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Preface

The theory of summability arises from the process of summation of series and
the significance of the concept of summability has been strikingly demonstrated
in various contexts, e.g., in analytic continuation, quantum mechanics, probability
theory, Fourier analysis, approximation theory, and fixed point theory. The methods
of almost summability and statistical summability have become an active area of
research in recent years.

This short monograph is the first one to deal exclusively with the study of some
summability methods and their interesting applications. We consider here some
special regular matrix methods as well as non-matrix methods of summability.
This book consists of 12 chapters. In Chap. 1, we recall some basic definitions
of sequence spaces, matrix transformations, regular matrices, and some special
matrices. Chapter 2 deals with the proof of the prime number theorem by using
Lambert’s summability and Wiener’s Tauberian theorem. In Chap.3, we give
some results on summability tests for singular points of an analytic function. In
Chap. 4, we study analytic continuation through Lototski summability. In Chap. 5,
we give application of summability methods to independent identically distributed
random variables. In Chap.6, we study a non-matrix method of summability,
i.e., almost summability which is further applied in Chaps.7 and 8 to study the
summability of Taylor series, Fourier series, and Walsh-Fourier series. We further
use almost summability in Chap. 9 to prove Korovkin type approximation theorems.
In Chap. 10, we study another non-matrix method of summability, i.e., statistical
summability. In Chap. 11, we study statistical approximation, and in the last chapter,
we give some applications of summability methods in fixed point theorems. For the
convenience of readers, all chapters of this book are written in a self-contained style
and all necessary background and motivations are given per chapter. As such this
brief monograph is suitable for researchers, graduate students, and seminars on the
above subject.

The author is very much thankful to all three learned referees for their valuable
and helpful suggestions.
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The author would also like to thank his family for moral support during the
preparation of this monograph.

Aligarh, India M. Mursaleen
October 15, 2013



Contents

1 Toeplitz Matrices ...........ooviiiiiiiiiiiiiiieeees 1
1.1 IntroduCtion..........iiiiiiiiiiiii e 1

1.2 Definitions and NOtations ...........ceviiiiiieeeeriiiiiiaeeeneennnnn. 1

1.2.1 Classical Sequence Spaces .........cceeeeeeiiiniieeeeennn. 1

122 B-Dual...ciiiiiiii i 3

1.2.3  Schauder BasiS ...........oiiiiiiiiiiiiiiie i 3

1.2.4 Matrix Transformation...............ccoeeeiiiiiiiiineeaaan, 4

1.2.5 Continuous Dual ...........ccoooiiiiiiiii i 4

1.3 Conservative and Regular Matrices .............cccevviiiieeennnn. 5

1.4 Some Special Summability Matrices............cccevviiiieeeennnn. 9

2 Lambert Summability and the Prime Number Theorem .............. 13
2.1 INtrodUCtioN. ...ttt 13

2.2 Definitions and NOtations ..........cooeeeiiiiiiiineeeeiiiiaaeeannnns 13

2 T ) 1111 1 - T S 15

2.4 The Prime Number Theorem .............ccooviiiiiiiiiiinnnnnnnn 22

3 Summability Tests for Singular Points ................................... 23
3.1 INtrodUCHON. ...ttt e 23

3.2 Definitions and NOtations ..........coeeeeeeiiiiiineeeeeiiiiaaeeannnns 23

3.3 Tests for Singular Points ... 24

4  Lototski Summability and Analytic Continuation ...................... 31
4.1 IntrodUCtiON. ...oetttiit ettt 31

4.2 Definitions and NOtations ..........eeeiiiiiiieeeeriiiiiineenennnnnnn. 32

43  Main Results........oiiiiiiiiii 34

5  Summability Methods for Random Variables........................... 41
5.1 IntroduCtion.........ouuuiieee it 41

5.2  Definitions and NOtationsS ..........couieiiiieeiiieeiiieeeiaeeennn.. 41

5.3 A-Summability of a Sequence of Random Variables............... 43

5.4  Strong Law of Large Numbers ................cooiiiiiiiiiiii. 50

ix



X Contents
6  Almost Summability.......... ... ... 53
6.1  INntrodUCtion...........ouuiiiiiiiiiiie e 53
6.2 Definitions and NOtations ..........ccoeeiiiiiiiiieeeeeiiiiiaaeeannnn, 53
6.3  Almost Conservative and Almost Regular Matrices................ 55
6.4  Almost Coercive MatriCes .........ooveeeeeiiiiiiaeeeaiiiiiiaaeeannns 58
7  Almost Summability of Taylor Series .................................... 61
7.1 INtrodUCtON. ...ttt 61
7.2 GEOMELIIC SEIICS ..ttt tttiiie e et et iie e e e iiiaa e e enns 61
T3 TaYLOT SOIIES .. 64
8  Matrix Summability of Fourier and Walsh-Fourier Series ............ 67
8.1 INtroduCtion.........oeiiiiiie et 67
8.2 Summability of Fourier Series..........ccoeeviiiiiiiiiiiniinnnnn. 67
8.3 Summability of Walsh-Fourier Series ..............ccooeviiiiiinnn 71
9  Almost Convergence in Approximation Process ........................ 75
9.1 INtrodUCHON . ...ttt ie e 75
9.2 Korovkin Approximation Theorems ..........cccevviiiiiiiiinnnnn. 75
9.3  Korovkin Approximation Theorems for Almost Convergence..... 76
10 Statistical Summability ... 83
10.1  INtrodUCHON . ..\ttt et e e e et e e e ieee e eeeaans 83
10.2  Definitions and NOtationS ..........oeveeeeiiiiiineeeeeiiianeennnnns 83
10.3  Results on Statistical CONVergence ..........ccevvvvvvviieeeeeenennns 85
10.4  Strong Cesaro Summability.........ccooeiiiiiiiiiiiiiiiiiiiinnnn. 88
10.5 Application to Fourier Series .........cocevviiiiiiiiiiiniennn. 89
10.6  A-Statistical CONVEIZENCE .....vvvvviiiiiiiiiiiiiiiiiiieeeeeeeeees 91
10.7  Statistical A-Summability .............ooiiiiiiiiiiiiiiiii 92
11 Statistical Approximation.........................oiiiiii 97
T1.1 IntroduCtion. ... .eee ettt et e ee e e e ieae e e eaaas 97
11.2  Application of Statistical Summability (C,1) ...................... 97
11.3  Application of Statistical A-Summability.................cooeett. 102
11.4 Rate of Statistical A-Summability...........ccoooeiiiiiiiii... 108
12 Applications to Fixed Point Theorems ................................... 111
12,1 IntrodUCtion...........oiiiniiiiiie e 111
12.2  Definitions and NOtationS ............coeeiiiiiiiineeiiieeiiieennnnnnns 111
12.3  Iterations of Regular Matrices ...............ooooiiiiiiiieaann. 112
12.4 Nonlinear Ergodic Theorems .............coooviiiiiiiiiiiiinnn.. 117
Bibliography ......... ... 119



Chapter 1
Toeplitz Matrices

1.1 Introduction

The theory of matrix transformations deals with establishing necessary and
sufficient conditions on the entries of a matrix to map a sequence space X into
a sequence space Y. This is a natural generalization of the problem to characterize
all summability methods given by infinite matrices that preserve convergence.

In this chapter, we shall present some important classes of matrices such as
conservative and regular matrices and enlist some important and very useful special
summability matrices. In the subsequent chapters some of these matrices will be
used to demonstrate their interesting applications.

1.2 Definitions and Notations

1.2.1 Classical Sequence Spaces

We denote by w the space of all sequences x = (x;);2, real or complex, by ¢ we
denote the set of all finite sequences, that is, sequences which have a finite number
of nonzero terms, and write £, ¢, Cg, and £ p for the classical sequence spaces of
all bounded, convergent, null, and absolutely p-summable sequences of complex
numbers, respectively, where 0 < p < co. Also by bs and cs, we denote the spaces
of all bounded and convergent series, respectively. bv; and bv are the spaces of all
sequences of bounded variation, that is, consisting of all sequences (xz) such that
(xx — xx—1) and (xx — xx+1) in £, respectively, and bvy is the intersection of the
spaces bv and ¢g. Lete = (1,1,...) and e® = (0,0,...,0, 1(kth place), 0, .. .).
The most popular metric on the space w is defined by

o0
Xk — Vil
dy(x.y) = Dx= () y = :
(x.5) §2k<1+|xk—yk|> x=(x), y =00 €w
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2 1 Toeplitz Matrices
The space £ of bounded sequences is defined by

Lo :=3x = (x¢) € 0 : sup |xi| < ooy.
keN

The natural metric on the space £, is defined by

doo(x,y) = sup |xp — yil: x = (xi). y = (Vi) € Loo-
keN
The spaces ¢ and ¢ of convergent and null sequences are given by

c:= {x:(xk)ea):klim |xx — 1| = 0 for some / E(C},
—00

= {x = (xx) €Ew: lim x; = 0}.
k—>00

The metric d, is also a metric for the spaces ¢ and cy.
The space £, of absolutely convergent series is defined as

= {x:(xk)ea):2|xk|<oo}.

k=0

The space £, of absolutely p-summable sequences is defined as

o0
l, = {x=(xk)€w22|xk|p<00}’ (0 < p <o)
k=0

In the case 1 < p < oo, the metric d,, on the space £, is given by

oo

1/p
dp(x,y) = (Z|xk _yk|p) px =), y =) €l

k=0

Also in the case 0 < p < 1, the metric d » on the space £, is given by

o0

dp(x.y) =D |xe—yil’s x = (). y = () € £,

k=0
< OO}

; x = (xx), ¥y = (yr) € bs. (1.2.1)

The space bs of bounded series is defined by

n
D
neN k=0

bs 1= {xz(xk)ea):sup

The natural metric on the space bs is defined by

n

> (= i)

k=0

d(x,y) = sup

neN
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The space cs of convergent series and the space csy of the series converging to zero
are defined as follows:

n

Zxk—l

k=0
~of.

>
k=0

The metric d defined by (1.2.1) is the natural metric on the spaces cs and cs.

The space bv of sequences of bounded variation is defined by

cs 1= %x:(xk)ea): lim =OforsomelE(C},
n—>od

csp i= %x = (x¢) € w: lim
n—>oo

o0
by := {x:(xk)6w12|xk_xk+l| <<>0}-

k=0

Define the difference sequence Au = {(Au);} by (Au)y = ux —uy4; forallk e N
with u_; = 0. The natural metric on the space bv, is defined by

d(x.y) = [lim(x—y)[+ Y [[AG—)l: x=(x). y=(y) €bv.  (1.22)
k=0

1.2.2 B-Dual

The B-dual or ordinary Kéthe-Toeplitz dual of X is defined by

o0
X .= {a=(ay) ew: Zakxk converges for all x € X}.
k=0

Note that £5, = cg =cf = ¢, ﬁf = loo, glﬂ) =, (1 < p.q < oo, with
p i 4+g7 = 1),csf =bv, bV =cs, 0 = ¢.

1.2.3 Schauder Basis

A Schauder basis or countable basis is similar to the usual (Hamel) basis of a
vector space; the difference is that Hamel bases use linear combinations that are
finite sums, while for Schauder bases they may be infinite sums. This makes
Schauder bases more suitable for the analysis of infinite-dimensional topological
vector spaces including Banach spaces. A Hamel basis is free from topology while
a Schauder basis depends on the metric in question since it involves the notion of
“convergence” in its definition and hence topology.
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A sequence (by)p—, in a linear metric space (X, d) is called a Schauder basis
(or briefly basis) for X (cf. [59]) if for every x € X there exists a unique sequence
(ak)p2, of scalars such that x = Y 72 | axby, that is, d(x,x")y - 0 (n - o0),
where x["l = ZZ:O oy by is known as the n-section of x. The series ZZO:() o by
which has the sum x is called the expansion of x, and («y) is called the sequence of
coefficients of x with respect to the basis (by).

Example 1.2.1. The following statements hold:

(i) The space £ has no Schauder basis, since it is not separable.
(ii) The spaces , ¢, and £, (1 < p < co) have (¢¥)®  as their Schauder bases.
(iii) We put 5@ = e and b® = e*=D for k = 1,2,... Then the sequence
(b(k)),‘:"=0 is a Schauder basis for ¢. More precisely, every sequence x € ¢ has
a unique representation x = le + Y oo (xx — [)e® where [ = limg— o0 Xi.

1.2.4 Matrix Transformation

If A is an infinite matrix with complex entries a,; (n,k € N), then we may write
A = (ayy) instead of A = (ank);z(,’(:(). Also, we write A, for the sequence in the nth
row of 4, ie., A, = (ank)]fozo for every n € N. In addition, if x = (x;) € w, then

we define the A-transform of x as the sequence Ax = {A4,(x)}2,, where

A, (x) = Zankxk (n e N)
k=0

provided the series on the right converges for each n € N. Further, the sequence x
is said to be A-summable to the complex number / if A,(x) — [, as n — oo, we
shall write x — [(A), where [ is called the A-limit of x.

Let X and Y be subsets of w and A an infinite matrix. Then, we say that A
defines a matrix mapping from X into Y if Ax exists and is in Y for every x € X.
By (X,Y), we denote the class of all infinite matrices that map X into Y. Thus
A e (X,Y)ifand onlyif 4, € XP foralln € Nand Ax € Y forall x € X.

1.2.5 Continuous Dual

Let X and Y be normed linear spaces. Then B(X, Y) denotes the set of all bounded
linear operators L : X — Y.If Y is complete, then B(X,Y) is a Banach space
with the operator norm defined by || L|| = sup,¢g, | L(x)| forall L € B(X,Y). By
X’ = B(X, C) ,we denote the continuous dual of X, that is, the set of all continuous
linear functionals on X. If X is a Banach space, then we write X* for X’ with its
norm given by || f|| = sup, g, | f(x)| forall f € X', where Sy is the unit sphere
in X.
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1.3 Conservative and Regular Matrices

It was the celebrated German mathematician Otto Toeplitz (1881-1940) who
characterized those matrices A = (a,x) which transform convergent sequences
into convergent sequences leaving the limit invariant (see [13, 17, 26, 41, 59]).
A summability method is an alternative formulation of convergence of a series
which is divergent in the conventional sense.

Definition 1.3.1. A matrix A is called a conservative matrix if Ax € ¢ for all
x € c. If in addition lim Ax = limx for all x € c, then A is called a regular
matrix or regular method or Toeplitz matrix. The class of conservative matrices will
be denoted by (c, ¢) and of regular matrices by (c, c; P) or (¢, €)reg.

Definition 1.3.2. A matrix A is called a Schur matrix or coercive matrix if Ax € ¢
for all x € £. The class of Schur matrices will be denoted by ({40, ¢).

Theorem 1.3.3 (Silverman-Toeplitz theorem). A = (a,x) € (c,c; P) if and

only if
o0
1Al = sup > lauc| < oo, (13.1)
neN k=0
lim a,x = 0 foreach k € N, (1.3.2)
n—00
o0
ngnolo];)ank = 1. (1.3.3)

The following is the more general class.

Theorem 1.3.4 (Kojima-Schur). A = (a,;) € (c,c) if and only if (1.3.1) holds
and there exist oy, € C such that

lim a,x = oy foreach k € N, (1.3.4)
n—o00
o0
nlirgozank =a. (1.3.5)
k=0

If A €(c,c)and x € c, then
o0 o0
”lggo A, (x) = (a _,;)ak) kll)rgo Xr + ];]akxk. (1.3.6)

Proof. Suppose that the conditions (1.3.1), (1.3.4), and (1.3.5) hold and x = (x;) €
¢ with x; — [ as k — oo. Then, since (a,x)ren € ¢? = £, for each n € N, the
A-transform of x exists. In this case, the equality

Zankxk = Zank(-xk -0 +1 Zank (1.3.7)
k=0 k=0 k=0
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holds for each n € N. In (1.3.7), since the first term on the right-hand side tends to
Z,fio ak(xx — ) by (1.3.4) and the second term on the right-hand side tends to [«
by (1.3.5) as n — 0o, we have

o0 o0

nll)noloZankxk = Zak(xk —1)+ lo. (1.3.8)
k=0 k=0

Hence, Ax € ¢, thatis, A € (c,c).

Conversely, suppose that A € (c,c). Then Ax exists for every x € c. The
necessity of the conditions (1.3.4) and (1.3.5) is immediate by taking x = e®
and x = e, respectively. Now, using the Banach-Steinhaus theorem and the closed
graph theorem, we have A € B(c, ¢). Thus,

00
Zankxk

k=0

sup = [ Allllxlloo (1.3.9)

neN

for all x € c. Now choose any n € N and any r € N and define x € ¢ by

Y = sgnay , 1 <k =<r,
k= 0 Lk>r.

Substituting this in (1.3.9) we get
p
> lan| < [14]. (1.3.10)
k=1

Letting r — oo and noting that (1.3.10) holds for every n € N we observe
that (1.3.1) holds. Finally, (1.3.8) is same as (1.3.6).
This completes the proof. O

Remark 1.3.5. Taking o = O for all k € N and « = 1 in Theorem 1.3.4, we get
Theorem 1.3.3.

First we state the following lemma which is needed in proving Schur’s theorem.

Lemma 1.3.6. Let B = (byi)n i be an infinite matrix such that )", | by |< oo for
eachn and )" | byx |— 0 (n — 00). Then Y, | by |converges uniformly in n.

Proof. Y | bux | 0 (n — oo) implies that ), | by |< oo forn > N(e).
Since Zk | bur |< oo for 0 < n < N(e), there exists m = M/(e, n) such that
Y ksum | buk |< oo for all n, which means that ), | b, |converges uniformly
inn.

This completes the proof of the lemma. O

Theorem 1.3.7 (Schur). A = (a,1) € ({0, ¢) if and only if (1.3.4) holds and

o
Z |ank| converges uniformly in n € N. (1.3.11)
k=0
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Proof. Suppose that the conditions (1.3.4) and (1.3.11) hold and x € {. Then,
> ank Xy is absolutely and uniformly convergent in n € N. Hence, Y, anrXxr —
> ok Xg (n — 00) which gives that A € (oo, ).

Conversely, suppose that A € (€oo,¢) and x € £o. Then necessity of (1.3.4)
follows easily by taking x = e®) for each k. Define b,y = a, —ay forallk,n € N.
Since ), | o |< 00, (Q_4 bui Xk ), converges whenever x = (x) € £oo. Now if
we can show that this implies

hp; | bur |= 0, (1.3.12)

then by using Lemma 1.3.6, we shall get the desired result. Suppose to the contrary
that lim, Y, | byk |# 0. Then, it follows that lim, Y, | bux |= [ > 0 through
some subsequence of the positive integers. Also we have b,,; — 0 as m — oo for
each k € N. Hence we may determine m(1) such that

| Y I bwaya | =1 |< 1/10 and by < 1/10.
k

Since ), | b1y |< 0o we may choose k(2) > 1 such that

oo

Z | Daiyi 1< 1/10.

k=k(2)+1

It follows that

k)
| Z | by | =1 1< 1/10.
k=2

For our convenience we use the notation ZZ= | bi |= B(m, p,q).

Now we choose m(2) > m(1) such that | B(m(2),1,00) — [ |< [/10 and
B(m(2),1,k(2)) < [/10. Then choose k(3) > k(2) such that | B(m(2),k(3) +
1,00)—1 |< 1/10. It follows that | B(m(2),k(2)+1,k(3))—! |< 3//10. Continuing
in this way and find m(1) <m(2) < ..., 1 = k(1) < k(2) < ... such that

B(m(r), 1,k(r)) <1/10
B(m(r).k(r + 1) + 1,00) < /10 (1.3.13)
Bm(r), k(r) + 1,k(r + 1)) — 1 |< 31/10.

Let us define x = (x;) € £oo such that || x ||= 1 by

0 ifk =1,

TN 1) sgnlbugs). i k() < k < k(r + 1),

(1.3.14)
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for r = 1,2,.... Then write ), by iXk as D, + > ,+ > 5, where ), is over
1 <k <k(r),>,isoverk(r) <k <k(r+1),and > ,isoverk > k(r +1). It
follows immediately from (1.3.13) with the sequence x given by (1.3.14) that

| me(r),k - (_l)rl |< l/2
k

Consequently, it is clear that the sequence Bx = (D, buxxx) is not a Cauchy
sequence and so is not convergent. Thus we have proved that Bx is not convergent
for all x € {o which contradicts the fact that A € (£, c). Hence, (1.3.12) must
hold. Now, it follows by Lemma 1.3.6 that ), | b, | converges uniformly in n.
Therefore, >, | ank |= D) | buk + ax | converges uniformly in 7.

This completes the proof. O

We get the following corollary:
Corollary 1.3.8. A € ({0, ¢o) if and only if

115112](: | bur |= 0. (1.3.15)

We observe the following application of Corollary 1.3.8.

Theorem 1.3.9. Weak and strong convergence coincide in {;.

Proof. We assume that the sequence (x)%  is weakly convergent to x in £y, that
is, | f(x™) = f(x) |= 0 (n — oo) forevery f € £}. Since £} and £« are norm
isomorphic, to every f € £} there corresponds a sequence a € £ such that f(y) =

Z:o:o aiyr. We define the matrix B = (b,,k);f’kzo by by = x,(cn) —xr (n,k =

0,1,...). Then we have f(x™)— f(x) = Y ro, ak(x,(cn) —Xk) = Y pegbukar — 0
(n — oo) forall a € £, thatis, B € ({s, ¢o), and it follows from Corollary 1.3.8
that || x® —x [lo,= Y020 | 5" = xi |= X020 | bur |- 0 (n — o0).

This completes the proof of the theorem. O

Definition 1.3.10. The characteristic y(A) of a matrix A = (aux) € (c,c) is
defined by

oo o0
= i S 3 (i)
k=0 k=0

which is a multiplicative linear functional. The numbers lim,_, o g, and lim,_,
Y i, ank are called the characteristic numbers of A. A matrix A is called coregular
if y(A) # 0 and is called conull if y(A) = 0.

Remark 1.3.11. The Silverman-Toeplitz theorem yields for a regular matrix A that
x(A) = 1 which leads us to the fact that regular matrices form a subset of coregular
matrices. One can easily see for a Schur matrix A4 that y(A4) = 0 which tells us that
coercive matrices form a subset of conull matrices. Hence we have the following
result which is known as Steinhaus’s theorem.
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Theorem 1.3.12 (Steinhaus). For every regular matrix A, there is a bounded
sequence which is not A-summable.

Proof. We assume that a matrix A € (c,c;P) N (oo, c). Then it follows
from Theorem 1.3.3 and Schur’s theorem that 1 = lim,_eo Z:ozo ane =
Y re o (limy 00 ank) = 0, a contradiction.

This completes the proof. O

1.4 Some Special Summability Matrices

First we give here some special and important matrices of triangles. The most
important summability methods are given by Hausdorff matrices and their special
cases.

(i) Hausdorff Matrix. Let u = (1), be a given complex sequence, M =
(m”k):f’ok=O be the diagonal matrix with m,, = w, n = 0,1,...),and D =
(dni) 35—, be the matrix with d,x = (—=1)* (}). Then the matrix H = H(u) =
DM D is called the Hausdorff matrix associated with the sequence W; i.e.,

. { i DI 0=k =,
0 Jk>n,

forall k,n € Ny.
(ii)) Cesaro Matrix. The Cesaro matrix of order 1 is defined by the following
matrix C; = (¢px)

n+l1 >

)L 0<k<n,
k=07 Lk >n.

