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Abstract In the present work we propose two bid-price based heuristic approa-
ches to tackle a stochastic price-oriented demand of air cargo transportation. We
assume fares are non-decreasing over time: the earlier the booking, the cheaper the
fare. We consider a single-leg flight without overbooking practices or no-show
customers. The proposed framework is suited for air cargo carriers providing a
unique product to all its price-oriented customers. The business sustainability
relies on a significant reduction in fares that would outperform other benefits, an
earlier time of delivery above all. Nevertheless, our modelling framework may be
easily extended to other modes of cargo transportation, such as maritime, where a
given shipment receives the same service regardless the paid fare, which, in turn,
only depends on the time the booking request is made.

Keywords Heuristics � Revenue management � Capacity management �Air cargo �
Dynamic programming � Bid-price

1 Introduction

Airlines traditionally prevent high fare paying passengers from buying down into
lower fare classes by associating restrictions to each fare level. They make
different fares correspond to different products whose characteristics fit the needs
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of only one class of customers. This fare policy is reasonable in presence, for each
class, of a product-oriented demand, interested to a specific fare product and
independent of the availability of cheaper services [25]. The emergence of
low-cost carriers shows that this assumption of independent demand segments is
becoming more and more unrealistic. Indeed, low-cost carriers offer a single type
of product to price-oriented passengers that ignore ticketing restrictions and
purchase solely on price [6]. Also, these passengers typically exploit the poten-
tiality of the Internet-based distribution channels to compare the fares of several
different airlines.

Precise modelling of customer choice behaviour has been a subject of growing
interest in recent years [7, 16]. In fact, the application of pricing algorithms that
assume independent demand to a non-segmented market gives rise to the spiral-
down effect: customers willing to pay a higher fare but accepting a lower one if
available are recorded as lower fare demand when the cheaper product is available.
Then, forecasts built on these cheaper product sales underestimate demand for
higher fare levels and more low fare products than necessary are made available
and, consequently, revenues spiral down [10]. To contrast such an effect, the recent
literature proposes pricing policies based on Revenue Management (RM)
approaches that segment passengers according to their willingness to pay instead
of their compliance to restrictions [27].

In the present work we study the application of these RM techniques to the air
cargo industry. Specifically, we propose and analyse the performances of two bid-
price based heuristic approaches to tackle a stochastic price-oriented demand of
cargo shipments.

The RM approaches are essential tools for cargo shipment as the demand in this
industry is in general price-oriented, although some segmentation of the demand
by offered product still exists. The same shipment may be charged differently
depending on the guaranteed delivery time (express delivery vs. standard deliv-
ery). In addition, some airlines, e.g., Lufthansa and American Airlines, offer
further optional product features that include boarding priority, pick-up time and
location at destination.

The air cargo industry accounts for tens of millions of dollars a year in revenue
and, according to the International Air Transport Association (IATA), has stabi-
lised and even shown some weak signs of reprise in certain markets (http://www.
iata.org/pressroom) after the recession following the 2008 crisis.

Price oriented demand has been a much explored field of study in RM in recent
years. In particular, Westermann [27] describes how to integrate revenue man-
agement and dynamic pricing concepts based on willingness to pay at airlines with
different fare structures. Hopperstad and Belobaba [12] introduce seat inventory
control schemas in the single-leg case when demand is not independent from fare
class. They forecast the total demand at the lowest fare and repartition it to the
different higher fare classes by taking into account the passengers’ willingness to
pay higher fares. Thus they are in the position to compute the booking limits using
traditional algorithms. Fiig et al. [11] address the coexistence of restricted and
unrestricted fare structures in markets sharing the same leg(s) on a network. Using
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simulations, Cléaz-Savoyen [9] shows that the simultaneous application of the
approaches described in Fiig et al. [11] and Hopperstad and Belobaba [12] allows a
partial mitigation of the spiral down effect in certain markets. Unfortunately, RM
approaches used for passenger flights cannot be directly applied to cargo flights.
Indeed, Kasilingam [14], Billings et al. [5] and Slager and Kapteijns [22] point out
that the structure of demand and services in the two industries present many
differences. For example, each passenger requires just one seat, while each cargo
shipment consumes capacity in terms of both weight and volume. Passenger
demand presents seasonality patterns while the cargo one is usually more erratic,
hence the former is easier to forecast than the latter. The number of passenger
customers is usually greater than cargo customers. However, the latter ones make
larger bookings, so the behaviour of few of them can significantly influence the
prices paid by other customers, a condition which is generally not true for
passengers.

