
Chapter 4
Embedded GOE for Spinless Fermion Systems:
EGOE(2) and EGOE(k)

Matrix ensembles generated by random two-body interactions, called two-body ran-
dom ensembles (TBRE), model what one may call many-body chaos or stochasticity
or complexity exhibited by these systems. These ensembles are defined by repre-
senting the two-particle Hamiltonian by one of the classical ensembles (GOE or
GUE or GSE) and then the m > 2 particle H matrix is generated by the m-particle
Hilbert space geometry [1–3]. The key element here is the recognition that there
is a Lie algebra that transports the information in the two-particle spaces to many-
particle spaces [3–5]. Thus, in these ensembles (for many particle systems) a random
matrix ensemble in two-particle spaces is embedded in the m-particle H matrix and
therefore these ensembles are more generically called embedded ensembles (EE)
[3, 6]. With GOE (GUE) embedding we have then EGOE(2) [EGUE(2)] with ‘2’
denoting that in two-particles spaces the H matrix is represented by a GOE. Due to
the two-body selection rules, many of the m-particle matrix elements will be zero.
Figure 1.1 gives an example of a H -matrix displaying the structure due to two-body
selection rules which form the basis for the EE description. Present understand-
ing is that EE generate paradigmatic models for many-body chaos [7, 8] (one-body
chaos is well understood using classical ensembles). Simplest of EE is EGOE(2)
[BEGOE(2)], the embedded Gaussian orthogonal ensemble of random matrices for
spinless fermion (boson) systems generated by random two-body interactions. Let
us begin with EGOE for spinless fermion systems.

4.1 EGOE(2) and EGOE(k) Ensembles: Definition and
Construction

The embedding algebra for EGOE(k) and EGUE(k) [also BEGOE(k) and
BEGUE(k)] for a system of m spinless particles (fermions or bosons) in N single
particle (sp) states with k-body interactions (k < m) is SU(N). These ensembles
are defined by the three parameters (N,m,k). The EGOE(2) ensemble for spinless
fermion systems is generated by defining the two-body Hamiltonian H to be GOE
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Fig. 4.1 Figure showing some configurations for the distribution of m = 6 spinless fermions in
N = 12 single particle states. The m-particle configurations or basis states are similar to the dis-
tributions obtained by putting m particles in N boxes with the conditions that the occupancy
of each box can be either zero or one and the total number of occupied boxes equals m. In
the figure, (a) corresponds to the basis state |ν1ν2ν3ν4ν5ν6〉, (b) corresponds to the basis state
|ν1ν3ν4ν7ν9ν10〉, (c) corresponds to the basis state |ν1ν2ν6ν7ν11ν12〉 and (d) corresponds to the
basis state |ν6ν7ν8ν9ν10ν11〉

in two-particle spaces and then propagating it to many-particle spaces by using the
geometry of the many-particle spaces [this is in general valid for k-body Hamilto-
nians, with k < m, generating EGOE(k)]. Let us consider a system of m spinless
fermions occupying N sp states. Each possible distribution of fermions in the sp
states generates a configuration or a basis state; see Fig. 4.1. Given the sp states |νi〉,
i = 1,2, . . . ,N , EGOE(2) is defined by the Hamiltonian operator,

̂H =
∑

νi<νj ,νk<ν�

〈νkν�| ̂H |νiνj 〉a†
ν�

a†
νk

aνi
aνj

. (4.1)

The action of the Hamiltonian operator defined by Eq. (4.1) on the basis states
|ν1ν2 · · ·νm〉 (Fig. 4.1 gives examples) generates the EGOE(2) ensemble in
m-particle spaces. The symmetries for the antisymmetrized two-body matrix ele-
ments 〈νkν�| ̂H |νiνj 〉 are

〈νkν�| ̂H |νj νi〉 = −〈νkν�| ̂H |νiνj 〉,
〈νkν�| ̂H |νiνj 〉 = 〈νiνj | ̂H |νkν�〉.

(4.2)

Note that aνi
and a†

νi
in Eq. (4.1) annihilate and create a fermion in the sp state

|νi〉 respectively. The Hamiltonian matrix H(m) in m-particle spaces contains three
different types of non-zero matrix elements (all other matrix elements are zero due
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to two-body selection rules) and explicit formulas for these are [7],

〈ν1ν2 · · ·νm| ̂H |ν1ν2 · · ·νm〉 =
∑

νi<νj ≤νm

〈νiνj | ̂H |νiνj 〉,

〈νpν2ν3 · · ·νm| ̂H |ν1ν2 · · ·νm〉 =
νm
∑

νi=ν2

〈νpνi | ̂H |ν1νi〉,

〈νpνqν3 · · ·νm| ̂H |ν1ν2ν3 · · ·νm〉 = 〈νpνq | ̂H |ν1ν2〉.

(4.3)

Note that, in Eq. (4.3), the notation |ν1ν2 · · ·νm〉 denotes the orbits occupied by the
m spinless fermions. The EGOE(2) is defined by Eqs. (4.2) and (4.3) with GOE(v2)
representation for ̂H in the two-particle spaces, i.e.,

〈νk ν�| ̂H |νiνj 〉 are independent Gaussian random variables

〈νk ν�| ̂H |νi νj 〉 = 0,

∣

∣〈νkν�| ̂H |νiνj 〉
∣

∣

2 = v2(1 + δ(ij),(k�)).

(4.4)

In Eq. (4.4), ‘overline’ indicates ensemble average and v is a constant. Now the
m-fermion EGOE(2) Hamiltonian matrix ensemble is denoted by {H(m)} where
{. . .} denotes ensemble, with {H(2)} being GOE. Note that, the m-particle H -matrix
dimension is df (N,m) = (

N
m

)

and the number of independent matrix elements is
df (N,2)[df (N,2) + 1]/2; the subscript ‘f ’ in df (N,m) stands for ‘fermions’.
Computer codes for constructing EGOE(2) ensemble have been developed by many
research groups; see for example [7, 9–12]. Just as the EGOE(2) ensemble, one can
define k-body (k < m) ensembles EGOE(k) (these are also called 2-BRE, 3-BRE,
. . . in [13]) with GOE representation for the H matrix in k particle spaces (thus
here we have random k-body interactions). It is possible to derive analytical results,
using BCA, for some properties of the general EGOE(k). We will turn to these now.

4.2 Eigenvalue Density: Gaussian Form

4.2.1 Basic Results from Binary Correlation Approximation

Binary correlation theory for the moments of the eigenvalue density generated by
spinless EGOE(k) has been developed by Mon and French [3, 14] and the moments
given by BCA correspond to the moments in the dilute limit defined by m → ∞,
N → ∞, k → ∞ and m/N → 0 and k/m → 0. Alternatively one can use the con-
dition that k is finite and k/m → 0. We will describe the BCA for EGOE(k) in some
detail here.

Let us begin with a kH -body operator,

H(kH ) =
∑

α,β

v
αβ
H α†(kH )β(kH ). (4.5)
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Here, α†(kH ) is the kH particle creation operator and β(kH ) is the kH particle anni-
hilation operator. Similarly, vαβ

H are matrix elements of the operator H in kH particle

space i.e., v
αβ
H = 〈kH β|H |kH α〉 (some authors use operators with daggers to denote

annihilation operators and operators without daggers to denote creation operators).
Following basic traces will be used throughout,

∑

α

α†(k)α(k) =
(

n̂

k

)

⇒
〈

∑

α

α†(k)α(k)

〉m

=
(

m

k

)

. (4.6)

∑

α

α(k)α†(k) =
(

N − n̂

k

)

⇒
〈

∑

α

α(k)α†(k)

〉m

=
(

m̃

k

)

; m̃ = N − m.

(4.7)
∑

α

α†(k)B
(

k′)α(k) =
(

n̂ − k′

k

)

B
(

k′)

⇒
〈

∑

α

α†(k)B
(

k′)α(k)

〉m

=
(

m − k′

k

)

B
(

k′). (4.8)

∑

α

α(k)B
(

k′)α†(k) =
(

N − n̂ − k′

k

)

B
(

k′)

⇒
〈

∑

α

α(k)B
(

k′)α†(k)

〉m

=
(

m̃ − k′

k

)

B
(

k′). (4.9)

Equation (4.6) follows from the fact that the average should be zero for m < k and
one for m = k and similarly, Eq. (4.7) follows from the same argument except that
the particles are replaced by holes. Equation (4.8) follows first by writing the k′-
body operator B(k′) in operator form using Eq. (4.5),

B
(

k′) =
∑

β,γ

v
βγ

B β†(k′)γ
(

k′), (4.10)

and then applying the commutation relations for the fermion creation and anni-
hilation operators. This gives

∑

β,γ v
βγ

B β†(k′)
∑

α α†(k)α(k)γ (k′). Now applying
Eq. (4.6) to the sum involving α gives Eq. (4.8). Equation (4.9) follows from
the same arguments except one has to assume that B(k′) is a fully irreducible
k′-body operator (Chap. 5 makes clear the notion of ‘irreducible’ operators) and
therefore, it has particle-hole symmetry. For a general B(k′) operator, this is valid
only in the N → ∞ limit. Therefore, this equation has to be applied with cau-
tion.