The inverse matrix C;~ ' = (d,x) of the matrix C; = (c,) is given by

)" % k+1),n—1<k<n,
0 ,0<n<n-—-2ork >n,

dnkz{

forall k,n € Ny.
Let r > —1 and define A;, by

n!

1 ,n=0.

Al =

n

% (r+1)(r+2)-(r+n) n=1.2
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(iii)

(iv)

1 Toeplitz Matrices

Then the Cesaro matrix of order r is defined by the following matrix C, =

(Cﬁk)

Ar—]
C;kz :ilgk’oikfn’
0 ,k>n,
forall k,n € Ny.
Euler Matrix. The Euler matrix E| of order 1 is given by the matrix E; =
(aui), where

_ (2" 0<k=n,
a"k_{ 0 ,k>n,

for all k,n € Ny whose generalization E, of order ¢ > 0 was defined by the
matrix E; = (b!,), where

pi 1@+ D" 0<k<n,
nk 0 Lk >n,

forall k,n € Ny.
Let0 < r < land (}) = n!/[k!(n — k)!] for all k,n € No. Then the Euler
matrix E" of order r is defined by the matrix £ = (e}, ), where

o = QA== 0 <k <n,
nk 0 Jk>n,

for all k,n € Ny. It is clear that E" corresponds to E, for r = (¢ + 1)~
Much of the work on the Euler means of order r was done by Knopp [53].
So, some authors refer to E” as the Euler-Knopp matrix. The original Euler
means E; = E'/? was given by L. Euler in 1755. E” is invertible such that
(E")~' = EV" withr # 0.

Riesz Matrix. Let 1 = (#;) be a sequence of nonnegative real numbers with
fto > 0 and write 7, = Y ;_# for all n € Ny. Then the Riesz matrix with
respect to the sequence t = (t) is defined by the matrix R" = (r!, ) which is
given by

Tnk =

n

; L 0<k<n,
0,k>n,

for all k,n € Ny. For t = e the Riesz matrix R’ is reduced to the matrix C.
The inverse matrix S’ = (s’, ) of the matrix R" = (r!,) is given by

— 1)
Snk = "

' w’n_lfkin’
0 ,0<k<n-2ork > n.
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(v) Norlund Matrix. Let ¢ = (qx) be a sequence of nonnegative real numbers

with go > 0 and write Q, = ZZ=0 qy for all n € Ny. Then the Norlund matrix
with respect to the sequence q = (qx) is defined by the matrix N9 = (aZk)
which is given by

n—k
4 =)o 0=k=n
nk 0 ,k>n,

for all k,n € Ny. For ¢ = e the Norlund matrix N7 is reduced to the matrix
C,. Now, write 1(z) = Y, t,2", k(z) = 1/t(z) = ), kn2". The inverse M1
of N9 is then given by (M?),; = k,—;Q; for j < n (cf. Peyerimhoft [80,

p- 17]). In the case ¢, = A;_‘ for all n € Ny, the method N is reduced to the
Cesaro method C, of order r > —1.

(vi) Borel Matrix. The Borel matrix B = (buy),5—, is defined by

box = e "'n* / k!

forallk,n € Ny.

Remark 1.4.1. The following statements hold:

| N N B S R

. The Cesaro matrix of order r is a Toeplitz matrix if r > 0.

. The Euler matrix E” of order r is a Toeplitz matrix if and only if 0 < r < 1.

. The Riesz matrix R’ is a Toeplitz matrix if and only if 7, — 0 as n — oo.

. The Norlund matrix N is a Toeplitz matrix if and only if ¢,/ Q,, — Oasn — oo.
. The Borel matrix is a Toeplitz matrix.



Chapter 2
Lambert Summability and the Prime Number
Theorem

2.1 Introduction

The prime number theorem (PNT) was stated as conjecture by German mathemati-
cian Carl Friedrich Gauss (1777-1855) in the year 1792 and proved independently
for the first time by Jacques Hadamard and Charles Jean de la Vallée-Poussin in
the same year 1896. The first elementary proof of this theorem (without using
integral calculus) was given by Atle Selberg of Syracuse University in October
1948. Another elementary proof of this theorem was given by Erdos in 1949.

The PNT describes the asymptotic distribution of the prime numbers. The PNT
gives a general description of how the primes are distributed among the positive
integers.

Informally speaking, the PNT states that if a random integer is selected in the
range of zero to some large integer N, the probability that the selected integer is
prime is about 1/ In(/N), where In(/N) is the natural logarithm of N. For example,
among the positive integers up to and including N = 10°, about one in seven
numbers is prime, whereas up to and including N = 10'°, about one in 23 numbers
is prime (where In(103) = 6.90775528 and In(1010) = 23.0258509). In other
words, the average gap between consecutive prime numbers among the first N
integers is roughly In(N).

Here we give the proof of this theorem by the application of Lambert summabil-
ity and Wiener’s Tauberian theorem. The Lambert summability is due to German
mathematician Johann Heinrich Lambert (1728-1777) (see Hardy [41, p. 372];
Peyerimhoff [80, p. 82]; Saifi [86]).

2.2 Definitions and Notations

(i) Mobius Function. The classical Mdbius function p(n) is an important mul-
tiplicative function in number theory and combinatorics.This formula is
due to German mathematician August Ferdinand Mobius (1790-1868) who

M. Mursaleen, Applied Summability Methods, SpringerBriefs in Mathematics, 13
DOI 10.1007/978-3-319-04609-9_2, © M. Mursaleen 2014
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(ii)

(iii)

(iv)

2 Lambert Summability and the Prime Number Theorem

introduced it in 1832. w(n) is defined for all positive integers n and has its
values in {—1, 0, 1} depending on the factorization of n into prime factors. It is
defined as follows (see Peyerimhoff [80, p. 85]):

—1, nis a square-free positive integer with an odd number of prime factors,

1 , nis a square-free positive integer with an even number of prime factors,
wn) =
0 , n is not square-free,

that is,
1 ,n=1,
pum) = (=D* ,n = pipy---pr. pi prime, p; # p;,  (2.2.1)
0 , otherwise.
Thus

(a) u(2) =—1,since2 = 2;
(b) u(10) =1, since 10 =2 x 5;
(¢) u(4) =0,since4d =2 x 2.

We conclude that u(p) = —1, if p is a prime number.

The Function 7(x). The prime-counting function w(x) is defined as the
number of primes not greater than x, for any real number x, that is, 7 (x) =
> p<x | (Peyerimhoff [80, p. 87]). For example, 7(10) = 4 because there
are four prime numbers (2, 3, 5, and 7) less than or equal to 10. Similarly,
7(1) =0,7(2) =0,7(3) = 1, n(4) = 2, 7(1000) = 168, 7(10%) = 78498,
and 7(10%) = 50847478 (Hardy [43, p. 9]).

The von Mangoldt Function A,. The function A, is defined as follows
(Peryerimhoff [80, p. 84]):

__{logp ,n = p®forsome prime p and o > 1,

An - .
0 , otherwise.
Lambert Summability. A series Y - | a,, is said to be Lambert summable (or
summable £) to s, if
oo
. kapx*
xl_l)nll_(l —X) kE_l T = s. (2.2.2)

In this case, we write Y _a, = s(£). Note that if a series is convergent to s,
then it is Lambert summable to s.

This series is convergent for |x| < 1, which is true if and only if a, =
O((1 + &)™), for every ¢ > 0 (see [6,52,99]).
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If we write x = e ¥ (y > 0),5(t) =< a (a0 = 0), g(t) = %,
then ) ay is summable £ to s if and only if (note that 1 — x & %)

1 [® ey o t
lim —/ ¢ _ds(t) = tim — | s()dg (—)
0 i 0 y

y—>00 y l—e > y—00

1 [ t
= lim ——/ g (—) s(t)dt = s.
Y=oy Jo y

The method £ is regular.

2.3 Lemmas

We need the following lemmas for the proof of the PNT which is stated and proved
in the next section. In some cases, Tauberian condition(s) will be used to prove
the required claim. The general character of a Tauberian theorem is as follows.
The ordinary questions on summability consider two related sequences (or other
functions) and ask whether it will be true that one sequence possesses a limit
whenever the other possesses a limit, the limits being the same; a Tauberian theorem
appears, on the other hand, only if this is untrue, and then asserts that the one
sequence possesses a limit provided the other sequence both possesses a limit and
satisfies some additional condition restricting its rate of increase. The interest of
a Tauberian theorem lies particularly in the character of this additional condition,
which takes different forms in different cases.

Lemma 2.3.1 (Hardy [41, p. 296]; Peyerimhoff [80, p. 801). If g(¢),h(t) €
L(0,0), and if

/oo gt dt # 0 (—o0 < x < 00), (2.3.1)
0

then s(t) = O(1) (s(t) real and measurable) and

N Y R . 1 [®
lim — gl —|s@®)dt =0 implies lim — h|—)s@)dt =0.
x—=>o00 X J X xX—=>00 X Jo X

Lemma 2.3.2 (Peyerimhoff [80, p. 84]). Ifn = p{'---p* (0; = 1,2,..., p;
prime), then 3 _,,, Aq = logn.

Proof. Since d runs through divisors of n and we have to consider only d =
PP Py P, therefore Y0, Ay = arlog pr + axlog py + <o+
oy log pr = logn.

This completes the proof of Lemma 2.3.2. O
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Lemma 2.3.3 (Peyerimhoff [80, p. 84]).

S l)n 1

Z

—2!7)¢(s)(s > 1),

where { is a Riemann’s Zeta function.

Proof. We have

2 1 1
s -5 (14545 +)
= () =24 (s)
= (1=27)(s).

This completes the proof of Lemma 2.3.3.

Lemma 2.3.4 (Hardy [41, p. 246]). Ifs > 1, then

A

() =[]

» P

Lemma 2.3.5 (Hardy [43, p. 253]).

0 =0 Y

n=1

Proof. From 2.3.3, we have

pS
log¢(s) =) log ——
) p

Differentiating with respect to s and observing that

d ) p’ log p
JE— [e) = -
ds gps—l ps—1

(2.3.2)

(2.3.3)

(2.3.4)
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we obtain

(2.3.5)

_ §'(s) _ Z log p
§(s) pi=1
The differentiation is legitimate because the derived series is uniformly convergent

fors>14+6>1,6 > 0.
We can write (2.3.5) in the form

Bept

p m=1

p

and the double series > > p™* log p is absolutely convergent when s > 1. Hence
it may be written as

o
Zp—ms logp — ZAnn_s'

p.m n=0
This completes the proof of Lemma 2.3.5. O

Lemma 2.3.6 (Peyerimhoff [80, p. 84]). s, — s(£), asn — oo and a, = O (1)
imply s, — s, asn — oo.

Proof. We wish to show that a, = O(1/n) is a Tauberian condition. In order to
apply Wiener’s theory we must show that (2.3.1) holds. But for ¢ > 0

—/ 13T (H)dt = (ix + s)/ 1Tl () dt
0 0

sl [ele)
= (ix +¢) Z/ pixtee=(k+Dr gy
0
k=0

1

)
=(ix+8)F(1+8+ix)ZW

k=0

i.e.,

o0
_f 1 g'(t)dt =T (1 + ix) lim  (ix + &)¢(1 + e + ix).
0 i

This has a simple pole at 1 and is # 0 on the line Rez = 1. A stronger theorem is
true, namely, £ C Abel, i.e., every Lambert summable series is also Abel summable
(see [42]), which implies this theorem. For the sake of completeness we give a proof
that (1 + ix) ## O for real x. The formula (2.3.4) implies ¢(1 + ix) # 0.

This completes the proof of Lemma 2.3.6. O
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Lemma 2.3.7 (Peyerimhoff [80, p. 86]).

Z M,gn) -0

n=1

Proof. This follows from O-Tauberian theorem for Lambert summability, if
%0 AW — O(L). But

n=1 n

(=0 B (3 ) Y
n=1 n=1 k=0

=(1-x)) Y ) =x(1-x).

m=1n/m

A consequence is (by partial summation)

> ulk) = 0@n) (2.3.6)

k<n

which follows with the notation

mn = Y plk) oo Z/,L(k)zfliozdm(t) =nm(n)—/lnm(t)dt.

k

1<k<t k<n
This completes the proof of Lemma 2.3.7. O

Lemma 2.3.8 (Hardy [43, p. 346]). Suppose that ci,c;,..., is a sequence of
numbers such that

Ct)=) e

n<t

and that f(t) is any function of t. Then

Yoafmy= Y Co{fm) - fr+ 1} +C0)f(xD. (237

n<x n<x—l1

If, in addition, c; = 0 for j < ny and f(t) has a continuous derivative for t > ny,
then

>t = C S - [ Cw 0. 238)

n<x n
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Proof. 1f we write N = [x], the sum on the left of (2.3.7) is
CHfM)+{CR)=CM)}fQ2) + - +{CN) = C(N =D} f(N)
=C{fD=FQ}+--+CWN =D{f(N—=1)= f(N)} + C(N) f(N).
Since C(N) = C(x), this proves (2.3.7). To deduce (2.3.8), we observe that C () =

C(n) whenn <t <n + 1 and so

n+1
C(ﬂ)[f(n)—f(n+1)]=—/ C(@) f'(t)dt.
n
Also C(¢) =0 whent < nj.
This completes the proof of Lemma 2.3.8. O

Lemma 2.3.9 (Hardy [43, p. 347]).

1 1
Z— =logx+C+0(—),

n X
n<x
where C is Euler’s constant.

Proof. Putc, = 1and f(¢t) = 1/t. We have C(x) = [x] and (2.3.8) becomes

LWt
el I

n<x

=logx+C+E,

where

Czl—/oot_[t]dt
1

12

is independent of x and

B [Ty xml

12 X

o (2)
.t x
1
X

This completes the proof of Lemma 2.3.9. O
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Lemma 2.3.10 (Peyerimhoff [80, p. 86]). If

=3 [w (;C—C) . % + log%—i-C] and Y (x) = 3" An,

k<x n<x
then x(x) = O(log(x + 1)).
Proof. Mobius formula (2.2.1) yields that

Y —x + logx +C = Y X(g) 1u(d). (2.3.9)

d< x

Fromlogn = }_,,, Au Lemma 2.3.2, it follows that

Slen=Y Y A=Y Y A=Yu(d)

n<x n=<x kd=n k<xd<x/k k<x

Therefore, we obtain

1
x(x) = Zlogn —X [logx +C+0 (;)i| + [x]log x — Zlogk + [x]C,

n<x k<x
ie.,
x(x) = O(log(x + 1)). (2.3.10)

This completes the proof of Lemma 2.3.10. O

Lemma 2.3.11 ([Axer’s Theorem] (Peyerimhoff [80, p. 87])). If

(a) x(x) is of bounded variation in every finite interval 1, T1],

() X i<k<r @k = O(x).
(¢) an = 0(1),
(d) y(x) = O(x*) forsome0 < a < 1,

then

Z X(%) ary = O(x).

1<k<x

Proof. Let0 < 6 < 1. Then

5 1o = 00557 = 0(s5).

i k
1<k<éx
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Assuming thatm — 1 < §x <m, N <x < N + 1 (m and N integers), we have

E @ E LG 2 (55)] o)1)

= 0(x) [:

1/8
— 0(x) / ldx (O] + 0).

()] o

This completes the proof of Lemma 2.3.11. O
Lemma 2.3.12 (Peyerimhoff [80, p. 87]). ¥ (x) —x = O(x).

Proof. 1t follows from (2.3.6), (2.3.9), (2.3.10), and Axer’s theorem, that ¥ (x) —
x = O(x).
This completes the proof of Lemma 2.3.12. O

Lemma 2.3.13 (Peyerimhoff [80, p. 87]). Let ¥(x) = }_,_, logp (p prime),
then

(@) ¥(x) < Y(x) = O(x);
(b) ¥(x) =(x) + HV/x) + -+ + F(Jx), for every k > ii’é;

Lemma 2.3.14 (Peyerimhoff [80, p. 87]).

log x
Y =90 + O3 V.
og?2
Proof. 1t follows from part (b) of Lemma 2.3.13 that
log x
¥(x) = D(x) + 0(1)1i\/§.
og?2

This completes the proof of Lemma 2.3.14. O
Lemma 2.3.15 (Peyerimhoff [80, p. 87]).
?(x) = x + O(x). (2.3.11)

Proof. Lemma 2.3.14 implies that #(x) = x + O(x). O
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2.4 The Prime Number Theorem

Theorem 2.4.1. The PNT states that 7 (x) is asymptotic to x/logx (see Hardy
[41, p. 9]), that is, the limit of the quotient of the two functions w(x) and
x/1Inx approaches 1, as x becomes indefinitely large, which is the same thing as
[7(x)logx]/x — 1, as x — oo (Peyerimhoff [80, p. 88]).

Proof. By definition and by

ol
T[(.X) :/;/2 @dﬁ(l‘)

_¥(x) RAU)
~ logx + /;/2 t(logt)?

_ P(x) X
~ logx +0 ((logx)z)
[note that ¥ (x) = O(x)].

Using (2.3.11) we obtain the PNT, i.e.,

lim 7w(x) = al ,
x—00 log x
or
. 7w(x)logx
lim ———— =1
x—>00 X

This completes the proof of Theorem 2.4.1. O



Chapter 3
Summability Tests for Singular Points

3.1 Introduction

A point at which the function f(z) ceases to be analytic, but in every neighborhood
of which there are points of analyticity is called singular point of f(z).
Consider a function f(z) defined by the power series

f@ =Y ax" G.1.1)
=0

having a positive radius of convergence. Every power series has a circle of
convergence within which it converges and outside of which it diverges. The radius
of this circle may be infinite, including the whole plane, or finite. For the purposes
here, only a finite radius of convergence will be considered. Since the circle of
convergence of the series passes through the singular point of the function which is
nearest to the origin, the modulus of that singular point can be determined from the
sequence a, in a simple manner. The problem of determining the exact position of
the singular point on the circle of convergence is considered; tests can be devised to
determine whether or not that point is a singular point of the function defined by the
series. It may be supposed, without loss of generality, that the radius of convergence
of the series is 1. In this chapter we apply Karamata/Euler summability method to
determine or test if a particular point on the circle of convergence is a singular point
of the function defined by the series (3.1.1).

3.2 Definitions and Notations

Karamata’s summability method K [o, B] was introduced by Karamata (see [8]) and
the summability method associated with this matrix is called Karamata method or
K|a, B]-method (c.f. [86]).

M. Mursaleen, Applied Summability Methods, SpringerBriefs in Mathematics, 23
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The Karamata matrix K [o, B] = (¢, ) is defined by
1,n=k=0,
Cnk =

0,n=0,k=1,2,3,...,

oz+(1—oc—,3)z:|n i X
—_— | = ek, n=12,....
[ I=pz k=0

K|w, B] is the Euler matrix for K[1 — r,0] = E(r) (see [2]); the Laurent matrix
for K[1 — r,r] = S(r) (see [95]), and with a slight change, the Taylor matrix for
K[0,r] = T(r) (see [28]). If T (r) = (cuk), then

1—r n+1 ol
[(1 )Z} =Y eud n=012,.
—rz k=0

3.3 Tests for Singular Points

King [49] devised two tests in the form of following theorems, each of which
provides necessary and sufficient condition that z = 1 be a singular point of the
function defined by the series (3.1.1).

Theorem 3.3.1. A necessary and sufficient condition that z = 1 be a singular point
of the function defined by the series (3.1.1) is that
1/n

lim sup
n—od

" (n
"1 —=r)y"""a,
2

for some 0 <r < 1.

Proof. Consider the function

1 rt
F@) = 1—(1—r)zf(1—(1—r)z)'

F(¢) is regular in the region
< 1} .

D=1 rt
A R N Y,

Furthermore, z = 1 is a singular point of f(z) if and only if # = 1 is a singular point

of F(t). A simple calculation gives
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D, = {t :Re(t) < 1},

1—r r
D, =1{t:|t— > ,
1-2r 1-2r
1—r r
D, =1{t:|t— < ,
1-2r 2r —1

forr =1/2,0<r <1/2,and 1/2 < r < 1, respectively. In each case t = 1 is on
the boundary of D, and D, contains all points of the closed unit disk except t = 1.
If we write F(1) = Y oo byt", it follows that 7 = 1 is a singular point of F(¢) if
and only if the radius of convergence of the series is exactly 1. That is, if and only if

I/n _

lim sup |b,, |

n—>oQ
The function F(¢) is given by

FO=1—a=m: 1—(1—r) XZ: [1—(1—r)ti|

m
o0 o0
— a rmtm _r n— mtn—m
S a3 (m) )
m=0 n=m

provided that (1 —r)|t| < 1. Itis easy to verify the interchange of summation in the
last expression. Hence, F (1) = Y 721" Y 5 _o (")r" (1 — r)""a,,. Therefore,

m=0
" (n

by _mX:;)(’”)r (1—7r)""ay,. (3.3.1)

This completes the proof. O

Theorem 3.3.2. A necessary and sufficient condition that z = 1 be a singular point
of the function defined by the series (3.1.1) is that

Z (Zl)rn—m(l _ r)m—H a

n=m

1/n

lim sup =1,

m—>00

for some 0 <r < 1.

Proof. Consider the function

Gt)=0—-r) f(r+ 1A —=r)).
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G(t) is regular in the region R, = {t : |r 4+ (1 — r)tz| < 1}. A simple calculation
gives

r 1
R, = t:‘t——< .
{ r—1 1—r}

The point + = 1 is on the boundary of R, and R, contains all points of the closed
unit disk except t = 1. If we write

o0
G(r) = Z cnt”,
n=0

it follows that z = 1 is a singular point of f(z) if and only if

limsup |¢, |/ = 1.
n—o0

The function G(¢) is given by

G)=(1=r)) an(r+1—=rn)

n=0
o0 o0 n
= (1= n—mgq __ \Mmm
( r)ZanZ(m)r (1—r)"t
n=0 m=0
o0 o0 n
— " n—mg¢q _ . ym+l1 -
Z Z (m)r 1—-r""a
m=0 n=m
Hence,
> (n
Cm = n—m _ym+1 - 3.
Z(m)r (1—r)y"tlq (3.3.2)
n=m
This completes the proof. O

These theorems yield the following corollaries.

Corollary 3.3.3. If the sequence (ay) is E(r)-summable, 0 < r < 1, to a nonzero
constant, then z = 1 is a singular point of the function defined by the series (3.1.1).

Corollary 3.3.4. If the sequence (ay) is T (r)-summable, 0 < r < 1, to a nonzero
constant, then 7 = 1 is a singular point of the function defined by the series (3.1.1).

Extending the above results, Hartmann [44] proved Theorem 3.3.6. The follow-
ing lemma is needed for the proof of Theorem 3.3.6.
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Lemma 3.3.5. If K[, B] = (cuk) for |a| < 1,|B8| < 1, then there exists p > 0,
independent of k, such that for |t| < pandk =0,1,2,...,

ic = 0= [ﬂ+(1_a_/3),]k.

