
Chapter 9
Embedded GOE Ensembles for Interacting
Boson Systems: BEGOE(1 + 2) for Spinless
Bosons

In Chaps. 4–8 EE for fermion systems are discussed in detail with analytical and
numerical results. In the present chapter and the next chapter, we will consider
EE for finite interacting boson systems (called BEE with ‘B’ for bosons). Unlike
for fermion systems, for fixed number (N ) of sp states, boson number m can in-
crease beyond N and therefore a dense limit with m → ∞ (complete definition
given ahead) is possible and this is one new aspect of boson systems. Also, BEE are
important because of the increasing interest in investigating (using experiments and
theory) BEC and quantum gases in general. As Asaga et al. state [1]: In an atomic
trap, bosonic atoms occupy partly degenerate single particle states. The interaction
will lift the degeneracy. A random matrix approach should reveal the generic fea-
tures of the resulting system. In addition, BEE are also important in understanding
certain aspects of the Interacting Boson Model (IBM) of atomic nuclei [2–5]. To get
started with BEE, we will first consider BEGOE(1 + 2) for spinless boson systems
in this chapter.

9.1 Definition and Construction

The BEGOE(2)/BEGUE(2) ensemble for spinless boson systems is generated by
defining the two-body Hamiltonian H to be GOE/GUE in two-particle spaces and
then propagating it to many-particle spaces by using the geometry of the many-
particle spaces [this is in general valid for k-body Hamiltonians, with k < m, gener-
ating BEGOE(k)/BEGUE(k)]. Consider a system of m spinless bosons occupying
N sp states |νi〉, i = 1,2, . . . ,N ; see Fig. 9.1. Then, BEGOE(2) is defined by the
Hamiltonian operator,

̂H(2) =
∑

νi≤νj ,νk≤νl

〈νkνl | ̂H(2)|νiνj 〉
√

(1 + δij )(1 + δkl)

b†
νk

b†
νl

bνi
bνj

, (9.1)
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Fig. 9.1 Some m boson configurations or basis states for m = 10 spinless bosons in N = 5 sp
states. Enumeration of the configurations is similar to distributing m particles in N boxes with the
conditions that the occupancy of each box lies between zero and m and the maximum number of
occupied boxes equals m. In the figure, (a) corresponds to the basis state |(ν1)

10〉, (b) corresponds
to the basis state |(ν1)

6(ν2)
3ν3〉, (c) corresponds to the basis state |(ν1)

2(ν2)
2(ν3)

2(ν4)
2(ν5)

2〉 and
(d) corresponds to the basis state |ν4(ν5)

9〉

with the symmetries for the symmetrized two-body matrix elements 〈νkνl | ̂H(2)|νiνj 〉
being,

〈νkνl | ̂H(2) | νj νi〉 = 〈νkνl | ̂H(2) | νiνj 〉,
〈νkνl | ̂H(2) | νiνj 〉 = 〈νiνj | ̂H(2) | νkνl〉.

(9.2)

Note that |νiνj 〉 denote two-boson symmetric states. The action of the Hamilto-
nian operator defined by Eq. (9.1) on an the basis states, defined by distributions
of bosons in the sp states as shown in Fig. 9.1, generates the H matrix in m-boson
spaces. Note that bνi

and b†
νi

in Eq. (9.1) annihilate and create a boson in the sp state
|νi〉, respectively. The Hamiltonian matrix H(m) in m-particle spaces contains three
different types of non-zero matrix elements and explicit formulas for these are [6],

〈

∏

r=i,j,...

(νr )
nr

∣

∣

∣

∣
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∣

∣

∣

∣
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(νr )
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∑

i≥j

ni(nj − δij )

(1 + δij )
〈νiνj | ̂H(2)|νiνj 〉,

〈

(νi)
ni−1(νj )

nj +1
∏

r ′=k,l,...

(νr ′)nr′
∣

∣

∣

∣

̂H(2)

∣

∣

∣

∣

∏

r=i,j,...

(νr )
nr

〉
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∑

k′

[

ni(nj + 1)(nk′ − δk′i )2

(1 + δk′i )(1 + δk′j )

]1/2

〈νk′νj | ̂H(2)|νk′νi〉, (9.3)
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〈

(νi)
ni+1(νj )

nj +1(νk)
nk−1(νl)

nl−1
∏

r ′=m,n,...

(νr ′)nr′
∣

∣

∣

∣

̂H(2)

∣

∣

∣

∣

∏

r=i,j,...

(νr )
nr

〉

=
[

nk(nl − δkl)(ni + 1)(nj + 1 + δij )

(1 + δij )(1 + δkl)

]1/2

〈νiνj | ̂H(2)|νkνl〉.

Note that all other m-particle matrix elements are zero due to two-body selection
rules. In the second equation in Eq. (9.3), i 	= j and in the third equation, four
combinations are possible: (i) k = l, i = j , k 	= i; (ii) k = l, i 	= j , k 	= i, k 	=
j ; (iii) k 	= l, i = j , i 	= k, i 	= l; and (iv) i 	= j 	= k 	= l. BEGOE(2) for spinless
boson systems is defined by Eqs. (9.2) and (9.3) with the H matrix in two-particle
spaces represented by GOE(v2). Now the m-boson BEGOE(2) Hamiltonian matrix
ensemble is denoted by {H(m)}, with {H(2)} being a GOE. Note that the H(m)

matrix dimension is

db(N,m) =
(

N + m − 1

m

)

(9.4)

and the number of independent matrix elements is db(N,2)[db(N,2) + 1]/2. The
subscript ‘b’ in db(N,m) stands for ‘bosons’. Using Eqs. (9.2) and (9.3) with GOE
representation for H in two-particle spaces, computer codes have been developed
for constructing BEGOE(2) ensemble [7].

