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Łódź, Poland

ISSN 2194-1009 ISSN 2194-1017 (electronic)
ISBN 978-3-319-04674-7 ISBN 978-3-319-04675-4 (eBook)
DOI 10.1007/978-3-319-04675-4
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014935180

Mathematics Subject Classification (2010): 53C44, 53C12, 53C40, 53C30, 53C20, 37C10, 34C05,
14P05, 35K93, 35R01, 37B05, 57R30, 53A07, 53B25, 53B21, 76D17, 76E05, 76E07, 34K02, 34C25,
92C45, 37E99, 26D10, 26C05

© Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

www.springer.com


Preface

This volume contains a collection of articles written by the participants, and their
colleagues and collaborators, of the second International workshop Geometry and
Symbolic Computation held at the University of Haifa (Israel) between May 15 and
18, 2013. The workshop was preceded by a day of excursions: the participants could
choose between sightseeing at Jerusalem, Galilea Sp., The Dead See Sp., etc. The
first International Workshop in this series, named “Reconstruction of Geometrical
Objects Using Symbolic Computations”, was on September 2008, at the University
of Haifa.

Both workshops were sponsored by the Caesarea Edmond Benjamin de Roth-
schild Foundation Institute for Interdisciplinary Applications of Computer Science
(CRI), the Center for Computational Mathematics and Scientific Computation
(CCMSC), the Faculty of Natural Sciences and the Department of Mathematics at
the University of Haifa.

Materials related to these workshops can be found on the homepage of V.
Rovenski http://math.haifa.ac.il/ROVENSKI/rovenski.html and on the official cite
of CRI http://www.cri.haifa.ac.il/index.php/crievents/.

The participants numbered approximately 20 and came from France, Greece,
Kazakhstan, Poland, Russia, Ukraine and, of course, Israel. The scientific committee
comprised of the editors of this volume and V. Golubyatnikov (Novosibirsk).
The list of local organizers includes one of the editors (V. Rovenski); Workshop
Secretary Dr. Irina Albinsky; Workshop Coordinator Ms. Danielle Friedlander; and
Technical Consultant Mr. Hananel Hazan.

The papers contained in this volume are closely related to the lectures delivered at
the conference, which was designed to cover different aspects of geometry together
with some applications.

Three of the articles collected in the first part (Geometry) of the volume are
related to geometric flows for submanifolds and foliated Riemannian manifolds
analogous, to some extent, to the classical mean curvature and Ricci flows. The
study of geometric flows for foliations was introduced by the editors in Topics in
Extrinsic Geometry of Codimension-One Foliations, Springer Briefs in Mathemat-
ics, Springer-Verlag, 2011. We are happy to see some progress in this field. Another
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vi Preface

article related to geometric flows is devoted to the study of the classical Ricci flow
on some particular homogeneous spaces. The other articles in this part reflect the
current interest of the authors and are devoted to laminations, integral formulae,
geometry of vector fields on Lie groups, and a general notion of osculation. Among
them, one can find new results concerning generic properties of minimal foliations
and laminations and a survey of integral formulae showing some relations between
such formulae and geometric flows.

The articles collected in the second part (Applications) concern some particular
problems of the theory of dynamical systems: mathematical models of liquid flows,
study of cycles for nonlinear dynamical systems and relation with entropy of some
quantities which appeared in a very special inequality (called Remez inequality) for
Ck-functions.

We express our gratitude to all the participants, the contributors to the volume,
the sponsors, and everyone who helped us while we were organizing the conference
and preparing the volume for publication. In particular, we would like to mention
Dr. Irina Albinsky who organized all the excursions, the registration of participants,
and the opening procedure.

Haifa, Israel Vladimir Rovenski
Łódź, Poland Paweł Walczak
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The Ricci Flow on Some Generalized
Wallach Spaces

N.A. Abiev, A. Arvanitoyeorgos, Yu. G. Nikonorov, and P. Siasos

Abstract We study the asymptotic behavior of the normalized Ricci flow
on generalized Wallach spaces that could be considered as a special planar
dynamical system. All nonsymmetric generalized Wallach spaces can be naturally
parametrized by three positive numbers a1; a2; a3. Our interest is to determine the
type of singularity of all singular points of the normalized Ricci flow on all such
spaces. Our main result gives a qualitative answer for almost all points .a1; a2; a3/
in the cube .0; 1=2�� .0; 1=2�� .0; 1=2�. We also consider in detail some important
partial cases.
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Introduction

In [1], we started the investigation of the normalized Ricci flow on generalized
Wallach spaces. In this chapter we recall our previous results and develop more
detailed study of some most interesting partial cases.

The study of the normalized Ricci flow equation

@

@t
g.t/ D �2Ricg C2g.t/

Sg

n
(1)

for a 1-parameter family of Riemannian metrics g.t/ in a Riemannian manifoldMn

was originally used by Hamilton in [14] and since then it has attracted the interest
of many mathematicians (cf. [8,26]). Recently, there has been an increasing interest
towards the study of the Ricci flow (normalized or not) on homogeneous spaces and
under various perspectives ([2, 6, 7, 13, 15, 18, 23] and references therein).

The aim of the present work is to study the normalized Ricci flow for invariant
Riemannian metrics on generalized Wallach spaces. These are compact homoge-
neous spacesG=H whose isotropy representation decomposes into a direct sum p D
p1 ˚ p2 ˚ p3 of three Ad.H/-invariant irreducible modules satisfying Œpi ; pi � � h
.i 2 f1; 2; 3g/ [20,22]. For a fixed bi-invariant inner product h�; �i on the Lie algebra
g of the Lie group G, any G-invariant Riemannian metric g on G=H is determined
by an Ad.H/-invariant inner product

.�; �/ D x1h�; �ijp1 C x2h�; �ijp2 C x3h�; �ijp3 ; (2)

where x1; x2; x3 are positive real numbers. An explicit expression for the Ricci
curvature of invariant metrics (2) is obtained in [22, Lemma 2]. By using expressions
for the Ricci tensor and the scalar curvature in [22] the normalized Ricci flow
equation (1) reduces to a system of ODEs of the form

dx1

dt
D f .x1; x2; x3/;

dx2

dt
D g.x1; x2; x3/;

dx3

dt
D h.x1; x2; x3/; (3)

where xi D xi .t/ > 0 .i D 1; 2; 3/ are parameters of the invariant metric (2) and

f .x1; x2; x3/ D �1 � A

d1
x1

� x1

x2x3
� x2

x1x3
� x3

x1x2

�
C 2x1

Sg

n
;

g.x1; x2; x3/ D �1 � A

d2
x2

� x2

x1x3
� x3

x1x2
� x1

x2x3

�
C 2x2

Sg

n
;

h.x1; x2; x3/ D �1 � A

d3
x3

� x3

x1x2
� x1

x2x3
� x2

x1x3

�
C 2x3

Sg

n
;

Sg D 1

2

�d1
x1

C d2

x2
C d3

x3
�A

� x1

x2x3
C x2

x1x3
C x3

x1x2

��
:
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Here di , i D 1; 2; 3, are the dimensions of the corresponding irreducible modules
pi , n D d1 C d2 C d3, and A is some special nonnegative number (see Sect. 1).
If A ¤ 0, then by denoting ai WD A=di > 0, i D 1; 2; 3, the functions f; g; h can
be expressed in a more convenient form (independent of A and di ) as

f .x1; x2; x3/ D �1 � a1x1

� x1

x2x3
� x2

x1x3
� x3

x1x2

�
C x1B;

g.x1; x2; x3/ D �1 � a2x2

� x2

x1x3
� x3

x1x2
� x1

x2x3

�
C x2B;

h.x1; x2; x3/ D �1 � a3x3

� x3

x1x2
� x1

x2x3
� x2

x1x3

�
C x3B;

where

B WD
� 1

a1x1
C 1

a2x2
C 1

a3x3
�
� x1

x2x3
C x2

x1x3
C x3

x1x2

��� 1
a1

C 1

a2
C 1

a3

��1
:

It is easy to check that the volume V D x
1=a1
1 x

1=a2
2 x

1=a3
3 is a first integral of system

(3). Therefore, on the surface

V � 1; (4)

we can reduce (3) to a system of two differential equations of the type

dx1

dt
D Qf .x1; x2/; dx2

dt
D Qg.x1; x2/; (5)

where

Qf .x1; x2/ � f .x1; x2; '.x1; x2//; Qg.x1; x2/ � g.x1; x2; '.x1; x2//;

'.x1; x2/ D x
� a3
a1

1 x
� a3
a2

2 :

Remark 1. From (4) it is clear that .x01 ; x
0
2/ D .�1q; �2q/ is a singular point of (5)

if and only if .x01 ; x
0
2 ; x

0
3/ D .�1q; �2q; �3q/, where �i > 0 for i D 1; 2; 3 is a

singular point of (3) corresponding to unique q WD �
�d=a1
1 �

�d=a2
2 �

�d=a3
3 > 0, where

d WD �
1=a1 C 1=a2 C 1=a3

��1
.

It is known that every generalized Wallach space admits at least one invariant
Einstein metric [22]. Later in [19, 20], a detailed study of invariant Einstein metrics
was developed for all generalized Wallach spaces. In particular, it was shown that
there are at most four invariant Einstein metrics (up to homothety) for every such
space. Recall that invariant Einstein metrics with V D 1 correspond to singular
points of (5); therefore, .x01 ; x

0
2 ; x

0
3/ is a singular point of system (3), (4) if and

only if .x01 ; x
0
2/ is a singular point of (5). It is our interest to determine the type
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of singularity of such points, and our investigation concerns this problem for some
special values of the parameters a1; a2, and a3. The main result in this direction
is Theorem 7, which gives a qualitative answer for almost all points (in measure
theoretic sense) .a1; a2; a3/ 2 .0; 1=2� � .0; 1=2� � .0; 1=2�. Note that the latter
inclusion is fulfilled for any triple .a1; a2; a3/ corresponding to some generalized
Wallach spaces (see the next section). However, we are interested in the behavior
of the dynamical system (5) for all values ai 2 .0; 1=2� despite the fact that some
triples may not correspond to “real” generalized Wallach spaces.

We expect to give a more detailed study of system (5) for various values
of the parameters a1; a2; a3, which could help towards a deeper understanding
of the behavior of the Ricci flow on more general homogeneous spaces. Also,
it is quite possible that system (5) is interesting not only for the parameters
ai 2 .0; 1=2� but also as a more general dynamical system other than the Ricci
flow. It is clear that system (3) is naturally defined for all values of a1; a2; a3
with a1a2 C a1a3 C a2a3 ¤ 0, but for system (5) we should assume a1a2a3 ¤ 0

additionally.

1 Generalized Wallach Spaces

We recall the definition and important properties of generalized Wallach spaces
(cf. [21, pp. 6346–6347] and [22]).

Consider a homogeneous almost effective compact space G=H with a (compact)
semisimple connected Lie group G and its closed subgroup H . Denote by g and h
the Lie algebras of G and H , respectively. In what follows, Œ� ; �� stands for the Lie
bracket of g and B.� ; �/ stands for the Killing form of g. Note that h� ; �i D �B.� ; �/
is a bi-invariant inner product on g.

Consider the orthogonal complement p of h in g with respect to h� ; �i. Every
G-invariant Riemannian metric on G=H generates an Ad.H/-invariant inner
product on p and vice versa [5]. Therefore, it is possible to identify invariant
Riemannian metrics on G=H with Ad.H/-invariant inner products on p (if H is
connected then the property to be Ad.H/-invariant is equivalent to the property to
be ad.h/-invariant). Note that the Riemannian metric generated by the inner product
h� ; �iˇ̌

p
is called standard or Killing.

Let G=H be a homogeneous space such that its isotropy representation p is
decomposed as a direct sum of three Ad.H/-invariant irreducible modules pairwise
orthogonal with respect to h� ; �i, i.e.,

p D p1 ˚ p2 ˚ p3;

with Œpi ; pi � � h for i 2 f1; 2; 3g:

Since this condition on each module resembles the condition of local symme-
try for homogeneous spaces (a locally symmetric homogeneous space G=H is
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characterized by the relation Œp; p� � h, where g D h ˚ p and p is Ad.H/-
invariant [5]), then spaces with this property were called three-locally-symmetric
in [19, 20]. But in this chapter we prefer the term generalized Wallach spaces, as
in [21].

There are many examples of these spaces, e.g., the flag manifolds

SU.3/=Tmax; Sp.3/=Sp.1/� Sp.1/ � Sp.1/; F4=Spin.8/:

These spaces (known as Wallach spaces) are interesting because they admit invariant
Riemannian metrics of positive sectional curvature (see [27]). The invariant Einstein
metrics on SU.3/=Tmax were classified in [9] and, on the remaining two spaces,
in [24]. In each of these cases, there exist exactly four invariant Einstein metrics
(up to proportionality). Other classes of generalized Wallach spaces are the various
Kähler C -spaces such as

SU.n1 C n2 C n3/
ı
S
�
U.n1/ � U.n2/ � U.n3/

�
;

SO.2n/=U.1/� U.n� 1/; E6=U.1/� U.1/� Spin.8/:

The invariant Einstein metrics in the above spaces were classified in [17]. Each
of these spaces admits four invariant Einstein metrics (up to scalar), one of which
is Kähler for an appropriate complex structure on G=H . Another approach to
SU.n1Cn2Cn3/

ı
S
�
U.n1/�U.n2/�U.n3/

�
was used in [3]. The Lie group SU.2/�

H D feg� is another example of a generalized Wallach space. Being three
dimensional, this group admits only one left-invariant Einstein metric which is
a metric of constant curvature [5].

In [22], it was shown that every generalized Wallach space admits at least one
invariant Einstein metric. This result could not be improved in general (since,
e.g.,SU.2/ admits exactly one invariant Einstein metric). Later in [19,20], a detailed
study of invariant Einstein metrics was developed for all generalized Wallach
spaces. In particular, it is proved that there are at most four Einstein metrics (up to
homothety) for every such space.

Denote by di the dimension of pi . Let
˚
e
j
i

�
be an orthonormal basis in pi

with respect to h� ; �i, where i 2 f1; 2; 3g, 1 � j � di D dim.pi /. Consider
the expression Œijk� defined by the equality

Œijk� D
X

˛;ˇ;�

˝�
e˛i ; e

ˇ
j

�
; e
�

k

˛2
;

where ˛, ˇ, and � range from 1 to di , dj , and dk , respectively. The symbols Œijk� are
symmetric in all three indices by bi-invariance of the metric h� ; �i. Moreover, for the
spaces under consideration, we have Œijk� D 0 if two indices coincide. Therefore,
the quantity A WD Œ123� plays an important role.

By [22, Lemma 1], we get di � 2A for every i D 1; 2; 3 with di D 2A if and
only if Œh; pi � D 0.
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Note that A D 0 if and only if the space G=H is locally a direct product of three
compact irreducible symmetric spaces (see [20, Theorem 2]).

Suppose A ¤ 0 and let

ai D A=di ; i 2 f1; 2; 3g: (6)

It is clear that ai 2 .0; 1=2�.
Consider the value of ai ’s for some special examples of generalized Wallach

spaces (see [20]).
The spaces SU.lCmCn/=S

�
U.l/�U.m/�U.n/� have the property a1Ca2C

a3 D 1=2. In this case, it is known that

a1 D n

2.l CmC n/
; a2 D m

2.l CmC n/
; a3 D l

2.l CmC n/
:

There are two other families of generalized Wallach spaces: SO.l CmC n/=�
SO.l/�SO.m/�SO.n/� and Sp.lCmCn/=�Sp.l/�Sp.m/�Sp.n/�. It should

be noted that

a1 D n

2.l CmC n � 2/ ; a2 D m

2.l CmC n� 2/
; a3 D l

2.l CmC n � 2/

for the orthogonal case and

a1 D n

2.l CmC nC 1/
; a2 D m

2.l CmC nC 1/
; a3 D l

2.l CmC nC 1/

for the symplectic case [20].
There are interesting examples with a1 D a2 D a3 DW a among the above

examples:

SU.3m/=S
�
U.m/�U.m/�U.m/�; SO.3m/=

�
SO.m/

�3
; Sp.3m/=

�
Sp.m/

�3
:

Obviously, a D 1=6, a D m=.6m � 4/, and a D m=.6m C 2/, respectively, for
these spaces. Note that the space SO.6/=

�
SO.2/

�3
satisfies the equality a D 1=4.

Note that not every triple .a1; a2; a3/ 2 .0; 1=2�� .0; 1=2�� .0; 1=2� corresponds
to some generalized Wallach space. For example, if ai D 1=2 for some i , then
there is no generalized Wallach space with aj ¤ ak , where i ¤ j ¤ k ¤ i (see
[22, Lemma 4]). Moreover, every ai should be a rational number for a generalized
Wallach space with simple group G (see (6), [20, Lemma 1] and [10, Table 1]).
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2 Description of the Singular Points of System (3)

We will first give a description of the singular points of system (3), as Einstein
metrics on generalized Wallach spaces. An easy calculation shows that for a1a2 C
a1a3 C a2a3 ¤ 0, the singular points .x1; x2; x3/ of system (3) can be found from
the equations

.a2Ca3/.a1x22Ca1x23�x2x3/C.a2x2Ca3x3/x1�.a1a2Ca1a3C2a2a3/x21D0;

.a1Ca3/.a2x21Ca2x23�x1x3/C.a1x1Ca3x3/x2�.a1a2C2a1a3Ca2a3/x22D0:
(7)

If a1a2a3 ¤ 0 and x3 D '.x1; x2/, then we also get singular points of system (5).
Recall that we are interested only in singular points with xi > 0, i D 1; 2; 3.

Note that system (7) is homogeneous (of degree 2) with respect to x1; x2; x3.
It is easy to see that xi D xj D 0 implies that either xk D 0 or ai .aj C ak/ D
aj .ai C ak/ D 0, i ¤ j ¤ k ¤ i . If we have a solution with xi D 1 and xj D 0,
then we should have .4a2j � 1/.ai C ak/.a1a2 C a1a3 C a2a3/ D 0. Therefore, if
ai 2 .0; 1=2/ for i D 1; 2; 3, then system (7) has no solution with zero component.
If ai 2 .0; 1=2�, i D 1; 2; 3, then it is proved in [20] that this system has (up to
multiplication by a constant, for example, if we put x3 D 1) at least one and at most
four solutions with positive components. A detailed information on these solutions
can be found in [20]. We briefly review these results below.

The case where at least two of ai ’s are equal. Without loss of generality we
may assume that a1 D a2 D b and a3 D c. Then system (7) is equivalent to
the following one:

.x2 � x1/
�
x3 � 2b.x1 C x2/

� D 0;

x2.x3 � x1/C .b C c/.x21 � x23/C .c � b/x22 D 0:
(8)

If x2 D x1 then the second equation of (8) becomes

.1 � 2c/x21 � x1x3 C .b C c/x23 D 0: (9)

Thus, we have the following singular points

.x1; x2; x3/ D �
2.b C c/q; 2.b C c/q; �q

�
; (10)

where � D 1˙p
1�4.1�2c/.bCc/, q 2 R, q > 0. We observe that for c D 1=2,

we have only one family of singular points .x1; x2; x3/ D �
.b C c/q; .b C c/q; q

�
.

Otherwise, 1 � 2c > 0, and all depend on the sign of the discriminant D1 D 1 �
4.1� 2c/.bC c/. Indeed, there exist one family of singular points forD1 D 0, two
families for D1 > 0, and none forD1 < 0.

If x2 ¤ x1 then x3 D 2b.x1 C x2/; so, the second equation of (8) reduces to

.bCc/.1�4b2/x21�
�
1�2bC8b2.bCc/�x1x2C.bCc/�1�4b2�x22 D 0: (11)
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If b D 1=2 then (11) has no solution. Otherwise, 1 � 4b2 > 0; hence, all real
roots of equation (11) are positive. The discriminant D2 of (11) has the same sign
as T WD 1� 4b � 2cC 16b2.bC c/. Thus, there exist one family of singular points
for T D 0, two families for T > 0, and none for T < 0.

In particular, if a1 D a2 D a3 D a, a 2 .0; 1=2/, then for a ¤ 1=4, we get
exactly four singular points .x1; x2; x3/ up to a positive multiple, namely .1; 1; 1/,
.1 � 2a; 2a; 2a/, .2a; 1 � 2a; 2a/, and .2a; 2a; 1 � 2a/. For a D 1=4, we get only
singular points proportional to .1; 1; 1/.

The case of pairwise distinct ai ’s. We consider two subcases here.
The case a1 Ca2 Ca3 D 1=2. Then all singular points .x1; x2; x3/ have the form

�
.1� 2a1/q; .1 � 2a2/q; 2.a1 C a2/q

�
;

�
.1� 2a1/q; .1 � 2a2/q; 2.1� a1 � a2/q

�
;

�
.1� 2a1/q; .1C 2a2/q; 2.a1 C a2/q

�
;

�
.1C 2a1/q; .1 � 2a2/q; 2.a1 C a2/q

�
;

where q 2 R; q > 0 : (12)

The case a1Ca2Ca3 ¤ 1=2. We look for singular points of the form .x1; x2; x3/ D
.1; t; s/. Then system (7) can be reduced to an equation of degree 4 either in s or
in t . By eliminating the summand containing t2, we obtain the following system
equivalent to (7):

�
.a2 C a3/s � .a1 C a2/

�
t D 2a1.a2 C a3/s

2 C .a3 � a1/s � 2a3.a1 C a2/;

.a2 C a3/t
2 � .a2 C a3/s

2 C s � t C a3 � a2 D 0:
(13)

It is easy to see that .a2Ca3/s�.a1Ca2/ ¤ 0 (see details in [20]). Expressing t from
the first equation of (13) and inserting it into the second, we obtain the following
equation of degree 4:

.a2 C a3/
2.2a1 � 1/.2a1 C 1/s4 C .a2 C a3/.2a2 C 4a1a3 C 1 � 4a21/s

3

C�2a21C2a23�8a1a22a3�2a22�8a21a2a3�2a2�8a1a2a23�2a1a3�a1�a3�8a21a23
�
s2

C.a1 C a2/.4a1a3 C 2a2 C 1 � 4a23/s C .2a3 � 1/.2a3 C 1/.a1 C a2/
2 D 0:

(14)

Denote byD3 the discriminant of the polynomial on the left-hand side of (14). It can
be shown ([20]) that all real solutions of (14) are positive. ForD3 ¤ 0, equation (14)
has either two or four distinct real solutions. Therefore, we get two or four families
of singular points determined by (14).

Notice that the conditionD3 D 0 holds, for example, for the homogeneous space
SO.20/=

�
SO.5/ � SO.6/ � SO.9/

�
(a1 D 5=36, a2 D 1=6, a3 D 1=4). In this

special case, equation (14) has one root of multiplicity 2 and the space under
consideration admits exactly three pairwise nonhomothetic singular points (i.e.,
invariant Einstein metrics).
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3 The Study of Singular Points

In this section, we recall some facts about the type of singular points of system (5).
Our basic references are [12, 16]. The functions Qf .x1; x2/ and Qg.x1; x2/ [see (5)]
are analytic in a neighborhood of an arbitrary point .x01 ; x

0
2/ (where x01 > 0 and

x02 > 0), and the following representations are valid:

Qf .x1; x2/ � J11.x1 � x01/C J12.x2 � x02/C F.x1; x2/;

Qg.x1; x2/ � J21.x1 � x01/C J22.x2 � x02/CG.x1; x2/;

where J11, J12, J21, and J22 are the elements of the Jacobian matrix

J WD J.x01 ; x
0
2/ D

0
BBB@

@ Qf .x01 ; x02/
@x1

@ Qf .x01 ; x02/
@x2

@ Qg.x01 ; x02/
@x1

@ Qg.x01 ; x02/
@x2

1
CCCA : (15)

The functions F andG are also analytic in a neighborhood of the point .x01 ; x
0
2/ and

F.x01 ; x
0
2/ D G.x01; x

0
2/ D @F.x01 ; x

0
2/

@x1
D @F.x01 ; x

0
2/

@x2
D @G.x01 ; x

0
2/

@x1

D @G.x01; x
0
2/

@x2
D 0:

The eigenvalues of J.x01 ; x
0
2/ can be found from the formula

�1;2 D �˙ p
�

2
; .j�1j � j�2j/;

where

� WD �2 � 4ı; � WD trace
�
J.x01 ; x

0
2/
�
; ı WD det

�
J.x01 ; x

0
2/
�
: (16)

We will use these notations in the sequel.
In the nondegenerate case (ı D �1�2 ¤ 0), we will use the following theorem.

Theorem 1 (Theorem 2.15 in [12]). Let .0; 0/ be an isolated singular point of the
system

dx

dt
D ax C by C A.x; y/;

dy

dt
D cx C dy C B.x; y/;
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where A and B are analytic in a neighborhood of the origin with

A.0; 0/ D B.0; 0/ D @A.0; 0/

@x
D @A.0; 0/

@y
D @B.0; 0/

@x
D @B.0; 0/

@y
D 0:

Let �1 and �2 be the eigenvalues of the matrix

	
a b

c d



which represents the linear

part of the system at the origin. Then the following statements hold:

(i) If �1 and �2 are real and �1�2 < 0, then .0; 0/ is a saddle.
(ii) If �1 and �2 are real with j�1j � j�2j and �1�2 > 0, then .0; 0/ is a node.

If �1 > 0 (respectively < 0) then it is unstable (respectively stable).
(iii) If �1 D ˛ C iˇ and �2 D ˛ � iˇ with ˛; ˇ ¤ 0, then .0; 0/ is a strong focus.
(iv) If �1 D iˇ and �2 D �iˇ with ˇ ¤ 0, then .0; 0/ is a weak focus or a center.

Cases (i)–(iii) are known as hyperbolic singular points.
In the semi-hyperbolic case, we will use another approach for investigation of (5)

based on the following theorem.

Theorem 2 (Theorem 2.19 in [12]). Let .0; 0/ be an isolated singular point of
the system

dx

dt
D A.x; y/;

dy

dt
D �y C B.x; y/; � > 0;

where A and B are analytic in a neighborhood of the origin with

A.0; 0/ D B.0; 0/ D @A.0; 0/

@x
D @A.0; 0/

@y
D @B.0; 0/

@x
D @B.0; 0/

@y
D 0:

Let y D �.x/ be the solution of the equation �y C B.x; y/ D 0 in a neighborhood
of .0; 0/, and suppose that the function  .x/ WD A.x; �.x// has the expression
 .x/ D emx

m C o.xm/, where m � 2 and em ¤ 0. Then

(i) if m is odd and em < 0, then .0; 0/ is a topological saddle;
(ii) if m is odd and em > 0, then .0; 0/ is an unstable node;

(iii) if m is even, then .0; 0/ is a saddle-node.

Note that if A and B satisfy the conditions of Theorem 2, then in a neighborhood
of the origin the following formulas are valid:

A.x; y/ D P1
nD2

Pn
iD0 pn�i;ixn�i yi ; pn�i;i D 1

iŠ.n � i/Š

@nA.0; 0/

@xn�i @yi
;

B.x; y/ D P1
nD2

Pn
iD0 qn�i;ixn�i yi ; qn�i;i D 1

iŠ.n � i/Š

@nB.0; 0/

@xn�i @yi
:

(17)
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A direct calculation of ı and � is often very complicated; so, we will obtain more
convenient formulas for � and ı in the case of singular points .x01 ; x

0
2/ of system (5).

Let QJ be the Jacobian matrix of the map

.x1; x2; x3/ 7! �
f .x1; x2; x3/; g.x1; x2; x3/; h.x1; x2; x3/

�

and let p.t/ D t3 � Q�t2 C Qıt C Q	 be the characteristic polynomial of QJ .
By direct computations using the chain rule, one can easily get the following two

lemmas (see details in [1]).

Lemma 1. If .x01 ; x
0
2/ is a singular point of system (5), then � D Q� and ı D Qı,

where p.t/ D t3 � Q�t2 C Qıt C Q	 is calculated at the point .x01 ; x
0
2 ; x

0
3 D '.x01 ; x

0
2//.

Lemma 2. Let p.t/ D t3 � Q�t2 C Qıt C Q	 be the characteristic polynomial of the
Jacobian matrix of system (3) at any point .x1; x2; x3/with x1x2x3 ¤ 0. Then Q	 D 0,
Q� D 2F1

Ax1x2x3 , and Qı D F2
A2x21x

2
2x

2
3

, where

F1 D a1a2x1x2 C a1a3x1x3 C a2a3x2x3

�.A C a2a3/a1x
2
1 � .A C a1a3/a2x

2
2 � .A C a1a2/a3x

2
3 ; (18)

F2 D �
a21a2a3.2A C a2a3/� A3

�
x41 C �

a1a
2
2a3.2A C a1a3/ � A3

�
x42

C�a1a2a23.2A C a1a2/ � A3
�
x43 � 2a21.A C a2a3/.a2x2 C a3x3/x

3
1

�2a22.A C a1a3/.a1x1 C a3x3/x
3
2 � 2a23.A C a1a2/.a2x2 C a1x1/x

3
3

C�a1a2.2.3a1a2 C a22 C a21/a
2
3 C 2.a1 C a2/a1a2a3 C a1a2/C 2A3

�
x21x

2
2

C�a1a3.2.3a1a3 C a23 C a21/a
2
2 C 2.a1 C a3/a1a2a3 C a1a3/C 2A3

�
x21x

2
3

C�a2a3.2.3a2a3 C a23 C a22/a
2
1 C 2.a2 C a3/a1a2a3 C a2a3/C 2A3

�
x22x

2
3

�2a1a2a3
�
.ACa2a3�a1/x1C.ACa1a3�a2/x2C.ACa1a2�a3/x3

�
x1x2x3;

(19)

and A D a1a2 C a1a3 C a2a3.

We will show a convenient way to deal with degenerate singular points of system
(5) in Lemma 3. By Lemma 1, a singular point .x1; x2/ of system (5) is degenerate
if and only if ı D Qı D 0. Note that the right-hand side of (19) is homogeneous in
the variables x1; x2; x3. Therefore, without loss of generality we may consider these
variables up to a positive multiple. Obviously from Lemma 2, it follows that Qı D 0

is equivalent to F2 D 0. Hence, we have

Lemma 3 ([1]). A singular point .x1; x2/ of system (5) is degenerate if and only if
the point .x1; x2; x3 D '.x1; x2// satisfies the equation F2 D 0, where F2 is given
by (19).
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4 A Special Case

Here, we consider the case a1 D a2 D a3 D 1=4 (corresponding to the space
SO.6/=

�
SO.2/

�3
) which is of special interest.

Theorem 3. For a1 D a2 D a3 D 1=4, system of ODEs (5) has a unique
.degenerate/ singular point .x01 ; x

0
2/ D .1; 1/ which is a saddle with six hyper-

bolic sectors.

Proof. As the calculations show, the unique singular point of (5) is indeed
.x01 ; x

0
2/ D .1; 1/ (see Fig. 1 for a phase portrait in a neighborhood of this point).

Note that in this case, J.x01 ; x
0
2/ D

	
0 0

0 0



: By moving .1; 1/ to the origin and by

the analyticity of Qf and Qg at .1; 1/, system (5) can be reduced to the equivalent
system

dx

dt
D P2.x; y/C P3.x; y/C P4.x; y/C � � � ;

dy

dt
D Q2.x; y/CQ3.x; y/CQ4.x; y/C � � � ;

0.9999

0.99995

1

1.0001

1.0001

x2

0.9999 0.99995 1 1.0001 1.0001
x1

Fig. 1 The unique singular point at a1 D a2 D a3 D 1=4
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where

P2.x; y/ D �x2=2C xy C y2; Q2.x; y/ D x2 C xy � y2=2;

and Pi .x; y/;Qi .x; y/ (i � 3) are some homogeneous polynomials of degree i
with respect to x and y (x D x1 � 1, y D x2 � 1).

Next, we use results from [16]. Using the blowing up y D ux, d
 D xdt , we
obtain the system

dx

d

D xP2.1; u/C x2P3.1; u/C x3P4.1; u/C � � � ;

du

d

D �.u/C x

�
Q3.1; u/� uP3.1; u/

�C x2
�
Q4.1; u/� uP4.1; u/

�C � � � ;

where

P2.1; u/ D u2 C u � 1=2; �.u/ D �.u � u1/.u � u2/.u � u3/;

u1 D �2; u2 D �1=2; u3 D 1:

We are in the case of [16, Sect. 6.2], where the equation�.u/ D 0 has three different
real roots. So, it is obvious that the blowing-up system has the singular points .0; u1/,
.0; u2/, and .0; u3/. We show that all of these singular points are saddles.

Let ˇi WD P2.1; ui / and let Ji be the matrix of the linear part of the blowing-up
system at the point .0; ui /, i D 1; 2; 3. Then

Ji D
	

ˇi 0
1
2
.ui � 1/.ui C 1/.2u2i � ui C 2/ �3ˇi




with eigenvalues equal to ˇi and �3ˇi . It is clear that ˇi ¤ 0 for all i D 1; 2; 3.
Therefore, the eigenvalues of Ji have different signs, and by Theorem 1, all the
singular points .0; ui /, i D 1; 2; 3, are saddles. The phase portrait of the blowing-up
system is identical to the one shown in [16, Fig. 7b].

The saddles .0; ui /, i D 1; 2; 3, correspond to the unique singular point .0; 0/
of the initial system. According to the qualitative classification of singular points of
degree 2 given by [16], the point .0; 0/ is also a saddle with six hyperbolic sectors
near it (see [16, Fig. 3(12)]). ut

5 The “Degeneration” Set �

Recall that systems (3) and (5) are well defined for all .a1; a2; a3/ 2 R
3 with a1a2C

a1a3 C a2a3 ¤ 0 [with the additional restriction a1a2a3 ¤ 0 for system (5)].
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The special case considered in Sect. 4 leads us to considering the set

�0 D f.a1; a2; a3/ 2 R
3 j system .5/ has at least one degenerate singular pointg:

Now, we represent the set �0 as a part of an algebraic surface � in R
3. Under

the assumptions a1a2 C a1a3 C a2a3 ¤ 0, a1a2a3 ¤ 0, and x3 D '.x1; x2/, the
singular points .x1; x2/ of system (5) can be found from equation (7), and according
to Lemma 3, they are degenerate if and only if F2 D 0. Note that (7) and F2 D 0

are homogeneous with respect to x1; x2; x3. Setting x3 D 1 and eliminating x1 and
x2 from these three equations (e.g., using Maple or Mathematica), we obtain the
equation

.4a21�1/.4a22�1/.a1Ca3/.a2Ca3/.a1a2Ca1a3Ca2a3/2 �Q.a1; a2; a3/ D 0; (20)

where

Q.a1; a2; a3/ D .2s1 C 4s3 � 1/.64s51 � 64s41 C 8s31 C 12s21 � 6s1 C 1

C240s3s21 � 240s3s1 � 1536s23s1 � 4096s33 C 60s3 C 768s23/

�8s1.2s1 C 4s3 � 1/.2s1 � 32s3 � 1/.10s1 C 32s3 � 5/s2 (21)

�16s21.13 � 52s1 C 640s3s1 C 1024s23 � 320s3 C 52s21/s
2
2

C64.2s1 � 1/.2s1 � 32s3 � 1/s32 C 2048s1.2s1 � 1/s42

and

s1 D a1 C a2 C a3; s2 D a1a2 C a1a3 C a2a3; s3 D a1a2a3:

Note that for a1 D ˙1=2, a2 D ˙1=2, a3 D �a1, and a3 D �a2, we have no
additional triples .a1; a2; a3/ of “degenerate” parameters. Therefore, the first four
factors in (20) can be ignored. Another reason to ignore them is the symmetry of the
problem under the permutation a1 ! a2 ! a3 ! a1. All these arguments imply

Lemma 4. If a point .a1; a2; a3/ with a1a2 C a1a3 C a2a3 ¤ 0 and a1a2a3 ¤ 0

lies in the set �0, then Q.a1; a2; a3/ D 0, where Q is defined by (21).

It is easy to see that Q.a1; a2; a3/ is a symmetric polynomial in a1; a2; a3 of
degree 12. Therefore, the equation Q.a1; a2; a3/ D 0 (without the restrictions
a1a2 C a1a3 C a2a3 ¤ 0 and a1a2a3 ¤ 0) defines an algebraic surface in R

3

that we will denote by �. From Lemma 4 we see that �0 � �.
In the rest of this section, we consider only points .a1; a2; a3/ 2 .0; 1=2� �

.0; 1=2�� .0; 1=2�. It is very important to describe in detail the set

�\ .0; 1=2�3 D f.a1; a2; a3/ 2 .0; 1=2�� .0; 1=2�� .0; 1=2� W Q.a1; a2; a3/ D 0g:
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0

0.1

0.2

0.3

0.4

0.5

a3

0.1 0.2 0.3 0.4 0.5
a2

Fig. 2 The set (curve) �\ .0; 1=2�3 for a1 D 1=2 containing a cusp at a2 D a3

As usual, the most complicated and interesting problem is the study of this surface
in neighborhoods of singular points of � determined by rQ.a1; a2; a3/ D 0.

For a1 D 1=2, the equationQ D 0 is equivalent to

4Qs2.4Qs2C1/2�4.4Qs2�1/.4Qs2C1/2 Qs1�13.4Qs2C1/2 Qs21 C4.4Qs2�1/Qs31 C44Qs41 D 0;

where Qs1 D a2 C a3 and Qs2 D a2a3. If a2; a3 2 .0; 1=2� then this set is a
curve homeomorphic to the interval Œ0; 1� with endpoints .1=2; 1=2;

p
2=2/ and

.1=2;
p
2=4; 1=2/ and with the singular point (a cusp) at the point a3 D a2 D

.
p
5 � 1/=4 	 0:3090169942 (see Fig. 2). The same is also valid under the

permutation a1 ! a2 ! a3 ! a1.
Note that for s1 D a1 C a2 C a3 D 1=2, the equation Q D 0 is equivalent to

s23.s2 � 2s3/2 D 1
2
a1a2a3.�5a1a2 C a1 � 2a21 C a2 � 2a22 C 6a1a2.a1 C a2// D 0.

It is easy to check that for a1; a2 2 Œ0; 1=2�, the equality �5a1a2 C a1 � 2a21 C a2 �
2a22 C 6a1a2.a1 C a2/ D 0 holds only when .a1; a2/ is one of the points .0; 0/,
.0; 1=2/, and .1=2; 0/.

Therefore, s1 D a1Ca2Ca3 D 1=2 in the set�\ Œ0; 1=2�3 only for points in the
boundary of the triangle with vertices .0; 0; 1=2/, .0; 1=2; 0/, and .1=2; 0; 0/. For all
other points in � \ .0; 1=2�3, we have the inequality s1 D a1 C a2 C a3 > 1=2.

It is clear that .1=4; 1=4; 1=4/ 2 �. Note that for s1 D a1 C a2 C a3 D 3=4, the
equationQ D 0 is equivalent to

.24s22 C 8s2 C 64s2s3 � 8s3 � 128s23 C 1/.32s2 � 64s3 � 5/2 D 0:
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(1/4,1/4,1/4)

0
0

0.2

0.4

a1

0 0.1 0.2 0.3 0.4 0.5a2

0.1

0.2

0.3

0.4

0.5

a3

00.10.20.30.40.5 a1
0 0.2 0.4a2

0

0.1

0.2

0.3

0.4

0.5

a3

Fig. 3 Three curves of singular points on �. The common point .1=4; 1=4; 1=4/ is an elliptic
umbilic

Fig. 4 The set (surface) �\ .0; 1=2�3

It is not difficult to show that .1=4; 1=4; 1=4/ is the only point in � \ Œ0; 1=2�3

satisfying the additional condition s1 D a1 C a2 C a3 D 3=4.
It turns out that the point .1=4; 1=4; 1=4/ is a singular point of degree 3 of the

algebraic surface � (see Figs. 3 and 4). The type of this point is elliptic umbilic in
the sense of Darboux (see [11, pp. 448–464] and [25, p. 320]) or of typeD�

4 in other
terminology (see, e.g., [4, Chap. III, Sects. 21.3, 22.3]).
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6 On the Signs of � and � for Singular Points of System (5)

In this section, we study the singular points of system (5) according to the signs of
� and � [see (16)]. Results depend on conditions on the parameters a1; a2; a3.

Lemma 5. The quadratic form

G.x; y; z/ WD �2.a1a3 C a2a3/xy � 2.a1a2 C a1a3/yz � 2.a2a3 C a1a2/xz

C.A C a21/x
2 C .A C a22/y

2 C .A C a23/z
2;

where A D a1a2Ca1a3Ca2a3, is nonnegative if A > 0 (in particular, if ai > 0 for
i D 1; 2; 3) and achieves its absolute minimum (equal to zero) exactly at the points

.x; y; z/ D �
.a2 C a3/t; .a1 C a3/t; .a1 C a2/t

�
; t 2 R:

Proof. It is easy to show that the matrix of the formG has nonnegative eigenvalues
0, 2A, and a21 C a22 C a23 C A. Obviously, the last two numbers are positive for
A > 0. Therefore, G is a nonnegative form. Note that the equation G D 0 has the
solutions given in the statement of the lemma. ut
Theorem 4. For a1a2Ca1a3Ca2a3 > 0, all singular points of system (5) are such
that � � �2 � 4ı � 0. In particular, a nondegenerate singular point (i.e. ı ¤ 0) of
(5) is either a node (if ı > 0) or a saddle (if ı < 0).

Proof. Let A D a1a2 C a1a3 C a2a3 > 0. By Lemmas 1 and 2, we get

� D �2 � 4ı D Q�2 � 4 Qı
D ��2.a1a3 C a2a3/x

2
1x

2
2 � 2.a1a2 C a1a3/x

2
2x

2
3 � 2.a2a3 C a1a2/x

2
1x

2
3

C.A C a21/x
4
1 C .A C a22/x

4
2 C .A C a23/x

4
3

�
x�2
1 x�2

2 x�2
3 :

Using Lemma 5 for x D x21 , y D x22 , and z D x23 , we get that � � 0 for all
x1; x2; x3 > 0, x3 D '.x1; x2/. So, in particular, � � 0 holds for all singular points
of system (5), and by Theorem 1, its nondegenerate singular points can be only
either a node or a saddle. ut
Remark 2. From Theorem 4 and Lemma 5, we get the following. If .x1; x2/ is a
singular point of system (5) with � D 0 then

.x1; x2; x3/ D �
q
p
a2 C a3; q

p
a1 C a3; q

p
a1 C a2

�
(22)

for a unique q 2 R, q > 0, determined by the equality x3 D '.x1; x2/.

Next, we are interested in the values .a1; a2; a3/ 2 .0; 1=2��.0; 1=2��.0; 1=2� for
which system (5) has at least one singular point with � D 0. By direct calculation,
we have got
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Theorem 5 ([1]). The only two families of the parameters ai , i D 1; 2; 3, satisfying
the conditions ai 2 .0; 1=2� and which can give singular points of system (5) with
the property � D 0, are the following:

a1 D a2 D a3 D s; s 2 .0; 1=2�; (23)

ai D aj D .2s2 � 1/2
8s2

; ak D 4s4 C 4s2 � 1
8s2

; s 2 .s1; s2/; (24)

where s1 WD
p
2
p
2 � 2=2, s2 WD p

2=2 (i; j; k 2 f1; 2; 3g, i ¤ j ¤ k ¤ i ).

Remark 3. Now we can find all singular points of system (5) corresponding to the
families (23), (24) and having � D 0.

According to Remark 2, family (23) provides a unique singular point .x1; x2/ D
.1; 1/ of (5) satisfying � D 0 for all s 2 .0; 1=2�.

Analogously, by Remark 2, it follows that family (24) provides only the following
singular points of (5) satisfying � D 0 for all s 2 .s1; s2/:

.2s2q; 2s2q/;
�
2s2q; .1 � 2s2/q�; �

.1� 2s2/q; 2s2q
�
;

where q D .2s2/
�2.4s4C4s2�1/
.6s2�1/.2s2C1/ .1 � 2s2/

�.2s2�1/2
.6s2�1/.2s2C1/ > 0 is determined by the

condition V � 1 [see (4)].

Remark 4. Using Theorem 5 and Lemma 4, we can detect all values of ai 2
.0; 1=2�, i D 1; 2; 3, such that system (5) has at least one degenerate singular point
with � D 0. According to Remark 3 for all s 2 .0; 1=2�, family (23) provides a
unique singular point .x1; x2/ D .1; 1/ of (5) with � D 0. In this case, Q [see (21)]
takes the form

Q D �.2s C 1/4.4s � 1/8;

and the equation Q D 0 implies that s D 1=4. Then according to Lemma 4, the
point .1; 1/ is a degenerate singular point (ı D 0) only for s D 1=4 (and its type
has been determined in Theorem 3). For s 2 .0; 1=4/[ .1=4; 1=2� the point .1; 1/ is
a node.

Analogously, for family (24), we have that

Q D s8.1 � 8s2 � 4s4/.1� 2s2/3.3 � 2s2/3;

and the equation Q D 0 has only three positive roots
p
2
p
5 � 4=2,

p
2=2, andp

6=2, but none of these values belong to the interval .s1; s2/. Therefore, (24) cannot
give singular points of (5) with � D ı D 0.
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Next, we denote by S the set of points .a1; a2; a3/ such that there is a singular
point .x01; x

0
2/ of system (5) with � D 0. Recall that for points with a1a2 C a1a3 C

a2a3 D 0, system (5) is undefined.

Theorem 6 ([1]). A point .a1; a2; a3/ with a1a2Ca1a3Ca2a3 ¤ 0 and a1a2a3 ¤ 0

lies on the surface S if and only if

Q1.a1; a2; a3/ WD 4.a1Ca2/.a1Ca3/.a2Ca3/�2a1�2a2�2a3C1 D 0: (25)

The proof of this theorem is straightforward. Indeed, equations (7) and (18) are
homogeneous with respect to x1; x2; x3. Now setting x3 D 1 and eliminating x1 and
x2 from the above three equations (using, e.g., Maple or Mathematica), we get the
equation

.a1Ca3/.a2Ca3/.a1a2Ca1a3Ca2a3/ � �4.a1Ca2/.a1Ca3/.a2Ca3/
�2.a1Ca2Ca3/C1

�D0:

The proof finishes by noting that for a3 D �a1 and a3 D �a2, we have no additional
sets of the parameters .a1; a2; a3/.

Remark 5. It should also be noted that the point .a1; a2; a3/ D .1=4; 1=4; 1=4/ is
the unique singular point of the surface S (rQ1.1=4; 1=4; 1=4/ D 0). This is clear
by reducing (25) to the simpler equation 4z1z2z3 � z1 � z2 � z3 C 1 D 0 using the
substitutions z1 D a1 C a2; z2 D a1 C a3; z3 D a2 C a3. It is easy to see that S
divides the cube Œ0; 1=2�3 into three domains QO1, QO2, and QO3 containing the points
.0; 0; 0/, .1=2; 1=2; 1=2/, and .1=8; 1=4; 3=8/, respectively.

Remark 6. It is easy to show that system (5) has a singular point with � D ı D 0

if and only if .a1; a2; a3/ D .1=4; 1=4; 1=4/ (in this case system (5) has exactly one
degenerate singular point .x1; x2/ D .1; 1/, see Sect. 4). Indeed, from the equations
� D 0 and ı D 0, we have � D �2 � 4ı D 0. According to Remark 4, the system of
equations ı D 0, � D 0 has a unique solution .a1; a2; a3/ D .1=4; 1=4; 1=4/. It is
easy to check that this solution satisfies (25) as well. Therefore, Theorem 6 implies
that � D 0.

Remark 7. There are no values of the parameters ai 2 .0; 1=2�, i D 1; 2; 3, for
which the singular points of (5) are nilpotent (�1 D �2 D 0, J ¤ 0). In fact,
assume that �1 D �2 D 0 and J ¤ 0. Then ı D �1�2 D 0 and � D �1 C �2 D 0.
By Remark 6, the equalities � D ı D 0 are possible only at a1 D a2 D a3 D 1=4,
hence we have the case of Theorem 3 again (i.e., the singular point is .1; 1/ with
J D 0).
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7 Singular Points for Parameters in the Set .0; 1=2/3 n �

We first discuss a part of the surface � (see Sect. 5) in the cube .0; 1=2/3. Recall
that � is invariant under the permutation a1 ! a2 ! a3 ! a1. It should be noted
that the set .0; 1=2/3 \ � is connected (it can be shown by lengthy computations
using suitable geometric tools). There are three curves (“edges”) of singular points
on � (i.e., points where rQ D 0): one of them has parametric representation
a1 D � 1

2
16t3�4tC1
8t2�1 ; a2 D a3 D t , and the others are defined by permutations of ai .

These curves have a common point .1=4; 1=4; 1=4/ which is an elliptic umbilic
on the surface � (see Figs. 3 and 4). The part of � in .0; 1=2/3 consists of three
(pairwise isometric) “bubbles” spanned on every pair of “edges” (cf. pictures of
elliptic umbilics at [28, pp. 64–91]). The Gaussian curvature at every nonsingular
point of the surface � \ .0; 1=2/3 is negative, as it could be checked by direct
calculations.

From the above discussion and some geometric considerations (that could be
rigorous but very lengthy), we see that the set .0; 1=2/3 n � has exactly three
connected components. Denote by O1, O2, and O3 the components containing
the points .1=6; 1=6; 1=6/, .7=15; 7=15; 7=15/, and .1=6; 1=4; 1=3/, respectively.

Let us fix j 2 f1; 2; 3g. By the definition of �, for all points .a1; a2; a3/ 2 Oj ,
system (5) has only nondegenerate singular points. The number of these points and
their corresponding types are the same on each componentOj (under some suitable
identification for various values of the parameters a1; a2; a3). Therefore, it suffices
to check only one point in the set Oj .

One of the main results of this chapter is the following theorem which clarifies the
above observation and provides a general result about the type of the nondegenerate
singular points of system (5).

Theorem 7. For .a1; a2; a3/ 2 Oj , the following possibilities for singular points of
system (5) can occur:

(i) If j D 1, then there is one singular point with ı > 0 (an unstable node) and
three singular points with ı < 0 (saddles)

(ii) If j D 2, then there is one singular point with ı > 0 (a stable node) and three
singular points with ı < 0 (saddles)

(iii) If j D 3, then there are two singular points with ı < 0 (saddles).

Proof. By Theorem 4, a nondegenerate singular point is either a node (if ı > 0) or
a saddle (if ı < 0).

Recall that for .a1; a2; a3/ 2 Oj , all singular points of system (5) are not
degenerate. Moreover, there are no singular points .x1; x2; x3/ with some zero
component. Therefore, the number of singular points and the set of signs of ı D Qı
for these points are constant on each component Oj . This is easy to be checked in
a small neighborhood of any point .a1; a2; a3/ 2 Oj (it follows from the stability
of nondegenerate singular points), and then the proof can be spread to all points of
the connected set Oj via continuous paths (as in standard analytical monodromy
theorems).
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Consider the componentO1 containing the representative point .1=6; 1=6; 1=6/.
Then as the calculations show, under x3 D 1, system (7) in the variables .x1; x2/ has
four solutions, given by .1; 1/, .2; 1/, .1=2; 1=2/, and .1; 2/. By Lemma 2, it follows
that the point .x1; x2/ D .1; 1/ corresponds to the value ı D 1=9 (an unstable node
with � D 2=3 and � D 0). If .x1; x2/ is one of the solutions .2; 1/, .1=2; 1=2/,
and .1; 2/, then ı equals to �2=9, �8=9, and �2=9, respectively (so these points are
saddles).

Consider now the component O2 containing the representative point
.7=15; 7=15; 7=15/. By the same manner using Lemmas 1 and 2, we get the
following four solutions .x1; x2/ of system (7): .1; 1/ with ı D 169=25 (a stable
node with � D �26=25 and � D 0) and .1=14; 1/, .1; 1=14/, .14; 14/ with ı equal
to �4901=225, �4901=225, and �4901=44100, respectively (three saddles).

Finally, consider the componentO3 containing the point .1=6; 1=4; 1=3/. In this
case, we get the following two solutions of system (7): .x1; x2/ D .4=5; 3=5/

with ı D �35=72 (a saddle) and .x1; x2/ 	 .2:284185494; 2:372799295/ with
ı D �0:0982 (a saddle). ut
Remark 8. The following is a natural (and practical) question: Let .a01; a

0
2; a

0
3/ be

any triple in .0; 1=2/3 n�. Is there a way to decide on which connected component
O1, O2, or O3 does this triple belong to? The answer is affirmative.

Indeed, consider first the simplest case where a01 D a02 D a03 DW a0. Then
obviously .a01; a

0
2; a

0
3/ 2 O1 for a0 < 1=4 and .a01; a

0
2; a

0
3/ 2 O2 for a0 > 1=4

(recall that .1=4; =1=4; 1=4/ is a very special point of �).
Assume now that a01 W a02 W a03 ¤ 1 W 1 W 1. Then we find (solving approximately

an algebraic equation of degree at most 12 with respect to t) the intersection of
� with the interval I containing points of the form .a1; a2; a3/ D .a01t; a

0
2t; a

0
3t/,

where 0 < t < 1. This means that we give numerical values to .a01; a
0
2; a

0
3/ and then

solve the corresponding equation with respect to t (it could be done by Mapler or
by Mathematicar).

From simple geometric arguments we have the following: If the number of
intersection points is 0, 1, and 2, then .a01; a

0
2; a

0
3/ belongs to O1, O3, and

O2, respectively. For instance, if all solutions of the corresponding equation are
complex, then the number of intersection points is 0 and .a01; a

0
2; a

0
3/ 2 O1.

Now, we consider an important partial case: a1 C a2 C a3 D 1=2, ai 2 .0; 1=2/.
It is easy to see that all these points are in the component O1 from Theorem 7 (see
the discussion in Sect. 5). On the other hand, we know the explicit form of all four
singular points of system (5) for this case, see (12). Hence, we can get a refinement
of Theorem 7 for this special case.

It is clear that for fixed ai 2 .0; 1=2/, i D 1; 2; 3, every family in (12) gives a
singular point .x01; x

0
2/ of system (5), with q uniquely determined by Remark 1.

Theorem 8. For a1 C a2 C a3 D 1=2, ai 2 .0; 1=2/, all singular points of system
(5) are nondegenerate. Moreover, the points from the first family in (12) are unstable
nodes, and the points from the other families in (12) are saddles.
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Proof. At first, we prove that (12) cannot provide degenerate singular points of
(5). In fact, at s1 D 1=2 the function Q.a1; a2; a3/ takes the form (see Lemma 4)
Q D �4096s23.2s3 � s2/. It is easy to check that the equalities s1 D 1=2 andQ D 0

are fulfilled if and only if

ai D t; aj D �ai ; ak D 1=2; t 2 R;

where i; j; k 2 f1; 2; 3g, i ¤ j ¤ k ¤ i . Therefore, according to Lemma 4,
every family in (12) can provide only nondegenerate (ı ¤ 0) singular points of
(5). Moreover, by Theorem 4 such nondegenerate points should be either nodes or
saddles. Using Lemmas 1 and 2, we get ı > 0 exactly for the first family. Therefore,
according to Theorem 7 only the first family in (12) can provide nodes of (5), and
the other families give saddles. Since � D 1=q > 0 then all nodes are unstable. ut
Remark 9. At a1 D a2 D a3 D 1=6 and q D 3=2 from the first family in (12), we
get a singular point .x01 ; x

0
2/ D .1; 1/ with the property � D 0. Note that the general

result about singular points with � D 0, obtained in Remark 3, implies that (5) has
a unique singular point .1; 1/ with � D 0 for all a1 D a2 D a3 D s, s 2 .0; 1=2�.

8 Tools for Semi-Hyperbolic Cases

In Sect. 9, we will study semi-hyperbolic singular points .x01 ; x
0
2/ of system (5)

where the matrix J.x01 ; x
0
2/ has one of the following special forms

k

	
1 1

1 1



; k ¤ 0; (26)

or

k

	
1 �1

�1 1



; k ¤ 0: (27)

Lemma 6. Let J.x01 ; x
0
2/ has form (26) with k > 0. Then the following statements

hold.

(i) There is a nondegenerate linear transformation of variables .x1; x2/ 7! .x; y/

reducing (5) to the canonical form

dx

dt
D X.x; y/;

dy

dt
D 2ky C Y.x; y/; k > 0; (28)

with

X.x; y/ � F .x1.x; y/; x2.x; y// �G .x1.x; y/; x2.x; y// ;

Y.x; y/ � F .x1.x; y/; x2.x; y//CG .x1.x; y/; x2.x; y// :
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(ii) The equation 2ky C Y.x; y/ D 0 has a unique solution y D �.x/, and there
is em ¤ 0 with m � 2 in the power series X.x; �.x// D P1

nD2 enxn.
(iii) All possible types of singularities of the point .x01 ; x

0
2/ are exactly the types of

singularities given in items (i)–(iii) of Theorem 2.

Proof. (i) It is easy to check that the linear transformation

x1 D x1.x; y/ WD .x C y/=2C x01; x2 D x2.x; y/ WD .y � x/=2C x02

moves .x01 ; x
0
2/ to the origin .0; 0/ and reduces (5) to the required canonical

form. Since F and G are analytic in a neighborhood of .x01 ; x
0
2/, then the

functionsX and Y satisfy the conditions of Theorem 2.
(ii) Let NY .x; y/ WD 2ky C Y.x; y/. Since NYy.0; 0/ D 2k ¤ 0, then by the implicit

function theorem in a sufficiently small neighborhood of .0; 0/, the equation
2ky C Y D 0 has a unique analytic solution y D �.x/, �.0/ D 0, �0.0/ D 0.
Since Y is represented by the Taylor series analogous to (17) [put B WD Y

in (17)], then y D �.x/ is represented by the power series y D �.x/ DP1
nD2 nxn; where

2 D �q2;0=.2k/;
3 D �.q1;12 C q3;0/=.2k/;

4 D �.q1;13 C q0;2
2
2 C q2;12 C q4;0/=.2k/;

5 D �.q1;14 C 2q0;223 C q2;13 C q1;2
2
2 C q3;12 C q5;0/=.2k/; : : :

Since X can be represented by the Taylor series analogous to (17) (put
A WD X in (17)), then the function  .x/ WD X.x; �.x// is also analytic
in a neighborhood of 0 and can be represented by the power series  .x/ DP1

nD2 enxn;  .0/ D 0;  0.0/ D 0; where

e2 D p2;0;

e3 D p1;12 C p3;0;

e4 D p1;13 C p0;2
2
2 C p2;12 C p4;0;

e5 D p1;14 C 2p0;223 C p2;13 C p1;2
2
2 C p3;12 C p5;0; : : :

There exists a first nonzero term em ¤ 0 in the sequence feng, n � 2. Otherwise
(i.e.,  .x/ � 0), we have the family of non-isolated singular points of (28)
along the line y D �.x/ in spite of our conditions.

(iii) Since k > 0, then we can apply Theorem 2 to system (28). Depending on the
values of m and em ¤ 0, the point .0; 0/ takes one of the types of singularities
given in Theorem 2. Now, we return to system (5) in variables x1; x2. Then
.0; 0/ corresponds to the singular point .x01 ; x

0
2/ of (5). ut
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Remark 10. If J.x01 ; x
0
2/ has form (27) with k > 0, then system (5) can be reduced

to the canonical form (28) with

X.x; y/ � F .x1.x; y/; x2.x; y//CG .x1.x; y/; x2.x; y// ;

Y.x; y/ � F .x1.x; y/; x2.x; y// �G .x1.x; y/; x2.x; y// :

The corresponding transformation is

x1 D x1.x; y/ WD .x C y/=2C x01 ; x2 D x2.x; y/ WD .x � y/=2C x02 :

Remark 11. For k < 0, we will assume (without loss of generality) that

e2 D �p2;0; e3 D �p1;12 � p3;0; : : : :

for both cases (26) and (27). Indeed, we may use the transformation t 7! �t
reducing systems of form (28) with k < 0 to the form x0.t/ D �X.x; y/,
y0.t/ D �2ky � Y.x; y/, with �k > 0.

Remark 12. To determine the first nonzero coefficient em, m � 2, it is sufficient to
know only pi;j and qi;j , where 2 � iCj � m. Therefore, we do not need the terms
of order i C j > m in calculations using the power series of X and Y . Note also
that we do not need the value of k if p2;0 ¤ 0.

We will use all the above results in the next section in order to study singular
points of (3) for an interesting special case.

9 Singular Points in the Case a1 D a2

In this section, we are interested in the case of coincident ai and aj with different
indexes. By permuting the indexes we may assume without loss of generality that
i D 1 and j D 2. Recall that the singular points of (3) corresponding to the case
a1 D a2 D b, a3 D c were described in Sect. 2. There are two types of such
singular points .x01 ; x

0
2 ; x

0
3/: those with the property x01 D x02 and those with the

property x03 D 2b.x01 C x02/.
The explicit form of singular points of the type x01 D x02 is given by (10).
Now, consider more closely the singular points of the type x03 D 2b.x01 C x02/.

For b ¤ 1=2, we can easily find the following singular points of (3) as solutions of
(11):

.x01 ; x
0
2 ; x

0
3/ WD .�1q; �2q; �3q/; q 2 R; q > 0; (29)
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Table 1 Special values for b and c

Values of b Values of c1 Values of c2 Values of c3 Values of c4 Relations

2 .0; b1/ � � 2 .0; 1=2/ > 1=2 c3 < c4
b1 � � 2 .0; 1=2/ 1=2 c3 < c4
2 .b1; b2/ � � 2 .0; 1=2/ 2 .0; 1=2/ c3 < c4
b2 2 .0; 1=2/ 2 .0; 1=2/ 2 .0; 1=2/ 2 .0; 1=2/ c1 D c2 < c3 < c4
2 .b2; 1=4/ 2 .0; 1=2/ 2 .0; 1=2/ 2 .0; 1=2/ 2 .0; 1=2/ c1 < c2 < c3 < c4
1=4 0 1=4 1=4 1=4 c1 < c2 D c3 D c4
2 .1=4; b3/ < 0 2 .0; 1=2/ 2 .0; 1=2/ 2 .0; 1=2/ c4 < c2 < c3
b3 < 0 2 .0; 1=2/ 1=2 2 .0; 1=2/ c4 < c2 < c3
2 .b3; b4/ < 0 2 .0; 1=2/ > 1=2 2 .0; 1=2/ c4 < c2 < c3
b4 < 0 2 .0; 1=2/ � 0 c4 < c2
2 .b4; 1=2� < 0 2 .0; 1=2/ < 0 < 0

where

�1 WD 2.b C c/.1 � 4b2/; �2 WD �2b C 8b3 C 8cb2 C 1˙ p
�;

�3 WD 2b
�
2c C 1˙ p

�
�
;

� WD .2c C 1/
�
1 � 4b � 2c C 16b2.b C c/

�
:

It is easy to check that �1; �2; �3 > 0 for � � 0. We will need the following special
values for b and c:

b1 D .
p
3 � 1/=4; b2 D .

p
2 � 1/=2; b3 D .

p
5 � 1/=4; b4 D p

2=4;

c1 WD �
1 � 2b �

p
4b2 C 4b � 1

�
=4; c2 WD �

1 � 2b C
p
4b2 C 4b � 1�=4;

c3 WD �
16b3 � 4b C 1

�
=
�
2 � 16b2

�
; c4 WD �

1 � 8b2
�
=.8b/:

Remark 13. In Table 1, we write down all values of b such that every ci , i D
1; : : : ; 4, is well defined and satisfies the condition ci 2 .0; 1=2�. Moreover, we show
some relations among ci , i D 1; : : : ; 4. It should also be noted that lim

b!b4�0
c3 D C1

and lim
b!b4C0

c3 D �1.

