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Abstract It is well known that in all situations involving the study of large data
sets where a substantial number of outliers or clustered data are present, regression
models based on M -estimators are likely to be unstable. Resorting to the inherent
properties of robustness of the estimates based on the Integrated Square Error
criterion we compare the results arising fromL2 estimates with those obtained from
some common M -estimators. The discrepancy between the estimated regression
models is measured by means of a new concept of similarity between functions and
a system of statistical hypothesis. A Monte Carlo Significance test, is introduced to
test the similarity of the estimates. Whenever the hypothesis of similarity between
models is rejected, a careful investigation of the data structure is necessary to check
for the presence of clusters, which can lead to the consideration of a mixture of
regression models. Concerning this, we shall see howL2 criterion can be applied in
fitting a finite mixture of regression models. The requisite theory is outlined and the
whole procedure is applied to a case study concerning the evaluation of the risk of
fire and the risk of electric shocks of electronic transformers.

Keywords Minimum integrated square error • Mixture of regression models •
Robust regression • Similarity between functions

1 Introduction

Regression is one of the widespread tools used to establish the relationship
between a set of predictor variables and a response variable. However, in many
circumstances, careful data preparation may not be possible and hence data may
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be heavily contaminated by a substantial number of outliers. In these situations,
the estimates of the parameters of the regression model obtained by the Maximum
Likelihood criterion are fairly unstable.

The development of robust methods is underlined by the appearance of a wide
number of papers and books on the topic including: Huber (1981), Rousseeuw and
Leroy (1987), Staudte and Sheather (1990), Davies (1993), Dodge and Jurečkova
(2000), Seber and Lee (2003), Rousseeuw et al. (2004), Jurečkova and Picek (2006),
Maronna et al. (2006) and Fujisawa and Eguchi (2006).

The approach based on minimizing the Integrated Square Error is particularly
helpful in those situations where, due to large sample size, careful data preparation
is not feasible and hence data may contain a substantial number of outliers (Scott
2001). In this sense the L2E criterion can be viewed as an efficient diagnostic tool
in building useful models.

In this paper we suggest a procedure of regression analysis whose first step
consists in comparing the results arising fromL2 estimates with those obtained from
some commonM -estimators. Afterwards, if a particular test of hypothesis leads us
to reject the conjecture of similarity between the estimated regression models, we
investigate the data for the presence of clusters by analyzing the L2 minimizing
function. The third step of the procedure consists in fitting a mixture of regression
models via the L2 criterion.

Below, we introduce the Integrated Square Error minimizing criterion for regres-
sion models, define a new concept of similarity between functions and introduce
a Monte Carlo Significance (M.C.S.) test. We also illustrate the whole procedure
by means of some simulated examples involving simple linear regression models.
Finally, we present an analysis of a case study concerning the evaluation of the risk
of fire and the risk of electric shocks in electronic transformers.

2 Parametric Linear Regression Models and Robust
Estimators

Let f.xi1; : : : ; xip; yi /giD1;:::;n be the observed data set, where each observa-
tion stems from a random sample drawn from the p C 1 random variable
.X1; : : : ; Xp; Y /. The regression model for the observed data set being studied
is yi D mˇ.xi / C "i , with i D 1; : : : ; n, where the object of our interest is the
regression mean

mˇ.xi / D EŒY jxi � D ˇ0 C
pX

jD1
ˇjxij (1)

and the errors f"igiD1;:::;n are assumed to be independent random variables with zero
mean and unknown finite variances.
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2.1 Huber M -Estimator

The presence of outliers is a problem for regression techniques; these may occur for
many reasons. An extreme situation arises when the outliers are numerous and they
arise as a consequence of clustered data. For example, a large proportion of outliers
may be found, if there is an omitted unknown categorical variable (e.g. gender,
species, geographical location, etc.) where the data behave differently in each
category. In parametric estimation, the estimators with good robustness proprieties
relative to maximum likelihood are theM -estimators. The class ofM -estimators of
the vector ˇ is defined as (e.g., Hampel et al. 2005)

Ǒ
M D arg min

ˇ

nX

iD1
�
�
yi �mˇ.xi /

�
; (2)

where � W R ! R is absolutely continuous convex function with derivative  .
If we assume that the r.v.s "i are independent and identically distributed as the r.v.

