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Preface

This volume brings together works resulting from research carried out by members
of the EURO Working Group on Transportation (EWGT) and presented during
meetings and workshops organized by the Group under the patronage of the
Association of European Operational Research Societies in 2012 and 2013.

The main targets of the EWGT include providing a forum to share research
information and experience, encouraging joint research and the development of
both theoretical methods and applications, and promoting cooperation among the
many institutions and organizations, which are leaders at national level in the field
of transportation and logistics.

The primary fields of interest concern operational research methods, mathe-
matical models, and computation algorithms, to solve and sustain solutions to
problems mainly faced by public administrations, city authorities, public transport
companies, service providers, and logistic operators. Related areas of interest are:
land use and transportation planning, traffic control and simulation models, traffic
network equilibrium models, public transport planning and management, appli-
cations of combinatorial optimization, vehicle routing and scheduling, intelligent
transport systems, logistics and freight transport, environment problems, transport
safety, and impact evaluation methods.

In this volume, attention focuses on the following topics of interest:

Decision-making and decision support

Energy and environmental impacts

Urban network design

Optimization and simulation

Traffic modeling, control and network traffic management
Transportation planning

Mobility, accessibility, and travel behavior

Vehicle routing

The complexity of the problems analyzed made it difficult to give a complete
picture of the above aspects but, in the opinion of the editors, the works presented
here will help readers to go more deeply into some significant subjects with the aid



vi Preface

of experts’ viewpoints of the problems. The high standard of the papers submitted
was ensured by a large and competent scientific committee and by a selective
reviewing process.

To end this preface, special thanks go to all those who contributed to this book,
including authors, reviewers and Springer, and in particular to Dr. Thomas Ditz-
inger (Springer, Applied Sciences and Engineering).

Jorge Freire de Sousa
Riccardo Rossi
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Part I
Decision Making and Decision Support
(in Transportation)

In the transportation field—as in many others—it is important to be able to
guarantee that the decision-making has been systematically followed, to ensure
that the right decisions are taken. Identifying needs, checking the availability of
resources, formulating frameworks of analysis, and evaluating methods are just
some of the aspects involved in this process, often reinforced by decision support
techniques. Hankach and Lepert introduce a decision support tool for evaluating
maintenance strategies on road networks with incomplete data. Ambrosino and Siri
provide a general formulation for proper train load planning for maritime container
terminals, as well as two other formulations for specific cases in which some
unproductive operations or movements are not permitted. Haasis et al. develop a
rule-based decision support system for improving the energy efficiency of passive
temperature-controlled means of transport, and apply it to the case of liquid
aluminium transport in Germany. Bandeira et al. present an integrated numerical
computing platform, using microscopic traffic and emission models, as a tool for
traffic assignment taking into account eco-routing purposes: the main aim of this
work was to identify the best traffic volume distribution which allows the
environmental costs for a given corridor with predetermined different alternative
routes to be minimized. Mendes-Moreira and Freire de Sousa discuss evaluation
of the impact of changes, before they are made, in global operational planning in
real-life conditions, and present a framework for their evaluation.



A Decision Support Tool for Evaluating
Maintenance Strategies on Roads
Networks with Incomplete Data

Pierre Hankach and Philippe Lepert

Abstract Choosing a maintenance strategy is a major challenge for road operators
because of its implications on the required budget and the quality of the road
network. However, a major problem has to be solved before we can compare the
performance of different strategies: on many real networks, essential data for
simulating the evolution of the distress of the pavement for the coming years and
hence simulating the strategies in order to evaluate them, are missing or highly
uncertain. In this chapter, we introduce a decision support tool for evaluating
maintenance strategies on roads networks with incomplete data. First, this tool is
used to build a Virtual Road Network (VRN) that represents the real network, and
on which plausible values are allocated to missing or uncertain data. Then, it is
used to simulate alternative strategies. To this end, the distress state of the
pavement is evolved using an appropriate evolution model and each strategy is
applied in order to determine the associated maintenance interventions. The
different strategies are thus compared (on the network scale) on the criteria of cost
and resulting distress state of the pavement in order to choose the best solution.

Keywords Pavement - Damage - Distress - Maintenance - Strategies
Simulation - Evolution models - Network

1 Introduction

Defining a maintenance strategy is a very important task for road mangers. In fact,
both the condition of the road network and the required maintenance budget
depend on the chosen strategy. Therefore, evaluating and comparing the cost and
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performance of different strategies is an essential step in maintenance manage-
ment. In this chapter, we present a decision support tool in order to evaluate
strategies and choose an adequate one.

A maintenance strategy is a set of rules that define when a maintenance
intervention is triggered and the design and technique of this intervention. Strategy
rules that trigger interventions are usually based on the extent of the distress and
other parameters such as the date of the last intervention. In order to evaluate a
strategy, the distress must be computed annually simulating its evolution for the
coming years starting from the present date and present condition of the pavement.
Whenever a maintenance intervention is triggered by the strategy, the condition of
the network is updated accordingly and taken into account for its future evolution.
Therefore, the condition of the pavement at a given date in the future is determined
by combining the evolution of distress and the effect of maintenance interventions.
The cost of maintenance associated to a strategy is the sum of the costs of indi-
vidual interventions that it triggers.

However, a major difficulty must be addressed in order to simulate a strategy
and evaluate it: essential data for this process are missing in real road network
databases. As it have been pointed, the distress state of the pavement must be
evolved for simulating a strategy and this evolution depends on different factors:
pavement design, resistance of materials to cracking, aggressivity of the traffic, etc.
It can be expressed by the following formula:

WFf = @(t; 05 ;75 05...) (1)

where @ is a complex formula in which ¢ represents the time elapsed since the
construction and o; f3;7; J; . . . represent the factors that influence the evolution. In
virtually all road databases describing real networks, the latter variables are
missing. There is therefore no possibility of applying an evolution model that takes
into account these factors without addressing the missing data problem.

In this chapter, we build a decision support tool for evaluating maintenance
strategies. First, the problem of missing data on roads networks is handled by
building a VRN that represents the real network, and on which plausible values are
allocated to missing or uncertain data. Afterwards, in order to evaluate mainte-
nance strategies, the distress is computed year after year using a distress evolution
model, triggering maintenance interventions by strategy rules. The consequences
of each strategy are assessed on the future distress state of the network and on the
required maintenance budget. Thus, different strategies can be compared.

2 Constructing the Virtual Network (VRN)

A virtual road network is a road database comprising: (1) a list of roads; (2) a
reference system and (3) a set of data describing the nature and condition of the
roads and their solicitation. As previously stated, the information and data
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contained in the database of a virtual network are generated according to certain
rules and/or by applying certain models in order to accurately represent the real
network. Hereafter, the rules followed for creating a virtual network are listed:

e The constitution of the network (number of roads, length) is identical to that of
the real network;

e Roads are divided into segments of homogeneous subgrade characteristics. The
length of each segment and its characteristics are random samples from the
probability distributions of these parameters on the real network (which may be
known from the examination of a number of design projects);

o If the traffic on the real network is not known and therefore cannot be assigned
directly, each road is divided into segments of homogenous traffic (that are
different from the segments mentioned in the previous point). The length of each
segment and its traffic are random samples from the probability distributions of
these parameters on the real network (obtained by performing a sampling on the
latter);

e The pavement design is homogenous per segments that correspond to the
original construction segments. Each segment’s length is a random sample from
a predefined probability distribution that reflects reality. The structure of the
segment is chosen according to the characteristics of the subgrade and the traffic
that will be supported, as is the case in a conventional design process. These
inputs are used to select structures types in a design catalog [1]. The distribution
of the types of structures obtained is validated by comparing to the distribution
on the real network (obtained by sampling).

In the remainder of this section, we describe the construction of a virtual
network. We take the French national road network (FNRN) as a reference real
network to illustrate this construction.

2.1 Constitution of a VRN

The VRN is constituted by all the roads of the real network. In order to locate
events—such as distress—on the roads, we associate to the network a linear
referencing system. Each road is associated with a unique identifier and a number
of location points (PR). The position of the various objects on the road is expressed
with respect to these points. For practical reasons, roads are segmented into
elementary sections of fixed length (typically 200 m). Each section is identified by
specifying the “PR + distance” of its start and end points. In the remainder of this
chapter we use as building blocks these sections in order to affect different
characteristics.



6 P. Hankach and P. Lepert

2.2 Attribution of the Bearing Capacity of the Subgrade

The pavement thickness design depends on the bearing capacity (PF) of the
platform. This bearing capacity is classified into four groups (PF1, PF2, PF3 and
PF4) according to the subgrade’s ability to withstand loads. In the process of
building the VRN, we assign each section a bearing capacity selected from these
four classes. To perform this assignment, two distributions must be defined in
advance from sampling performed on the real network:

e The first distribution governs the length of the pavement segments where the
bearing capacity is considered homogeneous. The length of each segment is a
random sample from a triangular distribution. To reproduce conditions similar
to those of the FNRN, the triangular distribution is defined with a minimum of
1 km, a maximum of 5 km and a mode of 2 km.

e The second governs the distribution of bearing capacity classes. Because this
distribution wasn’t available for the FNRN, the bearing capacity of each
homogenous segment is chosen randomly among the four classes. In the case
where the distribution between the four classes is known, it should be respected.

2.3 Attribution of the Traffic

The following procedure is applied when the traffic and/or its aggressivity is
unknown on all or a part of the network. Like for the bearing capacity, the
assignment of traffic on a virtual network is defined in two steps. First, the road
network is divided into segments of homogeneous traffic. Then, for each of these
segments, the daily vehicle average is defined for each category (cars, trucks...) as
random samples from predefined probability distributions. These latter distribu-
tions are defined by experts, and reflect the state of the traffic on the real network.
In order to reproduce traffic conditions similar to the FNRN the following distri-
butions are used:

e The length of each segment is defined as a random sample from a triangular
distribution with a minimum of 5 km, a maximum of 25 km and a mode of
15 km.

e The daily vehicle average is defined as a random sample from a triangular
distribution with a minimal traffic of O vehicles per day (v/d), maximum traffic
of 80000 v/d and a mode 30000 v/d.

In recent design methods, thickness design of pavements depends on the traffic
class TCi which takes into account the lifespan of the pavement. The traffic class is
determined by the total number of heavy traffic (which is a predefined proportion
of the total traffic) that will be supported by the pavement during its lifetime. This
lifetime is generally set at 20 years, and is extended to 30 years for pavements



A Decision Support Tool for Evaluating Maintenance Strategies 7

supporting high traffic. Traffic classes TC are obtained using the following formula
[2]:

TC=365N.[d+r.d.<%>.r} (2)

where N is the heavy traffic count; 7 the linear annual growth rate of traffic rate
(2 % by default); d the lifespan in years; and r represents the transversal distri-
bution of heavy traffic. According to the value of TC, the traffic is attributed one of
nine classes: TCO, TC1, TC2, TC3, TC4, TC5, TC6, TC7 or TCS.

2.4 Thickness Design

The thickness design of a pavement segment of the VRN is made using the same
rules applied for the construction of a real network. It depends on the bearing
capacity of the subgrade and the traffic class as described in [2].

The length of segments with a homogenous design results from the length of
construction segments. To reproduce the conditions of the FNRN, it is defined as a
random sample from a triangular distribution with a minimum of 5 km, a maxi-
mum of 25 km and a mode of 15 km. As each construction intervention occurs at a
given date, it also defines the age of the pavement.

The pavement design of a segment is given as a function of the bearing capacity
of the subgrade and the traffic (Table 1). However, on a single construction seg-
ment a multitude of combinations “bearing capacity class/traffic class” are usually
identified. Figure 1 shows the diversity of this combination for one construction
segment. Given this fact, the design that corresponds to the largest traffic coupled
with the smaller PF is chosen. This rule ensures the selection of the stronger design
among those that correspond to the various combinations.

3 Evaluating Maintenance Strategies

A maintenance strategy [3-5] is a set of decision rules that determines, mainly
based on the condition of a pavement’s section, its age, traffic or any other cri-
terion available in the database: the work to be done on this section; the design of
the maintenance works; and the priority given to it. Table 2 illustrates a very
simple strategy based on the IRI (International Roughness Index). It stipulates that
if IRT < 5 then no maintenance intervention is necessary, otherwise an overlay is
performed. Usually, strategies are much more sophisticated and rely on many
indicators to compute maintenance. Table 3 illustrates a strategy that defines
maintenance interventions depending on both the IRI and the percentage of cracks
extent.
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Table 1 The structure type (GB for base asphalt concrete, GH for cement treated concrete and
MX for composite pavement), the base layers thickness and the thickness of the surface layer
CS are given as a function of the bearing capacity of the subgrade and the traffic classes [1]

- inte- I Fiche Tc2 Tc3 Tca Tcs Tce Tc7 Tcs
orme n
Risque 30% 18% 10% 5% 2% 1% 1%
cs cs
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2 cs cs cs ‘1:3 e
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11 12
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PFAa 8 9 11 14 11
8 ° 12 14 5y
Risque 12.5% | 10% | 7.5% 5% 2.5% 1% 1%
cs cs
PF2 18 19
20 20
5 cs cs Ccs
GH PF3 GCa4/G gg g? i8 is8 20
ca 18 18 18
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PFa gi g; 18 19 20
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7 7
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segments I |
. . I | I 1 | | | | |
C I T T T T T T T 1
segments

Fig. 1 Combinations “bearing capacity class/traffic class” for one construction segment

Maintenance strategies are evaluated on two criteria:

e Condition of the pavement after a number of years of applying the strategy;
e The overall cost of maintenance it requires.

The condition of a pavement is characterized by a set of information, which we
call indicators. An indicator represents de state of a defined distress type (longi-
tudinal cracks, rutting, etc.) on pavement sections. Indicators of different distress
types can be combined to form a “functional index”. An example of such an index
is the “Structural Condition rating” (SC rating) which is used as a global condition
indicator of pavements sections on the FNRN [6, 7].
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Table 2 A simple IRI
maintenance strategy based
on the IRI <5 >5
No intervention Overlay
Table 3 A maintenance Cracks extent IRI
strategy where maintenance
interventions depend on both <5 >5
the IRI and the percentage of 0-10 No intervention Reshaping
cracks extent 10-50 Surface dressing Overlay
50-100 Overlay Overlay

Simulating as strategy is a step by step process, each step corresponding to one
year. It starts at the current date TO and ends on a date Tend = TO + x years. At
each step of the simulation (every year) two cases may arise for a given section of
the network:

e The simulated strategy does not trigger maintenance work, in this case, the
distress state is updated (the state is more deteriorated) using an evolution model
(described below);

e The simulated strategy triggers maintenance, the state of distress is updated
(usually many distress indicators are reinitialized because the pavement is
repaired), but also the evolution model to be applied on this section is adapted to
take into account the effects of the new layer added by maintenance works.

The diagram in Fig. 2 shows the process of simulating a strategy. Starting from
the VRN constructed in Sect. 2 and after the initiation of the network condition,
the simulation starts at the current year TO. For each elementary section of the
network, the decision rules of the strategy are applied annually to decide if a
maintenance intervention is necessary. If no maintenance is triggered, the distress
state of the pavement is updated using the evolution model. If maintenance works
are triggered, distress indicators are reinitialized and the evolution model applied
to the section is updated. At the end of this process, the average cost and average
global indicator’s value (SC) are calculated for the tested strategy.

In order to initiate the network’s condition, distress indicators are set to their
original values at current date TO. This can be done straightforwardly by defining
an indicator’s value on a given section as a random sample of the probability
distribution observed on the real network. However, although the distribution of
distress obtained on the VRN is identical to that of the real network, this approach
has a major drawback because it fails to take into account the dependence between
the state of distress on a section and its characteristics such its age, design, the
traffic it supports, etc. Therefore, and in order to take into account this dependence,
the adopted solution is to simulate the evolution of each section from its con-
struction until TO, while applying the maintenance strategy that has been used on
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| VRN construction ‘ | Initiation of VRN state |

Evaluated strategy

:I Section = 1 |

Apply strategy

Maintenance
triggered

Increment section

A N

Apply evolution models and Reinitialize distress indicators
update distress state and update evolution model for
the section
v v

no

Section = final

yes

Y
Compute global
cost and average
state of distress

L—1 Increment year Year = Tend

F

Fig. 2 Diagram that represents the simulation process of maintenance

the real network before TO. The workflow diagram of this process is the same as
Fig. 2 (with the exception that distress indicators values start at 0 at the con-
struction date). After the completion of this process, in order to validate the
distress state at TO, the corresponding distributions of distress values are checked
with the distributions observed on the real network.

In the remainder of this section, we describe some components of the simu-
lation process. First we present an evolution model for distress indicators. After-
wards, we discuss the effects of maintenance works on this model.

3.1 Evolution Model

Distress indicators evolve depending on several factors: layer thickness, modulus
and resistance to cracking of materials, traffic, etc. Their evolution can be
expressed by the formula given in (1). This equation can be written in a simpler
form a follows:
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%Ff = W(t; R) (3)

In which R represents the contribution of all other parameters, R(; f5; ;. . .).
For the evolution of distress, quantified by the length of road affected by the
deterioration in proportion to the length of elementary sections, the following
model is adopted [8]:

Vi(t) = Va + (Vi - Va)k; (1) (4)
where:
w0 -1 -gw e (G)
R \% G)
ki =0 if t< (—J)
do

Vg4 and V¢ are the min and max values of the evolution of the indicator, usually O
and 100;

qo is the kick off parameter of the model;

Po is the shape parameter of the model;

R is the robustness of the law applied to a section. It ranges from 0 to infinity,
the value characterizes the deviation of a section from average behavior;

t is the age of the section.

3.2 Effects of Maintenance Works

When a maintenance operation takes place on a section of the network, two
changes of the state of the latter should be taken into account:

1. The damage is more or less repaired, the corresponding indicators are then
reduced to a predictable value (usually 0);

2. The evolution of distress is altered because the pavement structure has been
changed.

Let’s assume that, in the evolution model, one of the explanatory variables
(contributing to R introduced above) is Odemark equivalent thickness, E:

R:R(Eeq; b; g; d;...) (6)

This especially occurs when the indicator characterizes the structural fatigue of
the pavement. The evolution of this indicator after the addition of a new layer with
a modulus E., and a thickness h.,, follows the type of evolution model as before,
but E.q is replaced with Ecqc [9]:
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Table 4 Constitution of the network

Road identifier Name Length (km)
1 A001 40.5
2 A002 34

Table 5 Pavement data that remains unchanged from year to year
Section Road PR + distance PR + distance BC Structure

number start end Type

1 A001 0 + 000 0 + 200 PF3 GB3/GB3
2 A001 0 + 200 0 + 400 PF3 GB3/GB3
15 A001 2 + 800 3 + 000 PF3 GB3/GB3

N (hE) + heE
21 (MeEf) + henEgy
> (hiE%)

In this equation, h; and E; represent the thickness and the modulus of layer i
before maintenance works. In most cases, these parameters (h; and E;) are not
saved in the database of the real network. Only the average value and the standard
deviation may be known. However, the procedure of creating a VRN exposed
above will enable to generate these parameters to complete the road database.
Then, the effect of overlays on fatigue distress evolution could be assessed with
more realism, and correctly taken into account when comparing two strategies.

_ZPo

)
o

Eeq,ch = Eeq .

(7)

4 Implementation

Data of a VRN are stored in a relational database. We define three different
relations for different types of stored data. The first relation, illustrated in Table 4,
records the constitution of the network (IDs, names and lengths of roads). The
second relation, illustrated in Table 5, records the unchangeable characteristics of
pavements (each elementary section has a single value for each characteristic)
such as the bearing capacity of the subgrade, structure types, etc. The last relation,
shown in Table 6, records the pavement data that can change from one year to
another such as distress and traffic. This last relation specifies the generation (or
age) of the data.

The decision support tool described is this chapter has many different modules
that interact directly or indirectly through the data created in the VRN. Three
different steps are identified where different modules are in action:
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Table 6 Pavement data that changes from year to year

13

Section Road PR + distance PR + distance Year Indicatorl
number start end

1 A001 0 + 000 0 + 200 1 0

1 A001 0 + 000 0 + 200 2 0

1 A001 0 + 000 0 + 200 15 12

1 A001 0 + 000 0 + 200 30 20

2 A001 0 + 200 0 + 400 1 0

1 2 3

VRN creation
-network constitution
-attribution of bearing
capacity
-attribution of traffic
-pavement design

{

Distress evolution

0

Applying strategy
rules

A

Fig. 3 Architecture

Strategy evaluation

1. Creating the VRN: the dedicated module creates the VRN geometry, affects the
subgrade bearing capacity, the traffic and pavement’s design.

2. Evolution of the distress and maintenance operations: two interacting modules
compute the evolution of distress and the maintenance applied according to the

tested strategy.

3. Evaluation of the strategies: the total cost and the value of different indicators
(comprising the SC index) are computed.

Figure 3 shows this architecture.

5 Conclusion

In this chapter, we have built a decision support tool for evaluating maintenance
strategies. This tool has two major elements: firstly, it handles the problem of
essential missing data for the strategy evaluation process. Secondly, it simulates
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the evolution of distress while applying the rules of a given strategy in order to
evaluate it.

The problem of missing data on roads networks is handled by building a VRN
that represents the real network, and on which plausible values are allocated to
missing or uncertain data. These data are essential for simulating the evolution of
the distress of the pavement for the coming years while taking into account
important factors such as pavement design, layer thickness, traffic aggressivity,
etc.

In order to evaluate maintenance strategies, the distress is computed year after
year using a distress evolution model, triggering maintenance interventions by
strategy rules. The consequences of each strategy are assessed on two criteria: the
resulting distress state of the pavement and on the required maintenance budget.
Thus, different strategies can be compared.
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Models for Train Load Planning Problems
in a Container Terminal

Daniela Ambrosino and Silvia Siri

Abstract In this chapter, the train load planning problem for maritime container
terminals is dealt with. In the most general case, the optimal assignment of con-
tainers to train slots is done considering that it is possible to make reshuffles in the
stacking area and to load the train not sequentially; of course, both these types of
unproductive movements should be minimized. In the chapter, a general formu-
lation for this problem is provided, as well as other two formulations for the
specific cases in which one of these two unproductive operations is not allowed.
Then, some experimental results are reported to show the differences among the
proposed models.

Keywords Maritime container terminals - Train load planning - Combinatorial
optimization

1 Introduction

Container terminals are very complex systems that require the development of
optimization methods to support the crucial decisions at the different planning
levels, from the strategic to the tactical until the operational one [1]. Some recent
surveys on operations research methods applied to container terminals are those
provided by Steenken et al. [2] and Stahlbock and Voss [3]. The authors divide the
optimization approaches found in the literature according to the different processes
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in a seaport terminal: ship planning (i.e. berth allocation, stowage planning and
crane split), storage and stacking planning, and transport optimization (divided in
quayside, landside, and crane movements). With respect to this classification, the
present chapter concerns the landside transport planning and presents an optimi-
zation approach for the definition of loading plans for trains.

As highlighted in Steenken et al. [2], a loading plan indicates on which wagon a
container must be placed; generally speaking, this decision depends on the con-
tainer destination, type and weight, as well as on the characteristics of the train and
wagons. The container location in the stacking area can influence the loading plan
as well. In this chapter, we consider the case in which the loading plan is per-
formed by the terminal operator with the aim of optimizing both the pick-up
operations in the stacking area where containers are waiting for being loaded on
trains and the loading operations of each train.

In the literature few works are specifically devoted to the train loading problem,
as it is in our work. Bostel and Dejax [4] deal with rail-rail terminals with rapid
transfer yards and propose some models and heuristic methods for container
allocation problems on trains. Corry and Kozan [5] consider a terminal where
containers are transferred to and from trucks on a platform adjacent to the rail
tracks provided with a short-term storage area. They propose several techniques
for defining the assignment of containers to slots of a train, minimizing container
handling time and optimizing the weight distribution of the train. In that model,
only one type of container is considered and the weight restrictions for the wagons
are neglected. In a following work, Corry and Kozan [6] treat again the train
planning problem, considering more types of containers and different loading
patterns and minimizing a weighted sum of number of wagons required and
equipment working time. Due to the large number of variables, they propose
heuristic algorithms, such as local search and simulated annealing, to solve the
problem in practical applications. The load planning problem in intermodal ter-
minals is also studied by Bruns and Knust [7] that consider explicitly the real
weight constraints for wagons, as we do in this chapter. They propose three dif-
ferent integer linear programming formulations for solving the problem of loading
containers on wagons in order to maximize the utilization of the train and mini-
mize transportation costs for loading containers and set up costs for changing the
configuration of wagons. Many types of containers are considered (including also
swap bodies) and different types of wagons are treated.

In the present chapter, we develop a mathematical model to optimally plan the
train load in order to maximize the train utilization, while minimizing the
unproductive activities that can arise both in the stacking area and during the train
loading operations executed by the crane. Real weight constraints are explicitly
considered, as done by Bruns and Knust [7], and the main novelty of the present
approach with respect to the one by Bruns and Knust [7] stands in modeling the
reshuffles in the stacking area, since this is a crucial aspect to be dealt with in
maritime container terminals. The model proposed in this chapter is an extended
version of the one developed by Ambrosino et al. [8] where, again, the train load
planning problem was treated but only in the case of sequential loading by the
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crane. A model similar to the one proposed in this chapter has been considered by
Ambrosino et al. [9] to evaluate the impact of various storage policies adopted in
the yard on different train loading strategies. In this chapter three different models
are validated and compared in order to understand which model is the most
suitable for solving real problems in maritime container terminals (i.e. providing
good and applicable solutions in an acceptable CPU time).

The chapter is organized as follows. Section 2 is devoted to introduce the
problem and the main issues related to it. Section 3 reports the mathematical
formulation for the planning problem, both in the general case and in the specific
cases of train sequential loading and no-reshuffle policy for the stacking area.
Section 4 regards the experimental analysis performed on the three different for-
mulations. Finally, some conclusions are drawn in Sect. 5.

2 Problem Description

The problem studied in this chapter regards the train load planning in seaport
terminals. The destination of containers is not taken into account in this load
planning problem, since the planning is related to the shuttle trains directed to the
inland port (for which the inland terminal is the only common destination). Thus it
is assumed that the containers in the stacking area have the same destination.
Moreover, the planning problem considers only one train at a time. Anyway, the
proposed approach can be easily modified in order to face the loading problem
when in the stacking area containers of different destinations are stored.

This work takes inspiration from a real case of an Italian port but it can be
easily extended to many other cases. This study refers to a container terminal in
which containers that will be loaded on trains are stored in a specific stacking area
close to the railway yard. From there, containers are moved near the tracks with
trailers; then, a crane loads containers on trains. Generally, the crane starts its work
from a wagon and goes on along the train without changing direction (i.e. going
forward). Sometimes, during the loading process it can happen that it is not
possible to load a container on the train without requiring to the crane to change
direction; in this case, for example, the crane has to come back to load a container
in a slot of a wagon already visited by the crane itself but remained free (in this
way, unproductive movements of the crane are executed).

Containers are stored in the stacking area in stacks of different height. During
the loading process, it is not always possible to pick up firstly the containers at the
top of the stacks. Sometimes it can be necessary to remove a container from the
top of a stack for loading, on the wagon served by the crane, another container that
is below it (in this case a reshuffle is executed).

Figure 1 reports a simple example of two different ways for loading, on 2
wagons, 4 containers belonging to the same stack. First of all, in tl (first opera-
tion), for loading container c3 in the first slot of wagon 1, container c4 must be
rehandled (container c4 is loaded in t2, i.e. as second operation; obviously we are
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Fig. 1 Sketch of the train loading phase

assuming that c4 cannot be loaded in the first slot e.g. for weight constraints).
Then, when loading wagon 2, the crane loads firstly container c2 (third operation)
and then goes back for loading container cl; instead of the unproductive crane
movement, the same load configuration can be obtained by rehandling container c2
for loading c1 (as happened in wagon 1) and then loading c2.

The assignment of containers to slots is guided by length and weight consid-
erations. One of the characteristics of this problem is the possibility of choosing a
particular weight/slot configuration among different ones available for each
wagon. These real wagon weight constraints are much stricter than simply con-
sidering a maximum weight capacity for each wagon and train. Further details on
different wagon configurations can be found in the paper by Bruns and Knust [7]
and in the work by Ambrosino et al. [8].

In the problem under investigation the main objective is to plan the train load in
order to minimize both the reshuffles in the stacking area and the unproductive
movements of the crane loading a train, whilst maximizing the load of the train. As
far as the maximization of the load of the train is considered, we have to note that
the maximization regards the number of TEUs and the total value of containers
loaded instead of the number of containers, since we have to take into account that
each container in the stacking area has a different priority to be loaded on a given
train. This priority can be directly connected to the due time of the container or to
its commercial value.

More formally, given a set of containers with different characteristics (length,
weight, and priority) and one train composed by a set of wagons of different types (i.e.
with different length, possible configurations and weight constraints), the problem is
to choose which containers to load on the train and in which wagon slot. Moreover,
the sequence of loading operations must be decided. For this case, a mathematical
formulation will be provided. Moreover, other two models can be developed for the
specific cases in which either unproductive movements of the crane are not
allowed (train sequential loading) or reshuffles are not allowed in the stacking area.
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3 Formulation of the Train Load Planning Problem

The mathematical formulation for the train load planning problem is a multi-
objective 0/1 Mixed Integer programming model.

3.1 Notation

Let us introduce the notation. First of all, let C denote the number of containers in
the stacking area, W the number of wagons of the train to be loaded, S the number
of train slots.

For each containeri = 1,.. ., C, the weight is denoted as w; (expressed in tons),
the length as /; (i.e. 20 or 40 feet), the cost for not being loaded as 7; (it depends on
the priority of the container). Moreover, y; ;,i,j € {1,...,C},i #j,is related to the
position of containers in the stacking area; it is equal to 1 if container i and j are
positioned in the same stack and container i is over container j, it is equal to 0
otherwise.

For each wagonw = 1,..., W, S,, is the subset of relative slots, B, is the subset
of weight configurations, @,, is the weight capacity. Moreover, B, is the subset of
weight configurations for slot s of wagon w, p is the length of slot s (i.e. 20 or 40
feet), p, is the position of slot s in the train with respect to the first slot of the first
wagon (expressed in TEUs), J, is the weight capacity of slot s in the weight
configuration b, Q is the weight capacity of the train.

Finally, some configuration parameters are the unitary rehandling cost o, the
unitary crane movement cost f§ and the maximum number of possible loading
operations on the train 7, that corresponds to the TEU capacity of the train.

3.2 General Formulation

In this section let us firstly consider the case in which both reshuffles in the
stacking area and unproductive crane movements can be executed. The problem
decision variables can be divided in the following sets:

o x5, €{0,1},i=1,...,C,s=1,...,S,t=1,...,T, equal to 1 if container i is
loaded in slot s at operation #, 0 otherwise (these variables are defined only when
container i is compatible with slot s in terms of length, i.e. 4; = p);

® fuor€{0,1},0=1,...,W,b € By, equal to 1 if configuration b is chosen for
wagon @, 0 otherwise;

® vij €{0,1},i,je{l,...,C}:y;; =1, equal to 1 if container i is handled to
load container j;
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e 7, >0,t=2,...,T, unproductive distance traveled by the crane when doing
operation ¢ (to compute this variable, it is assumed that the crane is positioned at
the beginning over the first wagon on the left and z, is equal to O if the crane,
between t—1 and ¢, goes straight, from left to right, whereas it is equal to the
covered distance (in TEUs) if the crane goes back, i.e. from right to left);

e u,>0,t=2,...,T,normally set to 0 except for the operation ¢ such that r— I is the
last loading operation by the crane; in that case u, is positive in order to set z, = 0.

The general formulation is provided in the following:

T c s T
min o - Z yij+ﬁ‘22t+zni‘ (12 Xi;,t) (1)
ije{l,...C}: =2 i=1 s=1 r=1

Tij=

ZZZwi-xi,s,,gww wo=1,...,.W (7)

i=1 se$, t=1

SN wieni, <@ (8)

i=1 s=1 t=1

N

S tne =30t ST+ r(z S a = zx_,-,s,,> o

s=1 t=1 s=1 t=1 s=1 t=1 s=1 t=1

i,j € {1""C}:7Lj:1

c S

C S
> ZZP,; 'xi‘s‘tfl_z Py Xige —u  t=2,...,T (10)
i=1 s=

i=1 s=1
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uf<r<zzx,»,s,,1—zzx,-,s,,) =2t
s=1

i=1 i=1 s=1

The objective function (1) minimizes a weighted sum of different cost terms,
corresponding to the rehandling cost in the stacking area, the unproductive crane
movements, and a penalty paid for containers not loaded on the train. The penalty
is higher for containers having a high commercial value (priority).

The first three sets of constraints regard the assignment of containers to train
slots: each container can be assigned at most to one slot (2); at most one container-
slot assignment is done for each operation (3); and, in each slot, at most one
container can be loaded (4). Other constraints regard the weight restrictions. First of
all, for each wagon, a given weight configuration must be chosen (5). Moreover,
(6), (7) and (8) represent the weight capacity constraints for each slot, each wagon
and for the whole train. Constraints (9) ensure that the rehandling variables y; ; are
correctly computed; in particular, it is important to remember that container i is
rehandled if, when operation ¢ is executed, a container j that is located in the
stacking area under i is loaded and container i has not yet been loaded on the train.
Finally, constraints (10)—(11) ensure that variables z, and u, are correctly computed.

This formulation differs from the one proposed by Ambrosino et al. [9] where the
initial position of the crane is not fixed and in the objective function the total
distance traveled by the crane is minimized; hence constraints (10) and (11) are
different, and in model (1)-(11) variables z, assume positive values only when the
crane goes back to an already visited slot. Moreover, also a different formulation for
computing reshuffles is used (i.e. constraints (9) are different in number and size).

