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Preface

This volume contains the proceedings of EWSN 2014, the 11th European Con-
ference on Wireless Sensor Networks. The conference took place in Oxford, UK,
during February 17–19, 2014. The aim of the conference was to discuss the latest
research results and developments in the field of wireless sensor networks.

EWSN received a total of 50 paper submissions, of which 12 were selected
for publication and presentation, yielding an acceptance rate of 24%. Paper sub-
missions were received from 26 countries around the world. EWSN adopted a
double-blind review process, where the identities of the paper authors were also
withheld from the reviewers. In total, 195 reviews were written, with all papers
being evaluated by at least three independent reviewers, and most receiving
four reviews. In addition, the 41 members of the Technical Program Commit-
tee participated in a week-long online discussion, focusing on the merits of the
submissions both individually and in comparison to one another, then making
the final decisions. The final program covered a wide range of topics that were
grouped into four sessions: Network Protocols, System Issues, Reliability, and
Sensing.

The conference program included other elements in addition to the presenta-
tion of research papers. The keynote was given by BP America Professor John
A. Stankovic from the University of Virginia who spoke about “Technical Solu-
tions Underlying Wireless Health Systems.” A poster and research demonstra-
tion session attracted numerous submissions, for which separate proceedings are
available.

We would like to thank everyone who contributed to EWSN 2014. In particu-
lar, we would like to thank the Technical Program Committee for their reviews,
and the entire Organizing Committee for their support. Finally, we also would
like to thank the local organization team, Dr. Andrew Markham, Dr. Andrew
Symington, Mrs. Elizabeth Walsh, and Ms. Andrea Pilot, for their help with the
conference planning.

February 2014 Bhaskar Krishnamachari
Amy L. Murphy
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NarrowCast: A New Link-Layer Primitive
for Gossip-Based Sensornet Protocols

Tomasz Pazurkiewicz, Michal Gregorczyk, and Konrad Iwanicki

University of Warsaw, Warsaw, Poland
{tp277655,mg277528}@students.mimuw.edu.pl,

iwanicki@mimuw.edu.pl

Abstract. Although gossiping protocols for wireless sensor networks (sensor-
nets) excel at minimizing the number of generated packets, they leave room for
improvement when it comes to the end-to-end performance, namely energy ef-
ficiency. As a step in remedying this situation, we propose NarrowCast: a new
primitive that can be provided by asynchronous duty-cycling link layers as a sub-
stitute for broadcasting for gossiping protocols. The principal idea behind the
NarrowCast primitive is to allow a sensor node to transmit to a fraction of its
neighbors, which enables controlling energy expenditures and reliability. We dis-
cuss methods of approximating the primitive in practice and integrating it with
gossiping protocols. We also evaluate implementations of the approximations
with Trickle, a state-of-the-art gossiping protocol, and X-MAC, a popular link
layer based on low-power listening. The results show that—without sacrificing
reliability—gossiping using even the simplest approximations of NarrowCast can
considerably outperform gossiping based on broadcasting in energy efficiency.

1 Introduction

Gossiping is a compelling communication paradigm with numerous applications in sen-
sornets, such as disseminating queries [1], aggregating information [2], or maintaining
complex overlays [3], to name a few examples. The essence of gossiping is that each
node has a local state, which it repeatedly broadcasts to its neighbors. Likewise, it in-
tegrates the states received from the neighbors with the local state. The global effect
of these repeated, local state exchanges is that information is disseminated among the
nodes, such that they can learn a query, collectively compute an aggregate, or construct
an overlay. Importantly, the dissemination process does not require any routing infras-
tructure and is robust to network dynamics, which is crucial especially under mobility.

The robustness of gossiping comes at a cost, though. The repeated node state broad-
casts, which allow gossip-based protocols to tolerate failures, packet loss, and mobility,
also introduce a lot of redundancy in the traffic. The redundancy wastes node resources.
At best, transmitting, receiving, and processing redundant information drains node en-
ergy and reduces the effective channel throughput. In extreme cases, such as a concen-
tration of mobile nodes in an area, the resulting broadcast storms may even lead to a
collapse of the entire dissemination process [4]. Gossiping in sensornets thus requires
managing redundancy: on the one hand, redundancy must be sufficient to handle net-
work dynamics; on the other hand, its negative performance effects must be minimal.

B. Krishnamachari, A.L. Murphy, and N. Trigoni (Eds.): EWSN 2014, LNCS 8354, pp. 1–16, 2014.
c© Springer International Publishing Switzerland 2014



2 T. Pazurkiewicz, M. Gregorczyk, and K. Iwanicki

To date, the problem of redundancy management has been addressed at the network
layer: in gossiping protocols themselves. For example, a gossiping protocol can make
probabilistic decisions on whether to rebroadcast its state or not [5] or can wait listen-
ing for and counting its neighbors’ broadcasts, so that its own one can hopefully be
suppressed [1]. In general, as we elaborate in the next section, multiple techniques exist
that allow gossiping protocols to limit the number of broadcast packets.

However, even though reducing the number of packets generated by a gossiping
protocol improves the network-layer dissemination performance, we argue that it still
leaves a lot of room for improvement with respect to the end-to-end performance, no-
tably energy efficiency. For instance, when analyzed end to end rather than only from
the network layer perspective, probabilistically rebroadcasting a packet wastes the en-
ergy of potentially many nodes that have already received and processed the packet.
Likewise, counting duplicate neighbors’ broadcasts requires energy for receiving and
processing them. All in all, we argue that while redundancy management mechanisms
at the network layer are necessary, if employed alone, they are inherently limited, as it
is the link layer below that controls channel access and radio energy expenditures.

In support of our argument, we propose NarrowCast, a link-layer primitive that is
a step toward improving the energy efficiency of gossiping in sensornets. NarrowCast
targets the suboptimal combination of broadcast communication and gossiping: on the
one hand, the link layer spends time and energy on ensuring that a broadcast reaches
all neighbors of the transmitter; on the other hand, some of the neighbors discard the
received data as redundant at the network layer, thereby wasting this effort. As a counter-
measure, the NarrowCast primitive allows a node to transmit to a fraction of its neigh-
bors. In effect, assuming that the resulting energy cost is proportional to the fraction,
the gossiping protocol gains control over energy expenditures and robustness.

We evaluate NarrowCast in simulation and on a ∼100-node testbed. Being concep-
tually simple a primitive, NarrowCast is not trivial to implement in the real world, espe-
cially when aiming at minimal assumptions and maximal performance. For this reason,
we present a few implementations that, under different assumptions, approximate Nar-
rowCast for X-MAC [6], a popular sensornet link-layer protocol. We evaluate these
implementations with Trickle [1], a state-of-the-art sensornet gossiping protocol. The
results confirm that NarrowCast improves the energy efficiency of gossiping.

The rest of the paper is organized as follows. Section 2 surveys related work. Sec-
tions 3 and 4, respectively, introduce and evaluate NarrowCast. Section 5 concludes.

2 Related Work

Arguably, the simplest form of gossiping is flooding, that is, rebroadcasting received
data once by each node. Flooding lacks any redundancy management. As a result, it
does not ensure that data reach all nodes, and may cause broadcast storms [4].

2.1 Managing Redundancy of Gossiping

For these reasons, virtually all gossiping protocols employ techniques for managing re-
dundancy. A popular technique is to have each node locally suppress its broadcast with
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a given probability [4,5,7,8]. The probability can be preconfigured globally [4,5,7], but
this may be suboptimal in networks with heterogeneous node densities or under mobil-
ity. Alternatively, the probability can be adapted by each node based on the perceived
neighborhood size [8], which requires additional neighborhood estimation mechanisms.
In any case, with an appropriate probability, such proactive techniques of redundancy
management considerably limit the traffic without impairing robustness.

In contrast to the proactive probabilistic ones, reactive techniques rely on observing
the dissemination process and acting accordingly. For example, before rebroadcasting,
each node can count broadcasts from its neighbors [1,4,7,9]. If the number of such
broadcasts exceeds a threshold, the node suppresses its own one. Again, the threshold
can be fixed [1,4,7] or adapted dynamically [9]. Alternatively, each node can estimate
the number of new nodes its broadcast would reach and suppress the broadcast if this
number is too low [4,7,9]. The estimation can be based on the nodes’ positions [4,7,9]
or signal quality [4]. Nodes can also piggyback their neighborhood onto broadcast data
[9]. Although estimation-based approaches are potentially more accurate, in practice,
counting-based ones perform similarly and are easier to implement.

Whereas the previous techniques focus on limiting traffic, improving the reliability
of gossiping typically boils down to broadcasting repeatedly and relying on the traffic-
limiting techniques—possibly in combinations—to minimize redundancy. In particular,
Trickle [1] uses counting and, in addition, dynamically increases interbroadcast inter-
vals (details in Sect. 3.1). Likewise, GOSSIP3 [5] combines counting with probabilistic
suppression. TARP [10], in turn, applies an entire sequence of rebroadcast rules.

All in all, in terms of network-layer packets, such algorithms perform well. Yet, their
end-to-end energy efficiency is heavily influenced by the underlying link layer, whose
medium access control (MAC) protocol determines the energy expenditures.

2.2 Link-Layer Support for Gossiping

However, sensornet MAC protocols are hardly ever optimized for gossiping. To date,
the prevalent traffic pattern in sensornets has been all-to-one data collection, for which
unicast communication over a virtual tree dominates. The popularity of this pattern is
reflected in some MAC protocols that offer dedicated mechanisms [11]. Gossiping, in
turn, assumes no virtual topology and currently relies on MAC support for broadcasting.
There are two main approaches to providing such support: synchronizing nodes and
probing the wireless channel. None of them is tailored to gossiping, though.

MAC protocols following the first approach [11,12,13,14] aim to ensure that a node
mostly sleeps, thereby saving energy, but when it does wake up to broadcast, all its
neighbors are awake as well. To this end, the nodes maintain synchronization. This,
however, is problematic, especially if they move. In particular, since they mostly sleep,
discovering them by a mobile node may take a lot of time [14]. Moreover, the node
must decide whether to adopt their wake-up schedule or not, which is again not trivial
if the global cost of the decision is to be low [14]. Alternatively, nodes may operate on
multiple schedules [12], but this requires more energy and schedule-disposal policies.
Finally, mechanisms are necessary for adapting to changing network conditions.

In contrast, MAC protocols following the second approach [6,15,16] do not main-
tain shared state, but rely on so-called low-power listening. As previously, a node mostly
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sleeps and wakes up only periodically to check if another node is transmitting. However,
the node wake-up schedules need not be synchronized. Instead, during a period guar-
anteeing that each neighbor will wake up—the low-power listening check interval—a
broadcasting node either transmits data repeatedly [16] or transmits an announcement
preamble followed by the data only at the period end [6,15] (details in Sect. 3.1). Al-
though this asynchrony facilitates applications of such protocols in mobile sensornets,
the prolonged transmissions incur a significant energy overhead [6,15,16].

All in all, as we argued previously, irrespective of the link-layer MAC scheme and
despite network-layer redundancy management, the energy efficiency of gossiping based
on broadcasting leaves room for improvement. To date, however, little work has been
done in this direction. Gaba et al. [17] suggest that cross-layer mechanisms could pro-
vide gossiping protocols with feedback from the link layer on channel utilization, so
that the protocols’ reaction to network dynamics could be optimized. Yet, to the best of
our knowledge, no sensornet cross-layer optimizations target gossiping. The interplay
between gossiping and the link layer is in turn touched upon by Dunkels et al. [18] who
provide a unified set of gossiping abstractions for different MAC schemes. Dunkels et
al. [19] also propose an additional announcement layer that concatenates data broad-
cast by different applications. While not aimed particularly at gossiping, this solution
could potentially improve gossiping in multi-application scenarios. In general, how-
ever, we are not aware of any solution that targets gossiping and takes the NarrowCast’s
approach: to abandon link-layer guarantees that a broadcast reaches all neighbors, as
many of the neighbors will ignore the received data anyway at a higher layer.

3 NarrowCast Primitive

The principal idea behind NarrowCast is simple: to allow a node to transmit to a fraction
of its neighbors. While solutions that utilize the primitive in an optimal manner consti-
tute an avenue for future research (see Sect. 5), this paper aims to demonstrate that
NarrowCast can offer performance benefits even for existing state-of-the-art solutions.

3.1 Assumptions and Prerequisites

To this end, as a gossiping algorithm for our discussion, we assume Trickle [1], as it
is a compelling solution employed, among others, by popular dissemination protocols,
collection protocols, and even Internet of Things standards. To guarantee that data even-
tually reach all nodes, every node running Trickle broadcasts the data repeatedly every
Tmax time units. Since for the sake of traffic Tmax is normally large (on the order of min-
utes), the dissemination latency would be large as well. Therefore, as a counter-measure,
whenever a new version of the data is produced at a node or the node receives such a
version from its neighbor, it shrinks its interbroadcast interval to Tmin. Since Tmin is in
contrast small (on the order of milliseconds), a broadcast storm may occur whenever all
neighbors receiving the new data shrink their intervals and attempt to rebroadcast.

To alleviate broadcast storms, Trickle uses two redundancy management mecha-
nisms (see Fig. 1). First, the interbroadcast interval of a node is doubled up to Tmax with
each broadcast by the node, that is, the duration of the i-th interval after learning a new
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E TCInterval end Interval shrinking (new data) Broadcast transmission R Broadcast reception S Suppressed broadcast

Node
TC E E E

new data arrives => T1 starts T1 ends; T2 starts T2 ends; T3 starts

T

T3 ends; T4 starts

T

T1=Tmin T2=2xTmin T3=4xTmin T4=8xTmin

transmissions at random time within Ti 

(a) doubling interbroadcast intervals

Node
R ES

enough broadcasts received new interval starts

T

broadcast performednot enough broadcasts received

R R R R

broadcast suppressed

(b) suppressing redundant transmissions (threshold = 3)

Fig. 1. The redundancy management mechanisms in Trickle

version of data is Ti = MIN(2i−1 ×Tmin,Tmax) [Fig. 1(a)]. This self-regulation mech-
anism enables recovering from a storm irrespective of the network density. Moreover,
instead of transmitting exactly after Ti time units, a node draws a random time from
(0.5×Ti,Ti), which desynchronizes transmissions. Second, in every interval, each node
counts broadcasts received with its version of the data. If their number exceeds a thresh-
old (typically 2–3), the node suppresses its own broadcast in the interval [Fig. 1(b)].

As to the link layer, NarrowCast assumes that the average cost of broadcasting data
in terms of energy and channel occupation is proportional to the fraction of neighbors
receiving the data. All asynchronous MAC protocols based on low-power listening sat-
isfy this assumption: the more data repetitions or the longer the transmitted part of a
preamble, the higher the channel occupation and energy costs, but also the more neigh-
bors awake to receive the data. In particular, our approximations of NarrowCast are built
for X-MAC [6], a popular low-power listening MAC, suitable for mobile networks.

In X-MAC, an announcement preamble is a sequence of short frames, a so-called
strobed preamble (see Fig. 2). The frames are separated by brief periods in which the
transmitting node switches to reception mode. This is useful for unicast packets, as the
receiver can acknowledge that it is up, thereby allowing the transmitter to terminate
the preamble and send the actual data [Fig. 2(a)]. For broadcast packets, in turn, pream-
bles must be transmitted during an entire low-power listening channel check interval

Preamble frameP A Acknowledgment frame D Data frameRadio activity period

Transmitter

Target Neighbor

Another Neighbor

P P P P D

A

P P

no transmission detected
transmission detected
but to another node

transmission
for me detected

signal
readiness

preamble frames need not be transmitted for entire check interval

low-power listening check interval
Transmitter

Neighbor 1

Neighbor 2

P P P P DP P

transmission detected transmission detected

P P P

no transmission detected

low-power listening check interval

transmit preamble frames during entire check interval transmit data frame

(a) unicast traffic (b) broadcast traffic

Fig. 2. An example of low-power listening with strobed preambles
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[Fig. 2(b)], which is typically preconfigured globally. Again, we would like to stress that
while we use X-MAC to illustrate and evaluate our ideas, any MAC protocol satisfying
the above cost-proportionality assumption could likely benefit from NarrowCast.

3.2 Main Hypothesis and Idea

Analyzing them in combination, we may observe that gossiping and MAC protocols
have independent reliability mechanisms. A MAC protocol bears the cost of waking up
all neighbors, so that they can receive each broadcast packet. At the same time, (cor-
rectly) assuming that broadcasts are unreliable, a gossiping protocol repeats them. This
functionality duplication negatively affects channel utilization and energy expenditures.

To illustrate, consider our combination of Trickle and low-power listening. Suppose
that a node broadcasts new data. Its neighbors are awakened by the preceding preamble
and receive the data. As a result, they all reset their Trickle intervals to Tmin and attempt
to rebroadcast. Recall that for latency reasons Tmin is small, on the order of milliseconds.
In contrast, to save energy, it is not uncommon for low-power listening preambles to last
hundreds of milliseconds. This means that in the initial Trickle intervals multiple nodes
want to rebroadcast simultaneously. Hopefully, the MAC protocol ensures that only
one succeeds at a time. However, this implies that the others wait, possibly with active
radios. Moreover, even though many nodes are already up, the rebroadcasting nodes
still have to transmit their preambles, as they may have neighbors that were not in the
range of the previous broadcasts, and hence, may yet be sleeping. All in all, the channel
congestion and the resulting waiting period may be considerable, which inflates the
energy expenditures. The situation is further aggravated when multiple data items are
disseminated simultaneously, as is often the case in gossip-based applications.

NarrowCast tries to alleviate these effects by giving control to the network layer over
the transmission reliability mechanisms at the link layer, and thereby, over the costs of
communication. The idea is to have the link layer provide a communication primitive
that allows the network layer (e.g., a gossiping protocol) to transmit, narrowcast, to a
fraction of neighbors. Under our cost-proportionality assumption on the link layer, such
narrowcasts can be proportionally shorter than broadcasts (e.g., have shorter pream-
bles), which reduces channel utilization and energy costs. Moreover, we hypothesize
that they need not compromise the reliability of dissemination, as the gossiping proto-
col will compensate with its own mechanisms (e.g., by repeating transmissions).

3.3 Implementation

To validate our hypotheses, we have implemented NarrowCast for the MiXiM frame-
work [20] of the OMNeT++ simulator [21], a low-level simulation engine for sensor-
nets, and for TinyOS 2.1, an operating system for sensor nodes. While NarrowCast is
conceptually simple, its implementation is challenging: whereas unicasting a packet to
one neighbor or broadcasting it to all is fairly straightforward, it is difficult to ensure that
a packet is received by a given fraction of neighbors, especially in the absence of shared
state. We have thus implemented only approximations of NarrowCast. They all share
the idea of shortening packet preambles, but vary in assumptions and implementation
effort. For simulation, we have also created a close-to-ideal oracle-based NarrowCast.
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Incomplete Preambles (IP). The first approximation requires the least implementation
effort. Suppose that the global interval in which every node wakes up to check the wire-
less channel for an ongoing preamble transmission is TC. A NarrowCast transmission
to a given percentage of neighbors, p, is preceded by an incomplete preamble, lasting
p× TC. The motivation behind this idea is that if we assume that neighbor wake-up
schedules are uniformly distributed, such an incomplete preamble lasting p×TC should
on average wake up p percent of neighbors, albeit without any hard guarantees.

Neighbor Cache (NC). The second approximation aims to improve the guarantees,
assuming that nodes maintain state. More specifically, each node caches its neighbors’
wake-up schedules. Before narrowcasting, it consults the cache to compute a pream-
ble fraction that would wake up p percent of its neighbors. The cache is updated by
piggybacking transmitters’ wake-up schedules on packets. For eviction, the oldest un-
refreshed schedules are chosen. While schedule maintenance is not coordinated among
nodes, schedules get outdated, which may be problematic especially under mobility.

Colliding Acknowledgments (CA- and CA+). The third approximation also aims to
improve the guarantees, but by means of acknowledgments. Upon waking up and re-
ceiving a preamble frame, a node transmits an acknowledgment frame. The frame is
transmitted only once for the preamble of a given packet. When a sufficient number of
acknowledgments in subsequent slots are observed by the transmitter, depending on the
variant, the transmitter terminates the preamble and sends the actual data frame. In the
CA- variant, the preamble lasts at most p×TC: it can be terminated earlier, as soon as
acknowledgments in k slots are observed. In contrast, in the CA+ variant, the preamble
lasts at least p×TC: it is not terminated before this time expires and acknowledgments
in at least k slots are observed. CA- thus minimizes costs, while CA+ favors reliability.

A major problem with this approximation is that multiple nodes may wake up si-
multaneously and transmit acknowledgment frames. Dutta et al. showed that if such
frames are identical and well timed, their collisions need not be destructive, but only
for a few transmitters [22]. Therefore, for scalability, we do not rely on receiving ac-
knowledgment frames, but merely on sensing a high channel state in acknowledgment
slots. Nevertheless, this approximation still requires the most implementation effort.

Oracle (OC) [only simulations]. Finally, in OMNeT++, we have also implemented
an oracle that informs a transmitter when a given percentage of its previously sleeping
neighbors have been awaken by preamble frames. Upon such an event, the transmitter
terminates the preamble and proceeds with a data frame.

While there are likely many other ways to implement NarrowCast, we believe the previ-
ous ones cover enough various techniques to assess the potential of the primitive well.

3.4 Integration with Higher-Layer Protocols

Likewise, there are several ways in which NarrowCast can be utilized by a gossiping
protocol like Trickle. Again for brevity, we focus just on two representative ones.
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First, instead of broadcasting, the protocol can decide to always narrowcast to a given
percentage, p, of neighbors. We denote such a scheme fix(p). For instance, narrowcast-
ing to 50% of neighbors should intuitively reduce energy expenditures, perhaps even
twice, without degrading reliability, unless the network is extremely sparse.

Second, a protocol like Trickle, in which the intervals between subsequent transmis-
sions change dynamically, can also dynamically change the percentage of neighbors to
which data is narrowcast. In particular, in every Trickle interval, the percentage can be
multiplied by a factor α > 1, assuming that the initial percentage (in T1) is pI . We refer
to such a scheme as dyn(pI , α). The idea behind the scheme is that in the initial inter-
vals data should be propagated fast, perhaps somewhat sacrificing reliability, hence the
percentage can be low. Later intervals are in turn longer, and thus, a larger percentage
can be utilized to reliably deliver the data to the rest of the nodes, but at a higher cost.

Finally, the NarrowCast-related interfaces provided by a link-layer are simple. The
fraction of nodes to which a packet should be narrowcast can be made part of the
packet’s meta-data, which allows for per-packet manipulations matching the convention
of TinyOS. An alternative solution is to designate separate NarrowCast addresses. For
example, address ffff is considered a broadcast address in TinyOS. For NarrowCast,
in turn, addresses fffx could be assigned, where 2x−15×100% denotes the percentage
of nodes that should receive a packet destined to this address (15 > x ≥ 0 or more).

4 Evaluation

We evaluate NarrowCast in OMNeT++/MiXiM and on a testbed. As mentioned pre-
viously, in all experiments we used Trickle (with Tmin = 256 ms, Tmax = 60 mins, and
suppression threshold = 3) in combination with the aforementioned X-MAC-based im-
plementations of NarrowCast (with different low-power listening check intervals).

The MiXiM framework [20] for OMNeT++ [21] strives to realistically simulate sen-
sornet communication at the signal level. Furthermore, we tried to match the simulated
radios to the radios of our sensor nodes, notably in terms of timing, throughput, encod-
ing, and packet reception rate deterioration with distance. We simulated up to 400 nodes
in static and mobile networks. In static networks, the nodes were arranged on a torus,
and we varied their density. Likewise, for mobility we varied the density by adopt-
ing square playgrounds of different sizes, in which the nodes moved with human-scale
speeds according to a random-waypoint model (min. speed = 0.3 m/s, max. speed =
1.66 m/s, max. stop time = 1 s). In addition, we let the mobility patterns to warm up for
one hour before starting the experiments. Overall, the static networks allow us to sys-
tematically study the impact of node density on NarrowCast, whereas the mobile ones
enable illustrating the effects of heterogeneity, borders, and connectivity dynamics.

The testbed [23], in turn, spans 10 offices and consists of 102 sensor nodes with
CC1101 868MHz radios, 96 of which took part in the experiments. For the employed
radio transmission power, the nodes form a network of 7 hops, with a nonuniform den-
sity (from 7 to 47 neighbors per node), and more than 15% of asymmetric links. We
thus believe that the testbed emulates a medium-scale real-world sensornet well.

Due to space constraints, we focus on experimental results that highlight only the
main advantages and drawbacks of NarrowCast, thereby illustrating its potential.
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4.1 Attainable Performance

Let us begin with a study of an ideal, oracle-based (OC) implementation of NarrowCast
with one new data item gossiped every five minutes, such that the average radio duty
cycle remains reasonable for sensornets: at a few percent. We study the dissemination
of 60 items (300 minutes) in 400-node torus networks with various densities. Such net-
works are homogeneous, and hence, for each density, we can configure X-MAC with a
global check interval that yields a minimal duty cycle. More specifically, we choose an
interval optimal for Trickle based on broadcasting, and use it also for Trickle with nar-
rowcasting. This guarantees that the comparisons are not be biased toward NarrowCast.

Figure 3 compares the simplest oracle-based NarrowCast, OC-fix, with broadcasting
in terms of duty cycle (a), coverage (b), and latency (c) in relation to network density.
Network density is defined as the average of local densities of all nodes. Local density is
in turn defined probabilistically for each node: as the sum of packet reception rates from
all other nodes (measured before the plotted experiments, independently for each node
pair to avoid collisions). As such, this definition captures also extremely poor links.
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Fig. 3. Narrowcasting vs. optimally configured broadcasting when gossiping one data item

Duty cycle—the percentage of time a node’s radio is active transmitting, receiving,
or idly listening—determines the energy consumption of the node. For all densities,
gossiping with even the simplest, fix(p), variant of NarrowCast offers a lower duty cycle
than optimally configured gossiping based on broadcasting, and the lower p is, the lower
the duty cycle [Fig. 3(a)]. In particular, for the lowest plotted values of p, the duty cycle
for narrowcasting is lower by up to a factor of 2 from the one for broadcasting.

The reduction is even more noteworthy considering the theoretical minimum of duty
cycle (1.84% in the figure), which corresponds to no communication and only peri-
odic low-power listening channel checks. If we subtract from the actual duty cycle the
idle listening duty cycle, we obtain what we dubbed a communication-induced duty cy-
cle, which describes dissemination efficiency. With this metric, we can observe that, in
all but extremely sparse networks, the fix(p) variant of narrowcasting disseminates the
same amount of information as broadcasting with nearly a factor of 1/p less energy. It
is not precisely 1/p, because some costs, such as activating the radio or transmitting
actual data, are independent of p. For sparse networks, in turn, the duty cycle grows
because OC-fix guarantees that p percent of neighbors (rounded up to 1) indeed wake
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up to receive the data, to which end the transmitted preamble parts may be longer than
p×TC. For a given p, this phenomenon happens at densities around 1/p, that is, when
the expected number of neighbors that wake up on a preamble part lasting p×TC drops
below 1. Nevertheless, even in the sparsest networks, NarrowCast reduces duty cycle.

At the same time, it does not impair reliability, measured with a standard coverage
metric [Fig. 3(b)]: the percentage of nodes that receive each data item. The coverage is
hardly ever below 90% (in the plotted experiments, it was above 99.8%), and in gen-
eral, we have not observed major differences between narrowcasting and broadcasting.
This validates our claim that reliability mechanisms in the communication stack are
redundant for gossiping, so we can relax some of them without impairing reliability.

By and large, narrowcasting also improves the pace of dissemination, measured, for
instance, as the latency to cover 90% of nodes [Fig. 3(c)]. The only exception is the
sparsest networks, with densities below 1/p. In such networks, due to the shorter low-
power listening preamble parts and weak links, fewer (out of already few) neighbors of
a transmitter have chances to hear the transmitted packet and start contributing to the
dissemination process. In effect, not only does the process bootstrap slower, but also the
latency penalties accumulate at each hop. Note, however, that we plotted such networks
only for illustration, as their actual density, compared to our definition that also captures
poor links, is extremely low. For example, no node has any neighbors with packet recep-
tion rates above 67% or even 50% in the sparsest plotted networks. Nevertheless, even
in such challenged networks, the latency growth is not dramatic. In networks with a
reasonable density, in turn, narrowcasting can reduce latency even twice. Moreover, for
each density, there seems to be an optimal value of p that minimizes the dissemination
latency. We leave an in-depth study of this phenomenon for future work.

Finally, Fig. 4 presents the divergence of individual duty cycles (a) and latencies (b)
from the averages plotted in Fig. 3, more specifically, the 10-th and 90-th percentile
values for each of the approximations and densities in the 60 rounds of dissemination.
In short, individual values are largely concentrated around the means, which suggests
that the performance stability of narrowcasting is comparable to that of broadcasting.

All in all, the results confirm our hypotheses. Gossiping with narrowcasting can be
more energy efficient than with broadcasting: it disseminates data with a lower channel
utilization, and hence, duty cycle and typically latency. At the same time, its reliability
is not impaired, being more than sufficient for gossip-based applications.

4.2 Quality of Approximations

However, the previous results concern an ideal, oracle-based implementation of Nar-
rowCast. In contrast, in practice, we can rely only on approximations. Figure 5 thus
presents the performance of our approximations (apart from CA-, as we explain shortly).

In dense and medium networks, the performance of the simplest approximation, In-
complete Preambles [IP-fix(p), Fig. 5(a)–(c)], is comparable to the oracle-based Nar-
rowCast. In contrast, in sparse networks, the approximation performs poorly in terms of
coverage (and hence, the latency to cover 90% of nodes), especially for low values of
p. This is because in IP-fix(p) packet preambles are always transmitted for a fixed frac-
tion, p, of the low-power listening check interval. In effect, while in dense networks or
for large p, there is only a remote probability that insufficiently many neighbors wake
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up in this fraction of time to check the channel, in sparse networks and for low values
of p, this probability grows, which impairs coverage. Put differently, unlike OC-fix(p),
IP-fix(p) is unable to compensate for network sparsity by extending the transmitted
preamble parts if necessary, which can be observed by comparing for sparse networks
the duty cycles of IP-fix(p) [Fig. 5(a)] and OC-fix(p) [Fig. 3(a)]: for OC-fix(p) they are
higher because of the longer preambles. Nevertheless, as we discuss shortly, even for
this simple approximation, we can improve the coverage with the dyn(pI, α) scheme.

The second approximation, Neighbor Cache [NC-fix(p), Fig. 5(d)–(f)], has similar
drawbacks as IP-fix(p). Even though a cache of neighbors’ wake-up schedules facil-
itates ensuring that sufficiently many neighbors have a chance to wake up during a
preamble transmission, the cache has to be complete. However, this is hard to guaran-
tee in sparse networks and for low values of p, because to add a neighbor to the cache,
a node must be lucky to wake up and hear the neighbor transmitting a shortened pream-
ble. The plots illustrate these effects, because in the corresponding experiments the node
caches were deliberately purged every third dissemination. While one may argue that
the caches could be maintained out of band, for many applications, especially mobile
ones, the benefits of NC-fix(p) may still not compensate its drawbacks.

The performance of the final approximation, Colliding Acknowledgments
[CA(-/+)-fix(p)], depends on the variant. Transmitting preambles for at most p percent
of the low-power listening check interval or until k acknowledgments are observed (the
CA- variant, not plotted) inherits the performance problems in sparse networks from
IP-fix. In contrast, transmitting preambles for at least p percent of the check interval
and until at least k acknowledgments are observed [the CA+ variant, Fig. 5(g)–(i)])
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Fig. 5. The performance of the approximations of NarrowCast (for CA+, k = 2)

performs best of all the approximations in the fix configuration. For all plotted network
densities, its coverage is above 99.8% and the duty cycle and latency are low. The ad-
ditional feedback in the form of k acknowledgments addresses the performance issues
of the previous approximations in sparse networks, even for k as small as 2. In fact, due
to this additional feedback, in the sparsest networks, the duty cycle for CA+ is slightly
higher than for OC [Fig. 5(g) vs. Fig. 3(a)] while the latency is lower [Fig. 5(i) vs.
Fig. 3(c)]. All in all, CA+ evidences that NarrowCast can be effectively approximated.

What is more, however, even with a simple, imperfect approximation, such as IP, we
can maximize reliability by dynamically controlling the fraction of neighbors to which
data is narrowcast: by means of the dyn(pI, α) scheme. To illustrate, Fig. 6 presents the
performance of IP-dyn(pI, 1.5) for different values of pI . In other words, after shrinking
the Trickle interval, each node starts with a low NarrowCast fraction, pI , and with each
doubling of the Trickle interval, it multiplies this fraction by 1.5, until it reaches 1.
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Fig. 6. Improving the reliability of Incomplete Preambles with the dyn(pI , α) scheme

This scheme provides both a lower duty cycle [Fig. 6(a)] and a high coverage
[Fig. 6(b)]. It does not significantly improve the latency in sparse networks [Fig. 6(c)],
because in such networks dissemination at a node often progresses only when the node’s
NarrowCast fraction has grown sufficiently, which takes time. In dense networks, in
turn, the latency is lower than for broadcasting. Finally, an additional advantage of IP-
dyn over CA+-fix is simplicity: its TinyOS implementation is just a few lines of code.

In summary, NarrowCast is best approximated with CA+. Yet, even simple approx-
imations, such as IP can offer a reasonable performance if accompanied with mecha-
nisms for dynamically adjusting the fraction of neighbors to which data is narrowcast.

4.3 Effects of Network Heterogeneity and Dynamics

NarrowCast performs well also under network dynamics. In particular, Fig. 7 shows the
performance of CA+ under mobility on square playgrounds with the same dimensions
as the toruses. Since mobility makes determining the optimal low-power listening check
interval hard, for each playground, we used the value from the corresponding torus.
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Fig. 7. Performance of Colliding Acknowledgments (CA+) under mobility (k = 2)

Again, narrowcasting outperforms broadcasting in duty cycle. At the same time, it
offers a lower latency and virtually perfect coverage in all but extremely sparse net-
works. In the sparse networks, in turn, the coverage drops slightly, but so does the cov-
erage for broadcasting. This is because in such networks, nodes get disconnected easily.
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In particular, due to disconnections, the coverage for narrowcasting is sometimes bet-
ter than for broadcasting. Nevertheless, even in the sparsest networks, the coverage is
above 90% (in fact, 97.7% in the plots), and more importantly, we have not observed
major differences between broadcasting and narrowcasting. Furthermore, the deviation
of individual values from the averages, measured, for instance, by the 10-th and 90-th
percentile values (not plotted), is not much higher than in the static torus networks. In
other words, network dynamics do not impair the performance of NarrowCast.

4.4 Real-World Behavior

Finally, to show that NarrowCast works in the real world, we present experiments with
the TinyOS implementations of the different approximations on our testbed. Although
we have conducted several experiments with various applications employing Narrow-
Cast, for consistency, in this paper we present only experiments with the same appli-
cation as in the simulations, albeit extended to concurrently disseminate multiple data
items. More specifically, d items (d ∈ {1, . . . ,16}) are disseminated in the system, and
for every such item, each node runs a dedicated instance of Trickle. Periodically, new
versions of all items appear simultaneously at random nodes and are started being gos-
siped. The period is one hour, so that even for d = 16, the average duty cycle is low.

Table 1 compares broadcasting and selected approximations of NarrowCast in terms
of communication-induced duty cycle and latency to cover 90% of nodes with all items.
The coverage is omitted as it was consistently equal to 100%. All depicted values were
obtained for the same 96 nodes of the testbed, and the dissemination scenarios were
repeated 4 times. The idle listening duty cycles for given values of d were as follows:
0.97% for 1 event, 1.31% for 2 events, 1.64% for 4 events, 3.3% for 8 and 16 events.

Table 1. Testbed results for selected approximations of NarrowCast
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# concurrent
commun.-induced duty cycle [%] latency to cover 90% of nodes [s]

disseminations (d)
1 0.95 0.39 0.15 0.34 0.2 0.56 0.43 4.39 1.37 2.38 2.05 2.03 3.07 2.23
2 1.37 0.58 0.28 0.48 0.32 0.82 0.64 30.5 3.99 3.82 3.35 2.23 7.9 7.91
4 1.62 0.55 0.31 0.59 0.32 1.13 0.91 42.8 8.22 3.96 7.82 4.97 16.1 9.97
8 1.53 0.81 0.42 0.78 0.54 1.4 1.08 65.3 14.5 6.58 16.1 8.62 33.9 22

16 3.52 1.25 0.67 1.36 0.75 2.6 2.12 121 51.4 34 57.8 31 61.2 60.1

As is typically the case in sensornets, the experimental results differ somewhat from
the simulations, despite the fine-tuning of the simulated radios. In particular, the ab-
solute numbers for duty cycle and latency vary due to the differences in the network
topologies and wireless communication phenomena not modeled by the simulator. Like-
wise, colliding acknowledgments perform worse in the real world than in simulation.
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This is because whereas in the simulator clear channel assessment is nearly perfect, in
our TinyOS implementation, it is configured conservatively. In effect, transmitted ac-
knowledgments are sometimes ignored, which slightly inflates duty cycle and latency.
While we were not compelled to address this issue, devising mechanisms optimized for
particular radio chips constitutes an interesting problem. There are also a few other mi-
nor differences that can be attributed to the testbed topology and experimental settings.

Nevertheless, despite these differences in absolute values, the basic trends from the
simulations remain valid. Narrowcasting to a fraction of neighbors instead of broadcast-
ing to all reduces the communication-induced duty cycle by a factor almost inversely
proportional to the fraction. By and large, it also reduces the dissemination latency.
Finally, it hardly affects the coverage. The testbed experiments thus confirm that the
approximations of NarrowCast can in practice improve the performance of gossiping.

5 Conclusions and Future Work

In summary, the results demonstrate that NarrowCast—a link-layer primitive allowing
a node to transmit to a fraction of its neighbors—can be effectively implemented in the
real world and can indeed improve the end-to-end performance of gossiping protocols.
In particular, for Trickle running on top of X-MAC, even the simplest implementations
of NarrowCast can reduce the energy consumption and latency by a significant factor,
without sacrificing reliability. In general, this reinforces our initial argument that the
efficiency of sensornet gossiping protocols leaves room for improvement.

Therefore, since gossiping is a compelling communication paradigm in sensornets,
especially under mobility, we believe that our work will inspire novel solutions, designed
from the end-to-end perspective. In particular, we are currently working on protocols tai-
lored specifically to NarrowCast. Furthermore, since applications of NarrowCast stretch
beyond gossiping, investigating such applications constitutes another research avenue.
For instance, we are studying the use of NarrowCast for routing. Finally, we are also
working on proving the properties of NarrowCast analytically.
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Abstract. We consider the problem of data collection from a continental-
scale network of mobile sensors, specifically applied to wildlife tracking.
Our application constraints favor a highly asymmetric solution, with heav-
ily duty-cycled sensor nodes communicating with a network of powered
base stations. Individual nodes move freely in the environment, resulting
in low-quality radio links and hot-spot arrival patterns with the available
data exceeding the radio link capacity.We propose a novel scheduling algo-
rithm, κ-Fair Scheduling Optimization Model (κ-FSOM), that maximizes
the amount of collected data under the constraints of radio link quality and
energy, while ensuring a fair access to the radio channel.We show the prob-
lem is NP-complete and propose a heuristic to approximate the optimal
scheduling solution in polynomial time. We use empirical link quality data
to evaluate theκ-FSOMheuristic in a realistic setting and compare its per-
formance tootherheuristics.Weshowthatκ-FSOMheuristic achieveshigh
data reception rates, under different fairness and node lifetime constraints.

Keywords: Link scheduling, Optimization, Fairness, Energy, Mobile
Sensor Network.

1 Introduction
Recent advances in embedded systems and battery technology have enabled a
new class of large-scale mobile sensing applications. Consider a swarm of micro-
aerial vehicles fitted with a variety of sensors that can achieve fine-grained three-
dimensional sampling of our physical spaces, enabling exciting new applications
such as urban surveillance, disaster recovery and environmental monitoring [1–
3]. It is now possible to monitor individual movement patterns of wildlife along-
side the various aspects of their environment [4–6]. In a typical mobile sensing
scenario, sensor nodes mounted on a carrier (e.g., vehicle or animal) collect nu-
merous sensor readings while in transit. The nodes ultimately arrive back at a
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known rendezvous point (e.g., command center or animal pen), often as a large
swarm and remain there for an extended period of time. The data stored on each
sensor node is offloaded to a base station (BS) during this time.

A number of considerations make the data collection non-trivial. First, the
number of nodes can be quite large (several hundreds) and while the nodes nor-
mally arrive back in large groups, their exact arrival sequence is often unknown.
Second, the sensor nodes typically have low residual energy levels after being out
in the field for an extended period and limited bandwidth due to their weight
and size limitations. It is thus critical to collect data from each node before its
residual energy is exhausted. Third, the quality of the wireless channel between
each node and the BS may vary with time. Having a node transmit during in-
stances when the channel quality is poor is likely to result in packet reception
errors, which in turn would require retransmissions and thus increased energy
expenditure. Fourth, data should be downloaded from the nodes in a fair way.
In particular, the amount of data collected from each node should be greater
than a certain application-specific threshold. This is important to maximize the
accuracy of data analysis, for example, in the context of mobility modeling and
population characteristics for wildlife monitoring.

Conventional scheduling such as the one employed in IEEE 802.15.4 [7] are
based on First Come First Served (FCFS), which we refer to as batch processing.
Batch processing has limited performance in real-world conditions with irregular
radio channels and limited bandwidth. Any node with poor link quality occupies
the channel due to retransmissions, while the nodes with higher link quality
have to wait. Finally, batch processing does not support data collection fairness,
potentially downloading a large amount of data from a small subset of nodes.

We consider the scheduling problem in the context of a real-world application
for monitoring flying foxes (also known as fruit bats). Flying foxes typically
swarm out in search of food at night and flock back to roosting camps during the
daytime. A typical roosting camp can consist of hundreds to tens of thousands
of animals [8]. Recent work [9] aims to collect fine-grained spatiotemporal data
about their movement patterns and environmental surroundings by attaching
a sensor collar to these animals. The embedded sensors record the flight and
biological data such as GPS, temperature and air pressure while the bats are
out and about. The data is offloaded to a BS in the roosting camp when the
bats flock back during the daytime. Fig. 1 depicts a typical roosting camp and
the sensor collar attached to the animal.

In this paper, we propose κ-fair scheduling optimization model (κ-FSOM)
to maximize data harvesting in a large-scale mobile sensor network. κ-FSOM
schedules transmissions based on both the link quality and the residual energy
of each node. It also guarantees that a certain application-specific amount of data
is collected from each node. We first show that this optimization problem is NP-
complete. Next, we propose a heuristic algorithm to optimize the scheduling in
linear time. The κ-FSOM heuristic prioritizes the nodes for scheduling based on
a ratio of the link quality and residual energy. This enables the nodes with the
lowest energy reserves and the best chance of achieving successful transmissions
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(a) Roosting Camp

(b) Flying fox with
the sensor collar

Fig. 1. Motivating Application: Flying fox monitoring

to transfer their data first. In addition, we develop a state transition model to
address the fairness criteria and maximize overall network goodput. While we use
the bat monitoring application as a case study, the proposed optimization model
and heuristic are application-agnostic and hence applicable to a wide variety of
large-scale mobile sensing scenarios with delay tolerance.

The rest of paper is organized as follows: Section 2 presents related work on
link scheduling and optimization. We discuss network configuration and MAC
protocol in Section 3. Section 4 formulates the scheduling optimization and con-
straints. In Section 5, we prove that the optimization problem is NP-complete
and introduce our heuristic algorithm. In Section 6, we show the performance of
the κ-FSOM heuristic and compare it with state-of-the-art. Finally, the paper
is concluded in Section 7.

2 Related Work

In this section, we review the literature on link scheduling and optimization in
wireless networks. To solve different optimization goals, recent work considers
throughput, energy consumption or time delay.

Extensive studies have been conducted on link scheduling in cellular networks.
In [10], the link quality is predicted by an application framework which tracks the
direction of travel of mobile phone at the BS. They develop energy-aware schedul-
ing algorithms for different application workloads such as syncing or streaming.
Some scheduling optimizations which consider multicast [11], quality-of-service
assurance [12] and fair relaying with multiple antennas [13] are proposed to
achieve optimal delay, capacity gain or network utility.

The majority of related work has focused on addressing the scheduling prob-
lem in the context of multi-hop networks [14–16]. However, the notion of fairness
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in multi-hop networks focuses on fair allocation of time slots among the links in
each super frame, which is different from the fairness in data collection of MSN.

A link scheduling for maximum throughput-utility in single-hop networks with
the constraint of network delay is presented in [17]. It establishes a delay-based
policy for utility optimization. The policy provides deterministic worst-case de-
lay bounds with total throughput-utility guarantee. The author in [18] proposes
an opportunistic scheduling algorithm that guarantees a bounded worst case
delay in single-hop wireless networks. However, those scheduling algorithms are
not applicable in MSNs, because they do not consider the constraints of energy
and fairness of collection. In [19], a sensing scheduling among sensor nodes is
presented to maximize the overall Quality of Monitoring utility subject to the
energy usage. The scheduling algorithm maximizes the overall utility which is to
evaluate quality of sensor readings based on the greedy algorithm. For body sen-
sor networks, Sidharth, et al. focus on polling-based communication protocols,
and address the problem of optimizing the polling schedule to achieve minimal
energy consumption and latency [20]. They formulate the problem as a geometric
program and solve it by convex optimization.

To the best of our knowledge, there is no research focusing on link schedul-
ing optimization for fair data collection in large-scale single-hop MSNs. The
recent work in the literature is not applicable because they do not optimize the
scheduling with the requirements of both energy consumption and data reception
fairness. The key difference of our work over previous scheduling optimization is
that for a single-hop MSN which includes a large number of nodes, data collec-
tion is maximized in a fair way before they run out of energy. We formulate the
transmission scheduling optimization model in Section 4.

3 Network Configuration and MAC Protocol

In this section, we describe our network setup in the context of the bat mon-
itoring application and propose extensions to IEEE 802.15.4 MAC protocol to
improve its performance under our specific constraints.

3.1 Network Configuration

Our sensor nodes [9] are based on a custom-designed light-weight sensing plat-
form. The node embeds a GPS receiver, a three-axis accelerometer, air pressure
sensors, a microphone and a flash memory for delay-tolerant data collection. The
node is powered by a battery and includes a solar panel for harvesting energy.
The bats are nocturnal feeders and can travel long distances (20 km in one night
on average) in search for food. Typically the bats return to the roosting camps
during the day in large numbers and remain there before heading out again at
night. Individual animals can be away for several weeks before returning back to
the camp. Thus the total data payload on each node can vary up to a few MB.

We also deploy a number of powered BSs located at animal congregation
areas. BSs download data from sensors over a single-hop radio link, using Texas
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Fig. 2. The timing relationship. Tstarti and Tendi stand for the starting and ending
time of node i’s data transmission respectively.

Instruments CC1101 radios over 915 MHz frequency band. BSs then upload
collected data to a central database over 3G.

3.2 MAC Protocol

We propose some modifications to IEEE 802.15.4 super frame structure to ad-
dress the constraints of our application since 802.15.4 MAC protocol is not feasi-
ble for scheduling optimization of MSNs. First, at the beginning of super frame,
the BS does not have any information (PRR, energy, data size, etc) about the
nodes. Second, the node competes the channel in CAP only when it receives the
beacon. If the node misses the beacon due to the poor link quality, it consumes
much energy on idle listening. Even worse, the node which misses the beacon
has no chance to compete for the channel no matter how small the energy or
how good the link quality is. We utilize a 2-stage communication model, with
random channel access period (RCAP) followed by scheduled data transmission
period (SDTP) (see Fig. 2). The two periods interchange periodically and are
synchronized by the BS. Sensor nodes do not keep track of the schedule while
away from the BS, they only participate when in the range of the BS.