(1 —at)? 1—at

Proof. Let f(z) =[a+ (1 —a—pB)z]/(1 —B2).1f0 < R < 1 < 1/|B], then there
exists p; > 0 such that if |z| < p; and let

$i(0) = T— f( ) Zz (/@)

Since this convergence is uniform in |z| < R, one can apply Weierstrass theorem on
uniformly convergent series of analytic functions (see [53]) to write

D rfE) = Zt” (chkz ) => 7 (chkt"). (33.3)
n=0 n=0 k=0 n=0

But

1 _ 1 -8z
1—tf(z) (1_m)[ BH1—a—py ]

1—at

(3.3.4)

There exits p, > 0 such that |t| < p, and |z] < R imply |[8 + (1 —a — B)t]z/[1 —
at]| < 1. Thus (3.3.4) may be expanded in a power series,

| & 1-pe[B+(-a-py
1—1f(z) _gol—at |: 1 —at i| (3:3-5)

Then, for |¢| < min(p;, p;), one has, by equating coefficients in (3.3.3) and (3.3.5),
the results of the lemma. O

Theorem 3.3.6. A necessary and sufficient condition that z = 1 be a singular point
of the function defined by the series (3.1.1) is that

1/n
=1 (3.3.6)

(o]

> cnkriax

k=0

lim sup
n—00

forsomea <1, <landa + B > 0.
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Proof. Consider the function

(I—-o)(d—p)t
(1 —ar)?

F(r) = f

1 —at

(ﬂ+(1—a—ﬂ)l)

F(¢) is regular in the region D, where

B+(—a—py|_

D:{t:
1 —at

18

Furthermore, z = 1 is a singular point of f(z) if and only if # = 1 is a singular point
of F(¢). A simple calculation gives

pol 4+ 2 < sl 1 - B — 20> 0;
D = t:Re(t) <1 ,1—=8—-2a=0;

pole 4 2 > sl 1 - B — 20 <0,

In each case ¢ = 1 is on the boundary of D and D contains all points of the closed
unit disk except t = 1. Writing F(¢) in series form yields
(- =P~ [p+—a—pT"

F(t) = ——m—M——— ag | ———m ™|

® (1 —ar)? Z k 1 —oat
k=0

provided ¢ ¢ D. By Lemma 3.3.5, there exists p > 0 such that for |t| < p; < p and
k=0,1,2,...

ot k
S it = (I—a) - Pt [ﬂ + (-« —ﬂ)l} _ (337)

(1 —ar)? 1—at

Since (1 —a)(1 —B)t/(1 —at)? vanishes for ¢t = 0 and [B + (1 —a — B)t]/[1 — «t]
is equal to B for t = 0, with |8| < 1, there exists p,(o, B) < p; such that |t| < p;
implies | Y02 cuk+1"| < Mr* for some r = r(a, B) < 1. Thus

chnk+lakt <Z|ak| chk+1l

k=0n=0 n=0
0o

<MY lalr",

which converges since (3.3.7) has radius of convergence one. Weierstrass theorem
now implies

oo o0
F() =Y cuprrart". (33.8)

k=0n=0
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for |t| < p,. By analytic continuation (3.3.8) holds in a disk whose boundary
contains the singularity of F(¢) nearest the origin and t = 1 is a singular point
of F(t) if and only if the radius of convergence of series (3.3.8) is exactly 1, i.e.,

00 1/n
limsup | Y " cppriar| = 1. (3.3.9)
n—od k=0
This completes the proof of the theorem. O

From this, following result may be deduced.

Corollary 3.3.7. If the sequence (0,aq,ay,...) is K[, B] summable < 1,8 <
lL,a + B > 0, to a nonzero constant, then z = 1 is a singular point of the function
given by (3.1.1).

Remark 3.3.8. Notice K|[w, B]isregular fora < 1,8 < land e+ > 0 (see [8]). If
(by) is the K[, B] transform of (0, ag, ay, ...), then by = 0, b, = Z,fo:o Cnk+10k,
n = 1,2,.... Now, if (0,a9,ay,...) is K[o, B] summable to a nonzero constant,
then (3.3.6) holds. If the T'(r) transform of (a,) is (¢,) and the K0, r] transform of
(0,a9,ay,...)is (yn), then yy = 0, y, = ¢,—1(n > 1) and thus one has immediately
Corollary 3.3.4. In [2] it is proved that E(r) is translative to the right when E(r) is
regular, so Corollary 3.3.7 implies Corollary 3.3.3.



Chapter 4
Lototski Summability and Analytic
Continuation

4.1 Introduction

Analytic continuation is a technique to extend the domain of a given analytic
function. Analytic continuation often succeeds in defining further values of a
function, for example, in a new region where an infinite series representation in
terms of which it is initially defined becomes divergent.

The problem of analytic continuation by summability may be formulated as
follows: Let f(z) have the Taylor expansion

@) =) arz—2) 4.1.1)
k=0

with a positive radius of convergence. Two questions arise: (i) What is the condition
of efficiency of a special linear transformation of (4.1.1) regarding the analytic
continuation of f(z)? (ii) Given some domain in the complex plane, does there
exist a linear transformation of (4.1.1) which yields the analytic continuation of
f(z) exactly into this domain and nowhere else? In some cases, as has been shown
by Borel [18], Okada [78], and Vermes [96], it is sufficient to focus attention on the
continuation of the geometric series z", |z| < 1; in this chapter we deal only with
the series in (4.1.1). In this context, Cooke and Dienes [27] have shown that there
exist transformations that are effective at some distinct points outside the circle of
convergence; this result was extended by Vermes [97] to a denumerable set of points.
Russel [85] and Teghem [94] have produced transformations effective respectively
on Jordan arcs and on domains that are not simply connected. In this chapter,
we describe a new Toeplitz summability method, i.e., the generalized Lototski or
[F, d,]-summability, and study the regions in which these methods sum a Taylor
series to the analytic continuation of the function which it represents.

M. Mursaleen, Applied Summability Methods, SpringerBriefs in Mathematics, 31
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4.2

®

(i)

(iii)

4 Lototski Summability and Analytic Continuation
Definitions and Notations

Suppose f is an analytic function defined on an open subset U of the complex
plane. If V' is a larger open subset of the complex plane containing U and g
is an analytic function defined on V' such that

g(@) = f(z)forallz € U,

then g is called an analytic continuation of f. In other words, the restriction
of g to U is the function f we started with.

Corresponding to a real or complex sequence (d) such that dj, # —1 for all
k € N, the generalized Lototski or [F, d,]-transform (t,) of a sequence (s,)
is defined by (Jakimovski [46])

4.2.1)

’ —_ L

"1 (di + E)(s0)
=] ——F=
1}:[1 di +1

where
Ef(sx) = Sp4k, k>0, p>0.

If lim ¢, exists as n — o0, we say that (s,,) is summable [F, d,] to the value
lim¢,.

For every sequence of polynomials {P,(x)} satisfying P,(1) # 0, the
[F*, P,]-transform of a sequence (s,,) will be defined by

= ﬁ Py (E)(s0)

> 1. 4.2.2)

. n=
izo P

It may easily be seen that if (s,) is the sequence of sums of the geometric
series Y > 1 Z", (z # 1); then in the notation above

1 7 oy di+z
t, = — 4.2.3
l—-z 1—z di +1 ( )
k=1
and
1 z 1 P2
"ol—-z 1-—z% 1_[ P (1) ( )
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(iv)

)

(vi)

(vii)

It follows that ¢, — (1 —z)~!, as n — oo if and only if

dr +z
=0, 4.2.5
n—)ool_[ dk + 1 ( )

while 17 — 1/(1 —z), as n — oo if and only if

o P@
] =0. 42.6
nl>ngo]£[1 Pl (4.2.6)

By I', we denote a family of Jordan arcs y in the complete complex plane,
with end points 0, oo directed from O to oo, and having the following
properties: (a) If y; and y, are two different elements of I', then they intersect
only at 0 and oco; (b) to each complex z (z # 0, 00) corresponds an element
y(z) = y € I passing through z. We write [0, z] and [z, oo] for the subarcs
of y(z) with end points 0 and z and with end points z and oo, respectively, and
we replace brackets by parenthesis to indicate the corresponding end point is
deleted from the subarc.

If A and B are two point sets, we denote:

(a) by d(A, B), the distance between them;

(b) by A7!, theset {z:z7! € A};

(c) by AB,theset{s:s =zw, z€ A, w € B};

(d) by wA, theset {s : s = zw, z € A};

(e) by A¢, the complement of A relative to the complete complex plane.

A family " will be called continuous provided to each z # 0, oo, and each
€ > 0 there corresponds a § = §(z1, &) > 0, such that

sup d(w,[0,z1]) <e,

wel0,z]

for all points z in the disk |z — 71| < §. The following example shows that an
arbitrary family y is not necessarily continuous. Let y, be the linear ray z > 0.
For n > 1, let y, be the polygonal line composed of the two line segments
[0,3 + 3i/2"] and [3 + 3i/2%",2 + 3i/2?"*!] and the ray ¢ + 3i /22", (1 >
2). We can easily embed the sequence (y,)q° in a family y (not uniquely).
Suppose this is done, and choose z7; = 2 and z = 2 + 2=(+D; Then,

sup d(w,[0,2]) > d(3 + 3i/2%",2) > 1.

wel[0,z]

Choose ¢ = 1, we see that y is not continuous.

Denote by P = P(z), a power series Y .o, a,2" with the partial sums s, (z)
and with a positive radius of convergence. Continue P (z) analytically along
each y € T from O to the first singular point w(y) on y. If there is no finite
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singular point on y, we define w(y) = co. By M = M(P;T') we denote the
union of all the sets [0, w(y)), and we call this set the I'-Mittag-Leffler star of
P(z). Clearly, co € M (se [47]). If zo € M, we denote by P(zo; I'), the value
at zo of the analytic continuation of P(z) along y(z9). By definition, P(z;T")
is a single valued function in M. A set D is called a I"-star set provided it is
not empty, co € D, and z € D implies [0,z] C D. A T'-star set that is also
a domain. Obviously, a I'-star domain is simply connected, a union of I'-star
domains, and an intersection of I'-star sets is a I"-star set.
(viii) For a family I', we define the set D(I") by

D) = {s = é, 7# 0,00;w € (0,1]}.

AsetDis I-regularif0 € D, 1 € D, co ¢ D, and D(I") C D°.

4.3 Main Results

We discuss in this chapter the results obtained by Meir [5] and Jakimovski [47].
Generalizing some known results Meir [5] proved the following theorems.

Theorem 4.3.1. Let the polynomial P (z) satisfy
Re[P(1)] = 0. 4.3.1)

Then, there exists a fixed sequence (d,), (n > landd, # —1) such that
[F, d,)-transform sums the geometric series to the value (1 — z)™" for every z for
which Re[P(z)] > 0 and does not sum it for every z for which Re[P(z)] < O.
The convergence of the transform is uniform in every bounded closed subset of
{z,Re[P(2)] > 0}.

Proof. Clearly we may suppose P(z) # constant. Then for every k > 1
P@+k=c(z+al)(c+ab)(z+ab), (432)

where p > 1, ¢ # 0 and ¢ does not depend on k. Define now d; = a’l, d, =
as,....d, =ai,...,dyp,...and in generalif v = up + p, (0 < p < p)

d, = ag“. (4.3.3)

Now letn = mp + ¢, (0 < g < p); then

Ttz puk [ g ) (1)
=] % M 4] =n"n", (4.3.4)
g5 =0 o\ oy a8 1
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where the second factoris 1 if ¢ = 0. By (4.3.1),if |1—z| < §, then |[Re P (2)| < 1/2,
and by (4.3.2)and (4.3.3)for1 < p < p, u >0,

P(=dypi,) = —(+1) < —1: (43.5)
thus
[1+d)|>6>0, v=12,... (4.3.6)
o np+q 7—1 np+q 7—1
‘nz - U:l,;[+1 (1 too 1) < vzl;[H (1 +7 +1D, 43.7)
and by (4.3.6)

e

- =11\
sa+(5)

Thus H(z") is uniformly bounded for every n > 1 and for every z belonging to a fixed
bounded point set.

P(x)+k
H(")
e =T
. 2kRe[P(2)] + [P = [P(D
= 1+ 438
I T 39
By a well-known theorem on infinite products
, n 0 . Re[P(z)] <O,
lim 1" = 43.
oo 1 { 0o, Re[P(2)] > 0. (4.39)

Also, the convergence to 0 is uniform in every point set where Re P(z) < —e, with
e > 0 fixed. (4.3.9), (4.3.7), (4.3.4), and (4.3.5) prove the theorem. ad

Theorem 4.3.2. Let R be a bounded set that contains the point z = 1 and whose
complement consists either of the point oo or of an unbounded domain. Let f(z) be
an analytic regular function satisfying

Re[f(1)] = 0. (4.3.10)

Then, there exists a sequence of polynomials {P,(x)}, (n > 1, P,(1) # 0) such
that [F*, P,]-transformation sums the geometric series to the value (1 — z)~" for
every z € R for which Re[f(z)] < 0 and does not sum it for z € R for which

Re[f(z)] > 0.
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Proof. By the well-known theorem of Walsh [98], for every k > 1 there exist
polynomials Qy (z) satisfying

10k (2) — f2)] < % (4.3.11)
for z € R with |z| < k, and
Or() = f(1); k=1,2,.... (4.3.12)
Define
Pi(@) = 0@ + ki k=1,2,.... (4.3.13)

By (4.3.11)—(4.3.13) for any fixed z such that |z] < K

P@ L f@=f) (]
Pk(l)—l—i- X +0(ﬁ)'

Now, by (4.3.2) and the theory of infinite products, if z € R

P
fim H e (2) Z{ 0 ,Re[P(2)] <O,
noo P (1) o0, Re[P(2)] > 0,
by (4.2.6).
This completes the proof of the theorem. O

Remark 4.3.3. A generalization of Theorem 4.3.2 can be made to the situation
where R is the union of increasing sequence of bounded closed sets R; the
complement of each of which is an unbounded domain. This result will prove the
existence of an [F*, P,]|-transformation that is effective for ) z" in the Mittag-
Leffler star of (1 — z)~!. It has to be mentioned that the [F*, P,]-transformations
are row-finite. Because of the lengthy proof Meir only stated the following result
too:

Theorem 4.3.4. Let D be an union of a finite number of simply connected bounded
domains having Jordan boundaries. Let z = 1 lie on the boundary, and let
E be a closed subset of the complement of D. Then, there exists an [F*, P,]-
transformation, which sums the geometric series to the sum (1 — z)™' for every
z € D and does not sum it for every z € E.

In the more generalized setup, Jakimovski [47] proved the following:

Theorem 4.3.5. Let I' be continuous. Suppose the infinite matrix (anm),,=o has
the following properties:

(i) Yoo odnm — 1, asn — oo.



4.3 Main Results 37

(ii) For certain open and I"-regular set D, the relation

o0
lim E apm?" =0
n—>o0

m=0

holds uniformly in every compact subset of D. Then, for each power series P(z)
with a positive radius of convergence, the relation

n—>o0

lim Y aum sw(2) = P(z.T) (4.3.14)
=0

holds uniformly in each compact subset of the set 2 = N{wD :w ¢ M, w ¢ oo},
where M is defined in part (vii).

The following lemmas are needed for the proof of Theorem 4.3.5.

Lemma 4.3.6. If T is continuous, then M(P;T) is a simply connected domain and
P(z;T) is holomorphic in M(P;T). If T is not continuous, then M(P;T) is not
necessarily a domain.

Proof. We have to show that if I" is continuous, then M (P; I") is a simply connected
domain and diZP (z;T) exists for all z € M. If zp € M and zy # O, then there
exists a domain G and a function f', holomorphic in G, such that [0, z9] C G and
f(z) = P(z; 1) for z € [0, z9]. The continuity of I" implies the existence of a § > 0
such that [0, z] C G whenever |z — zo| < §. Therefore

{z:lz—2| <8} C M(P;T)

and P(z;T') = f(z) for these values of z. Thus P’(zo; ') exists and M(P;T') is an
open set. The first part of lemma now follows from the general properties of I'-star
sets.

Next, let I' be the noncontinuous family described earlier. In order to prove
Lemma 4.3.6 it is enough to show the existence of the power series P(z) with a
positive radius of convergence such that M (P;T") is not a domain. Choose

For the function log{(z—a,)/(b,—a,)}(n > 1), choose at z = 0 the branch which, if
continued analytically from O to b, along the linear segment [0, b, ], yields at z = b,
the value log 1 = 2. The function

s 1

P(2) Zzn!log—z—an

n=1 Zn—by
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is holomorphic in |z| < 5/2. For the Jordan arc y, of our discontinuous family,
w(yo) = 5/2. For the Jordan arcs y;, w(y,) = b,. This means that

5
{z:0§z<§} C M(P:;T)
and

3i
%ZIZZI-FW,IZz} C M(P:T)", (n=1).

Hence each point z with 2 < z < 5/2 is not an interior point of M(P;T), and
M(P;T) is not a domain.
This completes the proof of Lemma 4.3.6. O

Lemma 4.3.7. Let D be a I'-regular set. Suppose y is a bounded Jordan curve
whose interior contains the point 0. If a set F satisfies the condition F C Ny,e,wD,
then it lies in the interior of y.

Proof. If z is on y or in the exterior of y, then z # 0 and there exists a point z;
such that z; € (0,z], z1 € y, and [0,z;) is included in the interior of y. Hence
zz;'e D(I) C DC. The last fact and hypothesis on F imply that z ¢ F.

This completes the proof of Lemma 4.3.7 O

Proof of Theorem 4.3.5. Suppose that F is any compact set in 2 and 0 € F. First
we establish the existence of rectifiable Jordan curve y with the following three
properties:

(@) y c M(P:T);
(b) Ty~' C D;
(c) F lies in the interior of y.

Since M(P;T") is a I'-star set, Lemma 4.3.6 and our hypothesis on F imply that
FMS) ™' cDand§=d(F(M®)™', D) > 0.

Because the set (M €)~! is a bounded continuum, there corresponds to each a > 0
a rectifiable Jordan curve £ that includes (M €)~! in its interior and has the property

_ 8
supd(w, (MS)™) < e

weg

Let y = £7!. Then y obviously has property (a). Since F is bounded (say |z| < a
for all z € F), there corresponds to each u € y a point w = w(u) € M€ such that
|u=! —w™!| < §/4a, whence |z/u — z/w| < §/4 for all z € F. Thus

() zaEor) -2l
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Therefore d(Fy~', D€) > §/2. In particular, y has property (b). Since property
(b) is equivalent to the assumption that F C €2, Lemma 4.3.7 implies that y has
property (c). Lemma 4.3.6, the properties of y, the fact that 1 &€ D, the assumption
(ii) of Theorem 4.3.5, and the calculus of residues yield the relation

i w

1 P F m+1
P(Z, F) 2 ¢ (W ) nli>oo Z Anm 1(—)dW
Y

= lim Zanmsm(z) (4.3.15)

n—oo

for all z € F, and the convergence is uniform in F'.
This completes the proof of Theorem 4.3.5. O

Remark 4.3.8. 1t is easy to see ([47], Remark, p. 355) that the assumptions of
Theorem 4.3.5 imply that 2 C M (P;T') (so that the right hand of (4.3.14) is
defined) and that the set of finite points of €2 is open.

Example 4.3.9. The following statements hold:

(i) The Lototski transform defined by [F, d,, = n — 1] sums the geometric series
for Re(z) < 1 and does not sum it for Re(z) > 1, [46]. Here P(z) =z — 1.

(ii) If P(z) = e'”(z— 1) with a suitable real y, we obtain a domain of summability
any given half plane, the boundary of which is a straight line passing through
z=1

(i) The family I' of all rays emanating from the point O is continuous and has
the property that D(I") = {x : x > 1}. In this special case, M(p; ) is the
ordinary Mittag-Leffler star of P(z), and Theorem 4.3.5 is a generalization
of Okada’s theorem. Here we have the additional result about the uniform
summability in compact subsets, which has proved for special domains D in
[78] (see also [26, p. 189]).

(iv) Lety be aJordan arc defined by ¢ = ¢ (r) for z = re’?, where ¢ is continuous
for 0 < r < o0o. The family of all Jordan arcs of the form y, = ei“y; O<ac<
27) is continuous. In particular case where y is a polynomial line composed
of the line segment [0, 1] and the ray 1 — iy, (0 < y < +00),

DN ={z: z>1,z<0}.



Chapter 5
Summability Methods for Random Variables

5.1 Introduction

Let (Xx) be a sequence of independent, identically distributed (i.i.d.) random
variables with E|X;| < oo and EXy = u, k = 1,2,....Let A = (a,;) be a
Toeplitz matrix, i.e., the conditions (1.3.1)—(1.3.3) of Theorem 1.3.3 are satisfied by
the matrix A = (a,x). Since

o0 o0
E lamXe| = E|Xe| Y lank| < ME|Xc|,
k=1 k=1

the series > po , dux Xk converges absolutely with probability one.

There is a vast literature on the application of summability to Probability
Theory. Here, we study only few applications of summability methods in summing
sequences of random variables and strong law of large numbers (c.f. [86]).

5.2 Definitions and Notations

In this section, we give some required definitions.

Definition 5.2.1 (Random variables). A function X whose range is a set of real
numbers, whose domain is the sample space (set of all possible outcomes) S of an
experiment, and for which the set of all s in S, for which X(s) < x is an event if x
is any real number. It is understood that a probability function is given that specifies
the probability X has certain values (or values in certain sets). In fact, one might
define a random variable to be simply a probability function P on suitable subsets
of a set T, the point of T being “elementary events” and each set in the domain of
P an event.

M. Mursaleen, Applied Summability Methods, SpringerBriefs in Mathematics, 41
DOI 10.1007/978-3-319-04609-9_5, © M. Mursaleen 2014
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Definition 5.2.2 (Independent random variables). Random variables X and Y
such that whenever A and B are events associated with X and Y, respectively, the
probability P(A and B) of both is equal to P(A) x P(B).

Definition 5.2.3 (Distribution). A random variable together with its probabil-
ity density function, probability function, or distribution function is known as
distribution.

Definition 5.2.4 (Distribution function). A real-valued function G(x) on R =
[—00, 00] is called distribution function (abbreviated d.f.) if G has the following
properties:

(a) G is nondecreasing;
(b) G is left continuous, i.e., lim, .y, G(y) = G(x), all x € R;
(€) G(—00) =limy—,_o G(x) =0, G(00) = limy—00 G(x) = 1.

Definition 5.2.5 (Independent, identically distributed random variable). A
sequence (X,),>1 (or the random variables comprising this sequence) is called
independent, identically distributed (abbreviated i.i.d.) if X,,,n > 1, are independent
and their distribution functions are identical.

Definition 5.2.6 (o-field). A class of sets F satisfying the following conditions is
called a o-field:

(@) if E; € F (i =1,2,3,...), then U'_ E; € F;
(b) if E € F,then EC € F.

Definition 5.2.7 (Probability Space). Let F be a o-field of subsets of 2, i.e.,
nonempty class of subsets of €2 which contains € and is closed under countable
union and complementation. Let P be a measure defined on F satisfying P(2) = 1.
Then the triple (2, F, P) is called probability space.

Definition 5.2.8 (Expectation). Let f be the relative frequency function (proba-
bility density function) of the variable x. Then

b
E(x)=/ xf(x)dx

is the expectation of variable x over the range a to b, or more usually, —oo to co.

Definition 5.2.9 (Almost Everywhere). A property of points x is said to hold
almost everywhere, a.e., or for almost all points, if it holds for all points except
those of a set of measure zero.

The concept of almost sure (a.s.) convergence in probability theory is identical
with the concept of almost everywhere (a.e.) convergence in measure theory.