3.3 Formulation for the Cases Without Unproductive Crane
Movements or Without Reshuffles

In the general formulation (1)—(11), by properly tuning parameters o and f, it is
possible to consider a train loading process in which the unproductive crane
movements and the reshuffles are weighted in different ways. Hence, by associating
a very high value to one of these two parameters, it is possible to represent the
specific cases without unproductive crane movements or without reshuffles.
However, from the experimental campaign performed, we have realized that it is
better (from a computational point of view) to define specific formulations for these
particular problems. For the sake of brevity, in the following, these models will be
described without reporting the complete formulation, that is straightforward.

As regards the case of train sequential loading (i.e. no unproductive crane
movements are allowed), the decision variables to be considered are the following.
First of all, the assignment variables are no more indexed with ¢ since, in the case of
sequential loading, the order of loading operations is given by the position of the slot
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where a container is loaded. Then, these variables are x;; € {0,1},i=1,...,C,s =
1,...,S, equal to 1 if container i is loaded in slot s, 0 otherwise (again, these
variables are defined when 4; = ). Variables f,, € {0,1},0=1,...,W,b €
B, and y; €{0,1},i,j€{l,...,C}:y;; =1, are defined exactly as in the
general formulation. Then, cost function (1) is rewritten without the second term and
the third term is changed considering that now the assignment variables are x; ;.
Constraints (3), (10), (11) are no more present; constraints (5) remain unchanged,
whereas constraints (2), (4), (6)—(9) must be changed according to the new definition
of x; ; variables. This formulation differs from the one presented by Ambrosino et al.
[8] for the presence of two index assignment variables and for different rehandling
constraints (9) .

When instead the stacking policy does not allow reshuffles, the model (1)—(11)
must be simplified considering the same variables except y;; € {0, 1} that are no
more present. Then, the new formulation can be obtained from model (1)—(11) by
deleting the first term of cost function (1) and constraints (9).

4 Experimental Results

In order to test the effectiveness of the proposed models for the train load planning
problem described in Sect. 2 and to compare them, the three models have been
implemented in C#; in particular, the 0-1 linear optimization models have been
solved using Cplex 12.5 and the IBM ILOG Concert library has been used for
building the models from the C# language.

Our experimental analysis is based on 6 groups of instances, whose main
characteristics are shown in Table 1. In particular, these 6 groups are characterized
by the same number of wagons (i.e. 20), different number of containers present in
the stacking area and different number of tiers (maximum number of containers in
a stack). For each group, we have randomly generated 5 instances, that differ for
the number of 20" and 40’ containers (probabilistically generated), the weight of
containers (uniformly distributed between a minimum and a maximum value,
specifically defined for 20’ and 40’ containers), the priority assigned to containers
(again, probabilistically generated, among three priority classes), and the train
composition (three different types of wagons are considered, two wagon types
have a capacity of 2 TEUs, the third one can carry 3 TEUs). In the last two
columns of Table 1 the average capacity of the train T (expressed in TEUs) and the
average number of TEUs stored in the stacking area are reported.

These 30 instances have been solved with the 3 models described above, i.e. the
general formulation allowing both reshuffles and unproductive crane movements,
the formulation for the case without unproductive crane movements and the one
for the case without reshuffles. Results are reported in Tables 2, 3 and 4. Each
table shows the size of the solved model (i.e. number of variables and constraints),
the value of the objective function, the optimality gap expressed in percentage, and
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Table 1 Characteristics of the groups of instances

Instances # containers # wagons # tiers T TEUs in
stacking area
1-5 30 20 4 46.4 39.2
6-10 30 20 6 47.0 432
11-15 40 20 4 46.2 56.8
16-20 40 20 6 47.6 58.0
21-25 50 20 4 47.0 77.6
26-30 50 20 6 46.4 74.4

the number of unproductive movements (i.e. number of reshuffles R and number of
crane movements M). Please note that the value of the objective function is
negative since the constant component of the objective function (1) has not been
added in the models in the implementation.

The last 3 columns are useful for understanding the goodness of the obtained
solutions in terms of train utilization and “quality” of loaded containers. In par-
ticular, L is the percentage ratio between the number of TEUs loaded and the
capacity of the train, L represents the percentage ratio between the number of
TEUs loaded and the TEUs stored in the stacking area, and P is the percentage
ratio between the sum of the priority of the loaded containers and the total priority
of containers present in the stacking area. The optimality gap is computed as the
ratio between (objective function value-lower bound) and (-lower bound). Finally,
each row of these tables reports the average data of the five solved instances.

The general model (1)—(11) seems to be very difficult to solve. In 3600 s in
some cases the solver is not able to obtain a solution (i.e. one instance of group
16-20, one of group 21-25 and two instances of group 26-30 are not solved). It is
worth noting that data reported in Table 2 are obtained by fixing the same weights
for reshuffles and unproductive crane movements in the objective function; any-
way, the difficulty in solving this model does not change also varying these two
weights.

Instead, the case of model without unproductive crane movements is com-
pletely different: instances are always solved up to optimality in very few seconds.
The related results are shown in Table 3, where also the CPU time in seconds is
reported. Except for the instances of the last two groups (21-25 and 26-30) the
number of reshuffles is generally very low.

Table 4 shows the results obtained when solving the model without reshuffles
with a time limit of 3600 s. The solutions obtained with this model are better than
those obtained with the general model, and for the first two groups of instances the
solutions are equivalent, in terms of TEUs loaded and priority loaded, to those
obtained with the model without unproductive crane movements. The solutions of
the remaining groups of instances are quite good in terms of TEUs loaded and
priority loaded but are characterized by a very large number of crane movements.
Moreover, the optimality gap in the worst case is 16 %.
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Table 2 Results obtained with the general model (1)—(11)

Inst. # var. # constr.  Obj. Gap R M L L P

1-5 73166.2  422.4 —1043.0 13 44 68.6 76.65 90.45 93.21
6-10 68397.8  461.0 —1225.6 6 52 332 81.87 88.84 85.09
11-15 85519.6  447.2 —1003.1 41 3.6 83.3 71.07 5549  62.85
16-20 92797.0 498.6 —682.4 50 100 28.6 36.83 28.65 50.11
21-25 99131.6  479.0 —989.1 48 1.0 439 48.75 27.52  47.80
26-30 102520.2 5204 —929.1 30 6.2 407 49.35 28.66  39.34

Table 3 Results obtained with the model without unproductive crane movements

Inst. # var.  # constr.  Ob;j. Time Gap R M L L P

1-5 1837.0 285.2 —-11970 154 O 00 - 84.28 99.57 99.85
6-10 17442 3220 —1287.8 139 0 22 - 8597 94.12 97.83
11-15 2130.0 310.6 —1621.8 388 0 42 - 100.00 82.10 93.67
16-20 22734 3578 —1700.0 844 O 60 - 98.78 83.07 93.16
21-25 2402.8 340.0 —-1960.2 273 0 98 - 100.00 6096 82.53
26-30 25334 3832 —18834 446 O 176 - 100.00 63.24 85.76

Table 4 Results obtained with the model without reshuffles

Inst. # var. # constr.  Obj. Gap R M L L P

1-5 73123.2 379.4 —1196.10 0 - 0.9 84.28 99.57 99.85
6-10 68322.8 386.0 —1287.70 1 - 2.3 85.97 94.12 97.83
11-15 85459.6 387.2 —1579.20 8 - 28.8 97.45 79.60  95.34
16-20 92701.0  402.6 —1643.70 7 - 48.3 95.92 80.03 92.60
21-25 99058.6 406.0 —1847.30 16 - 66.7 94.50 57.43 80.18
26-30 102399.2 399.4 —1855.60 10 - 434  99.61 62.95 85.66

5 Conclusions

In this chapter different models for solving a particular train load planning problem
are presented. Results obtained with an extensive experimental campaign show
that the general model is very difficult to be solved, whilst the simpler model that
enable only reshuffles in the staking area is always solved up to optimality. A
constructive heuristic can be used in order to provide a good solution in very few
seconds and to avoid expensive unproductive movements. Moreover, it seems that
a promising approach is solving the model where only reshuffles are permitted and
then applying a local search in order to improve either the load train quality, in
cases characterized by a 100 % of TEUs loaded on the train, or the percentage of
TEUs loaded in other cases. These ideas will be the focus of a future work.
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Application of a Rule-Based Decision
Support System for Improving Energy
Efficiency of Passive Temperature-
Controlled Transports
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Abstract A significant proportion of the flow of goods is transported and handled
temperature-controlled. Some of these transports are carried out with an active
temperature control, while other goods are transported within the scope of a
passive temperature control. The project SMITH focuses the issue of passive
temperature control using the example of an aluminium producer in Germany
which organizes transports of liquid aluminium. The liquid aluminium and the
corresponding crucibles need to be heated in a way, which guarantees the customer
a delivery in a proper processing temperature. Setting the temperature is currently
based on experience. The aim of SMITH is to improve the energy efficiency of
passive temperature-controlled logistics. The software predicts the optimum
temperature based on factors such as weather conditions. A transfer of the solution
to other temperature-controlled transports enables huge energy and CO, savings
and is an important contribution of the logistics industry to climate protection.
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1 Introduction

A significant proportion of the national and international flow of goods is trans-
ported and handled temperature-controlled. Temperature-controlled goods are
frozen or refrigerated foods, pharmaceutical products, chemicals as well as liquid
tar or liquid metal in the range of high temperatures. Some of these transports are
carried out with an active temperature control, while other goods are transported
within the scope of a passive temperature control. The passive temperature control
follows without cooling or heating by means of aggregates, the goods must be
located within a certain temperature range during the transport. Setting the tem-
perature is currently based on experience, using information like the transport time
and the condition of the transport container or weather conditions such as outdoor
temperature, wind speed and density of precipitation. The project SMITH at the
Institute of Shipping Economics and Logistics (ISL) addresses these temperatures
using the example of the transport of liquid aluminium with the aim to improve the
energy efficiency of passive temperature-controlled transports. During this project
arule-based expert system is developed that supports shippers and logistics service
providers in their decision on the starting temperature of the transported goods.
The software predicts the optimum temperature for specific applications based on
current factors such as material properties or transport and weather conditions. For
the configuration of the expert system and to collect real data from the passive
temperature-controlled transports, a multi-sensory tool including data storage and
data transmission is developed.

The remainder of this chapter is organized as follows. In §2, we describe the
characteristics of temperature-controlled transports. In particular the passive
temperature-controlled transport of liquid aluminium and its influencing factors
are specified. In §3, we present the developed demonstrator application. In §4, we
show the possible reduction of energy consumption and CO, emissions. In §5, we
offer some concluding comments.

2 Temperature-Controlled Transports

Temperature-controlled logistics and non-temperature-controlled logistics can be
distinguished by many features. Beside the differentiated temperature needs, for
temperature-critical goods other difficulties like durability, sensitivity, hygiene and
security requirements as well as packaging or batch size have to be taken care of.
Especially at the transportation of liquid aluminium beside the product-specific
features, legal restrictions have to be followed. Based on these reasons, the defi-
nition of temperature-controlled logistics written by Truszkiewitz and Vogel [14]
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which is analogical to the classic definition of logistics can be modified and used in
this topic too:

Beside the general objective of logistics to provide goods at the right place, at
the right time, in the required quantity and quality, the term temperature-controlled
logistics implies the simultaneous observance of all legal restrictions and cus-
tomer-specific requirements such as production, storage, transportation and dis-
tribution of temperature-critical goods.

The Definition refers not only the physical component of the transportation
process, but also describes the accompanying information and organization pro-
cesses. The transportation process is split in two systems: active and passive
temperature-controlled transports.

2.1 Active and Passive Temperature Control

The transportation of temperature-critical goods can be done active or passive
temperature-controlled. If during the transportation process heaters or cooling
units are used, the process is called active temperature-controlled. If isolating
packages, containers or carriers are used instead, it is called a passive temperature-
controlled transport [6].

Active systems can be used in nearly every form: from packets to containers,
almost everything can be cooled or heated. The heating mostly takes place by
batteries or external electric sources. The most important advantage of active
temperature-controlled transports is the high thermal stability. Disadvantages are
beside the high investments and running costs, the lack of flexibility [10].

An alternative for that is the passive temperature-controlled transport. In this
case heating or cooling systems are not used to reduce costs. In passive systems the
goods are enclosed by isolating charging units, which guarantee that the goods do
not get any thermal damages in a defined transport time [4]. But beside a tem-
perature resistant charging unit, this method requires enormous experiences of the
employees considering the external influences. The difficulty consists of the right
adjustment of the temperature. Influences which could affect the freight temper-
ature like physical, biological, climatic, chemical or abrasive influences or the
transport time and speed have to be considered and calculated before departure [6].
Furthermore, the temperature of goods is directly related to its quality, this point is
a critical problem of passive temperature-controlled systems.

2.2 Passive Temperature-Controlled Transport of Liquid
Aluminium

In the case of liquid aluminium passive temperature-controlled transport takes
place in special crucibles, which isolate the aluminium best possibly against
external influences. The crucibles have a capacity of 5 to 6 tons and are made of a
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stable steel case with reinforcing profiles as well as temperature resistant refractory
linings for optimum isolating.

Transport Process. The transport process of the liquid aluminium is based on a
type of kanban principle. The necessary preparations begin after the smelting of
aluminium scrap directly on the furnace. When a vehicle with empty transport
units reaches the plant site, new crucibles are heated on a customized preheating
station until the temperature of the new transport unit is equivalent to the alloy-
specific filling temperature of the liquid aluminium. After the defined preheating
temperature is achieved, the preheated crucible is transported to the nearby filling
station and the filling of the crucible starts. The filled crucibles are set in exchange
for empty ones on the truck and secured with four steel pins [2]. The entire process
of loading takes about an hour. Generally a truck transports only one type of alloy
per tour to avoid possible confusions at the customer site. Before the loaded trucks
leave the factory, they pass a checkweigher. At this point the total weight of the
truck and the departure time is recorded. All collected data such as weight, alloy
and preheating temperature are given to the customer in form of a protocol. In the
best case, the carrier reaches the site of the customer within the desired temper-
ature range and leaves the plant after unloading with empty crucibles and the
described process can restart again.

Influencing Factors. Basically, the cooling process is reflected in a digressive
falling curve of aluminium temperature along with the transport time, because the
effluent heat flow decreases with a decreasing temperature gradient to the outside
temperature. The progression of the curve and its pitch are primarily caused by the
prevailing parameters of influence. Table 1 shows these parameters of influence
that are explained below briefly.

The crucible condition is dependent on the remains of the liquid aluminium on
the inside of each crucible. These remains are formed with each transport. They
reduce the transporting amounts of liquid aluminium and therefore can have an
impact on the cooling process.

Due to the aerodynamic properties of the driver’s cab in combination with
possible installed air deflectors, the wind load of the crucibles vary depending on
the crucibles’ position (1 to 3). Thus the position of the transport units has a
decisive influence on the course of the cooling process.

The transport time includes the time period in which the liquid aluminium is in
the crucible. Therefore it is subject to all kind of influences. The transport time
begins at the starting time of filling the aluminium smelter and ends with the
discharge at the customer site. The duration of the transport is generally seen in
close connection with the transport distance. A longer transport time has a negative
effect on the temperature of the smelt.

The temperature gradient between the outdoor temperature and the alloy tem-
perature is primary defined by the outdoor temperature. High temperatures reduce
the discharge flow of heat. At lower temperatures a stronger cooling effect is
expected.

The precipitation respectively a high density of precipitation leads to decrease
of the aluminium temperature. Basically, it can be assumed that raindrops
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Table 1 Relevant

-y . Nomination Entity
parameters of influence with - — - - -
entities Crucible condition Number of fillings since last cleaning
Crucible position Position [1, 2, 3]
Transport time Hours [h]
Outdoor temperature Degrees celsius [°C]
Density of precipitation Millimeter per hour [mm/h]
Driving speed Kilometers per hour [km/h]
Relative humidity Percent [%]

evaporate by striking the surface of the crucible at a temperature up to 134° C. For
the evaporation of a liquid, in other words a phase transition from liquid to gaseous
state of aggregation, the heat of evaporation has to be achieved [1]. The necessary
energy is withdrawn from the system in form of thermal energy (energy conser-
vation). By that a higher density of precipitation leads to a higher withdrawn
thermal energy.

The driving speed causes a turbulent air flow at the surface of the crucibles,
which leads to a convective removal of the heat directly around the crucible. The
warm air is carried out of the system faster at higher driving speed and will be
replaced automatically from the inside of the crucible leading to a greater loss of
temperature of the aluminium.

At this time it cannot be estimated which quantitative and qualitative influences
are derived on the cooling process of the smelt. But in the past correlations
between relative humidity and cooling behavior of the aluminium alloy have been
found. Therefore this exogenous factor should be taken into consideration in the
progress of work.

Even if the direction of influence is basically clear, precise quantitative state-
ments about the cause-effect relationship of the individual parameters are difficult.
However, this would be important and desirable especially for an energy-efficient
control of the supply chain.

3 Decision Support System
3.1 Sensor System Architecture

For the recording of weather and crucible data a detection system was developed,
which makes it possible to capture the data in real time. The system was installed
on a truck‘s semitrailer to do the recordings. It includes a weather station with
Integrated Sensor Suits (ISS) and a data logger. The ISS records the actual weather
data like wind speed, humidity, precipitation and outdoor temperature during the
ride in a 10-min-interval. Further sensors were placed in the walls of the crucibles,
which record (also every 10 min) the temperature of the crucibles. The recorded
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data are transmitted via a cable to the data logger, which saves them in a storage
unit. The recorded weather data are being analyzed afterwards.

3.2 Expert System Architecture

The architecture of an expert system, in other words its exterior with different
program modules and connections, in general comprises of five components:
knowledge base, inference engine, user interface, explanation module and
knowledge acquisition module [7]. This basis architecture needs to be modified
and extended for this application. Figure 1 shows the resulting schematic structure
of the expert system.

The knowledge base is the core and the base of each expert system. It contains
the permanent expertise as well as the temporary knowledge of the experts about
the individual area of application. In this case the knowledge base distinguishes
between rule-based expert knowledge on the one hand and case-specific knowl-
edge on the other hand. While the first one is directly provided by experts, the
case-specific knowledge has to be provided by the users. The inference engine
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connects and combines both modes of knowledge by using fuzzy logic to draw a
conclusion. In addition to this conventional methodology, an external interface
uses route or customer information given by user to select route and customer
specific weather respectively traffic information.

Another component of the expert system is the user interface, which enables the
communication between expert system and user over a graphical user interface
(see Sect. 3.5). Besides the result output, the user interface is able to explain the
reasoning by showing intermediary results. The knowledge acquisition module is
only implemented and used in the development phase for decision-tree-based rule
induction. Over and above the human operators, the numerical data from the
measuring sensor system (see Sect. 3.1) represents a fundamental source of
knowledge.

3.3 Decision-Tree-Based Rule Induction

A decision tree is a decision support tool with nodes, arcs and leaf nodes. It is built
up of a hierarchical tree structure where each node contains a branching criterion
with associated alternatives for a specific attribute of training set [8]. The outcome
of this is the directed graph shown in Fig. 2. The nodes represent the decision
criteria, the arcs constitute the possible decision alternatives and the leaf nodes
show the closing decision result.

To generate an initial decision tree for this application a set of training cases is
obligatory. In this case the current training set comprises about 100 passive
temperature-controlled transports of liquid aluminium from supplier to customer.
Every transport is listed in the set with its specific attributes or rather its
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endogenous and exogenous influencing factors. The data acquisition was con-
ducted with the developed sensor system (see Sect. 3.1). In addition to the factor
values, the gradient of the liquid aluminium cooling curve is also given.

The identified influence factors (crucible position, crucible condition, driving
speed, humidity, density of precipitation, outdoor temperature) and their corre-
sponding measured data are synonymous with the decision criteria respectively
decision alternatives. The gradient represents the decision result. In principle, the
formed decision tree offers an own competency in solving decision problems, but
in this application the decision tree is used as a tool for rule induction. Every
decision tree can be translated into an equivalent rule base without any problems
[13]. Each decision path, which starts at the introductory criterion and ends with a
result, equates one rule. All passed decision criteria in connection with the selected
alternatives generate the antecedent (IF). The final decision result is the conse-
quent (THEN) of the rule. Of course, rewriting the decision tree to a collection of
rules, one for each path, would not result in anything more simple or flexible than
the tree [9]. Therefore and due to the fact that the set of training cases is limited
and not able to cover all future possible combination of influence data, the inte-
gration of fuzzy logic is necessary.

3.4 Fuzzy Rule-Based Expert System

The fuzzy logic approach helps to formalize human reasoning patterns and to
develop high-performance expert systems in contexts where data are uncertain
(e.g. “about 10 °C”) and/or vagueness (e.g. “very cold”).

The use of fuzzy logic combined with the expert system has two central
advantages [16]. On the one hand the application of linguistic variables provides
the system with elasticity and intuitiveness, and enables to generate the humanlike
decisions. On the other hand fuzzy logic helps expert systems to reduce com-
plexity and heterogeneity of their elements [12, 16].

Through the use of fuzzy logic in the expert system, the system is referred to as
a fuzzy logic-based expert system or fuzzy expert system. The development of
fuzzy logic-based expert systems consists of nine steps: Description of problem
and aims, knowledge acquisition, definition of membership functions (linguistic
variables and terms), creating the rule base, establishing a weighting factor for
each rule, selection of operators, selection of the defuzzification method, testing
and fine-tuning respectively optimization of the system [5, 15]. The input and
output variables of a fuzzy logic-based expert system can be made available from
different information sources, such as from numerical data of measuring sensors or
heuristics in the form of linguistic expressions [11].

The knowledge base is a central component of a fuzzy logic-based expert
system and contains the knowledge of experts on transport of liquid aluminium as
well as collected sensor data (see Sect. 3.2). The representation of this knowledge
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occurs mostly with if-then-rules. The inference engine component of the expert
system includes the fuzzy logic components for fuzzification and defuzzification.
In the fuzzification component, the sharp inputs are translated to fuzzy sets with
linguistic terms. The processing of the fuzzified inputs with if—then-rules occurs in
the inference component of the fuzzy logic-based expert system. Lastly, the de-
fuzzification component calculates a discrete result from the fuzzy sets.

3.5 Demonstrator Application

To support the data analysis process and for later tests in a productive environ-
ment, the development of a software demonstrator application has been realized.
The composition of the demonstrator can be roughly divided into two parts,
namely the calculation logic (containing fuzzy data handling and computations)
and the Graphical User Interface (input and output dialogs presented to the user).
The demonstrator has been completely developed in Java. As for the calculation
logic, a Java-based software library called jFuzzyLogic [3] has been used that
supports the Fuzzy Control Language (FCL) for easy import of fuzzy rules and
variables.

For the creation of the fuzzy logic rules the method of the decision tree and the
fuzzy logic were combined. For a detailed description of these methods see
Sects. 3.3 and 3.4. During a defined time period data concerning the different
influences on the aluminium temperature during the transports were recorded.
Based on the collected data a decision tree was derived. Afterwards the different
decision alternatives were compiled and transformed to a set of fuzzified rules.
These rules are finally stored in the configuration file of the demonstrator.
Required input data for the calculation of the temperature of the liquid aluminium
are: crucible condition, crucible position, transport time, outdoor temperature,
density of precipitation, humidity and desired temperature of the liquid aluminium
at arrival. The cooling curve of the aluminium is approximated with a falling
straight line. On the basis of the desired temperature at arrival and the other
required data the demonstrator determines the gradient or rather the simple
equation. As the travel time is known, the temperature of the liquid aluminium at
departure can now be calculated.

The Graphical User Interface (GUI) supports the user regarding the input of all
relevant input values for the fuzzy inference system. One of the areas of
deployment is the use of the decision support system as a smartphone-application
like shown in the following Fig. 3.

Since the needed computing power for the calculations is rather low and the
amount of stored data is small, any Android-capable smartphone should be a
sufficient platform to handle the execution of the application. When used as a
smartphone-application the decision support system grants the user a better
availability with less resources.
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Fig. 3 Screenshot of SMITH
android application
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4 Improving Energy Efficiency

The use of the SMITH-demonstrator makes it possible to optimally adjust the
preheating temperature of the crucible. Because of that less gas is needed for
preheating the crucible. This lower gas consumption leads to a lower output of
CO, during the heating. The calculation of the possible CO, savings is done by
analyzing the data of the set of training cases. Based on the recorded data the
transport is simulated with the use of the SMITH-Software, compared to the data
without the use of the SMITH-demonstrator and assessed concerning the possible
CO; savings. Here, the following assumptions have been made:
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Table 2 Symbols, their nomination and units of the equation one

Symbol Nomination Entity
COsave Possible CO, savings Kilogram [kg]
Thigher Aluminium temperature at arrival above customer Degrees celsius [°C]
requirements (weighted average)
Tiower Aluminium temperature at arrival under customer Degrees celsius [°C]
requirements (weighted average)
Twss Required temperature of aluminium by customer Degrees celsius [°C]
Wr Heating power of gas burner Kilowatt [kW]
COyqq CO,-conversion factor for burning of methane -
H; Calorific value of methane Mega joule per
kilogram [MJ/kg]
vr Heating rate Degrees celsius per
hour [°C/h]

e As the data basis for the comparison is unchanged it is assumed that the tem-
perature of the aluminium at arrival, ceteris paribus, is only adjusted by the
preheating temperature of the crucible on the aluminium producer’s site.

e The difference of the temperature required by the customer and the actual
measured temperature of the aluminium at arrival equates the temperature dif-
ference by which the crucible must be preheated more or less before filling.

e The required aluminium temperature at arrival is always maintained when using
the SMITH-demonstrator.

e Instead of natural gas pure methane is used for preheating the crucible. In
addition, the methane burns completely forming carbon dioxide and water.

e To calculate the possible CO, savings CO,g,,e per crucible and tour, taking into
account the assumptions mentioned above, the equation one was developed. The
equation itself and the results of the calculation will be explained briefly below.

COZsave = (Thigher + Tlower - Tw/S) * WT * COZﬂq/(Hi * VT) (1>

The different symbols of the equation, their nomination and their units are
shown in Table 2.

Tiower and Thjgher are the actual measured temperatures of the aluminium at
arrival on the customer’s site. These temperatures are determined by the set of
training cases: For all tours with a higher or lower aluminium temperature then the
customer requires the weighted average for the measured temperatures is formed.
From the sum of the temperatures at arrival the temperature required by the
customer T,,s is subtracted. Accordingly to the assumptions above the temperature
required by the customer equates the temperature at arrival when using the
SMITH-demonstrator. Therefore this difference equates the temperature differ-
ence, by which the crucible must be preheated less before filling the aluminium
into it. This difference is multiplied by factors for the preheating power W and the
CO,-conversion factor CO,,q. Both factors are constant. The preheating power
indicates the power of the gas burner. It is 200 kW. The CO,-conversion factor
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results from the reaction equation of burning methane. As 1 kg of methane is
burned 2,54 kg of CO, are generated. In the denominator the heating rate vt is
multiplied with the calorific value of the methane H;. These factors are constant as
well and are 84° C/h respectively 50,013 MJ/kg. By multiplying respectively
dividing the different factors the possible CO, savings per tour, where the alu-
minium temperature is too high, can therefore be calculated.

The temperature difference, which is calculated from the higher and lower
weighted average temperature of the aluminium at arrival (Tpigher, Tiower) and the
temperature required by the customer (T,,s), is 6,39 °C. Multiplying the temper-
ature difference with the factors W and CO,,q respectively dividing it by the
factors vT and Hi results in savings of 3,00 kg CO, per crucible and tour, if the
SMITH-demonstrator is used. Extrapolated to all crucibles and tours of the German
sites there is a reduction of CO,-emissions in the amount of 124,2 t per year. To get
a comparison: these 124,2 t match the annual CO,-emissions of nearly 84 Volks-
wagen Golf 1.6 TDI Bluemotion, basing on a mileage of 15.000 km for each car.

5 Conclusions

The method of the passive temperature-controlled transport requires high demands
on the employees for setting the right temperature of the goods at departure. To
support the employees and to optimize the efficiency of passive temperature-
controlled transports, we designed a rule-based expert system. From the point of
view of the aluminium producer the use of the SMITH-demonstrator leads to an
optimized heating process, time and cost savings. The higher efficiency of tem-
perature controlled transports results in a lower CO,-output during the preheating
of each crucible. As §4 showed a reduction of CO,-emissions during the pre-
heating of the crucible in the amount of 124,2 t per year is feasible. From the point
of view of the customer the use of SMITH-demonstrator leads to an increased
delivery reliability and quality.

The development of the software is ongoing. Especially the knowledge base of
the expert system is still growing, but the basic function of the system is evident. It
is already able to predict a temperature for the liquid aluminium. With a larger
knowledge base, the system will be able to create a more accurate prediction.

According to the project SMITH, the demonstrator application respectively the
rule-based expert system has been designed to predict the temperature of liquid
aluminium. But it is easy to adapt the software to other passive temperature-
controlled transports of goods. For example, tar is transported passive-controlled
as well. If the solution is transferred to other passive-controlled transports, even
higher energy savings and therefore CO, savings could be realized.
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An Eco-Traffic Management Tool

Jorge M. Bandeira, Sérgio R. Pereira, Tania Fontes,
Paulo Fernandes, Asad J. Khattak and Margarida C. Coelho

Abstract Drivers routing decisions can be influenced to minimize environmental
impacts by using, for instance, dynamic and intelligent road pricing schemes.
However, some previous research studies have shown that often different pollu-
tants can dictate different traffic assignment strategies which makes necessary to
assign weights to these pollutants so they become comparable. In this chapter, a
tool for traffic assignment taking into account eco-routing purposes is presented.
The main goal of this work is to identify the best traffic volume distribution that
allows a minimization of environmental costs for a given corridor with predeter-
mined different alternative routes. To achieve this, an integrated numerical com-
puting platform was developed by integrating microscopic traffic and emission
models. The optimization tool employs non-linear techniques to perform different
traffic assignment methods: User Equilibrium (UE), System Optimum (SO) and
System Equitable (SE). For each method, different strategies can be assessed
considering: (i) individual pollutants and traffic performance criteria; and (ii) all
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pollutants simultaneously. For the latter case, three different optimization
approaches can be assessed based on: (i) economic costs of pollutants once
released into the air; (ii) human health impacts according to the Eco-Indicator 99;
and (iii) real time atmospheric pollutant concentration levels. The model was
applied to a simple network, simulating three levels of traffic demand and three
different strategies for traffic assignment. The system is developed in Microsoft
Excel and offers a user friendly access to optimization algorithms by including a
dynamic user interface.

Keywords Eco-routing - Traffic assignment - Microscopic model « Atmospheric
emissions

1 Introduction

Although there have been some improvements over recent years, road transport
sector is still contributing significantly to nitrogen oxide (NOy), particulate matter
(PM10) and carbon monoxide (CO) emissions in Europe (33, 13 and 27 %,
respectively for each pollutant) [1]. Recent studies show that people living near
congested roads across Europe are still particularly exposed to air pollution. In
2010, urban traffic air quality stations recorded NO, and PM concentrations above
legal limits in 44 and 33 % of cases, respectively. These pollutants may have an
effect on the cardiovascular system, lungs, liver, spleen and blood [1]. A more
efficient management of existing infrastructures has been identified as a key policy
with great potential to reduce emissions. These measures may include behavioural
changes in the operation of vehicles (eco-driving) as well as route choices with
lower emissions impacts associated. In this context, the Eurovignette directive
proposes a “user pays” and a “polluter pays” principle for heavy duty vehicles in
Europe [2]. In order to encourage the move to transportation patterns with lower
environmental impacts, the tolls price could vary according to vehicles’ emissions,
distance travelled, location and time. Yin and Lawphongpanich [3] demonstrated
that there always exists a (non-negative) tolling system that leads to a traffic
distribution with minimum emissions. Recently an optimal emission pricing model
to reduce emissions in a given transportation network was proposed by Sharma
and Mishra [4]. The impact of route selection in terms of emissions has been
studied deeply in recent years. Bandeira et al. [5] conducted a detailed revision of
the most important studies in this field. Through an empirical study, the relevance
of the eco-routing concept has been reinforced [6]. However, in this chapter it was
found that the concept of “eco-friendly” should not be strictly confined to CO,/
fuel consumption since a trade-off between CO, versus local pollutants minimi-
zation has been observed. Barth et al., Ahn and Rakha, Yao and Song [7-9] have
conducted important research on environmentally friendly routing based on
microscopic emission models (CMEM, VT-micro and VSP respectively). In 2012,
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Gazis et al. [10] developed a system of eco-navigation taking into account the
relative impact of emissions in terms of cost, life cycle analysis, and current
critical air pollutants concentrations. However, in this approach, it was assumed
that routing has negligible impact on overall congestion. By modelling two large
scales areas, Guo et al. [11] found that a 40 % targeted green routing market
penetration yielded 25 % reduction in CO emissions at the expense of 13 %
increase in travel time. Instead, Ahn et al. [12] stated that a market penetration of
20 % of eco-routers may produce higher fuel consumption levels.

Some important conclusions of previous research are: (i) an efficient route
choice may lead to significant emission reductions; (ii) there may be a conflict in
minimizing different pollutants; (iii) the optimization of traffic operations should
consider the relative damage impacts of each pollutant; (iv) the implementation of
eco-routing systems may lead to unexpected results on large and complex
networks.

In a more realistic picture, a more efficient (environmentally) traffic distribution
could be performed in certain corridors wherever is possible to implement intel-
ligent toll systems that may lead to a better allocation of traffic. A recent study
pointed out that the benefits of dynamic eco-routing and dynamic emissions
pricing may lead to 160 billion US dollars of environmental benefits with relative
low incremental costs between 2017 and 2055 [13].

