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Abstract In this chapter we investigate the convergence of the mean curvature flow
of submanifolds in Euclidean and hyperbolic spaces with Gaussian density. For
Euclidean case, we prove that the flow deforms a closed submanifold with pinching
condition to a “round point” in finite time.
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1 Introduction

The mean curvature flow (MCF) was proposed by W. Mullins (1956) to describe the
formation of grain boundaries in annealing metals. Brakke [5] introduced the motion
of a submanifold by its MCF in arbitrary codimension and constructed a generalized
varifold solution for all time. There are many works for the classical solution
of MCF on hypersurfaces. Huisken [7] showed that if the initial hypersurface
in the Euclidean space is compact and uniformly convex, then MCF converges
to a “round point” in a finite time. He also studied MCF of hypersurfaces in
a Riemannian manifold satisfying a pinching condition in a sphere, see [1].
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For MCF of submanifolds with higher codimension, fruitful results were obtained
for submanifolds with low dimension or admitting some special structures, see
survey [11, 12]. Andrews and Baker [2] proved a convergence theorem for MCF of
closed submanifolds satisfying a suitable pinching condition in the Euclidean space.
Baker [3] and Liu–Xu–Ye–Zhao [8, 9] generalized Andrews-Baker’s convergence
theorem [2] for MCF of submanifolds in the Euclidean space to the case of MCF
of arbitrary codimension in spherical and hyperbolic space forms and Riemannian
manifolds.

Morgan [10] introduced manifolds with density, which provides a new concept
of curvature. A. Borisenko and V. Miquel considered MCF with density for hyper-
surfaces in Euclidean space.

In this chapter we study the convergence of the MCF of submanifolds in
Euclidean and hyperbolic spaces with Gaussian density. For Euclidean case, we
prove that the flow deforms a closed submanifold satisfying pinching condition
to a “round point” in finite time. For hyperbolic case, we find maximal radius (or
minimal normal curvature) of central hypersphere in a hyperbolic space that shrinks
to the origin under the MCF with Gaussian density; moreover, for central spheres of
smaller radius we estimate the collapsing time.

2 The MCF in Riemannian Manifolds and Space Forms

Consider immersions of a closed manifold Mn into a space form:

Ft W Mn ! NMnCp.c/; Ft .q/ D F.q; t/; q 2 Mn; t 2 Œ0; T /:

Denote by ht the second fundamental tensor, and by Ht D Tr g ht the mean
curvature vector field of the immersions (g is the induced metric on M ). The MCF
is the evolution equation (see [2, 11])

@tF D H; (1)

where F0 W Mn ! NMnCp.c/ provides initial data.

Remark 1. The general form of the MCF is

.@tF /
? D H; (2)

where ? denotes the projection onto the normal space of Ft.M/. This equation is
equivalent to (1) up to diffeomorphisms of M (see [12]; the proof is the same as for
p D 1 in [6]).

Let NMnCp.c/ be endowed with a continuous density function f D e , where
 2 C2. NMnCp.c//. The generalization of the mean curvature of submanifolds in
such spaces, obtained by the first variation of the volume, is given in [10] as

H D H � .r /?:
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It is natural to study flows governed by H instead of H :

@tF D H � .r /?: (3)

Any n-dimensional submanifold satisfies jhj2 � 1
n
jH j2 (where jH j and jhj are

norms), and totally umbilical submanifolds give the equality.

Lemma 1 ([13]). Let Mn be an n-dimensional submanifold in an .n C p/-
dimensional Riemannian manifold NMnCp and � a tangent two-plane on Tq.M/

at a point q 2 M . Choose an orthonormal two-frame fe1; e2g at q such that
� D spanfe1; e2g. Then

K.�/ � 1

2

�
2 NKmin C H2

n � 1 � jhj2
�

C
XnCp

aDnC1; j>i
X

.i;j /¤.1;2/.h
a
ij /

2 :

Recently, Andrews–Baker [2] proved convergence theorem for the MCF of
closed submanifolds satisfying a pinching condition in the Euclidean space.

Theorem A ([2]). Let n � 2, and suppose that F0.Mn/ is a closed submanifold
smoothly immersed in R

nCp . If F0.Mn/ has H ¤ 0 everywhere and satisfies

jhj2 �
(

4
3 n

jH j2; if n D 2; 3;

1
n�1 jH j2; if n � 4;

(4)

then MCF (1) has a unique smooth solution Ft W Mn � Œ0; T / ! R
nCp on a finite

maximal time interval, and Ft converges uniformly to a point q 2 R
nCp as t ! T .

