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Preface

The theory of summability arises from the process of summation of series and
the significance of the concept of summability has been strikingly demonstrated
in various contexts, e.g., in analytic continuation, quantum mechanics, probability
theory, Fourier analysis, approximation theory, and fixed point theory. The methods
of almost summability and statistical summability have become an active area of
research in recent years.

This short monograph is the first one to deal exclusively with the study of some
summability methods and their interesting applications. We consider here some
special regular matrix methods as well as non-matrix methods of summability.
This book consists of 12 chapters. In Chap. 1, we recall some basic definitions
of sequence spaces, matrix transformations, regular matrices, and some special
matrices. Chapter 2 deals with the proof of the prime number theorem by using
Lambert’s summability and Wiener’s Tauberian theorem. In Chap. 3, we give
some results on summability tests for singular points of an analytic function. In
Chap. 4, we study analytic continuation through Lototski summability. In Chap. 5,
we give application of summability methods to independent identically distributed
random variables. In Chap. 6, we study a non-matrix method of summability,
i.e., almost summability which is further applied in Chaps. 7 and 8 to study the
summability of Taylor series, Fourier series, and Walsh-Fourier series. We further
use almost summability in Chap. 9 to prove Korovkin type approximation theorems.
In Chap. 10, we study another non-matrix method of summability, i.e., statistical
summability. In Chap. 11, we study statistical approximation, and in the last chapter,
we give some applications of summability methods in fixed point theorems. For the
convenience of readers, all chapters of this book are written in a self-contained style
and all necessary background and motivations are given per chapter. As such this
brief monograph is suitable for researchers, graduate students, and seminars on the
above subject.

The author is very much thankful to all three learned referees for their valuable
and helpful suggestions.
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The author would also like to thank his family for moral support during the
preparation of this monograph.

Aligarh, India M. Mursaleen
October 15, 2013
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Chapter 1
Toeplitz Matrices

1.1 Introduction

The theory of matrix transformations deals with establishing necessary and
sufficient conditions on the entries of a matrix to map a sequence space X into
a sequence space Y: This is a natural generalization of the problem to characterize
all summability methods given by infinite matrices that preserve convergence.

In this chapter, we shall present some important classes of matrices such as
conservative and regular matrices and enlist some important and very useful special
summability matrices. In the subsequent chapters some of these matrices will be
used to demonstrate their interesting applications.

1.2 Definitions and Notations

1.2.1 Classical Sequence Spaces

We denote by ! the space of all sequences x D .xk/
1
kD1 real or complex, by � we

denote the set of all finite sequences, that is, sequences which have a finite number
of nonzero terms, and write `1, c, c0, and `p for the classical sequence spaces of
all bounded, convergent, null, and absolutely p-summable sequences of complex
numbers, respectively, where 0 < p < 1. Also by bs and cs, we denote the spaces
of all bounded and convergent series, respectively. bv1 and bv are the spaces of all
sequences of bounded variation, that is, consisting of all sequences .xk/ such that
.xk � xk�1/ and .xk � xkC1/ in `1, respectively, and bv0 is the intersection of the
spaces bv and c0. Let e D .1; 1; : : :/ and e.k/ D .0; 0; : : : ; 0; 1.kth place/; 0; : : :/:

The most popular metric on the space ! is defined by

d!.x; y/ D
1X

kD0

jxk � ykj
2k.1C jxk � ykj/ I x D .xk/; y D .yk/ 2 !:

M. Mursaleen, Applied Summability Methods, SpringerBriefs in Mathematics,
DOI 10.1007/978-3-319-04609-9__1, © M. Mursaleen 2014
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2 1 Toeplitz Matrices

The space `1 of bounded sequences is defined by

`1 WD
�
x D .xk/ 2 ! W sup

k2N
jxkj < 1

�
:

The natural metric on the space `1 is defined by

d1.x; y/ D sup
k2N

jxk � ykjI x D .xk/; y D .yk/ 2 `1:

The spaces c and c0 of convergent and null sequences are given by

c WD
�
x D .xk/ 2 ! W lim

k!1jxk � l j D 0 for some l 2 C

�
;

c0 WD
�
x D .xk/ 2 ! W lim

k!1xk D 0

�
:

The metric d1 is also a metric for the spaces c and c0.
The space `1 of absolutely convergent series is defined as

`1 WD
(
x D .xk/ 2 ! W

1X

kD0
jxkj < 1

)
:

The space `p of absolutely p-summable sequences is defined as

`p WD
(
x D .xk/ 2 ! W

1X

kD0
jxkjp < 1

)
; .0 < p < 1/:

In the case 1 � p < 1, the metric dp on the space `p is given by

dp.x; y/ D
 1X

kD0
jxk � ykjp

!1=p
I x D .xk/; y D .yk/ 2 `p:

Also in the case 0 < p < 1, the metric Qdp on the space `p is given by

Qdp.x; y/ D
1X

kD0
jxk � ykjpI x D .xk/; y D .yk/ 2 `p:

The space bs of bounded series is defined by

bs WD
(
x D .xk/ 2 ! W sup

n2N

ˇ̌
ˇ̌
ˇ

nX

kD0
xk

ˇ̌
ˇ̌
ˇ < 1

)
:

The natural metric on the space bs is defined by

d.x; y/ D sup
n2N

ˇ̌
ˇ̌
ˇ

nX

kD0
.xk � yk/

ˇ̌
ˇ̌
ˇ I x D .xk/; y D .yk/ 2 bs: (1.2.1)



1.2 Definitions and Notations 3

The space cs of convergent series and the space cs0 of the series converging to zero
are defined as follows:

cs WD
(
x D .xk/ 2 ! W lim

n!1

ˇ̌
ˇ̌
ˇ

nX

kD0
xk � l

ˇ̌
ˇ̌
ˇ D 0 for some l 2 C

)
;

cs0 WD
(
x D .xk/ 2 ! W lim

n!1

ˇ̌
ˇ̌
ˇ

nX

kD0
xk

ˇ̌
ˇ̌
ˇ D 0

)
:

The metric d defined by (1.2.1) is the natural metric on the spaces cs and cs0.
The space bv of sequences of bounded variation is defined by

bv WD
(
x D .xk/ 2 ! W

1X

kD0
jxk � xkC1j < 1

)
:

Define the difference sequence �u D f.�u/kg by .�u/k D uk � ukC1 for all k 2 N

with u�1 D 0. The natural metric on the space bv1 is defined by

d.x; y/ D j lim.x�y/jC
1X

kD0
jŒ�.x�y/�kjI xD.xk/; yD.yk/ 2 bv: (1.2.2)

1.2.2 ˇ-Dual

The ˇ-dual or ordinary Köthe-Toeplitz dual of X is defined by

Xˇ WD fa D .ak/ 2 ! W
1X

kD0
akxk converges for all x 2 Xg:

Note that `ˇ1 D c
ˇ
0 D cˇ D `1, `

ˇ
1 D `1, `ˇp D `q (1 < p; q < 1, with

p�1 C q�1 D 1), csˇ D bv, bvˇ D cs; !ˇ D �.

1.2.3 Schauder Basis

A Schauder basis or countable basis is similar to the usual (Hamel) basis of a
vector space; the difference is that Hamel bases use linear combinations that are
finite sums, while for Schauder bases they may be infinite sums. This makes
Schauder bases more suitable for the analysis of infinite-dimensional topological
vector spaces including Banach spaces. A Hamel basis is free from topology while
a Schauder basis depends on the metric in question since it involves the notion of
“convergence” in its definition and hence topology.



4 1 Toeplitz Matrices

A sequence .bk/
1
kD0 in a linear metric space .X; d/ is called a Schauder basis

(or briefly basis) for X (cf. [59]) if for every x 2 X there exists a unique sequence
.˛k/

1
kD0 of scalars such that x D P1

kD1 ˛kbk , that is, d.x; xŒn�/ ! 0 .n ! 1/,
where xŒn� D Pn

kD0 ˛kbk is known as the n-section of x: The series
P1

kD0 ˛kbk
which has the sum x is called the expansion of x, and .˛k/ is called the sequence of
coefficients of x with respect to the basis .bk/:

Example 1.2.1. The following statements hold:

(i) The space `1 has no Schauder basis, since it is not separable.
(ii) The spaces !, c0, and `p .1 � p < 1/ have .e.k//1kD1 as their Schauder bases.

(iii) We put b.0/ D e and b.k/ D e.k�1/ for k D 1; 2; : : : Then the sequence
.b.k//1kD0 is a Schauder basis for c: More precisely, every sequence x 2 c has
a unique representation x D le CP1

kD0.xk � l/e.k/ where l D limk!1 xk:

1.2.4 Matrix Transformation

If A is an infinite matrix with complex entries ank .n; k 2 N/, then we may write
A D .ank/ instead of A D .ank/

1
n;kD0. Also, we write An for the sequence in the nth

row of A, i.e., An D .ank/
1
kD0 for every n 2 N. In addition, if x D .xk/ 2 !, then

we define the A-transform of x as the sequence Ax D fAn.x/g1
nD0, where

An.x/ D
1X

kD0
ankxk .n 2 N/

provided the series on the right converges for each n 2 N. Further, the sequence x
is said to be A-summable to the complex number l if An.x/ ! l , as n ! 1, we
shall write x ! l.A/, where l is called the A-limit of x.

Let X and Y be subsets of ! and A an infinite matrix. Then, we say that A
defines a matrix mapping from X into Y if Ax exists and is in Y for every x 2 X .
By .X; Y /, we denote the class of all infinite matrices that map X into Y . Thus
A 2 .X; Y / if and only if An 2 Xˇ for all n 2 N and Ax 2 Y for all x 2 X .

1.2.5 Continuous Dual

Let X and Y be normed linear spaces. Then B.X; Y / denotes the set of all bounded
linear operators L W X ! Y . If Y is complete, then B.X; Y / is a Banach space
with the operator norm defined by kLk D supx2SX kL.x/k for all L 2 B.X; Y /. By
X 0 D B.X;C/ ,we denote the continuous dual ofX , that is, the set of all continuous
linear functionals on X . If X is a Banach space, then we write X� for X 0 with its
norm given by kf k D supx2SX jf .x/j for all f 2 X 0, where SX is the unit sphere
in X:
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1.3 Conservative and Regular Matrices

It was the celebrated German mathematician Otto Toeplitz (1881–1940) who
characterized those matrices A D .ank/ which transform convergent sequences
into convergent sequences leaving the limit invariant (see [13, 17, 26, 41, 59]).
A summability method is an alternative formulation of convergence of a series
which is divergent in the conventional sense.

Definition 1.3.1. A matrix A is called a conservative matrix if Ax 2 c for all
x 2 c: If in addition limAx D lim x for all x 2 c, then A is called a regular
matrix or regular method or Toeplitz matrix. The class of conservative matrices will
be denoted by .c; c/ and of regular matrices by .c; cIP / or .c; c/reg:

Definition 1.3.2. A matrix A is called a Schur matrix or coercive matrix if Ax 2 c
for all x 2 `1: The class of Schur matrices will be denoted by .`1; c/:

Theorem 1.3.3 (Silverman-Toeplitz theorem). A D .ank/ 2 .c; cIP / if and
only if

kAk D sup
n2N

1X

kD0
jankj < 1; (1.3.1)

lim
n!1ank D 0 for each k 2 N; (1.3.2)

lim
n!1

1X

kD0
ank D 1: (1.3.3)

The following is the more general class.

Theorem 1.3.4 (Kojima-Schur). A D .ank/ 2 .c; c/ if and only if (1.3.1) holds
and there exist ˛k; ˛ 2 C such that

lim
n!1ank D ˛k for each k 2 N; (1.3.4)

lim
n!1

1X

kD0
ank D ˛: (1.3.5)

If A 2 .c; c/ and x 2 c, then

lim
n!1An.x/ D

 
˛ �

1X

kD0
˛k

!
lim
k!1 xk C

1X

kD0
˛kxk: (1.3.6)

Proof. Suppose that the conditions (1.3.1), (1.3.4), and (1.3.5) hold and x D .xk/ 2
c with xk ! l as k ! 1. Then, since .ank/k2N 2 cˇ D `1 for each n 2 N, the
A-transform of x exists. In this case, the equality

1X

kD0
ankxk D

1X

kD0
ank.xk � l/C l

1X

kD0
ank (1.3.7)
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holds for each n 2 N. In (1.3.7), since the first term on the right-hand side tends toP1
kD0 ˛k.xk � l/ by (1.3.4) and the second term on the right-hand side tends to l˛

by (1.3.5) as n ! 1, we have

lim
n!1

1X

kD0
ankxk D

1X

kD0
˛k.xk � l/C l˛: (1.3.8)

Hence, Ax 2 c, that is, A 2 .c; c/:
Conversely, suppose that A 2 .c; c/: Then Ax exists for every x 2 c. The

necessity of the conditions (1.3.4) and (1.3.5) is immediate by taking x D e.k/

and x D e, respectively. Now, using the Banach-Steinhaus theorem and the closed
graph theorem, we have A 2 B.c; c/. Thus,

sup
n2N

ˇ̌
ˇ̌
ˇ

1X

kD0
ankxk

ˇ̌
ˇ̌
ˇ � kAkkxk1 (1.3.9)

for all x 2 c: Now choose any n 2 N and any r 2 N and define x 2 c0 by

xk D
�

sgn ank ; 1 � k � r;

0 ; k > r:

Substituting this in (1.3.9) we get
rX

kD1
jankj � kAk: (1.3.10)

Letting r ! 1 and noting that (1.3.10) holds for every n 2 N we observe
that (1.3.1) holds. Finally, (1.3.8) is same as (1.3.6).

This completes the proof. ut
Remark 1.3.5. Taking ˛k D 0 for all k 2 N and ˛ D 1 in Theorem 1.3.4, we get
Theorem 1.3.3.

First we state the following lemma which is needed in proving Schur’s theorem.

Lemma 1.3.6. Let B D .bnk/n;k be an infinite matrix such that
P

k j bnk j< 1 for
each n and

P
k j bnk j! 0 .n ! 1/: Then

P
k j bnk jconverges uniformly in n:

Proof.
P

k j bnk j! 0 .n ! 1/ implies that
P

k j bnk j< 1 for n � N."/:

Since
P

k j bnk j< 1 for 0 � n � N."/; there exists m D M."; n/ such thatP
k�M j bnk j< 1 for all n; which means that

P
k j bnk jconverges uniformly

in n:
This completes the proof of the lemma. ut

Theorem 1.3.7 (Schur). A D .ank/ 2 .`1; c/ if and only if (1.3.4) holds and

1X

kD0
jankj converges uniformly in n 2 N: (1.3.11)
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Proof. Suppose that the conditions (1.3.4) and (1.3.11) hold and x 2 `1. Then,P
k ankxk is absolutely and uniformly convergent in n 2 N. Hence,

P
k ankxk !P

k ˛kxk .n ! 1/ which gives that A 2 .`1; c/.
Conversely, suppose that A 2 .`1; c/ and x 2 `1: Then necessity of (1.3.4)

follows easily by taking x D e.k/ for each k:Define bnk D ank�˛k for all k; n 2 N:

Since
P

k j ˛k j< 1; .
P

k bnkxk/n converges whenever x D .xk/ 2 `1: Now if
we can show that this implies

lim
n

X

k

j bnk jD 0; (1.3.12)

then by using Lemma 1.3.6, we shall get the desired result. Suppose to the contrary
that limn

P
k j bnk j¤ 0: Then, it follows that limn

P
k j bnk jD l > 0 through

some subsequence of the positive integers. Also we have bmk ! 0 as m ! 1 for
each k 2 N. Hence we may determine m.1/ such that

j
X

k

j bm.1/;k j �l j< l=10 and bm.1/;1 < l=10:

Since
P

k j bm.1/;k j< 1 we may choose k.2/ > 1 such that

1X

kDk.2/C1
j bm.1/;k j< l=10 :

It follows that

j
k.2/X

kD2
j bm.1/;k j �l j< l=10:

For our convenience we use the notation
Pq

kDp j bmk jD B.m; p; q/:

Now we choose m.2/ > m.1/ such that j B.m.2/; 1;1/ � l j< l=10 and
B.m.2/; 1; k.2// < l=10. Then choose k.3/ > k.2/ such that j B.m.2/; k.3/ C
1;1/�l j< l=10. It follows that j B.m.2/; k.2/C1; k.3//�l j< 3l=10. Continuing
in this way and find m.1/ < m.2/ < : : : ; 1 D k.1/ < k.2/ < : : : such that

8
<

:

B.m.r/; 1; k.r// < l=10

B.m.r/; k.r C 1/C 1;1/ < l=10

B.m.r/; k.r/C 1; k.r C 1// � l j< 3l=10:
(1.3.13)

Let us define x D .xk/ 2 `1 such that k x kD 1 by

xk D
�
0; if k D 1;

.�1/rsgn.bm.r/;k/; if k.r/ < k � k.r C 1/;
(1.3.14)
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for r D 1; 2; : : :. Then write
P

k bm.r/;kxk as
P

1 CP
2 CP

3; where
P

1 is over
1 � k � k.r/;

P
2 is over k.r/ < k � k.r C 1/, and

P
2 is over k > k.r C 1/: It

follows immediately from (1.3.13) with the sequence x given by (1.3.14) that

j
X

k

bm.r/;k � .�1/r l j< l=2:

Consequently, it is clear that the sequence Bx D .
P

k bnkxk/ is not a Cauchy
sequence and so is not convergent. Thus we have proved that Bx is not convergent
for all x 2 `1 which contradicts the fact that A 2 .`1; c/. Hence, (1.3.12) must
hold. Now, it follows by Lemma 1.3.6 that

P
k j bnk j converges uniformly in n.

Therefore,
P

k j ank jD P
k j bnk C ˛k j converges uniformly in n.

This completes the proof. ut
We get the following corollary:

Corollary 1.3.8. A 2 .`1; c0/ if and only if

lim
n

X

k

j bnk jD 0: (1.3.15)

We observe the following application of Corollary 1.3.8.

Theorem 1.3.9. Weak and strong convergence coincide in `1.

Proof. We assume that the sequence .x.n//1nD0 is weakly convergent to x in `1, that
is, j f .x.n// � f .x/ j! 0 .n ! 1/ for every f 2 `�

1 . Since `�
1 and `1 are norm

isomorphic, to every f 2 `�
1 there corresponds a sequence a 2 `1 such that f .y/ DP1

kD0 akyk . We define the matrix B D .bnk/
1
n;kD0 by bnk D x

.n/

k � xk .n; k D
0; 1; : : :/. Then we have f .x.n//�f .x/ D P1

kD0 ak.x
.n/

k �xk/D P1
kD0 bnkak ! 0

.n ! 1/ for all a 2 `1, that is, B 2 .`1; c0/, and it follows from Corollary 1.3.8
that k x.n/ � x k`1D

P1
kD0 j x.n/k � xk jD P1

kD0 j bnk j! 0 .n ! 1/.
This completes the proof of the theorem. ut

Definition 1.3.10. The characteristic �.A/ of a matrix A D .ank/ 2 .c; c/ is
defined by

�.A/ D lim
n!1

1X

kD0
ank �

1X

kD0

�
lim
n!1 ank

�

which is a multiplicative linear functional. The numbers limn!1 ank and limn!1P1
kD0 ank are called the characteristic numbers ofA. A matrixA is called coregular

if �.A/ ¤ 0 and is called conull if �.A/ D 0:

Remark 1.3.11. The Silverman-Toeplitz theorem yields for a regular matrix A that
�.A/ D 1 which leads us to the fact that regular matrices form a subset of coregular
matrices. One can easily see for a Schur matrix A that �.A/ D 0 which tells us that
coercive matrices form a subset of conull matrices. Hence we have the following
result which is known as Steinhaus’s theorem.
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Theorem 1.3.12 (Steinhaus). For every regular matrix A, there is a bounded
sequence which is not A-summable.

Proof. We assume that a matrix A 2 .c; cIP / \ .`1; c/: Then it follows
from Theorem 1.3.3 and Schur’s theorem that 1 D limn!1

P1
kD0 ank DP1

kD0.limn!1 ank/ D 0, a contradiction.
This completes the proof. ut

1.4 Some Special Summability Matrices

First we give here some special and important matrices of triangles. The most
important summability methods are given by Hausdorff matrices and their special
cases.

(i) Hausdorff Matrix. Let � D .�n/
1
nD0 be a given complex sequence, M D

.mnk/
1
n;kD0 be the diagonal matrix with mnn D �n .n D 0; 1; : : :/, and D D

.dnk/
1
n;kD0 be the matrix with dnk D .�1/k �nk

�
. Then the matrixH D H.�/ D

DMD is called the Hausdorff matrix associated with the sequence �; i.e.,

hnk D
( Pn

jDk.�1/jCk�n
j

��
j
k

�
; 0 � k � n;

0 ; k > n;

for all k; n 2 N0.
(ii) Cesàro Matrix. The Cesàro matrix of order 1 is defined by the following

matrix C1 D .cnk/

cnk D
(

1
nC1 ; 0 � k � n;

0 ; k > n:

The inverse matrix C�1
1 D .dnk/ of the matrix C1 D .cnk/ is given by

dnk D
�
.�1/n�k.k C 1/ ; n � 1 � k � n;

0 ; 0 � n � n � 2 or k > n;

for all k; n 2 N0.
Let r > �1 and define Arn by

Arn D
�
.rC1/.rC2/���.rCn/

nŠ
; n D 1; 2; : : : ;

1 ; n D 0:
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Then the Cesàro matrix of order r is defined by the following matrix Cr D
.crnk/

crnk D
(
Ar�1n�k

Arn
; 0 � k � n;

0 ; k > n;

for all k; n 2 N0.
(iii) Euler Matrix. The Euler matrix E1 of order 1 is given by the matrix E1 D

.ank/, where

ank D
� �

n
k

�
2�n ; 0 � k � n;

0 ; k > n;

for all k; n 2 N0 whose generalization Eq of order q > 0 was defined by the
matrix Eq D .b

q

nk/, where

b
q

nk D
� �

n
k

�
.q C 1/�nqn�k ; 0 � k � n;

0 ; k > n;

for all k; n 2 N0.
Let 0 < r < 1 and

�
n
k

� D nŠ=ŒkŠ.n � k/Š� for all k; n 2 N0. Then the Euler
matrix Er of order r is defined by the matrix Er D .ernk/, where

ernk D
� �

n
k

�
.1 � r/n�krk ; 0 � k � n;

0 ; k > n;

for all k; n 2 N0. It is clear that Er corresponds to Eq for r D .q C 1/�1.
Much of the work on the Euler means of order r was done by Knopp [53].
So, some authors refer to Er as the Euler-Knopp matrix. The original Euler
means E1 D E1=2 was given by L. Euler in 1755. Er is invertible such that
.Er/�1 D E1=r with r ¤ 0:

(iv) Riesz Matrix. Let t D .tk/ be a sequence of nonnegative real numbers with
t0 > 0 and write Tn D Pn

kD0 tk for all n 2 N0. Then the Riesz matrix with
respect to the sequence t D .tk/ is defined by the matrix Rt D .r tnk/ which is
given by

rtnk D
(

tk
Tn
; 0 � k � n;

0 ; k > n;

for all k; n 2 N0. For t D e the Riesz matrix Rt is reduced to the matrix C1:
The inverse matrix St D .stnk/ of the matrix Rt D .r tnk/ is given by

stnk D
(
.�1/n�kTk

tn
; n � 1 � k � n;

0 ; 0 � k � n � 2 or k > n:
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(v) Nörlund Matrix. Let q D .qk/ be a sequence of nonnegative real numbers
with q0 > 0 and writeQn D Pn

kD0 qk for all n 2 N0. Then the Nörlund matrix
with respect to the sequence q D .qk/ is defined by the matrix Nq D .a

q

nk/

which is given by

a
q

nk D
(
qn�k

Qn
; 0 � k � n;

0 ; k > n;

for all k; n 2 N0. For q D e the Nörlund matrix Nq is reduced to the matrix
C1. Now, write t .z/ D P

n tnzn, k.z/ D 1=t.z/ D P
n knzn. The inverse Mq

of Nq is then given by .Mq/nj D kn�jQj for j � n (cf. Peyerimhoff [80,
p. 17]). In the case tn D Ar�1n for all n 2 N0, the method Nq is reduced to the
Cesàro method Cr of order r > �1.

(vi) Borel Matrix. The Borel matrix B D .bnk/
1
n;kD1 is defined by

bnk D e�nnk=kŠ

for all k; n 2 N0.

Remark 1.4.1. The following statements hold:

1. The Cesàro matrix of order r is a Toeplitz matrix if r � 0:

2. The Euler matrix Er of order r is a Toeplitz matrix if and only if 0 < r � 1:

3. The Riesz matrix Rt is a Toeplitz matrix if and only if Tn ! 0 as n ! 1.
4. The Nörlund matrixNq is a Toeplitz matrix if and only if qn=Qn ! 0 as n ! 1.
5. The Borel matrix is a Toeplitz matrix.



Chapter 2
Lambert Summability and the Prime Number
Theorem

2.1 Introduction

The prime number theorem (PNT) was stated as conjecture by German mathemati-
cian Carl Friedrich Gauss (1777–1855) in the year 1792 and proved independently
for the first time by Jacques Hadamard and Charles Jean de la Vallée-Poussin in
the same year 1896. The first elementary proof of this theorem (without using
integral calculus) was given by Atle Selberg of Syracuse University in October
1948. Another elementary proof of this theorem was given by Erdös in 1949.

The PNT describes the asymptotic distribution of the prime numbers. The PNT
gives a general description of how the primes are distributed among the positive
integers.

Informally speaking, the PNT states that if a random integer is selected in the
range of zero to some large integer N , the probability that the selected integer is
prime is about 1= ln.N /, where ln.N / is the natural logarithm of N . For example,
among the positive integers up to and including N D 103, about one in seven
numbers is prime, whereas up to and including N D 1010, about one in 23 numbers
is prime (where ln.103/ D 6:90775528 and ln.1010/ D 23:0258509). In other
words, the average gap between consecutive prime numbers among the first N
integers is roughly ln.N /:

Here we give the proof of this theorem by the application of Lambert summabil-
ity and Wiener’s Tauberian theorem. The Lambert summability is due to German
mathematician Johann Heinrich Lambert (1728–1777) (see Hardy [41, p. 372];
Peyerimhoff [80, p. 82]; Saifi [86]).