This study presents an eco-traffic management tool used to define the most
sustainable traffic distribution, given a total demand provided by the user, among n
routes linking an Origin/Destination pair (OD). This optimization can be per-
formed using different criteria and assignment methods. In a further step this
optimal distribution may be used to estimate optimal emission pricing schemes
under different levels of traffic demand. A case study is presented based on a
simplified road network linking an OD pair that consists of two arterials and two
motorways with different capacities.

2 Methodology

This section presents the methodology for the development of an eco-traffic
assignment tool. First, a brief explanation on the development of Volume-Delay
functions (VDF) and Volume-Emission functions (VEF) is provided. Then, the
optimization methods and the criteria available for eco-friendly traffic assignment
strategies are explained.

2.1 Volume-Delay and Volume-Emission Functions

VDF and VEF for each link must be defined before the optimization process is
started. These functions use the traffic volume as an independent variable and both



44 J. M. Bandeira et al.

Link Level = Development of Volume dependent Network Level
functions Traffic assignment
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Fig. 1 Overall structure of the optimization platform

travel time (VDF) and emissions (VEF) as dependent variables. Different scenarios
of traffic volumes using different links can be performed using commercial
microscopic traffic models or real world GPS data using probe vehicles. Micro-
scopic traffic flow models simulate single vehicle-driver units, thus the dynamic
variables of the models represent microscopic properties such as the position and
second-by-second speed of individual vehicles. Then, emissions can be estimated
using instantaneous emission models with the specified level of detail of the road
traffic model used previously (Fig. 1).

By conducting a regression analysis, and for a considerable number of routes, a
cubic polynomial function (Eq. 1) was shown to be appropriated to interpolate the
traffic volume with total pollutant emissions and other traffic parameters (P).
Figure 2 exemplifies the VEF for NOx and CO, for 4 different routes (see Sect. 3.1
for further details).

P = constant + bl -V +b2 - V2 + b3 - V3

. (1)
V < Capacity, C

The likely traffic distribution in the network can be assessed through the tra-
ditional volume-delay (or cost) functions and the User Equilibrium (UE) model
formulation. To ensure that the assignment converge to a unique solution, the VDF
must be strictly increasing. Thus, in this case, a cubic function may not be
appropriate, even a high correlation between the observed and predicted values is
obtained. In this platform, an additional tool to optimize the most widely used
VDF parameters of the BPR [14] and Conical [15] (Eqgs. 2 and 3) functions is
available. This optimization is conducted by minimizing the Root Mean Square
Error between observed/simulated and predicted values of travel time.

t=1p <l+a<g>ﬁ> 2)
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where: t—Travel time for volume V; tO—travel time at free flow; C—Capacity; o;
f—dimensionless parameters.

2.2 Criteria

A wide range of criteria is available to optimize the traffic distribution among alter-
native routes in a corridor, according to criteria and methods selected by the user.

In addition to traffic performance parameters (travel time, speed and, traffic
density), individual pollutants (CO, NOyx, HC, PM), and Greenhouse Gases (CO5),
three integrated optimization approaches are available based on: (a) economic
cost; (b) health impacts; and (c) air quality levels. The economic cost takes into
account the cost of each pollutant once released into the air. Unit benefits can be
introduced using published data on the value of reducing emissions or fuel savings.
The health impact approach weighs a range of substances according to various
damaging effects. Finally, an alternative approach is available if the user wants to
consider the real time air quality levels and assign different weights to each pol-
lutant. A more detailed explanation on the methodology for normalization of
emissions impacts can be found elsewhere [10]. By default, the parameters for
weighing pollutants effects (economic cost and health impacts-indicator) are based
on literature [13, 16], and are shown in Table 1. However, since these factors were
developed for different contexts, further research is needed to adapt and contex-
tualize these values to particular cases.

2.3 Assignment Method

In addition to the traditional UE approach, two different optimization goals are
considered: System Equitable (SE) and System Optimum assignment (SO). In the
first case, the traffic distribution between the OD pair is achieved at the same cost
for all routes. This concept introduced by Rilett and Benedek [17] has as main goal
to distribute equitably the negative effects of traffic among the alternative routes.
Moreover, a maximum amount of pollution in the total network or in a specific link
can be defined first. This objective is attained by minimizing the standard deviation
(among the alternative routes) of the cost associated with the selected criterion.
Both the Egs. 4 and 5 exemplify the optimization process taking into account the
criterion “Integrated Economic Cost”.

In the second method, the traffic assignment is performed with the aim of
maximizing the overall benefit of the whole network (Eq. 5). This objective is
attained by minimizing the total environmental costs of the system. This approach
indicates a lower bound for the amount of pollution impacts possible, and allows
the planners to identify how close to the optimum scenario they are. The constraint
functions ensure that the overall and the specific capacity of each link is not
exceeded, the non-negativity and the user-defined total demand is met (Egs. 9—12).
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Table 1 Effect of pollutants  p e Cost (USD/g) Impact (DALYs/kg)
based on economic costs [13]
and eco-Indicator 99 [16] NOx 0.02480 1.7200
HC 0.00827 0.0248
CO 0.00416 0.0141
CO, 0.00007 0.00406
PM 0.22920 7.26
n 2
. - 1(Ec; — EC
min \/Zl—l ( i ) (4)
n—1
. n
min Zi EC; (5)
where:
n m
EC=)" Zj P,CP; (6)
Pji(vi) = constant;; + blji V.+ bZJ,Vlz + b3ji Vf (7)
Vi =VT Xi (8)
Subject to:
tes
Z?I‘OU €S V] _ VT (9)
nroutes
> =1 (10)
x1 >0 (11)
V<G (12)
where:

C—Capacity (vph) of route i;

CP—Cost of the pollutant j (€/g) released in the air;
EC—Economic cost (€);

m—N° of pollutants considered;

n—N° of alternative routes;

P;j—Total emissions of the pollutant j produced on route i (g);

Vi—Total traffic volume on route i (vph);
VI—Total Demand (vph);
x—Relative flow on route i.

Depending on the complexity of the optimization process two optimization
strategies can be selected. The Generalized Reduced Gradient (GRG) Nonlinear
Solving based on Lasdon and Waren’s code [18], selects a basis, determines a
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search direction, and performs a line search on each major iteration—solving
systems of nonlinear equations at each step to maintain feasibility. For more
complex problems (non-convex), MS Excel provides an evolutionary algorithm to
optimize the relative flows (x;) that minimize the selected objective function. The
use of a population of solutions helps the optimization processes algorithm avoid
becoming “trapped” in a local optimum [19].

3 Case-Study

A simple network is presented as a case study for demonstration of some capa-
bilities of this tool. First, the characteristics of the network are described. Then, the
process of traffic and emissions simulation is briefly summarized. Finally, the
scenarios evaluated are presented.

3.1 Network Characteristics

The case study is based on a stylized road network that consists of four sections of
one kilometer of length with different capacities. Four representative scenarios of a
Portuguese road network are presented: (a) RI—Motorway with three lanes and
with an average toll cost of €0.08/km; (b) R2—Motorway with two lanes and one
interchange, with a toll cost of €0.064/km; (c) R3—Highway with one and two
lanes sections and one interchange; (d) R4—Arterial in a urban environment with
one lane in each direction, five intersections and one traffic light. The main costs
perceived by the users, and included in volume-costs functions, are the value of
time and the value of tolls. Figure 3 presents the link configuration and Fig. 4 the
respective Volume-Costs function, i.e. the user’s perceived cost as function of
traffic volume in each link.

3.2 Traffic and Emissions Modeling

The evaluation of traffic performance under different traffic demand levels was
performed using the VISSIM microsimulation model [20]. Driver behaviour
parameters of this model were tested in order to assess their effect on travel times
and also speed rates of links with similar characteristics. The calibration param-
eters can be divided into car-following parameters, lane-change parameters, sim-
ulation resolution, desired speed and acceleration distributions and vehicle specific
power distribution. A comprehensive explanation on traffic model calibration and
evaluation process is available elsewhere [21].
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Fig. 3 Layout of alternative R1
routes
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To estimate emissions, the Vehicle Specific Power (VSP) method classified in
14 modes was employed. This model allows the estimation of instantaneous
emissions based on second-by-second vehicle’s dynamics (speed, (v), accelera-
tion, (a) and road grade) (Eq. 13). The emissions factors used in this study from
gasoline and diesel passenger vehicles, as well to buses can be found elsewhere
[22-24]. To heavy duty and motorcycle vehicles, there is a lack of VSP emission
factors adapted to the European situation. Regarding these specific cases, the
CORINAIR methodology [25] was used. This methodology is based on speed,
slope and load factor. A C# console application was developed to compute second-
by-second vehicle drive cycle data from VISSIM and then calculate emissions
based on both mentioned methodologies. A typical Portuguese fleet has been
considered [26].

VSP = v[1.1a + 9.81 sin(arctan(grade)) + 0.132] 4 0.000302 x v* (13)

3.3 Scenarios

Three traffic assignment scenarios were assessed. The first one simulates the likely
traffic distribution using the user equilibrium formulation (UE). In this scenario,
each user seeks to minimize his costs without considering environmental issues.
The second scenario simulates an optimized traffic distribution scenario (SO) with
the aim of minimizing the overall cost of emissions produced on the network. In
the third scenario, a SE assignment is performed. Here, the pollution impacts are
equally distributed over the various routes. For each scenario, three distinct traffic
demands are analyzed: low demand, 1,000 vph; moderate demand, 4,000 vph; and
high demand 10,500 vph.
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Fig. 4 Volume-cost functions for the alternative routes

4 Results and Discussion

In this section, examples of model outputs are discussed. Firstly, the relative
contribution of each pollutant for the total environmental economic costs and the
eco-indicator is analyzed. Then, the evaluation of an optimization based on
environmental costs is conducted.

4.1 Optimization Parameters

Different approaches were tested to solve the non-linear problem, the GRG
method, and genetic algorithms (GA) using a set of recommended settings [27,
28]. Table 2 exemplifies the optimization time and the objective function value. It
can be seen that the GRG method is considerably faster than the use of evolu-
tionary algorithms, since this non-linear problem was convex. For non-convex
problems, the employ of GA can produce more reliable results and avoid be
trapped in a local minimum.

4.2 Relative Impact Of Pollutants Under UE

Figure 5 presents the environmental impact costs and the health impacts (eco-
indicator99) related with each pollutant among the alternative routes. In this case
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Table 2 Optimization time and objective function result (total integrated cost using different
optimization tools

Assignment strategy System equitable (SE) System optimum (SO)
Optimization method GA, GA, GRG GA, GA, GRG
Optimization time (s) 67 65 2 104 63 9
Relative flow

R1 44.0 % 43.8 % 44.1 % 53.7 % 52.1 % 529 %
R2 253 % 252 % 254 % 26.8 % 29.4 % 29.8 %
R3 17.3 % 17.3 % 17.3 % 10.8 % 10.4 % 10.7 %
R4 13.1 % 13.1 % 13.1 % 6.7 % 6.2 % 6.6 %
Final result (€) 0 0 0 652 653 669

the total impacts were estimated using the traditional UE assignment for a total
traffic demand of 4,000 vph. Each bar is an alternative route and each pollutant a
different segment of the bar. In terms of mass, all pollutants exhibit very distinct
orders of magnitude and CO, is by far the most abundant. However, when
translated in economic terms, the weight of CO is considerable higher. Consid-
ering the health impact, the influence of PM and CO, are comparable but in this
case NOy is clearly the pollutant with major impacts. Considering this perspective,
HC and CO are negligible. It should again be emphasized that these figures are
based on different studies and adopted for different realities. Regional factors such
as population densities or land use type influence the environmental costs impact
factors, but this is beyond the scope of this study.

4.3 Optimization of Environmental Economic Costs Under
Different Levels Of Demand

For reasons of economy of space the optimization analysis will be limited to the
criterion integrated cost. Figure 6 shows the traffic distribution for each scenario
according different demands. Figure 7 presents the total cost of pollution over
similar conditions. Each bar is a different traffic assignment scenario and the
contribution of each route is shown in a different colored segment. The relative
change (%) of users’ total costs between SE or SO assignments and the UE
scenario is shown by the black circles.

Regarding the low congestion scenario, an optimized traffic distribution would
allow about 18 % reduction of emissions impacts with a marginal impact in the
users cost (1 %). This situation occurs because the alternative R3 offers a good
alternative in terms of environmental costs without a considerable increase of
travel time. Under moderate demand, the SO assignment yields 33 % reduction of
pollution costs with 5 % increase in total users cost compared with the UE
assignment (Fig. 7). This situation occurs by shifting a considerable amount of
traffic from R2 to R1 with higher road capacity but higher toll costs (Fig. 6). The
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Fig. 5 Example of environmental costs (fop) and health impact of pollutants over different
routes (Bottom)

SE scenario would allow a slight reduction in the total environmental costs
(compared with UE assignment) but an increase in user costs of 24 %. Considering
the higher congestion scenario, there is no significant road capacity to allow
considerable improvements in emissions reduction. In this case, the SO assignment
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Fig. 7 Environmental costs and relative increase in total users cost in comparison to UE

has a similar distribution with the UE case (Fig. 6). Naturally, the potential of
minimizing costs associated with pollution decreases when the V/C ratio for the
OD pair is close to 1. In general, an optimization of environmental impacts
requires an extra effort in terms of users’ cost. Accordingly, we can conclude that
the toll rates scheme can be improved with regard to reducing the environmental
impact.
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5 Conclusions

A tool to help the traffic assignment in a certain corridor more efficiently and
environmentally friendly has been developed. The most innovative factor of this
tool is the ability to include the impacts of major pollutants in an integrated form
according to user’s needs. This tool is not intended to replace the traditional traffic
assignment models but rather complement them and contribute to a more effective
management of traffic. The outputs of this model can be the basis for implementing
intelligent traffic management measures. It is common knowledge that SO
assignment is an unrealistic scenario since it assumes that drivers will collaborate
in making their route choices considering the overall benefit of the complete
network, instead of their own benefits. However, new traffic advanced information
systems and smart road-pricing schemes may lead to a more efficient allocation of
traffic in certain corridors by dynamically change the equilibrium conditions. The
case study has demonstrated that it is possible to significantly reduce environ-
mental costs (30 %) by changing the flow distribution along a corridor with 4
alternative routes. Further research is needed to evaluate driver’s response to new
eco-routing systems. Moreover, it is necessary the development of a methodology
to adjust the impact of pollutant emissions according to the characteristics of
specific links.
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Evaluating Changes in the Operational
Planning of Public Transportation

Joao Mendes-Moreira and Jorge Freire de Sousa

Abstract Operational planning at public transport companies is a complex pro-
cess that usually comprises several phases. In the planning phase, schedules are
constructed considering that buses arrive and depart as scheduled. Obviously,
several disruptions frequently occur, but their impact on the operating conditions is
not easy to estimate. This difficulty arises mostly due to the impossibility of testing
different solutions under the same conditions. Indeed, typically, the available data
are a result of the current plan, while new proposed solutions have not produced
real data yet.

Along this chapter we discuss the assessment of the impact of changes in the
operational planning on the real operating conditions, before their occurrence. We
present a framework for such assessment, which includes two components: the
impact on costs, and the impact on revenues. We believe that this framework will
be useful in future works on operational planning of public transport companies.
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1 Introduction

In the last two/three decades, passenger transport companies have made important
investments in information systems, such as Automatic Vehicle Location (AVL),
automatic passenger counting, automated ticketing and payment, multi-modal
traveler information systems, operations software and data warehouse technology,
among others. As a consequence of this effort in Advanced Public Transportation
Systems, passenger transport companies have been able to collect massive data. As
in other areas of activity, all this information was not proving to be particularly
helpful in supporting companies to accomplish their mission in a significantly
better way. The quote we are drowning in information and starving for knowledge
from Rutherford D. Rogers, a librarian from Yale University, summarizes these
moments in the company lives.

The existence of these new data has driven to the development of new
approaches for the operational planning of public transportation. Some of these
approaches imply changes in the initial phases of operational planning. However,
the usefulness of such changes from a company point-of-view is of difficult
evaluation. Some of the reasons why such difficulty exists are:

e The multi-objective nature of this problem: evaluation of operational costs and;
evaluation of clients’ satisfaction.

e The dependency on the type of routes in the evaluation of clients’ satisfaction: a
client has no problems when a bus arrives two minutes in advance when he
knows that there is a bus every five minutes; but he will be very upset with such
advance if he knows that he must wait thirty minutes by the next bus.

e The impossibility of evaluating different operational plans under the same cir-
cumstances: changing the planning when those changes include changes in the
trips’ offer is very sensitive in terms of public perception. Additionally, due to
both the seasonal behavior and high variability of the traffic, it is difficult to
identify the factors that can explain the obtained differences using different
operational plans.

The main goal of this chapter is to present an evaluation framework in order to
measure the impact of changes in the operational planning of public transportation.
This chapter starts with the presentation of how operational planning is usually
done in public transportation companies. Then, in Sect. 3, a short review on
methods for evaluation of operational performance of public transport systems or
bus lines is presented. The main issues on such evaluation are presented in Sect. 4.
Then, in Sect. 5, a framework for the evaluation of changes in the operational
planning is presented. Section 6 presents a case study on the use of travel time
predictions for the definition of buses and drivers duties, and Sect. 7 concludes the
chapter.
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2 Operational Planning

Operational planning at public transport companies is a complex process that is
usually divided in a set of successive stages:

1. The network definition: it is, obviously, a planning task for the long/very long
term. It comprises the definition of the lines, routes and bus stops. We define
route as an ordered sequence of directed road stretches and bus stops. Lines are
a set of routes, typically two routes that use roughly the same road stretches but
in opposite directions.

2. The trips definition: it is a medium term task, with an horizon much shorter than
the network definition. There are typically two different methods for trip def-
inition: (1) headway-based, defining the time between two successive trips on
the same route [33]; or (2) schedule-based, defining timetables by explicitly
setting the departure time and the time of passage at the main bus stops. The
supply of trips is defined by route even if they are articulated between groups of
routes/lines [6].

3. The definition of the duties of the drivers and buses: they are medium term
(several months) tasks. The goal of both tasks is to define duties. A duty is the
work a bus/driver must do in a day. When a duty is defined, in both cases, we
do not know which driver or bus will do it. We are just making a logic
assignment. The case of bus duties is much simpler than driver duties for
obvious reasons: drivers must stop for lunch, cannot drive every day of the
week, etc., i.e., they have much more constraints than buses. According to Dias
[10], each driver duty is subject to a set of rules and constraints defined by the
government legislation, union agreements and some internal rules of the
company. Typically, bus duties are defined before driver duties.

4. The assignment of duties: it is the task where the driver duties are assigned to
drivers and bus duties are assigned to buses. We are now making a physical
assignment. Assignment for driver duties is more complex than for bus duties,
for similar reasons to the ones explained above. The assignment of driver duties
to drivers is called rostering. It can vary significantly from one company to
another.

Large and medium sized transport companies usually use computer-aided
systems that tackle the vehicle and driver scheduling problems in a sequential
basis. Though, the sequential solution approach, that takes the output of the current
problem as input of the next one, has no guarantee of always finding a good quality
solution to the overall problem. In order to overcome this drawback, solution
methods for the integrated vehicle-driver scheduling problem or for the integrated
driver scheduling and rostering problems have been proposed in the literature [2, 4,
15, 16, 19, 25].
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3 Short Review on Methods for Evaluation of Operational
Performance

Since the seventies, the Operational Planning of Mass Public Road Transportation
Networks has attracted the attention of many researchers. One of the main reasons
has always been the hard but challenging need of balance between two main
variables: the operational costs and the passengers’ satisfaction.

Increasing concerns with efficiency are shaping the way public transportation
systems are designed and operated. These concerns result not only from the
enormous financial constraints faced by municipalities, transport authorities and
operators but also from a greater awareness of sustainability. The evaluation of
performance of transportation systems has attracted widespread attention in the
last decade, and the methodological approach has evolved from the analysis of
activity ratios and key performance indicators to the use of both parametric sta-
tistical methods, such as stochastic frontiers, and non-parametric deterministic
methods, such as Data Envelopment Analysis (DEA). Both enable comparisons
against best observed performance, with DEA having the advantage of allowing
direct comparisons between the units considered (decision making units, DMUs)
accounting for multiple dimensions both in terms of the resources used and ser-
vices produced.

3.1 Analysis of Activity Ratios and Key Performance
Indicators

Since the seminal work of Nakanishi [26], where a customer-oriented bus per-
formance indicator program was established for the New York City, containing
two schedule adherence indicators—en route on-time performance and service
regularity—many authors developed methodologies inspired in bus performance
indicators using computer-aided dispatching, and GPS and AVL technologies (e.g.
[5, 13, 29]).

Traditionally, there has been an emphasis amongst transport operators and
authorities to collect statistics on operational performance that remain popular
because the statistics are easy to understand and the data is relatively easy to
collect. Many of the studies mentioned in the literature were applied to metro-
politan areas or made by entities related to those areas (e.g. [1, 7, 14, 30]).

Despite the significance of reliability indicators only a few studies have
examined the merits of alternative measures of reliability performance [22, 31].
None of these studies, however, evaluated both objective and subjective indicators
for both frequent and less frequent bus services.

In order to provide a more useful and reliable measurement tool of transit
performance, current research about the topic is ever more oriented to consider
both objective and subjective service quality measures [11, 32].
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More recently, Currie et al. [8] and Eboli and Mazulla [12] try to make both
things: the assessment of alternative bus reliability indicators and the junction of
objective and subjective indicators.

3.2 Statistical Methods

As previously mentioned, in the transportation sector, the analysis of performance
of mass transit companies is a field of study that has attracted widespread attention
in recent years. The literature review of De Borger et al. [9] reported 40 published
studies on the performance of public transportation companies using frontier
methods, with the majority using DEA. Barnum et al. [3] note that since 2002, the
number of studies using DEA to compare the efficiency of transportation com-
panies or systems has continuously increased. Whilst these studies are very helpful
to compare urban transport organizations or transit systems as a whole [18, 20, 27],
they are not effective to help a given organization to evaluate its internal activities.

But the application of DEA to compare subunits within a single public trans-
portation company is growing, even if there are still few papers evaluating the
performance of bus routes. In the following paragraphs some examples are
presented.

Sheth et al. [28] evaluated the overall performance of bus routes using DEA and
goal programming, but used simulated data. The main contribution of this chapter
was to identify a set of relevant performance indicators to evaluate bus routes, and
to propose the use of a framework that evaluates performance from different
perspectives, corresponding to different stakeholders: the service providers, the
users and the society in general.

Lin et al. [21] developed a framework for quality control of bus schedule
reliability. This framework was based on the use of DEA models and panel data
analysis procedures to establish confidence intervals for the DEA scores. This
research also recognized the importance of defining appropriate indicators of bus
service reliability. The study only used four indicators of on-time performance,
leaving aside measures of passenger related activity, resource usage or environ-
mental non-controllable factors such as traffic conditions. Therefore, the DEA
model used did not estimate efficiency levels, but it only provided a DEA based
composite indicator of schedule adherence.

Barnum et al. [3] used DEA to evaluate the efficiency of bus routes adjusting for
the effect of environmental variables. The authors discussed the advantages and
disadvantages of existing DEA approaches to account for non-discretionary (ND)
factors in efficiency assessments. They proposed a method for correcting the
efficiency scores to reflect the ND conditions of bus routes, and reported important
managerial insights that a DEA-based performance assessment can provide to bus
transit companies.
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Hahn et al. [17] applied a DEA approach for evaluating the efficiency of
exclusive bus routes in Seoul, considering both the desirable and the undesirable
outputs.

4 On the Evaluation of Operational Planning

In many research works, there is data obtained using a given operational plan. The
evaluation of new approaches for operational planning typically should be done
without having data obtained using the new proposed approaches. This happens
because testing new plans have strong implications in terms of operations and,
consequently are usually avoided. For that reason, the comparison between the
current and the new plan should be done using only data produced using the
current plan.

Changes in the operational planning of public transportation companies aim to
increase revenue and/or to reduce costs. In this section we discuss the main issues
concerning revenues and costs related to the operational management of public
transportation.

4.1 Operational Revenues

Operational revenues are obtained from selling trips. To quantify the revenues for
a past period is easy. However, to estimate the value of operational changes during
the planning phase is very different and will be discussed in Sect. 5. Moreover,
changes in the operational planning have, typically, long-term impact on the image
of the company that is of difficult evaluation.

4.2 Operational Costs

Two different types of costs can be identified: budgeted costs and non-budgeted
costs. The budgeted costs are the ones that were already estimated before the
operation’s occurrence, i.e., they are, typically, planned costs. The non-budgeted
costs are only known when the operations have already occurred and are, typically,
consequence of changes to the operational planning. Operational planners can
choose between wider or tighter plans. In the first case, budgeted costs will be
larger and disruptions will be less frequent. Consequently, non-budgeted costs will
be more reduced. Tighter plans have less budgeted costs. However, a larger
amount of disruptions will happen and, consequently, non-budgeted costs will be
larger.
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An example is the definition of trips’ travel times and slack times for the
schedules. Increasing its values the budgeted costs will increase because the ser-
vices of the drivers and buses will be larger. In this case the probability of schedule
disruption will be reduced comparing against the definition of shorter travel and
slack times. Decreasing travel and slack times will reduce budgeted costs but non-
budgeted costs will be larger because schedule disruption will be more frequent.

5 A Framework for Evaluating Changes
in the Operational Planning

In order to be able to quantify both operational revenues and costs in the planning
phase, they should be estimated. Now the question is: how can we estimate the
value of the changes done in the operational planning? Or, differently, and
assuming that the goal of changing operational planning is to maximize the dif-
ference between revenues and costs: which is the plan that maximizes such dif-
ference? In practical situations, given two alternative plans, how can we evaluate
which plan is the best? The framework we present intends to answer this question.

Considering the stages described in Sect. 2, namely, (1) network definition, (2)
trips definition, (3) Duties definition for both drivers and buses, and (4) duties
assignment (again for both drivers and buses), only changes in the second (trips
definition) and the third (duties definition) stages will be analyzed. Changes in
stage 1 are not very frequent and changes in stage 4 are mainly relevant for human
resource purposes.

The evaluation of each [ version of the planning is done according to the
objective function given in Eq. (1).

mlax OC]XR—CZ. (1)

where « is a value given by the user, R and C are the indicators for, respectively,
the revenues and the operational costs, and / identifies each of the versions under
evaluation. While « and C can be different for each version of the plan under study,
R is fixed. It can be used the value in the last available accounts report for revenues
due to trips sold. The value of «; should reflect the level of change in revenues
expected with a given plan /. The value of o = 1 represents that the given plan
does not have impact on the revenues comparing to the actual plan. As lower limit
for o we propose the ratio between the revenues due to pre-purchased passes and
the total of revenues due to trips sold, i.e., R. This proposal assumes that the pre-
purchased passes represent the less-volatile component of revenues. When the
proposed changes are done in stage 3, i.e., in the definition of the buses and/or
drivers duties, it is expected that the value of « has minor variations with respect to
1. Indeed, different arrangements in the duties definition hardly changes the
number of trips sold. Since the trips and slack times are defined at stage 2, the level
of satisfaction perceived by the clients depends much more on the definition of the
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trips than on the definition of the duties. Consequently, changes in stage 3 affect
mostly costs.

5.1 Estimating Costs

Two different types of costs can be identified: budgeted and non-budgeted ones.
Additionally, changes in both stages 2 or 3 can affect costs. In stage 2, budgeted
costs depends on the used slack times. Largest slack times increase budgeted costs
but, potentially, decrease non-budgeted costs. In stage 3, the ability to define buses
and drivers duties based on the given cycle times, can vary both budgeted and non-
budgeted costs. While budgeted costs can be estimated directly based on unitary
costs per time unit, non-budgeted costs cannot be estimated so easily.
The main indicators used to estimate budgeted costs are:

e Buses’ costs per time unit (BCTU): it should include all operational costs with
buses per unit time.

e Drivers’ costs per time unit (DCTU): it should include all operational costs with
drivers per unit time.

e Sum of all scheduled cycle times (SCT): since the schedules are usually defined
assuming certain slack times, cycle times can be obtained. This indicator can be
ameliorated by incorporating a factor for the inclusion of times with non-
commercial trips, such as the ones for connection to the bus garage.

e Sum of all durations of buses duties (DBD): since the buses duties are defined,
the sum of their durations is direct.

e Sum of all durations of drivers duties (DDD): like DBD it is directly obtained
since the drivers duties are defined.

All these five indicators are usually used as performance indicators in public
transportation companies. They are used to calculate budgeted costs as presented
in Table 1.

Non-budgeted costs result from disruptions between the planned and the real
services. Two different indicators should be used to estimate non-budgeted costs:
the amount of predicted disruptions and the average cost of disruptions. We discuss
next how to estimate these indicators when the changes occur in stages 2 and 3.

We propose the following approach to estimate the amount of predicted dis-
ruptions when changes are done in the second stage of operational planning.
Assuming an actual schedule AS; with an scheduled trips defined by their departure
times aty, aty, ..., at,, and a new schedule NS; with nn trips with departure times
nty, nty, ..., nt,, for the same line / and a set of effective trips defined by their
departure times RT = rty, rt,, ..., rt,,, where typically rn > > an. Considering the
middle times between the departure times of each successive trips of NS; MDP—
NS = mdp,, mdp,, ..., mdp,,, and splitting RT according to the MDP-NS values,
a set of effective trips per each scheduled trip in NS, is obtained. By comparing the
real cycle times per subset against the scheduled cycle time in NS,. A percentile of
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Table 1 Estimating

Changes in: Budgeted costs
budgeted costs
Stage 2 (BCTU + DCTU) x SCT
Stage 3 BCTU x DBD + DCTU x DDD

disruptive trips per scheduled trip in NS; is obtained. With such percentiles it is
possible to obtain a number of disruptive trips per time unit, for instance, per
month or per year. The same can be done for AS), allowing a comparison in terms
of number of disruptive trips between NS; and AS;. This approach uses real trips
obtained using AS; to evaluate NS,, and it is partially described in [23]. This is not,
obviously, the ideal situation. However, obtaining effective trips with NS, is,
typically, unfeasible.

The cost of disruptive trips should consider additional costs with drivers and
buses. The estimation of the cost per disruptive trip is easily obtained from
operational past data.

Changes in stage 3 can result in buses and drivers duties more or less difficult to
accomplish than the current buses and drivers duties. If the changes were done for
stage 3, all versions would use the same plan for stage 2, i.e., all versions were
done using the same cycle times. Consequently, non-budgeted costs are due to: (1)
inadequate times to allow drivers to move from one bus to another; or (2) inad-
equate times for the connection between different lines. The first case, as a con-
sequence on how stage 3 is planned, is negligible. The second case depends on the
way noncommercial trips for connection between lines are defined. Such trips
typically use paths out of route roads. Hence, typically, there is no data that can be
used to evaluate the suitability of the travel times defined for such trips. Anyway,
the eventual difficulties derived from the choices made by the company are easily
overcome by simple changes of paths or planned travel times. For these reasons
non-budgeted costs for changes done in stage 3 may be ignored without significant
consequences.

6 A Case Study

Now, we exemplify how the described approach can be used to evaluate the use of
long term travel time prediction for the definition of buses and drivers duties
instead of the scheduled travel times, as it is usually done.

Let us assume that a mass transit company has the necessary conditions to
redefine the planning, namely the duties for the buses and drivers and respective
assignment tasks, just three days before the date of the duties. How could the
company use Travel Time Predictions (TTP) results 3 days ahead [24]? The first
thing to do would be to make a new timetable just for internal planning purposes,
i.e., not known to the public. Let us denote the values of this new timetable with
the suffix * and let us give to the new scheduled travel time (ST7 *) the predicted
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travel time. It is important to note that for planning purposes the only information
that is used from this new timetable is the new STT * plus the new Slack Times
(SIT *). A possible approach to estimate a lower limit for STT * + SIT * would
be the use of a decision support system for timetable adjustments, as described in
[23] using STT * + SIT * = p.max, where p.max is a user defined percentile of
disruptive past trips. Another approach would be to define an algorithm to choose
one of the acceptable values for this sum. The process of defining SIT * would be
eased due to the constraint Cycle Time = Number of Buses in the line x
Scheduled Headway [34] which strongly limits the number of acceptable solutions,
as discussed in [23]. These new values for STT * + SIT * are the ones needed to
define new duties for both buses and drivers.
Summarizing the proposed evaluation of the two approaches:

To obtain long term travel time prediction for all trips of a given schedule;
To build a new schedule using the predicted travel times;

To generate buses and drivers duties using the current and the new schedules;
To estimate budgeted costs for the two versions of buses and drivers duties as
defined in Table 1;

5. To choose the version with the lowest budgeted cost.

Ll s

7 Conclusions

The available past data is generally obtained using the current plan. When a new
idea emerges in order to improve the current plan it is advisable to demonstrate its
validity in order to convince companies to adopt it. How to do it? How to quantify
the expected gains that may be obtained with its implementation? This chapter
discusses this point. A framework is presented by using data produced with the
current plan for the evaluation of the new proposed operational plans. Knowing
that the existing plan affects, to some extent, the available data, the validity of the
new plans is more difficult to prove using such data than it would be using the data
produced by the different plans under appraisal. This circumstance can be seen as a
hypothesis test with unknown significance level. Some of the other surveyed
approaches, namely DEA, imply the existence of data produced by the different
plans under consideration. However, in practical situations, such data typically
does not exist and obtaining it is not possible without serious consequences on
planning activities and on customers’ satisfaction. The proposed framework is,
according to the authors’ knowledge, a novelty.
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Part 11
Energy and Environmental Impacts
(of Transportation)

The complexity of problems and challenges relating to energy and environmental
impacts often requires interdisciplinary research, covering all aspects of
energy conversion and storage, alternative fuel technologies, and the science of
environmental impacts and mitigation. In the work by Chinese et al., a case study
of limited or locally non-existent market development for CNG in an Italian
frontier region is analysed and a mixed-integer non-linear programming model is
introduced, to evaluate the effect of incentive measures envisaged by the regional
government to foster refueling station development. Cavadas et al. propose a
method for planning the location of charging stations for electric vehicles in a city
in which the aim is to maximize the number of properly charged vehicles if the
budget for building stations is already fixed. Giménez et al. present a new approach
to determine the optimal locations of public charging stations for battery-driven
electric vehicles in urban areas, inspired by the low parking time and high rotation
rates of the most popular parking places used in pilot studies promoted by many
governments. The chapter of Nocera and Tonin aims at defining a fair value for the
Marginal Social Cost of Carbon to be used within transport planning, and discuss
how it is influenced by economic and scientific uncertainty, with the aim of
helping researchers, stakeholders and decision-makers to choose among the
current range of values supplied by the scientific literature. Romero et al. provide
an environmental approach based on an optimization-simulation model for
planning and managing an urban freight transport system which, using trucks,
must serve one or more points of the network which receive and/or generate large
volumes of cargo.