Extension of BEGOE(2) to BEGOE(1 + 2) incorporating mean-field one-body
part is straightforward. The BEGOE(1 + 2) Hamiltonian is,

{ ̂H }BEGOE(1+2) =̂h(1) + λ
{

̂V (2)
}; ̂h(1) =

N
∑

i=1

εi n̂i . (9.5)

The ̂V (2) above is same as ̂H(2) in Eq. (9.1) and the two-particle matrix elements of
̂V (2) are Vijkl = 〈i, j |̂V (2)|k, l〉. Similarly, εi in Eq. (9.5) are sp energies and they
can be fixed or drawn from an appropriate random ensemble as in EGOE(1 + 2).
Now on, we will drop the hat over H , h and V when there is no confusion. The m

particle matrix for H in Eq. (9.5) follows from Eqs. (9.2) and (9.3) by just adding
the h(1) contribution to the diagonal matrix elements,

〈

∏

r=i,j,...

(νr )
nr

∣

∣

∣

∣

h(1)

∣

∣

∣

∣

∏

r=i,j,...

(νr )
nr

〉

=
∑

r=i,j,...

nrεr . (9.6)

We assume that the sp energies given by h(1) have average spacing Δ. The λ pa-
rameter is expressed in units of Δ and we assume without loss of generality Δ = 1.
Clearly, it is easy to construct BEGOE(1 + 2) matrices on a computer using the
code for BEGOE(2). However, the matrix dimensions makes the calculations pro-
hibitive for larger vales of (m,N). For example db(5,10) = 1001, db(6,12) = 6188,
db(6,20) = 53130, db(8,20) = 888030 and db(10,20) = 10015005.

It is important to stress that, unlike for fermionic EE, there are only a few BEE
investigations in literature [1, 6, 8–11]. Moreover, for interacting spinless boson
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Fig. 9.2 Young tableaux for
various tensor parts of
two-body operators with
respect to SU(N) for spinless
boson systems. Figure 5.1a
gives the tensor parts for
one-body operators (Color
figure online)

systems with m bosons in N sp orbitals, dense limit defined by m → ∞, N →
∞ and m/N → ∞ is also possible as m can be greater than N for bosons. Also,
many of the results for bosons, as discussed ahead, can be obtained from those for
fermions by using N → −N symmetry and a m → N symmetry [12–15].

Using BEGOE(1 + 2) codes, in many numerical examples, eigenvalue densi-
ties ρ(E) are constructed and they are seen to be close to Gaussian in form. Due
to growing matrix dimensions, most of the calculations are restricted to N = 4,5
with m = 10–12 giving reasonable examples for the dense limit [6, 9, 16]. See
Fig. 5.2 for an example. In order to further confirm that ρ(E) is close to Gaussian
for BEGOE(1 + 2), analytical formulas for the first four moments of the eigenvalue
density are derived for a given ̂H(1 + 2). Before turning to them it is useful to men-
tion that a more symmetrized form of Vijkl will be useful and to this end introduced
are Vijkl where

Vijkl =
√

(1 + δij )(1 + δkl)Vijkl . (9.7)

Then, the V (2) operator takes the form

V (2) = 1

4

∑

i,j,k,l

Vijklb
†
i b

†
j bkbl. (9.8)

In the next two subsections λV (2) is called V (2).

9.2 Energy Centroids and Spectral Variances: U(N) Algebra

Embedding algebra for BEGOE(1+2) is U(N). As one and two boson states trans-
form the U(N) irreps {1} and {2} in Young tableaux notation, the one and two boson
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creation operators also transform as {1} and {2}. Then, one and two boson annihila-
tion operators transform as {1N−1} and {2N−1} respectively. Therefore, h(1) trans-
form as {1} × {1N−1} = [{1N } = {0}] ⊕ {21N−2} = (ν = 0) + (ν = 1) irreps (or
tensors). Note that here we have used U(N) ↔ SU(N) equivalence. Similarly V (2)

transforms as {2} × {2N−1} = [{2N } = {0}] ⊕ [{32N−21} = {21N−2}] ⊕ {42N−2} =
(ν = 0) + (ν = 1) + (ν = 2) irreps (or tensors). Figures 5.1a and 9.2 show these
decompositions in terms of Young tableaux for one-body and two-body operators
respectively. Given H = h(1) + V (2) as defined by Eqs. (9.5)–(9.8), it is possible
to write explicitly its U(N) decomposition into various ν parts. Firstly, it is easy to
recognize the ν = 0 part as it should be a scalar with respect to U(N), i.e. it should
be a polynomial in n̂. The result is,

Hν=0(1 + 2) = hν=0(1) + V ν=0(2) = ε0n̂ + V0

(

n̂

2

)

;

ε0 = 1

N

∑

i

εi , V0 = 1

2N(N + 1)

∑

i,j

Vij ij .

(9.9)

Little thought will give the ν = 1 parts of h(1) and V (2),

Hν=1(1 + 2) = hν=1(1) + V ν=1(2),

hν=1(1) =
∑

i

εν=1
i n̂i; εν=1

i = εi − ε0,

V ν=1(2) = (n̂ − 1)
∑

i,j

ζi,j b
†
i bj ;

ζi,j = 1

N + 2

∑

k

(

Vikjk − δij

1

N

[

∑

m,n

Vmnmn

])

.

(9.10)

Thus, V ν=1 corresponds to an effective (m-dependent) mean-field producing part
of V (2) and it is in general off-diagonal in the original mean-field basis, i.e. ζij 	= 0
for i 	= j . Finally, V ν=2(2) part is given by

V ν=2(2) = V (2) − V ν=0(2) − V ν=1(2);
V ν=2

ij ij = Vijij − V0 − ζi,i − ζj,j ,

V ν=2
ikjk = Vikjk −

√

(1 + δik)(1 + δjk)ζ(i, j); i 	= j,

V ν=2
ijkl = Vijkl; for all other cases.