" � N .0; �/, the least-squares estimator gives the Maximum Likelihood Estimate
(MLE) of the vector ˇ, i.e.:

Ǒ
MLE D arg min

ˇ

nX

iD1

�
yi �mˇ.xi /

�2
:

Since in the presence of outliers MLEs are quite unstable, i.e., inefficient and
biased, for our purpose in the class of M -estimators we shall resort to the robust
Huber M-estimator (HME) for which

�.yi �mˇ.xi // D

8
<̂

:̂

1

2
.yi �mˇ.xi //2 if jyi �mˇ.xi /j � k;

k jyi �mˇ.xi /j .1 � k

2
/ if jyi �mˇ.xi /j > k;

where the tuning constant k is generally set to 1:345 � .

2.2 L2-Based Estimator

We investigate estimation methods in parametric linear regression models based on
the minimum Integrated Square Error and the minimum L2 metric. In the ˛-family
of estimators proposed by Basu et al. (1998),L2 estimator, briefly L2E , is the more
robust to outliers, even if it is less efficient than MLE.

Given the r.v. X , with unknown density f .xj�0/, for which we introduce the
model f .xj�/, the estimate for �0 minimizing the L2 metric will be:
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O�L2E D arg min
�

Z

R

Œf .xj�/ � f .xj�0/�2 dx D

D arg min
�

�Z

R

f 2.xj�/ dx � 2E Œf .xj�0/�
�
D

D arg min
�

"Z

R

f 2.xj�/ dx � 2

n

nX

iD1
f .xi j�/

#
;

(3)

where, the so-called expected height of the density, E Œf .xj�0/� is replaced with its
estimate OE Œf .xj�0/� D n�1

Pn
iD1 f .xi j�/ and where (Basu et al. 1998),

Z

R

f 2.xj�/ dx D 1

n

nX

iD1

Z

R

f 2.xi j�/ dxi : (4)

We turn now our attention to illustrate how the estimates based on L2 criterion can
be applied to parametric regression models. Assuming that the random variables
Y jx are distributed as a N .mˇ0

.x/; �0/, i.e. fY jx.yjˇ0; �0/ D �.yjmˇ0
.x/; �0/, the

L2 estimates of the parameters in ˇ0 and �0 are given by Eq. (3), which in this case
becomes

. Ǒ ; O�/L2E D arg min
ˇ;�

"Z

R

�2.yjmˇ.x/; �/ dy � 2

n

nX

iD1
�.yi jmˇ.xi /; �/

#

D arg min
ˇ;�

"
1

2�
p
�

� 2

n

nX

iD1
�.yi jmˇ.xi /; �/

#
;

(5)

since from Eq. (4)

Z

R

�2.yjmˇ.x/; �/ dy D 1

n

nX

iD1

Z

R

�2.yi jmˇ.xi /; �/ dyi D
1

2 �
p
�
:

Clearly Eq. (5) is a feasible computationally closed-form expression so that L2
criteria can be performed by any standard non-linear optimization procedure, for
example, the nlm routine in the R library. However, it is important to recall that,
whatever the algorithm, convergence to the global optimum can depend strongly on
the starting values.

3 The Similarity Index and the M.C.S Test

To compare the L2E performance with respect to some other common estimators
we resort to an index of similarity between regression models introduced in Durio
and Isaia (2010). In order to measure the discrepancy between the two estimated
regression models, the index of similarity takes into account the space region
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Fig. 1 Data points and two estimated regression models OmT0.x/ and OmT1.x/. In panel (b) the
domains DpC1 and C pC1 upon which the sim.T0; T1/ statistic is computed

between OmT0.x/ and OmT1.x/ with respect to the space region where the whole of
the data points lie. Let T0 and T1 be two regression estimators and Ǒ

T0
, Ǒ

T1
the

corresponding vectors of the estimated parameters. Introducing the sets:

Ip D �
min.xi1/Imax.xi1/� � : : : � Œmin.xip/Imax.xip/

�
;

I D Œmin.yi /Imax.yi /� D ŒaI b� ;

we define the similarity index as

sim.T0; T1/
defD

R
DpC1 d tR
C pC1 d t

C pC1 D Ip � I (6)

DpC1 D ˚
.x; y/ 2 R

pC1 W �.x/ � y � �.x/; x 2 Ip�\ C pC1

with �.x/ D min . OmT0.x/; OmT1.x// and �.x/ D max . OmT0.x/; OmT1.x//.
Figure 1 shows how the similarity index given by Eq. (6) can be computed in

the simple case where p D 1. In panel (a) we have the cloud of data points and
the two estimated models Ǒ

