
Chapter 3
Summability Tests for Singular Points

3.1 Introduction

A point at which the function f .z/ ceases to be analytic, but in every neighborhood
of which there are points of analyticity is called singular point of f .z/.

Consider a function f .z/ defined by the power series

f .z/ D
1X

nD0

anzn (3.1.1)

having a positive radius of convergence. Every power series has a circle of
convergence within which it converges and outside of which it diverges. The radius
of this circle may be infinite, including the whole plane, or finite. For the purposes
here, only a finite radius of convergence will be considered. Since the circle of
convergence of the series passes through the singular point of the function which is
nearest to the origin, the modulus of that singular point can be determined from the
sequence an in a simple manner. The problem of determining the exact position of
the singular point on the circle of convergence is considered; tests can be devised to
determine whether or not that point is a singular point of the function defined by the
series. It may be supposed, without loss of generality, that the radius of convergence
of the series is 1. In this chapter we apply Karamata/Euler summability method to
determine or test if a particular point on the circle of convergence is a singular point
of the function defined by the series (3.1.1).

3.2 Definitions and Notations

Karamata’s summability method KŒ˛; ˇ� was introduced by Karamata (see [8]) and
the summability method associated with this matrix is called Karamata method or
KŒ˛; ˇ�-method (c.f. [86]).
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The Karamata matrix KŒ˛; ˇ� D .cnk/ is defined by

cnk D
�

1 ; n D k D 0;

0 ; n D 0; k D 1; 2; 3; : : : ;

�
˛ C .1 � ˛ � ˇ/z

1 � ˇz

�n

D
1X

kD0

cnkzk; n D 1; 2; : : : :

KŒ˛; ˇ� is the Euler matrix for KŒ1 � r; 0� D E.r/ (see [2]); the Laurent matrix
for KŒ1 � r; r� D S.r/ (see [95]), and with a slight change, the Taylor matrix for
KŒ0; r� D T .r/ (see [28]). If T .r/ D .cnk/; then

�
.1 � r/z

1 � rz

�nC1

D
1X

kD0

cnkzkC1; n D 0; 1; 2; : : :

3.3 Tests for Singular Points

King [49] devised two tests in the form of following theorems, each of which
provides necessary and sufficient condition that z D 1 be a singular point of the
function defined by the series (3.1.1).

Theorem 3.3.1. A necessary and sufficient condition that z D 1 be a singular point
of the function defined by the series (3.1.1) is that

lim sup
n!1

ˇ̌
ˇ̌
ˇ

nX

mD0

 
n

m

!
rm.1 � r/n�m am

ˇ̌
ˇ̌
ˇ

1=n

D 1;

for some 0 < r < 1:

Proof. Consider the function

F.t/ D 1

1 � .1 � r/t
f

�
rt

1 � .1 � r/t

�
:

F .t/ is regular in the region

Dr D
�

t W
ˇ̌
ˇ̌ rt

1 � .1 � r/t

ˇ̌
ˇ̌ < 1

�
:

Furthermore, z D 1 is a singular point of f .z/ if and only if t D 1 is a singular point
of F.t/. A simple calculation gives
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Dr D ft W Re.t/ < 1g;

Dr D
�

t W
ˇ̌
ˇ̌t � 1 � r

1 � 2r

ˇ̌
ˇ̌ >

r

1 � 2r

�
;

Dr D
�

t W
ˇ̌
ˇ̌t � 1 � r

1 � 2r

ˇ̌
ˇ̌ <

r

2r � 1

�
;

for r D 1=2; 0 < r < 1=2; and 1=2 < r < 1, respectively. In each case t D 1 is on
the boundary of Dr and Dr contains all points of the closed unit disk except t D 1.
If we write F.t/ D P1

nD0 bntn, it follows that t D 1 is a singular point of F.t/ if
and only if the radius of convergence of the series is exactly 1. That is, if and only if

lim sup
n!1

jbnj1=n D 1:

The function F.t/ is given by

F.t/ D 1

1 � .1 � r/t

1X

mD0

am

�
rt

1 � .1 � r/t

�m

D
1X

mD0

amrmtm

1X

nDm

 
n

m

!
.1 � r/n�mtn�m

provided that .1 � r/jt j < 1. It is easy to verify the interchange of summation in the
last expression. Hence, F.t/ D P1

nD0 tn
Pn

mD0

�
n
m

	
rm.1 � r/n�mam. Therefore,

bn D
nX

mD0

 
n

m

!
rm.1 � r/n�mam: (3.3.1)