(9.11)

Also, we can write the V ν=2(2) operator as

V ν=2(2) = 1

4

∑

i,j,k,l

˜Vijklb
†
i b

†
j bkbl; ˜Vijkl =

√

(1 + δij )(1 + δkl)V ν=2
ijkl . (9.12)
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Just as for fermion systems, propagation equation for boson systems for the m-
particle average of a k-body operator A(k) is simple,

〈

A(k)
〉m =

(

m

k

)

〈

A(k)
〉k

. (9.13)

Similarly, the various ν pats of A(k) will be orthogonal with respect to averages over
the m-boson spaces, i.e. 〈Aν1Bν2〉m = δν1ν2〈Aν1Bν1〉m. As the m particle averages
are polynomials in m, using Eq. (9.13) we obtain easily the propagation equations
for the energy centroids and spectral variances,

Ec(m) = 〈

H(1 + 2)
〉m = mε0 +

(

m

2

)

V0,

σ 2(m) = 〈(

H − Hν=0
)2〉m = 〈(

Hν=1
)2〉m + 〈(

Hν=2
)2〉m;

〈(

Hν=1
)2〉m = m(m + N)

N(N + 1)

∑

i,j

ξij (m)ξji(m),

ξij (m) = εν=1
i δij + (m − 1)ζij ,

〈(

Hν=2
)2〉m = m(m − 1)(N + m)(N + m + 1)

N(N + 1)(N + 2)(N + 3)

1

4

∑

i,j,k,l

˜Vijkl
˜Vklij .

(9.14)

Using Eq. (9.14) we can calculate ensemble average values for the energy centroids
(they come from h(1) only) and spectral variances for any m and with these, Gaus-
sian eigenvalue densities can be constructed. However, to prove that the dense limit
gives Gaussian form, formulas for the third and fourth moments are needed as dis-
cussed below.

9.3 Third and Fourth Moment Formulas: Gaussian Eigenvalue
Density in Dense Limit

For fermion systems, formulas for the third and fourth moments 〈(H − Hν=0)i〉m,
i = 3,4 are derived in detail by several authors using diagrammatic methods [17,
18]. They can be extended to boson systems by using N → −N symmetry [12–15],
i.e. by substituting −N for N in the expressions for moments of fermion systems
and then taking absolute values of each term, one obtains the expressions for boson
systems. The final formulas for 3rd and 4th moments are [12] as follows. Firstly,
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formula for the 3rd central moment is

M3 = 〈(

H − Hν=0
)3〉m

= m(N + m)(N + 2m)

N(N + 1)(N + 2)
X1

+
∑

s=2,3

(

m

s

)(

N + m + 1

2

)(

s + 2

2

)−1(
N + s + 1

s + 2

)−1

Xs + 〈

( ˜V )3〉m;

X1 =
∑

i,j,k

ξij (m)ξjk(m)ξki(m), X2 = 3D1 + 3

2
E1, X3 = 3E1,

D1 =
∑

i,j,k,l

˜Vijklξik(m)ξjl(m),

E1 =
∑

i,j,k,l,r

˜Vijkl
˜Vkrij ξlr (m).

(9.15)
Formula for 〈( ˜V )3〉m is given ahead. Going further, formula for the fourth central
moment is,

M4 = 〈(

H − Hν=0)4〉m

= m(N + m)

N(N + 1)
M2 +

∑

s=2,3

(

m

s

)(

N + m + 1

2

)(

s + 2

2

)−1(
N + s + 1

s + 2

)−1

Ys

+
∑

s=2,3

(

m

s + 1

)(

N + m + 2

3

)(

s + 4

3

)−1(
N + s + 3

s + 4

)−1

Zs + 〈

( ˜V )4〉m;

Y2 = 12K1 + 2(G1 + G2 + G3) + F1 + 3(M1)
2 + 6M2,

Y3 = 24K1 + 2F1,

Z2 = 12G1 + 6G2 + 12G3 + 12G4 + 3

2
G5 + 2F1 + 12F2 + 6F3,

Z3 = 4F1 + 24F2 + 12F3,

M1 =
∑

i,j

ξij (m)ξji(m), M2 =
∑

i,j,k,l

ξij (m)ξjk(m)ξkl(m)ξli (m),

K1 =
∑

i,j,k,l,r

˜Vijklξik(m)ξjr (m)ξrl(m),

G1 =
∑

i,j,k,l,r,s

˜Vijkl
˜Vksij ξir (m)ξrs(m), G2 =

∑

i,j,k,l,r,s

˜Vijkl
˜Vrsij ξkr (m)ξls(m),

G3 =
∑

i,j,k,l,r,s

˜Vijkl
˜Vkrisξlr (m)ξsj (m), G4 =

∑

i,j,k,l,r,s

˜Vijkl
˜Vkrisξj l(m)ξrs(m),
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G5 =
[

∑

i,j,k,l

˜Vijkl
˜Vklij

][

∑

r,s

ξrs(m)ξsr (m)

]

,

F1 =
∑

i,j,k,l,r,s,p

˜Vijkl
˜Vkprs

˜Vrsij ξlp(m), F2 =
∑

i,j,k,l,r,s,p

˜Vijkl
˜Vlrjs

˜Vspriξkp(m),

F3 =
∑

i,j,k,l,r,s,p

˜Vijkl
˜Vklrj

˜Vrpisξsp(m).

(9.16)

Finally, formula for 〈 ˜V r 〉m, valid for r = 2,3 and 4, is given by

〈

( ˜V )r
〉m =

r
∑

s=2

(

m

s

)(

N + s + m − 1

s

)(

2s

s

)−1(
N + 2s − 1

2s

)−1

Cs
r ;

C2
2 = 1

4

∑

i,j,k,l

˜Vijkl
˜Vklij , C2

3 = 1

8

∑

i,j,k,l,r,s

˜Vijkl
˜Vklrs

˜Vrsij ,

C3
3 = 2C2

3 +
∑

i,j,k,l,r,s

˜Viljk
˜Vkslr

˜Vrjsi , C2
4 = 1

16
(AA1),

C3
4 = 1

4
(AA1) + (CC1) + 1

2
(BA1) + 2(CA1),

C4
4 = 3

8
(AA1) + 6(CC1) + 3(BA1) + 6(CA1) + 3(AB1) + 3

(

C2
2

)2
,

AA1 =
∑

i,j,k,l,r,s,o,p

˜Vijkl
˜Vklrs

˜Vrsop
˜Vopij ,

AB1 =
∑

i,j,k,l,r,s,o,p

˜Vijkl
˜Vlrjs

˜Vsorp
˜Vpkoi,

BA1 =
∑

i,j,k,l,r,s,o,p

˜Vijkl
˜Vklis

˜Vrsop
˜Voprj ,

CA1 =
∑

i,j,k,l,r,s,o,p

˜Vijkl
˜Vkrso

˜Volrp
˜Vspij ,

CC1 =
∑

i,j,k,l,r,s,o,p

˜Vijkl
˜Vrsjo

˜Volsp
˜Vpkri .