T0
and Ǒ

T1
. The shaded area of panel (b) corresponds toR

DpC1 d t, while the integral
R
C pC1 d t is given by the area of the dotted rectangle,

in which data points lay.
In order to compute the integrals of Eq. (6), we employ the fast and accurate

algorithm proposed by Durio and Isaia (2010).
If the vectors Ǒ

T0
and Ǒ

T1
are close to each other, then sim.T0; T1/ will be close

to zero. On the other hand, if the estimated regression models OmT0.x/ and OmT1.x/ are
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dissimilar we are likely to observe a value of sim.T0; T1/ far from zero. We therefore
propose to use the sim.T0; T1/ statistic to verify the following system of hypothesis

(
H0 W ˇ0 D Ǒ

T0

H1 W ˇ0 ¤ Ǒ
T0

(7)

Since it is not reasonable to look for an exact form of the sim.T0; T1/ distribution,
in order to check the above system of hypothesis we utilise a simplified M.C.S. test
originally suggested by Barnard (1963) and later proposed by Hope (1968).

Let simT0T1 denote the value of the sim.T0; T1/ statistic computed on the observed
data. The simplified M.C.S. test consists of rejecting H0 if simT0T1 is the m˛-th
most extreme statistic relative to the corresponding quantities based on the random
samples of the reference set, where the reference set consists of m � 1 random
samples, of size n each, generated under the null hypothesis, i.e., drawn at random
from the model OmT0.x/ with � D O�T0 . In other words we generate m � 1 random
samples under H0 and for each of them we compute sim�

T0T1
and we shall reject

the null hypothesis, at the ˛ significance level, if and only if the value of the test
statistic simT0T1 is greater than all them� 1 values of sim�

T0T1
. We remark that if we

set m˛ D 1 and fix ˛ D 0:01, we have m � 1 D 99 (while fixing ˛ D 0:05 would
yield m � 1 D 19).

4 Simple Linear Regression and Examples

Since for our case study we shall consider the simple linear regression model
yi D ˇ0 C ˇ1 xi C "i , the L2 criterion according to Eq. (5) reduces to the following
computationally closed-form expression

. Ǒ ; O�/L2E D arg min
ˇ;�

"
1

2�
p
�

� 2

n

nX

iD1
�.yi jˇ0 C ˇ1 xi ; �/

#
: (8)

In the following we introduce two simulated examples in order to demonstrate
the behaviour of the L2 criterion in the presence of outliers and in the presence of
clustered data. To evaluate its performance, we shall use the Maximum Likelihood
estimator and the robust Huber M estimator. Given T1 D L2E , we shall perform
the M.C.S. test two times: the first one, fixing T0 D MLE, for sim.MLE; L2E/, the
second one fixing T0 D HME, for sim.HME; L2E/. We remark that, as p D 1, in
both situations we have Ip D Œmin.xi /Imax.xi /� and that clearly the integrals of
Eq. (6) are defined on bi-dimensional domains.

Example I. Let us consider a simulated dataset of n D 200 points generated
according to the model Y D X C ", where X � U.0; 10/ and " � N .0; 0:8/.
We then introduce m D 10.30/ points according to the model Y D �3 C X C ",
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Table 1 Results of simulated Example I

m D 10 m D 30

MLE HME L2E MLE HME L2E

Ǒ
0 0.3078 0.1616 0.0353 0.2884 0.2081 0.0139
Ǒ
1 0.9054 0.9509 0.9886 0.8635 0.8944 0.9975
O� 0.9889 0.9972 0.7926 1.2352 1.2389 0.9712

x − Panel (a)

R
es

po
ns

e 
y 

Data points
MLE
RME
L2E

0 2 4 6 8 10

0

2

4

6

8

10

0 2 4 6 8 10

0

2

4

6

8

10

x − Panel (b)

R
es

po
ns

e 
y 

Data points
MLE
RME
L2E

Fig. 2 Data points of Example I and estimated models OmML.x/, OmHM.x/ and OmL2.x/. In panel
(a) we set m D 10 outliers while in panel (b) m D 30

where X � U.8; 10/ and " � N .0; 0:4/, so that they can be considered as outliers.
Resorting to the estimators ML, HM and L2 we obtain the following estimates of
the parameters ˇ0, ˇ1 and � listed in Table 1 (also see Fig. 2).

