
Chapter 8
Matrix Summability of Fourier
and Walsh-Fourier Series

8.1 Introduction

In this chapter we apply regular and almost regular matrices to find the sum
of derived Fourier series, conjugate Fourier series, and Walsh-Fourier series
(see [4] and [69]). Recently, Móricz [67] has studied statistical convergence of
sequences and series of complex numbers with applications in Fourier analysis and
summability.

8.2 Summability of Fourier Series

Let f be L-integrable and periodic with period 2� , and let the Fourier series of
f be

1

a0
C

1X

kD1
.ak cos kx C bk sin kx/ : (8.2.1)

Then, the series conjugate to it is

1X

kD1
.bk cos kx � ak sin kx/ ; (8.2.2)

and the derived series is

1X

kD1
k .bk cos kx � ak sin kx/ : (8.2.3)
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68 8 Matrix Summability of Fourier and Walsh-Fourier Series

Let Sn.x/, QSn.x/, and S 0
n.x/ denote the partial sums of series (8.2.1), (8.2.2),

and (8.2.3), respectively. We write

 x.t/ D  .f; t/ D
�
f .x C t / � f .x � t / ; 0 < t � � I

g.x/; t D 0

and

ˇx.t/ D  x.t/

4 sin 1
2
t
;

where g.x/ D f .x C 0/ � f .x � 0/. These formulae are correct a.e..

Theorem 8.2.1. Let f .x/ be a function integrable in the sense of Lebesgue in
Œ0; 2�� and periodic with period 2� . Let A D .ank/ be a regular matrix of real
numbers. Then for every x 2 Œ��; �� for which ˇx.t/ 2 BV Œ0; ��;

lim
n!1

1X

kD1
ankS

0
k.x/ D ˇx.0C/ (8.2.4)

if and only if

lim
n!1

1X

kD1
ank sin

�
k C 1

2

�
t D 0 (8.2.5)

for every t 2 Œ0; ��, where BV Œ0; �� denotes the set of all functions of bounded
variations on Œ0; ��:

We shall need the following well-known Dirichlet-Jordan Criterion for Fourier
series [101].

Lemma 8.2.2 (Dirichlet-Jordan Criterion for Fourier Series). The trigonomet-
ric Fourier series of a 2�-periodic function f having bounded variation converges
to Œf .x C 0/ � f .x � 0/�=2 for every x and this convergence is uniform on every
closed interval on which f is continuous.

We shall also need the following result on the weak convergence of sequences in
the Banach space of all continuous functions defined on a finite closed interval [11].

Lemma 8.2.3. Let C Œ0; �� be the space of all continuous functions on Œ0; ��

equipped with the sup-norm k:k: Let gn 2 C Œ0; �� and
R �
0
gndhx ! 0, as n ! 1,

for all hx 2 BV Œ0; �� if and only if kgnk < 1 for all n and gn ! 0, as n ! 1.
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Proof. We have

S 0
k.x/ D 1

�

Z �

0

 x.t/

 
kX

mD1
m sinmt

!
dt

D � 1
�

Z �

0

 x.t/
d

dt

"
sin
�
k C 1

2

�
t

2 sin t
2

#
dt

D Ik C 2

�

Z �

0

sin

�
k C 1

2

�
tdˇx.t/;

where

Ik D 1

�

Z �

0

ˇx.t/ cos
t

2

"
sin
�
k C 1

2

�
t

sin t
2

#
dt:

Then,

1X

kD1
ankS

0
k.x/ D

1X

kD1
ankIk C 2

�

Z �

0

Ln.t/ dˇx.t/;

where

Ln.t/ D
1X

kD1
ank sin

�
k C 1

2

�
t:

Since ˇx.t/ is of bounded variation on Œ0; �� and ˇx.t/ ! ˇx.0C/ as t ! 0;

ˇx.t/ cos t
2

has also the same properties. Hence, by Lemma 8.2.2, Ik ! ˇx.0C/ as
k ! 1.