This completes the proof. ut
Theorem 3.3.2. A necessary and sufficient condition that z D 1 be a singular point
of the function defined by the series (3.1.1) is that

lim sup
m!1

ˇ̌
ˇ̌
ˇ

1X

nDm

 
n

m

!
rn�m.1 � r/mC1 an

ˇ̌
ˇ̌
ˇ

1=n

D 1;

for some 0 < r < 1:

Proof. Consider the function

G.t/ D .1 � r/ f .r C .1 � r/t/:
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G.t/ is regular in the region Rr D ft W jr C .1 � r/t j < 1g. A simple calculation
gives

Rr D
�

t W
ˇ̌
ˇt � r

r � 1

ˇ̌
ˇ <

1

1 � r

�
:

The point t D 1 is on the boundary of Rr and Rr contains all points of the closed
unit disk except t D 1. If we write

G.t/ D
1X

nD0

cntn;

it follows that z D 1 is a singular point of f .z/ if and only if

lim sup
n!1

jcnj1=n D 1:

The function G.t/ is given by

G.t/ D .1 � r/

1X

nD0

an.r C .1 � r/t/n

D .1 � r/

1X

nD0

an

1X

mD0

 
n

m

!
rn�m.1 � r/mtm

D
1X

mD0

tm

1X

nDm

 
n

m

!
rn�m.1 � r/mC1an:

Hence,

cm D
1X

nDm

 
n

m

!
rn�m.1 � r/mC1an: (3.3.2)

This completes the proof. ut
These theorems yield the following corollaries.

Corollary 3.3.3. If the sequence .an/ is E.r/-summable, 0 < r < 1, to a nonzero
constant, then z D 1 is a singular point of the function defined by the series (3.1.1).

Corollary 3.3.4. If the sequence .an/ is T .r/-summable, 0 < r < 1, to a nonzero
constant, then z D 1 is a singular point of the function defined by the series (3.1.1).

Extending the above results, Hartmann [44] proved Theorem 3.3.6. The follow-
ing lemma is needed for the proof of Theorem 3.3.6.
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Lemma 3.3.5. If KŒ˛; ˇ� D .cnk/ for j˛j < 1; jˇj < 1, then there exists � > 0,
independent of k, such that for jt j < � and k D 0; 1; 2; : : :,

1X

nD0

cn;kC1tn D .1 � ˛/.1 � ˇ/t

.1 � ˛t/2

�
ˇ C .1 � ˛ � ˇ/t

1 � ˛t

�k

:

Proof. Let f .z/ D Œ˛ C .1 � ˛ � ˇ/z�=.1 � ˇz/. If 0 < R < 1 < 1=jˇj, then there
exists �1 > 0 such that if jt j � �1 and let

�t .z/ D 1

1 � tf .z/
D

1X

nD0

tnŒf .z/�:

Since this convergence is uniform in jzj � R, one can apply Weierstrass theorem on
uniformly convergent series of analytic functions (see [53]) to write

1X

nD0

tnŒf .z/�n D
1X

nD0

tn

 1X

kD0

cnkzk

!
D

1X

kD0

zk

 1X

nD0

cnktn

!
: (3.3.3)

But

1

1 � tf .z/
D 1 � ˇz

.1 � ˛t/
h
1 � ˇC.1�˛�ˇ/t

1�˛t
z
i : (3.3.4)

There exits �2 > 0 such that jt j � �2 and jzj � R imply jŒˇ C .1 � ˛ � ˇ/t�z=Œ1 �
˛t�j < 1. Thus (3.3.4) may be expanded in a power series,

1

1 � tf .z/
D

1X

kD0

1 � ˇz

1 � ˛t

�
ˇ C .1 � ˛ � ˇ/t

1 � ˛t

�k

zk: (3.3.5)

Then, for jt j � min.�1; �2/; one has, by equating coefficients in (3.3.3) and (3.3.5),
the results of the lemma. ut
Theorem 3.3.6. A necessary and sufficient condition that z D 1 be a singular point
of the function defined by the series (3.1.1) is that

lim sup
n!1

ˇ̌
ˇ̌
ˇ

1X

kD0

cn;kC1ak

ˇ̌
ˇ̌
ˇ

1=n

D 1 (3.3.6)

for some ˛ < 1; ˇ < 1 and ˛ C ˇ > 0.
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Proof. Consider the function

