
Chapter 5
Summability Methods for Random Variables

5.1 Introduction

Let .Xk/ be a sequence of independent, identically distributed (i.i.d.) random
variables with EjXkj < 1 and EXk D �, k D 1; 2; : : : : Let A D .ank/ be a
Toeplitz matrix, i.e., the conditions (1.3.1)–(1.3.3) of Theorem 1.3.3 are satisfied by
the matrix A D .ank/. Since

E

1X

kD1

jankXkj D EjXkj
1X

kD1

jankj � MEjXkj;

the series
P1

kD0 ankXk converges absolutely with probability one.
There is a vast literature on the application of summability to Probability

Theory. Here, we study only few applications of summability methods in summing
sequences of random variables and strong law of large numbers (c.f. [86]).

5.2 Definitions and Notations

In this section, we give some required definitions.

Definition 5.2.1 (Random variables). A function X whose range is a set of real
numbers, whose domain is the sample space (set of all possible outcomes) S of an
experiment, and for which the set of all s in S , for which X.s/ � x is an event if x

is any real number. It is understood that a probability function is given that specifies
the probability X has certain values (or values in certain sets). In fact, one might
define a random variable to be simply a probability function P on suitable subsets
of a set T , the point of T being “elementary events” and each set in the domain of
P an event.
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42 5 Summability Methods for Random Variables

Definition 5.2.2 (Independent random variables). Random variables X and Y

such that whenever A and B are events associated with X and Y , respectively, the
probability P.A and B/ of both is equal to P.A/ � P.B/.

Definition 5.2.3 (Distribution). A random variable together with its probabil-
ity density function, probability function, or distribution function is known as
distribution.

Definition 5.2.4 (Distribution function). A real-valued function G.x/ on R D
Œ�1; 1� is called distribution function (abbreviated d.f.) if G has the following
properties:

(a) G is nondecreasing;
(b) G is left continuous, i.e., limy!x;y<x G.y/ D G.x/; all x 2 RI
(c) G.�1/ D limx!�1 G.x/ D 0; G.1/ D limx!1 G.x/ D 1.

Definition 5.2.5 (Independent, identically distributed random variable). A
sequence .Xn/n�1 (or the random variables comprising this sequence) is called
independent, identically distributed (abbreviated i.i.d.) if Xn; n � 1, are independent
and their distribution functions are identical.

Definition 5.2.6 (� -field). A class of sets F satisfying the following conditions is
called a � -field:

(a) if Ei 2 F (i D 1; 2; 3; : : :), then [n
iD1Ei 2 F ;

(b) if E 2 F , then Ec 2 F .

Definition 5.2.7 (Probability Space). Let F be a � -field of subsets of �, i.e.,
nonempty class of subsets of � which contains � and is closed under countable
union and complementation. Let P be a measure defined on F satisfying P.�/ D 1.
Then the triple .�; F; P / is called probability space.

Definition 5.2.8 (Expectation). Let f be the relative frequency function (proba-
bility density function) of the variable x. Then

E.x/ D
Z b

a

xf .x/dx

is the expectation of variable x over the range a to b, or more usually, �1 to 1.

Definition 5.2.9 (Almost Everywhere). A property of points x is said to hold
almost everywhere, a.e., or for almost all points, if it holds for all points except
those of a set of measure zero.

The concept of almost sure (a.s.) convergence in probability theory is identical
with the concept of almost everywhere (a.e.) convergence in measure theory.

Definition 5.2.10 (Almost Sure). The sequence of random variables .Xn/ is said to
converge almost sure, in short a.s. to the random variable X if and only if there exists
a set E 2 F with P.E/ D 0, such that, for every w 2 Ec , jXn.w/ � X.w/j ! 0, as

n ! 1. In this case, we write Xn

a:s:! X .
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Definition 5.2.11 (Median). For any random variable X a real number m.X/ is
called a median of X if P fX � m.X/g � .1=2/ � P fX � m.X/g.

Definition 5.2.12 (Levy’s inequalities). If fXj I 1 � j � ng are independent
random variables and if Sj D Pj

iD1 Xi , and m.Y / denotes a median of Y , then,
for any � > 0,

(i) P fmax1�j �nŒSj � m.Sj � Sn/� � �g � 2P fjSnj � �g;
(ii) P fmax1�j �n jSj � m.Sj � Sn/j � �g � 2P fSn � �g.

