
Chapter 84
Advance in Neural Networks for Power
Transformer Condition Assessment

Kun-Yuan Huang, Yann-Chang Huang, Hsing-Feng Chen
and Hsieh-Ping Chen

Abstract Artificial neural networks (ANN) have emerged as rapidly evolving and
highly practical approaches for condition assessment of power transformers. This
study reviewed different ANN approaches for assessing power transformer con-
ditions by discussing historical developments and presenting state-of-the-art ANN
methods. Relevant publications from international journals covering a broad range
of ANN methods were reviewed. This paper concludes that no single ANN
approach enables detection of all faults of power transformers; therefore, overall
and reliable assessment of power transformer conditions is necessary. Moreover,
the most effective condition assessment technique is to combine artificial intelli-
gent approaches to form hybrid intelligence-based systems and to aggregate them
into an overall evaluation. This paper is helpful in the academics, research and
engineering community, which is working on condition assessment of transformer
fault diagnosis using artificial intelligence.
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84.1 Introduction

Power transformer is an important apparatus in power systems and its failure may
interrupt power supplies and diminish profits. Minimizing the risk of power out-
ages entails detecting incipient faults inside power transformers immediately.
Moreover, the conditions must be assessed routinely, as well as the apparatus
reliability maintained. Therefore, accurately evaluating power transformer con-
ditions is essential.
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Time-based and condition-based monitoring strategies have been developed for
transformer fault identification and diagnosis. Time-based monitoring uses various
off-line tests to schedule tests for incipient faults in transformers; however, this
labor-intensive strategy is costly and sometimes ineffective in detecting faults that
develop between regular intervals of examination. Condition-based monitoring
applies advanced fault diagnosis techniques to identify on-line and off-line
incipient faults and to provide real-time transformer conditions; thus, it can also
optimize maintenance schedules.

Various condition assessment techniques of power transformer have been
developed to reduce operating costs, enhance the reliability of operation, and
improve power supply and service to customers. Advances in artificial neural
networks (ANN) techniques have rapidly improved transformer condition moni-
toring and assessment tools in recent years. Many practical transformer operation
problems have been solved by ANN-based condition monitoring and assessment
systems. This study reviews various ANN techniques for evaluating power
transformer conditions. A review of the accumulating literature on the practica-
bility, reliability, and automation of intelligent condition assessment systems was
performed to determine the state of the art in this important area.

84.2 Transformer Condition Assessment

Dissolved gas analysis (DGA) [1–8] is among the most common techniques used
for on-line condition assessment of power transformers. The DGA requires routine
oil sampling and modern technologies for on-line gas monitoring. The key step in
using gas analysis for fault detecting is correctly diagnosing the fault that gener-
ated the gases. Abnormal electrical or thermal stresses cause insulation oil to break
down and to release small quantities of gases.

These dissolved gases include hydrogen (H2), methane (CH4), ethylene (C2H4),
ethane (C2H6), acetylene (C2H2), carbon monoxide (CO), and carbon dioxide
(CO2). Each fault type produces gases that are generally combustible. An increase
in total combustible gases (TCG) that correlates with an increase in gas generating
rates may indicate the existence of any one or a combination of thermal, electrical
or corona faults. The composition of these gases depends on the fault type. Faults
in oil-filled transformers can be identified according to the gases generated and the
gases that are typical or predominant at various temperatures.

The DGA can provide the early diagnosis needed to increase the chance of
finding an appropriate cure. Interpretation schemes are generally based on defined
principles such as gas concentrations, key gases, key gas ratios, and graphical
representations. Common schemes mentioned in IEEE Standard C57.104-2008
include Key Gas Analysis [1, 2], Dornenberg Ratio [3] and Rogers Ratio [4]
Methods, Nomograph [5], IEC Ratio [5], Duval Triangle [6, 7], and CIGRE
Method [8]. The DGA can distinguish faults such as partial discharge, overheating,
and arcing in many different power transformers.
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Various DGA methods have been used by organizations and utilities to assess
transformer conditions. These DGA interpretation schemes are based on empirical
assumptions and practical knowledge gathered by experts worldwide. Neverthe-
less, if these interpretation schemes are not applied cautiously, they may incor-
rectly identify faults because they only indicate possible faults. In some cases,
DGA interpretation schemes may differ about identified faults, which is clearly
unacceptable for a reliable fault diagnosis system.