2.2 Definitions and Notations

(i) Möbius Function. The classical Möbius function �.n/ is an important mul-
tiplicative function in number theory and combinatorics.This formula is
due to German mathematician August Ferdinand Möbius (1790–1868) who

M. Mursaleen, Applied Summability Methods, SpringerBriefs in Mathematics,
DOI 10.1007/978-3-319-04609-9__2, © M. Mursaleen 2014
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introduced it in 1832. �.n/ is defined for all positive integers n and has its
values in f�1; 0; 1g depending on the factorization of n into prime factors. It is
defined as follows (see Peyerimhoff [80, p. 85]):

�.n/ D
8
<

:

1 ; n is a square-free positive integer with an even number of prime factors;
�1 ; n is a square-free positive integer with an odd number of prime factors;
0 ; n is not square-free;

that is,

�.n/ D
8
<

:

1 ; n D 1;

.�1/k ; n D p1p2 � � �pk; pi prime, pi ¤ pj ;

0 ; otherwise:
(2.2.1)

Thus

(a) �.2/ D �1, since 2 D 2;
(b) �.10/ D 1, since 10 D 2 � 5;
(c) �.4/ D 0, since 4 D 2 � 2.

We conclude that �.p/ D �1, if p is a prime number.
(ii) The Function �.x/. The prime-counting function �.x/ is defined as the

number of primes not greater than x, for any real number x, that is, �.x/ DP
p<x 1 (Peyerimhoff [80, p. 87]). For example, �.10/ D 4 because there

are four prime numbers (2, 3, 5, and 7) less than or equal to 10. Similarly,
�.1/ D 0; �.2/ D 0; �.3/ D 1; �.4/ D 2; �.1000/ D 168; �.106/ D 78498;

and �.109/ D 50847478 (Hardy [43, p. 9]).
(iii) The von Mangoldt Function ƒn. The function ƒn is defined as follows

(Peryerimhoff [80, p. 84]):

ƒn D
�

logp ; n D p˛ for some prime p and ˛ � 1;

0 ; otherwise:

(iv) Lambert Summability. A series
P1

nD1 an is said to be Lambert summable (or
summable L) to s, if

lim
x!1�

.1 � x/
1X

kD1

kakx
k

1 � xk D s: (2.2.2)

In this case, we write
P
an D s.L/: Note that if a series is convergent to s,

then it is Lambert summable to s:
This series is convergent for jxj < 1 , which is true if and only if an D

O..1C "/n/, for every " > 0 (see [6, 52, 99]).
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If we write x D e
� 1
y .y > 0/; s.t/ D P

k�t ak .a0 D 0/; g.t/ D te�t

1�e�t ;

then
P
ak is summable L to s if and only if (note that 1 � x � 1

y
)

lim
y!1

1

y

Z 1

0

te
� t
y

1 � e� t
y

ds.t/ D lim
y!1 �

Z 1

0

s.t/dg

�
t

y

	

D lim
y!1 � 1

y

Z 1

0

g0
�
t

y

	
s.t/dt D s:

The method L is regular.

2.3 Lemmas

We need the following lemmas for the proof of the PNT which is stated and proved
in the next section. In some cases, Tauberian condition(s) will be used to prove
the required claim. The general character of a Tauberian theorem is as follows.
The ordinary questions on summability consider two related sequences (or other
functions) and ask whether it will be true that one sequence possesses a limit
whenever the other possesses a limit, the limits being the same; a Tauberian theorem
appears, on the other hand, only if this is untrue, and then asserts that the one
sequence possesses a limit provided the other sequence both possesses a limit and
satisfies some additional condition restricting its rate of increase. The interest of
a Tauberian theorem lies particularly in the character of this additional condition,
which takes different forms in different cases.

Lemma 2.3.1 (Hardy [41, p. 296]; Peyerimhoff [80, p. 80]). If g.t/; h.t/ 2
L.0;1/, and if

Z 1

0

g.t/t ixdt ¤ 0 .�1 < x < 1/; (2.3.1)

then s.t/ D O.1/ (s.t/ real and measurable) and

lim
x!1

1

x

Z 1

0

g

�
t

x

	
s.t/dt D 0 implies lim

x!1
1

x

Z 1

0

h

�
t

x

	
s.t/dt D 0:

Lemma 2.3.2 (Peyerimhoff [80, p. 84]). If n D p
˛1
1 � � �p˛kk .˛i D 1; 2; : : : ; pi

prime/; then
P

d=n ƒd D logn:

Proof. Since d runs through divisors of n and we have to consider only d D
p1; p

2
1; : : : ; p

˛1
1 ; : : : ; p

˛k
k ; therefore

P
d=n ƒd D ˛1 logp1 C ˛2 logp2 C � � � C

˛k logpk D logn:
This completes the proof of Lemma 2.3.2. ut
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Lemma 2.3.3 (Peyerimhoff [80, p. 84]).

1X

nD1

.�1/n�1

ns
D .1 � 21�s/�.s/.s > 1/; (2.3.2)

where � is a Riemann’s Zeta function.

Proof. We have

1X

nD1

.�1/n�1

ns
D 1 � 1

2s
C 1

3s
� 1

4s
C � � �

D
�
1C 1

2s
C 1

3s

	
� 2

�
1

2s
C 1

4s
C 1

6s
C � � �

	

D �.s/ � 2

2s

�
1C 1

2s
C 1

3s
C � � �

	

D �.s/ � 21�s�.s/
D .1 � 21�s/�.s/:

This completes the proof of Lemma 2.3.3. ut
Lemma 2.3.4 (Hardy [41, p. 246]). If s > 1, then

�.s/ D
Y

p

ps

ps � 1 : (2.3.3)

Lemma 2.3.5 (Hardy [43, p. 253]).

� �0.s/ D �.s/

1X

nD1

ƒn

ns
(2.3.4)

Proof. From 2.3.3, we have

log �.s/ D
X

p

log
ps

ps � 1 :

Differentiating with respect to s and observing that

d

ds

�
log

ps

ps � 1
	

D � logp

ps � 1 ;



2.3 Lemmas 17

we obtain

� �0.s/
�.s/

D
X

p

logp

ps � 1 : (2.3.5)

The differentiation is legitimate because the derived series is uniformly convergent
for s � 1C ı > 1; ı > 0:

We can write (2.3.5) in the form

��
0.s/
�.s/

D
X

p

logp
1X

mD1
p�ms

and the double series
PP

p�ms logp is absolutely convergent when s > 1. Hence
it may be written as

X

p;m

p�ms logp D
1X

nD0
ƒnn

�s :

This completes the proof of Lemma 2.3.5. ut
Lemma 2.3.6 (Peyerimhoff [80, p. 84]). sn ! s.L/, as n ! 1 and an D O

�
1
n

�

imply sn ! s, as n ! 1.

Proof. We wish to show that an D O.1=n/ is a Tauberian condition. In order to
apply Wiener’s theory we must show that (2.3.1) holds. But for " > 0

�
Z 1

0

t ixC"g0.t/dt D .ix C "/

Z 1

0

t ixC"�1g.t/dt

D .ix C "/

1X

kD0

Z 1

0

t ixC"e�.kC1/tdt

D .ix C "/	.1C "C ix/

1X

kD0

1

.k C 1/1C"Cix

i.e.,

�
Z 1

0

t ixg0.t/dt D 	.1C ix/ lim
"!0

.ix C "/�.1C "C ix/:

This has a simple pole at 1 and is ¤ 0 on the line Rez D 1: A stronger theorem is
true, namely, L � Abel , i.e., every Lambert summable series is also Abel summable
(see [42]), which implies this theorem. For the sake of completeness we give a proof
that �.1C ix/ ¤ 0 for real x. The formula (2.3.4) implies �.1C ix/ ¤ 0:

This completes the proof of Lemma 2.3.6. ut
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Lemma 2.3.7 (Peyerimhoff [80, p. 86]).

1X

nD1

�.n/

n
D 0

Proof. This follows from O-Tauberian theorem for Lambert summability, ifP1
nD1

�.n/

n
D O.L/. But

.1 � x/
1X

nD1

�.n/xn

1 � xn D .1 � x/
1X

nD1
�.n/

1X

kD0
xn.kC1/

D .1 � x/
1X

mD1

X

n=m

�.n/ D x.1 � x/:

A consequence is (by partial summation)

X

k�n
�.k/ D O.n/ (2.3.6)

which follows with the notation

m.t/ D
X

1�k�t

�.k/

k
from

X

k�n
�.k/ D

Z n

1�0
tdm.t/ D nm.n/ �

Z n

1

m.t/dt:

This completes the proof of Lemma 2.3.7. ut
Lemma 2.3.8 (Hardy [43, p. 346]). Suppose that c1; c2; : : : ; is a sequence of
numbers such that

C.t/ D
X

n�t
cn

and that f .t/ is any function of t . Then

X

n�x
cnf .n/ D

X

n�x�1
C.n/ff .n/ � f .nC 1/g C C.x/f .Œx�/: (2.3.7)

If, in addition, cj D 0 for j < n1 and f .t/ has a continuous derivative for t � n1,
then

X

n�x
cnf .n/ D C.x/f .x/ �

Z x

n1

C.t/f 0.t/dt: (2.3.8)
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Proof. If we write N D Œx�, the sum on the left of (2.3.7) is

C.1/f .1/C fC.2/ � C.1/gf .2/C � � � C fC.N/ � C.N � 1/gf .N /
D C.1/ff .1/ � f .2/g C � � � C C.N � 1/ff .N � 1/ � f .N /g C C.N/f .N /:

Since C.N/ D C.x/, this proves (2.3.7). To deduce (2.3.8), we observe that C.t/ D
C.n/ when n � t < nC 1 and so

C.n/Œf .n/ � f .nC 1/� D �
Z nC1

n

C.t/ f 0.t/dt:

Also C.t/ D 0 when t < n1:
This completes the proof of Lemma 2.3.8. ut

Lemma 2.3.9 (Hardy [43, p. 347]).

X

n�x

1

n
D log x C C CO

�
1

x

	
;

where C is Euler’s constant.

Proof. Put cn D 1 and f .t/ D 1=t . We have C.x/ D Œx� and (2.3.8) becomes

X

n�x

1

n
D Œx�

x
C
Z x

1

Œt �

t 2
dt

D log x C C CE;

where

C D 1 �
Z 1

1

t � Œt �
t 2

dt

is independent of x and

E D
Z 1

x

t � Œt �
t 2

dt � x � Œx�
x

D
Z 1

x

O.1/

t2
dt CO

�
1

x

	

D O

�
1

x

	

This completes the proof of Lemma 2.3.9. ut
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Lemma 2.3.10 (Peyerimhoff [80, p. 86]). If

�.x/ D
X

k�x

h
 
�x
k

�
� x

k
C log

x

k
CC

i
and  .x/ D

X

n�x
ƒn;

then �.x/ D O.log.x C 1//:

Proof. Möbius formula (2.2.1) yields that

 .x/ � x C log x C C D
X

d� x

�
�x
d

�
�.d/: (2.3.9)

From logn D P
d=n ƒd Lemma 2.3.2, it follows that

X

n�x
logn D

X

n�x

X

kdDn
ƒd D

X

k�x

X

d�x=k
ƒd D

X

k�x
 
�x
k

�
:

Therefore, we obtain

�.x/ D
X

n�x
logn � x



log x C C CO

�
1

x

	�
C Œx� log x �

X

k�x
log k C Œx�C;

i.e.,

�.x/ D O.log.x C 1//: (2.3.10)

This completes the proof of Lemma 2.3.10. ut
Lemma 2.3.11 ([Axer’s Theorem] (Peyerimhoff [80, p. 87])). If

(a) �.x/ is of bounded variation in every finite interval Œ1; T �;
(b)

P
1�k�x ak D O.x/;

(c) an D O.1/;

(d) �.x/ D O.x˛/ for some 0 < ˛ < 1;

then

X

1�k�x
�
�x
k

�
ak D O.x/:

Proof. Let 0 < ı < 1. Then

X

1�k�ıx
�
�x
k

�
ak D O.x˛/ ı1�˛ x1�˛ D O

�
xı1�˛

�
:
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Assuming that m � 1 < ıx � m, N � x < N C 1 (m and N integers), we have

X

ıx�k�x
�
�x
k

�
ak D

N�1X

kDm



�
�x
k

�
� �

�
x

k C 1

	�
sk C �

� x
N

�
sN � �

� x
m

�
sm�1

D O.x/

Z x

ıx

ˇ̌
ˇd�

�x
t

�ˇ̌
ˇCO.x/

D O.x/

Z 1=ı

1

jd�.t/j CO.x/:

This completes the proof of Lemma 2.3.11. ut
Lemma 2.3.12 (Peyerimhoff [80, p. 87]).  .x/ � x D O.x/.

Proof. It follows from (2.3.6), (2.3.9), (2.3.10), and Axer’s theorem, that  .x/ �
x D O.x/:

This completes the proof of Lemma 2.3.12. ut
Lemma 2.3.13 (Peyerimhoff [80, p. 87]). Let #.x/ D P

p�x logp .p prime/;
then

(a) #.x/ �  .x/ D O.x/;
(b)  .x/ D #.x/C #.

p
x/C � � � C #.

p
x/, for every k > log x

log 2 .

Lemma 2.3.14 (Peyerimhoff [80, p. 87]).

 .x/ D #.x/CO.1/
log x

log 2

p
x:

Proof. It follows from part (b) of Lemma 2.3.13 that

 .x/ D #.x/CO.1/
log x

log 2

p
x:

This completes the proof of Lemma 2.3.14. ut
Lemma 2.3.15 (Peyerimhoff [80, p. 87]).

#.x/ D x CO.x/: (2.3.11)

Proof. Lemma 2.3.14 implies that #.x/ D x CO.x/: ut
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2.4 The Prime Number Theorem

Theorem 2.4.1. The PNT states that �.x/ is asymptotic to x= log x (see Hardy
[41, p. 9]), that is, the limit of the quotient of the two functions �.x/ and
x= ln x approaches 1, as x becomes indefinitely large, which is the same thing as
Œ�.x/ log x�=x ! 1, as x ! 1 (Peyerimhoff [80, p. 88]).

Proof. By definition and by

�.x/ D
Z x

3=2

1

log t
d#.t/

D #.x/

log x
C
Z x

3=2

#.t/

t.log t /2
dt

D #.x/

log x
CO

�
x

.log x/2

	

[note that #.x/ D O.x/�:

Using (2.3.11) we obtain the PNT, i.e.,

lim
x!1�.x/ D x

log x
;

or

lim
x!1

�.x/ log x

x
D 1:

This completes the proof of Theorem 2.4.1. ut



Chapter 3
Summability Tests for Singular Points

3.1 Introduction

A point at which the function f .z/ ceases to be analytic, but in every neighborhood
of which there are points of analyticity is called singular point of f .z/.

Consider a function f .z/ defined by the power series

f .z/ D
1X

nD0
anzn (3.1.1)

having a positive radius of convergence. Every power series has a circle of
convergence within which it converges and outside of which it diverges. The radius
of this circle may be infinite, including the whole plane, or finite. For the purposes
here, only a finite radius of convergence will be considered. Since the circle of
convergence of the series passes through the singular point of the function which is
nearest to the origin, the modulus of that singular point can be determined from the
sequence an in a simple manner. The problem of determining the exact position of
the singular point on the circle of convergence is considered; tests can be devised to
determine whether or not that point is a singular point of the function defined by the
series. It may be supposed, without loss of generality, that the radius of convergence
of the series is 1. In this chapter we apply Karamata/Euler summability method to
determine or test if a particular point on the circle of convergence is a singular point
of the function defined by the series (3.1.1).

3.2 Definitions and Notations

Karamata’s summability method KŒ˛; ˇ� was introduced by Karamata (see [8]) and
the summability method associated with this matrix is called Karamata method or
KŒ˛; ˇ�-method (c.f. [86]).

M. Mursaleen, Applied Summability Methods, SpringerBriefs in Mathematics,
DOI 10.1007/978-3-319-04609-9__3, © M. Mursaleen 2014
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24 3 Summability Tests for Singular Points

The Karamata matrix KŒ˛; ˇ� D .cnk/ is defined by

cnk D
�
1 ; n D k D 0;

0 ; n D 0; k D 1; 2; 3; : : : ;



˛ C .1 � ˛ � ˇ/z

1 � ˇz

�n
D

1X

kD0
cnkzk; n D 1; 2; : : : :

KŒ˛; ˇ� is the Euler matrix for KŒ1 � r; 0� D E.r/ (see [2]); the Laurent matrix
for KŒ1 � r; r� D S.r/ (see [95]), and with a slight change, the Taylor matrix for
KŒ0; r� D T .r/ (see [28]). If T .r/ D .cnk/; then



.1 � r/z
1 � rz

�nC1
D

1X

kD0
cnkzkC1; n D 0; 1; 2; : : :

3.3 Tests for Singular Points

King [49] devised two tests in the form of following theorems, each of which
provides necessary and sufficient condition that z D 1 be a singular point of the
function defined by the series (3.1.1).

Theorem 3.3.1. A necessary and sufficient condition that z D 1 be a singular point
of the function defined by the series (3.1.1) is that

lim sup
n!1

ˇ̌
ˇ̌
ˇ

nX

mD0

 
n

m

!
rm.1 � r/n�m am

ˇ̌
ˇ̌
ˇ

1=n

D 1;

for some 0 < r < 1:

Proof. Consider the function

F.t/ D 1

1 � .1 � r/t f
�

rt

1 � .1 � r/t
	
:

F .t/ is regular in the region

Dr D
�
t W
ˇ̌
ˇ̌ rt

1 � .1 � r/t
ˇ̌
ˇ̌ < 1

�
:

Furthermore, z D 1 is a singular point of f .z/ if and only if t D 1 is a singular point
of F.t/. A simple calculation gives
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Dr D ft W Re.t/ < 1g;

Dr D
�
t W
ˇ̌
ˇ̌t � 1 � r

1 � 2r
ˇ̌
ˇ̌ >

r

1 � 2r
�
;

Dr D
�
t W
ˇ̌
ˇ̌t � 1 � r

1 � 2r
ˇ̌
ˇ̌ <

r

2r � 1
�
;

for r D 1=2; 0 < r < 1=2; and 1=2 < r < 1, respectively. In each case t D 1 is on
the boundary of Dr and Dr contains all points of the closed unit disk except t D 1.
If we write F.t/ D P1

nD0 bntn, it follows that t D 1 is a singular point of F.t/ if
and only if the radius of convergence of the series is exactly 1. That is, if and only if

lim sup
n!1

jbnj1=n D 1:

The function F.t/ is given by

F.t/ D 1

1 � .1 � r/t
1X

mD0
am



rt

1 � .1 � r/t
�m

D
1X

mD0
amr

mtm
1X

nDm

 
n

m

!
.1 � r/n�mtn�m

provided that .1� r/jt j < 1. It is easy to verify the interchange of summation in the
last expression. Hence, F.t/ D P1

nD0 tn
Pn

mD0
�
n
m

�
rm.1 � r/n�mam. Therefore,

bn D
nX

mD0

 
n

m

!
rm.1 � r/n�mam: (3.3.1)

This completes the proof. ut
Theorem 3.3.2. A necessary and sufficient condition that z D 1 be a singular point
of the function defined by the series (3.1.1) is that

lim sup
m!1

ˇ̌
ˇ̌
ˇ

1X

nDm

 
n

m

!
rn�m.1 � r/mC1 an

ˇ̌
ˇ̌
ˇ

1=n

D 1;

for some 0 < r < 1:

Proof. Consider the function

G.t/ D .1 � r/ f .r C .1 � r/t/:
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G.t/ is regular in the region Rr D ft W jr C .1 � r/t j < 1g. A simple calculation
gives

Rr D
�
t W
ˇ̌
ˇt � r

r � 1
ˇ̌
ˇ <

1

1 � r
�
:

The point t D 1 is on the boundary of Rr and Rr contains all points of the closed
unit disk except t D 1. If we write

G.t/ D
1X

nD0
cnt

n;

it follows that z D 1 is a singular point of f .z/ if and only if

lim sup
n!1

jcnj1=n D 1:

The function G.t/ is given by

G.t/ D .1 � r/
1X

nD0
an.r C .1 � r/t/n

D .1 � r/
1X

nD0
an

1X

mD0

 
n

m

!
rn�m.1 � r/mtm

D
1X

mD0
tm

1X

nDm

 
n

m

!
rn�m.1 � r/mC1an:

Hence,

cm D
1X

nDm

 
n

m

!
rn�m.1 � r/mC1an: (3.3.2)

This completes the proof. ut
These theorems yield the following corollaries.

Corollary 3.3.3. If the sequence .an/ is E.r/-summable, 0 < r < 1, to a nonzero
constant, then z D 1 is a singular point of the function defined by the series (3.1.1).

Corollary 3.3.4. If the sequence .an/ is T .r/-summable, 0 < r < 1, to a nonzero
constant, then z D 1 is a singular point of the function defined by the series (3.1.1).

Extending the above results, Hartmann [44] proved Theorem 3.3.6. The follow-
ing lemma is needed for the proof of Theorem 3.3.6.
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Lemma 3.3.5. If KŒ˛; ˇ� D .cnk/ for j˛j < 1; jˇj < 1, then there exists 
 > 0,
independent of k, such that for jt j < 
 and k D 0; 1; 2; : : :,

1X

nD0
cn;kC1tn D .1 � ˛/.1 � ˇ/t

.1 � ˛t/2


ˇ C .1 � ˛ � ˇ/t

1 � ˛t
�k
:

Proof. Let f .z/ D Œ˛ C .1 � ˛ � ˇ/z�=.1 � ˇz/. If 0 < R < 1 < 1=jˇj, then there
exists 
1 > 0 such that if jt j � 
1 and let

�t .z/ D 1

1 � tf .z/ D
1X

nD0
tnŒf .z/�:

Since this convergence is uniform in jzj � R, one can apply Weierstrass theorem on
uniformly convergent series of analytic functions (see [53]) to write

1X

nD0
tnŒf .z/�n D

1X

nD0
tn

 1X

kD0
cnkzk

!
D

1X

kD0
zk
 1X

nD0
cnkt

n

!
: (3.3.3)

But

1

1 � tf .z/ D 1 � ˇz

.1 � ˛t/
h
1 � ˇC.1�˛�ˇ/t

1�˛t z
i : (3.3.4)

There exits 
2 > 0 such that jt j � 
2 and jzj � R imply jŒˇ C .1 � ˛ � ˇ/t�z=Œ1 �
˛t�j < 1. Thus (3.3.4) may be expanded in a power series,

1

1 � tf .z/ D
1X

kD0

1 � ˇz

1 � ˛t


ˇ C .1 � ˛ � ˇ/t

1 � ˛t
�k

zk: (3.3.5)

Then, for jt j � min.
1; 
2/; one has, by equating coefficients in (3.3.3) and (3.3.5),
the results of the lemma. ut
Theorem 3.3.6. A necessary and sufficient condition that z D 1 be a singular point
of the function defined by the series (3.1.1) is that

lim sup
n!1

ˇ̌
ˇ̌
ˇ

1X

kD0
cn;kC1ak

ˇ̌
ˇ̌
ˇ

1=n

D 1 (3.3.6)

for some ˛ < 1; ˇ < 1 and ˛ C ˇ > 0.
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Proof. Consider the function

F.t/ D .1 � ˛/.1 � ˇ/t
.1 � ˛t/2 f

�
ˇ C .1 � ˛ � ˇ/t

1 � ˛t
	
:

F .t/ is regular in the region D, where

D D
�
t W
ˇ̌
ˇ̌ˇ C .1 � ˛ � ˇ/t

1 � ˛t
ˇ̌
ˇ̌ < 1

�
:

Furthermore, z D 1 is a singular point of f .z/ if and only if t D 1 is a singular point
of F.t/. A simple calculation gives

D D

8
<̂

:̂

t W jt C ˛Cˇ
1�ˇ�2˛ j < j 1�˛

1�ˇ�2˛ j ; 1 � ˇ � 2˛ > 0I
t W Re .t/ < 1 ; 1 � ˇ � 2˛ D 0I

t W jt C ˛Cˇ
1�ˇ�2˛ j > j 1�˛

1�ˇ�2˛ j ; 1 � ˇ � 2˛ < 0:
In each case t D 1 is on the boundary of D and D contains all points of the closed
unit disk except t D 1. Writing F.t/ in series form yields

F.t/ D .1 � ˛/.1 � ˇ/t
.1 � ˛t/2

1X

kD0
ak



ˇ C .1 � ˛ � ˇ/t

1 � ˛t
�k
;

provided t " D. By Lemma 3.3.5, there exists 
 > 0 such that for jt j � 
1 < 
 and
k D 0; 1; 2; : : :

1X

nD0
cn;kC1tn D .1 � ˛/.1 � ˇ/t

.1 � ˛t/2


ˇ C .1 � ˛ � ˇ/t

1 � ˛t
�k
: (3.3.7)

Since .1�˛/.1�ˇ/t=.1�˛t/2 vanishes for t D 0 and ŒˇC .1�˛�ˇ/t�=Œ1�˛t�
is equal to ˇ for t D 0, with jˇj < 1, there exists 
2.˛; ˇ/ < 
1 such that jt j � 
2
implies jP1

nD0 cn;kC1tnj � Mrk for some r D r.˛; ˇ/ < 1. Thus

ˇ̌
ˇ̌
ˇ

1X

kD0

1X

nD0
cn;kC1aktn

ˇ̌
ˇ̌
ˇ �

1X

kD0
jakj

ˇ̌
ˇ̌
ˇ

1X

nD0
cn;kC1tn

ˇ̌
ˇ̌
ˇ

� M

1X

kD0
jakjrk;

which converges since (3.3.7) has radius of convergence one. Weierstrass theorem
now implies

F.t/ D
1X

kD0

1X

nD0
cn;kC1aktn; (3.3.8)
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for jt j � 
2. By analytic continuation (3.3.8) holds in a disk whose boundary
contains the singularity of F.t/ nearest the origin and t D 1 is a singular point
of F.t/ if and only if the radius of convergence of series (3.3.8) is exactly 1, i.e.,

lim sup
n!1

ˇ̌
ˇ̌
ˇ

1X

kD0
cn;kC1ak

ˇ̌
ˇ̌
ˇ

1=n

D 1: (3.3.9)

This completes the proof of the theorem. ut
From this, following result may be deduced.