Further, we determine values of a1 D a2 D b and a3 D c with .a1; a2; a3/ 2 �.

Lemma 7. Given b; c > 0, there exists a degenerate point of system (5) if and only
if one of the following three conditions hold:

(i) c D c1, b 2 Œb2; 1=4/;
(ii) c D c2, b 2 Œb2; 1=2�;

(iii) c D c3, b 2 .0; b3�.
Proof. This follows from Lemma 4. In the case a1 D a2 WD b, a3 WD c, the function
Q.a1; a2; a3/ takes the form
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Q D .c C 1=2/.c � c1/.c � c2/.c � c3/
3:

Using Remark 13, it is easy to determine all values of b with ci 2 .0; 1=2�, i D
1; 2; 3. ut
Remark 14. It is easy to see that all points of curves (i) and (ii) in Lemma 7 (except
the point .1=4; 1=4; 1=4/) are regular points of the surface �. On the other hand,
curve (iii) is a part of an “edge” of � in .0; 1=2�3 (see also Figs. 3 and 4).

9.1 Classification of Singular Points of the Type
x0

3
D 2b.x0

1
C x0

2
/

At first, we consider

Lemma 8. Let b; c be such that � � 0. Then, depending on the choice of ˙p
�,

formula (29) gives singular points of (5) of the form

.x01 ; x
0
2/ D .�1q; �2q/; (30)

where q is a unique positive real number satisfying (4). Moreover, the following
formula is valid for J.x01 ; x

0
2/:

ı D ��
2b.1� 4b2/.b C c/

�
2c C 1˙ p

�
�2
q2
:

Proof. Use Lemmas 1 and 2 where in (19) we substitute a1 D a2 D b, a3 D c

and .x01 ; x
0
2; x

0
3/ as in (29). The existence and the uniqueness of a suitable q follows

from Remark 1. ut
Using Lemmas 7 and 8, we can find all possible degenerate singular points (30)

of system (5).

Lemma 9. For singular points (30) of system (5), the following assertions hold:

(i) There are no degenerate singular points for b 2 Œb2; 1=4/, c D c1 and for
b 2 Œb2; 1=2� n f1=4g, c D c2

(ii) All singular points are degenerate (semi-hyperbolic) saddles for b 2 .0; b3� n
f1=4g, c D c3.

Proof. For singular points (30), we get � D 2.2c C 1/.8b2 � 1/.c � c3/.

(i) Recall that c2 D c3 only for b D 1=4 by Remark 13; hence, � ¤ 0 for c D c2,
b 2 Œb2; 1=2�nf1=4g. By Remark 13, there are no values of b such that c1 D c3.
Then, by the same reason as above,� ¤ 0 for c D c1, b 2 Œb2; 1=4/. Therefore,
ı ¤ 0 by Lemma 8.
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Table 2 Types of singularities in the case � � 0

Values of c with Values of c with Values of c giving
hyperbolic saddles semi-hyperbolic saddles linearly zero saddles

Values of b � > 0 � D 0 � D 0

b 2 .0; 1=4/ c 2 .0; c3/ c D c3 �
b D 1=4 c 2 .0; 1=4/ � c D c3 D 1=4

b 2 .1=4; b3/ c 2 .0; c3/ c D c3 �
b D b3 c 2 .0; c3/ c D c3 D 1=2 �
b 2 .b3; 1=2/ c 2 .0; 1=2� � �

(ii) In this case, � D 0 for singular points of (5) given by (30). Then, ı D 0 by
Lemma 8. As the calculations show the matrix of linear parts J D J.x01 ; x

0
2/

has the form J D k0

�
1 1

1 1

�
, where

k0 WD �1
2

4b � 1
.2b C 1/.2b � 1/2q

:

By Lemma 6, we can reduce (5) to the canonical form (28). Note that the expressions
for correspondingX and Y in this case are too big to be included here. Taking into
account Remark 12, we have

p2;0 D 0; p1;12 C p3;0 D �1
8

.8b2 � 1/3

b.4b � 1/.2b � 1/4.2b C 1/2q3
:

The case b 2 .0; 1=4/. Note that p1;12 C p3;0 < 0 in this case. Since k0 > 0, then
e3 D p1;12 C p3;0 < 0, and by Lemma 6 we have saddles.

The case b 2 .1=4; b3�. In this case, p1;12Cp3;0 > 0. Since k0 < 0, then system
(5) satisfies the conditions of Remark 11; so, e3 D �p1;12 �p3;0 < 0, and we have
saddles in this case too.

Note that in the above formulas, we assumed that the corresponding exact values
of q are the same as in Remark 1. ut

Theorem 9. Let � � 0. Then singular point (30) of system (5) has one of the types
of singularities depicted in Table 2.

Proof. Note that � > 0 for b 2 .0; b3�, c 2 .0; c3/ and for b 2 .b3; 1=2/, c 2
.0; 1=2�. Lemma 8 implies ı < 0 for � > 0. Now, it suffices to take into account
Lemma 9 and Theorem 3. ut
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Table 3 The sign of the value D

Values of b Values of c for D < 0 Values of c for D D 0 Values of c for D > 0

b 2 .0; b2/ � � c 2 .0; 1=2�

b D b2 � c D c1 D c2 c ¤ c1 D c2
b 2 .b2; 1=4/ c 2 .c1; c2/, c D c1, c D c2 c 2 .0; c1/[ .c2; 1=2�

b 2 Œ1=4; 1=2� c 2 .0; c2/ c D c2 c 2 .c2; 1=2�

Table 4 The sign of the value 8b.b C c/� 1

Values of c Values of c Values of c
Values of b for 8b.b C c/ < 1 for 8b.b C c/ D 1 for 8b.b C c/ > 1

b 2 .0; b1/ c 2 .0; 1=2� � �
b D b1 c 2 .0; 1=2/ c D c4 D 1=2 �
b 2 .b1; b4/ c 2 .0; c4/ c D c4 c 2 .c4; 1=2�

b 2 Œb4; 1=2� � � c 2 .0; 1=2�

9.2 Classification of Singular Points of the Type x0
1

D x0
2

We need the following

Lemma 10. Let b; c be such that either D WD 1 � 4.1 � 2c/.b C c/ � 0 for
� D 1C p

D, or 0 � D < 1 for � D 1 � p
D. Then, depending on the choice of

� D 1˙ p
D, formula (10) gives singular points of (5) of the form

.x01 ; x
0
2/ D .2.b C c/q; 2.b C c/q/; (31)

where q is a unique positive real number satisfying (4). Moreover, the following
formulas are valid for J.x01 ; x

0
2/:

� D 2.1� 2.b C c//

�q
; ı D D ˙ p

D

4.b C c/2�2q2

�
8b.b C c/ � �

�
: (32)

Proof. This follows from Lemmas 1 and 2 where in (19) we substitute a1 D a2 D b,
a3 D c, and .x01 ; x

0
2 ; x

0
3/ as in (10). Remark 1 guarantees the existence and

uniqueness of a suitable q. ut
Formulas (32) show that we need to analyze the signs of D, 8b.b C c/ � 1, and

D1 WD D � �
8b.b C c/ � 1�2.

Lemma 11. The signs of the values D, 8b.b C c/ � 1, and D1 are analyzed in
Tables 3, 4, and 5 respectively, where the sign “�” means that such a corresponding
combination does not occur.

Proof. The sign of D. D can be represented as a quadratic polynomial D D
8c2 C 4.2b � 1/c C 1 � 4b with respect to c, having discriminant 4b2 C 4b � 1.
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Table 5 The sign of the value D1

Values of b Values of c for D1 < 0 Values of c for D1 D 0 Values of c for D1 > 0

b 2 .0; b3/ c 2 .0; c3/ c D c3 c 2 .c3; 1=2�

b D b3 c 2 .0; 1=2/ c D c3 D 1=2 �
b 2 .b3; 1=2� c 2 .0; 1=2� � �

For b 2 .0; b2/, this discriminant is negative, and we have D > 0 for all
c 2 .0; 1=2�. For b D b2 we have D � 0, where D D 0 only for c D .2 � p

2/=4.
It is clear that for all b 2 .b2; 1=2�, the equationD D 0 has real roots c1, c2. Recall
that the signs of c1 and c2 were studied in Remark 13; hence, Table 3 is confirmed.

The signs of 8b.b C c/ � 1 and D1. It is clear that equations 8b.b C c/ � 1 D 0

and D1 D 0 are equivalent to c D c4 and c D c3, respectively. Using Remark 13,
we complete the proof of the lemma. ut

Using Lemmas 7 and 10, we will find in Lemma 12 and Theorem 10 all possible
degenerate singular points of system (5) of type (31).

Lemma 12. All singular points (31) of system (5) are degenerate (semi-hyperbolic)
saddles for b 2 .0; b3� n f1=4g, c D c3 (case .i i i/) of Lemma 7).

Proof. Recall that in this case singular points (31) of (5) correspond to family (10)

for � D 1 ˙ p
D. Since D D .4b�1/2

.8b2�1/2 > 0 for b ¤ 1=4 and c D c3, then
according to Lemma 10 the equality ı D 0 implies 8b.b C c3/ � � D 0, i.e.,

� D 4b.2b � 1/
8b2 � 1 > 0. For this �, the matrix J has the form J D k3

	
1 1

1 1



, where

k3 WD 4b�1
.2b�1/q .

Using Remark 12, we have

p2;0 D 0; p1;12 C p3;0 D 1

8

.8b2 � 1/3.2b C 1/

b.4b � 1/.2b � 1/q3
:

By the same manner as in Lemma 9, it is easy to prove that all singular points are
saddles for b 2 .0; b3� n f1=4g, c D c3.

Note that in the above formulas we assumed that the corresponding exact values
of q are determined as in Remark 1. ut
Remark 15. A more detailed analysis of Lemma 12 gives in addition the following:
For � D 1� p

D (resp. � D 1C p
D), the semi-hyperbolic saddle case occurs for

b 2 .0; 1=4/ (resp. b 2 .1=4; b3�), c D c3.

Theorem 10. Let D D 0. Then singular points (31) of system (5) are of types
depicted in Table 6.
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Table 6 Types of singularities in the case D D 0

Values of c with Values of c with
semi-hyperbolic saddle-nodes, linearly zero saddles,

Values of b D D 0 D D 0

b 2 Œb2; 1=4/ c D c1, c D c2 �
b D 1=4 � c D c2 D 1=4

b 2 .1=4; 1=2� c D c2 �

Proof. The case b ¤ 1=4. By Lemmas 7 and 9, we conclude that the equality ı D 0

holds only for singular points of type (31). In fact, as the calculations show D D 0

at c D ci , i D 1; 2, hence ı D 0 by Lemma 10.
Now we will determine the type of such degenerate singular points of (5). For

c D ci , i D 1; 2, we easily get that J D ki

	
1 �1

�1 1



, where

k1 WD 1 � 2b C p
4b2 C 4b � 1

2q
; k2 WD 1� 2b � p

4b2 C 4b � 1

2q
:

Using Remark 10, we can reduce system (5) to the canonical form (28), and taking
into account Remark 12, we can determine the first coefficient p2;0 in the Taylor
series (17) of the functionX corresponding to this canonical form.

The case b 2 Œb2; 1=4/, c D c1 (case (i) of Lemma 7). By a series of calculations,
we find

p2;0 D 1C 4c1 � 8c21
16b.bC c1/q2

:

It is clear that p2;0 > 0 because of 0 < c1 < 1=2 by Remark 13 in this case. Since
k1 > 0, then e2 D p2;0 > 0, by Lemma 6 we have saddle-nodes.

The case b 2 Œb2; 1=2�nf1=4g, c D c2 (case (ii) of Lemma 7). The first coefficient
p2;0 is

p2;0 D 1C 4c2 � 8c22
16b.bC c2/q2

:

Since 0 < c2 < 1=2 by Remark 13, then p2;0 > 0. If b 2 Œb2; 1=4/, then k2 > 0

and e2 D p2;0 > 0. Hence by Lemma 6, we have saddle-nodes. If b 2 .1=4; 1=2�,
then k2 < 0 and e2 D �p2;0 < 0 by Remark 11. Therefore, such b also gives
saddle-nodes.

The case b D 1=4 is covered by Theorem 3. ut

Theorem 11. Let D > 0, � D 1 C p
D. Then singular points (31) of system (5)

are of types depicted in Table 7.
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Table 7 Types of singularities in the case D > 0, � D 1C p
D

Values of c with Values of c with Values of c with
hyperbolic stable nodes, hyperbolic saddles, semi-hyperbolic saddles,

Values of b ı > 0, � < 0 ı < 0 ı D 0

b 2 .0; b2/ � c 2 .0; 1=2� �
b 2 Œb2; 1=4/ � c 2 .0; c1/[ .c2; 1=2� �
b D 1=4 � c 2 .1=4; 1=2� �
b 2 .1=4; b3/ c 2 .c2; c3/ c 2 .c3; 1=2� c D c3
b D b3 c 2 .c2; c3/ � c D c3 D 1=2

b 2 .b3; 1=2� c 2 .c2; 1=2� � �

Table 8 Types of singularities in the case D > 0, � D 1� p
D

Values of c with Values of c with Values of c with
hyperbolic unstable nodes, hyperbolic saddles, semi-hyperbolic saddles,

Values of b ı > 0, � > 0 ı < 0 ı D 0

b 2 .0; b2/ c 2 .0; c3/ c 2 .c3; 1=2/ c D c3
b 2 Œb2; 1=4/ c 2 .0; c1/[ .c2; c3/ c 2 .c3; 1=2/ c D c3
b D 1=4 � c 2 .1=4; 1=2/ �
b 2 .1=4; 1=2� � c 2 .c2; 1=2/ �

Proof. According to Lemma 10 for � D 1 C p
D the singular points .x01 ; x

0
2/ of

system (5) have form (31) with q > 0 determined by Remark 1.
By Theorem 1, the nondegenerate node case occurs only when ı > 0 in (32).

Note that the inequalityD C p
D < 0 has no solutions. Hence, ı > 0 implies

D > 0; D < .8b.b C c/ � 1/2 ; 8b.bC c/ � 1 > 0: (33)

The solutions of these inequalities were obtained in Lemma 11; so, we easily find
the solutions of system (33), depicted in the first and the second columns of Table 7.

Now, we analyze the sign of � in (32). Since 2.bCc2/�1 > 0 at b 2 .1=4; 1=2�,
then for b; c ensuring nodes we obtain 2.bCc/�1 > 2.bCc2/�1 > 0. Therefore,
� < 0; hence, all nodes are stable by Theorem 1.

The contents of the fourth column is known from Lemma 12 and Remark 15.
By Theorem 1, the nondegenerate saddle case occurs only if ı < 0. By Lemma 11
(excepting the values of b and c with D � 0), we easily get the third column of
Table 7. ut

Theorem 12. Let D > 0, � D 1 � p
D. Then singular points (31) of system (5)

are of types depicted in Table 8.

Proof. According to Lemma 10 for � D 1 � p
D, the singular points .x01 ; x

0
2/ of

system (5) have form (31) with q > 0 determined by Remark 1. It is easy to show
that � D 1 � p

D > 0 only for D > 0 and c < 1=2. Therefore, we may suppose
that 0 < c < 1=2.
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Since the inequality D � p
D > 0 has no solutions, then ı > 0 is possible in

(32) only if D � p
D < 0 and 8b.b C c/ � 1C p

D < 0. Note that the inequality
D � p

D < 0 is equivalent to D > 0 at 0 < c < 1=2. Therefore the inequality
ı > 0 is equivalent to system of the first and the second inequalities of (33) and
8b.bC c/� 1 < 0: Using Lemma 11, we can find that ı > 0 has the solutions given
in the first and the second columns of Table 8.

Now, we analyze the sign of � in (32). Since 2.b C c3/ � 1 < 0 at b 2 .0; 1=4/,
then for b; c ensuring nodes we have 2.bC c/� 1 < 2.bC c3/� 1 < 0. Therefore,
� > 0 and all nodes are unstable according to Theorem 1.

The contents of the fourth column are known from Lemma 12 and Remark 15. By
Theorem 1, the nondegenerate saddle case occurs if ı < 0. By Lemma 11 (excepting
the values of b and c with D � 0), we easily get the third column of Table 8. ut

9.3 Singular Points for .a1; a2; a3/ 2 � \ .0; 1=2�3

with a1 D a2

It is easy to see that in the nondegenerate cases (.a1; a2; a3/ 62 �), Theorems 9, 11,
and 12 are consistent with Theorem 7 stating that for every .a1; a2; a3/ 2 .0; 1=2/3n
�, system (5) has either one node and three saddles or two saddles.

Now, we consider singular points for .a1; a2; a3/ 2 � \ .0; 1=2�3 with a1 D a2.
From Lemma 7 and Remark 14, we see that (a1 D a2 D b and a3 D c) all points
of the curves c D c1 WD �

1 � 2b � p
4b2 C 4b � 1

�
=4, b 2 Œb2; 1=4/ and c D

c2 WD �
1 � 2b C p

4b2 C 4b � 1
�
=4, b 2 Œb2; 1=2� (cases (i) and (ii) of Lemma 7)

are regular points of the surface � (except the point .1=4; 1=4; 1=4/), but the curve
c D c3 WD �

16b3 � 4b C 1
�
=
�
2 � 16b2

�
, b 2 .0; b3� (case (iii) of Lemma 7) is one

of the three “edges” of � (see Figs. 3 and 4).

Theorem 13. If .a1; a2; a3/ D .b; b; c/ 2 � \ .0; 1=2�3, then the following
assertions about the singular points of system (5) hold:

(i) There exists a nondegenerate singular point of system (5) if and only if b 2
Œb2; 1=4/, c D c1 or b 2 Œb2; 1=4/ [ .1=4; 1=2�, c D c2. Moreover, in both
these cases (5) has exactly two nondegenerate saddles of form (30).

(ii) If b 2 Œb2; 1=4/, c D c1 or b 2 Œb2; 1=4/[ .1=4; 1=2�, c D c2, then system (5)
has exactly one degenerate singular point that is a saddle-node of form (31).

(iii) For every fixed b 2 .0; b3� n f1=4g and c D c3, system (5) has exactly two
(degenerate) singular points that are semi-hyperbolic saddles of forms (30)
and (31).

(iv) There is exactly one (degenerate) singular point .1; 1/ for .a1; a2; a3/ D
.1=4; 1=4; 1=4/, that is a linearly zero saddle.

Proof. Recall that by Lemma 7, the equalities c D ci , i D 1; 2; 3, are necessary for
.b; b; c/ 2 � \ .0; 1=2�3. Recall that c1 ¤ c3 and c2 ¤ c3 for all b ¤ 1=4.
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(i) By Theorem 9, system (5) has two nondegenerate saddles of form (30) in both
cases b 2 Œb2; 1=4/, c D c1 or b 2 Œb2; 1=4/ [ .1=4; 1=2�, c D c2. Now, we
prove that ı D 0 for all other admissible cases of the parameters b; c. Consider
the case c D c3. Then, we have � D 0 (see Table 2) and 8b.b C c/ � � D 0

(see the proof of Lemma 12). Therefore, by Lemmas 8 and 10, we have ı D 0

for both cases (30) and (31) of singular points. Next, consider the cases c D c1
and c D c2. SinceD D 0, then by Lemma 10 we have ı D 0 for singular points
of form (31). This proves (i).

Let us consider case (ii). By Theorem 10, there exists exactly one saddle-node
for b 2 Œb2; 1=4/, c D c1, and also for b 2 Œb2; 1=4/[ .1=4; 1=2�, c D c2.

Cases (iii) and (iv) are covered by Lemmas 9, 12 and Theorem 3. ut

Conclusion

Theorem 7 gives a general picture for types of singular points of system (5) with
.a1; a2; a3/ 2 .0; 1=2/ � .0; 1=2/ � .0; 1=2/. Nevertheless, it would be interesting
to study “degenerate” sets of parameters .a1; a2; a3/ from the set � \ .0; 1=2�3.
For the point .a1; a2; a3/ D .1=4; 1=4; 1=4/, we obtained suitable results in Sect. 4.
It should be noted that the point .a1; a2; a3/ D .1=4; 1=4; 1=4/ is a very special one
on the algebraic surface

� D f.a1; a2; a3/ 2 R
3 jQ.a1; a2; a3/ D 0g

(see Sects. 5 and 7). The following questions are worth for further investigation.

Question 1. Find a tool to study points .a1; a2; a3/ of � for determining the type
of singular points .x1; x2/ of system (5).

Note that this question is completely solved (see Theorem 13) for the case ai D
aj , i ¤ j , for .a1; a2; a3/ 2 �\ .0; 1=2�3. We specify the above question for some
other partial cases.

Question 2. Study in detail the case ak D 1=2, ai ; aj 2 .0; 1=2�, i ¤ j ¤ k ¤ i .

Question 3. What is the number and corresponding types of singular points of
system (5) for regular points (i.e., points .a1; a2; a3/ with rQ.a1; a2; a3/ ¤ 0) on
the surface � \ .0; 1=2/3?
Question 4. Are there regular points .a1; a2; a3/ of the surface � \ .0; 1=2/3 with
at least two degenerate singular points of (5)?
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Gaussian Mean Curvature Flow
for Submanifolds in Space Forms

Aleksander Borisenko and Vladimir Rovenski

Abstract In this chapter we investigate the convergence of the mean curvature flow
of submanifolds in Euclidean and hyperbolic spaces with Gaussian density. For
Euclidean case, we prove that the flow deforms a closed submanifold with pinching
condition to a “round point” in finite time.

Keywords Riemannian metric • Mean curvature flow • Density • Conformal
transformation
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1 Introduction

The mean curvature flow (MCF) was proposed by W. Mullins (1956) to describe the
formation of grain boundaries in annealing metals. Brakke [5] introduced the motion
of a submanifold by its MCF in arbitrary codimension and constructed a generalized
varifold solution for all time. There are many works for the classical solution
of MCF on hypersurfaces. Huisken [7] showed that if the initial hypersurface
in the Euclidean space is compact and uniformly convex, then MCF converges
to a “round point” in a finite time. He also studied MCF of hypersurfaces in
a Riemannian manifold satisfying a pinching condition in a sphere, see [1].
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For MCF of submanifolds with higher codimension, fruitful results were obtained
for submanifolds with low dimension or admitting some special structures, see
survey [11, 12]. Andrews and Baker [2] proved a convergence theorem for MCF of
closed submanifolds satisfying a suitable pinching condition in the Euclidean space.
Baker [3] and Liu–Xu–Ye–Zhao [8, 9] generalized Andrews-Baker’s convergence
theorem [2] for MCF of submanifolds in the Euclidean space to the case of MCF
of arbitrary codimension in spherical and hyperbolic space forms and Riemannian
manifolds.

Morgan [10] introduced manifolds with density, which provides a new concept
of curvature. A. Borisenko and V. Miquel considered MCF with density for hyper-
surfaces in Euclidean space.

In this chapter we study the convergence of the MCF of submanifolds in
Euclidean and hyperbolic spaces with Gaussian density. For Euclidean case, we
prove that the flow deforms a closed submanifold satisfying pinching condition
to a “round point” in finite time. For hyperbolic case, we find maximal radius (or
minimal normal curvature) of central hypersphere in a hyperbolic space that shrinks
to the origin under the MCF with Gaussian density; moreover, for central spheres of
smaller radius we estimate the collapsing time.

2 The MCF in Riemannian Manifolds and Space Forms

Consider immersions of a closed manifoldMn into a space form:

Ft W Mn ! NMnCp.c/; Ft .q/ D F.q; t/; q 2 Mn; t 2 Œ0; T /:

Denote by ht the second fundamental tensor, and by Ht D Tr g ht the mean
curvature vector field of the immersions (g is the induced metric on M ). The MCF
is the evolution equation (see [2, 11])

@tF D H; (1)

where F0 W Mn ! NMnCp.c/ provides initial data.

Remark 1. The general form of the MCF is

.@tF /
? D H; (2)

where ? denotes the projection onto the normal space of Ft .M/. This equation is
equivalent to (1) up to diffeomorphisms ofM (see [12]; the proof is the same as for
p D 1 in [6]).

Let NMnCp.c/ be endowed with a continuous density function f D e , where
 2 C2. NMnCp.c//. The generalization of the mean curvature of submanifolds in
such spaces, obtained by the first variation of the volume, is given in [10] as

H D H � .r /?:
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It is natural to study flows governed byH instead of H :

@tF D H � .r /?: (3)

Any n-dimensional submanifold satisfies jhj2 � 1
n
jH j2 (where jH j and jhj are

norms), and totally umbilical submanifolds give the equality.

Lemma 1 ([13]). Let Mn be an n-dimensional submanifold in an .n C p/-
dimensional Riemannian manifold NMnCp and � a tangent two-plane on Tq.M/

at a point q 2 M . Choose an orthonormal two-frame fe1; e2g at q such that
� D spanfe1; e2g. Then

K.�/ � 1

2

	
2 NKmin C H2

n � 1
� jhj2



C
XnCp

aDnC1; j>i
X

.i;j /¤.1;2/.h
a
ij /

2 :

Recently, Andrews–Baker [2] proved convergence theorem for the MCF of
closed submanifolds satisfying a pinching condition in the Euclidean space.

Theorem A ([2]). Let n � 2, and suppose that F0.Mn/ is a closed submanifold
smoothly immersed in R

nCp. If F0.Mn/ has H ¤ 0 everywhere and satisfies

jhj2 �
(

4
3 n

jH j2; if n D 2; 3;

1
n�1 jH j2; if n � 4;

(4)

then MCF (1) has a unique smooth solution Ft W Mn � Œ0; T / ! R
nCp on a finite

maximal time interval, and Ft converges uniformly to a point q 2 R
nCp as t ! T .

The rescaled maps QFt D Ft�qp
2n.T�t / converge in C1 as t ! T to an embedding QFT

with image equal to a regular unit n-sphere in some .nC 1/-dimensional subspace
of RnCp. If n � 4, pinching ratio (4) is optimal.

Liu–Wei–Zghao [8] extended Theorem A to submanifolds in hyperbolic spaces.

Theorem A0 ([8]). Let F0.Mn/ .n � 2/ be a closed submanifold smoothly
immersed in hyperbolic space H

nCp.c/ of constant curvature c < 0. If F0.Mn/

satisfies

jhj2 �
(

4
3 n

jH j2 C n
2
c; if n D 2; 3;

1
n�1 jH j2 C 2 c; if n � 4;

(5)

then MCF (1) with F0 as initial value has a unique smooth solution Ft W Mn �
Œ0; T / ! H

nCp.c/ on a finite maximal time interval, and Ft .M
n/ converges

uniformly to a “round point” as t ! T .
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3 Gaussian MCF in Euclidean Space

The Gaussian density e� n
2 �

2jxj2 (for some � > 0) in R
nCp is rotational invariant

and corresponds to the radial function

 .x/ D �n
2
�2jxj2: (6)

In this case, r .x/ D �n�2x for all x 2 R
nCp. Along the submanifold F.M/ we

have .r /? D �n�2F?. Since H D H � .r /?, see [10], the MCF in R
nCp

with Gaussian density is defined by

@tF D H C n�2F? : (7)

Lemma 2 (see [4]). Let  be a radial function on R
nCp. The vector field r is

conformal if and only if

 .x/ D ˙ n

2
�2jxj2 .hence; r D ˙n�2 x/ for some � > 0:

Borisenko–Miquel [4] proved convergence theorem for the MCF with Gaussian
density on a hypersurface in R

nC1.

Theorem B ([4]). Let F0 W M ! R
nC1 be a convex hypersurface with a chosen

unit normal vector N , which evolves under MCF with Gaussian density .see (7)
with p D 1/

@tF D .H C n�2hF;N i/N: (8)

Then its evolution Ft remains convex for all time t 2 Œ0; T / where it is defined.
If h � �g and h.v; v/ > �g.v; v/ in some vector at some point v, then there is

a point q0 inside the convex domain F0.M/ such that F0.M/ lies in the ball B with
center q0 of radius 1=�. Moreover,

1. T < 1 and h > �g for t 2 .0; T /,
2. Ft .M/ belongs to a ball of radius 1=� all time and shrinks to a “round point”

when t ! T .

Lemma 3 ([2]). If a solution Ft W Mn ! R
nCp .0 � t < T / of MCF (1) satisfies

jhj2 C a < C jH j2 for some constants C � 1
n

C 1
3 n

and a > 0 at t D 0, then this
remains true for all 0 � t < T .

Using Theorem A, we extend Theorem B for submanifolds in Euclidean space.

Theorem 1. Let F0 W Mn ! R
nCp be a complete smoothly immersed submanifold

with the condition

jhj2 C ˇ2 � C jH j2 WD
(

4
3 n

jH j2; if n D 2; 3;

1
n�1 jH j2; if n � 4;

(9)
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where

ˇ2 � .��/2
nC p

nC p C 1
�
� 1

n � 1
� C

�
jH j2: (10)

Then the MCF with the Gaussian density in R
nCp, (7), has a unique smooth solution

Ft W Mn � Œ0; T / ! R
nCp on a finite maximal time interval, and Ft converges

uniformly to a “round point” when t ! T .

Proof. Its main steps coincide with ones in the proof of Theorem B.

By Lemma 1, at each point q 2 Mn the smallest sectional curvatureKmin satisfies

Kmin.q/ � 1

2

� 1

n � 1
jH.q/j2 � jh.q/j2

�
: (11)

Substituting jhj2 from our assumption (9) into inequality (11), for q 2 M we obtain

Kmin.q/ � 1

2

 	
1

n � 1
� C



jH j2 C ˇ2

!
:

Note that 1
n�1 � C � 0. By Theorem of Bonnet, Hopf-Rinow and Myers for t D 0,

we have

diamM � �
p
2 Qd; Qd D

"	
1

n � 1 � C



jH j2 C ˇ2

#�1=2
:

Note that the inner diameter of M is greater than or equal to diameter d of F0.M/.
The Yung’s Theorem (1901) tells us that every set K � R

nCp of diameter d is

contained in a ball in R
nCp of radius r0.K/ D

q
nCp

2.nCpC1/ d . Thus, F0.M/ is

contained in a ball in R
nCp of radius

r0 � �

s
nC p

nC p C 1
Qd: (12)

Recall that if F0.M/ is contained in a ballB.r0/ of radius r0 > 0, then flow (1) must
develop singularity (collapsing to a point) before the time T D r20 =.2 n/, see [2].

Condition (10) for ˇ yields the inequality r20 =.2 n/ < 1=.2 n�
2/.

By Proposition 1, the MCF OFOt of (14) is equivalent to the flow Ft of (7) for all
Ot 2 Œ0; OT �.

The submanifold OF0.M/ D F0.M/ satisfies the conditions of Theorem A. Then
(1) has a unique smooth solution OFOt W Mn�Œ0; OT / ! R

nCp on a finite maximal time
interval, and it converges uniformly to a point Oq 2 R

nCp as Ot ! OT . The rescaled
maps converge in C1 as Ot ! OT to an embedding with image equal to a regular
n-sphere in some .nC 1/-dimensional subspace of RnCp.
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From equivalence of flows (14) and (7) we conclude that Ft converges in a finite
time uniformly to a point q 2 R

nCp . Since submanifolds OFOt .M / and Ft .M/ are
homothetic, we obtain that Ft converges to a “round point” q 2 R

nCp. ut
By the next proposition, one may transfer any result on MCF (1) to a result on

flow (3) with  given in (6).

Proposition 1 (For p D 1, see [4]). MCF (7) in R
nCp with Gaussian density is

equivalent, up to tangential diffeomorphisms, with the parameter change

Ot D � 1

2 n�2

�
e�2n�2t � 1

�
(13)

to the MCF in R
nCp

@ OF
@ Ot D OH

�
for Ot < 1

2 n�2

�
: (14)

Proof. The one-parameter family of diffeomorphisms �t.x/ D e�n�2tx is the
solution of the ODE

d

dt
�t .x/ D �n�2�t .x/

with the initial condition �0.x/ D x and is associated with the vector field X.x/ D
�n�2x on R

nCp. If F flows by the mean curvature with density f D e� 1
2 n�

2jxj2 ,
then the flow OFt D �t ı Ft has the form

OF D e�n�2tF: (15)

To check this and to find the corresponding reparametrization of time, we compute

@t OF D �n�2e�n�2tF C e�n�2t .H C n�2F?/

D �n�2e�n�2tF> C e�n�2tH D �n�2 OF> C e�n�2tH:

By (15), the second fundamental tensors of OF and F are related by Oh D e�n�2th;
hence, OH D e n�

2tH . Therefore, the evolution for OF is

@t OF D �n�2 OF> C e�2n�2t OH: (16)

If we define Ot by (13), we get dt=d Ot D .d Ot=dt/�1 D e 2 n�
2t , and

@ OF
@Ot D @ OF

@t
� dt
d Ot D �n�2e 2n�2t OF> C OH D 1

2

�
Ot � 1

2 n�2

��1 OF> C OH: (17)
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Flow (17) is, up to a tangential diffeomorphism (see Remark 1), equivalent to the
MCF equation @t OF D OH for Ot < OT D 1

2
n��2 (because at OT the tangential

diffeomorphism giving the equivalence is not well defined: the time Ot D OT
corresponds in (13) to t D 1). ut
Remark 2. For Euclidean case, we find t D � 1

2 n�2
log.1 � 2 n�2 Ot /, and the

converse of (15) is

F D e n�
2t OF D .1 � 2 n�2t/�1=2 OF :

In [3] Baker proved a convergence result for the MCF of submanifolds in a sphere
SnCp.c/ of constant curvature c > 0. Using this, one may deduce the convergence
theorem for the MCF for closed submanifolds satisfying a pinching condition in the
sphere with Gaussian density.

4 Gaussian MCF in Hyperbolic Space

Let r be the distance function from a fixed point q (the origin) on H
nCp WD

H
nCp.�1/.
The Gaussian density e n�

2.1�cosh r/ (for some� > 0) in a hyperbolic space HnCp
is rotational invariant and corresponds to the radial function

 .x/ D �n�2.cosh r.x/ � 1/: (18)

In this case, r .x/ D �n�2.sinh r.x//@r for all x 2 H
nCp.

The MCF with Gaussian density for a submanifold F0 W Mn ! H
nCp is

@tF D H C n�2.sinh r.F //@?
r : (19)

For a hypersurface F0 W Mn ! H
nC1 with a chosen unit normal vectorN this reads

@tF D �
H C n�2 sinh r.F /h@r ; N i�N: (20)

Lemma 4. (i) Let  D ' ı r be a radial function on H
nCp .for a function ' W

RC ! R of class C1/. Then the vector field r is conformal if and only if
'.r/ D ˙n�2.cosh r � 1/ for some � 2 RC .

(ii) In spherical coordinates .r; Qx/ in H
nCp the conformal diffeomorphisms belong-

ing to X.x/ D �n�2.sinh r.x//@r have a form Q�t .r; Qx/ D .�t .r/; Qx/, where

�t.r/ D 2 arctanh
�

tanh.r=2/ e�n�2t �: (21)
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Proof. (i) We have r D ' 0 rr . The condition for the vector field r being
conformal, that is, Hess D �g, translates into

' 00rr ˝ rr C ' 0 Hessr D �g: (22)

The hessian is defined as a symmetric .0; 2/-tensor such that Hess .X; Y / D
g.S.X/; Y /, where S.X/ D rXr is a self-adjoint .1; 1/-tensor.

The normal curvature of a sphere of radius r in H
nCp is coth r . Hence,

Hessr D .coth r/.g � rr ˝ rr/:

Collecting terms with g and rr ˝ rr in (22), we obtain the system

' 00 D .coth r/ ' 0; � D .coth r/ ' 0:

The solution of the first ODE with the initial condition '.0/ D 0 has the
required form. Notice that ' 	 
 1

2
n�2r2 for r 	 0, see Lemma 2.

(ii) The one-parameter family �t .r/ of conformal radial diffeomorphisms belong-
ing to QX.r/ D �n�2.sinh r/@r is the solution of the Cauchy’s problem

d

dt
�t .r/ D �n�2 sin h�t.r/; �0.r/ D r:

The unique solution has form (21). ut
Remark 3. One may represent HnCp as a unit ball B.0; 1/ � R

nCp with the metric

ds2 D 4 dx2

.1 � x2/2
; where x D .x1; : : : ; xnCp/; x2 D

X
i
x2i :

For the hyperbolic radial distance r we have dr D 2 djxj
1�x2 and

r D 2 arctanh.jxj/ ” jxj D tanh.r=2/:

Hence, sinh r D 2 jxj
1�x2 , and the unit radial vector is @r D 1�x2

2 jxj F .

If F flows by the mean curvature with density f D e n�
2.1�cosh r/, for the density

we obtain

r D �n�2.sinh r.F // @r D �n�2F :

Then the flow OFt D �t .Ft /, where �t .x/ D e�n�2tx, has the form, see (15),

OF D e�n�2tF : (23)
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The derivation in t yields

@t OF D @t .e
�n�2tF / D e�n�2t

�
.HCn�2F?/�n�2F � D e�n�2tH�n�2e�n�2tF> :

Note that coth r D 1Cx2
2 jxj and coth Or D 1Cx2e�2 n�2t

2 jxj e�n�2t
, where Or D 2 arctanh.e�n�2t jxj/

due to (23). Since the mapping of HnCp into itself given in (23) is conformal, for
the mean curvature vectorsH and OH of submanifolds F and OF we have

OH D �H; where � D coth Or
coth r

D 1C x2e�2n�2t

.1C x2/ e�n�2t :

Thus, e�n�2tH D .1Cx2/ e�2n�2t

1Cx2e�2n�2t
OH and the PDE above reduces to

@t OF D .1C x2/ e�2n�2t

1C x2e�2n�2t
OH � n�2 OF>:

After suitable tangential transformation of Mn, we obtain the PDE that general-
izes (1):

@t OF D 1C x2

e 2n�
2t C x2

OH : (24)

Note that (24) reduces to MCF (14) when � ! 0.
In the next proposition we find maximal radius (or minimal normal curvature)

of central hypersphere in a hyperbolic space that shrinks to the origin under the
MCF with Gaussian density; for central spheres of smaller radius we estimate the
collapsing time.

Proposition 2. Let either the radius r0 of the central hypersphere Sn.r0/ � H
nC1

or its normal curvature k satisfy the certain of inequalities

cosh r0 < �1 WD 1Cp
1C 4�4

2�2
; k > �

p
�1: (25)

Then Sn.r0/ shrinks to the origin under MCF (20) with Gaussian density by the
time

T D 1

n
p
1C4�4 ln

.1�2�2Cp1C4�4/.2�2 cosh r0�1C
p
1C4�4/

.2�2�1Cp1C4�4/.1�2�2 cosh r0C
p
1C4�4/

<
�1

n�2.�1 C 1/
� cosh r0 � 1
�1� cosh r0

: (26)

The central sphere of radius r1 D arccosh.�1/ is a fixed point of the flow. The central
sphere of radius r > r1 expands without limit.
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Proof. The mean curvature of the central hypersphere Sn.r/ of radius r is H D
�n coth r ; hence, N D @r and (20) reads as the ODE for the radius r.t/ > 0,

d

dt
r D �n coth r C n�2 sinh r; r.0/ D r0: (27)

The sphere shrinks to a point when

coth r � �2 sinh r > 0 , �2 cosh2 r � cosh r � �2 < 0:

The roots of quadratic equation �2�2 � � � �2 D 0 are �1;2 D 1˙
p
1C 4�4

2�2
.

The positive root �1 � 1, and the negative root �2 2 .�1; 0/. Hence, the central
sphere of radius r1 D arccosh.�1/ is a fixed point of the flow, the central sphere
of radius r > r1 expands without limit, and the central sphere of radius r < r1
shrinks to the origin. The normal curvature of the r1-sphere is k1 D coth r1 D
cosh r1=

p
cosh2 r1 � 1 D

r
1C

p
1C 4�4

2
> �.

Assuming �.t/ D cosh r.t/ > 1 and �o D cosh r0, we reduce (27) to

d�=dt D n.�2�2 � � � �2/ D n�2.� � �1/.� � �2/; �.0/ D �o:

We have

1

.� � �1/.� � �2/
D � 1

�1 � �2
� 1

�1 � y
C 1

y � �2
�
;

Z �

�o

dy

.y � �1/.y � �2/
D n�2t:

If the initial value satisfies �o 2 .1; �1/, then the integral above is log y��2
�1�y j��o D

n�2.�1 � �2/ t ; hence, the solution �.t/ is a decreasing function

�.t/ D �2 ˛ C �1

˛ C 1
; where ˛ D �1 � �o

�o � �2
e n�

2.�1��2/ t :

Note that lim
t!1�.t/ D �2 < 0 < 1 < �1 D lim

t! �1 �.t/. The collapse r.T / D 0 at

t D T (i.e., �.T / D 1) appears at

T D 1

n�2.�1 � �2/ log
.�o � �2/.�1 � 1/

.�1 � �o/.1 � �2/
> 0;
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that is, (26). Using the inequality log.1Cy/ < y for y > 0 and relation �2 D �1=�1,
we obtain

T <
1

n�2.�1 � �2/

� .�o � �2/.�1 � 1/

.�1 � �o/.1 � �2/
� 1

�

D �o � 1
n�2.�1 � �o/.1 � �2/

D �1

n�2.�1 C 1/
� �o � 1

�1 � �o
:

Certainly, for initial value �o > �1, the solution �.t/ is a monotone increasing
function. ut
Remark 4. For the MCF of a hypersphere in H

nC1, the radius obeys the PDE
d
dt
r D �n coth r ; hence, cosh r.t/ D e�nt cosh r0 and the existence time is

QT D 1
n

log.cosh r0/, i.e., r. QT / D 0. For � D 0, flow (20) reduces to the MCF,
and in this case we have lim�! 0 T D QT . For the MCF of a submanifold Mn in
H
nCp .n; p > 1/, we have the course estimate QT < 1

n�1 r0, see [8]. We conjecture
that Theorem A0 can be extended to the convergence theorem (like Theorem 1) for
the MCF of closed submanifolds satisfying a pinching condition in the hyperbolic
space with Gaussian density.
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Cantor Laminations and Exceptional Minimal
Sets in Codimension One Foliations

Gilbert Hector

Abstract In this paper we deal with two types of questions concerning the structure
of foliations (or laminations) on compact spaces:

1. Describe generic properties of foliations and laminations and refine the known
ones,

2. Discuss the embeddability of n-dimensional minimal Cantor laminations as
minimal sets in codimension one foliations on compact .n C 1/-manifolds or
as closed sets in R

nC1 (or any simply connected .nC 1/-manifold).

The two questions are related by the fact that exceptional minimal sets in
codimension one present stronger generic constraints.
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2. Discuss the embeddability of n-dimensional minimal Cantor laminations as
minimal sets in codimension one foliations on compact .n C 1/-manifolds
(exceptional minimal sets) or as closed sets in R

nC1 (or any simply connected
.nC 1/-manifold).

The two questions are related by the fact that exceptional minimal sets in
codimension one present stronger generic constraints.

(1) Concerning the first item, recall that some property is generic for a foliation
or lamination if the union of all leaves sharing it is a residual set: the intersection
of a countable sequence of open dense sets. Historically, the first generic property
appeared in the literature states that for any foliation or lamination .M;F/ the
union of all leaves with trivial holonomy is a residual set M� (see [11] or [6]).
Another obvious property is that if a foliation admits a dense (or recurrent) leaf,
then its leaves are generically recurrent, the foliation being called totally recurrent.
Following a pioneering work of Ghys [8], Cantwell and Conlon showed in [4] (see
also [2]) that the leaves of a minimal foliation or lamination have generically the
same endset; moreover, there are only three possibilities, namely: they have 1, 2, or
a Cantor set of ends (situation similar to that of finitely generated infinite groups).

Our first goal will be to refine the results of [2, 4] and propose a new proof of
them. Indeed, given .M;F/ we will search for a residual set M� contained in M�
such that all leaves contained in M� have the same endset, and in a second step we
will describe the subset M�nM� when it is nonempty.

More precisely, we provide a very short proof for the following:

Theorem A. For any minimal lamination .M;F/ one of the following holds:

(i) there exists a residual subset M� � M� such that all leaves of M� have one
end or all have two ends,

(ii) all leaves of M� have a Cantor set of ends.

With similar arguments we also get an unexpected result of topological
genericity:

Theorem B. For any compact minimal lamination, the union of planar leaves is
residual when it is nonempty.

We will say that .M;F/ is end-rigid if all leaves without holonomy have the same
endset or equivalently ifM� D M�. By Theorem A, this is the case for any foliation
or lamination having generically a Cantor set of ends, and a result of Blanc in [3]
asserts that it is also true for any foliation or lamination with generically two ends.

In order to describe the case of laminations with generically one end, we will use
the notion of vanishing separatrix, similar to the well-known notion of vanishing
cycle introduced by Novikov in [17]. Roughly speaking, a nontrivially vanishing
separatrix in an n-dimensional lamination is a closed connected .n � 1/-manifold
† embedded in a leaf L of F such that:
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(i) † separates L into two unbounded connected components,
(ii) † lifts homeomorphically to the nearby leaves, these lifts being generically null

homologous in the corresponding leaf.

The precise definition will be given in Definition 2.12. Our second result
concerns the structure of a particular class of laminations with generically one end:
the so-called generically tree-like laminations (see Definition 2.9):

Theorem C. For any compact minimal lamination .M;F/ which is generically
tree-like and with generically one end, one of the following holds:

(i) either F is end-rigid, i.e.,M� D M�,
(ii) or F supports a nontrivially vanishing separatrix.

There exist examples of both types: laminations by planes of Denjoy type for (i)
(see 4.1) and the Ghys-Kenyon Cantor laminations for (ii): they have generically
one end but are not end-rigid (see Examples 2.7).

(2) It is a natural question in foliation theory to ask whether any open manifold
can be a leaf in some codimension one compact foliated manifold? The answer
is no: a first example was provided by Ghys in [7]. Other authors asked the same
question for isometric types of manifolds (see, for example, [20]). Here we raise the
analogous question for compact Cantor laminations .M;L/: can we embed them as
an exceptional minimal set in a compact codimension one foliated manifold or as a
compact subset in R

nC1.
Vanishing separatrices will be the appropriate technical tool to be used for

dealing with this question, but one should note that a vanishing separatrix in the
minimal set M may be nonvanishing in M ; therefore, we say that it is sporadically
vanishing in M .

Our main result in this context is the following:

Theorem D. Any sporadically vanishing separatrix in an exceptional minimal set
.M;L/ of a codimension one foliation .M;F/ is trivially vanishing; thus, if L
is generically tree-like, it is also end-rigid. The same result holds for .M;L/
embedded in R

nC1.

Theorem E. No Ghys-Kenyon lamination embeds as an exceptional minimal set in
a codimension one compact foliated manifold neither as a closed subset into R

nC1.

In contrast with this result, we will notice that Cantor laminations embed in
codimension two.

All over the paper, we will deal with minimal foliations or laminations but it is
clear that all statements and results extend to totally recurrent foliations. Also for the
sake of simplicity, we will assume that all manifolds and structures considered here
are orientable and transversely orientable but we will not make any differentiability
assumption.
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1 Preliminaries on Foliations and Laminations

In order to facilitate our descriptions below, we fix here some notations and
recall some definitions, including very standard ones, for general foliations and
laminations.

We consider first foliated manifolds and indicate briefly how to adapt our
descriptions to laminations.

A local chart ' W U ! R
p of a p-manifold will be called a nice open cube if it

extends as a homeomorphism N' W U ! Œ0; 1�p � R
p.

Notations and definitions 1.1. Holonomy pseudogroup of a foliation F .

1. Let p D m C n. A foliation F of dimension n and codimension m on the
p-manifoldM may be defined by a nice foliated cocycle C D .f.Ui ; fi /g; fgij g/,
where

(i) U is a locally finite cover of M (finite when M is compact),
(ii) each Ui is a a nice open p-cube inM and if Ui \Uj ¤ ;, there exists a nice

open cube Uij (not necessarily belonging to U) such that Ui [ Uj � Uij ,
(iii) the distinguished map fi W Ui ! R

m is a submersion whose fibers (the
plaques of F in Ui ) are nice n-cubes and the image Qi D fi .Ui / is a nice
open cube in R

m which represents the set of plaques of Ui ,
(iv) the local homeomorphisms gij W R

m ! R
m verify the cocycle condition

and relate the distinguished maps by

fi D gij ı fj :

For each i , we identify Qi with a section of fi contained in Ui in such a
way that all these subsets are pairwise disjoint. We callQi the axis ofUi and
Q D `

j Qi the axis of F . Moreover for any plaque P in Ui , x D P \Qi

is called the center of P .

2. Due to (ii) above, any plaque of Ui cuts at most one plaque of Uj ; thus, the
change gij of transverse coordinates determines a local homeomorphism gener-
ally defined on a proper open subset of Qj (and denoted by the same symbol):

gij W Qj ! Qi:

The set � D fgij g generates the holonomy pseudogroup of F (with respect
to C), a pseudogroup of local homeomorphisms of Q denoted by .Q;P/.
This pseudogroup depends on C, but for a suitable notion of isomorphism of
pseudogroups its isomorphism class becomes independent of C and depends only
on the foliation F (see [11]).

It is important to note that, in general, Q is not compact even when M is
compact.
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3. For a K-lamination, a nice open cube is by definition homeomorphic to �0; 1Œn�T
with T open in K. In case of Cantor laminations, we require the distinguished
maps fi W Ui ! K to have clopen images so that the axisQi of each Ui is clopen
(in particular compact) as well as the global axis Q of F when M is compact.

Notations and definitions 1.2. Associated graphed structure and essential skele-
ton of .M;F/.

1. Let .Q;P/ be the holonomy pseudogroup of .M;F/ as above and let � D fgij g
be the canonical generating set of P . Denote by dom.gij / � Qj and im.gij / �
Qi the domain and image of gij , respectively. We construct a topological space
Me as follows:

(i) the basic piece is the axis Q of the foliated atlas U ,
(ii) for any ij , we glue on Q the tube of edges Tij D dom.gij / � Œ0; 1� by

identifying .x; 0/ 2 dom.gij / � Œ0; 1� with x 2 dom.gij / and .x; 1/ 2
dom.gij / � Œ0; 1� with gij .x/ 2 im.gij /.

2. Observe that Me inherits a “fine” or “foliated” topology when we endowQ and
all the sets dom.gij / with the discrete topology. Thus, Me becomes a foliated
space with a lamination F e , whose leaves are locally finite graphs representing
the orbits ofP onQ. By construction the holonomy pseudogroup of F e identifies
with .Q;P/.

Also embedding each tube Tij in M , we can view Me as immersed in M so
that the leaves of F e are the traces on Me of the leaves of F .

We call .M e;F e/ the graphed structure associated to .M;F/ (also called the
Schreier continuum of .M;F/ in [12]). By means of the immersion Me ! M

we can consider it as a kind of a 1-skeleton of .M;F/ and we call it also the
essential skeleton of .M;F/. As we will see below, .M e;F e/ inherits many
dynamical properties of the foliation F .

3. In case .M;F/ is a compact Cantor lamination,Me will be compact and F e will
be a compact Cantor lamination by graphs.

Example 1.3. LetB and F be closed manifolds of dimension n andm, respectively.
A group representation h W �1.B/ ! homeo.F / defines by suspension an
n-dimensional foliation F on a locally trivial bundle

F �� M
�

�� B

whose monodromy identifies with h. The holonomy pseudogroup of F is just
generated by the group action .F; �1.B//.

Let k be the cardinal of a finite set � of generators of �1.B/ and let Be be a
join of k circles. Then h induces a representation he W �1.Be/ ! homeo.F / whose
suspension will be the graphed structure .M e;F e/ associated to .M;F/. The leaves
of F are coverings of B and those of F e are coverings of Be .

In the general case, we obtain the following immediate but fundamental result.
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Lemma 1.4. If M is compact, any two corresponding leaves L 2 F and
Le D L\Me of F e have isomorphic endsets.

Proof. This is trivial if F admits a leaf-wise Riemannian metric implying that L
and Le are quasi-isometric. It extends easily to the general topological case. ut

2 Structure of Minimal Foliations and Laminations

In this section we seek the first goal of the paper: refine the genericity results of
Cantwell and Conlon (see [2,4]) and propose a drastically simplified proof for them.
After that we will be in a position to apply these results to the “embeddability”
problem in Sect. 4. Here, we work in the context of laminations.

So let .M e;F e/ be the graphed structure associated to the compact laminated
space .M;F/ with holonomy pseudogroup .Q;P/. The leaf Le 2 F e correspond-
ing to L 2 F is the complete connected subgraph generated by the set L \ Q of
vertices. It may be equipped with its natural “graph metric” d and for x 2 Q and
r 2 N , we will denote by ˇ.x; r/ the closed ball of center x and radius r in Le .

Also for any subset X � L \Q, we denote by Xe the complete subgraph of Le

generated by the set of vertices X . Its �-boundary (or boundary for short) @�Xe

is by definition the subset of all elements x 2 X for which there exists a generator
� 2 � such that x 2 dom.�/ and �.x/ … X .

We will also use the U-fattening OX of X defined as the union of all U-plaques P
whose center x D P \Q belongs to X .

We need one more notion.

Notations and definitions 2.1. 1. Let † � L be a codimension one closed
submanifold of a leaf L 2 F . We will say that † is nice (with respect to C) if

(i) for any F -plaque P � Ui with center x, P \† ¤ ; , x 2 †,
(ii) the complete subgraph .† \Q/e is contained in †.

It will be denoted by†e and called the essential skeleton of †.
2. Next, a compact n-domainD � L will be called nice if its boundary @D is nice.

Its essential skeleton is given by De D .D \ Q/e. The skeletons of D and @D
are related by @De D .@D/e .

It is not difficult to verify that any codimension one submanifold †, and thus
also any compact n-domain D, is isotopic to a nice one, so we will deal only
with nice domains in the sequel.
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2.1 General Genericity Properties

From now on, we assume that .M;F/ is minimal. For r 2 N, we denote byWr � Q

the set of all points x 2 Q such that there exists a compact connected domainDr.x/

in the leaf Lx 2 F through x verifying the following conditions:

(i) Dr.x/ is nice and @Dr.x/ has one or two connected components,
(ii) Dr.x/ � ˇ.x; r/,

(iii) Dr.x/ is a submanifold with trivial holonomy.

For each r , WrC1 � Wr and we set W1 D T
r Wr . Similar inclusions hold for the

U-fattenings: OWr and we set OW1 D T
r

OWr .
Recall that the unionM� of all leaves without holonomy of F is residual.

Lemma 2.2. If not empty, OW1 is a saturated residual subset of M� and thus of M .
Moreover either all leaves of OW1 have one end or they all have two ends.

Proof.

1. Indeed, suppose that W1 is not empty and take x 2 W1. The leaf Lex 2 F e

through x verifies
S
r ˇ.x; r/ D Lex ; thus, by definition, we immediately get

Lex �
[

r
Dr .x/ and consequently Lx D OLex D

[
r
Dr.x/:

The latter relation implies immediately that OW1 is nonempty, saturated, and
dense in M ; it is also contained in M� by condition (ii) above. Moreover each
OWr containing OW1 is dense; it is open by condition (iii) and Reeb’s local stability

theorem Reeb’s theorem (see [21]). It follows that OW1 is residual.
2. Condition (ii) also implies that any leaf in OW1 has at most two ends. If there

exists one with only one end, we may repeat the previous argument by restricting
to the subsets W 0

r � Wr defined by condition
i 0/ Dr.x/ is nice with connected boundary,

instead of (i). We will conclude that OW 01 D T
r

OW 0
r is residual and all its leaves

have exactly one end. This finishes the proof. ut
Recall that an end � of a leaf L is defined, up to equivalence, by a decreasing

sequence fVqgq2N of unbounded domains Vq � L with compact connected
boundary @Vq and empty intersection. We say that this end has trivial holonomy
if there exists q such that the domain Vq has trivial holonomy. We may assume that
all Vq are nice and we get the following.

Lemma 2.3. If there exists a leaf L0 of F having an isolated end � with trivial
holonomy, then OW1 D T

r
OWr is residual and F has generically one or two ends.

Proof. Indeed, the fact that � is isolated means that for any q > 0, the submanifold
V0q D V0nint.Vq/ is a nice compact connected domain whose boundary has exactly
two connected components @V0 and @Vq .
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Fix r 2 N ; we may assume without loss of generality that the distance of the two
sets @V e

r and @V e
0 verifies dist.@V e

r ; @V
e
0 / > r so that there exists q.r/ verifying

ˇ.x; r/ � V0q.r/

for any x 2 Vr \ Q. By minimality of F , Vr is dense in M and assuming that V0
has trivial holonomy, we conclude that .Vr \Q/ � Wr ; thus, OWr is open dense and
finally OW1 is residual. ut

We reach to the wanted result (Theorem A of the introduction):

Theorem 2.4. For any minimal lamination .M;F/, one of the following holds:

(i) there exists a residual subset M� � M� such that all leaves of M� have one
end or all have two ends,

(ii) all leaves of M� have a Cantor set of ends.

Proof. From Lemma 2.3, we deduce the following alternative:

(a) either there exists a leaf in F which has an isolated end with trivial holonomy
and we are in case (i) with M� D OW1,

(b) or no leaf in M� has an isolated end; any such leaf has a Cantor set of ends and
we are in case (ii). ut

The formulation of the previous theorem suggests the question whether, in case
(i), the two sets M� and M� may differ or not. To state it in a precise way, we
introduce the following definition:

Definition 2.5. We will say that the minimal lamination .M;F/ is end-rigid if all
leaves without holonomy have the same endset that is M� D M�.

According to Theorem 2.4, a minimal lamination whose leaves have generically
a Cantor set of ends is end-rigid. On the other hand, E. Blanc proved the following
in his thesis (see [3]):

Proposition 2.6. If the leaves of a minimal lamination .M;F/ have generically two
ends, then F is end-rigid, all leaves without holonomy have two ends, and any leaf
in MnM� has one end and nontrivial but finite holonomy.

We will also propose a simplified proof of this claim in [13]. Now remains the
question whether laminations with generically one end are end-rigid or not. Indeed,
the following family of examples will show that they are not.

Examples 2.7. The Ghys-Kenyon laminations.
We present here a large family of compact Cantor laminations whose leaves

have generically one end. All are based on a primary example of a compact Cantor
lamination .M;L/ foliated by trees and obtained as a subspace of the space of all
subgraphs of the Cayley graph of the groupZ2 with the Gromov-Hausdorff topology
(see [9]). The construction is rather involved and we refer to [9] or [1] for a precise
description. The relevant properties of .M;L/ are the following:
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(i) all leaves of L are trees and therefore have trivial holonomy,
(ii) the leaves of L have generically one end but some leaves have more than two

ends; L is not end-rigid.

Next, for any n one associates with this primary example a Cantor lamination
of dimension n with the same transverse structure, thus sharing the previous two
properties. This is done in two steps: first thicken the graphed space M by replacing
each vertex by the .n C 1/-ball BnC1 and each edge Œ0; 1� by the thickened edge
Œ0; 1� � B

n; second, take the boundary of the space obtained this way: it will be
foliated by n-manifolds.

All these examples are called Ghys-Kenyon laminations.

It is worth noticing that our method of proof for the main Theorem 2.4 extends
to the topological setting (see also Proposition 2.11). This is Theorem B of
“Introduction.”

Theorem 2.8. For any minimal lamination .M;F/ the union of all planar leaves
is residual if not empty.

Proof. Replacing condition (i) in the definition of Wr by (i00), each Dr.x/ is
homeomorphic to the closed disk of dimension n, we define sets W "r such that
for any x 2 W "1 D T

r W "r , we get Lx D S
r Dr.x/ showing that Lx is a plane

and the leaves of F are generically planes. ut

2.2 End-Rigidity and Vanishing Separatrices

Our next goal is to investigate more precisely the notion of end-rigidity for minimal
laminations with generically one end at least in the particular case of foliations
which are “generically tree-like” (see Definition 2.9) for which we also get a result
of topological genericity similar to Theorem 2.8.

For a space X we denote by H1� .X/ the homology group of locally finite
simplicial chains with real coefficients. We need new technical tools.

Notations and definitions 2.9. Separatrices and tree-like manifolds.

Let † be a closed .n � 1/-submanifold of an open connected n-manifold L.
According to our general orientability assumption, it is two-sided, thus disconnects
a fundamental family of neighborhoods.

We will say that † is a separatrix of L if it disconnects L into two connected
components LC and L� and it is null-homologous if one of these two components
is compact. Note that an open manifold L has one end if and only if any separatrix
in L is null homologous.

A .n�1/-manifold† is a separatrix if its homology class Œ†� 2 H1
n�1.L/ is zero;

it is null homologous if Œ†� 2 Hn�1.L/ is zero. Further, if † does not separate L,
then 0 ¤ Œ†� 2 Hn�1.L/ and † admits a dual loop � which cuts † in exactly one
point;† and � cut transversely and both being oriented, their algebraic intersection
� ^† D ˙1.
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Note also that if H1
n�1.L/ D 0, any closed connected .n � 1/-submanifold is a

separatrix whether null homologous or not. By analogy with trees, we will say that
such a manifold is tree-like. Of course a tree is a tree-like complex, a surface will be
tree-like if and only if its genus is zero, and a manifold with trivial first Betti number
is tree-like.

Notations and definitions 2.10. Transverse cylinders and towers in laminations.

An open set or manifold embedded in a leaf of F will be called horizontal. Now it
is a standard fact that any relatively compact open horizontal subset X � L admits
an open “tubular neighborhood” in M that is a disk bundle � W ƒ ! X over X
whose fibers are transverse to F . For example, in the differentiable case, it can be
constructed by local integration of the normal bundle.

(a) Next, suppose that X is a neighborhood in a leaf L of an embedded closed
horizontal submanifold Y � L of dimension q < n. The restriction of �
to C.Y / D ��1.Y / is still a disk bundle with an induced foliation C.Y / of
dimension q having Y as a proper compact leaf; in general, C has both compact
and noncompact leaves. We call C.Y / a transverse cylinder over Y .

(b) In case Y has trivial holonomy in C.Y /, the transverse cylinderC.Y / contains a
transverse cylinder T .Y / trivially foliated by the induced foliation T .Y / whose
leaves are level sets Yt homeomorphic to Y and indexed by a parameter t 2
Ty D ��1.y/, the local transverse disk at a base-point y 2 Y , Y itself being
identified with Yy . We call T .Y / a transverse tower over Y .

(c) In case of a Cantor lamination, we can always assume that Ty identifies with a
clopen subset of the transverse Cantor set and so T .Y / is compact.

For example, if L has trivial holonomy in F , we can always restrict a transverse
cylinder to a transverse tower.

We leave it to the reader to transfer the previous notions and definitions to the
setting of graphed structures.

As an immediate by-product we get a new genericity result:

Proposition 2.11. For a minimal compact lamination .M;F/ the following are
equivalent:

(i) F admits one leaf L0 � M� which is tree-like,
(ii) all leaves in M� are tree-like,

(iii) F is generically tree-like.

Proof. Implications .ii/ ) .iii/ ) .i/ are trivial so let us show that .i/ ) .ii/.
We proceed by contradiction and suppose that there exists L1 � M� admitting a
closed .n� 1/-submanifold† with nontrivial homology class Œ†� 2 Hn�1.L1/. Let
� � L1 be a dual loop with algebraic intersection � ^ † D C1. As L1 is without
holonomy by assumption, we have two foliated towers T .†/ and T .�/ foliated by
level surfaces indexed by a common fiber Tu with u D � \†. There exists an open
set T 0

u � Tu such that for any t 2 T 0
u , we get

�t ^†t D C1:
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As F is minimal, L0 \ T 0
u ¤ ; and for any t0 2 L0 \ T 0

u the submanifold†t0 � L0
is not a separatrix contradicting the fact that L0 is tree-like. Our claim follows. ut

We introduce now a technical tool which will prove essential for the description
of laminations with generically one end. It is similar to the vanishing cycles
introduced by Novikov for the study of foliations on three-manifolds (see [17]).