In bid-price RM policies, threshold, or ‘‘bid’’, prices are set for each unit of
resource. This kind of price setting was first introduced for airlines’ seat booking
by Smith and Penn [23] and Simpson [21]. Since then, they have become widely
used due to their conceptual simplicity and easiness of implementation. Talluri and
van Ryzin [24] give a comprehensive overview of bid-price techniques pointing
out the difficulties arising in determining the right bid. Generally speaking
determining the optimal bids may be computational cumbersome, even because
they may change dynamically as the flight departure times approach. For this
reason, Adelman [1] proposes to compute dynamic bid-prices through a Linear
Programming (LP) approximate model. A drawback of this approach is that the
number of variables grows exponentially. Bijvank et al. [4] aim at improving
robustness towards uncertainty in the demand. To this end, they propose three
heuristics that exploit scenario-based stochastic programming methods. Pricing
policies for a price-oriented demand are also determined through dynamic
programming approaches. As an example, Zhang [28] introduces a dynamic
programming decomposition approach and shows that it outperforms static
bid-fares one even when bids are frequently recomputed. Popescu et al. [19] use a
dynamic programming approach to determine the bid-prices in presence of large
shipments. Differently, in presence of small shipments they use a bid-price
approach whose bids are obtained by approximating the booking requests with
passenger arrival models.

Different authors discuss the consequences of imprecise demand models or
incomplete demand data in the air cargo industry. Totamane et al. [26] point out
that imprecise demand forecasting causes most cargo airlines to operate at an
average ratio between the utilized capacity and the total capacity, the so-called
load factor, of 50–70 %. To overcome this limit, they propose a learning
algorithm, based on a producer/consumer model, which is able to deliver a 9 %
revenue improvement. Luo et al. [17] address the problem of defining overbooking
policies that take into account that most booking reservation systems do not keep
track of unfulfilled requests. In this framework, they develop an overbooking
model that, under appropriate assumptions, they prove providing the optimal
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overbooking limits. Amaruchkul et al. [3] study the role of asymmetrical infor-
mation on customers’ demand, operating cost, margin and reservation profit. They
investigate under which conditions the maximum combined profit of the involved
agents can be obtained in the presence of such an asymmetry. The same authors, in
a previous work [2], address uncertainty in package volume, whereas Huang and
Hsu [13] and Chew et al. [8] deal with uncertainty in the supplied capacity.

The remainder of this paper is organised as follows. In Sect. 2, we formulate the
problem of interest using dynamic programming. In Sect. 3, we introduce two
heuristic bid price-based approaches. In Sect. 4, we describe the experiments we
carried out to compare the performances of the algorithms and we address the
analysis of the results. Finally, in Sect. 5, we draw some conclusions.

2 Dynamic Programming Formulation

In this section, we formulate the problem that a revenue manager faces when he
tries to maximise a cargo flight expected revenues as a dynamic programming
problem.

The revenue manager works within a single user-class framework, i.e., demand
is not segmented or restricted. We assume that there exists a finite set F of M fares
F = {f1, …, fM} which are unknown to the customer. The revenue manager has to
decide which of the M fares to propose to the customer, and this decision is taken a
posteriori, i.e., after having known the size of the shipment, and within the limits
set by the following marketing rules that we assume to hold:

2.1 Assumptions

1. A shipment can be accepted only if the flight has residual capacity in terms of
volume and weight to accommodate it.

2. A shipment must be charged proportionally to its weight, so that the revenue for
a shipment is computed as its weight times the paid fare.

3. The company discourages last minute opportunistic behaviour, hence the suc-
cession of fares displayed to the users must be non-decreasing as time
approaches flight departures.

4. No price negotiation is allowed.
5. Customers are served one at a time.

We observe that Assumption 2 may sound quite simplistic. However, the results
that we present in this work generalize trivially when more complex cost functions
are considered.

