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Abstract In this chapter we investigate the convergence of the mean curvature flow
of submanifolds in Euclidean and hyperbolic spaces with Gaussian density. For
Euclidean case, we prove that the flow deforms a closed submanifold with pinching
condition to a “round point” in finite time.
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1 Introduction

The mean curvature flow (MCF) was proposed by W. Mullins (1956) to describe the
formation of grain boundaries in annealing metals. Brakke [5] introduced the motion
of a submanifold by its MCF in arbitrary codimension and constructed a generalized
varifold solution for all time. There are many works for the classical solution
of MCF on hypersurfaces. Huisken [7] showed that if the initial hypersurface
in the Euclidean space is compact and uniformly convex, then MCF converges
to a “round point” in a finite time. He also studied MCF of hypersurfaces in
a Riemannian manifold satisfying a pinching condition in a sphere, see [1].
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For MCF of submanifolds with higher codimension, fruitful results were obtained
for submanifolds with low dimension or admitting some special structures, see
survey [11,12]. Andrews and Baker [2] proved a convergence theorem for MCF of
closed submanifolds satisfying a suitable pinching condition in the Euclidean space.
Baker [3] and Liu—Xu—Ye—Zhao [8, 9] generalized Andrews-Baker’s convergence
theorem [2] for MCF of submanifolds in the Euclidean space to the case of MCF
of arbitrary codimension in spherical and hyperbolic space forms and Riemannian
manifolds.

Morgan [10] introduced manifolds with density, which provides a new concept
of curvature. A. Borisenko and V. Miquel considered MCF with density for hyper-
surfaces in Euclidean space.

In this chapter we study the convergence of the MCF of submanifolds in
Euclidean and hyperbolic spaces with Gaussian density. For Euclidean case, we
prove that the flow deforms a closed submanifold satisfying pinching condition
to a “round point” in finite time. For hyperbolic case, we find maximal radius (or
minimal normal curvature) of central hypersphere in a hyperbolic space that shrinks
to the origin under the MCF with Gaussian density; moreover, for central spheres of
smaller radius we estimate the collapsing time.

2 The MCF in Riemannian Manifolds and Space Forms

Consider immersions of a closed manifold M" into a space form:
F,:M" — M"P(¢), F,(q)=F(q.t), geM" te[0,T).

Denote by £, the second fundamental tensor, and by H; = Trgh,; the mean
curvature vector field of the immersions (g is the induced metric on M). The MCF
is the evolution equation (see [2, 11])

&F = H, (1)

where Fy : M" — M"*?(c) provides initial data.

Remark 1. The general form of the MCF is
(8, F)" = H. )

where + denotes the projection onto the normal space of F,(M). This equation is
equivalent to (1) up to diffeomorphisms of M (see [12]; the proof is the same as for
p = 1lin [6]).

Let M ”_‘”’ (c) be endowed with a continuous density function f = eV, where
Y € C>(M"*7(c)). The generalization of the mean curvature of submanifolds in
such spaces, obtained by the first variation of the volume, is given in [10] as

Hy = H— (Vy)*t.
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It is natural to study flows governed by Hy, instead of H':
0F = H—(Vy)*. 3)

Any n-dimensional submanifold satisfies |i|> > %|H |> (where |H| and |h| are
norms), and totally umbilical submanifolds give the equality.

Lemma 1 ([13]). Let M" be an n-dimensional submanifold in an (n + p)-
dimensional Riemannian manifold M"*? and 7 a tangent two-plane on T,(M)
at a point ¢ € M. Choose an orthonormal two-frame {e|,e,} at q such that
7w = span{ey, e;}. Then

n+p

1/ = H? 2 a2
K(m) > E(ZKmin + 1 || ) + Za=n+1,j>i Z(i’j);é(l.z)(hij .

Recently, Andrews—Baker [2] proved convergence theorem for the MCF of
closed submanifolds satisfying a pinching condition in the Euclidean space.