Corollary 3.3.7. If the sequence .0; a0; a1; : : :/ is KŒ˛; ˇ� summable ˛ < 1; ˇ <

1; ˛ C ˇ > 0, to a nonzero constant, then z D 1 is a singular point of the function
given by (3.1.1).

Remark 3.3.8. NoticeKŒ˛; ˇ� is regular for ˛ < 1; ˇ < 1 and ˛Cˇ > 0 (see [8]). If
.bn/ is the KŒ˛; ˇ� transform of .0; a0; a1; : : :/, then b0 D 0, bn D P1

kD0 cn;kC1ak ,
n D 1; 2; : : :. Now, if .0; a0; a1; : : :/ is KŒ˛; ˇ� summable to a nonzero constant,
then (3.3.6) holds. If the T .r/ transform of .an/ is .cn/ and the KŒ0; r� transform of
.0; a0; a1; : : :/ is .�n/, then �0 D 0, �n D cn�1.n � 1/ and thus one has immediately
Corollary 3.3.4. In [2] it is proved that E.r/ is translative to the right when E.r/ is
regular, so Corollary 3.3.7 implies Corollary 3.3.3.



Chapter 4
Lototski Summability and Analytic
Continuation

4.1 Introduction

Analytic continuation is a technique to extend the domain of a given analytic
function. Analytic continuation often succeeds in defining further values of a
function, for example, in a new region where an infinite series representation in
terms of which it is initially defined becomes divergent.

The problem of analytic continuation by summability may be formulated as
follows: Let f .z/ have the Taylor expansion

f .z/ D
nX

kD0
ak.z � z0/

k (4.1.1)

with a positive radius of convergence. Two questions arise: (i) What is the condition
of efficiency of a special linear transformation of (4.1.1) regarding the analytic
continuation of f .z/? (ii) Given some domain in the complex plane, does there
exist a linear transformation of (4.1.1) which yields the analytic continuation of
f .z/ exactly into this domain and nowhere else? In some cases, as has been shown
by Borel [18], Okada [78], and Vermes [96], it is sufficient to focus attention on the
continuation of the geometric series

P
zn; jzj < 1I in this chapter we deal only with

the series in (4.1.1). In this context, Cooke and Dienes [27] have shown that there
exist transformations that are effective at some distinct points outside the circle of
convergence; this result was extended by Vermes [97] to a denumerable set of points.
Russel [85] and Teghem [94] have produced transformations effective respectively
on Jordan arcs and on domains that are not simply connected. In this chapter,
we describe a new Toeplitz summability method, i.e., the generalized Lototski or
ŒF; dn�-summability, and study the regions in which these methods sum a Taylor
series to the analytic continuation of the function which it represents.

M. Mursaleen, Applied Summability Methods, SpringerBriefs in Mathematics,
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4.2 Definitions and Notations

(i) Suppose f is an analytic function defined on an open subsetU of the complex
plane. If V is a larger open subset of the complex plane containing U and g
is an analytic function defined on V such that

g.z/ D f .z/ for all z 2 U;

then g is called an analytic continuation of f . In other words, the restriction
of g to U is the function f we started with.

(ii) Corresponding to a real or complex sequence .dk/ such that dk ¤ �1 for all
k 2 N, the generalized Lototski or ŒF; dn�-transform .tn/ of a sequence .sn/
is defined by (Jakimovski [46])

tn D
nY

kD1

.dk CE/.s0/

dk C 1
; n � 1; (4.2.1)

where

Ep.sk/ D spCk; k � 0; p � 0:

If lim tn exists as n ! 1, we say that .sn/ is summable ŒF; dn� to the value
lim tn.

(iii) For every sequence of polynomials fPn.x/g satisfying Pn.1/ ¤ 0, the
ŒF �; Pn�-transform of a sequence .sn/ will be defined by

t�n D
nY

kD0

Pk.E/.s0/

Pk.1/
; n � 1: (4.2.2)

It may easily be seen that if .sn/ is the sequence of sums of the geometric
series

P1
nD0 zn, .z ¤ 1/; then in the notation above

tn D 1

1 � z
� z

1 � z

nY

kD1

dk C z

dk C 1
(4.2.3)

and

t�n D 1

1 � z
� z

1 � z

nY

kD1

Pk.z/

Pk.1/
: (4.2.4)
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It follows that tn ! .1 � z/�1, as n ! 1 if and only if

lim
n!1

Y dk C z

dk C 1
D 0; (4.2.5)

while t�n ! 1=.1 � z/, as n ! 1 if and only if

lim
n!1

nY

kD1

Pk.z/

Pk.1/
D 0: (4.2.6)

(iv) By 	 , we denote a family of Jordan arcs � in the complete complex plane,
with end points 0, 1 directed from 0 to 1, and having the following
properties: (a) If �1 and �2 are two different elements of 	 , then they intersect
only at 0 and 1; (b) to each complex z .z ¤ 0;1/ corresponds an element
�.z/ D � 2 	 passing through z. We write Œ0; z� and Œz;1� for the subarcs
of �.z/ with end points 0 and z and with end points z and 1, respectively, and
we replace brackets by parenthesis to indicate the corresponding end point is
deleted from the subarc.

(v) If A and B are two point sets, we denote:

(a) by d.A;B/, the distance between them;
(b) by A�1, the set fz W z�1 2 Ag;
(c) by AB , the set fs W s D zw; z 2 A; w 2 Bg;
(d) by wA, the set fs W s D zw; z 2 Ag;
(e) by Ac , the complement of A relative to the complete complex plane.

(vi) A family 	 will be called continuous provided to each z ¤ 0;1, and each
" > 0 there corresponds a ı D ı.z1; "/ > 0, such that

sup
w2Œ0;z�

d.w; Œ0; z1�/ < ";

for all points z in the disk jz � z1j < ı: The following example shows that an
arbitrary family � is not necessarily continuous. Let �0 be the linear ray z � 0.
For n � 1, let �n be the polygonal line composed of the two line segments
Œ0; 3C 3i=2n� and Œ3C 3i=22n; 2C 3i=22nC1� and the ray t C 3i=22nC1, .t �
2/. We can easily embed the sequence .�n/10 in a family � (not uniquely).
Suppose this is done, and choose z1 D 2 and z D 2C 2�.nC1/i . Then,

sup
w2Œ0;z�

d.w; Œ0; 2�/ � d.3C 3i=22n; 2/ > 1:

Choose " D 1, we see that � is not continuous.
(vii) Denote by P 	 P.z/, a power series

P1
nD0 anzn with the partial sums sn.z/

and with a positive radius of convergence. Continue P.z/ analytically along
each � 2 	 from 0 to the first singular point w.�/ on � . If there is no finite



34 4 Lototski Summability and Analytic Continuation

singular point on � , we define w.�/ D 1. By M 	 M.P I	/ we denote the
union of all the sets Œ0;w.�//, and we call this set the 	-Mittag-Leffler star of
P.z/. Clearly, 1 62 M (se [47]). If z0 2 M , we denote by P.z0I	/, the value
at z0 of the analytic continuation of P.z/ along �.z0/. By definition, P.zI	/
is a single valued function in M . A set D is called a 	-star set provided it is
not empty, 1 62 D, and z 2 D implies Œ0; z� 
 D. A 	-star set that is also
a domain. Obviously, a 	-star domain is simply connected, a union of 	-star
domains, and an intersection of 	-star sets is a 	-star set.

(viii) For a family 	 , we define the set D.	/ by

D.	/ D
n
s D z

w
; z ¤ 0;1I w 2 .0; z�

o
:

A set D is 	-regular if 0 2 D; 1 62 D; 1 62 D; and D.	/ 
 Dc .

4.3 Main Results

We discuss in this chapter the results obtained by Meir [5] and Jakimovski [47].
Generalizing some known results Meir [5] proved the following theorems.

Theorem 4.3.1. Let the polynomial P.z/ satisfy

ReŒP.1/� D 0: (4.3.1)

Then, there exists a fixed sequence .dn/, .n � 1 and dn ¤ �1/ such that
ŒF; dn�-transform sums the geometric series to the value .1 � z/�1 for every z for
which ReŒP.z/� > 0 and does not sum it for every z for which ReŒP.z/� < 0.
The convergence of the transform is uniform in every bounded closed subset of
fz;ReŒP.z/� > 0g:
Proof. Clearly we may suppose P.z/ ¤ constant. Then for every k � 1

P.z/C k D c
�
z C ak1

� �
z C ak2

� � � �
�

z C akp

�
; (4.3.2)

where p � 1, c ¤ 0 and c does not depend on k. Define now d1 D a0
1; d2 D

a0
2; : : : ; dp D a21; : : : ; d2p; : : : and in general if � D �p C 
, .0 < 
 � p/

d� D a�C1
p : (4.3.3)

Now let n D mp C q, .0 � q < p/; then

nY

�D1

d� C z

d� C 1
D

nQ
kD1

P.z/Ck
P.1/Ck

 
mpCqQ
�DmpC1

d�Cz
d�C1

!
D …

.n/
1 …

.n/
2 ; (4.3.4)
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where the second factor is 1 if q D 0. By (4.3.1), if j1�zj < ı, then jReP.z/j < 1=2,
and by (4.3.2) and (4.3.3) for 1 � 
 � p; � � 0,

P.�d�pC
/ D �.�C 1/ � �1I (4.3.5)

thus

j1C d� j � ı > 0; � D 1; 2; : : : (4.3.6)

ˇ̌
ˇ….n/

2

ˇ̌
ˇ D

ˇ̌
ˇ̌
ˇ̌
npCqY

�DnpC1

�
1C z � 1

d� C 1

	ˇ̌ˇ̌
ˇ̌ �

npCqY

�DnpC1

�
1C

ˇ̌
ˇ̌ z � 1
d� C 1

ˇ̌
ˇ̌
	
; (4.3.7)

and by (4.3.6)

ˇ̌
ˇ….n/

2

ˇ̌
ˇ � .1C

� jz � 1j
ı

	p�1
:

Thus….n/
2 is uniformly bounded for every n � 1 and for every z belonging to a fixed

bounded point set.

ˇ̌
ˇ….n/

1

ˇ̌
ˇ
2 D

nY

kD1

ˇ̌
ˇ̌P.z/C k

P.1/C k

ˇ̌
ˇ̌
2

D
nY

kD1

�
1C 2kReŒP.z/�C jP.z/j2 � jP.1/j2

k2 C jP.1/j2
�
: (4.3.8)

By a well-known theorem on infinite products

lim
n!1…

.n/
1 D

�
0 ; ReŒP.z/� < 0;
1 ; ReŒP.z/� > 0:

(4.3.9)

Also, the convergence to 0 is uniform in every point set where Re P.z/ � �", with
" > 0 fixed. (4.3.9), (4.3.7), (4.3.4), and (4.3.5) prove the theorem. ut
Theorem 4.3.2. Let R be a bounded set that contains the point z D 1 and whose
complement consists either of the point 1 or of an unbounded domain. Let f .z/ be
an analytic regular function satisfying

ReŒf .1/� D 0: (4.3.10)

Then, there exists a sequence of polynomials fPn.x/g, .n � 1; Pn.1/ ¤ 0/ such
that ŒF �; Pn�-transformation sums the geometric series to the value .1 � z/�1 for
every z 2 R for which ReŒf .z/� < 0 and does not sum it for z 2 R for which
ReŒf .z/� > 0.
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Proof. By the well-known theorem of Walsh [98], for every k � 1 there exist
polynomials Qk.z/ satisfying

jQk.z/ � f .z/j < 1

k
(4.3.11)

for z 2 R with jzj � k, and

Qk.1/ D f .1/I k D 1; 2; : : : : (4.3.12)

Define

Pk.z/ D Qk.z/C kI k D 1; 2; : : : : (4.3.13)

By (4.3.11)–(4.3.13) for any fixed z such that jzj � K

Pk.z/

Pk.1/
D 1C f .z/ � f .1/

k
CO

�
1

k2

	
:

Now, by (4.3.2) and the theory of infinite products, if z 2 R

lim
n!1

nY

kD1

Pk.z/

Pk.1/
D
�
0 ; ReŒP.z/� < 0;
1 ; ReŒP.z/� > 0;

by (4.2.6).
This completes the proof of the theorem. ut

Remark 4.3.3. A generalization of Theorem 4.3.2 can be made to the situation
where R is the union of increasing sequence of bounded closed sets Ri the
complement of each of which is an unbounded domain. This result will prove the
existence of an ŒF �; Pn�-transformation that is effective for

P
zn in the Mittag-

Leffler star of .1 � z/�1. It has to be mentioned that the ŒF �; Pn�-transformations
are row-finite. Because of the lengthy proof Meir only stated the following result
too:

Theorem 4.3.4. LetD be an union of a finite number of simply connected bounded
domains having Jordan boundaries. Let z D 1 lie on the boundary, and let
E be a closed subset of the complement of D. Then, there exists an ŒF �; Pn�-
transformation, which sums the geometric series to the sum .1 � z/�1 for every
z 2 D and does not sum it for every z 2 E.

In the more generalized setup, Jakimovski [47] proved the following:

Theorem 4.3.5. Let 	 be continuous. Suppose the infinite matrix .anm/1n;mD0 has
the following properties:

(i)
P1

mD0 anm ! 1, as n ! 1.
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(ii) For certain open and 	-regular set D, the relation

lim
n!1

1X

mD0
anmzmC1 D 0

holds uniformly in every compact subset of D. Then, for each power series P.z/
with a positive radius of convergence, the relation

lim
n!1

1X

mD0
anm sm.z/ D P.z; 	/ (4.3.14)

holds uniformly in each compact subset of the set  D \fwD W w … M; w … 1g,
where M is defined in part (vii).

The following lemmas are needed for the proof of Theorem 4.3.5.

Lemma 4.3.6. If 	 is continuous, thenM.P I	/ is a simply connected domain and
P.zI	/ is holomorphic in M.P I	/. If 	 is not continuous, then M.P I	/ is not
necessarily a domain.

Proof. We have to show that if 	 is continuous, thenM.P I	/ is a simply connected
domain and d

d zP.zI	/ exists for all z 2 M . If z0 2 M and z0 ¤ 0, then there
exists a domain G and a function f , holomorphic in G, such that Œ0; z0� 
 G and
f .z/ D P.zI	/ for z 2 Œ0; z0�. The continuity of 	 implies the existence of a ı > 0
such that Œ0; z� 
 G whenever jz � z0j < ı. Therefore

fz W jz � z0j < ıg 
 M.P I	/

and P.zI	/ D f .z/ for these values of z. Thus P 0.z0I	/ exists and M.P I	/ is an
open set. The first part of lemma now follows from the general properties of 	-star
sets.

Next, let 	 be the noncontinuous family described earlier. In order to prove
Lemma 4.3.6 it is enough to show the existence of the power series P.z/ with a
positive radius of convergence such that M.P I	/ is not a domain. Choose

an D 5

2
C 19i

22nC3 ; bn D 2C 3i

22nC1 I .n � 1/:

For the function logf.z�an/=.bn�an/g.n � 1/, choose at z D 0 the branch which, if
continued analytically from 0 to bn along the linear segment Œ0; bn�, yields at z D bn
the value log 1 D 2�i . The function

P.z/ D
1X

nD1

1

nŠ log z�an
zn�bn
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is holomorphic in jzj < 5=2. For the Jordan arc �0 of our discontinuous family,
w.�0/ D 5=2. For the Jordan arcs � 0

n, w.�n/ D bn. This means that

�
z W 0 � z <

5

2

�

 M.P I	/

and
�

z W z D t C 3i

22nC1 ; t � 2

�

 M.P I	/C ; .n � 1/:

Hence each point z with 2 � z < 5=2 is not an interior point of M.P I	/, and
M.P I	/ is not a domain.

This completes the proof of Lemma 4.3.6. ut
Lemma 4.3.7. Let D be a 	-regular set. Suppose � is a bounded Jordan curve
whose interior contains the point 0. If a set F satisfies the condition F 
 \w2�wD,
then it lies in the interior of � .

Proof. If z is on � or in the exterior of � , then z ¤ 0 and there exists a point z1
such that z1 2 .0; z�; z1 2 � , and Œ0; z1/ is included in the interior of � . Hence
zz�1
1 2 D.	/ 
 DC . The last fact and hypothesis on F imply that z 62 F .
This completes the proof of Lemma 4.3.7 ut

Proof of Theorem 4.3.5. Suppose that F is any compact set in  and 0 2 F . First
we establish the existence of rectifiable Jordan curve � with the following three
properties:

(a) � 
 M.P I	/I
(b) 	��1 
 DI
(c) F lies in the interior of �:

Since M.P I	/ is a 	-star set, Lemma 4.3.6 and our hypothesis on F imply that

F.MC /�1 
 D and ı 	 d.F.MC /�1;DC / > 0:

Because the set .MC /�1 is a bounded continuum, there corresponds to each a > 0

a rectifiable Jordan curve � that includes .MC /�1 in its interior and has the property

sup
w2�

d.w; .MC /�1/ <
ı

4a
:

Let � D ��1. Then � obviously has property (a). Since F is bounded (say jzj � a

for all z 2 F ), there corresponds to each u 2 � a point w D w.u/ 2 MC such that
ju�1 � w�1j < ı=4a, whence jz=u � z=wj < ı=4 for all z 2 F . Thus

d
� z

u
;DC

�
� d

� z

w
;DC

�
�
ˇ̌
ˇ

z

u
� z

w

ˇ̌
ˇ >

ı

2
:
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Therefore d.F ��1;DC / > ı=2. In particular, � has property (b). Since property
(b) is equivalent to the assumption that F 
 , Lemma 4.3.7 implies that � has
property (c). Lemma 4.3.6, the properties of � , the fact that 1 62 D, the assumption
(ii) of Theorem 4.3.5, and the calculus of residues yield the relation

P.zI	/ D 1

2�i

I

�

P.wI	/
w

lim
n!1

1X

mD0
anm

1 � . z
w /
mC1

1 � z
w

dw

D lim
n!1

1X

mD0
anmsm.z/ (4.3.15)

for all z 2 F , and the convergence is uniform in F .
This completes the proof of Theorem 4.3.5. ut

Remark 4.3.8. It is easy to see ([47], Remark, p. 355) that the assumptions of
Theorem 4.3.5 imply that  
 M .P I	/ (so that the right hand of (4.3.14) is
defined) and that the set of finite points of  is open.

Example 4.3.9. The following statements hold:

(i) The Lototski transform defined by ŒF; dn D n � 1� sums the geometric series
for Re.z/ < 1 and does not sum it for Re.z/ > 1, [46]. Here P.z/ D z � 1.

(ii) If P.z/ D ei� .z �1/ with a suitable real � , we obtain a domain of summability
any given half plane, the boundary of which is a straight line passing through
z D 1.

(iii) The family 	 of all rays emanating from the point 0 is continuous and has
the property that D.	/ D fx W x � 1g. In this special case, M.pI	/ is the
ordinary Mittag-Leffler star of P.z/, and Theorem 4.3.5 is a generalization
of Okada’s theorem. Here we have the additional result about the uniform
summability in compact subsets, which has proved for special domains D in
[78] (see also [26, p. 189]).

(iv) Let � be a Jordan arc defined by � D �.r/ for z D rei� , where � is continuous
for 0 � r < 1. The family of all Jordan arcs of the form �˛ D ei˛� ; .0 � ˛ <

2�/ is continuous. In particular case where � is a polynomial line composed
of the line segment Œ0; 1� and the ray 1 � iy, .0 � y < C1/,

D.	/C D fz W z � 1; z � 0g:



Chapter 5
Summability Methods for Random Variables

5.1 Introduction

Let .Xk/ be a sequence of independent, identically distributed (i.i.d.) random
variables with EjXkj < 1 and EXk D �, k D 1; 2; : : : : Let A D .ank/ be a
Toeplitz matrix, i.e., the conditions (1.3.1)–(1.3.3) of Theorem 1.3.3 are satisfied by
the matrix A D .ank/. Since

E

1X

kD1
jankXkj D EjXkj

1X

kD1
jankj � MEjXkj;

the series
P1

kD0 ankXk converges absolutely with probability one.
There is a vast literature on the application of summability to Probability

Theory. Here, we study only few applications of summability methods in summing
sequences of random variables and strong law of large numbers (c.f. [86]).

5.2 Definitions and Notations

In this section, we give some required definitions.

Definition 5.2.1 (Random variables). A function X whose range is a set of real
numbers, whose domain is the sample space (set of all possible outcomes) S of an
experiment, and for which the set of all s in S , for which X.s/ � x is an event if x
is any real number. It is understood that a probability function is given that specifies
the probability X has certain values (or values in certain sets). In fact, one might
define a random variable to be simply a probability function P on suitable subsets
of a set T , the point of T being “elementary events” and each set in the domain of
P an event.

M. Mursaleen, Applied Summability Methods, SpringerBriefs in Mathematics,
DOI 10.1007/978-3-319-04609-9__5, © M. Mursaleen 2014
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Definition 5.2.2 (Independent random variables). Random variables X and Y
such that whenever A and B are events associated with X and Y , respectively, the
probability P.A and B/ of both is equal to P.A/ � P.B/.
Definition 5.2.3 (Distribution). A random variable together with its probabil-
ity density function, probability function, or distribution function is known as
distribution.

Definition 5.2.4 (Distribution function). A real-valued function G.x/ on R D
Œ�1;1� is called distribution function (abbreviated d.f.) if G has the following
properties:

(a) G is nondecreasing;
(b) G is left continuous, i.e., limy!x;y<x G.y/ D G.x/; all x 2 RI
(c) G.�1/ D limx!�1G.x/ D 0; G.1/ D limx!1G.x/ D 1.

Definition 5.2.5 (Independent, identically distributed random variable). A
sequence .Xn/n�1 (or the random variables comprising this sequence) is called
independent, identically distributed (abbreviated i.i.d.) ifXn; n � 1, are independent
and their distribution functions are identical.

Definition 5.2.6 (� -field). A class of sets F satisfying the following conditions is
called a � -field:

(a) if Ei 2 F (i D 1; 2; 3; : : :), then [n
iD1Ei 2 F ;

(b) if E 2 F , then Ec 2 F .

Definition 5.2.7 (Probability Space). Let F be a � -field of subsets of , i.e.,
nonempty class of subsets of  which contains  and is closed under countable
union and complementation. LetP be a measure defined onF satisfyingP./ D 1.
Then the triple .; F; P / is called probability space.

Definition 5.2.8 (Expectation). Let f be the relative frequency function (proba-
bility density function) of the variable x. Then

E.x/ D
Z b

a

xf .x/dx

is the expectation of variable x over the range a to b, or more usually, �1 to 1.

Definition 5.2.9 (Almost Everywhere). A property of points x is said to hold
almost everywhere, a.e., or for almost all points, if it holds for all points except
those of a set of measure zero.

The concept of almost sure (a.s.) convergence in probability theory is identical
with the concept of almost everywhere (a.e.) convergence in measure theory.

Definition 5.2.10 (Almost Sure). The sequence of random variables .Xn/ is said to
converge almost sure, in short a.s. to the random variableX if and only if there exists
a set E 2 F with P.E/ D 0, such that, for every w 2 Ec , jXn.w/�X.w/j ! 0, as

n ! 1. In this case, we write Xn
a:s:! X .
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Definition 5.2.11 (Median). For any random variable X a real number m.X/ is
called a median of X if P fX � m.X/g � .1=2/ � P fX � m.X/g.

Definition 5.2.12 (Levy’s inequalities). If fXj I 1 � j � ng are independent
random variables and if Sj D Pj

iD1 Xi , and m.Y / denotes a median of Y , then,
for any � > 0,

(i) P fmax1�j�nŒSj �m.Sj � Sn/� � �g � 2P fjSnj � �g;
(ii) P fmax1�j�n jSj �m.Sj � Sn/j � �g � 2P fSn � �g.

Definition 5.2.13 (Chebyshev’s inequality). In probability theory, Chebyshev’s
inequality (also spelled as Tchebysheff’s inequality) guarantees that in any prob-
ability distribution, “nearly all” values are close to the mean—the precise statement
being that no more than 1=k2 of the distribution’s values can be more than k standard
deviations away from the mean.

Let X be a random variable with finite expected value � and finite nonzero
variance �2. Then for any real number k > 0,

P fjX � �j � k�g � 1

k2
:

Definition 5.2.14 (Markov’s inequality). In probability theory, Markov’s inequal-
ity gives an upper bound for the probability that a nonnegative function of a random
variable is greater than or equal to some positive constant. It is named after the
Russian mathematician Andrey Markov.

If X is any nonnegative random variable and any a in .0;1/, then

P fX � ag � 1

a
EX:

Definition 5.2.15 (Infinitely often (I.O.)). Let .An/n�1 be a sequence of events.
Then limn!1An D fw W w 2 An for infinitely many ng; or limn!1An D fw W
w 2 An; I.O.g: Moreover, limn!1An D \1

nD1 \1
kDn Ak:

Lemma 5.2.16 (Borel-Cantelli Lemma). If .An/n�1 is a sequence of events for
which

P1
nD1 P fAng < 1, then P fAn; I:O:g D 0.