Using the definition of the H operator in Eq. (4.5), we have
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〈

H(kH )H(kH )
〉m =

∑

α,β

{

v
αβ
H

}2〈
α†(kH )β(kH )β†(kH )α(kH )

〉m

= v2
H

〈

∑

α

α†(kH )

{

∑

β

β(kH )β†(kH )

}

α(kH )

〉m

= v2
H T (m,N,kH ). (4.11)

As H is taken as EGOE(kH ) with all the kH particle matrix elements being Gaussian
variables with zero center and same variance (diagonal matrix elements variance

being twice that of off-diagonal matrix elements). This gives (v
αβ
H )2 = v2

H to be
independent of the α and β labels. It is important to note that in the dilute limit,
the diagonal terms [α = β in Eq. (4.11)] in the averages are neglected as they are
smaller by at least one power of 1/N and the individual H ’s are irreducible KH -
body operators. These assumptions are no longer valid for finite-N systems and
hence here the evaluation of averages is more complicated. In the dilute limit, we
have

T (m,N,kH ) =
〈

∑

α

α†(kH )

{

∑

β

β(kH )β†(kH )

}

α(kH )

〉m

=
(

m̃ + kH

kH

)〈

∑

α

α†(kH )α(kH )

〉m

=
(

m̃ + kH

kH

)(

m

kH

)

. (4.12)

Note that, we have used Eq. (4.7) to evaluate the summation over β and Eq. (4.6) to
evaluate summation over α in Eq. (4.12). In the ‘strict’ N → ∞ limit, we have

T (m,N,kH )
N→∞→

(

m

kH

)(

N

kH

)

. (4.13)

In order to incorporate the finite-N corrections, we have to consider the contribution
of the diagonal terms. Then, we have,

T (m,N,kH ) =
(

m

kH

)[(

m̃ + kH

kH

)

+ 1

]

. (4.14)

Going beyond 〈HH 〉, let us consider averages involving product of four opera-
tors of the form

〈

H(kH )G(kG)H(kH )G(kG)
〉m

,

where the operators H and G being of body ranks kH and kG respectively and they
are represented by independent EGOE(kH ) and EGOE(kG) ensembles respectively.
Now, there are two possible ways of evaluating this trace. Either (a) first contract the
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H operators across the G operator using Eq. (4.9) and then contract the G operators
using Eq. (4.8), or (b) first contract the G operators across the H operator using
Eq. (4.9) and then contract the H operators using Eq. (4.8). However, (a) and (b)
give the same result only in the ‘strict’ N → ∞ limit and also for the result incor-
porating finite N corrections as discussed below. In general, the final result can be
expressed as,

〈

H(kH )G(kG)H(kH )G(kG)
〉m = v2

H v2
G F(m,N,kH , kG). (4.15)

In the ‘strict’ dilute limit, we have

(

v2
H v2

G

)−1〈
H(kH )G(kG)H(kH )G(kG)

〉m

=
∑

α,β,γ,δ

〈

α†(kH )β(kH )γ †(kG)δ(kG)β†(kH )α(kH )δ†(kG)γ (kG)
〉m

=
(

m̃ − kG + kH

kH

)

∑

α,γ,δ

〈

α†(kH )γ †(kG)δ(kG)α(kH )δ†(kG)γ (kG)
〉m

=
(

m̃ − kG + kH

kH

)(

m − kG

kH

)

∑

γ,δ

〈

γ †(kG)δ(kG)δ†(kG)γ (kG)
〉m

=
(

m̃ − kG + kH

kH

)(

m − kG

kH

)(

m̃ + kG

kG

)(

m

kG

)

. (4.16)

Here in the first step β and β† are contracted using Eq. (4.9) giving
(

m̃−kG

kH

)

and then

it is taken out of the trace. In the second step α† and α are contracted. Then we are
left with a term that is similar to Eq. (4.12) and this gives the final result. Now in
the ‘strict’ N → ∞ limit, F(m,N,kH , kG) is

F(m,N,kH , kG) =
(

m − kH

kG

)(

m

kH

)(

N

kH

)(

N

kG

)

=
(

m − kG

kH

)(

m

kG

)(

N

kH

)(

N

kG

)

. (4.17)

In order to obtain correct finite-N corrections to F(· · · ), we have to contract over
operators whose lower symmetry parts can not be ignored. The operator H(kH )

decomposes into irreducible symmetry (or tensorial) parts F (s) denoted by s =
0,1,2, . . . , kH with respect to the unitary group SU(N); see Chap. 5. For a kH -
body number conserving operator [3, 15], we have (see also Chap. 5)

H(kH ) =
kH
∑

s=0

(

m − s

kH − s

)

F (s). (4.18)
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Here, the F (s) are orthogonal with respect to m-particle averages, i.e.,
〈F (s)F †(s′)〉m = δss′ . Now, 〈H(kH )G(kG)H(kH )G(kG)〉m will have four parts,

〈

H(kH )G(kG)H(kH )G(kG)
〉m

= v2
H v2

G

∑

α,β,γ,δ

〈

α†(kH )β(kH )γ †(kG)δ(kG)β†(kH )α(kH )δ†(kG)γ (kG)
〉m

+ v2
H v2

G

∑

α,γ,δ

〈

α†(kH )α(kH )γ †(kG)δ(kG)α†(kH )α(kH )δ†(kG)γ (kG)
〉m

+ v2
H v2

G

∑

α,β,γ

〈

α†(kH )β(kH )γ †(kG)γ (kH )β†(kH )α(kH )γ †(kG)γ (kG)
〉m

+ v2
H v2

G

∑

α,δ

〈

α†(kH )α(kH )δ†(kG)δ(kG)α†(kH )α(kH )δ†(kG)δ(kG)
〉m

= X + Y1 + Y2 + Z. (4.19)

Note that we have decomposed each operator into diagonal and off-diagonal parts.
We have used the condition that the variance of the diagonal matrix elements is
twice that of the off-diagonal matrix elements in the defining spaces to convert the
restricted summations into unrestricted summations appropriately to obtain the four
terms in the RHS of Eq. (4.19). Following [14, 16, 17] and applying unitary decom-
position to γ δ† (also δγ †) in the first two terms and αβ† (also βα†) in the third term
we will get X, Y1 and Y2. To make things clear, we will discuss the derivation for
X term in detail before proceeding further. Applying unitary decomposition to the
operators γ †(kG)δ(kG) and γ (kG)δ†(kG) using Eq. (4.18), we have

X = v2
H v2

G

∑

α,β,γ,δ

kG
∑

s=0

(

m − s

kG − s

)2
〈

α†(kH )β(kH )F †
γ δ(s)β

†(kH )α(kH )Fγ δ(s)
〉m

.

(4.20)
Contracting the operators ββ† across F ’s using Eq. (4.9) and operators α†α across
F using Eq. (4.8) gives,

X = v2
H v2

G

kG
∑

s=0

(

m − s

kG − s

)2(
m̃ + kH − s

kH

)(

m − s

kH

)

∑

γ,δ

〈

F †
γ δ(s)Fγ δ(s)

〉m
. (4.21)

Inversion of the equation,

∑

γ,δ

〈

γ †(kG)δ(kG)δ†(kG)γ (kG)
〉m = Q(m) =

kG
∑

s=0

(

m − s

kG − s

)2
∑

γ,δ

〈

F †
γ δ(s)Fγ δ(s)

〉m
,

(4.22)
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gives,

(

m − s

kG − s

)2
∑

γ,δ

〈

F †
γ δ(s)Fγ δ(s)

〉m

=
(

m − s

kG − s

)2(
N − m

s

)(

m

s

)

[

(kG − s)!s!]2

× (N − 2s + 1)

s
∑

t=0

(−1)t−s[(N − t − kG)!]2

(s − t)!(N − s − t + 1)!t !(N − t)!Q(N − t). (4.23)

For the average required in Eq. (4.22), we have

Q(m) =
∑

γ,δ

〈

γ †(kG)δ(kG)δ†(kG)γ (kG)
〉m =

(

m̃ + kG

kG

)(

m

kG

)

. (4.24)

Simplifying Eq. (4.23) using Eq. (4.24) and using the result in Eq. (4.21) along with
the series summation [14]

s
∑

t=0

(−1)t−s(N − t − kG)!(kG + t)!
(s − t)!(t !)2(N − s − t + 1)! = kG!(N − kG − s)!