The purpose of the RCAP is to collect information about sensor nodes, in-
cluding their current link quality, the amount of available data, and their energy
resources. This data fits in a single Hello packet and the nodes compete for the
channel in a random-access fashion. Nodes check the radio channel for other
transmissions by using carrier sensing (CS) to avoid packet collisions and the
reception of Hello packets is acknowledged by the BS, so the nodes can turn
off their radios until the end of the RCAP. However, if Hello packets collision
happen, the senders have to back off a random time to sense the channel again.
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BS calculates the transmission schedule at the end of RCAP by running the
κ-FSOM heuristic that we illustrate in Section 5. BS informs all sensor nodes
the optimal schedule by broadcasting a SACK packet at the end of the RCAP.

SDTP is driven by the schedule calculated by the κ-FSOM heuristic. The
nodes find their transmission slot (DATA slot) within the super frame and only
transmit during their scheduled time to prevent interference. The length of the
DATA slots is selected by the scheduler and will typically allow for multiple
packet transmissions. We use guard intervals to prevent packet collisions due to
time-synchronization errors. With a large number of nodes, some of them may
fail to communicate with the BS during RCAP. However, these nodes consume
limited energy due to a long sleeping time during the SDTP.

4 Transmission Scheduling Optimization Model

Next, we present an abstract generalizable model of the network, which is used
for the optimization model presented in the Section 4.2. We assume that there are
N nodes that directly communicate with the BS using single-hop communication.
The nodes typically arrive in large groups but their exact arrival sequence is
unknown. The residual energy of a node i, when it arrives at the camp is denoted
by E0

i . In order to prevent a node from completely depleting its battery, we
assume that a node powers down if the residual energy goes below a certain
threshold Etd. In this paper, a node in such a state is referred to as a dead
node. The wireless channel between each node and the BS is typically influenced
by a variety of environmental factors and the motion of the node. The channel
variability in turn influences the Packet Reception Rate (PRR) of the node. We
estimate the PRR as a function of empirically collected RSSI traces from a real
testbed as outlined in Section 6.

On the basis of Section 3, the BS aggregates the nodes and channel information
in the RCAP in order to schedule the transmissions. In this section, we explain
the basic notations and propose the scheduling optimization model under the
constraints of reception fairness and node’s remaining energy. We formulate the
scheduling optimization as an Integer Linear Programming (ILP) problem.

4.1 Problem Formulation

According to the super frame as shown in Fig. 2, we divide the SDTP to a number
of slots S, where, S =

∑N
i=1 ΔTi. Time slot j (j ∈ [1, S]) is allocated by the BS to

only one node’s transmission for the purpose of avoiding collisions. Therefore, the
allocated timeΔTi of the node i contains multiple time slots in one super frame. κ-
FSOM calculates optimal solutions for multiple super frames so that the schedule
is optimized globally.F is defined as the total number of super frames needed for all
the nodes to finish their data transmissions.The sequence number of super frame is
denoted as f (f ∈ [1, F ]).We assume the residual energywhen node i arrives at the

camp isE0
i (i ∈ [1, N ]). ThePRR is indicated by qfi , where q

f
i ∈ [0, 1].Additionally,

qfi may change from one super frame to the next due to the time-varying channel.
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We assume qfi does not change during the super frame since the flying foxes are not
highly mobile in the camp. The data payload stored on each node is represented by
λi and the fairness coefficient is κ where κ ∈ (0, 100%]. Thus, the data reception
fairness ensures that the number of data packets the BS collects from each node is
not less than κ · λi. We define the boolean variable xf

ij as a transmission indicator
for node i ∈ [1, N ] associated with the slot j ∈ [1, S] in the super frame f ∈ [1, F ].

xf
ij = 1 means node i has jth slot reserved for transmission in super frame f .
The number of data packets received by the BS in a super frame is defined as

γf , where

γf =

N∑
i=1

S∑
j=1

xf
ij · qfi , (f ∈ [1, F ]) (1)

Similarly, for all super frames, the data received by the BS from any node i is
defined as αi, where

αi =

F∑
f=1

S∑
j=1

xf
ij · qfi , (i ∈ [1, N ]) (2)

The energy consumption of nodes arises from the transmissions in RCAP and
SDTP as shown in Fig. 2. In this paper, we let etx−hello, erx−hack and erx−sack be
the energy consumption of transmitting one Hello packet, receiving one HACK
and one SACK of the nodes, respectively. The etx represents energy consumption
of transmitting one data packet. Due to the tiny energy consumption of carrier
sensing compared to transmitting and receiving packets [21], we neglect the same
in our model. The energy consumption of node i in the RCAP is ĚA, where

ĚA = etx−hello + erx−hack + erx−sack (3)

We next define ĚDi as the energy that node i consumes on data transmission in
all super frames, where

ĚDi =

F∑
f=1

S∑
j=1

xf
ij · etx, (i ∈ [1, N ]) (4)

4.2 Optimization Model

Based on the notations in the problem formulation, we formulate the κ-FSOM for
finding the optimal schedules as follows. Objective function of the optimization
model is to maximize γf of all super frames. Constraint (5) specifies the minimum
remaining energy to be above Etd. A node stops accessing the channel after all
its data has been transmitted or constraint (5) is violated. Consequently, it does

not waste energy in RCAP in subsequent super frames. For this purpose, ϕf
i is

defined as an indicator of RCAP in a super frame for the node. If the node i
does not compete for the channel in the RCAP of super frame f , ϕf

i is equal to

0.
∑F

f=1(ĚA ·ϕf
i ) indicates the energy consumption of the node in the RCAP of

all super frames.
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Constraint (6) guarantees that the BS receives sufficient data packets to meet
the fairness requirement. Constraint (7) limits the value of αi by the total pay-
load λi. Constraints (8) and (9) specify that at any data transmission time slot
only one node communicates with the BS to prevent transmission collisions.

The only unknown is the total number of super frames during which a node

is required to transmit. In other words, ϕf
i is not known. To determine ϕf

i , we

define a variable vfij for node i at any slot j of super frame f . Accordingly,

constraint (10) presents whether node i has stopped the data transmission or

not.
∑f

g=1

∑j
w=1 x

g
iwq

g
i is the total received packets until the current slot j of

super frame f . If the amount of data packets received from node i matches

the size of payloads λi, v
f
ij is equal to 0. Constraints (11) and (12) ensure the

future slots j′ and super frames g have vfij = 0 if λi packets have been received

from node i. Constraint (13) guarantees all ϕf
i of the future super frames is 0 if

vfij = 0. As a result, the remaining energy of node i which is restricted by the

RCAP indicator ϕf
i stops decreasing in constraint (5). Constraint (14) ensures

that the node i stops data transmission if ϕf
i = 0.

maximize

F∑
f=1

γf

subject to : E0
i −

F∑
f=1

(ĚA · ϕf
i )− ĚDi ≥ Etd, (i ∈ [1, N ]) (5)

αi ≥ κ · λi, (i ∈ [1, N ], κ ∈ (0, 1]) (6)

αi ≤ λi, (i ∈ [1, N ]) (7)

xf
ij ≤ 1, (i ∈ [1, N ], j ∈ [1, S], f ∈ [1, F ]) (8)

N∑
i=1

xf
ij ≤ 1, (j ∈ [1, S], f ∈ [1, F ]) (9)

λi −
f∑

g=1

j∑
w=1

xg
iw · qgi ≥ vfij , (i ∈ [1, N ], j ∈ [1, S], f ∈ [1, F ]) (10)

vfij ≥ vfij′ , (j′ ≥ j, j ∈ [1, S]) (11)

vfij ≥ vgij′ , (g ≥ f, j′ ≥ j, j ∈ [1, S], f ∈ [1, F ]) (12)

F−f∑
a=1

ϕf+a
i ≤ vfij , (i ∈ [1, N ], j ∈ [1, S]) (13)

xf
ij ≤ ϕf

i , (i ∈ [1, N ], j ∈ [1, S], f ∈ [1, F ]) (14)

5 κ-FSOM Heuristic Algorithm

In this section, we first show that κ-FSOM is NP-complete. Next, a heuristic
algorithm is proposed to approximate the optimal solution.
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Algorithm 1. κ-FSOM Heuristic Algorithm

1: nodes are in AD state and compete the channel
2: The BS calculates ηf

i for the node i, ∀f ∈ [1, F ]
3: The BS sorts the nodes by ηf

i , then ηf
i ≥ ηf

i′ , (i �= i′, i′ ∈ [1, N ])
4: The BS schedules the node i to transmit
5: if αi ≥ (κ · λi) then
6: The node i goes to NA state
7: The BS schedules the next one to transmit
8: else
9: The node i remains in AD state
10: end if
11: if every node has αi ≥ (κ · λi) ∀i ∈ [1, N ] then
12: All the nodes transfer to AD state
13: The BS calculates ηf

i for each node
14: The BS sorts the nodes by ηf

i , then ηf
i ≥ ηf

i′ , (i �= i′, i′ ∈ [1, N ])
15: if Ei ≥ Etd then
16: The BS schedules the node i to transmit
17: else
18: The node i changes state to the ND
19: The BS schedules the next one to transmit
20: end if
21: if αi < λi then
22: The node i remains in AD state
23: else
24: The node i changes state to the ND
25: end if
26: end if

Maximizing the collected data presented in κ-FSOM is a typical 0-1 Multi-
ple Knapsack Problem (MKP) [22]. We reduce an instance of a MKP to our
scheduling optimization problem by assigning ΔTi to each knapsack. Therefore,
the capacity of the knapsack is equal to ΔTi. The items to be put in knapsacks
are data packets whose size is prorated by qfi . The parameters of the energy and
fairness conditions (constraint (5) and (6)) are chosen so that they are satisfied
by any placement of items. In this way, optimal placement of items in knapsacks
is reduced to such an instance of our scheduling problem. Since the problem is
obviously an NP problem, this shows that our scheduling problem presented in
the Section 4 is NP-complete.

We propose a heuristic algorithm to approximate the optimal solution of κ-
FSOM. Due to the prominent effect of Ef

i and qfi on the scheduling, a ratio of

the link quality and remaining energy of the node i is denoted as ηfi , where

ηfi =
qfi

Ef
i

, ∀i ∈ [1, N ], ∀f ∈ [1, F ] (15)

Accordingly, Ef
i is obtained by
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Ef
i = E0

i −
f∑

f ′=1

(ĚA · ϕf ′
i )−

f∑
f ′=1

S∑
j=1

xf ′
ij · etx (16)

The motivation of calculating ηfi is to prioritize the nodes based on both the link
quality and remaining energy. The κ-FSOM heuristic gives a high transmission
priority to the node with larger ηfi . This method achieves large data reception

because for the nodes with the same qfi , the node with the smallest Ef
i gets

higher transmitting priority. Similarly, for the nodes with the same Ef
i , one with

higher qfi has higher priority.
In our heuristic, the node works in three states, Access & Data transmission

(AD), NonAccess (NA) and NonData (ND). In AD state, the node competes for
the channel in RCAP and transmits data in SDTP as shown in Fig. 2. In NA
state, the node neither accesses the channel nor transmits data but only receives
the SACK packets for the purpose of saving energy in the super frame. More
importantly, none of the nodes which are in the NA state transmit data given
that no time slots are allocated to them. This helps more nodes achieve fairness.
In ND state, the node does not turn on the radio and remains in sleep mode.

The κ-FSOM heuristic develops two steps to maximize the data reception
with ηfi . It is implemented as shown in Algorithm 1.

Initially, all nodes are in AD state and the BS schedules the node i (i ∈ [1, N ])

which has maximum ηfi to transmit data. The BS records the number of data
packets from the node. Once the node i meets the fairness of data reception
(constraint (6)), it transfers to the NA state. The benefit of NA state is to
reduce the channel competition since the number of nodes competing for the
channel is decreased. Certainly, after the first step, all the nodes have at least
κ · λi data packets being transmitted successfully and the fair reception of data
is achieved. At the second step, all the nodes change the state from NA to AD.
Then, the BS schedules the node with largest ηfi to transmit first. To maximize
data reception, node i remains in AD state until either constraint (5) or (7)
no longer holds. Moreover, if the constraint of (5) or (7) is not fulfilled by the
node i, it transitions to ND state. By using this approach, the number of data
packets collected by the BS is maximized, meanwhile, the energy and fairness
requirements are both achieved. Transition graph is shown in Fig. 3.

Fig. 3. The state transition of node i
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Table 1. Simulation Parameters

Maximum number of bats N 300

Working temperature TA 25 ◦C
Working frequency Freq 915 MHz

Supply voltage Vcc 3 V

Transmitting current Itx 35 mA

Receiving current Irx 15 mA

Remaining energy threshold Etd 1.67 mJ

Bit Rate Rb 19.2k bps

6 Simulation and Performance Evaluation

Given optimal schedules from κ-FSOM by AMPL, the performance of our heuris-
tic algorithm is compared to the optimal schedules. We study the performance of
the κ-FSOM heuristic in the static and dynamic scenarios in MATLAB. Finally,
we evaluate the impact of the fairness coefficient κ on network performance.

6.1 Simulation Configuration

The data collection network in the simulation contains one BS and N nodes
(N ∈ [10, 300]) which are randomly distributed within the open camp. The node
communicates with the BS using CC1101 radio [23].

A data packet which contains time, GPS and biological information has 32
bytes. The length of one Hello packet is 10 bytes. Equally, HACK and SACK
have the same length as Hello. Therefore, we have

etx−hello = Vcc · Itx · 10× 8

Rb
= 0.03mJ (17)

erx−hack = erx−sack = Vcc · Irx · 10× 8

Rb
= 0.01mJ (18)

etx = Vcc · Itx · 32× 8

Rb
= 0.1mJ (19)

According to the energy initialization of sensor nodes in simulations [24], E0
i in

this work is given by a normal distribution with the mean value of 50 Joule, an
energy budget that supports the node for several days. However, in our simu-
lations, the value of E0

i is given purposely so that some dead nodes which run
out of energy can be observed among different scheduling algorithms. The RSSI
trace recorded by the sensor collars on the flying foxes [9] is imported to our sim-
ulator, which provides an environment to conduct repeatable simulations based
on empirical data. Fig. 4 depicts a 780 seconds segment which includes 3120
RSSI samples (The sampling rate of sensor collar is 4 samples per second). In

this paper, we convert the RSSI to PRR for the qfi by the experimental results
of PRR-RSSI relationship [25].
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Fig. 4. RSSI trace of the node by the sensor collar on the flying fox

We evaluate three performance metrics: number of data packets received by
the BS (data reception), the number of fair nodes and dead nodes. Specifically,
the fair nodes denote the number of nodes such that node i fulfills αi ≥ κ · λi

(the fairness constraint (6)). We compare the performance of our heuristic with
κ-FSOM optimal solution at first. Each node carries 80 KB data which is the
payload generated by the sensor collar on flying fox in one day. Then, we simulate
the κ-FSOM heuristic in the static and dynamic scenarios. In the static scenario,
we assume all the nodes are in the camp from the start of experiment to the
end. In the dynamic case, the nodes arrive back at the camp at different times.
Since the number of nodes communicating with the BS in a short time is small,
we increase the data payload to 300 KB in order to explore the limits of the
scheduling algorithms. For this reason, a node occupies the channel longer while
more nodes enter the camp in the dynamic scenario.

To evaluate the performance of the κ-FSOM heuristic in the static and dy-
namic scenarios, two Greedy scheduling algorithms and FCFS algorithm are
constructed in the numerical investigations. Because two basic elements used in
κ-FSOM are the remaining energy represented by Ef

i and link quality qfi of node,
the Greedy scheduling algorithms are formulated by them. The first Greedy al-
gorithm is called Low Energy Greedy (LEG), namely, the transmission schedule

is based solely on the Ef
i of node. Lower Ef

i implies higher priority of transmis-
sion at super frame f . High PRR Greedy (HPG) is the second algorithm where

the node with higher qfi has higher priority. We compare them with the κ-FSOM
heuristic algorithm with κ = 10%, 50% and 90%.

6.2 Simulation Results

Comparing to optimal schedules To compare to the optimal schedule shown
in κ-FSOM, we assess the performance of our heuristic when it operates in ten
small-scale networks where the number of nodes is increased from 1 to 10. This
initial comparison makes us aware of the performance difference between κ-
FSOM and our heuristic. The node i carries 80 KB data, so λi = 2500. In fact,
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Table 2. Comparison between the optimal solutions and the κ-FSOM heuristic

Nodes AMPL (Cplex) κ-FSOM

Packets Fair
nodes

Runtime Packets Fair
nodes

Runtime

1 2499 1 1 s 2481 1 0.03 s

2 4999 2 4 s 4969 2 0.1 s

3 7499 3 17 s 7469 3 0.04 s

4 9998 4 50 s 9922 4 0.04 s

5 12498 5 1 m 5 s 12477 5 0.04 s

6 14998 6 5 m 15 s 14340 6 0.04 s

7 17498 7 58 m 47 s 17288 7 0.05 s

8 19997 8 5 h 49 m 19792 8 0.05 s

9 22498 9 17 h 25 m 21779 9 0.06 s

10 24997 10 30 h 5 m 24555 10 0.07 s

the comparison is not affected by different κ values, thus we choose κ=50% for
both the optimal schedules of κ-FSOM and the κ-FSOM heuristic. The optimal
schedules achieve a maximum number of received data packets with the fairness
and remaining energy constraints. They are constructed using AMPL and a state
of the art ILP solver, Cplex 12.5, in a 2.7 GHz Intel core processor with 8 GB
of memory.

Table 2 summarizes running time, the number of collected data packets and
fair nodes. It is also found that there is no dead node in all tests. On data recep-
tion, the κ-FSOM heuristic and optimal solution have the maximum difference
which is 719 when N = 9. On average, the number of packets in our heuristic is
less than the AMPL output by around 1.8%. Our heuristic guarantees exactly
the same number of fair nodes as optimal schedules. Moreover, our heuristic is
much more efficient than κ-FSOM on runtime.

Static Scenario. Fig. 5a and 5c show the performance of the aforementioned
four scheduling algorithms on the data reception and fairness. When there are
only 10 nodes in the network, they have pretty similar performance. However,
FCFS, LEG and HPG collect 92.2%, 90.8% and 83.5% less data packets than our
heuristic when N = 300. The number of fair nodes of our heuristic is more than
the ones of FCFS, LEG and HPG for 174, 170, 147 nodes when κ = 50% and N
= 300. The reason is that LEG scheduling fails when the low energy nodes have
poor link quality. The nodes with high PRR are not scheduled, however, they
still consume energy on channel competitions in RCAP. For HPG scheduling,
the nodes with high PRR occupy the SDTP for multiple super frames until they
finish the transmissions. This leads to a large number of dead nodes. However,
those nodes could have potentially gained higher data reception. In contrast, our
heuristic makes the schedule based on ηfi which considers both remaining energy
and link quality. Moreover, it also achieves the fairness of data collection.
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We find the data reception and fair nodes of FCFS, LEG and HPG do not
vary significantly from N = 100 to 300. The reason is indicated by dead nodes
which are shown in Fig. 5e. It shows FCFS, LEG and HPG have much more
dead nodes than the κ-FSOM heuristic starting from N = 50. According to the
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Fig. 5. (a), (c) and (e) are for static scenario; (b), (d) and (f) are for dynamic scenario

κ-FSOM heuristic, we know that κ is a crucial variable which affects the states
transition of node i. The performance of our heuristic varies with different κ
value. As shown, they are similar for κ = 10%, 50% and 90% when N is 10.
From N = 50 to N = 300, κ = 10% performs better than 50% and 90%. The
reason is that any node which is scheduled to transmit occupies more super
frames when κ is increased due to the fairness constraint (6). It makes the other
nodes compete the channel in RCAP repeatedly and cost energy.

Dynamic Scenario. In this set of experiments, we test the scheduling algo-
rithms when nodes fly back as a swarm. Since the arrival pattern of flying foxes
in real world is not known, we assume the inter-arrival time of nodes is expo-
nentially distributed which is typically used to model situations involving the
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random time between arrivals to a service facility [26]. One node has a data pay-
load of 300 KB. From Fig. 5b we find that the κ-FSOM heuristic has up to 37.1
times as many collected data packets as FCFS and HPG. It outperforms LEG
by 5 times as well. The reason is explained by Fig. 5d and 5f. The FCFS, LEG
and HPG have less fair nodes and more dead nodes than our heuristic, which
means the newly arrived nodes fail to transmit since the transmitting node have
not finished the transmission. It causes their energy to be depleted very soon.
Moreover, in Fig. 5d, we observe the difference of fairness which is achieved by
different κ is smaller than the one in static scenario. That is because the BS
schedules a small number of nodes in one super frame in dynamic scenario. The
first step of κ-FSOM heuristic is completed faster, hence more nodes achieve
fairness in dynamic scenario. Likewise, the number of dead nodes in our heuris-
tic has small difference in Fig. 5f. Due to the increase of λi in this scenario, there
are 16 dead nodes with the κ = 90% in our heuristic at the maximum.

6.3 Effect of Fairness Coefficient κ

Based on the preceding simulations, it is observed that different κ affects the
performance of our heuristic. Essentially, the κ decides the fairness level in κ-
FSOM. In this experiment, we analyze the impact of κ in the static scenario
with 300 nodes. Specifically, the κ is varied from 10% to 100%. The performance
of data reception, fair nodes and dead nodes are shown in Fig. 6.
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Fig. 6. The effect of κ on the performance of κ-FSOM scheduling

As shown in Fig. 6, data reception rate decreases and the number of dead
nodes increases with the increasing κ. This is because the transmission duration
of one node is extended when κ is increased. Other nodes deplete their energy
due to RCAP if the channel is occupied by someone with high ηfi for a long time.
Their data is not collected by the BS before the nodes exhaust the energy. We
also find that the scheduling with smaller κ achieves larger number of fair nodes.
However, since the BS gives higher priority to the larger ηfi node after all nodes
satisfy fairness constraint, it does not guarantee most of data can be collected
from each node. Therefore, κ changed from 40% to 50% keeps a balance between
the data reception from each node and total number of dead nodes.



32 K. Li et al.

7 Conclusion

In this paper, we have proposed and evaluated κ-FSOM which is a fair link
scheduling optimization model with the objective of maximizing the data recep-
tion in the energy-aware data collection of MSN. The super frame structure is
developed for the BS to collect data from the nodes. We have proved that the
scheduling optimization of κ-FSOM is an NP-complete problem. Therefore, the
κ-FSOM heuristic algorithm is proposed to approximate the optimal solutions
in polynomial time. Our heuristic schedules the transmissions of data senders
based on ηfi and three working states in two steps. With the application of fly-
ing foxes monitoring, we have shown the numerical performance of the κ-FSOM
heuristic based on the RSSI traced by the sensor collar. We have compared our
heuristic with the optimal schedules of κ-FSOM and presented extensive simula-
tions incorporating both static and dynamic scenarios. Specifically, the κ-FSOM
heuristic provides a near-optimal scheduling to the data collection in MSNs.
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Abstract. In this paper, we present CodeDrip, a data dissemination
protocol for Wireless Sensor Networks. Dissemination is typically used
to query nodes, send commands, and reconfigure the network. CodeDrip
utilizes Network Coding to improve energy efficiency, reliability, and
speed of dissemination. Network coding allows recovery of lost packets by
combining the received packets thereby making dissemination robust to
packet losses. While previous work in combining network coding and dis-
semination focused on bulk data dissemination, we optimize the design of
CodeDrip for dissemination of small values. We perform extensive evalu-
ation of CodeDrip on simulations and a large-scale testbed and compare
against the implementations of Drip, DIP and DHV protocols. Results
show that CodeDrip is faster, smaller and sends fewer messages than
Drip, DHV and DIP protocols.

1 Introduction

Wireless Sensor Networks (WSNs) consist of a large number of nodes with sens-
ing, computation, and wireless communication capability. These sensor networks
are typically deployed to collect data from the environment or other physical
spaces. Many sensor networks have been deployed in outdoor environment such
as forests and streets and in indoor setting such as buildings and factories. Wire-
less communication and energy efficiency are key requirements of these networks,
especially in applications where we retrofit existing infrastructure with smart
sensing and actuation capabilities.

ManyWSN applications require the capability to send messages from a central
server or controller node to all the nodes in the network. This type of communi-
cation pattern is called dissemination. Dissemination is typically used to query,
send commands, reconfigure and reprogram the network. A data dissemination
protocol for sensor networks needs to overcome several challenges. First, the en-
ergy in each sensor node is limited by the battery or energy harvesting capacity,
thus it is important to save energy to increase the sensor node’s operational
lifetime. Second, sensor nodes typically do not have powerful CPUs, so they
might not be capable of executing complex communication protocols. Finally,
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wireless communication is susceptible to transmission errors and packet loss. A
dissemination protocol should not only be reliable and energy efficient, but also
fast.

In this paper, we present CodeDrip, a data dissemination protocol for Wireless
Sensor Networks. CodeDrip uses Network Coding to improve energy efficiency,
reliability, and speed of dissemination. Instead of simply retransmitting received
data packets, sensor nodes combine various packets into one, and retransmit the
combined packet to its neighbors. Therefore, packet loss is mitigated since lost
packets might be recovered through the decoding of others combined packets.
By avoiding retransmission, the dissemination process might finish faster.

Existing data dissemination protocols for Wireless Sensor Networks present
a tradeoff: save energy at the expense of dissemination speed. These protocols
use transmission of summaries or version numbers and attempt to selectively
transmit the missing data to avoid redundant transmission. While this strategy
saves energy, it could incur large delays. Through extensive experiments, we
find that CodeDrip provides faster data dissemination while transmitting fewer
messages than most previous approaches.

Network Coding is not a new idea in wireless communication. However, pre-
vious work such as COPE [11], can not be applied to WSNs because these
algorithms require large memory overhead. Network coding schemes such as
Rateless Deluge [8] and AdapCode [9] have been previously proposed in wireless
sensor networks and are shown to have low memory and computational over-
head. However, these WSN dissemination protocols are designed for bulk data
dissemination and require O(n3) instructions for decoding with the Gaussian
elimination. There has been no previous study of effectiveness of network coding
in dissemination of small values. Previously, it was thought that there would be
limited opportunity to combine packets in dissemination of small values, hence
the focus on bulk data dissemination. We identify the opportunity to make dis-
semination of small values efficient with network coding and fill this gap in sensor
network protocol design space.

Our main contributions are as follows. First, we present the design and imple-
mentation of CodeDrip. Second, we study the performance of CodeDrip through
extensive simulation and testbed experiments on the KanseiGenie testbed [20].
Third, we compare CodeDrip to the data dissemination of small values with
Drip, DIP [18] and DHV [5] and quantify the Network Coding gain and show
that Network Coding is useful even for dissemination of small values.

Our work is organized as follows. In the next section, we present work related
to CodeDrip. In Section 3, we give an overview of network coding. CodeDrip is
explained in Section 4. We present the simulation results in Section 5 and the
testbed experiments in Section 6. We conclude in Section 7.

2 Related Work

There is a large body of work in dissemination protocols for WSN. Figure 1 sum-
marizes the major classes of dissemination protocols. In this section, we describe
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Fig. 1. Selected classes of dissemination protocols in sensor network. CodeDrip uses
network coding to make dissemination of small data efficient and fast.

how some of the dissemination protocols fit in the design space of dissemination
protocols and application of network coding in dissemination.

2.1 Dissemination of Small Values

Trickle [16] is used as a building block for a number of dissemination protocols
that propagate code or small values in WSN. Trickle has two key features that
allows it to be efficient: the timer control algorithm and duplicate suppression.
Trickle timer doubles its interval every time it fires. Thus, over the long run, the
interval converges to a very large maximum value. The timer can be reset to a
small value when a new message needs to be sent. Trickle uses version numbers
to detect and suppress duplicate transmissions. A node periodically broadcasts
its version but stays silent and increases the interval if it hears several messages
from its neighbors containing the same version number. When a node receives
a new version number, the node resets the timer and transmits the message.
CodeDrip uses Trickle timer in its design.

Drip [21] is the simplest data dissemination protocol that uses Trickle timer.
Each time an application transmits a message with Drip, a new version number is
used. The new version number causes the protocol to reset the Trickle timer and
thereby transmissions in the network to disseminate the new value. Redundant
transmissions are detected using version numbers and suppressed. When the
application does not inject new messages, the timer interval increases which
causes the control overhead to level off. When a new message is injected, the
new version number causes the timer to reset and the nodes disseminate the
message. Figure 2 shows how Drip works when it is used to disseminate three
values. Dissemination of each message is paced by its own Trickle timer.

DIssemination Protocol (DIP) [18] is a data discovery and dissemination pro-
tocol. DIP continuously measures network conditions and estimates whether each
data item requires an update. In DIP, a node periodically broadcasts a summary
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Fig. 2. Drip example. There are three values to be disseminated. Each value is inde-
pendently associated with a Trickle timer. Each packet has a value (rectangles on the
left side). Each dot represents when the timer fires and a message is sent.

message, containing hashes of its keys and versions. A hash-tree based algorithm
detects if there is an update. DIP scales logarithmically with the total number
of items. DHV [5] is a code consistency maintenance protocol. DHV’s key con-
tribution is its technique to efficiently determine when to perform code updates.
DHV detects and identifies which code item need updates at the bit level. DHV
uses the Trickle timer to control transmission rate and duplicate suppression.

DIP and DHV are examples of dissemination protocols that operate at the
level of a group of messages (for example, to compute summaries). On the other
hand, Drip operates at the granularity of a single message. In DIP and DHV, all
nodes must agree on a fixed set of data item identifiers before dissemination. DIP
and DHV can scale to a large number of data item updates, however perform
worse than Drip on small number of data items or updates [7].

2.2 Bulk and Middle-sized Data Dissemination

A different set of dissemination protocols have been proposed for middle or large-
sized objects. Maté [14] and Tenet [19] optimize the design of their dissemination
protocols for middle-sized objects. Maté virtual machine disseminates code cap-
sules to install small virtual programs. Tenet disseminates tasks, enabling users
to decide what to run in the sensor network during run-time.

Deluge [10] is a data dissemination protocol for code updates. It focuses on
disseminating bulk data. Several optimizations in storage, buffering, and trans-
mission enable it to efficiently disseminate objects (such as sensor node code)
that do not fit in the limited RAM of sensor nodes. Deluge also uses Trickle
timer to time its control packets.

2.3 Network Coding and Dissemination

Early work in network coding showed that, in general, in-network encoding of
packets could achieve an optimal capacity that cannot be realized via any feasible
routing-only scheme [2]. It was shown that network coding can achieve multicast
capacity while routing-only scheme may not. Follow on work showed that it is
sufficient for the encoding function to be linear [17]. In wireless environments,
network coding has been demonstrated to offer several benefits, such as improved
energy efficiency [6](by reducing the number of distinct transmissions), higher
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throughput and robustness (by allowing nodes to receive potentially multiple
copies of a single packet).

A number of network-coding protocols have been proposed in wireless com-
munication, for example COPE [11] and CodeTorrent [13]. COPE [11] demon-
strated that the use of network coding can improve the overall wireless network
throughput. CodeTorrent [13] performs content distribution in VANETs using
network coding. Unfortunately, a direct application of these protocols from mesh
networks to WSN is challenging primarily due to memory constraints on sensor
nodes that limit the cache size for overheard packets.

Researchers have proposed network coding protocols with low memory and
computational overhead. Keller et al. [12] experimentally investigate the delay
of flooding based multicast protocols for a sniper detection application using
network coding. DutyCode [4] combines the idea of Network Coding and duty-
cycle in the MAC layer.

Rateless Deluge [8] is an implementation of Deluge with Network coding.
AdapCode [9] is another reliable data dissemination protocol for code update
with Network Coding. Both protocols take advantage of Network Coding to
improve reliability and send fewer messages than Deluge. These protocols are
optimized for bulk data dissemination and have high memory overhead and
running time of O(n3) due to their use of Gaussian elimination. CodeDrip is
optimized for dissemination of small values and uses XOR operator for encoding
and hence has low computational overhead.

A data dissemination protocol in WSNs with network coding is also presented
in [23], but their focus is different from ours. They assume a TDMA-like MAC
and focus on a packet-scheduling, determining which packets to combine and
transmit given the radio on-off schedule. They prove that the problem is NP-
hard and provide a LP formulation. In contrast to their system, CodeDrip runs
on CSMA MAC. We also provide a rigorous testbed-based evaluation of dissem-
ination of small values using network coding.

3 Network Coding

Network Coding [3] is a technique that combines packets in the network thereby
increasing the throughput, decreasing energy consumption, and reducing the
number of messages that are transmitted [22].

In wireless networks, traditionally, dropped packets are recovered using re-
transmissions. By combining packets using network coding, it is possible to re-
cover the transmitted information without needing to retransmit all the lost
packets to all the nodes. We explain how Network Coding works with a simple
example.

Consider the topology in Figure 3. The sink node, at the center of the figure,
wishes to disseminate two packets, denoted P1 and P2. Sensor nodes 1 and 2 are
in the communication range of the sink node and might receive the packets. The
sink node transmits packet P1 but only sensor node 1 receives it. Later, the sink
node transmits packet P2, but at this time, only sensor node 2 properly receives
packet P2. Thus, each sensor node receives a different packet.
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Fig. 5. With retrans-
mission with Network
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With the traditional approach, lost packets are recovered using retransmis-
sions. In our example, the sink node retransmits packets P1 and P2. If these
retransmissions are successful, sensor node 1 will receive the missing packet P2

and sensor node 2 will receive the missing packet P1. Thus, even if these first
retransmissions are successful, we need a total of 4 transmissions for both the
nodes to successfully receive the message. We show this scenario in Figure 4.

Network Coding allows packets to be combined using a logic operator. We can
combine packets using, for instance, the XOR (exclusive or ⊕) operator. A new
packet is created by performing a bit-wise XOR of each each bit in the packets
P1 and P2. The new packet is of the same size as the packets P1 and P2.

In a network coding system, the sink node, instead of retransmitting packets
P1 and P2, retransmits a new packet which is P1 ⊕ P2. Sensor node 1, after
receiving this packet, is capable of decoding packet P2 by applying the XOR
operator between the packet P1, which it has already received, over the new
packet. Thus, sensor node 1 decodes P2 since P2 = P1 ⊕ (P1 ⊕ P2). In the same
way, sensor node 2 is capable of decoding P1 when it receives the new packet and
applies the XOR operator with packet P2, which it has already received. Thus,
sensor node 2 decodes P1 since P2 = P1⊕ (P1⊕P2). Thus, we are able to recover
both the packets with only three total transmissions, as shown in Figure 5.

This example illustrates the benefit of using Network Coding in the single
hop topology example. The number of messages was reduced from 4 to 3. For a
larger topology with many more hops, the gains are much larger.

4 Algorithm

CodeDrip uses Network Coding to improve the efficiency of dissemination in
Wireless Sensor Networks. In a sensor network deployment, we often need to dis-
seminate different information (e.g., configuration, commands) to the network.
With network coding, we can combine different packets and make dissemina-
tion more resilient to failure. We can recover lost packets if the sensor node had
received a combined message and an original message.
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Fig. 6. CodeDrip example. There are three values to be disseminated. Each value has
an associated Trickle timer. Each packet transmission might combine the packets.

Like Drip, CodeDrip uses the Trickle timer to time the message transmis-
sions with the goal that the data will eventually arrive at all the nodes in the
network. Unlike Drip, CodeDrip sometimes combines messages and transmits
the combined messages. CodeDrip does not use topology information to inform
its decision about which messages to combine, thus has no control overhead for
topology discovery. Later we will describe when CodeDrip decides to transmit
combined messages.

To combine messages, different network coding protocols use different oper-
ators. CodeDrip uses the ⊕ operator, which is a Galois field of 2, instead of
a more complex finite field. This choice allows Drip to run efficiently on re-
source constraint nodes. On most CPUs, the XOR operator is just one hardware
instruction.

We modify the packet format for Drip to accommodate the control fields
required by network coding. The decoding process needs to know which messages
were combined to create the given payload. We add to the message header a field
indicating what messages where combined. Each data to be disseminated has a
1 byte identifier. For more than 256 items, we could extend this identifier. Each
message, besides its payload, has a set of these identifiers. This set of identifiers
is the CodeDrip overhead necessary for the coding and decoding processes. The
unmodified Drip message has only one identifier and its payload is the data to
be disseminated. A combined message has two or more identifiers corresponding
to the packets that were combined. The payload consist of the result of applying
the XOR operator among the data that are identified by the list of identifiers.

Figure 6 shows how CodeDrip works. There are three values to be dissemi-
nated. Each value has an associated Trickle timer. When the Trickle timer fires
(represented by a dot), a message is sent. Figure 6 also illustrates the message
content, where packets are combined before transmission.

Each sensor node has two buffers, one for the original messages and one for
the combined messages, which are initially empty. After receiving a message,
the sensor node verifies if the message is original or combined. If the message is
original, the sensor node stores it in the original message buffer and will transmit
this message when the Trickle timer fires. Drip also requires an original message
buffer to store the data item and its version number.
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If the sensor node receives a combined message, the sensor node checks if it
can decode the new message from the original messages which it had already
received. If it is not possible, the message will be stored in the combined buffer
until new messages make it possible to decode the message. In practice, for
example, consider the case where only two messages can be combined, the node
will only store a combined message in the buffer if it does not have any of its
combined packets.

There are two probabilistic decision policies in CodeDrip. The first policy
decides what to do when a sensor node receives a message it has already received.
Receiving the same message many times indicates that its neighbors already have
the message. Thus, it is reasonable that the sensor nodes does not need to send
the message right away, since this message is not missing in the neighborhood. A
sensor node might decide to suppress the message, in other words, delay sending
the message. This process is called suppression and is also present in Drip. The
suppression probability determines if the protocol should suppress the message.

The second policy decides if CodeDrip should send the original message or a
combined message. This decision is made before sending the message, in other
words, when the Trickle timer fires. Each original message is associated with a
timer. When this timer fires, the sensor node decides to either send the original
message, or to combine with other messages and to send the combination. The
other messages to be combined are selected randomly. The combination can hap-
pen independently at every node and not just the node that initially generated
the packet. The combination probability affects the protocol performance and is
evaluated in Section 6.

Since CodeDrip has the potential to decode more than one message with
just one transmission, CodeDrip suppresses sending unnecessary messages faster
than Drip. For example, CodeDrip can receive the combination of two redundant
messages and delay the sender timer of these two messages in a single step while
Drip would need to receive both messages.

5 Simulation Experiments

We first perform a set of simulation experiments to study the performance of
CodeDrip and how its performance compares to other dissemination protocols.
Although simulation experiments use modeled wireless propagation characteris-
tics, which might be very different from what we find in realistic wireless net-
works, the results are nevertheless helpful in understanding the basic high-level
properties of the protocols.

5.1 Evaluation Methodology

We generated WSN topologies by placing the sensor nodes in random locations
in the network and constructing a communication graph where the edge weights
represent packet loss rate on that link. We made sure that all the topologies are
connected. We simulate each scenario ten times and we report the median of
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Fig. 8. Number of sensor nodes (in per-
centage) that already received all mes-
sages over time. Topology has 100 sensor
nodes and 50% packet loss rate.

the metrics. In each simulation, the network disseminated three different data
items. We use the simulator called TOSSIM [15] for our experiments. TOSSIM
is designed to simulate TinyOS applications. We use these metrics in our study:

– Efficiency: We use the number of messages as a measure of efficiency of
the protocol. With energy efficient and duty-cycling MAC, fewer number of
transmissions typically leads to less energy expenditure.

– Reliability: We use the fraction of nodes that receive the disseminated mes-
sage as a measure of reliability.

– Speed: We use the time it takes for all the nodes to receive the disseminated
message as a measure of speed. We call it dissemination time or latency.

5.2 Performance Analysis

In the first set of simulations, we compare the number of transmitted messages
for CodeDrip and Drip. Figure 7 shows the performance of Drip and CodeDrip
for different number of sensor nodes. Roofnet project [1] collected link-level mea-
surements from a realistic mesh network and shown that most communication
pairs (sender/receiver) have intermediate (50%) delivery probabilities. Thus, we
fix the packet loss rate to 50%. This setting allows us to study CodeDrip’s perfor-
mance in a realistic network. We found that, in larger networks, the overhead for
CodeDrip relative to Drip improves as shown in Figure 7. In all our simulation
experiments, CodeDrip sends fewer total messages than Drip.

In the second set of simulations, we compare the dissemination latency of
CodeDrip and Drip. Figure 8 shows the cumulative fraction of sensor nodes that
already received all the disseminated messages according to the dissemination
process time in topologies with 100 sensor nodes. Observe that Drip suffers from
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differnet packet loss rates in topologies with 100 sensor nodes

packet loss in the initial stage since there are few nodes transmitting and many
packets are lost. In CodeDrip, even when there are few nodes transmitting in the
beginning, the data propagates through larger part of the network. We can also
observe that dissemination latency is shorter for CodeDrip. While some nodes
do not receive the last message with Drip, increasing the dissemination time,
with CodeDrip the combined messages increases the probability of receiving the
last message, decreasing the dissemination latency.

In the third set of simulations, we study how the link quality affects CodeDrip
and Drip protocols. Figure 9 illustrates the performance of Drip and CodeDrip
as we vary the link quality in the network with a 100 sensor node topology. We
observe that CodeDrip is less affected by the packet loss rate than Drip since
CodeDrip needs fewer messages to finish the process. CodeDrip also has smaller
dissemination latency compared to Drip. When the packet loss rate is higher
than 50%, the measurements have higher variation, which is expected because
different decisions are made in dissemination depending on whether the packets
are succssfully received.

These results indicate that the dissemination process sends fewer messages
when coupled with Network Coding technique. The gains are improved when
the packet loss rate are higher.

6 Testbed Experiments

In this section, we describe testbed experiments used to validate the performance
results for CodeDrip in a more relistic wireless environment.

6.1 Evaluation Methodology

Testbed experiments involve implementing and running the protocol code on phys-
ical motes and collecting instrumentation data to understand the performance.
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Fig. 10. Number of messages sent and dissemination time for CodeDrip and Drip as
we increase the number of physical sensor nodes used in the testbed experiments

We used the public KanseiGenie Wireless Sensor Network Testbed [20] to run
our experiments with real sensor motes. This testbed provides access to TelosBs.
The motes on the testbed have a 3dB attenuator attached to their antennas. At
the lowest power level of transmission, the reliable range is 3 feet. Thus, this
testbed allows us to evaluate protocols in a realistic wireless environment with
a mix of reliable and unreliable links. We run the protocol code for CodeDrip,
Drip, DIP, and DHV on this testbed and collect performance information.

To collect data related to the performance of the protocol, we instrumented
the code of the protocols to send a message to the serial port of the TelosB
motes. The messages contain the id of the mote, the number of packets the mote
sent since the beginning of the dissemination and the number of messages the
mote have already received. The system adds a timestamp when a message is
sent. These messages are then sent and stored in a central server from which we
can download them for performance analysis.

6.2 Performance Analysis

In the first set of testbed experiments, our goal is to compare CodeDrip per-
formance with Drip for different network sizes. Figure 10 shows the number of
messages sent and the dissemination time for Drip and CodeDrip. We dissemi-
nated 10 values from the sink node. We tested topologies from 10 to 70 sensor
nodes. We changed the size of the network by programming the protocol code
on select nodes and programming “Blink” program on rest of the nodes. Each
point on the graph represents an average of results from 3 experiments and the
error bar is the standard deviation. Figure 10 shows that CodeDrip sends fewer
messages than Drip and CodeDrip is faster than Drip.

In the second set of experiments, we study the impact of suppression and
combination probability on different performance metrics. The probability of
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Fig. 11. Number of messages sent and dissemination time for CodeDrip and Drip for
different probability of suppression in the testbed experiments

suppressing a received message or combining multiple packets into a single packet
before transmission affects the performance of CodeDrip protocol. These results
can give us guidelines on how to configure these two parameters in a real-world
deployment.

Figure 11 depicts the number of sent messages and the dissemination time
by the probability of suppression. The experiments contain topologies with 70
physical sensor nodes. For comparison against Drip, we add a horizontal line that
indicates the Drip’s average of sent messages and also Drip’s average dissemina-
tion time. We can observe that for small probability of suppression, CodeDrip
sends more messages than Drip. However, the average dissemination time for
CodeDrip is always smaller than Drip. For better performance, the probability
of suppression should be set between 40% and 80%. In general, increasing the
probability of suppression decreases the number of messages but, on the other
hand, increases the dissemination time.

Figure 12 shows the results from experiments that analyze the impact of the
probability of combination parameter on dissemination performance. The prob-
ability of combination determines if the node should combine the messages when
the node transmits a message. The results suggest a trend where the number of
sent messages increases with the larger probability of combination. We presume
that by combining many times, we do not get an original message that could be
useful to decode all previous messages. CodeDrip is better than Drip for values
below 30%. Again, the average dissemination time for CodeDrip is always smaller
than Drip. For better performance, the probability of combination should be set
between 10% and 30%.

Thus, we investigated how the probability of suppression and combination
affects CodeDrip performance. For the next set of experiments, we set the prob-
ability of combination to 30% and probability of suppression to 50%.



46 N. dos Santos Ribeiro Júnior et al.

 1100

 1200

 1300

 1400

 1500

 1600

 1700

 1800

 10  20  30  40  50  60  70

N
um

be
r 

of
 m

es
sa

ge
s 

se
nt

Probability of combining packets (%)

Drip Average
CodeDrip

 0

 20

 40

 60

 80

 100

 10  20  30  40  50  60  70

D
is

se
m

in
at

io
n 

tim
e 

(s
)

Probability of combining packets (%)

Drip Average
CodeDrip

Fig. 12. Number of messages sent and dissemination time for CodeDrip and Drip for
different probability of combining packets in the testbed experiments

DIP and DHV are newer dissemination protocols that improve upon Drip for
certain types of dissemination. Drip treats every data item as a separate entity
for dissemination and DIP and DHV treat them as a group. We now evaluate
CodeDrip against both DHV and DIP.

One of the benefits of applying Network Coding is that it reduces the dis-
semination time. Figure 13 shows the evolution of dissemination with CodeDrip,
Drip, DIP, and DHV protocols over time in a topology with 70 physical sensor
nodes. The x-axis represents time since the dissemination process started. The
y-axis indicates the percentage of nodes that received all 10 disseminated mes-
sages. For at least 90% of nodes to receive all messages, CodeDrip takes only 6
seconds, while Drip needs 15 seconds, DIP spends 43 seconds and DHV is not
able to get 90% in over 100 seconds.

Figure 14 shows the number of messages sent over time for CodeDrip, Drip,
DIP, and DHV protocols in a topology with 70 physical sensor nodes. We observe
that the CodeDrip and Drip show a faster growth in the number of sent messages
at the beginning of the dissemination process, while DIP and DHV grow more
slowly. This is a consequence of how the protocols are implemented. CodeDrip
and Drip use different Tricke timer for each value that is being disseminated in
the network. DIP and DHV use only one Tricke timer for all values. Although
DIP sends fewer messages, not all nodes receive the dissemination content as
shown in Figure 13. Thus, CodeDrip transmits fewer packets than DHV and
Drip. Although CodeDrip transmits more packets than DIP, CodeDrip does the
job of completely disseminating the values, which was not the case for DIP.