5.3 A-Summability of a Sequence of Random Variables

Let F be the common distribution function of Xks and X , a random variable
having this distribution. It is also convenient to adopt the convention that ank D
0; jankj�1 D C1. In the next theorem, we study the convergence properties of the
sequence

Yn D
1X

kD0
ankXk; as n ! 1:
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Theorem 5.3.1. A necessary and sufficient condition that Yn ! � in probability is
that maxk2N jankj ! 0; as n ! 1:

Proof. The proof of the sufficiency is very similar to the corresponding argument in
[48], but it will be given here for the sake of completeness. First, we have that

lim
T!1TP ŒjX j � T � D 0 (5.3.1)

since EjX j < 1. Let Xnk be ankXk truncated at one and Zn D P1
kD0 Xnk . Now

for all n sufficiently large, since maxk2N jankj ! 0, it follows from (5.3.1) that

P ŒZn ¤ Yn� �
1X

kD0
P ŒXnk ¤ ankXk� D

1X

kD0
P ŒjX j � 1

jankj � � �

1X

kD0
jankj � �M:

It will therefore suffice to show that Zn ! � in probability. Note that

lim
n!1ŒEZn � �� D lim

n!1

" 1X

kD0
ank

�Z

jxj<jank j�1
xdF��

	
C�

 1X

kD0
ank�1

!#
D 0:

Since

1

T

Z

jxj<T
x2dF D 1

T

�
�T 2P Œjxj � T �C 2

Z T

0

xP Œjxj � x�dx

�
! 0;

it follows that for all n sufficiently large

1X

kD0
Var Xnk �

X
jankj2

Z

jxj<jank j�1
x2dF � �

1X

kD0
jankj � �M: (5.3.2)

But E.
P1

kD0 jXnkj/2 is easily seen to be finite so that Var Zn D P1
kD0 Var Xnk

which tends to zero by (5.3.2). An application of Chebyshev’s inequality completes
the proof of sufficiency. For necessity, let Uk D Xk � �, Tn D P1

kD0 ankUk so that
Tn ! 0 in probability and hence in law. Let g.u/ D EeiuUk be the characteristic
function of Uk . We have that

Q1
kD1 g.anku/ ! 1 as n ! 1: But

ˇ̌
ˇ̌
ˇ

1Y

kD1
g.anku/

ˇ̌
ˇ̌
ˇ � jg.anmu/j � 1

for any m, so that for any sequence kn,

lim
n!1 jg.an;knu/j D 1: (5.3.3)
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Since Uk is nondegenerate, there is a u0 such that jg.u/j < 1 for 0 < juj < u0
[57, p. 202]. Letting u D u0=2M , it follows that jan;knuj � Mu D u0=2 and then
an;knu ! 0, as n ! 1, by (5.3.3). Choosing kn to satisfy jan;kn j D maxk2N jankj.

This completes the proof of Theorem 5.3.1. ut
In Theorem 5.3.1 excluding the trivial case when Xk is almost surely equal to �,

it has been shown that Yn ! � in probability if and only if maxk2N jankj ! 0: This
condition is not enough, however, to guarantee almost sure (a.s.) convergence. To
obtain this the main result is proved in the following theorem [56].

Theorem 5.3.2. If maxk2N jankj D O.n�� /; � > 0; then EjXkj1C
1
� < 1 implies

that Yn ! � a.s.

For the proof of Theorem 5.3.2, we need the following lemmas.

Lemma 5.3.3 ([81, Lemma 1]). If EjX j1C 1
� < 1 and maxk2N jankj � Bn�� ,

then for every � > 0;

1X

nD0
P ŒjankXkj � �; for some k� < 1

Proof. It suffices to consider B D 1 and � D 1 for both the matrix A and
the random variables Xk may be multiplied by a positive constant if necessary.
(Assumption (1.3.2) is not used in this proof). Let

Nn.x/ D
X

ŒkWjank j�1�x�
jankj:

Notice that Nn.x/ D 0, for x < n� , and
R1
0
dNn.x/ D P1

kD0 jankj � M: If
G.x/ D P Œjxj � x�, limTG.t/ D 0, as T ! 1 since EjX j < 1, and thus

1X

kD0
P ŒjankXkj � 1� D

1X

kD0
G.jankj�1/

D
Z 1

0

XG.x/dNn.x/

D lim
T!1TG.T /Nn.T / �

Z 1

0

Nn. Nx/d ŒxG.x/�

� M

Z 1

n�
d jXG.x/j: (5.3.4)

To estimate the last integral, observe that, for z < y;

yG.y/ � zG.z/ D .y � z/G.z/C yŒG.y/ �G.z/�;
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so that

Z 1

n�
d jxG.x/j D

1X

jDn

Z .jC1/�

j �
d jxG.x/j

�
1X

jDn
Œ.j C 1/��j � �G.j � /C

1X

jDn
.j C 1/� ŒG.j � /�G..j C 1/� /�:

Summing the first of the final series by parts and using the existence of EjX j, we
see that it is dominated by the second series, and thus

Z 1

n�
d jxG.x/j � 2

1X

jDn
.j C 1/� ŒG.j � / �G..j C 1/� /�: (5.3.5)

Finally, by (5.3.4) and (5.3.5),

1X

nD1
P ŒjankXkj � 1 for k� �

1X

nD1

1X

kD1
P ŒjankXkj � 1�

� 2M

1X

nD1

1X

jDn
.j C 1/� ŒG.j � / �G..j C 1/� /�

D 2M

1X

jD1
j.j C 1/� ŒG.j � / �G..j C 1/� /�

� 2�C1M
Z

jxj1C 1
� dF.x/ < 1:

This completes the proof of Lemma 5.3.3. ut
Lemma 5.3.4 ([81, Lemma 2]). If EjX j1C 1

� < 1 and maxk2N jankj � Bn�� ,
then, for ˛ < �=2.� C 1/,

1X

nD0
P ŒjankXkj � n�˛; for at least two values of k� < 1:

Proof. By the Markov’s inequality,

1X

nD0
P ŒjankXkj � n�˛� � jankj1C

1
� EjX j1C 1

� n
˛.1C 1

� /;
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so that

P ŒjankXkj � n�˛ for at least two k�

�
X

j¤k
P ŒjanjXj j � n�˛; jankXkj � n�˛�

� .EjX j1C 1
� /2n

2˛.1C 1
� /
X

j¤k
janj j1C 1

� jankj1C
1
�

� .EjX j1C 1
� /2B2=�M2n

2Œ�1C˛.1C 1
� /�;

and the final estimate will converge when summed on n provided that ˛ < �=

2.� C 1/:

This completes the proof of Lemma 5.3.4. ut
Lemma 5.3.5 ([81, Lemma 3]). If � D 0; EjX j1C 1

� < 1, and maxk2N jankj �
Bn�� , then for every � > 0;

1X

nD0
P

"ˇ̌
ˇ̌
ˇ
X

k

0
ankXk

ˇ̌
ˇ̌
ˇ � �

#
< 1;

where

X

k

0
ankXk D

X

ŒkWjankXk j<n�˛�

ankXk;

and 0 < ˛ < � .

Proof. Let Xnk D
�
Xk ; jankXkj < n�˛;
0 ; otherwise

and ˇnk D EXnk . If ank D 0 then

ˇnk D � D 0, while if ank ¤ 0; then

jˇnkj D
ˇ̌
ˇ̌� �

Z

jxj�n�˛ jank j�1
xdF

ˇ̌
ˇ̌ �

Z

jxj�n�˛B�1n�
jxjdF:

Therefore ˇnk ! 0, uniformly in k and
P1

kD0 ankˇnk ! 0:

Let Znk D Xnk � ˇnk , so that EjZnkj D 0; EjZnkj1C
1
� � C , for some C , and

jankZnkj � 2n�˛ . Now

X

k

0
ankXk D

1X

kD0
ankXnk D

1X

kD0
ankZnk C

X

k

ankˇnk
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and so for n sufficiently large,
 ˇ̌
ˇ̌
ˇ
X

k

0
ankXk

ˇ̌
ˇ̌
ˇ � �

!
�
 ˇ̌
ˇ̌
ˇ

1X

kD0
ankZnk

ˇ̌
ˇ̌
ˇ � �

2

!
:

It will suffice, therefore, to show that

1X

nD0
P

 ˇ̌
ˇ̌
ˇ

1X

kD0
ankZnk

ˇ̌
ˇ̌
ˇ � �

!
< 1: (5.3.6)

Let � be the least integer greater than 1=� . The necessary estimate will be obtained
by computing E.

P1
kD0 jankZnkj/2� which is finite so that

E

 1X

kD0
jankZnkj

!2�
D

X

k1���k2�
E

2�Y

jD1
an;kj Zn;kj :

There is no contribution to the sum on the right so long as there is a j with kj ¤ ki ,
for all i ¤ j , since the Znk are independent and EZnk D 0: The general term to be
considered then will have

q1 of the k0s D �1; : : : ; qm of the k0s D �m;

r1 of the k0s D �1; : : : ; rp of the k0s D �p;

where 2 � qi � 1C 1
�
; rj > 1C 1

�
, and

mX

iD1
qi C

pX

jD1
rj D 2�:

Then,

E

mY

iD1
.an;�i Zn�i /

qi

pY

jD1
.an;�j Zn;�j /

rj

� .1C c/�
mY

iD1
jan;�i jqi

pY

jD1

ˇ̌
an;�j

ˇ̌1C 1
� .2n�˛/

�
rj�1� 1

�

�

� .1C c/�
mY

iD1
jan;�i j

pY

jD1
jan;�j j.Bn�� /

Pm
iD1.qi�1C p

� /

�
2

n˛

	P�
jD1.rj�1� 1

� /

;(5.3.7)

where c is the upper bound for EjZnkj1C
1
� mentioned above. Now, the power to

which n is raised is the negative of

�

mX

iD1
.qi � 1/C p C ˛

pX

jD1

�
rj � 1 � 1

�

	
:
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Now, if p is one (or larger),

p C ˛

pX

jD1

�
rj � 1 � 1

�

	
� 1C ˛

�
� � 1

�

	
;

while if p D 0;

�

mX

iD1
.qi � 1/ D �.2� �m/ � �� D 1C �

�
� � 1

�

	
� 1C ˛

�
� � 1

�

	
I

the first inequality being a result of

m � 1

2

mX

iD1
qi D �:

Therefore the expectation in (5.3.7) is bounded by

k1

mY

iD1
jan;�i j

pY

jD1
jan;�j jn�1�˛.�� 1

� /

and k1 depends only on c, � , and B . It follows that

E

 1X

kD0
ankZnk

!2�
� k2n

�1�˛.�� 1
� /

for some k2 which may depend on c; �; B , and M but is independent of n. An
application of the Markov’s inequality now yields (5.3.6).

This completes the proof of Lemma 5.3.5. ut
Proof of Theorem 5.3.2. Observe that

1X

kD0
ankXk D

1X

kD0
ank.Xk � �/C �

1X

kD0
ank

and the last term converges to � by (1.3.3). Therefore, we may consider only the
case � D 0. By the Borel-Cantelli Lemma, it suffices to show that for every � > 0,

1X

nD0
P

 ˇ̌
ˇ̌
ˇ

1X

kD0
ankXk

ˇ̌
ˇ̌
ˇ � �

!
< 1: (5.3.8)
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But
 ˇ̌
ˇ̌
ˇ

1X

kD0
ankXk

ˇ̌
ˇ̌
ˇ � �

!


 ˇ̌
ˇ̌
ˇ

1X

kD0
ankXk

ˇ̌
ˇ̌
ˇ � �

2

!

[
�
jankXkj � �

2
for some k

�

[ .jankXkj � n�˛ for at least two k/ :

Now if 0 < ˛ < �=2.� C 1/, then ˛ < � also and the series (5.3.8) converges as a
consequence of Lemma 5.3.3–5.3.5.

This completes the proof of Theorem 5.3.2. ut

5.4 Strong Law of Large Numbers

In the next theorem, we study the problems arising out of the strong law of large
numbers.

In probability theory, the law of large numbers (LLN) is a theorem that describes
the result of performing the same experiment in a large number of times. According
to the law, the average of the results obtained from a large number of trials should
be close to the expected value and will tend to become closer as more trials are
performed.

The strong law of large numbers states that the sample average converges almost
surely to the expected value (Xn ! �.C; 1/ a.s., as n ! 1), i.e.,

P



lim
n!1

X1 CX2 C � � � CXn

n
D �

�
D 1:

Kolmogorov’s strong law of large numbers asserts that EX1 ! � if and only
if
P
Wi is a.e. .C; 1/-summable to �, i.e., the .C; 1/-limit of .Xn/ is � a.e. By the

well-known inclusion theorems involving Cesàro and Abel summability (cf. [41],
Theorems 43 and 55), this implies that

P
Wi is a.e. .C; ˛/-summable to � for any

˛ � 1 and that
P
Wi is a.e. .A/-summable to �; where Wn D Xn � Xn�1 .X0 D

W0 D 0/: In fact, the converse also holds in the present case and we have the
following theorem.

Theorem 5.4.1. If X1;X2;X3; : : : is a sequence of i.i.d. random variables and ˛ �
1 and are given real numbers, then the following statements are equivalent:

E X1 D � (5.4.1)

lim
n!1

X1 CX2 C � � � CXn

n
D � a:e: (5.4.2)
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lim
n!1

n�1X

iD1

�
iC˛�1

i

�
Xn�1�

nC˛
n

� D � a:e:; (5.4.3)

where

 
j C ˇ

j

!
D .ˇ C 1/ � � � .ˇ C j /

j Š

lim
�!1�.1 � �/

1X

iD1
�iXi D � a:e: (5.4.4)

Proof. The implications (5.4.2) ) (5.4.3) ) (5.4.4) are well known (cf. [41]). We
now prove that (5.4.4) implies (5.4.1). By (5.4.4)

lim
m!1

1

m

1X

nD1
e�n=mXs

n D 0 .a:e:/;

where Xs
n D Xn �X 0

n with X
0

n; n � 1; and Xn; n � 1; being i.i.d. Let

Ym D 1

m

mX

nD1
e�n=mXs

n; Zm D 1

m

1X

nDmC1
e�n=mXs

n:

Then Ym C Zm
P! 0, as m ! 1, Ym and Zm are independent and symmetric.

Therefore it follows easily from the Levy’s inequality [57, p. 247] that Zm
P! 0.

Since Zm and .Y1; : : : ; Ym/ are independent and Ym C Zm ! 0 a.e., Zm
P! 0, we

obtain by Lemma 3 of [23] that Ym ! 0 a.e. Letting Y .1/m D Ym � e.m
�1Xsm/, since

e.m
�1Xsm/

P! 0, we have by Lemma 3 of [10] that Xs
m=m ! 1 a.e. By the Borel-

Cantelli lemma, this implies that EjX1j < 1. As established before, we then have
Xn ! EX1.A/ and so by (5.4.4), � D EX1:

This completes the proof of Theorem 5.4.1. ut
Remark 5.4.2. Chow [22] has shown that unlike the Cesàro and Abel methods
which require EjX1j < 1 for summability, the Euler and Borel methods require
EX2

1 < 1 for summability. Specifically, if X1;X2; : : : are i.i.d., then the following
statements are equivalent:

EX1 D �; EX2
1 < 1;

Xn ! �.E; q/; for some or equivalently for every q > 0; i.e.,

lim
n!1

1

.q C 1/n

nX

kD1

 
n

k

!
qn�kXk D � a.e.,

lim
n!1Xn D �.B/; i.e. lim

�!1
1

e�

1X

kD1

�k

kŠ
Xk D � a.e..



Chapter 6
Almost Summability

6.1 Introduction

In the theory of sequence spaces, an application of the well-known Hahn-Banach
Extension Theorem gives rise to the notion of Banach limit which further leads to
an important concept of almost convergence. That is, the lim functional defined on
c can be extended to the whole of `1 and this extended functional is known as the
Banach limit [11]. In 1948, Lorentz [58] used this notion of weak limit to define
a new type of convergence, known as the almost convergence. Since then a huge
amount of literature has appeared concerning various generalizations, extensions,
and applications of this method.

In this chapter, we study the almost conservative and almost regular matrices and
their applications.

6.2 Definitions and Notations

First we define almost convergence which will be used to define almost conservative
and almost regular matrices.

Definition 6.2.1. A linear functional L on `1 is said to be a Banach limit if it has
the following properties:

(i) L.x/ � 0 if x � 0I
(ii) L.e/ D 1, e D .1; 1; 1; : : :/;
(ii) L.Sx/ D L.x/; where S is the shift operator defined by .Sx/n D xnC1.

Definition 6.2.2. A bounded sequence x D .xk/ is said to be almost convergent to
the value l if all its Banach limits coincide, i.e., L.x/ D l for all Banach limits L.

Definition 6.2.3. A sequence x D .xk/ is said to be almost A-summable to the
value l if its A-transform is almost convergent to l .

M. Mursaleen, Applied Summability Methods, SpringerBriefs in Mathematics,
DOI 10.1007/978-3-319-04609-9__6, © M. Mursaleen 2014
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Lorentz [58] established the following characterization:
A sequence x D .xk/ is almost convergent to the number l if and only if

tmn.x/ ! l as m ! 1 uniformly in n; where

tmn D tmn.x/ D 1

mC 1

mX

iD0
xnCi :

The number l is called the generalized limit of x; and we write l D F - lim x: We
denote the set of all almost convergent sequences by F , i.e.,

F WD
n
x 2 `1 W lim

m!1 tmn.x/ D l uniformly in n
o
:

The sequences which are almost convergent are said to be summable by the method
F , i.e., x 2 F we mean x is almost convergent and F � lim x D L.x/:

Definition 6.2.4. Let A D .amk/
1
mIkD0 be a regular matrix method. A bounded

sequence x D .xk/ is said to be FA- summable to the value l if ymn D P1
kD0

amkxkCn ! l as m ! 1 uniformly in n.

Note that if A is replaced by the .C; 1/ matrix, then FA-summability is reduced
to almost convergence.

Example 6.2.5. The following statements and concepts may be useful:

(i) For z 2 C on the circumference of jzj D 1; L.zn/ D 0 holds everywhere except
for z D 1: For from

ˇ̌
ˇ̌ 1
k

�
zn C znC1 C � � � C znCk�1�

ˇ̌
ˇ̌ D

ˇ̌
ˇ̌zn

1 � zk

k.1 � z/

ˇ̌
ˇ̌ � 2

k.1 � jzj/ ;

the assertion follows immediately.
It is easy to see [58] that the geometric series

P
zn for jzj D 1; z ¤ 1 is

almost convergent to 1=.1 � z/: Hence it follows that the Taylor series of a
function f .z/, which for jzj < 1 is regular and on jzj D 1 has simple poles,
is almost convergent at every point of the circumference jzj D 1 with the limit
f .z/.

(ii) A periodic sequence .xn/ for which numbers N and p (the period) exist
such that xnCp D xn holds for n � N is almost convergent to the value
L.xn/ D 1

p
.xN C xNC1 C � � � C xNCp�1/: For example, the periodic sequence

.1; 0; 0; 1; 0; 0; 1; : : :/ is almost convergent to 1=3:
(iii) We say that a sequence .xn/ is almost periodic if for every " > 0, there are

two natural numbers N and r , such that in every interval .k; k C r/; k > 0; at
least one “"-period” p exists. More precisely jxnCp �xnj < "; for n � N must
hold for this p: Thus it is easy [58] to see that every almost periodic sequence
is almost convergent. But there are almost convergent sequences which are not
almost periodic. For example, the sequence x D .xk/ defined by
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xk D
�
1 ; k D n2;

0 ; k ¤ n2I n 2 N:

is almost convergent (to 0) but not almost periodic.

Remark 6.2.6. The following statements hold [58]:

(1) Note that c 
 F and for x 2 c; F � lim x D lim x: That is, every
convergent sequence is almost convergent to the same limit but not conversely.
For example, the sequence x D .xk/ defined by

xk D
�
1 ; k is odd;
0 ; k is even:

is not convergent but it is almost convergent to 1=2:
(2) In contrast to the well-known fact that c is a separable closed subspace of

.`1; k � k1/, F is a non-separable closed subspace of .`1; k � k1/.
(3) F is a BK-space with k � k1.
(4) F is nowhere dense in `1, dense in itself, and closed and therefore perfect.
(5) The method is not strong in spite of the fact that it contains certain classes of

matrix methods for bounded sequences.
(6) Most of the commonly used matrix methods contain the method F , e.g., every

almost convergent sequence is also .C; ˛/ and .E; ˛/-summable .˛ > 0/ to its
F -limit.

(7) The method F is equivalent to none of the matrix methods, i.e., the method F
cannot be expressed in the form of a matrix method.

(8) The method F seems to be related to the Cesàro method .C; 1/. In fact the
method .C; 1/ can be replaced in this definition by any other regular matrix
method A satisfying certain conditions.

(9) Since c 
 F 
 `1, we have `1 D `
�1 
 F � 
 c� D `1. That is, the �-dual of

F is `1, where � stands for ˛, ˇ, and � .

6.3 Almost Conservative and Almost Regular Matrices

King [50] used the idea of almost convergence to study the almost conservative and
almost regular matrices.

Definition 6.3.1. A matrix A D .ank/
1
nIkD1 is said to be almost conservative if

Ax 2 F for all x 2 c: In addition if F - limAx D lim x for all x 2 c; then A is said
to be almost regular.

Theorem 6.3.2. The following statements hold:

(a) A D .ank/
1
nIkD1 is almost conservative, i.e., A 2 .c; F / if and only if (1.3.1)

holds and
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9˛k 2 C 3 lim
p!1 t .n; k; p/ D ˛k for each k uniformly in nI (6.3.1)

9˛ 2 C 3 lim
p!1

1X

kD0
t.n; k; p/ D ˛ for each k uniformly in nI (6.3.2)

where t .n; k; p/ D 1

p C 1

nCpX

jDn
ajk for all n; k; p 2 N:

In this case, the F -limit of Ax is

.lim x/

 
˛ �

1X

kD0
˛k

!
C

1X

kD0
˛kxk;

for every x D .xk/ 2 c:
(b) A is almost regular if and only if the conditions (1.3.1), (6.3.1), and (6.3.2) hold

with ˛k D 0 for each k and ˛ D 1, respectively.

Proof. (a) Let the conditions (1.3.1), (6.3.1), and (6.3.2) hold, and x D .xk/ 2 c:

For every positive integer n, set

tpn.x/ D 1

p C 1

1X

kD1

nCpX

jDn
ajkxk:

Then we have

jtpn.x/j � 1

p C 1

1X

kD1

nCpX

jDn
jajkjjxkj � kAkkxk1:

Since tpn is obviously linear on c, it follows that tpn 2 c�, the continuous dual of c,
and that ktpnk � kAk.

Now

tpn.e/ D 1

p C 1

1X

kD1

nCpX

jDn
ajk D 1

p C 1

nCpX

jDn

1X

kD1
ajk;

so limp tpn.e/ exists uniformly in n and equals to ˛. Similarly, tpn.e.k// ! ˛k , as
p ! 1 for each k, uniformly in n. Since

˚
e; e.1/; e.2/; : : :

�
is a fundamental set in

c, and supp jtpn.x/j < 1 for each x 2 c, it follows that limp tpn.x/ D tn.x/ exists
for all x 2 c. Furthermore, ktnk � lim infp ktpnk for each n, and tn 2 c�. Thus,
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tn.x/ D .lim x/

"
tn.e/ �

1X

kD0
tn
�
e.k/

�
#

C
1X

kD0
xktn

�
e.k/

�

D .lim x/

 
˛ �

1X

kD0
˛k

!
C

1X

kD0
xk˛k;

an expression independent of n. Denote this expression by L.x/.
In order to see that limp tpn.x/ D L.x/ uniformly in n, set Fpn.x/ D tpn.x/ �

L.x/. Then Fpn 2 c�, kFpnk � 2kAk for all p and n, limp Fpn.e/ D 0 uniformly in
n, and limp Fpn.e

.k// D 0 uniformly in n for each k. Let K be an arbitrary positive
integer. Then

x D .lim x/e C
KX

kD1
.xk � lim x/ e.k/ C

1X

kDKC1
.xk � lim x/ e.k/;

and we have

Fpn.x/ D .lim x/Fpn.e/C
KX

kD1
.xk � lim x/ Fpn

�
e.k/

�

CFpn
" 1X

kDKC1
.xk � lim x/ e.k/

#
:

Now,

ˇ̌
ˇ̌
ˇFpn

" 1X

kDKC1
.xk � lim x/ e.k/

#ˇ̌
ˇ̌
ˇ � 2kAk

 
sup

k�KC1
jxk � lim xj

!

for all p and n. By first choosing a fixed K large enough, each of the three
displayed terms for Fpn.x/ can be made to be uniformly small in absolute value
for all sufficiently large p, so limp Fpn.x/ D 0 uniformly in n. This shows that
limp tpn.x/ D L.x/ uniformly in n: Hence Ax 2 F for all x 2 c and the matrix A
is almost conservative.

Conversely, suppose that A is almost conservative. If x is any null sequence,
then Ax 2 F 
 `1, i.e., A 2 .c; `1/. We know that A 2 .c; `1/ if and only
if kAk < 1. Hence, (1.3.1) follows. Furthermore, since e.k/ and e are convergent
sequences, k D 0; 1; : : :, limp tpn.e

.k// and limp tpn.e/ must exist uniformly in n.
Hence, conditions (6.3.1) and (6.3.2) hold, respectively.

(b) Let A be an almost conservative matrix. For x 2 c, the F -limit of Ax is
L.x/ which reduces to lim x, since ˛ D 1 and ˛k D 0 for each k. Hence, A is an
almost regular matrix. Conversely, if A is almost regular, then F � limAe D 1,
F � limAe.k/ D 0, and kAk < 1, as in the proof of Part (a).

This completes the proof of Theorem 6.3.2. ut
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Remark 6.3.3. Every regular matrix is almost regular (since c 
 F ) but an almost
regular matrix need not be regular. Let C D .cnk/ be defined by

cnk D
(
1C.�1/n
nC1 ; 0 � k � n;

0 ; n < k:

Then the matrix C is almost regular but not regular, since limn!1
P1

kD0 cnk does
not exist.

Remark 6.3.4. It is known that Er is regular if and only if 0 < r � 1 [2]. It is
natural to ask whether or not there exist values of r for which Er is almost regular
but not regular. But this is not the case for Euler matrix Er . In fact, we have that Er

is almost regular if and only if it is regular [50].

6.4 Almost Coercive Matrices

Eizen and Laush [31] considered the class of almost coercive matrices.

Definition 6.4.1. A matrix A D .ank/
1
nIkD1 is said be almost coercive if Ax 2 F

for all x 2 l1:
Theorem 6.4.2. A D .ank/

1
nIkD1 is almost coercive, i.e., A 2 .`1; F / if and only

if the conditions (1.3.1) and (6.3.1) hold and

9˛k 2 C 3 lim
p!1

1X

kD0
jt .n; k; p/ � ˛kj D 0 uniformly in n: (6.4.1)

In this case, the F -limit of Ax is
P1

kD0 ˛kxk for every x D .xk/ 2 `1.