(N + 1 − s)!
(

kG

s

)(

N + 1

s

)

,

(4.25)
the expression for X is,

X = v2
H v2

G F(m,N,kH , kG);

F(m,N,kH , kG) =
kG
∑

s=0

(

m − s

kG − s

)2(
m̃ + kH − s

kH

)(

m − s

kH

)(

m̃

s

)(

m

s

)(

N + 1

s

)

× N − 2s + 1

N − s + 1

(

N − s

kG

)−1(
kG

s

)−1

. (4.26)

Although not obvious, X has kH ↔ kG symmetry. This is easy to verify for
kH , kG ≤ 2. In the large N limit, Y1, Y2 and Z are neglected as X will make the
dominant contribution; Ref. [17] gives the formulas for Y1, Y2 and Z. Thus, in all
the applications, we use

〈

H(kH )G(kG)H(kH )G(kG)
〉m = X = v2

H v2
GF(m,N,kH , kG) (4.27)

with Eq. (4.17) or (4.26) for F(m,N,kH , kG) as appropriate.
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4.2.2 Dilute Limit Formulas for the Fourth and Sixth Order
Moments and Cumulants

In this section throughout we will use Eqs. (4.13) and (4.17) for the functions T

and F respectively, i.e. we will use the strict N → ∞ limit. Also in this section, we
will take H to be a k-body operator. As odd order cumulants vanish for EGOE(k),
the lowest two cumulants that give information about the shape of the eigenvalue
density are the fourth (k4) and sixth (k6) order cumulants. For these we need to
consider first the fourth moment and the sixth moment.

For the fourth moments given by 〈H 4(k)〉m, in BCA there will be three different
correlation patterns that will contribute (we must correlate in pairs the operators for
all moments of order >2),

〈

H 4(k)
〉m = 〈

H(k)H(k)H(k)H(k)
〉m

+ 〈

H(k)H(k)H(k)H(k)
〉m

+ 〈

H(k)H(k)H(k)H(k)
〉m

. (4.28)

In Eq. (4.28), we denote the binary correlated pairs of operators with the symbol
HH . The first two terms on the RHS of Eq. (4.28) are equal due to cyclic invariance

and follow from Eq. (4.11),

〈

H(k)H(k)H(k)H(k)
〉m = 〈

H(k)H(k)H(k)H(k)
〉m

= [〈

H 2(k)
〉m]2

. (4.29)

Similarly, the third term on the RHS of Eq. (4.28) follows from Eq. (4.27),

〈

H(k)H(k)H(k)H(k)
〉m = v4

H F(m,N,k, k). (4.30)

Combining Eqs. (4.28), (4.29) and (4.30), 〈H 4(k)〉m is given by,

〈

H 4(k)
〉m = v4

H

[

2
{

T (m,N,k)
}2 + F(m,N,k, k)

]

. (4.31)

Finally, fourth order cumulant k4 in the dilute limit is

k4 = γ2 = [〈

H 2(k)
〉m]−2〈

H 4(k)
〉m − 1 =

(

m − k

k

)(

m

k

)−1

− 1

→ −k2

m
+ k2(k − 1)2

2m2
+ O

(

1/m3). (4.32)
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In the last step we have used the expansion of binomials in powers of 1/m using,

(

m − r

k

)

= mk

k!
[

1 − 1

m

{

kr + k(k − 1)

2

}

+ 1

m2

{

k(k − 1

2

[

r2 + (k − 1)r + (3k − 1)(k − 2)

12

]}

+ O

(

1

m3

)]

.

(4.33)

Therefore, for example for a two-body operator (as in nuclei and atoms) as m in-
creases, the excess parameter γ2 (or k4) goes to zero indicating that the density
approaches Gaussian. We will confirm this further by deriving a formula for k6. Be-
fore turning to this, it should be added that formulas for lower order moments for
EGOE(2) were also derived by Gervios [18].

For the sixth moment 〈(H(k))6〉m there are 15 binary association diagrams and
they are

〈

H 6(k)
〉m

= 〈

H(k)H(k)H(k)H(k)H(k)H(k)
〉m

⊕ 〈

H(k)H(k)H(k)H(k)H(k)H(k)
〉m ⊕ 〈

H(k)H(k)H(k)H(k)H(k)H(k)
〉m

⊕ 〈

H(k)H(k)H(k)H(k)H(k)H(k)
〉m ⊕ 〈

H(k)H(k)H(k)H(k)H(k)H(k)
〉m

⊕ 〈

H(k)H(k)H(k)H(k)H(k)H(k)
〉m ⊕ 〈

H(k)H(k)H(k)H(k)H(k)H(k)
〉m

⊕ 〈

H(k)H(k)H(k)H(k)H(k)H(k)
〉m ⊕ 〈

H(k)H(k)H(k)H(k)H(k)H(k)
〉m

⊕ 〈

H(k)H(k)H(k)H(k)H(k)H(k)
〉m ⊕ 〈

H(k)H(k)H(k)H(k)H(k)H(k)
〉m

⊕ 〈

H(k)H(k)H(k)H(k)H(k)H(k)
〉m ⊕ 〈

H(k)H(k)H(k)H(k)H(k)H(k)
〉m

⊕ 〈

H(k)H(k)H(k)H(k)H(k)H(k)
〉m ⊕ 〈

H(k)H(k)H(k)H(k)H(k)H(k)
〉m

.

(4.34)

As all the correlated H ’s in Eq. (4.34) are dummy operators, it is easy to see that
the first five terms on RHS of Eq. (4.34) are all same. Similarly, the next six terms
and also the following three terms are same. This gives,



4.2 Eigenvalue Density: Gaussian Form 79

〈

H 6(k)
〉m

= 5
〈

H(k)H(k)H(k)H(k)H(k)H(k)
〉m ⊕ 6

〈

H(k)H(k)H(k)H(k)H(k)H(k)
〉m

⊕ 3
〈

H(k)H(k)H(k)H(k)H(k)H(k)
〉m

⊕ 〈

H(k)H(k)H(k)H(k)H(k)H(k)
〉m

. (4.35)

The first correlation diagram in Eq. (4.35) is simply {〈H 2(k)〉m}3. With the nor-
malization, which we will use from now onwards, v2

H

(

N
k

) = 1, this gives
(

m
k

)3
. The

second correlation diagram is also simple as we can take out the two directly corre-
lated H ’s outside the average and then we are left with 〈HGHG〉m type term. This
gives

(

m−k
k

) (

m
k

)2. For the third correlation diagram, we can use the rule, that follows
from Eqs. (4.8) and (4.9),

α†(k)β(k)H(k)β†(k)α(k) = v2
(

N

k

)

α†(k)H(k)α(k)

= v2
(

N

k

)(

m − k

k

)

H(k) =
(

m − k

k

)

H(k). (4.36)

By contracting the first and third correlated H ’s and similarly the fourth and the

sixth H ’s in the average gives the third term to be
(

m−k
k

)2 (

m
k

)

. In the last correla-
tion diagram, we have to necessarily contract across two H ’s i.e., we have to con-
tract two H ’s across an effectively 2k-body operator. Then, first contracting the first
and the fourth correlated H ’s, we are left with 〈HGHG〉m type term. This gives
(

m−2k
k

) (

m−k
k

) (

m
k

)

. Substituting these results, Eq. (4.35) gives

〈

H 6(k)
〉m = 5

(

m

k

)3

+ 6

(

m − k

k

)(

m

k

)2

+ 3

(

m − k

k

)2(
m

k

)

+
(

m − 2k

k

)(

m − k

k

)(

m

k

)

. (4.37)

First converting the sixth order moment into sixth order cumulant k6 using Eq. (B.5)
gives,

k6 = 5 − 9

(

m

k

)−1(
m − k

k

)

+ 3

(

m

k

)−2(
m − k

k

)2

+
(

m

k

)−2(
m − k

k

)(

m − 2k

k

)

.

(4.38)
Now, expanding the binomials in Eq. (4.38) in powers of 1/m using Eq. (4.33), we
have

k6 = k3(6k − 1)

m2
+ O

(

1

m3

)

. (4.39)
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Similarly, for the eight order cumulant [7] we have

k8 = −4k5(23k − 9)

m3
+ O

(

1

m4

)

. (4.40)

Equations (4.32), (4.39) and (4.40) clearly show that in the dilute limit, as m in-
creases (from m = k) the density approaches Gaussian as the cumulants kr approach
zero. In fact if we neglect all the cross correlated terms in the moment expressions,
clearly we have μ2r = (2r − 1)!! and they are the reduced central moments of a
Gaussian. Although this result is derived for the dilute limit, in practice Gaussian
form is seen even when the stringent dilute limit conditions are not valid (see Chap. 5
for examples). Thus the eigenvalue density tends to Gaussian form for EGOE(k).