Definition 2.12. Consider a tower T .†u/ over a separatrix †u parametrized by a
transverse disk Tu. We will say that †u is vanishing if there exists an open set
T 0 � Tu such that u 2 T 0

and the level surface†t is null homologous for any t 2 T 0.
It is trivially vanishing if †u itself is null homologous.

We are now in a position to prove Theorem C:

Theorem 2.13. Let .M;F/ be a minimal lamination which is generically tree-like.
If F has generically one end, one of the following holds:

(i) all leaves in M� are tree-like with one end,
(ii) F admits a nontrivially vanishing separatrix.

Proof. Any leaf L0 without holonomy and with more than one end supports a
separatrix†0 with a transverse tower T .†0/ Š †0�T0. Then take L1 � M� which
is tree-like. The subset T 0

0 � T0 of all values t such that †t is null homologous
contains T0 \L1 and thus is dense in T0. It is open by Reeb’s stability. and different
from T0 because †0 is a separatrix. We get a nontrivially vanishing separatrix †u

for any u 2 T 0
0nT 0

0 . ut
Of course, it would be much more satisfactory to have the result of Proposi-

tion 2.13 without restricting to tree-like laminations. Indeed, we conjecture that this
more general statement holds (see 4.5).

2.3 Vanishing Separatrices and Transverse Invariant Measures

To finish the section, we associate to a nontrivially vanishing separatrix a transverse
invariant measure for .M;F/. We refer to [14] for details on averaging sequences
and associated transverse invariant measures as defined in [10, 19].

For any compact connected horizontal domain X in the graphed structure
.M e;F e/, we denote by ].X/ the cardinality of X \ Q, the number of vertices
of X . A sequence fXpgp2N of such domains is a strong averaging sequence if

].@Xp/ is bounded while lim
p!1 ].Xp/ D 1:

Then up to extracting an appropriate subsequence, we may assume that this
sequence defines a measure � on Q by setting
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�.Y / D lim
p!1

1

].Xp/
].Y \Xp/

for any Borel set Y � Q. This measure is invariant by the holonomy pseudogroup
P and thus extends to a transverse invariant measure for F .

In the topological setting, a sequence fYpgp2N of nice compact horizontal
domains in .M;F/ is a strong averaging sequence if

].@Yp/ is bounded while lim
p!1 ].Yp/ D 1;

where ].Yp/ D ].Y ep / and @].Yp/ D @].Y ep /.
Now given a tower T .†u/ as in Definition 2.12, choose a sequence ftpgp2N � T 0

converging to u. For each p, †tp is null homologous; thus, there exists a compact
domain Ktp � Ltp such that †tp D @Ktp . We suppose that all †tp and Ktp are nice
(in the sense of Notations and Definitions 2.1).

Proposition 2.14. Let †u be a nontrivially vanishing separatrix of .M;F/. With
the previous notations, we get
.i/ ].†etp / is uniformly bounded, .i i/ lim

p!1 ].Ke
tp
/ D C1.

The sequence fKe
tp

gp2N is a strong averaging sequence defining a transverse
invariant measure � for .M;F/.

Proof. Claim (i) is obvious and if (ii) does not hold, then, up to extracting
convenient subsequences, we may assume successively that

(a) ].Ke
tp
/ is constant independent of p,

(b) the finite complexesKe
tp

are all isomorphic,
(c) fKe

tp
gp2N is a convergent sequence of compact subsets in Me.

By continuity, the limit Ke� of this sequence will be such that @Ke� D †eu implying
that our separatrix†u is trivially vanishing, a contradiction which proves the claim.

ut

3 Vanishing Separatrices in Codimension One Exceptional
Minimal Sets

Here, we come to the second part of our study: we consider minimal Cantor
laminations .M;L/ of dimension n embedded as exceptional minimal sets in
transversely orientable codimension one compact foliated manifolds .M;F/. Our
goal is to show that

(i) any vanishing separatrix of .M;L/ is trivially vanishing in M,
(ii) these Cantor laminations are end-rigid in the sense of Definition 2.5 provided

that they are generically tree-like.

We also show that the same result is valid for minimal codimension one foliations.
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3.1 Cohomology Class Associated to a Transverse Invariant
Measure

The appropriate tool to be used for the study of end-rigidity in the context of
codimension one foliations will be the cohomology class naturally defined by a
transverse invariant measure. This cohomology class was also considered by Levitt
in [15] and is a particular case of Sullivan’s “foliation cycles” (see [22]).

Construction 3.1. The cohomology class �� 2 H1.M/ for foliated manifolds.

So let � be a transverse invariant measure of a compact codimension one
transversely orientable foliated manifold .M;F/. Suppose that F is defined by some
nice atlas U D fUi; 'i /g with oriented axisQ D `

Qi .

1. For any continuous path c W Œ0; 1� ! M , there exists a finite sequence 0 D t0 <

t1 < � � � < ts D 1 such that each cj D cjŒtj�1;tj �; j D 1; 2; : : : ; s; is contained in
some Uij 2 U . We denote by Ncj the natural projection of cj to the axis Qij and
define a function N� W MŒ0;1� ! R by setting

(i) N�.cj / D ˙�Œ Ncj .tj�1/; Ncj .tj /� depending on the orientation of the interval
Œ Ncj .tj�1/; Ncj .tj /� in Qij ,

(ii) N�.c/ D Ps
jD1 N�.cj /.

Then using the fact that any two nice coverings have a common refinement,
one shows that the definition of N� is independent of all special choices involved
and does not depend on path homotopies, thus defining a period homomorphism

Per� W �1.M/ ! R:

The latter factorizes through H1.M/, thus defining the associated cohomology
class �� 2 H1.M/.

2. According to [14, vol. B, Chap. X, Theorem 2.3.2)], the support of any ergodic
transverse invariant measure of a codimension one foliation reduces to exactly
one minimal set M. Thus, for any positively oriented closed transversal � to F
which cuts M, we get

��.�/ > 0;

showing that H1.M/ ¤ 0 if M admits such a transversal.

A classical result of Sacksteder (see [19]) shows the converse and we get the
following.

Proposition 3.2. For any minimal set M of a codimension one transversely
orientable foliation .M;F/, the two following conditions are equivalent:

(i) M supports an invariant measure �,
(ii) The intrinsic holonomy of the restriction L of F to M is trivial.
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Here the intrinsic holonomy group of a leaf L in a minimal set M is the
holonomy group of L with respect to the induced lamination L: it is in general a
proper subgroup of the holonomy group of L with respect to F . Vanishing of the
intrinsic holonomy of some leaf L 2 L does not imply vanishing of the “global”
holonomy group of L. We illustrate this fact with the following example:

Example 3.3. Consider the group G of orientation preserving homeomorphisms of
S
1 generated by two elements:

(a) a Denjoy-type homeomorphism D: it is fixed point free, preserves globally a
Cantor subset K � S

1 and acts minimally on K,
(b) a homeomorphism ' whose fixed points set coincides with K.

The suspension of G defines a foliation .M;F/ on a three-manifold which is an
S
1-bundle over some closed surface. This foliation admits an exceptional minimal

set M which is a K-subbundle whose transverse structure is essentially generated
byD; for any leafL � M, the intrinsic holonomy group is trivial while its “global”
holonomy group is infinite cyclic generated by the germ of '.

3.2 Minimal Foliated Compact Manifolds

Our first application concerns codimension one minimal foliations.

Proposition 3.4. Let .M;F/ be a transversely orientable codimension one folia-
tion on a closed manifold M . If F is minimal, any vanishing separatrix is trivially
vanishing.

Proof. Indeed, by Proposition 2.13, the existence of a nontrivially vanishing
separatrix implies the existence of a nontrivial transverse invariant measure�which
in turn implies the triviality of holonomy (see Proposition 3.2). Now by a result of R.
Sacksteder (see [19]), the foliation F is conjugate to a foliation defined by a closed
one form. In this case all leaves are homeomorphic and they have either one or two
ends (see [14]). In particular, any vanishing separatrix is trivially vanishing. ut

As a consequence we get the following.

Theorem 3.5. Any transversely orientable codimension one minimal foliation
.M;F/ on a closed manifoldM which is tree-like is end-rigid.

3.3 Exceptional Minimal Sets and Sporadically Vanishing
Separatrices

Next we focus on exceptional minimal sets .M;L/ in codimension one compact
foliated manifolds .M;F/; our goal is to establish a result similar to Theorem 3.5
for such minimal sets. A more precise description of vanishing separatrices in
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this context will be helpful. We adapt the general description of Notations and
definitions 2.10; in particular, it will be convenient to consider transverse cylinders
and towers which are compact.

Notations 3.6. Without loss of generality we may assume the existence of a one-
dimensional foliation Ft transverse to F defined by a flow ˆ W M � R ! M (see
[21] or [14] for more details). We use it for the construction of transverse cylinders
and towers over pointed horizontal submanifolds.

1. So, let .Y; y/ be a closed horizontal submanifold. For any compact transverse
cylinder C.Y / over Y there exists a compact neighborhood Œa; b� of 0 in R such
that C.Y / D ˆ.Y � Œa; b�/ with Y D ˆ.Y � f0g/; we denote it by Cb

a .Y /. For
a tower T .Y / we may assume, after a possible reparametrization of the flow ˆ,
thatˆ W Y � Œa; b� ! T .Y / is a foliated homeomorphism; we identify Œa; b� with
a compact arc in the transverse leaf Ty and denote the tower by T ba .Y /. Finally
observe that cutting these cylinders and towers along Y , one gets left and right
half-cylinders and half-towers over Y : they are parametrized by intervals of type
Œa; y� and Œy; b�, respectively.

2. In particular, if Y is contained in a leaf L of an exceptional minimal set M, we
will always choose the parametrized arc Œa; b� of a transverse cylinder or tower
so that La and Lb are contained in M, the first being semi-proper on the left
and the second semi-proper on the right. We call the corresponding cylinders and
towers adapted (to the embedding of the Cantor lamination). Finally if L has
trivial intrinsic holonomy, the trace LT ba .Y / of Cb

a .Y / on M will be a transverse
tower over Y in the sense of (1) above; it is parametrized by the clopen Cantor
set J.a; b/ D Œa; b� \ M. We call it a restricted transverse tower over Y . If
the leaf Ly is semi-proper there exist such adapted towers parametrized by Œa; y�
or Œy; b�.

Now let us come to the description of vanishing separatrices†u in the context of
codimension one foliations. We assume †u contained in a leaf of an exceptional
minimal set M and vanishing in M but possibly not in M . According to
Proposition 3.2, the minimal set M has trivial intrinsic holonomy so that M� D M.

Observations and definitions 3.7. Sporadically vanishing separatrices.

Take a restricted adapted tower LT ba .†u/ as described in (2) of Notations 3.6
parametrized by the Cantor set J.a; b/. By definition of vanishing separatrices, there
exists an open subset S � J.a; b/ such that u 2 SnS and †t is null homologous
for any t 2 S \ J.a; b/.

As S is the trace on J.a; b/ of some open set QS � Q we can restrict to a
connected component QS 0 of QS and choosing u 2 S 0nS 0, we obtain

(i) either a left half-tower LT u
a .†u/ parametrized by a Cantor set J.a; u/ such that

†t is null homologous for any t 2 J.a; u/; t ¤ u,
(ii) or a right half-tower LT bu .†u/ parametrized by a Cantor set J.u; b/ such that †t

is null homologous for any t 2 J.u; b/; t ¤ u.
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In the first case, we say that †u is vanishing to the left in M and vanishing to
the right in M in the second. In both cases it is nontrivially vanishing if †u is not
null homologous. In general, there does not exist any transverse tower over†u inM .
In other words†u is a priori not vanishing inM that is why we say it is sporadically
vanishing in M .

Finally note that in general, the half-towers LT u
a .†u/ or LT bu .†u/ are not adapted

towers in the sense of Notations 3.6 (2) unless Lu is semi-proper on the suitable
side.

Next, we transfer the data given by the existence of a sporadically vanishing
separatrix into the setting of singular homology. We consider a sporadically
left-vanishing separatrix but of course a similar procedure would apply to a right-
vanishing one.

Description 3.8. So, let †u � M be a sporadically left-vanishing separatrix;
let C u

a .†u/ and LT u
a .†u/ be a corresponding pair of adapted left half-cylinder

and restricted left half-tower over †u as defined in Notations 3.6 (2). For any
t 2 J.a; u/; t ¤ u, †t is null homologous, i.e., there exists a compact connected
domain Kt � Lt such that †t D @Kt . Note that this domain is unique because if
not we would produce a nontrivial n-cycle showing that the corresponding leaf Lt
is compact contradicting the fact that it is exceptional.

As L has intrinsic trivial holonomy, we know by Notations 3.6 that there exists
for each t 2 J.a; u/nfug an adapted pair [Cbt

at
.Kt/ � LT btat .Kt /� such that the infinite

sequence of intervals Œat ; bt � covers J.a; u/nfug. Now it is not difficult to show that
we can select a countable increasing sequence ftpgp2N � J.a; b/ converging to u
and for each p an arc Œap; bp� � Œa; b� such that

(i) a0 D a and we have an increasing sequence ! D fa D a0 < b0 < � � � < ap <

bp < : : : g in J.a; u/ with upper bound u; in particular, all intervals Œap; bp� are
pairwise disjoint,

(ii)
S
p J.ap; bp/ D J.a; u/nfug.

Construction 3.9. n-Cycles associated to a sporadically left-vanishing separa-
trix †u. We orient all manifolds under consideration: we choose an orientation for
†u, lift it to the foliation C.†u/ on C u

a .†u/, and endow the cylinder C u
a .†u/ itself

with the product orientation by that of Ft. For any t 2 J.a; u/ there exists a well-
defined orientation for Kt such that †t D @Kt as oriented manifolds or as singular
chains.

1. Then for any pair x < y of elements in ! we define a n-cycle�y
x ofM by setting

�y
x D Cy

x .†u/CKx CKy

with the orientations defined above. In particular, for any integer p, �
bp
ap D

@C
bp
ap .Ktp / so that, up to a convenient subdivision of the chain �

ap
a , we get the

relation

�
ap
a C

Xp�1
jD1 @C

bj
aj .Ktj / D

Xp�1
jD1 �

ajC1

bj
;
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or at the level of homology classes in Hn.M/:

Œ�
ap
a � D

Xp�1
jD1Œ�

ajC1

bj
�:

2. As M is compact, the subspace E � Hn.M/ generated by the infinite sequence
of cycles f�ajC1

bj
gj2N is finite dimensional and there exists an integer k such that

E is generated by the finite subsequence f�ajC1

bj
gkjD1. For any j , the intersection

�
ajC1

bj
\M is reduced to the compact setKajC1

[Kbj contained in the union of

two semi-proper leaves of L. Then there exists a .F ;Ft/-bidistinguished open
cube U which meets M but not the compact set Œ

Sk
jD1 �

ajC1

bj
�, and for any

totally exceptional leaf L � M there exist two different horizontal plaques in U
with centers .z;w/ in U \Q\L. We join these two points by a path � � L and
a short transverse positive path 
 in U \Q; the composition � D � � 
 is a loop
in M such that

� \�
ajC1

bj
D ;; thus � ^�ajC1

bj
D 0

for any 1 � j � k. Using (1) we obtain the final relation

� ^ Œ�ap
a � D 0 for any p 2 N:

We reach to the central result of the paper (which is also the first part of
Theorem D):

Theorem 3.10. Any sporadically vanishing separatrix †u of an exceptional min-
imal set .M;L/ in a compact codimension one foliation .M;F/ is trivially
vanishing.

Proof. We suppose that†u is left vanishing. According to Proposition 2.14, we may
assume that K D fKapgp2N is a strong averaging sequence defining a transverse
invariant measure � for F . As K is contained in M, the support of � equals M.

Restricting to a subsequence if necessary, we may assume further that all domains
Kap are positively oriented (with respect to the orientation ofF ) so that the algebraic
intersection of Kap with the transverse path 
 introduced in Construction 3.9 (2) is
given by


 ^Kap D \.
 \Kap/:

Moreover, note that the transverse loop � D � � 
 of Construction 3.9 satisfies

� \Ka D � \Kap D 
 \Ka D 
 \ Cap
a .†u/ D ;



68 G. Hector

so that finally

� \�
ap
a D Œ� \ C

ap
a .†u/� [ Œ
 \Kap �:

Using again Construction 3.9 (2), we get for any p the relations

0 D � ^ 1

\.Kap/
�
ap
a D 1

\.Kap /
.� ^ Cap

a .†u//C 1

\.Kap /
.
 ^Kap/

D 1

\.Kap /
.� ^ Cap

a .†u//C 1

\.Kap /
\.
 \Kap/:

But for any p, � \ C
ap
a .†u/ is a subset of the fixed finite set � \ C u

a .†u/; thus,
limp!1 1

\.Kap /
.� ^ Cap

a .†u// D 0 which implies immediately that

0 D lim
p!1

1

\.Kap/
\.
 \Kap/ D lim

p!1
1

\.Ke
ap
/
\.
 \Ke

ap
/ D N�.
/

contradicting the fact that the measure � supported by M is nontrivial. This
achieves the proof for a left-vanishing separatrix but as the argument transposes
readily to the case of right-vanishing separatrices, our proof is complete. ut

Combining Theorem 2.4, Proposition 2.6, and Theorem 3.10, we get the
following application:

Theorem 3.11. An exceptional minimal set .M;L/ of a codimension one, trans-
versely orientable foliation F on a compact manifold M is end-rigid if one of the
following conditions is satisfied:

(i) L is tree-like and its leaves have generically one end,
(ii) the leaves of L have generically two or a Cantor set of ends.

Proof. Indeed, if the leaves of L have generically one end, we know by
Theorem 3.10 that any sporadically vanishing separatrix is trivially vanishing,
which means that L is end-rigid. ut
Remark 3.12. It is worth noticing that the proof of Theorem 3.10 and consequently
also that of Theorem 3.11 simplifies strongly for foliations of class C2. Indeed, in
this case, we know by a classical Theorem of Sacksteder that there exists a leaf in M
with linear holonomy. This is an element of intrinsic holonomy and consequently
M can support neither any transverse invariant measure nor any nontrivial vanishing
separatrix.

This implies, in particular, the following.

Theorem 3.13. For a foliation of class C2, any exceptional minimal set is generi-
cally with one or a Cantor set of ends.
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4 Embeddability of Cantor Laminations

In this section, we discuss briefly the question of embeddability of Cantor
laminations in codimension one. We also present more examples and state some
related open problems.

Examples 4.1. Different types of exceptional minimal sets in C0-foliations.

1. It is well known that for any minimal linear codimension one foliation F on the
torus T

nC1, all leaves are homeomorphic either to the n-plane or to a cylinder
T
p � R

n�p; these foliations are trivially tree-like and end-rigid. Performing
a surgery along a closed transversal one implements infinitely many handles
producing similar examples with all leaves non-tree-like.

Now thickening one (or more) leaf of such a linear foliation in the same way
as for the construction of the Denjoy homeomorphisms of S1 (compare [5]), one
gets a foliation with a Cantor minimal set of the same type. This construction is
possible in class C1 but not in class C2 according to Sacksteder’s Theorem.

2. All leaves of an exceptional minimal set in an analytic foliation have a Cantor set
of ends.

Observe that any Ghys-Kenyon lamination is tree-like, without holonomy and
not end-rigid. Using Theorem 3.11, we get the nonembeddability theorem (first
part of Theorem E):

Theorem 4.2. No Ghys-Kenyon lamination embeds as an exceptional minimal set
in a codimension one foliation .M;F/ of class C0.

In a second step we extend the previous discussion to embeddings of
n-dimensional Cantor laminations into R

nC1.
Recall that Whitney’s celebrated embedding theorem for compact manifolds

extends mutatis mutandis to laminations: any compact Cantor lamination
.M;L/ of dimension n embeds into some Euclidean space R

p with p > n. Now
one may ask whether it is possible to embed it into R

nC1. To discuss this question
we will use the following analogue of Theorem 3.10:

Theorem 4.3. A Cantor lamination .M;L/ of dimension n which embeds into
R
nC1 does not admit any transverse invariant measure. In particular, it is end-rigid

if tree-like. Moreover, the same result holds true when replacing R
nC1 by any simply

connected .nC 1/-manifold.

Proof. (1) First given .M;L/ embedded in R
nC1, we construct a one-dimensional

foliation Ft pointwise transverse to L and defined on a simply connected
neighborhood� of M.

Indeed, dealing locally one constructs a germ of transverse foliation in a
neighborhood W of M and extends it all over RnC1 with a closed set S of
singularities. By the usual approximation trick, one reduces S to a countable
family of isolated points and defines the wanted foliation Ft by restricting the
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previous one to the complement� of S . As the singular points are isolated, �
is simply connected and consequently Ft is orientable.

Now any transverse invariant measure � for L extends to the leaves of Ft,
and dealing as in Sect. 3.1, one defines an associated cohomology class �� 2
H1.�/. It is of course trivial by simple connexity of �.

(2) To go on, we proceed as in Construction 3.9(2): we take a local coordinate chart
V of RnC1 whose trace U D V \ M is a distinguished local chart for L. For
any leaf L � M there exist two different horizontal plaques with centers .z;w/
in U \ Q \ L. We join them by a path � � L and a short transverse positive
path 
 in V \Q also contained in�; the composition � D � � 
 is a loop in �
which verifies

��.�/ D �.�/ D �.�/C �.
/ D �.
/ > 0;

contradicting the simple connexity of �. ut
As a consequence of Theorem 4.3 and because all the laminations under

consideration support a nontrivial transverse invariant measure, we get the following
applications which complete the proofs of Theorems D and E:

Theorem 4.4. (1) No Cantor lamination of dimension n whose leaves have gener-
ically two ends embeds into R

nC1.
(2) If .M;L/ is a Cantor lamination embedded in R

nC1 which is generically tree-
like with one end, then it is end-rigid.

(3) No Ghys-Kenyon lamination embeds into R
nC1.

Our study leaves open a number of natural questions about embeddability of
Cantor laminations (in codimension 1); we provide here a nonexhaustive list:

Open questions 4.5.

1. Is it possible to extend Proposition 2.13 to general laminations with generically
one end without assuming that the leaves are tree-like? Similarly, is Theorem 3.5
valid without the assumption that the foliations are tree-like?

2. One may also ask for an analogue of Blanc’s Proposition 2.6. Is it true that a
Cantor lamination, whose leaves have generically one end, has trivial holonomy
when it is end-rigid ? Does it admit a transverse invariant measure and embed as
an exceptional minimal set in a codimension one foliation?

3. We do not know any example of an end-rigid Cantor lamination with generically
one end which embeds into R

nC1. Do there exist such embeddable laminations?
4. It seems that all known examples of exceptional minimal sets of codimension

one foliations which have generically a Cantor set of ends have nontrivial
intrinsic holonomy. Might it be that this is a necessary condition for this sort
of embeddings? A positive answer to this question would provide a kind of
topological Sacksteder’s Theorem!
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5. In [18], Raymond constructs foliations on the three-sphere admitting an excep-
tional minimal set. Removing one point, one gets a Cantor lamination by surfaces
with generically a Cantor set of ends embedded in R

3; this lamination has non
trivial intrinsic holonomy by Sacksteder’s Theorem. Now one may ask whether
there exist such examples with trivial intrinsic holonomy?

Remark 4.6 (Final remark). As observed in [16], any homeomorphism of the
Cantor set embedded into the two-sphere S

2 extends to the whole of S
2. Thus,

any group G of homeomorphisms of K extends to a group QG of homeomorphisms
of S2, in general, not isomorphic to G. Suspending the action of QG, one defines a
codimension two foliation which admits a minimal set defined by the suspension
of G. In other words, any minimal Cantor lamination defined by a group G embeds
as an exceptional minimal set in a codimension two-foliation; this observation
justifies our special interest in the codimension one case. Note that these foliations
will be only of class C0 leaving open the corresponding question for differentiable
foliations.
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Integral Formulas in Foliation Theory

Krzysztof Andrzejewski, Vladimir Rovenski, and Paweł Walczak

Abstract In this chapter we give an overview of integral formulas, and some of
their consequences, appearing in the study of extrinsic geometry of foliations and
distributions on Riemannian manifolds.

Keywords Riemannian manifold • Foliation • Integral formula • Curvature
• Totally geodesic • Newton transformation

Mathematics Subject Classifications (2010): 53C12, 53C20

1 Introduction

Analyzing history of extrinsic geometry of foliations we see that from the origin
it was related to some integral formulas containing the shape operator A (or the
second fundamental form B) of leaves and its invariants (mean curvature h, higher
order mean curvatures Sr , etc.) and some expressions corresponding to geometry
(curvature) of M . These formulas are of some interest; in several geometric
situations they provide obstructions to the existence of foliations with all the leaves
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enjoying a given geometric property of foliations—totally geodesic (umbilical),
minimal, constant mean curvature, etc. (see, [4, 8, 11, 19, 28, 30] and bibliographies
therein). Such formulas have also applications in different areas of differential
geometry and analysis on manifolds (see, for example [14, 16, 29]).

In this chapter we give an overview and summary of these formulas (certainly
incomplete) and some of their consequences. Throughout the chapter everything
(manifolds, submanifolds, foliations, etc.) is assumed to be C1-differentiable and
oriented. For simplicity, we omit the volume form in integrals. Repeated indices
denote summation over their range.

2 Integral Formulas

The first known integral formula (for codimension-one foliations) belongs to
Reeb [22]. It says that the total mean curvature of the leaves of a codimension one
foliation F on any closed Riemannian manifold equals zero, i.e.,

Z

M

h D 0: (1)

The proof of (1) is based on the divergence theorem and the identity divN D nh

where N is a unit normal to F vector field and n the dimension of F . One of
the consequences of this formula (and its counterpart for foliated domains with
boundary) provides the only obstruction for a function f on a closed foliated
manifold to become the mean curvature with respect to some Riemannian metric.
The conditions which are necessary and sufficient in this case read either f D 0 or
f must change the sign (see [20]).

Formula (1) poses a generalization to the case of second-order mean curvature
S2 (see also [21, 31] for arbitrary codimension)

2

Z

M

S2 D
Z

M

Ric.N;N /; (2)

which is a direct consequences of Green’s theorem applied to N . When dimF D 1

it reduces to Gauss theorem in the case Euler characteristic equals zero. Moreover,
(2) posses a leaf-wise counterpart. Namely, for a closed leaf L we have

Z

L

.Ric.N;N /C tr.A2/CN.h/C jrNN j2/ D 0: (3)

Both formulas have many applications. For example, (2) implies nonexistence of
umbilical foliations on closed manifold of negative curvature, and in the case of
constant mean curvature foliation F and nonnegative Ricci curvature, they imply
that F is totally geodesic andN parallel [11]. Consequently, due to (2), we have the
following assertion.
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Theorem 1. There is no codimension-one foliation of the Euclidean sphere whose
leaves have constant mean curvature.

Formulas (1) and (2) suggest the existence of similar ones for an arbitrary higher
order mean curvatures (in general some functions of them) on a closed manifold.
First step in this direction was done by Asimov, Brito et al. in [9, 13]. They showed
the following theorem.

Theorem 2. For a codimension one foliation of .nC 1/-dimensional manifold M
with constant sectional curvature c we have

STr WD
Z

M

Sr D

8
<̂
:̂
cr=2

 
n=2

r=2

!
vol.M/; n; r even;

0; n or r odd:

(4)

As a corollary we obtain that STr depends only on geometry of M not F . Proof
of the above theorem is quite technical and it is based on some special differential
forms (see (5) for q D 1).

Theorem 2 was generalized by Brito and Naveira [15] for a distribution D (n D
dimD) of arbitrary codimension q. Namely, they introduce some differential forms
�r for even r D 2s as follows

�r D
X

�2†n ".�/.!
�.1/ˇ1 ^ !�.2/ˇ1/ ^ � � � ^ .!�.2s�1/ˇs ^ !�.2s/ˇs /^

^ ��.2sC1/ ^ � � � ^ ��.n/; (5)

where !i˛.ej /D hei ;rej e˛i D �A˛ij , �i orthonormal frames, for i D 1; : : : ; n;
˛ D 1; : : : ; q, †n is the group of permutations of the set f1; : : : ; ng, ".�/ stands for
the sign of the permutation � . Furthermore, they define the total r th extrinsic mean
curvature STr of D on a compact manifoldM as

STr D 1

rŠ.n � r/Š

Z

M

�r ^ ;

where  D �nC1 ^ � � � ^ �m (m D dimM ), and compute STr for some distributions.

Theorem 3. If M is a closed manifold of constant sectional curvature c � 0 and
D? is a totally geodesic distribution, then

ST2s D

8̂
ˆ̂̂
ˆ̂̂
ˆ̂̂̂
<
ˆ̂̂
ˆ̂̂̂
ˆ̂̂
:̂

 
n=2

s

! 
q C 2s � 1

2s

! 
.q C 2s � 1/=2

s

!�1
cs vol.M/

if n is even and q is odd,

22s.sŠ/2..2s/Š/�1
 
q=2C s � 1

s

! 
n=2

s

!
cs vol.M/

if n and q are even,
0; otherwise.
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Let us note that, as in the case of codimension one, the integral does not depend
on the distribution D. However, the notion of higher order mean curvatures in
arbitrary codimension, in contrast with codimension one, remained rather myste-
rious and more subtle.

Another method for the generalization of formula (4), and also more geometric
definition of higher order mean curvatures in arbitrary codimension, has been
proposed in [26, 27]. Using integration on the tangent sphere bundle (S? � D?)
authors define higher order mean curvatures in arbitrary codimension by the formula

Z

N2S?.M/

Sr .CN /; (6)

where CN .X/ D �.rXN/
> for X 2 D is the co-nullity tensor of D.

On the other hand, for a family of quadratic matrices A D .A1; : : : ; Aq/ of order
n and a multi-index � D .�1; : : : ; �q/, we can define the generalized elementary
symmetric polynomials �� as the coefficients of the polynomial det.I C t1A1 C
� � � ; tqAq/, i.e.,

det.I C t1A1 C � � � C tqAq/ D
X

j�j�n �� t
�1
1 � � � t�qq ; (7)

where j�j D �1 C � � � C �q . Observe that the coefficients �� D ��.A/ depend only
on A, and �.0;:::;0/ D 1. It is convenient to put �� D 0 for j�j > n.

Next, using “Jacobi tensor” Rmix
N .X/ D R.X;N /N for X 2 D, authors obtain a

series of integral formulas for foliated locally symmetric spaces.

Theorem 4. Let F .TF D D/ be a totally geodesic foliation and M locally
symmetric then for any r we have

Z

S?.M/

�X
k�kDr ��.BN;1; : : : ; BN;r /

�
D 0; (8)

where k�k D �1 C 2�2 C � � � C q �q and

BN;2k D 1

.2k/Š
.�Rmix

N /k; BN;2kC1D 1

.2k C 1/Š
.�Rmix

N /kCN :

Since �.r;0;:::;0/ D Sr , one can find integral formula containing (6).
Next approach to higher order mean curvatures was proposed in [6]. The main

idea is that we are looking for, naturally related to a geometry of a foliation,
global vector fields on M and next we compute their divergence and use Stokes’
theorem. In codimension-one, two canonical vector fields are hN (normal) and
rNN (tangent). Natural generalization of the first one is SrN and the generalization
of the second one is based on the application of an operator Tr called Newton
transformation (build of A) acting on rNN . More precisely, we define inductively
operators
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T0 D I; Tr D SrI �ATr�1; 1 � r � n;

or, equivalently,

Tr D SrI � Sr�1AC � � � C .�1/r�1S1Ar�1 C .�1/rAr

which satisfy the following algebraic identities

tr.Tr / D .n � r/Sr ;

tr.ATr/ D .r C 1/SrC1;

tr.A2Tr/ D S1SrC1 � .r C 2/SrC2;

@t .SrC1/ D tr.Tr@tA/:

These operators arise naturally in the study of extrinsic geometry of hypersurfaces,
see [18, 23, 24]. It is worth to notice that there is increasing number of applications
of the Newton transformation in different areas of geometry in the last years (see,
for example, [1–3, 10, 12, 23]).

Computing the divergence divL.TrrNN/ along a leave L we obtain

Z

L

.hdivL Tr;rNN i �N.SrC1/C S1SrC1 � .r C 2/SrC2

C tr.RNTr/C hrNN; TrrNN i/ D 0; (9)

where

hdivL Tr; Y i D
Xr

jD1 tr.R..�A/j�1Y /Tr�j /; (10)

and the operatorR.Y / W �.F/ ! �.F/ is given by

R.Y /.X/ D R.X; Y /N; X 2 �.F/; Y 2 �.M/:

Since we are interested in the full divergence we compute the divergence of the sum
SrC1N C Tr.rNN/; using Stokes’ theorem and (9) one gets

Theorem 5. Let F be a codimension-one foliation on a closed Riemannian mani-
fold and N a unit normal of F , then we have

.r C 2/

Z

M

SrC2 D
Z

M

�
hdivTr ;rNN i C tr.RNTr/

�
; (11)

where divTr is given by (10).
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Example 1. Denote Z D rNN . For small r; r D 1; 2, (11) reads as

3

Z

M

S3 D
Z

M

�
S1Ric.N;N / � tr.ARN /C Ric.N;Z/

�
; (12)

4

Z

M

S4 D
Z

M

�
tr.T2RN /� hT2Z;H?i � hT2Z;Zi (13)

C tr
�
T2.RAZ;N � RZ;N /

��
;

where the linear operator RX;Y W D ! D is given by RX;Y W W ! R.W;X/Y >.

In the case of constant sectional curvature we obtain (4). Moreover, the above
result together with formula (9) implies the following theorem which generalizes
Theorem 1 to the case of second mean curvature.

Theorem 6. There is no codimension one foliation of the Euclidean sphere whose
leaves have constant second-order mean curvature.

Analyzing above applications of the Newton transformation in codimension one
there arises a natural question about similar considerations in arbitrary codimension
and their relations with the results obtained by Brito and Naveira. A formula for a
general distribution D of codimension q on a closed Riemannian manifold .M; g/
was obtained in [31] (see [21] for a foliation)
Z

M

Kmix D
Z

M

�kHk2 C kH?k2 � kBk2 � kB?k2 C kT k2 C kT ?k2� D 0; (14)

where Kmix D P
i�n; ˛�q g.R.ei ; e˛/e˛; ei / is the mixed scalar curvature and

ei .i � n/, e˛ .˛ � q/ is a local orthonormal frame adapted to D and D?. Here,
T and T ? are the integrability tensors of the distributions, andH andH? are their
mean curvature vectors. For q D 1, (14) reduces to (2).

One approach was proposed in [7] (and it is based on the suitable definitions
for submanifolds [17]). Namely, let Bj

i be the matrix elements of the second
fundamental form, then for even r 2 f1; : : : ; ng we define r th mean curvature Sr of
the distribution D by

Sr D 1

rŠ
ı
i1:::ir
j1:::jr

hBj1
i1
; B

j2
i2

i � � � hBjr�1
ir�1

; B
jr
ir

i;

r th mean curvature vector field by

S rC1 D 1

.r C 1/Š
ı
i1:::irC1

j1:::jrC1
hBj1

i1
; B

j2
i2

i � � � hBjr�1
ir�1

; B
jr
ir

iBjrC1

irC1
;

and finally Newton transformation by

Tr
i
j D 1

rŠ
ı
i1:::ir i
j1:::jr j

hBj1
i1
; B

j2
i2

i � � � hBjr�1
ir�1

; B
jr
ir

i;
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where the generalized Kronecker symbol ıi1:::irj1:::jr
is C1 or �1 according the i ’s are

distinct, and the j ’s are either even or odd permutation of the i ’s; and is 0 in all
other cases.

In spite of rather complicated definitions the main relations between Sr and Tr
are similar to the case of codimension one (for instance, tr.Tr/ D .n� r/Sr ) and we
have the following relations between Sr and �r :

1

rŠ.n � r/Š�r ^  D Sr�:

Moreover, in the case of constant sectional curvature and a totally geodesic
complementary distribution we can compute explicitly the divergence of S rC1, and
using Stokes’ theorem one obtains a recurrence

STrC2 D
Z

M

SrC2 D
Z

M

c.n � r/.q C r/

.r C q/.r C 2/
Sr ; (15)

which can be explicitly solved giving another proof of Theorem 3.
The second way of application of the Newton transformation in arbitrary

codimension was proposed in [25]. In this approach author defines global .1; 1/-
tensor field C on D by taking the following integral at a point x 2 M :

C.x/ D
Z

N2S?

x .M/

Tr .CN /;

where Tr.CN / is the Newton transformation associated with the co-nullity ten-
sor CN . If we compute the divergence of C.Z/ for appropriate vector field Z 2
�.D/, we obtain new series of integral formulas on M , as well as along leaves,
containing higher order mean curvatures and some terms related to the curvature
of M

.r C 2/

Z

S?.M/

SrC2.N / D
Z

S?.M/

�
hdivD T �

r .CN /;Zi � hTr.CN /Z;H?i

C tr.Tr .CN /RN /C
X

˛�qhTr.CN /.re˛N
>/;rN e˛i

�
;

where Z D rNN
> and the underlined term is given by

hdivD T �
r .CN /; Zi D

X
1�j�r

�
tr
�
Tr�j .CN /R.�CN /j�1Z;N

�

�
X

˛�qh.�C
�
N /

j�1.Ce˛ � C �
e˛
/Tr�j .CN /re˛N

>; Zi
�
:
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For r D 0 this yields (14). For r D 2 and integrable D we find total S4

4

Z

S?.M/

S4.N / D
Z

S?

�
tr.T2.AN /RN / � hT2.AN /Z;H?i

C tr
�
T2.AN /.RANZ;N �RZ;N /

�

C
X

˛�qhT2.AN /.re˛N
>/;rN e˛i

�
: (16)

For a codimension one foliation (tangent to D), (16) reduces to (13).
The notion of extrinsic curvatures (for a distribution of arbitrary codimension)

has been recently generalized in [5]. Namely, for any multi-index � D .�1; : : : ; �q/

of length j�j D �1 C � � � C �q , they introduce the transformation T� depending
on a system of linear endomorphisms. More precisely, for a system of linear
endomorphisms A D .A1; : : : ; Aq/ they use invariants ��, see (7), to define

T.0;:::;0/ D 1; (17)

T� D ��1 �
X

˛
A˛T˛[.�/

D ��1 �
X

˛
T˛[.�/A˛;

if j�j � 1 (18)

where ˛[.i1; : : : ; iq/ D .i1; : : : ; i˛�1; i˛ � 1; i˛C1; : : : ; iq/. Since these transfor-
mations are similar to the classical Newton transformation they are called the
generalized Newton transformations.

Let � W P ! M be the principal bundle of orthonormal frames (oriented
orthonormal frames, respectively) of D? with the structure group G (which is
always either the full orthogonal group or the special orthogonal group). Each
element .x; e/ D .e1; : : : ; eq/ 2 Px , x 2 M , induces the system of endomorphisms

A.x; e/ D .A1.x; e/; : : : ; Aq.x; e//

of Dx , where A˛.x; e/ is the shape operator corresponding to .x; e/, i.e.,

A˛.x; e/.X/ D � .rXe˛/
> ; X 2 Dx: (19)

Let T�.x; e/ be the generalized Newton transformation associated with the operator
A.x; e/. Taking an average over a fiber we obtain a set of globally defined
functions b��

b��.x/ D
Z

Px

��.x; e/ de D
Z

G

��.x; e0a/ da; (20)

and we call them extrinsic curvatures of a distribution D. Similarly to the
codimension-one case (i.e., for Sr and Tr ), we find total extrinsic curvatures in
terms of generalized Newton transformations and second fundamental forms of
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D and D?. In the special case of totally geodesic orthogonal distribution D?
and constant sectional curvature c of M , they reduce to the following recurrence
formula:

j�j�M� D c
X

˛

Z

P

tr.T˛2[ .�// D c
X

˛

Z

P

.n� j�j C 2/�˛2[ .�/

D c.n � j�j C 2/
X

˛
�M
˛2[ .�/

(21)

with the initial conditions �M.0;:::;0/ D vol.P / and �M
˛].0;:::;0/

D 0, where

˛].i1; : : : ; iq/ D .i1; : : : ; i˛�1; i˛ C 1; i˛C1; : : : ; iq/. In this case, the total extrinsic
curvatures do not depend on geometry of the distribution D.

Summarizing our considerations we see that there has been the rise of integral
formulas and their applications in foliation theory during the last years. Definitely,
there are much more integral formulas and their consequences than we have
indicated here.
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Prescribing the Mixed Scalar Curvature
of a Foliation

Vladimir Rovenski and Leonid Zelenko

Abstract We introduce the flow of metrics on a foliated Riemannian manifold
.M; g/, whose velocity along the orthogonal (to the foliation F ) distribution D is
proportional to the mixed scalar curvature, Scalmix. The flow preserves harmonicity
of foliations and is used to examine the question: When does a foliation admit
a metric with a given property of Scalmix (e.g., positive/negative or constant)?
If the mean curvature vector of D is leaf-wise conservative, then its potential
function obeys the nonlinear heat equation .1=n/@tu D �F u C .ˇD C ˆ=n/u C
.‰F

1 =n/u
�1�.‰F

2 =n/u
�3 with a leaf-wise constantˆ and known functions ˇD � 0

and ‰F
i � 0. We study the asymptotic behavior of its solutions and prove that

under certain conditions (in terms of spectral parameters of Schrödinger operator
HF D ��F � ˇD id ) the flow of metrics admits a unique global solution, whose
Scalmix converges exponentially to a leaf-wise constant. Hence, in certain cases,
there exists a D-conformal to g metric, whose Scalmix is negative, positive, or
negative constant.

Keywords Foliation • Riemannian metric • Conformal • Mixed scalar curva-
ture • Mean curvature vector • Parabolic PDE • Schrödinger operator • Twisted
product
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Introduction

In this section we discuss the question on prescribing the mixed scalar curvature of a
foliation and define the flow of leaf-wise conformal metrics depending on this kind
of curvature.

1. Geometry of Foliations. Let .MnCp; g/ be a connected closed (i.e., compact
without boundary) Riemannian manifold, endowed with a p-dimensional foliation
F (i.e., a partition into submanifolds (called leaves) of the same dimension p),
and r the Levi-Civita connection of g. The tangent bundle to M is decomposed
orthogonally as T .M/ D DF ˚ D, where the distribution DF is tangent to F .
Denote by . � /F and . � /? projections onto DF and D, respectively.

The second fundamental tensor and the mean curvature vector field of F are
given by hF .X; Y / D .rXY /

? andHF D Trg h, whereX; Y 2 DF . A Riemannian
manifold may admit many geometrically interesting foliations. Totally geodesic
(i.e., hF D 0) and harmonic (i.e., HF D 0) foliations are among these kinds that
enjoyed a lot of investigation of geometers (see survey in [8]). Simple examples
are parallel circles or winding lines on a flat torus and a Hopf family of great
circles on the sphere S3. Similarly, we define the second fundamental tensor
h.X; Y / D 1

2
.rXY C rY X/

F and the integrability tensor T .X; Y / D 1
2
ŒX; Y �F ,

where X; Y 2 D, of the distribution D. The mean curvature vector of D is given by
H D Trg h. A foliation F is said to be Riemannian, or transversely harmonic, if,
respectively, h D 0; or H D 0. Conformal foliations (i.e., h D .1=n/H � g jD)
were introduced by Vaisman [13] as foliations admitting a transversal conformal
structure.

One of the principal problems of geometry of foliations is the following, see [10]:
Given a foliation F on a manifold M and a geometric property .P /, does there

exist a Riemannian metric g on M such that F enjoys .P / with respect to g?
Such problems of the existence and classification of metrics on foliations (first posed
explicitly by H. Gluck for geodesic foliations) have been studied intensively by
many geometers in the 1970s.

A foliation is geometrically taut if there is a Riemannian metric making F
harmonic. Sullivan [12] provided a topological tautness condition for geometric
tautness. By the Novikov Theorem (see [2]) and Sullivan’s results, the sphere S3 has
no two-dimensional taut foliations. In the recent decades, several tools for proving
results of this sort have been developed. Among them, one may find Sullivan’s
foliated cycles and new integral formulae, see [14] and a survey in [10].

2. The Mixed Scalar Curvature. There are three kinds of Riemannian curvature
for a foliation: tangential, transversal, and mixed (a plane that contains a tangent
vector to the foliation and a vector orthogonal to it is said to be mixed). The
geometrical sense of the mixed curvature follows from the fact that for a totally
geodesic foliation, certain components of the curvature tensor, see [8], regulate
the deviation of leaves along the leaf geodesics. In general relativity, the geodesic
deviation equation is an equation involving the Riemann curvature tensor, which
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measures the change in separation of neighboring geodesics or, equivalently, the
tidal force experienced by a rigid body moving along a geodesic. In the language
of mechanics it measures the rate of relative acceleration of two particles moving
forward on neighboring geodesics.

Let fEi; Eagi�n; a�p be a local orthonormal frame on T .M/ adapted to D
and DF . The mixed scalar curvature is the following function: Scalmix DPn

iD1
Pp

aD1 R.Ea; Ei ; Ea; Ei /, see [8,10,14]. If either D or DF is one-dimensional
and is tangent to a unit vector field N , then the mixed scalar curvature is simply the
Ricci curvature Ric.N;N /. On a foliated surface .M2; g/ this coincides with the
Gaussian curvatureK . Recall the formula, see [14]:

Scalmix.g/ D div.H CHF /C kHk2 C kHFk2 C kT k2 � kh k2 � khFk2: (1)

The norms of tensors are khFk2DP
a;b khF .Ea; Eb/k2, kh k2 D P

i;j kh.Ei ; Ej /k2,
and kT k2 D P

i;j kT .Ei ; Ej /k2. Integrating (1) over a closed manifold and using
the Divergence Theorem, we obtain the integral formula with the total Scalmix.g/.
Thus, (1) yields decomposition criteria for foliated manifolds under constraints on
the sign of Scalmix (see [14] and a survey in [8]).

The basic question that we address in the chapter is the following: When a
foliation admits a metric with a given property of Scalmix .e.g., constant, positive,
or negative/?

Example 1. For any n � 2 and p � 1 there exists a fiber bundle with a closed
.nCp/-dimensional total space and compact p-dimensional totally geodesic fibers,
having constant mixed scalar curvature. To show this, consider the Hopf fibration
Q� W S3 ! S2 of a unit sphere .S3; gcan/ by great circles (closed geodesics). Let
. QF ; g1/ and . QB; g2/ be closed Riemannian manifolds with dimensions, respectively,
p�1 and n�2. LetM be the product QF �S3� QB with the metric g D g1�gcan �g2.
Then � W M ! S2� QB is a fibration with a totally geodesic fiber QF �S1. Certainly,
Scalmix � 2.

We shall examine the question above using evolution equations. A flow of metrics
on a manifold is a solution gt of a differential equation @tg D S.g/ , where
the geometric functional S.g/ is a symmetric .0; 2/-tensor usually related to some
kind of curvature. Rovenski and Walczak [10] (see also [11]) studied flows of
metrics on a foliation that depend on the extrinsic geometry of the leaves and posed
the following question:

Given a geometric property .P / of a submanifold, can one find a flow
@tg D S.g/ on a foliation .M;F/ such that the solution metrics gt .t � 0/

converge to a metric for which F enjoys .P /?
The notion of the D-truncated .r; 2/-tensor S? (where r D 0; 1) will be

helpful: S?.X1;X2/ D S.X?
1 ; X

?
2 /. The D-truncated metric tensor g? is given by

g?.X1;X2/ D g.X1;X2/ and g?.Y; �/ D 0 for all Xi 2 D; Y 2 DF . A flow of
D-conformal metrics is represented by S?.g/ D s.g/ g?, where s.g/ is a smooth
function on the space of metrics onM . We study the flow of metrics gt , see also [9]:
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@tg D �2 .Scalmix.g/ �ˆ/g?; (2)

where ˆ W M ! R is a leaf-wise constant function; its value is clarified in what
follows.

The flow (2) preserves harmonicity, total umbilicity, or total geodesy of foliations
(see Sect. 1.3). We ask the following question (see [9] and also [4, Problem 15]):

Given a Riemannian manifold .M; g/ with a harmonic foliation F , when do
solution metrics gt of (2) converge to a limit metric Ng with Scalmix. Ng/ positive,
negative, or constant?

In the case of a general foliation, the topology of the leaf through a point can
change dramatically with the point; this gives many difficulties in studying truncated
flows of metrics and leaf-wise parabolic PDEs. Therefore, we assume, at least at the
first stage of study,

.a/ the leaves to be compact, .b/ the manifold M to be fibered (instead of being foliated):
(3)

Example 2. (a) Let .M2; g/ be a two-dimensional Riemannian manifold (surface)
of Gaussian curvature K , endowed with a unit geodesic vector field N .
Certainly, (2) reduces to the following view:

@tg D �2 .K.g/ �ˆ/g? (4)

which looks like the normalized Ricci flow on surfaces but uses the truncated
metric g? instead of g. Let k be the geodesic curvature of curves orthogonal
to N . From (4) we obtain the PDE @tk D K;x (along a trajectory �.x/ of
N ). The above yields the Burgers equation @tk C .k2/;x D k;xx , which is
the prototype for advection–diffusion processes in gas and fluid dynamics, and
acoustics. When k and K are known, the metrics may be recovered as g?

t D
g?
0 exp .�2 R t

0
.K.s; t/ �ˆ/ ds/.

(b) For the Hopf fibration � W .S 2mC1; gcan/ ! CPm of a unit sphere with fiber
S1, by (1) we have Scalmix D 2m. Thus, the metric gcan on S 2mC1 is a fixed
point of flow (2) with ˆ D 2m.

3. Structure of the Chapter. The solution strategy is based on deducing from (2)
the forced Burgers-type equation

@tH C rFkHk2 D nrF .divF H/CX;

for a certain vector field X , see Proposition 1. If H is leaf-wise conservative, i.e.,
H D �nrF log u for a leaf-wise smooth function u.x; t/ > 0, this and (1) yield
the nonlinear heat equation

.1=n/ @tu D �F u C .ˇD Cˆ=n/ u C .‰F
1 =n/ u�1 � .‰F

2 =n/ u�3; u. � ; 0/ D u0;
(5)
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where functions ˇD.x/ � 0 and ‰F
i .x/ � 0 are known, and �F is the leaf-wise

Laplacian, see [2]. We study the asymptotic behavior of its solutions and prove that
under certain conditions (in terms of spectral parameters of Schrödinger operator
HF D ��F � ˇD id ) flow (4) has a unique global solution gt , whose Scalmix

converges exponentially to a leaf-wise constant. Thus, in certain cases, there exists
a D-conformal to g metric, whose Scalmix is negative, positive, or negative constant.

Section 1 contains main results (Theorems 1–4 and Corollaries 1–5), their
proofs and examples for one-dimensional case and for twisted products. These are
supported by results of Sect. 2 (Theorems 5–7) about nonlinear PDE (5) on a closed
Riemannian manifold. In Sect. 2.2 we examine (5) for the modeling case when a leaf
F is a circle S1 and the coefficients ˇD and ‰F

i are constants, and in Sects. 2.3–2.6
we study the general case.

1 Main Results, Proofs and Examples

1.1 Main Results

Define the operations with the leaf-wise derivatives: the divergence divF X WDPp
˛D1 g.r˛X; E˛/ of a vector field X and the Laplacian �F u WD divF .rFu/ of

a leaf-wise smooth function u, where rFu WD .ru/F . Notice that rF ; divF , and
�F are t-independent for the flow of metrics (4).

Based on the “linear algebra” inequality n kh k2 � kHk2 (with the equality when
D is totally umbilical, i.e., F is conformal), we introduce the following measure of
“nonumbilicity” of D:

ˇD WD n�2�n kh k2 � kHk2� � 0: (6)

Forp D 1, we have ˇD D n�2P
i<j .ki�kj /2, where ki are the principal curvatures

of D see [6, Sect. 4.1].
The Schrödinger operator is central to all of quantum mechanics. By Lemma 3

(in Sect. 1.3), the flow of metrics (2) preserves the leaf-wise Schrödinger operator
HF given by

HF .u/ D ��F u � ˇD u: (7)

The spectrum of HF on any compact leaf F is an infinite sequence of isolated
real eigenvalues �F0 � �F1 � � � � � �Fj � � � � counting their multiplicities, and
lim j!1 �Fj D 1. One may fix in L2.F / an orthonormal basis of corresponding
eigenfunctions fej g, i.e., HF .ej / D �Fj ej . If all leaves are compact, then �Fj are
leaf-wise constant functions and fej g are leaf-wise smooth functions on M .

If the leaf F.x/ through x 2 M is compact, then �F0 � 0 (since ˇD � 0)
and the eigenfunction e0 (called the ground state) may be chosen positive, see
Proposition 3. The fundamental gap �F1 � �F0 > 0 of HF has mathematical
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and physical implications (e.g., in refinements of Poincaré inequality and a priori
estimates); it is also used to control the rate of convergence in numerical methods
of computation. Note that the least eigenvalue of operator ��F u � .ˇD C ˆ

n
/ u

is �F0 � ˆ
n

.
An important step in the study of evolutionary PDEs is to show short-time

existence/uniqueness.

Theorem 1. Let F be a harmonic foliation on a closed Riemannian manifold
.M; g0/. Then the linearization of (2) at g0 is a leaf-wise parabolic PDE; hence,
(2) under assumptions (3) has a unique smooth solution gt defined on a positive
time interval Œ0; t0/.

We shall say that a smooth function f .t; x/ on .0;1/ � F converges to
Nf .x/ as t ! 1 in C1, if it converges in Ck-norm for any k � 0. It con-

verges exponentially fast if there exists ! > 0 (called the exponential rate)
such that lim t!1 e ! tkf .t; �/ � Nf kCk D 0 for any k � 0. Define du0;e0 WD
minF .u0=e0/=maxF .u0=e0/ > 0.

The following theorems are central results of the work.

Theorem 2. Let F be a harmonic foliation on a closed Riemannian manifold
.M; g0/ with assumptions (3), and H0 D �nrF log u0 for a smooth function
u0 > 0. If ˆ obeys the inequality

ˆ � n�F0 C d �4
u0;e0

maxF kT k2g0 ; (8)

then (2) has a unique smooth global solution gt .t � 0/, and for any ˛ 2
.0;minf�F1 ��F0 ; 2 .ˆ=n � �F0 /g/ we have the leaf-wise convergence in C1, as
t ! 1, with the exponential rate n˛:

Scalmix.gt / ! n�F0 �ˆ � 0; Ht ! �nrF log e0; hF .gt / ! 0:

For T D 0, condition (8) becomesˆ � n�F0 , and we have the following.

Corollary 1. Let F be a harmonic foliation with integrable normal distri-
bution on a closed Riemannian manifold .M; g0/ with assumptions (3) and
H0 D �nrF log u0 for a smooth function u0 > 0. If ˆ � n�F0 , then the claim
of Theorem 2 holds.

Theorem 3. Let F be a harmonic foliation on a closed Riemannian manifold
.M; g0/ with assumptions (3), and H0 D �nrF log u0 for a smooth func-
tion u0 > 0. Suppose that

p
2 maxM kT kg0 < minM khFkg0 . If d 2u0=e0 >p

2 maxM kT kg0=minM khFkg0 holds, then the interval

I0 D �
max

˚
0; 3 d �4

u0;e0 max
M

kT k2g0�min
M

khFk2g0
�
;
1

4
d 4u0;e0 min

M
khFk4g0=max

M
kT k2g0

�

(9)
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is nonempty, and for any ˚ satisfying the condition n�F0 � ˚ 2 I0, flow (2) admits
a unique smooth solution gt .t � 0/, and it converges in C1 exponentially fast
to a limit metric Ng D lim

t!1gt ; moreover, we have the exponential convergence

Scal mix.gt / ! ˚ , as t ! 1, in C1 along the leaves.

For T D 0 and hF ¤ 0, the bounds of I0 become simpler, and we have the
following.

Corollary 2. Let F be a harmonic foliation on a closed Riemannian manifold
.M; g0/ with assumptions (3). Suppose that the normal distribution is integrable,
hF ¤ 0, and H0 D �nrF log u0 for a smooth function u0 > 0. If ˆ � n�F0 , then
the claim of Theorem 3 holds.

The (co)dimension one versions of Corollaries 1 and 2 are discussed in Sect. 1.4.
The above results are summarized (due to the basic question) in the following.

Corollary 3. Let F be a harmonic foliation on a closed Riemannian manifold
.M; g/ with assumptions (3) andH D �nrF log u0 for a smooth function u0 > 0.

.i/ Then for any c > d�4
u0;e0 maxF kT k2g there exists a D-conformal to g metric Ng

with Scalmix. Ng/ � �c.
.ii/ If �2khFk2g < �4kT k2g C d �4

u0;e0 max
F

kT k2g , where � D u0=.Qu00e0/ and Qu00
is defined in Sect. 2.4, then there exists a D-conformal to g metric Ng with
Scalmix. Ng/ > 0.

.iii/ If
p
2maxF kT kg0 < du0;e0 minF khFkg0 , then there exists a D-conformal to

g metric Ng with Scalmix. Ng/ D const < 0.

Example 3. If ˇD D 0, then �F0 D 0. This appears for twisted products B �'t
NM

of .B; g/ and . NM; Ng/, i.e., M D B � NM with metrics gt D g C '2t Ng .t � 0/,
where 't 2 C1.B � NM/ are positive functions, see [7]. The mean curvature vector
H D �nrF log' is leaf-wise conservative.

The leaves B � fyg of a twisted product compose a totally geodesic foliation
F , while the fibers fxg � NM are totally umbilical with the leaf-wise conservative
mean curvature vectorH D �nrF log'. If metrics gt solve (2), thenH obeys the
Burgers-type equation @tH C rFkHk2 D nrF .divF H/, see (19) with T D 0,
hF D 0, and ˇD D 0. The function Q' WD e�ˆ t' obeys the heat equation @t Q' D
n�F Q'. Let B and NM be closed and gt D g C '2t Ng solve (2) with ˆ D 0, then gt
converge as t ! 1 in C1 with the exponential rate �F1 to the metric of the product
g1 D g C ' 21 Ng, with '1 D R

NM '.0; � ; y/ dy Ng; hence, Scalmix.g1/ D 0.

Let us look at what happens when B has the boundary and ' > 0 in the interior
of B . Simple example is a rotation surface in R

3, the leaves are meridians. By the
maximum principle [1, Sect. 3.73], the problem�F u D 0; uj @B D 0 has only zero
solution; hence, �F0 D 0 is not the eigenvalue. Let �.t; x/ D '.t; x/j @B be twice
continuously differentiable in t , and there exist limits

lim
t!1�.t; x/ D Q�.x/; lim

t!1 @t�.t; x/ D 0; lim
t!1 @2t �.t; �/ D 0 (10)
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for a smooth nonnegative function Q� W @B ! R uniformly for x 2 @B . Define the
functions ı.t; �/ WD �.t; �/� Q� and .t/ WD maxfkı.t; �/kC0.@B/; k@t ı.t; �/kC0.@B/g.

Next theorem examines when for the twisted product initial metric on Bp � NMn

the global solution of (2) converges to a limit metric with leaf-wise constant mixed
scalar curvature.

Theorem 4. Let the metrics gt onBp�'
NMn solve (2) and any of conditions (i)–(iii)

is satisfied:
(i) ˆ < 0 and (10)1;2, (ii) 0 � ˆ < n�F1 , p < 4, and (10), (iii) ˆ D n�F1 ,

p < 4, (10) and

Q� D 0;
R1
0
.
/ d
 < 1: (11)

Then gt exist for all t � 0, and converge, as t ! 1, uniformly on B � NMn in
C0-norm to a limit metric g1 D dx2 C '21.x/ Ng with Scalmix.g1/ D ˆ. Moreover,
(2) has a single point global attractor for (i) and (ii), but for (iii) the metric g1
depends on initial and boundary conditions.

1.2 Auxiliary Results

The Levi-Civita connection r of a metric g onM is given by a well-known formula

2 g.rXY;Z/ D X.g.Y; Z//C Y.g.X;Z// �Z.g.X; Y //
Cg.ŒX; Y �; Z/� g.ŒX;Z�; Y /� g.ŒY; Z�; X/ .X; Y; Z 2 T .M//:

(12)

Let gt be a smooth family of metrics on .M;F/ and S D @tg. Since the difference
of two connections is a tensor, @tr t is a .1; 2/-tensor on .M; gt /. Differentiating
(12) with respect to t yields, see [10],

2 gt..@tr t /.X; Y /;Z/ D .r t
XS/.Y;Z/C .r t

Y S/.X;Z/� .r t
ZS/.X; Y / (13)

for all t-independent vector fieldsX; Y;Z onM . If S D s.g/ g?, for short we write

@tg D s g? (14)

for a certain t-dependent function s W M ! R.

Lemma 1. For variations (14) of metrics we have

@thF D �s hF ; @tHF D �s HF : (15)

Variations of metrics (14) preserve total umbilicity, total geodesy, and harmonicity
of foliations.
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Proof. Let gt .t � 0/ be a family of metrics on .M;F/ such that @tgt D S.g/,
where the tensor S.g/ is D-truncated. Using (13), we find forX 2 D and �; � 2 DF ,

2 gt .@thF .�; �/; X/ D gt .@t .r t
� �/C @t .r t

� �/; X/

D .r t
�S/.X; �/C .r t

�S/.X; �/ � .r t
XS/.�; �/

D �S.r t
� �; X/ � S.r t

� �; X/ D �2 S.hF .�; �/; X/:

Assuming S.g/ D s.g/ g?, we have (15)1. Tracing this yields (15)2. By the theory
of ODEs, if HF D 0 or hF D 0 at t D 0 then, respectively,HF D 0 or hF D 0 for
all t > 0. By (15) we have

@t .hF � .1=p/HF gjF / D �s.hF � .1=p/HF gjF /:

By the theory of ODEs, if hF D .1=p/HF gjF (i.e., F is totally umbilical) for
t D 0, then hF D .1=p/HF gjF for all t > 0. ut

The co-nullity operator is defined byCN .X/ D �.rXN/
? forX 2 T .M/; N 2

DF . One may decompose CN restricted to D into symmetric and antisymmetric
parts as CN D AN C T

]
N . The Weingarten operator AN of D and the operator T ]N

are related with tensors h and T by

g.AN .X/; Y /Dg.h.X; Y /; N /; g.T
]
N .X/; Y /Dg.T .X; Y /; N /; X; Y 2 D:

The proof of the next lemma is based on (13) with S D s g?.

Lemma 2 (See [9] and [11]). For D-conformal variations (14) of metrics we have

@tAN D �1
2
N.s/ bid ; @tT ]N D �s T ]N .N 2 DF /;

@tH D �n
2

rFs; @t .divF H/ D �n
2
�F s: (16)

By (16)1;2, variations (14) preserve conformal foliations, i.e., the property
ˇD � 0.