Proof. Suppose that the matrix A satisfies conditions (1.3.1), (6.3.1), and (6.4.1).
For any positive integer K,

KX

kD1
j˛kj D

KX

kD1
lim
p

1

p C 1

ˇ̌
ˇ̌
ˇ̌
nCpX

jDn
ajk

ˇ̌
ˇ̌
ˇ̌

D lim
p!1

1

p C 1

KX

kD1

ˇ̌
ˇ̌
ˇ̌
nCpX

jDn
ajk

ˇ̌
ˇ̌
ˇ̌

� lim sup
p

1

p C 1

nCpX

jDn

1X

kD1
jajkj � kAk:
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This implies that
P1

kD1 j˛kj converges and that
P1

kD1 ˛kxk is defined for every
bounded sequence x 2 `1.

Let x 2 `1: For p 2 N; define the shift operator S on `1 by Sp.x/ D xnCp:
Then,


AxCS.Ax/C � � � CSp.Ax/

pC1 �
 1X

kD0
˛kxk

!
e

 D sup
n2N

ˇ̌
ˇ̌
ˇ̌

1X

kD1

nCpX

jDn

ajk�˛k
pC1 xk

ˇ̌
ˇ̌
ˇ̌

� kAk
0

@sup
n2N

1X

kD1

1

pC1

ˇ̌
ˇ̌
ˇ̌
nCpX

jDn
ajk�˛k

ˇ̌
ˇ̌
ˇ̌

1

A :

By letting p ! 1 and the uniformity of the limits in condition (6.4.1), it follows
that

lim
p!1

Ax C S.Ax/C � � � C Sp.Ax/

p C 1
D
 1X

kD0
˛kxk

!
e

and that Ax 2 F with F � limAx D P1
kD0 ˛kxk . Hence, A is almost coercive.

Conversely, suppose that A 2 .`1; F /. Then A 2 .`1; c/ and so the
conditions (1.3.1) and (6.3.1) follow immediately by Theorem 6.3.2. To prove the
necessity of (6.4.1), let for some n

lim sup
p

1

p C 1

1X

kD1

ˇ̌
ˇ̌
ˇ̌
nCpX

jDn

�
ajk � ˛k

�
ˇ̌
ˇ̌
ˇ̌ D N > 0:

Since kAk is finite, N is finite also. We observe that since
P1

kD1 j˛kj < 1, the
matrix B D .bnk/, where bnk D ank � ˛k , is also a almost coercive matrix. If
one sets Fkp D jPnCp

jDn.ajk � ˛k/j=.p C 1/; and Ekt D Fk;pt , one can follow
the construction in the proof of Theorem 2.1 in [31] to obtain a bounded sequence
whose transform by the matrix B is not in F . This contradiction shows that the limit
in (6.4.1) is zero for every n.

To show that this convergence is uniform in n, we invoke the following lemma,
which is proved in [88]. ut
Lemma 6.4.3. Let fH.n/g be a countable family of matrices H.n/ D fhpk.n/g
such that kH.n/k � M < 1 for all n and hpk.n/ ! 0, as p ! 1 for each k;
uniformly in n. Then,

P1
kD0 hpk.n/ ! 0, as p ! 1, uniformly in n for all x 2 `1

if and only if
P1

kD0 jhpk.n/j ! 0, as p ! 1, uniformly in n.

Proof. Put hpk.n/ D PnCp
jDn.ajk�˛k/=.pC1/ and letH.n/ be the matrix .hpk.n//.

Then kH.n/k � 2kAk for every n, and that limp hpk.n/ D 0 for each k; uniformly
in n by the condition (6.3.1). For any x 2 `1, limp

P1
kD0 hpk.n/xk D F�limAx�
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P
˛kxk; and the limit exists uniformly in n since Ax 2 F . Moreover this limit is

zero since

1X

kD1
jhpk.n/xkj � kxk 1

p C 1

1X

kD0
j
nCpX

jDn
Œajk � ˛k�j:

Thus, limp

P1
kD0 jhpk.n/j D 0 uniformly in n, and the matrix A satisfies the

condition (6.4.1).
This completes the proof. ut

Remark 6.4.4. The classes of almost regular and almost coercive matrices are
disjoint ([89], Theorem 4).

Definition 6.4.5. A matrix A is said to be strongly regular (cf. [58]) if it sums all
almost convergent sequences and limAx D F -lim x for all x 2 F:
Theorem 6.4.6. A is strongly regular if and only if A is regular and

lim
n!1

1X

kD0
jank � an;kC1j D 0:

Duran [29] considered the class of almost strongly regular matrices.

Definition 6.4.7. A matrix A D .ank/
1
nIkD1 is said be almost strongly regular if

Ax 2 F for all x 2 F:
Theorem 6.4.8. A D .ank/

1
nIkD1 is almost strongly regular if and only ifA is almost

regular, and

lim
p!1

1X

kD0
jt .n; k; p/ � t .n; k C 1; p/j D 0 uniformly in n:



Chapter 7
Almost Summability of Taylor Series

7.1 Introduction

In Chap. 4, we applied the generalized Lototski or ŒF; dn�-summability to study
the regions in which this method sums a Taylor series to the analytic continuation
of the function which it represents. In the applications of summability theory to
function theory it is important to know the region in which the sequence of partial
sums of the geometric series is A-summable to 1=.1 � z/ for a given matrix A. The
well-known theorem of Okada [78] gives the domain in which a matrix A D .ajk/

sums the Taylor series of an analytic function f to one of its analytic continuations,
provided that the domain of summability of the geometric series to 1=.1 � z/ and
the distribution of the singular points of f are known. In this chapter, we replace
the ŒF; dn�-matrix or the general Toeplitz matrix by almost summability matrix
to determine the set on which the Taylor series is almost summable to f .z/ (see
[51]). Most of the basic definitions and notations of this chapter are already given in
Chap. 4; in fact, this chapter is in continuation of Chap. 4.

7.2 Geometric Series

The following theorem is helpful in determining the region in which the sequence
of partial sums of the geometric series is almost A-summable to 1=.1 � z/.

Theorem 7.2.1. Let D be a set of complex numbers with 0 2 D0 and 1 … D: Let
s D fsk.z/gk D .

Pk
nD0 zn/k denote the sequence of partial sums of the geometric

series. Then, s is almostA-summable to 1=.1�z/ uniformly on each compact subset
of D if and only if

lim
p!1

1

p C 1

nCpX

jDn

1X

kD0
ajk D 1; uniformly in n; (7.2.1)

M. Mursaleen, Applied Summability Methods, SpringerBriefs in Mathematics,
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lim
p!1

1

p C 1

nCpX

jDn

1X

kD0
ajkzkC1 D 0; uniformly in n; (7.2.2)

uniformly on each compact subset of D.

Proof. Suppose that (7.2.1) and (7.2.2) hold. Then,

tpn.z/ D 1

p C 1

nCpX

jDn

1X

kD0
ajksk.z/

D 1

p C 1

nCpX

jDn

1X

kD0
ajk

1 � zkC1

1 � z
:

Hence,

lim
p!1 tpn.z/ D 1

1 � z
� lim
p!1

z

.p C 1/.1 � z/

nCpX

jDn

1X

kD0
ajkzk:

Therefore,

lim
p!1 tpn.z/ D 1

1 � z
;

uniformly in n and uniformly on each compact subset of D. Hence, s is almost
A-summable to 1=.1 � z/ uniformly on each compact subset of D.

Conversely, suppose that tpn.z/ ! 1=.1 � z/, as p ! 1, uniformly in n
and uniformly on each compact subset K of D. Then, tpn.0/ ! 1, as p ! 1,
uniformly in n. Hence,

lim
p!1

1

p C 1

nCpX

jDn

1X

kD0
ajk D 1; uniformly in n;

i.e., (7.2.1) holds. In particular, we have that the series
P1

kD0 ajk converges for
each j . But as above

tpn.z/ D 1

p C 1

nCpX

jDn

1X

kD0
ajk

1 � zkC1

1 � z
;

so that the series
P1

kD0 ajk.1 � zkC1/ converges for each j and on each compact
subsetK ofD. Therefore,

P1
kD0 ajkzkC1 converges for each j and on each compact

subset K of D. This implies that
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.z � 1/tpn.z/C tpn.0/ D 1

p C 1

nCpX

jDn

1X

kD0
ajkzkC1

and hence,

lim
p!1

1

p C 1

nCpX

jDn

1X

kD0
ajkzkC1 D .z � 1/ 1

1 � z
C 1 D 0;

uniformly in n and uniformly on each compact subset K of D, i.e., (7.2.2) holds.
This completes the proof. ut

Theorem 7.2.2. Let r ¤ 0 be a complex number. The sequence of partial sums of
the geometric series is almostEr -summable to 1=.1�z/ if and only if z 2 r , where

r D
�

z W
ˇ̌
ˇ̌z � r � 1

r

ˇ̌
ˇ̌ � 1

jr j ; z ¤ 1

�
:

Proof. It is easy to see that for the Euler matrixEr (7.2.1) holds, since
P1

kD0 erjk D
1. Hence, by Theorem 7.2.1 it is sufficient to show that r D , where

 D
8
<

:z W lim
p!1

1

p C 1

nCpX

jDn

1X

kD0
ajkzk D 0; uniformly in n

9
=

; :

In this case

nCpX

jDn

1X

kD0
erjkzk D

nCpX

jDn

jX

kD0

�
j

k

�
.1 � r/j�krkzk

D
nCpX

jDn
.1 � r C rz/j

D .1 � r C rz/n
1 � .1 � r C rz/p

1 � .1 � r C rz/
:

Therefore, z 2  if and only if j1 � r C rzj � 1; z ¤ 1. Hence, r D . In order
that the sequence of partial sums be Er -summable to 1=.1 � z/, it is necessary that
z lies strictly inside the disk r .

This completes the proof. ut
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7.3 Taylor Series

Note that Theorem 4.3.5 is the source of motivation of the following result which
is due to King [51] which provides the set on which the Taylor series is almost
summable to f .z/.

Theorem 7.3.1. Let P.z/ be the Taylor series which represents an analytic function
f in a neighborhood of the origin. Let � D f�k.z/g be the sequence of partial sums
of P.z/. Let 	 be continuous. Let M D M.P I	/ and let  D \fwD W w … M;

w ¤ 1g, where D is a 	-regular set with 0 2 D0. Let K be a compact subset of 
such that d.K.Mc/�1;Dc/ D ı > 0 and 0 2 K: If the sequence of partial sums of
the geometric series is almost A-summable to 1=.1� z/ uniformly on each compact
subset of D; then � is almost A-summable to P.zI	/ uniformly on K.

Proof. From Theorem 7.2.1, we get that (7.2.1) and (7.2.2) hold uniformly on each
compact subset of D: As in the proof of Theorem 4.3.5, it follows that there exists
a rectifiable Jordan curve � which satisfies the following conditions:

(i) � 
 M.P I	/;
(ii) 	��1 
 D;

(iii) K lies in the interior of � .

By Lemma 4.3.6, it follows that P.zI	/ is holomorphic in M.P I	/.
Let P.z/ D P1

kD0 ckzk . Then the conditions (7.2.1) and (7.2.2), the properties of
� , the fact that 1 … D, and the calculus of residues yield the following relation:

P.zI	/ D 1

2�i

Z

�

P.wI	/
w � z

dw

D 1

2�i

Z

�

P.wI	/
w

 
1

1 � z
w

!
dw

D 1

2�i

Z

�

P.wI	/
w

lim
p!1

1

p C 1

nCpX

jDn

1X

kD0
ajksk

� z

w

�
dw

D lim
p!1

1

p C 1

nCpX

jDn

1X

kD0
ajk

1

2�i

Z

�

P.wI	/
w

sk

� z

w

�
dw

D lim
p!1

1

p C 1

nCpX

jDn

1X

kD0
ajk

�
c0 C c1z C � � � C ckzk

�

D lim
p!1

1

p C 1

nCpX

jDn

1X

kD0
ajk�k.z/
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uniformly in n and uniformly on K. Hence, � is almost A-summable to P.zI	/
uniformly on K.

This completes the proof. ut
Remark 7.3.2. From Theorems 7.2.2 and 4.3.5, we conclude that the sequence
of partial sums of P.z/ is almost Er -summable to P.zI	/ uniformly on K: An
analysis shows that the sets of almost summability are slightly larger than the sets
of summability.



Chapter 8
Matrix Summability of Fourier
and Walsh-Fourier Series

8.1 Introduction

In this chapter we apply regular and almost regular matrices to find the sum
of derived Fourier series, conjugate Fourier series, and Walsh-Fourier series
(see [4] and [69]). Recently, Móricz [67] has studied statistical convergence of
sequences and series of complex numbers with applications in Fourier analysis and
summability.

8.2 Summability of Fourier Series

Let f be L-integrable and periodic with period 2� , and let the Fourier series of
f be

1

a0
C

1X

kD1
.ak cos kx C bk sin kx/ : (8.2.1)

Then, the series conjugate to it is

1X

kD1
.bk cos kx � ak sin kx/ ; (8.2.2)

and the derived series is

1X

kD1
k .bk cos kx � ak sin kx/ : (8.2.3)

M. Mursaleen, Applied Summability Methods, SpringerBriefs in Mathematics,
DOI 10.1007/978-3-319-04609-9__8, © M. Mursaleen 2014
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68 8 Matrix Summability of Fourier and Walsh-Fourier Series

Let Sn.x/, QSn.x/, and S 0
n.x/ denote the partial sums of series (8.2.1), (8.2.2),

and (8.2.3), respectively. We write

 x.t/ D  .f; t/ D
�
f .x C t / � f .x � t / ; 0 < t � � I

g.x/; t D 0

and

ˇx.t/ D  x.t/

4 sin 1
2
t
;

where g.x/ D f .x C 0/ � f .x � 0/. These formulae are correct a.e..

Theorem 8.2.1. Let f .x/ be a function integrable in the sense of Lebesgue in
Œ0; 2�� and periodic with period 2� . Let A D .ank/ be a regular matrix of real
numbers. Then for every x 2 Œ��; �� for which ˇx.t/ 2 BV Œ0; ��;

lim
n!1

1X

kD1
ankS

0
k.x/ D ˇx.0C/ (8.2.4)

if and only if

lim
n!1

1X

kD1
ank sin

�
k C 1

2

	
t D 0 (8.2.5)

for every t 2 Œ0; ��, where BV Œ0; �� denotes the set of all functions of bounded
variations on Œ0; ��:

We shall need the following well-known Dirichlet-Jordan Criterion for Fourier
series [101].

Lemma 8.2.2 (Dirichlet-Jordan Criterion for Fourier Series). The trigonomet-
ric Fourier series of a 2�-periodic function f having bounded variation converges
to Œf .x C 0/ � f .x � 0/�=2 for every x and this convergence is uniform on every
closed interval on which f is continuous.

We shall also need the following result on the weak convergence of sequences in
the Banach space of all continuous functions defined on a finite closed interval [11].

Lemma 8.2.3. Let C Œ0; �� be the space of all continuous functions on Œ0; ��

equipped with the sup-norm k:k: Let gn 2 C Œ0; �� and
R �
0
gndhx ! 0, as n ! 1,

for all hx 2 BV Œ0; �� if and only if kgnk < 1 for all n and gn ! 0, as n ! 1.
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Proof. We have

S 0
k.x/ D 1

�

Z �

0

 x.t/

 
kX

mD1
m sinmt

!
dt

D � 1
�

Z �

0

 x.t/
d

dt

"
sin
�
k C 1

2

�
t

2 sin t
2

#
dt

D Ik C 2

�

Z �

0

sin

�
k C 1

2

	
tdˇx.t/;

where

Ik D 1

�

Z �

0

ˇx.t/ cos
t

2

"
sin
�
k C 1

2

�
t

sin t
2

#
dt:

Then,

1X

kD1
ankS

0
k.x/ D

1X

kD1
ankIk C 2

�

Z �

0

Ln.t/ dˇx.t/;

where

Ln.t/ D
1X

kD1
ank sin

�
k C 1

2

	
t:

Since ˇx.t/ is of bounded variation on Œ0; �� and ˇx.t/ ! ˇx.0C/ as t ! 0;

ˇx.t/ cos t
2

has also the same properties. Hence, by Lemma 8.2.2, Ik ! ˇx.0C/ as
k ! 1.

Since the matrix A D .ank/ is regular, we have

lim
n!1

1X

kD1
ankIk D ˇx.0C/: (8.2.6)

Now, it is enough to show that (8.2.5) holds if and only if

lim
n!1

Z �

0

Ln.t/ dˇx.t/ D 0: (8.2.7)

Hence, by Lemma 8.2.3, it follows that (8.2.7) holds if and only if

kLn.t/ k � M for all n and for all t 2 Œ0; ��; (8.2.8)
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and (8.2.5) holds, where M is a constant. Since (8.2.8) is satisfied by the regularity
ofA, it follows that (8.2.7) holds if and only if (8.2.5) holds. Hence the result follows
immediately.

This completes the proof. ut
Similarly we can prove the following result for almost regularity.

Theorem 8.2.4. Let f be a function integrable in the sense of Lebesgue in Œ0; 2��
and periodic with period 2� . Let A D .ank/ be an almost regular matrix of real
numbers. Then for every x 2 Œ��; �� for which ˇx.t/ 2 BV Œ0; ��,

lim
p!1

1

p C 1

nCpX

jDn

1X

kD1
ajkS

0
k.x/ D ˇx.0C/ uniformly in n

if and only if

lim
p!1

1

p C 1

nCpX

jDn

1X

kD1
ajk sin

�
k C 1

2

	
t D 0 uniformly in n

for every t 2 Œ0; ��.
Theorem 8.2.5. Let f .x/ be a function integrable in the sense of Lebesgue in
Œ0; 2�� and periodic with period 2� . Let A D .ank/ be a regular matrix of real
numbers. Then A-transform of the sequence fk QSk.x/g converges to g.x/=� , i.e.,

lim
n!1

1X

kD1
kank QSk.x/ D 1

�
g.x/ (8.2.9)

if and only if

lim
n!1

1X

kD0
ank cos kt D 0 (8.2.10)

for every t 2 .0; ��; where each ak; bk 2 BV Œ0; 2��:
Proof. We have

QSn.x/ D 1

�

Z �

0

 x.t/ sinnt dt;

D g.x/

n�
C 1

n�

Z �

0

cosnt d x.t/:
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Therefore

1X

kD1
kank QSk.x/ D g.x/

�

1X

kD1
ank C 1

�

Z �

0

Kn.t/ d x.t/; (8.2.11)

where

Kn.t/ D
1X

kD1
ank cos kt:

Now, taking limit as n ! 1 on both sides of (8.2.10) and using Lemma 8.2.3 and
regularity conditions of A as in the proof of Theorem 8.2.1, we get the required
result. ut
Remark 8.2.6. Analogously, we can state and prove Theorem 8.2.4 for almost
regular matrix A.

8.3 Summability of Walsh-Fourier Series

Let us define a sequence of functions h0.x/; h1.x/; : : : ; hn.x/ which satisfy the
following conditions:

h0.x/ D
�
1; 0 � x � 1

2
;

�1; 1
2

� x < 1;

h0.x C 1/ D h0.x/ and hn.x/ D h0.2
nx/; n D 1; 2; : : :. The functions hn.x/ are

called the Rademacher’s functions.
The Walsh functions are defined by

�n.x/ D
�

1; n D 0;

hn1.x/hn2.x/ � � � hnr .x/; n > 1; 0 � x � 1

for n D 2n1 C 2n2 C � � � C 2nr ; where the integers ni are uniquely determined by
niC1 < ni .

Let us recall some basic properties of Walsh functions (see [34]). For each fixed
x 2 Œ0; 1/ and for all t 2 Œ0; 1/

(i) �n.x PCt / D �n.x/�n.t/;

(ii)
R 1
0
f .x PCt /dt D R 1

0
f .t/dt; and

(iii)
R 1
0
f .t/�n.x PCt /dt D R 1

0
f .x PCt /�n.t/dt;

where PC denotes the operation in the dyadic group, the set of all sequences s D .sn/,
sn D 0; 1 for n D 1; 2; : : : is addition modulo 2 in each coordinate.
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Let for x 2 Œ0; 1/,

Jk.x/ D
Z x

0

�k.t/dt; k D 0; 1; 2; : : :

It is easy to see that Jk.x/ D 0 for x D 0; 1:

Let f be L-integrable and periodic with period 1, and let the Walsh-Fourier
series of f be

1X

nD1
cn�n.x/;

where

cn D
Z 1

0

f .x/�n.x/dx

are called the Walsh-Fourier coefficients of f .
The following result is due to Siddiqi [91].

Theorem 8.3.1. Let A D .ank/ be a regular matrix of real numbers. Let zk.x/ D
ck�k.x/ for an L-integrable function f 2 BV Œ0; 1/: Then for every x 2 Œ0; 1/

lim
n!1

1X

kD1
ankzk.x/ D 0

if and only if

lim
n!1

1X

kD1
ankJk.x/ D 0;

where x is a point at which f .x/ is of bounded variation.

This can be proved similarly as our next result which is due to Mursaleen [69]
in which we use the notion of FA-summability. Recently, Alghamdi and Mursaleen
[4] have applied Hankel matrices for this purpose.

Theorem 8.3.2. Let A D .ank/ be a regular matrix of real numbers. Let zk.x/ D
ck�k.x/ for an L-integrable function f 2 BV Œ0; 1/: Then for every x 2 Œ0; 1/;

the sequence fzk.x/gk is FA-summable to 0 if and only if the sequence fJk.x/gk is
FA-summable to 0, that is,

lim
n!1

1X

kD1
ankzkCp.x/ D 0; uniformly in p
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if and only if

lim
n!1

1X

kD1
ankJk.x/ D 0 uniformly in p;

where x is a point at which f .x/ is of bounded variation.

Proof. We have

zk.x/ D ck�k.x/ D
Z 1

0

f .t/�k.t/�k.x/dt;

D
Z 1

0

f .t/�k.x PCt /dt D
Z 1

0

f .x PCt /�k.t/dt;

where x PCt belongs to the set  of dyadic rationals in Œ0; 1/I in particular each ele-
ment of  has the form p=2n for some nonnegative integers p and n; 0 � p < 2n:

Now, on integration by parts, we obtain

zk.x/ D Œf .x PCt /Jk.t/�10 �
Z 1

0

Jk.t/df .x PCt /;

D �
Z 1

0

Jk.t/df .x PCt /; since Jk.x/ D 0 for x 2 f0; 1g:

Hence, for a regular matrix A D .ank/ and p � 0; we have

1X

kD1
ankzkCp.x/ D �

Z 1

0

Dnp.t/ dhx.t/; (8.3.1)

where

Dnp.t/ D
1X

kD1
ankJkCp.t/; (8.3.2)

and hx.t/ D f .x PCt /. Write, for any t 2 R; gnp D .Dnp.t//.
SinceA is regular (and hence almost regular), it follows that kgnpk < 1 for all n

and p; and gnp ! 0, as n ! 1 pointwise, uniformly in p. Hence by Lemma 8.2.3,

Z 1

0

Dnp.t/dhx.t/ ! 0

as n ! 1 uniformly in p. Now, letting n ! 1 in (8.3.1) and (8.3.2) and using
Lemma 8.2.3, we get the desired result.

This completes the proof. ut
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Remark 8.3.3. If we take the matrix A as the Cesàro matrix .C; 1/, then we get the
following result for almost summability.

Theorem 8.3.4. Let A D .ank/ be almost regular matrix of real numbers. Let
zk.x/ D ck�k.x/ for an L -integrable function f 2 BV Œ0; 1/: Then for every
x 2 Œ0; 1/

F � lim
n!1

1X

kD1
ankzk.x/ D 0

if and only if

F � lim
n!1

1X

kD1
ankJk.x/ D 0,

where x is a point at which f is of bounded variation.



Chapter 9
Almost Convergence in Approximation Process

9.1 Introduction

Several mathematicians have worked on extending or generalizing the Korovkin’s
theorems in many ways and to several settings, including function spaces, abstract
Banach lattices, Banach algebras, Banach spaces, and so on. This theory is very
useful in real analysis, functional analysis, harmonic analysis, measure theory,
probability theory, summability theory, and partial differential equations. But
the foremost applications are concerned with constructive approximation theory
which uses it as a valuable tool. Even today, the development of Korovkin-type
approximation theory is far from complete. Note that the first and the second
theorems of Korovkin are actually equivalent to the algebraic and the trigonometric
version, respectively, of the classical Weierstrass approximation theorem [1]. In this
chapter we prove Korovkin type approximation theorems by applying the notion of
almost convergence and show that these results are stronger than original ones.

9.2 Korovkin Approximation Theorems

Let F.R/ denote the linear space of all real-valued functions defined on R. LetC.R/
be the space of all functions f continuous on R. We know that C.R/ is a normed
space with norm

kf k1 WD sup
x2R

jf .x/j; f 2 C.R/:

We denote by C2�.R/ the space of all 2�-periodic functions f 2 C.R/ which is
a normed space with

kf k2� D sup
t2R

jf .t/j:

M. Mursaleen, Applied Summability Methods, SpringerBriefs in Mathematics,
DOI 10.1007/978-3-319-04609-9__9, © M. Mursaleen 2014
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76 9 Almost Convergence in Approximation Process

We write Ln.f I x/ for Ln.f .s/I x/ and we say that L is a positive operator if
L.f I x/ � 0 for all f .x/ � 0.

Korovkin type approximation theorems are useful tools to check whether a given
sequence .Ln/n�1 of positive linear operators on C Œ0; 1� of all continuous functions
on the real interval Œ0; 1� is an approximation process. That is, these theorems exhibit
a variety of test functions which assure that the approximation property holds on the
whole space if it holds for them. Such a property was discovered by Korovkin in
1953 for the functions 1; x, and x2 in the space C Œ0; 1� as well as for the functions
1; cos, and sin in the space of all continuous 2�-periodic functions on the real line.