The rescaled maps QFt D Ft�qp
2n.T�t/ converge in C1 as t ! T to an embedding QFT

with image equal to a regular unit n-sphere in some .nC 1/-dimensional subspace
of RnCp . If n � 4, pinching ratio (4) is optimal.

Liu–Wei–Zghao [8] extended Theorem A to submanifolds in hyperbolic spaces.

Theorem A0 ([8]). Let F0.Mn/ .n � 2/ be a closed submanifold smoothly
immersed in hyperbolic space H

nCp.c/ of constant curvature c < 0. If F0.Mn/

satisfies

jhj2 �
(

4
3 n

jH j2 C n
2
c; if n D 2; 3;

1
n�1 jH j2 C 2 c; if n � 4;

(5)

then MCF (1) with F0 as initial value has a unique smooth solution Ft W Mn �
Œ0; T / ! H

nCp.c/ on a finite maximal time interval, and Ft.M
n/ converges

uniformly to a “round point” as t ! T .
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3 Gaussian MCF in Euclidean Space

The Gaussian density e� n
2 �

2jxj2 (for some � > 0) in R
nCp is rotational invariant

and corresponds to the radial function

 .x/ D �n
2
�2jxj2: (6)

In this case, r .x/ D �n�2x for all x 2 R
nCp . Along the submanifold F.M/ we

have .r /? D �n�2F?. Since H D H � .r /?, see [10], the MCF in R
nCp

with Gaussian density is defined by

@tF D H C n�2F? : (7)

Lemma 2 (see [4]). Let  be a radial function on R
nCp . The vector field r is

conformal if and only if

 .x/ D ˙ n

2
�2jxj2 .hence; r D ˙n�2 x/ for some � > 0:

Borisenko–Miquel [4] proved convergence theorem for the MCF with Gaussian
density on a hypersurface in R

nC1.

Theorem B ([4]). Let F0 W M ! R
nC1 be a convex hypersurface with a chosen

unit normal vector N , which evolves under MCF with Gaussian density .see (7)
with p D 1/

@tF D .H C n�2hF;N i/N: (8)

Then its evolution Ft remains convex for all time t 2 Œ0; T / where it is defined.
If h � �g and h.v; v/ > �g.v; v/ in some vector at some point v, then there is

a point q0 inside the convex domain F0.M/ such that F0.M/ lies in the ball B with
center q0 of radius 1=�. Moreover,

1. T < 1 and h > �g for t 2 .0; T /,
2. Ft.M/ belongs to a ball of radius 1=� all time and shrinks to a “round point”

when t ! T .

Lemma 3 ([2]). If a solution Ft W Mn ! R
nCp .0 � t < T / of MCF (1) satisfies

jhj2 C a < C jH j2 for some constants C � 1
n

C 1
3 n

and a > 0 at t D 0, then this
remains true for all 0 � t < T .

Using Theorem A, we extend Theorem B for submanifolds in Euclidean space.

Theorem 1. Let F0 W Mn ! R
nCp be a complete smoothly immersed submanifold

with the condition

jhj2 C ˇ2 � C jH j2 WD
(

4
3 n

jH j2; if n D 2; 3;

1
n�1 jH j2; if n � 4;

(9)
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where

ˇ2 � .��/2
nC p

nC p C 1
�
� 1

n � 1 � C
�
jH j2: (10)

Then the MCF with the Gaussian density in R
nCp , (7), has a unique smooth solution

Ft W Mn � Œ0; T / ! R
nCp on a finite maximal time interval, and Ft converges

uniformly to a “round point” when t ! T .

Proof. Its main steps coincide with ones in the proof of Theorem B.

