
Chapter 9
Almost Convergence in Approximation Process

9.1 Introduction

Several mathematicians have worked on extending or generalizing the Korovkin’s
theorems in many ways and to several settings, including function spaces, abstract
Banach lattices, Banach algebras, Banach spaces, and so on. This theory is very
useful in real analysis, functional analysis, harmonic analysis, measure theory,
probability theory, summability theory, and partial differential equations. But
the foremost applications are concerned with constructive approximation theory
which uses it as a valuable tool. Even today, the development of Korovkin-type
approximation theory is far from complete. Note that the first and the second
theorems of Korovkin are actually equivalent to the algebraic and the trigonometric
version, respectively, of the classical Weierstrass approximation theorem [1]. In this
chapter we prove Korovkin type approximation theorems by applying the notion of
almost convergence and show that these results are stronger than original ones.

9.2 Korovkin Approximation Theorems

Let F.R/ denote the linear space of all real-valued functions defined on R. LetC.R/
be the space of all functions f continuous on R. We know that C.R/ is a normed
space with norm

kf k1 WD sup
x2R

jf .x/j; f 2 C.R/:

We denote by C2�.R/ the space of all 2�-periodic functions f 2 C.R/ which is
a normed space with

kf k2� D sup
t2R

jf .t/j:
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76 9 Almost Convergence in Approximation Process

We write Ln.f I x/ for Ln.f .s/I x/ and we say that L is a positive operator if
L.f I x/ � 0 for all f .x/ � 0.

Korovkin type approximation theorems are useful tools to check whether a given
sequence .Ln/n�1 of positive linear operators on C Œ0; 1� of all continuous functions
on the real interval Œ0; 1� is an approximation process. That is, these theorems exhibit
a variety of test functions which assure that the approximation property holds on the
whole space if it holds for them. Such a property was discovered by Korovkin in
1953 for the functions 1; x, and x2 in the space C Œ0; 1� as well as for the functions
1; cos, and sin in the space of all continuous 2�-periodic functions on the real line.

The classical Korovkin first and second theorems state as follows (see [1, 55]):

Theorem 9.2.1. Let .Tn/ be a sequence of positive linear operators from C Œ0; 1�

into F Œ0; 1�: Then limn!1 kTn.f; x/ � f .x/k1 D 0, for all f 2 C Œ0; 1� if and
only if limn!1 kTn.fi ; x/ � ei .x/k1 D 0, for i D 0; 1; 2, where e0.x/ D 1;

e1.x/ D x, and e2.x/ D x2.

Theorem 9.2.2. Let .Tn/ be a sequence of positive linear operators from C2�.R/

into F.R/: Then limn!1 kTn.f; x/ � f .x/k2� D 0, for all f 2 C2�.R/ if and
only if limn!1 kTn.fi ; x/ � fi .x/k2� D 0, for i D 0; 1; 2, where f0.x/ D 1;

f1.x/ D cos x, and f2.x/ D sin x:

9.3 Korovkin Approximation Theorems for Almost
Convergence

The following result is due to Mohiuddine [60]. In [7], such type of result is proved
for almost convergence of double sequences.

Theorem 9.3.1. Let .Tk/ be a sequence of positive linear operators from C Œa; b�

into C Œa; b� satisfying the following conditions:

F � lim
p!1 kTk.1; x/ � 1k1 D 0; (9.3.1)

F � lim
p!1 kTk.t; x/ � xk1 D 0; (9.3.2)

F � lim
p!1

�
�Tk.t

2; x/ � x2��1 D 0: (9.3.3)

Then for any function f 2 C Œa; b� bounded on the whole real line, we have

F � lim
k!1 kTk.f; x/ � f .x/k1 D 0:

Proof. Since f 2 C Œa; b� and f is bounded on the real line, we have

jf .x/j � M; � 1 < x < 1:
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Therefore,

jf .t/ � f .x/j � 2M; � 1 < t; x < 1: (9.3.4)

Also, we have that f is continuous on Œa; b�, i.e.,

jf .t/ � f .x/j < �; 8jt � xj < ı: (9.3.5)

Using (9.3.4) and (9.3.5) and putting  .t/ D .t � x/2, we get

jf .t/ � f .x/j < � C 2M

ı2
 ; 8jt � xj < ı:

This means

�� � 2M

ı2
 < f .t/ � f .x/ < � C 2M

ı2
 :

Now, we operating Tk.1; x/ to this inequality since Tk.f; x/ is monotone and linear.
Hence,

Tk.1; x/

�

�� � 2M

ı2
 

�

< Tk.1; x/.f .t/ � f .x// < Tk.1; x/
�

� C 2M

ı2
 

�

:

Note that x is fixed and so f .x/ is a constant number. Therefore,

� �Tk.1; x/ � 2M

ı2
Tk. ; x/ < Tk.f; x/ � f .x/Tk.1; x/

< �Tk.1; x/C 2M

ı2
Tk. ; x/: (9.3.6)

