 1/ =4

�ˇ̌ D jsin .2�R � � .d � 1/ =4/j � 1

100
:

Then there exists an integer ` such that 2R D ` C .d � 1/ =4 ˙ ı, for a suitable
jıj � 1=50. Then 4R D 2` C .d � 1/ =2 ˙ 2ı, and since .d � 1/ =4 is not an
integer we have

ˇ̌
cos

�
2�R

ˇ̌
2m0

ˇ̌� � .d C 1/ =4
�ˇ̌

D jsin .� f2`C .d � 1/ =2˙ 2ı � � .d � 1/ =4g/j

� 1

2
k˙2ı C .d � 1/ =4k � 1

10
:

Then choosingm equal to m0 or to 2m0, we have

kDRk2
L2.Td / � cR d�1 :

We now prove .ii/. Let m be as in Lemma 34. Since d 	 1 .mod 4/ we have

kDRk2
L2.Td / � ��2 Rd�1 jmj�d�1 cos2 .2�R jmj � � .d C 1/ =4/C O

�
Rd�2

�

D ��2 Rd�1 jmj�d�1 sin2 .2�R jmj/C O
�
Rd�2

�
� c" R

d�1R�.dC1/" :

ut
For the simplices we have results complementary to the ones in Theorems 25

and 26. Let S be a simplex in R
d and for every t 2 T

d let

DR .t/ D card
�
Z
d \ .� .R S/C t/

�� Rd jS j :

Theorem 36. For every simplex S in R
d (d � 2) and R � 2 we have

i) kDRkL1;1.SO.d/�Td / � c logd�2 .R/
ii) kDRkL1.SO.d/�Td / � c logd�1 .R/

iii) kDRkLp.SO.d/�Td / � R.d�1/.1�1=p/ ; if 1 < p � C1 :
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Proof. For everym0 ¤ 0 we have

kDRkLp.SO.d/�Td / � Rd

8<
:
Z

SO.d/

Z
Td

ˇ̌
ˇ̌
ˇ̌
X
m¤0

OS .R� .m// e2� im	t
ˇ̌
ˇ̌
ˇ̌
p

dt d�

9=
;
1=p

� Rd
�Z

Td

Z
SO.d/

ˇ̌ OS
�
R�

�
m0
��ˇ̌p

d� dt

� 1=p
:

Then .ii/ and .iii/ follow from Theorem 19. The proof of .i/ is a consequence of
Lemma 18 as in the proof of the corresponding part of Theorem 19. ut

3.6 Irregularities of Distribution: Estimates from Below

It is time to go back to the Introduction, where we have referred to the fundamental
results of K. Roth (Theorem 2) and W. Schmidt (Theorem 1). In this section we
present two different approaches to Theorem 4, due to J. Beck and H. Montgomery
respectively. For convenience we shall apply Beck’s argument to prove Theorem 4
and Montgomery’s argument to prove a stronger version of the theorem which holds
true in the particular case when B is a simplex.

We now repeat the main part of the statement of Theorem 4.

Theorem 37. Let d � 2 and let B  R
d be a body of diameter smaller than 1

which satisfies (3.15). Then for every distribution P of N points in T
d we have

Z 1

0

Z
SO.d/

Z
Td

ˇ̌
card .P\ .�� .B C t/// � �dN jBjˇ̌2 dt d� d� � cdN

.d�1/=d :

(3.49)

Proof. For every 0 < � � 1, � 2 SO .d/, t 2 T
d the projection of �� .B/ � t is

injective from R
d to T

d . Given a finite distribution P D ft .j /gNjD1 of N points in
T
d we consider the discrepancies

D
B;P
N D DN D �N jBj C

NX
jD1

B .t .j //

DB;P
N .�; �; t/ D DN .�; �; t/ D �N�d jBj C

NX
jD1

���1.B/�t .t .j // :
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First we show that the function t 7! DN .�; �; t/ has Fourier series

X
m¤0

0
@ NX
jD1

e2� im	t .j /
1
A�d OB .�� .m// e2� im	t : (3.50)

Indeed

Z
Td

0
@�N�d jBj C

NX
jD1

���1.B/�t .t .j //

1
A dt

D �N�d jBj C
NX
jD1

Z
Td

���1.B/ .t .j /C t/ dt

D �N�d jBj CN

Z
Rd

���1.B/ .u/ du D 0 ;

while for m ¤ 0

Z
Td

0
@�N�d jBj C

NX
jD1

���1.B/�t .t .j //

1
A e�2� im	t dt

D
NX
jD1

Z
Td

���1.B/ .t .j /C t/ e�2� im	t dt

D
NX
jD1

Z
Td

���1.B/ .u/ e
�2� im	.u�t .j // du D

NX
jD1

e2� im	t .j /�d OB .�� .m// :

Let 0 < q < 1 and 0 < r < 1. By (3.50) and Theorem 8 we have

1

r

Z r

qr

Z
SO.d/

Z
Td

jDN.�; �; t/j2 dt d� d� (3.51)

D
X
m¤0

ˇ̌
ˇ̌̌
ˇ
NX
jD1

e2� im	t .j /
ˇ̌
ˇ̌̌
ˇ
2

1

r

Z r

qr

Z
SO.d/

ˇ̌
�d OB.��.m//

ˇ̌2
d� d�

D c
X
m¤0

ˇ̌̌
ˇ̌
ˇ
NX
jD1

e2� im	t .j /
ˇ̌̌
ˇ̌
ˇ
2

1

r

Z
fqr�j�j�rg

j OB .jmj �/j2 j�jdC1 d�
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�
X
m¤0

ˇ̌̌
ˇ̌
ˇ
NX
jD1

e2� im	t .j /
ˇ̌̌
ˇ̌
ˇ
2

rd
Z
fqr�j�j�rg

j OB .jmj �/j2 d�

�
X
m¤0

ˇ̌
ˇ̌
ˇ̌
NX
jD1

e2� im	t .j /
ˇ̌
ˇ̌
ˇ̌
2

rd jmj�d
Z
fqrjmj�j�j�r jmjg

j OB.�/j2 d�

�
X
m¤0

ˇ̌
ˇ̌
ˇ̌
NX
jD1

e2� im	t .j /
ˇ̌
ˇ̌
ˇ̌
2

rd jmj�d .1C r jmj/�1 :

(again, A � B means that there exist two positive constants c1 and c2 which do not
depend on N and r and satisfy c1A � B � c2A). Now we apply (3.51) first with
r D 1 and then with r D kN�1=d (we shall choose the constant k later on). We
obtain

Z 1

q

Z
SO.d/

Z
Td

jDN .�; �; t/j2 dt d� d� (3.52)

�
X
m¤0

ˇ̌
ˇ̌
ˇ̌
NX
jD1

e2� im	t .j /
ˇ̌
ˇ̌
ˇ̌
2

jmj�d�1

� c

(
inf
m¤0

1C kN�1=d jmj
kdN�1 jmj

) 8̂<
:̂
X
m¤0

ˇ̌
ˇ̌
ˇ̌
NX
jD1

e2� im	t .j /
ˇ̌
ˇ̌
ˇ̌
2  

kdN�1 jmj�d
1C kN�1=d jmj

!9>=
>;

� ˚
N1�1=d k1�d


 (
k�1N 1=d

Z kN�1=d

qkN�1=d

Z
SO.d/

Z
Td

jDN .�; �; t/j2 dt d� d�

)
:

Since

qkN�1=d � � � kN�1=d

there exists a small constant ı > 0 such that, for suitable choices of the constants q
and k we have

ı � qdkd jBj � N�d jBj � kd jBj � 1 � ı :

Being

NX
jD1

���1.B/�t .t .j //
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an integer, we deduce that

jDN .�; �; t/j D
ˇ̌
ˇ̌̌
ˇ�N�

d jBj C
NX
jD1

���1.B/�t .t .j //

ˇ̌
ˇ̌̌
ˇ � ı

for every � , t and � 2 �qkN�1=d ; kN�1=d
�
. Then (3.52) gives

Z 1

q

Z
SO.d/

Z
Td

jDN .�; �; t/j2 dt d� d� � cN1�1=d :

ut
Because of Theorem 24, the dilation in � in (3.49) cannot be deleted. In the

sequel of this section we shall see how to avoid the dilation in particular cases. The
starting point is a lemma due to J. Cassels (see [17, 42]).

Lemma 38. For every positive integer N let

QN D
n
x D .x1; x2; : : : ; xd / 2 R

d W ˇ̌xj ˇ̌ � d
p
2N for every j D 1; 2; : : : ; d

o
:

Then for every finite set ft .j /gNjD1  T
d

X
0¤m2QN\Zd

ˇ̌
ˇ̌
ˇ̌
NX
jD1

e2� im	t .j /
ˇ̌
ˇ̌
ˇ̌
2

� N2 : (3.53)

Proof. Let m D .m1;m2; : : : ; md/ an element of Zd . Adding N2 on both sides of
(3.53), we have to prove that

X
jm1j� d

p
2N

: : :
X

jmd j� d
p
2N

ˇ̌̌
ˇ̌
ˇ
NX
jD1

e2� im	t .j /
ˇ̌̌
ˇ̌
ˇ
2

� 2N 2 ;

and this is a consequence of the following inequality:

X
jm1j�

h
d
p
2N

i : : :
X

jmd j�
h
d
p
2N

i

ˇ̌
ˇ̌̌
ˇ
NX
jD1

e2� im	t .j /
ˇ̌
ˇ̌̌
ˇ
2

� N
�h

d
p
2N

i
C 1

	d
; (3.54)

where Œ
� denotes the integral part of the real number 
 . The LHS in (3.54) is
larger than
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X
jm1j�

h
d
p
2N

i

0
@1 � jm1jh

d
p
2N

i
C 1

1
A � � � (3.55)



X

jmd j�
h
d
p
2N

i

0
@1 � jmd jh

d
p
2N

i
C 1

1
A
ˇ̌
ˇ̌̌
ˇ
NX
jD1

e2� im	t .j /
ˇ̌
ˇ̌̌
ˇ
2

D
X

jm1j�
h
dp
2N

i

0
@1 � jm1jh

d
p
2N

i
C 1

1
A � � �

X
jmd j�

h
dp
2N

i

0
@1 � jmd jh

d
p
2N

i
C 1

1
A



NX
jD1

NX
`D1

e2� im	.t.j /�t .`//

D
NX
jD1

NX
`D1

X
jm1j�

h
d
p
2N

i

0
@1 � jm1jh

d
p
2N

i
C 1

1
A e2� im1.t1.j /�t1.`// : : :



X

jmd j�
h
d
p
2N

i

0
@1 � jmd jh

d
p
2N

i
C 1

1
A e2� imd .td .j /�td .`//

D
NX
jD1

NX
`D1

Kh
d
p
2N

i .t1 .j / � t1 .`// � � �Kh
d
p
2N

i .td .j / � td .`// ;

where

KM.t/ D
MX

jD�M

�
1 � jj j

M C 1

�
e2� ijt D 1

M C 1

�
sin .� .M C 1/ t/

sin .�t/

�2

is the Fejér kernel (M 2 N, t 2 T). Since KM.t/ � 0 for every t , we may bound
the terms in (3.55) from below by the “diagonal”

NX
jD1

Kh
d
p
2N

i .t1 .j / � t1 .j // � � �Kh
d
p
2N

i .td .j / � td .j // D N

�
Kh

d
p
2N

i .0/
�d

D N
�h

d
p
2N

i
C 1

	d
:

ut
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Theorem 39. Let S be a simplex in R
d , d � 2, the sides of which have length

smaller than 1. Then there exists a constant cd > 0 such that for every finite set
ft .j /gNjD1  T

d we have

Z
SO.d/

Z
Td

ˇ̌
ˇ̌̌
ˇ�N jS j C

NX
jD1

��1.S/�t .t .j //

ˇ̌
ˇ̌̌
ˇ
2

dt d� � cd N
.d�1/=d :

Proof. As a consequence of Parseval identity, Theorem 19 and Lemma 38 we obtain

Z
SO.d/

Z
Td

ˇ̌̌
ˇ̌
ˇ�N jS j C

NX
jD1

��1.S/�t .t .j //

ˇ̌̌
ˇ̌
ˇ
2

dt d�

D
X
m¤0

ˇ̌̌
ˇ̌
ˇ
NX
jD1

e2� im	t .j /
ˇ̌̌
ˇ̌
ˇ
2 Z

SO.d/
j OS .� .m//j2 d�

�
X

0¤m2QN

ˇ̌
ˇ̌
ˇ̌
NX
jD1

e2� im	t .j /
ˇ̌
ˇ̌
ˇ̌
2 Z

SO.d/
j OS .� .m//j2 d�

� c
X

0¤m2QN

ˇ̌
ˇ̌̌
ˇ
NX
jD1

e2� im	t .j /
ˇ̌
ˇ̌̌
ˇ
2

jmj�d�1

� c inf
m2QN

�
jmj�d�1

	 X
0¤m2QN

ˇ̌
ˇ̌̌
ˇ
NX
jD1

e2� im	t .j /
ˇ̌
ˇ̌̌
ˇ
2

� c N�1�1=dN 2 D c N 1�1=d :

ut
Remark 40. Using Theorem 8 the above argument gives a new proof of Theorem 37
(see [42]).

Corollary 41. Let S be a simplex in R
d the sides of which have length smaller than

1. Then, for every finite set ft .j /gNjD1  T
d there exists a (translated and rotated)

copy S 0 of S such that

ˇ̌
ˇ�N jS j C card

�
S 0 \ ft .j /gNjD1

	ˇ̌ˇ � cd N
.d�1/=2d :
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3.7 Irregularities of Distribution: Estimates from Above

We are going to check the quality of the estimates from below obtained in the
previous section. We will see that for any given body B and for every positive
integer N one can find a finite set ft .j /gNjD1  T

d , such that a suitable L2 mean

of the discrepancy is smaller than cN .d�1/=2d . Observe that we cannot choose
the points at random. Indeed, such a Monte Carlo choice of the N points gives
a

p
N discrepancy (see e.g. (3.61) below), and this is not enough to match the

N.d�1/=2d lower estimates in Theorems 37 and 39 (although for large dimension
d the exponent .d � 1/ =2d approaches 1=2). We shall get the N.d�1/=2d estimate
first using an argument related to lattice points problems, and then a probabilistic
argument.

For an overview of upper estimates related to irregularities of distribution,
see [20].

3.7.1 Applying Lattice Points Results

A very natural way to choose N points in a cube consists in putting them on a grid.
Suppose for the time being that we have N D Md points (Fig. 3.4). Then let

P D PM D 1

M
Z
d \

�
�1
2
;
1

2

�d
D ft .j /gNjD1 (3.56)

(the ordering of the t .j /’s is irrelevant).
This choice of P immediately relates our point distribution problem to certain

lattice point problems similar to the ones that we have considered in the previous

sections. Indeed, if B is a body in
�� 1

2
; 1
2

�d
and P is as in (3.56) we have

card .B \ PM/ D card
�
MB \ Z

d
�
:

Fig. 3.4 Points on a grid
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Before going on, observe that here M is an integer, while in the lattice point
problems we have considered so far, the dilation parameterR is real. In other words,
the choice of the piece of lattice in (3.56) implicitly contains some (but not all the)
dilations.

Now we show that the lower estimate in Theorem 37 cannot be improved. This
result has been originally proved by J. Beck and W. Chen [2]. We give two proofs:
the first one is based on Theorem 21, while the second one is probabilistic in nature
(see [2, 14, 22], see also [36, 41]). Since the second proof works under assumptions
more general than convexity, we will state two different theorems (the first one is
contained in the second one).

Theorem 42. Let B  R
d be a convex body of diameter smaller than 1. Then for

every positive integer N there exists a finite set ft .j /gNjD1  T
d such that

Z
SO.d/

Z
Td

ˇ̌
ˇ̌
ˇ̌�N jBj C

NX
jD1

��1.B/�t .t .j //

ˇ̌
ˇ̌
ˇ̌
2

dt d� � cd N
.d�1/=d :

Here cd depends only on the dimension d .

Proof. We apply Theorem 21. Assume first that N D Md for a positive integerM .

For any a 2 �� 1
2
; 1
2

�d
let

AN D ft .j /gNjD1 D �
aCM�1Zd

� \
�
�1
2
;
1

2

�d

(the role of a will be clear later on). Then

Z
SO.d/

Z
Td

ˇ̌
card .AMd \ .�.B/C t// �Md jBjˇ̌2 dt d�

D
Z

SO.d/

Z
Td

ˇ̌
card .AMd \ .�.B/C t C a// �Md jBjˇ̌2 dt d�

D Md

Z
SO.d/

Z
Œ� 1

2M ;
1
2M /

d

ˇ̌
card

�
M�1Zd \ .�.B/C t/

� �Md jBjˇ̌2 dt d�

D Md

Z
SO.d/

Z
Œ� 1

2M ;
1
2M /

d

ˇ̌
card

�
Z
d \ .�.MB/C Mt/

� �Md jBjˇ̌2 dt d�

D
Z

SO.d/

Z
Td

ˇ̌
card

�
Z
d \ .�.MB/C v/

� �Md jBjˇ̌2 dvd� ;

since the function

t 7! card
�
M�1Zd \ .�.B/C t/

� �Md jBj
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is M�1Zd periodic and the cube
�� 1

2
; 1
2

�d
contains Md disjoint copies of�� 1

2M
; 1
2M

�d
. By Theorem 21 we have

Z
SO.d/

Z
Td

ˇ̌
card .AMd \ .�.B/C t// �Md jBjˇ̌2 dt d� � cdM

d�1 � cdN
1�1=d :

(3.57)

To end the proof we need to pass from N D Md to an arbitrary positive
integer N . By a theorem of Hilbert (Waring problem, see [29]) there exists a
constant H D Hd such that every positive integer N can be written a sum of at
most H d th powers:

N D
HX
jD1

Md
j

with M1;M2; : : : ;MH positive integers. Now choose a1; a2; : : : ; aH 2 �� 1
2
; 1
2

�d
such that �

aj CM�1j Z
d
	

\ �
ak CM�1k Z

d
� D ¿ (3.58)

whenever j ¤ k. For j D 1; 2; : : : ;H let

AMd
j

D
�
aj CM�1j Z

d
	

\
�
�1
2
;
1

2

�d
:

By (3.58) the union

AN D
H[
jD1

AMd
j

is disjoint, so that AN contains exactly N points. Since

card .AN \ B/ �N jBj D
HX
jD1

�
card

�
AMd

j
\ B

	
�Md

j jBj
	
;

the theorem follows from (3.57). ut

3.7.2 Deterministic and Probabilistic Discrepancies

In the proof of the next theorem the points will be chosen in a probabilistic way.
Since we will start from the piece of lattice ft .j /gNjD1 introduced in (3.56), it will
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Fig. 3.5 Jittered sampling

be possible, as in the first proof, to assume N D Md . We will choose one point at
random inside each one of the N small cubes having sides parallel to the axes and
of length 1=M (Fig. 3.5).

The above choice is sometimes called jittered sampling.
We have the following generalization of Theorem 42.

Theorem 43. Let B  T
d be a body of diameter smaller than 1 satisfying (3.15).

Then for every positive integer N there exists a finite set ft .j /gNjD1  T
d such that

Z
SO.d/

Z
Td

ˇ̌
ˇ̌
ˇ̌�N jBj C

NX
jD1

��1.B/�t .t .j //

ˇ̌
ˇ̌
ˇ̌
2

dt d� � cd N
.d�1/=d :

Before starting the proof we introduce the following slightly more general point
of view.

Given the finite point set distribution P D ft .j /gNjD1 in (3.56), we introduce the
following randomization of P , see [2, 14, 22] and also [5, 36, 41]. Let d� denote a
probability measure on T

d and for every j D 1; : : : ; N , let d�j denote the measure
obtained after translating d� by t .j /. More precisely, for any integrable function g
on T

d , let

Z
Td

g.t/ d�j D
Z
Td

g.t � t .j // d� : (3.59)

As before, let dt denote the Lebesgue measure on T
d . For every sequence VN D

fv1; : : : ; vN g in T
d and every t 2 T

d , � 2 SO .d/ let

D.t; �; VN / D D.VN / D �N jBj C
NX
jD1

��1.B/�t
�
vj
�
:

As in (3.50),DN .t/ D D.t; �; VN / has Fourier series
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X
0¤m2Zd

0
@ NX
jD1

e2� im	vj
1
A OB.� .m// e2� im	t :

We now average

�Z
SO.d/

Z
Td

D2.t; �; VN / dt d�

� 1=2

in L2.Td ; d�j / for every j D 1; : : : ; N , and consider

Dd�.N / D
�Z

Td

: : :

Z
Td

Z
SO.d/

Z
Td

D2.t; �; VN / dt d� d�1.v1/ : : : d�N .vN /

� 1=2
:

We now use an orthogonality argument to obtain an explicit identity for Dd�.N /.
Indeed by Parseval identity, (3.59) and (3.56) we have

D2
d�.N /

D
Z

SO.d/

Z
Td

: : :

Z
Td

X
0¤m2Zd

ˇ̌
ˇ̌̌
ˇ
NX
jD1

e2� im	vj

ˇ̌
ˇ̌̌
ˇ
2

j OB.� .m/ j2 d�1.v1/ : : : d�N .vN /d�

D
Z

SO.d/

X
0¤m2Zd

j OB.� .m/ j2
NX

j;`D1

Z
Td

Z
Td

e2� im	vj e�2� im	v` d�j .vj /d�`.v`/d�

D
Z

SO.d/

X
0¤m2Zd

j OB.� .m/ j2




0
BB@N C

NX
j;`D1
j¤`

Z
Td

Z
Td

e2� im	.vj�t .j //e�2� im	.v`�t .`// d�.vj /d�.v`/

1
CCAd� :

Then

D2
d�.N /

D
Z

SO.d/

X
0¤m2Zd

j OB.� .m/ j2
0
BB@N C j O�.m/j2

NX
j;`D1
j¤`

e2� im	.t.`/�t .j //

1
CCA d�
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D
Z

SO.d/

X
0¤m2Zd

j OB.� .m/ j2
0
@N C j O�.m/j2

0
@ NX
j;`D1

e2� im	.t.j /�t .`// �N
1
A
1
Ad�

D N
X

0¤m2Zd

�
1 � j O�.m/j2�

Z
SO.d/

j OB.� .m/ j2 d�

C
X

0¤m2Zd
j O�.m/j2

ˇ̌
ˇ̌
ˇ̌
NX
jD1

e2� im	t .j /
ˇ̌
ˇ̌
ˇ̌
2 Z

SO.d/
j OB.� .m/ j2 d� :

So that

D2
d�.N / D N

�
jBj � k��1B � �k2

L2.SO.d/�Td /
	

C kD.�; �;P/ � �k2
L2.SO.d/�Td / :

(3.60)

The following are particular cases.

(a) Let d� D dt (the Lebesgue measure on T
d ). Then the second term in the RHS

of (3.60) vanishes since O�.m/ D 0 for m ¤ 0, and we find the Monte-Carlo
discrepancy:

D2
dt.N / D N

Z
SO.d/

X
0¤m2Zd

j OB.� .m//j2 d� D N
�
jBj � jBj2

	
: (3.61)

(b) Let d� D ı0 (the Dirac ı at 0). Then we have the piece of grid

M�1Zd \
�
�1
2
;
1

2

�d
;

and the first term in the RHS of (3.60) vanishes because O�.m/ D 1 for everym.
As for the second term, note that for t .j / in (3.56) we have

NX
jD1

e2� im	t .j / D
�
N if m 2 MZ

d

0 otherwise,
: (3.62)

We then obtain the grid discrepancy:

D2
ı0
.N / D N2

Z
SO.d/

X
0¤m2Zd

j OB.M� .m//j2 d� :

In the next case we shall choose one point at random inside each one of theMd

small cubes having sides parallel to the axes and length 1=M .
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(c) Let d� D d� D �.t/dt, with

�.t/ D NŒ�1=.2M/;1=.2M/�d .t/ :

Then, for m D .m1;m2; : : : ; md/ we have

O�.m/ D N
sin.�m1=M/

�m1

sin.�m2=M/

�m2

� � � sin.�md=M/

�md

and, for everym ¤ 0; (3.62) gives

O�.m/4D .�; �;P/ .m/

D O�.m/4D .�; �;P/ .m/

D
�
N

sin.�m1=M/

�m1

sin.�m2=M/

�m2

� � � sin.�md=M/

�md

�0@ OB .� .m//
NX
jD1

e2� im�t.j/

1
A

D 0 ;

so that the second term in the RHS of (3.60) vanishes. In this way we have the
jittered sampling discrepancy:

D2
d�.N / D N

�
jBj �

Z
SO.d/

Z
Td

ˇ̌
��1.B/ � �ˇ̌2 dt d�

�
(3.63)

D N
X

0¤m2Zd

�
1 �

ˇ̌
ˇ O� .m/

ˇ̌
ˇ2
�Z

SO.d/
j OB.� .m//j2 d� :

Proof (of Theorem 43). By (3.63) we can select a point uj from each one of the
cubes

(
t .j /C

�
� 1

2M
;
1

2M

�d) N
jD1

in such a way that

Z
SO.d/

Z
Td

ˇ̌̌
ˇ̌
ˇ�N jBj C

NX
jD1

��1.B/�t
�
uj
�
ˇ̌̌
ˇ̌
ˇ
2

dt d�

� N

�
jBj �

Z
SO.d/

Z
Td

�
��1.B/ � ��2 .t/ dt d�

�
:
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Since the support of the function � .t/ has diameter
p
d=M we have

�
��1.B/ � ��2 .t/ D ��1.B/ .t/

for every t not belonging to the set

(
x 2 R

d W min
y2@.��1.B//

jx � yj �
p
d=M

)
:

By our assumptions this set has measure � cd M
�1, uniformly in � , so that

N

�
jBj �

Z
SO.d/

Z
Td

�
��1.B/ � ��2 .t/ dt d�

�
� cd N M�1 D cd N

1�1=d :

(3.64)

ut
Remark 44. When B is a ball of radius r andN D Md the inequality (3.64) can be
reversed (see [22]), and there exist positive constants c1 and c2, depending at most
on d and on r , such that

c1 N
1�1=d � N

�
jBj �

Z
Td

.B � �/2 .t/ dt

�
� c2 N

1�1=d :

Remark 45. In the case of the ball it is possible to show that the discrepancy
described in Theorem 42 is larger than the one described in Theorem 43 for small
d and it is smaller for large d (see [22]). For d 	 1 .mod 4/ the situation is more
intricate because of the results in Theorem 24 (see [22] or [21]).
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Chapter 4
Superirregularity

József Beck

Abstract Finding the integer solutions of a Pell equation is equivalent to finding the
integer lattice points in a long and narrow tilted hyperbolic region, where the slope is
a quadratic irrational. Motivated by this relationship, we carry out here a systematic
study of point counting with respect to translated or congruent families of any given
long and narrow hyperbolic region. First we discuss the important special case when
the underlying point set is the set of integer lattice points in the plane and the slope
of the given hyperbolic region is arbitrary but fixed; see Theorems 3–21. Then we
switch to the general case of an arbitrary point set of density one in the plane, and
study point counting with respect to congruent copies of a given hyperbolic region;
see Theorem 30. The main results are about the extra large discrepancy that we call
superirregularity. This means that there is always a translated/congruent copy of any
given long and narrow hyperbolic region of large area, for which the actual number
of points in the copy differs from the area as much as possible, i.e. the discrepancy is
at least a constant multiple of the area. Our theorems demonstrate, in a quantitative
sense, that in point counting with respect to translated/congruent copies of any long
and narrow hyperbolic region, superirregularity is inevitable.

4.1 Introduction

Notation. For any real valued function f and positive function g, we write f D
O.g/ to indicate that there exists a positive constant c such that jf j < cg, and
also write f D o.g/ to indicate that f=g ! 0. We write kzk to denote the
distance of a real number z to the nearest integer. Furthermore, c0; c1; c2; : : : denote
positive constants which may depend on some of the parameters that arise from our
discussion.
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4.1.1 Pell’s Equation: Bounded Fluctuations

Our starting point is the well-known Pell’s equation, a standard part of any
introductory course on number theory. The theory of Pell’s equation, while mostly
elementary, is nevertheless one of the most beautiful chapters in the whole of
mathematics. Also, it is very important, since the concept of units plays a key role
in algebraic number theory.

We briefly recall the main results. Consider, for simplicity, the concrete equation
x2 � 2y2 D ˙1. This equation has infinitely many integral solutions; in fact, the set
of all integral solutions .xk; yk/ 2 Z2 forms a cyclic group generated by the least
positive solution. More precisely, we have

xk C yk
p
2 D ˙.1C p

2/k; k 2 Z:

All integral solutions of x2�2y2 D 1 are given by xkCyk
p
2 D ˙.1Cp

2/2k , while
all integral solutions of x2�2y2 D �1 are given by xk Cyk

p
2 D ˙.1Cp

2/2kC1.
In particular, all positive integer solutions of x2 � 2y2 D 1 are given by

xk C yk
p
2 D .1C p

2/2k D .3C 2
p
2/k; k D 1; 2; 3; : : : :

Taking the algebraic conjugate xk �yk
p
2 D .3�2p2/k , and combining these two

equations, we obtain the explicit formulas

xk D .3C 2
p
2/k C .3 � 2

p
2/k

2
and yk D .3C 2

p
2/k � .3 � 2

p
2/k

2
p
2

:

Since 0 < 3 � 2
p
2 < 1

5
, we have

xk D the nearest integer to
1

2
.3C 2

p
2/k

and

yk D the nearest integer to
1

2
p
2
.3C 2

p
2/k:

If k is large, the error is very small. For example, the 10-th solution of x2�2y2 D 1

in positive integers is the pair x10 D 22;619;537 and y10 D 15;994;428. Here we
find

1

2
.3C 2

p
2/10 D 22619536:99999998895 : : :

and

1

2
p
2
.3C 2

p
2/10 D 15994428:000000007815 : : : :
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Let F.N/ D F.
p
2I 1IN/ denote the number of positive integer solutions of the

Pell equation x2 � 2y2 D 1 up to N , in the sense1 that x � 1 and 1 � y � N .
We have

k � F.N/ if and only if
.3C 2

p
2/k � .3 � 2p2/k
2
p
2

� N;

which implies the asymptotic formula

F.N/ D F.
p
2I 1IN/ D logN

log.3C 2
p
2/

CO.1/: (4.1)

The formula (4.1) says that the counting function F.N/ D F.
p
2I 1IN/ has

an extremely predictable, almost deterministic behavior: it is c2 logN plus some
bounded error term.

Note that (4.1) has some far-reaching generalizations. Let Œ
1; 
2� be an arbitrary
interval, and let F.

p
2I Œ
1; 
2�IN/ denote the number of positive integer solutions

of the Pell inequality 
1 � x2�2y2 � 
2, with x � 1 and 1 � y � N . By using the
theory of indefinite binary quadratic forms, it is easy to prove the following analog
of (4.1). We have

F.
p
2I Œ
1; 
2�IN/ D c0 logN CO.1/; (4.2)

where the constant factor c0 D c0.
p
2I 
1; 
2/ is independent of N .

Furthermore, we can switch from
p
2 to any other quadratic irrational ˛. This

means that ˛ is a root of a quadratic equation Ax2 C Bx C C D 0 with integral
coefficients such that the discriminant B2 � 4AC � 2 is not a complete square.
An equivalent definition is that ˛ D .aCp

d/=b for some integers a; b; d such that
b ¤ 0 and d � 2 is not a complete square. Note that the quadratic irrationals are
characterized by their continued fractions. The continued fractions of ˛ is finally
periodic if and only if ˛ is a quadratic irrational. For example,

24� p
15

17
D 1C 1

5C
1

2C
1

3C
1

2C
1

3C : : : D Œ1I 5; 2; 3; 2; 3; 2; 3; : : :� D Œ1I 5; 2; 3�:

Let us go back to (4.2) and to the special case ˛ D p
2. If �2 < 
1 � �1 and

1 � 
2 < 2, then

c0.
p
2I 
1; 
2/ D 1

log.1C p
2/

D 2

log.3C 2
p
2/
: (4.3)

1For simplicity of notation, it is more convenient to restrict the second variable y.
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If �1 < 
1 � 1 � 
2 < 2, then

c0.
p
2I 
1; 
2/ D 1

log.3C 2
p
2/
: (4.4)

Finally, if �1 < 
1 � 
2 < 1, then of course

c0.
p
2I 
1; 
2/ D 0: (4.5)

4.1.2 The Naive Area Principle

It is very interesting to compare these well-known asymptotic results about the
number of solutions of the Pell equation/inequality to what we like to call the Naive
Area Principle, a natural guiding intuition in lattice point theory. It goes roughly as
follows. If a nice region has a large area, then it should contain a large number of
lattice points, and the number of lattice points is close to the area.

Of course, the heart of the matter is how we define a nice region precisely.
Consider, for example, the infinite open horizontal strip of height one, given by
0 < y < 1, �1 < x < 1. It has infinite area, but it does not contain any lattice
point. The reader is likely to agree that the infinite strip is a nice region, so the Naive
Area Principle is clearly violated here.

A less trivial example comes from the Pell inequality

� 1

2
� x2 � 2y2 � 1

2
: (4.6)

This is a hyperbolic region of infinite area, and contains no lattice point except the
origin. The reader is again likely to agree that the hyperbolic region (4.6) is also
nice, so this is again a violation of the Naive Area Principle.

Next we switch from (4.6) to the general Pell inequality


1 � x2 � 2y2 � 
2; (4.7)

where �1 < 
1 < 
2 < 1 are arbitrary real numbers. Of course, the hyperbolic
region (4.7) has infinite area. What we want to compute is the area of a finite
segment. Consider the finite region

H.
p
2I Œ
1; 
2�IN/ D ˚

.x; y/ 2 R2 W 
1 � x2 � 2y2 � 
2; x � 1; 1 � y � N


:

(4.8)

If N is very large compared to the pair of constants 
1 and 
2, then the finite region
H.

p
2I Œ
1; 
2�IN/ looks like a hyperbolic needle. It is easy to give a good estimate

for the area of this hyperbolic needle. We have
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area.H.
p
2I Œ
1; 
2�IN// D 
2 � 
1

2
p
2

logN CO.1/; (4.9)

where the implicit constant in the term O.1/ is independent of N , but may depend
on 
1 and 
2.

The proof of (4.9) is based on the familiar factorization

x2 � 2y2 D .x C y
p
2/.x � y

p
2/; (4.10)

and on the computation of the Jacobian of the corresponding substitution; this
explains the factor 2

p
2 in the denominator in (4.9). The details are easy, and go

as follows. In view of the factorization (4.10), it is more convenient to compute the
area of the following slight variant of the region (4.9). Let

H�.
p
2I Œ
1; 
2�IN/

D f.x; y/ 2 R2 W 
1 � x2 � 2y2 � 
2; 1 � x C y
p
2 � 2

p
2N g: (4.11)

Consider the substitution

u1 D x C y
p
2; u2 D x � y

p
2; (4.12)

which is equivalent to

x D u1 C u2
2

; y D u1 � u2

2
p
2
:

The corresponding determinant is

@.u; v/

@.x; y/
D
ˇ̌̌
ˇ1 �p

2

1
p
2

ˇ̌̌
ˇ D 2

p
2:

Applying the substitution (4.12), we have

area.H�.
p
2I Œ
1; 
2�IN// D 1

2
p
2

Z 2
p
2N

1

 Z 
2=u1


1=u1

du2

!
du1

D 1

2
p
2

Z 2
p
2N

1


2 � 
1
u1

du1 D 
2 � 
1

2
p
2

logN CO.1/: (4.13)

Simple geometric consideration shows that

area.H.
p
2I Œ
1; 
2�IN// D area.H�.

p
2I Œ
1; 
2�IN//CO.1/;

and so (4.13) implies (4.9).
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Now let us return to the Naive Area Principle. Comparing (4.2), (4.8) and
(4.9), it is reasonable to expect, in view of the Naive Area Principle, that the
counting function F.

p
2I Œ
1; 
2�IN/ is close to the area of the hyperbolic needle

H.
p
2I Œ
1; 
2�IN/. In other words, it is reasonable to expect that

c0.
p
2I 
1; 
2/ D 
2 � 
1

2
p
2
: (4.14)

Unfortunately, the Naive Area Principle is almost always violated in the quantitative
sense that (4.14) fails for the overwhelming majority of the choices �1 < 
1 <


2 < 1. In fact, the two sides of (4.14) have completely different behavior. The
left-hand side of has discrete jumps and the right-hand side is a continuous function
of 
1 and 
2. For example, as 
1 and 
2 run in the interval �2 < 
1 < 
2 < 2, the
constant factor c0.

p
2I 
1; 
2/ has only 3 possible values, namely

0;
1

log.3C 2
p
2/
;

2

log.3C 2
p
2/

I

see (4.3)–(4.5). This shows, in a quantitative way, how the general Pell inequality
(4.7) violates the Naive Area Principle.

4.1.3 The Giant Leap in the Inhomogeneous Case: Extra
Large Fluctuations

Using the familiar factorization (4.10), we can rewrite the Pell equation x2 � 2y2 D
˙1, restricted to positive integers, as

jx2 � 2y2j � 1 or jyp
2 � xj.yp

2C x/ � 1 or kyp
2k.yp

2C x/ � 1;

(4.15)

where kzk denotes, as usual, the distance of a real number z from the nearest integer.
Notice that in (4.15), x is the nearest integer to y

p
2, which is an irrational number.

Since y
p
2 � x, the inequality (4.15) is basically equivalent to the vague inequality

kyp
2k � 1C o.1/

2
p
2y

: (4.16)

The vagueness of (4.16) comes from the additional term o.1/, which tends to 0
as y ! 1. The formula (4.16) is ambiguous, but surely every mathematician
understands what we are talking about here.

An expert in number theory would classify (4.16) as a typical problem in
diophantine approximation. Next we give a nutshell summary of diophantine
approximation.
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The classical problem in the theory of diophantine approximation is to find good
rational approximations of irrational numbers. More precisely, we want to decide
whether an inequality

kn˛k < 1

n'.n/
or

ˇ̌̌
˛ � m

n

ˇ̌̌
<

1

n2'.n/
; (4.17)

or in general,

kn˛ � ˇk < 1

n'.n/
; (4.18)

where ˛ is a given irrational number and ˇ is a given real number, has infinitely
many integral solutions in n, and if this is the case, to determine the solutions, or at
least the asymptotic number of integral solutions. Here '.n/ is a positive increasing
function of n.

The diophantine inequality (4.17) is said to be homogeneous, whereas the
diophantine inequality (4.18) is said to be inhomogeneous. For example, in the
homogeneous case, the best possible result is Hurwitz’s well-known theorem, that
for any irrational number ˛, the inequality

kn˛k < 1p
5n

has infinitely many positive integer solutions.
In the inhomogeneous case, we can mention an old result of Kronecker, that for

any irrational number ˛ and any real number ˇ, the inequality

kn˛ � ˇk < 3

n

has infinitely many positive integer solutions. Perhaps the strongest inhomogeneous
result is Minkowski’s theorem, that for any irrational number ˛, the inequality

kn˛ � ˇk < 1

4n

has infinitely many integer but not necessarily positive solutions, unless 0 < ˇ < 1
is an integer multiple of ˛ modulo one.

The homogeneous case (4.17) has a complete theory based on the effectiveness
of the tool of continued fractions. These are classical results due mostly to Euler
and Lagrange. Unfortunately, we know much less about the inhomogeneous case.
Very recently, the author proved some new results in this direction, and basically
covered the case when ˛ is an arbitrary quadratic irrational and ˇ is a typical real
number. These results form a large part of the forthcoming book [2]; see also the
recent papers [8, 9].
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Before formulating our main results, we want to first elaborate on the connection
between homogeneous/inhomogeneous diophantine inequalities, such as (4.17) and
(4.18), and homogeneous/inhomogeneous Pell inequalities.

4.1.3.1 Homogeneous and Inhomogeneous Pell Inequalities

The general form of a quadratic curve on the plane is

a11x
2 C a12xy C a22y

2 C a13x C a23y C a33 D 0: (4.19)

We are interested in the integral solutions .x; y/ 2 Z2 of an arbitrary inequality


1 � a11x
2 C a12xy C a22y

2 C a13x C a23y � 
2; (4.20)

where 
1 < 
2 are given real numbers. Note that the inequality (4.20) defines a
plane region, and the boundary consists of two curves of the type (4.19). In the case
of negative discriminant D D a212 � 4a11a22 < 0, the inequality (4.20) defines a
bounded region where the boundary curves are two ellipses. The case of positive
discriminant D D a212 � 4a11a22 > 0 is much more interesting, because then
the inequality (4.20) defines an unbounded region, where the boundary curves are
two hyperbolas, and thus we have a chance for infinitely many integral solutions of
(4.20).

For simplicity, assume that the coefficients a11; a12; a22 in (4.20) are integers and
D D a212 � 4a11a22 > 0. We can factorize the quadratic part in the form

a11x
2 C a12xy C a22y

2 D a11.x � ˛y/.x � ˛0y/; (4.21)

where

˛ D �a12 C p
D

2a11
and ˛0 D �a12 � p

D

2a11
: (4.22)

Using (4.21), we can rewrite (4.20) in the form


1 � .x � ˛y C �1/.x � ˛0y C �2/ � 
2; (4.23)

where

�1 C �2 D a13

a11
and ˛0�1 C ˛�2 D �a23

a11
:

Note that 
1; 
2 are generic numbers; the pair 
1; 
2 in (4.20) is not necessarily the
same as the pair 
1; 
2 in (4.23).
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Without loss of generality we can assume2 that ja12j � a11 � p
D=3, and then

we have ˛ > 0 > ˛0.
For simplicity, assume that the interval Œ
1; 
2� is symmetric with respect to 0, so

that it is of the form Œ
1; 
2� D Œ�
; 
�. Assume also that we are interested in the
positive integral solutions of (4.23). Since ˛ > 0 > ˛0, for large positive x and y,
the second factor .x � ˛0y C �2/ in (4.23) is also large and positive, implying that
the first factor .x �˛yC �1/ in (4.23) has to be very small. In other words, x has to
be the nearest integer to .˛y � �1/. It follows that the symmetric version of (4.20),
namely

�
 � a11x
2 C a12xy C a22y

2 C a13x C a23y � 
;

where 
 > 0 is a given real number, is equivalent to the diophantine inequality

ky˛ � �1k < c

y CO.1/
; where c D 


˛ � ˛0 D 
a11p
D
: (4.24)

Let us return to the inequality (4.20). If the linear part a13xC a23y in the middle
is missing, i.e. a13 D a23 D 0, then we have a complete theory based on Pell’s
equation. More precisely, write Q.x; y/ D a11x

2 C a12xy C a22y
2. Then 
1 �

Q.x; y/ � 
2 if and only if

Q.x; y/ D m for some m 2 Z satisfying 
1 � m � 
2:

We have a complete characterization of the integral solutions of Q.x; y/ D m for
any integerm as follows. For any integerm, there is a finite list of primary solutions,
say, .xj ; yj /, j 2 J , where jJ j < 1, such that every solution x D u, y D v of
Q.x; y/ D m can be written in the form

u � ˛v D ˙
 

u0 C v0
p
D

2

!n
.xj � ˛yj /

for some j 2 J and n 2 Z, where x D u0 > 0, y D v0 > 0 is the least positive
solution of Pell’s equation x2 � Dy2 D 4. As a byproduct, we deduce3 that the
number of positive integral solutions of the inequality


1 � Q.x; y/ � 
2; 1 � x � N; 1 � y � N

has the simple asymptotic form c logN C O.1/, where c D c.a11; a12; a22; 
1; 
2/

is a constant and the error term O.1/ is uniformly bounded as N ! 1.

2This is a well-known fact from the reduction theory of binary quadratic forms. We omit the proof;
see, for example, [31].
3For a more detailed proof; see [23].
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Exactly the same holds if there is a non-zero linear part a13x C a23y in (4.20),
but its effect cancels out. Note that �1 in (4.23) is an integer.

Finally, if �1 is not an integer, then we say that (4.23) is an inhomogeneous Pell
inequality. In view of (4.24), an inhomogeneous Pell inequality (4.23) is basically
equivalent to an inhomogeneous diophantine inequality

kn˛ � ˇk < c

n
(4.25)

with c D 
a11=
p
D, where ˛ is a quadratic irrational defined in (4.22). The

inequality (4.25) is a special case of (4.18) where '.n/ is a constant.

4.1.3.2 Some Results

One of the main results in the forthcoming book [2] describes the asymptotic
behavior of the number of positive integral solutions of (4.20) for every non-square
integer discriminantD > 0 and almost all a13; a23. The number of solutions

• exhibits extra large fluctuations, proportional to the area,
• satisfies an elegant Central Limit Theorem, and
• satisfies a shockingly precise Law of the Iterated Logarithm; see Theorems 3, A

and B below.

For notational simplicity, we formulate the results in the special case of discrim-
inant D D 8, which corresponds to the most famous quadratic irrational ˛ D p

2.
Since the class number of the discriminantD D 8 is one, the general form of an

inhomogeneous Pell inequality of discriminantD D 8 is


1 � .x C ˇ1/
2 � 2.y C ˇ2/

2 � 
2; (4.26)

where 
1 < 
2 and ˇ1; ˇ2 2 Œ0; 1/ are fixed constants. For notational simplicity,
we restrict ourselves to symmetric intervals Œ�
; 
� in (4.26); note that everything
works similarly for general intervals Œ
1; 
2�.

The factorization

.x C ˇ1/
2 � 2.y C ˇ2/

2 D .x C ˇ � y
p
2/.x C ˇ0 C y

p
2/; (4.27)

where ˇ D ˇ1 � ˇ2
p
2 and ˇ0 D ˇ1 C ˇ2

p
2, clearly indicates that the asymptotic

number of integral solutions of (4.26) depends heavily on the local behavior
of n

p
2 mod 1. In fact, (4.26) is essentially equivalent to the inhomogeneous

diophantine inequality

knp
2 � ˇk < c

n
; (4.28)

with c D 
=2
p
2.
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To turn the vague term essentially equivalent into a precise statement, we proceed
as follows. Let F.

p
2Iˇ1; ˇ2I 
 IN/ be the number of integral solutions .x; y/ 2 Z2

of the inequality (4.26) with 
2 D 
 and 
1 D �
 satisfying 1 � y � N and x � 1.
It means counting lattice points in a long and narrow hyperbola segment. Next let
f .

p
2IˇI cIN/ denote the number of integral solutions n of the inequality (4.28)

satisfying 1 � n � N , where ˇ D ˇ1 � ˇ2
p
2. Now essentially equivalent means

that for almost all pairs ˇ1; ˇ2, we have F.
p
2Iˇ1; ˇ2I 
 IN/ � f .

p
2IˇI cIN/ D

O.1/ as N ! 1, where c D 
=2
p
2. More precisely, we have

Lemma 1. Let 
 > 0 and ˇ2 be arbitrary real numbers. Then for almost all ˇ1,
there exists a finite 0 < C.ˇ1; ˇ2; 
/ < 1 such that

Z 1

0

C.ˇ1; ˇ2; 
/ dˇ < 1

and

jF.p2Iˇ1; ˇ2I 
 IN/ � f .p2IˇI cIN/j < C.ˇ1; ˇ2; 
/

for all N � 1, where c D 
=2
p
2 and ˇ D ˇ1 � ˇ2

p
2.

We postpone the simple proof to Sect. 4.3.
In view of Lemma 1, it suffices to study the special case ˇ2 D 0 and ˇ1 D ˇ.

We have

� 
 � .x C ˇ/2 � 2y2 � 
; (4.29)

where 
 > 0 and ˇ 2 Œ0; 1/ are fixed constants. For simplicity, let F.
p
2IˇI 
 IN/

denote the number of integral solutions .x; y/ 2 Z2 of (4.29) satisfying 1 � y � N

and x � 1. Note that F.
p
2IˇI 
 IN/ counts the number of lattice points in a long

and narrow hyperbola segment, or hyperbolic needle, located along a line4 of slope
1=

p
2; see Fig. 4.1.

In the special case 
 D 1 and ˇ D 0, the inequality (4.29) becomes the simplest
Pell equation x2 � 2y2 D ˙1. The integral solutions .xk; yk/ form a cyclic group
generated by the smallest positive solution x D y D 1 in the well-known way. We
have xk C yk

p
2 D .1C p

2/k , implying the familiar asymptotic formula

F.
p
2Iˇ D 0I 
 D 1IN/ D logN

log.1C p
2/

CO.1/; (4.30)

where 1C p
2 is the fundamental unit of the real quadratic field Q.

p
2/.

In sharp contrast to the bounded fluctuation in the homogeneous case ˇ D 0, the
inhomogeneous case can exhibit extra large fluctuations proportional to the area;

4If ˇ D 0, then the line is y D x=
p
2.
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Fig. 4.1 A hyperbolic needle

see Theorem 3 below. To explain this, first we have to compute the mean value of
F.

p
2IˇI 
 IN/ as ˇ runs through the unit interval 0 � ˇ < 1.

Lemma 2. We have

Z 1

0

F.
p
2IˇI 
 IN/ dˇ D 
p

2
logN CO.1/; (4.31)

where the implicit constant in the term O.1/ is independent of N , but may depend
on 
 . Moreover, for an arbitrary subinterval 0 � a < b � 1, we have

lim
N!1

1
b�a

R b
a
F.

p
2IˇI 
 IN/ dˇ

logN
D 
p

2
: (4.32)

The estimates (4.31) and (4.32) express the almost trivial geometric fact that the
average number of lattice points contained in all the translated copies of a given
region, a hyperbola segment in our special case, is precisely the area of the region;
see Lemma 5. We shall give a detailed proof of Lemma 2 in Sect. 4.3.

Now we are ready to formulate our first, and weakest, extra large fluctuation
result, demonstrating that the fluctuations can be proportional to the area. This result
is hardly more than a warmup for, or simplest illustration of, the main results that
will come later.
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Theorem 3. For 
 D 1
2
, there are continuum many divergence points ˇ� 2 Œ0; 1/

in the sense that

lim sup
n!1

F.
p
2Iˇ�I 
 D 1=2In/

logn
> lim inf

n!1
F.

p
2Iˇ�I 
 D 1=2In/

logn
: (4.33)

Note that the fluctuation c3 logn in F.
p
2Iˇ�I 
 D 1=2In/ is as large as

possible, apart from a constant factor. This follows from Lemma 4 in the next
section. It is fair to say that Theorem 3 represents a sophisticated violation of the
Naive Area Principle.

We postpone the proof of Theorem 3 to Sect. 4.3.
Note that Theorem 3 has a far-reaching generalization. It holds for every 
 > 0,

and we actually have the stronger inequality

lim sup
n!1

F.
p
2Iˇ�I 
 In/
logn

>

p
2
> lim inf

n!1
F.

p
2Iˇ�I 
 In/
logn

: (4.34)

We shall return to this in Sect. 4.4; see Theorem 12.
Another far-reaching generalization of Theorem 3 will be discussed in Sect. 4.9;

see Theorem 21.
Finally, an extra large fluctuation type result for arbitrary point sets, instead of

the set Z2 of lattice points, will be discussed in Sect. 4.10; see Theorem 30.
We refer to these extra large fluctuation type results as superirregularity.

4.2 Defending the Naive Area Principle

The estimate (4.30) and inequality (4.33) display the two extreme cases: (1) the
negligible bounded fluctuations around the main value which is a constant multiple
of logN ; and (2) the extra large fluctuations proportional to the area. But what kind
of fluctuations do we have for a typical ˇ satisfying 0 < ˇ < 1? We show that
for a typical ˇ, the asymptotic number of solutions F.

p
2IˇI 
 IN/, as N ! 1,

justifies the Naive Area Principle. And beyond that, a more thorough look reveals
randomness.

Talking about randomness, note that the two most important parameters of a
random variable are the expectation, or mean value, and the variance. For the
function F.

p
2IˇI 
 IN/, the estimate (4.31) gives the expectation.

Explaining why the natural scaling is exponential. Note that for any 1 < M < N ,
the counting function is slowly changing in the sense that

F.
p
2IˇI 
 IN/ � F.p2IˇI 
 IM/ D O.log.N=M//; (4.35)
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where c4 log.N=M/ is the corresponding area. The geometric reason behind this
is the exponentially sparse occurrence of lattice points in the corresponding long
and narrow tilted hyperbola. The proof of (4.35) is a straightforward application of
Lemma 4 below.

We have the following corollary of (4.35). If M D cN , i.e. n runs through
the interval cN < n < N with some constant 0 < c < 1, then the fluctuation
of F.

p
2IˇI 
 IN/ is a trivial O.1/. This negligible constant size change O.1/ in

(4.35), as n runs through cN < n < N , explains why it is more natural to switch
to the exponential scaling F.

p
2IˇI 
 I eN /. In the rest of this discussion, we shall

often prefer the exponential scaling.
The variance comes from the following non-trivial result. For any 
 > 0, there is

a positive effective constant � D �.
/ > 0 such that

lim
N!1

1

N

Z 1

0

�
F.

p
2IˇI 
 I eN / � 
p

2
N

�2
dˇ D �2.
/:

The proof of this limit formula is based on a combination of Fourier analysis
(Poisson summation formula, Parseval formula) and the arithmetic of the quadratic
number field Q.

p
2/; see [2].

The first probabilistic result, nicely fitting the general scheme of determinism vs.
randomness, is the following; for the proof, see [2].

Theorem A (Central Limit Theorem). The renormalized counting function

F.
p
2IˇI 
 I eN / � .
=p2/N

�.
/
p
N

; 0 � ˇ < 1;

has a standard normal limit distribution as N ! 1.

To give at least some vague intuition behind Theorem A, we write

Gj .ˇ/ D F.
p
2IˇI 
 I ej /� F.

p
2IˇI 
 I ej�1/; j D 1; 2; : : : ; N:

In other words, Gj .ˇ/ is the number of integral solutions n 2 N of (4.29) satisfying
ej�1 < n � ej .

Note that Gj .ˇ/ is a bounded function. This follows from Lemma 4 below, and
from the obvious geometric fact that any short hyperbola segment corresponding
to Gj is basically a rectangle. More precisely, any short hyperbola segment
corresponding to Gj can be approximated by an inscribed rectangle R1 of slope
1=

p
2 and a circumscribed rectangle R2 of slope 1=

p
2 such that the ratio of the

two areas is uniformly bounded by an absolute constant.
It is time now to formulate

Lemma 4. Every tilted rectangle of slope 1=
p
2 and area 1

5
contains at most one

lattice point.



4 Superirregularity 235

We postpone the proof of this simple but important result to the next section.
Lemma 4 can be easily generalized. The same proof gives that for any quadratic

irrational ˛, there is a positive constant c5 D c5.˛/ > 0 such that every tilted
rectangle of slope ˛ and area c5 contains at most one lattice point.

Our key intuition is that the bounded function Gj .ˇ/ resembles the j -th Rade-
macher function, so the sum

F.
p
2IˇI 
 I eN /� 
p

2
N D

NX
jD1

�
Gj .ˇ/ � 
p

2

�
;

as a function of ˇ 2 Œ0; 1/, behaves like a sum ofN independent Bernoulli variables

F.
p
2IˇI 
 I eN /� 
p

2
N � ˙1˙ 1˙ : : :˙ 1„ ƒ‚ …

N

;

referred to often as an N -step random walk.
Our next result, Theorem B, can be interpreted as a variant of Khintchine’s

famous Law of the Iterated Logarithm in probability theory; see [21]. We show
that the number of solutions F.

p
2IˇI 
 I en/ of (4.29) oscillates between the sharp

bounds


p
2
n � �p

n
p
.2C "/ log logn < F.

p
2IˇI 
 I en/

<

p
2
nC �

p
n
p
.2C "/ log logn; (4.36)

where " > 0, as n ! 1 for almost all ˇ. Note that (4.36) fails with 2 � " in place
of 2 C ", where " > 0. Here the main term .
=

p
2/n means the area, so (4.36) can

be considered a highly sophisticated justification of the Naive Area Principle.
The estimate (4.36) is particularly interesting in view of the fact that the classical

Circle Problem is unsolved, and seems to be hopeless by current techniques. What
(4.36) means is that we can solve a Hyperbola Problem instead of the Circle
Problem. More precisely, we can prove for long and narrow tilted hyperbola
segments what nobody can prove for large concentric circles. Namely, we can show
that for almost all centers, i.e. for almost all values of the translation parameter
ˇ, the number of lattice points asymptotically equals the area plus an error which,
even in the worst case scenario, is about the square root of the area. For circles the
corresponding maximum error should be the square root of the circumference.

The Law of the Iterated Logarithm is one of the most famous results in classical
probability theory, and describes the maximum fluctuation in the infinite one-
dimensional random walk. The term infinite random walk refers to an infinite
sequence of random Bernoulli trials, where each trial is tossing a fair coin.
Of course, coin tossing belongs to the physical world; it is not a mathemat-
ical concept. But there is a well-known pure mathematical problem, which is
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considered equivalent. We can study the digit distribution of a typical real number
written in binary form

ˇ D b1

2
C b2

22
C b3

23
C : : : ;

where each bi D 0 or 1; here we have assumed for simplicity that 0 < ˇ < 1. The
infinite 0-1 sequence

b1 D b1.ˇ/; b2 D b2.ˇ/; b3 D b3.ˇ/; : : : ;

i.e. the sequence of binary digits of 0 < ˇ < 1, represents an infinite heads-and-tails
sequence, say, with 1 as heads and 0 as tails. The sum

Bn D Bn.ˇ/ D b1 C b2 C b3 C : : :C bn

counts the number of 1’s, or heads, among the first n binary digits of 0 < ˇ < 1.
Borel’s classical theorem about normal numbers asserts that

Bn.ˇ/

n
! 1

2
for almost all 0 < ˇ < 1:

Let Sn D Sn.ˇ/ denote the corresponding error term

Sn D Sn.ˇ/ D 2Bn.ˇ/� n D number of heads � number of tails;

so that Sn D Sn.ˇ/ represents the number of heads minus the number of tails among
the first n random trials, or coin tosses.

A well-known theorem of Khintchine [21] asserts that

lim sup
n!1

Sn.ˇ/p
2n log logn

D 1 for almost all 0 < ˇ < 1:

Note that Khintchine’s Theorem is a far-reaching quantitative improvement on
Borel’s famous theorem on normal numbers. The long form of Khintchine’s
Theorem says that for any " > 0 and almost all ˇ, we have the following two
statements:

• Sn.ˇ/ < .1C "/
p
2n log logn for all sufficiently large values of n; and

• Sn.ˇ/ > .1 � "/p2n log logn for infinitely many values of n.

This strikingly elegant and precise result is the simplest form of the so-called Law
of the Iterated Logarithm, usually called Khintchine’s form.

Let us return to (4.36). The fact that it is an analog of Khintchine’s Law of
the Iterated Logarithm suggests the vague intuition that the lattice point counting
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function F.
p
2IˇI 
 I en/ behaves like a generalized digit sum as ˇ runs through

0 < ˇ < 1.
What we are going to actually formulate below are two generalizations or

refinements of (4.36); see Theorem B. The first generalization is that for almost
all ˇ, (4.36) holds for all 
 , or in general, for all intervals Œ
1; 
2�. This is a variant
of the so-called Cassels’s form of the Law of the Iterated Logarithm; see [12].

The second generalization of (4.36) is the Kolmogorov–Erdős form, an ultimate
convergence-divergence criterion, which contains Khintchine’s form as a simple
corollary; see [14, 15, 22].

Theorem B (Law of the Iterated Logarithm).

(i) Let " > 0 be an arbitrarily small but fixed constant. Then for almost all ˇ,


p
2
n � �

p
.2C "/n log logn < F.

p
2IˇI 
 I en/

<

p
2
nC �

p
.2C "/n log logn (4.37)

holds for all 
 > 0 and for all sufficiently large n, i.e. for all n > n0.ˇ; 
/.
(ii) Let '.n/ be an arbitrary positive increasing function of n. Let 
 > 0 be fixed.

Then for almost all ˇ,

F.
p
2IˇI 
 I en/ >


p
2
nC '.n/�

p
n

holds for infinitely many values of n if and only if the series

1X
nD1

'.n/

n
e�'2.n/=2 (4.38)

diverges. The same conclusion holds for the other inequality

F.
p
2IˇI 
 I en/ <


p
2
n � '.n/�p

n:

Note that (4.37) is sharp in the sense that 2C " cannot be replaced by 2 � ".

Remarks. (i) By Lemma 1, we have f .
p
2IˇI cIN/ D F.

p
2IˇI 
 IN/ C O.1/

as N ! 1, where c D 
=2
p
2. So Lemma 1 implies that Theorems A

and B remain true if F.
p
2IˇI 
 IN/ is replaced by the number of solutions

f .
p
2IˇI cIN/ of the inhomogeneous diophantine inequality (4.28).

(ii) In Theorem B(i), there is a dramatic difference between rational ˇ and almost
all ˇ. For every rational ˇ, the counting function has the form

F.
p
2IˇI 
 IN/ D c.
/ logN CO.1/ as N ! 1
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for all 
 > 0, and it remains valid if
p
2 is replaced by any quadratic irrational.

This bounded size fluctuation around the main term c logN , which is typically
not the area, jumps up considerably. By (4.37), we have square root size
fluctuations around the main term, which is the area, so the fluctuations have
size the square root of the area, and this holds for almost all ˇ and all 
 > 0.

Let us return to (4.36). It is a special case of Theorem B(ii) with

'.n/ D ..2˙ "/ log logn/1=2:

Indeed, the series (4.38) is divergent or convergent depending on whether we have
2C " or 2 � " in the definition of '.n/.

We can obtain a much more delicate result by choosing a large integer k � 4 and
writing

'.n/ D .2 log2 nC 2 log3 nC 2 log4 nC : : :C 2 logk�1 nC .2˙ "/ logk n/
1=2 :

Beware that here, and here only, we use the space-saving notation log2 n D
log logn, i.e. it means the iterated logarithm instead of the usual meaning as base
2 logarithm, and in general, logk n D log.logk�1 n/ denotes the k-times iterated
logarithm of n. With this choice of '.n/, we have

1X
nD1

'.n/

n
e�'2.n/=2 �

X
n

1

n logn log2 n log3 n : : : logk�1 n.logk n/1˙"=2
;

which is divergent or convergent depending on whether we have 2 C " or 2 � " in
the definition of '.n/.

This example clearly illustrates the remarkable precision of Theorem B(ii).
Next we focus on a simple consequence of Theorem B. Let c > 0 be arbitrarily

small but fixed. Then by Theorem B, the inhomogeneous diophantine inequality

knp
2 � ˇk < c

n
(4.39)

has infinitely many integer solutions n � 1 for almost all ˇ, in the sense of the
Lebesgue measure.

Inequality (4.39) corresponds to the hyperbola segment

jy � ˇj < c

x
; x � 1;

where ˇ is fixed, and this has infinite area. But we may go further, and consider
smaller regions

jy � ˇj < 1

x logx
; jy � ˇj < 1

x logx log logx
;
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and the like. They all have infinite area, since

Z N

e

dx

x logx
D log logN and

Z N

ee

dx

x logx log logx
D log log logN;

and the rest all tend to infinity as N ! 1. It is very natural, therefore, to ask the
following question.

Question. Consider the inequalities

knp
2 � ˇk < c

n logn
; n � n1; (4.40)

knp
2 � ˇk < c

n logn log logn
; n � n2; (4.41)

and so on, where 0 � ˇ < 1 is a fixed constant. Is it true that for almost all ˇ, in
the sense of the Lebesgue measure, the inequalities (4.40), (4.41) and the like have
infinitely many positive integer solutions n?

Well, the answer is affirmative.

Theorem C (Area Principle for
p

2). Let  .x/ be any positive decreasing
function of the real variable x satisfying

1X
nD1

 .n/ D 1: (4.42)

Then the inhomogeneous inequality

knp
2 � ˇk <  .n/

has infinitely many integral solutions for almost all 0 � ˇ < 1, in the sense of
Lebesgue measure.

Furthermore, there is an interesting generalization of Theorem C where
p
2 is

replaced by any real ˛.
To explain this generalization, Theorem D below, we recall the basic question of

diophantine approximation. We want to decide whether an inequality

ˇ̌
ˇ̌˛ � p

q

ˇ̌
ˇ̌ < 1

q2
; or equivalently; jq˛ � pj < 1

q
;

with integers p and q, or more generally, an inequality

kq˛k <  .q/; (4.43)
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where  .q/ is a positive decreasing function of q, has infinitely many integral
solutions in q, and if this is the case, to determine the solutions, or at least the
asymptotic number of integral solutions.

It is perfectly natural to study the inhomogeneous analog of (4.43), the inequality

kq˛ � ˇk <  .q/; (4.44)

where ˇ is an arbitrary fixed real number. Of course, we may assume that 0�ˇ<1.
Is there any connection between the solvability of the homogeneous inequality

(4.43) and the inhomogeneous inequality (4.44)? Theorem C is about the special
case ˛ D p

2, and it justifies the Naive Area Principle. Recall that the Naive Area
Principle is a vague intuition claiming that a nice region of infinite area must contain
infinitely many lattice points. We know that the Naive Area Principle is false for the
hyperbolic region � 1

2
� x2 � 2y2 � 1

2
, which has infinite area and contains only

one lattice point, namely the origin. This Pell inequality is basically equivalent to
the diophantine inequality

kqp
2k < c

q
; (4.45)

with c � 2�5=2, and (4.45) does not have infinitely many integral solutions in q if
the constant c < 2�5=2.

The failure of the Naive Area Principle for (4.45) is compensated by the success
of the Naive Area Principle for the inhomogeneous inequality

kqp
2 � ˇk <  .q/;

which has infinitely many integral solution q for almost all ˇ, provided that  .x/
is any positive decreasing function of the real variable x satisfying (4.42). This is
the statement of Theorem C. The next result generalizes the special case ˛ D p

2 to
arbitrary real ˛.

Theorem D (General Area Principle). Let  .x/ be any positive decreasing
function of the real variable x satisfying (4.42). For any real number ˛, at least
one of the following two cases always holds:

(i) The homogeneous inequality (4.43) has infinitely many integral solutions.
(ii) The inhomogeneous inequality (4.44) has infinitely many integral solutions for

almost all 0 � ˇ < 1, in the sense of Lebesgue measure.

Remark. Note that divergence condition (4.42) is necessary. Indeed, if

1X
nD1

 .n/ < 1; (4.46)
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then the set of pairs .˛; ˇ/, for which the inequality (4.44) has infinitely many
integral solutions q, has two-dimensional Lebesgue measure zero. This statement
immediately follows from the statement that for every fixed ˇ, the set of ˛
which satisfy (4.44) for infinitely many q has Lebesgue measure zero. The second
statement has an easy proof as follows. Every such ˛ in 0 < ˛ < 1 is contained in
infinitely many intervals of the form

�
p C ˇ

q
�  .q/

q
;
p C ˇ

q
C  .q/

q

�

with integers q � N and 1 � p � q, and the total length of these intervals is less
than

2
X
q�N

 .q/;

which by (4.46) tends to zero as N ! 1. This means that Theorem D is a precise
convergence-divergence type result, or we may call it a zero-one law, to borrow a
well-known concept from probability theory.

Let us return to the inhomogeneous inequality (4.44). If ˛ is rational and ˇ is
irrational, then (4.44) has only finitely many integral solutions for any  .q/ ! 0 as
q ! 1. Well, this is trivial. It is less trivial to find an irrational ˛ and a decreasing
function  .x/ satisfying (4.42) such that for almost all ˇ, (4.44) has only finitely
many integral solutions. We can take any irrational 0 < ˛ < 1 with sufficiently
large partial quotients in the sense that

˛ D 1

a1C
1

a2C : : : D Œa1; a2; a3; : : :�;

where

ak � k.log k/2; (4.47)

and take

 .q/ D 1

q log q
: (4.48)

Then the denominator qk of the k-th convergent of ˛ is roughly

qk � a1a2 : : : ak � kk.log k/2 ; (4.49)

and so

X
k

1

log qk
D O

 X
k

1

k.log k/3

!
< 1:
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We recall the well-known fact
ˇ̌̌
ˇ˛ � pk

qk

ˇ̌̌
ˇ < 1

qkqkC1

which implies

ˇ̌
ˇ̌n˛ � npk

qk

ˇ̌
ˇ̌ < n

qkqkC1
: (4.50)

If qk � n < qkC1k�2 and

kn˛ � ˇk < 1

n log n
;

then by (4.49) and (4.50), we have

ˇ � npk

qk

 < 1

k2qk
C 1

n logn
<

2

k.log k/3qk
: (4.51)

If qkC1k�2 � n < qkC1, then define the set

Ak D
[
n

�
n˛ � 1

n logn
; n˛ C 1

n logn

�
mod 1; (4.52)

where the summation in (4.52) is extended over all n with qkC1k�2 � n < qkC1.
Motivated by (4.51), define the set

Bk D
[

0�j<qk

�
j

qk
� 2

k.log k/3qk
;
j

qk
C 2

k.log k/3qk

�
mod 1: (4.53)

Clearly

X
k

meas.Bk/ �
X
k

4

k.log k/3
< 1; (4.54)

where meas denotes the usual Lebesgue measure, and

X
k

meas.Ak/ D O

 X
k

log.k2/

k.log k/3

!
D O

 X
k

1

k.log k/2

!
< 1: (4.55)

It follows from (4.54) and (4.55) that almost all ˇ are contained in only a finite
number of Ak and in a finite number of Bk . In view of (4.51)–(4.53), this implies
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that for almost all ˇ, the inequality (4.44) has only finitely many integral solutions,
where ˛ and  are defined by (4.47) and (4.48).

For the proofs of Theorems A and B, we refer the reader to the forthcoming book
[2]. For the proofs of Theorems C and D, see the recent paper [8]. This section
was a detour, or rather a counterpart; the rest of the chapter is about extra large
fluctuations, i.e. sophisticated violations of the Naive Area Principle.

The next section is technical, and contains the proofs of Theorem 3 and
Lemmas 1–4. The truly interesting new results come later, starting in Sect. 4.4.

4.3 Proving Theorem 3 and the Lemmas

Proof of Lemma 2. First we establish the estimate (4.31). Consider the hyperbolic
needleHN .
/ D HN .

p
2I 
/, defined by

HN .
/ D f.x; y/ 2 R2 W �
 � x2 � 2y2 � 
; 1 � x C y
p
2 � 2

p
2N g: (4.56)

Comparing (4.11) with (4.56), we see that

HN .
/ D H�.
p
2I Œ�
; 
�IN/;

so by (4.13), we deduce that

area.HN .
// D 
p
2

logN CO.1/: (4.57)

Next we need the following almost trivial result.

Lemma 5. Let A  R2 be a Lebesgue measurable set in the plane with finite
measure denoted by area.A/. Then

Z 1

0

Z 1

0

j.AC x/\ Z2j dx D area.A/;

where AC x denotes the translation of the set A by the vector x 2 R2.

Now by Lemma 5, we have

Z 1

0

Z 1

0

j.HN .
/C v/\ Z2j dv D area.HN .
//: (4.58)

If v D .v1; v2/ 2 Œ0; 1/2 is chosen in such a way that v1 � v2
p
2 	 ˇ mod 1 is fixed,

then clearly

jF.p2IˇI 
 IN/ � j.HN .
/C v/\ Z2jj < c6.
/; (4.59)
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where c6.
/ is a constant independent of ˇ and N . The estimate (4.31) follows on
combining (4.57)–(4.59).

Next we prove (4.32). Let 0 � a < b � 1 be fixed. For any M � 1, consider the
parallelogram

PM D fv D .v1; v2/ 2 R2 W a � v1 � v2
p
2 � b; 0 � v1 C v2

p
2 � M g:

If M is large, then PM is a long and narrow parallelogram, but we can then turn
it into a round shape by applying an appropriate automorphism of the quadratic
form x2 � 2y2. The substitution x1 D x C 2y, y1 D x C y is a fundamental
automorphism,5 and writing

A D
�
1 2

1 1

�
;

we note that Ak , k 2 Z, give rise to infinitely many automorphisms preserving
the lattice points and the area. The eigenvectors of the matrix A are parallel to the
sides of parallelogram PM , so on applying an appropriate power Ak on the long
and narrow parallelogram PM , we obtain a round parallelogramAkPM with sides
parallel to that of PM , and

area.AkPM/ D area.PM/ D c7M:

Here round means that the diameter of parallelogram AkPM is O.
p
M/, so the

number of unit squares Œ0; 1/2 C n, n 2 Z2, intersecting the boundary of AkPM is
O.

p
M/.

Combining this geometric fact with (4.58), we have

1

area.PM/

Z
PM

j.HN .
/C v/\ Z2j dv D area.HN .
//.1CO.M�1=2//: (4.60)

If v D .v1; v2/ 2 Œ0; 1/2 is chosen in such a way that v1 � v2
p
2 	 ˇ mod 1 is

fixed, then clearly

jF.p2IˇI 
 IN/ � j.HN .
/C v/\ Z2jj < c8.
;M/; (4.61)

where c8.
;M/ is a constant independent of ˇ andN . Combining (4.57), (4.60) and
(4.61), we have

1
b�a

R b
a
F.

p
2IˇI 
 IN/ dˇ

logN

5Indeed, we have x21 � 2y21 D .x C 2y/2 � 2.x C y/2 D �.x2 � 2y2/.
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D
�

p
2

CO

�
1

logN

��
.1CO.M�1=2//C c8.
;M/

logN
: (4.62)

Since M can be arbitrarily large, (4.62) implies (4.32). The proof of Lemma 2 is
now complete. ut
Proof of Lemma 5. First assume thatA is bounded. LetN be a large integer. In view
of the periodicity of Z2, we have

Z N

0

Z N

0

j.AC x/\ Z2j dx D N2

Z 1

0

Z 1

0

j.AC x/\ Z2j dx:

On the other hand,

Z N

0

Z N

0

j.AC x/\ Z2j dx D
X
n2Z2

areafx 2 Œ0; N �2 W n 2 AC xg

D
X
n2Z2

areaf.n � A/\ Œ0; N �2g:

Without loss of generality, we can assume that the origin is inside A. Let d.A/
denote the diameter of A. Then .n � A/  Œ0; N �2 if n 2 Œd.A/;N � d.A/�2. On
the other hand, .n �A/ \ Œ0; N �2 D ; if n 62 Œ�d.A/;N C d.A/�2. Thus we have

.N C 2d.A//2 � area.A/ �
X
n2Z2

areaf.n �A/\ Œ0; N �2g � .N � 2d.A//2 � area.A/:

Dividing the last inequalities by N2, and combining with the equations above,
we see that Lemma 5 follows as N tends to infinity. If A is unbounded, then we
approximate A by an increasing sequence A1  A2  A3  : : : of subsets of A
such that each Ak is bounded and area.A nAk/ ! 0. The last step is then to use the
continuity of the Lebesgue measure. ut
Proof of Lemma 1. For notational simplicity, we restrict our proof to the special
case ˇ2 D 0; the general case is the same. Again the key step is to apply Lemma 5.
For 1 � K < L � 1, consider the four regions

HK;L.ˇI 
/ D f.x; y/ 2 R2 W �
 � .x C ˇ/2 � 2y2 � 
; K � y � L; x > 0g;
QHK;L.ˇI 
/ D f.x; y/ 2 R2 W 2p2yjx C ˇ � yp

2j < 
; K � y � L; x > 0g;
QHCK;L.ˇI 
/ D f.x; y/ 2 R2 W .2p2yC1/jxCˇ�yp

2j < 
; K � y � L; x > 0g;
QH�K;L.ˇI 
/ D f.x; y/ 2 R2 W .2p2y � 1/jxCˇ � y

p
2j < 
; K � y � L; x>0g:
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In view of the factorization (4.27), the condition .x; y/ 2 HK;L.ˇI 
/ gives the
estimate x C ˇ D y

p
2 C o.1/. In fact, we have the stronger form x C ˇ D

y
p
2CO.1=y/. Thus there is a threshold c9 D c9.
/ such that

QHCK;L.ˇI 
/  HK;L.ˇI 
/  QH�K;L.ˇI 
/

for all L > K > c9.
/. On the other hand, it is trivial that

QHCK;L.ˇI 
/  QHK;L.ˇI 
/  QH�K;L.ˇI 
/:

Consider now the special case K D 1, L D 1, ˇ D 0, and study the difference set

D.
/ D QH�1;1.0I 
/ n QHC1;1.0I 
/:

The area of this difference set can be estimated by

area.D.
// D O

�Z 1
1

�
1

2
p
2y � 1 � 1

2
p
2y C 1

�
dy

�

D O

�Z 1
1

dy

8y2 � 1
�

D O.1/:

Combining this with Lemma 5, we have

Z 1

0

Z 1

0

j.D.
/C v/\ Z2j dv D area.D.
// < 1: (4.63)

If v D .v1; v2/ 2 Œ0; 1/2 is chosen in such a way that v1 � v2
p
2 	 ˇ mod 1 is fixed,

then

D.
/C v � HK;L.ˇI 
/� QHCK;L.ˇI 
/; (4.64)

where A�B D .A n B/ [ .B n A/ denotes the symmetric difference of the sets A
and B . Combining (4.63) and (4.64), Lemma 1 follows easily. ut
Proof of Lemma 4. Consider a rectangle of slope 1=

p
2 which contains two lattice

pointsP D .k; `/ andQ D .m; n/; in fact, assume that P;Q are two vertices of the
rectangle. We denote the vector from P to Q by v D .m � k; n � `/, and consider
the two perpendicular unit vectors

e1 D
 p

2p
3
;
1p
3

!
and e2 D

 
1p
3
;�

p
2p
3

!
:
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Then the two side lengths a and b of the rectangle can be expressed in terms of the
inner products

a D je1 � vj D jpp
2C qjp
3

and b D je2 � vj D jp � q
p
2jp

3
;

where p D m � k and q D n � `. Thus we have

area D ab D j.pp
2C q/.p � q

p
2/j

3
:

Without loss of generality, we can assume that p � 0 and q � 0. Since .p; q/ ¤
.0; 0/, we have jp � qp

2j D 1=.p C q
p
2/, and so

area D j.pp
2Cq/.p � qp

2/j
3

D p
p
2C q

3.pCqp
2/

� p C q

3.p
p
2Cqp

2/
D 1

3
p
2
>
1

5
;

proving Lemma 4. ut
Proof of Theorem 3. We shall show that the set of numbers ˇ in question, the set of
divergence points, contains a Cantor set. This guarantees that the cardinality of the
set is continuum.

We make a standard Cantor set construction, i.e. we apply the method of nested
intervals. For notational convenience, we write F.

p
2IˇI 
 IN/ D F.ˇI 
 IN/.

By (4.31), we have

Z 1

0

F.ˇI 
 IN/ dˇ D 
p
2

logN CO.1/:

Applying this with 
 D 1
4
, we obtain the existence of 0 < ˇ1 < 1 and an arbitrarily

large integer N1 such that

F.ˇ1I 
 D 1=4IN1/ > 1

8
logN1:

Since 1
4
< 1

2
, there exists an interval I1 D Œa; b� with 0 < a < b < 1 such that

ˇ1 2 I1 and

F.ˇI 
 D 1=2IN1/ > 1

8
logN1 for all ˇ 2 I1: (4.65)

Next let n D .n1; n2/ 2 Z2 be a lattice point such that ˇ2 D n1 � n2
p
2 2 I1. Since

the equation jx2 � 2y2j � 3
4

does not have a non-zero integral solution, trivially

F.ˇ2I 
 D 3=4IN/ < 1

100
logN for all N � N2;
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where N2 is a sufficiently large threshold. We can clearly assume that N2 > N1.
Since 3

4
> 1

2
, there exists6 an interval I2 D Œa; b� with some 0 < a < b < 1 such

that ˇ2 2 I2 and

F.ˇI 
 D 1=2IN2/ < 1

100
logN2 for all ˇ 2 I2: (4.66)

We can clearly assume that I2 is a proper subinterval of I1. Let I.0/ D I2. Repeating
the second argument, we deduce that there exists another closed subinterval I.1/
such that I.0/ and I.1/ are disjoint, I.0/[ I.1/  I1 and

F.ˇI 
 D 1=2IN.1/
2 / <

1

100
logN.1/

2 for all ˇ 2 I.1/: (4.67)

We can clearly assume that N.1/
2 > N1.

By (4.32), we have

1

jI.0/j
Z
I.0/

F .ˇI 
 IN/ dˇ D .1C o.1//

p
2

logN;

and applying this with 
 D 1
4
, we obtain the existence of 0 < ˇ3 < 1 and a large

integer N3 such that

F.ˇ3I 
 D 1=4IN3/ > 1

8
logN3:

Since 1
4
< 1

2
, there exists an interval I3 D Œa; b� with 0 < a < b < 1 such that

ˇ3 2 I3 and

F.ˇI 
 D 1=2IN3/ > 1

8
logN3 for all ˇ 2 I3: (4.68)

We can clearly assume that I3 is a proper subinterval of I.0/. Write I.0; 0/ D I3.
Similarly, there exists another subinterval I.0; 1/ such that I.0; 0/ and I.0; 1/ are
disjoint, I.0; 0/[ I.0; 1/  I.0/ and

F.ˇI 
 D 1=2IN.1/
3 / >

1

8
logN.1/

3 for all ˇ 2 I.0; 1/: (4.69)

There are similar disjoint subintervals I.1; 0/ and I.1; 1/ of I.1/.
Next, let n D .n1; n2/ 2 Z2 be a lattice point such that ˇ4 D n1�n2

p
2 2 I.0; 0/.

Since the inequality jx2 � 2y2j � 3
4

does not have a non-trivial integral solution,

F.ˇ4I 
 D 3=4IN/ < 1

100
logN for all N � N4;

6Here a and b are generic numbers.
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where N4 < 1 is a sufficiently large threshold. We can clearly assume that N4 >
N3. Since 3

4
> 1

2
, there exists an interval I4 D Œa; b� with 0 < a < b < 1 such that

ˇ4 2 I4 and

F.ˇI 
 D 1=2IN4/ < 1

100
logN4 for all ˇ 2 I4: (4.70)

We can clearly assume that I4 is a proper subinterval of I.0; 0/. Let I.0; 0; 0// D I4.
Repeating the last argument, there exists another closed subinterval I.0; 0; 1/ such
that I.0; 0; 0/ and I.0; 0; 1/ are disjoint, I.0; 0; 0/[ I.0; 0; 1/  I.0; 0/ and

F.ˇI 
 D 1=2IN.1/
4 / <

1

100
logN.1/

4 for all ˇ 2 I.0; 0; 1/; (4.71)

and so on. Repeating this argument, we build an infinite binary tree

I1 � I"1 � I"1;"2 � I"1;"2;"3 � : : : ;

where "1; "2; "3; : : : 2 f0; 1g.
For an arbitrary infinite 0-1 sequence "1; "2; "3; : : :, let

ˇ 2 I1 \ I"1 \ I"1;"2 \ I"1;"2;"3 \ : : : :

Then by (4.65)–(4.71), there exists an infinite sequence 1 < M1 < M2 < M3 <

M4 < : : : of integers such that

F.ˇI 
 D 1=2IM2k�1/ >
1

8
logM2k�1 and F.ˇI 
 D 1=2IM2k/ <

1

100
logM2k;

where k D 1; 2; 3; : : :. This proves Theorem 3. ut

4.4 The Riesz Product and Theorem 12

4.4.1 The Method of Nested Intervals vs. the Riesz Product

At the end of Sect. 4.1, we formulated a far-reaching generalization of Theorem 3;
see (4.34). It states that Theorem 3 actually holds for every 
 > 0, and we have the
stronger inequality

lim sup
n!1

F.
p
2Iˇ�I 
 In/
logn

>

p
2
> lim inf

n!1
F.

p
2Iˇ�I 
 In/
logn

; (4.72)
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where .
=
p
2/ logn C O.1/ is the area of the corresponding hyperbolic region.

Indeed, (4.72) holds for continuum many divergence points ˇ� D ˇ�.
/ 2 Œ0; 1/.
The proof of Theorem 3 was based on an elementary argument that we may call

the method of nested intervals. To prove (4.72), we need a new idea, and apply a
more sophisticated Riesz product argument. The Riesz product is a powerful tool
in Fourier analysis. A typical application is to prove large fluctuations for lacunary
trigonometric series. To compare the method of nested intervals to the method of
Riesz products, we give a simple illustration; see Facts 1 and 2 below.

Consider a finite cosine sum

F.x/ D
NX
jD1

aj cos.2�nj x/; where aj D ˙1 for all 1 � j � N; (4.73)

and 1 � n1 < n2 < : : : < nN are integers. We study the following question. What
can we say about max0�x�1 F.x/? Well, under different extra conditions, we have
different results. We begin with

Fact 6. If the strong gap condition njC1=nj � 8 holds for every 1 � j � N � 1,
then

max
0�x�1 F.x/ � N

2
:

Proof. The proof is almost trivial. Let

J1 D
n
x 2 Œ0; 1� W cos.2�n1x/ lies between

a1

2
and a1

o
:

Since a1 D ˙1, the set J1 contains a closed subinterval I1 of length jI1j � 1=4n1.
Next let

J2 D
n
x 2 I1 W cos.2�n2x/ lies between

a2

2
and a2

o
:

Since a2 D ˙1, the set J2 contains a closed subinterval I2 of length jI2j � 1=4n2.
Next let

J3 D
n
x 2 I2 W cos.2�n3x/ lies between

a3

2
and a3

o
;

and so on. Repeating this process N times, we obtain a nested sequence of closed
intervals

Œ0; 1� � I1 � I2 � : : : � IN

such that ak cos.2�nkx/ � 1
2

for all x 2 Ik , k D 1; 2; : : : ; N . Then clearly F.x/ �
N=2 for every x 2 IN . ut
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This is a typical application of the method of nested intervals. Next comes the
Riesz product argument. The problem that we study is the following. What will
happen if the strong gap condition njC1=nj � 8 is replaced by the weaker condition
njC1=nj � 1 C " > 1, where " > 0 is an arbitrarily small but fixed constant? Can
we still prove a linear lower bound like max0�x�1 F.x/ � cN with some constant
c D c."/ > 0 depending only on the value of "? Unfortunately, the method of nested
intervals hopelessly collapses. Our new approach is the Riesz product argument. The
following result, a well-known theorem of Sidon in Fourier analysis, is much deeper
than Fact 6.

Fact 7 (Sidon’s Theorem). If the weak gap condition

njC1
nj

� 1C " > 1 (4.74)

holds for every 1 � j � N � 1, where 0 < " < 1
2

is a fixed constant, then for F.x/
defined in (4.73), we have

max
0�x�1 F.x/ � cN with c D 1

4"�1 log.2"�1/
:

Proof. Let 1 D i.1/ < i.2/ < : : : < i.M/ be a subsequence of 1; 2; 3; : : : ; N such
that

ni.jC1/
ni.j /

� 2

"
; j D 1; 2; : : : ;M � 1; (4.75)

and consider the Riesz product

R.x/ D
MY
jD1

.1C ai.j / cos.2�ni.j /x//:

Since ai.j / D ˙1, we have R.x/ � 0. We shall use this Riesz product R.x/ as a
test function. First we evaluate the integral

Z 1

0

F.x/R.x/ dx D
MX
jD1

a2i.j /

Z 1

0

cos2.2�ni.j /x/ dx D M

2
: (4.76)

Indeed, multiplying out the Riesz product R.x/, and then using Euler’s formula
2ey D eiy C e�iy , we obtain terms like

ai.j1/ai.j2/ai.j3/ : : : ai.jk/e
2� i.˙ni.j1/˙ni.j2/˙ni.j3/˙:::˙ni.jk//; (4.77)

where we shall call (4.77) a product of length k � 1. We distinguish two cases.
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Case 8 (short products). k D 1. Multiplying the corresponding terms with F.x/
and integrating from 0 to 1, we obtain

MX
jD1

a2i.j /

Z 1

0

cos2.2�ni.j /x/ dx D M

2
;

which is precisely (4.76).

Case 9 (long products). k � 2. We can clearly write 1 � j1 < j2 < : : : < jk .
Then using the elementary inequalities

1C "

2
C
� "
2

	2 C
� "
2

	3 C : : : < 1C " and 1� "

2
�
� "
2

	2 �
� "
2

	3 � : : : > 1

1C "

if 0 < " < 1
2
, we deduce that

j ˙ ni.j1/ ˙ ni.j2/ ˙ ni.j3/ ˙ : : :˙ ni.jk/j lies between .1C "/ni.jk/ and
1

1C "
ni.jk/:

Comparing this to the gap condition (4.74), we see that F.x/ and the long products
of R.x/ represent disjoint sets of exponential functions

e2� i`x; ` 2 Z:

Using the orthogonality of these functions, the contribution of Case 9 to the integralR 1
0
F.x/R.x/ dx is zero. This proves (4.76).

The same argument shows that

Z 1

0

R.x/ dx D 1: (4.78)

Since R.x/ � 0, the condition (4.78) means that the integral
R 1
0
F.x/R.x/ dx is a

weighted average of F.x/, with non-negative weights. It follows from (4.76) that

max
0�x�1 F.x/ �

Z 1

0

F.x/R.x/ dx D M

2
: (4.79)

The inequality .1 C "/r > 2=" clearly holds with r D 2"�1 log.2"�1/. Thus by
(4.74) and (4.75), we can choose

M � N

r
D N

2"�1 log.2"�1/
: (4.80)

Sidon’s theorem then follows from (4.79) and (4.80). ut
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4.4.2 The Rectangle Property and Theorem 12

Let us return now to Theorem 3 and (4.72). We restate Theorem 3 in a slightly
different form. Recall the notation in (4.56). We have

HN.
p
2I 
/ D f.x; y/ 2 R2 W �
 � x2 � 2y2 � 
; 1 � x C y

p
2 � 2

p
2N g;

(4.81)

that is,HN .
p
2I 
/ is a long, narrow, tilted hyperbolic needle of slope 1=

p
2. Its area

is .
=
p
2/ logN CO.1/; see (4.57). Theorem 3 states, roughly speaking, that in the

special case 
 D 1
2
, there are two translated copies of the same tilted hyperbolic

needle HN.
p
2I 
 D 1=2/ such that one is substantially richer in lattice points

than the other. The discrepancy is proportional to the area, and we have extra large
deviation. More precisely, there is a positive absolute constant c10 > 0 such that
for infinitely many integers Ni , where Ni ! 1, there are translated copies x.i/1 C
HNi .

p
2I 
/ and x.i/2 C HNi .

p
2I 
/ of the tilted hyperbolic needle HNi .

p
2I 
 D

1=2/ such that

jZ2 \ .x.i/1 CHNi .
p
2I 
 D 1=2//j � jZ2 \ .x.i/2 CHNi .

p
2I 
 D 1=2//j

> c10 logNi: (4.82)

In view of the periodicity of the lattice points, we can clearly assume that the pairs
of vectors x.i/1 and x.i/2 are all in the unit square Œ0; 1/2, with i ! 1.

The extra large deviation result (4.82), which is equivalent to Theorem 3, can
be generalized in several stages. The first generalization is (4.72), or at least an
equivalent form as follows.

Proposition 10. Let 
 > 0 be an arbitrary but fixed real number, and let N � 2 be
an integer. Then there exists a positive constant ı0 D ı0.
/ > 0, independent of N ,
such that for the tilted hyperbolic needleHN .

p
2I 
/ of area .
=

p
2/ logN CO.1/,

there exist translated copies x1 CHN.
p
2I 
/ and x2 CHN .

p
2I 
/ such that

jZ2 \ .x1 CHN.
p
2I 
//j > 
p

2
logN C ı0 logN

and

jZ2 \ .x2 CHN .
p
2I 
//j < 
p

2
logN � ı0 logN:

Note that Proposition 10 immediately leads to the existence of a single diver-
gence point ˇ� D ˇ�.
/ 2 Œ0; 1/ in (4.72). To exhibit continuum many divergence
points ˇ� D ˇ�.
/ 2 Œ0; 1/, we simply have to combine Proposition 10 with the
routine Cantor set argument in the proof of Theorem 3.
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For the second stage of generalization, we replace the set Z2 of lattice points in
the plane with an arbitrary subset A  Z2 of positive density. Here is an illustration
of such a set A . We say that a lattice point n D .n1; n2/ 2 Z2 is coprime7 if the
coordinates n1 and n2 are relatively prime. Let Z2coprime denote the set of coprime
lattice points in the plane. It is well known from number theory that Z2coprime is a
subset of Z2 with positive density 6=�2.

Now let A be an arbitrary subset of Z2 of positive density ı D ı.A / > 0. There
is a natural generalization of Proposition 10 where we replace Z2 with A . The price
that we have to pay is that, due to the lack of periodicity of a general subset A , the
translations are not necessarily in the unit square anymore.

Proposition 11. Let A  Z2 be an arbitrary subset of positive density ı D
ı.A / > 0. Let 
 > 0 be an arbitrary but fixed real number, and let N � 2 be
an integer. Assume further that M=N is sufficiently large, depending only on 
 and
ı. Then there exists a positive constant ı0 D ı0.
; ı/ > 0, independent ofN andM ,
such that for the tilted hyperbolic needleHN .

p
2I 
/ of area .
=

p
2/ logN CO.1/,

there exist translated copies x1 C HN .
p
2I 
/  Œ0;M �2 and x2 C HN.

p
2I 
/ 

Œ0;M �2 such that

jA \ .x1 CHN .
p
2I 
//j > ı
p

2
logN C ı0 logN

and

jA \ .x2 CHN .
p
2I 
//j < ı
p

2
logN � ı0 logN:

It turns out that the only relevant property of a lattice point set A  Z2 that we
really use in the proof of Proposition 11 is the rectangle property in Lemma 4, that
every tilted rectangle of slope 1=

p
2 and area 1

5
contains at most one lattice point.

Of course, the concrete value 1
5

of the constant is secondary.
The third stage of generalization goes far beyond the family of lattice point sets

A  Z2. The only requirement is that the point set satisfies the rectangle property.

Theorem 12. Let P be a finite set of points in the square Œ0;M �2 with density ı, so
that the number of elements of P is jPj D ıM2. Assume further that P satisfies
the following rectangle property, that there is a positive constant c1 D c1.P/ > 0

such that every tilted rectangle of slope 1=
p
2 and area c1 contains at most one

element of the set P . Let

7We also say that such a point is visible, explained by the geometric fact that the line segment with
n and the origin as endpoints does not contain another lattice point. If n D .n1; n2/ 2 Z2 were not
coprime, then the point .n1=d; n2=d/ 2 Z2, where d � 2 is the greatest common divisor of n1 and
n2, would lie on this line segment.
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ı0 D ı0.c1; 
; ı/ D 10�12ı�; (4.83)

where

� D min

�



20
;
p
c1
;

10�7c1
2

;
10�7c21
2


�
: (4.84)

Furthermore, assume that both N andM=N are sufficiently large and satisfy

N � 210.
C
�1/ and M >
1011.
 C 
�1/.N C 2
/

c1ı�
: (4.85)

Then for the tilted hyperbolic needle HN.
p
2I 
/ of area .
=

p
2/ logN C O.1/,

there exist translated copies x1 C HN .
p
2I 
/  Œ0;M �2 and x2 C HN.

p
2I 
/ 

Œ0;M �2 such that

jP \ .x1 CHN.
p
2I 
//j > ı
p

2
logN C ı0 logN

and

jP \ .x2 CHN.
p
2I 
//j < ı
p

2
logN � ı0 logN:

Note that Propositions 10 and 11 are special cases of Theorem 12, with P D Z2

and P D A respectively.
Unfortunately, the proof of Theorem 12 is rather difficult and long, and the very

complicated details cover the next four sections. But the main idea is quite simple.
It is basically a sophisticated application of the Riesz product.

4.5 Proof of Theorem 12 (I): Proving Extra Large Deviations
via Riesz Product

Since the proof is long and complicated, a convenient notation here makes a
big difference. It is much simpler for us to work with hyperbolic regions in
the usual horizontal-vertical position instead of the tilted position. It means that,
instead of working with the set Z2 of lattice points in the plane and the family of
tilted hyperbolic needles of a fixed quadratic irrational slope, as in the setting of
Theorem 12, we rotate back. In other words, we rotate Z2 by a quadratic irrational
slope, and consider the family of hyperbolic needles in the usual horizontal-vertical
position.

Let 
 > 0 be an arbitrary real number, and letN � 2 be a large integer. Consider
the hyperbolic region
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Fig. 4.2 A hyperbolic needle in usual horizontal-vertical position

H
.N / D f.x; y/ 2 R2 W �
 � xy � 
; 1 � x � N gI (4.86)

see Fig. 4.2. Again we refer to H
.N / as a hyperbolic needle.
Notice that H
.N / is basically the horizontal-vertical version of the tilted

hyperbolic needle HN.
p
2I 
/; see (4.56) or (4.81). To emphasize the difference

between the tilted and the horizontal-vertical versions, we have made a major
change in the notation, and switched the location of the parameters 
 and N .

The area of H
.N / equals the integral

area.H
.N // D 2

Z N

1




x
dx D 2
 logN:

Let rot˛Z2 denote the rotated copy of Z2 by the angle � , where tan � D ˛ is the
slope and using the origin as the fixed point of the rotation. If ˛ ¤ 0 is a quadratic
irrational, then the continued fractions for ˛ is finally periodic. This is a well known
number-theoretic fact; for example, if ˛ D 1=

p
2, then

1p
2

D 1

1C
1

2C
1

2C
1

2C : : : D Œ1; 2; 2; 2; : : :� D Œ1; 2�:

Periodicity implies that the continued fraction digits, formally known as the partial
quotients, form a bounded sequence. It is well known that boundedness yields

kkk˛k � c11 D c11.˛/ > 0 for all integers k � 1; (4.87)

where c11 D c11.˛/ > 0 is some positive constant depending only on ˛, and kzk
denotes the distance of a real number z to the nearest integer. If ˛ D 1=

p
2, then

(4.87) follows from the factorization x2 � 2y2 D .x � yp
2/.xC y

p
2/. If x and y

are integers, then
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1 � jx2 � 2y2j D j.x � yp
2/.x C y

p
2/j D jx˛ � yjp2jx C y

p
2j;

and we choose x D k and y to be the nearest integer to k˛. This explains why in
the special case ˛ D 1=

p
2 that the choice c11 D 1

4
in (4.87) works.

Inequality (4.87) has an important geometric interpretation, namely that there
is another constant c12 D c12.˛/ > 0, depending only on ˛, such that for every
axes-parallel rectangle R,

jrot˛Z2 \ Rj � 1 whenever area.R/ D c12.˛/: (4.88)

If ˛ D 1=
p
2, then c12 D 1

5
is a good choice in (4.88), in view of Lemma 4.

The following statement is just a slight generalization of Theorem 12.

Proposition 13. Let P be a finite set of points in the square Œ0;M �2 with density ı,
so that the number of elements of P is jPj D ıM2. Assume further that P satisfies
the following rectangle property, that there is a positive constant c1 D c1.P/ > 0

such that every axes-parallel rectangle of area c1 contains at most one element of
the set P . Let ı0 D ı0.c1; 
; ı/ be defined by (4.83) and (4.84), and assume that
both N and M=N are sufficiently large and satisfy (4.85). Then for the hyperbolic
needleH
.N / given by (4.86), there exist translated copies x1 CH
.N /  Œ0;M �2

and x2 CH
.N /  Œ0;M �2 such that

jP \ .x1 CH
.N //j > 2ı
 logN C ı0 logN (4.89)

and

jP \ .x2 CH
.N //j < 2ı
 logN � ı0 logN: (4.90)

Remarks. (i) The term 2ı
 logN in (4.89) and (4.90) represents the expectation,
since the set P has density ı and the hyperbolic needle H
.N / has area
2
 logN . The extra terms ˙ı0 logN show that the deviation from the expec-
tation is proportional to the expectation, justifying the terminology extra large
deviation.

(ii) The constant factors such as 10�12 and 1011 are certainly very far from best
possible. Since the proof is complicated, our primary goal is to present the basic
ideas in the simplest form, and we do not care too much about optimizing these
constant factors.

We begin our long proof of Proposition 13.
Consider the point-counting function

f .x/ D jP \ .x CH
.N //j: (4.91)

If x 2 Œ0;M �N� 
 Œ
;M � 
�, then clearly

x CH
.N /  Œ0;M �2: (4.92)
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This explains why we choose the rectangle Œ0;M � N� 
 Œ
;M � 
� to be our
underlying domain in the proof.

Let

�.x/ D f .x/� ı � area.H
 .N // D f .x/ � 2ı
 logN (4.93)

denote the discrepancy function;�.x/ deserves its name if (4.92) holds.
In order to show that �.x/ > ı0 logN > 0 holds for some x D x1, we apply

the test function method initiated by Roth [26]. The basic idea of this method is to
construct a positive test function T .x/ > 0 such that

1

.M �N/.M � 2
/

Z M�N

0

Z M�





�.x/T .x/ dx > c13 logN > 0; (4.94)

and

1

.M �N/.M � 2
/
Z M�N

0

Z M�





T .x/ dx < c14: (4.95)

Combining (4.94) and (4.95) with the general trivial inequality

Z
�.x/T .x/ dx � max

x
�.x/

Z
T .x/ dx; (4.96)

which holds for any positive function T .x/ > 0, we conclude that

max
x
�.x/ > c15 logN

with some positive constant c15 > 0.
Similarly, to show that �.x/ < �ı0 logN < 0 for some x D x2, we construct a

positive test function T �.x/ > 0 such that

1

.M �N/.M � 2
/

Z M�N

0

Z M�





�.x/T �.x/ dx < �c16 logN < 0; (4.97)

and again

1

.M �N/.M � 2
/
Z M�N

0

Z M�





T �.x/ dx < c17: (4.98)

Clearly (4.97) and (4.98) lead to the inequality

min
x
�.x/ < �c18 logN < 0

with some positive constant c18 > 0.
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Let us return to (4.94) and (4.95). We shall express the test function T .x/ in
terms of modified Rademacher functions, sometimes called Haar wavelet, and this
is another idea that we borrow from Roth’s pioneering paper [26]. The benefit of
working with modified Rademacher functions is that we have orthogonality and,
what is more, we have super-orthogonality; see the key property below.

Note that Roth simply took the sum of certain modified Rademacher functions,
and applied the Cauchy–Schwarz inequality instead of (4.96). For his argument,
orthogonality was sufficient. It was Halász’s innovation8 to express T .x/ as a Riesz
product of modified Rademacher functions; see Halász [19]. The main point is that
the Riesz product takes advantage of the super-orthogonality. Here we develop an
adaptation of the Roth–Halász method for hyperbolic regions.

Following the Roth–Halász approach, we shall express the test function T .x/ as
a Riesz product of modified Rademacher functions, in the form

T .x/ D
Y
j2J

.1C �Rj .x//; (4.99)

where 0 < � < 1 is an appropriate constant to be specified later, J is some
appropriate index-set and Rj .x/, j 2 J , are certain modified Rademacher
functions to be defined below. We assume that the test function T .x/ is zero outside
the rectangle Œ0;M �N� 
 Œ
;M � 
�.

Suppose that 10�2 > �1 > 0 and 10�2 > �2 > 0 are small positive real numbers,
to be specified later, such that

M �N

�1
D M � 2


�2
D 2m; (4.100)

where m � 1 is an integer. Let j be an arbitrary integer in the interval 0 � j � n

where 2n � N , that is, n D log2 N CO.1/ in binary logarithm. We decompose the
rectangle Œ0;M �N� 
 Œ
;M � 
� into 2m 
 2m D 4m disjoint translated copies of
the small rectangle

Œ0; 2j �1� 
 Œ0; 2�j �2�; (4.101)

and call these congruent copies of the small rectangle (4.101) j -cells. For each of
the 4m j -cells, we independently choose one of the three patterns C�, �C and 0;
see Fig. 4.3.

As Fig. 4.3 shows, the pattern C� actually means a two-dimensional pattern
as follows. We divide the j -cell into four congruent subrectangles, and define
a step-function on the j -cell, with value C1 on the upper-right and lower-left
subrectangles, and value �1 on the upper-left and lower-right subrectangles.

8Halász used this method, among many other things, to give an elegant new proof of Schmidt’s
well-known discrepancy theorem; see [27].
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��

��

Fig. 4.3 The patternsC�,
�C and 0

Similarly, the pattern �C means the step-function with value �1 on the upper-
right and lower-left subrectangles, and value C1 on the upper-left and lower-right
subrectangles.

Finally, the pattern 0 means that the step-function is zero on the whole j -cell.
In the sequel, we shall simply refer to these two-dimensional patterns as C�,

�C and 0, representing the bottom rows in Fig. 4.3.
By making an independent choice of C�, �C and 0 for each j -cell, we obtain a

particular modified Rademacher function Rj .x/ of order j , defined over the whole
rectangle Œ0;M � N� 
 Œ
;M � 
�. We define Rj .x/ to be 0 outside the rectangle
Œ0;M �N� 
 Œ
;M � 
�.

Since for each of the 4m j -cells there are 3 options, namely C�, �C and 0, the
total number of modified Rademacher functions Rj .x/ of order j is 34

m
. Let R.j /

denote the family of all 34
m

modified Rademacher functions of order j . Note that the
notation Rj .x/ is somewhat ambiguous in the sense that it represents any element
of this huge family R.j /.

Super-Orthogonality: Key Property of the Modified Rademacher Functions.
If k � 1 and 0 � j1 < : : : < jk � n, then in every elementary cell of size
2j1�1 
 2�jk�2, the product Rj1.x/ : : : Rjk .x/ of k modified Rademacher functions
satisfies one of the three familiar patterns in Fig. 4.3.

Note that an elementary cell of size 2j1�1 
 2�jk�2 arises as a non-empty
intersection of a j1-cell and a jk-cell, where j1 < jk . The proof of the above key
property is almost trivial. It is based on the fact that for any k � 2, the intersection
of any k cells of different orders j1 < : : : < jk is either empty or equal to the
intersection of the j1-cell and the jk-cell, i.e. the intersection of the first and the
last. We emphasize that in each of the 3 patterns the integral of the corresponding
step-function is zero.

Since every modified Rademacher function Rj .x/ has values ˙1 or 0, and since
0 < � < 1, it is clear that the Riesz product (4.99) defines a positive test function
T .x/. The index-set J , a subset of f0; 1; 2; : : : ; ng, will be specified later. Note
in advance that J is a large subset of f0; 1; 2; : : : ; ng, in the sense that jJ j �
c19.nC 1/.

Next we check the second requirement (4.95) of the test function. Multiplying
out the Riesz product (4.99), we have

T .x/ D
Y
j2J

.1C �Rj .x//
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D 1C �
X
j2J

Rj .x/C �2
X
j1<j2

ji2J

Rj1.x/Rj2.x/

C�3
X

j1<j2<j3

ji2J

Rj1.x/Rj2.x/Rj3.x/C : : : ; (4.102)

in the form 1 plus the linear part plus the quadratic part plus the cubic part and so
on. Substituting (4.102) into the left hand side of (4.95), we have

1

.M �N/.M � 2
/

Z M�N

0

Z M�





T .x/ dx

D 1C
X
k�1

�k

.M �N/.M � 2
/
X

j1<:::<jk
ji2J

Z M�N

0

Z M�





Rj1.x/ : : : Rjk .x/ dx

D 1: (4.103)

The vanishing integrals in the last step occurs as a consequence of the super-
orthogonality of the modified Rademacher functions. For each of 3 patterns that
the integrand takes, the integral is zero. Clearly (4.103) gives (4.95) with c14 D 1.

Finally, we turn to requirement (4.94). The verification of this is by far the most
difficult part of the proof. This is where we make the critical decision on how we
choose an appropriate modified Rademacher functionRj .x/ from amongst the huge
family R.j / of size 34

m
. We choose the best Rj .x/ 2 R.j / in order to synchronize

the trivial errors. The synchronization argument is at the very heart of the proof.
Note that if we did not synchronize the trivial errors, then they might cancel out,
and we would then not be able to guarantee extra large deviation.

The Trivial Errors and Synchronization. By (4.91) and (4.93), the discrepancy
function equals

�.x/ D jP \ .x CH
.N //j � ı � area.H
 .N //;

and so we can write

Z M�N

0

Z M�





�.x/T .x/ dx

D
Z M�N

0

Z M�





0
@ X
Pi2P\.xCH
.N//

1 � ı � area.H
.N //

1
AT .x/ dx
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D
Z M�N

0

Z M�





0
@ X
Pi2P\.xCH
.N//

1

1
AT .x/ dx

�.M �N/.M � 2
/ı � area.H
 .N //; (4.104)

where in the last step we have used (4.103), and where P1; P2; P3; : : : denote the
elements of the given point set P .

Changing the order of summation and integration, we obtain

Z M�N

0

Z M�





0
@ X
Pi2P\.xCH
.N//

1

1
AT .x/ dx D

X
Pi2P

Z
Pi�H
 .N/

T .x/ dx; (4.105)

where

Pi �H
.N / D fPi � w W w 2 H
.N /g

denotes a reflected and translated copy of the hyperbolic needleH
.N /. Combining
(4.104) and (4.105), we have

1

.M �N/.M � 2
/
Z M�N

0

Z M�





�.x/T .x/ dx

D
X
Pi2P

1

.M �N/.M � 2
/

Z
Pi�H
 .N/

T .x/ dx � ı � area.H
 .N //: (4.106)

To evaluate (4.106), we return to the Riesz product (4.102). Note that the term 1 in
fact denotes the characteristic functionB of the rectangleB D Œ0;M�N�
Œ
;M�

�, since by definition the modified Rademacher functions are all zero outside B .

We begin with the contribution of 1 D B in (4.102), and note simply that

Z
Pi�H
 .N/

B.x/ dx D
Z
B\.Pi�H
 .N//

dx D area.B \ .Pi �H
.N ///: (4.107)

Geometric Ideas. Next we study the contribution of the linear part of (4.102) in
(4.106). Synchronization means that we want to make the sum

X
Pi2P

Z
Pi�H
 .N/

Rj .x/ dx (4.108)

large and positive for every j 2 J , where the index-set J  f0; 1; 2; : : : ; ng
will be specified later. We decompose the underlying rectangle B D Œ0;M � N� 

Œ
;M � 
� into j -cells. Let C be an arbitrary j -cell; it has size �1�2. Consider a
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Fig. 4.4 Intersection of a j -cell with a hyperbolic arc Pi �H
.N /

single term in (4.108), and restrict it to the j -cell C . The geometric meaning of the
integral

Z
C\.Pi�H
 .N//

Rj .x/ dx (4.109)

plays a crucial role in the argument below; see Fig. 4.4.
Since the j -cell is very small, the hyperbola arcPi�H
.N / can be approximated

by its tangent line locally. This explains the tilted straight line segment in Fig. 4.4.
The arrows indicate the inside of the hyperbolic needle, i.e. the arc in the picture is
the upper arc of the needle.

The value of integral (4.109) depends heavily on which of the 3 patterns happens
to show up in the restriction of Rj .x/ to the j -cell C . The patterns C� and �C
give two integrals whose sum is 0, whereas the pattern 0 clearly gives an integral
with value 0.

How do we choose the right pattern C�, �C or 0 in an arbitrary j -cell C ? Well,
for a fixed point the choice is trivial. For every fixed point Pi 2 P , exactly one of
the two patterns C� and �C will make the integral (4.109) positive, unless both
integrals are equal to 0. The problem is that we are dealing with a large sum

X
Pi2P

Z
C\.Pi�H
 .N//

Rj .x/ dx (4.110)

instead of just a single term (4.109), and we have to make (4.110) positive. The
difficulty is that different points may prefer different patterns; say, forPi1 the pattern
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C� may make the integral (4.109) positive, whereas for another pointPi2 the pattern
�C may make the integral (4.109) positive.

To overcome this difficulty, we will apply the Single Dominant Term Rule, which
means the following. If the sum (4.110) is dominated by a single term (4.109), then
by an appropriate choice between the patterns C� and �C, we can always make
this dominant term positive. We then show that the contribution from the remaining
terms to (4.110) is relatively negligible. If there is no dominant term in (4.110), then
we choose the pattern 0.

Of course, we have to define precisely what domination means. The success of
the Single Dominant Term Rule is based on the fact that single term domination is
quite typical: it happens very often among the 4m j -cells.

What is single term domination in (4.110)? To explain this, we have to talk about
slopes. The slope of the diagonal of a j -cell is

4�j �2=�1 � 4�j ;

since �1 and �2 are almost equal.9 Since the hyperbola is a smooth curve, the
intersection of a translated and reflected hyperbolic needle Pi � H
.N / with the
j -cell C is almost like the intersection of C with a half-plane, or the intersection of
C with two nearly parallel half-planes. Since half-planes have well-defined constant
slopes, as an intuitive oversimplification, we shall use the terms half-plane and slope
for the intersections C \ .Pi �H
.N //. Single term domination occurs if

• there is precisely one half-plane C \ .Pi �H
.N // with slope close to 4�j that
intersects C ; and

• this intersection is a large triangle in only one of the four subrectangles of C ,
namely the lower right subrectangle, where the pattern is constant.

Here the intersection requirement large triangle from the lower right subrectangle
guarantees that the integral (4.109) is far from zero, and the integral (4.109) of this
dominant term is called the trivial error.

An Important Consequence of the Rectangle Property. As indicated above, single
term domination means that there is exactly one half-plane C \ .Pi �H
.N // with
slope close to 4�j . It is important to point out that we cannot have two half-planes
with slopes very close to 4�j such that both are upper arcs. As shown Fig. 4.5, if
C \ .Pi1 �H
.N // and C \ .Pi2 �H
.N // are both upper arcs with slopes very
close to 4�j , then the two points Pi1 and Pi2 have to be in the same axes-parallel
rectangle of area c1, namely, in an axes-parallel rectangle where the slope of the

9We do not distinguish between positive and negative slopes. Note that the reflected hyperbolic
needle �H
.N / has two long arcs: the upper arc, which is increasing, and the lower arc, which is
decreasing; here the lower arc is below the upper arc. When we say that Pi � H
.N / intersects
C , then it always means that at least one of the two long arcs of Pi � H
.N / intersects C . For
example, in the trivial error discussed at the end of this paragraph, the intersection comes from the
upper arc.
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Fig. 4.5 Forbidden configuration

diagonal is close to 4�j . But two points in the same axes-parallel rectangle of area
c1 is impossible: it contradicts the hypothesis of Proposition 13.

What can happen, however, is that we have two half-planes with slopes very close
to 4�j such that one is an upper arc and the other one is a lower arc. For example,
it can happen that C \ .Pi1 � H
.N // is an upper arc and C \ .Pi2 � H
.N // is
a lower arc with both slopes10 close to 4�j . To overcome this difficulty, we switch
to a 2 
 2 configuration of j -cells. More precisely, instead of working with a single
j -cell C , we switch to a 2 
 2 configuration of four neighboring j -cells C1, C2,
C3 and C4, where C1 is the upper left, C2 is the upper right, C3 is the lower left
and C4 is the lower right member of the 2 
 2 configuration. The simple geometric
idea is the following. Assume that the upper arc of Pi1 �H
.N / intersects both C2
and C3 satisfying the requirement large triangle from the lower right subrectangle,
where the pattern is constant. Then obviously the lower arc of Pi2 �H
.N / cannot
intersect both of C2 and C3, since the slopes are close to 4�j . Therefore, either C2
or C3 will be a j -cell with single term domination. That is, we can always save at
least one of the four neighboring j -cells C1, C2, C3 and C4. See Fig. 4.6, where C3
has single term domination.

10Again, we do not distinguish between positive and negative slopes.
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Fig. 4.6 A 2� 2 configuration of j -cells

Choosing a Short Vertical Translation. Next we explain how one can satisfy the
intersection requirement large triangle from the lower right subrectangle, where the
pattern is constant. This is very important, since this requirement guarantees that the
dominant integral (4.109) is far from zero. First we pick an arbitrary point Pi 2 P .
Then of course the hyperbolic needle Pi �H
.N / has a long arc such that the slope
is close to 4�j ; long in fact means length of roughly 2j . Therefore, for each point
Pi 2 P , there is a j -cell C such that the intersection C \ .Pi � H
.N // has
slope close to 4�j . Unfortunately, nothing guarantees that Pi � H
.N / intersects
only one of the four subrectangles, where the pattern is constant. The solution is
very simple. We apply a short vertical translation of the point set P , but of course
the modified Rademacher functions and the test function T .x/ remain fixed in the
rectangle B D Œ0;M � N� 
 Œ
;M � 
�. Here a short vertical translation means
that the length of the vertical translation runs from 0 to 1. For a j -cell, a translation
of length from 0 to 2�j �2 already suffices: as the point Pi moves up vertically, the
intersection C \ .Pi �H
.N // changes, and has good positions wherePi �H
.N /

intersects only the lower right subrectangle, where the pattern is constant, and at
the same time, this intersection is a large triangle. Since the slope is close to 4�j ,
a positive constant percentage of the translations is good. If we apply translations
from 0 to 1, then it will work for all j .

It follows from a standard averaging argument that there is11 a vertical translation
0 < t0 < 1 which is good for many pairs .Pi ; j / at the same time, where Pi 2 P
is a given point and j 2 f0; 1; 2; : : : ; ng is an order of the modified Rademacher
function. Here many means a positive constant percentage of all pairs.

11In fact, the majority will do.
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Of course, a vertical translation has a bad side effect. It causes some points to
leave the underlying square Œ0;M �2. However, luckily for us, it suffices to use short
translations of length at most 1, so that we lose relatively few points, and only those
that are close to the boundary. Note that the rectangle property in the hypothesis of
Proposition 13 guarantees that there are at mostO.M/ points close to the boundary,
which clearly is negligible compared to the number ıM2 of points in P .

Summarizing the Vague Geometric Intuition. A typical vertical translation of length
0 < t0 < 1 has the property that for a positive constant percentage of the
pairs .j;C /, where j 2 f0; 1; 2; : : : ; ng and C is a j -cell, we have single term
domination, so that12

X
Pi2P

Z
C\.Pi�H
 .N//

Rj .x/ dx � 1

2

Z
C\.Pi0�H
 .N//

Rj .x/ dx � c20 > 0; (4.111)

where Pi0 is the dominating point, i.e. the intersection C \ .Pi0 � H
.N // has
slope close to 4�j , and this intersection is a large triangle from the lower right
subrectangle ofC , where the pattern is constant. We shall explain the missing details
of (4.111) later, and give an explicit value for c20.

The Single Term Domination Rule and (4.111) give

X
j2J

X
Pi2P

1

.M �N/.M � 2
/

Z
Pi�H
 .N/

Rj .x/ dx

� c21jJ j � c22.nC 1/ > 0: (4.112)

The geometric intuition requires that j 2 J satisfies an inequality like

max

�
1;
1




�
� 2j � min

�
N;
N




�
: (4.113)

To guarantee (4.113), we choose J to be the interval of integers j 2
f0; 1; 2; : : : ; ng satisfying

log2

�
max

�
1;
1




��
� j � log2 N � log2.maxf1; 
g/: (4.114)

We emphasize that this was just an intuitive proof of (4.112). We shall return to
(4.111) and (4.112) later, and show how we can make the whole argument perfectly
precise and explicit.

We shall complete the proof of Proposition 13 in the next three sections. Note
that (4.112) is the most difficult part.

12Here we skip a lot of technical details!
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4.6 Proof of Theorem 12 (II): More on the Riesz Product

Applying Super-Orthogonality. We next turn to the contribution of the quadratic,
cubic and higher order terms of the Riesz product (4.102) to (4.106). Let k � 2,
and let 0 � j1 < : : : < jk � n. Suppose that C � is the non-empty intersection
of k cells of orders j1 < : : : < jk . Then C � is an elementary cell of size 2j1�1 

2�jk�2 D 2j1�jk �1�2. Super-orthogonality yields that the product Rj1.x/ : : : Rjk .x/
of k modified Rademacher functions of the given orders, restricted to C �, equals
one of the 3 patterns C�, �C or 0.

Assume that the translated and reflected hyperbolic needlePi �H
.N / intersects
C �, and let slope D slope.C �\.Pi�H
.N /// denote the slope13 of the intersection
C �\ .Pi �H
.N //. Simple geometric consideration shows that, roughly speaking,
the integral

1

area.C �/

Z
C�\.Pi�H
 .N//

Rj1.x/ : : : Rjk .x/ dx

is negligible unless the slope of the intersection C � \ .Pi � H
.N // is close to
2�.j1Cjk/, the slope of the diagonal of C �. More precisely, we have

1

area.C �/

ˇ̌
ˇ̌
ˇ
Z
C�\.Pi�H
 .N//

Rj1.x/ : : : Rjk .x/ dx

ˇ̌
ˇ̌
ˇ

� min

�
1

slope � 2j1Cjk ; slope � 2j1Cjk
�
: (4.115)

Note that (4.115) is a straightforward corollary of the geometry of the 3 possible
patterns of Rj1.x/ : : : Rjk .x/ in C �.

The hyperbolic needle H
.N / is bounded by the long curves y D 
=x and its
reflection y D �
=x, with 1 � x � N . The slope is the derivative .�
=x/0 D

x�2. The number of elementary cells C � of size 2j1�jk �1�2 intersecting a fixed
hyperbolic needle Pi �H
.N / is estimated from above by the simple expression

2

�
2N

2j1�1
C 2


2�jk �2

�
: (4.116)

Here the factor 2 comes from the two long boundary hyperbolic curves, the first term
comes from the pointed end of the hyperbolic needle, and the second term comes
from the wide part of the hyperbolic needle. A more detailed explanation of (4.116)
goes as follows.

13We do not distinguish between positive and negative slopes.
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Let us start with the pointed end of the hyperbolic needleH
.N /.