Definition 5.2.10 (Almost Sure). The sequence of random variables (X)) is said to
converge almost sure, in short a.s. to the random variable X if and only if there exists
aset E € F with P(E) = 0, such that, for every w € E€, | X,,(w) — X(w)| — 0, as

. . a.s.
n — oo. In this case, we write X,, —> X.
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Definition 5.2.11 (Median). For any random variable X a real number m(X) is
called a median of X if P{X <m(X)} > (1/2) < P{X > m(X)}.

Definition 5.2.12 (Levy’s inequalities). If {X;; 1 < j < n} are independent
random variables and if §; = Z{:l X;, and m(Y) denotes a median of Y, then,
for any € > 0,

(1) P{maxl§j511[Sj _m(Sj - Sn)] = 6} = 2P{|Sn| = 6};
(11) P{maxl§j5n |Sj _m(Sj - Sn)| = 5} =< 2P{Sn = €}~

Definition 5.2.13 (Chebyshev’s inequality). In probability theory, Chebyshev’s
inequality (also spelled as Tchebysheff’s inequality) guarantees that in any prob-
ability distribution, “nearly all” values are close to the mean—the precise statement
being that no more than 1/ k2 of the distribution’s values can be more than k standard
deviations away from the mean.

Let X be a random variable with finite expected value w and finite nonzero
variance . Then for any real number k > 0,

1
P{|X_M|2k0}§ﬁ.

Definition 5.2.14 (Markov’s inequality). In probability theory, Markov’s inequal-
ity gives an upper bound for the probability that a nonnegative function of a random
variable is greater than or equal to some positive constant. It is named after the
Russian mathematician Andrey Markov.

If X is any nonnegative random variable and any « in (0, co), then

1
P{X >a} < —EX.
a

Definition 5.2.15 (Infinitely often (I.O.)). Let (4,),>1 be a sequence of events.
Then lim, 00 Ay = {w : w € A, for infinitely many n}, or lim,—00 A, = {w :
w € 4,,L0.}. Moreover, lim, 00 4, = N72; NP2, Ak

Lemma 5.2.16 (Borel-Cantelli Lemma). If (A,),>1 is a sequence of events for
which Y ;2| P{A,} < oo, then P{A,, 1.0.} = 0.

5.3 A-Summability of a Sequence of Random Variables

Let F be the common distribution function of X;s and X, a random variable
having this distribution. It is also convenient to adopt the convention that a,; =
0, |a.x|~! = 4o00. In the next theorem, we study the convergence properties of the
sequence

oo
Y, = E an Xk, as n — oo.
k=0
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Theorem 5.3.1. A necessary and sufficient condition that Y, — [ in probability is
that maxgen |auk| — 0,as n — oo.

Proof. The proof of the sufficiency is very similar to the corresponding argument in
[48], but it will be given here for the sake of completeness. First, we have that

lim TP[|X|>T]=0 (5.3.1)
T—o00

since E|X| < oo. Let X,;; be a,; X truncated at one and Z, = Z,fio X,k Now
for all n sufficiently large, since maxyen |a,x| — 0, it follows from (5.3.1) that

oo

1
a |]562|ank|§eM.
nk k=0

P[Z, # Yl <) PlXuk #anXi]l = ) P[IX| 2
k=0 k=0

It will therefore suffice to show that Z, — u in probability. Note that
(o) (o)
lim [EZ, — u] = lim Ank (/ xdF—M) +u ane—1]|=0.
n—>o0 n—>00 kg{) |x|<‘ank|71 /;)

Since

1 1 T
— x2dF = — %—TZP[|x| > T+ 2/ xP[|x| > x]dx} -0,
Ix|<T T 0

it follows that for all n sufficiently large

o0 o0
> Var X < Y lancl® X’dF <€) lap| <eM. (53.2)
k=0 |

x|<‘ank|_l k=0

But E(Y_72, | Xux|)? is easily seen to be finite so that Var Z, = > 7o, Var X,
which tends to zero by (5.3.2). An application of Chebyshev’s inequality completes
the proof of sufficiency. For necessity, let Uy = Xy — u, T, = Z}:OZO ar Uy so that
T, — 0 in probability and hence in law. Let g(u) = Ee'*Us be the characteristic
function of U,. We have that ]_[,fo=1 glaypu) — 1 asn — oo. But

[ ] 2@uw
k=1

= |g(anmu)| <1

for any m, so that for any sequence k,,,

lim |g(anr,u)| = 1. (5.3.3)
n—o00
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Since Uy is nondegenerate, there is a uy such that |g(u)|] < 1 for 0 < |u| < u

[57, p. 202]. Letting u = uo/2M, it follows that |a, i, u| < Mu = uy/2 and then

an ,u — 0,as n — 00, by (5.3.3). Choosing k, to satisty |a, k,| = maXien |ank|-
This completes the proof of Theorem 5.3.1. O

In Theorem 5.3.1 excluding the trivial case when Xy is almost surely equal to u,
it has been shown that Y,, — p in probability if and only if maxyen |@,x| — 0. This
condition is not enough, however, to guarantee almost sure (a.s.) convergence. To
obtain this the main result is proved in the following theorem [56].

Theorem 5.3.2. If maxyen |auk| = O(n77), y > 0, then E|Xk|l+% < oo implies
that Y, — u a.s.
For the proof of Theorem 5.3.2, we need the following lemmas.

Lemma 5.3.3 ([81, Lemma 1]). If E|X|'t? < oo and maxzex |ans| < Bn™?,
then for every € > 0,

o
ZP[lanka| > e, for some k] < oo
n=0

Proof. Tt suffices to consider B = 1 and ¢ = 1 for both the matrix 4 and
the random variables X; may be multiplied by a positive constant if necessary.
(Assumption (1.3.2) is not used in this proof). Let

Na) = D" laml.

[k:lani |~ <x]

Notice that N,(x) = 0, for x < n?, and fooo AN, (x) = Y72, lank| < M. If
G(x) = P[|x| = x], imTG(t) = 0,as T — oo since E|X| < 00, and thus

(o]

o0
PllawXel = 11 =Y G(lau|™)
k=0 k=0

/00 XG(x)dN,(x)
0

= lim TG(T)Nn(T)—/oo N, (%)d[xG(x)]
T—o00 0

IA

M /oo d|XG(x)). (5.3.4)

To estimate the last integral, observe that, for z < y,

yG(y) —26@) = (y —2G([) + y[G(y) - G@)].
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so that

G+

d|xG
g/ G ()]

Y

/ dIxG )|

3

<0G+ 1)V—ﬂ1G(ﬂ)+Z<J + 1[G~ G((j + 1))

j=n j=n

Summing the first of the final series by parts and using the existence of E|X|, we
see that it is dominated by the second series, and thus

/ dxG() <2 (G + GG —G( + D). (53.5)
nY j=n
Finally, by (5.3.4) and (5.3.5),

o0 oo o0
> PllanXe| = 1fork] < >3 PllanXi| = 1]
n=1

n=1k=1

<2M Y NG+ DIGG) -GG+ D)

n=1j=n
=2M Y j(j + D'IG(") = G(( + D]
ji=1

< 2y+1Mf x|"7 dF(x) < o.

This completes the proof of Lemma 5.3.3. O

Lemma 5.3.4 ([81, Lemma 2]). If E|X|'"7 < oo and maxgen |ank| < Bn~7,
then, foroa < y/2(y + 1),

o0
Z Pllane X | = n™%, for at least two values of k] < oc.
n=0

Proof. By the Markov’s inequality,

o0

1 1 1
> PllanXel = 1] < lan| "7 E[X| 70D,
n=0
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so that

Plla,x Xi| = n™ for at least two k]
<Y PllayX;| = n™ |anXe| = n™
J#k
1 1 1 1
< (E1X|")2 200> a7 a |
J#k
< (ElX|1+%)ZBZ/yMZHZ[—H-Dl(H-%)]’
and the final estimate will converge when summed on n provided that o« < y/

2(y + 1).
This completes the proof of Lemma 5.3.4. O

Lemma 5.3.5 (81, Lemma 3]). If u = 0, E|X|'T7 < oo, and maxeen |ant| <
Bn™7, then for every € > 0,
> 6i| < 00,

o0
>r|
n=0
Z/anka = Z ank Xk,
k

[k:lank Xi |<n—]

/
Z ank Xk
k

where

and0 <o < y.

Xi , |anc Xi] <n™¢,
0 , otherwise
Bux = = 0, while if a,; # 0, then

Bue| = ’u—/ dF 5/ \x|dF.
[x|=n=a; |~ |x|=n—*B—1nr

Therefore B, — 0, uniformly in k and Z,fozo ank Bk — 0.

Let Z,r = Xur — Buk, so that E|Z,;| = 0; E|an|l+% < C, for some C, and
|ank Zuk| < 2n~%. Now

, o0 (e e)
D amXe = anXok =Y anZuk + Y ankBuk
k k=0 k=0 k

Proof. Let X, = { and B,x = EXuk. If ayr = 0 then
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and so for n sufficiently large,

() (e

It will suffice, therefore, to show that
> e) < 00. (5.3.6)

n=0

[e'9)
Z Ank an
k=0

oo

Z ankznk

k=0

Let v be the least integer greater than 1/y. The necessary estimate will be obtained
by computing E (Y p—, |@nk Zux|)*” which is finite so that

00 2v 2v
E <Z |ankznk|) = Z E Han,k,- Zn,kj-

k=0 ky-kay j=1

There is no contribution to the sum on the right so long as there is a j with k; # k;,
foralli # j, since the Z, are independent and EZ,; = 0. The general term to be
considered then will have

giofthe k’'s = &,...,q, of the k's = &,
riofthe ks = ni,....r, of the k's =,

where2§q,~§1+%, rj >1+%,and

Then,

14

E l_[(an.f; Znéi)qi l_[ (an,nj Zn,nj )rj

i=1 j=1

mn P 1 1 1
<(+e) 1—[ |an.&_|qi 1_[ ian,nj| +y (2n—a)(rj—1—7)
j=1

i=1

,(5.3.7)

ne

- - sty (2 \ 50T
< (14 &) [[hane | T] lann, |(Bn—) =1t ( )

i=1 j=1

1 .
where ¢ is the upper bound for E|Z, k|1+V mentioned above. Now, the power to
which # is raised is the negative of

m 14
VZ(‘]i—l)-f-p-i-OlZ(rj—l—%).
j=l

i=1
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Now, if p is one (or larger),
’ 1 1
p—i—aZ(rj—l——) zl+a(v——),
= y y
while if p =0,
m 1 l
VZ(Qi—1)=V(2V—m)ZJ/V=1+V(V—;) Zl+a(v—;):
i=1

the first inequality being a result of

Therefore the expectation in (5.3.7) is bounded by

m V4
—N—a(v—1
ko [ [lang | [T lana, In~ 720

i=1 j=1

and k; depends only on ¢, y, and B. It follows that

00 2v
1
E (Zankznk) < kon~'T07y)
k=0

for some k, which may depend on c, y, B, and M but is independent of n. An
application of the Markov’s inequality now yields (5.3.6).
This completes the proof of Lemma 5.3.5. O

Proof of Theorem 5.3.2. Observe that

) ) )
Zanka = Zank(Xk — )+ /’Lzank

and the last term converges to u by (1.3.3). Therefore, we may consider only the
case i = 0. By the Borel-Cantelli Lemma, it suffices to show that for every € > 0,

n=0

e ¢]

Zanka

k=0

> e) < 0Q. (5.3.8)
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o0
€
= C nX Z_
(Eewrf=) < (Errd-2)

€
U <|anka| > 3 for some k)

But

oo
Zankxk
k=0

U (lanx Xr| = n™“ for at least two k) .

Now if 0 < @ < y/2(y + 1), then @ < y also and the series (5.3.8) converges as a
consequence of Lemma 5.3.3-5.3.5.
This completes the proof of Theorem 5.3.2. O

5.4 Strong Law of Large Numbers

In the next theorem, we study the problems arising out of the strong law of large
numbers.

In probability theory, the law of large numbers (LLN) is a theorem that describes
the result of performing the same experiment in a large number of times. According
to the law, the average of the results obtained from a large number of trials should
be close to the expected value and will tend to become closer as more trials are
performed.

The strong law of large numbers states that the sample average converges almost
surely to the expected value (X, — u(C,1) a.s., asn — 00), i.e.,

lim =u
n—o00 n

P[ Xi+ X+ + X, }:1‘

Kolmogorov’s strong law of large numbers asserts that EX; — p if and only
if Y W; isa.e. (C, 1)-summable to u, i.e., the (C, 1)-limit of (X,,) is 1 a.e. By the
well-known inclusion theorems involving Cesaro and Abel summability (cf. [41],
Theorems 43 and 55), this implies that ) W is a.e. (C, @)-summable to p for any
o > 1 and that )_ W; is a.e. (A)-summable to u; where W, = X, — X,—1 (Xp =
Wy = 0). In fact, the converse also holds in the present case and we have the
following theorem.

Theorem 54.1. If X, X», X3, ... is a sequence of i.i.d. random variables and o >
1 and are given real numbers, then the following statements are equivalent:

EX =pu 54.1)
. X1+ X+ 4+ X,
lim

n—00 n

= U a.e. 54.2)
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| n—1 1+a ])X 3 A
ni?goz n+0() =M a.e., (54.3)

(,- +ﬂ) CBED (Bt ))
where . = -
J J!

o
lim (1 —A);A X;=pu ae. (5.4.4)

Proof. The implications (5.4.2) = (5.4.3) = (5.4.4) are well known (cf. [41]). We
now prove that (5.4.4) implies (5.4.1). By (5.4.4)

1 o0
: —n/mys —
mllr)noo p E e X, =0(a.e.),

n=1

where X¥ = X, — X, with X,, n > 1, and X,,, n > 1, being i.i.d. Let

Lo
= Z";e MM Z = nale nimys,

Then Y,, + Z,, —P> 0, as m — oo, Y, and Z,, are independent and symmetric.

Therefore it follows easily from the Levy’s inequality [57, p. 247] that Z,, i) 0.

Since Z,, and (Y1,...,Y},,) are independent and Y,,, + Z,, — O a.e., Z, i 0, we

obtain by Lemma 3 of [23] that ¥,, — 0 a.e. Letting Y,\" = Y¥,, — ™ '), since

e %0 L0, we have by Lemma 3 of [10] that X3 /m — oo a.e. By the Borel-
Cantelli lemma, this implies that E|X;| < 1. As established before, we then have
X, = EX (A) and soby (5.4.4), u = EX,.

This completes the proof of Theorem 5.4.1. O

Remark 5.4.2. Chow [22] has shown that unlike the Cesaro and Abel methods
which require E|X;| < oo for summability, the Euler and Borel methods require
EXl2 < oo for summability. Specifically, if X, X», ... are i.i.d., then the following
statements are equivalent:
EX, = pu, EX{ < oo,
X, — u(E,q), for some or equivalently for every g > 0, i.e.,

1

n
n
lim —— E kX, =u ae.,
n—o0 (q + 1)" o (k)q EEH

1 o= Ak
lim X, = u(B), ie. Alggoe_’\];ﬁxk =/ ae..

n—o0



Chapter 6
Almost Summability

6.1 Introduction

In the theory of sequence spaces, an application of the well-known Hahn-Banach
Extension Theorem gives rise to the notion of Banach limit which further leads to
an important concept of almost convergence. That is, the lim functional defined on
¢ can be extended to the whole of £, and this extended functional is known as the
Banach limit [11]. In 1948, Lorentz [58] used this notion of weak limit to define
a new type of convergence, known as the almost convergence. Since then a huge
amount of literature has appeared concerning various generalizations, extensions,
and applications of this method.

In this chapter, we study the almost conservative and almost regular matrices and
their applications.

6.2 Definitions and Notations

First we define almost convergence which will be used to define almost conservative
and almost regular matrices.

Definition 6.2.1. A linear functional L on £, is said to be a Banach limit if it has
the following properties:

(1) L(x)>=0ifx > 0;
i) Le)=1,e=(1,1,1,...);
(i) L(Sx) = L(x); where S is the shift operator defined by (Sx), = x,+1.

Definition 6.2.2. A bounded sequence x = (xj) is said to be almost convergent to
the value / if all its Banach limits coincide, i.e., L(x) = [ for all Banach limits L.

Definition 6.2.3. A sequence x = (xi) is said to be almost A-summable to the
value [ if its A-transform is almost convergent to /.

M. Mursaleen, Applied Summability Methods, SpringerBriefs in Mathematics, 53
DOI 10.1007/978-3-319-04609-9_6, © M. Mursaleen 2014
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Lorentz [58] established the following characterization:
A sequence x = (xi) is almost convergent to the number [ if and only if
tmn(x) — | as m — oo uniformly in n, where

1 m
bin = tpn(X) = ——— Xn+i-
(x) m+1§ ¥

The number !/ is called the generalized limit of x, and we write [ = F-limx. We
denote the set of all almost convergent sequences by F, i.e.,

F = {x €l : lim t,,(x) = [ uniformly in n}
m—>00
The sequences which are almost convergent are said to be summable by the method

F,ie., x € F we mean x is almost convergent and F — limx = L(x).

Definition 6.2.4. Let A = (auk)5;—, be a regular matrix method. A bounded

sequence x = (xi) is said to be Fy4- summable to the value [ if y,, = Z/fo:o
AmkXi+n — | as m — oo uniformly in n.

Note that if A is replaced by the (C, 1) matrix, then F4-summability is reduced
to almost convergence.

Example 6.2.5. The following statements and concepts may be useful:

(i) Forz € C on the circumference of |z] = 1, L(z") = 0 holds everywhere except
for z = 1. For from

2
S 9
k(1 —1z[)

l(zn +Zn+1+.__+zn+k—l) — Zn l_zk
k k(1 —2)

the assertion follows immediately.

It is easy to see [58] that the geometric series Y 7" for |z| = 1,z # 11is
almost convergent to 1/(1 — z). Hence it follows that the Taylor series of a
function f(z), which for |z| < 1 is regular and on |z] = 1 has simple poles,
is almost convergent at every point of the circumference |z| = 1 with the limit
f@).

(i) A periodic sequence (x,) for which numbers N and p (the period) exist
such that x,4+, = Xx, holds for n > N is almost convergent to the value
L(x,) = %(xN + XN41+ -+ Xn4p—1). For example, the periodic sequence
(1,0,0,1,0,0,1,...) is almost convergent to 1/3.

(iii) We say that a sequence (x,) is almost periodic if for every ¢ > 0, there are
two natural numbers N and r, such that in every interval (k,k + r),k > 0, at
least one “e-period” p exists. More precisely |x,4, —x,| < &, forn > N must
hold for this p. Thus it is easy [58] to see that every almost periodic sequence
is almost convergent. But there are almost convergent sequences which are not
almost periodic. For example, the sequence x = (x;) defined by
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o = 1,k =n?
k= 0,k #n%*neN.

is almost convergent (to 0) but not almost periodic.
Remark 6.2.6. The following statements hold [58]:

(1) Note that ¢ C F and for x € ¢, F — limx = limx. That is, every
convergent sequence is almost convergent to the same limit but not conversely.
For example, the sequence x = (x;) defined by

Y = 1, k is odd,
0, k is even.
is not convergent but it is almost convergent to 1/2.

(2) In contrast to the well-known fact that ¢ is a separable closed subspace of
(loos || - lloo)s F is a non-separable closed subspace of ({oo, || - [l0o)-

(3) F is a BK-space with || - || co-

(4) F is nowhere dense in £, dense in itself, and closed and therefore perfect.

(5) The method is not strong in spite of the fact that it contains certain classes of
matrix methods for bounded sequences.

(6) Most of the commonly used matrix methods contain the method F, e.g., every
almost convergent sequence is also (C, «) and (E, «)-summable (¢ > 0) to its
F-limit.

(7) The method F is equivalent to none of the matrix methods, i.e., the method F
cannot be expressed in the form of a matrix method.

(8) The method F seems to be related to the Cesaro method (C, 1). In fact the
method (C, 1) can be replaced in this definition by any other regular matrix
method A satisfying certain conditions.

(9) Since ¢ C F C €oo, we have £, = £l C FT C ¢f = ¢,. That is, the f-dual of
F is £, where } stands for «, 8, and y.

6.3 Almost Conservative and Almost Regular Matrices

King [50] used the idea of almost convergence to study the almost conservative and
almost regular matrices.

Definition 6.3.1. A matrix A = (auk);5—, is said to be almost conservative if
Ax € F for all x € c¢. In addition if F-lim Ax = lim x for all x € ¢, then A is said
to be almost regular.

Theorem 6.3.2. The following statements hold:

(a) A = (ank)y5.=, is almost conservative, i.e., A € (c, F) if and only if (1.3.1)
holds and
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Jopy € C> lim t(n,k, p) = oy for each k uniformly in n; (6.3.1)
p—>00

o0
do € C> lim Zt(n,k, p) = « foreach k uniformly in n; (6.3.2)

n+p

1
here t(n,k, p) = —— ; Il n,k,peN.
where t(n,k, p) p+12a/k forall n,k,p

j=n

In this case, the F-limit of Ax is
o o0
(lim x) (Ol — Zak) + Zakxk,
k=0 k=0

for every x = (xi) € c.
(b) A is almost regular if and only if the conditions (1.3.1), (6.3.1), and (6.3.2) hold
with ax = 0 for each k and o = 1, respectively.

Proof. (a) Let the conditions (1.3.1), (6.3.1), and (6.3.2) hold, and x = (x;) € c.
For every positive integer n, set

oo n+p

() =~ — > D apxn

k=1 j=n

Then we have

oo n+p

ltpn ()| = ZZ|a/k||xk| = [[Allllx]lco-

k 1j=n

Since 1, is obviously linear on c, it follows that 7, € ¢*, the continuous dual of ¢,
and that |, | < || A].

Now
oo n+p n+p oo
tpn(e) ZZ ajr = P+1 Zza/k»
k 1j=n j=nk=1

so lim, ¢, (e) exists uniformly in # and equals to «. Similarly, ¢, (e®) - ay, as
p — oo for each k, uniformly in . Since {e, e(l), A } is a fundamental set in
¢, and sup,, |15, (x)| < oo for each x € ¢, it follows that lim, 7, (x) = 1,(x) exists
for all x € c. Furthermore, [|#,| < liminf, ||¢,,| for each n, and ¢, € c¢*. Thus,
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o0 o
ty(x) = (limx) |:tn (e) — Z t (e(k)):| + Z Xikta (e(k))
k=0 k=0

o0 o0
= (lim x) (oe — Zak) + Zxkak»
k=0 k=0

an expression independent of n. Denote this expression by L(x).

In order to see that lim, ¢, (x) = L(x) uniformly in n, set Fp,(x) = ,,(x) —
L(x).Then F,, € ¢*, || Fp.| <2||A| forall p andn,lim, F,,(e) = 0 uniformly in
n, and lim, F, (e®) = 0 uniformly in n for each k. Let K be an arbitrary positive
integer. Then

K [os}
x = (limx)e + Z (xx —limx) e® + Z (xx — limx) e®,
k=1 k=K+1

and we have

K
Fpu(x) = (limx)F,,(e) + Z (xx — limx) Fp, (e®)
k=1

o0
+F,, |: Z (xk —limx)e(k)i| .
k=K+1

Now,

Fpy |: Z (xx — lim x) e(k)i|

k=K+1

§2||A||< sup |xk—limx|)

k>K+1

for all p and n. By first choosing a fixed K large enough, each of the three
displayed terms for F,,(x) can be made to be uniformly small in absolute value
for all sufficiently large p, so lim, F,,(x) = O uniformly in n. This shows that
lim, ¢,,(x) = L(x) uniformly in n. Hence Ax € F for all x € ¢ and the matrix A
is almost conservative.