Since the matrix A D .ank/ is regular, we have

lim
n!1

1X

kD1
ankIk D ˇx.0C/: (8.2.6)

Now, it is enough to show that (8.2.5) holds if and only if

lim
n!1

Z �

0

Ln.t/ dˇx.t/ D 0: (8.2.7)

Hence, by Lemma 8.2.3, it follows that (8.2.7) holds if and only if

kLn.t/ k � M for all n and for all t 2 Œ0; ��; (8.2.8)
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and (8.2.5) holds, where M is a constant. Since (8.2.8) is satisfied by the regularity
ofA, it follows that (8.2.7) holds if and only if (8.2.5) holds. Hence the result follows
immediately.

This completes the proof. ut
Similarly we can prove the following result for almost regularity.

Theorem 8.2.4. Let f be a function integrable in the sense of Lebesgue in Œ0; 2��
and periodic with period 2� . Let A D .ank/ be an almost regular matrix of real
numbers. Then for every x 2 Œ��; �� for which ˇx.t/ 2 BV Œ0; ��,

lim
p!1

1

p C 1

nCpX

jDn

1X

kD1
ajkS

0
k.x/ D ˇx.0C/ uniformly in n

if and only if

lim
p!1

1

p C 1

nCpX

jDn

1X

kD1
ajk sin

�
k C 1

2

�
t D 0 uniformly in n

for every t 2 Œ0; ��.
Theorem 8.2.5. Let f .x/ be a function integrable in the sense of Lebesgue in
Œ0; 2�� and periodic with period 2� . Let A D .ank/ be a regular matrix of real
numbers. Then A-transform of the sequence fk QSk.x/g converges to g.x/=� , i.e.,

lim
n!1

1X

kD1
kank QSk.x/ D 1

�
g.x/ (8.2.9)

if and only if

lim
n!1

1X

kD0
ank cos kt D 0 (8.2.10)

for every t 2 .0; ��; where each ak; bk 2 BV Œ0; 2��:
Proof. We have

QSn.x/ D 1

�

Z �

0

 x.t/ sinnt dt;

D g.x/

n�
C 1

n�

Z �

0

cosnt d x.t/:
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Therefore

1X

kD1
kank QSk.x/ D g.x/

�

1X

kD1
ank C 1

�

Z �

0

Kn.t/ d x.t/; (8.2.11)

where

Kn.t/ D
1X

kD1
ank cos kt:

Now, taking limit as n ! 1 on both sides of (8.2.10) and using Lemma 8.2.3 and
regularity conditions of A as in the proof of Theorem 8.2.1, we get the required
result. ut
Remark 8.2.6. Analogously, we can state and prove Theorem 8.2.4 for almost
regular matrix A.

8.3 Summability of Walsh-Fourier Series

Let us define a sequence of functions h0.x/; h1.x/; : : : ; hn.x/ which satisfy the
following conditions:

h0.x/ D
�
1; 0 � x � 1

2
;

�1; 1
2

� x < 1;

h0.x C 1/ D h0.x/ and hn.x/ D h0.2
nx/; n D 1; 2; : : :. The functions hn.x/ are

called the Rademacher’s functions.
The Walsh functions are defined by

�n.x/ D
�

1; n D 0;

hn1.x/hn2.x/ � � � hnr .x/; n > 1; 0 � x � 1

for n D 2n1 C 2n2 C � � � C 2nr ; where the integers ni are uniquely determined by
niC1 < ni .