A Service Station Location Model

to Explore Prospects and Policies

for Alternative Transport Fuels: A Case
of CNG Distribution in Italy

Damiana Chinese, Piera Patrizio and Monica Bonotto

Abstract CNG is an example of alternative gaseous fuel whose market devel-
opment requires supply infrastructure (pipelines), refuelling stations and alterna-
tive vehicles to exist at the same time, which is known as the “chicken and egg
dilemma”. In this chapter, a case study of limited or locally nonexistent market
development for CNG in an Italian frontier region is analyzed and a mixed integer
non linear programming model is introduced to evaluate the effect of incentive
measures envisaged by the regional government to foster refuelling station
development. It is found that, taking an entrepreneurs’ perspective of maximizing
profits, even with substantial capital grants investors are more likely to choose
higher demand areas, in spite of fiercer competition, rather than areas without
stations. Subsidies should be more specifically targeted to critical areas to be
efficient.

Keywords CNG filling stations - Compressed natural gas vehicles - Mixed
integer non linear programming - Location mode

1 Introduction

The simultaneous existence of fuel supply chains, refuelling stations and alterna-
tive vehicles is required for a sustained adoption of alternative transport fuels. In
particular, especially the introduction of new gaseous fuels, such as hydrogen,
CNG or biogas, faces the challenge of attracting investors in refuelling stations to
attain satisfactory refuelling service levels, so that, in turn, more customers find
new gaseous fuels an attractive option and market develops [1].
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This subject, which is known even in literature as “the chicken and egg
dilemma”, is investigated in few studies from either a modelling or an empirical
perspective. Most empirical [1, 2] or model based [3] studies are performed at a
national or international scale, so they give substantial strategic insights but cannot
be immediately used at the detailed, local planning level to guide the site and
capacity definition of refuelling stations.

On the other hand, the use of operations research models for location planning
of service stations is widely spread in literature. Most applications concern future
hydrogen based supply chains [4-8], while a single example handling CNG
refuelling stations is reported [9].

Upchurch and Kuby [10] present a review of models for optimal location of
alternative-fuel stations and summarize three general approaches to locate refu-
elling stations optimally, i.e.:

e Variants of the p-median model, generally based on census data (about popu-
lation and car ownership), which tend to and locate stations close to where
people live, in harmony with empirical research demonstrating that consumers
prefer to refuel near their homes [11].

e Traffic count or VMT methods, based on road traffic data, which tend to locate
stations on several adjacent links of high volume freeways.

e Flow intercepting location models, which yield more realistic representations
but require a data matrix of traffic flows from origins to destination, which is
hardly available at some geographic scales.

For each of these approaches, several variants of objective functions could be
conceived, but, to the best of our knowledge, competition factors such as the
profitability of single service stations are seldom taken into account. Models
focusing on intercepting flow allow to maximize revenues, while a least cost
planning philosophy underpins variants of maximum covering algorithms (e.g.
Bapna et al. [12]) and strategic planning models at supply chain level [13].
Profitability of service stations is considered implicitly in multicriteria approaches
adopted by Frick et al. [9], who use utility models, and by Brey et al. [14], who
develop an AHP model. Explicitly, profitability is incorporated in the objective
function only by Hugo et al. [15], who deal with the strategic supply chain
planning of hydrogen, particularly with refineries location planning, and by Ber-
sani et al. [6], who aim at maximizing net present values of a network of hydrogen
fuelling stations.

To overcome the chicken and egg dilemma, the profitability of service stations
is, however, a key issue: empirical research has shown that, in cases of successful
market penetration of alternative transport fuels, refuelling infrastructure mostly
grew through private investment [2]. Therefore, understanding which options for
technology, capacity and location planning would be most desirable for potential
investors, who aim at maximizing their profits, allows to gain insight on the future
evolution of alternative fuel distribution systems and on their chances to thrive or
decline.
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This especially applies to the case of our concern, that is the development of
CNG service stations in Friuli Venezia Giulia (FVG), an Italian region with about
one million inhabitants located at the border with Austria and Slovenia. While the
market penetration of CNG in Northern Italy is remarkable, reaching a market
share of 2 % of total cars statistics [16], and the number of service stations is
generally expanding [17] in FVG the market share of CNG cars stops at 0.3 %.
And only three refuelling stations exist, located in municipalities marked in black
in the upper right miniature in Fig. 1, i.e. mostly in the Western part of the region.
Historically, taxes on fuels have been significantly lower in neighbouring countries
than in Italy, which makes refuelling abroad the cheapest option, especially for
inhabitants living closer to Slovenia. To reduce the resulting flow of refuelling
commuters, the regional government of FVG used to finance a system of pricing
zones depending on distance to borders, which was modified in 2011 due to
objections by the European Union on the grounds of distortion of economic
competition between countries. The effectiveness of the discounts was often
limited, especially in the first pricing zone (represented in medium gray and
marked as F1 in the miniature map in Fig. 1).

This situation is a typical example of a “chicken and egg” dilemma, preventing
investors from installing alternative fuel stations, especially in the bordering area.
The regional government recently conceived some financial support measures for
new CNG distribution stations, which were then stopped as a consequence of
national and regional spending reviews. Our aim is to estimate the potential impact
of the envisaged subsidies and to evaluate prospects for CNG in the area, by
assessing the economical feasibility of expanding the distribution network in the
examined region under current and potential circumstances. For this purpose, we
analyzed factors affecting actual CNG demand in FVG as reported in Sect. 2 and
developed a mixed integer linear programming model for identifying the optimal
location, technology and capacity of CNG refuelling stations as shown in Sect. 3.
Obtained results are discussed in Sect. 4.

2 Factors Affecting Decisions on the Location of CNG
Refueling Stations in Friuli Venezia Giulia

To develop a location model accounting for profits of refuelling stations, potential
sales should be estimated. Data on CNG consumption have been collected at
regional level in FVG in recent years [18], but they are only available for a
restricted time period (from 2007 to 2011) and at a regional aggregation level, so it
is not possible to discriminate between sales at different sites. On the other hand,
data on the determinants of fuel demand commonly recognized in literature [2, 19]
are available at a more local level: gasoline prices between 2007 and 2010 are
available at municipal level from studies on the zone tariff mechanism, the share of
CNG vehicles is known at regional level since 2006 [16], at province level for the
year 2009 (personal communication by Federmetano, 2012)and the number of total
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Fig. 1 Distribution of estimated CNG demand and factors affecting the location of CNG stations
in FVG

vehicles is known at municipal level for the year 2009 (http://www.
comuni-italiani.it/06/statistiche/veicoli.html). For this reason, we used national
data to create static econometric models [20], in order to clarify the relation
between the involved variables, then applied such models using local data and
validated them at regional level by comparing estimated and real regional demand,
calculating RMSEs in order to identify best fitting models. In this way, we for-
mulated and tested several alternative models, both logarithmic and linear.

At the end, the best fits were obtained with the simple model expressed by

Eq. (1):
Dir = 1,27 Vit (1)

The obtained model has a coefficient of determination R* = 0.98 and percent
errors between —11 % and +6 % when estimating regional consumption for the
years 2007-2011. Thus, we deduce that:

e The model can be used at least at regional level to make reasonable forecasts of
demand;


http://www.comuni-italiani.it/06/statistiche/veicoli.html
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e The specific consumption of CNG per vehicle in FVG is aligned with national
data;

e As the model is obtained by regression through the origin, also use at municipal
level seems acceptable.

For this purpose, we will use data on the total number of vehicles available at
municipal level for the year 2009 and weigh them by the share of CNG vehicles on
total vehicles in the same year, available at province level, i.e. at an intermediate
aggregation level between regional and municipal ones.

2.1 The Impact of Distance from Slovenia on Demand
of Gaseous Vehicle Fuels

While we found that regional specific CNG demand per vehicle is aligned with
national values, to apply the model at municipal level it would be desirable to
understand how distance from Slovenia may affect CNG demand. While there are
no data on CNG, we got data about LPG vehicles and LPG consumption at
province level, provided by the Italian Ministry for Economic Development. LPG
shares similar features with CNG in that it is a niche market fuel, alternative to
gasoline and diesel oil, characterized by tax exemption and consequent lower
prices and no zone tariff in FVG. By performing both a general stepwise linear
regression and a partial correlation analysis to test the relationship between
province LPG demand (D), number of vehicles (V) and province distance (T) from
Slovenia, we concluded that factor T will almost disappear when controlling for V.
In other words, demand for LPG is affected by distance from Slovenia in that more
alternative fuel vehicles are purchased in farthest municipalities from the border,
whereas the average consumption per vehicle remains unaffected. We can assume
CNG demand to behave similarly, and that, consequently, the coefficient in the
model above does not need to be calibrated for the distance from the border, once
the number of vehicles at local level is known. We can thus apply Eq. (1) to
estimate demand at municipal level based on the total number of vehicles per
municipality and the CNG vehicle share at province level, obtaining the main map
in Fig. 1.

2.2 How Closeness to Natural Gas Pipelines and Pressure
Levels of Natural Gas Supply Affect Costs

Figure 1 also shows the location of the natural gas high-pressure pipeline in FVG,
which has a significant impact on effectiveness of CNG stations. In fact, the main
element of a CNG station is a compressor plant, which elevates natural gas
pressure from municipal distribution (4 bar) or gas pipeline (40 bar) levels to the
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high-pressure levels required for refueling (220 bar). Both compressor installation
and operation costs are higher when connecting to low pressure (LP) infrastructure
than to high pressure (HP) infrastructure, but while LP pipeline exists in every
municipality considered as eligible location in this study, Fig. 1 shows that HP
pipeline is only present in a limited number of municipalities. On the other hand, it
should be observed that costs of connecting to LP infrastructure are generally
lower than HP pipeline connection costs because distribution pipes are nowadays
virtually present under every road, while HP pipeline are usually farther from
urban centers. However, rather than incorporating such micro-location issues in an
overall optimization model, possibly enhancing its complexity to a great extent,
we preferred to preliminarily evaluate the impact of connection costs on annual
equivalent costs of CNG stations based on cost data obtained from constructors for
various plant capacities and found that connecting to the HP pipeline is the optimal
solution when inequality 2 is verified, i.e.:

Dyip(Q) <365¢"%%C (2)

where Dy, is the distance from pipe, Dy, is break even distance and Q represents
the given capacities of the refueling stations in kNm*/year. It should be noticed
that, according to the current market trends, it is unlikely that CNG-dedicated
stations shall be built: capital costs considered here refer to the upgrade of existing
fuel stations to distribute also CNG.

Given an average surface of municipalities of about 35 km?, an average number
of 2.1 existing fuel stations per municipality and typical capacity ranges of refu-
eling stations between 300 and 1000 kNm3/year, in our model we will assume that
in municipalities served by HP pipeline it will be generally possible to find a fuel
station to upgrade to CNG within the economical distance from the pipeline.

2.3 Subsidies Foreseen by Friuli Venezia Giulia to Overcome
the Chicken and Egg Dilemma

In August 2010, in order to overcome the chicken and egg dilemma, a legislative
decree has been issued by the regional government (L.R.14/2010), relating to
subsidies’ disbursement for CNG fuel stations establishment in the region. Such
subsidies, supplied as outright grants, have a maximum value of 50 % of the total
construction expenditure, regardless of the location decision.

3 Model Formulation

The main goal of the model is to estimate whether and where entrepreneurs are
likely to invest in CNG refuelling stations under current and prospective cir-
cumstances, assuming that their rational behavior is directed to maximizing the net
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present value of their investments. For this reason, we build upon the work by
Bersani et al. [6] because they adopt a similar perspective, although for hydrogen
distribution. In order to formulate the decision problem for CNG in FVG, fol-
lowing assumptions are introduced:

e Based on previous break-even analysis, we assumed that in the municipalities
characterized by the presence of gas pipeline only HP stations should be built;

e The location of the three existing CNG stations is fixed, but their costs are
treated from an external viewpoint like the costs of new stations;

e At the moment, it is not realistic to allow the construction of more than one
CNG station in each municipality.

3.1 Model Structure

The basic variables of the models are defined as follows:

v, i = 1, ...., N: binary variable associated with the ith municipality. Specifically,
yi = 1 when a station is located in the ith considered municipality, otherwise
yi=0;

Yai I = 1, ...., N: binary variable associated with the ith municipality, with y,; = 1
if a HP CNG station is located in the considered municipality, otherwise y,; = 0;
Ysi I = 1, ...., N: binary variable associated with the ith municipality, with yy,; = 1

if a LP CNG station is located in the considered municipality, otherwise y,; = 0
Q;: capacity of the ith fuel station in kNm*/year;

P;: annual equivalent profit of the ith station, in €/year

x;: binary variable representing the fraction of demand associated with the jth
municipality to be served by a fuel station located in the ith municipality.

The parameter D, represents the CNG demand in each municipality, calculated
according to Eq. (1) using the estimated number of CNG vehicles in the ith
municipality as independent variable. V; is calculated by multiplying the total
number of vehicles in the municipality, which is known for the year 2009, by the
share of CNG vehicles on total vehicles in 2009, which is known at province level.
Other relevant parameters are the binary parameter p;, equaling 1 if the ith
municipality is served by a gas pipeline, O otherwise, and the distance #; between
municipalities i and j. The objective function is to maximize the sum of annual
equivalent profits of all stations, as shown in Eq. (3):

penG - Qi — Ceng Qi — Crryi +
N N
Max Z P, = Z - (CMAINAHP + CEL,HP)Qai - (CMAIN,LP + CELfLP) Ovi —
i=1

i=1

1 (Cstre,upyai + Cstrv.1pQui + CstrE.LPYbi + CstrV 1P Qi)

3)
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Where f is the capital recovery factor of a series of uniform amounts, in this
case for an interest rate of 7 % for 15 years, while other cost and sale price
parameters are summarized in Appendix.

All cost functions are obtained interpolating data obtained by CNG station
constructors or managers for at least three different plant capacities.

It should be observed that purchase and sale prices of natural gas obviously do
not depend on connection technology, while the cost of human resources for
capacities within the technically acceptable range is invariant.

Equations (4-13) represent the main constraints of the model, basically aimed
at determining the capacity Q; of the service station located in the ith municipality
according to Eq. (5) as a weighted sum of demand in the municipality of concern
and of demand in other municipalities, which can be partially diverted to the ith
station depending on attraction factors (Eq. 7) related to distance decay functions
(Eq. 8) as indicated in [9] and in [6]. With respect to those references, we do not
fix a minimum number of stations, as it is our aim to find it through system
optimization. On the other hand, the truncation condition we introduce with
Eq. (7) influences the relative distance between stations, in that it imposes that,
above a maximum distance t,,,,, the attraction of customers to the fuel station
drops to zero.

N
Qi:inij+DiYi i=1,--,N 4)
=
i#f

attrj;-y; ( 1 —yj)

N tijgtmax
X = Z}attrji-yi (5)
0 tj >tgx i=1,---,N j=1,--- N

1 . .

attrji:t— i=1,---,N j=1,---,N (6)
i

yai+ybi§yi l:177N (7)
yaigpi l:177N (8)
wi<l—pi i=1,--- N )
QuigyaiBHP l:177N (10>
Qi <YpiBrp i=1,--- N (11)
Qi+ Q=0 i=1,---,N (12)
Pi>0 i=1,---,N (13)

Equations (7-12) deal with HP-LP factors and express logical conditions,
requiring that at maximum one station is built in each municipality, either HP or



A Service Station Location Model to Explore Prospects and Policies 79

LP (Eq. 7) and in particular assuring that HP technology is used if we choose to
construct stations in municipalities served by HP natural gas pipeline (Eqgs. 8 and
9). A maximum technically feasible capacity B equaling 2000 kNm?/year is
imposed through Eqgs. (10) and (11) which at the same time force the system to
install either HP capacity Q,; or LP capacity Q,,, so that the total capacity cal-
culated with Eq. (12) is actually either equal to Q,; if HP is technically feasible or
to O, otherwise. Finally, Eq. (13) requires the equivalent annual profit of every
single station to be non negative

3.2 Model Implementation

Like similar models in literature, the model is structured as a MINLP problem with
binary and continuous decision variables. After a preliminary screening, mainly
excluding low population municipalities in the mountain part of the region, 219
eligible locations were identified and distances were calculated and saved in Excel
format using RouteBlast (2013). The nature and dimensions of the problem make
the identification of global optimum solutions within the branch and bound
framework very challenging due to the presence of both the integer variables and
the non-convexities. For this reason, we decided to try a genetic solver and, given
that our data had been mainly been saved in spreadsheet form, we chose to use the
commercial solver Evolver® (2010), with 0.5 crossover rate, a mutation rate
automatically determined by the program and a stopping rule entailing a progress
of 10 % in the last 1500 trials and a maximum of 15000 trials. Solution times
between 10 and 30 h were achieved with these settings and considered acceptable
for our purposes.

4 Results and Discussion

In order to asses potential effects of different subsidy schemes, optimal location
and capacities were evaluated in four scenarios, i.e.:

e At current demand levels, with no subsidies;

At current demand levels, with the 50 % capital grant foreseen by the regional
government;

With double demand level in the border area, with no capital grants to stations;
With double demand level in the border area and 50 % capital grant.

By evaluating these scenarios at different levels of the truncation factor intro-
duced with Eq. (6), we found that such factor has a significant impact on the share
of total demand, which is cost-effectively served by stations and on their location
and size. The analysis were conducted for two values of 7., namely 20 and
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50 km, representing the maximum daily distance for 80 % of European drivers and
the maximum daily distance for 70 % of Italian drivers respectively [21].

The analysis with #,,x at 20 km seem to give a more realistic picture of the
current scenario, in that it leads to conclude that only four stations would be
sustainable at current conditions with no subsidies, whereas the analysis at
tmax = 50 km tells that even six stations would be viable without incentives. On
the other hand, the evaluation of the effect of subsidies seems more realistic with
the 50 km analysis, because the other one foresees a proliferation of up to 12
micro-plants with an average capacity of less than 200 kNm*/year, which does not
seem a rational behavior for investors given, in particular, that average sales at
national level can be estimated at about 940 kNm¥/year per station. To this
respect, from our evaluation with both the 20 and 50 km an average plant capacity
of 350 kNm?/year is already viable at the financial conditions we assume (i.e. 7 %
interest rate for 15 years. Post-analysis discussion with constructors who provided
cost data pointed out that, based on experience, a minimum size of about
500 kNm*/year should be economically feasible. This size is smaller than the
national sales average, probably due to the more recent practice of upgrading
existing gasoline refueling stations—which requires less investment—rather than
building standalone stations selling CNG only, which was common practice in the
1990s due to competition and legislation barriers. On the other hand, what we
probably underestimated are contingencies, variability in connection costs and the
minimum attractive rate of return, which is actually considered by investors to
account for those risks. We intend to continue our analysis on these aspects, e.g. by
extended sensitivity analysis. Nevertheless, we conclude that at the moment the
50 km scenario is the more realistic and the only one we choose to graphically
represent in this chapter (see Fig. 2), for the sake of brevity.

Looking at Fig. 2 we find that a generic 50 % subsidy at current demand
conditions would still lead entrepreneurs to choose locations far away from the
border, in spite of competition due to relative proximity of existing CNG stations,
rather than to invest in the F1 area. A similar pattern was also obtained in the
20 km scenario. As a consequence, the small demand by about 200 vehicles
registered in the F1 area, probably in past times of substantial national incentives
for CNG vehicle purchase, is not met and at present those vehicles are most likely
fuelled with gasoline. Moreover, the more realistic 50 km analysis shows that the
50 % subsidy, which, based on our optimization, would result in an outlay of
almost 1 M€ for the regional government, would not substantially change the
number of economically viable CNG stations (from 6 to 7), although it would
certainly help these investment opportunities to be put into action at these times of
difficult access to credit for firms. Still, if the aim of the regional government is to
attain a more even distribution of CNG demand in the region, specific measures for
the F1 area are needed. For instance, increasing the number of vehicles in the
F1 by 100 %, for instance through capital grants for vehicle purchase, would make
a fuel station feasible there (although with our probably optimistic minimum
capacity). And probably the most effective option would be to invest in both
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Current demand, no subsidies Current demand, 50% capital grant
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Fig. 2 Optimized capacity and location of CNG refueling station, with t;,, = 50 km

vehicle subsidies and station subsidies (lower right quarter of Fig. 2). In our view,
however, in present times of public outlay restriction, incentives should be spe-
cifically targeted to current low demand areas, especially F1.

5 Conclusions

Like every model, the presented MINLP optimization model for CNG refueling
stations planning in Friuli Venezia Giulia is based on assumptions and simplifi-
cations, in part due to computational requirements and in part depending on the
features of available data. Collecting further information through empirical
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research would be a necessary step to increase the validity of the obtained results.
In particular, given the demonstrated effect of the attraction function, data col-
lection of actual or stated refueling behavior of CNG vehicle drivers would be
needed, given that empirical research on refueling behavior, on which modeling
assumptions of this and similar models in literature are based, dates back to the
1980s [11], is focused on gasoline and on the US market. So far, the developed
model supported reasonable arguments to rethink the structure of public subsidies
making government goals more explicit. Finally, the analysis and statistical
modeling of demand data for this case study shows that different policies and tariff
structures of neighboring countries impact on consumers’ decisions of vehicle
purchase, and consequently on alternative fuel demand, which may jeopardize the
effects of policies for sustainable transport put into force in single countries. From
an European perspective, efforts on policy and infrastructure development could
therefore benefit from international coordination, perhaps more than from
competition.

Appendix A

Table A.1 Annual LPG demand at province level

Year Pipe Province D(PROV) Vehicles,, (PROV) Vehiclestor (PROV)
(euro/1) 1)

2007 0.626 Gorizia 81810 271 88812
0.626 Pordenone 2097972 3562 193833
0.626 Trieste NA 409 127548
0.626 Udine 3616002 2679 337664

2008 0.680 Gorizia 136.50 371 8562
0.680 Pordenone 3950514 4079 196487
0.680 Trieste NA 595 127591
0.680 Udine 4177764 3297 341432

2009 0.563 Gorizia 141.804 724 88598
0.563 Pordenone 4488642 5781 198013
0.563 Trieste NA 1018 127670
0.563 Udine 4915872 5571 344248

2010 0.661 Gorizia 545400 953 88501
0.661 Pordenone 6655698 6.903 199270
0.661 Trieste NA 1284 127842
0.661 Udine 7419258 6986 347507

2011 0.755 Gorizia 621756 982 88636
0.755 Pordenone 7850124 6914 201975
0.755 Trieste NA 1321 128006

0.755 Udine 7010208 7068 351215
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Table A.2 Economic coefficients

High-pressure Low-pressure
Cstrv [€/kNM3year] 287.8 413.5
Cstril€/year] 249811 255996
CeL [E/KNM?] 15.21 28.21
Cm AIN[€/kNM3year] 0.402(Cstrry; +Cstrv Qi)—139930 0.269(Cstrry; +CstrY Q;)— 106840
Cengl€/KNM?] 490 490
Cyr [€/year] 35180 35180
Pengl€/KNM?] 980 980
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Electric Vehicles Charging Network
Planning

Joana Cavadas, Goncalo Correia and Joao Gouveia

Abstract In this chapter we propose a method to plan the location of charging
stations for electric vehicles (EV) in a city in which the objective is to maximize
the number of satisfied vehicles under a fixed budget for building the stations. We
take into consideration the maximum capacity of each possible site for installing a
station, in terms of the number of plugs that each one can have, and the distance
from that location and each demand point, which is measured in walking time. To
be able to apply these models, we develop a charging demand model for based on
parking data, considering that the higher the parking time, the greater the proba-
bility of charging. We also take in consideration the relation between the demand
at different points, e.g., if a vehicle can charge at home, the probability of needing
to charge at work will be significantly reduced. We test our mathematical models
for the case of the city of Coimbra, where there is already a network of charging
stations. We first use an existing mobility survey to extract parking data and
establish a demand grid, and then we apply the models that gives us the optimal
location for charging stations for the entire city allowing us to compare both.
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1 Introduction

With the current economic crisis and the growing dependence on fossil fuels for
the mobility of people and goods, one of the main causes of the high levels of
pollution in our cities and the known greenhouse effects, one observes the re-
launch of electric vehicles (EV) as one of the solutions to help mitigate these
problems. The electric motors technology was developed in the beginning of the
automobile invention (in the end of the nineteenth century and the beginning of the
twentieth century) but soon it was abandoned to give place to the combustion
engine in the twenties of the twentieth century. This resulted from the discovery of
petroleum sources but also it was a consequence of the low autonomy and power
of the EV [4]. EVs are more efficient in energy consumption, they are more
environmental friendly because they have zero local emissions, they also generate
zero noise pollution because they are silent, and even the energy used in the
batteries can be obtained through a renewable source, as opposed to the vehicles
powered by internal combustion engines that are responsible for 40 % of the CO,
emissions and 70 % of other greenhouse gas emissions in urban areas [5]. How-
ever, EVs still have the same problem that they had before: a low autonomy
(between 60 and 160 km); and a new problem: the long time needed to recharge
(between 6 and 8 h in normal charging [2]). These limitations hinder the EVs
adoption by the automobile market. Webster [14] points out that this low auton-
omy is more than enough for the majority of the trips done in 1 day. The second
limitation can be overcome with the planning of a charging stations network
nearby users’ main destinations, in order to enable the charge of EVs during
parking times.

There have been developed some models to define the best location for charging
stations and these have been based different ways of estimating the charging
demand. This estimation of demand may take into account different perspectives,
namely the traffic flow [6, 8, 9], the charging requirement [1, 12, 13], the parking
time spent in the study sites [3] and the number of vehicles and its use [7].

The planning of a charging network has been proposed to be made mainly by
optimization models or heuristics. For example: Feng et al. [6] developed a
method based in the partition of the network to minimize users’ losses on the way
to the charging stations and in 2011 [8] proposed a new method based in the
Weighted Voronoi Diagram with the same purpose as the model before. Worley
et al. [15] formulated the charging stations location problem with a discrete-
integer-program whose purpose was to minimize the costs of travelling, charging
operations and the charging stations network investment. In Frade et al. [7] the
model was based on the p-median problem in order to maximize the satisfied
demand; another approach was the use of numerical methods in a multiobjective
model in order to minimize the investment, the distance traveled and the cost of
the network [13]. In the recent chapter by Chen et al. [3] a mixed-integer program
was developed in order to minimize the walking distance between the parking
location and the users’ destination site. In this chapter we present an approach to
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the estimation of charging demand which, as in Chen et al. [3], is based on the
parking time in each site but it also considers demand transference through the
successive trips made between the different parking locations. This lets the model
define which site will be more beneficial to receive a charging station without
necessary refusing some of the demand of other sites. Given this demand, we
develop a mixed-integer optimization model as in Frade et al. [7] with the purpose
to maximize the satisfied demand under a fixed budget. We then improve it, taking
into account the possibility of transferring demand from sites which have trips
between them. We also develop a variation of this model that considers the day
split into time intervals, in order to reduce the effects that peak hours may have in
changing the solution. We exemplify the application of these models with the case-
study city of Coimbra.

The chapter is structured as follows. We start, in Sect. 2, by explaining how to
estimate the demand at each discrete point in space and apply in a first mixed-
integer optimization model that maximizes the satisfied demand. We proceed, in
Sect. 3 by explaining the concept of transferable demand and how to adapt the
mathematical programming model in order to consider this possibility. In Sect. 4,
we present our final model improvement, which adds time intervals to the opti-
mization formulation, testing the influence that this added realism may bring to the
network planning. Finally, in Sect. 5, the three models are applied to Coimbra. The
chapter ends with the main conclusions withdrawn from the results.

2 Local Demand Estimation

We will start by estimating the contribution of an EV to the demand for charging
vehicles i.e., the time that it is expected to be charging during a day in each public
charging station. Our model will be based on two assumptions: first, we will
assume that the average number of times an EV charges during the day is constant
for all EV’s; second we will assume that the probability that a vehicle is charged
during one of its stops along the day is proportional to the time it remains parked in
that location.

Given an EV’s driver m, and a parking location j, let 77" be the amount of time
that m stays parked at location j, and 7" be the total time that m is parked during
the day. By our assumption, and by normalizing the expected number of daily
charges of an EV to one, we conclude that the probability that m charges at j is

™
Pl =45
so the expected duration of charging will be given by E/* = T7" - P}". To estimate

If m charges during its stop, it will charge for the entire time it is parked,

the total potential demand at a particular location j, we then have to sum over all
EVs’ drivers, and we obtain D; = Q - Zm E}”, where  is the average number of
daily charges of an EV, which we assumed constant. In practice it will normally be
easier to compute this sum over all drivers and multiply by the proportion of EV in
the total number of them.
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Fig. 1 Example of distance

penalty function I', where H
is the value of the reasonable
distance considered

2.1 Basic Charging Station Location Model

We propose a basic mixed integer programming model for determining the opti-
mal location of charging stations using the local demand estimation previously
explained. We assume that the demand was estimated at M different locations, and
we will represent by D; the demand at location j. We will also assume that there
are N possible locations for placing charging stations and we will represent by Cy
and By, the capacity of station & (if built) and the cost of building it, respectively.
Note that since the demand is given by the number of cars - hour of occupation,
the capacity has to be given also in this unit. Finally, given a demand site j and a
potential location k for a charging station, we will define I'j as a distance penalty
that will be valued one if the two places are very close and will decrease as
distance increases, becoming zero if the distance is greater than what we will
assume to be a reasonable walking distance. A possible choice for distance penalty
function can be seen in Fig. 1.

With this data we can now propose a model for maximizing the demand sat-
isfied, under a fixed budget T as follows:

M N
maxZDszjk-ij (])
Jj=1 k=1

M
subjecttoZDjzijCk, k=1,...,N, (2)
=
N
szkglv jzla"'7M7 (3)
k=1
ijSXk, Jj=1...M, kzl;"'an (4)
N
Zkak<T, (5)
k=1
we01], j=1,...M, k=1,...N, (6)

x €{0,1}, k=1,...,N. 7)
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where:
Zjx  proportion of demand from j satisfied by the charging station located in k;
x; 1 or O depending on whether a charging station is located in k or not.

The objective function (1) of this mixed-integer optimization model maximizes
the satisfied demand, taking into account the distance penalty with the purpose of
giving priority to the demand sites closest to the charging station, and avoid
forcing users to travel long distances.

Given a demand location, its proportion of satisfied demand cannot exceed 1
(100 %) (3), furthermore the capacity of a charging station cannot be surpassed by
the demand it satisfies (2). Finally, only a charging station that is effectively built
can satisfy demand (4) and the cost of the built charging stations must be within
the budget (5). Expressions (6) and (7) set the domain for the decision variables.

3 Transferable Demand Estimation

The previous model considers demand as a local property, where all sites are
independent. However, if an EV’s driver stops at several different sites during the
day, the presence of a charging station in one of the stops, affects the demand for
charging the vehicle in the remaining ones. If all EVs’ drivers that could use a
particular charging station have other possibilities of charging their vehicle one
can save money by not building in that location and instead building stations that
would bring users not previously covered by any charging station, typically those
that have less stops thus more constrained in their possibilities of charging the EV.
The previous model does not consider this possibility, so in order to deal with this
we introduce the notion of transferable demand.

Suppose we have an EV’s driver m whose daily trips include a journey between
two parking locations i and j. We will consider that part of the probability of m
charging in location i can be transferred to j and vice versa. Given the demand
model previously presented, we conclude that the added demand of m on j, coming
from i can be as large as Ujj = P;" - T;". To estimate the potential added demand to
Jj coming from i, we only have to sum over all EVs’ drivers that travel from i to j,
and we obtain V;; = Q%" Ujj where, as referred, €2 is the average number of daily
charges of an EV. We also have to consider the maximum demand that can be
subtracted from i by being transferred to other places. This is the sum of the
demand E}" of all the vehicles that go from i to j, which will be denoted as Wj;. In
short, if all EVs that travel between parking location j and i decide to charge at
location j instead of i, the proportion of satisfied demand would decrease by W;; in
i and increase by Vj; in j.
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3.1 Transferable Demand Charging Station Location Model

Using the notion of transferable demand we can now propose an improved version
of the previous model.