But

Tk.f; x/ � f .x/ D Tk.f; x/ � f .x/Tk.1; x/C f .x/Tk.1; x/ � f .x/
D ŒTk.f; x/ � f .x/Tk.1; x/�C f .x/ŒTk.1; x/ � 1�: (9.3.7)

Using (9.3.6) and (9.3.7), we have

Tk.f; x/ � f .x/ < �Tk.1; x/C 2M

ı2
Tk. ; x/C f .x/ ŒTk.1; x/ � 1� : (9.3.8)

Let us estimate Tk. ; x/

Tk. ; x/ D Tk
�

.t � x/2; x�

D Tk.t
2 � 2tx C x2; x/

D Tk.t
2; x/C 2xTk.t; x/C x2Tk.1; x/

D ŒTk.t
2; x/ � x2� � 2xŒTk.t; x/ � x�C x2ŒTk.1; x/ � 1�:
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Using (9.3.8), we obtain

Tk.f; x/ � f .x/ < �Tk.1; x/C 2M

ı2

˚�

Tk.t
2; x/ � x2�C 2xŒTk.t; x/ � x�

Cx2ŒTk.1; x/ � 1��C f .x/ ŒTk.1; x/ � 1�

D �ŒTk.1; x/ � 1�C � C 2M

ı2

˚�

Tk.t
2; x/ � x2�C 2xŒTk.t; x/�x�

Cx2ŒTk.1; x/ � 1��C f .x/ ŒTk.1; x/ � 1� :

Since � is arbitrary, we can write

Tk.f; x/ � f .x/ � �ŒTk.1; x/ � 1�C 2M

ı2
fŒTk.t2; x/ � x2�C 2xŒTk.t; x/ � x�

Cx2ŒTk.1; x/ � 1�g C f .x/ ŒTk.1; x/ � 1� :

Now replacing Tk.�; x/ by Dn;p.f; x/ D 1
pC1

PnCp
kDn Tk.�; x/, we get

Dn;p.f; x/ � f .x/ � �ŒDn;p.1; x/ � 1�C 2M

ı2
fŒDn;p.t

2; x/ � x2�

C2xŒDn;p.t; x/ � x�C x2ŒDn;p.1; x/ � 1�g
Cf .x/ �Dn;p.1; x/ � 1� ;

and therefore

�
�Dn;p.f; x/ � f .x/��1 �

�

� C 2Mb2

ı2
CM

�
�
�Dn;p.1; x/ � 1��1

C4Mb

ı2

�
�Dn;p.t; x/ � x��1 C 2M

ı2

�
�Dn;p.t

2; x/ � x2��1 :

Letting p ! 1 and using (9.3.1)–(9.3.3), we get

lim
p!1

�
�Dn;p.f; x/ � f .x/��1 D 0 uniformly in n:

This completes the proof of the theorem. ut
In the following example we construct a sequence of positive linear operators

satisfying the conditions of Theorem 9.3.1, but it does not satisfy the conditions of
Theorem 9.2.1.

Example 9.3.2. Consider the sequence of classical Bernstein polynomials

Bn.f; x/ WD
nX

kD0
f

�
k

n

� 

n

k

!

xk.1 � x/n�kI 0 � x � 1:
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Let the sequence .Pn/ be defined by Pn W C Œ0; 1� ! C Œ0; 1� with Pn.f; x/ D
.1C zn/Bn.f; x/, where zn is defined by

zn D
�
1 ; n is odd;
0 ; n is even

Then,

Bn.1; x/ D 1; Bn.t; x/ D x; Bn.t
2; x/ D x2 C x � x2

n
;

and the sequence .Pn/ satisfies the conditions (9.3.1)–(9.3.3). Hence, we have

F � lim kPn.f; x/ � f .x/k1 D 0:

On the other hand, we get Pn.f; 0/ D .1C zn/f .0/; since Bn.f; 0/ D f .0/; and
hence

kPn.f; x/ � f .x/k1 � jPn.f; 0/ � f .0/j D znjf .0/j:

We see that .Pn/ does not satisfy the classical Korovkin theorem, since
lim supn!1 zn does not exist.

Our next result is an analogue of Theorem 9.2.2.

Theorem 9.3.3. Let .Tk/ be a sequence of positive linear operators from C2�.R/

into C2�.R/. Then, for all f 2 C2�.R/

F � lim
k!1 kTk.f I x/ � f .x/k2� D 0 (9.3.9)

if and only if

F � lim
k!1 kTk.1I x/ � 1k2� D 0; (9.3.10)

F � lim
k!1 kTk.cos t I x/ � cos xk2� D 0; (9.3.11)

F � lim
k!1 kTk.sin t I x/ � sin xk2� D 0: (9.3.12)

Proof. Since each f0, f1, and f2 belongs to C2�.R/, the conditions (9.3.10)–
(9.3.12) follow immediately from (9.3.9). Let the conditions (9.3.10)–(9.3.12) hold
and f 2 C2�.R/.