Theorem A ([2]). Let n > 2, and suppose that Fy(M") is a closed submanifold
smoothly immersed in R"7P. If Fo(M™") has H # 0 everywhere and satisfies

SL|HP?,  ifn =23,

4)
LIH]?,  ifn=>4,

|h|* < ;

then MCF (1) has a unique smooth solution F, : M" x [0, T) — R"*? on a finite
maximal time interval, and F, converges uniformly to a point q € R"™*P ast — T.
The rescaled maps F, = \/21:’(—;7‘1_” converge in C*® ast — T to an embedding Fr
with image equal to a regular unit n-sphere in some (n + 1)-dimensional subspace
of R"™P_ Ifn > 4, pinching ratio (4) is optimal.

Liu—Wei—Zghao [8] extended Theorem A to submanifolds in hyperbolic spaces.
Theorem A’ ([8]). Let Fo(M") (n > 2) be a closed submanifold smoothly

immersed in hyperbolic space H"VP(c) of constant curvature ¢ < 0. If Fo(M™)
satisfies

|HP?+%c,  ifn=23,

> <9 .
E|H|2+2c, ifn > 4,

®)

then MCF (1) with Fy as initial value has a unique smooth solution F, : M" x
[0,T) — H'*P(c) on a finite maximal time interval, and F;(M") converges
uniformly to a “round point” ast — T.
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3 Gaussian MCF in Euclidean Space

The Gaussian density e % Wil (for some 1 > 0) in R"*7 is rotational invariant
and corresponds to the radial function

Y ) =3 Wl ©)

In this case, Vi/(x) = —nu’x for all x € R"*7. Along the submanifold F(M) we
have (V{)+ = —np?F~. Since Hy, = H — (V{)*, see [10], the MCF in R"*7
with Gaussian density is defined by

0 F =H +nu’F*. @)

Lemma 2 (see [4]). Let  be a radial function on R" TP, The vector field Vi is
conformal if and only if

Y(x) ==+ % w?x)? (hence, Vi = £ nu’x) for some p > 0.

Borisenko-Miquel [4] proved convergence theorem for the MCF with Gaussian
density on a hypersurface in R" !,

Theorem B ([4]). Let Fy : M — R""! be a convex hypersurface with a chosen
unit normal vector N, which evolves under MCF with Gaussian density (see (7)
with p = 1)

8 F = (H 4+ nu*(F,N))N. 8)

Then its evolution F, remains convex for all time t € [0, T) where it is defined.

If h > ng and h(v,v) > pg(v,v) in some vector at some point v, then there is
a point qy inside the convex domain Fy(M) such that Fo(M) lies in the ball B with
center qo of radius 1/ . Moreover,

1. T <ooand h > ug fort € (0,T),

2. F{(M) belongs to a ball of radius 1/ all time and shrinks to a “round point”
whent — T.

Lemma 3 ([2]). Ifa solution F, : M" — R"*7 (0 <t < T) of MCF (1) satisfies

|h|> + a < C|H |? for some constants C < % + ﬁ and a > 0 att = 0, then this

remains true forall 0 <t < T.

Using Theorem A, we extend Theorem B for submanifolds in Euclidean space.
Theorem 1. Let Fy : M" — R"*P be a complete smoothly immersed submanifold
with the condition
SLIHP,  ifn =23,

W+ B> <C|H| =
g IH] L |H|>, ifn=>4,

&)
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where

2 2 N p 1 2
H . 1
B~ = (mp) I ( I C)I | (10)

Then the MCF with the Gaussian density in R"*?, (7), has a unique smooth solution
F, : M" x [0,T) — R""? on a finite maximal time interval, and F, converges
uniformly to a “round point” whent — T.

Proof. Its main steps coincide with ones in the proof of Theorem B.

By Lemma 1, at each point g € M" the smallest sectional curvature K, satisfies

1 1
Knin(@) = 5 (== [H@ = h(@)[*). an

Substituting ||? from our assumption (9) into inequality (11), for g € M we obtain

Knin(q) > % ((ﬁ - c) |H|> + ﬂ2>.