M M N
maXZDZz,k ,k-l-ZZszZyUk (8)

=1 j=1 k=1

subject toZDjzjk+ZZVUy,]k<Ck, k=1,...,N, )

i=1 j=1

N M N
> Diza+ Y > Wyyp<Di, i=1,..,M, (10)

k=1 Jj=1 k=1
N
Zyljkgla l?]:177M7 (11)
k=1
ijSxk, jzl,...,M, ](ZI,...JV7 (12)
Vi <x, ij=1,...M, k=1, N, (13)
N
> By <T (14)
=1
wel01], j=1,...M, k=1,...,N, (15)
vix €[0,1, ij=1,...M, k=1,..,N, (16)
xe{0,1}, k=1,...,N. (17)

In the model, y;x represents the proportion of the potential demand that can be
transferred from i to j that is effectively transferred and satisfied in charging station k.

The objective function was changed from its previous expression in (1)—(8) by
taking in consideration not only the satisfied local demand but also the demand
that was transferred to each location. This was also taken in consideration in the
charging station capacity constrain (9). We also had to replace the demand con-
straint (3) by taking into account that the total demand satisfied locally plus the
total demand lost through transfer cannot be higher than the original demand at
each site (10). One last addition to the model was constraint (11) that guarantees
that there is no transfer above the transferable demand. Finally, as in the previous
model, only a site with a charging station can satisfy a demand location ((12) and
(13)) and the cost of the charging station network must be below the budget (14).
Expressions (15)—(17) set the domain for the decision variables.
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(a) (b)

Fig. 2 Number of vehicles parked at each hour of the day at a residential location (a) and at an
office/commercial location (b) (Mondego region mobility system [10])

4 Considering Time Intervals

It is normally the case that local demand at a site during the day fluctuates widely.
For example, one expects that residential locations have most of the demand
during the night, while office, industrial or commercial areas would have more
people present during working hours (Fig. 2). The previous models do not take
these changes into consideration, using instead an average of the charging that the
results we consider to be the demand. This induces distortions, since if demand is
sharply concentrated at some peak hour, the capacity installed might be inadequate
to deal with that peak, and much less of it can be satisfied than what previous
models would assume. To have more realistic results we propose a new model
where the day is divided in time intervals.

4.1 Estimating Demand at a Time Interval

Given an EV’s driver m and a parking location j, we denoted by 77" the time that m
stays parked at that location. The time the individual remains there might be split
between several of the time intervals that we are now considering, so we now
consider ij’“ to be the time that m stays parked at j during the o time interval. In
particular, if [ is the set of all time intervals considered, T]m = Zae J TJ'” We can
now proceed to estimate the demand at a specific time interval in the same way as
we did in the previous demand estimation. Each vehicle m will have an expected

charging duration at time interval o« given by E/"* = P' - T;"”. Therefore total

demand at site j at time interval o will be given by DY = Q3" E"”, where Q has
the same meaning as before. Note that summing Dj over all time intervals we
recover D;, illustrating that Df, Vo € I, is a temporal refinement of local demand.

We now have to deal with the transferable demand, and adapt it to these new
settings. Note that the added demand to location j at time 5 coming from m that

T

traveled from i at time interval o cannot be greater than U,-’]'-"“ =P T Fs
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.o

where -5 represents the proportion of time that m stays at i during o, so the

maximum added demand coming from i at time interval « is just the sum of this
figure over all users that travelled from (or to) i and are present at location j at
interval f, which we will denote by V“ﬁ . The maximum demand that can be
subtracted from location i and interval « resultmg from transfers to j at f3, is then
given by the sum over all users present at i during o that will travel to (or come

from) j of their demand E'-M times the proportion of time that m stays at j during
mp
B, TT , and we will denote it by W“ﬁ Again, note that summing V“ﬁ and W“ﬁ over

all time intervals recovers the previously defined V;; and W;.

4.2 Improved Location Model

Applying all the previously defined notions we now propose a model that con-
siders demand transference and several time intervals for the demand definition.

M N M M N
max Y > DIy Tt Y3 Y VD v T (18)
xel | j=1 k=1 i=1 j=1 eI k=1
M M M
subjecttoZszﬁc+ZZZ v iﬁSCﬁ k=1,..,N, Vpel, (19)
j=1 i=1 j=1 acl
N M
> D+ ZZ Zyyk D, i=1,...M, Yael, (20)
k=1 j=1 pel k=1
N
SN V<, dij=1,.. . MYBel, (21)
acl k=1
N
ZZ YRS, dij=1,.. MYael (22)
pel k=
dh<x, j=1,...M, k=1, NVYBel, (23)
Yk <xe ij=1,...M, k=1, ,NVYopel (24)
N
Zkak<T (25)
=1

defo,1], j=1,...M, k=1,...N, VBel, (26)
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e, ij=1,...M, k=1,..N, Vapel, (27)
x€{0,1}, k=1,...,N. (28)

In this model zﬁ( is the proportion of the demand at location j in the time interval

f that is satisfied by a charging station at k, while yfj‘f is the proportion of trans-
ferable demand from i at time interval « to j at time interval beta that is transferred
and satisfied by a charging station at k. The objective function (18) was changed
from (8) by summing the satisfied demand over all time intervals.

The capacity constraint (19) and the demand constraint (20) were taken inter-
val-wise. Note that the capacity depends on the length of the time interval, since it
is measured in total number of hours of parking for all the cars (cars - hour).
Constraints (21) and (22) guarantee that the total demand added to j at interval
coming from i at interval « and the total demand subtracted to i at interval o going

to j at f do not exceed Vsﬂ and W;ﬁ , respectively. Constraints (23)—(25) are
analogous to the previous model, while expressions (26)—(28) set the domain for
the decision variables.

5 Case Study, City of Coimbra

To illustrate the proposed models we will apply them to the city of Coimbra, in the
central region of Portugal. The municipality of Coimbra had a little over 140,000
inhabitants in 2011 (according to the 2011 census), and has an area of 319.41 km?.
For our study we will consider only the main consolidated area of the city and
main neighboring suburbs that concentrate most of the population of the munic-
ipality. According to the last comprehensive mobility survey done in the city there
is a motorization rate of about 530 vehicles/1,000 inhabitants and the private
vehicles fleet is of about 55,000 vehicles. In the same study an estimated 70 % of
the trips inside the city are done in a private vehicle while only 17 % use the Bus
network, the only transit system in the city. Most of the residents do two trips per
day (65 %) and the main three motives for a trip are going to work, going to school
and shopping [11]. Like in the rest of the country the city has a very small number
of EVs in circulation, and an EV charging station network has been installed with
nine locations. This network is a result of the Program for Electric Mobility
developed in 2009 by the Portuguese government, this program had as its main
purpose to create, install and operate a network of charging stations for promoting
the use of EV thus reducing the petroleum dependence and reduce pollutant
emissions (http://www.mobie.pt/en/homepage). In the first stage the charging
network was created in 25 municipalities (Coimbra included). This network was
foreseen to grow in a second stage as the adoption of EVs grows. This growth is
expected due to the tax benefits given to these vehicles implemented in the plan for
stability and growth applied between 2010 and 2013.
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Table 1 Permanency profiles given by the mobility survey

Profile number Number of stops Stops by duration % of respondents
0-2h 2-8 h >8 h

1 1 0 0 1 9.29

2 1 0 1 0 532

3 2 0 0 2 28.70

4 2 0 1 1 25.82

5 2 1 0 1 13.78

6 3 1 0 2 2.00

7 4 1 2 1 3.14

Other 11.95

The basis for our study is the geo coded mobility survey that was done in
Coimbra, conducted between October of 2008 and March of 2009 [10]. This
survey questioned a sample of 10,000 participants, with information about trip
origins and destinations and mode choice in a working day. To consolidate our
data and make it easier to handle it, the demand was aggregated into sectors using
a grid with cells with 800 m sides over the city. The demand was aggregated on
each sector at its weighted centre of mass, the squares with negligible demand
were eliminated (less than 10 parking) and other squares were subdivided because
they had very high demand (higher than 100 parking) resulting in 400 m side
squares. At the end of this procedure we obtained an area of 62.88 km? divided
into 129 sectors, of which 88 have an area of 0.64 km? and 41 have an area of
0.16 km®.

The mobility survey did not ask for the vehicle type driven by the respondent
thus there is no distinction between combustion engine vehicles and EVs. To have
this in consideration we multiply the contribution of each vehicle on the demand
for charging by using a correction factor 4. This factor depends on the forecasted
percentage of EV’s in the fleet and has the purpose of representing the estimated
average number of charging time of EV’s occurring at a public charging station.
Given the mobility survey, we are able to define permanency profiles (Table 1)
considering the number of stops along the day (1, 2, 3, 4 or greater than 5) by each
individual (Fig. 3).

Finally we will use the centroids of each of the squares of our grid as candidate
charging station locations. This is just indicative, and should in practice be
replaced by a more informed study of physically possible locations in the city
(possibly closer to the demand center on each square). In Fig. 4 we can see the
resulting grid, the demand points and the candidate sites for placing a charging
station.

To estimate the demand from the mobility survey we have to choose values for
QA that represent the number of expected daily charges per vehicle on the road,
denote that this factors represents the proportion of EVs given all the vehicles and
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Fig. 3 Proportion of parking Number of Stop s

number

given an EV the probability of its charging occurs in a public charging station. We
ran simulations for 1, 1.5 and 2 chargings per 1,000 vehicles. We defined the
distance penalty function as follows:

—(dy)* +20*
< () ) se dj < 20 min

i = 4 20*- exp((%f) (29)

0 se djx > 20 min,

where dj; is the distance between demand point j and candidate charging station
side k measured in minutes of walking time. This assumes that 20 min is the
maximum time-distance that the drivers are willing to walk from the parking space
where they leave the vehicle charging and their destination (see Fig. 1. with
H = 20). Since the current charging network installed has nine charging stations,
we opted to study the optimal location of a similarly-sized network, so we set the
cost of a station to 1 and the total budget to 9. We also assume that each station has
four plugs, giving it a total capacity of Cp =4 -24 = 96 cars - hour. For the
improved model, we will consider the division of the day in four time intervals of
6 heach: I = {]2,8],]8, 14],]14,20],]20, 2] }. The capacity in this case will then be
C,/j =46 =24 cars - hour.

In Figs. 5 and 6 we present the optimal network obtained for the three models
proposed for QA € {;dw, 753} Table 2 shows the index of coverage, defined by
the ratio between the objective function’s value and the total local demand, for
QA € {1000, 1000 * 11)30, 1000} In Table 2 we also present the index of coverage
obtained when applying each model to the network already existing in Coimbra,
the MOBL.E network (Fig. 7).
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Fig. 4 Dealt area with the
resulting grid, the demand
points and the candidate
sites for placing a charging
station

Fig. 5 Optimal network in
the three models (basic,
transferable and improved)
with @4 = 1/1000
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Note that the addition of transferable demand corrects an underestimated sat-
isfiable demand in the basic model, while adding time intervals, shows that we
were dramatically overestimating capacity.

6 Discussion and Conclusions

The main contributions of this chapter are the establishment of a demand model
for EV charging based on parking locations and durations and the proposal of a
mixed-integer model approach to pick the best locations for deploying charging
station network that maximizes the satisfied demand under a fixed budget. Our
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Fig. 6 Optimal network in the three models (basic, transferable and improved) with Q4 = 1.5/
1000

Table 2 Index of coverage for each model and each possible value of QA

QA 0.5/1000 1/1000 1.5/1000 2/1000
Optimal network: basic model 0.5567 0.5463 0.5185 0.4766
Optimal network: transferable model 0.7798 0.7616 0.6752 0.5272
Optimal network: improved model 0.6499 0.6312 0.5820 0.4944
MOBLE network: basic model 0.4240 0.4240 0.4240 0.4099
MOBILE network: transferable model 0.6433 0.6435 0.6108 0.5010
MOBLE network: improved model 0.5168 0.5168 0.5018 0.4486

Fig. 7 MOBLE network
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demand model not only deals with each parking location separately (as was pre-
viously proposed in [3]) but also uses the daily activities of travelers to link the
demand on distinct locations. We were then able to use this data to improve on
previously proposed mathematical programming models.

Results obtained from applying our models to travel data for the city of
Coimbra, show that in networks where demand is relatively low, the impact of
considering demand transference can be very high. Since only a limited number of
charging stations is built, we should expect that the users will adjust their behavior
accordingly, adding demand to the stations that are actually built. This model
seems to be very useful for these situations where lack of demand prevents full-
city coverage to be viable. When dividing the day in time intervals, the results
obtained show again a very big impact on satisfied demand. This means that
disregarding peak-hour effect, averaging demand over the whole day, leads to a
significant overestimation of capacity. Comparing the optimal and the MOBLE
networks, we can conclude that our solutions are not very different from the
existing network, but the values of covered demand are lower is this network.

Note that several variations of these models can easily be adopted and studied.
We can use the time intervals to model differences between weekday/weekend
demand patterns; We could also make demand transfer harder, by limiting it to
some fraction of its theoretical value, modeling demand inertia; We can separate
demand points into residential and industry/commercial areas and use this data to
further refine the demand model; Another possible adaptation is to consider the
number of plugs that must be installed in each location instead of charging stations
with a constant number of plugs. In fact, one of the main strengths of both the
estimation and the optimization models is that they are theoretically simple, and
therefore easy to adapt and refine. After a solution is obtained, it might also be
possible to use some local numerical optimization methods to slightly perturb the
proposed charging station locations and improve the quality of the solution.

The proposed models present a good performance in our case study in terms of
Coimbra’s dimension that is, considering the number of possible locations for
charging stations and demand locations. However, this may not happen for a larger
scale problem, due to the increasing of computation complexity. In the particular
case of the improved model, the way the time is discretized also contributes to
increase the complexity of the problem. The more we increase the number of time
intervals in order to better fit the drivers’ profiles in the demand estimation, the
greater the number of decision variables. These scaling limitations can potentially
be circumvented by the use of heuristics, preprocessing the data to reduce the
number of potential charging stations or dividing a large problem into subproblems.

The main difficulties encountered in the development of the study have to do
with access to some of the useful real data, namely, good estimates of future
penetration rate of EVs and viable locations to charging stations, which would
require further research before application of these models. Another aspect that
should be taken in consideration is the actual behavior of EVs’ drivers, which is
the determining factor for the average number of daily charges, and for which no
reliable data seems to be available at least for the Portuguese reality.
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Despite this, we believe that the methodology developed in this chapter can
provide a good planning for a charging station network and offers a valid con-
tribution to the growing field of electric mobility.
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Analysis and Model to Identify the Most
Convenient Locations
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Abstract Most of the plans to deploy public pilot networks of slow charging-
stations in urban areas are choosing locations at popular parking places, such as
city centers, shopping areas, train stations, and university campuses. The low
parking time and high rotation rates often observed there could deliver an inad-
equate solution. This chapter presents a new approach to determine the optimal
locations of public charging stations in urban areas. This approach relies on three
different parts: an analysis of the specific battery electrical vehicles (BEV)
charging characteristics obtained from a literature and market overview; the
application of a location optimization model which maximizes the population
access to these stations and in consequence the potential use of them; and the use
of a target market index. Some of the specific characteristics of the charging
problem addressed by this approach are: the required time of charge, access dis-
tance, and charging opportunities.
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1 Introduction

There are many pilot programs for installing charging-stations in urban areas but
most of them lack of a comprehensive analysis for the location of the stations. In
the majority of the cases, the plans are choosing locations at popular parking
places, such as city centers, shopping areas, train stations, and university cam-
puses. These places are highly visible, however, the low parking time and high
rotation rates often observed there could deliver an inadequate solution for the
daily charging needs of the users. The higher refueling times and lower autonomy
ranges of BEV makes previous refueling station location models not suitable for
these conditions.

This chapter presents a new approach to determine the most convenient loca-
tions of public charging stations in urban areas and therefore, to optimize its
distribution. This approach describes the particular characteristics of the BEV
recharging process and valuates the expected effects of cover a determined loca-
tion with a charging station. Indexes as the number of residents, workers or daily
shoppers are used to measure the importance of each location. These indexes are
also complemented by the time spent on each activity, as also by the level of the
target market.

This approach relies on three different parts: an analysis of the specific BEV
charging characteristics obtained from a literature and market overview, which
allows evaluating the daily charging needs; the application of a location-optimization
model which maximizes the population access to these stations and in consequence
the potential use of them; and an estimation of the target market, by the adoption of
an index related to socio-economic characteristics of the user. After these parts, a
maximal gradual covering location model is used to maximize the benefits of the
public charging network and decide the optimal location of a fixed amount of sta-
tions. This model maximizes simultaneously the benefits for the users, by enlarging
the opportunities to have access to charging stations, and also the benefits for the
operator, by increasing the potential use of their stations.

Covering models such as the one underlying the proposed approach were
introduced in Church and Velle [8] and recently surveyed in Snyder [25]. Models
of this type have been recently applied to alternative fuel charging station location
problems by e.g. Wang and Wang [28] and Frade et al. [13].

2 Charging Technologies

The main challenge of electric vehicles lies on the energy storage system. The
research goal is to find the best balance between storage capacity (energy density),
performance (charge time, power and life-span), and cost. There are commonly
four types of energy storage systems considered for electrical vehicles: electro-
chemical batteries, ultra-capacitors, fuel cells and flywheels. Detailed analysis can
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be found comparing the basic technical characteristics of different storage tech-
nologies in Burke [5] and Chan [6, 7], with more updated and more general
comparison in Boulanger et al. [2], Eberle and von Helmolt [9] and Van Bree [26].
According with these studies, it is argued that electro-chemical battery electrical
vehicles (BEV) are the most convenient mid-term technology to implement the
electrical mobility. This is mainly because electro-chemical batteries have the
most balanced characteristics, even considering the long charging times, which in
the case of urban uses is feasible to be handled if the charging process is smartly
managed. Instead, some fast charge alternatives as the ultra-capacitors and fly-
wheels have a high cost and low energy density; fuel cells is a promising alter-
native with higher density, but is still a non-mature technology with very high
costs and the requirement of a dedicated considerable infrastructure.

Considering the electro-chemical battery vehicles, there are mainly three types
of commercially available recharging technologies: slow charge, fast charge and
exchange of batteries. Some comparison between these charge methods can be
found in Botsford and Szczepanek [1] or Boulanger et al. [2]. The slow charge is
the preferred and recommended system by auto manufacturers. This type of charge
presents a series of advantages over the rest: it is the best condition to maintain the
battery life-span; requires a simple installation that could be made at home; it has
better efficiencies; it does not have important impacts in the grid and could use
electricity directly from it. The alternative of fast charge has negative effects on the
battery life-span an on the electricity network. The exchange of batteries it is an
interesting alternative to solve charging times, but require additional batteries (the
most expensive component) and their standardization, which is not likely to be
easily accepted by the manufacturing industry and the users. The main limitation
of slow charge, it is precisely the considerable needed time to charge the batteries.
An efficient public slow charging network can easily supply the energy needs of
the commute and urban trips of BEV.

Most of the market available BEVs have autonomies from 100 to 200 km
(Table 1) in ideal conditions. For common urban uses these autonomies are
reduced to approximately 80 to 160 km. A full charge of these vehicles varies
from 3.5 to 9 h of slow charge, depending on the size of the batteries (which is
directly related to the autonomy range) and the capacity of the charger. In the case
of a public charger this time should not exceed 8 h.

According to a study from Eurostat, most of the Europeans make on average 3
trips per day and travel between 30 and 40 km per day [12]. Passenger car
transportation accounts on average for about a 70 % of the total passenger
transport, and the average commute distance is from 6 to 8 km, which is less than a
quarter than the total average daily distance. The average day distance includes the
long distance trips and other modes different from car, suggesting that in the
specific case of the use of cars in urban areas this distance will be significantly
lower. Therefore, it can be assumed that an autonomy range of 40 km will cover
the great majority of BEV urban trips and the energy required for this range can be
usually supplied from 2 to 3 h. Hence, the average charging process of a BEV will
require 3 h a day, and a maximum of no more than 8§ h for a full charge.
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Table 1 Characteristics of the typical market available BEV

Model Release  Autonomy  Battery Time of charge (h at
year (Km) (Kwh) 240 V)
Mitsubishi i MiEV (Citroen C-Zerp/ 2010 160 16 7.0
Peugeot iOn)
Nissan Leaf 2010 175 24 8.0
Renault Fluence ZE 2012 185 22 9.0
Renault Twizy 2012 100 7 35
Ford Focus Electric 2013 122 23 4.0
Smart ED 2013 110 17.6 6.0

3 Charging Process

Given the considerable required charging time, the common refuelling process
taking place in some minutes at the middle of a trip is no longer feasible or
convenient for the BEV technology. Instead, the recharge process can take place
during the parking time. A private urban car is usually park the great majority of
the day near the usual activities of the driver. These activity locations will rep-
resent then the potential locations for the charging process. The charging coverage
of the users will be measured by the access to charging stations near these places
and weighted by the usual time spent on each one.

3.1 Access Distance

The instant coverage concept measures whether a given location is within an
acceptable walking distance of the nearest public charging station (through the
shortest possible network path, as recommended in Gutiérrez and Garcia-
Palomares [15] ). If this condition is achieved, then the location is considered to be
instantly covered. To the best of our knowledge, there is no (published) work on
acceptable walking distances to charging stations. However, several studies have
addressed the same topic in relation to bus (transit) stops. This includes, for
instance, Van Nes and Bovy [27] and Furth and Rahbee [14]. Distances between
bus stops worldwide are of the order of 400 m, being usually a little larger in
Europe than in North America. In line with the results of Furth and Rahbee [14],
Murray [21] and Horner and Murray [17] using the same distance as the radius for
the coverage area of a bus stop in their studies. However, as pointed out in
Gutiérrez et al. [16] based on data from Madrid, Spain, binary coverage functions
such as the ones underlying these studies do not capture the decay pattern observed
empirically: coverage starts to decay significantly for walking distances above 200
or 300 m, is relatively small after 400 or 500 m, but is not null until distances are
as large as 1,400 m (a detailed discussion of distance-decay functions is available
in Martinez and Viegas [19]).
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In order to represent the observed empirical behaviour, a coverage function of
three segments is considered to evaluate instant coverage: a first segment with a
coverage rate of 1 (100 %) for distances below the (maximal) full coverage dis-
tance (dgpp); a second segment with a linear coverage rate decay, from 1 to O,
between the full coverage distance and the maximal (partial) coverage distance
(dmax); and finally, no coverage for distances higher than the maximal coverage
distance. That is:

1 < dij <d
Cij = 4 i o iy <dj <dma Vi€N, jEK (1)
0 <~ d,j > dmax

where

N  set of zones

K  set of possible charging station locations

c;j coverage rate for location i with a charging station at k
d;;  distance from location i to charging station k.

In accord with the empirical studies mentioned previously, plausible values for
the full coverage distance and the maximum coverage distance are 200 and 400 m,
respectively (Fig. 1).

The instant coverage of location i (v;) is equal to the coverage rate obtained by
the nearest charging station:

Vi = MaX;jeK C,‘j,Vl. eN (2)

3.2 Parking Locations and Times

The average time distribution of population activities in Europe is summarized in
Fig. 2 [11]. It can be observed there that, in general, home and work are the only
places where BEV drivers can completely fulfill their average daily charging
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Traveling and parking
Parking time (Potential charging time) Travelling time
22:40 h 24h  (1:20 h)
Activities
At home At work Others
(13.66 h) (5.66 h) (3.33h)|22:40 h
Oh 13:40 h 19:20 h 24h

Fig. 2 Daily distribution of parking time in Europe

needs, as the time spent on average in other locations (mainly because of shopping
and leisure activities) is much shorter. This observation is backed by the analysis
of some enquiries, as for example those mentioned in Skippon and Garwood [24],
where it was found that the preferred places to charge the electric vehicles are at
home and at work.

Given this usual proportion of the daily activities it is possible to identify the
potential charging locations and the average parking time spend in each one. The
relation between the proportions of time represents the relative importance of
having access on each location. For example, to have access to charging stations at
home, represents 2.48 (13.66 h/5.66 h) more time access than in work.

3.3 Home Charging Access

The use of private chargers at home is a comfortable alternative to the use of
public charging stations, and BEV users who can pay their cost (approximately
1000 euros) and, most importantly, have a private garage (with a proper electric
connection), will most certainly install them. The latter requirement is commonly
met in North America but not in Europe, where most people live in apartment
buildings and private parking lots are the dominant home parking solutions. Such
parking lots are not ideal to install private chargers, because this involves modi-
fications on buildings that require a relatively large expenditure and may be dif-
ficult to approve by the building’s community of property owners. For BEV users
who can charge their vehicles at home, public charging stations normally will only
provide coverage when they are working or doing other activities.

3.4 Charging Coverage

The charging coverage measures the sum of hours of access to charging station of
the users in a determined location. For each location, three types of users will be
considered: the residents; the workers; and the shoppers or leisure visitors. As it
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was stated on the previous subsection, the residents with access to a private garage
will not be considered as users of charging stations (will use a private home
charger), and therefore, just the residents without a private garage are considered.
The covered time provided to each user corresponds with the usual average time
spent on the activity. The expression for the charging coverage of the location i is
as it follows:

W,‘Z(R,'XfR—I—E,‘XfE—FSinS)XV,‘ (3)

where

R; amount of residents (without access to a private garage) on the location i
E; amount of workers (employments) on the location i

S; amount of daily shoppers of leisure visitors on the location i

fr average time spent at home

fe average time spent at work

fs average time spent in other activities (shopping and recreation)

v;  instant coverage at location i.

4 Target Market

The BEV technology is an attractive alternative to some small market segments
with certain characteristics. These segments—the potential BEV buyers—are the
target users for charging stations.

To address the target market, an index of the level of potential electric vehicle
adoption is going to be created. This index can be assessed by the relation with
socio-economic characteristics of the population that are commonly related to the
adoption of electrical vehicles. This relation should be calibrated for the particular
location of application, mainly by revealed or state preference studies.

Some of the characteristics that usually are related with the adoption of elec-
trical vehicles or similar type of vehicles are education, income, car ownership and
commuting distance. A group of studies in which these characteristics and other
ones are evaluated are: Kurani et al. [18], McCarthy and Tay [20], Brownstone and
Train [3], Brownstone et al. [4], Williams and Kurani [29], Potoglou and
Kanaroglou [22], Sangkapichai and Saphores [23], Erdem et al. [10], Skippon and
Garwood [24] and Zhang et al. [30]. Most of the studies found the same factors and
also similar impacts on the willingness to adopt electrical vehicles or similar types
of vehicles.

The final index should measure the relative difference between the segments of
the population and is applied to different locations distinguished also by the type of
activity of the users in that location.
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5 Location Model

Once defined the charging coverage and the adoption potential the objective
function of our location model is easily to be defined. The charging coverage
weighted by the respective potential adoption index of the users of a determined
activity in a determined location, would represent the formulation of the objective
function. The maximization of this objective will look for the greatest amount of
hours of access to charging station of the users, giving more focus to those who are
more willing to adopt an electric vehicle. Most of the parts of the charging cov-
erage are, in fact, weight factors of a determined location, as it is also the case of
the adoption potential. The overall configuration of the objective function corre-
sponds to maximal gradual covering model.
The model formulation is expressed as it follows:

maxZ:ZZ(afxRifo—i—afinxfE—i—afo,-xfs)xc,»jxx,-j (4)

ieN jeK
Subject to:
X,’jgyj,Vl.EN,jEK (5)
D xy<1,VieN (6)
jeN
> ovi=rp (7)
JjeK

Decision variables:
y; decision to locate a station at j (binary)

x; decision to cover location i from station at j

where:

N set of zones

K  set of possible charging station locations

c;; coverage rate for location i with a charging station at j

aé adoption potential of residents (without access to a private garage) of location
l

a¥  adoption potential of workers of location i

a;  adoption potential of shoppers and leisure activity visitors of location i

R; amount of residents (without access to a private garage) on the location i

E; amount of workers (employments) on the location i

S;  amount of daily shoppers of leisure visitors on the location i

fr average time spent at home

fe average time spent at work

fs  average time spent in other activities (shopping and recreation)

p  amount of stations.
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First, in expression (5), the decision to cover the location i from the location j,
requires to have a station at j. Secondly, the expression (6), determines that only
one station can provide service to each location. Finally, expression (7), limits the
total amount of station to be equal to p.

6 Conclusions

This chapter presents a new approach to determine the optimal locations of public
charging-stations in urban areas. A common maximal gradual covering model is
used to find the best location for a limited amount of stations, providing the best
solution for the users (increasing the user access to stations) and for the operator
(increasing the uses of the stations).

The new approach relies in the particular definition of two components of the
gradual maximal covering model in accordance with the BEV charging require-
ments, the access to charging stations and the weight of each location. In regards
of the access a simplified two step function is used based on empirical information.
In regards of the weight, a composition between the level of activities of the
location; the usual time spend on each activity, and the particular characteristics of
the users in relation with the target market characteristics are used.

The data requirements of the model are the amount of residents without access
to a private garage, amount of employments, amount of daily shoppers or leisure
activity visitors and some socio-economic characteristics of those users. The
computational efforts to solve the model can take from one second for areas of 50
sectors to few minutes in areas of 1000 sectors in optimization software like FICO
Xpress (FICO 2012). The new formulation provides a better understanding of the
BEV charging problem, identifying the best locations based on previous market
research.

A further work to improve the model is to introduce the capacity issues of the
stations and also expand the coverage analysis from a general point of view to the
specific distribution between the users. The introduction of uncertainties on the
characteristics of the market is also under consideration. Finally, hypothetical and
real case studies are also under development.
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A Joint Probability Density Function

for Reducing the Uncertainty of Marginal
Social Cost of Carbon Evaluation

in Transport Planning

Silvio Nocera and Stefania Tonin

Abstract This chapter aims at defining a fair value for the Marginal Social Cost
of Carbon (MSCC) to be used within transport planning, briefly discussing how it
is influenced by economic and scientific uncertainty, with the scope of helping
researchers, stakeholders and decision makers to choose among the current range
of values of four orders of magnitude provided from the scientific literature. The
method here proposed estimates a joint probability density function for MSCC
using a database of almost 600 available estimates, and then defines a subsample
of 80 to be used for the evaluation of transport planning policies and projects, so
that the variability of MSCC decreases significantly to a single order of magnitude.

Keywords Transport policy - Carbon dioxide estimation - Marginal social cost of
carbon (MSCC)

1 Introduction

Providing a reliable value for carbon dioxide (CO,) emissions is a fundamental
task if our society wants to develop a sustainable transport industry and protect the
environment from the consequences of global warming. Technological advances in
recent years have been considerable and play a noticeable role towards this goal.
Nonetheless, transport is the end-use sector that has seen by far the most rapid
increase in emissions over the last 20 years: some of the issues regarding freight
mobility seem still open [1], and CO, emissions in transport increased by 2.2 Gt
from 1991 to 2011, or by almost 50 % [2]. Some previous researches [3—6]
seem to identify an issue in the quality perceived of specific modes, it seems
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however that this complicated challenge cannot be tackled by mere technology but
should be sustained from adequate policy interventions instead [7]. Reducing
emissions in transport thus forms a crucial element for any comprehensive strategy
to reduce global CO, emissions.

Setting a fair value for the cost of climatic change is not a mere economic
valuation exercise, but a more complex procedure that attempts to quantify the
negative externalities resulting from a rise in temperature levels. Due to the
cumulative nature of such consequences, greater and greater impacts are expected
from the progressive increase in carbon concentrations [8]. The real challenge
seems to predict with a certain accuracy how CO, will affect future climatic
change and impact the physical environment. Even if theoretically rigorous, this
logic suffers from a number of economic and scientific uncertainties that are
endemic to all these estimates [9]. The process is based on five main steps: firstly,
the estimation of future CO, emission levels; secondly, the determination of a link
between emissions and atmospheric concentration; thirdly, the assessment of CO,
consequences on climatic change; fourthly, the measurement of the physical
impacts of climate change; and finally their economic appraisal.

Methods for calculating CO, production [10] and specific integrated assessment
models [11] have been developed recently to determine the externalities of
endogenous greenhouse warming and to monetize them. Scientific literature also
describes other methods to quantify the CO, economic cost such as the Avoidance
Cost [12] or market-based prices, i.e., carbon trading cost [13, 14] and carbon tax
[15].

However, the current relative abundance of estimates, somehow very divergent,
in turn increases the uncertainties for researchers. This chapter aims particularly at
developing a method for reducing such uncertainty, with the aim of helping
transport researchers and decision makers to orient themselves among the vast
range of values provided by the scientific literature. The array of such values
derives from the selection of the main integrated assessment models (IAMs) of
climate change through a damage function that reflects the interaction between
climate variation and the impacts in the economy and society.

This chapter will focus on the assessment of an efficient economic value for the
so-called “Marginal Social Cost of Carbon” (MSCC)l—i.e. the net present value
of the incremental damage due to a small increase in CO, emissions [17]. Tech-
nically, MSCC represents the marginal cost of global damage from climate change
or, conversely, the value of damages avoided for a small emission reduction (i.e.
the benefit of a CO, reduction).

A fair estimate of MSCC can be used by policy-makers to infer about the
carbon efficiency of a certain transport action (such as new light-duty vehicles with
low CO, emission, better transport infrastructure plans, new policies or regulations
expected to cut CO, emissions, etc.). It can either be adopted in terms of

' MSCC is also defined as “Marginal Climate Change Damage Cost” or “Social cost of Carbon”
[16].
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Cost-Benefit Analysis (CBA) to value the benefits of climate policy or to set a
Pigouvian tax imposed by a benevolent social planner, or in a Multi Criteria
Evaluation (MCE), where an efficiently valued MSCC can stand for the impact of
greenhouse gases of a certain action. The possibility of using both these methods
jointly, as it often happens, also holds.