Finally, we compare memory overhead of the four dissemination protocols.
Table 1 compares the RAM, ROM, and code size usage (in bytes) from CodeDrip,
Drip, DIP and DHV. CodeDrip uses more RAM than Drip because of buffers.
But, this overhead is marginal since it still consumes less memory than DIP and
DHV. CodeDrip consumes fewer ROM memory than Drip, DHV and DIP.
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Table 1. RAM, ROM and Code size usage from CodeDrip, Drip, DIP, and DHV

Metric CodeDrip Drip DIP DHV

RAM (bytes) 900 845 959 928
ROM (bytes) 17980 21274 22130 21478

Code size (bytes) 42655 50123 49493 49003

7 Conclusions

In this work, we presented CodeDrip, a data dissemination protocol for Wireless
Sensor Network. The main idea behind this protocol is to apply Network Coding
in the dissemination process, decreasing the number of transmitted messages and
consequently saving energy consumption. CodeDrip requires additional space in
the packet to store message ids and buffers to store combined messages. These
overheads can be controlled by specifying the maximum number of messages that
can be decoded and the maximum buffer size. We evaluated the performance of
CodeDrip with simulation and testbed experiments. Our results showed that
CodeDrip is faster than Drip, DIP and DHV protocols to disseminate infor-
mation. CodeDrip also requires less ROM memory than Drip, DHV and DIP.
Furthermore, CodeDrip transmits fewer packets than DHV and Drip. Although
CodeDrip transmits more packets than DIP, CodeDrip’s dissemination reliability
is higher than DIP’s. Thus, CodeDrip is faster, smaller and sends fewer messages
than Drip, DHV and DIP protocols.

For future work, we plan to analyze the impact of different topology types
and link qualities on the performance of CodeDrip. Another interesting work is
to develop new policies to combine messages using more complex operators.
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Abstract. Developing sensornet software is difficult partly because of
the limited visibility of the system state of deployed nodes. Sensor-
net checkpointing is a method that allows developers to save and re-
store full system state of nodes. We present four extensions to sensornet
checkpointing—compression, binary diffs, selective checkpointing, and
checkpoint inspection—that reduce the time required for checkpointing
operations considerably, and improve the granularity at which system
state can be examined and manipulated down to the variable level. We
show through an experimental evaluation that the checkpoint sizes can
be reduced by 70%-93%, and the time can be reduced by at least 50%
because of these improvements. The reduced time and increased gran-
ularity benefits multiple checkpointing use cases, including automated
testing, network visualization, and software debugging.

1 Introduction

Sensornet applications can be rigorously tested in simulation, but the conditions
in a deployed network are not easy to model and simulate accurately. Hence, even
if the network appears to work well in simulation, it might encounter problems
in a real setting as experience has shown [11].

The limited visibility of the internal system state makes it difficult to analyze
where the error stems from. Moreover, the actual infrastructure (e.g., a multi-hop
wireless network) needed for transmitting error reports or debugging commands
may break down once the fault has occurred. When errors have distributed effects
over a partial or whole network, the difficulty of debugging increases because the
faulty node has to be located before it can be inspected. Systematic testing of
node firmware in realistic settings requires visibility into the state of each node
to ensure that a certain scenario has been tested. This is challenging to attain
without an additional hardware infrastructure, such as in Flocklab [12].

Sensornet checkpointing is a software-based approach to mitigate these issues
faced by researchers and software developers [14]. By using sensornet checkpoint-
ing, it is possible to save and restore the full run-time state of a sensor node.
The run-time state of a node consists of a snapshot of the volatile memory and
the current state of the hardware such as timers and LEDs. This improves the
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visibility into the system tremendously, and provides us with a foundation for
making use of testing and debugging techniques formerly not available in the
sensor networking domain.

Motivation. The applications of sensornet checkpointing include automated
testing, network visualization, and debugging. These applications are affected in
different ways by the size required to store and transmit a single checkpoint file.

In the case of automated testing, the number of testing scenarios that can
be covered within a bounded time is limited by the time required to transmit
checkpoint files between testbed nodes and a workstation. In the case of network
visualization, the frequency at which one can update the visualized image of the
network is inherently limited by the latency of the checkpointing operation. In
the case of debugging, the size of the checkpoint should be limited so as to
have a minimal influence on the state of the local node and the network when
transferring the checkpoint back to the PC.

Currently, checkpoint files comprise the full system state. Because of the rel-
atively large size of checkpoint files, the time required to transfer them between
testbed nodes and a PC is high. In our initial tests in the TWIST testbed, the
checkpointing operation took on average 16 s, which limits the efficacy of the
aforementioned applications.

Contributions and Roadmap. In order to make sensor network checkpointing
more efficient for these applications, we make the following three contributions:

– As the first contribution, we decrease the size of the checkpoint files using
two mechanisms described in Section 3. First, we describe a memory-efficient
implementation of the Lempel-Ziv algorithm [21] to shrink the checkpointing
files. We investigate and adapt the parameterization for the special require-
ments of checkpointing on resource-constrained devices. Second, we intro-
duce a binary diff algorithm to compress consecutive checkpoints.

– Our second contribution are two novel mechanisms for partial checkpointing.
These mechanisms are based on the insight that many debugging applica-
tions do not need to work with the full system state. Towards this end, we
introduce in Section 4 a new checkpointing format that is self-contained and
allows us to store partial system states, thereby enabling what we call se-
lective checkpointing. This functional addition to the original checkpointing
method not only improves the efficiency in cases where only sub-states are
stored but also enables new applications of checkpointing formerly not avail-
able. Furthermore, this functionality makes it possible to store and rollback
the states of multiple applications independently. We describe a general tool
to analyze checkpoint files in the new format.

– Our last contribution is the evaluation of the proposed mechanisms in Sec-
tion 5. We present a detailed analysis of the compression algorithm in terms
of memory consumption and achieved compression ratios demonstrating that
we can reduce the checkpoint files to 7%− 30% of the original size. We also
show the capabilities of selective checkpointing in a case study of fault in-
jection, where we reduce the time for a rollback operation by 98%.
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After the evaluation, we present related work in Section 6, and conclude our
work in Section 7.

2 Background

Sensornet checkpointing makes it easy to save and restore the full run-time state
on real sensor nodes. A checkpoint contains the full volatile memory and the
state of modifiable hardware registers, such as the ones used for timers and
actuators. A small service runs on each node to manage saving and restoration
of checkpoints. During either of these operations, the checkpoint service freezes
the normal operation of the node by turning off interrupts and taking control of
the processor. When checkpointing, the service writes the node state into a file in
the flash memory [18]. When restoring the state, the service reads the previously
saved system state from the file and substitutes it for the current contents of the
memory and the hardware registers.

Checkpoint files can be transferred either through a testbed back-channel,
or—in the case of a deployed network—through radio communication. The state
of a node can be rolled back using a checkpoint file generated earlier, thereby
making it appear as if the network is jumping back in time to an earlier state.
The rollback feature makes it possible to replay the network execution from a
known state. The state can then be inspected offline with standard debugging
tools, but it must be rolled back on a simulated node first. This provides a high
visibility into the state of any individual node.

There are many applications for sensor network checkpointing including auto-
mated testing [3], visualization of the network where checkpointing enables non-
intrusive collection of node-specific information such as routing tables, memory
usage and radio connections [14], simulation model validation and debugging by
moving the state of all nodes from the testbed to a simulator where it is eas-
ier to find the root cause when an error is detected in the testbed [14]. Using
rollbacks one can, for example, suspend a testbed run after the initial network
set-up has been performed in order to investigate how the network is affected by
environmental conditions [2].

3 Accelerated Checkpointing

In our initial experiments with the checkpointing implementation of Österlind
et al. [14] we observed that a checkpointing operation on the TWIST testbed
takes approximately 16 s on average. The latency of checkpointing depends on
the time to store the state on the flash and the time to transfer this file from the
flash to the local machine over USB or a testbed backchannel. All those steps
are accelerated by reducing the checkpoint sizes.

Through inspection of various kind of memory images induced by running
different system firmwares on TMote Sky nodes, we find that a considerable
part of the RAM is unused, and therefore filled with zeros. This opens up the
possibility to compress the state files considerably.
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Fig. 1. Sliding window and look-ahead buffer during compression. The string search
tries to match the longest string inside the sliding window buffer. The matching string
can expand into the look-ahead buffer, but it must start in the sliding window.

To this end, we design LLZ, a memory-optimized lossless compression algo-
rithm based on the Lempel-Ziv algorithm. Furthermore, we use binary diffs of
consecutive checkpoints that we apply our compression algorithm on. Both of
these mechanisms are designed to have memory footprints commensurate with
the requirements of mote-class devices.

3.1 Compression

Compressing checkpoints is a straightforward way to reduce the size of the check-
points. Compression algorithms are well researched on regular platforms as well
as on resource-constrained devices [16]. We conducted initial experiments with
run-length encoding compression, but observed a decreasing performance for
more complicated checkpoint files. Therefore we choose a compression algorithm
based on Lempel-Ziv compression. We select the LZFX compression format [4].
Its reference implementation is designed to be fast and the implementation is
small. Both of those properties are important for WSN nodes where computation
time and memory overhead matters. The reference implementation of LZFX still
uses up memory of around 1 MByte during its compression operations, however.
We develop Low memory Lempel-Ziv (LLZ), a memory-optimized compression
algorithm using the compression format of LZFX.

Format. We use the LZFX compression format as shown in Figure 2. Data
encoded in the compression format replaces redundant data by referring to earlier
occurrences in the data stream. Those replacements are called back references.
Non-redundant data is encoded uncompressed as literal data.

Every data element is annotated by a codeword, describing the type and the
length of the data. In case of uncompressed data, this codeword is followed by
the literal data. In case of a back reference to redundant data, the codeword is
followed by at least another one, which encodes the address of the reference.

The first three bits specify the type of the data element. If they are zero, the
codeword specifies uncompressed data. The next 5 bits define the length L−1 of
the following uncompressed data. If the first three bits are between 0 and 7, the
codeword defines a short back reference. The first three bits are then interpreted
as the length of L − 2 of a back reference. This makes it possible to encode
data elements up to 8 bytes long. Longer sequences are encoded with the first
three bits set. The following codeword specifies the length of the back reference.
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Format Type Description
000LLLLL < L+ 1 bytes> uncompressed data <L> = length - 1
LLLooooo oooooooo BR with length< 9 <o> = addr-1; <L> = length-2
111ooooo LLLLLLLL oooooooo BR with length>= 9 <o> = addr-1; <L> = length-2

Fig. 2. The binary format of the compressed data stream specifies three different data
elements. The first three bits indicate if uncompressed data or a back reference (BR)
is encoded. Back references to redundant data are divided into short back references,
with a maximal length of 8, and long back references. Long back references require an
additional codeword to store the length of the encoded data.

In both back reference cases, the address o− 1 is stored in the last 5 bits of the
first codeword and an additional codeword.

Algorithm. LLZ is a memory-optimized variant of the Lempel-Ziv compression
algorithm. To produce the compressed data stream, we maintain a sliding win-
dow buffer and a look-ahead buffer, as depicted in Figure 1. The sliding window
buffer is a fixed size buffer of the last M bytes of the processed uncompressed
data. This buffer is the area in which we search for redundant data elements.
The look-ahead buffer is a fixed size buffer of the next N bytes of data, we want
to compress. It represents the data we want to find inside of the sliding window.

LLZ looks for the longest string match of the look-ahead inside the sliding
window. If we find such a match, we can create a back reference pointing to the
redundant data. If we are unable to find a fitting match, we encode the data
uncompressed. We then forward both buffers by the amount of encoded bytes
and repeat this procedure until all data is encoded. We encode longer sequences
of uncompressed data with the least amount of codewords possible. Matches that
are shorter than three characters are encoded uncompressed as the first three
bits would otherwise indicate a literal run.

The efficiency of LLZ depends on the size of the sliding window (parameter
M) and the size of the look-ahead buffer (parameter N), as well as the algorithm
used for the longest string search. If M is large, the probability of finding good
matches increases allowing us to create better back references. If the size N is
large, we are able to encode longer data elements. This can lead to better back
references as well as better uncompressed encoded data since the codewords to
encode these are sparser.

Memory Optimizations. When we implement LLZ on a sensor node we have
to take the limited memory into account. To achieve good compression ratios,
we want to choose the parameters M and N large. This would yield a higher
probability for back references and we would be also able to encode longer data
elements. The reference implementation of LZFX compresses blocks of 1MB size
which are kept in memory during the compression process. On sensor nodes we
are forced to find values that are big enough to yield good compression ratios,
but also small enough to fit on sensor nodes.
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Performance. Another performance criteria for LLZ is the method used to
find a matching string in the sliding window buffer. To speed up the search
process, secondary data structures are needed. In the reference implementation,
LZFX uses a hash table of 216 = 65536 bytes for this purpose, but alternative
implementations exist [1]. The slowest, but most memory efficient method is
to use no additional data structures and search directly in the sliding window
buffer. We adjust this algorithm to skip parts of the sliding window that are
known to not contain further matches. We do not use an additional buffer to
store the current uncompressed data, since we use the sliding window buffer for
this. If we choose N > M , we extend the sliding window buffer to the size of the
look-ahead buffer. The total buffer size is therefore max(M,N) +N . The worst
case complexity of this longest string search algorithm is Θ(M ×N).

3.2 Binary Diffs

Checkpointing repeatedly creates multiple full checkpoints even if only small
parts of the memory change. We observed, that many memory locations change
only slowly or remain almost static after the initialization, while others change
rapidly. The size of the following checkpoints can be reduced by only storing the
differences to a former checkpoint. Existing tools like bsdiff[15] and XDelta[13]
have high memory requirements during the diff operation.

We implemented a memory-efficient binary diff algorithm that reduces the
information entropy of the checkpoint files, and thereby ensures that they can
be compressed to a greater degree. LLZ works best with repeated data like long
strings of the same character, since those sequences can be encoded efficiently.
This can be exploited if only small parts of a file change. We apply byte-wise
XOR to the two input files and store the result in a diff file. Every byte that is
equal in both files is set to zero in the diff file. Every file of those three ones can
be retrieved by applying the XOR operation to the two other files.

4 Selective Checkpointing

For many debugging applications storing the full system state is wasteful. Being
able to only use full checkpoints also limits the applicability of checkpointing.
It is not possible to save the state of parts of the system, like applications, in-
dependently. Selective checkpointing provides the functionality to specify which
memory sections should be included in the checkpoint. We develop a new file
format for checkpoints that supports a general description of checkpoint files.
We use this selective checkpointing to develop a checkpoint inspection tool that
allows us to analyze and manipulate checkpoints offline.

Selective checkpointing has many advantages over a full state exchange. Par-
tial states are usually much smaller than full states, containing only a few bytes
rather than a couple of kilobytes. This results in a much higher performance of
the checkpointing and rollback operations as we show in the case study of a fault
injection in Section 5.3.
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Fig. 3. The new checkpoint file format. It can contain arbitrary many memory sections
and can be used for word sizes between 8 and 128 bit.

Another major advantage of selective checkpointing is that partial states do
not influence the whole system. This might seem contradictory to the initial goal
of checkpointing, saving the complete run-time state of a node and replaying it
later. In practice this means that the state of multiple applications running on
one node cannot be saved independently since rolling back a checkpoint includes
restoring the state of all applications and the operating system. We enable this
functionality with selective checkpointing.

A third advantage is that we are not forced to restore the same date during
a rollback operation that was formerly saved during a checkpointing operation.
The selective checkpointing format is self-contained, meaning that it contains
enough information about the stored memory locations to be rolled back. This
enables asynchronous checkpointing applications, where one part of the system
is manipulated while another one is observed using checkpointing.

By selecting only parts of the full state for a checkpoint, it is possible to
create a state that is not consistent. This can happen if the the state of the
application depends on data structures in the operating system that are not
part of the checkpoint. Although we do not have a mechanism to resolve these
dependencies yet, we believe that by carefully selecting the memory sections or
employing additional code to resolve such situations, inconsistent checkpoints
can be handled. Currently, this has to be done manually though.

4.1 Format

The checkpointing format, as shown in Figure 3, consists of a file header and
a header for each memory section that is included in the file. It is also possi-
ble to specify a section for hardware information or other special payload, not
represented in the volatile memory. The file header consists of 1 byte split into
a version field and an address width (AW) field. The version field specifies the
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format version of the file, and can be used to identify incompatible checkpoint
files if the format changes in the future. The address length field specifies the
number of bytes an address uses on the target platform. This is important be-
cause the address width can differ between architectures. The TI MSP430 devices
use 16 bit to 20 bit for addressing, whereas the ARM Cortex M3 platform uses
32 bit. The header for each section consists of a section start (SS) field and a sec-
tion length (SL) field. Both fields consist of AW bytes to cover the entire memory
range. Each section header is followed by SL bytes of payload. A special section
is started with an empty SS and SL field, followed by a special section length
(SSL) field. The SSL field takes like the SS and SL field AW bytes. The special
section header is followed by SSL bytes of payload. With this information, the
rollback section can restore the state or partial state correctly. Hardware infor-
mation can be stored in the special section header. The data stored there is not
specified by the format and can be used for any purpose.

This checkpoint format allows for memory efficient handling of the input. We
can process one checkpoint file with constant memory overhead, since only the
file header and the current section header need to be stored in memory.

4.2 Checkpoint Inspection

We use the selective checkpointing extension to create a checkpoint inspection
tool, which provides the functionality to analyze and manipulate checkpoints
without replaying them on a node or inside a simulator. We argue that a check-
pointing framework should include the possibility to create arbitrary new check-
points and to analyze existing ones, rather than only providing the means for
saving and restoring a sensor node’s state or a part of a state. We are convinced
that this tool enables new applications of checkpointing in the areas of testing
and debugging.

There are two types of variables that are interesting for a software tester. The
first type is the local variables, which are stored on the stack. They are created
when a function is entered and they are destroyed when this function is left.
The other type is global variables, which are accessible from every function at
any time. In our checkpointing implementation, it is not possible to capture the
local variables. This is a trait inherent in Contiki’s architecture that is based on
Protothreads [8]: all running threads share one stack, which gets reset when a
thread yields. It is thus unnecessary to include local variables in the checkpoint.
Because of this limitation, Contiki applications need to use global variables that
are preserved during task switching, to store their state. Since global variables
are stored in the checkpoint as a part of the global state of the operating system,
we can access most of the interesting variables.

To get the information needed to analyze a checkpoint offline, our checkpoint
inspection tool processes the ELF-encoded firmware of the sensor node. The ELF
format provides detailed information about the location, size, and name of every
symbol. Unfortunately the ELF format does not provide information about the
structures of the symbols, but this information can be retrieved from the source
code. The memory sections that are contained in the checkpoint are the BSS and
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DATA sections of the firmware. The BSS section contains all global variables that
do not have any initialization. The location and size of those variables is, however,
static. The DATA section stores all global variables, which are initialized in any
kind of way. To have information about all variables, we have to combine both
descriptions. This gives us the address of the variables in RAM. The mapping
between the RAM address and the position in the checkpointing file is not linear.
We can, however, create an address translation using the information provided
with the new checkpointing format.

5 Evaluation

We evaluate our improved checkpointing functionality throughmicro-benchmarks
and experiments in the TWIST testbed, using two sensor network applications.
The first application collects data over a wireless sensor network and sends it
periodically to a sink. Data collection is probably the most common application
of wireless sensor networks [10]. This application uses the Rime stack [7] for com-
munication. The second application we use for the evaluation is a small webserver
that uses the uIP stack [6] for communication. The communication stack repre-
sents a significant part of a typical WSN firmware. By using different communica-
tion stacks,we can examinewhether theirmemory usage differs in any considerable
manner, and thereby affects the compression results.

To evaluate the performance of our LLZ compression algorithm, we measure
the compression ratios in relation to the selected sliding window size and look-
ahead buffer size. In this paper, we define the compression ratio as the size of
the compressed file as fraction of the original file size: ratio =

sizecompressed

sizeoriginal
.

The sliding window size and the look-ahead buffer size range from 8 byte to
512 byte. We calculate the data points that represent the best memory usage to
achieve a compression ratio of at least 30%. During early tests, we found that
such a compression ratio is easily achievable for most firmwares, and yields a
notable performance boost. We also calculate the best compression ratios that
are achievable with a memory usage of 128 bytes, and measure how LLZ behaves
with increasing memory usage. Lastly, we measure the time needed to create the
checkpoints, compress them, and transfer them to the TWIST testbed, and com-
pare the results with those of the original checkpointing method. We transferred
the files via SSH from 89 nodes using the TWIST testbed. All timing measure-
ments were repeated multiple times and the listed times are the average times
over all runs.

5.1 Compression

Scenario. We compress a complete checkpoint for both applications, including
the whole RAM except the regions of the file system and the checkpointing
application and compare the results against run-length encoding. We compare
also the compression behavior of a RPL implementation in Contiki with a RPL
implementation in TinyOS to analyze the influence of different operating system
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(b) Compression ratios for the tinyos-rpl
application

Fig. 4. The compression ratios of a full checkpoint on TMote Sky are plotted dependent
on look-ahead and window size. The black square shows the best compression ratio for
a memory usage below ≤ 128 bytes (left: 11%, right: 10%).

architectures on our approach.We record the time required to create a checkpoint
and downloading it to the local machine using a node directly connected to our
test machine and the TWIST testbed. We test the times without compression
and with compression of the data stream during checkpointing operation.

Results. The compression ratios for both applications, web server and data col-
lection, are shown in Figure 4. A checkpoint of the data collection application
can be compressed with a compression ratio of 30% using 48 bytes of buffer
memory, i.e., the sliding window and look-ahead buffer. We can achieve a com-
pression ratio of 23% by using 128 bytes of buffer memory. We need 40 bytes to
achieve a compression ratio of 30% for a checkpoint of the web server applica-
tion. With 128 bytes of buffer memory, we can reach a compression ratio of 19%.
The best compression ratio we measured was 15% by using 512 of memory for
the buffers. The results show that an increased size of the look-ahead buffer size
leads to a rapid improvement of the compression ratios for small buffer sizes.
The impact of the sliding window buffer size is lower for small buffer sizes. For
larger buffer sizes, the effects on the compression ratio in relation to buffer sizes
are comparable between sliding window and look-ahead buffer.

The fast improvement of the compression ratios for increasing look-ahead
buffer sizes can be explained by the more efficient encoding of consecutive zeros
in the checkpointing files. Unused memory segments in the RAM are initialized
with zeros. One back reference codeword can encode at most as many bytes as
fit in the look-ahead buffer. The improvements of the compression ratios with
higher memory usage are as expected. The choice of the operating system has
little influence on the compression performance of LLZ.
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Fig. 5. A comparison of the compression ratios of LLZ and RLE when applied on full
or partial checkpoints. LLZ outperforms RLE if sufficient memory for the buffers is
used or if the checkpoints are complicated.
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Fig. 6. The accumulated times for checkpointing and rollback are plotted in the left
and middle figures using local nodes connected with a USB serial adapter and the
TWIST testbed. The times for performing a fault injection are plotted in the right
figure. We are able to improve the times for all operations considerably.

The compression results in comparison with the results for run-length encod-
ing (RLE) are given in Figure 5. LLZ performs slightly worse than RLE when
there is a very small amount of RAM available for LLZ to use for its search
buffer. It outperforms RLE if larger buffers are chosen or with more complex
checkpoints, which is the common case.

Figure 6 shows the recorded times for the checkpointing and rollback opera-
tions. We observe a notable reduction for all operations using local nodes as well
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(a) Compression ratios for the data col-
lection application
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(b) Compression ratios for the web
server application

Fig. 7. Compression ratios of a diff between two checkpoints on TMote Sky. The best
compression ratios for a memory usage ≤ 128 bytes are 12% for the data collect ap-
plication and 11% for the web server application. The lowest memory usages for a
compression ratio ≤ 30% is 32 bytes for both applications.

as using the TWIST testbed. By compressing the checkpoint files, we reduce not
only the transfer time but also the time for the generation of the checkpoint file.
Since we compress the state before writing it to a file in flash memory, the file
size becomes smaller, which reduces the time spent on flash writing. The total
time of the checkpointing operation is reduced by 4.5 seconds (46.5%) on local
nodes, and by 8.4 seconds (50.5%) using the TWIST testbed. The rollback times
are reduced by 7.6 seconds (20.8%) on local nodes, and by 97.3 seconds (52.0%)
on the TWIST testbed.

5.2 Binary Diffs

Scenario. We evaluate the performance of binary diffs using two checkpoints for
both application, which are taken 30 minutes apart from each other. We observe
that this time frame is long enough to encounter state changes. We then create
a binary diff of both files and compress it afterwards. The diff of both source
files should yield better compression ratios than the source files under the same
memory restrictions.

Results. We plot the compression ratios for both applications in Figure 7. The
best compression ratio using 128 bytes of total buffer memory is 12% for the
data collection application and 11% for the web server application. The lowest
memory usage to achieve a compression ratio of 30% is 32 bytes for both ap-
plications. The best compression ratio we obtained was 7% by using 512 bytes
of memory for the search buffers. The dependency of the compression ratios on
the buffer sizes is similar to what can be observed when compressing the source
files. We could, however, observe an even higher impact of the look-ahead buffer
size for low buffer sizes.
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Our experiments show that binary diffs in combination with our LLZ com-
pression algorithm can lead to checkpoint sizes that are only around 7% of the
original size. This directly improves the performance of the checkpoint and roll-
back operations.

5.3 Selective Checkpointing

Fault injection is a technique used to cover test cases that occur only rarely dur-
ing normal operation. Those cases contain mainly code paths used for exception
handling that are never executed, if the correlating fault is not present. Normally
a debugger can be used for fault injection, but in sensor networks debuggers are
usually not available. Checkpointing provides the possibility to create arbitrary
states and transfer them to sensor nodes and can therefore be used to inject
faults for testing purposes. In this case study, we inject faults into the routing
table of a sensor node that uses the Rime communication stack. We use selective
checkpointing and checkpoint inspection to create faulty states and upload them
to the node.

The same application is possible using the checkpointing implementation by
Österlind et al. [14]. Using their implementation, we need to replay a checkpoint
on a simulated node where we can change the memory using debugging tools
such as GDB. We then need to create a new checkpoint using the simulator. We
believe that this procedure can be improved by using checkpoint inspection.

Scenario. To inject faults in the Rime routing table it is not necessary to trans-
fer a complete state to the sensor node. We only need to transfer those seg-
ments, that contain the routing table itself. With the techniques introduced in
Section 4.2 we are able to get the location and size of every symbol. With this
information we are now able to create a new checkpoint containing only the
memory segments for the Rime routing table using selective checkpointing. We
measure the size of the selective checkpointing and it takes to transfer it to either
a local node and or to the testbed.

Results. The memory footprint of one routing entry is 11 bytes. In our configu-
ration, one routing table can hold up to 8 entries which results in a total memory
of 88 bytes, which are allocated in one block. In addition to this, we also need
to store the access pointer of the table which accounts another two bytes. We
need to create headers for both memory sections, and for the checkpoint itself.
The total checkpoint size that we upload to the nodes is 99 bytes. We did not
compress the file because of the small size.

The times for injecting the fault are given in Figure 6. The average upload
time of this checkpoint to the TWIST testbed this fault is 4.78 seconds. The
rollback operation took 0.42 seconds in average. For the local case we measured
1.06 seconds for the upload and 0.02 seconds for the rollback operation. We
observe in both cases, that the delay between initiating the upload and the start
of the data transfer took the dominant part of the upload operation. Without
selective checkpointing, we would need to upload a full checkpoint. Compared
to the rollback operation of a full checkpoint, we reduce the time elapsed by 182
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seconds on the TWIST testbed. This is a reduction of 98%. We reduce the time
for local nodes by 35.3 seconds (86%).

Our experiments show that we can inject faults more efficiently using selective
checkpointing and checkpoint inspection. We reduce the times to perform an
injection by over 86% and avoid the need to replay an existing checkpoint on a
simulated node to perform the operation.

6 Related Work

Testing and debugging software in sensor networks is notoriously difficult, and
this circumstance has spurred a plethora of research. In controlled environments
such as simulations and testbeds, the possibility of debugging greatly exceeds
that of deployed network environments. Many techniques have been developed
toward this end, including cross-layer simulation [9], symbolic execution [17],
and pre-deployment modifications of the software to check more thoroughly for
memory errors [5].

Once a network is deployed, however, other techniques are required to diagnose
and mitigate system malfunction. Wachs et al. argued for designing protocols to
have a high degree of visibility [19], meaning that the diagnosis of communication
failures should have a low energy cost. This can greatly help software developers
and network operators to understand why failures occur in deployed networks.
However, when unforeseen failures occur in the protocol or other parts of the
system, the originally designed visibility in a certain protocol may be insufficient
to diagnose the error.

Clairvoyant allows source-level debugging in deployed wireless sensor
networks networks [20]. This concept overlaps with parts of our work, since
Clairvoyant makes it possible to read and write at arbitrary locations in sys-
tem memory. However, Clairvoyant does not employ data compression to handle
transfers of larger subsets of the system state, which is a gap that we fill for sen-
sornet checkpointing in this paper. Checkpointing also operates on a larger scale
than conventional debugging, making it practical to retrieve efficiently complete
state of a node.

The technique we adopt and improve upon in this paper, sensornet checkpoint-
ing [14], offers full system visibility, allowing the inspection of errors unforeseen
by protocol designers, and errors whose source are at other parts of the system
than in the network stack. Moreover, sensornet checkpointing is not limited to
diagnosis of errors alone; it also enables rollback of system state.

Plank et al.’s checkpointing library Libchkpt [16] offers checkpointing support
for Unix applications. It includes incremental checkpointing and compression
of checkpoints to make checkpointing more efficient. Inspired by their work we
bring this functionality to resource-constrained networks and add the extended
functionality of selective checkpointing.
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7 Conclusions

To make sensornet checkpointing efficient and flexible enough to use for auto-
mated testing, network visualization, and software debugging, we have presented
four improvements to the original checkpointing technique: compression, binary
diffs, selective checkpointing, and checkpoint inspection. Through these improve-
ments, we shrunk the file size of full checkpoints down to 7%-30% of the original
size. This reduces the checkpointing and rollback operations time by at least
50%. We also made checkpointing more flexible with respect to the granularity
of checkpointing, allowing one to checkpoint at any level from the full system
down to individual variables. This allows testing of selected subsets of the system
state with considerably lower transfer cost compared to sensornet checkpointing
in its original form.
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Abstract In this work we describe a systematic approach to power subsystem
capacity planning for solar energy harvesting embedded systems, such that unin-
terrupted, long-term (i.e., multiple years) operation at a predefined performance
level may be achieved. We propose a power subsystem capacity planning algo-
rithm based on a modified astronomical model to approximate the harvestable
energy and compute the required battery capacity for a given load and harvesting
setup. The energy availability model takes as input the deployment site’s latitude,
the panel orientation and inclination angles, and an indication of expected meteo-
rological and environmental conditions. We validate the model’s ability to predict
the harvestable energy with power measurements of a solar panel. Through sim-
ulation with 10 years of solar traces from three different geographical locations
and four harvesting setups, we demonstrate that our approach achieves 100%
availability at up to 53% smaller batteries when compared to the state-of-the-art.

Keywords: Wireless sensor networks, energy harvesting, modeling, experimen-
tation.

1 Introduction

Advances in miniaturization and low-power design of electronic devices have allowed
Wireless Sensor Networks (WSNs) to reach a state at which they represent a feasible
option for continuous observation of various processes, e.g., industrial, agricultural, or
environmental monitoring. Due to remote and inaccessible deployment sites, and the
lack of power sources, the motes comprising a sensor network are usually battery pow-
ered devices [1]. However, the finite energy store imposed by non-rechargeable batteries
severely limits the achievable performance level of application scenarios with increased
energy demands, e.g., [2]. Ambient energy harvesting, particularly in the form of solar
energy harvesting [3, 4], has thus attracted much attention as a promising solution for
enabling perpetual system operation.

The ultimate goal of an energy harvesting system is to enable uninterrupted long-
term (i.e., on the order of multiple years) operation at a defined minimum performance
level (i.e., sustained duty-cycle). However, simply enhancing an embedded system with
energy harvesting capabilities may not suffice to achieve this goal [5, 6]. This is be-
cause solar energy harvesting opportunities depend both on static and dynamic factors,
e.g., efficiencies of the solar panel and energy storage element, solar panel installation
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parameters [5], and time-varying meteorological conditions, and transient local obstruc-
tions. Despite the many design examples that can be found in literature describing so-
lar energy harvesting systems specifically designed for long-term WSN applications,
the problem of how to systematically sizing the energy store and solar panel capaci-
ties, such that uninterrupted, long-term operation at a defined performance level can
be achieved, remains an open task. The work presented in this paper addresses this is-
sue and provides a tool for design space exploration and identification of the smallest
combination of battery and solar panel for a particular application.

The performance level achievable by an embedded computing system is ultimately
limited by the available energy. Thus, the battery capacity must be large enough to
cover the longest period without harvesting opportunities, and the panel must be able to
generate sufficient amounts of energy to replenish the battery within an acceptable time
frame. However, due to highly dynamic meteorological conditions, it may be difficult to
define either of these periods without resorting to pessimistic assumptions [7]. In fact,
literature review shows that most efforts attempt to mitigate the effects of improperly
designed power subsystems with dynamic load scaling [8], which are based on expected
harvesting opportunities predicted by an energy prediction scheme, e.g., [9, 10].

While runtime energy awareness and reactivity is important for achieving improved
system utility and energy efficiency, we argue that it can not replace appropriate design-
time capacity planning of the power subsystem. Even a perfect, yet fictional energy
predictor could achieve continuous operation only if the entire power subsystem is
provisioned to support the given load. Hence, for application scenarios that require
uninterrupted long-term operation at a pre-defined minimum performance level, the
aforementioned approaches alone are unsatisfactory because they do not consider the
effects of the power subsystem capacities.

To this end we propose a design-time, i.e., offline power subsystem capacity planning
algorithm for solar energy harvesting systems. The approach considers seasonal varia-
tions of the energy source, the sun, to approximate the harvestable energy and compute
the required battery capacity given a panel size and deployment location information.
Assuming that the modeled conditions reflect actual conditions, the power subsystem
capacity obtained with this approach enables uninterrupted operation at a defined per-
formance level, subject only to hardware failure, or environmental phenomena with a
long-term effect on harvesting opportunities, e.g., volcanic eruption.

The contributions of this work are summarized as follows. First, we propose a power
subsystem capacity planning algorithm based on a modified astronomical model [11].
Second, we validate the modified model’s ability to approximate the harvestable energy
with power measurements of a solar panel. Thirdly, we evaluate the capacity planning
approach through simulation, and show that it yields smaller batteries than the state-
of-the-art (SotA) capacity planning algorithm [12]. We further show that our approach
outperforms the SotA by achieving 100% availability over ten years for three different
test datasets, while requiring up to 53% smaller batteries. In contrast to SotA, our ap-
proach does not rely on detailed power traces or calibration data, but only requires a
crude estimate of average meteorological conditions at the intended deployment site.

Sec. 2 briefly reviews related work. Sec. 3 introduces the high-level concept of the
power subsystem capacity planning approach. Sec. 4 provides a detailed discussion of
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the harvesting conditioned energy availability model that forms the basis of the capacity
planning algorithm presented in Sec. 5. In Sec. 6, we evaluate the proposed method’s
ability to achieve uninterrupted long-term operation, and its sensitivity to parameter
variations. Finally, Sec. 7 concludes this work with a summary and brief discussion of
future work.

2 Related Work

Many design examples of energy harvesting systems can be found in literature, e.g.,
ZebraNet [13], Heliomote [14], Ambimax [15], Fleck [16], Rivermote [17], etc. How-
ever, they fail to provide systematic approaches for power subsystem capacity plan-
ning, and instead present anecdotal, application specific design choices that are based
on simplified assumptions. Since the realization that energy harvesting is not necessar-
ily sufficient to guarantee uninterrupted operation [7], efforts have primarily focused
on mitigating the impacts of an inappropriately provisioned power subsystem with en-
ergy prediction schemes, e.g., [18–20], and dynamic load scheduling based on short-
term predictions [8–10, 21]. Three notable exceptions are [7, 12, 22], which are briefly
discussed in the following.

In [12] an analytical model for long-term sustainable operation is presented. The au-
thors consider battery capacity planning based on a representative power profile, infer-
ring that the panel size is fixed. The approach is evaluated with a network of Heliomotes
over two months during Summer in Los Angeles. To the best of our knowledge, this is
the only approach that presents systematic guidelines for offline capacity planning. It
will be discussed in more detail in Sec. 6.3 and used as a baseline for evaluation.

Design experiences of the HydroSolar micro-solar power subsystem are presented
in [7]. Despite leveraging the same astronomical model [11] used in this paper, the au-
thors compute the panel size under the assumption that at most 30 minutes of daily
charging would have to meet the daily energy requirements, essentially provisioning
the solar panel for the worst case scenario (see Sec. 5). The battery is selected such that
it can support 30 days of operation without harvesting opportunities. However, their
deployment did not achieve uninterrupted operation despite seemingly overprovision-
ing the power subsystem. Interestingly, the authors mention that capacity planning for
long-term operation is reasonable, if not necessary, and may be beneficial for improved
system utility; however, they do not further investigate this insight.

Another closely related work that relies on the same astronomical model is presented
in [22]. The authors empirically validate the model and show that it is, despite its low
complexity, very applicable to real-world scenarios. However, the authors are not con-
cerned with capacity planning, but rather focus on runtime prediction of harvesting
opportunities with an extended astronomical model. The same battery and panel siz-
ing guidelines as in [7] are used, which may result in an underprovisioned power
subsystem.

3 Power Subsystem Design for Long-Term Operation

The ability to achieve uninterrupted long-term operation for solar energy harvesting
systems depends on a properly dimensioned power subsystem that can support the
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expected load. Fig. 1 shows the high-level design flow of the proposed capacity planning
approach for enabling long-term, uninterrupted system operation. The dashed boxes
represent user inputs that characterize the deployment setup, hardware technology em-
ployed, electrical load, and expected meteorological conditions. The capacity planning
algorithm discussed in Sec. 5 then computes the battery capacity required to support a
user-specified performance level DCsys.

Technology Parameters:

System Parameters:

Deployment Parameters:
Latitude, Orientation, Inclination

Capacity Sizing (Sec. 5)

Energy Availability Model (Sec. 4.1)

Harv. Cond. Energy Model (Sec. 4.2)S, Ppv, ηpv, ηcc, ηvr, ηbatin , ηbatout

Psys, DCsys, Pvr, Pcc Battery Capacty: Bnom

Performance Level:
DCsupported

Environmental Parameter: Ω

Fig. 1. Design flow for power subsystem capacity planning. Dashed boxes and arrows represent
user inputs based on which the supported duty-cycle and required battery capacity are computed.

For estimating the theoretically harvestable energy, we leverage the fact that the en-
ergy source, the sun, follows both a diurnal and annual cycle. These cycles and the
resulting solar energy can be approximated very well with an astronomical model [11].
This model requires deployment location and solar panel setup information as input,
i.e. latitude of the deployment site, and orientation and inclination angles of the solar
panel, to which we collectively refer as deployment parameters.

The astronomical model further depends on three parameters that account for the at-
mosphere’s optical characteristics and the reflective properties of the ground. However,
the exact values for these parameters are highly dependent on time-varying meteoro-
logical phenomena. In Sec. 4.1 we explain how the model parameterization is reduced
such that it takes a single input parameter to account for atmospheric and reflective
properties. We call this parameter the environmental parameter Ω.

The energy that can effectively be harvested on a given day further depends on the
technology parameters. These parameters characterize the technologies employed by
specifying the solar panel’s surface area Apv , its conversion efficiency ηpv , and max-
imum power rating Ppv , the efficiencies of the power conditioning circuitry (ηvr and
ηcc), and the charge and discharge efficiencies (ηbatin and ηbatout

) of the chosen stor-
age element. In this work we are not concerned with the selection of optimal storage
technology, as this is highly application specific. Note that we leave the selection of
panel size to the designer and compute the battery capacity for the given panel. This is
because solar panels are available in discrete sizes and scale linearly with output power
rating. The capacity of a battery is somewhat less dependent on size. More importantly,
however, the panel’s maximum physical size is primarily limited by the form factor of
the mote’s enclosure and therefore considered a more sensitive design constraint.

Finally, the system parameters, i.e. power dissipation Psys, and minimum expected
duty-cycle DCsys, and power conditioning circuitry, i.e., voltage regulator Pvr, and
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charge controller Pcc, characterize the load imposed on the battery. The system’s to-
tal energy requirement defines the performance level expected by the designer, while
the supported duty-cycle DCsupported, computed by the capacity planning algorithm
defines the fraction of the expected performance level that can be sustained with the
computed battery capacity Bnom. Note that this work assumes constant power dissi-
pation by the load; however, the model also applies to variable power profiles if the
average load behavior can be approximated at design time.

In summary, the input parameters discussed in this section characterize the system
and expected meteorological conditions such that the energy availability model in Sec. 4
can accurately approximate the long-term energy harvesting opportunities.

4 System Model

A crucial step in capacity planning consists of estimating the theoretically harvestable
energy at a specific point in space and time. To achieve this, we leverage an astronom-
ical energy model [11]. Sec. 4.1 discusses three modifications to this model such that
varying environmental conditions can be taken into account. Sec. 4.2 describes the har-
vesting conditioned model, which incorporates conversion and storage inefficiencies.

4.1 Energy Availability Model

According to [11], the total solar energy Eastro(·), incident on a flat surface located
at latitude L, oriented at azimuth and inclination angles φp, and θp respectively. As
shown in (1), it is defined as the sum of the energy contained in direct solar radiation
Esun(·), the diffuse radiation by the sky Esky(·), and the reflection of direct and diffuse
radiation by the ground Egnd(·), on a given day d, and time of day t [11]. The magni-
tude of Eastro(·), given in Wh · m−2, further depends on the distribution and optical
characteristics of absorbent gases in the atmosphere, represented by diffuse sky radia-
tion parameter k, optical thickness of the atmosphere τ , and the reflective properties of
the ground R, all of which are unit-less. More details on this model and the impact of
varying optical characteristics are given in [11], and [23, 24] respectively.

Eastro(·) = Esun(d, t, L, φp, θp, τ)+Esky(d, t, L, k, θp, τ)+Egnd(d, t, L, k,R, θp, τ)
(1)

Local obstructions, such as trees, buildings, and meteorological factors (i.e. clouds,
snow) also affect the solar energy incident on the panel. Accounting for these effects
relies on extensive knowledge of the topographical and meteorological conditions at
the deployment site, hence they are not directly considered by the astronomical model.
As discussed later in this section, we account for these effects in the calculation of the
environmental parameter Ω.

The astronomical model is further expressed in terms of k and τ , both of which are
dependent on time-varying optical characteristics of the atmosphere that are difficult
to predict [24]. The authors in [11] suggest values of k = 0 and k = 1 for absolute
lower and upper bounds to obtain the contribution by diffuse sky radiation. For the
atmosphere’s optical thickness, τ , values between 0.1 and 0.4 are recommended, where
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the former represents a very clear sky, and the latter a very hazy sky [11,23]. However,
for energy harvesting purposes, an upper bound of τ = 1, i.e., no solar harvesting is
possible, can be assumed.

In an effort to quantify the parameters k and τ , we note that solar power traces (see
Sec. 6.1) can be closely approximated with Eastro(·) by letting k = 0.1 and varying τ ,
such that

∑T Eastro(·) ∼=
∑T Eactual(d). We leverage this observation and define the

so called environmental parameter Ω in (2) to replace τ . The parameter δi represents
the proportion of time during which the atmosphere exhibits the optical thickness τi.

Ω =

N∑
i

δiτi , where

N∑
i

δi = 1 (2)

To obtain a representative indication of the atmosphere’s long-term average opti-
cal property, the granularity of the weather conditions is represented by N . For ex-
ample, for a particular geographical location, and with N = 4, we might let δ =
[0.25, 0.35, 0.2, 0.2] to represent 25% of the time with clear sky conditions (τ1 = 0.1),
35% and 20% with light (τ2 = 0.4), and heavy (τ3 = 0.7) occlusions respectively, and
20% with no harvesting opportunities at all (τ4 = 1) (see also Sec. 6.2 and 6.4).

As is evident from (1), τ appears in the expressions for Esun, Esky , and Egnd. How-
ever, due to fixing k and varying τ , Ω may take values larger than the quantities rec-
ommended for τ in the original model. Hence, to minimize the error due to diffuse sky
radiation [25], we replace τ with min(Ω, 0.4) in the expression for Esky .

The astronomical model assumes a flat horizontal terrain, which, depending on the
topography of the deployment site, may not be a valid assumption. The authors in [11]
state that the magnitude of Egnd(·) is subject to large error because of topographi-
cal variations. However, with a solar panel located at 40◦N , oriented due south (i.e.,
φp = 180◦) with 40◦ inclination angle, and τ = 0.2, k = 0.3, the total annual solar
energy incident with R = 0 is only 2.94% lower than assuming ground reflectivity of
bare ground, i.e., R = 0.3 [11]. Therefore, unless the effects of ground reflection at a
particular deployment site can be obtained through profiling or detailed surface models,
it is reasonable to ignore the effect of ground reflection, and assume R = 0.

4.2 Harvesting Conditioned Energy Model

The model introduced in the previous section is used to compute the energy incident
on a flat surface with a surface area of 1m2 for a given time of the year. However,
when concerned with electrical energy as opposed to solar energy, various losses due
to conversion inefficiencies and self-consumption must be considered [5]. This section
discusses the effects of non-ideal harvesting and storage elements.

System Architecture. In this work, a harvest-store-use system architecture as defined
in [4] is assumed. In such an architecture, the energy to operate the load is always supplied
by the battery, and no bypass path exists that allows operating the load directly from the
solar panel when the battery is full, and surplus energy is available. Since there is no
dependence on the type of energy store employed, alternative harvesting architectures
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may also be used. We further assume a stationary solar harvesting installation without
sun-tracking capabilities, i.e. orientation and inclination angles are fixed.

Panel Characteristics. Only a fraction of the solar energy incident on a solar panel is
converted to electrical energy. Depending on technology, the conversion efficiency ηpv
achieves a few percent for thin-film technologies, and exceeds 40% for high-end multi-
junction cells [26]. Furthermore, a solar panel has a manufacturer specified maximum
output Ppv . This is typically given for Standard Test Conditions (STC), hence the peak
power output is not an optimal indication of maximum power. Nevertheless, we assume
the maximum possible harvested energy over a time period δt to be limited by δt · Ppv .

In the context of WSN application scenarios, it is desirable to keep the solar panel
small in size so to match the mote’s housing and meet low cost expectations [5, 6, 27].
Large-scale photo-voltaic installations are usually only used for WSN base stations and
experimental units when mains power is not available. Since the energy model is defined
in units of energy per square meter, we account for different solar panel sizes by scaling
the total daily electrical energy output by the panel’s surface area Apv . Hence, the total
harvested energy on a given day d is approximated with (3), where ηcc represent the
charge controller’s efficiency.

Epv(d,Ω) = Apv · ηcc · ηpv
t=23∑
t=0

min(1hr · Ppv, Eastro(d, t, L, k,R, θp, φp, Ω)) (3)

Charge Controller Characteristics. Before the energy transformed by the solar panel
can be stored in the battery, a fraction 1 − ηcc of the total energy is lost due to the
conversion inefficiency imposed by the charge controller, hence the multiplicative factor
ηcc in (3). Depending on the chosen technology, the conversion efficiency ηcc, can range
from 50% for low cost controllers, up to 95% for high-end, i.e., Maximum Power-
Point Tracking controllers [7]. The choice of technology is very application specific,
and there are arguments advocating advanced charge controllers [28, 29], while others
argue that, for micro-solar energy harvesting systems, the gain is dwarfed by the energy
expenditure of the controller [7]. It is also possible to operate without a charge controller
[15], but the lack of over-voltage protection may significantly reduce battery life [29].

Charge controllers often implement a battery protection mechanism, known as low-
power load disconnect [30]. If the battery is fully depleted at any point in time, the
load will only be re-connected after the battery state-of-charge has reached a certain
percentage of Bnom. Prolonged downtime due to protection against deep discharge
cycles can incur significant performance penalties. Furthermore, deep cycles severely
affect the battery health and its expected lifetime, and should therefore be avoided.