Define the domain U WD fx 2 M W ‰F
1 ‰

F
2 ¤ 0g and the functions

‰F
1 WD u20 khFk2g0 ; ‰F

2 WD u40 kT k2g0 : (17)

Lemma 3 (Conservation laws). Let gt .t � 0/ be D-conformal metrics (14) on
a foliated manifold .M;F ;D/ such that H0 D �nrF log u0 for a positive function
u0 2 C1.M/. Then the following two functions and two vector fields on U are
t-independent W

ˇD; khFk2=kT k; H � .n=2/rF log kT k; H � nrF log khFk:
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Proof. Using Lemma 2 and g?.H; � / D 0, we calculate

@t kh k2 D @t
X

˛
Tr .A2E˛ / D 2

X
˛

Tr .AE˛@tAE˛ /

D �
X

˛
E˛.s/Tr AE˛ D �g.rs;H/;

@tg.H;H/ D s g?.H;H/C 2 g.@tH;H/ D �ng.rs;H/:

Hence, n @tˇD D @t kh k2g � 1
n
@tg.H;H/ D 0, that is, the function ˇD does not

depend on t .
For any function f 2 C1.M/ and a vector N 2 DF , using .@tg/.� ; N / D 0,

we find

g.rF .@tf /;N / D N.@tf / D @tN.f / D @tg.rFf;N / D g.@t .rFf /;N /:

Hence rF .@tf / D @t .rFf /. By Lemma 2, we find

@tkT k2 D �@t
X

˛
Tr
�
.T

]
E˛ /

2
� D �2

X
˛

Tr .T ]E˛@t T
]
E˛ /

D 2s
X

˛
Tr
�
.T

]
E˛ /

2
� D �2 s kT k2:

Similarly, by Lemma 3 and using the proof of Lemma 1, we obtain @tkhFk2 D
�s khFk2. By the above, hF ¤ 0 ¤ T on U , and we have @t log kT k2gt D �2 s
and @t log khFk2gt D �s. Using rF@t D @trF , we obtain @tHt D
.n=2/ @trF log kT kgt and @tHt D n @trF log khFkgt ; moreover, @t .khFk2=kT k/
D 0. From the above the claim follows. ut

Next lemma allows us to reduce (2) to the leaf-wise PDE (with space derivatives
along F only).

Lemma 4 (See also [9]). Let F be a harmonic foliation on .M; g/. Then (1) reads

Scalmix D divF H � kHk2=nC kT k2 � khFk2 � nˇD: (18)

Proof. From (1), using HF D 0 and identity divH D divF H � kHk2g , we obtain
Scalmix D divF H � khk2 C kT k2 � khFk2. Substituting khk2 D nˇD C kHk2=n
due to (6), we get (18). ut
Proposition 1. Let F be a harmonic foliation on a Riemannian manifold .M; g0/
and a family of metrics gt .0 � t < t0/ solves (2). Then

@tH C rFkHk2 D nrF .divF H/C nrF .kT k2gt � khFk2gt � nˇD/: (19)

Suppose that H0 D �nrF log u0 for a leaf-wise smooth function u0 > 0, then
Ht D �nrF log u for some positive function u W M � Œ0; t0/; moreover,
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.i/ if ‰F
2 ¤ 0, then u D .‰F

2 /
1=4kT k�1=2

gt , and the nonlinear PDE (5) is satisfied.
.ii/ if ‰F

1 � 0 � ‰F
2 , then the potential function u may be chosen as a solution of

the linear PDE

.1=n/ @tu D �F u C ˇD u; u. � ; 0/ D u0: (20)

Proof. By Theorem 1, (2) admits a unit local leaf-wise smooth solution
gt .0 � t < t0/. The functions Scalmix.gt /;Ht , kT kgt , and khFkgt are then uniquely
determined for 0 � t < t0. From (16)3 with s D �2 .Scalmix.g/ � ˆ/ and using
(18) we obtain (19).

(i) By Lemma 3(ii), Ht � .n=4/rF log kT k2gt D X for some vector field X
on M . Since H0 is conservative, X D �.n=4/rF log for some leaf-wise
smooth function  > 0 on M . Hence, Ht D �nrF log

�
 1=4kT k�1=2

gt

�
and,

by condition H0 D �nrF log u0, one may take  D u40 kT k2g0 . Define a leaf-

wise smooth function u WD .‰F
2 /

1=4kT k�1=2
gt on U � Œ0; t0/ and calculate

@t .log kT k2gt / D �4 @t log.kT k�1=2
gt

/ D �4 @t log..‰F
2 /

�1=4u/ D �4 @t log u:

By Lemma 3 and (17) khFk2gt =kT kgt D ‰F
1 .‰

F
2 /

�1=2; thus, u D
.‰F

1 /
1=2khFk�1

gt
on U � Œ0; t0/ and

@t .log khFk2gt / D �2 @t log.khFk�1
gt
/ D �2 @t log..‰F

1 /
�1=2u/ D �2 @t log u:

From the above and (18) we then obtain

@t log u D �.1=4/ @t .log kT k2gt / D s=2 D �Scalmix.gt /Cˆ

D n�F log u C ng.rF log u;rF log u/C nˇD

CˆC‰F
1 u�2 �‰F

2 u�4:

Substituting @t log u D u�1@tu, rF log u D u�1rFu, and �F log u D
u�1�F u � u�2g.rFu;rFu/, we find that u solves the nonlinear heat equa-
tion (5).

(ii) Note thatH obeys a forced leaf-wise Burgers equation [a consequence of (19)]

@tH C rFkHk2gt D nrF .divF H/� n2rFˇD:

The rest of the proof can be seen in [9, Proposition 2]. ut
Under certain conditions, (19) and (20) have single-point exponential attractors.

The authors of [5] proved the polynomial convergence of a solution to the forced
Burgers PDE on R

n.
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1.3 Proofs of Main Results

Proof of Theorem 1. Let gt D g0 C s g?
0 .0 � t < "/ be D-conformal metrics

on a foliated manifold .M;F/, where s W M � Œ0; "/ ! R is a smooth function.
By Lemma 1, F is harmonic with respect to all gt . We differentiate (18) by t , and
apply Lemmas 2 and 3 to obtain

@tScalmix.gt / D �.n=2/�F s C g.rs;H/C s
�khFk2gt � 2 kT k2gt

�
:

Hence, the linearization of (2) at g0 is the following linear PDE for s on the leaves:

@t s D n�F s � 2 g0.r s; H0/ � 2 .Scalmix.g0/C khFk2g0 � 2 kT k2g0/s:

The result follows from the theory of parabolic PDEs [1] and assumption (3), see
also Sect. 2.6. ut
Proof of Theorem 2. By Theorem 1, there exists a unique local solution gt on
M � Œ0; t0/. By Proposition 1(ii), H obeys (19), and H D �nrF log u for some
positive function u satisfying (5) with u.� ; 0/ D u0. Note that conditions (8) yield
.u�
0 /
4 � .‰F

2 /
C=.ˆ � n�F0 /, see (50) with ˇ D ˇD C ˆ=n and �F0 � ˆ=n < 0

and definitions (17) and (44). By Theorem 5, one may leaf-wise smoothly extend
a solution of (5) on M � Œ0;1/; hence, Ht.x/ is defined for t � 0 and is smooth
on the leaves. By Theorem 6(i), u ! 1 as t ! 1 with exponential rate n˛
for ˛ 2 .0;minf�F1 ��F0 ; 2.ˆ=n � �F0 g/. Hence, ‰F

2 u�4 is leaf-wise smooth;
moreover, kT kgt ! 0 and hF .gt / ! 0 as t ! 1. By Theorem 6(ii), Ht D
�nrF log u approaches in C1, as t ! 1, to the vector field NH D �nrF log e0;
hence, divF Ht approaches to the leaf-wise smooth function �n�F log e0. Since
��F e0 � .ˇD Cˆ=n/ e0 D �F0 e0, we have, as t ! 1,

divF Ht � kHk2gt =n ! �n.�F e0/=e0 D n.�F0 C ˇD/�ˆ:

By (18), Scalmix.� ; t/ approaches exponentially to n�F0 � ˆ as t ! 1. Then a
smooth solution to (2) is gt D g0 exp.�2 R t

0
.Scalmix.� ; 
/ � ˆ/ d
/, where t � 0,

see also Sect. 2.6. ut
Proof of Theorem 3. By Theorem 1, there exists a unique local solution gt on
M � Œ0; t0/. By Proposition 1(ii), H obeys (19), and H D �nrF log u for
some positive function u satisfying (5). Note that the inequality

p
2max

M
kT kg0 <

d2u0;e0 min
M

khFkg0 yields

3 d�4
u0;e0

max
M

kT k2g0 � min
M

khFk2g0 <
1

4
d 4u0;e0 min

M
khFk4g0=max

M
kT k2g0 I

hence, I0 is nonempty. Next, we find that the inequalities 0 < n�F0 � ˚ <
1
4
d 4u0;e0 min

M
khFk4g0=max

M
kT k2g0 yield 0 < n�F0 � ˚ < 1

4
min
M
.khFk4g0u40=e40/=
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max
M
.kT k2g0u40=e40/, which represent conditions (72). Finally, the condition n�F0 �

˚ � 3 d�4
u0;e0 max

M
kT k2g0 � min

M
khFk2g0g, see the definition of I0, yield

n�F0 � ˚ > 3 max
M
.kT k2g0u40=e40/=.u0=e0/4 � min

M
.khFk2g0u20=e20/=.u0=e0/2;

which means u0 2 U 1. By Theorem 7, there exists u�—a unique solution in U 1 of
the stationary PDE for (5),

n�F u C .n ˇD Cˆ/ u C‰F
1 u�1 �‰F

2 u�3 D 0;

and Ht ! �nrF log u� and Scalmix.gt / ! ˆ as t ! 1 with the exponential
rate. ut
Proof of Corollary 3. Claim (i) follows from Theorem 2. The metrics gt .g0 D g/

of Theorem 2 diverge as t ! 1 with the exponential rate � D ˆ� n�F0 :

9C > 1; 8X 2 D; 8 t � 0 W C �1e2� tg.X;X/ � gt .X;X/ � Ce2� tg.X;X/:

Consider D-conformal metrics Ngt D gF C e�2� t .gt /?. By (16)3, NHt D Ht . Let
.� ; �/0 be the inner product and the norm in L2.F / for any leaf F . The function
v D e�� tu converges as t ! 1 to Qu00e0, where Qu00 D .Qu; e0/0 D u00 C R1

0
q0.
/ d
 ,

see Theorem 6 and (66). For t ! 1 we have

khFk2Ngt D e2� tkhFk2gt D ‰F
1 =v

2 ! �2khFk2g;

kT k2Ngt D e4� tkT k2gt D ‰F
2 =v

4 ! �4kT k2g;

and the metrics Ngt converge as t ! 1 to the metric Ng1 D gF C ��2g?. By (18),
we find

Scalmix. Ng1/ D n�F0 �ˆC �4kT k2g � �2khFk2g :

Comparing with (8) completes the proof of (ii). Claim (iii) follows from Theorem 3.
ut

1.4 One-Dimensional Case

Let .M; g/ be a Riemannian manifold with a unit vector field N , i.e., p D 1 or
n D 1. In this case, Scalmix is the Ricci curvature Ric.N;N /.

Case p D 1. Let N be tangent to a geodesic foliation F , h the scalar second
fundamental form, and H D Trg h the mean curvature of D D N?. We have
hF D 0, and (18) reads Ric.N;N / D kT k2 C N.H/ � H2=n � nˇD . Let the
metric evolve as, see (2),

@tg D �2 .Ricg.N;N /�ˆ/g?; (21)
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then H obeys the PDE along N -curves, see (19), @tH CN.H2/ D nN.N.H//C
n
�
N.kT k2/ � nˇD

�
. Suppose that H D �nN.log u0/ for a leaf-wise smooth

function u0 > 0 on M , then we assume H D �nN.log u/ for a positive function
u W M � Œ0; t0/, see Proposition 1.

If D is integrable, then the function u. � ; t/ > 0 may be chosen as a solution
of the following linear heat equation, see (20), @tu D nN.N.u//C nˇD u, where
u. � ; 0/ D u0. By Theorem 2, flow (21) admits a unique global solution gt .t � 0/.
If �F0 � ˆ=n < 0, then we have exponential convergence as t ! 1 of gt ! Ng,
H ! �nN.log e0/, and Ric gt .N;N / ! n�F0 �ˆ.

If D is nowhere integrable, then u D .‰F
2 /

1=4kT k�1=2
gt (with ‰F

2 WD u40 kT k2g0 >
0); moreover, the potential function u > 0 solves the nonlinear heat equation,
see (5),

.1=n/ @tu D N.N.u//C .ˇD Cˆ=n/ u � .‰F
2 =n/ u�3; u. � ; 0/ D u0:

If (8) are satisfied, then (21) admits a unique solution gt .t � 0/. We have
exponential convergence as t ! 1 of functions H ! �nN.log e0/ and
Ric gt .N;N / ! n�F0 �ˆ. By Theorem 2 we have

Corollary 4. Let N be a unit vector field tangent to a geodesic foliation F on
.M; g/ and (3) hold.

(i) Then for any c > d �4
u0;e0 maxF kT k2g there is a D-conformal to g metric Ng with

the property Ric Ng.N;N / � �c < 0.
(ii) If �2khFk2g < �4kT k2g C d �4

u0;e0 maxF kT k2g , where � D u0=.Qu00e0/ and Qu00 is
defined in Sect. 2.4, then there exists a D-conformal to g metric Ng such that
Ric Ng.N;N / > 0.

Case n D 1. LetN be orthogonal to a compact harmonic foliationF of codimension
one. Then T D ˇD D HF D 0, H D rNN , ‰F

1 D u20khFk2g0 , operator (7)
coincides with ��F (hence, �F0 D 0 and e0 D const), and (18) reads Ric.N;N / D
divF H � kHk2 C khFk2. By (19), we have

@tH C rFkHk2gt D rF .divF H/ � rF .khFk2gt /:

Suppose the condition H0 D �rF log u0 for a leaf-wise smooth function u0 > 0

on M . Then H D �rF log u, where, see (5),

@tu D �F u Cˆ u C‰F
1 u�1; u. � ; 0/ D u0:

If ˆ > 0, then (8) holds and, by Theorem 2, flow (21) admits a unique global
solution gt .t�0/. As t!1, we have convergence H!0; Ric gt .N;N / !
�ˆ; hF .gt / ! 0 with the exponential rate ˛ for any ˛ 2 .0; minf�F1 ; 2ˆg/.
By Theorems 2 and 3, we have the following.
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Corollary 5. Let F be a codimension one harmonic foliation with a unit normal
vector field N and assumptions (3).

(i) Then for any c > d �4
u0;e0 maxF kT k2g there is a D-conformal to g metric Ng with

Ric Ng.N;N / � �c.
(ii) If hF ¤ 0, then there exists a D-conformal to g metric Ng with Ric Ng.N;N / D

const < 0.

For a totally geodesic foliation F , i.e., hF � 0, (18) reads Ric.N;N / D
divF H � kHk2 D divH .

Let the metric evolve by (21). By Proposition 1, H obeys the homogeneous
Burgers equation @tH C rFkHk2 D rF .divF H/. Suppose that the curvature
vector H of N -curves is leaf-wise conservative: H D �rF log u for a function
u > 0. This yields the heat equation @tu D �F u. Solution of the above PDE
satisfies on the leaves Nu WD lim

t!1 u.t; x/ D R
Fx

u0.x/ dx =Vol.Fx; g/. Since

rFe0 D 0, we have NH D lim t!1H.t; �/ D 0. Then Ric Ng.N;N / D 0, where
Ng D lim t!1 gt .

1.5 Twisted Products

Definition 1 (See [7]). Let .Bp; dx2/ and . NMn; Ng/ be Riemannian manifolds, and
' 2 C1.B � NM/ a positive function. The twisted product B �'

NM is the manifold
M D B� NM with the metric g D dx2C'2 Ng. When the warping function ' depends
on B only, the twisted product becomes a warped product. (When ' D 1, B �'

NM
is a direct product.) The rotational symmetric metrics, i.e., NM is a unit n-sphere, are
the particular case of a warped product; such metrics appear on rotation surfaces in
space forms.

The leaves B � fyg of a twisted product compose a totally geodesic foliation F
onM , while the fibers fxg� NM are totally umbilical with the mean curvature vector
H D �nrF log'.

One may apply the existence/uniqueness Theorem 1 to conclude that (2)
preserves total umbilicity of foliations with integrable orthogonal distribution. Thus
we have the following.

Corollary 6. Flow (2) preserves twisted .warped/ product metrics.

For a twisted product we have hF D 0, T D 0, and

h D �rF .log'/ g?; H D �nrF log' .when ' ¤ 0/:

Since R.X;N; Y;N / D � 1
'
N.N.'// g?.X; Y / .N 2 DF / when ' ¤ 0, we

conclude that

Scalmix D �n�F '=' .when ' ¤ 0/: (22)
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Let 0 < �F1 � � � � � �Fi � � � be eigenvalues (leaf-wise constant functions on M )
counting their multiplicities, lim j!1 �Fj D 1, and feig1�i<1 the corresponding
L2-orthonormal basis of eigenfunctions with ei D 0 on @B of the eigenvalue
problem in B: ��F ei D �Fi ei . As in Proposition 3, �F1 has multiplicity 1 (hence
�F1 < �F2 ) and e1 > 0 on the interior of B . Denote by .� ; �/0 and k � k0 the inner
product and the norm in L2.B/.

Proof of Theorem 4. If a family of twisted product metrics gt D dx2 C'2.t; x; y/ Ng
solves (2) onM D B � NM , then @t .'2/ Ng D 2.n�F '='/ NgC 2ˆ'2 Ng. This yields
the leaf-wise parabolic Cauchy’s problem with Dirichlet boundary conditions for
the warping function ' (we omit the parameter y)

@t' D n�F ' Cˆ'; '.0; �/ D '0; '.t; �/j @B D �.t; �/: (23)

Linear problem (23) has a unique classical solution ' W Œ0;1/ � B ! R. We shall
study convergence of ' as t ! 1 to a stationary state, i.e., to a solution Q' W B ! R

of the problem

��F Q' D .ˆ=n/ Q'; Q'j@B D Q�: (24)

Similar problems can be studied for Neumann boundary conditions. One may
assume n D 1.

Let U W Œ0;1/ � B ! R solves the Dirichlet problem on B , where t plays the
role of a parameter,

�F U D 0; Uj @B D ı.t; �/:
Since U.t; �/ is harmonic on B , by the maximum principle, see [1, Sect. 3.73], we
have kU.t; �/kC0 D kı.t; �/kC0.@B/ for any t > 0. It is easy to check that the function

v.t; x/ D '.t; x/ � Q'.x/ � U.t; x/; .t; x/ 2 Œ0;1/ � B; (25)

solves the Cauchy’s problem

@tv D �F v Cˆv C f; v.0; �/ D v0; v.t; �/j@B D 0; (26)

where

v0 WD '0 � Q' � U.0; �/; f WD ˆU � @tU: (27)

Since �.t; �/ is twice differentiable in t , the functions @tU.t; �/ and @2t U.t; �/
are also harmonic on B , their boundary values are @tUj @B D @t ı.t; �/ and
@2t Uj @B D @2t ı.t; �/, and we have k@tU kC0 D k@t ı.t; �/kC0.@B/ and k@2t U kC0 D
k@2t ı.t; �/kC0.@B/, respectively, for t > 0. Hence,

jf .t; �/jC0 � .jˆj C 1/.t/; j@tf .t; �/jC0 � .jˆj C 1/ Q.t/; (28)
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where Q.t/ WD maxfkı.t; �/kC0.@B/; k@t ı.t; �/kC0.@B/; k@2t ı.t; �/kC0.@B/g. Consider
Fourier series

v.t; x/ D
X1

jD1 vj .t/ ej .x/; f .t; x/ D
X1

jD1 fj .t/ ej .x/;

v0.x/ D
X1

jD1 v
0
j ej .x/; (29)

where
R
B
ei .s/ej .s/ ds D ıij and

vj D
Z

B

v.�; s/ ej .s/ ds; fj D
Z

B

f .�; s/ ej .s/ ds; v0j D
Z

B

v0.s/ ej .s/ ds :

For cases (i) and (ii) we will obtain '1 D Q' and for (iii ) we will get '1 WD
.v01 C R1

0
f1.
/ d
/e1.

(i) By (25), we obtain

j'.t; x/ � Q'.x/j D jv.t; x/C U.t; x/j � jv.t; x/j C jı.t; x/j: (30)

Then from (26)1 and (28)1 we get the estimate

@t v ��F v Cˆv � .jˆj C 1/.t/ � @tv ��F v Cˆv � f
� @tv ��F v Cˆv C .jˆj C 1/.t/:

By the maximum principle for parabolic equations with Dirichlet’s boundary
conditions, see [1, Sect. 4.46], we have jv.t; �/jC0 � Nv.t/, where Nv.t/ is a
solution of the Cauchy’s problem for the ODE,

d

dt
Nv D ˆ Nv C .jˆj C 1/.t/; Nv.0/ D jv0jC0 :

Using (30) and Lemma 5 below with a D ˆ < 0 and s.t/ D .jˆj C 1/.t/,
we prove case (i).

(ii) Substituting (29) into (26)1;2 and comparing the coefficients yield the Cauchy’s
problem

v 0
j D .ˆ � �Fj /vj C fj .t/; vj .0/ D v0j ; (31)

for vj .t/, whose solution is

vj .t/ D v0j e
.ˆ��Fj /t C R t

0
e.ˆ��Fj /.t�
/fj .
/ d
: (32)

Denote by w.t; �/ D .��F � ˆ id / v.t; �/ and wj .t/ D .w.t; �/; ej /0. By
Elliptic Regularity Theorem the operator .��F � ˆ id /�1 maps L2 into H2
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and, since p < 4, by Sobolev Embedding Theorem the space H2 is embedded
continuously into C0 (see Sect. 2.1). Therefore, the operator .��F �ˆ id /�1
acts continuously from L2 into C0; hence,

jv.t; �/jC0 � j.��F�ˆ id /�1w.t; �/jC0 � j.��F�ˆ id /�1jB.L2; C 0/ � jw.t; �/j0:
(33)

We denote by B.L2; C 0/ the Banach space of all bounded linear operators
A W L2 ! C0 with the norm kAkB.L2;C 0/ D supv2L2n0 kA.v/kC =kvk0, see
Sect. 2. Furthermore, we obtain

vj .t/D.v.t; �/; ej /0D.�Fj �ˆ/�1.v.t; �/; .�Fj �ˆ/ej /0D.�Fj �ˆ/�1.v.t; �/;
.��F�ˆ id /ej /0D.�Fj �ˆ/�1�.��F�ˆ id / v.t; �/; ej

�
0
D.�Fj �ˆ/�1 wj .t/:

In particular, v0j D .�Fj � ˆ/�1wj .0/. From (32), using integration by parts,
we obtain

wj .t/Dwj .0/ e
.ˆ��Fj / tCfj .t/ � e .ˆ��Fj / t fj .0/�

R t
0
e.ˆ��Fj /.t�
/f 0

j .
/ d
:

Applying Schwarz’s inequality to the integral, we get the following:

� Z t

0
e
.ˆ��Fj /.t�
/f 0

j .
/ d

�2 �

Z t

0
e
.ˆ��Fj /.t�
/ d
 �

Z t

0
e
.ˆ��Fj /.t�
/.f 0

j .
//
2 d


D 1 � e
.ˆ��Fj / t

�Fj �ˆ

Z t

0
e
.ˆ��Fj /.t�
/.f 0

j .
//
2 d


� 1

�Fj �ˆ

Z t

0
e
.ˆ��Fj /.t�
/.f 0

j .
//
2 d
:

Taking into account these circumstances and using Parseval’s equality, we have

jw.t; �/j0 � jw.0; �/j0 e .ˆ��F1 / t C jf .t; �/j0 C jf .0; �/j0 e .ˆ��F1 / t

C.�F1 �ˆ/�1=2
� Z t

0

e.ˆ��Fj /.t�
/j@tf .
; �/j20 d

�1=2

: (34)

Then using estimate (28)2 and the arguments from the proof of Lemma 5,
we get

jw.t; �/j0 � jw.0; �/j0 e .ˆ��F1 / tCp
volB .jˆj C 1/

�
.t/C .0/ e .ˆ��F1 / t �

C
p

volB

�F1 �ˆ
�
e.1��/ .ˆ��F1 / t sup 
2Œ0; � t � Q 2.
/C sup 
2Œ� t; t � Q 2.
/

�1=2
;

� 2 .0; 1/: (35)

Using (30), (33), and equality (22), we prove case (ii).
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(iii) Since Q� D 0, we can choose Q' D 0 as a solution of (24). Hence v.t; x/ D
'.t; x/�U.t; x/, see (25), and v0.x/ D '0.x/�U.0; x/, see (27). By (25), we
have

j'.t; x/� '1.x/j D jv.t; x/ � '1.x/j C kı.t; �/kC0.B/ ; (36)

where '1 WD .v01 C R1
0
f1.
/ d
/e1. For j D 1, we obtain from (31):

v 0
1 D f1.t/; v1.0/ D v01 ) v1.t/ D v01C

Z 1

0

f1.
/ d
�
Z 1

t

f1.
/ d
;

where the improper integrals converge in view of condition (11) and definition
(27). Hence

ˇ̌
v1.t/ � v01 �

Z 1

0

f1.
/ d

ˇ̌ D ˇ̌ Z 1

t

f1.
/ d

ˇ̌ � .volB/1=2

Z 1

t

.
/ d
;

(37)

which converges to 0 as t ! 1. Define Qw.t; �/ D .��F �� id /.v.t; �/�'1/
with fixed � < �F1 . Since p < 4, we get as in the proof of (ii):

jv.t; �/� '1jC0 � j.��F �ˆ id /�1jB.L2; C 0/ � j Qw.t; �/j0;

where Qwj .t/ D . Qw.t; �/; ej /. Clearly, Qwj .t/ for j > 1 coincides with wj .t/
defined in the proof of claim (ii). Then as in this proof of (ii), we obtain for
j > 1:

Qwj .t/D Qwj .0/ e .�F1 ��Fj / tCfj .t/�e .�F1 ��Fj / t fj .0/�
Z t

0

e.�
F
1 ��Fj /.t�
/f 0

j .
/ d
:

Using the above and estimates (36) and (37), we complete the proof of case (iii)
similarly as the proof of (ii) (see (34), (35), and all further arguments).

ut
Lemma 5. Let y.t/ solve the Cauchy’s problem .for the ODE/ y0 D ˛.t/y C
s.t/; y.0/ D y0, where the functions ˛;  2 C Œ0;1/, ˛.t/ � a < 0, and the
function s.t/ is bounded. Then

jy.t/j � jy0je at C jaj�1e.1��/ at sup 
2Œ0; � t � js.
/j C jaj�1 sup 
2Œ� t; t � js.
/j (38)

for any � 2 .0; 1/. In particular, if lim t!1 s.t/ D 0, then lim t!1 y.t/ D 0.
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Proof. As is known, y.t/ D y0e
R t
0 ˛.�/ d� CR t

0
e
R t

 ˛.�/ d� s.
/ d
 . Hence, we have the

estimate

jy.t/j D jy0je atC
Z � t

0
e a.t�
/js.
/j d
C

Z t

� t
e a.t�
/js.
/j d


� jy0je atC sup 
2Œ0; � t � js.
/j
Z � t

0
e a.t�
/ d
C sup 
2Œ� t; t � js.
/j

Z t

� t
e a.t�
/ d
:

The above and
R � t
0 e a.t�
/ d
D.e at�e.1��/ at /=a,

R t
� t e

a.t�
/ d
 D .e.1��/ at�1/=a
yield (38). ut
Example 4 (Rotation surfaces). The metric on a rotation surface in R

3 belongs to
warped products, see Example 3. Let M2

t � R
3 W Œ'.t; x/ cos �; '.t; x/ sin �;

 .t; x/�, where 0 � x � l; j� j � �; ' � 0 be a one-parameter family of rotation
surfaces such that .@x'/2 C .@x /

2 D 1. The profile curves � D const are unit
speed geodesics tangent to the vector field N . The �-curves are circles in R

3; their
geodesic curvature is k D �.log'/; x. The metric gt D dx2 C '2.t; x/ d �2 is
rotational symmetric and its Gaussian curvature isK D �'; xx='. Let gt obeys (4),
then ' solves the Cauchy’s problem

@t'D';xxCˆ'; '.0; x/D'0.x/; '.t; 0/D�0.t/ � 0; '.t; l/D�1.t/ � 0;

(39)

where '.x/ > 0 for x 2 .0; l/, �0; �1 2 C1Œ0;1/ and there exist limits
lim
t!1�j .t/ D Q�j 2 Œ0;1/.

The solution of stationary problem (e.g., (24) with B D Œ0; l� and �Fj D
.� j=l/2) has the view

Q'.x/ D

8
ˆ̂̂<
ˆ̂̂:

Q�1 sin.
p
ˆx/C Q�0 sin.

p
ˆ .l�x//

sin.
p
ˆl/

if 0 < ˆ < �F1 ;

Q�0 C . Q�1 � Q�0/.x=l/ if ˆ D 0;

Q�1 sinh.
p�ˆx/C Q�0 sinh.

p�ˆ .l�x//
sinh.

p�ˆ l/ if ˆ < 0:

For the resonance case, ˆ D �F1 D .�=l/2, the stationary problem is solvable if
and only if Q�0 D Q�1 D 0, and in this case the solutions are Q'.x/ D C sin.�x=l/,
where C > 0 is constant.

By Theorem 4, ifˆ > .�=l/2, then gt diverge as t ! 1; otherwise, gt converge
to a limit metric g1 D dx2 C ' 21.x/d �2 with K.g1/ D ˆ. Certainly, if ˆ D
.�=l/2 and additional assumptions hold

Q�j D 0;

Z 1

0

j�j .
/ � Q�j j d
 < 1;

Z 1

0

j�0
j .
/j d
 < 1 .j D 0; 1/;

(40)
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see (11), then '1 D .v01 C R1
0 f1.
/ d
/ sin.� x=l/, and if ˆ < .�=l/2, then

'1 D Q'. When a solution '.x; t/ .t � 0/ of (39) is known and j'; x j � 1, we
find  .t; x/ D  .t; 0/ C R x

0

p
1 � .'; x/2 dx. Note that rotation surfaces in R

3 of
constant Gaussian curvature are locally classified.

Assume for simplicity that �j .t/ � Q�j . Then ı.t/ � 0 and U � 0.
Hence, f � 0, v0 D '0 � Q'0, and (40) is satisfied. For ˆ D .�=l/2, we
get '1 D C sin.� x=l/, where C D v01 D R l

0 v0.s/ ds, and then  1 D
l
�

EllipticE .cos.�x=l/; C�=l/. Here EllipticE.z; k/ D R z
0

p
.1 � k2s2/=.1� s2/ ds

is the incomplete elliptic integral. To provide a numerical example for ˆ D .�=l/2,
let l D � , C D 1 and �j D 0. In this case, the limit profile curve is a semicircle
Œsin x; cos x� .0 � x � �/, and the limit rotation surface is a round sphere of
radius 1.

2 Results for PDEs

Let .F; g/ be a closed p-dimensional Riemannian manifold, e.g., a leaf of a compact
foliation F . Functional spaces over F will be denoted without writing .F /, for
example, L2 instead of L2.F /.

Let Hl be the Hilbert space of differentiable by Sobolev real functions on F ,
with the inner product . �; � /l and the norm k � kl . In particular, H0 D L2 with the
product . �; � /0 and the norm k � k0.

If E is a Banach space, we denote by k � kE the norm of vectors in this space.
If B and C are real Banach spaces, we denote by Br .B; C / the Banach space of
all bounded r-linear operators A W Qr

iD1 B ! C with the norm kAkBr .B;C / D
supv1;:::;vr2Bn0

kA.v1;:::;vr /kC
kv1kB �:::�kvrkB . If r D 1, we shall write B.B; C / and A.�/, and if B D

C we shall write Br .B/ and B.B/, respectively.
If M is a k-regular manifold or an open neighborhood of the origin in a real

Banach space and N is a real Banach space, we denote by Ck.M;N / .k � 1/ the
Banach space of all Ck-regular functions f W M ! N , for which the following
norm is finite:

kf kCk.M;N/ D supx2M maxfkf .x/kN ; max1�jr j�k kdrf .x/kBr .TxM;N/g:

Denote by k � kCk , where 0 � k < 1, the norm in the Banach space Ck ;
certainly, k � kC when k D 0. In coordinates .x1; : : : ; xp/ on F , we have kf kCk D
maxx2F maxj˛j�k jd˛f .x/j, where ˛ � 0 is the multi-index of order j˛j D Pp

iD1 ˛i
and d˛ is the partial derivative.

Sobolev embedding Theorem (See [1]). If a nonnegative k 2 Z and l 2 N are
such that 2 l > p C 2 k, then Hl is continuously embedded into Ck.

We shall also use the following scalar maximum principle [3, Theorem 4.4].
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Proposition 2. Suppose that X.t/ is a smooth family of vector fields on a closed
Riemannian manifold .F; g/, and f 2 C1.R � Œ0; T //. Let u W F � Œ0; T / ! R be
a C1 supersolution to

@tu � �gu C hX.t/;rui C f .u; t/:

Let ' W Œ0; T � ! R solve the Cauchy’s problem for ODEs d
dt ' D

f .�.t/; t/; '.0/ D C . If u.� ; 0/ � C , then u.� ; t/ � '.t/ for t 2 Œ0; T /. .Claim
also holds with the sense of all three inequalities reversed/.

2.1 The Schrödinger Operator

For a smooth (non-constant in general) function ˇ W F ! R, the Schrödinger
operator, see (7),

H.u/ WD ��u � ˇ u (41)

is self-adjoint and bounded from below (but it is unbounded). The domain of
definition of H is H2.

Elliptic Regularity Theorem (See [1]). If H is given by (41) and 0 … �.H/, then
for any nonnegative k 2 Z we have H�1 W Hk ! HkC2.

The spectrum �.H/ consists of an infinite sequence of isolated eigenvalues �0 �
�1 � � � � � �j � � � � of H counting their multiplicities, and limj!1 �j D 1.
If we fix in L2 an orthonormal basis of corresponding eigenfunctions fej g (i.e.,
H.ej / D �j ej ), then any function u 2 L2 is expanded into the series (converging to
u in theL2-norm) u.x/ D P1

jD0 cj ej .x/, where cj D .u; ej /0 D R
F

u.x/ ej .x/ dx.
The proof is based on the following facts. One can add a constant to ˇ such that
H becomes invertible in L2 (e.g., �0 > 0) and H�1 is bounded in L2. Since by
the Elliptic Regularity Theorem with k D 0, we have H�1 W L2 ! H2, and the
embedding of H2 into L2 is continuous and compact, see [1], then the operator
H�1 W L2 ! L2 is compact. This means that the spectrum �.H/ is discrete; hence,
by the spectral expansion theorem for compact self-adjoint operators, fej gj�0 form
an orthonormal basis in L2.

Proposition 3 (See [9]). Let ˇ be a smooth function on a closed Riemannian
manifold .F; g/. Then the eigenspace of operator (41), corresponding to the least
eigenvalue, �0, is one-dimensional, and it contains a positive smooth eigenfunc-
tion, e0.

Suppose that ˇ.x/ � ˇ� on F ; hence, .ˇ.x/u; u/0 � ˇ�.u; u/0. Thus,

.Hu; u/0 D
Z

F

.jru.x/j2 � ˇ.x/ju.x/j2/ dx �
Z

F

.jru.x/j2 � ˇ�ju.x/j2/ dx

D .��u � ˇ�u; u/0



Prescribing the Mixed Scalar Curvature of a Foliation 105

for any u 2 Dom.H/. Since ˇ� is the maximal eigenvalue of the linear operator
�C ˇ� id (id is the identity operator), by the variational principle for eigenvalues,
we obtain �0 � �ˇ� < 0. Similarly, one may show that the condition ˇ.x/ � ˇC
on F provides �0 � ˇC.

2.2 The Nonlinear Heat Equation

The Cauchy’s problem for the heat equation with a linear reaction term, see (5), has
the form

@tu D � u C ˇ u; u.x; 0/ D u0.x/: (42)

After scaling the time and replacement of functions

t=n ! t; ‰F
i =n ! ‰i ; ˇD Cˆ=n ! ˇ; �F0 �ˆ=n ! �0;

problem (5) reads as the following Cauchy’s problem for the nonlinear heat
equation on .F; g/:

@tu D � u C ˇ u C‰1.x/ u�1 �‰2.x/ u�3; u.x; 0/ D u0.x/: (43)

By [1, Theorem 4.51], the parabolic PDE (43) has a unique smooth solution u.� ; t/
for t 2 Œ0; t0/. Denote by Ct D F � Œ0; t/ the cylinder with the base F . Define the
quantities

‰C
i D maxF .‰i=e2i0 /; ‰�

i D minF .‰i=e2i0 /; i D 1; 2;

uC
0 D maxF .u0=e0/; u�

0 D minF .u0=e0/; ˇ� D minF jˇj: (44)

The following examples show that (43) may have

– solutions on closed manifolds F (i.e., periodic solutions when p D 1);
– attractors (which are not global) when ˇ < 0, and no attractors when ˇ > 0.

Example 5. First, we shall examine (43) for modeling case when ˇ and ‰i � 0 are
real constants. Denote f .u/ WD ˇu C‰1 u�1 �‰2 u�3.

1. The corresponding Cauchy’s problem for ODE with y.t/ is

y 0 D f .y/; y.0/ D y0 > 0: (45)

(1a) Assume ˇ < 0. The stationary positive solutions of (45) are the roots of equa-
tion f .y/ D 0, which is biquadratic: jˇj y4�‰1y2C‰2 D 0. If 4 jˇj‰2 < ‰2

1 ,

then we have two positive solutions y1;2 D �‰1˙.‰21�4 jˇj‰2/1=2
2jˇj

�1=2
and y1 > y2.
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The linearization of (45) at the point yk is

v 0 D f 0.yk/v .k D 1; 2/;

We have

f 0.yk/ D �jˇj d

dy

�
y�3.y2 � y21/.y

2 � y22/
�j yDyk :

Hence f 0.y1/ < 0 and f 0.y2/ > 0, and the stationary solution y1 of (45) is
asymptotically stable but y2 is unstable. The solution y.t/ of (45) satisfying
y.0/ D y0 is given in implicit form by

.y2�y21/A

.y2�y22/B
D .y20�y21 /A
.y20�y22 /B

e�2jˇjt ; where AD y21

y21�y22
; BD y22

y21�y22
:

(1b) Next, assume ˇ > 0, then f .y/ D 0 is the biquadratic equation ˇ y4 C
‰1y

2�‰2 D 0, which has only one positive root y1 D ��‰1C.‰21C4ˇ ‰2/1=2
2 ˇ

�1=2
.

We calculate

f 0.y1/ D ˇ
d

dy

�
y�3�y2 � y21

��
y2 C ‰2

ˇ y21

��j yDy1 > 0I

hence, a unique positive stationary solution y1 of (45) is unstable. One may
also show that in the case ˇ D 0, (45) has a unique positive stationary solution,
which is unstable.

(1c) Let ‰2 D 0 and ‰1 > 0, then @tu D �u C f .u/, where f .u/ D ˇ u C‰1u�1.
For ˇ < 0 the zero-mode approximation @tu D f .u/ of the equation

above has a unique positive stationary (also called equilibrium) solution u� D
.‰1=jˇj/1=2 (root of f ). The solution u� is stable (attractor) since

f 0.u�/ D �jˇj d

du

�
u�1.u � u�/.u C u�/

�j uDu
�

< 0:

If ˇ � 0, then @tu D f .u/ has no positive stationary solutions, and (48) has
no cycles (since it has no fixed points), hence (47) has no solutions.

2. Let F be a circle S1. Then (43) corresponds to the Cauchy’s problem

u;t D u;xx C f .u/; u.x; 0/ D u0.x/ > 0 .x 2 S1; t � 0/: (46)

The stationary equation with u.x/ for (46) with periodic boundary conditions has
the form

u 00 C f .u/ D 0; u.0/ D u.l/; u 0.0/ D u 0.l/; l > 0 (47)
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(i.e., S1 is a circle of length l). Denote v D d
dx u. Then (47) is reduced to the

dynamical system

u 0 D v; v 0 D �f .u/ .x � 0; u > 0/: (48)

The existence of a periodic solution to (47) is equivalent to the existence of a
solution with the same period of (48). The system (48) is Hamiltonian, since
@uv � @vf .u/ D 0, its Hamiltonian H.u; v/ (the first integral) is a solution of the
system @uH.u; v/ D f .u/; @vH.u; v/ D v. Then

H.u; v/ D 1

2
.v2 C ˇu2/C‰1 ln u C 1

2
‰2 u�2:

The trajectories of (48) lie in the level lines of H.u; v/. Consider two cases.

(2a) Assume ˇ < 0. By results above, system (48) has two fixed points: .yi ; 0/ .i D
1; 2/ with y1 > y2. To clear up the character of these points, we linearize (48)
at .yi ; 0/,

E� 0 D Ai E�; Ai D
	

0 1

�f 0.yi / 0



:

As we have shown in the previous section, f 0.y1/ < 0 and f 0.y2/ > 0.
Hence the point .y1; 0/ has the “saddle” type and .y2; 0/ is the “center.” The
separatrix (the level line of H.u; v/ passing through the saddle point .y1; 0/) is
given by H.u; v/ D H.y1; 0/, i.e.,

v2 D jˇj.u2 � y 21 / � 2‰1 ln.u=y1/�‰2.u�2 � y �2
1 /:

The separatrix divides the half-plane u > 0 into three simply connected areas.
Then .y2; 0/ is a unique minimum point of H.u; v/ in the area D D f.u; v/ W
H.u; v/ < H.y1; 0/; 0 < u < y1g. The phase portrait of (48) in D consists of
the fixed point .y2; 0/ and the cycles surrounding this point all correspond to
non-constant solutions of (47) with various l . Other two areas do not contain
cycles of the system, since they have no fixed points.

Assume ˇ � 0. By results above, system (48) has one fixed point: .y1; 0/
and f 0.y1/ > 0. Hence, .y1; 0/ is the “center.” Since .y1; 0/ is a unique
minimum point of H.u; v/ in the semiplane u > 0, the phase portrait of (48)
consists of the fixed point .y1; 0/ and the cycles surrounding this point all
correspond to non-constant solutions of (47) with various l .

(2b) For �2 D 0 and �1 > 0, the Hamiltonian of (48) isH.u; v/ D 1
2
.v2 Cˇ u2/C

‰1 ln u. Solving H.u; v/ D C with respect to v and substituting to the first
equation of the system, we get du

dx D p�ˇ u2 � 2‰1 ln u C 2C . In the case
ˇ < 0, the separatrix is H.u; v/ D H.u�; 0/, i.e.,

v2 D jˇj.u2 � u2�/ � 2‰1 ln.u=u�/:
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The separatrix divides the half-plane u > 0 into four simply connected areas.
Since in each of these areas there are no fixed points of (48), this system has
no cycles. Hence, (47) has no solutions.

(2c) Consider (47) for‰1 D 0 and l D 2� . Define p D u 0 and search forp D p.u/
as a function of u. Then u 00 D d

du p, and we obtain

.p2/u
0 D �2 ˇ u C 2‰2 u�3 H) ju 0j2 D C1 � ˇ u2 �‰2 u�2:

After separation of variables and integration we get

u D

8
ˆ̂̂̂
<̂
ˆ̂̂̂
:̂

r
C1
2ˇ

C 1
2ˇ

q
C21 � 4ˇ ‰2 sin.2

p
ˇ.x C C2//; .C 21 � 4ˇ‰2 � 0/ ˇ > 0;

r
� C1
2jˇj C 1

2jˇj
q
C21 C 4jˇj‰2 cosh.2

pjˇj.x C C2// ˇ < 0;
p
‰2=C1 C C1.x C C2/2 ˇ D 0:

(49)

By (49)2;3, for ˇ � 0 and ‰1 D 0, (47) has no positive solutions. By (49)1, for
ˇ > 0 and ‰2 > 0 the solution u.x/ is 2�-periodic and positive only in two
cases:

 ˇ ¤ n2

4
.n 2 N/ and C1 D 2 .ˇ ‰2/

1=2; such a solution u� D .‰2=ˇ/
1=4 is

unique.
 ˇ D n2

4
.n 2 N/; such solutions form a two-dimensional manifold:

u0.C1; C2/ D 1

n

�
2C1 C 2.C 2

1 � n2‰2/1=2 sin.n.x C C2//
�1=2

:

2.3 Long-Time Solution to (43) with �0 < 0

Lemma 6. Let �0 < 0 for .F; g/ and u.x; t/ > 0 be a solution in Ct0 of (43) with
the condition

.u�
0 /
4 � ‰C

2 =j�0j; (50)

see (8). Then the following a priori estimates are valid:

w�.t/ � u.x; t/=e0.x/ � wC.t/; .x; t/ 2 Ct0 ; (51)

where �0 < 0 and

w�.t/De��0t
�
.u�
0 /
4C‰C

2

�0
�e 4�0t ‰

C
2

�0

� 1
4
; wC.t/De��0t

�
.uC
0 /

2�‰
C
1

�0
Ce 2�0t ‰

C
1

�0

� 1
2
:

(52)
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Proof. Since e0.x/ > 0 on F , we can change the unknown function in (43):

u.x; t/ D e0.x/w.x; t/:

Substituting into (43) and using �e0 C ˇe0 D ��0e0, we obtain the Cauchy’s
problem for w.x; t/:

@tw D �w � �0w C 2 g.r log e0; rw/

Ce�2
0 .x/‰1.x/w�1 � e�4

0 .x/‰2.x/w�3; w.� ; 0/ D u0=e0: (53)

Then using (44)1, we obtain the differential inequalities

�w��0wC2 g.r log e0;rw/�‰C
2 w�3 � @tw � �w��0wC2g.r log e0;rw/C‰C

1 w�1 :

By the scalar maximum principle of Proposition 2 and (44)2;3, we conclude that (51)
holds, where w�.t/ and wC.t/ are solutions of the following Cauchy’s problems
for ODEs

d

dt
w�D��0 w� �‰C

2 w�3� ; w�.0/Du�
0 I d

dt
wCD � �0 wC C‰C

1 w�1C ; wC.0/DuC
0 :

One may check that these solutions are expressed by (52) and w�.t/ < wC.t/ for
all t � 0. ut

Note that if ‰C
i D 0 (i.e., ‰i � 0), then (51) reads u�

0 e
��0t � u.�; t/=e0 �

uC
0 e

��0t . Define

v.x; t/ D e�0tu.x; t/;

see (43), and obtain the Cauchy’s problem

@tv D �v C .ˇ C �0/ v CQ; v.x; 0/ D u0.x/; (54)

whereQ WD P2
iD1.�1/iC1‰i .x/ v1�2i .x; t/ e 2i�0t . Certainly,Q D Q1�Q2, where

Q1.x; t/ D ‰1.x/v
�1.x; t/e2�0t ; Q2.x; t/ D ‰2.x/v

�3.x; t/e4�0t :

Lemma 7. Let v.x; t/ be a positive solution of (54) in Ct0 D F � Œ0; t0/, where
�0 < 0, the functions u0 > 0 and ‰i � 0 belong to C1, and (50) is satisfied.
Then

(i) for any multi-index ˛ D .˛1; ˛2; : : : ; ˛p/ there exists a real C˛ � 0 such that

j@˛xv.x; t/j � C˛.1C t/j˛j; .x; t/ 2 Ct0 :
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(ii) for any multi-index ˛ there exist real NQi˛ � 0 .i D 1; 2/ such that

j@˛xQi .x; t/j � NQi˛.1C t/j˛je 2 i�0t ; .x; t/ 2 Ct0 ; i D 1; 2: (55)

Proof. Using (51) and (52), we estimate the solution v.x; t/ of (54) when (50)
holds:

v� � v.x; t/=e0.x/ � vC; .x; t/ 2 F � Œ0;1/; (56)

where the constants are given by v� D �
.u�
0 /
4 � ‰C

2 =j�0j
� 1
4 and vC D �

.uC
0 /

2 C
‰C
1 =j�0j

� 1
2 .

(i) Denote for brevity Dj D @xj .j D 1; 2; : : : ; p/ and D˛ D @˛x D
D˛1D˛2 � � �D˛p . Differentiating (54) by x1; : : : ; xp , we obtain the following
PDEs for the functions p˛.x; t/ WD @˛xv.x; t/:

@tpj D .�C.�0Cˇ/ id /pj CDj .ˇ/vCDj .Q/;

@tpjk D .�C.�0Cˇ/ id /pjkCDj .ˇ/pkCDk.ˇ/pjCDjk.ˇ/vCDjk.Q/;

(57)

and so on, where 1 � j; k � p and

Dj .Q/ D
X

i
.�1/iC1e 2i�0t v�2i �Dj .‰i /vC.1 � 2 i/‰ipj

�
;

Djk.Q/ D
X

i
.�1/iC1e 2i�0t v�2i �Djk.‰i/vC.1 � 2 i/Dj .‰i/pk

C.1 � 2 i/Dk.‰i /pj�2 i.1�2 i/v�1‰ipjpkC.1�2 i/‰ipjk
�
;

(58)

and so on. Let us change unknown functions in (57) and so on:

pj D Qpj e0; pjk D Qpjk e0; : : : (59)

Then in the same manner, as (53) have been obtained from (43), we get for
j; k D 1; 2; : : : ; p

@t Qpj D � QpjC2 g.r log e0;r Qpj /Ca QpjCbj =e0CDj .ˇ/v=e0;

@t Qpjk D � QpjkC2 g.r log e0;r Qpjk/Ca QpjkCbjk=e0CDjk.ˇ/v=e0; (60)



Prescribing the Mixed Scalar Curvature of a Foliation 111

and so on, where

a D
X

i
.�1/iC1.1�2 i/‰i v�2i e2i�0t ; bjD

X
i
.�1/iC1Dj .‰i / v1�2i e 2i�0t ;

bjk D
X

i
.�1/iC1e 2i�0t v�2i �Djk.‰i / v

e0
C .1 � 2 i/

�
Dj .‰i / Qpk CDk.‰i / Qpj � 2 i ‰i e0

v
Qpj Qpk

��
:

From (56) and (58)–(60) we get the differential inequalities

�aC.t/j Qpj j � bC
j � ˇC

j vC � @t Qpj �� Qpj � 2 g.r log e0;r Qpj /
� aC.t/j Qpj j C bC

j C ˇC
j vC ;

�aC.t/j Qpjkj � bC
jk � ˇC

jkvC � @t Qpjk �� Qpjk � 2 g.r log e0;r Qpjk/
� aC.t/j Qpjkj C bC

jk C ˇC
jkvC

for j D 1; 2; : : : ; p, where

aC.t/ D
X

i
.2 i � 1/‰C

i .v�/�2i e2i�0t ; bC
j D

X
i

�
.v�/1�2i max

F

ˇ̌
Dj .‰i /

ˇ̌�
;

ˇC
j D max

F

ˇ̌
Dj .ˇ/

ˇ̌
;

bC
jk

D
X

i
e 2i�0t .v�/�2i

�
max
F

ˇ̌
Djk.‰i /=e

2i
0

ˇ̌
vCC.2 i�1/�max

F

ˇ̌
Dj .‰i /=e

2i
0

ˇ̌ Qpk

C max
F

ˇ̌
Dk.‰i /=e

2i
0

ˇ̌ Qpj C 2 i .v�/�1‰C
i Qpj Qpk

��
;

ˇC
jk

D max
F

ˇ̌
Djk.ˇ/

ˇ̌
: (61)

By the maximum principle of Proposition 2, the estimate j Qpj .x; t/j � QpC
j .t/

is valid for any .x; t/ 2 C1 D F � Œ0;1/, where pC
j .t/ solves the Cauchy’s

problem for the ODE:

d

dt
pC
j D aC.t/jpC

j j C bC
j C ˇC

j vC; pC
j .0/ D Np0j WD maxF

ˇ̌ Qpj .� ; 0/
ˇ̌
:

As is known,

pC
j .t/ D Np0j exp

� Z t

0

aC.
/ d

�

C
Z t

0

.bC
j C ˇC

j vC/ exp
� Z t

s

aC.
/ d

�

ds :

In view of (61)1, we have

Z 1

0

aC.
/ d
 < 1:
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Above yield that for any j 2 f1; 2; : : : ; pg there exists a real QCj > 0 such that

j Qpj .x; t/j � QCj .1C t/; .x; t/ 2 C1 :

In view of (59), this completes the proof of (i) for j˛j D 1.
Similarly we obtain that for any j; k 2 f1; 2; : : : ; pg there exists a real

QCjk � 0 such that j Qpjk.x; t/j � QCjk.1 C t/2 for .x; t/ 2 C1. By (59), we
obtain claim (i) for j˛j D 2. By induction with respect to j˛j we prove (i) for
any ˛.

(ii) Estimates (55) for j˛j D 0, jQi.x; t/j � .maxF ‰i / .v�/1�2i e 2i�0t , follow
immediately from (56). Estimates (55) for j˛j D 1; 2 follow from claim (i),
estimates (56), and equalities (58). By induction with respect to j˛j we prove
(ii) for any ˛.

ut
Theorem 5. Cauchy’s problem (43) on F , with �0 < 0 and the initial value u0.x/
satisfying (50), admits a unique smooth solution u.x; t/ > 0 in the cylinder C1 D
F � Œ0;1/.

Proof. The positive solution u.x; t/ of (43) satisfies a priori estimates (51) on any
cylinder Ct? where it exists. By standard arguments, using the local theorem of the
existence and uniqueness for semiflows, we obtain that this solution can be uniquely
prolonged on the cylinder C1. Then by Lemma 7, all partial derivatives by x of
u.x; t/ exist in C1. Hence, u is smooth on C1. ut

2.4 Asymptotic Behavior of Solutions to (43) with �0 < 0

Recall that �0 and e0 > 0 are the least eigenvalue and the ground state of
operator (41).

Theorem 6. Let u > 0 be a smooth solution on C1 of (43) with �0 < 0 and the
initial value u0.x/ satisfying (50) .see Theorem 5). Then there exists a solution Qu on
C1 of the linear PDE

@t Qu D �Qu C .ˇ.x/C �0/ Qu (62)

such that for any ˛ 2 �0;minf�1 � �0; 2 j�0jg
�

and any k 2 N

.i/ u D e��0t .Qu C �.x; t//; .i i/ r log u D r log e0 C �1.x; t/;

where k�.� ; t/kCk D O.e�˛t / and k�1.� ; t/kCk D O.e�˛t / as t ! 1.
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Proof. (i) Let G0.t; x; y/ be the fundamental solution of (62), called the heat
kernel. As is known, G0.t; x; y/ D P

j e
.�0��j / t ej .x/ ej .y/. Due to the

Duhamel’s principle, the solution v D e�0tu of Cauchy’s problem (54) satisfies
the nonlinear integral equation

v.x; t/ D
Z

F

G0.t; x; y/ u0.y/ dy C
Z t

0

� Z

F

G0.t � 
; x; y/Q.y; 
/ dy
�

d
 :

(63)

Expand v, u0, and Q into Fourier series by eigensystem fej g:

v.x; t/ D P1
jD0 vj .t/ ej .x/; vj .t/ D .v.� ; t/; ej /0 D R

F v.y; t/ ej .y/ dy;

u0.x/ D P1
jD0 u0j ej .x/; u0j D .u0; ej /0 D R

F
u0.y/ ej .y/ dy;

Q.x; t/ D P1
jD0 qj .t/ ej .x/; qj .t/ D .Q.� ; t/; ej /0 D R

F
Q.y; t/ ej .y/ dy :

(64)

Then we obtain from (63)

vj .t/ D u0j e
.�0��j /t C

Z t

0

e.�0��j /.t�
/qj .
/ d
 .j D 0; 1; : : : /: (65)

Substituting vj .t/ of (65) into (64), we represent v in the form v D Qu C � ,
where

Qu D Qu00 e0C
X

1

jD1
u0j e

.�0��j /t ej ; Qu00Du00C
Z

1

0

q0.
/ d
; (66)

� D �
� Z 1

t

q0.
/ d

�
e0C

X
1

jD1
Qvj ej ; QvjD

Z t

0

e.�0��j /.t�
/qj .
/ d
:(67)

Observe that Qu solves (62) with the initial condition Qu. � ; 0/ D u0 C� R1
0
q0.
/ d


�
e0.

Let us take k 2 N, l D �
p=4 C k=2

�C 1, and � < �0. Using assumption
u0 2 C1.F / and the fact that Q.� ; t/ 2 C1.F / for any t � 0, we may
consider the functions w0 WD .H�� id /lu0 and P. � ; t/ WD .H�� id /lQ. � ; t/,
which have the same properties: w0 2 C1.F / and P.� ; t/ 2 C1.F / for any
t � 0. Let us represent

.u0; ej /0 ej D ..H � � id /�lw0; ej /0 ej D .w0; .H � � id /�l ej /0 ej

D .w0; ej /0
ej

�j � � D .H � � id /�l
�
.w0; ej /0 ej

�
:

Similarly, we obtain

.Q. � ; t/; ej /0 ej D .H � � id /�l
�
.P. � ; t/; ej /0 ej

�
:
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Using (67) and taking into account that the operator .H � � id /�l acts
continuously in L2 and that the series in (66) and (67) converge in L2, we
obtain the representations

X1
jD1 u0j e

.�0��j /t ej D .H�� id /�l
X1

jD1 e
.�0��j /t .w0; ej /0 ej ;

X1
jD1 Qvj .t/ej D .H�� id /�l

Z t

0

�X1
jD1 e

.�0��j /.t�
/.P. � ; t/; ej /0 ej
�

d
:

By the Elliptic Regularity Theorem and the Sobolev Embedding Theorem (see
Sect. 2.1), the operator .H � � id /�l acts continuously from L2 into Ck. Then
we have
���
X

1

jD1
u0j e

.�0��j /t ej

���
Ck

� k.H � � id /�lkB.L2;Ck / �
���
X

1

jD1
e.�0��j /t .w0; ej /0 ej

���
0

D k.H�� id /�lkB.L2;Ck/
�X

1

jD1
e2.�0��j /t .w0; ej /

2
0

�1=2

� k.H�� id /�lkB.L2;Ck/ e.�0��1/tkw0k0; (68)

���
X

1

jD1
Qvj .t/ej

���
Ck

� k.H � � id /�lkB.L2;C k /

�
����
Z t

0

X
1

jD1
e.�0��j /.t�
/.P. � ; t/; ej /0 ej d


����
0

� k.H � � id /�lkB.L2;C k /

Z t

0

���
X

1

jD1
e.�0��j /.t�
/.P. � ; t/; ej /0 ej

���
0

d


� k.H � � id /�lkB.L2;C k /

Z t

0

�X
1

jD1
e2.�0��j /.t�
/.P. � ; t/; ej /20

�1=2
d


� k.H � � id /�lkB.L2;C k /

Z t

0

e.�0��1/.t�
/kP. � ; t/k0 d
: (69)

On the other hand, by Lemma 7(ii),

kP. � ; t/k0 � p
Vol.F; g/ k.H � � id /l

�
Q. � ; t/�kC0 � NQ.1C t/2l e2�0t

for some NQ � 0. Then continuing (69), we find

Z t

0
e.�0��1/.t�
/kP. � ; t/k0 d
 � NQ

Z t

0
e.�0��1/.t�
/.1C 
/2l e2�0
 d


< NQe.�0��1/t .1C t/2l
Z t

0
e.�1��0C2�0/ 
 d


D NQ.1C t/2l

(
e2�0t�e.�0��1/t

�1��0C2 �0 if 2�0 ¤ �0 � �1;
e.�0��1/t t if 2�0 D �0 � �1:

(70)
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From (66)–(70) we get claim (i).
(ii) From (66) and (67) we obtain

u D e��0t �Qu00 e0 C N�.� ; t/�; ru D e��0t �Qu00re0 C r N�.� ; t/�;

where N�.� ; t/ D �.� ; t/CP1
jD1 u0j e

.�0��j /t ej . In view of (68), k N�.� ; t/kCk D
O.e�˛t / for any k 2 N. Furthermore, since Qu.�; 0/ > 0 on F , then Qu00 D
.Qu. �; 0/; e0/0 > 0. Using

w.�; t; 
/ WD 
u.�; t/C .1 � 
/ Qu00 e��0t e0 D e��0t .Qu00 e0 C 
 N�.�; t//;

we have

�1.�; t/ D r log u.�; t/� r log e0 D
Z 1

0

@

@


�
r log w.�; t; 
/

�
d


D
Z 1

0

� r N�.�; t/
Qu00e0 C 
 N�.�; t/ �

N�.�; t/.Qu00re0 C 
r N�.�; t//
.Qu00e0 C 
 N�.�; t//2

�
d
 :

By the above, and the fact that inff jQu00e0 C 
 N�.�; t/j W x 2 F; t 2 Œt0;1/; 
 2
Œ0; 1�g > 0 holds for t0 > 0 large enough, follows claim (ii).

ut

2.5 Attractor of (43) with �0 > 0

In this section we assume that �0 > 0 for .F; g/.
Along with Cauchy’s problem (43) consider the Cauchy’s problem for the ODE:

y 0 D �.y/; y.0/ D y0; (71)

where �.y/ D ��0y C ��
1 y

�1 � �C
2 y

�3 .y > 0/. Assume that

0 < �0 < .�
�
1 /

2=.4 �C
2 /; (72)

hence, ��
1 > 0. Then the equation �.y/ D 0 has two distinct positive solutions

y2 < y1,

y1 D
���

1 C
q
.��

1 /
2 � 4�C

2 �0

2�0

�1=2
; y2 D

���
1 �

q
.��

1 /
2 � 4�C

2 �0

2�0

�1=2
;
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which are stationary solutions of (71)1. Denote by y3 D ����

1 C
q
.��

1 /
2C12�C

2 �0

2�0

�1=2
a unique positive solution of equation � 0.y/ D 0. Notice that �.y/ > 0 for y 2
.y2; y1/ and �.y/ < 0 for y 2 .0; 1/ n Œy2; y1�; �.y/ increases in .0; y3/ and
decreases in .y3; 1/. It is clear that y3 2 .y2; y1/. The line z D ��0y is the
asymptote for the graph of �.y/ for y ! 1. We have limy#0 �.y/ D �1, � 0.y/
decreases in .0; y4/ and increases in .y4; 1/, where y4 D

q
6�C

2 =�
�
1 > y3, and

lim
y!1� 0.y/ D ��0. Hence,

�."/ WD infy2Œy1�";1/.��0.y// D minfj�0.y1 � "/j; �0g

for " 2 .0; y1 � y3/. Define the closed in C sets U "
2 � U "

1 by

U "
1 WD fu0 2 C W u0=e0 � y1 � "g;

U "
2 WD fu0 2 C W y1 � " � u0=e0 � .�C

1 =�0/
1=2g

with " 2 .0; y1 � y3/ under assumption (72). Define the set U 1 WD fu0 2 C W
u0=e0 > y3g. Notice that U "

1 � U 1 for all " 2 .0; y1 � y3/.
Let St W u0 ! u.� ; t/ .t � 0/ be the one-parameter semigroup for (43) with (72)

in F � Œ0;1/.

Proposition 4. If " 2 .0; Ny1�y3/, then (43) with (72) and u0 2 U "
1 admits a unique

global solution. Furthermore, the sets U "
1 and U "

2 are invariant for the operators
St .t � 0/.