For this reason, quantifying carbon impacts fairly, and reducing the variation
range for MSCC have significant practical importance in transport planning, as
policy makers may—by purpose or unconsciously—tend to choose the pathway
that best addresses their objectives. This approach basically overcomes the risk
profile of the outcomes on the way to maximize the chances of hitting a certain
target, potentially disregarding some assumptions and input uncertainties. This is
especially dangerous when decisions and setting standards that shape the future
over several decades are at stake, because of the notable uncertainties in tech-
nology and economic fluctuations in the mid to long term. The prospect to reduce
the uncertainty of MSCC, and consequently to set a correct market price signal,
allows implementing the most efficient and lowest costs action (be it a project, a
plan, or an investment), for reducing CO, impacts in transport sector. Greater
certainty of the value of MSCC in the long term policy will also encourage long-
run technological innovation and greater investment in more energy-efficient and
reduced CO, emission, and capital equipment in the transport sector [18].

A method for estimating a probability density function will be therefore sug-
gested in this chapter, based on a database made available by Tol? [17], which
collected almost 600 different estimates of MSCC. Each of them is the result of
some structural characteristics and specific assumptions underlying the TAMs,
which provide estimates of the monetary impacts of CO, emissions. It also
includes different ways to convert the total economic cost of climate change into
marginal costs of current emissions, such as the different discount rates, the
regional economic inequalities, the growth rate of per capita consumption, etc. The
analysis performed in this chapter will be based on a subsample of 80 MSCC
values related to emission scenarios equal or later than 2015, so as to capture the
more recent studies, and consequently the new technological innovation in climate
change modeling.

This chapter first estimates the main determinants of the MSCC through a
regression model. Then, it infers a probability density function with the aim of
highlighting some of the assumptions used in the carbon assessment, focusing on
the uncertainty of the different estimates currently available. The aim is to provide
a realistic estimation for one of the most worrisome environmental impacts of
transport.

The structure of the chapter is divided into five sections. This current section
aimed at introducing the theme and provided a motivation for conducting such
kind of analysis. Section 2 deals with the economic impacts of climate change and

2 The database on the marginal damage costs of CO, emissions can be found at: http://www.
sussex.ac.uk/Users/rt220/marginaldamagecost.xlsx.
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the related uncertainty. Section 3 proposes a regression model to determine the
main factors that produce such a high uncertainty in the MSCC valuation, and
Sect. 4 tests the values by adopting a two-parameter Gumbel distribution. Finally,
Sect. 5 discusses the results and concludes the chapter.

2 Economic Impacts of Climate Change

According to Tol [17], there are four different ways to estimate economic impacts
of climate change. It is for instance possible to interview a limited number of
experts [19]. It is also possible to multiply estimates of the “physical effects” of
climate change with estimates of their price [20-27]. Alternatively, Bosello et al.
[28] use similar estimates of the physical impacts but compute the general equi-
librium effects on welfare. Finally, other methods may consist in using observed
variations (across space) in prices and expenditures to discern the effect of climate
[29-32], or in drafting self-reported well-being [33, 34].

These methods link the variation of GDP to the increase of temperatures
(Table 1): the forecast impacts on the national economies are very different,
varying from a considerable decrease (—11.5 %: [33]) to a slight increase of the
GDP (+2.3 %: [26]).

A shared agreement between these studies is that the uncertainty is vast and
right-skewed. This means that undesirable surprises are more likely than desirable
ones. For instance, it is hard to make an upper bound limit to the value of the
climate sensitivity. Estimates stop conventionally at 3 °C of global warming, but
climate change may well go beyond that. The uncertainties about the impacts are
compounded by extrapolation [35]. Moreover, impacts change drastically in the
various countries, as the poorest tend to be more vulnerable to climate change.
They have a large share of their economic activity in sectors such as agriculture,
that are directly exposed to the weather. Furthermore, they also tend to be worse at
adaptation, lacking resources and capacity [36].

3 A Regression Model for the Estimates of MSCC

As previously shown (Table 1), a significant amount of studies has calculated the
economic damage of climate change in terms of total cost of carbon for a
benchmark scenario. This value allows to determine also the MSCC, which is
defined as the additional damage caused by an additional tonne of carbon emis-
sions. The process goes as follows: firstly, the total cost of carbon is measured in
terms of loss of world GDP with respect to a doubling of atmospheric CO, con-
centrations from pre-industrial levels. These values are generally obtained running
a main impact assessment model (IAM) such as PAGE [11]. Secondly, once
estimated the total cost of climate change, varying different assumptions to take
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Table 1 Estimates of the

] Study Warming (Celsius degrees) Impact (% GDP)
welfare loss due to climate

change (as equivalent income (19] 3.0 —4.8 (=30.0 t0 0.0)
loss in percent) (23] 3.0 —-13

[21] 2.5 —14

[25] 2.5 —-1.9

[491 % 2.5 —1.7

[501 % 2.5 —2.5(—0.5t0 —11.4)

[30] *>¢ 2.5 0.0b 0.1b

[51] 2.5 —1.5

[26] 1.0 2.3 (1.0)

2914 2.5 —0.1

[341*¢ 1.0 —0.4

[11] *¢ 2.5 0.9 (—0.2 to 2.7)

[32] 2.5 —0.9 (0.1)

[24] 3.0 —-2.5

[331 % 3.2 —11.5

[28] 1.9 -0.5

? The global results were aggregated by the author

® The top estimate is for the “experimental” model, the bottom
estimate for the “cross-sectional” model

¢ Mendelsohn et al. [30] only include market impacts

4 Maddison [29] only considers non-market impacts on house-
holds

 The numbers used by Hope are averages of previous estimates
by Fankhauser [21] and Tol [26]; Stern et al. [44] adopted the
work of Hope

Estimates of the uncertainty are given in bracket as standard
deviations or 95 % confidence intervals

Source [17]

into account several physical climate and key economic variables, it is possible to
estimate the social cost of carbon (that is, the additional damage caused by the
emissions of an additional tonne of carbon)3. Recently, Tol [17] made available a
dataset of 588 values coming from 75 different studies of the social cost of car-
bon®. The database gives information about the authors’ names, the publication
year, the currency used, the years of emission, and a set of other variables created
by the author for taking other effects into account. It includes for instance, the
growth rate of the social cost of carbon, the welfare loss of the impacts of climate
change expressed as equivalent income losses, the pure rate of time preference
used in the different studies, if the equity-weighting was applied, and many more
(for further information see [17]).

3 Scientific literature reasons substances emitted in tonnes of carbon (tC) or tonnes of carbon-
dioxide (tCO,) generally, the equivalence relation 1tC=3.664 tCO, [37] holds.

4 Only some of the total cost estimates have been used for estimating the marginal social cost of
carbon (such as [29], [30], [32], [34]).
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The range of those estimates, expressed in 2010 U.S. dollars and related to
emissions in the year 2010 goes from $—10.4/tC to $7,243.7/tC. The negative
values mean that climate change can initially have positive impacts. Tol asserts
that this is partially explained by the fact that “the global economy is concentrated
in the temperate zone, where a bit of warming may well be welcomed because of
reductions in heating costs and cold-related health problems” [38], or even
because “the higher ambient concentration of carbon dioxide would reduce water
stress in plants and may make them grow faster” [39].

It is also well-known that the MSCC is influenced by different variables, such as
the Pure Rate of Time Preference (PRTP)°, the growth rate of per capita con-
sumption, the total welfare impact of climate change, the elasticity of marginal
utility of consumption, the projections of CO, emissions, the carbon cycle, the rate
of warming, the economic scenarios, and some others [17, 40]. Any of these
factors is a potential source of uncertainty.

Tol’s database is used in this chapter to estimate the main determinants of the
value of the MSCC through a robust Ordinary Least Square (OLS) regression
analysis:

INMSCC = X + ¢ (1)

where X is a vector of independent variables, and ¢ is the error term.

Through the previous regression analysis, we establish a relation between the
dependent variable MSCC and the set of independent variables X, examining
which of the latter has more influence on the value of the former. We chose to
express the equation in the form of a natural log to take the right skewedness of the
estimates of MSCC into account. The log transformation also allows to interpret
the coefficients of the regression model easily, as one percentage change in the
independent value leads to a /(100) % change in the dependent one.

Table 2 refers to the whole sample of 588 cases available, analyzing only those
which present every information needed. It summarizes the main variables
selected for estimating the OLS model, the estimates of their coefficients, and the
value of t-student. It shows that all the explanatory variables are significant at the
5 % level, except the coefficient of the dummy variable accounting for the pos-
sibility of the study to adopt an independent impact assessment for the estimation
of the total costs of climate change.

The model indicates a moderate, statistically significant association with the R-
squared value of 47 %, which is comparable with many meta-analysis studies in
the literature [41]. Results of the OLS regression show that higher PRTP implies
lower value of MSCC, all else the same. For instance, the increase of one point in
the average discount rate would result in a decrease of 63.7 % change in the
average value of MSCC. This result confirms that the choice of the discount rate is
central to any assessment of climate change policy, especially those that will have

5 The PRTP is the rate at which time is discounted, it is also defined as the “Rate of Impatience”:
people would prefer consume now than in the future [42].
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the major effects on a distant future such as generally those related to transport
sector. Given a certain fixed amount of costs, this implies that higher discount rates
tend to reduce the present value of benefits, hence weakening the implementation
of current strong action. Similarly, more recent publications and a longer time
horizon for emissions also reduce the values of MSCC variable. The dummy
variables chosen to describe the quality of the different studies considered in this
chapter so far indicate that peer-reviewed studies and the adoption of integrated
assessment models that used a dynamic approach decrease the MSCC [43]. On the
contrary, studies that compute the marginal damage costs from total damages
increases the value of the MSCC. The value of MSCC is also predicted to increase
when the practice to weighting impacts in different regions is applied.

As transport policy options range here from comprehensive legislation to tar-
geted regulations to reduce carbon emissions and improve the efficiency of
vehicles, a false estimation of the economic damage—in any direction—Ileads to
an error in the determination of the priority of the actions to undertake and to a
consequent penalization for the community. This is the reason for which we tried
to specialize the argument developed so far to transport policy, by choosing in the
next section the estimates which could be influent to future transport actions.

4 A Joint Probability Density Function for the MSCC
Estimates

In this part of this chapter, we calibrate an appropriate probability density function
with the aim to reducing part of the uncertainty of the MSCC estimates currently
available in literature and to narrow down the results for future strategies of
transport policy. Focusing primarily on feasibility analysis, we restrict our attention
on those studies in which the emission scenarios are referred to the year 2015 or
later (henceforth, emission scenarios >2015). The aim is to estimate CO, impacts
of future transport actions and strategies. The different emissions projections used
in the integrated assessment models are based on specific socio-economic
assumptions in terms of GDP, population growth, and technological change that
might modify the emissions pathway and the resulting damage. The subsample
considered accounts for 80 observations, and it is statistically described in Table 3.

Table 3 shows that for the overall sample the mean estimate of the MSCC is
$173.32/tC. This high value is determined by some extreme values present in the
sample, as further indicated by the other statistics reported in the table (median,
standard deviation, mode, and 95th percentile). If the analysis is restricted to the
emission scenarios of year 2015 or later, the mean estimate of the MSCC drops to
$109.91/tC, while the mode unexpectedly increases to $25.57/tC.

To investigate the high variability a little further, the different PRTPs have been
carefully considered, since the choice of the appropriate discount rate for climate
change policy is considerably debated in economic literatures [44, 45]. We have
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Table 3 Main descriptive statistics of the MSCC for the whole sample and the subsample of
values pertaining to emissions after 2015

Whole sample ~ MSCC > 2015 ($tC)  MSCC > 2015, MSCC > 2015,
PRTP 3 % ($/tC)  PRTP 1 % ($/tC)

Mean 173.32 109.91 27.50 73.55

Median 37.56 32.74 25.93 38.56

Std dev  494.69 345.58 24.62 88.78

Mode 10.51 25.58 25.57 37.93

95 % 711.00 305.10 88.68 241.82

N. obs. 588 80 38 28

Source Tol database [17], elaborated
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Fig. 1 Kernel density of different distributions with target emission after 2015

already highlighted in the previous section that a higher discount rate implies that
the costs incurred in the future for climate change adaptation and mitigation
policies will have lower present values.

The estimated mean for the subsample related to a PRTP equal to 3 % is lower
than the one of the subsample where the PRTP is equal to 1 % (Fig. 1), confirming
what should have been expected, but also partially explaining the variation in the
estimates. Moreover, the distribution of the different estimates of MSCC is right
skewed and Fig. 1 shows the kernel density functions of the MSCCs for all
observations of the sample considered in this study, for those equal to a 3 and a
1 % PRTP.

To account for the skewedness of the distribution, and to illustrate the right tail
distribution of the estimates related to the MSCC, a two-parameter Gumbel
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Table 4 Results of the two- sCC

parameter Gumbel
distribution used B

Coefficient z-value

80.89 (8.42) 9.53 (<0.000)
1 40.62 (9.12) 4.45 (<0.000)
Log Likelihood —499.98

Note standard errors in parentheses

Fig. 2 Probability density
function of sample data 0,0044 -
MSCC > 2015 0,004 -
0,0036 -
0,0032 -
0,0028
g 0,0024 -
0,002 -
0,0016 -
0,0012 -
BE-4 -
4E-4
4
0 200 400 600
dollar per tonne of carbon
Table 5 Sample statistics MSCC > 2015 MSCC > 2015, MSCC > 2015,
and characteristics of the ($/tC) PRTP 3 % ($/tC) PRTP 1 % ($/C)
Gumbel distribution
Mean 87.31 26.99 67.87
Median 70.27 23.46 58.34
Std. dev. 102.60 24.61 57.95
Mode 40.62 17.31 41,79
95 % 280.59 67.18 174.66
N 80 38 28

distribution is applied to build up an overall distribution of the estimates and their
uncertainties [46]. Using Stata®, the scale and location parameters were inferred
by maximum likelihood methods.

It is well-known that the Gumbel two-parameter (u, f§) density belongs to the
Generalized Extreme Value distributions [47]. Its probability density function is

the following:

2)
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where  is the location parameter of the distribution and f is the scale parameter,
and

z=¢ (%) and p>0 (3)

As interesting properties of the Gumbel distribution, the mode is equal to the
location parameter p, the mean (y,;) is equal to:

fo=ptpey (4)

where y is the Euler’s constant and it is equal to 0.5772.
Finally the median (i) can be expressed as:

fp = p— f-In(In2). (5)

5 Results and Conclusions

The subsample of 80 estimates of the MSCC, as previously defined, has been used
to fit the two-parameter Gumbel distribution, and Table 4 shows the main results.
The best-fit Gumbel distribution has a scale parameter of 80.89 and location
parameter of 40.62, and the two parameters are significantly different from zero (as
shown from the z-values).

Figure 2 displays the probability density function with the parameters of
Table 4, when only the value of MSCC related to emissions after 2015 is
considered.

Table 5 reports the sample statistics and characteristics of the Gumbel distri-
bution fitted to the observations when emissions are later than 2015, and two
alternative ways to split the sample, when PRTP is equal to 3 and 1 %.

The mean of the probability density function for the restricted sample is $87.31/
tC, but the mode is only $40.62/tC. This large difference seems to suggest that the
mean estimate is still driven by some large estimates of MSCC, as also shown
from the estimated MSCC at the 95th percentile ($280.59/tC). Once again the
higher rate of time preference implies that the costs of climate change incurred in
the future will have a lower present value. The mean estimate of the MSCC for the
studies with a 3 % rate is in fact $26.99/tC, while it is $67.87/tC for studies that
choose a 1 % PRTP.

Furthermore, the results of the regression analysis show that it is possible to
distinguish among the different MSCC estimates: the most recent studies reflect
some innovation on climate change research, at the same time yielding lower
estimates with smaller uncertainties than the first pioneering studies did. Finally, it
must be noted that the choice of discount rate and the aggregation over countries
(equity weighting) may considerably change the final estimate, and assume hence
important policy implications. Even if we managed to reduce it consistently
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through the regression proposed in Sect. 3, our results show that the uncertainty
surrounding the estimates of MSCC is still high, and that a deeper investigation is
necessary to reduce it any further. Additional efforts should be devoted to disen-
tangle the quantitative effects of the different explanatory variables on the
dependent variable such as the climate policy regime adopted to meet the targets
(international or national trading of emission permits, carbon tax, etc.), geographic
information, the sectors considered in the models, and others. This was not yet
available in the current database.

As transport emissions are a significant contributor to climate change, their
economical estimation is extremely important and should not be left out from
feasibility studies. Particularly, MSCC may be a key input in Cost Benefit Analysis
and in other valuation approaches that can help in the decision making process:
hence, reducing the uncertainty surrounding its calculation is vital to obtain sound
results. It must be considered that climate changing affects transport planning in at
least two ways: firstly, the increasing environmental threats will reduce the
resilience and performance of surface transport systems, especially in some
countries, forcing the transport system to adapt to these changes and carrying to
potential waste of economic resources. Secondly, since transport sector is one of
the largest emitters of carbon dioxide, better strategies to mitigate the impact of
transportation emissions are essential. In both cases, climate change considerations
have to be integrated into the transport planning process already in its first steps.

Through a top-down approach, the evaluation of carbon emissions through the
method described in this chapter allows transport policy analysts to identify some
possible risks, and in case of necessity to carry out a number of steps for reducing
uncertainty in carbon emission evaluation, thus efficiently monitoring their effects.
At the same time, a bottom-up approach should allow a concrete estimation of the
impacts on some parts of the complex transport system that cause CO, emissions.
Provided that travel demand, modal share and elasticity could be estimated with
some reliability [48] this would allow an efficient planning of technical and policy
measures for hitting transport emissions and consequences, including an estima-
tion of specific investments in new systems (for instance, driverless subways) or
technologies (e.g., ITS, hybrid or electric vehicles).
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An Environmental Approach to Optimize
Urban Freight Transport Systems

Juan P. Romero, Juan Benavente, Jose L. Moura, Angel Ibeas
and Borja Alonso

Abstract This chapter proposes an optimization-simulation model for planning
and managing an urban freight transport system, which has to serve one or more
points of the network that receive and/or generate a great volume of cargo, using
trucks. This type of transport has special characteristics and generates significant
impacts: increased traffic congestion, due to the presence of large vehicles which
take up much space and are very slow; and air pollution caused by the extra traffic
volume and the extra congestion. Therefore, the purpose of the model is to min-
imize these negative effects on the environment and on the users of the local road
network. To achieve this goal, the authors propose and solve an optimization
problem to minimize the total system cost (operating costs of the suppliers, costs
supported by private vehicle users and public transport users, operating costs of the
public transport, etc.). The proposed optimization problem is a bi-level mathe-
matical programming model, where the upper level defines the total cost of the
system, and the lower level defines the behaviour of private and public users,
assuming that each of them chooses the route that minimizes his total journey cost.
Then, this model is applied to the real case in the city of Santander (Northern
Spain) obtaining a series of interesting conclusions from the corresponding sen-
sitivity analysis.
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1 Introduction

On the subject of urban freight transport, the situation in which one or more points
of the network require large amounts of supplies, and/or generate a significant
volume of waste material, usually construction and demolition debris, has not been
sufficiently considered in the literature. Due to the characteristics of the vehicles
used to move the cargo, and how traffic flow is affected by their presence, this type
of transport has a significant impact on the urban environment: increased traffic
congestion; more air pollution; and, due to longer journey times, a raise in private
transport costs.

This problem can be approached as a typical supply chain problem; where
materials need to be delivered, in predetermined quantities, to a point, following a
schedule. There are many studies where supply chain modeling and simulation
have been applied to predict the behavior and optimize the design of many kinds of
industry. One example is [1], who modeled and designed the supply chain struc-
ture for a food company. With the same aim in mind, other types of tools and
techniques have been developed to study urban goods movement in supply chains:
simulation techniques to study production, accounting and distribution policies, as
in the work of [2]; the Goodtrip model by Boerkamps and Binsbergen [3];
microscopic-level models for mode choice and vehicle routing, as in the work of
[4], who use adaptive stated preferences for designing a freight mode choice
model; and the freight routing model of time-definite delivery by Lin [5].

As previously stated, none of the references above mention the particular case
of transporting large amounts of cargo to or from one or more points of an urban
transport network, a subject which has hardly been studied; although some work
does exist, such as [6], who designed an integrated model that combines concrete
production scheduling with its transport by trucks. Their objective was to mini-
mize the operator costs only, thus social and environmental impacts were not taken
into account.

Most of the studies that examine social and environmental impacts have mainly
concentrated on the development of rules, regulations, measurement and legisla-
tion in order to minimize the impact of goods transport in urban areas. The work of
[7] stands out in this field, discussing measures taken and the effects they produced
in large European cities; and identifying three characteristics of the urban mobility
of goods: the movement of goods is not affected by the internal structure of the
city; urban policies regarding freight mobility are inefficient; and the provision of
adequate logistic services is growing slower than the need for them in urban areas.
From a social point of view, the work of [8] proposes a model for the movement of
containers using trucks with time constraints at origins and destinations, guaran-
teeing that the drivers will not work more than a certain number of hours per shift.
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Therefore, this chapter presents a model to optimize freight transport to and/or
from one point of the urban network, based on the minimization of the overall
costs of the system. Apart from quantifying the costs associated with transport
planning, the proposed model considers the emission of pollutants throughout the
study area.

This section has presented the Introduction and State of the Art. In Sect. 2, we
describe our methodology; Sect. 3 provides specific details of the case study; and
finally our main conclusions are shown in Sect. 4.

2 Methodology

We present a model to optimize the planning and management of a system that
uses large vehicles (trucks) to supply and/or retrieve great amounts of supplies/
waste materials from one point of an urban network. This model considers a
number of potential routes, and determines the optimal way to distribute truck trips
among them from an economic, social, and environmental point of view. To
achieve this goal, a network with car, bus, and truck modes has been modelled and
then calibrated; using the modal split and the trip assignment to the network steps
to implement the interactions between modes. Therefore, any variation in the
characteristics of the freight transport system affects both car and bus modes, as it
can lead to modal shifts and changes in the routes chosen by drivers, or lines
selected by bus users.

The optimization model is based on the minimization of the total system cost,
which is a social cost function composed of car and bus user costs, and bus and
truck operating costs [9—11]. Bi-level mathematical programming has been applied
to find the best alternative: the urban network model on the lower level returns the
data (flows, access times, waiting times, travel times, etc.) needed by the upper
level to calculate the total system cost.

Social Cost = Cu + Cop

Cur = Cuc + Cug
Cuc = Pyigiec * Tigje
Cup = Pace - Tacep + Pegrs * Tegrn

+ PEpB * TESP-,B + DPTravel B TTWVL’I.,B + PTraB ° TTVa“,B

where:

Cur Total users cost
Cuc Car users cost
Cupg Bus users cost

Trraver,c - Car travel time
Orraver,c  Car travel time worth
Tace,B Bus access time
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Bus access time worth
Bus egress time

Bus egress time worth
Bus waiting time

Bus waiting time worth
Bus travel time

Bus travel time worth
Bus transfer time

Bus transfer time worth.

Operating costs are calculated using the following formulation:

where:
Copr
Copg
Copr

Copr = Copp + Copr,
Copg = CR+ CP + CF
CR = ¢y - Total Km.
CP = @cp - Person hours 2)
CF = @ - N°Buses

CopTr = ZT’ ﬁ -Cy

T= Toutward + Tretum + Tloading + Tunloading

Total operating costs
Bus operating cost
Truck operating cost.

Bus operating costs (Copp) is made up of three factors: Cost proportional to
travelled distance (CR), personnel costs (CP), and fixed costs (CF).
Total cost due to the distance travelled by the buses is equal to:

where:

CR = @i - Total Km. (3)

@cr Unit cost per kilometer covered by bus

where:

Total Km. =Y L;-f;
i

L; Length of route i
f;  Frequency of route i.

Employee costs are calculated considering only the personnel who are really
working on the buses:
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CP = @¢p - Person hours 4)

where:
¢cp  The hourly employee cost (€ per hour)

tc;
Man — Hours = =

where:
tc; Time of a round trip (min)
h; Headway on route i (min).

Fixed costs are calculated with the following formula that only considers the
buses that are really circulating:
CF = @¢f - N°buses (5)

where:
¢cr  Fixed cost per hour of bus (€ per hour)

tc;
N°buses = -

i hi
where:

tc; Time of a round trip (min)
h; Headway on route i (min).

Truck operating cost (Copry) is estimated as:
Coprr = » Ti-fi- C,

T = Tnurward + Trezum + Tloading + Tunloading

where:
T, uwara  Truck outward time
T et Truck return time

Tioading Truck loading time
Tunivadging  Truck unloading time

C, Cost per hour of truck use
fi Truck flow.

To gauge the environmental impact of the different alternatives, the emissions
of 5 types of pollutants have been calculated (CO, NOx, NMVOC, CH, and PM).
Each transport mode’s fuel consumption depends on the total distances travelled
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Table 1 Vehicle’s consumption rates (litres/Km) and vehicle’s emission rates (g of pollutant/Kg
of fuel)

Emissions (g of pollutant / Kg of fuel) Consumption (I/Km)

CO NOx NMVOC CH; PM  Congested Uncongested Kg/l
Gasoline cars  75.99 10.89 13.44 1.19 0.03 0.08 0.06 0.680
Diesel cars 377  11.12 0.61 0.07 0.80 0.07 0.05 0.850
Buses 6.62 32.67 0.99 024 081 034 0.26 0.850
Trucks 9.82 34.84 3.06 038 134 034 0.26 0.850

by vehicles of that mode through congested and uncongested roads [12, 13]. Then,
the emissions produced by these consumptions can be estimated [14].

Table 1 shows the different fuel consumption rates for the different kinds of
vehicles in our model, depending on if the road is congested or not, and each kind
of vehicle’s emission rates (g of pollutant/Kg of fuel):

To solve the optimization problem, due to the size of the case study in relation
to the number of variables, an exhaustive search algorithm will be applied. It will
return all possible solutions, allowing us to analyze how the system behaves.

3 Case of Study

The methodology described above is applied to a real case: the city of Santander
(Spain). It is a medium-sized city, with approximately 180,000 inhabitants, located
on the north coast of the Iberian Peninsula.

A large construction project in the southeast of Santander will require a flow of
20 trucks per hour. The size and speed of these trucks create a substantial negative
impact, increasing air pollution and traffic congestion.

The three alternatives to supply materials to the construction site are shown in
Fig. 1. R1 route passes for the most part through a 2-lane urban road, except in the
section closest to the construction site, where it goes through a tunnel of 800 m
with a single lane in each direction. The route R2 has a initial leg in common with
route R1, passing in its final stage to a single lane road in each direction, going
around housing areas instead of through the tunnel to get to the construction.
Finally, Route R3, even though runs through 2-lane and 3-lane urban roads in each
direction, passes through areas of the city with high traffic density.

Applying the methodology previously described, we determine the social cost
(user and operating costs), and pollutant emissions of all the different ways to
distribute 20 trucks between the three routes.

Also, we perform a sensitivity analysis, studying how different values of the
maximum speed for the trucks (20, 15, and 10 km/h) affect social cost and
emissions in the city of Santander. The results are shown in Fig. 2.

Moreover, we represent the social cost of all simulated cases, ordering these
from lowest to highest social cost. See Fig. 3.
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Fig. 1 Considered routes

Analyzing Figs. 2 and 3, it can be seen that, as expected, the lower the truck
speed becomes, the further to the right the center of mass of each cloud of points is
located; because slower trucks increase the negative influence of the construction
project in the urban system. Furthermore, lower truck speeds have the consequence
of a wider range of possible social costs (the points are arranged closer to a straight
line): from 470 units in the case of a truck speed of 20 km/h, to 670 units in the
case of a truck speed of 15 km/h, and finally 1161 units in the case of a truck speed
of 10 km/h.

It can also be seen in Fig. 2 that slower trucks means that the cloud of points
will resemble a straight line more closely.

Regarding emissions, their overall value hardly changes at all, because we are
working with mean fuel consumption rates, instead of considering fuel con-
sumption as function that depends on the vehicle’s speed. It would be necessary a
detailed analysis at this point. See Table 2.

Regardless of the chosen truck speed, we can minimize the social cost, the
emissions, or choose an intermediate solution. Thus, if we want to minimize the
social cost, will have to move along the Ox axis (« = 0°) until the perpendicular
from our position touches the curve shown in black in Fig. 4 (Pareto boundary). In
the same way, if we want to minimize emissions, we will travel along the Oy axis
(o = 90°). If the planner wants an intermediate optimal solution, he should use: o |
0° <o <90° As an example, we represent in Fig. 4 the Pareto optimal for
o = 45°.
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Table 2 Social cost and emissions values

Truck speed Social cost Emissions
20 15 10

Maximum 258442 258909 259753 403166

Minimum 257972 258239 258592 401190

Centre of mass 258209 258521 259153 402181

This way we can obtain many different solutions, according to the truck speed,
and the chosen objective: social cost minimization, emission minimization, or a
combination of both.
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Fig. 4 Detail of social cost versus emissions

4 Conclusions

This chapter proposes a model to distribute truck trips along different routes in an
urban environment, in a way that makes possible to analyze the emissions and the
cost of the alternatives. In this way, we can propose policies to minimize the
negative consequences, from a completely environmental, purely social, or
intermediate point of view.

Due to the special characteristics of the case study, we opted for an exhaustive
search algorithm, which yielded plentiful data, which was examined and used to
perform a sensitivity analysis to determine how variations in the speed of the
trucks influence the model’s output.

Considering a family of solutions as the points that represent, for a certain value
of the speed of the trucks, the social cost and emissions consequence of all possible
ways to distribute the 20 trucks between the three routes; we observe that, as
expected, the social cost of the center of mass of a family of solutions increases as
the speed of the trucks decreases. For instance, if we compare the centers of
masses of the families corresponding to truck speeds of 20 and 15 km/h, the
latter’s social cost is 0.12 % times greater. Analogously, studying 20 and 10 km/h
families reveals a 0.37 % increase in the social cost of the center of mass. Also, the
greater a family of solutions’ truck speed, the wider its range of social cost values:
20 km/h family has a social cost range of values 42 % greater than the 15 km/h
family; and 147 % greater than the 10 km/h family. It is also worth mentioning
that as truck speed decreases, a family of solutions’ outline becomes less steep,
longer, and thinner.
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Part III
(Urban) Network Design

Many transportation applications such as capital investment decision-making,
parking planning, or traffic-light signal setting involve some form of network
design. Cipriani et al. present and test a method to support the design of urban
road transport systems, highlighting the sustainability of the proposed measures.
Polimeni and Vitetta design jointly the road network and transit routes in an urban
area. Ceylan et al. develop a simulation/optimization model for solving the
problem of determining on-street parking places in urban road networks.



A Road Network Design Model for
Large-Scale Urban Network

Ernesto Cipriani, Andrea Gemma and Marialisa Nigro

Abstract The aim of this work is to propose and test a methodology to support the
design of urban road transport systems, highlighting the sustainability of the
proposed measures. Finally, a tool for public administration support is provided.
The problem is formulated as a road network design problem (NDP) with fixed
demand, with design variables representing street direction and lane addition on
links of the road network; the proposed methodology is based on two main phases:
(1) a first phase aiming at reducing the solution’s search space; (2) a second phase
concerning the optimization procedure. The latter consists in a heuristic method
based on a genetic algorithm. The procedure has been initially tested on a sub-
network of the city of Rome (Eur network), and subsequently applied to the city of
Brindisi (Southern Italy).

Keywords Road network design problem - Sustainability - Noise pollution

1 Introduction

In recent years, metropolitan areas are converting into the “automobile cities” [1]:
the private demand increases more and more and, due to the lack of available
spaces and to the high construction costs, it is not always possible to supply to this
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increase with new infrastructures. Moreover, the “automobile city” is not
consistent with sustainable issues, implying high social costs in terms of safety
and health problems. In such a context, the reorganization of the current supply
configuration is one of the available method to use existing resources efficiently
and in a sustainable way.

This concept can be expressed mathematically as a Road Network Design
Problem (RNDP): it is usually differentiated between the pure Network Design
Problem (NDP), that consists in the optimal definition of link directions and
capacities [2], and the Traffic Signal Setting (TSS) problem, i.e. to define the
optimal signal setting at each junction [3, 4].

A lot of literature exists about the RNDP, however the basic classification of the
different adopted approaches is based on: (1) the type of variables analyzed, that
can be integer (topology) and/or continuous (signal settings), (2) the way the
demand is dealt with (elastic or fixed, mono or multi-modal), (3) the optimization
criteria (minimization of total costs or maximization of the reserve capacity etc. in
combination with a descriptive or normative user behavior), (4) the solution
algorithms.

Cantarella and Vitetta [2] deal with both the variables types, considering an
elastic demand with respect to mode choice and different optimization criteria.
Cipriani et al. [5] face with the Transit Network Design Problem (TNDP).
Miandoabchi et al. [6] address a bi-modal multi-objective NDP. Drezner and
Wesolowsky [7] put as objective the minimization of the total construction and
transportation costs, while Ziyou and Yifan [8] the maximization of the reverse
capacity of the road network, that is the maximum possible increase in traffic
demand accepted by a given network structure.

About the solution algorithms, a lot of metaheuristic approaches have been
explored: Simulated Annealing [9], Tabu search, Genetic Algorithm [7], Hill
Climbing, Path Relinking [10], Descent Algorithm and Scatter Search algorithm
[11], but also Hybrid Genetic Algorithm and Evolutionary Simulated Annealing
[12].

The aim of this work is to propose and test a methodology to support the design
of urban road transport systems, highlighting the sustainability of the proposed
measures.

The problem is formulated as a road network design problem (NDP) with fixed
demand, with design variables representing street direction and lane addition on
links of the road network; specifically: (1) to modify the number of lanes for each
direction, possibly increasing the capacity of the links entering new lanes if there
are not planning constraints and enough space is available (2) to find the optimal
direction on one-way traffic links.

