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Simple Stabilization Design for Perturbed
Time-Delay Systems

Chien-Hua Lee, Tsung-Lieh Hsien, Ping-Chang Chen
and Hsin-Ying Huang

Abstract This paper addresses the stabilization design problem for the continuous
perturbed systems subjected to a time delay. By using the Riccati equation
approach associated with the upper bound of the solution of the Riccati equation, a
new stabilizability criterion is proposed. This criterion is easy to be tested.
According to the above criterion, a simple stabilization controller is developed.
This controller is very simple and hence is easy to be implemented.
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85.1 Introduction

It is known that time delay exist naturally in physical systems, engineering sys-
tems, and so on. Time delay can be considered as a of instability source of systems.
On the other hand, perturbation is also a source of instability and must be inte-
grated into system model. The control problem of systems with time delay(s) and/
or perturbations then is complicate and hence has become an attractive research
topic over past several decades. A number of research approaches have been
proposed to solve control problems of systems with time delay(s) and/or pertur-
bation(s) during the past decades [1–10]. In [2, 3, 5–10], stabilizability conditions
have been developed and various feedback controllers have also been derived. It is
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seen that the proposed results often come to solving LMI. Since there are usually
many free matrices in LMI, this might be a miscellaneous work. Therefore, to
develop a simple stabilizability condition and a state feedback controller for
perturbed time-delay systems is the objective of this paper. We first derive a
simple upper matrix bound of the solution of the Riccati equation by choosing
properly the positive definite matrix Q. Then, by using the Riccati equation
approach associated with the proposed upper bound, a concise stabilizability cri-
terion is presented. This criterion does not involve any Riccati equation and hence
is easy to be tested. Furthermore, according to the obtained criterion, a simple
stabilization controller is developed. This controller is very simple and hence is
easy to be implemented. An algorithm is also proposed to construct the controller.

The following symbol conventions are used in this paper. Symbol R denotes the
real number field. A [CB means matrix A - B is positive (semi)definite;
k1(A) denote the maximal eigenvalue of a symmetric matrix A. kAk is the norm of
matrix A. Furthermore, the identity matrix with appropriate dimensions is repre-
sented by I.

85.2 Main Results

Consider the time-delay systems with nonlinear perturbations

_xðtÞ ¼ AxðtÞ þ Adxðt � dÞ þ BuðtÞ þ f ðxðtÞ; tÞ þ fdðxðt � dÞ; tÞ ð85:1Þ

where, x 2 R
n, u 2 R

m, d [ 0, respectively, denote the state, the input to be
designed, and the delay duration, A, Ad, and B represent constant matrices with
appropriate dimensions and A is a stable matrix, and f(x(t), t) and fd(x(t - d), t) are
nonlinear perturbations with the following properties:

f ðxðtÞ; tÞk k� d xðtÞk k and fdðxðt � dÞ; tÞk k� dd xðt � dÞk k ð85:2Þ

where d and dd are positive constants. It is assumed that the pair (A, B) is com-
pletely controllable. The objective of this paper is to derive simple stabilizability
conditions and design a memoryless state feedback controller in the form of

uðtÞ ¼ �FxðtÞ ð85:3Þ

where F is the gain matrix such that the resulting closed-loop system is stable.
Before developing the main results, we first give the following useful result.

Lemma 1 If there exists a positive constant g such that

AT þ A� 2gBBT þ 2 dþ dd þ
Adk k
2

� �
I þ AT

d Ad

Adk k\0 ð85:4Þ

then the positive solution P of the Riccati equation
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AT Pþ PA� PBBT P ¼ �Q ð85:5Þ

has the upper bound

P\qI ð85:6Þ

where the n 9 n real positive definite matrix Q is given as

Q ¼ q 2dþ Adk k þ 2ddð ÞI þ AT
d Ad

Adk k

� �
ð85:7Þ

and q is a arbitrary positive constant.

Proof Let a positive semi-definite matrix R be defined by

R � ðP� gIÞBBTðP� gIÞ: ð85:8Þ

Then, we can rewrite the Riccati equation (85.5) as

A� gBBT
� �TðqI � PÞ þ ðqI � PÞ A� gBBT

� �
¼ �Rþ Qþ g2BBT þ q AT þ A� 2gBBT

� �
: ð85:9Þ

In (85.9), we have

Q þ g2BBT þ q AT þ A� 2gBBT
� �

¼ q AT þ A� 2gBBT þ 2 dþ dd þ
Adk k
2

� �
I þ AT

d Ad

Adk k þ
g2

q
BBT

� �
:

ð85:10Þ

It is obvious that if the condition (85.4) is satisfied, then there must exist a
constant q � g2kBk2 such that the right-hand side of (85.10) is a negative definite
matrix. Furthermore, the condition (85.4) also implies that AT ? A - 2gBBT \ 0,
one hence can conclude that the matrix A - gBBT is stable. Therefore, Eq. (85.9)
is a Lyapunov equation and then its solution is positive definite. That is, the
solution of the Riccati equation (85.5) has the upper bound (85.6). Thus, this
completes the proof.

Then, by utilizing lemma 1 and some linear algebraic techniques, a stabilization
controller for the system (85.1) is designed as follows.