(9.17)

By numerical construction of various members of BEGOE(1 + 2) with some values
for (m,N,λ), formulas given by Eqs. (9.14)–(9.17) have been verified and they in
turn provide a good test of the BEGOE(1 + 2) codes. Some examples are as follows
[19]. For m = 8,12,20 and 400 with N = 5, γ2 values are −0.21, −0.11, −0.05
and −0.03 respectively. Similarly, for m = 12,20 and 400 with N = 12, the γ2

values are −0.17, −0.07 and −0.01 respectively. For sufficiently large values for
N (N > 5) and m � N , |γ2| < 0.3 (γ1 ∼ 0 as expected) for BEGOE(2). Analytical
formula for γ2 can be obtained by considering V ν=2(2). In the strict dense limit,
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only this part will generate γ2 for BEGOE(2). Equations (9.17) and (9.14) will give,

γ2(m,N)
m→∞−→ (N + 2)(N + 3)P

(N + 5)(N + 6)(N + 7)
− 3;

P = 6
(N + 4)(N + 5)2

(N + 2)(N + 3)

[

γ2(4,N) + 3
]

− 6
(N + 4)(N + 6)

(N + 2)

[

γ2(3,N) + 3
] + (N + 7)

[

γ2(2,N) + 3
]

.

(9.18)
For sufficiently large N , γ2(m,N) for m = 2,3 and 4 will be given by Eq. (4.32), i.e.
γ2(m) ∼ (

m
2

)−1(m−2
2

) − 1. Then, γ2(2,N) = γ2(3,N) = −1 and γ2(4,N) = −5/6.
These and Eq. (9.18) will lead to

γ2(∞,N) = −2(2N + 11)/(N + 6)(N + 7). (9.19)

Therefore in the dense limit [6],

γ2
dense limit−→ − 4

N
(9.20)

and this is good for N ≥ 20. The dense limit result for BEGOE(2) as given by
Eq. (9.20) should be compared to the result γ2(m) → −4/m for EGOE(2) for
fermions in the dilute limit. Thus there is a m → N symmetry between fermions
in dilute limit and bosons in the dense limit. Thus, for sufficiently large values of
N , BEGOE(2) gives Gaussian eigenvalue densities in the dense limit. However,
even for small N as seen from Eq. (9.19), the Gaussian form is valid. For example
for N = 5, we have γ2(∞,N) = −0.32 and therefore for the dense boson systems
N > 5 is sufficient for obtaining the Gaussian form.

Simplifications used above are some what complicated for BEGOE(1 + 2).
However, it can be shown easily [12] that reasonable h(1) will give Gaussian
densities in the dense limit. Combining this with the EGOE(2) Gaussian densi-
ties, one can argue that BEGOE(1 + 2) in general, independent of λ value, gives
Gaussian eigenvalue densities; see Fig. 5.2. Numerical calculations for sufficiently
large value for N (N > 5) and m � N have indeed shown that |γ2| < 0.3 (sim-
ilarly γ1) for BEGOE(1 + 2). Some examples with λ = 0.025 and sp energies
given by εi = i + 1/i are as follows [19]. With m = 10, for N = 4, 6 and 8,
(γ1, γ2) = (0.16,−0.43), (0.13,−0.29) and (0.09,−0.25) respectively. Similarly,
With m = 5000, for N = 4,8 and 12, (γ1, γ2) = (0.0,−0.41), (0.0,−0.2) and
(0.0,−0.13) respectively.
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9.4 Average-Fluctuation Separation and Ergodicity
in the Spectra of Dense Boson Systems

9.4.1 Average-Fluctuation Separation

For boson systems we will consider BEGOE(2) and the dense limit defined by
m → ∞, N → ∞ and m/N → ∞. As discussed in Sect. 4.3.1, level motion in
BEGOE(2) is given by Eqs. (4.44) and (4.50) as the eigenvalue density in the dense
limit is close to a Gaussian. To apply Eq. (4.50), we need Σ̃rr . A formula for this is
obtained as follows.

In two particle space, the H matrix is GOE and therefore the two particle matrix
elements Hαβ are independent Gaussian variables with Hαβ = 0, H 2

αα = 2υ2 and

H 2
αβ = υ2 for α 	= β . Now the two particle variance is,

〈

H 2
〉m=2 =

(

N + 1

2

)−1
∑

α,β

H 2
αβ

=
(

N + 1

2

)−1 {(

N + 1

2

){(

N + 1

2

)

− 1

}

υ2 +
(

N + 1

2

)

2υ2
}

. (9.21)

For large N , the above equation simplifies to 〈H 2〉m=2 = N2υ2/2. Therefore the
m-particle variance σ 2(m), from Eq. (9.14), is

σ 2(m) = 〈

H 2〉m → 〈(

Hν=2)2〉m

= m(m − 1)(N + m)(N + m + 1)

N(N + 1)(N + 2)(N + 3)

〈〈

H 2〉〉m=2
. (9.22)

Then in the dense limit, using the normalization 〈H 2〉m=2 = σ 2(2) = N2υ2/2 = 1,
we have

σ 2(m) =
(

m

2

)2(
N

2

)−1

. (9.23)