The classical Korovkin first and second theorems state as follows (see [1, 55]):

Theorem 9.2.1. Let .Tn/ be a sequence of positive linear operators from C Œ0; 1�

into F Œ0; 1�: Then limn!1 kTn.f; x/ � f .x/k1 D 0, for all f 2 C Œ0; 1� if and
only if limn!1 kTn.fi ; x/ � ei .x/k1 D 0, for i D 0; 1; 2, where e0.x/ D 1;

e1.x/ D x, and e2.x/ D x2.

Theorem 9.2.2. Let .Tn/ be a sequence of positive linear operators from C2�.R/

into F.R/: Then limn!1 kTn.f; x/ � f .x/k2� D 0, for all f 2 C2�.R/ if and
only if limn!1 kTn.fi ; x/ � fi .x/k2� D 0, for i D 0; 1; 2, where f0.x/ D 1;

f1.x/ D cos x, and f2.x/ D sin x:

9.3 Korovkin Approximation Theorems for Almost
Convergence

The following result is due to Mohiuddine [60]. In [7], such type of result is proved
for almost convergence of double sequences.

Theorem 9.3.1. Let .Tk/ be a sequence of positive linear operators from C Œa; b�

into C Œa; b� satisfying the following conditions:

F � lim
p!1 kTk.1; x/ � 1k1 D 0; (9.3.1)

F � lim
p!1 kTk.t; x/ � xk1 D 0; (9.3.2)

F � lim
p!1

Tk.t2; x/ � x21 D 0: (9.3.3)

Then for any function f 2 C Œa; b� bounded on the whole real line, we have

F � lim
k!1 kTk.f; x/ � f .x/k1 D 0:

Proof. Since f 2 C Œa; b� and f is bounded on the real line, we have

jf .x/j � M; � 1 < x < 1:
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Therefore,

jf .t/ � f .x/j � 2M; � 1 < t; x < 1: (9.3.4)

Also, we have that f is continuous on Œa; b�, i.e.,

jf .t/ � f .x/j < �; 8jt � xj < ı: (9.3.5)

Using (9.3.4) and (9.3.5) and putting  .t/ D .t � x/2, we get

jf .t/ � f .x/j < � C 2M

ı2
 ; 8jt � xj < ı:

This means

�� � 2M

ı2
 < f .t/ � f .x/ < � C 2M

ı2
 :

Now, we operating Tk.1; x/ to this inequality since Tk.f; x/ is monotone and linear.
Hence,

Tk.1; x/

�
�� � 2M

ı2
 

	
< Tk.1; x/.f .t/ � f .x// < Tk.1; x/

�
� C 2M

ı2
 

	
:

Note that x is fixed and so f .x/ is a constant number. Therefore,

� �Tk.1; x/ � 2M

ı2
Tk. ; x/ < Tk.f; x/ � f .x/Tk.1; x/

< �Tk.1; x/C 2M

ı2
Tk. ; x/: (9.3.6)

But

Tk.f; x/ � f .x/ D Tk.f; x/ � f .x/Tk.1; x/C f .x/Tk.1; x/ � f .x/
D ŒTk.f; x/ � f .x/Tk.1; x/�C f .x/ŒTk.1; x/ � 1�: (9.3.7)

Using (9.3.6) and (9.3.7), we have

Tk.f; x/ � f .x/ < �Tk.1; x/C 2M

ı2
Tk. ; x/C f .x/ ŒTk.1; x/ � 1� : (9.3.8)

Let us estimate Tk. ; x/

Tk. ; x/ D Tk
�
.t � x/2; x�

D Tk.t
2 � 2tx C x2; x/

D Tk.t
2; x/C 2xTk.t; x/C x2Tk.1; x/

D ŒTk.t
2; x/ � x2� � 2xŒTk.t; x/ � x�C x2ŒTk.1; x/ � 1�:
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Using (9.3.8), we obtain

Tk.f; x/ � f .x/ < �Tk.1; x/C 2M

ı2

˚�
Tk.t

2; x/ � x2�C 2xŒTk.t; x/ � x�

Cx2ŒTk.1; x/ � 1��C f .x/ ŒTk.1; x/ � 1�

D �ŒTk.1; x/ � 1�C � C 2M

ı2

˚�
Tk.t

2; x/ � x2�C 2xŒTk.t; x/�x�

Cx2ŒTk.1; x/ � 1��C f .x/ ŒTk.1; x/ � 1� :

Since � is arbitrary, we can write

Tk.f; x/ � f .x/ � �ŒTk.1; x/ � 1�C 2M

ı2
fŒTk.t2; x/ � x2�C 2xŒTk.t; x/ � x�

Cx2ŒTk.1; x/ � 1�g C f .x/ ŒTk.1; x/ � 1� :

Now replacing Tk.�; x/ by Dn;p.f; x/ D 1
pC1

PnCp
kDn Tk.�; x/, we get

Dn;p.f; x/ � f .x/ � �ŒDn;p.1; x/ � 1�C 2M

ı2
fŒDn;p.t

2; x/ � x2�

C2xŒDn;p.t; x/ � x�C x2ŒDn;p.1; x/ � 1�g
Cf .x/ �Dn;p.1; x/ � 1� ;

and therefore

Dn;p.f; x/ � f .x/1 �
�
� C 2Mb2

ı2
CM

	Dn;p.1; x/ � 11

C4Mb

ı2

Dn;p.t; x/ � x1 C 2M

ı2

Dn;p.t
2; x/ � x21 :

Letting p ! 1 and using (9.3.1)–(9.3.3), we get

lim
p!1

Dn;p.f; x/ � f .x/1 D 0 uniformly in n:

This completes the proof of the theorem. ut
In the following example we construct a sequence of positive linear operators

satisfying the conditions of Theorem 9.3.1, but it does not satisfy the conditions of
Theorem 9.2.1.

Example 9.3.2. Consider the sequence of classical Bernstein polynomials

Bn.f; x/ WD
nX

kD0
f

�
k

n

	 
n

k

!
xk.1 � x/n�kI 0 � x � 1:
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Let the sequence .Pn/ be defined by Pn W C Œ0; 1� ! C Œ0; 1� with Pn.f; x/ D
.1C zn/Bn.f; x/, where zn is defined by

zn D
�
1 ; n is odd;
0 ; n is even

Then,

Bn.1; x/ D 1; Bn.t; x/ D x; Bn.t
2; x/ D x2 C x � x2

n
;

and the sequence .Pn/ satisfies the conditions (9.3.1)–(9.3.3). Hence, we have

F � lim kPn.f; x/ � f .x/k1 D 0:

On the other hand, we get Pn.f; 0/ D .1C zn/f .0/; since Bn.f; 0/ D f .0/; and
hence

kPn.f; x/ � f .x/k1 � jPn.f; 0/ � f .0/j D znjf .0/j:

We see that .Pn/ does not satisfy the classical Korovkin theorem, since
lim supn!1 zn does not exist.

Our next result is an analogue of Theorem 9.2.2.

Theorem 9.3.3. Let .Tk/ be a sequence of positive linear operators from C2�.R/

into C2�.R/. Then, for all f 2 C2�.R/

F � lim
k!1 kTk.f I x/ � f .x/k2� D 0 (9.3.9)

if and only if

F � lim
k!1 kTk.1I x/ � 1k2� D 0; (9.3.10)

F � lim
k!1 kTk.cos t I x/ � cos xk2� D 0; (9.3.11)

F � lim
k!1 kTk.sin t I x/ � sin xk2� D 0: (9.3.12)

Proof. Since each f0, f1, and f2 belongs to C2�.R/, the conditions (9.3.10)–
(9.3.12) follow immediately from (9.3.9). Let the conditions (9.3.10)–(9.3.12) hold
and f 2 C2�.R/.

Let I be a closed subinterval of length 2� of R. Fix x 2 I . By the continuity of
f at x, it follows that for given " > 0 there is a number ı > 0 such that for all t

jf .t/ � f .x/j < "; (9.3.13)
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whenever jt � xj < ı: Since f is bounded, it follows that

jf .t/ � f .x/j � 2kf k2� ; (9.3.14)

for all t 2 R: For all t 2 .x� ı; 2� Cx� ı�. Using (9.3.13) and (9.3.14), we obtain

jf .t/ � f .x/j < "C 2kf k2�
sin2 ı

2

 .t/; (9.3.15)

where  .t/ D sin2Œ.t � x/=2�. Since the function f 2 C2�.R/ is 2�-periodic, the
inequality (9.3.15) holds for t 2 R.

Now, operating Tk.1I x/ to this inequality, we obtain

jTk.f I x/ � f .x/j � Œ"C jf .x/j�jTk.1I x/ � 1j C "C kf k2�
sin2 ı

2

ŒjTk.1I x/ � 1j

Cj cos xjjTk.cos t I x/ � cos xj C j sin xjjTk.sin t I x/ � sin xj� � "

C
"
"C jf .x/j C kf k2�

sin2 ı
2

#
fjTk.1I x/ � 1j

CjTk.cos t I x/ � cos xj C jTk.sin t I x/ � sin xjg
Now, taking supx2I , we get

kTk.f I x/ � f .x/k2� � "CK .kTk.1I x/ � 1k2�
C kTk.cos t I x/ � cos xk2� C kTk.sin t I x/ � sin xk2�/ ; (9.3.16)

where K WD
(
"C kf k2� C kf k2�

sin2 ı
2

)
:

Now replacing Tk.�; x/ by 1
mC1

PnCm
kDn Tk.�; x/ in (9.3.17) on both sides and then

taking the limit as m ! 1 uniformly in n. Therefore, using conditions (9.3.10)–
(9.3.12), we get

lim
m!1


1

mC 1

nCmX

kDn
Tk.f; x/ � f .x/


2�

D 0 uniformly in n;

i.e., the condition (9.3.9) is proved.
This completes the proof of the theorem. ut
In the following example we see that Theorem 9.3.3 is stronger than

Theorem 9.2.2.

Theorem 9.3.4. For any n 2 N; denote by Sn.f / the n-th partial sum of the
Fourier series of f , i.e.,
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Sn.f /.x/ D 1

2
a0.f /C

nX

kD1
ak.f / cos kx C bk.f / sin kx:

For any n 2 N; write

Fn.f / WD 1

nC 1

nX

kD0
Sk.f /:

A standard calculation gives that for every t 2 R

Fn.f I x/ WD 1

2�

Z �

��
f .t/

1

nC 1

nX

kD0

sin .2kC1/.x�t/
2

sin x�t
2

dt

D 1

2�

Z �

��
f .t/

1

nC 1

nX

kD0

sin2 .nC1/.x�t/
2

sin2 x�t
2

dt

D 1

2�

Z �

��
f .t/'n.x � t /dt;

where

'n.x/ WD
8
<

:

sin2 .nC1/.x�t /
2

.nC1/ sin2 x�t
2

; x is not a multiple of 2�;

nC 1 ; x is a multiple of 2�:

The sequence .'n/n2N is a positive kernel which is called the Fejér kernel, and the
corresponding operators Fn; n � 1 are called the Fejér convolution operators.

Note that the Theorem 9.2.2 is satisfied for the sequence .Fn/: In fact, we have
for every f 2 C2�.R/, Fn.f / ! f , as n ! 1.

Let Ln W C2�.R/ ! C2�.R/ be defined by

Ln.f I x/ D .1C zn/Fn.f I x/; (9.3.17)

where the sequence z D .zn/ is defined as above. Now,

Ln.1I x/ D 1;

Ln.cos t I x/ D n

nC 1
cos x;

Ln.sin t I x/ D n

nC 1
sin x

so that we have

F � lim
n!1 kLn.1I x/ � 1k2� D 0;
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F � lim
n!1 kLn.cos t I x/ � cos xk2� D 0;

F � lim
n!1 kLn.sin t I x/ � sin xk2� D 0;

that is, the sequence .Ln/ satisfies the conditions (9.3.9)–(9.3.12). Hence by
Theorem 9.3.3, we have

F - lim
n!1 kLn.f / � f k2� D 0;

i.e., our theorem holds. But on the other hand, Theorem 9.2.2 does not hold for our
operator defined by (9.3.17), since the sequence .Ln/ is not convergent.

Hence Theorem 9.3.3 is stronger than Theorem 9.2.2.



Chapter 10
Statistical Summability

10.1 Introduction

There is another notion of convergence known as the statistical convergence which
was introduced by Fast [33] and Steinhaus [93] independently in 1951. In [66],
Moricz mentioned that Henry Fast first time had heard about this concept from
Steinhaus, but in fact it was Antoni Zygmund who proved theorems on the statistical
convergence of Fourier series in the first edition of his book [101, pp. 181–188]
where he used the term “almost convergence” in place of statistical convergence
and at that time this idea was not recognized much. Since the term “almost
convergence” was already in use (as described earlier in this book), Fast had to
choose a different name for his concept and “statistical convergence” was most
suitable. In this chapter we study statistical convergence and some of its variants
and generalizations. Active researches were started after the paper of Fridy [37]
and since then many of its generalizations and variants have appeared so far, e.g.,
[38, 62, 64, 70, 74, 76, 77], and so on.

10.2 Definitions and Notations

(i) Let K � N. Then the natural density of K is defined by (c.f. [24])

ı.K/ D lim
n!1

1

n
jfk � n I k 2 Kgj;

where jfk � n W k 2 Kgj denotes the number of elements of K not
exceeding n.

For example, the set of even integers has natural density 1
2

and set of primes
has natural density zero.

M. Mursaleen, Applied Summability Methods, SpringerBriefs in Mathematics,
DOI 10.1007/978-3-319-04609-9__10, © M. Mursaleen 2014
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84 10 Statistical Summability

(ii) The number sequence x is said to be statistically convergent to the number L
provided that for each � > 0;

ı.K/ D lim
n!1

1

n
jfk � nI jxk � Lj � �gj D 0;

i.e.,

jxk � Lj < � a: a: k: (10.2.1)

In this case we write st � lim xk D L.

By the symbol st or S we denote the set of all statistically convergent sequences
and by st0 or S0 the set of all statistically null sequences.

Remark 10.2.1. Note that every convergent sequence is statistically convergent to
the same number, so that statistical convergence is a natural generalization of the
usual convergence of sequences. The sequence which converges statistically need
not be convergent and also need not be bounded.

Example 10.2.2. Let x D .xk/ be defined by

xk D
�
k ; k is a square;
0 ; otherwise.

Then jfk � n W xk 6D 0gj � p
n: Therefore, st � lim xk D 0: Note that we could

have assigned any values whatsoever to xk when k is a square, and we could still
have st � lim xk D 0: But x is neither convergent nor bounded.

It is clear that if the inequality in (10.2.1) holds for all but finitely many k,
then lim xk D L: It follows that lim xk D L implies st � lim xk D L so
statistical convergence may be considered as a regular summability method. This
was observed by Schoenberg [90] along with the fact that the statistical limit is a
linear functional on some sequence space. Salat [87] proved that the set of bounded
statistically convergent (real) sequences is a closed subspace of the space of bounded
sequences.

In most convergence theories it is desirable to have a criterion that can be used
to verify convergence without using the value of the limit. For this purpose we
introduce the analogue of the Cauchy convergence criterion [37].

(iii) The number sequence x is said to be statistically Cauchy sequence provided
that for every � > 0 there exists a number N.D N.�// such that

jxk � xN j < � a: a: k; (10.2.2)

i.e.,

lim
n!1

1

n
jfk � n W jxn � xN j � �gj D 0:
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In order to prove the equivalence of Definitions given in Parts (i) and (ii) of
Sect. 10.2 we shall find it helpful to use a third (equivalent). This property states
that for almost all k; the values xk coincide with those of a convergent sequence.

10.3 Results on Statistical Convergence

Theorem 10.3.1. The following statements are equivalent:

(i) x is a statistically convergent sequence;
(ii) x is a statistically Cauchy sequence;

(iii) x is a sequence for which there is a convergent sequence y such that xk D
yk a: a: k.

As an immediate consequence of Theorem 10.3.1 we have the following result.

Corollary 10.3.2. If x is a sequence such that st-lim xk D L; then x has a
subsequence y such that limyk D L:

Schoenberg [90, Lemma 4] proved that the Cesàro mean of order 1 sums every
bounded statistically convergent sequence. This raises the question of whether the
C1 method includes the statistical convergence method irrespective of boundedness.
The answer is negative, a fortiori, as we shall see in the next theorem. But first we
give a useful lemma.

Lemma 10.3.3. If t is a number sequence such that tk 6D 0 for infinitely many k,
then there is a sequence x such that xk D 0 a: a: k: and

P1
kD1 tkxk D 1:

Proof. Choose an increasing sequence of positive integers fm.k/g1
kD1 such that for

each k,

m.k/ > k2 and tm.k/ 6D 0:

Define x by xm.k/ D 1=tm.k/ and xk D 0 otherwise. Then xk D 0 a: a: k andP1
kD1 tkxk D P1

kD1 tm.k/xm.k/ D 1. ut
Theorem 10.3.4. No matrix summability method can include the method of statis-
tical convergence.

Proof. The preceding Lemma 10.3.3 shows that in order for a matrix to include
statistical convergence it would have to be row-finite. Let A be an arbitrary row-
finite matrix and choose a nonzero entry, say an.1/;k0.1/ 6D 0: Then choose k.1/ �
k0.1/ so that

an.1/;k.1/ 6D 0 and an.1/;k D 0 if k > k.1/:



86 10 Statistical Summability

Now select increasing sequences of row and column indices such that for
each m;

an.m/;k.m/ 6D 0; k.m/ � m2; and an.m/;k D 0 if k > k.m/:

Define the sequence x D .xk/ as follows:

xk D

8
<̂

:̂

1
an.1/;k.1/

; : : : ; k D k.1/;

1
an.m/;k.m/

h
m �Pm�1

iD1 an.m/;k.i/xk.i/
i
; : : : ; k D k.m/;

0 ; otherwise.

Then x is not A-summable because .Ax/n.m/ D mI also, k.m/ � m2 implies that
jfk � n W xk 6D 0gj � p

n; so xk D 0 a: a: k: Thus st � lim xk D 0; we conclude
that A does not include statistical convergence. ut
Remark 10.3.5. By definition, the method of statistical convergence cannot sum
any periodic sequence such as f.�1/kg. Therefore, statistical convergence does not
include most of the classical summability methods. When combined with Theo-
rem 10.3.4 this suggests that perhaps statistical convergence cannot be compared to
any nontrivial matrix method. The following example shows that is not the case.

Example 10.3.6. Define the matrix A by

ank D
8
<

:

1 ; k D n and n is not a square;
1=2 ; n D m2 and k D n or k D .m � 1/2; m 2 N

0 ; otherwise.

Then for any sequence x we have

.Ax/n D
8
<

:

x1=2 ; n D 1;

Œx.m�1/2 C xm2�=2 ; n D m2 for m D 2; 3; : : :

xn ; n is not a square:

Thus A is obviously a regular triangle. To see that A is included by statistical
convergence suppose limn!1.Ax/n D L: Then lim

n 6Dm
xn D L and obviously

jfk � n W .Ax/n 6D xngj � p
n; so by Theorem 10.3.1, st- lim xk D L: To see

that A is not equivalent to ordinary convergence consider the sequence x D .xk/

given by

xk D
�
.�1/m ; k D m2 for m D 1; 2; : : : ;

0 ; k is not a square:

Then .Ax/n D 0 for n > 1; but x is not convergent.
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Remark 10.3.7. We know that every subsequence of a convergent sequence is
convergent, but this is no longer true in case of statistical convergence, i.e., a
statistically convergent sequence may have a subsequence which is not statistically
convergent. Consider the statistically convergent sequence x D .xk/ as defined in
Example 10.2.2. Now, consider the subsequence .xk2/ of .xk/. It is clear that the
subsequence .xk2/ of the statistically convergent sequence .xk/ is not statistically
convergent.

In this direction we state the following important result given by Salat [87], which
tells about the structure of a statistically convergent sequence.

Theorem 10.3.8. A sequence x D .xk/ is statistically convergent to L if and only
if there exists a set K D fk1 < k2 < � � � < kn < � � � g � N such that ı.K/ D 1 and
lim xkn D L:

Proof. Suppose that there exists a set K D fk1 < k2 < � � � < kn < � � � g � N such
that ı.K/ D 1 and limn!1 xkn D L: Then there is a positive integer N such that
for n > N ,

jxkn � Lj < �: (10.3.1)

Put K� WD fn 2 N W jxn � Lj � �g and K 0 D fkNC1; kNC2; : : :g: Then ı.K 0/ D 1

and K� � N�K 0 which implies that ı.K�/ D 0: Hence x D .xk/ is statistically
convergent to L:

Conversely, let x D .xk/ be statistically convergent to L: For r D 1; 2; 3; : : : ;

put Kr WD fn 2 N W jxn � Lj � 1=rg and Mr WD fn 2 N W jxn � Lj < 1=rg: Then
ı.Kr/ D 0 and

M1 � M2 � � � �Mi � MiC1 � � � � (10.3.2)

and

ı.Mr/ D 1; r D 1; 2; 3; : : : (10.3.3)

Now we have to show that for n 2 Mr; .xkn/ is convergent to L: Suppose that .xkn/
is not convergent toL: Therefore there is � > 0 such that jxkn �Lj � � for infinitely
many terms. Let M� WD fn 2 N W jxkn � Lj < �g and � > 1=r .r D 1; 2; 3; : : :/:

Then

ı.M�/ D 0; (10.3.4)

and by (10.3.2), Mr 
 M�: Hence ı.Mr/ D 0; which contradicts (10.3.3), and
therefore .xkn/ is convergent to L:

This completes the proof of the theorem. ut
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10.4 Strong Cesàro Summability

Here, we define strong p-Cesàro summability and find its connection with statistical
convergence.

Definition 10.4.1. Let p 2 R; 0 < p < 1. A sequence x D .xk/ is said to be
strongly p-Cesàro summable to the limit L if

Pn
kD1 jxk � Ljp=n ! 0, as n ! 1.

In this case, we write xk ! LŒC; 1�p:

The following result provides the relationship between strongly p-Cesàro
summability and statistical convergence (c.f. [25, 101]).

Theorem 10.4.2. If a sequence is strongly p-Cesàro summable to L, then it is
statistically convergent to L. If a bounded sequence is statistically convergent to
L, then it is strongly p-Cesàro summable to L.

Proof. Let x D .xk/ be any strongly p-Cesàro summable sequence to L. Then, for
a given � > 0, we have

nX

kD1
jxk � Ljp � ˇ̌fk � n W jxk � Ljp � �gˇ̌�p:

It follows that if x is strongly p-Cesàro summable to L; then x is statistically
convergent to L:

Now suppose that x is bounded and statistically convergent to L and put K D
kxk1 C jLj: Let � > 0 be given and select N� such that

1

n

ˇ̌
ˇ̌k � n W jxk � Ljp �

��
2

�1=p ˇ̌ˇ̌ <
�

2Kp
;

for all n > N� and set Ln D ˚
k � n W jxk � Lj � .�=2/1=p

�
: Now for n > N� we

have that

1

n

nX

kD1
jxk � Ljp D 1

n

8
<

:
X

k2Ln
jxk � Ljp C

X

k 62Ln;k�n
jxk � Ljp

9
=

;

<
n�

2nkp
kp C n�

2n

D �

2
C �

2
D �:

Hence, x is strongly p-Cesàro summable to L. ut
The following important result is due to Connor [25].

Theorem 10.4.3 (Decomposition Theorem). If x 2 ! is strongly p-Cesàro
summable or statistically convergent to L; then there is a convergent sequence y
and a statistically null sequence z such that y is convergent to L; x D y C z
and limn n

�1jfk � n W zk 6D 0gj D 0: Moreover, if x is bounded then kzk1 �
kxk1 C jLj:
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Proof. We apply Theorem 10.4.2. Let N0 D 0 and select an increasing sequence of
positive integers N1 < N2 < N3 < : : : such that if n > Nj we have that

n�1 ˇ̌fk � n W jxk � Lj � j�1gˇ̌ < j�1:

Now define y and z as follows: if N0 < k < N1 set zk D 0 and yk D xk: Now
suppose that j � 1 and that Nj < k � NjC1: If jxk � Lj < j�1 we set yk D xk
and zk D 0 and if jxk � Lj � j�1 we set yk D L and zk D xk � L: It is clear from
our construction that x D y C z and that kzk1 � kxk1 C jLj if x is bounded.

We first show that limk yk D L: Let � > 0 and pick j such that � > j�1:
Observe that for k > Nj we have that jyk �Lj < � since jyk �Lj D jxk �Lj < �
if jxk � Lj < j�1 and jyk � Lj D jL � Lj D 0 if jxk � Lj > j�1: Since � was
arbitrary, we have established the claim.

Next we prove that z is statistically null. Note that it suffices to show that
limn n

�1jfk � n W zk 6D 0gj D 0; which follows by observing that jfk � n W
zk 6D 0gj � ˇ̌fk � n W jzkj � �gˇ̌ for any natural number n and � > 0:

We now show that if ı > 0 and j 2 N such that j�1 < ı; then jfk � n W zk 6D
0gj < ı for all n > Nj : Recall from the construction that if Nj < k � NjC1; then
zk 6D 0 only if j xk � L j> j�1: It follows that if N` < k � N`C1; then

fk � n W zk 6D 0g � ˚
k � n W jxk � Lj > `�1�:

Consequently, if N` < n � N`C1 and ` > j; then

n�1jfk � n W zk 6D 0gj � n�1 ˇ̌fk � n W jxk � Lj > `�1gˇ̌ < `�1 < j�1 < ı:

This completes the proof of the theorem. ut
We deduce the following corollary.