Definition 5.2.13 (Chebyshev’s inequality). In probability theory, Chebyshev’s
inequality (also spelled as Tchebysheff’s inequality) guarantees that in any prob-
ability distribution, “nearly all” values are close to the mean—the precise statement
being that no more than 1=k2 of the distribution’s values can be more than k standard
deviations away from the mean.

Let X be a random variable with finite expected value � and finite nonzero
variance �2. Then for any real number k > 0,

P fjX � �j � k�g � 1

k2
:

Definition 5.2.14 (Markov’s inequality). In probability theory, Markov’s inequal-
ity gives an upper bound for the probability that a nonnegative function of a random
variable is greater than or equal to some positive constant. It is named after the
Russian mathematician Andrey Markov.

If X is any nonnegative random variable and any a in .0; 1/, then

P fX � ag � 1

a
EX:

Definition 5.2.15 (Infinitely often (I.O.)). Let .An/n�1 be a sequence of events.
Then limn!1 An D fw W w 2 An for infinitely many ng; or limn!1 An D fw W
w 2 An; I.O.g: Moreover, limn!1 An D \1

nD1 \1
kDn Ak:

Lemma 5.2.16 (Borel-Cantelli Lemma). If .An/n�1 is a sequence of events for
which

P1
nD1 P fAng < 1, then P fAn; I:O:g D 0.

5.3 A-Summability of a Sequence of Random Variables

Let F be the common distribution function of Xks and X , a random variable
having this distribution. It is also convenient to adopt the convention that ank D
0; jankj�1 D C1. In the next theorem, we study the convergence properties of the
sequence

Yn D
1X

kD0

ankXk; as n ! 1:
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Theorem 5.3.1. A necessary and sufficient condition that Yn ! � in probability is
that maxk2N jankj ! 0; as n ! 1:

Proof. The proof of the sufficiency is very similar to the corresponding argument in
[48], but it will be given here for the sake of completeness. First, we have that

lim
T !1 TP ŒjX j � T � D 0 (5.3.1)

since EjX j < 1. Let Xnk be ankXk truncated at one and Zn D P1
kD0 Xnk . Now

for all n sufficiently large, since maxk2N jankj ! 0, it follows from (5.3.1) that

P ŒZn ¤ Yn� �
1X

kD0

P ŒXnk ¤ ankXk� D
1X

kD0

P ŒjX j � 1

jankj � � �

1X

kD0

jankj � �M:

It will therefore suffice to show that Zn ! � in probability. Note that

lim
n!1ŒEZn � �� D lim

n!1

" 1X

kD0

ank

�Z

jxj<jank j�1

xdF ��

�
C �

 1X

kD0

ank�1

!#
D 0:

Since

1

T

Z

jxj<T

x2dF D 1

T

�
�T 2P Œjxj � T � C 2

Z T

0

xP Œjxj � x�dx

�
! 0;

it follows that for all n sufficiently large

1X

kD0

Var Xnk �
X

jankj2
Z

jxj<jank j�1

x2dF � �

1X

kD0

jankj � �M: (5.3.2)

But E.
P1

kD0 jXnkj/2 is easily seen to be finite so that Var Zn D P1
kD0 Var Xnk

which tends to zero by (5.3.2). An application of Chebyshev’s inequality completes
the proof of sufficiency. For necessity, let Uk D Xk � �, Tn D P1

kD0 ankUk so that
Tn ! 0 in probability and hence in law. Let g.u/ D EeiuUk be the characteristic
function of Uk . We have that

Q1
kD1 g.anku/ ! 1 as n ! 1: But

ˇ̌
ˇ̌
ˇ

1Y

kD1

g.anku/

ˇ̌
ˇ̌
ˇ � jg.anmu/j � 1

for any m, so that for any sequence kn,

lim
n!1 jg.an;knu/j D 1: (5.3.3)
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Since Uk is nondegenerate, there is a u0 such that jg.u/j < 1 for 0 < juj < u0

[57, p. 202]. Letting u D u0=2M , it follows that jan;knuj � M u D u0=2 and then
an;kn u ! 0, as n ! 1, by (5.3.3). Choosing kn to satisfy jan;kn j D maxk2N jankj.

This completes the proof of Theorem 5.3.1. ut
In Theorem 5.3.1 excluding the trivial case when Xk is almost surely equal to �,

it has been shown that Yn ! � in probability if and only if maxk2N jankj ! 0: This
condition is not enough, however, to guarantee almost sure (a.s.) convergence. To
obtain this the main result is proved in the following theorem [56].

