Chapter 111
Bidirectional Ant Colony Optimization
Algorithm for Cloud Load Balancing

Shin-Hung Li and Jen-Ing G. Hwang

Abstract Cloud computing supplies convenient, on-demand network access to
shared computing resources. Although cloud computing has many advantages,
some core issues, such as load balancing, need to be resolved. Cloud load bal-
ancing provides a mechanism to allocate the appropriate workload for each virtual
machine in a cloud computing environment. One of the main characteristics of the
cloud computing environment is rapid change; therefore, a good load-balancing
method should adapt quickly to environment changes to achieve high perfor-
mance. This paper proposes a load-balancing method based on the Ant Colony
Optimization (ACO) algorithm and describes a simulation using the CloudSim
toolkit package. Experimental results show that the proposed method is an
effective ACO method for cloud balancing.

Keywords Cloud computing - Load balancing : Ant colony optimization -
Pheromones

111.1 Introduction

With the increasing popularity of cloud computing, the cloud faces a major
challenge in managing an extremely large number of service requests. In order to
maintain the stability of the system and provide good service, an effective load-
balancing technique for task scheduling in dynamic cloud environment is required.

S.-H. Li - J.-I. G. Hwang (IX)

Department of Computer Science and Information Engineering, Fu Jen Catholic University,
Taipei 24205, Taiwan, Republic of China

e-mail: jihwang@csie.fju.edu.tw

S.-H. Li
e-mail: 400226064 @mail.fju.edu.tw

J. Juang et al. (eds.), Proceedings of the 2nd International Conference on Intelligent 907
Technologies and Engineering Systems (ICITES2013), Lecture Notes in Electrical Engineering 293,
DOI: 10.1007/978-3-319-04573-3_111, © Springer International Publishing Switzerland 2014



908 S.-H. Li and J.-I. G. Hwang

Some researchers developed effective algorithms based on the behavior of social
animals, because social organisms can effectively adapt to a changing environ-
ment. For example, an ant colony can dynamically allocate tasks without a central
manager. The Ant Colony Optimization (ACO) algorithm has been used to solve
the load-balancing problem in Peer-to-Peer (P2P) environments [1, 2], and in grid
computing [3-5]. Recently, ACO has also been applied to the cloud environment
[6-8].

In this paper, an improved ACO algorithm is proposed for load balancing in the
cloud environment and the CloudSim tool [9, 10], is used to conduct simulations
for comparing the effectiveness of different load-balancing strategies.

The rest of the paper is organized as follows: Sect. 111.2 briefly describes the
simple ACO algorithm. Section 111.3 discusses the proposed bidirectional ACO
algorithm. Section 111.4 shows the experimental results. Finally, Sect. 111.5
presents conclusions.

111.2 Simple Ant Colony Optimization

Ant colony algorithms are computational swarm intelligence methods that were
inspired by a number of different behaviors observed in ant colonies. A simple
ACO algorithm was proposed by Dorigo et al. [11, 12].

Dorigo et al.’s ACO algorithm was based on the foraging behavior of ants while
searching for the shortest path between the ant nest and a food source. Likewise,
one can consider the general problem as finding the shortest path between two
nodes on a graph. During the shortest-path search, cooperation among the ants is
achieved by releasing pheromones to influence the behavior of other ants. How
forager ants decide which edge to follow is a probabilistic technique and depends
on the pheromone concentrations on different edges. Let t; be the pheromone
concentration between nodes of i and j in the graph. Initially, the value 7;0) is
assigned a random value to indicate the pheromone at time zero, and a number of
ants are placed at the starting node. Each ant then creates a path between the
starting node and the terminating node by determining the next edge from
the current node at every time step (iteration) ¢. The transition probability pg(t) of

the kth ant moving from node i to node j at time step ¢ is defined as

(t(1)* o .
~ oo T e (i)

uelJy (i) b
0 otherwise

(111.1)

where Ji(7) is the set of feasible nodes linked to node i along the path of the kth ant,
and o is a parameter used to intensify the influence of pheromone concentrations.
When an ant has traversed a path within the time step ¢, the ant retraces its path and
deposits pheromone on every edge of the path. The concentration of the deposited



111 Bidirectional Ant Colony Optimization Algorithm 909

pheromone on the edge (i, j) is inversely proportional to the length of the path.
That is,
1

(1) o ——— (111.2)

A k
AR 73y

i
where Arg is the deposited pheromone, and L*(¢) is the length of the path created
by the kth ant at time step 7. The total pheromone intensity of an edge is then
updated using Eq. (111.3).

(1 + 1) = (1 = feva) X rij(t)+§n:Arf;(t) (111.3)
k=1

where f3,,, is the pheromone evaporation rate with f3,,, € [0, 1], and n is the
number of ants. The iterations are executed until one of the terminating conditions
is true. The solution is the shortest path found among all the paths traversed by the
ants.

