Chapter 2
Lambert Summability and the Prime Number
Theorem

2.1 Introduction

The prime number theorem (PNT) was stated as conjecture by German mathemati-
cian Carl Friedrich Gauss (1777-1855) in the year 1792 and proved independently
for the first time by Jacques Hadamard and Charles Jean de la Vallée-Poussin in
the same year 1896. The first elementary proof of this theorem (without using
integral calculus) was given by Atle Selberg of Syracuse University in October
1948. Another elementary proof of this theorem was given by Erdos in 1949.

The PNT describes the asymptotic distribution of the prime numbers. The PNT
gives a general description of how the primes are distributed among the positive
integers.

Informally speaking, the PNT states that if a random integer is selected in the
range of zero to some large integer N, the probability that the selected integer is
prime is about 1/ In(/N), where In(/N) is the natural logarithm of N. For example,
among the positive integers up to and including N = 10°, about one in seven
numbers is prime, whereas up to and including N = 10'°, about one in 23 numbers
is prime (where In(103) = 6.90775528 and In(1010) = 23.0258509). In other
words, the average gap between consecutive prime numbers among the first N
integers is roughly In(N).

Here we give the proof of this theorem by the application of Lambert summabil-
ity and Wiener’s Tauberian theorem. The Lambert summability is due to German
mathematician Johann Heinrich Lambert (1728-1777) (see Hardy [41, p. 372];
Peyerimhoff [80, p. 82]; Saifi [86]).

2.2 Definitions and Notations

(i) Mobius Function. The classical Mdbius function p(n) is an important mul-
tiplicative function in number theory and combinatorics.This formula is
due to German mathematician August Ferdinand Mobius (1790-1868) who
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(ii)

(iii)

(iv)
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introduced it in 1832. w(n) is defined for all positive integers n and has its
values in {—1, 0, 1} depending on the factorization of n into prime factors. It is
defined as follows (see Peyerimhoff [80, p. 85]):

—1, nis a square-free positive integer with an odd number of prime factors,

1 , nis a square-free positive integer with an even number of prime factors,
wn) =
0 , n is not square-free,

that is,
1 ,n=1,
pum) = (=D* ,n = pipy---pr. pi prime, p; # p;,  (2.2.1)
0 , otherwise.
Thus

(a) u(2) =—1,since2 = 2;
(b) u(10) =1, since 10 =2 x 5;
(¢) u(4) =0,since4d =2 x 2.

We conclude that u(p) = —1, if p is a prime number.

The Function 7(x). The prime-counting function w(x) is defined as the
number of primes not greater than x, for any real number x, that is, 7 (x) =
> p<x | (Peyerimhoff [80, p. 87]). For example, 7(10) = 4 because there
are four prime numbers (2, 3, 5, and 7) less than or equal to 10. Similarly,
7(1) =0,7(2) =0,7(3) = 1, n(4) = 2, 7(1000) = 168, 7(10%) = 78498,
and 7(10%) = 50847478 (Hardy [43, p. 9]).

The von Mangoldt Function A,. The function A, is defined as follows
(Peryerimhoff [80, p. 84]):

__{logp ,n = p®forsome prime p and o > 1,

An - .
0 , otherwise.
Lambert Summability. A series Y - | a,, is said to be Lambert summable (or
summable £) to s, if
oo
. kapx*
xl_l)nll_(l —X) kE_l T = s. (2.2.2)

In this case, we write Y _a, = s(£). Note that if a series is convergent to s,
then it is Lambert summable to s.

This series is convergent for |x| < 1, which is true if and only if a, =
O((1 + &)™), for every ¢ > 0 (see [6,52,99]).
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If we write x = e ¥ (y > 0),5(t) =< a (a0 = 0), g(t) = %,
then ) ay is summable £ to s if and only if (note that 1 — x & %)

1 [® ey o t
lim —/ ¢ _ds(t) = tim — | s()dg (—)
0 i 0 y

y—>00 y l—e > y—00

1 [ t
= lim ——/ g (—) s(t)dt = s.
Y=oy Jo y

The method £ is regular.

2.3 Lemmas

We need the following lemmas for the proof of the PNT which is stated and proved
in the next section. In some cases, Tauberian condition(s) will be used to prove
the required claim. The general character of a Tauberian theorem is as follows.
The ordinary questions on summability consider two related sequences (or other
functions) and ask whether it will be true that one sequence possesses a limit
whenever the other possesses a limit, the limits being the same; a Tauberian theorem
appears, on the other hand, only if this is untrue, and then asserts that the one
sequence possesses a limit provided the other sequence both possesses a limit and
satisfies some additional condition restricting its rate of increase. The interest of
a Tauberian theorem lies particularly in the character of this additional condition,
which takes different forms in different cases.