Note that ﬁ — C > 0. By Theorem of Bonnet, Hopf-Rinow and Myers for t = 0,
we have

—1/2
- - 1

diam M < 7+2d, d=|:(—1—c)|H|2+ﬁ2] .
n—

Note that the inner diameter of M is greater than or equal to diameter d of Fy(M).
The Yung’s Theorem (1901) tells us that every set K C R"*? of diameter d is

contained in a ball in R"*? of radius ro(K) = ,/ 2(+p’;1) d. Thus, Fo(M) is
contained in a ball in R"*7 of radius

o <m |—TP g (12)
n+p+1

Recall that if Fo(M) is contained in a ball B(r) of radius ry > 0, then flow (1) must
develop singularity (collapsing to a point) before the time T = rZ/(2n), see [2].

Condition (10) for f yields the inequality r3/(2n) < 1/(2npu?).

By Proposition 1, the MCF FA of (14) is equivalent to the flow F; of (7) for all
ielo,T].

The submanifold ﬁo(M ) = Fo(M) satisfies the conditions of Theorem A. Then
(1) has a unique smooth solution FA M" x]0, T) — R"Pona finite maximal time
interval, and it converges umformly to a point § € R"™7 as f — T. The rescaled
maps converge in C® as { — T to an embedding with image equal to a regular
n-sphere in some (n + 1)-dimensional subspace of R" 7,
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From equivalence of flows (14) and (7) we conclude that I:", converges in a finite
time uniformly to a point ¢ € R"*”. Since submanifolds F;(M) and F,(M) are
homothetic, we obtain that F; converges to a “round point” g € R"*7. O

By the next proposition, one may transfer any result on MCF (1) to a result on
flow (3) with ¢ given in (6).

Proposition 1 (For p = 1, see [4]). MCF (7) in R"*? with Gaussian density is
equivalent, up to tangential diffeomorphisms, with the parameter change

1

e =) (13

{ =

to the MCF in R**?

IF . |
~=H for t < . (14)
at 2nu?
Proof. The one-parameter family of diffeomorphisms ¢,(x) = e "Wy is the

solution of the ODE

d
() = =i, (x)
with the initial condition ¢o(x) = x and is associated with the vector field X(x) =

—nu’x on R”fp. If F flows by the mean curvature with density f = e -3 nu?lxl?
then the flow F; = ¢, o F; has the form

A 2
F=e¢ "'F, (15)
To check this and to find the corresponding reparametrization of time, we compute

O F = —nple ™ F 4 eI (H + np’F1)
= —n;ﬁe‘””thT te Y = —nplFT + e

By (15), the second fundamental tensors of F and F are related by ho= et h;
hence, H = e””th . Therefore, the evolution for F' is

O F =—np’FT + e 2 (16)
If we define 7 by (13), we get dt/df = (di/dt)™" = ¢2"** and
OF F dr

A A~ 1 1 =1 . A
I Y I Hz_(f_ ) Fl+ A 17
of ot di e + 2 2npu? +H. D




Gaussian Mean Curvature Flow for Submanifolds in Space Forms 45

Flow (17) is, up to a tangential dlffeomorphlsm (see Remark 1), equivalent to the

MCEF equation &F = Hforf < T = —nu ~2 (because at T  the tangennal
diffeomorphism giving the equivalence is not well defined: the time f = T
corresponds in (13) to ¢ = 00). O
Remark 2. For Euclidean case, we find ¢t = sz log(1 — 2nut), and the

converse of (15) is
F=e"'F=(1-2nu)""?F.

In [3] Baker proved a convergence result for the MCF of submanifolds in a sphere
S"*tP(c) of constant curvature ¢ > 0. Using this, one may deduce the convergence
theorem for the MCF for closed submanifolds satisfying a pinching condition in the
sphere with Gaussian density.

4 Gaussian MCF in Hyperbolic Space

Let r be the distance function from a fixed point ¢ (the origin) on H't7 :=
H" P (—1).