Case A. As x runs through the interval N � x � p

2.j1Cjk/=2, the slope of the

intersection C � \ .Pi �H
.N // is 
x�2, which is less than 2�.j1Cjk/, the slope of
the diagonal of C �. It follows that in this range, Pi �H
.N / intersects fewer than

2 � 2N
2j1�1

elementary cells C � of size 2j1�jk �1�2, with total area not exceeding 4�2N2�jk .

Case B. As x runs through the interval
p

2.j1Cjk/=2 � x � 1, the slope of the

intersection C � \ .Pi �H
.N // is greater than 2�.j1Cjk/, the slope of the diagonal
of C �. It follows that in this range, Pi �H
.N / intersects fewer than

2 � 2


2�jk �2

elementary cells C � of size 2j1�jk �1�2, with total area not exceeding 4�1
2j1 .

In Case A, we view the hyperbola xy D 
 as y D 
=x. In Case B, we switch
the role of the coordinate axes and view the same hyperbola as x D 
=y. Thus by
(4.115) and (4.116), we have

ˇ̌
ˇ̌
ˇ
Z
Pi�H
 .N/

Rj1.x/ : : : Rjk .x/ dx

ˇ̌
ˇ̌
ˇ

� 4�2N2
�jk � 2

n

Z N

p

2.j1Cjk /=2


2j1Cjk
x2

dx C 4�1
2
j1 � 2




Z 


p

2�.j1Cjk /=2


2�.j1Cjk/
y2

dy

D 8�22
�jk

 
p

2.j1Cjk/=2 � 
2j1Cjk

N

!
C 8�12

j1
�p


2�.j1Cjk/=2 � 
2�.j1Cjk/
	

� 8
p

.�1 C �2/2

.j1�jk/=2: (4.117)

Recall that the contribution 1 D B in (4.102), whereB D Œ0;M �N�
 Œ
;M �

�. Combining (4.102), (4.106) and (4.107), we have

1

.M �N/.M � 2
/
Z M�N

0

Z M�





�.x/T .x/ dx

D
X
Pi2P

area.B \ .Pi �H
.N ///

.M �N/.M � 2
/ � ı � area.H
 .N //
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C�
X
j2J

X
Pi2P

1

.M �N/.M � 2
/

Z
Pi�H
 .N/

Rj .x/ dx

C
X
k�2

�k
X

j1<:::<jk
ji2J

X
Pi2P

1

.M �N/.M�2
/
Z
Pi�H
 .N/

Rj1.x/ : : : Rjk .x/ dx:

(4.118)

Using (4.117), it is easy to estimate the last term in (4.118). We have

X
k�2

�k
X

j1<:::<jk
ji2J

X
Pi2P

1

.M �N/.M � 2
/

ˇ̌̌
ˇ̌
Z
Pi�H
 .N/

Rj1.x/ : : : Rjk .x/ dx

ˇ̌̌
ˇ̌

�
X
k�2

�k
X

0�j1<:::<jk�n

X
Pi2P

8
p

.�1 C �2/2

.j1�jk/=2

.M �N/.M � 2
/ : (4.119)

For convenience, let us write q D jk � j1. We estimate the sum

X
k�2

�k
n�kC1X
j1D0

n�j1X
qDk�1

X
j1<j2<:::<jk�1<j1Cq

2�q=2: (4.120)

In the innermost sum in (4.120), the indices j2; : : : ; jk�1 can be chosen from among
the q � 1 numbers lying between j1 and j1 C q in

�
q�1
k�2
�

ways. To simplify (4.120),
we can let the indices j1 and q run up to n. Then we change the order of summation.
Thus we have

X
k�2

�k
n�kC1X
j1D0

n�j1X
qDk�1

X
j1<j2<:::<jk�1<j1Cq

2�q=2

�
X
k�2

�k
nX

j1D0

nX
qDk�1

 
q � 1

k � 2

!
2�q=2 D

nX
j1D0

nX
qD1

2�q=2
qC1X
kD2

�k

 
q � 1
k � 2

!
:

(4.121)

Note that the innermost sum

qC1X
kD2

�k

 
q � 1

k � 2

!
D �2

qC1X
kD2

�k�2
 
q � 1

k � 2

!
D �2.1C �/q�1:

It follows that if 0 < � <
p
2 � 1, then
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nX
j1D0

nX
qD1

2�q=2
qC1X
kD2

�k

 
q � 1

k � 2

!
D

nX
j1D0

nX
qD1

2�q=2�2.1C �/q�1

D .nC 1/�2p
2

nX
qD1

�
1C �p
2

�q�1
� .nC 1/�2p

2

1X
qD1

�
1C �p
2

�q�1

D .nC 1/�2p
2

�
1 � 1C �p

2

��1
D .nC 1/�2p

2 � 1 � �
: (4.122)

Combining (4.119)–(4.122), we obtain

Lemma 14. If 0 < � <
p
2 � 1, then

X
k�2

�k
X

j1<:::<jk
ji2J

X
Pi2P

1

.M �N/.M � 2
/

ˇ̌̌
ˇ̌
Z
Pi�H
 .N/

Rj1.x/ : : : Rjk .x/ dx

ˇ̌̌
ˇ̌

� jPj
.M �N/.M � 2
/ � 8p
.�1 C �2/ � .nC 1/�2p

2 � 1 � � : (4.123)

We return to (4.118). The contribution from the first term on the right hand side
is o.1/, so that it is negligible. To see this, we recall that jPj D ıM2, and also that
Pi � H
.N /  B D Œ0;M � N� 
 Œ
;M � 
� for all but O.M/ points Pi 2 P .
Thus

X
Pi2P

area.B \ .Pi �H
.N ///

.M �N/.M � 2
/ � ı � area.H
 .N //

D ıM2 CO.M/

.M �N/.M � 2
/
� area.H
.N // � ı � area.H
.N //

D O

�
N logN

M

�
D o.1/: (4.124)

For the second term on the right hand side of (4.118), we have the estimate (4.112).
Thus combining (4.112), (4.118), (4.123) and (4.124), we obtain

1

.M �N/.M � 2
/

Z M�N

0

Z M�





�.x/T .x/ dx

� c23�.nC 1/� c24
.nC 1/�2p
2 � 1 � � � o.1/;
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where the constants, the first one yet unspecified, are positive and 0 < � <
p
2� 1.

By choosing a sufficiently small � in the range 0 < � <
p
2 � 1, we clearly have

1

.M �N/.M � 2
/

Z M�N

0

Z M�





�.x/T .x/ dx

� c25�.nC 1/ > c26 logN > 0;

proving (4.94), and thus proving Proposition 13 in the positive direction; see (4.89).
It remains to clarify the missing details in (4.111) and (4.112); see also the paragraph
Summarizing the Vague Geometric Intuition at the end of Sect. 4.5.

Single Term Domination: Clarifying the Technical Details. The geometric ideas
introduced in Sect. 4.5 lead to the following conclusion. At least half of the short
vertical translations P C .0; t0/, where 0 < t0 < 1, of the given point set P have
the property that for at least 1 % of the pairs .j;C /, where j 2 f0; 1; 2; : : : ; ng and
C is a j -cell of the underlying rectangleB D Œ0;M�N�
Œ
;M �
�, there is single
term domination. This property includes, among other requirements to be specified
later, that there is a dominating point Pi0 D Pi0.j;C / 2 P such that

• C \ .Pi0 �H
.N // has slope between 5
6
4�j and 7

6
4�j ;

• Pi0 � H
.N / intersects only the lower right subrectangle of C , and the
intersection is a large triangle, meaning that the area is at least 1

32
of the area

of C , that is, the area is at least �1�2=32.

Then, by choosing the pattern C� in the j -cell C , we have

Z
C\.Pi0�H
 .N//

Rj .x/ dx � �1�2

32
: (4.125)

To justify the notion single term domination, we shall show that for a typical pair
.j;C /, the contribution of the remaining points Pi 2 P , with i ¤ i0, in the j -cell
C is negligible, in the sense that

ˇ̌
ˇ̌
ˇ̌̌
ˇ
X
Pi2P
i¤i0

Z
C\.Pi�H
 .N//

Rj .x/ dx

ˇ̌
ˇ̌
ˇ̌̌
ˇ

� �1�2

40
: (4.126)

To prove (4.126), let Pi ¤ Pi0 be another point in P such that Pi � H
.N /

intersectsC , i.e. the upper or lower arc of the boundary of the hyperbolic needlePi�
H
.N / intersects the j -cell C . We are going to distinguish four cases, depending
on the type of the intersection of Pi � H
.N / with C , corresponding to upper or
lower arc, and close to horizontal or close to vertical, relative to the diagonals of C .

Case 15. The upper arc of Pi �H
.N / intersects C , and the slope is less than the
slope of the dominant needle Pi0 �H
.N /; see Fig. 4.7.
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Fig. 4.7 Upper arc of Pi �H
.N / intersects C , with slope less than slope of Pi0 �H
.N /

Let Pi0 D .ai0 ; bi0/ and Pi D .ai ; bi / denote the coordinates of the two points in
question. By the hypothesis of Case 1, we have ai > ai0 . Write

h D hi D ai � ai0 > 0 and v D vi D bi � bi0 ;

where of course h denotes horizontal and v denotes vertical. The rectangle property
guarantees that hjvj � c1 > 0.

Let .A1; A2/ denote the coordinates of the lower left vertex of the j -cell C .
The intersection of the line x D A1 with the upper arcs of Pi0 � H
.N / and Pi �
H
.N / give two points, and the hypothesis of Case 1 implies that these intersection
points are close to each other. More precisely, with x D 1C ai0 � A1, where ai0 �
A1 > 0 and the additional term 1 comes from the fact that the hyperbolic needle
H
.N / begins at x D 1, we have the upper bound

ˇ̌̌
ˇ
�
bi0 C 


x

	
�
�
bi C 


x C h

�ˇ̌̌
ˇ < 2 � 2�j �2: (4.127)

Since bi � bi0 D v, we can rewrite (4.127) in the form

ˇ̌̌
ˇ
�



x
� 


x C h

�
� v

ˇ̌̌
ˇ D

ˇ̌̌
ˇ 
h

x.x C h/
� v

ˇ̌̌
ˇ < 2�jC1�2: (4.128)
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On the other hand, we know that the slope of the upper arc of C \ .Pi0 �H
.N //

satisfies the inequality

5

6
4�j � 


x2
� 7

6
4�j : (4.129)

We claim that if �1, and so also �2, is a small constant, then the upper arc of
Pi0 � H
.N / intersects a large number of j -cells different from C such that the
slope is still almost equal to 4�j . Indeed, the horizontal size of C is 2j �1 and,
assuming that (4.129) holds, the inequality

5

6
4�j � 


.x C `2j �1/2
� 7

6
4�j (4.130)

has constant times 1=�1 consecutive integer solutions in `. If �1 > 0 is small, then
of course 1=�1 is large, justifying our claim.

Returning to (4.128) and (4.129), and then substituting x by x C `2j �1, we have
the respective inequalities

ˇ̌̌
ˇ 
h

.x C `2j �1/.x C `2j �1 C h/
� v

ˇ̌̌
ˇ < 2�jC1�2 (4.131)

and (4.130). If (4.129) holds, then there are at least
p

=10�1 consecutive integer

solutions ` of (4.130).
The basic idea is the following. If ` runs through these integer solutions of (4.130)

while 
 , x, h and v remain fixed, then the function


h

.x C `2j �1/.x C `2j �1 C h/
; (4.132)

as a function of `, has substantially different values, and we expect only very few
of them to be very close to a fixed v in the quantitative sense of (4.131). Of course,
here we assume that �2 is small.

Next we work out the details of this intuition. We begin by noting that (4.130)
implies

r
6


5
2j � x C `2j �1 �

r
6


7
2j : (4.133)

Using this in (4.132), we have the good approximation


h

.x C `2j �1/.x C `2j �1 C h/
� 
hp


2j .
p

2j C h/

D h

2j .2j C h=
p

/
:

(4.134)
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We now distinguish two cases. First assume that 0 < h � p
c12

j�1, where c1 > 0

is the positive constant in the rectangle property. Then the rectangle property yields

jvj � c1

h
� c1p

c12j�1
D 2

p
c12
�j (4.135)

and

h

2j .2j C h=
p

/
<

h

2j 2j
�

p
c1

2
2�j : (4.136)

The assumption

�2 <

p
c1

2
; (4.137)

together with (4.134)–(4.136), implies that (4.131) has no solution.
We can assume, therefore, that the lower bound

h >
p
c12

j�1 (4.138)

holds. Now we go back to the basic idea. We claim that if we switch ` to `C 1 in
the function (4.132), then its value changes by at least as much as

�12
�j�2

1Cp

=c1

: (4.139)

Indeed, by (4.133), we have


h

.x C `2j�1/.x C `2j�1 C h/
� 1p


2j C 2j �1
� 
hp


2j C h
: (4.140)

We also have the routine estimate

1p

2j

� 1p

2j C 2j �1

D 1p

2j

�
1 � 1

1C �1=
p



�

D 1p

2j

 
�1p



�
�
�1p



�2
C
�
�1p



�3
� : : :

!
� �1


2j
: (4.141)

Furthermore, by (4.138), we have


hp

2j C h

>



2
p

=c1 C 1

: (4.142)

Then the error estimate (4.139) follows on combining (4.140)–(4.142).
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Let us return to (4.132) and (4.139), and apply them in (4.131). We deduce that
among the constant times 1=�1 consecutive integer values of ` satisfying (4.130),
there are only constant times .1Cp


=c1/ that will satisfy (4.131). More explicitly,
it is safe to say that

at most 10

�
1C

r



c1

�
values of ` will satisfy both (4.130) and (4.131): (4.143)

The next step is

A Combination of the Rectangle Property and the Pigeonhole Principle. We recall
(4.138), that h >

p
c12

j�1. Consider the power-of-two type decomposition

2r�1
p
c12

j < h � 2r
p
c12

j ; r D 0; 1; 2; : : : : (4.144)

We claim that for a fixed point Pi0 D .ai0 ; bi0/ 2 P and for a fixed integer r � 0,
there are at most

10

r



c1
2r (4.145)

other points Pi D .ai ; bi / 2 P , with Pi ¤ Pi0 , such that h D hi D ai � ai0 > 0

and v D vi D bi � bi0 satisfy (4.131), thus implicitly (4.130) also, and (4.144).
To establish the bound (4.145), first note that if h D hi satisfies (4.144), then by

(4.134) and (4.144), we have


h

.x C `2j �1/.x C `2j �1 C h/
� h

2j .2j C h=
p

/

� 2r
p
c12

j

2j .2j C 2r
p
c12j =

p

/

D 2�j

1=
p

 C 2�r=pc1 ;

so that a solution of (4.131) gives the approximation

v D vi � 2�j
�

1

1=
p

 C 2�r=pc1 ˙ 2�2

�
: (4.146)

Assuming

�2 <
1

8.1=
p

 C 1=

p
c1/
; (4.147)

then (4.146) yields the good approximation

v D vi � 2�j

1=
p

 C 2�r=pc1 : (4.148)
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Suppose on the contrary that there are more than (4.145) other points Pi D
.ai ; bi / 2 P , with Pi ¤ Pi0 , such that h D hi D ai �ai0 > 0 and v D vi D bi �bi0
satisfy (4.131), thus implicitly (4.130) also, and (4.144). Then by the Pigeonhole
Principle and (4.148), there must exist two points Pi1 ; Pi2 2 P , with i1 ¤ i2, such
that

vi1 � 2�j

1=
p

 C 2�r=pc1 � vi2 and jhi1 � hi2 j � 2r

p
c12

j

10
p

=c12r

D c12
j

10
p


:

Since the product

2�j

1=
p

 C 2�r=pc1 � c12

j

p



D c1

1C 2�r
p

=c1

< c1;

we conclude that there exists an axes-parallel rectangle of area less than c1 and
which contains at least two points of P , namely Pi1 and Pi2 . This contradicts the
rectangle property, and establishes the bound (4.145).

If h D hi falls into the interval (4.144), then

slope.C \ .Pi �H
.N /// D 


.x C h/2
� 


h2
� 


c14r
� 4�j ; (4.149)

where 4�j almost equals the slope of the diagonals of the j -cell C . By (4.149), we
have

1

area.C /

ˇ̌̌
ˇ̌
Z
C\.Pi�H
 .N//

Rj .x/ dx

ˇ̌̌
ˇ̌ � 10


c14r
: (4.150)

Furthermore, (4.150) holds for all j -cells C satisfying

5

6
4�j � slope.C \ .Pi0 �H
.N /// � 7

6
4�j : (4.151)

Let us return now to (4.126). Combining (4.143)–(4.145) and (4.150), we have

X
Pi2P
i¤i0

Case 1

X
C

.4.151/

1

area.C /

ˇ̌
ˇ̌̌Z

C\.Pi�H
 .N//
Rj .x/ dx

ˇ̌
ˇ̌̌�X

r�0
10

�
1C
r



c1

�
10

r



c1
2r
10


c14r

D 1000

 �



c1

�3=2
C
�



c1

�2!X
r�0

2�r D 2000

 �



c1

�3=2
C
�



c1

�2!
: (4.152)
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Since there are at least 
=10�1 consecutive integer solutions ` of (4.130), assuming
that (4.129) holds, we have

X
C

.4.151/

1 �
p



10�1
: (4.153)

Recall that in order to prove (4.126), we distinguish four cases. Inequalities
(4.152) and (4.153) complete Case 1. The remaining three cases will be discussed
in the next section. Note that these cases are quite similar to Case 1, but there are
some annoying differences in the minor details. We shall complete the proof of
Proposition 13 in Sect. 4.8.

4.7 Proof of Theorem 12 (III): Completing the Case Study

Let us return to (4.125) and (4.126). Again we assume that there is a dominating
point Pi0 D Pi0 .j;C / 2 P such that

• C \ .Pi0 �H
.N // has slope between 5
6
4�j and 7

6
4�j ;

• Pi0 � H
.N / intersects only the lower right subrectangle of C , and the
intersection is a large triangle, meaning that the area is at least 1

32
of the area

of C , that is, the area is at least �1�2=32.

Again let Pi ¤ Pi0 be another point in P such that Pi�H
.N / intersects C , i.e. the
upper or lower arc of the boundary of the hyperbolic needle Pi �H
.N / intersects
the j -cell C . We now discuss the second case, which is quite similar to the first
case. Roughly speaking, we switch the roles of the horizontal and the vertical.

Case 16. The upper arc of Pi � H
.N / intersects C , and the slope is greater than
the slope of the dominant needle Pi0 �H
.N /; see Fig. 4.8.

Let Pi0 D .ai0 ; bi0/ and Pi D .ai ; bi / denote the coordinates of the two points in
question. By the hypothesis of Case 2, we have ai0 > ai . Write

h D hi D ai0 � ai > 0 and v D vi D bi0 � bi ;

where again h denotes horizontal and v denotes vertical. The rectangle property
guarantees that hjvj � c1 > 0.

Let .A1; A2/ denote the coordinates of the upper left vertex of the j -cell C . The
intersection of the line y D A2 with the upper arcs of Pi0 �H
.N / and Pi �H
.N /

give two points, and the hypothesis of Case 16 implies that these intersection points
are close to each other. More precisely, with y D A2�bi0 , we have the upper bound
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Fig. 4.8 Upper arc of Pi �H
.N / intersects C , with slope greater than slope of Pi0 �H
.N /

ˇ̌
ˇ̌�ai � 


y C v

�
�
�
ai0 � 


y

�ˇ̌ˇ̌ < 2 � 2j �1: (4.154)

Since ai0 � ai D h > 0, we can rewrite (4.154) in the form

ˇ̌
ˇ̌�

y

� 


y C v

�
� h

ˇ̌
ˇ̌ D

ˇ̌
ˇ̌ 
v

y.y C v/
� h

ˇ̌
ˇ̌ < 2jC1�1: (4.155)

We emphasize that y C v > 0, otherwise

0 � y C v D .A2 � bi0/C .bi0 � bi / D A2 � bi ;

so that bi � A2, which means that the whole upper arc of Pi �H
.N / is above the
j -cell C . But this is impossible, since in Case 2 we assume that the upper arc of
Pi �H
.N / intersects C .

Since we switch the roles of the horizontal and the vertical, we focus on the
reciprocal of the slope. We know that the reciprocal of the slope of the upper arc of
C \ .Pi0 �H
.N // satisfies the inequality

6

7
4j � 


y2
� 6

5
4j : (4.156)



280 J. Beck

We claim that if �2, and so also �1, is a small constant, then the upper arc of
Pi0 � H
.N / intersects a large number of j -cells different from C such that the
reciprocal of the slope is still almost equal to 4j . Indeed, the vertical size of C is
2�j �2 and, assuming that (4.156) holds, the inequality

6

7
4j � 


.y C `2�j �2/2
� 6

5
4j (4.157)

has constant times 1=�2 consecutive integer solutions in `. If �2 > 0 is small, then
of course 1=�2 is large, justifying our claim.

Returning to (4.155) and (4.156), and then substituting y by yC`2�j �2, we have
the respective inequalities

ˇ̌
ˇ̌ 
v

.y C `2�j �2/.y C `2�j �2 C v/
� h

ˇ̌
ˇ̌ < 2jC1�1 (4.158)

and (4.157). If (4.156) holds, then there are at least
p

=10�2 consecutive integer

solutions ` of (4.157).
The basic idea is the same as in Case 15. If ` runs through these integer solutions

of (4.157) while 
 , y, h and v remain fixed, then the function


v

.y C `2�j �2/.y C `2�j �2 C v/
; (4.159)

as a function of `, has substantially different values, and we expect only very few
of them to be very close to a fixed h in the quantitative sense of (4.158). Of course,
here we assume that �1 is small.

Next we work out the details of this intuition. We begin by noting that (4.157)
implies

r
6


7
2�j � y C `2�j �2 �

r
6


5
2�j : (4.160)

Using this in (4.159), we have the good approximation


v

.y C `2�j �2/.y C `2�j �2 C v/
� 
vp


2�j .p
2�j C v/
D v

2�j .2�j C v
p

/
:

(4.161)

We now distinguish three cases. First assume that v < 0. Since y C v > 0, we have
y�1 < .y C v/�1, and so by (4.158), we have

2jC1�1 > jhj D h: (4.162)
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Combining (4.162) with the rectangle property, we deduce that

jvj � c1

h
>

c1

2�1
2�j : (4.163)

Substituting (4.163) into (4.161), and assuming that

�1 <
c1

2
p


; (4.164)

we have

v

2�j .2�j C v=
p

/

D jvj
2�j .v=p
 � 2�j / D 2j

1=
p

 � 2�j =jvj >

p

2j : (4.165)

Combining (4.158), (4.161)–(4.163) and (4.165), we conclude that

2jC1�1 > h >
1

2

p

2j � 2jC1�1;

which is an obvious contradiction if

�1 <

p



8
: (4.166)

This proves that v > 0.
Next assume that 0 < v � p

c12
�j�1, where c1 > 0 is the positive constant in

the rectangle property. Then the rectangle property yields

h � c1

v
� c1p

c12�j�1
D 2

p
c12

j (4.167)

and

v

2�j .2�j C v=
p

/
<

v

2�j 2�j
�

p
c1

2
2j : (4.168)

The assumption

�1 <

p
c1

2
; (4.169)

together with (4.161), (4.167) and (4.168), implies that (4.158) has no solution.
We can assume, therefore, that the lower bound

v >
p
c12
�j�1 (4.170)
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holds. Now we go back to the basic idea. We claim that if we switch ` to `C 1 in
the function (4.159), then its value changes by at least as much as

�12
j�2

1Cp

=c1

: (4.171)

Indeed, by (4.160), we have


v

.y C `2�j �2/.y C `2�j �2 C v/
� 1p


2�j
� 
vp


2�j C v
: (4.172)

We also have the routine estimate

1p

2�j

� 1p

2�j C 2�j �2

D 1p

2�j

�
1 � 1

1C �2=
p



�

D 1p

2�j

 
�2p



�
�
�2p



�2
C
�
�2p



�3
� : : :

!
� �22

j



: (4.173)

Furthermore, by (4.170), we have


vp

2�j C v

>



2
p

=c1 C 1

: (4.174)

The error estimate (4.171) follows on combining (4.172)–(4.174).
Let us return to (4.159) and (4.171), and apply them in (4.158). We deduce that

among the constant times 1=�2 consecutive integer values of ` satisfying (4.157),
there are only constant times .1Cp


=c1/ that will satisfy (4.158). More explicitly,
it is safe to say that

at most 10

�
1C

r



c1

�
values of ` will satisfy both (4.157) and (4.158): (4.175)

As in Case 15, the next step is

A Combination of the Rectangle Property and the Pigeonhole Principle. We recall
(4.170), that v >

p
c12
�j�1. Consider the power-of-two type decomposition

2r�1
p
c12
�j < v � 2r

p
c12
�j ; r D 0; 1; 2; : : : : (4.176)

We claim that for a fixed point Pi0 D .ai0 ; bi0/ 2 P and for a fixed integer r � 0,
there are at most

10

r



c1
2r (4.177)
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other points Pi D .ai ; bi / 2 P , with Pi ¤ Pi0 , such that h D hi D ai0 � ai > 0

and v D vi D bi0 � bi > 0 satisfy (4.158), thus implicitly (4.157) also, and (4.176).
To establish the bound (4.177), first note that if v D vi satisfies (4.176), then by

(4.161) and (4.176), we have


v

.y C `2�j �2/.y C `2�j �2 C v/
� v

2�j .2�j C v=
p

/

� 2r
p
c12
�j

2�j .2�j C 2r
p
c12�j =

p



D 2j

1=
p

 C 2�r=pc1 ;

so that a solution of (4.158) gives the approximation

h D hi � 2j
�

1

1=
p

 C 2�r=pc1 ˙ 2�1

�
: (4.178)

Assuming

�1 <
1

8.1=
p

 C 1=

p
c1/
; (4.179)

then (4.178) yields the good approximation

h D hi � 2j

1=
p

 C 2�r=pc1 : (4.180)

Suppose on the contrary that there are more than (4.177) other points Pi D
.ai ; bi / 2 P , with Pi ¤ Pi0 , such that h D hi D ai0 � ai > 0 and v D vi D
bi0 � bi > 0 satisfy (4.158), thus implicitly (4.157) also, and (4.176). Then by the
Pigeonhole Principle and (4.180), there must exist two points Pi1 ; Pi2 2 P , with
i1 ¤ i2, such that

hi1 � 2j

1=
p

 C 2�r=pc1 � hi2 and jvi1 � vi2 j � 2r

p
c12
�j

10
p

=c12r

D c12
�j

10
p


:

Since the product

2j

1=
p

 C 2�r=pc1 � c12

�j
p



D c1

1C 2�r
p

=c1

< c1;

we conclude that there exists an axes-parallel rectangle of area less than c1 and
which contains at least two points of P , namely Pi1 and Pi2 . This contradicts the
rectangle property, and establishes the bound (4.177).
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If v D vi falls into the interval (4.176), then

1

slope.C \ .Pi �H
.N ///
D 


.y C v/2
� 


v2
� 


c14r
� 4j ; (4.181)

where 4j almost equals the reciprocal of the slope of the diagonals of the j -cell C .
By (4.181), we have

1

area.C /

ˇ̌̌
ˇ̌
Z
C\.Pi�H
 .N//

Rj .x/ dx

ˇ̌̌
ˇ̌ � 10


c14r
: (4.182)

Furthermore, (4.182) holds for all j -cells C satisfying (4.151). Let us return now to
(4.126). Combining (4.175)–(4.177) and (4.182), we have

X
Pi2P
i¤i0

Case 2

X
C

.4.151/

1

area.C /

ˇ̌
ˇ̌̌Z

C\.Pi�H
 .N//
Rj .x/ dx

ˇ̌
ˇ̌̌�X

r�0
10

�
1C
r



c1

�
10

r



c1
2r
10


c14r

D 1000

 �



c1

�3=2
C
�



c1

�2!X
r�0

2�r D 2000

 �



c1

�3=2
C
�



c1

�2!
; (4.183)

a perfect analog of (4.152). This completes Case 16.

Case 17. The lower arc of Pi �H
.N / intersects C , and the slope is less than the
slope of the dominant needle Pi0 �H
.N /; see Fig. 4.9.

Let Pi0 D .ai0 ; bi0/ and Pi D .ai ; bi / denote the coordinates of the two points in
question. By the hypothesis of Case 17, we have ai > ai0 . Write

h D hi D ai � ai0 > 0 and v D vi D bi � bi0 ;

where again h denotes horizontal and v denotes vertical. It is obvious from the
geometry of Case 17 that v > 0. The rectangle property guarantees that hv � c1 > 0.

Let .A1; A2/ denote the coordinates of the lower left vertex of the j -cell C . The
intersection of the line x D A1 with the upper arc of Pi0 � H
.N / and the lower
arc of Pi �H
.N / give two points, and the hypothesis of Case 3 implies that these
intersection points are close to each other. More precisely, similar to Case 1, with
x D 1C ai0 �A1, we have the upper bound

ˇ̌
ˇ̌�bi0 C 


x

	
�
�
bi � 


x C h

�ˇ̌ˇ̌ < 2 � 2�j �2: (4.184)
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Fig. 4.9 Lower arc of Pi �H
.N / intersects C , with slope less than slope of Pi0 �H
.N /

Since bi � bi0 D v, we can rewrite (4.184) in the form

ˇ̌
ˇ̌�

x

C 


x C h

�
� v

ˇ̌
ˇ̌ < 2�jC1�2: (4.185)

Note that (4.185) is an analog of (4.128) in Case 15, the only difference being that
a minus sign is replaced by plus sign. This means that we can basically repeat the
argument in Case 15. In fact, the plus sign helps and makes Case 17 simpler than
Case 15. On the other hand, we know that the slope of the upper arc of C \ .Pi0 �
H
.N // satisfies the inequality (4.129).

Again, if �1, and so also �2, is a small constant, then the upper arc ofPi0�H
.N /

intersects a large number of j -cells different from C such that the slope is still
almost equal to 4�j . Indeed, the horizontal size of C is 2j �1 and, assuming that
(4.129) holds, the inequality (4.130) has constant times 1=�1 consecutive integer
solutions in `.

Returning to (4.129) and (4.185), and then substituting x by x C `2j �1, we have
the respective inequalities (4.130) and

ˇ̌
ˇ̌ 


x C `2j �1
C 


x C `2j�1 C h
� v

ˇ̌
ˇ̌ < 2�jC1�2: (4.186)
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If (4.129) holds, then there are at least
p

=10�1 consecutive integer solutions ` of

(4.130).
The basic idea is the same as in Case 15. If ` runs through these integer solutions

of (4.130) while 
 , x, h and v remain fixed, then the function




x C `2j�1
C 


x C `2j �1 C h
; (4.187)

as a function of `, has substantially different values, and we expect only very few
of them to be very close to a fixed v in the quantitative sense of (4.186). Of course,
here we assume that �2 is small.

Next we work out the details of this intuition. We begin by noting that (4.130)
implies (4.133). Using this in (4.187), we have the good approximation




x C `2j �1
C 


x C `2j �1 C h
� 
p


2j
C 
p


2j C h
: (4.188)

We now distinguish two cases. First assume that 0 < h � c12
j�2=p
 , where

c1 > 0 is the positive constant in the rectangle property. Then the rectangle property
yields

jvj � c1

h
� c1p

c12j�1
D 2

p
c12
�j : (4.189)

On the other hand, assuming that

�2 <

p



2
; (4.190)

it then follows from (4.186) and (4.188) that

v � 2
p

2j

C 2�jC1�2 < 4
p

2�j : (4.191)

Since (4.189) and (4.191) contradict each other, we can therefore assume that

h >
c12

j�2
p


; (4.192)

which is an analog of (4.138) in Case 1. Now we go back to the basic idea. We claim
that if we switch ` to `C 1 in the function (4.187), then its value changes by at least
as much as

�12
�j�2; (4.193)
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an analog of (4.139). Indeed, (4.193) follows immediately from the routine estimate

1p

2j

� 1p

2j C 2j �1

D 1p

2j

�
1 � 1

1C �1=
p



�
� �1


2j
:

Let us return to (4.187) and (4.193), and apply them in (4.186). We deduce that

at most 10 values of ` will satisfy both (4.130) and (4.186): (4.194)

As in Cases 15–16, the next step is

A Combination of the Rectangle Property and the Pigeonhole Principle. We recall
(4.192), that h > c12j�2=

p

 . Consider the power-of-two type decomposition

2r�1
c12

j�1
p



< h � 2r
c12

j�1
p


; r D 0; 1; 2; : : : : (4.195)

We claim that for a fixed point Pi0 D .ai0 ; bi0/ 2 P and for a fixed integer r � 0,
there are at most

10 � 2r (4.196)

other points Pi D .ai ; bi / 2 P , with Pi ¤ Pi0 , such that h D hi D ai � ai0 > 0

and v D vi D bi � bi0 satisfy (4.186), thus implicitly (4.130) also, and (4.195).
To establish the bound (4.196), first note that if h D hi satisfies (4.195), then by

(4.188) and (4.195), we have




x C `2j �1
C 


x C `2j �1 C h
� 
p


2j
C 
p


2j C h
� p


2�j
�
1C 1

1C c12r�1=


�
;

so that a solution of (4.186) gives the approximation

v D vi � p

2�j

�
1C 1

1C c12r�1=


�
˙ 2�jC1�2: (4.197)

Assuming

�2 <

p



100
; (4.198)

then (4.197) yields the good approximation

v D vi � p

2�j

�
1C 1

1C c12r�1=


�
: (4.199)
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Suppose, contrary to the bound (4.196), that there are more than 10 � 2r other points
Pi D .ai ; bi / 2 P , with Pi ¤ Pi0 , such that h D hi D ai � ai0 > 0 and
v D vi D bi � bi0 satisfy (4.186), thus implicitly (4.130) also, and (4.195). Then
by the Pigeonhole Principle and (4.199), there must exist two points Pi1 ; Pi2 2 P ,
with i1 ¤ i2, such that

vi1 � p

2�j

�
1C 1

1C c12r�1=


�
� vi2 and jhi1 � hi2 j � 2rc12

j�1=p

10 � 2r D c12

j

20
p


:

Since the product

p

2�j

�
1C 1

1C c12r�1=


�
� c12

j

2
p


< c1;

we conclude that there exists an axes-parallel rectangle of area less than c1 and
which contains at least two points of P , namely Pi1 and Pi2 . This contradicts the
rectangle property, and establishes the bound (4.196).

If h D hi falls into the interval (4.195), then

slope.C \ .Pi �H
.N /// D 


.x C h/2
� 


h2
� .
=c1/

2

4r�2
� 4�j ; (4.200)

where 4�j almost equals the slope of the diagonals of the j -cell C . By (4.200), we
have

1

area.C /

ˇ̌̌
ˇ̌
Z
C\.Pi�H
 .N//

Rj .x/ dx

ˇ̌̌
ˇ̌ � 10.
=c1/

2

4r�2
: (4.201)

Furthermore, (4.201) holds for all j -cells C satisfying (4.151). Let us return now to
(4.126). Combining (4.194)–(4.196) and (4.201), we have

X
Pi2P
i¤i0

Case 3

X
C

.4.151/

1

area.C /

ˇ̌̌
ˇ̌
Z
C\.Pi�H
 .N//

Rj .x/ dx

ˇ̌̌
ˇ̌ �

X
r�0

10 � 10 � 2r � 10.
=c1/
2

4r�2

D 16000

�



c1

�2X
r�0

2�r D 32000

�



c1

�2
: (4.202)

This completes Case 17.

Case 18. The lower arc of Pi �H
.N / intersects C , and the slope is greater than
the slope of the dominant needle Pi0 �H
.N /; see Fig. 4.10.
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Fig. 4.10 Lower arc of Pi �H
.N / intersects C , with slope greater than slope of Pi0 �H
.N /

Let Pi0 D .ai0 ; bi0/ and Pi D .ai ; bi / denote the coordinates of the two points
in question. By the hypothesis of Case 4, we have ai0 > ai . We want positive real
numbers, and write

h D hi D ai0 � ai > 0 and v D vi D bi � bi0 > 0;

where again h denotes horizontal and v denotes vertical. The rectangle property
guarantees that hv � c1 > 0.

Let .A1; A2/ denote the coordinates of the lower left vertex of the j -cell C . We
have bi > A2 > bi0 and bi �A2 > A2�bi0 . The intersection of the line y D A2 with
the upper arc of Pi0 �H
.N / and the lower arc of Pi �H
.N / give two points, and
the hypothesis of Case 4 implies that these intersection points are relatively close
to each other in the following quantitative sense. Write y D A2 � bi0 > 0. Then
bi �A2 D .bi � bi0/� y D v � y > y, and we have the upper bound

ˇ̌
ˇ̌�ai � 


v � y
�

�
�
ai0 � 


y

�ˇ̌ˇ̌ < 2 � 2j �1: (4.203)

Since ai0 � ai D h > 0, we can rewrite (4.203) in the form

ˇ̌
ˇ̌�

y

� 


v � y

�
� h

ˇ̌
ˇ̌ < 2jC1�1: (4.204)
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Now we basically repeat the argument of Case 16. But, just like Case 17 is a simpler
version of Case 15, Case 18 is a simpler version of Case 16. Case 18 is similar to
Case 17 in the technical sense that the two critical functions

f3.y/ D 


y
C 


y C h
and f4.y/ D 


y
� 


v � y
(4.205)

are in synchrony, in the sense that each is a sum of two parts that increase or decrease
together as y varies.

As in Case 16, we switch the roles of the horizontal and the vertical, and focus
on the reciprocal of the slope. We know that the reciprocal of the slope of the upper
arc of C \ .Pi0 �H
.N // satisfies the inequality (4.156). We know also that if �2,
and so also �1, is a small constant, then the upper arc of Pi0 � H
.N / intersects a
large number of j -cells different from C such that the reciprocal of the slope is still
almost equal to 4j .

Returning to (4.156) and (4.204), and then substituting y by yC`2�j �2, we have
the respective inequalities (4.157) and

ˇ̌
ˇ̌ 


y C `2�j �2
� 


v � .y C `2�j �2/
� h

ˇ̌
ˇ̌ < 2jC1�1: (4.206)

If (4.156) holds, then there are at least
p

=10�2 consecutive integer solutions ` of

(4.157).
The basic idea is the same as in Case 16. If ` runs through these integer solutions

of (4.157) while 
 , x, h and v remain fixed, then the function




y C `2�j �2
� 


v � .y C `2�j �2/
; (4.207)

as a function of `, has substantially different values, and we expect only very few
of them to be very close to a fixed h in the quantitative sense of (4.157). Of course,
here we assume that �1 is small.

Next we work out the details of this intuition. We begin by noting that (4.157)
implies (4.160). Since the functions f3.y/ and f4.y/ given by (4.205) are in
synchrony, we can basically repeat the argument of (4.187), (4.193) and (4.194)
in Case 3, and conclude that if we switch ` to `C 1 in the function (4.207), then its
value changes by at least as much as

�22
j�2;

an analog of (4.171) and (4.193). Thus we deduce that

at most 10 values of ` will satisfy both (4.157) and (4.206): (4.208)
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As in Cases 15–17, the next step is

A Combination of the Rectangle Property and the Pigeonhole Principle. In this
case, since v � .y C `2�j �2/ > y C `2�j �2, we have

v > 2.y C `2�j �2/: (4.209)

In view of (4.160), we can assume that

v >

r
6


7
2�jC1:

Consider the power-of-two type decomposition

2r�1
r
6


7
2�jC2 < v � 2r

r
6


7
2�jC2; r D 0; 1; 2; : : : : (4.210)

We claim that for a fixed point Pi0 D .ai0 ; bi0/ 2 P and for a fixed integer r � 0,
there are at most

100
2r

c1
(4.211)

other points Pi D .ai ; bi / 2 P , with Pi ¤ Pi0 , such that h D hi D ai0 �
ai > 0 and v D vi D bi � bi0 > 0 satisfy (4.206), thus implicitly (4.157) also,
and (4.210).

To establish the bound (4.211), first note that if v D vi satisfies (4.210), then by
(4.160), (4.206) and (4.209), and assuming that

�1 <

p



4
; (4.212)

we have

h D hi <



y C `2�j �2
C 2jC1�1 � 


2�j
p
6
=7

C 2jC1�1 � 2
p

2j : (4.213)

Suppose, contrary to the bound (4.211), that there are more than 100
2r=c1 other
points Pi D .ai ; bi / 2 P , with Pi ¤ Pi0 , such that h D hi D ai0 � ai > 0 and
v D vi D bi �bi0 > 0 satisfy (4.206), thus implicitly (4.157) also, and (4.210). Then
by the Pigeonhole Principle and (4.213), there must exist two points Pi1 ; Pi2 2 P ,
with i1 ¤ i2, such that

maxfhi1 ; hi2g � 2
p

2j and jvi1 � vi2 j � 2r

p
6
=72�jC2

100
2r=c1
D c1

p
6=7

25
p


2�j :
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Since the product

p

2j � c1

p
6=7p



2�j D
r
6

7
c1 < c1;

we conclude that there exists an axes-parallel rectangle of area less than c1 and
which contains at least two points of P , namely Pi1 and Pi2 . This contradicts the
rectangle property, and establishes the bound (4.211).

If v D vi falls into the interval (4.210), then

1

slope.C \ .Pi �H
.N ///
D 


.y C v/2
� 


v2
� 1

4r
� 4j ; (4.214)

where 4j almost equals the reciprocal of the slope of the diagonals of the j -cell C .
By (4.214), we have

1

area.C /

ˇ̌
ˇ̌
ˇ
Z
C\.Pi�H
 .N//

Rj .x/ dx

ˇ̌
ˇ̌
ˇ � 10

4r
: (4.215)

Furthermore, (4.215) holds for all j -cells C satisfying (4.151). Let us return now to
(4.126). Combining (4.208), (4.210), (4.211) and (4.215) we have

X
Pi2P
i¤i0

Case 4

X
C

.4.151/

1

area.C /

ˇ̌
ˇ̌
ˇ
Z
C\.Pi�H
 .N//

Rj .x/ dx

ˇ̌
ˇ̌
ˇ �

X
r�0

10 � 100 

c1
2r � 10

4r

D 10000



c1

X
r�0

2�r D 20000



c1
: (4.216)

This completes Case 18.

4.8 Completing the Proof of Theorem 12

In this section, we shall finally complete the proof of Proposition 13. Let us return
to (4.125) and (4.126). We are now ready to clarify the technical details of the single
term domination.

Let Pi0 2 P and j 2 J be arbitrary.

Property 19. The slope 
=x2 of the hyperbolic needle Pi0 �H
.N / satisfies

5

6
4�j � 


x2
� 7

6
4�j : (4.217)
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t0

Fig. 4.11 Short vertical translations

Note that (4.217) holds if and only if

r
6


7
2j � x �

r
6


5
2j ;

and this is an interval of length greater than
p

2j =6. Since a j -cell C has horizontal

side �12j , there are more than

p

2j =6

�12j
D

p



6�1

j -cells C with the slope of the intersection C \ .Pi0 � H
.N // satisfying
Property 19.

It would be not too difficult to prove directly, by using some familiar arguments
from uniform distribution, that among these more than

p

=6�1 j -cells C , at least

1 % has the following additional property.

Property 20. The hyperbolic needle Pi0 � H
.N / intersects only the lower right
subrectangle of C , and the intersection is a large triangle, meaning that the area is
at least 1

32
the area of C , i.e. the area is at least �1�2=32.

It is technically simpler, however, to force Property 20 in an indirect way, by
using the trick of short vertical translations; see Fig. 4.11. This geometric trick was
already mentioned at the end of Sect. 4.5.

More precisely, for every real number t0 satisfying 0 < t0 < 1, consider all
j -cells C such that, with B D Œ0;M �N� 
 Œ
;M � 
�, we have

C \ .Pi0 C .0; t0/ �H
.N //  B (4.218)

and

5

6
4�j � slope.C \ .Pi0 C .0; t0/�H
.N /// � 7

6
4�j : (4.219)

Simple geometric consideration shows that for, say, at least 5% of the pairs .t0;C /,
where C satisfies (4.218) and (4.219), C \ .Pi0 C .0; t0/ � H
.N // also satisfies
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Property 20, i.e. Pi0 C .0; t0/ �H
.N / intersects only the lower right subrectangle
of C , and the intersection is a large triangle of area at least �1�2=32.

For the proof of the positive direction (4.89), we choose the pattern C� in every
j -cell C satisfying (4.218) and (4.219). Naturally, we choose the opposite pattern
�C for the negative direction (4.90). Then

Z
C\.Pi0C.0;t0/�H
 .N//

Rj .x/ dx � �1�2

32
: (4.220)

Finally, if the j -cell C does not satisfy both (4.218) and (4.219), then we choose
the pattern 0. Therefore, by (4.220) and summarizing Cases 1–4, we have

Z 1

0

0
@X
j2J

X
Pi02P

Z
Pi0C.0;t0/�H
.N/

Rj .x/ dx

1
Adt0

�
X
j2J

X
Pi02P
.4.222/

0
BB@ 1

20
�

p



6�1
� �1�2
32

�
X
Pi2P
i¤i0

X
C

.4.219/

Z 1

0

ˇ̌̌
ˇ̌
Z
C\.PiC.0;t0/�H
.N//

Rj .x/ dx

ˇ̌̌
ˇ̌dt0

1
CCA

�
X
j2J

X
Pi02P
.4.222/

 p

�2

3840
� �1�2

 
4000

 �



c1

�3=2
C
�



c1

�2!

C32000
�



c1

�2
C 20000




c1

!!
; (4.221)

where the summation over Pi0 2 P is under the restriction

Pi0 C .0; t0/ �H
.N /  B for all t0 satisfying 0 < t0 < 1; (4.222)

the summation over C is under the restriction (4.219), the summation over Pi 2 P
with i ¤ i0 encompass Cases 15–18, and finally the factor 1

20
comes from the

5% mentioned earlier. Furthermore, we have used in the last step the inequalities
(4.152), (4.183), (4.202) and (4.216) for every t0 satisfying 0 < t0 < 1.

In our discussion in Sects. 4.6 and 4.7, we have made some assumptions on �1
and �2. Corresponding to Cases 15–18, we have assumed respectively that
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�2 < min

�p
c1

2
;

1

8.1=
p

 C 1=

p
c1/

�
;

�1 < min

�
c1

2
p


;

p



8
;

p
c1

2
;

1

8.1=
p

 C 1=

p
c1/

�
;

�2 < min

�p



2
;

p



100

�
;

�1 <

p



4
I

see (4.137), (4.147), (4.164), (4.166), (4.169), (4.179), (4.190), (4.198) and (4.212).
Since

1

1=
p

 C 1=

p
c1

�
p

 C p

c1

2
;

we can guarantee all of the above requirements on �1 and �2 by imposing the single
inequality

maxf�1; �2g < min

�p



100
;

p
c1

8
;
c1

2
p



�
: (4.223)

Let us return to (4.221). We have

p

�2

3840
� �1�2

 
4000

 �



c1

�3=2
C
�



c1

�2!
C 32000

�



c1

�2
C 20000




c1

!

�
p

�2

7680
; (4.224)

assuming that (4.223) holds and �1 satisfies the additional inequality

1

�1
� 108p




 �



c1

�
C
�



c1

�2!
: (4.225)

Since �1 and �2 are almost equal, in view of (4.100), we can satisfy both (4.223)
and (4.225) by the choice

�1 � �2 D min

� p



200
;

p
c1

10
;
10�8c1
2
p


;
10�8c21
2
3=2

�
: (4.226)
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Substituting (4.226) in (4.224) and then returning to (4.221), we have

Z 1

0

0
@X
j2J

X
Pi02P

Z
Pi0C.0;t0/�H
.N/

Rj .x/ dx

1
Adt0 �

X
j2J

X
Pi02P
.4.222/

p

�2

7680
;

where i0 is now a dummy variable. Clearly there exists t0, satisfying 0 < t0 < 1,
such that

X
j2J

X
Pi2P

Z
PiC.0;t0/�H
.N/

Rj .x/ dx �
X
j2J

X
Pi2P
.4.228/

p

�2

7680
: (4.227)

Note that in (4.227), we have substituted the dummy variable i0 by i , together with
a corresponding summation restriction

Pi C .0; t0/ �H
.N /  B for all t0 satisfying 0 < t0 < 1: (4.228)

Next we return to (4.118), and replace the point set P by the translated point set
P C .0; t0/. Then Lemma 14 gives

1

.M �N/.M � 2
/

Z M�N

0

Z M�





�.x/T .x/ dx

D
X
Pi2P

area.B \ .Pi C .0; t0/�H
.N ///

.M �N/.M � 2
/
� ı � area.H
.N //

C�
X
j2J

X
Pi2P

1

.M �N/.M � 2
/

Z
PiC.0;t0/�H
 .N/

Rj .x/ dx C E1; (4.229)

where the error E1 satisfies

jE1j � jPj
.M �N/.M � 2
/

� 8p
.�1 C �2/ � .nC 1/�2p
2 � 1 � �

: (4.230)

Recall that P is a finite subset of the square Œ0;M �2 with cardinality jPj D
ıM2. Since 0 < t0 < 1, the rectangle property implies, via elementary calculations,
that the condition

Pi C .0; t0/�H
.N /  B D Œ0;M �N� 
 Œ
;M � 
� (4.231)

holds for all but at most

.2N C 4
 C 1/M

c1
(4.232)
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points Pi 2 P . Thus

X
Pi2P

area.B \ .Pi C .0; t0/ �H
.N ///

.M �N/.M � 2
/
� ı � area.H
.N //

D ıM2 C �c�11 .2N C 4
 C 1/M

.M �N/.M � 2
/
� area.H
 .N //� ı � area.H
 .N //

D
�

M2

.M �N/.M � 2
/ � 1

�
ı � area.H
.N //

C� c
�1
1 .2N C 4
 C 1/M

.M �N/.M � 2
/
� area.H
 .N //;

with some constant � satisfying �1 � � � 1. Since area.H
.N // D 2
 logN , it
then follows thatˇ̌̌

ˇ̌
ˇ
X
Pi2P

area.B \ .Pi C .0; t0/ �H
.N ///

.M �N/.M � 2
/
� ı � area.H
 .N //

ˇ̌̌
ˇ̌
ˇ

� 3N C 6
 C 1

.M �N/.M � 2
/
� 2
 logN: (4.233)

Combining (4.229), (4.230) and (4.233), we deduce that

1

.M �N/.M � 2
/

Z M�N

0

Z M�





�.x/T .x/ dx

D �
X
j2J

X
Pi2P

1

.M �N/.M � 2
/
Z
PiC.0;t0/�H
 .N/

Rj .x/ dxCE2; (4.234)

where the error E2 satisfies

jE2j � jPj
.M �N/.M � 2
/

� 8p
.�1 C �2/ � .nC 1/�2p
2 � 1 � �

C 3N C 6
 C 1

.M �N/.M � 2
/ � 2
 logN: (4.235)

Combining (4.227), (4.234) and (4.235), we then conclude that

1

.M �N/.M � 2
/
Z M�N

0

Z M�





�.x/T .x/ dx

� �
X
j2J

1

.M �N/.M � 2
/

X
Pi2P
.4.228/

p

�2

7680
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� jPj
.M �N/.M � 2
/ � 8p
.�1 C �2/ � .nC 1/�2p

2 � 1 � �

� 3N C 6
 C 1

.M �N/.M � 2
/ � 2
 logN: (4.236)

Recall that J is an interval of integers satisfying (4.114), so that

jJ j � .nC 1/� log2

�

 C 1




�
:

On the other hand, it follows from (4.231) and (4.232) that

X
Pi2P
.4.228/

1 � ıM2 � .2N C 4
 C 1/M

c1
:

Thus

X
j2J

1

.M �N/.M � 2
/
X
Pi2P
.4.228/

1

�
�
.nC 1/� log2

�

 C 1




���
ı � 2N C 4
 C 1

c1M

�
: (4.237)

Let us now return to (4.236). If � is small, then �2 is negligible compared to
�. Let � D 10�6, say. Substituting this and the estimate (4.237) into (4.236), and
assuming that N and M=N are both large, we deduce that

1

area.B/

Z
B

�.x/T .x/ dx

� �

�
.nC 1/� log2

�

 C 1




���
ı � 2N C 4
 C 1

c1M

� p

�2

104
:

More precisely, the assumptions on N and M are given by (4.84) and (4.85), and
the choice for n is made precise by

N

2
< 2n � N:

These choices, together with the definition (4.226) for �2, ensure that

1

area.B/

Z
B

�.x/T .x/ dx � ı0 logN; (4.238)
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where ı0 D ı0.c1; 
; ı/ > 0 is a positive constant independent of N and M , and
defined by (4.83) and (4.84).

It now follows from (4.238) that there exists a translated copy x1CH
.N / of the
hyperbolic needle H
.N / such that x1 CH
.N /  Œ0;M �2 and

jP \ .x1 CH
.N //j � 2ı
 logN C ı0 logN:

This establishes the inequality (4.89). The proof of the other inequality (4.90) is the
same, except that we replace the pattern C� by the opposite pattern �C.

Thus the long proof of Proposition 13 is complete. This also completes the proof
of Theorem 12.

4.9 Yet Another Generalization of Theorem 3

Let ˛ > 0, 0 � ˇ < 1 and 
 > 0 be arbitrary but fixed real numbers,
and let f .˛IˇI 
 IN/ denote the number of integral solutions of the diophantine
inequality14

kn˛ � ˇk < 


n
; 1 � n � N:

This inequality motivates the hyperbolic region

jy � ˇj < 


x
; 1 � x � N;

which has area 2
 logN .
Let us return to the special case ˛ D p

2. Combining Lemmas 1 and 2, we have

Z 1

0

f .
p
2IˇI 
 IN/ dˇ D 2
 logN CO.1/; (4.239)

and for an arbitrary subinterval Œa; b�with 0 � a < b � 1, we have the limit formula

lim
N!1

1
b�a

R b
a f .

p
2IˇI 
 IN/ dˇ

logN
D 2
: (4.240)

There is a straightforward generalization of (4.239) and (4.240) for arbitrary ˛ > 0,
and the proof is the same. We have

Z 1

0

f .˛IˇI 
 IN/ dˇ D 2
 logN CO.1/; (4.241)

14Note that the special case ˛ Dp2 was introduced in Sect. 4.1; see (4.28).
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and for an arbitrary subinterval Œa; b�with 0 � a < b � 1, we have the limit formula

lim
N!1

1
b�a

R b
a
f .˛IˇI 
 IN/ dˇ

logN
D 2
: (4.242)

The formulas (4.239)–(4.242) express the almost trivial geometric fact that the
average number of lattice points contained in all the translated copies of a given
region equals the area of the region; see Lemma 5. It is natural, therefore, to study
the limit

lim
N!1

f .˛IˇI 
 IN/
2
 logN

: (4.243)

The case of rational ˛ in (4.243) is trivial. Indeed, if N ! 1, then the function
f .˛IˇI 
 IN/ remains bounded for all but a finite number of values of ˇ D ˇ.˛/

in the unit interval. When f .˛IˇI 
 IN/ tends to infinity, it behaves like a linear
function c27N , which is much faster than the logarithmic function logN .

If ˛ is irrational, then we have the following non-trivial result, which can be
considered a far-reaching generalization of Theorem 3.

Theorem 21. Let ˛ > 0 be an arbitrary irrational, and let 
 > 0 be an arbitrary
real number. There are continuum many divergence points ˇ� D ˇ�.˛; 
/ 2 Œ0; 1/

such that

lim sup
n!1

f .˛Iˇ�I 
 In/
logn

> lim inf
n!1

f .˛Iˇ�I 
 In/
logn

:

To prove Theorem 21, we can clearly assume that 0 < ˛ < 1. We need the
continued fractions

˛ D 1

a1C
1

a2C
1

a3C : : : D Œa1; a2; a3; : : :�:

For irrational ˛, the digits a1; a2; a3; : : : form an infinite sequence, with ai � 1 for
all i � 1. For k � 2, the fractions

pk

qk
D Œa1; : : : ; ak�

are known as the convergents to ˛. It is well known that pk; qk are generated by the
recurrence relations

pk D akpk�1 C pk�2; qk D akqk�1 C qk�2; (4.244)

with the convention that p0 D 0, q0 D 1, p1 D 1 and q1 D a1.
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Another well-known fact about the convergents is the inequality

ˇ̌
ˇ̌˛ � pk�1

qk�1

ˇ̌
ˇ̌ � 1

qk�1qk
;

which clearly implies

kqk�1˛k < 1

akqk�1
: (4.245)

Write n D `qk�1. Then by (4.245), we have

kn˛k D k`qk�1˛k < `

akqk�1
D `2

ak`qk�1
D `2

akn
;

and so kn˛k < 
=n holds whenever `2=ak � 
 , i.e. whenever

1 � ` � p

ak: (4.246)

Now let

Nk D bp

akcqk�1; (4.247)

where bzc denotes the lower integral part of a real number z. It then follows from
(4.246) that the homogeneous diophantine inequality kn˛k < 
=n has at least

kX
iD1

bp

aic

integer solutions n satisfying 1 � n � Nk. Formally, we therefore have

f .˛Iˇ D 0I 
 INk/ �
kX
iD1

bp

aic: (4.248)

We distinguish two cases, and start with the much harder one.

Case 22. For all sufficiently large values of k, we have

kX
iD1

bp

aic � 100 � 2
 logNk: (4.249)
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We proceed in four steps.

Step 1. The crucial first step in the argument is to show that the condition (4.249)
implies the exponential upper bound

kY
iD1
.ai C 1/ � ec

0k (4.250)

for all sufficiently large values of k, where c0 D c0.
/ is a finite constant
independent of k.

To derive (4.250), we use the well-known principle that the exponential functions
grow faster than polynomials, in the form of an elementary inequality as follows.

Lemma 23. For any fixed positive c > 0, the inequality

.x C 1/c � .8c2e�2/ce
p
x

holds for every x � 1.

Proof. We start with the trivial observation that x C 1 � 2x for all x � 1, which
leads us to the function g.x/ D .2x/ce�

p
x , which we wish to maximize. It is

easy to compute the derivative of g.x/ and show that its value is maximized when
x D 4c2. The desired inequality follows from .xC 1/ce�

p
x � g.x/ � g.4c2/. ut

By repeated application of (4.244), we have

qk�1 D ak�1qk�2 C qk�3 � .ak�1 C 1/qk�2

� .ak�1 C 1/.ak�2 C 1/qk�3 � : : : �
k�1Y
iD1
.ai C 1/: (4.251)

Combining this with (4.247) and (4.249), we have

kX
iD1
.
p

ai � 1/ � 100 � 2


 
log

p

 C log

p
ak C log

k�1Y
iD1
.ai C 1/

!

� 200


 
log

p

 C log

kY
iD1
.ai C 1/

!
: (4.252)

Applying the exponential function, the inequality (4.252) becomes

kY
iD1

e
p

ai�1 � 
100


kY
iD1
.ai C 1/200
 ; (4.253)

and this inequality holds for all sufficiently large k, i.e. for all k � k0.
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Applying Lemma 23 with c D 400
p

 and x D ai for each i D 1; 2; : : : ; k C 1,

and then multiplying these inequalities together, we obtain

kY
iD1
.ai C 1/400

p

 � .800

p

/800

p

k

kY
iD1

e
p
ai :

Raising this to the
p

 -th power, we have

kY
iD1
.ai C 1/400
 � .800
/800
k

kY
iD1

e
p

ai : (4.254)

We next combine (4.253) and (4.254) to obtain

kY
iD1
.ai C 1/400
 � .800
/800
kek
100


kY
iD1
.ai C 1/200
 ;

which, on removing a common factor and then taking 200
 -th root, becomes

kY
iD1
.ai C 1/ � .800
/4kek=200


p

 D p


..800
/4e1=200
 /k: (4.255)

Since this holds for all k � k0, the inequality (4.250) follows.

Step 2. We shall next show that small digit ai implies a local rectangle property.
It follows from (4.255) that, for all sufficiently large k,

ai C 1 � .1000
/8e
1

100
 (4.256)

holds for at least k=2 values of i in 1 � i � k. In other words, at least half of the
continued fraction digits ai of ˛ are small, less than a constant depending only on

 , in the precise quantitative sense of (4.256).

Next we show that, for every small digit ai , the rectangle property must hold
locally, in some power-of-two range around qi . To prove this, we basically repeat
the proof of Lemma 4, and use some facts from the theory of continued fractions;
see Lemma 24 below. The details go as follows.

As in the proof of Lemma 4, we consider a rectangle of slope 1=˛ and which
contains two lattice points P D .k; `/ and Q D .m; n/; in fact, assume that P
and Q are two vertices of the rectangle. We denote the vector from P to Q by
v D .m � k; n � `/, and consider the two perpendicular unit vectors

e1 D
�

˛p
1C ˛2

;
1p
1C ˛2

�
and e2 D

�
1p
1C ˛2

;� ˛p
1C ˛2

�
:
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Then the two sides a and b of the rectangle can be expressed in terms of the inner
products e1 � v and e2 � v. We have

a D je1 � vj D jp˛ C qjp
1C ˛2

and b D je2 � vj D jp � q˛jp
1C ˛2

;

where p D m � k and q D n � `. Thus the area of the rectangle is equal to

area D ab D jp˛ C qjjp � q˛j
1C ˛2

: (4.257)

Without loss of generality we can assume that p � 0 and q � 0, and that p is the
nearest integer to q˛. Then jp�q˛j D kq˛k. Next we need the following fact from
the theory of continued fractions.

Lemma 24. If 1 � q < qi , then

kq˛k � kqi�1˛k > 1

.ai C 2/qi�1
:

We postpone the proof of Lemma 24.
Now assume that

qi�1
4

� q < qi : (4.258)

Applying Lemma 24 and (4.258), we have

jp � q˛j D kq˛k � kqi�1˛k > 1

.ai C 2/qi�1
� 1

4.ai C 2/q
:

Substituting this in (4.257) and assuming (4.258), we have

area D ab D .p˛ C q/jp � q˛j
1C ˛2

� qjp � q˛j
1C ˛2

� 1

4.ai C 2/.1C ˛2/
: (4.259)

Let us elaborate on the meaning of (4.259). It is about a rectangle of slope 1=˛
which contains two lattice points P D .k; `/ and Q D .m; n/; in fact, P and Q
are two vertices of the rectangle. We write the vector from P to Q as v D .p; q/

and, without loss of generality, we can assume that p � 0 and q � 0, and that p is
the nearest integer to q˛. If q is large, then

p
1C ˛2q is very close to the diameter

of this long and narrow rectangle. It means that q is basically a size parameter of
the rectangle. Assume that the restriction (4.258) holds. Then the inequality (4.259)
tells us that the area of this long and narrow rectangle is at least 1=4.ai C2/.1C˛2/,
that is, the area is not too small if ai is not too large.
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We can therefore rephrase (4.258) and (4.259) together in a nutshell as follows.
A small digit ai yields the rectangle property locally. This means that we have a
good chance to adapt the Riesz product technique.

For the convenience of the reader, we interrupt the argument, and include a proof
of Lemma 24 which is surprisingly tricky.

Proof of Lemma 24. Recall (4.244), that

pk D akpk�1 C pk�2; qk D akqk�1 C qk�2:

These recurrences hold for any ak , including arbitrary real values. Writing

˛ D Œa1; : : : ; ak�1; ˛k�;

with

˛k D ak C 1

akC1C
1

akC2C : : : D Œak I akC1; akC2; : : :�;

we obtain the useful formula

˛ D ˛kpk�1 C pk�2
˛kqk�1 C qk�2

;

and it follows that

qk�1˛ � pk�1 D qk�1pk�2 � pk�1qk�2
˛kqk�1 C qk�2

: (4.260)

It is not difficult to show that

qk�1pk�2 � pk�1qk�2 D �.qk�2pk�3 � pk�2qk�3/: (4.261)

Since p0 D 0, q0 D 1, p1 D 1 and q1 D a1, we have q1p0 � p1q0 D �1. It follows
by induction, using (4.261), that

qk�1pk�2 � pk�1qk�2 D .�1/k�1: (4.262)

Combining this with (4.260), we have

qk�1˛ � pk�1 D .�1/k�1
˛kqk�1 C qk�2

; (4.263)

which implies

kqk�1˛k D jqk�1˛ � pk�1j D 1

˛kqk�1 C qk�2
>

1

.ak C 2/qk�1
:
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It remains to prove that, if p and q are integers with 0 < q < qk , then

jq˛ � pj � jqk�1˛ � pk�1j: (4.264)

To prove this, we define integers u and v by the equations

p D upk�1 C vpk; q D uqk�1 C vqk: (4.265)

Note that (4.265) is solvable in integers u and v, since the determinant of the system
is ˙1, in view of (4.262). Since 0 < q < qk , we must have u ¤ 0. Moreover, if
v ¤ 0, then u and v must have opposite signs. Since qk�1˛ � pk�1 and qk˛ � pk
also have opposite signs, in view of (4.263), we conclude that

jq˛ � pj D ju.qk�1˛ � pk�1/C v.qk˛ � pk/j
D ju.qk�1˛ � pk�1/j C jv.qk˛ � pk/j
� ju.qk�1˛ � pk�1/j � jqk�1˛ � pk�1j;

proving (4.264). ut
Step 3. We next employ the Riesz product technique. Let us return to Theorem 12,
and the basically equivalent Proposition 13. A trivial novelty is that in this section,
the slope is 1=˛, whereas in Theorem 12 and Proposition 13, the slopes are respec-
tively 1=

p
2 and 0. The Riesz product (4.99) is defined by using some appropriate

modified Rademacher functions Rj .x/ 2 R.j / for j with 1 � 2j � N , i.e. for
log2 N CO.1/ values of j . In the hypothesis of Theorem 12 and Proposition 13, we
have the unrestricted rectangle property; here we have a restricted rectangle property
instead, meaning that the rectangle property holds only for O.logN/ values of the
power-of-two parameter j , where 0 � j � log2 N CO.1/. Indeed, by (4.250) and
(4.251), we have

logNk D log qk�1 CO.1/ � log
kY
iD1
.ai C 1/CO.1/ D O.logN/;

and by (4.256), the continued fraction digit ai of ˛ is small for at least k=2 values
of i in 1 � i � k, if k is sufficiently large. For these small values of the continued
fraction ai , the rectangle property holds in the power-of-two range around qi�1, i.e.
when 2j � qi�1; see (4.258) and (4.259). This means that we can easily save the
Riesz product technique developed earlier in Sects. 4.5–4.8. The minor price that
we pay is a constant factor loss, due to the fact that log2 N is replaced by c28 logN ,
where c28 D c28.
/ is a small positive constant depending only on 
 > 0. Thus we
obtain the following result.
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Lemma 25. Let I D Œa; b�, where 0 � a < b < 1, be an arbitrary subinterval
of the unit interval. Assume that (4.249) holds. Then there exists a constant ı0 D
ı0.
/ > 0, depending only on 
 > 0, such that the following hold:

(i) For all sufficiently large integers N , there is a subinterval I1 D Œa1; b1� of I ,
possibly depending on N and with a < a1 < b1 < b, such that for all ˇ1 2 I1,

f .˛Iˇ1I 
 IN/ > 2
 logN C ı0 logN:

(ii) For all sufficiently large integers N , there is a subinterval I2 D Œa2; b2� of I ,
possibly depending on N and with a < a2 < b2 < b, such that for all ˇ2 2 I2,

f .˛Iˇ2I 
 IN/ < 2
 logN � ı0 logN:

Step 4. The last step, the construction of a Cantor set, is routine. Combining the
method of nested intervals with Lemma 25, we can easily build an infinite binary
tree of nested intervals the same way as in the proof of Theorem 3. The divergence
points ˇ� arise as the intersection of infinitely many decreasing intervals, which
correspond to an infinite branch of the binary tree. Since a binary tree of countably
infinite height has continuum many infinite branches, we obtain continuum many
divergence points, proving Theorem 21 in Case 22.

Case 26. The inequality

kX
iD1

bp

aic > 100 � 2
 logNk (4.266)

holds for infinitely many integers k � 1, where Nk is defined by (4.247).

The estimate (4.241) tells us that 2
 logNk is the average value of f .˛IˇI 
 INk/
as ˇ runs through the unit interval. On the other hand, combining (4.248) and
(4.266), we deduce that

f .˛Iˇ D 0I 
 INk/ > 100 � 2
 logNk

for infinitely many integers k � 1. In other words, for infinitely many values
N D Nk , the homogeneous case ˇ D 0 gives at least 100 times more integer
solutions than the average value 2
 logNk . This represents an extreme bias; in
fact, an extreme surplus. The proof of Theorem 3 is based on a somewhat similar
extreme bias, a violation of the Naive Area Principle, in the sense that the Pell
inequality �1 < x2 � 2y2 < 1 has no integer solution except x D y D 0,
while the corresponding hyperbolic region has infinite area. The only difference
is that whereas in Theorem 3, we have an extreme shortage of solutions for the
homogeneous case ˇ D 0, we have here an extreme surplus. But this difference is
irrelevant for the method of nested intervals, as it works in both cases. This means
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that in Case 2, we can simply repeat the Cantor set construction in the proof of
Theorem 3. This completes the proof of Theorem 21.

Theorem 21 is a qualitative result. In contrast, we complete this section with a
quantitative result.

Proposition 27. Let ˛ > 0 and 
 > 0 be arbitrary real numbers. Then there is an
effectively computable positive constant ı0 D ı0.
/ > 0, depending only on 
 > 0,
such that for every sufficiently large integer N , there exist two real numbers ˇ1.N /
and ˇ2.N / in the unit interval, with 0 � ˇ1.N / < ˇ2.N / < 1, such that

jf .˛Iˇ1.N /I 
 IN/� f .˛Iˇ2.N /I 
 IN/j > ı0 logN:

We just outline the proof in a couple of sentences, since it is basically the same as
that of Theorem 21, without the Cantor set construction. Indeed, let q`�1 � N < q`.
Since q` D a`q`�1 C q`�2 � .a` C 1/q`�1, we have

1 � N

q`�1
� a` C 1:

Again we distinguish two cases.

Case 28. We have

`�1X
iD1

bp

aic C

$s

N

q`�1

%
� 100 � 2
 logN:

Then by repeating the argument of Case 1 in the proof of Theorem 21 above, we
obtain Proposition 27; see Lemma 25.

Case 29. We have

`�1X
iD1

bp

aic C

$s

N

q`�1

%
> 100 � 2
 logN:

Then

f .˛Iˇ D 0I 
 IN/ > 100 � 2
 logN;

and so we can choose ˇ1.N / D 0. Finally, for ˇ2.N /, we can choose any below
average point; in other words, we can choose ˇ2.N / to be any ˇ that satisfies the
inequality f .˛IˇI 
 IN/ � .2C o.1//
 logN ; see (4.241).
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4.10 General Point Sets: Theorem 30

What will happen if we drop the rectangle property in Theorem 12 or Proposi-
tion 13? Can we still exhibit extra large deviations for hyperbolic needles? This is
the subject of this last section.

Suppose that P is a finite point set of density ı > 0 in a large square Œ0;M �2,
so that jPj D ıM2. We shall make a very mild technical assumption, that P is
not clustered. More precisely, we introduce a new concept called the separation
constant and denoted by � D �.P/, and say that P is �-separated if the usual
Euclidean distance between any two points of P is at least � . For example, the set
of integer lattice points in the plane is clearly 1-separated, so that �.Z2/ D 1.

Our basic idea is the following. We show that if P is �-separated with some
not too small constant � > 0, then the rectangle property holds, at least in a
weak statistical sense, for the majority of the directions which we shall call the
good directions. For example, in Theorem 12, the slope 1=

p
2 is a concrete good

direction. This is how we will be able to save the Riesz product argument in the proof
of Theorem 12 or Proposition 13, and still prove extra large deviations, proportional
to the area, for hyperbolic needles, at least for the majority of the directions.

In the rest of the section, we work out the details of the vague intuition, and this
will give us Theorem 30. The obvious handicap of this majority approach is that for
an arbitrary point set P which is not clustered, we cannot predict whether a given
concrete direction is good or not.

Another, and purely technical, shortcoming is that in Theorem 30, we cannot
get rid of the assumption that P is not clustered. This technical difficulty is rather
counterintuitive, since at least at first sight, clusters actually seem to help us create
extra large deviations. However, some technical difficulties prevent us from adapting
the Riesz product technique for clustered point sets P . It remains an interesting
open problem to decide whether or not the separation constant � D �.P/ in
Theorem 30 plays any role.

In Theorem 30, we change15 the underlying set, and switch from the large square
Œ0;M �2 to the large disk

disk.0IM/ D fx 2 R2 W jxj � M g

of radiusM and centered at the origin.
Let P be a finite point set of density ı > 0 in the large disk disk.0IM/, so that

jPj D ı�M2; here we assume that the radius M is large. We also assume that P
is not clustered. More precisely, we assume that P is �-separated for some positive
constant � D �.P/ > 0. The goal is to count the number of elements of P in
rotated and translated copies of our usual hyperbolic needleH
.N /.

15The reason behind this change is rotation-invariance. Theorems 3 and 12 are about translated
copies, whereas Theorem 30 is about rotated and translated copies of the hyperbolic needle.
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Let 10�2 > � > 0 be a small positive real numbers, to be specified later. Let
j be an arbitrary integer in the interval 0 � j � n, where 2n � N , that is, n D
log2 N C O.1/ in binary logarithm. We decompose the large disk disk.0IM/ into
disjoint translated copies of the small rectangle

Œ0; 2j �� 
 Œ0; 2�j ��I (4.267)

in other words, we form a rectangle lattice starting from the origin. We shall focus
on the copies of (4.267) which are inside the large disk disk.0IM/, and ignore the
copies of (4.267) that intersect the boundary circle or are outside the disk. Note
that there are O.2j �M/ copies of (4.267) that intersect the boundary circle of the
large disk. If 2j � D o.M/, then there are .1 C o.1//�M2��2 copies of (4.267)
that are inside the large disk disk.0IM/. We call these translated copies of the small
rectangle (4.267) j -cells. More precisely, we call them j -cells of angle 0.

In general, let � be an arbitrary angle, with 0 � � < � . Let Rot� denote the
rotation of the plane by the angle � , assuming that the fixed point of the rotation
Rot� is the origin. We decompose the large disk disk.0IM/ into disjoint translates
of the rotated copy

Rot� .Œ0; 2j �� 
 Œ0; 2�j ��/ (4.268)

of the small rectangle (4.267). We shall focus on the translated copies of (4.268)
which are inside the large disk disk.0IM/. Again, if 2j � D o.M/, then there
are .1 C o.1//�M2��2 translated copies of (4.268) that are inside the large disk
disk.0IM/. We call these translated copies of the small rectangle (4.268) j -cells of
angle � .

We want to prove, in a quantitative form, that if P is not clustered, then for
a typical angle � 2 Œ0; �/, the overwhelming majority of the j -cells of angle �
that contain at least one point of P actually contain exactly one point of P . A
quantitative result like this, a statistical version of the rectangle property, will serve
as a substitute for the rectangle property, and it will suffice to save the Riesz product
technique developed in Sects. 4.5–4.8.

Statistical Version of the Rectangle Property: An Average Argument. Suppose that
Pi1 ; Pi2 2 P , where i1 ¤ i2, are two arbitrary points. We define the angle-set by

angle.Pi1 ; Pi2 I j / D f� 2 Œ0; �/ W there is a j -cell of angle � containing Pi1 and Pi2g:

The angle-set angle.Pi1 ; Pi2 I j / is clearly measurable. Let jangle.Pi1 ; Pi2 I j /j
denote the usual one-dimensional Lebesgue measure, i.e. length.

The basic idea is to estimate the double sum

X
Pi1 ;Pi22P
i1¤i2

jangle.Pi1 ; Pi2 I j /j:
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Simple geometric consideration shows that

jangle.Pi1 ; Pi2 I j /j < 2 � 2�j �
jPi1Pi2 j

;

where 2�j � is the length of the short side of a j -cell and jPi1Pi2 j denotes the usual
Euclidean distance between Pi1 and Pi2 , and so

X
Pi1 ;Pi22P
i1¤i2

jangle.Pi1 ; Pi2 I j /j < 2�j �
X
Pi12P

0
BBB@
X
Pi22P
i1¤i2

1

jPi1Pi2 j

1
CCCA : (4.269)

Since P is �-separated, it is easy to give an upper bound to the inner sum in (4.269).
Using a standard power-of-two decomposition, we have

X
Pi22P
i1¤i2

1

jPi1Pi2 j
�

X
1�`�L

X
Pi22P
i1¤i2

2`�1�<jPi1Pi2 j�2`�

1

jPi1Pi2 j

�
X
1�`�L

1

2`�1�
� �.2`C1/2 D

X
1�`�L

8�

�
� 2` < 16�

�
� 2L; (4.270)

where L denotes the largest integer such that16 2L� < 2jC1�, and where the
estimate �.2`C1/2 arises from the fact that a square of side �=2 cannot contain
two points from P , since P is �-separated. From (4.270), and using the fact that
2L� < 2jC1�, we conclude that

X
Pi22P
i1¤i2

1

jPi1Pi2 j
<
16�

�
� 2L < 16�

�
� 2

jC1�
�

D 25��2j

�2
: (4.271)

Combining (4.269) and (4.271), and using the fact that jPj D ı�M2, we then
obtain

X
Pi1 ;Pi22P
i1¤i2

jangle.Pi1 ; Pi2 I j /j < 2�j �jPj2
5��2j

�2
D 25�2�2ıM2

�2
: (4.272)

16Note that 2j � is the length of the long side of a j -cell.
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Recall that the disk disk.0IM/ of radius M contains .1 C o.1//�M2��2 j -cells
of a given angle � , and that � runs through the interval 0 � � < � . It is natural,
therefore, to normalize the sum (4.272) and consider the average

1

�2M2��2
X

Pi1 ;Pi22P
i1¤i2

jangle.Pi1 ; Pi2 I j /j < �4 � 2
5ı

�2
: (4.273)

Consequences of Inequality (4.273). Let us return to Sect. 4.8. Recall that the last
step in the proof of Proposition 13, and indirectly the proof of Theorem 12, is to
choose the parameters �1 and �2 as sufficiently small positive constants independent
of M and N ; see (4.226). In fact, in view of (4.100), �1 and �2 are almost equal.

In similar fashion, we assume here that the parameter 
 of the hyperbolic needle,
the density ı of P and the separation constant � of P are fixed positive constants,
and consider �, which of course plays the role of �1 and �2, as a parameter that we
shall eventually choose as a sufficiently small positive constant independent of M
and N .

Since the area of a j -cell is �2, we can say roughly that the probability that a
j -cell of any angle contains a point of P is

density 
 area D ı�2: (4.274)

On the other hand, in view of (4.273), the probability that a j -cell of any angle
contains exactly two points of P does not exceed c29�

4, which is negligible
compared to ı�2 in (4.274) if � is small enough.

In general, the probability that a j -cell of any angle contains exactly p points of
P , where 2` < p � 2`C1 with ` D 1; 2; 3; : : :, does not exceed c30�44�`, where the
constant factor c30 is independent of `. Indeed, p points from P means that we can
choose

�
p
2

�
pairs Pi1 ; Pi2 , implying that those rich j -cells show up with multiplicity

 
p

2

!
> 2`2`�1 D 1

2
4`

in (4.273), explaining the factor 4�` in c30�44�`. The point here is that even the sum
of the products

X
`�1

2`C1�44�`

is negligible compared to the ı�2 in (4.274) if � is small enough.
Summarizing, we can say that (4.273) implies the following general picture about

the distribution of the elements of P in the j -cells of any angle. Let � 2 Œ0; �/ be
a typical angle, and consider the j -cells of angle � . The overwhelming majority of
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the points P 2 P turn out to be singles, meaning that if the point P is contained in
some j -cell C of angle � , then C does not contain any other point of P . Here the
vague term overwhelming majority in fact has the quantitative meaning of 1�O.�2/
part of P . Note that 1 �O.�2/ is almost 1 if � is small.

Furthermore, rich j -cells turn out to be very rare in the following sense. Let
` � 0 be a fixed integer. The proportion of the j -cells C of angle � containing p
points of P , where 2` < p � 2`C1, compared to those j -cells which contain at
least one point of P , does not exceed c31�24�`, where the constant factor c31 is
independent of `. Since 2` is negligible compared to 4` if ` is large, the term very
rare is well justified.

We can say, therefore, that a weaker statistical version of the rectangle property
holds for the majority of the angles � 2 Œ0; �/, assuming that � > 0 is a sufficiently
small constant depending only on the parameter 
 of the hyperbolic needle, the
density ı of P and the separation constant � of P .

A simple analysis of the Riesz product argument in Sects. 4.5–4.8 shows that this
weaker statistical version of the rectangle property is a good substitute for the strict
rectangle property, and thus we can prove the following result.

Theorem 30. Let P be a finite set of points in the disk disk.0IM/ with density
ı, so that the number of elements of P is jPj D ı�M2. Assume that P is �-
separated for some � > 0. Assume further that both N and M=N are sufficiently
large, depending only on 
 , ı and � . Then there exist a positive constant ı0 D
ı0.�; 
; ı/ > 0, independent of N and M , and a measurable subset A  Œ0; 2�/,
of Lebesgue measure greater than 99

100
� 2� , such that for every angle � 2 A , there

exist translated copies x1 C Rot�H
 .N /  disk.0IM/ and x2 C Rot�H
 .N / 
disk.0IM/ of the rotated hyperbolic needle Rot�H
 .N / such that

jP \ .x1 C Rot�H
.N //j � 2ı
 logN C ı0 logN

and

jP \ .x2 C Rot�H
 .N //j � 2ı
 logN � ı0 logN:

As indicated at the beginning of this section, it is reasonable to guess that clusters
just help to create extra large fluctuations. This intuition motivates the following

Open Problem. Can one prove a version of Theorem 30 which makes no reference
to the separation constant � D �.P/? In other words, can we simply drop � D
�.P/ from the hypotheses of Theorem 30?

The author guesses that the answer is affirmative but, unfortunately, cannot
prove it.

Finally, we briefly mention a closely related problem, where we cannot drop the
separation constant � D �.P/ from the hypotheses. Note that Theorems 3–21 all
concern the extra large fluctuations of the measure-theoretic discrepancy, meaning
the difference between the number of points of P and its expectation of density
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times area. What we study last here is the large fluctuations of the ˙1-discrepancy,
or 2-coloring discrepancy.

This means that we have an arbitrary 2-coloring ' W P ! f˙1g of the given
point set P , with C1 representing red and �1 representing blue, say. Extra large
fluctuations of the ˙1-discrepancy means that there is a translated, or rotated and
translated, copiesH 0 and H 00 of the hyperbolic needleH
.N / such that

X
P2P\H 0

'.P / > c32 � area.H 0/ D c33 logN > 0

with some positive constants c32 and c33 and

X
P2P\H 00

'.P / < �c34 � area.H 00/ D �c35 logN < 0

with some positive constants c34 and c35.
The Riesz product technique can be easily adapted to prove extra large fluctua-

tions of the ˙1-discrepancy. For example, we have the following ˙1-discrepancy
analog of Proposition 13.

Proposition 31 (2-Coloring Discrepancy for Translated Copies). Let P be a
finite set of points in the square Œ0;M �2 with density ı, so that the number of
elements of P is jPj D ıM2. Let ' W P ! f˙1g be an arbitrary 2-coloring
of P . Assume that P satisfies the following rectangle property, that there is a
positive constant c1 D c1.P/ > 0 such that every axes-parallel rectangle of area c1
contains at most one element of the set P . As in Proposition 13, let ı0 D ı0.c1; 
; ı/
be defined by (4.83) and (4.84), and assume that both N and M=N are sufficiently
large and satisfy (4.85). Then for the hyperbolic needle H
.N / given by (4.86),
there exist translated copies x1 C H
.N /  Œ0;M �2 and x2 C H
.N /  Œ0;M �2

such that

X
P2P\.x1CH
.N//

'.P / � ı0 logN

and

X
P2P\.x2CH
.N//

'.P / � �ı0 logN:

Similarly, one can easily prove the following analog of Theorem 30.

Proposition 32 (2-Coloring Discrepancy for Rotated and Translated Copies).
Let P be a finite set of points in the disk disk.0IM/ with density ı, so that the
number of elements of P is jPj D ı�M2. Let ' W P ! f˙1g be an arbitrary
2-coloring of P . Assume that P is �-separated with some � > 0. Assume further
that both N and M=N are sufficiently large, depending only on 
 , ı and � . Then
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there exist a positive constant ı0 D ı0.�; 
; ı/ > 0, independent of N and M , and
a measurable subset A  Œ0; 2�/, of Lebesgue measure greater than 99

100
� 2� ,

such that for every angle � 2 A , there exist translated copies x1 C Rot�H
.N / 
disk.0IM/ and x2 C Rot�H
.N /  disk.0IM/ of the rotated hyperbolic needle
Rot�H
.N / such that

X
P2P\.x1CRot�H
 .N //

'.P / � ı0 logN

and

X
P2P\.x2CRot�H
 .N //

'.P / � �ı0 logN:

We want to point out that in Proposition 32 on the ˙1-discrepancy of hyperbolic
needles, we definitely need some extra condition implying that P is not too
clustered. Indeed, it is easy to construct an extremely clustered point set P for
which the ˙1-discrepancy of the hyperbolic needles is negligible. For example,
we can start with a typical point set in general position, and split up every point
into a pair of points being extremely close to each other. The two points in these
extremely close pairs are joined with a straight line segment each, and we refer
to these line segments as the very short line segments. Consider the particular 2-
coloring of the point set where the two points in the extremely close pairs all have
different colors, with one C1 and the other �1. We can easily guarantee that this
particular 2-coloring has negligible ˙1-discrepancy for the family of all hyperbolic
needles congruent to H
.N /. If the original point set is in general position and the
point pairs are close enough, than the arcs of any congruent copy ofH
.N / intersect
at most two very short line segments. Since the boundary of H
.N / consists of 4
arcs, the ˙1-discrepancy is at most 4 � 2 D 8, which is indeed negligible.
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Part II
Combinatorial Discrepancy



Chapter 5
Multicolor Discrepancy of Arithmetic Structures

Nils Hebbinghaus and Anand Srivastav

Abstract In this chapter we present developments over the last 20 years in
the discrepancy theory for hypergraphs with arithmetic structures, e.g. arithmetic
progressions in the first N integers and their various generalizations, like Cartesian
products, sums of arithmetic progressions, central arithmetic progressions in Zp

and linear hyperplanes in finite vector spaces. We adopt the notion of multicolor
discrepancy and show how the 2-color theory generalizes to multicolors exhibiting
new phenomena at several places not visible in the 2-color theory, for example in the
coloring of products of hypergraphs. The focus of the chapter is on proofs of lower
bounds for the multicolor discrepancy for hypergraphs with arithmetic structures.
Here, the application of Fourier analysis or linear algebra techniques is often not
sufficient and has to be combined with combinatorial arguments, in the form of an
interplay between the examination of suitable color classes and the Fourier analysis.

5.1 Introduction

Several books treat combinatorial discrepancy theory: the “Ten Lectures on the
Probabilistic Method” of Joel Spencer [71], the book “The Probabilistic Method”
of Noga Alon, Joel Spencer and Paul Erdős [1] and the first and second edition
of “Geometric Discrepancy (An Illustrated Guide)” of Jiří Matoušek [51, 53].
The book of Bernard Chazelle [19] places discrepancy theory in a broad context
of mathematics and computer science. A concise introduction to Ramsey Theory is
the book of Ronald Graham, Bruce Rothschild and Joel Spencer [36]. An excellent
survey on geometric and combinatorial discrepancy theory is the article of Beck
and Sós [13]. A thorough treatment discussing combinatorial as well as geometric
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discrepancy theory is the book of Beck and Chen [11]. The theme discrepancy of
arithmetic progressions can be found in many of these references. In this chapter we
will discuss the discrepancy of several arithmetic structures generalizing arithmetic
progressions in a comprehensive and self-contained way.

We start with the basic notion of combinatorial discrepancy and an overview of
fundamental results (Sect. 5.2). Emphasis is given to the introduction of the notion
of combinatorial multicolor discrepancy and the generalization of several classical
results from 2-color discrepancy theory to c colors. For example, the famous six-
standard-deviation upper bound of Spencer for the discrepancy of a hypergraph

with n nodes and m hyperedges in 2 colors is O
�p

n ln.m=n/
	

and for c-colors

it becomes O
�p

n
c

ln.cm=n� c/
�
. We show at several places, concerning classical

upper and lower bounds, how the partitioning factor of 1=c has to be invoked into
these discrepancy bounds. This forms the basis for further discussions, but the reader
more interested in arithmetic structures may skip the technical details.

Section 5.3 introduces the d -fold Cartesian products of hypergraphs, in particu-
larly the d -fold Cartesian product of the hypergraph of arithmetic progressions in
the first N integers. This gives a kind of d -dimensional generalization. The starting
point of this section is the famous theorem of K. Roth [67] and J. Matoušek and
J. Spencer [56] which states that the discrepancy of the hypergraph of arithmetic
progressions is N1=4, up to a constant. We show that the discrepancy function for
Cartesian products is submultiplicative, and almost submultiplicative in c colors,
leading to upper bounds for the discrepancy which scale in the dimension d in a
natural way. On the other hand we adapt Fourier analysis to prove matching lower
bounds. It is also shown that the situation for the c-color discrepancy of Cartesian
products is much more involved and Ramsey’s theorem is required to describe the
complex behavior depending on the very form of the number of colors. Interesting
new phenomena appear in mixed situations, where low-dimensional objects are
considered in a high-dimensional environment, for example arithmetic progressions
that have the same common difference, one-dimensional arithmetic progressions in
the ŒN �d and d -dimensional symmetric arithmetic progressions in ŒN �d .

Section 5.4 is devoted to the hypergraph of all sets formed by sums of any k
arithmetic progressions in f1; : : : ; N g, k a fixed integer . Some authors call them
high-dimensional arithmetic progressions [59]. We will show that their discrepancy
is typically of the order O.

p
n/, for k � 2, thus significantly higher than for

k D 1. The emphasis is on the proof of lower bounds, with Fourier analysis and
combinatorial arguments.

In Sect. 5.5 we consider the problem of finding the c-color discrepancy of
arithmetic progressions and centered arithmetic progressions resp. in Zp , p a prime.
We will show that its discrepancy is essentially about O.

p
p=c/. Major effort is

required to circumvent the fact that Fourier analysis cannot be directly applied to the
centered arithmetic progressions because they are not translation invariant. This is
done with combinatorial decompositions depending on arithmetic arguments, so that
Fourier analysis can be invoked in a suitable way.
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A new aspect of combinatorial c-color discrepancy theory is the notion of
the one-sided c-color discrepancy. The one-sided discrepancy function cannot be
bounded with discrepancy bounds, and has its own structure, demanding for a
specific theory. We study in Sect. 5.6 the one-sided c-color discrepancy of the
hypergraphs of linear hyperplanes in the finite vector spaceFrq using Fourier analysis
on F

r
q in an interplay with combinatorial arguments to locate the right color classes

leading to large discrepancy hyperedges. We show that the one-sided discrepancy is

bounded from below by˝q

�p
nz.1 � z/=c

	
, where z D .q�1/ mod c

c
, and the upper

bound is tight up to a logarithmic factor. So again, the one-sided discrepancy obeys
the square root behavior.

We conclude the chapter stating some open problems (Sect. 5.7).

5.2 Multicolor Discrepancy

In this section we introduce the notion of combinatorial multicolor discrepancy
and generalize several classical results from 2-color discrepancy theory to c colors
(c� 2). We give a method that constructs c-colorings by iteratively computing
2-color discrepancies covering a large class of theorems like the ‘six standard
deviations’ theorem of Spencer [70], the Beck–Fiala theorem [12], the results of
Matoušek, Welzl and Wernisch [57] and Matoušek [50]. In particular, the c-color
discrepancy of a hypergraph with n vertices andm hyperedges is O.

p
n
c

log. cm
n�c //.

For m D O.n/ and c � ˛n for a constant ˛ 2 .0; 1/ this bound becomes
O.
p

n
c

log c/.
In situations where the discrepancy in c colors cannot be bounded in terms

of two-color discrepancies in general, this approach fails, as well as for the
linear discrepancy version of the Beck–Fiala theorem. Here an extension of the
floating color technique via tensor products of matrices is appropriate leading to
multicolor versions of the Beck–Fiala theorem and the Bárány–Grinberg theorem.
Interestingly, the tensor product technique gives also a lower bound for the c-color
discrepancy of general hypergraphs.

5.2.1 From Graphs to Hypergraphs

Combinatorial discrepancy theory has its origin in the coloring of graphs. A (simple,
finite) graph is a pair G D .V;E/ where V is a finite set andE is a set of 2-element
subsets of V , i.e. E � �

V
2

�
, where

�
V
2

�
denotes the set of all 2-element subsets of

V . The elements of V are called nodes or vertices and the elements of E are called
edges. A common notation for an edge e 2 E is e D fu; vg, with u; v 2 V . Thus, the
edge e is not directed and here we are not concerned with directed graphs.
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For a graph G D .V;E/ and k 2 N, a function f W f1; : : : kg 7! V is called a k-
coloring, if for every edge e D fu; vg 2 E we have f .u/ ¤ f .v/. So the vertices of
an edge have different colors. The numbers 1; : : : ; k are called colors. With k D n

we can trivially color all vertices of G. The challenge is to determine the smallest
k such that a k-coloring exists. To shorten the notation we set for a non-negative
integer l , Œl � WD f1; : : : ; lg.

Definition 1. Let G D .V;E/ be a graph. The chromatic number .G/ is the
smallest integer k such that G can be colored with k colors.

A whole branch of combinatorics is devoted to the coloring of graphs. Among
the milestones in this area is the famous 4-color theorem that for a planar graph the
chromatic number is at most 4. The theorem has been proved in 1976 by Kenneth
Appel and Wolfgang Haken [2,3] with a computer-assisted proof, the first of its kind,
checking about 1;936 case distinctions. Thereafter, shorter proofs were given. In
1996, Neil Robertson, Daniel Sanders, Paul Seymour and Robin Thomas [66] found
a computer-assisted proof with 633 case distinctions. In 2004, Benjamin Werner and
Georges Gonthier, see Gonthier (2008) [35], constructed a formal proof using the
Coq proof assistant system.

Existence proofs of finite combinatorial objects in combinatorics challenge their
construction in an efficient way. In fact, the algorithmic point of view of modern
computer science has become a central matter in cross-cutting, interdisciplinary
research, both for mathematical insight as well as for applications. For a graph
G D .V;E/ with jV j D n we may ask if we can construct a coloring with an
algorithm using only a polynomial number of steps, e.g. O.n2/, O.n3/ etc. The
theory of NP-completeness by Cook (1971) and Karp (1975) is a fundamental
discovery to characterize the combinatorial complexity of problems. The coloring
problem is hard in the sense that its polynomial-time solution would imply that
all other problems in the class NP can be solved in polynomial time as well.
Such problems are called NP-hard. It is conjectured that NP-hard problems are not
solvable in polynomial time and it comes down to the question if P D NP. It is
widely believed and conjectured, that P ¤ NP. This conjecture is regarded perhaps
as the biggest open problem in theoretical computer science.

On the other hand, if G is bipartite, so V D A [ B , A \ B D ;, and the
edges are all of the form fa; bg, a 2 A, b 2 B , then .G/ D 2. Any graph
G can be tested for bipartiteness using breath/depth first search in O.jEj/ steps,
simultaneously providing a 2-coloring ofG, if the test is positive. Since bipartiteness
of G is equivalent to .G/ D 2, the 2-coloring problem of graphs is solvable in
polynomial time, in this sense it is an easy problem. The situation changes when
passing to hypergraphs.

Definition 2. A (finite) hypergraph H D .X;E / is a pair where X is a finite set
and E is a subset of the power set P.X/. The elements of X are called nodes or
vertices and the elements of E are called hyperedges (or simply edges). For Y  X ,
we define EY WD fE \ Y IE 2 E g and HY D .Y;EY / is the hypergraph induced on
Y by H .
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In combinatorics, H is known as a set system, and in computational geometry
H is called a range space (hereX 2 E is required in addition). Of course, if jEj D 2

for all E 2 E , H is just a graph. How can we generalize the coloring concept to
hypergraphs? In graphs, a feasible coloring of the vertices of an edge e D fv; ug
demands that u and v have different colors. So the number of colors in an edge is
perfectly balanced. But we can also say that in a feasible graph coloring edges are
not monochromatic. These two different interpretations lead to the following two
alternatives for the generalizations of the coloring concept to hypergraphs. We color
the vertices of H with 2 colors such that

a) (first alternative) the number of different colors for every hyperedge is nearly the
same, so the 2-coloring is nearly balanced in every hyperedge,

b) (second alternative) no hyperedge is monochromatic.

The first concept of hypergraph coloring is the roof for combinatorial discrepancy
theory, while the second one is fundamental for Ramsey theory. We may ask
whether the 2-coloring problem in hypergraphs can be solved in polynomial time.
We will show that the complexity jumps by passing from graphs to hypergraphs.
In fact the 2-color discrepancy problem is NP-hard (Theorem 26) calling for a
mathematical and algorithmic foundation. Now let us proceed to the definition of
the discrepancy of a 2-coloring of hypergraphs.

5.2.2 2-Color Discrepancy

The objects of 2-color combinatorial discrepancy theory is the study of 2-colorings
of hypergraphs with the property that in all hyperedges the number of vertices in
the two colors is roughly the same. In combinatorial discrepancy theory we are
interested in tight absolute bounds for the discrepancy function, which depend on the
structure of the hypergraphs under consideration. Lower bounds show that for any
2-coloring the discrepancy is at least that lower bound, while upper bounds are
derived by the proof of the existence of a particular coloring or even by a
construction of the same.

Two Colors: Discrepancy, Linear and Hereditary Discrepancy. Let H D .X;E /
be a hypergraph. A partition of X into two color classes can be represented by a
function  W X ! f�1;C1g. We identify �1 and C1 with colors, say red and blue,
and thus call  a coloring. The color-classes �1.�1/ and �1.C1/ form a partition
of X . For a hyperedgeE 2 E let us define .E/ WD P

x2E .x/. The imbalance of
E 2 E with respect to  is j.E/j. The discrepancy of H with respect to  is

disc.H ; / WD max
E2E j.E/j (5.1)
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Fig. 5.1 A 2-coloring with
discrepancy 1, which is
optimal since there are
hyperedges with odd
cardinality

The discrepancy of H is the hypergraph invariant

disc.H / WD min
WX!f�1;C1g

disc.H ; / (5.2)

A two-coloring example is shown in Fig. 5.1.
The concept of hypergraph discrepancy has been generalized to matrices in a

natural way. Let A D .aij/ be a real m 
 n-matrix, k�k1 be the usual L1-norm on
R and set

disc.A/ WD min
x2f�1;1gn

kAxk1 (5.3)

Let H D .X;E / be a hypergraph withX D fx1; : : : ; xng and E D fE1; : : : ; Emg.
The matrix A D .aij/, where aij D 1 if xj 2 Ei and aij D 0 otherwise, is called the
incidence matrix ofH . Clearly, we have disc.A/ D disc.H /. Thus the discrepancy
of matrices generalizes the discrepancy notion for hypergraphs, and for zero–one-
matrices both concepts are equivalent.

There are two related notions: The linear discrepancy of an arbitrary matrix A is
defined by

lindisc.A/ WD max
p2Œ�1;1�n min

x2f�1;1gn
kA.p � x/k1 (5.4)

Linear discrepancy can be regarded as a measure of how well a fractional solution
can be rounded to an integer solution. Some authors define linear discrepancy by

max
p2Œ0;1�n min

x2f0;1gn
kA.p � x/k1 (5.5)

Both versions differ only by a constant factor 2. A special case of the second version
is the weighted discrepancy, which refers to the problem of splitting the edges in an
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arbitrary ratio p W 1 � p as in the discrepancy problem. We define the weighted
discrepancy in 2 colors: let 1n WD .1; : : : ; 1/> 2 R

n. For x 2 f0; 1gn and p 2 Œ0; 1�,
the weighted discrepancy with respect to x and p is

wd.A; x; p/ WD kA.1np � x/k1 ; (5.6)

the weighted discrepancy with respect to p is

wd.A; 2; p/ WD min
x2f0;1gn

kA.1np � x/k1 ; (5.7)

and the weighted discrepancy finally is

wd.A; 2/ WD max
p2Œ0;1�wd.A; 2; p/: (5.8)

The hereditary discrepancy is

herdisc.A/ WD max
J
Œn�

disc
�
.aij /i2Œm�;j2J

�
; (5.9)

where Œn� WD f1; : : : ; ng.
All notions can be formulated for hypergraphs in a natural way. For example,

herdisc.H / is the maximum discrepancy of all induced subgraphs H0 of H :

herdisc.H / WD max
H0
H

disc.H0/ (5.10)

We will write A0 � A to indicate that the matrix A0 consists of some columns of
the matrix A. Similarly for hypergraphs we will write H0 � H or H0 � H if H0

is an induced subgraph of H .

Proposition 3. The following relations between the different discrepancy notions
hold:

(i) disc.A/ � herdisc.A/
(ii) disc.A/ � lindisc.A/

(iii) wd.A; 2/ � 1
2

lindisc.A/
(iv) lindisc.A/ � 2 herdisc.A/
(v) wd.A; 2/ � herdisc.A/

Relations (i), (ii) and (iii) are more or less obvious, while the relation between the
linear and the hereditary discrepancy is not. Relation (iv) was discovered by Beck
and Spencer [14] and Lovász, Spencer and Vesztergombi [48]. In 1986 Spencer
conjectured that lindisc.A/ � .1 � 1

nC1/. This conjecture is still unsolved, but sig-
nificant contribution were made meanwhile. Doerr [21] showed that the inequality
(iv) can be improved to lindisc.A/ � .1 � 1

2m
/ herdisc.A/, see also Bohman and

Holzman [16]. And for totally unimodular matrices Spencer’s conjecture was proved
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in the affirmative by Doerr [21, 24]. The proof uses the fact that the extreme points
of the polyhedron of a totally unimodular matrix are integral.

Theorem 4 (Doerr [21]). Let A be a totally unimodular m 
 n matrix. Then
lindisc.A/ � .1 � 1

nC1 /.

Further results on the linear discrepancy for theLp-norm can be found in Doerr [25].
Matoušek could bound the hereditary discrepancy in terms of the linear discrepancy
in [52].

5.2.3 Some Fundamental Discrepancy Results

5.2.3.1 Upper Bounds for the Combinatorial Discrepancy.

A milestone in combinatorial discrepancy theory is the celebrated “six-standard-
deviation” theorem of Joel Spencer [70].

Theorem 5 (Spencer [70]). Let H D .X;E / be a hypergraph with n vertices and
m � n hyperedges. Then

disc.H / D O
�q

n log.m
n
/
	
:

In particular, if m D O.n/, then disc.H / D O.
p
n/. For m D n, the bound is

6
p
n.

The bound ofO.
p
n/ is tight for an infinite family of hypergraphs, namely those

with a Hadamard matrix as its incidence matrix. Alternative proofs were given by
Gluskin [34] with the Minkowski lattice point theorem and by Giannopoulos [33]
using Gaussian measure and geometry.

It has been a long-standing open problem whether there is a polynomial-time
algorithm which constructs a 2-coloring with discrepancy O.

p
n/. In 2010, N.

Bansal solved this problem [6] with a polynomial-time randomized algorithm and
little later, Bansal and Spencer [7] were able to de-randomize the algorithm [7]. We
refer the interested reader to the chapter of Nikhil Bansal.

Theorem 6 (Bansal [6]). Let H D .X;E / be a hypergraph with n vertices and
m D n hyperedges. There is a randomized polynomial time algorithm which
computes a 2-coloring with discrepancyO.

p
n/.

Lovett and Meka [49] gave a constructive algorithm which achieves Spencer’s
bound for all hypergraphs, i.e. m � n. The algorithm is based on linear algebra
techniques and random walks. We refer to the chapter of N. Bansal.

When the maximum vertex degree1 of the hypergraph is bounded, another type
of discrepancy result can be proved:

1The degree of a vertex is the number of hyperedges that contain the vertex.
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Theorem 7 (Beck–Fiala [12]). Let H D .X;E / be a hypergraph and�.H / 2 N

be the maximum vertex degree of H . Then

disc.H / � lindisc.H / � 2�.H /� 1:

Note that the hypergraphs associated to Hadamard matrices2 have discrepancy at
least ˝.

p
�.H //. Beck and Fiala conjectured

Conjecture 8 (Beck–Fiala [12]). disc.H / D O.
p
�.H //.

The conjecture is still open. With some effort Bednarchak and Helm [42]
improved the bound to 2�.H /� 3. A major step was taken by Srinivasan [72]:

Theorem 9 (Srinivasan [72]). Let H D .X;E / be a hypergraph and�.H / 2 N

be the maximum vertex degree of H . Then disc.H / � O.
p
�.H / logn/:

Bansal [6] gave a randomized polynomial time algorithm which achieves the bound
of Srinivasan. The best bound is due to Banaszczyk [5].

Theorem 10 (Banaszczyk [5]). Let H D .X;E / be a hypergraph and �.H / 2
N be the maximum vertex degree of H . Then disc.H / � O.

p
�.H / logn/:

Still, no polynomial-time algorithm is known to compute colorings within the
discrepancy bound of Banaszczyk.

A discrepancy result widely used in combinatorial discrepancy theory is the
following theorem of Beck [10]. We will frequently make use of it in this chapter.
Let k be a positive integer. Let us define the hypergraph Hk by Hk WD .X; fE 2
E W jEj � kg/. So only large hyperedges are considered.

Theorem 11 (Beck [10]). Let H D .X;E / be a finite hypergraph, n WD jX j and
m WD jE j. Let t and K be natural numbers such that deg.Ht / � K . Then

disc.H / � c.t CK logK/1=2 log1=2 m logn;

where c > 0 is an absolute constant.

Theorem 11 implies the following corollary.

Corollary 12. If there exists a constant t > 0 with the property deg.Ht / � t; then
there is an absolute constant c > 0 such that disc.H / � c

p
t logm logn:

Let us move to the notion of the discrepancy of a sequence of vectors. This
kind of problems were already posed by Dworetzky in 1963, see [13, page 1420].
The theorem of Bárány–Grinberg [9] gives a very general result.

2A Hadamard matrix of dimension n is a matrix in f�1; 1gn�n whose rows are mutually
orthogonal.
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Theorem 13 (Bárány–Grinberg [9]). Let k � k be an arbitrary norm on R
n and let

v1; v2; : : : ; vk be vectors in R
n such that kvik � 1 for all i D 1; : : : ; k. There are

signs "i 2 f�1;C1g; i D 1; : : : ; k, such that for all l 2 Œk�,


lX
iD1

"ivi

 � 2n:

The hypergraph setting allows a natural reformulation in terms of vectors by
considering the incidence matrix of the hypergraph, resp. its row and column
vectors. The Beck–Fiala theorem formulated in the vector setting states that for any
vectors v1; : : : ; vk 2 f0; 1gn with kvik1 � 1 for all i , there are signs "i 2 f�1;C1g
for all i , such that

Pk
iD1 "ivi

1 < 2. Thus the Beck–Fiala theorem is not a special

case of the Bárány–Grinberg theorem, nor vice versa.
Spencer’s theorem in the vector setting shows that for any sequence of vectors

v1; : : : ; vk 2 f0; 1gn with kvik1 � 1 for all i , there are signs "i 2 f�1;C1g
for all i such that

Pk
iD1 "ivi

1 � 6
p
n. So, informally speaking the Bárány–

Grinberg theorem holds true for any norm while the Beck–Fiala theorem combines
the L1-norm and the L1-norm. Spencer’s theorem combines the L1-norm and
Grinberg further showed that the combination of the L2-norm with the L2-norm
gives a bound of

p
n. The only combination for which nothing can be said, and

which is a major open problem in discrepancy theory, is the combination of the
L1-norm and the L2-norm. The following conjecture is due to János Komlós (see,
e.g., the book of Joel Spencer [71]).

Conjecture 14. Let v1; v2; : : : ; vk be vectors in R
n with kvik2 � 1 for all i D

1; : : : ; k. There are signs "i 2 f�1;C1g; i D 1; : : : ; k, and a constantK such that


kX
iD1

"ivi


1
< K

Note that the Komlós conjecture implies the Beck–Fiala conjecture. The best
result towards the Komlós conjecture is due to Banaszczyk.

Theorem 15 (Banaszczyk [5]). Let k � k be the Euclidean norm on R
n and 
n the

standard Gaussian measure on R
n with density .2�/�n=2 exp.�kxk2=2/. There is a

constant c > 0 with the following property: if K is an arbitrary convex body in R
n

with 
n.K/ � 1=2, then to each sequence u1; : : : ; um 2 R
n with kuik � c for all i

there correspond signs �1; : : : ; �m 2 f�1; 1g such that
P

i �iui 2 K .

Note that this result implies Theorem 10. An interesting further progress was
recently made by A. Nikolov [60], who proved that if one assigns unit real vectors
rather than signs C1;�1, then the Komlós conjecture holds with K D 1.
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5.2.3.2 Lower Bounds

Throughout this chapter we will make use of a general lower bound of Lovász and
T. Sós , see [13, Theorem 2.8 and Corollary 2.9]. Let us define the L2-discrepancy.
For a hypergraph H D .X;E / with n D jX j, m D jE j, the L2-discrepancy is

disc2.H / WD min


 
1

m

X
E2E

j.E/j2
!1=2

: (5.11)

We immediately have, disc.H / � disc2.H /, so the L2-discrepancy gives a lower
bound for the discrepancy. The advantage of the L2-discrepancy is that we can
invoke linear algebra to compute lower bounds for disc2.H /.

Theorem 16. Let H D .X;E / be a hypergraph with n D jX j, m D jE j and let A
be the incidence matrix of H . With Tr we denote the trace of a matrix.

(i) disc.H / � �
n�min.A

TA/
�1=2

,
(ii) If for some diagonal matrix D, the matrix ATA � D is positive semidefinite,

then disc2.H / � .Tr D/1=2:

An other fundamental lower bound is due to Lovász, Spencer, and Veszter-
gombi [48].

For a real matrix A define detlb.A/ WD maxk maxB j detBj1=k; where the
maximum ranges over all k 
 k submatrices B of A. For a hypergraph H let us
define detlb.H / WD detlb.A/ where A is the incidence matrix of H .

Theorem 17 (Lovász, Spencer, and Vesztergombi [48]). For every hypergraph
H , herdisc.H / � 1

2
detlb.H /:

Matoušek [54] showed that this bound is almost tight.

Theorem 18 (Matoušek [54]). For every hypergraph H with n nodes and m
hyperedges,

herdisc.H / � O
�

logn
p

logm
	

detlb.H /:

A major breakthrough is the very recent algorithm approximating the hereditary
discrepancy within poly-logarithmic factors by Nikolov, Talwar and Zhang [61]
(see also the chapter of N. Bansal). Most recently Matoušek and Nikolov [55]
introduced the so called ellipsoid-infinity norm and showed that these bounds are
asymptotically tight in the worst case. Among the striking applications of this
new concept is the new lower bound ˝.logd�1 n/ for the d -dimensional Tusnady
problem, asking for the combinatorial discrepancy of an n-point set in R

d with
respect to axis-parallel boxes. For d � 3 this improves over the previous lower
bound of ˝.log.d�1/=2 n/.
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5.2.3.3 Arithmetic Progressions

Let us define the hypergraph of arithmetic progressions.

Definition 19. For a; d; l 2 N, denote by Aa;d;l WD fa C id W 0 � i � l � 1g the
arithmetic progression with starting point a, difference d and length l . Let X WD
ŒN � D f0; : : : ; N � 1g. Denote by E the set of all arithmetic progressions in X , that
is E D fAa;d;l \ X W a 2 X; d; l 2 X n f0gg. The hypergraph HN WD .X;E / is
called the hypergraph of arithmetic progressions in the first N positive integers.

The investigation of two colorings of arithmetic progressions has been a fundamen-
tal problem in the history of combinatorics. In 1927 van der Waerden [75] proved
his famous theorem that if the non-negative integers are colored with finitely many
colors, then there are arbitrarily long monochromatic arithmetic progressions.

Theorem 20 (Van der Waerden [75]). For any integers k and c there exist
W.k; c/ > 0, N > W.k; c/, N integer, such that for every c-coloring of f1; : : : ; N g
there exists a monochromatic arithmetic progression of length at least k.

K. Roth [67] exhibited another aspect of the same phenomenon. Arithmetic
progressions have large discrepancy:

Theorem 21 (Roth [67]). It holds that disc.HN / D ˝
�
N

1
4

	
.

Roth himself did not believe that his lower bound is optimal, most probably
due to the fact that the probabilistic method immediately gives the upper bound
O.

p
N logN/. A. Sárközy [31] was the first who improved the exponent of N and

showed an upper bound of O.N
1
3Co.1//. A breakthrough was made by J. Beck in

[10], who showed that the lower bound is best possible up to a polylogarithmic
factor by improving the upper bound to O.N

1
4 log

5
2 N /. It lasted 30 years until

J. Matoušek and J. Spencer finally solved the problem (”the end of the hunt” [56]).

Theorem 22 (Matoušek, Spencer [56]). It holds that disc.HN / D O
�
N

1
4

	
.

We will give proofs for the lower bound in a more general context. The Roth-
Matoušek-Spencer theorem is in fact the motivation and the kernel of the theme
of this chapter. Let us conclude this introduction with the most challenging open
problem in this context, the old conjecture of P. Erdős, (worth of more than $ 500),
with almost no progress towards an answer so far.

Conjecture (Erdős [30]). For any  W N ! f�1; 1g and every constant C > 0

there are d and n such that
ˇ̌Pn

kD1 .kd/
ˇ̌ � C .

5.2.4 Multicolor Discrepancy of Hypergraphs and Matrices

Doerr and Srivastav [26] extended combinatorial discrepancy theory from 2-colors
to c-colors. We present some of the basic techniques and results, also as a basis for
later sections.
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5.2.4.1 Multicolor Discrepancy

A c-coloring of a hypergraph H D .X;E / is a mapping  W X ! M , where M is
any set of cardinality c. For convenience we set M D Œc�. Sometimes a different set
M can be of advantage. For example, in applications to communication complexity
M is a finite Abelian group [4]. We define the discrepancy of an edge E 2 E in
color i 2 M with respect to  by

disc;i .E/ WD
ˇ̌̌
ˇj�1.i/ \ Ej � jEj

c

ˇ̌̌
ˇ ; (5.12)

the discrepancy of H with respect to  by

disc.H ; ; c/ WD max
i2M;E2E disc;i .E/ (5.13)

and the discrepancy of H in c colors by

disc.H ; c/ WD min
WX!Œc� disc.H ; ; c/: (5.14)

The definition for c D 2 implies:

Proposition 23. disc.H ; 2/ D 1
2

disc.H /.

One might wonder whether multicolor discrepancy can be controlled by the
2-color discrepancy, for example by recursively splitting the color classes induced
by an optimal 2-coloring. This is not the case:

Example. Let k 2 N and n D 4k. Set

Hn D �
Œn�;

˚
X � Œn� W ˇ̌X \ �

n
2

�ˇ̌ D ˇ̌
X n �n

2

�ˇ̌
�
:

Obviously, Hn has 2-color discrepancy zero, but disc.Hn; 4/ D 1
8
n.

Here is a proof: let  W Œn� ! Œ4� be any 4-coloring. Let i 2 Œ4� be a color such
that j�1.i/j � 1

4
n. Then there are setsE1 � Œ n

2
�,E2 � Œn�nŒ n

2
� such that jEj j D 1

4
n

and �1.i/ \ Ej D ;. Thus E1 [ E2 is an edge in H and has discrepancy 1
8
n in

color i . On the other hand  W x 7! ˙
4x
n

�
is a 4-coloring with discrepancy 1

8
n.

Such examples exist for nearly any two numbers of colors. Unless c1 divides c2,
there are hypergraphs Hn on n vertices having discrepancy �.n/ in c1 colors and
zero discrepancy in c2 colors. This has been investigated in [23].

An alternative representation of multicolors are vectors. When concerned with
the discrepancy of matrices, this will be more convenient. We describe the color
i 2 Œc� by a special vectorm.i/ 2 R

c defined by

m
.i/
j WD

�
c�1
c

W i D j

� 1
c

W otherwise
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Then

disc.H ; ; c/ D max
E2E


X
x2E

m..x//


1

(5.15)

Set Mc WD fm.i/ji 2 Œc�g. Apparently, we have

disc.H ; c/ D min
WX!Mc

max
E2E


X
x2E

.x/


1

(5.16)

As for 2 colors, the notion of multicolor discrepancy has a natural extension
to matrices. Let A 2 R

m�n be any matrix. Let A be the matrix which results
from replacing every aij in A by aijIc , where Ic shall denote the identity matrix
of dimension c. Identifying a  W Œn� ! Mc by a cn-dimensional vector in the
natural way, we get

disc.A; c/ WD min
WŒn�!Mc

A1 (5.17)

Using tensor products, an elegant reformulation of (5.17) is the following. For
any two matricesAk 2 C

mk�nk , k D 1; 2, the tensor (or Kronecker) productA1˝A2
is the matrix B D .bij/ 2 C

m1m2�n1n2 such that

b.i1�1/m1Ci2;.j1�1/n1Cj2 D ai1j1ai2j2

for all ik 2 Œmk�, jk 2 Œnk�, k D 1; 2. So B is formed by replacing every entry aij of
A1 by aijA2. With a straightforward calculation we have:

disc.A; c/ D min
WX!Mc

k.A˝ Ic/k1 (5.18)

The Weighted Multicolor Discrepancy. The other notions of discrepancy trans-

form to the multi-color case in a similar way: setMc D
nP

i2Œc� �im.i/ W � 2 Œ0; 1�c;P
i2Œc� �i D 1

o
, which is the convex hull ofMc .

When trying to get a c-coloring by starting with a 2 coloring and partitioning
the color classes until c partitions are reached, a new concept appears, the weighted
discrepancy. For p 2 Mc set p W Œn� ! McI i 7! p. We define the weighted
discrepancy of A with respect to the weight p and the coloring  by

wd.A; ; p/ WD A.p � /
1 ; (5.19)

the weighted discrepancy of A with respect to the weight p by

wd.A; c; p/ WD min
WŒn�!Mc

wd.A; ; p/ (5.20)
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and the weighted discrepancy of A by

wd.A; c/ WD max
p2Mc

wd.A; c; p/ (5.21)

There is an equivalent way to define weighted discrepancy. Denote by Ec the
standard basis of Rc and by Ec its convex hull, so Ec D fp 2 Œ0; 1�c W kpk1 D 1g.
We have

wd.A; c/ D max
p2Ec

min
WŒn�!Ec

A.p � /
1 (5.22)

Note that this is an extension of the definition of wd.H ; 2/ in Eq. (5.8).
For hypergraphs it reads as follows. We define the weighted discrepancy with
respect to a weight p and a coloring  by

wd.H ; ; p/ WD max
j2Œc�;E2E

ˇ̌ˇ̌
E \ �1.j /

ˇ̌ � pj jEjˇ̌ (5.23)

The weighted discrepancy of the hypergraphs with respect to the weight p is

wd.H ; c; p/ WD min
WX!Mc

wd.H ; ; p/: (5.24)

Multicolor Linear and Hereditary Discrepancy. The linear discrepancy in c

colors can be defined by

lindisc.A; c/ WD max
pWŒn�!Mc

min
WŒn�!Mc

A.p � /
1 : (5.25)

Finally, the hereditary discrepancy in c colors is

herdisc.A; c/ WD max
A0�A

disc.A0; c/: (5.26)

All these notions transfer to hypergraphs by taking the incidence matrix of the
hypergraph. For instance, for a hypergraph H with incidence matrix A we have
lindisc.H / WD lindisc.A/. Like in Proposition 23, these other discrepancy notions
are identical with the usual notions up to the constant factor of 2. When citing
2-color results, we will use the conventional notation which has no parameter c
in it, e. g. herdisc.H /. In many applications, we will use the hereditary discrepancy
and in fact, it bounds the 2-color weighted discrepancy, according to Proposition 3:

Proposition 24. For all induced subhypergraphs H0 of H we have
wd.H0; 2/ � herdisc.H0/.

Doerr [22] showed a kind of converse result: if the hereditary discrepancy in c
colors is bounded, one can construct c2 colorings (and in particular 2-colorings)
with low discrepancy. Together with Proposition 24 and Theorem 31 this shows
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that the hereditary discrepancy in two numbers of colors deviates at most by a
constant factor (depending on the numbers of colors, but not on the hypergraph).
Furthermore, he studied the c-color linear discrepancy. The following observation
suggests that it might behave differently in more than 2 colors. Consider a totally
unimodular m 
 n matrix A. Various proofs show that lindisc.A; 2/ � 1 holds.
As already mentioned, Doerr [21] proved the sharp bound of 1 � 1

nC1 .

NP-Hardness of the Discrepancy Problem. Let us denote by DISCREPANCY the
decision problem with a hypergraph along with a non-negative rational numberK as
the input and the question, whether the discrepancy of this hypergraph is at mostK .
We show that this decision problem is NP-complete even for a very special class of
hypergraphs, namely those with VC-dimension only 2.

Definition 25. Let H D .X;E / be a hypergraph. Let Y � X .

(i) Y is called shattered, if H jY D P.Y /.
(ii) the VC-dimension (Vapnik-Chervonenkis dimension) of H is the maximum

cardinality of a shattered subset of X .

Hypergraphs with bounded VC-dimension play a central role in computational
geometry [58]. They have the nice property that if the VC-dimension is d , then
for any Y � X , the number of hyperedges of H restricted to Y is at most jY jd [1].
We have:

Theorem 26. DISCREPANCY is NP-complete even if the VC -Dimension of the
hypergraph is 2.