Lemma 2.3.1 (Hardy [41, p. 296]; Peyerimhoff [80, p. 801). If g(¢),h(t) €
L(0,0), and if

/oo gt dt # 0 (—o0 < x < 00), (2.3.1)
0

then s(t) = O(1) (s(t) real and measurable) and

N Y R . 1 [®
lim — gl —|s@®)dt =0 implies lim — h|—)s@)dt =0.
x—=>o00 X J X xX—=>00 X Jo X

Lemma 2.3.2 (Peyerimhoff [80, p. 84]). Ifn = p{'---p* (0; = 1,2,..., p;
prime), then 3 _,,, Aq = logn.

Proof. Since d runs through divisors of n and we have to consider only d =
PP Py P, therefore Y0, Ay = arlog pr + axlog py + <o+
oy log pr = logn.

This completes the proof of Lemma 2.3.2. O
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Lemma 2.3.3 (Peyerimhoff [80, p. 84]).

S l)n 1

Z

—2!7)¢(s)(s > 1),

where { is a Riemann’s Zeta function.

Proof. We have

2 1 1
s -5 (14545 +)
= () =24 (s)
= (1=27)(s).

This completes the proof of Lemma 2.3.3.

Lemma 2.3.4 (Hardy [41, p. 246]). Ifs > 1, then

A

() =[]

» P

Lemma 2.3.5 (Hardy [43, p. 253]).

0 =0 Y

n=1

Proof. From 2.3.3, we have

pS
log¢(s) =) log ——
) p

Differentiating with respect to s and observing that

d ) p’ log p
JE— [e) = -
ds gps—l ps—1

(2.3.2)

(2.3.3)

(2.3.4)
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we obtain

(2.3.5)

_ §'(s) _ Z log p
§(s) pi=1
The differentiation is legitimate because the derived series is uniformly convergent

fors>14+6>1,6 > 0.
We can write (2.3.5) in the form

Bept

p m=1

p

and the double series > > p™* log p is absolutely convergent when s > 1. Hence
it may be written as

o
Zp—ms logp — ZAnn_s'

p.m n=0
This completes the proof of Lemma 2.3.5. O

Lemma 2.3.6 (Peyerimhoff [80, p. 84]). s, — s(£), asn — oo and a, = O (1)
imply s, — s, asn — oo.

Proof. We wish to show that a, = O(1/n) is a Tauberian condition. In order to
apply Wiener’s theory we must show that (2.3.1) holds. But for ¢ > 0

—/ 13T (H)dt = (ix + s)/ 1Tl () dt
0 0

sl [ele)
= (ix +¢) Z/ pixtee=(k+Dr gy
0
k=0

1

)
=(ix+8)F(1+8+ix)ZW

k=0

i.e.,

o0
_f 1 g'(t)dt =T (1 + ix) lim  (ix + &)¢(1 + e + ix).
0 i

This has a simple pole at 1 and is # 0 on the line Rez = 1. A stronger theorem is
true, namely, £ C Abel, i.e., every Lambert summable series is also Abel summable
(see [42]), which implies this theorem. For the sake of completeness we give a proof
that (1 + ix) # O for real x. The formula (2.3.4) implies ¢(1 + ix) # 0.

This completes the proof of Lemma 2.3.6. O
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Lemma 2.3.7 (Peyerimhoff [80, p. 86]).

ZH,(;?) -0

n=1

Proof. This follows from O-Tauberian theorem for Lambert summability, if
%0 AW — O(L). But

n=1 n

(=0 B (3 ) Y
n=1 n=1 k=0

=(1-x)) Y ) =x(1-x).

m=1n/m

A consequence is (by partial summation)

> ulk) = 0@n) (2.3.6)

k<n

which follows with the notation

mn = Y plk) oo Z/,L(k)zfliozdm(t) =nm(n)—/lnm(t)dt.

k

1<k<t k<n
This completes the proof of Lemma 2.3.7. O

Lemma 2.3.8 (Hardy [43, p. 346]). Suppose that ci,c;,..., is a sequence of
numbers such that

Ct)=) e

n<t

and that f(t) is any function of t. Then

Yoafmy= Y Co{fm) - fr+ 1} +C0)f(xD. (237

n<x n<x—l1

If, in addition, c; = 0 for j < ny and f(t) has a continuous derivative for t > ny,
then

>t = C S - [ Cw 0. 238)

n<x n
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Proof. 1f we write N = [x], the sum on the left of (2.3.7) is
CHfM)+{CR)=CM)}fQ2) + - +{CN) = C(N =D} f(N)
=C{fD=FQ}+--+CWN =D{f(N—=1)= f(N)} + C(N) f(N).
Since C(N) = C(x), this proves (2.3.7). To deduce (2.3.8), we observe that C () =

C(n) whenn <t <n + 1 and so

n+1
C(ﬂ)[f(n)—f(n+1)]=—/ C(@) f'(t)dt.
n
Also C(¢) =0 whent < nj.
This completes the proof of Lemma 2.3.8. O

Lemma 2.3.9 (Hardy [43, p. 347]).