We also stress the following consequences of the above assumptions.
Assumptions 1 and 4 imply that a customer is lost if the displayed fare does not
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satisfy his willingness to pay or if there is not enough weight and volume capacity
to accommodate his shipment. Also, the revenue manager will always display no
more than one fare at a time, since customers are price-oriented and hence always
purchase the necessary capacity for their shipments at the lowest available fare that
is not higher than their willingness to pay.

Hereafter, we denote by:

• {0, 1, …, t, t ? 1, …, T} the set of the time instants at which customers can
arrive and be served, 0 is flight reservation opening and T is the closing time;

• tk [ {0, …, T} the arrival time of the k customer;
• /t the probability a customer shows up at time t;
• f the generic fare;
• Cw and Cv the flight storage capacities in weight and volume, respectively;
• (x, t) the size of the generic shipment, where x and t are its weight and its

volume, respectively; both are integer values less than or equal to (Cw, Cv);
• pkm the customer k willingness to pay toward a fare fm [ M, that is the proba-

bility that a customer arriving at time t is willing to pay fmx to send a package of
size (x, t);

• qxt the probability that a shipment has size (x, t);
• Jm(t, w, v) the function that returns the expected optimal revenues from time t on

under the hypothesis that the revenue manager displays in t a fare fm and there
are residual capacities w in weight and v in volume.

At each time t, being w and v the residual capacities, the revenue manager faces
the following dynamic programming problem:

Jmðt;w; vÞ ¼ ½ð1� /tÞ þ /t

X
xtð Þ[ w;vð Þ

qxt� Jmðt þ 1;w; vÞ þ /t

X
xtð Þ� w;vð Þ

qxtmaxj [ m

fpkjðfjxþ Jjðt þ 1;w� x; v� tÞÞ þ ð1� pkjÞJjðt þ 1;w; vÞg
ð1Þ

with final conditions: Jm(T, w, v) = Jm(T, 0, v) = Jm(T, w, 0) = 0 for all
0 B w B Cw and 0 B v B Cv.

The first term of Eq. (1) r.h.s. states that the expected revenues from t on
coincide with the expected revenues from t ? 1, when no customer shows up in t,
or if the size of the shipment exceeds the available capacity, when a customer
shows up in t. Differently, the second term states that, when a customer shows up,
the revenue manager must choose the fare to display after having seen the size of
the shipment. In this situation, the expected revenues in t are given by the sum of
the revenues from the current customer (stage revenues) and the expected revenues
from t ? 1 on (revenues to go). In presence of a customer and being displayed a
fare fj, two situations may occur:

• with probability pkj the current customer accepts fj, then the stage revenues are
equal to fjx and the next customer finds (w - x) and (v - t) as available
capacities;
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• with probability (1 - pkj) the current customer refuses fj, then stage revenues
are 0 and the next customer finds w and v as available capacities.

We conclude this section observing that the difference Jm(t, w, v)–Jm(t, w - x,
v - t) represents the opportunity cost at fare fm of a shipment of size (x, t)
making a request at time t when capacities w in weight and v in volume are still
available, i.e., it is the expected loss in future revenue from using the capacity
now rather than reserving it for future use [25]. Accordingly, if Jm(t, w, v) is
differentiable then qJm(t, w, v)/qw and qJm(t, w, v)/qv are the weight marginal
opportunity cost and volume marginal opportunity cost, respectively.

3 Bid-Price Heuristics

Solving problem (1) is, in general, impractical from a computational point of view.
For this reason, in this section, we present two heuristics based on threshold values
called bid-prices. The rationale behind these heuristics is the following. An opti-
mal policy, solution of (1), accepts a shipment if and only if the revenue it
generates is larger or equal to its opportunity cost and bid-prices can be fixed as
approximate estimations of the marginal opportunity costs. On the base of this
property, bid-price heuristic policies accept a shipment if its revenue is greater or
equal to the estimation of its opportunity cost that can be derived from the
bid-prices [25]. More formally, we denote by pw(w, t) and pv(v, t) the bid-prices
for weight and volume, respectively, when capacities w in weight and v in volume
are still available at time t. Then, the opportunity costs of such a request are
approximated by pw(w, t)x ? pv(v, t)t. Hence a booking request generating
revenues r is accepted if and only if [18]:

r ¼ f x� pwðw; tÞxþ pvðv; tÞt; ð2Þ

where f is the fare applied.