Now, the variance Σ11 of the centroid fluctuations is given by

Σ11 = 〈H 〉m〈H 〉m − 〈H 〉m 〈H 〉m = m(m − 1)

N(N + 1)

∑

α

Hαα

m(m − 1)

N(N + 1)

∑

β

Hββ

= m4

N4

∑

α

H 2
αα = m4

N4

(

N + 1

2

)

2υ2 = 2
m4

N4

〈

H 2(2)
〉m=2

⇒ Σ̃11 = 2
m4

N4
. (9.24)
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In the last step in Eq. (9.24) we have used the normalization that σ 2(2) = 1 and also
HααHββ = 0 for α 	= β . Similarly the expression for the variance of the variance

fluctuations Σ22 = 〈H 2〉m〈H 2〉m − 〈H 2〉m 〈H 2〉m is derived as follows. First we
use

〈

H 2〉m = m(m − 1)(N + m)(N + m + 1)

N(N + 1)(N + 2)(N + 3)

〈

H 2〉2

m→∞,
N→∞=

m/N→∞
m4

N4
2

∑

α≥β

H 2
αβ. (9.25)

Then,

Σ22 = 4
m8

N8

∑

α�β
γ�δ

H 2
αβH 2

γ δ − 4
m8

N8

∑

α�β

H 2
αβ

∑

γ�δ

H 2
γ δ

= 4
m8

N8

{

∑

α�β

H 4
αβ+

∑

αβ 	=γ δ
α�β
γ�δ

H 2
αβ H 2

γ δ −
∑

α�β

H 2
αβ

∑

γ�δ

H 2
γ δ

}

= 4
m8

N8

{

∑

α�β

H 4
αβ−

∑

α�β

(

H 2
αβ

)2 +
∑

α�β
γ�δ

H 2
αβ H 2

γ δ −
∑

α�β
γ�δ

H 2
αβ H 2

γ δ

}

= 4
m8

N8

{

3
∑

α�β

υ4−
∑

α�β

υ4
}

= 4
m8

N8
2

{

1

2

(

N + 1

2

)((

N + 1

2

)

+ 1

)}

υ4

� 4
m8

N8

(〈

H 2(2)
〉m=2)2

. (9.26)

Now using the normalization that σ 2(2) = 1 gives

Σ̃22 = 4
m8

N8
. (9.27)

Following Eqs. (9.24) and (9.27), it is conjectured [6] that in general Σ̃ζζ is,

Σ̃ζζ = 〈

Hζ
〉m〈

Hζ
〉m = 2ζ

m4ζ

N4ζ
= 2ζ

(

m

2

)2ζ (
N

2

)−2ζ

. (9.28)
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Note that for a k-body Hamiltonian, it is plausible that Σ̃ζζ = 2ζ
(

m
k

)2ζ (N
k

)−2ζ
. Com-

bining (9.23), (9.28) and (4.50) will give,

(

S2
ζ

) = 2ζ

(

N

2

)−ζ

. (9.29)

Substituting this in Eq. (4.44) gives for the level motion in dense limit for
BEGOE(2),

(δE)2

D(E)
2

BEGOE(2)=
(

N + m − 1

m

)2(
m

2

)2(
N

2

)−2
[

ρG (E)
]2

×
{

∑

ζ≥1

(ζ !)−22ζ

(

N

2

)−ζ
[

Heζ−1(Ê)
]2

}

Ê=0→ 1

π

(

N+m−1
m

)2

(

N
2

)

{

1 + 1

12

(

N

2

)−2

+ 1

320

(

N

2

)−4

+ · · ·
}

. (9.30)

Thus, just as for fermions (see Chap. 4), as ζ increases, deviations in (δE)2 from the

leading term rapidly go to zero due to the
(

N
2

)−2r
, r = 1,2, . . . terms in Eq. (9.30).

There will be no change until ζ ∼ N/2, thereby defining separation. Beyond this,
as pointed out first for bosons by Patel et al. [6] using numerical calculations, for
ζ � N/2 the deviations grow, i.e. fluctuations set in and they will tend to that of
GOE. This is further tested using more numerical calculations in [16]. Comparing
Eq. (9.30) with Eq. (4.54), one sees again m ↔ N symmetry between dilute fermion
and dense boson systems.

9.4.2 Ergodicity in BEGOE(2)

An important question raised by Asaga et al. [8], investigating BEGUE(k) is that
the bosonic ensembles are not ergodic. This was inferred from the study of level
fluctuations for large number of bosons in two and three sp states. Turning to boson
systems it is seen from Eqs. (9.24) and (9.27), in the dense limit, scaled Σ11 and
Σ22 are

̂Σ11 = Σ11(m)

〈H 2〉m
→ 4

N2
,

̂Σ22 = Σ22(m)

{〈H 2〉m}2
→ 16

N4

(9.31)

for BEGOE(2) and they remain valid even for BEGOE(k). Secondly, as m → ∞ and
N finite, still the BEGOE(k) matrix dimension is infinity. Thus, we have a situation
where the matrix dimension is infinite and the centroid and variance fluctuations are
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Fig. 9.3 Centroid (Ec),
variance (σ 2), skewness (γ1)
and excess (γ2) parameters
for the eigenvalue density of a
200 member BEOE(2)
systems with 5000 bosons in
N sp states and N = 2–12.
Figure shows average values
(filled circle) and widths of
the fluctuations (vertical
bars) of (a) Ec normalized by
{σ 2}1/2, (b) σ 2 normalized
by σ 2, (c) γ1 and (d) γ2.
Figure is taken from [9] with
permission from Elsevier

not zero. Therefore, BEGOE(k) [similarly BEGUE(k)] is not ergodic if the dense
limit is defined by m → ∞ and N finite [1, 8]. However if we follow the definition
used in the beginning of this section, then in the dense limit with sufficiently large
N value fluctuations in centroids and variances will tend to zero; see also Fig. 9.3.
Going beyond this, fluctuations in γ1 and γ2 have been studied numerically for
sufficiently large N values and very large m values using the formulas given in
Sect. 9.3. As seen from Fig. 9.3, numerical results clearly establish that the variances
in γ1 and γ2 rapidly go to zero in the dense limit as N increases. Thus in the dense
limit defined by m → ∞, N → ∞ and m/N → ∞, BEGOE(k) [also BEGUE(k)
discussed in Chap. 11] will be ergodic [9].