For m = k, EGOE (EGUE) reduces to GOE (GUE) and the state density then is a
semi-circle. For fixed k as we increase m starting from k (or vice verse) there will be
semi circle to Gaussian transition in state densities. Numerically this was studied in
the past [6] but the transition point was not known. Simplifying Eq. (4.32) for fixed
(m, k) and N → ∞, it is seen that γ2 → −1 for m < 2k. This is suggestive that
m = 2k is the transition point. To prove this conclusively, Benet et al. [19, 20] solved
EGUE(k) [it is possible to solve EGOE(k) also] using super symmetry (SUSY)
method and showed that the density is semi-circle for m < 2k. It is also proved
that there will be non-vanishing corrections to the semi-circle shape for m ≥ 2k.
However the SUSY method fails for m > 2k and therefore SUSY method could not
be used to prove that for m � 2k the eigenvalue density takes Gaussian form. In
conclusion, as m increases from k, state densities exhibit semi-circle to Gaussian
transition with m = 2k being the transition point.

4.3 Average-Fluctuation Separation and Lower-Order Moments
of the Two-Point Function

4.3.1 Level Motion in Embedded Ensembles

Given a normalized state density ρ(E), it is possible to expand it in terms of its
asymptotic (or smoothed) form ρ(E) and the orthonormal polynomials Pμ(E) de-
fined by the asymptotic density. For EGOE ensembles ρ(E) is a Gaussian, i.e.
ρ(E) = ρG (E) = (

√
2πσ)−1 exp[−(E −Ec)

2/2σ 2]. Then the Gram-Charlier (GC)
expansion [21] gives,

ρ(E) = ρG (E)

{

1 +
∑

ζ≥3

(ζ !)−1Sζ Heζ (̂E)

}

. (4.41)

In Eq. (4.41), ̂E = (E − Ec)/σ is the standardized E. The centroid Ec = 〈H 〉m
and the variance σ 2 = 〈H 2〉m − E2

c of the Gaussian ρG are same as that of ρ. Heζ

are Hermite polynomials and Sζ are, in principle, related to higher moments of the
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state density ρ(E). One can apply Eq. (4.41) to EGOE(2) and BEGOE(2) by noting
that for fermions in the dilute limit and for bosons in the dense limit (see Chap. 9),
ρ(E) = ρG (E). Thus, at this stage distinction between boson and fermion systems
is not important. We will not consider boson systems here and return to them in
Chap. 9. Since Sζ ’s change from member to member of the EGOE(2) ensemble,
one can treat them as independent random variables with zero center,

Sζ = 0, Sζ Sζ ′ = 0 for ζ �= ζ ′. (4.42)

This is consistent with the result ρ(E) = ρG (E) where the ’bar’ denotes ensemble
average. Each ζ term in Eq. (4.41) represents an excitation ‘mode’ and the wave-
length of the modes is proportional to ζ−1. Therefore small ζ terms are long wave-
length modes and large ζ are short wavelength modes. The distribution function
F(E), the integrated version of ρ(E), is F(E) = d

∫ E

∞ ρ(E′)dE′ where d is the
dimensionality. Deviation of a given level with energy E from its smoothed (with
respect to the ensemble) counter part E gives the level motion. In terms of F(E)

and the local mean spacing D(E), we have δE = E − E = [F(E) − F(E)]D(E).

Then, the variance of the level motion is given by the ensemble average of (δE)2

D(E)
2 .

Using Eq. (4.41) we have easily,

(δE)2

D(E)
2

= [

F(x) − F(x)
]2

= d2σ 2[ρG (E)
]2

{

∑

ζ≥3

(ζ !)−2S2
ζ

[

Heζ−1(̂E)
]2

}

. (4.43)

By adding centroid and variance fluctuations, the summation in Eq. (4.43) extends
to ζ ≥ 1. Then,

(δE)2

D(E)
2

= d2σ 2[ρG (E)
]2

{

∑

ζ≥1

(ζ !)−2S2
ζ

[

Heζ−1(̂E)
]2

}

. (4.44)

Thus we need S2
ζ for EGOE and BEGOE and we will address this now.

4.3.2 S2
ζ in Binary Correlation Approximation

Definition of the co-variances Σp,q and an expression for them in terms of S2
ζ are,

Σp,q = 〈

Hp
〉〈

Hq
〉 − 〈

Hp
〉 〈

Hq
〉

=
∑

ζ≥1

S2
ζ (σ )p+q

(

p

ζ

)(

q

ζ

)

(p − ζ − 1)!!(q − ζ − 1)!!. (4.45)
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The above relation follows from Eq. (4.41) as

〈

Hp
〉 = 〈

Hp
〉 +

∑

ζ≥3

(ζ !)−1Sζ

∫

EpρG (E)Heζ (̂E)dE. (4.46)

We have used in Eq. (4.45) the fact that σp
(

p
ζ

)

(p − ζ − 1)!! is the pth (central)

moment of ρ(E)Heζ (̂E). Note that Ec = Ec = 0. On the other hand, using BCA we
have [3]

Σp,q = 〈

Hp
〉〈

Hq
〉 − 〈

Hp
〉 〈

Hq
〉

=
∞
∑

ζ=0

(

p

ζ

)(

q

ζ

)

{〈

Hζ
〉〈

Hp−ζ
〉} {〈

Hζ
〉〈

Hq−ζ
〉} − 〈

Hp
〉 〈

Hq
〉

. (4.47)

The last term of Eq. (4.47) will cancel with the ζ = 0 term of the first term. Then
we have,

Σp,q =
∑

ζ≥1

(

p

ζ

)(

q

ζ

)

〈

Hp−ζ
〉 〈

Hq−ζ
〉 〈

Hζ
〉〈

Hζ
〉

. (4.48)

The Gaussian moments of 〈Hp−ζ 〉 are (p − ζ − 1)!!(σ )p−ζ . Therefore,

Σp,q =
∑

ζ≥1

(

p

ζ

)(

q

ζ

)

(p − ζ − 1)!!(q − ζ − 1)!!(σ )p+q−2ζ
〈

Hζ
〉〈

Hζ
〉

. (4.49)

Comparing Eqs. (4.49) and (4.45) will give the important relation,

S2
ζ = 〈

Hζ
〉〈

Hζ
〉

(σ )−2ζ = (σ )−2ζ Σ̃ζζ . (4.50)

Thus for studying (δE)2

D
2 via (4.44), all we need to evaluate is 〈Hζ 〉〈Hζ 〉.

4.3.3 Average-Fluctuations Separation in the Spectra of Dilute
Fermion Systems: Results for EGOE(1) and EGOE(2)

For one body interactions as discussed by Bloch in 1969 [22], fluctuations are of
Poisson type. The argument is that without interactions there are many conserved
symmetries. An example is U(N1)⊕U(N2)⊕−−, where Ni = 2j +1 for a nuclear
or atomic shell model j -orbit. Note that the nearest neighbor spacing Sn for the
n’th level is Sn = En+1 − En where En+1 = ∑m

i=1 ε′
i and En = ∑m

i=1 ε′′
i . Here for

example ε′
i are the energies of the single particle states that are occupied by the m

fermions for generating the (n + 1)-th state. Similarly ε′′
i generate the n-th state.
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Then, obviously Sn’s will be uncorrelated giving Poisson fluctuations. In [23] (see
also [8])), the authors argued that there will be effects in the lowing part of the
many particle spectrum that depend explicitly on the structure of the single particle
spectrum. These specific effects are not yet verified in any data analysis. However,
after a critical excitation strength Poisson fluctuations set in. Thus generically, for
correlations and hence for the level repulsion we require k-body interactions with
k ≥ 2. Now, we will consider k = 2 and the results extend to any k > 2 [3, 6].