The Gaussian density "> (1=¢%h7) (for some y > 0) in a hyperbolic space H"*7
is rotational invariant and corresponds to the radial function

V¥ (x) = —np®(coshr(x) — 1). (18)

In this case, Vi/(x) = —npu?(sinh r(x))d, for all x € H"*7.
The MCF with Gaussian density for a submanifold Fy : M" — H"*? is

0 F = H + np’(sinhr (F))d+. (19)

For a hypersurface Fy : M" — H"*! with a chosen unit normal vector N this reads

o F = (H + np? sinh r(F)(0,, N))N. (20)

Lemmad. (i) Let v = ¢ or be a radial function on H'*? (for a function ¢ :

R, — R of class C"). Then the vector field V1 is conformal if and only if
o(r) = £np?(coshr — 1) for some 1 € R .

(ii) In spherical coordinates (r, %) in H" VP the conformal diffeomorphisms belong-

ing to X(x) = —nu2(sinh r(x))d, have a form ¢,(r, %) = (¢:(r), X), where

¢:(r) = 2arctanh( tanh(r/2) e‘"”zt). (21)
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Proof. (1) We have Vi = ¢’ Vr. The condition for the vector field Vi being
conformal, that is, Hessy, = A g, translates into

©"Vr ® Vr + ¢’ Hess, = A g. (22)
The hessian is defined as a symmetric (0, 2)-tensor such that Hessy (X, Y) =
g(S(X),Y), where S(X) = Vx V1 is a self-adjoint (1, 1)-tensor.

The normal curvature of a sphere of radius  in H" 7 is coth r. Hence,
Hess, = (cothr)(g — Vr ® Vr).
Collecting terms with g and Vr ® Vr in (22), we obtain the system
¢" = (cothr) ¢/, A = (cothr) ¢'.

The solution of the first ODE with the initial condition ¢(0) = 0 has the
required form. Notice that ¢ ~ F % nu?r? for r ~ 0, see Lemma 2.

(ii) The one-parameter family ¢,(r) of conformal radial diffeomorphisms belong-
ing to X (r) = —nu?(sinh r)d, is the solution of the Cauchy’s problem

S i) = sinhg (). golr) =7

The unique solution has form (21). O

Remark 3. One may represent H"*7 as a unit ball B(0, 1) C R"*? with the metric

, | 4dx N _ - )
ds _(1——xz)2’ where X = (x1,...,X,4,), X —Zix,-.
For the hyperbolic radial distance » we have dr = ff—‘;‘zl and

r = 2arctanh(|x|) <= |x| = tanh(r/2).

2x . . . 2
1_‘““ IZ, and the unit radial vector is 0, = ;‘—QF .

If F flows by the mean curvature with density / = ¢”#*(1=¢%sh")_for the density
we obtain

Hence, sinhr =

Vy = —np’(sinhr(F)) 9, = —nu’F .
Then the flow ﬁ, = ¢;(F;), where ¢,(x) = e‘”“zlx, has the form, see (15),

F=e"WiF, (23)
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The derivation in ¢ yields

3 F =d,(e "'F) = e_"“zt((H-i-nuzFL)—anzF) =e " pple I FT

2 n 2, —2nu’t n 2
Note that cothr = IZJKI and coth7 = %, where 7 = 2 arctanh(e ~"*|x|)
XxX|e

due to (23). Since the mapping of ]Ijl"+p into itself given in (23) is conformal, for
the mean curvature vectors H and H of submanifolds F' and F' we have

R th7 1 2, —2nu’t
H =)\H, where )L:CO - txe —.
cothr (14 x2)e—nt

—onu2
e 2npct

2 A
Thus, e " H = U0 " f and the PDE above reduces to
14x2e —2nu=t

- (1 +x2)e—2nu2t R o AT
R

After suitable tangential transformation of M”, we obtain the PDE that general-
izes (1):

2
9, F = lj—x a. (24)

e 2npst + x2

Note that (24) reduces to MCF (14) when u — 0.