Conversely, suppose that A is almost conservative. If x is any null sequence,
then Ax € F C £oo, 1.6., A € (c,€x). We know that A € (c, o) if and only
if ||A|| < oo. Hence, (1.3.1) follows. Furthermore, since e*) and e are convergent
sequences, k = 0, 1,..., lim, ,,(e®) and lim, 7,, (¢) must exist uniformly in 7.
Hence, conditions (6.3.1) and (6.3.2) hold, respectively.

(b) Let A be an almost conservative matrix. For x € ¢, the F-limit of Ax is
L(x) which reduces to lim x, since « = 1 and oy = O for each k. Hence, A is an
almost regular matrix. Conversely, if A is almost regular, then F' — lim de = 1,
F —lim Ae™ = 0, and || A|| < oo, as in the proof of Part (a).

This completes the proof of Theorem 6.3.2. O
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Remark 6.3.3. Every regular matrix is almost regular (since ¢ C F) but an almost
regular matrix need not be regular. Let C = (c,x) be defined by

1+(=1"
_ ) EEE 0k =n,

Cnk
0 ,n<k.

Then the matrix C is almost regular but not regular, since lim,_ Z](:o:o ¢k does
not exist.

Remark 6.3.4. 1t is known that E” is regular if and only if 0 < r < 1 [2]. It is
natural to ask whether or not there exist values of r for which E” is almost regular
but not regular. But this is not the case for Euler matrix E”. In fact, we have that E”
is almost regular if and only if it is regular [50].

6.4 Almost Coercive Matrices

Eizen and Laush [31] considered the class of almost coercive matrices.

Definition 6.4.1. A matrix A = (a,x)55._, is said be almost coercive if Ax € F
forall x € [

Theorem 6.4.2. A = (a”k):?kzl is almost coercive, i.e., A € (Leo, F) if and only
if the conditions (1.3.1) and (6.3.1) hold and

o0
Joy € C 3 Lim Y " |t(n.k. p) — x| = O uniformly in n. (6.4.1)
p—>00
k=0
In this case, the F-limit of Ax is Y g, o Xk for every x = (x) € {oo

Proof. Suppose that the matrix A satisfies conditions (1.3.1), (6.3.1), and (6.4.1).
For any positive integer K,

K K n+p
Z|ak| = lim —— Zajk
k=1 k=1 " p+l j=n
K |n+p
= lim —— Za/k
p=oee p +1 k=1 |j=n
n+p oo
< limsup — 5 222 lail = 141,

Jnk]
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This implies that Y ;- |ox| converges and that Y ;= axxx is defined for every
bounded sequence x € £o.

Let x € £o. For p € N, define the shift operator S on £ by S7(x) = X4 ,.
Then,

Ax+S(AxX)+---+SP(A e o ntp
x+ ( X)+ + ( x)_ Zaka e :sup Zzajk aka
p+l k=0 neN =1 j=n ptl
o] 1 n+p
< ||A4]l | sup —_ ai—oly
nGNI; p+1 ; /

By letting p — oo and the uniformity of the limits in condition (6.4.1), it follows
that

. Ax 4 S(AX) + -+ + SP(Ax) <°° )
lim = Z apxi | e
p—>00 p+1
k=0

and that Ax € F with F —lim Ax = ) 7 axx;. Hence, A is almost coercive.

Conversely, suppose that A € (Lo, F). Then A € (£x,c) and so the
conditions (1.3.1) and (6.3.1) follow immediately by Theorem 6.3.2. To prove the
necessity of (6.4.1), let for some n

oo |n+p

hmpsuPp—li—IZ Z(ajk—ak) =N >0.

k=1|j=n

Since ||A| is finite, N is finite also. We observe that since > oo | |ax| < oo, the
matrix B = (b,i), where b,y = a,r — ai, is also a almost coercive matrix. If
one sets Fy, = |Z'}iﬁ(ajk —o)|/(p + 1), and Ey; = Fyp,, one can follow
the construction in the proof of Theorem 2.1 in [31] to obtain a bounded sequence
whose transform by the matrix B is not in F. This contradiction shows that the limit
in (6.4.1) is zero for every n.

To show that this convergence is uniform in n, we invoke the following lemma,
which is proved in [88]. O

Lemma 6.4.3. Let {H(n)} be a countable family of matrices H(n) = {h,x(n)}
such that |H(n)|| < M < oo for all n and h,(n) — 0, as p — oo for each k,
uniformly in n. Then, Y 7= hpk (n) — 0, as p — 0o, uniformly in n for all x € {og
ifand only if Y _p= o |hpk (n)| = 0, as p — oo, uniformly in n.

Proof. Puth i (n) = Z;H:'fj (ajk—ox)/(p+1) and let H(n) be the matrix (/1 pi (1)).
Then || H (n)|| < 2||A|| for every n, and that lim,, /2 ,x (n) = O for each k, uniformly
in n by the condition (6.3.1). Forany x € {oo, lim, > po o hpi(n)xx = F—lim Ax—
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> o xk, and the limit exists uniformly in n since Ax € F. Moreover this limit is
zero since

0 1 oo n+p
D Mgl < xll—— D01 3 ek — ol
k=1 p k=0 j=n
Thus, lim, Y 7o Ay« (n)| = O uniformly in 7, and the matrix A satisfies the
condition (6.4.1).
This completes the proof. O

Remark 6.4.4. The classes of almost regular and almost coercive matrices are
disjoint ([89], Theorem 4).

Definition 6.4.5. A matrix A is said to be strongly regular (cf. [58]) if it sums all
almost convergent sequences and lim Ax = F-limx forall x € F.

Theorem 6.4.6. A is strongly regular if and only if A is regular and
o0
lim Z |ank - an,k-i—ll =0.

n—00
k=0

Duran [29] considered the class of almost strongly regular matrices.

Definition 6.4.7. A matrix A = (ank);5 = is said be almost strongly regular if
Ax € F forall x € F.

Theorem 6.4.8. A = (aui),—, is almost strongly regular if and only if A is almost
regular, and

oo
lim Z lt(n,k, p) —t(n,k + 1, p)| = 0 uniformly in n.



Chapter 7
Almost Summability of Taylor Series

7.1 Introduction

In Chap. 4, we applied the generalized Lototski or [F, d,]-summability to study
the regions in which this method sums a Taylor series to the analytic continuation
of the function which it represents. In the applications of summability theory to
function theory it is important to know the region in which the sequence of partial
sums of the geometric series is A-summable to 1/(1 — z) for a given matrix A. The
well-known theorem of Okada [78] gives the domain in which a matrix 4 = (a )
sums the Taylor series of an analytic function f to one of its analytic continuations,
provided that the domain of summability of the geometric series to 1/(1 — z) and
the distribution of the singular points of f are known. In this chapter, we replace
the [F,d,]-matrix or the general Toeplitz matrix by almost summability matrix
to determine the set on which the Taylor series is almost summable to f(z) (see
[51]). Most of the basic definitions and notations of this chapter are already given in
Chap. 4; in fact, this chapter is in continuation of Chap. 4.

7.2 Geometric Series

The following theorem is helpful in determining the region in which the sequence
of partial sums of the geometric series is almost A-summable to 1/(1 — z).

Theorem 7.2.1. Let D be a set of complex numbers with 0 € D° and 1 ¢ D. Let
s ={sk@ = (Zﬁ:o 7")x denote the sequence of partial sums of the geometric
series. Then, s is almost A-summable to 1/(1 —z) uniformly on each compact subset
of D if and only if

1 n+p oo
lim —— air = 1, uniformly inn, 7.2.1
Jdim —— Z > aj iformly (7.2.1)
j=n k=0
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n+p oo
lim —— ai = = 0, uniformly inn, 7.2.2
p—>oo p 41 /Zn ];) ik f Y ( )

uniformly on each compact subset of D.

Proof. Suppose that (7.2.1) and (7.2.2) hold. Then,

n+p oo
tpn(z) = Zza/ksk(z)
j=n k=0
ntp oo k+1
1 11—z
= DD a4
r+1i=iD -
Hence,
1 n+p oo
lim ¢,,z) = —— lim ————
A @ = 7 I 1)(1 —9 & Zza”‘z
Therefore,
lim 7,,(z) = !
pglc}o pnlZ) = I_Z’

uniformly in » and uniformly on each compact subset of D. Hence, s is almost
A-summable to 1/(1 — z) uniformly on each compact subset of D.

Conversely, suppose that #,,(z) — 1/(1 —z2), as p — oo, uniformly in n
and uniformly on each compact subset K of D. Then, t,,(0) — 1, as p — oo,
uniformly in 7. Hence,

n+p oo
lim —— a;r = 1, uniformly in n,

i.e., (7.2.1) holds. In particular, we have that the series > poa;x converges for
each j. But as above

n+p oo 1—Z+
tpn(@) = —ZZ e
j=n k=0

so that the series Y e @k (1 — zT!) converges for each j and on each compact
subset K of D. Therefore, Y f,axz* T converges for each j and on each compact
subset K of D. This implies that
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n+p oo
(z— l)tpn(z) +tpn(0) Zza/kz
j =n k=0
and hence,
1 n+p oo 1
lim —— W =GE—1)— +1=0,
pféopﬂ;];c‘f"z @D+

uniformly in # and uniformly on each compact subset K of D, i.e., (7.2.2) holds.
This completes the proof. O

Theorem 7.2.2. Let r # 0 be a complex number. The sequence of partial sums of
the geometric series is almost E"-summable to 1/(1—z) if and only if 7 € Q,, where
r—1

ol
r Ir|

Proof. Itis easy to see that for the Euler matrix E” (7.2.1) holds, since Z/fo:o e; P =
1. Hence, by Theorem 7.2.1 it is sufficient to show that 2, = €, where

Lz

,z;«él}

n+p oo

Q=4z: lim —— aZ* = 0, uniformly in n
Jim, —— ZZ it y

In this case

n+p oo n+p j

Y= () a-r

j=nk=0 j=nk=0

n+p

=Z(l—r—|—rz)j
j=n
1—(1—r+rz?
=(1-— " .
( r+ry I1—(1—=r+rz

Therefore, z € Q if and only if [l — r + rz| < 1, z # 1. Hence, 2, = Q. In order
that the sequence of partial sums be E”-summable to 1/(1 — z), it is necessary that
z lies strictly inside the disk €2,.

This completes the proof. O
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7.3 Taylor Series

Note that Theorem 4.3.5 is the source of motivation of the following result which
is due to King [51] which provides the set on which the Taylor series is almost
summable to f(z).

Theorem 7.3.1. Let P(2) be the Taylor series which represents an analytic function
f in a neighborhood of the origin. Let 0 = {0} (z)} be the sequence of partial sums
of P(2). Let T be continuous. Let M = M(P;T") and let Q = N{wD :w ¢ M,
w # ool, where D is a T -regular set with 0 € D°. Let K be a compact subset of 2
such that d(K(M€)™', D) = 8§ > 0 and 0 € K. If the sequence of partial sums of
the geometric series is almost A-summable to 1/(1 — z) uniformly on each compact
subset of D, then o is almost A-summable to P(z; ') uniformly on K.

Proof. From Theorem 7.2.1, we get that (7.2.1) and (7.2.2) hold uniformly on each
compact subset of D. As in the proof of Theorem 4.3.5, it follows that there exists
a rectifiable Jordan curve y which satisfies the following conditions:

i) y CcM(P;T);
(i) Ty~' c D;
(iii) K lies in the interior of y.
By Lemma 4.3.6, it follows that P(z; ") is holomorphic in M(P;T).

Let P(z) = Z,fio cxZ¥. Then the conditions (7.2.1) and (7.2.2), the properties of
y, the fact that 1 ¢ D, and the calculus of residues yield the following relation:

1 P(w; T
P =L [FeD),
2ni J, w—z
1 /‘P(w;r) 1
= — [ —= dw
2mi J, w 1—§
n+p oo
o e =D I)D
= 5 - .y a/kSk( ) w
27i S, w p<><>p—i-ljnkO
n+p oo
1 P(w;T) z
“ (2)
pggop—i—lzz jk2m w Sk w v
j=n k=0
n+p oo
:plgréo—p_i_ ZZW co+ciz+ o+ )
j=n k=0
n+p oo

= plggo pT Z Zajkak(z)

j=nk=0
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uniformly in 7 and uniformly on K. Hence, o is almost A-summable to P(z;T")
uniformly on K.
This completes the proof. O

Remark 7.3.2. From Theorems 7.2.2 and 4.3.5, we conclude that the sequence
of partial sums of P(z) is almost E”-summable to P(z;I') uniformly on K. An
analysis shows that the sets of almost summability are slightly larger than the sets
of summability.



Chapter 8
Matrix Summability of Fourier
and Walsh-Fourier Series

8.1 Introduction

In this chapter we apply regular and almost regular matrices to find the sum
of derived Fourier series, conjugate Fourier series, and Walsh-Fourier series
(see [4] and [69]). Recently, Méricz [67] has studied statistical convergence of
sequences and series of complex numbers with applications in Fourier analysis and
summability.

8.2 Summability of Fourier Series

Let f be L-integrable and periodic with period 27, and let the Fourier series of

f be

1 o0
—+ E (ay coskx + by sinkx) . (8.2.1)
-

Then, the series conjugate to it is

o0
Z (by coskx — ay sinkx), (8.2.2)
k=1
and the derived series is
o0
Z k (by coskx — ay sinkx) . (8.2.3)
k=1
M. Mursaleen, Applied Summability Methods, SpringerBriefs in Mathematics, 67
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Let S,(x), S, (x), and S (x) denote the partial sums of series (8.2.1), (8.2.2),
and (8.2.3), respectively. We write

f(x+1t)— f(x—1),0<t <m;

V() =y (fir) = g(x), t=0

and

poy = 1)

=,
4sin 5t
where g(x) = f(x + 0) — f(x — 0). These formulae are correct a.e..

Theorem 8.2.1. Let f(x) be a function integrable in the sense of Lebesgue in
[0,27] and periodic with period 2rw. Let A = (anx) be a regular matrix of real
numbers. Then for every x € [—m, ] for which B, (t) € BV]0, ],

o0
Jim > a,Si(x) = Be(0+) (8.2.4)
k=1
if and only if
ad 1
lim ];ank sin (k + 5) =0 (8.2.5)

for every t € [0, 7], where BV |0, ] denotes the set of all functions of bounded
variations on [0, r].

We shall need the following well-known Dirichlet-Jordan Criterion for Fourier
series [101].

Lemma 8.2.2 (Dirichlet-Jordan Criterion for Fourier Series). The trigonomet-
ric Fourier series of a 2 -periodic function [ having bounded variation converges
to [f(x +0) — f(x — 0)]/2 for every x and this convergence is uniform on every
closed interval on which f is continuous.

We shall also need the following result on the weak convergence of sequences in
the Banach space of all continuous functions defined on a finite closed interval [11].

Lemma 8.2.3. Ler C[0, 7] be the space of all continuous functions on [0, 7]
equipped with the sup-norm ||.||. Let g, € C[0, 7] and fon gndhy — 0, asn — oo,
forall hy € BV|0, ] if and only if ||g.|| < oo for all n and g, — 0, as n — oo.
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Proof. We have
17 L
S'(x) = — (t i dt
' (x) 71/(; W ()(r;msmmt)

B sin (k + 3) ¢
___/ vl )_|: 2sin§ ]dt
= I + %/Oﬂ sin (k + %) 1dBx(1),

where
1 (" t | sin(k +1)¢
= —/ Bx(t) cos = |:(—t2):| dt.
T Jo 2 sin 5
Then,
0o oo ) P
> S0 = Y+ = [ Lo(e) dpato),
T Jo
k=1 k=1
where

d 1
L,) = Zank sin (k + 5) t.

k=1

69

Since B.(t) is of bounded variation on [0, 7] and B,(t) — B.(0+) as ¢t — 0,
B () cos § has also the same properties. Hence, by Lemma 8.2.2, I — B(0+) as

k — oo.
Since the matrix A = (a,) is regular, we have

(o]
nlgglo Z ani Iy = Bx(0+).
k=1
Now, it is enough to show that (8.2.5) holds if and only if
lim L,(t)dB.(t) =0.
0

n—00

Hence, by Lemma 8.2.3, it follows that (8.2.7) holds if and only if

IL,(¢) || < M for all n and for all ¢ € [0, 7],

(8.2.6)

(8.2.7)

(8.2.8)



70 8 Matrix Summability of Fourier and Walsh-Fourier Series

and (8.2.5) holds, where M is a constant. Since (8.2.8) is satisfied by the regularity
of A, it follows that (8.2.7) holds if and only if (8.2.5) holds. Hence the result follows
immediately.

This completes the proof. O

Similarly we can prove the following result for almost regularity.

Theorem 8.2.4. Let f be a function integrable in the sense of Lebesgue in [0, 2]
and periodic with period 2r. Let A = (aui) be an almost regular matrix of real
numbers. Then for every x € [—m, t] for which B,(t) € BV |0, ],

n+p oo
lim —— airS;(x 0+4) uniformly in n
i, 7 303 kL) = B0+ anformiy
if and only if
n+p oo
lim —— k t =0uni lyi
pl)ngop_i_lz_:nkz:la]ksm( + = ) uniformly in n

foreveryt € [0, r].

Theorem 8.2.5. Let f(x) be a function integrable in the sense of Lebesgue in
[0, 2] and periodic with period 2x. Let A = (auk) be a regular matrix of real
numbers. Then A-transform of the sequence {k Sy (x)} converges to g(x)/x, i.e.,

o0
- 1
lim ) " kaneSe(x) = —g(x) (8.2.9)
n—o00 k=1 s
if and only if
ngngo];)ank coskt =0 (8.2.10)

foreveryt € (0, ], where each ay, b, € BV|0,2n].
Proof. We have

Sa(x) = %/0” ¥y (¢) sinnt dt,

_ 8 T L/ﬂ cosnt dy(t).
0

nmw nmw
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Therefore
= : g(x) L[
3 kanSi(0) = £ 3 g, + —/ Ko dy(),  (82.11)
T T Jo
k=1 k=1
where

K,(t) = Zank coskt.
k=1

Now, taking limit as n — oo on both sides of (8.2.10) and using Lemma 8.2.3 and
regularity conditions of A as in the proof of Theorem 8.2.1, we get the required
result. O

Remark 8.2.6. Analogously, we can state and prove Theorem 8.2.4 for almost
regular matrix A.

8.3 Summability of Walsh-Fourier Series

Let us define a sequence of functions ho(x), hi(x),...,h,(x) which satisfy the
following conditions:

I, 0
) =
ho(x + 1) = ho(x) and h,(x) = ho(2"x), n = 1,2,.... The functions &, (x) are
called the Rademacher’s functions.
The Walsh functions are defined by

1, n =0,

¢n(X) N %hnl(x)hnz(x)"'h"r(x)’ n>1,0=x=1

forn = 2" 4 2" 4 ... 4+ 2" where the integers n; are uniquely determined by
niy1 < n;.

Let us recall some basic properties of Walsh functions (see [34]). For each fixed
x €[0,1) and forall t € [0, 1)

(1) ¢n(x'i't) = ¢f’l('x)¢f’l(t)a
Gi) [y f(xdo)de = [} f(t)dr, and
(i) [y f(O)ga(xF)dt = [} f(xF0)a(t)d1,

where + denotes the operation in the dyadic group, the set of all sequences s = (s,,),
s, =0,1forn =1,2,...1is addition modulo 2 in each coordinate.
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Let for x € [0, 1),

Ji(x) = /OX o()dt, k=0,1,2,...

It is easy to see that J;(x) = 0 for x =0, 1.
Let f be L-integrable and periodic with period 1, and let the Walsh-Fourier
series of f be

chqbn(x),
n=1

where

1
¢ = /0 FO)da(x)dx

are called the Walsh-Fourier coefficients of f.
The following result is due to Siddiqi [91].

Theorem 8.3.1. Let A = (ayi) be a regular matrix of real numbers. Let 7;(x) =
cr¢r (x) for an L-integrable function f € BV[0,1). Then for every x € [0, 1)

o0
nlggo];ankzzc (x) =0
if and only if
o0
nli)lgo;anka(X) =0,

where x is a point at which f(x) is of bounded variation.

This can be proved similarly as our next result which is due to Mursaleen [69]
in which we use the notion of F4-summability. Recently, Alghamdi and Mursaleen
[4] have applied Hankel matrices for this purpose.

Theorem 8.3.2. Let A = (a,i) be a regular matrix of real numbers. Let 7;(x) =
crdr(x) for an L-integrable function f € BV][0,1). Then for every x € [0, 1),
the sequence {zi(x)}x is F4-summable to 0 if and only if the sequence {Ji(x)}y is
F4-summable to 0, that is,

o
nl_i)n;oZankzkﬂ,(x) = 0, uniformly in p
k=1
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if and only if

o0
lim Zanka(x) = 0 uniformly in p,
n—>o0 =1

where x is a point at which f(x) is of bounded variation.

Proof. We have

1
2(6) = e (x) = /0 SO OB ()1,

1 1
- / £ (xFr)di = / Ft0d (),
0 0

73

where x+7 belongs to the set 2 of dyadic rationals in [0, 1); in particular each ele-
ment of 2 has the form p/2" for some nonnegative integers p and n,0 < p < 2".

Now, on integration by parts, we obtain

2k (x)

1
L) ()]} — /0 Je(t)df (),

Hence, for a regular matrix A = (a,x) and p > 0, we have

[ee] 1
> anszip () == [ Daple) ds(0),
k=1 0

where

00
an(t) = Zank-]k+p(t)v
k=1

and h,(t) = f(x-+r). Write, forany ¢ € R, g,,, = (D, (1)).

1
—/ Ji(t)df (x+1), since Ji(x) = 0 for x € {0, 1}.
0

(8.3.1)

(8.3.2)

Since A is regular (and hence almost regular), it follows that || g,, || < oo forall n
and p, and g,, — 0, as n — oo pointwise, uniformly in p. Hence by Lemma 8.2.3,

/ Dy (0)dhy(0) > 0
0

as n — oo uniformly in p. Now, letting n — oo in (8.3.1) and (8.3.2) and using

Lemma 8.2.3, we get the desired result.
This completes the proof.

ad
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Remark 8.3.3. 1f we take the matrix A as the Cesaro matrix (C, 1), then we get the
following result for almost summability.

Theorem 8.3.4. Let A = (auir) be almost regular matrix of real numbers. Let
w(x) = cidr(x) for an L -integrable function f € BV][0,1). Then for every
x €[0,1)

o0
F —nlggo;anm(ﬂ =0

if and only if
oo

F— 1im > auJi(x) =0,

n—>00
k=1

where x is a point at which f is of bounded variation.



Chapter 9
Almost Convergence in Approximation Process

9.1 Introduction

Several mathematicians have worked on extending or generalizing the Korovkin’s
theorems in many ways and to several settings, including function spaces, abstract
Banach lattices, Banach algebras, Banach spaces, and so on. This theory is very
useful in real analysis, functional analysis, harmonic analysis, measure theory,
probability theory, summability theory, and partial differential equations. But
the foremost applications are concerned with constructive approximation theory
which uses it as a valuable tool. Even today, the development of Korovkin-type
approximation theory is far from complete. Note that the first and the second
theorems of Korovkin are actually equivalent to the algebraic and the trigonometric
version, respectively, of the classical Weierstrass approximation theorem [1]. In this
chapter we prove Korovkin type approximation theorems by applying the notion of
almost convergence and show that these results are stronger than original ones.