In the dilute limit H = H(2) will be effectively an irreducible two-body operator.
Chapter 5 gives details of the decomposition of H(2) into irreducible zero, one and
two-body operators. Then, using trace propagation results discussed in Chap. 5,

we have σ 2(m) = 〈H 2(2)〉m dilute limit⇒ (

m
2

)〈H 2(2)〉2. Here on-wards we will use the
normalization 〈H 2(2)〉2 = 1. Then, σ 2(m) = 〈H 2(2)〉m = (

m
2

)

. Also, in the dilute
limit, as H(2) is an irreducible two-body operator, the propagation equation for
〈Hp〉m is

〈

Hp
〉m = m(m − 1)(N − m)(N − m − 1)

N(N − 1)(N − 2)(N − 3)
x

(p)

2

+ m(m − 1)(m − 2)(N − m)(N − m − 1)(N − m − 2)

N(N − 1)(N − 2)(N − 3)(N − 4)(N − 5)
x

(p)

3

+ · · ·
m→∞,N→∞−−−−−−−−→

m/N→0

m2

N2
x

(p)

2 + m3

N3
x

(p)

3 + · · ·

−→ m2

N2
x

(p)

2 = m2

2

(

N2

2

)−1

x
(p)

2 =
(

m

2

)

〈

Hp
〉2

. (4.51)

Equation (4.51) gives the correct result for p = 2. Now the cross correlated trace is,

〈

Hζ (2)
〉m〈

Hζ (2)
〉m =

(

m

2

)2
〈

Hζ (2)
〉2〈

Hζ (2)
〉2

= 2ζ

(

m

2

)2(
N

2

)−2

. (4.52)

Here, as H in 2-particle spaces is a GOE, we used the GOE result for
〈Hζ (2)〉2〈Hζ (2)〉2 given by Eq. (2.60). Now, Eqs. (4.50) and (4.52) along with

σ 2(m) = (

m
2

)

will give the important result

S2
ζ = 2ζ

(

m

2

)2−ζ (
N

2

)−2

. (4.53)
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Substituting Eq. (4.53) in Eq. (4.44) will give the final result for level motion in
EGOE(2),

(δE)2

D(E)
2

=
(

N

m

)2(
m

2

)2
[

ρG (E)
]2

×
{

∑

ζ≥1

(ζ !)−22ζ

(

m

2

)2−ζ (
N

2

)−2
[

Heζ−1(̂E)
]2

}

Ê=0−−→ 1

π

(

N

m

)2(
m

2

)(

N

2

)−2

×
{

1 + 1

12

(

m

2

)−2

+ 1

320

(

m

2

)−4

+ · · ·
}

. (4.54)

Thus, as ζ increases, deviations in (δE)2 from the leading term rapidly go to zero
due to the

(

m
2

)−2r , r = 1,2, . . . terms in Eq. (4.54). There will be no change until
ζ ∼ m/2, thereby defining separation. Beyond this, for ζ � m/2 the deviations
grow, i.e. fluctuations set in and they will tend to that of GOE [the GOE nature
of fluctuations is seen in large number of numerical calculations and therefore it
is conjectured in [3, 6] that the EGOE fluctuations in energy levels and strengths
will follow GOE—however there is no analytical proof]. Note that for GOE, from
Eq. (2.67), we have

(δE)2

D(E)
2

̂E=0−−→ γ

π2
ln 2d, (4.55)

where γ is Euler constant and d is m-particle H matrix dimension. It is important to
stress that the BCA for EGOE(2), that gave Eq. (4.54) fails for ζ > m/2. However,
before this limit is reached separation sets in. An important consequence of the
separation is that the only a few long wavelength modes are required to define the
averages. Thus we need a few lower order moments for spectral averages and they
can be calculated using trace propagation equations without recourse to H matrix
construction and diagonalization. The separation and the GOE nature of fluctuations
(then they will be small) form the basis for statistical spectroscopy (SS) [24]. We
will discuss this further in Chaps. 5 and 7.

4.3.4 Lower-Order Moments of the Two-Point Function and Cross
Correlations in EGOE

Unlike GOE, for EGOE’s with N the number of single particle states fixed, two-
point function involves in general the two energies drawn from the spectra for two
different particle numbers say m1 and m2. It is important to note that the GOE in
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the defining space will be same for the systems with m1 fermions and m2 fermions
as N is fixed. The two-point function Sρ:m1,m2,N (x1, x2) is defined by

Sρ:m1,m2,N (x1, x2) = 〈

δ(H − x1)
〉m1
N

〈

δ(H − x2)
〉m2
N

− 〈

δ(H − x1)
〉m1
N

〈

δ(H − x2)
〉m1
N

.

(4.56)
Here, in the densities we have also shown N explicitly to stress that N is same in
all the densities. In general we have m1 = m2 or m1 �= m2. The bivariate moments
Σp,q in Eq. (4.45) are the moments for the two-point function with m1 = m2. Sim-
ilarly the level motion, discussed in the previous subsections, for a (m,N) system
derives from Sρ:m,m,N(x1, x2). More importantly, Eq. (4.56) shows that EGOE gen-
erates cross correlations, that is correlations between spectra with different particle
numbers, as the bivariate moments

Σp,q(m1,m2,N) = 〈

Hp
〉m1
N

〈

Hq
〉m2
N

− 〈

Hp
〉m1
N

〈

Hq
〉m2
N

(4.57)

will be in general non-zero for m1 �= m2. It is important to stress that so far all
attempts to derive the form of Sρ:m1,m2,N (x1, x2) for EGOE have failed; see for ex-
ample [3, 25, 26]. However, it is possible to derive the formulas for the lower order
bivariate moments, i.e. Σp,q(m1,m2,N) with p + q ≤ 4. These give some infor-
mation about cross correlations generated by EGOE. We will discuss this important
aspect in later chapters and in detail in Chap. 12.

4.4 Transition Strength Density: Bivariate Gaussian Form

The strength R(Ei,Ef ) generated by a transition operator O in the H -diagonal ba-
sis is R(Ei,Ef ) = |〈Ef | O | Ei〉|2. Correspondingly, the bivariate strength density
Ibiv;O (Ei,Ef ) or ρbiv;O (Ei,Ef ) which is positive definite and normalized to unity
is defined by

Ibiv;O (Ei,Ef ) = 〈〈

O†δ(H − Ef )Oδ(H − Ei)
〉〉

= If (Ef )
∣

∣〈Ef |O|Ei〉
∣

∣

2
I i(Ei)

= 〈〈

O†O
〉〉

ρbiv;O (Ei,Ef ). (4.58)

With εi and εf being the centroids and σ 2
i and σ 2

f being the variances of the
marginal densities ρi;O (Ei) and ρf ;O (Ef ) respectively of the bivariate density

ρbiv;O , the bivariate reduced central moments of are μpq = 〈O†(
H−εf

σf
)qO(

H−εi

σi
)p〉

/〈O†O〉 and ζ = μ11 is the bivariate correlation coefficient. In order to obtain the
asymptotic form of ρbiv;O for EGOE, formulas for μpq with p + q = 4 and 6 are
derived using BCA and thereby the reduced cumulants kpq with p + q = 4 and 6.

Firstly, H is represented by EGOE(k). Given the transition operator O of body
rank t , we can decompose it into a part that is correlated with H and represent
the remaining part say R by a EGOE(t ) independent of EGOE(k) representing H .
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Then O = αH + R and the αH term generates the expectation values or the diag-
onal matrix elements 〈E|O|E〉 where E are H eigenvalues. Note that, as H and
R are independent, α = 〈OH 〉/〈H 2〉. Therefore R generates the off-diagonal, in
the H diagonal basis, transition matrix elements |〈Ef |O|Ei〉|2, Ei �= Ef . Thus, by
removing the diagonal or expectation value producing part of O , we can assume
that H and the part R of O can be represented by EGOE(k) and EGOE(t) respec-
tively and further they can be assumed to be independent. Once we remove the
αH part from O , we need not to make a distinction between O and R and hence
from now on we use only O . Thus, the theory for transition strengths should be
applied only to the off-diagonal matrix elements. Now, we proceed to derive for-
mulas for the bivariate moments μpq using BCA with independent EGOE(k) and
EGOE(t) representations for H and O respectively [16, 27]. The matrix elements
variances v2

H and v2
O respectively in the defining space will be in general different

for EGOE(k) and EGOE(t). However they will not appear in the formulas for μpq

as these are reduced moments. It is useful to point out that the correlations in μpq

arise due to the non-commutability of H and O operators. Firstly it is seen that all
μpq with p+q odd will vanish on ensemble average and also μpq = μqp . Moreover
σ 2

i = 〈O†OH 2〉m/〈O†O〉m = 〈H 2〉 and σ 2
f = σ 2

i . Thus the first non-trivial moment
is μ11 and it is given by,

ζ = μ11 = {〈

O†(t)O(t)
〉m 〈

H(k)H(k)
〉m}−1〈

O†(t)H(k)O(t)H(k)
〉m

. (4.59)

Applying Eqs. (4.11), (4.13), (4.15) and (4.17) will then give,

ζ =
(

m

k

)−1(
m − t

k

)

= 1 − kt

m
+ k(k − 1)t (t − 1)

2m2
+ O

(

1

m3

)

. (4.60)

In the cases with p + q = 4, the moments to be evaluated are μ40 = μ04, μ31 = μ13
and μ22. The diagrams for these follow by putting O† and O at appropriate places
in the 〈H 4〉 diagrams in Eq. (4.28). Firstly, μ04 is given by