Proof. Let u. � ; t/ D e0 w. � ; t/ and w0 D w. � ; 0/. From (53) we obtain the
differential inequalities

�w C 2 hr log e0; rwi C �.w/ � @tw � �w C 2 hr log e0; rwi
� �0w C �C

1 w�1: (73)

Suppose that u0 2 U "
1 ; hence, w0 � y1 � ". By the maximum principle of

Proposition 2 and Lemma 8, in the maximal domain DM of the existence of the
solution w.x; t/ of (53), the estimate

w. � ; t/ � y1 � "e��."/ t

is valid, which, in particular, implies that this solution cannot “blowdown" to zero.
Applying the maximum principle to the right inequality of (73), we get that in DM

w. � ; t/ � �
..uC

0 /
2 � �C

1 =�0/e
�2�0t C �C

1 =�0
�1=2

: (74)
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From the last estimate we conclude that the solution u.x; t/ of (43) exists for all
.x; t/ 2 F � Œ0; 1/. Furthermore, we have proved above that if u0 2 U "

1 , then
u. � ; t/ 2 U "

1 for any t > 0. This means that the set U "
1 is invariant for the

operators St .t � 0/. This fact and the following from (74) estimate w. � ; t/ �
maxfuC

0 ; .�
C
1 =�0/

1=2g imply that also the set U "
2 is invariant for all St . ut

Lemma 8. .i/ If y0 > y2, then the solution y.t/ of Cauchy’s problem (71) obeys
lim t!1 y.t/ D y1. Furthermore, if y0 2 .y2; y1/, then y.t/ is increasing and if
y0 > y1, then y.t/ is decreasing.
.i i/ If y0 � y1 � ", where " 2 .0; y1 � y3/, then the estimate is valid:

jy.t/ � y1j � jy0 � y1je��."/ t : (75)

Proof. (i) Assume that y0 2 .y2; y1/. Since �.y/ is positive in .y2; y1, y.t/ is
increasing. The graph of y.t/ cannot intersect the graph of the stationary solution
y1; hence, the solution y.t/ exists and is continuous on the whole Œ0;1/, and it is
bounded there. There exists lim t!1 y.t/, which coincides with y1, since y1 is a
unique solution of �.y/ D 0 in .y2;1/. The case y0 > y1 is treated similarly.

(ii) For y0 � y1 � ", where " 2 .0; y1 � y3/, denote z.t/ D y1 � y.t/. We obtain
from (71)1, using definition of �."/ and the fact that �.y1/ D 0,

.z2/0 D 2 z z0 D 2z2
Z 1

0

� 0.y C 
z/ d
 � �2�."/ z2:

This differential inequality implies (75). The case y0 > y1 is treated similarly.

Define d.e0/ WD emax
0 =emin

0 � 1, where emax
0 D maxF e0 and emin

0 D minF e0.

Lemma 9. If (72) holds and " 2 .0; y1 � y3/, then the operators St .t � 0/ satisfy
in U "

1 the Lipschitz condition with respect to C -norm with the Lipschitz constant
d.e0/e

��."/ t .

Proof. Let u. � ; t/ be a solution of problem (43). Recall that the function w. � ; t/ D
u. � ; t/=e0 is the solution of Cauchy’s problem (53), which we shall write in the form

@tw D �w C 2 hr log e0; rwi C f .w; � /; w.� ; 0/ D u0=e0; (76)

where f .w; � / D ��0w C �1 w�1.e0/�2 � �2 w�3.e0/�4. By Proposition 4, the set
U "
1 is invariant for (43), i.e., St

�
U "
1

� � U "
1 for any t � 0. Take u0i 2 U "

1 .i D 1; 2/

and denote by ui .� ; t/ D St .u0i /, wi . �; t/ D ui . �; t/=e0 and w0i D u0i =e0. Using (76)
and the equalities

2 � D �. 2/ � 2 kr  k2; r . 2/ D 2 r  
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with  D w2 � w1, we obtain

@t
�
.w2 � w1/

2
� D 2 .w2 � w1/ @t .w2 � w1/ � �

�
.w2 � w1/

2
�C

C < r log e0; r.w2 � w1/
2 > C2.f .w2; � /� f .w1; � //.w2 � w1/:

Since wi � y1 � " > y3 .i D 1; 2/, we get

.f .w2; � /� f .w1; � //.w2 � w1/ D .w2 � w1/
2

Z 1

0

@wf .w1 C 
.w2 � w1/; � / d


� .w2 � w1/
2

Z 1

0

�0.w1 C 
.w2 � w1// d
 � ��."/.w2 � w1/
2:

Thus, the function v. � ; t/ D .w1. � ; t/ � w1. � ; t//2 satisfies the differential
inequality

@t v � �v � 2�."/ v C hr log e0; rvi:

By the maximum principle of Proposition 2, we have v. � ; t/ � vC.t/, where vC.t/
solves the ODE

v 0C D �2�."/ vC.t/; v.0/ D kw02 � w01k2C :

Thus, we have the estimate

kSt .u02/ � St .u01/kC � emax
0 kw2. � ; t/� w1. � ; t/kC

� emax
0 e��."/ tkw02 � w01kC � d.e0/e

��."/ tku02 � u01kC (77)

which implies the desired claim. ut
Theorem 7. If (72) is satisfied, then the stationary equation of (43) on .F; g/

� u C ˇ u C �1u
�1 � �2u�3 D 0

has in the set U 1 a unique solution u?, and y1 � u?=e0 � .�C
1 =�0/

1=2 holds.
Furthermore, for " 2 .0; y1 � y3/,
.i/ U "

1 is attracted by (43) to the point u? in the sense of an exponential C -
convergence, i.e.,

��u.� ; t/� u?
��
C

� d.e0/ e
��."/ t��u0 � u?

��
C

.t > 0; u0 2 U 1/I (78)

.ii/ U "
1 is attracted by (43) to the point u? also in the sense of exponential C1-

convergence: for any u0 2 U 1 \ C1, multi-index ˛ with j˛j � 1 and ı 2 .0; �."//
there is C.˛; ı/ > 0 such that
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��D˛
�
u.� ; t/� u?

���
C

� C.˛; ı/ e�.�."/� ı/ t
��u0 � u?

��
C j˛j

.t > 0/: (79)

Proof. By Proposition 4 and Lemma 9, for any t � 0 the operator St maps the set
U "
1 , which is closed inC , into itself, and for t > 1

�."/
lnd.e0/ it is a contraction there.

Since all operators St commute with one another, they have a unique common fixed
point u? in U "

1 , which is a stationary solution of (43). By Proposition 4, U "2 � U "1 is
also St -invariant; hence, u? 2 U "

2 . Since " 2 .0; y1 � y3/ is arbitrary, we obtain the
desired bounds for u?.

(i) Estimate (78) follows directly from (77).
(ii) First, consider the case when j˛j D 1. Denote by

u.� ; t/ D St .u0/; v. � ; t/ D u. � ; t/� u?; yi . � ; t/ D @xi v. � ; t/
.i 2 f1; 2; : : : ; pg/:

Since u? is a stationary solution of (43), we have the PDE

@t v D �v C ˇv C b.u ; � /� b.u? ; � /; where b.u ; � / D �1u
�1 � �2u�3:

Differentiating the equality above, and denoting wi .� ; t/ D yi . � ; t/=e0 we get

@twi D �wi C 2 g .r log e0;rwi /C hwi C �i v;

where h D ��0 C R 1
0
@ub.u? C 
.u � u?// d
 and �i D .@xi ˇ C @xi h/=e0. Since u?

and u. � ; t/ .t � 0/ belong to the convex set U "
1 , we obtain in the same manner as

in Lemma 9 that h � R 1
0
�0.u? C 
.u � u?// d
 � ��."/. Furthermore, since U "

1 is
separated from u0 D 0, the functions �i . � ; t/ and all their derivatives are bounded
in F � Œ0;1/. Applying (78) and

j�i v wi j � .2 ı/�1 . N�i /2v2 C 2 ıw2i ; ı 2 .0; �."//

with N�i D supF�Œ0;1/ j�i . � ; t/j, and using the same arguments as in the proof of
Lemma 9, we conclude that the function zi . � ; t/ D w2i . � ; t/ satisfies the differential
inequality

@t z � �zC < r log e0;rz > �2 .�."/� ı/z C N�ie�2�."/ t ;

where N�i D d.e0/.2ı/
�1. N�i /2kv. � ; 0/k2C . By the maximum principle of Proposi-

tion 2, we obtain the estimate z. � ; t/ � zC
i .t/, where zC

i .t/ solves the ODE

.zC
i /

0 D �2 .�."/� ı/zC
i C N�ie�2�."/ t ; zC

i .0/ D kwi . � ; 0/k2C :
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Hence,

zC
i .t/ D �kwi . � ; 0/k2C C N�i=.2 ı/

�
e�2�."/ t � N�ie�2.�."/�ı/ t =.2 ı/:

Coming back from wi . � ; t/ to yi . � ; t/ D @xi .u. � ; t/�u?/, we obtain (79) with j˛j D
1. Considering the second partial derivatives y;ij D @2xi xj v .i; j 2 f1; 2; : : : ; pg/
and denoting wij . � ; t/ D y;ij . � ; t/=e0, we obtain the equations

@tw;ij D �w;ij C 2 hr log e0;rw;ij i C hw;ij C �ij . � ; t/;

where the term �ij . � ; t/ contains only v. � ; t/ and yi . � ; t/, which have been
estimated above. Then we get (79) for j˛j D 2 in a similar manner as above. By
induction we prove (79) for any j˛j. ut
Remark 1. As in the proof of Theorem 6(ii), we may show in Theorem 7 that
r log u ! r log u� as t ! 1 in C1 with the exponential rate �."/ � ı for small
ı > 0.

2.6 Nonlinear Heat Equation with Parameter

Let the metric g, the connection r, and the Laplacian � smoothly depend on q,
which belongs to an open subset Q of Rn. Consider the Cauchy’s problem on a
closed Riemannian manifold .F; g/

@tu D �u C f .x; u; q/; u.x; 0; q/ D u0.x; q/: (80)

Here, f is defined in the domainD D F � I �Q, where I � R is an interval, and
u0 is defined in the domain QD D F �Q and satisfies the condition u0.x; q/ 2 I for
any x 2 F and q 2 Q.

Proposition 5. Suppose that f 2 C1.D/, u0 2 C1. QD/, all partial derivatives of
f and u0 by x, u, and q are bounded in D and QD, and for any q 2 Q there exists a
unique solution u W F � Œ0; T � �Q ! R of Cauchy’s problem (80) such that all its
partial derivatives by x are bounded in F �Œ0; T ��Q. Then u.� ; t; �/ 2 C1.F �Q/
for any t 2 Œ0; T �.
Proof. This is standard; we give it for the convenience of a reader. As is known,
u.� ; t; q/ 2 C1.F / for any q 2 Q, t 2 Œ0; T �. We should prove the smooth
dependence on q of the solution u.x; t; q/ and of all its partial derivatives by x
for any fixed t 2 Œ0; T �. We shall divide the proof into several steps.

Step 1: The continuous dependence of u.x; t; q/ in q. To show this, take q0 2 Q
and denote by v.x; t; q/ D u.x; t; q/ � u.x; t; q0/ and v0.x; q/ D u0.x; q/ �
u0.x; q0/. Let us represent

f .x; u.x; t; q/; q/�f .x; u.x; t; q0/; q0/DF.x; t; q/v.x; t; q/CG.x; t; q/ � .q�q0/;
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where

F.x; t; q/ D R 1
0
@uf .x; u.x; t; q0/C 
v.x; t; q/; q0 C 
.q � q0// d


G.x; t; q/ D R 1
0

gradqf .x; u.x; t; q0/C 
v.x; t; q/; q0 C 
.q � q0// d
 :

Then the function v.x; t; q/ is a solution of the Cauchy’s problem:

@tv D �v C F.x; t; q/v CG.x; t; q/ � .q � q0/; v j tD0 D G0.x; q/ � .q � q0/;

where G0.x; q/ D R 1
0 gradqv0.x; q0 C 
.q � q0// d
 . Then by the maximum

principle of Proposition 2,

jv.x; t; q/j � w.t; q/ 8 .x; t; q/ 2 F � Œ0; T � �Q; (81)

where w.t; q/ is the solution of the following Cauchy’s problem for the ODE:

@t w D NF jwj C NG jq � q0j; w.0; q/ D NG0 jq � q0j (82)

with NF D sup
F�Œ0;T ��Q

jF j, NG D sup
F�Œ0;T ��Q

jGj and NG0 D sup
F�Q

jG0j. Then from (81)

and (82) we get

jv.x; t; q/j � � NG0e NF t C.e NF t �1/. NG= NF /�jq�q0j; .x; t; q/ 2 F �Œ0; T ��Q;

which implies the claim of Step 1.
Step 2: All the partial derivatives of u.x; t; q/ by x are continuous in q. Differen-

tiating subsequently by x both sides of the equation and of the initial condition
in (80), we have the following Cauchy’s problems for p˛ D @˛xu (˛ is the multi-
index):

@tpi D �pi C @uf .x;u.x; t; q/; q/pi C @ixf .x;u.x; t; q/; q/; pi j tD0 D @ixu0.x; q/;

@t pi;j D �pi;j C @uf .x; u.x; t; q/; q/pi;j C @2uf .x;u.x; t; q/; q/pipj

C@u@
i
xf .x;u.x; t; q/; q/pj C @

i;j
x f .x;u.x; t; q/; q/;

pi;j j tD0 D @
i;j
x u0.x; q/; (83)

and so on. Applying the claim of Step 1 to these Cauchy’s problems, we prove
the claim of Step 2.

Step 3: u.x; t; q/ is smooth with respect to q. Take q0 2 Q and consider the
divided difference

ı y.x; t; s/ D 1

s
.u.x; t; q0 C sy/� u.x; t; q0// .y 2 R

n; s 2 R/:
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Denote by ı0y.x; s/ D 1
s
.u0.x; q0 C sy/� u0.x; q0//. As in Step 1, we obtain the

Cauchy’s problem for ı y

@t ı y D �ı y C QF .x; t; s/ı y C QG.x; t; s/ � y; ı y j tD0 D ı0y.x; s/; (84)

QF .x; t; s/ D
Z 1

0
@uf .x;u.x; t; q0/C
.u.x; t; q0Csy/�u.x; t; q0///; q0Csy/ d
;

QG.x; t; s/ D
Z 1

0
gradqf .x; u.x; t; q0/C
.u.x; t; q0Csy/�u.x; t; q0///; q0Csy/ d
:

Applying to Cauchy’s problem (84) the claim of Step 1, we conclude that
ı y.x; t; s/ is continuous by s at the point s D 0, that is, there exists the directional
derivative d y.x; t; q0/ D gradqu.x; t; q0/ � y D lim s!0 ı y.x; t; s/. Moreover,
d y.x; t; q/ is the solution of the Cauchy’s problem

@td y D �d y C @uf .x; u.x; t; q/; q/d y C gradqf .x; u.x; t; q/ � y;

d y j tD0 D gradqu0.x; q/ � y: (85)

Applying the claim of Step 1 to this Cauchy’s problem, we find that d y.x; t; q/ D
gradqu.x; t; q/ � y continuously depends on q for any y 2 R

n. Thus, u.x; t; q/ is
C1-regular in q. Applying the above arguments to the Cauchy’s problem (85),
we conclude that u.x; t; q/ belongs to C2 with respect to q. Finally, we prove by
induction that u.x; t; q/ is smooth in q.

Step 4: Applying all the arguments of Step 3 to the Cauchy’s problems (83) and
so on, we prove that all derivatives of u.x; t; q/ in x smoothly depend on q.

ut
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The Partial Ricci Flow for Foliations

Vladimir Rovenski

Abstract We study the flow of metrics on a foliation (called the Partial Ricci Flow),
@tg D �2 r.g/, where r is the partial Ricci curvature; in other words, for a unit
vector X orthogonal to the leaf, r.X;X/ is the mean value of sectional curvatures
over all mixed planes containing X . The flow preserves total umbilicity, total
geodesy, and harmonicity of foliations. It is used to examine the question: Which
foliations admit a metric with a given property of mixed sectional curvature (e.g.,
constant)? We prove local existence/uniqueness theorem and deduce the evolution
equations (that are leaf-wise parabolic) for the curvature tensor. We discuss the
case of (co)dimension-one foliations and show that for the warped product initial
metric the solution for the normalized flow converges, as t ! 1, to the metric with
r D ˆ Og, where ˆ is a leaf-wise constant.

Keywords Manifold • Foliation • Flow of metrics • Totally geodesic • Partial
Ricci curvature • Conullity tensor • Parabolic differential equation • Warped
product
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1 Introduction

We define the partial Ricci flow on foliations. It is proposed as the main tool to
prescribe the partial Ricci and mixed curvature of a foliation (see Toponogov’s
question in what follows).
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1.1 Totally Geodesic Foliations

A Riemannian manifold may admit many kinds of geometrically interesting
foliations (e.g., totally geodesic, totally umbilical, harmonic, and Riemannian).
The problems of the existence and classification of metrics with a given geometry
on foliations (first posed by H. Gluck in 1979 for geodesic foliations) were studied
already in the 1970s when D. Sullivan provided a topological condition (called
topological tautness) for a foliation, equivalent to the existence of a Riemannian
metric making all the leaves minimal, see [5]. Several authors investigated whether
on a given Riemannian manifold there exists a totally geodesic foliation, as well as
the inverse problem of determining whether one can find a Riemannian metric on
a foliated manifold with respect to which the foliation becomes totally geodesic,
see [7, 8, 11] and a survey in [12]. Simple examples of totally geodesic foliations
are parallel circles or winding lines on a flat torus, and a Hopf field of great
circles on the sphere S3. In the codimension-one case, totally geodesic foliations
on closed nonnegatively curved space forms are completely understood: they are
given by parallel hyperplanes in the case of a flat torus T n and they do not exist
for spheres Sn. If the codimension is greater than one, examples of geometrically
distinct totally geodesic foliations are abundant.

Let .MnCp; g/ (where n; p > 0) be a connected Riemannian manifold with
the Levi-Civita connection r, F a smooth p-dimensional foliation on M , and
D its orthogonal n-dimensional distribution. We have the orthogonal splitting of
the tangent bundle T .M/ D DF C D, where DF consists of vectors tangent
to the leaves. As usual, R.X; Y;Z; V / D g.R.X; Y /Z; V / is the Riemannian
curvature tensor, and R.X; Y / D rYrX�rXrYCrŒX;Y � is the curvature tensor.
Thus, R.X; Y / D r2

Y;X � r2
X;Y , where r2

X;Y WD rXırY � rrXY is the second
covariant derivative. The sectional curvature of the plane � D X ^ Y is K� D
R.X; Y;X; Y /=.g.X;X/g.Y; Y /� g.X; Y /2/.

The mixed plane is spanned by two vectors such that the first (second) vector
is tangent (orthogonal) to a leaf. Let also mixed curvatures stand for the sectional
curvatures of mixed planes. The mixed curvature of a foliated manifold regulates
the deviation of leaves along the leaf geodesics. (The geodesic deviation equation
involves the curvature tensor, which measures in mechanics the rate of relative
acceleration of two particles moving forward on neighboring geodesics.)

Theorem 1 (see [6]). Let .MnCp; g/ be foliated with complete totally geodesic
leaves of dimensionp. Denote by �.n/�1 the maximal number of point-wise linearly
independent vector fields on a sphere Sn�1. If the sectional curvature of M has the
same positive value for all mixed planes then

p � �.n/� 1: (1)

To the best of our knowledge, this is the unique theorem in Riemannian
geometry, which involves the topological invariant �.n/, the Adams number; here,
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�
�
.odd/ 2 4dCc� D 8d C 2 c , where d � 0 and 0 � c � 3, see [1]. In the case of

p D 1, the manifold M is foliated by complete geodesics. Theorem 1 prohibits
the existence of a foliation of an even-dimensional manifold by geodesics with
positive constant mixed curvatures, since �.n/ � 1 D 0 for an odd n. Hopf’s
fiber bundle � W S3 ! S2 gives the simple example of such a foliation for
the odd n C p D 3, where the sphere S3 is equipped with the standard metric.
Fibers of Hopf’s bundle are closed geodesics (great circles). Theorem 1 has various
applications to geometry of submanifolds, see survey in [11]. Among Toponogov’s
many important contributions to global Riemannian geometry is the following
question, see [11, p. 30]:

Question 1. Can Theorem 1 be generalized by replacing the hypothesis “all mixed
curvatures are equal to a positive constant” with the weaker one: “all mixed
curvatures are positive”?

Although the question was posed in 1980s, it is still open for a closed foliated
manifold M . The exactness of estimate (1) and necessity of more conditions when
a foliation is given locally have been proven in [11]. The author solved the problem
(i.e., Question 1) for the special case, whenMnCp is a ruled submanifold of a sphere
(i.e., the leaves are the rulings).

One may try to attack Question 1 by deforming the metric in directions
orthogonal to leaves. The candidate for such a deformation is the flow defined in
the next section.

1.2 The Partial Ricci Tensor

Paper [4] (see also [15]) studies the new action on foliations; this is imitative of
Einstein–Hilbert functional except that the scalar curvature is replaced by Scmix:

Jmix W g !
Z

�

Scmix.g/ d volg :

Here � is a fixed relatively compact domain in M and

Scmix D
Xp

iD1
Xn

aD1 R.Ea; Ei ; Ea; Ei /

is the mixed scalar curvature (a function on M ), see [11, 13, 20], where
fEi; Eagi�p; a�n is a local orthonormal frame on T .M/ adapted to DF and D.
In particular, Scmix D Ric.N;N / when one of the distributions is 1-dimensional
and is spanned by a unit vector fieldN , see Sect. 4.1. For a foliated surface .M2; g/,
i.e., n D p D 1, we obtain Scmix D K – the Gaussian curvature.
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An inspection of Euler–Lagrange equations of Jmix (called the mixed gravita-
tional field equations) leads to a new kind of Ricci curvature, whose properties need
to be further investigated.

The partial Ricci curvature is the symmetric .0; 2/-tensor r D r.g/ defined as,
see [13],

r.X; Y / D Tr F R.X?; � ; Y?; � / D
Xp

iD1
R.X?; Ei ; Y

?; Ei /; X; Y 2 T .M/;

(2)

where ? is the orthogonal to F component of a vector. Definition (2) does not
depend on the choice of fEigi�p; in other words, for a unit vector X 2 D, the
quantity r.X;X/ is the mean value of sectional curvatures over all mixed planes
containingX . The symmetric .1; 1/-tensor

RicD.X/ D
Xp

iD1
�
R.Ei ;X

?/ Ei
�?

(called the partial Ricci tensor) is dual to (2), i.e., g.RicD.X/;Z/ D r.X;Z/.
Certainly, we have

Tr g r D Tr .RicD/ D Scmix:

For a 1-dimensional foliation (spanned by a unit vector N on a manifold) we have

r.X; Y / D R.X;N; Y;N /; X; Y 2 T .M/ (3)

and RicD D RN WD R.N; � /N the Jacobi operator for N .
The notion of the D-truncated .0; 2/-tensor will be helpful: S.X; Y / D

S.X?; Y ?/; X; Y 2 T .M/. The tensor r provides the example of a D-truncated
symmetric .0; 2/-tensor. Another useful example is the D-truncated metric tensor
Og, i.e., Og.X; Y / D g.X?; Y ?/.

The author [13] studied the problem of prescribing r on a locally conformally
flat foliated manifold .M; g/, provided conditions for .0; 2/-tensors S of a simple
form (defined on M ) to admit a metric Qg conformal to g that solves the partial
Ricci equations r.g/ D S (and Einstein-type equations, r.g/ D 1

p
Scmix � Og), and

presented explicit solutions.
A geometric flow of metrics, gt , on a manifold is a solution of a differential

equation @tg D S.g/ , where the symmetric .0; 2/-tensor S.g/ is usually related to
some kind of curvature (e.g., the Ricci flow, see [2], and the mean curvature flow).
The flows of metrics on foliations that depend on the second fundamental form
of leaves are studied in [14–16]. In this chapter we study the flow of metrics (on
foliations) and use it to examine the question: Which foliations admit a metric with
a given property of the partial Ricci curvature or mixed curvature .e.g., constant/?
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Definition 1. The Partial Ricci Flow (PRF) is a family of metrics gt ; t 2 Œ0; "/,
satisfying the PDE

@tg D �2 r.g/: (4)

(The PRF on a 1-dimensional foliation was studied in [19]). The normalized PRF is
defined by

@tg D �2 r.g/C 2ˆ Og; (5)

whereˆ W M ! R is a leaf-wise constant. For a foliated surface, (5) reads

@tg D �2 .K �ˆ/ Og:

Observe that r.X; Y / D 0 if either X or Y is tangent to F . Thus, the PRF
preserves the orthogonal distribution to F , does not change the geometry of
the leaves, and keeps them to be totally umbilical (totally geodesic) or minimal
submanifolds, see Proposition 3 in Sect. 3.3.

Remark 1. The fixed points of (5) are metrics with r D ˆ Og (examples are Hopf
fibrations of odd-dimensional spheres). The author and Zelenko [17,18] studied the
D-conformal flow

@tg D �2 .Scmix.g/ �ˆ/ Og ; (6)

i.e., ‘Yamabe type’ analogue to (5). For certain conditions, (6) admits a unique
global solution gt converging exponentially fast to a metric, whose Scmix is a leaf-
wise constant.

In the case of a general foliation, the topology of the leaf through a point can
change dramatically with the point; this gives many difficulties in studying truncated
flows of metrics and leaf-wise parabolic PDEs. Therefore, we assume, at least at the
first stage of study (e.g., Theorem 2),

.a/ the leaves to be compact, .b/ the manifoldM to be fibered instead of being
foliated: (7)

Theorem 2. Let F be a smooth foliation on a closed Riemannian manifold .M; g0/.
Then the linearization of (5) at g0 is a leaf-wise parabolic PDE; hence, (5)
under assumptions (7) has a unique smooth solution gt defined on a positive time
interval Œ0; t0/.

We are going to study the PRF along with the same line as the classical Ricci
flow is applied in the proof of the smooth 1=4-pinching sphere theorem, see for
example [2].
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The author conjectured (in his project EU-FP7-P-2010-RG, No. 276919) the
following:

Let F be a p-dimensional totally geodesic foliation on a closed Riemannian
manifold .MnCp; g/. Assume all mixed curvatures to be sufficiently close to a
positive constant. Then the PRF evolves the metric g to a limit metric whose mixed
curvature is a positive function of a point.

The conjecture seems to be an analogue of the following result by C. Böhm and
B. Wilking.

Theorem 3 (see Theorem 1.10 in [2]). On a compact manifold the Ricci flow
evolves a Riemannian metric with 2-positive curvature operator R .i.e., the sum
of the first two eigenvalues of R is positive/ to a limit metric with constant sectional
curvature.

Observe the following difference in statements of the conjecture and Theorem 3:
the sectional curvature of the limit metric is constant in Theorem 3, while the mixed
curvature can depend on a point in the conjecture. The difference is caused by the
absence of Schur’s lemma in the case of fiber bundles. Nevertheless, the statement
of author’s conjecture implies inequality (1).

Theorem 8 and Corollaries 6 and 7 (Sect. 4.3) confirm the conjecture for a special
case of warped product metrics when the leaves are space forms.

2 Preliminaries

We survey the basic tensors of the extrinsic geometry of foliations, describe their
behavior under D-truncated variations of a metric, and find the F -Laplacian of the
curvature tensor.

2.1 Basic Tensors of the Extrinsic Geometry of a Foliation

The second fundamental tensor hF of F is defined by hF .N1;N2/ D
.rN1N2/? .Ni 2 DF /. The Weingarten operator AF

X W DF ! DF is given by
g.AF

X .N1/; N2/ D g.hF .N1;N2/; X/. The mean curvature vector of F is given by
HF D Tr g hF . A foliation F is called totally umbilical, harmonic, totally geodesic,
if hF D .HF=p/ g jF ; HF D 0, and hF D 0, respectively.

Definition 2. The conullity tensor C W DF � T .M/ ! D is defined by

CN .X/ D �.rXN/?; N 2 DF ; X 2 T .M/: (8)
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In particular, CN1.N2/ D �hF .N1;N2/ when N1;N2 2 DF . Hence, C D 0 if
and only if F is totally geodesic and D is integrable with totally geodesic integral
manifolds (in this case, by de Rham decomposition Theorem,M is locally the direct
product).

The second fundamental tensor h and the integrability tensor T of D are given by

h.X; Y / D .1=2/ .rXY C rY X/
F ; T .X; Y / D .1=2/ ŒX; Y �F .X; Y 2 D/:

(9)

Then H D Tr g h is the mean curvature vector of D. If D is integrable then T D 0,
and if F is a Riemannian foliation then h D 0. The (self-adjoint) Weingarten
operator AN W D ! D and the skew-symmetric operator T ]N W D ! D related
to N 2 DF are dual to tensors h and T , respectively:

g.AN .X/; Y / D g.h.X; Y /;N /;

g.T ].X/; Y / D g.T .X; Y /;N /.X; Y 2 D/: (10)

Let � be the conjugation of .1; 1/-tensors on D with respect to g. We have the
identities on D

AN D .CN C C �
N /=2; T

]
N D .CN � C �

N /=2; CN D AN C T
]
N : (11)

For N1;N2 2 DF , define the tensor RN1;N2 .X/ D �
R.N1;X

?/N2
�?

and the self-
adjoint operator RN WD RN;N . We have RicD.X/ D Pp

iD1 REi .X?/. Note that
divF h WD Pp

iD1 g.ri h. �; �/; Ei / is a symmetric bilinear form on D. Define the

symmetric tensors A D P
i A

2
i and T D P

i .T
]
i /
2.

The deformation tensor of a vector fieldZ is the symmetric part of r Z restricted
to D,

DefD.Z/.X; Y / D .1=2/ Œg.rX Z; Y /C g.rY Z;X/�; X; Y 2 D:

Lemma 1. For a foliation F on .M; g/ and any X; Y 2 D; Ni 2 DF , we have

R.N1;X;N2; Y / D g...rN1 C /N2 � CN2CN1/.X/; Y /

C g...rX A
F /Y �AF

Y A
F
X /.N1/;N2/; (12)

r.X; Y / D divF h.X; Y / � g..A C T /.X/; Y /

C DefD.HF /.X; Y /� Tr .AF
Y A

F
X /; (13)

Scmix D divF H � khk2 C kT k2 C divHF C kHFk2 � khFk2: (14)
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Proof. For (12) see [11, Lemma 2.25]. Note that

X
i
g..rX A

F /Y .Ei /; Ei/ D
X

i
rX.g.A

F
Y .Ei /; Ei//

D rX.g.
X

i
hF .Ei ; Ei/; Y // D g.rXHF ; Y /:

Denote divF C WD P
i .ri C /i and divF T ] WD P

i .ri T
]/i . Tracing (12) on DF

yields

r.X; Y / D g.divF C.X/; Y /� g.
X

i
C 2
i .X/; Y /C g.rXHF ; Y /� Tr .AF

Y A
F
X /:

(15)

The symmetric part of above equation is (13). The antisymmetric companion
of (13) is

g.divF T ].X/; Y / �
X

i
g
�
.AiT

]
i C T

]
i Ai /.X/; Y

� D dDHF .X; Y /; (16)

where dDHF .X; Y / D 1
2
Œg.rX HF ; Y /�g.rY HF ; X/� is the antisymmetric part

of r?HF , which is regarded as a 2-form. Tracing (13) on D, we obtain (14). ut
Remark 2. Note that (14) follows from the equality

divH D divF H � kHk2 (17)

and the known formula for complementary distributions D and DF , see [20],

Scmix D div.H CHF /CkHk2CkHFk2CkT k2CkTFk2�kh k2�khFk2 : (18)

One may find the norms of tensors using the orthonormal frame fEi; Eagi�p; a�n as

khFk2 D
X

a;b
khF .Ea; Eb/k2; kh k2 D

X
i;j

kh.Ei ; Ej /k2;

jT k2 D
X

i;j
kT .Ei ; Ej /k2:

Corollary 1. For a totally umbilical foliation F on .M; g/ and any X; Y 2
D; Ni 2 DF we have

RN1;N2 D .rN1 C /N2 � CN2CN1 C g.N1;N2/
�r?ı HF � g.HF ; �/HF

�
; (19)

r.X; Y / D divF h.X; Y / � g.A C T /.X/; Y /C DefD.HF /.X; Y /

�p g.HF ; X/g.HF ; Y /: (20)
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For a harmonic foliation F , we have

r D divF h� .A C T /[ � Tr .AFı AFı /;

RicD D .divF h/ ] � A � T �
X

i
h.AFı .Ei/; Ei /; (21)

.divF T /] D
X

i

�
AiT

]
i C T

]
i Ai

�
: (22)

For a totally geodesic foliation F , we have

RN1;N2 D .rN1 C /N2 � CN2CN1; r D divF h � .A C T /[;

RicD D .divF h/ ] � A � T : (23)

The symmetric and antisymmetric parts of (23)1 with N1 D N2 D N are

RN D rN AN �A2N � .T
]
N /

2; rN T
]
N D AN T

]
N C T

]
NAN : (24)

2.2 Time-Dependent Adapted Metrics

Denote by M the space of smooth Riemannian metrics on M such that the
distribution D is orthogonal to F . Elements of M are called .D;DF /-adapted
metrics (adapted metrics, in short).

Let S.g/ be a D-truncated symmetric .0; 2/-tensor on a foliated Riemannian
manifold .M; g/. Consider a family of adapted metrics gt on a smooth manifoldM
(with 0 � t < ") satisfying PDE

@tg D S.g/: (25)

Since the difference of two connections is a tensor, @tr t is a .1; 2/-tensor on .M; gt /
with the symmetry .@tr t /.X; Y / D .@tr t /.Y;X/. Recall the formula [2]:

2 gt ..@tr t /.X; Y /;Z/ D .r t
X St /.Y;Z/C .r t

Y St /.X;Z/� .r t
Z St /.X; Y / (26)

for all X; Y;Z 2 �.T .M//. If the vector fields X D X.t/; Y D Y.t/ are
t-dependent then

@t .r t
XY / D .@tr t /.X; Y /C rX.@tY /C r@tXY:

Let S] W T .M/ ! T .M/ the .1; 1/-tensor dual to S , i.e., g.S].X/; Y / D S.X; Y /.

Lemma 2. Let the local D-frame fEag evolve by (25) according to

@tEa D �.1=2/ S].Ea/ : (27)

Then fEa.t/g is a gt -orthonormal frame of D for all t .
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Proof. We have

@t .gt .Ea; Eˇ// D gt .@tEa.t/; Eˇ.t//C gt .Ea.t/; @tEˇ.t//C .@t gt /.Ea.t/; Eˇ.t//

D St.Ea.t/; Eˇ.t// � .1=2/ gt.S
]
t .Ea.t//; Eˇ.t//

� .1=2/ gt.Ea.t/; S]t .Eˇ.t/// D 0: ut

Lemma 3 (see [14]). For (25) with D-truncated tensor S and vectors X; Y 2
D; N 2 DF we have

2 g.@th.X; Y /;N / D �.rN S/.X; Y /C S.Y; CN .X//C S.X;CN.Y //; (28)

2 @tAN D �rN S
] C ŒAN � T ]N ; S]�; @tT

]
N D �S] T ]N ; (29)

2 @tCN D �rN S
] C ŒCN ; S

]� � 2 T
]
N S

]; (30)

2 @tH D �rF .Tr S]/; (31)

@thF D �S] ı hF ; @tHF D �S].HF /: (32)

Proof. Note that @tT D 0. For all X; Y 2 D, using (26) and (9), we have

2 g
�
@t .r t

XY /; N
� D .r t

XS/.Y;N /C .r t
Y S/.X;N /� .r t

N S/.X; Y /

D �.r t
N S/.X; Y / � S.Y;r t

XN /� S.X;r t
Y N /:

From this and symmetry of @tr t , we have (28). Using (10), we then find

g.@tAN .X/; Y / D @tg.h.X; Y /;N /� .@t g/.AN .X/; Y /;
g.@tT

]
N .X/; Y / D �.@t g/.T ]N .X/; Y /:

The above, (11) and (28) yield (29). Using @tCN D @tAN C @tT
]
N and (29), we

obtain (30). Next, using Lemma 2, we deduce (31):

2 g.@tH;N / D 2
X

a
g.@t .h.Ea; Ea//; N /

D 2
X

a
g.@th.Ea; Ea//C 2 h.@tEa; Ea//; N /

D
X

a
Œ�.rN S/.Ea; Ea/C 2 S.CN .Ea/; Ea/� g.h.S].Ea/; Ea/; N /�

D �N.Tr S]/:
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Finally, from (26) we have

2 gt .@thF .N1;N2/; X/ D gt .@t .r t
N1
N2/C @t .r t

N2
N1/; X/

D .r t
N1
S/.X;N2/C .r t

N2
S/.X;N1/� .r t

XS/.N1;N2/

D �S.r t
N1
N2;X/C S.r t

N2
N1;X/

D �2 S.hF .N1;N2/; X/:

Hence, 2 gt .@thF .N1;N2/; X/ D �2 gt .S] ı hF .N1;N2/; X/ for X 2 T .M/, that
is (32)1. Since @tEi D 0, we have (32)2

@tHF D
X

i
@thF .Ei ; Ei / D �

X
i
S].hF .Ei ; Ei// D �S].HF /:ut

Corollary 2. For (25), the tensors @tAN , @tT
]
N , where N 2 DF , and @t RicD may

be not self-adjoint:

.@tAN /
� � @tAN D ŒS]; AN �; .@tT

]
N /

� C @tT
]
N D ŒT

]
N ; S

]�;

.@t RicD/� � @t RicD D �ŒRicD; S]�: (33)

Proof. From (29), formulae (33)1;2 follow. Notice that

@t r.X; Y / D @t .g.RicD.X/; Y // D S.RicD.X/; Y /

C g..@t RicD/.X/; Y / .X; Y 2 D/: (34)

From this and symmetry of @t r , equality (33)3 follows. ut
The metrics gt on M in (25) are interpreted as a natural bundle metric on the

spatial tangent bundle E , that is, the pull-back of T .M/ under the projection M �
.0; "/ ! M; .q; t/ ! q, see [2]. The fiber of E over a point .q; t/ is given by
E.q;t/ D TqM and is endowed with the metric gt .

A connection r on a vector bundle E over M is a map r W X .M/ � �.E/ !
�.E/, written as .X; �/ ! rX� , such that, see [2],

1. r is C1.M/-linear in X : rf1X1Cf2X2 � D f1rX1 � C f2rX2 � ,
2. r is R-linear in � : rX.�1�1 C �2�2/ D �1rX �1 C �2rX �2, and
3. r satisfies the product rule: rX.f�/ D X.f / � C f rX � .

A connection r on a vector bundle E is said to be compatiblewith a metric g on
E if for any �; � 2 �.E/ and X 2 X .M/, we have X.g.�; �// D g.rX�; �/ C
g.�; rX�/. Compatibility by itself is not enough to determine a unique connection.
There is a natural connection Qr on E , which extends the Levi-Civita connection
on T .M/. We need to specify only the covariant time derivative Qr@t . Given any
section X of the vector bundle E , we define Qr@t by

Qr@t X D @tX C .1=2/ S].X/ for X 2 D; Qr@t N D 0 for N 2 DF : (35)
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Lemma 4. The connection on E is compatible with the natural bundle metric:

Qr@t g D 0: (36)

Proof. One may assume that X; Y 2 D are constant in time. In this case, we have
Qr@t X D 1

2
S].X/ and Qr@t Y D 1

2
S].Y /. Since @tg D S , this and (25) imply (36):

. Qr@t g/.X; Y / D @tg.X; Y /�g. Qr@t X; Y /�g.X; Qr@t Y / D .@t g/.X; Y /� S.X; Y / D 0: ut

This connection is not symmetric: in general, Qr@t X ¤ 0, while QrX@t D 0 always
forX 2 D. Clearly, the torsion tensor Tor.X; Y / WD QrXY � QrY X� ŒX; Y � vanishes
if both arguments are spatial; so, the only nonzero components are

Tor.@t ; X/ D Qr@t X � QrX@t D .1=2/ S].X/ .X 2 D/:

However, each submanifold M � ftg is totally geodesic; so, computing derivatives
of spatial tangent vector fields gives the same result as computing for sections
of T .M � Œ0; "//. In particular, the corresponding Weingarten operators satisfy
QAN D AN .

Remark 3. Using connection (35), we also have

g.. Qr@t h/.X; Y /;N / D g.@th.X; Y / � h. Qr@t X; Y /� h.X; Qr@t Y /; N /

D �.1=2/ .r t
NS/.X; Y /;

. Qr@t AN /.X/ D .@tAN /.X/� AN . Qr@t X/

D �.1=2/ .r t
NS

]/.X/� .1=2/ ŒT
]
N ; S

]�:

If D is integrable then, see (29),

Qr@t AN D �.1=2/ QrN S
]:

2.3 The Leaf-Wise Laplacian of the Curvature Tensor

In analogy with [2, Sect. 4.2.1], define the quadratic in the curvature tensor B 2
ƒ4
0.M/ as

B.X; Y; V;Z/ D
Xp

iD1hR.X; � ; Y; Ei /; R.V; � ; Z; Ei /i for all

X; Y; V;Z 2 T .M/;
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where fEi gi�p is a local orthonormal frame on DF . Although generally we have
B.X; Y;Z; V / ¤ B.Y;X; V;Z/, the tensorB has some symmetries of the curvature
tensor, as

B.X; Y;Z; V / D B.Z; V;X; Y /: (37)

The leaf-wise Laplacian is defined by �F D Tr F .r 2/ D P
i r 2

i;i .

Proposition 1 (see [19] for p D 1). On a Riemannian manifold .M; g/ endowed
with a smooth foliation F , the F -Laplacian of the curvature tensor satisfies

�F R.X; Y;Z; V / D
X

i
Œr2
X;Z R.Y;Ei ; V;Ei/ � r2

Y;Z R.X;Ei ; V;Ei/

C r2
Y;V R.X;Ei;Z;Ei / � r2

X;V R.Y;Ei ; Z;Ei /�

� �
B.X; Y;Z; V /� B.X; Y; V;Z/� B.Y;X;Z; V /

C B.Y;X; V;Z/ � 2B.Z; Y; V;X/
C 2B.Z;X; V; Y /

�C hR. � ; Y;Z; V /;
X

i
R.X;Ei; � ; Ei/i

� hR. � ; X;Z; V /;
X

i
R.Y;Ei ; � ; Ei/i: (38)

Proof. Using riR.X; Y;Z; V /CrXR.Y;Ei ; Z; V /CrY R.Ei ; X;Z; V / D 0 (the
second Bianchi identity)—together with the linearity over R of r on the space of
tensor fields [2]—we find that

�F R.X; Y;Z; V / D
X

i
r2
i;iR.X; Y;Z; V /

D
X

i
Œr2
i;XR.Ei ; Y;Z; V /� r2

i;Y R.Ei ; X;Z; V /�: (39)

It suffices to express the first two terms on the rhs of (39) using lower order terms.
To compute the first term on the rhs of (39), we transpose ri and rX ,

r2
i;XR.Ei ; Y;Z; V / D r2

X;iR.Ei ; Y;Z; V /C .R.X;Ei/R/.Ei ; Y;Z; V /: (40)

Using the second Bianchi identity riR.Z; V;Ei ; Y / C rZR.V;Ei ; Ei ; Y / C
rV R.Ei ;Z;Ei ; Y / D 0, we transform the first term on the rhs of (40),

r2
X;i R.Ei ; Y;Z; V / D r2

X;Z R.Y;Ei ; V;Ei/ � r2
X;V R.Ei ; Y;Ei ; Z/: (41)

Next, we transform the second term on the rhs of (40), using the identity

.R.X; Y /R/.Z;U; V;W / D �R.R.X; Y /Z;U; V;W /� R.Z;R.X; Y /U; V;W /

�R.Z;U;R.X; Y /V;W /� R.Z;U; V;R.X; Y /W /
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and noting that R.X; Y /f D 0 where f D R.Z;U; V;W / (in our case,
R.X;Ei/.R.Ei ; Y;Z; V // D 0)

.R.X;Ei/R/.Ei ; Y; Z; V / D �R.R.X;Ei/.Ei ; Y; Z; V /� : : : �R.Ei ; Y; Z;R.X;Ei /V /
D hR.X;Ei ; � ; Ei /; R. � ; Y;Z; V /i

C hR.Ei ;X; Y; �/ R.Ei ; � ; Z; V /i
C hR.Ei ;X;Z; � /; R.Ei ; Y; � ; V /i
C hR.Ei ;X; V; � /; R.Ei ; Y; Z; � /i: (42)

The first term on the rhs of (42) yields

h
X

i
R.X;Ei ; � ; Ei/; R. � ; Y;Z; V /i D �hR.Y; � ; Z; V /;

X
i
R.X;Ei ; � ; Ei/i:

We transform the second term on the rhs of (42), using the first Bianchi identity,
X

i
hR.Ei ;X; Y; �/ R.Ei ; � ; Z; V /i D �

X
i
hR. � ; Y;X;Ei/ R.Z; V; � ; Ei/i

D
X

i

�hR. � ; Y;X;Ei/ R. � ; Z; V;Ei/i
C hR. � ; Y;X;Ei/ R.V; � ; Z;Ei /i

�

D B.Y;X;Z; V /� B.Y;X; V;Z/:

The third and the fourth terms on the rhs of (42) are transformed as

hR.Ei ;X;Z; � /; R.Ei ; Y; � ; V /i C hR.Ei ;X; V; � /; R.Ei ; Y;Z; � /i
D �hR. � ; Z;X;Ei/; R. � ; V; Y;Ei/i � hR. � ; V;X;Ei/; R. � ; Z; Y;Ei/i
D �B.Z;X; V; Y /C B.V;X;Z; Y /:

Hence, (42) takes the following form:
X

i
.R.X;Ei/R/.Ei ; Y;Z; V / D B.Y;X;Z; V /�B.Y;X; V;Z/�B.Z;X; V; Y /

CB.V;X;Z; Y /
�hR.Y; � ; Z; V /;

X
i
R.X;Ei ; � ; Ei/i: (43)

Substituting expressions of (41) and (43) into (40), we have

X
i
r2
i;XR.Ei ; Y; Z; V / D

X
i

�r2
X;Z R.Y; Ei ; V;Ei /� r2

X;V R.Y;Ei ;Z;Ei /
�

� .B.Y; X; V;Z/ � B.Y;X;Z; V /C B.Z;X; V; Y /

� B.V;X;Z; Y //� hR.Y; � ; Z; V /;
X

i
R.X;Ei ; � ; Ei /i:
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Using symmetry X $ Y , we also have
X

i
r2
i;Y R.Ei ;X;Z; V / D

X
i

�r2
Y;Z R.X;Ei ; V; Ei / � r2

Y;V R.X;Ei ; Z;Ei /
�

� �
B.X; Y; V; Z/ � B.X; Y; Z; V /C B.Z; Y; V; X/

� B.V; Y; Z;X/� � hR.X; � ; Z; V /;
X

i
R.Y;Ei ; � ; Ei /i:

By the above, (39) reduces to
X

i
r2
i;i R.X; Y;Z; V /

D
X

i

�r2
X;ZR.Y;Ei ; V;Ei /� r2

X;V R.Y;Ei ; Z;Ei /

�r2
Y;ZR.X;Ei; V;Ei/C r2

Y;V R.X;Ei ;Z;Ei /
�

ChR. � ; Y;Z; V /;
X

i
R.X;Ei ; � ; Ei/i

�hR. � ; X;Z; V /;
X

i
R.Y;Ei ; � ; Ei/i

� .B.Y;X; V;Z/� B.Y;X;Z; V /C B.Z;X; V; Y /� B.V;X;Z; Y /

�B.X; Y; V;Z/C B.X; Y;Z; V /� B.Z; Y; V;X/C B.V; Y;Z;X//:

Using the symmetry (37) of B , from the above, we obtain (38). ut
Remark 4. The distribution D (orthogonal to a foliation F ) will be called averaged
curvature-invariant if

P
i R.Ei ;D/Ei � D, where fEi g is a local orthonormal

frame on DF . This holds when DF is curvature-invariant, i.e., R.X; Y /.DF / �
DF for any X; Y 2 DF , see [11]; hence, the distribution orthogonal to a totally
geodesic foliation F is (averaged) curvature-invariant (indeed, R.Ei ;X/Ei 2 D
for X ? DF ). Another example provide distributions orthogonal to foliations on
space forms. For an averaged curvature-invariant distribution D and any vectors
X 2 D; Y 2 T .M/ we have
X

i
R.X;Ei; Y;Ei / D

X
i
g.R.Ei ; X/Ei ; Y / D g.RicD.X/; Y / D r.X; Y /:

(44)
In this case, (38) reads

�F R.X; Y;Z; V / D
X

i
Œr2
X;Z R.Y;Ei ; V;Ei /� r2

Y;Z R.X;Ei; V;Ei /

C r2
Y;V R.X;Ei;Z;Ei /� r2

X;V R.Y;Ei ; Z;Ei /�

� �
B.X; Y;Z; V / � B.X; Y; V;Z/� B.Y;X;Z; V /

C B.Y;X; V;Z/� 2B.Z; Y; V;X/
C 2B.Z;X; V; Y /

�C hR. � ; Y;Z; V /; r.X; � /i
� hR. � ; X;Z; V /; r.Y; � /i: (45)
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3 Main Results

In this section we prove local existence/uniqueness theorem and deduce the system
of evolution equations (that are parabolic along the leaves) for the curvature and
conullity tensors.

3.1 Short-Time Existence and Uniqueness for PRF

To linearize the differential operator g ! �2 r.g/, see (4), on the space M, we
need the following.

Proposition 2 (see [2]). Let gt be a family of metrics on a manifold M such that
@t g D S . Then

2 @t R.X; Y;Z; V / D r2
X;V S.Y;Z/Cr2

Y;Z S.X; V /�r2
X;Z S.Y; V /�r2

Y;V S.X;Z/

C S.R.X; Y /Z; V /�S.R.X; Y /V; Z/: (46)

Note that the first and second derivatives of a .0; 2/-tensor S can be expressed as

rZ S.Y; V / D Z.S.Y; V //� S.rZY; V / � S.Y;rZV /;

r2
X;Z S.Y; V / D rX.rZ S/.Y; V / � rrXZ S.Y; V /

D rX.rZ S.Y; V //�rZ S.rXY; V /�rZ S.Y;rXV /

� rrXZ S.Y; V /: (47)

Define the bilinear form FN W D � D ! R for N 2 DF (FN D 0 for totally
geodesic foliations) by

FN .Z;X/ D g...rZ A
F /X � AF

XA
F
Z /.N /;N /:

One may calculate,

X
i
FEi .Z; X/ D g.rZ HF ; X/� Tr .AF

XA
F
Z /:

Note that

X
i
FEi .Z; S

].X// D S.rZ HF ; X/ � Tr .AF
S].X/

AF
Z /:

Lemma 5. Let .M; g/ be a Riemannian manifold with a smooth foliation F . Then
the tensor r evolves by (25) .with a D-truncated symmetric .0; 2/-tensor S.g//
according to
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2 @t r.X;Z/ D ��F S.X;Z/C
X

i

�ri S.Ci.X/;Z/C ri S.Ci.Z/;X/

C S.C 2
i .X/;Z/C S.C 2

i .Z/;X/� 2 S.Ci.X/; Ci .Z//
�

C S.RicD.Z/;X/C S.RicD.X/;Z/ � rZS.HF ; X/

� rXS.HF ; Z/ � S.rXHF ; Z/

� S.rZHF ; X/C Tr .AF
S].X/

AF
Z /: (48)

If, in addition, F is a totally geodesic foliation .i.e., hF D 0) then

2 @t r.X;Z/ D ��F S.X;Z/C
X

i

�ri S.Ci.X/;Z/C ri S.Ci.Z/;X/

C S.C 2
i .X/;Z/C S.C 2

i .Z/;X/� 2 S.Ci.X/; Ci.Z//
�

C S.RicD.Z/;X/C S.RicD.X/;Z/; (49)

2 @t RicD D ��F S] C
X

i

�
.ri S

]/Ci C C �
i ri S

] C S] C 2
i C .C �

i /
2S]

� 2C �
i S

] Ci
�C RicD S] � S] RicD; (50)

2 @tScmix.g/ D ��F .Tr S]/C 2
X

i
Tr ..ri S

]/Ci/: (51)

Proof. Since the tensor r is D-truncated, one may assume X;Z 2 D and then
calculate the time derivative @t r.X;Z/ D P

i @t R.X;Ei;Z;Ei /. By Proposition 2
with Y D V D Ei , we then have

2 @t r.X;Z/ D S.RicD.X/;Z/

C
X

i

�r2
X;i S.Ei ; Z/Cr2

i;Z S.X;Ei/

� r2
X;Z S.Ei ; Ei /� r2

i;i S.X;Z/
�
: (52)

By definition (8), we have .rX Ei /
? D �CEi .X/, and we can take a local vector

field X with the property CEi .X/ D �ri X at a fixed point x 2 M . By the above
and (47), for a D-truncated symmetric .0; 2/-tensor S we have rZ S.X;Ei/ D
S.X; Ci.Z// and rZ S.Ei ; Ei / D 0; hence,

r2
X;i S.Ei ; Z/ D rX.ri S.Ei ; Z//� ri S.rX Ei ;Z/� ri S.Ei ;rX Z/

� rrX Ei S.Ei ; Z/

D ri S.Ci.X/;Z/C S.C 2
i .X/;Z/ � rX S.ri Ei ; Z/

� S.rX.ri Ei /; Z/;

r2
i;Z S.X;Ei/ D ri .rZ S.X;Ei// � rZ S.riX;Ei/� rZ S.X;ri Ei /
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� rri Z S.X;Ei/

D ri S.Ci.Z/;X/� rZ S.ri Ei ; X/

C S.ri .Ci .Z//; X/C S.C 2
i .Z/;X/

(12)D ri S.Ci.Z/;X/C S.C 2
i .Z/;X/C S.REi .Z/;X/

� FEi .Z; S].X//� rZS.ri Ei ; X/;

r2
X;Z S.Ei ; Ei/ D rX.rZ S.Ei ; Ei //�2rZ S.rX Ei ; Ei /

� rrXZ S.Ei ; Ei /

D 2 S.Ci.X/; Ci .Z//:

By HF D P
i ri Ei and the above, (52) reduces to (48). ut

Proof of Theorem 2. We will use variations of the form g.t/ D g0 C t S with
a D-truncated symmetric .0; 2/-tensor S . We will show that �F Sik yields the
principal symbol of order two, and other terms are of order less than two.
By Lemma 5, the linearization of �2 r is the second-order differential operator
(elliptic along the leaves)

D.�2 r/ik D �F Sik C QSik;

where QSik consists of the first- and zero-order terms. The result then follows from the
theory of parabolic PDEs on vector bundles, see [2, Sect. 5.1], and assumption (7).

ut

3.2 Evolution of the Curvature Tensor Along the PRF

In this section we derive evolution equations for the Riemann curvature tensor, the
partial Ricci tensor, and Scmix along the PRF. These evolution equations for p D 1

were derived in [19].
Define the difference tensor Q.X;ZIY; V / D �P

ir2
X;Z R.Y;Ei ; V;Ei/

� �
r2
X;Z r.Y; V /.

Lemma 6. For Y; V 2 D we have

Q.X;ZIY; V / D
X

i

�rXR.Y; Ci.Z/; V;Ei /C rXR.Y;Ei ; V; Ci .Z//

C rZR.Y; Ci .X/; V;Ei/C rZR.Y;Ei ; V; Ci.X//

CR.Y;rXCi .Z/; V;Ei/CR.Y;Ei ; V;rXCi .Z//

� R.Y;Ci.Z/; V; Ci.X//� R.Y;Ci.X/; V; Ci.Z//
�
:
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Proof. We calculate

X
i
r2
X;Z R.Y;Ei ; V;Ei / D

X
i

�rX.rZ R/.Y;Ei ; V;Ei / � r
rXZ R.Y;Ei ; V;Ei /

�

D rX

�
rZ r.Y; V / �

X
i

�
R.Y;rZ Ei ; V;Ei /

CR.Y;Ei ; V;rZ Ei /
�� �

X
i

�rZ R.rXY;Ei ; V;Ei /

C rZ R.Y;rX Ei ; V;Ei /C rZ R.Y;Ei ;rXV;Ei /

C rZ R.Y;Ei ; V;rX Ei/
� � r

rXZ r.Y; V /

C
X

i

�
R.Y;r

rXZ Ei ; V;Ei /

CR.Y;Ei ; V;r
rXZ Ei/

�

D r2
X;Z r.Y; V /C

X
i

�rX R.Y; Ci .Z/; V;Ei /

C rX R.Y;Ei ; V; Ci .Z//

C rZ R.Y;Ci .X/; V;Ei /C rZ R.Y;Ei ; V; Ci .X//

CR.Y;rX Ci.Z/; V;Ei /

�R.Y;Ci .Z/; V; Ci .X// � R.Y;Ci .X/; V; Ci .Z//

CR.Y;Ei ; V;rX Ci .Z//
�

using

X
i
rZ R.Y;Ei ; V;Ei/ D rZ r.Y; V /�

X
i

�
R.Y;rZ Ei ; V;Ei/

CR.Y;Ei ; V;rZ Ei /
�
;

r2
X;Z r.Y; V / D rX.rZ r.Y; V // � rZ r.Y;rXV / � rZ r.rXY; V /

� rrXZ r.Y; V /:

The above yields the claim. ut
By Lemma 6, the tensor

QQ D Q.X;ZIY; V / �Q.Y;ZIX;V /CQ.Y; V IX;Z/�Q.X; V IY;Z/ (53)

does not contain second-order derivatives when at least two vectors of fX; Y;Z; V g
belong to D.

Remark 5. Using Gauss and Codazzi equations for submanifolds, one may study
the remaining case and show that QQ does not contain the second-order derivatives
when at most one vector belongs to D. By Lemma 6, we find .when at least three
vectors of fX; Y;Z; V g belong to D/
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QQ D
X

i

�rCi .Z/R.X; Y;Ei; V /CrCi .Y /R.X;Ei ;Z; V /C rCi .X/R.Ei ; Y;Z; V /
C rCi .V /R.X; Y;Z;Ei/C riR.X;Ci.Y /;Z; V /C riR.Ci.X/; Y;Z; V /

C riR.X; Y;Z;Ci .V //C riR.X; Y; Ci.Z/; V /CR.Y;rXCi .Z/; V;Ei/

CR.Y;Ei ; V;rXCi .Z//� R.Y;Ci.Z/; V; Ci.X// �R.Y;Ci.X/; V; Ci.Z//
�R.Y;rXCi.V /;Z;Ei / �R.Y;Ei ; Z;rXCi .V //CR.Y;Ci.V /;Z; Ci .X//

CR.Y;Ci .X/;Z;Ci .V //CR.X;rY Ci.V /;Z;Ei /CR.X;Ei ;Z;rY Ci.V //

�R.X;Ci.V /;Z; Ci .Y // �R.X;Ci.Y /;Z; Ci .V //� R.X;rY Ci.Z/; V;Ei /

�R.X;Ei ; V;rY Ci.Z//CR.X;Ci.Z/; V; Ci.Y //CR.X;Ci.Y /; V; Ci.Z//
�
:

Theorem 4. Let F be a smooth foliation on .M; g/, and at least two vectors of
fX; Y;Z; V g belong to D. Then the curvature tensor evolves by (4) according to a
leaf-wise heat equation

@t R.X; Y;Z; V / D �F R.X; Y;Z; V /C B.X; Y;Z; V /

� B.X; Y; V;Z/ � B.Y;X;Z; V /
C B.Y;X; V;Z/� 2B.Z; Y; V;X/C 2B.Z;X; V; Y /

� r.R.X; Y /V; Z/� r.R.X; Y /Z; V /

� hR. � ; Y;Z; V /;
X

i
R.X;Ei ; � ; Ei/i

C hR. � ; X;Z; V /;
X

i
R.Y;Ei ; � ; Ei/i � QQ : (54)

For an averaged curvature-invariant distribution D this simplifies due to (45).

Proof. Applying (46) with S D �2 r , we have

@t R.X; Y;Z; V / D r2
X;Z r.Y; V /� r2

Y;Z r.X; V /C r2
Y;V r.X;Z/� r2

X;V r.Y;Z/

�r.R.X; Y /V; Z/ � r.R.X; Y /Z; V /: (55)

Comparing (55) with (38), and using (53), completes the proof. ut
Example 1. Let F be a one-dimensional foliation spanned by a unit vector field N .
Then

B.X; Y; V;Z/ D hR.X; � ; Y; N /; R.V; � ; Z; N /i for all X; Y; V;Z 2 TM:

Formula (38) takes the form, see also [19],

r2
N;N R.X; Y;Z; V / D Œr2

X;Z R.Y;N; V;N /� r2
Y;Z R.X;N; V;N /

C r2
Y;V R.X;N;Z;N /� r2

X;V R.Y;N;Z;N /�
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� �
B.X; Y;Z; V / � B.X; Y; V;Z/� B.Y;X;Z; V /

C B.Y;X; V;Z/� 2B.Z; Y; V;X/C 2B.Z;X; V; Y /
�

C hR. � ; Y;Z; V /; r.X; � /i � hR. � ; X;Z; V /; r.Y; � /i:
(56)

Note that Q.X;ZIY; V / D r2
X;Z R.Y;N; V;N / � r2

X;Z r.Y; V /. Hence, the
curvature tensor evolves by (4) according to a heat-type equation alongN -curves

@t R.X; Y;Z; V / D r2
N;N R.X; Y;Z; V /C �

B.X; Y;Z; V /� B.X; Y; V;Z/

� B.Y;X;Z; V /C B.Y;X; V;Z/� 2B.Z; Y; V;X/

C 2B.Z;X; V; Y /
� � hR. � ; Y;Z; V /; r.X; � /i

C hR. � ; X;Z; V /; r.Y; � /i � QQ : (57)

Theorem 5. Let F be a smooth foliation on .M; g/. Then the tensor r evolves by (4)
according to

@t r.X;Z/ D �F r.X; Z/� 2 r.X;RicD.Z// �
X

i

�ri r.Ci .X/;Z/

C ri r.X; Ci.Z//C r.X;C 2
i .Z//C r.C 2

i .X/;Z/

C 2 r.Ci.X/; Ci.Z//
� � Tr .AF

RicD.X/A
F
Z /

C rX r.HF ; Z/C rZ r.HF ; X/C r.rX HF ; Z/C r.rZ HF ; X/;

(58)

where X;Z 2 D. We have Tr .AF
RicD.X/A

F
Z / D .1=p/ g.HF ; Z/RicD.HF ; X/

in (58) for a totally umbilical foliation F , and for a totally geodesic foliation, we
obtain

@t r.X;Z/ D �F r.X;Z/� 2 r.X;RicD.Z//

�
X

i

�ri r.Ci.X/;Z/C ri r.X; Ci.Z//

C r.X;C 2
i .Z//C r.C 2

i .X/;Z/� 2 r.Ci.X/; Ci.Z//
�
; (59)

@tRicD D �F RicD

�
X

i

�
.riREi /Ci

C .Ci /
�.riREi /CREi C 2

i C .C 2
i /

�REi �2.Ci/�REi Ci
�
; (60)

@t Scmix.g/ D �F Scmix.g/ � 2
X

i

�
Tr .AiriREi /C 2Tr ..T ]i /

2 REi /
�
: (61)
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Proof. Substituting S D �2 r into (48), we obtain (58), which for hF D 0

yields (59). By (59) and (34) we get (60). Tracing (60) and using @t .Tr RicD/ D
Tr.@t RicD/ and Tr .T ]riREi / D 0 yield

@tScmix.g/ D �F Scmix.g/ � 2
X

i

�
Tr .CiriREi /C 2Tr .CiT

]
i REi /

�
:

From this, the skew-symmetry of T ]i and the property Tr .B1B2/ D Tr .B2B1/, we
obtain (61). ut
We apply Uhlenbeck’s trick (see [2]) to remove a group of terms in (54) with a
‘change of variables.’