9.5 Poisson to GOE Transition in Level Fluctuations: λc Marker

In Chaps. 5 and 6 it is seen that fermion systems exhibit three transition markers and
these play an important role in statistical nuclear spectroscopy and in mesoscopic
physics as discussed in Chap. 7. Further applications will be discussed in Chap. 15
ahead. Then, an important questions is: does BEGOE(1+2) also exhibit three simi-
lar transition markers. This is answered in the affirmative in the present and the next
two subsections.

Numerical calculations for N = 4,5 systems with m = 10–12 have been carried
out in [9] and they clearly showed that, as the interaction strength λ in Eq. (9.5)
varies, BEGOE(1 + 2) exhibits Poisson to GOE transition in level fluctuations and
there is a λc marker for this transition just as for EGOE(1 + 2). Figure 9.4 shows
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Fig. 9.4 Ensemble averaged NNSD histogram with H = h(1) + λV (2), for various λ values for a
BEGOE(1+2) system with N = 5 and m = 10. Note that in the figure, H1 = h(1) and H2 = V (2).
BEGOE results are compared with Poisson and Wigner (GOE) forms. It is seen clearly that the
system exhibits Poisson to GOE transition in NNSD

an example. For λ = 0 there are deviations from Poisson form as the sp energies
chosen are εi = i + 1/i (see also Chaps. 5 and 6). The transition marker λc can be
determined for example by using Eq. (5.18). This gives for example, λc = 0.025,
0.018 and 0.015 for m = 8, 12 and 16 (with N = 4) respectively. Similarly, λc =
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Fig. 9.5 Calculated critical
interaction strength λc vs
B/K . Filled circles are for
N = 5 (with m = 7 − 16) and
filed triangles are for N = 5
(with m = 7–12). Figure is
taken from [9] with
permission from Elsevier
(Color figure online)

0.027, 0.021 and 0.018 for m = 8, 10 and 12 (with N = 5) respectively. In order
to verify if λc values for BEGOE(1 + 2) follow AJS criterion, an attempt has been
made in [9]. According to AJS, λc is proportional to the spacing between states
directly coupled by V (2). With B giving the span of the directly coupled states
(B ∝ NΔ) and K the number of directly coupled states, λc ∝ B/K . However till
now there is no success in deriving a formula for K for boson systems. In [9], K is
determined by explicit counting in many numerical examples with N = 4,5. Plot of
λc vs B/K , constructed using this, as shown in Fig. 9.5, verifies that AJS is indeed
applicable to BEGOE(1 + 2). It should be noted that though λc is proportional to
B/K , the slope is seen to be N dependent.

9.6 BW to Gaussian Transition in Strength Functions: λF

Marker

Strength functions Fk(E) defined with respect to the basis states |k〉, which are
the eigenstates of h(1) with energy Ek = 〈k|H |k〉, as discussed before in Chap. 5,
give information about localization (or delocalization) of the wavefunctions. Just as
for fermionic systems (see Chaps. 5 and 6), increasing λ beyond λc, it is seen that
the strength functions Fk(E) generated by BEGOE(1 + 2) exhibit BW to Gaussian
transition [10] giving a transition marker λF > λc. Figure 9.6 shows an example. In
the calculations, strength functions Fξ (E) with ξ −δ ≤ Ek ≤ ξ +δ are averaged and
plotted as Fξ (E) in Fig. 9.6; δ = 0.025 for λ ≤ 0.035 and 0.1 for λ > 0.035. The
calculated Fξ (E) histograms are fitted to a simple function Fξ (E : μ) interpolating
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Fig. 9.6 Ensemble averaged Fξ (E) histograms for a 20 member BEGOE(1 + 2) with N = 5,
m = 10. Results are shown for ξ = 0,±1 and for various λ values. Best fit curves obtained using
Eq. (9.32) are also shown for each ξ and λ. All energies are scaled using σ , the spectral width.
It is seen clearly that the system exhibits BW (for very small λ, it is close to a delta-function) to
Gaussian transition in strength functions. Figure is taken from [10] with permission from Elsevier

BW and Gaussian forms,

Fξ (E : μ) = μFBW :ξ (E) + (1 − μ)FG :ξ (E);

FBW :ξ (E) = 1

2π

Γ

(E − ξ)2 + Γ 2/4
,

FG :ξ (E) = 1√
2π σ

exp−(E − ξ)2/2σ 2

(9.32)

with (μ,Γ,σ ) being the free parameters. As seen from Fig. 9.6, the fits are quite
good. As μ defines the shape of Fξ (E), this is the most important parameter in
Eq. (9.32). Weighted average of μ as a function of λ is shown in Fig. 9.7 and average
is calculated as μ = [∑μ(ξ) exp−ξ2/2]/[∑ exp−ξ2/2]; μ(ξ) represents μ-value
that corresponds to Fξ (E) for a given λ. Using Fig. 9.7 and a criterion for onset of
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Fig. 9.7 Parameter μ vs λ

for various ξ values (they are
called Ek in the figure).
Continuous curve gives
weighted average of μ.
Figure is taken from [10] with
permission from Elsevier

Gaussian behavior, one can deduce the λF value. In [10, 20], the criterion used is

R(λF ) = 0.7;

R(λ) =
∑

i{Fλ
ξ (Ei) − FBW :ξ (E)}2

∑

i{FG :ξ (Ei) − FBW :ξ (E)}2
.