For the proof of Theorem 26 we introduce the property B problem. We say a
hypergraph has property B , if there is a 2-coloring of the nodes so that no edge is
monochromatic [1, page 56]. This problem is NP-hard as shown by Lovász [47]. The
proof works by reduction from 3-colorability of a graph: for a graph G D .V;E/

a 3-uniform hypergraph H .G/ is introduced, with node set .f1; 2; 3g 
 V / [ f1g
and edge set

ff.i; u/; .i; v/;1g W i 2 f1; 2; 3g; .u; v/ 2 Eg [ ff.1; v/; .2; v/; .3; v/g W v 2 V g :

It is easy to see that this hypergraph has VC dimension 2, as follows. The VC
dimension is at least 2, since f.i; u/; .i; v/g forms a shattered set for each i and
.u; v/ 2 E . Since the largest edge is of cardinality 3, the VC dimension is at most 3.
It remains to show that none of the edges forms a shattered set. First consider an edge
of the form Y WD f.i; u/; .i; v/;1g with .u; v/ 2 E . Then f.i; u/; .i; v/g 62 H .G/jY
since there is no other edge than Y where .i; u/ and .i; v/ occur together. Next
consider an edge of the form Y WD f.1; v/; .2; v/; .3; v/g. Then this is the only edge
in which .1; v/ and .2; v/ occur together, so f.1; v/; .2; v/g 62 H .G/jY .

Hence the property B problem is NP-hard even if restricted to 3-uniform
hypergraphs of VC dimension 2. It is now easy to prove Theorem 26:

Proof (of Theorem 26). Obviously, a 3-uniform hypergraph is a yes-instance for the
property B problem if and only if it is a yes-instance for the discrepancy problem
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with parameterK D 2. Hence with a polynomial-time algorithm for the discrepancy
problem restricted to 3-uniform hypergraphs and VC dimension 2, we can solve the
property B problem with the same restrictions in polynomial time. ut

More recently, Charikar et al. [18] proved.

Theorem 27. It is NP-hard to distinguish between hypergraphs on N nodes with
discrepancy zero and those with discrepancy˝.

p
N/.

The Basic Probabilistic Bound. This is in fact the starting point of combinatorial
discrepancy theory, reflecting the true spirit of the probabilistic method invented
by Paul Erdős. We consider a random coloring, and color each vertex indepen-
dently with a random color. Using the Chernoff bound one can prove that with
positive probability the random coloring is balanced to a certain extent, more
precisely, for a hypergraph H D .X;E / with m WD jE j and s D maxE2E jEj,
disc.H / � p

2s ln.2m/ [1, Theorem 12.1.1]. For c colors we have:

Proposition 28. disc.H ; c/ �
q

1
2
s ln.2mc/.

Proof. Let us define a random c-coloring  by assigning a color from Œc� to every
vertex v 2 X uniformly at random, independently for all v. We define random
variablesXi;v by

Xi;v WD
�
c�1
c

W .v/ D i

� 1
c

W otherwise

for all v 2 X , i 2 Œc�. Set Xi;E WD P
v2E Xi;v for all E 2 E , i 2 Œc�. We invoke a

large deviation bound due to H. Chernoff [1, Theorem A.1.4]. It states

P .jXi;Ej > ˛/ < 2e�2˛2=jEj

for any real ˛ > 0. For ˛ WD
q

1
2
s ln.2mc/ we have

P .8i 2 Œc�; E 2 E W jXi;E j � ˛/ D 1 � P .9i 2 Œc�; E 2 E W jXi;Ej > ˛/
� 1 �

X
i2Œc�;E2E

P .jXi;E j > ˛/

> 1 �
X

i2Œc�;E2E
2e�2˛2=jEj

� 1 � 2cm � e�2˛2=s D 0:

Hence with strictly positive probability  has discrepancy at most
q

1
2
s ln.2mc/,

thus such a coloring exists. ut
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The bound of O.
p

s
2

ln.2mc// is actually not what we would expect, because

intuitively c-coloring means partitioning the setX into c color classes, so jEj
c

is more
likely the expected number of nodes in E in each color class, thus consequently
a bound of O.

p
s
c

ln.mc// would be more natural. In the following Sects. 5.2.5
and 5.2.6 we will show that such a discrepancy bound can be proved.

5.2.5 Recursive Coloring and Its Limitations

A simple way to get a c-coloring is to start with an (optimal) 2-coloring and to
partition the two color classes in a suitable way until a c-coloring is reached. What is
the success of such an approach, if any? In this subsection we will show that it leads
to c-color versions of some classical combinatorial discrepancy bounds, but it is not
strong enough to incorporate the number of colors c into the bounds. Nevertheless
the recursive approach is the basis for further refinements. But the technical part
of Sect. 5.2.5 will not be needed in the sections on arithmetic progressions and
their generalizations. For these sections it should be sufficient to note the c-color
analogue of the six-standard-deviation theorem (Corollary 44) in Sect. 5.2.6.

Consider an (optimal) 2-coloring and the subhypergraph on the two coloring
classes. Now, find a 2-coloring for each of these subhypergraphs. These 2-colorings
form a 4-coloring for the original hypergraph. Continuing this partitioning process
we arrive at a c D 2k-coloring, k integer. Obviously, such a partitioning works only
if c is a power of 2. The hard work is to show that any c can be treated. In Sect. 5.2.6
we will see how to bring c into the discrepancy bound.

We represent the iterated partitioning of the set of colors C by a binary tree.
A binary rooted tree T D .XT ;ET / is called a partition tree for C , if the following
conditions are satisfied: the root of T is C , all nodes are subsets of C , all leaves
are singletons of C and each two son nodes form a partition of their common
father node. For every color i 2 C there is a unique path C D C

.i/
0 � C

.i/
1 �

: : : � C
.i/

k.i/ D fig in the partition tree. We write h.T / for the height of T , that
is the length of a longest path connecting a leaf and the root. We call a function
p W C ! Œ0; 1�, a weight of the set C of colors if

P
i2C pi D 1. For a color i 2 C

set v.T; p; i/ WD Pk.i/

lD1
pi

p.C
.i/
l /

and v.T; p/ D maxi2C v.T; p; i/. The next theorem

shows the influence of the partition tree chosen for the recursive coloring process.

Theorem 29. Let wd.H0; 2/ � K for all induced subgraphs H0 of H . Let C be
a set of colors with c D jC j and let p be a weight of C . Let T D .XT ;ET / be a
partition tree of C . Then there is a coloring  W X ! C such that for all colors
i 2 C and all E 2 E we have

ˇ̌jE \ �1.i/j � pi jEjˇ̌ � Kv.T; p; i/:
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In particular, wd.H ; c; p/ � Kv.T; p/. With K WD maxH0 wd.H0; 2/, where H0

is an induced subhypergraph, we have wd.H ; c; p/ � v.T; p/ herdisc.H /.

Proof. We use induction on the height h.T / of T . For h.T / D 0 we have just one
color and both sides of the inequality become zero. Let T be of height h.T / > 0 and
assume that the theorem is true for all partition trees of height strictly less than h.T /.
Let C1 and C2 be the sons of C in T . Set qj WD p.Cj / D P

k2Cj pk , j D 1; 2.
By assumption there is a 2-coloring 0 W X ! Œ2� such that

ˇ̌jE \ �10 .j /j � qj jEjˇ̌ � wd.H ; 2; .q1; q2// � K (5.27)

holds for all j 2 Œ2� and E 2 E . Put Xj WD �10 .j /, j D 1; 2. Denote by Tj the
subtree having Cj as its root. Then the hypergraph HjXj together with the set of
colors Cj , the weight 1

qj
pjCj and the partition tree Tj fulfils the assumption of this

theorem. By induction there are colorings j W Xj ! Cj , j 2 1; 2 such that

ˇ̌̌
jE \Xj \ �1j .i/j � 1

qj
pi jE \ Xj j

ˇ̌̌
� Kv

�
Tj ;

1
qj
pjCj ; i

	
� K

k.i/X
lD2

pi
qj

1
qj
p
�
C
.i/

l

	
(5.28)

for all i 2 Cj . Set

 D 1 [ 2 W x 7!
�
1.x/ W x 2 X1
2.x/ W otherwise.

Let j 2 Œ2� and i 2 Cj . Then C .i/
1 D Cj and qj D p.C

.i/
1 /. Let E 2 E .

From (5.27), (5.28) and with a straightforward calculation we get

ˇ̌jE \ �1.i/j � pi jEjˇ̌ �
ˇ̌
ˇjE \ Xj \ �1j .i/j � pi

qj
jE \ Xj j

ˇ̌
ˇ

Cpi
qj

ˇ̌jE \Xj j � qj jEjˇ̌

.5.27/;.5.28/�
k.i/X
lD2

pi
qj

1
qj
p.C

.i/

l /
K C pi

qj
K

D K

k.i/X
lD1

pi

p.C
.i/

l /
D Kv.T; p; i/:

Hence  satisfies the claim. For the specific K , the assertion follows from
Proposition 24. ut
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The following partition tree gives a bound of v.T; p; i/ < 4 for all i 2 Œc�: we
start with the tree consisting of the unique node C . For a leaf C0 of cardinality jC0j
greater than 1 let us define sons by the following rule: if there is a color i 2 C0
with weight pi � 1

2
p.C0/, then the sons of C0 shall be fig and C0 n fig. Otherwise

partition C0 in any way .C1; C2/ such that p.Cj / 2 � 1
3
p.C0/;

2
3
p.C0/

�
. Repeat this

process until all leaves are singletons. Further improvements can be achieved if we
consider the equi-weighted discrepancy, where p D 1

c
1c.

Definition 30. A partition tree for a positive integer n is a binary tree T D .XT ;ET /
together with a labelling l W XT ! Œn� such that the following conditions are
satisfied:

(i) The root r is labelled l.r/ D n.
(ii) For every non-leaf v with sons s1 and s2 we have

l.v/ D l.s1/C l.s2/

(iii) The leaves are labelled 1.

For a path P W r D v.i/0 ; v
.i/
1 ; : : : ; v

.i/

k.i/ connecting the root r and a leaf v.i/k.i/ labelled
i we call

v.T; P / D
k.i/X
lD1

1

l
�

v.i/l

	

the value of P and define v.T / as the maximum v.T; P / over all these paths P .
Finally v.n/ shall be the minimum v.T / over all partition trees T of n. There is
a natural correspondence between partition trees for sets of colors and for positive
integers. Let T D .XT ;ET / denote a partition tree for the set of colors C . Define a
labelling lT W XT ! ŒjC j� I v 7! jvj. Then, T together with lT is a partition tree for
jC j.

Now let T together with l denote a partition tree for a positive integer c. Let C
be any set of colors such that jC j D c. We construct a partition tree T � for C such
that lT � D l . Define f W XT ! 2Œc� recursively: set f .r/ D C for the root r of
T . For every node v with sons s1 and s2 such that f .v/ is already defined choose
f .s1/ to be any subset of f .v/ of size l.s1/ and f .s2/ D f .v/ n f .s1/. Note that f
is injective, and by replacing every v 2 XT by f .v/ we get a partition tree T � for
C . Clearly, lT� D l .

Furthermore, we have

v.T �; 1
c
1c/ D max

i2C

k.i/X
lD1

1
cˇ̌̌
C
.i/

l

ˇ̌̌ D max
i2C

k.i/X
lD1

1

l
�

v.i/l

	 D v.T /:
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Theorem 31. Let K WD maxH0 wd.H0; 2/, where H0 is an induced subhyper-
graph of H . Then

(i) disc.H ; c/ � v.c/K � 2:0005K .
(ii) disc.H ; c/ D wd.H ; c; p/ � 2:0005 herdisc.H /:

Proof. (i) Let T D .XT ;ET / together with l be a partition tree for c such that
v.T / D v.c/. We build T � as above and apply Theorem 29 to T � and p D 1

c
1c :

disc.H ; c/ D wd.H ; c; p/ � Kv.T �; p/ D Kv.T / D Kv.c/:

The upper bound on v.c/ can be proved by a specific construction of a partition
tree for c (see [26]).

(ii) follows from the argument in (i) using T � and Theorem 29.
ut

A first c-color version of the Beck–Fiala theorem is:

Theorem 32. For any hypergraph H we have

disc.H ; c/ < v.c/�.H / � 2:0005�.H /:

Proof. The Beck–Fiala theorem states that lindisc.H / < 2�.H / holds for any
hypergraph H . In particular, we have wd.H0; 2/ � 1

2
lindisc.H0/ < �.H0/ �

�.H / for all induced subhypergraphsH0 of H . The stated inequality then follows
from Theorem 31. ut
The limitation is clear: at the moment we are not able to bring c into the discrepancy
bound. This crucial step is done in the next section.

5.2.6 Refined Recursive Coloring

In this subsection we extend the recursive approach. Roughly speaking we show that
if the 2-color discrepancy of the subhypergraphs on any n0 � n vertices is bounded
by O

�
n˛0
�
, then the c-color discrepancy is bounded by O

�
. n
c
/˛
�
.

A useful concept is that of so called fair colorings with respect to a weight p.

Definition 33. Let p 2 Œ0; 1�c be a c-color weight and H D .X;E / a hypergraph.
A c-coloring  is a fair p-coloring of H , if j j�1.i/j � pi jX j j � 1 holds for all
i 2 Œc�.

Now, if n is not a multiple of c, we cannot split n into c parts of equal size, but
on the other hand we wish to get a partition so that each partition class is roughly
n=c large. This is the motivation to introduce integral weights.
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Definition 34. Let H D .X;E / be a hypergraph. We call a weight p 2 Œ0; 1�c

integral with respect to H (or H -integral for short) if all pi , i 2 Œc�, are multiples
of 1=jX j.
It is easy to see that for any weight there is a corresponding integral weight:

Proposition 35. Let H D .X;E / be a hypergraph with jX j D n. For any weight
p 2 Œ0; 1�c , there is a H -integral weight q such that for all i 2 Œc�, jpi �qi j � 1=n.

The relation between the discrepancy and the weighted discrepancy with respect
to a weight and an integral weight is stated by the next proposition.

Proposition 36. Let H D .X;E / be a hypergraph. Suppose that for any
H -integral weight q there is a fair c-coloring  with wd.H ; ; q/ � k.q/ for some
k.q/ 2 R. Then for any c-color weight p 2 Œ0; 1�c there is a H -integral weight p0
and a k D k.p0/ 2 R so that wd.H ; ; p0/ � k and wd.H ; ; p/ � k C 1. In
particular, for the weight p D 1

c
1c we get disc.H ; 0 ; c/ � k C 1 for some fair

c-coloring 0 .

Proof. Let p 2 Œ0; 1�c be a weight and let p0 be an associated H -integral weight
(Proposition 35). By assumption there is a fair c-coloring  and k D k.p0/ 2 R so
that wd.H ; ; p0/ � k. Let E be a hyperedge and Ai be the i -th color class of .
By the triangle inequality we have

jjE \Ai j � pi jEjj � ˇ̌jE \Ai j � p0i jEjˇ̌C jpi � p0i jjEj
� wd.H ; ; p0/C jpi � p0i jjEj � k C 1;

since jpi � p0i j � 1=n, according to Proposition 35. Taking the maximum over all
i and all E , the claim follows. The statement about the c-color discrepancy follows
from the above argument, because for p D 1

c
1c the notion of c-color discrepancy

and weighted discrepancy coincide. ut
Using a recoloring argument we can transform arbitrary colorings into fair

colorings.

Lemma 37. Let H D .X;E / be a hypergraph such thatX 2 E . Let p D .q; 1�q/
be a 2-color weight. Then any 2-coloring  of H can be modified in O.jX j/ time
to a fair p-coloring  such that

wd.H ; ; p/ � 2wd.H ; ; p/:

Proof. Let  be a 2-coloring. Set x WD qjX j � j�1.1/j. Since X is an edge in H ,
we have jxj � wd.H ; ; p/. Let  denote a coloring arising from  by changing
the color of bjxjc points in such a way that

ˇ̌
qjX j � j�1.1/jˇ̌ < 1. Now  is a fair

coloring with respect to the weight .q; 1 � q/. For an edge E 2 E we compute
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ˇ̌
qjEj � j�1.1/\Ejˇ̌

� ˇ̌
qjEj � j�1.1/\Ejˇ̌C ˇ̌j�1.1/\Ej � j�1.1/\Ejˇ̌

� ˇ̌
qjEj � j�1.1/\Ejˇ̌C bjxjc

� 2wd.H ; ; p/:

This completes the proof. ut
In the following we present a recursive-coloring algorithm. Its analysis requires

the following constants. Let ˛ 2 �0; 1Œ. For each p 2 �0; 1Œ define v˛.p/ to be the
value

max

8<
:

kX
iD1

iY
jD1

q˛j

kY
jDiC1

qj W k 2 N; q1; : : : ; qk�1 2 �0; 2
3

�
; qk 2 Œ0; 1�;

kY
jD1

qj D p

9=
; :

Set c˛ WD 2
21�˛�1

 
1C 1

1�
�
2
3

	.1�˛/
!

. Note that c1=2 � 31:15:

Straightforward calculations give [26]:

Lemma 38. Let ˛ 2 �0; 1Œ.
(i) For 0 < p < q � 2

3
, we have q˛v˛.

p

q
/C q˛

p

q
� v˛.p/.

(ii) For all p 2 Œ0; 1�, 2
21�˛�1v˛.p/ � c˛p

˛ .

We make a technical assumption. It requires that the discrepancy decreases
when passing to smaller subhypergraphs. This assumption will later allow us to
use hereditary discrepancy bounds.

Assumption 39 (Decreasing-Discrepancies-Assumption). Let H D .X;E / be a
hypergraph. Set n WD jX j. Let p0; ˛ 2 �0; 1Œ and D > 0. For all X0 � X with
jX0j � p0jX j and all q 2 Œ0; 1� such that .q; 1 � q/ is HjX0 -integral there is a fair
.q; 1 � q/-coloring  of HjX0 with discrepancy at mostDjX0j˛.

The next lemma shows how to get a fair coloring under the decreasing-
discrepancy assumption.

Lemma 40. Suppose that the Decreasing-Discrepancies-Assumption holds with
p0; ˛ 2�0; 1Œ and D > 0. For each H -integral weight .q; 1 � q/; p0 � q � 1

2
,

there is a fair .q; 1 � q/-coloring  with discrepancy at most wd .H ; ; p/ �
2

21�˛�1D .qn/˛:

Algorithm 1 recursively computes a fair coloring with respect to an integral
weight.

The main technical theorem is:

Theorem 41. Suppose that the Decreasing-Discrepancies-Assumption holds. Then
for each H -integral weight p 2 Œ0; 1�c there is a fair p-coloring  of H such
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Algorithm 1: RECURSIVE COLORING

input : A hypergraph H D .X; E / fulfilling the Decreasing-Discrepancies-Assumption, a
set C of at least 2 colors and an H -integral weight function p W C ! Œ0; 1�

output: A coloring  W X ! C as in Theorem 41
1 Choose a partition fC1; C2g of the set of colors C such that kp

jC1k1; kpjC2k1 � 2
3

or C1
contains a single color with weight at least 1

3
. Set .q1; q2/ WD .kp

jC1k1; kpjC2k1/;
2 According to Lemma 40, compute a fair .q1; q2/-coloring 0 W X ! Œ2� that has discrepancy

at most 2
21�˛

�1
D.qi n/

˛ in color i D 1; 2 if qi � p0. Set Xi WD �1.i/ for i D 1; 2;
3 for i D 1; 2 do
4 if jCi j > 1 then
5 By recursion compute a fair 1

qi
p

jCi -coloring i W Xi ! Ci for H
jXi with

discrepancy at most 2
21�˛

�1
Dv˛.

pj

qi
/.qin/

˛ in each color j 2 Ci such that

pj � p0;
6 else if Ci D fj g for some j 2 C then Choose i W Xi ! fj g as the constant mapping

7 for x 2 X do
8 if x 2 X1 then .x/ WD 1.x/ else .x/ WD 2.x/

9 Return ;

that the discrepancy is at most 2
21�˛�1Dv˛.pi /n˛ � Dc˛.pin/

˛ in all those colors
i 2 Œc� such that pi � p0.

Proof. Let p 2 Œ0; 1�c be a H -integral weight. To avoid trivial cases we shall
always assume that for all i 2 C , pi > 0.

We prove that the algorithm RECURSIVE COLORING computes a coloring as
claimed. Suppose by induction that this holds for sets of less than c colors. We
analyze the algorithm started on a color set C with c WD jC j � 2. We show
correctness. In Step 1 of the algorithm, both C1 and C2 are non-empty and q2 � 2

3

holds. Therefore by Lemma 40 and induction the colorings i ; i D 0; 1; 2 can be
computed as desired in Step 2 and 3. Let E 2 E , i 2 Œ2� and j 2 Ci such that
pj � p0. If jCi j > 1, then

ˇ̌jE \ �1.j /j � pj jEjˇ̌
D ˇ̌jE \ �10 .i/\ �1i .j /j � pj jEjˇ̌

�
ˇ̌̌
jE \ �10 .i/\ �1i .j /j � pj

qi
jE \ �10 .i/j

ˇ̌̌
C
ˇ̌̌
pj
qi

jE \ �10 .i/j � pj jEj
ˇ̌̌

�
ˇ̌
ˇj.E \ Xi/ \ �1i .j /j � pj

qi
jE \ Xi j

ˇ̌
ˇC pj

qi

ˇ̌jE \ �10 .i/j � qi jEjˇ̌

� 2
21�˛�1Dv˛.

pj
qi
/.qin/

˛ C pj
qi

2
21�˛�1D.qin/

˛

� 2
21�˛�1Dv˛.pj /n

˛
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by Lemma 38 (i). On the other hand, if Ci contains a single color j , then pj D
qi and

ˇ̌jE \ �1.j /j � pj jEjˇ̌ D ˇ̌jE \ �10 .i/j � qi jEjˇ̌
� 2

21�˛�1D.qin/
˛

� 2
21�˛�1Dv˛.pj /n

˛:

The last estimate in the theorem follows from Lemma 38 (ii). ut
We are ready to prove the multicolor analogue to Spencer’s six-standard-

deviation theorem.

5.2.7 c-Color Six Standard Deviations

The celebrated six standard deviations result of Joel Spencer [70] states that for
all hypergraphs H D .X;E / with n D jX j and m D jE j, m � n, disc.H / �
K

q
n ln. 2m

n
/ for some constantK > 0. An interesting case is m D O.n/, and there

disc.H / D O.
p
n/. For m significantly larger than n this result is outnumbered

(due to the implicit constants) by a simple random coloring. Using the relation
between discrepancies respecting a particular weight, the connection to hereditary
discrepancy (Proposition 24) and the recoloring argument (Lemma 37), we derive
from Spencer’s result

Lemma 42. For any X0 � X and HjX0 -integral weight p D .q; 1 � q/ there is a

fair p-coloring  of HjX0 satisfying wd.HjX0 ; ; p/ � 2K

r
jX0j ln

�
2mC2
jX0j

	
.

Proof. Let X0 � X . Then any induced subhypergraph of HjX0 has discrepancy

at most K
q

jX0j ln. 2mjX0j /, because Spencer’s bound is monotone in the number of

vertices. According to Proposition 24, we have

wd
�
HjX0 ; 2; p

� � wd
�
HjX0 ; 2

� � herdisc
�
HjX0

� � K

r
jX0j ln

�
2m
jX0j

	
: (5.29)

It remains to show the existence of a fair coloring. Let H denote the hypergraph
arising from H by adding the set X as an additional edge (unless X 2 E already
holds). Then H jX0 has at most mC 1 edges. Let � be a 2-coloring such that

wd
�
H jX0; �; p

	
D wd

�
H jX0 ; 2; p

	
:

By (5.29), wd
�
H jX0 ; 2; p

	
� K

r
jX0j ln

�
2mC2
jX0j

	
. The desired fair p-coloring 

can be constructed from � by Lemma 37. ut
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Theorem 43. Let H D .X;E / denote a hypergraph with n vertices, m � n and
let p 2 Œ0; 1�c be a HjX0 -integral weight. Set p0 WD mini2Œc� pi . Then there is a fair

p-coloring with discrepancy at most 63K

r
pin ln

�
2mC2
p0n

	
for all i .

Proof. By Lemma 42 we may apply Theorem 41 with ˛ D 1
2
, D D 2K

q
ln. 2mC2

p0n
/

and p0. This yields a fair p-coloring with discrepancy at most Dc˛
p
pin in color

i 2 Œc�, for all i . The claim follows from c˛ � 31:15. ut
Corollary 44. Let H D .X;E / denote a hypergraph with jX j D n and jE j D
m � n. Then, disc.H ; c/ � O

�p
n
c

ln.cm=n � c/�. For m D n and c � 
n for
some constant 
 < 1, the bound becomesO

�p
n
c

ln.c/
�
.

Proof. Consider the weight r D 1
c
1c . By Proposition 35 there is a H -integral

weight p such that for all i

jrin � pi j � 1=n: (5.30)

By Theorem 43, there is a fair coloring  with wd.H ; ; p/ � k, where

k WD max
i
63K

r
pin ln

�
2mC2
p0n

	
D O

�q
n
c

ln.cm=n� c/
	
;

using (5.30). The statement for m D n and c � 
n for some constant 
 < 1 now is
an immediate consequence. ut
In Corollary 44 the log-factor for m D nk , k > 1 a constant, is ln.cn/, while for
k D 1 or m D n, it is only ln.c/. A better approximation of only ln.n/, which is
independent of c in case ofm being large compared to n can be achieved by the next
theorem.

Theorem 45. Let p denote an H -integral c-color weight. Set p0 WD
min fpi W i 2 Œc�g. Then a c-coloring  having discrepancy at most 45

p
pin ln.4m/

in color i 2 Œc� can be computed in expected time O
�
nm log

�
1
p0

		
. In particular,

a c-coloring  such that

disc.H ; ; c/ � 45
q

n
c

ln.4m/C 1

can be computed in expected time O.nm log c/.

Proof. There is little to do form D 1, so let us assume thatm � 2. We show that the
colorings required by the Decreasing-Discrepancies-Assumption can be computed
in expected time O.jX0jm/. Denote by H the hypergraph obtained from H by
adding the whole vertex set as an additional hyperedge. Let X0 � X and .q; 1 � q/

be a 2-color weight. Let  W X0 ! Œ2� be a random coloring, independently coloring
the vertices with probabilities P..x/ D 1/ D q and P..x/ D 2/ D 1 � q for all
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x 2 X0. A standard application of the Chernoff inequality (cf. [1]) shows that

.�/ wd
�
H jX0; ; .q; 1 � q/

	
�
q

1
2
jX0j ln.4m/

holds with probability at least m�1
2m

. Hence by repeatedly generating and testing
these random colorings until .�/ holds we obtain a randomized algorithm computing
such a coloring with expected running time O.nm/. By Lemma 37 we get a fair
.q; 1� q/-coloring for HjX0 having discrepancy at most

p
2jX0j ln.4m/. Hence for

˛ D 1
2
, D D p

2 ln.4m/ and arbitrary p0 the colorings required in the Decreasing-
Discrepancies-Assumption can be computed in expected time O .jX0jm/.

Therefore we may apply Theorem 41 with p0 D minfpi W i 2 Œc�g. The
discrepancy bounds follow from c˛ � 31:15. Computing such a coloring involves

O
�

log. 1
p0
/n
	

times computing a color for a vertex. As this can be done in expected

time O.m/, we have the claimed bound of O
�
nm log

�
1
p0

		
. ut

Note that the construction of the 2-colorings can be derandomized with standard
derandomization techniques like an algorithmic version of the Chernoff-Hoeffding
inequality (cf. [74] or [73]). Thus the colorings in Theorem 45 can be computed by
a deterministic polynomial-time algorithm as well.

5.2.8 Bounded Shatter Functions

We have already defined the notion of the VC -dimension of a hypergraph (Defini-
tion 25). There are many natural examples of hypergraphs in geometry with bounded
VC -dimension (see [37]). We need the concept of the shatter functions which are
closely related to the VC -dimension.

Definition 46. Let H D .X;E / be a hypergraph.

(i) For a subset A � X set ˘H .A/ WD fA \ E W E 2 E g. The primal shatter
function �H is defined by

�H .p/ WD max fj˘H .A/j W A � X; jAj D pg;

where p � n.
(ii) The hypergraph H � D .X�;E �/, where X� D E , E � D fEx W x 2 Xg, and

Ex D fE 2 E W x 2 Eg, is called the dual hypergraph of H . The primal
shatter function of H � is called the dual shatter function of H and is denoted
by ��H .

Using our recursive approach we can generalize results due to Matoušek, Welzl
and Wernisch [57] and Matoušek [50] connecting discrepancy with the primal
shatter function �H and dual shatter function ��H of a hypergraph.
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Theorem 47. Let H D .X;E / be a hypergraph and let d � 1.

(i) If �H D O
�
md
�
, then disc.H ; c/ D O

�
. n
c
/
1
2� 1

2d

	
.

(ii) If ��H D O.md/, then disc.H ; c/ D O
�
. n
c
/
1
2� 1

2d logn
	

.

In both cases the implicit constants are independent of c.

Proof. The primal shatter function of an induced subhypergraph is bounded from
above by the primal shatter function of the whole hypergraph. Adding the vertex
set as additional edge changes the primal shatter function by at most 1, and does
not change the dual shatter function. Without loss of generality we may therefore
assume X 2 E . The remainder of the proof is standard: bound the weighted
discrepancies of the induced subhypergraphs using Proposition 24, use (Lemma 37)
and apply Theorem 41. ut

5.2.9 The Beck–Fiala Theorem

In this section we extend the Beck–Fiala theorem to multicolors. In the 2-color
case the theorem is proved using the technique of ‘floating colors’ where fractional
“colors” in Œ�1; 1� are successively changed to colors in f�1; 1g. Linear algebra is
the key tool there. For the c-color case we need in addition vector colors and tensor
products as well.

Denote by �.H / WD maxx2X jfE 2 E W x 2 Egj the maximum degree of the
hypergraph H . The Beck–Fiala theorem states that disc.H / < 2�.H / for any
hypergraph H (cf. [12]).

Beck and Fiala actually proved a more general result. For any matrix A D .aij /

from R
m�n denote by kAk1 WD maxj2Œn�

P
i2Œm� jaij j the operator norm induced by

the 1-norm.

Theorem 48 ([12]). For any matrix A 2 R
m�n, lindisc.A/ < 2kAk1:

The goal of this paragraph is to show:

Theorem 49 (Doerr, Srivastav [26]). For any matrix A 2 R
m�n it holds that

lindisc.A; c/ < 2kAk1:

The following elementary remark plays a crucial role in the proof of the c-color
Beck–Fiala theorem.

Lemma 50. Let x 2 Mc . Assume that there is a j 0 2 Œc� such that xj 0 …
f� 1

c
; c�1

c
g. Then there is at least a second index j 00 (different from j 0) such that

xj 00 … f� 1
c
; c�1

c
g.
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Proof. By assumption we have cxj 0 … Z. As c
P

j2Œc� xj D 0 2 Z by definition

of Mc , there exists a j 00 2 Œc�, j 0 ¤ j 00 such that cxj 00 … Z. In particular, xj 00 …
f� 1

c
; c�1

c
g. ut

Proof (of Theorem 49). Set � WD kAk1 and A D .aij / WD A ˝ Ic . Note that
� D kAk1. Let p W Œn� ! Mc . Set  D p. Successively we change  to a mapping
Œn� ! Mc . We regard p and  as cn-dimensional vectors.

Set J WD ˚
j 2 Œcn� W j … ˚� 1

c
; c�1

c




. We call the columns with indices from

J floating (the others fixed). Set I WD
n
i 2 Œcm� W Pj2J jaij j > 2�

o
, and call the

rows from I active (the others ignored). During the rounding process we will ensure
that the following conditions are fulfilled (this is clear at the beginning, because
 D p):

1. .A.p � //jI D 0, i. e. all active rows have discrepancy zero, and
2. all colors are in Mc , in particular we have

Pc�1
kD0 cj�k D 0 for all j 2 Œn�.

Note that (ii) is the crucial difference to the 2-color case, where we only need a
condition of type (i). Condition (ii) increases the number of equations.

We assume that the rounding process is at a stage where J and I are as above
and (i) and (ii) hold. If there is no floating color, i. e. J D ;, then all j , j 2 Œcn�,
are in f� 1

c
; c�1

c
g and  has the desired form.

Assume that there are still floating colors and consider the system

c�1X
kD0

cj�k D 0; j 2 Œn� such that c.j � 1/C k 2 J for some k 2 Œc�: (5.31)

By Lemma 50, in every equation of (5.31) there are at least two floating variables
j 0 ; j 00 , i. e. j 0; j 00 2 J . Thus (5.31) is a system of at most 1

2
jJ j equations. Now,

jJ j� �
X
j2J

X
i2I

jaij j D
X
i2I

X
j2J

jaij j > jI j 2�;

so jJ j > 2jI j. Hence

AjI�J jJ D 0 (5.32)

c�1X
kD0

cj�k D 0; j 2 Œn� such that c.j � 1/C k 2 J for some k 2 Œc�:

We have at most jI j C 1
2
jJ j < jJ j equations, thus the system is under-determined

and there is a non-trivial solution x 2 R
jJ j for (5.32). We extend x to xE 2 R

cn by

.xE/j WD
�
xj W j 2 J
0 W otherwise

:
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By (ii) and the definition of J , all variables j ; j 2 J are in
�� 1

c
; c�1

c

�
. Now, there

must be a � > 0 such that at least one component of  C �xE becomes fixed and
all colors are in Mc , i. e.  C �xE 2 Mn

c .  C �xE fulfils (i) since .AxE/jI D 0.
Define  WD C�xE . Since (i), (ii) are fulfilled for this new , we can continue the
rounding process until all j , j 2 Œcn� are in f� 1

c
; c�1

c
g.

We can now conclude the proof by showing
A.p � /1 < 2�. Let i 2 Œcm�

and let .0/ and J .0/ the values of  and J when the row i first became ignored. We
have .0/j D j for all j … J .0/ and j.0/j � j j < 1 for all j 2 J .0/. Note thatP

j2J .0/ jaij j � 2�, since i is ignored. Thus

ˇ̌�
A.p � /�

i

ˇ̌ D ˇ̌�
A
�
p � .0/

��
i
C �

A
�
.0/ � 

��
i

ˇ̌

D
ˇ̌
ˇ̌ 0C

X
j2J .0/

aij

�

.0/
j � j

	 ˇ̌ˇ̌ < 2�:

This completes the proof. ut
The immediate consequence for the c-color discrepancy is:

Corollary 51. disc.H ; c/ < 2�.H /.

5.2.10 The Theorem of Bárány–Grinberg

Let k�k denote a norm on R
d . From a partition point of view the theorem of Bárány–

Grinberg states that under the given assumptions there is a 2-partition .I1; I2/ of the
set X D fv1; : : : ; vkg such that for any subset X0 D fv1; : : : ; vlg


X

v2Ij\X0
v � 1

2

X
v2X0

v

 < n

for j D 1; 2. This motivates:

Definition 52 (Discrepancy of Vectors). Let X be a finite set of vectors in R
n and

P D fI1; : : : ; Icg a c-partition ofX . Let k�k be an arbitrary norm on R
n. We define

the discrepancy of the set X w. r. t. P and k � k by

disc .P; k � k/ WD max
j2Œc�


X
v2Ij

v � 1
c

X
v2X

v

 :

A further reformulation is useful. For a subset X0 � X set
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PjX0 WD fI1 \X0; : : : ; Ic \X0g:

Let v1; v2; : : : ; vk be vectors and P D fI1; : : : ; Icg be a c-partition of
fv1; v2; : : : ; vkg. We define the discrepancy of the sequence v1; v2; : : : ; vk w. r. t.
P and k � k by

disc
�
.vl /l2Œk�;P; k � k� WD max

l2Œk� disc
�
Pjfv1;:::;vl g; k � k� :

In this notation the Bárány–Grinberg theorem is as follows: there is a 2-partition
P D fI1; I2g such that disc

�
.vl /l2Œk�;P; k � k� < n. We define a norm k � kc on

R
cn:

Definition 53. Let w 2 R
cn and define the n-dimensional vector

wjfj;jCc;:::;jC.n�1/cg WD .wj ;wjCc; : : : ;w.n�1/c/> 2 R
n:

Define

kwkc WD max
j2Œc�

wjfj;jCc;:::;jC.n�1/cg
 :

Tensor products allow an elegant reformulation of the discrepancy of a sequence
of vectors. A straightforward calculation shows [26]:

Lemma 54. Let X � R
n be a finite set of vectors and P D fI1; : : : ; Icg be any

c-partition of X . Let  W X ! Œc� be the corresponding coloring (i. e. for all
v 2 X; l 2 Œc� we have .v/ D l if and only if v 2 Il ). Then the discrepancy of X
w. r. t. P and k � k is

disc.P; k � k/ D

X
v2X

v ˝m..v//


c

:

The c-color version of the Bárány-Grinberg theorem is:

Theorem 55. Let k � k be an arbitrary norm on R
n and let v1; v2; : : : ; vk be vectors

in R
n such that kvik � 1 for all i D 1; : : : ; k. Then there is a c-partition P D

fI1; : : : ; Icg of fv1; v2; : : : ; vkg such that

disc .P; k � k/ < .c � 1/n:

Proof. According to Lemma 54 we must show the existence of a coloring  W Œk� !
Mc such that

P
i2Œl� vi ˝ .i/


c
< .c � 1/n for all l 2 Œk�.

We follow the pattern of the proof of the Bárány-Grinberg theorem. Let A WD Œn�

and .i/j WD 0 for all i 2 Œk�, j 2 Œc�. As in the literature we call those .i/j where

i 2 A and .i/j … f c�1
c
;� 1

c
g variables and the corresponding color vector .i/
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active. At the beginning we have cn variables and n active color vectors and all
color vectors .i/; i 2 Œk� are in Mc , so we have

P
i2A vi ˝ .i/ D 0.

For the basic rounding procedure, which is called repeatedly, we define

A0 WD
�
i 2 Œk� W 9j 2 Œc� W .i/j …

�
c � 1

c
;�1
c

��
:

This is the set of indices of active color vectors. We consider the system of
equations:

X
i2A

vi ˝ .i/ D 0 (5.33)

X
j2Œc�


.i/
j D 0 for all i 2 A0.

Let n0 be the number of variables and m0 the rank of the system (5.33). By
Lemma 50, each active vector contains at least two variables, so n0 � 2jA0j.
Furthermore, we have m0 � .c � 1/n C jA0j, since

P
j2Œc� 

.i/
j D 0 for all i 2 Œk�

holds at any phase of the rounding process.

Case 56. There is no nontrivial solution to (5.33). Then there are at most m0
variables. The inequality 2jA0j � n0 � m0 � .c�1/nCjA0j implies jA0j � .c�1/n.

Suppose that there are vectors that have not been active, i. e. A ¤ Œk�. In this case
we set A WD A [ fmax.A/ C 1g, update system (5.33) and continue the rounding
process. At A D Œk� the rounding process is terminated by changing the remaining
variables to c�1

c
or � 1

c
in any way such that all .i/ are in Mc .

Case 57. There is a nontrivial solution for (5.33). Then—as in the proof of the
Beck–Fiala theorem—we can change  so that some variables become c�1

c
or � 1

c

and all variables stay in Œ� 1
c
; c�1

c
�. Now .i/ 2 Mc for all i 2 Œk� and

P
i2A vi ˝

.i/ D 0. And we may continue the rounding process.

Consider l 2 Œk�. Let Q.1/; : : : ; Q.k/ be the value of the color vectors at the phase
of the rounding process when A D Œl � and no nontrivial solution to (5.33) can
be found. Let QA0 be the value of A0 at this stage. Let .1/f ; : : : ; 

.k/

f be the final

values of the color vectors. We know j QA0j � .c � 1/n. As .i/ 2 Mc , we have Q.i/ � 
.i/

f

1 < 1 for all i 2 Œl �. Furthermore Q.i/ D 
.i/

f is true if i … QA0, because

an inactive vector would never become active. According to (5.33) also the equationP
i2Œl� vi ˝ Q.i/ D 0 holds. The calculations
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X
i2Œl�

vi ˝ .i/

c

�
X
i2Œl�

vi ˝ Q.i/

c

„ ƒ‚ …
D 0 by (5.33)

C
X
i2Œl�

vi ˝ ..i/ � Q.i//

c

D

X
i2 QA0

vi ˝ ..i/ � Q.i//

c

D max
j2Œc�


X
i2 QA0

.vi ˝ ..i/ � Q.i///jfj;jCc;:::;jC.n�1/cg


D max
j2Œc�


X
i2 QA0

vi .
.i/ � Q.i//j



<
X
i2 QA0

kvik

� .c � 1/n

finish the proof. ut
Bárány and Doerr [8] showed another multicolor version of the Bárány-Grinberg
theorem.

Theorem 58 (Bárány, Doerr [8]). Let d; c 2 N. Let k � k be any norm on R
d . Let

B denote the unit ball with respect to this norm. Any sequence v1; v2; : : : of vectors
in B can be partitioned into c subsequences V1; V2; : : : ; Vc in a balanced manner
with respect to the partial sums: for all n 2 N and l � c we have


X

i�k;vi2Vl
vi � 1

c

X
i�k

vi

 � 2:005d:

5.2.11 Lower Bounds

Let us complement the discussion so far by lower bound considerations. In fact,
we will see that almost matching c-color lower bounds can be proved. We need a
c-color version of a fundamental result of Lovász and Sós [13], through which the
discrepancy function is connected to the minimal eigenvalue of the matrix A>A,
where A is the given matrix. We require the following standard results from linear
algebra, which we state without proofs.

Lemma 59. The following laws hold for the tensor product:

1. Associativity: All matrices A;B;C fulfil .A˝ B/˝ C D A˝ .B ˝ C/.
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2. Distributivity with C: For all matrices A;B;C such that A C B is defined we
have .ACB/˝C D A˝C CB ˝C and C ˝ .ACB/ D C ˝ACC ˝B .

3. ‘Mixed Product Rule’: .AB/ ˝ .CD/ D .A ˝ C/.B ˝ D/ for all matrices
A;B;C;D such that AB and CD are defined.

4. ˝ is compatible with inversion: .A ˝ B/�1 D A�1 ˝ B�1 for all non-singular
matrices A and B .

5. The (complex) eigenvalues of A˝B are exactly the products of an eigenvalue of
A and one of B .

6. rank.A˝ B/ D rank.A/ rank.B/.
7. det.A˝B/ D .detA/nB .detB/nA for all matricesA 2 C

nA�nA andB 2 C
nB�nB .

Eigenvalues associated to the incidence matrix of a hypergraph are connected to
the discrepancy function. The c-color version is as follows.

Theorem 60. For a matrix A 2 R
m�n, let �min D �min.A

>A/ be the minimal

eigenvalue of A>A. Then disc.A; c/ �
q

n.c�1/
mc2

�min.

Proof. We fix a c-coloring  W Œn� ! Mc with minimum c-color discrepancy. Then

disc.A; c/ D k.A˝ Ic/k1
� 1p

cm
k.A˝ Ic/k2

� 1p
cm

kk2
q
�min..A˝ Ic/>.A˝ Ic//

Lemma 59(iii)D 1p
cm

r
n.c � 1/

c

q
�min..A>A/˝ Ic/

Lemma 59(v)D
r
n.c � 1/
mc2

q
�min.A>A/:

ut
It is a known fact that hypergraphs corresponding to Hadamard matrices show

that Spencer’s ‘six standard deviations’ result is tight, up to constant factors. Here
is a c-color extension.

Theorem 61. There is a universal constantK > 0 such that for an infinite sequence
of n 2 N there is a hypergraph with n vertices, n edges and with discrepancy at least
K
p

n
c
.

Proof. We consider n 2 N such that there exists a Hadamard matrixH of dimension
n, i. e.H 2 fC1;�1gn�n and all rows ofH are pairwise orthogonal. By multiplying
some rows by �1, we may assume that all entries of the first column v1 are 1. Let
v2; : : : ; vn denote the remaining columns. Set A D 1

2
.H C J /, where J is the n
 n

matrix consisting of 10s only. A is the incidence matrix of a hypergraph H of n
edges on n vertices. We prove that H has the desired discrepancy.



5 Multicolor Discrepancy of Arithmetic Structures 353

Fix an arbitrary coloring  W Œn� ! Mc and let i 2 Œc� be such that

ˇ̌
�1.m.i// n f1gˇ̌ � n�1

c
: (5.34)

For all j 2 Œc�, define j W Œn� ! ˚� 1
c
; c�1

c



; k 7! .k/j . Let a1; : : : ; an be the

row vectors of A and for x; y 2 R
n, let x � y be the usual inner product in R

n. Then

disc.H ; ; c/ D k.A˝ Ic/k1
D .a1 � 1; : : : ; a1 � c; : : : ; an � 1; : : : ; an � c/>

1
� .a1 � i ; : : : ; an � i />

1
D kAik1
� 1p

n
kAik2 :

By (5.34) we have

ˇ̌˚
k 2 Œn� n f1g W i .k/ D c�1

c


ˇ̌ � n�1
c
: (5.35)

By definition of A, there exists a � 2 R such that Ai D Pn
kD2 12i .k/vk C�v1. As

the v1; : : : ; vn are pairwise orthogonal, we may conclude the proof by the following
chain of estimations:

kAik2 D
vuut nX

kD2
i .k/2

 1
2
vk
2
2

C �2kv1k22

�
vuut nX

kD2
i .k/2

 1
2
vk
2
2

D 1
2

p
n

vuut nX
kD2

i .k/2

� 1
2

p
n

q
n�1
c

�
c�1
c

�2 C .n�1/.c�1/
c

�� 1
c

�2
(by (5.35))

D 1
2

p
n

q
.n�1/.c�1/

c2
:

And finally, with the lower bound estimation for the discrepancy above, we obtain

disc.H ; c/ � 1
2

q
.n�1/.c�1/

c2
. ut
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5.3 Arithmetic Progressions in the Integers

In this section we investigate the hypergraph of arithmetic progressions and
their higher dimensional generalizations. Let us consider the hypergraph HN of
arithmetic progressions in the first N positive integers (Definition 19). While the
upper bound of Matoušek and Spencer (Theorem 22) is non constructive, the bound
of Sárközy is constructive. In Chap. 7, L. Kliemann presents an elegant probabilistic
version of Sárközy’s algorithm and its analysis due to V. Sauerland [69], which also
has a very efficient implementation (see [44]).

We proceed to the proof of an upper and lower bound for the c-color discrepancy
of the hypergraph of arithmetic progressions due to Doerr and Srivastav [26].

Theorem 62. disc.HN ; c/ D O.c�0:16N 0:25/ for c � N0:25.

Proof. For an absolute constant C 0 the following holds: Let p 2 Œ0; 1�c be a weight.
Then there is a fair coloring of HN with respect to p having discrepancy at most
C 0p0:16i N 0:25 in each color i such that pi � N0:25. By Lemma 5.3 of [56] an induced
subgraph H0 D .HN /jX0 of HN on jX0j D �N � N0:25 vertices has discrepancy
at most C1�0:16N 0:25 for some absolute constant C1. We show that herdisc.H0/ �
2C1�

0:16N 0:25:
Let H1 D .X1;E1/ be an induced subhypergraph of H0. If jX1j � N0:25 we are

done by Lemma 5.3 of [56]. Let us therefore assume jX1j < N0:25. We show that
.H1/ˇ̌̌hN

2

i and .H1/ˇ̌̌
ŒN �n

h
N
2

i have discrepancy at most C1�0:16N 0:25 and conclude

disc.H1/ � 2C1�
0:16N 0:25. Consider the hypergraph

H2 WD Hˇ̌
ˇ�X1\

h
N
2

i	
[
n
N�N0:25C

ˇ̌
ˇX1\

h
N
2

iˇ̌ˇC1;:::;No

This hypergraph has exactly N0:25 � �N vertices and thus discrepancy
at most C1�0:16N 0:25. As every edge of .H1/

ˇ̌
ˇhN
2

i is also an edge of H2,

we conclude disc

�
.H1/

ˇ̌
ˇhn
2

i
�

� C1�
0:16N 0:25. A similar argument shows

disc

�
.H1/

ˇ̌
ˇŒN �nhN

2

i
�

� C1�
0:16N 0:25. Hence herdisc.H0/ � 2C1�

0:16N 0:25. The

relation between the linear and hereditary discrepancy yields that all weighted
discrepancies of H0 are bounded by 2C1�

0:16N 0:25. As ŒN � is an arithmetic
progression, we may apply Lemma 37 and conclude that twice this discrepancy
may be achieved by a fair coloring respecting the underlying weight. We may apply
Theorem 41 with D D 4C1N

0:09, ˛ D 0:16 and p0 D N0:25, which proves our
claim. ut

And the lower bound is:

Theorem 63. The hypergraph of arithmetic progressions fulfils
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disc.HN ; c/ � 0:04
1p
c

4
p
N:

Proof. For the lower bound we will follow the approach of [13]. Set k D
�q

1
6
N

�
.

Let E be the set of arithmetic progressions of length k and difference less than
6k computed modulo N (hence our arithmetic progressions may be over-wrapped
from N to 1 at most once). Every arithmetic progression of E is a union of at most
two arithmetic progressions from EN , so the discrepancy of HN is at least half the
discrepancy of E .

Recall that a matrix is called circulant if the i -th row can be obtained from the first
by shifting it i � 1 times to the right. Let us enumerate the arithmetic progressions
in E in a way that if i is not divisible by N , then EiC1 D Ei C 1 (always computed
modulo N ), i. e. EiC1 is Ei shifted right by one. Thus the incidence matrix A D
.aij / 2 f0; 1g6kN�N defined by aij D 1 if and only if j 2 Ei consists of 6k
circulant sub-matrices. As sum and product of two circulant matrices are circulant
again, A>A is circulant. The eigenvectors of circulant matrices are known to be of
the form .1; "; "2; : : : ; "N�1/>, where " is an N th root of unity. Thus the minimum
eigenvalue �min.A

>A/ of A>A is greater than 1
4
k2.

Using Theorem 60 we have disc ..ŒN �;EN / ; c/
2 � N.c�1/

6kNc2
1
4
k2 D .c�1/k

24c2
. Hence

disc.HN ; c/ � 0:5 disc ..ŒN �;E / ; c/

�
s

c � 1

96
p
6c2

4
p
N

� 0:0652

r
c � 1

c2
4
p
N

� 0:04

r
1

c

4
p
N:

This completes the proof. ut

5.3.1 Cartesian Products

This subsection is based on the work of Doerr, Srivastav and Wehr [29]. Let us
introduce Cartesian products of arithmetic progressions, a kind of high-dimensional
generalization of arithmetic progressions in the integers.

Definition 64. Let HN be the hypergraph of arithmetic progressions in the first N
integers. A d -dimensional arithmetic progressionA in ŒN �d is the Cartesian product
of d arithmetic progressions in ŒN �, i. e. A D Qd

iD1 Ai where Ai is an arithmetic
progression in ŒN � for all i D 1; : : : ; d . Let H d

N be the hypergraph with node
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0 0

40

40

Fig. 5.2 Some
two-dimensional Cartesian
products of arithmetic
progressions

set ŒN �d and with the set of hyperedges consisting of Cartesian products of any d
arithmetic progressions in ŒN �.

Note that H 1
N D HN . The study of H d

N was suggested by Hans Jürgen Prömel
in the context of Petra Wehr’s (née Knieper) dissertation at the Humboldt University
Berlin in 1996. The motivation came from the multi-dimensional version of van der
Waerden’s theorem, the theorem of Gallai [64] (see also [36]). By Gallai’s theorem
the following is true: Let t be a positive integer and X D Œt �d . If Nd is finitely
colored, then there exist integers x1; x2; : : : ; xd and ı 2 N such that

W D .x1; : : : ; xd /C ıX

D ˚
.x1 C i1ı; x2 C i2ı; : : : ; xd C id ı/ W 0 � ij � t; j D 1; : : : ; d



is monochromatic. Note that W is a d -dimensional arithmetic progression in the
sense of Definition 64.

Examples for two-dimensional Cartesian products of arithmetic progressions are
shown in Fig. 5.2.

In the following, we present the proof of Doerr, Srivastav and Wehr [29] for the
tight bound disc.H d

N / D �.N
d
4 /. This extends the lower bound of ˝.N1=4/ of

Roth [67] and the matching upper bound O.N1=4/ of Matoušek and Spencer [56]
from d D 1 to arbitrary, fixed d . To establish the lower bound harmonic analysis
on locally compact Abelian groups is used. For the upper bound a product coloring
arising from the theorem of Matoušek and Spencer is sufficient. The main theorem
is:

Theorem 65 (Doerr, Srivastav, Wehr [29]). Let d � 1 be an integer. We have

��dN d
4 � disc.H d

N / � ˛dN
d
4 ;

where ˛ > 0 is an absolute constant. Thus disc.H d
N / D �.N

d
4 / for every fixed d .
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We will also show that a kind of submultiplicativity of the c-color discrepancy
function allows also to settle a c-color bound using Theorem 65:

Theorem 66. Let d � 1 be an integer. Then disc.H d
N ; c/ � O.c0:84d�1N d

4 /:

Note that a non-trivial lower bound for disc.H d
N ; c/, c � 3, is not known. For the

proof of the lower bound in Theorem 65 we need some Fourier analysis, useful at
many places in this chapter.

5.3.2 Basics of Fourier Analysis on LCA Groups

We give a short overview on the basics of Fourier analysis on locally compact
Abelian groups (LCA groups). For an extensive introduction to this field we refer to
the book of W. Rudin [68].

Definition 67. Let .G;C;T / be a locally compact Abelian group. A character on
G is a function 
 W G ! C with

(i) j
.x/j D 1 for all x 2 G,
(ii) 
.x C y/ D 
.x/
.y/ for all x; y 2 G.

Let OG denote the set of all characters on G.

Remark 68. OG is a subset of the set CG of all complex-valued functions on G.
Define an addition of functions by f Cg W G ! C; x 7! .f Cg/.x/ WD f .x/g.x/.

Theorem 69. Let G be a locally compact Abelian group. Then

(i) OG is closed under the addition C in C
G .

(ii) There exists a topology T OG on OG such that OG is a locally compact Abelian
group.

OG is called the dual group of G.

For a locally compact Abelian group G and all 1 � p < 1 we denote by Lp.G/
the subset of all Borel functions f with kf kp WD .

R
G

jf .x/jpdx/1=p < 1, where
the used measure is the up to a positive constant unique Haar measure. Now we are
able to define the Fourier transform for functions in L1.G/ and the convolution of
two functions in L1.G/.

Definition 70 (Fourier Transform). Let G be a locally compact Abelian group
and f 2 L1.G/. The Fourier transform Of W OG ! C is defined by Of .
/ WDR
G f .x/
.�x/ dx:

Definition 71 (Convolution). Let G be a locally compact Abelian group and
f; g 2 L1.G/. The convolution f � g W G ! C is defined by

.f � g/.y/ WD
Z
G

f .x/g.y � x/ dx:
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Remark 72. The Fourier transform and the convolution are well defined. For f; g 2
L1.G/ the convolution f � g is also in L1.G/ and it holds kf � gk1 � kf k1kgk1
[68].

The following two theorems are the key for the use of Fourier analysis in
discrepancy theory. The first shows that the Fourier transform is multiplicative on
the Banach algebra L1.G/, where the multiplication on L1.G/ is the convolution.
The second is the well-known Plancherel Theorem for locally compact Abelian
groups [68].

Theorem 73. Let G be a locally compact Abelian group. For all f; g 2 L1.G/ we
have 1f � g D Of Og.

Theorem 74. The Haar measure on OG can be normalized such that the Fourier
transform is an isometry, i.e. k Of k2 D kf k2, for all f 2 L1.G/\ L2.G/.

We have to mention here that, if G is discrete, the integral
R
G

�dx is nothing but
the sum

P
x2G . In our discrepancy theoretical problems we are only concerned with

discrete or even finite Abelian groups. Note that with the discrete topology they are
automatically locally compact. The following corollary to Theorem 74 is useful in
this setting.

Corollary 75. Let G be a finite Abelian group of order r . Then for any complex-
valued function f on G we have kbf k22 D rkf k22.

We also give a basic consequence of the Plancherel theorem. Let x C E WD
fx C y W y 2 Eg and for an A � G we define f .A/ WD P

a2A f .a/.

Proposition 76. Let E0 be a set of subsets of G and let 
 > 0 be chosen such thatP
E2E0

jb11�E.r/j2 � 
 for all r 2 OG. Let f W G ! C. Then

X
E2E0

X
x2G

jf .x C E/j2 � 
kf k22:

Proof. We have

f .x C E/ D
X

y2xCE
f .y/ D

X
y2G

f .y/11xCE.y/

D
X
y2G

f .y/11�E.x � y/ D .f � 11�E/.x/;
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and

X
E2E0

X
x2G

jf .x CE/j2 D
X
E2E0

X
x2G

j.f � 11�E/.x/j2

PlancherelD
X
E2E0

X
r2 OG

j4.f � 11�E/.r/j2

multiplic. of conv.D
X
r2 OG

j Of .r/j2
X
E2E0

jb11�E.r/j2

� 

X
r2 OG

j Of .r/j2

PlancherelD 
kf k22
proves the claim. ut

5.3.3 Cartesian Products: Lower Bound

The Fourier-analytical proof of the lower bound can also be found in Petra Wehr’s
dissertation [45]. Roth’s proof of the lower bound in the one-dimensional case [67]
does not invoke the discrepancy function directly. This might be one reason why
it was not possible to generalize Roth’s proof to Cartesian products earlier. We use
the abstract framework of locally compact Abelian groups. For the remainder of this
section let d denote a positive integer.G WD Z

d equipped with the discrete topology
is a locally compact Abelian group. Let T  C be the unit circle. We denote the
set of characters of G by OG. In this discrete setting the convolution of two functions
f; g 2 L1.G/ is .f �g/.y/ WD P

x2G f .x/g.y �x/. The Fourier transform of f is

Of W OG ! CI 
 7!
X
x2G

f .x/
.�x/:

Note that we have 1f � g D Of Og. Let < �; � > denote the inner product on R
n.

Using the duality OZ ' T , it is straightforward to show the following proposition.

Proposition 77. For ˛ 2 Œ0; 1Œd let 
˛ W Z
d ! T I z 7! e2�i<˛;z> denote the

character associated to ˛ and T d WD f
˛j˛ 2 Œ0; 1Œd g.

(i) The dual group cZd of Zd is T d .
(ii) The Fourier transform Of of a function f 2 L1.Zd / can be written as

Of .
˛/ D
X
z2Zd

e�2�i<˛;z>f .z/:



360 N. Hebbinghaus and A. Srivastav

Proof (of Theorem 65, lower bound). We express the discrepancy of a given d -
dimensional arithmetic progression and a given 2-coloring as the convolution of
the coloring function and a characteristic function of the arithmetic progression.
Then we compute the L2-norm of this function applying the Plancherel theorem.
An average argument (taking the sum over a special set of d -dimensional arithmetic
progressions) and an estimate for the sum of unit roots completes the proof. Some
notations are needed.

• L WD 1
2

p
N , � WD f1; : : : ;pN gd , J WD ŒN �d ,

• Aj0;ı0 WD fj0 C ı0i W i 2 ŒL�g \ ŒN �,
• For ı 2 � , j 2 J define Aj;ı WD Qd

iD1 Aji ;ıi .

Define the extension F of a 2-coloring  of ŒN �d to Z
d by

F .j / D
�
.j / W j 2 J

0 W otherwise.

We define a (quasi-)characteristic function of A0;ı by

�ı.k/ D
�
1 W �k 2 A0;ı
0 W otherwise

An easy calculation yields

.F � �ı/.j / D .Aj;ı/ (5.36)

for all ı 2 �, j 2 J .
As F and �ı have finite support, we have F � �ı 2 L1.Zd / \ L2.Zd /. The

Plancherel theorem for locally compact Abelian groups [68] gives:

X
j2J

2.Aj;ı/
.5.36/D kF � �ık22 D 

2F � �ı
2
2

D k OF � O�ık22
D

Z
Œ0;1�d

j OF .
˛/ O�ı.
˛/j2 d˛: (5.37)

Roth [67] showed the following estimate for sums of unit roots.

p
NX

ıD1

ˇ̌
ˇ̌̌
ˇ
L�1X
jD0

e2�iıj˛

ˇ̌
ˇ̌̌
ˇ
2

� ��2N D
�
2

�
L

�2
for arbitrary ˛ 2 R: (5.38)
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Thus we have

X
ı2�

ˇ̌̌
ˇ̌ O�ı.
˛/

ˇ̌̌
ˇ̌
2

D
X
ı2�

ˇ̌
ˇ̌̌
ˇ
X
j2Zd

�ı.j /e
�2�i<j;˛>

ˇ̌
ˇ̌̌
ˇ
2

D
X
ı2�

ˇ̌̌
ˇ̌
ˇ

X
j1;:::;jd2ŒL�

e2�i.j1ı1˛1C			Cjd ıd ˛d /
ˇ̌̌
ˇ̌
ˇ
2

D
X
ı2�

ˇ̌
ˇ̌
ˇ̌
dY
kD1

0
@L�1X
jkD0

e2�ijkık˛k

1
A
ˇ̌
ˇ̌
ˇ̌
2

D
dY
kD1

0
B@
p
NX

ıkD1

ˇ̌
ˇ̌
ˇ̌
L�1X
jkD0

e2�ijkık˛k

ˇ̌
ˇ̌
ˇ̌
2
1
CA

� .��2N /d D ��2dN d : (5.39)

The Plancherel theorem says

k OF k22 D kF k22 D
X
j2J

2.j / D Nd : (5.40)

Finally

X
ı2�

X
j2J

2.Aj;ı/
.5.37/D

X
ı2�

Z
Œ0;1�d

j OF .
˛/ O�ı.
˛/j2d˛

D
Z

Œ0;1�d

j OF .
˛/j2
 X
ı2�

j O�ı.
˛/j2
!
d˛

.5.39/� .��2N /d
Z

Œ0;1�d

j OF .
˛/j2d˛

.5.40/D .��2N /dN d D ��2dN 2d :

The sum
P

ı2�
P

j2J 2.Aj;ı/ consists ofN
3d
2 terms. The pigeonhole principle

implies the existence of ı 2 � and j 2 J such that

2.Aj ;ı/ � ��2dN 2d

N
3d
2

D ��2dN
d
2 :

So j.Aj ;ı/j � ��dN d
4 , and thus the discrepancy of H d

N is at least ��dN d
4 . ut
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5.3.4 Cartesian Products: Upper Bound

B. Doerr gave a very general argument which solves the problem also for an
arbitrary number of colors. The proof idea came up in a discussion with Nati Linial
at the workshop on discrepancy theory in 1998 at Kiel University.

Let G D .X;E / and H D .Y;F / be hypergraphs. Define the Cartesian product
of G and H by

G 
 H WD .X 
 Y; fA 
 B W A 2 E ; B 2 F g/ :

By this definition, the hypergraph of d -dimensional arithmetic progressions is
the d -fold Cartesian product of the hypergraph of (one-dimensional) arithmetic
progressions on ŒN �.

Theorem 78. For any c 2 N and any two hypergraphs G and H we have

disc.G 
 H ; c/ � c disc.G ; c/ disc.H ; c/:

Proof. Pick a Latin square Q D .qij / of dimension c, i. e. Q 2 Œc�Œc��Œc� such that
every row and column contains every number of Œc� exactly once. Note that for every
c 2 N there is a Latin square of dimension c : Let � be any group multiplication on
Œc�. Then qij WD i � j defines a Latin square. As Q is a Latin square we may define
a permutation �i of Œc� for every i 2 Œc� by the following rule: �i .j / is the unique
k 2 Œc� such that qjk D i .

Choose optimal colorings G and H of G and H respectively, i. e.,
disc.G ; G / D disc.G ; c/ and disc.H ; H / D disc.H ; c/. Define  W X 
 Y !
Œc� by

.x; y/ WD qG .x/H .y/

for all x 2 X; y 2 Y .
Let A 2 E ; B 2 F . Set

ai D ˇ̌
�1G .i/ \Aˇ̌ � jAj

c
;

bi D ˇ̌
�1H .i/ \ B ˇ̌� jBj

c

for all i 2 Œc�. Then we have

c�1X
iD0

ai D 0 D
c�1X
iD0

bi : (5.41)

This yields
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ˇ̌
�1.i/ \ .A 
B/ˇ̌ D

c�1X
jD0

ˇ̌
�1G .j / \Aˇ̌ � ˇ̌�1H .�i .j // \ B

ˇ̌

D
c�1X
jD0

�
aj C jBj

c

��
b�i .j / C jAj

c

�

D
c�1X
jD0

aj b�i .j / C jAj
c

c�1X
jD0

aj C jBj
c

c�1X
jD0

bj C c
jAjjBj
c2

D
c�1X
jD0

aj b�i .j / C jA 
 Bj
c

by (5.41).

As jai j � disc.G ; c/ and jbi j � disc.H ; c/, we have

ˇ̌
ˇ̌ˇ̌�1.i/ \ .A 
 B/ˇ̌� jA 
 Bj

c

ˇ̌
ˇ̌ D

c�1X
jD0

aj b�i .j / � c disc.G ; c/ disc.H ; c/:

This proves the theorem. ut
For two colors we have disc.G / D 2 disc.G ; 2/, so by Theorem 78:

Corollary 79. The 2-color discrepancy is sub-multiplicative, i. e.,

disc.G 
 H / � disc.G / disc.H /:

We can now finish the proof of Theorem 65.

Proof (of Theorem 65, upper bound). It follows from Definition 64 that the
hypergraph of d -dimensional arithmetic progressions is the d -fold Cartesian prod-
uct of the hypergraph of one-dimensional arithmetic progressions. Using optimal
colorings for any of the factors of the hypergraph of d -dimensional arithmetic
progressions arising from the theorem of Matoušek and Spencer [56], Corollary 79
implies Theorem 65. ut
We may ask whether there is any further relation between the discrepancy of a
general hypergraph G 
 H and the product disc.G / disc.H /. Unfortunately, this
is not the case:

Example 80. The hypergraph of two-element subsets of a three-element set G D
.Œ3�;

�
Œ3�
2

�
/ has discrepancy two (one color class has at least two elements, i.e., it

contains a monochromatic two-set). The Cartesian product G 
G can be colored in
a way that there is no monochromatic rectangle: .i; i/ WD 1 and .i; j / WD �1 for
i; j 2 Œ3�; i ¤ j . So disc.G 
 G / � 2 < 4 D disc.G /2. This is easy to see looking
at a suitable drawing of G 
G : the vertices form a 3
3-grid, the hyperedges consist
of the corners of the rectangles having axis-parallel edges. All these rectangles have
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(a) (b)

Fig. 5.3 (a) Example hypergraph G with discrepancy 1; (b) Coloring of the vertices of H D
G � G with discrepancy 0

one or two points on the diagonal of the grid, and thus have discrepancy two or zero
with respect to .

Another example shows that the discrepancy of a product can become 0, even if
the factors have non-zero discrepancy.

Example 81. Let G be the hypergraph

.f1; : : : ; 7g; ff1; 2g; f1; 3g; f1; 4g; f1; 5g; f2; 3; 4; 5; 6; 7gg/

as depicted in Fig. 5.3a.

One can check that G does not have discrepancy 0, because otherwise the points
2; 3; 4 and 5 would be in the same color class, but the edge E D f2; 3; 4; 5; 6; 7g
is imbalanced. On the other hand, G 
 G has discrepancy 0 (see the coloring in
Fig. 5.3b).

5.3.5 Cartesian Products of Symmetric Progressions

We further follow Doerr, Srivastav and Wehr [29].
A d -dimensional symmetric arithmetic progression is defined as follows:

Definition 82. The hypergraph

H d
N; sym WD .ŒN �d ; f

dY
iD1

A W A arithmetic progressiong/:
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is called the hypergraph of d -dimensional symmetric arithmetic progressions in
ŒN �d .

Here a hyperedge is the Cartesian product of the same arithmetic progression in
f1; : : : ; N g. At the workshop of the DFG graduate school “Algorithmische Diskrete
Mathematik” in Berlin in April 1997, Walter Deuber asked about the discrepancy
of this hypergraph. Note that this is a special case of our general problem, because
H d
N; sym  H d

N . This shows disc.H d
N; sym/ � cN

d
4 . But a much better bound can be

proved.

Theorem 83. There is a constant C > 0 independent of d and N such that

disc
�
H d
N; sym

	
� CN

1
4 :

The above theorem is a consequence of a more general result. Let H D .X;E /
be a hypergraph. Set E d

sym WD fEd jE 2 E g. We call H d
sym WD .Xd ;E d

sym/ the d -fold
symmetric Cartesian product of H .

Theorem 84 (Doerr, Srivastav, Wehr [29]).

disc.H d
sym/ � disc.H /:

Proof. Let D WD f.x; : : : ; x/ W x 2 Xg be the diagonal of Xd . For x 2 Xd nD set

a.x/ WD minfi W xi ¤ xiC1g:

Define f W Xd ! Xd by

f .x/i WD
8<
:
xa.x/C1 W x … D; i � a.x/

x1 W x … D; i D a.x/C 1

xi W otherwise

Note that f .f .x// D x for all x 2 Xd , so f is a bijection. For all x 2 Xd nD the
f -orbitOf .x/ of x has order 2 and consists of x and f .x/. Further we have

fxi W i 2 Œd �g D ff .x/i W i 2 Œd �g;

and thus f leaves the hyperedges of H d
sym invariant.

Pick an optimal coloring 0 of H . Choose a system R of representatives of the
f -orbits in Xd n D, i. e., for all x 2 Xd n D either x or f .x/ lies in R. Define
 W Xd ! f�1; 1g by

.x/ WD
8<
:

�1 W x 2 R
0.v/ W x D .v; : : : ; v/ 2 D

1 W otherwise
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Let E 2 E . From the properties of f and R we get

jEd\Rj D jf .Ed\R/j D jf .Ed /\f .R/j D jEd\.Xd nDnR/j D jEd nDnRj:

Thus

X
x2Ed

.x/ D
X

x2Ed\R
�1C

X
x2Ed\D

.x/C
X

x2Ed\f .R/
1 D

X
v2E

0.v/;

and this concludes the proof. ut
Lower bounds are not known. For the general case, not much can be said

due to Example 81 in the previous subsection. In the special case of arithmetic
progressions, it seems to be difficult to use Fourier analysis, because the convolution
and Fourier-transform take place on different groups, namely Z

d and the diagonal of
Z
d . Thus no factoring like k2F � �ık22 D k OF � O�ık22, i. e., is available, and therefore

the coloring function cannot be separated from the characteristic function, which
was a crucial step in the proof of the lower bound of Theorem 65.

5.3.6 More on Products: Simplices

So far, we have proved for the 2-color discrepancy of products of hypergraphs and
symmetric products

disc.H d / � disc.H /d ; and

disc.H d
sym/ � disc.H /:

There are no such results known for multicolors, and in fact the situation
is much more complex. Doerr, Gnewuch and Hebbinghaus [27] showed that
disc.H d

sym; c/ D O.disc.H ; c// does not hold in general, but if c divides kŠ S.d; k/
for all k 2 f2; : : : ; d g, where S.d; k/ is the Stirling number of the second kind, the
c-color discrepancy of H d

sym can be bounded by the c-color discrepancy of H .

Coloring Simplices. The key idea in [27] stems from the proof of the inequality
disc.H d

N;sym/ � disc.HN / in the case of d D 2. The required 2-coloring is
constructed as follows. To color the diagonal in X 
X , we use an optimal coloring
with discrepancy disc.H /. Now color the points above the diagonal blue and
the points below the diagonal red. Obviously, it is not clear how to extend this
approach to d � 3 and c D 3, the notion “above” resp. “below” the diagonal
has no meaning here. The idea of Doerr, Gnewuch and Hebbinghaus is to view the
diagonal as a one-dimensional simplex, and the parts above/below the diagonal as
two two-dimensional simplices. So the coloring is a suitable coloring of a simplicial
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decomposition of X2. For c D 3 and d D 3, the set X3 is partitioned into six
3-dimensional simplices obtained from the set fx 2 X3 W x1 < x2 < x3g by
permuting the coordinates, accordingly the six 2-dimensional simplices permuting
the coordinates of the set fx 2 X3 W x1 D x2 < x3g and the one-dimensional
simplex fx 2 X3 W x1 D x2 D x3g. With each color one colors exactly two
3-dimensional and two 2-dimensional simplices. The diagonal is colored with an
optimal coloring coming from the one-dimensional situation.

We proceed to elaborate on this idea. The detailed discussion will show new
and mathematically interesting phenomena regarding the coloring of simplices, in
particular, Ramsey’s theorem comes into the picture.

A set fx1; : : : ; xkg of integers with x1 < : : : < xk is denoted by fx1; : : : ; xkg<.
For a set S we put

 
S

k

!
D fT � S W jT j D kg :

Furthermore, let Sk be the symmetric group on Œk�. For l; d 2 N with l � d ,
Pl.d/ denotes the set of all partitions of Œd � into l non-empty subsets. Let e1 D
.1; 0; : : : ; 0/, : : :, ed D .0; : : : ; 0; 1/ be the standard basis of Rd . For c 2 N and
� 2 N0 we write c j� if there exists an m 2 N0 with mc D �.

Definition 85. Let d 2 N, l 2 Œd � and T � N finite. For J D fJ1; : : : ; Jlg 2 Pl.d/
with minJ1 < : : : < minJl put fi D fi .J / D P

j2Ji ej , i D 1; : : : ; l . Let � 2 Sl .
We call

S�J .T / WD
n lX
iD1

˛�.i/fi W f˛1; : : : ; ˛lg< � T
o

an l-dimensional simplex in T d . If l D d , write S�.T / instead of S�J .T / (as
jPd.d/j D 1).

Remark 86. Let S.d; l/, d; l 2 N be the Stirling numbers of the second kind, then

S.d; l/ D
lX

jD0

.�1/j .l � j /d

j Š .l � j /Š (5.42)

and jPl.d/j D S.d; l/ (see, e.g. [65]).
Let T � N be finite. If jT j � l , we have S�I .T / ¤ S�J .T / as long as I ¤ J or

� ¤ � . So the number of l-dimensional simplices in T d is lŠ S.d; l/. If jT j < l ,
then there exists obviously no non-empty l-dimensional simplex in T d .

The main results in [27] is:

Theorem 87 (Doerr, Gnewuch, Hebbinghaus [27]). Let c; d 2 N.
If c j kŠ S.d; k/ for all k 2 f2; : : : ; d g, then every hypergraph H satisfies
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disc.H d
sym; c/ � disc.H ; c/ : (5.43)

If c − kŠ S.d; k/ for some k 2 f2; : : : ; d g, then there exists a hypergraph K such
that

disc.K d
sym; c/ � 1

3 kŠ
disc.K ; c/k ; (5.44)

and K can be chosen to have arbitrary large discrepancy disc.K ; c/.

Let us draw some implications of this theorem. Note that (5.43) does not hold for
c D 4 and for c D 3, it holds if d is odd.

Corollary 88. The following two facts hold.

(i) Let d � 3 be an odd number. Then for any hypergraph H it holds that

disc.H d
sym; 3/ � disc.H ; 3/:

(ii) Let d � 2 be an even number and c D 3l , l 2 N. There exists a hypergraph
H with arbitrary large discrepancy that fulfils

disc.H d
sym; c/ � 1

6
disc.H ; c/2:

Proof. Observe that 3j kŠ for all k � 3. Due to S.d; 2/ D 2d�1 � 1, we have
3jS.d; 2/ if and only if d is odd: 23�1 � 1 D 3, 24�1 � 1 D 7 and if d D k C 2,
then 2d�1 � 1 D 4.2k�1 � 1/C 3, hence 3j .2d�1 � 1/ iff 3j .2k�1� 1/. Theorem 87
applies and we are done. ut
Corollary 89. Let l 2 N and c D 4l . For all d � 2 there is a hypergraph H with
disc.H d

sym; c/ � 1
6

disc.H ; c/2.

Proof. S.d; 2/ D 2d�1 � 1 is an odd number, so 4 − 2Š S.d; 2/ and Theorem 87
concludes the proof. ut
Proof (of Theorem 87 (5.43)). This is the easy part. Let us first consider the case
that c j kŠ S.d; k/ for all k 2 f2; : : : ; d g. Let H D .X;E / be a hypergraph and
let  W X ! Œc� be a c-coloring such that disc.H ;  / D disc.H ; c/. For Y �
X , put D.Y / D f.y; : : : ; y/ W y 2 Y g. We define a c-coloring  W Xd ! Œc�:
for .x; : : : ; x/ 2 D.X/, set .x; : : : ; x/ D  .x/. For the remaining vertices, let
 be such that all simplices are monochromatic, and for each k there are exactly
1
c
kŠS.d; k/ monochromatic k-dimensional simplices in each color.

Let E 2 E and put R.E/ WD Ed n D.E/. For any k 2 f2; : : : ; d g and any two
k-dimensional simplices S; S 0 we have jS \R.E/j D jS 0 \R.E/j. Therefore, our
choice of  implies j�1.i/ \R.E/j D 1

c
jR.E/j for all i 2 Œc�. Hence
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max
i2Œc�

ˇ̌
ˇj�1.i/\Ed j � jEd j

c

ˇ̌
ˇ

D max
i2Œc�

ˇ̌
ˇj�1.i/\ R.E/j � jR.E/j

c
C j�1.i/\D.E/j � jD.E/j

c

ˇ̌
ˇ

D max
i2Œc�

ˇ̌
ˇj�1.i/\D.E/j � jD.E/j

c

ˇ̌
ˇ D max

i2Œc�

ˇ̌
ˇj �1.i/\ Ej � jEj

c

ˇ̌
ˇ :

This shows disc.H d
sym; c/ � disc.H ; c/. ut

For the proof of Theorem 87 (5.44) a Ramsey-type result is required.

Lemma 90. For all m 2 N, all l 2 Œd �, all � 2 Sl , and all J 2 Pl.d/, there is an
n 2 N such that for all N � N with jN j D n and each c-coloring  W Nd ! Œc�

there is a subset T � N with jT j D m and S�J .T / is monochromatic with respect
to .

Proof. By Ramsey’s theorem (see, e.g. [36], Section 1.2), for every l 2 Œd � there
exists an n such that for each c-coloring  W �Œn�

l

� ! Œc� there is a subset T of Œn�
with jT j D m and

�
T
l

�
is monochromatic with respect to  . Let N � N with jN j D

n. We can assume N D Œn� by renaming the elements of N and preserving their
order. Let  W Œn�d ! Œc� be an arbitrary c-coloring. We define l;�;J W �Œn�

l

� ! Œc�

by l;�;J .fx1; : : : ; xlg</ D 

 
lP

iD1
x�.i/fi

!
, where the fi D fi .J / are the vectors

corresponding to the partition J introduced in Definition 85. By Ramsey’s theorem
there is a T � N with jT j D m and l;�;J is constant on

�
T

l

�
. Hence, S�J .T / is

monochromatic with respect to . This proves the claim. ut
With induction we get:

Lemma 91. Let c; d 2 N. For allm 2 N there exists an n 2 N having the following
property: For each c-coloring  W Œn�d ! Œc� there is a subset T � Œn� with jT j D m

such that for all l 2 Œd � each l-dimensional simplex in T d is monochromatic with
respect to .

Proof. Each simplex is uniquely determined by a pair

.�; J / 2
d[
lD1

.Sl 
 Pl.d// :

Let .�i ; Ji /i2Œs� be an enumeration of all these pairs. Put n0 WD m. We proceed by
induction. Let i 2 Œs� be such that ni�1 is already defined and has the property that
for any N � N, jN j D ni�1 and any coloring  W Nd ! Œc� there is a T � N ,
jT j D m such that for all j 2 Œi � 1�, S

�j
Jj
.T / is monochromatic. According to

Lemma 90 choose ni large enough such that for each N � N with jN j D ni and
for each c-coloring ' W Nd ! Œc� there exists a subset T of N with jT j D ni�1 and
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S
�i
Ji
.T / is monochromatic with respect to '. Note that there is a T 0 � T , jT j D m

such that S
�j
Jj
.T 0/ is monochromatic for all j 2 Œi �. n WD ns concludes the proof.

ut
Proof (of Theorem 87 (5.44)). By assumption c − kŠ S.d; k/ for some k 2
f2; : : : ; d g. Let m be large enough so that

1

2

 
m

�

!
�

��1X
lD0

lŠ S.d; l/

 
m

l

!
� 1

3 kŠ
mk

for all � 2 fk; : : : ; d g. This can obviously be done, since the left hand side of the
last inequality is of the formm�=2�ŠCO.m��1/ form ! 1. Using Lemma 91, we
can choose n 2 N such that for any c-coloring  W Œn�d ! Œc� there is an m-point
set T � Œn� with all simplices in T d being monochromatic with respect to .

The special hypergraph K WD
�
Œn�;

�
Œn�
m

�	
satisfies our claim. Let  be any c-

coloring of K , choose T as in Lemma 91. Let � 2 fk; : : : ; d g be such that for each
l 2 f� C 1; : : : ; d g there is the same number of l-dimensional simplices in T in
each color but not so for the �-dimensional simplices. With

S WD
d[
lD�

[
J2Pl .d/

[
�2Sl

S�J .T /

we obtain

disc.K d
sym; /

� max
i2Œc�

ˇ̌
ˇj�1.i/ \ T d j � jT d j

c

ˇ̌
ˇ

� max
i2Œc�

� ˇ̌
ˇj�1.i/\ S j � jS j

c

ˇ̌
ˇ�

ˇ̌
ˇj�1.i/ \ .T d n S /j � jT d n S j

c

ˇ̌
ˇ
�

� max
i2Œc�

ˇ̌̌
ˇ

X
J2P� .d/;�2S�

j�1.i/ \ S�J .T /j � �Š S.d; �/

c

 
m

�

!ˇ̌̌
ˇ

�c � 1
c

�
md �

dX
lD�

lŠ S.d; l/

 
m

l

!�

� 1

2

 
m

�

!
�

��1X
lD0

lŠ S.d; l/

 
m

l

!
� 1

3 kŠ
mk :

This proves disc.K d
sym; c/ � 1

3kŠ
mk. The choice of n implies disc.K ; c/ D�

1 � 1
c

�
m. ut
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5.3.7 Arithmetic Progressions with Common Difference

A special subhypergraph of the hypergraph of Cartesian products of d arithmetic
progressions is the hypergraph of arithmetic progressions that have the same
common difference.

Definition 92. The hypergraph H 0
N;d WD .ŒN �d ;E 0N;d / with

E 0N;d WD
(

dY
iD1

Aai ;ı;Li W Aai ;ı;Li 2 EN ; ı 2 ŒN �
)

is called the d -dimensional hypergraph of arithmetic progressions with common
differences.

We have H d
sym  H 0

N;d  H d
N . Unfortunately, no lower bound is known for

the discrepancy of H d
sym which would also be a lower bound for the discrepancy

of H 0
N;d . Interestingly, the c-color discrepancy of H 0

N;d can be determined by the
following theorem of Hebbinghaus [38]:

Theorem 93 (Hebbinghaus [38]). Let d;N 2 N. It holds

(i) disc.H 0
N;d ; c/ D ˝d

�
1p
c
N d=.2dC2/

	
.

(ii) disc.H 0
N;d ; c/ D Od

�
Nd=.2dC2/.logN/3.dC2/=2

�
.

For the proof of the lower bound a special set of hyperedges is considered. Set

Aa;ı WD ˚
a C ıb W b 2 f0; 1; : : : ; L � 1gd
 \ ŒN �d

for L WD 1
2
N 1=.dC1/, all ı 2 � WD �

Nd=.dC1/� and all a 2 Z
d . For convenience

let us assume that 1
2
N 1=.dC1/ 2 N. It is easy to see that there are at most�

3
2
N
�d

elements a 2 Z
d such that Aa;ı ¤ ; for some ı 2 �. Thus, we

look for the discrepancy of a subhypergraph of H 0
N;d , which consists of at most�

3
2

�d
N dCd=.dC1/ hyperedges. A lower discrepancy bound for this subhypergraph is

trivially also a lower bound for disc.H 0
N;d ; c/.

We need two technical lemmas. By the next lemma one can assume for every
c-coloring  W ŒN �d ! Œc� of H 0

N;d that there is a color i 2 Œc� such that at least but

not much more than Nd

c
elements of ŒN �d are colored with color i .

Lemma 94. Let  W ŒN �d ! Œc� be a c-coloring of H 0
N; d and ˛ > 0. Then it holds

disc.H 0
N; d ; / > ˛

Nd=.2dC2/p
c

or there exists a color i 2 Œc� such that

0 � ıA � 1

c
� ˛c�1=2N�dCd=.2dC2/

for A WD �1.i/ and ıA WD 1

Nd jAj.
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Proof. Nd

c
is the average size of a color-class of . Therefore, there exists at least

one color i 2 Œc� with j�1.i/j � Nd

c
. If there is a color i 2 Œc� such that

j�1.i/j � Nd

c
> ˛N

d=.2dC2/p
c

, then we get with ŒN �d itself as a d -dimensional
arithmetic progression that has common difference 1

disc.H 0
N;d ; / �

ˇ̌̌
ˇ̌ˇ̌�1.i/\ ŒN �d

ˇ̌�
ˇ̌
ŒN �d

ˇ̌
c

ˇ̌̌
ˇ̌

D
ˇ̌
ˇ̌ˇ̌�1.i/ˇ̌� Nd

c

ˇ̌
ˇ̌

> ˛N
d=.2dC2/p

c
:

Thus, we can assume that there is no such color. This yields the existence of a color
i 2 Œc� with 0 � j�1.i/j� Nd

c
� ˛N

d=.2dC2/p
c

. We set A WD �1.i/ and ıA WD 1

Nd jAj
and get

0 � ıA � 1

c
� ˛c�1=2N�dCd=.2dC2/

as desired. ut
In order to estimate Fourier coefficients of the indicator functions of the special

hyperedges mentioned above, we need the following lemma which can be proved
as (5.38).

Lemma 95. Let ˛ 2 Œ0; 1�d and J WD f0; 1; : : : ; L � 1gd . There exists ı 2 � with

ˇ̌̌
ˇ̌
ˇ
X
j2J

e2�iıhj;˛i
ˇ̌̌
ˇ̌
ˇ
2

�
�
2

�
L

�2d
D
�
1

�

�2d
N 2d=.dC1/:

We are ready to prove Theorem 93 (i).

Proof (of Theorem 93 (i)). Let  W ŒN �d ! Œc� be an arbitrary c-coloring of H 0
N;d .

By Lemma 94 there exists a color i 2 Œc� such that for A WD �1.i/ and ıA WD
1
Nd jAj

0 � ıA � 1

c
� ˛c�1=2N�dCd=.2dC2/ (5.45)

holds for a constant 0 < ˛ � 1
2

(that we will fix later). Otherwise, Lemma 94 yields

disc.H 0
N;d ; / > ˛

Nd=.2dC2/p
c

. Define the function fA W Zd ! C by
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fA.x/ WD
8<
:
1 � ıA W x 2 A;

�ıA W x 2 ŒN �d nA;
0 W x 2 Z

d n ŒN �d ;

for all x 2 Z
d . For every subset X � ŒN �d we have

fA.X/ WD
X
x2X

fA.x/ D
X

x2X\A
.1� ıA/C

X
x2XnA

.�ıA/ D jX \ Aj � ıAjX j:

Since ıA is about 1
c
, for every hyperedgeE 2 E 0N;d the discrepancy ofE in the color

i is approximately jfA.E/j.
For every ı 2 �, we set Eı WD A0;ı and get the following chain of equations for

the Fourier coefficients of the indicator function 11�Eı . Let ˛ 2 Œ0; 1�d .

b11�Eı .˛/ D
X
z2Zd

11�Eı .z/e�2�ihz;˛i

D
X
z2Eı

e2�ihz;˛i

D
X
j2J

e2�iıhj;˛i;

with J D f0; 1; : : : ; L� 1gd . Thus, Lemma 95 yields the existence of a ı 2 � with

ˇ̌̌b11�Eı .˛/
ˇ̌̌2 D

ˇ̌
ˇ̌̌
ˇ
X
j2J

e2�iıhj;˛i
ˇ̌
ˇ̌̌
ˇ
2

�
�
1

�

�2d
N 2d=.dC1/:

Hence, it holds for every ˛ 2 Œ0; 1�d :

X
ı2�

ˇ̌
ˇb11�Eı .˛/

ˇ̌
ˇ2 �

�
1

�

�2d
N 2d=.dC1/: (5.46)

Using this estimation, with Proposition 76 we get

X
ı2�

X
j2Zd

ˇ̌
fA.Aj;ı/

ˇ̌2 D
X
ı2�

X
j2Zd

jfA.j C Eı/j2

�
�
1

�

�2d
N 2d=.dC1/kfAk22
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D
�
1

�

�2d
N 2d=.dC1/ �ıAN d .1 � ıA/

2 C .1 � ıA/N d .�ıA/2
�

D
�
1

�

�2d
ıA.1 � ıA/N

2d=.dC1/Cd :

Observe that j�j D Nd=.dC1/. Hence there exists a ı0 2 � such that

X
j2Z

jfA.Aj;ı0/j2 �
�
1

�

�2d
ıA.1 � ıA/N

d=.dC1/Cd :

As mentioned before, there are at most
�
3
2
N
�d

elements j 2 Z
d such that

fA.Aj;ı0/ ¤ 0. Therefore we can find a j0 2 Z
d satisfying

jfA.Aj0;ı0/j � 1

�d

�
2

3

�d=2p
ıA.1 � ıA/N

d=.2dC2/ � 1

4d

p
ıA.1 � ıA/N

d=.2dC2/:

Set x WD ıA � 1
c
. It holds 0 � x � ˛c�1=2N�dCd=.2dC2/ � 1

2
p
c
. Thus, we get

jfA.Aj0;ı0 /j � 1

4d

p
ıA.1 � ıA/N

d=.2dC2/

D 1

4d

s�
1

c
C x

��
c � 1
c

� x

�
Nd=.2dC2/

D 1

4d

r
c � 1

c2
C c � 2

c
x � x2 N d=.2dC2/

� 1

4d

r
1

2c
� 1

4c
Nd=.2dC2/

D 1

22dC1
N d=.2dC2/

p
c

:

We fix the constant ˛ in (5.45). Set ˛ WD 1

22dC2 . Then

disc.H 0
N;d ; / �

ˇ̌
ˇ̌jAj0;ı0 j � 1

c
jAj0;ı0 j

ˇ̌
ˇ̌

D
ˇ̌
ˇ̌jAj0;ı0 j � ıAjAj0;ı0 j C

�
ıA � 1

c

�
jAj0;ı0 j

ˇ̌
ˇ̌

� ˇ̌jAj0;ı0 j � ıAjAj0;ı0 j
ˇ̌ �

ˇ̌̌
ˇıA � 1

c

ˇ̌̌
ˇ jAj0;ı0 j
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� 1

22dC1
N d=.2dC2/

p
c

� 1

22dC2
c�1=2N�dCd=.2dC2/N d

D 1

22dC2
N d=.2dC2/

p
c

:

Since  is an arbitrary c-coloring, we have shown disc.H 0
N;d ; c/ � 1

22dC2
Nd=.2dC2/p

c

and are done.

Proof (of Theorem 93 (ii)). We wish to apply Beck’s [10] upper bound for
the hereditary discrepancy of the hypergraph H 0

N;d . We need the subhypergraph
of H 0

N;d of all elementary d -dimensional arithmetic progressions with common
difference defined as follows. For every ı 2 N, every a 2 Œı�d , every s 2 N

d
0

and every f 2 N
d
0 we set

AP.a; ı; s; f / WD
d

X
iD1 fai C jı W fi2si � j � .fi C 1/2si g :

Let Hel WD .ŒN �d ;Eel / be the hypergraph, where

Eel WD ˚
AP.a; ı; s; f / � ŒN �d W ı 2 N; a 2 Œı�d ; s 2 N

d
0 ; f 2 N

d
0



:

Lemma 96. There exists a constant c > 0 such that

herdisc.H 0
N;d / � c logd N herdisc.Hel /:

Proof. Every hyperedge of H 0
N;d can be decomposed into at most c logd N

hyperedges of Hel for an appropriate constant c > 0. This decomposition can be
found in [45]. Also in every induced subhypergraph of H 0

N;d this decomposition can
be applied. This proves the assertion of the lemma. ut

We continue the proof of Theorem 93 (ii). We apply Beck’s theorem, Theo-
rem 11. Accordingly, we have to determine a t > 0 such that the maximal degree
of the hypergraph Hel;t WD .ŒN �d ;Eel;t /, where Eel;t WD fE 2 Eel W jEj � tg, is
bounded by t . Let

S.a; ı; t/ WD
n
s 2 S W 2

Pd
iD1 si � t; ai C .2si � 1/ı � N.i 2 Œd �/

o

for all a 2 ŒN �d , ı 2 N and all t > 0. Using that for every m 2 ŒN �d there is only
one vector a 2 Œı�d with ai 	 mi .mod ı/ and we get
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deg.Hel;t / D max
m2ŒN �d

jfAP.a; ı; s; f / 2 Eel;t W m 2 AP.a; ı; s; f /gj

�
bN= dptcX
ıD1

jS.a; ı; t/j:

Here ı cannot be larger than bN= d
p
tc, since for every E D d

X
iD1Ai 2 Eel with

jEj � t there is at least one i 2 Œd � with jAi j � d
p
t . We have jS.a; ı; t/j � logd N

for all ı � 2. Thus, there is a constant c1 > 0 such that

deg.Hel;t / � c1
N
d
p
t
.logN/d :

We set t WD c
d=.dC1/
1 N d=.dC1/.logN/d

2=.dC1/ and get

deg.Hel;t / � t:

This estimation holds obviously also for all induced subhypergraphs of Hel . Thus,
Theorem 11 implies

herdisc.Hel / � c2N
d=.2dC2/.logN/d

2=.2dC2/.logN/2

D c2N
d=.2dC2/.logN/.d

2C4dC4/=.2dC2/

for a constant c2 > 0 only depending on the dimension d . With Lemma 96 we have

herdisc.H 0
N;d / � c3N

d=.2dC2/.logN/.3d
2C6dC4/=.2dC2/

� c3N
d=.2dC2/.logN/3.dC2/=2

for a constant c3 > 0 only depending on d . Finally, we apply Theorem 31 (ii) and
get

disc.H 0
N;d ; c/ � c0N

d=.2dC2/.logN/3.dC2/=2

for a constant c0 > 0 depending only on the dimension d . ut

5.3.8 Arithmetic Progressions in N

Most natural are also arithmetic progressions in the set N. A direct consequence of
Roth’s lower bound proof for such progressions can be found in [13].
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Corollary 97. Given any 2-coloring  W N ! f�1;C1g of the non-negative
integers, then for infinitely many values of ı there is a (finite) arithmetic progression
A of difference ı such that

j.A/j > c
p
ı

for an absolute constant c.

The best upper bound for the discrepancy in terms of the difference was shown by
J. Beck and J. Spencer [15]:

Theorem 98. There is a constant c0 > 0 such that the following holds: Let n be a
positive integer. Then there exists a 2-coloring  W N ! f�1;C1g such that for any
arithmetic progression A of difference ı � n and of arbitrary length

j.A/j < c0
p
ı.logn/3:5:

An analogous result in the d -dimensional case has been proved by Doerr,
Srivastav and Wehr [29]. Let Al;a;ı WD a C ıŒl� denote the arithmetic progression
with starting point a, difference ı and length l . For a; ı 2 N

d and l 2 ŒN � n 0, set
Al;a;ı D Ali ;ai ;ıi . Write ı > k (resp. ı � k) to express that all components ıi of ı
are greater than k (resp. less or equal than k).

Theorem 99. For any 2-coloring  W Nd ! f�1;C1g and every vector k 2 N
d

there exists a d -dimensional arithmetic progression Al;a;ı such that ı > k and

j.Al;a;ı/j > ��d
p
ı1 : : : ıd :

Conversely, for any positive integer n there exists a 2-coloring  W N
d !

f�1;C1g such that for any arithmetic progression Al;a;ı of difference ı � n and
of arbitrary length and starting point

j.Al;a;ı/j < cd0

p
ı1 : : : ıd .logn/3:5d :

Proof. The upper bound can be easily proved by the product coloring argument
(Theorem 78). For the lower bound fix a 2-coloring  of Nd and k. Define a 2-
coloring k of Nd by

k.x/ WD .kx/

for all x 2 N
d (where kx WD .kixi /

d
iD1). Choose an integer N > kkk21. From the

proof of the lower bound in Theorem 65 one can conclude the existence of vectors
l; ı0 2 � D f1; : : : ;pN gd and a0 2 ŒN �d such that
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jk.Al;a0 ;ı0/j > ��dN d
4 � c

q
ı01 : : : ı0d :

Since k.Al;a0 ;ı0/ D .Al;ka0 ;kı0/, Al;ka0 ;kı0 is an arithmetic progression as
desired. ut

5.4 Sums of Arithmetic Progressions

Another interesting notion of high-dimensional arithmetic progressions are sums
of d arithmetic progressions in f1; : : : ; N g. The famous theorem of G. Freiman in
additive number theory states that a sumset with small cardinality contains a d -
dimensional arithmetic progression [32, 59]. In 2002, A. Srivastav suggested the
study of the discrepancy of the hypergraph of all sets formed by k arithmetic pro-
gressions in f1; : : : ; N g. Subsequently, a theoretical foundation has been achieved
in a number of papers by Hebbinghaus [38], Cilleruelo, Hebbinghaus [20] and
Přívětivý [62, 63]. We present these developments in this section.

Let us define the sum of arithmetic progressions formally.

Definition 100. Let A be the set of all arithmetic progressions in Z. Define the
hypergraph HN;k D .ŒN �;EN;k/ of sums of k arithmetic progressions, where

EN;k WD f.A1 C A2 C : : : Ak/\ ŒN � W Ai 2 A g :

Some examples for sums of 2 arithmetic progressions are shown in Fig. 5.4.

5.4.1 Multicolor Discrepancy of HN;k

Hebbinghaus [38] proved:

Theorem 101 (Hebbinghaus [38]). For all positive integers k we have

disc.HN;k ; c/ D ˝k

�
Nk=.2kC2/p

c

	

Let us first describe the proof idea of Theorem 101. We assume that 2k�1jN1=.kC1/.
Bertrand’s postulate (also called Chebyshev’s theorem) states the existence of
prime numbers pi for all i 2 f1; 2; : : : k � 1g with 2i�kC1N 1=.kC1/ < pi <

2i�kC2N 1=.kC1/. Every sum of k arithmetic progressions is characterized by a
starting point, a k-tuple ı D .ı1; ı2; : : : ; ık/ of differences and a k-tuple L D
.L1; L2; : : : ; Lk/ which fixes the length of the k arithmetic progressions. Let us
introduce here the special set of hyperedges. These hyperedges have the same
k-tuple L D .L1; L2; : : : ; Lk/ fixing the length of the k arithmetic progressions
that are summed up. Define the length of the i -th arithmetic progression .i 2
f1; 2; : : : kg/ by
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400

Fig. 5.4 Some arithmetic
progressions (black dots) and
their sums (gray dots)

Li WD 2i�k�1N
1

kC1 :

Let Q� WD
kQ
iD1

f1; 2; : : : ; 2Lig. We define a set � of k-tuples of differences by

� WD
8<
:.ı1; ı2; : : : ; ık/ W ıi D

iY
jD1

eıj
k�1Y
jDi

pj ; 1 � i � k; .eı1;eı2; : : : ; eık/ 2 e�
9=
; :

For all j 2 Z and all ı D .ı1; ı2; : : : ; ık/ 2 � we set

Aj;ı WD
(
j C

kX
iD1

ai ıi W ai 2 f0; 1; 2; : : : ; Li � 1g; 1 � i � k

)
\ ŒN �:

The non-trivial hyperedges Aj;ı with j 2 Z and ı 2 � are building the
subhypergraph mentioned above. We set Eı WD A0;ı for all ı 2 �.

We need a series of lemmas (for proofs see [38]). The first lemma locates j in
Aj;ı ¤ ;.

Lemma 102. Let j 2 Z and ı 2 � with Aj;ı ¤ ;. Then j 2 f�N
2

C 1;�N
2

C
2; : : : ; N g.

A typical argument in proofs of c-color discrepancy are alternatives of the type that
either the discrepancy is of the required order or there is a large color-class. Such
arguments will be frequently used in multicolor proofs via Fourier analysis.

Lemma 103. Let  W X ! Œc� be a c-coloring of HN;k and ˛ > 0, then it holds

disc.HN;k ; c; / > ˛N
k=.2kC2/p

c
or there is a color i 2 Œc� such that it holds for

A WD �1.i/ and ıA WD 1
N

jAj

0 � ıA � 1

c
� ˛c�1=2N�.kC2/=.2kC2/:
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We define the characteristic function of sums of arithmetic progressions. For all
ı 2 � and all i 2 f1; 2; : : : kg, let �ıi W Z ! f0; 1g be defined by

�ıi .j / WD
�
1 W �j 2 ıi f0; 1; 2; : : : ; Li � 1g;
0 W otherwise:

The function �ı WD �ı1 � �ı2 � : : : � �ık is an indicator function for the set �Eı as
the following lemma states.

Lemma 104. Let ı 2 �. Then �ı.x/ D 11�Eı .x/ for all x 2 Z.

Next, an estimation for exponential sums is required. It is an immediate
consequence of Roth’s estimate (5.38).

Lemma 105. Let ˛ 2 R, L 2 N. There exists an integer ı 2 f1; 2; : : : ; 2Lg such
that

ˇ̌̌
ˇ̌
ˇ
L�1X
jD0

e2�iıj˛

ˇ̌̌
ˇ̌
ˇ
2

�
�
2

�
L

�2
:

The following lemma is the key for the proof of Theorem 101.

Lemma 106. Let ˛ 2 Œ0; 1�. There exists a constant c1 > 0, only depending on k,
such that

X
ı2�

j O11�Eı .˛/j2 � c1N
2k=.kC1/:

Proof. Observe that for all ı 2 � and all t 2 f1; 2; : : : ; kg

O�ıt .˛/ D
X
x2Z

�ıt .x/e
�2�ix˛

D
Lt�1X
jD0

e2�ijıt ˛:

We have

X
ı2�

j O11�Eı .˛/j2 D
X
ı2�

j O�ı.˛/j2 (5.47)

D
X
ı2�

kY
tD1

j O�ıt .˛/j2 by Theorem 73

D
2L1X
eı1D1

: : :

2LkX
eıkD1

kY
tD1

ˇ̌̌
ˇ̌
ˇ
Lt�1X
jD0

e
2�ij˛

tQ
sD1

eıs k�1Q
sDt

ps

ˇ̌̌
ˇ̌
ˇ
2

(5.48)
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Using Lemma 105 we can find a ı1 2 f1; 2; : : : ; 2L1g with

ˇ̌̌
ˇ̌
ˇ
L1�1X
jD0

e
2�ij ı1

 
˛
k�1Q
sD1

ps

!ˇ̌̌
ˇ̌
ˇ
2

�
�
2

�
L1

�2
:

In the same way we get ı2 2 f1; 2; : : : ; 2L2g, ı3 2 f1; 2; : : : ; 2L3g up to ık 2
f1; 2; : : : ; 2Lkg such that for all t 2 f1; 2; : : : ; kg

ˇ̌
ˇ̌̌
ˇ
Lt�1X
jD0

e
2�ij ıt

 
˛
t�1Q
sD1

ıs

k�1Q
sDt

ps

!ˇ̌
ˇ̌̌
ˇ
2

�
�
2

�
Lt

�2
: (5.49)

Using (5.47) and (5.49) we get for an appropriate constant c1 > 0 only depending
on k:

X
ı2�

j O11�Eı .˛/j2
(5.47)�

kY
tD1

ˇ̌
ˇ̌
ˇ̌
Lt�1X
jD0

e
2�ij˛

tQ
sD1

ıs
k�1Q
sDt

ps

ˇ̌
ˇ̌
ˇ̌
2

(5.49)�
kY
tD1

�
2

�
Lt

�2

� c1N
2k=.kC1/

ut
Proof (of Theorem 101). Let  W X ! Œc� be a c-coloring of HN;k . According to
Lemma 103 we can assume that there is a color i 2 Œc� such that for A WD �1.i/
and ıA WD 1

N
jAj

0 � ıA � 1

c
� ˛c�1=2N�.kC2/=.2kC2/ (5.50)

for a constant 0 < ˛ � 1
2

(that we fix later). Otherwise Lemma 103 yields

disc.HN;k ; c; / > ˛
Nk=.2kC2/p

c
:

Let fA W Z ! C be defined by

fA.x/ WD
8<
:
1 � ıA W x 2 A;

�ıA W x 2 ŒN � n A;
0 W x 2 Z n ŒN �;
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for every x 2 Z. For every subset X � ŒN � we have

fA.X/ WD
X
x2X

fA.x/ D
X

x2X\A
.1� ıA/C

X
x2XnA

.�ıA/ D jX \ Aj � ıAjX j:

The estimation
P

ı2� j O11�Eı .˛/j2 � c1N
2k=.kC1/ from Lemma 106 allows us to

apply Proposition 76. We get

X
ı2�

X
j2Z

ˇ̌
fA.Aj;ı/

ˇ̌2 D
X
ı2�

X
j2Z

jfA.j C Eı/j2

� c1N
2k=.kC1/kfAk22

D c1N
2k=.kC1/ �ıAN.1� ıA/2 C .1 � ıA/N.�ıA/2

�
D c1ıA.1 � ıA/N

.3kC1/=.kC1/

It holds j�j D j Q�j D Qk
iD1.2Li/ D O.Nk=..kC1//. Hence there exists a constant

c2 > 0 and a ı0 2 � such that

X
j2Z

jfA.Aj;ı0/j2 � c1

j�jıA.1 � ıA/N
.3kC1/=.kC1/ � c2ıA.1 � ıA/N .2kC1/=.kC1/:

According to Lemma 102, Aj;ı0 D ; for all j 2 Z n f�N
2

C 1;�N
2

C 2; : : : ; N �
1;N g. Therefore we can find a j0 2 f�N

2
C 1;�N

2
C 2; : : : ; N � 1;N g such that

ˇ̌
fA.Aj0;ı0/

ˇ̌ �
r
c2

2

p
ıA.1 � ıA/N k=.2kC2/:

Set x WD ıA � 1
c
. It holds 0 � x � ˛c�1=2N�.kC2/=.2kC2/ � 1

2
p
c
. For c3 WD

q
c2
8

we get

ˇ̌
fA.Aj0;ı0 /

ˇ̌ �
r
c2

2

p
ıA.1 � ıA/N k=.2kC2/

D
r
c2

2

s�
1

c
C x

��
c � 1
c

� x

�
Nk=.2kC2/

D
r
c2

2

r
c � 1
c2

C c � 2
c

x � x2 N k=.2kC2/

�
r
c2

2

r
1

2c
� 1

4c
N k=.2kC2/

D c3
N k=.2kC2/

p
c

:
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Now we fix the constant ˛ in (5.50). W.l.o.g. we can assume c3 � 1 and set ˛ WD c3
2

.
Then

disc.HN;k ; c; / �
ˇ̌̌
ˇjAj0;ı0 j � 1

c
jAj0;ı0 j

ˇ̌̌
ˇ

D
ˇ̌
ˇ̌jAj0;ı0 j � ıAjAj0;ı0 j C

�
ıA � 1

c

�
jAj0;ı0 j

ˇ̌
ˇ̌

�
ˇ̌
ˇjAj0;ı0 j � ıAjAj0;ı0 j

ˇ̌
ˇ�

ˇ̌
ˇ̌ıA � 1

c

ˇ̌
ˇ̌ jAj0;ı0 j

� c3
N k=.2kC2/

p
c

� c3

2
c�1=2N�.kC2/=.2kC2/N

D c3

2

N k=.2kC2/
p
c

:

Thus, we have shown disc.HN;k ; c/ � ˛N
k=.2kC2/p

c
, where the constant ˛ > 0

depends only on k. ut

5.4.2 Přívětivý’s 2-Color Improvement for k � 3

For k D 2 the lower bound of Hebbinghaus is ˝.N1=3/. For k � 3, Aleš Přívětivý
[62, 63] improved the bound to ˝.N1=2/:

Theorem 107 (Přívětivý [62]). Let N be a prime. For all positive integers k � 3

we have disc.HN;k/ D ˝
�
N1=2

�
.

It is sufficient to show disc .HN;3/ D ˝
�
N1=2

�
because HN;3 � HN;k , k � 3.

The basis of the proof is the eigenvalue method [13]. We briefly review the main
ingredients needed here. Let us consider the hypergraph H D .ŒN �;E / with N
vertices andm hyperedges. Let A be the m 
N incidence matrix of H . Recall the
notion of the L2-discrepancy

disc2.H /2 WD min

� k Ax k22
m

W x 2 f�1; 1gN
�

Since the matrix ATA is positive semidefinite, its eigenvalues �1 � �2 � � � � �
�N are non-negative real numbers. Suppose that x D x1v1 C x2v2 C � � � C xN vN
where fvig is an orthonormal eigenbasis, the eigenvector vi being associated to the
eigenvalue �i . Then
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k Ax k22D xT AT Ax D
�X

i

xivi
	�X

i

�ixivi
	

D
NX
i

�ix
2
i � �NN

Hence

disc.H / � disc2.H / �
r
�N �N
m

: (5.51)

We need some facts about circulant matrices. A circulant matrix is an N 
 N

matrix whose rows are composed of cyclically shifted copies of the first row.
Namely, for an N -dimensional vector .a0; a1; : : : ; aN�1/ we define the circulant
matrix B by bij D a.j�i / mod N .

Let theN -th roots of unity be 1 D �0; �1; �2; : : : ; �N�1. It can be shown that zi D
.1 D �0i ; �i ; : : : ; �

N�1
i /T is an eigenvector of B . The eigenvalues �0; �1; : : : ; �N�1

of a circulant matrices can be expressed as

�i D a0 C a1�i C a2�
2
i C � � � C aN�1�N�1i

for all i 2 0; 1; : : : ; N � 1.
Let B D ATA (where A is a incidence matrix of a hypergraph). Assume in

addition that B D ATA is a circulant matrix. Then bij counts the number of sets
E 2 E containing both elements i and j . Now, the following congruences modulo
N hold

N�k 	 N

N�1X
iD0

ai �
i
k 	

N�1X
iD0

N�1X
jD0

a.i�j /�.i�j /k 	
N�1X
iD0

N�1X
jD0

bij �
.i�j /
k

	
X
E2E

X
i2E

X
j2E

�
.i�j /
k 	

X
E2E

ˇ̌
ˇX
i2E

�ik

ˇ̌
ˇ2;

hence

�k D 1

N

X
E2E

ˇ̌
ˇX
i2E

�ik

ˇ̌
ˇ2: (5.52)

Let us define a wrapped hypergraph. To shorten the notation set H D HN;3 D
.ŒN �;E / where E D fE1; : : : ;Emg is a numbering of the hyperedges. Consider for
each Ei , its N � 1 translated hyperedges: for every i 2 Œm�, j 2 ŒN � and Ei 2 E ,
the set EiNCj is defined by

EiNCj D f.k C j / mod N W k 2 Ei g :
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The new hypergraphHW D .ŒN �;EW /, where EW D fE0;E1; : : : ;EmN�1g, is called
the wrapped hypergraph of H . The incidence matrix A of HW can be expressed as
composed of N 
N circulant matrices A0;A1; A2; : : : ; Am�1 stacked up vertically

A D

0
BBB@
A0
A1
:::

Am�1

1
CCCA

One can show thatA is not a circulant matrix, butB D ATA is a circulant matrix,

because B has the form B D
m�1X
iD0

ATi Ai and the inner product of the two column

vectors Aki and Ali is equal to the inner product of the column vectors AkC1i and
AlC1i . The next lemma can be proved in a straightforward way, see also [13] or [19].

Lemma 108. Let HW D .ŒN �;EW / be the wrapped hypergraph, and A be its
incidence matrix. Then the N 
 N matrix B D ATA is a circulant matrix and

its eigenvalues are �k D
m�1X
iD0

ˇ̌
ˇ X
j2EiN

�
j

k

ˇ̌
ˇ2 for all k 2 ŒN �.

Using Lemma 108 and (5.51), it can be established that if for each k there exists a

set Eq such that
ˇ̌
ˇ X
j2Eq

�
j

k

ˇ̌
ˇ > cN˛ for some c; ˛ � 0, then we have disc.H / � cN˛p

m
.

So we need to find a hyperedge with large value of
ˇ̌
ˇ X
j2Eq

�
j

k

ˇ̌
ˇ. Such a Eq has the

property that �jk lies in one part of the unit circle for all j 2 Eq . Namely, if all
j 2 Eq satisfy

� �

3
� arg �jk � �

3
(5.53)

then Re.�jk / � 1
2

for all j 2 Eq and
ˇ̌̌ X
j2Eq

�
j

k

ˇ̌̌
will be at least jEq j

2
.

We define for every Eq � ŒN � a new set E 0q:

E 0q WD fjk mod N W j 2 Eqg: (5.54)

E 0q is actually the set of indices i of �i D �
j

k that participate in the sum
X
j2Eq

�
j

k . The

condition
ˇ̌
arg �jk

ˇ̌ � �
3

for all j 2 Eq is thus equivalent to

E 0q �
n
0; 1; : : : ;

j1
6
N
ko

[
nl5
6
N
m
; : : : ; N � 1

o
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Now let us pass to sums of arithmetic progressions. Přívětivý constructed a
specific set which is the sum of three arithmetic progressions.
Construction of Ck: For a fixed k, let
c1; c2; c3; d1; d2; d3; n1; n2; n3 be the integers characterized as follows:

1. Let c1 be the j 2 f1; : : : ; bp
N cg for which the value of Re.�jk / is maximum.

Put d1 D minf�kc1 mod N; kc1 mod N g and n1 D
j

N
12maxfc1;d1g

k
.

2. If c1 � 12d1, put c2 D d2 D n2 D 1, otherwise set c2 D N mod c1, d2 D
d1
˙
N
c1

�
and n2 D b N

30d1
c.

3. If d1 < 6, then put c3 D d3 D n3 D 1, otherwise let c3 be the j 2 f1; : : : ; � 2N
d1

˘g
for which the value of Re.�jk / is maximum.

Set d3 D minf�jc3 mod N; jc3 mod N g and n3 D
j
d1
12

k
.

4. Finally, set Ck WD fi1c1 C i2c2 C i3c3 W ik 2 Œnk�; k D 1; 2; 3g.

Lemma 109. Let N be a prime. For each k 2 f1; 2; : : : ; N � 1g we have

(i) Ck is a sum of three arithmetic progressions in ŒN �.
(ii) Re.�jk / � 1=2 for every j 2 Ck .

(iii) jCkj � 1
5000

N .

Proof. We first give some relations among these constants. The constant c1 is the
number j 2 f1; : : : ; bp

N cg for which the value of Re.�jk / is maximum. That means

we need to find a value of j for which j arg.�jk /j is minimum. By the pigeonhole

principle, for at least two distinct 1 � j1 < j2 � dp
N e, the angles arg.�j1k / and

arg.�j2k / fall in the interval of length of 2�

dpN e . Thus we can find c1 such that

� 2�

dp
N e � arg.�c1k / � 2�

dp
N e

By definition of d1, j arg.�c1k /j D arg.�d1/. Hence d1 � p
N . With the same

argument we get for c3 and d3, c3 � 2N
d1

(by construction) and d3 � d1
2

(by the
pigeonhole principle).

Proof of (i). By construction, the set Ck is a sum of three arithmetic progressions.
The largest element of Cj is

maxCk D c1.n1 � 1/C c2.n2 � 1/C c3.n3 � 1/ � N

12
C N

30
C N

6
� N

2

Proof of (ii). As discussed above, this is the condition we have ensured while
picking values for c1; c2; c3; d1; d2; d3. Now
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max
j2Ck

ˇ̌
arg.�jk /

ˇ̌ D max
.i1;i2;i3/2Œn1��Œn2��Œn3�

ˇ̌
arg.�c1i1k /C arg.�c2i2k /C arg.�c3i3k /

ˇ̌

� max
i12Œn1�

ˇ̌
arg.�c1i1k /

ˇ̌C max
i22Œn2�

ˇ̌
arg.�c2i2k /

ˇ̌C max
i32Œn3�

ˇ̌
arg.�c3i3k /

ˇ̌

D 2�

n
.d1.n1 � 1/C d2.n2 � 1/C d3.n3 � 1//

In the case that c1 � d1

max
j2Ck

ˇ̌
arg.�jk /

ˇ̌ D 2�

N
.d1.n1 � 1/C d2.n2 � 1/C d3.n3 � 1//

� 2�

N

�
d1

N

12d1
C d2.1 � 1/C d1

2

d1

12

�

� �

3

otherwise

max
j2Ck

ˇ̌
arg.�jk /

ˇ̌ D 2�

N
.d1.n1 � 1/C d2.n2 � 1/C d3.n3 � 1//

� 2�

N

�
d1

N

144d1
C d1

�
N

c1

�
c1

30d1
C d1

2

d1

12

�

� �

3
:

Proof of (iii). Put D WD fi1d1 C i2d2 W i1 2 Œn1�; i2 2 Œn2�g. From the fact that
d2 D d1

˙
N
c1

�
and d2 > n1d1 (this ensures disjoint copies of A0k over Œb 1

6
nc�), we

deduce that D is a subset of arithmetic progression with common difference d1 and
furthermore jDj D n1n2.

Now we introduce the set

E WD fi1d1 C i2d2 C i3d3 W i1 2 Œn1�; i2 2 Œn2�; i3 2 Œn3�g :

E is union of n3 shifted copies ofD. We will see that these n3 copies are mutually
disjoint. Assume for a moment that this is not the case and two copies of D have
a common element. Then for p; p0 2 n1 and k; k0 2 n3, we have .p � p0/d1 D
.k0�k/d3. This implies ld1 D rd3, where l; r are appropriate values, since d1 > d3,
r > l . On the other hand, let us consider the function fk.j / D jk mod N . This
function is bijective as N is prime. Hence the pre-images of ld1; rd3 are equal and
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lc1 D rc3. But c1 < c3, and we have a contradiction. Thus all shifted copies of D
are mutually disjoint and hence jEj D n1n2n3 � N

5000
. ut

We can finish the proof of Theorem 107

Proof (of Theorem 107). For a fixed N , we construct FN D .ŒN �; S/, where S D
fS0; S1; : : : ; SN2�1g as follows: for S0, take the set

˚
0; 1; : : : ;

�
N
5000

˘

and for 0 <

i < N , we put SiN D Ci . By construction we have for all k,

ˇ̌̌ X
j2SiN

�
j

k

ˇ̌̌
�
X
j2SiN

Re.�jk / � N

10000
;

so disc.FN / >
N1=2

10000
: Since any set in FN is a union of two sets consisting of

sums of three arithmetic progressions, we have (pigeonhole principle) disc.HN;3/ �
1
2

disc.FN / D ˝.N1=2/. ut

5.4.3 The Improvement of Cilleruelo and Hebbinghaus
for k D 2

Stimulated by Přívětivý’s result, Hebbinghaus [39] closed the gap:

Theorem 110 (Hebbinghaus [39]). disc.HN;2/ D ˝
�
N1=2

�
.

For any c � 2 Cilleruelo and Hebbinghaus [20] proved

Theorem 111 (Cilleruelo, Hebbinghaus [20]). disc.HN;2; c/ D ˝
�
N1=2

�
.

We will give the proof for c D 2. Recall that the c-color bound of Theorem 101
for c D 2 and k D 2 is ˝.N1=3/. The improvement of Cilleruelo and Hebbinghaus
to ˝.N1=2/ is based on the following idea. There exist members of a specific set,
which we call E0, consisting of sums of two arithmetic progressions starting at 0,
with a large Fourier transform, more exactly, for every ˛ 2 Œ0; 1/ there is an E 2 E0
such that

jb11�E.˛/j � 1

300
N:

This leads to the estimate

X
E2E0

jb11�E.˛/j2 � O.N2/;

while in the previous analysis for this sum only a lower bound of O.N4=3/ was
achieved (Lemma 106). The finer analysis benefits from looking inside the set E0
instead of showing a lower bound for the whole sum

P
E2E0 jb11�E.˛/j2. The starting
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point for the refinement is an observation about the structure of such progressions.
Let us define E0 as the set of sums of two arithmetic progressions, each with starting
point 0. We can characterize them by the difference and length of the two arithmetic
progressions. Further define for all ı1; ı2; L1; L2 2 N:

Eı1;L1;ı2;L2 WD fj1ı1 C j2ı2 W j1 2 Œ0; L1 � 1�; j2 2 Œ0; L2 � 1�g :

We represent the set E0 as the union of three subsets E1, E2 and E3.
The first two sets E1 and E2 are as follows.