Because the conventional DGA diagnosis results may be imprecise and even
incomplete, a suitable information integration method is needed to process DGA
data to overcome such uncertainties. Therefore, the integration of available
transformer DGA-based diagnostic approaches to generate an overall condition
assessment is very important for asset management in modern power system
operation.

84.3 Artificial Intelligence Applications

An ANN acquires knowledge through training, which is a major advantage when
the training set is often composed of actual observations of the physical world
rather than being formed of the human opinions used for fuzzy (or expert) systems.
However, the training set must adequately represent the domain of interest.
Otherwise, the network must make decisions that are not based on experience.
Diagnosis accuracy evaluations of the ANN-based transformer fault diagnosis
systems have confirmed their effectiveness and reliability.

Many works on applications of ANN in condition assessment of transformers
have been published; the proposed systems have been promising because the ANN
can learn hidden relations among fault types and dissolved gas concentrations.
Besides their learning capabilities, another advantage of ANN is their capability to
acquire new information by incremental training from newly obtained samples.
Doing so is usually impossible in systems based on fuzzy rules unless the
implementations also rely on a back-propagation procedure to evolve parameters.
After training, the diagnostic accuracies of the ANN were tested with a new set of
DGA results and compared with those obtained by inspection and analysis.

A two-step ANN method [9] was used to detect transformer faults. The first
ANN classified the fault as overheating, corona, or arcing; the second ANN
determined if the cellulose was involved. The results of the two-step ANN
approach were promising even with limited sample data; however, additional
training data should be needed for the ANN to learn more complex relationships.
Moreover, the accuracy of fault diagnosis can be improved choosing the proper
value of learning rate, momentum factor and activation functions.

The ANN diagnostic method has proven very effective for diagnosing the
insulating properties of an oil-insulated power apparatus [10]. A comparative study
of ANNs in detecting incipient transformer faults was presented in [11], and the
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diagnosis accuracies obtained were about 87–100 %. An ANN trained with
Levenberg–Marquardt learning algorithm demonstrated that the algorithm is
apparently the fastest method for training a moderate-sized feedforward ANN [12].

Self-organizing polynomial modeling technique [13] was proposed to heuris-
tically formulate the model using a hierarchical architecture with several layers of
functional nodes using simple low-order polynomials. The networks can learn
numerical, complicated, and uncertain relationships between dissolved gas content
in transformers and fault conditions. A fuzzy-based vector quantization network
was used to classify historical DGA data [14]. For each category of gas attributes,
a learning vector quantization network was trained to classify potential faults
caused by insulation deterioration. Remarkable classification accuracy has been
achieved with substantially reduced training.

Evolutionary algorithms were used to automatically tune the network param-
eters (connection weights and bias terms) of the ANN to achieve the best model
[15, 16]. The evolutionary algorithms based systems can identify complex rela-
tionships among the gases dissolved in transformer oil and corresponding fault
types by combining the global search capabilities of evolutionary algorithms with
the highly nonlinear mapping capabilities of the ANN.

Conventional ANN has difficulty determining the number of neurons in hidden
layers, and training is time consuming. To overcome the drawbacks of traditional
ANN, extension-based methods based on the matter-element model and extended
relation functions have been used for diagnosing power transformer faults [17, 18].
A cerebellar model articulation controller neural network (CMACNN) method was
presented for diagnosing power transformer faults [19]. The CMACNN fault
diagnosis scheme functions like the human cerebellum and enables a powerful and
efficient fault diagnosis. The results also confirm that multiple incipient faults can
be detected simultaneously. An effective and flexible probabilistic neural network
(PNN) overcomes the slow repeated iterative process and poor adaptation capa-
bility for structural data of the conventional ANN [20]; diagnostic results con-
firmed the effectiveness of the PNN approach.