Applying the M.C.S. test, with ˛ D 0:01, to the estimated models OmML.x/

and OmL2.x/, we reject the null hypothesis of system (7) as we have simML;L2 D
0:0203 > max.sim�

ML;L2/ D 0:0128. Turning our attention to models OmHM.x/ and
OmL2.x/, the M.C.S. test leads us to accept the null hypothesis since simHM;L2 D
0:0091 < max.sim�

HM;L2/ D 0:0123.
In the case we add m D 30 outliers to the sample data, the results of the M.C.S.

tests lead us to different conclusions. In both situations we reject the null hypothesis
of system (7) as we have

simML;L2 D 0:0364 > max.sim�
ML;L2/ D 0:0159

simHM;L2 D 0:0289 > max.sim�
HM;L2/ D 0:0103

When the outliers are few, the estimated regression model OmHM.x/ and OmL2.x/

do not differ significantly. This is not the case when the number of outliers increases;
in this sense it seems that L2 estimator can be helpful in cluster detection.
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Table 2 Results of simulated
Example II

MLE HME L2E

Ǒ
0 2.6755 2.4956 1.7340
Ǒ
1 0.4607 0.5086 0.6856
O� 1.4021 1.4074 1.1633
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Fig. 3 (Panel a) Data points of Example II and estimated models OmML.x/, OmHM.x/ and OmL2.x/.
(Panel b) Contour plot of function g.ˇj��/ of Eq. (9) evaluated at �� D 0:5 O�L2E

Example II. Let us consider a dataset of n D 300 points, 200 of which arise from
model Y D 1C 0:8X C "1 while the remaining from model Y D 5 � 0:2X C "2,
where "1 � N .0; 1/, "2 � N .0; 0:5/ and X � U.1; 10/. Again, resorting to the
estimators ML, HM and L2 we obtain the following estimates of the parameters ˇ0,
ˇ1 and � listed in Table 2 (also see Fig. 3, panel a). Considering the models OmML.x/

and OmL2.x/ the M.C.S. test, with ˛ D 0:01, indicates that they can be considered
dissimilar, as we observe simML;L2 D 0:0582 > max.sim�

ML;L2/ D 0:0210. This is
still true if we consider the estimated models OmHM.x/ and OmL2.x/, in fact from the
M.C.S. test we have simHM;L2 D 0:0451 > max.sim�

MH;L2/ D 0:0156. Also in this
situation the L2 estimator seems to be helpful in detecting clusters of data when
compared with the Maximum Likelihood and the Huber M estimators.

5 Mixture of Regression Models via L2

It seems to the authors that the properties of robustness of L2 estimates, as outlined
above, can be helpful in pointing out the presence of clusters in the data, e.g. Durio
and Isaia (2007).

This in the sense that whenever sample data belong to two (or more) clusters,
OmL2.x/will always tend to fit the cluster with the heaviest number of data points and

hence big discrepancies between OmML.x/ and OmL2.x/ will be likely to be observed,
as illustrated by the previous examples. Investigating more accurately function (5)
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for a fixed value of � it can be seen that in all situations where sample data are
clustered it can show more than one local minimum. A simple way forward is to
investigate the behaviour of the function

g.ˇj��/ D 1

2�
p
�

� 2

n

nX

iD1
�.yi jmˇ.xi /; ��/ (9)

for different values of �� on its parameter space, for instance, the interval
�0; 2 � O�L2E�. In fact, whenever sample data are clustered, function g.ˇj��/ given
by Eq. (9) shows one absolute and one or more local points of minimum.

Whenever the presence of clusters of data is detected by L2 criterion, we can
use L2 estimator assuming that the model that best fits the data is a mixture of
K � 2 regression models. Assuming that each data point .xi ; yi / comes from
the k-th regression model yi D mˇk

.xi / C "ik with probability pk , we suppose
that the random variables Y jx are distributed as a mixture of K Gaussian random
variables, i.e.,

fY jx.yj�0/ D
KX

kD1
p0k �.yjmˇ0k

.x/; �0k /: (10)

We are now able to derive the following closed-form expression for the estimates of
�0 D Œp0;ˇ0; � 0�; in fact, according to Eq. (9) and recalling Eq. (4), we have

O�L2E Darg min
p;ˇ;�

2

4 1
n

nX

iD1

KX

jD1

KX

hD1
pj ph �.0jmˇj

.xi /�mˇh
.xi /; �2j C �2h/�

� 2

n

nX

iD1

KX

kD1
pk �.yi jmˇk

.xi /; �2k /

#
: (11)

Solving Eq. (11) we obtain the estimates of the vector of the weights, i.e. Op D
Œp1; : : : ; pK�

T , the vector of the parameters, i.e. Ǒ D Œˇ01 ; : : : ; ˇd1 ; : : : ; ˇ0K ; : : : ;

ˇdK �
T and the vector of the standard deviations of the error of each component of

the mixture, i.e. O� D Œ�1; : : : ; �K�
T .