E1 WD
n
Eı1;L1;ı2;L2 W ı1 2 Œ24�; L1 D

l
N
6ı1

m
; ı2 D 1;L2 D 1

o
;

and

E2 WD
n
Eı1;L1;ı2;L2 W ı1 2 Œ25;N 1=2�Z; L1 D

l
N
12ı1

m
; ı2 2 Œı1 � 1�; L2 D

l
ı1�1
12

mo
:

The definition of the last set E3 is a bit more involved. Consider the sum of two
arithmetic progressions. For every difference ı1 of the first arithmetic progression
we determine a set of differences ı2 for the second arithmetic progression. Let ı1 2
ŒN

1
2 � and let

B.ı1/ WD fb 2 Œı1� W .b; ı1/ D 1g

be the set of all elements of Œı1� that are relatively prime to ı1. Let b 2 B.ı1/.
Set k WD �

log.N 1=2ı�11 /
˘

. We define for all 0 � k � k sets, M.b; k/, of
differences for the second arithmetic progression. The setM.b; k/ should cover the
range of possible differences for the second arithmetic progression for the interval
.2kN 1=2; 2kC1N 1=2�. Let

M.b; k/ WD �
b C 22kı1Z

� \ �
2kN 1=2; 2kC1N 1=2 C 22kı1

�
:

For all 0 � k � k we set Mı1.k/ WD S
b2B.ı1/

M.b; k/. Now we are able to define the

third set E3:

E3 WD
[

ı12ŒN 1=2�

k[
kD0

n
Eı1;L1;ı2;L2 W L1 D

l
2kN1=2

12

m
; ı2 2 Mı1.k/; L2 D

l
2�kN1=2

12

mo
:

We have

Proposition 112. E0 D E1 [ E2 [ E3.

In the next lemma we prove that the cardinality of the sets Ei is of orderO.N/.
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Lemma 113. jE3j � 6N , thus jE0j � 7N .

Proof. By definition of E3, we have jE3j D PN1=2

ı1D1
Pk

kD0 jMı1.k/j. Consider

jM.b; k/j for all b 2 B.ı1/ and all 0 � k � k. We first show that the difference
22kı1 of two consecutive elements of M.b; k/ is at most 2kN 1=2. Since

22kı1 � 2k2log.N1=2ı�1
1 /ı1 D 2kN 1=2:

jM.b; k/j � 3 � 2kN 1=2

22kı1
D 3 � 2�kN 1=2ı�11 :

FurtherMı1.k/ D S
b2B.ı1/

M.b; k/. This yields

jMı1.k/j � ı1jM.b; k/j � 3 � 2�kN 1=2:

Thus

jE3j D
X

ı12ŒN 1=2�

kX
kD0

jMı1.k/j

�
X

ı12ŒN 1=2�

kX
kD0

3 � 2�kN 1=2

< 3N

1X
kD0

2�k � 6N:

It is easy to see that jE1 [ E2j � N . This proves the lemma. ut
The proof of Theorem 110 is based on the the following lemma.

Lemma 114 (Main Lemma). For every ˛ 2 Œ0; 1/ there exists anE 2E0 such that

jb11�E.˛/j � 1

300
N:

With this lemma we can conclude the proof of the claimed lower bound.

Proof (of Theorem 110). For a 2 Z and E 2 EN;2 let Ea WD a C E . Note thatP
a2Z j.Ea/j2 D k � 11�Ek22. Using the Plancherel theorem and the convolution

property of the Fourier transform we get

X
E2E0

X
a2Z

j.Ea/j2 D
X
E2E0

k � 11�Ek22

D
X
E2E0

k1 � 11�Ek22
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D
X
E2E0

k Ob11�Ek22

D
X
E2E0

Z 1

0

j O.˛/j2jb11�E.˛/j2d˛

D
Z 1

0

j O.˛/j2
0
@X
E2E0

jb11�E.˛/j2
1
Ad˛:

The Main Lemma yields for every ˛ 2 Œ0; 1/ the existence of an E 2 E0 such that
jb11�E.˛/j � 1

300
N . Thus, we get for every ˛ 2 Œ0; 1/

X
E2E0

jb11�E.˛/j2 � 1

90000
N 2:

Hence, we can continue the estimation of the sum of squared discrepancies as
follows.

X
E2E0

X
a2Z

j.Ea/j2 D
Z 1

0

j O.˛/j2
0
@X
E2E0

jb11�E.˛/j2
1
A d˛

� 1

90000
N 2k Ok22

D 1

90000
N 2kk22

D 1

90000
N 3:

Since every E 2 E0 satisfies E � ŒN �, we get for all a 2 Z n f�N C 1; : : : ; N g
that Ea \ ŒN � D ; and thus .Ea/ D 0. Therefore,

P
E2E0

P
a2Z

j.Ea/j2 is the sum of

at most 2N jE0j � 14N 2 non-trivial elements (Lemma 113). Hence, there exists an
E 2 E0 and an a 2 f�N D 1; : : : ; N g such that

j.Ea/j2 � 1

1260000
N:

Thus, we have proven

disc.HN;2/ � j.Ea/j > 1

1200
N 1=2

i.e. disc.HN;2/ D ˝
�
N1=2

�
. ut

For the proof of the Main Lemma we need the following auxiliary lemmas.
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Lemma 115. For every ˛ 2 Œ0; 1/ and every k 2 N there exists a ı 2 Œk� and an
a 2 Z such that

jı˛ � aj < 1

k
:

Proof. For all j 2 Œk� we set

Mj WD
�
ı 2 Œk� W ı˛ � bı˛c 2

�
j � 1

k
;
j

k

��
:

For every ı 2 M1 it holds jı˛ � bı˛cj < 1
k

. Thus, we can assume M1 D ;. By the
pigeonhole argument there exists a j 2 Œk� n f1g with jMj j � 2. Let ı1; ı2 2 Mj

with ı1 < ı2. Set ı WD ı2 � ı1. Using ı1; ı2 2 Mj , we get

jı � .bı2˛c � bı1˛c/j D j.ı2 � bı2˛c/ � .ı1 � bı1˛c/j < 1

k

as required. ut
Lemma 116. Let ˛ 2 Œ0; 1/, ı1; ı2; L1; L2 2 N with L1 ¤ 1 ¤ L2 be chosen such
that for suitable a1; a2 2 Z we have

jıj ˛ � aj j � 1

12.Lj � 1/
; .j D 1; 2/:

SetE WD fj1ı1Cj2ı2 W j1 2 Œ0; L1�1�; j2 2 Œ0; L2�1�g. For the Fourier transform
of the indicator function 11�E of the set �E we get

jb11�E.˛/j � jEj
2
:

Proof. The Fourier transform of a function f W Z ! C is Of W Œ0; 1/ ! C, ˛ 7!P
z2Z
f .z/e�2�iz˛ . Thus,

b11�E.˛/ D
X
z2E

e2�iz˛:

Let z 2 E . There exists a j1 2 Œ0; L1�1� and a j2 2 Œ0; L2�1�with z D j1ı1Cj2ı2.
Hence,

e2�iz˛ D e2�i.j1ı1Cj2ı2/˛

D e2�iŒj1.ı1˛�a1/Cj2.ı2˛�a2/�e2�i.j1a1Cj2a2/

D e2�iŒj1.ı1˛�a1/Cj2.ı2˛�a2/�:
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Using jj1.ı1˛ � a1/C j2.ı2˛ � a2/j � L1�1
12.L1�1/ C L2�1

12.L2�1/ D 1
12

C 1
12

D 1
6
, we get

Re.e2�iz˛/ � 1
2
. This proves

jb11�E.˛/j D
ˇ̌̌
ˇ
X
z2E

e2�iz˛
ˇ̌̌
ˇ � Re.

X
z2E

e2�iz˛/ � jEj
2

as asserted. ut
We are able to demonstrate the proof idea of the Main Lemma.

Proof (Main Lemma). Using Lemma 115 we can find a ı1 2 ŒN 1
2 � such that for an

appropriate a1 2 Z it holds jı1˛ � a1j < N� 12 . Dividing by ı1 we get

j˛ � a1

ı1
j < N� 12 ı�11 : (5.55)

Choose ı1 and a1 in such a way that a1
ı1

is an irreducible fraction. We distinguish
three cases, but give the proof only in the first case as the other cases are similar, but
little bit more involved.

Case 1 : j˛ � a1
ı1

j < N�1 and ı1 � 24.
Case 2 : j˛ � a1

ı1
j < N�1 and ı1 > 24.

Case 3 : j˛ � a1
ı1

j � N�1.

Proof for Case 1. Set L1 WD d N
6ı1

e, ı2 WD 1, and L2 WD 1. The set E WD Eı1;L1;ı2;L2
is an element of the special set of hyperedges E0. More precisely, E 2 E1.
Arguments similar to those in the proof of Lemma 116 show

jb11�E.˛/j � Re

 X
z2E

e2�iz˛

!

D
L1�1X
j1D0

Re
�
e2�ij1ı1˛

�

� L1Re
�
e
2�i
6

	
� N

288
:

ut

5.5 Discrepancy of Arithmetic Progressions in Zp

In this section, which is based on [40] and previous material treated in [38], we
consider the problem of finding the c-color discrepancy, c � 2, of arithmetic
progressions and centered arithmetic progressions resp. in Zp . We will show that
its discrepancy is much larger than for arithmetic progressions in the first n integers.
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It is easy to prove that for p D 2 the discrepancy of the arithmetic progressions in
Zp is exactly .c � 1/=c and it is 1 for any p and c D 2 for the centered arithmetic
progressions. But no matching upper and lower bounds were known beyond these
special cases. We show that for both hypergraphs the lower bound is tight up to

a logarithmic factor in p: the lower bound is ˝
�q

p

c

	
and the upper bound is

O
�q

p

c
lnp

	
. The main work is the proof of the lower bounds with Fourier analysis

on Zp . The result for the centered arithmetic progressions is the interesting result,
because here due to the lack of translation-invariance of the hypergraph, Fourier
analysis alone does not work and has to be combined with a suitable decomposition
of such progressions. Techniques of this type may be useful also in other areas where
lower bounds for combinatorial functions are sought.

5.5.1 Zp-Invariant Hypergraphs

We define the hypergraph HZp :

Definition 117. HZp WD .Zp;EZp /, where

EZp WD fAa;ı;L W 0 � a � p � 1; 1 � ı � p � 1; 1 � L � pg

and Aa;ı;L WD f.a C jı/C pZ W 0 � j � L � 1g is the hypergraph of arithmetic
progressions in Zp .

Unlike in the hypergraph of arithmetic progressions in Œn�, an arithmetic progression
in Zp can be wrapped around (several times). Thus by Roth’s lower bound, or
Theorem 65 for d D 2, the discrepancy of HZp is at least ˝

�
p1=4

�
. According

to Theorem 45 its c-color discrepancy isO
�q

p

c
lnp

	
. So there is a significant gap

between lower and upper bound. Furthermore, the central object in this chapter is
the hypergraph of centered arithmetic progressions.

Definition 118. Define HZp;0 WD �
X;EZp;0

�
, where the set of hyperedges EZp;0 is

the set of all arithmetic progressions of the form Cı;L WD fjı W �L � j � Lg
with ı 2 Zp n f0g and 0 � L � p�1

2
. HZp;0 is called the hypergraph of centered

arithmetic progressions in Zp .

Again by Theorem 45 an upper bound for its discrepancy is O
�q

p

c
lnp

	
, but

at the moment we do not have a lower bound. There is an important structural
difference between arithmetic progressions and centered arithmetic progressions.
The translate of an arithmetic progression is again an arithmetic progression, but this
is obviously not true for centered arithmetic progressions. The translation-invariance
is essential for a lower bound proof based on Fourier analysis as in the paper of
Roth [67]. For hypergraphs missing the translation-invariance, lower bound proofs
are a challenging task requiring new combinatorial ideas.
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Let G D Zp , p a prime. Let us briefly recall some facts about the Fourier
transform from Sect. 5.3.2. It is well-known that the dual group OG of G is G itself.
The Fourier transform of a function f W Zp ! C can be written as

Of W OZp ! C; r 7!
X
x2Zp

f .x/e�2�i xr=p:

For f; g W Zp ! C the convolution f � g W G ! C is defined by .f �
g/.y/ WD P

x2G f .x/g.y � x/; y 2 G: The Fourier transform of a convolution is

multiplicative, i.e., 1f � g D Of Og. The Plancherel theorem says kbf k22 D pkf k22 for

all f W G ! C, where kf k2 WD
�
1
p

P
x2G jf .x/j2

	1=2
is the usual 2-norm of f .

Let H D .Zp;E / be a hypergraph with the property that there is an E 2 E
such that for all a 2 Zp n f0g and b 2 Zp it holds that b C aE 2 E . We call
such hypergraphsZp-invariant with respect to the hyperedgeE . The hypergraph of
arithmetic progressions in Zp has this property: with E WD f0; 1; : : : ; p�1

2
g, b C aE

is the arithmetic progression with starting point b, difference a and length pC1
2

.
The next result on functions on Zp is the basis for the investigation of the coloring
function.

Theorem 119. Let H D .Zp;E / be a hypergraph that is Zp-invariant with respect
toE 2 E . Let ıE WD 1

p
jEj be the density ofE in Zp and f W Zp ! C be a function.

There are a 2 Zp n f0g and b 2 Zp with

jf .b C aE/j � p
ıE.1 � ıE/ kf k2:

Proof. In order to apply Proposition 76, we have to find an 
 > 0 such thatP
a2Zpnf0g jb11�aE.r/j2 � 
 for all r 2 Zp .
Let r 2 Zp n f0g. It holds for all a 2 Zp n f0g

b11�aE.r/ D
X

x2.�aE/
e�2�i xr=p D

X
x2.�E/

e�2�i xar=p Db11�E.ar/:

The multiplication with r is a bijection on Zp n f0g. Hence

X
a2Zpnf0g

jb11�aE.r/j2 D
X

a2Zpnf0g
jb11�E.ar/j2

D
X

a2Zpnf0g
jb11�E.a/j2

D
0
@X
a2Zp

jb11�E.a/j2
1
A � jb11�E.0/j2

PlancherelD p
X
a2Zp

j11�E.a/j2 � jEj2 D jEj.p � jEj/:
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Fig. 5.5 A large color class
case

For r D 0 we have

X
a2Zpnf0g

jb11�aE.0/j2 D
X

a2Zpnf0g
j.�aE/j2 D .p � 1/jEj2:

Therefore
X

a2Zpnf0g
jb11�aE.r/j2 � jEj.p � jEj/ for all r 2 Zp . By Proposition 76

X
a2Zpnf0g

X
b2Zp

jf .b C aE/j2 � jEj.p � jEj/kf k22 D p2ıE.1 � ıE/kf k22:

The right hand side is a sum of p.p � 1/ terms. Hence there are a 2 Zp n f0g and
b 2 Zp with

jf .b C aE/j �
s

p2

p.p � 1/
ıE.1 � ıE/kf k22 � p

ıE.1 � ıE/ kf k2:

This completes the proof. ut
Let us informally sketch the general line of our approach. We wish to determine

a lower bound for the discrepancy of a Zp-invariant hypergraphH D .Zp;E /. For
every c-coloring  of H , there exists a color i 2 f1; 2; : : : ; cg with j�1.i/j � p

c
.

Now for a constant ˛ > 0 that we choose to optimize the lower bound, there exists

a color i 2 f1; 2; : : : ; cg with j�1.i/j > p

c
C ˛

q
p

c
or there is no such color. In

the first case an average argument will show that for some b 2 Zp , the translation

b C E has discrepancy ˝.
q

p

c
/ (see Fig. 5.5). In the other case there must be a

color i 2 f1; 2; : : : ; cg such that for A WD �1.i/ it holds p

c
� jAj � p

c
C˛

q
p

c
. Let

ıA WD 1
p

jAj be the density of A in Zp . We define the fA W Zp ! C by
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fA.x/ WD
�
1 � ıA W x 2 A;

�ıA W x 2 Zp nA:

Obviously, we have fA.x/ D 11A.x/ � ıA for all x 2 Zp . This particular function is
closely related to the discrepancy function: for every E 2 E

fA.E/ D
X
x2E

fA.x/ D
X

x2E\A
.1 � ıA/C

X
x2EnA

.�ıA/ D jE \ Aj � ıAjEj:

So jfA.E/j is a kind of discrepancy of the hyperedge E with respect to the color
class A.
In view of good lower bounds, we are interested in a large value of jfA.E/j for some
E 2 E . The next corollary exhibits a lower bound of ˝

�p
p
�
.

Corollary 120. Let A;E � Zp , ıA WD 1
p

jAj and ıE WD 1
p

jEj. Furthermore let
fA W Zp ! C, x 7! 11A.x/ � ıA. There exist a 2 Zp n f0g and b 2 Zp such that

jfA.b C aE/j �
p
ıA.1 � ıA/ıE.1 � ıE/p:

Proof. According to Theorem 119 there are a 2 Zp n f0g and b 2 Zp such that

jfA.b C aE/j � p
ıE.1 � ıE/ kfAk2

D p
ıE.1 � ıE/

sX
x2A

.1 � ıA/2 C
X

x2ZpnA
.�ıA/2

D p
ıE.1 � ıE/

q
pıA.1 � ıA/2 C p.1 � ıA/ı

2
A

D p
ıA.1 � ıA/ıE.1 � ıE/p

as claimed. ut

5.5.2 Discrepancy of Arithmetic Progressions in Zp

The next theorem is the basis for the discrepancy result for centered arithmetic
progressions, but also of independent interest as nearly tight bounds are proved.

Theorem 121 (Hebbinghaus, Srivastav [40]). There exists a constant ˛ > 0 such
that for the hypergraph of the arithmetic progressions HZp in Zp we have

1

3

r
p

c
� disc.HZp ; c/ � ˛

r
p

c
lnp C 1:
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Proof. For p 2 f2; 3g it is easy to check that the claimed bounds are valid (for
p D 2 disc.HZp ; c/ D c�1

c
). Since p is a prime, we can assume that p � 5 and p

is odd.
Proof of the lower bound. Let  W Zp ! f1; 2; : : : ; cg be a c-coloring. There

exists a color i 2 f1; 2; : : : ; cg with j�1.i/j � p

c
. If there is a color i 2 f1; : : : ; cg

with j�1.i/j � p

c
> 1

3

q
p

c
; then disc.HZp ; c; / >

1
3

q
p

c
, because Zp itself is

an arithmetic progression in Zp . Thus, we can assume that there is a color i 2
f1; 2; : : : ; cg such that for A WD �1.i/ it holds 0 � jAj � p

c
� 1

3

q
p

c
:

Set ıA WD jAj
p

. We define the function fA W Zp ! C by

fA.x/ WD
�
1 � ıA W x 2 A;

�ıA W otherwise:

For every subset X � Zp

fA.X/ D
X
x2X

fA.x/ D
X

x2A\X
.1 � ıA/C

X
x2XnA

.�ıA/ D jA\ X j � ıAjX j:

Let us sketch the argumentation in the following: we wish to find an arithmetic

progression P in Zp such that jfA.P /j � 1
3

q
p

c
. Thereafter, it is proved that the

discrepancy ofP or the complement ofP in Zp with respect to  is at least jfA.P /j.
Since the complement of an arithmetic progression in Zp is also an arithmetic
progression in Zp , the lower bound is achieved. Let us define E WD A

0;1;
pC1
2

.

For every a 2 Zp n f0g and every b 2 Zp , b C aE D A
b;a;

pC1
2

is the

arithmetic progression with starting point b, difference a and length pC1
2

in Zp .
By Corollary 120 there are a 2 Zp n f0g and b 2 Zp such that

jfA.b C aE/j �
p
ıA.1 � ıA/ıE.1 � ıE/p

D
s
ıA.1 � ıA/

p C 1

2p

p � 1

2p
p

�
r

p2�1
4p2

p
ıA.1� ıA/p

�
q

24
100

p
ıA.1 � ıA/p

�
p
6
5

p
ıA.1 � ıA/p:
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Let x WD ıA � 1
c

then 0 � x � 1
3
p
pc

. Thus, we have

ıA.1 � ıA/ D
�
1

c
C x

��
c � 1
c

� x

�
D c � 1

c2
C c � 2

c
x � x2 � c � 1

c2
� 1

9pc
:

For p � 5 we conclude

jfA.b C aE/j �
p
6

5

s
c � 1

c
� 1

9p

r
p

c
�

p
6

5

r
1

2
� 1

45

r
p

c
>
1

3

r
p

c
:

If fA.b C aE/ > 0, define Q WD b C aE. Otherwise, if fA.b C aE/ < 0, we set

Q WD Zp n .b C aE/. Q is an arithmetic progression in Zp with fA.Q/ � 1
3

q
p

c
,

because fA.Zp n .b C aE// D fA.Zp/� fA.b C aE/ D �fA.b C aE/. Hence

disc.HZp ; c; / � jA\Qj � 1
c
jQj

D jA\Qj � ıAjQj C .ıA � 1
c
/jQj � fA.Q/ >

1

3

r
p

c
:

Proof of the upper bound. The number of hyperedges in HZp is bounded by p3

because for every tuple .a; ı; L/ with 0 � a � p � 1, 1 � ı � p � 1 and 1 �
L � p there is only one arithmetic progression P in Zp with P D Aa;ı;L and every
hyperedge of HZp is of this form. By Theorem 45 there is a constant ˛ > 0 such
that

disc.HZp ; c/ � ˛

r
p

c
lnp C 1:

This completes the proof. ut
We proceed to centered arithmetic progressions.

5.5.3 Centered Arithmetic Progressions

The main result is:

Theorem 122 (Hebbinghaus, Srivastav [40]). Let c � 3. For the hypergraph of
centered arithmetic progressions in Zp there exists a constant ˛ > 0 such that

1

31

r
p

c
� disc.HZp;0; c/ � ˛

r
p

c
lnp C 1:
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We state bounds for the c-color discrepancy of HZp;0 only for c � 3, because
disc.HZp;0; 2/ D 1, using the coloring

 W Zp ! f�1; 1g; x 7!
�

1 W x 2 f0; : : : ; p�1
2

g;
�1 W x 2 fpC1

2
; : : : ; p � 1g:

For the proof of Theorem 122, we need a couple of lemmas. Define for a subset
A � Zp of density ıA WD 1

p
jAj < 1

2
the function

gA W Zp ! C; x 7!
8<
:
2 � 2ıA W fx;�xg � A;

1 � 2ıA W fx;�xg ¤ fx;�xg \ A ¤ ;;
�2ıA W fx;�xg \A D ;:

(5.56)

Let fA W Zp ! C be defined as in Sect. 5.5.2, i.e., fA.x/ D 1 � ıA if x 2 A and
f .x/ D �ıA otherwise. The function gA is a kind of symmetrization of fA:

gA.x/ D fA.x/C fA.�x/; for all x 2 Zp;

and it turns out to be a key concept in the proof of Theorem 122. The next lemma
gives an estimation for kgAk22.
Lemma 123. Let A be a subset of Zp with density ıA D 1

p
jAj < 1

2
, then

kgAk22 � 4pıA.
1
2

� ıA/:

Proof. We set � WD 1
p

jfx 2 Zp W fx;�xg ¤ fx;�xg\A ¤ ;gj, i.e. � is the density
of the subset of Zp of all x with 11A.x/ ¤ 11A.�x/. For this density we get � � 2ıA,
because for every y 2 fx 2 Zp W fx;�xg ¤ fx;�xg \ A ¤ ;g either y 2 A or
�y 2 A. Since there are .ıA � 1

2
�/p elements x 2 Zp with gA.x/ D 2 � 2ıA, �p

elements x 2 Zp with gA.x/ D 1� 2ıA and .1� ıA � 1
2
�/p elements x 2 Zp with

gA.x/ D �2ıA, we have

kgAk22 D
X
x2Zp

jgA.x/j2

D .ıA � 1
2
�/p.2 � 2ıA/

2 C �p.1 � 2ıA/2 C .1 � ıA � 1
2
�/p.�2ıA/2

D p
�
�.�2C 4ıA � 2ı2A C 1 � 4ıA C 4ı2A � 2ı2A/C 4ıA.1 � ıA/

�
D 4p

�
ıA.1 � ıA/ � 1

4
�
�

Using � � 2ıA we get kgAk22 � 4pıA.
1
2

� ıA/. ut
With the function gA multi-sets come into play. For every multi-set K over Zp let
us denote by K.x/ the frequency of occurrence of x 2 Zp in K . For a multi-set K
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over Zp and a function f W Zp ! C we extend the definition f .X/ D P
x2X f .x/

for subsets X � Zp to multisets by

f .K/ WD
X
x2Zp

K.x/f .x/:

Let E � Zp and let M be the multi-set E [ .�E/, i.e., every element of E \ .�E/
occurs twice in M . Thus, we have

M.x/ D 11E.x/C 11E.�x/

for all x 2 Zp . With this definition we have

gA.E/ D
X
x2E

gA.x/ D
X
x2E

.fA.x/C fA.�x// D
X
x2Zp

M.x/fA.x/ D fA.M/:

(5.57)

The proof of Theorem 122 will use this equation in the following way. As in
Sect. 5.5.2 fA is the color-function for a color-class A. The term jfA.M/j is a
kind of discrepancy of the multi-set M D E [ .�E/. Via (5.57) we can calculate
a lower bound for jfA.M/j using the modified color-function gA. The set E is an
arithmetic progression with starting point 0 in Zp , the multi-setM D E[.�E/ can
be separated into at most three sets that are either a centered arithmetic progression
or the complement of a centered arithmetic progression in Zp , as the following
lemma states. Let us further define

Definition 124. Let E be an arithmetic progression with starting point 0 in Zp and
let M be the multi-set M D E [ .�E/. We defineM0 WD fx 2 Zp W M.x/ � 1g.

Note that M0 D E [ .�E/, in the usual sense of the union of two sets. We have

Lemma 125. M0 is a centered arithmetic progression.

Proof. Let E D fka W k 2 f0; 1; : : : ; L � 1gg with a 2 Zp n f0g and L � p.

Case 1: There is an x 2 E \ .�E/. Then there are k1; k2 2 f0; 1; : : : ; L � 1g
with k1a D x D �k2a. Thus .k1 C k2/a 	 0 mod p . Since p is prime, p is
a divisor of k1 C k2, so L � 1 � p=2, and hence M0 D Zp , which is a centered
arithmetic progression.

Case 2: E \ .�E/ is empty. Then M0 D fka W k 2 f�LC 1; : : : ;�1; 0; 1; : : : ;
L � 1gg is a centered arithmetic progression.

ut
Lemma 126. Let P be an arithmetic progression in Zp . The set P \ .�P/ is the
union of at most two sets that are either a centered arithmetic progression or the
complement of a centered arithmetic progression in Zp .
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Proof. Let ˛ 2 Zp , ˇ 2 Zp n f0g and 1 � L � p � 1 such that P D f˛ C iˇ W
0 � i � L � 1g. We can assume that L < p, because otherwise P \ .�P/ D
P D Zp and there is nothing left to prove. For each x 2 P \ .�P/ there are
i; j 2 f0; 1; : : : ; L � 1g such that

x 	 ˛ C iˇ 	 �˛ � jˇ mod p (5.58)

This is equivalent to .i C j /ˇ 	 �2˛ mod p. Let k1 2 f0; 1; : : : ; p � 1g be the
unique element with k1ˇ 	 �2˛ mod p. Set k2 WD k1 C p. Then fk1; k2g is the
solution set for the congruence kˇ 	 �2˛ in the set f0; 1; : : : ; 2p � 1g. Clearly,
each i C j is contained in this set, so i C j 2 fk1; k2g. We make the following case
distinction.

Case 1: k1 > 2L� 2

Case 2: L � 1 < k1 � 2L� 2

Case 3: k1 � L � 1 and k2 > 2L � 2
Case 4: k1 � L � 1 and k2 � 2L � 2
Let us show the pattern of the proof in the second case as the proof for the remaining
cases is along this line. We have k2 D k1 C p > L � 1 C p > 2L � 2. Therefore
the solutions .i; j / 2 f0; 1; : : : ; L � 1g2 of the congruence (5.58) are exactly the
solutions of the equation i C j D k1. The possible values for i and j resp. are the
elements of the set Y WD fk1 �LC 1; k1 �LC 2; : : : ; L� 1g. Thus P \ .�P/ D
f˛ C iˇ W i 2 Y g.

Case 2.1: k1 is even. Then jP \ .�P/j D L�1� .k1�LC1/C1 D 2L�1�k1
is odd. The central element in P \ .�P/ is ˛C k1

2
ˇ D ˛�˛ D 0 and P \ .�P/

is a centered arithmetic progression.
Case 2.2: k1 is odd. Since p is a prime, we can write X WD Zp n .P \ .�P// in

the form X D f˛ C iˇ W i 2 Y0g with Y0 D fL;L C 1; : : : ; k1 � L C pg. The
cardinality ofX is odd, because the cardinality of P \ .�P/ is even. The central
element in X is

˛ C k1 C p

2
ˇ D ˛ � 2˛ � pˇ

2
D ˛ � ˛ D 0 mod p:

Hence X is a centered arithmetic progression.
ut

Proof (of Theorem 122). The upper bound for the discrepancy of the hypergraph
HZp of all arithmetic progression in Zp from Theorem 121 is also an upper bound
for the discrepancy of HZp;0, since EZp;0 � EZp . Thus, only the lower bound is left
to prove. The assertion is trivial for p 2 f2; 3g. Hence, we can assume p � 5. We
consider the case c � 4 and refer for c D 3 (the easier case) to [40]. Let be c � 4

and fix an arbitrary c-coloring  W Zp ! f1; 2; : : : ; cg of HZp;0. There exists at least
one color i 2 f1; 2; : : : ; cg with j�1.i/j � p

c
. If there is a color i 2 f1; 2; : : : ; cg

such that j�1.i/j > p

c
C 1

25

q
p

c
, then
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disc.HZp;0; c; / �
ˇ̌
ˇ̌jZp \ �1.i/j � 1

c
jZpj

ˇ̌
ˇ̌ > 1

25

r
p

c
;

because Zp itself is a centered arithmetic progression in Zp . Thus, we can assume
that this is not the case and get the existence of a color i 2 f1; 2; : : : ; cg such that it
holds for A WD �1.i/

p

c
� jAj � p

c
C 1

25

r
p

c
:

For the density ıA WD 1
p

jAj of A in Zp we have

0 � ıA � 1

c
� 1

25

s
1

pc
:

Set E WD f0; 1; : : : ; p�1
2

g and ıE WD jEj D pC1
2

. For the function gA defined
in (5.56) we get by Theorem 119 the existence of an a 2 Zp n f0g and a b 2 Zp

such that

jgA.b C aE/j �
p
ıE.1� ıE/kgAk2 D 1

2

s
p2 � 1
p2

kgAk2:

Using Lemma 123 we have

jgA.b C aE/j �
s
p2 � 1
p2

s
ıA

�
1

2
� ıA

�
p:

The set b C aE is an arithmetic progression with starting point b, difference a and

length pC1
2

. Setting x WD ıA � 1
c

we get 0 � x � 1
25

q
1
pc

. Therefore,

ıA

�
1

2
� ıA

�
D
�
1

c
C x

��
1

2
� 1

c
� x

�
D c � 2

2c2
Cc � 4

2c
x�x2 � c � 2

2c2
� 1

625pc

and hence (using p � 5 and c � 4)

jgA.b C aE/j �
s
p2 � 1
p2

s�
c � 2

2c2
� 1

625pc

�
p

�
s
24

25

�
1

4
� 1

3125

�r
p

c

>
12

25

r
p

c
:
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Since jgA.Zp n .b C aE//j D jgA.b C aE/j, we can assume that 0 62 .b C aE/.
Every arithmetic progression in Zp can be supplemented step by step until it is
the whole set Zp , because p is a prime. Thus, we can supplement b C aE to an
arithmetic progression P1 with starting point 0. Using the triangle-inequality P1 or
P1 n .b C aE/ is an arithmetic progression P with starting point 0 and

jgA.P /j � 1

2
jgA.b C aE/j > 6

25

r
p

c
:

We define the multi-set M WD P [ .�P/ and get according to Eq. (5.57),

jfA.M/j D jgA.P /j:

Lemma 126 states that P \ .�P/ is the union of at most two sets that are
either a centered arithmetic progression or the complement of a centered arithmetic
progression in Zp . Since the set M0 WD fx 2 Zp W M.x/ � 1g D P [ .�P/ is a
centered arithmetic progression, the multi-set M is the union of at most three sets
that are either a centered arithmetic progression or the complement of a centered
arithmetic progression in Zp . Using the triangle-inequality at least one of these sets,
which we denote by P0, satisfies

jfA.P0/j � 1

3
jfA.M/j D 1

3
jgA.P /j > 2

25

r
p

c
:

It holds jfA.Zp n P0/j D jfA.P0/j > 2
25

q
p

c
. Therefore we can assume that P0 is a

centered arithmetic progression in Zp . The triangle-inequality yields

disc.HZp;0; c; / �
ˇ̌
ˇ̌jP0 \Aj � 1

c
jP0j

ˇ̌
ˇ̌

D
ˇ̌̌
ˇjP0 \Aj � ıAjP0j C

�
ıA � 1

c

�
jP0j

ˇ̌̌
ˇ

� ˇ̌jP0 \Aj � ıAjP0j
ˇ̌ �

ˇ̌
ˇ̌�ıA � 1

c

�
p

ˇ̌
ˇ̌

D jfA.P0/j �
ˇ̌̌
jAj � p

c

ˇ̌̌

>
2

25

r
p

c
� 1

25

r
p

c

D 1

25

r
p

c

as desired. ut
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5.6 One-Sided Discrepancy of Linear Hyperplanes

In the previous sections we were concerned with the c-color discrepancy of certain
arithmetic hypergraphs. A new aspect of combinatorial discrepancy theory is the
notion of the one-sided discrepancy. Such a discrepancy function appears for
example in the context of the declustering problem [28]. The one-sided discrepancy
function cannot be bounded with discrepancy bounds, and has its own structure,
demanding for a specific theory. Hebbinghaus, Schoen and Srivastav [41] studied
the one-sided c-color discrepancy (c � 2) of linear hyperplanes in the finite vector
space F

r
q . Let Hq;r denote the hypergraph with vertex set Frq and all linear hyper-

planes, i. e., subspaces of codimension one in F
r
q as hyperedges. It was shown that

the one-sided discrepancy of Hq;r is bounded from below by ˝q

�p
nz.1 � z/=c

	
using Fourier analysis on F

r
q . For the discrepancy of Hq;r there is a lower bound

˝q

�p
nz.1 � z/

	
and an upper bound of Oq

�p
nz.1 � z/ log c

	
. The upper bound

is derived by the c-color extension of Spencer’s six standard deviation theorem
(Theorem 44) and is also valid for the one-sided discrepancy. Thus, the gap between
the upper and lower bound for the one-sided discrepancy is a factor of

p
c log c and

the bounds are tight for any constant c and q. In the following we will present the
techniques and main results with proofs.

5.6.1 Discrepancy of Hq;r

The c-color discrepancy measures deviations from the average value jEj
c

in both
directions. Therefore one cannot decide whether the discrepancy is caused by a
lack or an excess of vertices in a hyperedge in one color. To measure the guaranteed
excess of vertices in one hyperedge and color, we define another discrepancy notion.
The one-sided c-color discrepancy of H with respect to  is defined by

discC.H ; ; c/ D max
i2Œc� max

E2E

�
jAi \ Ej � jEj

c

�

and the one-sided c-color discrepancy of H by

discC.H ; c/ D min
WX!Œc� discC.H ; ; c/:

Trivially, discC.H ; c/ � disc.H ; c/, and since
P
i2Œc�

�
jAi \ Ej � jEj

c

	
D 0 for

every E 2 E , we get

disc.H ; c/ � .c � 1/ discC.H ; c/: (5.59)
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Let us define the hypergraph under consideration in this section. Let Fq be the
field with q elements, where q D pk is a prime power and let X D F

r
q be

the r-dimensional vector space over Fq . Furthermore, let Eq;r be the set of linear
hyperplanes of X . This means that Eq;r is the set of all subspaces of codimension 1.
For a set S � F

r
q we define S] D S n f0g. Set n D jX j D qr and Hq;r D .X;Eq;r /.

Hq;r is an n
q

-uniform hypergraph with n vertices and jEq;r j D n�1
q�1 hyperedges.

First we consider the case cj.q � 1/.
Proposition 127. If cj.q � 1/ we have

discC.Hq;r ; c/ D disc.Hq;r ; c/ D c � 1

c
:

Proof. Let E1 be the set of all one-dimensional subspaces of X . Then

X D f0g [
[
W 2E1

.W n f0g/ : (5.60)

For everyW 2 E1 the set W n f0g contains q � 1 elements. Since cj.q � 1/, we can
color W n f0g in an exactly balanced way: we just color q�1

c
vertices of W n f0g in

each color. Doing this for everyW 2 E1 and coloring the origin with the color 1 we
get a c-coloring WX ! Œc�. This is a coloring with the least possible discrepancy

discC.Hq;r ; ; c/ D disc.Hq;r ; ; c/ D c � 1
c

;

which proves the claim. ut
For the remainder we assume that c − .q � 1/.

Theorem 128. Let z D .q�1/ mod c

c
. There exists a constant ˛ > 0 such that

1

q

p
nz.1 � z/� 1 � disc.Hq;r ; c/ � ˛

p
nz.1 � z/ log c:

As in Sect. 5.1, define for a color i 2 Œc� the vectorm.i/ 2 R
c with

m
.i/
j D

�
c�1
c

W i D j;

� 1
c

W otherwise:

and set Mc D fm.i/ W i 2 Œc�g. Let WX ! Mc be a c-coloring of H . Further, we
define  2 R

nc by iC.j�1/c D ..vj //i for all i 2 Œc� and j 2 Œn�, where X D
fv1; v2; : : : ; vng. Let Ic denote the c-dimensional identity matrix. Then, according
to (5.18) in Sect. 5.1, we have
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disc.H ; ; c/ D max
E2E


X
x2E

.x/


1

D k.M ˝ Ic/k1 :

If we delete the origin from the vector space, the lower bound proof becomes easier.
Thus define X 0 D X n f0g, E 0q;r D fE \ X 0 W E 2 Eq;rg, and H 0

q;r D .X 0;E 0q;r /. It
is obvious that disc.Hq;r ; c/ � disc.H 0

q;r ; c/ � 1, thus we can focus on H 0
q;r . The

hypergraph H 0
q;r has an interesting property. For two arbitrary elements x; y 2 X 0

let us denote by d.x; y/ the number of hyperedgesE 2 E 0q;r which contain x and y
and call it the pair-degree of x and y. One can check that

d.x; y/ D
(

qr�1�1
q�1 W if x and y are linearly dependent;

qr�2�1
q�1 W otherwise:

LetM be the incidence matrix of H 0
q;r : the rows ofM correspond to the hyperedges

of H 0
q;r , the columns to the vertices of H 0

q;r and the component Mi;j of M is 1
if vj 2 Ei and is 0 otherwise. W.l.o.g. we can assume that the columns of M
are arranged according to the one-dimensional subspaces of X . Let us denote by�
MTM

�
x;y

the component of the matrix MTM in the row that corresponds to the
vertex x 2 X 0 and the column that corresponds to the vertex y 2 X 0. Then we
have

�
MTM

�
x;y

D d.x; y/, and the matrix MTM is of the following form: on the

diagonal there are n�1
q�1 copies of the .q � 1/ 
 .q � 1/-matrix with all components

equal to qr�1�1
q�1 , and all other components of M are equal to qr�2�1

q�1 .
We need the following lemma, which extends the lemma of Beck and Sos

[13, Theorem 2.8 and Corollary 2.9] to block diagonal matrices and the c-color
discrepancy. For simplicity we focus on block diagonal matrices consisting of
blocks of same size and identical elements.

Lemma 129. Let H D .X;E / be a finite hypergraph. Let n D jX j, m D jE j and

k; l 2 N such that n D kl . Set z D l mod c
c

and let M be the incidence matrix of
H . If for some block diagonal matrix D consisting of k copies of an l 
 l-matrix
Y with all entries equal to 
 > 0, the matrix MTM � D is positive semidefinite,
then

disc.H ; c/ �
�
k
z.1 � z/

m

� 1
2

:

Proof. Let WX ! Mc be a c-coloring such that disc.H ; c/ D disc.H ; ; c/. For
all i 2 Œl � let us denote the coloring of the set Xi of vertices corresponding to the
i -th block ofD by i WXi ! Mc . Using the discrepancy notion and the color vector
 introduced at the beginning of this subsection, we obtain
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disc.H ; c/ D k.M ˝ Ic/k1 � 1p
cm

k.M ˝ Ic/k2

D
�
1

cm
T Œ.MTM�D/˝ IcCD ˝ Ic�

� 1
2

�
�
1

cm
T .D ˝ Ic/

� 1
2

�
�
k


cm

�
cz.1 � z/2 C c.1 � z/z2

�� 1
2

D
�
k
z.1 � z/

m

� 1
2

which finishes the proof. ut
Proof (of Theorem 128). Lower Bound. Consider the hypergraph H 0

q;r , where the

origin has been deleted. LetD be the block diagonal matrix consisting of n�1
q�1 blocks

on the diagonal, where each block is a .q� 1/
 .q� 1/-matrix with all components

equal to qr�1�1
q�1 � qr�2�1

q�1 D qr�2 and all other components of D are 0. Since we
have for all x; y 2 X 0

.MTM/x;y D d.x; y/ D
(

qr�1�1
q�1 W if x and y are linearly dependent;

qr�2�1
q�1 W otherwise;

all components of the matrix MTM � D are qr�2�1
q�1 . Therefore, the matrix

MTM � D is positive semidefinite, and we can apply Lemma 129. The constants
for Lemma 129 in this situation are k D n�1

q�1 , 
 D qr�2, and m D n�1
q�1 . Thus,

we get

disc.H 0
q;r ; c/ � �

qr�2z.1 � z/
� 1
2 D 1

q

p
nz.1 � z/:

And for the lower bound for the c-color discrepancy of Hq;r we have

disc.Hq;r ; c/ � disc.H 0
q;r ; c/ � 1 � 1

q

p
nz.1 � z/:

Upper Bound. For the proof of the upper bound recall our assumption z ¤ 0, i.e.
.q � 1/ mod c ¤ 0. Let W be an arbitrary one-dimensional subspace of X . Then
for every E 2 Eq;r either W � E or W \ E D f0g. So for any two non-trivial
x; y 2 W there is no E 2 Eq;r with x 2 E and y 62 E . Thus we can color all
but s D .q � 1/ mod c non-trivial elements of W in such a way that every color
is used in the same amount, for every one-dimensional subspace of X . One can
check that the sub-hypergraph induced by the pre-colored vertices has discrepancy
0. Let H 0

q;r D .X 0;E 0q;r / be the sub-hypergraph induced by the other n0 D n�1
q�1 sC 1

vertices of X . By construction it is clear that

disc.Hq;r ; c/ � disc.H 0
q;r ; c/:
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Applying Theorem 43 to the hypergraph H 0
q;r we get

disc.Hq;r ; c/ � disc.H 0
q;r ; c/ D O

 r
n0
c

log c

!
D O

�r
nz

q
log c

�
:

The only thing left to prove is 1
q

� .1�z/. If c < q then .1�z/ � 1
c
> 1

q
is obvious.

Hence, we can assume c � q. Using q � 1 � q�1
q
c, we get

1 � z D c � .q � 1/

c
�
c � .q�1/c

q

c
D 1

q
;

and are done. ut

5.6.2 One-Sided Discrepancy of Hq;r

Obviously the upper bound in Theorem 128 for the c-color discrepancy is also an
upper bound for the one-sided c-color discrepancy discC.Hq;r ; c/. But the lower
bound needs to be investigated separately. Let r0 W N ! N be the function defined
by r0.2/ D 6, r0.q/ D 5 for 3 � q � 5, and r0.q/ D 4 otherwise. The main result
is the following.

Theorem 130. Let z D .q�1/ mod c
c

, z ¤ 0. If r � r0.q/, we have

discC.Hq;r ; c/ �
p

z.1 � z/

4q.q � 1/
r
n

c
� 1:

Proof Idea. We will first observe that for a c-coloring  of X the one-sided
discrepancy discC.Hq;r ; ; c/ can be written as

discC.Hq;r ; ; c/ D max
i2Œc� max

E2Eq;r

 OAi.E?/
q

C jAi j
q

� n

qc

!
; (5.61)

where OAi is the Fourier transform of the indicator function 11Ai in F
r
q and for all

E 2 Eq;r we set OAi.E?/ D P
x2E?nf0g OAi.x/. Then we will prove that for any

set A � F
r
q there exists an E 2 Eq;r with OA.E?/ � �1. And finally a certain

tradeoff between the size of Ai and OAi.E?/ in (5.61) can be shown that leads to
the stated lower bound. As a first step towards the proof of Theorem 130 we prove
some lemmas for the Fourier transform on F

r
q .
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5.6.3 The Fourier Transform and Some Consequences

Basic facts about the Fourier transform on finite groups can be found in the book of
R. Lidl and H. Niederreiter [46]. For convenience, let us recall what we need. We
have definedX D F

r
q . Let f WX ! C be a function. TrFq=Fp WFq is the absolute trace

function defined by

TrFq=Fp WFq ! Fp; ˛ 7! ˛ C ˛p C ˛p
2 C : : :C ˛p

k�1

:

When there is no danger of confusion, we write Tr.:/. Theorem 2.23 (iii) in the book
of Niederreiter [46] states that the function TrFq=Fp is linear and onto. The Fourier

Transform Of is defined by

Of WX ! C; z 7!
X
x2X

f .x/e
2�i
p Tr.hx;zi/

;

where hx; zi D x1z1 C x2z2 C : : :C xrzr is the inner product in F
r
q . Furthermore we

set for all W � X :

Of .W / D
X

z2W ]

Of .z/;

where W ] D W n f0g. Let us denote by OA D O11A the Fourier transform of the
indicator function 11A .A � X/. Note that for allE 2 Eq;r there is a unique subspace
E? of X of dimension one, which is orthogonal to E . To shorten notation, define

Definition 131. For every A � X and every hyperedgeE 2 Eq;r

dC.A;E/ WD jA\Ej � jAj
q
:

We have the following orthogonality relation.

Lemma 132. For each z 2 X] and a 2 X we have

1

q

X
x2hzi

e
2�i
p Tr.ha;xi/ D

�
0 W ha; zi ¤ 0;

1 W ha; zi D 0:

Proof. Let hzi be the subspace generated by z. If ha; zi D 0, then ha; xi D 0 for
every x 2 hzi. Hence,

1

q

X
x2hzi

e
2�i
p Tr.ha;xi/ D 1

q

X
x2hzi

e
2�i
p Tr.0/ D 1

q

X
x2hzi

1 D 1

q
jhzij D 1:
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Now we assume ha; zi ¤ 0. Then ha; xi runs through the whole field Fq , if x runs
through the whole subspace hzi. Since the trace function Tr is onto and non-trivial,

there exists a y 2 hzi with e
2�i
p Tr.ha;yi/ ¤ 1. Moreover, the function f W hzi !

hzi; x 7! x C y is bijective. Thus,

e
2�i
p Tr.ha;yi/

0
@1
q

X
x2hzi

e
2�i
p Tr.ha;xi/

1
A D 1

q

X
x2hzi

e
2�i
p Tr.ha;xCyi/

D 1

q

X
x2hzi

e
2�i
p Tr.ha;xi/

:

Using e
2�i
p Tr.ha;yi/ ¤ 1, we get 1

q

P
x2hzi

e
2�i
p Tr.ha;xi/ D 0. ut

Lemma 133 establishes a first link between one-sided discrepancy and Fourier
analysis.

Lemma 133. For every subset A � X and every hyperedge E 2 Eq;r

dC.A;E/ D 1

q
OA.E?/:

Proof. Let z 2 E? n f0g. Using Lemma 132 we have

jA\ Ej D
X
a2A

ıha;zi;0 D
X
a2A

1

q

X
x2hzi

e
2�i
p Tr.ha;xi/ D 1

q

X
x2E?

X
a2A

e
2�i
p Tr.ha;xi/

D 1

q

X
x2E?

OA.x/ D 1

q
OA.E?/C 1

q
OA.0/ D 1

q
OA.E?/C 1

q
jAj:

Thus, we have dC.A;E/ D jA \Ej � 1
q
jAj D 1

q
OA.E?/. ut

Note that Lemma 133 immediately implies the statement (5.61). Let us define ˛ WD
jEq;r j and ˇ WD jfE 2 Eq;r W v 2 Egj for an arbitrary v 2 X] D X n f0g. Note that
the definition of ˇ does not depend on the choice of v.

Lemma 134. We have ˛ D qr�1
q�1 and ˇ D qr�1�1

q�1 .

Proof. Due to orthogonality, there is a one-to-one correspondence between the
subspaces of dimension one and codimension one in X . Thus the number of linear
hyperplanes in X is the number of basis of one-dimensional subspace of X divided
by the number of basis of a fixed one-dimensional subspace of X . So we have
˛ D qr�1

q�1 . Double-counting yields
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ˇ.qr � 1/C ˛ D
0
@X

v2X]
jfE 2 Eq;r W v 2 Egj

1
AC jfE 2 Eq;r W 0 2 Egj

D
X
v2X

jfE 2 Eq;r W v 2 Egj D
X
E2Eq;r

jEj D ˛qr�1:

Thus, we have ˇ D ˛
qr�1�1
qr�1 D qr�1�1

q�1 . ut
The three statements in the next lemma will be useful for our calculations. The

proof is just an rearrangement of sums [41]. For convenience we define

M2 D
n
.a1; a2; k1; k2/ 2 A 
 A 
 F

]
q 
 F

]
q W k1a1 C k2a2 D 0

o
;

M3 D
�
.a1; a2; a3; k1; k2; k3/ 2 A3 


�
F
]
q

	3 W k1a1 C k2a2 C k3a3 D 0

�
:

Let E1 denote the set of all one-dimensional subspaces of X .

Lemma 135. Let A � X . We have

(i)
P

E2Eq;r
OA.E?/ D n 11A.0/� jAj,

(ii)
P

E2Eq;r
OA.E?/2 D n

q�1 jM2j � .q � 1/jAj2,

(iii)
P

E2Eq;r
OA.E?/3 D n

q�1 jM3j � .q � 1/2jAj3.

Calculating jM2j gives a Parseval-type equation.

Corollary 136. For every A � X

X
E2Eq;r

j OA.E?/j2 D n.q � 1/1A.0/� .q � 1/jAj2 C n
X
W 2E1

jA\W ]j2

and in particular

X
E2Eq;r

j OA.E?/j2 � jAj .n � .q � 1/jAj/ :

For some hyperedge the one-sided discrepancy is not too small:

Lemma 137. Let A � X . There exists an E 2 Eq;r with dC.A;E/ � �1.

Proof. With Lemma 133, we have

X
E2Eq;r

dC.A;E/ D 1

q

X
E2Eq;r

OA.E?/ D 1

q

X
E2Eq;r

X
z2.E?/]

X
a2A

e
2�i
p Tr.ha;zi/



5 Multicolor Discrepancy of Arithmetic Structures 413

D 1

q

X
a2A

X
z2X]

X
E2Eq;r

z2E?

e
2�i
p Tr.ha;zi/

D 1

q

0
@X
a2A]

X
z2X]

e
2�i
p Tr.ha;zi/ C 11A.0/

X
z2X]

e
2�i
p Tr.h0;zi/

1
A

D 1

q

0
@X
a2A]

.�1/C 11A.0/.n� 1/

1
A

D 1

q

�
11A.0/.n� 1/� jA]j�

D 1

q
.11A.0/.n/ � jAj/ :

We already showed jEq;r j D n�1
q�1 . There exists an E 2 Eq;r with

dC.A;E/ � q � 1
n � 1

1

q
.11A.0/n � jAj/ :

If 0 2 A, we get dC.A;E/ � 0. Thus, we can assume 0 62 A and get

dC.A;E/ � �q � 1
n � 1

jAj
q

� �q � 1
n � 1

n � 1

q
D �q � 1

q

completing the proof. ut

5.6.4 Proof of the Main Result

As already explained, our strategy for the proof of Theorem 130 is to find either a
large color-class Ai , or to show that the sum of squared Fourier coefficients is very
large. In the first case, for the large color-class Ai the term jAi j

q
� jEj

c
is large. And

using Lemma 137, we get a hyperedge E 2 Eq;r with
OAi .E?/

q
� �1. This results

in a large discrepancy. In the latter case we will use the sum of squared Fourier
coefficients to deduce large discrepancy. The next lemma is a technical result, and
for a proof we refer again to [41].
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Lemma 138. Let k 2 R
C with 1

qr�1�q r2 �1 � k � 1
3q

and z D .q�1/ mod c

c
. Either

there exists a color i 2 Œc� and a hyperedge E 2 Eq;r with

jAi \ Ej � jEj
c
> k

p
n

c

or we have

X
i2Œc�

X
E2Eq;r

j OAi.E?/j2 � n.n � 1/c

q � 1

�
z.1 � z/� k

c2
.q � 1/2

�
:

We need some definitions. For E 2 Eq;r set

IC.E/ WD fi 2 Œc� W OAi.E?/ � 0g;
I�.E/ WD Œc� n IC.E/;

M D max
i2Œc�

max
E2Eq;r

j OAi.E?/j:

Proposition 139. There is an E 2 Eq;r with

X
i2IC.E/

OAi.E?/ D �
X

i2I�.E/

OAi.E?/ � M: (5.62)

Proof. By Lemma 133, for any E 2 Eq;r

X
i2Œc�

OAi.E?/ D q
X
i2Œc�

dC.Ai ; E/ D 0;

so

X
i2IC.E/

OAi.E?/ D �
X

i2I�.E/

OAi.E?/ D
X

i2I�.E/

ˇ̌̌
OAi.E?/

ˇ̌̌
;

and the last sum is at least M for some E . ut
Proof (of Theorem 130). Let r � r0.q/ and WX ! Œc� be a c-coloring of Hq;r . Set

k D
p

cz.1�z/
4q.q�1/ . We have to show

discC.Hq;r ; c/ � k

p
n

c
:

We fix the constant � D
q

nc
8q

�
z.1 � z/ � k

c2
.q � 1/2

�
. A straightforward calculation

shows
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�

c
� k

p
n

c
: (5.63)

which we will use later on. Both numbers are positive, therefore it suffice to prove
�2

n
� k2 � 0. We have

�2

n
� k2 D c

8q

 
z.1 � z/ �

p
cz.1 � z/.q � 1/

4qc2

!
� cz.1 � z/

16q2.q � 1/2

D c

8q

 
z.1 � z/ �

p
cz.1 � z/.q � 1/

4qc2
� z.1 � z/

2q.q � 1/2

!

� c

8q

�
z.1 � z/ � z.1 � z/

4
� z.1 � z/

4

�

D cz.1 � z/

16q
� 0:

We make the following nested case distinctions.

Case 1:P
i2IC.E/

�
jAi \ Ej � jEj

c

	
� � for an E 2 Eq;r .

In this case we have

c discC.Hq;r ; ; c/ �
X

i2IC.E/

�
jAi \Ej � jEj

c

�
� �

and hence,

discC.Hq;r ; ; c/ � �

c

.5.63/� k

p
n

c
: (5.64)

Case 2:
P

i2IC.E/

�
jAi \Ej � jEj

c

	
< � for all E 2 Eq;r .

Thus,

X
i2I�.E/

�
jAi \Ej � jEj

c

�
D �

X
i2IC.E/

�
jAi \Ej � jEj

c

�
> �� (5.65)

for all E 2 Eq;r .

Case 2.1: M � 2q�.
By (5.62), we have for an appropriateE 2 Eq;r :

1

q

X
i2I�.E/

jAi j � jI�.E/j jEj
c
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Lemma 133D
X

i2I�.E/

�
jAi \Ej � jEj

c

�
� 1

q

X
i2I�.E/

OAi.E?/

.5.62;5.65/
> �� C 1

q
M � �� C 2q�

q
D �:

Hence, there exists an i0 2 I�.X/ with

1

q
jAi0 j � jEj

c
� �

c

.5.63/� k

p
n

c
:

Lemma 137 ensures the existence of an E0 2 Eq;r with

1

q
OAi0.E?0 / � �1

and thus,

discC.Hq;r ; ; c/ � jAi0 \E0j � jE0j
c

(5.66)

D 1

q
OAi0.E?0 /C 1

q
jAi0 j � jE0j

c

� k

p
n

c
� 1: (5.67)

Case 2.2: M < 2q�.
To use Lemma 138 we have to verify 1

qr�1�q r2 �1 � k � 1
3q

, which can be

done with a little algebraic manipulations. By Lemma 138 either there exists
a color i 2 Œc� and an E 2 Eq;r such that

jAi \Ej � jEj
c
> k

p
n

c
(5.68)

or we have

X
i2Œc�

X
E2Eq;r

j OAi.E?/j2 � n.n � 1/c
q � 1

�
z.1 � z/ � k

c2
.q � 1/2

�
(5.69)

In the first case we get a lower bound for the one-sided discrepancy as desired.
Thus we can assume that (5.69) is satisfied. There exists an E 2 Eq;r with

X
i2Œc�

j OAi.E?/j2 � nc

�
z.1 � z/ � k

c2
.q � 1/2

�
:
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And we get

2M

0
@ X
i2I�.E/

j OAi.E?/j
1
A D M

0
@ X
i2I�.E/

j OAi.E?/j C
X

i2IC.E/

j OAi.E?/j
1
A

D M
X
i2Œc�

j OAi.E?/j �
X
i2Œc�

j OAi.E?/j2

� nc

�
z.1 � z/ � k

c2
.q � 1/2

�
:

Furthermore

X
i2I�.E/

j OAi.E?/j � nc

2M

�
z.1 � z/ � k

c2
.q � 1/2

�

>
nc

4q�

�
z.1 � z/� k

c2
.q � 1/2

�
D 2�

and (5.61) gives

1

q

X
i2I�.E/

jAi j � jI�.E/j jEj
c

D
X

i2I�.E/

�
jAi \Ej � jEj

c

�
� 1

q

X
i2I�.E/

OAi.E?/

.5.65/
> �� C 2� D �:

So, there exists an i0 2 I�.X/ such that

1

q
jAi0 j � jEj

c
>
�

c

.5.63/� k

p
n

c
:

Lemma 137 implies the existence E0 2 Eq;r with

1

q
OAi0.E?0 / � �1:

It follows that

discC.Hq;r ; ; c/ � jAi0 \ E0j � jE0j
c
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D 1

q
OAi0.E?0 /C 1

q
jAi0 j � jEj

c

� k

p
n

c
� 1: (5.70)

We have shown

discC.Hq;r ; ; c/ � k

p
n

c
� 1 D

p
z.1 � z/n

4q.q � 1/pc � 1:

This completes the proof. ut

5.6.5 Large Number of Colors

So far, our upper and lower bounds for the one-sided c-color discrepancy differ by
a factor of

p
c log c. Interestingly, the gap can be reduced to a factor of

p
log c for

a large number of colors, namely if c � qn1=3. The upper bound in (128) then is

discC.Hq;r ; c/ D Oq

�q
n
c

log c
	
:

Let us proceed to the proof of the lower bound.

Theorem 140. Let c � qn1=3 and r � 4. We have

discC.Hq;r ; c/ � 1

22
p
q

r
n

c
� 1:

In particular,

discC.Hq;r ; c/ D ˝q

�q
n
c

	
:

The key for the proof of Theorem 140 is the following lemma.

Lemma 141. Let A � X with jAj � 1
2
qr�1 and 0 2 A. There exists an E 2 Eq;r

with

dC.A;E/ � min

�
1

16.q � 1/2
n

jAj ;
1p
10q

p
jAj
�
:

Proof. Corollary 136 yields

X
E2Eq;r

j OA.E?/j2 � jAj.n � .q � 1/jAj/ � 1
2
njAj:
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Let us denote by EC the set of all E 2 Eq;r with OA.E?/ � 0 and by E � the set of
all E 2 Eq;r with OA.E?/ < 0. Furthermore define M D maxE2Eq;r OA.E?/. Recall
that we have defined ˛ D jEq;r j D n�1

q�1 � 2qr�1. Lemma 135 (i) yields

X
E2E �

ˇ̌̌
OA.E?/

ˇ̌̌
D �

X
E2Eq;r

OA.E?/C
X
E2EC

OA.E?/

D jAj � nA.0/C
X
E2EC

OA.E?/

� ˛M:

Using Lemma 135 (iii) in the same way, we get

X
E2E �

ˇ̌
ˇ OA.E?/

ˇ̌
ˇ3 D ˛M3 C .q � 1/2jAj2

Thus, with the Cauchy–Schwarz inequality

1
2
njAj �

X
E2EC

j OA.E?/j2 C
X
E2E�

j OA.E?/j2

� ˛M2 C
X
E2E �

j OA.E?/j 12 j OA.E?/j 32

� ˛M2 C
 X
E2E �

j OA.E?/j
! 1

2
 X
E2E �

j OA.E?/j3
! 1

2

� ˛M2 C .˛M/
1
2
�
.q � 1/2jAj3 C ˛M3

� 1
2 :

The first case is .q � 1/2jAj3 < ˛M3. Here we have

1

2
njAj � ˛M2 C .˛M/

1
2 .2˛M3/

1
2

� .1C p
2/˛M2

and thus, M �
q

qjAj
10

. For the E 2 Eq;r corresponding to M we have

dC.A;E/ D 1

q
OA.E?/ �

s
jAj
10q

:

The other case, .q � 1/2jAj3 � ˛M3, can be treated in a similar way. ut
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Proof (of Theorem 140). Consider an arbitrary c-coloring WX ! Œc� of Hq;r . Let
Ai WD �1.i/ for all i 2 Œc�. There exists at least one color-class Ai with jAi j � n

c
.

In the case that there is no color-class Ai with n
c

� jAi [ f0gj � n
c

C 1
3

p
n
c

there
must be a color-class Ai0 with jAi0 [ f0gj > n

c
C 1

3

p
n
c
. Using Lemma 137 we get

discC.Hq;r ; ; c/ � max
E2Eq;r

�
dC .Ai0 [ f0g; E/C jAi0[f0gj

q
� jEj

c

�
� 1

� 1
3q

q
n
c

� 1:

Now, there is a color-classAi0 with n
c

� jAi0 [f0gj � n
c

C 1
3

p
n
c
, because otherwise

we are done. In order to invoke Lemma 141 we have to ensure jAi0 [ f0gj < 1
2
qr�1.

This can be seen as follows:

jAi0 [ f0gj � n
c

C 1
3

q
n
c

� qr�
4
3�1 C 1

3
q
r
2� 23� 12

� qr�1
�
2�

4
3 C 1

3
2�

13
6

	
< 1

2
qr�1:

Hence, there exists an E 2 Eq;r with

dC.Ai0 [ f0g; E/ � min

�
1

16.q � 1/2
n

jAi0 [ f0gj ;
1p
10q

pjAi0 [ f0gj
�

� 1

22
p
q

r
n

c
:

Thus, we have

discC.Hq;r ; ; c// � dC.Ai0 [ f0g; E/C jAi0 j
q

� jEj
c

� 1 � 1

22
p
q

r
n

c
� 1

as asserted. ut

5.7 Some Open Problems

It is still an interesting problem to present algorithms that compute colorings with
optimal or nearly optimal discrepancy which are both, practically and theoretically
efficient.

We have proved in Sect. 5.3.5 an upper bound for the 2-color discrepancy of the
hypergraph of Cartesian products of symmetric arithmetic progressions, but a lower
bound is not known. In general, good lower and upper bounds would be of interest,
both in two and more colors, for products of hypergraphs.
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We discussed arithmetic progressions in the integers and sums of such pro-
gressions (Sects. 5.3 and 5.4). A natural generalization are quadratic arithmetic
progressions, with a linear and a quadratic term. The analysis of the discrepancy
function for such progressions seems to be difficult, because here exponential sums
with quadratic terms in the exponent, special cases of Weyl sums, appear demanding
for techniques able to master this kind of non-linearity in Fourier analysis.

Furthermore, in Sect. 5.5 we analyzed the discrepancy of arithmetic progressions
in Zp , where p is a prime. The proof methods were using this fact. Can we develop
also theory for non-prime p’s?

In Sect. 5.6 we have established almost tight bounds for the c-color discrepancy
of the hypergraph of linear hyperplanes in F

r
q . For the one-sided c-color discrepancy

of the same hypergraph we have given a lower and an upper bound which differ by
a factor

p
c log c. In particular, for any constant c and q upper and lower bound

are tight up to a constant factor. Moreover, in the case that the number of colors c
is large (c � qn

1
3 ) we have reduced this gap to a factor of

p
log c. A challenging

algorithmic problem still is to construct an Oq.
p
n/-discrepancy coloring for the

linear hyperplanes in F
r
q .

Acknowledgements We thank Mayank Singhal, MSc, for reading this chapter and Dr. Volkmar
Sauerland for his assistance in Latex.

References
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Chapter 6
Algorithmic Aspects of Combinatorial
Discrepancy

Nikhil Bansal

Abstract This chapter describes some recent results in combinatorial discrepancy
theory motivated by designing efficient polynomial time algorithms for finding low
discrepancy colorings. Until recently, the best known results for several combi-
natorial discrepancy problems were based on counting arguments, most notably
the entropy method, and were widely believed to be non-algorithmic. We describe
some algorithms based on semidefinite programming that can achieve many of these
bounds. Interestingly, the new connections between semidefinite optimization and
discrepancy have lead to several new structural results in discrepancy itself, such
as tightness of the so-called determinant lower bound and improved bounds on the
discrepancy of union of set systems. We will also see a surprising new algorithmic
proof of Spencer’s celebrated six standard deviations result due to Lovett and Meka,
that does not rely on any semidefinite programming or counting argument.

6.1 Introduction

In this chapter we consider the algorithmic aspects of several problems arising in
discrepancy theory. In particular, we will focus on combinatorial discrepancy, which
deals with the following type of question. There is a set-system .V; C / specified by
the elements V D f1; : : : ; ng and a collection of subsets C D fS1; : : : ; Smg of V .
Find a red-blue coloring of V such that each set inC is colored as evenly as possible.

Formally, let us use �1 and C1 to denote the colors red and blue. Given a coloring
 W V ! f�1; 1g, let us define the discrepancy of  for a set S as disc.; S/ WD
j.S/j where .S/ WD P

i2S .i/. Note that .S/measures the imbalance between
the number of elements in S that are colored �1 and 1. The discrepancy of the
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coloring  for the system .V; C / is defined as the maximum discrepancy over all
sets S 2 C ,

disc.; C / WD max
S2C j.S/j:

The discrepancy of the system .V; C / is the minimum discrepancy over all possible
colorings, i.e.

disc.C / D min


max
j2Œm� j.Sj /j:

More generally, one can define the discrepancy of a m 
 n matrix A as disc.A/ WD
minx2f�1;1gn kAxk1. Clearly, ifA is the incidence matrix of a set system, then this is
precisely the discrepancy of the set system as defined above. Almost all of the results
that we consider in this chapter generalize to arbitrary matrices in a straightforward
way. However we will focus on the case of set systems to keep the notation simple,
and also for historical reasons, as most results in combinatorial discrepancy are
stated for set systems.

Roughly speaking, the discrepancy of a set system is a useful measure of its
inherent complexity, and hence its understanding it is related to several areas in
mathematics and theoretical computer science. In computer science for example,
discrepancy is useful in topics such as probabilistic and approximation algorithms,
computational geometry, numerical integration, derandomization, complexity the-
ory, data structures and so on. We discuss one such application in Sect. 6.1.1, but
for more details we refer the reader to [10, 13, 20].

Algorithmic Aspects. Motivated by these applications, several interesting and
non-trivial techniques have been developed for both upper bounding and lower
bounding the discrepancy of various classes of set systems. As we shall see, many
of these techniques are non-constructive in the sense that they prove the existence
of a low discrepancy coloring, but give no clue about how to find one efficiently. As
usual, an algorithm is called efficient if its running time on every input instance is
polynomial in the size of the description of the instance. For us, this means that the
algorithm must run in time polynomial in n and m. In particular, the algorithm that
enumerates over all possible 2n colorings and picks the best one is not efficient.

Designing efficient algorithms for finding low discrepancy colorings has several
motivations. First, in many applications (see Sect. 6.1.1) one actually needs to find
such a coloring efficiently. Another motivation is from theoretical computer science
where one wishes to understand which problems admit efficient algorithms and
which ones do not. Until recently, many techniques for upper-bounding discrepancy
were believed to be inherently non-algorithmic.

Approximating Discrepancy. Perhaps the most natural question is the following.
Given a set system .V; C / can we determine its discrepancy exactly, or perhaps
even approximately, in polynomial time? Unfortunately, it turns out that this general
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question is essentially hopeless in a very strong sense. In particular, recently
Charikar, Newman and Nikolov [9] showed the following.

Theorem 1. Given a set system on n elements andm D O.n/ sets, it is NP-hard to
distinguish whether the system has discrepancy 0 or˝.

p
n/.

In particular, Theorem 1 says that assuming P¤NP, no polynomial time algo-
rithm can distinguish even among the following two extreme cases (i) whether a
given set system with O.n/ sets has discrepancy 0 or (ii) has discrepancy at least
c
p
n for some universal constant c.
We assume that the reader is familiar with basic notions of computational

complexity such as P¤ NP. For more details, an excellent reference is [26].
Theorem 1 is surprisingly tight, as the celebrated “six standard deviations suffice”

result of Spencer [27] shows that

Theorem 2. Every set system withm D n sets has discrepancy at most 6
p
n. More

generally, for m > n, the discrepancy is O..n log.m=n//1=2/.

We shall prove Theorems 1 and 2 in Sects. 6.6 and 6.2.2.

Hereditary Discrepancy. One reason why discrepancy is so hard to estimate (in
the sense of Theorem 1) is that it is a very fragile quantity. The following example
is instructive.

Let .V; C / be a set system with high discrepancy, where V D f1; : : : ; ng and
C D fS1; : : : ; Smg. Let .V 0; C 0/ be a copy of .V; C / on a different ground set. That
is, let V 0 D fn C 1; : : : ; 2ng and C 0 D fS 01; : : : ; S 0mg where each S 0i D fn C j W
j 2 Sig is a copy of Si on V 0. Consider the system .W;D/ WD ..V [ V 0; fS1 [
S 01; : : : ; Sm [ S 0mg/, that is, with elements V [ V 0 and with i -th set Si [ S 0i . As the
system .W;D/ contains the system .V; C / (restricting .W;D/ to V gives .V; C /),
it is at least as complex as C , and hence one would expect its discrepancy to be no
less than that of .V; C /. However, .W;D/ has discrepancy zero for trivial reasons,
as one can color all the elements in V by 1 and those in V 0 by �1.

To get around these kinds of anomalies, it is very useful to define the hereditary
discrepancy of a set system .V; C /. Specifically, given V 0 � V , let C jV 0 denote the
collection fS \ V 0 W S 2 C g. Then, the hereditary discrepancy of .V; C / is defined
as

herdisc.C / D max
V 0
V

disc.C jV 0/:

Most upper bounds stated in terms of discrepancy also imply the same bound for
hereditary discrepancy (for example if a class of systems is closed under taking
restrictions of the ground set, then bounding the discrepancy of systems in this class,
also implies bounds on hereditary discrepancy).

Let us consider an application to see how the concepts of discrepancy and
hereditary discrepancy can be useful.
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6.1.1 An Application

Suppose we are given a fractional solution x 2 R
n, to a linear system Ax D b on n

variables andm constraints. We would like to round x to an integral solution Qx such
that the error in each of the m equations is as low as possible, i.e. find Qx 2 Z

n that
minimizes kA.x � Qx/k1.

The answer to this question turns out to be closely related to the hereditary
discrepancy of the matrix A.

Theorem 3 (Lovász, Spencer, and Vesztergombi [18]). For any x 2 R
n satisfying

Ax D b, there is a Qx 2 Z
n with k Qx � xk1 < 1, such that kA.x � Qx/k1 �

herdisc.A/.

Proof. Let x D .x1; : : : ; xn/, and consider the binary expansion of each xi . That
is, we write xi as bxic C P

j�1 qij 2�j , where qij 2 f0; 1g denotes the j -th bit of
xi after the decimal point. The idea of the proof is to round the bits qij to 0, while
introducing low error in each of the m equations.

Let k be a fixed positive integer. Consider the k-th bit qik of each xi . Let A.k/

be the sub-matrix of A restricted to those columns i for which qik D 1. By the
definition of hereditary discrepancy, there is a f�1; 1g coloring .k/ of the columns
of A.k/ such that the discrepancy of each row of A.k/ is at most herdisc.A/. Viewing
.k/ as a vector in R

n with entries f�1; 0; 1g (where the 0 entries correspond to
the columns not in A.k/), consider the vector x0 D x C 2�k.k/. Now, the k-th
bit of each x0i is 0, as .k/.i/ 2 f�1; 1g if qik D 1 and 0 if qik D 0. Moreover,
Ax0 � Ax D A.x0 � x/ D 2�kA.k/ and hence kAx � Ax0k1 � 2�k � herdisc.A/.

We now iterate this process (treating x0 as x) on the bits at position k � 1; k �
2; : : : ; 1. This produces a vector x0 D x C 2�k.k/ C 2�kC1.k�1/ C : : :C 2�1.1/,
where the first k bits of each x0i are 0, and jAx�Ax0j � herdisc.A/.2�k C2�kC1C
: : : 2�1/ < herdisc.A/. Making k arbitrarily large implies the final result. ut

Let us note a few things about the proof, as these ideas will also be useful later.
(i) For each bit position j , the coloring .j / is used as a guide whether to round the
bit qij up or down. (ii) After the update is applied to the j -th bit, the bits in positions
j�1 or earlier might change due to carry-overs, and hence the submatrixA.j�1/ and
the coloring .j�1/ at the next step depend on the previous choices j ; .jC1/; : : :.
(iii) The proof does not give an efficient algorithm to find Qx, as the low hereditary
discrepancy property only shows the existence of some good j .

We remark that Doerr [12] gives an improved error bound of .1 �
1=2m/herdisc.A/ in Theorem 3.

6.1.2 Chapter Overview

The chapter is organized as follows. We first describe some classical methods for
both upper bounding and lower bounding the discrepancy of various types of set
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systems. We then discuss the more recent results, that will build upon these previous
ideas. To keep our discussion manageable, in this chapter we mostly focus on two
problems which will suffice to convey the main ideas.

Arbitrary Set Systems. Given n elements and an arbitrary collection of m D n

sets, find a minimum discrepancy coloring.

Bounded Degree Set Systems. Given n elements and an arbitrary collection of sets
such that each element lies in at most t sets, find a minimum discrepancy coloring.

We now give a brief overview of the topics and the results that we will consider.

6.1.2.1 Classical Upper Bound Methods

Random Coloring. Given a set system .V; C /, perhaps the simplest idea is to color
each element randomly and independently ˙1 with probability 1=2 each.

Lemma 4. For any set system .V; C / on n elements andm sets, a random coloring
has discrepancyO.

p
n logm/ with high probability.

Proof. For any set S 2 C , .S/ is a random variable with mean 0 and variance
jS j. Thus, by standard Chernoff bounds (see for e.g. [1]), PrŒj.S/j � c

pjS j� �
2 exp.�c2=2/. Choosing, say c D 2

p
logm, this probability is at most 2=m2, and

hence by a union bound over the m sets in C , maxS j.S/j � 2
p
n logm with

probability at least 1 � 2=m. ut
In particular, for m D n this gives a discrepancy of O.

p
n logn/. This is

reasonably good as there exist set systems on n sets with discrepancy at least
˝.

p
n/ (we will see this in Sect. 6.6). However, a random coloring is not very

interesting as it is completely oblivious to the problem structure. For example, even
for bounded degree set systems with t D O.1/, a random coloring only gives
˝.

p
n/ discrepancy, while the actual discrepancy is O.1/ (see Theorem 5 below).

Moreover, note that Theorem 2 always beats random coloring for any set system.

Linear Algebraic Method. A simple but powerful approach for bounding discrep-
ancy is based on basic linear algebra. An interesting application of this method is
the following result for bounded degree set systems.

Theorem 5 ([6]). IfA is a set system where each element lies in at most t sets, then
disc.A/ � 2t � 1.

We shall see the proof of this theorem is Sect. 6.2.1. While the idea itself is quite
simple, the underlying idea will play a key role in later results.

The Entropy Method. One of the most powerful and widely used tools in
combinatorial discrepancy is the so-called partial coloring method due to [5] and
its refinements [27] based on the so-called entropy method. For example, Spencer’s
original proof of Theorem 2 was based on the entropy method. It can also be used to
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prove aO.
p
t logn/ bound [28] for bounded degree systems,1 which can sometimes

be better than the bound in Theorem 5.
As we shall see in Sect. 6.2.2, the entropy method is based on a clever application

of the pigeonhole principle to the space of all 2n possible colorings, and only proves
the existence of a low discrepancy coloring, without giving any algorithmic insight
on how to find it efficiently. For example, even though Theorem 2 was long known,
no polynomial time algorithm better than random coloring was known until recently
for general set systems.

6.1.2.2 A Lower Bound Method

A variety of techniques have also been developed for proving lower bounds on
discrepancy. Many of these are based on deep results and connections to various
areas of mathematics (see for e.g. [10, 20]). One of the strongest known results in
this direction is the following determinant lower bound due to [18]. For a real matrix
A, define

detlb.A/ WD max
k

max
B

j detBj1=k;

where the maximum is over all k 
 k submatrices B of A. For a set system .V; C /,
let detlb.C / denote detlb.A/ where A is the incidence matrix of .V; C /.

Theorem 6 ([18]). For every set system C , herdisc.C / � 1
2
detlb.C /:

We shall prove Theorem 6 in Sect. 6.7.1. The proof is based on an interesting
geometric interpretation of hereditary discrepancy which will be useful later.

6.1.2.3 Some Recent Results

Recently, several advances have been made in combinatorial discrepancy theory.
First, many previous (non-constructive) results based on the entropy method, can
now be made algorithmic. In particular, Bansal [3] showed the following algorithmic
version of Spencer’s result.

Theorem 7 ([3]). For any set system on m D O.n/ sets, there is a randomized
polynomial time algorithm to find an O.

p
n/ discrepancy coloring.

This result is based on semidefinite programming (SDPs) and in particular a new
method to round SDP solutions based on designing correlated gaussian random
walks. This method has several other applications. For example, it gives an

1Interestingly, an improved O.
p
t logn/ bound is also known [2] using a different method based

on convex geometry.
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algorithm to find O.
p
t logn/ discrepancy coloring for bounded degree systems,

matching the bound of [28]. It also gives a good approximation algorithm to find a
low discrepancy coloring for systems with low hereditary discrepancy.

Theorem 8 ([3]). For any set system .V; C / on n elements and m sets, there is a
randomized polynomial time algorithm to find a coloring with discrepancy at most
O..logm logn/1=2/ � herdisc.C /.

Theorem 8 directly implies the following algorithmic version of Theorem 3.

Corollary 9. Given any fractional solution x 2 R
n to the system Ax D b on m

equations, there is a polynomial time algorithm to round x to Qx 2 Z
n such that

kA.x � Qx/k1 D O..logm logn/1=2/ � herdisc.A/.

In Sect. 6.3 we give the relevant background on semidefinite programming and
prove Theorem 8. Then we show how these ideas can be refined and combined with
the entropy method to obtain Theorem 7. However, instead of proving the O.

p
n/

bound, we show a weaker O..n log log logn/1=2/ bound (which is already much
stronger than random coloring). This weaker bound illustrates all the ideas involved
without the tedious calculations needed for the O.

p
n/ bound.

Somewhat surprisingly, even though the algorithm in Theorem 7 is polynomial
time, it crucially relies on the non-constructive entropy method in its design, and
in particular does not give a truly constructive proof of Spencer’s result. This
unsatisfying situation was resolved very recently by Lovett and Meka [19] who
gave a simpler and completely constructive proof of Spencer’s result based on
gaussian random walks and linear algebraic ideas. In particular, their proof does
not use entropy method. We will see their proof in Sect. 6.5. Interestingly, their
main result implies a variant of the partial coloring that is quantitatively stronger
(in a certain regime) than the one obtained by the entropy method. This variant can
also be viewed as a “robust” version of the so-called iterated rounding technique in
approximation algorithms, and has found some other very interesting algorithmic
uses recently [25].

The connections between discrepancy and semidefinite programming have also
been useful in other ways besides algorithm design. In a very interesting result,
Matoušek [21] gave the first non-trivial upper bound on the gap between the
determinant lower bound and hereditary discrepancy.

Theorem 10 ([21]). For any set system .V; C /, herdisc.C / � O.logn
p

logm/ �
detlb.C /.

This result is remarkably tight, as there exist set systems for which herdisc.C / D
˝.logn/ � detlb.C / [23]. The proof of Theorem 10 is based on SDP duality, and
relating the dual SDP solution to sub-determinants of A via eigenvalues. We will
prove Theorem 10 in Sect. 6.7.1.

Among other things, Theorem 10 also implies the following new structural result
in discrepancy [21]: For any two set systems .V; C1/ and .V; C2/,

herdisc.C1 [ C2/ � max.herdisc.C1/; herdisc.C2// �O.logn
p

logm/:
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Previously such a result was known only for the special case when C2 consists of
a single set [16]! A further extension of this result to the union of t set-system can
also be found in [21].

Some Related Results that We Do not Discuss. A very recent and surprising
result that we do not discuss in this chapter, is the first algorithm for approximating
hereditary discrepancy to within poly-logarithmic factors [22]. Note that apriori it
is not even clear whether the minimum hereditary discrepancy problem is in NP.2

For this to hold, given a set system .V; C / and a target hereditary discrepancy
�, there must exist a (short) polynomial time verifiable witness that certifies that
disc.C jJ / � � for each of the 2n subsets J � V . The result of [22] is based
on combining the geometric interpretation of hereditary discrepancy together with
powerful results and ideas from convex geometry, most notably the restricted
invertibility principle by Bourgain and Tzafriri [7] and its refinements due to
Vershynin [30].

Finally, the recent algorithmic ideas developed for addressing discrepancy related
questions have also led to some very interesting results in optimization and
algorithms (e.g. [8, 14, 24, 25]). However, a discussion of these is beyond the scope
of this chapter.

6.2 Some Classic Results

We describe some classical results and techniques which will be very useful later.

6.2.1 Linear Algebraic Method

Beck and Fiala proved the following bound on the discrepancy of bounded degree
set systems, based on the linear algebraic method. Even though very elementary,
this will be an important proof for us, as its high level idea will be used many times
later.

Theorem 11 ([6]). If .V; C / is a set system such that each element lies in at most d
sets, then disc.S/ � 2d � 1. Moreover, such a coloring can be found in polynomial
time.

Proof. We will give an algorithm that starts with the all 0-coloring0, i.e. 0.i/ D 0

for all i , and iteratively updates the colors over time until they all reach �1 or 1.
During the intermediate steps, the elements may be assigned a fractional coloring,
i.e. in Œ�1; 1� instead of f�1; 1g. We now describe how the algorithm proceeds.

2Observe that proving a c-approximation for a problem, implies that the (approximate) problem is
both in NP and co-NP. Note that both Theorems 6 and 8 can be used to give a co-NP witness.
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Let t D .t .1/; : : : ; t .n// denote the coloring after the t-th iteration. Initially,
0.i/ D 0 for all i . We say that i is alive at time t , if jt�1.i/j < 1. Otherwise,
if t�1.i/ 2 f�1; 1g, it is considered fixed and is never updated again. Call a set S
safe at time t if at most d elements of S are alive. Otherwise, we call S dangerous.

The algorithm will ensure that at least one alive variable becomes fixed in each
iteration, and hence it terminates in at most n steps. As an element’s color is not
updated once it is fixed, once a set becomes safe it stays safe henceforth. The
coloring is updated in each iteration as follows. At iteration t , let C t denote the
collection of dangerous sets. The crucial observation is that the number of dangerous
sets is strictly less than the number of alive elements. This follows as each (alive)
element lies in at most d sets, and each dangerous set contains strictly more than d
alive elements.

Let v D .v1; : : : ; vn/, and consider the linear system defined by Sj � v D 0

(
P

i2Sj vi D 0/ for each dangerous set Sj and vi D 0 for each element i that is fixed.
By the observation above, there are strictly less than n constraints and hence by basic
linear algebra, there must exist a non-zero update direction v D .v.1/; : : : ; v.n//
such that v.i/ D 0 if i is fixed, and Sj �v D 0 if j is dangerous. We set t D t�1Cıv
where ı > 0 is the smallest real such that some alive variable reaches �1 or 1 and
gets fixed.

To see that the discrepancy of any set S is at most 2d �1, observe that as long as
a set is dangerous, the update rule ensures that S �t D 0. However, once S becomes
safe, it has at most d alive variables and thus no matter how these variables will be
subsequently updated, the discrepancy added with be strictly less than 2d . As the
discrepancy is an integer, it can be at most 2d � 1 ut

Let us note some key points about the proof. (i) The algorithms works with
fractional colorings at intermediate steps. (ii) At each step it makes progress towards
becoming an integral coloring. (iii) During the algorithm a set is protected as long
as it is dangerous.

6.2.2 Entropy Method

The following result is known as the partial coloring lemma and is one of the most
widely used techniques in combinatorial discrepancy. Its proof is based on a refined
counting approach called the entropy method, and a clever pigeonhole principle
argument. We closely follow the exposition in [20].

Theorem 12 (Partial Coloring Lemma via the Entropy Method). Let .V; C / be
a set system on n elements, and let a number �S > 0 be given for each set S 2 C .
Suppose the �S satisfy the condition

X
S2C

g

 
�SpjS j

!
� n

5
(6.1)
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where

g.�/ D
(

Ke��2=9 if � > 0:1
K ln.��1/ if � � 0:1

and K is some absolute constant. Then there is a partial coloring  that assigns
˙1 to at least n=10 variables (and 0 to the rest), satisfying j.S/j � �S for each
S 2 C .

We begin with some standard results that we will need to prove Theorem 12.

Entropy. Let Y be a discrete random variable that takes value y with probability
py . Then, its entropy is defined as H.Y / WD P

y py log2.1=py/.
Entropy satisfies the following properties (see e.g. [11]).

1. If H.Y / � k, then py � 2�k for some value y.
2. If Y attains ` different values, then H.Y / � log2 `. The equality is attained iff
Y D U`, the uniform distribution on ` values.

3. Subadditivity: If Y1; : : : ; Ym are arbitrary (correlated) random variables, and
X D .Y1; : : : ; Ym/ is a random vector with components Y1; : : : ; Ym, then
H.Y / � P

i H.Yi /.

Roughly speaking, the entropyH.X/ measures the amount of randomness in X .

Lemma 13. Let k D 24n=5 and suppose 1; : : : ; k are k distinct ˙1 colorings
of Œn�, such that for every two colorings i and j , with i; j 2 Œk�, it holds that
ji .S/� j .S/j � 2�S for each set S 2 C . Then, there exists a partial coloring 
that assigns ˙1 to at least n=10 elements (and 0 to the rest) satisfying .S/ � �S

for each S 2 C .

Proof. This follows from the standard isoperimetric inequality for the hamming
cube [17], which states that any subset C  f�1; 1gn of the cube with jC j >P`

jD0
�
n
j

�
contains two points in C with hamming distance at least 2`.

As 24n=5 >
Pn=20

hD0
�
n
h

�
this implies that there must exist two colorings i ; j in

f1; : : : ; kg with hamming distance at least n=10. Now, consider the vector  D
.i � j /=2. Note that .`/ D ˙1 whenever i .`/ ¤ j .`/, and is 0 otherwise.
Moreover, for any set S 2 C

j.S/j D j
X
`2S

.`/j D j1
2

X
`2S
.i .`/� j .`//j D j1

2
.i .S/� j .S//j � �S:

Here the last inequality follows from the property of the colorings 1; : : : ; k . ut
We now prove Theorem 12.

Proof. (Theorem 12) For a ˙1 coloring  and a set S 2 C , let Y.S/ WD
round

�
.S/

2�S

	
, where round.x/ D bx C 1=2c is the rounding function to the nearest
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integer. Thus Y.S/ simply indicates which bucket of size 2�S the discrepancy
.S/ lies in.

Let Y.S/ be the random variable that takes value Y.S/ where the coloring 
is chosen uniformly at random among the 2n possible colorings of Œn�. We can
determine Y.S/ exactly. In particular, if  is a random coloring, then PrŒ.S/ D
k� D � jS j

.jS j�k/=2
�
2�jS j which is roughly exp.�k2=.2jS j//. In particular, .S/

is distributed approximately uniformly in Œ�p
S;

p
S� and then decays super-

exponentially in subsequent intervals of size
pjS j. Let �S WD �S=

pjS j.
Claim. The entropy of YS satisfiesH.YS/ � g.�S/, for g as defined in Theorem 12.

Proof (Sketch). We refer the reader to [20] for the precise calculation, but the
idea is the following. For �S � 0:1, YS is distributed essentially uniformly in
Œ�1=�S; 1=�S� and the probability that YS takes values outside this range decreases
super-exponentially. ThusH.YS/ � H.U2�S / D O.log.1=�S//.

On the other hand if �S is large (say �S D 10), then p0 D PrŒYS D
0� � 1 � exp.��2S=2/ (and hence very close to 1), and for ` > 1, PrŒjYS j D
`� � 2 exp.��2S`2=2/. Thus YS is essentially always 0 and has entropy roughly
p0 log.1=p0/ � log.1=p0/ D O.exp.��2S=2/. Together this gives,H.YS/ � g.�S/

for any set S . ut
For Y.S/ as defined above, let Y denote the random vector Y D

.Y.S1/; : : : ; Y.Sm// where S1; : : : ; Sm are the sets in C . By sub-additivity
of entropy and the claim above H.Y / � P

j H.Yj / � P
S2C g.�S/. AsP

S g.�S/ � n=5, this gives H.Y / � n=5 and hence Y attains some value
b D .b1; : : : ; bm/ with probability at least 2�n=5. Equivalently, there exist k � 24n=5

different coloringsi , i D 1; : : : ; k such that Y.i .Sj // D bj for each i D 1; : : : ; k

and j D 1; : : : ; m, and thus for every 1 � i; i 0 � k and j D 1; : : : ; m it holds that
ji .Sj /� i 0.Sj /j � 2�S . Applying Lemma 13 now gives the result. ut

Let us see how Theorem 12 implies Spencer’s result and the O.
p
t logn/ bound

for bounded-degree set systems.

Proof of Theorem 2. The coloring is constructed in phases. Let n0 D n and let
ni denote number of uncolored elements left at the beginning of phase i , for
i D 0; 1; : : :. In phase i , we apply Theorem 12 to these ni elements with �i

S D
c.ni log.2n=ni//1=2 and verify that (6.1) holds when c is a large enough constant.
This gives a partial coloring on at least ni=10 elements, with discrepancy for any set
S at most�i

S . This gives that niC1 � .0:9/ni and hence ni � .0:9/in. Summing up
over the phases, the discrepancy for any set is at most

X
i

�i
S �

X
i

c

�
n.0:9/i log

�
2n

n.0:9/i

��1=2
D O.n1=2/:

ut
Proof of O.

p
t log n/ Discrepancy for Bounded Degree Systems [28]. The

coloring is constructed in phases where at most ni � n.0:9/i elements are left
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uncolored in phase i . In phase i , let si;j denote the number of sets with the number
of uncolored elements in the range Œ2j ; 2jC1/. As the degree of the set system is
at most t , we have that si;j � min.m; ni t=2j /. Using this fact, it can be verified
that (6.1) holds if �S D ct1=2 for some large enough constant c. Thus each set
incursO.

p
t / discrepancy in each phase and hence the total discrepancy incurred is

O.t1=2 logn/.

6.3 Systems with Low Hereditary Discrepancy

In this section we prove Theorem 8.

Theorem 8. For any set system .V; C / on n elements and m sets, there is
a randomized polynomial time algorithm to find a coloring with discrepancy
O..logm logn/1=2 � herdisc.C //.

The algorithm will be based on semidefinite programming, so we first give a brief
overview of semidefinite programming.

Semidefinite Programming. Recall that a linear program (LP) consists of some
collection of variables x1; : : : ; xn where each xi takes values in R, and the goal is to
optimize some linear objective function

P
i cixi , subject to some linear constraintsP

i aj ixi � bj for j D 1; : : : ; m. Linear programs can be solved optimally in
time that is polynomial in n;m, and the bit length required to describe the entries
aj i ; bj ; ci .

A semidefinite program (SDP) can be viewed as the following linear program.
The variables are written in the form xij where 1 � i; j � n (the reason for
writing variables in this form will become clear soon). There are m arbitrary linear
constraints on xij of the type

P
ij a

k
ij xij � bk for k D 1; : : : ; m and there is some

linear objective function
P
cij xij . Moreover, we require the symmetry condition

xij D xj i . Finally, one imposes the constraint that the n 
 n matrix X D .xij /,
consisting of entries xij , be positive semidefinite. That is, all its eigenvalues must
be non-negative (this is well defined as X is symmetric and hence has only real
eigenvalues), and we denote this by X � 0. To summarize, a general SDP has the
following form.

min
X

cij xij

s:t:
X
ij

akij xij � bk; 1 � k � m

X � 0

xij D xj i ; 1 � i; j � n

where akij ; b
k; cij are arbitrary real numbers.
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While the condition X � 0 may appear non-linear, note that it can be enforced
by adding (infinitely many) linear constraints of the form aTXa � 0, one for each
vector a 2 R

n. Despite the infinitely many constraints, by standard optimization
theory and in particular the Ellipsoid method, this program can be solved to any
desired level of accuracy in polynomial time. In particular, given a candidate
solution X there exists an efficient separation procedure as one can determine in
polynomial time whether aT Xa < 0 for some a, by computing the least eigenvalue
of X and checking if it is negative. For more details about solving semidefinite
programs, we refer the reader to [29].

Vector Program View. Recall that a symmetric n 
 n matrix X is positive
semidefinite if and only if it is the Gram matrix of some vectors v1; : : : ; vn 2 R

n.
That is, each entry xij can be written as xij D hvi ; vj i where h; i denotes the
standard inner product. Moreover, given X , the vectors vi can be computed in
polynomial time using the Cholesky decomposition procedure.

This implies that an SDP can equivalently be viewed as an arbitrary linear
program where the variables correspond to inner product of vectors. This is referred
to as the vector program view of an SDP, and it will be extremely useful for our
purposes. Note that one can only impose constraints on the dot products of vi ’s and
not on the vectors vi ’s themselves. Let us see how this is useful for discrepancy.

SDP Relaxation for Discrepancy. The natural SDP relaxation for the problem of
finding a ˙1 coloring with discrepancy at most � is the following.

k
X
i2Sj

vik22 � �2 for each set Sj 2 C (6.2)

kvik22 D 1 for each element i 2 V: (6.3)

Here, as usual, kvk2 D .hv; vi/1=2 denotes the length of v. The first constraint (6.2)
says that the discrepancy of each set Sj must be at most �. Observe that this is a
linear constraint on the dot product of variables as the left hand side of (6.2) can
be written as

P
i2Sj ;i 02Sj hvi ; vi 0i. The second constraint says that each hvi ; vi i D 1,

i.e. each vi must be a unit vector.
This is a valid relaxation as any ˙1 coloring with discrepancy at most � is

a feasible solution to the above program (corresponding to the solution vi D
.1; 0; : : : ; 0/ or vi D .�1; 0; : : : ; 0/ depending on whether i is colored 1 or �1). We
will call any feasible solution to this SDP, a vector-coloring for C , and the smallest
value � for which this SDP is feasible as the vector discrepancy of C , denoted by
vecdisc.C /. Clearly, vecdisc.C / � disc.C /.

Using this SDP. Before we describe our algorithm, we describe a natural approach
for using this SDP that does not work, but it will give important insights.

Let A be a matrix with discrepancy � (the reader should think of � as being very
small, say 0). First, we can assume that the algorithm knows �, as it can try all
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values 0; 1; : : : ; n and pick the smallest � for which the SDP given by (6.2)–(6.3) is
feasible. Now let us consider some vector-coloring vi obtained by solving this SDP.
In this solution, the unit vectors vi will be nicely correlated such that for every set
Sj , the vector

P
i2Sj vi has length at most � (say 0).

Our goal then is to convert these vectors vi into the numbers ˙1 without
increasing

P
i2Sj vj too much. A natural first step is to try to convert vi into real

numbers (hopefully close to ˙1) without substantially violating the sums
P

i2Sj vj .
So we project the vectors vi on some vector g 2 R

n to get real numbers yi D hg; vi i.
This seems reasonable as this maintains the correlations among vi . In particular,
these yi satisfy

X
i2Sj

yi D
X
i2Sj

hg; vi i D hg;
X
i2Sj

vi i � kgk2 � k
X
i2Sj

vik2;

implying that
P

i2Sj yi is also small if kPi2Sj vik is small. To this end, it will be
very convenient to project the vi on to random gaussian vectors in R

n.

Gaussian Random Variables. We recall the following standard facts about gaus-
sian distributions.

1. The gaussian distributionN.�; �2/ with mean � and variance �2 has probability
distribution function

f .x/ D 1

.2�/1=2�
e�.x��/2=2�2 :

2. If X is distributed as N.0; �2/, then PrŒjX j � t�� � 2e�t 2=2 for any t � 1.
3. Additivity: If g1 � N.�1; �

2/ and g2 � N.�2; �
2
2 / are independent gaussian

random variables, then for any t1; t2 2 R, the random variable t1g1 C t2g2 is
distributed as N.t1�1 C t2�2; t

2
1 �

2
1 C t22 �

2
2 /.

The additivity property of gaussians implies the following useful property.

Lemma 14. Let g 2 R
n be a random gaussian, i.e. each coordinate is chosen

independently according to distribution N.0; 1/. Then for any arbitrary vector v 2
R
n, the random variable hg; vi � N.0; kvk22/.

Proof. As hg; vi D P
i g.i/v.i/, where g.i/ and v.i/ denote the i -th coordinate of

g and v, and as the g.i/0s are independent, the additivity property implies that hg; vi
is distributed as N.0;

P
i v.i/2/ D N.0; jjvjj22/. ut

If the vectors vi satisfy (6.2)–(6.3), then if we choose a random gaussian g and
let yi D hg; vi i, Lemma 14 implies that

1. Each yi is distributed as N.0; 1/. This follows as kvik22 D 1.
2. For each j , the discrepancy

P
i2Sj yi is distributed as N.0;� �2/, i.e. as a

gaussian with mean 0 and variance at most �2. This follows as kPi2Sj vik2 � �2

by the SDP constraint.
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This seems quite close to what we would like. As yi � N.0; 1/, we have that
yi=.c.logn/1=2/ 2 Œ�1; 1� with high probability (for some large enough constant
c). Moreover, for any j , the discrepancy jPi2Sj yi j D O.�.logn/1=2/ with
high probability. Perhaps, one could now hope to round these yi ’s to ˙1 without
increasing the discrepancy substantially.

However, this possibility is ruled out by the hardness result in Theorem 1. In
particular, this result implies that there must exist systems with discrepancy˝.

p
n/

but vector-discrepancy 0 (if such systems did not exist, then solving the discrepancy
SDP with � D 0 would give an algorithm to distinguish between discrepancy 0 and
˝.

p
n/).

So, we adopt a different approach. Instead of trying to round the yi ’s directly
into ˙1, we will obtain a ˙1 solution gradually by combining several different
collections of correlated y0i s and solving several SDPs. This is also where we
will really use that the guarantee is Theorem 8 is with respect to the hereditary
discrepancy.

Algorithm Overview. As mentioned above, instead of trying to obtain a coloring
using a single SDP solution, we will gradually produce a solution by using several
SDPs over time. At time 0, we start with the “empty” coloring x0 D .0; : : : ; 0/

where each element is colored 0. We slowly modify it over time as follows: Suppose
xt�1 denotes the coloring of elements at time t � 1, we obtain the coloring xt by
adding a small perturbation vector ut (how this is chosen will be described later)
to xt�1, i.e. xt .i/ D xt�1.i/ C ut .i / for each element i . As the perturbations are
added, the color of the elements will evolve over time. Whenever an element’s color
reaches �1 or C1, we freeze that element’s color and it is not longer updated.

It remains to specify how to generate the updates ut . This is done using the
gaussian rounding idea described above. In particular, at time t , we consider the
SDP given by (6.2)–(6.3) with � D herdisc.C / (but only restricted to elements i that
are still alive, i.e. not frozen yet). As � D herdisc.C /, no matter which variables
are alive at time t , the SDP is always feasible. We take the vectors vti corresponding
to some feasible SDP solution and set uti D 
hg; vti i, where g is a random gaussian
in R

n and 
 is some polynomially small scaling factor (
 D 1=nc for any c � 1

suffices).

6.3.1 The Algorithm

We now state the algorithm formally.

1. Let xt denote the coloring at time t . Let 
 D 1=n and ` D 8 logn=
2. We
initialize, x0.i/ D 0 for all i 2 Œn�. The F t denote the set of frozen variables by
time t , where we initialize F 0 D ;.
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2. For each time step t D 1; 2; : : : ; ` repeat the following steps:

a. Find a feasible solution to the following semidefinite program:

k
X
i2Sj

vik22 � �2 for each set Sj

kvik22 D 1 8i … F t�1

kvik22 D 0 8i 2 F t�1

b. Pick a random gaussian vector gt 2 R
n.

c. For each i 2 Œn�, update xt .i/ D xt�1.i/C 
hgt ; vti i.
d. Set F t D F t�1. For each i , freeze i if jxt .i/j > 1, and update F t D F t [fig.

3. After time t D `, if some jx`.i/j < 1 (i.e. some element is alive), return fail.
4. For each i , set x`i D �1 if x`i < �1, and x`i D 1 if x`i > 1. Output the coloring x`.

Remark. The SDP in step 2(a) changes only when the set of frozen variables
F changes. Moreover, the SDP is always feasible irrespective of the set F t as
herdisc.C / � �.

6.3.2 Analysis

We will prove that the algorithm above produces a coloring with discrepancy
O..logm logn/1=2�/ with probability at least 1=2, where � is the hereditary
discrepancy of A. The proof relies on two simple ideas, that we first describe
informally.

The Proof Sketch. First we show that all elements are frozen by time ` with high
probability. Let us consider some element i . Observe that its color xt .i/ starts at
0, and evolves over time until it crosses ˙1 and is frozen. At each step the update
ut .i / D 
hvti ; g

t i is added. As kvtik D 1, by Lemma 14, uti � N.0; 
2/, and as
gt is chosen independently at each time step, ut .i / is independent of the previous
updates ut�1.i/; ut�2.i/; : : : for x.i/ (this is not strictly true, but let us ignore this
technicality here). As the increments are N.0; 
2/, xt .i/ will reach ˙1 in O.1=
2/
steps with constant probability, and thus the probability that it does not reach ˙1
until ` D O.logn=
2/ steps is at most 1=n2. So, with probability at least 1 � 1=n,
all elements will be frozen by time `.

We show now that the discrepancy is bounded with high probability. Let us
consider how the discrepancy xt .Sj / D P

i2Sj x
t .i/ of a set Sj evolves over time.

It is 0 initially at t D 0, at each step t , it is updated by ut .Sj / D P
i2Sj 
hgt ; vti i.

Let �t WD kPi2Sj vtjk2. The SDP constraint ensures that �t � �. Thus (roughly
speaking) xt .Sj / evolves as a random walk with stepsN.0;� 
�/. By standard tail
bounds, PrŒx`.Sj / > c.logm/1=2 � p

` � 
�� � 1=m2 for some suitable constant c.
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By union bound over the sets implies that

disc.C / D O..logm/1=2 �
p
` � 
�/ D O.� � .logm logn/1=2/:

Finally, note that truncating x`.i/ to ˙1 in the last step introduces very low error.
As jxti j < 1 holds just before it is frozen and the next increment is aN.0; 
2/ update,
it must hold that jxti j < 1C 
 �O..logn/1=2/ with high probability when it freezes.
Thus, truncation adds at most n � 
 �O..logn/1=2/ D O..logn/1=2/ error to any set.

The Formal Proof. Recall that a sequence of random variables X0; : : : ; Xt forms
a martingale, if EŒXt jXt�1; : : : ; X0� D Xt�1. We first need the following tail bound
on martingales with gaussian increments.

Lemma 15. Let 0 D X0 D X1; : : : ; Xn be a martingale with increments Yi D
Xi �Xi�1. Suppose for 1 � i � n, we have that Yi j.Xi�1; : : : ; X0/ is distributed as
�iG, where G is a standard gaussianN.0; 1/ and �i is a constant such that j�i j � 1

(note that �i may depend on X0; : : : ; Xi�1). Then,

PrŒjXnj � �
p
n� � 2e��2=2:

Proof. Let ˛ be a parameter to be optimized later. We have,

EŒe˛Yi jXi�1; : : : ; X0� �
Z 1
�1

e˛y �
�

1

.2�/1=2�i
e�y2=2�2i

�
dy

D e˛
2�2i =2 �

Z 1
�1

�
1

.2�/1=2�i
e�.y�˛�2i /2=2�2i

�
dy

D e˛
2�2i =2 � e˛

2=2:

Now,

EŒe˛Xn � D EŒe˛Xn�1 e˛Yn � D EŒe˛Xn�1EŒe˛Yn jXn�1; : : : ; X0�� � e˛
2=2

EŒe˛Xn�1 �:

Thus it follows by induction that EŒe˛Xn � � e˛
2n=2. Finally by Markov’s inequality,

PrŒXn � �
p
n� D PrŒe˛Xn � e˛�

p
n� � e�˛�

p
n
EŒe˛Xn � � e�˛�

p
nC˛2n=2:

Setting ˛ D �=
p
n and noting that PrŒXn � �

p
n� D PrŒXn � ��p

n� implies the
claim. ut
Lemma 16. Let Xt D g1 C : : : C gt where gi are iid N.0; 1/ random variables.
Then there is some universal constant c > 0 such that for any integer k � 1,

PrŒjXt j <
p
n for t D 1; : : : ; k

p
n� < .1 � c/�kC1:

While more precise estimates known for the above quantity, the following simple
proof suffices for our purposes.
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Proof. By additivity of gaussians, Xn is distributed as N.0; n/. Thus PrŒjXnj >
2
p
n� � c for some constant c > 0. Now, if jXt j <

p
n holds for each

t D 1; : : : ; k
p
n, it must necessarily hold that jXnj < p

n and that jXjn�X.j�1/nj <
2
p
n for each j D 2; : : : ; k. As each of these events is independent and the

probability of each latter event is at most 1� c. This implies the claimed result. ut
We can now prove Theorem 8.

Lemma 17. With probability at least 1 � 1=n, all elements will be frozen by time
` D O.logn=
2/.

Proof. Let us consider an element i . We bound the probability that its color xt .i/
never crosses ˙1 until time `. Starting from 0, at each step t , the update ut .i / D

hvti ; g

t i is added to xt�1.i/. Now, while the vector vti may depend on previous
choices of the gaussian vectors gt

0

for t 0 < t (as they determine the SDP at time t),
note that uti is distributed as N.0; 
2/ and is independent of ut

0

i for t 0 < t , whenever
kvtik D 1. By Lemma 16 there is some constant c0 such that the probability that xi
does not each ˙1 by c0 logn=
2 steps is at most 1=n2. The result follows by a union
bound over the n elements. ut
Lemma 18. With probability at least 1 � 1=m, for each set S , it holds that
disc.S/ D O.� � .logm logn/1=2/.

Proof. The discrepancy of a set Sj at time t is xt .Sj / D P
i2Sj x

t .i/. It is 0 at
t D 0, and at each step t it gets updated by ut .Sj / D P

i2Sj 
hgt ; vti i. Let �t WD
kPi2Sj vtjk2. The SDP constraint ensures that �t � �. Now, �t may depend on

the previous choices gt
0

for t 0 � t � 1 (as these choices affect the SDP at time t),
but as gt is chosen independently at time t , conditioned on the previous random
choices gt

0

, the update ut .Sj / � N.0; 
2�2t /. Thus, xt .Sj / forms a martingale with
incrementsN.0;� 
2�2/. So by Lemma 15,

PrŒx`.Sj / > c.logm/1=2 �
p
` � 
�� � 1=m2

for some suitable constant c. By a union bound over the m sets, disc.S/ D
O..logm/1=2 � p` � 
�/ D O.� � .logm logn/1=2/ with probability at least 1� 1=m.

ut
Finally, as discussed previously, truncating a frozen variable x`.i/ to ˙1

introduces only negligible error. Combining Lemmas 17 and 18 gives Theorem 8.

6.3.3 Bounds Based on Partial Hereditary Discrepancy

Let us define the partial hereditary discrepancy of a system as the smallest number
� such that for any sub-system, there exists a partial coloring (say that colors at least
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half the elements of that sub-system) with discrepancy at most �. The result above
can be refined to show that

Theorem 19. There is a polynomial time algorithm that finds a coloring with
discrepancy O.�.logm logn/1=2/, where � is the partial hereditary discrepancy
of A.

This is useful because for many problems better bounds are known on partial
hereditary discrepancy than for hereditary discrepancy. For example, for bounded
degree systems the best bound we know on hereditary discrepancy isO..t logn/1=2/
[2], while the partial hereditary discrepancy is O.

p
t/ (as we saw in Sect. 6.2.2).

The algorithm is a direct modification of the one in Sect. 6.3.1. We replace the
SDP constraint (6.3) that kvik2 D 1, by the conditions

P
i kvik2 � n=2 and kvik2 �

1 for each i . In particular, we consider the following SDP.

k
X
i2Sj

vik22 � �2 for each set Sj (6.4)

X
i…F

kvik22 � jF cj=2 (6.5)

kvik22 � 1 8i 2 F c (6.6)

kvik22 D 0 8i 2 F (6.7)

Here F c denotes the complement of F (i.e. alive variables) and � is the partial
hereditary discrepancy. Note that the constraints (6.5) and (6.6) only require that at
least half of the alive variables must be colored.

Analysis. While the algorithm is same as before, the analysis needs some more
care. The problem is that the alive variables do not necessarily satisfy kvik2 D 1,
but only the weaker condition (6.5). So, a priori it is possible that some variable
always has kvik � 0 and hence never makes progress towards reaching ˙1. To
get around this, one needs a more careful “energy increment” argument to show
that after every 1=
2 time steps, a constant fraction of the variables do reach ˙1
in expectation. One can then show that all elements are eventually colored ˙1 in
O.logn=
2/ time steps with probability at least 1=nO.1/.

The key result is the following.

Theorem 20. Let x 2 Œ�1;C1�n be an arbitrary fractional coloring with at most
k alive variables. Starting from the coloring x, let z be the coloring obtained after
applying the steps (2a)–(2d) of the algorithm for the SDP given by (6.4)–(6.7), for
16=
2 time units. Then the probability that z has more than k=2 alive variables is
at most 1=4.

Proof. Let u D 16=
2 and for each 1 � t � u, let xt denote the coloring at the
end of time t starting from the initial coloring x0 D x, i.e. after t applications of
steps (2a)–(2d). Let K denote the set of alive variables at time t D 0. Let kt denote
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the number of variables alive at the end of time t , and let k D k0 D jKj. We would
like to show that ku � k0=2 with probability at least 3=4. To do this, we track how
the “energy”

P
i xt .i/

2 of the coloring xt evolves as the algorithm proceeds.
For each time t D 1; : : : ; u, let us define

rt D
(P

i2K xt .i/2 if kt�1 � k=2;

rt�1 C 
2k=4 otherwise:

Lemma 21. Conditioned on any coloring xt�1 at the end of time t�1, the expected
increment rt � rt�1 at time step t is at least 
2k=4, where the expectation is over the
choice of the random gaussian g 2 Rn at time t . That is, EŒrt � rt�1jxt�1� � 
2k=4

for any xt�1.

Proof. If kt�1 < k=2, this follows trivially from the definition of rt , as rt is
deterministically set to rt�1 C 
2k=4. So it suffices to consider the case when
kt�1 � k=2. Let vt the vector solution to the SDP (6.4)–(6.7). Then,

EŒrt � rt�1jxt�1� D EŒrt jxt�1�� rt�1

D Eg

"X
i

.xt�1.i/C 
hg; vti i/2
#

�
X
i

xt�1.i/2

D
X
i

�
2
xt�1EŒhg; vti i�C 
2EŒ.hg; vti i/2�

� � 
2kt�1 � 
2k=4:

The first step follows as rt�1 is completely determined by xt�1. The last step follows
for the following reason. By Lemma 14, hg; vti i is distributed as N.0; kvtik2/ which
implies that EgŒhg; vti i� D 0 and EgŒ.hg; vti i/2� D kvtik2. Now, the SDP constraint
(6.5) ensures that

P
i kvtik2 � kt�1=2 which is at least k=4. ut

We now use this lemma together with Markov’s inequality to finish off the proof.
The crucial observation is the following. Consider time t D u. If ku � k=2,

then by definition ru D P
i2K xu.i/

2 � k. On the other hand, it always holds that
ru � kCu
2k=4. This is because in any run of the algorithm, rt D P

i2K xt .i/2 � k

as long as kt � k=2, and when kt falls below k=2, then rt increases deterministically
by 
2k=4 at each subsequent time step.

This gives us that

EŒru� D EŒrujku � k=2�PrŒku � k=2�C EŒrujku < k=2�PrŒku < k=2�

� k � PrŒku � k=2�C .k C 
2uk=4/ � .1 � PrŒku � k=2�/

D k C .1 � PrŒku � k=2�/ � .
2uk=4/:

As EŒru� � 
2uk=4 by Lemma 21, together this gives that 
2uk=4 � k C .1 �
PrŒku � k=2�/ � .
2uk=4/, and hence that PrŒku � k=2� � k=.
2uk=4/ D 1=4 as
claimed. ut
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Lemma 22. Let ` D 16 logn=
2. The probability that every element is colored ˙1
by time `, is at least 1=n.

Proof. We apply Theorem 20 repeatedly with the starting coloring x D xt at the
time steps t D 0; 16=s2; 32=s2; : : : ; .16 logn/=s2 D `. With probability at least
.1� 1=4/logn � 1=n, the number of alive variables at least halves at each epoch and
hence reaches 0. ut

The proof of Theorem 19 now follows directly by combining Lemma 22 together
with the argument in Lemma 18.

6.4 Algorithmic Version of Spencer’s Result

In this section we consider Theorem 7. This result turns out to be much more tricky
that the algorithm in the previous section.

To keep the focus on the main ideas, we will first describe a weaker version of
Theorem 7, that gives an O..n log log logn/1=2/ discrepancy coloring (note that is
still much better than randomized rounding). Later, in Sect. 6.5 we will describe the
recent and much simpler algorithm due to Lovett and Meka [19] to find an O.

p
n/

discrepancy coloring.

Some Problematic Issues. The reason that proving Theorem 7 is much more tricky
is the following. First, it is not at all clear whether semidefinite programming is
useful. In particular, consider the SDP given by (6.2)–(6.3). The natural thing is to
set � D O.

p
n/, and try to use this SDP solution.3 However, if we set � � p

n,
then this SDP can always return the trivially feasible solution vi D ei for i 2 Œn�,
where ei denotes the unit vector in the i th direction. This SDP solution is feasible as
the vi are unit vectors kvik D 1 and their orthogonality implies that kPi2S vik2 D
.jS j/1=2 � n1=2 for any S . Thus, the SDP does not seems to reveal any useful
information.

A second problem is that in the previous algorithm the discrepancy of a set
performs a random walk over time. So, even if we the expected discrepancy of a
set isO.

p
n/, some of them are very likely to deviate from the expectation by factor

˝.
p

logn/. So we do not seem to get anything better than the O.
p
n logn/ bound

that random coloring would have given us anyway.

The Additional Idea. To get around these issues, the idea is to let the discrepancy
bound �S for set S (in the SDP) vary over time depending on how the discrepancy
of S evolves. If a set S gets dangerously closely to violating the target c

p
n

discrepancy bound, we set its �S (denoted by �S in Lemma 12) in the SDP to be
much smaller than

p
n, thereby ensuring that its discrepancy is extremely unlikely

3Note that one cannot set � D o.
p
n/ in our setting, there are set systems on m D O.n/ sets

(e.g. the Hadamard set system, that we will see in Sect. 6.6) with vector discrepancy ˝.
p
n/.



446 N. Bansal

to exceed in c
p
n is subsequent iterations. The point is that the entropy method

(Lemma 12) guarantees a partial coloring provided the discrepancy bounds satisfy
the condition (6.1). So if we can argue that not too many sets become dangerous,
then the argument still goes through.

Before we describe the algorithm and its analysis, we state the following
corollary of Theorem 12 that we will need.

Corollary 23. Let .V; C / be any set system onm D O.n/ sets, and C 0  C be any
sub-collection of O.n=.log logn/2/ sets. Then there exists a partial coloring where
the discrepancy of sets in C 0 is at most

p
n= logn and the ones in C nC 0 isO.pn/.

Proof. For each set S 2 C 0, setting �S D p
n= logn contributes at most

g.1= logn/ D O.log logn/ to the left hand side of (6.1). As jC 0j D
O.n=.log log/2n/, the overall contribution due to C 0 is o.n/. For the sets in C n C 0
we set �S D c

p
n for c large enough, so that their total contribution to (6.1) is at

most n=10. Thus the claimed partial coloring exists by Lemma 12. ut

6.4.1 Algorithmic Subroutine and Analysis

We now describe the algorithm. We only consider the first phase when the number
of uncolored variables reduces from n to n=2. This is the hardest phase and contains
all the main ideas.

Algorithm for the First Phase. We start with the all 0 coloring, and consider the
following partial coloring SDP.

k
X
i2S

vik22 � �2S for each set S D S1; : : : ; Sm (6.8)

X
i…F

kvik22 � jF cj=2 (6.9)

kvik22 � 1 8i … F (6.10)

kvik22 D 0 8i 2 F (6.11)

Initially we set �S D cn1=2 for each set S , where c is a large enough constant
such that (6.1) is satisfied easily with some slack. As previously, for each time step
t , we obtain the update uti D 
hgt ; vtii for i D 1; : : : ; n and add it to the coloring
thus far. We repeat this for O.1=
2/ steps, at which point we expect half the colors
to reach ˙1.

During these steps, if the discrepancy jxt .S/j of S ever exceeds 2.n log log
logn/1=2, we label S dangerous and set �S D n1=2= logn in all the subsequent
SDPs. This ensures that its discrepancy increment ut .S/ will have standard devia-
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tion at most O.
 � .n1=2= logn// henceforth, making S extremely unlikely to incur
an additional˝.n1=2/ discrepancy over the remainingO.1=
2/ steps.

Analysis. By design, the reduction of �S for dangerous sets ensures that after
O.1=
2/ steps, the discrepancy of every set is O..n log log logn/1=2/ with high
probability. Moreover, Lemma 22 implies that with probability at least 3=4, at least
n=2 elements are colored ˙1 by the end of the phase.

It suffices to show that with probability at least 3=4, the SDP never becomes
infeasible. Indeed, as the discrepancy of any set forms a martingale with gaussian
increments with standard deviation O.

p
n/, thus by Lemma 15 the probability

of a set ever becoming dangerous is O.exp .�2 log log logn// D O.log logn/�2.
Thus the total expected number of dangerous sets is O.n=.log logn/2//, and by
Markov’s inequality, with probability at least 3=4, this number does not exceed
O.n.log logn/�2/. Corollary 23 now gives the claimed result.

Remarks.

1. TheO.n1=2/ bound in Theorem 7 follows by refining this idea by having multiple
danger levels and by setting the bounds �S for a set S appropriately for each
danger level.

2. Even though Theorem 7 gives a polynomial time algorithm, it crucially uses the
entropy method to argue about the feasibility of the SDP, and hence is not truly
constructive.

Recently, Lovett and Meka [19] discovered a much simpler argument to obtain
an algorithmic version of Spencer’s result. Their idea was to combine the gaussian
random walk approach above together with the linear algebraic ideas that we saw in
Sect. 6.2.1. We now describe their algorithm and analysis.

6.5 The Result of Lovett and Meka

As usual, let .V; C / be a set system with n elements and m sets S1; : : : ; Sm. Lovett
and Meka [19] gave the following algorithmic version of the partial coloring lemma.

Theorem 24. Let x 2 Œ�1; 1�n be some fractional coloring, with k alive elements
(i.e. k elements i such that x.i/ ¤ ˙1). For j D 1; : : : ; m, let �j be such that

X
j

exp.��2j =16/ � k=16: (6.12)

Then there is a randomized polynomial time algorithm to find a coloring x0 with at
most k=2 alive variables such that the additional discrepancy added to each set Sj
is at most�Sj D �j

pjSj j. That is, jx0.Sj /�x.Sj /j � �Sj for each j D 1; : : : ; m.
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Remark. The theorem is stated in the form above so that it can be applied
repeatedly to obtain a complete coloring after O.logn/ rounds. The reader may
assume that the starting coloring x is .0; : : : ; 0/.

An interesting aspect of Theorem 24 is that it is quantitatively stronger than the
entropy method (Theorem 12). In particular, if we require � � 1 for the sets, then
using (6.1) this can only be done forO.n= logn/ sets, while Theorem 24 allows this
for ˝.n/ sets. For more discussion on the comparison with the entropy method we
refer the reader to [19].

We now prove Theorem 24. Let K denote the set of alive elements at t D 0.
Without loss of generality let us assume that K D f1; : : : ; kg. As in the previous
algorithms, the algorithm will start from the initial coloring x0 D x and update it
over time as xt D xt�1 C ut by adding a suitably chosen tiny update vector ut at
time t .

6.5.1 The Algorithm

Let 
 � 1=n2 be a tiny parameter as before, and let ı D .10 logn/
 . Let us call a
set Sj dangerous after time t � 1, if jxt�1.Sj / � x0.Sj /j � �j � ı. Also, we call a
variable i frozen after time t � 1 if jxt�1.i/j � 1� ı. The algorithm will ensure that
the color xt .i/ of any element i does not change once it freezes, and moreover the
discrepancy of a set S also never changes once it becomes dangerous.

To achieve this the algorithm makes the update ut at time t in an appropriate
linear subspace defined as follows. Given the coloring xt�1 after time t � 1, let
V t � R

k be the subspace of points .v.1/; : : : ; v.k// satisfying:

1. If the element i is frozen, then v.i/ D 0.
2. If the set Sj is dangerous, then

P
i2Sj\Œk� v.i/ D 0.