Let I be a closed subinterval of length 2� of R. Fix x 2 I . By the continuity of
f at x, it follows that for given " > 0 there is a number ı > 0 such that for all t

jf .t/ � f .x/j < "; (9.3.13)
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whenever jt � xj < ı: Since f is bounded, it follows that

jf .t/ � f .x/j � 2kf k2� ; (9.3.14)

for all t 2 R: For all t 2 .x� ı; 2� Cx� ı�. Using (9.3.13) and (9.3.14), we obtain

jf .t/ � f .x/j < "C 2kf k2�
sin2 ı

2

 .t/; (9.3.15)

where  .t/ D sin2Œ.t � x/=2�. Since the function f 2 C2�.R/ is 2�-periodic, the
inequality (9.3.15) holds for t 2 R.

Now, operating Tk.1I x/ to this inequality, we obtain

jTk.f I x/ � f .x/j � Œ"C jf .x/j�jTk.1I x/ � 1j C "C kf k2�
sin2 ı

2

ŒjTk.1I x/ � 1j

Cj cos xjjTk.cos t I x/ � cos xj C j sin xjjTk.sin t I x/ � sin xj� � "

C
"

"C jf .x/j C kf k2�
sin2 ı

2

#

fjTk.1I x/ � 1j

CjTk.cos t I x/ � cos xj C jTk.sin t I x/ � sin xjg
Now, taking supx2I , we get

kTk.f I x/ � f .x/k2� � "CK .kTk.1I x/ � 1k2�
C kTk.cos t I x/ � cos xk2� C kTk.sin t I x/ � sin xk2�/ ; (9.3.16)

where K WD
(

"C kf k2� C kf k2�
sin2 ı

2

)

:

Now replacing Tk.�; x/ by 1
mC1

PnCm
kDn Tk.�; x/ in (9.3.17) on both sides and then

taking the limit as m ! 1 uniformly in n. Therefore, using conditions (9.3.10)–
(9.3.12), we get

lim
m!1

�
�
�
�
�

1

mC 1

nCmX

kDn
Tk.f; x/ � f .x/

�
�
�
�
�
2�

D 0 uniformly in n;

i.e., the condition (9.3.9) is proved.
This completes the proof of the theorem. ut
In the following example we see that Theorem 9.3.3 is stronger than

Theorem 9.2.2.

Theorem 9.3.4. For any n 2 N; denote by Sn.f / the n-th partial sum of the
Fourier series of f , i.e.,
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Sn.f /.x/ D 1

2
a0.f /C

nX

kD1
ak.f / cos kx C bk.f / sin kx:

For any n 2 N; write

Fn.f / WD 1

nC 1

nX

kD0
Sk.f /:

A standard calculation gives that for every t 2 R

Fn.f I x/ WD 1

2�

Z �

��
f .t/

1

nC 1

nX

kD0

sin .2kC1/.x�t/
2

sin x�t
2

dt

D 1

2�

Z �

��
f .t/

1

nC 1

nX

kD0

sin2 .nC1/.x�t/
2

sin2 x�t
2

dt

D 1

2�

Z �

��
f .t/'n.x � t /dt;

where

'n.x/ WD
8

<

:

sin2 .nC1/.x�t /
2

.nC1/ sin2 x�t
2

; x is not a multiple of 2�;

nC 1 ; x is a multiple of 2�:

The sequence .'n/n2N is a positive kernel which is called the Fejér kernel, and the
corresponding operators Fn; n � 1 are called the Fejér convolution operators.

Note that the Theorem 9.2.2 is satisfied for the sequence .Fn/: In fact, we have
for every f 2 C2�.R/, Fn.f / ! f , as n ! 1.

Let Ln W C2�.R/ ! C2�.R/ be defined by

Ln.f I x/ D .1C zn/Fn.f I x/; (9.3.17)

where the sequence z D .zn/ is defined as above. Now,

Ln.1I x/ D 1;

Ln.cos t I x/ D n

nC 1
cos x;

Ln.sin t I x/ D n

nC 1
sin x

so that we have

F � lim
n!1 kLn.1I x/ � 1k2� D 0;
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F � lim
n!1 kLn.cos t I x/ � cos xk2� D 0;

F � lim
n!1 kLn.sin t I x/ � sin xk2� D 0;

that is, the sequence .Ln/ satisfies the conditions (9.3.9)–(9.3.12). Hence by
Theorem 9.3.3, we have

F - lim
n!1 kLn.f / � f k2� D 0;

i.e., our theorem holds. But on the other hand, Theorem 9.2.2 does not hold for our
operator defined by (9.3.17), since the sequence .Ln/ is not convergent.

Hence Theorem 9.3.3 is stronger than Theorem 9.2.2.
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