3.1 Static BP Heuristic (SBP)

We define bid-prices as static if they are fixed at the beginning of the booking
period, i.e., they do not change over time and do not depend on the remaining
capacity: pw(w, t) = pw and pv(v, t) = pv.

Once the bid-prices are chosen, our heuristic fixes a same fare f for all cus-
tomers. Specifically, f is set equal to the first accepted shipment’s minimum
available fare such that the acceptance rule (2) is almost surely respected; that is

f ¼ minffj : fjxh� pwxh þ pvth and phj ¼ 1g
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where, h denotes the first customer for which a fare fj [ F satisfying the above
condition exists. The uniqueness of f trivially guarantees that the displayed fares do
not decrease over time. However, an evident drawback of this choice is that actual
generated revenues depend on the willingness to pay of the first accepted customer
k. Heuristic SBP may perform poorly when demand is inverse, especially if
bid-price values are low. This performance problem holds true for static bid-price
approaches in general since they accept a request as long as its revenues are higher
than the computed threshold, without taking into account that the marginal value
of the remaining capacity increases over time. A common solution to this is to
recalculate bid-prices at pre-defined time intervals (which become smaller as flight
booking closure grows closer) in order to take into account the increased marginal
value of remaining capacity.

To fix the values of the static bid-prices our heuristic averages the optimal static
bid-prices of a set of training instances (possibly based on historical data). Spe-
cifically, paralleling the work in Pak and Dekker [18], we combine the findings in
Lenstra et al. [15] and in Rinnooy Kan et al. [20], and we observe that, if the
demand is known in advance, the choice of accepting shipments of size (xk, tk)
generating (potential) revenue rk = f*xk, where f* is the maximum fare that
customer k is willing to pay, can be made by solving a multi-dimensional knapsack
problem. Then, we compute the bid-prices for each training instance by solving the
associated knapsack problem through the following greedy algorithm.
Greedy algorithm. For each customer k we define the ratio

dk ¼ rk=ðkxk þ ltkÞ

where k and l are appropriate positive multipliers. The ratio dk is a measure of the
revenue for unit of the overall resources used by shipment k. The multipliers k and
l are necessary to express volume and weight capacity requirements as single
resource consumption. Items are then ordered by decreasing values of dk and
accordingly inserted into the knapsack as long as there is available capacity.
Clearly, the choice of the multipliers may affect the sequence of shipments
entering the knapsack and thus the associated final revenues. However, Rinnooy
Kan et al. [20] prove that there exists a pair of multipliers k*and l* maximising the
revenues that can be computed in O(n3logn), where n is the number of shipments.

Let d* be the ratio value associated to the last shipment inserted in the knapsack
when the multipliers are k* and l*. We define the instance optimal static bid-prices
as:

pw ¼ d�k� pv ¼ d�l�:

Indeed, is trivial to observe that, in the above procedure, the shipment of a
customer k is inserted into the knapsack if and only if dk C d* and there is enough
capacity. Under these circumstances, condition (2) is met, as rk C d*

(k*xk ? l*tk) = pwxk ? pvtk. h
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3.2 Dynamic BP Heuristic (DBP)

In our dynamic bid-price heuristic bid-prices are updated as the requests arrive, in
order to capture and exploit the increasing willingness to pay of the demand. Let Lk

and Mk be the weight and volume (dynamic) bid-price values, respectively. Hence
the acceptance rule at time tk is rk C Lk xk ? Mk tk.

After each accepted request, static bid-prices are calculated by running SBP on
the remaining capacity and demand. Let pw(w, t) and pv(v, t) be the weight and
volume bid-prices respectively, when SBP is run on N - k ? 1 customers with
remaining capacities w and v.

Initially, we set: L1 = pw(Cw, t1), M1 = pv(Cv, t1). Then we update the dynamic
bid-prices according to the following policy:

• Lk+1 = Lk, Mk+1 = Mk: if request k is rejected or if one or both static bid-prices
turn out to be lower than or equal to current values of Lk or Mk, that is, either
pw(w, tk+1) B Lk or pv(v, tk+1) B Mk.