In the next proposition we find maximal radius (or minimal normal curvature)
of central hypersphere in a hyperbolic space that shrinks to the origin under the
MCEF with Gaussian density; for central spheres of smaller radius we estimate the
collapsing time.

Proposition 2. Let either the radius ry of the central hypersphere S™(ro) C H'+!
or its normal curvature k satisfy the certain of inequalities

1+ 1+ 4u*

T . k> par. (25)

coshrg < oy 1=

Then S"(ry) shrinks to the origin under MCF (20) with Gaussian density by the
time
_ 1 n (1=22 4 /1+4u*) (21> cosh ro— 14/ 1+4u*)
ny/1+4p*  Qul—14/1+4u*)(1-2u% coshro++/1+4u*)

o1 coshrg—1

(26)

< . )
nu?(o; + 1) o1—coshry

The central sphere of radius ry = arccosh(ay) is a fixed point of the flow. The central
sphere of radius r > ry expands without limit.



48 A. Borisenko and V. Rovenski

Proof. The mean curvature of the central hypersphere S”(r) of radius r is H =
—n cothr; hence, N = 9, and (20) reads as the ODE for the radius r(z) > 0,

d 2 .
7 r = —ncothr + npu” sinhr, r(0) = ro. 27)

The sphere shrinks to a point when

cothr — p’sinhr >0 <«  p?cosh’r —coshr — p? < 0.
The roots of quadratic equation u?c?> — o — u?> = 0 are 0y, = li—‘w.
The positive root oy > 1, and the negative root 0, € (—1,0). Hence, the central
sphere of radius r; = arccosh(o) is a fixed point of the flow, the central sphere
of radius r > r; expands without limit, and the central sphere of radius r < ry
shrinks to the origin. The normal curvature of the r;-sphere is k; = cothr; =

[1+ 1+ ap*
coshr;/y/cosh’r; — 1 = % > .

Assuming o (¢) = coshr(¢) > 1 and 0, = cosh ry, we reduce (27) to
do/dt = n(u*o* —o — pu?) = nu*(o —o01) (0 — 02), o(0) = o,.

We have

1 _ 1 ( 1 . 1 )
(0 —o1)(0 —02) op—oy\o—y y—oy/

’ dy = nu’t
o, (y—0o)(y —02) ’

If the initial value satisfies 0, € (1,07), then the integral above is log % g =

nu?(o; — 07) t; hence, the solution o (¢) is a decreasing function

oy + 01 01 — 0,
= -, where o = —

eﬂuz(Ul—Uz)I )
o+ 1 0, — 02

o(r)
Note that tlim ot) =0, <0<1l<o0 = ) lim o(t). The collapse r(T) = 0 at
—00 — —00
t =T (ie.,o(T) = 1) appears at
(0o —02)(01 — 1)

1
T = 10 > 0,
np*(o; — 02) £ (01 — 0,)(1 —02)
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that is, (26). Using the inequality log(1+y) < y for y > 0 and relation o, = —1/07,
we obtain

1 ((ao—oz)(al - ]>
np*(or —02) \ (01 — 0,)(1 — 02)
_ Oy — 1 g1 Oy — 1

T2 —o)(1—0y)  nptoi+1) oy —o,

Certainly, for initial value 0, > o9, the solution o(¢) is a monotone increasing
function. 0

Remark 4. For the MCF of a hypersphere in H"*!, the radius obeys the PDE
%r = —ncothr; hence, coshr(t) = e ™ coshry and the existence time is
T = }llog(cosh ro), ie., r(T) = 0. For 4 = 0, flow (20) reduces to the MCF,
and in this case we have lim, .o T = T . For the MCF of a submanifold M" in
H"*? (n, p > 1), we have the course estimate T < ﬁ 1o, see [8]. We conjecture
that Theorem A’ can be extended to the convergence theorem (like Theorem 1) for
the MCF of closed submanifolds satisfying a pinching condition in the hyperbolic

space with Gaussian density.
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