Battery Characteristics. The purpose of the battery is to store harvested energy for
supporting the electrical load during periods when harvesting is not possible. However,
a battery is not a perfect energy storage element. It suffers from a variety of deficiencies
that depend on the battery’s chemistry, temperature, discharge rate, and fill-level [30] .

Hence, to account for charging and discharging inefficiencies of the battery during
simulation, the energy flowing into and out of the battery is scaled by the respective effi-
ciency factors ηbatin and ηbatout , as shown in (4) and (5). The loss in the charging process
due to battery internal resistance and electrochemical processes is represented by ηbatin .
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The factor 1/ηbatout accounts for the fact that only a fraction of the charge transferred
into the battery during charging can be recovered when discharging the battery [30] .

Ebatin(d) = min(ηbatin ·Epv(d,Ω),min(0, ηbatout ·Bnom−B(d−1)−Ebatout(d)))
(4)

Ebatout(d) = Eload(d)/ηbatout + Eleak (5)

Since a battery has a finite capacity, not all energy generated by the panel may ac-
tually flow into the battery, as indicated by the min(·) function in (4). Similarly, to
support the energy consumption Eload(d), which represents all energy consumers re-
gardless of function (see (7)), the current battery level and harvested energy must exceed
the amount to be withdrawn from the battery, i.e., B(d− 1) +Ebatin(d) > Ebatout

(d).
The battery specific leakage Eleak is assumed to be constant [12]. Then, with the bat-
tery characterized by (4) and (5), the battery state-of-charge at the end of a given day is
obtained with (6). Bnom is the manufacturer rated nominal capacity converted to Watt-
hours. For consistency, B(d) ≥ 0 ∀d, which means that the expected load may not
always be sustained. To circumvent this, the designer may overprovision the battery to
enable minimal operation, i.e., B(d) ≥ Bmin ∀d.

B(d) = min(ηbatout ·Bnom, B(d− 1) + Ebatin(d)− Ebatout(d)) (6)
We ignore aging effects of the battery [30]. However, we note that our approach re-

sults in very shallow discharge cycles and so protects the expected battery lifetime [30].
In fact, our method results in one full discharge cycle per year; assuming a battery rated
for a few hundred discharge cycles [31], the battery will clearly outlast the electronics.
Load Model. The electrical load on the battery consists of all energy consumers present
in the system. In addition to the electronic system that performs a particular task, the
consumers may include power conditioning, and other supervisory circuitry. For the
purpose of capacity planning, the load is specified as the system’s total average power
dissipation that must be supported by the battery. It is obtained by summing the products
of the M system components’ duty-cycle (DCi) and power dissipation (Psysi). The
total daily energy required to operate at the expected performance level is then defined
by (7), where γ = 24 hours.

Eload(d) = γ ·
[
Pcc + Pvr +

M∑
i

(
DCsysi · Psysi

)]
(7)

The power dissipation by the charge controller and input voltage regulator is rep-
resented by Pcc and Pvr, respectively. These are assumed to be always operational.
Depending on design optimizations, however, both of them may be duty-cycled to re-
duce energy consumption. In that case, their average power dissipation is computed
identically to that of the system components.

5 Capacity Planning for Long-Term Uninterrupted Operation

As discussed in Sec. 4, the harvestable energy can be closely approximated if setup and
technology parameters are known. To account for the effects of meteorological condi-
tions, and thus more closely approximate the long-term energy input, the environmental
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parameter Ω was defined. This parameter can be obtained with (2), or, if available, by
profiling a representative dataset. The total energy consumption, defined in (5), com-
pletes the necessary information for long-term capacity planning.

Intuitively, a battery should be sized exactly such that (i) it can support the expected
operation during periods of solar energy deficit, and (ii) be replenished by the panel
during times of solar energy surplus. We consider the annual solar cycle to compute the
power subsystem capacity such that uninterrupted long-term system operation with a
minimum battery capacity and solar panel size can be achieved. Two such cycles are
illustrated in Fig. 2, which shows the actual energy input Eactual(d) of the CA dataset,
the daily system consumption to be supported, and the model approximation Ebatin(d)

such that
∑T

Eactual(d) ∼=
∑T

Ebatin(d) over T = 720 days.
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Fig. 2. Actual (Eactual), and modeled daily energy input (Ebatin ) and output (Ebatout ) for panel
area Apv = 0.02m2 over two years of the CA dataset (see Sec. 6.1). Surplus energy is indicated
with the hatched area. The cross-hatched area shows the required battery capacity.

The battery capacity, Bnom, required to operate the system during times of deficit,
i.e., Ebatout

(d) > Ebatin(d), d ∈ [d1, ..., d2], is given in (8) and illustrated by the cross-
hatched area in Fig. 2. Note that we assume the battery to be fully charged on day d1.
The first term on the left-hand side in (8) specifies the amount of energy that is necessary
to support the system operation, while the second term represents the modeled energy
input expectations. The difference is then the minimum required battery capacityBnom.

d2∑
d1

(Ebatout
(d) − Ebatin(d)) ≤ Bnom (8)

Similarly, (9) specifies the amount of energy that is harvested in excess of what is
required to sustain short term operation during periods of surplus, i.e., over the inter-
val [d0, ..., d1] (hatched area in Fig. 2). As mentioned previously, the harvested energy
during periods of surplus must be able to recharge the battery. To achieve perpetual op-
eration over multiple years, the left-hand term in (9) must therefore be at least as large
as the left-hand term in (8).

d1∑
d0

(Ebatin(d) − Ebatout
(d)) ≥ Bnom (9)

The required battery capacity Bnom can then be obtained by finding the intersections
d0, d1, and d2 between Ebatin(d) and Ebatout

(d) such that inequalities (8) and (9)
hold. For example, with the CA dataset shown in Fig. 2, and a panel size of 20cm2
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and Eload = 227.8mW , the required battery capacity is approximately 68Wh (see
Sec. 6.3). When reducing the panel size by 50%, the battery capacity must be increased
by roughly 67% in order to achieve a performance level of 65% of the larger panel
setup. This clearly shows the non-linear relationship between battery capacity and solar
panel performance.

6 Evaluation

This section evaluates the proposed method’s ability to yield a battery capacity that
ensures uninterrupted long-term operation of solar energy harvesting systems.

6.1 Evaluation Methodology, Validation Data, and Performance Metrics

Methodology. To validate the modified astronomical model, we first compare its en-
ergy estimations to measurements performed with a solar panel. As a second step, we
evaluate the model’s ability to support long-term operation by simulating a system ac-
cording to Sec. 4 and 5, and the simulation input data discussed in the following.

Table 1. Name, time-period, and location of NSRD1 datasets used for evaluation of the proposed
approach. Maximum, mean, minimum and variance of solar radiation are given in Wh/0.01m2.

Name Time Period Latitude Longitude Maximum Mean Minimum Variance
CA 01/01/99 – 12/31/09 34.05 -117.95 10.37 7.03 0.92 5.62
MI 01/01/99 – 12/31/09 42.05 -86.05 10.55 5.34 0.53 9.05
ON 01/01/99 – 12/31/09 48.05 -87.65 10.98 5.07 0.44 11.24

Model Validation Input Data. For validation of the modified astronomical model,
we obtain ground-truth data by measuring the power generated by a 0.1725m2 mono-
crystalline solar panel (cleversolar CS-30) rated at 30 Watt over a period of 41 days
(22/07/2013 - 08/31/2013). The power generated by the panel, and dissipated over a
purely resistive load was sampled at 1Hz with a custom measurement circuit. The panel
was placed on the roof-top of our university building at 47.37◦N , 8.55◦E, and oriented
with azimuth, and inclination angles of 170◦ and 70◦ respectively. This particular lo-
cation has clear view of the sky without any obstructions that could lead to shading,
hence deviations from the model can be assumed to originate from weather effects only.
Ground reflections are assumed to be negligible.

Simulation Input Data. For the simulation input data, we resort to the National So-
lar Radiation Database1 (NSRD) from where we obtain hourly, global (i.e. direct and
diffuse) solar radiation for three locations in California (CA), Michigan (MI), and On-
tario (ON) (see Table 1). We use 11 years of data, from which the first year (i.e., days
1-365) of each location is used as calibration data (see Sec. 6.3), while the data for the
remaining 10 years is used as input for the simulation discussed in Sec. 6.3.

1 http://rredc.nrel.gov/solar/old_data/nsrdb/1991-2010

http://rredc.nrel.gov/solar/old_data/nsrdb/1991-2010
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Fig. 3. Ratio of total daily energy predicted with our approach (Epv(d,Ω = 0.51), and actual
energy input (Eactual(d)) for each day. Note: bars are capped at 2, and labeled with actual value.

Table 2. Modified astronomical model validation statistics

(a) Statistics for 41 day experiment.

Min: 0.7947 Mode: 0.7947

Max: 26.87 St. Dev.: 5.737

Mean: 3.389 Range: 26.07

Median: 1.01

(b) Weekly energy sums. Eactual refers to measurements with solar panel.

Week

1 2 3 4 5 6 Total

Epv [Wh] 4844 5646 5034 5109 5164 3706 29503

Eactual [Wh] 3773 5775 3155 4929 3605 3255 24492

Epv/Eactual 1.28 0.98 1.6 1.04 1.43 1.14 1.20

The data traces from NSRD are given in Wh ·m−2 of solar energy incident on a flat
surface with zero inclination. To account for smaller panel sizes, inefficiencies of indi-
vidual components, and losses in energy storage during simulation, the data is condi-
tioned as explained in Sec. 4.2. For the technology parameters we assume ηbatin = 0.9,
ηbatout

= 0.7, ηcc = ηvr = 1, ηpv = 10%, and zero inclination angle. The reconnect
hysteresis (see Sec. 4.2) is set at 30% of battery capacity B = ηbatout · Bnom.

Performance Metrics. For performance comparison between the approach discussed
in this paper and the state-of-the-art (SotA) [12], we define the following metrics. Since
size and cost considerations play a major role in WSN scenarios, an optimal energy
harvesting system is one with the smallest hardware configuration that is able to achieve
the expected performance level, i.e., when Eload is sustained over the entire simulation.

For evaluating the performance of the two approaches, we assume that the maximum
feasible panel size is given, and wish to obtain the minimum battery capacity such that
uninterrupted operation can be achieved. We report the computed battery capacities,
and percentage of time spent with depleted battery for each configuration and dataset.
Any set of input parameters that cannot support long-term operation at the expected
performance level is considered invalid.

6.2 Modified Astronomical Model Validation

The measurement data described in Sec. 6.1 is used as ground truth for validation of the
modified astronomical model. Here we are concerned with how well the actual energy
input can be approximated with a given Ω. We assume Ω = 0.51 as per (3) with
τ = [0.1, 0.4, 0.7, 1] and δ = [0.25, 0.35, 0.2, 0.2] to represent the expected weather
condition. For the panel efficiency we use ηpv = 21.5% according to the specification,
and the technology and deployment parameters from Sec. 6.1.
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Table 3. Expected, and actual performance level achieved (in mW), and required battery capacity
(i.e., B = ηbatout · Bnom, in Wh) obtained from simulation of 4 panel sizes (in m2) and the 3
datasets listed in Table 1 for SotA and the method proposed in this work

MI CA ON

Apv Expected Actual B Expected Actual B Expected Actual B

SotA
0.005 55.73

52.32 42.51
73.17

73.17 61.48
56.75

51.04 56.96
This work 55.73 88.85 73.17 56.84 56.75 137.5

SotA
0.01 111.46

104.65 85.03
146.28

146.28 122.96
113.53

102.11 113.93
This work 111.46 168.39 146.28 113.5 113.53 275.1

SotA
0.015 157.54

148.34 106.44
197.85

197.85 133.89
159.1

145.19 171.42
This work 157.54 218.74 197.85 110.8 159.1 363.81

SotA
0.02 186.71

179.18 113.9
227.83

227.83 127.02
186.72

173.01 180.58
This work 186.71 216 227.83 67.59 186.72 381.6

As is evident from Fig. 3, which shows the ratio of estimated and actual energy input
for each day, the model tends to significantly overestimate available energy for days
with little, to no energy harvesting opportunities. Table 2a lists statistics for the same
41-day period. Table 2b shows the results when considering an estimation granularity
of one week. Over the entire period, the actual conditions are overestimated by 20.04%.
This is a good result, considering that even more elaborate models tend to suffer a great
deal from uncertainties, particularly due to modeling of diffuse sky radiation [25].

6.3 Capacity Planning Performance Evaluation

The previous section showed that our energy availability model can closely approximate
actual conditions. This section now demonstrates that our approach in fact supports
uninterrupted long-term operation of a simulated system for a variety of input data.
Aside from SotA [12], we are not aware of concrete algorithms for power subsystem
capacity planning of energy harvesting systems. Thus, the method described in [12, 32,
33] is used as a baseline and briefly reviewed in the following.

Reference Model. In [12] the authors present a set of abstractions for capacity planning
of energy harvesting systems that can be considered the state-of-the-art (SotA) in har-
vesting theory. The authors define Energy-Neutral Operation (ENO) as a performance
metric, and formally state the conditions that must be met to achieve ENO. The authors
argue that a system’s total average power dissipation, ρc, must always be less than, or
equal to the source’s average power generation, ρs. If energy inefficiency is acceptable,
i.e., dissipating the power generated by the panel as heat when the battery is full, the
minimum battery capacity is defined by the sum of the maximum negative deviation
from ρs, and the maximum positive deviation from ρc. If wasting is not permitted, the
battery capacity must be increased by the maximum positive deviation from ρs such
that surplus energy can be buffered [32]. Despite defining a capacity for long-term con-
tinuous operation, the authors conclude that, for achieving ENO, the battery state-of-
charge B(d) on day d must be no less than B(d− 1). With this approach the benefits of
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capacity planning are not fully leveraged; the system must rely on a well performing
energy prediction scheme to achieve acceptable long-term performance.

In order to extract ρs, the SotA algorithm requires a dataset that is representative of
the conditions at the deployment site. However, when applying the method described
in [32] to obtain this quantity, it is found that their approach yields significantly dif-
ferent performance levels depending on the particular time period used. In fact, even
for datasets with little variance, e.g., the CA dataset (see Table 1), ρs converges to its
average value only after a few seasonal cycles. This exemplifies that, when attempting
to achieve uninterrupted long-term operation at a predefined performance level, consid-
eration of the source’s longest cycle is necessary. In the case of solar harvesting, the
period can generally be assumed to be one year. However, in areas where significant
meteorological phenomena with a periodicity of multiple years occur, improved results
may be obtained if the analysis is performed over the respective period.

Simulation. The SotA approach attempts to compute the supported performance level
and required battery size based on a given power profile. Our approach, on the other
hand, takes the expected performance level as input. Hence, to evaluate and compare
the two approaches through simulation, we first obtain the respective performance levels
and battery capacities as follows. With the setup and technology parameters defined in
Sec. 6.1, we find the battery capacity and supported performance level with the SotA
approach and one year of calibration data for all three datasets listed in Table 1 and
four panel sizes, i.e.,. 5cm2, 10cm2, 15cm2, and 20cm2. The respective performance
levels obtained with SotA are then used as input to our model to compute the minimal
capacities required for each dataset. Once these quantities have been found for SotA and
our approach, we run a simulation with the remaining 10 years of data.

Note that our approach does not require calibration data. However, since SotA relies
on a representative power trace, we allow our approach to extract the weather conditions
from the calibration data to compute Ω (see Sec. 4.1). We use τ = [0.1, 0.4, 0.7, 1] and
N = 4 in (2) and let δi be the days with more than 75%, 50%, 25%, and 0% of the
maximum expected energy, i.e., Eastro(Ω = 0.1). Since meteorological conditions
tend to follow a certain periodicity, Ω may be obtained with very little data. In fact, we
did not find significant improvements when using more than half a year of calibration
data, as long as the data is representative of the conditions during the critical periods of
continuous solar energy deficit, i.e., winter in the northern hemisphere.

Results. The results obtained from simulation are summarized in Table 3, and discussed
in the following. As is evident, the SotA approach achieves an acceptable performance
only for the CA dataset. As defined in Sec. 6.1, acceptable performance means that the
battery can support the user-specified performance level indefinitely.

While the SotA approach yields smaller battery capacities for the MI and ON datasets
compared to our approach, the configurations fail to sustain the expected performance
level over the entire simulation period. Our approach, on the other hand, achieves the
expected performance level with zero down-time for all configurations and simulations.

CA Dataset. With the CA dataset, SotA achieves the expected performance level for
the entire 10 year period with all simulated panel sizes. This comes at no surprise;
the authors of the SotA approach are located in Southern California and used locally
measured data for design and verification of their approach. From Table 1 we see that



Towards Enabling Uninterrupted Long-Term Operation 79

this particular dataset has the lowest input data variance, with roughly half of that of
the other datasets. Nevertheless, with Apv = 0.005m2 and Apv = 0.01m2, the SotA
approach yields a battery size that is about 1.48 times the size of the minimal capacity.
For the other two panel sizes, the algorithm overestimates the absolute minimal possible
capacity by a factor of 1.86, and 2.7, respectively.

For the same dataset, our approach yields smaller battery capacities that can sustain
the expected performance level over the entire simulation period. When compared to
SotA, a reduction of roughly 8% in capacities are obtained with Apv = 0.005m2 and
Apv = 0.01m2. For Apv = 0.015m2 and Apv = 0.02m2 our approach yields 17.25%
and 46.8% smaller capacities than SotA. This is an interesting result because it shows
that average generation, ρs, is not a good indicator of the long-term sustainable per-
formance level. With increasing panel size, ρs behaves in a manner that may not be
representative of the long-term dynamics, causing the SotA model to assume an overly
pessimistic negative deviation from ρs, and yield a larger capacity than necessary.

MI and ON Datasets. The results in Table 3 show that SotA does not achieve satisfac-
tory performance for the MI and ON dataset. Hence, we only focus on the results of our
approach. For the MI dataset, the minimal possible battery capacity is overestimated by
a maximum of 13.5%. For the ON dataset, our approach overestimates by up to 22.1%.
This constant, but reasonable overestimate is due to assuming Ω larger than absolutely
necessary. In fact, reducing Ω by 20% for ON leads to an overestimate of only 1.4%.
For the MI dataset, Ω must be reduced by 7% to achieve the same result. However, do-
ing so would result in dangerously low battery fill-levels during times of deficit, causing
the system to become susceptible to low-power disconnect penalties.

When given the opportunity to analyze two full years of calibration data, the SotA
approach fails to achieve the expected performance level only for one of the config-
urations of the MI dataset. With Apv = 0.015m2, the system spends 0.59%, or 21.5
days of the time with a drained battery. Considering that SotA’s performance depends
on the closeness of ρs to actual average generation, longer data traces are expected to
improve its performance. Interestingly, SotA overestimates the battery capacities for the
CA dataset almost identically when only one year of data is available, which is due
to the low variance in the energy input. For the other two datasets, both approaches
yield comparable capacities, despite giving SotA the advantage of analyzing two years
of calibration data, while our method only used one year of calibration data.
Energy Approximation. In this work we focused on long-term provisioning because
short-term deviations from the model should be absorbed by a properly sized battery.
Here we investigate how our model can cope with source variations that lead to energy
deficit. Fig. 4 shows the ratio of total energy approximated by the model, and effectively
harvested energy for each year on the left, and the same for the periods of continuous
deficit on the right. As is evident, with the largest panel size used (Apv = 0.02), the
model assumes on average around 95% of the actual annual energy input for the CA and
MI datasets, and roughly 88% for ON. The ratios of approximated and actual energy
input for the panels with area 0.005m2 and 0.01m2 are about 85% for CA and MI, and
around 78% for ON.

For the periods of deficit, shown on the right hand graphs in Fig. 4, much more vari-
ation is evident from one year to the next. However, the approximations with different
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panel sizes are much less scattered, and the approximation with the larger panel size is
not always best. Nevertheless, on average, the model underestimates actual conditions
by roughly 20% for the CA and MI datasets, and about 25% for ON. This shows that the
battery obtained is reasonably overprovisioned, and will be able to safely bridge short
periods with energy input below modeled long-term expectations.

6.4 Sensitivity Analysis

In this section we investigate the model’s sensitivity to the selection of the environ-
mental parameter Ω. We further exemplify the importance of choosing inclination, and
azimuth angles such that they are representative of the actual deployment setup.

Environmental Parameter. As is evident from Sec. 6.2, the model’s ability to accu-
rately estimate the long-term expected energy input depends on proper choice of Ω.
This parameter is used to account for environmental effects due to e.g., meteorological
conditions and local obstructions. These cause the model to overestimate actual energy
input, which is equivalent to assuming too low of a value for Ω.

Hence, to investigate these effects on the model’s estimation accuracy, we scale Ω
with a scaling factor S (i.e., Epv(..., S ·Ω) in (4)), and simulate the system as discussed
in Sec. 6.1. The achieved mean duty-cycle over ten years for the three datasets are
shown in Fig. 5. The results show that the expected duty-cycle can be achieved when
the energy input is at least 75%, 85%, and 90% of the original magnitude for the CA,
ON, and MI datasets respectively.
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Fig. 6. (a) Total annual energy incident with inclination angles from 0◦ to 90◦ as a function of
azimuth angle. (b) Total daily energy incident over one year for inclination angles ranging from
0◦ to 60◦ (τ = 0.1, k = 0.3, R = 0.3, ηpv = 0.1).

Setup Parameters. The effects of varying the setup parameters, i.e. inclination and
orientation angles, on the harvestable energy are illustrated in Fig. 6a. It shows the total
annual energy incident on a panel with a surface area of 10cm2 over the course of one
year for the three datasets in Table 1 and various inclination angles as a function of the
panel orientation. As is intuitively clear, for an inclination angle of 0◦, i.e. the panel is
placed parallel to the ground, the orientation has no effect.

Similarly, Fig. 6b shows the total daily energy incident on the same panel for var-
ious inclination angles. The effect on the harvestable energy due to setup parameters,
and seasonal variations is clearly visible, solidifying our argument that the source’s sea-
sonal behavior must be considered when attempting to achieve uninterrupted long-term
operation at a predefined performance level.

7 Conclusions

In this work we presented a systematic approach to offline capacity planning of the
power subsystem for solar energy harvesting systems. The approach is based on a mod-
ified astronomical model and takes into account seasonal variations of the energy source
to enable uninterrupted long-term operation. Solar power measurements of a real panel
are used to validate the modified model. We further compared our approach to the state
of the art (SotA) in harvesting theory through simulation with real-world input data, and
showed that the proposed method achieves zero down-time (compared to up to 10% for
SotA) for three different locations and four different panel sizes while requiring up to
53% smaller batteries. The results show that pre-deployment design considerations are
absolutely inevitable for achieving long-term uninterrupted system operation. In order
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to enable the system to adapt to significant deviations from the model, and therefore im-
prove the energy efficiency, we are currently extending this work with a low-complexity,
power subsystem aware, dynamic duty-cycling scheme.
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Abstract. BBS (Black Burst Synchronization) is a synchronization pro-
tocol for multi-hop wireless ad-hoc networks providing deterministic up-
per bounds for tick offset and convergence delay. General bounds can
be determined analytically, and depend on parameters such as maxi-
mum network diameter and maximum clear channel assessment delay.
From the general bounds, concrete bounds can be derived by inserting
hardware-specific values. Certainly, it is crucial that the platform-specific
values are accurate, and that all sources of delay are considered.

In this paper, we report on the experimental validation and derivation
of timing constraints of BBS for an implementation on the Imote 2 plat-
form, using a Software Defined Radio (SDR) for some measurements. In
particular, we identify sources of delay that have an impact on the up-
per bounds for tick offset and convergence delay, and devise and conduct
experiments to measure these delays. As it turns out, the timing con-
straints for BBS reported in the original work need several refinements.
Also, the jitter introduced by optimization techniques of the hardware
platform like instruction and data caches needs careful consideration. We
have applied these insights gained from the experiments to improve the
design and implementation of BBS.

1 Introduction

Synchronization is a core functionality in many distributed systems. Two kinds
of synchronization can be distinguished. Time synchronization has the objective
to synchronize the clocks of a set of nodes by agreeing on common reference
points in time and associated time values. Tick synchronization is concerned
with establishing common reference points in time only. This is sufficient, e.g.,
for communication based on time division multiple access (TDMA) schemes.

In a research project together with industrial partners, we apply a TDMA
scheme in a communication system for wireless networked control systems used in
production automation. In this project, it is crucial that deterministic guarantees
for packet delays and transfer reliability can be given, which we want to achieve
by collision-free medium access in exclusively reserved time slots. This, however,
requires that an upper bound for tick offset, i.e., worst case synchronization
inaccuracy, can be guaranteed.

To satisfy this requirement, we have identified Black Burst Synchronization
(BBS) [1, 2] as a possible synchronization protocol. BBS is applicable in wireless
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multi-hop networks and provides deterministic upper bounds for tick offset (syn-
chronization accuracy) and convergence delay (duration of a resynchronization
phase). This distinguishes BBS from most existing synchronization protocols in
this domain, which can provide only average values obtained at runtime.

In [1, 2], general bounds for tick offset and convergence delay are determined
analytically, using parameters such as maximum network diameter (in hops),
maximum Clear Channel Assessment (CCA) delay, and transceiver switching
times. To obtain concrete bounds, values of the particular network topology and
of the specific hardware platform taken from data sheets are used. Certainly, it
is crucial for the operation of BBS that these values are accurate. Furthermore,
it is essential that all sources of delay are considered.

In this paper, we report on the experimental validation of timing behavior of
BBS for our implementation on the Imote 2 platform. In particular, we reconsider
the earlier findings on upper bounds for tick offset and convergence delay, and
identify additional sources of delay mainly resulting from interaction between
processor and transceiver. In our work, we have devised and conducted numerous
experiments to measure these delays, and to validate values given in data sheets.
For presentation in this paper, we have selected experiments that have provided
us with important insights to improve the design and implementation of BBS.

The paper continues with a survey of related work. Afterwards, Sect. 3 outlines
BBS. Section 4 presents the Imote 2 platform and a refined analysis of the BBS
timing behavior for this hardware. Section 5 reports on experiments to measure
and to derive platform-specific delays, and to validate values from data sheets.
Finally, Sect. 6 summarizes our findings and outlines future work.

2 Related Work

While there are numerous papers investigating implications of wireless chan-
nels and different communication technologies such as IEEE 802.15.4 [3] and
IEEE 802.11 [4], there is only little work on validation of transceiver properties
and on derivation of additional hardware- and implementation-specific timing
constraints. And indeed, for most protocols with the objective on improving
average case, small deviations from data sheet values can actually be neglected.

This particularly holds for most synchronization protocols, which aim at high-
est synchronization accuracy and hardware independence. Examples are Refer-
ence Broadcast Synchronization (RBS) [5], Timing-Sync Protocol for Sensor
Networks (TPSN) [6], and Gradient Time Synchronization Protocol (GTSP) [7].
In these protocols, exchange of synchronization messages is contention-based,
thereby introducing risk of frame collisions and unpredictable delays. Because of
this inherently integrated non-determinism, only average case instead of worst
case analysis can be applied. A detailed discussion of BBS’s advantages and a
comparison with other synchronization protocols can be found in [1, 2].

However, deterministic protocols such as BBS require accurate consideration
of all transceiver properties. Besides BBS, we found only few deterministic close-
to-hardware protocols for sensor networks: In [8], the authors present BitMAC,
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a comprehensive MAC protocol for tree topologies, which are typical for wireless
sensor networks. BitMAC covers several challenges of wireless networks like chan-
nel allocation (FDMA), reservations, and synchronization. To address these chal-
lenges, the authors of BitMAC introduce a new collision-resistant transmission
scheme that is based on On-Off-Keying and similar to the black burst encoded
transmission scheme of BBS. It was implemented on the BTnode3 platform
[9] that is equipped with a CC1000 transceiver. Wireless Dominance (WiDom)
[10, 11], is a binary countdown protocol for wireless networks and addresses spo-
radic message streams. An application of WiDom consists of a tournament phase
that is preceded by a synchronization phase. WiDom has been implemented on
MICAz sensor nodes [12] that are equipped with CC2420 transceivers.

Though the authors of WiDom consider many hardware timing constraints,
they do not scrutinize the data sheet values. Instead, the correctness of WiDom
is ensured by large guard times. Thus, there is up to our knowledge no other work
on the implementation of deterministic protocols dealing with timing constraints
on such low abstraction level and with such high thoroughness.

3 Survey of BBS

Black Burst Synchronization (BBS) [1, 2] is a synchronization protocol for wire-
less multi-hop ad-hoc networks. Different from most existing synchronization
protocols in this domain, BBS provides deterministic upper bounds for tick offset
and convergence delay. Furthermore, BBS has low complexity regarding compu-
tation, storage, time, and structure, and is robust against topology changes due
to node movement or node failure. The protocol is based on periodical resynchro-
nization phases, in which all network nodes are synchronized by a round-based
exchange of synchronization messages called tick frames. A tick frame consists of
an SOTF bit (Start of Tick Frame) to mark the beginning of the frame, followed
by the encoded round number k. Resynchronization is done as follows:

– Resynchronization is started by some master node Vm at a given local ref-
erence point in time called local tick and referred to by t0,m. At t0,m, Vm

sends a tick frame with k = 1. This marks the beginning of synchronization
round 1.

– All nodes Vi receiving the tick frame in round 1 record the start of reception
as their local tick t0,i and send a tick frame dround (the constant, and there-
fore pre-calculable, round duration) after t0,i. This marks the beginning of
synchronization round 2.

– Synchronization rounds continue until all nodes Vj have received a tick frame
in some round k at tk,j . Given the constant round duration, node Vj can
compute its local tick t0,j as tk,j − (k − 1) · dround.

– The number of rounds equals nmaxHops, which represents an upper bound
of the network diameter in hops.

In any round k > 1, it is possible that more than one node sends a tick
frame, i.e., tick frames may collide. To render collisions non-destructive, BBS
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uses a black burst encoding for tick frames. A black burst encodes a binary one
of a tick frame. A binary zero is encoded by no transmission. A black burst
can be characterized as a period of transmission energy of defined length on the
medium. The only information derived from a black burst is its starting point
and its duration. Therefore, if several black bursts sent (almost) simultaneously
overlap, this information is not destroyed. To detect black bursts, the Clear
Channel Assessment (CCA) mechanism of the transceiver is used.

In [1, 2], the upper bound for tick offset after resynchronization is determined
as follows:

dmaxOffset = nmaxHops · dmaxCCA (3.1)

where dmaxCCA is the maximum CCA delay to detect the channel as busy.
In most cases, it is sufficient to not consider the network-wide worst case offset
but the two-hop worst case offset, which is denoted by dmaxOffset,local = 2 ·
dmaxCCA. Due to diverging local node clocks, the tick offset increases after a
synchronization phase, which is bounded by periodic resynchronizations.

Furthermore, the convergence delay is given as dconv = nmaxHops ·dround with
a round duration dround as follows:

dround = (nbits + 1) · dbit + dproc with dbit = drxtx + dbb + dtxrx (3.2)

Here, nbits is the bit count to transfer the maximal round number nmaxHops.
It is increased by one due to the additional SOTF bit. dbit is the bit duration,
and dproc is a processing delay needed by the receiving node before the next
round can be started. The bit duration is determined by delays to switch the
transceiver from rx to tx mode (drxtx) and back (dtxrx), and the duration of a
black burst dbb.

4 Implementation of BBS on the Imote 2 Platform

In the course of a current industrial project, in which we apply a TDMA scheme
in a wireless networked control system, we have implemented BBS on the Imote 2
platform. During the implementation, it turned out that the original formulas
as given in Eqs. (3.1) and (3.2) need refinement, because some additional delays,
which are not explicitly given by data sheets, were not considered. Please note
that Eqs. (3.1) and (3.2) describe upper bounds. Thus, implementations based
on the original formulas may work in most cases and [1] indeed reports on a
working implementation. They are, however, error-prone when variable delays
come close to their bounds.

In the following, we first outline the Imote 2 platform, because precisely know-
ing your hardware is a precondition to capture all delays. Then, we present an
extension to improve BBS’s robustness and a refinement of its formulas.

4.1 Description of the Imote 2 Hardware Platform

The Imote 2 sensor platform [13] (see Fig. 1a and 1b), initially developed by
Intel, is equipped with the PXA271 processor and the CC2420 transceiver [14].



88 M. Engel, D. Christmann, and R. Gotzhein

(a) Top layer (b) Bottom layer

PXA271CC2420
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Imote 2

(c) Schematic representation

Fig. 1. Imote 2 hardware platform

The processor consists of an XScale core, which is based on the ARMv5TE pro-
cessor architecture, 256KiB SRAM, and numerous peripherals to interact with
the environment, such as GPIO (General Purpose Input/Output), UART (Uni-
versal Asynchronous Receiver Transmitter), and SPI (Synchronous Peripheral
Interface). Furthermore, the Imote 2 also includes 32MiB SDRAM and 32MiB
Flash Memory stacked into the PXA271 chip. The processor clock is configurable
in fixed steps ranging from 13MHz to 416MHz.

The CC2420 chip is an IEEE 802.15.4 compliant transceiver for the 2.4GHz
ISM band developed by Chipcon. Physical layer and parts of the IEEE 802.15.4
MAC layer are integrated into the chip. For the implementation of BBS, the
MAC layer support is not needed, because IEEE 802.15.4 frames are sent only
to generate energy on the medium. The digital interface of the CC2420 consists
of an SPI slave and several output pins. Figure 1c shows the interconnect of
CC2420 and PXA271 schematically. The SPI bus is used to transfer commands
to the transceiver, to read the transceiver’s state, and to exchange payload of sent
or received IEEE 802.15.4 frames. The output pins signal important events such
as frame receptions (via Start-of-Frame-Delimiter (SFD) pin) and the current
state of the medium (signaled by CCA pin). Each of these signals is connected
to a GPIO pin of the PXA271, thereby triggering interrupts at signal edges.

4.2 Improvement of the Robustness of BBS

In early experiments, we have encountered several problems with the robust-
ness of BBS. We had, in particular, the problem that arbitrary communication
patterns were interpreted as tick frames and that successive tick frames were
merged, thereby leading to synchronization failures and a violation of the guar-
anteed tick offset. To solve this problem, we have changed the tick frame format
of BBS. In our implementation, the tick frame is still composed of SOTF bit and
round number, but the SOTF bit is now prolonged and distinguishably longer
than the other bits of a tick frame. Thus, the probability of misinterpreting a
medium occupancy as start of a tick frame is significantly reduced.

4.3 Refinement of BBS Timing Constraints

During the implementation of BBS on the Imote 2 platform and during experi-
ments with first prototypes, we identified several sources of delays that have not
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been reported in [1, 2]. These delays are mainly because of poorly documented
hardware latencies and have an impact on the convergence delay as well as the
tick offset of BBS. In the following paragraphs, we provide an update of the
original BBS formulas by considering additional delays.

Refinement of the Bit Duration dbit. The bit duration dbit describes the
smallest interval to transmit consecutive black bursts. Comparing Eq. (3.2) with
data sheets, we found that, on the one hand, some important constraints are not
considered and, on the other hand, an unnecessary delay is listed. In the follow-
ing, we derive three constraints for dbit. The first constraint concerns sending
nodes, the second and third constraints affect receivers.

To transmit a black burst, CPU and transceiver have to go through several
steps. First, the transmission has to be set up, which means that hardware
registers of the CC2420 are reconfigured and the IEEE 802.15.4 payload is sent
over the SPI bus. Since this delay, denoted by dTX,pre, is variable in general, we

investigate the worst case and consider the upper bound, referred to as d̂TX,pre.
After this preparation, a hardware timer of the PXA271 processor is set in order
to trigger the actual black burst transmission. When the timer fires, an STXON

command is transferred to the transceiver. The duration between timer firing and
STXON command reception by the CC2420 is denoted by dTX , and, according
to our notation, its upper bound is called d̂TX . Finally, there is a delay drxtx
(with upper bound d̂rxtx) to switch the transceiver from rx mode to tx mode.
This delay results from recalibration of the frequency generator and adjustment
of the power amplifiers. After switching to tx mode, the transceiver transmits
the black burst, that has a constant duration dbb.

1 Since one tick frame consists
of several bits, black bursts may be sent in sequence and we have to sum up all
delays and formulate the following constraint:

dbit ≥ d̂TX,pre + d̂TX + d̂rxtx + dbb (4.1)

Note, that different from Eq. (3.2), dbit does no longer depend on dtxrx, because
according to the data sheet, the CC2420 does not require to entirely switch back
to rx mode between consecutive transmissions (see also verification in Sect. 5.2).

Besides the nominal duration of a black burst dbb, receptions of black bursts
are influenced by three factors: The first factor is due to the mode of operation of
the CCA mechanism. Depending on the received signal strength, the detection
of the actual medium state has a variable delay of up to dmaxCCA = 128 μs. This
implies that a perceived medium occupancy can be dmaxCCA longer than the
actual transmission. The second factor is in the case of multiple senders trans-
mitting black bursts simultaneously. Because these senders may have a worst
case offset of dmaxOffset,local, the perceived medium occupancy can addition-
ally be prolonged by dmaxOffset,local. In addition, the duration dRX to signal
the change of the medium state by the CCA pin to the PXA271 processor and
to trigger execution of the interrupt routine has to be considered. Because in

1 The duration dbb is actually configurable and must be larger than dmaxCCA.
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general dRX is also variable, we investigate the upper bound d̂RX . To receive
several consecutive black bursts, we therefore formulate a second constraint:

dbit ≥ dbb + dmaxCCA + dmaxOffset,local + d̂RX (4.2)

Besides separating consecutive black bursts, a receiver must also be able to
determine bit positions of black bursts inside tick frames unambiguously. Since
all points in time are considered relative to the SOTF bit of the tick frame,
subsequent black bursts can be received earlier as well as later than expected.
The deviation of the actual reception timestamp from the expected timestamp
is composed of all maximum jitters that can occur between sending a black
burst and its corresponding reception and is called δ̂tr. Note, that only jitter has
to be considered, since constant delays can be subtracted out. In particular, δ̂tr
consists of three factors: First, there is a jitter at sender side, which is essentially
the variable part of dTX . We refer to the maximum of this jitter as d̂VTX . Next,
there is the delay introduced by the CCA mechanism, dmaxCCA. Last, there is
a jitter at the receiver side between the signaling of the medium state change
and the storage of the corresponding timestamp in an interrupt routine. The
maximum jitter for this operation is denoted by d̂VRX,intr . In total, we have

δ̂tr = d̂VTX + dmaxCCA + d̂VRX,intr (4.3)

Let tbit be the point in time when an arbitrary bit is expected by a receiver.
Then, tbit + dbit would denote the point in time, when the next bit is expected.
Because both points can be shifted by ±δ̂tr, the following constraint must hold
in order to assign received black bursts correctly:

tbit + δ̂tr < tbit + dbit − δ̂tr ,which leads us to dbit > 2 · δ̂tr (4.4)

Refinement of Round Duration and Tick Offset. Because of the changed
tick frame format (see Sect. 4.2), the duration of the SOTF bit dSOTF has to
be distinguished from the duration of other bits dbit of a tick frame. The revised
round duration is now given by

dround = dSOTF + nbits · dbit + dproc. (4.5)

Note that different to Eq. (3.2), dbit is now set to a value fulfilling Eqs. (4.1),
(4.2), and (4.4). dSOTF is derived similar to dbit.

Different from the original definition of the tick offset dmaxOffset in Eq. (3.1),
we additionally have to consider variable processing delays at sender and receiver
nodes as described in Eq. (4.3). Thus, the upper bounds for network-wide and
two-hop tick offset after resynchronization are now refined as

dmaxOffset = nmaxHops · δ̂tr (4.6)

dmaxOffset,local = 2 · δ̂tr (4.7)
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5 Experimental Validation and Derivation of Timing
Constraints

In this section, we present selected results from numerous experiments that have
provided insights into the Imote 2 platform and all variable delays from Sect. 4.3,
thereby leading to an improved design and implementation of BBS. We want
to point out that the objective of this section is to determine upper bounds for
variable delays and to validate timing constraints from data sheet values and not
to evaluate our entire BBS implementation against the original implementation.
In particular, a comparison would not reveal practical insights, because BBS aims
at worst case bounds, and producing identical worst case evaluation scenarios
for both implementations is hardly possible. However, results from functional
evaluations of our BBS implementation can be found in [15].

To measure timing constraints, we intercept SPI bus, CCA pin, and SFD
pin between CC2420 and PXA271 processor (see Fig. 1c) with an ASIX Sigma
2 logic analyzer.2 Thus, we can monitor actual timestamps of events (such as
transfers of commands) and deduce relevant delays with high accuracy. Most
measured delays are subject to variation. To capture these variations, each ex-
periment was repeated between 100 and 1000 times, depending on the objective.
In all presented experiments, which ran in a laboratory, we have used the Imote 2
with 104MHz. To mitigate interference from other networks, TX power and CCA
threshold were tuned appropriately.

5.1 Maximum Switching Delay d̂rxtx

The reliable operation of BBS requires an accurate calculation of dbit. Regarding
the constraint in Eq. (4.1), an upper bound of the switching delay d̂rxtx must be
known. In the CC2420 data sheet, the nominal default value for drxtx is given
as 192μs, but the chip can be reconfigured to use 128μs. In the experiment pre-
sented below, we configured the chip to use 128μs, validated the given switching
delay, and determined the upper bound d̂rxtx.

The events that are used to measure the actual switching delay are sketched
in Fig. 2. During the experiment’s run, these events are monitored by the logic
analyzer. While the transceiver is in RX mode, switching is started at tSTXON when
the transmission command STXON is received via the SPI bus by the CC2420.
After switching is finished, a sync header consisting of preamble (set to 8 symbols
in the experiment) and SFD field (2 symbols) is transmitted. A rising edge on
the SFD pin signals the end of this transmission at t�SFD. The actual measured
switching delay, which we call Δrxtx, can now be calculated as follows:

Δrxtx = t�SFD − tSTXON − dsyncHdr (5.1)

where dsyncHdr = (8 + 2) · dsym = 10 · 16 μs = 160 μs is a constant delay, and
dsym = 16 μs is the symbol duration.

2 The analyzer supports sampling frequencies of up to 200MHz. Due to technical
limitations, we had to reduce the sampling frequency in some experiments. Concrete
measurement errors are provided for each experiment.
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Table 1. Δrxtx: Summary of measuring results to switch from rx to tx mode

Δrxtx Measurement error

Minimum 128 860 ns ±10 ns
Maximum 129 000 ns ±10 ns
Range 140 ns ±20 ns
Deviation 36.91 ns

The results of the experiment are shown in Tab. 1 and Fig. 3. The maximum
switching delay d̂rxtx including the maximal measurement error is 129.01 μs,
which is slightly higher than the data sheet value. All measured delays lie within
a small range of 140ns, thereby arguing for a high quality of d̂rxtx. By considering
the maximal observation error, we get an upper bound of the variable part
of d̂Vrxtx = 160 ns. The difference between the data sheet and the measured
values (∼ 1 μs) was analyzed in further experiments in more detail. In these
experiments, the deviation could be traced back to variable delays of processing
SPI frames by the CC2420.

5.2 Transmission of Multiple Frames in Sequence

The experiment in this section examines if the CC2420 transceiver is able to
cancel automatic transitions from tx to rx mode. This would shorten bit duration
dbit and improve convergence delay dconv. In our setup, we use two Imote 2.
The first one sends two consecutive frames. The second one tries to receive both
frames and signals success. In this experiment, we used a Software Defined Radio
(SDR) to record and compare the signal strength of both transmissions.

In Fig. 4, the sender’s signals between CC2420 and PXA271, which were
monitored during the experiment’s runs, as well as the signal strength on the
medium are shown. The end of the first transmission is detected by a falling
edge of the SFD signal. This triggers an interrupt, in which the second STXON

command is sent to the transceiver. This interrupt processing induces a small

Commands
(measured)

Medium
(derived from SFD)

SFD
(measured)

0 100 200 300 400
tSTXON tTX t�SFD t�SFD

Δrxtx dsyncHdr

t [μs]

Fig. 2. Δrxtx: Measuring points and observed signal behavior
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delay Δproc, which is far less than d̂txrx. The second transmission is initialized
right after the second STXON command, i.e., the transceiver does not entirely
switch to rx mode, but cancels this step.

In all repetitions of our experiment, both frames could be received and de-
coded properly. In addition, the SDR did not show any differences in the received
signal strengths. These results allow us to skip the switch back to rx mode when
transmitting multiple black bursts in sequence. Therefore, our hypothesis in
Sect. 4.3 is valid and we are allowed to drop dtxrx from the bit duration dbit.

5.3 CCA Delay dmaxCCA

The upper bound of the CCA delay, given by dmaxCCA, affects bit duration dbit
as well as maximum tick offsets dmaxOffset and dmaxOffset,local of BBS. For the
correct and reliable operation of BBS, it is therefore crucial that dmaxCCA is an
upper bound and that the actual CCA delay never exceeds dmaxCCA.

In the following, we present results of an experiment with the focus on CCA
delay. The experiment consists of two nodes: A sending node transmitting black
bursts and a corresponding receiving node. The timestamps of several important
events are captured by the logic analyzer, which is in this experiment connected
to both nodes. In particular, we have recorded the point in time when the trans-
mission is started by the sending node, tTX, as well as the points in time when
the CCA mechanism of the receiver claims the medium to be occupied or clear
again, t�CCA and t�CCA, respectively.

From these timestamps, we derive the difference between start of a black
burst transmission and its perception ΔTX→�CCA = t�CCA − tTX. Furthermore, we
calculate the perceived black burst duration Δ�CCA→�CCA = t�CCA − t�CCA and the
difference between end of the black burst transmission and medium is reported
clear again, ΔTXEND→�CCA = t�CCA − tTXEND, where tTXEND = tTX + dbb. The duration
of black bursts dbb is fixed to 288 μs in this experiment. The measurement is
repeated over varying distances between sender and receiver.

The results are shown in Fig. 5 and allow following conclusions: First, there
is no correlation between CCA delays and distance. This result can be traced
back to a highly uncorrelated relation between RSSI value and distance, and
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Fig. 4. Signal behavior and perceived signal strength as a function of time when trans-
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confirms previous work reporting on a large RSSI variability in indoor environ-
ments with multi-path fading and reflections (e.g., in [16–18]). Second, the CCA
delays ΔTX→�CCA and ΔTXEND→�CCA are always below dmaxCCA, and the maxi-
mum duration of the perceived black burst Δ�CCA→�CCA is always in the range
dbb±dmaxCCA. In summary, we can assert that dmaxCCA is a valid upper bound.

5.4 Maximum Switching Delay d̂txrx

The CC2420 automatically switches to rx mode after a transmission is complete.
Similar to switching from rx to tx mode, the transition from tx back to rx mode
needs recalibration of the frequency generator. For this task, the data sheet of
the CC2420 transceiver gives 12 symbol durations, i.e., dtxrx = 192 μs. However,
since switching from rx to tx mode can be shortened to 128μs by configuration,
it seems likely that 128μs are also sufficient for switching from tx to rx mode.
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To check this hypothesis, we came up with an experiment, in which one node
occupies the medium with a continuous signal3 while a second node sends a
regular black burst. The pin behavior of the CC2420 transceiver of the second
node was observed while and after transmission and is given in Fig. 6: At t�SFD,
the SFD pin level goes low. According to the data sheet, this denotes the end
of the transmission. Shortly after, at t�CCA, the CCA signal is driven high which
means that the transceiver claims to sense a clear medium, albeit the medium
is occupied by our continuous signal. It is likely that at this point in time, the
switch to rx mode is finished and the transceiver is capable of receiving data
again. At t�CCA, there is a falling edge on the CCA signal, i.e., the transceiver
eventually detects the continuous medium occupancy.

