Chapter 8
Matrix Summability of Fourier
and Walsh-Fourier Series

8.1 Introduction

In this chapter we apply regular and almost regular matrices to find the sum
of derived Fourier series, conjugate Fourier series, and Walsh-Fourier series
(see [4] and [69]). Recently, Méricz [67] has studied statistical convergence of
sequences and series of complex numbers with applications in Fourier analysis and
summability.

8.2 Summability of Fourier Series

Let f be L-integrable and periodic with period 27, and let the Fourier series of

f be

1 o0
—+ E (ay coskx + by sinkx) . (8.2.1)
-

Then, the series conjugate to it is

o0
Z (by coskx — ay sinkx), (8.2.2)
k=1
and the derived series is
o0
Z k (by coskx — ay sinkx) . (8.2.3)
k=1
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68 8 Matrix Summability of Fourier and Walsh-Fourier Series

Let S,(x), S, (x), and S (x) denote the partial sums of series (8.2.1), (8.2.2),
and (8.2.3), respectively. We write

f(x+1t)— f(x—1),0<t <m;

V() =y (fir) = g(x), t=0

and

poy = 1)

=,
4sin 5t
where g(x) = f(x + 0) — f(x — 0). These formulae are correct a.e..

Theorem 8.2.1. Let f(x) be a function integrable in the sense of Lebesgue in
[0,27] and periodic with period 2rw. Let A = (anx) be a regular matrix of real
numbers. Then for every x € [—m, ] for which B, (t) € BV]0, ],

o0
Jim > a,Si(x) = Be(0+) (8.2.4)
k=1
if and only if
ad 1
lim ];ank sin (k + 5) =0 (8.2.5)

for every t € [0, 7], where BV |0, ] denotes the set of all functions of bounded
variations on [0, r].

We shall need the following well-known Dirichlet-Jordan Criterion for Fourier
series [101].

Lemma 8.2.2 (Dirichlet-Jordan Criterion for Fourier Series). The trigonomet-
ric Fourier series of a 2 -periodic function [ having bounded variation converges
to [f(x +0) — f(x — 0)]/2 for every x and this convergence is uniform on every
closed interval on which f is continuous.

We shall also need the following result on the weak convergence of sequences in
the Banach space of all continuous functions defined on a finite closed interval [11].

Lemma 8.2.3. Let C[0, 7] be the space of all continuous functions on [0, 7]
equipped with the sup-norm ||.||. Let g, € C[0, 7] and fon gndhy — 0, asn — oo,
forall hy € BV|0, ] if and only if ||g.|| < oo for all n and g, — 0, as n — oo.
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Proof. We have
17 L
S'(x) = — (t i dt
' (x) 71/(; W ()(r;msmmt)

B sin (k + 3) ¢
___/ vl )_|: 2sin§ ]dt
= I + %/Oﬂ sin (k + %) 1dBx(1),

where
1 (" t | sin(k +1)¢
= —/ Bx(t) cos = |:(—t2):| dt.
T Jo 2 sin 5
Then,
0o oo ) P
> S0 = Y+ = [ Lo(e) dpato),
T Jo
k=1 k=1
where

d 1
L,) = Zank sin (k + 5) t.

k=1
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Since B.(t) is of bounded variation on [0, 7] and B,(t) — B.(0+) as ¢t — 0,
B () cos § has also the same properties. Hence, by Lemma 8.2.2, I — B(0+) as

k — oo.
Since the matrix A = (a,) is regular, we have

(o]
nlgglo Z ani Iy = Bx(0+).
k=1
Now, it is enough to show that (8.2.5) holds if and only if
lim L,(t)dB.(t) =0.
0

n—00

Hence, by Lemma 8.2.3, it follows that (8.2.7) holds if and only if

IL,(¢) || < M for all n and for all ¢ € [0, 7],

(8.2.6)

(8.2.7)

(8.2.8)
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and (8.2.5) holds, where M is a constant. Since (8.2.8) is satisfied by the regularity
of A, it follows that (8.2.7) holds if and only if (8.2.5) holds. Hence the result follows
immediately.

This completes the proof. O

Similarly we can prove the following result for almost regularity.

Theorem 8.2.4. Let f be a function integrable in the sense of Lebesgue in [0, 2]
and periodic with period 2r. Let A = (aui) be an almost regular matrix of real
numbers. Then for every x € [—m, t] for which B,(t) € BV |0, ],

n+p oo
lim —— airS;(x 0+4) uniformly in n
i, 7 303 kL) = B0+ anformiy
if and only if
n+p oo
lim —— k t =0uni lyi
pl)ngop_i_lz_:nkz:la]ksm( + = ) uniformly in n

foreveryt € [0, r].