Algorithm. Initialize x0 D x and V 0 D R
k .

For t D 1; : : : ; T , where T D 16=.3
2/, repeat the following steps.

1. Pick g � N.V t /. Update the coloring as xt D xt�1 C 
g.
2. If some element i freezes or if some set Sj becomes dangerous at time t , update
V tC1 accordingly.

Note that as the algorithm proceeds R
k D V 0 � V 1 � � � � � V t . Moreover,

as the update 
g lies in V t , it follows that for any element i , we have that
jxt .i/j is at most 1 � ı C O.

p
log.T //
 � 1 with high probability. Similarly,

the additional discrepancy jxt�1.S/ � x0.S/j of any set does not exceed �j � ı C
O.


pjSj jplogT / � �j C 1=n.
Thus one only needs to show that the algorithm does not get stuck (i.e. V t D ;,

while more than half the variables are still alive).
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6.5.2 Analysis

We begin with two simple properties of random gaussian vectors that play a key role
in the analysis.

For a linear subspace V � R
n, let N.V / denote the standard multi-dimensional

gaussian distribution supported on V . A random vector g is distributed according to
N.V / if g D g.1/v1 C : : :C g.d/vd where fv1; : : : ; vd g is an orthonormal basis for
V , and g.1/; : : : ; g.d/ are independentN.0; 1/ random variables. By the rotational
invariance of the multi-dimensional gaussian distribution, it is easily seen that g is
invariant of the choice of the basis fv1; : : : ; vd g.

Lemma 25. If g � N.V /, then for all u 2 R
n, hg; ui � N.0; �2/where �2 � kuk2.

Proof. Let u0 denote the projection of u onto V . Clearly, ku0k � kuk. As g 2 V ,
hg; ui D hg; u0i, which by Lemma 14 is distributed as N.0; ku0k2/. ut

Let ei denote the unit vector in the i -th direction.

Lemma 26. Let V be a d -dimensional subspace of Rn and g � N.V /. For i D
1; : : : ; n let �i be such that hg; ei i � N.0; �2i /. Then

Pn
iD1 �2i D d .

Proof. If v1; : : : ; vd is an orthogonal basis for V , then by Lemma 14, �2i DPd
jD1hei ; vj i2. Thus

Pn
iD1 �2i D Pn

iD1
Pd

jD1hei ; vj i2 D Pd
jD1

Pn
iD1hvj ; ei i2 DPd

jD1 kvjk2 D d , where the second last equality follows as fe1; : : : ; eng is an
orthogonal basis for Rn and hence kvk2 D Pn

iD1hv; eii2 for every v. ut
The proof of theorem now follows by arguments similar to the ones in Sect. 6.3.3.

We sketch the main idea here and refer the reader to [19] for the detailed
computations.

First we claim that not many sets become dangerous in expectation. This follows
as at each time step t , Lemma 25 implies that irrespective of the choice of V t , the
discrepancy increment of each set Sj is distributed as N.0;� 
2jSj j/. Thus, by
Lemma 15,

PrŒjxT .Sj /� x0.Sj /j � �Sj � � 2 exp.��2
Sj
=.T 
2jSj j// D 2 exp.�3�2j =16/:

(6.13)
As �j satisfy (6.12), by a standard calculation that we skip, (6.13) implies that

the probability that more than k=8 sets become dangerous is at most 1=8.
Let us condition on the event that no more than k=8 sets become dangerous.

Then we claim that with probability at least 3=4, at least k=2 elements become
frozen. This follows by the argument in Lemma 20. In particular, if fewer than k=2
elements are frozen, then at any time during the algorithm the dimension of the
subspace V t is at least k � k=2 � k=8 � 3k=8. Now, Lemma 26 implies that the
expected energy increment

P
i xt .i/

2 �xt�1.i/2 � .3k=8/
2. So, if fewer than k=2
elements are frozen, the total energy increment will be T .3k=8/
2 D 2k. But as
xt .i/

2 can never exceed k, we can use the argument in the proof of Lemma 20 (with
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constants modified) to upper bound the probability that fewer than k=2 elements are
fixed. Together, these two claims imply the result.

6.6 Inapproximability of Discrepancy

In this section we prove Theorem 1, which shows that discrepancy is essentially
hopeless to approximate. The proof has two main ingredients. One starts with a very
weak hardness result for discrepancy, which states that it is NP-hard to determine if
a set system has discrepancy 0 or if a constant fraction of sets have discrepancy at
least 1. The next step is to amplify this hardness by composing it with the Hadamard
set system. The Hadamard system is a classic example that shows that Theorem 2 is
tight up to constant factors.

Hadamard Set System. We recall the construction of the 2k
2k Hadamard matrix
H.k/, which is defined as the k-fold tensor product H.k/ WD H.1/ ˝ � � � ˝ H.1/,
where H.1/ is the 2 
 2 matrix with entries h.1; 1/ D h.1; 2/ D h.2; 1/ D 1 and
h.2; 2/ D �1.

Let us denote n D 2k and H D H.k/. The only property we need of the H is
that (i) it is symmetric and consists of ˙1 entries, (ii) its first row consists entirely
of 1’s and (iii) its columns are mutually orthogonal, i.e. HTH D nI .

Let J denote the n 
 n matrix with all 1’s, and let Z be the 0–1 matrix Z WD
1
2
.H C J /. Then Z satisfies the following.

Lemma 27. Let x 2 R
n be such that

P
i>1 x

2
i D ˝.n/. Then kZxk22 D ˝.n2/.

Proof. Let Zi (resp. Ji ;Hi ) denote the i -th column of Z (resp. J;H ). We have

kZxk22 D .Zx/T .Zx/ D
X
i;j

xiZ
T
i Zj xj D 1

4

X
i;j

xi .Hi C Ji /
T .Hj C Jj /xj :

As the columns of H are orthogonal,
P

i;j xi xjH
T
i Hj D P

i x
2
i H

T
i Hi D

nkxk22. Moreover, as Jj D H1 for all j ,
P

i;j xi xjH
T
i Jj D P

i;j xi xjH
T
i H1 D

.
P

j xj /.nx1/: Similarly,
P

i;j xi xj J
T
i Hj D .

P
i xi /.nx1/. Finally, the last termP

i;j xixj J
T
i Jj D n.

P
i xi /

2. Combining these terms gives

kZxk22 D n.kxk22C2x1.
X
i

xi /C.
X
i

xi /
2/ D n.kxk22C.x1C

X
i

xi /
2�x21/ � n.

X
i>1

x2i /:

ut
Max-2-2-Set-Splitting Problem. We will use the following max-2-2-set-splitting
problem (henceforth referred to as MSS). An instance of MSS consists of m sets,
C D fC1; : : : ; Cmg on n elements, each set consisting of exactly four distinct
elements. The objective is to assign each element either f�1;C1g such that number
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of sets for which the values sum to exactly 0 is maximized. Clearly, for any
assignment, the sets can have values f0;˙2;˙4g. The sets that have value 0 are
called split, and otherwise they are unsplit.

Theorem 28 ([15]). There exists a universal constant 	 > 0 such that it is NP-hard
to distinguish between instances of MSS whether (i) there is an assignment such that
all the sets are split, or (ii) any assignment will result in at least 	m unsplit sets.

Moreover, one can assume that in these instances no element appears in more
than b sets for some universal constant b.

If C denotes the m 
 n incidence matrix of an MSS instance, the result above
implies that it is NP-hard to distinguish whether (i) the discrepancy of C is 0 (ii) for
any y 2 f�1; 1gn, at least ˝.m/ sets have non-zero discrepancy. We amplify this
gap by composing the MSS instance with the Hadamard system. At first, we obtain
a matrix whose entries are not necessarily f0; 1g, but lie in the range Œ0; b� for some
constant b. Later, we show how to modify the argument to obtain a f0; 1g matrix.

Theorem 29. Given a m 
 n matrix B with m D O.n/ and integer entries in the
range Œ0; b�, where b is a constant, it is NP-hard to distinguish between the cases:
(i) the discrepancy of B is 0 (ii) for any y 2 f�1; 1gn, kByk22 D ˝.n2/.

Proof. Let us take an instance of MSS on n elements and m D O.n/ sets, and let
C be its incidence matrix. By duplicating some sets if necessary, we can assume
without loss of generality that m is an integer power of 2. Consider the matrix B D
ZC , whereZ is them
m set system in Lemma 27. As each column of C contains
at most b 1’s and Z is a 0 � 1 matrix, each entry of B is an integer in Œ0; b�.

Now, if the MSS instance corresponding to C has an assignment y that splits
each set, then Cy D 0 and hence By D Z.Cy/ D 0. On the other hand if kCyk22 D
˝.m/, then by Lemma 27 and noting that the first entry of Cy 2 f0;˙2;˙4g, it
follows that kByk22 D kZ.CY /k22 D ˝.m2/ D ˝.n2/. ut

We now modify the argument so that B only has f0; 1g entries. Let us partition
the sets in the MSS instance into h � 4bC 1 parts T 1; : : : ; T h such that an element
j appears in at most one set from any collection T i . Such a partition exists as each
set contains four elements and each elements lies in at most b sets, and hence each
set shares an element with at most 4b other sets. Duplicating sets if necessary, we
assume that the number of sets mi in T i is an integer power of 2. For each i D
1; : : : ; h, let Hi denote the mi 
 mi Hadamard set system, and let Bi D HiT i .
Note that Bi has f0; 1g entries as each element appears in at most one set in T i . Let
B be the .

P
i mi/ 
 n matrix obtained by placing the rows of B1; : : : ; Bh one after

the other.
Now if Cy D 0 then T iy D 0 for each i , and hence each Biy D HiT iy D 0

which implies that By D 0. On the other hand, if kCyk22 D ˝.m/, then kT iyk22 D
˝.m=b/ D ˝.m/ for some i , and hence kByk22 � kBiyk22 D kHi.T iy/k22 D
˝.m2/, where the last step follows from Lemma 27.
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6.7 Tightness of the Determinant Lower Bound

In this section, we see how the connection between discrepancy and semidefinite
programming can be used to show that the determinant lower bound characterizes
hereditary discrepancy up to poly-logarithmic factors. We begin by describing the
determinant lower bound and proving Theorem 6. Then in Sect. 6.7.2, we prove
Theorem 10.

6.7.1 Determinant Lower Bound

Recall that for a real matrix A, we denote detlb.A/ WD maxk maxB j detBj1=k;
where the maximum is over all k 
 k submatrices B of A. We will show that

Theorem 6. For any real matrix A, herdisc.A/ � 1
2
detlb.A/:

Let us define the linear discrepancy of a matrix A as

lindisc.A/ WD max
x2Œ�1;1�n min

y2f�1;1gn
kAx �Ayk1:

That is, it is the worst case error over all points x 2 Œ�1; 1�n, when x is rounded to
the “best” integral y 2 f�1; 1gn. Theorem 3 directly implies that

lindisc.A/ � 2 herdisc.A/ (6.14)

(we lose the extra factor 2 here as y 2 f�1; 1gn, instead of y 2 f0; 1gn).
Lemma 30. To prove Theorem 6, it suffices to show that for any k 
 k matrix B ,
lindisc.B/ � det.B/1=k:

Proof. Let A be any m 
 n matrix. By the definition of hereditary discrepancy and
(6.14)

herdisc.A/ � max
k

max
B

herdisc.B/ � 1

2
max
k

max
B

lindisc.B/;

where B ranges over the k 
 k submatrices of A. By the claim, this is at least
1
2

maxk maxB det.B/1=k which is exactly 1
2
detlb.A/. ut

Thus we focus on proving Lemma 30 for square matrices. The proof is based on a
geometric interpretation of lindisc.

Geometric Interpretation of Linear Discrepancy. Let B be an invertible k 
 k

matrix (if B is non-invertible, then det.B/ D 0 and Lemma 30 holds trivially). Let
P 2 R

k be the set of points x satisfying �1 � Bx � 1, where 1 is the all 1’s vector
in R

k . Clearly, if x 2 P then �x also lies in P and hence P is symmetric about
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the origin. Note that P is the inverse image of the unit cube Œ�1; 1�k under B�1,
i.e. P D fB�1z W z 2 Œ�1; 1�kg: We claim the following.

Lemma 31. Linear discrepancy is the smallest real number t such that placing a
copy of tP at every point f�1; 1gk covers the cube Œ�1; 1�k completely.

Proof. By definition of linear discrepancy and P , lindisc.B/ is smallest t such that
for each point x 2 Œ�1; 1�k , the polytope tP C x (i.e. P scaled t times and shifted
by x) contains some point y in f�1; 1gk. Let x be any point in Œ�1; 1�k . Now if
y 2 f�1; 1gk is such that y 2 tP C x, then y � x 2 tP . But then, x � y 2 tP by
the symmetry of P which implies that x 2 tP C y. ut

We now finish the proof of Theorem 6. For each y 2 f�1; 1gk, let Ry D
Œ�1; 1�k \ .tP C y/ denote the intersection of the unit cube with the copy of tP
at y. Observe that Ry is identical to tP \ I.�y/ where I.y/ is the orthant˘i Œ0; yi �

formed by the origin and y. As tP D [yDf�1;1gk .tP \ I.y//, this implies that Ry’s
give a partitioning of tP and hence

Vol.tP / D tkVol.P / D
X

y2f�1;1gk
Vol.Ry/ � Vol.Œ�1; 1�k/ D 2k (6.15)

where the inequality above follows by Lemma 31 and the definition of Ry .
As P D fB�1z W z 2 Œ�1; 1�kg we have that

Vol.P / D det.B�1/Vol.Œ�1; 1�k/ D 2k det.B�1/ D 2k= det.B/: (6.16)

Taking logarithms in (6.15) and using (6.16) this gives t � 2=Vol.P /1=k D
det.B/1=k; which implies Lemma 30 and hence Theorem 10.

6.7.2 Matoušek’s Upper Bound

A natural question is whether the determinant lower bound essentially determines
the hereditary discrepancy of a system. Hoffman gave an elegant example (see [20])
of a set system with detlb.C / D O.1/ and disc.C / � .logn/=.log logn/, and hence
implies that the gap between the two can be˝.logn= log logn/. Recently, Pálvölgyi
[23] gave an improved example with an ˝.logn/ gap. However, there was no non-
trivial result upper bound known on this gap until the following recent result [21] of
Matoušek.

Theorem 10. [21] For any set system .V; C /, herdisc.C / � O.logn
p

logm/ �
detlb.C /.

The proof uses several interesting ideas, and in particular the duality for
semidefinite programming.
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SDP Dual for Discrepancy. Let us recall the strong duality for convex programs
which states the following. Let P be a convex programming problem (say, with
minimization objective). Then any feasible solution to the dual program of P is a
lower bound on the optimum solution for P . Moreover under some mild technical
conditions (see [29] for details), the value of the optimum feasible dual solution
is equal to the value of the optimum feasible solution for P . Let us apply this
to the following discrepancy minimization SDP for the system .V; C / (having the
optimum value vecdisc.C /).

min �2; s.t. .i/ k
X
i2Sj

vik22 � �2 8Sj 2 C; and .i i/ kvik22 D 1; 8i 2 V:

Lemma 32. For any set system .V; C / with n elements and m sets, we have
that vecdisc.C / � D if and only if there are nonnegative reals w1; : : : ;wm withPm

jD1 wj � 1 and reals z1; : : : ; zn with
Pn

iD1 zj � D2 such that for all x 2 R
n,

mX
jD1

wj

�X
i2Sj

xi

�2
�

nX
iD1

zi x
2
i : (6.17)

While computing the dual formally needs some work (and we refer the reader
to [21] for details), this dual has a rather intuitive interpretation. Suppose there
exists a convex combination with coefficients wi , of the set discrepancy constraints
.
P

i2Sj xi /
2 such that this sum always exceeds

Pn
iD1 zi x2i no matter what real

values are assigned to xi ’s. Or in other words,
Pm

jD1 wj .
P

i2Sj xi /
2 � Pn

iD1 zi x2i
is a positive definite quadratic form. Then, indeed

Pn
iD1 zi x2i D P

i zi for any ˙1
assignment to the xi ’s and hence this certifies that

Pn
iD1 zi is a lower bound on the

discrepancy. The duality says that if the vector discrepancy is D, then there always
exists a choice of witnesses wj ’s and zi ’s of this form.

We now show the following result, which directly implies Theorem 10.

Theorem 33. Let C D fS1; : : : ; Smg be a set system on Œn� with vecdisc.C / D D.
Then detlb.C / D ˝.D=

p
logn /.

Before proving Theorem 33, we show how it implies Theorem 10.

Proof (of Theorem 10). Let J  Œn� be such that vecdisc.C jJ / is maximized. Then,
it must hold that

vecdisc.C jJ / D ˝.herdisc.C /=.logm logn/1=2/ (6.18)

otherwise, one could use the algorithm in Theorem 8 to color any subsystem
.J 0; C jJ 0/ of .V; C / with discrepancy strictly less then herdisc.C /, contradicting
the definition of hereditary discrepancy.

Applying Theorem 33 toC jJ we obtain detlb.C jJ /D˝.vecdisc.C jJ /=plogn/:
Together with (6.18), this gives that
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detlb.C / � detlb.C jJ / � ˝.herdisc.C /=.
p

logn.logm logn/1=2//;

where the first inequality follows as any sub-matrix of C jJ is also a sub-matrix of
C . ut
Proof (of Theorem 33). Let us consider the dual formulation of vector discrepancy
from Lemma 32. For more convenient notation, let us write the nonnegative weight
wj as ˇ2j . Moreover, let L � Œn� consist of the indices i with zi > 0. By Lemma 32
applied with xi D 0 for i … L, and writing zi D 
2i for i 2 L, we obtain

mX
iDj

ˇ2j

� X
i2Sj\L

xi

�2
�
X
i2L


2i x
2
i (6.19)

for all x 2 R
L, where kˇk2 � 1 and k�k2 � D.

Next, we select K � L with k
ŒK�k2 D ˝.D=
p

logn/ and such that all
entries of 
ŒK� are within a factor of 2 of each other (here 
ŒK� denotes the
vector 
 restricted to coordinates in K). Such a subset K exists for the following
reason: Let 
max D maxi j
i j. For ` D 0; 1; 2; : : : ; 2 logn � 1, let K` D fi W
j
i j 2 .2�`�1
max; 2

�`
max�g. The contribution to k
k of the components of 
 with

i � 
max=n

2 is negligible, and so there exists some `0 for which
P

i2K`0 �2i D
˝.k�k2= logn/.

Let us denote k D jKj and QD D 1
2
k�ŒK�k. As

P
i2K 
2i D 4 QD2, and all these


i are within twice of each other, we have that 
i � QD=pk for all i 2 K . So,
restricting (6.19) to vectors x with xi D 0 for i 62 K , we have that

mX
jD1

ˇ2j

� X
i2Sj\K

xi

�2
�

QD2

k

X
i2K

x2i : (6.20)

Let C D AŒ�; K� be the m 
 k incidence matrix of the system AjK and let LC be
the m 
 k matrix obtained from C by multiplying the j th row by ˇj . Then (6.20)
can be rewritten as

xT LCT LCx D k LCxk2 �
QD2

k
kxk for all x 2 Rk:

This, by the usual variational characterization of eigenvalues, tells us that the
smallest eigenvalue of the k 
 k matrix LCT LC is at least QD2=k. Now, as the
determinant is the product of eigenvalues, this implies that det. LCT LC/ � . QD2=k/k .
By the Binet–Cauchy formula we obtain

det. LCT LC/ D
X
I

det. LCŒI;��/2; (6.21)
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where the summation is over all k-element subsets I � Œm� and LCŒI;�� consists
of the rows of LC whose indices lie in I . Setting M WD maxI j det.C ŒI;��/j and
noting that det. LCŒI;��/ D det.C ŒI;��/Qj2I ˇj , we can bound the right-hand side
of (6.21) as

X
I

det. LC ŒI;��/2 D
X
I

det.C ŒI;��/2
Y
j2I

ˇ2j � M2
X
I

Y
j2I

ˇ2j

� M2

�Pm
jD1 ˇ2j

	k
kŠ

� M2

kŠ
;

where the second inequality follows as every term
Q
j2I ˇ2j occurs kŠ times in

the multinomial expansion of .ˇ21 C � � � C ˇ2m/
k . Letting B WD C ŒI;�� for an I

maximizing j detC ŒI;��j, we have

det.B/2 � kŠ det. LCT LC/ � kŠ. QD2=k/k � .k=e/k. QD2=k/k D ˝. QD/2k D ˝.D=
p

log n/2k:

So the k
k matrixB witnesses that detlb.C / D ˝.D=
p

logn /, which implies the
claimed result. ut
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Chapter 7
Practical Algorithms for Low-Discrepancy
2-Colorings

Lasse Kliemann

Abstract We present practical approaches for low-discrepancy 2-colorings in the
hypergraph of arithmetic progressions. A simple randomized algorithm, a determin-
istic combinatorial algorithm (Sárközy 1974), and three estimation of distribution
algorithms are compared. The best of them experimentally achieves a constant-
factor approximation.

We consider practical approaches for computing low-discrepancy 2-colorings in
hypergraphs, using modern parallel computer systems. The hypergraph An of
arithmetic progressions in the first n integers will be our benchmark. Our interest
is in the range 100;000 � n � 250;000. We have chosen An for two reasons.
First, its discrepancy is well understood and known to be �. 4

p
n/. Second, An is

a massive hypergraph with approximately n2 ln.n/=2 hyperedges, but at the same
time it can be represented very succinctly in a computer program. The highlight is
an estimation of distribution algorithm (EDA) that experimentally achievesO. 4

p
n/

for up to n D 250;000. For this n, the number of hyperedges in An is more than
377�109. We will explain the idea behind EDAs and their technical features in detail.

7.1 Facts on An

Given a 2 N0 D f0; 1; 2; 3; : : :g and d; ` 2 N D f1; 2; 3; : : :g, the set

Aa;d;` :D faC id I 0 � i < `g D fa; aC d; aC 2d; : : : ; a C .` � 1/ d g
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Table 7.1 Approximating the number of APs

n n2 ln.n/=2 jAnj Relative error (rounded)

100 	 103 57564627325 55836909328 3:1%
125 	 103 91688039190 88988439957 3:0%
150 	 103 134081893947 130194434212 3:0%
175 	 103 184860787935 179569486783 3:0%
200 	 103 244121452911 237210329226 2:9%
225 	 103 311947596930 303200671205 2:9%
250 	 103 388413006151 377614297340 2:9%

is the arithmetic progression (AP) with starting point a, difference d , and length `.
Its cardinality is jAa;d;`j D `. For n 2 N, denote �n� :D f0; : : : ; n � 1g and call
An :D fAa;d;`\ �n�I a 2 N0^d; ` 2 Ng the hypergraph of arithmetic progressions
in the first n integers. The set of vertices is implicitly assumed to be �n�. In the
literature, it is more common to use the set Œn� D f1; : : : ; ng as the vertex set, but
for us, starting from 0 is more convenient. Likewise, we make the convention that
for any set X and k 2 N, vectors from Xk are indexed by 0; : : : ; k � 1.

An is a massive hypergraph. Its number of hyperedges is

jAnj D nC
n�2X
aD0

n�1�aX
dD1

jn � 1 � a

d

k
D nC

n�2X
aD0

n�aX
`D2

jn � 1 � a

` � 1

k
, (7.1)

which can be estimated using integrals [22] as

.n� 1/2 ln.n � 1/
2

� 3n2 � 8n

4
� jAnj � n2 ln.n/

2
C n2 C 2nC 1

4
.

It follows jAnj D �.n2 ln.n//. For large n, by which we mean 100 � 103 � n �
250 � 103, a pretty good estimate is jAnj � n2 ln.n/=2 with an error around 3%,
shown by Table 7.1.

For n D 100 � 103, storing this hypergraph explicitly as an hyperedge-vertex
incidence matrix requires about 635TiB provided we only use 1 bit for each entry.
For n D 250 � 103 it is more than 10 PiB.1 Using lists of 32 bit integers for the
hyperedges is even more costly. Based on (7.1), we get the expression

nC
n�2X
aD0

n�aX
`D2

` �
jn � 1 � a

` � 1
k

for the number of required list entries. For n D 100 � 103, this gives about 998TiB
and for n D 250 � 103 more than 15 PiB. Fortunately, there is no need to store the
hypergraph explicitly for the algorithmic approaches we are about to present.

1We have 1TiBD 240 byte and 1PiB D 250 byte.
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When we speak of discrepancy in the following, we always mean the
(combinatorial) 2-color discrepancy. We denote it with “disc”, so if H � 2V

is any hypergraph on vertex set V , e.g. An on V D �n�, the discrepancy of H is

disc.H / :D min
2f�1;C1gV

discH ./ ,

where discH ./ :D maxE2H j.E/j and .E/ :D P
v2E v for a coloring . We

call discH ./ the discrepancy of H with respect to  and j.E/j the discrepancy
or imbalance of hyperedgeE with respect to . In total the expression is:

disc.H / D min
2f�1;C1gV

max
E2H

ˇ̌X
v2E

v

ˇ̌
.

We denote colorings as functions, i.e. from f�1;C1gV , or as vectors, i.e. from
f�1;C1gn, but always use vector notation v when referring to the color of a
particular vertex v.

In 1964, it was shown by Roth [20] that disc.An/ D ˝. 4
p
n/. More than 30 years

later, in 1996, it was shown by Matoušek and Spencer [14] that disc.An/ D O. 4
p
n/,

so together we have disc.An/ D �. 4
p
n/. The proofs do not yield an efficient

algorithm to actually construct a coloring with discrepancy�. 4
p
n/.

7.2 Overview of Algorithmic Approaches

Standard probabilistic arguments show that discrepancy O.
p
n ln.m// can be

reached in general hypergraphs with n vertices and m hyperedges with a simple
randomized algorithm with constant probability. For An, this means O.

p
n ln.n//,

far away from O. 4
p
n/. In 1974, Sárközy invented a method which we call modulo

coloring: for an appropriately chosen prime p, the first p numbers are colored in a
certain randomized way and then this coloring is simply repeated for the rest of the
numbers, up to n. The algorithm achieves discrepancy O. 3

p
n ln.n// with constant

probability.
In 2010, in a pioneering work, the algorithmic problem was solved

(up to logarithmic factors) by Bansal [5], using semi-definite programs (SDP).
However, Bansal’s algorithm requires solving a series of SDPs that grow in the
number of hyperedges, making it practically problematic given the enormous size
of An. In our experiments with a sequential implementation of Bansal’s algorithm,
even for n < 100, it requires several hours to complete. We will not consider details
of Bansal’s algorithm here and instead point to his Chap. 6. However, I believe
that it would be worthwhile considering and perhaps refining his techniques from a
practical point of view for arithmetic progressions in future work.

In 2012, Sauerland [22] evaluated a univariate EDA based on the “quantum-
inspired evolutionary algorithm” by Han and Kim [7] in the range up to
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Table 7.2 Results for An obtained with the EDA from [11], which is called apQEA and will be
explained in detail later. Running times are given in minutes. Each row, except the last, is based on
30 runs with the same parameters. The last row is based on 5 runs. For n � 200 	 103 , a number of
96 processor cores is used in parallel. For n D 250 	 103, a number of 192 processor cores is used

n 3 b 4
p
nc Running time

100 	 103 53 7�D01

125 	 103 56 11�D01

150 	 103 59 20�D02

175 	 103 61 39�D05

200 	 103 63 74�D15

250 	 103 67 83�D16

n D 100 � 103. He showed that this EDA beats other randomized algorithms
consistently, however it remained unclear whether the asymptotic �. 4

p
n/ could

be achieved by this approach.
In 2013, Kliemann et al. [11] presented a new univariate EDA, capable of treating

the cases of larger n, up to n D 250 � 103 and perhaps even beyond, reliably
attaining discrepancy 3 b 4

p
nc in experiments. This was the first practical constant-

factor approximation algorithm for the discrepancy problem in An. The achieved
discrepancies are given in Table 7.2 together with mean running times and their
standard deviations over a number of runs for each n. Computations were conducted
on 96 processor cores in parallel for n � 200�103 and on 192 cores for n D 250�103.
All those computations as well as those described later in this chapter were carried
out on the NECTM Linux Cluster of the Rechenzentrum at Kiel University, with
SandyBridge-EPTM processors. The numbers given in Table 7.2 will serve as a
comparison in the discussion of other approaches in the rest of this text.

7.3 Discrepancy Computation: Shortcutting, Parallelization

Given a coloring  2 f�1;C1gn, the discrepancy of An with respect to  will
be denoted by discA ./ in the following. Computing discA ./ naively requires
checking all the approximately n2 ln.n/=2 APs in An. Using the following obvious
relation, this can be done more efficiently than treating each AP on its own:

.Aa;d;`/ D .Aa;d;`�1/C aC.`�1/ d .

So we have the algorithm given in Algorithm 1. We initialize the discrepancy
computed so far to ı :D 1 in line 1, the discrepancy of the singleton APs, so we
have the condition a C d � n � 1 on d . Note that still, lines 6 and 7 have to be
executed approximately n2 ln.n/=2 times.

Sometimes, we are only interested in the exact discrepancy provided that it is on
or below some ı0. Then we can initialize ı :D ı0 in line 1 and have the condition
a C ı0 d � n � 1 on d , since we are not interested in the discrepancy of APs of
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Algorithm 1: Simple discrepancy computation. For-loops use inclusive ranges,
so e.g. a runs through the set �n� D f0; : : : ; n � 1g

Input:  2 f�1;C1gn
Output: discA ./

1 ı :D 1;
2 for a :D 0 to n� 1 do
3 for d :D 1 to n� 1� a do
4 s :D 0;

5 for ` :D 1 to
j
n�1�a

d

k
C 1 do

6 s :D sC aC.`�1/ d ;
7 if jsj > ı then ı :D jsj;

8 return ı;

Algorithm 2: Discrepancy computation with additional parameters for speedup
Input:  2 f�1;C1gn and ı0; ı1 2 N

Output: maxfdiscA ./; ı0g or report that discA ./ � ı1
1 ı :D ı0;
2 for a :D 0 to n� 1 do

3 for d :D 1 to
j
n�1�a
ı0

k
do

4 s :D 0;

5 for ` :D 1 to
j
n�1�a

d

k
C 1 do

6 s :D sC aC.`�1/ d ;
7 if jsj > ı then
8 ı :D jsj;
9 if ı � ı1 then return “discA ./ � ı1”;

10 return ı;

length ı0 or shorter. Hence the loop for d only runs from 1 to b n�1�a
ı0

c. We will use
this for ı0 :D b3 4

p
nc in some of our algorithms when we are just aiming to achieve

this discrepancy, providing a substantial speedup.
Moreover, sometimes we are only interested in the exact value of discA ./

provided it is better than some ı1. If discA ./ � ı1, then the exact value is
uninteresting since will be discarded anyway. This happens in the EDAs presented
later, but also in the random coloring algorithm presented in the next section. Since
discA ./ is a maximum over all APs, we can abort computation once an AP E
is found with j.E/j � ı1. We call this shortcutting and speak of a shortcut
discrepancy computation, as opposed to a full one. Shortcutting has shown to be
an enormous time saver in practice. In total, the algorithm looks like given in
Algorithm 2.

The discrepancy computation can be thread-parallelized. The range �n� for
starting points a is split into chunks, and these are assigned to different threads.
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Communication is light: when a thread has found the shortcutting condition to
be true, this must be communicated so that all threads terminate. In case of no
shortcut, the maximum discrepancy found over all threads must be determined in
the end. However, we must be aware that although communication is light, there is
an overhead involved with using multiple threads. When there are many shortcuts
during the run of an algorithm, it should therefore be considered using only a
moderate number of threads for discrepancy computation. If unsure, a good value
for the number of threads should be determined in preliminary experiments.

7.4 Random Coloring

This approach works for general hypergraphs. Consider the simple algorithm of
flipping a fair coin for each vertex to decide its color, in other words we endow
f�1;C1gV with the uniform distribution and sample our colorings from this
probability space. Denote m the number of hyperedges and let " > 0. Denote
˛ :D ˛.n;m; "/ :D p

2n ln.2m="/. By Chernoff bounds, see, e.g. [15, Thm. 7.1.1]
or [1, Cor. A.1.2], we easily derive that for each hyperedgeE:

P
�j.E/j > ˛� < 2 e� ˛2

2jEj � 2 e�
˛2

2n D "=m .

By the union bound, it follows that the probability of having a hyperedgeE violating
the ˛ bound is at most ". Hence with probability at least 1� " we attain discrepancy
˛ D O.

p
n ln.m//.

How does this approach perform in practice for An? We test it on n D
100 � 103 with 96 parallel processes, each using one core. Since there is only a
handful of full discrepancy computations, we decided against thread-parallelizing
this part. Repeatedly, new colorings are generated randomly and their discrepancy
computed, using the best discrepancy so far for shortcutting. The parallel processes
communicate the best solution among themselves, so that each can make best use of
shortcutting. It turns out that after 60min of computation, no better than discrepancy
220 is reached. The number of trials conducted in this time was 166 �106. There was
no improvement during the last 25 of the 60 min. For comparison: with the right
algorithm, discrepancy 53 is possible within 7 min as per Table 7.2. On the other
hand, it should be noted that discrepancy 220 is much better than the theoretical
guarantee, which is 2 286 for " D 1=2.

7.5 Modulo Colorings: Sárközy’s Technique

Let p � n be a prime number and � 2 f�1;C1gp a coloring of the first p integers
�p� D f0; : : : ; p� 1g. Then a coloring  of the first n integers �n� D f0; : : : ; n� 1g
can be defined by v :D �v mod p for each v 2 �n�. In other words, we repeat � until
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all n integers are colored; we do not require an integral number of repetitions, so the
last repetition of � may be cut off, just when n � 1 has been colored. We call � a
generating coloring and  a p-modulo coloring.

Now let � be balanced, i.e. j�.�p�/j D jPv2�p� �vj � 1. Let Aa;d;` be any AP
and ` D qp C r with integers q; r and r < p. Then we have the decomposition:

Aa;d;` D
q�1[
iD0

AaCipd; d;p„ ƒ‚ …
Bi :D

[AaCqpd; d; r„ ƒ‚ …
Bq :D

; (7.2)

where the unions are disjoint. For any set X � N denote .X mod p/ :D fx mod
pI x 2 Xg. Since p is prime, each of the p-element sets B0; : : : ; Bq�1 is mapped
exactly onto �p� by modulo p, so .Bi mod p/ D �p�, thus .Bi / D �.�p�/ for
each i 2 �q�. By � being balanced, we arrive at

j.Aa;d;`/j �
q�1X
iD0

j�.Bi /j C j.Bq/j � q C j.Bq/j � n

p
C j.Bq/j , (7.3)

where for the last bound we use q D `�r
p

� n
p

.
This observation suggests that if p and � are appropriately chosen, modulo

colorings will tend to have small discrepancy. Moreover, when actually computing
discrepancy, a p-modulo coloring allows us restricting to starting points a 2 �p�,
which reduces computation time drastically. We will give more concrete figures on
this later in Sect. 7.8.

7.5.1 Analysis

It may be tempting to choose p very small, but the best discrepancy we can hope
for in a p-modulo coloring is dn=pe. To see this, consider A0;p;dn=pe noting that
dn=pe � n=pC1�1=p and so 0C.dn=pe�1/ p � n�1, hence this is indeed an AP
in �n�, and it is monochromatic. However, with p chosen such that n � p

p3 ln.p/,
we get discrepancy O. 3

p
n ln.n// by a randomized algorithm with probability 1 �

4=p; the choice of p will be made precise later. This result is due to Sárközy [6,
p. 39]; the proofs given here that lead up to Theorem 5 follow Sauerland [22].

First we have to discuss how to create a balanced coloring of �p�. Denote
h :D pC1

2
. One way is to randomly color the first h � 1 numbers with colors

�0; : : : ; �h�2 and the next h � 1 ones based on that with the opposite sign. The
one remaining number p � 1 is colored arbitrarily, say with �h�1. So we have
� 2 f�1;C1gh. There is some freedom of choice how to color h; : : : ; p � 2 based
on �. The following mirror construction (with an additional feature explained later
in Sect. 7.5.2) has shown to be good in experiments. The coloring of �p� obtained
by the mirror construction looks like this:
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Algorithm 3: Constructing a random balanced coloring. This algorithm has to
be seen in the context of Lemma 1. Note that we will use this algorithm mainly
to construct generating colorings of �p� for some prime p, in which case the
coloring will be called “�” and not “”

1 foreach v 2 V1 do
2 v :Dunif f�1;C1g;
3 '.v/ :D �v;

4 if V ¤ V1 [ V2 then color v 2 V n V0 arbitrarily;
5 return ;

.�0; : : : ; �h�2; ��h�2; : : : ; ��0; �h�1/ 2 f�1;C1gp . (7.4)

The following lemma and algorithm work for general hypergraphs. The operator
:Dunif means drawing uniformly at random; when multiple such statements appear
in an algorithm, they are assumed to describe independent random experiments.

Lemma 1. Let " > 0. Let H be a hypergraph with an n-element vertex set V and
m hyperedges. Let V1; V2  V with jV1j D jV2j, bijection ' W V1 �! V2, and
jV n V0j � 1 with V0 :D V1 [ V2. Then with probability at least 1 � ", Algorithm 3
on this page constructs a coloring  with discH ./ � 2

p
n ln.4m="/C 1.

Proof. Denote ˛ :D p
n ln.4m="/, which is half of the main term in the stated

bound. Each of the families .v/v2V1 and .v/v2V2 D .'.v//v2V1 is a family of
independent random variables. Hence by Chernoff bounds, similar to Sect. 7.4, for
each i 2 f1; 2g and E 2 H we have

P
�j.E \ Vi/j > ˛

�
< 2 e

� ˛2

2jE\Vi j � 2 e�
˛2

n D "

2m
.

We use jE \ Vi j � n=2 here. By the union bound and the triangle inequality it
follows

P
�9E 2 H W j.E \ V0/j > 2˛

� �
X
E2H

P
�j.E \ V0/j > 2˛

�

�
X
E2H

P
�
.j.E \ V1/j > ˛/ _ .j.E \ V2/j > ˛/

�
<
X
E2H

2
"

2m
� " .

Since the at most one vertex in V n V0 can worsen discrepancy of a hyperedge by at
most 1, we are done. ut
This result is particularly useful for hypergraphs with few hyperedges. We turn our
attention to the group Zp , by which we understand the set �p� D f0; : : : ; p � 1g
with the operation x ˚ y :D ..x C y/ mod p/ for x; y 2 N0. Although we define
the operation also outside of �p�, the result is always in �p�. For a 2 N0 and d; ` 2
N we denote
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A
p

a;d;`
:D fa˚ id I 0 � i < `g D f..aC id / mod p/ I 0 � i < `g

the arithmetic progression in Zp with starting point a, difference d and length
`. Denote A p :D fApa;d;`I a 2 N0 ^ d; ` 2 Ng the hypergraph of arithmetic
progressions in Zp . It is easy to see that

A
p

a;d;` D A
p

.a mod p/; .d mod p/;minf`;pg .

Hence jA pj � p3. It follows:

Corollary 2. By Algorithm 3, we find with probability at least 1 � " a balanced
coloring � of A p with discA p .�/ � 2

p
p ln.4p3="/C 1 D O.

p
p ln.p//.

In [6, p. 39], it is claimed that a balanced coloring with discrepancy O.
p
p ln.p//

can be constructed deterministically2 by coloring p�1 arbitrarily, e.g. with C1, and

coloring v < p � 1 using the Legendre symbol
�

vC1
p

	
, i.e. in total:

�v :D

8̂̂
<
ˆ̂:

C1 if v D p � 1

C1 if v C 1 is quadratic residue modulo p

�1 else

for v 2 �p�.

The proof of the O.
p
p ln.p// bound allegedly works via number-theoretic argu-

ments, but to the best of my knowledge has never been published. We give practical
results for the Legendre construction at the end of Sect. 7.5.2.

The next lemma shows how discrepancy of A p propagates under a p-modulo
coloring.

Lemma 3. There exists a prime p such that
p
p3 ln.p/ 2 Œ n

4
; n�. Furthermore, with

such a choice of p, let � 2 f�1;C1gp be balanced. Then

discA ./ � 4
p
p ln.p/C discA p .�/C 1 ,

where  is the p-modulo coloring constructed from � .

Proof. Choose x 2 R so that n D p
x3 ln.x/ and p as the largest prime p � x.

Then by Bertrand’s postulate, x
2

� p � x. Clearly
p
p3 ln.p/ � p

x3 ln.x/ D n

and moreover

n D
p
x3 ln.x/ �

p
8p3 ln.2p/ �

p
16p3 ln.p/ D 4

p
p3 ln.p/ .

2The description given in [6] reads differently to what we present here, since there, APs live on
Œn� D f1; : : : ; ng and not �n� D f0; : : : ; n � 1g, as here. Still, the generating coloring is defined
on �p� in [6].



468 L. Kliemann

It follows

n

p
� 4

p
p3 ln.p/

p
D 4

p
p ln.p/ . (7.5)

Fix a; d; `. We consider two cases for d . The first case is d � p. Then n �
1 � a C .` � 1/ d � a C .` � 1/ p, so n�1�a

p
C 1 � ` and with (7.5) we have

` � 4
p
p ln.p/C 1. In the worst case, j.Aa;d;`/j D `, so we conclude in the case

d � p that

j.Aa;d;`/j � 4
p
p ln.p/C 1 .

Now consider the case d < p. We will use (7.3) and bound j.Bq/j. Since d is
not a multiple of p, each number in Bq is mapped to a different number in �p� by
the modulo operation. Thus Bq is one-to-one with an AP in Zp and so j.Aa;d;`/j �
n=pCdiscA p .�/ � 4

p
p ln.p/C1CdiscA p .�/, where the final inequality follows

from (7.5). ut
We have immediately:

Corollary 4. By Algorithm 3, we find with probability at least 1 � " a balanced
coloring � of A p , where

discA ./ � 4
p
p ln.p/C 2

p
p ln.4p3="/C 1

holds for the p-modulo coloring  constructed from � . If restricting to " � 4=p,
this bound simplifies to

discA ./ � 6
p
p ln.p/C 1 .

We combine these results to get:

Theorem 5. By using the coloring constructed by Algorithm 3 as a generating
coloring for a p-modulo coloring , we have with probability at least 1 � 4=p

that

discA ./ � 6 3
p
2=3 � n ln.n/C 1 D O. 3

p
n ln.n// .

Proof. Let p as in Lemma 1, thus in particular
p
p3 ln.p/ � n. We have

q
p3 ln3.p/ D

p
p3 ln.p/ ln.p/ D

p
p3 ln.p/ � 2

3
� ln

�
p3=2

�

�
p
p3 ln.p/ � 2

3
� ln

�p
p3 ln.p/

�
� n � 2

3
� ln .n/ ,

thus
p
p ln.p/ � 3

p
2=3 � n ln.n/. The theorem follows with Corollary 4. ut
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As the last step of the theoretical analysis, we provide an asymptotically almost
matching lower bound. Recall that discrepancy is lower-bounded by dn=pe. For our
choice of p we have

p
p3 ln.p/ � n hence p � n2=3

ln.p/1=3
� n2=3 and so n=p � 3

p
n.

7.5.2 Experiments

Before putting this algorithm into practice, we do one more refinement to the way
we construct a coloring  of �n� out of a coloring � of �h� for h D pC1

2
. Recall

the mirror construction from (7.4), which gives us a coloring � of �p�, which is
then repeated to color �n�. In the experimental studies in [11], an alternating mirror
technique is used, which alternately uses �p�1 and ��p�1 for numbers of the form
kp � 1 with k 2 N. This means that we repeat the following coloring of �2p� via
v 7! .v mod 2p/:

.�0; : : : ; �h�2; ��h�2; : : : ; ��0; �h�1; �0; : : : ; �h�2; ��h�2; : : : ; ��0; ��h�1/:

A review of the proofs from Sect. 7.5.1 yields that the discrepancy bounds of
Theorem 5 still hold. Instead of thinking modulo 2p let us stick to modulo p but
consider the color ofp�1 as not being determined and appearing different each time
we look at it. We review the proof of Lemma 3 for this case. Fix a; d; `. The case of
d � p uses the roughest estimation possible, namely the length of the progression.
It is independent of the actual coloring. For the case d < p, realize that each of the
sub-progressionsB0; : : : ; Bq when mapped to �p� by the modulo operation contains
each number from �p� at most once. Due to our construction, the coloring of �p�
is balanced regardless of the color that p � 1 receives. This handles B0; : : : ; Bq�1.
For Bq , we look more precisely what V1 and V2 in Lemma 1 are for the mirror
construction, namely V1 D �h� D f0; : : : ; h � 1g and V2 D fh; : : : ; p � 2g. The
proof of that lemma works with any color being assigned to the last vertex p�1 (cf.
line 4 in Algorithm 3), it does not have to be in any accordance with the rest of the
colors, nor does it have to be probabilistically chosen. The “C1” in the bound takes
care of it.

The alternating mirror technique gives rise to the hope that we could attain a
better discrepancy than dn=pe. But considering A1;p;` with ` as large as possible,
we get ` D bn=p � 2=p C 1c 2 fbn=pc ; dn=peg, which is no big improvement.

Table 7.3 gives results for n D 100 �103 and different primes. For each prime, we
run for 60 min in the same framework that we used in Sect. 7.4. The result is given
in the third column. The number of trials is rounded to the nearest 10 millions.

The best result 66 is attained after 36 min with no improvement during the
remaining 24 min. The smallest prime, 1;123, is the largest prime p such that
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Table 7.3 Sampling from the uniform distribution with alternating mirror technique

p
j
n
p
� 2

p
C 1

k
Result Number of trials

2803 36 76 400 	 106
2243 45 73 430 	 106
1907 53 69 410 	 106
1873 54 69 430 	 106
1607 63 66 390 	 106
1399 72 72 300 	 106
1249 81 81 230 	 106
1123 90 90 220 	 106

p
p3 ln.p/ � n, which is the one suggested by Sárközy and used in the proof

of Theorem 5. It is noteworthy that for the three smallest primes, the best possible
result was found. Moreover, this happened virtually immediately, within the first
minute.

Finally, we test the Legendre construction. Since it deterministically determines
a coloring of �p�, there is no need for a mirror construction. However, we use the
alternating technique. A vast range of primes is tested, starting with 563 (which is
approximately 1 123

2
) and then all primes in ascending order until 60 min are up.

A single-threaded implementation is used, but this is enough to reach prime 11;059.
The best discrepancy of 71 is obtained for prime 1;907 after 11min; the randomized
version attained discrepancy 69 for this prime, however using much more computing
power. For the primes on or below 1;123, we only get discrepancy 90 with the
Legendre construction. Without the alternating technique, best discrepancy we
obtain with the Legendre construction in the range 563–10;429 of primes during
60 min is 88 for prime 3;083, which is clearly inferior to the 71.

7.6 EDA: Beyond the Uniform Distribution

Using modulo colorings, discrepancy can be brought to much smaller values than
what we have seen for fully random colorings in Sect. 7.4. However, this is still
some distance from the 53 which allegedly can be achieved in only 7 min. How
can we do this? The idea is not sticking to the uniform distribution to generate the
random portion of the colorings, which is .�0; : : : ; �h�1/ 2 f�1;C1gh. Instead, we
gradually modify the distribution on f�1;C1gh with the intention of concentrating
it in promising regions of this search space. Estimation of distribution algorithms
(EDA) follow this approach, more precisely the idea of gradually modifying a
distribution characterizes incremental EDAs. We describe the idea of EDAs in more
detail, starting with the non-incremental version.
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7.6.1 Population-Based EDAs

Assume the search space is f0; 1gk for some k 2 N, and the task is to maximize a
function f W f0; 1gk �! Q. The function f is typically called the fitness function,
and a solution x 2 f0; 1gk is sometimes called an individual. For the discrepancy
problem, we would use f�1;C1gh as the search space (which is essentially the same
as f0; 1gh) and the negative of the discrepancy as fitness, so larger fitness is better.

In a population-based EDA, we start by sampling a number of, say, N , solutions
using the uniform distribution. This set P  f0; 1gk of N solutions is called a
population. From the population, we select the, say, 50% solutions with highest
fitness, denote them A  P  f0; 1gk. We ask: what probability distribution could
have produced this set A of relatively good solutions? If we knew this distribution,
we could sample it some more and hope for even better solutions. An important
characteristic of an EDA is what types of distributions it considers. In the simplest
case, the k coordinates in the solution are treated as a family of independent random
variables. All such distributions look like Q D .Q0; : : : ;Qk�1/ 2 Œ0; 1�k with
Qi stating the probability of sampling a 1 in position i . An EDA assuming this
independence is called a univariate EDA. One of the earliest EDAs, the univariate
marginal distribution algorithm (UMDA) by Mühlenbein and Paaß [16], is of this
type. In UMDA, given the selection A  P of promising solutions, we build a
distribution, also called a (probabilistic) model, by defining

Qi :D jfx 2 AI xi D 1gj
jAj for each i 2 �k�.

Then we use Q to sample N new solutions, again select promising solutions out of
those (e.g. the 50% best) and build the next model, and so on.

This continues until we are satisfied or we run out of time or some other termina-
tion criterion holds. One other possible termination criterion is that the models have
low entropy. Entropy is a measure of randomness, defined as �Pk�1

iD0 Qi log.Qi /,
which is at its maximum k when Qi D 1

2
for all i , and at its minimum 0 if

Qi 2 f0; 1g for all i . When entropy is low, sampling will yield similar solutions.
Population-based EDAs are considered evolutionary algorithms since they allow

the fittest individuals in the populationP to reproduce via the distributionQ, which
is build upon them. Each iteration is therefore also called a generation.

7.6.2 Incremental EDAs

Instead of building the model from scratch in each generation, it is possible to
update an existing model. Then we speak of an incremental EDA. One of the
earliest incremental EDAs was given in 1994 and 1995 by Baluja [3] and Baluja
and Caruana [4], known as population-based incremental learning (PBIL). It starts
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with Q D .1=2; : : : ; 1=2/ 2 Œ0; 1�k , the uniform distribution. In each generation, a
population P is sampled from Q. Then an individual x� 2 P with maximal fitness
among all the individuals in P is determined and Q slightly adjusted towards it:

Qi :D
(
Qi � �Qi if x�i D 0

Qi C �.1 �Qi/ if x�i D 1
for each i 2 �k�.

� 2 Œ0; 1� is a parameter, called learning rate. Variations include using the best N
individuals x.1/; : : : ; x.N/ 2 P for some N < jP j and update the model with each
of them, starting with the best.

The compact genetic algorithm (cGA) given by Harik et al. [9] in 1997 is similar,
but only two solutions are sampled each generation. Let x� and x be the two
solutions and f .x�/ � f .x/. Then the model update works as follows:

Qi :D
(

maxf0; Qi � �g if x�i D 0

minf1; Qi C �g if x�i D 1
for each i 2 �k� such that x�i ¤ xi .

So only in coordinates where the better solution differs from the inferior one, an
update is performed. Another difference to PBIL is that updates are in absolute
terms. Variations include sampling N solutions x.1/; : : : ; x.N/ instead of just 2, and
then for each unordered pair fj; j 0g 2 �

ŒN �
2

�
we let x.j / and x.j

0/ take the roles of
two solutions in the simple version. The cGA algorithm was evaluated on large-scale
optimization problems by Sastry et al. [21].

Incremental EDAs are also considered evolutionary algorithms, in the sense
that the probabilistic model gives a compact representation of a population of
individuals. Over time, the frequency of fit individuals increases, as the model is
adjusted towards producing fitter individuals upon being sampled.

In 2002, Han and Kim [7] gave an incremental EDA using an attractor. Their
algorithm is called the quantum-inspired evolutionary algorithm (QEA); we will
comment on this name later. Since we will discuss variants of this algorithm, we call
the version given by Han and Kim the standard QEA (sQEA). sQEA also starts with
Q D .1=2; : : : ; 1=2/. Additionally, there is a solution a 2 f0; 1gk called the attractor.
In the simplest case, it is initialized by drawing from f0; 1gk uniformly at random.
In each generation,Q is sampled yielding a solution x and then x is compared to a.
If f .x/ � f .a/, i.e. x is at least as good as a, then we update a :D x and continue
with the next generation; we also say that the sample x is accepted. If, on the other
hand, f .x/ < f .a/, i.e. the sample x is inferior to a, thenQ is updated in a similar
way as in PBIL or cGA, namely moved towards a where x and a differ. Then the
next generation starts, either with the updated attractor (if f .x/ � f .a/) or with the
same attractor as before (if f .x/ < f .a/). Since in case f .x/ < f .a/ the sample
x is discarded, sQEA can make use of shortcutting when used for the discrepancy
problem. As an extension, multiple samples can be taken in each generation. The
model is only adjusted if none of them satisfies f .x/ � f .a/, and then an arbitrary
one, say the first, is used as reference for the test xi ¤ ai .
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The original description of sQEA carries out the model update using the
following procedure: the point .

p
1 �Qi;

p
Qi/ in the plane is rotated by a certain

angle # either clockwise (if ai D 0) or counter-clockwise (if ai D 1), and the
new value of Qi becomes the square root of the new ordinate. This is inspired by
quantum computing; an actual benefit could be that towards the extremes (0 and 1)
shifts become smaller. We call this rotation learning, opposed to linear learning as
in cGA. The angle # in rotation learning corresponds to � in linear learning. Instead
of giving # or �, we will often prefer to specify how many different values each
Qi can attain in the interval Œ0; 1�, called learning resolution. Learning resolution is
R D �

2#
andR D 1

�
, respectively. Of course, the attractor concept of sQEA can also

be used with linear learning, not only with rotation learning.
The term “quantum-inspired” is due to recognizing that theQ0; : : : ;Qk�1 behave

similar to k qubits in a quantum computer: each is in a state between 0 and 1,
and only upon observation takes on states 0 or 1 with certain probabilities. Hence
what we call “sampling” is also called “observing” in the literature. Clearly, any
univariate EDA is “quantum-inspired” in this sense, including UMDA and PBIL
from the 1990s. However, it appears that “quantum-inspired” has become the
attribute to describe incremental EDAs that work with an attractor. In [19], Platel
et al. formally state and explain that QEAs indeed belong to the class of EDAs.

Although EDAs are often better than just sampling uniformly over and
over again, they can suffer from premature convergence, i.e. the probabilities
Q0; : : : ;Qk�1 can quickly move to one of the extremes (0 or 1) and the algorithm
does not provide means to break out of this. Premature convergence can also be
seen as a lack of exploration of the search space.

sQEA can be implemented treating multiple models in parallel, typically up
to 100, each having an attractor attached to it. Periodically, all models replace
their attractor with the best one over all models. This is called migration or
synchronization. As a refinement, models are divided into groups, and we have
local migration and global migration. In each generation, we have local migration:
the attractor of a model is replaced by the best attractor in its group. Only every
Tg generations, we have global migration: each attractor is replaced by the best
attractor over all models, regardless of groups. The number Tg is called the global
migration period. Not conducting global migration in each generation is intended to
prevent premature convergence. Indeed, it can be observed sometimes that entropy
drastically rises after a global migration when using a large enough global migration
period. This must be considered when using low entropy as a termination criterion.

Given an appropriate implementation, it can be considered treating the different
models asynchronously in parallel in order to prevent idle time. This is particularly
interesting if the fitness function provides a shortcutting mechanism, as in the
discrepancy problem. A full description of sQEA is given in Algorithm 4.

In 2007, Platel, et al. [18] gave the versatile QEA (vQEA). It works similar to
sQEA with the exception that the attractor is replaced by the sample x in each
generation unconditionally, even if f .x/ < f .a/. This feature is also intended
to prevent premature convergence. Experimental evidence suggests this being a
very promising approach. When using multiple models in parallel, migration is



474 L. Kliemann

Algorithm 4: The standard QEA (sQEA). By M we denote the set of all
models. The shift �.Qi/ is either determined by rotation when using rotation
learning, then it depends on Qi , or it is just a constant if using linear learning.
The termination criterion “hopeless” could be low entropy

1 in parallel for each model Q D .Q0; : : : ; Qk�1/ 2M do
2 initialize generation counter t :D 0;
3 initialize model Q :D .1=2; : : : ; 1=2/;
4 initialize attractor a :Dunif f0; 1gk ;
5 repeat
6 if t mod Tg D 0 then a :D best attractor over all models;
7 else a :D best attractor over all models inQ’s group;
8 sample Q for N times yielding x.1/; : : : ; x.N/ 2 f0; 1gk ;
9 if 9j 2 ŒN � W f .x.j// � f .a/ then a :D best of x.1/; : : : ; x.N/;

10 else for i D 0; : : : ; k � 1 do

11 if x.1/i ¤ ai then Qi :D
(

maxf0; Qi ��.Qi/g if ai D 0

minf1; Qi C�.Qi/g if ai D 1

12 t :D t C 1;
13 until satisfied or hopeless or out of time;

performed in each generation such that the attractor of each model in generation
t C 1 is the best sample taken in generation t . This reduces the possibilities for
shortcutting: each generation, at least one full fitness function evaluation must be
conducted. A similar observation holds for PBIL and cGA.

In [11], sQEA, vQEA, and a novel variant called attractor population QEA
(apQEA) are compared against each other on the low-discrepancy problem for APs.
The next section will be devoted to apQEA, and in the section that follows we will
summarize the experimental comparison of the three.

For more on EDAs in general, the reader is referred to the survey by Hauschild
and Pelikan [10] and the references therein. That survey also points out and explains
several EDAs which are not univariate, i.e. they do not necessarily treat the k
coordinates of a solution as independent random variables. For experimental work
see, e.g., [2, 8, 12, 13, 17].

7.7 Attractor Population QEA (apQEA)

This and the following section is based on [11], where the attractor population
QEA (apQEA) was invented and tested on the discrepancy problem in An. apQEA
strikes a balance between the approaches of sQEA and vQEA. In sQEA, attractors
basically follow the best solution found so far, with some delay if using global
migration period. In vQEA, attractors change frequently even if this means that
the new attractor is less fit. In apQEA, an attractor population P � f0; 1gk of a
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Algorithm 5: apQEA

1 randomly initialize attractor population P 
 f0; 1gk of cardinality S ;
2 in parallel for each model Q D .Q0; : : : ; Qk�1/ 2M do
3 initialize model Q :D .1=2; : : : ; 1=2/;
4 repeat
5 a :D select from P;
6 do P times
7 f0 :D worst fitness in P;
8 sample Q for N times yielding x.1/; : : : ; x.N/ 2 f0; 1gk ;
9 if 9j 2 ŒN � W f .x.j// > f0 then

10 inject each x.j/ into P if f .x.j// > f0;
11 trim P to the size of S , removing worst solutions;

12 else for i D 0; : : : ; k � 1 do

13 if x.1/i ¤ ai then Qi :D
(

maxf0; Qi ��.Qi/g if ai D 0

minf1; Qi C�.Qi/g if ai D 1

14 until satisfied or hopeless or out of time;

fixed size S is maintained, which is a set of solutions from which attractors are
drawn. For each model, every P 2 N generations a new attractor is selected from
P . The parameter P , which is the number of generations that an attractor stays
in function, is called the attractor persistence. We made good experiences with
P D 10. Selection can for example be done by a tournament: draw two solutions
from P uniformly at random and use the better of the two with probability 60%
and the inferior of the two with probability 40%.

In each generation, the sampled solution x is compared to the worst solution
in P . Denote f0 the worst fitness in P at that point in time. Then the sample is
accepted if f .x/ > f0, in which case it is injected into P and then P trimmed
to its original size S , removing worst solutions. If f .x/ � f0, then the model is
adjusted using rotation learning or linear learning, then the sample x is discarded. It
is also conceivable to use f .x/ � f0 as the acceptance criterion, similar to sQEA.
For the discrepancy problem, f .x/ > f0 has shown to be superior, but this could be
different for other problems. It is also conceivable to use the N th percentile in P
for comparison instead of f0, for a parameterN . As in sQEA, multiple samples can
be taken per generation.

A very important parameter is the size S D jPj of the attractor population.
We will see in experiments that larger S means better exploration abilities. For the
discrepancy problem, we will have to increase S (moderately) when n increases.
A complete description of apQEA is given as Algorithm 5 on the current page.

apQEA will benefit from shortcutting since f .x/ has only to be computed exactly
when f .x/ > f0. It is also appropriate to treat the models asynchronously in
apQEA, hence preventing idle time: the attractor population is there, any process
may inject into it or select from it at any time—given an appropriate implementation.
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7.7.1 Flatline Termination Criterion

Since the attractor changes often in apQEA, entropy oftentimes never reaches near
zero but instead oscillates around values like 20 or 30. A more stable measure is the
mean Hamming distance in the attractor population, i.e.

1�
S
2

� �
X

fx;x0g2.P2 /
jfi I xi ¤ x0i gj .

However, it also can get stuck well above zero. To determine a hopeless situation,
we instead developed the concept of a flatline. A flatline is a period of time in
which neither the mean Hamming distance reaches a new minimum nor the best-
so-far solution improves. When we encounter a flatline stretching over 25% of the
computation time so far, we declare the situation hopeless. To avoid erroneously
aborting in early stages, we additionally demand that the relative mean Hamming
distance, which is the mean Hamming distance divided by k, falls below 1=10.
Those thresholds were found to be appropriate (for the discrepancy problem)
in preliminary experiments. For other problems, those values might have to be
adjusted.

7.7.2 Implementation

To fully benefit from the features of apQEA, we need an implementation which
allows asynchronous communication between processes. Our MPI-based imple-
mentations (version 1.2.4) exhibited unacceptable idle times when used for asyn-
chronous communication, so we wrote our own client-server-based parallel frame-
work. It provides a server that manages the attractor population. Clients can connect
to it at any time via TCP/IP and do selection and injection. The server takes care
of trimming the population after injection. Great care was put into making the
implementation well-performing and free of race conditions. The server uses a
simple filesystem-based database. Any number of server processes (connected to
client processes over the network) can access the database at the same time and
do selection and place injection requests. Periodically, every few seconds, a single
process treats the injection requests and performs the actual injection and trimming
of the attractor population. This way, the main data structure is never modified
by more than one process at a time. The system gets by without any locking
mechanisms.

Most parts of the software is written in Bigloo,3 an implementation of the
Scheme programming language, which, quoting its website, is “devoted to one goal:

3http://www-sop.inria.fr/indes/fp/Bigloo/.

http://www-sop.inria.fr/indes/fp/Bigloo/
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enabling Scheme based programming style where C(++) is usually required.” In
our experience, Scheme allows us to quickly arrive at a working implementation,
which can easily be adapted afterwards. Scheme code usually is very concise.
Nonetheless, the fitness function (discrepancy computation) and a few other parts
were written in C, for performance reasons and to have OpenMP available. This
is possible since Bigloo provides a C interface. OpenMP is used to distribute
fitness function evaluation across multiple processor cores. So we have a two-level
parallelization: on the higher level, we have multiple processes treating multiple
models and communicating via the attractor population server. On the lower level,
we have thread parallelization for the fitness function. The framework provides also
means to run sQEA and vQEA, although in the case of vQEA perhaps not in the
most efficient way.

We always use 8 threads (on 8 processor cores, one for each thread) for the fitness
function. If not stated otherwise, a total of 96 processor cores is used. This allows us
to have 12 models fully in parallel; if we use more models on the same number of
processors, then the set of models is partitioned and the models from each partition
are treated sequentially.

7.8 QEA Results for the Discrepancy Problem in An

We prepare for the three algorithms sQEA, vQEA, and apQEA to be tested on An.
We will use modulo colorings with the alternating mirror construction as introduced
in Sect. 7.5. Recall that the best discrepancy to hope for is bn=pc. Our aim is to
attain the asymptotic�. 4

p
n/, therefore we choose p depending on n so that n=p D

�. 4
p
n/. Call b3 4

p
nc the target discrepancy; preliminary experiments had shown

this to be an attainable goal for apQEA in reasonable time. Better approximations
may be possible with other parameters and more processors and/or more time, but
we do not investigate this here. Since we wish to attain the target discrepancy, we
choose p large enough so that we have some room relative to the target discrepancy,
say n=p � 2:5 � 4

p
n, i.e. p � 2=5 � n3=4. Precisely, we choose p to be the largest

prime subject to p � d2=5 � n3=4e.
Recall also that modulo colorings allow restricting to small starting points for

APs, namely with alternating modulo coloring we can restrict to starting points in
�2p�. Denote m.n/ :D jAnj, and also denote m.n; p/ :D jfAa;d;` \ �n�I a 2
�2p� ^ d; ` 2 N0gj the number of APs in An with starting points in �2p�. Table 7.4
for each n gives the prime p as explained above and the corresponding values for
m.n/ and m.n; p/ as well as to which percent the number of APs to test is reduced
(rounded to full percents).

Of course, where applicable, we do shortcutting by setting ı1 appropriately
in Algorithm 2. Parameter ı0 is set to the target discrepancy. In fact, in our
implementation, we use some additions to Algorithm 2, exploiting further the
structure of APs and making it substantially more technically involved. We do not
give the details here; they are not necessary for understanding this chapter.
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Table 7.4 Reducing the number of APs to check

n p m.n/ m.n; p/
m.n;p/

m.n/

100 	 103 2243 55836909328 5105563932 9%
125 	 103 2659 88988439957 7720722747 9%
150 	 103 3049 130194434212 10798481037 8%
175 	 103 3413 179569486783 14295844944 8%
200 	 103 3779 237210329226 18300540427 8%
225 	 103 4133 303200671205 22745014549 8%
250 	 103 4463 377614297340 27536746469 7%

Table 7.5 Results for sQEA

R M D 12 M D 24 M D 48 M D 96

50 60 61 59 59 58 57 58 58

100 59 59 57 59 59 56 56 56

500 57 56 57 57 55 56 56 57

1 000 57 57 56 55 57 56 58 59

2 000 57 57 57 58 59 60 63 62

3 000 56 57 59 58 61 61 64 65

7.8.1 sQEA

The important parameters of sQEA are number of modelsM , number of samplesN
taken in each generation, learning resolution R, global migration period Tg, and
number of groups. We stick to N D 10 samples in each generation for all
experiments. For R, we use 50, 100 and 500, which are common settings, and
also try 1 000, 2 000, and 3 000. In [8], it is proposed to choose Tg in linear
dependence on R, which in our notation and neglecting a small additive constant
reads Tg D 2 � R˛ with 1:15 � ˛ � 1:34. We use ˛ D 1:25 and ˛ D 1:5, so
Tg D 2:5 � R and Tg D 3 � R. In [8], the number of groups is fixed to 5 and the
number of models ranges up to 100. We use 6 groups and up to 96 models. We use
rotation learning, but made similar observations with linear learning.

We fix n D 100 � 103, which implies p D 2 243 as per our way to choose the
prime, and do 3 runs for each set of parameters. Computation is aborted after 15
min, which is roughly double the time apQEA needs to reach the target discrepancy
of 53. Table 7.5 (taken from [11]) gives mean discrepancies over the 3 runs. The left
number is for smaller Tg and the right for higher Tg , e.g. for M D 12 and R D 50

we have 60 for Tg D 2:5 � 50 D 125 and 61 for Tg D 3 � 50 D 150.
Although those discrepancies look better than those we computed in

Sect. 7.5.2—in particular compare with the 73 we got for p D 2 243 there—
target discrepancy 53 is never reached. For two runs we reach 54, namely for
.M;R; Tg/ D .24; 1 000; 3 000/ and .96; 500; 1 250/. But for each of the 2
settings, only 1 of the 3 runs reached 54. There is no clear indication whether
smaller or larger Tg is better. Entropy left in the end generally increases with M
and R.
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Table 7.6 Results for sQEA for larger n

n D 100 	 103 125 	 103 150 	 103 175 	 103 200 	 103

Time limit in minutes 15 25 40 80 150
Best sQEA result 54 60 63 68 69
Target 53 56 59 61 63

We pick the setting .M;R; Tg/ D .24; 1 000; 3 000/, which attained 54 in 1 run
and also has lowest mean value of 55, for a 5 h run. In the 15 min runs with this
setting, entropy in the end was 48 on average. What happens if we let the algorithm
use up more of its entropy? As it turns out while entropy is brought down to 16
during the 5 h, only discrepancy 56 is attained.

The main problem with sQEA here is that there is no clear indication which
parameter to tune in order to get higher quality solutions—at least not within
reasonable time (compared to what apQEA can do). In preliminary experiments,
we reached target discrepancy 53 on some occasions, but with long running times.
We found no way to reliably reach discrepancy 55 or better with sQEA.

Finally, for .M;R; Tg/ D .24; 1 000; 3 000/, we do experiments for up to n D
200 � 103, with 3 runs for each n. The time limit is twice what apQEA requires on
average, rounded to the next multiple of 5. Table 7.6 for each n gives the best result
obtained over the 3 runs and the target for comparison.

Although we do multiple runs and allocate twice the time apQEA would need to
attain the target, the best result for sQEA stays clearly away from the target.

In apQEA, we use f .x/ > f0 as the criterion for accepting the sample x. In
sQEA, the non-strict f .x/ � f .a/ is used. Changing this to f .x/ > f .a/ in sQEA
has shown to be detrimental for the discrepancy problem: the best discrepancy we
reached with this modification in similar experiments was 57.

7.8.2 vQEA

Recall that vQEA in generation t C 1 unconditionally replaces the attractor for each
model with the best sample found during generation t . vQEA does not use groups
nor global migration period, instead all models form a single group “to ensure
convergence” [18].4 Indeed, our experiments confirm that vQEA has no problem
keeping entropy high. We conducted 5 runs with N D 10 samples each generation,
M D 12 models in parallel, learning resolution R D 50, and rotation learning
for n D 100 � 103. In all of the runs, the target of 53 was hit with about 100 of

4However, in [18] it is suggested to use groups with vQEA in future work.
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entropy left. However, the time required was almost 2 h.5 We also conducted 5 runs
with linear learning, yielding the same solution quality at a 12% higher running
time. We also did a run for n D 125�103; there vQEA attained the target discrepancy
after 3:5 h.

The high running times were to be expected since vQEA can only make limited
use of shortcutting. Since we take multiple samples in each generation (10 for
each model), fitness function evaluation from the second sample on can make use
of shortcutting. However, necessarily each generation takes at least the time of
one full fitness function evaluation. We conclude that while vQEA has impressive
exploration capabilities and delivers high solution quality “out of the box”, i.e.
without any particular parameter tuning, it is not well suited for the discrepancy
problem.

7.8.3 apQEA

Recall that the most important parameter for apQEA is the attractor population
size S . We fix attractor persistence to P D 10, number of models to M D 12,
number of samples in each generation to N D 10, and learning resolution to
R D 100 with linear learning. The main parameter S is varied in steps of 10.
Computation is aborted when the target of b3 4

p
nc is hit (a success) or a long flatline

is observed (a failure), as explained in Sect. 7.7.1. For selecting attractors, we use
tournament selection: draw two solutions randomly from P and use the better one
with 60% probability and the inferior one with 40% probability. For each n and
appropriate choices of S , we do 30 runs and record the following: whether it is
a success or a failure, final discrepancy (equals target discrepancy for successes),
running time (in minutes), mean final entropy. For failures, we also record the time
at which the last discrepancy improvement took place (for successes, this value is
equal to the running time). Table 7.7 (taken from [11]) gives results grouped into
successes and failures, all numbers are mean values over the 30 runs together with
their standard deviation.

We observe that by increasing S , we can guarantee the target to be hit.
Dependence of S on n for freeness of failure appears to be approximately linear
or slightly super-linear: ratios of S to n=1 000 for no failures are 0:30, 0:24, 0:27,
0:29, and 0:30. But even if S is one step below the required size, discrepancy is only
1 away from the target (with an exception for n D 125 � 103 and S D 20, where we
recorded discrepancy 58 in 1 of the 30 runs). Running times for failures tend to be
longer than for successes, even if the failure is for a smaller S . This is because
it takes some time to detect a failure by the flatline criterion. Larger S effects

5Even more, these 2 h is only the time spent in fitness function evaluation. Total running time was
about 4 h, but we suspect this to be partly due to our implementation being not particularly suited
for vQEA resulting in communication overhead.
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Table 7.7 Results for apQEA

Successes Failures

n S # Result Time Entropy # Result Time Entropy Last imp.

100 	 103 20 28 53�D00 05�D01 38�D09 02 54�D00 08�D01 22�D01 06�D01

100 	 103 30 30 53�D00 07�D01 63�D12 00 na na na na

125 	 103 20 17 56�D00 09�D02 31�D08 13 57�D00 12�D01 19�D09 08�D01

125 	 103 30 30 56�D00 11�D01 48�D11 00 na na na na

150 	 103 30 26 59�D00 16�D02 46�D11 04 60�D00 23�D02 32�D09 16�D02

150 	 103 40 30 59�D00 20�D02 62�D10 00 na na na na

175 	 103 30 16 61�D00 24�D04 31�D08 14 62�D00 38�D05 21�D08 24�D03

175 	 103 40 27 61�D00 32�D05 42�D09 03 62�D00 47�D02 26�D05 30�D01

175 	 103 50 30 61�D00 39�D05 57�D11 00 na na na na

200 	 103 30 02 63�D00 38�D02 22�D06 28 65�D01 47�D08 24�D17 30�D05

200 	 103 50 28 63�D00 53�D08 44�D08 02 64�D00 76�D06 28�D02 53�D03

200 	 103 60 30 63�D00 74�D15 53�D12 00 na na na na

larger entropy; failures tend to have lowest entropy, indicating that the problem
is the models having locked onto an inferior solution. The table also shows what
happens if we do lazy S tuning, i.e. fixing S to the first successful value S D 30 and
then increasing n: failure rate increases and solution quality for failures deteriorates
moderately. The largest difference to the target is observed for n D 200 � 103 and
S D 30, namely we got discrepancy 67 in 1 of the 30 runs; target is 63. For
comparison, the best discrepancy we found via sQEA in 3 runs for such n was
69 and the worst was 71. We conclude that a mistuned S does not necessarily have
catastrophic implications, and apQEA can still beat sQEA.

To see the effect of parallelization, we double number of cores from 96 to 192
and increase number of models to M D 24, so that they can be treated in parallel
with 8 cores each. Table 7.8 (taken from [11]) shows results for 5 runs for each set of
parameters. First consider n D 175 � 103 and 200 � 103. The best failure-free settings
for S are 30 and 50. In comparison with the best failure-free settings for 96 cores,
running time is reduced to 17=39 D 44% and 42=74 D 57%, respectively. 50% or
less would mean a perfect scaling. When we do not adjust S , i.e. we use 50 and 60,
running time is reduced to 26=39 D 67% and 53=74 D 72%, respectively. We also
compute for n D 250 � 103.

Colorings found by apQEA can be downloaded6 and verified. A small Bigloo
Scheme program is included, but a similar program can be implemented quickly
from scratch in any programming language.

6http://www.informatik.uni-kiel.de/~lki/discap-results.html.

http://www.informatik.uni-kiel.de/~lki/discap-results.html
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Table 7.8 Results for apQEA on 192 processor cores

Successes Failures

n S # Result Time Entropy # Result Time Entropy Last imp.

175 	 103 20 02 61�D00 14�D02 22�D02 03 62�D00 20�D02 31�D12 13�D00

175 	 103 30 05 61�D00 17�D04 43�D07 00 na na na na
175 	 103 50 05 61�D00 26�D03 72�D12 00 na na na na

200 	 103 40 04 63�D00 30�D03 42�D12 01 64�D00 42�D00 32�D02 28�D00

200 	 103 50 05 63�D00 42�D10 52�D05 00 na na na na
200 	 103 60 05 63�D00 53�D08 60�D11 00 na na na na

250 	 103 50 04 67�D00 58�D07 42�D08 01 68�D00 110�D00 29�D02 70�D00

250 	 103 60 05 67�D00 83�D16 61�D14 00 na na na na

7.9 Conclusion and Future Work

Different randomized approaches were presented for the discrepancy problem in the
hypergraph of arithmetic progressions in the first n integers. The first important step
was to use modulo colorings for certain prime numbers, as suggested by Sárközy
in 1974. The second step was to look beyond the uniform distribution and use
estimation of distribution algorithms instead. The third step was to refine the QEA
procedure into what became apQEA. This new form of QEA is able to attain the
asymptotic�. 4

p
n/ and beat similar previous EDAs, namely sQEA and vQEA.

At the time of writing, apQEA has only been tested on this particular discrepancy
problem. It should be determined in the future whether apQEA is also applicable for
computing low-discrepancy colorings in other hypergraphs and also whether it can
improve on known results for other hard problems, like packing and covering in
graphs and hypergraphs. At least for the discrepancy problem in An, apQEA is easy
to tune, since a single parameter, the size S of the attractor population, has a clear
and foreseeable effect: it improves solution quality (if possible) at the price of an
acceptable increase in running time. Will this hold for other challenging problems
as well?

Experimentation is emerging as a tool in Combinatorics. For example, exper-
imentation is used in a Polymath project7 on one of the most challenging open
problems of Paul Erdős on homogeneous arithmetic progressions. Our problem
sizes are far beyond those of the Polymath project. Of course, our problem is
different, but related and in future work it should be attempted to apply apQEA
to homogeneous arithmetic progressions.
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Part III
Applications and Constructions



Chapter 8
On the Distribution of Solutions to Diophantine
Equations

Ákos Magyar

Abstract Let P be a positive homogeneous polynomial of degree d , with integer
coefficients, and for natural numbers � consider the solution sets

ZP;� D fm 2 Zn W P.m/ D �g:

We’ll study the asymptotic distribution of the images of these sets when projected
onto the unit level surface fP D 1g via the dilations, and also when mapped to the
flat torus Tn. Assuming the number of variables n is large enough with respect to
the degree d we will obtain quantitative estimates on the rate of equi-distribution
in terms of upper bounds on the associated discrepancy. Our main tool will be
the Hardy-Littlewood method of exponential sums, which will be utilized to obtain
asymptotic expansions of the Fourier transform of the solution sets

!P;�.�/ D
X

m2Zn; P.m/D�
e2�im	� ;

relating these exponential sums to Fourier transforms of surface carried measures.
This will allow us to compare the discrete and continuous case and will be crucial
in our estimates on the discrepancy.

8.1 Introduction

A fundamental problem in number theory is to find integer solutions of diophantine
equations, that is equations of the form

Á. Magyar (�)
UBC, 1984 Mathematics Road, Vancouver, BC, Canada V6T 1Z2
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P.m1; : : : ; mn/ D �

where P is a polynomial with integer coefficients. The approaches fall into two
broad categories, algebraic and analytic, the latter being especially useful when the
number of variables is large with respect to the degree of the polynomial.

If the polynomial P is also positive and homogeneous of (even) degree d , then
for each natural number �, there is a finite solution set

ZP;� D fm 2 Zn W P.m/ D �g: (8.1)

One may view these sets as the set of lattice points on the level surfaces fP D �g and
by homogeneity they can be projected onto the unit level surface SP WD fP D 1g via
the dilationsm ! ��1=dm. We will study the rate of equi-distribution of the images
of the solution sets Z0P;� on the unit level surface SP as � ! 1. Of course one
needs some more conditions on the polynomialP in order to have solutions at all of
the diophantine equationP.m/ D �. For example ifP.m/ D m8

1C.m2
2C: : :Cm2

n/
4

then even for large n there are only a sparse set of �’s (namely which can be written
as a sum of an 8-th and a 4-th power) for which there are solutions, and even for
those values of � one cannot have equi-distribution as the first coordinate m1 can
take very few values. A natural condition on the polynomialP , introduced by Birch
[4], is that of P being non-singular in the sense that

rP.z/ D .@1P.z/; : : : ; @nP.z// ¤ 0; for all z 2 Cn; z ¤ 0:

Also, there are local or congruence obstructions. For example, the polynomial
P.m/ D md

1 C p.md
2 C : : : C md

n/ is non-singular, but the equation P.m/ D �

can only have an integer solution if � is congruent to a d -th power modulo p.
Nevertheless, as it is implicit in the work of Birch [4], that if P is non-singular
and if the number of variables n is large enough with respect to the degree d ,
then there is an infinite arithmetic progression � depending on P , which can be
explicitly determined, such that for each � 2 � the equation P.m/ D � has the
expected number of solutions � �n=d�1, in fact the number of solutions can be
asymptotically determined. We will refer to such a set � as a set of regular values
of the polynomial P .

As mentioned earlier, one of the problems we will be interested in is the asymp-
totic distribution of the images of the solution sets Z0P;� D f��1=dmI P.m/ D �g
as � ! 1 (� 2 �), on the unit level surface SP . First, one can show that there
is a natural measure �P on the surface SP , such that the sets Z0P;� become weakly
equi-distributed with respect to the measure d�P . That is for any smooth function 	
one has that

1

N�

X
x2Z0

P;�

	.x/ !
Z
SP

	.x/ d�P .x/; as � ! 1; � 2 �;
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where N� is the number of solutions of the equation P.m/ D �. To get quantitative
information on the rate of equi-distribution, we define below the discrepancy of a
finite setZ  SP with respect to caps. For a unit vector � 2 Rn and positive number
a, define the cap

Ca;� WD fx 2 SP W x � � � ag;

where x �� is the dot product of the vectors x and �. Note that Ca;� is the intersection
of the surface SP with the half-space defined by x � � � a, and we will refer to �
as the direction of the cap. The associated discrepancy of a finite set Z  SP ,
consisting of N points, with respect to caps of a given direction � is given by

D.Z; �/ D sup
a>0

j jZ \ Ca;� j �N �P .Ca;�/j; (8.2)

where jAj denotes the size of a set A.
It turns out that for the solution sets Z0P;� the discrepancy depends heavily on the

direction of the cap. To see this consider the polynomialP.m/ D m2
1C : : :Cm2

n, so
that one is interested in the distribution of lattice points on spheres, projected back
to the unit sphere. It is well-known that for n � 5, the size of the solution sets are
N� � �

n
2�1. If � D .0; : : : ; 0; 1/ then for certain values of a, the boundary of the

cap contain as many as � �
n�3
2 points from the set Z0P;�. Indeed, after scaling back

with a factor of �1=2, the boundary of the cap is given by the equation.
m2
1 C : : :Cm2

n�1 D � for some � depending on � and a. Thus the discrepancy

cannot be smaller than �
n�3
2 � N

1� 1
n�2

� . In contrast, we will show that if the
direction of the cap points away from rational points as much as possible, then one
can obtain much better bounds on the discrepancy. To be more precise let us call a
point ˛ 2 Rn�1 diophantine, if for every " > 0 there exists a constant C� > 0 such
that for all q 2 N

kq˛k D min
m2Zn�1

jq˛ �mj � C" q
� 1
n�1�": (8.3)

Correspondingly a point � 2 Sn�1 is called diophantine if for every 1 � i � n

for which �i ¤ 0, the point ˛i 2 Rn�1 is diophantine, where the coordinates of ˛i

are obtained by dividing each coordinate of � by �i and deleting the i -th coordinate.
It is easy to see that the complement of diophantine points has measure 0 in Rn�1
and hence in Sn�1 as well, see [Lemma 3, Sec. 2.2]. We will show, see also [13], in
dimensions n � 4, that the discrepancy is bounded by above by

D.Z0P;�; �/ � C�;" N
1
2C 1

2.n�2/

� (8.4)
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for all " > 0, when � is diophantine. This is especially significant in large
dimensions as it is known from the works of Beck and Schmidt [3, 15], see also
[12], that for any set of N points on the unit sphere Sn�1, the L2 average of the

discrepancy with respect to spherical caps is at least N
1
2� 1

2.n�1/ . For general non-
singular, positive and homogeneous polynomials P , the same observation shows
that for rational directions (p.e. when � D .0; : : : ; 0; 1/), the discrepancy is at least

N
1� 1

n�d

� , while we’ll show that in diophantine directions it is bounded by N1�
d
�

with 
d D 1

.d�1/2dC1 , in large enough dimensions.
We will also study the equi-distribution of the solutions when mapped to the

flat torus Tn D Rn=Zn. Let ˛ D .˛1; : : : ; ˛n/ 2 Rn and consider the map T˛ W
Zn ! Tn, defined by T˛.m/ D .m1˛1; : : : ; mn˛n/ .mod 1/ . Then the images of
the solution sets take the form

˝�;˛ D f.m1˛1; : : : ; mn˛n/I P.m1; : : : ; mn/ D �g � Tn:

It is clear that if one of the coordinates of the point ˛ is rational then the
corresponding coordinate of the points in the image set can take only finitely many
different values and the sets ˝�;˛ cannot become equi-distributed as � ! 1.
It turns out that this is the only obstruction for non-singular polynomials P in
sufficiently many variables. Indeed we will see that if ˛ 2 .RnQ/n, then for any
	 2 C1.T n/ we have that

N�1�
X

P.m/D�
	.m1˛1; : : : ; mn˛n/ !

Z
Tn
	.x/ dx; (8.5)

as � ! 1 through regular values of the polynomial P . To obtain quantitative
bounds on the rate of equi-distribution, we will assume that each coordinate of the
point ˛ is diophantine, that is kq˛ik � C"q

�1�" , for all " > 0 and for all q 2 N
with an appropriate constant C" > 0. Identify the torus with the set Œ� 1

2
; 1
2
/n and let

K � .� 1
2
; 1
2
/n be a compact, convex set with nonempty interior. The discrepancy

of the image set ˝�;˛ with respect to the convex bodyK is defined by

D.K; ˛; �/ D
X

P.m/D�
K.m1˛1; : : : ; mn˛n/�N� voln.K/;

where K is the indicator function of the set K . We will show that for diophantine
points ˛ one has the upper bound

jD.K; ˛; �/j � CP �
n
d �1�
d ; (8.6)

for some constant 
d > 0 depending only on the degree d .
Let us remark that the above is a special case of a more general phenomenon;

namely if .X;�/ is a probability measure space, and if T D .T1; : : : ; Tn/ is a
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commuting, fully ergodic family of measure-preserving transformations, then the
images of the solution sets

˝�;x WD fT m11 : : : T mnn .x/I P.m1; : : : ; mn/ D �g � X;

become equi-distributed as � ! 1; .� 2 �/, for almost every x 2 X [11].
To prove such results one needs estimate certain maximal operators associated to
averages over the solution sets P.m/ D �, however, as in this generality one cannot
hope for quantitative bounds on the rate of equi-distribution, we will not discuss
such results below.

Crucial to all these results is the structure of the Fourier transform of the indicator
function of the set of lattice points on the level surface fP D �g. This is an
exponential sum of the form

O!�.�/ D
X

m2Zn; P.m/D�
e�2�i m	� : (8.7)

Note that O!�.0/ D N�, that is the number of solutions to the equation P.m/ D �,
a quantity which has been extensively studied in analytic number theory. Indeed
for the special case P.m/ D m2

1 C : : : C m2
n asymptotic formulae for the number

of solutions were obtained by Hardy and Littlewood, by developing the so-called
“circle method” of exponential sums. Their methods were later further extended by
Birch and Davenport [4, 5], to treat higher degree non-diagonal forms; in fact they
have shown that

N� D O!�.0/ D cp�
n
d �1

1X
qD1

K.q; 0; �/CO.�
n
d �1�ı/; (8.8)

for some ı > 0. The expression K.�/ D P1
qD1 K.q; 0; �/ is called the singular

series, and it capturers all the local arithmetic information about the polynomial
P . Without recalling the precise definition of the terms K.q; 0; �/ here (see
Sect. 8.3.1.4), it is enough to note here that for regular values � 2 � the singular
series K.�/ bounded below by a fixed constant AP > 0. It turns out that one
can derive similar asymptotic formulas for the exponential sums O!�.�/, which are
uniform in the phase variable �. Namely, we will show that

O!�.�/ D cP �
n
d �1

1X
qD1

mq;�.�/C E�.�/; (8.9)

where

sup
�

jE .�/j � C �.
n
d �1/.1�
/:
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Moreover

mq;�.�/ D
X
l2Zn

K.q; l; �/  .q� � l/ Q�P .� 1
d .� � l=q//;

where  is a smooth cut-off function supported near the origin, and Q�P is the
Euclidean Fourier transform of the surface measure �P

Q�P .�/ D
Z
SP

e�2�i x	� d�P .x/:

To describe the meaning of this formula, note first that for � near the origin

m1;�.�/ D  .�/ Q�P .� 1
d .�//;

since K.1; 0; �/ D 1. The term cP �
n
d �1 Q�P .� 1

d �/ can be interpreted as the Fourier
transform of a smooth density supported on the level surface fP D �g. Thus the
first term in the approximation formula may be viewed as an approximation near
the origin via the Fourier transform of a surface carried measure. Notice also that all
other terms are similar involving the Fourier transform Q�P .� 1

d .� � l=q// , and may
be viewed as higher order approximations near the rational points l=q. In fact if �
is near a rational point l=q, then the sum expressing mq;�.�/ has only one nonzero
term taken at l D Œq��, the nearest integer point to q�.

Let us sketch below how this formula will allow us to compare the discrete and
the continuous case and to estimate the rate of equi-distribution of the solution sets
in terms of the discrepancy.

Let a be the indicator function of the interval Œa; b� (b being a fixed num-
ber depending on P ), then by taking the inverse Fourier transform a DR Oa.t/e2�it 	dt , and by making a change of variables t ! ��1=d t , one may write

jZ0P;� \ Ca;� j D
X

P.m/D�
a.�

� 1
d m � �/ D

Z
R
�
1
d Oa.t� 1

d / O!�.t�/ dt;

and also

�P .Ca;�/ D
Z
SP

a.x � �/ d�P .x/ D
Z

R
Oa.t/ Q�P .t�/ dt:

Substituting the asymptotic formula (8.9) into this expression one may study the
contribution of each term separately

Iq;�.�/ WD
Z

R
�
1
d Oa.t� 1

d /mq;�.t�/ dt:
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A crucial point is that if jt j � q�1 then  .qt� � l/ D 0 unless l D 0, moreover
 .qt�/ D 1, hence

mq;�.t�/ D K.q; 0; �/ Q�P .� 1
d t�/:

Writing

Iq;�.�/ D
Z
jt j�q�1

C
Z
jt j�q�1

D I 1q;�.�/C I 2q;�.�/;

one has, after a change of variables t WD �1=d t , that

I 1q;�.�/ D K.q; 0; �/

Z
jt j�� 1d q�1

Oa.t/ Q�P .t�/ dt:

At this point one exploits the cancelation in the normalized exponential sums
K.q; l; �/ and oscillatory integrals Q�P .�/, expressed in estimates roughly of the
form

jK.q; l; �/j � q�cn

j Q�P .�/j � .1C j�j/�c0n:

Then, for j�j D 1, one can extend the integral to the whole real line by making a
small error. This gives

I 1q;�.�/ � K.q; 0; �/

Z
R

Oa.t/ Q�P .t�/ dt D K.q; 0; �/ �P .Ca;� /:

Thus by formula (8.8), we have that

cP �
n
d �1

1X
qD1

I 1q;�.�/ � N� �P .Ca;�/: (8.10)

To get upper bounds for the discrepancy one needs to estimate the total contribution
of the rest of terms I 2q;�.�/, exploiting the diophantine properties of the point �. In
fact by making a change of variables t WD qt , and noting that the only nonzero term
of the sum expressing mq;�.

t
q
�/ is taken at l D Œt��, one may write

I 2q;�.�/ D �
1
d

q

Z
jt j�1

Oa
 
t
�
1
d

q

!
K.q; Œt��; �/  .ft�g/ Q�P

 
�
1
d

q
ft�g

!
dt;

where ft�g D t� � Œt�� denotes the fractional part of the point t�. At diophantine
points it is not hard to show that on average jft�gj D kt�k � c" t

�" (see Lemma 6
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in Sect. 8.2.2), thus using the cancelation estimates for K.q; l; �/ and Q�.�/ again,
the terms I 2q;�.�/ add up only to a small error.

The organization of the rest of this chapter is as follows. In the next section
we will derive the asymptotic expansion (8.9) for the polynomial P.m/ D m2

1 C
: : : C m2

d , and prove upper bounds on the discrepancy of lattice points on spheres.
Next, we will extend our approach to general non-singular forms, using the Birch-
Davenport method of exponential sums. Finally, in the last section we will study the
equi-distribution of the images of the solution sets fP.m/ D �g modulo 1, when
mapped to the flat torus Tn via the map T˛.

As for our notations, we will think of the polynomial P hence the parameters
n, d being fixed, and write f D O.g/ or alternatively f � g if jf .m/j �
C g.m/ for all m 2 N with a constant C > 0 depending only on the polynomial
P or the parameters n, d . We will also write, f � g if g � f and f � g

if both f � g and f � g . If the implicit constant in our estimates depend on
additional parameters "; ı; : : : then we may write f D O";ı:::.g/ or f �";ı;::: g. The
Fourier transform of a function f defined on Zn will be denoted by Of , as opposed,
somewhat unconventionally, we will denote the Euclidean Fourier transform of a
function 	 defined on Rn by Q	. This is to avoid confusion as we will often move
between the discrete and continuous settings.

8.2 The Discrepancy of Lattice Points on Spheres

The uniformity of the distribution of lattice points on spheres has been extensively
studied and proved in dimension at least 4, see [7], and later in dimension 3 [6] using
difficult estimates for the Fourier coefficients of modular forms. These methods,
however, do not take into consideration the direction of the caps, and hence the
bounds obtained are subject to the limitations described in the introduction, arising
from caps whose direction has rational coordinates.

We will assume that the direction � of the caps is diophantine in the sense that
�i D �=�i satisfies condition (8.3) for each 1 � i � n such that �i ¤ 0 . In this
case, when Z D f��1=2mI jmj2 D �g , we will obtain the following upper bound
on the discrepancy, defined in (8.2), see also [13].

Theorem 1. Let n � 4 and let � 2 Sn�1 be a diophantine point. Then for every
" > 0, one has

jDn.�; �/j � C�;" �
n�1
4 C" (8.11)

We note that for n � 4, and if n D 4 assuming that 4 does not divide �, one has
that N� � �

n
2�1, thus (8.11) implies that

jDn.�; �/j � C�;" N
1
2C 1

2.n�2/C"
� :
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In dimension n D 4, the best previous estimate for the normalized discrepancy
D.�; �/=N� was given in [7] of the order of ��1=5C" while we get the improvement
��1=4C". In case n D 4 and � D 4k there are only 24 lattice points of length �1=2,
estimates for the discrepancy become trivial in such degenerate cases.

8.2.1 The Fourier Transform of Lattice Points on Spheres

Our first task will be to derive the asymptotic formula (8.9) for the special case
when P.m/ D jmj2 D m2

1 C : : : m2
n. As we have mentioned this can be viewed

as an extension of the asymptotic formula for the number of representations of a
positive integer � as sum of n squares, and as such our main tool will be the Hardy-
Littlewood method of exponential sums. Because of the quadratic nature of the
problem, there are special tools available this case, most notably the transformation
properties of certain theta functions. Also, we will use the so-called Kloosterman
refinement, mainly to include the case n D 4. For a fixed � 2 N and � 2 Tn, set
ı D ��1 and write

e�2� O!�.�/ D
X
jmj2D�

e�2�ıjmj2 e2�im	� D
X
jmj2D�

w.m/; (8.12)

where the weight function w.x/ D e�2�ıjmj2 e2�im	� is bounded and absolute
summable. Using the fact that

R 1
0
e2�i.jmj2��/˛ d˛ D 1 if jmj2 D � and is equal to

0 otherwise, one may write

O!�.�/ D e2�
Z 1

0

S.˛; �/ e�2�i˛� d˛;

where

S.˛; �/ D
X
m2Zn

e2�i jmj2˛ w.m/ D
X
m2Zn

e2�i ..˛Ciı/jmj2Cm	�/ (8.13)

is a theta function. It is well-known, at least when � D 0, that it is concentrated near
rational points a=q with small denominator. To exploit this, one dissects the interval
Œ0; 1� into small neighborhoods of the set of rational points RN D fa=qI .a; q/ D
1; q � N g for some specific choice of the parameter N . It is easy to see, using
Dirichlet’s principle, that one can choose intervals around the rational points a=q of
length jIa=q j � 1=Nq. This suggests that

O!�.�/ � c
X
q�N

X
.a;q/D1

e
��i� aq

Z 1
Nq

� 1
Nq

S

�
a

q
C �; �

�
e�2�i �� d�:
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The idea behind the Kloosterman refinement is to make a specific choice of this
partition (the so-called Farey dissection) and to estimate carefully the errors arising
from the fact that the length of the intervals corresponding to a fixed denominator
are not quite the same. We will use the following general result

Theorem A (Heath-Brown [9]). Let P W Zn ! Z be a polynomial with integral
coefficients, let �, N be natural numbers and let w 2 L1.Zn/. Then one has

X
P.m/D�

w.m/ D
X
q�N

Z 1
qN

� 1
qN

e�2�i��S0.q; �/d� C E1.�/ (8.14)

where

jE1.�/j � C N�2
X
q�N

X
juj�q=2

.1C juj/�1 max
�� 1

qN

jSu.q; �/j (8.15)

Here C > 0 is an absolute constant and

Su.q; �/ D
X

.a;q/D1
e
2�i au�a�

q S.a=q C �/ ; S.˛/ D
X
m2Zn

e2�i˛P.m/w.m/; (8.16)

where aa 	 1 .mod q/.

This is proved in [9] for the case � D 0 and for a non-negative weight function
w, however the proof extends without any changes to all � 2 N and w 2 L1.Zn/.
Let us postpone the proof of the above result to the end of this section and see how
it translates to our situation.

By (8.13) we have that

S.a=q C �/ D
X
m2Zn

e
2�i aq jmj2 e2�i m	� h�;ı.m/;

with h�;ı.x/ D e2�i.�Ciı/jxj2 . Writingm WD qm1Cs, wherem1 2 Zn, s 2 .Z=qZ/n,
and applying Poisson summation, we have

S.a=q C �/ D
X

s2.Z=qZ/n

e
2�i aq jsj2

X
m12Zn

e2�i .qm1Cs/	� h�;ı.qm1 C s/

D
X

s2.Z=qZ/n

e
2�i aq jsj2

X
l2Zn

Z
Rn
e2�i .qxCs/	� h�;ı.qx C s/ e�2�i x	l dx

D
X
l2Zn

q�n
X

s2.Z=qZ/n

e
2�i

ajsj2Cl�s
q

Z
Rn
h�;ı.y/ e

2�iy	.�� l
q / dy

D
X
l2Zn

G.a; q; l/ Qh�;ı.l=q � �/: (8.17)
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Here G.a; q; l/ is a normalized Gaussian sum:

G.a; q; l/ D q�n
X

s2.Z=qZ/n

e
2�i ajsj2�s�l

q : (8.18)

The function h�;ı.x/ is of the form e��zjxj2 with z D 2.ı� i�/, hence, after a change
of variables x WD z1=2x, its Fourier transform can be evaluated explicitly,

Qh�;ı.l=q � �/ D .2.ı � i�//�
n
2 e
� �jq��lj2

2q2.ı�i� / : (8.19)

Let us first estimate the error terms Su.q; �/ in formula (8.15). Note that on the

range when j� j � 1= qN � 1= q�1=2, one has Re
�

1
q2.ı�i�/

	
D ı

q2.ı2C�2/ � c , for

some absolute constant c > 0. Thus

j Qh�;ı.� � l=q/j � C q
n
2 �

n
4 e�cjq��lj2 : (8.20)

Also, by (8.17)

Su.q; �/ D
X
l2Zn

K.q; l; �I u/ Qh�;ı.� � l=q/;

where

K.q; l; �I u/ D
X

.a;q/D1
e
2�i au�a�

q G.a; l; q/; (8.21)

These exponential sums have been extensively studied in number theory, various
estimates are known in the literature, going back to the original work of Klooster-
man. We will use the following estimate, which we will take for granted for now,
however for the sake of completeness will include a proof later.

Theorem B. Let K.q; l; �I u/ be the exponential sum defined in (8.21). Then one
has for every " > 0,

jK.q; l; �I u/j � Cn;" q
n�1
2 C" .�; q1/

1
2 2

r
2 ; (8.22)

where q D q12
r with q1 odd, and .�; q1/ denotes the greatest common divisor of �

and q1.

We remark that using only standard estimates for Gaussian sums would yield to a
weaker bound of O.q�n=2C1/, thus the extra cancelation in the sum over .a; q/ D 1

is crucial. By this and estimate (8.20) we have

max
j� j� 1

qN

Su.q; �/ � C" q
1
2C".�; q1/

1
2 2

r
2 : (8.23)
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The factors .�; q1/
1
2 2

r
2 are at most �" on average for q � �

1
2 , hence they do not play

any role in our estimates. Indeed, it is easy to see that

Lemma 2. Let ˇ 2 R. Then for every " > 0, one has

X
q�� 12

qˇ .�; q1/
1
2 2

r
2 � Cˇ;" �

ˇC1
2 C"

Proof. Let 1 � � � �1=2. First, we show that

X
q��

.�; q1/
1
2 2

r
2 � C" �

" �

To see this, write d D .�; q1/ and q1 D dt . Then d divides � and d2rt � �, hence
the left side is majorized by

X
d j�

X
r2N

d
1
2 2

r
2
�

d2r
� C" �

" �

By partial summation, we have

C" �
" .�

ˇ
2 C

X
��� 12

��ˇ�1 / � C" �
ˇC1
2 C":

ut
Going back to the error termE1.�/ defined in (8.15), we have by estimate (8.23)

and Lemma 2

jE1.�/j � Cn;" �
n�1
4 C"; (8.24)

for all " > 0.
The main term in (8.14) takes the form

M.�/ W D
X
q�N

Z 1
qN

� 1
qN

e�2�i��S0.q; �/d�

D
X
q�N

X
l2Zn

K.q; l; �I 0/
Z 1

qN

� 1
qN

e�2�i�� Qh�;ı.� � l=q/ (8.25)

We will do now a number of transformations, to obtain the asymptotic formula (8.9),
described in the introduction. First we insert the functions .q�� l/, the restrict the
summation in l to at most one non-zero term. Then we extend the integral to the
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whole real line and identify it with the Fourier transform of the normalized measure
on the unit sphere.

First, let  .�/ be a smooth cut-off function which is constant 1 on Œ� 1
8
; 1
8
�n and

is equal to 0 for � … Œ� 1
4
; 1
4
�n. Then by (8.19), one estimates

X
l2Zn

.1 �  .q� � l// j Qh�;ı.� � l=q/j � Cn .�
2 C ı2/�

n
4 e

cı

q2.�2Cı2/ � �
n
4 q

n
2 ;

where the last inequality follows from the fact that e�u � u� n4 taking the special
value u D ı

q2.�2Cı2/ . Thus, by (8.15), the total error accumulated by inserting the
cut-off functions in (8.25) is bounded by

jE2.�/j � C" �
n
4� 12

X
q�N

q�
1
2C�.�; q/

1
2 � C" �

n�1
4 C�; (8.26)

and the main term takes the form

M2.�/ WD
X
q�N

X
l2Zn

K.q; l; �I 0/ .q� � l/
Z 1

qN

� 1
qN

e�2�i�� Qh�;ı.� � l=q/: (8.27)

At this point, the integration can be extended to the whole real line, exploiting the
fact that now there is at most one nonzero term in the l-sum. For j� j � 1

qN
� ı one

has jQs�;ı.� � l=q/j � �� n
2 , thus the total error obtained in (8.27) by extending the

integration is

jE3.�/j � C"
X
q�N

q�
1
2C�.�; q/

1
2

Z
j� j� 1

qN

��
n
2 d� � C" �

n�1
4 C�: (8.28)

Finally, we identify the integrals, and show that

Lemma 3.

I�.�/ WD e2�
Z

R
e�2�i�� Qh�;ı.�/ d� D �

n
2�1 Q�.� 1

2 �/; (8.29)

where � is one-half of the surface area measure on the unit sphere in Rn.

Proof. By using (8.19) and making a change of variables: t D �� to take out the
dependence on �, one has that

I�.�/ D e2��
n
2�1

Z
R
e�2�it .2.1� i t//� n

2 e
� ��j�j2

2.1�i t / dt:
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Let � WD �1=2�, then out task is to show that

J.�/ WD e2�
Z

R
e�2�it .2.1� i t//�

n
2 e
� �j�j2

2.1�i t / dt D Q�.�/:

We now insert an extra convergence factor e��
 t2 into the integral defining J.�/.
Denoting the resulting integral by J 
 we have J 
 ! J as � ! 0; moreover for
any test function 	 in the Schwartz space

Z
Rn

O	.�/J.�/ d� D lim

!0

Z
Rd

O	.�/J 
 .�/ d�:

Also,

Z
Rd

O	.�/J 
 .�/ d� D
Z

Rd
	.x/J 
.x/ dx: (8.30)

Note, that by (8.19) we have that Qht;1.�/ D .2.1� i t//�n=2e� �j�j2

2.1�i t / , thus

J 
.x/ D e2�
Z

R
e�2�it e�2�jxj2.1�i t /e��
t2 dt D 
�

1
2 e��.1�jxj2/=
 e��jxj2 :

Inserting this into (8.30), and letting 
 ! 0, we obtain

Z
Rn

O	.�/J.�/ d� D
Z

Rn
	.x/ d�.x/;

and thus J.�/ D Q�.�/, as we wanted to prove. Note that

Q�.0/ D J.0/ D
Z

R
e�2�it

dt

.2.1� i t//n=2 D �n=2

� .n=2/
:

This identifies � as one-half of the surface area measure of the unit sphere. ut
Substituting the above formula (8.29) into the expression (8.27), the main term

finally takes the form

M3.�/ WD �n=2�1
X
q�N

X
l2Zn

K.q; l; �I 0/ .q� � l/ Q�.�1=2.� � l=q/: (8.31)

Note, that all error terms (8.15), (8.24), (8.26), and (8.28), we obtained in the
process of transforming the main term into the above expression is of magnitude
O".�

n�1
4 C"/. Summarizing we have proved
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Theorem 4. Let n � 4. Then one has

O!�.�/ D �
n
2�1

X
q�� 12

mq;�.�/C E�.�/;

where

jE�.�/j � C" �
n�1
4 C" (8.32)

holds uniformly in � for every " > 0. Moreover

mq;�.�/ D
X
l2Zn

K.q; l; �/  .q� � l/ Q�.� 1
2 .� � l=q// (8.33)

where

K.q; l; �/ D q�n
X

.a;q/D1

X
s2.Z=qZ/n

e
2�i

a.jsj2��/Cs�l
q :

Here Q� denotes the Fourier transform of the surface-area measure � on Sn�1, and 
is a smooth cut-off function supported on Œ� 1

4
; 1
4
�n which is constant 1 on Œ� 1

8
; 1
8
�n.

8.2.2 Some Properties of Diophantine Points

We will derive here a few elementary properties of diophantine points, needed later
in our estimates on the discrepancy. Crucial among them is the fact if � 2 Sn�1 is a
diophantine point, then kt�k � T �" on average for 1 � t � T , where k�k denotes
the distance of a point � 2 Rn to the nearest lattice point. To start, let us call a point
˛ 2 Rn of type " if it satisfies condition (8.3) with a given " > 0.

Lemma 5. For every � > 0 the set of points ˛ 2 Œ0; 1�n�1 of type " has measure 1.

Proof. If a point ˛ 2 Rn�1 is not of type � then there are infinitely many positive
integers q such that: kq�k � q� 1

n�1�� . This means that there exists an m 2 Zn

such that: j� � m=qj � q� n
n�1�� . However the sum of the volumes of all such

neighborhoods around the pointsm=q 2 Œ0; 1�n�1 is bounded by

1X
nD1

qn�1q�n�� � C";

thus the set of points which belong to infinitely many of such neighborhoods has
measure 0. ut
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This shows that the set of points ˛ 2 Rn�1 which are not diophantine has measure
0. Indeed ˛ is diophantine if it is of type "k D .1=2/k for all k 2 N. Next we show
that kq˛k � 1 on average.

Lemma 6. Let ˛ 2 Œ0; 1�n�1 be diophantine,Q > 1 and 1 � k < n � 1. Then for
every " > 0, we have

X
q�Q

kq˛k�k � C" Q
1C" (8.34)

Proof. Let " > 0. Consider the set of points fq˛g 2 Œ�1=2; 1=2�n�1, for 1 � q �
Q. If q1 ¤ q2 then

jfq1˛g � fq2˛gj � k.q1 � q2/˛k � C" Q
� 1
n�1� "

n ;

thus the number of points in a dyadic annulus 2�j � kq˛k < 2�jC1 is bounded by
2�.n�1/j Q1C" and the sum in (8.34) is convergent for 1 � k < n� 1. ut
Lemma 7. Let � 2 Sn�1 be diophantine, and assume that maxj j�j j D j�nj. Let
t � 1 , ˛ D .˛1; : : : ˛n�1/ , ˛j D �j =�n and q D Œt�n�. Then one has

kt�k � 1

n
kq˛k

Proof. Note that

t�j D t�n˛j D Œt�n�˛j ˙ kt�nk˛j
hence

jq˛j �mj j � jt�j �mj j C kt�nk:

Thus taking mj D Œt�j �, we have

kq˛j k � kt�j k C kt�nk:

Summing for 1 � j � n � 1 proves the lemma. ut
Lemma 8. Suppose � 2 Sn�1 is diophantine, and let t � 1 and T � 1. Then for
every " > 0, one has

kt�k � C" t
� 1
n�1�" (8.35)

Moreover, for 1 � k < n � 1

Z T

1

kt�k�k � C" T
1C" (8.36)
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Proof. By permuting the coordinates of �, one can assume that maxj j�j j D j�nj.
Inequality (8.35) follows immediately from Lemma 7 and the definition of a
diophantine point. Similarly (8.35) is reduced to (8.34) by observing that for a fixed
q, the set of t’s for which q D Œt�n� is an interval of length at most 1=�n � p

n. ut

8.2.3 Upper Bounds on Discrepancy

We have developed all the necessary tools to prove Theorem 8.11, our main result
in this section. The argument will follow the broad outline given at the end of the
introduction, in addition we will use the standard stationary phase estimate on the
Fourier transform of the surface area measure on the unit sphere Sn�1, see for
example [17]

j O�.�/j � .1C j�j/� n�1
2 (8.37)

Now, for given a > 0 let a denote the indicator function of the interval Œa; 1C a�.
The discrepancy may be written as

Dn.�; �/ D
X
jmj2D�

a.�
� 12 m � �/ �N�

Z
Sn�1

a.x � �/ d�.x/: (8.38)

The function a can be replaced with a smooth function 	a;ı by making a small
error in the discrepancy. Indeed, let 0 � 	.t/ � 1 be smooth function supported
in Œ�1; 1�n, such that

R
	 D 1. For a given ı > 0 let 	ȧ;ı D a˙ı � 	ı , where

	ı.t/ D ı�1	.t ı�1/ and define the smoothed discrepancy as

Dn.	ȧ;ı; �; �/ D
X
jmj2D�

	ȧ;ı.�
� 1
2 m � �/ �N�

Z
Sn�1

	ȧ;ı.x � �/ d�.x/: (8.39)

Lemma 9. One has

jDn.�; �/j � max .jDn.	
C
a;ı; �; �/j; jDn.	

�
a;ı; �; �/j/C O.ıN�/: (8.40)

Proof. Note that 	�a;ı.t/ � a.t/ � 	Ca;ı.t/ thus

X
jmj2D�

	�a;ı.��
1
2 m � �/ �

X
jmj2D�

a.�
� 12 m � �/ �

X
jmj2D�

	Ca;ı.�
� 12 m � �/

and

N�

Z
Sn�1

	Ca;ı.x ��/ d�.x/ � N�

Z
Sn�1

a.x ��/ d�.x/ � N�

Z
Sn�1

	�a;ı.x ��/ d�.x/
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Subtracting the above inequalities, (8.40) follows from the fact that

Z
Sn�1

.	Ca;ı � 	�a;ı/ .x � �/ d�.x/ � ı

ut
In what follows, we take ı D ��n and write 	a;ı for 	ȧ;ı , as our estimates work

the same way for both choices of the sign. By taking the inverse Fourier transform
of 	a;ı.t/ one has

X
jmj2D�

	a;ı .�
�1=2 m � �/ D

Z
R
�
1
2 Q	a;ı.t� 1

2 / O!�.t�/ dt (8.41)

also
Z
Sn�1

	a;ı .x � �/ d�.x/ D
Z

R

Q	a;ı.t/ Q�.t�/ dt (8.42)

We substitute the asymptotic formula (8.9) into (8.41) and study the contribution of
each term separately. Accordingly, let

Iq;� WD
Z

R
�
1
2 Q	a;ı.t� 1

2 /mq:�.t�/ dt; (8.43)

and

E� D
Z

R
�
1
2 Q	a;ı.t� 1

2 / E�.t�/ dt: (8.44)

To estimate the error term in (8.44) note that

Z
R
�
1
2 j Q	a;ı.t� 1

2 /j dt � C

Z
R
.1C jt j/�1.1C ıjt j/�1 dt � C log �:

Thus by (8.32) one has for every " > 0

jE�j � C" �
n�1
4 C": (8.45)

Next, decompose the integral in (8.43) as

Iq;� D
Z
jt j<1= 8q

C
Z
jt j�1= 8q

D I 1q;� C I 2q;�: (8.46)

Here an important observation is that if jt j < 1= 8q then  .qt� � l/ D 0 unless
l D 0, moreover  .tq�/ D 1 since jtq�j j < 1= 8q for each j . Hence
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mq;�.t�/ D K.q; 0; �/ Q�.� 1
2 t�/:

Thus by (8.43) and a change of variables: t WD t�1=2

I 1q;� D K.q; l; �/

Z
jt j<� 12 = 8q

Q	a;ı.t/ Q�.t�/ dt: (8.47)

Lemma 10. One has for every " > 0

j 
n�n
2�1

X
q�� 12

I 1q;� � N�

Z
Sn�1

	a;ı .x � �/ d�.x/ j � C" �
n�1
4 C" (8.48)

Proof. Using (8.37), one has

Z
jt j�� 12 = 8q

j Q	a;ı.t/ Q�.t�/ j dt � C" �
� n�1

4 C" q n�1
2 (8.49)

Thus by (8.42) and (8.47)

j I 1q;� �K.q; 0; �/

Z
Sn�1

	a;ı .x � �/ d�.x/ j � C" �
� n�1

4 C" q
n�1
2 jK.q; 0; �/j

Substituting � D 0 in (8.33) one has

jN� � 
n�n
2�1

X
q�� 12

K.q; 0; �/j � C" �
n�1
4 C" (8.50)

Using (8.22) and (8.50), the left side of (8.48) is estimated by

C"

0
B@�n�1

4 C" C �
n�3
4 C"

X
q�� 12

q" .�; q1/
1
2 2

r
2

1
CA � C" �

n�1
4 C" (8.51)

ut
To estimate the remaining error terms one needs to exploit the diophantine

properties of the direction �.

Lemma 11. Let � 2 Sn�1 diophantine. Then for every " > 0, we have

X
q�� 12

jI 2q;�j � C�;" �
� n�3

4 C" (8.52)
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Proof. First, note that  .q�� l/ D 0 unless l D Œq��, that is the closest lattice point
to the point q� 2 Rn. Using the notation fq�g D q� � Œq�� one may write

mq;�.t�/ D K.q; Œqt��; �/  .fqt�g/ Q�
 
�
1
2

q
fqt�g

!

By making a change of variables t WD qt , it follows from estimates (8.22) and (8.37)
that

jI 2q;�j � C" .�
1
2 =q/�

n�3
2 q�

n�1
2 C" .�; q1/

1
2 2

r
2 J�; (8.53)

where

J� D
Z
jt j�1=8

j Q	a;ı.t � 1
2 =q/j kt�k� n�1

2 dt;

and kt�k denotes the distance of the point t� to the nearest lattice point. For q � �1=2

one has

j O	a;ı.t � 1
2 =q/j � C .�

1
2 =q/�1 jt j�1 .1C ıjt j/�1 (8.54)

To estimate the integral J� we use (8.54), and integrate over dyadic intervals 2j �
jt j < 2jC1 (j � �3). For a fixed j we have

Z 2jC1

2j
t�1.1C ıt/�1 kt�k� n�1

2 dt � C" 2
j" .1C ı2j /�1 (8.55)

Summing over j this gives: J� � C" .�
1
2 =q/�1�". Substituting into (8.53) one

estimates

jI 2q;�j � C" �
� n�1

4 C" q" .�; q1/
1
2 2

r
2 (8.56)

Summing over q � �1=2, and using Lemma 2, estimate (8.52) follows. ut
Theorem 1 follows immediately from Lemmas 9–11, and estimate (8.45).

8.2.4 The Kloosterman Refinement

For the sake of completeness we include below the proofs of Theorems A–B. The
present form of Theorem A was given by Heath-Brown [9] in his study of non-
singular cubic forms, the idea going back to Kloosterman. Theorem B follows from
the multiplicative properties of Kloosterman sums and Weil’s estimates [14].
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To start let w be an absolutely summable weight function, P be an integral
polynomial,N a fixed positive integer, and write

I WD
X

P.m/D�
w.m/ D

Z 1�1=NC1

�1=NC1
S.˛/ d˛; (8.57)

with S.˛/ D P
m2Zn e

2�i P 0.m/w.m/ , P 0.m/ D P.m/��. Breaking up the interval
Œ�1=N C 1; 1 � 1=N C 1� according to the Farey dissection of order N (see [8],
Ch. 3.8), we have

I D
X
q�N

X
.a;q/D1

Z
S.a=q C ˇ/ dˇ:

Here for fixed a the inner integral is over the interval

�
a C a0

q C q0
� a

q
;
aC a00

q C q00
� a

q

�
;

where a0=q0; a=q; a00=q00 are consecutive Farey fractions. Since qa0�q0a D �1 and
qa00 � q00a D 1 the range of ˇ is given by

�.q C q0/�1 � qˇ � .q C q00/�1:

Since for consecutive Farey fractions, we have q C q0; q C q00 � N , one may write
I as

X
q�N

Z 1=qN

�1=qN

X
a

S.a=q C ˇ/ dˇ; (8.58)

where the inner sum is restricted to 1 � a � q, .a; q/ D 1, and

q0 � 1

qjˇj � q .ˇ < 0/; q00 � 1

qˇ
� q .ˇ > 0/: (8.59)

The numbers q0; q00 are completely specified by a as q0 	 �q00 	 a�1 .mod q/
and N � q < q0; q00 � N , thus (8.58) eventually restricts the summation in a. The
point is that if jˇj � q�1.q C N/�1, then (8.58) places no restriction on a, and
otherwise a D a�1 .mod q/must lie in one of two intervals J.q; ˇ/ � .0; q/. Then
one estimates

X
a2J.q;ˇ/

S.a=q C ˇ/ D
X

.s;q/D1
S.s=q C ˇ/

X
t2J.q;ˇ/

1

q

X
juj�q=2

e
2�i

u.s�t /
q
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D 1

q

X
juj�q=2

Su.q; ˇ/
X

t2J.q;ˇ/
e
�2�i ut

q

�
X
juj�q=2

.1C juj/�1jSu.q; ˇ/j; (8.60)

where

Su.q; ˇ/ D
X

.s;q/D1
e
2�i us

q S.s=q C ˇ/;

using the estimate

1

q

X
t2J.q;ˇ/

e
�2�i ut

q � .1C juj/�1:

Since

.qN /�1 � q�1.q CN/�1 D N�1.q CN/�1 � N�2

and

q�1.q CN/�1 � .2qN /�1;

the total contribution to (8.58) arising from the ranges jˇj � q�1.q CN/�1 is

� N�2
X
q�N

X
juj�q=2

.1C juj/�1 max
1
2�qN jˇj�1

jSu.q; ˇ/j: (8.61)

The remaining range for ˇ gives

X
q�N

Z 1=q.qCN/

�1=q.qCN/
S0.q; ˇ/ dˇ:

If one integrates for jˇj � 1=qN instead, the resulting error is again of the form
of (8.61). Thus summarizing the above estimates, we have

I D
X
q�N

Z 1=q.qCN/

�1=q.qCN/

S0.q; ˇ/ dˇCO.N�2
X
q�N

X
juj�q=2

.1Cjuj/�1 max
1
2

�qN jˇj�1

jSu.q; ˇ/j/:

and Theorem A follows.
From the standard estimate for the Gaussian sums G.a; l; q/ � q�n=2, it is

immediate that
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jK.q; l; �I u/j � q�n=2C1: (8.62)

Also,G.a; l; q/ is a product of one dimensional sums, thus for q odd, by completing
the square in the exponent, it may be written in the form (see also [14], Ch. 4)

G.a; l; q/ D q�n �nq
�q
a

	n
e
�2�i 4a jlj2

q G.1; 0; q/n;

where
�
q

a

�
denotes the Jacobi symbol, �q is a 4th root of unity, and a denotes the

multiplicative inverse of a mod q. Substituting this into (8.21) we have

K.q; l; �I u/ D �nq q
�nG.1; 0; q/n

X
.a;q/D1

�q
a

	n
e
2�i

a�C4a.u�jlj2/
q : (8.63)

The sum in (8.63) is a Kloosterman sum or Salie sum depending on whether n is
even or odd. Weil’s estimates [14, Ch. 4] imply

jK.q; l; �I u/j � C" q
� n�1

2 C" .�; q/
1
2 : (8.64)

Estimate (8.22) follows by writing q D q1q2, with q1 odd and q2 D 2r ,
applying (8.64) to q1, (8.62) to q2 D 2r and using the multiplicative property

K.q; l; �I u/ D K.q1; l q2; �I u q2
2/K.q2; l q1; �I u q1

2/; (8.65)

where q1q1 	 1 (mod q2), and q2q2 	 1 (mod q1). Property (8.65) is well-known,
and is an easy computation using the Chinese Remainder Theorem. This finishes
the proof of Theorem B.