• Lk+1 = pw(w, tk+1), Mk+1 = pv(v, tk+1) if request k is accepted and static bid-
prices turn out to be greater than or equal to current values of Lk or Mk, that is
pw(w, tk+1) [ Lk and pv(v, tk+1) [ Mk.

Finally, we choose the fare to display to customer k as f = min{fj: fjxk C

Lkxk ? Mktk and pkj = 1}. If no fare satisfies this last condition, customer k is
rejected.

The rationale behind the choice of updating dynamic bid-prices only when both
SBP bid-prices simultaneously increase is three-fold. First, in this way, at each
update, the threshold given by the pair (Lk+1, Mk+1) is the optimal one for the
remaining capacity and demand, according to the SBP algorithm. Second, we cannot
update both the bid-prices to lower SBP bid-prices values as otherwise we could not
guarantee that the displayed fare does not decrease over time. Third, we cannot
update a single bid-price to a higher value when only one SBP bid-price is greater
than the current dynamic bid-prices as otherwise we obtain a too selective policy.
Indeed, the acceptance threshold increases very rapidly over time since it is updated
whenever at least one bid-price augments.

We finally point out that the choice to consider updating dynamic bid-prices
only after a request is accepted, and not after any request, is due to reducing
computational time.

4 Experimental Results

In this section, we assess the quality of the heuristics introduced in the previous
section. The revenues obtained with the two heuristics are then compared also with
the ones obtained solving problem (1) under the assumption that the number of
customers and their characteristics, in terms of both arrival times and the shipment
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sizes, are known in advance. In fact, under this (relaxed although unrealistic)
assumption, problem (1) becomes computational tractable and provides an upper
bound for the optimal expected revenues J1(0, Cw, Cv). Hereafter, we indicate this
last kind of revenues as obtained through dynamic programming (DYM).

4.1 Experiment Design

Each shipment is characterised by three attributes: weight, volume and willingness
to pay of its owner; they are expressed in kilos (Kg), cubic meters (m3) and US
dollars ($), respectively. As it is common practice within the air cargo industry, we
distinguish between small and large shipments: small when its weight is between 2
and 45 kg and large when it is between 46 and 500 kg. This distinction is generally
applied because of the different weight and volume capacities reserved on the
aircraft and the dissimilar fares applied by the carriers. In principle, fares per unit
of weight decrease as the weight increases and roughly depend on the distance to
be flown. Since in this work all the customers book for the same single-leg flight,
we can neglect the dependence on the distance.

Hence, fares are only related to the shipment weight category and to the time of
the booking request. We considered four different fares (f1 \ f2 \ f3 \ f4) for both
small and large shipments. As anticipated, fares are non-decreasing over time and
only one fare is available at each time instant.

In order to deal with uncertainty regarding shipment volume [2, 22], it is usual
practice within airlines to associate an average volume for a given weight, i.e., a
shipment k of weight xk has an average volume cxk where c is a constant. We set
c = 0.00581 as in Pak and Dekker [18]. To add variability to the volume, its value
tk is randomly chosen in an interval centred in cxk whose length becomes larger as
the weight of the shipment increases.

Tests are run with willingness to pay of the demand either random or inverse. In
the former case, the willingness to pay is stationary over the time. Indeed the
willingness to pay of customer k is chosen randomly in the interval [f1xk - lm,
f4xk ? lM] with lm = 0.92 and lM = 2.26 for small shipments and lm = 16.56 and
lM = 21.26 for large shipments. In the latter case (i.e., inverse demand), we
introduce a dummy fare f0 \ f1 and we divide the N potential customers in four
intervals of approximately equal length. Each customer in interval i, (i = 1, 2, 3, 4)
randomly chooses between fare fi-1 and fare fi with equal probability p = 0.5.

By averaging the values presented by airlines on their websites, we fixed the
relevant data as reported in Table 1.
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4.2 Computational Results

We distinguish four different scenarios in accordance with the four different sets of
instances used as input demand. Tables 2 and 3 present the average values obtained
over the same set of K instances by the different heuristics for each scenario.