Commands
(measured)

Medium
(continuous signal)

Transmission
(derived from SFD)

SFD
(measured)

CCA
(measured)

RSSI VALID
(measured)

0 100 200 300 400 500 600 700
t�SFD t�CCA t�CCA

Δrxtx Δtxrx ΔCCA

t [μs]

Fig. 6. Δtxrx: Measuring points and observed signal behavior at the sender

To prove the hypothesis that the transceiver is ready to receive at t�CCA, we
maximized the duration ΔCCA = t�CCA− t�CCA by minimizing the signal strength
of our continuous signal. Thereby, we forced the CCA mechanism to exploit all
eight symbol durations in dmaxCCA to detect the continuous signal. Thus, we
can state that t�CCA denotes the point in time when switching is completed and
the transceiver is able to receive again, if the following observations are made:

ΔCCA ≈ dmaxCCA (5.2)

Finally, we can evaluate the switching duration from tx to rx mode as follows:

Δtxrx = t�CCA − t�SFD (5.3)

The results are given in Tab. 2 and show that our precondition in Eq. (5.2) is
satisfied. Next, it can be seen that Δtxrx is about 123.75μs, thereby providing
evidence that 128μs are sufficient to switch from tx to rx mode. In summary, we

3 We also used a CC2420 transceiver in test mode to generate a continuous carrier.
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Table 2. Δtxrx: Summary of measuring results for switching from tx to rx mode

Δtxrx ΔCCA Measurement error

Minimum 123 750 ns 128 120 ns ±5 ns
Maximum 123 755 ns 128 125 ns ±5 ns
Range 5 ns 5 ns ±10 ns
Deviation 1.614 ns 2.454 ns

recommend to use d̂txrx = 128 μs as upper bound, since the measured 123.75μs
are subject to component tolerance and environmental influence.

Another lesson learned from this experiment is regarding the RSSI VALID sig-
nal, which was also captured and is shown in Fig. 6. According to the data
sheet, this signal denotes whether the RSSI (Received Signal Strength Indica-
tion) value, which can be read by an SPI transfer, is valid. Since the CCA
mechanism compares the RSSI value against a threshold, the RSSI VALID signal
also indicates whether the level on the CCA pin is valid. The RSSI VALID signal
is not exposed via a physical pin but must be read from an internal CC2420
register via SPI. Though the signal is delayed, because we had to poll the state
of RSSI VALID continuously, we gain an important insight from our experiments:
The RSSI VALID signal is, as expected, driven low while transmitting, but has
a rising edge already before t�CCA. This means that the signal indicates a valid
RSSI value, though the transceiver is not yet ready to receive. As a resulting
note, we recommend to ignore the RSSI VALID signal and to not interpret RSSI
value and CCA signal for at least d̂txrx+dmaxCCA = 256 μs after a transmission.

5.5 Processing Delays

In order to guarantee reliable operation of BBS on the Imote 2 platform, we
have to consider that the PXA271 processor also induces hardware latencies. In
Sect. 4.3, we refer to the upper bounds of these latencies by d̂TX,pre, d̂TX , d̂RX ,

d̂VTX , and d̂VRX,intr . It is crucial that these upper bounds are not underestimated,
because this would break constraints and render BBS unreliable. If, on the other
hand, bounds are overestimated, we can classify the delays with respect to their
consequences into two groups.

– If a delay of the first group is overestimated, this will have a negative impact
on the convergence delay dconv, because the bit duration dbit is greater than
actually needed. In particular, this is d̂TX,pre, d̂TX , and d̂RX .

– If a delay of the second group is overestimated, this will have a negative
impact on synchronization accuracy, i.e., the tick offsets dmaxOffset and

dmaxOffset,local. This is particularly d̂VTX and d̂VRX,intr .

Since our implementation aims at robustness and accuracy (and not efficiency),
we overestimated delays of the first group based on empirical data of some simple
measurements and concentrated on tighter bounds for the second group.
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Both quantities (d̂VTX and d̂VRX,intr) include the variable delay of the processor
when an interrupt is raised. We call the upper bound of the variable part of this
delay d̂Vintr . To measure d̂Vintr , we conducted an experiment with one Imote 2,
where we triggered an interrupt by creating an edge to a GPIO pin. The interrupt
handler on the PXA271 answers this interrupt request by generating an edge
on another GPIO pin. Thus, we can monitor the input and output event with
a logic analyzer and measure the reaction delay (denoted by Δintr). Note, that
the duration to emit the output edge is also included in the measured duration
by this approach.

Table 3. Δintr: Measuring results for
interrupt reaction delay

Measurement
Δintr error

Minimum 4075 ns ±5 ns
Maximum 4155 ns ±5 ns
Range 80 ns ±10 ns

The measurement results are shown in
Tab. 3. The overall reaction delay is ap-
prox. 4.1μs which is quite long compared
to a CPU clock cycle of just 9.62ns. The
range, which is essentially the variable
part of Δintr, is however only 80 ns with a
maximum observation error of 10 ns. From
this, we can deduce

d̂VRX,intr = d̂Vintr = 90 ns

d̂VTX = d̂Vintr + d̂Vrxtx = 90 ns + 160 ns = 250 ns,

where d̂Vrxtx is the variable part of Δrxtx as determined in Sect. 5.1.

Further experiments revealed that d̂Vintr highly depends on processor workload.
For example, if software on the PXA271 has periodic bursty workloads, the range
is increased up to 10.4 μs. Therefore, we identified sources of jitter and elaborated
on countermeasures to keep the variable delay low:4

– If an interrupt request is raised, while an older interrupt is being served, the
later one will be deferred until the first one is completely handled. Since we
roughly know the points in time when black bursts are expected (namely
during synchronization phases), we can assure that only relevant interrupts
are handled during this time by simply masking all uninvolved interrupts.

– Whenever an interrupt is raised, the CPU instruction currently in execution
stage must be completed. Depending on the type of the instruction, the
duration until completion can vary significantly. This especially holds for
memory operations. To counteract this, we make sure that there is no such
instruction executed when a black burst is expected by taking control over
the processor in advance.

– When finally the CPU begins serving the interrupt, it is critical whether the
code and data of the interrupt routine is already available in the cache or if
it must be transferred from backing memory first. Due to PXA271’s cache
eviction strategy, it is unpredictable in practice, whether a specific datum is
held in cache after executing arbitrary program code. As a countermeasure,
we used the cache locking feature of the PXA271 core, thereby guaranteeing
that required instructions and data are always held in cache.

4 The evaluation of these proposals can be found in [15].
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6 Conclusions and Outlook

For the implementation of deterministic protocols, knowledge about timing con-
straints and hardware platform is crucial. In this paper, we have presented our
Imote 2 implementation and experimental validation of BBS, a deterministic
synchronization protocol for ad-hoc networks with bounded tick offset and con-
vergence delay. During our work, we have identified additional sources of delay
that have an impact on the offset and delay bounds of BBS, but have not been
considered in the original papers [1, 2]. We have analyzed these sources of de-
lay and refined the original formulas to include hardware latencies. In numerous
experiments, we have quantified these delays and used the obtained values to
improve the robustness of our implementation.

During the implementation of BBS, we gained the experience that implement-
ing deterministic protocols requires a holistic approach taking all characteristics
of the underlying hardware into account. Due to optimization techniques in mod-
ern hardware tackling the improvement of the average case, many delays can only
be determined empirically. Therefore our results can not easily be transferred
to other hardware. However, the approach to deal with hardware characteristics
and additional delays may be helpful for implementations on other platforms
and/or of other protocols.

Regarding the Imote 2 platform, an important finding was the inaccuracy or
even incorrectness of data sheet values. This particularly holds for the CC2420
transceiver, for which we found that switching to rx mode requires less time than
stated in the data sheet (about 128μs instead of 192μs). On the other hand, ad-
ditional jitter has to be considered, which is introduced by the transceiver to
process commands received via SPI and during interrupt handling. To cope with
these problems, validation experiments are indispensable. Though our discus-
sion and evaluation mainly concentrate on BBS for Imote 2, the results also
show that other protocols can benefit from attentive considerations of hard-
ware characteristics. This holds particularly for all protocols relying on correct
transceiver behavior. In this regard, our experiments revealed a crucial problem
of the CC2420’s RSSI VALID signal, which may lead to a misinterpretation of
the current channel state, and may be a problem for CSMA-based protocols.

Albeit we have a working BBS implementation, we are looking for more effi-
cient and accurate implementations with dedicated hardware and Software De-
fined Radios (SDRs). Such hardware can be customized for transmission of black
bursts, thereby considerably improving convergence delay as well as offset.
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Abstract. Sensor networks can nowadays deliver 99.9% of their data
with duty cycles below 1%. This remarkable performance is, however,
dependent on some important underlying assumptions: low traffic rates,
medium size densities and static nodes. In this paper, we investigate the
performance of these same resource-constrained devices, but under sce-
narios that present extreme conditions: high traffic rates, high densities
and mobility. To cope with these stringent requirements, we propose a
novel communication protocol named SOFA (Stop On First Ack). SOFA
utilizes opportunistic anycast to drastically reduce the rendezvous times
of asynchronous duty cycled nodes –long rendezvous times are the key
limitation of protocols operating under high densities and high traffic
conditions. SOFA is also stateless, which makes it resilient to mobility.
We implemented SOFA in the Contiki OS and tested it both in simu-
lation and on a 100-node testbed. Our results show that SOFA reliably
communicates in mobile networks with extreme densities (hundreds of
nodes) and higher traffic rates (packets per second) while maintaining
a low duty cycle (≈2%). Under these extreme conditions, current duty
cycled protocols collapse.

1 Introduction

Hitherto, the protocol stack of wireless sensor networks has been mainly designed
and optimized for applications satisfying one or more of the following conditions:
(i) low traffic rates (a packet per node every few minutes), (ii) medium sized den-
sities (tens of neighbors), and (iii) static topologies. There are, however, many
scenarios where these relatively mild network conditions do not hold and tradi-
tional protocol stacks simply collapse. We consider mobile networks consisting of
hundreds of thousands of nodes with hundreds of neighbors that need to dissem-
inate information at a relatively high rate (a packet per node every few seconds,
instead of every few minutes).

Our work is motivated by a scenario related to public safety: the need to
monitor crowds in open-air festivals. SOFA is part of the EWiDS project aimed at
providing attendees with coin-size devices that can actively monitor the density
of their surroundings and issue alerts when crossing dangerous thresholds.
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From a networking perspective, communication in mobile scenarios with high
traffic rates and high densities poses several non-trivial technical challenges.
First, similar to traditional WSN, these Extreme Wireless Sensor Networks
(EWSN) also work with devices with limited energy resources and need to rely
on radio duty-cycling techniques to save energy. Second, due to the network scale
and node mobility, we cannot rely on methods that combine duty cycling tech-
niques with central coordinators [8] or that require some level of synchronization
between the wake up periods of a given node and its neighbors [7,17]. The sys-
tem must be asynchronous and fully distributed. Third, due to their inefficient
bandwidth utilization, traditional unicast and broadcast primitives –which are
asynchronous, distributed and built on top of duty cycling techniques [3,16]–
simply collapse under the traffic-demands of EWSN.

Henceforth, providing an energy-efficient communication primitive in EWSN
requires a careful evaluation of the following problem: in asynchronous duty
cycling techniques, much of the bandwidth is wasted in coordinating the ren-
dezvous of the (sleeping) nodes. In EWSN, nodes need to reduce this overhead
to free up the channel’s bandwidth for actual data transmissions.

To tackle this problem, SOFA (Stop on First Ack) introduces a bi-directional
communication primitive called opportunistic anycast. This primitive establishes
a data exchange with the first neighbor to wake up. In this way, SOFA avoids
the need for neighborhood discovery and minimizes the inefficient rendezvous
time typical of asynchronous MAC protocols.

By selecting opportunistically the next neighbor to communicate with, SOFA
provides a perfect building block for gossiping algorithms [2,14,13]. Gossiping
techniques have been proven to be particularly suitable to disseminate informa-
tion in large-scale distributed systems. Overall, SOFA offers an alternative to
the traditional protocol stack, that cannot operate in extreme sensor networks.

We implemented SOFA in Contiki and evaluated it through a series of exper-
iments on a 100-node testbed, and with Cooja simulations (considering mobility
and densities of up to 450 nodes). Overall, our study makes the following three
key contributions:

– We introduce EWSN and the problem of communicating in such networks.
– We present the design, implementation and evaluation of SOFA, a commu-

nication protocol that utilizes opportunistic anycast to overcome the lim-
itations of inefficient rendezvous mechanisms. SOFA combines the energy
efficiency typical of low-power MAC protocols with the robustness and ver-
satility of gossip-like communication.

– We show that SOFA can successfully deliver messages, regardless of mobility,
in networks with densities of hundreds of nodes while maintaining the duty
cycle at approximately 2%.

2 Related Work

The constrained energy resources of WSN led to a first generation of protocols
that traded bandwidth utilization for lower energy consumption. Such proto-
cols are based on asynchronous radio duty-cycling methods, which implies that
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senders need to wait for their receiver to wake up (to rendezvous), before send-
ing their data. While in low power listening (LPL) [3] nodes send a beaconing
sequence until the receiver wakes up, in low power probing (LPP) [5,16], the
sender waits for a wakeup beacon from the receiver.

The WSN community is well aware of the limitations of the first generation
of low-power protocols and several notable contributions have improved their
performance. To reduce the overhead of the rendezvous phase, protocols such
as WiseMAC [7] keep track of the wakeup periods of their neighbors and use
this information to wakeup just a few instants before the intended receiver. This
type of protocols works very well on stable networks, where the overhead of
estimating the wake periods is seldom done. Highly mobile scenarios, however,
prevent the use of these methods.

Another efficient way to disseminate information has been recently proposed
by Ferrari et al. [8]. By using a finely synchronized TDMA mechanism, together
with extremely efficient network-wide floods, the authors are able to dissemi-
nate information irrespective of mobility. However, their low-power wireless bus
requires a central coordinator and a network with limited diameter (the syn-
chronization degrades as the number of hops increases). The wide scale (graph
diameter) of EWSN prevents the use of this approach, and the central coordi-
nator exposes a single point of failure.

2.1 The Need for Opportunistic Communication

Several notable studies have identified the important role that opportunistic
communication has on improving the performance of low-power WSN. In essence,
the key idea of these studies is the following: instead of waiting for a pre-
defined node to wake up, opportunistically transmit to who is available now.
In ORW [10], the authors propose to use anycast communication to improve the
performance of CTP [9], the de-facto data collection protocol in WSN. In Back-
cast [6], the authors show that by using anycast communication, the capture
effect can be leveraged to increase the probability of receiving an ack from a vi-
able receiver. While SOFA is motivated and inspired by these studies, there is an
important difference. We do not use opportunistic anycast to improve the per-
formance of traditional network protocols under mild conditions, but to enable
a new communication protocol that scales to EWSN. To summarize we make
the following observations:

– Basic asynchronous low-power MAC protocols collapse under the densities
and traffic demands of extreme wireless sensor networks.

– Mobility prevents the use of more complex and efficient low-power MACs.
– Opportunistic behaviors are needed to scale to EWSN.

3 SOFA Mechanism

The design of SOFA follows two main goals: reduce the inefficient rendezvous
phase of low-power MAC protocols, and guarantee that the dissemination of
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Fig. 1. SOFA mechanism

data is performed in an efficient and reliable way. To satisfy these goals, SOFA
implements an efficient communication primitive, called opportunistic anycast,
that minimizes the rendezvous overhead and natively supports Gossip, a robust
data dissemination technique created for large-scale networks.

Before proceeding it is important to remark that SOFA focuses on maximizing
the messages exchanged locally among neighbors (1-hop), leaving the multi-hop
dissemination and aggregation of information to the Gossip layer.

3.1 The Basic Idea

The general idea of SOFA can be applied to any asynchronous duty cycled MAC
protocol. Due to space constraints, we focus our analysis on the LPL version
of SOFA. The reason is that this implementation performs better in extreme
densities, especially in terms of reliability. Nevertheless, in Appendix A, we will
provide some insight on the LPP implementation.

Rendezvous Phase: In traditional LPL protocols [3], when a sender wakes up,
it transmits a series of short packets –called beacons– and waits for the receiver
to wake up. When the intended receiver wakes up, it hears the latest beacon
and sends an acknowledgement back. SOFA follows a similar mechanism: the
sender, node A in Figure 1(a), also broadcasts a series of beacons but only waits
until any neighbor wakes up. The main difference between the two mechanisms
lays in the selection of the destination. While in LPL the destination is chosen
by the upper layers in the stack, in SOFA the MAC protocol opportunistically
chooses the destination that is most efficient to reach: the first neighbor to wake
up. If nodes B or C were to be chosen, node A would need to send beacons (jam
the channel) until these nodes wake up again. By sending its data to the first
neighbor that wakes up (node D), SOFA reduces the nodes’ rendezvous time,
allowing low-power MAC protocols to efficiently scale to EWSN. We call this
communication primitive opportunistic anycast.

Data Exchange Phase: Selecting the first (random) neighbor that wakes up
as the destination, has a strong relation with a family of randomized networking
algorithms called gossiping [2,14]. Gossip algorithms do not aim for traditional
end-to-end communication (where routes are formed and maintained ahead of
time), instead they exchange information randomly with a neighbor (or subset
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of neighbors). The relation between SOFA and Gossiping is fundamental for
the practical impact of our work. Unicast and broadcast primitives allow the
development of a wide-range of algorithms and applications in WSN such as
routing, data collection, querying and clustering (to name a few). Unfortunately,
under the stringent characteristics of EWSN these basic primitives collapse. Our
aim is to provide an alternative communication protocol for extreme conditions.
We hope that this effort will allow the community to use SOFA as a basic building
block for other gossip applications such as routing in delay tolerant networks [15]
and landscaping of data [11].

We will now describe the design of the three key characteristics of SOFA:
short rendezvous phase, reliable push-pull data exchange, and random peer sam-
pling. The design of a short rendezvous phase was influenced by the limitations
of asynchronous duty cycled protocols. The push-pull data exchange and the
random peer sampling were designed to satisfy the needs of general gossiping
applications.

3.2 Short Rendezvous Phase

Stopping at the first encounter, instead of searching for a specific destination,
has two important consequences on the performance of SOFA. First, and most
importantly, it eliminates the main limitation that LPL has under extreme net-
working conditions: channel inefficiency. By drastically reducing the length of the
rendezvous phase, the channel no longer gets easily saturated by medium/high
traffic demands or medium/high node densities. A short rendezvous phase also
reduces the duty cycle of the radio, which in turn, increases the lifetime of the
node. Second, increasing the network’s density (up to a point) improves the
performance of SOFA. With more neighbors, the probability that one will soon
wake up is higher.

To quantify the benefits of a short rendezvous phase, we present a simple
model that captures the expected duration of the rendezvous phase as a func-
tion of the neighborhood size and the wakeup period (the time elapsed between
two consecutive wake-ups of a node). Since nodes wake up periodically in a com-
pletely desynchronized way, we can model the inter-arrival times of the nodes’
wake-ups as a set of independent random variables with uniform distribution.
The first order statistic U1 can then be used to estimate the length of the ren-
dezvous phase. The expected length E[U1] of N uniform random variables (neigh-
bors) is given by the Beta random variable with parameters α=1 and β=N

U1 ∼ B(1, N), E[U1] =
1

1 +N

Given a wakeup period W and a neighborhood size N , the expected length of
the rendezvous phase of SOFA can be computed as follows:

E[s] =
W

1 +N
(1)
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Fig. 2. SOFA rendezvous phase (testbed results)

Considering that the expected rendezvous time of unicast E[u] is W/2 [3,12] and
that the time spent for the data exchange phase is negligible compared to the
rendezvous (see Figure 2(a)), we can model the gain G of SOFA compared to
unicast as the following:

G =
E[s]

E[u]
=

W

1 +N

2

W
=

2

1 +N

For a node with 99 neighbors, this means that the expected rendezvous times of
SOFA is 50 times smaller than the one using unicast. Figure 2(a) compares the
expected length of the rendezvous phase using the proposed model with values
observed in testbed experiments. In this example, W=1 s and the neighborhood
size ranges from 5 to 100 nodes. The slight underestimation is mainly due to
collisions, which delay the detection of the first node by the sender.

It is important to highlight three key points about the impact of density
on SOFA. First, since the performance of SOFA is not significantly affected by
changes in medium/high densities, SOFA does not need to adapt to this type of
density fluctuations in mobile networks. Second, to reduce the duration of the
rendezvous phase in low density networks, the wakeup period can be reduced (at
the cost of increasing the duty cycle). This trade-off is studied in more detail in
Section 5.3. Finally, in case the network switches from an extreme condition to
a normal one (low density), the protocol stack can switch to the use of standard
broadcast and unicast messages. To detect the density of the network, SOFA can
exploit the tight correlation between the number of neighbors and the expected
length of the rendezvous phase (Equation 1).

3.3 Reliable Push-pull Data Exchange

To exchange data efficiently and reliably, SOFA has two phases: a 2-way ren-
dezvous phase and a 3-way data exchange phase. These phases are shown in
Figure 1(a) and their design is driven by two factors: (i) the high relative cost of
the rendezvous phase compared to the data-exchange phase, and (ii) the effect
of unreliable and asymmetric links on the constant mass requirement of gossip’s
data-aggregation algorithms. The effect of these factors is explained below.



106 M. Cattani et al.

Using a Push-pull Exchange Amortizes the High Relative Cost of
the Rendezvous Phase. Gossiping algorithms have two types of data com-
munication: push and push-pull. In the push method, only the sender transfers
information to the receiver(s). In the push-pull method, two nodes exchange
their information. Compared to the latter, push-pull allows gossip algorithms to
compute more complex aggregates and converge faster [4]. Nevertheless, from
our perspective what matters most is the relative cost of the rendezvous phase.
Given that the cost of this phase is high compared to the data exchange phase,
it is beneficial to exchange as much information as possible once two nodes
rendezvous. For this reason, SOFA implements a push-pull approach. A push
approach would double the overhead of the rendezvous phase, making SOFA
less resilient to extreme conditions.

The 2-way Rendezvous Phase Filters Out Asymmetric and Unreliable
Links, While the 3-way Handshake Reduces the Probability of Losing
“Gossip Mass". Losing messages has a particularly detrimental effect on the
accuracy of gossiping. For example, when two nodes agree to swap half their value
(mass), the loss of a message results in a too low value on the node that missed
it, which influences the outcome of all the other nodes as the error propagates
in consecutive rounds. The conservation of mass is, thus, an important issue in
gossiping algorithms. From a design perspective, this means that we need to
consider two important points. First, nodes should avoid the use of unreliable
and asymmetric links (which have been shown to be commonplace in WSN [18]).
Second, if a packet is lost, we have to reduce the chances of losing mass.

The 2-way rendezvous phase reduces the chance of using unreliable and asym-
metric links. Several studies have shown that unreliable links are usually asym-
metric (and vice versa) [18]. On the other hand, bidirectional links are usually
characterized by being more reliable. By performing a 2-way exchange before
transmitting the actual data, SOFA increases the chances of using a reliable
link. It is important to remark that some LPL methods do not follow this ap-
proach [12]. These methods piggyback the data on the beacons and acknowl-
edgement packets, that is, they transmit information without checking first if
the link is reliable and symmetric or not.

The 3-way data exchange phase reduces the chance of losing mass in the
event that a packet is lost. In spite of our efforts to filter out unreliable and
asymmetric links during the rendezvous phase, the high temporal variability of
low-power links can cause a reliable link to become momentarily unreliable. In
the event that a packet is lost, the worst situation for two nodes is to disagree
on the outcome of an event. That is, two nodes should either agree that the
message exchange was successful (both nodes received the mass) or agree that
no message was exchanged (aborting the exchange). If only one node deems
the event as successful, then the mass of the other is lost. The latter situation
happens when the last packet of an n-way handshake is lost. This (dis)agreement
problem is discussed in depth in [1], and the authors prove that in WSN the best
strategy to reduce disagreements is to use a 3-way handshake.
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3.4 Random Peer Sampling

Most gossip algorithms rely on the selection of a random neighbor (or subset
of neighbors) at each round. Having a good random selection leads to a faster
convergence. To ensure a proper random selection, SOFA introduces random
values to the wakeup periods of each node. For a wakeup period of W seconds,
nodes wake up uniformly at random between [0.5W , 1.5W ].

To validate the effectiveness of our approach, we performed an experiment
on a 100-node testbed. For 10 minutes nodes exchange messages and count the
number of times they are selected by their neighbors (their score). Figure 2(b)
shows that the distribution of the scores is close to uniform, with the [5, 95] per-
centiles close to the average value. It is important to remark that this evaluation
was performed on a static testbed. Mobility would further randomize the selec-
tion of neighbors, facilitating the dissemination of data, and drastically reducing
the convergence time of Gossip [13].

4 Implementation

We implemented SOFA on the Contiki OS based on X-MAC [3]. Nodes were
configured to wakeup every second for 10 ms. If a beacon is received within this
10 ms period, the node sends an acknowledgement and starts the data exchange
phase. Otherwise, the node goes back to sleep. Notice that these parameters set
a minimum duty cycle of 1 %, hence, any extra activity beyond this point is part
of the overhead caused by the rendezvous and data exchange phases. Below we
describe the implementation of the most important features of SOFA.

Transmit Back-off. In traditional MAC protocols, before sending a packet, a
transmitter first checks the signal level of the channel (CCA check) to see if there
is any activity. If no activity is detected the packet is sent. In SOFA, we do not
perform a CCA check. Instead, a potential sender listens to the channel for 10 ms
acting, practically, as a receiver. If after this period no packet is detected, the
node starts the rendezvous phase. If the node detects a packet that is part of an
on-going data exchange, it goes back to sleep (collision avoidance). However, if
the detected packet is a beacon, the node changes its role from sender to receiver.
By performing a transmit back-off instead of a CCA check, SOFA transforms a
possible collision between two senders into a successful message exchange with a
very low rendezvous cost.

Collision Avoidance. One of the key challenges of operating under extreme
density conditions is the higher likelihood of collisions due to higher traffic de-
mands. SOFA follows a simple guideline to reduce the frequency of collisions: if
a sender detects a packet loss –for instance, by not receiving an ack–, instead
of attempting a retransmission, the node goes back to sleep. This conservative
approach reduces the traffic in highly dense networks. The main caveat of this
approach is when the lost packet is the last data ack. In this case, the two
parties will disagree on the data delivery, causing an information (mass) loss.
Fortunately, our testbed results show that this is not a frequent event.
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There is a collision event that is not avoided by the above mentioned ap-
proach and has a higher probability of occurrence in SOFA. When two or more
active receivers detect a beacon, their ACKs are likely to collide (cf. nodes B
and C in Figure 1(b)). The sender will receive neither of the ACKs and will con-
sequently continue transmitting beacons. Upon receiving a subsequent beacon
(not the expected data packet), the two colliding receivers infer that a collision
has occurred and both will go back to sleep. The first node to wake up after the
collision (node D) will acknowledge the beacon and exchanges its data. Finally,
randomizing the wake up periods of nodes helps in reducing the chances that
this type of collisions occurs repeatedly among the same couples of nodes.

Packet Addressing. SOFA uses two main types of data packets. For the ren-
dezvous phase, the beacons have no destination address, any node can receive
and process the information. For the data exchange phase, the packets contain
the destination address of the involved parties. The beacon packets were as small
as possible (IEEE 802.15.4 header + 1 byte to define the packet type and 1 byte
when addressing is needed).

5 Results

To evaluate the effectiveness of SOFA we ran an extensive set of experiments
and simulations. Our testbed has 108 nodes installed above the ceiling tiles of an
office building. The wireless nodes are equipped with a MSP430 micro-controller
and a CC1101 radio chip. To reach the highest possible neighborhood size, we set
the transmission power to +10 dBm. With these settings, the network is almost
a clique. For our simulations we used Cooja, the standard simulator for Contiki.
We tested network densities of up to 450 nodes and different mobility patterns.
Simulations beyond this density value are not possible with normal cluster com-
puting facilities. For both experiments and simulations, the baseline scenario was
configured to have a wake up period W=1 s and a transmission period T=2 s.
That is, nodes wake up every second to act as receivers and every two seconds to
act as senders. Considering that nodes listen for packet activity at each wakeup
for 10 ms, the baseline duty-cycle is ≈ 1 %. Any extra consumption beyond 1 %
is caused by SOFA. The evaluation results presented in this section consider
also other values for W and T , but unless stated otherwise the experiments are
carried out using the baseline parameters. The results are averaged over 20 runs
of 10 minutes each.

5.1 Performance Metrics

The evaluation of SOFA focuses on three key areas: energy consumption, band-
width utilization and mass conservation. To capture the performance of SOFA
in these areas, we utilize the following metrics:

Duty Cycle. The percentage of time that the radio is active. Duty-cycle is a
widely utilized proxy for energy consumption in WSN because radio activity
accounts for most of the energy consumption in WSN nodes.
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Fig. 3. SOFA compared to LPL (testbed results)

Exchange Rate. The number of successful data-exchanges (3-way handshakes)
in a second. This is a per-node metric. If, instead, we count the total number
of data exchanges in a second over the entire network we refer to the global
exchange rate.

Mass Delivery Ratio. The percentage of times that the data-exchange phase
ends up without any information loss. Recall that if the ack of the data phase
is lost, the receiver deems the exchange as successful, but the sender deems the
exchange as unsuccessful and ignores the previously received packet (mass loss).
The mass delivery ratio is a metric focused on evaluating the viability of SOFA
as a basic communication primitive to general gossip algorithms.

5.2 The Need for a Novel Approach

Previously in this paper, we argued that traditional low-power methods collapse
under the stress imposed by extreme networking conditions. This subsection
quantifies this claim. We compare SOFA with the standard Contiki implementa-
tion of LPL on our testbed. To provide a fair comparison, LPL chooses a random
neighbor from a pre-computed list of destinations at every transmission request.
That is, we do not enforce on LPL the necessary neighbor discovery process
that would be needed to obtain the destination address (SOFA does not need
an address to bootstrap the communication).

Figure 3 compares the duty cycle and the exchange rate of SOFA and LPL
in our testbed. For LPL, the evaluation shows only the result for W=125ms
because LPL collapses with the baseline W=1 s. This collapsing occurs because,
with W=1 s, the rendezvous phase of LPL requires on average 0.5 s. Hence,
5 nodes require on average a 2.5-seconds window to transmit their data, but
the transmission period is 2 s, which leads to channel saturation. Comparing
the best parameter for LPL (W=125ms) with the best parameter for SOFA
(W=1 s) shows that SOFA widely outperforms LPL. For most neighborhood
sizes (30 and above), SOFA uses four times less energy and delivers five times
more packets for the same T .

It is important to remark that SOFA is not a substitute for traditional low
power methods, as they aim at providing different services. SOFA cannot provide
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Fig. 4. Testbed performance for different wake-up times W and transmission periods
T . Note that the exchange rate is normalized to T .

several of the functionalities required by applications relying on unicast and
broadcast primitives. Most WSN applications are designed for data gathering
applications sending a few packets per minute. In these scenarios, the state-of-
the-art in WSN research performs remarkably well. The aim of our comparison is
to highlight that traditional methods were not designed to operate under extreme
conditions neither to efficiently support Gossip applications. We will now analyze
the performance of SOFA based on different parameters and scenarios.

5.3 Exploring SOFA Parameters

SOFA is a simple protocol with only two parameters available for fine-tuning:
the wakeup period W and the transmission period T . We now evaluate the
performance of SOFA as a function of these parameters. The results of this
subsection are all based on testbed experiments. Figure 4 shows the performance
of SOFA for two different wakeup periods (125 and 1000 ms), and for three
different transmission periods (1, 2 and 5 seconds).

The Impact of the Transmission Period T . Let us start by analyzing the
impact of T on the duty cycle. Figure 4(a) shows two important trends. First,
beyond a certain neighborhood size (≈ 30), T does not have a significant impact
on the duty cycle. Decreasing the transmission period certainly increases the
duty cycle of the node, but not by much. Second, in low/medium dense networks
(below 30 neighbors), increasing T has a more significant effect on the duty cycle,
but it is still a sub-linear relation. An increment of T by a factor of five, increases
the duty cycle by only a factor of two. The reason for the difference in duty



SOFA: Communication in Extreme Wireless Sensor Networks 111

cycle between low/medium and high density networks, is that at lower densities,
SOFA spends more time on the rendezvous phase. This implies a higher overhead
at each transmission attempt. Conversely, increasing the density increases the
likelihood of finding a receiver sooner.

Note that, thanks to the transmit back-off mechanism (which changes the role
of senders to receivers to reduce collisions), increasing the transmission rate de-
creases the length of the rendezvous phase. With nodes sending data more often,
the probability that two senders are active at the same time is higher. While in
a normal MAC protocol this would lead to collisions, in SOFA it translates into
an efficient message exchange (the rendezvous time is minimal) among the two
senders. As for the impact of T on the relative exchange rate, SOFA behaves as
most protocols do when they work under high traffic demands: the higher the
traffic rate, the more saturated the channel, and the lower the probability to
exchange information. This trend is observed in Figure 4(c). It is important to
notice, however, that the exchange rate decreases in a gentle manner.

The Impact of the Wake Period Period W . Intuitively, reducing the wakeup
period should reduce the rendezvous time (because nodes wakeup more fre-
quently), which in turn should free up bandwidth and allow a higher exchange
rate. However, the trade-off for a more efficient use of bandwidth would be a
higher duty cycle. Figures 4(b) and (d) show the performance of SOFA with
a wakeup period W=125 ms. With this value, the baseline duty cycle is 8 %.
The figures show that reducing W does increase the relative exchange rate, but
mainly on low/medium dense networks (by ≈ 50%). Therefore, it is possible to
improve the performance of SOFA in low density networks at the cost of in-
creasing the energy consumption. For high density networks, however, we have
a similar throughput but with a duty cycle that is four times higher.

5.4 SOFA under Extreme Densities and in Mobile Scenarios

The previous testbed results show that SOFA performs well in densities as high as
100 neighbors. However, from a practical perspective it is important to determine
(i) the saturation point of SOFA, i.e., how many nodes SOFA can handle before
saturating the bandwidth, and (ii) the impact of mobility. Unfortunately, there
are no large-scale mobile testbeds available in the community, and hence, we rely
on the Cooja simulator to investigate these aspects.

SOFA Shows a Strong Resilience to Extreme Densities. Figures 5(a) and
(c) show the prior testbed results together with the simulation results. These
results consider clique networks for both the testbed and simulation results.
First, it is important to notice that Cooja captures, in a pretty accurate way, the
trends observed on the testbed. Figure 5(a) shows that the duty cycle continues
to decrease (almost monotonically) and stabilize after a density of more than
100 neighbors. Figure 5(c) shows that the exchange rate degrades monotonically
but in a graceful manner (notice that the x-axis is in a log scale).

There is, however, a more important question to answer about SOFA: at what
density does it saturate? The clique curves (bottom two curves) in Figure 5(d)
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Fig. 5. SOFA’s performance in extreme network conditions (testbed and simulation
results)

provide some insight into this question. In these experiments, we evaluated the
global exchange rate at different densities. For the tested parameters, SOFA
saturates when the density approaches 200 neighbors per node. Note that these
are clique scenarios. In multi-hop networks, SOFA can exploit the well known
spatial multiplexing effect (parallel data exchanges) and achieve higher global
exchange rates. The top curve in 5(d) depicts this behavior. The highest point
represents a network with 450 nodes and an average density of 150 neighbors.

The Performance of SOFA Remains the Same in Static and Mobile
Scenarios. By being a stateless protocol, with nodes acting independently in an
asynchronous and distributed fashion, SOFA does not require spending energy
on maintaining information about the node’s neighborhood and it is independent
from the network topology and mobility.

To test SOFA with dynamic topologies, we simulated an area of 150x150
meters where nodes moved according to traces generated by the BonnMotion’s
random waypoint model. We tested three speeds: 0 m/s (static), 1.5 m/s (walk-
ing) and 7 m/s (biking). The radio range was set to 50 meters, with every node
being connected, on average, to one third of the network. The maximum density
was 150 nodes in a 450-node network. The resulting multi-hop networks had an
effective diameter of just below three hops, which ensures that hidden terminal
effects are taken into consideration. Figure 6 shows the duty cycle and the ex-
change rate of SOFA under the patterns static, walking and biking. We can see
that the speed of the nodes does not influence neither the energy consumption
nor the delivery ratio and the exchange rate.
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5.5 Gossip Support

As mentioned before, one the goals of our study is to develop a communication
primitive that is useful for general gossip applications. In gossip, it is important
to conserve mass. Our 3-way handshake phase guarantees that, unless the last
ack is lost, the two nodes will reach either a positive agreement (both nodes
exchange their mass) or a negative agreement (both nodes keep their mass).
Clearly, a positive agreement is the most desirable outcome, but both outcomes
guarantee that no mass is lost during the exchange. The most important issue
is to reduce the possibility of disagreements (when only one node, the sender,
deems the transaction as successful).

To evaluate SOFA’s ability for mass conservation, we compute the mass de-
livery ratio. This metric represents the fraction of data exchanges that end up
successfully. Figure 5(b) depicts the mass delivery ratio of SOFA under different
densities. The figure shows that even under extreme densities (450 neighbors)
SOFA is able to achieve a high percentage of successful exchanges (above 90 %).
This is an important result. In the previous subsection, we found that SOFA
saturates at approximately 200 nodes, beyond this point the exchange rate de-
creases monotonically. But, Figure 5(b) shows that the few exchanges that are
able to occur beyond this point are able to be completed successfully. In other
words, even under extremely demanding conditions SOFA has a remarkable abil-
ity to conserve mass. This feat is due to the careful design of SOFA aimed at (i)
selecting reliable links (rendezvous phase), (ii) implementing a transmit back-
off instead of a CCA (to avoid sender-based collisions), (iii) avoiding the use of
retransmissions (which would jam the channel) and (iv) providing a method to
reduce mass losses due to packet drops (3-way handshake).

6 Conclusions

In this study we define the concept of Extreme Wireless Sensor Networks and
propose SOFA, a communication protocol that can operate efficiently and reli-
ably under EWSN’s stringent conditions. To the best of our knowledge, this is
the first effort aiming at mobile sensor networks with high densities and high
traffic rates. Traditional low-power protocols, which were not designed with these
requirements in mind, simply collapse under such circumstances.
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SOFA shows a strong resilience to extreme networking conditions. First, the
stateless, asynchronous and distributed characteristics of SOFA make it immune
to mobility. SOFA has the same performance in static and mobile environments.
Second, SOFA reaches a bandwidth saturation at densities close to 200 nodes
and it is able to provide reliable communication for densities of up to 450 nodes.

Finally, it is important to stress that SOFA is not intended to replace tra-
ditional low-power methods, as these provide a different set of services. SOFA
complements these traditional methods. If the network’s conditions change (to a
milder state), the network stack can switch to unicast and broadcast primitives.
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Appendix A: SOFA and LPP

SOFA is a generic mechanism that can be applied to any low power duty cycled
protocol. In this appendix we briefly explore SOFA in combination with low
power probing (SOFA-LPP). The main difference with SOFA-LPL resides in the
rendezvous mechanism. While in SOFA-LPL the initiator actively probes the
channel with beacons, in LPP the initiator passively listens to the channel until
a neighbor sends out his wake-up beacon signaling it is ready for communication.

LPP can lead to collisions when two nodes target the same destination, as
they will both respond to the wake-up beacon of that node. For unicast this is
unlikely (nodes target specific neighbors), but for opportunistic anycast senders
in close proximity target the same (first to wake-up) node. Similar to SOFA-
LPL’s transmit back-off, we can remedy this by having an initiator first act as
a receiver (by sending out a beacon of its own) before turning into a sender
(passively listening for beacons); this way two initiators engage in an effective
communication with each other instead of ending up with a collision.

Figure 7 shows that SOFA-LPP performs worse than SOFA-LPL. In particu-
lar, SOFA-LPP suffers in terms of mass delivery ratio and exchange rate. This
is largely due to the periodical wakeup beacons, which saturate the channel for
medium to highly-dense networks.
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Abstract. During phases of transient connectivity, sensor nodes receive
a substantial number of corrupt packets. These corrupt packets are gen-
erally discarded, losing the sent information and wasting the energy put
into transmitting and receiving. Our analysis of one year’s data from an
outdoor sensor network deployment shows that packet corruption follows
a distinct pattern that is observed on all links. We explain the pattern’s
core features by considering implementation aspects of low-cost 802.15.4
transceivers and independent transmission errors. Based on the insight
into the corruption pattern, we propose a probabilistic approach to re-
cover information about the original content of a corrupt packet. Our
approach vastly reduces the uncertainty about the original content, as
measured by a manifold reduction in entropy. We conclude that the prac-
tice of discarding all corrupt packets in an outdoor sensor network may
be unnecessarily wasteful, given that a considerable amount of informa-
tion can be extracted from them.

Keywords: wireless, transmission errors, packet corruption, outdoor
sensor networks, robustness, 802.15.4.

1 Introduction

Outdoor sensor networks experience significant variations in radio link perfor-
mance over time [1,2]. When links are in a transient state, they receive a large
amount of corrupt packets, which are commonly discarded. Consequently, the
information the sender intended to transmit is lost and has to be retransmitted.
Therefore, corrupt packets incur a cost on the networks’ limited energy budget
for both transmitting and receiving the corrupt packet, and for retransmission.

We study corrupt packets from an 802.15.4-based outdoor deployment in a
remote area. We find that corruption occurs to a non-negligible degree on in-
termediate links. It emerges that corruption follows a distinct, stable pattern
that holds over various time scales and across links. We explain this pattern
by considering an implementation aspect of low-cost 802.15.4 transceivers, the
tie resolution strategy in coding, and a channel model in which errors occur in-
dependently. While corruption in packets has been studied recently in outdoor
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networks [3] and earlier in the case of interference [4,5], we are the first to explain
the occurence of the observed pattern.

Some earlier work has also addressed how to make use of corrupt packets.
Apart from forward error correction, the approaches either selectively retransmit
parts of a packet that are suspected to be corrupted [6,7], or aim to reconstruct
a correct packet from multiple corrupt packets [8].

We take a novel path to handling corrupt packets. We note that data in sen-
sor networks is often inherently uncertain, e.g., due to limited accuracy of sensor
readings. We therefore propose an approach that—rather than trying to exactly
reconstruct a corrupt packet—probabilistically infers the packet’s original con-
tent by exploiting the pattern in corruption. In combination with application
knowledge, our approach enables recovery of information from corrupt pack-
ets. In contrast to earlier work, our approach does not need retransmissions of
corrupt packets and hence does not incur an additional communication cost.

The evaluation of our approach shows that the uncertainty associated with a
corrupt packet can be reduced significantly, as measured by an up to eight-fold
reduction in entropy. We further validate our approach by applying it to data
collected from a second deployment in another location, and find that it enables
recovery of information from corrupt packets.

In summary, this paper makes the following core contributions:

– By analyzing data from a long-term outdoor deployment, we describe the
distinct pattern of how 802.15.4 packets are corrupted. Crucially, we can ex-
plain the pattern by considering implementation aspects of low-cost 802.15.4
transceivers and a simple radio channel model.

– Based on our insights, we describe an approach that probabilistically infers
the original content of a corrupt packet. We evaluate this approach on a
data set from a separate deployment, and find that it enables recovery by
correctly assigning high probabilities to the original content. We also achieve
a manifold reduction in the uncertainty associated with a corrupt packet.

To ensure that this paper is focused and self-contained, we have decided to leave
out certain systems aspects, which we will address in future work.

The rest of the paper is organized as follows. We describe our deployment
and data collection in Sec. 2, and briefly recap the IEEE 802.15.4 standard in
Sec. 3. We analyze packet corruption in our deployment in Sec. 4, and describe
our recovery approach in Sec. 5. Section 6 evaluates the approach, followed by
a brief discussion of practical aspects in Sec. 7. We then survey related work in
Sec. 8 and conclude the paper in Sec. 9.

2 Deployment and Data Collection

We deployed a sensor network at the outskirts of Uppsala, Sweden. The network
is located in an open field with no trees or bushes in the surroundings, in a remote
location that very few people have access to. The deployment is therefore not
affected by man-made radio interference, e.g., from WiFi or Bluetooth.
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(a) Pole with four sensor nodes
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Fig. 1. Outdoor deployment. Sensor nodes are labeled 1–16 in the right figure.

The network is comprised of 16 TelosB sensor nodes, which are equipped with
802.15.4-compatible CC2420 radio transceivers that operate in the 2.4 GHz ISM
band [9]. The nodes are attached to four poles, with four nodes per pole (Fig. 1a).
The poles are aligned along a straight line with a distance of 20 m between
consecutive poles, as shown in Fig. 1b. On each pole, two nodes are mounted at
0.5 m above the ground and two nodes are mounted at 1.5 m.

The purpose of the network is to study radio links in 802.15.4 outdoor net-
works. Therefore, nodes take turns in sending 34-byte long probing packets every
500 ms. Whenever a node receives a packet, it logs the received packet content
and the signal-to-noise ratio and Link Quality Indication (LQI) associated with
the packet. Rather than discarding corrupt packets, nodes are programmed to
also log corrupt packets. For power supply and log data collection, all nodes are
connected via 5 m long RF-shielded USB cables to low-power Linux machines,
which in turn are connected via Ethernet to a regular desktop PC that acts as
a central experiment monitor.

By analyzing the log files, which contain all sent and received packets (both
correct and corrupt), we can determine which parts of a corrupt packet have
suffered corruption. We use this information to analyze corruption in Sec. 4.

3 Recap of IEEE 802.15.4

We briefly recapitulate the aspects of the IEEE 802.15.4 standard that are rele-
vant to this paper. IEEE 802.15.4 is a standard for low-rate, low-power wireless
communication [10], which has found wide-spread adoption in sensor networks.

A transmitted byte is represented by two four-bit symbols. 802.15.4 employs a
direct sequence spread spectrum (DSSS) technique, in which each of the 16 possi-
ble symbols is represented by one code word. A code word, in turn, is represented
by a 32-bit long pseudo-noise chip sequence.

We clarify the operation of 802.15.4 with an example. A sender wants to
transmit a packet with n bytes of payload to a receiver. The sender translates
each byte to two symbols. For each symbol, it determines the corresponding
code word. The code words’ chip sequences are then modulated onto a carrier
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Fig. 2. The left figure exemplifies the amount of corrupt packets received for a specific
link. The right figure shows that almost all intermediate links receive a substantial
amount of corrupt packets.

frequency. The receiver demodulates the incoming chip sequences and matches
them to the known code words. In this way, the receiver decodes 2n symbols,
from which it can construct the n payload bytes.

Synchronization is required to detect packet boundaries. A sender starts each
packet with a predefined preamble, followed by a start frame delimiter and a
length field. Upon decoding a preamble and start frame delimiter, a receiver
knows that a packet is being transmitted. If the receiver fails to decode the
preamble, the packet is lost.

Due to noise on the radio channel, a receiver’s demodulated chip sequence
may differ from the chip sequence transmitted by the sender. In this case, the
incoming chip sequence is matched to the closest code word. DSSS thereby
achieves resilience against noise, since there is a many-to-one mapping between
chip sequences and code words. If sufficiently many chips are demodulated in-
correctly [11], the receiver matches the incoming chip sequence to an incorrect
code word, and hence decodes the wrong symbol. In this case, packet corruption
occurs. To detect corruption, 802.15.4 packets end with a two-byte cyclic redun-
dancy check (CRC) field. A receiver computes the CRC for the incoming packet
and compares it against the received trailing CRC field. If they mismatch, the
receiver knows that corruption has occurred.

4 Packet Corruption in an Outdoor Sensor Network

In this section, we analyze corrupt packets that were received by nodes in our
deployment over the course of one year, from June 2012 to June 2013. We begin
by briefly quantifying the amount of corruption occurring in the deployment.
Then, we describe how corruption affects individual transmitted symbols, fol-
lowed by a characterization of the effect of corruption on whole packets. Our
analysis is focused on the regularities in corruption that enable the probabilistic
recovery of information, as described in Sec. 5.