9.2 Korovkin Approximation Theorems

Let F(IR) denote the linear space of all real-valued functions defined on R. Let C(R)
be the space of all functions f continuous on R. We know that C(R) is a normed
space with norm

I/ lloo := Stelglf(X)l, f € CR).

We denote by C,, (R) the space of all 2-periodic functions f € C(R) which is
a normed space with

I/ ll2r = sup [ f(2)].
1R

M. Mursaleen, Applied Summability Methods, SpringerBriefs in Mathematics, 75
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We write L, (f;x) for L,(f(s);x) and we say that L is a positive operator if
L(f;x)>0forall f(x)>0.

Korovkin type approximation theorems are useful tools to check whether a given
sequence (L,),>1 of positive linear operators on C [0, 1] of all continuous functions
on the real interval [0, 1] is an approximation process. That is, these theorems exhibit
a variety of test functions which assure that the approximation property holds on the
whole space if it holds for them. Such a property was discovered by Korovkin in
1953 for the functions 1, x, and x? in the space C|[0, 1] as well as for the functions
1, cos, and sin in the space of all continuous 27 -periodic functions on the real line.

The classical Korovkin first and second theorems state as follows (see [1,55]):

Theorem 9.2.1. Let (T,,) be a sequence of positive linear operators from C|0, 1]
into F[0,1]. Then lim, o |T,(f, X) — f(X)|leo = 0, for all f € CJ0,1] if and
only if lim, o0 | T, (fi.x) — €;(X)|loc = O, for i = 0,1,2, where eg(x) = 1,
e1(x) = x, and e;(x) = x>

Theorem 9.2.2. Let (T,) be a sequence of positive linear operators from Cp; (R)
into F(R). Then limy—oo |Ty(f,X) — f(X)||l2x = O, for all f € Cyz(R) if and

only if im, o0 | T, (fi, X) — fi(X)|l2r = O, fori = 0,1,2, where fo(x) = 1,
fi(x) = cosx, and f>(x) = sinx.

9.3 Korovkin Approximation Theorems for Almost
Convergence

The following result is due to Mohiuddine [60]. In [7], such type of result is proved
for almost convergence of double sequences.

Theorem 9.3.1. Let (T}) be a sequence of positive linear operators from Ca, b]
into Ca, b] satisfying the following conditions:

F— lim [Te(1,x) = 1o =0, (9.3.1)

F — lim [|T(t,x) — x| o = O, (9.3.2)
p—>0

F— lim |T(t*.x) — x*| = 0. (9.3.3)
p—>00

Then for any function f € Cla, b] bounded on the whole real line, we have
F— lim [|Ti(f.x) = f(X)]loo = 0.
k—o00
Proof. Since f € Cla,b] and f is bounded on the real line, we have

| f(x)] <M, —o0 < x < o0.
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Therefore,
| f() — f(x)| <2M, —oco <t,x < o0. (9.3.4)
Also, we have that f is continuous on [a, b], i.e.,
[ f(t)— f(x)| <e, Y|t —x| <. (9.3.5)

Using (9.3.4) and (9.3.5) and putting ¥ (t) = (t — x)?, we get

2M
| f(t)— f(x)| <€+ S—Zw, V|t —x| <.
This means

2M
—e——x//<f(t)—f(x)<6+ 32

Now, we operating Ty (1, x) to this inequality since T} ( f, x) is monotone and linear.
Hence,

Il (_E _ %_Ajw) < Tl O(F(O) — f()) < Te(1.x) (e + 2 ) |

Note that x is fixed and so f(x) is a constant number. Therefore,
2M
—€Ti(1,x) = T (Y. x) < Ti(f. x) = f() T (1, x)

< eTi(l,x) + 2—Tk(1p x).  (9.3.6)
But
T (fox) = f(x) = Ti(f. x) = f() T (1, x) + ()T (1, x) — f(x)
= [Tk (f.x) = f(O) T (1, X)] + f)[Tk(1, x) = 1].(9.3.7)
Using (9.3.6) and (9.3.7), we have

Te(fx) — f(x) < €Tel.x) + e T ) + (0 [T (1.x) — 1]. 93.8)
Let us estimate T (v, x)
Tk(wv X) = Tk [(Z _x)Z’x]
= T (t? = 2tx + x2,x)
= Ti(t?, x) + 2xTi (¢, x) + x> Ty (1, x)
= [T (t%, x) — x?*] — 2x[T(t, x) — x] + x?[Tr (1, x) — 1].
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Using (9.3.8), we obtain

Ti(f.x)— f(x) < eTp(1,x) + 25—1‘24 {[Tk(tz,x) —xz] + 2x [Ty (2, x) — x]

+x32[Te (L, x) — 1]} + f(x) [T (1, x) — 1]
2M
52
+x32[Te (1, x) — 1]} + f(x) [Te(1,x) —1].

=¢e[Ti(l,x)—1]+€ + {7k (% x) — x*] + 2x[Ti (1. x)—x]

Since € is arbitrary, we can write

Ti(f,x)— f(x) <e€[Te(1,x)— 1]+ 28—A24{[Tk(lz,x) — X% 4 2x[Ti (¢, x) — x]
+x°[Ti(Lx) = 1} + f () [Ti(1,x) — 1]

Now replacing Tj (-, x) by D, ,(f,x) = # ZZ;’; Ty (-, x), we get

2M
Dn,p(f, )C) - f(x) = 6[Dn,p(lvx) - 1] + 8_2{[Dn,p(t27x) _x2]
+2x[Dy p(t, x) — x] + x*[Dy (1, x) — 1]}

+f(x) [Dn,p(lvx) - 1] )

and therefore

Mb?
D) = 0 = (e 2504 ) 1Dyt 1]
Mb M
F G 1 Dap ) = 3]+ 2 D) =

Letting p — oo and using (9.3.1)—(9.3.3), we get

Pli)n;o || D, p,(fix)— f(x) “OO = 0 uniformly in 7.

This completes the proof of the theorem. O

In the following example we construct a sequence of positive linear operators
satisfying the conditions of Theorem 9.3.1, but it does not satisfy the conditions of
Theorem 9.2.1.

Example 9.3.2. Consider the sequence of classical Bernstein polynomials

By(fx):=) f (5) (Z)xk(l —x)"* 0<x <1
k=0
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Let the sequence (P,) be defined by P, : C[0,1] — C[0, 1] with P,(f,x) =
(14 z,) B, (f, x), where z, is defined by

1, nisodd,
0, niseven

Then,

2
X —Xx
B,(1,x) =1, B,(t,x) =x, B,(t* x)=x*+ ,
n

and the sequence (P,) satisfies the conditions (9.3.1)—(9.3.3). Hence, we have
F—lim | P,(f,x) = f(X)]looc = 0.

On the other hand, we get P,(f,0) = (14 z,) f(0), since B,(f,0) = f(0), and
hence

[Pa(f.x) = f(X)lloo = [Pu(£.0) = f(O)] = z4] £(O)].
We see that (P,) does not satisfy the classical Korovkin theorem, since
lim sup,,_, o, z» does not exist.
Our next result is an analogue of Theorem 9.2.2.

Theorem 9.3.3. Let (T}) be a sequence of positive linear operators from Ca, (R)
into Cy(R). Then, for all f € Cz(R)

F = lim [ T(f:%) = /()] = 0 93.9)
if and only if

F — lim |Tx(1;x) = 1|,, =0, (9.3.10)

k—>o00
F— klim | Tk (cost; x) —cosx|,, =0, (9.3.11)

—>00
F— klim | Tk (sint; x) —sinx||,, = 0. (9.3.12)

—> 00

Proof. Since each fy, fi, and f> belongs to C,,(R), the conditions (9.3.10)-
(9.3.12) follow immediately from (9.3.9). Let the conditions (9.3.10)—(9.3.12) hold
and f € Cp; (R).

Let I be a closed subinterval of length 27 of R. Fix x € I. By the continuity of
f at x, it follows that for given & > 0 there is a number § > 0 such that for all ¢

[f() = f(0)] <e, (9.3.13)
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whenever |t — x| < §. Since f is bounded, it follows that
Lf@) = f)l = 2] fll2x. (9.3.14)
forallt € R.Forallt € (x —8,2m + x — §]. Using (9.3.13) and (9.3.14), we obtain

2| f ll2n

24
S 2

lf()—f) <e+ V(). (9.3.15)

where ¥ (¢) = sin?[(t — x)/2]. Since the function f € Cy,(R) is 27-periodic, the
inequality (9.3.15) holds for ¢ € R.
Now, operating Ty (1; x) to this inequality, we obtain

T30 = @ = e+ NIT0 — 1+ + LB 70 -1
2
—+]| cos x|| Ty (cost; x) — cos x| + | sin x|| Tk (sint; x) —sinx|] < e
" [e+ /()] + ”.fﬂ?] 1Tt — 1]
sin 3

+|Ty(cost; x) —cos x| + | T (sint; x) — sin x|}
Now, taking sup,.;, we get

1T (f5%) = F()an = &+ KTk (15%) = 1l
+ | Tk (cost; x) —cos x|, + | Tk (sint; x) —sinx|,,), (9.3.16)

||f||27,§ .

where K 1= qe+ || fllr + = 23
sin” 3

Now replacing T (-, x) by m+—1 SUE" T (-, x) in (9.3.17) on both sides and then
taking the limit as m — oo uniformly in n. Therefore, using conditions (9.3.10)—
(9.3.12), we get

n+m

1
mli_)néo pear ,(X: Ti(fix)— f(x) = 0 uniformly in n,
=n 2
i.e., the condition (9.3.9) is proved.
This completes the proof of the theorem. O

In the following example we see that Theorem 9.3.3 is stronger than
Theorem 9.2.2.

Theorem 9.3.4. For any n € N, denote by S, (f) the n-th partial sum of the
Fourier series of f, i.e.,
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SN = 2a0() + Y an(F)cosks + be(f)sinkx.
k=1

For any n € N, write
1 n
F, = — S, .
(D)= g LS

A standard calculation gives that for every t € R

1 p 1 n sin 2k+1)(x—1)
F,(f;x) = — t 2 dt
n(f3) 2 _nf()n—i-lz sin %

k=0

2 (n+1)(x—1)
2

1 [ 1 <. sin
— t dt
2 _,,f()n—i-lz in®

k=0 S

" rentx =0y,

2w ),
where
sin? 7(”4—1)2()(_’) . .
on(x) = D = X is not a multiple of 2,
n+1 , xisamultiple of 2.

The sequence (¢, ),en is a positive kernel which is called the Fejér kernel, and the
corresponding operators F,, n > 1 are called the Fejér convolution operators.
Note that the Theorem 9.2.2 is satisfied for the sequence (F},). In fact, we have
forevery f € Cor(R), F,(f) = f,asn — oo.
Let L, : Coz (R) — C5,(R) be defined by

L,(f:x)=(142z)F,(f:x), (9.3.17)

where the sequence z = (z,) is defined as above. Now,

L,(1:x) =1,
Ly(cost;x) = —
cost;x) = cos X,
" n+1
. n .
L,(sint;x) = sin x
n+1

so that we have

F = lim [|Ly(1:3) = 1z, =0,



82 9 Almost Convergence in Approximation Process
F — lim ||L,(cost;x) —cosx|,, =0,
n—>od
F — lim ||L,(sint;x) —sinx||,, =0,
n—00

that is, the sequence (L,) satisfies the conditions (9.3.9)—(9.3.12). Hence by
Theorem 9.3.3, we have

F-lim [ Ly(f) = flax =0,
i.e., our theorem holds. But on the other hand, Theorem 9.2.2 does not hold for our

operator defined by (9.3.17), since the sequence (L) is not convergent.
Hence Theorem 9.3.3 is stronger than Theorem 9.2.2.



Chapter 10
Statistical Summability

10.1 Introduction

There is another notion of convergence known as the statistical convergence which
was introduced by Fast [33] and Steinhaus [93] independently in 1951. In [66],
Moricz mentioned that Henry Fast first time had heard about this concept from
Steinhaus, but in fact it was Antoni Zygmund who proved theorems on the statistical
convergence of Fourier series in the first edition of his book [101, pp. 181-188]
where he used the term “almost convergence” in place of statistical convergence
and at that time this idea was not recognized much. Since the term “almost
convergence” was already in use (as described earlier in this book), Fast had to
choose a different name for his concept and “statistical convergence” was most
suitable. In this chapter we study statistical convergence and some of its variants
and generalizations. Active researches were started after the paper of Fridy [37]
and since then many of its generalizations and variants have appeared so far, e.g.,
[38,62,64,70,74,76,77], and so on.

10.2 Definitions and Notations
(1) Let K € N. Then the natural density of K is defined by (c.f. [24])

1
§(K)= lim —|{k <n; k € K},
n—oo n

where [{k < n : k € K}| denotes the number of elements of K not
exceeding 7.

For example, the set of even integers has natural density % and set of primes
has natural density zero.

M. Mursaleen, Applied Summability Methods, SpringerBriefs in Mathematics, 83
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(i) The number sequence x is said to be statistically convergent to the number L
provided that for each € > 0,

1
§(K) = lim —|{k <n:|x; —L| > €}| =0,
n—o0o n
ie.,

|xx —L| < € a.a.k. (10.2.1)

In this case we write st — lim x; = L.

By the symbol st or S we denote the set of all statistically convergent sequences
and by sty or Sy the set of all statistically null sequences.

Remark 10.2.1. Note that every convergent sequence is statistically convergent to
the same number, so that statistical convergence is a natural generalization of the
usual convergence of sequences. The sequence which converges statistically need
not be convergent and also need not be bounded.

Example 10.2.2. Let x = (xi) be defined by

. k , k is a square,
k= .
0 , otherwise.

Then |[{k < n : x; # 0}| < /n. Therefore, st — lim x; = 0. Note that we could
have assigned any values whatsoever to x; when k is a square, and we could still
have st — lim x; = 0. But x is neither convergent nor bounded.

It is clear that if the inequality in (10.2.1) holds for all but finitely many k,
then limx; = L. It follows that limx; = L implies st — limx; = L so
statistical convergence may be considered as a regular summability method. This
was observed by Schoenberg [90] along with the fact that the statistical limit is a
linear functional on some sequence space. Salat [87] proved that the set of bounded
statistically convergent (real) sequences is a closed subspace of the space of bounded
sequences.

In most convergence theories it is desirable to have a criterion that can be used
to verify convergence without using the value of the limit. For this purpose we
introduce the analogue of the Cauchy convergence criterion [37].

(iii) The number sequence x is said to be statistically Cauchy sequence provided
that for every € > 0 there exists a number N(= N(¢)) such that

|xk —xy| <€ a.a.k, (10.2.2)

1.€.,

1
lim —|[{k <n:|x, —xy| > €}| = 0.
n—>oon
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In order to prove the equivalence of Definitions given in Parts (i) and (ii) of
Sect. 10.2 we shall find it helpful to use a third (equivalent). This property states
that for almost all k, the values x; coincide with those of a convergent sequence.

10.3 Results on Statistical Convergence

Theorem 10.3.1. The following statements are equivalent:

(i) x is a statistically convergent sequence;
(ii) x is a statistically Cauchy sequence;
(iii) x is a sequence for which there is a convergent sequence y such that x; =
Vi a.a.k.

As an immediate consequence of Theorem 10.3.1 we have the following result.

Corollary 10.3.2. If x is a sequence such that st-limxy = L, then x has a
subsequence y such that lim y, = L.

Schoenberg [90, Lemma 4] proved that the Cesaro mean of order 1 sums every
bounded statistically convergent sequence. This raises the question of whether the
C| method includes the statistical convergence method irrespective of boundedness.
The answer is negative, a fortiori, as we shall see in the next theorem. But first we
give a useful lemma.

Lemma 10.3.3. Ift is a number sequence such that ty, 7 0 for infinitely many k,
then there is a sequence x such that xy = 0 a. a. k. and Z,fozl tr Xy = o0.

Proof. Choose an increasing sequence of positive integers {m(k)}72, such that for
each k,

m(k) > k* and ) # 0.
Define x by Ximx) = 1/tnr) and xx = 0 otherwise. Then x; = 0 a. a. k and
201 Xk = R o ¥m(k) = 00 H

Theorem 10.3.4. No matrix summability method can include the method of statis-
tical convergence.

Proof. The preceding Lemma 10.3.3 shows that in order for a matrix to include
statistical convergence it would have to be row-finite. Let A be an arbitrary row-
finite matrix and choose a nonzero entry, say a,) /) 7 0. Then choose k(1) >
k'(1) so that

anyky 70 and ayyx =0 if k > k(1).
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Now select increasing sequences of row and column indices such that for
each m,

A (m).k(m) 7é 0, k(m) = m2, and An(m)k = 0 ifk > k(m)

Define the sequence x = (x) as follows:

1 —
P k= k(D),
Y= G [m - an(m),k(,-)xk(,-)] s ko= k(m),
0 , otherwise.

Then x is not A-summable because (Ax),m) = m; also, k(m) > m? implies that
[k <n:xi #0} <+ /n,s0x; =0 a.a.k. Thus st —limx; = 0, we conclude
that A does not include statistical convergence. O

Remark 10.3.5. By definition, the method of statistical convergence cannot sum
any periodic sequence such as {(—1)¥}. Therefore, statistical convergence does not
include most of the classical summability methods. When combined with Theo-
rem 10.3.4 this suggests that perhaps statistical convergence cannot be compared to
any nontrivial matrix method. The following example shows that is not the case.

Example 10.3.6. Define the matrix A by
1 ,k =mnand n isnot a square,
ang =131/2,n=m? and k =nor k=(m—1)?, meN

0 , otherwise.

Then for any sequence x we have

x1/2 n=1,
(Ax)y = 3 [Xuo1 + Xp2]/2 . n =m? for m=2,3,...
Xn , n 1is not a square.

Thus A is obviously a regular triangle. To see that A is included by statistical

convergence suppose lim,_o(Ax), = L. Then li;n X, = L and obviously

ik < n : (Ax), # x,}| < /1, so by Theorem 10.3.1, st-limx; = L. To see
that A is not equivalent to ordinary convergence consider the sequence x = (xi)
given by

D", k=m? for m=1,2,...,

X = .
0 , k isnot a square.

Then (Ax), = 0 forn > 1, but x is not convergent.
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Remark 10.3.7. We know that every subsequence of a convergent sequence is
convergent, but this is no longer true in case of statistical convergence, i.e., a
statistically convergent sequence may have a subsequence which is not statistically
convergent. Consider the statistically convergent sequence x = (x) as defined in
Example 10.2.2. Now, consider the subsequence (x;2) of (xx). It is clear that the
subsequence (x;2) of the statistically convergent sequence (x;) is not statistically
convergent.

In this direction we state the following important result given by Salat [87], which
tells about the structure of a statistically convergent sequence.

Theorem 10.3.8. A sequence x = (xy) is statistically convergent to L if and only
if there exists a set K = {ky < ky <--- <k, <---} C Nsuch that 5(K) = 1 and
limx, = L.

Proof. Suppose that there exists aset K = {k; <k, <--- <k, <---} € Nsuch
that §(K) = 1 and lim,,— 0 Xk, = L. Then there is a positive integer N such that
forn > N,

Ixi, — L| < e. (10.3.1)

Put K. :={neN:|x,—L|>¢}and K' = {kny+1,ky+2,...}. Then §(K’) = 1
and K, € N—K’ which implies that §(K.) = 0. Hence x = (xi) is statistically
convergent to L.

Conversely, let x = (x;) be statistically convergent to L. For r = 1,2,3,...,
put K, :={neN:|x,—L|>1/r}and M, :={n € N: |x, — L| < 1/r}. Then
8(K,) = 0and

M DMy D---M; DM;yD--- (10.3.2)
and

SM,)=1,r=1,2,3,... (10.3.3)
Now we have to show that for n € M,, (xy,) is convergent to L. Suppose that (xy, )
is not convergent to L. Therefore there is € > 0 such that |x;, — L| > € for infinitely
many terms. Let M, ;= {n e N: |x,, —L| <e}ande > 1/r (r =1,2,3,...).

Then
§(Me) =0, (10.3.4)
and by (10.3.2), M, C M.. Hence §(M,) = 0, which contradicts (10.3.3), and

therefore (xy, ) is convergent to L.
This completes the proof of the theorem. O
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10.4 Strong Cesaro Summability

Here, we define strong p-Cesaro summability and find its connection with statistical
convergence.

Definition 10.4.1. Let p € R, 0 < p < oo. A sequence x = (xi) is said to be
strongly p-Cesaro summable to the limit L if > ; _, |xx — L|”/n — 0, as n — oo.
In this case, we write x; — L[C, 1],.

The following result provides the relationship between strongly p-Cesaro
summability and statistical convergence (c.f. [25,101]).

Theorem 10.4.2. If a sequence is strongly p-Cesaro summable to L, then it is
statistically convergent to L. If a bounded sequence is statistically convergent to
L, then it is strongly p-Cesaro summable to L.

Proof. Let x = (xi) be any strongly p-Cesaro summable sequence to L. Then, for
a given € > 0, we have

D lxi— L7 = [tk <nlxg — LIP = e}]e’.

k=1
It follows that if x is strongly p-Cesaro summable to L, then x is statistically
convergent to L.

Now suppose that x is bounded and statistically convergent to L and put K =

Ix]loo + |L|. Let € > 0 be given and select N, such that

1

n

€
2K»

El

1/p
kfnﬂm—LVz<9 <

foralln > N andset L, = {k <n: |xx — L| > (¢/2)"/?}. Now forn > N, we
have that

n
D R S D S 7y
k=1

keL, k&Ly.k<n

ne p + E
2nk?p 2n
€ €

= — — = €

2 2
Hence, x is strongly p-Cesaro summable to L. O

The following important result is due to Connor [25].

Theorem 10.4.3 (Decomposition Theorem). If x € w is strongly p-Cesaro
summable or statistically convergent to L, then there is a convergent sequence y
and a statistically null sequence z such that y is convergent to L, x = y + 2
and lim, n™'|{k < n : zx # 0} = 0. Moreover, if x is bounded then ||z]|cc <
IXlloe + L.
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Proof. We apply Theorem 10.4.2. Let Ny = 0 and select an increasing sequence of
positive integers Ny < N, < N3 < ...such thatif n > N; we have that

n_1|{k <n:|xx—L|> j_1}| < ;L

Now define y and z as follows: if Ny < k < Ny set zz = 0 and y; = x;. Now
suppose that j > 1 and that N; < k < Nj41. If [xx — L| < j ! we set y = xx
and 7z = Oandif |x;y — L| > j~' weset yy = L and z; = x; — L. It is clear from
our construction that x = y + z and that ||z]|oc < ||X]lo + | L] if x is bounded.

We first show that lim; y; = L. Let € > 0 and pick j such that e > ;L.

Observe that for k > N; we have that |y, — L| < esince |[yx — L| = |xx — L| <€
if|x( —L| < j'and |yx —L| = |L —L| = 0if |x; — L| > j~'. Since € was
arbitrary, we have established the claim.

Next we prove that z is statistically null. Note that it suffices to show that
lim, n '{k < n : zz # 0} = 0, which follows by observing that |[{k < n :
% # 0} > |{k <n:lul = e}| for any natural number n and € > 0.