Corollary 3. Let F be a totally geodesic foliation on a Riemannian manifold
.M; g/. Then the curvature tensor evolves by (4) according to

Qr@t R.X; Y;Z; V / D �F R.X; Y;Z; V /C B.X; Y;Z; V /

� B.X; Y; V;Z/� B.Y;X;Z; V /
C B.Y;X; V;Z/� 2B.Z; Y; V;X/C 2B.Z;X; V; Y /� QQ;

(62)

where X; Y;Z; V 2 D and QQ is given in (53). The tensor r evolves by (4)
according to

Qr@t r.X;Z/ D �F r.X;Z/�
X

i

�ri r.Ci.X/;Z/C ri r.Ci.Z/;X/

C r.C 2
i .X/;Z/C r.C 2

i .Z/;X/ � 2 r.Ci.X/; Ci .Z//
�
: (63)

Proof. Using definition Qr@t X D @tX � RicD.X/ D � RicD.X/, we obtain

Qr@t R.X; Y;Z; V / D @t R.X; Y;Z; V /

� R.� Qr@t X; Y;Z; V /� : : : � R.X; Y;Z;� Qr@t V /

D @t R.X; Y;Z; V /C hR. �; Y;Z; V /; r.X; � /i
C hR.X; � ; Z; V /; r.Y; � /i C hR.X; Y; �; V /; r.Z; � /i
C hR.X; Y;Z; � /; r.V; � /i:

From this, (54), and (44), equation (62) follows. Similarly, (58) yields (63). ut
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3.3 Evolution by PRF of the Extrinsic Geometry

Proposition 3. The normalized PRF (5) preserves the metric of DF and the
orthogonality of vectors to F . If F is either totally umbilical .totally geodesic/ or
harmonic foliation for t D 0 then it has the same property for all t > 0.

Proof. Since r.N; �/ D 0 for any N 2 DF , (5) preserves the metric on DF and the
scalar product g.N;X/ for any X 2 D. Hence, the normalized PRF preserves the
distribution D orthogonal to F .

By (32) with S D �2 r C 2ˆ Og, we have

@thF D 2RicD ı hF � 2ˆhF ; @tHF D 2RicD.HF /� 2ˆHF : (64)

Hence, (5) preserves total geodesy and harmonicity of foliations. By (64) we have

@t .hF � .1=p/HF gjF / D 2.RicD �ˆ Oid / ı .hF � .1=p/HF gjF /:

By the local theorem of existence and uniqueness of a solution to ODE, if hF D
.1=p/HF gjF (i.e., F is totally umbilical) for t D 0 then hF D .1=p/HF gjF for
all t > 0. ut

By Corollary 2 with S D �2 rC2ˆ Og and anyN 2 DF , we have the symmetries
of the PRF:

.@tAN /
� � @tAN D 2 ŒAN ;RicD�; .@t T

]
N /

� C @tT
]
N D �2 ŒT ]N ;RicD�;

.@t RicD/� D @t RicD :

Proposition 4. Let F be a harmonic foliation. Then the tensor h and the mean
curvature vector H of D evolve by (5) according to

@th.X; Y / D rF divF h.X; Y / � divF
�
h.X;Cı.Y //C h.Cı.X/; Y /

�Cˆh.X; Y /

C g.ŒC �ı .A C T /C .A C T /Cı � rF .A C T /�.X/; Y /

C Tr .AF
C

ı

.Y /A
F
X CAF

C
ı

.X/A
F
Y /� rF Tr .AF

Y A
F
X /; (65)

@tH D rF .divF H/C rF .kT k2 � khk2 � khFk2/: (66)

The tensors AN , T ]N , and CN D AN C T
]
N evolve by (5) according to

@tAN D rN RicD C ŒT
]
N � AN ; RicD�; @t T

]
N D 2.RicD �ˆ Oid / T ]N ; (67)

@tCN D rN RicD C ŒRicD; CN �C 2 T
]
N RicD �2ˆT ]N : (68)



148 V. Rovenski

Proof. From (28) (with S D �2 r C 2ˆ Og) we have (65). From (31) with S D
�2 r C 2ˆ Og we have

@tH D rFScmix.gt /: (69)

Substituting Scmix from (18) into (69) and using (17) (or tracing (65)) yield (66).
Indeed, from (29) and (30) (with S D �2 r C 2ˆ Og), we obtain (67) and (68). ut

4 Examples

In this section we show that PRF preserves several classes of foliations and prove
existence/uniqueness of global leaf-wise smooth solution metrics convergence of a
solution under certain conditions.

4.1 Totally Geodesic Foliations of Codimension One (n D 1)

Let F be a codimension-one totally geodesic foliation on a Riemannian manifold
.MpC1; g/ with a unit normal vector field N . Then M is locally (globally, if M
is simply connected and the leaves are complete) isometric to a product manifold
F p � R, with a twisted product metric dx2 C '2dy2, where dx2 is a fixed metric
on F p and ' 2 C1.F p � R/, see [9, Theorem 1]. The mean curvature vector of
N -curves is H D �rF log'. Note that T D 0, HF D 0, and Scmix D Ric.N;N /,
and (18) reads

Ric.N;N / D divF H � kHk2 D divH: (70)

Since r D Ric.N;N / Og, PRF (5) with a leaf-wise constant ˆ W M ! R reduces
to (6),

@tg D �2 .Ric.N;N / �ˆ/ Og: (71)

The spectrum of �F on a compact leaf F is an infinite sequence of isolated
real eigenvalues 0 D �0 < �1 � �2 � : : : counting their multiplicities, and
lim j!1 �j D 1. One may fix in L2.F / an orthonormal basis of corresponding
eigenfunctions fej g, i.e., ��F .ej / D �j ej , and e0 D const > 0.

One may compare the next result with [18, Theorem 4].

Theorem 6. Let F be a totally geodesic foliation of codimension one with simply
connected leaves and a unit normal N on a Riemannian manifold .M; g0/, and
let assumptions (7) are satisfied. Then (71) has a unique global smooth solution
gt .t � 0/. If ˆ D 0 then as t ! 1, the metrics gt converge with the exponential
rate �1 to the limit smooth metric Ng and

Ric.N;N / D 0; NH D 0:



The Partial Ricci Flow for Foliations 149

Proof. From (66) with T D 0, hF D 0, and khk D kHk, we obtain the
Burgers-type equation for H

@tH C rF .kHk2/ D rF .divF H/: (72)

For any leaf (fiber) F there is a simply connected neighborhood UF ' F � R

such that H0 D �rF log u0 for a smooth function u0 > 0 on UF . One may take
H D �rF log u, where the function u.t; x/ > 0 obeys the heat equation (see also
[17, Proposition 2])

@tu D �F u; u.0; �/ D u0: (73)

The Cauchy’s problem (73) has a unique global (smooth for t > 0) solution and
lim
t!1 u D Nu > 0 is a leaf-wise constant. Denote by .� ; �/0 and k �k0 the inner product

and the norm in L2.F /. Using Fourier series representation

u D .u0; e0/0 e0 C e��1tX
j>1

e.�1��j / t .u0; ej /0 ej ;

we find rFu D e��1tP
j>1 e

.�1��j / t .u0; ej /0 rFej . Since the series above
converge absolutely and uniformly with exponential rate, and .u0; e0/0 > 0, we
have lim

t!1 u D .u0; e0/0 e0 > 0 is leaf-wise constant and lim
t!1 rFu D 0, see [17,

Proposition 4]. Hence, (72) admits a unique smooth solutionH and

lim
t!1H D lim

t!1
rFu

u
D lim

t!1
e��1tP

j>1 e
.�1��j / t .u0; ej /0 rFej

.u0; e0/0 e0 C e��1tP
j>1 e

.�1��j / t .u0; ej /0 ej
D 0:

Note that divF H D divF .rFu
u / D 1

u�F u � jrFuj2=u2 ! 0 as t ! 1. By (70),
this corresponds to smooth functions Rict .N;N /, and

lim
t!1 Rict .N;N / D lim

t!1.divF H � kHk2/ D 0;

where convergence is exponential. Then we recover the metrics gt .t � 0/

from (71). If ˆ D 0 then gt converge exponentially to a smooth limit metric Ng. ut

4.2 Geodesic Foliations (p D 1)

Let F be a one-dimensional foliation spanned by a unit vector field N . Denote by
C WD CN the conullity tensor, T ] WD T

]
N the integrability tensor, and A WD AN the

Weingarten operator of F . Then (19) and (20) hold, whereHF D rNN . The above
and the equality divN D � Tr A provide

N.Tr A/ D Tr .A2/C Tr ..T ]/2/C Ric.N;N /� divHF : (74)
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Here, Tr A D Tr g h D H is the mean curvature of D. Note that kT ]k2 D
� Tr ..T ]/2/. By Theorem 5 with p D 1 and Lemma 3 with p D 1 and S D �2 r ,
we have the following (see also [19]).

Proposition 5. Let N be a unit geodesic vector field. Then the curvature evolves
by (4) according to

@t r.X; Y / D r2
N;N r.X; Y /�rN r.C.X/; Y /�rN r.X;C.Y // (75)

� r.C 2.X/; Y /�r.X;C 2.Y //C2 r.C.X/; C.Y //�2 r.X;RN.Y //;
@t RN D r2

N;N RN � .rNRN /C � C �rNRN �RNC 2 � .C �/2RN

C 2C �RNC; (76)

@t RicN D N.N.RicN // � 2Tr .ArNRN / � 4Tr ..T ]/2 RN /: (77)

For (5), we also have

@tC D rN .rN C /� .C C C �/rN C � .C � C �/C 2 � 2ˆT ]; (78)

@tT
] D 2 .rN A/T

] � 2A2T ] � 2 .T ]/3 � 2ˆT ]; (79)

@tA D rN .rN A/� 2ArN AC ŒA2; T ]� � 2 .T ]/2A � 2 T ]AT ]; (80)

@tH D rN .rN H/� rN Tr .A2/� 4Tr ..T ]/2A/: (81)

Using (80) and definition (35), we obtain the following.

Corollary 4 ([19]). Let N be a unit geodesic vector field with integrable orthogo-
nal distribution. Then the Weingarten operator A evolves by (4) according to

Qr@t A D rN .rN A/ � rN .A
2/: (82)

By the existence/uniqueness Theorem 2, we have the following.

Proposition 6 ([19]). If rN N D 0 and A D 0 at t D 0 then flow (5) preserves
these properties.

Next theorem deals with a geodesic Riemannian foliation such that T ¤ 0.
Examples are provided by Hopf fibrations of odd-dimensional spheres.

Theorem 7. Let F be a geodesic foliation spanned by a unit vector field N on
.M; g0/. Suppose that F is a Riemannian foliation .A D 0/ and the orthogonal
distribution D is nowhere integrable .T ¤ 0/. If r � ˆ Og and rjD > 0 at t D 0

then (5) admits a unique solution gt .t 2 R/ such that lim
t!�1RN.t/ D ˆ Oid and

lim
t!1RN .t/ D 0.

Proof. By Proposition 6, we have A D 0 for t � 0; hence, C D T ].
By (24), rN T

] D 0 and RN D �.T ]/2 � 0. This yields rNRN D 0, rN r D 0,
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and N.RicN / D 0 for t � 0; hence, (75)–(80) reduce to ODEs in the variable t .
By (50)–(51) with p D 1 and S] D �2RN C 2ˆ Oid , we obtain

@t RN D �RN .T ]/ 2 � .T ]/2RN � 2 T ]RNT ] � 4ˆRN D 4RN .RN �ˆ Oid /;

@t RicN D �4Tr ..T ]/2RN / � 4ˆRicN D 4Tr .R2N /� 4ˆRicN � 4

n
.RicN /2

� 4ˆRicN ;

see also (76)–(77). One may show that (5) preserves positive RicN . By Proposi-
tion 4, we have

@tT
] D �2 T ]�.T ]/2 Cˆ Oid �: (83)

In our case rjD > 0, the dimension n should be even. (Indeed, if n is odd then
the skew-symmetric operator T ] has zero eigenvalues; hence, RN also has zero
eigenvalues.)

Let �i.t/ > 0 be the eigenvalue and ei .t/ the eigenvector of RN.t/ under
flow (5). Then

@t ei D .�i �ˆ/ei ; @t�i D 4�i .�i �ˆ/:
Hence, the PRF preserves the directions of eigenvectors of RN . Furthermore, if
ˆ � �i.0/ > 0 then lim

t!�1�i.t/ D ˆ and lim
t!1�i.t/ D 0. ut

4.3 Warped Products

Definition 3 (see [9]). Let .Bp; dx2/ and . NMn; Ng/ be Riemannian manifolds,
and ' 2 C1.B/ a positive function. The warped product B �'

NM is the manifold
M D B � NM with the metric g D dx2 C '2.x/ Ng. The fibers fxg � NM of a warped
product are totally umbilical, while the leaves B � fyg compose a totally geodesic
foliation F on M . (Examples are rotational symmetric metrics, i.e., NM is a unit
sphere, which appear on rotation surfaces in space forms.)

Recall that Hessian of a function on a Riemannian manifold is defined by
Hess ' X D rXr'.

Lemma 7. Let M D B �'
NM be the warped product. Then r D �.�F '='/ Og,

and the following conditions are equivalent:

Kmix depends on a point on M only , HessF' D ��' idF for some function � W NM ! R:

Proof. For a warped product B �'
NM we have hF D 0, T D 0, and

h D �rF .log'/ Og; H D �nrF .log'/ when ' ¤ 0:
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The sectional curvature is K.X;N / D � 1
'
N.N.'// for any unit vectors N 2 DF

and X 2 D, when ' ¤ 0, see [9]. Note that g.HessF' .N /;N / D N.N.'//. Using
definitions�F ' D P

i Ei .Ei.'// and (2) we then get

r D �.�F '='/ Og; RicD D �.�F '='/ Oid .when ' ¤ 0/:

From the above the last claim follows. ut
One may apply the existence/uniqueness Theorem 2 to conclude that (5)

preserves total umbilicity of foliations with integrable orthogonal distribution. Thus
we have the following.

Corollary 5. Flow (5) preserves warped product metrics.

Let us look at what happens when B has a boundary (e.g., B is a ball in R
p)

and ' > 0 in the interior of B . By the maximum principle, see [3, Sect. 3.73], the
problem �F u D 0; uj@B D 0 has only zero solution; hence, � D 0 is not the
eigenvalue. Let 0 < �1 � : : : � �i : : : be eigenvalues and feig1�i<1 the unit L2-
norm eigenfunctions of the eigenvalue problem ��F ei D �iei in B and ei D 0 on
@B . Note that �1 has multiplicity 1 and one may assume e1 > 0 in the interior of B .

Assume that �.t; x/ WD '.t; x/j @B is twice continuously differentiable in t , and
there exist limits

lim
t!1�.t; x/ D Q�.x/; lim

t!1 @t�.t; x/ D 0; lim
t!1 @2t �.t; �/ D 0 (84)

for a smooth nonnegative function Q� W @B ! R uniformly with respect to x 2 @B .
We shall study when for the warped product initial metric onM D Bp � NMn the

solution of (5) converges to one with leaf-wise constant partial Ricci curvature (see
[19] for p D 1).

Theorem 8. Let the warped product metrics gt D dx2 C '2t .x/ Ng on Bp � NMn

solve (5), and any of conditions .i/–.i i i/ are satisfied:
.i/ ˆ < 0 and (84)1;2, .i i/ 0 � ˆ < �1, p < 4, and (84),

.i i i/ ˆ D �1, p < 4, (84) and

Q� � 0;
R

1

0
.
/ d
 < 1; .t/ WD maxfk�.t; �/ � Q�kC0.@B/; k@t�.t; �/kC0.@B/g:

(85)

Then gt exist for all t � 0, as t ! 1, gt converge in the C0-norm uniformly on
B � NMn to the limit metric g1 D dx2C'21.x/ Ng with r.g1/ D ˆ Ng. Moreover, (5)
has a global single point attractor for cases .i/ and .i i/, but for .i i i/ the limit
metric g1 depends on initial and boundary conditions.

Proof. If a family of warped product metrics gt D dx2 C '2.t; x/ Ng solve (5) onM ,
then, by Lemma 7, @t .'2/ Og D 2.�F '='/ Og C 2ˆ'2 Og. This yields the leaf-wise
parabolic Cauchy’s problem (with Dirichlet boundary conditions) for the warping
function ',

@t' D �F ' Cˆ'; '.0; �/ D '0; '.t; �/j @B D �.t; �/: (86)
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Linear problem (86) has a unique classical solution ' W Œ0;1/ � B ! R.
By Lemma 8, ' converges, as t ! 1, to a stationary state, i.e., to a solution
Q' W B ! R of the problem

��F Q' D ˆ Q'; Q'j @B D Q�: ut (87)

Example 2. For p D 1, i.e., B D Œ0; l� and �j D .� j=l/2, the solution of (87) has
the form

Q'.x/ D

8
ˆ̂<
ˆ̂:

Q�1 sin.
p
ˆx/C Q�0 sin.

p
ˆ .l�x//

sin.
p
ˆ l/

if 0 < ˆ < �1;

Q�.0/C . Q�1 � Q�0/.x=l/ if ˆ D 0;
Q�1 sinh.

p�ˆx/C Q�0 sinh.
p�ˆ.l�x//

sinh.
p�ˆ l/ if ˆ < 0:

For ˆ D �1, problem (87) is solvable when Q�.l/ D Q�.0/ D 0; in this resonance
case, the solutions are Q'.x/ D a sin.�x=l/ C Q�.0/ cos.�x=l/, where a > 0 is an
arbitrary constant.

To formulate Lemma 8, we need some notations. Let U W Œ0;1/�B ! R solves
the Dirichlet problem on B , where t plays role of a parameter,

�F U D 0; Uj@B D �.t; �/� Q�:

Then the function v.t; x/ WD '.t; x/ � Q'.x/ � U.t; x/ on Œ0;1/ � B solves the
Cauchy’s problem

@tv D �F v Cˆv C f; v.0; �/ D v0; v.t; �/j@B D 0;

where v0 D '0 � Q' � U.0; �/ and f D ˆU � @tU . Similar problems can
be studied for Neumann boundary conditions. Consider Fourier series f .t; x/ DP1

jD1 fj .t/ ej .x/ and v0.x/ D P1
jD1 v0j ej .x/, where fj D R

B f .�; s/ ej .s/ ds
and v0j D R

B
v0.s/ ej .s/ ds. Recall that

R
B
ei .s/ej .s/ ds D ıij .

Lemma 8 (see [18]). Let the function ' on Bp solve (86) with ˆ � �1. If ˆ >

�1 then '.t; x/ diverges as t ! 1. Otherwise, '.t; x/ converges in the C0-norm
uniformly on B to the limit
.i/ Q', see (87), when ˆ < 0 and (84)1;2 hold, .ii/ Q', when 0 � ˆ < �1, p < 4,
and (84) hold,
.iii/ '1 WD .v01 C R1

0
f1.
/ d
/ e1 when ˆ D �1, p < 4, (84) and conditions (85)

on @B hold.

For p D 1, Lemma 8, cases (ii) and (iii) hold under assumption (84)1;2 only,
see [19].

Corollary 6 (see [19]). Let the warped product metrics gt D dx2 C '2t .x/ Ng on
M D Œ0; l� � NM solve (5) and (84) with B D Œ0; l� hold. If ˆ < .�=l/2 .see
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conditions (i ) and (i i ) of Theorem 8/ then gt converge uniformly for x 2 Œ0; l� to
the limit metric g1, whose mixed sectional curvature is ˆ.

The following result will be used in the proof of Corollary 7.

Theorem A ([10]). Let .Bp; g/ be a compact Riemannian manifold with totally
geodesic boundary. Assume that there exists a function ' ¤ const satisfying
Hess' D �k2' id on B , ' D 0 on @B , for a positive number k. Then .Bp; g/

is isometric to the upper hemisphere of radius 1=k in R
pC1.

Corollary 7. Let conditions of Theorem 8(iii) hold for (5) withˆ D �1, p < 4, and
let .Bp; dx2/ be a hemisphere of radius

p
p=�1 in R

pC1. Then the mixed curvature
of the metric g1 is constant:

K.N;X/ D ˆ=p .for any unit vectors N 2 DF ; X 2 D/: (88)

Proof. By Theorem 8 (i i i ), '1 is proportional to e1. The Hessian of first eigen-
function e1 (of Laplacian on a hemisphere of curvature k > 0) satisfies the condition
HessFe1 D �k e1 id F , see Theorem A. Hence, HessF' is also proportional to the
identity mapping. Thus, (88) holds. ut
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Osculation in General: An Approach

Paweł G. Walczak

Abstract This is an essay about osculation, that is, the tangency of highest order of
different types, of different objects (hyperplanes, spheres, cyclides, and others), and
arbitrary hypersurfaces.

Keywords Hypersurface • Tangency type • Osculation

Mathematics Subject Classification: Primary 53A07, Secondary 53A04, 53A05

Introduction

Everyone knows what is an osculating plane, circle, or sphere for a curve in the
three-dimensional space, or the osculating sphere for a surface. These notions
belong to foundations of the classical differential geometry of curves and surfaces,
are similar but differ a bit. The dimensions of the osculating object (plane, circle,
sphere) and of the object being osculated (curve, surface) are related differently (�,
�, D). The order of tangency varies depending on the case and the way of tangency
differs. Either these objects are tangent “globally” (that is, along the whole space
tangent to one of them) of highest rank or the direction of tangency diminishes with
rank growing. In general, a sphere osculating a surface is tangent (of order one) in
all directions but it is tangent of order two just in one particular direction.

In the literature, one can find several articles about other objects (conics,
quadrics, helices, Dupin cyclides, etc.) osculating either curves or surfaces ([1, 4, 6,
7,13] etc.). Upon discussion with colleagues at several universities, we realized that
one can imagine completely different and incomparable approaches to the order and
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type of tangency and to osculation of different objects of arbitrary dimension and
codimension. Our goal here is to introduce and discuss one of possible approaches
“in general,” that is, for an arbitrary submanifold and arbitrary (to some extend)
family of submanifolds, candidates for osculating objects, of a given manifold. Our
chapter is not a real research paper, it has a character of an essay discussing notions
which belong to the so-called folklore but can be useful and are rather difficult to
find in the literature in large generality.

Since the notion of tangency is local, we shall work with hypersurfaces (of arbi-
trary dimension and codimension) in R

N but one can observe that the problem has
also a global aspect: the candidates for osculating objects (as spheres, circles, or
planes) are global so, one can consider them as global submanifolds of a manifold
equipped with a geometric (for example, Riemannian) structure satisfying a given
extrinsic geometric property (for example, being totally geodesic, umbilical or so).
It seems also that osculating objects of different sorts can be useful for computer
graphics or computer-aided geometric design (CADG).

Here, we work at generic points; however, we are aware of the fact that there
is a large interest in “super-osculation” at special points which comes from the
classical Four Vertex Theorem [12] and several its generalizations ([5, 14], and
the bibliographies therein), results on sextactic and 3-extactic points ([10] and the
bibliography therein), and other related problems.

We assume that all our objects are as smooth as needed, say differentiable of
class C2013 or more, if necessary.

1 Type and Order of Tangency

Let† and S be two hypersurfaces of RN given respectively by the equationF D 0,
F W R

N ! R
n being a submersion, and by a parametrization �, S D �.Rk/,

� W Rk ! R
N being an immersion. (Certainly, one may consider F and � defined

locally, on open sets, but our approach does not diminish generality.) Let f D F ı�
and p D �.0/ 2 S \†.

Consider a sequence V D .V1; V2; V3; : : :/ of linear subspaces Vj of Rk such that
VjC1 � Vj for all j 2 N. Certainly, Vj D VjC1 for all j large enough. We shall
say that † and S are tangent of type V at p whenever f .0/ D 0,

df .0/jV1 D 0 and djf .0/j ˇj�1 Vj�1 ˝ Vj D 0; for all j > 1; (1)

where ˇj V denotes the j th symmetric power of a vector space V . Roughly
speaking, condition (1) says that all the directional derivatives at 0 of order j in
the direction of an arbitrary sequence of j vectors, j � 1 of them belonging to Vj�1
and one to Vj , are equal to 0.



Osculation in General: An Approach 159

Remark. Condition (1) can be modified to either

djf .0/j ˇj Vj D 0; j 2 N (2)

or

djf .0/j ˇj�kj Vj ˝ ˇkj Vj�1 D 0; j 2 N; (3)

where k D .k1; k2; : : :/ is a sequence of integers satisfying 0 � kj � j for all
j , providing other approaches to tangency and osculation. These conditions are not
discussed here; anyway, one can imagine situations where such types of tangency
could be of some interest.

If r D maxfj 2 NIVj ¤ f0gg, then we shall say that the rank of the tangency of
† and S equals r .

Finally, if d D .d1; d2; d3; : : :/ is a nonincreasing sequence of nonnegative
integers, then we shall say that † and S are tangent of type d and rank r at p
if r D maxfj 2 NI dj > 0g and there exists a system V as above which satisfies (1)
and the equalities dimVj D dj for all j .

Standard results of differential calculus imply directly that the above definitions
are correct, that is, independent of the maps F and � describing hypersurfaces †
and S .

2 Osculation

Let S D �.Rk/ be as before while S D f†�; � 2 ƒg, ƒ being an open subset
of R

m, be a family of hypersurfaces given by F� D 0, F� W R
N ! R

n being
submersions. Assume that the family S is smooth, that is, the map R

m � R
N 3

.�; x/ 7! F�.x/ 2 R
n is smooth. Fix p D �.0/ 2 S and denote by ƒp (resp., by

Sp) the family of all � 2 ƒ for which †� 2 S passes through p (resp., the family
of all †� with � 2 ƒp).

Fix, as before, a decreasing sequence d D .d1; d2; d3; : : :/ of nonnegative
integers and denote by r�, � 2 ƒp , the rank of tangency at p of type d of †�
and S . An element †�0 with �0 2 ƒp and r�0 D maxfr�I� 2 ƒpg will be called
d -osculating S at p.

First, let us collect some of the simplest examples of objects osculating curves.
In this case, the only possible types of tangencies are of the form d.r/ D
.d1; d2; : : :/, where dj D 1 for j � r and dj D 0 for all j > r , and r is a
fixed natural number.

Example 1.

(1) Generically, given a curve � W s 7! �.s/ in R
N , the affine r-dimensional,

r < N , hyperplane P through �.s/ spanned by the vectors � 0.s/; : : : ; � .r/.s/
is tangent to � of order r and there is no r-hyperplane tangent to � of higher
order, so P is d.r/-osculating in our sense.
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(2) Since the dimension of the space of all the .N � 1/-dimensional spheres in
R
N passing through a given point p0 equals N (a sphere like that is uniquely

determined by its center), the best order of tangency of such a sphere with
a generic curve equals N as well, and N is the order of tangency of the
.N � 1/-sphere osculating a curve. More generally, consider the space of all
.r � 1/-spheres in R

N passing through p0; its dimension equals r.N � r C 1/

(indeed, every such sphere is uniquely determined by the affine .m C 1/-
hyperplane H containing the sphere and a point of H (the center), and the
dimension of the Grassmannian GN

r equals r.N � r/) and the system (1)
consists of r � .N � r/ equations when we think about the tangency of order r .
Therefore, the .r � 1/-sphere osculating a generic curve should have order of
tangency r . In particular, circles osculating generic curves in R

N are tangent of
order 2 for any N .

(3) Consider now the space H of all helices in R
3 passing through a given point.

A helix like that is determined by the position of the cylinder containing it,
its position on the cylinder and two constants, and its curvature and torsion.
Therefore, the dimension of our space H equals 5. For d D d.r/, system of
equations (1) contains 2r members; therefore, one can expect that generically
the best order of tangency of a helix and a curve is only 2, the same as for
osculating circles even if the space of helices is definitely richer than that of
circles. However, one may expect the existence of a one-parameter family of
osculating helices and, in fact, this is the case: this fact was known already to
Olivier [13] in the first half of nineteenth century.

(4) If Ss
0 is the space of all planar algebraic curves of degree s passing through

the origin, then dimSs
0 D .s2 C 3s � 2/=2 (the dimension of the space of

all polynomials P of two variables, of degree s, with P.0; 0/ D 0, modulo
multiplication by constants), system (1) reduces—after suitable normalization
of the coefficients of the polynomials—to a linear system of r , r being the
order of tangency under consideration, and equations with .s2 C 3s � 2/=2

variables which for a generic curve through the origin has solutions whenever
r � .s2 C 3s � 2/=2 and the solution is unique when one has equality in the
preceding inequality. This means that r D .s2 C 3s � 2/=2 is, generically,
the order of tangency of the algebraic curve of degree s osculating a planar
curve. In particular, for s D 1we get r D 1, the order of tangency of the tangent
line, while for s D 2we get r D 4, the order of tangency of an osculating conic.

Now, let us turn our attention to surfaces. In this case, the only possible types of
tangency are d.r1; r2/ D .d1; d2; : : :/, where dj D 2 for 1 � j � r1, dj D 1 for
r1 < dj � r1 C r2 and dj D 0 for all j > r1 C r2.

Example 2.

(1) If S D �.U /, U � R
2, is a surface is R

N with parametrization � as in
Sect. 1, then, given u 2 R

k , any hyperplane H spanned by all the derivatives
.@iCj �=.@ix1@j x2//.u/ with i C j � r1 and, for example, .@k�=@kx1/.u/,
r1 < k � r1 C r2 (and possibly other vectors of R

N ) is tangent to S of
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type d.r1; r2/ at p D �.u/ and dimH D r2 C .r21 C 3r1/=2; if N � n D
r2C.r21 C3r1/=2, then—given a one-dimensional subspace of the plane tangent
to S at p—the .N � n/-hyperplaneH0 spanned exactly by all these derivatives
is the unique one tangent to S of type d.r1; r2/, no better tangency is possible
in this dimension; so, generically one has a one-dimensional family of .N �n/-
dimensional hyperplanes osculating S in this type. For example, if N > 6, then
one can find such a family of six-dimensional hyperplanes osculating S of types
either d.1; 4/ or d.2; 1/.

(2) Consider a surface S in R
N and the space of all .N � 1/-dimensional spheres

passing through a given point, say the origin o, of S .

(2.1) In the best known case of N D 3, condition (1) for degree 1 implies
obviously that the center of any sphere tangent to S at o lies on the
normal line through o; then one can observe that generically tangency of
type d.2; 0/ is impossible to obtain but that of type d.1; 1/ may happen
when the space (here, line) V2 � ToS is chosen in the direction of
the eigenvalue of the Weingarten operator A D �rN , N being a unit
normal. And, generically, this is optimal, that is, the order of tangency of
osculating spheres of type d.1; 1/ is 2. Observe also that generic surfaces
intersect their osculating spheres along curves, so they are .2; 1; 1; 1; : : :/-
tangent in the sense of (2) to these spheres and the rank of this type of
osculation is infinite.

(2.2) If N D 4, then, for any direction  orthogonal to the surface at the
reference point one has the corresponding Weingarten operator A , its
eigenvalues, eigenvectors, and principal directions. Generically, all the
corresponding osculating spheres are tangent to S of type d.1; 1/ and,
therefore, a generic surface has at a generic point a one-parameter family
of osculating spheres of this type.

(2.3) Next, if N D 5, then condition (1) for d D .2; 2; 0 : : :/ reduces to a
system of five (in fact, linear) equations in five variables and generically
has a unique solution while a higher order of tangency cannot occur;
therefore, a generic surface in R

5 has the unique osculating sphere of
type d.2; 0/. In the same way, a generic surface S in R

N , where N D
k.k C 3/=2 and k � 2, admits, at a generic point p, the sphere which
d.k; 0/-osculates S at p.

(3) Keep S as before and take as S the space of all the circles passing through a
given point, say o. Each circle † can be expressed as the intersection of N � 1

spheres †i , i D 1; : : : ; N � 1 of dimension N � 1. Expressing S locally in the
form

xj D aj x
2
1 C bj x1x2 C cj x

2
2 C dj x

3
1 C ej x

2
1x2 C fj x1x

2
2 C gj x

3
2

CH:O:T:; j D 3; : : : ; N; (4)

(where “H. O. T.” reads as “higher order terms”) and substituting the right hand
side of the above into the equations
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NX
iD1
.x2i � 2�

j
i xi / D 0; j D 1; : : : ; N � 1; (5)

we learn that generically there are exactly three directions (called, according
to our knowledge, Laguerre directions) x2 D ti x1, i � 3, for which S and †
are tangent of order d.3/ D .1; 1; 1; 0; 0; : : :/ for suitable choice of coordinates
�ij of centers of the spheres †j . Better tangency of a circle and a sphere is,
generically, impossible, so order of tangency of a circle osculating (in our sense)
a surface in R

N is 3 and does not depend on N .
(4) Again, keep S as before with N D 3 and take as S the space of all the

Dupin cyclides, that is, conformal images of tori, cylinders, and cones of
revolution, passing through the origin. By Fialkov results (see [9] and [2]),
given a nonumbilical point p of S , S can be mapped by a unique Möbius
transformation (mapping p to the origin o) to the position

z D 1

2
.x2 � y2/C 1

6
.�1x

3 C �2y
3/

C 1

24
.ax4 C 4bx3y C 6‰x2y2 C 4cxy3 C dy4/CH:O:T:; (6)

where �1 and �2 are conformal principal curvatures of S , coefficients a; b; c; d
depend on �i ’s and their derivatives, and ‰ is another local conformal invariant
determining, together with �i ’s and two conformally invariant 1-forms !1, !2,
the conformal type of S . For a Dupin cyclid C , (6) reduces to

z D 1

2
.x2 � y2/C 1

8
.x4 � y4/C 1

6
‰Cx

2y2 CH:O:T:; (7)

‰C being the corresponding conformal invariant (at o) of C . Comparing (6) and
(7) one can observe (see [1]) that generically (at a nonumbilical point where one
of the conformal principal curvatures, say �2, is different from 0) a surface and
the Dupin cyclid can be strongly tangent of type d.2; 2/ with V1 D ToS , the
space V2 � ToS being determined by the condition y D tx with t D � 3

p
�1=�2

and C being suitably chosen (to satisfy the relation 1
24
.aC4btC6‰t2C4ct3C

dt4/ D 1
8
.1 � t4/C 1

6
‰C t

2). Again, a better tangency cannot be expected; so,
the Dupin cyclid described above can be considered as the one which osculates
S at p in our sense.

3 Existence

Given a sequence d D .d1; d2; : : :/ as before, we shall denote by Gr.l; d / the space
of all the sequences V D .V1; V2; : : :/ of linear subspaces of Rl such that VjC1 � Vj
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and dimVj D dj for all j . Certainly, Gr.l; d / has a natural structure of a manifold.
Its dimensionD.l; d/ equals

D.l; d/ D d1.l � d1/C d2.d1 � d2/C d3.d2 � d3/C : : : : (8)

On the other hand, due to the symmetry of mixed derivatives and the well-known
equality

dim ˇj V D
 
d C j � 1

j

!
when dimV D d;

in this situation, the number QD.d/ of independent equations in system (1) equals

QD.d/ D d1 C .2d1 � d2 C 1/d2=2

C
sX

jD3

  
dj�1 C j � 1

j

!
�
 
dj�1 � dj C j � 1

j

!!
; (9)

where s D maxfj I dj > 0g.
Consider S and S as in Sect. 2 and let l D min.N � n; k/.
Certainly, if the family S is small, one cannot expect existence of members of

S tangent of order r to an arbitrary hypersurface S . Therefore, we will consider
families which are “large enough” in the following sense: S is called .d; r/-
complete whenever the map

ƒ � R
N � Gr.l; d / 3 .�; p;V/

7! .F�.p/; dF�.p/jV1; : : : ; d rF�j ˝r�1 Vr�1 ˝ Vr/ (10)

is surjective: its values are sequences of symmetric multilinear maps which can be
identified with elements of suitable powers of Rn and, taken all together, constitute
elements of the space R

n.1C QD.d//. Certainly, such situation may occur only when

mCN CD.l; d/ � n.1C QD.d//: (11)

Set

�.d; r/ D mCD.l; d/� n � .1C QD.d.r///; (12)

where d.r/ D .d1; d2; : : : ; dr ; 0; 0; : : :/. With this terminology, using standard
Explicit Function Theorem, we can summarize our discussion in the following.

Proposition 1. If the family S is .d; r/-complete and �.d; r/ � 0 while �.d; r C
1/ < 0, then for a generic S and p 2 S there exists a �.d; r/-dimensional space of
elements of S which d -osculate S at p.
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One can verify that this general observation agrees with what we said in
Examples 1 and 2. For instance,

• In Example 1(1) one has n D N � r , m D .r C 1/.N � r/ and QD.d.r// D r , so
�.d.r/; r/ D 0,

• In the case of .r � 1/-dimensional spheres considered in Example 1(2) one has
m D .N � r C 1/.r C 1/ and�.d.r/; r/ D 0 as before,

• In Example 2(1) one hasm D n.N �nC1/, andD.2; d/ D 1 and QD.d/ D r2C
.r21 C3r1/=2when d D d.r1; r2/ D .2; : : : ; 2; 1; : : : ; 1; 0; 0; : : :/, so�.d; r/ D 1

when N � n D r2 C .r21 C 2r1/=2 and r D r1 C r2,

and so on.

4 Final Remarks

Certainly, one can imagine and consider a variety of situations different from those
described in Examples 1 and 2. Let us comment briefly about some of them, those
which are currently of some interest for us.

4.1 Dupin Cyclides and Curves

Analogously to the situation studied in [1] and described here in Example 2 (4), one
can search for Dupin cyclides osculating curves in R

3. Since every Dupin cyclid is
characterized up to a Möbius transformation by the value of‰, the dimension of the
Möbius group in R

3 equals 10 and for a Dupin cyclidC there exists a two-parameter
family of Dupin transformations preserving C , the dimension of the space of all the
Dupin cylides equals 9 and the expected order of best tangency of a Dupin cyclid
and a curve equals 8. At the moment, we are not able to describe the Dupin cyclid
osculating a surface as we have done for surfaces. This should be possible if one
could calculate more terms in the canonical equation of a curve:

y D x3=6C .2Q � T 2/x5=120CH:O:T:;

z D T x4=24C T 0x5=.120
p
/CH:O:T:; (13)

where  D p
.	0/2 C 	2
2 while 	 and 
 are, respectively, the standard curvature

and torsion of our curve. Analogously to what we said in Example 2 (4) about
surfaces, a generic curve � together with a generic point p 2 � can be transformed
to the position (13) by a unique Möbius transformation sendingp to the origin o, see
[8] and [2]. In (13), the quantities Q and T are called, respectively, the conformal
curvature and the conformal torsion of � . The quantitiesQ and T can be expressed
in terms of the curvature 	 and torsion 
 of � , and their derivatives, for example
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T D .2.	0/2
 C 	2
3 C 		0
 0 � 		00
/=5=2: (14)

Comparing (14) either with classical textbooks on differential geometry of curves
or, for instance, with [15], on can see that a generic curve is spherical if and only
if its torsion T vanishes identically and this holds when the osculating sphere along
the curve is constant. A similar result should hold for curves on Dupin cyclides: one
should be able to find a condition expressed in terms of Q, T and, perhaps, their
derivatives equivalent to “Dupin cyclidity” of a curve. Curves located on Dupin
cylides should be interesting for CAGD.

4.2 Algebraic Varieties

One should be able to generalize Example 1 (4) to the case of algebraic varieties of
arbitrary degree. Given a finite system s D .s1; : : : ; sn/ of natural numbers, one can
consider the space S.s/ of all algebraic varieties given by

P1 D 0; : : : ; Pn D 0; (15)

Pi being a polynomial of degree si of N real variables. Calculating the dimension
of the space S.s/ seems to be an exercise in combinatorics and should allow to find
the degree and dimension of the space of varieties from S.s/ which d -osculate a
given hypersurface S � R

N . Certainly, there is a problem of regularity of the space
of solutions of (15) at the point of tangency to S . A complex version of this situation
can be also considered.

4.3 Isoparametric Hypersurfaces

Any Dupin cyclid is conformally equivalent to a surface with constant principal
curvatures in a three-dimensional space form M3.c/. Such a surface provides an
example of an isoparametric hypersurface: a codimension-1 hypersurface † �
MN.c/ is isoparametric whenever its principal curvatures are constant. Such
hypersurfaces were studied already by Elli Cartan in 1930s but still are of great
interest, see, among the others, [3, 11] and the bibliographies therein. Therefore,
given a space formMN.c/, it seems to be interesting to consider the space S.l; s/,
s D .s1; : : : ; sl / of all its isoparametric hypersurfaces which have l distinct principal
curvatures of multiplicities s1; : : : ; sl and, given an arbitrary submanifold S �
MN.c/ search for osculating elements of S.l; s/. For l D 1 the problem reduces to
the one for umbilical hypersurfaces, in fact spheres, and this was discussed to some
extent in our examples of Sect. 2.

One can generalize this problem once again replacing isoparametric
hypersurfaces by isoparametric submanifolds of arbitrary (fixed) codimension: a
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submanifold N of MN.c/ is said to be isoparametric whenever its normal bundle
N is flat and its principal curvatures corresponding to parallel sections of N are
constant.
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Stability of Left-Invariant Totally Geodesic Unit
Vector Fields on Three-Dimensional Lie Groups

Alexander Yampolsky

Abstract We consider the problem of stability or instability of unit vector fields on
three-dimensional Lie groups with left-invariant metric which have totally geodesic
image in the unit tangent bundle with the Sasaki metric with respect to classical
variations of volume. We prove that among non-flat groups only SO.3/ of constant
curvature C1 admits stable totally geodesic submanifolds of this kind. Restricting
the variations to left-invariant (i.e., equidistant) ones, we give a complete list of
groups which admit stable/unstable unit vector fields with totally geodesic image.

Mathematics Subject Classifications (2010): 53C40, 53B21

Introduction

Let .M; g/ be a Riemannian manifold and � a unit tangent vector field on M . Then
� can be considered as a local or global (if exists) immersion � W M ! T1.M/

into the unit tangent bundle. The Sasaki metric Qg on T .M/ gives rise to the metric
on T1.M/ and hence on �.M/. In this way .�.M/; Qg/ gets definite intrinsic and
extrinsic geometry. Particularly, a unit vector field is said to be minimal or totally
geodesic if �.M/ is a minimal or totally geodesic submanifold in .T1.M/; Qg/. From
the variation theory viewpoint, a minimal unit vector field is a stationary point of
the first local normal variation of the volume functional of �.M/. In other words, �
is a minimal unit vector field if the mean curvature vector of �.M/ � .T1.M/; Qg/
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vanishes; � is a totally geodesic unit vector field if all the second fundamental forms
of �.M/ � .T1.M/; Qg/ vanish. We refer to this kind of minimality as the classical.

A different type of volume variations and hence the minimality for a given unit
vector field was proposed in [12] and developed in [9,10]. Denote by X1.M/ a space
of all smooth unit vector fields on M . The variation of � within X1.M/ gives rise
to variation of �.M/ and hence the volume functional Vol� W X1.M/ ! R. We call
this type of variations the field variations. A unit vector field � is called minimal, if
� is a stationary point of the latter functional. It was proved that this definition of
minimality is equivalent to the classical one, i.e. minimal unit vector field gives rise
to minimal immersion � W M ! T1.M/. The minimality condition in a meaning of
[10] was expressed in terms of a special 1-form. A number of examples of minimal
unit vector fields by using this 1-form [3–5, 8, 13, 14] (the list is not complete) was
constructed. In the case of three-dimensional Lie group G with the left-invariant
metric, K. Tsukada and L. Vanhecke managed to find a list of all minimal left-
invariant unit vector fields [17]. It was proved that each minimal left-invariant unit
vector field on three-dimensional unimodular Lie group is an eigenvector of the
Ricci operator.

A. Borisenko [1] was the first who asked on unit vector fields with totally
geodesic image in the unit tangent bundle of Riemannian manifold. The author
solved the problem in two-dimensional case [19] and has extracted the subclass
of totally geodesic fields on three-dimensional Lie groups by equalizing to zero the
whole second fundamental form [21]. As a result, it was proved that each totally
geodesic left-invariant unit vector field on three-dimensional unimodular Lie group
is the unit eigenvector of the Ricci operator of G with eigenvalue 2, if exists.

The second variation formula for the �.M/-volume functional with respect to
the field variation was obtained in [11] and is very complicated to handle with.
That is why only little number of results concerning stability/instability are known.
Particularly, a minimal unit vector field on two-dimensional Riemannian manifold
is always stable with respect to the field variations [11]. In application to the Hopf
vector field on the unit 3-sphere, it was also proved that it is minimal and stable
[11]. Remark that the Hopf vector field is a totally geodesic one as well as the unit
characteristic vector field of the Sasakian structure [18].

On the other hand, there is a well-known formula for the second variation of
volume [16] which allows to check stability/instability of minimal submanifold
in the Riemannian space with respect to local (or global, if admissible) normal
variations of the submanifold. We refer to this kind of stability as classical. This
kind of stability/instability is different from the one considered in [11] because the
normal variation of the �.M/ gives rise to the wider class of the field variations.
Namely, the variation field can be non-orthogonal to �.

In some cases, the normal variation of the minimal submanifold �.M/ � T1.M/

is probably equivalent to the field variation of minimal unit vector field. The case of
totally geodesic left-invariant unit vector field on the three-dimensional Lie group
with the left-invariant metric gives a corresponding example. In [14], the authors
tried to check stability/instability of left-invariant unit vector fields from Tsukada-
Vanhecke list [17]. They have constructed the left-invariant variations of minimal
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unit left-invariant vector field on compact quotient of unimodular three-dimensional
Lie groups which produce instability with respect to the field variations.

In this chapter, we check the list of all totally geodesic left-invariant unit vector
fields on three-dimensional Lie group G with the left-invariant metric and provide
stability or instability conditions for them with respect to classical normal variations
of domains in �.G/ � T1.G/. In the case of unimodular groups, we conduct a
complete proof for their compact quotients for the sake of simplicity.

The main result (Theorem 2.2) says that only S3 of constant curvature C1 admits
classically stable totally geodesic left-invariant unit vector field. We also give a list
of left invariant totally geodesic unit vector fields on unimodular three-dimensional
Lie groups with the left-invariant metric which are stable/unstable with respect to
classical left-invariant variations (Theorem 2.4).

1 Preliminaries

The definition of the Sasaki metric is based on the bundle projection differential
�� W T T .M/ ! T .M/ and the connection map K W T T .M/ ! T .M/ [7]. For
any QX; QY 2 T.q;�/T .M/, we have

Qg. QX; QY / D g.�� QX;�� QY /C g.K QX;K QY /:
By definition, the vertical distribution V.q;�/ D ker�� and the horizontal one
H.q;�/ D kerK. Then T.q;�/T .M/ D V.q;�/ ˚ H.q;�/ and the horizontal and vertical
distributions are mutually orthogonal with respect to Qg.

The horizontal and vertical lifts of a vector field X on the base are defined as the
unique vector fields Xh and Xv on T .M/ such that

��Xh D X; ��Xv D 0;

KXh D 0; KXv D X:

The h and v lifts of a tangent frame onM form a lifted frame on T .M/. As concerns
the unit tangent bundle, the lifted frame on T1.M/ at .q; �/ 2 T1.M/ is formed by
h lift and the tangential lift [2] of the frame on M . The latter is defined by

Xtan D Xv � g.X; �/�v:

Evidently, Xtan D Xv for all X from the orthogonal complement of the “vector
part” of a point .q; �/. We use this fact without special comments.

Denote by X.M/ the Lie algebra of smooth vector fields on M and by X�?
.M/

the orthogonal complement of a unit vector field � in X.M/. If � is a unit vector
field on M , then it can be considered as a mapping � W M ! T1.M/. Then its
differential �� sends a vector field X 2 X.M/ into T �.M/, by [20],

��X D Xh C .rX�/
tan D Xh C .rX�/

v;

where r means the Riemannian connection of .M; g/.
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In what follows, we use the notion of the Nomizu operator A� W X.M/ !
X�?

.M/ given by

A�X D �rX�:

Denote by At� a conjugate Nomizu operator defined by g.A�X; Y / D g.X;At�Y /:

Then one can define the tangent �� W X.M/ ! T �.M/ and the normal  W X.M/ !
T ?�.M/ mappings by

��.X/ D Xh � .A�X/
tan D Xh � .A�X/

v;

.Y / D .At�Y /
h C Y tan:

(1)

Then there are local orthonormal frames .e1; : : : ; en/ 2 X.M/ and .f1; : : : ; fn�1/ 2
X�?

such that

A�ei D �ifi ; At�fi D �iei ;

where �i � 0 are the singular values of the linear operator A� . In fact, ei are
the eigenvectors of the symmetric linear operator At�A� and its eigenvalues are the
squares of the singular values.

By dimension reasons, there is at least one local unit vector field e0 such that
A�e0 D 0. Then

Qe˛ D �
�

.e˛/

j�
�

.e˛/j D 1p
1C�2˛

.eh˛ � �˛f v
˛ /; Qen D eh0 ;

Qn˛ D .f˛/

j.f˛/j D 1p
1C�2˛

.�˛e
h
˛ C f v

˛ / ˛ D 1; : : : ; n � 1
(2)

form the tangent and normal framing over �.M/ � T1.M/. We call this framing the
singular one. If � is a geodesic unit vector field, i.e., A�� D 0, then one can always
put Qen D �h.

Let Qn D .Z/

j.Z/j be a unit normal vector field on �.M/ and F � M be a domain

with a compact closure. Denote by QN D w Qn a local normal variation vector field,
where w W F ! R is a smooth function such that wj@ NF D 0. Suppose �.M/ is
minimal. Then the formula for second variation of the volume in application to our
case takes the form

ı2.Vol�/ D
Z

�.F /

�
jj Qr? QN jj2 � .fRic. QN/C jj QS QN jj2/

�
dV�;

where Qr? means the covariant derivative in the normal bundle of �.M/, fRic. QN/ is
the partial Ricci curvature and QS is the shape operator of �.M/.
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In the case of compact orientable M and totally geodesic �.M/, the formula
takes a simpler form, namely

ı2Vol� D
Z

�.M/

Xn

iD1
�
jj Qr?

Qei QN jj2 � w2 QK. Qei ; Qn/
�
dV�:

Finally remark that

dV� D
q

det.I C At�A�/ dV WD L1=2 dV;

where dV is the volume element of the base manifold. That is why one can rewrite
the formula of the second variation as follows

ı2Vol� D
Z

M

Xn

iD1
�
jj Qr?

Qei QN jj2 � w2 QK. Qei ; Qn/
�
L1=2 dV: (3)

In next sections, we simplify this formula in the case of three-dimensional Lie
groups with the left-invariant metric.

2 Three-dimensional Unimodular Lie Groups
with the Left-Invariant Metric

Let � be a unit left-invariant vector field on the three-dimensional Lie group G
with the left-invariant Riemannian metric. The group G is unimodular if and
only if there is a discrete subgroup � acting on G by left translations free and
properly discontinuous such that the left quotient �nG is compact [15]. The
�nG is a compact Riemannian manifold with the same curvature properties as G.
The descended unit vector field has the same properties concerning minimality,
harmonicity, etc. as the one on G [14].

For each three-dimensional unimodular Lie group G, there is an orthonormal
frame e1; e2; e3 such that [15]

Œe2; e3� D �1e1; Œe3; e1� D �2e2; Œe1; e2� D �3e3: (4)

We will refer to this frame as to the canonical one. This frame consists of
eigenvectors of the Ricci curvature operator. Each frame vector field is a Killing
one and hence geodesic. The Levi-Civita connection coefficients on G can be
easily found, namely, with �i D 1

2
.�1 C �2 C �3/ � �i , the frame covariant

derivatives take the form rei ek D �i ei � ek. It is also well known that the
principal Ricci curvatures are �i D 2�j�k and the basic sectional curvatures are
kij WD g.R.ei ; ej /ej ; ei / D 1

2
.�i C �j � �k/, where i; j; k are all different.
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The constants �1; �2; �3 define the topological structure ofG in the following sense:

Signs of �1; �2; �3 Associated Lie group

C;C;C SO.3/

C;C;� SL.2;R/

C;C; 0 E.2/

C; 0;� E.1; 1/

C; 0; 0 N il3 (Heisenberg group)
0; 0; 0 R ˚ R ˚ R

The class of left-invariant totally geodesic unit vector fields on three-dimensional
unimodular Lie group G can be described as the eigenvectors of the Ricci operator
associated with the eigenvalue 2, if exists [21]. Namely, where S stands for vector

�1 �2 �3 �1 �2 �3 �

0 0 0 0 0 0 S
0 0 0 ¤ 0 0 0 ˙e1, cos t e2 C sin t e3

0 0 0 0 ¤ 0 0 ˙e2, cos t e1 C sin t e3

0 0 0 0 0 ¤ 0 ˙e3, cos t e1 C sin t e2

2 ˙e2
2 ˙e3

2 2 cos t e1 C sin t e2

2 2 cos t e1 C sin t e3

2 2 cos t e2 C sin t e3

2 2 2 S

fields of the form � D cos t cos s e1 C cos t sin s e2 C sin t e3 with fixed parameters
t and s. Analysis of the above table yields the following result [21].

Theorem 2.1. Let G be a three-dimensional unimodular Lie group with a left-
invariant metric. Let fei ; i D 1; 2; 3g be the canonical frame of its Lie algebra.
Set for definiteness �1 � �2 � �3. Then the totally geodesic left-invariant unit
vector fields on (a compact quotient of) G are the following:
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G or �nG Conditions on �1; �2; �3 �

SO(3) �1 D �2 D �3 D 2 cos t cos s e1 C
cos t sin s e2 C sin t e3

�1 D �2 D � > �3 D 2 ˙e3
�1 D �2 D � > 2 > �3 D
� � p

�2 � 4

cos t e1 C sin t e2

�1 D 2 > �2 D �3 D � > 0 ˙e1
�1 D �C p

�2 � 4 > � D
�2 D �3 > 2

cos t e2 C sin t e3

�1 > �2 > �3 > 0,
�2m � .�i � �k/

2 D 4

˙em (i,k,m=1,2,3)

SL.2;R/ �23 � .�1 � �2/2 D 4 ˙e3
�21 � .�2 � �3/2 D 4 ˙e1

E.2/ �1 D �2 > 0; �3 D 0 ˙e3, cos t e1 C sin t e2
�21 � �22 D 4, �1 > �2 > 0,
�3 D 0

˙e1

E.1; 1/ �23 � �21 D 4,
�1 > 0; �2 D 0; �3 < 0

˙e3

�21 � �23 D 4,
�1 > 0; �2 D 0; �3 < 0

˙e1

N il3 �1 D 2; �2 D 0; �3 D 0 ˙e1
R˚R˚R �1 D �2 D �3 D 0 cos t cos s e1 C

cos t sin s e2 C sin t e3

where t and s are arbitrary fixed parameters.

For any left invariant vector field � D x1e1 C x2e2 C x3e3, we have rei � D
�i ei � � and as a consequence, with respect to the canonical frame, we have

A� D
0
@

0 ��2x3 �3x2
�1x3 0 ��3x1

��1x2 �2x1 0

1
A : (5)

To calculate the integrand in (3), we need some Lemmas.

Lemma 2.1. Let � WD em be a totally geodesic left-invariant unit vector field
on .compact quotient of/ unimodular three-dimensional Lie group G with a left-
invariant metric. Then the normal bundle connection coefficients of �.G/ with
respect to framing (1) are

Q�ij js D �1
2
kij ısm; .i < j / ¤ m;

where kij means the sectional curvature of G along ei ^ ej .
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Proof. We will conduct the proof for � D e3. Observe that since � is supposed
totally geodesic, the principal Ricci curvature �3 D 2 and hence �1�2 D 1

2
�3 D 1.

From (5) we get

A� D
0
@
0 ��2 0
�1 0 0

0 0 0

1
A ; At� D

0
@

0 �1 0

��2 0 0

0 0 0

1
A ; At�A� D

0
@
�21 0 0

0 �22 0

0 0 0

1
A :

Hence, the e1; e2 can be taken as the vectors of singular frame. Since

A�e1 D �1e2; A�e2 D ��2e1;
we may put �1 D �1; �2 D �2 and take f1 D e2; f2 D �e1. Then the framing (2)
takes the form

Qe1 D
 

1q
1C�21

e1

!h
�
 

�1q
1C�21

e2

!v
; Qe2 D

 
1q
1C�22

e2

!h
C
 

�2q
1C�22

e1

!v
;

Qe3 D .e3/
h (6)

Qn1 D
 

�1q
1C�21

e1

!h
C
 

1q
1C�21

e2

!v
; Qn2 D

 
�2q
1C�22

e2

!h
�
 

1q
1C�22

e1

!v
:

(7)

Recall, that Q�i
j js WD Qg. QrQes Qnj ; Qni / and in our case we only need to calculate Q�2

1js .
To do this we use Kowalski-type formulas from [2], namely

QrXhY
h D .rXY /

h � 1
2
.R.X; Y /�/tan; QrXhY

tan D .rXY /
tan C 1

2
.R.�; Y /X/h;

QrXtanY
h D 1

2
.R.�;X/Y /h; QrXtanY

tan D �g.Y; �/Xtan:

Then

QrXh1 CXtan2
.Y h1 CY tan2 / D �rX1Y1C

1

2
R.�; Y2/X1

C1

2
R.�;X2/Y1

�hC�rX1Y2�
1

2
R.X1; Y1/��g.Y2; �/X2

�tan

Straightforward calculations show that the curvature tensor components are of
the form

e1 e2 e3

R.e1; e2/ �k12e2 k12e1 0

R.e1; e3/ �k13e3 0 k13e1

R.e2; e3/ 0 �k23e3 k23e2

where kij D 1
2
.�i C �j � �m/ (i ¤ j ¤ m ¤ i ) are basic sectional curvatures.
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Using this formulas, we obtain easily QrQe1 Qn1 D ..�/e3/tan D 0, QrQe2 Qn1 D .�/eh3
and hence Q�2

1j1 D Q�2
1j2 D 0. Finally,

QrQe3 Qn1 D 1

2

k12q
1C �21

eh2 � 1

2

2�3 � �1k13q
1C �21

ev1 :

As �1�2 D 1, we can simplify

2�3 � �1k13q
1C �21

D 2�3 � �1.�1�2 C �2�3 � �1�3/q
1C �21

D 2�3 � .�1 C �3 � �21�3/q
1C �21

D �3 C �21�3 � �1q
1C �21

D �2�3 C �1�3 � �2�3
�2

q
1C �21

D k12q
1C �22

;

k12q
1C �21

D �2k12q
1C �22

:

So, we have

QrQe3 Qn1 D 1

2
k12 Qn2;

hence Q�2
1j3 D 1

2
k12: In the cases of �De1 and �De2 the calculations are similar. �

The partial Ricci curvature fRic. QN/ D w2
Pn

iD1 QK. Qei ; Qn/; where Qei are the
vectors of orthonormal frame tangent to �.M/, can be calculated by using the
formula for the sectional curvature of T1.M/. Namely, if QX D Xh

1 C Xtan
2 and

QY D Y h1 C Y tan2 are orthonormal, then [6]

QK. QX; QY / D ˝
R.X1; Y1/Y1; X1

˛ � 3

4
kR.X1; Y1/�k2

C 1

4
kR.�; Y 0

2/X1 CR.�;X 0
2/Y1k2 C 3

˝
R.X1; Y1/Y

0
2 ; X

0
2

˛

� ˝
R.�;X 0

2/X1;R.�; Y
0
2/Y1

˛C kX 0
2k2kY 0

2k2 � ˝
X 0
2; Y

0
2

˛2

C ˝
.rX1R/.�; Y

0
2/Y1; X1

˛C ˝
.rY1R/.�; X

0
2/X1; Y1

˛
; (8)
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whereX 0
2 D X2�g.X2; �/�, Y 0

2 D Y2�g.Y2; �/�, R and r are the curvature tensor
and Riemannian connection of the base manifold .M; g/ respectively.

So, to find the partial Ricci curvature of �.G/, we need the covariant derivatives
of the curvature tensor. One can find them by standard calculations.

Lemma 2.2. Let .e1; e2; e3/ be the canonical left-invariant frame on (compact
quotient of) a three-dimensional unimodular Lie group with a left-invariant metric.
Then the covariant derivatives of the curvature tensor are of the form

.r�R/.e1; e2/e1 .r�R/.e1; e2/e2 .r�R/.e1; e2/e3

e1 �1.�3 � �2/e3 0 ��1.�3 � �2/e1

e2 0 �2.�3 � �1/e3 ��2.�3 � �1/e2

e3 0 0 0

.r�R/.e1; e3/e1 .r�R/.e1; e3/e2 .r�R/.e1; e3/e3

e1 �1.�3 � �2/e2 ��1.�3 � �2/e1 0

e2 0 0 0

e3 0 �3.�2 � �1/e3 ��3.�2 � �1/e2

.r�R/.e2; e3/e1 .r�R/.e2; e3/e2 .r�R/.e2; e3/e3

e1 0 0 0

e2 �2.�3 � �1/e2 ��2.�3 � �1/e1 0

e3 �3.�2 � �1/e3 0 ��3.�2 � �1/e1

where �i are the principal Ricci curvatures and �i are the connection coefficients.

Now we can calculate the partial Ricci curvature with respect to arbitrary normal
vector field for totally geodesic �.G/.

Lemma 2.3. Let � D em be a totally geodesic unit vector field on a (compact
quotient of) three-dimensional unimodular Lie groupG with a left-invariant metric.
The partial Ricci curvature of �.G/ with respect to arbitrary normal vector field
QN D hi Qni C hj Qnj .i ¤ j ¤ m ¤ i ) is of the form

fRic. QN/ D 1

4
kij .h

2
i C h2j /C

�
1 � �2j

4

�
h2i C

�
1 � �2i

4

�
h2j ;

where kij is a basic ei ^ ej sectional curvature and �i are the principal Ricci
curvatures.
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Proof. We will conduct the proof for � D e3, since the other cases are similar. Take
the �.G/ tangent and normal framing according to (6) and (7). Then the arbitrary
normal vector field QN can be expressed by

QN D
 

h1�1q
1C �21

e1 C h2�2q
1C �22

e2

!h
C
 

� h2q
1C �22

e1 C h1q
1C �21

e2

!v
:

Observe that if QX is of unit length and orthogonal to QY , then j QY j2 QK. QX; QY / could be
calculated by (8) assuming that Y1 and Y2 are the components of the non-normalized
vector. Keeping this, put

Y1 D h1�1q
1C �21

e1 C h2�2q
1C �22

e2; Y2 D � h2q
1C �22

e1 C h1q
1C �21

e2:

To calculate QK. Qe1; QN/, put

X1 D 1q
1C �21

e1; X2 D ��1q
1C �21

e2:

The MAPLE calculations yield:

˝
R.X1; Y1/Y1; X1

˛ D �22k12

.1C �21/.1C �22/
h22

ˇ̌
ˇ
�1�2D1

D �21�3 C �3 � �1
�1.1C �21/

2
h22;

jjR.X1; Y1/�jj2 D 0;

jjR.�; Y2/X1 CR.�;X2/Y1jj2 D .k13 C �1�2k23/
2

.1C �21/.1C �22/
h22

ˇ̌
ˇ
�1�2D1

D 4�21
.1C �21/

2
h22;

˝
R.X1; Y1/Y2; X2

˛ D � �1�2k12

.1C �21/.1C �22/
h22

ˇ̌
ˇ
�1�2D1

D ��1.�
2
1�3 C �3 � �1/
.1C �21/

2
h22;

˝
R.�;X2/X1;R.�; Y2/Y1

˛ D 0;
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kX2k2kY2k2 � ˝
X2; Y2

˛2 D �21
.1C �21/.1C �22/

h22

ˇ̌
ˇ
�1�2D1

D �41
.1C �21/

2
h22;

˝
.rX1R/.�; Y2/Y1; X1

˛ D �3.�2 � �3/

2.1C �21/.1C �22/
h22

ˇ̌
ˇ
�3D2;�1�2D1

D 2�21.�1�3 � 1/

.1C �21/
2

h22;

˝
.rY1R/.�; X2/X1; Y1

˛ D � �22�3.�1 � �3/
2.1C �21/.1C �22/

h22

ˇ̌
ˇ
�3D2;�1�2D1

D 2.�1 � �3/

�1.1C �21/
2
h22:

After substitution into (8), we get

j QN j2 QK. Qe1; QN/ D
	
1 � 1

2
�1



h22:

After similar calculations, one can find

j QN j2 QK. Qe2; QN/ D
	
1 � 1

2
�2



h21;

j QN j2 QK. Qe3; QN/ D 1

4
k212.h

2
1 C h22/C

 
�2

2
� �22
4

!
h21 C

 
�1

2
� �21
4

!
h22:

It follows then

fRic. QN/ D 1

4
k212.h

2
1 C h22/C

�
1 � �22

4

�
h21 C

�
1 � �21

4

�
h22;

which completes the proof. �

The following Lemma is the principal one.