111.3 The Proposed Algorithm

In this paper, a Bidirectional Load Balancing ACO (BLBACO) algorithm that is
inspired by Li et al. [6] and Nishant et al. [7] is proposed. The BLBACO used the
Load Balancing ACO (LBACO) [6] characteristics to determine the loading and
computing capacity of each virtual machine, and BLBACO also adapted the
concept proposed in [7], where the movements of the ants in the system are defined
as either a forward movement or a backward movement. Forward movement is the
direction of ants moving from the nest to a food source, and backward movement
is the direction from the food source to the nest. In the computing cloud, forward
movement can be defined as the direction of an under-loaded virtual machine
(nest) seeking an over-loaded virtual machine (food), while backward movement is
the reversed direction. Once the search is completed, a portion of the tasks that
were originally assigned to the over-loaded virtual machine can be reassigned to
the under-loaded virtual machine.
The proposed algorithm performs the following procedures:

e Initialize pheromone
At the beginning, an amount of pheromone intensity is initialized at each virtual
machine, and each ant is randomly positioned on a virtual machine.

e Select a virtual machine



910 S.-H. Li and J.-I. G. Hwang

The probability of the kth ant selecting the jth virtual machine is calculated by
the following formula [6]:

o] [=v) 1] :
v - I...
p]k(l) = Z [Tu(n]l[EVu]ﬁ[LBlJ/ ’ lf € " (1114)

u€lJy (i)
0 , otherwise

where pj’-‘ (¢) is the probability of the kth ant selecting the virtual machine j at time
step 1, 7;(t) is the pheromone concentration deposited on the virtual machine j at
time step ¢,EV; is the computing capacity of the virtual machine j, LB; is the load
balancing factor of the virtual machine j, «, f, and y are parameters, and m is the
total number of virtual machines.

e Update pheromones

Two sets of formulae are used to update pheromones. If all virtual machines are
over-loaded or all virtual machines are under-loaded, a one-way update formula is
used; otherwise, a set of bidirectional update formula is used. The formulae are
described as follows:

Case 1: Ifall virtual machines are over-loaded state or all virtual machines are under-
loaded, a one-way formula is used to update the pheromone intensity:

Tt +1) = (1= Bog) % 7(t) + zn:m]’f(z) (111.5)
k=1

where 1;(¢) is the total pheromone intensity of node j at time step 1, Arj’? is the

pheromone deposited by ant k, and f3,,, is the pheromone evaporation rate as

defined in Eq. (111.3).

Case 2: If the cloud environment contains both over-loaded and under-loaded
virtual machines, two pheromone-update formulae are used [7]. The first
formula is used when an ant is at an under-loaded node and is searching
for an over-loaded node:

FPi(t+1) = (1 — B,,,)FP;(t +ZAFP’< (111.6)

where FP(t) is the total amount of foraging pheromone at node j at time step ¢, and
AFPJI-‘ is the pheromone deposited by ant k.

The other formula is used when an ant is at an over-loaded node and is returning
to the under-loaded node:

TPi(t+1) = (1 — B,,.)TP;(t +ZATP" (111.7)



111 Bidirectional Ant Colony Optimization Algorithm 911

Table 111.1 Number of virtual machines = 50 (fixed)

Iteration Algorithm 500 tasks 300 tasks 100 tasks 50 tasks 25 tasks
Makespan (ms)

1 LBACO 93.86 83.27 60.55 35.17 22.13
BLBACO 87.77 77.98 54.34 24.48 20.38
30 LBACO 82.11 73.18 52.95 27.34 18.39
BLBACO 76.09 69.38 45.71 19.11 16.80
70 LBACO 74.62 68.75 48.17 24.24 15.76
BLBACO 69.78 65.25 42.81 16.02 14.43
100 LBACO 64.0 58.91 39.69 20.15 11.72
BLBACO 58.10 55.86 36.15 11.32 10.96

Table 111.2 Number of virtual machines = Number of tasks

Iteration Algorithm 500 tasks 300 tasks 100 tasks 50 tasks 25 tasks
Makespan (ms)

1 LBACO 52.64 48.55 48.85 46.44 47.70
BLBACO 38.62 34.83 35.05 34.84 36.37
30 LBACO 46.58 38.88 43.19 40.74 41.71
BLBACO 34.18 28.57 30.22 29.08 31.05
70 LBACO 40.01 35.29 37.49 37.44 36.39
BLBACO 32.25 26.44 27.688 26.33 28.46
100 LBACO 34.75 31.88 31.15 31.64 30.30
BLBACO 28.028 22.83 23.82 22.59 23.95

where TP(t) is the total amount of tracing pheromone of node j at time step ¢, and
ATP}‘ is the pheromone deposited by ant k.

111.4 Experimental Results

The proposed BLBACO algorithm was implemented using the Java language and
was tested on the CloudSim platform [9, 10]. The LBACO [6] algorithm has
outperformed the First-Come-First-Serve (FCFS) algorithm and the basic ACO
algorithm. In addition, the approach proposed by Nishant et al. [7] is not suitable
for a dynamic environment. Therefore, the proposed BLBACO algorithm com-
pared with LBACO [6]. The experiments used the parameter settings in [6]; that is,
the number of ants n is 8, the pheromone evaporation rate f,,, is 0.01, and the
parameters «, f3, and y in Eq. (111.4) are 3, 2, and 8, respectively.