We now show thatif § > 0 and j € N such that j=' < §, then [{k < n : 7 #
0}| < é forallm > N;. Recall from the construction that if N; < k < N; 4, then
2 # Oonly if | x; — L |> j~!. It follows that if Ny < k < Ny, then

{kfn:zk#0}§{k§n:|xk—L|>Z_l}.
Consequently, if Ny < n < Nyyq and £ > j, then

nMk<niz#0 <n 'k <n:lg—Ll > < <7 <8

This completes the proof of the theorem. O

We deduce the following corollary.

Corollary 10.4.4. Let x € w. If x is strongly p-Cesaro summable to L or
statistically convergent to L, then x has a subsequence which converges to L.

10.5 Application to Fourier Series

Let f : T — C be a Lebesgue integrable function on the torus T := [—x, 7), i.e.,
f € LY(T). The Fourier series of f is defined by

f) ~Y " f(e™, x e, (10.5.1)

jez

where the Fourier coefficients f () are defined by

£y = = / Fyedr, j e 7. (105.2)
27T T
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The symmetric partial sums of the series in (10.5.1) are defined by

sc(fix) =Y f(j)e’, x €T, k eN. (10.5.3)

lilsk

The conjugate series to the Fourier series in (10.5.1) is defined by [101, vol. I, p. 49]

> (—i sgn j) f(j)el . (10.5.4)
JEZ
Clearly, it follows from (10.5.1) and (10.5.4) that
~ .o ~ ' R A ..
DS iy (=isgn ) f (e = 1423 f(j)e,
JEZ JEL j=l

and the power series

o0
1 +2ZfA(j)e’7X, where z:=re'*, 0 <r <1,
=

is analytic on the open unit disk |z| < 1, due to the fact that
Fi s 5z [ 1101 e

The conjugate function f of a function f € L'(T) is defined by

PN § f(x + t)
Sx) = lslfol T Je<it|<n Ztan—
—hm Ll / flx—1)— (x+z)dt

(10.5.5)
el0 T 2 tan L

in the “principal value” sense, and that f (x) exists at almost every x € T.
We have the following results [100] (c.f. [67, Theorem 2.1 (ii)]).

Theorem 10.5.1. If f € L'(T), then for any p > 0 its Fourier series is strongly
p-Cesaro summable to f(x) at almost every x € T. Furthermore, its conjugate
series (10.5.4) is strongly p-Cesaro summable for any p > 0 to the conjugate
function f (x) defined in (10.5.5) at almost every x € T.

The above result together with Theorem 10.4.2 implies the following useful
result.
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Theorem 10.5.2. If f € L'(T), then its Fourier series is statistically convergent
to f(x) at almost every x € T. Furthermore, its conjugate series (10.5.4) is
statistically convergent to the conjugate function f (x) defined in (10.5.5) at almost
every x € T.

10.6 A -Statistical Convergence

In this section, we study the notion of A-density and A-statistical convergence.
Following Freedman and Sember [36], Kolk [54] introduced the notion of
A-statistical convergence by taking an arbitrary nonnegative regular matrix A
in place of Cesaro matrix Cj in the definition of statistical convergence.

Definition 10.6.1. Let K = {k;} be an index set and let o* = () with

1 ek
J 0, otherwise.

For a nonnegative regular matrix A, if ApX € ¢ (the space of convergent sequences),
then §4(K) = lim, .o A, is called the A-density of K, thus

34(K) = lim E ayr = lim E An ;-
n—>oo n—o00 :
kek i

Definition 10.6.2. A sequence x = (xy) is said to be A-statistically convergent to
the number L if 64(K.) = O for every € > 0, where K. = {k : |xy — L| > €}.
In this case, we write sty — limx; = L. By the symbol sty we denote the set of
all A-statistically convergent sequences and by st’; the set of all A-statistically null
sequences.

It should be noted that A-statistical convergence is defined only for a nonnegative
matrix 4.

Definition 10.6.3. A matrix A = (a,y) is called uniformly regular if it satisfies the
following conditions:

(i) Sup,en D_reo l@nk| < 00;

(i) limy—oo Y ¢Zg ank = 1:
(iif) limy,—co SUPey |@nk| = 0.

Agnew [3] has proved the following theorem:

Theorem 10.6.4 (Agnew’s Theorem). If a matrix A = (a,;) satisfies the condi-
tion lim, oo SUP ey |Ank| = 0 and Z,(:OZO lank| < oo foralln € N, then there exists
a divergent sequence of 0s and 1s which is A-summable to 0 or, equivalently, if A
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satisfies the assumptions of Agnew’s theorem, then there exists an infinite index set
K with §4(K) = 0.

For a uniformly regular matrix A and an infinite index set K = {k;} the
submatrix (a,x,) of A obviously satisfies the assumptions of Agnew’s theorem.
Therefore, we obtain the following result:

Theorem 10.6.5. If the matrix A is uniformly regular then every infinite index set
contains an infinite subset K with § 4(K) = 0.

We have the following important characterization of A-statistical convergence,
proved for A = C; by Fridy [37] and for an arbitrary nonnegative regular A by
Kolk [54], which is an analogue of Theorem 10.3.8.

Theorem 10.6.6. A sequence x = (xy) converges A-statistically to L if and only if
there exists an infinite index set K = {k;} so that the subsequence (xy,) converges
to L and § 4(N\K) = 0 (and hence §4(K) = 1).

Note that Theorem 10.6.6 together with Theorem 10.6.5 shows that for a
uniformly regular matrix A the A-statistical convergence is strictly stronger than
convergence.

10.7 Statistical A-Summability

Recently, the idea of statistical (C, 1)-summability was introduced in [63], of statis-
tical (H, 1)-summability in [63] by Moricz, and of statistical (N, p)-summability
by Moricz and Orhan [68]. In this section we generalize these statistical summability
methods by defining the statistical A-summability for a nonnegative regular matrix
A which is due to Edely and Mursaleen [30] and find its relationship with
A-statistical convergence. Statistical A-summability for double sequences is studied
in [15].

Definition 10.7.1. Let A = (a;;) be a nonnegative regular matrix and x = (xy)
be a sequence. We say that x is statistically A-summable to £ if for every € > 0,
Si <n:|yi—4| =¢€}) =0,ie.,

1
lim —[{i <n:|y;—4{] = €}| =0,
n—oo n
where y; = A;(x). Thus x is statistically A-summable to £ if and only if Ax is
statistically convergent to £. In this case we write £ = (A)g— lim x (= st—1lim Ax).
By (A)y, we denote the set of all statistically A-summable sequences.
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Remark 10.7.2. We have the following particular cases:

(1) If we take A = (a;1) defined by

(i)

(iii)

(iv)

L 0<k<i,
ajx =4 '+ .
0 , otherwise,
then the statistical A-summability is reduced to the statistical (C,1)-
summability due to Moricz [63].
If we take A = (a;;) defined by

L 0<k<i,
ajp =1 b - T
1 .
0 , otherwise,
then the statistical A-summability is reduced to the statistical (N, p)-
summability due to Moricz and Orhan [68], where p = (pi) is a sequence of
nonnegative numbers such that py > 0 and

1]
lim P; = lim Zpk = oo.
1—>00 l—)OOk_O

If we take A = (a;) defined by

1 .

R E 3 O S k S L,
djk = .

0 , otherwise,

where [; = ZZ:O 1/(k + 1), then the statistical A-summability is reduced to
the statistical (H, 1)-summability due to Moricz [65].
If we take A = (a,) defined by

ak:g%ﬂ,kel,,z[n—)tn—i—l,n],
! 0 .,k¢l,,

then the statistical A-summability is reduced to the statistical A-summability
due to Mursaleen and Alotaibi [71], where A = (A,) is a nondecreasing
sequence of positive numbers tending to oo such that 4,41 < A, + 1,A; = 0.

(v) If we take A = (a,) defined by

an = % kel = (kr—l»kr]a
0 k¢l
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then the statistical A-summability is reduced to the statistical lacunary summa-
bility due to Mursaleen and Alotaibi [72], where 8 = (k,) is a lacunary
sequence such that ko = 0and h, = k, —k,—; - oo asr — oo.

We give the relation between statistical A-summability and A-statistical
convergence.

Theorem 10.7.3. If a sequence is bounded and A-statistically convergent to 1, then
it is A-summable to | and hence statistically A-summable to | but not conversely.

Proof. Let x be bounded and A-statistically convergent to /, and K, = {k < n :
|xx —I| > €}. Then

[An () =1 < | D ame e =D+ | Y anlxe = 1)

k€K, k€K,
<€ au+sup|x =D Y an.
k¢K, keN kek,

By using the definition of A-statistical convergence and the conditions of regularity
of A, we get |[A,(x) — 1| — 0, as n — o0, since € is arbitrary and hence
st—lim |A,(x) =] = 0.

To see that the converse does not hold, we construct the following examples:

(1) Let A = (ayx) be the Cesaro matrix, i.e.,

1
ay = 1 1 ,0<n <k,
0 , otherwise,

and let

o = 1, k is odd,
k= 0, k is even.

Then x is A-summable to 1/2 (and hence statistically A-summable to 1/2) but
not A-statistically convergent.
(i) Take x = (xx) as above and let A = (a,) be defined by

1/2 , n is non-square and k = ntn+1,
apk = 1 ,n isasquareand k = n2,
0 , otherwise.
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Then, we have

00 1/2 , n is a nonsquare,
AnpXp = 0 , n is even square,
k=1 1 , otherwise.

We see that x is not A-summable and hence it is not A-statistically convergent

but
{i <n:

i.e., x is statistically A-summable to 1/2. O

lim —
n—oon




Chapter 11
Statistical Approximation

11.1 Introduction

In the last chapter we discussed statistical summability and its various
generalizations and variants, e.g., lacunary statistical convergence, A-statistical
convergence, A-statistical convergence, statistical summability (C,1), and
statistical A-summability. In this chapter, we demonstrate some applications of these
summability methods in proving Korovkin-type approximation theorems. Such a
method was first used by Gadjiev and Orhan [39] in which the statistical version of
Korovkin approximation was proved by using the test functions 1, x, and x2. Since
then a large amount of work has been done by applying statistical convergence and
its variants, e.g., [61,71-73,75,92] for different set of test functions. In this chapter
we present few of them and demonstrate the importance of using these new methods
of summability.

11.2 Application of Statistical Summability (C, 1)

In this section, we use the notion of statistical summability (C, 1) to prove the
Korovkin-type approximation theorem by using the test functions 1,e™, e™2*. We
apply the classical Baskakov operator to construct an example in support of this
result.

For a sequence x = (xi), let us write t, = ﬁ Y k=0 Xk. We say that a sequence
x = (xg) is statistically summable (C, 1) if st — lim, o t, = L. In this case we
write L = C;(st) — lim x.

First we demonstrate through the following example that the statistical summa-
bility (C, 1) is stronger than both ordinary convergence as well as statistical
convergence.

M. Mursaleen, Applied Summability Methods, SpringerBriefs in Mathematics, 97
DOI 10.1007/978-3-319-04609-9__11, © M. Mursaleen 2014
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Example 11.2.1. Define the sequence x = (x;) by
1 Jk=m?>—m, m*—m+1,..., m*>—1,

Xk=191-—m,k=m* m= 2,3,4,..., (11.2.1)
0 , otherwise.

Then
b= nilixk
k=0
B zii n=m*—m+s,5s=0,1,2,...m—1:m=2,3,...,

0 , otherwise.

We easily see that ¢, — 0, as n — oo and hence st —lim,, 7, = 0, i.e., x = (xy)
is statistically summable (C, 1) to 0. On the other hand st — liminfy oo xx = 0
and st—limsup;_, ., xx = 1, since the sequence (mz);'no=2 is statistically convergent
to 0. Hence, x = (xi) is not statistically convergent.

Let C(I) be the Banach space with the uniform norm || - || of all real-valued
continuous functions on I = [0, 00); provided that lim,_, o, f(x) is finite.

Boyanov and Veselinov [19] have proved the following theorem on C[0, c0) by
using the test functions 1, e™", e™2".

Theorem 11.2.2. Let (Ty) be a sequence of positive linear operators from C(I)
into C(I). Then forall f € C(I)

lim |7 (f:x) = f(X)]loo =0
k—>o00
if and only if
lim | T(1;x) = 1|5 = 0,
k—o00
lim [Tx(e™";x) —e oo =0,
k—>00

kli)rgo H Ti(e % x) —e™> Hoo =0.

Now we prove the following result by using the notion of statistical summability
(C,1).

Theorem 11.2.3. Let (T}.) be a sequence of positive linear operators from C(I)
into C(I). Then forall f € C(I)

Ci(st) = lim [T (f:%) = f(¥)]loo =0 (11.2.2)
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if and only if
Cl(st)—klim [ Te(1:x) — 1], = O, (11.2.3)
—>00
Ci(st) —klim 1T x) —e oo =0, (11.2.4)
—>00
Ci(st) — lim ||[Tx(e > :x) —e > _ =0. 11.2.5
1(s) — lim [ Ti(e™%5x) —e™| (11.2.5)

Proof. Since each 1, e™*, e™2* belongs to C (1), conditions (11.2.3)—(11.2.5) follow
immediately from (11.2.2). Let f € C(I). Then there exists a constant M > 0 such
that | f(x)| < M for x € I. Therefore,

[f(s)— f(x)| <2M, —oc0 < 5,x < 0. (11.2.6)
Also, for a given & > 0 there is a § > 0 such that

[f(s) — f(X)] <e, (11.2.7)

whenever e — e | < § forall x € .
Using (11.2.6), (11.2.7), putting ¥; = (s, x) = (e~ —e™¥)?, we get

£6) = F <+ @), Vs =] <8
This is,
M M
o= 2 W) < f6) - f00) < e+ ().

Now, operating Ty (1; x) to this inequality since T} ( f; x) is monotone and linear,
we obtain

2M
710 |~ = 3 ] < a6 - f)
< Tettin) e+ ).
Note that x is fixed and so f(x) is a constant number. Therefore,

—eTp(1;x) — ZS—AZ/ITj’k(wl;x) < T (f;x)— f(x)T(1;x)

2M
< eTe(1;x) + 8—2Tk(w1;x). (11.2.8)



100 11 Statistical Approximation

But

T (f3x) = f(x) =T (f3x) = fF(O)Ti(1:x) + f() T (1;x) — f(x)
= [Tk (f:x) = fO)T(1; )] + f()[Tie(1;x) — 1].
(11.2.9)

Using (11.2.8) and (11.2.9), we have

Ti(f50) = f0) < Tl + S T ) + [T ) — 1]

(11.2.10)
Now
Ti(i:x) = Ti[(e” —e )] = Ti(e™™ —2¢™%e ™ + e x)
= Ti(e™™'1x) — 2" Ti(e™"1x) + () Tie(1:x)
= [Ti(e™':x) — 7] = 27" [Ti(e™"1x) — e~ + e [T (1:x) — 1].

Using (11.2.10), we obtain
T(f52) = f06) < eTi(150) + S (T (@) — e
D¢ N Ti(e ™ x) — ] e [T (1) — 1) + F(OITi(Lix) — 1]
=elTi(10) — 1] + 6 + o (T3 0) — ] 26~ [T (e ™) — ]
+e P [T(1;x) — 1 + F(0)[Tr(1;x) —1].
Since ¢ is arbitrary, we can write
T30 = () < 6lTi(1:0) = 1]+ 25Tl 0) — e

—2e7¥[Ti(e™"sx) — e ] + e [T (1;x) — 11} + f(0) [Tk (15 x) — 1.

Therefore

2M
Te(f:x) = f)] = &+ (e + M)[Ti(L:x) — 1] + —~le T (1 x, y) — 1
2M —2s —2x aM —Xx —s5 —x
+8—2|Tk(€ ix)|—e? |+8—2|€ [Tk (e™";x) —e™|
aM 2M '
<e+ (8+ M + 8_2) |Te(L;x) — 1] + 7|6_2*||Tk(1;x) —1]

2M 4M ‘
+8—2|Tk(e_2";x) —e ¥+ 5—2|Tk(eﬂ;x) — e (11.2.11)
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since |e™*| < 1 for all x € I. Now, taking sup,.;, we get

1Tk (f: %) = () oo
< e+ K(ITi(1; ) = Uloo + I Ti(e™*5 %) — e lloo + 1Tk (e ™3 x) — €™ oo,
(11.2.12)
where K = max {s + M + %’» 28—1‘7_4} Now replacing 7y(-,x) by

Y ieo Tk(-,x)/(m+1) and then by B,,(-,x) in (11.2.12) on both sides. For a
given r > 0 choose &’ > 0 such that ¢’ < r. Define the following sets

D={m=<n:|Bu(fx)— f(X)|leo =7},
r—¢e

4K }’
r—¢e

D, = %m <n:|Bn(1,x)—1]co >

Dy = {msn Bt x) — ¢ e = } ,

Dy={m<n:1Bux)—e o= =5
j— . m 9 oo 4K .

Then, D C D{ U D, U D3, and so §(D) < §(D;) + 8(D,) + 8(D3). Therefore,
using conditions (11.2.3)—(11.2.5), we get

Cilst) = lim [T/, %) = /(¥)]loo = 0.

This completes the proof of the theorem. O

In the following example we construct a sequence of positive linear operators
satisfying the conditions of Theorem 11.2.3 but does not satisfy the conditions of
Theorem 11.2.2 as well as its statistical version.

Example 11.2.4. Consider the sequence of classical Baskakov operators[14].

Va(fix) = Zf(g) (n —11€+ k)xk(l 4k
k=0

where 0 < x,y < oo.
Let L, : C(1) — C(I) be defined by

L,(f:x) =1+ x)Va(f52)],

where the sequence x = (x,) is defined by (11.2.1). Note that this sequence is
statistically summable (C, 1) to 0 but neither convergent nor statistically convergent.
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Now,
L,(1;x) =1,
L,e™;x) =1+ x— xe_%)_”,
Lo(e™*:x%) = (1 +x>— xze_%)_”,

we have that the sequence (L,) satisfies the conditions (11.2.3)—(11.2.5). Hence by
Theorem 11.2.3, we have

Ci(st) = Tim [1La(f) = flloo = 0.

On the other hand, we get L, (f;0) = |(1 + x,) f(0)], since V,,(f;0) = £(0), and
hence

ILn(f3x) = f() oo = [La(f30) = f(0)] = |x, f(O)].
We see that (L,) does not satisfy the conditions of the theorem of Boyanov and
Veselinov as well as its statistical version, since (x,) is neither convergent nor
statistically convergent. Hence Theorem 11.2.3 is stronger than Theorem 11.2.2 as
well as its statistical version.

11.3 Application of Statistical A -Summability

Let H, (1) denote the space of all real-valued functions f on I such that

w(f:8) = Sug{lf(S) —f)]:]s —x[ =6}

K X
1+s 1+x

1) = ()] < (f;

where w is the modulus of continuity, i.e.,

It is to be noted that any function f € H, (1) is continuous and bounded on 1.
The following Korovkin-type theorem was proved by Cakar and Gadjiev [21].

Theorem 11.3.1. Let (L,) be a sequence of positive linear operators from H, (1)
into Cg(1). Then for all f € H,(I)

nlggo ILn(f3%) = ) cyay =0
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if and only if
nli>ngo ”Ln(ﬁ’x) _giHCB(I) = 0’ (l = 07 192)7

where

2
B0 = 1 410 = . 2() = (1 j‘_x) .

Erkus and Duman [32] have given the A-statistical version of the above theorem
for functions of two variables. In this section, we use the notion of statistical A-
summability to prove a Korovkin-type approximation theorem for functions of two
variables with the help of test functions 1, x/(1 + x), y/(1 + y).[x/(1 + x)]*> +

/(1 + y)P.
Let I = [0,00) and K = I x I. We denote by Cg(K) the space of all bounded

and continuous real-valued functions on K equipped with norm

1f sy = SUPKIf(x,y)I, f € Cp(K).

(x.y)€

Let H,=(K) denote the space of all real-valued functions f on K such that

2 2
6.0 = fp)l <o | £ \/(115 I-T—x) *(#‘TL)

where @* is the modulus of continuity, i.e.,

o (f:8) = sup  Alf(s.0) = [, )] V(s —x)2 + (1 —y)? <8}

(s.0).(x.y)€K

It is to be noted that any function f € H,(K) is bounded and continuous on K,
and a necessary and sufficient condition for f € H,*(K) is that w*(f;§) — 0, as
§— 0.

Theorem 11.3.2. Let A = (a,x) be nonnegative regular summability matrix. Let
(Ty) be a sequence of positive linear operators from H,+(K) into Cg(K). Then for
all f € Hy=(K)

o0
st— lim Y anTe(fix.9) = fx.y)| =0 (11.3.1)
n—00
k=1 Cp(K)
if and only if
o0
st— lim | > auTe(lix. y) — 1 =0 (11.3.2)
n—oo
k=1 Cp(K)
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o0
N X
t— li kT X,y ) — =0, (1133
T Za”‘"(ursxy) 1+x (1133
k=1 Cp(K)
st— lim_ > anTy (m;x,y)—m =0, (11.3.4)
k=1 Cp(K)
o] s 2 t 2
t— li T, Jx,
LA ;a"" k|:(l+s) +(1+t) xy]
X 2 y 2
) Y =0. (11.3.5)
X Y Cp(K)

Proof. Since each of the functions fy(x,y) = 1, fi(x,y) = x/(1 + x),
Ll y) =y/A+y), fx,y) =[x/ +x))+[y/(1+ )] belongs to H,«(K),
conditions (11.3.2)—(11.3.5) follow immediately from (11.3.1). Let f € H,*(K)
and (x,y) € K be fixed. Then for ¢ > O there exist 6;,8, > 0 such that

[ f(s.1) = f(x, )| < &holds for all (s,7) € K satisfying |35 — 35| < 61 and
1’? — %| < 8,. Let

2 2
. . S _ X t . y
k@)= (S’I)EK'\/(les 1+x) +(1+z 1+y) <9

where § = min{é;, §,}. Hence,

[f(s,0) = fCe, ) = 1f(s,8) — fx, V) xke) (s, 1)
+Hf(s.0) = fOe, Xk (s,1)
< 8+2N)(K\K(5)(S,Z), (11.3.6)

where yp denotes the characteristic function of the set D and N = | f|lcpx)-
Further we get

T J - (R 2 Ly AR TR
5.1) < — _ ——-——) . a13.
XE\K(®) 2 \1+s 1+x 8 \1+1 14y

Combining (11.3.6) and (11.3.7), we get

IN s x \? t y )
If(s,t)—f(x,y)|§8+5—z[(1+s_1+x) +(1+t_1+y)]
(11.3.8)
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After using the properties of f, a simple calculation gives that

105

| Tk (f 5, )= f (e, Y <e+MA{Ti(fo; x, y)— fo(x, I+ITi (f15x, y)— fi(x, )]
HTk(f2s %, y) — Lo, |+ Tk (f35x, ) — f(x, I},

where M := ¢+ N + 4N /8> Now replacing Ty (f:x, y) by > o anc Tk (f X, )
and taking sup, ,)cx, wWe get

> an T (fix.3)—f(x.9)

<e+M |:
Cp(K)

> Ti(foix. y)— fo(x. )

(11.3.9)

k=1 k=1 Ca(K)
o0 o0

+ 1D anTe(fizx.y) — fix.y) 1D anTe(frix.9) = folx. y)
k=1 Cp(K) k=1 Cp(K)
o0

1D anTe(f:x.y) — fa(x.y) } (11.3.10)
k=1 C(K)

For a given r > 0 choose ¢ > 0 such that ¢ < r, define the following sets

[e )
D: > anTi(fix.y) = f(x.y) =7,
k=1 C(K)
> r—e
Dy : D awnTe(forx.y) — folx. ) T
k=1 Cp(K)
> r—e
D;: Y awTi(fisx,y) = filx,) T
k=1 Cp(K)
> r—e
Ds: D auTe(frix.y) = folx.y) T
k=1 Cp(K)
> r—e
Dy : > anTi(fs:x.y) = falx.y) T
k=1 Cp(K)

Then from (11.3.10), we see that D C D; U Dy U D3 U Dy and therefore §(D) <
8(Dy) + 8(D2) + 8(D3) + 8(D4). Hence the conditions (11.3.2)—(11.3.5) imply the
condition (11.3.1).