The proposed methodology is based on two main phases: (1) a first phase in
order to reduce the solution’s search space; (2) a second phase in order to optimize
the solution.

During the first phase a hierarchical set of sequences is created: the definition of
the sequences is one of the main novelty of the study and a sequence consists in a
set of contiguous links (in a given direction of traffic) with similar geometric



A Road Network Design Model 141

characteristics representing a main road. This is based on the consideration that
modern large urban networks are usually very detailed in the representation of
main roads split in many short links that it is reasonable to be consistent with each
other. This phase permits to reduce the search space, as it lowers the number of
possible combination of values that links belonging to the same main direction can
assume: the sequences, and no single links, are considered as variable and thus
optimized, so increasing the performances of the solution methods, as reported by
Cantarella et al. [10] and suggested by Russo and Vitetta [13].

In order to solve the optimization expected in the second phase of the meth-
odology, an heuristic method based on a genetic algorithm has been implemented
and calibrated. The choice of the genetic algorithm derives from the promising
results obtained by this type of algorithm in literature [6, 7].

The procedure has been tested on a sub-network of the city of Rome (Eur
network) initially with the objective of minimizing the total travel time of the
network and then applied to the city of Brindisi (Southern Italy); in this last case a
penalty term has been introduced in the objective function of the NDP in order to
take into account the noise pollution.

2 The Methodology

The problem is formulated as a road network design problem (NDP) with fixed
demand, with design variables representing street direction and lane addition on
links of the road network; specifically: (1) to modify the number of lanes for each
direction, possibly increasing the capacity of the links entering new lanes if there
are not planning constraints and enough space is available (2) to find the optimal
direction on one-way traffic links.

The proposed methodology is based on two main phases: (1) a first phase in
order to reduce the solution’s research space; (2) a second phase in order to
optimize the solution.

2.1 First Phase: Reducing the Search Space

The first phase consists of five steps:

1. associating lane constrains to each link in terms of maximum number of lanes
for the roadway (Cmax) and minimum number of lanes for any one-way road
section (Cmin);

2. identifying the invariants links, such as main corridors of high priority or links
belonging to the local road network, which will not be subjected to the next
optimization phase;
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Fig. 1 One way optimal direction definition

. identifying the links necessarily at one-way ride (links relative to roadway

section with one lane only);

. defining an optimal one-way direction for links of step 4 (strictly one-way

links);

. defining a hierarchical set of sequences, where the sequence is a set of

contiguous links (in a given direction of traffic) with similar geometric char-
acteristics representing a main road.

In the step 1, the attribute Cmax is a positive integer representing the maximum

number of lanes for the whole roadway section; it can be obtained in the design
phase only according to physical constraints. Instead, the attribute Cmin could be
also equal to zero, when dealing with one-way links. Steps 3 and 4 proceed with
the definition of the optimal direction for the links necessarily at one-way ride.
These links will not be taken into account during the second phase of the process
(optimization phase).

One way optimal direction definition.

The procedure adopted to define the optimal one-way direction derives from the

procedure firstly proposed by Montella [14]:

1.

2.

for each one-way link (OW,1, Fig. 1a), the other way round link is created
(OW,2, Fig. 1b);

the morning peak hour demand is assigned to the network with an equilibrium
assignment model and the derived link flows are collected (fan);

. the afternoon peak hour demand is assigned to the network with an equilibrium

assignment model and the derived link flows are collected (fpy);
for each OW,1 and OW,2 the total link flow is computed as the sum of f; o); and

fz, PM>

. if the total link flow on OW,l1 is greater than the total link flow on OW,2, the

last one is deleted or vice versa (Fig. 1c).
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Fig. 2 Sequences definition

As usually in urban traffic networks the traffic is differently oriented between
the morning and the afternoon period, the procedure considers both peaks demand
matrices.

Sequences definition.

In order to avoid the occurrence of discontinuity phenomena, a procedure that
automatically assigns to each link an attribute indicating the belonging to a
sequence has been implemented and applied preliminarily in the optimization
phase.

A sequence is a set of contiguous links (in a given direction of traffic) with
similar geometric characteristics representing a main road. The sequences have a
hierarchy of relevance and they are the decisional variables entering in the opti-
mization phase (second phase).

The construction of the hierarchical set of sequences occurs as follows (Fig. 2):

. a list containing the candidate links of the network is initialized;

. the link with the higher flow value fp is selected (link B) and removed from the
above list;

3. link B defines the (first) sequence S1; any other link R of the list belongs to the

sequence S1 if:

N =

a. using a select link analysis procedure, the path flow vector Fy passing on the
link B is derived;

b. for each link R crossed by a path flow F € Fg the following condition is
checked: F/fg > a, where o is a threshold; if the inequality is satisfied the
link R is considered belonging to the sequence S1, and removed from the
list;

The procedure restarts from point 1, considering the next remaining link in the
list with the higher flow value in order to construct sequence S2 and so on until the
list is empty. The construction of the sequences is applied to both the design
scenarios of morning and afternoon peak hours, obtaining two sets of hierarchical
sequences: the procedure is suited to deal with the occurrence that a same
sequence can have a different relevance in morning and afternoon hours, as can be
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detected in real networks, where roads play different roles in the morning and in
the afternoon periods, being affected by different types of flows.

First sequences created by the procedure (for both the design scenarios of
morning and afternoon peak hours) are the most hierarchically important
(sequences firstly created are characterized by higher flows): this hierarchy will be
fully exploited during the implementation of the optimization phase.

2.2 Second Phase: Optimization

The optimization phase works only on links 1 belonging to the set of the sequences
S, as constructed in the first phase of the procedure; the optimal solution is
searched in order to minimize a mono criteria objective function containing the
total travel time (TTT) on the network for both the rush hours (morning and
afternoon):

OF. = TTT*™ 4 TTTP™ = (Zles f?.m4t?m.) + (Zles f{lm.t{).m.) (1)

In order to solve the optimization, a heuristic method based on a genetic
algorithm has been implemented considering the promising results obtained by this
type of algorithm in literature (see for instance Cipriani et al. [5]).

The implemented genetic algorithm is based on the following common struc-
ture [15]:

1. starting population generation: each member (chromosome) of the starting
population has a genome composed by elements equal to the number of
sequences S. At first iteration, a number of chromosomes (NC) are randomly
created considering for each element of the genome a number of lanes in the
constraint interval [A,B], where: A = max; 5;(Cmin); B = max; 5;(Cmax);

2. solutions evaluation: each chromosome is evaluated, assigning the supply
characteristics contained in the genome to the sequences, performing an
assignment of the a.m. and p.m. traffic demand and computing the O.F. reported
in (1);

3. elitism: at each iteration a percentage value p,,; of the chromosomes belonging
to the population of the previous iteration is sent directly to the population of
the next iteration without changes. The elitism starts from the second iteration
of the algorithm and the chromosomes candidates to this operation are those
with the best values of the objective function;

4. mutation: the mutation is carried out on a percentage value p,, of the chro-
mosomes in all iterations; the chromosomes to be mutated are randomly
extracted from those remaining as a result of the elitism. Each element of the
genome of the chromosomes entering in the mutation process has a probability
(mutation rate, mr) to be changed;

5. selection: using a Roulette wheel procedure, chromosomes are selected in pairs;
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Fig. 3 NC and mr parameters calibration

6. crossover: a multipoint crossover is applied between each pair of chromosomes
derived from the selection phase, in order to generate a number of new
chromosomes equal to percentage value p.,., of the starting population.

The solutions, in the form of number of lanes for each sequence, are transferred
to the level of individual links (number of lanes for each link), verifying the
constraints on the local maximum and minimum number of lanes: once made,
these choices are considered definitive, thus the number of lanes relative to the
links belonging to sequences of lower relevance is conditioned by the number of
lanes already identified for the links belonging to sequences of higher relevance.

The algorithm is stopped when, for the current population, the minimum value
of the objective function is very close to the average value of the values of all the
objective functions. This means that the population is composed of very similar
chromosomes. The best solution (effective solution of the optimization problem) is
represented by the chromosome with the lowest value of the objective function
inside the population.

3 Calibration of the NDP: Eur Network

A first calibration of the parameters related to the number of chromosomes of the
starting population (NC) and the mutation rate (mr) has been performed using a
real test network: the Eur district located in the Southern of Rome. It is composed
by 21 centroids, 49 regular nodes, 176 links and a demand in the morning peak
hour of 30,000 vehicles.

The values of p.;, p,, and p.,.s; have been set to respectively 10, 15 and 75 %.

It can be observed (Fig. 3, NC parameter) that the goodness of the obtained
solutions, in terms of objective function value, improves as the number of chro-
mosomes of the population increases and, in particular, this improvement is very
marked up to the case of 50 chromosomes; after, the improvement is much less
evident. As a consequence, a number of chromosomes equal to 50 represents the
best compromise between goodness of the solutions and computational times.
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Table 1 Results of NDP on Eur network

TTTa.m. TTTp.m. Global O.F.
Current state (h) 5,060 5,180 10,240
After optimization (h) 4,819 4,840 9,659
Percentage difference (%) —4.7 —6.5 -5.6

Fixed the NC parameter to 50, the calibration of the mutation rate (mr) has been
performed (Fig. 3, mc parameter): in this case the goodness of the solutions
obtained is observed for values of mr equal to 0.015 and 0.025.

Setting finally the NC parameter to 50 and the mr parameter to 0.015, the NDP
has been applied on the Eur network, obtaining the results reported in Table 1:

All the traffic assignments required by the model have been performed using the
EMME simulator (INRO).

4 Application of the NDP: Brindisi Network

The NDP procedure, appropriately tested and calibrated, has been applied to a
network greater than the previous one. In this way it is possible to underline the
real potential of the procedure, while in the test network the configurations to be
evaluated are limited and the O.F. convergence needs few iterations.

The analyzed network is the Brindisi network, a city of about 90,000 inhabit-
ants located in the Southern Italy: it is composed by 43 centroids, 368 regular
nodes and 885 links.

The NDP procedure has been applied for two different scenarios:

1. a first scenario, where only one way links optimal direction and optimal lane
layout has been derived;

2. asecond scenario, where not only one way links optimal direction and optimal
lane layout has been derived, but also the optimal capacity increment.

For both the scenarios, the noise impact has been introduced within the NDP
procedure as a penalty in (1); this penalty is calculated as:

P = C- Ny (2)

with
C = a constant to be calibrated;
Nyg = residual number of violations of the acoustic limit as a result of a reduction
of the link free speed of 5 km/h.

Results for both the scenarios are reported in Table 2: in the first case, scenario
1, it is possible to work only on the current structure of the network, without
extension of it; in such a case, the model shows its capability to reduce both the
total travel time and the number of acoustic violations. In particular, the acoustic
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Table 2 Results of NDP on Brindisi network

TTTa.m. TTTp.m. Global Nvr Saturation
(h) (h) O.F. (h) degree > 1.5
(n®links)
Current state 14,326 9,609 23,935 12 25
Scenario  After optimization 13,113 9,483 22,596 0 18
1
Percentage difference —8.50 —1.30 —5.30 - —28.00
(%)
Scenario  After optimization 10,142 7,548 17,690 2 13
2
Percentage difference —27.10  —18.10 —2350 —83.33 —48.00
(%)
(a) Current state (b) Optimization (scenario 2)

Saturation
degree

B 0-0.25
B 025-05
[Jos-015
[ 0.75-1
-1

Fig. 4 Saturation degree ante (a), and post (b) optimization—scenario 2

violations are totally cleared although the reduction of the total travel time is only
equal to 5.30 % respect to the current state.

In the second case, scenario 2, where it is possible to add new capacity to the
current structure of the network, the total travel time reduction reaches the 23.50 %
and it is translated in a high reduction of congestion (Fig. 4, the links with a satu-
ration degree greater than 1.5 are reduced of 48 %, respect to the 28 % of scenario
1). The supply increase obtained optimizing scenario 2 is equal to the 17 % of the
current state (moving from 450 linear kilometers of lanes to 530 linear kilometers).

5 Conclusions

The study proposes and tests a methodology to support the design of the road
urban transport systems, considering as design variables street direction and lane
addition on links of the road network. The problem is formulated as a road network
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design problem (NDP) with fixed demand. The proposed methodology is based on
two main phases: (1) a first phase in order to reduce the solution’s search space; (2)
a second phase in order to optimize the solution.

The definition of the sequences during the first phase of the procedure is one of
the main novelty of the study and it permits to reduce the search space, as the
sequences and no single links are optimized.

Results of the conducted applications demonstrate the reliability of the proce-
dure in terms of both travel times and noise impacts, as the possibility to adopt the
procedure for public administration support.

Future developments will deal with: (1) more elaborated multi-objective
functions, for example introducing also building costs, (2) introducing the free
speed as a variable (integer variable—speed classes), (3) building dynamically
the sequences, (4) other metaheuristic algorithms, (5) the elasticity of demand, (6)
the join of the Road network design problem with the Transit network design
problem.
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A Method for Topological Transit
Network Design in Urban Area

Antonio Polimeni and Antonino Vitetta

Abstract The goal of this chapter is to design jointly the road network and the
transit routes in an urban area. Generally, the transit route design is made without
evaluating the possible changes in the path due to the road network layout design.
In the problem, two main aspects can be considered: it is necessary to design, in a
joint model, road network for cars and buses; it is necessary to design route for
buses integrated with the optimized road network. Starting from a rigid road
supply and an elastic demand, the road and the transit network are designed in
accordance with one or more objectives (minimum travel time, maximum users
satisfaction). The problem is formulated as a discrete problem. The proposed
algorithm implemented is heuristic, based on genetic algorithm. To test the
proposed procedure, an application to a main transit line of Reggio Calabria is
reported.

Keywords Bus transit line - Genetic algorithm - Elastic demand - Optimization
problem

1 Introduction

In the Network Design Problem (NDP) the main aim is to optimize the network
configuration, optimizing a set of criteria related to a set of objectives. Relating to
the problem formulation, a mono or multi-objective approach (user, public
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manager and community) can be followed. Relating to the problem solution, its
complexity does not allow using exact algorithms (at least for real problems).

In an urban area, a design problem should consider: (i) the road network design
problem (RNDP), related to link directions and signals setting at the junctions for
all traffic components (car, bus, ...); (ii) the transit network design problem
(TNDP), related to the transit routes and frequencies. In most cases, in literature,
the two problems are studied separately.

A possible RNDP classification can be made considering the variables involved
in the problem. So, three set of problems can be identified: problems with discrete
variables [1-7], problems with continuous variables [8—17], problems with mixed
variables [18-21]. Discrete variables dealing with the road layout; continuous
variables dealing with junction regulation and price (road pricing and park
pricing).

The transit design consists of three main aspects: the routes, the frequencies and
the scheduling. In [22-24], first indications on the routes and frequencies design
are supplied, proposing heuristic approaches to generate the routes. The frequency
design is based on flow maximization on the transit lines, considering also the cost
management. In [25, 26], first indications on the routes and frequencies design
considering the user behaviour are supplied. The scheduling design considers,
generally, two topics: the vehicles and the crew scheduling. The two topics can be
considered separately or joint in the design model (one of the papers relative to this
topic is [27].

In this chapter, a formulation trying to link in a joint method the RNDP and the
TNDP is proposed. The problem is formulated considering the route cost for transit
system in the objective function of the RNDP. The design variables are, in the
RNDP the road layout (topology) and the junctions regulation (link capacity);
in the TNDP are the transit routes (topology) and the frequency (route capacity).
In term of algorithms, two main stages can be considered: a first stage, in which
the road network and the transit routes topology are designed; a second stage, in
which the buses frequencies and scheduling are designed (Fig. 1).

The highlights of this chapter can be summarized in: joint road and transit
network design, a genetic algorithm codified to design reserved lanes for transit
vehicles, comparing transit design in optimized and non-optimized network,
testing the application of the method in a real network and comparing the result
with a real transit line.

The chapter is structured as follows. In Sect. 2 the general model is proposed, in
Sect. 3 a solution algorithm is presented. In Sect. 4 some numerical examples
relative to the application of the model and algorithm for real system are discusses.
Some conclusions and future developments are reported in Sect. 5.
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Fig. 1 Joint road network and transit design problem

2 Problem Formulation

In the problem (Fig. 1) the inputs are the supply and the demand, distinct into road
demand (potential users that move using your vehicle) and the transit demand
(potential users that move using the transit system). The design module (RNDP
and TNDP) allows configuring the network both for private vehicles (cars,
motorcycles, ...) and buses. The outputs of this module are an optimized network
in terms of topology and junction regulation and the optimized routes for buses. A
test is performed to evaluate the results: if it is passed, a module allows designing
frequencies and scheduling; else a demand split procedure is applied to evaluate
the variation in the demand due the new network configuration. The output is the
optimal road and transit plan.
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Generally, a network design model is structured considering:

. the objective function;
. the design variables;
3. the set of constraints.

N =

The objective function is responsible for explaining the objectives of the
problem, both on mono-objective case (only an objective) and in multi-objective
case (some objectives to achieve). Example of objectives are the minimum travel
time, the maximum safety, the minimum management costs.

The design variables are responsible to formalize the problem, describing the
aspects that can be optimized in the problem.

The set of constraints considers can be split in some subset: technical (network
connection, signals, number of lanes, number of bus), economic (budget), nor-
mative (i.e. maximum CO emission) and the behavioural constraint that simulates
the demand-supply interaction.

A general formulation of the design problem, considering the mono-objective
case and the minimization approach is reported in Eqgs. (1-4):

Objective: miny , z(f,y) (1)
Design variables: y € Sy (2)
Constraints: £ = fsni(c(f,y)) (3)

fess Q)

where z is the objective function, f is the link flow vector in the multimodal (road
and transit) network and y is the configuration vector (design variables).
The vector f has two parts:

e a link flow vector £ for road;
e a link vector f* for transit.
The vector y has three parts:

a sub-vector y'" for junction setting;
a sub-vector y*? for link layout;
e a sub-vector y** for transit routes layout.

The flow vector f is function of the link cost vector functions ¢ with stochastic
network loading function fgny .
The vector y and the vector f belong respectively to:

S, the set of admissibility of design variables;
Sy the set of admissibility of link flow.
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A possible specification for the objective function is:

where

* [ is a weight coefficient;
e 7, is the cost for the road users;
® 7, is the cost for the transit users.

In Eq. (5) the component z; is related to network design (RNDP) while the
component z, is related to the transit routes design (TNDP and RNDP).

3 Algorithms

In this section, two classes of algorithms are considered: an algorithm for TNDP, it
allows designing the transit routes; an algorithm for RNDP integrated with TNDP,
it allows designing the road network. For simplicity sake, in the follows (Sects. 3.1
and 3.2) the two algorithms are treated separately, but they are correlated con-
sidering that the TNDP algorithm work on the designed road network with a
feedback. To highlight this correlation, Fig. 2 shows the logical flows of the
topological stage reported in Fig. 1. As mentioned in Sect. 1, the input date are
the supply and the demand (distinguishing road demand and transit demand). The
RNDP procedure allow obtaining an optimized road network configuration;
starting from it a feasible transit network is extracted as input for TNDP, that
applies a search procedure to finding an optimal topology for transit routes and
evaluate the routes cost. A test is performed to evaluate the current solution, if it is
passed the solution is accepted, else the demand is split between road and transit
and a new iteration is performed.

3.1 Algorithms: RNDP

The output of RNDP are the best road link layout (optimizing the network layout),
junctions regulation (optimizing the network in term of signals at junctions) and
reserved transit lanes (optimizing the transit routes).
The algorithm implemented to solve the link layout and lane allocation
(including the lane reservation) is based on genetic algorithm proposed in [18].
The genetic algorithm allows evolving an initial set of solutions (population)
until achieve a goal (in our case, minimize the objective function).
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Basic elements of the genetic algorithm are:

A. Polimeni and A. Vitetta

Objectives

Constraints

o the selection: is the process of choosing solutions from the population (i.e. an
approach is the roulette tournament);
e the crossover: is the process of taking two solutions and producing from them

one or more other solutions;

e mutation: is the process of create a perturbation in one or more solutions.

The junctions can be solved as in [18], by using a projected gradient algorithm.
Known the network layout by the solution of integer variables problem, an
assignment is effected in order to calculate the objective function with the current
signals setting variables, the procedure is iterated until convergence.

Another simplified way is to optimize the signals at junctions by using an
approximate method (such as Webster method).
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3.2 Algorithms: TNDP

Designing the transit routes, two phases are considered [28]: design of the
potential routes and extraction of the final set of routes.

The design of the potential routes implies: place the last stations; individuate
the feasible network (from designed road network); build the transit routes.

The last stations are placed in the neighborhood of other transport modes (like
train stations or sea stations) to maximize the inter-modality and the accessibility.

The movements of a transit vehicle (a bus) are more constrained than car
movements (i.e. for the vehicle shape or the vehicle length). For this reason, it is
necessary to extract in the RNDP level a feasible network starting from the
designed road network, eliminating some links with specific criteria (low width,
low curve radius, high slope). If in the RNDP are designed reserved links for
transit, the feasible network contains the reserved links.

The transit routes design is based on a constructive heuristic, implementing a
greedy search. At each iteration three links type (waiting, boarding, alighting) are
added, optimizing the component z, of Eq. (2). The link addition procedure change
if in the current solution there are or there are not partial transit routes. In first case,
to add the links, only the forward star of the initial node of the routes or the
backward star of the final node is considered. In second case, to add the links, all
the links in the feasible network are considered.

The final solution is a set of routes extracted considering the features of
designed lines.

4 Application

The test application is performed on the city of Reggio Calabria (Italy).

The aim of this demo application is to highlight how change the transit design
joint with an optimized network. Traditional applications in transit design field
design the lines considering the demand levels (i.e. drawing the line for the more
loads network links) but not considering the variations in road network as optimal
lanes allocation and junctions’ regulation.

An existing transit line is considered, crossing the city from south (Airport) to
north (University) and vice versa. In this test, the design of the transit line between
Airport and University is considered to compare the existing and the designed
transit line. For simplicity sake, the comparison is made considering the direction
Airport-University; the same analysis could be done in the direction University-
Airport. In all the network configurations proposed below, the transit line always
passes through some interchange points (i.e. train station, sea station) that do not
change in design phase.
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University

Fig. 3 Actual transit line configuration (—I) versus designed transit line in non-optimized
network (---II)

(i) The first configuration of the examined transit line is the present configuration,
designed by the transit manager, with the aim to connect some interchange
points in the city. In this context, the line touches, among others, the airport,
the train station, the sea station. In Fig. 3, the continuous line shows the actual
transit route and some of the main stops. A reserved lane for buses and a lane
(in the same direction) for other vehicles characterize the way between the
point R1 and the point R2 (Fig. 3, the reserved lanes are indicated with a bold
line).

(i) A second configuration is due solving the TNDP in a non-optimized road
network (as in consolidate literature). The assignment on the feasible network
allows identifying, at each iteration, the link with greater flow, generating the
transit route between Airport and University. The generated route (dotted line
in Fig. 3) differ from the actual route in the links near to the train and the sea
station. The reason is that actual route wants to encourage the accessibility
stations while the model for transit route design select links belonging on city
centre with higher demand.

(iii) The third configuration is the solution of the joint problem RNDP and TNDP:
in this case, the transit line is designed together with the road network
optimization, and the transit line configuration influences the road network
design. Two cases are considered: designing reserved lanes (in addition to the
existing ones) or not. In first case (Ill.a), the line designed in optimized
network overlap the line designed in non-optimized network. In the second
case (IIL.b), some modifications are introduced in the system, as in Fig. 4. The
dotted line is the transit line in non-optimized network, whereas the dashed
line is the transit line in optimized network. The main differences is the
change in the transit line topology, which after the train station diverges
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_. Design configuratson with reserved lanes
(optimized network)

Fig. 4 Designed transit line in optimized network (- - - IIl.a) versus designed transit line in non-
optimized network (---I1I1.b)

following the reserved lanes (way between R3 and R4 in Fig. 4). Another
change is in the way between R1 and R2, now dedicated only at the others
vehicles (two lanes in direction north—south). The solution with reserved
lanes offers a gain, in term of cost function (2), about of 5 %.

5 Conclusion and Future Developments

In this chapter, a method for joint road and transit network design in urban area is
proposed. The method consists of two main procedures: first, a road network
design to optimize the link layout; second the transit routes generation in the
optimized network. The consolidated literature gives the transit route generation
considering only the demand and addressing the transit route on the more load
links with the road network fixed. The proposed procedure want to take into
account both the demand and the road network design, with a loop that ties the
transit route with the road network design. In fact, the proposed problem formu-
lation, considers jointly the road users and the transit line users and the whole
objective function evaluates the road users and the transit users costs and the
general management costs. In this formulation, the infrastructures in the supply is
assumed rigid whereas the demand is elastic (to consider the variations in the users
choice). The proposed procedure to solve the whole problem, considers two
algorithms: a genetic algorithm to solve the road network design problem, a greedy
algorithm to solve the transit route design.

A preliminary test in a real road network is performed, considering two
different cases for network design: reserving some lanes to transit lines or not.
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Is emerged that reserving some lanes to the transit lanes, in this experiments, a
gain for all users in the objective function is possible considering that also the road
system is optimized.

The results have to be considered preliminary and future developments concern
the problem extension, considering more than one transit line and updating the
search algorithm.
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Determining On-Street Parking Places
in Urban Road Networks Using
Meta-Heuristic Harmony Search
Algorithm

Huseyin Ceylan, Ozgur Baskan, Cenk Ozan and Gorkem Gulhan

Abstract This study aims to develop a simulation/optimization model for the
solution to the problem of determining on-street parking places in urban road
networks. The problem is dealt within the Discrete Network Design (DND) con-
text due to the binary decision variables and the bi-level programming technique is
used for the solution of the problem. The upper level represents the determination
of on-street parking places while the reaction of drivers’ to the design is handled in
user equilibrium manner in the lower level. The upper level problem is formulized
as a non-linear mixed integer programming problem and the meta-heuristic
Harmony Search (HS) optimization technique is employed for the solution. In the
proposed model, VISUM traffic analysis software is utilized as the simulation tool
for solving the lower level problem. The performance of the proposed model is
tested on Sioux-Falls road network which has widely been used on DND studies in
the previous works. Results show that determining optimal or near-optimal
on-street parking places may be achieved by using the proposed model.

Keywords On-street parking - Discrete network design problem . Harmony
search algorithm - Traffic management - VISUM traffic model
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1 Introduction

Mobility demand of people living in urban and metropolitan areas has continuously
been growing due to the increasing socio-economical needs which lead varied
activities. Hence, people tend to use individual motorized transport modes in order
to satisfy this ever-changing mobility demand. Increasing trend of modal shift in
favor of the private car leads parking problems in urban road networks. Inadequacy
of parking facilities comes with serious problems about the urban economics and
travel quality of the citizens. Drivers tend to solve their parking problems, which
arise from inadequate parking spaces, by on-street parking while the local
authorities seek for solutions to develop parking policies that would not decrease
the capacity of the road network.

Shoup [1] stated that a significant number of drivers cruse in search of an
available parking space in congested traffic. Free/underpriced and unplanned
on-street parking may lead to serious problems in terms of the network capacity.
On the other hand, properly planned and market-clearing charged on-street parking
places may provide an ideal source of local public revenue. Yousif and Purnawan
[2] investigated the effects of the design of the parking spaces on maneuver time
and the gap acceptance to merge into the traffic stream when leaving a parking
space. Portilla et al. [3] quantified the influence of on-street parking maneuvers and
badly parked vehicles on average link travel times. It was stated that badly parked
vehicles and parking maneuvers have a significant impact on link travel times and
roadway capacity. Guo et al. [4] proposed a proportional hazard-based duration
model to investigate the influence of on-street parking places on travel time. It was
stated that the occupancy, number of parking maneuvers and effective lane width
have a significant impact on travel time. According to our current knowledge,
researchers have focused on the influence of on-street parking on link travel times
and capacities. On the other hand, there is a need for a model that could be used to
determine the network-wide available lanes for on-street parking purpose.

Due to the binary variables, which represent whether a lane is allocated to the
on-street parking space, this problem may be handled in Discrete Network Design
(DND) context. Numerous researchers have discussed on DND and developed
solution methods for different problems in the literature. Bruynooghe [5] proposed
an integer programming model for determining optimal investment strategies to
improve the performance of road networks. LeBlanc [6] implemented the Branch
and Bound (BB) method to the solution of the DND problem in which the link
flows were calculated in the User Equilibrium (UE) manner. Poorzahedy and
Turnquist [7] developed a bi-level programming model for solution of DND
problem. In their model, minimization of the total network travel time was
achieved with a BB-based heuristic algorithm. The BB method, which has been
used to solve DND problems, has some disadvantages such as high memory and
long computation time requirement for the problems including large number of
decision variables [8, 9]. Gao et al. [10] introduced a solution algorithm based on a
support function concept to describe the relationship between flows and the new
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additional links in the network. The bi-level problem is discontinuous due to the
use of binary variables to represent lane allocations and capacity improvements
and it necessitates heuristic solution methods [11]. Ceylan and Ceylan [12] for-
mulated the bi-level DND problem as mixed integer programming problem and
employed the meta-heuristic Harmony Search (HS) algorithm for the solution. It
was stated that the HS based solution method gave remarkable results for the
solution of capacity improvement and lane allocation problems.

In this study, a bi-level mixed integer programming model is proposed to
determine the optimal on-street parking places on urban road networks. On the
upper level, lane allocations to the on-street parking space are carried out using
meta-heuristic HS algorithm. The reactions of drivers are taken into account in the
UE manner and the traffic assignment problem is solved using VISUM traffic
simulation tool in the lower level. Note that the delays and congestions arise from
the parking maneuvers are out of scope of this chapter.

The rest of this chapter is organized as follows. The problem formulation is
summarized in Sect. 2. In Sect. 3, basics of the HS algorithm and model devel-
opment are presented. A numerical application is presented in Sect. 4. The chapter
ends with some conclusions in Sect. 5.

2 Problem Formulation

The nomenclature used in the formulation is given in the table below.

Nomenclature

A Set of links (Va € A)

M Set of candidate links for on-street parking (Vm € M)

K,s  Set of paths between Origin-Destination (O-D) pair rs (Vr € R) (Vs € S)
R

S

Set of origins (Vr € R)
Set of destinations (Vs € S)
Cq Capacity of link a (Va € A)
D,,  Travel demand between origin r (Vr € R)and destination s (Vs € S)
i Traffic volume on path k between O-D pair rs (Vr € R) (Vs € )
I, Length of link a (Va € A)

P Free flow travel time on link a (Va € A)
t4(vq) Travel time on link a (Va € A)
Va Traffic volume on link a (Va € A)

o Arbitrary penalty factor
0y Element of the link/path incidence matrix. J;;, = 1 if route k uses link a, and &, = 0
otherwise
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The problem of determining the on-street parking places may be expressed as
the maximization of total length of available lanes which are allocated to on-street
parking as follows:

m

maxZuili (1)
i=1

S.t.

m<1 (Vme M) 2)

where u; is a binary variable which may be expressed as follows:

3)

- — 1 if one lane of link m is allocated to on-street parking
™71 0 otherwise

The constraint, which is given in Eq. (2), ensures that the UE flows would not
exceed the capacity of the candidate links. The UE link flows are calculated by the
solution of the following convex optimization problem:

mxinz = Z/ta(x)dx (4)
0

acA
s.t.
S S =Dy VreR, s€S, kekKy, (5)
kek
=S 1o, VreR, s€S, acA keKk, (6)
rs kEK,
]:YZO VrER, SES, kEKrs (7)

3 Harmony Search Algorithm and Model Development
3.1 Meta-Heuristic Harmony Search Algorithm

HS is a heuristic optimization technique that has been created by getting inspired
from a musical improvisation process of an orchestra by Geem et al. [13]. In an
orchestra, musicians literally seek for a perfect harmony by improvising successive
melodies while the global or a near-global optimum solution is investigated
throughout iterations in an optimization process. In this analogy, decision variables
and their values may represent the musicians and the notes performed by the
orchestra, respectively. In the recent years, the HS algorithm has been applied to
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the solution of many engineering optimization problems including transport
energy demand modeling, continuous network design and area traffic control
problems [14—16]. The HS algorithm has five steps:

Step 1: Initialization of the problem and HS parameters
Consider an optimization problem as follows:

max f(X) (8)
S.t.

Xp € [Xhmin, Xnmax]; B =1,2,...,0 (10)
where f(X) is the objective function to be maximized, g;(X) is the inequality
constraint (i = 1,2,...,P), X = [x1,xa, .. .,xQ]T is the set of decision variables, Q
is the number of decision variables, P is the number of inequality constraints, X min
and x;, max are the lower and upper bounds for decision variables (h = 1,2, ..., Q).

Three parameters, which are used in the HS progress, are set at this step. The
first one is Harmony Memory Size (HMS) which represents the number of solution
vectors in the Harmony Memory (HM). Harmony Memory Considering Rate
(HMCR), which is the second one, is the probability of assigning the values to the
variables from the HM. The third one is Pitch Adjusting Rate (PAR) that is
the probability of slightly adjusting by moving to neighboring values of a value
selected from the HM.

Step 2: Initialization of the HM
The HM, which includes randomly generated solution vectors and their
corresponding fitness values, is initialized as given in Eq. (11).

x| X e Xpl X £

X % %o %D f()

; ; L s s (1)
x{-IMS—l x;IMS—l .. xg}i/lS—l xHMS—l f(xHMS—l

xll'iMS ngs o xgn_/zls xIQWS F(xHMS)

Step 3: Improvisation of a new harmony

Improvising a new harmony represents generation of a new solution vector.
First of all, it is decided whether the value of a decision variable is selected from
the HM (e.g.x| € [x].. x™5]) based on the HMCR or not, as follows:

o x, € {x},x72,x3, ..., xI™S1 with probability HMCR (12)
=\ X, € Xy with probability (1 — HMCR)
where X, is the possible random range for each decision variable (h = 1,2,.. ., Q).