8.3 The Discrepancy of Lattice Points on Hypersurfaces

We will study now the uniformity of distribution of lattice points on a homogeneous,
non-singular, hypersurface. We will show that if the dimension of the underlying
Euclidean space is large enough with respect to the degree of the hypersurface, then
there are non-trivial upper bounds on the discrepancy with respect to caps.

The analysis will be similar to what we have carried out for spheres, however in
this generality we will use the Birch-Davenport method of exponential sums, which
will allow us to develop uniform asymptotic formulae for the Fourier transform of
the set of lattice points on the hypersurface.

To formulate our main result in this section, let P.m/ be a positive, homogeneous
polynomial of degree d with integer coefficients, and for � 2 N, define the
hypersurface

S� D fx 2 RnI P.x/ D �g
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We will write S for S1, the unit level surface. Recall that the polynomial is called
non-singular if for all z 2 Cn=f0g

rP.z/ D .@1.z/; : : : ; @n.z// ¤ 0 (8.66)

Our main result in this section is the following upper bound of the set of
solutions Z0P;� D f��1=dmI P.m/ D �g with respect to the family of caps
Ca;� corresponding to a given diophantine direction �, defined in (8.2). Similar but
somewhat weaker results have been obtained in [13].

Theorem 12. Let n > d.d�1/2dC1, and letP.m/ be a positive, homogeneous non-
singular polynomial of degree d with integer coefficients. If � 2 Sn�1 is diophantine,
then we have

jDP .�; �/j � C�;" �
. nd �1/.1�
d /; (8.67)

with 
d D 1

.d�1/2dC1 .

To see why this upper bound is non-trivial, note that as P is positive, we have
that P.x/ � jxjd , thus on average for L � � < 2L, the surface S� contains
� �n=d �1 lattice points. Indeed there are � Ln=d lattice points m in the region
L � P.m/ < 2L, and they lie on L hypersurfaces. As we have mentioned, because
of congruence obstructions, one cannot have that jZn \ S�j � �n=d �1 for all large
�, but it can be shown that this holds all � 2 �, for an infinite arithmetic progression
� � N. Such a set � will be called a set of regular values. Thus one has

Corollary 13. Let n > d.d � 1/2dC1, P.m/ be a positive, homogeneous non-
singular polynomial of degree d with integer coefficients, and let � be a set of
regular values for P . If � 2 Sn�1 is diophantine, then we have

jDP .�; �/j � C�;" N
1�
d
� ; (8.68)

for each � 2 �, with 
d D 1

.d�1/2dC1 , whereN� denotes the number of lattice points
on the surface S�.

8.3.1 The Fourier Transform of the Set of Lattice Points
on Hypersurfaces

We will now generalize the asymptotic formula (8.9) describing the structure of
the Fourier transform of lattice points on spheres, using the Birch-Davenport [4,
5, 16] version of the Hardy-Littlewood method of exponential sums. This method
was developed to count solutions of (systems of) diophantine equations, when the
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number of variables is large enough with respect to the degrees of the polynomials,
and it is one of the most far reaching application of analytic tools in the area of
diophantine equations. In spite of this there are very few accessible description of
this method, so perhaps it is of interest to discuss it in detail in the case of a single
non-singular homogeneous polynomial.

8.3.1.1 Minor Arcs Estimates

To start, let 	 be a smooth cut-off function which is constant 1 on the unit level
surface S D fP D 1g, and let N D �1=d . Then

O!�.�/ D
X

P.m/D�
e2�i x	�	.m/ D

Z 1

0

S.˛; �/e�2�i˛� d˛; (8.69)

where

S.˛; �/ D
X
m2Zn

e2�i.P.m/Cm	�/	.m=N/ (8.70)

As is usual in the circle-method, we will now define a family of small intervals,
which we will call major arcs on which the exponential sum S.˛; �/ is concentrated.
Let 0 < � � 1 be a parameter, and for a given pair of natural numbers a; q such
that .a; q/ D 1, define the corresponding major arc centered at a=q by

La;q.�/ D f˛ W 2j˛ � a=qj < q�1N�dC.d�1/� g;

moreover let

L.�/ D
[

q�N.d�1/� ; .a;q/D1
La;q.�/:

If ˛ … L.�/, the we say ˛ is in a minor arc. The following properties of the major
arcs are immediate from their definition.

Proposition 14. (i) If �1 < �2 then �1 � L.�2/.
(ii) If � < d

2.d�1/ then the intervals La;q.�/ are disjoint for different values of a
and q.

(iii) jL.�/j � N�dC.d�1/� .

We will now derive standard Weyl-type estimates, following [4], for the expo-
nential sum S.˛; �/, when ˛ is in a minor arc. It will be useful to introduce the
notations

DhP.m/ D P.m/ � P.mC h/; �h	.m/ D 	.m/	.mC h/;
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and inductively

Dh1;:::;hkP D Dh1.Dh2;:::;hkP /; �h1;:::;hk	 D �h1.�h2;:::;hk	/:

Note, that the above expressions are independent of the order of the vectors
h1; : : : ; hk . We will also use repeatedly the expression

j
X
m

	.m/j2 D
X
m;h

	.m/	.mC h/ D
X
m;h

�h	.m/:

Writing 	N .m/ D 	.m=N/, and taking averages, we have

jN�nS.˛; �/j2 D N�2n
X
h1;m

e2�i ˛Dh1P.m/�h	��h1	N .m/

� N�n
X
h1

jN�n
X
m

e2�i ˛Dh1P.m/�h1	N .m/j

Note that the summation is restricted to jh1j � N and jmj � N . Applying the
Cauchy-Schwarz inequality d � 2 times, one has

jN�nS.˛; �/j2d�1 � N�n.d�1/
X

h1;:::;hd�1

N�nj
X
m

e
2�i˛D

h1;:::;hd�1P.m/�h1;:::;hd�1 	N .m/j

(8.71)

Note that the implicit constant in (8.71) depends only on the dimension n and the
degree d , and the summation again is restricted to jhi j � N and jmj � N . The
point is that after taking d � 1 “derivatives”, the polynomialDh1;:::;hd�1P becomes
linear, i.e. it is of the form

Dh1;:::;hd�1P.m/ D
nX

jD1
mj ˚j .h

1; : : : ; hd�1/; (8.72)

where the coefficients ˚j W Zn.d�1/ ! Z are multi-linear forms. In fact writing the
homogeneous polynomial P as

P.m/ D
X

1�j1;:::;jd
aj1;:::;jd mj1 : : : mjd ;

so that the coefficients aj1;:::;jd are independent of the order of the indices
j1; : : : ; jd�1, it is not hard to see that

˚j .h
1; : : : ; hd�1/ D dŠ

X
j1;:::;jd�1

aj1;:::;jd�1;j h
1
j1
: : : hd�1jd�1

: (8.73)
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For simplicity let us introduce the notations

h WD .h1; : : : ; hd�1/;

�N;h.x/ WD �h1;:::;hd�1	N .x/;

˚.h/ WD .˚1.h/; : : : ; ˚n.h//:

Now, by (8.72) the inner sum in (8.71) is the Fourier transform the function �N;h at
� D ˛˚.h/. To estimate it, note that

ˇ̌
ˇ̌̌� d

dx

�k
�N;h.x/

ˇ̌
ˇ̌̌ � N�k; for all k 2 N;

(where the implicit constant depends only on n; d and k), and that the function�N;h
is supported on jxj � N . Thus integrating by parts k-times we have that

j Q�N;h.�/j � Nn .1CN j�j/�k;

where Q�N;h denotes the Fourier transform of �N;h.x/ considered as function on Rn.
Thus by Poisson summation

j O�N;h.�/j �
X
l2Zn

j Q�N;h.� � l/j � Nn .1CN k�k/�k :

Here we used the notation k�k D maxj k�j k, for a point � D .�1; : : : ; �n/,
where k�j k denotes the distance of the j -th coordinate �j from the nearest integer.
Plugging this, into inequality (8.71) we have

jN�nS.˛; �/j2d�1 � N�n.d�1/
X

h2Zn.d�1/; jhj�N
.1CN k˛˚.h/k/�k; (8.74)

for all k 2 N. We will fix now k D nC 1, and use the multi-linearity of the forms
˚j .h

1; : : : ; hd�1/, to estimate the right side of inequality (8.74) by the number of
.h1; : : : ; hd�1/Zn.d�1/, jhj j � N such that k˛˚.h/k � N�1 . More generally, for
given parameters �; �, let us introduce the quantities

R.N � ;N��; ˛/ D jfh 2 Zn.d�1/I jhj � N; k˛˚j .h/k � N��; 1 � j � ngj:
(8.75)

Lemma 15.

.N�njS.˛; �/j/2d�1 � N�n.d�1/R.N;N�1; ˛/: (8.76)
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Proof. Consider the points f˛ ˚.h/g 2 Œ� 1
2
; 1
2
�n , where f g denotes the fractional

part, and divide the cube Œ� 1
2
; 1
2
�n into Nn cubes Bs of size 1

N
. Now if B0 D

Œ� 1
2N
; 1
2N
�n, then for each fixed h0 D .h1; : : : ; hd�2/, the cube B0 will contain

at least as many points of the form f˛ ˚.h0; hd�1/g , as any of the other cubes
Bs . Indeed, this follows immediately from the linearity of the forms ˚j in the
variable hd�1. Since the center of the cubes Bs are N�1s D . s1

N
; : : : ; sn

N
/ with

�N=2 � sj < N=2 , the right side of (8.74) is bounded by

N�n.d�1/
X

�N2 �s1;:::;sn<N
2

.1C jsj/�n�1 R.N;N�1; ˛/ � N�n.d�1/R.N;N�1; ˛/:

ut
Next, we will use that fact that the quantities R.N � ;N��; ˛/ can be compared

to each other for different values of the parameters �; �, in fact we will need the
following

Lemma 16. Let 0 < � < 1
d�1 . Then we have

N�n.d�1/R .N;N�1; ˛/ � N�n.d�1/� R .N �;N�dC.d�1/� ; ˛/: (8.77)

This is based on the following result

Lemma 17 (Davenport [5]). Let L1.u/; : : : ; Ln.u/ be n real linear forms in n
variables u1; : : : ; un, say

Lj .u/ D
X
k

�jk uk;

which are symmetric in the sense that �jk D �kj . Let 1 < K1 < K2 and for
0 < r < 1 let U.r/ denote the number of integer solutions of the system

jukj < rK1; kLj .u/k < rK�12 : (8.78)

Then for all 0 < r � 1 we have

U.1/ � r�nU.r/: (8.79)

This is Lemma 3.3 in [5] and is an application of the geometry of numbers.
Let us remark here only that the solutions of (8.78) can be viewed as lattice points
.u; v/ 2 Z2n which are inside the convex symmetric body rB , where

B D f.u; v/ 2 R2nI jukj < K1; jvj � Lj .u/j < K�12 ; 1 � k; j � ng:
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Proof (of Lemma 16). We will apply Lemma 17 in each variable h1; : : : ; hd�1 . Fix
h0 D .h2; : : : ; hd�1 , write u D h1 and Lj .u/ D ˛ ˚j .u; hh

0/ . From (8.73) it is
clear that the linear forms Lj .u/ are symmetric, thus we can apply Lemma 17, with
K1 D K2 D N , r1 D N��1, r2 D 1 for each h0. Summing over h0 gives

R.N;N�1˛/�Nn.1��/jfh 2 Zn.d�1/I jh1j � N�; jh0j�N; k˛ ˚.h/k < N��2g:

Next, set u D h2, fix the remaining variables and apply Lemma 8.69 with K1 D
N; K2 D N2�� and r D N��1. Continuing this procedure for all the variables
h1; : : : ; hd�1 eventually, we have

R.N;N�1˛/ � Nn.d�1/.1�ı/R .N � ;N�dC.d�1/� ; ˛/;

which is the same as (8.77). ut
Note that if there is a point h 2 Zn.d�1/ , jhj � N such that k˛˚j .h/k <

N�dC.d�1/� and ˚j .h/ ¤ 0, then setting q D j˚j .h/j , we have that

ˇ̌̌
ˇ˛ � a

q

ˇ̌̌
ˇ < 1

q
N�dC.d�1/�

for some a 2 Zn such that .a; q/ D 1. Thus ˛ 2 L.�/ by the definition of major
arcs, hence if ˛ is in a minor arc, we have

R .N � ;N�dC.d�1/� ; ˛/ D jfh 2 Zn.d�1/I jhj � N; ˚1.h/ D : : : D ˚n.h/ D 0g:
(8.80)

which is the number of lattice points h 2 Zn.d�1/ of size jhj � N� on the variety

S˚ WD fz 2 Cn.d�1/I ˚1.z/ D : : : D ˚n.z/ D 0g:

By (8.73) it is easy to see that ˚j .h; : : : ; h/ D .d � 1/Š.@=@j /P.h/, thus if we set

4 WD f.h; : : : ; h/I h 2 Cng � Cn.d�1/;

then

S˚ \ 4 D fh 2 CnI @1P.h/ D : : : D @nP.h/ D 0g D f0g;

by our assumption that the polynomial P is non-singular. Then by basic facts from
algebraic geometry it follows that

D WD dim S	 � n.d � 1/� n:
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The dimension of the algebraic set S˚ is defined algebraically, however it is
well-known, see [10], Ch. 7, that if it has dimension D then every bounded part
of it can be covered by O.��D/ balls of diameter � for any 0 < � < 1. Combining
this with the fact that S˚ is homogeneous, we have

jfh 2 Zn.d�1/ \ S˚ I jhj�N� gj�jfh0 2 .N��Z/n.d�1/ \ S˚ I jh0j � 1gj�ND � :

(8.81)

Then by (8.76), (8.77) and (8.81), we have the following estimate on the minor arcs.

Lemma 18. Let 0 < � < 1. If ˛ … L.�/, then we have uniformly in �

jS.˛; �/j � N n�n� 2�.d�1/

: (8.82)

We will also need a variant of the above estimate when the cut-off function 	 is
replaced by the indicator function  of a cube of side length � 1 centered near the
origin. The estimate below is proved in [4], however it easily follows from (8.82).
Indeed, choose a cut off function 	 such that 	 D , and let P1.m/ D P.m/ C
m � � . Then by Plancherel’s identity

X
m2Zn

e2�i˛P1.m/ 	.m=N/.m=N/ D (8.83)

D
Z

Tn

 X
m2Zn

e2�i˛P1.m/�m	�	.N=P /
!
.N n O.N�// d� � N

n� n

2d�1 .log N/n:

Here Tn is the flat torus, and the above estimate follows using (8.82) for the first term
of the integral uniformly in �, and the fact that kNn O.N�/kL1.Tn/ � .log N/n.

Corollary 19. Let 1 � a < q be natural numbers s.t. .a; q/ D 1. The for the
exponential sum

G.a; q; l/ D q�n
X

s2.Z=qZ/n

e
2�i

aP.m/�l�s
q ;

one has

jG.a; q; l/j � q
� n

.d�1/2d .log q/n: (8.84)

Proof. Set N D q, ˛ D a=q, � D l=q, � D 1=2.d � 1/ and notice that ˛ … L.�/.
Indeed, for q1 � q.d�1/� we have

ˇ̌̌
ˇaq � a1

q1

ˇ̌̌
ˇ � 1

q1q
� 1

q1
q�dC.d�1/� :
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Then (8.84) follows from (8.83), choosing  to be the indicator function of Œ0; 1/n,
and identifying .Z=qZ/n with Œ0; q/n \ Zn. ut
Corollary 20. If j˛j < P�d=2 then one has

jS.˛; �/j � Nn .Nd j˛j/�
n

.d�1/2d�1 :

Proof. Choose � such that j˛j D N�dC.d�1/� , that is .N d j˛j/ 1
d�1 D N� . The

major arcs La;q.�/ are disjoint since .d � 1/� < d=2, moreover ˛ is an endpoint of
the interval L0;1.�/ hence ˛ … La;q.�/. By (8.82) this gives

jS.˛; �/j � Nn�n2�.d�1/� D Nn .Nd j˛j/�
n

.d�1/2.d�1/ :

ut

8.3.1.2 Approximations on the Major Arcs

We will now derive an asymptotic expansion for the Fourier transform of the lattice
points on the hypersurface S� D fP D �g along the lines as in Sect. 8.2.
Throughout this section we will assume that n is sufficiently large, in particular
that n > nd WD d.d � 1/2dC1 , set 
d WD 1

.d�1/2dC1 , and for simplicity of notation

introduce the quantity D WD .d � 1/2d�1 .
Going back to the integral defined in (8.69), for a given � , write

O!�.�/ D
Z
˛2L.�/

S.˛; �/ d˛ C
Z
˛…L.�/

S.˛; �/ d˛ D A�.�/C E1
�.�/: (8.85)

It follows from our assumptions on n, that there is a � < 1
2.d�1/ , such that

n�2�.d�1/ > d C n
d

thus (8.71) implies that S.�; �/ � Nn�d�n
d for � … L.�/ . Thus we have the
estimate, uniformly in �

jE1
�.�/j � Nn�d�n
d : (8.86)

We will fix a � < 1
2.d�1/ so that (8.86) holds, and will do a number of

transformations on the main term A�.�/ which are similar the ones we have used
in the special case of the spheres. For a given ˛ 2 La;q.�/ for some .a; q/ D 1,
q � N.d�1/� , write ˛ D a=q C ˇ, with jˇj � N�dC.d�1/� and m D qm1 C s with
m1 2 Zn, s 2 .Z=qZ/n. Applying Poisson summation as in (8.17), we have
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S.a=q C ˇ; �/ D
X
m2Zn

e
2�i aq P.m/e2�im	�Hˇ;N .m/

D
X

s2.Z=qZ/n

G.a; q; l/ QHˇ;N .l=q � �/; (8.87)

where QHˇ;N is the Fourier transform of the function Hˇ;N .x/ D e2�iˇP.m/	.m=N/ ,
and G.a; q; l/ is the exponential sum defined in (8.84). Thus we have

A�.�/ D
X

q�N.d�1/�

X
.a;q/D1

X
l2Zn

G.a; l; q/ J�.� � l=q/; (8.88)

where

J�.� � l=q/ D
Z
jˇj�N�dC.d�1/�

QH.l=q � �; ˇ/e�2�i�ˇ dˇ

We shall approximate the functions A�.�/ with functions B�.�/ where the cut-off
function  .q� � l/ have been inserted in (8.88), that is let

B�.�/ D
X
a;q

X
l2Zn

G.a; l; q/  .q� � l/ J�.� � l=q/

Next, we extend the integration in ˇ and define

M�.�/ D
X
a;q

X
l2Zn

G.a; l; q/  .q� � l/ I�.� � l=q/

with

I�.� � l=q/ D
Z

R

QH.� � l=q; ˇ/e�2�i�ˇ dˇ: (8.89)

A crucial point is to identify the integrals I�.�/, in fact we will show that

I�.�/ D Q��.�/:

First we estimate the errors obtained.

Lemma 21. If 0 < � < 1
2.d�1/ then one has uniformly in �

jA�.�/ � B�.�/j � Nn�d�n
d :

Proof. If we set

�ˇ.�/ D
X
l

G.a; q; l/ .1 �  .q� � l// QHN;ˇ.� � l=q/;



8 Diophantine Equations 519

then it is enough to show that j�ˇ.�/j � Nn�d�n
d uniformly for jˇj �
N�dC.d�1/� and � 2 Tn. Let � D � � ł=q, and estimate QHN;ˇ.�/ by partial
integration:

QHN;ˇ.�/ � Nn

ˇ̌
ˇ̌Z

Rn
e2�i N

d ˇ P.x/	.x/ e2�iNx	� dx

ˇ̌
ˇ̌

� NnjN�j�K
ˇ̌
ˇ̌Z

Rn
.d=d�/K .e2�i N

d ˇ P.x/	.x/ e2�iNx	� dx

ˇ̌
ˇ̌

� NnjN�j�K .1CNd jˇj/K:

Now, on the support of 1 �  .q� � l/ we have that

N j�j D N j� � l=qj � N1�.d�1/� ;

hence for jˇj � N�dC.d�1/� and � < 1=2.d � 1/, choosing 0 < � < 1
2

� .d � 1/�
we have

j�ˇ.�/j � Nn.N=q/��K
X
l2Zn

.1C jq� � l j/��K � Nn��K.1�.d�1/�/:

The Lemma follows by choosingK sufficiently large. ut
In order to estimate the error obtained by extending the integration in ˇ, we will

need the following

Lemma 22. For given �; L > 0 let

I.L; �/ D
Z
e2�iL.P.x/Cx	�/	.x/ dx:

Then one has

I.L; �/ � .1C L/�
n
D ; (8.90)

with D D .d � 1/2d�1.

Proof. The estimate is obvious for L < 1, so let L � 1. If j�j � C with a large
enough constantC , then the gradient of the phase LjP 0.x/C�j � L on the support
of 	 and (8.90) follows by partial integration.

Suppose j�j � C and introduce the parameters �; N; ˛ such thatL D N.d�1/� ,
˛ D N�dL. Note that if � < 2d�1=n, then we have N > L

2n
D . Changing variables

y D Nx yields

I.L; �/ D N�n
Z
e2�i˛ .P.y/CNd�1y	�/	.y=N / dy:



520 Á. Magyar

We compare the integral to a corresponding exponential sum

N�nS.˛; �/ D N�n
X
m2Zn

e2�i˛ .P.m/CNd�1 m	�/ 	.m=N/:

If y D mC z where m 2 Zn and z 2 Œ0; 1�n, then it is easy to see that

je2�i˛ .P.y/CNd�1y	�/ � e2�i˛ .P.m/CNd�1m	�/j � N�1C.d�1/� ;

since j˛j D N�dC.d�1/� and j�j � C . Thus

jI.L; �/�N�nS.˛/j � N�1C2.d�1/� � N�
1
2 � L�

n
D :

Also, by Corollary 20

jN�n S.˛; �/j � jNd˛j� n
D D L�

n
D

and (8.90) follows. ut
We remark that a better uniform estimate can be obtained by using real variable

methods, exploiting the fact thatP.x/ � jxjd . However we have chosen to estimate
integral using exponential sums as this method works also for indefinite forms P .
Now, it is easy to prove.

Lemma 23. We have, uniformly in �

jB�.�/ �M�.�/j � Nn�d�n
d

Proof. One has by (8.90)

Z
jˇj�N�dC.d�1/�

j QH.� � l=q/j dˇ � Nn� n
D � Nn�d�n
d :

The factors  .q� � l/ restrict the sum in l to at most one non-zero term, moreover
by (8.84) we have jG.a; q; l/j � q� n

DC" � q�3 , say. Thus

jB�.�/ �M�.�/j � .
X

q�N.d�1/�

X
.a;q/D1

q�3/ N n�d�n
d � Nn�d�n
d :

ut
Summarizing, we have the asymptotic formula

O!�.�/ D M�.�/C E�.�/;
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where

M�.�/ D
X

q�N.d�1/�

X
.a;q/D1

X
l2Zn

G.a; q; l/  .q� � l/ I�.� � l=q/;

and

jE�.�/j � Nn�d�n
d ;

uniformly in � 2 Tn.

8.3.1.3 The Singular Integral

We will now identify the integrals I�.�/ with the Fourier transform of a certain
natural measure supported on the surface S� D fP D �g. Note that by assumption
that the polynomial P is non-singular and positive, S� is a smooth, compact hyper-
surface in Rn.

There is a unique n � 1-form d�P .x/ on Rnnf0g such that

dP ^ d�P D dx1 ^ : : : ^ dxn; (8.91)

called the Gelfand-Leray form (see [1, 2], Sec.7.1). To see this, suppose that say
@1P.x/ ¤ 0 on some open set U . By a change of coordinates: y1 D P.x/; yj D xj
for 2 � j � n, Eq. (8.91) takes the form

dy1 ^ d�P .y/ D @1H.y/ dy1 ^ : : : ^ dyn

where x1 D H.y/; xj D yj is the inverse map. Thus the form d�P .y/ D
@1H.y/ dy2 ^ : : : ^ dyn satisfies (8.91).

We define the measure �� as the restriction of the n � 1 form d�P to the level
surface S�. This measure is absolutely continuous with respect to the Euclidean
surface area measure dSP;�, more precisely one has

Proposition 24.

d��.x/ D dS�.x/

jP 0.x/j ; (8.92)

where dS� denotes the Euclidean surface area measure on the level surface
fP D �g.

Proof. Choose local coordinates y as before; in coordinates y level surface S� and
surface area measure dS� takes the form

S� D fx1 D H.�; y2; : : : ; yn/; xj D yj I 2 � j � ng;
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and

dS�.y/ D .1C
nX

jD2
@2jH.�; y//

1=2 dy2 ^ � � � ^ dyn:

Using the identity P.H.y/; y2; : : : ; yn/ D y1 , one has

@1P.x/@1H.y/ D 1 ; @1P.x/@jH.y/C @jP.x/ D 0;

This implies that

@1H.y/ D .1C
nX

jD2
@2jH.y//

1=2 � jP 0.x/j�1;

and (8.92) follows by taking y1 D �. ut
A crucial observation is that the measure d��, considered as a distribution on Rn,

has a simple oscillatory integral representation.

Lemma 25. Let P.x/ be a non-singular, homogeneous polynomial, and let � be a
real number. Then in the sense of distributions

��.x/ D
Z

R
e2�i .P.x/��/t dt: (8.93)

This means that for any smooth cut-off function .t/ and test function 	.x/ one has

lim
"!0

Z Z
e2�i.P.x/��/t.�t/	.x/ dxdt D

Z
	.x/d��.x/: (8.94)

Proof. Let U be an open set on which @1P ¤ 0, and by a partition of unity we can
assume that supp 	 � U . Changing variables y1 D P.x/; yj D xj the left side
of (8.94) becomes

lim
�!0

Z Z
e2�i.y1��/t.�t/ Q	.y/j@1H.y/j dydt D

Z
Q	.�; y0/j@1H.�; y0/jdy0;

where y0 D .y2; : : : yn/.
The last equality can be seen by integrating in t and in y1 first, and using the

Fourier inversion formula:

lim
�!0

Z Z
e2�i.y1��/t.�t/g.y1/ dy1dt D g.�/:

On the other hand S� \ U D fx1 D H.�; y2; : : : yn/; xj D yj g , and ��.y/ D
j@1H.�; y0/j dy0 in parameters y0 D .y2; : : : ; yn/. ut
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Now it is easy to identity the integrals I�.�/ defined in (8.89). Indeed by (8.94),
we have

I�.�/ D
Z

Rn

Z
R
e�2�i .P.x/��/ˇ e2�ix	�	.x=P / dˇ d�

D
Z

Rn
��.x/e

2�ix	�	.x=P / d� D Q��.�/

Also, by homogeneity, Q��.�/ D �n=d �1 Q�.�1=d�/ , where � is the Gelfand-Leray
measure restricted the unit level surface S D fP D 1g. Thus we have shown

Theorem 26. Let d � 2, n � d.d�1/2dC1, and let P be a positive, homogeneous,
non-singular polynomial of degree d . Then we have

O!�.�/ D M�.�/C E�.�/; (8.95)

where

M�.�/ D �
n
d �1

X
q�Nd�1�

X
.a;q/D1

X
l2Zn

G.a; q; l/  .q�� l/ Q�.� 1
d .�� l=q//; (8.96)

and

jE�.�/j � Nn�d�n
d (8.97)

uniformly in � 2 Tn, where 
d D 1

.d�1/2dC1 .

Let us remark that following the error estimates carefully, in fact it was shown
that

jE�.�/j � Nn�d� n
DC2 D Nn�d�n
 0

d

with some constant 
 0d > 
d for n > d.d � 1/2dC1. This will be utilized in our
estimates on the discrepancy, to swallow certain small factors of size N".

We will also need an estimate on the decay of the Fourier transform of the
measure � , later in our upper bounds on the discrepancy.

Lemma 27. One has

j Q�.�/j � .1C j�j/� n
DC1

Proof. Suppose j�j > 1, and choose a cut-off 	 such that 	� D � . Then by (8.94),
we have

Q�.�/ D
Z
e�2�i x	�	.x/ d�.x/

D lim
ı!0

Z Z
e�2�i x	�e2�i.P.x/�1/t	.x/.ıt/ dxdt
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We decompose the range of integration into two parts

Q�.�/ D
Z
jt j�cj�j

Z
Rn

C
Z
jt j�cj�j

Z
Rn

D I1 C I2

Note that if jt j � C j�j , with a sufficiently small constant c > 0, then one has for
the gradient of the phase

j.tP.x/ � x � �/0j D jP 0.x/ � �j � j�j=2;

thus integrating by partsK times yields

jI2j � CN .1C j�j/�KC1:

For jt j � C j�j we have by (8.90)

j
Z
e2�i.tP.x/�x	�/	.x/ dxj � jt j� n

D ;

hence

I1 �
Z
jt j�C j�j

jt j� n
D dt � j�j� n

DC1;

with D D .d � 1/2d�1. ut

8.3.1.4 The Singular Series

In order to get nontrivial upper bounds on the discrepancy for the set of lattice
points on hypersurfaces, one needs to ensure that there are many lattice points on
the surface. We will do this, by showing the existence of a regular set of values �
corresponding to a non-singular polynomial P . Most of what we discuss below is
standard, for example it is implicit in [4], so we only include the details for the sake
of completeness.

Recall that we have a fixed � slightly smaller than 1
2.d�1/ , so that the asymptotic

expansion (8.96) holds with an error term of size O.Nn�d�n
d /, where N D �1=d

and 
d D 1

.d�1/2dC1 . Taking � D 0 this means that

O!�.0/ D �
n
d �1

X
1�N.d�1/�

K.q; 0; �/CO.Nn�d�n
d /;
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where

K.q; 0; �/ D
X

.a;q/D1
G.a; q; l/ D q�n

X
.a;q/D1

X
s2.Z=qZ/n

e
2�i

a.P.s/��/�s�l
q :

To exploit the multiplicativity of the terms K.q; 0; �/ we need to extend the
summation for all q 2 N, and estimate the error obtained. This can be done by
using (8.84) which yields

jK.q; 0; �/j � .log q/nq�
n
DC1;

thus for a sufficiently small " > 0
X

q�N.d�1/�

jK.q; 0; �/j �" N
�.d�1/�. nD�2�"/ � N�n
d

if n > d.d � 1/2dC1, by our choice of the parameters, D and 
d . Indeed, we have
that .n=D � 2/ > 2n
d , thus choosing � sufficiently close to (but smaller than)
1=2.d � 1/, the above estimate holds. It is well-known, and easy to see from the
Chinese Remainder Theorem, that K.q1; 0; �/K.q2; 0; �/ D K.q1q2; 0; �/ for q1
and q2 being relative primes, which implies that

1X
qD1

K.q; 0; �/ D
Y

p prime

.

1X
rD0

K.pr ; 0; �// DW
Y

p prime

Kp.�/;

where the last equality is used to define the arithmetic factors Kp.�/ D
1P
rD0

K.pr ; 0; �/ . Note that K.1; 0; �/ D 1 and by estimate (8.84) we have that

Kp.�/ D 1 C O.p� n
DC2/ D 1 C O.p�2/ . Thus choosing R D RP sufficiently

large, we have that

1=2 �
Y

p>R p prime

jKp.�/j � 2 (8.98)

An important and well-known fact, which we will explain below, is that the
arithmetic factors Kp.�/ can be interpreted as the density of solutions of the
equation P.m/ D � among the p-adic integers (see [4]). Thus the main term in
the asymptotic formula (8.8) is the product of the densities of the solutions in the p-
adic integers and the density of solutions among the real numbers and is an instance
of the so-called local-global principle.

To see this, define

r.pK; �/ WD jfm 2 .Z=.pKZ/n W P.m/ 	 � .mod pN /gj;

One has
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Proposition 28.

KX
rD0

K.pr ; 0; �/ D p�n.K�1/r.pK; �/:

Proof. Note that

r.pK; �/ D
X

m .mod pK/

p�K
pKX
bD1

e
2�i.P.m/��/ b

pK ;

since the inner sum is equal to pK or 0 according to whether P.m/ 	 � .mod pK/

or not. Next one writes b D apK�r , where .a; p/ D 1, 1 � a < pr for r D
0; 1; : : : ; K , and collects the terms corresponding to a fixed r which turn out to be
K.pr ; 0; �/. ut

Let us remark that this implies Kp.�/ D limK!1 p�n.K�1/r.pK; �/ , which can
be viewed as the density of the solutions among the p-adic integers.

To count the number of solutions modulo pK , one uses the p-adic version of
Newton’s method.

Lemma 29. Let p be a prime, � and let k; l be natural numbers such that l > 2k.
Suppose there is anm0 2 Zn for which

P.m0/ 	 � .mod pl/;

moreover suppose, that pk is the highest power of p which divides all the partial
derivatives @jP.m0/.

Then for K � l , one has p�K.n�1/rP .pK; �/ � p�l.n�1/.

Proof. For K D l this is obvious. Suppose it is true for K , and consider all the
solutionsm1 .mod p

NC1/ of the formm1 D mC pK�ks where s .mod p/. Then

P.mC pK�ks/� � D P.m/ � �C pK�kP 0.m/ � s D 0 .mod pKC1/;

which yields a C b � s D 0 .mod p/ where apK D P.m/ � � and bpk D P 0.m/.
Then bj ¤ 0 .mod p/ for some j hence there are pn�1 solutions of this form. All
obtained solutions are differentmod .pKC1/, andm1 satisfies the hypothesis of the
lemma. ut

We remark that in case of m D 1, k D 0 the above argument shows that there
are exactly p.K�1/.n�1/ solutions m for which m D m0 .mod p/ and P.m/ D
�.mod pK/. It is not hard to establish now the existence of a set of regular values
for the polynomial P .
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Lemma 30. let P.m/ be a homogeneous non-singular polynomial of degree d � 2,
then there exists an infinite arithmetic progression � and constants 0 < cP < CP ,
such that for all � 2 �

cP � K.�/ � CP

Proof. Let �0 D P.m0/ ¤ 0 for some fixed m0 ¤ 0. Let p1; : : : ; pJ be the set of
primes less then R. Let k be an integer s.t. pkj does not divide d�0, for all j � J ,
where d is degree of P.m/. By the homogeneity relation P 0.m0/ � m D d�0 it
follows that pkj does not divide some partial derivative @iP.m0/. Fix l s.t. l > 2k

and define the arithmetic progression
� D f�0 C k

QJ
jD1 plj W k � kQg. Then we claim that � is a set of regular

values. Indeed by Proposition 28 one has for � 2 �

Kpj .�/ D lim
N!1p

�n.N�1/
j rQ.p

N
j ; �/ � p

�l.N�1/
j :

This together with (8.98) ensures that the singular series K.�/ remains bounded
from below, and the error term becomes negligible by choosing k D kP large
enough. ut

Let us remark that along the same lines it can be shown, that all large numbers
are regular values of P.m/, if for each prime p < R and each residue class
s .mod p/, there is a solution of the equations P.m/ D s .mod p/ such that
P 0.m/ ¤ 0 .mod p/. This is the case for example for P.m/ D P

j m
d
j .

8.3.2 Upper Bounds for the Discrepancy

We will prove Theorem 12 by extending the arguments given in Sect. 8.2 to the case
of a general homogeneous non-singular hypersurface. Our main tool again will be
the asymptotic expansion (8.95)

O!�.�/ D �
n
d �1

X
q�N.d�1/�

mq;�.�/C E�.�/;

where

mq;�.�/ D
X
l2Zn

K.q; l; �/  .q� � l/ Q�.� 1
d .� � l=q//:

Note that 0 < � < 1
2.d�1/ and N D �1=d . Moreover we will need the decay

estimates

j Q�.�/j � .1C j�j/� n
DC1 (8.99)

jKp.q; l; �/j �" q
� n
DC1C" (8.100)
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Recall that the discrepancy of the set Z0P;� D f��1=dmI P.m/ D �g with respect
to caps Ca;� D fx 2 SP W jx � � � ag may be written as

DP .�; �/ D
X

P.m/D�
a.�

�1=dm � �/ � N�

Z
SP

a.x � �/ d�.x/;

where N� is the number of solutions of the diophantine equation P.m/ D �, and
a is the indicator function of an interval Œa; b�, b being a fixed constant such that
jx � �j � b for all x 2 SP and � 2 Sn�1.

We turn to the proof of Theorem 12. As before, it will be enough to estimate the
“smoothed” discrepancy

DP .	a;ı; �; �/ D
X

P.m/D�
	a;ı.�

� 1
d m � �/ �N�

Z
SP

	a;ı.x � �/ d�.x/;

for, say ı D ��n. Taking the inverse Fourier transform of the functions 	a;ı , we
have

X
P.m/D�

	a;ı .�
�1=d m � �/ D

Z
R
�
1
d Q	a;ı.t� 1

d / O!�.t�/ dt (8.101)

also
Z
Sn�1

	a;ı .x � �/ d�.x/ D
Z

R

Q	a;ı.t/ Q�.t�/ dt: (8.102)

Moreover, as in (8.43) and (8.44), set

Iq;� WD
Z

R
�
1
d Q	a;ı.t� 1

d /mq;�.t�/ dt;

and

E� WD
Z

R
�
1
2 Q	a;ı.t� 1

2 / E�.t�/ dt:

First, we estimate the error term using (8.95)

jE�j � Nn�d�n
d
Z

R
.1C jt j/�1.1C ıjt j/�1 (8.103)

� �
n
d �1� n

d .log �/ � �.
n
d �1/.1�
d /; (8.104)
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Next, we decompose the integral Iq;� as in (8.46), and observe that for jt j < 1= 8q

mq;�.t�/ D K.q; 0; �/ Q�.�1=d t�/:

Lemma 31. We have

j� n
d �1

X
q�N.d�1/�

I 1q;� � N�

Z
SP

	a;ı .x � �/ d�.x/ j � �.
n
d �1/.1�
d /: (8.105)

Proof. By the above observation and a change of variables t D �1=d t , we have

X
q�N.d�1/�

I 1q;� D
X

q�N.d�1/�

K.q; 0; �/

Z
jt j<N=8q

Q	a;ı.t/ Q�.t�/ dt:

We extend the integration to the whole real line to exploit (8.102), the error obtained
is bounded by

Z
jt j�N=8q

j Q	a;ı.t/j j Q�.t�/j dt �
Z
jt j�N=8q

.1C jt j/� n
D dt � N�

n
DC1q

n
D�1:

Thus
ˇ̌
ˇ̌
ˇ̌� n

d �1
X

q�N.d�1/�

I 1q;� �
X

q�N.d�1/�

K.q; 0; �/

Z
Sp

	a;ı .x � �/ d�p.x/
ˇ̌
ˇ̌
ˇ̌

�" N
� n
DC1

X
q�N.d�1/�

q�
n
DC1C"q

n
D�1 � N�n
d ; (8.106)

using the facts that .d � 1/� < 1
2

and n
D

� 2 > n
d , choosing " > 0 sufficiently
small. ut
Lemma 32. One has

X
q�N.d�1/�

jI 2q;�j � N�n
d : (8.107)

Proof. Since  .q� � l/ D 0 unless l D Œq��, the nearest lattice point to the point
q�, we have that

mq;�.t�/ D K.q; Œqt��; �/  .fqt�g/ Q�
�
N

q
fqt�g

�
:
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By making a change of variables t WD tq, it follows from (8.99) and (8.100)

jI 2q;�j �" N
� n
DC2 q�1C" J�

where

J� D
Z
jt j�1=8

j Q	a;ı.tN=q/j kt�k� n
DC1 dt:

Note that for q � N.d�1/� < N 1=2

j Q	a;ı.tN=q/j � q

N
jt j�1.1C jıt j/�1:

By a dyadic decomposition of the range of integration, using (8.36), we have

jJ�j �"

q

N

X
j��3

2"j .1C ı2j /�1 � q N�1C"0 ;

with "0 D nd". Choosing " > 0 sufficiently small, this implies

X
q�N.d�1/�

jI 2q;�j �"

X
q�N1=2

q"N�
n
DC1C"0 � N�

n
DC2 � N�n
d : (8.108)

ut
Finally, we remark that Theorem 12 follows immediately from estimates (8.103)–

(8.107). ut

8.3.3 The Distribution of the Solutions Modulo 1

We will study the distribution of the images of the solutions of a diophantine equa-
tion P.m/ D � on the flat torus Tn D Rn=Zn, via the map T˛ W .m1; : : : ; mn/ !
.m1˛1; : : : ; mn˛n/ .mod 1/, where ˛ D .˛1; : : : ; ˛n/ 2 Rn is a given point. We
will assume, as before, that P is a positive, homogeneous, non-singular polynomial
of degree d , and n � nd is large enough with respect to the degree. Note that if
one of the coordinates ˛i is rational, say equal to a=q, thenmi˛i can take at most q
different values modulo 1, so the images of the solution sets

˝�;˛ WD f.m1˛1; : : : ; mn˛n/ W P.m1; : : : ; mn/ D �g � Tn (8.109)

cannot become equi-distributed on the torus as � ! 1, even if one restricts to
regular values only. In the opposite case, we have
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Theorem 33. Let ˛ D .˛1; : : : ; ˛n/ be point such that ˛i is irrational for all 1 �
i � n, and 	 be a smooth function on Tn. If � is a set of regular values of the form
P , then one has

lim
�!1; �2�N

�1
�

X
P.m/D�

	.m1˛1; : : : ; mn˛n/ D
Z

Tn
	.x/ dx; (8.110)

where N� is the number of solutions of the equation P.m/ D �.

Proof. For simplicity, let us introduce the notation m ı ˛ D .m1˛1; : : : ; mn˛n/. By
using the inverse Fourier transform 	.ˇ/ D P

l2Zn
O	.l/e2�i ˇ	 l , we have

X
P.m/D�

	.m ı ˛/ D
X
l2Zn

O	.l/
X

P.m/D�
e2�i.m1l1˛1C:::mnln˛n/

D
X
l2Zn

O	.l/ O!�.l ı ˛/ D N� O	.0/C T�.˛/; (8.111)

where

T�.˛/ D
X

l2Zn; l¤0
O	.l/ O!�.l ı ˛/: (8.112)

Substituting the asymptotic expansion (8.95) into the above expression we have

T�.˛/ D
X

q�N.d�1/�

X
l¤0

mq;�.l ı ˛/ O	.l/ C
X
l¤0

E�.l ı ˛/ O	.l/:

Using the fact that O	.l/ � CM.1C jl j/�M for all M 2 N, estimate (8.97) implies

X
l¤0

jE�.l ı ˛/ O	.l/j � Nn�d�n
d k O	kl1 � Nn�d�n
d ; (8.113)

where N D �1=d and 
d > 0 is a constant depending on d . Also, by (8.100) one
has

jmq;�.l ı ˛/j �" N
n�dq�

n
DC1C" O�

�
N

q
kql ı ˛k

�
: (8.114)

Since ˛ 2 .R=Q/n by our assumption and l ¤ 0 we have that kql ı ˛k > 0 , thus

mq;�.l ı ˛/ ! 0 as � ! 1:
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Let " > 0 be fixed, then by (8.114) one estimates crudely

X
q�N"

X
l¤0

jmq;�.l ı ˛/ O	.l/j � Nn�d X
q�N"

q�
n
DC1 � Nn�d�n"0 : (8.115)

Also, for a fixed q � N"

X
jlj�N"

jmq;�.l ı ˛/ O	.l/j � Nn�d�"; (8.116)

by using the decay estimate j O	.l/j � .1C jl j/�2n .
Since for regular values � 2 � the number of solutions is N� � �

n
d �1 D

Nn�d , (8.110) follows from (8.114)–(8.116). ut
Let ˛ D .˛1; : : : ; ˛n/ be a point such that each of its coordinates˛i is diophantine

in the sense that kl˛ik � C"jl j�1�" for l 2 Z=f0g, for every " > 0. We will call
such points ˛ diophantine, and we can extend this definition to points ˛ 2 Tn as ˛
diophantine if and only if ˛Cm is such for anym 2 Zn. Note that this condition on
˛ is different from the notion used in Sects. 8.2–8.3, nevertheless (8.3) implies that
the set of diophantine points of the torus has measure 1. Also, it is immediate from
the definition that for any l D .l1; : : : ; ln/ 2 Zn, l ¤ 0 we have that

kl ı ˛k � C" jl j�1�": (8.117)

For diophantine points ˛ we will derive quantitative estimates on the discrepancy
of the sets ˝�;˛ with respect to both smooth functions and compact, convex bodies.
To be more precise, for a smooth function 	 2 C1.Tn/ define the associated
discrepancy as

D.	; ˛; �/ WD
X

P.m/D�
	.m ı ˛/ �N�

Z
T n
	.x/ dx: (8.118)

Theorem 34. Let ˛ 2 Tn be a diophantine point, and let 	 2 C1.Tn/. Then for
n > nd D d.d � 1/2dC1, one has

jD.	; ˛; �/j � �
n
d �1�n�d ; (8.119)

with a constant �d > 0 depending only on the degree d .

Proof. We will argue as in the proof of Theorem 33, using condition (8.117) and
the decay estimates (8.99) and (8.100). To start, observe that by (8.111)–(8.112)

D.	; ˛; �/ D T�.˛/ �
X

q�N.d�1/�

X
l¤0

jmq;�j j O	.l/j C O.Nn�d�n
d /:
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Since ˛ is assumed to be diophantine we have for all " > 0

jD.	; ˛; �/ � Nn�d X
q�N.d�1/�

X
l¤0

q�
n
DC1

�
1CN

q
kql ı ˛k

�� n
DC1

j O	.l/j (8.120)

�" N
n�d X

q�N.d�1/�

X
l¤0

q�
n
DC1

�
1C N

q2C"jl j1C"
�� n

DC1
.1C jl j/�2n:

Now the parameter � in the asymptotic formula (8.95) was chosen such that .d �
1/� < 1=2 , accordingly we will set " D .1 � 2.d � 1/�/=4. This will ensure that

N

q2C"jl j1C" � N";

for 1 � q � N.d�1/� and 0 < jl j < N" , thus by (8.120)

X
q�N.d�1/�

X
0<jlj<N"

jmq;�.l ı ˛/j j O	.l/j � Nn�d�".n=D�1/ � Nn�d�n�d ;

with, say �d D .1 � 2.d � 1/�/=8D. The rest of the sum is estimated crudely by

Nn�d X
q�N.d�1/�

X
jlj�N"

q� n
DC1.1C jl j/�2n � Nn�d�"n:

This finishes the proof of Theorem 34. ut
Finally, we will study the discrepancy of the image sets ˝˛;� with respect to

compact, convex bodies K � .� 1
2
; 1
2
/n, when the flat torus Tn is identified as

a set with Œ� 1
2
; 1
2
/n. Let us remark that in this case one cannot hope for better

upper bounds thanO.�
n
d �1� 1

d /. Indeed, consider the discrepancy with respect to the
family of cubesKc D Œ�c; c�n . The number of solutions of the equation P.m/ D �

is � �n=d�1 but (as P.m/ � jmjd ) each coordinate can take � �1=d values, thus
the number of solutionsm D .m1; : : : ; mn/ with m1 being fixed is at least �

n
d �1� 1

d ,
for some value of m1. Fix such an m1 and let c1 D m1˛1 .mod 1/. This means that
the boundary of the cube Kc1 contains at least �

n
d �1� 1

d points of the set ˝˛;� so the
discrepancy changes by at least this much as c passes through c1 and thus one cannot
have a better uniform upper bound on it. We will prove a similar upper bound, of the
formO.�

n
d �1��d / with a constant �d > 0 depending only on the degree d which as

uniform over a large family of convex bodies.
We will use the fact that if K � .� 1

2
; 1
2
/n is a closed convex set with non-empty

interior then there exist convex setsK1 andK2 such that for sufficiently small ı > 0

B.K1; ı/ � K � B.K2; ı/ � .�1; 1/n;
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where B.K; ı/ is the set of points whose distance to the set K is at most ı. To make
our estimates uniform for a large family of convex bodies, define the quantity ıK as
the largest ı > 0 for which there exists a point x such that x C Bı � K and also
K C Bı � Œ� 1

2
; 1
2
�n, where Bı is the closed ball of radius ı centered at the origin.

Lemma 35. Let K � .� 1
2
; 1
2
/n be a closed convex body, and let x be a point in the

interior of K . For given 0 < ı < ıK=10, C0 D 2=ıK , and �1 D ��12 D 1 � C0ı;
define the convex bodies K1 D x C �1K , K2 D x C �2K .

If 	 � 0 is a smooth cut-off function supported in .�1; 1/n such that
R
	 D 1,

then we have

K1 � 	ı � K � K2 � 	ı; (8.121)

where K stands for the indicator function of a set K , and 	ı.x/ D ı�n	.x=ı/.

Proof. From the definition it is immediate that K1 � K � K2 � .� 1
2
; 1
2
/n. By

translation invariance we may assume that x0 D 0 and then it is enough to show that
B.K1; ı/ � K and B.K; ı/ � K2. Since K D x0 C �1K2 D �1K2 both claim can
be shown the same way. Indeed, assume indirect that there is y 2 K1 and z … K

such that jy � zj � ı. Then by the Hahn-Banach Theorem there is a unit vector v
for which

v � y C ı � v � z > max
x2K v � x � ��11 y � z;

since ��11 y 2 K . Also, by our assumption BıK � K , hence

y � z � v � z � ı > ıK � ı � ıK=2:

This implies

�1ı � .1 � �1/y � z � C0ı ıK=2;

which is a contradiction since �1 < 1 and C0ıK � 2. The same argument shows
that B.K; ı/ � K2 and (8.121) follows. ut

For a closed, convex body K � .� 1
2
; 1
2
/n and a diophantine point ˛, define the

discrepancy

D.K; ˛; �/ D
X

P.m/D�
K.m1˛1; : : : ; mn˛n/�N�voln.K/;

where K is the indicator function ofK considered as a function on Tn, and voln.K/
denotes the volume of the body. We have the following uniform estimate on the
discrepancy.
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Theorem 36. Let n > d.d � 1/2dC1 and let P be a non-singular integral
polynomial in n variables, and let ˛ 2 Rn be diophantine and let ı0 > 0. Then
for a closed, convex bodyK � .� 1

2
; 1
2
/n such that ıK � ı0 we have

jD.K; ˛; �/j � Nn�d��d ; (8.122)

where �d > 0 is a constant depending only on d , and the implicit constant in (8.122)
depends only on the polynomial P , the point ˛ and on ı0 and is independent ofK .

Proof. Let us use the notation 	K;ı D K � 	ı . By (8.121) we have for ı < cı0
(c > 0 being sufficiently small)

X
P.m/D�

	K1;ı.mı˛/�N�
Z

Tn
	K2;ı � D.K; ˛; �/ �

X
P.m/D�

	K2;ı.mı˛/�N�
Z

Tn
	K1;ı:

and also
Z

Tn
.	K2;ı � 	K1;ı/ � Cı voln.K/;

with a constant C � ı�10 . Thus

jD.K; ˛; �/j � max
iD1;2 jD.	Ki ;ı; ˛; �/j CO.Nn�d ı/: (8.123)

To estimate the discrepancy with respect to the smooth functions 	Ki ;ı we proceed
as before, with exception that now we have the estimates on their Fourier transform

j O	Ki ;ı.l/j D j O	Ki .l/ O	.ıl/j � .1C ıjl j/�2n;

in particular k O	Ki ;ıkl1 � ı�n. Thus

j
X
l¤0

E�.l ı ˛/ O	Ki ;ıj � Nn�d�n
d ı�n: (8.124)

For the main terms, we have

X
0<jlj<N"

jmq;�.l ı ˛/ O	Ki ;ı.l/j � Nn�d q�

n
D C1

�
1C N

q2C"jl j1C"

�
�

n
D C1

.1C ıjl j/�2n

� Nn�d�". n
D

�1/ q�

n
D

C1ı�n; (8.125)
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for q � N.d�1/� , choosing " D .1 � 2.d � 1/�/=4 as before. Also

X
jlj�N"

jmq;�.l ı ˛/ O	Ki ;ı.l/j � Nn�dq�
n
DC1

X
jlj�N"

.1C ıjl j/�2n

� Nn�dq�
n
DC1 .1C ıN "/�2n N "n: (8.126)

Let ı D N� "
4D then the right side of both (8.125) and (8.126) is O.Nn�d� "

4D

q� n
DC1/. Summing for 1 � q � N.d�1/� and using (8.123) we obtain the estimate

jD.K; ˛; �/j � Nn�d� "
4D :

Finally note that the exponent �d WD "
4D

depend only on the parameter � and D,
hence ultimately only on dimension d , while the implicit constants in our estimates
depend on the parameter ı0 and not on the body K . This finishes the proof of
Theorem 36. ut

8.3.4 Some Possible Further Directions

Our estimates on the uniformity of the distribution of solutions to diophantine
equations in many variables are by no means exhaustive. In fact even in the case
of the sphere, it is not clear if our upper bounds are sharp or even what should be the
sharp bounds. A closely related problem is to find lower bounds for the mean square
average of the discrepancy of the lattice points on spheres over the family of all
spherical caps. It is expected that the lattice points are far from optimally distributed
and essentially higher lower bounds can be obtained then the uniform lower bounds
given in [3,15] and [12]. To obtain nontrivial lower bounds one may exploit the fact
that lattice points in small caps are concentrated on lower dimensional spheres.

For higher degree polynomials it is unrealistic to expect sharp bounds in the
generality we have discussed. The special case of the polynomial P.m/ D md

1 C
: : : C md

n (d even) deserves special attention as the number of the solutions of the
equation P.m/ D �, the so-called Waring problem, has been studied extensively. In
fact much sharper asymptotic formulas have been obtained than the ones which
can derived from the Birch-Davenport method [18]. In general we have only
considered positive polynomials of even degree, however there are natural analogues
for indefinite forms. Indeed one may identify the solution set of the diophantine
equation P.m1; : : : ; mn/ D 0 within the box jmi j � N as the set of lattice points
ZP .N / D S \ Zn \ Œ�N;N �n where S D fP D 0g is the zero surface of P . One
can shrink this set by a factor of N and study the discrepancy with respect to caps
as N ! 1.

Let us also remark that weaker bounds we have obtained for the distribution of the
solutions modulo 1 seemed partly because of we have allowed very rough convex
sets K . It might be true that better upper bounds can be given by assuming some
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smoothness of the boundary of the convex body, however it is not even immediately
clear how to improve the bounds on the discrepancy with respect to balls.

Finally, as we mentioned in the introduction, the uniformity of distribution of the
solutions modulo 1, is a special case of a more general phenomenon. It can be shown
[11] that the images of the solution sets fP.m/ D �g become equi-distributed when
mapped to a probability measure space X via a fully ergodic commuting family of
measure preserving transformations. It would be interesting to see if one can get
estimates for the rate of equi-distribution for other measure preserving systems than
the flat torus with the coordinate shifts.
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Chapter 9
Discrepancy Theory and Quasi-Monte Carlo
Integration

Josef Dick and Friedrich Pillichshammer

Abstract In this chapter we show the deep connections between discrepancy theory
on the one hand and quasi-Monte Carlo integration on the other. Discrepancy theory
was established as an area of research going back to the seminal paper by Weyl
[117], whereas Monte Carlo (and later quasi-Monte Carlo) was invented in the
1940s by John von Neumann and Stanislaw Ulam to solve practical problems. The
connection between these areas is well understood and will be presented here. We
further include state of the art methods for quasi-Monte Carlo integration.

9.1 Introduction: The Connection between Discrepancy
Theory and Quasi-Monte Carlo Integration

Let us start with introducing the concepts of discrepancy and quasi-Monte Carlo
(QMC) for the domain Œ0; 1�s and for a point set P D fx1; : : : ;xN g. To define
discrepancy, we define a set of ‘test sets’ B. For instance, a common choice is the
set of all intervals anchored at 0 D .0; : : : ; 0/, denoted by Œ0; t/ D Qs

iD1Œ0; ti /,
where t D .t1; : : : ; ts/. The local discrepancy then is

�P.t/ D 1

N

NX
nD1

1Œ0;t/.xn/�
sY
iD1

ti ;
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ttt

Fig. 9.1 The local
discrepancy �P.t/ measures
the difference between the
relative number of points that
belong to the interval Œ0; t/
and its volume

where 1Œ0;t/ denotes the characteristic function of the interval Œ0; t/, i.e. 1Œ0;t/.x/ is
one if x belongs to Œ0; t/ and zero otherwise; see Fig. 9.1. The Lp-discrepancy of
P is then the Lp norm 1 � p � 1 of �P given by

Lp.P/ D k�PkLp D
�Z

Œ0;1�s
j�P.t/jp dt

�1=p
:

TheL1-norm of the discrepancy function is also called the star-discrepancy, which
is denoted by D�N .P/, i.e., D�N .P/ D k�PkL

1

D sup j�P.t/j, where the
supremum is extended over all t 2 Œ0; 1�s .

A quasi-Monte Carlo rule based on a point set P D fx1; : : : ;xN g is an equal
weight quadrature rule

QP.f / WD 1

N

NX
nD1

f .xn/;

which can be used to approximate the integral
R
Œ0;1�s

f .x/ dx. It is assumed that
the quadrature points are chosen in some deterministic way which yields a small
integration error for certain function classes.

To illustrate the connection between discrepancy and integration error we first
consider discrepancy and numerical integration on the unit interval Œ0; 1�.

9.1.1 An Elementary Approach

Central to showing the connection between the discrepancy of a point set and the
integration error is the characteristic function of an interval. For numbers x 2 R the
characteristic function of an interval I is given by

1I .x/ D
�
1 if x 2 I;
0 otherwise:
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To give a glimpse of this connection between discrepancy and integration error, note
the following two properties of the characteristic function:

1. Let P D fx1; : : : ; xN g � Œ0; 1� be a point set. Then

�P.t/ WD 1

N

NX
nD1

1Œ0;t/.xn/ � t

measures the discrepancy between the proportion of the points in the interval
Œ0; t/ and the length of the interval.

2. Let f W Œ0; 1� ! R be continuously differentiable. Then

f .x/ D f .1/ �
Z 1

0

f 0.t/1.x;1�.t/ dt D f .1/ �
Z 1

0

f 0.t/1Œ0;t/.x/ dt: (9.1)

These two properties can now be connected naturally in the following way. Let
f W Œ0; 1� ! R be continuously differentiable. Consider the integration error of f
using a quasi-Monte Carlo rule QP.f / D 1

N

PN
nD1 f .xn/, given by

e.f IP/ D
Z 1

0

f .x/ dx � 1

N

NX
nD1

f .xn/:

Then, using (9.1), we obtain

e.f IP/

D
Z 1

0

�
f .1/ �

Z 1

0

f 0.t/1Œ0;t/.x/ dt

�
dx � 1

N

NX
nD1

�
f .1/ �

Z 1

0

f 0.t/1Œ0;t/.xn/ dt

�

D f .1/�
Z 1

0

Z 1

0

f 0.t/1Œ0;t/.x/ dt dx � f .1/C 1

N

NX
nD1

Z 1

0

f 0.t/1Œ0;t/.xn/ dt

D
Z 1

0

f 0.t/
"
1

N

NX
nD1

1Œ0;t/.xn/ �
Z 1

0

1Œ0;t/.x/ dx

#
dt

D
Z 1

0

f 0.t/�P.t/ dt:

By using Hölder’s inequality we obtain

je.f IP/j � Lp.P/kf 0kLq ; (9.2)
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where 1 � p; q � 1, 1=p C 1=q D 1 and kgkLq D
�R 1

0
jg.t/jq dt

	1=q
with the

obvious modification for q D 1. For p D 1, inequality (9.2) is a simplified
version of Koksma’s inequality (see Kuipers and Niederreiter [65, Chapter 2,
Theorem 5.1]).

Some remarks regarding the last inequality are in order. We have obtained an
upper bound on the integration error which is a product of two factors,

• one of which, kf 0kLq depends only on the integrand f ; it is a semi-norm of f ,
and

• one of which, the Lp-discrepancy Lp.P/ of P , depends only on the point set
P .

Thus (9.2) shows that quadrature points with small Lp-discrepancy will yield a
small integration error for functions with finite semi-norm kf 0kLq .

Notice that there is a simple reason why a semi-norm rather than a norm is
sufficient in (9.2): for any constant c 2 R we have e.f C cIP/ D e.f IP/,
i.e., constant functions are integrated exactly by the quasi-Monte Carlo ruleQP .

9.1.2 A Reproducing Kernel Approach

Until now we conveniently assumed that f is continuously differentiable. How-
ever, there is a practical framework called reproducing kernel Hilbert spaces by
Aronszajn [3], which defines a whole class of functions. On the domain Œ0; 1�, a
reproducing kernel is a functionK W Œ0; 1� 
 Œ0; 1� ! C which is

• symmetric: K.x; y/ D K.y; x/ for all x; y 2 Œ0; 1�, and
• positive semi-definite, that is,

NX
k;lD1

akalK.xk; xl / � 0

for all a1; : : : ; aN 2 C and x1; : : : ; xN 2 Œ0; 1�. (Here, al denotes the conjugate
complex of al .)

A reproducing kernel can naturally be defined using the characteristic function 1Œ0;x/
by setting

K.x; y/ D 1C
Z 1

0

1.x;1�.t/1.y;1�.t/ dt D 1C min.1 � x; 1 � y/:
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The function K such defined is symmetric and positive definite, and thus a
reproducing kernel. Associated with this reproducing kernel is a set H .K/ of
functions f W Œ0; 1� ! R and an inner product h�; �iH .K/ on H .K/ such that

• K.�; y/ 2 H .K/ for all y 2 Œ0; 1�, and
• f .y/ D hf;K.�; y/iH .K/ for all y 2 Œ0; 1� and f 2 H .K/.

From Aronszajn [3] it is known that the function space H .K/ is a Hilbert space
with an inner product which is uniquely defined. For functions f; g, which can be
represented in the form (9.1), the inner product is given by

hf; giH .K/ D f .1/g.1/C
Z 1

0

f 0.x/g0.x/ dx:

These functions f and g are absolutely continuous and f 0; g0 2 L2.Œ0; 1�/, the
space of square integrable functions defined on Œ0; 1�.

Let y 2 Œ0; 1� be fixed. Then k.x/ WD K.x; y/ has the representation

k.x/ D 1 �
Z 1

0

1.x;1�.t/Œ�1.y;1�.t/� dt:

Thus, by matching it with the pattern from (9.1), k.1/ D 1 and k0.x/ D �1Œy;1�.x/.
Thus

hf;K.�; y/iH .K/ D f .1/1 �
Z 1

0

f 0.x/1Œy;1�.x/ dx D f .y/:

Then the integration error of f using a quasi-Monte Carlo rule based on P D
fx1; : : : ; xng is given by

e.f IP/ D
Z 1

0

f .x/ dx � 1

N

NX
nD1

f .xn/

D
Z 1

0

hf;K.�; x/iH dx � 1

N

NX
nD1

hf;K.�; xn/iH .K/

D
*
f;

Z 1

0

K.�; x/ dx � 1

N

NX
nD1

K.�; xn/
+

H .K/

:

We have

h.z/ WD
Z 1

0

K.z; x/ dx � 1

N

NX
nD1

K.z; xn/

D �
Z 1

0

1.z;1�.t/

"
1

N

NX
nD1

1.xn;1�.t/ �
Z 1

0

1.x;1�.t/ dx

#
dt
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D �
Z 1

0

1.z;1�.t/

"
1

N

NX
nD1

1Œ0;t/.xn/� t

#
dt

D �
Z 1

0

1.z;1�.t/�P.t/ dt:

Consequently, matching the representation of h given above with the pattern
from (9.1), we obtain h.1/ D 0 and h0.x/ D �P.x/. Hence we have

e.f IP/ D hf; hiH .K/ D f .1/0C
Z 1

0

f 0.x/�P.x/ dx D
Z 1

0

f 0.x/�P.x/ dx:

Thus, taking the absolute value and using Hölder’s inequality we again obtain (9.2).
So far we have considered the integration error for a particular function f . Since

we have now a function space H .K/ with inner product h�; �iH .K/, we can define

the corresponding norm by k � kH .K/ D h�; �i1=2H .K/. Then it is meaningful to define
the worst-case error in the unit ball of H .K/ by

e.H .K/IP/ D sup
f 2H .K/;kf kH .K/�1

je.f IP/j:

Since e.f IP/ D hf; hiH .K/ we obtain

e.H .K/IP/ D sup
f 2H .K/;kf kH .K/�1

jhf; hiH .K/j

� sup
f 2H .K/;kf kH .K/�1

kf kH .K/khkH .K/ D khkH .K/:

On the other hand, we have h 2 H .K/ and by choosing f D h=khkH .K/ we
obtain that

e.H .K/IP/ D khkH .K/:

This yields the formula

e2.H .K/IP/ D hh; hiH .K/ (9.3)

D
Z 1

0

Z 1

0

K.x; y/ dx dy � 2

N

NX
nD1

Z 1

0

K.x; xn/ dx C 1

N 2

NX
n;mD1

K.xn; xm/:

As h.1/ D 0 and h0 D �P we have khkH .K/ D k�PkL2 D L2.P/. Thus

e.H .K/IP/ D L2.P/



9 Discrepancy Theory and Quasi-Monte Carlo Integration 545

and so (9.3) yields an explicit expression for the L2-discrepancy (which is the
one-dimensional version of a formula that is sometimes attributed to Warnock; see
Matoušek [75, Lemma 2.14])

.L2.P//2 D 4

3
� 2

N

NX
nD1

3 � x2n
2

C 1

N 2

NX
n;mD1

Œ1C min.1 � xn; 1 � xm/�:

Since the reproducing kernel functionK has a closed form, the worst-case error can
be computed for given point sets P .

In the following we also consider another, related, reproducing kernel, namely

K.x; y/ D min.1 � x; 1 � y/:

The corresponding reproducing kernel Hilbert space consists of the same functions
f as in the reproducing kernel Hilbert space as above with the restriction that
f .1/ D 0. The corresponding inner product is then simply

R 1
0
f 0.x/g0.x/ dx.

9.1.3 Discrepancy and Numerical Integration in Arbitrary
Dimension

The step from Œ0; 1� to Œ0; 1�s for some s � 1 is achieved by considering tensor
product function spaces. Let now P D fx1; : : : ;xN g � Œ0; 1�s . The reproducing
kernel for functions on Œ0; 1�s is simply given by

K.x;y/ D
Z
Œ0;1�s

1.x;1�.t/1.y;1�.t/ dt D
sY
iD1

min.1 � xi ; 1 � yi /; (9.4)

where x D .x1; : : : ; xs/;y D .y1; : : : ys/, and .x; 1� D Qs
iD1.xi ; 1�. The corre-

sponding Hilbert space H .K/ is the s-fold tensor product of the one dimensional
reproducing kernel Hilbert spaces with reproducing kernel K.x; y/ D min.1 �
x; 1�y/. In particular, if f 2 H .K/, then k@sf=@xkL2 < 1 and @jujf

@xu
.zu; 1/ D 0

for u � f1; : : : ; sg, where @xu D Q
i2u @xi and where .zu; 1/ stands for the vector

whose i th component is zi if i 2 u and 1 otherwise. Further, for u D ; we have
@jujf

@xu
.zu; 1/ WD f .1/. The inner product is given by

hf; giH .K/ D
Z
Œ0;1�s

@sf

@x
.t/
@sg

@x
.t/ dt:
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The same steps as in the previous two subsections can be carried out to obtain
the discrepancy function

�P.t/ D 1

N

NX
nD1

1Œ0;t/.xn/�
sY
iD1

ti :

Again, an analogue of (9.2) holds, namely for the integration error of a function
f 2 H .K/ using a quasi-Monte Carlo rule based on P we have

je.f IP/j � Lp.P/k@sf=@xkLq :

Again, for p D 1, this is a simplified version of the Koksma-Hlawka inequality
(see Kuipers and Niederreiter [65, Chapter 2, Theorem 5.5]).

The worst-case error is again given by

e.H .K/IP/ D sup
f 2H .K/;kf kH .K/�1

je.f IP/j D khkH .K/;

where h.z/ D R
Œ0;1�s

K.z;x/ dx � 1
N

PN
nD1 K.z;xn/. Again we have khkH .K/ D

k�PkL2 D L2.P/, therefore we obtain

e.H .K/IP/ D L2.P/:

The analogue of (9.3) yields

e2.H .K/IP/ D hh; hiH .K/

D
Z
Œ0;1�s

Z
Œ0;1�s

K.x;y/ dx dy � 2

N

NX
nD1

Z
Œ0;1�s

K.x;xn/ dx

C 1

N 2

NX
n;mD1

K.xn;xm/:

Since there is an explicit expression for the reproducing kernel (9.4) we obtain an
explicit expression for theL2-discrepancy of P D fx1; : : : ;xN g, sometimes called
Warnock’s formula

.L2.P//2 D 1

3s
� 2

N

NX
nD1

sY
iD1

1 � x2n;i

2
C 1

N 2

NX
n;mD1

sY
iD1

min.1 � xn;i ; 1 � xm;i /;

(9.5)

where xn;i denotes the i th component of the point xn.
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The discrepancy defined this way does not take lower order projections into
account. To include also lower dimensional projections we use the reproducing
kernel

K.x;y/ D
Z
Œ0;1�s

sY
iD1

�
1C 1.xi ;1�.ti /1.yi ;1�.ti /

�
dt

D
sY
iD1

Œ1C min.1 � xi ; 1 � yi /� :

In this case the inner product is given by

hf; giH .K/ D
X
u
Œs�

Z
Œ0;1�juj

@jujf
@xu

.tu; 1/
@jujg
@xu

.tu; 1/ dtu;

where Œs� D f1; : : : ; sg and where for u � Œs� and x D .x1; : : : ; xs/ we write
xu for the juj-dimensional projection of x onto the coordinates given by u and
where .xu; 1/ is the s-dimensional vector whose i th component is xi if i 2 u and 1
otherwise. Further we have

e2.H .K/IP/ D
X
;¤u
Œs�

.L2.Pu//
2

D 4s

3s
� 2

N

NX
nD1

sY
iD1

3 � x2n;i
2

C 1

N 2

NX
n;mD1

sY
iD1
Œ1C min.1 � xn;i ; 1 � xm;i /�;

where Pu stands for the projection of the points in P onto the coordinates in u and
L2.Pu/ stands for the L2-discrepancy of Pu.

9.1.4 Integration in Weighted Function Spaces

Sloan and Woźniakowski [110] (see also Dick, Sloan, Wang, Woźniakowski [33])
introduced a weighted discrepancy. The idea is that in many applications some
projections are more important than others and that this should also be reflected
in the quality measure of the point set.

The difference in the importance of projections is usually modelled by intro-
ducing so-called weights. Here we restrict ourselves to product-weights. Let � D
.
i /i�1 be a sequence of weights in R

C. We use then the reproducing kernel
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K�.x;y/ D
Z
Œ0;1�s

sY
iD1

�
1C 
i1.xi ;1�.ti /1.yi ;1�.ti /

�
dt

D
sY
iD1

Œ1C 
i min.1 � xi ; 1 � yi /� :

In this case the inner product is given by

hf; giH .K�/ D
X
u
Œs�

��1u
Z
Œ0;1�juj

@jujf
@xu

.tu; 1/
@jujg
@xu

.tu; 1/ dtu;

where for u � Œs� we write �u D Q
i2u 
i and for u D ; we have �; D 1 and

@jujf

@xu
.tu; 1/ WD f .1/.

With

h.z/ D
Z
Œ0;1�s

K�.z;y/ dy � 1

N

NX
nD1

K�.z;xn/

D
sY
iD1

�
1C 
i

2
.1 � z2i /

	
� 1

N

NX
nD1

sY
iD1
Œ1C 
i min.1 � zi ; 1 � xn;i /�

and

@jujh
@zu

.tu; 1/ D .�1/jujC1�u�P.tu/

we obtain for the integration error of a function f 2 H .K�/,

e.f IP/ D hf; hiH .K� /

D
X
u
Œs�

��1u .�1/jujC1�u

Z
Œ0;1�juj

@jujf
@xu

.tu; 1/�P.tu; 1/ dtu:

The unweighted version of this formula is due to Hlawka [53] and Zaremba [119]
and is called Hlawka-Zaremba identity. Applying Hölder’s inequality for integrals
and sums we obtain

je.f IP/j � kf kH .K� /;qLp;� .P/;

where 1 � p; q � 1 and 1=p C 1=q D 1,

kf kH .K� /;q D
0
@X

u
Œs�
��qu

Z
Œ0;1�juj

ˇ̌
ˇ̌̌@jujf
@xu

.tu; 1/

ˇ̌
ˇ̌̌q dtu

1
A
1=q
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and the so-called weighted Lp-discrepancy is given by

Lp;� .P/ D
0
@ X
;6Du
Œs�

�pu.Lp.Pu//
p

1
A
1=p

D
0
@ X
;6Du
Œs�

�pu

Z
Œ0;1�juj

j�P..tu; 1//jp dtu

1
A
1=p

;

where �P and Lp denote the usual local and Lp-discrepancy, respectively. In the
case p D 1 we also write

D�N;� .P/ D max
;6Du
Œs�

�uD
�
N .Pu/:

We call D�N;� the weighted star-discrepancy of P . Note that D�N;1 D D�N , where
1 D .1/i�1, the sequence of weights where every weight is equal to one.

We also obtain a weighted discrepancy and Warnock-type formula, given by

e2.H .K�/IP/ D .L2;� .P//2 D
X
;¤u
Œs�

�2u.L2.Pu//
2

D
sY
iD1

�
1C 
2i

3

�
� 2

N

NX
nD1

sY
iD1

 
1C 
2i

1 � x2n;i
2

!
(9.6)

C 1

N 2

NX
n;mD1

sY
iD1
Œ1C 
2i min.1 � xn;i ; 1 � xm;i /�:

We remark that the assumption that s < 1 can also be removed. In particular,
Gnewuch [44] considered numerical integration in infinite dimensional reproducing
kernel Hilbert spaces. Further, integration over Rs rather than Œ0; 1�s has for instance
been considered in [23].

9.1.5 Discrepancy and Quasi-Monte Carlo on the Sphere

The above approach can be generalised in various ways, see for instance
Gnewuch [45, 88]. In the following we illustrate the above approach on a different
domain, see Brauchart and Dick [9]. Consider the sphere S

s D f.x1; : : : ; xsC1/ 2
R
sC1 W x21 C � � � C x2sC1 D 1g. As test sets we use spherical caps

C.t;x/ D fz 2 S
s W hz;xi � tg; x 2 S

s;�1 � t � 1;
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where h�; �i denotes the standard inner product in R
sC1. We use the same approach

as above. Let now P D fx1; : : : ;xN g � S
s .

We define a reproducing kernel

K.x;y/ D
Z 1

�1

Z
Ss

1C.x;t /.z/1C.y;t /.z/ d�.z/ dt;

where � is the Lebesgue measure on the sphere S
s normalised to a probability

measure.
The corresponding reproducing kernel Hilbert space H .K/ then includes

functions of the form

f .x/ D
Z 1

�1

Z
Ss

1C.x;t /.z/f0.z; t/ d�.z/ dt; (9.7)

where f0 2 L2.Ss 
 Œ�1; 1�/, see Brauchart and Dick [9].
Notice that in this case f0 is not related to any classical derivative of f . We only

assume that there exists a function f0 2 L2.S
s 
 Œ�1; 1�/ such that (9.7) holds.

Notice further that for our purposes it is not necessary to be able to obtain f0 from
some given f (for the cube Œ0; 1�s the function f0 can be obtain via differentiation,
but that fact was not used).

For functions f; g W Ss ! R with representation of the form (9.7) we can define
the inner product

hf; giH .K/ D
Z 1

�1

Z
S2

f0.z; t/g0.z; t/ d�.z/ dt:

Again, going through the same steps as above we obtain the discrepancy function

�P.z; t/ D 1

N

NX
nD1

1C.z;t /.xn/ � �.C.z; t//:

Again, we obtain a Koksma-Hlawka type inequality of the form

ˇ̌̌
ˇ̌
Z
Ss

f .x/ d�.x/ � 1

N

NX
nD1

f .xn/

ˇ̌̌
ˇ̌ � k�PkLpkf0kLq :

We call k�PkLp the Lp spherical cap discrepancy

k�PkpLp D
Z 1

�1

Z
Ss

ˇ̌
ˇ̌
ˇ
1

N

NX
nD1

1C.z;t /.xn/� �.C.z; t//

ˇ̌
ˇ̌
ˇ
p

d�.z/ dt:
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Again, the L2-discrepancy is related to the worst-case integration error

e.H .K/IP/ D sup
f 2H .K/;kf kH .K/�1

je.f IP/j D k�PkL2 :

We also obtain

e2.H .K/IP/ D k�Pk2L2

D
Z
Ss

Z
Ss

K.x;y/ d�.x/ d�.y/� 2

N

NX
nD1

Z
Ss

K.x;xn/ d�.x/

C 1

N 2

NX
n;mD1

K.xn;xm/ (9.8)

D 1

N 2

NX
n;mD1

K.xn;xm/�
Z
Ss

Z
Ss

K.x;y/ d�.x/ d�.y/: (9.9)

The reproducing kernel for the sphere Ss even has a concise form, see Brauchart and
Dick [9], given by

K.x;y/ D 1 � � . sC1
2
/

s
p
�� . s

2
/
kx � yk; (9.10)

where k � k denotes the Euclidean norm in R
sC1 and � > 0 is the Gamma function.

Thus, using (9.8) and (9.10) we also obtain a Warnock-type formula

k�Pk2L2 D � . sC1
2
/

s
p
�� . s

2
/

"Z
Ss

Z
Ss

kx � yk d�.x/ d�.y/� 1

N 2

NX
n;mD1

kxn � xmk
#
:

This equality is known as Stolarsky’s invariance principle, see Stolarsky [113]. The
value of the distance integral is known explicitly and is given by

Z
Ss

Z
Ss

kx � yk d�.x/ d�.y/ D 2s
� ..s C 1/=2/� ..s C 1/=2/p

�� .s � 1=2/
;

where � is the Gamma function.
It would be interesting to find generalisations of the geometric discrepancy

defined above for other domains (manifolds) where the reproducing kernel also
has a concise form to obtain analogues of Stolarsky’s invariance principle for other
domains.
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9.2 Bounds on the Discrepancy

In this section we discuss some bounds on the Lp-discrepancy. For s;N 2 N and
1 � p � 1 let

discp.N; s/ D inf
P�Œ0;1/s

jPjDN

Lp.P/

denote the minimal Lp-discrepancy that can be achieved by point sets consisting of
N points in Œ0; 1/s. Note that for any 1 � p1 � p2 � 1 we have

discp1 .N; s/ � discp2.N; s/:

9.2.1 Asymptotic Bounds

In the case p D 1 it is known that for any fixed s 2 N there exist constants
0 < cs � Cs such that

cs
.logN/�s

N
� disc1.N; s/ � Cs

.logN/s�1

N
; (9.11)

where �2 D 1 (see Bejian [7] and Schmidt [101]) and �s � .s � 1/=2 for s � 3,
which follows from a result of Roth [98]. For s � 3 the lower bound on �s has
recently been improved to �s � .s � 1/=2C ıs for some unknown 0 < ıs < 1=2;
see Bilyk, Lacey and Vagharshakyan [8]. The upper bound can even be achieved
constructively.

A point set P whose star-discrepancy satisfies an upper bound of the form
D�N .P/ D O..logN/˛s =N / as N ! 1, where ˛s � 0, is sometimes called a
low discrepancy point set. There are several methods to construct low discrepancy
point sets. Examples of such point sets include:

• Hammersley point sets which are based on the infinite van der Corput sequence
(see, e.g., [31] and Niederreiter [81]) achieving ˛s D s � 1.

• Lattice point sets (or, more general, integration lattices) which were introduced
independently by Korobov [59] and Hlawka [54] and which are well explained
in the books of Niederreiter [81] and of Sloan and Joe [106]. Here it is known
that one can achieve ˛2 D 1 and ˛s D s for s � 3. Lattice point sets will be
discussed in Sect. 9.4.

• .t;m; s/-nets in base b which were introduced by Niederreiter [79,81] and which
are the main topic of the recent book [31]. Precursors of such nets go back to
constructions of Sobol’ [112] and Faure [41]. With nets one can achieve ˛s D
s � 1 for all s � 1. .t;m; s/-nets will be discussed in Sect. 9.3.1.
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For 1 < p < 1 and for any fixed s 2 N it is known that

discp.N; s/ �s;p

.logN/.s�1/=2

N
as N ! 1; (9.12)

where A �s;p B means that there are constants cs;p; Cs;p > 0 depending only on
s; p such that cs;pB � A � Cs;pB . Here the lower bound is due to Roth [98] for
p � 2 and Schmidt [102] for 1 < p < 2. The upper bound was shown first for the
L2-discrepancy by Davenport [16] for s D 2, by Roth [99, 100] and Frolov [42] for
arbitrary dimensions s 2 N and by Chen [11] for the generalLp case. But we know
even more. For any p > 1, any dimension s 2 N and any integer N � 2 there is an
explicit construction of a point set P consisting of N points in the s-dimensional
unit cube such that

Lp.P/ �s;p

.logN/.s�1/=2

N
;

where A �s;p B means that there is a constant c0s;p > 0 depending only on s
and p, such that A � c0s;pB . Such a construction was first given by Davenport
for p D s D 2 and by Chen and Skriganov [12] for the case p D 2 and arbitrary
dimension s. Later Skriganov [105] generalised this construction to theLp case with
arbitrary p > 1. This construction is also explained in Chen and Skriganov [13] and
in [31, Chapter 16]. A different construction was recently presented in [27].

9.2.2 Discrepancy and Tractability

In many applications the dimension s can be rather large. But in this case, the
asymptotically almost optimal bounds on the discrepancy given, e.g., in (9.11), are
even not useful for a modest numberN of points. For example, assume that for every
s;N 2 N we have a point set Ps;N in the s-dimensional unit cube of cardinality N
with star-discrepancy of at most

D�N .Ps;N / �s

.logN/s

N
:

Hence for any " > 0 the star-discrepancy behaves asymptotically like N�1C",
which is the optimal rate of convergence since for dimension s D 1 we already
have D�N .P1;N / � 1=.2N /. However, the function N ! .logN/s=N decreases
to zero not until N � es . For N � es this function is increasing which means
that for cardinality N in this range our discrepancy bounds are useless. But even
for moderately large dimension s, the value of es is huge, such that point sets
with cardinality N � es cannot be used for practical applications. Therefore, the
bound (9.11) is only useful if N is large compared to the dimension s.
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Hence we are interested in the discrepancy of point sets with not too large
cardinalityN (compared to s). To analyse this problem systematically one considers
the following quantity. For " > 0 let

N1.s; "/ D min fN 2 N W disc1.N; s/ � "g ;

the so-called inverse of the L1-discrepancy. This is the minimal cardinality N of a
point set in Œ0; 1/s such that we can achieve a star-discrepancy not larger than ".

It is known that

disc1.N; s/ � c

r
s

N
(9.13)

for all N; s 2 N from which it follows that

N1.s; "/ � Cs"�2 (9.14)

for some positive constants c and C . This was shown first by Heinrich, Novak,
Wasilkowski and Woźniakowski [48] by using deep results from probability theory.
Later, Aistleitner [2] showed by a simplified argument that in (9.13) one can even
choose c D 10.

Hence, the inverse of star-discrepancy depends only polynomially on s and
"�1. In Information-based Complexity (IBC) theory such a behaviour is called
polynomial tractability.

Furthermore, it is known that the dependence on the dimension s of the upper
bound on the N th minimal star-discrepancy in (9.14) cannot be improved. It was
shown by Hinrichs [51, Theorem 1] that there exist constants Qc; "0 > 0 such that

N1.s; "/ � Qcs="

for 0 < " < "0 and disc1.N; s/ � min."0; Qcs=n/.
The bound (9.13) is only an existence result. Until now no explicit construction

of a point set P of cardinality N in Œ0; 1/s for which D�N .P/ satisfies (9.13) is
known. A first constructive approach of such points for which the bound (9.13)
is nearly achieved is given in Doerr, Gnewuch and Srivastav [39] which is further
improved in Doerr and Gnewuch [38]. There, a deterministic algorithm is presented
that constructs point sets PN;s consisting of N points in Œ0; 1/s satisfying

D�N .PN;s/ D O

�
s1=2

N 1=2
.log.N C 1//1=2

�

in run-timeO.s log.sN /.�N /s/, where � D �.s/ D O..log s/2=.s log log s// ! 0

as s ! 1 and where the implied constants in the O-notations are independent of
s and N . However, this is still by far too expensive to obtain point sets for high
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dimensional applications. A small improvement for the run time is presented in
Doerr, Gnewuch, Kritzer and Pillichshammer [40]. However, this improvement has
to be payed with a worse dependence of the bound for the star-discrepancy on the
dimension s.

Let us now turn our attention to the analogue problem for the L2-discrepancy
instead of star-discrepancy. Contrary to the star-discrepancy here it makes little
sense to ask for the smallest cardinality of a point set with L2-discrepancy of at
most some " > 0. The reason for this is that the L2-discrepancy of the empty point
set in the s-dimensional unit cube is exactly 3�s=2, which follows from (9.5), or in
other words, disc2.0; s/ D 3�s=2. Thus for s large enough, the empty set has always
L2-discrepancy smaller than ". (This is not the case for the star-discrepancy which is
always one for the empty set.) This may suggest that for large s, the L2-discrepancy
is not properly scaled. In the following we therefore use the L2-discrepancy of the
empty point set disc2.0; s/ as a reference.

In general, for 1 � p � 1, s 2 N and " > 0 the inverse of the Lp-discrepancy
is hence defined as

Np.s; "/ D min
˚
N 2 N W discp.N; s/ � " discp.0; s/



:

For N2.s; "/ the situation is quite different compared to N1.s; "/. It was shown
in Sloan and Woźniakowski [110] and Woźniakowski [118] (in a much more general
setting) that for " 2 .0; 1/ we have

N2.s; "/ � .1 � "2/
�
9

8

�s
: (9.15)

Hence N2.s; "/ grows exponentially in dimension s. A direct proof of (9.15) is also
presented in [31, Proof of Proposition 3.58]. For more general results see Novak and
Woźniakowski [88, Chapter 11]. Hence the inverse of theL2-discrepancy depends at
least exponentially on the dimension s. In IBC theory this exponential dependence
on the dimension is called intractability or the curse of dimensionality. For a more
detailed discussion of tractability of various notions of discrepancy we refer to the
work of Novak and Woźniakowski [85–89].

9.2.3 Weighted Discrepancy and Strong Tractability

One of the reasons for introducing a weighted discrepancy in Sect. 9.1.4 is that with
this concept one can overcome the curse of dimensionality for the L2-discrepancy
under suitable conditions on the weights � . Also for the weighted star-discrepancy
one can obtain a weaker dependence on the dimension for suitable choices of
weights.
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For s;N 2 N and 1 � p � 1 and for a sequence � of weights we define

discp;�.N; s/ D inf
P�Œ0;1/s

jPjDN

Lp;� .P/:

For s 2 N and " > 0 the inverse of the weighted Lp-discrepancy is defined as

Np;�.s; "/ D min
˚
N 2 N W discp;� .N; s/ � " discp;�.0; s/



:

In a paper of Hinrichs, Pillichshammer and Schmid [52, Theorem 1] it has been
shown that there exists a constant C > 0 such that

disc1;�.N; s/ � C
1C p

log sp
N

max
;6Du
Is

�u

p
juj: (9.16)

Hence, if

sup
sD1;2;:::

max
;6Du
Œs�

�u

p
juj < 1; (9.17)

then there exists a C� > 0 such that

disc1;�.N; s/ � C�

1C p
log sp
N

;

and therefore

N1;�."; s/ �
�

QC�

�
1Cp

log s
	2
"�2

�
:

for some QC� > 0. This means that the weighted star-discrepancy is polynomially
tractable whenever the weights satisfy condition (9.17). Compared to the usual star-
discrepancy, see (9.14), here we have a much weaker dependence on the dimension
s. Note that (9.17) is a very mild condition on the weights. It is enough that the
weights 
i are decreasing and that 
i < 1 for an index i 2 N. Under a stronger
condition on the weights one can even obtain the following property.

If
P

i�1 
i < 1, then for any ı > 0 there exists a Cı;� > 0 such that

disc1;�.N; s/ � Cı;�

N1�ı (9.18)

and hence

N1;�."; s/ �
l QCı;�"� 1

1�ı

m
(9.19)
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for some QCı;� > 0. Since this bound is even independent of the dimension one says
that the weighted star-discrepancy is strongly polynomially tractable. The bound
in (9.18) can be achieved with a superposition of polynomial lattice point sets as
discussed in Sect. 9.5; see [31, Corollary 10.30].

We know from Sect. 9.2.2 that the classical L2-discrepancy is subject to the
curse of dimensionality. This disadvantage can be overcome when we change to
the weighted setting.

Averaging the squared weighted L2-discrepancy yields

Z
Œ0;1�sN

�
L2;� .f�1; : : : ;�N g/�2 d�1 � � � d�N

D 1

N

 
sY
iD1

�
1C 
2i

2

�
�

sY
iD1

�
1C 
2i

3

�!

and hence

disc2;� .N; s/ � 1

N 1=2

 
sY
iD1

�
1C 
2i

2

�
�

sY
iD1

�
1C 
2i

3

�!1=2
:

Note that disc2;� .0; s/ D
�
�1CQs

iD1
�
1C 
2i

3

		1=2
. Therefore, we obtain

disc2;�.N; s/

disc2;� .0; s/
� 1

N 1=2
exp

 
1

6

sX
iD1


2i

!
(9.20)

(for details we refer to Sloan and Woźniakowski [110], see also [31, Proof of
Theorem 3.64]). Hence if

P
i�1 
2i < 1 then there exists a C� > 0 such that

N2;�."; s/ � C�"
�2:

Again this bound is independent of the dimension s and hence the weighted L2-
discrepancy is strongly tractable as long as the squared weights 
2i , i � 1, are
summable. On the other hand, this condition is also necessary for strong tractability
which follows from (9.15) (see again [31, Proof of Theorem 3.64] for details).

If we only would have lim sups!1
Ps

iD1 
2i =.log s/, then we still obtain
from (9.20) that the weighted L2-discrepancy is polynomially tractable.

Further results on the tractability of weighted discrepancy can be found in [31],
Hinrichs, Pillichshammer and Schmid [52], Leobacher and Pillichshammer [71] and
Novak and Woźniakowski [88].
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9.2.4 Definition of Tractability for the Worst-Case Integration
Error

Let us return to the integration problem for functions from a reproducing kernel
Hilbert space H .K/. By e.H .K/IP/ we denote the worst-case error of a quasi-
Monte Carlo rule based on the point set P . The initial error is defined by

e.H .K/I ;/ D sup
f 2H .K/;kf kH .K/�1

ˇ̌
ˇ̌Z
Œ0;1�s

f .x/ dx

ˇ̌
ˇ̌ :

For " > 0 let NH .K/."; s/ denote the minimal number of nodes that are required
to reduce the initial error by a factor of ", i.e.,

NH .K/."; s/

D minfN 2 N W 9P � Œ0; 1/s; jPj D N and e.H .K/IP/ � "e.H .K/I ;/g:

This number is called the information complexity of QMC integration in H .K/.
Now one says that multivariate integration in the space H .K/ is polynomially

(QMC) tractable, if there exist non-negativeC; ˛; ˇ such that

NH .K/."; s/ � Cs˛"�ˇ

holds for all dimensions s 2 N and for all " > 0. If this inequality holds with
˛ D 0, then one says that multivariate integration in the space H .K/ is strongly
(polynomially) (QMC) tractable. The infima ˛ and ˇ are called the s-exponent and
the "-exponent of (strong) polynomial (QMC) tractability.

We remark that there are further notions of tractability such as, e.g., weak
tractability or T -tractability. For more information we refer to the books by Novak
and Woźniakowski [86, 88, 89].

9.3 Low Discrepancy Point Sets and Sequences

As stated at the beginning, quasi-Monte Carlo rules use deterministic constructions
of quadrature points which yield small integration errors. For the reproducing
kernel Hilbert spaces on Œ0; 1�s , we know from Sect. 9.1 that this amounts to
constructing point sets with small discrepancy. Explicit constructions of low
discrepancy sequences where given by Sobol [112], Faure [41], Niederreiter [79]
and Niederreiter-Xing [82]. The following section gives an introduction to the
underlying ideas.
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9.3.1 Nets and Sequences

The aim is to construct a point set PN D fx0; : : : ;xN�1g (in this context it is
convenient to index the points from 0 rather than 1) such that the discrepancy
k�PN kLp converges with the (almost) optimal order. To do so, we discretise the
problem by choosing the point set PN such that the local discrepancy�PN .z/ D 0

for certain z 2 Œ0; 1�s (those z in turn are chosen such that the discrepancy of PN is
small, as we explain below).

It turns out that, if one chooses a base b � 2 and N D bm, for every dimension
s � 1 there exists a nonnegative integer t such that for all positive integersm there
exists a point set Pbm D fx0; : : : ;xbm�1g such that �Pbm

.z/ D 0 for all z D
.z1; : : : ; zs/ of the form

zi D ai

bdi
for 1 � i � s;

where 0 < ai � bdi is an integer and d1 C � � � C ds � m � t with d1; : : : ; ds 2 N0.
We stress that the value of t can be chosen independently ofm (but has to dependent
on s). A point set Pbm which satisfies this property is called a .t;m; s/-net in base
b. An equivalent description of .t;m; s/-nets in base b is given in the following
definition.

Definition 1. Let b � 2, m; s � 1 and 0 � t � m be integers. A point set Pbm D
fx0; : : : ;xbm�1g � Œ0; 1/s is called a .t;m; s/-net in base b, if for all d1; : : : ; ds 2
N0 with d1 C � � � C ds D m � t , the elementary interval

sY
iD1

�
ai

bdi
;
ai C 1

bdi

�

contains exactly bt points of Pbm for all integers 0 � ai < b
di .

A sequence of points S D .x0;x1; : : :/ � Œ0; 1/s is called a .t; s/-sequence in
base b, if for all k � 1 and m > t the point set

fx.k�1/bm; : : :xkbm�1g

is a .t;m; s/-net in base b.

Clearly, every point set Pbm in Œ0; 1/s is a .t;m; s/-net in base b with t D m.
Smaller values of t imply a stronger condition on the point set since elementary
intervals of higher resolution are considered. This implies better distribution
properties of the point set. However, a necessary condition such that a .0;m; s/-net
in base b exists is s � b C 1, and a necessary condition such that a .0; s/-sequence
in base b exists is s � b. On the other hand, for fixed base b, for a .t; s/-sequence
to exist we must have t � cbsCdb for some constants cb > 0 and db which depend
on b but not on s. The parameter t is often referred to as the quality parameter of
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ttt

Fig. 9.2 A .0; 4; 2/-net in
base 2

the net. An introduction into the theory of .t;m; s/-nets and .t; s/-sequences can be
found in [31] and in Niederreiter [81, Chapter 4].

As an example, Fig. 9.2 shows a .0; 4; 2/-net in base 2 which is a 24 D 16 element
point set in Œ0; 1/2 where every elementary interval

�
A

2d
;
AC 1

2d

�


�
B

24�d
;
B C 1

24�d

�

for d 2 f0; 1; 2; 3; 4g, A 2 f0; : : : ; 2d � 1g and B 2 f0; : : : ; 24�d g contains exactly
one point.

9.3.2 Digital Nets and Sequences

Explicit constructions of .t;m; s/-nets can be obtained using the digital construction
scheme. Such point sets are then called digital nets (or digital .t;m; s/-nets if the
point set is a .t;m; s/-net).

To describe the digital construction scheme, let b be a prime number and let Zb
be the finite field of order b (a prime power and the finite field Fb could be used as
well) and let d;m 2 N. Let C1; : : : ; Cs 2 Z

dm�m
b be s matrices of size dm
m with

elements in Zb (the so-called generating matrices). The i th coordinate xn;i of the
nth point xn D .xn;1; : : : ; xn;s/, 0 � n < bm and 1 � i � s, of the digital net is
obtained in the following way.

9.3.2.1 Digital Construction Scheme

• For 0 � n < bm let n D n0Cn1bC� � �Cnm�1bm�1 be the base b representation
of n and let n D .n0; : : : ; nm�1/> 2 Z

m
b be the digit vector of n.

• Let

yn;i D Cin:
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• For yn;i D .yn;i;1; : : : ; yn;i;dm/
> 2 Z

dm
b set

xn;i D yn;i;1

b
C � � � C yn;i;dm

bdm
:

In order to obtain a sequence of points x0;x1; : : : one uses generating matrices
of size 1
1, that is, C1; : : : ; Cs 2 Z

1�1
b . Such a sequence is then called a digital

sequence (or digital .t; s/-sequence if the sequence is a .t; s/-sequence).
The classical construction of digital nets proposed by Niederreiter [81]

uses d D 1.
The search for .t;m; s/-nets and .t; s/-sequences has now been reduced to

finding suitable matrices C1; : : : ; Cs. The geometric property of .t;m; s/-nets can
also be translated into an algebraic property for the generating matrices.

Definition 2. Let b be prime andm; s � 1 be integers. Then the point set generated
by the matrices C1; : : : ; Cs 2 Z

m�m
b is called a digital .t;m; s/-net over Zb if for all

d1; : : : ; ds 2 N0 with
Ps

iD1 di � m � t the system of vectors

c1;1; : : : ; c1;d1 ; : : : ; cs;1; : : : ; cs;ds 2 Z
m
b ;

where ci;k denotes the kth row of Ci , is linearly independent over Zb .
The sequence generated by the matrices C1; : : : ; Cs 2 Z

1�1
b is called a

digital .t; s/-sequence over Zb if for all m � t the left-upper m 
 m submatrices
C
.m/
1 ; : : : ; C

.m/
s of C1; : : : ; Cs generate a digital .t;m; s/-net over Zb .

In Niederreiter [81] it has been shown that a digital .t;m; s/-net over Zb is a
.t;m; s/-net in base b and that a digital .t; s/-sequence over Zb is a .t; s/-sequence
in base b.

Explicit constructions of suitable generating matrices are available, see [31] and
Niederreiter [81]. We describe the construction by Niederreiter as an example.

Let s 2 N, b be a prime number and let p1; : : : ; ps 2 ZbŒx� be distinct monic
irreducible polynomials over Zb . Let ei D deg.pi / for 1 � i � s. For 1 � i � s,
j � 1 and 0 � k < ei , consider the expansions

xei�1�k

pi .x/j
D
1X
rD0

a.i/.j; k; r/x�r�1

over the field Zb..x
�1// of formal Laurent series. Then we define the matrix Ci D

.c
.i/
j;r /j�1;r�0 by

c
.i/
j;r D a.i/.Q C 1; k; r/ 2 Zb for 1 � i � s; j � 1; r � 0; (9.21)

where j � 1 D Qei C k with integers Q D Q.i; j / and k D k.i; j / satisfying
0 � k < ei . Digital sequences for which generating matrices are given by (9.21) are
called Niederreiter sequences. The following result holds:
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Theorem 3 (Niederreiter [79, Theorem 1], Dick and Niederreiter [26]). The
digital sequence with generating matrices C1; : : : ; Cs 2 Z

1�1
b given by (9.21)

is a .t; s/-sequence in base b with

t D
sX
iD1
.ei � 1/:

If pi .x/ D x � i � 1 2 ZbŒx� for 1 � i � s, then we obtain the digital
.0; s/-sequence over Zb which is known as Faure sequence [41]. By setting b D 2,
p1.x/ D x 2 Z2Œx� and p2; : : : ; ps are distinct primitive polynomials over Z2, then
we obtain Sobol’ sequences [112].

9.3.3 Discrepancy Bounds

We have obtained constructions of .t;m; s/-nets and .t; s/-sequences which yield
uniformly distributed point sets and sequences. These nets are designed such that
the local discrepancy is 0 for many points. Since the discrepancy can only vary
slowly, one can expect that the discrepancy of the net itself is small. This is indeed
the case. For instance, the following classical result holds.

Theorem 4 (Niederreiter [81, Theorems 4.5 and 4.6]). The star-discrepancy of a
.t;m; s/-net P in base b is bounded by

D�bm.P/ � b�.m�t /
s�1X
iD0

 
s � 1
i

! 
m � t
i

!�
b

2

�i

for b � 3, and for b D 2 we have

D�bm.P/ � 2�.m�t /
s�1X
iD0

 
m � t
i

!
:

To illustrate the basic idea for the proof of this discrepancy bound we show the
result in the most simple case s D b D 2 and t D 0. A proof for the general result
can be found in [31, Proof of Corollary 5.3].

Proof. For a measurable set C letA.C / denote the number of elements of P which
belong to C .

We consider an interval B D Œ0; ˛/ 
 Œ0; ˇ/ where the dyadic digit expansion of
˛ and ˇ is given by

˛ D a1

2
C a2

22
C � � � C am

2m
C � � � ;

ˇ D b1

2
C b2

22
C � � � C bm

2m
C � � � :
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The basic idea is to approximate the interval B from the interior and from the
exterior with disjoint unions of elementary intervals. Let

I1 WD
h
0;
a1

2

	


�
0;
b1

2
C � � � C bm�1

2m�1

�
;

J1 WD
h
0;
a1

2

	


�
0;
b1

2
C � � � C bm�1

2m�1
C 1

2m�1

�
:

Then we have I1 � B and

I1 D
2m�1b1C			Cbm�1�1[

kD0

h
0;
a1

2

	


�
k

2m�1
;
k C 1

2m�1

�

is a disjoint union of two-dimensional elementary intervals of area 2�m. By the
.0;m; 2/-net property we know that each of these intervals contains exactly one
element of P . Hence it follows that A.I1/ D 2m�.I1/. In the same way it follows
that A.J1/ D 2m�.J1/.

Let further

Ik WD
ha1
2

C � � � C ak�1
2k�1

;
a1

2
C � � � C ak

2k

	


�
0;
b1

2
C � � � C bm�k

2m�k

�
;

Jk WD
ha1
2

C � � � C ak�1
2k�1

;
a1

2
C � � � C ak

2k

	


�
0;
b1

2
C � � � C bm�k

2m�k
C 1

2m�k

�

for 1 � k � m � 1 and put

Im WD
ha1
2

C � � � C am�1
2m�1

;
a1

2
C � � � C am

2m

	

 Œ0; 0/ D ;;

Jm WD
ha1
2

C � � � C am�1
2m�1

;
a1

2
C � � � C am

2m

	

 Œ0; 1/:

Using the .0;m; 2/-net property again, it follows, in the same way as for I1 and J1,
that A.Ik/ D 2m�.Ik/ and A.Jk/ D 2m�.Jk/ for all 1 � k � m. Furthermore, note
that �2.Jk n Ik/ � 2�m for all 1 � k � m.

Putting

B WD
m[
kD1

Ik;

B WD
m[
kD1

Jk [
��
a1

2
C � � � C am

2m
;
a1

2
C � � � C am

2m
C 1

2m

�

 Œ0; 1/

�
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we have B � B � B; A.B/ D 2m�2.B/ and, by using the .0;m; 2/-net property
again, A.B/ D 2m�2.B/. Hence

�2.B/ D 2�mA.B/ � 2�mA.B/ � 2�mA.B/ D �2.B/

and

��2.B/ � ��2.B/ � ��2.B/:

Therefore, we obtain

�2.B/� �2.B/ � 2�mA.B/� �2.B/ � �2.B/ � �2.B/;

and hence

j2�mA.B/ � �2.B/j � �2.B n B/ � m

2m
C 1

2m
D 1

2m

1X
iD0

 
m

i

!
;

independent of the choice of B . ut
The until now best asymptotic result for the star-discrepancy of general .t;m; s/-

nets in base b has been shown by Kritzer [61].

Theorem 5 (Kritzer [61]). The star-discrepancy of a .t;m; s/-net P in base b
with m > 0 satisfies

bmD�bm.P/ � B.s; b/btms�1 CO.btms�2/;

where the implied O-constant depends only on b and s and where

B.s; b/ D
�
b

2

�s
1

.b C .�1/b/.s � 1/Š.logb/s�1
:

Thus, .t;m; s/-nets achieve a convergence order of N�1.logN/s�1. Notice that
since Lp.P/ � D�N .P/ for all 1 � p � 1, this bound also applies to the Lp-
discrepancy. Apart from the power in the logN factor, it is known that this rate of
convergence is best possible.

9.3.4 Randomised Quasi-Monte Carlo

So far we have considered deterministic constructions of quadrature points in
the unit cube. The advantage of quadrature algorithms based on deterministic
constructions is that the convergence rate of the integration error improves for



9 Discrepancy Theory and Quasi-Monte Carlo Integration 565

functions with integrable partial mixed derivatives of order up to 1, which is not
the case for so-called standard Monte Carlo (MC). Standard MC approximates the
integral

R
Œ0;1�s

f .x/ dx with 1
N

PN
nD1 f .zn/, where z1; : : : ; zN are uniformly i.i.d.

in Œ0; 1�s . However, there is also some merit in choosing the quadrature points
randomly in Œ0; 1�s as in the standard MC algorithm. The most obvious case of the
usefulness of this choice is if the integrand does not have sufficient smoothness for
QMC, in fact, standard MC works for functions in L2.Œ0; 1�s/. Another advantage is
that one can obtain a statistical estimation of the variance of the estimator. Let

OI .f I z1; : : : ; zN / D
Z
Œ0;1�s

f .x/ dx � 1

N

NX
nD1

f .zn/:

Since the quadrature points z1; : : : ; zN are chosen randomly from the uniform
distribution, for each given f , the quantity OI .f I z1; : : : ; zN / is a random variable.
The variance Var. OI .f I z1; : : : ; zN // of OI .f I z1; : : : ; zN / satisfies

Var. OI .f I z1; : : : ; zN // D E

� OI 2.f I z1; : : : ; zN /
	

D
Z
Œ0;1�s

: : :

Z
Œ0;1�s

OI 2.f I z1; : : : ; zN / dz1 : : : dzN

D 1

N

 Z
Œ0;1�s

f 2.x/ dx �
�Z

Œ0;1�s
f .x/ dx

�2!

D Var.f /

N
;

which shows the convergence rate of order N�1=2 of the standard deviation

Std. OI .f I z1; : : : ; zN // D
q

Var. OI .f I z1; : : : ; zN //

to the correct value. For f 2 L2.Œ0; 1�s/, the variance decays with order N�1=2 for
the standard MC method. Functions with higher order smoothness do not yield an
improved rate of convergence for standard MC.

The aim of randomised QMC is to construct a hybrid of MC and QMC with
‘the best of both worlds’. To define a setting to analyse the variance in this case,
one considers the randomised error, which one can also call the worst-case-root-
mean-square error. That is, let B be some Banach space with norm k � kB. Then
the randomised error is defined as

eran.BI QP/ D sup
f 2B;kf kB�1

q
Var. OI .f //;
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where QP D fz1; : : : ; zN g is some randomised point set in Œ0; 1�s (concrete examples
of such point set are discussed below). In the remainder of this subsection we
consider B to be the reproducing kernel Hilbert space with reproducing kernel
K.x;y/ D Qs

iD1.1C 
i min.1 � xi ; 1 � yi //, i.e., B D H .K/.
There are several ways of obtaining randomised .t;m; s/-nets and .t; s/-

sequences, such that the .t;m; s/-net and .t; s/-sequences structure, respectively,
are preserved. A simple way of doing so is by using a digital shift � 2 Œ0; 1�s .
Assume that fx0; : : : ;xbm�1g � Œ0; 1/s forms a .t;m; s/-net in base b, where
xn D .xn;1; : : : ; xn;s/ and xn;i D xn;i;1b

�1Cxn;i;2b�2C� � � . Let � D .�1; : : : ; �s/ 2
Œ0; 1/s , with �i D �i;1b

�1 C �i;2b
�2 C � � � , be i.i.d. uniformly distributed in Œ0; 1/s .

In all the b-adic representations we assume that infinitely many digits are different
from b � 1.

We now define the randomised point set fz0; : : : ; zbm�1g, where zn D
.zn;1; : : : ; zn;s/ and zn;i D zn;i;1b�1 C zn;i;2b�2 C � � � . This is done by defining
the digits zn;i;k 2 f0; : : : ; b � 1g by

zn;i;k 	 xn;i;k C �i;k .mod b/ for all 0 � n < bm; 1 � i � s; k � 1: (9.22)

The point set z0; : : : ; zbm�1 is called a randomly digitally shifted .t;m; s/-net. It can
be shown that, with probability 1, the randomly digitally shifted .t;m; s/-nets in
base b are again .t;m; s/-nets in base b; see [28, Lemma 3].

There are also variations of this method. For instance, one can use (9.22) for
1 � k � m and set zn;i;k D 0 for k > m. Or one can use (9.22) for 1 � k � m

and choose zn;i;k uniformly i.i.d. in f0; : : : ; b � 1g for k > m. We call this method a
digital shift of depth m. The convergence rate of the randomised error for functions
from the reproducing kernel Hilbert spaces considered in Sect. 9.1.3 is of order
N�1.logN/.s�1/=2; see Chen and Skriganov [13], Cristea, Dick and Pillichsham-
mer [15], and [29]. However, it is known that the best possible convergence rate
of the randomised error for this function space is of order N�3=2.logN/c1.s/, again
with c1.s/ � s; see Bakhvalov [4] and also Novak [84]. We discuss in the following
a randomisation method for .t;m; s/-nets and .t; s/-sequences which yields an
improvement of the convergence rate of the randomised error for the reproducing
kernel Hilbert space with kernelK.x;y/ D Qs

iD1.1C 
i min.1� xi ; 1� yi//. This
method goes back to Owen [93–95] and is called Owen’s scrambling, see also [31,
Section 13.5].

Owen’s scrambling algorithm is best described for some generic point x 2
Œ0; 1/s , with x D .x1; : : : ; xs/ and xi D �i;1b

�1 C �i;2b
�2 C � � � . The scrambled

point shall be denoted by y 2 Œ0; 1/s , where y D .y1; : : : ; ys/ and yi D �i;1b
�1 C

�i;2b
�2 C � � � . The point y is obtained by applying permutations to each digit of

each coordinate of x. The permutation applied to �i;l depends on �i;k for 1 � k < l .
Specifically, �i;1 D �i .�i;1/, �i;2 D �i;�i;1 .�i;2/, �i;3 D �i;�i;1;�i;2 .�i;3/, and in general

�i;k D �i;�i;1;:::;�i;k�1
.�i;k/; (9.23)
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where �i;�i;1;:::;�i;k�1
is a random permutation of f0; : : : ; b � 1g. We assume that

permutations with different indices are chosen mutually independent from each
other and that each permutation is chosen with the same probability.

To describe Owen’s scrambling, for 1 � i � s let

˘i D f�i;�i;1;:::�i;k�1
W k 2 N; �i;1; : : : ; �i;k�1 2 f0; : : : ; b � 1gg

be a given set of permutations, where for k D 1 we set �i;�i;1;:::;�i;k�1
D �i , and let

˘ D .˘1; : : : ;˘s/. Then, on applying Owen’s scrambling using these permutations
to some point x 2 Œ0; 1/s , we write y D ˘ .x/ and yi D ˘i.xi / for 1 � i � s,
where y is the point obtained by applying Owen’s scrambling to x using the set of
permutations ˘ D .˘1; : : : ;˘s/.

For a .t; s/-sequence x0;x1; : : :, the Owen scrambled sequence y0;y1; : : : is then
given by yn D ˘ .xn/ for n � 0 (for .t;m; s/-nets one just uses 0 � n < bm). The
convergence rate of the randomised case error for Owen scrambled .t;m; s/-nets is
then

eran.H .K/I QP/ �s

.logN/.s�1/=2

N 3=2
: (9.24)

Further, Loh [72] even proved a central limit theorem for Owen scrambled .0;m; s/
nets.

Note that Owen’s scrambling is complicated to implement, since all the randomly
chosen permutations need to be stored. Therefore, several simplifications have been
introduced which simplify the randomisation but still achieve (9.24). The main idea
is to design randomisations such that Owen’s lemma [94, Lemma 2] still holds. This
then implies that also (9.24) still holds.

For instance, the following properties are sufficient for scrambling, see Hong and
Hickernell [55] and Matoušek [74]:

A. Each of the sets of permutations ˘i is sampled from the same distribution D
and these sampling are mutually independent.

B. If xi 2 Œ0; 1/ is any real number and ˘i is drawn from the distribution D , then
˘i.xi / is uniformly distributed in Œ0; 1/.

C. Let au D au;1b
�1 C au;2b

�2 C � � � for u D 1; 2 and cu D ˘.au/ D cu;1b
�1 C

cu;2b
�2 C � � � . Assume that a1;k D a2;k for 1 � k < r and a1;r ¤ a2;r . Then

a. c1;k D c2;k for 1 � k < r ;
b. .c1;r ; c2;r / is uniformly distributed on the set f.d; e/ 2 Z

2
b W d ¤ eg;

c. cu;k are independent for k > r and u D 1; 2.

Further simplifications are possible, since often the precise distribution does not
have to be known, only their first and second moments, see Matoušek [74].

A scrambling of digital nets which satisfies the conditions above and is easier to
implement than Owen’s scrambling is the following: Let C1; : : : ; Cs 2 Z

1�1
b be

generating matrices of a digital .t; s/-sequence overZb and letL1; : : : ; Ls 2 Z
1�1
b
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be non-singular, lower triangular matrices. We choose those matrices randomly such
that for Li D .�u;v/u;v�1, where �u;v 2 U f0; : : : ; b � 1g i.i.d. for u > v, �u;u 2
U f1; : : : ; b � 1g i.i.d. and �u;v D 0 for u < v. Further, let ei 2 Z

1
b be chosen i.i.d.

randomly in U f0; : : : ; b � 1g1. Then we obtain a scrambled sequence by setting

yn;i D LiCin C ei .mod b/ for 1 � i � s;

and for yn;i D .yn;i;1; yn;i;2; : : :/
> 2 Z

1
b we set

zn;i D yn;i;1b
�1 C yn;i;2b

�2 C � � �
and zn D .zn;1; : : : ; zn;s/ 2 Œ0; 1/s .

The sequence .z0; z1; : : :/ is again a .t; s/-sequence in base b with probability 1
and also satisfies the properties A, B, C. Therefore, the randomised error for such a
sequence is bounded by

eran.H .K/I QP/ �s

.logN/.s�1/=2

N 3=2
:

9.3.5 Higher Order Nets and Sequences

Quasi-Monte Carlo rules using digital nets as quadrature points, as described
above, achieve a convergence rate of the integration error of order N�1.logN/s

for functions of bounded variation. If the integrand has more smoothness, then
the above result does not yield a better rate of convergence. In [19, 20] it was
shown how to construct QMC rules which can achieve a convergence rate of order
N�˛.logN/˛s for integrands with square integrable partial mixed derivatives up
to order ˛ in each variable (we say that such functions have smoothness ˛ in the
following).

Let us now consider digital nets and digital sequences. Above we have seen that
an algebraic property of the generating matrices ensures that the corresponding dig-
ital net has small discrepancy. These digital nets are therefore useful as quadrature
points in a QMC algorithm. Similarly, we now explain the algebraic properties of the
generating matrices of the digital nets necessary such that the corresponding QMC
rules achieve the almost optimal rate of convergence for integrands of smoothness ˛.
The following definition is a special case of [20, Definition 4.3 and Definition 4.8].

Definition 6. Let ˛;m 2 N. Let C1; : : : ; Cs 2 Z
˛m�m
b be generating matrices of

a digital net and let ci;k denote the kth row of Ci . Then the point set generated by
C1; : : : ; Cs is a digital .t; ˛; ˛m 
 m; s/-net over Zb if for all integers 1 � ji;1 <

� � � < ji;�i � ˛m, 1 � i � s, such that

sX
iD1

min.˛;�i /X
kD1

ji;k � ˛m � t;
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the row vectors

c1;j1;1 ; : : : ; c1;j1;�1 ; : : : ; cs;js;1 ; : : : ; cs;js;�s

are linearly independent over Zb .
Let C1; : : : ; Cs 2 Z

1�1
b be the generating matrices of a digital sequence. If for

allm � t=˛ the left-upper ˛m
m submatricesC .˛m;m/
1 ; : : : ; C

.˛m;m/
m of C1; : : : ; Cs

generate a digital .t; ˛; ˛m 
m; s/-net, then the sequence generated by C1; : : : ; Cs
is a digital .t; ˛; s/-sequence over Zb .

There is an explicit construction method for such higher order nets and sequences
which works the following way.

9.3.5.1 Higher Order Net Construction

• Choose a .t;m; ˛s/-net in base b whose elements are of the form

xn D .xn;1; : : : ; xn;˛s / 2 Œ0; 1�˛s

and xn;i D xn;i;1b
�1 C � � � C xn;i;mb

�m C � � � for 1 � i � ˛s and 0 � n < bm.
• For 0 � n < bm define yn D .yn;1; : : : ; yn;s/ 2 Œ0; 1�s by

yn;i D
mX
jD1

X̨
kD1

xn;.i�1/˛Ck;j b�k�.j�1/˛ for 1 � i � s:

The net fy0; : : : ;ybm�1g is called a higher order net. This construction can easily
be extended to higher order sequences; see [31, Section 15.2]. Furthermore, one can
also apply the construction method to the generating matrices directly.

The following explicit construction method of suitable generating matrices was
introduced in [19, 20].

Let ˛ � 1 and let C1; : : : ; Cs˛ be the generating matrices of a digital .t 0; m; ˛s/-
net. As we will see later, the choice of the underlying digital .t 0; m; ˛s/-net has
a direct impact on the bound of the t-value of the digital .t; ˛; ˛m 
 m; s/-net,
which was proven in [19, 20]. Let Cj D .cj;1; : : : ; cj;m/> for 1 � j � ˛s; i.e., cj;l
are the row vectors of Cj . Now let the matrix C .˛/

j consist of the first rows of the
matrices C.j�1/˛C1; : : : ; Cj˛, then the second rows of C.j�1/˛C1; : : : ; Cj˛, and so

on, in the order described in the following: The matrix C .˛/
j is a ˛m
mmatrix; i.e.,

C
.˛/
j D .c.˛/j;1 ; : : : ; c

.˛/
j;˛m/

>, where c.˛/j;l D cu;v with l D .v � j /˛ C u, 1 � v � m,
and .j � 1/˛ < u � j˛ for 1 � l � ˛m and 1 � j � s.

We remark that this construction can be extended to digital .t; ˛; s/-sequences by
letting Cj D .cj;1; cj;2; : : : />, for 1 � j � ˛s, denote the generating matrices of a

digital .t 0; ˛s/-sequence; the resulting matrices C .˛/
j , 1 � j � s, are now 1 
 1
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matrices, where again we have C .˛/
j D .c.˛/j;1 ; c

.˛/
j;2 ; : : :/

>, where c.˛/j;l D cu;v with
l D .v � j /˛ C u, v � 1, and .j � 1/˛ < u � j˛ for l � 1 and 1 � j � s. We
have the following result on the quality parameter:

Theorem 7 ([20]). Let ˛ 2 N and let C1; : : : ; C˛s be the generating matrices of
a digital .t 0; m; ˛s/-net over Zb of prime order b. Let C .˛/

1 ; : : : ; C
.˛/
s be defined as

above. Then the matrices C .˛/
1 ; : : : ; C

.˛/
s are the generating matrices of a digital

.t; ˛; ˛m 
m; s/-net over Zb with

t D ˛min

�
m; t 0 C

�
s.˛ � 1/

2

��
:

Furthermore, form D 1, the matrices C .˛/
1 ; : : : ; C

.˛/
s obtained from the generating

matrices C1; : : : ; C˛s of a .t 0; ˛s/-sequence over Zb are the generating matrices of
a digital .t; ˛; s/-sequence over Zb with

t D ˛

�
t 0 C

�
s.˛ � 1/

2

��
:

A slight improvement of this result for some cases can be found in Dick and
Kritzer [25].

We have the following result on the absolute error for the integration of function
with smoothness ˛ with QMC rules based on higher order nets.

Theorem 8 ([20], [31, Chapter 15]). Let fy0; : : : ;ybm�1g be a higher order net
constructed from a digital .t 0; m; ˛s/-net in base b. Assume that the integrand f
has smoothness ˛. Then the absolute error converges with order

ˇ̌
ˇ̌̌Z
Œ0;1�s

f .x/ dx � 1

bm

bm�1X
nD0

f .yn/

ˇ̌
ˇ̌̌ �s;b

m˛s

bm˛�t
;

where t D ˛min.t 0 C bs.˛ � 1/=2c; m/.
Furthermore, it has been shown that, asymptotically, the t-value achieved in the

above construction is optimal in the following sense.

Theorem 9 (Dick and Baldeaux [24, Theorem 5]). Assume that t; ˛; s; b 2 N, b
prime, are such that there exists a .t; ˛; s/-sequence over Zb . Then

t > s
˛.˛ � 1/

2
� ˛:

Since explicit constructions of .t; s/-sequences with t D O.s/ are known, see
Niederreiter and Xing [83], it follows that the asymptotic behaviour of the t-value
of digital .t; ˛; s/-sequences is

t �b s˛
2:



9 Discrepancy Theory and Quasi-Monte Carlo Integration 571

Furthermore, explicit constructions can be obtained using the method from [19, 20]
introduced above. However, it would be interesting to find other explicit construc-
tions of higher order nets and sequences which can achieve smaller values of t for
small values of m and s.

9.3.6 Scrambled Higher Order Nets

In the previous section we have seen how QMC rules can be constructed such
that the integration error converges with order N�˛.logN/˛s . Then, the question
arises whether there is also a generalisation of Owen’s scrambling such that the
randomised error achieves a higher rate of convergence as well. An affirmative
answer can be given with the following construction of ‘higher order scrambled’
nets.