Theorem 5.3.2. If maxk2N jankj D O.n�� /; � > 0; then EjXkj1C 1
� < 1 implies

that Yn ! � a.s.

For the proof of Theorem 5.3.2, we need the following lemmas.

Lemma 5.3.3 ([81, Lemma 1]). If EjX j1C 1
� < 1 and maxk2N jankj � Bn�� ,

then for every � > 0;

1X

nD0

P ŒjankXkj � �; for some k� < 1

Proof. It suffices to consider B D 1 and � D 1 for both the matrix A and
the random variables Xk may be multiplied by a positive constant if necessary.
(Assumption (1.3.2) is not used in this proof). Let

Nn.x/ D
X

ŒkWjank j�1�x�

jankj:

Notice that Nn.x/ D 0, for x < n� , and
R1

0
dNn.x/ D P1

kD0 jankj � M: If
G.x/ D P Œjxj � x�, lim T G.t/ D 0, as T ! 1 since EjX j < 1, and thus

1X

kD0

P ŒjankXkj � 1� D
1X

kD0

G.jankj�1/

D
Z 1

0

XG.x/dNn.x/

D lim
T !1 T G.T /Nn.T / �

Z 1

0

Nn. Nx/d ŒxG.x/�

� M

Z 1

n�

d jXG.x/j: (5.3.4)

To estimate the last integral, observe that, for z < y;

yG.y/ � zG.z/ D .y � z/G.z/ C yŒG.y/ � G.z/�;
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so that

Z 1

n�

d jxG.x/j D
1X

j Dn

Z .j C1/�

j �

d jxG.x/j

�
1X

j Dn

Œ.j C 1/� �j � �G.j � / C
1X

j Dn

.j C 1/� ŒG.j � /� G..j C 1/� /�:

Summing the first of the final series by parts and using the existence of EjX j, we
see that it is dominated by the second series, and thus

Z 1

n�

d jxG.x/j � 2

1X

j Dn

.j C 1/� ŒG.j � / � G..j C 1/� /�: (5.3.5)

Finally, by (5.3.4) and (5.3.5),

1X

nD1

P ŒjankXkj � 1 for k� �
1X

nD1

1X

kD1

P ŒjankXkj � 1�

� 2M

1X

nD1

1X

j Dn

.j C 1/� ŒG.j � / � G..j C 1/� /�

D 2M

1X

j D1

j.j C 1/� ŒG.j � / � G..j C 1/� /�

� 2�C1M

Z
jxj1C 1

� dF.x/ < 1:

This completes the proof of Lemma 5.3.3. ut
Lemma 5.3.4 ([81, Lemma 2]). If EjX j1C 1

� < 1 and maxk2N jankj � Bn�� ,
then, for ˛ < �=2.� C 1/,

1X

nD0

P ŒjankXkj � n�˛; for at least two values of k� < 1:

Proof. By the Markov’s inequality,

1X

nD0

P ŒjankXkj � n�˛� � jankj1C 1
� EjX j1C 1

� n
˛.1C 1

� /
;
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so that

P ŒjankXkj � n�˛ for at least two k�

�
X

j ¤k

P Œjanj Xj j � n�˛; jankXkj � n�˛�

� .EjX j1C 1
� /2n

2˛.1C 1
� /
X

j ¤k

janj j1C 1
� jankj1C 1

�

� .EjX j1C 1
� /2B2=� M 2n

2Œ�1C˛.1C 1
� /�

;

and the final estimate will converge when summed on n provided that ˛ < �=

2.� C 1/:

This completes the proof of Lemma 5.3.4. ut
Lemma 5.3.5 ([81, Lemma 3]). If � D 0; EjX j1C 1

� < 1, and maxk2N jankj �
Bn�� , then for every � > 0;

1X

nD0

P

"ˇ̌
ˇ̌
ˇ
X

k

0
ankXk

ˇ̌
ˇ̌
ˇ � �

#
< 1;

where

X

k

0
ankXk D

X

ŒkWjankXk j<n�˛�

ankXk;

and 0 < ˛ < � .