Because corrupt packets are usually discarded, the degree to which packet
corruption occurs is unknown for most sensor networks. From our log data we
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Fig. 3. Symbol mutations as observed in the data set and in simulation. Our simulation
model produces the same core pattern as the empirical measurements.

observe that intermediate links (links that have a PRR between 10% and 90%
[12,13]) experience a substantial amount of packet corruption. Figure 2a shows a
representative example of such an intermediate link. The depicted link initially
has a high PRR, but deteriorates over time. As PRR falls, the amount of corrupt
packets, indicated by the hatched gray area, grows.

Next we look at the amount of corruption over all intermediate links from the
duration of the deployment. We observe that about 80% of intermediate links
have a ratio of corrupt packets to correctly received packets of at least 0.5. That
is, for every two correctly received packets, they receive one corrupt packet on
average. Figure 2b illustrates this ratio of corrupt packets to correctly received
packets for intermediate links for a time span of two weeks in March 2013.

We conclude that packet corruption occurs at a non-negligible scale on inter-
mediate links. Because intermediate links are the best candidates for improving
network performance, this initial observation motivates us to understand packet
corruption in more detail.

4.1 Corrupt Symbols

We now consider corruption at the finest level of granularity at which it can be
observed in our deployment: the symbol level. If a node sends a packet containing
a symbol si and due to corruption a receiver decodes the symbol incorrectly,
which symbol sj will the receiver likely decode?

Figure 3a shows how often each possible mutation si → sj is observed over all
links from the span of twelve months. The figure is a visual representation of the
mutation matrix. An entry (j, i) of the mutation matrix denotes the frequency
with which we observed a sent symbol si to be received as sj . The matrix diagonal
describes how often a symbol was decoded correctly. We omit the diagonal in
the figure to focus on corruption. The darker the color in the figure, the higher
the frequency. A distinct visual structure emerges in the figure, which leads us
the following three observations:
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Fig. 4. Hamming distances for 802.15.4 code words (left) and MSK-transformed code
words (right). The MSK transformation explains observations 1 and 2.

Observation 1: Mutations are not uniformly distributed. If corruption occurs
to a sent symbol, the received symbol depends on which symbol was sent. For
example, if a node sends symbol s0 which suffers corruption, the receiver most
commonly decodes it as a s5 (see column 0). Conversely, if a node receives a
corrupt symbol as s5, it is least common that s13 was sent (see row 5).

Observation 2: The most significant bit of a symbol is more stable than other
bits. Note that the subdiagonal (8, 0) to (15, 7) and the superdiagonal (0, 8) to
(7, 15) are lighter than the rest of the plot. For each column, the corresponding
entry on these diagonals represents the symbol which differs from the sent symbol
in only the most significant bit. For example, the sent symbol s0 = 00002 is least
commonly decoded as s8 = 10002. This leads to the most significant bit of a
symbol being more stable on average in our deployment.

Observation 3: Symbols s0 to s7 are more stable than other symbols. Consider
the bottom left quadrant in Fig. 3a. It is significantly lighter than the other
quadrants. This reflects the fact that in our data, the symbols s0 to s7 are
unlikely to be decoded as s8 to s15. The converse is not true. Consequently,
symbols s0 to s7 are less commonly corrupted than symbols s8 to s15.

The pattern shown in Fig. 3a represents mutation frequencies aggregated over
all links over the whole time span of the deployment. We confirmed that the pat-
tern also holds for individual links, and at various time scales. An independent
research group has recently observed a similar pattern in an outdoor environ-
ment [3], which suggests the observations to be general.

To the best of our knowledge, no explanation has been offered so far as to why
the pattern emerges. As Schmidt et al. point out [3], the pattern is surprising
because it shows a negative correlation to the pairwise hamming distances of
the code words defined in the 802.15.4 standard (see Fig. 4a). For example, the
hamming distance between the code words for s0 and s8 is low, yet this mutation
is among the least common in our deployment.
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We attribute the first two observations to an implementation aspect of low-
cost 802.15.4 transceivers. Rather than implementing an O-QPSK demodulator,
as suggested in the 802.15.4 standard, many low-cost transceivers use an MSK
demodulator instead [14]. While an MSK demodulator can correctly receive a
chip sequence sent by an O-QPSK modulator, the received chip sequence will
be transformed. Therefore, MSK-based 802.15.4 transceivers use a transformed
set of code words to ensure compatibility with other 802.15.4 transceivers. The
hamming distances between the transformed code words are shown in Fig. 4b.

Observation 1 can be explained by considering that each code word varies in
its hamming distances to other code words. Therefore, the symbol that a corrupt
chip sequence is decoded as depends on which symbol was sent.

Next, observation 2 follows directly from the observation that the MSK-
transformed code word for symbol si has the highest hamming distance to the
MSK-transformed code word for the symbol which differs from si only in the
most significant bit. This is visualized by the light sub- and superdiagonals in
Fig. 4b. Therefore, the most significant bit is more stable on average.

It remains to explain observation 3, which states that symbols s0 to s7 are
more stable than the other symbols. This observation does not follow from the
use of transformed code words, because code word distances are of course sym-
metric. We can explain the observation by considering how ties are resolved. A
tie occurs if a received chip sequence matches two or more code words equally
well. In this case, the transceiver must resolve the tie by choosing one of the
matching code words. In a simple simulation, we found that if ties are resolved
in a specific order1, a pattern very similar to the empirically observed muta-
tion matrix emerges (Fig. 3b). With the found order, a tie between two code
words s0≤i≤7 and s8≤j≤15 will always be resolved in favor of the first symbol.
Consequently, symbols s0 to s7 are more stable, as stated by observation 3.

Our simulation assumed one sender and one receiver, a fixed signal-to-noise
ratio (SNR) at the receiver, and a channel model in which chip errors are inde-
pendent, as would be expected in an additive white Gaussian noise channel, for
example. Fixing the SNR implies a fixed chip error probability at the receiver.

We draw another useful conclusion from the similarity of the empirical and
the simulated mutation matrix. The similarity suggests that the radio channel
in the deployment can be modeled by a channel in which errors are independent,
as assumed in our simulation. Note that differences in absolute values in Fig. 3a
and Fig. 3b can be explained by considering that the simulated mutation matrix
is based on a fixed SNR, whereas the empirical mutation matrix is based on
packets received at various SNR levels. Nonetheless, the similarity holds.

In summary, we conclude that corruption follows a distinct pattern, which
we attribute to MSK-transformed code words, the tie resolution strategy and a
radio channel with independent chip errors.

1 The order is s7, s6, . . . , s0, s15, s14, ..., s8.
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Fig. 5. Symbol error frequency over positions of the payload. Error frequencies are
roughly uniform. Variations can be attributed to payload structure and content.

4.2 Errors in Packets

In the previous section, we considered the effect of corruption on individual
symbols. We now shift our focus one layer up in the network stack to the link layer
and consider how corruption affects whole packets, i.e., sequences of symbols.

Distribution of Errors. How are symbol errors distributed within a packet?
Figure 5 shows this distribution where for each position of the payload, the plot
shows the frequency with which a symbol at this position was corrupt. The x-
axis is annotated with the content of the payload. For example, the first four
positions contain the packet header.

The error frequency is similar across all positions, ranging from 4.5% to 6%.
Although the distribution is roughly uniform, there are notable deviations. First,
the symbol at position 0 is most often corrupt. Second, there is a periodicity: the
error frequencies for positions 4 to 19 are similar to the frequencies for positions
20 to 35, and so on. These deviations can be explained by the content of sent
packets. For all packets sent in our deployment, position 0 always contains sym-
bol s8, which we know to be least stable. Furthermore, the payload of the probing
packets sent in our deployment repeats itself after position 20, giving rise to the
observed periodicity. Finally, because the sent packets contain structured rather
than random content, some positions have slightly higher corruption frequencies
than others. The observed deviations from uniformity are within range of the
deviations we would expect due to the effects described in Sec. 4.1.

Correlation of Errors. Are errors correlated? I.e., does an error at position x
tell us something about whether an error occurred at position y? We computed
pairwise correlations between all positions over all corrupt packets. The maxi-
mum absolute correlation between any two symbol positions is less than 0.09.
Considering that a value of 0 indicates no correlation at all, we conclude that
there are no notable correlations between errors at different positions. This ob-
servation agrees with our assumption that the deployment’s radio channel is well
described by assuming independent chip errors, and thus independent symbol
errors.
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Fig. 6. Number of corrupt symbols per packet. Most suffer only little corruption.

Amount of Corruption in a Packet. Finally, we quantify how many symbols
in a corrupt packet are incorrect. Figure 6 shows a normalized histogram of the
number of symbol errors per corrupt packet. The figure shows that most packets
have very few errors, and that the frequency of occurrence decreases with an
increase in the amount of corruption.

5 Recovering Data from Corrupt Packets

We now describe how we use the observations from the previous section in an
approach which for a given corrupt packet defines a probability distribution over
the possible sent packets.

Computing a Probability Distribution over Possible Sent Packets. We
consider how to infer the likely sent data from a received corrupt packet. Our goal
is to assign probabilities to the possible sent data, given the data in a corrupt
packet. Recall from Sec. 3 that corruption occurs if sufficiently many chips in an
incoming chip sequences are decoded incorrectly and hence the chip sequence is
matched to the wrong code word. For the remainder of this analysis, we denote
the probability of an individual chip in a received chip sequence being flipped
as pchip. For now, assume that we know pchip for each received packet. We will
revisit this assumption in the next section.

For a given value of pchip, we can compute through simulation a corresponding
mutation matrix Mpchip . For example, the mutation matrix shown in Fig. 3b
describes the mutation probabilities for pchip = 0.3. Most importantly to our
approach, the matrix rows describe the mutation probabilities for a received
symbol. Note that the matrix main diagonal describes the probabilities of a
symbol being received correctly.

For a given received packet, we now want to infer the first symbol of the sent
packet. Let the first symbol of the received packet be sj , and consider the case in
which we know the packet to be corrupt because the CRC failed. By considering
row j of Mpchip , we can assign a probability to each possible sent symbol that
could have led to the receiver decoding sj . More specifically, the probability that
the sent symbol si is decoded as the received symbol sj is given by the entry
M

pchip

j,i of the mutation matrix. We write p(si|sj) = M
pchip

j,i . For example, the
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probability p(s5|s13) that symbol s5 was sent when s13 was received is given by
M

pchip

13,5 . This reasoning holds for all position of the packet.
Because symbol errors are independent, we can readily assign probabilities

to sequences of sent symbols. Assume, for example, that a receiver decoded the
sequence of symbols r = (s13, s3, s0, s11). What is the probability that the actual
sent symbols were t = (s5, s3, s1, s11)? Due to independence, this probability is
given by the product of the individual mutation probabilities:

p(t|r) = p(s5, s3, s1, s11|s13, s3, s0, s11)
= p(s5|s13) · p(s3|s3) · p(s1|s0) · p(s11|s11)
= M

pchip

13,5 · M
pchip

3,3 · M
pchip

0,1 · M
pchip

11,11

In the manner we just outlined, a probability can be assigned to every possible
sent symbol sequence for a given received symbol sequence and a given value of
pchip. This conceptually simple idea comprises our recovery approach. For each
received, corrupt packet, we can compute a probability distribution over the
possible sent packets. To compute the distribution, all we need to know is the
chip error probability pchip during packet reception.

To summarize, our approach determines a probability distribution over the
possible sent data for given received data in a corrupt packet and a given pchip.
This concludes our description of recovery. We deliberately do not specify how
the probability distribution is to be used by an application, because we believe
that application knowledge should drive this process.

Estimating pchip. To assign probabilities to possible sent data, we need an es-
timate of the chip error probability pchip for each corrupt packet. Unfortunately,
low-cost transceivers do not provide such an estimate directly. Although there
is a well-defined relationship between SNR and the chip error probability [15],
we found the resolution of SNR reported by low-cost transceivers too low for a
meaningful pchip estimate.

To overcome this obstacle, we estimate pchip for each packet by considering
the LQI value associated with the packet. In the case of CC2420 transceivers,
LQI is reflective of the correlation of an incoming chip sequence to the matched
code word over the first eight symbols of a packet [9]. Therefore, we expect it
to reflect the chip error rate. We construct a mapping from LQI values to chip
error estimates as follows: for each LQI value l, we determine the empirically
observed symbol error probability for symbol s0. We then calculate the chip
error probability plchip that yields the same symbol error probability for s0. We
then construct a mapping from LQI to chip error probability by interpolating a
3rd degree spline through the resulting (l, plchip) tuples. Our mapping is defined
on LQI values in the range from 32 to 90, which covers 98.5% of all corrupt
packets in our data set. We constrain the mapping to this range because we
observe only very few corrupt packets with LQI less than 32 or higher than 90,
and we therefore have little support to construct a mapping for these values.
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While we do not expect our LQI to pchip mapping to be perfect, we note that
given the information that low-cost transceiver usually provide about the chan-
nel, it is difficult construct with a more well-defined estimate. We are confident
that if transceivers were to provide high-resolution SNR measurements, a more
exact estimator of chip error probabilities can be designed.

6 Evaluation

Our proposed approach defines a probability distribution over the possible sent
data for given received data in a corrupt packet. We now address two questions
pertaining to the resulting distributions. First, to what extent does the approach
reduce uncertainty about the original content of a corrupt packet? Second, is the
resulting distribution for a given corrupt packet meaningful? I.e., does it assign
probabilities in a way such that the actual sent data has a high probability?

6.1 Reduction in Uncertainty

Let us address the first question of how much our approach reduces the uncer-
tainty associated with a received, corrupt packet.

We consider the case in which a node sends a packet containing a 16-bit
word t that we are interested in. This word could, for example, encode a sensor
measurement, but for the sake of this analysis, we assume that we do not have
any application-specific knowledge about the likely content t. We assume that a
corrupt packet is received that contains the 16-bit word r. Due to the corruption,
we do not know whether r = t or not.

As a base case, assume that the corrupt packet is simply discarded. In this
case, we know nothing about t. It could have taken any of the 216 = 65,536
possible values with equal probability. We measure the uncertainty associated
with the discarded, corrupt packet by considering the entropy of the probability
distribution over all possible words t′ that could have been transmitted. There
are 16 bits of entropy:

Hdiscard = −
65535∑
t′=0

p(t′) log p(t′)

= −
∑
t′

2−16 log 2−16 = 16.

Next, we consider the case in which we do not discard the corrupt packet.
The corrupt packet contains a word r, but we do not know if r = t. Using the
approach described in Sec. 5, we can compute the probability p(t′|r) for every
possible 16-bit word t′. As in the case of the discarded packet, we can compute
the entropy, which depends on the estimate of pchip and on the received word r:

Hr = −
65535∑
t′=0

p(t′|r) log p(t′|r).
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Fig. 7. Uncertainty
associated with a
corrupt packet in the
case the packet is
discarded, and when
our proposed approach
is used. Our approach
significantly reduces
the uncertainty, as
measured by entropy.

Figure 7 depicts the entropy for both the base line case and our approach for
different values of pchip. The y-axis denotes the entropy. The x-axis relates to
the received word r as described below.

In the base case, in which the corrupt packet is discarded, the entropy is
16 regardless of which word was received in the corrupt packet, and regardless
of the chip error probability. With our approach, which assigns probabilities
the possible sent words by considering which word r was received in the corrupt
packet, the entropy depends on r. This is an effect of our observation that symbol
mutations are not uniform. For a given chip error probability pchip, the entropies
Hr are plotted in increasing order along the x-axis.

The figure makes it clear that our approach significantly reduces the entropy
associated with a corrupt 16-bit word. In the case of a chip error probability of
0.2, the entropy is reduced to less than 2 bits—an eight-fold reduction of the
entropy of the base case. For a higher chip error probability of 0.3, the entropy is
still halved in comparison to the base case. In the case of an extreme chip error
probability of 0.4, the entropy is reduced by two bits. However, for such a high
chip error probability, most packets will be lost rather than corrupt because the
preamble is likely to be corrupt as well. We therefore conclude that for realistic
chip error probabilities of 0.2 to 0.3, our approach vastly reduces the uncertainty
associated with a corrupt packet.

6.2 Evaluation of Probability Assignment

We have shown how our probability assignment reduces the uncertainty associ-
ated with a corrupt packet. It remains to show that the probability assignment
is sensible, i.e., that there is a meaningful relationship between the probability
assigned to possible sent words t′ and the word t that was actually sent.

To address this question, we consider corrupt packets from a deployment
different from the one that provided the data for the analysis in Sec. 4. Evaluating
our approach on data from a different deployment increases our confidence in the
generality of our findings, and helps understand whether our approach is strongly
tied to the observations from our deployment in Uppsala. The other deployment
is located in the Abisko national park in northern Sweden, which lies above the
polar circle (latitude of 66◦ 33′ 44′′ N) in a climate that differs significantly from
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Fig. 8. Our approach correctly assigns a high probability to the actual sent word, both
in absolute (left) and relative (right) terms

the climate in Uppsala. The Abisko deployment consists of 12 TelosB sensor
nodes, and has a spatial layout similar to the Uppsala deployment. We consider
corrupt packets from Abisko that were received during the first week of April
2013.We focus on this week because the deployment did not have any operational
problems, such as failing nodes.

The data set of the Abisko deployment contains ca. 440,000 corrupt packets.
We know the correct payload for each packet from our log data. We consider a
16-bit word t in these packets that describes the source address of the sender.
We do not use any knowledge about the possible content of this word. For each
corrupt packet, we estimate the chip error probability pchip based on the packet’s
LQI measurement, as described earlier. We use the estimate to compute p(t|r),
which is the probability that is assigned to the sent word t when r was received.
Clearly, it is desirable that a high probability be assigned to the sent word.

Figure 8a shows the empirical cumulative distribution function of the proba-
bility assigned to the sent word t for each corrupt packet. The x-axis shows the
probability assigned to the sent word. The y-axis shows for how many of the
packets this probability was below the corresponding x value. Note that for only
30 % of the corrupt packets, a probability of less than 0.7 is assigned to the sent
word. For only 28 % of the corrupt packets, the probability assigned to the sent
word is less than 0.5. It follows that for most corrupt packets, a high probability
is assigned to the word that was actually sent. For these packets the probability
assignment is sensible. However, a very low probability is assigned to the correct
word for about 25% of the corrupt packets. Note that this does not imply that
the assignment is wrong—in cases of a high chip error probability, there will be
high uncertainty. High uncertainty means that the probability distribution will
be more uniform across all possible sent words. The question thus is whether
these low-probability assignments come from corrupt packets with high chip er-
ror probabilities. Before turning to this question, we conclude from Fig. 8a that
for more than 70% of the corrupt packets, the probability assignment is sensible,
because it assigns a high probability to the sent word.

We now order all possible sent words by decreasing order of assigned probabil-
ity and determine the rank. E.g., the word t′ that has been assigned the highest
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probability has rank one, the word with the second highest probability has rank
two, etc. If two or more words have the same probability, they have the same
rank. We are interested in the rank assigned to the sent word t.

The distribution of rank of the sent word is shown in Fig. 8b by an empirical
cumulative distribution function. The figure shows that in 95% of the cases, the
sent word is assigned a very high rank. I.e., the sent word is assigned a higher
probability than most other possible candidates. We take this as an indication
that even in cases where the highest probability is not assigned to the sent word,
the sent word still takes a very high probability in comparison to other pos-
sible candidates. For the remaining 5% of corrupt packets, the rank is almost
uniformly distributed up to the maximal rank of 65,536. We attribute this ob-
servation to misestimations of the chip error probability pchip. Since we estimate
pchip from LQI, and LQI is only measured over the first eight symbols of a packet,
it may by pure chance sometime misrepresent the chip error probability.

To summarize, we have shown in this section that for most corrupt packets,
the sent word is assigned a high probability in comparison to other candidates.
We conclude that the probability assignment we described in Sec. 5 indeed as-
signs probabilities in a meaningful manner. This observation suggests that our
estimator of pchip based on LQI is sufficiently accurate to enable recovery. Our
approach thus enables sensor networks to infer the possible sent word corre-
sponding to a corrupt packet.

7 Practical Considerations

We briefly discuss three aspects of practicality.
First, our approach determines a probability distribution over possible sent

data. It does, by design, not produce a single value. When application knowledge
about the likely content of a packet is available, this knowledge can be combined
with our probability distribution to constrain the likely sent data even further.
Application knowledge could be, for example, knowing the domain of a mea-
sured value from previous measurements. Such knowledge is often used to detect
outliers, assess data quality, or handle missing data (e.g., see [11,16,17]). Such
approaches are largely orthogonal to our proposal. Because the distributions
computed by our approach are not centered around a single value, we believe
that in combination with application knowledge, an even more exact inference
of the content of corrupt packets is possible.

Second, a related question pertains to the complexity of our proposal. Note
that the maths involved in determining the probability distribution is compu-
tationally very simple. Yet, for a received n symbol sequence, there are 16n

different possible sent values in the case of corruption. Enumerating all of them
is infeasible for larger values of n. However, even for situations with moderately
high chip error probabilities, many probabilities will be very close to zero. We
envision that an application performing recovery will be interested in the top
k 
 16n possible sent sequences with the highest probabilities. These can be
determined efficiently without enumerating all possible values. Therefore, we
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believe that recovery can be performed in-network by nodes that are slightly
more powerful than the TelosB-type nodes.

Third, the packets we analyzed in this paper were all sent and received by
Texas Instruments CC2420 transceivers. Although this particular chip has a
very high prevalence in academic research, the question arises of how well our
findings translate to other 802.15.4 radio chipsets. In part, the observed pattern
is an effect of the use of MSK demodulators, which are cheap to implement [18].
Therefore, they are common in low-cost transceivers. Consequently, we expect
the pattern to hold for other transceiver, too. Note that because the pattern
emerges even on short time scales, its presence in a particular radio chipset can
be readily verified in an anechoic chamber.

8 Related Work

Wireless channels are inherently unstable [19,12], causing errors in transmissions,
and making mitigation strategies for these errors a wide field of research.

Schmidt et al. study corruption in an 802.15.4-based outdoor network and
make observations similar to ours [3]. They point out that bit errors are not
equally probable over all positions in the payload in 802.15.4 packets. They
compare their empirical results to the expected values using code words as used
with O-QPSK modulation. Han et al. identify patterns in the bit error probabil-
ities of the payload in 802.11, which are not due to the channel conditions nor
hardware-specific [20].

By using a software-defined radio, Wu et al. characterize the error patterns
of individual 802.15.4 chip sequences in order to determine the channel condi-
tions [21]. Similarly, Jamieson et al. implement a scheme in which they count
the differences between the received and the known chip sequences to estimate
the likelihood of a symbol being corrupt [6]. They then use this information, as
part of a MAC protocol, to only re-transmit symbols that were likely corrupted.
Dubois-Ferrière et al. combine successive alternating packets in order to infer
the correct payload [8]. They show that this is feasible even when consecutive
packets are broken, making the approach more robust than regular forward error
correction. Hauer et al. propose to selectively retransmit parts of a packet during
which there was a strong variation in received signal strength [7].

9 Conclusion

In this paper, we have described how corruption systematically affects symbols
and packets in an outdoor 802.15.4 sensor network. We described a pattern
in corruption that we attributed to the use of MSK demodulators, a specific
tie resolution strategy when decoding, and a channel model with independent
errors. These insights allowed us to formulate a novel probabilistic approach to
recover information from corrupt packets. We showed that the approach reduces
the uncertainty associated with a corrupt packet, and that it correctly assigns
a high probability to the data that was actually sent. We will address systems
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aspects of our approach in future work and develop a concrete implementation
of the proposed ideas. We specifically plan to investigate the trade-off between
data quality and energy consumption, as well as the relationship of our proposed
recovery mechanism to other approaches such as forward error correction.

We conclude that patterns in packet corruption in outdoor sensor networks
can be understood, and that information may be recovered from some corrupt
packets. All is not lost when it comes to corrupt packets, and therefore discarding
all of them is unnecessarily wasteful.
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Abstract. Wireless sensor networks (WSN) offer a promising engineer-
ing solution which brings deployment flexibility and saves wiring costs in
industrial automation and control applications. However, utilizing this
technology is still challenging due to the current low reliability of the
standard WSN communication, e.g., large percentage of unreliable links,
and the possibility of battery depletion and node failure. To overcome
these difficulties we propose Sparkle, a WSN control network design based
on concurrent transmission particularly oriented to periodic multi-loop
control systems. It primarily draws on the Glossy protocol and inherits
its advantages in high packet reliability, low latency and accurate time
synchronization. The novelty of Sparkle is that it optimizes each end-
to-end communication flow independently by performing “control” on
the flow. Specifically, we show how to perform transmission power and
topology controls. We introduce WSNShape, a unique topology control
technique based on the capture effect, which drastically reduces energy
while simultaneously improves packet reliability and latency, compared
to Glossy. Finally, we design and implement PRRTrack, a component
of Sparkle that can adaptively switch among various operation modes
of different control strategies, thus trading-off reliability vs. energy con-
sumption. Through evaluation on real-world testbeds, we demonstrate
that Sparkle enables flows to satisfy the reliability requirement while re-
ducing the energy consumption by in average 80% and the latency by a
further 5% over the almost optimal latency of Glossy.

1 Introduction

Wireless sensor networks (WSN) with their very low power radio technology
offer great potential in industrial automation and control applications by 1)
cutting off huge cost of wiring, 2) offering high flexibility in deployment and
3) saving energy in communication and computation. However, the generally
strict requirements on packet reliability and communication latency of these
applications are especially challenging for the unreliable communication of WSN.
Despite the fact that some pioneering works in academia and a few industrial
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standards have appeared, to the best of our knowledge, no large scale application
of WSN has yet taken place.

Recently, the Glossy protocol [1] showed the possibility of obtaining determin-
istic low latency, high reliability and high synchronization precision simultane-
ously by applying the technology of constructive interference (CI), i.e. a number
of nodes transmit the same packet at roughly the same time so that the signals
add up constructively at the receiver. These features match the requirements of
control networks so good that Glossy can offer a sound basis for it. Based on
Glossy, we design and implement Sparkle, a periodic multi-loop control network
where each control loop is mapped into one or more communication flows. The
novelty of Sparkle is that we perform “control” on each flow (say flow a → b,
a and b being two end nodes), with the goal that the QoS (quality of service)
metrics of the flow satisfy given requirements or are optimized. For that purpose,
we need the cooperation of the opposite flow (flow b → a).

Specifically, we show that by effectively controlling the network topology and
transmission power (tx power) of a flow, the QoS metrics of reliability, energy
consumption and latency can be further improved simultaneously, compared to
Glossy. We propose a novel technique for topology control, WSNShape, which
uses the capture effect [2] to find a number of reliable paths between the source
and the destination of a flow and then activate nodes on one or more of these
paths. As shown by evaluation, it greatly reduces energy consumption and very
probably also improves end-to-end reliability and latency. Additionally, we ex-
perimentally show that the tx power also affects the QoS metrics significantly
and the Glossy protocol without WSNShape may not be reliable enough for
control networks.

Based on these findings, we design and implement the “controller” of Sparkle,
PRRTrack, which adaptively switches between operation modes of different tx
powers and WSNShape levels. Experiments on two real-world testbeds show that
the requirement on reliability is satisfied, the latency is reduced, and the energy
consumption is greatly improved over today’s state-of-the-art techniques.

2 Related Work

WSN-based networks for automation and control is a field under active research.
Some industrial standards such as WirelessHART1 and ISA1002 have appeared.
A few academic projects have also been reported, e.g. the GINSENG project for
monitoring and control in oil refineries [3], and the TRITon project for lighting
control in road tunnels [4]. All of them use static or semi-static routing for
communication, which is inherently not robust to node or link failure.

Glossy [1] is a one-to-all flooding protocol based on the so-called construc-
tive interference, i.e. the concurrent transmission of the same packets by mul-
tiple transmitters. It achieves almost optimal latency, high reliability and time
synchronization of μs accuracy. Since these features match the requirements

1 http://www.hartcomm2.org
2 http://www.isa.org

http://www.hartcomm2.org
http://www.isa.org
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of automation and control systems perfectly, we choose Glossy as the starting
point to design our system Sparkle. When concurrent transmissions of different
packets take place, one packet may overpower the others and be successfully
received. This is called capture effect. The capture effect in WSN was first dis-
cussed by [2]. A recent work [5] shows the universality of the capture effect in
WSN and employs it to implement an efficient all-to-all aggregative communi-
cation. WSNShape, the topology control technique of Sparkle, also makes use of
the capture effect, and is therefore instantly reactive to node or link failure. A
unified reception model for concurrent transmission in WSN is proposed in [6].

To optimize the energy efficiency of the end-to-end communication primitive
implemented with the Glossy flooding technique, [7] uses the hop count from the
source node as a metric for forwarder selection (topology control). It is shown to
reduce the energy consumption by 30%. In contrast, we use the capture effect for
forwarder selection, which leads to energy savings of about 80% to 90% together
with better reliability and lower latency in networks of similar size. In addition,
we assume nothing about the symmetry of the network (e.g. the hop count from
node a to b is the same as from b to a), and the two directional flows between a
pair of nodes are independently controlled.

In all, as far as we are aware of, Sparkle is the first wireless control network
based on the technology of concurrent transmission [1][6], resulting in a system
that has excellent performance in communication reliability, latency and energy
consumption, as well as unprecedented robustness to node or link failure.

3 The Architecture of Sparkle

Sparkle employs a protocol similar to TDMA, which is normally used by wireless
control networks, as it allows for deterministic scheduling and relatively deter-
ministic QoS performance. The architecture makes independent QoS control for
each end-to-end flow possible.

3.1 Mapping the Communication of Control Systems to Flows

Sparkle supports arbitrary communication requirements of periodic multi-loop
control systems. For the simplest case of SISO (single input single output) con-
trol loop, it requires that a packet with sensor data is transmitted from the
sensor to the controller, and a packet with actuation data is transmitted from
the controller to the actuator periodically. If we implement the controller on any
of the two end nodes, then we only need to maintain one QoS conformable flow
from the sensor to the actuator node. On the other hand, if we implement the
controller on a separate node, then two flows need to be maintained. For the
more complex case of MIMO (multiple input multiple output) control loop, we
need to maintain multiple flows from every sensor to the controller and from the
controller to every actuator. Besides, Sparkle also supports the communication
of data collection and dissemination commonly required by monitoring applica-
tions. As mentioned before, to control a flow, we need the cooperation of the
opposite flow for delivering control commands.
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3.2 Frame Structure

A Sparkle frame is composed of a sync slot, a number of data slots and zero or
one test slot (Fig. 1). In each slot, a flooding is performed with different source
node, different tx power and different set of participating nodes.

sync slot data slot #1 data slot #2 ... test slot / idle

Fig. 1. A Sparkle frame

The purpose of the sync slot is to obtain network-wide time synchronization, in
which an authority node (normally located in the network center) floods a short
sync packet over the network with the Glossy protocol. Since the sync packet is
very short (10 bytes in our implementation), it has a very high chance of being
received correctly by each node, if we use a proper transmission power. The
network-wide time synchronization is a prerequisite for the data communication
in Sparkle. The next data slots are used for the communication of arbitrary flows.
Different flows may have different period length, dependent on the requirement
of the control systems. The test slot is used for the QoS control of the flows.
Whether a set of flows (with arbitrary period length) is schedulable in Sparkle
is determined by whether the total utilization of all slots is no more than 1.

3.3 Controlling the QoS Metrics of a Flow

Sparkle is capable of performing different QoS control for different flows. Gener-
ally speaking, the QoS controller of a flow is located at the destination node. It
keeps track of the QoS metrics of the flow and sends out control commands to
the source node or the whole network in the test slots of the opposite flow when
necessary (e.g. setting tx power or activating/deactivating nodes for a flow).
This design decision has the advantage of easy implementation and independent
performance control for different flows, even for a pair of opposite flows. The
detailed control scheme of Sparkle will be expounded later.

4 How Network Parameters Affect Performance

In this part, we investigate experimentally in real-world testbeds how the tx
power and network topology affect the QoS metrics of reliability, latency and
energy consumption. The so-called WSNShape technique is a novel topology
control method which uses the capture effect to find the reliable paths from the
source to the destination of a flow. It is very effective in finding reliable paths,
compatible with the Glossy protocol as it requires no unicast transmission, and is
much more lightweight and faster than ordinary routing protocols. Furthermore,
it is resilient to node failure, which is not provided by the routing of existing
control networks.
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(d) Latency of Arena

Fig. 2. The PRR and end-to-end latency at different tx powers. A point in the scatter
plot is the metrics at 0dB and −15dB, for a given source and destination pair.

4.1 Different Transmission Powers

The evaluation results in the Glossy paper [1] show that a higher tx power
gives lower latency and higher reliability. However, our evaluation on the two
TUDμNet testbeds [8] shows that a higher tx power may lead to lower reliability
when the network connectivity is very high.

TUDμNet includes two testbeds called Piloty and Arena respectively. The
former has 63 telosB nodes [9] (n1 to n63, 55 are active), located in various
offices on two floors of the CS building at TU Darmstadt, spanning a volume of
30 × 20 × 8m3. The latter has 60 telosB nodes (n1001 to n1060, 42 are active),
forming a 5×12 grid, located in a large room with line-of-sight between any two
nodes, spanning a volume of 31 × 7 × 3m3. To compare different powers fairly,
we let a source node perform Glossy flooding to all other nodes in the network,
by setting the tx power of all nodes to 0dB and −15dB alternately per second.
In this way, we exclude the effect of the relatively slow channel variation of static
WSN. Each active node acts once as the source.

Our results in Fig. 2 show that in the Piloty testbed, in almost all cases,
the packet reception rate (PRR) is better when the higher tx power is cho-
sen. However, in the Arena testbed, quite often the higher tx power gives lower
reliability. The conclusion of the Glossy paper that the latency is lower under
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a higher tx power is generally supported by our experiments [1]. Intuitively, it
is due to the smaller hop count.

We argue that the reason that very often a lower tx power improves PRR
in the Arena testbed is a higher network connectivity than that in the Piloty
testbed. For instance, in one experiment run in the Arena testbed, we found
that at 0dB, in average 33.04 nodes are one hop away from the source, while
at −15dB, only 19.25 nodes are one hop away. Furthermore, one node has a
PRR of 79% and 99% at 0dB and −15dB, respectively. At 0dB, the node is
for most of the time (62%) two hops away, hence it suffers from the low signal
to noise ratio (SNR) caused by the large number of concurrently transmitting
nodes at hop one. In contrast, that 0dB has generally better PRR than −15dB
in the Piloty testbed is due to a lower connectivity when compared to that of the
Arena testbed. The node density of the former per m3 is only one ninth of the
latter, and the separation of walls and floors reduces the connectivity further.
This brings to light that anticipating a proper tx power with respect to packet
reliability is very hard. To do so, predicting the channel condition and taking the
reception model of concurrent transmissions into account [6] would be required.
One practical way of overcoming this problem is to empirically determine the tx
power. Finally, the phenomenon that a high tx power causes low reliability also
evidences that topology control is necessary.

4.2 Network Shaping with WSNShape

Control networks normally feature one-to-one communication, which is a special
case of the one-to-all communication intrinsically supported by Glossy. If we
could find a stripe of nodes between the source and destination for a flow, and
only perform Glossy flooding among these nodes, energy consumption would
be significantly reduced since lots of nodes are deactivated, and hopefully there
would be still enough nodes in the stripe to take the advantage of the high
reliability of constructive interference. However, we face two obstacles in network
shaping, i.e. how to find the stripe: 1) Glossy is a routing free protocol and derives
its advantages in reliability and latency from this feature. Therefore, network
shaping with traditional routing protocols is not compatible with Glossy. 2) Since
the channel condition is time-variant, we should continuously perform network
shaping, which requires the process to be very lightweight and fast. Our novel
WSNShape technique overcomes the two obstacles by effectively utilizing the
capture effect.

Path Identification. The most important step of WSNShape is path identi-
fication, i.e. to find the reliable paths between the source and destination of a
flow. We use the test slots of the flow for this purpose (Fig. 1). The process is
as follows:
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1. Activate all nodes in the network.
2. The source sets the bit corresponding to itself in the path-ident packet and

broadcasts it. The path-ident packet contains basically a bit set of N bits
where N is the number of nodes in the network3.

3. Any node relays the packet exactly once in the way as Glossy. One difference
is that instead of rebroadcasting the packet unmodified, the node sets the
bit corresponding to itself in the path-ident packet before rebroadcasting.

4. If a packet is correctly received at destination, the packet can be used to
reconstruct a path from the source to the destination.

Path Identification is Effective and Lightweight

Fig. 3. An example of path identification. a → b → e → f is an identified path.

The capture effect implies that if a number of nodes transmit different packets
concurrently and a packet is correctly decoded by the receiver, the packet should
come from the node whose signal is the strongest at the receiver. Given that all
nodes transmit with the same power, theoretically, we can infer that if a path
is identified with the above process, then every link of the path, say x → y, has
the smallest signal loss among all links going into the node y, and the path has
the shortest number of hops from the source to the destination.

Conceptually we build a network ofK layers, where layer 0 only has the source
node, and layer i contains all nodes that receive the packet after i relays. Each
node in layer i − 1 has a directional link to each node in layer i. Fig. 3 shows
a path identified from source a to destination f in an example network. Then,
the signal loss of b → e is smaller than c → e, because node b and c are both
one hop away from a and transmit simultaneously. Similarly, the signal loss of
e → f is smaller than d → f . The shortest number of hops can be obtained
taking into account the network is layered and directional. Although we cannot
say that the identified path has the globally smallest cumulative path loss, as
each link is locally optimal, practically, the path should be reliable and short.

To evaluate the quality of path identification, we test it on a number of flows
with source and destination far apart on two floors in the Piloty testbed. A test
slot is applied for each flow every 6s. The results for flows n33 ↔ n60 are shown
in Fig. 4, which are similar to that of the other flows. The path identification
is very effective, both flows have a path identification rate P (the percentage
of times that a path is successfully identified) of over 99%. This confirms that

3 A control network normally has less than 100 nodes which takes only a dozen of
bytes. If the network size is much bigger than the path length, we should enumerate
the node ID of each hop rather than using a bit set.
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Fig. 4. The CDF and number of nodes in the identified paths, P is the path identifi-
cation rate. Tx power = 0dB.

the capture effect is universal in WSN [5]. This has the advantage that the path
identification is inherently resilient to node failure, which is not available in
the routing of existing control networks. Since the capture effect is universal,
as long as the network is connected, the sudden failure of a few nodes will not
cause failure in path identification. The path identification is also lightweight and
fast. For both testbeds, the size of the path-ident packet is rather small, of 16
bytes, which has both advantages of short radio-on time and high reception rate.
However, the results also show the discrepancy between the experimentation and
theory. In the testbed evaluation, we find that the distribution of the identified
paths is concentrated on a few short paths (the most common 3 paths together
have probability > 90%), but has a long tail (29 and 12 paths are identified for
both flows respectively). We argue that the reason that many paths of different
length are identified is mainly due to the time variation of the channel. Yet
it is favorable as it provides us with the chance to attain high reliability by
combining multiple paths. Furthermore, despite the increase of path length, the
path identification remains effective when we use a smaller tx power.

WSNShape Protocol. After we have identified the reliable paths, we are ready
to utilize them to improve the QoS. The WSNShape protocol takes a parameter
of path count C, which is the number of different paths we combine to form the
stripe. C can be ∞, meaning that all paths should be combined. The WSNShape
protocol performs the following steps for a flow continuously:

1. Path Identification. As described above, paths are identified in the test slots.
2. Path Combination. At the destination node we use a sliding window of size

M , holding the most recent M paths identified (M = 100, keeping a history
of 10 to 20min). After a new path is put into the sliding window, we perform
a sort on the paths in the decreasing order of path frequency. Then we
combine the C most common paths to form a stripe4.

4 In our implementation, the statistics starts when 10 paths are identified.
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3. Stripe Activation. If the nodes in the stripe have been changed, the destina-
tion node floods it in the form of bit map in the next test slot of the opposite
flow. To guarantee a high probability of reception, the packet is flooded three
times. When a node receives the stripe, it checks whether it is in the stripe
or not. Based on that, it activates or deactivates itself (sleep) in the future
data slots for the flow.

Since the WSN nodes are generally resource constrained devices with limited
RAM and computational capability, we need to optimize the data structure of
the sliding window. Although a relatively large number of path samples (up
to 100) are preserved, normally the number of different paths is an order of
magnitude less. Therefore, we use a linked list to keep these samples. A node
in the linked list consists of a path and the number of occurrence of it. The
data structure is efficient in terms of both storage and computation. In the next
section, we will evaluate how the WSNShape performs compared to the baseline
Glossy.

5 Performance Comparison of Different Sparkle
Operation Modes

A Sparkle operation mode is a given combination of a tx power and a topology
control. As shown by extensive evaluation in this section, different operation
modes have different performance trade-offs in reliability, latency and energy
consumption. Eight operation modes are investigated: 1) bl-hi, all nodes are
active and have tx power of 0dB. 2) bl-lo, all nodes are active and have tx
power of −15dB. 3) ns-1, WSNShape with path count C = 1, which is basically
single-path routing. 4) ns-2, WSNShape with C = 2.5 5) ns-3, 6) ns-4, 7) ns-5,
and 8) ns-all, WSNShape with C = ∞. The evaluation gives insight into the
performance of different operation modes, providing fundamentals for the design
of an adaptive scheme.

5.1 Evaluation Setup

In the evaluation, the Sparkle frame has a period of 1s. In each one-hour run,
we evaluate 6 flows simultaneously. The 6 flows are 3 pairs of opposite flows (e.g.
a ↔ b is a pair). Each flow needs to transmit a packet per second (corresponding
to a control system with period of 1s). Thus, the frame is composed of 8 slots –
one sync slot, 6 data slots, and one test slot which is circularly used by each flow
to identify path and to broadcast the stripe of WSNShape for its opposite flow.
To save energy, all packets except the stripe broadcast are transmitted only once.
The stripe broadcast is transmitted 3 times. The stripe for a given path count
is broadcast whenever it is updated. The data packet has a length of 126 bytes.
Furthermore, in each slot, a node turns off the radio when it has transmitted for
the given number of times (once or thrice) or it has been on for 40ms. The same

5 If there is in total one path, then this mode is same as ns-1.
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Table 1. The statistical results of Sparkle modes. The column “adaptive” refers to the
combination of bl-hi, bl-lo, ns-2 and ns-all. Good PRR means PRR ≥ 95%.

bl-hi bl-lo ns-1 ns-2 ns-3 ns-4 ns-5 ns-all adaptive

Good PRR Rate (%) 58.62 55.17 56.90 68.97 77.59 81.03 81.03 86.21 98.28

Normalized Latency (%) 100.00 169.26 91.81 92.91 93.13 92.79 93.06 93.93 -

Active Slot Rate (%) 100.00 100.00 6.66 9.14 11.62 13.28 14.58 18.23 -

as before, to fairly compare the different modes, the network circularly runs in
each mode for 1s. This is controlled by the sync-seq, a counter contained in the
sync packet, incremented after each frame. After the network is bootstrapped,
each node should share the same sync-seq. It also controls which flow should use
a certain test slot. The program is implemented on the Contiki OS [10].

We evaluate two types of flows: 1) long flow, with end nodes far apart and
2) unreliable flow, where the flow itself or the opposite flow has low reliability
(< 90%) in the default bl-hi mode.6 These flows represent the worst evaluation
scenario since path identification should be relatively ineffective. However, for
all flows, the path identification is successful. The long flow set includes 6 flows
(3 pairs) for the Piloty and Arena testbeds respectively. The unreliable flow set
includes 22 flows (11 pairs) for the Piloty testbed and 24 flows (12 pairs) for the
Arena testbed.

5.2 Performance Comparison

The QoS metrics of a number of typical flows are depicted in Fig. 5 and the
average values of the QoS metrics over all flows are shown in Tab. 1. We focus on
the trade-off of 3 metrics: 1) PRR, the end-to-end reliability of packet delivery
of a flow, 2) active slot rate (ASR), the number of active data slots over the
number of all data slots for a flow and 3) normalized latency, the average end-
to-end latency normalized over the value of the mode bl-hi. The active slot rate
should be the same as the average percentage of active nodes, which is roughly
proportional to the energy consumption.

Reliability. In average, the reliability of all WSNShape modes except ns-1 is
better than that of the baseline modes bl-hi and bl-lo (Tab. 1). The mode ns-
all is generally the best. The situation that ns-1 is significantly worse than the
other WSNShape modes evidences the advantage of constructive interference
of multiple transmitters in boosting reliability. It shows that the concurrent
transmission based network with only a few concurrent transmitters is more
reliable than the traditional network based on single-path routing, even if the
path is reliable. On the other hand, if the number of concurrent transmitters is
very high (mode bl-hi), the reliability may decrease. Furthermore, there is at
least one flow for which a certain mode is better than all the others (Fig. 5).
Thus, there is no winner in all cases and the relative performance among various

6 These pairs of flows are identified by the experiments in Sec. 4.1 for evaluating the
effects of tx power.



Making ‘Glossy’ Networks Sparkle: Exploiting Concurrent Transmissions 143

bl−hi bl−lo ns−1 ns−2 ns−3 ns−4 ns−5 ns−all
0

20

40

60

80

100

120

140

160

180

modes

%

 

 
PRR
Active slot rate
Latency

(a) flow n29 → n60, best mode: bl-hi
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(b) flow n1044 → n1001, best mode: bl-lo
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(c) flow n1015 → n1032, best mode: ns-1
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(d) flow n60 → n33, best mode: ns-2
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(e) flow n60 → n29, best mode: ns-all
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(f) flow n1024 → n1048, PRRs < 95%.

Fig. 5. Some typical results from the evaluation of Sparkle modes. The points high-
lighted have good reliability (PRR ≥ 95%). Latencies are normalized to that of bl-hi.

modes can be chaotic. But if we can always choose the best mode among bl-hi,
bl-lo, ns-2 and ns-all, over 98% of the cases, we can obtain good reliability
(≥ 95%, sufficient for most control systems). The only case that good reliability
is unattained is shown in Fig. 5(f) where only one path can be identified for the
flow and none of the modes reaches good reliability. This motivates us to design
an adaptive scheme which can choose among the four modes.



144 D. Yuan, M. Riecker, and M. Hollick

End-to-end Latency. As listed in Tab. 1, the average latency of the WSNShape
modes are 6% to 8% shorter than that of the bl-hi, and generally the latency
increases slightly with the path count C. This shows the advantage of limited
concurrent transmissions. The moderate number of concurrent transmitters in-
creases SNR and thus the PRR in comparison to the large number of concurrent
transmitters in the mode bl-hi. Therefore, statistically less rounds of trans-
missions are needed before the destination successfully receives a packet. The
latency of the bl-lo mode is about 69% longer than that of the bl-hi mode,
because the lower tx power increases the hop count. The end-to-end latency is
near optimal. The largest average latency and hop count of a flow under the low
tx power of −15dB are 33.7ms and 7.0, respectively. The values under the high
tx power of 0dB are 18.9ms and 3.7, respectively. The latencies are very small
considering the large packet size of 126 bytes whose transmission takes more than
4ms. In addition, Sparkle can provide the hard deadline guarantee by turning
off the radio after the slot duration has finished (slot duration = 40ms in our
implementation).

Energy Consumption. The actual energy consumption should be roughly pro-
portional to the ASR. Obviously ASR = 100% in the baseline modes because all
nodes are active. The various WSNShape modes ns-1 to ns-all save as much as
93% to 82% of energy compared to the baseline modes. This is due to the large
amount of inactive modes. Intuitively, the saving decreases with the path count
C. Although the ASR value of the two baseline schemes is 100% in both cases,
we expect that bl-lo consumes more energy than bl-hi, since the former has
a much longer latency which increases the listen time significantly. This more
than compensates the slight saving brought by the low tx power. In summary,
we can give an energy consumption model:

E(bl-lo) > E(bl-hi) 	 E(ns-all) > · · · > E(ns-i) > E(ns-j) > · · · > E(ns-1) (1)

where E(·) is the energy consumption of a mode, and i = j + 1.