(9.33)

The interpolating function Fξ (E : μ) gives R(λF ) = (1 − μ2) = 0.7 ⇒ μ = 0.163.
Thus, there will be Gaussian behavior for μ ≤ 0.163 with onset at 0.163. This to-
gether with the results in Fig. 9.7 give λF ∼ 0.05 for the N = 5, m = 10 system
considered in Fig. 9.6. Although we have clear demonstration that as λ going be-
yond λc, strength functions make a transition from BW to Gaussian form in the
dense limit of BEGOE(1 + 2), just as with λc, there is no formula yet for the λF

marker in terms of (N,m).

9.7 Thermalization Region: λt Marker

9.7.1 NPC, Sinfo and Socc

As we increase λ beyond λF , BEGOE(1 + 2) generates a region of thermalization.
Before discussing this, we consider NPC, Sinfo and Socc in the dense limit. Firstly,
for λ > λF , it has been well verified that Eq. (5.23) describes NPC in h(1) basis and
similarly Eq. (5.25) for exp(Sinfo). Some examples are shown in Figs. 9.8 and 9.9
and given in these figures are also the values of the correlation coefficient ζ . In
Fig. 9.9, Sinfo in both h(1) and V (2) basis is shown and the importance of this
will be discussed ahead. As there is no restriction on number of bosons in a given
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Fig. 9.8 NPC vs E for different λ values for a 20 member BEGOE(1 + 2) with N = 5, m = 10.
In the figures ‘theory’ corresponds to Eq. (5.23). Values of ζ , the correlation coefficient, are also
shown in the figures (Color figure online)

sp level, definition of Socc(E) will be different for bosons, i.e. Eq. (5.32) will not
apply. The definition is,

Socc(E) = −
∑

i

〈E|n̂i |E〉{ln〈E|n̂i |E〉}. (9.34)

Here, 〈E|n̂i |E〉 is the occupancy of the i-th sp state at energy E. Applying Eq. (5.31)
and carrying out simplifications by treating εi as a continuous variable, formula for
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Fig. 9.9 Information entropy
vs E in the h(1) and V (2)

basis for a 100 member
BEGOE(1 + 2) ensemble
with N = 5, m = 10 for
different λ values. Results
averaged over bin size 0.1 are
shown as circles; filled circles
correspond to h(1) basis and
open circles correspond to
V (2) basis. Ensemble
averaged ζ 2 values are also
given in the figure. Note that
at the duality point λ = λd ,
the results in h(1) and V (2)

basis coincide. Although not
shown in the figures, the
BEGOE(1 + 2) results follow
Eq. (5.25). See Sect. 9.7.2 for
details. Figure is constructed
using the results in [21]
(Color figure online)

Socc(E), valid in the λ > λF has been derived in [9] giving

exp
{

Socc(E) − expSocc:max
} = exp−

[(

N + m

N

)

ζ 2Ê2

2

]

. (9.35)

Result of Eq. (9.35) is compared with numerical examples in Fig. 9.10.
In order to apply the formulas for NPC, Sinfo and Socc , we need the correlation

coefficient ζ and it is defined by Eq. (5.21). Formula for this follows from the results
in Sect. 9.2 and the fact that number of off-diagonal and diagonal two-particle matrix
elements are N(N + 1)(N + 2)(N − 1)/4 and N(N + 1)/2 respectively. Secondly,
for the V (2) matrix, variance of the these off-diagonal elements is λ2 while that of
the diagonal elements is 2λ2. Then we have,

ζ 2(m,N) =
m(N+m)
N(N+1)

∑

i ε̃
2
i + λ2{m(m−1)(N+m)(N+m+1)

(N+2)(N+3)
}

m(N+m)
N(N+1)

∑

i ε̃
2
i + λ2{m(m−1)(N+m)(N+m+1)(N2+N+2)

4(N+2)(N+3)
}
. (9.36)
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Fig. 9.10 Socc vs E for the same system used in Fig. 9.8. In the figure, open circles correspond to
the results from the ensemble calculations and the continuous (red) curves correspond to Eq. (9.35).
Ensemble averaged ζ values are also given in the figure (Color figure online)

Numerical calculations in [10] showed that Eq. (9.36) is good for any λ.

9.7.2 Thermalization in BEGOE(1 + 2)

Thermalization in interacting boson systems was investigated by Borgonovi et al.
[22], using a simple symmetrized coupled two-rotor model. They explored different
definitions of temperature and compared the occupancy number distribution with the
Bose-Einstein distribution. Their conclusion is: “For chaotic eigenstates, the distri-
bution of occupation numbers can be approximately describe by the Bose-Einstein
distribution, although the system is isolated and consists of two particles only. In this
case a strong enough interaction plays the role of a heat bath, thus leading to ther-



9.7 Thermalization Region: λt Marker 219

malization”. In order to establish that this is a generic property of interacting boson
systems, thermalization in BEGOE(1 + 2) was investigated in [21] using different
definitions of temperature and entropy and the results are as follows.

Temperature can be defined in a number of different ways in the standard ther-
modynamical treatment. These definitions of temperature are known to give same
result in the thermodynamical limit i.e. near a region where thermalization occurs
[23]. Four definitions of temperature (T = β−1) are:

• βc: defined using the canonical expression between energy and temperature,

〈E〉βc
=

∑

i Ei exp[−βcEi]
∑

i exp[−βcEi] (9.37)

where Ei are the eigenvalues of the Hamiltonian.
• βf it : defined using occupation numbers obtained by making use of the standard

canonical distribution,

〈nk〉E =
∑

i〈nk〉Ei exp[−βf itEi]
∑

i exp[−βf itEi] . (9.38)

Here k is single particle state index and Ei are eigenvalues. In applying Eq. (9.38),
the constraint

∑

k〈nk〉E = m should be taken into account.
• βBE : defined using Bose-Einstein distribution for the occupation numbers,

〈nk〉E = 1
/{

exp
[

βBE(E)
(

εk − μ(E)
)] − 1

}

. (9.39)

Here μ is the chemical potential. Although, this expression is derived for a system
with large number of non-interacting particles in contact with a thermostat, it can
be used even in isolated systems with relatively few particles [24, 25].