Proof. Let Xnk D
�

Xk ; jankXkj < n�˛;

0 ; otherwise
and ˇnk D EXnk . If ank D 0 then

ˇnk D � D 0, while if ank ¤ 0; then

jˇnkj D
ˇ̌
ˇ̌� �

Z

jxj�n�˛ jank j�1

xdF

ˇ̌
ˇ̌ �

Z

jxj�n�˛B�1n�

jxjdF:

Therefore ˇnk ! 0, uniformly in k and
P1

kD0 ankˇnk ! 0:

Let Znk D Xnk � ˇnk , so that EjZnkj D 0; EjZnkj1C 1
� � C , for some C , and

jankZnkj � 2n�˛ . Now

X

k

0
ankXk D

1X

kD0

ankXnk D
1X

kD0

ankZnk C
X

k

ankˇnk
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and so for n sufficiently large,
 ˇ̌
ˇ̌
ˇ
X

k

0
ankXk

ˇ̌
ˇ̌
ˇ � �

!
�
 ˇ̌
ˇ̌
ˇ

1X

kD0

ankZnk

ˇ̌
ˇ̌
ˇ � �

2

!
:

It will suffice, therefore, to show that

1X

nD0

P

 ˇ̌
ˇ̌
ˇ

1X

kD0

ankZnk

ˇ̌
ˇ̌
ˇ � �

!
< 1: (5.3.6)

Let � be the least integer greater than 1=� . The necessary estimate will be obtained
by computing E.

P1
kD0 jankZnkj/2� which is finite so that

E

 1X

kD0

jankZnkj
!2�

D
X

k1���k2�

E

2�Y

j D1

an;kj Zn;kj :

There is no contribution to the sum on the right so long as there is a j with kj ¤ ki ,
for all i ¤ j , since the Znk are independent and EZnk D 0: The general term to be
considered then will have

q1 of the k0s D 	1; : : : ; qm of the k0s D 	m;

r1 of the k0s D 
1; : : : ; rp of the k0s D 
p;

where 2 � qi � 1 C 1
�
; rj > 1 C 1

�
, and

mX

iD1

qi C
pX

j D1

rj D 2�:

Then,

E

mY

iD1

.an;	i Zn	i /
qi

pY

j D1

.an;
j Zn;
j /rj

� .1 C c/�

mY

iD1

jan;	i jqi

pY

j D1

ˇ̌
an;
j

ˇ̌1C 1
� .2n�˛/

�
rj �1� 1

�

�

� .1 C c/�

mY

iD1

jan;	i j
pY

j D1

jan;
j j.Bn�� /
Pm

iD1.qi �1C p
� /

�
2

n˛

�P�
j D1.rj �1� 1

� /

;(5.3.7)

where c is the upper bound for EjZnkj1C 1
� mentioned above. Now, the power to

which n is raised is the negative of

�

mX

iD1

.qi � 1/ C p C ˛

pX

j D1

�
rj � 1 � 1

�

�
:
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Now, if p is one (or larger),

p C ˛

pX

j D1

�
rj � 1 � 1

�

�
� 1 C ˛

�
� � 1

�

�
;

while if p D 0;

�

mX

iD1

.qi � 1/ D �.2� � m/ � �� D 1 C �

�
� � 1

�

�
� 1 C ˛

�
� � 1

�

�
I

the first inequality being a result of

m � 1

2

mX

iD1

qi D �:

Therefore the expectation in (5.3.7) is bounded by

k1

mY

iD1

jan;	i j
pY

j D1

jan;
j jn�1�˛.�� 1
� /

and k1 depends only on c, � , and B . It follows that

E

 1X

kD0

ankZnk

!2�

� k2n
�1�˛.�� 1

� /

for some k2 which may depend on c; �; B , and M but is independent of n. An
application of the Markov’s inequality now yields (5.3.6).

This completes the proof of Lemma 5.3.5. ut
Proof of Theorem 5.3.2. Observe that

1X

kD0

ankXk D
1X

kD0

ank.Xk � �/ C �

1X

kD0

ank

and the last term converges to � by (1.3.3). Therefore, we may consider only the
case � D 0. By the Borel-Cantelli Lemma, it suffices to show that for every � > 0,

1X

nD0

P

 ˇ̌
ˇ̌
ˇ

1X

kD0

ankXk

ˇ̌
ˇ̌
ˇ � �

!
< 1: (5.3.8)
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But
 ˇ̌
ˇ̌
ˇ

1X

kD0

ankXk

ˇ̌
ˇ̌
ˇ � �

!
�
 ˇ̌
ˇ̌
ˇ

1X

kD0

ankXk

ˇ̌
ˇ̌
ˇ � �

2

!