μ04 = [〈

O†O
〉m(〈

H 2
〉m)2]−1 〈

O†H 4(k)O
〉m

= [〈

O†O
〉m(〈

H 2
〉m)2]−1〈

O†O
〉m 〈

H 4(k)
〉m

= 2 +
(

m

k

)−1(
m − k

k

)

= μ40. (4.61)

Here we have used independence of O and H ensembles and used BCA that led to
Eq. (4.32). Similarly,

μ13 = [〈

O†O
〉m(〈

H 2
〉m)2]−1[〈

O†H(k)H(k)H(k)OH(k)
〉m

⊕ 〈

O†H(k)H(k)H(k)OH(k)
〉m

⊕ 〈

O†H(k)H(k)H(k)OH(k)
〉m]

. (4.62)
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The first two terms in Eq. (4.62) are equal and the directly correlated H–H pair
can be removed from the trace giving

(

m
k

)

. Then we are left with 〈O†HOH 〉m term
that gives

(

m−t
k

)(

m
t

)

. In the last term, we have to first contract the first and third

H ’s across the second H giving
(

m−k
k

)

factor. Then we are left with 〈O†HOH 〉m
term that gives

(

m−t
k

)(

m
t

)

using Eq. (4.36) for contracting H ’s across the O operator.
Combining all these, we have

μ13 =
(

m

k

)−2[

2

(

m − t

k

)(

m

k

)

+
(

m − t

k

)(

m − k

k

)]

= ζμ04. (4.63)

Alternatively, it is possible to consider μ31 and this gives immediately Eq. (4.63).
Note that μ31 involves 〈O†HOH 3〉m with O† and O correlated and [(m

t

)]−1
(

m−k
t

) =
[(m

k

)]−1
(

m−t
k

)

. This proof also gives immediately that μ15 = μ51 = ζμ06. Now, we
will consider μ22 where

μ22 = [〈

O†O
〉m(〈

H 2
〉m)2]−1[〈

O†H(k)H(k)OH(k)H(k)
〉m

⊕ 〈

O†H(k)H(k)OH(k)H(k)
〉m

⊕ 〈

O†H(k)H(k)OH(k)H(k)
〉m]

=
(

m

k

)−2 [(

m

k

)2

+
(

m − t

k

)2

+
(

m − k − t

k

) (

m − t

k

)]

. (4.64)

The first term in Eq. (4.64) is simple as we can take out the correlated pairs of H ’s
from the trace. The second term follows by applying Eq. (4.36) twice for the con-
traction of H ’s across O . The third term follows by first contracting two H ’s across
HO operator (effective body rank k + t) and then we are left with the 〈O†HOH 〉m
term. Using (4.60), (4.61), (4.63) and (4.64), formulas for the 4th order cumulants
are obtained and they are

k04 = k40 = μ04 − 3 =
(

m

k

)−1(
m − k

k

)

− 1

= −k2

m
+ k2(k − 1)2

2m2
+ O

(

1

m3

)

,

k13 = k31 = μ13 − 3μ11 = ζ k04 = −k2

m
+ k2[(k − 1)2 + 2kt]

2m2
+ O

(

1

m3

)

,

k22 = μ22 − 2μ2
11 − 1 = ζ 2

{

(

m − k − t

k

) (

m − t

k

)−1

− 1

}

= −k2

m
+ k2[(k − 1)2 + 4kt − 2t]

2m2
+ O

(

1

m3

)

.

(4.65)
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In order to establish the structure of the bivariate cumulants, the cumulants to order
p + q = 6 are also derived starting with the 15 diagrams in Eq. (4.34). Following
the μ04 and μ13 derivations, we have simply,

μ06 = [(〈

H 2
〉m)3]−1〈

H 6
〉m

= 5 + 6

(

m

k

)−1(
m − k

k

)

+ 3

(

m

k

)−2(
m − k

k

)2

+
(

m

k

)−2(
m − 2k

k

)(

m − k

k

)

,

μ15 = ζμ06.

(4.66)

Here we have used Eq. (4.37) and ζ is given by Eq. (4.60). Now, we will consider
μ24 and it is given by,

μ24 = [〈

O†O
〉m(〈

H 2〉m)3]−1

× [〈{

O†H(k)H(k)OH(k)H(k)H(k)H(k)

⊕ O†H(k)H(k)OH(k)H(k)H(k)H(k)
}

⊕ {

O†H(k)H(k)OH(k)H(k)H(k)H(k)

⊕ O†H(k)H(k)OH(k)H(k)H(k)H(k)

⊕ O†H(k)H(k)OH(k)H(k)H(k)H(k)
}

⊕ {

O†H(k)H(k)OH(k)H(k)H(k)H(k)

⊕ O†H(k)H(k)OH(k)H(k)H(k)H(k)

⊕ O†H(k)H(k)OH(k)H(k)H(k)H(k)
}

⊕ {

O†H(k)H(k)OH(k)H(k)H(k)H(k)

⊕ O†H(k)H(k)OH(k)H(k)H(k)H(k)
}

⊕ {

O†H(k)H(k)OH(k)H(k)H(k)H(k)
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Table 4.1 Diagrams for the bivariate reduced moment μ24 and the corresponding BCA formulas.
In the table, X = [〈O†O〉m (〈H 2〉m)3]
Correlation diagram Formula in BCA

X−12〈O†AAOCCBB〉m 2

X−13〈O†ACOCABB〉m 3

(

m

k

)−2(
m − t

k

)2

X−13〈O†ABOABCC〉m 3

(

m

k

)−2(
m − t

k

)(

m − t − k

k

)

X−12〈O†ACOBCBA〉m 2

(

m

k

)−3(
m − k

k

)(

m − t

k

)2

X−12〈O†ACOBABC〉m 2

(

m

k

)−3(
m − k

k

)(

m − t

k

)(

m − t − k

k

)

X−1〈O†AAOCBCB〉m
(

m

k

)−1(
m − k

k

)

X−1〈O†ACOBACB〉m
(

m

k

)−3 (

m − 2k

k

)(

m − t − k

k

)(

m − t

k

)

X−1〈O†ACOBCAB〉m
(

m

k

)−3(
m − t

k

) 2k
∑

ν=k

(

m − ν

k

)(

m − k − t

ν − k

)(

k

2k − ν

)

⊕ O†H(k)H(k)OH(k)H(k)H(k)H(k)
}

⊕ O†H(k)H(k)OH(k)H(k)H(k)H(k)

⊕ O†H(k)H(k)OH(k)H(k)H(k)H(k)

⊕ O†H(k)H(k)OH(k)H(k)H(k)H(k)
〉m]

. (4.67)

For simplicity, the ‘overline’ symbol is dropped in Eq. (4.67). All the terms in ‘{}’
brackets are equal and we show in Table 4.1, using the same alphabet for correlated
pairs of H ’s, the diagrams and the formula for them in BCA. The first seven terms
in Table 4.1 are easy to recognize following the results already given before using
BCA. The last term is special as we need to contract over two operators that are
correlated in a different way than in all the other diagrams we have considered so
far. Therefore, this needs special treatment as discussed in the context of the 8th
moment of the eigenvalue density in [3]. Finally, in BCA μ33 can be written as
follows (again here also the ‘overline’ symbol is dropped everywhere),
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μ33 = [〈

O†O
〉m(〈

H 2〉m)3]−1

× [〈{

O†H(k)H(k)H(k)OH(k)H(k)H(k)

⊕ O†H(k)H(k)H(k)OH(k)H(k)H(k)

⊕ O†H(k)H(k)H(k)OH(k)H(k)H(k)

⊕ O†H(k)H(k)H(k)OH(k)H(k)H(k)
}

⊕ {

O†H(k)H(k)H(k)OH(k)H(k)H(k)

⊕ O†H(k)H(k)H(k)OH(k)H(k)H(k)

⊕ O†H(k)H(k)H(k)OH(k)H(k)H(k)

⊕ O†H(k)H(k)H(k)OH(k)H(k)H(k)
}

⊕ O†H(k)H(k)H(k)OH(k)H(k)H(k)

⊕ {

O†H(k)H(k)H(k)OH(k)H(k)H(k)

⊕ O†H(k)H(k)H(k)OH(k)H(k)H(k)
}

⊕ O†H(k)H(k)H(k)OH(k)H(k)H(k)

⊕ {

O†H(k)H(k)H(k)OH(k)H(k)H(k)

⊕ O†H(k)H(k)H(k)OH(k)H(k)H(k)
}

⊕ O†H(k)H(k)H(k)OH(k)H(k)H(k)
〉m]

. (4.68)

Just as for μ24, we can write Eq. (4.68) as a sum of seven terms by recognizing that
the terms in a given ‘{}’ will give the same result. In Table 4.2 given are the BCA
formulas for these terms.