Summary. In general, the reliabilities of the WSNShape modes improve with
the path count C. The trade-off is that the latencies and energy consumptions
(ASR) of them increase with C (Tab. 1). Compared to the Glossy protocol (with
different tx powers), WSNShape with C ≥ 2 brings improvement in reliability,
latency and energy consumption simultaneously. The energy saving is significant,
over 80%. The improvement in latency is slight, only a few percent. Regarding
reliability, ns-all is generally the best mode. But the relative reliability can
be chaotic for different flows. However, if we can adaptively choose the most
reliable mode among bl-hi, bl-lo, ns-2 and ns-all, far better performance
can be achieved than sticking to any specific mode, which is the main topic of
the next section.

6 PRRTrack: Adaptively Minimizing Energy
Consumption while Meeting Reliability Requirement

A useful control system must be stable and have a satisfactory performance,
which normally requires that each flow has latency below and reliability above
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Fig. 6. The mode switch process of PRRTrack

preset values, respectively [11]. In this section, we design and evaluate an au-
tomatic scheme, PRRTrack, a component of Sparkle that adaptively switches
between different operation modes, with the goal of minimizing energy consump-
tion while meeting the reliability requirement. In case the reliability requirement
cannot be satisfied by any of the modes, PRRTrack achieves the best-effort per-
formance by keeping a flow operate in the most reliable mode for most of the
time. The testbed evaluation shows that PRRTrack effectively achieves its design
goal together with the advantage of improving latency.

6.1 The Design of PRRTrack

The main idea of PRRTrack is simple: if the current mode satisfies the reliability
requirement, it tries to find a more energy-efficient one, otherwise it tries to find
one that satisfies the reliability requirement. Given the model of relative energy
efficiency of our various modes, the process to find a more energy-efficient mode is
straightforward. But on the other hand, since no model of the relative reliability
is available, the process to find a mode satisfying the reliability requirement is
basically trial-and-error.

The control logic of PRRTrack is realized at the destination node of a flow.
It performs two activities: first, it maintains the recently identified 100 paths
for WSNShape; second, it keeps track of the current PRR by calculating the
reception rate of the recent 100 data packets of a flow. Also, in the manner
of feedback control, it gives proper commands of mode switch based on the
difference between the current PRR and the reliability set-point.

The mode switch process of PRRTrack is illustrated in Fig. 6. We only switch
among the four modes bl-hi, bl-lo, ns-2 and ns-all. Since we prefer to minimize
mode switches, we revise our energy model from (1): E(bl-lo) = E(bl-hi) >
E(ns-all) > E(ns-2).

6.2 Implementation

The implementation details of PRRTrack are as follows. The test slots are used
for path identification and mode switch commands. The path-ident packets are
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sent by the source node once every 10s if there is no pending mode switch com-
mand, which is sent by the destination node whenever necessary. Included in the
mode switch command is the stripe for WSNShape, if the mode is a WSNShape
one. Since the mode switch features trial-and-error, in our implementation it
may lead to temporary PRR decrease when we probe a new mode. In the chosen
configuration, this may cause decreased performance of about 100s (the test du-
ration, Fig. 7(c)). If the control system cannot tolerate that, we can implement
the PRRTrack more conservatively by probing a mode in the test slots before
actually switching the data slots to that mode. This will give better reliability
performance at the cost of more energy consumption due to the higher overhead
of test slots and slower mode switch reaction. Whenever we switch to a different
mode, we flush the sliding window for PRR re-calculation.

6.3 Evaluation

For the evaluation of PRRTrack, we compare the performance of Sparkle with
PRRTrack to that of Sparkle with the fixed mode bl-hi. In each round of the
evaluation, we run both programs for 3 hours each. Similar to Sec. 5.1, 3 pairs
of opposite flows are evaluated in each round. For each of the Piloty and Arena
testbeds, we evaluate 12 random pairs of opposite flows.

The evaluation results of two representative flows in the Piloty testbed are
shown in Fig. 7. We show the averaged PRR from the program start. From
Figures 7(a) and 7(b) we observe that if we stick to the bl-hi mode, neither of
the two flows can satisfy the reliability requirement PRR ≥ R with R = 90%.
Furthermore, the PRR values are not stable. There are long periods in which
the PRR goes up or down steadily. From Figures 7(c) and 7(d) we see that if
PRRTrack is applied, the reliability requirement can be satisfied and the PRR
values are much more stable.

In the case of Fig. 7(c), we observe that after the PRRTrack starts, we tran-
sition immediately into the state FR. Then we test the modes ns-2, ns-all,
bl-hi and bl-lo one by one, in the decreasing order of energy efficiency, to find
a reliable one, but none of them satisfies PRR ≥ 90% for 1000s (L = 1000s).
Therefore, we switch to the most reliable mode at that time, bl-hi, and hold on
it for 1000s. After the hold time, we transition back to the state FR. But now
bl-hi can meet R for over 1000s, therefore we later transition to the state FE,
to find a more energy-efficient mode. Now we land in the mode ns-all, which is
not only more energy-efficient, but also reliable enough. But from time to time
(after about every 1000 sec), we try the more efficient ns-2 for 100s, to find a
potentially reliable and more energy-efficient mode. However, until the end of
the program, this probing is unsuccessful. The situation in Fig. 7(d) is much sim-
pler. After we switch to the mode ns-2, the reliability requirement can always
be satisfied, therefore, we stay in the mode as it is the most energy-efficient one.

To measure the energy consumption of the radio component, which accounts
for the predominant part of energy consumption of our system, we use Energest,
a software-based method for energy measurement provided in Contiki [12]. For
higher precision, we consider the different current consumptions of listen mode
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(a) flow n26 → n63, fixed mode bl-hi
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(b) flow n16 → n61, fixed mode bl-hi
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(c) flow n26 → n63, PRRTrack
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(d) flow n16 → n61, PRRTrack

Fig. 7. The reliability of PRRTrack vs fixed mode. Reliability requirement R = 90%.

Table 2. The energy consumption and latency of PRRTrack vs. fixed mode. Energyd

is the energy consumption of data slots. Energyt is that of test slots.

Fixed mode bl-hi (3 hours) PRRTrack (3 hours)

Energyd(J) Energyt(J) Latency(ms) Energyd(J) Energyt(J) Latency(ms)

flow n26 ↔ n63 1008.27 0 18.09 196.21 24.11 16.15

flow n16 ↔ n61 1009.68 0 16.11 109.21 23.17 14.45

and transmit mode with various tx powers. As listed in Tab. 2, the energy saving
of the PRRTrack is huge. For two pairs of flows n26 ↔ n63 and n16 ↔ n61,
including the control overhead (that of test slots), it uses only 22% and 13% of
that of the fixed mode bl-hi, respectively7. The control overhead amounts for
about 1/5 of the energy consumption. Additionally, PRRTrack also improves the
average end-to-end latency by about 10%. Over all 24 pairs of flows, the average
energy saving is 84% and the latency improvement is 5%.

7 We look at the energy consumption of a pair of opposite flows together instead of
separately because to achieve reliable transmission on one flow, we need the cooper-
ation of some test slots of its opposite flow.
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7 Conclusion

We have presented Sparkle, a communication network for periodic multi-loop
control systems with high packet reliability, very low energy consumption, as
well as near-optimal and deterministic latency. To our knowledge, it is the first
control network based on concurrent transmission. Sparkle has a flexible archi-
tecture that supports arbitrary and independent QoS control mechanisms for
all communication flows. The novel WSNShape is a topology control technique
based on the capture effect. It leads to huge saving of energy consumption as well
as to high probability of improvement in reliability and latency, compared to the
baseline Glossy protocol. By combining different levels of WSNShape and trans-
mission power, we derive various operation modes featuring different energy and
performance characteristics. Then we design a control scheme PRRTrack, that
can adaptively switch between these operation modes. Through extensive evalu-
ation on real-world testbeds, we confirm that our scheme satisfies the design goal
of preset reliability while in average massively reducing the energy consumption
by 84%. In addition, it also reduces the latency by 5%.
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Abstract. Wireless visual sensor networks (VSNs) are expected to play
a major role in future IEEE 802.15.4 personal area networks (PAN) under
recently-established collision-free medium access control (MAC) proto-
cols. In such environments, the trade-off between the number of camera
sensors to deploy (spatial coverage) and the frame rate to use for each
camera sensor (temporal coverage) plays a major role in the VSN en-
ergy consumption. In this paper, we address this aspect for single-hop
VSNs, i.e. networks comprising independent and identical wireless vi-
sual sensor nodes connected to a collection node via a star topology. We
derive analytic results for the energy-optimal spatio-temporal coverage
parameters of such VSNs under a-priori known bounds for the mini-
mum frame rate per sensor and the minimum and maximum possible
number of nodes to deploy. Our results are parametric to the probability
density function characterizing the data-production rate per node and
the energy consumption parameters of the system of interest. Experi-
mental results using TelosB motes under: a collision-free transmission
protocol, the IEEE 802.15.4 PAN physical layer (CC2420 transceiver)
and Monte-Carlo–generated data sets, reveal that our analytic results
are within 7% of the energy consumption measurements for a wide range
of settings. In addition, results obtained via a multimedia subsystem per-
forming visual feature extraction in video frames show that the optimal
spatio-temporal settings derived by the proposed framework allow for
up to 48% of reduction of energy consumption in comparison to ad-hoc
settings. As such, our analytic modeling is useful for early-stage studies
of possible VSN deployments under collision-free MAC protocols prior
to costly and time-consuming experiments in the field.

1 Introduction

The integration of low-power wireless networking technologies such as IEEE
802.15.4-enabled transceivers [1] with inexpensive camera hardware [2] has en-
abled the development of the so-called visual sensor networks (VSNs). VSNs

B. Krishnamachari, A.L. Murphy, and N. Trigoni (Eds.): EWSN 2014, LNCS 8354, pp. 150–165, 2014.
c© Springer International Publishing Switzerland 2014
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can be thought of as networks of wireless devices capable of sensing multime-
dia content [3], such as still images and video, audio, depth maps, etc. Via the
recent provisioning of an all-IPv6 network layer under 6LoWPAN and the emer-
gence of collision-free low-power medium access control (MAC) protocols, such
as the time slotted channel hopping (TSCH) of IEEE 802.15.4e-2012 [4], VSNs
are expected to play a major role in the evolution of the Internet-of-Things (IoT)
paradigm [5].

1.1 Review of Visual Sensor Networks

An increasing number of VSN solutions were proposed recently with a focus
on new transmission protocols allowing for high-bandwidth collision-free com-
munications [6,4] and in-network visual processing techniques [7]. Most of the
proposed VSN solutions can be abstracted as two tightly-coupled subsystems: a
multimedia processor board and a low-power radio subsystem [2], interconnected
via a push model. A cluster of such identical nodes can be organized into a VSN
comprising a star topology that can operate in collision-free steady-state mode
as illustrated in the example of Figure 1, with the consumption rate of each node
being s bits for each interval of T seconds that the VSN remains active, or s

T
bits-per-second (bps). Within each node, the multimedia subsystem is respon-
sible for acquiring images, processing them and pushing the processed data to
the radio subsystem. For example, in the most typical application scenario for
VSNs, the multimedia subsystem would acquire each image, compress it into a
JPEG bitstream (e.g., using an MJPEG codec) and push the JPEG bitstream
to the radio subsystem [2]. The latter transmits the processed data stream to
the low-power border router (LPBR) [5], and eventually to a remote destination,
which, under the IoT paradigm, could be any IPv6 Internet address.

Multimedia Processing Subsystem: The frame rate under which each VSN
camera is operating, i.e. each node’s temporal coverage, is controlling the fre-
quency of the push operations. At the same time, the multimedia processing task
itself (e.g., JPEG compression) controls the volume of bits pushed to the radio
subsystem within each frame’s duration.

Communications Subsystem: The number of sensors in the (single-hop) star
topology, i.e. the VSN’s spatial coverage (Figure 1), controls the bandwidth
available to each sensor (i.e. its average transmission rate) under a collision-free
MAC protocol [6,8,4]. Thus, there is a fundamental tradeoff between the spatial
and temporal coverage in a network: high frame rate leads to high bandwidth
requirement per transmitter, which in turn decreases the number of sensors that
can be accommodated with the same LPBR. Conversely, dense spatial coverage
via the use of a large number of visual sensors decreases the available bandwidth
per sensor and this in turn reduces the achievable frame rate per sensor in order
to maintain tight coupling.
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LPBR

s/4s/4

s/4 s/4
Radio Subsystem

Multimedia Subsystem

Memory

Camera

Raw image data

JPEG image / salient points

Data buffering

Data transmission
to higher tier / LPBR

Fig. 1. Single-hop star topology in a visual sensor network, where every visual sensor
(video camera) has its own spatial coverage, with s indicating the bits consumed by
each node within each active interval of T seconds. Each camera node comprises two
subsystems, which are illustrated in the figure expansion. If required, each node can
buffer parts of its data stream for later transmission.

Overall System Perspective – Energy Consumption: Like traditional
wireless sensor networks, VSN nodes are battery operated. Hence, energy con-
sumption plays a crucial role in the design of a VSN, especially for those applica-
tions where a VSN is required to operate for days or even weeks without external
power supply. In the last few years, several works have addressed the problem
of lifetime maximization in VSNs: depending on the research area, solutions are
available for energy-aware protocols and cross-layer optimization [4], application
tradeoffs [5] and deployment strategies [2]. While existing work addresses trans-
mission, scheduling and protocol design aiming for energy efficiency, it does not
consider the impact of the spatio-temporal coverage in the energy consumption
of VSNs. This is precisely the focus of this paper.

1.2 Contribution

In this paper, we derive analytic results concerning energy-aware VSN deploy-
ments under the push model of Figure 1. Specifically, we are interested in the
link of the aforementioned spatio-temporal tradeoff with the incurred energy con-
sumption under well known probability density functions modeling the pushed
data volume of image and video applications, such as intra/inter-frame video
coding and visual features extraction and transmission. We focus on the widely
used case of single-hop VSNs comprising identical sensors connected to the LPBR
via a star topology and we derive an analytic model that captures the expected
energy consumption in function of: (i) the number of visual sensors deployed,
(ii) the frame rate used by each camera sensor and (iii) the statistical charac-
terization of the bitstream data volume produced by each sensor after on-board
image analysis or compression. The extrema of the derived energy consumption
function are then analytically derived in order to provide closed-form expressions
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for the minimum energy consumption of each case under consideration. The de-
rived analytic results are experimentally validated with a VSN performing visual
feature extraction and transmission to the LPBR.

2 Utilized System Model and Its Expected Energy
Consumption

In the first four subsections we introduce the components of the utilized system
model and the corresponding nomenclature. The key notations are summarized
in Table 1, along with the practical settings used in the experiments of the paper.

2.1 Communication and System Infrastructure

Consider a wireless visual sensor network comprising a star topology. The net-
work consists of n independent and identical camera nodes that process visual
data and transmit multimedia streams to the LPBR. The MAC layer of the net-
work is operating under a collision-free time-division (or time-frequency division)
multiple access protocol [6,8,4], so that simultaneous transmissions (self-inflicted
collisions) are avoided. Let s

T bps be the average consumption rate of the LPBR
over the VSN active interval of T seconds.

Within each node, the multimedia and radio subsystems work in parallel: while
the multimedia system acquires and processes data corresponding to the current
video frame, the radio subsystem transmits the multimedia stream stemming
from the processing of the previous video frame(s). Examples of VSN applica-
tions that fit the communications model illustrated in Figure 1 are: multi-camera
JPEG compression and transmission of video bitstreams [7], multi-sensor visual
features extraction [9] and transmission, multi-camera compression and trans-
mission for object recognition, etc.

2.2 Active Time Interval and Delay Tolerance

Given that applications based on visual sensor networks are subject to severe
bandwidth requirements, it may not be possible to transmit the entirety of each
multimedia stream within the transmission opportunities corresponding to the
duration of one video frame. In such a case, buffering to on-board memory is
required. This means that the application must tolerate certain delay until all
multimedia streams are received by the LPBR. This delay is controlled by the
chosen value of T and can be tuned to fit the constraints imposed by each
deployment scenario.

After T seconds, each sensor stops gathering new data, completes the trans-
mission of any data that may exist in its buffer and goes into suspension mode
until the occurrence of the next active time interval. For example, setting T = 5
s indicates that the sensors are actively gathering and processing visual data for
five seconds, complete any remaining data transmissions after that, and then
suspend their activity until being reactivated. The VSN activation can either
be event-driven (e.g., when activity or motion is detected) or periodic, with a
certain duty cycle [2,4].
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2.3 Spatio-temporal Coverage and Statistical Characterization of
Data Transmission Volume per VSN Node

We consider that the VSN is established under the following two application
constraints:

– spatial coverage bounds ; the number of deployed nodes, n, is upper- and
lower-bounded, i.e., Nmin ≤ n ≤ Nmax

– temporal coverage lower bound ; the total frame acquisitions, k, within a pre-
defined time interval, T , is lower-bounded, i.e., k ≥ Kmin

The bounds of the spatio-temporal coverage stem from application specifics,
such as: the cost of installing and maintaining visual sensors, the minimum
and maximum spatial coverage required for the area to be monitored, and the
minimum frame rate that allows for visual data gathering and analysis with
sufficient temporal resolution for the application.

Since the multimedia subsystem of each visual sensor produces varying
amounts of data depending on the monitored events and the specifics of the
visual analysis and processing under consideration, the data stream volume pro-
duced by each camera in such multimedia applications is a non-deterministic
quantity. We thus model the data volume produced when each camera processes
k frames via a random variable (RV) Xk, with marginal probability density func-
tion (PDF) P (χk), Xk � P (χk).

2.4 Energy Consumption Penalties

Following the push model illustrated in Figure 1, each node performs the follow-
ing operations during the active time interval T :

1. Acquisition: A low-power camera sensor acquires k frames, each incurring a
Joule (J) of energy expenditure. Hence, the energy consumed during T s is
ka J.

2. Processing and transmission: Each captured video frame is processed with a
CPU-intensive algorithm, realized by the multimedia subsystem. Each frame
processing produces, on average, r bits (b) for transmission. These bits are
pushed to the radio subsystem, which in turn transmits them to the base
station. Let g J be the average energy required for processing and producing
one bit of information and j the average energy required to transmit it to
the LPBR. The average energy consumed for processing and transmission
within the active interval is hence (g + j)

´∞
0 χkP (χk)dχ = (g + j)E [Xk] J,

with E [Xk] bits comprising the statistical expectation of the data volume
corresponding to k frames.

3. Buffering and Idling: As shown in Figure 1, the sensor network consists of
n sensor nodes that communicate with the LPBR, which has pre-defined
consumption rate of s

T bps. Under balanced coupling, each sensor node can
transmit s

n bits during the analysis time interval of T s. We thus identify
two cases: if the amount of data generated by the processing phase is greater



Energy Consumption of Visual Sensor Networks 155

Table 1. Visual sensor energy and bitrate parameters, including settings used in this
paper

Parameter Description Unit Value
Radio Subsystem (measured on TelosB with Contiki & NullMAC/NullRDC)
n, Nmin, Nmax Number of nodes, min/max setting – Nmin = 2, Nmax = 16

s
T

Data consumption rate kbps 144
j Transmission energy per bit J/b 2.197 × 10−7

b Beaconing/idling energy per bit J/b 1.902 × 10−7

p Buffering energy per bit J/b 2.861 × 10−7

Multimedia Subsystem ASIC [10][2]
k, Kmin Frames captured within T s, min. setting – Kmin = 2T

a Acquisition energy per frame J 4.000 × 10−3

g Processing energy per bit (visual features) J/b 1.907 × 10−8

than s
n , then the sensor node has to buffer the remaining data in a high-

power, typically off-chip, memory. Letting p J be the energy cost of storing
one bit of information, the energy spent for buffering during the active time
interval is: p

´∞
s
n
(χk − s

n )P (χk)dχk J. Conversely, if the data generated is
less than s

n , the sensor node enters an “idle” state, where b J is consumed
for beaconing and other synchronization operations corresponding to the
duration of the transmission of one bit. The energy spent during the idle
mode of the analysis time interval is thus: b

´ s
n

0
( s

n − χk)P (χk)dχk J.

2.5 Expected Energy Consumption

Summing all contributions 1∼3 described in the previous subsection, the energy
consumption of the coupled system, Ec, over the time interval T is:

Ec (n, k) = ka + (g + j)E[Xk] + p

ˆ ∞

s
n

(χk − s

n
)P (χk)dχk + b

ˆ s
n

0

(
s

n
− χk)P (χk,)dχk.

(1)

Adding and subtracting p
´ s

n

0 (χk − s
n )P (χk)dχk to (1) leads to:

Ec (n, k) = ka + (p + g + j)E[Xk]− ps

n
+ (b + p)

ˆ s
n

0

(
s

n
− χk)P (χk)dχk. (2)

The last equation forms the basis for the analytic exploration of the minimum
energy consumption under the knowledge of the marginal PDF characterizing
the data production and transmission process.
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3 Analytic Derivation of Minimum Energy Consumption

Our objective is to derive the spatio-temporal parameters minimizing Ec (n, k)
in (2) subject to the spatio-temporal constraints defined in Section 2, that is:

{n�, k�} = argmin
∀n,k

Ec (n, k) , (3)

with

Nmin ≤ n ≤ Nmax and k ≥ Kmin (4)

and {n�, k�} the values deriving the minimum energy consumption.
In the following, we consider two different marginal distributions for P (χk)

and derive the choice for n and k that minimizes the energy consumption, while
ensuring the conditions imposed by the application constraints are met. While
our analysis is assuming that n and k are continuous variables, once the {n�, k�}
values are derived, they can be discretized to the sets {�n�� , �k��}, {�n�� , �k��}
{�n�� , �k��} {�n�� , �k��} [if all four satisfy the constraints of (4)] in order to
check which discrete pair of values derives the minimum energy consumption in
(2). This is because: (i) the energy functions under consideration are continuous
and differentiable; and (ii) we shall show that, for the data size PDFs under
consideration, a unique minimum is found for (2) that is parametric to the
setting of the temporal constraint (Kmin). As such, the analysis on the continuous
variable space can be directly mapped onto the discrete variable set under the
aforementioned discretization.

3.1 Illustrative Case: Uniform Distribution

When one has limited or no knowledge about the cumulative data transmitted
by each VSN node during T , one can assume that P (χk) is uniform over the
interval [0, 2kr]. That is,

P (χk) =

{
1

2kr 0 ≤ χk ≤ 2kr

0 otherwise
(5)

with EU[Xk] = kr corresponding to the mean value of the data transmitted by
a node that produces k frames of r bits each on average. Using (5) in (2) leads
to:

Ec,U(n, k) = k [a + r(p + j + g)]− ps

n
+

s2(b + p)
4n2kr

. (6)

To obtain the solution to (3) under the energy consumption given by (6), one
can search for critical points of Ec,U. Imposing that the derivatives of Ec,U with
respect to n and k are both equal to zero leads to:{

∂Ec,U
∂n = ps

n2 − s2(b+p)
2n3kr = 0

∂Ec,U
∂k = a + r(p + j + g)− s2(b+p)

4n2k2r = 0
(7)
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It can be shown that the solution of (7) requires a < 0 (the detailed derivation
is omitted due to space limitations). However, this is not physically feasible since
a is the energy cost to acquire one frame. Hence, under the physical constraints
of the problem, there is no single (global) solution {n�, k�} ∈ R× R to (3) in its
unconstrained form, i.e. when one ignores the constraints of (4). However, we
may look at one or the other direction individually (i.e., along n or k) in order
to find a local or global minimum for that particular direction and then choose
for the other direction the value that minimizes (3) under the spatio-temporal
constraints of (4). Subsequently, we can identify if the derived minima are unique
under the imposed constraints and whether the entire region of support of the
energy function has been covered by the derived solutions. These are investigated
in the following.

n-direction. We examine the function Ec,U along the plane k = k̄, k̄ ≥ Kmin,
and analyze Ec,U(n, k̄) which is now a function of n only. It is straightforward to
show by first-derivative analysis that the only candidate extremum or inflection
point of Ec,U(n, k̄) is n0,U = βU

k̄
, with

βU =
s (b + p)

2pr
(8)

defined as a “system-specific” parameter (which depends on average bits trans-
mitted and the energy penalty rates). This candidate extremum or inflection
point is valid under the assumption that: Nmin ≤ n0,U ≤ Nmax, i.e. that the can-
didate point falls within the predefined spatial constraints of (4). Furthermore,
we find that d2Ec,U(n, k̄)

dn2

∣∣∣
n=n0,U

> 0, which demonstrates that n0,U is a local

minimum. Given that local extrema must alternate within the region of sup-
port of a continuous and differentiable function, the boundary points (n = Nmin
and n = Nmax) cannot be local minima. Thus, n0,U is the global minimum of
Ec,U(n, k̄) within Nmin ≤ n ≤ Nmax.

Having derived the global minimum of Ec,U(n, k̄) along an arbitrary plane
k = k̄, k̄ ≥ Kmin, we can now attempt to find the value of k, k ≥ Kmin, that
minimizes the energy function. Evaluating Ec,U(n, k) on n = n0,U we obtain:

Ec,U(n0,U, k) = k

[
a + r

[
(p + j)− p2

b + p
+ g

]]
. (9)

Evidently, the value of k minimizing (9) is the minimum allowable, i.e. k = Kmin.
Thus, the solution minimizing (3) in the n-direction is Sn0,U =

(
βU

Kmin
, Kmin

)
.

This solution holds under the constraint:

Nmin ≤ βU

Kmin
≤ Nmax. (10)

k-direction. Similarly, we cut Ec,U(n, k) along the plane n = n̄, Nmin ≤ n̄ ≤
Nmax, and minimize Ec,U(n̄, k) which is now function of k only. Following the
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steps presented earlier, we can show by first and second derivative analysis that
the global minimum of Ec,U(n̄, k) occurs at k0,U = γU

n̄ with the “system-specific”
parameter γU defined as:

γU =
s

2

√
b + p

r [a + r(p + j + g)]
. (11)

The global minimum of k0,U given above holds under the assumption that k0,U ≥
Kmin due the predefined temporal constraint of (4). Having derived the global
minimum of Ec,U(n̄, k) along an arbitrary plane n = n̄, Nmin ≤ n̄ ≤ Nmax, we
can now attempt to find the value of n, Nmin ≤ n ≤ Nmax, that minimizes the
energy function. Evaluating Ec,U(n, k) on k = k0,U we obtain:

Ec,U(n, k0,U) =
1
n

[
a + r(p + j + g)γU − ps +

s2(b + p)
4rγU

]
(12)

Evidently, the value of n minimizing (12) is the maximum allowable, i.e. n =
Nmax. Hence, the solution when attempting to minimize (12) in the k-direction
under the constraints of (4) is Sk0,U =

(
Nmax,

γU
Nmax

)
, under the constraint:

Kmin ≤ γU
Nmax

. (13)

Uniqueness of Solution and Solution When (10) and (13) Do Not
Hold: Starting from (10), with a few straightforward manipulations we reach

βU
Nmax

≤ Kmin ≤ βU
Nmin

, with βU defined in (8). The second constraint for Kmin
is provided by (13). It can be shown that βU > γU (derivation omitted due to
page limitation), which demonstrates that the constraints of the two established
solutions are non-overlapping. Thus, the solutions Sn0,U and Sk0,U are unique
within their respective bounds for Kmin.

To establish the optimal solutions when neither of these two constraints is
satisfied, we have to analyze what happens when γU

Nmax
< Kmin < βU

Nmax
or

Kmin > βU
Nmin

, as neither Sn0,U nor Sk0,U are applicable in such cases. It is
straightforward to show that ∂Ec,U

∂n and ∂Ec,U
∂k are never zero within these inter-

vals. Hence, the solution we are looking for must lie on one of the two boundary
points: (Nmin, Kmin) or (Nmax, Kmin).

Let’s focus on the case of Kmin ∈
(

γU
Nmax

, βU
Nmax

)
and evaluate Ec,U(n, k) on

the boundary plane n = Nmax. Since Ec(Nmax, k) is monotonically increasing for
k > γU

Nmax
the optimal point is k = Kmin, which leads to the solution Smaxmin =

(Nmax, Kmin). Similarly, let’s look at the k direction by evaluating the energy
function on the k = Kmin plane. Now n0,U = βU

Kmin
is larger than Nmax and is

thus not admissible. Since Ec,U(n, Kmin) is decreasing for n < n0,U, the optimal
point is n = Nmax, which also leads to the solution Smaxmin = (Nmax, Kmin).
Hence we conclude that when Kmin ∈

(
γU

Nmax
, βU

Nmax

)
, the optimal solution is
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Smaxmin = (Nmax, Kmin). Finally, when Kmin > βU
Nmin

, following a similar
analysis we reach that the optimal solution is Sminmin = (Nmin, Kmin).

Summarizing, when the data transmitted by each VSN node follows the Uni-
form distribution of (5), the set of solutions giving the minimum energy con-
sumption in (3) under the spatio-temporal constraints of (4) is:

{n�, k�}U =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
Nmax,

γU
Nmax

)
if Kmin ≤ γU

Nmax

(Nmax, Kmin) if γU
Nmax

< Kmin < βU
Nmax(

βU
Kmin

, Kmin

)
if βU

Nmax
≤ Kmin ≤ βU

Nmin

(Nmin, Kmin) if Kmin > βU
Nmin

(14)

with βU and γU defined by (8) and (11).

3.2 Pareto Distribution

We present a second example with the Pareto distribution. This distribution
has been used, amongst others, to model the marginal data size distribution
of TCP sessions that contain substantial number of small files and a few very
large ones [11]. It will also be shown by the experimental results of this paper
that it presents a good fit to multimedia traffic generated by visual features
extraction algorithms and hence it warrants detailed study under the proposed
VSN framework.

Consider P (χk) as the Pareto distribution with scale v and shape α > 1:

P (χk) =

{
α vα

χα+1
k

, χk ≥ v

0, otherwise
. (15)

Setting v = α−1
α kr leads to EP[Xk] = kr, i.e., we match the expected transmis-

sion data volume to that of the Uniform distribution.
Under (15), the energy expression of (2) becomes:

Ec,P = k [a + r(p + j + g)] +
bs

n
+ (b + p)

(
vαnα−1

sα−1 (α − 1)
− αv

α − 1

)
. (16)

Following the same analysis as for the Uniform PDF, we conclude that, when
the data transmitted by each VSN node follows the Pareto distribution of (15),
the set of solutions giving the minimum energy consumption in (3) under the
spatio-temporal constraints of (4) is:

{n�, k�}P =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
Nmax,

γP
Nmax

)
if Kmin ≤ γP

Nmax

(Nmax, Kmin) if γP
Nmax

< Kmin < βP
Nmax(

βP
Kmin

, Kmin

)
if βP

Nmax
≤ Kmin ≤ βP

Nmin

(Nmin, Kmin) if Kmin > βP
Nmin

,

(17)
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with

βP =
sα

r (α − 1)

(
b

b + p

)
1
α , (18)

and

γP =
sα

r(α − 1)

(
r(b − j − g)− a

r (b + p)

) 1
α−1

. (19)

The details of the derivation of (17) follow the same steps as the ones detailed
for the Uniform distribution and are omitted for brevity of description.

3.3 Discussion

The results of this section can be used in practical applications to assess the
impact of the spatio-temporal constraints and the data production and trans-
mission process (as characterized by its marginal PDF) on the energy consump-
tion of VSNs, under a variety of energy consumption rates for the radio and
multimedia subsystems. For example, under particular technology specifications
(i.e. given j, b, p, a and g parameters) and preset number of nodes and frames to
capture within the activation time interval, one can determine the required en-
ergy in order to achieve the designated visual data gathering task. Similarly,
under the proposed framework, one can determine the data production and
transmission (marginal) PDFs that meet preset energy supply, spatio-temporal
constraints and technology parameters (i.e. energy consumption per bit for each
task). As a result, our proposed energy consumption model and the associated
analytic results can be used in many ways for early exploration of system, net-
work, and data production parameters in VSNs that match the design specifica-
tions of classes of application domains. Such application examples are given in
Section 5.

4 Evaluation of the Analytic Results

For the radio subsystem of Figure 1, we used TelosB sensor nodes equipped with
a 802.15.4-compliant CC2420 radio transceiver. Each TelosB runs the low-power
Contiki 2.6 operating system and implements the open-source TFDMA proto-
col proposed recently [6] for time-synchronized multichannel communications
with the LPBR. Given that the TFDMA protocol ensures collision-free packet
transmissions by each node via application-layer adaptation of the transmission
slots based on a desynchronization mechanism [6], we enabled the low-power
NullMAC and NullRDC options of the Contiki OS. This led to data consump-
tion rate at the application layer of s

T = 144 kbps. Evidently the usage of the
TFDMA protocol is only for illustration purposes and any other protocol ensur-
ing collision-free communications by centralized or distributed slot allocation,
such as the IEEE 802.15.4e-2006 GTS [8] or the IEEE 802.15.4e-2012 TSCH [4]
can be used.
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All energy measurements were performed using a Tektronix MDO4104-6 oscil-
loscope to capture the real-time current consumption at a high-tolerance 1 Ohm
resistor placed in series with each TelosB node running the described operations.
Under these operational settings, the average transmission cost per bit, j J/b,
as well as the cost for beaconing, b J/b, and buffering, p J/b, were established
experimentally; their values are shown at the top half of Table 1.

Although capable of simple processing tasks, the TelosB is not a multimedia
platform. However, it can be attached via its integrated FTDI USB chip to a
more powerful platform such as the BeagleBone [12], or integrated with a low
power DSP processor, as done in the CITRIC project [2]. Here, we assume that
the multimedia sybsystem is based on an application-specific integrated circuit
(ASIC), such as the one proposed recently for energy-efficient visual feature
extraction [10] in images. Obviously, the processing cost per bit is application
and hardware dependent; in the following, we use g (in J/b) derived from Park
et al [10] and reported at the bottom half of Table 1. Finally, concerning image
acquisition, we considered the energy cost of acquiring a frame (a J) derived
from the specifications of the OV7670 camera sensor, which is widely used in
low-power visual sensor platforms [2] and is also reported in Table 1.

Under the settings described previously and shown in Table 1, our first goal is
to validate the basic analytic expressions of Section 3, namely (6) and (16), with
respect to the energy consumption measured when performing Monte-Carlo–
based experiments combined with actual energy measurement. To this end, we
simulated the multimedia data production process on each VSN node by: (i)
artificially creating several sets of data size values according to the marginal
PDFs of Section 3 via rejection sampling and (ii) setting the mean data size
per video frame to r = 5.2 kbit. The sets containing data sizes are copied onto
the read-only memory of each sensor node during deployment. At run time,

(a) Uniform distribution (b) Pareto distribution (α = 4)

Fig. 2. The grayscale surfaces show the energy consumption of a single camera sensor
node in function of the number of frames per second and the total number of nodes.
The blue crosses correspond to the value of the consumed energy as measured from
the sensor network test-bed. All energy values and frames (k) are normalized to a
one-second interval.
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Table 2. Differences between theoretical and experimental results and the optimal
value for the number of nodes and the frames-rates for the considered data transmission
(marginal) PDFs under the settings of Figure 2

PDF Mean Error (%) Max Error (%) R2 Theoretical optimum
Uniform 1.08 4.81 0.9987 {n�, k�}U = {12, 2}

Pareto (α = 4) 1.64 6.05 0.9973 {n�, k�}P = {14, 2}

each node fetches a new frame size from the preloaded set, produces artificial
data according to it (akin to receiving the information from the multimedia
subsystem) and transmits the information to the LPBR following the process
described in the system model of Section 2. Depending on the frame size, the
node can enter in idling/beaconing state or it can buffer the data exceeding the
allocated TFDMA slots.

We report here energy measurements obtained under varying values of n and
k. The chosen active time interval was set to be T = 154 s and, beyond mea-
suring the accuracy of the model versus experiments, we also compared the
theoretically-optimal values for k and n according to Section 3 with the ones
producing the minimum energy consumption in the experiments. For the re-
ported experiments of Figure 2 and Table 2, the spatio-temporal constraints
were: Nmin = 2, Nmax = 16 and Kmin = 2T frames, i.e. two frames per sec-
ond. All our reported measurements and the values for k are normalized to a
one-second interval for easier interpretation of the results.

As one can see from Figure 2 and Table 2, the theoretical results match the ex-
perimental results for all the tested distributions, with the maximum percentile
error between them limited to 6.12% and all the coefficients of determination be-
tween the experimental and the model points being above 0.995. In addition, the
theoretically-obtained optimal values for {n�, k�} from (14) and (17), are always
in agreement with the experimentally-derived values that were found to offer the
minimum energy consumption under the chosen spatio-temporal constraints. We
have observed the same level of accuracy for the proposed model under a va-
riety of data sizes (r), active time interval durations (T ) and spatio-temporal
constraints (Nmin, Nmax and Kmin), but omit these repetitive experiments for
brevity of exposition.

5 Application in Visual Features Extraction

In order to assess the proposed model against application deployments, we con-
sider the extraction and transmission of local visual features for image analysis.
This scenario represents a wide range of practical VSN-related deployments pro-
posed recently [2,7]. In a nutshell, salient keypoints of an image are identified by
means of a detector algorithm, and the patch of pixels around each keypoint is
encoded in a feature vector by a specialized descriptor algorithm. Here, we focus
on corner-like local features, such as the ones detected by the FAST corner detec-
tor [9], which is optimized for fast and efficient detection on low-power devices.
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Fig. 3. The energy function for the considered application scenario. The grayscale
surfaces represent the fitted energy function obtained with the Pareto PDF, while the
blue crosses represent the experimental measurements. All energy values and frames
(k) are normalized to a one-second interval.

Table 3. Energy consumption under varying spatio-temporal constraints with ad-hoc
settings and with settings derived from the proposed Pareto model (Kmin, k and the
energy values are normalized to a one-second interval)

Spatio-temporal Visual features extraction
Constraints Ad-hoc deployment Proposed approach Gain
Kmin = 5 kadhoc = 5 k� = 5

Case 1 Nmin = 3 nadhoc = 3 n� = 6 10.30%
Nmax = 6 Ec = 0.031 J Ec = 0.028 J
Kmin = 2 kadhoc = 2 k� = 2

Case 2 Nmin = 2 nadhoc = 2 n� = 10 48.65%
Nmax = 10 Ec = 0.022 J Ec = 0.012 J

For what concerns the descriptor, several algorithms are available in the litera-
ture: here we assume to use the BRIEF descriptor, which produces a 64 bytes
binary feature vector starting from intensity comparisons between pixels of the
patch to be described, thus being particularly tailored for resource constrained
devices. As input data, we considered the video sequences from the PETS2007
dataset1, which are taken from an airport surveillance video system. The orig-
inal resolution of all sequences is 768 x 576 pixels and the original frame rate
is 25 frames-per-second. Similarly as before, the process is repeated for different
video sequences and different frame rates (i.e. different values of k normalized
to frames-per-second).

We repeated the experimental measurements described in Section 4 for this
application scenario and under the same spatio-temporal constraints (Nmin = 2,
Nmax = 16, Kmin = 2T , i.e. two frames per second), this time loading on the
sensor network the traces of data sizes computed after the processing of the

1 http://pets2007.net

http://pets2007.net
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video sequences in the two cases and utilizing the energy parameters of Table
1. Then, we fitted2 the energy measurements with the ones produced by the
Pareto distribution. The best fit was obtained under parameters α = 4, v = kr
and r = 11.7 kbit, as shown in Figure 3, with coefficient of determination value
R2 ∼= 0.96. Similarly as before, all reported energy values and number of frames
are normalized to a one-second interval for easier interpretation of the results.

Given the high accuracy of the Pareto-based energy model against the ap-
plication results, we utilized the settings for the minimum energy consumption
derived for the Pareto case [see (17)] to ascertain the energy saving that can be
potentially achieved against arbitrary (ad-hoc) settings. As an example, in Table
3, we consider two different cases, characterized by different spatio-temporal con-
straints. For each case, we compare the optimal solution given by (17) with an
ad-hoc “least-cost” solution that assumes values equal to the minimum spatio-
temporal constraints (under the intuitive assumption that less nodes and less
frames-per-second lead to smaller energy consumption). Evidently, the proposed
approach allows for significant energy savings, which can be more than 45% in
comparison to the ad-hoc settings.

6 Conclusions

We proposed an analytic model for the energy consumption of wireless VSN
arranged in a star-shaped topology under preset spatio-temporal constraints.
We derived analytic conditions for the optimal spatio-temporal settings within
the VSN for different PDFs characterizing the multimedia data volume to be
transmitted by each node. Monte-Carlo experiments performed via an energy-
measurement testbed revealed that the proposed model’s accuracy is within 7%
of the obtained energy consumption. Applying the model to the application
scenario of visual features extraction demonstrated that substantial energy sav-
ings can be obtained via the proposed approach against ad-hoc settings for the
spatio-temporal parameters of the VSN. As such, the proposed model can be
used for early-stage studies of VSNs to determine the best operational parame-
ters prior to cumbersome and costly real-world deployment and testing. Future
research directions include the extension of the proposed framework to multi-tier
cluster-tree topologies as well as other multimedia traffic distributions.
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work Programme for Research of the European Commission, under FET-Open
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2 Fitting is performed by matching the average data size r of each distribution to the
average data size of the set of visual features.
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Abstract. Accurate energy expenditure monitoring will be an essential
part of medical diagnosis in the future, enabling individually-tailored
just-in-time interventions. However, there are currently no real-time
monitors that are practical for continuous daily use. In this paper, we in-
troduce the K-Sense energy expenditure monitor that uses inertial mea-
surement units (IMUs) mounted to an individual’s wrist and ankle with
elastic bands to determine angular velocity and position. The system
utilizes kinematics to determine the amount of energy required for each
limb to achieve its current movement. Our empirical evaluation includes
over 3,000,000 individual data samples across 12 individuals and the re-
sults indicate that the system can estimate total energy expenditure with
a 92 percent accuracy on average.

Keywords: Body Sensor Network, Energy Expenditure, Kinematics.

1 Introduction

Obesity has reached epidemic proportions throughout the United States and
was recently classified as a disease by the American Medical Association. It cur-
rently affects 35.9 percent of adults, 18.4 percent of adolescents, and 18 percent
of children [20]. The estimated annual medical cost of obesity in the U.S. is �147
billion per year, with annual medical spending 42 percent higher for an obese
individual compared to a normal weight individual [19]. The causes of obesity
are as broad as the number of instances; however, most are contributed to indi-
vidual lifestyles. Society has transitioned from manual labor style jobs such as
factories or farms to office style environments where people sit at desks. Addi-
tionally, leisure activities have become more sedentary which include television
or computer entertainment. All these factors contribute to the growing obesity
epidemic.

Research has shown that a small amount of exercise is beneficial, but moti-
vating individuals to change their behaviors is difficult [12]. However, there are
currently no practical solutions for real-world precision energy expenditure mea-
surement. Technologies such as metabolic carts [22] and calorimeter rooms [32]
allow researchers to accurately measure energy expenditure; however, they are
difficult and intrusive to wear or place a significant burden on the participant.

B. Krishnamachari, A.L. Murphy, and N. Trigoni (Eds.): EWSN 2014, LNCS 8354, pp. 166–181, 2014.
� Springer International Publishing Switzerland 2014
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Most commercially available systems rely on waist or wrist mounted accelerom-
eters which fail to capture the motion of body extremities. A common solution
is the Actigraph system [1] which places an accelerometer on a elastic band
worn under clothing around the waist. Other systems, such as the SenseWear
arm-band [23], are bulky and worn on the upper arm. While it contains more
sensors than most solutions, it not convenient to wear and has a limited ability
to measure leisure activities. There is currently an influx of devices on the mar-
ket that are designed to promote physical activity such as the FitBit [4], Nike’s
Fuel band [25], or Ubifit Garden [13]. They connect wirelessly to a smartphone
or computer to provide feedback about the user’s daily activities. These devices
are primarily designed to help motivate individuals to exercise by assuming be-
haviors will change once they see how much or how little they are really moving
during the day.

In this paper, we introduce the K-Sense energy expenditure monitor: a more
accurate wearable monitoring system based on inertial measurement units
(IMUs), consisting of 3-axis accelerometer, gyroscope, and magnetometer which
are attached to the waist, wrist, and ankle of a person. These are combined
with Bluetooth radios to transmit real-time motion data to a computer or
smartphone. It measures motion and angular position, which are represented
as quaternions, of each sensed point at approximately 50 hertz. The system uses
the formula τ = Iα, where τ is angular force, I is momentum and α is angular
acceleration to estimate the amount of force required to achieve each successive
position. K-Sense is a diagnostic technology designed for medical professionals
in evaluating a person’s behaviors or the effectiveness of an exercise treatment
program. It will also enable a real-time feedback control mechanism for more
effective obesity treatments. Our vision of the system involves integrating our
techniques into a smartphone, wrist watch, and shoe, resulting in a solution
without requiring any extraneous wearable devices.

K-Sense is a motion capture and analysis system; therefore, the main challenge
is correctly measuring energy expenditure: the amount of energy a human body
uses performing activities. The process of measuring limb and body motion is
subject to many different sources of noise: the accuracy of each sensor, the basal
metabolic rate which is the energy expenditure necessary to sustain the body’s
functions, individual characteristics of limb composition, and the variations of
muscle and movement efficiency, among many others. Therefore, measuring limb
motion on an arm and leg is not sufficient to capture this complete metabolic
system. The insight behind K-Sense is that many times a person is performing
similar actions with either their legs or their arms thus individual sensors are
not necessary for each limb and that positional measurements provide more
details about each activity. Additionally, there are many factors that contribute
to energy expenditure which can not be measured based on motion. Instead,
K-Sense considers the efficiency of limb motion and basal energy expenditure
along with training data provided by a metabolic system.

In this paper, we present K-Sense’s hardware design, signal processing
algorithms, and kinematic system. We evaluate K-Sense with controlled
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experiments in a laboratory setting across six activities. Twelve test subjects fol-
lowed a twenty-five minute action sequence consisting of standing, jumping, lying
down,working ona computer,walking, and running.Each subjectwas connected to
a laboratorymetabolic system which captures the intake and expiration of oxygen
and carbon dioxide. A total of over 300minutes of data were generated for analysis
and our results indicate that energy expenditure typically varies by 8.42 percent, or
6.65 kilocalories, on an average from ground truth. In comparison, the Actigraph
system achieved a 14 percent energy expenditure error on the same set of experi-
ments. K-Sense is computationally efficient: it is an online algorithm that could be
easily implemented on an embedded platform. This indicates that the algorithm
can be used on resource-limited platforms such as a smartphone.

2 Related Work

Systems designed to measure or estimate human energy expenditure can roughly
be categorized into three groups: (1) direct, (2) indirect, and (3) non-calorimetric.

Direct calorimetry systems measure the heat loss from the body which is pre-
cisely the amount of energy expended. Systems such as an insulated chamber [31],
indirect calorimetry room [32], or the Suit calorimeter [34] directly measure en-
ergy; however, the subject is placed within a very expensive and somewhat small
environment where they must stay for the duration of the study. This signifi-
cantly limits the types of activities they can perform. In contrast, our system is
designed to be worn during everyday activities and is not constrained to partic-
ular rooms.

Indirect calorimetry systems typically measure the intake and expiration of
gases which are converted into energy expenditure. Systems such as the Douglas
bag [17] are difficult to operate and require the subjects to breath air from a
sealed bag for a period of time. This is impractical for long duration studies.
Other systems such as a metabolic cart [22] capture the air breathed through a
gas sensor where it measures the concentrations of oxygen and carbon dioxide.
These systems can be made small enough to be portable; however, their cost
is prohibitive for large user studies and because they rely on the collection of
gases, a mask must be worn over the nose and mouth making continuous wear
difficult. Another common indirect measurement is doubly labeled water [15],
where the hydrogen and oxygen molecules are tagged with a non-radioactive
isotope. This allows researchers to measure energy expenditure over longer time
durations without inconveniencing the participant except for occasional blood
tests.