[
�
jankXkj � �

2
for some k

�

[ .jankXkj � n�˛ for at least two k/ :

Now if 0 < ˛ < �=2.� C 1/, then ˛ < � also and the series (5.3.8) converges as a
consequence of Lemma 5.3.3–5.3.5.

This completes the proof of Theorem 5.3.2. ut

5.4 Strong Law of Large Numbers

In the next theorem, we study the problems arising out of the strong law of large
numbers.

In probability theory, the law of large numbers (LLN) is a theorem that describes
the result of performing the same experiment in a large number of times. According
to the law, the average of the results obtained from a large number of trials should
be close to the expected value and will tend to become closer as more trials are
performed.

The strong law of large numbers states that the sample average converges almost
surely to the expected value (Xn ! �.C; 1/ a.s., as n ! 1), i.e.,

P

�
lim

n!1
X1 C X2 C � � � C Xn

n
D �

	
D 1:

Kolmogorov’s strong law of large numbers asserts that EX1 ! � if and only
if
P

Wi is a.e. .C; 1/-summable to �, i.e., the .C; 1/-limit of .Xn/ is � a.e. By the
well-known inclusion theorems involving Cesàro and Abel summability (cf. [41],
Theorems 43 and 55), this implies that

P
Wi is a.e. .C; ˛/-summable to � for any

˛ � 1 and that
P

Wi is a.e. .A/-summable to �; where Wn D Xn � Xn�1 .X0 D
W0 D 0/: In fact, the converse also holds in the present case and we have the
following theorem.

Theorem 5.4.1. If X1; X2; X3; : : : is a sequence of i.i.d. random variables and ˛ �
1 and are given real numbers, then the following statements are equivalent:

E X1 D � (5.4.1)

lim
n!1

X1 C X2 C � � � C Xn

n
D � a:e: (5.4.2)
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lim
n!1

n�1X

iD1



iC˛�1

i

�
Xn�1


nC˛
n

� D � a:e:; (5.4.3)

where

 
j C ˇ

j

!
D .ˇ C 1/ � � � .ˇ C j /

j Š

lim
�!1�.1 � �/

1X

iD1

�i Xi D � a:e: (5.4.4)

Proof. The implications (5.4.2) ) (5.4.3) ) (5.4.4) are well known (cf. [41]). We
now prove that (5.4.4) implies (5.4.1). By (5.4.4)

lim
m!1

1

m

1X

nD1

e�n=mXs
n D 0 .a:e:/;

where Xs
n D Xn � X

0

n with X
0

n; n � 1; and Xn; n � 1; being i.i.d. Let

Ym D 1

m

mX

nD1

e�n=mXs
n; Zm D 1

m

1X

nDmC1

e�n=mXs
n:

Then Ym C Zm

P! 0, as m ! 1, Ym and Zm are independent and symmetric.

Therefore it follows easily from the Levy’s inequality [57, p. 247] that Zm

P! 0.

Since Zm and .Y1; : : : ; Ym/ are independent and Ym C Zm ! 0 a.e., Zm

P! 0, we
obtain by Lemma 3 of [23] that Ym ! 0 a.e. Letting Y

.1/
m D Ym � e.m�1Xs

m/, since

e.m�1Xs
m/ P! 0, we have by Lemma 3 of [10] that Xs

m=m ! 1 a.e. By the Borel-
Cantelli lemma, this implies that EjX1j < 1. As established before, we then have
Xn ! EX1.A/ and so by (5.4.4), � D EX1:

This completes the proof of Theorem 5.4.1. ut
Remark 5.4.2. Chow [22] has shown that unlike the Cesàro and Abel methods
which require EjX1j < 1 for summability, the Euler and Borel methods require
EX2

1 < 1 for summability. Specifically, if X1; X2; : : : are i.i.d., then the following
statements are equivalent:

EX1 D �; EX2
1 < 1;

Xn ! �.E; q/; for some or equivalently for every q > 0; i.e.,

lim
n!1

1

.q C 1/n

nX

kD1

 
n

k

!
qn�kXk D � a.e.,

lim
n!1 Xn D �.B/; i.e. lim

�!1
1

e�

1X

kD1

�k

kŠ
Xk D � a.e..
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