Lemma 2.4. Let � D em be a totaly geodesic left-invariant unit vector field on a
three-dimensional non-flat compact quotient of a unimodular Lie group with a left-
invariant metric. Then the integrand in the second volume variation formula (3) can
be reduced to
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W.h; h/ W D
"
ei .hi /

2

1C�2i
�2kij
�m

ei .hi /ej .hj /Cej .hj /
2

1C�2j
Cei .hj /

2

1C�2i
C2kij

�m
ei .hj /ej .hi /

Cej .hi /
2

1C�2j
Cem.hi /2Cem.hj /2C

	
�2j

4
�1


h2iC

	
�2i
4

�1


h2j

#
j�mj; (9)

where i ¤ j ¤ m ¤ i , �i and �j are the principal Ricci curvatures, kij are the
basic sectional curvatures of G and hi are the variation functions.

Proof. We will conduct the calculations for the case m D 3. First of all observe
that � D em is the unit Ricci eigenvector of eigenvalue �3 D 2, which means that
�1�2 D 1 and hence

L D det.I CAt�A�/ D 1C�21 C�22 C�21�
2
2 D 2C�21 C�22 D .�1 C�2/

2 D �23:

Therefore, dV� is a constant multiple of dV , namely dV� D j�3jdV . Take the
�.G/ tangent and normal framing according to (6) and (7). Put QN D h1 Qn1 C h2 Qn2.
To calculate j Qr?

Qei QN j2, observe that

Qr?
Qei QN D hh QrQei QN; Qn1ii Qn1 C hh QrQei QN; Qn2ii Qn2

D Qei .h1/ Qn1 C Qei .h2/ Qn2 C h2hh QrQei Qn2; Qn1ii Qn1
C h1hh QrQei Qn1; Qn2ii Qn2

D Qei .h1/ Qn1 C Qei .h2/ Qn2 C h2 Q�12ji Qn1 C h1 Q�21ji Qn2:

By Lemma 2.1, we have

Qr?
Qe1 QN D Qe1.h1/ Qn1 C Qe1.h2/ Qn2; Qr?

Qe2 QN D Qe2.h1/ Qn1 C Qe2.h2/ Qn2;

Qr?
Qe3 QN D

	
Qe3.h1/ � 1

2
k12h2



Qn1 C

	
Qe3.h2/C 1

2
k12h1



Qn2:

Therefore

3X
iD1

jj Qr?
Qei QN jj2 D

3X
iD1

� Qei .h1/2CQei .h2/2
�Ck12

� Qe3.h2/h1�Qe3.h1/h2
�C1

4
k212.h

2
1Ch22/:

Since hi are the functions on the base manifold, we have Qe˛.h� / D 1p
1C�2˛

e˛.h� /

and Qe3.h� / D e3.h� /, where .˛; � D 1; 2/ . Hence,
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X3

iD1 jj Qr?
Qei QN jj2 D

X2

˛D1
1

1C �2˛

�
e˛.h1/

2 C e˛.h2/
2
�

C e3.h1/
2 C e3.h2/

2 C k12
�
e3.h2/h1 � e3.h1/h2

�

C 1

4
k212.h

2
1 C h22/:

Since G is compact, by the divergence theorem
Z

G

div.X/dV D 0

for any vector field X . For X D h1h2e3, we have

div.h1h2e3/ D g.grad.h1h2/; e3/ D e3.h1/h2 C e3.h2/h1

and hence
Z

G

�
e3.h2/h1 � e3.h1/h2

�
dV D 2

Z

G

e3.h2/h1dV:

Analyzing the table in Theorem 2.1 one can observe that in all cases (except E.2/
and T 3 with flat metric) the totaly geodesic ei corresponds to �i ¤ 0. Therefore, we
can continue as

2

Z

G=�

e3.h2/h1dV D 2

�3

Z

G

Œe1; e2�.h2/h1 dV:

Expand

h1Œe1; e2�.h2/ D h1e1.e2.h2//� h1e2.e1.h2//

D e1.h1e2.h2//� e1.h1/e2.h2/� e2.h1e1.h2//C e2.h1/e1.h2/:

Since G is compact and boundaryless, after applying the Stokes formula we get
Z

G

�
e3.h2/h1 � e3.h1/h2

�
dV D 2

�3

Z

G

�
e2.h1/e1.h2/� e1.h1/e2.h2/

�
dV:

Hence,

Z

�.G/

X3

iD1 jj Qr?
Qei QN jj2dV� D

Z

G

�e1.h1/2
1C�21

�2k12
�3

e1.h1/e2.h2/Ce2.h2/
2

1C�22
Ce1.h2/

2

1C�21
C2k12

�3
e1.h2/e2.h1/Ce2.h1/

2

1C�22
Ce3.h1/2Ce3.h2/2

C1

4
k212.h

2
1Ch22/

�
j�3jdV:
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Taking into account the result of Lemma 2.3, we obtain

ı2Vol� D
Z

G

	
e1.h1/

2

1C�21
�2k12
�3

e1.h1/e2.h2/Ce2.h2/
2

1C�22
Ce1.h2/

2

1C�21
C2k12

�3
e1.h2/e2.h1/

Ce2.h1/
2

1C�22
Ce3.h1/2Ce3.h2/2C

	
�22
4

�1


h21C

	
�21
4

�1


h22



j�3j dV:

The other cases can be treated in a similar way. �

Remark 1. It is worthwhile to mention that if �1 D �2 D �3 D 1, then �1 D �2 D
�3 D 2 and the integrand (9) up to multiple 2 is the same as in [11] obtained for the
Hopf vector field on S3.1/. In this case, we deal with SO.3/ of constant curvature
C1 which is isometric to S3.1/. The left-invariant unit vector field corresponds
the Hopf vector field on S3.1/. So we can conclude that in this case the second
variation of volume with respect to the field variation is equal to a half of classical
second variation of volume. Therefore, the Hopf vector field is stable with respect to
both types of variations. The stability the Hopf vector field with respect to the field
variations was proved in [11] and in [18] for the classical treatment.

From Lemma 2.4 we immediately conclude the following.

Theorem 2.2. Let � be a left-invariant unit vector field on a compact quotient of
a non-flat three-dimensional unimodular Lie group G with a left-invariant metric.
Then �.�nG/ is a stable totally geodesic submanifold in T1.�nG/ if and only if
G D SO.3/ of constant curvature C1 and � is arbitrary left-invariant.

Proof. Let � D em be totally geodesic. Then �m D 2 and to be left-invariant stable,
the other Ricci curvatures must satisfy

j�i j � 2 or, equivalently, j�m�j j � 1

and

j�j j � 2 or, equivalently, j�i�mj � 1:

To be generally stable, both quadratic expressions involving derivatives must be
positively semi-definite. The latter condition is equivalent to

k2ij

�2m
� 1

.1C �2i /.1C �2j /
:

Since �m D 2�i�j D 2, we have .1C�2i /.1C�2j / D .2C�2i C�2j / D .�iC�j /2 D
�2m. As a result, jkij j � 1. Observe that kij D �i�m C �m�j � 1 and hence the
equality jkij j � 1 is equivalent to

0 � �m.�i C �j / � 2 or 0 � �m

�i
.1C �2i / � 2 or 0 � �m

�i
� 2

1C �2i
:
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Evidently, all connection coefficients have to be of the same sign. Therefore, the
classical stability take place if

�m�i � 1;
�m

�i
� 1; 0 � �m

�i
� 2

1C �2i
:

The possible solutions of the system satisfy �1 D �2 D �3 D ˙1. Taking into
account the signs of �i , we obtain a unique solution �1 D �2 D �3 D 1 which
means that the base manifold is SO.3/ of constant curvature C1 and hence � is
arbitrary left-invariant.

If the system is inconsistent, then the totally geodesic submanifold �.G/ is
unstable. Indeed, if say �i < 2, then in the case of compact quotient one can
take hi D 0, hm D 0, and hj D const ¤ 0 and we get W.h; h/ < 0 over
whole compact quotient. If �i � 2 and �j � 2 but jkij j > 1, then both quadratic
expressions that involve derivatives of hi and hj inW.h; h/ are not positively semi-
definite. By taking h3 D 0 and h1; h2 sufficiently small with derivatives making
the quadratic expressions negative, we obtain negative W.h; h/ at least over some
domain F � �nG. �

The proof of Lemma 2.4 essentially uses non-flatness of the group. If the group
is flat, then the second classical variation of volume for the unit vector field with
totally geodesic image is much simpler.

Theorem 2.3. Let � be a unit vector field on a compact quotient of a flat three-
dimensional unimodular Lie group G with a left-invariant metric. Then

• If G D E.2/ and � is a parallel unit vector field on E.2/, then �.�nG/ is a
stable totally geodesic submanifold;

• If G D E.2/ and � is in integrable distribution orthogonal to the parallel vector
field on E.2/, then �.�nG/ is an unstable totally geodesic submanifold;

• If G D R ˚R˚ R and is arbitrary left-invariant, then �.T 3/ is a stable totally
geodesic submanifold.

Proof. We have flat E.2/ if �1 D �2 D a > �3 D 0. In this case �1 D
0,�2 D 0,�3 D a and �1 D �2 D �3 D 0. The field � D e3 is the field of unit
normals of the integrable orthogonal distribution �?. In this case, fRic. QN/ D 0 and
we have �.G/ stable totally geodesic submanifold in T1.G/.

As concerns the field � D cos te1 C sin te2, rotating the frame in e1 ^ e2 plane,
we may always put � D e1 without loss of generality. Then

A� D
0
@
0 0 0

0 0 �a
0 0 0

1
A ; At� D

0
@
0 0 0

0 0 0

0 �a 0

1
A :

The tangent frame consists of

Qe1 D eh1 ; Qe2 D eh2 ; Qe3 D 1p
1C a2

.eh3 C aev2 /:
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The normal frame on �.G/ consists of

Qn2 D 1p
1C a2

.�aeh3 C ev2 /; Qn3 D ev3 :

For the field of normal variation QN D h2 Qn2 C h3 Qn3, we have

fRic. QN/ D a2

1C a2
h23:

The normal connection of �.G/ is flat and hence, by choosing the variation with
constant h1 and h2, we get

W.h; h/ D � a2

1C a2
h23;

which means that �.G/ is unstable totally geodesic submanifold in T1.G/.
In the case ofR˚R˚R, the compact quotient is flat torus T 3. Each left-invariant

field is parallel and therefore, the �.T 3/ is stable totally geodesic submanifold. �

Considering the field of normal variation of �.G/ for � D e3, namely,

QN D
 

h1�1q
1C �21

e1 C h2�2q
1C �22

e2

!h
C
 

� h2q
1C �22

e1 C h1q
1C �21

e2

!v
;

one can observe that this field generates two variations of the field � in a meaning
of [11], namely

Z1 D ��. QN/ D h1�1q
1C�21

e1C h2�2q
1C�22

e2; Z2 D K. QN/ D � h2q
1C�22

e1C h1q
1C�21

e2:

If h1 and h2 are non-constant, then these variations exclude �.G/ from the class of
submanifolds in T1.G/, generated by the left-invariant unit vector fields. This fact
justifies the following definition.

Definition 2.1. Let � be left-invariant unit vector field on a Lie groupG with a left-
invariant metric. The normal variation vector field QN on �.G/ � T1.G/ is called
left-invariant, if Z1 D ��. QN/ andZ2 D K. QN/ are left-invariant vector fields on G.

If we restrict the variations to the left-invariant ones, we obtain a wider class of
classically stable totally geodesic unit vector fields.

Theorem 2.4. Let G be a three-dimensional unimodular Lie group with a left-
invariant metric. Let .e1; e2; e3/ be the canonical frame of its Lie algebra. Set for
definiteness �1 � �2 � �3. Then stable/unstable with respect to left-invariant
variations totally geodesic submanifolds generated by unit left-invariant vector field
� on compact quotient of G are the following.
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left-invariant stability
G or �nG Ricci principal curvatures � or instability

SO(3) �1 D �2 D �3 D 2 S stable
�1 D �2 > �3 D 2 ˙e3 stable
�1 D �2 D 2 > �3 cos t e1Csin t e2 unstable
�1 D 2 > �2 D �3 ˙e1 unstable
�1 > �2 D �3 D 2 cos t e2Csin t e3 stable
�1 D 2 > �2 > �3 ˙e1 unstable
�1 > �2 D 2 > �3 ˙e2 unstable
�1 > �2 > �3 D 2 ˙e3 stable

�nSL.2;R/ �3 D 2 > �2 > �2 > �1 ˙e3 unstable
�1 D 2 > �2 > �2 > �3 ˙e1 stable

�nE.2/ �1 D �2 D �3 D 0; ˙e3, stable
�1 D �2 D 0; �3 > 0 cos t e1Csin t e2 unstable
�1 D 2 > �3 > �2 D �2 ˙e1 unstable

�nE.1; 1/ �3 D 2 > �1 D �2 > �2 ˙e3 stable
�1 D 2 > �2 D �2 > �3 ˙e1 stable

� nNil3 �1 D 2 > �2 D �3 D �2 ˙e1 stable

T 3 �1 D �2 D �3 D 0; S stable
�1 D �2 D �3 D 0

where S stands for arbitrary left-invariant unit vector field of the form � D
cos t cos s e1 C cos t sin s e2 C sin t e3 with fixed parameters t and s.

Proof. If one takes the left-invariant variations, then (9) takes the form

W.h; h/ D
	
�2j

4
� 1



h2i C

	
�2i
4

� 1



h2j :

Hence if

min.j�i j; j�j j/ � �m D 2 .i ¤ j ¤ m ¤ i/;

then � D em generates a stable totally geodesic submanifold. If �i < 2 or �j < 2,
then choosing hj ¤ 0 or hi ¤ 0 we get W.h; h/ < 0 which means that the
submanifold �.G/ is unstable.

Below, we check all unimodular three-dimensional Lie groups with left-invariant
metric and corresponding totally geodesic unit vector fields on left-invariant stability
or instability.

• The group SO.3/.

1. �1 D �2 D �3 D 2. Here � is arbitrary unit left-invariant and �.G/ is a
classically stable totally geodesic submanifold in T1.G/ by Theorem 2.2.
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2. Put �1 D �2 D 2C ı; �3 D 2. Here � D e3. Since

�1 D 2.1C ı/ D �2 D 2.1C ı/ > �3 D 2;

�.G/ is a left-invariant stable totally geodesic submanifold in T1.G/.
3. Put �1 D �2 D 2C "; �3 D 2C " �p

"."C 4/ > 0. Rotating the frame in
e1 ^ e2 plane, we can always put � D e1.

The connection coefficients are

�1 D 1C"�p"."C4/
2

; �2 D 1C"�p"."C4/
2

; �3 D 1C"Cp"."C4/
2

:

The principal Ricci curvatures are

�1 D 2; �2 D 2; �3 D 1

2

�
2C " �p

"."C 4/
�2
:

We have �1 D �2 D 2 > �3 > 0 andW.h; h/ D .�23=4�1/h22 < 0 for h2 ¤ 0.
Hence, �.G/ is an unstable totally geodesic submanifold in T1.G/.

4. Put �1 D 2; �2 D �3 D 2 � ", 0 < " < 2. Here � D e1. The connection
coefficients and the Ricci principal curvatures are

�1 D 1 � "; �2 D 1; �3 D 1I �1 D 2; �2 D 2.1� "/; �3 D 2.1� "/:

We have �1 D 2 > �2 D �3 > �2 and hence �22 D �23 < 4. Therefore, �.G/
is an unstable totally geodesic submanifold in T1.G/.

5. Put �1 D " C p
4C "2; �2 D p

4C "2; �3 D p
4C "2. In this case � D

cos te2 C sin te3. Rotating the frame, we may put � D e3. Then

�1 D
p
"2 C 4 � "

2
; �2 D �3 D

p
"2 C 4C "

2
D 1=�1:

The principal Ricci curvatures are

�1 D 2C ".
p
"2 C 4C "/ > �2 D �3 D 2;

and hence �.G/ is a left-invariant stable totally geodesic submanifold in
T1.G/.

6. �1 > �2 > �3 > 0, �2m�.�i ��k/2 D 4. Denote �2��3 D ı > 0; �1��2 D
" > 0. Then �1 � �3 D "C ı. Here we have 3 distinct cases.

(i) �21 D .�2 � �3/2 C 4, � D e1. Then

�1 D
p
4C ı2; �2 D

p
4C ı2 � " > 0; �3 D

p
4C ı2 � " � ı > 0:
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The connection coefficients are

�1 D
p
ı2 C 4 � ı

2
� "; �2 D

p
ı2 C 4 � ı

2
; �3 D

p
ı2 C 4C ı

2
:

The principal Ricci curvatures are

�1 D 2 > �2 D 2�".
p
ı2 C 4Cı/ > �3 D 2�."Cı/.

p
ı2 C 4�ı/ > �2;

and we obtain an unstable totally geodesic submanifold in T1.G/.
(ii) �22 D .�1 � �3/2 C 4, � D e2. Then

�1 D
p
4C."Cı/2C"; �2 D

p
4C."Cı/2; �3 D

p
4C."Cı/2�ı > 0:

The connection coefficients are

�1 D
p
."C ı/2 C 4 � ."C ı/

2
; �2 D

p
."C ı/2 C 4C " � ı

2
;

�3 D
p
."C ı/2 C 4C "C ı

2
:

The principal Ricci curvatures are

�1 D 2C".
p
."Cı/2C4C"Cı/; �2 D 2; �3 D 2�ı�

p
."Cı/2C4�."Cı/�:

Here �1 > �2 D 2 > �3 > �2 and we obtain an unstable totally geodesic
submanifold in T1.G/.

(iii) �23 D .�1 � �2/2 C 4, � D e3. Then

�1 D
p
4C "2 C "C ı; �2 D

p
4C "2 C ı; �3 D

p
4C "2:

The connection coefficients are

�1 D
p
"2C4�"
2

; �2 D
p
"2Cj4C"
2

D 1=�1; �3 D
p
"2C4C"
2

Cı:

The principal Ricci curvatures are

�1 D 2C ."C ı/.
p
"2 C 4C "/ > �2 D 2C ı.

p
"2 C 4 � "/ > �3 D 2;

and we obtain a left-invariant stable totally geodesic submanifold in
T1.G/.

• The group SL.2;R/. Here we have � D e3 or � D e1.
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1. In the case � D e3, we have �23 � .�1 � �2/2 D 4. Put �1 � �2 D " > 0. Then
�3 D �p

4C "2, �2 D a > 0; �1 D aC ". The connection coefficients are

�1 D �
p
"2C4C"
2

; �2 D �
p
"2C4�"
2

D 1=�1; �3 D aC
p
"2C4C"
2

:

The principal Ricci curvatures are

�1 D �2 � a
�p

"2 C 4 � "
�
; �2 D �2 � .aC "/

�p
4C "2 C "

�
; �3 D 2:

Observe that �3 D 2 > �1 > �2, but �2 < �1 < �2. Therefore, �22 > �21 > 4

and hence .�22=4�1/h23C.�23=4�1/h22 > 0. So we have �.G/ a left-invariant
stable totally geodesic submanifold in T1.G/.

2. In the case � D e1, we have �21 � .�2 � �3/
2 D 4. Put �3 D �a .a > 0/,

�2 D �3C" D "�a > 0, �1 D p
4C "2. (Observe, that �1��2 D p

"2 C 4�
"C a > ��3 D a.) Besides, �1 � �2. Therefore,

p
"2 C 4 � " � a > 0.

The connection coefficients are

�1 D �a�
p
"2C4�"
2

; �2 D
p
"2C4�"
2

; �3 D
p
"2C4C"
2

D 1=�2:

The principal Ricci curvatures are

�1 D 2; �2 D �2�a
�p

"2C4C"
�
; �3 D �2C ."�a/

�p
"2C4�"

�
:

Observe that �2 < �2 but �2 < �3 < 2. Indeed, "� a � p
"2 C 4, and hence

."�a/
�p

"2C4�"
�

�
p
"2C4

�p
"2C4�"

�
D 4�"

�p
"2C4�"

�
< 4:

Therefore the �.G/ is an unstable totally geodesic submanifold in T1.G/.

• The groupE.2/. The flat case was considered in Theorem 2.3. Consider the case
�21 � �22 D 4, �1 > 0; �2 > 0, and � D e1. Put �1 D p

4C a2; �2 D a > 0,
�3 D 0. Then

�1 D �
p
4C a2 � a

2
; �2 D

p
4C a2 � a

2
; �3 D

p
4C a2 C a

2
D 1=�2

and

�1 D 2; �2 D �2; �3 D �2C a.
p
4C a2 � a/:

So we have

�1 D 2 > �3 > �2 D �2; �23 < 4;

and hence .�23=4 � 1/h22 < 0 for h2 ¤ 0. Therefore, �.G/ is an unstable totally
geodesic submanifold in T1.G/.
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• The group E.1; 1/. Here again we have 2 options.

1. Consider �23 � �21 D 4, �1 > 0; �2 D 0; �3 < 0. The field here is � D e3. Put
�1 D a and �3 D �p

a2 C 4. Then

�1 D �aCp
a2C4
2

; �3 D aCp
a2C4
2

; �2 D a�p
a2C4
2

D 1=�1;

and the principal Ricci curvatures are

�1 D �2; �3 D 2; �2 D �1
2
.a C

p
a2 C 4/2 D �2 � a.a C

p
4C a2/:

Evidently, �3 D 2 > �1 D �2 > �2 but �22 > �
2
1 D 4. Therefore,

.�22=4 � 1/h21 � 0;

and we have a left-invariant stable totally geodesic submanifold in T1.G/.
2. Consider �21 � �23 D 4, �1 > 0; �2 D 0; �3 < 0. In this case � D e1. Put
�1 D p

a2 C 4 and �3 D �a < 0. Then

�1 D �aCp
a2C4
2

; �2 D
p
a2C4 � a

2
; �3 D

p
a2C4Ca
2

D 1=�2;

and the principal Ricci curvatures are

�1 D 2; �2 D �1
2
.a C

p
a2 C 4/2 D �2 � a.a C

p
a2 C 4/; �3 D �2:

Observe that �1 D 2 > �3 D �2 > �2 but �22 > �
2
3 D 4. Therefore,

.�22=4 � 1/h21 � 0;

and we have a left-invariant stable totally geodesic submanifold in T1.G/.

• The group Nil3. In this case �1 D 2; �2 D 0; �3 D 0 and the field � D e1. It is
easy to calculate

�1 D �1; �2 D 1; �3 D 1 D 1=�2;

�1 D 2; �2 D �2; �3 D �2;

and observe that �1 D 2 > �2 D �3 D �2. Therefore, �.G/ is a left-invariant
stable totally geodesic submanifold in T1.G/.

• The flat torus T 3 was considered in Theorem 2.3. �
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Remark 2. The results of Theorem 2.4 that concern instability correlate with
instability results from [14], where the second variation of volume was calculated
with respect to the field variations and the variation field was chosen with constant
variation functions, i.e., left-invariant in our terminology.

Summarizing the results of Theorem 2.4, we can observe that �.G/ is stable with
respect to left-invariant variations with totally geodesic unit vector field if and only
if � is the unit eigenvector of the Ricci operator which corresponds to minimal in
absolute value principal Ricci curvature � D 2.

3 Non-Unimodular Groups

If G is a three-dimensional non-unimodular Lie group with a left-invariant metric,
then there is the left-invariant orthonormal frame .e1; e2; e3/ such that

Œe1; e2� D ˛ e2 C ˇ e3; Œe1; e3� D �ˇ e2 C ı e3; Œe2; e3� D 0;

where ˛; ˇ, and ı ar all constant satisfying ˛ > ı; ˛ � �ı. Let us call this frame
canonical one.

The non-unimodular group is not compact and does not admit a compact
factor [15]. That is why one should consider formula (3) over each domain F � G

with compact closure. We say that the �.G/ is an unstable minimal/totally geodesic
unit vector field if there is a domain F � G with a compact closure such that the
second variation ı2Vol� .F / < 0.

The author described the groups which admit the totally geodesic left-invariant
vector fields [21]. Here we complete the theorem with stability property as follows.

Theorem 3.1. Let G be a three-dimensional non-unimodular Lie group with a left-
invariant metric. Let � be a left-invariant unit vector field on G and .e1; e2; e3/ the
canonical orthonormal frame of its Lie algebra. Suppose �.G/ � T1.G/ is totally
geodesic. Then

• ˇ D ı D 0 and � D e3 is a parallel unit vector field; the �.G/ is a stable totally
geodesic submanifold in T1.G/;

• ˛ı D �1; ˇ D ˙1 and � is of the form

� D ˇp
1C ˛2

e2 C ˛p
1C ˛2

e3I

the �.G/ is an unstable totally geodesic submanifold in T1.G/.

Proof. As it was proved in [21], if ˇ D ı D 0, then � D e3 is a field of unit normals
of some totally geodesic 2-foliation on G and A� D �r� D 0. Hence, in (8) all
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the terms with � turn into zero. Equation (1) implies that �.G/ is horizontal while
its field of normals is vertical. Therefore, X2 D K. QX/ D 0 and Z1 D ��. QN/ D 0.
Equation (8) implies

fRic. QN/ D 0:

Therefore,W.h; h/ � 0 and hence �.G/ is stable.
Consider the case

˛ı D �1; ˇ D ˙1; � D ˇp
1C ˛2

e2 C ˛p
1C ˛2

e3:

Observe, that the conditions ˛ > ı; ˛ � �ı and ˛ı D �1 imply ˛ � 1. For such a
vector field, we have

x1 D 0; x2 D ˇp
1C ˛2

; x3 D ˛p
1C ˛2

: (10)

The table of covariant derivatives is

r e1 e2 e3

e1 0 ˇ e3 �ˇ e2
e2 �˛ e2 ˛ e1 0

e3
1
˛
e3 0 � 1

˛
e1

Then

A� D

0
BB@

0 �˛ x2 1
˛
x3

ˇ x3 0 0

�ˇ x2 0 0

1
CCA ; At� D

0
BB@

0 ˇ x3 �ˇ x2
�˛ x2 0 0

1
˛
x3 0 0

1
CCA

and

At�A� D

0
BB@
1 0 0

0 ˛ 2

1C˛ 2
�˛ ˇ
1C˛ 2

0
�˛ ˇ
1C˛ 2

1
1C˛ 2

1
CCA :

Therefore, the singular values of A� are 0 and 1. The corresponding singular
frames are
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s0 D �; s1 D e1; s2 D �˛ ˇp
1C˛ 2 e2 C 1p

1C˛ 2 e3;

f1 D A�.s1/ D ˇ˛p
1C˛ 2 e2 � 1p

1C˛ 2 e3; f2 D A�.s2/ D e1:

Hence, the tangent and normal orthonormal framing of �.G/ is given by (2) as
follows

Qe0 D �h;

Qe1 D �
�

.s1/

j�
�

.s1/j D 1p
2
eh1 � 1p

2

�
˛ ˇp
1C˛ 2 e2 � 1p

1C˛ 2 e3
�v
;

Qe2 D �
�

.s2/

j�
�

.s2/j D 1p
2

� �˛ ˇp
1C˛ 2 e2 C 1p

1C˛ 2 e3
�h � 1p

2
ev1 ;

Qn1 D .f1/

j.f1/j D 1p
2
eh1 C 1p

2

�
˛ ˇp
1C˛ 2 e2 � 1p

1C˛ 2 e3
�v
;

Qn2 D .f2/

j.f2/j D 1p
2

� �˛ ˇp
1C˛ 2 e2 C 1p

1C˛ 2 e3
�h C 1p

2
ev1 :

To calculate the partial Ricci curvature for �.G/ by (8), we need the components of
the Riemannian tensor of G with respect to the canonical frame [21].

e1 e2 e3

R.e1; e2/ ˛ 2e2 � ˇ.˛ � ı /e3 �˛ 2e1 ˇ.˛ � ı /e1

R.e1; e3/ �ˇ.˛ � ı /e2 C ı 2e3 ˇ.˛ � ı /e1 �ı 2e1
R.e2; e3/ 0 ˛ ı e3 �˛ ı e2

The derivatives of the curvature tensor need routine calculations which can be
conducted with MAPLE.

.r�R/.e1; e2/e1 .r�R/.e1; e2/e2 .r�R/.e1; e2/e3

e1 2ˇ2.˛ � ı /e2 C ˇ.˛ 2 � ı 2/e3 �2ˇ2.˛ � ı /e1 �ˇ.˛ 2 � ı 2/e1
e2 0 ˇ˛ .˛ � ı /e3 �ˇ˛ .˛ � ı /e2
e3 0 ˛ ı .˛ � ı /e3 �˛ ı .˛ � ı /e2

.r�R/.e1; e3/e1 .r�R/.e1; e3/e2 .r�R/.e1; e3/e3

e1 ˇ.˛ 2 � ı 2/e2 � ˇ2.˛ � ı /e3 �ˇ.˛ 2 � ı 2/e1 2ˇ2.˛ � ı /e1

e2 0 ˛ ı .˛ � ı /e3 �˛ ı .˛ � ı /e2
e3 0 �ˇı .˛ � ı /e3 ˇı .˛ � ı /e2
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.r�R/.e2; e3/e1 .r�R/.e2; e3/e2 .r�R/.e2; e3/e3

e1 0 0 0

e2 ˛ ˇ.˛ � ı /e2 C ˛ ı .˛ � ı /e3 �˛ ˇ.˛ � ı /e1 �˛ ı .˛ � ı /e1
e3 ˛ ı .˛ � ı /e2 � ˇı .˛ � ı /e3 �˛ ı .˛ � ı /e1 ˇı .˛ � ı /e1

Take now the field of normal variation QN D h1 Qn1 C h2 Qn2: To calculate K. Qe1; QN/,
put

X1 D 1p
2
e1; X2 D � 1p

2

 
˛ ˇp
1C ˛ 2

e2 � 1p
1C ˛ 2

e3

!
;

Y1 D ��. QN/ D 1p
2

 
h1e1 C h2

	
� ˛ ˇp

1C ˛ 2
e2 C 1p

1C ˛ 2
e3


!
;

Y2 D K. QN/ D 1p
2

 
h2e1 C h1

	
˛ ˇp
1C ˛ 2

e2 � 1p
1C ˛ 2

e3


!
;

and apply (8). The MAPLE calculations yield

˝
R.X1; Y1/Y1; X1

˛ D �1
4

˛ 4 C ˛ 2 C 1

˛ 2
h22; jjR.X1; Y1/�jj2 D 0;

jjR.�; Y2/X1 CR.�;X2/Y1jj2 D ˛ 6 � ˛ 4 C 3˛ 2 C 1

˛ 2.1C ˛ 2/
h22;

kX2k2kY2k2 � ˝
X2; Y2

˛2 D 1
4
h22;

˝
R.X1; Y1/Y2; X2

˛ D 1

4

˛ 4 C ˛ 2 C 1

˛ 2
h22;

˝
R.�;X2/X1;R.�; Y2/Y1

˛ D 0;

˝
.rX1R/.�; Y2/Y1; X1

˛ D �1
4

˛ 6 � ˛ 4 C 5˛ 2 � 1
˛ 2.1C ˛ 2/

h22;

˝
.rY1R/.�; X2/X1; Y1

˛ D �1
4

˛ 6 C 10˛ 4 C 4˛ 2 C 7

˛ 2.1C ˛ 2/
h22:

After substitution into (8) and the MAPLE algebraic transformations, we get

QK. Qe1; QN/ D 1

4

˛ 6 C 10˛ 4 C 4˛ 2 C 7

˛ 2.1C ˛ 2/
h22:
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In a similar way,

QK. Qe2; QN/ D 1

4

5˛ 8 � ˛ 6 C 3˛ 4 C 13˛ 2 � 8
˛ 2.1C ˛ 2/2

h21 C ˛ 8 C 2˛ 4 C 1

˛ 2.1C ˛ 2/2
h22;

QK. Qe0; QN/ D 1

4

˛ 4 C 14˛ 2 � 11
.1C ˛ 2/2

h21 � 1

4

3˛ 4 C 2˛ 2 � 9

.1C ˛ 2/2
h22:

As a result, the partial Ricci curvature of �.G/ obtains the form

fRic. QN/ D 1

4

5˛ 8 C 17˛ 4 C 2˛ 2 � 8

˛ 2.1C ˛ 2/2
h21C 1

4

5˛ 8 C 8˛ 6 C 20˛ 4 C 20˛ 2 C 11

˛ 2.1C ˛ 2/2
h22:

In this case, we cannot consider left-invariant variations because of the boundary
conditions. Nevertheless, one can consider a left-invariant variation over a subdo-
main F1 � F such that mes. NF n F1/ < " for however small ". If the second
left-invariant variation over F1 is negative and bounded away from zero, then by
taking F1 sufficiently large we always can make ı2Vol�.F / < 0.

If the variation field QN is left-invariant, then
X2

iD0 jj Qr?
Qei QN jj2 D

�X2

iD0. Q�21i /2
�
.h21 C h22/;

where Q�21i D Qg. QrQei Qn1; Qn2/ are the coefficients of the �.G/ normal bundle connection
with respect to the chosen frame. Calculating, we get

QrQe0 Qn1 D 3

4

p
2p

1C ˛2

�
ˇ˛e2 C e3

�h C
p
2

1C ˛2
ev1 ;

QrQe1 Qn1 D 0;

QrQe2 Qn1 D 1

2

1p
1C ˛2

�
ˇ.2˛2 � 1/e2 � ˛e3

�h � 1

2

˛4 C ˛2 � 2
˛.1C ˛2/2

ev1 :

Now one can easily find

Q�210 D ˛ 2 C 2

1C ˛ 2
; Q�211 D 0; Q�212 D �1

4

p
2.3˛ 2 � 2/

˛
:

After substitution and MAPLE algebraic transformations, the left-invariant part of
integrand in (3) takes the form

W.h; h/ D �1
8

˛ 8 � 14˛ 6 C 13˛ 4 � 24˛ 2 � 20

˛ 2.1C ˛ 2/2
h21

� 1

8

˛ 8 C 2˛ 6 C 19˛ 4 C 12˛ 2 C 18

˛ 2.1C ˛ 2/2
h22: (11)

The factor at h2 is always negative and hence the submanifold �.G/ is unstable.
The proof is complete. �
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Closing Observation

Analyzing Remarks 1 and 2, one can conjecture that if the horizontal and vertical
projections of classical normal variation vector field are in �?, then the classical
stability or instability of minimal (or totally geodesic) submanifold �.M/ � T1.M/

is equivalent to stability or instability of the unit vector field in the meaning of [11].
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Applications



Rotational Liquid Film Interacted with Ambient
Gaseous Media

Gaissinski I., Levy Y., Rovenski V., and Sherbaum V.

Abstract Annular jets of an incompressible liquid moving in a gas at rest are
of interest for applications. The experimental study of annular liquid jets shows
existing tulip and bubble jet shapes and also predicts the existence of periodic
shape. However, sufficient simplifications of mathematical models of the flow
details were made: the effects of the forces of surface tension of the longitudinal
motion and the variability of the tangential velocity component of the centrifugal
forces in the field were neglected. In this work, the equations described the flow of
rotational annular jets of viscous liquid in an undisturbed medium with allowance
of the abovementioned effects. The basic model was obtained through the use of
quasi-two-dimensional momentum balance equations in the metric space with the
co- and contravariant basis vectors suitable for surfaces with complicated shape. The
pressure difference outside and within the jet was obtained and analyzed. The results
of calculations show the dependence of the jet shape on the relative contributions
of the initial rotation rate, viscosity, surface tension, gravity forces, and pressure
difference. An exact solution to the problem of the motion of a thin cylindrical shell
due to different internal and external pressures is obtained. Analysis of nonlinear
instabilities of the Rayleigh–Taylor type in meridional cross section was carried
out. It is shown that the instabilities, which appear due to pressure drop, cannot be
stabilized by rotation.
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Introduction

During the first stage of atomization process (atomization is the making of an
aerosol, which is a colloid suspension of fine solid particles or liquid droplets in a
gas), free rotating films of liquid are formed [11]. As a rule, they take cylindrical or
conical forms. For these kinds of films two main mechanisms can be distinguished
which disturb the film shape. The first of them is connected to instability and to the
growth of flexural perturbations due to the dynamic action of the surrounding gas.
The second mechanism of the film distortion of the perfect shape of the film is due
to the liquid rotation around the film axis.

In a study [4] special attention is paid to the non-axisymmetric perturbation
development due to the film rotation. Due to competition between centrifugal and
surface forces, the film acquires a wavy shape even when the flow is stable. Shapes
of swirling liquid annular jets were studied in by Epikhin [3]. He accounted for
viscosity and friction between air and liquid. These results gave solutions for the
effect of these factors on the steady film configuration and its initial velocity
profile. The numerical and experimental investigation of stable wavy shapes in
free films of ideal liquids was carried out in [5]. But the surface tension effect on
the longitudinal motion of the film was neglected. The present work is dedicated
to the study of rotating liquid films interacting with the ambient air at different
pressures. Asymptotic analysis and numerical simulation were applied. The effect
of the liquid viscosity was taken into account.

1 The Main Equations

Let us consider a free rotating liquid film following out of an annular nozzle with
the assumption that the disintegration of the film takes place fairly far downstream.
The motion may naturally be described on the basis of the quasi-two-dimensional
equations of thin film dynamics for the momentum balance (Fig. 1); d�1d�2 is
the element of the film. The overall momentum within the element is expressed
as �h

p
aVd�1d�2. Entov and Yarin [13] have obtained the quasi-two-dimensional

equations in the frame of reference �i .i D 1; 2/ associated with the middle surface
of a film (i.e., the conditional area located in the middle of the film thickness). They
considered it as a two-dimensional continuum:
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Fig. 1 Element of the film surface with vector components

@t .g1h/C @�1
�
g1hW

1
�C @�2

�
g1hW

2
� D 0;

@t .�Vg1h/C @�1
�
�VW 1g1h

�C @�2
�
�VW 2g1h

� D @�1N
1 C @�2N

2 C qg1;
g1 D p

EG � F 2; E D a1 � a1; F D a1 � a2; G D a2 � a2:
(1.1)

The following definitions are used: � D �.�1; �2/ is the liquid density; V D
V.�1; �2/ is the velocity field; h D h.�1; �2/ is the film thickness; M is the middle
surface, r D r.�1; �2/ of the film with the parametrization �˛ being the curvilinear
coordinates (Fig. 1); q is the distributed external force per unit area of the film; W is
the liquid velocity relative to the frame of reference associated with the median
surface of the film (the reference frame velocity is U and W D V � U/; N˛ D
N˛�a� is the internal surface forces per unit length of film cross section along a line
�˛ D const; and N˛� is the symmetrical contravariant tensor. The corresponding
metrics is characterized by the covariant base vectors a˛ D @r=@�˛ , dr D a˛d�˛ ,
and ˛ D 1; 2; a3 is the unit normal to the surfaceM ; the contravariant base vectors
a˛ and co- and contravariant components of the metric tensor a˛ˇ; a˛ˇ satisfy the
geometric formulas

a˛ˇ D a˛aˇ; a˛ˇ D a˛aˇ; a˛aˇ D ı˛ˇ; a˛ˇa
ˇ� D ı�˛ ; deta˛ˇ D a;

where ı�˛ is the Kronecker delta function g˛mgmˇ D ı˛ˇ . The components of the
tensor N˛� are given in the form [13]

N˛� D p
g1 .�

˛� hC 2��a˛� / ; (1.2)

where �� is the surface tension coefficient and �˛� is the contravariant surface stress
tensor.

The first equation of (1.1) is continuity, and the second one is the momentum
equation. In the case of axisymmetric stable flow (Fig. 2) the motion may be
described on the basis of the thin film dynamics (1.1) and (1.2) for quantities
averaged over the thickness of the film. For the case of axisymmetric stable flow
equations take the following form [13]:
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Fig. 2 Scheme of a liquid film with motion direction

hRV
 D h0R0V
0;

�

	
hRV


dV


ds
� V 2

� h sin 



D d�

Rh

ds
� h��� sin C g�Rh cos ;

�
�
hRV 2




d 

ds
� V 2

� h cos 
� D �

Rh

d 

ds
� h��� cos 

C 2��
�
R
d 

ds
� cos 

�� g�Rh sin � .pi�po/R;

�
�
hRV


dV�

ds
� V�V
h sin 

� D d��
Rh

ds
C �
�h sin : (1.3)

The terms which take into account pressure drop are included additionally by
comparison with studies [13]. The first equation of the system (1.1) gives the
equation of continuity; the remaining equations are projections of the momentum
equation on the directions of the tangent 
 and the normal n to the middle surface of
the film and on the direction of the variation of the angular (azimuthal) coordinate
� on the middle surface.

The following notation is introduced: R is the radius of the middle surface of
the film (Fig. 2); h is its thickness; V
 and V� are the longitudinal and rotational
components of the fluid velocity vector; the index 0 denotes the values of the
quantities at the nozzle exit; � is the liquid density; s is the coordinate reckoned
along the generator of the middle surface of the film;  is the angle between the
tangent 
 and the axis of symmetry x of the film; po and pi are the outer and
inner ambient media static pressures; d =ds is the curvature of the generator of the
middle surface of the film; g is the acceleration due to the force of gravity g which is
directed along the axis xI �

 ; �
� , and ��� are the components of the stress tensor
in the coordinate system associated with the middle surface of the film, which are
determined for a Newtonian liquid (with allowance for the condition that there are
no stresses on the film surfaces) by the relationships
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�

 D 2�
�
2
dV


ds
C V
 sin 

R

�
; �
� D �

�dV�
ds

� V� sin 

R

�
;

��� D 2�
�dV

ds

C 2V
 sin 

R

�
; (1.4)

where � is the liquid viscosity. Choosing as scales for R and s the radius R0, for
V
 and V� the velocity V
0, for h the thickness h0, and for the stresses parameter
�V
0=R0, we obtain, using (1.3) and (1.4), the following dimensionless system:

dV


ds
D V 2

�

V
R
sin C Re�1

�
d

ds

	
�



V




� ���

V
R
sin 


C Fr�1 cos 

V

;

d 

ds
D
	
V
 � We�1R � Re�1 �



V



�1 �	 V 2
�

V
R
� We�1 � Re�1 ���

V
R



cos 

�Fr�1 sin 

V

� Eu

WeR


;

dV�

ds
C V�

R
sin D Re�1

�
d

ds

	
�
�

V




� �
�

V
R
sin 


;

dR

ds
D sin ;

dx

ds
D cos ; (1.5)

where dimensionless stress tensor components are

�

 D 2

	
2
dV


ds
C V
 sin 

R



; �
� D dV�

ds
� V� sin 

R
;

��� D 2

	
dV


ds
C 2V
 sin 

R



: (1.6)

The last two equations in (1.5) express obvious geometric relationships. The
dimensionless values

We D �h0V
2

0

2��
; Re D �R0V
0

�
; Fr D V 2


0

gR0
; Eu D .pi � po/R0

2��

are the Weber, Reynolds, Froude, and Euler numbers, correspondingly. The sys-
tem (1.5) requires formulation of conditions on the near and far ends of the film.
On the nozzle exit we have

xjsD0 D 0; RjsD0 D 1; V
 jsD0 D 1; V� jsD0 D �R0=V
0

D V�0=V
0 � V�;  jsD0 D  0; (1.7)

where� is the angular velocity (Fig. 2).
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The effect of the boundary conditions at the far end of an annular jet with x D L

appears to a great extent only in a narrow boundary layer and for fairly high does
not propagate upstream. In this context it is enough to solve Cauchy’s problem
(1.5)–(1.7).

2 Asymptotic Analysis

We consider the Newtonian liquid films in the equality conditions of the outer and
inner static pressures (Eu D 0/; gravity effect is neglected (Fr ! 1/. It follows
from (1.5) and (1.7) that at a definite value of the rotation velocity at the nozzle
exit V� D We�1=2 and with  0 D 0 for ideal liquid (inverse Reynolds number
" D Re�1 ! 0/, there are no oscillations, and R � 1; consequently, the middle
surface of the film has a cylindrical shape (see Appendix).

For the given initial rotation velocity and the film exit angle such that

V� D We�1=2 C ˇ�; ˇ� << We�1=2;  0 << 1; (2.1)

small oscillations in the main parameters of the film must take place along x-axis,
and the presence of viscosity cannot alter this picture qualitatively. Consequently,
assuming that the inequalities (2.1) are fulfilled, we represent the unknown values
in the form

V
 D 1C ˛.s/; V� D We�1=2 C ˇ.s/; R D 1C �.s/; (2.2)

where ˛ and � are small in comparison with unity and ˇ is small in comparison
with We�1=2.

The representation (2.2) for R is not subject to doubt when  0 D 0; in the case
0 <  0 << 1 we may also expect a solution oscillating periodically near R D 1

which will be constructed in what follows. In linear approximation s 	 x and

 	 sin 	 tan D dR=dx D d�=dx << 1: (2.3)

Substituting (2.2) and (2.3) into (1.5) and (1.6), we obtain after linearization with
respect to ˛; ˇ, and �

d˛

dx
D We�1 d�

dx
C "

	
4
d2˛

dx2
C 2

d2�

dx2



;

d 2�

dx2
D �

1 � We�1��1
�

We�1 �2ˇWe1=2 � � � ˛� � "
	
2
d˛

dx
C 4

d�

dx



;

dˇ

dx
D � We�1=2 d�

dx
C "

	
d2ˇ

dx2
� We�1=2 d 2�

dx2



: (2.4)
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Using (2.1) and (2.3) for (1.7), we find that the solutions of the system (2.4) must
satisfy the conditions

˛jxD0 D � jxD0 D 0; ˇjxD0 D ˇ�; d�=dx j xD0 D  0: (2.5)

Integrating the first and the third equations of the system (2.4), we obtain

˛ D C1 C We�1� C "

	
4
d˛

dx
C 2

d�

dx



;

ˇ D D1 � We�1� C "

	
dˇ

dx
� We�1 d�

dx



; (2.6)

where C1 and D1 are indeterminate constants. Substituting (2.6) into the second
equation of the system (2.4) and neglecting values O

�
"2
�

we get the following
equation:

d2�

dx2
C �

3C We�1

We � 1
D 2We1=2D1 � C1

We � 1 � 4 "
We C 1

We � 1
� d�
dx
: (2.7)

Let us find the solution of this equation in the case of low viscosity, Re >> 1, by
means of the asymptotic multi-scale method [8, 12]. Note that for typical values of
the parameters, � D 103 kg/m3; R0 D 10�2 m, V
0 D 1:0m/s, the value of " is
low, due to Re 	 104. Since the important effect of viscosity can appear only at far
downstream the film exit, we introduce the slow variableX D "x D O.1/, which is
locally independent from x. Representing the solution in the form of the asymptotic
series � D �0 C "�1 and neglecting terms of order higher than Re�1, we obtain,
from (2.7),

@2

@x2
.�0 C "�1/C 2"

@2�0

@x@X
C 3C We�1

We � 1 .�0 C "�1/ D 2We1=2D1 � C1
We � 1

� 4" .We C 1/2

We .We�/
@�0

@x
: (2.8)

Separating out the dominant terms from (2.8), we obtain the equation

@2�0

@x2
C �0

3C We�1

We � 1 D 2We1=2D1 � C1
We � 1

;

whose solution is

�0 D A.X/ eimx C B.X/ e�imx C �r ; m D
h 3We C 1

We.We � 1/
i1=2

;

�r D 2We1=2D1� C1
3C We�1 : (2.9)
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It is assumed that in practice We > 1. In order to determine the unknown functions
A and B in (2.9), we will consider the terms of the order " in (2.8):

@2�1

@x2
Cm2�1 D �4" .We C 1/2

We .We � 1/
@�0

@x
� 2

@2�0

@x@X
: (2.10)

Substituting (2.9) in the r.h.s. of (2.10) and requiring absence solutions of type �1 �
x exp .˙imx/, which are inadmissible in an asymptotic series, we obtain

A D A0e
�PX ; B D B0e

�PX ; P D 2 .We C 1/2

We .We � 1/
; (2.11)

where A0 and B0 are arbitrary constants.
Cutting off the asymptotic series, we obtain by means of (2.9) and (2.11)

�0 D A0e
�PXCimx C B0 exp e�PX�imx C �r : (2.12)

In accordance with conditions for � in (2.5) and (2.12), we obtain

A0 D �1
2
Œi . 0=m/C �r � ; B0 D 1

2
Œi . 0=m/ � �r � :

These latter equations give, with allowance for (2.12),

� D �r
�
1 � e�PX cosmx

�C  0

m
e�PX sinmx: (2.13)

Using (2.13) and omitting in (2.6) the important terms of order ", we obtain

˛ D C1 C �r We�1 �1 � e�PX cosmx
�C We�1  0

m
e�PX sinmx;

ˇ D D1 � �r We�1=2 �1 � e�PX cosmx
� � We�1  0

m
e�PX sinmx:

(2.14)

By means of the boundary conditions (2.5) for ˛ and ˇ we find from (2.14) that
C1 D 0; D1 D ˇ�. Using Eqs. (2.2), (2.9), (2.11), (2.13), and (2.14), we find

R D 1C 2
3
ˇ�

We3=2

WeC 1
3

�
1 � e�PX cosmx

�C  0
m
e�PX sinmx;

V
 D 1C 2
3
ˇ�

We3=2

WeC 1
3

�
1 � e�PX cosmx

�C  0
m

We�1 e�PX sinmx;

V� D We�1=2 C 1
3
ˇ�

WeC1
WeC 1

3

C 2
3
ˇ�

We3=2

WeC 1
3

e�PX cosmx �  0
m

We�1=2 e�PX sinmx;

 D 2
3
ˇ�

We3=2

WeC 1
3

m e�PX sinmx C  0 e
�PX cosmx;

X D "x; m D �
3WeC1

We.We�1/
�1=2

; P D 2.WeC1/2
We.We�1/ ; We > 1:

(2.15)
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The thickness of the film is calculated by using the continuity equation as h D
1=RV
 . We also note that the general solution of the system (2.4) has the form

� D e�PX .F1 sinmx C F2 cosmx/C �r C O ."/ ;
˛ D C2 e

�L�x
4 " C We�1 e�PX .F1 sinmx C F2 cosmx/C �r We�1 C C1 C O ."/ ;

ˇ D D2 e
�L�x

4 " � We�1=2 e�PX .F1 sinmx C F2 cosmx/��rWe�1=2CD1CO ."/ ;
(2.16)

where the new indeterminate constants F1; F2; C2, and D2 appear. It is easily seen
that there is a boundary layer of thickness O ."/ far downstream nozzle exit, x D L,
where perturbations of the velocity components ˛ and ˇ are finely adjusted to the
boundary conditions ˛jxDL D ˛L; ˇjxDL D ˇL, where ˛L and ˇL are prescribed
values.

Outside this boundary layer the first terms in the expressions for ˛ and ˇ in (2.16)
are unimportant like the terms of order O ."/, and the four constants F1; F2; C2,
and D2 are determined by the boundary conditions (2.5). The values C1 and D1

coincide with those given above, and moreover we have

F1 D  0=m; F2 D �2
3

ˇ�We3=2

We C 1
3

:

Correspondingly, (2.16) gives rise to the asymptotic solution (2.15) which holds
everywhere outside a narrow layer of thickness O."/ in the vicinity x D L. The
boundary conditions at x D L determine the constants C2 and D2. The solution
constructed for the problem (2.15) describes the main effect due to the influence of
low viscosity: at a large downstream distance the low viscosity makes a contribution
comparable with the oscillation amplitudes of s, which decreases as a result.

It is easy to be satisfied by means (2.15) that in the considered approximation
(when the interaction between liquid film and ambient media is assumed to be
neglected) the kinetic energy

E D 1

2
�
�
V 2

 C V 2

�

�

of the liquid (exactly like the momentum projection on the x-axis, �RV�/ is
conserved and only an energy transfer from the rotational to the longitudinal motion
takes place, and vice versa, as it happens in the absence of viscous stresses.

It follows from (2.15) that with increaseX the oscillations damp, and the film has
parameters which differ from those on the nozzle exit. Thus, when ˇ� > 0, the film
expands, and the longitudinal velocity component increases, while the rotational one
decreases.



208 Gaissinski I. et al.

3 Laminar Jet with Different Outer and Inner Pressures
of Ambient Media

Laminar flows of rotating annular jets may be described by the Navier–Stokes
equations in orthogonal coordinate system fs;n; �g attached to the middle surface
of the jet as it was shown in Fig. 2. We introduce an additional dimensionless term,
�, considering the pressure drop between outer, “o,” and inner, “i,” media:

� D p o,st � p i,st

�V 2

0

;

where p o,st and p i,st are the outer and inner static pressures, accordingly. We
introduce the variable N D n"�1

0 and present the solution in the form of a power
series expansion with the parameter "0 D Re�1=2, assuming the normal velocity and
thickness of the jet to be small values of first order. In the first approximation, we
obtain a system of equations describing the rotating liquid jet flow in the form

@

@s
.RV
/C @

@N
.RVn/ D 0;

V

@V


@s
C Vn

@V


@N
D Fr�1 cos C !2R sin C @2V


@N 2
� V 2




r0.s/

D � @p

@N
� Fr�1 sin C !2R cos ;

V

@!

@s
C Vn

@!

@N
D �2 V
!

R.s/
sin C @2!

@N 2
: (3.1)

In the system (3.1), we define r0.s/ � k�1.s/ as the curvature radius of the jet
surfaceR.s/ and ! as the angular velocity. The equations of the middle surface and
bounding surfaces of the jet have, respectively, the form

dR

ds
D sin ;

dx

ds
D cos ; N D 0; (3.2)

V
;l
dıl

ds
D 2Vn;l ; N D 1

2
.�1/lC1 ı.s/; l D

�
1; for outer surface “o”;
2; for inner surface “i”:

(3.3)

The boundary conditions on the interfaces express the absence of tangential stresses
and the discontinuity of the normal stresses and, in the considered approximation,
have the form

@V


@N
D 0; pl D pl; st C 2 .�1/lC1 �sR�1

s ; N D 1

2
.�1/lC1 ı.s/; 2

Rs

D 1

R.s/
cos � d 

ds
: (3.4)
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Here, Rs is the effective curvature radius of the middle surface at the considered
point; ı is the liquid film thickness; �o and �i are the liquid surface tension
coefficients at the outer and inner surfaces of the liquid film, �s D 1

2
.�i C �o/.

If the tangential and angular velocity profiles at the nozzle exit, s D 0, are uniform
and have minor differences from the profiles for s > 0, V
 D V
.s/; ! D !.s/,
then the first, third, and fourth equations of the system (3.1) have, with allowance
for (3.3), the form

RV
ı D Q0 D const; V

dV


ds
D Fr�1 cos C!2R sin ; V


d!

ds
D �2!V


R
sin :

(3.5)

Let us consider the second equation of (3.1). For fixed value of the coordinate s, it
is an ordinary equation of the first order in P :

dp

dN
D �Fr�1 sin C V 2


 =r0.s/C !2R.s/ cos :

Integrating it across the film and using the boundary conditions (3.4) we find

po � pi D �
Fr�1 sin � V 2


 =r0.s/ � !2R.s/ cos 
�
ı.s/:

Expressing by means of the jet shape curvature and using (3.4), we obtain the
following equation:

d 

ds
D cos � R Eu C �

Fr�1
0 sin � We�1

0 !
2R cos 

�
=V


R � We�1
0 V


;

We�1
0 D 1

2
Q0 Wes ; Fr�1

0 D 1

2
Q0 WesFr�1; Eu D 1

2
Wes�; (3.6)

where Wes D 2Wei Weo= .Wei C Weo/ is the average Weber at the middle surface of
the liquid film. Here, the dimensionless parameters of the problem are replaced by
modified dimensionless numbers in accordance with formulas of [2], whereQ0 D 1

was taken.
Thus, the problem of the flow of incompressible liquid jet in an ideal undisturbed

medium reduces to Cauchy’s problem for the system of ODE ( (3.2), (3.5), and (3.6))
with initial conditions

V
.0/ D 1; !.0/ D �; R.0/ D 1;  .0/ D  0: (3.7)

Equations (3.5) in the case Fr�1
0 D 0 can be integrated. With allowance for the

initial conditions (3.7), we find

!.s/ D �=R2.s/; V
 .s/ D
p
1C�2 Œ1 � 1=R.s/�: (3.8)
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We use the expression (3.8) to calculate the surface radius R� in the critical section
(where the tangential velocity component vanishes) that can take a place in the limit
of high initial rotation velocity,� >> 1:

R� D �=
p
1C�2: (3.9)

It follows from (3.9) that for strong initial rotation,� >> 1, all R� .�/ nears unity,
and the critical sections are asymptotically shifted to the start of the flow.

4 Numerical Simulations

Now we study the evolution of rotating annular jet (film) of an ideal liquid. This
problem was formulated in Sect. 1 (system (1.5)) for " D Re�1 ! 0 with initial
conditions (1.7). After transformation of this system to a form which is solved for
derivatives, Cauchy’s problem indicated is integrated numerically by the Runge–
Kutta method. The Runge and Kutta method showed that by combining the results
of two additional Euler steps, the error can be reduced to O.h5/.

These algorithms can be extended to arbitrarily large first-order systems of ODE:

dyi
ds

D fi ."; s; y1.s/; : : : ; yM .s// ; i D 1; : : : ;M;

yi .s0/ D yi;0:
(4.1)

The Runge–Kutta fourth-order method for this problem is given by the following
equations:

snC1 D sn C h;

yi;nC1 D yi;n C 1
6

�
k
.1/
i C 2k

.2/
i C 2k

.3/
i C k

.4/
i

�
;

(4.2)

where h D .sN � s0/=N is the step, n D 0; : : : ; N

k
.1/
i D hfi ."; sn; y1;n; : : : ; yM;n/ ;

k
.2/
i D hfi

	
"; sn C 1

2
h; y1;n C 1

2
k
.1/
1 ; : : : ; yM;n C 1

2
k
.1/
M



;

k
.3/
i D hfi

	
"; sn C 1

2
h; y1;n C 1

2
k
.2/
1 ; : : : ; yM;n C 1

2
k
.2/
M



;

k
.4/
i D hfi

�
"; sn C h; y1;n C k

.3/
1 ; : : : ; yM;n C k

.3/
M

�
: (4.3)



Rotational Liquid Film Interacted with Ambient Gazeous Media 211

The calculations for the interval ŒsN � s0� are considered complete if

max
i2Œ1;M�

� ˇ̌
y
.h=2/
i;N � y.h/i;N

ˇ̌
= max
i2Œ1;M�

�ˇ̌
y
.h/
i;N

ˇ̌
;
ˇ̌
y
.h=2/
i;N

ˇ̌��
< "0;

y
.h/
i;N D yi .sN /

ˇ̌
hD.sN�s0/=N ; y

.h=2/
i;N D yi .sN /

ˇ̌
h=2D.sN�s0/=2N ; (4.4)

where "0 is the calculation error.
To calculate an annular jet of viscous liquid one of the perturbation theory meth-

ods may be used, namely, the method of successive approximation in [8,12]. The first
step consists of calculating the velocity distribution in an ideal liquid film, in a grav-
itational field: Cauchy’s problem (1.5)–(1.7) for " D 0. In the next step the velocity
distributions and the derivatives dV
=ds; dV�=ds; d =ds; dR=ds, and dx=ds
may be found analytically using the solutions V .0/


 ; V
.0/

� ,  .0/, R.0/; and x.0/ of the
system (1.5) obtained for " ! 0. Then, using the already obtained data, the stresses
�

 ; �
� ; ��� and derivatives d.�

 =V
/=ds, d.�
�=V
/=ds can be determined to
solve the system (1.6), which should be integrated together with (1.5) for the general
case " ¤ 0.