Let us recall some basic properties of Walsh functions (see [34]). For each fixed
x 2 Œ0; 1/ and for all t 2 Œ0; 1/

(i) �n.x PCt / D �n.x/�n.t/;

(ii)
R 1
0
f .x PCt /dt D R 1

0
f .t/dt; and

(iii)
R 1
0
f .t/�n.x PCt /dt D R 1

0
f .x PCt /�n.t/dt;

where PC denotes the operation in the dyadic group, the set of all sequences s D .sn/,
sn D 0; 1 for n D 1; 2; : : : is addition modulo 2 in each coordinate.
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Let for x 2 Œ0; 1/,

Jk.x/ D
Z x

0

�k.t/dt; k D 0; 1; 2; : : :

It is easy to see that Jk.x/ D 0 for x D 0; 1:

Let f be L-integrable and periodic with period 1, and let the Walsh-Fourier
series of f be

1X

nD1
cn�n.x/;

where

cn D
Z 1

0

f .x/�n.x/dx

are called the Walsh-Fourier coefficients of f .
The following result is due to Siddiqi [91].

Theorem 8.3.1. Let A D .ank/ be a regular matrix of real numbers. Let zk.x/ D
ck�k.x/ for an L-integrable function f 2 BV Œ0; 1/: Then for every x 2 Œ0; 1/

lim
n!1

1X

kD1
ankzk.x/ D 0

if and only if

lim
n!1

1X

kD1
ankJk.x/ D 0;

where x is a point at which f .x/ is of bounded variation.

This can be proved similarly as our next result which is due to Mursaleen [69]
in which we use the notion of FA-summability. Recently, Alghamdi and Mursaleen
[4] have applied Hankel matrices for this purpose.

Theorem 8.3.2. Let A D .ank/ be a regular matrix of real numbers. Let zk.x/ D
ck�k.x/ for an L-integrable function f 2 BV Œ0; 1/: Then for every x 2 Œ0; 1/;

the sequence fzk.x/gk is FA-summable to 0 if and only if the sequence fJk.x/gk is
FA-summable to 0, that is,

lim
n!1

1X

kD1
ankzkCp.x/ D 0; uniformly in p
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if and only if

lim
n!1

1X

kD1
ankJk.x/ D 0 uniformly in p;

where x is a point at which f .x/ is of bounded variation.

Proof. We have

zk.x/ D ck�k.x/ D
Z 1

0

f .t/�k.t/�k.x/dt;

D
Z 1

0

f .t/�k.x PCt /dt D
Z 1

0

f .x PCt /�k.t/dt;

where x PCt belongs to the set � of dyadic rationals in Œ0; 1/I in particular each ele-
ment of � has the form p=2n for some nonnegative integers p and n; 0 � p < 2n:

Now, on integration by parts, we obtain

zk.x/ D Œf .x PCt /Jk.t/�10 �
Z 1

0

Jk.t/df .x PCt /;

D �
Z 1

0

Jk.t/df .x PCt /; since Jk.x/ D 0 for x 2 f0; 1g:

Hence, for a regular matrix A D .ank/ and p � 0; we have

1X

kD1
ankzkCp.x/ D �

Z 1

0

Dnp.t/ dhx.t/; (8.3.1)

where

Dnp.t/ D
1X

kD1
ankJkCp.t/; (8.3.2)

and hx.t/ D f .x PCt /. Write, for any t 2 R; gnp D .Dnp.t//.
SinceA is regular (and hence almost regular), it follows that kgnpk < 1 for all n

and p; and gnp ! 0, as n ! 1 pointwise, uniformly in p. Hence by Lemma 8.2.3,

Z 1

0

Dnp.t/dhx.t/ ! 0

as n ! 1 uniformly in p. Now, letting n ! 1 in (8.3.1) and (8.3.2) and using
Lemma 8.2.3, we get the desired result.

This completes the proof. ut



74 8 Matrix Summability of Fourier and Walsh-Fourier Series

Remark 8.3.3. If we take the matrix A as the Cesàro matrix .C; 1/, then we get the
following result for almost summability.

Theorem 8.3.4. Let A D .ank/ be almost regular matrix of real numbers. Let
zk.x/ D ck�k.x/ for an L -integrable function f 2 BV Œ0; 1/: Then for every
x 2 Œ0; 1/

F � lim
n!1

1X

kD1
ankzk.x/ D 0

if and only if

F � lim
n!1

1X

kD1
ankJk.x/ D 0,

where x is a point at which f is of bounded variation.
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