Theorem 8.2.5. Let f(x) be a function integrable in the sense of Lebesgue in
[0, 2] and periodic with period 2x. Let A = (auk) be a regular matrix of real
numbers. Then A-transform of the sequence {k Sy (x)} converges to g(x)/x, i.e.,

o0
- 1
lim ) " kaneSe(x) = —g(x) (8.2.9)
n—o00 k=1 s
if and only if
ngngo];)ank coskt =0 (8.2.10)

foreveryt € (0, ], where each ay, b, € BV|0,2n].
Proof. We have

Sa(x) = %/0” ¥y (¢) sinnt dt,

_ 8 T L/ﬂ cosnt dy(t).
0

nmw nmw
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Therefore
= : g(x) L[
3 kanSi(0) = £ 3 g, + —/ Ko dy(),  (82.11)
T T Jo
k=1 k=1
where

K,(t) = Zank coskt.
k=1

Now, taking limit as n — oo on both sides of (8.2.10) and using Lemma 8.2.3 and
regularity conditions of A as in the proof of Theorem 8.2.1, we get the required
result. O

Remark 8.2.6. Analogously, we can state and prove Theorem 8.2.4 for almost
regular matrix A.

8.3 Summability of Walsh-Fourier Series

Let us define a sequence of functions ho(x), hi(x),...,h,(x) which satisfy the
following conditions:

I, 0
) =
ho(x + 1) = ho(x) and h,(x) = ho(2"x), n = 1,2,.... The functions &, (x) are
called the Rademacher’s functions.
The Walsh functions are defined by

1, n =0,

¢n(X) N %hnl(x)hnz(x)"'h"r(x)’ n>1,0=x=1

forn = 2" 4 2" 4 ... 4+ 2" where the integers n; are uniquely determined by
niy1 < n;.

Let us recall some basic properties of Walsh functions (see [34]). For each fixed
x €[0,1) and forall t € [0, 1)

(1) ¢n(x'i't) = ¢f’l('x)¢f’l(t)a
Gi) [y f(xdo)de = [} f(t)dr, and
(i) [y f(O)ga(xF)dt = [} f(xF0)a(t)d1,

where + denotes the operation in the dyadic group, the set of all sequences s = (s,,),
s, =0,1forn =1,2,...1is addition modulo 2 in each coordinate.
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Let for x € [0, 1),

Ji(x) = /OX o()dt, k=0,1,2,...

It is easy to see that J;(x) = 0 for x =0, 1.
Let f be L-integrable and periodic with period 1, and let the Walsh-Fourier
series of f be

chqbn(x),
n=1

where

1
¢ = /0 FO)da(x)dx

are called the Walsh-Fourier coefficients of f.
The following result is due to Siddiqi [91].

Theorem 8.3.1. Let A = (ayi) be a regular matrix of real numbers. Let 7;(x) =
cr¢r (x) for an L-integrable function f € BV[0,1). Then for every x € [0, 1)

o0
nlggo];ankzzc (x) =0
if and only if
o0
nli)lgo;anka(X) =0,

where x is a point at which f(x) is of bounded variation.

This can be proved similarly as our next result which is due to Mursaleen [69]
in which we use the notion of F4-summability. Recently, Alghamdi and Mursaleen
[4] have applied Hankel matrices for this purpose.

Theorem 8.3.2. Let A = (a,i) be a regular matrix of real numbers. Let 7;(x) =
crdr(x) for an L-integrable function f € BV][0,1). Then for every x € [0, 1),
the sequence {zi(x)}x is F4-summable to 0 if and only if the sequence {Ji(x)}y is
F4-summable to 0, that is,

o
nl_i)n;oZankzkﬂ,(x) = 0, uniformly in p
k=1
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if and only if

o0
lim Zanka(x) = 0 uniformly in p,
n—>o0 =1

where x is a point at which f(x) is of bounded variation.

Proof. We have

1
2(6) = e (x) = /0 SO OB ()1,

1 1
- / £ (xFr)di = / Ft0d (),
0 0

73

where x+7 belongs to the set 2 of dyadic rationals in [0, 1); in particular each ele-
ment of 2 has the form p/2" for some nonnegative integers p and n,0 < p < 2".

Now, on integration by parts, we obtain

2k (x)

1
L) ()]} — /0 Je(t)df (),

Hence, for a regular matrix A = (a,x) and p > 0, we have

[ee] 1
> anszip () == [ Daple) ds(0),
k=1 0

where

00
an(t) = Zank-]k+p(t)v
k=1

and h,(t) = f(x-+r). Write, forany ¢ € R, g,,, = (D, (1)).

1
—/ Ji(t)df (x+1), since Ji(x) = 0 for x € {0, 1}.
0

(8.3.1)

(8.3.2)

Since A is regular (and hence almost regular), it follows that || g,, || < oo forall n
and p, and g,, — 0, as n — oo pointwise, uniformly in p. Hence by Lemma 8.2.3,

/ Dy (0)dhy(0) > 0
0

as n — oo uniformly in p. Now, letting n — oo in (8.3.1) and (8.3.2) and using

Lemma 8.2.3, we get the desired result.
This completes the proof.

ad
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Remark 8.3.3. 1f we take the matrix A as the Cesaro matrix (C, 1), then we get the
following result for almost summability.

Theorem 8.3.4. Let A = (auir) be almost regular matrix of real numbers. Let
w(x) = cidr(x) for an L -integrable function f € BV][0,1). Then for every
x €[0,1)

o0
F —nlggo;anm(ﬂ =0

if and only if
oo

F— 1im > auJi(x) =0,

n—>00
k=1

where x is a point at which f is of bounded variation.
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