From the previous discussion, it is easy to derive all the formulas given in Ta-
ble 4.2. Using the formulas given in Appendix B, all the bivariate reduced moments
can be converted into bivariate cumulants and then the 1/m expansions for the 6th
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Table 4.2 Diagrams for the bivariate reduced moment μ33 and the corresponding BCA formulas.
In the table, X = [〈O†O〉m(〈H 2〉m)3]
Correlation diagram Formula in BCA

X−14〈O†ACCOABB〉m 4

(

m

k

)−1(
m − t

k

)

X−14〈O†ABAOBCC〉m 4

(

m

k

)−2(
m − k

k

)(

m − t

k

)

X−1〈O†ABCOCBA〉m
(

m

k

)−3(
m − t

k

)3

X−12〈O†ACBOCAB〉m 2

(

m

k

)−3(
m − t

k

)(

m − t − k

k

)2

X−1〈O†ABAOCBC〉m
(

m

k

)−3 (

m − k

k

)2(
m − t

k

)

X−12〈O†ABCOCAB〉m 2

(

m

k

)−3(
m − t

k

)2(
m − k − t

k

)

X−1〈O†ACBOACB〉m
(

m

k

)−3(
m − 2k − t

k

)(

m − t − k

k

)(

m − t

k

)

order cumulants are,

k06 = k60 = μ06 − 15μ04 + 30

= k3(6k − 1)

m2
− k3(k − 1)2(7k − 1)

m3
+ O

(

1

m4

)

,

k15 = k51 = ζk06 = k3(6k − 1)

m2
− k3[(k − 1)2(7k − 1) + kt (6k − 1)]

m3
+ O

(

1

m4

)

,

k24 = k42 = μ24 − μ04 − 8ζμ13 − 6μ22 + 24ζ 2 + 6

= k3(6k − 1)

m2
− k3[(k − 1)2(7k − 1) + t (12k2 − 6k − 1)]

m3
+ O

(

1

m4

)

,

k33 = μ33 − 6μ13 − 9ζμ22 + 12ζ 3 + 18ζ

= k3(6k − 1)

m2
− k3[(k − 1)2(7k − 1) + t (16k2 − 13k + 2)]

m3
+ O

(

1

m4

)

.

(4.69)

As discussed in Appendix B, for a bivariate Gaussian all cumulants kpq with
p + q ≥ 3 should be zero. Therefore, using Eqs. (4.65) and (4.69), it is seen
that in the dilute limit (just as in the case of state densities, here also one needs
k2/m → 0), the transition strength densities approach bivariate Gaussian form.
Thus, we have
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ρbiv;O (Ei,Ef )

EGOE−→ ρbiv;O (Ei,Ef ) = ρbiv−G ;O (Ei,Ef ; εi, εf , σi, σf , ζ )

= 1

2πσiσf

√

1 − ζ 2

× exp

{

− 1

2(1 − ζ 2)

[(

Ei − εi

σi

)2

− 2ζ

(

Ei − εi

σi

)(

Ef − εf

σf

)

+
(

Ef − εf

σf

)2]}

. (4.70)

However, for the strict validity of the Gaussian form, kpq = 0 for p + q ≥ 3
should be valid for any rotation of the (Ei,Ef ) variables. To examine this, we
convert the bivariate moments μpq given above in the (Ei,Ef ) variables into
those defined for the sum and difference variables (Ei + Ef ,Ei − Ef ). Re-
duced moments and cumulants defined by these new variables will be denoted
by μ′

pq and k′
pq respectively. For example, denoting Ei by x1 and Ef by x2,

we have (without loss of generality, we assume (x1, x2) are standardized vari-
ables)

μ′
20 = 〈

(x1 + x2)
2
〉m = 〈

2x2
1 + 2x1x2

〉m = 2(1 + ζ ),

μ′
02 = 〈

(x1 − x2)
2
〉m = 〈

2x2
1 − 2x1x2

〉m = 2(1 − ζ ),

μ′
40 = [

4(1 + ζ )2
]−1〈

(x1 + x2)
4
〉m

= [

4(1 + ζ )2
]−1〈2x4

1 + 6x2
1x2

2 + 8x1x
3
2

〉m

= [

4(1 + ζ )2
]−1

(2μ40 + 6μ22 + 8μ31),

μ′
04 = [

4(1 − ζ )2
]−1〈

(x1 − x2)
4
〉m

= [

4(1 − ζ )2
]−1〈2x4

1 + 6x2
1x2

2 − 8x1x
3
2

〉m

= [

4(1 − ζ )2
]−1

(2μ40 + 6μ22 − 8μ31).

(4.71)

Here, we have used the results 〈x2
1〉 = 〈x2

2〉 and 〈x2
i xj 〉 = 〈x2

j xi〉. Converting the
moments μpq into cumulants kpq , we obtain (it should be noted that ζ ′ = 0) using
Eq. (4.65),

k′
40 = [

2(1 + ζ )2
]−1

(k40 + 3k22 + 4k31) = −k2

m
+ O

(

1

m2

)

,

k′
04 = [

2(1 − ζ )2
]−1

(k40 + 3k22 − 4k31) = k − 3/2

t
+ O

(

1

m

)

.

(4.72)
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Similarly, it is easy to see that μ′
13 = μ′

31 = 0 and k′
13 = k′

31 = 0. The μ′
22 and k′

22
are given by

μ′
22 = [

4
(

1 − ζ 2
)]−1〈

(x1 + x2)
2(x1 − x2)

2
〉m

= [

4
(

1 − ζ 2
)]−1

(2μ40 − 2μ22),

k′
22 = [

2
(

1 − ζ 2
)]−1

(k40 − k22) = k(1 − 2k)

4m
+ O

(

1

m2

)

.

(4.73)

From these equations, it is clearly seen that k04 in the difference variable will
not approach zero even if m is large although all the other cumulants approach
zero as m → ∞. Therefore, even in the dilute limit, EGOE will not generate a
strict bivariate Gaussian. To further confirm this result, sixth order cumulants k′

pq

with p + q = 6 are considered. Following the same procedure as in Eq. (4.72)
for the sixth order cumulants, we get the following results using Eqs. (4.65) and
(4.69),

k′
60 = [

4(1 + ζ )3
]−1[k60 + 6k51 + 15k42 + 10k33]

= k3(6k − 1)

m2
+ O

(

1

m3

)

,

k′
51 = k′

15 = 0, k′
33 = 0,

k′
42 = [

4(1 − ζ )(1 + ζ )2
]−1[k60 + 2k51 − k42 − 2k33]

= k2(32k2 − 30k + 3)

16m2
+ O

(

1

m3

)

,

k′
24 = [

4(1 + ζ )(1 − ζ )2
]−1[k60 − 2k51 − k42 + 2k33]

= k(−8k2 + 18k − 5)

8mt
+ O

(

1

m2

)

,

k′
06 = [

4(1 − ζ )3
]−1[k60 − 6k51 + 15k42 − 10k33]

= 16k2 − 46k + 35

4t2
+ O

(

1

m

)

.

(4.74)

It is seen from Eq. (4.74) that the cumulants k′
24 and k′

06 will not approach zero
even if m is large. Thus, in practice one has to apply the bivariate Edgeworth correc-
tions (given in Appendix B) to the bivariate Gaussian form of the transition strength
density.

The peculiar behavior of k′
rs is a result of the behavior of the bivariate correlation

coefficient ζ in the original (Ei,Ef ) variables. It is seen from Eq. (4.60) that ζ → 1
as m → ∞ (with k/m → 0 and t/m → 0). This implies that as m increases, the
strength density will become narrower. The value ζ = 1 is unphysical as this implies
H and O commute. In practice, ζ = 0.6–0.8 and it will not be very close to 1. Note
that ζ = 0 implies that the strengths are constant, i.e. the system reduces to a GOE
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representation. An expansion for the strengths that starts from the GOE result can
be obtained by expanding the delta functions in Eq. (4.58) in terms of polynomials
defined by the H eigenvalue density. Given the eigenvalue density ρ(E) and the
corresponding orthonormal polynomials Pμ(E), we have [28]

δ(H − E) = ρ(E)
∑

μ

Pμ(H)Pμ(E). (4.75)

Given the moments of ρ(E), we can write the polynomials Pμ(E). As odd moments
vanish for EGOE, the lowest four polynomials, in terms of standardized variables
x, are

P0(x) = 1, P1(x) = x, P2(x) = x2 − 1
√

μ4 − 1
, P3(x) = x3 − μ4x

√

μ6 − μ2
4

.