Average execution time refers to the training instances for SBP and DBP. The
testing instances simply need to check at each booking request whether the
threshold is respected or not, which is a very quick operation.

On the other hand, the DYM algorithm does not require a training phase, so the
testing instances are optimally solved through dynamic programming and average
execution time refers to these latter.

The results provided shows that, at least for the instances considered, both the
heuristics are reasonable. Here, we recall that the DYM results are upper bounds
on the optimal ones that a revenue manager could obtain solving (1) without a
priori deterministically knowing the demand. Static bid-price heuristic DBP, as
expected performs better than SBP with inverse demand. Differently, SBP
outperforms DBP when the demand is random. This latter observation is not
surprising as, given the non-decreasing assumption, the DBP tries to increase the

Table 1 Experiment parameters

Small shipments
Weight capacity Cw 4000 kg
Volume capacity Cv 26.7 m3

Fares f1 = 4.34$
f2 = 5.31$
f3 = 6.04$
f4 = 7.72$

Shipment weight xk 2 B xk B 45 kg (integer random)
Shipment volume tk tk is a random number between:

[cxk - 0.0051, cxk ? 0.0051] when xk B 9
[cxk - 0.0101, cxk ? 0.0101] when 10 B xk B 45

Demand amount N 750
Large shipments
Weight capacity Cw 15500 kg
Volume capacity Cv 80.25 m3

Fares f1 = 1.97$
f2 = 2.67$
f3 = 3.67$
f4 = 4.03$

Shipment weight xk 46 B xk B 500 kg (integer random)
Shipment volume tk tk is a random number in:

[cxk - 0.0201, cxk ? 0.0601] when 46 B xk B 99
[cxk - 0.0151, cxk ? 0.171] when 100 B xk B 299
[cxk - 0.0101, cxk ? 0.451] when 300 B xk B 500

Demand amount N 450
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revenues becoming more and more selective. However, in the case of random
demand, the willingness to pay of the customers does not increase over time and
then the DBP may reject too many customers. Indeed, in presence of a stationary
demand, it may be reasonable to become less selective when we approach the
flight closing time. Unfortunately, the implementation of a similar policy could
induce an opportunistic behaviour in the demand and modify its statistics.

Table 2 Results for random demand (average values)

Small shipments, random demand

DYM SBP DBP

Revenues 2,458,003 2,283,183 2,082,226
Weight LF 0.999 0.964 0.849
Volume LF 0.869 0.839 0.738
Accepted requests (No.) 178 166 152
Running time (s) 552 \1 624

Large shipments, random demand

DYM SBP DBP

Revenues 4,752,162 4,641,544 4,421,279
Weight LF 0.820 0.816 0.770
Volume LF 0.997 0.992 0.935
Accepted requests (num.) 51 49 48
Running time (sec.) 64 \1 2

Table 3 Results for inverse demand (average values)

Small shipments, inverse demand

DYM SBP DBP

Revenues 2,712,138 2,053,969 2,121,717
Weight LF 0.999 1.000 1.000
Volume LF 0.870 0.870 0.870
Accepted requests (num.) 171 173 174
Running time (sec.) 594 \1 122

Large shipments, inverse demand

DYM SBP DBP

Revenues 5,110,171 4,680,050 4,736,291
Weight LF 0.821 0.823 0.824
Volume LF 0.990 0.999 0.998
Accepted requests (num.) 47 48 49
Running time (sec.) 79 \1 5
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5 Conclusions

In the present work we introduced the problems that can arise in RM from an
imprecise forecast of customer demand. In this context, we focused on customer’s
willingness to pay as a proven robust measure on which to build capacity man-
agement algorithms. Referring to a bi-dimensional capacity scenario (i.e., weight
and volume, which is the case of air cargo) and considering demand as
deterministic at the time of booking, we first introduced an optimal Dynamic
Programming model. Then we proposed two bid-prices based algorithms, one,
static and one dynamic, and showed through computational tests their perfor-
mances in terms of average revenues and computational times.

Future development of this work may address further improvements to the BP
policies and comparison to DP based heuristics, another solving approach that has
drawn a wide interest in literature.
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