By Lemma 1, at each point q 2 Mn the smallest sectional curvatureKmin satisfies

Kmin.q/ � 1

2

� 1

n � 1 jH.q/j2 � jh.q/j2
�
: (11)

Substituting jhj2 from our assumption (9) into inequality (11), for q 2 M we obtain

Kmin.q/ � 1

2

 �
1

n � 1 � C
�

jH j2 C ˇ2

!
:

Note that 1
n�1 � C � 0. By Theorem of Bonnet, Hopf-Rinow and Myers for t D 0,

we have

diamM � �
p
2 Qd; Qd D

"�
1

n � 1 � C
�

jH j2 C ˇ2

#�1=2
:

Note that the inner diameter of M is greater than or equal to diameter d of F0.M/.
The Yung’s Theorem (1901) tells us that every set K � R

nCp of diameter d is

contained in a ball in R
nCp of radius r0.K/ D

q
nCp

2.nCpC1/ d . Thus, F0.M/ is

contained in a ball in R
nCp of radius

r0 � �

s
nC p

nC p C 1
Qd: (12)

Recall that if F0.M/ is contained in a ball B.r0/ of radius r0 > 0, then flow (1) must
develop singularity (collapsing to a point) before the time T D r20 =.2 n/, see [2].

Condition (10) for ˇ yields the inequality r20 =.2 n/ < 1=.2 n�
2/.

By Proposition 1, the MCF OFOt of (14) is equivalent to the flow Ft of (7) for all
Ot 2 Œ0; OT �.

The submanifold OF0.M/ D F0.M/ satisfies the conditions of Theorem A. Then
(1) has a unique smooth solution OFOt W Mn�Œ0; OT / ! R

nCp on a finite maximal time
interval, and it converges uniformly to a point Oq 2 R

nCp as Ot ! OT . The rescaled
maps converge in C1 as Ot ! OT to an embedding with image equal to a regular
n-sphere in some .nC 1/-dimensional subspace of RnCp .
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From equivalence of flows (14) and (7) we conclude that Ft converges in a finite
time uniformly to a point q 2 R

nCp . Since submanifolds OFOt .M/ and Ft.M/ are
homothetic, we obtain that Ft converges to a “round point” q 2 R

nCp . ut
By the next proposition, one may transfer any result on MCF (1) to a result on

flow (3) with  given in (6).

Proposition 1 (For p D 1, see [4]). MCF (7) in R
nCp with Gaussian density is

equivalent, up to tangential diffeomorphisms, with the parameter change

Ot D � 1

2 n�2

�
e�2 n�2t � 1� (13)

to the MCF in R
nCp

@ OF
@ Ot D OH

�
for Ot < 1

2 n�2

�
: (14)

Proof. The one-parameter family of diffeomorphisms �t .x/ D e�n�2tx is the
solution of the ODE

d

dt
�t .x/ D �n�2�t .x/

with the initial condition �0.x/ D x and is associated with the vector field X.x/ D
�n�2x on R

nCp . If F flows by the mean curvature with density f D e� 1
2 n�

2jxj2 ,
then the flow OFt D �t ı Ft has the form

OF D e�n�2tF: (15)

To check this and to find the corresponding reparametrization of time, we compute

@t OF D �n�2e�n�2tF C e�n�2t .H C n�2F?/

D �n�2e�n�2tF> C e�n�2tH D �n�2 OF> C e�n�2tH:

By (15), the second fundamental tensors of OF and F are related by Oh D e�n�2th;
hence, OH D e n�

2tH . Therefore, the evolution for OF is

@t OF D �n�2 OF> C e�2 n�2t OH: (16)

If we define Ot by (13), we get dt=d Ot D .d Ot=dt/�1 D e 2n�
2t , and

@ OF
@Ot D @ OF

@t
� dt
d Ot D �n�2e 2n�2t OF> C OH D 1

2

�
Ot � 1

2 n�2

��1 OF> C OH: (17)
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Flow (17) is, up to a tangential diffeomorphism (see Remark 1), equivalent to the
MCF equation @t OF D OH for Ot < OT D 1

2
n��2 (because at OT the tangential

diffeomorphism giving the equivalence is not well defined: the time Ot D OT
corresponds in (13) to t D 1). ut
Remark 2. For Euclidean case, we find t D � 1

2 n�2
log.1 � 2 n�2 Ot /, and the

converse of (15) is

F D e n�
2t OF D .1 � 2 n�2t/�1=2 OF :

In [3] Baker proved a convergence result for the MCF of submanifolds in a sphere
SnCp.c/ of constant curvature c > 0. Using this, one may deduce the convergence
theorem for the MCF for closed submanifolds satisfying a pinching condition in the
sphere with Gaussian density.