Self-organizing map (SOM)-based approach to analyzing DGA data has dem-
onstrated convincing performance in DGA for fault diagnosis [21]. The evolution
of incipient faults can now be visualized by plotting DGA trajectories, and the
incipient fault can thereby be monitored visually so that proper corrective actions
can be taken at the right time. Studies have reported the use of wavelet networks
(WN) and DGA samples for incipient fault detection in power transformers [22,
23]. A comparative study of evolving WN for incipient fault diagnosis in trans-
formers indicated that the diagnostic accuracy and efficiency of five WN
approaches are superior to those of conventional ANN and are suitable for fault
diagnosis of power transformers [24].

The novel hybrid self-adaptive training approach-based radial basis function
(RBF) neural network [25] showed several performance advantages over other
ANN: better approximation capability, simpler network structure, and faster
learning speed. The proposed method generated RBF neural network models based
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on fuzzy c-means and quantum-inspired particle swarm optimization (PSO), which
can automatically configure network structures and automatically obtain model
parameters.

84.4 Issuess for ANN Applications

Like expert system (ES), the ANN cannot directly handle fuzzy information. This
limitation comes from the basic configuration of the network: knowledge is dis-
tributed over the entire pattern of weights, and the weights are involved in each
decision. Moreover, operations of ANN are also obscured by nonlinearities. The
ANN knowledge is discreetly distributed throughout the network according to the
sample learning rather than stored in a knowledge base as in ES. When the dif-
ference between the training samples and the fault samples is very large, the
reasoning used by ANN to reach a conclusion is not clear.

An ANN shares many similarities with a fuzzy logic system (FLS). They both
use stored knowledge to make decisions about new inputs. Both can generalize;
both produce correct responses despite minor variations in the inputs. Table 84.1
summarizes the advantages and disadvantages of artificial intelligence approaches
for power transformer condition assessment. The performance of ES depends on
the quantity and quality of the obtained knowledge. The FLS explicitly displays
expert knowledge that is not extracted from the DGA data. The ANN performs in
transformer fault diagnoses but the knowledge it captured remains hidden in the
model. This paper suggests that hybrid intelligence-based systems, which combine
an ES, FLS, ANN, and computational intelligence for diagnosing transformer
faults, are the state-of-the-art condition assessment tools for power transformers.

Table 84.1 The advantages and disadvantages of artificial intelligence approaches

Method Advantages Disadvantages

ES • Inference by specialized knowledge and
experience

• Cannot obtain knowledge from new data
samples by self-learning

• Makes a decision similar to that made by
human experts

• Relies heavily on knowledge engineers
and domain experts

FLS • Manages decisions that involve imprecise
knowledge

• Requires identification of proper
membership functions

• Softens fault decision boundaries for
solving uncertainty problems

• Cannot learn directly from data samples

ANN • Accurately and efficiently captures input–
output relations by training

• Accuracy depends on correct and
complete training samples

• Excellent interpolation and extrapolation
capacity

• Difficulty in determining network
structures and parameters
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84.5 Conclusions

This paper has reviewed literature on transformer fault diagnosis and the great
progress made in recent decades. This review provides important information
about research directions and trends in the field of transformer condition moni-
toring using ANN. Although condition assessment of ANN can offer early warning
of insulation conditions, no single method can detect the full range of faults and
reliably estimate remnant life. Each method has its own strengths and weaknesses.
Moreover, a more useful method is to combine and integrate all the diagnosis
results obtained from major DGA approaches to present an overall evaluation.
Therefore, instead of using one diagnostic method, hybrid intelligent methods that
combine the strengths of each method require further study to improve detection of
incipient faults in power transformers.
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