9.3.6.1 Scrambled Higher Order Nets

• Choose a .t;m; ˛s/-net in base b whose elements are of the form xn D
.xn;1; : : : ; xn;˛s/ 2 Œ0; 1�˛s and xn;i D xn;i;1b

�1 C � � � C xn;i;mb
�m C � � � for

1 � i � ˛s and 0 � n < bm.
• Apply Owen’s scrambling or one of its simplifications to the digital net to obtain

randomised point set fz0; : : : ; zbm�1g where zn D .zn;1; : : : ; zn;˛s/ 2 Œ0; 1�˛s and
zn;i D zn;i;1b�1 C � � � C zn;i;mb�m C � � � for 1 � i � ˛s and 0 � n < bm.

• For 0 � n < bm define yn D .yn;1; : : : ; yn;s/ 2 Œ0; 1�s by

yn;i D
1X
jD1

X̨
kD1

zn;.i�1/˛Ck;j b�k�.j�1/˛ for 1 � i � s:

The net fy0; : : : ;ybm�1g is called a scrambled higher order net. Again, this
construction can easily be extended to higher order sequences.

The points y0;y1; : : : can be used in a QMC rule to obtain an improved
convergence rate for the randomised error for functions with smoothness ˛.

Theorem 10 ([22, Theorem 10]). Let fy0; : : : ;ybm�1g be a scrambled higher
order net constructed from a digital .t;m; ˛s/-net in base b. Assume that the
integrand f has smoothness ˛. Then the randomised error converges with order

q
Var. OI .f // �s;b

m.˛C1/s=2

b.m�t /.˛C1=2/
:



572 J. Dick and F. Pillichshammer

Apart from the power of the logb N.D m/ factor, this convergence order cannot
be improved; see Bakhvalov [4] and also Novak [84].

A few remarks are in order. One cannot change the order in the construction
of higher order scrambled nets and sequences. That is, if one applies the higher
order construction first, and the scrambling method afterwards, one does not obtain
an improved rate of convergence. Further, currently there is no known scrambling
method for general higher order digital nets and sequences (only for higher order
digital nets or sequences which have been obtain using the higher order construction
above). Thus, for instance, the scrambling method above cannot be applied to higher
order polynomial lattice rules, which will be defined below.

9.3.7 Digitally Shifted Nets

Digital shifts of depth m of a .t;m; s/-net have already been introduced in
Sect. 9.3.4. Here we consider a so-called simplified shift of depthm.

Assume that P D fx0; : : : ;xbm�1g forms a .t;m; s/-net in base b where xn D
.xn;1; : : : ; xn;s/ and xn;i D xn;i;1b

�1 C xn;i;2b
�2 C � � � . Choose � D .�1; : : : ; �s/

where �i D �i;1b
�1 C � � � C �i;mb

�m and �i;j are independent and uniformly
distributed in f0; : : : ; b � 1g.

We now define the randomised point set fz0; : : : ; zbm�1g, where zn D
.zn;1; : : : ; zn;s/ and

zn;i D zn;i;1
b

C � � � C zn;i;m
bm

C 1

2bm
;

where

zn;i;k 	 xn;i;k C �i;k .mod b/ for all 0 � n < bm; 1 � i � s; 1 � k � m:

Such a digital shift is called a simplified digital shift of depth m. We denote a
point set P that is digitally shifted by a simplified digital shift of depthm by OP� .

Note that for the simplified digital shift, we only have bsm possibilities, which
means only m digits per dimension need to be selected for performing a simplified
digital shift.

A simplified digital shift (of depth m) preserves the .t;m; s/-net structure; see
[31, Section 4.4.4].

Theorem 11 (Cristea, Dick and Pillichshammer [15, Theorem 1]). Let P be a
digital .t;m; s/-net over Zb with generating matrices C1; : : : ; Cs . Then the mean
square weighted L2-discrepancy of OP� is given by
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EŒL22;� .
OP� /�

D
X
;6Du
Œs�

�2u

"
2

 
1

3juj
�
�
1

3
C 1

24b2m

�juj!
C 1

bm2juj

 
1 �

�
1 � 1

3bm

�juj!#

C
X

;6Du�Œs�
uDfu1;:::;ueg

�2u

3juj
bm�1X

k1;:::;keD0

.k1;:::;ke/6D.0;:::;0/

C>

u1 k1C���CC>

ue keD0

eY
iD1

 .ki /;

where  .0/ D 1 and

 .k/ D 3

2b2.rC1/

�
1

sin2.�r�=p/
� 1

3

�

if k D �0 C �1b C � � � C �rb
r with �i 2 f0; : : : ; b � 1g and �r 6D 0 .

The proof of this result is based on a Walsh expansion of the Warnock-type
formula (9.6) and on the orthogonality properties of Walsh functions. A proof for
the unweighted case can also be found in [31, Section 16.5]. An estimate of the
sums involved in the above formula yields the following result.

Corollary 12 (Cristea, Dick and Pillichshammer [15, Theorem 2]). Let P be
a digital .t;m; s/-net over Zb with t < m. Then the mean square weighted L2-
discrepancy of OP� is bounded by

EŒL22;� .
OP� /� � 1

b2m

X
;6Du
Œs�

�2u

"
1

6
C b2t

�
b2 � b C 3

6

�juj
.m � t/juj�1

#
:

For example, in the unweighted case, i.e., � D 1 D .1; 1; : : :/ we obtain

EŒL22;1.
OP� /� �s;b

.m � t/s�1
b2.m�t /

:

In particular, for every digital .t;m; s/-netP overZb there exists a simplified digital
shift � � 2 f0; 1=bm; : : : ; .bm � 1/=bmgs of depthm such that

L2;1. OP� �/ �s;b

.m � t/
s�1
2

bm�t
:

According to Roth’s lower bound (9.12), for a .0;m; s/-net this bound is best
possible in the order of magnitude in m.

Let Mb;m be the set of all m 
 m matrices with entries over Zb and let Cs;b WD
f.C1; : : : ; Cs/ W Ci 2 Mb;m for 1 � i � sg. Let 1=2 < � � 1. Then consider the
average
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Abm;s;� WD 1

bm
2s

X
.C1;:::;Cs/2Cs;b

�
EŒL22;� .

OP� /�
	�
: (9.25)

Using Theorem 11 we have

Abm;s;� � 1

b2�m

X
;6Du
Œs�

�2�u

3�2�juj

�
1C 1

3bm

��juj

C 1

bm
2juj

X
;6Du�Œs�

uDfu1;:::;ueg

�2�u

3�juj
bm�1X

k1;:::;keD0

.k1;:::;ke/6D.0;:::;0/

eY
iD1

 .ki /
�

X
Cu1 ;:::;Cue2Mb;m

C>

u1 k1C���CC>

ue keD0

1

Let ki D �i;0 C �i;1b C : : : C �i;m�1bm�1 and let ci;j be the j th row vector of the
matrix Ci . Since at least one ki 6D 0 it follows that there is a �i;j 6D 0. First, assume
that �1;0 6D 0. Then for any choice of

cu1;2; : : : ; cu1;m; cu2;1; : : : ; cu2;m; : : : ; cue ;1; : : : ; cue;m 2 Z
m
b

we can find exactly one vector cu1;1 2 Z
m
b such that C>u1 k1 C � � � C C>ue ke D 0 is

fulfilled. The same argument holds with �1;0 replaced by �i;j and cu1;1 replaced by
cui ;jC1. Therefore, we have

X
Cu1 ;:::;Cue2Mb;m

C>

u1 k1C���CC>

ue keD0

1 D bm
2juj�m

and hence, after some elementary algebra, we obtain for 1=2 < � � 1,

Abm;s � 1

b2�m

X
;6Du
Œs�

�2�u

3�

�
2

3

��juj
C 1

bm

X
;6Du
Œs�

�2�u

3�juj

 
1C

bm�1X
kD1

 .k/�

!juj

� 1

bm

X
;6Du
Œs�

�2�u c
juj
b;�

� 1

bm

sY
iD1
.1C cb;�


2�
i /;

for some cb;� > 0.
Thus, for 1=2 < � � 1, there exists a sequence . OP� �/m�1 of simplified digitally

shifted digital nets over Zb for which we have

L2;� . OP� �/ � 1

bm=.2�/

sY
iD1
.1C cb;�


2�
i /

1=.2�/ for all m 2 N:
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If
P

i�1 
2�i < 1, then we obtain

disc2;� .bm; s/

disc2;�.0; s/
� L2;� .P� �

m
/

disc2;� .0; 1/

� 1

bm=.2�/
exp

 
1

2�

sX
iD1

log.1C cb;�

2�
i /

!
disc2;�.0; 1/�1

� 1

bm=.2�/
exp

 
cb;�

2�

1X
iD1


2�i

!
disc2;�.0; 1/�1 DW Cb;�;�

bm=.2�/
;

and this bound is independent of the dimension s. For " > 0 choose m 2 N such
that bm�1 < d.Cb;�;�"�1/2�e DW N � bm. Then we have

disc2;� .bm; s/

disc2;� .0; s/
� "

and hence

N2;�."; s/ � bm < bN D bd.Cb;�;�"�1/2�e:

This means that the weighted L2-discrepancy is strongly tractable with "-exponent
at most 2� whenever

P
i�1 
2�i < 1 for some � 2 .1=2; 1�, and the corresponding

bounds can be achieved with digitally shifted digital nets.

9.4 Lattice Rules

In this section we present another construction method for low-discrepancy point
sets in Œ0; 1�s which can be used for QMC algorithms. In the following we write
fxg D x � bxc for the fractional part of a nonnegative real number. For vectors
x D .x1; : : : ; xs/ 2 R

s we set fxg WD .fx1g; : : : ; fxsg/.
Definition 13. For an integer N � 2 and for g 2 Z

s the point set P.g; N /

consisting of the N elements

xn D
n n
N

g
o

for all 0 � n < N

is called a lattice point set. A QMC rule using P.g; N / as underlying node set is
called a lattice rule. Hence a lattice rule is of the form

QN;g.f / D 1

N

N�1X
nD0

f
�n n
N

g
o	
:
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Lattice point sets were introduced independently by Korobov [59] and
Hlawka [54]. A detailed treatise can be found in the books of Niederreiter [81]
and of Sloan and Joe [106].

An important property of a lattice point set P.g; N / is that for all h 2 Z
s we

have

N�1X
nD0

exp
�
2�i

n

N
g � h

	
D
�
N if g � h D 0 .mod N/;
0 otherwise:

(9.26)

This property motivates the following definition.

Definition 14. The dual lattice of the lattice point set P.g; N / from Definition 13
is defined as

Lg;N D fh 2 Z
s W h � g 	 0 .mod N/g:

Property (9.26) is the reason why it is most convenient to consider one-periodic
functions for the analysis of the integration error of lattice rules. This analysis can
again be described in terms of a reproducing kernel as explained in Sect. 9.1.

9.4.1 The Worst-Case Error of Lattice Rules in Weighted
Korobov Spaces

We consider a reproducing kernel of the form

KKor.x;y/ D
X
h2Zs

!h exp.2�ih � .x � y//

for all x and y in Œ0; 1�s with some weights !h 2 R
C for all h 2 Z

s such
that

P
h2Zs !h < 1, which may also depend on other parameters. This choice

guarantees that the kernel is well defined, since

jKKor.x;y/j � KKor.x;x/ D
X
h2Zs

!h < 1:

Obviously, the function KKor.x;y/ is symmetric in x and y and it is easy to show
that it is also positive definite. Therefore,KKor.x;y/ is indeed a reproducing kernel.

Common examples for !h are the following ones:

• !h D r˛;�.h/
�1 where ˛ > 1 is a real, � D .
1; 
2; : : :/ is a sequence of positive

reals, for h D .h1; : : : ; hs/ we put r˛;�.h/ D Qs
iD1 r˛;
i .hi /, and for h 2 Z and


 > 0 we put
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r˛;
 .h/ D
�
1 if h D 0;


�1jhj˛ if h 6D 0:

In this case we will write KKor D Ks;˛;� . In the unweighted case, i.e., � D
.1; 1; : : :/, we simply write r˛ instead of r˛;� andKKor D Ks;˛.

• !h D !khk1 with some ! 2 .0; 1/, where khk1 WD jh1j C � � � C jhsj for h D
.h1; : : : ; hs/. In this case we will write KKor D K 0s;! .

Associated with this reproducing kernel is now the Hilbert space H .KKor/

of functions f W Œ0; 1�s ! R which are one-periodic in each variable. The
corresponding inner product is given by

hf; giH .KKor/ D
X
h2Zs

!�1h
Of .h/ Og.h/; (9.27)

where Of .h/ D R
Œ0;1�s

f .x/ exp.�2�ih � x/ dx is the hth Fourier coefficient of f .
As usual, the norm in H .KKor/ is defined by

k � k2H .KKor/
D hf; f iH .KKor/ D

X
h2Zs

!�1h j Of .h/j2:

The function space H .KKor/ is called a Korobov space.
Using the approach from Sect. 9.1 it follows that the worst-case error for

integration in H .KKor/ using a quasi-Monte Carlo rule based on a point set
P D fx0; : : : ;xN�1g is given by

e2.H .KKor/IP/ D sup
f 2H .KKor/

kf kH .KKor/
�1

e2.f IP/

D
Z
Œ0;1�s

Z
Œ0;1�s

KKor.x;y/ dx dy

� 2

N

N�1X
nD0

Z
Œ0;1�s

KKor.x;xn/ dx C 1

N 2

NX
n;mD1

KKor.xn;xm/

D
X

h2Zsnf0g
!h

ˇ̌̌
ˇ̌ 1
N

N�1X
nD0

exp.2�ih � xn/

ˇ̌̌
ˇ̌
2

:

If the QMC rule is a lattice rule, then, using (9.26) and the notation from
Definition 14, we obtain the following simplified expression for the worst-case error.

Theorem 15. The worst-case error of a lattice rule for integration in the Korobov
space H .KKor/ is given by

e2.H .KKor/IP.g; N // D
X

h2Lg;N nf0g
!h:
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Remark 16. If ˛ � 2 is an even integer, then the Bernoulli polynomialB˛ of degree
˛ has the Fourier expansion

B˛.x/ D .�1/.˛C2/=2˛Š
.2�/˛

X
h2Z

h6D0

exp.2�ihx/

jhj˛ for all x 2 Œ0; 1/I

see for example Sloan and Joe [106, Appendix C]. Hence in this case we obtain

e2.H .Ks;˛;�/IP.g; N //

D �1C 1

N

N�1X
kD0

sY
iD1

�
1C 
i

.�1/.˛C2/=2.2�/˛
˛Š

B˛

��
kgi

N

���
;

so that e2.H .Ks;˛;�/IP.g; N // can be calculated in O.Ns/ operations.

We present the following lower bound on the integration error for numerical
integration in the Korobov space. We prove this lower bound for quadrature rules of
the form

QP;w.f / D
N�1X
nD0

wnf .xn/;

where P D fx0; : : : ;xN�1g � Œ0; 1�s and w D .w0; : : : ;wN�1/ 2 R
N are

given. The result holds even for more general quadrature rules not considered
here, see Bakhvalov [4]. Note that a QMC rule is obtained by choosing w D
.N�1; : : : ; N�1/ 2 R

N . In this case we write e.H .KKor/IP.g; N /I w/ for the
worst-case error of the quadrature rule QP;w in the Korobov space.

Theorem 17. Let P be an arbitrary N -element point set in Œ0; 1�s and let w D
.w0; : : : ;wN�1/ 2 R

N .

1. (Bakhvalov [4], Temlyakov [114]) If KKor D Ks;˛ for an ˛ > 1, then

e.H .Ks;˛/IPI w/ � C.s; ˛/
.logN/.s�1/=2

N ˛=2
;

where C.s; ˛/ > 0 depends on ˛ and s, but not on N and w.
2. (Šarygin [116]) If KKor D K 0s;! for an ! 2 .0; 1/, then

e.H .K 0s;!/IPI w/ �
�
1C 2

1 � !

��s=2
!.sŠ.NC1//1=s :

Proof. 1. We follow the proof of Temlyakov [114, Lemma 3.1]. In the same way
as was shown above, the worst-case error in the Korobov space for an arbitrary
quadrature rule can be written as
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e2.H .Ks;˛/IPI w/ D j1 � ˇj2 C
X

h2Zsnf0g
r�1˛ .h/

ˇ̌̌
ˇ̌
N�1X
nD0

wnexp.2�ih � xn/

ˇ̌̌
ˇ̌
2

;

where ˇ D PN�1
nD0 wn.

Let f W R ! R be an infinitely times differentiable function such that f .x/ > 0
for x 2 .0; 1/ and f .r/.x/ D 0 for x 2 Rn.0; 1/ for all 0 � r � a WD d˛=2eC1.
For instance, let

f .x/ D
�
xaC1.1 � x/aC1 for x 2 .0; 1/
0 otherwise:

(9.28)

For m 2 N0 let fm.x/ D f .2mC2x/ and for m D .m1; : : : ; ms/ 2 N
s
0 let

fm.x/ D
sY
iD1

fmi .xi /;

where x D .x1; : : : ; xs/. Let kmk1 D m1 C � � � Cms. We obtain

Ofm.0/ D
sY
iD1

Z 1

0

f .2miC2x/ dx D
sY
iD1

1

2miC2

Z 1

0

f .y/ dy D 1

2kmk1C2s
I s.f /;

where I.f / D R 1
0
f .y/ dy. For instance, by choosing f according to (9.28) we

obtain

I.f / D B.a C 2; aC 2/ D ..a C 1/Š/2

.2a C 3/Š
;

where B denotes the beta function.
Let t be such that

2N � 2t < 4N:

Let

Bm D
(

y 2 Œ0; 1�s W
N�1X
nD0

wnfm.xn � y/ D 0

)
:

Notice that the support of fm.xn � y/ (as a function of y) is contained
in the interval

Qs
iD1.xi;n � 2�mi�2; xi;n/ and hence the support of F.y/ D

1
N

PN�1
nD0 fm.xn�y/ is contained in

SN�1
nD0

Qs
iD1.xi;n�2�mi�2; xi;n/. Therefore

the area of the support of F is at most N2�kmk1 . Thus for all m such that
kmk1 D t we have

�s.Bm/ � 1 �N2�kmk1 D 1 �N2�t > 1=4;
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where �s denotes the s dimensional Lebesgue measure.
Let ˇ D PN�1

nD0 wn. Thus we have

�s.Bm/j Ofm.0/j2jˇj2 D
Z
Bm

jQw.fm.� � y//� Ofm.0/ˇj2 dy

�
Z
Œ0;1�s

jQw.fm.� � y// � Ofm.0/ˇj2 dy

D
X

h2Zsnf0g
j Ofm.h/j2

ˇ̌̌
ˇ̌
N�1X
nD0

wn exp.2�ih � xn/

ˇ̌̌
ˇ̌
2

:

We have

Ofm.h/ D
Z 1

0

f .2mC2x/ exp.�2�ihx/ dx

D 1

2mC2

Z 1

0

f .y/ exp.�2�ih2�m�2y/ dy D 1

2mC2
Of .h2�m�2/;

where Of denotes the Fourier transform of f . Since, by assumption, f is infinitely
times differentiable, integration by parts shows that for anym 2 N0 we have

j Ofm.h/j � 2�m�2j Of .h2�m�2/j � Ca2
�m�2 min.1; .h2�m�2/�a/;

where the constant Ca > 0 depends only on a and f . Then for m with kmk1 D t

we have

j Ofm.h/j � C.a; s/

sY
iD1
.2�mi min.1; 2ami r�1a .hi ///

D C.a; s/2.˛=2�1/t
sY
iD1
.2�˛mi=2 min.1; 2ami r�1a .hi ///:

By summing over all choices of m with kmk1 D t we obtain

X
m2N

s
0

kmk1Dt

j Ofm.h/j2 � 2.˛�2/tC 2.a; s/
X
m2N

s
0

kmk1Dt

sY
iD1
.2�˛mi min.1; 22ami r�2a .hi ///

� 2.˛�2/tC 2.a; s/

sY
iD1

1X
mD0

2�˛m min.1; 22amr�2a .hi //:
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The last sum can now be estimated by

1X
mD0

1

2˛m
min.1; 22amr�2a .hi //

D
X

0�m�.log2 ra.hi //=a

2.2a�˛/mr�2a .hi /C
X

m>.log2 ra.hi //=a

2�˛m

� r2a�˛.hi /22a�˛ � 1

22a�˛ � 1 r�12a .hi /C r�1˛ .hi /2
˛

2˛ � 1

� r�1˛ .hi /

�
1C 2˛

2˛ � 1

�
� 3r�1˛ .hi /:

Thus we have

C1.a; s/2
�.˛�2/t X

m2N
s
0

kmk1Dt

j Ofm.h/j2 � r�1˛ .h/:

We obtain

e2.H .Ks;˛/IPI w/ D j1� ˇj2 C
X

h2Zsnf0g
r�1˛ .h/

ˇ̌
ˇ̌̌N�1X
nD0

wnexp.2�ih � xn/

ˇ̌
ˇ̌̌2

� j1� ˇj2 C C1.a; s/
1

2.˛�2/t
X
m2N

s
0

kmk1Dt

X
h2Zsnf0g

j Ofm.h/j2
ˇ̌
ˇ̌̌N�1X
nD0

wnexp.2�ih � xn/

ˇ̌
ˇ̌̌2

� j1� ˇj2 C C1.a; s/
1

2.˛�2/t
X
m2N

s
0

kmk1Dt

�s.Bm/j Ofm.0/j2jˇj2

� j1� ˇj2 C C2.a; s/jˇj2 2
2t

N ˛

X
m2N

s
0

kmk1Dt

2�2t�4sI 2s.f /

� j1� ˇj2 C C3.a; s/jˇj2N�˛
 
t C s � 1
s � 1

!
:

Set A D C3.a; s/N
�˛�tCs�1

s�1
�
. Then the last expression can be written as j1 �

ˇj2 C Ajˇj2, which satisfies

e2.H .Ks;˛/IPI w/ � j1�ˇj2 CAjˇj2 � A

1C A
� C4.a; s/N

�˛
 
t C s � 1
s � 1

!
;

which implies the result, since t � log2.N /.
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2. The lower bound in the case that KKor D K 0s;! for some ! 2 .0; 1/ can be
deduced from the following result due to Šarygin [116]: For any point set P D
fx0; : : : ;xN�1g in Œ0; 1/s one can find a periodic function f W Œ0; 1�s ! R with
the following properties:

• the Fourier coefficients of f satisfy j Of .h/j � !jhj1 ;
• f .xn/ D 0 for all 0 � n < N ;
•
R
Œ0;1�s

f .x/ dx � !.sŠ.NC1//1=s .

Then the function g.x/ D .1C 2
1�! /

�s=2f .x/ is contained in the unit ball of the
Korobov space H .K 0s;!/ and hence the result follows from the properties of the
function f .ut

Remark 18. For the worst-case error of lattice rules for integration in the Korobov
spaces H .Ks;˛;� / and H .K 0s;!/ we have the following lower bounds:

For any integer N � 2 and g 2 f0; 1; : : : ; N � 1gs we have

e.H .Ks;˛;� /IP.g; N // �
 
2�.˛/

sX
iD1


i

!1=2
1

N ˛=2
;

where �.˛/ D P
h�1 h�˛ , and

e.H .K 0s;!/IP.g; N // � !
1
2 .sŠN /

1=s

:

Proof. We have

e2.H .Ks;˛;�/IP.g; N // D
X

h2Lg;N nf0g

1

r˛;�.h/
�

sX
iD1

X
hi2Znf0g

hi gi�0 .mod N/


i

jhi j˛

� 2

sX
iD1


i

1X
hD1

1

.Nh/˛
D 2�.˛/

 
sX
iD1


i

!
1

N˛
:

Define �.g/ D minh2Lg;N nf0g khk1. Then we have

e2.H .K 0s;!/IP.g; N // D
X

h2Lg;N nf0g
!khk1 D

1X
kD�.g/

!k
X

h2Lg;N nf0g
khk1Dk

1 � !�.h/:

In Lyness [73, Section 5] it is shown that for anyN 2 N and any g 2 f0; 1; : : : ; N �
1gs we have �.g/ � .sŠN /1=s . Hence we have

e2.H .K 0s;!/IP.g; N // � !.sŠN /
1=s

:ut
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Remark 19. The quantity �.g/ used above is the enhanced trigonometric degree of
lattice rules, see Cools and Lyness [14] and Lyness [73]. A cubature rule of enhanced
trigonometric degree ı is one that integrates all trigonometric polynomials of degree
less then ı exactly.

There are also existence results for lattice point sets. In the case ofKKor D Ks;˛;�

these results are mainly based on averaging arguments over all lattice points g 2
f0; : : : ; N � 1gs for given N � 2. These methods are nowadays quite standard
and there are even constructions of such lattice points based on a component-
by-component approach. Here one constructs successive the components of g.
This approach was introduced by Korobov [60] and later re-invented by Sloan
and Reztsov [107]. In the following let P D f2; 3; 5; : : :g denote the set of prime
numbers.

Algorithm 20. Let N 2 P and let s � 2.

1. Choose g1 D 1.
2. For d > 1, assume we have already constructed g1; : : : ; gd�1. Then find gd 2

f1; : : : ; N � 1g which minimises e2.H .Ks;˛;� /IP..g1; : : : ; gd�1; z/; N // as a
function of z 2 f1; : : : ; N � 1g.

Variations of this algorithm for shifted and randomly shifted lattice rules were
analysed by Sloan, Kuo and Joe [108, 109]. The case where N is not necessarily
a prime number was first considered in [18].

A straightforward implementation of Algorithm 20 would require O.N2s2/

operations for the construction of a lattice point set P.g; N / in dimension s. Using
the so-called fast component-by-component algorithm due to Nuyens and Cools
the construction costs can be reduced to O.sN logN/ operations; see Nuyens and
Cools [90–92] and the references therein for more detailed information.

In the case of KKor D K 0s;! there is, until now, only one existence result for
lattice rules. Note, however, that a (modified) regular grid can be used to obtain
an exponential rate of convergence with polynomial tractability; see Dick, Larcher,
Pillichshammer and Woźniakowski [37]. Since a regular grid can be obtained using
the digital construction scheme, it also follows that there are digital nets for which
one can obtain an exponential rate of convergence for integrands from H .K 0s;!/.

Theorem 21 (Kuo [66] and Dick, Larcher, Pillichshammer and Woźniakowski
[37]).

1. For any prime number N , a vector g 2 f0; : : : ; N � 1gs can be found using
Algorithm 20 such that

e2.H .Ks;˛;� /IP.g; N // � 21=�

N 1=�

sY
iD1
.1C 2
�i �.˛�//

1=�

for 1=˛ < � � 1.
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2. For any prime numberN , there exists a g 2 f0; : : : ; N � 1gs such that

e2.H .K 0s;!/IP.g; N // � !2
�1.sŠN /1=s

�
4e

! � !2
�s
N:

Proof. 1. A proof of this result can be found in Kuo [66].
2. We have

e2.H .K 0s;!/IP.g; N // D
X

h2Lg;N nf0g
!khk1

D
1X

kD�.g/
!k

X
h2Lg;N nf0g
khk1Dk

1 (9.29)

�
1X

kD�.g/
!k2s

 
k C s � 1
s � 1

!

� !�.g/2s.1 � !/�s
 
�.g/C s � 1

s � 1

!
; (9.30)

where we used

1X
kD�

 
k C r � 1

r � 1

!
!k � !�

 
�C r � 1
r � 1

!
.1 � !/�r ; (9.31)

which can be shown using the binomial theorem; see Matoušek [74, Lemma
2.18] or [29, Lemma 6].
Now we show that for a prime number N , there exists a g 2 f0; 1; : : : ; N � 1gs
such that

�.g/ � d2�1.sŠ N /1=se � s: (9.32)

For a given h D .h1; : : : ; hs/ 2 Z
s n f0g with jhi j < N for 1 � i � s, there

are Ns�1 choices of g 2 f0; 1; : : : ; N � 1gs such that g � h 	 0 .mod N/.
Furthermore,

jfh 2 Z
s W khk1 D `gj � 2s

 
`C s � 1
s � 1

!
:

Let � < N be a given positive integer (note that �.g/ < N always). Then,

jfh 2 Z
s W khk1 � �gj � 2s

�X
`D0

 
`C s � 1
s � 1

!
D 2s

 
�C s

s

!
:
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Therefore,

jfg 2 f0; 1; : : : ; N � 1gs W �.g/ � �gj � Ns�12s
 
�C s

s

!
:

Note that the total number of possible generators g 2 f0; 1; : : : ; N � 1gs is Ns .
Thus, if

Ns�12s
 
�C s

s

!
< Ns; (9.33)

there exists a g 2 f0; 1; : : : ; N � 1gs such that �.g/ > �. We estimate

2s

 
�C s

s

!
� 2s.�C s/s.sŠ/�1:

This means that (9.33) is satisfied if 2s.� C s/s.sŠ/�1 < N , i.e., for � D
d2�1.sŠ N /1=se � s � 1. Hence (9.32) is shown. Combining (9.30) and (9.32)
yields the desired result.ut
Let us discuss some tractability issues for the Korobov space Ks;˛;� where

˛ > 1. Assume that
P

i�1 
�i < 1 for some � 2 .1=˛; 1�. Then we obtain from
Theorem 21 that

e.H .Ks;˛;� /IP.g; N // � 21=.2�/

N 1=.2�/
exp

 
1

2�

sX
iD1

log.1C 2
�i �.˛�//

!

� 21=.2�/

N 1=.2�/
exp

0
@�.˛�/

�

X
i�1


�i

1
A DW C˛;�

N1=.2�/

and this bound is independent of the dimension s. Note that for the initial error we
have e.H .Ks;˛;� /I ;/ D 1; see Sloan and Woźniakowski [111].

For " > 0 let N be the smallest prime number that is larger or equal
d.C˛;�"�1/2�e DW M . Then we have e.H .Ks;˛;�/IP.g; N // � " and hence

NH .Ks;˛;� /."; s/ � N < 2M D 2d.C˛;�"�1/2�e;

where we used Bertrand’s postulate which tells us that M � N < 2M . Hence
multivariate integration in H .Ks;˛;�/ is strongly tractable with "-exponent at most
2� whenever

P
i�1 
�i < 1 for some � 2 .1=˛; 1�. The corresponding bounds can

be achieved with lattice point sets. Furthermore, in Sloan and Woźniakowski [111,
Theorem 5] it was shown that the condition

P
i�1 
i < 1 is also necessary for

strong tractability.
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Under weaker assumptions on the weights one can still obtain polynomial
tractability. For more results in this direction we refer to Sloan and Woźniakowski
[111] or to Novak and Woźniakowski [88, Chapter 16].

A discussion of tractability issues for the Korobov space H .K 0s;!/ can be
found in Dick, Larcher, Pillichshammer and Woźniakowski [37] and in Kritzer,
Pillichshammer, and Woźniakowski [64].

9.4.2 Star-Discrepancy of Lattice Point Sets

For a lattice point set P.g; N / each point xn is of the form xn D fyn=N g with
yn D ng 2 Z

s . In particular, the elements of a lattice point set have always rational
components. For such point sets there is a variant of the inequality of Erdős-Turán-
Koksma due to Niederreiter [81, Theorem 3.10], i.e., a general upper bound for the
discrepancy in terms of exponential sums. To formulate this result we need some
notation.

For an integerM � 2, let

C.M/ D .�M=2;M=2�\ Z

and let Cs.M/ be the Cartesian product of s copies of C.M/. Furthermore, let

C �s .M/ D Cs.M/ n f0g:

For h 2 C.M/ put

r.h;M/ D
�
M sin.�jhj=M/ if h 6D 0;

1 if h D 0:

For h D .h1; : : : ; hs/ 2 Cs.M/, put r.h;M / D Qs
iD1 r.hi ;M/:

Proposition 22 (Niederreiter [81, Theorem 3.10]). Let M � 2 be an integer and
let P D fx0; : : : ;xN�1g be a point set in the s-dimensional unit cube where xn is
of the form xn D fyn=M g with yn 2 Z

s for all 0 � n < N . Then we have

D�N .P/ � 1 �
�
1 � 1

M

�s
C

X
h2C�

s .M/

1

r.h;M /

ˇ̌
ˇ̌̌ 1
N

N�1X
nD0

exp.2�ih � yn=M/

ˇ̌
ˇ̌̌
:

Applying this result to a lattice point set P.g; N /, i.e.,M D N , and using (9.26)
and the fact that for h 2 C �s .N /we have r.h;N / � 2r.h/, where r.h/ WD r1;1.h/ D
max.1; jhj/, we obtain the following result.
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Theorem 23 (Niederreiter [81, Theorem 5.6]). For the star-discrepancy of a
lattice point set P.g; N / we have

D�N .P.g; N // � 1 �
�
1 � 1

N

�s
C 1

2
R.g; N / � s

N
C 1

2
R.g; N /;

where

R.g; N / WD
X

h2C�

s .N /\Lg;N

1

r.h/
:

Theorem 23 gives a bound on the star-discrepancy of lattice point sets which is
much easier to handle than D�N itself (note that the exact computation of the star-
discrepancy of a given point set is an NP-hard problem; see Gnewuch, Srivastav,
and Winzen [46]). Using (9.26) again, the quantity R.g; N / can be written as

R.g; N / D �1C 1

N

N�1X
nD0

sY
iD1

0
@1C

X
h2C�.N /

exp.2�ihngi=N /

jhj

1
A ; (9.34)

and hence its calculation requires O.N2s/ operations. This can be reduced to
O.Ns/ operations by using an asymptotic expansion; see Joe and Sloan [58].

It has been shown by Larcher [69] that for any dimension s � 2 there exists some
cs > 0 such that for all N � 2 and all g 2 Z

s we have

R.g; N / � cs
.logN/s

N
:

On the other hand, it has been shown by Niederreiter [81, Theorem 5.10] that for
any integers s � 2 and N � 2 we have

1

jGs.N /j
X

g2Gs.N/
R.g; N / D 1

N
.2 logN C c/s � 2s logN

N
CO

�
.log logN/2

N

�
;

(9.35)

with c D 2
 � log 4C1 D 0:768 : : :, where 
 D 0:577 : : : is the Euler constant and
where Gs.N / D fg D .g1; : : : ; gs/ 2 Cs.N / W gcd.gi ; N / D 1 for 1 � i � sg. In
particular, we have the following result.

Theorem 24 (Larcher [69] and Niederreiter [81]). For any integers s � 2 and
N � 2 there exist g 2 Gs.N / such that

R.g; N / �s

.logN/s

N

and this order of magnitude is best possible.
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If N is a prime we can use the following component-by-component algorithm
for the construction of a ‘good’ lattice point. For a construction for compositeN we
refer to Sinescu and Joe [103].

Algorithm 25. Let N 2 P and let s � 2.

1. Choose g1 D 1.
2. For d > 1, assume we have already constructed g1; : : : ; gd�1. Then find
gd 2 f1; : : : ; N � 1g which minimises RN ..g1; : : : ; gd�1; z// as a function of
z 2 f1; : : : ; N � 1g.

Again, a straightforward implementation of Algorithm 25 would require
O.N2s2/ operations for the construction of a lattice point set P.g; N / in dimension
s. Using the so-called fast component-by-component algorithm due to Nuyens and
Cools the construction costs can be reduced to O.sN logN/ operations; see, again,
Nuyens and Cools [90–92].

The following result shows that Algorithm 25 provides an optimal lattice point
with respect to the order of magnitude of R.g; N /.

Theorem 26 (Joe [56]). Let N 2 P and suppose that g D .g1; : : : ; gs/ is
constructed according to Algorithm 25. Then for all 1 � d � s we have

R.g.d/; N / � 1

N � 1
.1C SN /

d ;

where g.d/ D .g1; : : : ; gd / and where SN D P
h2C�.N / jhj�1.

Proof. Since N 2 P it follows that R.g1;N / D 0 for all g1 2 f1; : : : ; N � 1g. Let
d � 1 and assume that we have

R.g; N / � 1

N � 1
.1C SN /

d ;

where g D .g1; : : : ; gd /. Now we consider .g; gdC1/ WD .g1; : : : ; gd ; gdC1/.
As gdC1 minimises R..g; �/; N / over f1; : : : ; N � 1g we obtain

R..g; gdC1/; N / � 1

N � 1

N�1X
gdC1D1

X
.h;hdC1/2C

�

dC1
.N /

h�gChdC1gdC1�0 .mod N/

1

r.h/

1

r.hdC1/

D
X

.h;hdC1/2C�

dC1.N /

1

r.h/

1

r.hdC1/
1

N � 1

N�1X
gdC1D1

hdC1gdC1��h�g .mod N/

1;

where we just changed the order of summation. Separating out the term where
hdC1 D 0 we obtain
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R..g; gdC1/; N /

� R.g; N /C
X

h2Cd .N/

1

r.h/

X
hdC12C�.N /

1

r.hdC1/
1

N � 1

N�1X
gdC1D1

hdC1gdC1��h�g .mod N/

1:

Since N 2 P, the congruence hdC1gdC1 	 �h � g .mod N/ has exactly one
solution gdC1 2 f1; : : : ; N � 1g if h � g 6	 0 .mod N/ and no solution in
f1; : : : ; N � 1g if h � g 	 0 .mod N/. From this insight it follows that

R..g; gdC1/; N / � R.g; N /C 1

N � 1

X
h2Cd .N/

1

r.h/

X
hdC12C�.N /

1

r.hdC1/

D R.g; N /C SN

N � 1

X
h2Cd .N/

1

r.h/

D R.g; N /C SN

N � 1
.1C SN /

d

� 1

N � 1
.1C SN /

d C SN

N � 1.1C SN /
d

D 1

N � 1
.1C SN /

dC1;

where we used the induction hypotheses to boundR.g; N /.ut
It can be shown that SN � 2 logN (for a proof of this fact see Niederreiter [76,

Lemmas 1 and 2]). Therefore, from Theorems 23 and 26 we obtain the following
bound on the star-discrepancy of the lattice point set whose generating vector is
constructed with Algorithm 25.

Corollary 27 (Joe [56]). Let N 2 P and suppose that g D .g1; : : : ; gs/ is
constructed according to Algorithm 25. Then for all 1 � d � s we have

D�N .P.g.d/; N // � d C .2 logN/d

N
;

where g.d/ D .g1; : : : ; gd /.

Korobov suggested the use lattice points of the form g D .1; g; g2; : : : ; gs�1/
with g 2 Z to restrict the number of candidates that must be inspected. At least
for N 2 P there is a result in the vein of (9.35) for such so-called Korobov lattice
points. Niederreiter [81, Theorem 5.18] showed that for any N 2 P and any integer
s � 2 we have

1

N

N�1X
gD0

R..1; g; g2; : : : ; gs�1/; N / <
s � 1

N
.2 logN C 1/s:

Combined with Theorem 23 this leads to the following result.
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Corollary 28. Let N 2 P and let s � 2 be an integer. For any real 0 < " � 1 there
exist more than .1 � "/N elements g 2 f0; : : : ; N � 1g such that

D�N .P..1; g; g2; : : : ; gs�1/; N // � s

N
C 1

"

s � 1
2N

.2 logN C 1/s:

Recently Bykovskii [10] showed the existence of lattice point sets P.g; N / in

dimension s with star discrepancy of order of magnitude .logN/s�1 log logN
N

.

9.4.3 Weighted Star-Discrepancy of Lattice Point Sets

For the weighted star-discrepancy of a lattice point set P.g; N / we obtain from
Theorem 23

D�N;� .P.g; N // D max
;6Du
Œs�

�uD
�
N .P.gu; N //

�
X
;6Du
Œs�

�uD
�
N .P.gu; N //

�
X
;6Du
Œs�

�u

 
1 �

�
1 � 1

N

�juj!
C 1

2

X
;6Du
Œs�

�uR.gu; N /; (9.36)

where gu denotes the projection of g onto the components given by u. Hence
P.gu; N / is the juj-dimensional lattice point set which is obtained by a projection
of the points from P.g; N / onto the components given by u.

Set Qr.h; 
/ D 1 C 
 if h D 0, and 
r.h/ if h 6D 0 and set Qr.h;�/ DQs
iD1 Qr.hi ; 
i /. Then it follows from (9.34) that

X
;6Du
Œs�

�uR.gu; N /

D �
X
;6Du
Œs�

�u C
X
;6Du
Œs�

1

N

N�1X
nD0

Y
i2u

i

0
@1C

X
h2C�.N /

exp.2�ihngi=N /

jhj

1
A

D �
sY
iD1
.1C 
i/C 1

N

N�1X
nD0

sY
iD1

0
@1C 
i C 
i

X
h2C�.N /

exp.2�ihngi =N /

jhj

1
A

D �
sY
iD1
.1C 
i/C 1

N

N�1X
nD0

sY
iD1

X
h2C.N/

Qr.h; 
i / exp.2�ihngi=N / (9.37)
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D �
sY
iD1
.1C 
i/C

X
h2Cs.N /

Qr.h;�/ 1
N

N�1X
nD0

exp.2�ih � gn=N/

D
X

h2C�

s .N /\Lg;N

Qr.h;�/ DW QR�.g; N /: (9.38)

From (9.37) we see that QR�.g; N / can be computed in O.N2s/ operations. Again
this can be reduced to O.Ns/ operations by using an asymptotic expansion; for
details see Joe [57, Appendix A].

Hence for the weighted star-discrepancy of a lattice point set P.g; N / we obtain

D�N;� .P.g; N // �
X
;6Du
Œs�

�u

 
1 �

�
1 � 1

N

�juj!
C 1

2
QR�.g; N /:

If the weights 
i , i � 1, are summable, then it has been shown by Joe [57] that

X
;6Du
Œs�

�u

 
1 �

�
1 � 1

N

�juj!
� max.1; � / exp.

P
i�1 
i /

N
(9.39)

where � D P
i�1 
i=.1C 
i / < 1.

If N 2 P one can again use the component-by-component algorithm (Algo-
rithm 25) with R replaced by QR� for the construction of a ‘good’ lattice point.

Theorem 29 (Joe [57]). Let N 2 P and suppose that g D .g1; : : : ; gs/ is
constructed according to Algorithm 25 (with R replaced by QR� ). Then for all
1 � d � s we have

QR�.g
.d/; N / � 1

N � 1
dY
iD1
.1C 
i.1C SN //

d ;

where g.d/ D .g1; : : : ; gd / and SN D P
h2C�.N / jhj�1.

Using the estimate SN � 2 logN from the previous section we obtain the
following result.

Corollary 30 (Joe [57]). Let N 2 P and suppose that g D .g1; : : : ; gs/ is
constructed according to Algorithm 25 (with R replaced by QR� ). Then for all
1 � d � s we have

D�N;� .P.g.d/; N // �
X
;6Du
Œd �

�u

 
1 �

�
1 � 1

N

�juj!
C 1

N

dY
iD1

.1C 2
i logN/ ;

where g.d/ D .g1; : : : ; gd / and Œd � D f1; : : : ; d g.
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Assume that
P

i�1 
i < 1, then we obtain from Hickernell and Niederreiter [50,
Lemma 3] that for any ı > 0 there exists a c� ;ı > 0, independent of s and � , such
that

sY
iD1

.1C 2
i logN/ � c� ;ıN
ı for any s 2 N:

Using this, (9.39) and Corollary 30 we obtain the following result.

Corollary 31. Let N 2 P and suppose that g is constructed according to
Algorithm 25 (with R replaced by QR� ).

If
P

i�1 
i < 1, then for any ı > 0 there exists a c� ;ı > 0, independent of s and
N , such that the weighted star-discrepancy of P.g; N / satisfies

D�N;� .P.g; N // � c�;ı

N 1�ı :

In particular, if
P

i�1 
i < 1, then for any prime number N it follows from
Corollary 31 that

disc1;�.N; s/ � c� ;ı

N 1�ı

and that the bound can be achieved by a lattice point set.
Note that disc1;�.0; s/ D max;6Du
Œs� �u � 
1 > 0.
For " > 0 and ı > 0 let N be the smallest prime number that is larger or equal

to d.c� ;ı

�1
1 "�1/1=.1�ı/e DW M . Then we have disc1;�.N; s/ � "disc1;�.0; s/ and

hence

N1;�."; s/ � N < 2M D 2d.c�;ı

�1
1 "�1/1=.1�ı/e;

where we used Bertrand’s postulate which tells us thatM � N < 2M . This bound,
which is independent of the dimension s, was already presented in (9.19) and shows
that the weighted star-discrepancy is strongly tractable with "-exponent equal to one
whenever the weights 
i , i � 1, are summable.

For the weighted Lp-discrepancy of a point set P we have

Lp;� .P/ �
0
@ X
;6Du
Œs�

�pu.D
�
N .Pu//

p

1
A
1=p

�
X
;6Du
Œs�

�uD
�
N .Pu/;

where we used Jensen’s inequality, which states that
P

k a
p

k � �P
k ak

�p
for any

p � 1 and non-negative reals ak . Hence, for a lattice point set we obtain from (9.36)
and (9.38) that
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Lp;� .P.g; N // �
X
;6Du
Œs�

�u

 
1 �

�
1 � 1

N

�juj!
C 1

2
QR�.g; N /:

This means that the results for the weighted star-discrepancy apply also for the
weighted Lp-discrepancy. In particular, if

P
i�1 
i < 1, then the weighted Lp-

discrepancy is strongly tractable with "-exponent equal to one. (Note thatLpp;� .;/ D
�1CQs

iD1.1C 

p
i

pC1 /.)

9.5 Polynomial Lattice Rules

There is also an algebraic analogue of lattice rules which is based on arithmetic
of polynomials over finite fields. This construction has first been introduced by
Niederreiter [80] as special construction of digital nets over a finite field Fq where q
is a prime power. For simplicity, here we only consider prime bases b and the finite
field Zb of order b. On the other hand, here we generalize Niederreiter’s approach
to get a construction for higher order nets. This was first considered in [30].

Let b 2 P, let ZbŒx� denote the set of polynomials in x with coefficients in Zb and
let Zb..x�1// denote the set of formal Laurent series

P1
lDw ulx�l where w 2 Z and

ul 2 Zb . For n 2 N let Gb;n WD fq 2 ZbŒx� W deg.q/ < ng and G�b;n D Gb;n n f0g.
Note that jGnj D bn.

Definition 32. Let ˛;m; s 2 N and choose an irreducible polynomial p 2 ZbŒx�

with deg.p/ D ˛m. Further let q D .q1; : : : ; qs/ 2 Gs
b;˛m and consider the

expansions

qi .x/

p.x/
D
1X
lDwi

u.i/l x
�l 2 Zb..x

�1//;

where wi � 1. Define the ˛m 
m matrices C1; : : : ; Cs over Zb , Ci D .c
.i/

k;l /, by

c
.i/

k;l D u.i/kCl�1 2 Zb for 1 � i � s; 1 � k � ˛m; 1 � l � m:

The matrices C1; : : : ; Cs generate a digital .t;m; s/-net P˛.q; p/ over Zb which
is called a polynomial lattice point set. The quadrature rule QP˛.q;p/ is called a
polynomial lattice rule.

Polynomial lattice point sets can also be introduced independent from digital net
theory. To this end let �n, n 2 N, be the map from Zb..x

�1// to the interval Œ0; 1/
defined by

�n

 1X
lDw

ulx
�l
!

D
nX

lDmax.1;w/

ul b
�l :
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Then the following construction is equivalent to Definition 32; see [31, Chap-
ter 10]. For a given dimension s � 1, choose p 2 ZbŒx� with deg.p/ D ˛m and let
q1; : : : ; qs 2 ZbŒx�. Then P˛.q; p/ is the point set consisting of the bm points

xh D
�
�˛m

�
h.x/q1.x/

p.x/

�
; : : : ; �˛m

�
h.x/qs.x/

p.x/

��
for h 2 Gb;m:

Observe the similarity of this construction with the definition of ordinary lattice
point sets from Definition 13, which is the reason for calling P˛.q; p/ a polynomial
lattice point set.

Classical polynomial lattice point sets assume that ˛ D 1, which also corre-
sponds to the case of classical digital nets; see Niederreiter [80,81], [31, Chapter 10]
or [96]. In this case we simply omit the index ˛ and write P.q; p/.

The dual polynomial lattice is of importance for studying polynomial lattice
rules.

Definition 33. Let ˛;m 2 N. The dual polynomial lattice of a polynomial lattice
point set P˛.q; p/ with generating vector q 2 Gs

b;˛m and p 2 ZbŒx� with deg.p/ D
˛m, is given by

D˛.q; p/ D fk 2 Gs
b;˛m W k � q 	 a .mod p/ where deg.a/ < .˛ � 1/mg:

For convenience we also write D �̨.q; p/ D D˛.q; p/ n f0g. If ˛ D 1 we again omit
the index ˛ for the sake of simplicity.

For the following we will need the concept of b-adic Walsh functions which
we introduce now. For b � 2 we denote by !b the bth primitive root of unity
exp.2�i=b/.

Definition 34. Let k 2 N0 with b-adic expansion k D �0 C �1bC �2b
2 C � � � . The

kth b-adic Walsh function bwalk W R ! C, periodic with period one, is defined as

bwalk.x/ D !
�0�1C�1�2C�2�3C			
b ;

for x 2 Œ0; 1/ with b-adic expansion x D �1b
�1 C �2b

�2 C �3b
�3 C � � � (unique in

the sense that infinitely many of the digits �i must be different from b � 1). We call
the system f bwalk W k 2 N0g the b-adic Walsh function system.

Now we generalise the definition of Walsh functions to higher dimensions.

Definition 35. For dimension s � 2, and k1; : : : ; ks 2 N0 we define the s-
dimensional b-adic Walsh function bwalk1;:::;ks W Rs ! C by

bwalk1;:::;ks .x1; : : : ; xs/ WD
sY

jD1
bwalkj .xj /:
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For vectors k D .k1; : : : ; ks/ 2 N
s
0 and x D .x1; : : : ; xs/ 2 Œ0; 1/s we write, with

some abuse of notation,

bwalk.x/ WD bwalk1;:::;ks .x1; : : : ; xs/:

The system f bwalk W k 2 N
s
0g is called the s-dimensional b-adic Walsh function

system.

Basic properties of Walsh functions are summarised in [31, Appendix A].
An important property of polynomial lattice point sets is that

X
x2P˛.q;p/

bwalk.x/ D
�
bm if k 2 D˛.q; p/;

0 otherwise:
(9.40)

For a proof of this property we refer to [31, Lemmas 4.75 and 10.6] for ˛ D 1 and
[31, Lemmas 4.75 and 15.25] for ˛ � 1.

Based on the definition of polynomial lattice point sets in terms of digital nets,
the dual polynomial lattice is related to the dual net of a digital net; see [31,
Lemma 10.6] or Niederreiter [81, Lemma 4.40]. There is also a concept related
to the t-value of digital nets which we introduce in the following.

Definition 36. Let ˛;m 2 N. The figure of merit %˛ of a polynomial lattice point set
P˛.q; p/ with generating vector q 2 Gs

b;˛m and modulus p 2 ZbŒx� with deg.p/ D
˛m is given by

%˛.q; p/ D �1C min
k2D�

˛ .q;p/
deg˛.k/;

where deg˛.k/ D Ps
iD1 deg˛.ki / for k D .k1; : : : ; ks/ and

deg˛.ki / D
( Pmin.˛;�/

uD1 au for ki .x/ D �1x
a1�1 C � � � C ��x

a��1;
0 otherwise;

with a1 > a2 > � � � > a� > 0 and �1; : : : ; �� 2 Zb n f0g. For ˛ D 1 we again omit
the index ˛ and write %.q; p/.

The following theorem connects the figure of merit of a polynomial lattice point
set with the t-value.

Theorem 37 (Niederreiter [81, Theorem 4.42], Dick, Kritzer, Pillichshammer
and Schmid [36, Theorem 2]). Let ˛;m 2 N. Let P˛.q; p/ be a polynomial
lattice point set with q 2 Gs

b;˛m and modulus p 2 ZbŒx� with deg.p/ D ˛m. Then
P˛.q; p/ is a digital .t; ˛; 1; ˛m 
m; s/-net in base b with

t D ˛m � %˛.q; p/:
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This result connects polynomial lattice point sets and digital nets. Hence the
bounds on the discrepancy of digital nets, that is, Theorems 4, 5, 8, also apply to
polynomial lattice point sets. Further results on the star-discrepancy of polynomial
lattice point sets will be presented in Sect. 9.5.3.

The usefulness of polynomial lattice point sets for multivariate integration has
been shown by connecting it to digital nets. However, as opposed to digital nets
and sequences, no explicit constructions of polynomial lattice point sets are known
except for dimension 2, see Niederreiter [81, pp. 87, 88]. For higher dimensions one
relies on computer search algorithms to find good polynomial lattice rules. There
are several methods of finding good polynomial lattice point sets, each based on a
different criterion, which we consider in the following.

9.5.1 The Worst-Case Error of Polynomial Lattice Rules
in Weighted Walsh Spaces

Similarly to lattice rules, we introduce a suitable space of functions for which the
integration error of polynomial lattice rules for ˛ D 1 can be analysed (the case
˛ > 1 will be considered later in this section). This function space is based on
Walsh functions as introduced in Definitions 34 and 35, respectively.

We define a Walsh function space analogously to the Korobov space, essentially
by replacing the exponential function exp.2�ihx/ by Walsh functions bwalk .

Let s � 1 and b � 2 be integers, ı > 1 a real and � D .
i /i�1 a sequence
of nonnegative reals. The s-dimensional weighted Walsh space is the reproducing
kernel Hilbert space of b-adic Walsh series f .x/ D P

k2Ns0
Of .k/ bwalk.x/ with

reproducing kernel defined by

Kwal;s;b;ı;� .x;y/ D
X
k2Ns0

rwal;b;ı .k;�/ bwalk.x � y/;

where for k D .k1; : : : ; ks/ we put rwal;b;ı.k;�/ D Qs
iD1 rwal;b;ı.ki ; 
i / and for

k 2 N0 and 
 > 0 we write

rwal;b;ı .k; 
/ D
�
1 if k D 0;


b�ıa if k D �0 C �1b C � � � C �ab
a and �a 6D 0:

Furthermore, for x D P1
iDw �ib

�i and y D P1
iDw �ib

�i by � we denote the digit-
wise subtraction modulo b, i.e.,

x � y WD
1X
iDw

zi b
�i where zi WD xi � yi .mod b/:

For vectors x;y we apply � component wise.
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The inner-product in H .Kwal;s;b;ı;� / is given by

hf; giH .Kwal;s;b;ı;� / D
X
k2Ns0

rwal;b;ı .k;�/
�1 Of .k/ Og.k/;

where the Walsh coefficients are given by Of .k/ D R
Œ0;1�s f .x/ bwalk.x/ dx.

Similarly to the Korobov space, the worst-case integration error for a QMC rule
in H .Kwal;s;b;ı;� / using a polynomial lattice point set P.q; p/ D fx0; : : : ;xN�1g
is given by

e2.H .Kwal;s;b;ı;� /IP.q; p// D
X

k2Ns0nf0g
rwal;b;ı .k;�/

ˇ̌
ˇ̌̌ 1
N

N�1X
nD0

bwalk.xn/

ˇ̌
ˇ̌̌2
:

There is also an analogue for Theorem 15.

Theorem 38 (Dick, Kuo, Pillichshammer and Sloan [17, Lemma 4.1]). The
worst-case error of a polynomial lattice rule for integration in the Walsh space
H .Kwal;s;b;ı;� / is given by

e2.H .Kwal;s;b;ı;� /IP.q; p// D
X

h2D�.q;p/

rwal;b;ı.k;�/:

In [28, Theorem 2] it was shown that there is a concise formula for the
square worst-case error for a QMC rule based on a digital net. Applying this
formula for a polynomial lattice point set P.q; p/ D fx0; : : : ;xbm�1g with xn D
.xn;1; : : : ; xn;s/, we have

e2.H .Kwal;s;b;ı;� /IP.q; p// D �1C 1

bm

bm�1X
nD0

sY
iD1
.1C 
i	.xn;i //;

where for x 2 Œ0; 1/ we have

	.x/ D bı.b � 1/
bı � b �

(
0 if x D 0;

bblogb xc.ı�1/ b2ı�bı
bı�b if x > 0:

This equation can now be used to obtain a construction algorithm for polynomial
lattice point sets in the following way.

Algorithm 39. Let p 2 ZbŒx� be a polynomial of degreem 2 N and let s � 2.

1. Choose q1 D 1 2 ZbŒx�.
2. For d > 1, assume we have already constructed q1; : : : ; qd�1 2 ZbŒx�. Then

find z 2 Gb;m which minimises e2.H .Kwal;d;b;ı;� /IP..q1; : : : ; qd�1; z/; p// as
a function of z 2 Gb;m.
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For polynomial lattice point sets constructed by Algorithm 39 we have the
following result.

Theorem 40 (Dick, Kuo, Pillichshammer and Sloan [17, Theorem 4.4]). Let
p 2 ZbŒx� be irreducible, with deg.p/ D m. Suppose q D .q1; : : : ; qs/ 2 Gs

b;m

is constructed by Algorithm 39. Then for all 1 � d � s we have

e.H .Kwal;d;b;ı;� /IP.q.d/; p// � 21=.2�/

bm=.2�/

dY
iD1
.1C �.ı�/
�i /

1=.2�/;

for all 1=ı < � � 1, where q.d/ D .q1; : : : ; qd / and where �.ı�/ D bı�.b�1/
bı��b .

Assume that
P

i�1 
�i < 1 for some � 2 .1=ı; 1�. Then we obtain from
Theorem 40 that

e.H .Kwal;s;b;ı;� /IP.q; p// � 21=.2�/

bm=.2�/
exp

 
1

2�

sX
iD1

log.1C �.ı�/
�i /

!

� 21=.2�/

bm=.2�/
exp

0
@�.ı�/

2�

X
i�1


�i

1
A DW Cb;ı;�

bm=.2�/

and this bound is independent of the dimension s. Note that for the initial error we
have e.H .Kwal;s;b;ı;� /I ;/ D 1; see [28, p. 162].

For " > 0 choose m 2 N such that bm�1 < d.Cb;ı;�"�1/2�e DW M � bm. Then
we have e.H .Kwal;s;b;ı;� /IP.q; p// � " and hence

NH .Kwal;s;b;ı;� /."; s/ � bm < bM D bd.Cb;ı;�"�1/2�e:

Thus multivariate integration in H .Kwal;s;b;ı;� / is strongly tractable with "-
exponent at most 2� whenever

P
i�1 
�i < 1 for some � 2 .1=ı; 1�. The

corresponding bounds can be achieved with polynomial lattice point sets.
Furthermore, in [28, Corollary 1] it was shown that the condition

P
i�1 
i < 1 is

also necessary for strong tractability.
Under weaker assumption on the weights one can still obtain polynomial

tractability. For more results in this direction we refer to [28].
To put the result from Theorem 40 into context, we provide a lower bound on the

integration error, which can be viewed as an analogue to Theorem 17. This result
shows that the convergence rate in Theorem 40 is almost best possible.

Theorem 41 (Roth [98] and Heinrich, Hickernell, and Yue [47, Theorem 9]).
Let P be an arbitrary N -element point set in Œ0; 1�s and let w D .w0; : : : ;wN�1/ 2
R
N . Then for any ı > 1
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e.H .Kwal;s;b;ı;� /IPI w/ � Cs;ı;�
.logN/.s�1/=2

N ı=2
;

where Cs;ı;� > 0 depends on ı; s;� but not on N .

Proof. Choose t 2 N0 such that

2N � bt < 4N:

Let m D .m1; : : : ; ms/ 2 N
s
0 with kmk1 D m1 C � � � C ms D t and let l D

.l1; : : : ; ls/ 2 N
s
0 with 0 � li < b

mi for 1 � i � s. Set

Bl ;m D
sY
iD1

�
li

bmi
;
li C 1

bmi

�
:

For a given x 2 Œ0; 1/s let l .x/ be such that x 2 Bl .x/;m. Now we define

fm.x/ D
�
0 if Bl .x/;m \ P ¤ ;;
1 otherwise:

Then we have
Z
Œ0;1�s

fm.x/ dx � 1 � N

bt
� 1

2
:

We set

F.x/ D
X

m2Ns0kmk1Dt

fm.x/

and therefore we have

Z
Œ0;1�s

F .x/ dx D
X

m2Ns0kmk1Dt

Z
Œ0;1�s

fm.x/ dx �
X

m2Ns0kmk1Dt

1

2
� 1

2

 
t C s � 1
s � 1

!
:

Further, we have F.xn/ D 0 for all 1 � n � N and thus

ˇ̌
ˇ̌̌Z
Œ0;1�s

F .x/ dx �
NX
nD1

wnF.xn/

ˇ̌
ˇ̌̌ � 1

2

 
t C s � 1
s � 1

!
:
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We now estimate the norm of F . By Parseval’s theorem we have

X
k2Ns0

j Ofm.k/j2 D
Z
Œ0;1�s

jfm.x/j2 dx � 1

and hence

X
k2Ns0

j Ofm.k/ Ofm0.k/j �
0
@X

k2Ns0
j Ofm.k/j2

1
A
1=20
@X

k2Ns0
j Ofm0.k/j2

1
A
1=2

� 1:

Further note that Ofm.k/ D 0 if there is an 1 � i � s such that ki � bmi . Thus

kF k2H .Kwal;s;b;ı;� /

D
X

m;m02Ns0kmk1Dkm0k1Dt

hfm; fm0iH .Kwal;s;b;ı;�/

�
X

m;m02Ns0kmk1Dkm0k1Dt

min.m1;m0

1/X
u1D0

� � �
min.ms;m0

s/X
usD0



bu1�1X

k1Dbbu1�1c
� � �

bus�1X
ksDbbus�1c

1

rwal;b;ı .k;�/
j Ofm.k/ Ofm0.k/j

�
X

m;m02Ns0kmk1Dkm0k1Dt

min.m1;m0

1/X
u1D0

� � �
min.ms;m0

s/X
usD0

1

rwal;b;ı..bu1 � 1; : : : ; bus � 1/;�/

�
X

m;m02Ns0kmk1Dkm0k1Dt

sY
iD1

2
41C 
�1i

min.mi ;m0

i /X
uiD1

bı.ui�1/
3
5

D
X

m;m02Ns0kmk1Dkm0k1Dt

sY
iD1

"
1C 
�1i

bımin.mi ;m0

i / � 1

bı � 1

#

� C 0ı;s;�
X

m;m02Ns0kmk1Dkm0k1Dt

bı
Ps
iD1 min.mi ;m0

i /;

where C 0ı;s;� > 0 is a constant which depends only on ı; s;� .
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We now estimate the last sum. We have

X
m;m02Ns0kmk1Dkm0k1Dt

bı
Ps
iD1 min.mi ;m0

i / D
tX

�D0
bı�A.�; t/;

where A.�; t/ is the number of solutions to the system of equations

m1 C � � � Cms D t;

m01 C � � � Cm0s D t;

min.m1;m
0
1/C � � � C min.ms;m

0
s/ D �:

Thus, for 0 � � � t we have

A.�; t/ �
s�1X
uD1

 
s

u

! 
�C s � 1
s � 1

! 
t � �C u � 1

u � 1

! 
t � �C s � u � 1

s � u � 1

!

� Cs�
s�1.t � �/s�2;

for some constant Cs > 0 independent of t and �. Therefore we have

tX
�D0

bı�A.�; t/ � Cs

tX
�D0

bı��s�1.t � �/s�1

� C 0s
Z t

0

bı��s�1.t � �/s�1 d�

� C 00s t s�1=2btı=2Is�1=2.log btı=2/;

where we used Prudnikov, Brychkov, and Marichev [97, Subsection 2.3.6, Eq. (1)]
and where Is�1=2 denotes the modified Bessel function of the first kind. Since
Is�1=2.z/ � cs

ezp
2�z

(see for instance Abramowitz and Stegun [1, Eq. 9.7.1]), it

follows that there is a constant C > 0 (depending only on s; ı but not on t) such
that

tX
�D0

bı�A.�; t/ � Cbtıt s�1:

Thus, there is a constant Cı;s;� > 0, such that

kF kH .Kwal;s;b;ı;� / � Cı;s;�b
tı=2t .s�1/=2:
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Let g.x/ D F.x/=kF kH .Kwal;s;b;ı;� /. Then g is in the unit ball of H .Kwal;s;b;ı;� /

and we have

e.H .Kwal;s;b;ı;� /IPI w/ �
ˇ̌
ˇ̌
ˇ
Z
Œ0;1�s

g.x/ dx �
NX
nD1

wng.xn/

ˇ̌
ˇ̌
ˇ

� 1

2
kF k�1

 
t C s � 1
s � 1

!

� CN�ı=2.logN/.s�1/=2

for some constant C > 0 independent of N . ut
Notice that in the above constructions it was sufficient to use polynomial lattice

point sets P.q; p/. Generally, the space H .Kwal;s;b;ı;� / does not contain smooth
functions for ı > 1. Hence, if one wants to consider classical spaces of functions
with smoothness ˛, the above results only work for ˛ � 1.

To extend the construction of polynomial lattice rules to integrands of smooth-
ness ˛ > 1, one needs to use polynomial lattice point sets P˛.g; p/ with ˛ > 1.
This has been shown in Baldeaux, Dick, Greslehner and Pillichshammer [5] and
Baldeaux, Dick, Leobacher, Nuyens and Pillichshammer [6].

We introduce a space of functions of smoothness ˛ 2 N in the following. For
such ˛ let Ls;˛;� W Œ0; 1�s 
 Œ0; 1�s ! R be the reproducing kernel given by

Ls;˛;� .x;y/ D
sY
iD1

"
1C 
i

X̨
aD1

Ba.xi /Ba.yi /

.aŠ/2
� .�1/˛
i B2˛.jxi � yi j/

.2˛/Š

#
;

where x D .x1; : : : ; xs/, y D .y1; : : : ; ys/, and Ba.�/ denotes the Bernoulli
polynomial of degree a. For instance we have B1.x/ D x � 1=2, B2.x/ D
x2 � x C 1=6, B3.x/ D x3 � 3x2=2 C x=2, and so on. For dimension s D 1

the inner product in the reproducing kernel Hilbert space H .L1;˛;
 / is given by

hf; giH .L1;˛;
 / D
Z 1

0

f .x/ dx
Z 1

0

g.x/ dx C 1




˛�1X
aD1

Z 1

0

f .a/.x/ dx
Z 1

0

g.a/.x/ dx

C 1




Z 1

0

f .˛/.x/g.˛/.x/ dx; (9.41)

where f .a/ denotes the ath derivative of f . For s > 1 the space H .Ls;˛;� / is the
s-fold tensor product of the one-dimensional spaces H .L1;˛;
i /, 1 � i � s.

The extension of the construction algorithm in Baldeaux, Dick, Greslehner and
Pillichshammer [5] and Baldeaux, Dick, Leobacher, Nuyens and Pillichshammer [6]
for ˛ > 1 is based on a continuous embedding of H .Ls;˛;� / into a space of Walsh
series [21]. It is then shown that Algorithm 39 can be used with a generalised quality



9 Discrepancy Theory and Quasi-Monte Carlo Integration 603

criterion of order ˛ > 1 stemming from the Walsh space together with polynomial
lattice point sets P˛.q; p/. The convergence rate obtained in this case is of the form

e2.H .Ls;˛;� /IP˛.q; p// � b��m
sY
iD1
Œ1C 


1=�
i Cb;˛;��

�;

where Cb;˛;� > 0 and 1 � � < ˛.
Notice that the Korobov space H .Ks;˛;�/ is continuously embedded in the space

H .Ls;˛;� /. In fact, the restriction of H .Ls;˛;� / to functions with one-periodic
partial mixed derivatives up to order ˛ � 1 in each variable, yields the space
H .Ks;˛;�/. This can be seen for instance by considering the one-dimensional inner
product for such functions, in which case (9.41) reduces to

hf; giH .L1;˛;
 / D
Z 1

0

f .x/ dx
Z 1

0

g.x/ dx C 1




Z 1

0

f .˛/.x/g.˛/.x/ dx;

which is equivalent to the inner product given in (9.27) (which can be shown by
substituting the Fourier series for f and g in the inner product above).

Thus, Theorem 17 also applies to multivariate integration in the space H .Ls;˛;1/

and we have

e.H .Ls;˛;1/IPI w/ � e.H .Ks;˛/IPI w/ � C.s; ˛; ˇ/
.logN/.s�1/=2

N ˛=2
:

Thus, the construction algorithm for higher order polynomial lattice rules yields
quadrature rules which are almost best possible in terms of their convergence rate.

In the following we present an alternative approach to constructing higher
order polynomial lattice rules using some ideas from Dick, Sloan, Wang and
Woźniakowski [34] and Sinescu and L’Ecuyer [104]. First, notice that there is an
explicit formula for the worst-case error in H .Ls;˛;� / using (9.3), given by

e2.H .Ls;˛;�/IP/ D
Z
Œ0;1�s

Z
Œ0;1�s

Ls;˛;� .x;y/ dx dy

� 2

N

NX
nD1

Z
Œ0;1�s

Ls;˛;� .x;xn/ dx C 1

N 2

NX
n;n0D1

Ls;˛;� .xn;xn0/

D �1C 1

N 2

NX
n;n0D1

Ls;˛;� .xn;xn0/;

where P D fx1; : : : ;xN g. Thus, for a given point set, the worst-case error can be
computed in O.N2s/ operations. Thus, we can use the following algorithm to find
good higher order polynomial lattice rules.
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Algorithm 42. Let ˛;m; s � 2 be integers, let p 2 ZbŒx� be a polynomial of degree
˛m.

For 1 � d � s, assume we have already constructed q1; : : : ; qd�1 2 Gb;˛m.
Then randomly choose c polynomials h1; : : : ; hc 2 Gb;˛m, where h1; : : : ; hc are
uniformly i.i.d. Set qd D hu, where 1 � u � c is the value of w which minimises

e2.H .Ld;˛;� /IP˛..q1; : : : ; qd�1; hw/; p//:

The following result stems from Baldeaux, Dick, Greslehner and Pillichsham-
mer [5]. Let 1=˛ < � � 1. Assume that q D .q1; : : : ; qd�1/ 2 Gd�1

b;˛m is such
that

e2�.H .Ld�1;˛;� /IP˛.q; p// � 1

bm

d�1Y
iD1
.1C 
�i Cb;˛;�/; (9.42)

where the constant Cb;˛;� > 0 depends only on b; ˛; �. Then we have

1

b˛m

X
q2Gb;˛m

e2�.H .Ld;˛;� /IP˛..q; q/; p// � 1

bm

dY
iD1
.1C 
�i Cb;˛;�/;

where .q; q/ D .q1; : : : ; qd�1; q/. Using Markov’s inequality we obtain,
given (9.42) holds, that for all t � 1 we have

#

(
q 2 Gb;˛m W e2�.H .Ld;˛;�/IP˛..q; q/; p// � t

bm

dY
iD1
.1C 
�i Cb;˛;�/

)

> b˛m
�
1 � 1

t

�
;

which can be written as

#

(
q 2 Gb;˛m W e.H .Ld;˛;� /IP˛..q; q/; p// � t

b
m
2�

dY
iD1
.1C 
�i Cb;˛;�/

1
2�

)

> b˛m
�
1 � 1

t2�

�
:

Hence the probability that at least one of h1; : : : ; hc satisfies

e.H .Ld;˛;� /IP˛..q; hw/; p// � t

b
m
2�

dY
iD1
.1C 
�i Cb;˛;�/

1
2�

is at least 1 � t�c=.2�/. Thus, we have the following theorem.
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Theorem 43. Let 1=˛ < � � 1. The probability that the vector q D .q1; : : : ; qs/ 2
Gs
b;˛m constructed by Algorithm 42 satisfies

e.H .Ld;˛;� /IP˛.q
.d/; p// � t

b
m
2�

dY
iD1
.1C 
�i Cb;˛;�/

1
2�

for all 1 � d � s, where q.d/ D .q1; : : : ; qd /, is at least .1 � t�c=.2�//s � 1 �
st�c=.2�/.

9.5.2 The Construction of Polynomial Lattice Rules Based
on the Figure of Merit

Another way of constructing polynomial lattice point sets is based on the figure of
merit %˛ from Definition 36. In Algorithms 39 and 42 we used the worst-case error
in some function spaces to compare polynomial lattice rules. In the following we
show how Theorems 5, 8 and 37 can also be used to obtain a construction of good
polynomial lattice point sets.

The idea is to search for polynomial lattice point sets which maximise the figure
of merit.

Algorithm 44. Let ˛; b;m; s 2 N, b � 2, be given and let p 2 ZbŒx� with
deg.p/ D ˛m. Choose q 2 Gs

b;˛m which maximises %˛.q; p/.

Since computing the value of %˛.q; p/ for given polynomials q; p is computa-
tionally expensive, Algorithm 44 can only be used for small values of ˛;m and s. In
order to reduce the size of the search space, one can also consider a simplification
due to Korobov [60].

Algorithm 45. Let ˛; b;m; s 2 N, b � 2, be given and let p 2 ZbŒx� with
deg.p/ D ˛m. Choose q 2 Gb;˛m which maximises %˛..q; q2; : : : ; qs/; p/.

If ˛ D 1, one can also consider the generating vector .1; q; : : : ; qs�1/ (as
originally proposed by Korobov for lattice rules).

The following result for ˛ D 1 was first shown in Larcher, Lauss, Niederreiter,
and Schmid [68].

Theorem 46 (Larcher, Lauss, Niederreiter, and Schmid [68]). Let b 2 P,m; s 2
N with s � 2 and let p 2 ZbŒx� be irreducible over ZbŒx� with deg.p/ D m. For
% > 0 define

�.s; %/ D
s�1X
dD0

 
s

d

!
.b � 1/s�d

%CdX
lD0

 
s � d C l � 1

l

!
bl C 1 � b%Cs:
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1. If �.s; %/ < bm, there exists a q 2 Gs
b;m with

%.q; p/ � %C s:

2. If �.s; %/ < bm

s�1 , there exists a polynomial q 2 Gb;m such that g 	�
1; q; : : : ; qs�1

�
.mod p/ satisfies

%.q; p/ � %C s:

Corollary 47. Let b 2 P, m; s 2 N with s � 2 and with m sufficiently large. Let
p 2 ZbŒx� be irreducible with deg.p/ D m.

1. There exists a vector q 2 Gs
b;m with

%.q; p/ �
�
m � .s � 1/.logb m � 1/C logb

.s � 1/Š

.b � 1/s�1

�
:

2. There exists a polynomial q 2 Gb;m such that q 	 .1; q; : : : ; qs�1/ .mod p/
satisfies

%.q; p/ �
�
m � .s � 1/.logb m � 1/C logb

.s � 2/Š

.b � 1/s�1

�
:

Together with Theorems 37 and 5 this result shows the existence of polynomial
lattice point sets P.q; p/ with star-discrepancy of order

D�bm.P.q; p// �s;b

m2s�2

bm
:

More precise results on the star-discrepancy of polynomial lattice point sets will be
presented in Sect. 9.5.3.

For ˛ > 1 we have the following result from Dick, Kritzer, Pillichshammer and
Schmid [36].

Theorem 48 (Dick, Kritzer, Pillichshammer and Schmid [36, Theorem 3]). Let
b 2 P, m;˛; s 2 N, ˛; s � 2, and p 2 ZbŒx� with deg.p/ D ˛m be irreducible. For
% > 0 define

�.s; %; ˛/ D
%X
lD0

sX
iD1

 
s

i

! X
l1;:::;li	1

l1C���CliDl

iY
zD1

C.˛; lz/;
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where

C.˛; l/ D
˛�1X
vD1
.b � 1/v

 
l � v.v�1/

2
� 1

v � 1

!

C
bl=˛cX
iD1

.b � 1/˛bi�1
 
l � ˛i � ˛.˛�3/

2
� 2

˛ � 2

!
:

1. If �.s; %; ˛/ < bm, there exists a q 2 Gs
b;˛m with

%˛.q; p/ � %:

2. If �.s; %; ˛/ < bm

s�1 , there exists a polynomial q 2 Gb;˛m such that q 	�
q; q2; : : : ; qs

�
.mod p/ satisfies

%˛.q; p/ � %:

The proofs of Theorems 46 and 48 are based on the following idea applied to
codes and going back to Gilbert [43] and Varshamov [115]. We illustrate this idea
for Algorithm 44.

First, note that there are jGs
b;˛mj D jGb;˛mjs D b˛ms vectors q to choose from.

The idea is to estimate the number of vectors q 2 Gs
b;˛m for which %˛;m.q; p/ < %

for some chosen % � 0. If this number is smaller than the total number of possible
choices of vectors q 2 Gs

b;˛m, it follows that there is at least one vector q with
%˛.q; p/ � %. For details we refer to [31, Chapter 10] and [31, Section 15.7.1], or
to Dick, Kritzer, Pillichshammer and Schmid [36] and Larcher, Lauss, Niederreiter,
and Schmid [68].

In Dick, Kritzer, Pillichshammer and Schmid [36] it was shown that Theorem 48
sometimes yields higher order digital nets with parameters better than the ones
obtained using the higher order construction of Sect. 9.3.5.

9.5.3 Star-Discrepancy of Polynomial Lattice Point Sets

For a polynomial lattice point set P.g; p/ with ˛ D 1 each point xn is of the
form xn D fyn=bmg with yn 2 Z

s . In particular, the elements of a polynomial
lattice point set always have a finite b-adic digit expansion. A bound similar to
that of Proposition 22 on the star-discrepancy of such point sets was first given by
Niederreiter [77, Satz 2] (see also Niederreiter [81, Theorem 3.12]). An approach
to this result by means of Walsh functions was described by Hellekalek [49,
Theorem 1]. To formulate the result of Hellekalek we again need some notation.
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Let b � 2 be an integer. For a vector k D .k1; : : : ; ks/ 2 N
s
0 we put �b.k/ WDQs

iD1 �b.ki / where �b.0/ D 1 and where for k 2 N0 we set

�b.k/ D 1

brC1 sin2.��r=b/

if k D �rb
r C k0, where �r 2 f1; : : : ; b � 1g and 0 � k0 < br .

Proposition 49 (Hellekalek [49] and Niederreiter [77]). LetN � 1 and let P D
fx0; : : : ;xN�1g be a point set in the s-dimensional unit cube where xn is of the form
xn D fyn=bmg with yn 2 Z

s , and m; b 2 N, b � 2. Then we have

D�N .P/ � 1 �
�
1 � 1

bm

�s
C

X
k2N

s
0

0<jkj

1

<bm

�b.k/

ˇ̌
ˇ̌̌ 1
N

N�1X
nD0

bwalk.xn/

ˇ̌
ˇ̌̌
:

A proof of this result can also be found in [31, Proof of Theorem 3.28].
Applying this result to a polynomial lattice point set P.q; p/, in particularN D

bm, and using (9.40), we obtain the following result.

Theorem 50 (Dick, Leobacher and Pillichshammer [32]). For the star-
discrepancy of a polynomial lattice point set P.q; p/ we have

D�bm.P.q; p// � 1 �
�
1 � 1

bm

�s
CRb.q; p/ � s

bm
CRb.q; p/;

where

Rb.q; p/ WD
X

h2D�.q;p/

�b.h/:

In the original version of the above results on the star-discrepancy, the squared
sine function in the definition of �b can be replaced by the ordinary sine function.
Here we deal with the slightly weaker bound since in this case the quantity Rb can
be computed efficiently. Assume that P.q; p/ D fx0; : : : ;xbm�1g, where xn D
.xn;1; : : : ; xn;s/. Then, using (9.40) we can write Rb.q; p/ as

Rb.q; p/ D �1C 1

bm

bm�1X
nD0

sY
iD1

 
1C

bm�1X
hD1

�b.h/ bwalh.xn;i /

!
: (9.43)

and from this one can deduce that

Rb.q; p/ D �1C 1

bm

bm�1X
nD0

sY
iD1

	b;m.xn;i /;
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where for x D �1b
�1 C � � � C �mb

�m we have

	b;m.x/ D

8̂
<
:̂
1C i0

b2�1
3b

C 2
b
�i0.�i0 � b/ if �1 D � � � D �i0�1 D 0 and

�i0 6D 0 with 1 � i0 � m;

1Cmb2�1
3b

otherwise:

In particular,Rb.q; p/ can be computed in O.bms/ operations; for a proof we refer
to [31, Section 10.2].

It has been shown in Kritzer and Pillichshammer [62] that there exists a cs;b > 0
such that for any p 2 ZbŒx� with deg.p/ D m and any q 2 .G�b;m/s we have

Rb.q; p/ � cs;bb
deg.ıs/ .m � deg.ıs//s

bm
; where ıs WD gcd.q1; : : : ; qs ; p/:

On the other hand, let b 2 P, s;m 2 N, and let p 2 ZbŒx� be irreducible with
deg.p/ D m. Then we have

1

jG�b;mjs
X

q2.G�

b;m/
s

Rb.q; p/ D 1

bm � 1

 �
1Cm

b2 � 1
3b

�s
� 1 � smb

2 � 1
3b

!
;

see Dick, Leobacher and Pillichshammer [32, Theorem 2.3] or [31, Theorem 10.21]
for a proof. See also Niederreiter [81, Theorem 4.43]. In particular, we have the
following result.

Theorem 51 (Dick, Leobacher and Pillichshammer [32, Theorem 2.3] and
Kritzer and Pillichshammer [62, Theorem 1.1]). Let b 2 P, s;m 2 N, s � 2.
For any p 2 ZbŒx� with deg.p/ D m there exists a q 2 .G�b;m/s such that

Rb.q; p/ �b;s

ms

bm

and this order of magnitude is best possible.

If p is irreducible we can use the following component-by-component algorithm
for the construction of P.g; p/.

Algorithm 52. Given b 2 P, s;m 2 N, and a polynomial p 2 ZbŒx�, with
deg.p/ D m.

1. Choose q1 D 1.
2. For d > 1, assume we have already constructed q1; : : : ; qd�1 2 G�b;m. Then find
qd 2 G�b;m which minimises the quantity Rb..q1; : : : ; qd�1; z/; p/ as a function
of z 2 G�b;m.

Since the quantity Rb.q; p/ can be calculated in O.bms/ operations, the cost of
Algorithm 52 is of O.b2ms2/ operations. Using the fast component-by-component
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algorithm due to Nuyens and Cools [91] this can be reduced to O.smbm/ opera-
tions; see [31, Section 10.3].

Theorem 53 (Dick, Leobacher and Pillichshammer [32, Theorem 2.7]). Let b 2
P, s;m 2 N, and let p 2 ZbŒx� be irreducible with deg.p/ D m. Suppose q D
.q1; : : : ; qs/ 2 .G�b;m/s is constructed according to Algorithm 52. Then for all 1 �
d � s we have

Rb.q
.d/; p/ � 1

bm � 1

�
1Cm

b2 � 1
3b

�d
;

where q.d/ D .q1; : : : ; qd /.

The proof of the result relies on similar ideas to those of the corresponding
result for lattice rules from Theorem 26. A detailed proof can also be found in [31,
Section 10.2.2].

A similar result for not necessarily irreducible polynomials is proven, but with
much more technical effort, in Dick, Kritzer, Leobacher and Pillichshammer [35,
Theorem 2].

Corollary 54 (Dick, Leobacher and Pillichshammer [32, Corollary 2.8]). Let
b 2 P, s;m 2 N, and let p 2 ZbŒx� be irreducible with deg.p/ D m. Suppose
q 2 .G�b;m/s is constructed according to Algorithm 52. Then we have

D�bm.P.q; p// � s

bm
C 1

bm � 1

�
1Cm

b2 � 1
3b

�s

This result is not quite as good as the best existence result for point sets with low
star-discrepancy from (9.11). However, the result is in line with the analogous result
from the theory of lattice point sets, cf. Corollary 27.

For polynomial lattice point sets one knows that they also have the digital net
structure. Based on this property one can prove the following improved, but still not
optimal in the sense of (9.11), existence result.

Theorem 55 (Kritzer and Pillichshammer [63], Larcher [70]). Let b 2 P and
s 2 N. Then for any polynomial p 2 ZbŒx� of degree m with gcd.p; x/ D 1 or
p.x/ D xm there exists a generating vector q 2 Gs

b;m such that

D�bm.P.q; p// �s;b

ms�1 logm

bm
:

This bound is excellent in an asymptotic sense if m ! 1. The dependence
on the dimension s is not known. A construction of polynomial lattice point sets
P.q; p/ whose star-discrepancy satisfy the bound from Theorem 55 is not known
so far.
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In dimension s D 2 we have an explicit construction due to Niederreiter of a
generating vector q such that P.q; xm/ has small star-discrepancy. For s D b D 2

and for anym 2 N let

qm.x/ D
blog2 mcC1X

jD0
xm�bm=2j c 2 Z2Œx� and qm D .1; qm/ 2 Z2Œx�

2:

Theorem 56 (Niederreiter [78] and [81]). For any m 2 N we have

D�2m.P.qm; x
m// �

�
m

3
C 9

19

�
1

2m
:

Proof. Consider the continued fraction expansion

qm.x/

xm
D ŒA1; : : : ; Ah�;

where Ai 2 Z2Œx� and deg.Ai / � 1 for 1 � i � h. Niederreiter [78] proved
that K.qm.x/=xm/ WD max1�i�h deg.Ai / D 1. From Theorem 37 and from
Niederreiter [81, Theorem 4.46] it follows that the two-dimensional polynomial
lattice point set P.qm; x

m/ is a digital .0;m; 2/-net over Z2. In Larcher and P. [67]
it has been shown that the star-discrepancy of any digital .0;m; 2/-net over Z2 is at
most

�
m
3

C 9
19

�
2�m and hence the result follows.ut

9.5.4 Weighted Star-Discrepancy of Polynomial Lattice
Point Sets

For the weighted star-discrepancy of a polynomial lattice point set we obtain from
Theorem 50

D�N;� .P.q; p// D max
;6Du
Œs�

�uD
�
N;� .P.qu; p//

�
X
;6Du
Œs�

�u

 
1 �

�
1 � 1

bm

�juj!
C

X
;6Du
Œs�

�uRb.qu; p/;

where qu denotes the projection of q onto the components given by u. Hence
P.qu; p/ is the juj-dimensional polynomial lattice point set which is obtained by a
projection of the points from P.q; p/ onto the components given by u.

Set Q�b.h; 
/ D 1 C 
 if h D 0 and 
�b.h/ if h 6D 0, and set Q�b.h;�/ DQs
iD1 Q�b.hi ; 
i /. Then it follows from (9.43) in the same way as for the correspond-

ing result for lattice rules that
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QRb;� .q; p/ WD
X
;6Du
Œs�

�uRb.qu; p/

D
X

h2D.g;p/�
Q�b.h;�/

D �
sY
iD1
.1C 
i /C 1

bm

bm�1X
nD0

sY
iD1
.1C 
i	b;m.xn;i //: (9.44)

From (9.44) we see that QRb;� .q; p/ can be computed in O.bms/ operations.
Hence for the weighted star-discrepancy of a polynomial lattice point set

P.q; p/ we obtain

D�bm;�.P.q; p// �
X
;6Du
Œs�

�u

 
1 �

�
1 � 1

bm

�juj!
C QRb;� .q; p/:

If p is irreducible one can again use the component-by-component algorithm
(Algorithm 52) withRb replaced by QRb;� for the construction of a ‘good’ generating
vector.

Theorem 57 (Dick, Leobacher and Pillichshammer [32, Theorem 3.7]). Let
b 2 P, s;m 2 N, let p 2 ZbŒx� be irreducible with deg.p/ D m. Suppose
q D .q1; : : : ; qs/ 2 .G�b;m/s is constructed according to Algorithm 52 (with Rb
replaced by QRb;� ). Then for all 1 � d � s we have

QRb;�.q.d/; p/ � 1

bm � 1
dY
iD1

�
1C 
i

�
1Cm

b2 � 1
3b

��
;

where q.d/ D .q1; : : : ; qd /.

Corollary 58 (Dick, Leobacher and Pillichshammer [32, Corollary 3.8]). Let
b 2 P, s;m 2 N, and let p 2 ZbŒx� be irreducible with deg.p/ D m. Suppose
q D .q1; : : : ; qs/ 2 .G�b;m/s is constructed according to Algorithm 52 (with Rb
replaced by QRb;� ). Then for all 1 � d � s we have

D�bm;�.P.q.d/; p// �
X
;6Du
Œd �

�u

 
1 �

�
1 � 1

bm

�juj!

C 1

bm � 1

dY
iD1

�
1C 
i

�
1Cm

b2 � 1

3b

��
;

where q.d/ D .q1; : : : ; qd / and Œd � D f1; : : : ; d g.

Similarly as for lattice point sets we can now deduce the following result.
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Corollary 59. Let p be irreducible and suppose that q is constructed according to
Algorithm 52 (with Rb replaced by QRb;� ).

If
P

i�1 
i < 1, then for any ı > 0 there exists a cb;� ;ı > 0, independent of s
andm, such that the weighted star-discrepancy of P.q; p/ satisfies

D�bm;�.P.q; p// � cb;� ;ı

bm.1�ı/
:

Assume that
P

i�1 
i < 1. For simplicity, we consider the case b D 2 only.
Let ı > 0 and let N 2 N with binary representation N D 2m1 C � � � C 2mk , where
0 � m1 < m2 < � � � < mk , i.e., mk D blog2 N c, where log2 denotes the logarithm
in base 2. For each 1 � i � k choose an irreducible polynomial pi 2 Z2Œx� with
deg.pi / D mi and construct a vector qi according to Algorithm 52 (with b D 2

and with R2 replaced by QR2;� ). Then for the resulting polynomial lattice point sets
P.qi ; pi / we obtain from Corollary 59 that

D�2mi ;�.P.qi ; pi // � c� ;ı

2mi .1�ı/

for all 1 � i � k. Let PN D P.q1; p1/ [ : : : [ P.qk; pk/ (here we mean
a superposition where the multiplicity of elements matters). Then it follows from
the triangle inequality for the star-discrepancy (see [31, Proposition 3.16]) and the
definition of the weighted star-discrepancy that

D�N;� .PN / �
kX
iD1

2mi

N
D�2mi ;�.P.qi ; pi // � c� ;ı

N

kX
iD1

2mi ı

� c� ;ı

N

blog2 N cX
jD0

2jı � Qc� ;ı

N 1�ı :

Hence for each s;N 2 N there exists an N -element point set PN in Œ0; 1/s with
D�N;� .PN / � Qc
;ıN�1Cı and this point set is a superposition of polynomial lattice
point sets.

In particular, if
P

i�1 
i < 1, it follows that for any s;N 2 N we have

disc1;�.N; s/ � Qc� ;ı

N 1�ı

and that the bound can be achieved by a superposition of polynomial lattice point
sets.

Recall that disc1;� .0; s/ D max;6Du
Œs� �u � 
1 > 0.
For " > 0 and ı > 0 we obtain

N1;�."; s/ � ˙
. Qc� ;ı


�1
1 "�1/1=.1�ı/

�
:
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This bound, which is independent of the dimension s, was already presented
in (9.19) and shows again that the weighted star-discrepancy is strongly tractable
with "-exponent equal to one whenever the weights 
i , i � 1, are summable.

As for lattice point sets, for the weighted Lp-discrepancy of a polynomial lattice
point set we obtain

Lp;� .P.q; p// �
X
;6Du
Œs�

�u

 
1 �

�
1 � 1

bm

�juj!
C QRb;� .g; p/:

Again, this means that the results for the weighted star-discrepancy apply also
for the weighted Lp-discrepancy.
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Chapter 10
Calculation of Discrepancy Measures
and Applications

Carola Doerr, Michael Gnewuch, and Magnus Wahlström

Abstract In this book chapter we survey known approaches and algorithms to
compute discrepancy measures of point sets. After providing an introduction which
puts the calculation of discrepancy measures in a more general context, we focus
on the geometric discrepancy measures for which computation algorithms have
been designed. In particular, we explain methods to determineL2-discrepancies and
approaches to tackle the inherently difficult problem to calculate the star discrepancy
of given sample sets. We also discuss in more detail three applications of algorithms
to approximate discrepancies.

10.1 Introduction and Motivation

In many applications it is of interest to measure the quality of certain point sets, e.g.,
to test whether successive pseudo-random numbers are statistically independent,
see, e.g., [82, 87, 99], or whether certain sample sets are suitable for multivariate
numerical integration of certain classes of integrands, see, e.g., [25]. Other areas
where the need of such measurements may occur include the generation of low-
discrepancy samples, the design of computer experiments, computer graphics, and
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stochastic programming. (We shall describe some of these applications in more
detail in Sect. 10.5.) A particularly useful class of quality measures, on which we
want to focus in this book chapter, is the class of discrepancy measures. Several
different discrepancy measures are known. Some of them allow for an efficient
evaluation, others are hard to evaluate in practice. We shall give several examples
below, but before doing so, let us provide a rather general definition of a geometric
discrepancy measure.

Let .M;˙/ be a measurable space. Now let us consider two measures � and �
defined on the �-algebra ˙ of M . A typical situation would be that � is a rather
complicated measure, e.g., a continuous measure or a discrete measure supported
on a large number of atoms, and � is a simpler measure, e.g., a discrete probability
measure with equal probability weights or a discrete (signed) measure supported
on a small number of atoms. We are interested in approximating � by the simpler
object � in some sense and want to quantify the approximation quality. This can be
done with the help of an appropriate discrepancy measure.

Such situations occur, e.g., in numerical integration, where one has to deal with
a continuous measure � to evaluate integrals of the form

R
M
f d� and wants to

approximate these integrals with the help of a quadrature formula

Qf D
nX
iD1

vi f .x
.i// D

Z
M

f d�I (10.1)

here � D �Q denotes the discrete signed measure �.A/ D Pn
iD1 vi 1A.x.i//, with 1A

being the characteristic function of A 2 ˙ . Another instructive example is scenario
reduction in stochastic programming, which will be discussed in more detail in
Sect. 10.5.3.

To quantify the discrepancy of � and � one may select a subset B of the �-
algebra ˙ , the class of test sets, to define the local discrepancy of � and � in a test
set B 2 B as

�.BI�; �/ WD �.B/� �.B/;

and the geometric L1-discrepancy of � and � with respect to B as

disc1.BI�; �/ WD sup
B2B

j�.BI�; �/j: (10.2)

Instead of considering the geometric L1-discrepancy, i.e., the supremum norm
of the local discrepancy, one may prefer to consider different norms of the local
discrepancy. If, e.g., the class of test sets B is endowed with a �-algebra ˙.B/
and a probability measure ! on ˙.B/, and the restrictions of � and � to B are
measurable functions, then one can consider for p 2 .0;1/ the geometric Lp-
discrepancy with respect to B, defined by
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discp.BI�; �/ WD
�Z

B
j�.BI�; �/jp d!.B/

�1=p
:

In some cases other norms of the local discrepancy may be of interest, too.
In the remainder of this chapter we restrict ourselves to considering discrete

measures of the form

�.B/ D
nX
iD1

vi 1B.x
.i//; where v1; : : : ; vn 2 R and x.1/; : : : ; x.n/ 2 M:

(10.3)

In the case where vi D 1=n for all i , the quality of the probability measure � D �X
is completely determined by the quality of the “sample points” x.1/; : : : ; x.n/. The
case where not all vi are equal to 1=n is of considerable interest for numerical
integration or stochastic programming (see Sect. 10.5.3). As already mentioned
above, in the case of numerical integration it is natural to relate a quadrature ruleQf
as in (10.1) to the signed measure � D �Q in (10.3). The quality of the quadratureQ
is then determined by the sample points x.1/; : : : ; x.n/ and the (integration) weights
v1; : : : ; vn.

Let us provide a list of examples of specifically interesting discrepancy measures.

• Star discrepancy. Consider the situation where M D Œ0; 1�d for some d 2 N, ˙
is the usual �-algebra of Borel sets of M , and � is the d -dimensional Lebesgue
measure �d on Œ0; 1�d . Furthermore, let Cd be the class of all axis-parallel half-
open boxes anchored in zero Œ0; y/ D Œ0; y1/
� � �
 Œ0; yd /, y 2 Œ0; 1�d . Then the
L1-star discrepancy of the finite sequence X D .x.i//niD1 in Œ0; 1/d is given by

d�1.X/ WD disc1.Cd I�d ; �X/ D sup
C2Cd

j�.C I�d ; �X/j;

where

�X.C / WD 1

n

nX
iD1

1C .x
.i// for all C 2 ˙ . (10.4)

Thus �X is the counting measure that simply counts for given Borel sets C the
number of points of X contained in C . The star discrepancy is probably the
most extensively studied discrepancy measure. Important results about the star
discrepancy and its relation to numerical integration can, e.g., be found in [5,24,
37, 94, 99] or the book chapters [7, 16, 25].

Since we can identify Cd with Œ0; 1�d via the mapping Œ0; y/ 7! y, we
may choose ˙.Cd / as the �-algebra of Borel sets of Œ0; 1�d and the probability
measure ! on ˙.Cd / as �d . Then for 1 � p < 1 the Lp-star discrepancy
is given by
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d�p .X/ W D discp.Cd I�d ; �X/D
 Z

Œ0;1�d

ˇ̌
ˇ̌
ˇy1 � � �yd� 1

n

nX
iD1

1Œ0;y/.x
.i//

ˇ̌
ˇ̌
ˇ
p

dy

!1=p
:

In the last few years also norms of the local discrepancy function different from
Lp-norms have been studied in the literature, such as suitable Besov, Triebel-
Lizorkin, Orlicz, and BMO1 norms, see, e.g., [8,68,69,91,92,132] and the book
chapter [7].
The star discrepancy is easily generalized to general measures �. For an
application that considers measures � different from �X see Sect. 10.5.3.
Notice that the point 0 plays a distinguished role in the definition of the star
discrepancy. That is why 0 is often called the anchor of the star discrepancy.
There are discrepancy measures on Œ0; 1�d similar to the star discrepancy that rely
also on axis-parallel boxes and on an anchor different from 0, such as the centered
discrepancy [65] or quadrant discrepancies [66,102]. Such kind of discrepancies
are, e.g., discussed in more detail in [101, 103].

• Extreme discrepancy. The extreme discrepancy is also known under the names
unanchored discrepancy and discrepancy for axis-parallel boxes. Its definition
is analogue to the definition of the star discrepancy, except that we consider the
class of test sets Rd of all half-open axis-parallel boxes Œy; z/ D Œy1; z1/ 
 � � � 

Œyd ; zd /, y; z 2 Œ0; 1�d . We may identify this class with the subset f.y; z/ j y; z 2
Œ0; 1�d ; y � zg of Œ0; 1�2d , and endow it with the probability measure d!.y; z/ WD
2d dy dz. Thus theL1-extreme discrepancy of the finite sequenceX D .x.i//niD1
in Œ0; 1/d is given by

de1.X/ WD disc1.Rd I�d ; �X/ D sup
R2Rd

j�.RI�d ; �X/j;

and for 1 � p < 1 the Lp-extreme discrepancy is given by

dep.X/ WD discp.Rd I�d ; �X/

D
0
@Z

Œ0;1�d

Z
Œ0;z/

ˇ̌
ˇ̌
ˇ
dY
iD1
.zi � yi / � 1

n

nX
iD1

1Œy;z/.x
.i//

ˇ̌
ˇ̌
ˇ
p

2d dy dz

1
A
1=p

:

The L2-extreme discrepancy was proposed as a quality measure for quasi-
random point sets in [96].
To avoid confusion, it should be mentioned that the term “extreme discrepancy”
is used by some authors in a different way. Especially in the literature before 1980
the attribute “extreme” often refers to a supremum norm of a local discrepancy
function, see, e.g., [83, 138]. Since the beginning of the 1990s several authors

1BMO stands for “bounded mean oscillation”.
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used the attribute “extreme” to refer to the set system of unanchored axis-parallel
boxes, see, e.g., [96, 99, 103].

• G-discrepancy. The G- or G-star discrepancy is defined as the star discrepancy,
except that the measure � is in general not the d -dimensional Lebesgue measure
�d on Œ0; 1�d , but some probability measure given by a distribution function G
via �.Œ0; x// D G.x/ for all x 2 Œ0; 1�d . This is

disc1.Cd I�; �X/ D sup
C2Cd

ˇ̌̌
ˇ̌G.x/ � 1

n

nX
iD1

1C .x
.i//

ˇ̌̌
ˇ̌ :

The G-discrepancy has applications in quasi-Monte Carlo sampling, see, e.g.,
[105]. Further results on the G-star discrepancy can, e.g., be found in [54].

• Isotrope discrepancy. Here we have again M D Œ0; 1�d and � D �d . As set of
test sets we consider Id , the set of all closed convex subsets of Œ0; 1�d . Then the
isotrope discrepancy of a set X is defined as

disc1.Id I�d ; �X/ WD sup
R2Id

j�.RI�d ; �X/j: (10.5)

This discrepancy was proposed by Hlawka [71]. It has applications in probability
theory and statistics and was studied further, e.g., in [4, 97, 113, 124, 143].

• Hickernell’s modifiedLp-discrepancy. For a finite point set X  Œ0; 1�d and a set
of variables u  f1; : : : ; d g let Xu denote the orthogonal projection of X into the
cube Œ0; 1�u. Then for 1 � p < 1 the modified Lp-discrepancy [65] of the point
set X is given by

D�p.X/ WD
0
@ X
;¤u
f1;:::;dg

d�p .Xu/
p

1
A
1=p

; (10.6)

and for p D 1 by

D�1.X/ WD max
;¤u
f1;:::;dg

d�1.Xu/: (10.7)

In the case where p D 2 this discrepancy was already considered by Zaremba
in [142]. We will discuss the calculation of the modified L2-discrepancy in
Sect. 10.2 and present an application of it in Sect. 10.5.2.

The modifiedLp-discrepancy is an example of a weighted discrepancy, which
is the next type of discrepancy we want to present.

• Weighted discrepancy measures. In the last years weighted discrepancy measures
have become very popular, especially in the study of tractability of multivariate
and infinite-dimensional integration, see the first paper on this topic, [117], and,
e.g., [25, 26, 53, 67, 89, 103] and the literature mentioned therein.
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To explain the idea behind the weighted discrepancy let us confine ourselves to
the case where M D Œ0; 1�d and � D �X is a discrete measure as in (10.4). (A
more general definition of weighted geometricL2-discrepancy, which comprises
in particular infinite-dimensional discrepancies, can be found in [53].) We
assume that there exists a one-dimensional measure �1 and a system B1 of test
sets on Œ0; 1�. For u � f1; : : : ; d g we define the product measure �u WD ˝j2u�

1

and the system of test sets

Bu WD
�
B � Œ0; 1�u

ˇ̌
ˇ̌B D

Y
j2u

Bj ; Bj 2 B1

�

on Œ0; 1�u. Again we denote the projection of a set X � Œ0; 1�d to Œ0; 1�u by Xu.
Put B WD Bf1;:::;dg and � WD �f1;:::;dg. Let .
u/u
f1;:::;dg be a family of weights,
i.e., of non-negative numbers. Then the weighted L1-discrepancy d�1;
 .X/ is
given by

d�1;
 .X/ WD disc1;
 .BI�; �X / D max
;¤u
f1;:::;dg


u disc1.BuI�u; �Xu/:

(10.8)

If furthermore there exists a probability measure ! D !1 on B1, put !u WD
˝j2u!

1 for u � f1; : : : ; d g. The weighted Lp-discrepancy d�p;
 .X/ is then
defined by

d�p;
 .X/ WD discp;
 .BI�; �X / D
0
@ X
;¤u
f1;:::;dg


u discp.BuI�u; �Xu/
p

1
A
1=p

;

where

discp.BuI�u; �Xu/
p D

Z
Bu

j�u.Bu/� �Xu.Bu/jp d!u.Bu/:

Hence weighted discrepancies do not only measure the uniformity of a point
set X  Œ0; 1�d in Œ0; 1�d , but also take into consideration the uniformity of
projections Xu of X in Œ0; 1�u. Note that Hickernell’s modified Lp-discrepancy,
see (10.6), is a weighted Lp-star discrepancy for the particular family of weights
.
u/u
f1;:::;dg where 
u D 1 for all u.

Other interesting discrepancy measures in Euclidean spaces as, e.g., discrepan-
cies with respect to half-spaces, balls, convex polygons or rotated boxes, can be
found in [5, 13, 17, 94] and the literature mentioned therein. A discrepancy measure
that is defined on a flexible region, i.e., on a certain kind of parameterized variety
M D M.m/,m 2 .0;1/, of measurable subsets of Œ0; 1�d , is the central composite
discrepancy proposed in [19]. For discrepancy measures on manifolds as, e.g., the
spherical cap discrepancy, we refer to [10, 25, 37] and the literature listed there.
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There are further figures of merits known to measure the quality of points
sets that are no geometric discrepancies in the sense of our definition. Examples
include the classical and the dyadic diaphony [62, 145] or the figure of merit
R.z; n/ [78, 99, 115], which are closely related to numerical integration (see also
the comment at the beginning of Sect. 10.3.4). We do not discuss such alternative
figures of merit here, but focus solely on geometric discrepancy measures. In fact,
we confine ourselves to the discrepancies that can be found in the list above. The
reason for this is simple: Although deep theoretical results have been published
for other geometric discrepancies, there have been, to the best of our knowledge,
no serious attempts to evaluate these geometric discrepancies efficiently. Efficient
calculation or approximation algorithms were developed almost exclusively for
discrepancies that are based on axis-parallel rectangles, such as the star, the extreme
or the centered discrepancy, and weighted versions thereof. We briefly explain in the
case of the isotrope discrepancy at the beginning of Sect. 10.3 the typical problem
that appears if one wants to approximate other geometric discrepancies than those
based on axis-parallel rectangles.

This book chapter is organized as follows: In Sect. 10.2 we consider L2-
discrepancies. In Sect. 10.2.1 we explain why many of these discrepancies can be
calculated exactly in a straightforward manner with O.n2 d/ operations, where n
denotes (as always) the number of points in X and d the dimension. In Sect. 10.2.2
we discuss some asymptotically faster algorithms which allow for an evaluation
of the L2-star and related L2-discrepancies in time O.n logn/ (where this time
the constant in the big-O-notation depends on d ). The problem of calculating L2-
discrepancies is the one for which the fastest algorithms are available. As we will
see in the following sections, for p ¤ 2 there are currently no similarly efficient
methods known.

In Sect. 10.3 we discuss the calculation of the L1-star discrepancy, which is
the most prominent discrepancy measure. To this discrepancy the largest amount
of research has been devoted so far, both for theoretical and practical reasons. We
remark on known and possible generalizations to other L1-discrepancy measures.
In Sect. 10.3.1 we present elementary algorithms to calculate the star discrepancy
exactly. These algorithms are beneficial in low dimensions, but clearly suffer from
the curse of dimensionality. Nevertheless, the ideas used for these algorithms are
fundamental for the following subsections of Sect. 10.3. In Sect. 10.3.2 we discuss
the more sophisticated algorithm of Dobkin, Eppstein and Mitchell, which clearly
improves on the elementary algorithms. In Sect. 10.3.3 we review recent results
about the complexity of exactly calculating the star discrepancy. These findings
lead us to study approximation algorithms in Sect. 10.3.4. Here we present several
different approaches.

In Sect. 10.4 we discuss the calculation of Lp-discrepancy measures for values
of p other than 2 and 1. This Section is the shortest one in this book chapter, due
to the relatively small amount of research that has been done on this topic.
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In Sect. 10.5 we discuss three applications of discrepancy calculation and
approximation algorithms in more detail. These applications are the quality
testing of points (Sect. 10.5.1), the generation of low-discrepancy point sets via
an optimization approach (Sect. 10.5.2), and scenario reduction in stochastic
programming (Sect. 10.5.3). The purpose of this section is to show the reader
more recent applications and to give her a feeling of typical instance sizes that can
be handled and problems that may occur.

10.2 Calculation of L2-Discrepancies

L2-discrepancies are often used as quality measures for sets of sample points.
One reason for this is the fact that geometric L2-discrepancies are equal to the
worst-case integration error on corresponding reproducing kernel Hilbert spaces and
the average-case integration error on corresponding larger function spaces, see the
research articles [43, 53, 65, 67, 102, 117, 141, 142] or the surveys in [25, 103].

An additional advantage of the L2-star discrepancy and related L2-discrepancies
is that they can be explicitly computed at costO.dn2/, see Sect. 10.2.1 below. Faster
algorithms that are particularly beneficial for lower dimension d and larger number
of points n will be presented in Sect. 10.2.2.

10.2.1 Warnock’s Formula and Generalizations

It is easily verified by direct calculation that the L2-star discrepancy of a given
n-point set X D .x.i//niD1 in dimension d can be calculated via Warnock’s
formula [135]

d�2 .X/ D 1

3d
� 21�d

n

nX
iD1

dY
kD1
.1 � .x.i/k /2/C 1

n2

nX
i;jD1

dY
kD1

minf1� x
.i/

k ; 1 � x
.j /

k g

(10.9)

with O.dn2/ arithmetic operations. As pointed out in [43, 93], the computation
requires a sufficiently high precision, since the three terms in the formula are usually
of a considerably larger magnitude than the resultingL2-star discrepancy. A remedy
suggested by T. T. Warnock [136] is to subtract off the expected value of each
summand in formula (10.9) (assuming that all coordinate values x.i/k are uniformly
and independently distributed) and to add it back at the end of the computation. This
means we write down (10.9) in the equivalent form
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d�2 .X/ D 1

n

�
1

2d
� 1

3d

�
� 21�d

n

nX
iD1

2
4 dY
kD1

.1 � .x.i/
k
/2/ �

�
2

3

�d35

C 1

n2

0
BB@

nX
i;jD1

i¤j

2
4 dY
kD1

minf1 � x
.i/

k
; 1 � x

.j /

k
g � 1

3d

3
5C

nX
iD1

2
4 dY
kD1

.1 � x.i/
k
/ � 1

2d

3
5
1
CCA ;

(10.10)

and calculate first the terms inside the brackets Œ: : :� and sum them up afterwards.
These terms are, in general, more well-behaved than the terms appearing in the
original formula (10.9), and the additional use of Kahan summation [79] helps to
further reduce rounding errors [136].

For other L2-discrepancies similar formulas can easily be deduced by direct
calculation. So we have, e.g., that the extremeL2-discrepancy ofX can be written as

de2 .X/ D 1

12d
� 2

6d n

nX
iD1

dY
kD1
.1 � .x.i/k /3 � .1 � x

.i/

k /
3/

C 1

n2

nX
i;jD1

dY
kD1

minfx.i/k ; x.j /k g minf1 � x
.i/

k ; 1 � x
.j /

k g;
(10.11)

cf. [60, Section 4], and the weighted L2-star discrepancy of X for product weights

u D Q

j2u 
j , 
1 � 
2 � � � � � 
d � 0, as

d�2;
 .X/ D
dY
kD1

�
1C 
2k

3

�
� 2

n

nX
iD1

dY
kD1

 
1C 
2k

1 � .x.i/k /2
2

!

C 1

n2

nX
i;jD1

dY
kD1

�
1 � 
2k minf1 � x.i/k ; 1 � x

.j /

k g
	
;

(10.12)

cf. also [25]. In particular, the formula holds for the modifiedL2-discrepancy (10.6)
that corresponds to the case where all weights 
j , j D 1; 2; : : :, are equal to
1. Notice that formulas (10.11) and (10.12) can again be evaluated with O.dn2/
arithmetic operations. In the case of the weighted L2-star discrepancy this is due
to the simple structure of the product weights, whereas for an arbitrary family of
weights .
u/u
f1;:::;dg the cost of computing d�2;
 .X/ exactly will usually be of order

˝.2d/.

10.2.2 Asymptotically Faster Methods

For the L2-star discrepancy S. Heinrich [60] developed an algorithm which is
asymptotically faster than the direct calculation of (10.9). For fixed d it uses at most
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O.n logd n/ elementary operations; here the implicit constant in the big-O-notation
depends on d . This running time can be further reduced to O.n logd�1 n/ by using
a modification noted by K. Frank and S. Heinrich in [43].

Let us start with the algorithm from [60]. For a quadrature rule

Qf D
nX
iD1

vi f .x
.i//; with vi 2 R and x.i/ 2 Œ0; 1�d for all i ;

we define the signed measure �Q by

�Q.C / WD Q.1C / D
nX
iD1

vi 1C .x
.i// for arbitrary C 2 Cd .

Then it is straightforward to calculate

d�2 .Q/ WD disc2.Cd I�d ; �Q/

D 1

3d
� 21�d

nX
iD1

vi

dY
kD1
.1 � .x.i/k /2/

C
nX

i;jD1
vivj

dY
kD1

minf1� x
.i/

k ; 1 � x
.j /

k g:

(10.13)

If we are interested in evaluating this generalized version of (10.9) in time
O.n logd n/ orO.n logd�1 n/, it obviously only remains to take care of the efficient
calculation of

nX
i;jD1

vivj

dY
kD1

minfy.i/k ; y.j /k g; where y.i/k WD 1 � x.i/k for i D 1; : : : ; n.

In the course of the algorithm we have actually to take care of a little bit more
general quantities: LetA D ..vi ; y.i///niD1 andB D ..wi ; z.i///miD1, where n;m 2 N,
vi ;wi 2 R and y.i/; z.i/ 2 Œ0; 1�d for all i . Put

D.A;B; d/ WD
nX
iD1

mX
jD1

viwj

dY
kD1

minfy.i/k ; z.j /k g:

We allow also d D 0, in which case we use the convention that the “empty product”
is equal to 1.

The algorithm is based on the following observation: If d � 1 and y.i/d � z.j /d for
all i 2 f1; : : : ; ng, j 2 f1; : : : ; mg, then
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D.A;B; d/ D
nX
iD1

mX
jD1

.vi y
.i/

d /wj

d�1Y
kD1

minfy.i/k ; z.j /k g D D. QA;B; d � 1/;

where QA D ..Qvi ; y.i///niD1, B D ..wi ; z.i///miD1 with Qvi D .vi y
.i/

d / and y.i/ D
.y

.i/

k /
d�1
kD1 and z.i/ D .z.i/k /

d�1
kD1. Hence we have reduced the dimension parameter d

by 1. But in the case where d D 0, we can simply calculate

D.A;B; 0/ D
 

nX
iD1

vi

!0
@ mX
jD1

wi

1
A (10.14)

with cost of order O.n C m/. This observation will be exploited by the algorithm
proposed by Heinrich to calculate D.A;B; d/ for given d � 1 and arrays A and B
as above.

We describe here the version of the algorithm proposed in [60, Section 2]; see
also [93, Section 5]. Let � denote the median of the d th components of the points
y.i/, i D 1; : : : ; n, from A. Then we split A up into two smaller arrays AL and
AR with AL containing bn=2c points y.i/ (and corresponding weights vi ) satisfying
y
.i/

d � � and AR containing the remaining dn=2e points (and corresponding

weights) satisfying y.i/d � �. Similarly, we split up B into the two smaller arrays
BL and BR that contains the points (and corresponding weights) from B whose d th
components are less or equal than � and greater than �, respectively.

Since we may determine � with the help of a linear-time median-finding
algorithm in time O.n/ (see, e.g., [1, Ch. 3]), the whole partitioning procedure can
be done in timeO.nCm/. With the help of this partitioning we can exploit the basic
idea of the algorithm to obtain

D.A;B; d/ D D.AL;BL; d/CD.AR;BR; d/CD. QAL;BR; d � 1/
CD.AR; QBL; d � 1/; (10.15)

where, as above, QAL is obtained from AL by deleting the d th component of the
points y.i/ and substituting the weights vi by vi y

.i/

d , and AR is obtained from AR
by also deleting the d th component of the points y.i/, but keeping the weights vi . In
an analogous way we obtain QBL and BR, respectively.

The algorithm uses the step (10.15) recursively in a divide-and-conquer manner.
The “conquer” part consists of three base cases, which are solved directly.

The first base case is m D 0; i.e., B D ;. Then D.A;B; d/ D 0.
The second one is the case d D 0 already discussed above, where we simply use

formula (10.14) for the direct calculation of D.A;B; 0/ at cost at most O.nCm/.
The third base case is the case where jAj D 1. Then we can compute directly
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D.A;B; d/ D v1

mX
jD1

wj

dY
kD1

minfy.1/k ; z.j /k g:

This computation costs at most O.m/.
An inductive cost analysis reveals that the cost of this algorithm to calculate

D.A;B; d/ is of orderO..nCm/ logd .nC1//, see [60, Prop. 1]. As already said, the
implicit constant in the big-O-notation depends on d . J. Matoušek provided in [93] a
running time analysis of Heinrich’s algorithm that also takes care of its dependence
on the dimension d and compared it to the cost of the straightforward calculation
of (10.13). From this analysis one can conclude that Heinrich’s algorithm reasonably
outperforms the straightforward method if n is larger than (roughly) 22d ; for details
see [93, Section 5]. Moreover, [60, 93] contain modifications of the algorithm
and remarks on a practical implementation. Furthermore, Heinrich provides some
numerical examples with the number of points ranging from 1;024 to 65;536 in
dimensions ranging from 1 to 8 comparing the actual computational effort of his
method and the direct calculation of (10.13), see [60, Section 5]. In these examples
his method was always more efficient than performing the direct calculation;
essentially, the advantage grows if the number of points increases, but shrinks if
the dimension increases.

As pointed out by Heinrich in [60, Section 4], his algorithm can be modified
easily to calculate L2-extreme discrepancies instead of L2-star discrepancies with
essentially the same effort. Furthermore, he describes how to generalize his
algorithm to calculate “r-smooth” L2-discrepancies, which were considered in
[108,125]. (Here the smoothness parameter r is a non-negative integer. If r D 0, we
regain the L2-star discrepancy. If r > 0, then the r-smooth discrepancy is actually
not any more a geometric L2-discrepancy in the sense of our definition given in
Sect. 10.1.)

Heinrich’s algorithm can be accelerated with the help of the following obser-
vation from [43]: Instead of employing (10.14) for the base case D.A;B; 0/, it
is possible to evaluate already the terms D.A;B; 1/ that occur in the course of
the algorithm. If we want to calculate D.A;B; 1/, we assume that the elements
y.1/; : : : ; y.n/ 2 Œ0; 1� from A and z.1/; : : : ; z.m/ 2 Œ0; 1� from B are already in
increasing order. This can be ensured by using a standard sorting algorithm to
preprocess the input at cost O..n C m/ log.n C m//. Now we determine for each
i an index �.i/ such that y.i/ � z.j / for j D 1; : : : ; �.i/ and y.i/ < z.j / for
j D �.i/ C 1; : : : ; m. If this is done successively, starting with �.1/, then this
can be done at cost O.nCm/. Then

D.A;B; 1/ D
nX
iD1

vi

0
@ �.i/X
jD1

wj z.j / C y.i/
mX

jD�.i/C1
wj

1
A ; (10.16)

and the right hand side can be computed withO.nCm/ operations if the inner sums
are added up successively. Thus the explicit evaluation of D.A;B; 1/ can be done



10 Calculation of Discrepancy Measures and Applications 633

at total cost O.nCm/. Using this new base case (10.16) instead of (10.14) reduces
the running time of the algorithm to O..n C m/ logd�1.n C 1// (as can easily be
checked by adapting the proof of [60, Prop. 1]).

The original intention of the paper [43] is in fact to efficiently calculate the
L2-star discrepancies (10.13) of Smolyak quadrature rules. These quadrature rules
are also known under different names as, e.g., sparse grid methods or hyperbolic
cross points, see, e.g., [47, 100, 119, 125, 137, 144] and the literature mentioned
therein. Frank and Heinrich exploit that a d -dimensional Smolyak quadrature rule
is uniquely determined by a sequence of one-dimensional quadratures, and in
the special case of composite quadrature rules even by a single one-dimensional
quadrature. Their algorithm computes theL2-star discrepancies of Smolyak quadra-
tures at costO.N log2�d N Cd log4 N / for a general sequence of one-dimensional
quadratures and at cost O.d log4 N / in the special case of composite quadrature
rules; here N denotes the number of quadrature points used by the d -dimensional
Smolyak quadrature. This time the implicit constants in the big-O-notation do not
depend on the dimension d . With the help of their algorithm Frank and Heinrich are
able to calculate the L2-star discrepancy for extremely large numbers of integration
points as, e.g., roughly 1035 points in dimension d D 15. For the detailed description
of the algorithm and numerical experiments we refer to [43].

Notice that both algorithms from [43,60] use as a starting point formula (10.13).
Since the three summands appearing in (10.13) are of similar size, the algorithms
should be executed with a sufficiently high precision to avoid cancellation effects.

10.2.3 Notes

Related to the problem of calculating L2-discrepancies of given point sets is the
problem of computing the smallest possible L2-discrepancy of all point sets of a
given size n. For the L2-star discrepancy and arbitrary dimension d the smallest
possible discrepancy value of all point sets of size n was derived in [111] for n D 1

and in [85] for n D 2.
Regarding the L2-star discrepancy, one should mention that this discrepancy

can be a misleading measure of uniformity for sample sizes n smaller than 2d .
For instance, Matoušek pointed out that for small n the pathological point set that
consists of n copies of the point .1; : : : ; 1/ in Œ0; 1�d has almost the best possibleL2-
star discrepancy, see [93, Section 2]. A possible remedy is to consider a weighted
version of the L2-star discrepancy instead, as, e.g., the modified L2-discrepancy.