Example II (continued). Referring to the situation of Example II, for which O�L2 D
1:1633, the contour plot of function g.ˇj��/ of Eq. (9) and displayed in Fig. 3,
panel b, evaluated at �� D 0:5 O�L2E , shows the existence of one absolute minimum
corresponding to the estimates of the parameters of the model Y D 1C 0:8X C "1
and one local minimum close to the values of the parameters of the model Y D
5� 0:2X C "2. We therefore consider a mixture of K D 2 simple linear regression
models. Since in this situation Eq. (10) becomes

fY jx.yj�0/ D p01 �.yjˇ001 C ˇ011 x; �
0
1 /C p02 �.yjˇ002 C ˇ012 x; �

0
2 /;
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Fig. 4 (Panel a) Data points and estimated components of the mixture of two simple regression
models via L2. (Panel b) Data points assignment according to the “quick classification rule” with
	 D 3

the L2 estimates of the vector �0, according to Eq. (11), will be given by solving

O�L2E D arg min
p;ˇ;�

"
p21�2Cp22�1
2�1�2

p
�

C 2

n

nX

iD1
p1p2�.0jˇ01 Cˇ11xi �ˇ02 �ˇ12xi ; �21 C �22 /�

� 2

n

nX

iD1

	
p1 �.yi jˇ01 C ˇ11 xi ; �

2
1 /C p2 �.yi jˇ02 C ˇ12 xi ; �

2
2 /

#
: (12)

From numerical minimization of Eq. (12), we obtain (see Fig. 4, panel a) the
following estimates of the eight parameters of the mixture

L2E Model_1: Op1 D 0:646 Ǒ
01 D 1:0281 Ǒ

11 D 0:8109 O�1 D 0:8411

L2E Model_2: Op2 D 0:354 Ǒ
02 D 4:8267 Ǒ

12 D �0:0576 O�2 D 0:5854

which are quite close to the true values of the parameters.
From a practical point of view, it would be interesting to be able to highlight

which data points belong to each component of the mixture; to this end we resort
to a quick classification rule based on the assumption that the density of the errors
follows a Normal distribution, i.e. 8 i D 1; : : : ; n

if j O"i1 j 5 	 O�1 ^ jO"i2 j > 	 O�2 ! .xi ; yi / 2 Model L2E � I
if j O"i1 j > 	 O�1 ^ jO"i2 j 5 	 O�2 ! .xi ; yi / 2 Model L2E � II
if j O"i1 j 5 	 O�1 ^ jO"i2 j 5 	 O�2 ! .xi ; yi / 2 Unknown model

if j O"i1 j > 	 O�1 ^ jO"i2 j > 	 O�2 ! .xi ; yi / 2 Outlier; (13)

where 	 is an appropriate quantile of a N .0; 1/.
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Table 3 Classification I L2 estimates of Op Quick rule

L2E Model_1 64:6% 34:6% .103/

L2E Model_2 35:4% 12:7% .38/

Unknown model – 52:7% .157/

Fixing 	 D 3, if we apply the quick rule and drop two points that are classified as
outliers we obtain (see Fig. 4, panel b) the following classification table, see Table 3.
Clearly, the high percentage of not assigned points (52:7%) is due to the specific
structure of the two clusters which are quite confused.

6 The Case Study

A firm operating in the field of diagnosis and decontamination of electronic
transformers fluids assesses the risks of fluid degradation, electric shocks, fire or
explosion, PCB contamination, decomposition of cellulosic insulation, etc. With the
aid of well-known models and relying on the results of chemical analysis, the firm’s
staff estimate the value of the risk on continuous scales.

In order to determine if their methods of assigning risk values are independent
of specific characteristics of the transformers (age, voltage, fluid mass, etc.) we
conducted an analysis based on a database of 1;215 records of diagnosis containing
oil chemical analysis, technical characteristics and risk values.