In Eq. (12), value of the h-th decision variable is selected from HM with the
probability of HMCR or it is selected from the possible range with the probability



168 H. Ceylan et al.

of (1—HMCR). If the value of a decision variable is selected from the HM then it
is decided whether the pitch adjusting process will be performed based on the PAR
or not, as follows:

o x, £Rand(0, 1) x bw  with probability PAR (13)
h X, with probability (1 — PAR)

where bw is an arbitrary bandwidth, Rand(0, 1) is a uniform random number
between 0 and 1. Note that the values of the all decision variables

(x/z,xg,xg, . .,x’Q> are selected in the same manner.

Step 4: Updating the HM

At this step, corresponding objective function values of the newly generated
vector and the worst solution vector in the HM are compared. If the new solution
vector provides a better objective function value then it is replaced with worst one
in the HM.

Step 5: Checking the termination criterion
If a preset termination criterion is met then the algorithm is terminated.
Otherwise, the computation is continued by iterating Steps 3-5.

3.2 Model Development

Flow chart of the proposed model is given in Fig. 1.

It can be seen in Fig. 1 that the characteristics of the road network, candidate
lanes, O-D demands, HS parameters and the termination criterion are initialized at
Step 1. At Step 2, the HM is filled with initial solution vectors which include
randomly generated binary variables. Then the UE link flows are calculated for
each solution vector in the HM based on Eq. (4). In this study, the UE assignment
problem is solved by VISUM traffic simulation tool [17]. In order to calculate the
total length of the lanes, which are allocated to the on-street parking, the objective
function, which was given in Eq. (1), may be modified as follows:

max <zm: u;l; — G,-(vi)) (14)

i=1

where G;(v;) is the static penalty function, which may be used to handle the
inequality constraints given in Eq. (2), and it has the following form:

o ifE>1 (VieM)
Gi(vi) = {0 otherwise (15)

At Step 3, a new solution vector is generated based on the HM and it should be
adjusted by the probability of PAR. However, considering the binary space, in
which the value of each decision variable in the HM is bounded to be “0” or “17,
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START Step 2.Filling HM
Fill HM with randomly generated binary variables to

generate initial solution vectors as many as HMS

Step 1. Initialization ¢
= Objective function (Eq. (14)) _ .
= Tnitialize road network Solve UE assignment problem for each solution
= Initialize O-D demand vector in the HM by VISUM
= Set candidate lanes for on-street parking ,L
* Set HS parameters Calculate the corresponding objective function val-
= Set termination criterion

ues of the solution vectors in the HM based on Eq. (14)

v

Step 3.Improvising a new harmony

Y

Generate a new solution vector based on HM

Solve UE assignment problem for new solution
vector by VISUM and calculate Eq. (14)

Step 4. Updating HM
Replace the new solution
vector with the worst one

in the HM

Step 5.
Is the termination
criterion satisfied?

Is the new solution
vector better than the
worst one in the HM?

Fig. 1 Flow chart of the proposed model

traditional pitch adjusting process may become non-functional. Wang et al. [18]
have modified Eq. (13) in order to improve the local search performance of the HS
algorithm as follows:
1 .
- (1) o n<ean i
h

where u}, is the h-th element of the first, so-called best, solution vector in the HM.
Therefore, the algorithm performs a better local search based on the current and
best available solutions. Newly generated solution vector represents a new
on-street parking space design and then the UE assignment problem is solved by
VISUM traffic simulation tool, similarly to the previous step. Then, the corre-
sponding objective function value is calculated based on Eq. (14). At Step 4, new
solution vector is compared with the worst one in the HM in terms of their
corresponding objective function values. If the new solution vector provides a
better objective function value then it is included to the HM while the other is
excluded. A preset termination criterion is checked at Step 5. If it is not satisfied
then the computation is continued by iterating Steps 3-5.

4 Numerical Application

In this section, a numerical example is given to prove the performance of the
proposed model. The test network, which represents the road network of the city of
Sioux Falls, South Dakota, is given in Fig. 2.
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Fig. 2 Layout of the test 3
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As can be seen in Fig. 2 that the test network consists of 76 links, 24 nodes and
552 O-D pairs. It is considered that each link consists of two traffic lanes. Link
capacities and free flow travel times are taken from [19] and the original O-D
travel demands, which were given in [6], are adjusted from daily to peak-hour
figures by a factor of 0.05 for this study.

For the solution of the test problem, HMS, HMCR and PAR parameters are set
as 40, 0.95 and 0.4, respectively and the model run is terminated after the 10000-th
iteration. The arbitrary penalty factor o is set as 4 kms for each link with a volume
to capacity ratio greater than “1”. In this study, link travel times are calculated
based on Bureau of Public Roads (BPR) travel time function, which has the
following form [20]:

f =10 [1 + 0.15(vi/ci)4] (17)

In Table 1, link lengths of Sioux Falls network are given. In this study, 26 links,
for which the volume to capacity ratio is greater than “1”, are excluded from the
on-street parking candidates list. Thus, 50 links, one lane of which may be
allocated to on-street parking, are candidates with total length of 112 km. The
convergence history of the proposed model is presented in Fig. 3.
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Table 1 Link lengths

Links Length (km)
9, 11, 16, 18, 19, 49, 52, 53, 54, 58, 65, 69, 73, 76 1.0
17, 20, 25, 26, 37, 38, 45, 46, 50, 55, 57, 66, 67, 75 1.5
2,5,6,7,8, 12, 15, 29, 34, 35, 39, 40, 42, 48, 56, 59, 60, 61, 70, 71, 72 2.0
4, 13, 14, 22, 23, 27, 32, 41, 44, 47, 63, 68 2.5
1, 3, 10, 28, 31, 33, 36, 43, 62, 64 3.0
30, 51 4.0
21, 24 5.0
140
— Objective
120 b
- — = Park length
100 H
R N Penalty
80 CR.
§
v
£
=
X
=) )
(=3 (=1
(=] (=}
Iterations <
Fig. 3 Convergence history of the proposed model
Table 2 The results of the proposed model
Links allocated to on-street parking Total length (km)
1,2,3,5,6,7,8,9, 11, 18, 21, 24, 35, 37, 38, 50, 54, 55, 56, 60 42.0

It can be seen from Fig. 3 that the convergence is achieved after about 350
iterations. The results and new layout of the network are given in Table 2 and
Fig. 4, respectively.

As can be seen in Fig. 4 that one lane of each 20 links are allocated to on-street
parking and 42 km long parking space is provided. Changes of total travel time
and average volume to capacity ratio through the road network are given in
Table 3.

Table 3 shows that the total travel time on network changes below 1 % while
average capacity usage changes about 9 % through the network after the appli-
cation of the proposed model. In order to show the effect of different HS
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Fig. 4 Layout of the network after model application

Table 3 Total travel times and average volume to capacity ratios for the network

Case No Original Model results Change
Total travel time (veh-h) 18705.88 18784.08 0.42
Average volume/capacity ratio 0.76 0.83 9.21

parameters on the solution accuracy of the model, the problem has been solved
with different sets of HS parameters. Data sets and obtained results are given in
Table 4.

It can be seen in Table 4 that the optimal/near-optimal solution has been
achieved for all cases. Note that the solution has been reached after 539 and 2658
improvisations as the minimum and maximum number of iterations by the cases 7
and 3, respectively.
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Table 4 Results of the proposed model for different sets of HS parameters
Case no HMS HMCR PAR Total length of parking places (km) Iterations

1 40 0.85 0.20 42 1143
2 40 0.85 0.30 42 1654
3 40 0.85 0.40 42 2658
4 40 0.90 0.20 42 989
5 40 0.90 0.30 42 1114
6 40 0.90 0.40 42 1289
7 40 0.95 0.20 42 539
8 40 0.95 0.30 42 547

5 Conclusions

In this chapter, the problem of optimizing on-street parking places in urban road
networks has been dealt within the DND context. For this purpose, a bi-level
simulation/optimization model has been developed. In this model, the upper level
represents the designer’s strategy, which includes the decision of the lanes allo-
cated to on-street parking, while the drivers’ response are modeled in the lower
level within the UE manner. Note that the traffic assignment problem is solved
using VISUM traffic simulation tool while the upper level decisions are made by
meta-heuristic HS optimization algorithm. Proposed model has been applied to a
well-known test network and encouraging results have been obtained. In the future
studies, delays and congestions arise from the parking maneuvers should be taken
into account to improve the applicability of the model to the more realistic
problems.
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Part IV
Optimization and Simulation
(in Transportation)

Many of the problems which arise in transportation are solved by optimization
approaches and simulation models. Gallo et al. study the Global Optimization of
Signal Settings (GOSS) problem and propose a meta-heuristic algorithm for its
solution. Castelli et al. present two bid price-based heuristic approaches to tackle
stochastic price-oriented demand for air cargo. Maia and Couto propose a freight
network optimization model, developed as a support tool for planning and policy
decisions involved in improving rail networks at regional and national levels.
Gomes et al. have developed a Decision Support System (DSS), integrating
simulation and optimization, to help design and operate Demand Responsive
Transportation services, minimizing operating costs and maximizing service
quality. Dell’Orco et al. propose a microscopic model of crowd evacuation which
incorporates the fuzzy perception and anxiety inherent in human reasoning. Reyes
et al. formulate the O/D matrix adjustment problem based upon traffic counts as a
bi-level optimization problem in which the Traffic Assignment Problem (TAP) is
the lower level, and use new TAP methods in order to accelerate the convergence
of the TAP and reduce the computational cost of the process.
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Abstract In this chapter the Global Optimisation of Signal Settings (GOSS)
problem is studied and a meta-heuristic algorithm is proposed for its solution. The
GOSS problem arises when the parameters of all (or some) signalised intersections
of a network are jointly optimised so as to minimise the value of an objective
function (such as total travel time). This problem has been widely studied else-
where and several algorithms have been proposed, mainly based on descent
methods. These algorithms require high computing times for real-scale problems
and usually lead to a local optimum since the objective function is hardly ever
convex. The high computing times are due to the need to perform traffic assign-
ment to determine the objective function at any iteration. In this chapter we
propose a multi-start method based on a Feasible Descent Direction Algorithm
(FDDA) for solving this problem. The algorithm is able to search for a local
optimal solution and requires lower computing times at any iteration. The pro-
posed algorithm is tested on a real-scale network, also under different demand
levels, by adopting different assignment algorithms proposed in the literature.
Initial results show that the proposed algorithms perform well and that computing
times are compatible with planning purposes also for real-scale networks.
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1 Introduction

In this chapter we consider the problem of optimising the signal settings of all (or
some) signalised intersections of an urban network, assuming its physical
configuration (topology and link dimensions) as fixed and invariable. This problem
is a particular case of the more general Equilibrium Network Design Problem
(ENDP), where signal settings assume the role of decision variables. This problem,
also known as the Signal Setting Design Problem (SSDP), can be solved by
following two different approaches [1]: a global approach (GOSS—Global Opti-
misation of Signal Settings) and a local approach (LOSS—Local Optimisation of
Signal Settings). In the first case the signal settings of the network are designed so
as to minimise total user travel time and the problem can be formulated with an
optimisation model. In the second case, instead, the signal settings of each junction
are designed so as to minimise only the total delay at that given junction,
according to a specific local control policy, leading to a fixed-point model.

In this chapter we study the GOSS problem; the LOSS problem has been treated
by the authors elsewhere in previous papers [2, 3]. Vis-a-vis the consolidated
literature, we propose some metaheuristic algorithms for solving the problem that
are able to reduce the computing times significantly when compared with other
algorithms, and to search for several local optima since, except for simple and
particular cases, the objective function is usually not convex.

The general formulation of the SSDP and the distinction between the global and
local approach can be found in [1, 4-8]. The GOSS problem was studied in a static
environment by [1, 9-15]. References [16-18] also considered the offsets as
decision variables. References [19, 20] proposed group-based methods, while [21]
studied the joint optimisation of signal settings and road pricing. A dynamic
approach was proposed in [22] while Artificial Neural Network solution methods
were proposed by [23, 24].

This chapter is organised as follows: Sect. 2 formulates the optimisation model;
the proposed solution algorithms are described in Sect. 3; numerical results on a
real-scale network are summarised in Sects. 4 and 5 concludes the chapter.

2 Optimisation Model

The GOSS problem consists in optimising jointly the values of the parameters of
all (or some) signalised intersections of an urban network in order to optimise a
given objective function. Since the objective function usually represents the total
travel time on the network, the problem is one of minimisation. In this problem,
the signal settings (effective green times, cycle lengths, etc.) take the roles of
decision variables. In general, the GOSS problem can be formulated as follows:

& = Arg min w (g.f) ()
g
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subject to:
f=r (2)
geG 3)

where g is the signal settings vector; f is the link flow vector; g is the optimal
solution; f* represents the equilibrium link flow vector (obtained by solving an
equilibrium assignment problem on the network); w(-) represents the objective
function; f = f* represents the assignment constraint; and G represents the feasible
set for the signal settings, that is all constraints other than that of assignment.

In this chapter we consider the following assumptions: (a) transportation
demand is rigid; (b) the cycle lengths are not considered variables of the problem,;
(c) all signalised intersections have only two phases; (d) the objective function is
the total travel time on the network; (e) the route choice model is stochastic.

Assumptions (b) and (c) can be removed, although in this case the variables of
the problem increase, as do the computing times for reaching a solution.
Assumptions (b) and (c) allow the number of decision variables to be reduced to
one for each signalised intersection. Indeed, if C; stands for the effective cycle for
intersection i, with g/ the effective green time for phase A of intersection i, the
effective green time of the other phase is simply obtained as g = C; — g/

Assumption (a) should be easily removed, complicating only the assignment
procedure that should consider an elastic demand assignment model. Since the
optimisation of traffic signals does not generally produce significant effects on user
choices differing in path choice, such as destination or mode, the removal of this
assumption is not useful. As for assumption (d), it is possible to choose another
objective function (average travel speed, total delay, air pollution emissions, etc.)
without problems; we choose this objective function because it is the one that best
represents the overall operation of the network.

Finally, also assumption (e) could be easily removed, but on urban networks
stochastic route choice models are better than their deterministic counterparts,
since the alternative routes on an OD pair are numerous and their costs are
sometimes close.

Under these assumptions, the GOSS model proposed in this chapter can be
formulated as follows:

& = Argmin (g, f)'f* (4)

with:

g =¢85, 8. 8] (5)

subject to:

f'=4P(A'c(g.f"))d (6)
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8min S glA S Ci — &min VZ (7)

g =Cc-g Vi (8)

where, over the already defined terms, ¢(+) is the link cost vector; P(-) is the route
choice probability matrix; A4 is the link-route incidence matrix; d is the demand
vector; gmi 1S the minimum value of effective greens (for instance 15 s).

This model is a non-linear constrained optimisation model; the objective
function is not linear, the assignment constraint is not linear and not in a closed
form and the variables could be assumed either continuous or discrete. This model
can be seen as a bi-level model where the upper level is the optimisation one and
the lower level is represented by the solution of the assignment problem.

Under some quite mild assumptions on link cost functions, to each feasible
solution, g, corresponds one and only one configuration of equilibrium traffic
flows, f*; the relation between signal settings and equilibrium traffic flows is an
application: once g is fixed, f* is exactly determined. Therefore, the constraint (6)
can be formally expressed as:

fr=r )

The problem consists in finding the signal settings, g, to which equilibrium
traffic flows, f*(g), correspond, which minimise the value of the objective func-
tion. Inserting constraint (9) inside the objective function, the optimisation model
is simplified as follows:

g = Arg min [c(g.f” @)]'f (@) (10)

subject to:
Gmin <& < Ci — &umin Vi (11)
g=c—-g Vi (12)

The solution of this model requires calculation of equilibrium traffic flows, f~,
at each objective function evaluation, solving the fixed point problem (6).
Therefore, it is very important, in order to reduce computing times, to minimise the
time for calculating the equilibrium traffic flows, whatever the algorithm adopted
for solving the optimisation problem (10-12) is.

3 Solution Algorithms

For solving the optimisation problem described by equations (10-12) we propose
to use a multi-start method based on a Feasible Descent Direction Algorithm
(FDDA). The multi-start approach is necessary since the objective function is not
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convex, except for simple cases, and looking for more local optimal solutions can
improve the final results, even if it requires higher computing times. In particular,
in the proposed algorithm we will assume that decision variables (i.e. g) are
discrete and express the duration in seconds of the effective green times.

The algorithm considers different solutions as starting points for the descent
direction local search, leading to several local optima. The different starting points
can be generated in different ways. Hence, we propose the following starting points:
(a) all variables g’l“ equal to 50 % of the cycle; (b) all variables g’,“ equal to gn; (c)
all variables g? equal to C; — guin; (d) all variables g equal to g/*, where gi**
represents the solution of the LOSS problem, i.e. the values of signal settings that
are congruent with equilibrium traffic flows and local control policy (see [1, 8]); (e)
random values for all variables gf Obviously, several combinations of these
methods can be adopted. In what follows, the variable g; represents the variable g7

Concerning the FDDA, in order to minimise computing times we do not use a
numerical gradient to generate descent directions since it requires that derivative
values of the objective function be numerically calculated, which implies the
solution of an equilibrium assignment problem for each partial derivative. Thus the
proposed algorithm chooses a variable, g;, and searches for the optimal value of
the variable assuming the other variables as fixed. In particular, the search phase of
the FDDA uses a predetermined step of some seconds, added with or subtracted
from the current value of the analysed variable. Moreover, the step is reduced
when the objective function stops decreasing, until a minimum step value (for
instance, 1 s) along the direction is reached. The algorithm then chooses another
direction and operates in the same way, stopping when no steps in any direction
are able to reduce the objective function further.

Various algorithms can be proposed according to the approach used to choose
the direction to follow (i.e. the variable to minimise). In this chapter we propose to
analyse two approaches:

e a Steepest Descent Method (SDM), where the descent direction in terms of
decisional variable (i.e. vector component) to be analysed (and related increase
or decrease) is chosen so that it produces the best reduction of the objective
function;

e a Random Descent Method (RDM), where the descent direction (i.e. the vector
component to be modified and its increase or decrease) is chosen randomly.

Although the SDM approach seems to be the better one since it allows us to
identify the direction which potentially minimises the objective function to a
greater extent, it requires that an equilibrium assignment problem be solved for
each direction (i.e. 2 x the number of variables) prior to choosing the descent
direction; the latter method, instead, does not require these preliminary assign-
ments. Moreover, several applications of a neighbourhood search algorithm in the
case of large-scale networks (see, for instance, [25, 26]) have shown that an RDM
approach provides good results in reasonable calculation times when compared to
the SDM.
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3.1 Assignment Algorithms

To solve the fixed-point problem (6), we analyse the use of three kinds of algo-
rithms based on an MSA framework ([27, 28]). Algorithms based on the MSA
(Method of Successive Averages) framework are widely used for solving traffic
assignment problems formulated as fixed-point problems. The main MSA
algorithms are the MSA-FA (Flow Averaging), which was proposed by [28]; the
MSA-CA (Cost Averaging) devised by [29]; and the MSA-ACO (Ant Colony
Optimisation), which was proposed by [30]. Even if these algorithms could also be
used under the assumption of deterministic route choice models, in the following
we will refer only to stochastic route choice models, that work better for simu-
lating user behaviour on urban networks.

All these algorithms are based on the calculation of a sequence of network
loadings (i.e. assignment for uncongested networks) and stop when the link traffic
flows are equal (in practice, a stop threshold is used) to the uncongested network
loading traffic flows.

The MSA-FA averages at each iteration the uncongested link flows, %, , with
the results of the previous iteration fkfl, as follows:
k=k+1
ok — c(fk—l)
flz/NL =fun (ck)
fr=F Tk =)

The MSA-CA is based on the same general framework of the MSA-FA but the
costs, instead of flows, are averaged, as follows:

k=k+1

fk :fUNL(ck_l)

i =elff)

Ck — Ck71 + 1/k(yk 7(/']{71)

Finally, the MSA-ACO algorithm, based on Ant Colony Optimisation ([31, 32]),
uses the general framework of the MSA as follows:

k=k+1
ck:c(fk—l)
Ark:‘v(ck)

=74 l/k(A‘ck -7
ft :fUNL(Tk)
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where ¢ and At* represent, respectively, the pheromone trail and the related
increase at iteration k.

Generally, the above algorithms adopt as a starting condition a null flow vector
(i.e. f° = 0). Moreover, MSA-CA and MSA-ACO need initial network loading in
order to have, respectively, a link cost vector (c°) and a pheromone trail vector
(7%) consistent with the network topology and travel demand.

Since in the implementation of the GOSS problem we assume travel demand as
rigid and the network topology as invariant, we may implement assignment
algorithms according to two different approaches: (a) the starting flow vector at
each iteration of the FDDA algorithm is always the null vector (i.e. fO = 0); (b) the
starting flow vector at each iteration of the FDDA algorithm, except for the first
iteration, is equal to the equilibrium flow vector of the previous iteration. Indeed,
in the latter case the initial flow vector, albeit not an equilibrium according to the
new signal setting configuration, is closer than the null vector to the equilibrium
solution. Moreover, in the case of MSA-CA and MSA-ACO it is possible to avoid
the pre-loading phase since equilibrium vectors of the previous iterations are
always consistent with network topology and travel demand.

Hence, in the numerical application we indicate as MSA-xx-FO0 the algorithms
based on the first approach and MSA-xx-UE the algorithms based on the latter
approach.

4 Numerical Results

The proposed algorithms were tested on the urban network of Benevento, a town
of about 61,000 inhabitants in the south of Italy. The transportation model (i.e. the
supply network and travel demand) was built when the town’s Urban Traffic Plan
was drawn up. The network graph consists of 1,577 oriented links (corresponding
to 216 kms of roads) and 678 nodes (66 internal zone centroids, 14 external zone
centroids and 598 generic nodes). The travel demand matrix was estimated by a
system of random utility models (see [33]) calibrated for other urban networks and
adapted to the specific case by means of traffic data collected at 139 count sections.
The network has only eight signalised intersections whose operation can be
modelled by means of nine two-phase intersections, since one of them can be split
into two different signalised intersections. Figure 1 shows the network graph
where the grey and black nodes represent respectively the 80 centroids and 9
signalised intersections.

Initial tests were implemented to compare the SDM approach with that of the
RDM, by applying all assignment algorithms in the case of the starting point (a),
i.e. when all design variables (effective green times) are equal to 50 % of the
effective cycle.

In particular, Figs. 2, 3 and Table 1 show that, consistently with the literature
(such as [25, 26]), the RDM almost always requires less computational effort both
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Fig. 1 Supply model

in terms of calculation times and algorithmic steps. In particular, as shown below,
the quantity which best describes the computational effort is the number of
Uncongested Network Loadings (UNLs) rather than the number of Algorithm
Iterations (Als).

Likewise, in terms of assignment algorithms, the MSA-ACO provides similar
results to the other algorithms with almost always a lower number of UNLs and
hence the calculation time is lower too. In particular, the approach which uses
equilibrium flows from the previous assignment (i.e. the MSA-ACO-UE), allows a
considerable reduction in the number of UNLs and hence elaboration time.

However, it is worth noting that, as shown elsewhere (see, for instance, [30]),
although assignment models have the same theoretical solution numerically due to
the stop threshold, they provide slightly different solutions. This difference in
terms of equilibrium flow estimation obviously yields a difference in objective
function values related to a generic g vector, since the objective function depends
on equilibrium flow values. With these considerations, a generic assignment
algorithm based on the first assignment approach (i.e. initial flow always null) will
always provide the same result in terms of equilibrium flow and hence in terms of
objective function value. Likewise, assignment algorithms based on the second
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assignment approach (i.e. initial flows equal to the equilibrium flows of the
previous iteration) will provide equilibrium flows, and hence an objective function
estimation, depending on the initial flow vector. Hence, the calculation of the
objective function related to a generic g vector, once the assignment algorithm is
fixed, could not be unable to provide always the same result.

Further applications were implemented to test the usefulness of applying the
FDDA algorithm by means of an RDM approach in the case of MSA-ACO-UE as
an assignment algorithm. In particular, confirming the above considerations, we

analysed:

e the implementation of the RDM approach, by increasing travel demand by a
factor of 1.6, in order to verify whether the positive performance of assignment

algorithms is maintained (see Table 2);
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Objective Function
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o the implementation of the RDM approach with an MSA-ACO-UE by adopting
different random sequences for identifying descent directions (see Table 3).

Finally, in order to apply the multi-start approach with the FDDA-RDM, we
applied it in the following cases (see Table 4):

1 initial solution where all variables are equal to g,;, (i.e. starting point b);

1 initial solution where all variables are equal to g, (i.e. starting point c);

1 initial solution where all variables are equal to the solution of the LOSS
problem (i.e. starting point d);

5 initial solutions where any variable is obtained by means of consecutive
random draws (i.e. starting point e).
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5 Conclusions and Research Prospects

This chapter focused on the Global Optimisation of Signal Settings (GOSS)
problem that arises when we assume that the signal settings of each junction are
designed jointly so as to minimise total travel time on the network. This problem
can be formulated as a bilevel constrained optimisation problem where the lower
level consists in implementing an equilibrium traffic assignment problem. In this
chapter we applied a multi-start method based on a Feasible Descent Direction
Algorithm (FDDA). In particular, we defined the descent direction according to
two different approaches: a Steepest Descent Method (SDM) and a Random
Descent Method (RDM). Finally, we proposed to solve the assignment problem by
means of three algorithms (MSA-FA, MSA-CA and MSA-ACO) formulated with
two different approaches according to initial network flows.

The first major result is that, according to the literature (see, for instance, [30]), in
the case of real-scale networks, the MSA-ACO allows the assignment problem to be
solved in a lower calculation time but with the same accuracy in determining equi-
librium solutions compared with other traditional MSA algorithms (i.e. MSA-FA
and MSA-CA). Likewise, the adoption of an RDM approach in the FDDA allows
local optima to be determined in fewer iterations compared to the SDM approach.
Moreover, due to the non-convexity of the objective function, it is not possible to
state a priori that an RDM approach provides a worse solution than an SDM approach
(indeed, in some cases, the RDM has provided a better result).

Numerical applications have shown that the use of different draw sequences for
implementing the RDM provides different solutions both in terms of objective
function value and in terms of decisional variable optimal values.

Finally, the use of initial flows equal to the equilibrium flows in the previous
iteration allows the assignment problem to be solved in a shorter calculation time.
However, it is worth noting that since MSA algorithms stop when a stopping
criterion (which consists in a threshold of the difference between initial flows and
uncongested network flows) is satisfied, the same MSA-xx-UE algorithm, in the
case of different initial flows, could provide different equilibrium flows which all
verify the stopping criterion but provide different values of the objective function.
Hence, if the stopping criterion threshold of the assignment algorithm is comparable
in order of magnitude with the objective function variation in a neighbourhood of
the local optimum, the stopping criterion could lead to different optimal solutions.

Future research could fruitfully focus on the search for other algorithms to solve
the GOSS problem, further reducing computing times. MSA-ACO-FO and MSA-
ACO-UE could be combined to obtain a good compromise between the reduction
in computation time and the uniqueness of the objective function values. Finally,
the solution of the GOSS problem could be used within methods and algorithms
for solving the (topological) Urban Network Design Problem.
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Bid-Price Heuristics for Unrestricted
Fare Structures in Cargo Revenue
Management

Lorenzo Castelli, Raffaele Pesenti and Desirée Rigonat

Abstract In the present work we propose two bid-price based heuristic approa-
ches to tackle a stochastic price-oriented demand of air cargo transportation. We
assume fares are non-decreasing over time: the earlier the booking, the cheaper the
fare. We consider a single-leg flight without overbooking practices or no-show
customers. The proposed framework is suited for air cargo carriers providing a
unique product to all its price-oriented customers. The business sustainability
relies on a significant reduction in fares that would outperform other benefits, an
earlier time of delivery above all. Nevertheless, our modelling framework may be
easily extended to other modes of cargo transportation, such as maritime, where a
given shipment receives the same service regardless the paid fare, which, in turn,
only depends on the time the booking request is made.

Keywords Heuristics - Revenue management - Capacity management - Air cargo -

Dynamic programming - Bid-price

1 Introduction

Airlines traditionally prevent high fare paying passengers from buying down into
lower fare classes by associating restrictions to each fare level. They make
different fares correspond to different products whose characteristics fit the needs
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of only one class of customers. This fare policy is reasonable in presence, for each
class, of a product-oriented demand, interested to a specific fare product and
independent of the availability of cheaper services [25]. The emergence of
low-cost carriers shows that this assumption of independent demand segments is
becoming more and more unrealistic. Indeed, low-cost carriers offer a single type
of product to price-oriented passengers that ignore ticketing restrictions and
purchase solely on price [6]. Also, these passengers typically exploit the poten-
tiality of the Internet-based distribution channels to compare the fares of several
different airlines.

Precise modelling of customer choice behaviour has been a subject of growing
interest in recent years [7, 16]. In fact, the application of pricing algorithms that
assume independent demand to a non-segmented market gives rise to the spiral-
down effect: customers willing to pay a higher fare but accepting a lower one if
available are recorded as lower fare demand when the cheaper product is available.
Then, forecasts built on these cheaper product sales underestimate demand for
higher fare levels and more low fare products than necessary are made available
and, consequently, revenues spiral down [10]. To contrast such an effect, the recent
literature proposes pricing policies based on Revenue Management (RM)
approaches that segment passengers according to their willingness to pay instead
of their compliance to restrictions [27].

In the present work we study the application of these RM techniques to the air
cargo industry. Specifically, we propose and analyse the performances of two bid-
price based heuristic approaches to tackle a stochastic price-oriented demand of
cargo shipments.

The RM approaches are essential tools for cargo shipment as the demand in this
industry is in general price-oriented, although some segmentation of the demand
by offered product still exists. The same shipment may be charged differently
depending on the guaranteed delivery time (express delivery vs. standard deliv-
ery). In addition, some airlines, e.g., Lufthansa and American Airlines, offer
further optional product features that include boarding priority, pick-up time and
location at destination.

The air cargo industry accounts for tens of millions of dollars a year in revenue
and, according to the International Air Transport Association (IATA), has stabi-
lised and even shown some weak signs of reprise in certain markets (http://www.
iata.org/pressroom) after the recession following the 2008 crisis.

Price oriented demand has been a much explored field of study in RM in recent
years. In particular, Westermann [27] describes how to integrate revenue man-
agement and dynamic pricing concepts based on willingness to pay at airlines with
different fare structures. Hopperstad and Belobaba [12] introduce seat inventory
control schemas in the single-leg case when demand is not independent from fare
class. They forecast the total demand at the lowest fare and repartition it to the
different higher fare classes by taking into account the passengers’ willingness to
pay higher fares. Thus they are in the position to compute the booking limits using
traditional algorithms. Fiig et al. [11] address the coexistence of restricted and
unrestricted fare structures in markets sharing the same leg(s) on a network. Using
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simulations, Cléaz-Savoyen [9] shows that the simultaneous application of the
approaches described in Fiig et al. [11] and Hopperstad and Belobaba [12] allows a
partial mitigation of the spiral down effect in certain markets. Unfortunately, RM
approaches used for passenger flights cannot be directly applied to cargo flights.
Indeed, Kasilingam [14], Billings et al. [5] and Slager and Kapteijns [22] point out
that the structure of demand and services in the two industries present many
differences. For example, each passenger requires just one seat, while each cargo
shipment consumes capacity in terms of both weight and volume. Passenger
demand presents seasonality patterns while the cargo one is usually more erratic,
hence the former is easier to forecast than the latter. The number of passenger
customers is usually greater than cargo customers. However, the latter ones make
larger bookings, so the behaviour of few of them can significantly influence the
prices paid by other customers, a condition which is generally not true for
passengers.

In bid-price RM policies, threshold, or “bid”, prices are set for each unit of
resource. This kind of price setting was first introduced for airlines’ seat booking
by Smith and Penn [23] and Simpson [21]. Since then, they have become widely
used due to their conceptual simplicity and easiness of implementation. Talluri and
van Ryzin [24] give a comprehensive overview of bid-price techniques pointing
out the difficulties arising in determining the right bid. Generally speaking
determining the optimal bids may be computational cumbersome, even because
they may change dynamically as the flight departure times approach. For this
reason, Adelman [1] proposes to compute dynamic bid-prices through a Linear
Programming (LP) approximate model. A drawback of this approach is that the
number of variables grows exponentially. Bijvank et al. [4] aim at improving
robustness towards uncertainty in the demand. To this end, they propose three
heuristics that exploit scenario-based stochastic programming methods. Pricing
policies for a price-oriented demand are also determined through dynamic
programming approaches. As an example, Zhang [28] introduces a dynamic
programming decomposition approach and shows that it outperforms static
bid-fares one even when bids are frequently recomputed. Popescu et al. [19] use a
dynamic programming approach to determine the bid-prices in presence of large
shipments. Differently, in presence of small shipments they use a bid-price
approach whose bids are obtained by approximating the booking requests with
passenger arrival models.

Different authors discuss the consequences of imprecise demand models or
incomplete demand data in the air cargo industry. Totamane et al. [26] point out
that imprecise demand forecasting causes most cargo airlines to operate at an
average ratio between the utilized capacity and the total capacity, the so-called
load factor, of 50-70 %. To overcome this limit, they propose a learning
algorithm, based on a producer/consumer model, which is able to deliver a 9 %
revenue improvement. Luo et al. [17] address the problem of defining overbooking
policies that take into account that most booking reservation systems do not keep
track of unfulfilled requests. In this framework, they develop an overbooking
model that, under appropriate assumptions, they prove providing the 