4 Gaussian MCF in Hyperbolic Space

Let r be the distance function from a fixed point q (the origin) on H
nCp WD

H
nCp.�1/.
The Gaussian density e n�

2.1�cosh r/ (for some � > 0) in a hyperbolic space HnCp
is rotational invariant and corresponds to the radial function

 .x/ D �n�2.cosh r.x/ � 1/: (18)

In this case, r .x/ D �n�2.sinh r.x//@r for all x 2 H
nCp .

The MCF with Gaussian density for a submanifold F0 W Mn ! H
nCp is

@tF D H C n�2.sinh r.F //@?
r : (19)

For a hypersurface F0 W Mn ! H
nC1 with a chosen unit normal vector N this reads

@tF D �
H C n�2 sinh r.F /h@r ; N i�N: (20)

Lemma 4. (i) Let  D ' ı r be a radial function on H
nCp .for a function ' W

RC ! R of class C1/. Then the vector field r is conformal if and only if
'.r/ D ˙n�2.cosh r � 1/ for some � 2 RC .

(ii) In spherical coordinates .r; Qx/ in H
nCp the conformal diffeomorphisms belong-

ing to X.x/ D �n�2.sinh r.x//@r have a form Q�t .r; Qx/ D .�t .r/; Qx/, where

�t .r/ D 2 arctanh
�

tanh.r=2/ e�n�2t�: (21)
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Proof. (i) We have r D ' 0 rr . The condition for the vector field r being
conformal, that is, Hess D �g, translates into

'00rr ˝ rr C '0 Hessr D �g: (22)

The hessian is defined as a symmetric .0; 2/-tensor such that Hess .X; Y / D
g.S.X/; Y /, where S.X/ D rXr is a self-adjoint .1; 1/-tensor.

The normal curvature of a sphere of radius r in H
nCp is coth r . Hence,

Hessr D .coth r/.g � rr ˝ rr/:

Collecting terms with g and rr ˝ rr in (22), we obtain the system

'00 D .coth r/ '0; � D .coth r/ '0:

The solution of the first ODE with the initial condition '.0/ D 0 has the
required form. Notice that ' � 	 1

2
n�2r2 for r � 0, see Lemma 2.

(ii) The one-parameter family �t .r/ of conformal radial diffeomorphisms belong-
ing to QX.r/ D �n�2.sinh r/@r is the solution of the Cauchy’s problem

d

dt
�t .r/ D �n�2 sin h�t .r/; �0.r/ D r:

The unique solution has form (21). ut
Remark 3. One may represent HnCp as a unit ball B.0; 1/ � R

nCp with the metric

ds2 D 4 dx2

.1 � x2/2 ; where x D .x1; : : : ; xnCp/; x2 D
X

i
x2i :

For the hyperbolic radial distance r we have dr D 2 djxj
1�x2 and

r D 2 arctanh.jxj/ ” jxj D tanh.r=2/:

Hence, sinh r D 2 jxj
1�x2 , and the unit radial vector is @r D 1�x2

2 jxj F .

If F flows by the mean curvature with density f D e n�
2.1�cosh r/, for the density

we obtain

r D �n�2.sinh r.F // @r D �n�2F :

Then the flow OFt D �t .Ft /, where �t .x/ D e�n�2tx, has the form, see (15),

OF D e�n�2tF : (23)
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The derivation in t yields

@t OF D @t .e
�n�2tF / D e�n�2t

�
.HCn�2F?/�n�2F � D e�n�2tH�n�2e�n�2tF> :

Note that coth r D 1Cx2
2 jxj and coth Or D 1Cx2e�2 n�2t

2 jxj e�n�2t
, where Or D 2 arctanh.e�n�2t jxj/

due to (23). Since the mapping of HnCp into itself given in (23) is conformal, for
the mean curvature vectors H and OH of submanifolds F and OF we have

OH D �H; where � D coth Or
coth r

D 1C x2e�2n�2t

.1C x2/ e�n�2t :

Thus, e�n�2tH D .1Cx2/ e�2n�2t

1Cx2e�2n�2t
OH and the PDE above reduces to

@t OF D .1C x2/ e�2n�2t

1C x2e�2n�2t
OH � n�2 OF>:

After suitable tangential transformation of Mn, we obtain the PDE that general-
izes (1):

@t OF D 1C x2

e 2n�
2t C x2

OH : (24)

Note that (24) reduces to MCF (14) when � ! 0.
In the next proposition we find maximal radius (or minimal normal curvature)

of central hypersphere in a hyperbolic space that shrinks to the origin under the
MCF with Gaussian density; for central spheres of smaller radius we estimate the
collapsing time.