Corollary 10.4.4. Let x 2 !: If x is strongly p-Cesàro summable to L or
statistically convergent to L; then x has a subsequence which converges to L:

10.5 Application to Fourier Series

Let f W T ! C be a Lebesgue integrable function on the torus T WD Œ��; �/, i.e.,
f 2 L1.T/. The Fourier series of f is defined by

f .x/ �
X

j2Z
Of .j /eijx; x 2 T; (10.5.1)

where the Fourier coefficients Of .j / are defined by

Of .j / WD 1

2�

Z

T

f .t/e�ijt dt; j 2 Z: (10.5.2)
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The symmetric partial sums of the series in (10.5.1) are defined by

sk.f I x/ WD
X

jj j�k
Of .j /eijx; x 2 T; k 2 N: (10.5.3)

The conjugate series to the Fourier series in (10.5.1) is defined by [101, vol. I, p. 49]

X

j2Z
.�i sgn j / Of .j /eijx: (10.5.4)

Clearly, it follows from (10.5.1) and (10.5.4) that

X

j2Z
Of .j /eijx C i

X

j2Z
.�i sgn j / Of .j /eijx D 1C 2

1X

jD1
Of .j /eijx;

and the power series

1C 2

1X

jD1
Of .j /eijx; where z WD reix; 0 � r < 1;

is analytic on the open unit disk jzj < 1, due to the fact that

j Of .j / j� 1

2�

Z

�

j f .t/ j dt; j 2 Z:

The conjugate function Of of a function f 2 L1.T/ is defined by

Of .x/ WD � lim
"#0

1

�

Z

"�jt j��
f .x C t /

2 tan t
2

dt

D lim
"#0

1

�

Z �

"

f .x � t / � f .x C t /

2 tan t
2

dt (10.5.5)

in the “principal value” sense, and that Of .x/ exists at almost every x 2 T.
We have the following results [100] (c.f. [67, Theorem 2.1 (ii)]).

Theorem 10.5.1. If f 2 L1.T/, then for any p > 0 its Fourier series is strongly
p-Cesàro summable to f .x/ at almost every x 2 T. Furthermore, its conjugate
series (10.5.4) is strongly p-Cesàro summable for any p > 0 to the conjugate
function Of .x/ defined in (10.5.5) at almost every x 2 T.

The above result together with Theorem 10.4.2 implies the following useful
result.
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Theorem 10.5.2. If f 2 L1.T/, then its Fourier series is statistically convergent
to f .x/ at almost every x 2 T. Furthermore, its conjugate series (10.5.4) is
statistically convergent to the conjugate function Of .x/ defined in (10.5.5) at almost
every x 2 T.

10.6 A-Statistical Convergence

In this section, we study the notion of A-density and A-statistical convergence.
Following Freedman and Sember [36], Kolk [54] introduced the notion of
A-statistical convergence by taking an arbitrary nonnegative regular matrix A

in place of Cesàro matrix C1 in the definition of statistical convergence.

Definition 10.6.1. Let K D fkig be an index set and let 'K D .'Kj / with

'Kj D
�
1 ; j 2 K;
0 ; otherwise:

For a nonnegative regular matrixA, ifA'K 2 c (the space of convergent sequences),
then ıA.K/ D limn!1An'

K is called the A-density of K, thus

ıA.K/ D lim
n!1

X

k2K
ank D lim

n!1
X

i

an;ki :

Definition 10.6.2. A sequence x D .xk/ is said to be A-statistically convergent to
the number L if ıA.K�/ D 0 for every � > 0; where K� D fk W jxk � Lj � �g.
In this case, we write stA � lim xk D L. By the symbol stA we denote the set of
all A-statistically convergent sequences and by st0A the set of all A-statistically null
sequences.

It should be noted thatA-statistical convergence is defined only for a nonnegative
matrix A.

Definition 10.6.3. A matrix A D .ank/ is called uniformly regular if it satisfies the
following conditions:

(i) supn2N
P1

kD0 jankj < 1I
(ii) limn!1

P1
kD0 ank D 1I

(iii) limn!1 supk2N jankj D 0.

Agnew [3] has proved the following theorem:

Theorem 10.6.4 (Agnew’s Theorem). If a matrix A D .ank/ satisfies the condi-
tion limn!1 supk2N jankj D 0 and

P1
kD0 jankj < 1 for all n 2 N; then there exists

a divergent sequence of 0s and 1s which is A-summable to 0 or, equivalently, if A
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satisfies the assumptions of Agnew’s theorem, then there exists an infinite index set
K with ıA.K/ D 0.

For a uniformly regular matrix A and an infinite index set K D fkig the
submatrix .an;ki / of A obviously satisfies the assumptions of Agnew’s theorem.
Therefore, we obtain the following result:

Theorem 10.6.5. If the matrix A is uniformly regular then every infinite index set
contains an infinite subset K with ıA.K/ D 0.

We have the following important characterization of A-statistical convergence,
proved for A D C1 by Fridy [37] and for an arbitrary nonnegative regular A by
Kolk [54], which is an analogue of Theorem 10.3.8.

Theorem 10.6.6. A sequence x D .xk/ converges A-statistically to L if and only if
there exists an infinite index set K D fkig so that the subsequence .xki / converges
to L and ıA.NnK/ D 0 (and hence ıA.K/ D 1/.

Note that Theorem 10.6.6 together with Theorem 10.6.5 shows that for a
uniformly regular matrix A the A-statistical convergence is strictly stronger than
convergence.

10.7 Statistical A-Summability

Recently, the idea of statistical .C; 1/-summability was introduced in [63], of statis-
tical .H; 1/-summability in [63] by Moricz, and of statistical . NN;p/-summability
by Moricz and Orhan [68]. In this section we generalize these statistical summability
methods by defining the statistical A-summability for a nonnegative regular matrix
A which is due to Edely and Mursaleen [30] and find its relationship with
A-statistical convergence. StatisticalA-summability for double sequences is studied
in [15].

Definition 10.7.1. Let A D .aik/ be a nonnegative regular matrix and x D .xk/

be a sequence. We say that x is statistically A-summable to ` if for every � > 0,
ı.fi � n W jyi � `j � �g/ D 0, i.e.,

lim
n!1

1

n
jfi � n W jyi � `j � �gj D 0;

where yi D Ai.x/. Thus x is statistically A-summable to ` if and only if Ax is
statistically convergent to `. In this case we write ` D .A/st� lim x .D st� limAx/.
By .A/st, we denote the set of all statistically A-summable sequences.
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Remark 10.7.2. We have the following particular cases:

(i) If we take A D .aik/ defined by

aik D
(

1
iC1 ; 0 � k � i;

0 ; otherwise;

then the statistical A-summability is reduced to the statistical .C; 1/-
summability due to Moricz [63].

(ii) If we take A D .aik/ defined by

aik D
(
pk
Pi
; 0 � k � i;

0 ; otherwise;

then the statistical A-summability is reduced to the statistical . NN;p/-
summability due to Moricz and Orhan [68], where p D .pk/ is a sequence of
nonnegative numbers such that p0 > 0 and

lim
i!1Pi D lim

i!1

iX

kD0
pk D 1:

(iii) If we take A D .aik/ defined by

aik D
(

1
kli
; 0 � k � i;

0 ; otherwise;

where li D Pi
kD0 1=.k C 1/, then the statistical A-summability is reduced to

the statistical .H; 1/-summability due to Moricz [65].
(iv) If we take A D .ank/ defined by

ank D
(

1
�n
; k 2 In D Œn � �n C 1; n�;

0 ; k … In;

then the statistical A-summability is reduced to the statistical �-summability
due to Mursaleen and Alotaibi [71], where � D .�n/ is a nondecreasing
sequence of positive numbers tending to 1 such that �nC1 � �n C 1; �1 D 0.

(v) If we take A D .ank/ defined by

ank D
(

1
hr
; k 2 Ir D .kr�1; kr �;

0 ; k … Ir ;
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then the statistical A-summability is reduced to the statistical lacunary summa-
bility due to Mursaleen and Alotaibi [72], where � D .kr / is a lacunary
sequence such that k0 D 0 and hr D kr � kr�1 ! 1 as r ! 1.

We give the relation between statistical A-summability and A-statistical
convergence.

Theorem 10.7.3. If a sequence is bounded and A-statistically convergent to l; then
it is A-summable to l and hence statistically A-summable to l but not conversely.

Proof. Let x be bounded and A-statistically convergent to l , and K� D fk � n W
jxk � l j � �g. Then

jAn.x/ � l j �
ˇ̌
ˇ̌
ˇ̌
X

k 62K�
ank.xk � l/

ˇ̌
ˇ̌
ˇ̌C

ˇ̌
ˇ̌
ˇ̌
X

k2K�
ank.xk � l/

ˇ̌
ˇ̌
ˇ̌

� �
X

k 62K�
ank C sup

k2N
j.xk � l/j

X

k2K�
ank:

By using the definition of A-statistical convergence and the conditions of regularity
of A, we get jAn.x/ � l j ! 0, as n ! 1, since � is arbitrary and hence
st � lim jAn.x/ � l j D 0.

To see that the converse does not hold, we construct the following examples:

(i) Let A D .ank/ be the Cesàro matrix, i.e.,

ank D
(

1
nC1 ; 0 � n � k;

0 ; otherwise;

and let

xk D
�
1 ; k is odd;
0 ; k is even:

Then x is A-summable to 1=2 (and hence statistically A-summable to 1/2) but
not A-statistically convergent.

(ii) Take x D .xk/ as above and let A D .ank/ be defined by

ank D
8
<

:

1=2 ; n is non-square and k D n2; n2 C 1;

1 ; n is a square and k D n2;

0 ; otherwise:
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Then, we have

1X

kD1
ankxk D

8
<

:

1=2 ; n is a nonsquare;
0 ; n is even square;
1 ; otherwise:

We see that x is not A-summable and hence it is not A-statistically convergent
but

lim
n!1

1

n

ˇ̌
ˇ̌
�
i � n W

ˇ̌
ˇ̌yi � 1

2

ˇ̌
ˇ̌ � �

� ˇ̌
ˇ̌ D 0;

i.e., x is statistically A-summable to 1=2. ut



Chapter 11
Statistical Approximation

11.1 Introduction

In the last chapter we discussed statistical summability and its various
generalizations and variants, e.g., lacunary statistical convergence, �-statistical
convergence, A-statistical convergence, statistical summability .C; 1/, and
statisticalA-summability. In this chapter, we demonstrate some applications of these
summability methods in proving Korovkin-type approximation theorems. Such a
method was first used by Gadjiev and Orhan [39] in which the statistical version of
Korovkin approximation was proved by using the test functions 1; x; and x2: Since
then a large amount of work has been done by applying statistical convergence and
its variants, e.g., [61,71–73,75,92] for different set of test functions. In this chapter
we present few of them and demonstrate the importance of using these new methods
of summability.

11.2 Application of Statistical Summability .C; 1/

In this section, we use the notion of statistical summability .C; 1/ to prove the
Korovkin-type approximation theorem by using the test functions 1; e�x; e�2x . We
apply the classical Baskakov operator to construct an example in support of this
result.

For a sequence x D .xk/, let us write tn D 1
nC1

Pn
kD0 xk:We say that a sequence

x D .xk/ is statistically summable .C; 1/ if st � limn!1 tn D L: In this case we
write L D C1.st/ � lim x:

First we demonstrate through the following example that the statistical summa-
bility .C; 1/ is stronger than both ordinary convergence as well as statistical
convergence.

M. Mursaleen, Applied Summability Methods, SpringerBriefs in Mathematics,
DOI 10.1007/978-3-319-04609-9__11, © M. Mursaleen 2014
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Example 11.2.1. Define the sequence x D .xk/ by

xk D
8
<

:

1 ; k D m2 �m; m2 �mC 1; : : : ; m2 � 1;
�m ; k D m2; m D 2; 3; 4; : : : ;

0 ; otherwise:
(11.2.1)

Then

tn D 1

nC 1

nX

kD0
xk

D
(

sC1
nC1 ; n D m2 �mC s; s D 0; 1; 2; : : : ; m � 1I m D 2; 3; : : : ;

0 ; otherwise:

We easily see that tn ! 0, as n ! 1 and hence st � limn!1 tn D 0; i.e., x D .xk/

is statistically summable .C; 1/ to 0. On the other hand st � lim infk!1 xk D 0

and st � lim supk!1 xk D 1; since the sequence .m2/1mD2 is statistically convergent
to 0. Hence, x D .xk/ is not statistically convergent.

Let C.I / be the Banach space with the uniform norm k � k1 of all real-valued
continuous functions on I D Œ0;1/I provided that limx!1 f .x/ is finite.

Boyanov and Veselinov [19] have proved the following theorem on C Œ0;1/ by
using the test functions 1; e�x; e�2x .

Theorem 11.2.2. Let .Tk/ be a sequence of positive linear operators from C.I /

into C.I /: Then for all f 2 C.I /

lim
k!1 kTk.f I x/ � f .x/k1 D 0

if and only if

lim
k!1 kTk.1I x/ � 1k1 D 0;

lim
k!1 kTk.e�sI x/ � e�xk1 D 0;

lim
k!1

Tk.e�2s I x/ � e�2x1 D 0:

Now we prove the following result by using the notion of statistical summability
.C; 1/:

Theorem 11.2.3. Let .Tk/ be a sequence of positive linear operators from C.I /

into C.I /: Then for all f 2 C.I /

C1.st/ � lim
k!1 kTk.f I x/ � f .x/k1 D 0 (11.2.2)
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if and only if

C1.st/ � lim
k!1 kTk.1I x/ � 1k1 D 0; (11.2.3)

C1.st/ � lim
k!1 kTk.e�sI x/ � e�xk1 D 0; (11.2.4)

C1.st/ � lim
k!1

Tk.e�2sI x/ � e�2x1 D 0: (11.2.5)

Proof. Since each 1; e�x; e�2x belongs toC.I /; conditions (11.2.3)–(11.2.5) follow
immediately from (11.2.2). Let f 2 C.I /: Then there exists a constantM > 0 such
that jf .x/j � M for x 2 I: Therefore,

jf .s/ � f .x/j � 2M; � 1 < s; x < 1: (11.2.6)

Also, for a given " > 0 there is a ı > 0 such that

jf .s/ � f .x/j < "; (11.2.7)

whenever je�s � e�x j < ı for all x 2 I:
Using (11.2.6), (11.2.7), putting  1 D  1.s; x/ D .e�s � e�x/2, we get

jf .s/ � f .x/j < "C 2M

ı2
. 1/; 8 js � xj < ı:

This is,

�" � 2M

ı2
. 1/ < f .s/ � f .x/ < "C 2M

ı2
. 1/:

Now, operating Tk.1I x/ to this inequality since Tk.f I x/ is monotone and linear,
we obtain

Tk.1I x/


�" � 2M

ı2
. 1/

�
< Tk.1I x/.f .s/ � f .x//

< Tk.1I x/


"C 2M

ı2
. 1/

�
:

Note that x is fixed and so f .x/ is a constant number. Therefore,

� "Tk.1I x/ � 2M

ı2
Tj;k. 1I x/ < Tk.f I x/ � f .x/Tk.1I x/

< "Tk.1I x/C 2M

ı2
Tk. 1I x/: (11.2.8)
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But

Tk.f I x/ � f .x/ D Tk.f I x/ � f .x/Tk.1I x/C f .x/Tk.1I x/ � f .x/
D ŒTk.f I x/ � f .x/Tk.1I x/�C f .x/ŒTk.1I x/ � 1�:

(11.2.9)

Using (11.2.8) and (11.2.9), we have

Tk.f I x/ � f .x/ < "Tk.1I x/C 2M

ı2
Tk. 1I x/C f .x/ŒTk.1I x/ � 1�:

(11.2.10)

Now

Tk. 1I x/ D TkŒ.e
�s � e�x/2I x� D Tk.e

�2s � 2e�se�x C e�2x I x/
D Tk.e

�2sI x/ � 2e�xTk.e�sI x/C .e�2x/Tk.1I x/
D ŒTk.e

�2s I x/ � e�2x� � 2e�xŒTk.e�sI x/ � e�x�C e�2xŒTk.1I x/ � 1�:
Using (11.2.10), we obtain

Tk.f I x/ � f .x/ < "Tk.1I x/C 2M

ı2
fŒTk..e�2s/I x/ � e�2x�

�2e�xŒTk.e�sI x/ � e�x� C e�2xŒTk.1I x/ � 1�g C f .x/ŒTk.1I x/ � 1�

D"ŒTk.1I x/ � 1�C "C 2M

ı2
fŒTk..e�2s/I x/ � e�2x� � 2e�xŒTk.e�sI x/ � e�x�

Ce�2xŒTk.1I x/ � 1�g C f .x/ŒTk.1I x/ � 1�:

Since " is arbitrary, we can write

Tk.f I x/ � f .x/ � "ŒTk.1I x/ � 1�C 2M

ı2
fŒTk.e�2sI x/ � e�2x�

�2e�xŒTk.e�sI x/ � e�x�C e�2xŒTk.1I x/ � 1�g C f .x/ŒTk.1I x/ � 1�:
Therefore

jTk.f I x/ � f .x/j � "C ."CM/jTk.1I x/ � 1j C 2M

ı2
je�2xjjTk.1I x; y/ � 1j

C2M

ı2
jTk.e�2sI x/j � e�2x j C 4M

ı2
je�xjjTk.e�sI x/ � e�xj

� "C
�
"CM C 4M

ı2

	
jTk.1I x/ � 1j C 2M

ı2
je�2xjjTk.1I x/ � 1j

C2M

ı2
jTk.e�2sI x/ � e�2xj C 4M

ı2
jTk.e�sI x/ � e�xj (11.2.11)
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since je�xj � 1 for all x 2 I: Now, taking supx2I , we get

kTk.f I x/ � f .x/k1
� "CK.kTk.1I x/ � 1k1 C kTk.e�sI x/ � e�xk1 C kTk.e�2s I x/ � e�2xk1;

(11.2.12)

where K D max
˚
"CM C 4M

ı2
; 2M
ı2

�
. Now replacing Tk.�; x/ byPm

kD0 Tk.�; x/=.mC1/ and then by Bm.�; x/ in (11.2.12) on both sides: For a
given r > 0 choose "0 > 0 such that "0 < r . Define the following sets

D D fm � n W kBm.f; x/ � f .x/k1 � rg ;

D1 D
�
m � n W kBm.1; x/ � 1k1 � r � "0

4K

�
;

D2 D
�
m � n W kBm.t; x/ � e�xk1 � r � "0

4K

�
;

D3 D
�
m � n W kBm.t2; x/ � e�2xk1 � r � "0

4K

�
:

Then, D 
 D1 [ D2 [ D3; and so ı.D/ � ı.D1/ C ı.D2/ C ı.D3/: Therefore,
using conditions (11.2.3)–(11.2.5), we get

C1.st/ � lim
n!1 kTn.f; x/ � f .x/k1 D 0:

This completes the proof of the theorem. ut
In the following example we construct a sequence of positive linear operators

satisfying the conditions of Theorem 11.2.3 but does not satisfy the conditions of
Theorem 11.2.2 as well as its statistical version.

Example 11.2.4. Consider the sequence of classical Baskakov operators[14].

Vn.f I x/ WD
1X

kD0
f

�
k

n

	 
n � 1C k

k

!
xk.1C x/�n�k I

where 0 � x; y < 1.
Let Ln W C.I / ! C.I / be defined by

Ln.f I x/ D j.1C xn/Vn.f I x/j;

where the sequence x D .xn/ is defined by (11.2.1). Note that this sequence is
statistically summable .C; 1/ to 0 but neither convergent nor statistically convergent.
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Now,

Ln.1I x/ D 1;

Ln.e
�sI x/ D .1C x � xe� 1

n /�n;

Ln.e
�2sI x2/ D .1C x2 � x2e� 1

n /�n;

we have that the sequence .Ln/ satisfies the conditions (11.2.3)–(11.2.5). Hence by
Theorem 11.2.3, we have

C1.st/ � lim
n!1 kLn.f / � f k1 D 0:

On the other hand, we get Ln.f I 0/ D j.1C xn/f .0/j, since Vn.f I 0/ D f .0/, and
hence

kLn.f I x/ � f .x/k1 � jLn.f I 0/ � f .0/j D jxnf .0/j:

We see that .Ln/ does not satisfy the conditions of the theorem of Boyanov and
Veselinov as well as its statistical version, since .xn/ is neither convergent nor
statistically convergent. Hence Theorem 11.2.3 is stronger than Theorem 11.2.2 as
well as its statistical version.

11.3 Application of Statistical A-Summability

Let H!.I / denote the space of all real-valued functions f on I such that

jf .s/ � f .x/j � !

�
f I
ˇ̌
ˇ̌ s

1C s
� x

1C x

ˇ̌
ˇ̌
	
;

where ! is the modulus of continuity, i.e.,

!.f I ı/ D sup
s;x2I

fjf .s/ � f .x/j W js � xj � ıg:

It is to be noted that any function f 2 H!.I / is continuous and bounded on I:
The following Korovkin-type theorem was proved by Çakar and Gadjiev [21].

Theorem 11.3.1. Let .Ln/ be a sequence of positive linear operators from H!.I /

into CB.I /: Then for all f 2 H!.I /

lim
n!1 kLn.f I x/ � f .x/kCB.I / D 0
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if and only if

lim
n!1 kLn.fi I x/ � gikCB.I / D 0I .i D 0; 1; 2/;

where

g0.x/ D 1; g1.x/ D x

1C x
; g2.x/ D

�
x

1C x

	2
:

Erkuş and Duman [32] have given the A-statistical version of the above theorem
for functions of two variables. In this section, we use the notion of statistical A-
summability to prove a Korovkin-type approximation theorem for functions of two
variables with the help of test functions 1; x=.1 C x/; y=.1 C y/; Œx=.1 C x/�2 C
Œy=.1C y/�2.

Let I D Œ0;1/ and K D I � I . We denote by CB.K/ the space of all bounded
and continuous real-valued functions on K equipped with norm

kf kCB.K/ WD sup
.x;y/2K

jf .x; y/j; f 2 CB.K/:

Let H!�.K/ denote the space of all real-valued functions f on K such that

jf .s; t/ � f .x; y/j � !�
2

4f I
s�

s

1C s
� x

1C x

	2
C
�

t

1C t
� y

1C y

	2
3

5 ;

where !� is the modulus of continuity, i.e.,

!�.f I ı/ D sup
.s;t/;.x;y/2K

fjf .s; t/ � f .x; y/j W
p
.s � x/2 C .t � y/2 � ıg:

It is to be noted that any function f 2 H!�.K/ is bounded and continuous on K;
and a necessary and sufficient condition for f 2 H!�.K/ is that !�.f I ı/ ! 0, as
ı ! 0.

Theorem 11.3.2. Let A D .ank/ be nonnegative regular summability matrix. Let
.Tk/ be a sequence of positive linear operators fromH!�.K/ into CB.K/: Then for
all f 2 H!�.K/

st � lim
n!1



1X

kD1
ankTk.f I x; y/ � f .x; y/


CB.K/

D 0 (11.3.1)

if and only if

st � lim
n!1



1X

kD1
ankTk.1I x; y/ � 1


CB.K/

D 0 (11.3.2)
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st � lim
n!1



1X

kD1
ankTk

�
s

1C s
I x; y

	
� x

1C x


CB.K/

D 0; (11.3.3)

st � lim
n!1



1X

kD1
ankTk

�
t

1C t
I x; y

	
� y

1C y


CB.K/

D 0; (11.3.4)

st � lim
n!1



1X

kD1
ankTk

"�
s

1C s

	2
C
�

t

1C t

	2
I x; y

#

�
"�

x

1C x

	2
C
�

y

1C y
/2
	#

CB.K/

D 0: (11.3.5)

Proof. Since each of the functions f0.x; y/ D 1; f1.x; y/ D x=.1 C x/,
f2.x; y/ D y=.1Cy/, f3.x; y/ D Œx=.1Cx/�2C Œy=.1Cy/�2 belongs toH!�.K/,
conditions (11.3.2)–(11.3.5) follow immediately from (11.3.1). Let f 2 H!�.K/

and .x; y/ 2 K be fixed. Then for " > 0 there exist ı1; ı2 > 0 such that
jf .s; t/ � f .x; y/j < " holds for all .s; t/ 2 K satisfying j s

1Cs � x
1Cx j < ı1 and

j t
1Ct � y

1Cy j < ı2. Let

K.ı/ WD
8
<

:.s; t/ 2 K W
s�

s

1C s
� x

1C x

	2
C
�

t

1C t
� y

1C y

	2
< ı

9
=

; ;

where ı D minfı1; ı2g. Hence,

jf .s; t/ � f .x; y/j D jf .s; t/ � f .x; y/j�K.ı/.s; t/
Cjf .s; t/ � f .x; y/j�KnK.ı/.s; t/

� "C 2N�KnK.ı/.s; t/; (11.3.6)

where �D denotes the characteristic function of the set D and N D kf kCB.K/.
Further we get

�KnK.ı/.s; t/ � 1

ı21

�
s

1C s
� x

1C x

	2
C 1

ı22

�
t

1C t
� y

1C y

	2
: (11.3.7)

Combining (11.3.6) and (11.3.7), we get

jf .s; t/ � f .x; y/j � "C 2N

ı2

"�
s

1C s
� x

1C x

	2
C
�

t

1C t
� y

1C y

	2#
:

(11.3.8)
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After using the properties of f , a simple calculation gives that

jTk.f I x; y/�f .x; y/j�"CM fjTk.f0I x; y/�f0.x; y/jCjTk.f1I x; y/�f1.x; y/j
CjTk.f2I x; y/ � f2.x; y/j C jTk.f3I x; y/ � f3.x; y/jg; (11.3.9)

whereM WD "CN C 4N=ı2. Now replacing Tk.f I x; y/ by
P1

kD1 ankTk.f I x; y/
and taking sup.x;y/2K , we get



1X

kD1
ankTk.f I x; y/�f .x; y/


CB.K/

�"CM
2

4


1X

kD1
ankTk.f0I x; y/�f0.x; y/


CB.K/

C


1X

kD1
ankTk.f1I x; y/ � f1.x; y/


CB.K/

C


1X

kD1
ankTk.f2I x; y/ � f2.x; y/


CB.K/

C


1X

kD1
ankTk.f3I x; y/ � f3.x; y/


CB.K/

3

5 : (11.3.10)

For a given r > 0 choose " > 0 such that " < r , define the following sets

D WD
8
<

:n W


1X

kD1
ankTk.f I x; y/ � f .x; y/


CB.K/

� r

9
=

; ;

D1 WD
8
<

:n W


1X

kD1
ankTk.f0I x; y/ � f0.x; y/


CB.K/

� r � "
4K

9
=

; ;

D2 WD
8
<

:n W


1X

kD1
ankTk.f1I x; y/ � f1.x; y/


CB.K/

� r � "
4K

9
=

; ;

D3 WD
8
<

:n W


1X

kD1
ankTk.f2I x; y/ � f2.x; y/


CB.K/

� r � "
4K

9
=

; ;

D4 WD
8
<

:n W


1X

kD1
ankTk.f3I x; y/ � f3.x; y/


CB.K/

� r � "
4K

9
=

; :

Then from (11.3.10), we see that D 
 D1 [D2 [D3 [D4 and therefore ı.D/ �
ı.D1/C ı.D2/C ı.D3/C ı.D4/: Hence the conditions (11.3.2)–(11.3.5) imply the
condition (11.3.1).