Matoušek’s observation may also be interpreted in the context of numerical
integration. The L2-star discrepancy is equal to the worst-case error of quasi-Monte
Carlo (QMC) integration on the unanchored Sobolev space. More precisely, we have
for a finite sequence X D .x.i//niD1 in Œ0; 1�d that

d�2 .X/ D sup
f 2B

ˇ̌
ˇ̌Z
Œ0;1�d

f .x/ dx �Q.f /

ˇ̌
ˇ̌ ;
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where B is the norm unit ball of the unanchored Sobolev space and Q is the QMC
algorithm

Q.f / D 1

n

nX
iD1

f .x.i//I

see, e.g., [103, Chapter 9]. Now Matoušek’s observation indicates that if for given
n smaller than 2d one is interested in minimizing the worst-case integration error
with the help of a general quadrature rule of the form (10.1), then one should not
use QMC algorithms with equal integration weights 1=n. In fact, already normalized
QMC algorithms with suitably chosen equal integration weights a D a.n; d/ < 1=n

as stated in [103, (10.12)] improve over conventional QMC algorithms with weights
1=n; for a detailed discussion see [103, Section 10.7.6]. This suggests that for n
smaller than 2d the L2-star discrepancy modified by substituting the factor 1=n by
a < 1=n from [103, (10.12)] may be a better measure of uniformity than the L2-star
discrepancy itself.

10.3 Calculation of L1-Discrepancies

In this section we survey algorithms which can be used to calculate or approximate
the L1-star discrepancy. Most of these algorithms have a straightforward exten-
sion to other “L1-rectangle discrepancies”, as, e.g., to the extreme discrepancy
discussed above, the centered discrepancy [65], or other quadrant discrepancies
[66,103]. Algorithms for the L1-star discrepancy are also necessary to compute or
estimate weightedL1-star discrepancies. Let us, e.g., assume that we are interested
in finding tight upper or lower bounds for the weighted L1-discrepancy d�1;
 .X/,
as defined in (10.8). Then we may divide the family of weights .
u/u
f1;:::;dg into a
set S of suitably small weights and a set L of larger weights and use the fact that
the star discrepancy has the following monotonicity behavior with respect to the
dimension: If u � v, then d�1.Xu/ � d�1.Xv/. We can use the algorithms discussed
below to calculate or bound the discrepancies d�1.Xu/, u 2 L. The remaining
discrepancies d�1.Xv/, v 2 S , corresponding to the less important weights can be
upper-bounded simply by 1 and lower-bounded by maxu2L I u�v d

�1.Xu/ (or even by
0 if the weights are negligible small).

In general, it is not easy to calculate L1-discrepancies as defined in (10.2); the
cardinality of the system B of test sets is typically infinite. Since we obviously
cannot compute the local discrepancies for an infinite number of test boxes,
we usually have to find a finite subset Bı  B such that disc1.BI�; �/ D
disc1.Bı I�; �/ or at least disc1.BI�; �/ � disc1.Bı I�; �/C ı for sufficiently
small ı. (This “discretization method” is also important for finding upper bounds
for the best possible discrepancy behavior with the help of probabilistic proofs, see,
e.g., [3] or the book chapter [52].) For most systems B of test sets this is not a
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trivial task. If one is, for instance, interested in the isotrope discrepancy, see (10.5),
it is not completely obvious to see how the system Id can be substituted by a finite
set system that leads to a (arbitrarily) close approximation of disc1.Id I�d ; �X/.
In [97] H. Niederreiter pointed out that it is sufficient to consider the smaller system
of test sets Ed of all open and closed polytopes P contained in Œ0; 1�d with the
property that each face of P is lying entirely on the boundary of Œ0; 1�d or contains
a point of X . Note that Ed still consists of infinitely many test sets and that further
work has to be done before this observation can be used for a concrete algorithm to
approximate the isotrope discrepancy.

For the star discrepancy it is easier to find useful discretizations, as we will
show below.

10.3.1 Calculating the Star Discrepancy in Low Dimension

Let us have a closer look at the problem of calculating the L1-star discrepancy:
Let X D .x.i//niD1 be some fixed finite sequence in Œ0; 1/d . For convenience we
introduce for an arbitrary point y 2 Œ0; 1�d the short-hands

Vy WD
dY
iD1

yi ;

and

A.y;X/ WD
nX
iD1

1Œ0;y/.x
.i//; as well as A.y;X/ WD

nX
iD1

1Œ0;y�.x
.i//;

i.e., Vy is the volume of the test box Œ0; y/, A.y;X/ the number of points ofX lying
inside the half-open box Œ0; y/, and A.y;X/ the number of points of X lying in the
closed box Œ0; y�. Let us furthermore set

ı.y;X/ WD Vy � 1

n
A.y;X/ and ı.y;X/ WD 1

n
A.y;X/ � Vy:

Putting ı�.y;X/ WD maxfı.y;X/; ı.y;X/g, we have

d�1.X/ D sup
y2Œ0;1�d

ı�.y;X/:

We define for j 2 f1; : : : ; d g

�j .X/ WD fx.i/j j i 2 f1; : : : ; ngg and � j .X/ WD �j .X/[ f1g;
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1

y

x

zx(1)

x(2)

x(3)

x(4)

x(5)

Fig. 10.1 Some set
X D .x.i//5iD1 in Œ0; 1/2, a
test box Œ0; y/, and
x 2 � .X/, z 2 � .X/ with
x � y � z

and put

� .X/ WD �1.X/ 
 � � � 
 �d .X/ and � .X/ WD � 1.X/ 
 � � � 
 � d .X/:

We refer to � .X/ and to � .X/ as grids induced by X .

Lemma 1. Let X D .x.i//niD1 be a sequence in Œ0; 1/d . Then

d�1.X/ D max

(
max
y2� .X/

ı.y;X/ ; max
y2� .X/ ı.y;X/

)
: (10.17)

Formulas similar to (10.17) can be found in several places in the literature—the
first reference we are aware of is [97, Thm. 2].

Proof. Consider an arbitrary test box Œ0; y/, y 2 Œ0; 1�d , see Fig. 10.1.
Then for every j 2 f1; : : : ; d g we find a maximal xj 2 �j .X/ [ f0g and a

minimal zj 2 � .X/ satisfying xj � yj � zj . Put x D .x1; : : : ; xd / and z D
.z1; : : : ; zd /. We get the inequalities

Vy � 1

n
A.y;X/ D Vy � 1

n
A.z; X/ � Vz � 1

n
A.z; X/;

and

1

n
A.y;X/ � Vy D 1

n
A.x;X/ � Vy � 1

n
A.x;X/� Vx:
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Observing that A.x;X/ D 0 if xj D 0 … �j .X/ for some j 2 f1; : : : ; d g, we see
that the right hand side of (10.17) is at least as large as d�1.X/.

Let us now show that it cannot be larger than d�1.X/. So let y 2 � .X/ be given.
Then we may consider for a small " > 0 the vector y."/, defined by y."/j D
minfyj C "; 1g for j D 1; : : : ; d . Clearly, y."/ 2 Œ0; 1�d and

lim
"!0

�
1

n
A.y."/; X/� Vy."/

�
D 1

n
A.y;X/ � Vy:

These arguments show that (10.17) is valid. ut
Lemma 1 shows that an enumeration algorithm would provide us with the exact

value of d�1.X/. But since the cardinality of � .X/ for almost all X is nd , such
an algorithm would be infeasible for large values of n and d . Indeed, for a random
n-point set X we have almost surely j� .X/j D nd , resulting in ˝.nd / test boxes
that we have to take into account to calculate (10.17). This underlines that (10.17)
is in general impractical if n and d are large. There are some more sophisticated
methods known to calculate the star discrepancy, which are especially helpful in
low dimensions. In the one-dimensional case H. Niederreiter derived the following
formula, see [97] or [98].

Theorem 2 ([97, Thm. 1]). Let X D .x.i//niD1 be a sequence in Œ0; 1/. If x.1/ �
x.2/ � � � � � x.n/, then

d�1.X/ D n
max
iD1 max

�
i

n
� x.i/ ; x.i/ � i � 1

n

�
D 1

2n
C n

max
iD1

ˇ̌
ˇ̌x.i/ � 2i � 1

2n

ˇ̌
ˇ̌ :

(10.18)

Proof. The first identity follows directly from (10.17), since for y D 1 2 � .X/ we
have Vy � 1

n
A.y;X/ D 0. The second identity follows from

max

�
i

n
� x.i/ ; x.i/ � i � 1

n

�
D
ˇ̌
ˇ̌x.i/ � 2i � 1

2n

ˇ̌
ˇ̌C 1

2n
; i D 1; : : : ; n:

ut
Notice that (10.18) implies immediately that for d D 1 the set f 1

2n
; 3
2n
; : : : ; 2n�1

2n
g

is the uniquely determined n-point set that achieves the minimal star discrepancy
1=2n.

In higher dimension the calculation of the star discrepancy unfortunately
becomes more complicated.

In dimension d D 2 a reduction of the number of steps to calculate (10.17)
was achieved by L. De Clerk [22]. In [11] her formula was slightly extended and
simplified by P. Bundschuh and Y. Zhu.

Theorem 3 ([22, Section II],[11, Thm. 1]). Let X D .x.i//niD1 be a sequence in

Œ0; 1/2. Assume that x.1/1 � x
.2/
1 � � � � � x

.n/
1 and rearrange for each i 2 f1; : : : ; ng



638 C. Doerr et al.

the numbers 0; x.1/2 ; : : : ; x
.i/
2 ; 1 in increasing order and rewrite them as 0 D �i;0 �

�i;1 � � � � � �i;i � �i;iC1 D 1. Then

d�1.X/ D n
max
iD0

i
max
kD0 max

�
k

n
� x.i/1 �i;k ; x.iC1/1 �i;kC1 � k

n

�
: (10.19)

The derivation of this formula is mainly based on the observation that in
dimension d � 2 the discrepancy functions ı.�; X/ and ı.�; X/ can attain their
maxima only in some of the points y 2 � .X/ and y 2 � .X/, respectively, which
we shall call critical points. The formal definition we state here is equivalent to the
one given in [56, Section 4.1].

Definition 4. Let y 2 Œ0; 1�d . The point y and the test box Œ0; y/ are ı.X/-critical,
if we have for all 0 ¤ " 2 Œ0; 1�y1�
� � �
 Œ0; 1�yd � thatA.yC";X/ > A.y;X/.
The point y and the test box Œ0; y� are ı.X/-critical, if we have for all " 2 Œ0; y/nf0g
thatA.y�";X/ < A.y;X/. We denote the set of ı.X/-critical points by C .X/ and
the set of ı.X/-critical points by C .X/, and we put C �.X/ WD C .X/[ C .X/.

In Fig. 10.1 we have, e.g., that y D .x
.5/
1 ; x

.4/
2 / and y0 D .x

.5/
1 ; 1/ are ı.X/-

critical points, while y00 D .x
.5/
1 ; x

.3/
2 / is not. Furthermore, y D .x

.3/
1 ; x

.3/
2 / and

y0 D .x
.5/
1 ; x

.1/
2 / are ı.X/-critical points, while y 00 D .x

.4/
1 ; x

.2/
2 / is not. This shows

that, in contrast to the one-dimensional situation, for d � 2 not all points in � .X/
and � .X/ are critical points.

With a similar argument as in the proof of Lemma 1, the following lemma can
be established.

Lemma 5. Let X D .x.i//niD1 be a sequence in Œ0; 1�d . Then C .X/ � � .X/ and
C .X/ � � .X/, as well as

d�1.X/ D max

(
max
y2C .X/ ı.y;X/ ; max

y2C .X/
ı.y;X/

)
: (10.20)

For a rigorous proof see [22, Section II] or [56, Lemma 4.1].
The set of critical test boxes may be subdivided further. For j D 0; 1; : : : ; n put

C k.X/ WD fy 2 C .X/ jA.y;X/ D kg ;
and

C k.X/ WD
n
y 2 C .X/ jA.y;X/ D k

o
:

Then

d�1.X/ D n
max
kD1

max

(
max

y2C k�1.X/
ı.y;X/ ; max

y2C k.X/

ı.y;X/

)
; (10.21)
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see [22, Section II]. For d D 2 De Clerk characterized the points in C k.X/

and C k.X/ and derived (10.19) under the assumption that j�j .X/j D n for
j D 1; : : : ; d [22, Section II]. Bundschuh and Zhu got rid of this assumption, which
resulted in a technically more involved proof [11, Section 2].

De Clerck used her formula (10.19) to provide explicit formulas for the discrep-
ancies of Hammersley point sets [59] for arbitrary basis b and n D bm, m 2 N,
see [22, Section III]. Her results generalize the formulas for the star discrepancy of
two-dimensional Hammersley sets in basis 2 provided by Halton and Zaremba [58].
To establish the explicit formula, she used a recursion property of two-dimensional
Hammersley point sets X of size bm [39] and the facts that these sets are symmetric
with respect to the main diagonal of the unit square [109] and that their discrepancy
function ı.�; X/ is never positive [45], which implies that for the calculation of the
discrepancy of these sets one only has to consider ı.X/-critical test boxes.

In dimension d D 3 Bundschuh and Zhu provided a formula similar to (10.19).

Theorem 6 ([11, Thm. 2]). Let X D .x.i//niD1 be a sequence in Œ0; 1/3. Put x.0/ WD
.0; 0; 0/ and x.nC1/ WD .1; 1; 1/, and assume that x.1/1 � x

.2/
1 � � � � � x

.n/
1 . For i 2

f1; : : : ; ng rearrange the second componentsx.0/2 ; x
.1/
2 ; : : : ; x

.i/
2 ; x

.nC1/
2 in increasing

order and rewrite them as 0 D �i;0 � �i;1 � � � � � �i;i � �i;iC1 D 1 and denote the
corresponding third components x.i/3 , i D 0; 1; : : : ; i; n C 1 by Q�i;0; Q�i;1; : : : ; Q�i;iC1.
Now for fixed i and k D 0; 1; : : : ; i rearrange Q�i;0; Q�i;1; : : : ; Q�i;k ; Q�i;iC1 and rewrite
them as 0 D �i;k;0 � �i;k;1 � � � � � �i;k;k � �i;k;kC1 D 1. Then

d�1.X/ D n
max
iD0

i
max
kD0

k
max
`D0 max

�
k

n
� x

.i/
1 �i;k�i;k;` ; x

.iC1/
1 �i;kC1�i;k;`C1 � k

n

�
:

(10.22)

The method can be generalized to arbitrary dimension d and requires for generic
point sets roughly O.nd=d Š/ elementary operations. This method was, e.g., used
in [139] to calculate the exact discrepancy of particular point sets, so-called rank-
1 lattice rules (cf. [24, 99, 115]), up to size n D 236 in dimension d D 5 and to
n D 92 in dimension d D 6. But as pointed out by P. Winker and K.-T. Fang, for
this method instances like, e.g., sets of size n � 2;000 in d D 6 are infeasible. This
method can thus only be used in a very limited number of dimensions.

A method that calculates the exact star discrepancy of a point set in a run-
ning time with a more favorable dependence on the dimension d , namely time
O.n1Cd=2/, was proposed by Dobkin, Eppstein, and Mitchell in [27]. We discuss
this more elaborate algorithm in the next subsection.

10.3.2 The Algorithm of Dobkin, Eppstein, and Mitchell

In order to describe the algorithm of Dobkin, Eppstein, and Mitchell [27], we begin
with a problem from computational geometry. In Klee’s measure problem, the input
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is a set of n axis-parallel rectangles in R
d , and the problem is to compute the volume

of the union of the rectangles. The question of the best possible running time started
with V. Klee [81], who gave an O.n logn/-time algorithm for the one-dimensional
case, and asked whether this was optimal; it was later found that this is the case [44].
The general case was considered by J. L. Bentley [6], who gave an O.nd�1 logn/-
time algorithm for d � 2, thus (surprisingly) giving an algorithm for the d D 2

case with an asymptotic running time matching that of the d D 1 case. By the lower
bound for d D 1, Bentley’s algorithm is tight for d D 2, but as we shall see, not for
d � 3.

The essential breakthrough, which also lies behind the result of [27], was given
by Overmars and Yap [107]. They showed that Rd can be partitioned (in an input-
dependent way) into O.nd=2/ regions, where each region is an axis-parallel box,
such that the intersection of the region with the rectangles of the input behaves in a
particular regular way. Let us fix some terminology. Let C D Œa; b� be a region in
the decomposition. A slab in C is an axis-parallel box contained in C which has full
length in all but at most one dimension, i.e., a box

Qd
jD1 Ij where Ij D Œaj ; bj � for

all but at most one j . A finite union of slabs is called a trellis. Overmars and Yap
show the following result.

Theorem 7 ([107]). Let d be a fixed dimension. Given a set of n rectangles in R
d ,

there is a partitioning of the space into O.nd=2/ regions where for every region, the
intersection of the region with the union of all rectangles of the input forms a trellis.

An algorithm to enumerate this partition, and a polynomial-time algorithm
for computing the volume of a trellis, would now combine into an O.nd=2Cc/-
time algorithm for Klee’s measure problem, for some constant c > 0; Overmars
and Yap further improve it to O.nd=2 logn/ time (and O.n/ space) by using
dynamic data structures and careful partial evaluations of the decomposition.
Recently, T. M. Chan [12] gave a slightly improved running time of nd=22O.log� n/,
where log� n denotes the iterated logarithm of n, i.e., the number of times the
logarithm function must be iteratively applied before the result is less than or
equal to 1.

While no direct reductions between the measure problem and discrepancy
computation are known, the principle behind the above decomposition is still useful.
Dobkin et al. [27] apply it via a dualization, turning each point x into an orthant
.x;1/, and each box B D Œ0; y/ into a point y, so that x is contained in B if
and only if the point y is contained in the orthant. The problem of star discrepancy
computation can then be solved by finding, for each i 2 f1; : : : ; ng, the “largest”
and “smallest” point y 2 � .X/ contained in at most respectively at least i orthants;
here largest and smallest refer to the value Vy defined previously, i.e., the volume of
the box Œ0; y/. Note that this is the dual problem to (10.21). As Dobkin et al. [27]
show, the partitioning of R

d of Overmars and Yap can be used for this purpose.
In particular, the base case of a region B such that the intersections of the input
rectangles with B form a trellis, corresponds for us to a case where for every point
x there is at most one coordinate j 2 f1; : : : ; d g such that for any y 2 B only the
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value of yj determines whether x 2 Œ0; y/. Given such a base case, it is not difficult
to compute the maximum discrepancy relative to points y 2 B in polynomial time.

We now sketch the algorithm in some more detail, circumventing the dualization
step for a more direct presentation. For simplicity of presentation, we are assuming
that for each fixed j 2 f1; : : : ; d g, the coordinates x.1/j ; : : : ; x

.n/
j are pairwise

different. We will also ignore slight issues with points that lie exactly on a region
boundary.

We will subdivide the space Œ0; 1�d recursively into regions of the form Œa1; b1�

: : :
 Œai ; bi �
 Œ0; 1�d�i ; call this a region at level i . We identify a region with Œa; b�;
if the region is at level i < d , then for j > i we have aj D 0 and bj D 1. For
j 2 f1; : : : ; ig, we say that a point x is internal in dimension j , relative to a region
Œa; b� at level i , if x is contained in Œ0; b/ and aj < xj < bj . We will maintain two
invariants as follows.

1. For every point x contained in the box Œ0; b/, there is at most one coordinate
j 2 f1; : : : ; ig such that x is internal in dimension j .

2. For any region at level i > 0 and any j 2 f1; : : : ; ig there are onlyO.
p
n/ points

internal in dimension j .

Once we reach a region at level d , called a cell, the first condition ensures that we
reach the above-described base case, i.e., that every point contained in the box Œ0; b/
is internal in at most one dimension. The second condition, as we will see, ensures
that the decomposition can be performed while creating onlyO.nd=2/ cells.

The process goes as follows. We will describe a recursive procedure, subdividing
each region at level i < d into O.

p
n/ regions at level i C 1, ensuring O.

p
n
d
/ D

O.nd=2/ cells in the final decomposition. In the process, if Œa; b� is the region
currently being subdivided, we letXb be the set of points contained in the box Œ0; b/,
and XI the subset of those points which are internal in some dimension j � i . We
initialize the process with the region Œ0; 1�d at level 0, with Xb being the full set of
points of the input, and XI D ;.

Given a region Œa; b� at level i < d , with Xb and XI as described, we will
partition along dimension iC1 into segments Œ�j ; �jC1�, for some �j , j 2 f1; : : : ; `g,
where ` is the number of subdivisions. Concretely, for each j 2 f1; : : : ; ` � 1g we
generate a region Œa.j /; b.j /� D Œa1; b1� 
 : : : 
 Œai ; bi � 
 Œ�j ; �jC1� 
 Œ0; 1�d�i�1 at

level iC1, set X.j /

b D Xb\ Œ0; b.j // andX.j /
I D .XI \ Œ0; b.j ///[fx 2 X.j /

b W �j <
xiC1 < �jC1g, and recursively process this region, with point set X.j /

b and internal

points X.j /
I . Observe that the points added to X.j /

I indeed are internal points, in
dimension i C 1. The coordinates �j are chosen to fulfill the following conditions.

For all x 2 XI ; we have xiC1 2 f�1; : : : ; �`g: (10.23)

For all j 2 f1; : : : ; ` � 1g; we have jfx 2 Xb W �j < xiC1 < �jC1gj D O.
p
n/:

(10.24)

We briefly argue that this is necessary and sufficient to maintain our two invariants
while ensuring that ` D O.

p
n/ at every level. Indeed, if condition (10.23) is not
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fulfilled, then the point x is internal in two dimensions in some region Œa.j /; b.j /�,
and if condition (10.24) is not fulfilled for some j , then jX.j /

I j is larger thanO.
p
n/

in the same region. To create a set of coordinates �j fulfilling these conditions is not
difficult; simply begin with the coordinate set fxiC1 W x 2 XI g to fulfill (10.23),
and insert additional coordinates as needed to satisfy (10.24). This requires at most
jXI jC .n=

p
n/ coordinates; thus ` D O.

p
n/ as required, and one finds inductively

that both invariants are maintained at every region created at level i C 1.
To finally sketch the procedure for computing the discrepancy inside a given cell,

let B D Œa; b� be the cell, Xb the points contained in Œ0; b/, and X 0 the set of points
in Œ0; b/ which are not also contained in Œ0; a�. The points X 0 must thus be internal
in at least one dimension, so by invariant 1, the pointsX 0 are internal in exactly one
dimension j 2 f1; : : : ; d g. Note that if a point x 2 X 0 is internal in dimension j ,
and hence has xi � ai for every i 2 f1; : : : ; d g, i ¤ j , then for any y 2 .a; b/

we have that x 2 Œ0; y/ if and only if yj > xj ; that is, if x is internal in dimension
j , then the membership of x in Œ0; y/ is determined only by yj . Now, for each
j 2 f1; : : : ; d g, let X 0j D fx 2 X 0 W aj < xj < bj g be the points internal in
dimension j ; note that this partitionsX 0. We can then determineX \ Œ0; y/ for any
y 2 .a; b/ by looking at the coordinates yj independently, that is,

Œ0; y/ \ X D .Œ0; a� \ Xb/ [
d[
jD1

fx 2 X 0j W xj < yj g:

This independence makes the problem suitable for the algorithmic technique of
dynamic programming (see, e.g., [20]). Briefly, let fj .y/ D jXb \ Œ0; a�j CPj

kD1 jfx 2 X 0k W xk < ykgj. For i 2 f1; : : : ; ng and j 2 f1; : : : ; d g, let p.i; j / be

the minimum value of
Qj

kD1 yk such that fj .y/ � i , and let q.i; j / be the maximum

value of
Qj

kD1 yk such that fj .y/ � i and y 2 .a; b/. By sorting the coordinates
xj of every set X 0j , it is easy both to compute the values of p.�; 1/ and q.�; 1/, and
to use the values of p.�; j / and q.�; j / to compute the values of p.�; j C 1/ and
q.�; j C 1/. The maximum discrepancy attained for a box Œ0; y/ for y 2 .a; b/ can
then be computed from p.�; d / and q.�; d /; note in particular that for y 2 .a; b/, we
have fd .y/ D jX\Œ0; y/j. For details, we refer to [27]. Discrepancy for boxes Œ0; y�
with yj D 1 for one or several j 2 f1; : : : ; d g can be handled in a similar way.

Some slight extra care in the analysis of the dynamic programming, and
application of a more intricate form of the decomposition of Overmars and Yap,
will lead to a running time of O.nd=2C1/ and O.n/ space, as shown in [27].

10.3.3 Complexity Results

We saw in the previous sections that for fixed dimension d the most efficient
algorithm for calculating the star discrepancy of arbitrary n-point sets in Œ0; 1/d , the
algorithm of Dobkin, Eppstein, and Mitchell, has a running time of orderO.n1Cd=2/.
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So the obvious question is if it is possible to construct a faster algorithm for the
discrepancy calculation whose running time does not depend exponentially on the
dimension d .

There are two recent complexity theoretical results that suggest that such an algo-
rithm does not exist—at least not if the famous hypotheses from complexity theory,
namely that P ¤ NP and the stronger exponential time hypothesis[74], are true.

10.3.3.1 Calculating the Star Discrepancy Is NP-Hard

Looking at identity (10.17), we see that the calculation of the star discrepancy of a
given point set X is in fact a discrete optimization problem, namely the problem to
find an y 2 � that maximizes the function value

ı�.y;X/ D max
n
ı.y;X/ ; ı.y;X/

o
:

In [55] it was proved that the calculation of the star discrepancy is in fact an NP-hard
optimization problem. Actually, a stronger statement was proved in [55], namely
that the calculation of the star discrepancy is NP-hard even if we restrict ourselves
to the easier sub-problem where all the coordinates of the input have finite binary
expansion, i.e., are of the form k2�� for some � 2 N and some integer 0 � k � 2� .
To explain this result in more detail let us start by defining the coding length of a real
number from the interval Œ0; 1/ to be the number of digits in its binary expansion.

Informally speaking, the class NP is the class of all decision problems, i.e.,
problems with a true-or-false answer, for which the instances with an affirmative
answer can be decided in polynomial time by a non-deterministic Turing machine2;
here “polynomial” means polynomial in the coding length of the input. Such a non-
deterministic Turing machine can be described as consisting of a non-deterministic
part, which generates for a given instance a polynomial-length candidate (“certifi-
cate”) for the solution, and a deterministic part, which verifies in polynomial time
whether this candidate leads to a valid solution.

In general, the NP-hardness of an optimization problemU is proved by verifying
that deciding the so-called threshold language of U is an NP-hard decision problem
(see, e.g., [73, Section 2.3.3] or, for a more informal explanation, [46, Section 2.1]).
Thus it was actually shown in [55] that the following decision problem is NP-hard:

Decision Problem. STAR DISCREPANCY

Instance: Natural numbers n; d 2 N, sequence X D .x.i//niD1 in Œ0; 1/d ; " 2
.0; 1�

Question: Is d�1.X/ � "?

2NP stands for “non-deterministic polynomial time”.
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Notice that the input of STAR DISCREPANCY has only finite coding length if
the binary expansion of all coordinates and of " is finite. The standard approach
to prove NP-hardness of some decision problem is to show that another decision
problem that is known to be NP-hard can be reduced to it in polynomial time. This
approach was also used in [55], where the graph theoretical problem DOMINATING

SET was reduced to STAR DISCREPANCY. The decision problem DOMINATING SET

is defined as follows.

Definition 8. Let G D .V;E/ be a graph, where V is the finite set of vertices and
E � ffv;wg j v;w 2 V ; v ¤ wg the set of edges of G. Let M be a subset of V .
Then M is called a dominating set of G if for all v 2 V nM there exists a w 2 M
such that fv;wg is contained in E .

Decision Problem. DOMINATING SET

Instance: Graph G D .V;E/, m 2 f1; : : : ; jV jg
Question: Is there a dominating set M � V of cardinality at most m?

The decision problem DOMINATING SET is well studied in the literature and
known to be NP-complete, see, e.g., [46].

Before we explain how to reduce DOMINATING SET to STAR DISCREPANCY, let
us introduce another closely related decision problem, which will also be important
in Sect. 10.3.4.2.

Decision Problem. EMPTY HALF-OPEN BOX

Instance: Natural numbers n; d 2 N, sequence X D .x.i//niD1 in Œ0; 1/d , " 2
.0; 1�

Question: Is there a y 2 � .X/ with A.y;X/ D 0 and Vy � "?

As in the problem STAR DISCREPANCY the coding length of the input of EMPTY

HALF-OPEN BOX is only finite if the binary expansion of all coordinates and of
" is finite. For the reduction of DOMINATING SET it is sufficient to consider these
instances with finite coding length. We now explain how to reduce DOMINATING

SET to EMPTY HALF-OPEN BOX in polynomial time; this proof step can afterwards
be re-used to establish that DOMINATING SET can indeed be reduced to STAR

DISCREPANCY.

Theorem 9 ([55, Thm. 2.7]). The decision problem EMPTY HALF-OPEN BOX is
NP-hard.

Proof. Let G D .V;E/;m 2 f1; : : : ; jV jg be an instance of DOMINATING SET. We
may assume that V D f1; : : : ; ng for n WD jV j. Let ˛; ˇ 2 Œ0; 1/ have finite binary
expansions and satisfy ˇ < ˛n; for instance, we may choose ˛ D 1=2 and ˇ D 0.
For i; j 2 f1; : : : ; ng put

x
.i/
j WD

(
˛; if fi; j g 2 E or i D j;

ˇ; otherwise,
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and put x.i/ WD .x
.i/
j /

n
jD1 2 Œ0; 1/n and X WD .x.i//niD1. We shall show that there is

a dominating setM � V of cardinality at mostm if and only if there is a y 2 � .X/
such that A.y;X/ D 0 and Vy � ˛m.

Firstly, assume that there is a dominating set M � V of cardinality at most m.
Put

yj WD
(
˛; if j 2 M;
1; otherwise,

and y WD .yj /
n
jD1. Then y 2 � .X/ and Vy D ˛jM j � ˛m. Hence it suffices to prove

that Œ0; y/ \ X D ;. Now for each i 2 M we have x.i/i D ˛, i.e., x.i/ … Œ0; y/.
For every i 2 V n M there is, by definition of a dominating set, a � 2 M such
that fi; �g 2 E , implying x.i/� D ˛ which in turn yields x.i/ … Œ0; y/. Therefore
A.y;X/ D 0.

Secondly, assume the existence of a y 2 � .X/ such that A.y;X/ D 0 and Vy �
˛m. Recall that y 2 � .X/ implies that yj 2 fˇ; ˛; 1g for all j . Since ˇ < ˛n � Vy ,
we have j ˚j 2 f1; : : : ; ng j yj � ˛


 j D n. Putting M WD fi 2 f1; : : : ; ng j yi D
˛g, we have jM j � m. Since A.y;X/ D 0, we obtain jM j � 1, and for each
i 2 f1; : : : ; ng there exists a � 2 M such that fi; �g 2 E or i 2 M . Hence M is a
dominating set of G with size at most m. ut

In [55] further decision problems of the type “maximal half-open box for k
points” and “minimal closed box for k points” were studied; these problems
are relevant for an algorithm of E. Thiémard that is based on integer linear
programming, see Sect. 10.3.4.2.

Theorem 10 ([55, Thm. 3.1]). STAR DISCREPANCY is NP-hard.

Proof (Sketch). Due to identity (10.17) the decision problem STAR DISCREPANCY

can be formulated in an equivalent way: Is there a y 2 � .X/ such that ı.y;X/ � "

or ı.y;X/ � "? The NP-hardness of this equivalent formulation can again be shown
by polynomial time reduction from DOMINATING SET. So let V D f1; : : : ; ng, and
let G D .V;E/;m 2 f1; : : : ; ng be an instance of DOMINATING SET. We may
assume without loss of generality n � 2 and m < n. Put ˛ WD 1 � 2�.nC1/, ˇ WD 0,
and

x
.i/
j WD

(
˛; if fi; j g 2 E or i D j;

ˇ; otherwise.

The main idea is now to prove for X WD .x.i//niD1 that d�1.X/ � ˛m DW " if and
only if there is a dominating set M � V for G with jM j � m.

From the proof of Theorem 9 we know that the existence of such a dominating
setM is equivalent to the existence of a y 2 � .X/withA.y;X/ D 0 and Vy � ˛m.
Since the existence of such a y implies d�1.X/ � ˛m, it remains only to show that
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d�1.X/ � ˛m implies in turn the existence of such a y. This can be checked with
the help of Bernoulli’s inequality, for the technical details we refer to [55].

10.3.3.2 Calculating the Star Discrepancy Is W[1]-Hard

Although NP-hardness (assuming P ¤ NP) excludes a running time of .nC d/O.1/

for computing the star discrepancy of an input of n points in d dimensions, this
still does not completely address our running time concerns. In a nutshell, we
know that the problem can be solved in polynomial time for every fixed d (e.g.,
by the algorithm of Dobkin, Eppstein, and Mitchell), and that it is NP-hard for
arbitrary inputs, but we have no way of separating a running time of n�.d/ from,
say, O.2dn2/, which would of course be a huge breakthrough for computing low-
dimensional star discrepancy.

The usual framework for addressing such questions is parameterized complexity.
Without going into too much technical detail, a parameterized problem is a decision
problem whose inputs are given with a parameter k. Such a problem is fixed-
parameter tractable (FPT) if instances of total length n and with parameter k
can be solved in time O.f .k/nc/, for some constant c and an arbitrary function
f .k/. Observe that this is equivalent to being solvable in O.nc/ time for every
fixed k, as contrasted to the previous notion of polynomial time for every fixed
k, which also includes running times such as O.nk/. We shall see in this section
that, unfortunately, under standard complexity theoretical assumptions, no such
algorithm is possible (in fact, under a stronger assumption, not even a running time
of O.f .d/no.d// is possible).

Complementing the notion of FPT is a notion of parameterized hardness. A
parameterized reduction from a parameterized problem Q to a parameterized
problem Q0 is a reduction which maps an instance I with parameter k of Q to
an instance I 0 with parameter k0 of Q0, such that

1. .I; k/ is a true instance of Q if and only if .I 0; k0/ is a true instance of Q0,
2. k0 � f .k/ for some function f .k/, and
3. the total running time of the reduction is FPT (i.e., bounded byO.g.k/jjI jjc/, for

some function g.k/ and constant c, where jjI jj denotes the total coding length
of the input).

It can be verified that such a reduction and an FPT-algorithm for Q0 imply an FPT-
algorithm for Q.

The basic hardness class of parameterized complexity, analogous to the class NP
of classical computational complexity, is known as W[1], and can be defined as
follows. Given a graph G D .V;E/, a clique is a set X � V such that for any
u; v 2 X , u ¤ v, we have fu; vg 2 E . Let k-CLIQUE be the following parameterized
problem.
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Parameterized Problem. k-CLIQUE

Instance: A graph G D .V;E/; an integer k.
Parameter: k
Question: Is there a clique of cardinality k in G?

The class W[1] is then the class of problems reducible to k-CLIQUE under
parameterized reductions, and a parameterized problem is W[1]-hard if there is a
parameterized reduction to it from k-CLIQUE. (Note that, similarly, the complexity
class NP can be defined as the closure of, e.g., CLIQUE or 3-SAT under standard
polynomial-time reductions.) The basic complexity assumption of parameterized
complexity is that FPT ¤ W[1], or equivalently, that the k-CLIQUE problem
is not fixed-parameter tractable; this is analogous to the assumption in classical
complexity that P ¤ NP.

For more details, see the books of R. G. Downey and M. R. Fellows [36]
or J. Flum and M. Grohe [42]. In particular, we remark that there is a different
definition of W[1] in terms of problems solvable by a class of restricted circuits
(in fact, W[1] is just the lowest level of a hierarchy of such classes, the so-called
W-hierarchy), which arguably makes the class definition more natural, and the
conjecture FPT ¤ W[1] more believable.

P. Giannopoulus et al. [48] showed the following.

Theorem 11 ([48]). There is a polynomial-time parameterized reduction from k-
CLIQUE with parameter k to STAR DISCREPANCY with parameter d D 2k.

Thus, the results of [48] imply that STAR DISCREPANCY has no algorithm with
a running time of O.f .d/nc/ for any function f .d/ and constant c, unless FPT D
W[1].

A stronger consequence can be found by considering the so-called exponential-
time hypothesis (ETH). This hypothesis, formalized by Impagliazzo and Paturi [74],
states that 3-SAT on n variables cannot be solved in time O.2o.n//; in a related
paper [75], this was shown to be equivalent to similar statements about several other
problems, including that k-SAT on n variables cannot be solved in timeO.2o.n// for
k � 3 and that 3-SAT cannot be solved in time O.2o.m//, where m equals the total
number of clauses in an instance (the latter form is particularly useful in reductions).

It has been shown by J. Chen et al. [14, 15] that k-CLIQUE cannot be solved
in f .k/no.k/ time, for any function f .k/, unless ETH is false. We thus get the
following corollary.

Corollary 12 ([48]). STAR DISCREPANCY for n points in d dimensions cannot be
solved exactly in f .d/no.d/ time for any function f .d/, unless ETH is false.

In fact, it seems that even the constant factor in the exponent of the running time
of the algorithm of Dobkin, Eppstein and Mitchell [27] would be very difficult to
improve; e.g., a running time of O.nd=3Cc/ for some constant c would imply a new
faster algorithm for k-CLIQUE. (See [48] for more details, and for a description of
the reduction.)
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10.3.4 Approximation of the Star Discrepancy

As seen in Sects. 10.3.3.1 and 10.3.3.2, complexity theory tells us that the exact
calculation of the star discrepancy of large point sets in high dimensions is
infeasible.

The theoretical bounds for the star discrepancy of low-discrepancy point sets
that are available in the literature describe the asymptotic behavior of the star
discrepancy well only if the number of points n tends to infinity. These bounds are
typically useful for point sets of size n � ed , but give no helpful information for
moderate values of n. To give concrete examples, we restate here some numerical
results provided in [76] for bounds based on inequalities of Erdős-Turán-Koksma-
type (see, e.g., [24, 99]).

If the point set Pn.z/ is an n-point rank-1 lattice in Œ0; 1�d with generating vector
z 2 Z

d (see, e.g., [99, 115]), then its discrepancy can be bounded by

d�1.Pn.z// � 1 �
�
1 � 1

n

�d
C T .z; n/ � 1 �

�
1 � 1

n

�d
CW.z; n/

� 1 �
�
1 � 1

n

�d
CR.z; n/=2I

(10.25)

here the quantities W.z; n/ and R.z; n/ can be calculated to a fixed precision
in O.nd/ operations [76, 78], while the calculation of T .z; n/ requires O.n2d/
operations (at least there is so far no faster algorithm known).

S. Joe presented in [76] numerical examples where he calculated the values
of T .z; n/, W.z; n/, and R.z; n/ for generators z provided by a component-by-
component algorithm (see, e.g., [84, 104, 116, 118]) from [76, Section 4]. For
dimension d D 2 and 3 he was able to compare the quantities with the exact values

d�1.Pn.z// �
"
1 �

�
1 � 1

n

�d#
DW E.z; n/: (10.26)

In d D 2 for point sets ranging from n D 157 to 10;007, the smallest of the three
quantities, T .z; n/, was 8–10 times larger than E.z; n/. In dimension d D 3 for
point sets ranging from n D 157 to 619 it was even more than 18 times larger.
(Joe used for the computation of E.z; n/ the algorithm proposed in [11] and was
therefore limited to this range of examples.)

Computations for d D 10 and 20 and n D 320;009 led to T .z; n/ D 1:29 � 104
and 5:29 � 1013, respectively. Recall that the star discrepancy and E.z; n/ are always
bounded by 1. The more efficiently computable quantities W.z; n/ and R.z; n/ led
obviously to worse results, but W.z; n/ was at least very close to T .z; n/.

This example demonstrates that for good estimates of the star discrepancy for
point sets of practicable size we can unfortunately not rely on theoretical bounds.
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Since the exact calculation of the star discrepancy is infeasible in high dimen-
sions, the only remaining alternative is to consider approximation algorithms. In the
following we present the known approaches.

10.3.4.1 An Approach Based on Bracketing Covers

An approach that approximates the star discrepancy of a given set X up to a user-
specified error ı was presented by E. Thiémard [128,130]. It is in principle based on
the generation of suitable ı-bracketing covers (which were not named in this way in
[128, 130]). Let us describe Thiémard’s approach in detail.

The first step is to “discretize” the star discrepancy at the cost of an approxima-
tion error of at most ı. The corresponding discretization is different from the one
described in Sect. 10.3.1; in particular, it is completely independent of the input set
X . The discretization is done by choosing a suitable finite set of test boxes anchored
in zero whose upper right corners form a so-called ı-cover. We repeat here the
definition from [30].

Definition 13. A finite subset � of Œ0; 1�d is called a ı-cover of the class Cd of all
axis-parallel half-open boxes anchored in zero (or of Œ0; 1�d ) if for all y 2 Œ0; 1�d

there exist x; z 2 � n f0g such that

x � y � z and Vz � Vx � ı:

Put

N.Cd ; ı/ WD minfj� j j � ı-cover of Cd .g

Any ı-cover � of Cd satisfies the following approximation property:

Lemma 14. Let � be a ı-cover of Cd . For all finite sequencesX in Œ0; 1�d we have

d�1.X/ � d�� .X/C ı; (10.27)

where

d�� .X/ WD max
y2�

ˇ̌
Vy �A.y;X/ˇ̌

can be seen as a discretized version of the star discrepancy.

A proof of Lemma 14 is straightforward. (Nevertheless, it is, e.g., contained
in [30].)

In [50] the notion of ı-covers was related to the concept of bracketing entropy,
which is well known in the theory of empirical processes. We state here the
definition for the set system Cd of anchored axis-parallel boxes (a general definition
can, e.g., be found in [50, Section 1]):
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Definition 15. A closed axis-parallel box Œx; z�  Œ0; 1�d is a ı-bracket of Cd if
x � z and Vz�Vx � ı. A ı-bracketing cover ofCd is a set of ı-brackets whose union
is Œ0; 1�d . By NŒ �.Cd ; ı/ we denote the bracketing number of Cd (or of Œ0; 1�d ), i.e.,
the smallest number of ı-brackets whose union is Œ0; 1�d . The quantity lnNŒ �.Cd ; ı/
is called the bracketing entropy.

The bracketing number and the quantity N.d; ı/ are related to the covering and
the L1-packing number, see, e.g., [30, Rem. 2.10].

It is not hard to verify that

N.Cd ; ı/ � 2NŒ �.Cd ; ı/ � N.Cd ; ı/.N.Cd ; ı/C 1/ (10.28)

holds. Indeed, if B is a ı-bracketing cover, then it is easy to see that

�B WD fx 2 Œ0; 1�d n f0g j 9y 2 Œ0; 1�d W Œx; y� 2 B or Œy; x� 2 Bg (10.29)

is a ı-cover. If � is a ı-cover, then

B� WD fŒx; y� j x; y 2 � [ f0g ; Œx; y� is a ı-bracket ; x ¤ yg

is a ı-bracketing cover. These two observations imply (10.28).
In [50] it is shown that

ı�d .1 �Od.ı// � NŒ �.Cd ; ı/ � 2d�1.2�d/�1=2ed .ı�1 C 1/d ; (10.30)

see [50, Thm. 1.5 and 1.15]. The construction that leads to the upper bound
in (10.30) implies also

NŒ �.Cd ; ı/ � .2�d/�1=2ed ı�d COd.ı
�dC1/ (10.31)

(see [50, Remark 1.16]) and

N.Cd ; ı/ � 2d .2�d/�1=2ed .ı�1 C 1/d : (10.32)

For more information about ı-covers and ı-bracketing covers we refer to the
original articles [30, 50, 51] and the survey article [52]; the articles [51] and [52]
contain also several figures showing explicit two-dimensional constructions.

The essential idea of Thiémard’s algorithm from [128, 130] is to generate for a
given point set X and a user-specified error ı a small ı-bracketing cover B D Bı

of Œ0; 1�d and to approximate d�1.X/ by d�� .X/, where � D �B as in (10.29), up
to an error of at most ı, see Lemma 14.

The costs of generating Bı are of order �.d jBıj/. If we count the number of
points in Œ0; y/ for each y 2 �B in a naive way, this results in an overall running
time of�.dnjBıj/ for the whole algorithm. As Thiémard pointed out in [130], this
orthogonal range counting can be done in moderate dimension d more effectively
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by employing data structures based on range trees, see, e.g., [21,95]. This approach
reduces in moderate dimension d the time O.dn/ per test box that is needed for
the naive counting to O.logd n/. Since a range tree for n points can be generated in
O.Cdn logd n/ time,C > 1 some constant, this results in an overall running time of

O..d C logd n/jBıj C Cdn logd n/ :

As this approach of orthogonal range counting is obviously not very beneficial in
higher dimension (say, d > 5), we do not further explain it here, but refer for the
details to [130].

The smallest bracketing covers Tı used by Thiémard can be found in [130]; they
differ from the constructions provided in [50, 51], see [51, 53]. He proved for his
best constructions the upper bound

jTıj � ed
�

ln ı�1

ı
C 1

�d
;

a weaker bound than (10.31) and (10.32), which both hold for the ı-bracketing
covers constructed in [50]. Concrete comparisons of Thiémard’s bracketing covers
with other constructions in dimension d D 2 can be found in [51], where also
optimal two-dimensional bracketing covers are provided.

The lower bound in (10.30) proved in [50] immediately implies a lower bound for
the running time of Thiémard’s algorithm, regardless how cleverly the ı-bracketing
covers are chosen. That is because the dominating factor in the running time is
the construction of the ı-bracketing cover jBıj, which is of order �.d jBıj/.
Thus (10.30) shows that the running time of the algorithm is exponential in d . (Nev-
ertheless smaller ı-bracketing covers, which may, e.g., be generated by extending
the ideas from [51] to arbitrary dimension d , would widen the range of applicability
of Thiémard’s algorithm.) Despite its limitations, Thiémard’s algorithm is a helpful
tool in moderate dimensions, as was reported, e.g., in [32, 128, 130] or [106], see
also Sect. 10.5.1.

For more specific details we refer to [110, 128, 130]. For a modification of Thié-
mard’s approach to approximate L1-extreme discrepancies see [50, Section 2.2].

10.3.4.2 An Approach Based on Integer Linear Programming

Since the large scale enumeration problem (10.17) is infeasible in high dimensions,
a number of algorithms have been developed that are based on heuristic approaches.
One such approach was suggested by E. Thiémard in [131] (a more detailed
description of his algorithm can be found in his PhD thesis [129]). Thiémard’s
algorithm is based on integer linear programming, a concept that we shall describe
below. His approach is interesting in that, despite being based on heuristics in
the initialization phase, it allows for an arbitrarily good approximation of the star
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discrepancy of any given point set. Furthermore, the user can decide on the fly which
approximation error he is willing to tolerate. This is possible because the algorithm
outputs, during the optimization of the star discrepancy approximation, upper and
lower bounds for the exact d�1.X/-value. The user can abort the optimization
procedure once the difference between the lower and upper bound are small enough
for his needs, or he may wait until the optimization procedure is finished, and the
exact star discrepancy value d�1.X/ is computed.

Before we describe a few details of the algorithm, let us mention that numerical
tests in [130, 131] suggest that the algorithm from [131] outperforms the one from
[130] (see Sect. 10.3.4.1 for a description of the latter algorithm). In particular,
instances that are infeasible for the algorithm from [130] can be solved using the
integer linear programming approach described below, see also the discussion in
Sect. 10.5.1.

The basic idea of Thiémard’s algorithm is to split optimization problem (10.17)
into 2n optimization problems similarly as done in Eq. (10.21), and to transform
these problems into integer linear programs. To be more precise, he considers
for each value k 2 f0; 1; 2; : : : ; ng the volume of the smallest and the largest
box containing exactly k points of X . These values are denoted V k

min and V k
max,

respectively. It is easily verified, using similar arguments as in Lemma 1, that these
values (if they exist) are obtained by the grid points ofX , i.e., there exist grid points
ykmin 2 � .X/, ykmax 2 � .X/ such that

A.ykmin; X/ D k and Vykmin
D V k

min ;

A.ykmax; X/ D k and Vykmax
D V k

max :

It follows from (10.21) that

d�1.X/ D max
k2f0;1;2;:::;ng

max

�
k

n
� V k

min; V
k

max � k

n

�
: (10.33)

As noted in [55], boxes containing exactly k points may not exist, even if the n
points are pairwise different. However, they do exist if for at least one dimension
j 2 f1; : : : ; d g the coordinates .xj /x2X are pairwise different. If they are pairwise
different for all j 2 f1; : : : ; d g, in addition we have

V 1
min � : : : � V n

min and V 0
max � : : : � V n�1

max :

Note that we obviously have V 0
min D 0 and V n

max D 1. We may therefore disregard
these two values in Eq. (10.33).

As mentioned in Sect. 10.3.3.1 (cf. Theorem 9 and the text thereafter), already
the related problem “Is V 0

max � �?” is an NP-hard one. By adding “dummy points” at
or close to the origin .0; : : : ; 0/ one can easily generalize this result to all questions
of the type “Is V k

max � �?”. Likewise, it is shown in [55] that the following decision
problem is NP-hard.
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Decision Problem. V k
min-BOX

Instance: Natural numbers n; d 2 N, k 2 f0; 1; : : : ; ng, sequence X D .x.i//niD1
in Œ0; 1/d ; " 2 .0; 1�
Question: Is there a point y 2 � .X/ such that A.y;X/ � k and Vy � "?

This suggests that the V k
max- and V k

min-problems are difficult to solve to optimality.
As we shall see below, in Thiémard’s integer linear programming ansatz, we will not
have to solve all 2n optimization problems in (10.33) to optimality. Instead it turns
out that for most practical applications of his algorithms only very few of them need
to be solved exactly, whereas for most of the problems it suffices to find good upper
and lower bounds. We shall discuss this in more detail below.

For each of the 2n subproblems of computing V k
min and V k

max, respectively,
Thiémard formulates, by taking the logarithm of the volumes, an integer linear
program with nCd.n�k/ binary variables. The size of the linear program is linear
in the size nd of the input X . We present here the integer linear program (ILP) for
the V k

min-problems. The ones for V k
max-problems are similar. However, before we are

ready to formulate the ILPs, we need to fix some notation.
For every n 2 N we abbreviate by Sn the set of permutations of f1; : : : ; ng. For

all j 2 f1; : : : ; d g put x.nC1/j WD 1 and let �j 2 SnC1 such that

x
.�j .1//

j � : : : � x
.�j .n//

j � x
.�j .nC1//
j D 1:

With �j at hand, we can define, for every index ı D .ı1; : : : ; ıd / 2 f1; : : : ; nC 1gd
the closed and half-open boxes induced by ı,

Œ0; ı� WD
dY
jD1

Œ0; x
.�j .ıj //

j � and Œ0; ı/ D
dY
jD1

Œ0; x
.�j .ıj //

j /:

One of the crucial observations for the formulation of the ILPs is the fact that x.i/ 2
Œ0; ı� (resp. x.i/ 2 Œ0; ı/), if and only if for all j 2 f1; : : : ; d g it holds that ��1j .i/ �
ıj (resp. ��1j .i/ � ıj � 1). We set

zij .ı/ WD
(
1; if ��1j .i/ � ıj ;

0; otherwise.

Every ı induces exactly one sequence z D ..z.i/j .ı///
d
jD1/niD1 in .f0; 1gd /n, and,

likewise, for every feasible sequence z there is exactly one ı.z/ 2 f1; : : : ; n C 1gd
with z D z.ı.z//. In the following linear program formulation we introduce also the
variables y.1/; : : : ; y.n/, and we shall have y.i/ D 1 if and only if x.i/ 2 Œ0; ı.z/�.
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The integer linear program for the V k
min-problem can now be defined as follows.

ln.V k
min/ D min

dX
jD1

Œln.x
.�j .1//

j /C
nX
iD2

z
.�j .i//

j .ln.x
.�j .i//

j / � ln.x
.�j .i�1//
j //�

(10.34)

subject to

(i) 1 D z
.�j .1//

j D : : : D z
.�j .k//

j � : : : � z
.�j .n//

j 8j 2 f1; : : : ; dg
(ii) z

.�j .i//

j D z
.�j .iC1//

j 8j 2 f1; : : : ; dg8i 2 f1; : : : ; ng W
x
.�j .i//

j D x
.�j .iC1//

j

(iii) y.i/ � z.i/j 8j 2 f1; : : : ; dg8i 2 f1; : : : ; ng
(iv) y.i/ � 1� d CPd

jD1 z.i/j 8i 2 f1; : : : ; ng
(v)

Pn
iD1 y

.i/ � k
(vi) y.i/ 2 f0; 1g 8i 2 f1; : : : ; ng
(vii) z.i/j 2 f0; 1g 8j 2 f1; : : : ; dg8i 2 f1; : : : ; ng

We briefly discuss the constraints of the integer linear program (10.34).

• Since we request at least k points to lie in the box Œ0; ı.z/�, the inequality

x
.�j .ı.z/j //
j � x

.�j .k//

j must hold for all j 2 f1; : : : ; d g. We may thus fix the

values 1 D z
.�j .1//

j D : : : D z
.�j .k//

j .
• The second constraint expresses that for two points with the same coordinate

x
.�j .i//

j D x
.�j .iC1//
j in the j th dimension, we must satisfy z

.�j .i//

j D z
.�j .iC1//
j .

• The third and fourth condition say that y.i/ D 1 if and only if x.i/ 2 Œ0; ı.z/�.
For x.i/ 2 Œ0; ı.z/� we have ��1j .i/ � ı.z/j and thus z.i/j D 1, j 2 f1; : : : ; d g.

According to condition (iv) this implies y.i/ � 1 � d C Pd
jD1 z.i/j D 1, and

thus y.i/ D 1. If, on the other hand, x.i/ … Œ0; ı.z/�, there exists a coordinate
j 2 f1; : : : ; d g with x.i/j > ı.z/j . Thus, z.i/j D 0 and condition (iii) implies

y.i/ � z.i/j D 0.
• Condition (v) ensures the existence of at least k points inside Œ0; ı.z/�.
• Conditions (vi) and (vii) are called the integer or binary constraints. Since only

integer (binary) values are allowed, the linear program (10.34) is called a (binary)
integer linear program. We shall see below that by changing these conditions to
y.i/ 2 Œ0; 1� and z.i/j 2 Œ0; 1�, we get the linear relaxation of the integer linear
program (10.34). The solution of this linear relaxation is a lower bound for the
true V k

min-solution.

Using the V k
min- and V k

max-integer linear programs, Thiémard computes the star
discrepancy of a set X in a sequence of optimization steps, each of which possibly
deals with a different k-box problem. Before the optimization phase kicks in, there
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is an initialization phase, in which for each k an upper bound V k
min for V k

min
and a lower bound V k

max for V k
max is computed. This is done by a simple greedy

strategy followed by a local optimization procedure that helps to improve the
initial value of the greedy strategy. Thiémard reports that the estimates obtained
for the V k

max-problems are usually quite good already, whereas the estimates for
the V k

min-problems are usually too pessimistic. A lower bound V k
min for the V k

min-
problem is also computed, using the simple observation that for each dimension
j 2 f1; : : : ; d g, the j th coordinate of the smallest V k

min-box must be at least as large

as the kth smallest coordinate in .xj /x2X . That is, we have V k
min � Qd

jD1 x
.�j .k//

j .

We initialize the lower bound V k
min by setting it equal to this expression. Similarly,Qd

jD1 x
.�j .kC1//
j is a lower bound for the V k

max-problem, but this bound is usually
much worse than the one provided by the heuristics. For an initial upper bound of
V k

max, Thiémard observes that the V n�1
max -problem can be solved easily. In fact, we

have V n�1
max D maxfx.�j .n//j j j 2 f1; : : : ; d gg. As mentioned in the introduction to

this section, if for all j 2 f1; : : : ; d g the j th coordinates x.1/j ; : : : ; x
.n/
j of the points

in X are pairwise different, we have V 0
max � : : : � V n�1

max . Thus, in this case, we may
initialize V k

max, k D 1; : : : ; n � 1, by V n�1
max .

From these values (we neglect a few minor steps in Thiémard’s computation) we
compute the following estimates

Dk
min.X/ WD k

n
� V k

min and Dk
min.X/ WD k

n
� V k

min ;

Dk
max.X/ WD V k

max � k
n

andDk
max.X/ WD V k

max � k
n
:

Clearly,Dk
min.X/ � k

n
� V k

min � Dk
min.X/ and Dk

max.X/ � V k
max � k

n
� Dk

max.X/.
After this initialization phase, the optimization phase begins. It proceeds in

rounds. In each round, the k-box problem yielding the largest estimate

D�1.X/ WD max

�
max

k2f1;2;:::;ng
Dk

min.X/; max
k2f0;1;:::;n�1g

Dk
max.X/

�

is investigated further.
If we consider a V k

min- or a V k
max-problem for the first time, we regard the linear

relaxation of the integer linear program for ln.V k
min/ or ln.V k

max/, respectively. That
is—cf. the comments below the formulation of the ILP for V k

min-problem above—

instead of requiring the variables y.i/ and z.i/j to be either 0 or 1, we only require
them to be in the interval Œ0; 1�. This turns the integer linear program into a linear
program. Although it may seem that this relaxation does not change much, linear
programs are known to be polynomial time solvable, and many fast readily available
solving procedures, e.g., commercial tools such as CPLEX, are available. Integer
linear programs and binary integer linear programs such as ours, on the other hand,
are known to be NP-hard in general, and are usually solvable only with considerable
computational effort. Relaxing the binary constraints (vi) and (vii) in (10.34) can
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thus be seen as a heuristic to get an initial approximation of the V k
min- and V k

max-
problems, respectively.

In case of a V k
min-problem the value of this relaxed program is a lower bound for

ln.V k
min/—we thus obtain new estimates for the two values V k

min andDk
min. If, on the

other hand, we regard a V k
max-problem, the solution of the relaxed linear program

establishes an upper bound for ln.V k
max/; and we thus get new estimates for V k

max
andDk

max. We may be lucky that we get an integral solution, in which case we have
determined V k

min or V k
max, respectively, and do not need to consider this problem in

any further iteration of the algorithm.
If we consider a V k

min- or V k
max-problem for the second time, we solve the integer

linear program itself, using a standard branch and bound technique. Branch and
bound resembles a divide and conquer approach: the problem is divided into smaller
subproblems, for each of which upper and lower bounds are computed.

Let us assume that we are, for now, considering a fixed V k
min-problem (V k

max-
problems are treated the same way). As mentioned above, we divide this problem
into several subproblems, and we compute upper and lower bounds for these
subproblems. We then investigate the most “promising” subproblems (i.e., the ones
with the largest upper bound and smallest lower bound for the value of V k

min) further,
until the original V k

min-problem at hand has been solved to optimality or until the
bounds for V k

min are good enough to infer that this k-box problem does not cause the
maximal discrepancy value in (10.33).

A key success factor of the branch and bound step is a further strengthening
of the integer linear program at hand. Thiémard introduces further constraints to
the ILP, some of which are based on straightforward combinatorial properties of
the k-box problems and others which are based on more sophisticated techniques
such as cutting planes and variable forcing (cf. Thiémard’s PhD thesis [129] for
details). These additional constraints and techniques strengthen the ILP in the sense
that the solution to the linear relaxation is closer to that of the integer program.
Thiémard provides some numerical results indicating that these methods frequently
yield solutions based on which we can exclude the k-box problem at hand from
our considerations for optimizing (10.33). That is, only few of the 2n many k-box
problems in (10.33) need to be solved to optimality, cf. [131] for the details.

As explained above, Thiémard’s approach computes upper and lower bounds for
the star discrepancy of a given point set at the same time. Numerical experiments
indicate that the lower bounds are usually quite strong from the beginning, whereas
the initial upper bounds are typically too large, and decrease only slowly during
the optimization phase, cf. [131, Section 4.2] for a representative graph of the
convergence behavior. Typical running times of the algorithms can be found in [131]
and in [56]. The latter report contains also a comparison to the alternative approach
described in the next section.
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10.3.4.3 Approaches Based on Threshold-Accepting

In the next two sections we describe three heuristic approaches to compute lower
bounds for the star discrepancy of a given point set X . All three algorithms are
based on randomized local search heuristics; two of them on a so-called threshold
accepting approach, see this section, and one of them on a genetic algorithm, see
Sect. 10.3.4.4.

Randomized local search heuristics are problem-independent algorithms that can
be used as frameworks for the optimization of inherently difficult problems, such
as combinatorial problems, graph problems, etc. We distinguish between Monte-
Carlo algorithms and Las Vegas algorithms. Las Vegas algorithms are known to
converge to the optimal solution, but their exact running time cannot be determined
in advance. Monte-Carlo algorithms, on the other hand, have a fixed running time
(usually measured by the number of iterations or the number of function evaluations
performed), but we usually do not know the quality of the final output. The
two threshold accepting algorithms presented next are Monte-Carlo algorithms for
which the user may specify the number of iterations he is willing to invest for a
good approximation of the star discrepancy value. The genetic algorithm presented
in Sect. 10.3.4.4, on the other hand, is a Monte-Carlo algorithm with unpredictable
running time (as we shall see below, in this algorithm, unconventionally, the
computation is aborted when no improvement has happened for some t iterations
in a row).

This said, it is clear that the lower bounds computed by both the threshold
accepting algorithms as well as the one computed by the genetic algorithm may
be arbitrarily bad. However, as all reported numerical experiments suggest, they are
usually quite good approximations of the true discrepancy value—in almost all cases
for which the correct discrepancy value can be computed the same value was also
reported by the improved threshold accepting heuristic [56] described below. We
note that these heuristic approaches allow the computation of lower bounds for the
star discrepancy also in those settings where the running time of exact algorithms
like the one of Dobkin, Eppstein, and Mitchell described in Sect. 10.3.2 are not
feasible.

Threshold accepting is based on a similar idea as the well-known simulated
annealing algorithm [80]. In fact, it can be seen as a simulated annealing algorithm
in which the selection step is derandomized, cf. Algorithm 1 for the general scheme
of a threshold accepting algorithm. In our application of computing star discrepancy
values, we accept a new candidate solution z if its local discrepancy d�1.z; X/ is
not much worse than that of the previous step, and we discard z otherwise. More
precisely, we accept z if and only if the difference d�1.z; X/ � d�1.y;X/ is at
least as large as some threshold value T . The threshold value is a parameter to
be specified by the user. We typically have T < 0. T < 0 is a reasonable choice
as it prevents the algorithm from getting stuck in some local maximum of the local
discrepancy function. In the two threshold accepting algorithms presented below, T
will be updated frequently during the run of the algorithm (details follow).
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Algorithm 1: Simplified scheme of a threshold accepting algorithm for the
computation of star discrepancy values. I is the runtime of the algorithm
(number of iterations), and T is the threshold value for the acceptance of a
new candidate solution z

1 Initialization: Select y 2 � .X/ uniformly at random and compute d�

1

.y; X/;
2 for i D 1; 2; : : : ; I do
3 Mutation Step: Select a random neighbor z of y and compute d�

1

.z; X/;
4 Selection step: if d�

1

.z; X/� d�

1

.y; X/ � T then y z;

5 Output d�

1

.y; X/;

The first to apply threshold accepting to the computation of star discrepancies
were P. Winker and K.-T. Fang [139]. Their algorithm was later improved in [56].
In this section, we briefly present the original algorithm from [139], followed by a
short discussion of the modifications made in [56].

The algorithm of Winker and Fang uses the grid structure � .X/. As in line 1
of Algorithm 1, they initialize the algorithm by selecting a grid point y 2 � .X/

uniformly at random. In the mutation step (line 3), a point z is sampled uniformly
at random from the neighborhood N mc

k .y/ of y. For the definition of N mc
k .y/ let

us first introduce the functions 'j , j 2 f1; : : : ; d g, which order the elements in
� j .X/; i.e., for nj WD j� j .X/j the function 'j is a permutation of f1; : : : ; nj g
with x

.'j .1//

j � : : : � x
.'j .nj //

j D 1. For sampling a neighbor z of y we first draw
mc coordinates j1; : : : ; jmc from f1; : : : ; d g uniformly at random. We then select,
independently and uniformly at random, for each ji , i D 1; : : : ; mc, a value ki 2
f�k; : : : ;�1; 0; 1; : : : ; kg. Finally, we let z D .z1; : : : ; zd / with

zj WD
(
yj ; for j … fj1; : : : ; jmcg ;
yj C kj ; for j 2 fj1; : : : ; jmcg :

Both the valuesmc 2 f1; : : : ; d g and k 2 f1; : : : ; n=2g are inputs of the algorithm to
be specified by the user. For example, if we choosemc D 3 and k D 50, then in the
mutation step we change up to three coordinates of y, and for each such coordinate
we allow to do up to 50 steps on the grid � j .X/, either to the “right” or to the “left”.

In the selection step (line 4), the search point z is accepted if its discrepancy
value is better than that of y or if it is at least not worse than d�1.y;X/ C T , for
some threshold T � 0 that is determined in a precomputation step of the algorithm.
Winker and Fang decided to keep the same threshold value for

p
I iterations, and

to replace it every
p
I iterations with a new value 0 � T 0 > T . The increasing

sequence of threshold values guarantees that the algorithm has enough flexibility in
the beginning to explore the search space, and enough stability towards its end so
that it finally converges to a local maximum. This is achieved by letting T be very
close to zero towards the end of the algorithm.
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The algorithm by Winker and Fang performs well in numerical tests on rank-1
lattice rules, and it frequently computes the correct star discrepancy values in cases
where this can be checked. However, as pointed out in [56], their algorithm does
not perform very well in dimensions 10 and larger. For this reason, a number of
modifications have been introduced in [56]. These modification also improve the
performance of the algorithm in small dimensions.

The main differences of the algorithm presented in [56] include a refined
neighborhood structure that takes into account the topological structure of the point
set X and the usage of the concept of critical boxes as introduced in Definition 4.
Besides this, there are few minor changes such as a variable size of the neighborhood
structures and splitting the optimization process of d�1.�; X/ into two separate
processes for ı.�; X/ and ı.�; X/, respectively. Extensive numerical experiments are
presented in [56]. As mentioned above, in particular for large dimension this refined
algorithm seems to compute better lower bounds for d�1.�; X/ than the basic one
from [139].

We briefly describe the refined neighborhoods used in [56]. To this end, we first
note that the neighborhoods used in Winker and Fang’s algorithm do not take into
account the absolute size of the gaps x.'.iC1//j � x

.'.i//
j between two successive

coordinates of grid points. This is unsatisfactory since large gaps usually indicate
large differences in the local discrepancy function. Furthermore, for a grid cell

Œy; z� in � .X/ (i.e., y; z 2 � .X/ and .zj D x
.'j .ij //

j / ) .yj D x
.'j .ijC1//
j /

for all j 2 Œd �) with large volume, we would expect that ı.y;X/ or ı.z; X/
are also rather large. For this reason, the following continuous neighborhood is
considered. As in the algorithm by Winker and Fang we sample mc coordinates
j1; : : : ; jmc from f1; : : : ; d g uniformly at random. The neighborhood of y is the set
N mc
k .y/ WD Œ`1; u1� 
 : : : 
 Œ`d ; ud � with

Œ`j ; uj � WD
(

fyj g; for j … fj1; : : : ; jmcg ;
Œx.'j .'

�1
j .yj /�k_ 1//; x.'j .'

�1
j .yj /Ck^nj //�; for j 2 fj1; : : : ; jmcg ;

where we abbreviate '�1j .yj / � k _ 1 WD maxf'�1j .yj / � k; 1g and, likewise,
'�1j .yj /C k ^ nj WD minf'�1j .yj /C k; nj g. That is, for each of the coordinates
j 2 fj1; : : : ; jmcg we do k steps to the “left” and k steps to the “right”. We sample
a point Qz 2 N mc

k .y/ (not uniformly, but according to some probability function
described below) and we round Qz once up and once down to the nearest critical
box. For both these points Qz� and QzC we compute the local discrepancy value, and
we set as neighbor of y the point z 2 arg maxfı.Qz�; X/; ı.QzC; X/g. The rounded
grid points QzC and Qz� are obtained by the snapping procedure described in [56,
Section 4.1]. We omit the details but mention briefly that rounding down to Qz� can
be done deterministically (Qz� is unique), whereas for the upward rounding to QzC
there are several choices. The strategy proposed in [56] is based on a randomized
greedy approach.
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We owe the reader the explanation of how to sample the point Qz. To this end, we
need to define the functions

�j W Œ`j ; uj � ! Œ0; 1�; r 7! rd � .`j /
d

.uj /d � .`j /d
; j 2 fj1; : : : ; jmcg

whose inverse functions are

��1j W Œ0; 1� ! Œ`j ; uj � ; s 7!
��
.uj /

d � .`j /d
�
s C .`j /

d
	1=d

:

To sample Qz, we first sample values s1; : : : ; smc 2 Œ0; 1� independently and uniformly
at random. We set Qzj WD ��1j .sj / for j 2 fj1; : : : ; jmcg and we set Qzj WD yj for
j … fj1; : : : ; jmcg. The intuition behind this probability measure is the fact that it
favors larger coordinates than the uniform distribution. To make this precise, observe
that in the case where mc D d , the probability measure on N mc

k .y/ is induced
by the affine transformation from N mc

k .y/ to Œ0; 1�d and the polynomial product
measure

�d . dx/ D ˝d
jD1f .xj / �. dxj / with density function f W Œ0; 1� ! R ; r 7! drd�1

on Œ0; 1�d . The expected value of a point selected according to �d is d=.d C 1/,
whereas the expected value of a point selected according to the uniform measure
(which implicitly is the one employed by Winker and Fang) has expected value 1=2.
Some theoretical and experimental justifications for the choice of this probability
measure are given in [56, Section 5.1]. The paper also contains numerical results
for the computation of rank-1 lattice rules, Sobol’ sequences, Faure sequences,
and Halton sequences up to dimension 50. The new algorithm based on threshold
accepting outperforms all other algorithms that we are aware of. For more recent
applications of this algorithm we refer the reader to Sect. 10.5.2, where we present
one example that indicates the future potential of this algorithm.

10.3.4.4 An Approach Based on Genetic Algorithms

A different randomized algorithm to calculate lower bounds for the star discrepancy
of a given point set was proposed by M. Shah in [114]. His algorithm is a genetic
algorithm. Genetic algorithms are a class of local search heuristics that have
been introduced in the sixties and seventies of the last century, cf. [72] for the
seminal work on evolutionary and genetic algorithms. In the context of geometric
discrepancies, genetic algorithms have also been successfully applied to the design
of low-discrepancy sequences (cf. Sect. 10.5.2 for more details). In this section, we
provide a very brief introduction into this class of algorithms, and we outline its
future potential in the analysis of discrepancies.
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Algorithm 2: Simplified scheme of a .� C �/ evolutionary algorithm for the
computation of star discrepancy values. I is the runtime of the algorithm (i.e.,
the number of iterations), C is the number of crossover steps per generation,
andM is the number of mutation steps

1 Initialization: Select y.1/; : : : ; y.�/ 2 � .X/ uniformly at random and compute
d�

1

.y.1/; X/; : : : ; d�

1

.y.�/; X/;
2 for i D 1; 2; : : : ; I do
3 Crossover Step: for j D 1; 2; : : : ; C do
4 Select two individuals y; y0 2 fy.1/; : : : ; y.�/g at random and create from y and y0

a new individual z.j / by recombination;
5 Compute d�

1

.z.j /; X/;

6 Mutation Steps: for j D 1; 2; : : : ;M do
7 Select an individual y 2 fy.1/; : : : ; y.�/; z.1/; : : : ; z.C /g at random;
8 Sample a neighbor n.j/ from y and compute d�

1

.n.j /; X/;

9 Selection step:
10 From fy.1/; : : : ; y.�/; z.1/; : : : ; z.C /; n.1/; : : : ; n.M/g select—based on their local

discrepancy values d�

1

.	; X/—a subset of size �;
11 Rename these individuals y.1/; : : : ; y.�/;

12 Output d�

1

.y; X/;

While threshold accepting algorithms take their inspiration from physics, genetic
algorithms are inspired by biology. Unlike the algorithms presented in the previous
section, in genetic algorithms, we typically do not keep only one solution candidate
at a time, but we maintain a whole set of candidate solutions instead. This set is
referred to as a population in the genetic algorithms literature. Algorithm 2 provides
a high-level pseudo-code for genetic algorithms, adjusted again to the problem of
computing lower bounds for the star discrepancy of a given point configuration.
More precisely, this algorithm is a so-called .� C �/ evolutionary algorithm (with
� D C CM in this case). Evolutionary Algorithms are genetic algorithms that are
based on Darwinian evolution principles. We discuss the features of such algorithms
further below.

As mentioned above, the nomenclature used in the genetic algorithms literature
deviates from the standard one used in introductory books to algorithms. We briefly
name a few differences. In a high-level overview, a genetic algorithm runs in several
generations (steps, iterations), in which the solution candidates (individuals) from
the current population are being recombined and mutated.

We initialize such an algorithm by selecting � individuals at random. They
form the parent population (line 1). To this population we first apply a series
of crossover steps (line 5), through which two (or more, depending on the
implementation) individuals from the parent population are recombined. A very
popular recombination operator is the so-called uniform crossover through which
two search points y; y0 2 � .X/ are recombined to some search point z by setting
zj WD yj with probability 1=2, and by setting zj D y0j otherwise. Several other
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recombination operators exist, and they are often adjusted to the problem at hand.
The random choice of the parents to be recombined must not be uniform, and it may
very well depend on the local discrepancy values d�1.y.1/; X/; : : : ; d�1.y.�/; X/,
which are also referred to as the fitness of these individuals.

Once C such recombined individuals z.1/; : : : ; z.C / have been created and evalu-
ated, we enter the mutation step, in which we compute for a number M of search
points one neighbor each, cf. line 8. Similarly as in the threshold accepting algo-
rithm, Algorithm 1, it is crucial here to find a meaningful notion of neighborhood.
This again depends on the particular application. For our problem of computing
lower bounds for the star discrepancy value of a given point configuration, we
have presented two possible neighborhood definitions in Sect. 10.3.4.3. The newly
sampled search points are evaluated, and from the set of old and new search points
a new population is selected in the selection step, line 9. The selection typically
depends again on the fitness values of the individuals. If always the � search points
of largest local discrepancy value are selected, we speak of an elitist selection
scheme. This is the most commonly used selection operator in practice. However,
to maintain more diversity in the population, it may also be reasonable to use other
selection schemes, or to randomize the decision.

In the scheme of Algorithm 2, the algorithm runs for a fixed number I of
iterations. However, as we mentioned in the beginning of Sect. 10.3.4.3, Shah’s
algorithm works slightly different. His algorithm stops when no improvement has
happened for some t iterations in a row, where t is a parameter to be set by the user.

The details of Shah’s implementation can be found in [114]. His algorithm was
used in [106] for the approximation of the star discrepancy value of ten-dimensional
permuted Halton sequences. Further numerical results are presented in [114]. The
problem instances considered in [114], however, are not demanding enough to make
a proper comparison between his algorithm and the ones presented in the previous
section. On the few instances where a comparison seems meaningful, the results
based on the threshold accepting algorithms outperform the ones of the genetic
algorithm, cf. [56, Section 6.4] for the numerical results. Nevertheless, it seems that
the computation of star discrepancy values with genetic and evolutionary algorithms
is a promising direction and further research would be of interest.

10.3.5 Notes

In the literature one can find some attempts to compute for L1-discrepancies
the smallest possible discrepancy value of all n-point configurations. For the star
discrepancy B. White determined in [138] the smallest possible discrepancy values
for n D 1; 2; : : : ; 6 in dimension d D 2, and T. Pillards, B. Vandewoestyne,
and R. Cools in [111] for n D 1 in arbitrary dimension d . G. Larcher and
F. Pillichshammer provided in [85] for the star and the extreme discrepancy the
smallest discrepancy values for n D 2 in arbitrary dimension d . Furthermore, they
derived for the isotrope discrepancy the smallest value for n D 3 in dimension
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d D 2 and presented good bounds for the smallest value for n D d C 1 in arbitrary
dimension d � 3. (Note that the isotrope discrepancy of n < d C 1 points in
dimension d is necessarily the worst possible discrepancy 1.)

10.4 Calculation of Lp-Discrepancies for p … f2; 1g

This section is the shortest section in this book chapter. The reason for this is not that
the computation of Lp-discrepancies, p … f2;1g, is an easy task which is quickly
explained, but rather that not much work has been done so far and that therefore,
unfortunately, not much is known to date. We present here a generalization of
Warnock’s formula for even p.

Let 
1 � 
2 � � � � � 
d � 0, and let .
u/u
f1;:::;dg be the corresponding product
weights; i.e., 
u D Q

j2u 
j for all u. For this type of weights G. Leobacher and
F. Pillichshammer derived a formula for the weighted Lp-star discrepancy d�p;
 for
arbitrary even positive integers p that generalizes the formula (10.12):

.d�p;
 .X//p D
pX
`D0

 
p

`

!�
�1
n

�` X
.i1;:::;i`/2f1;:::;ng`

dY
jD1

 
1C 
j

1 � max1�k�`.x.ik/j /p�`C1

p � `C 1

!
;

(10.35)

see [89, Thm. 2.1] (notice that in their definition of the weighted discrepancy they
replaced the weights 
u appearing in our definition (10.8) by 
p=2u ). Recall that
in the special case where 
1 D 
2 D � � � D 
d D 1, the weighted Lp-star
discrepancy d�p;
 .X/ coincides with Hickernell’s modified Lp-discrepancy. Using
the approach from [89] one may derive analogous formulas for the Lp-star and Lp-
extreme discrepancy. The formula (10.35) can be evaluated directly at costO.dnp/,
where the implicit constant in the big-O-notation depends on p. Obviously, the
computational burden will become infeasible even for moderate values of n if p is
very large.

Apart from the result in [89] we are not aware of any further results that are
helpful for the calculation or approximation of weighted Lp-discrepancies.

10.4.1 Notes

The calculation of average Lp-discrepancies of Monte Carlo point sets attracted
reasonable attention in the literature. One reason for this is that Lp-discrepancies
such as, e.g., the Lp-star or Lp-extreme discrepancy, converge to the corresponding
L1-discrepancy if p tends to infinity, see, e.g., [49,61]. Thus the Lp-discrepancies
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can be used to derive results for the correspondingL1-discrepancy. In the literature
one can find explicit representations of average Lp-discrepancies in terms of sums
involving Stirling numbers of the first and second kind as well as upper bounds and
formulas for their asymptotic behavior, see, e.g., [49, 61, 70, 89, 123].

10.5 Some Applications

We present some applications of algorithms that approximate discrepancy measures.
The aim is to show here some more recent examples of how the algorithms are
used in practice, what typical instances are, and what kind of problems occur. Of
course, the selection of topics reflects the interest of the authors and is far from
being complete. Further applications can, e.g., be found in the design of computer
experiments (“experimental design”), see [38,88], the generation of pseudo-random
numbers, see [82, 87, 99, 126], or in computer graphics, see [27].

10.5.1 Quality Testing of Point Sets

A rather obvious application of discrepancy approximation algorithms is to estimate
the quality of low-discrepancy point sets or, more generally, deterministic or
randomized quasi-Monte Carlo point configurations.

Thiémard, e.g., used his algorithm from [130], which we described in
Sect. 10.3.4.1, to provide upper and lower bounds for the star discrepancy of Faure
.0;m; s/-nets [40] with sample sizes varying from 1;048;576 points in the smallest
dimension d D 2 to 101 points in the largest dimension 100 (where, not very
surprisingly, the resulting discrepancy is almost 1). He also uses his algorithm to
compare the performance of two sequences of pseudo-random numbers, generated
by Rand() and MRG32k3a [86], and Faure, Halton [57], and Sobol’ [120] sequences
by calculating bounds for their star discrepancy for sample sizes between 30 and
250 points in dimension 7.

For the same instances Thiémard was able to calculate the exact star discrepancy
of the Faure, Halton and Sobol’ sequences by using his algorithm from [131], which
we described in Sect. 10.3.4.2, see [131, Section 4.3].

In the same paper he provided the exact star discrepancy of Faure .0;m; s/-
nets ranging from sample sizes of 625 points in dimension 4 to 169 points in
dimension 12. These results complement the computational results he achieved for
(less demanding) instances in [128] with the help of the algorithm presented there.

Algorithms to approximate discrepancy measures were also used to judge the
quality of different types of generalized Halton sequences. Since these sequences
are also important for our explanation in Sect. 10.5.2, we give a definition here.

Halton sequences are a generalization of the one-dimensional van der Corput
sequences. For a prime base p and a positive integer i 2 N let i D dkdk�1 : : : d2d1
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Fig. 10.2 The first 200
points of the 20-dimensional
Halton sequence, projected to
dimensions 19 and 20

be the digital expansion of i in base p. That is, let d1; : : : ; dk be such that i DPk
`D1 d`p`�1. Define the radical inverse function 	p in base p by

	p.i/ WD
kX
`D1

d`p
�` : (10.36)

Let pj denote the j th prime number. The i th element of the d -dimensional Halton
sequence is defined as

x.i/ WD .	p1.i/; : : : ; 	pd .i// :

The Halton sequence is a low-discrepancy sequence, i.e., its first n points X D
.x.i//niD1 in dimension d satisfy the star discrepancy bound

d�1.X/ D O
�
n�1 ln.n/d

�
: (10.37)

In fact, the Halton sequence was the first construction for which (10.37) was verified
for any dimension d [57], and up to now there is no sequence known that exhibits a
better asymptotical behavior than (10.37).

Nevertheless, for higher dimension d the use of larger prime pj bases leads
to some irregularity phenomenon, which is often referred to as high correlation
between higher bases [9]. This phenomenon can easily be visualized by looking
at two-dimensional projections of Halton sequences over higher coordinates, see
Fig. 10.2.
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To reduce these undesirable effects, Braaten and Weller [9] suggested to use
generalized Halton sequences. To obtain such a sequence, one applies digit
permutations to the Halton sequence: For a permutation �p of f0; 1; : : : ; p � 1g
with fixpoint �p.0/ D 0 define in analogy to (10.36) the scrambled radical inverse
function 	�p by

	�p .i/ WD
kX
`D1

�p.d`/p
�`:

The i th element of the generalized (or scrambled) Halton sequence in d dimensions
is then defined by

x.i/.˘/ WD .	
�p1
p1 .i/; : : : ; 	

�pd
pd .i// ; (10.38)

where we abbreviate˘ WD .�p1 ; : : : ; �pd /.
In several publications different permutations were proposed to shuffle the digits

of the Halton sequence, see, e.g., [2, 18, 23, 41, 106, 133, 134] and the literature
mentioned therein. Many authors tried to compare the quality of some of these
permutations by considering theoretical or numerical discrepancy bounds or other
numerical tests.

Vandewoestyne and Cools [133], e.g., calculated the L2-star and L2-extreme
discrepancy of several generalized Halton sequences by using Warnock’s for-
mula (10.9) and the corresponding modification (10.11), respectively. The instances
they studied ranged from 10;000 sample points in dimension 8 to 1;000 points in
dimension 64. They reported that those generalized Halton sequences performed
best which are induced by the simple reverse permutations �p.0/ D 0 and �p.j / D
p � j for j D 1; : : : ; p � 1. These sequences showed usually a smaller L2-star
and L2-extreme discrepancy as, e.g., the original Halton sequences, the generalized
Halton sequences proposed in [2,9] or the randomized Halton sequences from [134];
for more details see [133].

Ökten, Shah and Goncharov [106] tried to compare different generalized Halton
sequences by calculating bounds for their L1-star discrepancy. For the calculations
of the upper bounds for the star discrepancy they used Thiémard’s algorithm
presented in [130]. For the calculation of the lower bounds they used Shah’s
algorithm [114], which gave consistently better lower bounds than Thiémard’s
algorithm. They did the calculation for instances of 100 points in dimension 5 and
10 and studied different cases of prime bases. So they considered, e.g., different
generalized Halton sequences in d D 5 where the prime bases are the 46th to
50th prime numbers p46; : : : ; p50 (which corresponds to the study of the projections
over the last 5 coordinates of 50-dimensional sequences induced by the first 50
primes). Ökten et al. found that, apart from the original Halton sequence, the reverse
permutations led to the highest discrepancy bounds, in contrast to their very lowL2-
star and L2-extreme discrepancy values. (This indicates again that the conventional
L2-star and L2-extreme discrepancy are of limited use for judging the uniformity
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of point sets, cf. also the notes at the end of Sect. 10.2.) Furthermore, they reported
that the average star discrepancy bounds of generalized Halton sequences induced
by random permutations were rather low. For more details we refer to [106].

Algorithms to approximate star discrepancies were used in [32] to compare the
quality of small samples of classical low-discrepancy points and Monte Carlo points
with new point sets generated in a randomized and in a deterministic fashion.
Here, “small samples” has to be understood as point sets whose size is small
compared to the dimension, say, bounded by a constant times d or d3=2. Notice
that for this sample sizes asymptotic bounds like (10.37) do not provide any helpful
information. The classical point sets were Halton-Hammersley points [24, 57, 99],
Sobol’ points [77,120,121], and Faure points shuffled by a Gray code [40,126,127].
The algorithms that generated the new point sets rely on certain random experiments
based on randomized rounding with hard constraints [28, 122] and large deviation
bounds that guarantee small discrepancies with high probability. The deterministic
versions of these algorithms make use of derandomization techniques from [28,34].
The concrete algorithms are randomized versions of the component-by-component
(CBC) construction proposed in [33] and implemented in [31] and a randomized and
derandomized version of an algorithm proposed in [29, 32]. The CBC construction
has the advantage that it is faster and can be used to extend given low-discrepancy
point sets in the dimension, but its theoretical error bound is worse than the one for
the latter algorithm.

In the numerical experiments different methods to approximate the discrepancy
were used, depending on the instance sizes. For instances of 145–155 points in
dimension 7 and 85–95 points in dimension 9 exact discrepancy calculations were
performed by using the method of Bundschuh and Zhu [11]. For larger instances
this was infeasible, so for instances ranging from 145–155 points in dimension 9
to 65–75 points in dimension 12 a variant of the algorithm of Dobkin, Eppstein
and Mitchell [27] was used that gained speed by allowing for an imprecision of
order d=n. It should be noted that since the publication of these experiments, the
implementation of this algorithm has been improved; a version that attains the
same speed without making the d=n-order sacrifice of precision is available at
the third author’s homepage at http://www.mpi-inf.mpg.de/~wahl/. For the final
set of instances, ranging from 145–155 points in dimension 12 to 95–105 points
in dimension 21, the authors relied on upper bounds from Thiémard’s algorithm
from [130] and on lower bounds from a randomized algorithm based on threshold
accepting from [140], which is a precursor of the algorithm from [56]. Similarly
as in [106], the randomized algorithm led consistently to better lower bounds than
Thiémard’s algorithm. For the final instances of 95–105 points in dimension 21 the
gaps between the upper and lower discrepancy bounds were roughly of the size 0:3,
thus these results can only be taken as very coarse indicators for the quality of the
considered point sets.

As expected, the experiments indicate that for small dimension and relatively
large sample sizes the Faure and Sobol’ points are superior, but the derandomized
algorithms (and also their randomized versions) performed better than Monte Carlo,
Halton-Hammersley, and Faure points in higher dimension for relatively small

http://www.mpi-inf.mpg.de/~wahl/
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sample sizes. From the classical low-discrepancy point sets the Sobol’ points
performed best and were competitive for all instances. For more details see [32,
Section 4].

10.5.2 Generating Low-Discrepancy Points via
an Optimization Approach

In Sect. 10.3.4.4 we have seen that genetic algorithms can be used for an approx-
imation of the star discrepancy values of a given point configuration. Here in this
section we present another interesting application of biology-inspired algorithms in
the field of geometric discrepancies.

Whereas the works presented in Sect. 10.3.4 focus mainly on the computation
of star discrepancy values, the authors of [23], F.-M. de Rainville, C. Gagné, O.
Teytaud, and D. Laurendeau, apply evolutionary algorithms (cf. Sect. 10.3.4.4 for
a brief introduction) to generate low discrepancy point configurations. Since the
fastest known algorithms to compute the exact star discrepancy values have running
time exponential in the dimension (cf. Sect. 10.3.2 for a discussion of this algorithm
and Sect. 10.3.3 for related complexity-theoretic results), and the authors were—
naturally—interested in a fast computation of the results (cf. [23, Page 3]), the
point configurations considered in [23] are optimized for Hickernell’s modified L2-
star discrepancies, see Eq. (10.6) in the introduction to this chapter. As mentioned
in Sect. 10.2, L2-star discrepancies can be computed efficiently via Warnock’s
formula, cf. Eq. (10.9). Similarly, Hickernell’s modified L2-discrepancy can be
computed efficiently with O.dn2/ arithmetic operations.

The point sets generated by the algorithm of de Rainville, Gagné, Teytaud,
and Laurendeau are generalized Halton sequences. As explained in Sect. 10.5.1,
generalized Halton sequences are digit-permuted versions of the Halton sequence,
cf. Eq. (10.38). The aim of their work is thus to find permutations �p1 ; : : : ; �pd such
that the induced generalized Halton sequence has small modified L2-discrepancy.
They present numerical results for sequences with 2,500 points in dimensions 20,
50, and 100 and they compare the result of their evolutionary algorithm with that
of standard algorithms from the literature. Both for the modified L2-discrepancy
as well as for the L2-star discrepancy the results indicate that the evolutionary
algorithm is at least comparable, if not superior, to classic approaches.

The evolutionary algorithm of de Rainville, Gagné, Teytaud, and Lauren-
deau uses both the concept of crossover and mutation (as mentioned above, see
Sect. 10.3.4.4 for a brief introduction into the notations of genetic and evolutionary
algorithms). The search points are permutations, or, to be more precise configura-
tions of permutations. The mutation operator shuffles the values of the permutation
by deciding independently for each value in the domain of the permutation if
its current value shall be swapped, and if so, with which value to swap it. The
crossover operator recombines two permutations by iteratively swapping pairs of
values in them.
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We recall that in the definition of the generalized Halton sequence, Eq. (10.38),
we need a vector (a configuration) ˘ D .�p1 ; : : : ; �pd / of permutations of
different length. The length of permutation �pi is determined by the i th prime
number pi . These configurations are extended component-by-component. That is,
the evolutionary algorithm first computes an optimal permutation �2 on f0; 1g and
sets ˘ WD .�2/. It then adds to ˘ , one after the other, the optimal permutation �3
for f0; 1; 2g, the one �5 on f0; 1; 2; 3; 4g, and so on. Here, “optimal” is measured
with respect to the fitness function, which is simply the modified (Hickernell) L2-
discrepancy of the point set induced by ˘ . We recall from Eq. (10.38) that a vector
˘ of permutations fully determines the resulting generalized Halton sequence.

The iterative construction of ˘ allows the user to use, for any two positive
integers d < D, the same permutations �p1; : : : ; �pd in the first d dimensions of
the two sequences in dimensions d andD, respectively.

The population sizes vary from 500 individuals for the 20-dimensional point sets
to 750 individuals for the 50- and 100-dimensional point configurations. Similarly,
the number of generations that the author allow the algorithm for finding the best
suitable permutation ranges from 500 in the 20-dimensional case to 750 for the 50-
dimensional one, and 1,000 for the 100-dimensional configuration.

It seems evident that combining the evolutionary algorithm of de Rainville,
Gagné, Teytaud, and Laurendeau with the approximation algorithms presented in
Sect. 10.3.4 is a promising idea to generate low star discrepancy point sequences.
This is ongoing work of Doerr and de Rainville [35]. In their work, Doerr and de
Rainville use the threshold accepting algorithm from [56] (cf. Sect. 10.3.4.3) for
the intermediate evaluation of the candidate permutations. Only the final evaluation
of the resulting point set is done by the exact algorithm of Dobkin, Eppstein, and
Mitchell [27] (cf. Sect. 10.3.2). This allows the computation of low star discrepancy
sequences in dimensions where an exact evaluation of the intermediate permutations
of the generalized Halton sequences would be far too costly. Using this approach,
one can, at the moment, not hope to get results for such dimensions where the
algorithm of Dobkin, Eppstein, and Mitchell does not allow for a final evaluation
of the point configurations. However, due to the running time savings during the
optimization process, one may hope to get good results for moderate dimensions for
up to, say, 12 or 13. Furthermore, it seems possible to get a reasonable indication of
good generating permutations in (10.38) for dimensions much beyond this, if one
uses only the threshold accepting algorithm to guide the search. As is the case for
all applications of the approximation algorithms presented in Sect. 10.3.4, in such
dimensions, however, we do not have a proof that the computed lower bounds are
close to the exact discrepancy values.

We conclude this section by emphasizing that, in contrast to the previous
subsection, where the discrepancy approximation algorithms were only used to
compare the quality of different point sets, here in this application the calculation of
the discrepancy is an integral part of the optimization process to generate good low
discrepancy point sets.
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10.5.2.1 Notes

Also other researchers used algorithms to approximate discrepancy measures in
combination with optimization approaches to generate low discrepancy point sets.
A common approach described in [27] is to apply a multi-dimensional optimization
algorithm repeatedly to randomly jiggled versions of low discrepancy point sets
to search for smaller local minima of the discrepancy function. In [38, 90] the
authors used the optimization heuristic threshold accepting to generate experimental
designs with small discrepancy. The discrepancy measures considered in [38] are
the L1- and the L2-star discrepancy, as well as the centered, the symmetric, and
the modified L2-discrepancy. The discrepancy measure considered in [90] is the
central composite discrepancy for a flexible region as defined in [19].

10.5.3 Scenario Reduction in Stochastic Programming

Another interesting application of discrepancy theory is in the area of scenario
reduction. We briefly describe the underlying problem, and we illustrate the
importance of discrepancy computation in this context.

Many real-world optimization problems, e.g., of financial nature, are subject
to stochastic uncertainty. Stochastic programming is a suitable tool to model such
problems. That is, in stochastic programming we aim at minimizing or maximizing
the expected value of a random process, typically taking into account several
constraints. These problems, of both continuous and discrete nature, are often
infeasible to solve optimally. Hence, to deal with such problems in practice, one
often resorts to approximating the underlying (continuous or discrete) probability
distribution by a discrete one of much smaller support. In the literature, this
approach is often referred to as scenario reduction, cf. [64, 112] and the numerous
references therein.

For most real-world situations, the size of the support of the approximating
probability distribution has a very strong influence on (i.e., “determines”) the
complexity of solving the resulting stochastic program. On the other hand, it is also
true for all relevant similarity measures between the original and the approximating
probability distribution that a larger support of the approximating distribution allows
for a better approximation of the original one. Therefore, we have a fundamental
trade-off between the running time of the stochastic program and the quality of
the approximation. This trade-off has to be taken care of by the practitioner,
and his decision typically depends on his time constraints and the availability of
computational resources.

To explain the scenario reduction problem more formally, we need to define
a suitable measure of similarity between two distributions. For simplicity, we
regard here only distance measures for two discrete distributions whose support
is a subset of Œ0; 1�d . Unsurprisingly, a measure often regarded in the scenario
reduction literature is based on discrepancies, cf. again [64, 112] and references
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therein. Formally, let P and Q be two discrete Borel distributions on Œ0; 1�d and let
B be a system of Borel sets of Œ0; 1�d . The B-discrepancy between P andQ is

disc1.BIP;Q/ D sup
B2B

jP.B/�Q.B/j :

The right choice of the set B of test sets depends on the particular application.
Common choices for B are

• Cd , the class of all axis-parallel half-open boxes,
• Rd , the class of all half-open axis-parallel boxes,
• Pd;k , the class of all polyhedra having at most k vertices, and
• Id , the set of all closed, convex subsets,

which were introduced in Sect. 10.1.
In the scenario reduction literature, the discrepancy measure associated with Cd

is referred to as star discrepancy, uniform, or Kolmogorov metric; the one associated
with Id is called isotrope discrepancy, whereas the distance measure induced by
Rd is simply called the rectangle discrepancy measure, and the one induced by
Pd;k as polyhedral discrepancy.

With these distance measures at hand, we can now describe the resulting
approximation problem. For a given distribution P of support fx.1/; : : : ; x.N/g we
aim at finding, for a given integer n < N , a distribution Q such that (i) the support
fy.1/; : : : ; y.n/g of Q is a subset of the support of P of size n and that (ii) Q
minimizes the distance between P and Q.

Letting ı.z/ denote the Dirac measure placing mass one at point z, p.i/ WD
P.x.i//, 1 � i � N , and q.i/ WD P.x.i//, 1 � i � n, we can formulate this
minimization problem as

minimize disc1.BIP;Q/ D disc1.BI
NX
iD1

p.i/ı.x.i//;

nX
iD1

q.i/ı.y.i///

(10.39)

subject to fy.1/; : : : ; y.n/g � fx.1/; : : : ; x.N/g ;
q.i/ > 0; 1 � i � n ;

nX
iD1

q.i/ D 1:

This optimization problem can be decomposed into an outer optimization problem
of finding the support fy.1/; : : : ; y.n/g and an inner optimization problem of
finding—for fixed support fy.1/; : : : ; y.n/g—the optimal probabilities q.1/; : : : ; q.n/.

Some heuristics for solving both the inner and the outer optimization problems
have been suggested in [64]. In that paper, Henrion, Küchler, and Römisch mainly
regard the star discrepancy measure, but results for other distance measures are
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provided as well; see also the paper [63] by the same set of authors for results on
minimizing the distance with respect to polyhedral discrepancies.

We present here a few details about the algorithms that Henrion, Küchler, and
Römisch developed for the optimization problem (10.39) with respect to the star
discrepancy. A more detailed description can be found in their paper [64].

Two simple heuristics for the outer optimization problem are forward and
backward selection. In forward selection we start with an empty support set Y ,
and we add to Y , one after the other, the element from X D fx.1/; : : : ; x.N/g that
minimizes the star discrepancy between P and Q, for an optimal allocation Q of
probabilities q.1/; : : : ; q.jY j/ to the points in Y . We stop this forward selection when
Y has reached its desired size, i.e., when jY j D n.

Backward selection follows an orthogonal idea. We start with the full support
set Y D X and we remove from Y , one after the other, the element such that
an optimal probability distribution Q on the remaining points of Y minimizes the
star discrepancy disc1.Cd IP;Q/. Again we stop once jY j D n. It seems natural
that forward selection is favorable for values n that are much smaller than N , and,
likewise, backward selection is more efficient when the differenceN � n is small.

For the inner optimization problem of determining the probability distribution
Q for a fixed support Y , Henrion, Küchler, and Römisch formulate a linear
optimization problem. Interestingly, independently of the discrepancy community,
the authors develop to this end the concept of supporting boxes—a concept that
coincides with the critical boxes introduced in Definition 4, Sect. 10.3.1. Using these
supporting boxes, they obtain a linear program that has much less constraints than
the natural straightforward formulation resulting from problem (10.39). However,
the authors remark that not the solution to the reduced linear program itself is
computationally challenging, but the computation of the supporting (i.e., critical)
boxes. Thus, despite significantly reducing the size of the original problem (10.39),
introducing the concept of critical boxes alone is not sufficient to considerably
reduce the computational effort required to solve problem (10.39). The problems
considered in [64] are thus only of moderate dimension and moderate values of
N and n. More precisely, results for four and eight dimensions with N D 100,
N D 200, and N D 300 points are computed. The reduced scenarios have n D 10,
20, and 30 points.

Since most of the running time is caused by the computation of the star
discrepancy values, it seems thus promising to follow a similar approach as in
Sect. 10.5.2 and to use one of the heuristic approaches for star discrepancy
estimation presented in Sect. 10.3.4 for an intermediate evaluation of candidate
probability distributionsQ. This would allow us to compute the exact distance of P
andQ only for the resulting approximative distributionQ.

We conclude this section by mentioning that similar approaches could be
useful also for the other discrepancy measures, e.g., the rectangle or the isotrope
discrepancy of P and Q. However, for this to materialize, more research is needed
to develop good approximations of such discrepancy values. (This is particularly
the case for the isotrope discrepancy—see the comment regarding the isotrope
discrepancy at the beginning of Sect. 10.3.)
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Bessel function 16, 162, 601
Bessel’s inequality 79, 90
best hyperbolic cross approximation 132
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Birch–Davenport method 494, 509, 510
Bochner integral 99
Borel function 357
Borel’s theorem on normal numbers 236
Borell’s inequality 129, 130
bounded mean oscillation (BMO)

norm 624
space 79, 106

bracketing entropy 649, 650
bracketing number 650
branch and bound 656
Brownian sheet 80, 118, 119
brute force 113

C

Cantor set 247
Cantor set construction 247
cap 489

direction 489, 494
discrepancy 489

cell 641
centered discrepancy 624
central composite discrepancy 626
central limit theorem 234, 567
Chang–Wilson–Wolff inequality 98
character (of a locally compact Abelian group)

357
Chebyshev inequality 122, 192
Chernoff bound 335
Chernoff inequality 345
Chernoff–Hoeffding inequality 345
Chinese remainder theorem 49, 509
Cholesky decomposition 437
Chrestenson–Levy function 62
circle problem 235
circulant matrix 355
coding length 643
coloring 425

balanced 465
fair 339
generating 465
modulo 465
of a graph 139
of edges 139
partial 431
random 429, 464

combinatorial 2-color discrepancy 323, 461
combinatorial multicolor discrepancy 320
compact genetic algorithm (cGA) 472
complexity class

FPT 646

NP 322, 643
W[1] 646, 647

component-by-component algorithm 588,
591, 609, 648, 667, 669

conditional expectation 147, 148
continued fractions 223, 300
convolution 357
coprime lattice point 254
covariance kernel 128
covering number 123
critical points 638
critical test box 638
cubature formula 74, 91

Kolmogorov’s method 74, 90
cubature rule 583
curse of dimensionality 82, 555, 627
cutoff function 164, 165, 492
cutting plane 656

D

Davenport reflection 19
decision problem 643

3-SAT 647
discrepancy 334
dominating set 644
empty half-open box 644
star discrepancy 643

ı-bracket 650
ı-bracketing cover 649, 650
ı-cover 649
diaphony 627
digital .t; ˛; ˛m�m; s/-net over Zb 568
digital .t; s/-sequence

over Zb 561
digital construction scheme 560

generating matrices 560
digital net 560

dual 595
digital sequence 560, 561

Faure 562
Niederreiter 561
Sobol’ 562

digital shift 566
simplified 572

digital .t; ˛; s/-sequence over Zb 569
digital .t; m; s/-net 560

over Zb 561
digital .t; s/-sequence 561
dilation 187
diophantine

approximation 19, 226, 239
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coordinate 490
direction 490
equation 222, 487
inequality 227
point 489, 532

Dirac measure 13, 215
Dirichlet’s principle 495
discrepancy 426
2-color 314, 323, 461
axis-parallel rectangle based 627
cap 489
centered 624
central composite 626
combinatorial 2-color 323, 461
combinatorial multicolor 320
decision problem 334
determinant lower bound 430
function 73, 187
extreme 624
for axis-parallel boxes (see extreme

discrepancy)
G-star 625
geometric 72
half space 192
hereditary 325, 427
Hickernell’s modified Lp 625
isotrope 625, 671
L2-square 383
L2 545, 546, 627, 628
L2-extreme 624, 629
L2-star 627
linear 324
local 539
Lp 540, 663
Lp spherical cap 550
Lp -extreme 624
Lp -star 623
L

1

622
L

1

-extreme 624
L

1

-star 623
measure 622
modified L2 625
modified Lp 625
multicolor 320
of a point set 4
of a vector sequence 327
of finite point sets 74
of infinite sequences 74
of matrices 324
one-sided 405
phenomena of large 5
phenomena of small 5
polyhedral 671
problem of large 5

problem of small 17
quadrant 624
r-smooth L2 632
rectangle 671
smoothed 503
spherical cap 626
star 73, 540, 623
unanchored (see discrepancy, extreme)
weighted 325, 549, 555, 625
weighted combinatorial multicolor 332
weighted L2 557
weighted Lp 549, 626
weighted L

1

626
weighted star 549

discrete optimization problem 643
divergence theorem 164
divide-and-conquer 631, 656
Dobkin–Eppstein–Mitchell algorithm 627,

639
dominating point 267
dominating set 644

decision problem 644
dual lattice 576
dual polynomial lattice 594
dyadic box 92, 93
dyadic interval 26, 28, 83, 94, 506
dyadic rectangle 74, 84, 85
dyadic square function 96

product 101
dynamic programming 642

E

EDA
incremental 471
population-based 471

edge coloring 139
ellipsoid method 437
empty half-open box

decision problem 644
entropy 434

method 429, 433
metric 127, 130
number 82, 123

equation
diophantine 222, 487
Parseval-type 412
Pell 222

Erdős–Turán–Koksma inequality 586,
648

Euclidean Fourier transform 492
Euler’s formula 251



688 Index

evolutionary algorithm (EA)
.�C �/ 661

exponential time hypothesis (ETH) 647
exponentially square integrable function 98
extra large deviation 253, 257
extreme discrepancy 624
L

1

624

F

facet 162
fair coloring 339
Farey dissection 496
Farey fraction 507
fast component-by-component algorithm

583, 588
Faure construction 48
Faure sequence 562, 660
Faure set 55, 56, 667
Fejér kernel 208
Fine formula 44
Fine–Price formula 65
fitness function 471
flat torus 490, 530
flatline termination criterion 476
formula

cubature 74, 91
Euler 251
Fine 44
Fine–Price 65
inclusion-exclusion 143
Parseval 234
Poisson summation 196, 234
quadrature 622
Stirling 126
Warnock 545, 546, 549, 551, 628
Warnock, generalization 663

forward selection 672
Fourier series

lacunary 80, 115, 116
Fourier transform decay 161, 180, 186, 523
Fourier–Walsh analysis 40
p-adic 62

Fourier–Walsh coefficients 40, 63
Fourier–Walsh series 40, 63
FPT (compexity class) 646
FPT-algorithm 646
function

exponentially square integrable 98
subgaussian 98

function space 80
Besov 79, 105

BMO 79, 106
exponential Orlicz 79, 98, 106
Hardy 79, 103
Korobov 576, 577
Lp 79
product BMO 106
reproducing kernel Hilbert 124, 128, 542,

543, 545, 628
Schwartz 500
Sobolev 105, 128, 633
Walsh 596
weighted Walsh 596

G

G-star discrepancy 625
Gallai’s theorem 356
gap condition

strong 250
weak 251

Gauss’ circle problem 198
Gaussian curvature 163, 164, 180
Gaussian measure 326
Gaussian sum 497
Gelfand–Leray form 521
Gelfand–Leray measure 523
generating coloring 465
generation

in EDA 471
genetic algorithm (GA) 657, 660

(parent) population 661
crossover 661
elitist selection scheme 662
fitness (of an individual) 662
generation 661
individual 661
mutation 661, 662
population 661
recombination 661
selection 662
uniform crossover 661

geometric discrepancy 72
Gilbert–Varshamov bound 126, 130
graph coloring 139
graph matching 139
great open problem 19, 76

H

Hölder function 91
product 92
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Hölder inequality 191, 541
Haar basis 74, 83

product 84
Haar coefficient 74
Haar expansion 81, 96, 105
Haar function 74, 83
Haar function method of Roth 75
Haar measure 357
Haar wavelet 83, 259
Hadamard matrix 326
Hahn–Banach theorem 534
half-space discrepancy 192
Halton construction 48
Halton sequence 49, 660, 665

generalized 666
scrambled 666

Halton set 49
extended 52
translated 53

Halton–Hammersley set 667
Hammersley set 149, 552, 639
Hamming distance 125
Hamming weight 125
Hardy norm 103
Hardy space 79, 103
Hardy–Littlewood maximal function theorem

179
Hardy–Littlewood method 491
harmonic analysis 80, 95
Heinrich’s algorithm 629
hereditary discrepancy 325, 427

multicolor 333
Hickernell’s modified Lp -discrepancy 625
high correlation between higher bases 665
higher order net 568, 569

scrambled 571
higher order sequence 568, 569

scrambled 571
Hilbert space technique 73
Hlawka–Zaremba identity 548
Hoeffding inequality 9
Hurwitz’s theorem 227
Hyperbola Problem 235
hyperbolic cross 131, 132

best approximation 132
dyadic 132

hyperbolic cross points (see Smolyak
quadrature rule)

hyperbolic needle 224, 226, 243
hypergraph 322

of arithmetic progressions 330
of arithmetic progressions in Zp 467
of arithmetic progressions in the first n

integers 460

of linear hyperplanes 405
wrapped 385
Zp-invariant 394

hyperplane 171
hypersurface 509

I

identity
Hlawka–Zaremba 548
Parseval 14, 96, 117, 173, 188
Plancherel 516

inclusion-exclusion formula 143
individual 471
induced box 653
induced grid 636
inequality

Bessel 79, 90
Borell 129
Chang–Wilson–Wolff 98
Chebyshev 122, 192
Chernoff 345
Chernoff–Hoeffding 345
diophantine 227
Erdős–Turán–Koksma 586, 648
Hölder 191, 541
Hoeffding 9
isoperimetric 129, 434
Jensen 111, 592
Khintchine 79, 97, 99
Koksma 542
Koksma–Hlawka 546, 550
large deviation 9, 140
Littlewood–Paley 96
Littlewood–Paley type 75, 79, 101, 132
Markov 604
Minkowski (integral) 169
Pell 223, 224
small ball 75, 79, 107

information complexity 558
Information-based Complexity (IBC) 554
integer linear programming 651
integral weight 340
integration

error 541
numerical 84, 90, 91
operator 91, 120
polynomially (QMC) tractable 558
quasi-Monte Carlo (QMC) 539
strongly polynomially (QMC) tractable

558
internal point dimension 641
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intractability 555
irregularity of distribution 73, 74
isoperimetric inequality 129, 434
isotrope discrepancy 625, 671

J

Jacobi symbol 509
Jensen’s inequality 111, 592

K

k-clique
parameterized problem 647

Kahan summation 629
Khintchine inequality 79, 97, 99
Khintchine’s theorem 236
Klee’s measure problem 639
Kloosterman refinement 495, 496, 506
Kloosterman sum 506
Koksma inequality 542
Koksma–Hlawka inequality 546, 550
Kolmogorov

cubature error bound method 74
Kolmogorov metric 671
Kolmogorov width 82
Kolmogorov’s cubature error bound method

90
Korobov lattice points 589
Korobov space 576, 577
Kuelbs–Li equivalence 124
Kuelbs–Li theorem 124

L

L2-square discrepancy 383
L2-discrepancy 545, 546, 627, 628
r-smooth 632
modified 625

L2-extreme discrepancy 624, 629
L2-star discrepancy 627
lacunarity 116
lacunary Fourier series 115, 116
lacunary sequence 116
Lagrange’s theorem 11
large deviation 119

inequality 9, 140
technique 8

large discrepancy phenomena 5
large discrepancy problem 5
Las Vegas algorithm 657
Latin square 362
lattice point set 552, 575
lattice rule 575, 639

polynomial 593
Laurent series 561, 593
Law of the Iterated Logarithm 230, 236

Cassels’s form 237
Khintchine’s form 235, 236
Kolmogorov–Erdős form 237

LCA group 357
learning rate 472
learning resolution 473
Lebesgue measure 3, 17, 82, 238, 550, 580,

623, 625
Legendre symbol 467
lemma

Anderson 121
Owen 567
partial coloring 433, 447

level surface 488 (see also hypersurface)
linear discrepancy 324

multicolor 333
linear learning 473
linear relaxation 654
Littlewood–Paley inequality 75, 79, 96, 101,

132
dyadic 79

Littlewood–Paley product square function
90

Littlewood–Paley square function 97
Littlewood–Paley theory 79, 95, 96, 101
local discrepancy 539, 623

of measures 622
local-global principle 525
low discrepancy point set 552, 558
low discrepancy sequence 558
Lp space 79
Lp spherical cap discrepancy 550
Lp -discrepancy 540, 663

inverse of 555
modified 625
of measures 622

Lp -extreme discrepancy 624
Lp -star discrepancy 623
L

1

-discrepancy
inverse of 554
of measures 622

L
1

-extreme discrepancy 624
L

1

-star discrepancy 623
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M

major arc 511
Markov’s inequality 604
martingale 97
martingale difference square function 97
matching (in a graph) 139
mean value theorem 179
measure

Dirac 13, 215
Gaussian 326
Gelfand–Leray 523
Haar 357
Lebesgue 3, 17, 82, 238, 550, 580, 623,

625
of discrepancy 622

measure-preserving transformation 491
method

Birch–Davenport 494, 509, 510
branch and bound 656
divide-and-conquer 631, 656
ellipsoid 437
entropy 429, 433
Hardy–Littlewood 491
Kolmogorov’s cubature error bound 74
nested intervals 247
partial coloring 429
probabilistic 335
Roth (orthogonal function) 75–77, 80, 83
sparse grid 633

metric entropy 80, 123, 124, 127, 130
migration 473

global 473
local 473

Minkowski inequality (integral) 169
Minkowski’s theorem 227
minor arc 511
mirror construction 465
modulo coloring 465
Monte-Carlo (MC) 565
Monte-Carlo (MC) algorithm 565, 657
Monte-Carlo point set 667
.�C �/ evolutionary algorithm (EA) 661
multicolor discrepancy 320

N

Naive Area Principle 224
nested interval method 247
Niederreiter sequence 561
norm

Besov 105, 624
BMO 624
Hardy 103
Orlicz 624
Triebel–Lizorkin 624

NP (complexity class) 322, 643
NP-completeness 322, 644
NP-hard problem 322
NP-hardness 322, 643
numerical integration 84, 90, 91

O

Orlicz function 98
Orlicz norm 98, 624
Orlicz space

exponential 79, 98, 106
orthogonal basis 84, 96, 105
orthogonal decomposition 73
orthogonal function method of Roth 75–77,

80, 83
orthogonal range counting 650
orthogonal transformation 6
Owen scrambled sequence 567
Owen’s lemma 567
Owen’s scrambling 566

P

p-adic integer 525
parallel section function 162
parameterized complexity 646
parameterized problem 646
parameterized reduction 646
Parseval formula 234
Parseval identity 14, 96, 117, 173, 188
Parseval’s theorem 600
Parseval-type equation 412
partial coloring 431

lemma 433, 447
method 429
SDP 446

partition tree
for a color set 336
for a positive integer 338

Pell inequality 223, 224
Pell’s equation 222
Plancherel identity 516
Plancherel theorem 150, 358
point set discrepancy 4
Poisson sum 496
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Poisson summation formula 196, 234
polar coordinates 162
polygon 181
polyhedral discrepancy 671
polyhedron 180
polynomial

Bernoulli 578, 602
non-singular 488
regular value of 490
regular value set of 488, 510
trigonometric 117, 131

polynomial lattice point set 557, 593
figure of merit 595

polynomial lattice rule 593
polynomial tractability 554
population-based incremental learning (PBIL)

471
premature convergence 473
principle

Dirichlet 495
local-global 525
restricted invertibility 432
Roth 83, 85
Stolarsky invariance 551

probabilistic method 335
probabilistic proof 634
problem

fixed-parameter tractable (FPT) 646
Gauss’ circle 198
great open 19, 76
Klee’s measure 639
large discrepancy 5
NP-complete 644
NP-hard 322, 643
parameterized 646
small ball 118, 128
small deviation 118, 121
small discrepancy 17
W[1]-hard 646, 647
Waring 536

product BMO space 106
product Hölder function 92
product Haar basis 84
product rule 112
property B 334
pseudo-random numbers 621

Q

QEA
attractor population (apQEA) 474
standard (sQEA) 472

versatile (vQEA) 473
quadrant discrepancy 624
quadrature algorithm 564
quadrature formula 622
quadrature points 540
quadrature rule 540, 578, 623

Smolyak 633
“quantum-inspired” attribute 473
quantum-inspired evolutionary algorithm

(QEA) 472
quasi-Monte Carlo (QMC) 539

algorithm 634
integration 539, 558, 633
randomised 564, 565
rule 540
sampling 625

R

r-function 86, 112, 113
Rademacher function 86, 97, 235

generalized 86
modified 259, 260

radical inverse function 665
Ramsey theory 323
random coloring 429, 464
random walk 235, 440, 445

gaussian 430, 431, 447
infinite 235

randomised error 565
range tree 651
rectangle discrepancy 671
rectangle property 253, 254
region level 641
regular value 490
regular value set 488, 510
reproducing kernel 129, 542
reproducing kernel Hilbert space 124, 128,

542, 543, 545, 628
restricted invertibility principle 432
Riesz product 75, 112, 115, 116, 136, 249,

251, 259
Rosenblum–Tsfasman weight 67
rotation learning 473
Roth’s principle 83, 85

S

Salie sum 509
sawtooth function 21
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Schwartz space 500
scrambled radical inverse function 666
semidefinite programming (SDP) 430, 436

for partial coloring 446
vector program view 437

separation constant 309
sequence

digital 560, 561
digital .t; s/ 561
digital .t; s/ over Zb 561
Faure 660
Halton 660, 665
higher order 568, 569
lacunary 116
low discrepancy 558
Niederreiter 561
Owen scrambled 567
Sobol’ 660
.t; s/ in base b 559
.t; s/ over Zb 570
uniformly distributed 72
van der Corput 25, 552, 664

set
Cantor 247
dominating 644
dual polynomial lattice 594
extended Halton 52
extended van der Corput 31
Faure 55, 56, 667
Halton 49, 50
Halton–Hammersley 667
Hammersley 552, 639
lattice point 552, 575
low discrepancy 552, 558
Monte-Carlo 667
of shattered hyperedges 334
polynomial lattice point 557, 593
regular value 488, 510
shifted van der Corput 35
Sobol’ 667
translated Halton 53
translated van der Corput 31
van der Corput 25, 26, 80, 149, 151

shatter function
dual 345
primal 345

shattered hyperedge set 334
shortcutting computation 462
Sidon’s theorem 80, 116, 251
� -separation 309
simplex 182, 367
single dominant term rule 264
single term domination 264, 272
singular series 491, 524

slab 640
small ball conjecture 76, 108

generic signed 110
signed 109
trigonometric 133

small ball inequality 75, 79, 107
signed 145

small ball probability 119, 122, 124, 127,
130, 134

small ball problem 118, 128
small deviation probability 80, 118, 119
small deviation problem 118, 121
small discrepancy phenomena 5
small discrepancy problem 17
Smolyak quadrature rule 633
smoothed discrepancy 503
snapping procedure 659
Sobol’ sequence 562, 660
Sobol’ set 667
Sobolev space 105, 128, 633
sparse grid method (see Smolyak quadrature

rule)
spherical average 163
spherical cap 164
spherical cap discrepancy 626
spherical mean 163, 172
square function

martingale difference 79
standard QEA (sQEA) 472
star discrepancy 73, 107, 540, 623

decision problem 643
inverse of 554
Lp 623
L

1

623
star discrepancy metric 671
Stirling number 366
Stirling’s formula 126
stochastic program 670
stochastic programming 622, 670

scenario reduction 622, 670
Stolarsky’s invariance principle 551
strong tractability 555, 557
strongly distinct vectors 137
subgaussian function 98
sum

Gaussian 497
Kloosterman 506
of arithmetic progressions 320, 378
Poisson 496
Salie 509

summation
Kahan 629
Poisson 196, 234

super-orthogonality 259, 260
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superirregularity 233
support 165
supporting box 672

T

T -tractability 558
tensor product 121, 545
tensor product technique 321
theorem

Beck–Fiala 321
Borel’s normal number 236
Bárány–Grinberg 321
central limit 234, 567
Chinese remainder 49
divergence 164
Gallai 356
Hahn–Banach 534
Hardy–Littlewood (maximal function)

179
Hurwitz 227
Khintchine 236
Kuelbs–Li 124
Lagrange 11
mean value 179
Minkowski 227
Minkowski lattice point 326
Parseval 600
Plancherel 150, 358
Sidon 80, 116, 251
six standard deviations 321
van der Waerden 330

theory
Littlewood–Paley 79, 95, 96,

101
Ramsey 323

Thiémard’s algorithm
bracketing cover approach 650
ILP-based 651

threshold accepting 657, 658
threshold language 643
.t; m; s/-net

digital 560
in base b 552, 559
Owen scrambled 567
quality parameter 559
randomly digitally shifted 566

total unimodular matrix 325
tractability

polynomial 554
strong 557

trellis 640

Triebel–Lizorkin norm 624
trigonometric polynomial 117, 131
trivial error 261, 264
.t; s/-sequence

in base b 559
over Zb 570

Turing machine (non-deterministic) 643
type " point 501

U

unanchored discrepancy (see extreme
discrepancy)

uniform metric 671
uniformly distributed sequence 72
unit level surface 488
univariate marginal distribution algorithm

(UMDA) 471

V

van der Corput conjecture 4
van der Corput sequence 25, 552, 664

generalization by Faure (see Faure
construction)

generalization by Halton (see Halton
construction)

van der Corput set 25, 26, 80, 149, 151
extended 31
Fourier–Walsh approach 38
shifted 35
translated 31

Vandermonde matrix 58
variable forcing 656
VC -dimension 334
versatile QEA (vQEA) 473
vertical translation 266

W

W[1] (complexity class) 646, 647
W[1]-hardness 646, 647
Walsh coefficients 597
Walsh expansion 573
Walsh function 39, 62, 77, 573

b-adic 594
b-adic system 594
s-dimensional b-adic 595
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Walsh series 602
Walsh space 596
Waring problem 536
Warnock formula 545, 546, 549, 551, 628

generalization 663
weak tractability 558
weighted discrepancy 325, 549, 555, 625
weighted L2-discrepancy 557
weighted Lp-discrepancy 549, 626

inverse of 556
weighted L

1

-discrepancy 626
weighted star-discrepancy 549

weighted Walsh space 596
Weil’s estimate 506
Weyl-type estimate 511
Winker–Fang algorithm 658
worst-case-root-mean-square error 565
wrapped hypergraph 385

Z

Zp-invariant hypergraph 394
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