Taking into account the risk of fire (Y ) and the risk of electric shocks (X ),
it was natural to suppose a linear dependence between the two variables, i.e., we
considered the simple regression model with mˇ.xi / D ˇ0 C ˇ1xi .

Resorting to the estimators ML, HM and L2 we obtained the following estimates
of the parameters ˇ0, ˇ1 and � listed in Table 4.

Although the estimates of the vector of the parameters ˇ are quite close, the
corresponding three estimated models differ in some way, e.g., Fig. 5, panel a.

Computing the values of the sim./ statistics, the M.C.S. test led us to the
conclusion that the L2 estimated model can be considered dissimilar from both
OmML.x/ and OmHM.x/ models, as

simML;L2 D 0:0220 > max.sim�
ML;L2/ D 0:0051

simHM;L2 D 0:0203 > max.sim�
HM;L2/ D 0:0031

Probing more deeply, we found that function g.ˇj��/ of Eq. (9) presents two
points of minimum for �� D 0:5 O�L2E D 0:0755, as shown in Fig. 5, panel b.

Therefore we decided to model our data by means of a mixture of two simple
regression models. Considering the L2 criterion and solving Eq. (12), we found that
about 57%.D Op1 %/ of the data points follow the model

Omˇ1
.x/ D �0:4042C 1:7705 x ! L2E Model_1
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Table 4 Estimates of the
parameters after resorting

MLE HME L2E

Ǒ
0 �0.4321 �0.4423 �0.5330
Ǒ
1 1.7110 1.7199 1.8115
O� 0.1472 0.1471 0.1509
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Fig. 5 Case study. (Panel a) Data points and estimated models OmML.x/, OmHM.x/ and OmL2.x/.
(Panel b) Contour plot of function g.ˇj��/ of Eq. (9) evaluated at �� D 0:5 O�L2E , with O�L2E D
0:151

for which O�1 D 0:0547, while the remaining 43%.D Op2 %/ of the data points follow
the model

Omˇ2 .x/ D �0:3955C 1:5847 x ! L2E Model_2

for which O�2 D 0:0775. Panel a of Fig. 6 shows the two estimates models.
Applying the quick rule we were able to classify the data according to whether

they followed the first or the second regression model. From the L2 estimates of Op
and the quick rule (dropping two points that were classified as outliers) we obtained
the following classification table, see Table 5.

In order to classify the 266 (D 22:0%) points belonging, according to the
quick rule, to the Unknown Model, we had to investigate more deeply the specific
characteristics of the transformers themselves.

Examining our database, we found that 40% of the transformers has a fluid mass
5500 kg and the L2 criterion gave us an estimate of 43% for the weight of points
belonging to L2E Model_1 while our quick rule assigned the 36:9% of data points
to L2E Model_2.

Furthermore, our quick classification rule assigns 419 out of the 448 points
(93:5%) to L2E Model_2 and these have a fluid mass less (or equal) than 500 kg,
while all the 499 transformers imputed to L2E Model_1 have a fluid mass greater
than 500 kg, see Table 6.
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Fig. 6 Case study. (Panel a) Data points and estimated models Omˇ1
.x/ and Omˇ2

.x/. (Panel b)
Final data points assignment according to the fluid mass of the electrical transformers

Table 5 Classification II L2 estimates of Op Quick rule

L2E Model_1 57:0% 41:1% .499/

L2E Model_2 43:0% 36:9% .448/

Unknown model – 22:0% .266/

Table 6 Fluid mass of the
model

Fluid mass 5 500 kg Fluid mass > 500 kg

L2E Model_1 0 (0:0%) 499 (100%)
L2E Model_2 419 (93:5%) 29 (6:5%)
Unknown model 65 (24:4%) 201 (75:6%)

From the above, we decided to use the fluid mass as clustering variable and so
we assigned the transformers with a fluid mass equal or less than 500 kg to Model
L2E Model_2 while the transformers with a fluid mass greater than 500 kg were
assigned to the L2E Model_1 regression line. The final assignment is shown in
Fig. 6, panel b.

These results allowed us to state that, at fixed level of risk of electric shocks,
the risk of fire was evaluated in a different way for the two groups of transformers,
i.e., the relationship between the two variables depended on the fluid mass of the
transformers.

However, the chemical staff of the firm could not find any scientific reason to
explain the different risks of fire in the two types of transformers, so they decided to
change the model used by assigning different weights to the hydrocarbon variable
in order to better reflect the differential risks of fire.
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