The class of systems most similar to K-Sense is based on physiological mon-
itoring. Much research has been done based on using heart rate to estimate
energy expenditure [9,30,35,28] In most cases, these solutions produce errors
around 20 percent. Another solution that has the potential to be very accurate,
electromyography [29], unfortunately requires each muscle group to be measured
independently, thus making this impractical for daily use.

There has been a large influx of wearable sensor platforms on the commercial
market recently which include the Nokia Activity Monitor [3], Sports Tracker [7],
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Nike+ [6], Nike Fuelband [25], BodyBugg [8], Fitbit [4], Actigraph [1], Ubifit Gar-
den [13], SenseWear Pro3 Armband and the SenseWear Mini [23]. Several of these
system utilize GPS to track user movement along with accelerometers to aid in
the estimation of energy consumption. Other systems such as the BodyBugg
utilize machine learning to estimate energy expenditure but can be affected by
types of movement not accounted for in the models. Because these systems are
closed-source, it is challenging to evaluate their energy estimation algorithms.
In one case, Darcy et al. evaluate the SenseWear devices and show an error rate
of 8.2 percent with a deviation of 6.7 [23] but is in a relatively large form factor
that be prohibitive for long-term wear.

Many other approaches are based on utilizing accelerometers to identify the
activities and motions of individuals[11,30,10,35,27] All these techniques follow
a similar approach where sensor data is collected and correlated with energy
expenditure to produce an estimator. K-Sense utilizes a similar approach with
its regression solution; however, by modeling the angular and translation motion
of each limb, K-Sense is able to use kinematics to improve on this class of results
without adding significant hardware to each individual.

3 System Design

The primary goal of the K-Sense hardware platform is to measure the position
of a person’s limb movements as they go about their daily lives. Secondary goals
include energy consumption with a 16 hour minimum run-time and a small
comfortable form-factor.

3.1 Hardware Design and Operation

K-Sense sensors utilize a Sparkfun Razor 9DoF inertial measurement unit (IMU),
consisting of three axis accelerometers (ADXL345), gyroscopes (IDG3200), and
magnetometers (HMC5883L), which are mounted on elastic bands that can be
secured to a person’s wrist, ankle, and waist, as shown in Figures 1 and 2. Each
IMU was calibrated using the manufacturer’s process. These three sensors are
sampled by an on-board ATmega328 before being sent through a serial inter-
face to our data collecting system. We modified the firmware to sample and
output data as fast as possible, 50Hz per sensor-axis or 450Hz for each IMU
board, and transmitted via a Bluetooth serial interface (RN-41) at 115200 bits
per second. A computer connects to all three devices over separate Bluetooth
channels to log the data. Each sensor platform is powered by a rechargeable 3.7
volt lithium-polymer battery which yields an approximate run-time of 16 hours.
Our prototype would be further optimized and miniaturized before large scale
deployment.

3.2 Signal Processing

K-Sense uses two main signal processing algorithms for each of its energy esti-
mation algorithms. The first algorithm corrects each data stream’s time stamps
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Fig. 1. The electronic suite is attached
to elastic bands that are easily placed
on the wrist, ankle, and waist of each
participant

Fig. 2. The K-Sense evaluation envi-
ronment where a person is walking on
a treadmill in a metabolic lab

Fig. 3. K-Sense acquires data from an inertial measurement unit (IMU) and corrects
the time stamps before converting to quaternions. Next, it utilizes two separate ap-
proaches for energy estimation: (1) a regression-based approach that utilizes windows
and features and (2) a kinematic-based approach based on angular velocity.

and the second transforms the corrected raw data streams into quaternions.
Next, there are two possible algorithm paths. The first utilizes regression over
a set of features to approximate energy expenditure and the second utilizes a
kinematic approach to estimate the amount of work done, and therefore, energy
expenditure.

Time Stamp Correction. Data is collected by the IMU board, sent through
a wireless Bluetooth link, and processed by our logging software where periodic
errors in the time stamps occur. Figure 4 illustrates the manifestation of the time
stamp synchronization errors as triangular shaped deviations where the logged
time stamp is in the future. These events are periodic and consistent throughout
the experiments . To correct these deviations, we utilize a robust linear regression
technique [21] to fit a line and a predefined offset of 0.3 seconds to the data
traces, effectively mapping the samples to a linear time sequence.

Quaternion. Each IMU produces data with three degrees of freedom for each
sensor type or nine degrees of freedom for the whole board. This data is
processed on our data logging computer which converts the raw sensor data
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Fig. 4. The dashed line indicates the raw time stamp sequence with three instances of
incorrect values. A corrected time sequence is identified with the solid line.
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Fig. 5. Each participant performed six activities in a laboratory setting. Data is shown
as a quaternion (w,x,y,z) plot for all three sensor platforms with each activity having
distinct visual differences.

into quaternions [24]: a representation for the sum of a scalar and a three di-
mensional vector. Many IMU systems prefer to convert to Euler angles, yaw,
pitch, and roll; however, this representation of three dimensional space suffers
from a gimbal lock problem: the loss of one degree of rotational freedom [33].
Quaternions effectively add a fourth axis in an arbitrary orientation to always
have an axis on which to rotate and are easily converted to Euler angles.

Energy Regression. K-Sense provides two mechanisms from which it estimates
energy expenditure. The first is based on multi-dimensional linear regression.
First, the raw data and quaternion values are represented as a 13 element vec-
tor: Vi = qia, q

i
b, q

i
c, q

i
d, a

i
x, a

i
y, a

i
z, g

i
x, g

i
y, g

i
z,m

i
x,m

i
y,m

i
z where element Vi at time i

contains values qi for the four quaternion components, ai for all three accelerom-
eter axis, gi for all three gyroscope axis, and mi for all three magnetometer axis.
The goal of energy regression is to convert a sequence of the vectors V from up
to three IMUs into a set of identifying features which can be used to correlate
with energy expenditure.
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Fig. 6. Sensors are placed at the wrist, ankle, and waist on the right side of each
participant’s body. The distance between a joint and a limb’s center of mass, RA and
RL, is used in the kinematic model.

For each set of vectors Vi, ..., Vi+w, where w is the size of each window, K-
Sense computes the following features over all columns independently: maximum,
minimum, mean, amplitude and variance. These features are stored in a vector
Fi = F1, F2, ..., Fn, where n is the total number of features generated. Thus,
K-Sense’s signal processing fuses multiple IMU platforms and different types of
data into a single feature vector representing a fixed amount of time.

A model is constructed by computing all feature vectors and assigning a corre-
sponding energy expenditure based on ground truth collected from a metabolic
cart. Figure 5 is an example data trace which illustrates the basic activities used
during our experiments along with corresponding quaternion representations for
each of the waist, wrist, and ankle sensors. K-Sense utilizes a linear regression to
map the multi-dimensional feature vectors to each assigned energy expenditure.
We then utilize these regression parameters to estimate each window’s energy
and thus the total energy expenditure can be estimated by summing all windows.

Kinematic Energy. K-Sense’s second mechanism is based on utilizing angular
sensor data, provided by the IMU, to estimate amount of work necessary to
accomplish that movement. For simplicity, we have placed sensors on the right
side of the body on the wrist, ankle, and waist as shown in Figure 6. We are
currently assuming each limb will be expending equal amounts of energy whether
the arms are moving as a mirror image to each other, or the arms and legs are
moving in a counteracting manner. Ultimately, total energy expenditure is a
function of the angular movement of the arms and legs along with the basal
metabolic rate for the core of the body, the amount of energy expended to
maintain the body’s core functions and is typically based on a person’s height,
weight, and age.

K-Sense estimates energy expenditure where rotational work, W = τθ, is
a function of τ , rotational force and θ, angular displacement. By combining
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momentum, I, and angular acceleration, α, work becomes W = Iαθ. Angular
acceleration, α = αc/r, is a function of tangential acceleration, αc and the radius,
r, from the limb joint to the limb center of mass (Figure 6) resulting in work
being defined as W = I(αc/r)θ. Finally, by combining angular velocity, ω, with
equations αc = ω2r, and I = mr2 we derive

W = mr2ω2θ (1)

where work,W , is a function of mass,m, the radius squared, the angular velocity
squared, and the angular displacement. This equation forms the basis of K-
Sense’s energy estimator.

3.3 Estimating Work

The amount of work done during each time interval needs to be estimated. Par-
ticipants were required to provide their gender, age, height, and weight. The
height and weight of each were used in conjunction with equations derived from
Paolo et al. and Plagenhoef et al. [18,26] to compute the mass and lengths of
individual body parts for each participant and the weight is used to compute
basal energy requirements. Basal energy is the energy needed to carry out funda-
mental metabolic functions, such as breathing, ion transport, normal turnover of
enzymes and other body components. The basal energy consumption of the hu-
man body is approximately 4 kilojoule per kilogram of body weight per hour [5].

The following equation is used to estimate the total amount of energy ex-
pended by each participant

Eestimate = 2xEWrist + 2yEAnkle + zEBody (2)

where the estimated energy is two times the energy measured at the wrists plus
two times the energy measured at the ankles and the energy of the body. Due to
imperfect data and models, we have included a calibration factor, x, y, z, for each
of the energy estimation components which will need to be tuned to minimize
root mean square (RMS) error or total energy error. We utilized a minimax
optimization process to derive the tuned values for x, y, and z, based on the
RMS and end-to-end error for the data traces. Calibration data was taken from
the metabolic measurement device used for ground truth data collection.

4 Experimental Setup

We built three K-Sense IMU bands and used them for a 12-person trial, where
each person was subject to the same experimental protocol lasting approximately
25 minutes. Multiple versions of the K-Sense platform were initially tested before
arriving at our current solution. The K-Sense platforms were attached to the
right side of each subject’s body. Each person performed a series of six different
activities consisting of standing, jumping, laying, sitting, walking (3 mph), and
running (6 mph). Jumping was performed for 30 seconds and all other activities
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Fig. 7. The size of a window is determined by optimizing the average, standard devi-
ation, and root mean square error

for four minutes. The study design and testing was done with the help of a
kinematics lab (Figure 2). We have collected over five hours of data from the
experiments. Due to the short duration of the jumping activity and the lack of
data from the Actigraph system, we exclude it from our evaluation.

As a comparison to the current state of the art, each subject wore an Actigraph
ActiLife version 6 [2] accelerometer during the experiment. This was placed
around the waist according to the manufacturer’s specifications. We calculated
energy expenditure from Actigraph using Actigraph New 2-Regression Model
defined by Crouter et. al. [14]. Additionally, ground truth was determined by a
Parvo Medics TrueOne 2400 metabolic system which consists of a mouthpiece
to collect expired gases and is hooked up to a sensor and computer via a six foot
tube. This is one of the gold standards in metabolic measurement from which
we are able to measure the accuracy of K-Sense and the Actigraph system.

5 Evaluation

The evaluation of the K-Sense platform is composed of two main components.
First, we evaluate the effectiveness of the regression-based approach and second,
an evaluation of the kinematics is provided. In each case, we illustrate the effects
of different trade-offs on the total energy estimation error.

5.1 Regression Modeling

The linear regression model over feature vectors Fn (Section 3.2) is trained using
a leave-one-out cross validation procedure. In other words, the parameters used
for person n were derived from all the other participants’ data and ground truth.
This avoided the need for splitting the testing and training sets into two distinct
groups. The window size was set to 5 seconds which provides an appropriate
error minimization (Figure 7). K-Sense’s regression model produces estimates of
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result in variations in energy predic-
tion error. The wrist sensor alone pro-
vides the most accurate results at 11.2
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sensor too, the error is slightly larger at
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Fig. 9. Different sensor combinations,
quaternion (Q), accelerometer (A), and
gyroscope (G), are evaluated for opti-
mal performance. The quaternions pro-
vide the best performance trade off
for both error and standard devia-
tion. Magnetometers were not utilized
due to interference from the laboratory
equipment.

energy expenditure accurate to 88 percent of the ground truth measurements
and has a standard deviation of 9 percent (Figure 10). In contrast, the current
state-of-the-art system, Actigraph, estimates energy expenditure at 86 percent
with standard deviation of 12 percent. Our system with its simple feature set
provides approximately the same accuracy as Actigraph.

Component Evaluation. Figure 8 shows a comparison of how effective the
sensors, ankle (A), wrist (Wr), and/or waist (Wa), are at estimating energy ex-
penditure in different configurations. Most errors are between 11 and 14 percent
with only the pair of waist and ankle sensors exceeding 15 percent. Addition-
ally, the standard deviations fall into a slightly smaller range. The optimal error
choice based on our data would be to utilize only the wrist sensor; however, the
wrist with ankle sensor provides nearly the same error rate with a lower standard
deviation. This results in a more consistent performance across all trials.

Figure 9 shows a comparison of the effects of different data sources on the re-
gression error rates.We examine the effects of utilizing features from quaternions,
accelerometers, and gyroscopes when combined with the wrist and ankle combi-
nations from above. Magnetometer values are not directly used in the evaluation
because the laboratory environment affects accuracy. The acceleration-based ap-
proach yields the worst performance in terms of accuracy and deviation. This
is similar for any combination which contains the accelerometers. In this case,
features solely based on the quaternions provide the best result at 88 percent
accuracy with a 9 percent standard deviation.
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Fig. 11. The total amount of energy expended by each participant is shown along with
K-Sense’s estimation. In one instance, Person 7, K-Sense significantly underestimates
energy and in most cases, the estimate is similar to ground truth.

5.2 Kinematic Evaluation

The second approach to estimating energy is based on K-Sense’s kinematic mod-
eling. Figure 10 shows that K-Sense is able to achieve an accuracy of 92 percent
with a standard deviation of 5 percent by utilizing only the ankle and wrist
sensors and applying a kinematic model to the data.

Figure 10 shows the error rate of several algorithms along with a comparison
to Actigraph. There are cases such as Person 2 or 8 where both the Actigraph and
regression approaches produce significant error rates. This is due to the partic-
ular motions performed by the test subjects which was unable to be accounted
for by each algorithms. However, the K-Sense kinematic algorithm performed
significantly better with error rates of 1 and 6 percent. In nearly all cases, the
K-Sense kinematic solution produces comparable or better results then the cur-
rent Actigraph system.
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Fig. 12. The size of a window is determined by optimizing the average, standard de-
viation, and root mean square error. In the case of K-Sense’s kinematic approach, this
is 5 seconds.

Figure 11 shows the measured energy expenditure for each of twelve test
subjects and their related K-Sense kinematic estimations. K-Sense overestimates
the energy expenditure for eight people and underestimates the energy for four
participants. In the worst case, K-Sense is off by 18 kilocalories and at best, it
is within 1 kilocalorie. These results indicate that we are able to accurately and
consistently estimate individual energy expenditure.

We compare the effects of window size, due to ground truth occurring at every
breath instead of continuously, on the kinematic solution (Figure 12). We jointly
minimize the average error over all trials, the standard deviation of these errors,
and the average sum of root mean square (RMS) error per person. In this figure,
average error and standard deviation are at a minimum in windows between five
and twenty seconds. The smaller windows produce lower RMS error, thus we
chose a window size of five seconds.

Figure 13 shows an example time series plot of one participant’s data which in-
cludes quaternions, ground truth energy expenditure, and K-Sense’s kinematic
estimate. During sedentary activities, K-Sense’s energy estimation is approxi-
mately 0.34 kilocalories in each five second window and increases as the activity
level increases. When a person is walking, between 850 and 1050 seconds, this
level increases to 0.64 kilocalories per window and further increases to 0.89 while
running. These values are comparable to the ground truth measurements for each
specific activity.

To understand the effects of K-Sense’s kinematic solution, we show the cu-
mulative energy over time for a single trial. Figure 14 illustrates that K-Sense
estimates never exceed 9 kilocalories away from ground truth at approximately
800 seconds into the test. Our model is overestimating energy in this case; how-
ever, there are other examples where we consistently underestimate.

Table 1 shows the average end-to-end error percent and average sum of root
mean square (RMS) error per person for each window. The best end-to-end
error rate of 7.64 percent occurs when utilizing the ankle sensor; however, this
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Fig. 13. The K-Sense estimation follows a similar pattern to ground truth which is
correlated with the quaternion (w,x,y,z) representation

Table 1. Statistics for all experiments when averaged across all participants. K-Sense
(ankle) provides the most accurate result but K-Sense provides a better average error
and RMS error.

Method Average error percent Average sum of RMS error

K-Sense 8.42 0.24

K-Sense (wrist only) 9.07 0.26

K-Sense (ankle only) 7.64 0.26

K-Sense (regression) 11.9 0.20

Actigraph New 2-Regression 14 0.24

is less consistent through time then using both the ankle and wrist (K-Sense).
We believe a good middle ground occurs for the first case with an average error
of 8.42 percent and an RMS error of 0.24. Our regression-based approach was
able to achieve a better RMS error; however, it was much worse in the average
error metric. In both cases, K-Sense or K-Sense (regression) outperform the
Actigraph solution which had an average error of 14 percent. By utilizing the
K-Sense kinematic algorithm, we were able to reduce the measurement error
by over 5 percent. The end-to-end root mean square errors percent for various
devices including Actical (19%), DirectLife (14%), IDEEA (18%), ActiGraph
(26%), and Fitbit (28%), which are larger than K-Sense’s end-to-end root mean
square error at 10.03 percent [16].

6 Conclusions and Future Work

In this paper, we present the K-Sense energy expenditure monitor that can esti-
mate an individual’s energy with a set of wearable bands. The system operates
by measuring the angular velocity of limbs using a low-cost IMU sensor platform.
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Fig. 14. Energy expenditure is cumulative over time and in this example, K-Sense’s
estimation tracks ground truth data while consistently overestimating energy. At the
worst point, K-Sense is off by 9 kilocalories before converging to 1.6 kilocalories at the
end of the trial.

We evaluate this system in a metabolic lab with twelve subjects, each perform-
ing the same controlled experiment, resulting in approximately five hours of data
and 3,000,000 individual data samples. Our results exceed the Actigraph system
by over 5 percent, reducing the total error from 14 percent to about 8 percent.
Accurate energy expenditure monitoring will be the basis for many future in-
tervention technologies such as an assessment of daily activity in a free living
scenario or as a basis for just-in-time interventions for a variety of diseases in-
cluding obesity and diabetes. In the future, we envision a kinematic solution that
is integrated into common wearable platforms such as a smartphone, shoes, and
watches. Additionally, we are continuing to work on identifying specific types
of activities based on the kinematics and associated those movements with in-
creases in work such as carrying an object, climbing stairs, or the efficiency of
individual person’s movement.
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35. Wyss, T., Mäder, U.: Energy expenditure estimation during daily military routine
with body-fixed sensors. Military Medicine 176(5), 494 (2011)



KinSpace: Passive Obstacle Detection via Kinect

Christopher Greenwood1, Shahriar Nirjon1, John Stankovic1,
Hee Jung Yoon2, Ho-Kyeong Ra2, Sang Son2, and Taejoon Park2

1 University of Virginia, Computer Science Department
{cmg7t,smn8z,stankovic}@virginia.edu

2 Daegu Gyeongbuk Institute of Science and Technology (DGIST),
Department of Information and Communication Engineering

{heejung8,hk,son,tjpark}@dgist.ac.kr

Abstract. Falls are a significant problem for the elderly living indepen-
dently in the home. Many falls occur due to household objects left in
open spaces. We present KinSpace, a passive obstacle detection system
for the home. KinSpace employs the use of a Kinect sensor to learn the
open space of an environment through observation of resident walking
patterns. It then monitors the open space for obstacles that are poten-
tial tripping hazards and notifies the residents accordingly. KinSpace uses
real-time depth data and human-in-the-loop feedback to adjust its under-
standing of the open space of an environment. We present a 5,000-frame
deployment dataset spanning multiple homes and classes of objects. We
present results showing the effectiveness of our underlying technical so-
lutions in identifying open spaces and obstacles. The results for both lab
testing and a deployment in an actual home show roughly 80% accuracy
for both open space detection and obstacle detection even in the pres-
ence of many real-world issues. Consequently, this new technology shows
great potential to reduce the risk of falls in the home due to environmen-
tal hazards.

Keywords: fall prevention, object detection, obstacles, safety, Kinect.

1 Introduction

Falls account for a large number of the injuries sustained in the home. Var-
ious studies estimate that from 33-52% of adults aged 65 or greater have at
least one fall per year [2,13]. These falls are the leading cause of injury-related
hospitalization for this population [13]. Behind motor vehicles, falls are the sec-
ond largest contributor to the economic burden of injuries in the United States,
and amount to almost $20 billion in estimated annual cost (about 1.5% of the
national healthcare expenditure) [8].

It has also been shown that falls in the elderly population can largely be
attributed to trips [3,20]. Researchers at Colorado State University estimate
that about one third of falls in the elderly occur due to environmental hazards
in the home, the most common of which is tripping over objects on the floor [20].
This gives clear motivation for the development of a system to assist in keeping
living spaces free of obstacles in an effort to prevent falls.

B. Krishnamachari, A.L. Murphy, and N. Trigoni (Eds.): EWSN 2014, LNCS 8354, pp. 182–197, 2014.
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Most existing solutions deal with the detection of falls as they occur, not
the detection of environmental factors that cause falls. This, of course, does
not actually prevent falls. Some research has been done in systems that detect
obstacles to prevent falls, however existing solutions to this approach require that
the user wear a camera system on the body. A system that is statically installed
in the home and requires no repeated user input represents a significantly more
scalable and user-friendly approach.

This paper makes the following contributions:

1. KinSpace, a passive, automatic, Kinect-based open space detection, obstacle
detection, and alert system

2. A set of system features that address real-world complicating factors involved
with in-home deployments of Kinect systems.

3. A lab evaluation of KinSpace that fully analyzes the accuracy of both open
space and obstacle detection.

4. An deployment of KinSpace in two homes that demonstrates the handling
of real-world issues, showing 80% overall obstacle detection accuracy.

5. A large deployment data set spanning several rooms and multiple classes of
objects, with roughly 5,000 detection frames.

2 Related Work

Our work lies at the intersection of several existing bodies of research.
One area is object segmentation. These systems perform processing on depth

data to gain additional information about the scene. Silberman [19] presents
work on scene segmentation, in which individual objects are segmented from the
background of a scene. Greuter et. al. [6] use depth information to control a robot
for the Eurobot Challenge, in which the robot must navigate obstacles while
moving objects about a predefined playing space. Similar projects leverage depth
information from the Kinect or similar sensors in the field of object tracking for
home healthcare [12].

When considering the application area of fall detection and prevention, exist-
ing work has primarily focused on detecting a fall after it has occurred. This has
been done in various ways. Many systems have been developed to perform fall
detection using wearable sensors [5,13,15,18]. Some systems employ the use of
smart phones to reduce friction with the user [4,7]. Other systems, such as Life
Alert, employ the user as a sensor and provide a simple notification system to
alert others about a fall [10].

Work has been done in the area of fall prevention using a depth camera,
mainly in the assistance of visually impaired users. Bernabei et. al. [1] present
a real-time system in which the depth sensor is attached to the user and the
system notifies the user through earphones of obstacles in his immediate path.
Zöllner et. al. [23] propose a similar system that uses vibrotactile feedback to
communicate obstacle notifications to the user.

Our work is also influenced by the research area of general home monitor-
ing. Well Aware Systems [21] has developed a comprehensive monitoring system
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aimed at the elderly and disabled living independently. Wood and Stankovic [22]
propose AlarmNet, which uses a similar wireless sensor network to learn resident
patterns to further inform healthcare providers. We hypothesize that KinSpace
could be added as one element of such deployments.

3 Obstacle Detection: The Problem and Issues

We define obstacle detection as the process of monitoring a room and detecting
objects that are likely to cause a fall. An obstacle is likely to cause falls because
of its size and position in the room relative to where individuals routinely walk.
An obstacle detection system detects any such objects and notifies the proper
person in the event of detection so that appropriate action can be taken to
minimize risk of falls.

This problem is difficult for several reasons. First, it is difficult to identify
the ”open space” where misplaced objects would be considered falling hazards.
Second, once the open space is defined, we have an equally complex problem of
determining which elements in the scene are non-obstacles (floor, background,
furniture, large movable objects such as a chair, etc.) and which are true obsta-
cles. This understanding of which objects are truly obstacles can also potentially
change over time.

Intervention Strategy: When an obstacle is detected by the system as a risk
to the resident, an intervention should take place to minimize the risk of falling.
This intervention could be a notification to the resident (visual, auditory, techno-
logical, etc.) or a notification to another individual such as a healthcare provider.
There are several factors that affect the success of these different modalities of
intervention, such as the physical/mental condition of the resident, the reaction
time of non-residents, and the user’s reaction to false alarms.

False Alarms: False alarms are a problem that must be handled in any safety
system. Particularly in this type of system, if the system warns about numer-
ous obstacles that happen to not be obstacles, the user will lose confidence in
the system and any caregivers notified of obstacles may not take the proper
precautions.

Real-World Environment: There are several real-world factors that make the
problem of obstacle detection more complex in deployment than in lab testing.
For in-home deployment, the open space may not be as rigidly defined as in
lab environments. It may also change over time due to rearranging furniture,
addition of permanent objects, changing travel patterns, natural settling of ob-
jects, or sensor drift. A robust obstacle detection system must be flexible in its
definition of open space so as to evolve over time.

Another complicating factor about real-world deployment is that different
people and different scenarios lead to different objects being considered actual
obstacles. For instance, if a pair of shoes is left in the middle of a hallway with
no residents currently in the room, we might all agree that this is an obstacle
and potential falling hazard. But what if a resident comes into the room and
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sets a shopping bag down temporarily? Some might consider this an obstacle
because the user may turn around and forget the bag is there. But a user that
remembers the bag is there may not want to be notified each time that obstacle
is detected.

Real-world environments also present the system with a much more varied set
of objects and detection patterns. Even if a system is extremely reliable in its
detection of large, rigid obstacles, there is inherent complexity introduced when
the obstacle is smaller or non-rigid (a towel, an empty shopping bag, or even a
spill). Obstructions and occlusions are complicating factors that any real-world
system must address.

There is also noise that occurs in real-world sensor data that makes obstacle
detection much more difficult. For instance, in deployment, the Kinect sensor
may not detect the presence of humans in the scene depending on their distance
from the sensor, their angle with respect to the sensor, and the angle at which
they enter the scene. This may lead the system to consider parts of a user’s
person as potential obstacles. Noisy depth data and irregular objects may also
cause the system to incorrectly segment a single object into multiple, further
complicating the problem of determining a true obstacle from background.

4 KinSpace

KinSpace uses a statically-installed Microsoft Kinect sensor to perform open
space and obstacle detection in a room so as to minimize the risk of falls. This
section discusses the process by which KinSpace learns the open space in the
scene and then detects obstacles in that environment.

4.1 System Overview

Each KinSpace system (one or more per room to account for sensor range) is
made up of a Kinect sensor, a processing unit (laptop or embedded processing
device), and a GUI feedback unit on a laptop. At installation time the system is
placed in training mode through indication on the feedback unit. During train-
ing mode, the processing unit receives skeleton data from the sensor. It uses
this skeleton data to record where users walk in the environment as well as
information about the orientation of the floor relative to the sensor.

The user then places the system in detection mode. In detection mode, the
processing unit receives depth stream data from the sensor and user input from
the feedback unit. It detects obstacles in the scene and adjusts its understanding
of the open space based on detection results and user input. It then passes
detection results to the feedback unit for notification to the user.

4.2 Algorithm Description

Training - Data Collection: The sensor is installed at its desired location and
enabled in training mode. KinSpace then monitors the room using the skele-
ton data stream from the Kinect sensor [11]. Whenever a skeleton is detected,
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KinSpace checks the tracking state of each foot joint for each skeleton and records
the position information for all foot joints that are marked as Tracked by the
Kinect. The Kinect also provides an estimate of the floor plane equation (in
a sensor-centric coordinate system), which KinSpace saves for normalization of
these skeleton points.

Training - Data Processing: When the user places the system in detection
mode, training data collection is complete, and post-processing occurs to pro-
duce the final training dataset. We use the latest floor plane equation to redefine
the coordinate system for all depth points. The new coordinate system has its
origin on the floor directly beneath the Kinect and a y-axis that is normal to
the floor plane. KinSpace interprets the y-coordinate of a point as its height
off the ground, and uses the Euclidean distance (considering only the x- and
z-coordinates) between two points to represent the lateral distance (bird’s eye
distance) between those points. KinSpace calculates a transformation matrix
(rotation and translation) that converts all Kinect coordinates into this new co-
ordinate system. All foot points captured during data collection are transformed
to generate a normalized training set of foot points. The system filters this set
of projected points, removing any whose height is above a certain threshold. A
large height value for a foot point indicates either that the user’s feet were not
on the ground in this frame or that a measurement error occurred. In either
case, the foot point is probably not a good representation of the open space in a
room. For example, if the user is lying on a bed, we do not want foot points to be
captured and added to the open space. The transformation matrix for the scene
and the resulting set of filtered projected foot points gives us the full training
set to be used during detection.

Detection - Lateral Filter: In the detection phase, KinSpace captures and
analyzes one frame per second. At each frame, all depth pixels are converted
to the sensor-centric coordinate space by Kinect software, producing one 3D
point per pixel. KinSpace then transforms these points into the floor-centered
coordinate space. The system computes the lateral distance between each point
and its nearest neighbor in the training set. That lateral distance is computed
using a simple 2D Euclidean distance calculation, ignoring the y-coordinate.
This results in a distance that does not take relative height of the objects into
account. Any point with a lateral distance less than the lateral distance threshold
is considered an obstacle pixel candidate.

Detection - Vertical Filter: After filtering by the lateral distance threshold,
the set of obstacle pixel candidates will contain not only obstacle pixels, but
also actual floor pixels in or near the open space. To account for this, the system
filters the candidate set by the height of the pixel relative to the floor. Any pixel
that has a height less than the vertical distance threshold is discarded. This gives
us a candidate set of pixels that are within a specified distance of the open space
and are above a specified height.

Detection - Cluster and Size Filter: This set of candidates is likely to contain
some noise, or pixels that are not part of true obstacles. We make the assumption
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that actual obstacles are composed of mostly connected pixels, and that noise
in the candidate set is mostly be made up of individual pixels or small patches
of connected pixels. The system clusters candidate pixels into disjoint sets of
pixels (segments) using binary connected component filtering [16]. To remove
noise, KinSpace then filters the segment set to remove all segments whose pixel
count is less than the object size threshold. All objects that remain are not just
laterally close enough to the open space and high enough, but contain enough
connected pixels to be considered a true obstacle.

Detection - Output: At every frame, the obstacle detection algorithm outputs
this set of objects, each of which is made up of a set of pixels in the depth frame.
This allows us to estimate the size of each object as well as its approximate
location in the room.

4.3 Real-World Considerations

The algorithm described above performs very well in idealistic conditions. How-
ever, as discussed in Section 3, there are several real-world factors that make the
problem of obstacle detection much more difficult in deployment, and KinSpace
has several additional features implemented to address these factors.

The first real-world factor that must be addressed is false positives. KinSpace
gives the user the ability to actively acknowledge an alert and provide feedback
to the system. When an alert is raised, the user can either remove the true
obstacle or push a button on the feedback unit that indicates to KinSpace that
whatever is being detected at that time is not a true obstacle. KinSpace then
adapts its detection process through what we call baseline filtering. When a false
positive has been indicated by user feedback, KinSpace takes a snapshot of the
pixels that were indicated as obstacle candidates during the frame in question.
Then for future detection, candidate pixels in the baseline filter are discarded
from the candidate pixel set. One possible use case for this would be if a resident
places a new piece of furniture in the room. KinSpace would likely detect this
obstacle and the user would be alerted to it. Once the user notifies KinSpace
that the piece of furniture is meant to be there, all of the pixels detected as part
of that chair are ruled out from future consideration, and the piece of furniture
effectively becomes part of the background.

Sensor drift and natural settling of the environment lead to additional false
positives. KinSpace provides more continuous false positive reduction through
baseline evolution so as to minimize false positives caused by these phenomena.
When KinSpace is first placed in detection mode it performs an initial baseline
filtering to remove any false positives in the environment at startup time. This
could occur if the user stepped particularly close to a background object, for
instance. After this initial calculation, baseline evolution begins. At each detec-
tion frame, KinSpace has knowledge of its current baseline filter. It computes the
obstacle candidate segments as described in Section 4.2. It then scans these can-
didate segments searching for segments that are (1) adjacent to existing baseline
regions, and (2) small in segment size relative to the size of the adjacent baseline
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region. Pixel segments that satisfy these two conditions are considered not as
obstacles but instead portions of the evolving baseline. These pixel segments are
added to the existing baseline (and thus not detected as obstacle pixels for the
current and all subsequent frames).

To account for objects being split into multiple discontiguous pixel segments,
KinSpace uses isotropic dilation to fuse segments that are close to one another
into a single detected obstacle. The more prevalent problem with signal noise
is that users can be erroneously detected as obstacles themselves. To solve this
problem, we implement a temporal consistency process. After obstacles are de-
tected in the current frame, KinSpace checks each obstacle for temporal consis-
tency with the previous N frames (N being defined by the temporal consistency
factor). Temporal consistency is satisfied when a given obstacle in frame 1 and
any obstacle in frame 0 have similar size (relative to the size of the object it-
self) and similar location (relative to the size of the frame). An obstacle is only
considered a true obstacle if it maintains temporal consistency with all previous
N frames (we use N=2 in our experiments). There is a tradeoff here in that
when an object is initially placed in an open space, there is a slight delay as
the object establishes temporal consistency with previous frames, during which
time the obstacle is not detected. However, we found this to be a reasonable
tradeoff since the intended use of KinSpace is detecting objects that have been
misplaced, and are thus not in motion.

The final real-world factor we address is the position of detected obstacles
relative to users in the scene. It is a trivial task to ensure that any pixels de-
tected as obstacles do not lie on the users themselves. But we also do not want
KinSpace to detect an obstacle when a user places an object down with the
intention of picking it right back up. Because of this desired behavior, we imple-
ment the following protocol. When an obstacle is detected and there are valid
skeletons detected in the scene, KinSpace delays an alert about this obstacle
until one of two conditions are met: (a) the user moves a certain distance away
from the detected obstacle, or (b) a certain period of time passes without the
obstacle being moved. Both the user distance threshold and the time threshold
are configurable parameters. This protocol aims to reduce frustration with the
system by reducing false positives that occur when the user is fully aware of his
or her placement of objects in the room.

5 Evaluation

We evaluate KinSpace using an extensive set of controlled lab experiments and
several in-home deployments.

5.1 Lab Experimental Setup

Our lab experiments involve placing a Kinect in the lab and marking off a portion
of the visible floor space as an open area. This allows us to test the effectiveness
of the system at detecting objects within the open area while ignoring objects
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that are outside the open area. After designating the open area, we actively train
the system by having an experimenter traverse the open area by foot.

We test the system under three different floor layouts (see Figure 1). These
layouts simulate those we would expect to see in a real deployment. Layout A
is the simplest of the three, defined by a rectangle in the center of the frame of
view with no obstructions. This is similar to what one would see in a hallway
that is generally kept with little furniture. Layout B also has no obstructions,
but the open area is defined as an L shape instead of a simple rectangle. For
layout C, we started with the same simple rectangle as in layout A, but placed
a table on one side. Users are forced to walk around the table when navigating
the open space, and thus we expect to see the open space omitting space under
the table. The sensor has a view of both under the table and the floor on the
opposite side of the table to test detection accuracy under both cases.

After the training phase, we place obstacles inside and outside the open area
to test the detection accuracy of our system. We capture 3 individual frames
with each configuration of objects in the scene. Our first experiment tests the
accuracy of the system at adapting its detection to the three different layouts.
We do this by placing a series of objects about four inches in height at distances
between seven and fourteen feet from the sensor throughout the open space. We
visually inspected the detection results to ensure that the detected objects were
not disjoint from the actual objects in the scene. We then conduct an experiment
to quantify the maximum usable distance of the system by training on layout A
as well as space directly behind layout A. We vary the distance from the sensor
and at each distance, place multiple objects both inside and outside the open
area. Finally, we perform an analysis of the accuracy of the system as the size
of the object changes. Because of the measurement resolution of the Kinect and
the lateral and vertical distance thresholding done by the system, we know that
at a certain point an object is too small to detect. By using variably sized items,
we aim to quantify the effect of these parameters.

5.2 Lab Results

Open Space Calculation: Figure 1 depicts the open space calculated by
KinSpace when trained under each layout. In these images the bright areas
represent portions of the scene that that KinSpace determines to be open space.
We see that in each layout, KinSpace is able to learn nearly 100% of the open
space through active training. We note that each calculated open space region
also includes some overlapping onto non-open space areas - we define this as the
false positive open space. This is due to the lateral distance threshold, which we
set as 0.2 meters for all detection experiments. Decreasing this threshold would
lead to less false positives caused by the border around the open space, but also
leaves the potential for gaps in the true open space. We discuss the effect of this
parameter in more depth in Section 5.3.

It is clear from inspection that the system adapts its understanding of the
open space based on the foot patterns of users during training. Additionally, we
note that in Layout C, the system effectively excludes portions of the scene that
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(a) Layout A (b) Layout B (c) Layout C

(d) Open space A (e) Open space B (f) Open space C

Fig. 1. Figures (a)-(c) show the three layouts defined for our lab experiments. Figures
(d)-(f) depict the open space calculated by KinSpace when trained under each layout.

(a) Layout A (b) Layout B

(c) Layout C with objects under ta-
ble

(d) Layout C with objects on oppo-
site side of table

Fig. 2. The layout used to train the system dictates which objects are detected as
obstacles by KinSpace
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are not true floor space even if they are close to the walking path of the user
(the legs of the table).

Effect of Layout: In Figure 2a, we see that under Layout A, the system suc-
cessfully detects the four objects that lie within the defined open space of the
environment while ignoring objects placed outside this open space. In layout B
(Figure 2b), KinSpace again is able to detect objects inside the open space and
discard objects that lie in areas not covered by the new training region. Under
Layout C, we see that the system is effective both at discarding objects that
lie underneath the table (thus outside of the open space) as well as correctly
detecting obstacles on the opposite side of the table.

Effect of Distance from Kinect: This analysis is performed on layout A.
We trained the system using a large area and attempted to detect objects as
they were moved further from the Kinect. From Figure 3a we observe consistent
detection accuracy in the range of 7-13 feet from the sensor, after which point
the accuracy decreases sharply. This can be attributed to the maximum depth
sensing distance.

Effect of Size of Object: The large objects used are roughly 4-5 inches in
height, while the small objects are roughly 2-3 inches in height. From Figure 3b
we observe that as the size of the object decreases, the effective detection distance
decreases as well. This makes sense - the smaller an object is, the less distance it
has to be from the sensor before the number of pixels it occupies falls below the
threshold. As the object gets smaller it will also fall below the vertical distance
threshold, which was set to roughly 1.5 inches for our experiments. A possible
improvement to the current system would be to vary the object size threshold
based on how far away the object is or use additional Kinect systems in the
room.
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Fig. 3. Controlled lab experimentation that evaluates the effect of distance from the
sensor and object size on detection accuracy

5.3 Deployment Experimental Setup

In the second phase of our evaluation, we deploy the system into two home
environments. The first goal of these deployments is to evaluate how well the
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system can estimate the open space of a room by using passive training only. We
install KinSpace in the room and allow it to train while residents of the home
go about their normal activities. The system uses the activities of the residents
to determine which portions of the room should be deemed open space.

We then test the system’s calculation of the open space in the scene. A trial
participant uses a color image of the scene to hand label the perceived open space,
which provides us with ground truth. We compare the open space determined
by KinSpace to this ground truth to determine how well KinSpace calculates the
open space. An analysis is also done on this data to test the effects of the lateral
distance threshold parameter. We do so by varying the parameter and testing
the accuracy of KinSpace’s open space determination with respect to ground
truth.

The second goal of our deployments is to test the system’s detection of ob-
stacles in a real-world environment. We do so using a scripted set of actions
performed by a test user over the course of several minutes (see Figure 4). The
script is performed five times for various classes and sizes of objects. We test
small objects that are likely to cause tripping, such as water bottles and shoes,
as well as large objects that a resident may run into, such as chairs and light
fixtures. We hand label each trial with the true number of obstacles in the scene
at each frame and then compare the output of KinSpace to this ground truth.

1. Walk in, drop object 1, walk out
2. Walk in, pick up object 1, drop object 2, walk out
3. Walk in, drop object 1, walk out
4. Walk in, pick up object 2, drop object 3, walk out
5. Walk in, drop object 3, walk out
6. Walk in, pick up all objects, walk out

Fig. 4. Deployment experiment script used for all trials

5.4 Deployment Results

Open Space Calculation: We allow KinSpace to train on the natural move-
ments of residents throughout the home. We then observe the accuracy of the
calculated open space with respect to ground truth, as the number of frames
considered by KinSpace increases. We also vary the lateral distance threshold
to observe the effects of this parameter on the resulting open space calculation.
One would expect that as the lateral distance threshold increases, passive train-
ing allows the system to learn more of the ground truth open space, but also
increases the false positive rate.

The left graph in Figure 5 shows the portion of the true open space that is
captured in the system’s determination of open space as the number of frames
considered increases. The right graph depicts the false positive rate as the system
considers more frames. Note that the number of considered frames includes only
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Fig. 5. Accuracy of passive open space detection, showing true positive and false pos-
itives rates as the number of training frames increases

those in which a valid skeleton was detected. We observe several distinct points
in the training process where there is a sharp spike in the portion of the open
space that is recognized by the system - these spikes represent times when a
resident moved into a portion of the open space for the first time. These spikes
in the system’s knowledge of the open space come with a smaller increase in
false positives. As the resident moves about that space, additional knowledge of
the open space slows.

After observing these results, we decided to use a lateral distance threshold
of 0.2 meters for all experiments, as it offered the best tradeoff between true
positive and false positive rates.

Obstacle Detection: We first present two examples of a scripted trial. Over
each trial, KinSpace monitors the environment and indicates the number of
obstacles it detects in the scene. We present this output over time, along with
the hand-labeled ground truth.
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Fig. 6. Examples of scripted trial output. (a) Note very high detection accuracy except
for transitions when user is actually manipulating objects; (b) An object is missed after
Event 5, likely due to isotropic dilation.

In the first example (see Figure 6), for sections where the system is in a stable
state and the user is not in the process of dropping or picking up an object,
the system proves to be extremely reliable. The main source of detection error
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occurs when a user is near the obstacles in question, which causes objects to
be in motion, occlusion of objects, and the user’s body to be considered as part
of an obstacle. Such factors cause temporal consistency to be broken and the
system fails to recognize a stable obstacle.

Wealsopresent an examplewhere even ina stable state, the systemhadproblems
detecting all objects in the scene. In this trial, the system is very accurate until
Event 5, at which time it fails to detect a third object in the scene. Upon visual
inspection of the output, we see that in a case like this, two of the objects are close
enough to be considered the same object after applying isotropic dilation on the
object segments.Though this is a potential source of inaccuracy of the system, since
themain goal of the system is to detect the presence of obstacles at all, the confusion
between one obstacle and several obstacles is not a critical flaw.
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Fig. 7. (a) KinSpace detected most objects with high accuracy, but had trouble in
particular detecting bottles of water; (b) Over all object classes, there was a consistent
degradation of detection accuracy as number of objects increased

We next present aggregate results of running the scripted deployment across
multiple object classes, for 5 trials per object class. We first examine the effects of
the class of object on the accuracy of detecting the correct object count, regardless
of what the true object count is. We observe that KinSpace performs very well for
a wide variety of object classes, but struggles on certain classes, particularly water
bottles. This is likely due to the relatively small size of the water bottle combined
with its translucence, which causes Kinect data errors.We next examine the effect
of the number of objects in the scene on detection accuracyacross all object classes.
We saw consistently poorer detection accuracy in the frames in whichmore objects
werepresent.This is likelydue to anumber of factors.First,withmore objects in the
same amount of area, it ismore likely that occlusion (an external factor) or isotropic
dilation (an internal factor) causesKinSpace to fuse two objects and consider them
one, causing an erroneous detected object count. Second, the majority of frames in
which a human was manipulating the scene were those in which the ground truth
object count was greater than one. If we were to disregard these frames completely
and focus on stable state wewould likely see an increase in detection accuracywith
multiple objects.
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Figure 8 shows a confusion matrix between the ground truth obstacle count
and the obstacle count detected by KinSpace for all object classes and trials (over
5000 frames of deployment data). We observe over 79% detection performance
overall and note that when an error does occur, KinSpace is more likely to detect
fewer objects than actually exist in the scene. This gives us confidence that if
KinSpace alerts the user to one or more object in the scene, these are actually
obstacles and not false positives.
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Fig. 8. Confusion matrix incorporating 5000 frames of deployment data. Error cells
in the bottom left portion indicate false negatives (18.8%), while error cells in the top
right indicate false positives (1.7%).

6 Discussion

KinSpace shows promising results both in lab and in deployment. However, there
are several limitations of the system, as well as additional considerations that
would have to be addressed in a production system.

One limitation is the size and profile of an object that can be detected by
KinSpace. Because KinSpace applies a threshold to both an object’s height and
the number of contiguous pixels, objects that are small enough will not be de-
tected. We adjusted the parameters of the system to minimize the effect and
note the effect of this limitation in our results section. Furthermore, we note
that if an object is small enough to be filtered out by the thresholding process
of KinSpace, it is likely that its depth profile will be lost in the measurement
accuracy of the Kinect sensor itself. This indicates that although object size is
a limitation of KinSpace, it is a limitation that is (to some extent) imposed by
the Kinect itself and applies to any similar system.

Another limitation of the system is the inherent inaccuracies that occur when
a user is in the process of manipulating objects in the scene. As an object is
being picked up or set down, there is often a 1-2 frame range on either end of
the event during which time detection is inaccurate. Though this is a source
of error, this is not a major limitation with respect to the primary motivation
of KinSpace - to notify users about the presence of obstacles that may cause
falls. Though the number of obstacles is helpful, the key information we want
to capture is whether or not an object is there at all. As such, the confusion
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between two and three obstacles, for instance, is a minor issue. Also, KinSpace
is primarily useful when a user forgets that an object has been placed in an
open space. In fact, a production system would likely not notify the user of an
obstacle for a certain period of time, during which time we can assume the user
intends for that object to be there. Because of this, we felt it best for the system
to default to not detecting obstacles when in doubt. This reduces the number of
false positives and ensures that when KinSpace detects an object in the scene,
it has a relatively high level of confidence that there is truly an obstacle there.

This work develops a technology whose motivation is fall prevention. We de-
velop and analyze the properties of the technical solution. In the future, we would
like to extend current technology to address additional object classes such as flat
objects and spills. We would also like to perform additional analysis to evaluate
the user feedback aspect of KinSpace as well as its potential to prevent falls.

7 Conclusion

We have presented KinSpace, a system that uses the Kinect sensor to observe
an environment and learn the open space. It then monitors that open space
for the presence of obstacles and notifies the resident if an obstacle is left in
the open space. KinSpace employs a feedback loop with the user and with its
own output to allow it to evolve its understanding of the objects in the scene.
We have tested KinSpace extensively in lab to prove the potential of using the
Kinect sensor for obstacle detection in open spaces. We have also presented two
in-home deployments and produced a large data set that spans multiple rooms
and numerous object classes (5,000 total frames of testing data). Through this
deployment experimentation we have shown an obstacle detection accuracy of
80%. We have shown a very low false positive rate, proving the reliability of
KinSpace as a tool for notifying residents about falling hazards. KinSpace is
shown to be an easily-deployable, low cost system that helps keep open spaces
clear in the home, potentially preventing falls and injuries for residents.
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