This completes the proof of the theorem. O
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If we replace the matrix A in Theorem 11.3.2 by an identity matrix, then we
immediately get the following result which is due to Erkus and Duman [32]:

Corollary 11.3.3. Let (T) be a sequence of positive linear operators from H = (K)
into Cg(K). Then for all f € H,*(K)

st— lim [[Te(f:x.9) = f(x Wllegr) =0 (11.3.11)
if and only if
st— lim | Tx(L;x, y) = Ulcpk) =0, (11.3.12)
k—00
t— lim | T [ — s 0 (11.3.13)
st — lim —x,y | - =0, 3.
k—00 k 14+ Y 1+x Cp(K)
Y _
st — lim ( ,y) - — =0, (11.3.14)
ko0 L4 yllesu
;2
st— lim |: —) ;x,y:|
k—o00 14+t
2
|:(1+ ) (1+ ) :| = 0. (11.3.15)
x Y Cp(K)

Example 11.3.4. We show that the following double sequence of positive linear
operators satisfies the conditions of Theorem 11.3.2 but does not satisfy the
conditions of Corollary 11.3.3 and Theorem 11.3.1.

Consider the following Bleimann, Butzer, and Hahn [16] (of two variables)
operators:

B,(f:x.y)

= k n\[n\ ;&
(1+x)”(1+y)";)];) (n—]+1 n—k+l)<})<k)xjy’

(11.3.16)

where f € H,(K), K = [0,00) x [0,00) and n € N. Since
n m 4
(142 = Z( )
j=o \/
it is easy to see that

lim B, (fo;x,y) = 1= fo(x, ).
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Also by a simple calculation, we obtain

. i n x x
n]l)n;an(fl’x’y) _n]l>n;on+l (1+X) B I+

= fl(xvy)»
X

. . L n y Y
Jm B (fox,y) = lim ——— (1+y) I+

Finally, we get

= fa(x, ).
y

lim B,(f3:x,y)
n—>0o0

. nn-—1) X 2 n X
n—00 (n + 1)2 (1+x) + (n + 1)2 (1+x

+M(L)Z+L(L)
m+1)2\1+y m+1)2\1+y

X 2 y 2
-(55) +(555) = e

Now, take A = (C, 1) and define u = (u,) by

o — 1, k is odd,
k= 0, k is even.

Let the operator L, : H,(K) — Cp(K) be defined by

L,(f:x,y)=0+u)B,(f;x,y).
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Then the sequence (L,) satisfies the conditions (11.3.2)—(11.3.5). Hence by

Theorem 11.3.2, we have

Zaann(f;X,Y) - f(x,y)

st— lim
m-—>00
n=1
l m
= st i | S L~ )
n=

Cp(K)

= 0.
Cp(K)

On the other hand, the sequence (L,) does not satisfy the conditions of
Theorem 11.3.1, Corollary 11.3.3, and Theorem 2.1 of [32], since (L,) is
neither convergent nor statistically (nor A-statistically) convergent. That is,
Theorem 11.3.1, Corollary 11.3.3, and Theorem 2.1 of [32] do not work for
our operators L,. Hence Theorem 11.3.2 is stronger than Corollary 11.3.3 and

Theorem 2.1 of [32].
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11.4 Rate of Statistical A -Summability

In this section, using the concept of statistical A-summability, we study the rate of
convergence of positive linear operators with the help of the modulus of continuity.
Let us recall, for f € H,«(K)

2 2
[fls.0) = flx, )] < 07 f;\/(l—s}-s_l—)fc—x) +(1L+t_l—)+}-y) ’

where

o (f:8) = sup  Alf(s.0) = fx, )] V(s —x)2 + (1 —y)? < 8}

(s.0).(x.y)€K

We have the following result:

Theorem 11.4.1. Let A = (aui) be nonnegative regular summability matrix and
(Ty) be a sequence of positive linear operators from H,+(K) into Cg(K). Assume
that

(i) st—Tlimy—oo | 302 ank Te(fo) = foll ¢y = 0
(ii) st —lim,o@*(f;8,) =0,

where

snzj

Then for all f € H,*(K)

> auTe(y)

2 2
. _ _ s x ty
P W"hw_l/’(s‘t)_(wx 1+x) +(1+t 1+y) :

Cp(K)

=0.
Cp(K)

st — lim
n—o0

Zanka(f) - f
k=1

Proof. Let f € H,+(K) be fixed and (x,y) € K be fixed. Using linearity and
positivity of the operators T for all n € N, we have

<> a0 = fx.p)lx.y)

k=1

D anTe(fix.y) = f(x.y)

k=1

D an Ti(foix. ) — fo(x.y)

k=1

+ /)l
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s x \2 t y 2
o)t

[ [
fzanka w f’S X,y
k=1

A leswo | Y ank Ti(forx.y) = folx. )

k=1

o0
<Y auTi| |1+ ; ©*(f:8);x,y
k=1

+ flleg k) Z ank Tr (fos x, y) — fo(x, y)

k=1

< auo*(fiOT | | 1+ 5 Loixy
k=1
S esw | Y ank Ti(forx.y) = folx. )
k=1
<w*(f:6) Zanka(fo;x,y)—fo(x,y) +1 S Mg k) Zanka(fo:xﬁy)—fo(x,y)
k=1 k=1

0*(f:8) & s x \? t y \?
*(f:8 T || ———— — ] ix,y|.
tot(f:9+—5 ];“nkk I+ 1<) T Ty ) Y
Hence,

Zanka(f)_f

k=1 Cp(K)
< fllepx Zanka(fo)—fo +w*(f:96) Zanka(fo)—fo
k=1 Cp(K) k=1 Cp(K)
0*(f:8) | S N
t IS w07 (1),
k=1 Cp(K)

Now if we choose § := §, := \/”Z,‘fo:l an T (V) ||CB(K), then
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Zanka(f) - f
k=1

Cp(K)

<\ flles

Z anka(fO) - fO
k=1

Cp(K)

+o*(f:6,) + 20" (f160).

Cr(K)

D anTi(fo) = fo
P

Therefore,

D anTe(fo) = fo

k=1

Zanka(f) - f

k=1

<M
Cp(K)

Cp(K)

+o*(f:6,) +o*(f:8) ., (11.4.1)

Cr(K)

> anTi(fo) — fo
k=1

where M = max{2, || f|lczk)}.- Now, for a given r > 0, choose & > 0 such that
€ > r. Let us write

o0
E:=qn: |y auTe(fix,9) = f(x,y) >t
k=1 Cp(K)
> r
Ey:=qn: Y anTi(forx.y) = fo(x.y) =2
k=1 Cp(K)
-
Eri={n:0"(f18) = 3|
i r
Es:=1in:0"(f;8) Zanka(fo;x,y) — fo(x,y) > Y
k=1 Cp(K)

Then E C E{ U E; U E; and therefore §(E) < 6(E;) + 8(E,) + §(E3). Using
conditions (i) and (ii) we conclude

=0.
Cp(K)

st— lim
n—>0o0

Zanka(f) - f
k=1

This completes the proof of the theorem. O



Chapter 12
Applications to Fixed Point Theorems

12.1 Introduction

Let E be a closed, bounded, convex subset of a Banach space X and f : E —> E.

Consider the iteration scheme defined by Xo = xo € E, X,41 = f(xn), x4 =
n

> ankXk, n > 1, where A is a regular weighted mean matrix. For particular
k=0
spaces X and functions f we show that this iterative scheme converges to a fixed

point of f. During the past few years several mathematicians have obtained fixed
point results using Mann and other iteration schemes for certain classes of infinite
matrices. In this chapter, we present some results using such schemes which are
represented as regular weighted mean methods. Results of this chapter appeared in
[20,40,82] and [84].

12.2 Definitions and Notations

Let E be a nonempty closed convex subset of a Banach space X. A mapping T :
E — E issaid to be

(a) a contraction on X, if there is some nonnegative real number k < 1 such that
forallxand yin E, |[Tx —Ty|| <k|x—yl;

(b) anon-expansive map if |Tx —Ty| < ||lx — y|;

(c) quasi non-expansive map if

ITx =Tyl

s aillx =yl + axllx = Tx|| + aslly = Tyl + aallx = Tyl + aslly — Tx[| (%)

5
forallx,y € E, a; > 0and )_a; < 1.

i=1

M. Mursaleen, Applied Summability Methods, SpringerBriefs in Mathematics, 111
DOI 10.1007/978-3-319-04609-9__12, © M. Mursaleen 2014
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Let (X, d) be a metric space and 7 : X — X be a mapping. The point x € X is
called a fixed point of T if Tx = x.

The following generalized iteration process is called Mann iteration in which
A = (a;;), i, j € Nis an infinite matrix of real numbers such that

ajj >0, foralli, j € Nand a;; = O for j > i, (12.2.1)
lim a;; = 0 for each fixed j € N, (12.2.2)
1—>00

i
Y aj =1, foralli € N, (12.2.3)

Jj=1

Obviously the above matrix A is regular. If £ be a nonempty, closed, convex
subset of a Banach space B and T be a mapping of E into itself satisfying certain
conditions, then starting with an arbitrary element x; € E, the generalized iteration
process, denoted by the triplet (x1, A, T'), is defined by

n
Xp+1 = Tv, where v, = Zankxk, forall n € N.
k=1

Various choice of the infinite matrix A yields many interesting iterative process
as special cases. Taking A to be the infinite identity matrix I, then the process
(x1, A, T) is just an ordinary Picard iteration defined by

Vi+l = Xpt+1 = T'v, whence v, = T"vy = T"x;.

In many particular problems the generalized iteration process can easily be seen to
converge while the ordinary Picard iteration process may not converge.

Let X be a Banach space. A sequence (x,) in X is said to be (a) almost (strongly)
convergent to z € X if the strong lim,_ % Z’;:Z*I x; = z uniformly in k, (b)
almost weakly convergent to z € X if (x,, y) is almost convergent to (x, y) for all
y e X*.

Let E be a nonempty closed and convex subset of a Banach space X and {x,}
a bounded sequence in X. For x € X, define the asymptotic radius of {x,} at x
as the number r(x, {x,}) = limsup,_,, || Xx» —x || . Let r = r(E,{x,}) :=
inf{r(x,{x,}) : x € E}and A = A(E,{x,}) := {x € E : r(x,{x,}) = r}.
The number r and the set A are called the asymprotic radius and asymptotic center
relative to E, respectively.

12.3 Iterations of Regular Matrices

Let X be a normed linear space, £ a nonempty closed bounded, convex subset of
X, f : E — E possessing at least one fixed point in £, and A an infinite matrix.
Given the iteration scheme
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Xo=Xx0 € E, (1231)
Tpp1 = fxn), n=0,1,2,---, (12.3.2)
n
X = @i, n =123, (12.3.3)
k=0

it is reasonable to ask what restrictions on the matrix A are necessary and/or
sufficient to guarantee that the above iteration scheme converges to a fixed point
of f.

Several mathematicians have obtained result using iteration schemes of the
form (12.3.1)—(12.3.3) for certain classes of infinite matrices. We shall confine our
attention to regular triangular matrices A satisfying:

0<aw <1, nk=0,1,2,--, (12.3.4)

n
Dt =1 n=012-. (12.3.5)
k=0

Conditions (12.3.4) and (12.3.5) are obviously necessary in order to ensure that
X, and X, in (12.3.2) and (12.3.3) remain in E. The scheme (12.3.1)—(12.3.3) is
generally referred to as the Mann process.

Barone [12] observed that a sufficient condition for a regular matrix A to
transform each bounded sequence into a sequence whose set of limit points is
connected is that A satisfies

o0
1inmz dnk — an—14| = 0. (12.3.6)
k=0

Rhoades announced the following conjecture:
Conjecture. Let f be a continuous mapping of [a, b] into itself, A a regular matrix
satisfying (12.3.4)—(12.3.6). Then the iteration scheme defined by (12.3.1)—(12.3.3)
converges to a fixed point of f.
The conjecture need not remain true if condition (12.3.6) is removed. To see this,
let A be the identity matrix, [a,b] = [0, 1], f(x) = 1 — x, and choose xy = 0.
The conjecture is true for a large class of weighted mean matrices as we now
show.
A weighted mean method is a regular triangular method A = (a,x) defined by
anx = pi/P,, where the sequence {p,} satisfies py > 0, p, > 0forn > 0,
n
P, = Y pr,and P, — oo asn — oo. Itis easy to verify [84] that such a matrix
k=0
satisfies (12.3.6) if and only if p, /P, — 0 as n — oc.

Theorem 12.3.1. Let A be a regular weighted mean method satisfying (12.3.6), f a
continuous mapping from E = [a, b] into itself. Then the iteration scheme (12.3.1)—
(12.3.3) converges to a fixed point of f.
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Proof. There is no loss of generality in assuming [a,b] = [0, 1]. Any regular
weighted mean method automatically satisfies conditions (12.3.4) and (12.3.5).
Using (12.3.3) we may write

Xp+1 = (pn+l/Pn+l)(f(xn) — .Xn) + X;. (12.3.7)

Since x,, f(x,) € [0, 1], we have, from (12.3.7), |x,+1 — Xu| < put1/Pn+1 — O
asn — oo.

Now following the proof in ([35], p.325), we can easily establish that {x,}
converges. It remains to show that {x, } tends to a fixed point of f.
Fact. Let A be any regular matrix, f as defined above. If the iteration
scheme (12.3.1)—(12.3.3) converges, it converges to a fixed point of f.

Letx = {x,}, x ={X,}, y = lign X, = f(»). But A is a regular matrix. Hence

y =limx, = lim 4,(%) = f(»). .

Remark 12.3.2. One obtains the theorem of [35] by setting p, = 1 in Theorem
12.3.1.

Reiermann [83] defines a summability matrix A = (a,x) by

ce [[ (I—¢j), k<n,

ap =4 T (123.8)
c}’l 9 k = n»
0 k>n,
where the real sequence {c,} satisfies (i) co = 1, (i) 0 < ¢, < 1 forn > 1,

and (iii) Y_ ¢, diverges. (it is easy to verify [84] that A is regular and satisfies
k

conditions (12.3.4) and (12.3.5). Actually Reinermann permits ¢, = 1 in order
to take care of the identity matrix, but in all interesting applications the restriction

¢p < 1 is imposed). He then defines the iteration scheme (12.3.1) and x,+; =
n

> ani f (xx), which can be written in the form
k=0

Xot1 = (1 = cp)xn + cn fxn), (12.3.9)

and establishes the following.

Theorem 12.3.3 ([83], p.211). Leta,b € R, a <b, E =[a,b], f 1 E > E, f

continuous and with at most one fixed point. With A as defined in (12.3.8) and

with {c,} satisfying (i)—(iii) and lim ¢, = 0, the iteration scheme (12.3.1), (12.3.9)
n

converges to the fixed point of f.

Theorem 12.3.4. The matrix of (12.3.8) with {c,} satisfying (i)—(iii) is a regular
weighted mean matrix.



12.3 TIterations of Regular Matrices 115

Proof. For, set ayx = pi/Pn, k < n.Then pi/pet1 = ani/ani+1 = (1 —
Ck+1)/Ck+1, which can be solved to obtain

k
pe=cpo/ [[=cp). k>o. (12.3.10)
j=1

By induction one can show that P, = po/ [[(1 —c¢;), n > 0. Since > cx
J=1 k
diverges, the product must diverge to 0. Therefore P, — oo as n — oo and the
weighted mean method (N, p,) with p, defined by (12.3.10) is regular. Also, each
Pk > 0.
Conversely, let (N, p,) be a regular weighted mean method with each p; > 0
and define {c,} by

Cn = pn/Pn, n=0. (12.3.11)
Then ¢y = 1, and, since each py > 0, 0 < ¢, < 1 for all n > 0. Now

n
from (12.3.11), 1 —¢, = P,—;/P,, whichleads to P, = po/ [] (1 —c;). Therefore
j=1

n
Pi/Py =cr [] (1 —c;)and A has the form (12.3.8). Moreover, ) ¢, diverges

j=k+1 %
because P, — oo as n — o0. Since ¢, = p,/P,, the condition limc¢, = 0 is the
same as (N, p,) satisfying (12.3.6). |

Remark 12.3.5. We point out, however, that even though matrices involved
are the same, the iteration schemes (12.3.1)—(12.3.3) and (12.3.1), (12.3.9)
are different. Scheme (12.3.1)—(12.3.3) takes the form x = Az, where z =
{x0, f(x0), f(x1),---}; whereas (12.3.1) and (12.3.9) become x = Aw, where
w = {f(x0), f(x1),---}. In other words the first scheme uses a translate of w.
However, since f is continuous, it is easy [84] to verify, using the fact, that each
method converges to the same fixed point.

Hillam [45] has shown the conjecture to be false and has established the
following result, which is a slight generalization of Theorem 12.3.1.

Theorem 12.3.6 ([45], p.16). Ler f : [0,1] — [0,1], f continuous, A a regular
triangular matrix satisfying (12.3.4)—(12.3.6) and

n

Z |an+l,k - (l - an+1,k+1)ank| = O(an+1,n+l)~
k=0
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If; in addition,

oo n
DO lantra = (1= anyras)anc] < 0o,

n=1k=0

then the iteration scheme (12.3.1)—(12.3.3) converges to a fixed point of f.

Theorem 12.3.7. Let E be nonempty closed convex subset of a Banach space B
and let T : E — E be a mapping satisfying condition (x). If for any x| € E and
a generalized iteration process (x1, A, T') such that the sequences {x,}, and {v,},
both converge to p, then p is the unique fixed point of T in E.

Proof. Let x; € E and A to be an infinite matrix defined by Mann. In view
of (12.3.2), v, € E,Vn € N which is assured by the restriction (iii) on A.
We now claim that p = Tp. If possible, suppose that p # Tp. Then

lp = Tpll < lIxns1 — Pl + X1 = Tpll
= [lxnr1 = Pl +1Tva — Tp|
< xut1 — pll + arllva — pll + aallve — Tval|
+asllp —Tpll + asllva = Tpl + aslp — Tvall.
Now passing through the limit as n — co, we have
(I—as—ay)|p—Tpll =0.
Interchanging the roles of 7p and x, 4, we can have similarly,
(I—ay—as)|p—Tpll =0.
Adding those two, we have
2-(@+azt+astas)llp—Tpll <0
which is a contradiction. Hence we must have p = Tp.
We shall now show the uniqueness of the fixed point p of T'. Let u(# p) € E be
another fixed point of 7" in E. Thus we have
lu—pll = ITu—"Tpll
< aillu— pl+azllu—Tul| + asllp — Tpll + asllu=Tp| + as|p — Tu|
= (a1 + a4+ as)|u—p|
< (I —ay—as)llu—pl|l

= (a2 + az)|ju — p|| < 0 which is a contradiction. Therefore u = p.
This completes the proof of the theorem. O
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12.4 Nonlinear Ergodic Theorems

Brézis and Browder [20] extended Baillon’s theorems [9, 10] from the usual Cesaro
means of ergodic theory to general averaging processes A, = Y po, duk T*, where
(a,,k)fszo is an infinite matix such that a,; > 0 and ZZOZO ayr = 1. We present
here a slight modification as follows.

Theorem 12.4.1. Let H be a Hilbert space, C a closed bounded convex subset of
H, and T a non-expansive self map of C. Let A = (ank); .=, be a strongly regular
matrix of nonnegative real numbers. Then for each x € C, A,x = Z](:o:o ane T*x
converges weakly to a fixed point of T.

Proof. The following extension of Opial’s lemma [79] will be needed in proving
this result.

Lemma 12.4.2. Let {x;} and {yi} be two sequences in H, F a nonempty subset of
H, C,, the convex closure of U j>m{x;}. Suppose that

(a) foreach f € F, | x; — f >~ p(f) < +o0;
(b) dist(yr,Cp) — 0as k — oo for each m;
(c) any weak limit of an infinite subsequence of {yy} lies in F.

Then yj converges weakly to a point of F.

We apply Lemma 12.4.2 with F the fixed point set of T in C, x; = T*x,
Vn = 2 peo dnkXk- Since | x;— f |? decreases with j, it converges to p(f) < +oo.
Since, by regularity of 4, a,, — 0asn — +oo, dist(y,,Cp) — Oasn — oo
for each m. To show that (c) holds, it suffices to prove that | y, — Ty, |— 0 as
n — +o0. For any u in H,

o
—u |2 Z Qnjnk(X; — U, Xp — u).
k=0
Since
20x; —uxp —u) =| x; —u P+ [ xe—u P —|x; —x
o
2| yn—u |2= ZZank | X —u |2 —Tn,

k=0

where r, = Zﬁﬂ)a,,jank | x; —xx |* . If we choose u = y,, then r, =

> oo ank | Xk — yu |* . If we take u = Ty,, then

oo
2 | Yn — Tyn |2 = 2an,O |x - Tyn|2 +2 Zank | Txk—l - Tyn |2 —TIn
k=0

oo oo
2
< 24,0 |x=Tyu? +2 ) aur | xic1=y P =2 aue | xe—yn
k=0 k=0
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IA

oo
2an,() |x - Tyn |2 +2 Z(an,k-H - ank) I Xk = In |2
k=0

IA

)
2 (an,() + Z | Apk+1 — Ank |) diam(c)z — 0 (n = 00),
k=0

by strong regularity of A.
Hence we get the desired result. O

Next result is due to Reich [82] in which the notion of almost convergence is
used.

Theorem 12.4.3. Let H be a Hilbert space, C a closed bounded convex subset of
H, and T a non-expansive self map of C with a fixed point. Let A = (ank),—
be a strongly regular matrix of nonnegative real numbers. Then for each x € C,
{yn} = {Anx} converges weakly to a fixed point z of T that is the asymptotic center

of {T"x}.

Proof. Let us write S,(xx) = % le‘i}i_l x; for any sequence {x,}. Let F be the
fixed point set of 7 and P : C — F the nearest point projection. Writing x,, for
T"x. Let {k(n)} be an arbitrary sequence of natural numbers and f any point in F.
Note that {x,} is bounded, { P x,} converges strongly to z, and

(Sn(Pxi(ny = SuCekm)s | —2) = =M S, (| Pxiny —2 )

for some constant M. Also
1
| Sn(xk(n)) - TSn(xk(n)) |f m | Xk(n) — TSn(xk(n)) | .

Therefore if {S, (xk())} converges weakly to ¢, then we have (i) (z —¢, f —z) >0
for all f € F and hence Pq = z, (i) ¢ € F. In other words, S,(xkmn) — z
(weakly) and {x,} is almost weakly convergent to z. Now applying Theorem 7 of
Lorentz [58], strong regularity of A yields the desired result.

This completes the proof of the theorem. O
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