(4.76)
Substituting in Eq. (4.58) the delta function expansion given by Eq. (4.75), we obtain
[29]

∣

∣〈mf ,Ef |O|miEi〉
∣

∣

2 =
∑

μ,ν

〈

O†P
mf
μ (H)OP mi

ν (H)
〉mi P

mf
μ (Ef )P mi

ν (Ei). (4.77)

For simplicity we assume that mi = mf = m. Now, using the results for μpq given
before one can write down formulas using BCA for gμν = [〈O†O〉m]−1〈O†Pμ(H)×
OPν(H)〉m, μ + ν ≤ 6. Then,

g00 = 1, g11 = ζ, g22 = ζ 2
[

1 − k2t

2m2
+ O

(

1

m3

)]

,

g33 = ζ 3
[

1 − 3
k2t

2m2
+ O

(

1

m3

)]

.

(4.78)

All other gμν = 0 or at least O( 1
m3 ). For example,

g24 = g42 = k3t (2k − 1)

4
√

3m3
+ O

(

1

m4

)

. (4.79)

Generalizing the results in Eq. (4.78) we have in the dilute limit

[〈

O†O
〉m]−1〈

O†Pμ(H)OPν(H)
〉m = δμν(ζ )μ

⇒ ρbiv:O (Ei,Ef ) = ρ1(Ei)ρ2(Ef )

∞
∑

μ=0

(ζ )μPμ(Ef )Pμ(Ei)

= ρbiv−G ;O (Ei,Ef ). (4.80)

For EGOE the eigenvalue densities are Gaussians and hence the polynomi-
als are Hermite polynomials. Then the sum over the polynomials gives exactly



4.5 Strength Sums and Expectation Values: Ratio of Gaussians 95

ρbiv−G ;O (Ei,Ef ) with correlation coefficient ζ . Therefore the polynomial expan-
sion has to be summed to very high orders to recover the bivariate Gaussian form.
This implies that larger the ζ value, slower will be the convergence of the poly-
nomial expansion for transition strengths. For EGOE, the correlation coefficient
ζ = (

m
k

)−1(m−t
k

)

and this will be closer to unity. Therefore, expansions for transi-
tion strength densities starting with a bivariate Gaussian form will be appropriate.
In practice, it is important to employ the bivariate Edgeworth expansion given by
Eq. (B.15) incorporating krs , r + s = 3,4 corrections.

4.5 Strength Sums and Expectation Values: Ratio of Gaussians

Given a operator O acting on an eigenstate with energy Ei , the transition strength
sum, sum of the strengths going to all states with energies Ef , is

∑

Ef
|〈Ef |O|Ei〉|2

and this is nothing but the expectation value 〈O†O〉Ei = 〈Ei |O†O|Ei〉. However,
taking degeneracies into account, one has to deal with strength sum or expectation
value densities. Given a positive definite operator K = O†O , the expectation density
IK(E) = IO†O (E) and its normalized version ρK(E) are

Im
K (E) = 〈m,E|K|m,E〉Im(E) = 〈K〉m,EIm(E)

= 〈〈

Kδ(H − E)
〉〉m;

ρk(E) = 〈Kδ(H − E)〉m
〈K〉m .

(4.81)

Clearly, expectation value will be the ratio of expectation value density and state
density. More importantly, strength sum density [for this K = O†O in Eq. (4.81)]
will be a marginal density of the bivariate strength density. For EGOE(k), as the
bivariate strength density is a bivariate Gaussian, the strength sum density will be a
Gaussian and strength sum will be a ratio of Gaussians [27],

〈

O†O
〉E = Im

O†O
(E)

Im(E)

EGOE−→ Im
O†O :G (E)

Im
G (E)

= 〈

O†O
〉m ρm

O†O :G (E)

ρm
G (E)

. (4.82)

Moments of the strength sum density are

Mp

(

O†O
) = 〈O†OHp〉m

〈O†O〉m . (4.83)

Using the moments to fourth order it is possible to add Edgeworth corrections to the
Gaussian densities in Eq. (4.82). With O = ai , Eq. (4.82) gives expectation values
of the number operator n̂i or the occupancies of the sp states |i〉. Similarly O is
GT operator gives GT strength sums [30] in nuclei and dipole operator gives dipole
strength sums in atoms [31].
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4.6 Level Fluctuations

In this section, we will briefly discuss the various attempts made in literature to
derive the two-point correlation function in energy levels for EGOE(k) and similarly
for EGUE(k).

French [3, 6] has conjectured in early 70’s, as already stated in Sect. 4.3, that
the level and strength fluctuations for EGOE(k) follow GOE. This inference came
from many numerical examples (with unfolding of each member of the ensemble
with Edgeworth corrected Gaussian defined by the moments generated by individ-
ual members, i.e. using spectral unfolding rather than ensemble unfolding) both
from EGOE(2) and random two-body interactions in nuclear shell model. These
showed that the NNSD is close to Wigner form, Δ3( n ) fits Dyson-Mehta formula
and strength fluctuations follow P-T law. See for example Figs. 2.2, 2.4, 5.3 and
[6, 7]. However, the two-point correlation function could not be derived as the BCA
fails here.

In 1984, Verbaarschot and Zirnbauer [32] used the replica trick, developed in sta-
tistical mechanics for the study of spin glasses and Anderson localization, to derive
the two-point function for EGOE(k). However their attempted was not successful.
Later in 2000, Weidenmüller’s group made another attempt [19, 20]. They have used
two extreme models, one called EGEmin(k) where all the k-particle matrix elements
are assumed to be same. Thus it will have only one independent variable. The other
ensemble is called EGEmax(k) where all matrix elements, in the m particle space
H matrix, allowed by symmetries are assumed to be independent Gaussian random
variable and the rest are put to zero. Clearly EGEmin(k) represents an integrable
system and therefore follows Poisson. Similarly, it was shown explicitly using the
SUSY method that EGEmax(k) follows GOE. Then, using the sparsity of EGOE(k)
ensemble it is argued that EGOE(k) fluctuations should be in between Poisson and
GOE. However, explicit form of the two-point correlation function could not be de-
rived [25, 26]. More recently Papenbrock et al. [33], made another attempt to estab-
lish the nature of fluctuations generated by EGOE(k). They have, motivated by the
analogy to metal-insulator transition (MIT) and a special power-law random band
matrix (PLRBM) that simulates the critical statistic at the MIT, constructed a ran-
dom matrix ensemble called scaffolding ensemble (ScE) having properties: (i) ScE
is more sparse than EGOE(k) ensemble; (ii) ScE spectral fluctuations are those of
the critical ensemble. Using arguments based on a combination of analytical results,
numerical examples and application of a criterion due to Levitov [34], it is argued
that EGOE(k) H matrices (with k ≥ 2) lie on the delocalized side of the MIT and is
therefore chaotic or equivalently EGOE(k) fluctuations follow GOE.

It is important and also of interest to understand ergodicity and universality of
embedded ensembles. Width of the fluctuations in energy centroids and spectral
variances, discussed in detail in Chaps. 11 and 12, clearly indicate that in the dilute
limit (for boson systems in the dense limit) EE will be ergodic. However there is not
yet an explicit analytical derivation of the result that EE are ergodic. Larger variety
of EE described in Chaps. 5–11 and 13 also show that EE have universality—their
results apply to a variety of physical systems. Finally, there are some attempts to
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study fluctuations in energy levels near the ground state in EE. For example, Bohi-
gas and Flores [35] compared the properties of the low-lying part of the spectrum
generated by random interactions in shell model (called TBRE—see Chap. 13) and
showed that the widths of the positions of individual eigenvalues were much larger
for the TBRE than for the GOE. Cota et al. [36, 37] analyzed NNSD and obtained
for the Brody parameter the value ∼0.8. More recent results by Flores et al. [38]
show that the semi-Poisson distribution gives a better fit than the Brody distribution,
if spectral unfolding is used.

4.7 Summary

In summary, EGOE(k) [similarly EGUE(k) discussed in Chap. 11] generates for
m � k Gaussian form for state densities with γ2 → −k2/m and this is established
using BCA. In fact, as m increases from m = k, state densities exhibit semi-circle
to Gaussian transition with m = 2k being the transition point. The semi-circle form
for m < 2k has been proved using SUSY method and the result beyond this follows
from the BCA method. Thus, the one-point function for EGOE(k) differs from that
of GOE. Secondly, using BCA it is established that the smoothed transition strength
densities will take close to a bivariate Gaussian form. Then smoothed transition
strength sums, being marginal densities divided by the state density, will be ratio
of two Gaussians. Thirdly, EGOE(k) exhibits average-fluctuation separation (as m

increases) and also non-zero cross correlations between spectra with different par-
ticle numbers (Chap. 12 gives details). Finally, it is seen (from transition strengths
and level fluctuations with both being essentially two-point in nature) that there are
important differences between GOE and EGOE in the two-point functions.
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