The solution to (4.1) will be found using iteration procedure below:

dy
.0/
i =ds D fi .0; s; y1.s/; : : : ; yM .s// ;

dy
.1/
i =ds D fi

�
"; s; y

.0/
1 .s/; : : : ; y

.0/
M .s/

�
;

dy
.2/
i =ds D fi

�
"; s; y

.1/
1 .s/; : : : ; y

.1/
M .s/

�
;

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
dy

.q/
i =ds D fi

�
"; s; y

.q�1/
1 .s/; : : : ; y

.q�1/
M .s/

�
:

Follow the estimation
��y.q/i � y.q�1/

i

��
L2Œ0;S�

� ��fi
�
"; s; y

.q�1/
1 .s/; : : : ; y

.q�1/
M .s/

�

�fi
�
"; s; y

.q�2/
1 .s/; : : : ; y

.q�2/
M .s/

���
L2Œ0;S�

� R S
0

ˇ̌
ˇfi
�
"; s; y

.q�1/
1 .s/; : : : ; y

.q�1/
M .s/

� � fi
�
"; s; y

.q�2/
1 .s/; : : : ; y

.q�2/
M .s/

�ˇ̌ˇ ds
� j"jq kfikL2Œ0;S � � j"jqKi �!

q!1 0

for all functions fi limited on compact Œ0; S�. As a rule, for " << 1, it is enough to
limit of only the first iteration, q D 1. The implementation of this method leads to
the following ODE system:

dV
.0/



ds
D V

.0/
� V

.0/
�

V
.0/

 R.0/

sin .0/ C Fr�1

V
.0/



cos .0/;

d .0/

ds
D cos .0/

V
.0/

 � We�1R.0/

�
V
.0/
� V

.0/
�

V
.0/

 R.0/

� We�1 � Fr�1

V
.0/



tan .0/ � Eu
We

R.0/

cos .0/

�
;

dV
.0/
�

ds
D �V

.0/
�

R.0/
sin .0/:
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Calculating the terms in (4.1) and multiplying " D Re�1 by the second derivations
d2V

.0/

 =ds2 and d2V .0/

� =ds2, one obtains

Re�1� d
ds

�
�


V


� � ���
V
R

sin 
� 	 "

�
d
ds

�
�


V


�� ���
V
R

sin 
�ˇ̌
V
DV .0/
 ;V�DV .0/� ; RDR.0/; D .0/

D " 4

V
.0/



h
d2V

.0/



ds2
� dV

.0/



ds

�
1

V
.0/



dV
.0/



ds
C 1
2

sin .0/

R.0/

�
C V

.0/



2R.0/

�
cos .0/ d 

.0/

ds
� 3 sin2  .0/

R.0/

�i

Re�1 �


V


	 �


V


Re�1 ˇ̌
V
DV .0/
 ;V�DV .0/� ;RDR.0/; D .0/ D 2"

�
2 1

V
.0/



dV
.0/



ds
C sin .0/

R.0/

�
;

Re�1 ���
V
R

	 ���
V
R

Re�1 ˇ̌
V
DV .0/
 ;V�DV .0/� ;RDR.0/; D .0/ D 2"

R

�
1

V
.0/



dV
.0/



ds
C 2 sin .0/

R.0/

�
;

(4.5)

Re�1� d
ds

�
�
�
V


� � �
�
V
R

sin 
�	"� d

ds

�
�
�
V


� � �
�
V
R

sin .0/
�ˇ̌
V
DV .0/
 ;V�DV .0/� ;RDR.0/; D .0/

D "

�
1

V
.0/



d2V
.0/
�

ds2
� V

.0/
�

V
.0/



cos .0/

R.0/
d .0/

ds
�
�

1

V
.0/



dV
.0/



ds
C 2 sin .0/

R.0/

�	
1

V
.0/



dV
.0/
�

ds
�V

.0/
�

V
.0/



sin .0/

R.0/




(4.6)

d2V
.0/



ds2
D d

ds

" �
V
.0/
�

�2

V
.0/

 R.0/

sin .0/ C Fr�1 cos .0/

V
.0/



#

D V
.0/
�

V
.0/



�
sin .0/

R.0/

	
2
dV

.0/
�

ds
� V

.0/
�

V
.0/



dV
.0/



ds
� V

.0/
�

R.0/
sin .0/



� Fr�1

V
.0/

 V

.0/

�

dV
.0/



ds

C
	
V
.0/

�

R.0/
cos .0/ � Fr�1 sin .0/

V
.0/
�



d .0/

ds


;

d2V
.0/
�

ds2
D � d

ds

�
V
.0/
�

R.0/
sin .0/


D � sin .0/

R.0/

	
dV

.0/
�

ds
� V

.0/
�

R.0/
sin .0/



� V

.0/
�

R.0/
cos .0/ d 

.0/

ds
:

(4.7)

Substituting the results (4.5) into the base system (1.5)–(1.6), we obtain finally

dV

ds

D F1 .s; V
 ; V� ;  ;R/C "G1 .s; V
 ; V� ;  ;R/ ;

d 

ds
D
nh

V 2�
V
R

� We�1 � " 2
R

�
F1.:/

V

C 2 sin 

R

�i
cos � Fr�1

V

sin � Eu

WeR
o

�
h
V
 � We�1R � 2"

�
2F1

.:/

V

C sin 

R

�i�1

dV�
ds

D F2 .s; V
 ; V� ;  ;R/C "G2 .s; V
 ; V� ;  ;R/ ;

dR
ds

D sin ; dx
ds

D cos ;

(4.8a)
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where

F1.:/ D V 2�
V


1
R

sin C Fr�1 cos 
V

; F2.:/ D �V�

R
sin ;

G1.:/ D 4 V�
V 2


n
sin 
R

�
2F2.:/ � V�

V

F1.:/ � V�

R
sin 

�
� V


V�
F1.:/

�
F1.:/

V

C 1

2

sin 
R

�

� Fr�1

V


F1.:/

V�
C cos2  

V
� We�1R

�
V 2�
V


1
R

� We�1 � Fr�1 tan 
V


� Eu
We

R
cos 

�

�
�
V�
R

� Fr�1 tan 
V�

C 1
2R

V 2

V�

�
� 3

2

V 2

V�

sin2  
R2

o
;

G2.:/ D �
h
2 V�
V
R

cos2  
V
� We�1R

�
V 2�
V


1
R

� We�1 � Fr�1 tan 
V


� Eu
We

R
cos 

�

C 1
V


sin 
R

�
F2.:/ � V�

R
sin 

�C
�
F1.:/

V

C 2

sin 
R

� �
F2.:/

V

� V�

V


sin 
R

�i
:

(4.8b)
Solving the system (4.8a,b) with initial conditions (1.7) numerically using Runge–
Kutta algorithm (4.2)–(4.4), one obtains a new velocity distribution V
 ; V� and the
liquid film shape R.x/ with allowance for viscosity.

For the case without rotation, when V� jsD0 D 0, the system (4.8a,b) is sufficiently
simplified:

dV

ds

D F1 .s; V
 ;  ;R/C "G1 .s; V
 ;  ;R/ ;
d 

ds
D �

nh
We�1 C " 2

R

�
F1.:/

V

C 2 sin 

R

�i
cos C Fr�1 sin 

V

C Eu

WeR
o

�
h
V
 � We�1R � 2"

�
2
F1.:/

V

C sin 

R

�i�1
;

dR
ds

D sin ; dx
ds

D cos ;

where

F1.:/ D Fr�1

V

cos ;

G1.:/ D �4
n
F1.:/

V


�
F1.:/

V

C 1

2

sin 
R

�
C Fr�1

V


F1.:/

V 2

C 3

2

sin2  
R2

C cos2  
V
� We�1R

�
We�1 C Fr�1 tan 

V

C Eu

We
R

cos 

� �
1
2R

� Fr�1 tan 
V 2


�o
:

The numerical simulations were provided using MAPLE. The main results are
present in Fig. 3 for the case with po D pi .Eu D 0/, We D 13:74, Fr D 5:01� 104
for two different Reynolds numbers, Re = 2,000 (Fig. 3a) and Re D 100 (Fig. 3b).

To show that the values R .x/ are not zero for x > 5 in Fig. 3 (line (a)) we
presented their numerical values (see Table 1). It can be seen the valueR .x/ > 10�3
even for x > 12.

To show agreement between results obtained from asymptotic analysis to
numerical ones, let us consider the ideal liquid film (" D 0/ for the case We D
7:14; Fr D 1; V
 jsD0 D 1:0,  jsD0 D 0, V� jsD0 D 1:2We�1=2 D 0:44 on the
interval x 2 Œ0; 25�. This case corresponds to situation when the middle surface of
the film has to oscillate in a stable flow according to (2.15) obtained in Sect. 2. The
results are shown in Fig. 4a.
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Fig. 3 Shape of the liquid film for the conditions: We D 13:74, Fr D 5:01 � 104; Re D 2; 000

case (a), Re = 100 case (b). Boundary conditions: x
jsD0 D 0; R

jsD0 D 1; V

jsD0 D 1;  

jsD0 D
0; V�

jsD0 D 0:001; 0:01, 0:1; 0:5; 1:0; the lines correspond to V� jsD0 D (a) ! 0; (b) !
0:01; (c) ! 0:1; (d) ! 0:5; (e) ! 1:0

Table 1 Numerical form of the shape R.x/

s 1 2 3 4 5 6 7

x.s/ 0.99 1.99 2.97 3.94 4.88 5.87 6.87
R.s/ 0.96084 0.84422 0.65247 0.38957 0.06469 0.00462 0.00395
s 8 9 10 11 12 13 14
s 7.87 8.87 9.87 10.87 11.87 12.87 13.87
x.s/ 0.00345 0.00307 0.00276 0.00251 0.00229 0.00212 0.00195

It can be seen that for the case with ideal liquid we obtain undamped oscillations
(Fig. 4a, red line) while accounting for viscosity; " D Re�1 D 0:01 leads to natural
damping.

Let us compare our modeling with numerical results [3] (Fig. 4b) with exper-
iment [9] provided for an annular liquid jet with parameters Re D 100; We D
110; Fr D 1; Eu D 0 and the initial angular velocities V� jsD0 D 2:0; 4:0.
Comparison shows good agreement of our model (solid lines) with experimental
data (dash lines).
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Fig. 4 (a) Shape of the liquid film for the conditions: We D 7:143; Fr D 1; " D 0; 0:01;
boundary conditions: xjsD0 D 0; RjsD0 D 1; V
 jsD0 D 1; V� jsD0 D 1:2We�1=2 D
0:44;  jsD0 D 0; line a corresponds to " D Re�1 D 0, line b—" D Re�1 D 0:01. (b)
Shape of the liquid film for the conditions: We D 110; Fr D 1; Re D 100; Eu D 0, boundary
conditions: xjsD0 D 0; RjsD0 D 1; V
 jsD0 D 1; V� jsD0 D 2:0; 4:0;  jsD0 D 0; the lines a
and b correspond to V� jsD0 D 2:0 and 4:0, accordingly; dash lines for 0 � x � 400—experiment
[3, 9]

Our next step is to compare lines a and b with numerical lines a� and b�
obtained for the oil annular rotational jet (for results, see Fig. 5a) with the following
parameters and properties: flow rate Pm D 0:01777 kg/s, initial geometry sizes
R0 D 0:002m, ı0 D 1:524 � 10�4 m, fluid density � D 765 kg/m3, viscosity
� D 9.2 � 10�4 kg/m � s, and surface tension �� D 0:025N/m [1], for the case when
the inner pressure differs from outer one, �p ¤ 0, and pressure difference between
inner and outer pressures is �p D 21, 138 kPa. These conditions correspond to
the Euler numbers 2:6 � 103; 1:7 � 104; We = 347.0, Fr =7586, and Re = 20,000
correspond to the conditions above.

Comparing our simulations with experiment [10] for a water annular jet without
rotation, the nozzle diameter D0 D 1:0mm and the pressure drop �p D 2:4 Pa
show good agreement for the two variants of inlet velocities, Vin D 0:8 and 1.6 m/s
(Fig. 5b). Solid lines correspond to our calculations, and symbols � and  to
experimental data for Vin D 0:8; 1:6m/s, respectively.
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Fig. 5 (a) Longitudinal velocity V
 evolution along the axial coordinate x for the conditions:
We D 347:0; Fr D 7586, Re D 20; 000, Eu D 2:6 � 103; 1:7 � 104; boundary conditions: xjsD0 D
0; RjsD0 D 1; V
 jsD0 D 1:5, V� jsD0 D 0:5;  jsD0 D 0; a and a � �p D 21 kPa, b and
b��p D 138 kPa. (b) Longitudinal velocity on the axial coordinate x for the boundary conditions:
xjsD0 D 0; RjsD0 D 1; V
 jsD0 D 1; V� jsD0 D 0;  jsD0 D 0; (a) We D 2:2; Fr D 1:3,
Vin D 0:8m/s, Eu D 0:00868; (b) We D 8:8; Fr D 5:2; Vin D 1:6m/s, Eu D 0:00868

5 Analysis of Nonlinear Instability in Meridional
Cross Section

Instabilities leading to oscillations in some particular properties of a system are
intimately related to pattern formation. Nontrivial patterns form spontaneously
as a result of the occurrence and propagation of the fronts of instability.
These spontaneous patterns can be turned into functional structures at the
corresponding length scale when the pattern-forming processes are properly
designed and controlled. In this work, we propose a scenario for mass transfer
instability in one-dimensional flow of a one-component fluid near its discontinuous
liquid–gas phase transition. Instability leading to density oscillations occurs when
the system fails to support steady-state flow due to the absence of mechanically
stable uniform state as a consequence of a discontinuous transition. The main
hydrodynamic instabilities are the Rayleigh–Taylor and Kelvin–Helmholtz [6, 8].
The instability approaches may be conditionally divided into two parts, linear and
nonlinear. The linear approach is well known and simple for study, but it shows
only which oscillating modes are stable and which are unstable. Nonlinear approach
shows the singularities of the surface between jet and surrounding media that appear
as a result of the spatial instability development. In this paragraph we will consider
nonlinear approach to study instability in meridional cross section of the jet.

The hydrodynamic instability has 3D character, but for qualitative analysis we
limit our research to study the Rayleigh–Taylor instability in meridional planeR; �
assuming the flow to be cylindrically axisymmetric. Then the motion equation may
be written as [7]
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Fig. 6 (a) k-petal rose: Z.�; t/ D exp.i�/ � �k�1 exp.ik�/ with k D ˙8; j�j < 1.
(b) Self-intersecting k-petal rose: Z.�; t/ D exp.i�/� �k�1 exp.ik�/ with k D ˙8; j�j D 1

�
@2r
@t2

D �p.r; �; t/

	
ez � @r

@�



; (5.1)

where � is Lagrange coordinate, i.e., dm D �d�, and�p D pi � po is assumed to
be constant. SubstitutingZ D xC iy D r exp .i�/ transforms (5.1) to the equation
in polar coordinates

�
@2Z

@t2
D i�p

@Z

@�
: (5.2)

Assuming that at the nozzle exit cross section the cylindrical film rotates with
angular velocity � D V�;0=R0 and has zero radial velocity, the initial conditions
are given as follows:

Z .�; 0/ D exp .i�/ � �0

k
exp .ik�/ ;

@Z .�; 0/

@t
D i�Z .�; 0/ ; (5.3)

where j�0j < 1 and k is a wave mode. Note that the second initial condition is
sufficiently different from the similar one in [6]. Let us find the solution to the
problems (5.2) and (5.3) in the form (Fig. 6a)

Z.�; t/ D R.t/
�
exp.i�/ � �.t/k�1 exp.ik�/

�
: (5.4)
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Note that at j�.t/j � 1 the curve Z.�; 
/ becomes self-intersecting (k-petal rose).
Fig. 6b illustrates k-petal rose (for � D 1/. It would appear natural to assume that
the film lives up to an instant of time t� such that j� .t�/j D 1. Substituting (5.4)
into (5.2) gives the system

d2�

d
2
C 2

R

dR

d


d�

d

D a�.
/.1 � k/;

d 2R

d
2
D �aR.t/; a D 1

2�
Eu=We

(5.5)
with initial conditions

R.0/ D 1;
dR

d


ˇ̌

D0 D V�

ˇ̌

D0 D V�; �.0/ D �0;

d�

d


ˇ̌

D0 D 0: (5.6)

Here 
 D t=t0 and t0 D R0=V
0. Obviously, the system (5.5) splits onto two
equations. The second one with its boundary conditions (5.6) accepts analytical
solution

R.
/ D

8̂
<
:̂

cos
p
a
 C V�p

a
sin

p
a
; �p > 0

V�
 C 1; �p D 0
1
2

��
1C .V�=

pjaj/� exp
�pjaj
�C �

1 � .V�=
pjaj/� exp

��pjaj
��; �p < 0:
Substituting (5.4) into the first equation of the system (5.5) gives

d2�
d
2

C F.
/d�
d


D sign .�p/ jaj.1 � k/�.
/;

F.
/ D 2
pjaj �

8
<
:

b�tan
p
a 


1Cb tan
p
a 

; �p > 0

bCtanh
pjaj 


1Cb tanh
pjaj 
 ; �p < 0;

�.0/ D �0;
d�
d


ˇ̌

D0 D 0;

(5.7)

where b D V�=
pjaj D V�

p
2� We=Eu. In the case when pressure drop is

absent (5.7) has a trivial solution, � D �0. In general case the problem (5.7) accepts
analytical solution:

�.
/ D �0pjkj

8
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂:

1
cos

p

a 
Cb sin
p

a 


(
cos

p
ak 


�p
k C b tan

p
ak 


�
; k > 0

cosh
p
ajkj 
�pjkj C b tanh

p
ajkj 
�; k < 0 �p > 0

pjkj; �p D 0

1

cosh
p

jaj 
Cb sinh
p

jaj 


(
cosh

pjakj 
�pjkj C b tanh
pjajk 
�; k > 0

cos
pjakj 
�pjkj C b tan

pjakj 
�; k < 0
�p < 0

(5.8)

For nonrotating jet, V� D 0, the solution (5.8) is transformed to the simple form

�.
/ D �0

8
ˆ̂̂̂
<̂
ˆ̂̂̂
:̂

cos
p
ak 
= cos

p
a 
; k > 0

cosh
p
ajkj
= cos

p
a 
; k < 0

�p > 0;

1; �p D 0;

cosh
pjajk 
= cosh

pjaj 
; k > 0
cos

pjakj 
= cosh
pjaj 
; k < 0 �p < 0:

(5.9)
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Fig. 7 Dependencies �.
/ for a D 0:125 and b D 0:8; modes k D 3; 4; 6; 8; 16

Fig. 8 Function �.
/ for a D 0:125 and b D 0:8; modes k D �3; �4; �6; �8; �16

Let us study the modes k D ˙2; ˙3; ˙4; ˙5; ˙6; ; : : : in a wide range
temporary interval, 
 > 100, for low initial value of parameter �0; �0 D 0:05.
Figures 7–10 show dependence � on dimensionless time 
 ; the curves correspond
to the wave numbers k D ˙3; ˙4; ˙6; ˙8; ˙16.

It can be seen that for positive value a, which corresponds to positive pressure
drop, �p > 0 and for wide range of parameter b D 0:8 � 25, all positive modes,
k > 1, are unstable (Fig. 7). This result can be obtained analytically. In fact, see (5.8)

�.
/ D �0
1C .b=

p
k/ tan

p
ak 


1C b tan
p
a 


� cos
p
ak 


cos
p
a 


; �p > 0; k > 0:

Thus, �.
/ ! 1, when 
 D �n=2
p
ak; n D 1; 2; : : : ; i.e., we obtain periodic

singular unstable points that are consistent with the results shown in Fig. 7.
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Fig. 9 Function �.
/ for a D �0:04 and b D 25:0; modes k D 3; 4; 6; 8; 16

Fig. 10 Function �.
/ for a D �0:04 and b D 25:0; modes k D �3; �4; �6; �8; �16

All modes with negative k are also unstable (Fig. 8). Really,

�.
/ D �0
1C .b=

pjkj/ tanh
p
ajkj 


1C b tan
p
a 


� cosh
p
ajkj 


cos
p
a 


; �p > 0; k < 0I

hence �.
/ ! 1, when 
 D �n=2
p
ak; n D 1; 2; : : : ; and at 
 ! 1, i.e.,

we obtain periodic singular unstable points and asymptotic instability. For negative
pressure drop corresponding to negative parameter a, all negative modes decreased
(Fig. 10), while all positive modes increased (Fig. 9). The results shown in Figs. 9
and 10 may be obtained analytically. Indeed, from (5.8), we have

�.
/ D �0
1C .b=

pjkj/ tanh
pjajk 


1C b tanh
pjaj 
 � cosh

pjakj 

cosh

pjaj 
 ; �p < 0; k > 0:



Rotational Liquid Film Interacted with Ambient Gazeous Media 221

Fig. 11 Function �.
/ for a D 0:04 and b D 0; modes k D 3; 4; 6; 8; 16

Fig. 12 Function �.
/ for a D 0:04 and b D 0; modes k D �3; �4; �6; �8; �16

Hence, �.
/ ! 1, at 
 ! 1, for all k < 0, when �p > 0, for all k > 0; and
for all k > 1, when �p < 0, i.e., there is asymptotic instability that is consistent
with Figs. 8 and 9. For negative pressure drop, �p < 0, one obtains �.
/ ! 0, at

 ! 1, for all negative modes, k < 0, i.e., there is asymptotic stability (compare
with Fig. 10). The lines �.
/ are gathering with increasing jaj as it plays a role
of dimensionless frequency in (5.8) and (5.9). In the case of nonrotating jet, when
parameter b D 0, and at positive pressure drop (a > 0), both the positive and
negative modes become unstable (Figs. 11 and 12) by comparison with the rotational
jet (Fig. 7).

For negative pressure drop, all positive modes are unstable (Fig. 9), and negative
modes are stable (similar to Fig. 10, i.e., in this case rotation does depend on the jet
stability). The rotating velocity affects jet stability so that only two of considered
positive modes, k D 4 and 16, become stable. The curves in Figs. 7, 8, 11, and 12
are periodic, so their behavior is shown in the range of one–two periods.
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6 Conclusion

The equations that described the flow of rotating annular jets of viscous liquid in an
undisturbed ideal medium are obtained and analyzed. The effect of surface tension
gravity forces and inner–outer pressure difference on jet behavior was considered.
Asymptotic analysis for low viscosity value (high Reynolds numbers) was carried
out. It is shown that energy transfer from the rotational to the longitudinal motion
takes place. The problem of a laminar jet flow with pressure difference between
outer and inner ambient area was formulated additionally.

It is shown that equations which describe this phenomenon can be reduced to
Cauchy’s problem for the system of ODE. This equation set was solved by the
method of successive approximation. The solution results are in good agreement
with test.

Nonlinear analysis of instability shows that the film instability in meridional
cross section is developed due to pressure difference. At positive pressure inner–
outer difference, �p > 0, two positive modes, k D 4; and16 are stable while all
negative modes, k < 0, are unstable. In the case �p < 0 all negative modes are
stable and all positive modes are unstable. These instabilities in meridional cross
section developed due to pressure drop cannot be stabilized by rotation; only two
modes, k D 14 and 16, become stable due to rotation.

7 Appendix

In the case of " � Re�1 D 0, Eu D 0; Fr ! 1 the problem (1.5)–(1.7) leads to
the system

dV

ds

D V 2�
V
R

sin ; dV�
ds

D �V�
R

sin ;
d 

ds
D cos 

R
� V 2� =V
� We�1R

V
� We�1R
; dR

ds
D sin ; dx

ds
D cos 

(7.1a)

with the boundary conditions

xjsD0 D 0; RjsD0 D 1; V
 jsD0 D 1; V� jsD0 D V�;  jsD0 D  0:

(7.1b)
Substituting the fourth equation into the first and the second ones gives

V

dV


ds
D V 2

�

R

dR

ds
;
1

V�

dV�

ds
D � 1

R

dR

ds
;
d 

ds

D cos 

R
� V

2
� =V
�We�1R
V
 � We�1R

;
dR

ds
D sin ;

dx

ds
D cos :
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Hence

V
 D
p
C1 � C2=.2R4/; V� D C=R;

d 

ds

D cos 

R
� V

2
� =V
�We�1R
V
 � We�1R

;
dR

ds
D sin ;

dx

ds
D cos :

Using boundary conditions one obtains

V
 D
q

1
2
V 2
� .1 �R�4/C 1; V� D V�=R;

d 

ds
D cos 

R
� .V 2�=R2/=Œ 12 V 2�.1�R�4/C1�� We�1R

1
2 V

2
�.1�R�4/C1� We�1R

; dR
ds

D sin ; dx
ds

D cos :
(7.2)

Proposition 1. When R D const;  D const; V
 D const, and V� D const

are the solution to (7.2), (7.1b) it is necessary and sufficient to have the boundary
values:  0 D 0; V� D We�1=2.

Proof. (1) Necessity. If R D const;  D const, then follow the initial condi-
tions (7.1b)R � 1,  � 0, and so the system (7.2) has a simple view:

R D const D 1;  D const D 0; V
 D const D 1; V� D const D V�;
d 

ds
D � cos V 2�� We�1

1� We�1 D 0:

The result V� D We�1=2 proves the necessity.
(2) Sufficiency. Let V� and  0 be equal to V� D We�1=2;  0 D 0, and we assume

that R ¤ const, V
 ¤ const, V� ¤ const, and  ¤ const are the solution
to (7.2) and (7.1a,b). Then the constant functions R D 1;  D 0; V
 D 1, and
V� D We�1=2 also satisfy the problem as it was proven in the previous point
1. Hence, because of the uniqueness theorem for Cauchy’s problem, only the
single solution, namely, R � 1;  � 0; V
 � 1; V� � We�1=2, satisfies
to (7.2) and (7.1a,b). ut

Acknowledgements The first, second, and fourth authors are grateful to Israel Science Foundation
(ISF) for the support (ISF Grant No 661/11).

References

1. Chuech S. G., Numerical simulations of non-swirling and swirling annular liquid jets, AIAA
Journal, 1993, Vol. 31, N. 6, 1022–1027

2. Epikhin V. E., Forms of annular streams of trickling liquid, Fluid Dynamics, 1977, Vol. 12,
N. 1, 6–10

3. Epikhin V. E., On the shapes of swirling annular jets of a liquid, Fluid Dynamics, 1979, Vol. 14,
N. 5, 751–755



224 Gaissinski I. et al.

4. Epikhin V. E. and Shkadov V.Ya., On the length of annular jets interacting with an ambient
medium, Fluid Dynamics, 1983, Vol. 18, N. 6, 831–838

5. Epikhin V. E. and Shkadov V. Ya., Numerical simulation of the nonuniform breakup of
capillary jets, Fluid Dynamics, 1993, Vol. 28, N. 2, 166–170

6. Gaissinski I., Kelis O., and Rovenski V., Hydrodynamic Instability Analysis, Verlag VDM,
2010

7. Gaissinski I. M., Kalinin A. V., and Stepanov A. E., The influence of the magnetic field on the
˛-particles deceleration, Sov. Journal of Applied Mechanics and Technical Physics, 1979, N. 6,
pp. 40–46

8. Gaissinski I. and Rovenski V., Nonlinear Models in Mechanics: Instabilities and Turbulence,
Sec. 4.1.7, Lambert, 2010

9. Kazennov A. K., Kallistov Yu. N., Karlikov V. P., and Sholomovich G. I., Investigation of thin
annular jets of incompressible liquids, Nauchn. Tr. Inst. Mekh. Moscow Univ., 1970, No. 1, p. 21

10. Kihm K. D. and Chigier N. A., Experimental investigations of annular liquid curtains, J. of
Fluid Engineering, 1990, Vol. 112, N. 3, 61–66

11. Lefebvre A. H., Atomization and Sprays, N.Y.: Combustion (Hemisphere Pub. Corp.), 1989
12. Nayfeh A. H., Perturbation Methods, Wiley Classic Library, Wiley–Interscience, 2004
13. Yarin A. L., Free Liquid Jets and Films: Hydrodynamics and Rheology, Longman Scientific &

Technical and Wiley & Sons, Harlow, New York, 1993



On Cycles and Other Geometric Phenomena
in Phase Portraits of Some Nonlinear Dynamical
Systems

Gaidov Yu. A. and Golubyatnikov V.P.

Abstract We show existence of cycles in some special nonlinear 4-D and 5-D
dynamical systems and construct in their phase portraits invariant surfaces contain-
ing these cycles. In the 5D case, we demonstrate non-uniqueness of the cycles. Some
possible mechanisms of this non-uniqueness are described as well.

Keywords Dynamical system • Cycle

Mathematics Subject Classifications (2010): 34C05, 34C25, 92C45, 37E99

We study geometric properties of phase portraits of nonlinear dissipative dynamical
systems considered as models of gene networks functioning. In some simple
cases, when the gene network is regulated by negative feedbacks only, all its
n biochemical species, such as proteins, RNA, etc., can be ordered cyclically:
x1; x2; : : : xn; xnC1 D x1 (see [8,11,13]). Here, xj � 0 denotes concentration of the
j th species in the gene network, j D 1; 2; : : : n. Usually, these negative feedbacks
are described by monotonically decreasing functions fj � 0 in the right-hand sides
of the chemical kinetics equations:

dxj

dt
� Pxj D fj .xj�1/� kj � xj ; j D 1; : : : ; n: (1)
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The nonnegative function fj describes here the rate of synthesis of the j th species,
and the negative term �kj �xj corresponds to the natural degradation of this species.
Just for simplicity of exposition, we consider below the dimensionless form of the
system (1), i.e., when kj D 1 for all j D 1; : : : ; n.

In theoretical considerations, and in numerical experiments (see, e.g., [6, 11,
13, 14]), the monotonically decreasing functions fj usually have either the form
fj .x/ D ˛j �.1Cx�j /�1, i.e., they are the Hill’s functions, or they have the threshold
piecewise constant form

Lj .w/ D Aj > 2 for 0 � w < 1I Lj .w/ D 0 for 1 � wI

here Aj D const. Note that such a threshold regulation corresponds to the value
�j D 1 in the Hill’s function case.

In our previous publications cited above, we have obtained some conditions of
existence, stability, and non-uniqueness of cycles in the cases of odd-dimensional
dynamical systems (1), i.e., if n D 2m C 1. It should be noted that the phase
portraits of even-dimensional dynamical systems of the type (1) have quite different
structure; see below.

Consider symmetric 5-dimensional dynamical system

dx1

dt
D f .x5/� x1I dx2

dt
D f .x1/ � x2I : : : dx5

dt
D f .x4/� x5: (2)

Here, the functions fj .x/ � f .x/ in all these equations coincide. Let ˛ D f .0/

be their maximal value. It was shown in [7] that the cube

Q D Œ0; ˛� � Œ0; ˛� � Œ0; ˛� � Œ0; ˛� � Œ0; ˛� � R
5C

is an invariant set of the system (2), and there is exactly one stationary point M0

of this system in the cube Q. Our main aim is to construct integral surfaces in the
phase portraits of the symmetric system (2) in the case of threshold functions f .x/
and to find periodic trajectories on these surfaces. But we start our exposition from
the smooth case.

For geometric description of phase portraits of this system, consider the partition
of Q by 5 hyperplanes containing the stationary point M0 2 Q and parallel to
the coordinate hyperplanes. It is easy to see that for symmetric system (2) all
coordinates of the point M0 are equal: x� WD x01 D x02 D x03 D x04 D x05 . So, we
get a collection of 32 small blocks, which can be enumerated by binary indices:

f"1"2"3 : : : "5g D fX 2 Q j x1 ?"1 x
�; x2 ?"2 x

�; : : : ; x5 ?"5 x
�g ; (3)

here X D .x1; x2; : : : ; x5/, "1; "2; : : : "5 2 f0; 1g, and the relations are defined as
follows: the symbol ?0 means �, and the symbol ?1 means �. The faces of these
blocks contained in the interior of Q (i.e., in the hyperplanes xj D x�) will be
called the interior faces.
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Similar constructions can be realized for higher-dimensional dynamical systems
and for threshold functions L.x/ as well. In this piecewise constant case, the role
of the stationary point plays the point E5 with coordinates f1; 1; 1; 1; 1g; thus, the
partition (3) here is determined by the inequalities xj ?"j 1.

Direct calculations of the signs of the right-hand sides of the system (2) show
that all its trajectories which start in the block f10101g travel through the blocks (3)
according to the cyclic diagram

f10101g ! f00101g ! f01101g ! f01001g ! f01011g ! f01010g !
! f11010g ! f10010g ! f10110g ! f10100g ! f10101g : : : (4)

Here, each trajectory of the system (2) passes through the common face of
two adjacent blocks according to the corresponding arrow in this diagram. This
construction implies that the union Q10 of 10 blocks listed in (4) is an invariant
domain of this system. In terms of [2], this domain belongs to the first potential level
of the phase portrait of the system (2). If this system is smooth, then its linearization
at the stationary pointM0 has the eigenvalues

�k D �1 � p �
	

cos
2�

5
.k � 1/C i � sin

2�

5
.k � 1/



; k D 1; 2; 3; 4; 5:

Here, p � �df .w/=dw > 0; all derivatives are calculated at the pointM0.
In the sequel we consider another enumeration of these eigenvalues; it corre-

sponds to the values of their real parts: Re�j � Re�jC1. It is easy to see that for
the system (2) Re�1 < Re�2 D Re�3 < 0.

Denote by P4;5 the 2-dimensional plane containing the point M0 and parallel
to the eigenvectors corresponding to the eigenvalues �4, �5 with maximal real
parts. Some open disks of this plane centered at the point M0 are contained in the
domainQ10.

If Re�4 D Re�5 > 0, then the stationary point M0 is hyperbolic (i.e., the real
parts of all eigenvalues are either strictly positive or strictly negative). It was shown
in [7] that if the point M0 is hyperbolic, then the invariant domain Q10 contains
at least one cycle of the system (2). From now on we assume that this point is
hyperbolic.

According to the well-known Grobman–Hartman theorem (see, e.g., [9]), each
nonlinear dynamical system can be linearized in some small neighborhood U.M0/

of each of its hyperbolic stationary point.
Thus, the eigenvalues �2, �3 correspond to an invariant 2-dimensional surface

…2;3 in the neighborhoodU.M0/. Let P2;3 be its tangent plane at the pointM0. This
surface becomes a part of corresponding 2-dimensional plane after the linearization
of the system (2) in U.M0/. On this surface …2;3, the trajectories of this system
travel through the blocks (3) according to the diagram

f11110g ! f11100g ! f11101g ! f11001g ! f11011g ! f10011g !
! f10111g ! f00111g ! f01111g ! f01110g ! f11110g : : : (5)
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Denote by OQ10 the union of all 10 blocks listed in this diagram. Following the proofs
of the main results of [3, 7, 8], one can verify that in contrast with (4), for each
block of the diagram (5), the trajectories of the system (2) can leave it through three
adjacent blocks. Only one of them is contained in OQ10.

In particular, the trajectories which start in the third block f11101g of the diagram
(5) can pass to the blocks f01101g, f10101g, and f11001g through the faces x1 D x�,
x2 D x�, x3 D x�, respectively. Only the last of these 3 blocks is mentioned in the
diagram (5), and the first two blocks listed here are contained in Q10.

Hence, if the pointM0 is hyperbolic, then some trajectories of the system (2) with
starting point in OQ10 are attracted to the cycle, which is contained inQ10. Thus, OQ10

is not invariant. In terms of [2], this domain belongs to the unstable potential level
3 of the phase portrait of the system (2).

As in the case of Q10, one can verify that the intersection OQ10 \ P2;3 contains
some disk centered at the point M0. Note that both these domains are non-convex
polyhedra with disjoint interiors, and they are star-shaped with respect to their
common vertex M0.

All these considerations can be reproduced for any odd-dimensional symmetric
dynamical system analogous to (2). For any pair of complex conjugate eigenvalues
�2j , �2jC1 of linearization of such .2m C 1/-dimensional system at its stationary
point, the diagrams analogous to (4) and (5) can be constructed as well. Here, for
any j � m, the number of consecutive nonzero indices in f"1"2 : : : "2mC1g in the
j th diagrams is “proportional” to the angle arg�2j and corresponds to the potential
level of all 4mC 2 blocks of such a diagram.

Note that the right-hand sides of the equations in (2) define a vector field in Q,
and the divergence of this field equals identically �5. Hence, the volume of any
bounded domainW � R

5C decreases exponentially when t tends to 1:

Vol.W.t// D Vol.W.0// � exp.�5t/:

See, for example [4]. Thus, each unstable cycle of the system (1) cannot repel
its trajectories in all directions. Otherwise, the volume of some of its toric
neighborhood will not decrease when t ! 1.

It is possible to derive some lower bounds for the number of cycles in the phase
portraits in the cases when the odd dimension of symmetric system of the type (2)
is not a prime number; see [2]. Let 2mC 1 D p � q, p ¤ q. It is not difficult to find
invariant p-dimensional and q-dimensional planesPp and Pq in the phase portraits
of such systems. If the point M0 is hyperbolic for restrictions of the “ambient”
dynamical system to these planes, then, according to [8], each of these planes
contains a cycle of this system, and there is one more cycle in Q2mC1 which does
not intersect Pq [ Pq , and has the potential level 1 in terms of [2].

For example, the phase portrait of symmetric 21-dimensional system of the type
(2) contains 7-dimensional invariant planeP7 defined by the equations fxj D xjC3g
and 3-dimensional invariant plane P3 defined by the equations fxm D xmC7g. Here
1 � j � 18, 1 � m � 14.
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Fig. 1 Projections of two
cycles of 11-D Hill’s system
onto 3-D plane

If the point M0 is hyperbolic in P3 and P7, then according to [6], and [8],
respectively, each of these planes contains a cycle of the system (2); hence, this
system has at least 3 different cycles.

Actually, non-uniqueness of cycles is observed in numerical experiments in the
case of prime dimensions as well. For example, Fig. 1 shows projections of two
trajectories and their limit cycles of symmetric 11-dimensional dynamical system
of the Hill’s type onto 3-dimensional plane corresponding to the eigenvalues �1, �8,
and �9. Here f .x/ D 130 � .1C x6/�1.

For smooth odd-dimensional dimensionless asymmetric dynamical systems of
the type (1), we have already obtained conditions of existence of cycles in the
invariant domains similar to Q10; see [7, 8].

Consider now the symmetric threshold dynamical systems of the type (1).
Making corresponding change of the variables, we can assume that kj D 1 for
all j , 1 � j � n. In this case, existence of symmetric cycles in their phase
portraits follows from direct calculation, which we reproduce here for 4-dimensional
dynamical system

Px1 D L.x4/� x1I Px2 D L.x1/� x2I Px3 D L.x2/ � x3I Px4 D L.x3/� x4I (6)

analogous to (2). Similar 5-dimensional threshold dynamical system will be denoted
by (65).

Let A D L.0/. As in the 5-dimensional case, we construct 4-dimensional
invariant cube k4 D Œ0; A� � Œ0; A� � Œ0; A� � Œ0; A� � R

4C in the phase portrait
of the system (6). Consider the diagram

: : : ! f1110g ! f1100g ! f1101g ! f1001g ! f1011g !
! f0011g ! f0111g ! f0110g ! f1110g ! : : : (7)
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As in the previous diagrams, let us denote by Q8 the union of all eight blocks in
the cube k4 listed here. This union is a non-convex polyhedron which is star-shaped
with respect to the point E4 D .1; 1; 1; 1/.

Let us describe construction of a cycle C8 of the system (6) which is symmetric
with respect to cyclic permutations of the variables xj .

Since this cycle passes from the first block of the diagram (7) to the second one
through the face x3 D 1, we assume that its intersection point X.0/ with this face
has the coordinates

X.0/ D fx.0/1 > 1; x
.0/
2 > 1; x

.0/
3 D 1; x

.0/
4 < 1g: (8)

In the second block of the diagram (7) the system (6) has the form

Px1 D A � x1I Px2 D �x2I Px3 D �x3I Px4 D A � x4;
hence, the trajectories of the system (6) in this block are described by the equations

x1.t/ D AC .x
.0/
1 �A/e�t ; x2.t/ D 0C .x

.0/
2 � 0/e�t ;

x3.t/ D 0C .x
.0/
3 � 0/e�t ; x4.t/ D AC .x

.0/
1 � A/e�t ,

or in the vector form: X.t/ D B0 C .X.0/ � B0/, where B0 D .A; 0; 0; A/, and
X.t/ D .x1.t/; x2.t/; x3.t/; x4.t//.

Hence, in this block all these trajectories are contained in the rays with the end-
point B0, and the shifts along these trajectories can be represented as homotheties
with the center B0 and coefficients e�t .

The following proposition can be easily verified for any dimension n in a
similar way.

Lemma. The trajectories of a threshold dynamical system analogous to (6) are
rectilinear inside the interior of each block f"1"2 : : : "ng.

For t D t1 D ln.A � x04/ � ln.A � 1/ the cycle C8 intersects the face x4 D 1 of
the second block at the point X.1/ with the coordinates

x
.1/
1 > 1; x

.1/
2 > 1; x

.1/
3 < 1; x

.1/
4 D 1;

which can be easily calculated in terms of coordinates of the point X.0/.
Now, according to the diagram (7), the cycle C8 passes to its third block, where

the system (6) has the form

Px1 D �x1I Px2 D �x2I Px3 D �x3I Px4 D A� x4;

and the shifts along its trajectories are represented by the homotheties with the
center B1 D .0; 0; 0; A/.

According to the diagram (7), the cycle C8 leaves the third block through the
face x2 D 1 at some point X.2/ D fx.2/1 ; x.2/2 D 1; x

.2/
3 ; x

.2/
4 g. Its coordinates can

be easily expressed in terms of coordinates of the point X.0/. Since the cycle C8 is
symmetric, we get
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x
.0/
3 D x

.2/
2 D 1; x

.0/
4 D x

.2/
3 D 1

x
.0/
2

; x
.0/
1 D x

.2/
4 D A� A� x

.0/
4

x
.0/
2

;

x
.0/
2 D x

.2/
1 D A.A� x

.0/
4 /

x
.0/
2 .A� 1/

� A� x
.0/
1

x
.0/
2

:

ForA > 2, this algebraic system with unknowns x.0/1 , x.0/2 , x.0/4 has a unique solution
which satisfies the initial conditions (8). Actually, we have to verify that the cubic
equation

z3 C z2 C z C 1 � z2 � A2

A � 1 D 0

has a unique solution z D x
.0/
4 on the segment Œ0; 1�, if A > 2. Let X.0/ be such point

that its coordinates satisfy the algebraic system above.
Thus, after eight steps along the diagram (7), the trajectory which starts at this

point X.0/ returns to X.0/, and so we have constructed the required cycle C8 � Q8

of the dynamical system (6).
Since the trajectories of the system (6) are represented by homotheties inside

each block of the partition of the cube P4, the intersection of each ray E4X.j /,
j D 0; 1; 2; etc. with corresponding block is shifted along these trajectories to the
ray E4X.jC1/. It is assumed here that E4X.8/ D E4X.0/, since C8 is a cycle.

So, these linear shifts allow us to construct an invariant piecewise linear surface
M2 � k4 containing the cycle C8 in its interior. This surface is composed by 8
triangles with common vertex E4 which is incident to their edges contained in
adjacent blocks of the diagram (7). It should be noted that the classical theorems
on central manifolds of smooth dynamical systems state that these manifolds are
either small, or are bounded by corresponding cycles, and, in general, cannot be
extended beyond these limits; see, for example, [1, 10, 12].

The phase portrait of dynamical system (6) has two stable stationary points
Z1 D .0; A; 0; A/ and Z2 D .A; 0; A; 0/ contained in the blocks f0101g and
f1010g, respectively. Considerations of the homothety shifts in these blocks show
that f0101g is contained in the attraction basin U1 of the point Z1 and f1010g is
contained in the attraction basin U2 of the pointZ2. Similar stable stationary points
Z1 D .0; A; : : : ; 0; A/,Z2 D .A; 0; : : : ; A; 0/ do exist in phase portrait of any even-
dimensional symmetric threshold dynamical system. Asymmetric systems of this
type have also two stable stationary points.

These attraction basins U1 and U2 are separated by 3-dimensional invariant
surface M3, such that M2 � M3. The diagonal � of the cube k4 which joins the
origin with the pointsE4 and .A;A;A;A/ is contained inM3 as well. This diagonal
is an invariant 1-dimensional manifold of the symmetric dynamical system (6) and
all its analogues odd-dimensional and even-dimensional. Thus, we have obtained
the theorem:
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Fig. 2 Projections of two
cycles of the system (2) onto
2-D plane

Theorem 1. Let A > 2; then the dynamical system (6) has exactly one piecewise
linear cycle C8. This cycle passes through the blocks of the diagram (7) and is
contained in the piecewise linear surface M2 � Q8 which is composed by 8
triangles with common vertex E4.

Note that the odd-dimensional dynamical systems of this type do not have stable
stationary points. For all these higher-dimensional threshold dynamical systems,
similar constructions and considerations can be reproduced as well; cf. [3]. For
example, in the case of 5-dimensional dynamical system .65/, one can verify the
existence of a piecewise linear cycle OC10 which passes through the blocks (3)
according to the diagram (5).

So, we can deduce the following result:

Theorem 2. Let A >
5C p

5

2
; then the 5-dimensional dynamical system .65/

analogous to (6) has at least two piecewise linear cycles C10 and OC10. These cycles
pass through the blocks of the diagrams (4) and (5), respectively. Each of these two
cycles is contained in an invariant piecewise linear surface: C10 � M2

1 � Q10 and
OC10 � M2

2 � OQ10. Each of these invariant surfaces is composed by 10 triangles
with common vertex E5.

Figure 2 shows projections of two cycles of “almost threshold” symmetric
smooth Hill’s system with ˛ D 2050, � D 10 onto 2-dimensional plane
corresponding to the eigenvalues �4; �5 with positive real parts. The large pentagon
is the projection of the cycle which follows the diagram (4), and the star inside is
the projection of the cycle which follows the diagram (5). The point in the center is
the projection of the stationary pointM0.

Much more difficult is the problem of classification of all cycles, stable and
unstable, for asymmetric dynamical systems (1).
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More complicated models of gene networks regulated by combinations of
negative and positive feedbacks were considered in [5,11]. Each of the correspond-
ing nonlinear dynamical systems contains several stationary points in its phase
portrait. The neighborhoods of stationary points with negative topological index
can be decomposed to small blocks, as it was done in the diagrams above, and
conditions of existence of cycles (and stable cycles) can be formulated for these
dynamical systems as in the case of absence of positive feedbacks.
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Remez-Type Inequality for Smooth Functions

Yosef Yomdin

Abstract The classical Remez inequality bounds the maximum of the absolute
value of a polynomial P.x/ of degree d on Œ�1; 1� through the maximum of
its absolute value on any subset Z of positive measure in Œ�1; 1�. Similarly, in
several variables the maximum of the absolute value of a polynomial P.x/ of
degree d on the unit ball Bn � R

n can be bounded through the maximum of its
absolute value on any subset Z � Qn

1 of positive n-measure mn.Z/. In [11] a
stronger version of Remez inequality was obtained: the Lebesgue n-measure mn

was replaced by a certain geometric quantity !n;d .Z/ satisfying !n;d .Z/ � mn.Z/

for any measurable Z. The quantity !n;d .Z/ can be effectively estimated in terms
of the metric entropy ofZ and it may be nonzero for discrete and even finite sets Z.

In the present paper we extend Remez inequality to functions of finite smooth-
ness. This is done by combining the result of [11] with the Taylor polynomial
approximation of smooth functions. As a consequence we obtain explicit lower
bounds in some examples in the Whitney problem of a Ck-smooth extrapolation
from a given set Z, in terms of the geometry of Z.
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1 Introduction

The classical Remez inequality ([9], see also [5]) reads as follows:

Theorem 1.1. Let P.x/ be a polynomial of degree d . Then for any measurable
Z � Œ�1; 1�

maxŒ�1;1�jP.x/j � Td

	
4 �m

m



maxZ jP.x/j; (1.1)

wherem D m1.Z/ is the Lebesgue measure ofZ and Td .x/ D cos.d arccos.x// is
the d th Chebyshev polynomial.

In several variables a generalization of Theorem 1.1 was obtained in [2]:

Theorem 1.2. Let B � R
n be a convex body and let � � B be a measurable set.

Then for any real polynomial P.x/ D P.x1; : : : ; xn/ of degree d we have

sup
B

jP j � Td

 
1C .1 � �/ 1n
1� .1 � �/ 1n

!
sup
�

jP j: (1.2)

Here � D mn.�/

mn.B/ ; with mn being the Lebesgue measure on R
n. This inequality is

sharp and for n D 1 it coincides with the classical Remez inequality.

It is clear that Remez inequality of Theorems 1.1 and 1.2 cannot be verbally
extended to smooth functions: such function f may be identically zero on any given
closed set Z and nonzero elsewhere. In the present paper we show that adding a
“remainder term” (expressible through the bounds on the derivatives of f ) provides
a generalization of the Remez inequality to smooth functions. Our main goal is to
study the interplay between the geometry of the “sampling set” Z, the bounds on
the derivatives of f , and the bounds for the extension of f from Z to the ball Bn

of radius 1 centered at the origin in R
n. To state our main “general” result we need

some definitions:

Definition 1.1. For a set Z � Bn � R
n and for each d 2 N the Remez constant

Rd.Z/ is the minimal K for which the inequality supBn jP j � K supZ jP j is valid
for any real polynomial P.x/ D P.x1; : : : ; xn/ of degree d .

For some Z the Remez constant Rd.Z/ may be equal to 1. In fact, Rd.Z/ is
infinite if and only ifZ is contained in the set of zeroes YP D fx 2 R

n; jP.x/ D 0g
of a certain polynomial P of degree d . See [3] for a detailed discussion.

Definition 1.2. Let f W Bn ! R be a k times continuously differentiable function
on Bn. For d D 0; 1; : : : ; the approximation error Ed.f / is the minimum over
all the polynomials P.x/ of degree d of the absolute deviation M0.f � P/ D
maxx2Bn jf .x/ � P.x/j.



Remez-Type Inequality for Smooth Functions 237

Theorem 1.3. Let f W Bn ! R be a k times continuously differentiable function
on Bn, and let a subset Z � Bn be given. Put L D maxx2Zjf .x/j. Then

maxx2Bn jf .x/j � inf
d
ŒRd .Z/.LC Ed.f //C Ed.f /�: (1.3)

Proof. Let for a fixed d Pd .x/ be the polynomial of degree d for which the
best approximation of f is achieved: Ed.f / D maxx2Bn jf .x/ � P.x/j. Then
maxx2ZjP.x/j � LCEd.f /. By definition of the Remez constantRd .Z/ we have
maxx2Bn jP.x/j � Rd.Z/.L C Ed.f //. Returning to f we get maxx2Bn jf .x/j �
Rd.Z/.L C Ed.f // C Ed.f /: Since this is true for any d , we finally obtain
maxx2Bn jf .x/j � infd ŒRd .Z/.LC Ed.f //C Ed.f /�: ut

In this paper we produce, based on Theorem 1.3, explicit Remez-type bounds for
smooth functions in some typical situations.

2 Bounding Rd.Z/ via Metric Entropy

It is well known that the inequality of the form (1.1) or (1.2) may be true also for
some sets Z of measure zero and even for certain discrete or finite sets Z. Let us
mention here only a couple of the most relevant results in this direction: in [4,8,12]
such inequalities are provided for Z being a regular grid in Œ�1; 1�. In [6] discrete
sets Z � Œ�1; 1� are studied. In this last paper the invariant �Z.d/ is defined and
estimated in some examples, which is the best constant in the Remez-type inequality
of degree d for the couple .Z � Œ�1; 1�/.

In [11] (see also [1]) a strengthening of Remez inequality was obtained: the
Lebesgue n-measure mn was replaced by a certain geometric quantity !n;d .Z/;
defined in terms of the metric entropy of Z, and satisfying !n;d .Z/ � mn.Z/ for
any measurable Z � Qn

1 . So we have the following proposition, which combines
the result of Theorem 3.3 of [11] with the well-known bound for Chebyshev
polynomials (see [5]):

Proposition 2.1. For each Z � Bn and for any d the Remez constant Rn;d .Z/
satisfies

Rn;d .Z/ � Td

 
1C .1 � �/

1
n

1 � .1 � �/ 1n

!
�
	
4n

�


d
; (2.1)

where � D !n;d .Z/.

In what follows we shall omit the dimension n from the notations for !d .Z/ D
!n;d .Z/. It was shown in [11] that in many cases (but not always!) the bound of
Proposition 2.1 is pretty sharp. In the present paper we recall the definition of !d .Z/
and estimate this quantity in several typical cases, stressing the setting where Z is
fixed, while d changes.
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2.1 Definition and Properties of !d.Z/

To define !d .Z/ let us recall that the covering numberM.";A/ of a metric space A
is the minimal number of closed "-balls coveringA. Below A will be a subset of Rn

equipped with the l1 metric. So the "-balls in this metric are the cubes Qn
" .

For a polynomial P on R
n let us consider the sublevel set V�.P / defined by

V�.P / D fx 2 Bn; jP.x/j � �g. The following result is proved in ([10]):

Theorem 2.1 (Vitushkin’s bound). For V D V�.P / as above

M."; V / �
Xn�1

iD0 Ci .n; d/
	
1

"


i
Cmn.V /

	
1

"


n
; (2.2)

with Ci.n; d/ D C 0
i .n/.2d/

.n�i /. For n D 1 we have M."; V / � d C �1.V /.
1
"
/;

and for n D 2 we have

M."; V / � .2d � 1/2 C 8d

	
1

"



C �2.V /

	
1

"


2
:

For " > 0 we denote byMn;d ."/ (or shortlyMd."/) the polynomial of degree n� 1
in 1

"
as appears in (2.2):

Md."/ D
Xn�1

iD0 Ci .n; d/
	
1

"


i
: (2.3)

In particular,

M1;d ."/ D d; M2;d ."/ D .2d � 1/2 C 8d

	
1

"



:

Now for each subset Z � Bn (possibly discrete or finite) we introduce the quantity
!d.Z/ via the following definition:

Definition 2.1. Let Z be a subset in Bn � R
n. Then !d .Z/ is defined as

!d.Z/ D sup
">0

"nŒM.";Z/�Md."/�: (2.4)

The following results are obtained in [11]:

Proposition 2.2. The quantity !d.Z/ for Z � Bn has the following properties:

1. For a measurable Z !d .Z/ � mn.Z/:

2. For any set Z � Bn the quantities !d .Z/ form a nonincreasing sequence in d .
3. For a set Z of Hausdorff dimension n � 1, if the Hausdorff n � 1 measure of Z

is large enough with respect to d , then !d .Z/ is positive.
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4. Let Gs D fx1 D �1; x2; : : : ; xs D 1g be a regular grid in Œ�1; 1�. Then
!d .Gs/ D 2.s�d/

s�1 .

Let Zr D f1; 1
2r
; 1
3r
; : : : ; 1

kr
; : : :g. In this case !d.Zr / � rr

.rC1/rC1
1
dr
:

Let Z.q/ D f1; q; q2; q3; : : : ; qm; : : :g; 0 < q < 1. Then !d.Z.q// � qd

log. 1q /
.

We need the following result, which, although in the direction of the results in
[11], was not proved there explicitly. Let S be a connected smooth curve in B2

of the length � . Define "0 as the maximal " such that for each ı � " we have
M.ı; S/ � l.S/

2ı
. The parameter "0 is a kind of “injectivity radius” of the curve S ,

and for any curve of length � inside the unit ballB2 it cannot be larger than 1
�

. Write
"0 as "0 D 1

l�
; l � 1. The computation below essentially compares the length of

S with the maximal possible length of an algebraic curve of degree d inside B2,
which is of order d . So it is convenient for any given d to write � as � D md .

Proposition 2.3. In the notations above, !d .S/ satisfies

!d.S/ � 1

2l

	
1 � 24

m



: (2.5)

In particular, for the length of S larger than 24d , !d .S/ is strictly positive.

Proof. By definition,

!d .S/ D sup
"
"2ŒM."; S/ �Md."/� D sup

"
"2
�
M."; S/� .2d � 1/2 � 8d

	
1

"



:

Substituting here "0 D 1
l�

we get

!d .S/ �
	

1

lmd


2 �
l.md/2

2
� .2d � 1/2 � 8lmd2


D

D 1

2l

 
1 � 2

m

"	
2d � 1

d


2
C 8

#!
� 1

2l

	
1 � 24

m



:

In particular, for m > 24, i.e., for the length of S larger than 24d , the quantity
!d.S/ is strictly positive. ut

3 Bounding Smooth Functions

Let f W Bn ! R be a k times continuously differentiable function on Bn. For
l D 0; 1; : : : ; k put Ml.f / D maxBnkd lf k; where the norm of the l th differential
of f is defined as the sum of the absolute values of all the partial derivatives of
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f of order l . To simplify notations, we shall not make specific assumptions on the
continuity modulus of the last derivative dkf . Now we use Taylor polynomials
of an appropriate degree between 0 and k � 1 in order to bound from above the
approximation error Ed.f /; d D 0; 1; : : : ; k. Applying Theorem 1.3, we obtain
the following result:

Proposition 3.1. Let f W Bn ! R be a k times continuously differentiable function
on Bn, with Ml.f / D maxBnkd lf k; l D 0; 1; : : : ; k; and let a subset Z � Bn be
given. Put L D maxx2Zjf .x/j. Then

M0.f / D maxx2Bn jf .x/j � mindD0;1;:::;k�1ŒRd .Z/.LC ET
d .f //C ET

d .f /�;

(3.1)

where ET
d .f / D 1

.dC1/ŠMdC1.f / is the Taylor remainder term of f of degree d on
the unit ball Bn.

Proof. We restrict infimum in Theorem 1.3 to a smaller set of d ’s and replace
Ed.f / with a larger quantity ET

d .f /. ut
In general we cannot get an explicit answer for the minimum in Proposition 3.1,

unless we add more specific assumptions on the set Z and the sequence Md.f /.
However, this proposition provides an explicit and rather sharp information in the
case where the set Z is “small.” Let us pose the following question: for a fixed
s D 1; : : : ; k � 1 and a given set Z � Bn, is it possible to bound M0.f / D
maxx2Bn jf .x/j through L D maxx2Zjf .x/j and MsC1.f / only, without knowing
bounds on the derivatives d l.f /; l � s?

Proposition 3.2. If Rs.Z/ < 1, then M0.f / � Rs.Z/.L C ET
s .f // C ET

s .f /

with ET
s .f / D 1

.sC1/ŠMsC1.f /. If Rs.Z/ D 1 then M0.f / cannot be bounded in
terms of L andMl.f /; l � s C 1:

Proof. In case Rs.Z/ < 1 the required bound is obtained by restricting the
minimization in (3.1) to d D s only. If Rs.Z/ D 1 then already polynomials
of degree s vanishing on Z cannot be bounded on Bn. ut

Now we can apply explicit calculations of !d .Z/ in Sect. 2 to get explicit
inequalities relating the geometry of Z, the values of f on this set, and the bounds
on the derivatives of f . We shall restrict ourselves to the case of Z being a
curve in the plane, as considered in Proposition 2.3. Other situations presented in
Proposition 2.2 can be treated in the same way. Let S be a connected smooth curve in
B2 of the length � and the injectivity radius "0. For d � �

24
�1 put 	d D 1

2l
.1� 24

m
/;

in notations of Proposition 2.3.

Proposition 3.3. Let f W B2 ! R be a k times continuously differentiable function
on B2, with Ml.f / D maxB2kd lf k; l D 0; 1; : : : ; k; and S � B2 be a curve with
the length � and with the injectivity radius "0. Put L D maxx2S jf .x/j. Then for
each s � �

24
� 1 we have

M0.f / �
	
8

	s


s
.LC ET

s .f //C ET
s .f /; (3.2)
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with ET
s .f / D 1

.sC1/ŠMsC1.f / and 	s D 1
2l
.1 � 24

m
/ > 0: For each s there are

curves Ss � B2 of the length at least 2s such that M0.f / cannot be bounded in
terms of L andMl.f /; l � s C 1:

Proof. The bound follows directly from Propositions 3.2, 2.3, and 2.1. Now take
as a curve Ss a zero set of a polynomial y D Ts.x/ inside B2. Then for f .x; y/ D
K.y�Ts.x// vanishing on Ss M0.f / cannot be bounded throughMl.f /; l � sC1.

ut
Another way to extract more explicit answer from Proposition 3.1 is to bound the

normsMl.f / of the l th-order derivatives of f , for l D 0; 1; : : : ; k; by their maximal
valueM D M.f /, to substitute M instead of Ml.f / into the inequality 3.1, and to
explicitly minimize the resulting expression in d .

We shall fix the smoothness k and consider sets Z � Bn for which !.Z/ D
!k�1.Z/ > 0. In particular, letZ � Bn be a measurable set withmn.Z/ > 0. Then
!d.Z/ � mn.Z/ for each d . Sets Z in the specific classes, discussed in Sect. 2
above, provide additional examples. Since !0.Z/ � !1.Z/ � : : : � !k�1.Z/, by
Proposition 2.1 for each d D 0; : : : ; k�1 we haveRd .Z/ � . 4n

!.Z/
/d . Let us denote

4n
!.Z/

� 4n by q D q.Z/.
The following theorem provides one of possible forms of an explicit inequality,

generalizing the Remez one to smooth functions:

Theorem 3.1. Let f W Bn ! R be a k times continuously differentiable function on
Bn, with Ml.f / D maxBnkd lf k � M D M.f /; l D 0; 1; : : : ; k; and let a subset
Z � Bn with !k�1.Z/ > 0 be given. Put L D maxx2Zjf .x/j, q D q.Z/ � 4n.
Then

M0.f / D maxx2Bn jf .x/j � 2qd0LC 1

.d0 C 1/Š
M; (3.3)

where d0 D d0.M;L/; satisfying 1 � d0 � k � 1, is defined as follows: d0 D 0 if
L > M , d0 D k � 1 if L � 1

kŠ
M , and for 1

kŠ
M � L � M the degree d0 is defined

by 1
.d0C1/ŠM � L � 1

d0Š
M:

In particular, for L > M the inequality takes the form

M0.f / � LC 2M; (3.4)

while for L � 1
kŠ
M we get

M0.f / � 2qk�1LC 1

kŠ
M: (3.5)

Proof. As above,Rd .Z/ � . 4n
mn.Z/

/d D qd : By Theorem 1.3 we have

maxx2Bn jf .x/j � inf
dD0;1;:::;kŒq

d .LC ET
d .f //C ET

d .f /� �

� qd
	
LC 1

.d C 1/Š
M



C 1

.d C 1/Š
M:
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Now we guess the value of d which approximately minimizes the expression in the
right-hand side: let d0 D d0.M;L/ be defined as follows:
d0 D 0 if L > M , d0 D k � 1 if L � 1

kŠ
M , and for 1

kŠ
M � L � M the degree d0

is uniquely defined by the condition

1

.d0 C 1/Š
M � L � 1

d0Š
M:

In each case we have 1 � d0 � k � 1. Substituting d0 into the above expression
we obtain for L > M the inequality M0.f / D maxx2Bn jf .x/j � LC 2M , while
for L � M we get M0.f / � 2qd0L C 1

.d0C1/ŠM: In the case L � 1
kŠ
M we get

d0 D k � 1, and the inequality takes the formM0.f / � 2qk�1LC 1
kŠ
M: ut

Remark. In the case L > M in Theorem 3.1 we have d0 D 0 and the resulting
inequality (3.4) is rather straightforward. Indeed, we take one point x0 2 Z. By the
assumptions, jf .x0/j � L, while jjdf jj � M on Bn. For each x 2 Bn we have
jjx�x0jj � 2. Hence jf .x/j � LC 2M: However, for smaller L, i.e., for larger d0,
the result apparently cannot be obtained by a similar direct calculation. Compare a
discussion in the next section.

4 Whitney Extension of Smooth Functions

There is a classical problem of Whitney (see [7] and references therein) concerning
extension of Ck-smooth functions from closed sets. Recently a major progress
has been achieved in this problem. The following “finiteness principle” has been
obtained, in its general form, by C. Fefferman in 2003: for a finite set Z � Bn

and for any real function f on Z denote by jjf jjZ;k the minimal Ck-norm of the
Ck-extensions of f to Bn.

There are constants N and C depending on n and k only, such that for any finite
set Z � Bn and for any real function f on Z we have jjf jjZ;k � Cmax QZ jjf jj QZ;k ,

with QZ consisting of at most N elements.
The original proof of this result, as well as its further developments in [7]

and other publications, provides rich connections between the geometry of Z and
the behavior of the Ck-extensions of F . Effective algorithms for the extension
have been also investigated in [7]. Still, the problem of an explicit connecting
the geometry of Z, the behavior of f on Z, and the analytic properties of the
Ck-extensions of f to Bn for n � 2 remains widely open. In one variable
divided finite differences provide a complete answer (Whitney). The following
result illustrates the role of the Remez constant Rd.Z/ in the extension problem.

Theorem 4.1. For a finite set Z � Bn and for any x 2 Bn nZ let Zx D Z [ fxg:
Let fZ;x be zero on Z and 1 at x and let QfZ;x be a Ck-extensions of fZ;x to Bn.
Then for each d D 0; : : : ; k � 1 we have MdC1. QfZ;x/ � .dC1/Š

Rd .Z/C1 .
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Proof. By Proposition 3.1 we have for the extension QfZ;x
M0. QfZ;x/ � mindD0;1;:::;k�1ŒRd .Z/.LC ET

d .f //C ET
d .f /�;

where ET
d .

QfZ;x/ D 1
.dC1/ŠMdC1. QfZ;x/ is the Taylor remainder term of f of degree

d on the unit ball Bn. In our case M0. QfZ;x/ � 1 while L D 0. So we obtain
1 � mindD0;1;:::;k�1.Rd .Z/ C 1/ 1

.dC1/ŠMdC1. QfZ;x/. We conclude that for each

d D 0; : : : ; k � 1 we haveMdC1. QfZ;x/ � .dC1/Š
Rd .Z/C1 . ut

The results of Sect. 3 can be translated into more results on extension from
finite set, similar to that of Theorem 4.1. More importantly, Remez inequality for
polynomials can be significantly improved, taking into account, in particular, a
specific position of x with respect to Z. We plan to present these results separately.
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