Proposition 2. Let either the radius r0 of the central hypersphere Sn.r0/ � H
nC1

or its normal curvature k satisfy the certain of inequalities

cosh r0 < �1 WD 1Cp
1C 4�4

2�2
; k > �

p
�1: (25)

Then Sn.r0/ shrinks to the origin under MCF (20) with Gaussian density by the
time

T D 1

n
p
1C4�4 ln

.1�2�2Cp1C4�4/.2�2 cosh r0�1C
p
1C4�4/

.2�2�1Cp1C4�4/.1�2�2 cosh r0C
p
1C4�4/

<
�1

n�2.�1 C 1/
� cosh r0 � 1
�1� cosh r0

: (26)

The central sphere of radius r1 D arccosh.�1/ is a fixed point of the flow. The central
sphere of radius r > r1 expands without limit.
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Proof. The mean curvature of the central hypersphere Sn.r/ of radius r is H D
�n coth r ; hence, N D @r and (20) reads as the ODE for the radius r.t/ > 0,

d

dt
r D �n coth r C n�2 sinh r; r.0/ D r0: (27)

The sphere shrinks to a point when

coth r � �2 sinh r > 0 , �2 cosh2 r � cosh r � �2 < 0:

The roots of quadratic equation �2�2 � � � �2 D 0 are �1;2 D 1˙
p
1C 4�4

2�2
.

The positive root �1 � 1, and the negative root �2 2 .�1; 0/. Hence, the central
sphere of radius r1 D arccosh.�1/ is a fixed point of the flow, the central sphere
of radius r > r1 expands without limit, and the central sphere of radius r < r1
shrinks to the origin. The normal curvature of the r1-sphere is k1 D coth r1 D
cosh r1=

p
cosh2 r1 � 1 D

r
1C

p
1C 4�4

2
> �.

Assuming �.t/ D cosh r.t/ > 1 and �o D cosh r0, we reduce (27) to

d�=dt D n.�2�2 � � � �2/ D n�2.� � �1/.� � �2/; �.0/ D �o:

We have

1

.� � �1/.� � �2/ D � 1

�1 � �2
� 1

�1 � y C 1

y � �2
�
;

Z �

�o

dy

.y � �1/.y � �2/ D n�2t:

If the initial value satisfies �o 2 .1; �1/, then the integral above is log y��2
�1�y j��o D

n�2.�1 � �2/ t ; hence, the solution �.t/ is a decreasing function

�.t/ D �2 ˛ C �1

˛ C 1
; where ˛ D �1 � �o

�o � �2 e
n�2.�1��2/ t :

Note that lim
t!1 �.t/ D �2 < 0 < 1 < �1 D lim

t! �1 �.t/. The collapse r.T / D 0 at

t D T (i.e., �.T / D 1) appears at

T D 1

n�2.�1 � �2/ log
.�o � �2/.�1 � 1/
.�1 � �o/.1 � �2/ > 0;
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that is, (26). Using the inequality log.1Cy/ < y for y > 0 and relation �2 D �1=�1,
we obtain

T <
1

n�2.�1 � �2/
� .�o � �2/.�1 � 1/
.�1 � �o/.1 � �2/ � 1

�

D �o � 1
n�2.�1 � �o/.1 � �2/ D �1

n�2.�1 C 1/
� �o � 1
�1 � �o :

Certainly, for initial value �o > �1, the solution �.t/ is a monotone increasing
function. ut
Remark 4. For the MCF of a hypersphere in H

nC1, the radius obeys the PDE
d
dt
r D �n coth r ; hence, cosh r.t/ D e�nt cosh r0 and the existence time is

QT D 1
n

log.cosh r0/, i.e., r. QT / D 0. For � D 0, flow (20) reduces to the MCF,
and in this case we have lim�! 0 T D QT . For the MCF of a submanifold Mn in
H
nCp .n; p > 1/, we have the course estimate QT < 1

n�1 r0, see [8]. We conjecture
that Theorem A0 can be extended to the convergence theorem (like Theorem 1) for
the MCF of closed submanifolds satisfying a pinching condition in the hyperbolic
space with Gaussian density.
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