This completes the proof of the theorem. ut
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If we replace the matrix A in Theorem 11.3.2 by an identity matrix, then we
immediately get the following result which is due to Erkuş and Duman [32]:

Corollary 11.3.3. Let .Tk/ be a sequence of positive linear operators fromH!�.K/

into CB.K/: Then for all f 2 H!�.K/

st � lim
k!1 kTk.f I x; y/ � f .x; y/kCB.K/ D 0 (11.3.11)

if and only if

st � lim
k!1 kTk.1I x; y/ � 1kCB.K/ D 0; (11.3.12)

st � lim
k!1

Tk
�

s

1C s
I x; y

	
� x

1C x


CB.K/

D 0; (11.3.13)

st � lim
k!1

Tk
�

t

1C t
I x; y

	
� y

1C y


CB.K/

D 0; (11.3.14)

st � lim
k!1

Tk

"�
s

1C s

	2
C
�

t

1C t

	2
I x; y

#

�
"�

x

1C x

	2
C
�

y

1C y

	2#
CB.K/

D 0: (11.3.15)

Example 11.3.4. We show that the following double sequence of positive linear
operators satisfies the conditions of Theorem 11.3.2 but does not satisfy the
conditions of Corollary 11.3.3 and Theorem 11.3.1.

Consider the following Bleimann, Butzer, and Hahn [16] (of two variables)
operators:

Bn.f I x; y/

WD 1

.1C x/n.1C y/n

nX

jD0

nX

kD0
f

�
j

n � j C 1
;

k

n � k C 1

	 
n

j

! 
n

k

!
xj yk;

(11.3.16)

where f 2 H!.K/, K D Œ0;1/ � Œ0;1/ and n 2 N. Since

.1C x/n D
nX

jD0

 
m

j

!
xj ;

it is easy to see that

lim
n!1Bn.f0I x; y/ D 1 D f0.x; y/:
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Also by a simple calculation, we obtain

lim
n!1Bn.f1I x; y/ D lim

n!1
n

nC 1

�
x

1C x

	
D x

1C x
D f1.x; y/;

lim
n!1Bn.f2I x; y/ D lim

n!1
n

nC 1

�
y

1C y

	
D y

1C y
D f2.x; y/:

Finally, we get

lim
n!1Bn.f3I x; y/ D lim

n!1

"
n.n � 1/
.nC 1/2

�
x

1C x

	2
C n

.nC 1/2

�
x

1C x

	

Cn.n � 1/
.nC 1/2

�
y

1C y

	2
C n

.nC 1/2

�
y

1C y

	#

D
�

x

1C x

	2
C
�

y

1C y

	2
D f3.x; y/:

Now, take A D .C; 1/ and define u D .un/ by

uk D
�
1 ; k is odd;
0 ; k is even:

Let the operator Ln W H!.K/ ! CB.K/ be defined by

Ln.f I x; y/ D .1C un/Bn.f I x; y/:

Then the sequence .Ln/ satisfies the conditions (11.3.2)–(11.3.5). Hence by
Theorem 11.3.2, we have

st � lim
m!1



1X

nD1
amnLn.f I x; y/ � f .x; y/


CB.K/

D st � lim
m!1


1

m

mX

nD1
Ln.f I x; y/ � f .x; y/


CB.K/

D 0:

On the other hand, the sequence .Ln/ does not satisfy the conditions of
Theorem 11.3.1, Corollary 11.3.3, and Theorem 2.1 of [32], since .Ln/ is
neither convergent nor statistically (nor A-statistically) convergent. That is,
Theorem 11.3.1, Corollary 11.3.3, and Theorem 2.1 of [32] do not work for
our operators Ln: Hence Theorem 11.3.2 is stronger than Corollary 11.3.3 and
Theorem 2.1 of [32].
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11.4 Rate of Statistical A-Summability

In this section, using the concept of statistical A-summability, we study the rate of
convergence of positive linear operators with the help of the modulus of continuity.
Let us recall, for f 2 H!�.K/

jf .s; t/ � f .x; y/j � !�
2

4f I
s�

s

1C s
� x

1C x

	2
C
�

t

1C t
� y

1C y

	2
3

5 ;

where

!�.f I ı/ D sup
.s;t/;.x;y/2K

fjf .s; t/ � f .x; y/j W
p
.s � x/2 C .t � y/2 � ıg:

We have the following result:

Theorem 11.4.1. Let A D .ank/ be nonnegative regular summability matrix and
.Tk/ be a sequence of positive linear operators from H!�.K/ into CB.K/. Assume
that

(i) st � limn!1
P1

kD1 ankTk.f0/ � f0

CB.K/

D 0,
(ii) st � limn!0 !

�.f I ın/ D 0,

where

ın D
vuut


1X

kD1

ankTk. /


CB.K/

with  D  .s; t/ D
�

s

1C s
� x

1C x

	2
C
�

t

1C t
� y

1C y

	2
:

Then for all f 2 H!�.K/

st � lim
n!1



1X

kD1
ankTk.f / � f


CB.K/

D 0:

Proof. Let f 2 H!�.K/ be fixed and .x; y/ 2 K be fixed. Using linearity and
positivity of the operators Tk for all n 2 N, we have

ˇ̌
ˇ̌
ˇ

1X

kD1
ankTk.f I x; y/ � f .x; y/

ˇ̌
ˇ̌
ˇ �

1X

kD1
ankTk.jf .s; t/ � f .x; y/jI x; y/

Cjf .x; y/j
ˇ̌
ˇ̌
ˇ

1X

kD1
ankTk.f0I x; y/ � f0.x; y/

ˇ̌
ˇ̌
ˇ
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�
1X

kD1
ankTk

2

664!
�

0

BB@f I ı

r
�
s
1Cs � x

1Cx
�2 C

�
t
1Ct � y

1Cy
�2

ı

1

CCA I x; y

3

775

Ckf kCB.K/
ˇ̌
ˇ̌
ˇ

1X

kD1
ankTk.f0I x; y/ � f0.x; y/

ˇ̌
ˇ̌
ˇ

�
1X

kD1
ankTk

2

664

0

BB@1C

r
�
s
1Cs � x

1Cx
�2 C

�
t

1Ct � y
1Cy

�2

ı

1

CCA!
�.f I ı/I x; y

3

775

Ckf kCB.K/
ˇ̌
ˇ̌
ˇ

1X

kD1
ankTk.f0I x; y/ � f0.x; y/

ˇ̌
ˇ̌
ˇ

�
1X

kD1
ank!

�.f I ı/Tk

2

64

0

B@1C
�
s
1Cs � x

1Cx
�2 C

�
t

1Ct � y
1Cy

�2

ı2
I x; y

1

CA

3

75

Ckf kCB.K/
ˇ̌
ˇ̌
ˇ

1X

kD1
ankTk.f0I x; y/ � f0.x; y/

ˇ̌
ˇ̌
ˇ

�!�.f I ı/
ˇ̌
ˇ̌
ˇ

1X

kD1
ankTk.f0I x; y/�f0.x; y/

ˇ̌
ˇ̌
ˇCkf kCB.K/

ˇ̌
ˇ̌
ˇ

1X

kD1
ankTk.f0I x; y/�f0.x; y/

ˇ̌
ˇ̌
ˇ

C!�.f I ı/C!�.f I ı/
ı2

1X

kD1
ankTk

"�
s

1Cs� x

1Cx
	2

C
�

t

1C t
� y

1C y

	2
I x; y

#
:

Hence,



1X

kD1
ankTk.f / � f


CB.K/

�kf kCB.K/


1X

kD1
ankTk.f0/�f0


CB.K/

C!�.f I ı/


1X

kD1
ankTk.f0/�f0


CB.K/

C!�.f I ı/
ı2



1X

kD1
ankTk. /


CB.K/

C !�.f I ı/:

Now if we choose ı WD ın WD
qP1

kD1 ankTk. /

CB.K/

; then
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1X

kD1
ankTk.f / � f


CB.K/

� kf kCB.K/


1X

kD1
ankTk.f0/ � f0


CB.K/

C!�.f I ın/


1X

kD1
ankTk.f0/ � f0


CB.K/

C 2!�.f I ın/:

Therefore,



1X

kD1
ankTk.f / � f


CB.K/

� M

8
<

:



1X

kD1
ankTk.f0/ � f0


CB.K/

C!�.f I ın/


1X

kD1
ankTk.f0/ � f0


CB.K/

C !�.f I ın/
9
=

; ; (11.4.1)

where M D maxf2; kf kCB.K/g. Now, for a given r > 0, choose " > 0 such that
" > r . Let us write

E WD
8
<

:n W


1X

kD1
ankTk.f I x; y/ � f .x; y/


CB.K/

� r

9
=

; ;

E1 WD
8
<

:n W


1X

kD1
ankTk.f0I x; y/ � f0.x; y/


CB.K/

� r

3K

9
=

; ;

E2 WD
n
n W !�.f I ın/ � r

3K

o
;

E3 WD
8
<

:n W !�.f I ın/


1X

kD1
ankTk.f0I x; y/ � f0.x; y/


CB.K/

� r

3K

9
=

; :

Then E 
 E1 [ E2 [ E3 and therefore ı.E/ � ı.E1/ C ı.E2/ C ı.E3/: Using
conditions (i) and (ii) we conclude

st � lim
n!1



1X

kD1
ankTk.f / � f


CB.K/

D 0:

This completes the proof of the theorem. ut



Chapter 12
Applications to Fixed Point Theorems

12.1 Introduction

Let E be a closed, bounded, convex subset of a Banach space X and f W E �! E.
Consider the iteration scheme defined by Nx0 D x0 2 E, NxnC1 D f .xn/; xn D
nP

kD0
ank Nxk; n � 1, where A is a regular weighted mean matrix. For particular

spaces X and functions f we show that this iterative scheme converges to a fixed
point of f . During the past few years several mathematicians have obtained fixed
point results using Mann and other iteration schemes for certain classes of infinite
matrices. In this chapter, we present some results using such schemes which are
represented as regular weighted mean methods. Results of this chapter appeared in
[20, 40, 82] and [84].

12.2 Definitions and Notations

Let E be a nonempty closed convex subset of a Banach space X . A mapping T W
E ! E is said to be

(a) a contraction on X; if there is some nonnegative real number k < 1 such that
for all x and y in E, kT x � Tyk � kkx � yk;

(b) a non-expansive map if kT x � Tyk � kx � yk;
(c) quasi non-expansive map if

kT x � Tyk

� a1kx � yk C a2kx � T xk C a3ky � Tyk C a4kx � Tyk C a5ky � T xk (*)

for all x; y 2 E; ai � 0 and
5P
iD1

ai � 1:

M. Mursaleen, Applied Summability Methods, SpringerBriefs in Mathematics,
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Let .X; d/ be a metric space and T W X ! X be a mapping. The point x 2 X is
called a fixed point of T if T x D x.

The following generalized iteration process is called Mann iteration in which
A D .aij /; i; j 2 N is an infinite matrix of real numbers such that

aij � 0; for all i; j 2 N and aij D 0 for j > i; (12.2.1)

lim
i!1 aij D 0 for each fixed j 2 N; (12.2.2)

iX

jD1
aij D 1; for all i 2 N: (12.2.3)

Obviously the above matrix A is regular. If E be a nonempty, closed, convex
subset of a Banach space B and T be a mapping of E into itself satisfying certain
conditions, then starting with an arbitrary element x1 2 E, the generalized iteration
process, denoted by the triplet .x1; A; T /, is defined by

xnC1 D T vn where vn D
nX

kD1
ankxk; for all n 2 N:

Various choice of the infinite matrix A yields many interesting iterative process
as special cases. Taking A to be the infinite identity matrix I , then the process
.x1; A; T / is just an ordinary Picard iteration defined by

vnC1 D xnC1 D T vn whence vnC1 D T nv1 D T nx1:

In many particular problems the generalized iteration process can easily be seen to
converge while the ordinary Picard iteration process may not converge.

LetX be a Banach space. A sequence .xn/ inX is said to be (a) almost (strongly)
convergent to z 2 X if the strong limn!1 1

n

PkCn�1
jDk xj D z uniformly in k; (b)

almost weakly convergent to z 2 X if hxn; yi is almost convergent to hx; yi for all
y 2 X�:

Let E be a nonempty closed and convex subset of a Banach space X and fxng
a bounded sequence in X . For x 2 X , define the asymptotic radius of fxng at x
as the number r.x; fxng/ D lim supn!1 k xn � x k : Let r D r.E; fxng/ WD
inffr.x; fxng/ W x 2 Eg and A D A.E; fxng/ WD fx 2 E W r.x; fxng/ D rg:
The number r and the set A are called the asymptotic radius and asymptotic center
relative to E, respectively.

12.3 Iterations of Regular Matrices

Let X be a normed linear space, E a nonempty closed bounded, convex subset of
X , f W E �! E possessing at least one fixed point in E, and A an infinite matrix.
Given the iteration scheme
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Nx0 D x0 2 E; (12.3.1)

NxnC1 D f .xn/; n D 0; 1; 2; � � � ; (12.3.2)

xn D
nX

kD0
ank Nxk; n D 1; 2; 3; � � � ; (12.3.3)

it is reasonable to ask what restrictions on the matrix A are necessary and/or
sufficient to guarantee that the above iteration scheme converges to a fixed point
of f .

Several mathematicians have obtained result using iteration schemes of the
form (12.3.1)–(12.3.3) for certain classes of infinite matrices. We shall confine our
attention to regular triangular matrices A satisfying:

0 � ank � 1; n; k D 0; 1; 2; � � � ; (12.3.4)
nX

kD0
ank D 1; n D 0; 1; 2; � � � : (12.3.5)

Conditions (12.3.4) and (12.3.5) are obviously necessary in order to ensure that
xn and Nxn in (12.3.2) and (12.3.3) remain in E. The scheme (12.3.1)–(12.3.3) is
generally referred to as the Mann process.

Barone [12] observed that a sufficient condition for a regular matrix A to
transform each bounded sequence into a sequence whose set of limit points is
connected is that A satisfies

lim
n

1X

kD0
jank � an�1;kj D 0: (12.3.6)

Rhoades announced the following conjecture:
Conjecture: Let f be a continuous mapping of Œa; b� into itself, A a regular matrix
satisfying (12.3.4)–(12.3.6). Then the iteration scheme defined by (12.3.1)–(12.3.3)
converges to a fixed point of f .

The conjecture need not remain true if condition (12.3.6) is removed. To see this,
let A be the identity matrix, Œa; b� D Œ0; 1�; f .x/ D 1 � x, and choose x0 D 0.

The conjecture is true for a large class of weighted mean matrices as we now
show.

A weighted mean method is a regular triangular method A D .ank/ defined by
ank D pk=Pn, where the sequence fpng satisfies p0 > 0; pn � 0 for n > 0,

Pn D
nP

kD0
pk; and Pn ! 1 as n ! 1. It is easy to verify [84] that such a matrix

satisfies (12.3.6) if and only if pn=Pn ! 0 as n ! 1.

Theorem 12.3.1. LetA be a regular weighted mean method satisfying (12.3.6), f a
continuous mapping from E D Œa; b� into itself. Then the iteration scheme (12.3.1)–
(12.3.3) converges to a fixed point of f:
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Proof. There is no loss of generality in assuming Œa; b� D Œ0; 1�. Any regular
weighted mean method automatically satisfies conditions (12.3.4) and (12.3.5).
Using (12.3.3) we may write

xnC1 D .pnC1=PnC1/.f .xn/ � xn/C xn: (12.3.7)

Since xn, f .xn/ 2 Œ0; 1�, we have, from (12.3.7), jxnC1 � xnj � pnC1=PnC1 ! 0

as n ! 1.
Now following the proof in ([35], p.325), we can easily establish that fxng

converges. It remains to show that fxng tends to a fixed point of f .
Fact: Let A be any regular matrix, f as defined above. If the iteration
scheme (12.3.1)–(12.3.3) converges, it converges to a fixed point of f .

Let x D fxng; Nx D f Nxng; y D lim
n

Nxn D f .y/. But A is a regular matrix. Hence

y D lim
n
xn D lim

n
An. Nx/ D f .y/. ut

Remark 12.3.2. One obtains the theorem of [35] by setting pn D 1 in Theorem
12.3.1.

Reiermann [83] defines a summability matrix A D .ank/ by

ank D

8
ˆ̂<

ˆ̂:

ck
nQ

jDkC1
.1 � cj / ; k < n;
cn ; k D n;

0 ; k > n;

(12.3.8)

where the real sequence fcng satisfies (i) c0 D 1, (ii) 0 < cn < 1 for n � 1,
and (iii)

P
k

ck diverges. (it is easy to verify [84] that A is regular and satisfies

conditions (12.3.4) and (12.3.5). Actually Reinermann permits cn D 1 in order
to take care of the identity matrix, but in all interesting applications the restriction
cn < 1 is imposed). He then defines the iteration scheme (12.3.1) and xnC1 D
nP

kD0
ankf .xk/, which can be written in the form

xnC1 D .1 � cn/xn C cnf .xn/; (12.3.9)

and establishes the following.

Theorem 12.3.3 ([83], p.211). Let a; b 2 R; a < b; E D Œa; b�; f W E ! E; f

continuous and with at most one fixed point. With A as defined in (12.3.8) and
with fcng satisfying (i)–(iii) and lim

n
cn D 0, the iteration scheme (12.3.1), (12.3.9)

converges to the fixed point of f .

Theorem 12.3.4. The matrix of (12.3.8) with fcng satisfying (i)–(iii) is a regular
weighted mean matrix.
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Proof. For, set ank D pk=Pn; k � n. Then pk=pkC1 D ank=an;kC1 D ck.1 �
ckC1/=ckC1, which can be solved to obtain

pk D ckp0=

kY

jD1
.1 � cj /; k > 0: (12.3.10)

By induction one can show that Pn D p0=
nQ

jD1
.1 � cj /; n > 0. Since

P
k

ck

diverges, the product must diverge to 0. Therefore Pn ! 1 as n ! 1 and the
weighted mean method . NN;pn/ with pn defined by (12.3.10) is regular. Also, each
pk > 0.

Conversely, let . NN;pn/ be a regular weighted mean method with each pk > 0

and define fcng by

cn D pn=Pn; n � 0: (12.3.11)

Then c0 D 1, and, since each pk > 0; 0 < cn < 1 for all n > 0. Now

from (12.3.11), 1�cn D Pn�1=Pn, which leads to Pn D p0=
nQ

jD1
.1�cj /. Therefore

pk=Pn D ck
nQ

jDkC1
.1 � cj / and A has the form (12.3.8). Moreover,

P
k

ck diverges

because Pn ! 1 as n ! 1. Since cn D pn=Pn, the condition lim
n
cn D 0 is the

same as . NN;pn/ satisfying (12.3.6). ut
Remark 12.3.5. We point out, however, that even though matrices involved
are the same, the iteration schemes (12.3.1)–(12.3.3) and (12.3.1), (12.3.9)
are different. Scheme (12.3.1)–(12.3.3) takes the form x D Az, where z D
fx0; f .x0/; f .x1/; � � � g; whereas (12.3.1) and (12.3.9) become x D Aw, where
w D ff .x0/; f .x1/; � � � g. In other words the first scheme uses a translate of w.
However, since f is continuous, it is easy [84] to verify, using the fact, that each
method converges to the same fixed point.

Hillam [45] has shown the conjecture to be false and has established the
following result, which is a slight generalization of Theorem 12.3.1.

Theorem 12.3.6 ([45], p.16). Let f W Œ0; 1� ! Œ0; 1�, f continuous, A a regular
triangular matrix satisfying (12.3.4)–(12.3.6) and

nX

kD0
janC1;k � .1 � anC1;kC1/ankj D o.anC1;nC1/:
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If, in addition,

1X

nD1

nX

kD0
janC1;k � .1 � anC1;kC1/ankj < 1;

then the iteration scheme (12.3.1)–(12.3.3) converges to a fixed point of f .

Theorem 12.3.7. Let E be nonempty closed convex subset of a Banach space B
and let T W E ! E be a mapping satisfying condition ./. If for any x1 2 E and
a generalized iteration process .x1; A; T / such that the sequences fxngn and fvngn
both converge to p, then p is the unique fixed point of T in E.

Proof. Let x1 2 E and A to be an infinite matrix defined by Mann. In view
of (12.3.2), vn 2 E;8n 2 N which is assured by the restriction (iii) on A.

We now claim that p D Tp. If possible, suppose that p ¤ Tp. Then

kp � Tpk � kxnC1 � pk C kxnC1 � Tpk
D kxnC1 � pk C kT vn � Tpk
� kxnC1 � pk C a1kvn � pk C a2kvn � T vnk

C a3kp � Tpk C a4kvn � Tpk C a5kp � T vnk:

Now passing through the limit as n ! 1, we have
.1 � a3 � a4/kp � Tpk � 0:

Interchanging the roles of Tp and xnC1, we can have similarly,
.1 � a2 � a5/kp � Tpk � 0:

Adding those two, we have
f2 � .a2 C a3 C a4 C a5/gkp � Tpk � 0

which is a contradiction. Hence we must have p D Tp:

We shall now show the uniqueness of the fixed point p of T . Let u.¤ p/ 2 E be
another fixed point of T in E. Thus we have

ku � pk D kT u � Tpk
� a1ku � pkC a2ku � T uk C a3kp � Tpk C a4ku�Tpk C a5kp � T uk
D .a1 C a4 C a5/ku � pk
� .1 � a2 � a3/ku � pk

) .a2 C a3/ku � pk � 0 which is a contradiction. Therefore u D p.
This completes the proof of the theorem. ut
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12.4 Nonlinear Ergodic Theorems

Brézis and Browder [20] extended Baillon’s theorems [9,10] from the usual Cesàro
means of ergodic theory to general averaging processes An D P1

kD0 ankT k , where
.ank/

1
n;kD0 is an infinite matix such that ank � 0 and

P1
kD0 ank D 1: We present

here a slight modification as follows.

Theorem 12.4.1. Let H be a Hilbert space, C a closed bounded convex subset of
H; and T a non-expansive self map of C . Let A D .ank/

1
n;kD0 be a strongly regular

matrix of nonnegative real numbers. Then for each x 2 C; Anx D P1
kD0 ankT kx

converges weakly to a fixed point of T:

Proof. The following extension of Opial’s lemma [79] will be needed in proving
this result.

Lemma 12.4.2. Let fxkg and fykg be two sequences inH , F a nonempty subset of
H , Cm the convex closure of [j�mfxj g. Suppose that

(a) for each f 2 F , j xj � f j2! p.f / < C1I
(b) dist.yk; Cm/ ! 0 as k ! 1 for each mI
(c) any weak limit of an infinite subsequence of fykg lies in F .

Then yk converges weakly to a point of F .

We apply Lemma 12.4.2 with F the fixed point set of T in C , xk D T kx;

yn D P1
kD0 ankxk: Since j xj�f j2 decreases with j , it converges to p.f / < C1.

Since, by regularity of A; ank ! 0 as n ! C1, dist.yn; Cm/ ! 0 as n ! 1
for each m: To show that (c) holds, it suffices to prove that j yn � Tyn j! 0 as
n ! C1: For any u in H ,

j yn � u j2D
ˇ̌
ˇ̌
ˇ

1X

kD0
ank.xk � u/

ˇ̌
ˇ̌
ˇ

2

D
1X

j;kD0
anj ankhxj � u; xk � ui:

Since

2hxj � u; xk � ui Dj xj � u j2 C j xk � u j2 � j xj � xk j2;

2 j yn � u j2D 2

1X

kD0
ank j xk � u j2 �rn;

where rn D P1
j;kD0 anj ank j xj � xk j2 : If we choose u D yn; then rn DP1

kD0 ank j xk � yn j2 : If we take u D Tyn; then

2 j yn � Tyn j2 D 2an;0 jx � Tynj2 C 2

1X

kD0

ank j T xk�1 � Tyn j2 �rn

� 2an;0 jx�Tynj2 C2
1X

kD0

ank j xk�1�yn j2 �2
1X

kD0

ank j xk�yn j2
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� 2an;0 jx � Tynj2 C 2

1X

kD0

.an;kC1 � ank/ j xk � yn j2

� 2

 
an;0 C

1X

kD0

j an;kC1 � ank j
!

diam.C /2 ! 0 .n ! 1/;

by strong regularity of A:
Hence we get the desired result. ut
Next result is due to Reich [82] in which the notion of almost convergence is

used.

Theorem 12.4.3. Let H be a Hilbert space, C a closed bounded convex subset of
H; and T a non-expansive self map of C with a fixed point: Let A D .ank/

1
n;kD0

be a strongly regular matrix of nonnegative real numbers. Then for each x 2 C;

fyng D fAnxg converges weakly to a fixed point z of T that is the asymptotic center
of fT nxg:
Proof. Let us write Sn.xk/ D 1

n

PkCn�1
jDk xj for any sequence fxng: Let F be the

fixed point set of T and P W C ! F the nearest point projection. Writing xn for
T nx: Let fk.n/g be an arbitrary sequence of natural numbers and f any point in F:
Note that fxng is bounded, fPxng converges strongly to z, and

˝
Sn.Pxk.n/ � Sn.xk.n//; f � z

˛ � �MSn.j Pxk.n/ � z j/

for some constant M: Also

j Sn.xk.n// � TSn.xk.n// j� 1

n1=2
j xk.n/ � TSn.xk.n// j :

Therefore if fSn.xk.n//g converges weakly to q; then we have (i) hz � q; f � zi � 0

for all f 2 F and hence Pq D z; (ii) q 2 F . In other words, Sn.xk.n// ! z
(weakly) and fxng is almost weakly convergent to z: Now applying Theorem 7 of
Lorentz [58], strong regularity of A yields the desired result.

This completes the proof of the theorem. ut
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