1 1
Z— =logx+C+0(—),

n X
n<x
where C is Euler’s constant.

Proof. Putc, = 1and f(¢t) = 1/t. We have C(x) = [x] and (2.3.8) becomes

LWt
el I

n<x

=logx+C+E,

where

Czl—/oot_[t]dt
1

12

is independent of x and

B [Ty xml

12 X

o (2)
.t x
1
X

This completes the proof of Lemma 2.3.9. O
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Lemma 2.3.10 (Peyerimhoff [80, p. 86]). If

=3 [w (;C—C) . % + log%—i-C] and Y (x) = 3" An,

k<x n<x
then x(x) = O(log(x + 1)).
Proof. Mobius formula (2.2.1) yields that

Y —x + logx +C = Y X(g) 1u(d). (2.3.9)

d< x

Fromlogn = }_,,, Au Lemma 2.3.2, it follows that

Slen=Y Y A=Y Y A=Yu(d)

n<x n=<x kd=n k<xd<x/k k<x

Therefore, we obtain

1
x(x) = Zlogn —X [logx +C+0 (;)i| + [x]log x — Zlogk + [x]C,

n<x k<x
ie.,
x(x) = O(log(x + 1)). (2.3.10)

This completes the proof of Lemma 2.3.10. O

Lemma 2.3.11 ([Axer’s Theorem] (Peyerimhoff [80, p. 87])). If

(a) x(x) is of bounded variation in every finite interval [1, T1],

() X i<k<r @k = O(x).
(¢) an = 0(1),
(d) y(x) = O(x*) forsome0 < a < 1,

then

Z X(%) ary = O(x).

1<k<x

Proof. Let0 < 6 < 1. Then

5 1o = 00557 = 0(s5).

i k
1<k<éx
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Assuming thatm — 1 < §x <m, N <x < N + 1 (m and N integers), we have

E @ E LG 2 (55)] o)1)

= 0(x) [:

1/8
— 0(x) / ldx (O] + 0).

()] o

This completes the proof of Lemma 2.3.11. O
Lemma 2.3.12 (Peyerimhoff [80, p. 87]). ¥/ (x) —x = O(x).

Proof. 1t follows from (2.3.6), (2.3.9), (2.3.10), and Axer’s theorem, that ¥ (x) —
x = O(x).
This completes the proof of Lemma 2.3.12. O

Lemma 2.3.13 (Peyerimhoff [80, p. 871). Let ¥(x) = }_,_, logp (p prime),
then

(@) ?(x) < ¥(x) = 0O(x);
(b) ¥(x) =(x) + HV/x) + -+ + F(Jx), for every k > igﬁ;

Lemma 2.3.14 (Peyerimhoff [80, p. 87]).

log x
Y =90 + O3 V.
og?2
Proof. 1t follows from part (b) of Lemma 2.3.13 that
log x
¥(x) = D(x) + 0(1)1i\/§.
og?2

This completes the proof of Lemma 2.3.14. O
Lemma 2.3.15 (Peyerimhoff [80, p. 87]).
?(x) = x + O(x). (2.3.11)

Proof. Lemma 2.3.14 implies that 3 (x) = x + O(x). O
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2.4 The Prime Number Theorem

Theorem 2.4.1. The PNT states that 7 (x) is asymptotic to x/logx (see Hardy
[41, p. 9]), that is, the limit of the quotient of the two functions w(x) and
x/1Inx approaches 1, as x becomes indefinitely large, which is the same thing as
[7(x)logx]/x — 1, as x — oo (Peyerimhoff [80, p. 88]).

Proof. By definition and by

ol
T[(.X) :/;/2 @dﬁ(l‘)

_¥(x) RAU)
~ logx + /;/2 t(logt)?

_ P(x) X
~ logx +0 ((logx)z)
[note that ¥ (x) = O(x)].

Using (2.3.11) we obtain the PNT, i.e.,

lim 7w(x) = al ,
x—00 log x
or
. 7w(x)logx
lim ———— =1
x—>00 X

This completes the proof of Theorem 2.4.1. O
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