• βT : defined using state density ρ(E) generated by H . Note that

βT = d ln[ρ(E)]
dE

. (9.40)

Figure 9.11 shows ensemble averaged values of β , computed via various definitions
described above, for a 100 member BEGOE(1+2) ensemble with m = 10 and N =
5 as a function of Ê = (E − ε)/σ , for various λ values. The β values are calculated
from Ê = −1.5 to the center of the spectrum, where temperature is infinity. The
edges of the spectrum have been avoided as (i) density of states is small near the
edges of the spectrum and (ii) eigenstates near the edges are not fully chaotic. Since
the state density for BEGOE(1 + 2) is Gaussian irrespective of λ values, βT as a
function of energy gives straight line. Dotted lines shown in the plots represents βT

results in Fig. 9.11. It is clearly seen that for λ < λc [for (m,N) = (10,5), λc ∼ 0.02
and λF ∼ 0.05], all the definitions give different values of β . Whereas in the region
λ ≤ λF , temperature found from BE distribution, βBE , turns out to be completely
different from other temperatures. As in this region, the structure of eigenstates is
not chaotic enough leading to strong variation in the distribution of the occupation
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Fig. 9.11 Ensemble
averaged inverse of
temperature β as a function
energy E, for different values
of two body interaction
strength λ for the
BEGOE(1 + 2) system
considered in Fig. 9.9.
Results for different
definitions of inverse of
temperature β are given. In
the calculations, the sp
energies are chosen to be
independent Gaussian
random variables. With some
modification, figure is taken
from [21] with permission
from Elsevier

numbers and therefore strong fluctuations in βBE . Moreover, near the center of the
spectrum (i.e. as T → ∞), value of the denominator in Eq. (9.39) becomes very
small, which leads to large variation in βBE values form member to member. Further
increase in λ > λF , in the chaotic region, all definitions give essentially same value
for the temperature for λ ∼ λt . It is seen from Fig. 9.11 that the matching between
different values of β is good near λ = λt = 0.13 for the N = 5, m = 10 example.

For further establishing that λ ∼ λt defines thermodynamic region, used are three
different definitions of entropy and these are [as in EGOE(1+2) and EGOE(1+2)-
s studies] thermodynamic entropy Sther , information entropy Sinfo and occupancy
entropy Socc . The following measure, introduced in [26] (see also Chap. 15) has
been used to obtain λt :

Δs(λ) =
{∫ ∞

−∞
[(

R
info
E − Rther

E

)2 + (

R
sp
E − Rther

E

)2]
dE

}1/2/{∫ ∞

−∞
Rther

E dE

}

,

(9.41)
where Rα

E = exp[Sα(E) − Sα
max]. In the thermodynamic region the values of the

different entropies should be very close to each other, hence the minimum of Δs

gives the value of λt . In Fig. 9.12, results shown for ensemble averages Δs(λ) (blue
stars) obtained for a 100 member BEGOE(1 + 2) ensemble with 10 bosons in 5
single particle states as a function of the two-body interaction strength λ. The second
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Fig. 9.12 Ensemble
averaged values ω and Δs as
a function of two body
interaction strength λ for the
BEGOE(1 + 2) system
considered in Fig. 9.9. The
vertical dashed lines
represent the position of λc

and λt . In the calculation
single particle energies are
taken as independent real
Gaussian random variables.
Here λc � 0.02 and
λt � 0.13. Figure is taken
from [21] with permission
from Elsevier (Color figure
online)

vertical dashed line indicates the position of λt where ensemble averaged Δs(λ) is
minimum. For the present example, we obtained λt � 0.13. This value of λt is same
as obtained using different definitions of temperature. In order to show that λc � λt ,
the NNSD as a function of λ are fitted to Brody distribution and extracted the Brody
parameter ω. Then the chaos marker λc is determined by the condition ω(λ) = 1/2.
Ensemble averaged values of ω(λ) are shown in Fig. 9.12 and the λc value is shown
by a vertical dash line in the figure.

To derive a formula for λt , considered is duality in BEGOE(1 + 2). The dual-
ity region (see Chaps. 5 and 6) λ = λd is the region (in λ space) where all wave
functions look alike and it is expected to correspond to the thermodynamic region
defined by λ = λt . To examine duality, Sinfo(E) in h(1) basis and in V (2) basis are
compared. Figure 9.9 shows some numerical results and it is seen that the values of
Sinfo(E) in these two basis coincide at λ = 0.13 giving value for the duality marker
λd � 0.13 for the N = 5,m = 10 example. This value is very close to the value
of marker λt and therefore, λd region can be interpreted as the thermodynamic re-
gion in the sense that all different definitions of temperature and entropy coincide
in this region. As discussed in Sect. 5.3.5, λt is given by ζ 2(λt ) = 0.5. In addition,
Eq. (9.36) gives the (m,N ) dependence of the marker,

λt = 2

√

(N + 2)X

N(N + 1)(N − 2)(m − 1)(N + m − 1)
, X =

N
∑

i=1

ε̃i
2. (9.42)

For uniform sp spectrum with εi = i, X = N(N + 1)(N − 1)/12 and then,

λt =
√

(N − 1)(N + 2)

3(N − 2)(m − 1)(N + m + 1)
.
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For m = 10 and N = 5, this gives λt ≈ 0.15. For the sp energies that are used in the
calculations in Figs. 9.11 and 9.12, X = N(N2 + 5)/12 and then

λt =
√

(N + 2)(N2 + 5)

3(N + 1)(N − 2)(m − 1)(N + m + 1)
.

For m = 10 and N = 5, this gives λt ≈ 0.16 as compared to the numerically found

value λt = 0.13. In the dense limit, Eq. (9.42) gives λt ∼ 1
m

√

N
3 . Similarly, in the

dilute limit, it gives λt ∼ 1√
3m

in agreement with the EGOE(1 + 2) result given in
Chap. 5.
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