In the first category of experiments, we fixed the total number of virtual
machines to be 50 in each trial, and we varied the number of task requests to be
500, 300, 100, 50, and 25 in different trials. BLBACO and LBACO each executed
5 times for each trial. The makespan averages are shown in Table 111.1.



912 S.-H. Li and J.-I. G. Hwang

Experiment 1 Experiment 2
100 - 100 -
ﬁ 01 r'i 07 - = LBACO
X 704 X 70
“ - ——BLBACO
ﬁ €0 - ™ 60
!—
= 50 50._.
s -
@ 40 @ 40 Mo
%m. — — LBACO &m""'——_ ‘‘‘‘‘
g 20 - ~——BLBACO g 2. S——
® 10 - m 10
2 o . . ’ . S 0 hrrm— _
TOLMARRIRBIRRGER TORARRIRRIRRESS
Iteration Iteration

Fig. 111.1 Overall performance of the first experiment category with 500 tasks (/eft) and of the
second category experiment with 300 tasks (right)

The second category of experiments verified the effectiveness of load-balancing
strategies when the cloud environment contains both over-loaded and under-
loaded virtual machines. To simplify the experiments, we set an equal number of
virtual machines and task requests, and we assumed that the system would contain
both under-loaded and over-loaded nodes. The results are listed in Table 111.2. To
easily compare the performance of BLBACO with the performance of LBACO,
we choose one trial from each category of experiments. The left panel of
Fig. 111.1 shows the performance of the first category experiment with 50 virtual
machines and 500 task requests, and the right panel shows the performance of the
second category experiment with 300 virtual machines and 300 task requests.
Based on the experimental results, the performance of BLBACO is better than that
of LBACO. This validates the effectiveness of the proposed BLBACO algorithm.

111.5 Conclusions

In this paper, an improved method of cloud load balancing based on the ACO
algorithm was proposed. The proposed BLBACO algorithm considers the loading
and computing capacity of each virtual machine with bidirectional movement in
ACO. The experiments showed that the BLBACO algorithm has better perfor-
mance compared to LBACO [6]. This indicates that BLBACO can effectively deal
with task allocation in a dynamic cloud environment.



111 Bidirectional Ant Colony Optimization Algorithm 913
References

1. Montresor, A., Meling, H., & Babaoglu, O. (2002). Messor: Load-balancing through a swarm
of autonomous agents. In AP2PC (pp. 125-137).

2. Michlmayr, E. (2006). Ant algorithms for search in unstructured peer-to-peer networks. In
22th IEEE International Conference on Data Engineering Workshops. Atlanta, GA, USA.

3. Salehi, M. A., Deldari, H. (2006). Grid load balancing using an echo system of intelligent
ants. In 24th IASTED Parallel and Distributed Computing and networks.

4. Fidanova, S., & Durchova, M. (2006). Ant Algorithm for Grid Scheduling Problem. In I.
Lirkov, S. Margenov, & J. Wasniewski (Eds.), LSSC 2005. LNCS (Vol. 3743, pp. 405-412).
Heidelberg: Springer.

5. Lee, Y. H., Leu, S., & Chang, R. S. (2011). Improving job scheduling algorithms in a grid
environment (Vol. 27, pp. 991-998). Amsterdam: Future generation computer systems,
FGCS.

6. Li, K., Xu, G., Zhao, G., Dong, Y., & Wang, D. (2011). Cloud task scheduling based on load
balancing ant colony optimization. In Conference of ChinaGrid (pp. 3-9). Liaoning.

7. Nishant, K., Sharma, P., Krishna, V., Gupta, C., Singh, K. P., Nitin, N., & Rastogi, R. (2012).
Load balancing of nodes in cloud using ant colony optimization. In /4th International
Conference on Conference of Modelling and Simulation. Cambridge.

8. Kansal, N. J. (2012). Existing load balancing Techniques in cloud computing: A systematic
review. Journal of Information Systems and Communication.

9. Wickremasinghe, B., Calheiros, R. N., & Buyya, R. (2010). CloudAnalyst: A cloudsim based
visual modeller for analysing cloud computing environments and applications. In 24th IEEE
International Conference on Advanced Information Networking and Applications (pp.
446-452). Perth, WA.

10. Buyya, R., Ranjan, R., & Calheiros, R. N (2010) CloudSim: A toolkit for modeling and
simulation of cloud computing environments and evaluation of resource provisioning
algorithms. In IEEE International Conference on High Performance Computing (Vol. 41,
pp. 23-50).

11. Dorigo, M., & Di Caro, G. (1999). Ant colony optimization: A new meta-heuristic. In: D.
Corne, M. Dorigo, & F. Glover (Eds.), New ideas in optimization (pp. 11-32).

12. Dorigo, M., & Stiitzle, T. (2001). An experimental study of the simple ant colony
optimization algorithm. In WSES International Conference on Evolutionary Computation
(pp. 253-258).



	111 Bidirectional Ant Colony Optimization Algorithm for Cloud Load Balancing
	Abstract
	111.1…Introduction
	111.2…Simple Ant Colony Optimization
	111.3…The Proposed Algorithm
	111.4…Experimental Results
	111.5…Conclusions
	References