F.t/ D .1 � ˛/.1 � ˇ/t

.1 � ˛t/2
f

�
ˇ C .1 � ˛ � ˇ/t

1 � ˛t

�
:

F .t/ is regular in the region D, where

D D
�

t W
ˇ̌
ˇ̌ˇ C .1 � ˛ � ˇ/t

1 � ˛t

ˇ̌
ˇ̌ < 1

�
:

Furthermore, z D 1 is a singular point of f .z/ if and only if t D 1 is a singular point
of F.t/. A simple calculation gives

D D

8
<̂

:̂

t W jt C ˛Cˇ

1�ˇ�2˛
j < j 1�˛

1�ˇ�2˛
j ; 1 � ˇ � 2˛ > 0I

t W Re .t/ < 1 ; 1 � ˇ � 2˛ D 0I
t W jt C ˛Cˇ

1�ˇ�2˛
j > j 1�˛

1�ˇ�2˛
j ; 1 � ˇ � 2˛ < 0:

In each case t D 1 is on the boundary of D and D contains all points of the closed
unit disk except t D 1. Writing F.t/ in series form yields

F.t/ D .1 � ˛/.1 � ˇ/t

.1 � ˛t/2

1X

kD0

ak

�
ˇ C .1 � ˛ � ˇ/t

1 � ˛t

�k

;

provided t " D. By Lemma 3.3.5, there exists � > 0 such that for jt j � �1 < � and
k D 0; 1; 2; : : :

1X

nD0

cn;kC1tn D .1 � ˛/.1 � ˇ/t

.1 � ˛t/2

�
ˇ C .1 � ˛ � ˇ/t

1 � ˛t

�k

: (3.3.7)

Since .1 � ˛/.1 � ˇ/t=.1 � ˛t/2 vanishes for t D 0 and Œˇ C .1 � ˛ � ˇ/t�=Œ1 � ˛t�

is equal to ˇ for t D 0, with jˇj < 1, there exists �2.˛; ˇ/ < �1 such that jt j � �2

implies jP1
nD0 cn;kC1tnj � Mrk for some r D r.˛; ˇ/ < 1. Thus

ˇ̌
ˇ̌
ˇ

1X

kD0

1X

nD0

cn;kC1aktn

ˇ̌
ˇ̌
ˇ �

1X

kD0

jakj
ˇ̌
ˇ̌
ˇ

1X

nD0

cn;kC1tn

ˇ̌
ˇ̌
ˇ

� M

1X

kD0

jakjrk;

which converges since (3.3.7) has radius of convergence one. Weierstrass theorem
now implies

F.t/ D
1X

kD0

1X

nD0

cn;kC1aktn; (3.3.8)
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for jt j � �2. By analytic continuation (3.3.8) holds in a disk whose boundary
contains the singularity of F.t/ nearest the origin and t D 1 is a singular point
of F.t/ if and only if the radius of convergence of series (3.3.8) is exactly 1, i.e.,

lim sup
n!1

ˇ̌
ˇ̌
ˇ

1X

kD0

cn;kC1ak

ˇ̌
ˇ̌
ˇ

1=n

D 1: (3.3.9)

This completes the proof of the theorem. ut
From this, following result may be deduced.

Corollary 3.3.7. If the sequence .0; a0; a1; : : :/ is KŒ˛; ˇ� summable ˛ < 1; ˇ <

1; ˛ C ˇ > 0, to a nonzero constant, then z D 1 is a singular point of the function
given by (3.1.1).

Remark 3.3.8. Notice KŒ˛; ˇ� is regular for ˛ < 1; ˇ < 1 and ˛Cˇ > 0 (see [8]). If
.bn/ is the KŒ˛; ˇ� transform of .0; a0; a1; : : :/, then b0 D 0, bn D P1

kD0 cn;kC1ak ,
n D 1; 2; : : :. Now, if .0; a0; a1; : : :/ is KŒ˛; ˇ� summable to a nonzero constant,
then (3.3.6) holds. If the T .r/ transform of .an/ is .cn/ and the KŒ0; r� transform of
.0; a0; a1; : : :/ is .�n/, then �0 D 0, �n D cn�1.n � 1/ and thus one has immediately
Corollary 3.3.4. In [2] it is proved that E.r/ is translative to the right when E.r/ is
regular, so Corollary 3.3.7 implies Corollary 3.3.3.
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