Theorem 1 If the stabilizability condition (85.4) holds, the perturbed time-delay
system (85.1) can be stabilized by a memoryless state feedback controller in the
form of (85.3) with

F ¼ 0:5BT P ð85:11Þ

where the positive definite matrix P satisfies the Riccati equation (85.5) and the
positive definite matrix Q is given by (85.7).
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Proof Using the controller (85.3) with (85.11), the system (85.1) becomes

_xðtÞ ¼ ðA� 0:5BBT PÞxðtÞ þ Adxðt � dÞ þ f ðxðtÞ; tÞ þ fdðxðt � dÞ; tÞ: ð85:12Þ

For this system, we construct a Lyapunov function as

VðxðtÞ; tÞ ¼ xTðtÞPxðtÞ þ q

Z t

t�d
xTðsÞ AT

d Ad

Adk k þ ddI

� �
xðsÞds ð85:13Þ

where the positive definite matrix P satisfies (85.5). For convenience, we use
symbols V, x, and xd to replace V(x(t), t), x(t), and x(t - d), respectively, in the
following and later descriptions. Furthermore, f(x(t), t) and fd(x(t - d), t) are also
replaced by f and fd, respectively. Now, taking the derivative along the trajectories
of (85.1) gives

_V ¼ xT AT Pþ PA� PBBT Pþ q
AT

d Ad

Adk k þ ddI

� �� �
x� qxT

d

AT
d Ad

Adk k þ ddI

� �
xd

þ xT
d AT

d Pxþ xT PAdxd þ f T Pxþ xT Pf þ f T
d Pxþ xT Pfd:

ð85:14Þ

Since

xT
d AT

d Pxþ xT PAdxd �
1

Adk k xT
d AT

d PAdxd þ Adk kxT Px

\q
1

Adk k xT
d AT

d Adxd þ Adk kIxT x

� �
;

ð85:15Þ

f T Pxþ xT Pf � dxT Pxþ 1
d

f T Pf \q dxT xþ 1
d

f T f

� �
� q2dxT x; ð85:16Þ

and

f T
d Pxþ xT Pfd �

1
dd

f T
d Pfd þ ddxT Px

\q
1
dd

f T
d fd þ ddxT x

� �
� qdd xT

d xd þ xT x
� 	

;

ð85:17Þ

then

_V\xT �Qþ q 2dI þ Adk kI þ AT
d Ad

Adk k þ 2ddI

� �� �
x

¼ qxT � 2dþ Adk k þ 2ddð ÞI � AT
d Ad

Adk k þ 2dI þ Adk kI þ AT
d Ad

Adk k þ 2ddI

� �
x ¼ 0

ð85:18Þ
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where the upper bound (85.6) is used. Therefore, it is seen that if the condition
(85.4) is satisfied, then the resulting closed-loop system (85.12) is asymptotically
stable. Thus, the proof is completed.

Remark 1 An interesting consequence of this theorem is that the stabilizability
condition (85.4) is independent of the Riccati equation (85.5). Furthermore, it is
also independent of the free variable q.

Remark 2 Another benefit of the upper bound (85.6) is that we can use the bound
qI to replace P in the memoryless feedback controller (85.3) to simplify the
controller design. The result is given as follows.

Theorem 2 If the stabilizability condition (85.4) is met, then the perturbed time-
delay system (85.1) can be stabilized by making use of the feedback controller

uðtÞ ¼ �0:5BT qIxðtÞ ¼ �gBT xðtÞ ð85:19Þ

where the positive constant g defined by g : 0.5q is chosen by the designer.

Proof From (85.19), the closed-loop system now becomes

_xðtÞ ¼ ðA� gBBTÞxðtÞ þ Adxðt � dÞ þ f ðxðtÞ; tÞ þ fdðxðt � dÞ; tÞ: ð85:20Þ

Here, we choose the Lyapunov function as

V ¼ xT xþ
Z t

t�d
xTðsÞðA

T
d Ad

Adk k þ ddIÞxðsÞds:
ð85:21Þ

This can lead to

_V ¼ xT ½AT þ A� 2gBBT þ AT
d Ad

Adk k þ ddI�x� xT
d ð

AT
d Ad

Adk k þ ddIÞxd

þ xT
d AT

d xþ xT Adxd þ f T xþ xT f þ f T
d xþ xT fd

� xT ½AT þ A� 2gBBT þ 2ðdþ dd þ
Adk k
2
ÞI þ AT

d Ad

Adk k�x\0:

ð85:22Þ

Therefore, it is seen that if the condition (85.4) holds, then the perturbed time-
delay system (85.1) can be indeed stabilized by the controller (85.19). Thus, the
proof is completed.

Note that the stabilization controller (85.19) is very simple. We also give the
following algorithm for designing the positive constant g.

Algorithm 1

Step 1. Set k = 0. Give an initial value of gk = 0.
Step 2. Substitute gk into the stabilizability condition (85.4) and check it. If it is

satisfied, then stop the algorithm and the controller is obtained. Otherwise,
go to Step 3.
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Step 3. Set

gkþ1 ¼ gk þ e

where e is an adequate positive constant. If gk+1 [ w, then stop this algorithm and
the stabilization controller can not be found where w is a default large value.
Otherwise, go to Step 2.

85.3 Conclusions

The stabilization design problem of the continuous perturbed systems subjected to
a time delay has been solved. A new stabilizability criterion is proposed to
guarantee the existence of stabilization controller. This criterion does not involve
any Riccati equation and hence is easy to be tested. Furthermore, a simple sta-
bilization controller that is independent of the Riccati equation has also been
developed. By the proposed algorithm, it is seen that this controller is easy to be
implemented.
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